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Bu çalışma, EMG sinyalleri ve derin öğrenme modeli kullanılarak parmak 

hareketlerinin sınıflandırılmasına odaklanmaktadır. Elektromiyografi sinyalleri, 

kasların elektriksel aktivitesini kaydeden biyomedikal sinyallerdir ve bu sinyaller 

analiz ederek, protez uzuvların üretilmesi, koşulların teşhis edilmesi ve hatta protez 

uzuvların kontrol edilmesi gibi çeşitli alanlarda kullanılır. Bu çalışmada kullanılan 

veriler, on sağlıklı gönüllüden toplanan verilerdir. Her gönüllü, parmak hareketiyle 

ilgili yedi görevi gerçekleştirdi ve her görev beş kez tamamlandı; bu, tüm gönüllülerden 

alınan toplam deney sayısının 350 olduğu anlamına geliyor. Elektromiyografi sinyalleri 

kullanılarak verileri kaydedildi ve daha sonra bu veriler işlenerek kullanılabilir hale 

getirildi. Bu çalışmada veriler işlendikten sonra sınıflandırmaya hazır hale getirilmiştir. 

Öncelikle her bir parmağa ait veriler ayrılınmıştır ve bazı parmağa bir kanaldan fazla 

ait olduğu için FastICA yöntemi kullanarak bu kanalların verileri teke düşürmüştür. 

Daha sonra, zaman alanı tanımlayıcıları (TDD), evrişimli sinir ağı (CNN) ve uzun kısa 

süreli bellek (LSTM) kullanılarak belirli öznitelikler çıkarıldı. Bu öznitelikler 

çıkarıldıktan sonra sınıflandırma işlemi için en önemli öznitelikler karşılıklı bilgi 

yöntemi (MI) kullanılarak seçilmiştir. Bu sürecin ardından tam bağlantılı sinir ağı 

modelinin (FCNN) seçilerek sınıflandırma gerçeklenirmiştir. Modelin etkili bir şekilde 

öğrenilmesi ve yüksek doğruluk oranlarının elde edilmesi nedeniyle sınıflandırma 

işlemi başarılı olmuştur. Bu sonuçlar elde edildikten sonra derin öğrenme modellerinin 

yaşamsal belirtilerin ve EMG sinyallerinin sınıflandırılmasında etkili bir araç 

olabileceği sonucuna varılabilir. Bu çalışmadan, Derin öğrenme ile sınıflama ve analiz 

alanlarda etkili katkılar sağlayabileceği sonucuna varılabilir. 

 

Anahtar Kelimeler: Elektromiyografi, parmak hareketleri sınıflandırması, 

derin öğrenme, konvolüsyonel sinir ağları, uzun kısa süreli bellek, gerçek zamanlı 

sinyal işleme, bağımsız bileşen analizi. 
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This study focuses on the classification of finger movements using EMG signals 

and deep learning model. Electromyography signals are biomedical signals that record 

the electrical activity of muscles, and these signals are analyzed and used in various 

fields such as the production of prosthetic limbs, diagnosing conditions, and even 

controlling prosthetic limbs. The data used in this study is the data collected from ten 

healthy volunteers. Each volunteer performed seven tasks related to finger movements, 

and each task was completed five times; this means that the total number of experiments 

from all volunteers is 350. The data was recorded using electromyography signals, and 

then these data were processed and made usable. In this study, the data was made ready 

for classification after being processed. First, the data belonging to each finger was 

separated, and since more than one channel belonged to some fingers, the FastICA 

method was used to reduce the data of these channels to one. Then, specific features 

were extracted using time domain descriptors (TDD), convolutional neural network 

(CNN), and long short-term memory (LSTM). After extracting these features, the most 

important features for the classification process were selected using the mutual 

information method (MI). After this process, the classification was performed by 

selecting the fully connected neural network model (FCNN). The classification process 

was successful due to the effective learning of the model and the high accuracy rates. 

After these results were obtained, it can be concluded that deep learning models can be 

an effective tool in the classification of vital signs and EMG signals. It can be concluded 

from this study that deep learning can provide effective contributions to the fields of 

classification and analysis. 

 

Keywords: Electromyography, finger movement classification, deep learning, 

convolutional neural networks, long short-term memory, real-time signal processing, 

independent component analysis
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1. GİRİŞ 

Son yıllarda, öznitelikle derin öğrenme tekniklerine erişimle birlikte yapay zekâ 

alanında gelişmeler ilerleme kaydetti. Derin öğrenme, basit ve küçük veri kümelerinde 

öne çıkan makine öğreniminin aksine, büyük veri kümelerinden önemli kalıpları 

çıkarma konusunda üstündür. Derin öğrenme, zamansal veri analizi alanı, hayati sinyal 

işleme alanı ve görüntü işleme alanı gibi birçok alanda ilerleme ve devrim getirmiştir 

[1]. Elektromiyografi (EMG) sinyalleri, insan kaslarının elektriksel aktivitesini 

kaydeden hayati tıbbi sinyallerdir. Bu sinyalleri, kasların ne zaman ve nasıl çalıştığını 

detaylı olarak kaydederler; sınıflandırma ve analiz süreçleri, teşhis alanları, protez uzuv 

üretimi ve rehabilitasyon süreçleri [2]. Derin öğrenme modelleri, sinyalleri işleme ve 

veri kümelerinden veri çıkarma konusunda mükemmel performansa sahiptir. Örneğin 

CNN modeli ve LSTM modeli önemli özniteliklerin çıkarılmasında üstünlük 

göstermektedir. CNN, sinyallerin uzaysal özniteliklerini öğrenirken, LSTM zaman 

içindeki bağımlılıkları yakalamada en etkili yöntemdir. Bu modeller büyük veri 

setlerinin işlenmesi, analiz edilmesi ve sınıflandırılmasında etkili ve güçlü performans 

göstermektedir [3]. Ayrıca bu çalışmada, 10 sağlıklı gönüllüden toplanan her parmak 

için EMG sinyalleri kullanıldıktan sonra sınıflama işleminin başarılı olması için derin 

öğrenme modelleri ve diğer araçlar kullanıldı. İlkinde verileri ayırıp kullanılabilir hale 

getirmek için Fast Independent Component Analysis (FastICA) kullanıldı. Daha sonra 

sınıflandırma süreci için önemli özniteliklerin çıkarılması amacıyla zaman alanı 

tanımlayıcıları (Time Domain Descriptors) TDD ve derin öğrenme modelleri Evrişimli 

Sinir Ağı (Convolutional Neural Networks) ve uzun kısa süreli bellek (Long Short-

Term Memory) LSTM kullanıldı. Seçilen öznitelikler arasından en önemli öznitelikleri 

seçmek için karşılıklı bilgi (Mutual Information) MI kullanıldı. Yüksek sınıflandırma 

sonucu gösteren derin öğrenme modeli, tam bağlantılı sinir ağı (Fully Connected Neural 

Networks) FCNN kullanılarak sınıflandırma işlemi gerçeklenmiştir. Derin öğrenme 

modelleri, makine öğrenimi modelin aksine büyük veri setlerinden öğrenme yetenekleri 

sayesinde EMG sinyallerinin analizinde yüksek doğruluk sağlarken, sinyallerin daha 

geniş ölçekte kullanılmasına da olanak tanıyor [4]. Bu çalışma, EMG sinyallerini 

kullanarak parmak hareketlerini sınıflandırmada derin öğrenme teknikleri 

kullanılmaktadır. Bu biyomedikal mühendisliği, rehabilitasyon ve protez kontrol 

sistemleri gibi alanlara önemli katkılar sağlanır. 
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1.1. Literatür Taraması: EMG Sinyalleri ve Derin Öğrenme Yöntemleri 

Kasların elektriksel aktivitesini izlemek için elektromiyografi sinyalleri 

kullanılır. Bu sinyal biyomedikal sinyaldir ve robotik, protez cihazlar, teşhis vakaları 

ve diğer alanlarda kullanılmaktadır. 2000’li yıllardan itibaren, Kas hareketleri doğru 

tahmin amacı ile kullanılan bir yöntemdir. Kas aktivasyonundan elde edilen sinyalin 

işlenmesi ve sınıflaması için en uygun yöntemler ve modeller seçilmektedir. Bu 

modelden biri derin öğrenme modelidir. Derin öğrenme modeli sınıflama ve 

öznitelikler çıkarmak için yaygın bir yoldur öznitelikle görsellerin sınıflaması ya da 

EMG sinyalin işlemesi ve sınıflaması. Derin öğrenme ile EMG sinyallerin sınıflaması, 

son yıllarda sıkça kullanılan modeldir çünkü elde edilen sonuçlar çok yüksek doğruluk 

gösterir ve öznitelik çıkarma alanında kendine bir yol çizerek şimdilik sıkça kullanılan 

yöntem oldu. Buda protez alanlarda, teşhislerde, hastalıklarda ve farklı biyomedikal 

çalışmalarda büyük fayda kattı. 

EMG sinyallerin sınıflama alanında sıkça ve yaygın kullanılan modelden biri 

Convolutional Neural Networks (CNN) modelidir. Derin öğrenme algoritması CNN, 

çok geniş alanında kullanılmakta, özellikle görüntü ve sinyal işlemesinde sinyallerin 

uzaysal öznitelikleri öğrenme imkânı ile büyük başarı sağlar. Biyomedikal verilerde 

kullanınca, ham sinyallerden direkt anlamlı öznitelikler çıkarma yeteneği sahiptir [5]. 

2016 yılında Atzori ve arkadaşları, yüzey elektromiyografisi (sEMG) ile elde 

edilen verileri kullanarak protez uzuvları kontrol etmek için derin öğrenme 

yöntemlerini denediler. Atzori tarafından yürütülen bu çalışmada 67 sağlıklı kişi ve 11 

ampute kişi kullanıldı. Sınıflandırmada evrişimsel sinir ağları kullanılmış ve bu 

sınıflandırma sonucunda sağlıklı bireylerde %66, ampute bireylerde ise %38 doğruluk 

oranına ulaşılmıştır. Dolayısıyla CNN'in sahada daha yüksek doğruluk elde etme 

yeteneğine sahip olduğu sonucuna varılmıştır [6].  

2024 yılında Triwiyanto et al. Ve ark. Yüzey EMG sinyallerini kullanarak el 

hareketi sınıflandırma performansını artırmak için bir derin öğrenme modeli 

geliştirdiler. Bu veriler on sağlıklı kişiden elde edildi. Bu çalışmada sınıflandırma 

işleminde doğruluk oranı yaklaşık %97'ye ulaşan evrişimli sinir ağları kullanılmış olup 

bu doğruluk diğer yöntemlere göre daha yüksektir. Dolayısıyla bu çalışmada CNN'in 

ham sEMG verilerini dahi işlemede iyi olduğu sonucuna varılabilir. Öznitelik çıkarma 

olmadan [7]. 
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Reza Azhiri ve ark. “EMG Sinyallerinin Tekrarlayan Sinir Ağları (RNN'ler) 

Aracılığıyla Gerçek Zamanlı Sınıflandırılması” adlı bir çalışma yapmışlar ve EMG 

sinyallerinin gerçek zamanlı sınıflandırılmasında tekrarlayan sinir ağlarını 

kullanmışlardır. Bu çalışmada, zaman-frekans alanı boyunca özniteliklerin çıkarılması 

için ayrık bir dalgacık dönüşümü kullanılmıştır. Öznitelikler çıkarıldıktan sonra 

RNN'ler kullanılarak sınıflandırılmış ve 600 milisaniye içerisinde %96'luk doğruluk 

oranı elde edilmiştir. Bu da RNN modellerinin hız ve doğruluk açısından daha iyi 

sonuçlar verebileceğini doğrulamaktadır [8]. 

EMG sinyallerin sınıflamasında sadece derin öğrenme algoritmaları 

kullanılmıyor, farklı algoritmalarda kullanılır ve bu algoritmalarda makine öğrenme 

algoritmaları ve modelleridir. Bu algoritmalardan Destek Vektör Makineleri (SVM), 

Yapay sinir ağları (ANN) ve Rastgele Ormanlar (Random Forest) gibi geleneksel 

algoritmalar, küçük verileri için daha uygun ve yüksek sonuçları verirler. 

Lee ve ark. (2022) tarafından gerçekleştirilen çalışmada, elektromiyogram (EMG) 

sinyallerinin kullanıldığı el ve parmak hareketlerinin yapay sinir ağları (ANN) ile 

sınıflandırılması incelenmiştir. Çalışmada, 10 sağlıklı katılımcıdan üç farklı EMG 

kanalı üzerinden veriler toplanmış ve katılımcılar 10 farklı el ve parmak hareketi 

gerçekleştirmiştir. Elde edilen verilerden zaman-domain (TD) öznitelikleri 

çıkarılarak, ANN, destek vektör makineleri (SVM), rastgele orman (RF) ve lojistik 

regresyon (LR) algoritmaları ile sınıflandırma yapılmıştır [9]. 

Sonuçlara göre ANN, %94 doğruluk oranıyla en iyi performansı gösterirken, 

SVM %87,6, RF %83,1 ve LR %53,9 doğruluk oranlarına ulaşmıştır. Çalışmada 

Ann’ının, diğer yöntemlere kıyasla bireysel farklılıklardan en az etkilendiği ve 

katılımcılar arası doğruluk farkının daha az olduğu vurgulanmıştır. Ayrıca, sadece TD 

özniteliklerinin kullanılmasıyla diğer çalışmalara kıyasla kanal başına daha fazla 

hareket tanımlanmış ve bu yöntemle sistemin kullanım kolaylığının ve hesaplama 

yükünün azaltıldığı belirtilmiştir.  

2020 yılında Sanjay Kumar ve ark. yüzey EMG sinyalleri ile parmak hareketleri 

arasındaki doğrusal olmayan ilişkileri inceleyen ve bu ilişkileri belirli uygulamalarda 

kullanılabilecek şekilde modelleyen bir çalışma yürüttüler. Toplanıp bir veri seti haline 

getirilen veriler, araştırmacıların geliştirdikleri modelde daha sonra protez uzuv 

geliştirme ve daha verimli hale getirme alanlarında kullanılmak üzere parmak 
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hareketlerini sınıflandırmak için kullanıldı [10]. Bu çalışmada (derin öğrenme 

kullanılarak parmak hareketlerinin sınıflandırılması) Sanjay ve arkadaşlarının yaptığı 

çalışmadan elde edilen veriler kullanılmıştır.  

Kaslar ve parmak hareketleri arasındaki doğrusal olmayan ilişkileri öğrenmek 

için MRD modeli eğitilmiştir. Veri setlerindeki modelin sürekli iyileştirilmesi ile eğitim 

süreci gerçekleştirilir. Bu grupta SGD gibi optimizasyon algoritmaları ve model 

parametremizin güncellenmesi her defasında eğitim sürecinin sonunda tekrarlanır. 

Eğitim sürecinin sonunda kas aktivasyonu ile parmak hareketleri arasındaki ilişkileri 

öğrenen bir model yapılmıştır [10].  

Test sürecinde modelin performansı çeşitli istatistiksel ölçümler kullanılarak 

analiz edilmiş ve modelin başarısı ortalama karesel hata, ortalama mutlak hata ve 

korelasyon katsayısı gibi çeşitli ölçümler kullanılarak değerlendirilmiştir. Model 

sonuçları, modelin parmak hareketlerini %91'e kadar korelasyon katmanı tahmin 

edebildiğini ve ayrıca bu modelin doğrusal olmayan sinerjileri çıkarmanın etkili bir 

yolu olduğunu kanıtladığını gösterdi [10]. 

Derin öğrenme modelleri yalnızca sınıflama için değil, aynı zamanda öznitelik 

çıkarımında da yüksek katkı sağlamaktadır. CNN ve LSTM gibi modeller, daha yüksek 

sınıflama başarısı elde edebilmek için anlamlı öznitelikler çıkarabilmektedir.  

Ali Arı'nın 2023 yılında "Derin Öğrenme ve Zaman Alanı Tanımlayıcılarına 

Dayalı Özellik Çıkartımı Kullanılarak EMG Sinyali Sınıflandırması ve El Kavrama 

Hareketi Tanıma" başlıklı çalışmasında TDD, CNN ve LSTM modelleri kullanılarak 

öznitelikler çıkarılmış, bu öznitelikler MRMR yöntemiyle anlamlı olanları seçilmiş ve 

SVM ile sınıflandırma yapılmıştır. Yapılan sınıflandırmanın doğruluğu ise %98.34 

olarak elde edilmiştir [11]. 
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2. GENEL BİLGİLER 

2.1. Yüzey Elektromiyografi 

Yüzey Elektromiyografi (Surface Electromyography, sEMG), kasların 

elektriksel aktivitesini invaziv olmayan bir yöntemle ölçmek amacıyla kullanılan 

nörofizyolojik bir tekniktir. Bu yöntemde, elektrotlar cilt üzerine yerleştirilir ve altta 

bulunan kasların elektriksel sinyalleri kaydedilir. sEMG, kasların motor birimlerinden 

kaynaklanan aksiyon potansiyellerini toplar ve bu sinyaller, kas aktivitesinin 

zamanlaması, şiddeti ve koordinasyonu hakkında bilgi verir. Klinik ortamlarda, spor 

bilimlerinde ve rehabilitasyon süreçlerinde sıkça kullanılan sEMG, kas 

fonksiyonlarının değerlendirilmesi ve kas-iskelet sistemi hastalıklarının teşhisi için 

önemli bir araçtır [12]. 

 

2.1.1. Yüzey Elektromiyografi'nin Tarihçesi ve Gelişimi 

Elektromiyografi (EMG), 19. yüzyılın sonlarından itibaren kasların elektriksel 

aktivitesini incelemek için geliştirilen yöntemlerin başında gelir. İlk çalışmalar, kasların 

elektriksel potansiyellerinin kayıt altına alınması üzerine odaklanmış ve yüzey 

elektrotlarının kullanılmaya başlanmasıyla sEMG'nin temelleri atılmıştır. 20. yüzyılın 

ortalarında teknolojideki gelişmeler sayesinde sEMG daha hassas ve güvenilir bir 

teknik haline gelmiştir. Bugün, sEMG cihazları dijital sinyal işleme teknikleri ile 

çalışarak daha detaylı analizlere olanak tanımaktadır. Ayrıca, modern biyomedikal 

mühendislik uygulamaları sayesinde, sEMG sadece kas aktivitesinin ölçülmesinde 

değil, aynı zamanda insan-makine arayüzü ve protez kontrol sistemlerinde de kullanılır 

hale gelmiştir [12]. 

 

2.1.2. Yüzey Elektromiyografi'nin Temel İlkeleri 

sEMG’nin temel prensibi, kaslar çalışırken motor birimlerden yayılan 

elektriksel sinyallerin cilt yüzeyine kadar ulaşması ve yüzey elektrotlarıyla bu 

sinyallerin kaydedilmesidir. Bir kasın kasılması sırasında motor nöronlar, kas liflerine 

elektriksel uyarılar gönderir ve bu elektriksel aktivite aksiyon potansiyelleri şeklinde 

cilde yansır. sEMG cihazları bu aksiyon potansiyellerini kaydeder ve analiz eder [13]. 
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 Ölçüm sırasında kullanılan elektrotların yerleşimi, cilt ve kas arasındaki 

dokuların öznitelikleri, sinyalin kalitesini ve doğruluğunu etkileyebilir. Bu nedenle, 

doğru elektrot yerleşimi ve sinyal işleme teknikleri, güvenilir sonuçlar elde etmek için 

kritik öneme sahiptir. 

 

Şekil 2.1Yüzey Elektrotlar 

 

2.2. Veri seti  

Veri seti, belirli bir amaçla toplanan ve analiz edilmeye hazır olan organize 

verilerdir. Çeşitli değişkenler veya gözlemler içerebilir ve sayısal, kategorik ya da 

metinsel olabilir. Bilimsel araştırmalarda veri setinin kalitesi, boyutu ve çeşitliliği 

araştırmanın başarısında kritik rol oynar. Genellikle tablolar halinde düzenlenir; satırlar 

gözlemleri, sütunlar ise bu gözlemlerde ölçülen öznitelikleri temsil eder. sEMG gibi 

çalışmalarda veri setleri, kas aktivitesini ölçen sinyalleri içerebilir. 

Veri seti oluşturma süreci, araştırma amacına uygun doğru verilerin 

toplanmasıyla başlar. sEMG çalışmalarında, elektrotların doğru yerleştirilmesi ve 

cihazların uygun kullanımı veri kalitesi için önemlidir. Ayrıca, denek seçimi ve 

örnekleme yöntemleri veri setinin temsil gücünü ve genellenebilirliğini etkiler. Veri 

analiz süreci ise ham verilerin işlenmesi, eksik verilerin tamamlanması ve ardından 

istatistiksel yöntemlerle anlamlı sonuçlar çıkarılması gibi adımları içerir. Veri setinin 

kalitesi, araştırma sonuçlarının doğruluğunu ve tekrarlanabilirliğini etkiler. 
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Şekil 2.2Veri Seti Örneği 

 

2.3. Parmak hareketlerin sınıflaması 

Parmak hareketlerinin sınıflandırılması, insan-makine etkileşimi, protez 

kontrolü, sanal gerçeklik uygulamaları ve nörobilim alanlarında önemli bir araştırma 

konusudur. Parmak hareketleri, öznitelikle el becerileri gerektiren görevlerde önemli 

rol oynar ve bu hareketlerin doğru bir şekilde sınıflandırılması, robotik sistemlerde veya 

biyomedikal cihazlarda başarılı bir insan-makine arayüzü sağlamak açısından kritik 

öneme sahiptir. Bu sınıflandırma, genellikle hareket verilerinin toplanması ve bu 

verilerin farklı algoritmalar kullanılarak analiz edilmesi ile gerçekleştirilir. 

Parmak hareketlerinin sınıflandırılması süreci, hareket verilerinin 

toplanmasıyla başlar. Bu veriler genellikle elektromiyografi (EMG) sinyalleri, 

ivmeölçerler ve jiroskoplar gibi cihazlarla toplanır. EMG sinyalleri, parmakların kas 

aktivitesini kaydederken; ivmeölçer ve jiroskoplar, hareketin uzaydaki konumu ve hızı 

gibi verileri sağlar. Toplanan verilerden sinyal genliği, frekansı, ivme ve açı gibi 

öznitelikler çıkarılarak sınıflandırma algoritmalarına iletilir. 
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Sınıflandırma aşamasında çeşitli algoritmalar kullanılır. Destek Vektör 

Makineleri (SVM), doğrusal olmayan problemlerde başarılı olup hareket verilerini 

sınıflara ayırır. Yapay Sinir Ağları (ANN), öznitelikle derin öğrenme tabanlı 

algoritmalar, karmaşık hareketleri öğrenmede etkilidir. K-En Yakın Komşu (KNN) 

algoritması, hareketlerin sınıflandırılmasında en yakın komşuları temel alır. Bu 

algoritmalar, parmak hareketlerini tanıyarak sistemlerin daha doğru çalışmasını sağlar. 
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3. MATERYAL VE YÖNTEMLER 

3.1. Materyal 

3.1.1. Veri Toplama ve Ön İşlemesi Süreci 

Sanjay Kumar Dwivedi ve ark. tarafında bir veri set toplanıldı. Çalışmada 

toplanan veriler, yaşları 26 ila 31 arasında değişen 10 sağlıklı gönüllüden kaydedilmiştir 

[10]. Gönüllüler her bir parmak hareketini yaparken, parmaklardaki kas aktivasyonu 

EMG sinyali olarak kaydedilmiştir. Aynı anda kinematik verileri toplamak için 

parmaklara 23 farklı eklem noktası yerleştirilmiştir. Böylece hem kas aktivasyonuna ait 

veriler hem de kinematik veriler toplandı.Parmaklara ait  EMG sinyalleri Şekil 3.1 ‘de 

gösterildiği gibi elektrot bağlantıları yapılarak elde edilmiştir. Bu elektrotlar farklı kanalları 

oluşturmak üzere Tablo 3.1’de verilen el/parmak hareketlerine ait kas gruplarının üzerine 

yerleştirilmiştir. 

 

Araştırmanın temelini oluşturan ve kaydedilen verilerin kalitesini doğrudan 

etkileyen kritik aşama veri toplama sürecidir. Bu süreçte elde edilen ve toplanan veriler, 

ileride modellerin eğitimi ve değerlendirilmesi için kullanılır. 

 

Şekil 3.1 Veri Setin toplamasında kullanılan kanallar 
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Tablo 3.1Yüzey Elektrotların Hangi Kasların Üzerinde Yerleştirildiğini 

Belirlenmesi 

 

3.1.1.1. Kas Aktivasyonlarının Kaydedilmesi 

Kas aktivasyonunu ölçmek için kullanılan en yaygın yöntem, yüzeysel 

elektromiyografi(sEMG)dir. Veri toplama çalışmasında, doğru ve kaliteli bir şekilde 

sEMG sinyallerini kaydetmek için Ag-AgCl bipolar aktif elektrotlar kullanılmasına 

karar verilmiştir. Bu elektrotlar, kas liflerinin doğrultusuna uygun bir şekilde önkol 

bölgesindeki 8 farklı kasın üzerine yerleştirilirken, her elektrotla diğer elektrot arasında 

20 mm mesafe bırakılmıştır. 20 mm mesafesi sinyallerin kalitesini optimize etmek için 

seçilmiştir.  

Veri toplama sırasında, Digitex Lab. Co. Ltd. tarafından üretilen BA1104 pre-

amplifikatör ve TU-4 telemetri ünitesi kas aktivasyonlarını hassas bir şekilde 

kaydetmek için kullanılmıştır. BA1104 pre-amplifikatör, daha hassas verilerin 

toplanmasını sağlamak için sEMG sinyallerini kuvvetlendirir . Bundan sonra TU-4 

telemetri ünitesi  kuvvetlendirilen sinyalleri kablosuz olarak alıcıya aktarır ve elde 

edilen sEMG sinyaller, 1Hz ile 1kHz arasında bir frekans aralığında kaydedilir. Böylece 

kas aktivasyonlarının doğru bir şekilde izlenmesine yeterli frekans çözünürlüğü 

sağlanır. Daha sonra sinyaller 12bit çözürlüklü bir A/D dönüştürücü ile analog halden 

dijital hale gelir. Bu işlem, sEMG sinyallerinin ileride analiz edebilmesi ve 

işlenebilmesi için hazırlanmıştır. 

Kanal Hedef Kas El/Parmak 

1 Baş parmak uzun abdüktör kası (APL) 
Baş parmak abdüksiyonu, 

ekstansiyonu 

2 Radius bilek bükücü kası (FCR) Bilek, el fleksiyonu 

3 Yüzeysel parmak bükücü kas (FDS) 2-5. parmak PIP fleksiyonu 

4 Derin parmak bükücü kas (FDP) 2-5. parmak DIP fleksiyonu 

5 Parmak ekstansör kası (ED) 2-5. parmak ekstansiyonu 

6 İşaret parmağı ekstansör kası (EI) İşaret parmağı 

7 Ulnar bilek ekstansör kası (ECU) Bilek ekstansiyonu ve abdüksiyonu 

8 Radius bilek ekstansör kası (ECR) Bilek ve baş parmak 
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3.1.2. Verilerin Ön İşlenmesi 

Toplanan ham veriler, doğrudan modellemeye uygun hale getirilebilmesi için 

bir dizi ön işleme adımından geçirilmiştir. Bu adımlar, sEMG verilerinin işlenmesi ve 

kinematik verilerin işlenmesi olarak iki ana başlık altında incelenmiştir. 

3.1.2.1. sEMG Verilerinin İşlenmesi 

Bu adımda, ham sEMG verilerinin kas aktivasyonlarını doğru bir şekilde temsil 

edebilmesi için çeşitli ön işleme adımları uygulanmıştır. Uygulanan ön işleme adımları, 

sinyallerin filtrelenmesi, normalizasyonu ve düzleştirilmesini içermektedir. 

Bant geçiren filtrelemede, 10 Hz ile 500 Hz arasında çalışan 4. dereceden 

Butterworth filtresi kullanılarak ham sEMG sinyalleri filtrelendi. Bu filtreleme işlemi, 

sinyaldeki düşük frekanslı gürültüleri ve yüksek frekanslı parazitleri ortadan kaldırarak 

kas aktivasyonlarının daha net bir şekilde elde edilmesini sağlar. Yüksek frekanslı 

gürültülerin yanı sıra hareketlerden kaynaklanan düşük frekans bileşenlerini de yok 

ederek, kas aktivasyonlarının doğru bir şekilde analiz edilmesine olanak tanır.[10] 

Düzleştirme ve normalize etme adımında, doğrultma (rectifier) işlemi ile önceki 

adımdan filtrelenmiş sinyaller pozitif değerlere çevrilmiş ve her bir sinyal, ilgili kas 

için elde edilen maksimum sEMG değeri ile normalize edilmiştir. Kaslardan elde edilen 

sinyallerin karşılaştırabilir hale gelmesi ve kas aktivasyon seviyelerinin doğru bir 

şekilde değerlendirilmesi için normalize etme işlemi uygulanır. Kas aktivasyonlarının 

her bir kas için standart bir ölçümle ifade etmesi için bu işlem yapılır. 

Normalize işleminden sonra sinyaller, alçak geçiren filtreleme işleminde, 4Hz 

kesim frekansı olan sıfır fazlı bir alçak geçiren filtre ile süzülmüştür. Kas aktivasyon 

sinyallerini daha düzleştirmek ve olası gürültüyü azaltmak için bu filtre yöntemi 

kullanılır. Yani bu filtreleme işlemi sinyaldeki ani dalgalar ve yüksek frekans gürültüyü 

kaldırır ve sinyal daha stabil hale gelir. 

Ön işleme adımları, ham sEMG sinyallerinden kas aktivasyonunu başarılı bir 

şekilde tahmin etmek için gerekli olan işlenmiş verilerin elde edilmesine yönelik olarak 

gerçekleştirilir. Bu işlenmiş veriler, kas aktivasyonu modelinde kullanılacak verilerin 

temelini oluşturur. sEMG sinyalleri bu şekilde işlendiğinde, modelin doğruluk oranı 

artar ve kinematik verilerle olan ilişkiyi güçlendirir. 
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3.1.3. Sonuç Değerlendirme 

Veri toplama ve ön işleme süreci, bu çalışmanın temel bileşenlerinden biridir. 

sEMG sinyalleri ve kinematik verilerin doğru bir şekilde toplanması ve işlenmesi, 

modelin doğruluğunu ve güvenilirliğini doğrudan etkileyen faktörlerdir. Elde edilen 

veriler, yüksek boyutlu sinyallerin düşük boyutlu temsillerinin oluşturulmasında ve bu 

temsillerin, karmaşık motor kontrol görevlerinde kullanılmasında büyük rol oynamıştır. 

Bu süreç, kas aktivasyonları ile parmak kinematikleri arasındaki ilişkilerin doğru bir 

şekilde çıkarılmasını sağlamakta ve bu ilişkilerin daha ileri analizler için 

kullanılabilmesine olanak tanımaktadır. 

 

3.2. Yöntemler 

3.2.1. Veri Toplama ve Hazırlık 

Çalışmamızda, 10 farklı katılımcı (9 erkek, 1 kadın) üzerinde gerçekleştirilen 

bir deneyde elde edilen veri seti kullanılmıştır. Her katılımcı, 7 farklı görevi 5 kez 

tekrarlayarak toplam 35 deneme gerçekleştirmiştir. Veri seti, katılımcıların hareketlerini 

tanımlayan kinematik veriler ve kas aktivitelerini gösteren elektromiyografi (EMG) 

sinyallerinden oluşmaktadır. Bu değişken, her bir deneme ve görev için 5x7 boyutunda 

bir matris şeklinde organize edilmiştir. Çalışmamızda, parmak hareketleriyle ilgili 5 

göreve odaklanıldığından, bu matris 5x5 boyutuna indirgenmiştir. Matrisin her bir 

hücresi, 8 farklı kas kanalından alınan 4000 örneklik bir sinyal içermektedir. Bu 

kanalların bazıları, sadece parmak hareketleriyle değil, elin diğer bölgelerindeki 

hareketlerle de ilişkilidir. 

Tablo 3.2 Parmaklara Ait Kanalların Belirlemesi 

Parmak  Kanal1 Kanal2 Kanal3 Kanal4 Kanal5 Kanal6 Kanal7 Kanal8 

Başparmak          

İşaret          

Orta          

Yüzük          

Serçe          

 

Araştırmanın odak noktası parmak hareketleri olduğu için, veri analizini 

kolaylaştırmak ve sonuçların daha güvenilir olması amacıyla toplam veri setinden 

sadece parmaklara ait 5 kanal seçilmiştir. Bu kanallar, Tablo 3.2'de listelenmiştir. 
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Veri analizinde, her parmağın hareketini ayrı ayrı takip etmek için farklı bir 

yaklaşım benimsenmiştir. İşaret parmağı için özel bir kanal oluşturulurken, orta, yüzük 

ve serçe parmakların sinyalleri birleştirilerek tek bir kanalda toplanmıştır. Elde edilen 

bu kanallar, FastICA yöntemi ile bağımsız bileşenlere ayrıştırılarak 4000x1 boyutunda 

tek boyutlu sinyaller elde edilmiştir. 

3.2.1.1. Bağımsız Bileşen Analizi (Fast Independent Component 

Analysis, FastICA) 

Çalışmada, çok kanallı gözlemlenen parmak hareket verilerinden anlamlı 

bileşenleri çıkarmak için FastICA algoritması kullanılmıştır. FastICA, diğer ICA 

algoritmalarına göre daha hızlı ve verimli olduğu için tercih edilmiştir. Bu algoritma, 

karışık sinyallerden, parmak hareketleriyle doğrudan ilişkili olan fizyolojik sinyalleri 

temsil eden bağımsız bileşenleri başarılı bir şekilde çıkarır [14, 15]. Öznitelikle orta, 

yüzük ve serçe parmaklarından elde edilen 3, 4, 5 kanallarının birleştirilerek tek bir 

kanala indirgenmesi, farklı parmaklardan elde edilen sinyallerin farklı güç ve gürültü 

seviyelerine sahip olmasından kaynaklanan dengesizliği gidererek, sonraki analizler 

için daha homojen bir veri seti elde etmeyi amaçlar. Bu adım, veri ön işleme sürecinde 

önemli bir rol oynar. 

𝑿 = 𝑨𝑺 ( 3.1) 

X matrisi, 4000 zaman örneği için 3 farklı sensörden alınan verileri içerir. Bu 

veriler, A matrisi adı verilen bir karışım matrisi ile karıştırılmış haldedir. A matrisi, 

orijinal sinyallerin nasıl bir araya gelerek gözlemlenen sinyalleri oluşturduğunu 

gösterir. FastICA algoritması, bu karışımı çözerek orijinal sinyallere karşılık gelen 

bağımsız bileşenleri (S matrisi) elde eder. S matrisi, 4000 zaman örneği ve tek bir 

bileşenden oluşur. Bu bileşenler, sinyallerin temel yapı taşlarını oluşturur ve sinyallerin 

kökeni hakkında önemli bilgiler verir. 

 

𝑿 = (

𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑

𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝟐

⋮ ⋮ ⋮
𝒙𝟒𝟎𝟎𝟎,𝟏 𝒙𝟒𝟎𝟎𝟎,𝟐 𝒙𝟒𝟎𝟎𝟎,𝟑

)   (3.2) 
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𝑨 = (

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

) (3.3) 

 

bağımsız bileşen matrisini elde etmek için karıştırma matrisinin tersini bulmak gerekir. 

ve denklem şu şekilde olur. 

𝑺 = 𝑾𝑿  (3.4) 

W, karıştırma matrisinin tersidir ve bağımsız bileşenleri elde etmek için 

kullanılır. Bu matris, 1x3 boyutundadır. 

𝑾 = 𝑨−𝟏 (3.5) 

 

𝑾 = (𝒘𝟏𝟏 𝒘𝟏𝟐 𝒘𝟏𝟑)  (3.6) 

 

𝑺 = (𝒘𝟏𝟏 𝒘𝟏𝟐 𝒘𝟏𝟑) (

𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝟑

𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝟐

⋮ ⋮ ⋮
𝒙𝟒𝟎𝟎𝟎,𝟏 𝒙𝟒𝟎𝟎𝟎,𝟐 𝒙𝟒𝟎𝟎𝟎,𝟑

)   (3.7) 

 

𝑺 = (

𝒔𝟏𝟏

𝒔𝟐𝟏

⋮
𝒔𝟒𝟎𝟎𝟎,𝟏

)   (3.8) 

 

S matris, parmak hareketlerinden elde edilen EMG sinyallerinin bağımsız 

bileşenlerini temsil etmektedir. FastICA algoritmasını kullandıktan sonra elde edilen 

bileşenler, daha sonra analiz edilmek ve kaydetmek için, orijinal sinyallerin 

karışımından bağımsız olarak ayrıştırılmıştır. Bu adımla, tüm parmakların verileri 

birbirine benzer boyutlu hale getirilmiştir, yani tüm parmakların verileri artık 

4000x1boyutundadır. Bu işlem verileri ön işlemeden önce dengeli ve basit hale 

getirmiştir.  
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3.2.1.2. Eğitim ve Test Verilerinin Ayrılması 

 FastICA’dan sonra ön işlemeyi geçmeden önce, veri setini eğitim ve test olmak 

üzere ikiye ayırmaktır. Eğitim seti, modelin öğrenmesi için kullanılırken; test seti, 

modelin hiç görmediği verilerden oluşur. Bu, modelin sadece eğitim verilerini 

öğrenmesini değil, daha önce görmediği veriler üzerinde de doğru tahmin yapıp 

yapamayacağını test etmemizi sağlar.  Veri setinin belirli bir oranı (%70 eğitim ve %30 

test) bu şekilde eğitim ve test olarak ayrılmıştır. 

3.2.2. Veri Ön İşleme 

Veri ön işleme adımında, elde edilen ham veriler, daha anlamlı ve kullanışlı hale 

getirilmek üzere çeşitli yöntemlere tabi tutulur. Bu süreçte, öncelikle Zaman Alanı 

Tanımlayıcıları (Time Domain Descriptors), Evrişimli Sinir Ağı (Convolutional Neural 

Network, CNN) ve Uzun-Kısa Süreli Bellek (Long Short-Term Memory, LSTM) gibi 

derin öğrenme modelleri kullanılarak verilerden farklı öznitelikler çıkarılır. Bu 

öznitelikler, verinin zaman içindeki değişimlerini ve kalıplarını yansıtır. Daha sonra, 

Karşılıklı Bilgi (Mutual Information) yöntemi ile bu öznitelikler arasındaki ilişkiler 

incelenerek, sınıflandırma için en önemli ve ayırt edici öznitelikler seçilir. Bu sayede, 

seçilen öznitelikler kullanılarak yapılan sınıflandırma işlemlerinde daha başarılı 

sonuçlar elde edilir. 

 

3.2.2.1. Zaman Alanı Tanımlayıcıları (Time Domain Descriptors, TDD) 

Parmak hareketlerinin karakteristik özniteliklerini ortaya çıkarmak için, her bir 

deneyden elde edilen veriler üzerinde Zaman Alanı Tanımlayıcıları (TDD) yöntemi 

uygulanmıştır. TDD, bir sinyalin ortalaması, varyansı, tepe değeri gibi zamanla ilgili 

istatistiksel özniteliklerini ifade eder [16]. Bu yöntem sayesinde, her bir deney için 

Tablo 3.3 ’de belirlenen 22 farklı TDD özniteliği hesaplanmıştır. Bu öznitelikler, 

parmak hareketlerinin hızlanması, yavaşlaması, düzenliliği gibi farklı yönlerini temsil 

eder. Elde edilen bu öznitelikler, derin öğrenme modelinin eğitiminde giriş verisi olarak 

kullanılır. Böylece, model, parmak hareketlerinin bu farklı özniteliklerini öğrenerek 

daha doğru sınıflandırmalar yapabilir. 
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Tablo 3.3TDD ile Çıkarılacak 22 Öznitelik 

Öznitelik Adı Açıklama 

Mean Sinyalin ortalama değeri 

Standard Deviation Sinyalin standart sapması 

Maximum Value Sinyalin maksimum değeri 

Minimum Value Sinyalin minimum değeri 

RMS (Root Mean Square) Sinyalin karekök ortalaması 

MAV (Mean Absolute Value) Sinyalin ortalama mutlak değeri 

Waveform Length Sinyalin dalga boyu 

Zero Crossings Sinyalin sıfır geçişleri sayısı 

Slope Sign Changes Eğimin işaret değişikliklerinin sayısı 

Skewness Sinyalin çarpıklık değeri 

Kurtosis Sinyalin basıklık değeri 

Variance Sinyalin varyansı 

Energy Sinyalin enerji değeri 

Entropy Sinyalin entropisi 

Mean Absolute Difference Ortalama mutlak fark 

Max Absolute Difference Maksimum mutlak fark 

Median Sinyalin medyan değeri 

Range Sinyalin aralığı (maksimum- 

minimum) 

P25 (Percentile 25) Sinyalin 25. yüzdelik dilimi 

P75 (Percentile 75) Sinyalin 75. yüzdelik dilimi 

IQR (Interquartile Range) Çeyrekler arası aralık (P75- P25) 

ZCR (Zero Crossing Rate) Sıfır geçiş oranı 
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Mean: Sinyalin ortalama değeri 

𝒎𝒆𝒂𝒏 =
𝟏

𝑵
∑ 𝒙𝒊

𝑵
𝒊=𝟏    (3.9) 

 

Şekil 3.2TDD'nin Ortalama Sinyali 

 

StandardDeviation: Sinyalin standart sapması 

𝒔𝒕𝒅 = √
𝟏

𝑵
∑ (𝒙𝒊 − 𝒎𝒆𝒂𝒏)𝟐𝑵

𝒊=𝟏  (3.10) 

 

Şekil 3.3TDD'nin Srandart Sapması 
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Tablo 3.4 TDD Özniteliklerin Denklemleri 

 

 

 

 

Öznitelik Denklem 

Ortalama 

 

𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

Standart Sapma 

 
√

1

𝑁
∑(𝑥𝑖 − 𝑚𝑒𝑎𝑛)2

𝑁

𝑖=1

 

Maksimum Değer 𝑀𝑎𝑥 = max(𝑥𝑖) 

Minimum Değer 𝑚𝑖𝑛 = min(𝑥𝑖) 

Karekök Ortalamsı 

𝑅𝑀𝑆 =
1

𝑁
∑ 𝑥𝑖

2

𝑁

𝑖=1

 

Ortalama Mutlak Değer 

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥𝑖|

𝑁

𝑖=1

 

Dalga Formu Uzunluğu 

∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 

Sıfır Geçişleri 

∑ 𝑠𝑖𝑔𝑛(𝑥𝑖 ∙ 𝑥𝑖+1)

𝑁−1

𝑖=1

< 0 

Eğeri Yön Değişiklikleri 

∑ 𝑠𝑖𝑔𝑛((𝑥𝑖 − 𝑥𝑖−1) ∙

𝑁−1

𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)) 

Çarpıklık 1
𝑁

∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛)3𝑁
𝑖=1

𝑠𝑡𝑑3
 

Basıklık 1
𝑁

∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛)4𝑁
𝑖=1

𝑠𝑡𝑑4
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Tablo 3.5. TDD Özniteliklerin Denklemleri 

 

 

 

Öznitelik Denklem 

Sinyalin varyansı 1

𝑁
∑(𝑥𝑖 − 𝑚𝑒𝑎𝑛)2

𝑁

𝑖=1

 

Sinyalin enerji değeri 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑥𝑖
2

𝑁

𝑖=1

 

Sinyalin entropisi 

− ∑(𝑥𝑖
2) ∙ log(𝑥𝑖

2 + 1𝑒 − 12)

𝑁

𝑖=1

 

Ortalama mutlak fark 1

𝑁 − 1
∑|𝑥𝑖+1 − 𝑥𝑖|

𝑁−1

𝑖=1

 

Maksimum mutlak fark max(|𝑥𝑖+1 − 𝑥𝑖|) 

Sinyalin medyan değeri 𝑀𝑒𝑑𝑖𝑎𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥𝑖) 

 

Sinyalin aralığı (maksimum- 

minimum) 

𝑅𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥 − 𝑚𝑖𝑛 

Sinyalin 25. yüzdelik dilimi 𝑃25 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑥𝑖 , 25) 

 

Sinyalin 75. yüzdelik dilimi 𝑃75 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑥𝑖 , 75) 

 

Çeyrekler arası aralık (P75- 

P25) 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑥𝑖 , 75)

− 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑥𝑖, 25) 
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3.2.2.2. Evrişimli Sinir Ağı  (Convolutional Neural Network, CNN) 

3.2.2.2.1. CNN Mimarisi ve Temel İlkeler 

CNN modeli, otomatik bir şekilde sinyal verilerinden öznitelikler çıkarır. Giriş 

katmanı, sinyal verilerini CNN modeli için uygun hale dönüştürür. Sonra da Conv1D 

katmanı kullanarak sinyallerdeki paternler öğrenilir ve en önemli öznitelikleri elde 

etmek ve çıkarmak için filtreler uygulanır. Veri boyutlarını küçültmek ve önemli 

bilgileri özetlemek için Havuzlama (Pooling) katmanı kullanılır. Evrişim ve Havuzlama 

işleminden elde edilen özniteliklerin haritalarını Düzleştirme katmanı (Flatten Layer)  

düzleştirir [17]. Çıkarılan özniteliklerden ileri düzeyde öznitelikler hesaplamak için 

Dense katmanları kullanılır. Bu adımlardan sonra CNN modeli anlamlı öznitelikler 

çıkarmış olur ve öznitelik seçimi ve sınıflama için hazırlanmış olur. 

3.2.2.2.2. Giriş (Input) Katmanı  

Giriş katmanında, CNN'in kullanılabilmesi ve çalışabilmesi için sinyaller uygun 

formata getirilir; bu format üç boyutludur. Dolayısıyla, sinyaller üç boyutlu formata 

dönüştürülür. Sinyallerin bu şekilde işlenmesi, CNN'in sinyaldeki zaman serisinden 

örüntüler (paternler) çıkarmasını sağlar. 

𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏}                       (3.11) 

𝑥𝑖 , sinyalin 𝑖 . zaman dilimindeki değerini ifade eder ve 𝑛  sinyalin toplam 

uzunluğudur. 

3.2.2.2.3. Evrişimli Katman (Convolutional Layer) 

Evrişimli katman, CNN'in en önemli bölümlerinden biridir. Bu katman, 

sinyaldeki örüntüleri analiz etmek ve tanımak için küçük filtreler uygular. Bu filtreler, 

sinyallerin üzerinde kayarak küçük bölümlerini inceler [18]. Böylece, filtreleme 

işleminde kullanılan filtreler, sinyalleri analiz ederek önemli öznitelikleri başarılı bir 

şekilde çıkarır. Evrişim işlemi sırasında, filtre ile sinyal arasında çarpma işlemi 

gerçekleştirilir ve her seferinde yeni bir öznitelik haritası elde edilir. Bu haritalar, 

sinyaldeki farklı örüntülerin ve frekans bileşenlerinin görselleştirilmesini sağlar. 

𝑺(𝒕) =  (𝑿 ∗  𝑾)(𝒕) =  ∑ 𝑾(𝒊) ∙ 𝑿(𝒕 +  𝒊 −  𝟏)𝒌
𝒊=𝟏             (3.12) 
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𝑋(𝑡) , giriş sinyalini, 𝑊(𝑖), filtrenin ( 𝑖 ). ağırlığını ifade eder. " ∗ " sembolü, 

evrişim işlemini temsil eder. 

3.2.2.2.4. Aktivasyon Fonksiyonu (ReLU) 

Doğrusal olmayan aktivasyon fonksiyonu, CNN'de evrişim katmanından sonra 

uygulanır. Bu çalışmada kullanılan aktivasyon fonksiyonu ReLU fonksiyonudur. ReLU 

sıkça ve yaygın bir şekilde kullanılan fonksiyondur. ReLU, sinyallerdeki sadece negatif 

değerler üzerinde çalışarak tüm negatif değerleri sıfırlar ve pozitif değerleri olduğu gibi 

bırakır.  

𝒇(𝒙) = 𝐦𝐚𝐱(𝟎, 𝒙)   (3.13) 

x, evrişim katmanından gelen bir değeri ifade eder. Eğer 𝑥  negatifse, ReLU 

çıktısı sıfır olur. Eğer 𝑥 pozitifse, ReLU çıktısı  𝑥 ile aynı olur. 

 

3.2.2.2.5. Maksimum Havuzlama (Max Pooling) Katmanı 

Evrişim katmanından sonra gelen havuzlama katmanı, boyutları küçültmek ve 

modelin daha verimli bir şekilde çalışmasını sağlamak için kullanılır. Havuzlama 

işlemi, sinyalin belirli bölgelerden en yüksek değeri alarak sinyali özetler. Bu sayede 

model, hesaplamada fazla yük harcamaz ve önemli bilgileri koruyarak aşırı öğrenme 

(overfitting) riskini azaltır. Havuzlama tekniği olarak en yaygın kullanılan yöntem max 

pooling'dir. Max pooling, yüksek frekanslı bileşenleri daha iyi koruduğu için tercih 

edilen bir yöntemdir. 

𝒚(𝒕) =  𝒎𝒂𝒙{𝑺(𝒕 +  𝒊)|𝒊 =  𝟎, … , 𝒑 − 𝟏}   (3.14) 

 

𝒑, havuzlama penceresinin boyutunu ifade eder.  

 

3.2.2.2.6. Düzleştirme Katmanı (Flatten Layer) 

Genellikle havuzlama ve evrişim katmanlarından çıkan veriler çok boyutlu veri 

yapılarıdır. Bu çıkışların bağlantı katmanlarına geçmeden önce düzleştirilmesi gerekir. 

Çok boyutlu verilerin tek boyutlu hale dönüştürülmesi için düzleştirme katmanı 

uygulanır. Bu işlem, bir sinyalin öznitelik haritasının tek boyutlu bir vektöre 
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dönüştürülmesini sağlar. Sinyalde n tane öznitelik haritası bulunur ve her bir haritada 

m tane değer vardır. Bu işlemden elde edilen vektör, öznitelik haritası ile değer sayısının 

çarpımıyla elde edilir; dolayısıyla m*n boyutunda bir vektör oluşturulur. 

3.2.2.2.7. Tam Bağlantılı Katman (Fully Connected Layer) 

Tam bağlantılı katman, her bir nöronun giriş verilerini ağırlıklandırarak toplar 

ve ReLU aktivasyon fonksiyonu ile işleyerek ileri düzeyde bilgi çıkarır [19]. Bu 

çalışmada tam bağlı katman sadece öznitelik çıkarımı yapmaktadır. Sınıflama işlemi 

olsaydı, eğitim süreci gerçekleşecekti; ancak burada yalnızca öznitelik çıkarımı 

gerçekleştirilmektedir. 

𝒛 =  ∑ 𝒘𝒊 ∙ 𝒙𝒊
𝒏
𝒊=𝟏 +  𝒃   (3.15) 

 

𝑤𝑖 , ağırlıkları; 𝑥𝑖, giriş değerlerini ve 𝒃, bias terimini ifade eder. Bu toplama 

işlemi sonrası, aktivasyon fonksiyonu uygulanır. 

𝒂 = 𝑹𝒆𝑳𝑼(𝒛)   (3.16) 

 

3.2.2.2.8. Çıkış Katmanı (Output Layer) 

Öznitelik çıkarma işlemi, sinyallerin farklı yönlerinin analiz etmesine yardımcı 

olur. Çıkarılan öznitelikler ise sinyalin farklı paternlerini ve bileşenlerini temsil 

etmektedir. 

𝑷(𝒚 = 𝒋|𝒙) =
𝐞𝐱𝐩(𝒛𝒋)

∑ 𝐞𝐱𝐩(𝒛𝒌)𝑲
𝒌=𝟏

   (3.17) 

 

exp(𝒛𝒋), sınıf 𝒋 için hesaplanan değeri ifade eder ve toplam  𝑲  sınıf vardır. Bu 

işlem, her sınıfın olasılığını hesaplanır ve sınıflandırma problemleri için kullanılır. 

 

3.2.2.3. Uzun-Kısa Süreli Bellek (Long Short-Term Memory, LSTM) 

Yöntemi ve yapısı 

Zaman serisi verilerinde uzun vadeli bağımlılıkları modellemek için kullanılan 

LSTM, tekrarlayan sinir ağlarının (RNN) bir türüdür. Bu model, gereksiz bilgileri 
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unutmak ve önemli bilgileri bellekte tutmak için hücre durumu ile giriş kapısı, unutma 

kapısı ve çıkış kapısı kullanır [20, 21]. 

3.2.2.3.1. Hücre Durumu 

Hücre durumu, bu modelin en önemli bileşenlerinden biridir; çünkü yalnızca 

zaman serisindeki taşınan bilgileri temsil etmekle kalmaz, aynı zamanda LSTM’nin 

hafızası görevini de üstlenir. Geçmiş bilgilerin sürekli güncel kalmasını sağlamak için, 

zamanın her ilerlemesinde hücre durumu güncellenir ve bu sayede bilgileri korur. 

𝑪𝒕 = 𝒇𝒕 ∙ 𝑪𝒕−𝟏 + 𝒊𝒕 ∙ 𝑪̃𝒕  (3.18) 

 

𝐶𝑡, mevcut zaman adımındaki hücre durumu, 𝐶𝑡−1, önceki zaman adımındaki 

hücre durumu, 𝐶𝑡−1 , unutma kapısının çıktısı, 𝑖𝑡 , giriş kapısının çıktısı, 𝐶̃𝑡, hücre 

durumu. 

 

3.2.2.3.2. Unutma Kapısı (Forget Gate) 

Hücre durumundaki bilgilerin ne kadar kaybedileceği ve ne kadar korunacağı, 

unutma kapısı tarafından belirlenir. 

𝒇𝒕  =  𝝈(𝑾𝒇  ∙  [𝒉{𝒕−𝟏}, 𝒙𝒕] + 𝒃𝒇)  (3.19) 

 

𝑓𝑡 , unutma kapısının çıktısı, 𝑊𝑓 , unutma kapısının ağırlık matrisi, ℎ{𝑡−1} , bir 

önceki zaman adımındaki gizli durum, 𝑥𝑡, mevcut zaman adımındaki giriş, 𝑏𝑓, unutma 

kapısının kutuplama terimi, 𝜎, sigmoid aktivasyon fonksiyonudur. 

 

3.2.2.3.3. Giriş Kapısı (Input Gate) 

Bu kapı, yeni bilgilerden hangilerinin hücre durumuna ekleneceğini belirler. Bu 

süreç, her zaman adımında bilgilerin nasıl işlendiğini kontrol eder.  

Giriş kapının çıktısı. 

𝒊𝒕  =  𝝈(𝑾𝒊  ∙  [𝒉{𝒕−𝟏}, 𝒙𝒕] + 𝒃𝒊)   (3.20) 
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𝑪𝒕̂  = 𝐭𝐚𝐧𝐡(𝑾𝑪  ∙  [𝒉{𝒕−𝟏}, 𝒙𝒕] + 𝒃𝑪)  (3.21) 

 

Bu işlem, mevcut hücre durumunu giriş kapısının çıktısı ile günceller ve 

hücreye eklenecek yeni hücre durumu adayını hesaplar. 

𝑖𝑡 , giriş kapısının çıktısı, 𝐶𝑡̂ , hücre durumu adayı, 𝑊𝑖  ve 𝑊𝐶 , giriş kapısının 

ağırlık matrisleri,  𝑏𝑖  ve 𝑏𝐶 , giriş kapısının kutuplama terimleri, 𝑡𝑎𝑛ℎ  , hiperbolik 

tanjant aktivasyon fonksiyonudur. 

 

3.2.2.3.4. Hücre Durumunun Güncellenmesi 

Güncellenmiş hücre durumu 

𝑪𝒕 =  𝒇 𝒕 ∙  𝑪{𝒕−𝟏}  +  𝒊𝒕  ∙ 𝑪𝒕̂  

 (3.22) 

𝐶𝑡, yeni hücre durumu, 𝑓 𝑡, unutma kapısının çıktısı, 𝐶{𝑡−1}, bir önceki hücre 

durumu, 𝑖𝑡, giriş kapısının çıktısı, 𝐶𝑡̂, yeni hücre durumu adayıdır. 

 

3.2.2.3.5. Çıkış Kapısı (Output Gate) 

Bu kapı, hücrede depolanan bilgilerin ne kadarının dışarıya aktarılacağını 

belirler. Çıkış kapısı, modelin tahmin işlemini gerçekleştirmek için kullanılacak 

bilgileri kontrol eder. Modelin çıkışı, çıkış kapısının çıktısı, hücre durumu ve gizli 

durumdan oluşur. 

 

𝒐𝒕  =  𝝈 (𝑾𝒐  ∙  [𝒉{𝒕−𝟏}, 𝒙𝒕] + 𝒃𝒐)   (3.23) 

 

𝒉𝒕  =  𝒐𝒕  ∙ 𝐭𝐚𝐧𝐡(𝑪𝒕)   (3.24) 

 

𝑜𝑡, çıkış kapısının çıktısı, ℎ𝑡, yeni gizli durumdur. 
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3.2.2.3.6. Öznitelik çıkarma sonucu 

Yukarıdaki modelleri ve yöntemleri kullanarak gerekli öznitelikler başarılı bir 

şekilde seçilir ve verileilerin sayısı azaltılmış olur. Sonuç olarak toplamda 118 özellik 

elde edilir: 22 TDD, 64 CNN ve 32 LSTM. 

 

3.2.2.4. Karşılıklı Bilgi (Mutual Information, MI) 

Ön işleme aşamasında, TDD, CNN ve LSTM kullanılarak toplamda çok sayıda 

öznitelik elde edilmiştir. Bu sayı sınıflama için yeterli olsa da, daha net ve yüksek 

sonuçlar elde etmek amacıyla Karşılıklı Bilgi yöntemi uygulanmaktadır. Bu yöntem, en 

önemli özniteliklerin seçilmesini sağlayarak, öznitelik sayısını azaltır. Böylece, 

sınıflama işlemi daha kolay hale gelir ve performans artışı sağlanır; ayrıca aşırı 

öğrenme (overfitting) riskinden kaçınılmış olur. 

3.2.2.4.1. Karşılıklı Bilgi Hesaplaması 

 

Bu hesaplama, bir özelliğin hedef değişken üzerindeki etkisini göstermek için o 

özniteliğin hedef değişkenle olan karşılıklı bilgi miktarını hesaplar. Bu sayede, hangi 

özniteliklerin hedef değişkenle daha fazla ilişkili olduğu belirlenir ve en önemli 

öznitelikler seçilerek sınıflama performansı artırılabilir. 

 

𝑰(𝑿𝒊; 𝒀) = ∑ ∑ 𝑷(𝒙𝒊, 𝒚) 𝐥𝐨𝐠 (
𝑷(𝒙𝒊,𝒚)

𝑷(𝒙𝒊)𝑷(𝒚)
)𝒚∈𝒀𝒙𝒊∈𝑿𝒊
   (3.25) 

𝑋 öznitelik, 𝑌 hedef değişken, 𝑝(𝑥, 𝑦) ortak olasılık dağılımı, 𝑝(𝑥) ve 𝑝(𝑦) ise 

marjinal olasılık dağılımlarıdır. 

 

MI yöntemi kullanıldığında, hesaplama sonucuna göre öznitelikler sıralanır ve 

en yüksek değere sahip olanlar seçilir. Bu çalışmada, fazla sayıda öznitelik seçmemek 

amacıyla 30 özellik belirlenmiştir.  Bu seçim, sınıflama işlemi için daha uygun hale 

gelir ve daha yüksek performans gösterir. 
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Şekil 3.4 MI ile Seçilen İlk Öznitelik 

 

 

Şekil 3.5 MI ile Seçilen İkinci Öznitelik 

 

3.3. Derin Öğrenme Modeli Tasarımı 

Son yıllarda yapay zekâ ve makine öğrenimi alanında yapılan gelişmeler, 

verilerin işlenmesi ve analizi konusunda büyük katkılar sağlamıştır. Bu alandaki 

yenilikler devam ederken, dikkat çekici yöntemler arasında derin öğrenme öne 

çıkmaktadır. Derin öğrenme, makine öğreniminden önemli ölçüde farklıdır; çünkü çok 

katmanlı sinir ağları kullanarak büyük ve karmaşık veri kümeleriyle başa 

çıkabilmektedir. Oysa makine öğrenimi, bazen büyük veri işlemede zorluk ve 

gecikmelerle karşılaşabilir. 

Derin öğrenme, verilerdeki doğrusal olmayan yapıların modellenmesinde çok 

katmanlı bir yapı kullanarak, karmaşık ve büyük veri setleri üzerinde olumlu ve başarılı 

sonuçlar elde edilmesine yardımcı olur. Bu nedenle birçok araştırmacı, büyük veri 

setlerine sahip olduklarında derin öğrenme yöntemlerini tercih etmektedir. 
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 Derin öğrenme, özellikle görüntü ve ses işleme gibi analiz alanlarında yaygın 

bir şekilde kullanılmaktadır. Makine öğrenimiyle karşılaştırıldığında, derin öğrenme, 

tıbbi sinyallerin analizi gibi zaman serisi verileriyle çalışırken de benzersiz sonuçlar 

ortaya koymaktadır. Bu çalışmada, parmak hareketlerinin sınıflandırılması için EMG 

sinyalleri kullanılarak derin öğrenme uygulanmıştır. 

Öznitelik çıkarma adımında TDD ile birlikte derin öğrenmenin iki modeli olan 

CNN ve LSTM kullanılmıştır. Deneysel sınıflama aşamasında ise SVM ve KNN 

algoritmalarıyla yüksek sonuçlar elde edilmiştir. Bu durum, derin öğrenmenin pozitif 

etkisini ve başarılı bir şekilde özniteliklerin çıkarıldığını göstermektedir. 

 

3.3.1. Tam Bağlantılı Sinir Ağı (Fully Connected Neural Networks FCNN) 

nın Diğer Modellerle Karşılaştırılması 

Evrişimli Sinir Ağı (CNN) mimarisi, genellikle görüntü işleme ve iki boyutlu 

veri setlerinde yaygın olarak kullanılır. CNN, verinin uzaysal paternlerini öğrenmek 

için filtreler kullanır ve sinir ağının her katmanı, verideki belirli öznitelikleri çıkarmaya 

odaklanır. Ancak CNN, zaman serisi veriler üzerinde çok etkili değildir; çünkü zamanla 

değişen sinyallerde uzaysal paternlerden çok, ardışık verilerin birbiriyle olan ilişkileri 

önemlidir. 

Yinelemeli Sinir Ağı (Recurrent Neural Network, RNN) ise zaman serisi 

verilerinin analiz edilmesinde, özellikle uzun vadeli sonuçların öğrenilmesinde başarılı 

sonuçlar vermekte ve oldukça uygun olup göz alıcı bir performans sergilemektedir. 

Ancak eğitim sırasında uzun serilerde doğru sonuçlara ulaşmanın zorluk derecesini 

etkileyebilecek bir sorun (gardiyan kaybı) yaşayabilir. RNN modelleri içinde bu sorunu 

çözen veya önemli ölçüde sorunu azaltan ancak maliyeti genellikle yüksek olan LSTM 

modeli bulunmaktadır. 

FCNN ise her bir nöronun bir önceki katmandaki tüm nöronlara bağlı olduğu 

bir yapıya sahip olması ve sinyallerdeki doğrusal olmayan kalıpları öğrenebilmesi 

nedeniyle öğrenmede daha iyi sonuçlar vermektedir. Bu modeli en çok farklılaştıran 

özellik, özellikle bu çalışmanın temelini oluşturan EMG verileri gibi zaman serisi 

verilerindeki hesaplamaların büyük hızıdır.  Bu modelin yeteneği, hesaplama hızı ve 

doğrusal olmayan ilişkileri öğrenme yeteneğinin yüksek olması, EMG verilerinin 
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sınıflandırılmasında daha iyi sonuçlar elde edilmesine yardımcı olmaktadır. Bu 

nedenle, her bir nöronun önceki tüm hücrelere bağlı olması avantajı ve hesaplama 

sürecinin basitliği ve hızı, bu modeli bu çalışmada kullanılacak en iyi seçim haline 

getirmektedir [22].  

3.3.2. FCNN'nin Bu Çalışmada Seçilme Nedeni 

Genel olarak EMG sinyalleri kasların elektriksel aktivitelerini kaydeder ve bu sinyaller 

çoğu zaman elektriksel aktiviteleri kaydederken kasların yaptığı harekete bağlı olarak 

farklı paternler ve gürültüler içerir.  Bu verinin doğasında doğrusal olmayan ve 

karmaşık paternler bulunması nedeniyle, bu çalışmada en çok tercih edilen model 

FCNN olmuştur. Çünkü FCNN, doğrusal olmayan paternler ve karmaşık verilerle fazla 

zaman harcamadan işlem yapabilme yeteneğine sahiptir. Ayrıca, bu model, karmaşık 

verilerin daha hızlı ve verimli bir şekilde öğrenilmesini sağlayan, mükemmel sonuçlar 

elde edilmesini mümkün kılan katman yapısına sahiptir. 

FCNN'nin bu çalışmaya büyük ölçüde yardımcı olacak birçok önemli özelliği 

bulunmaktadır. Özellikle, parmak veya kas hareketlerinden elde edilen EMG 

sinyallerindeki zamana bağlı değişiklikleri analiz etmek için, zaman serisi verilerindeki 

doğrusal olmayan ilişkilerin öğrenilmesi gibi kritik bir rol oynamaktadır. Ayrıca, 

verilerin boyutu ve karmaşıklığı da göz önünde bulundurulduğunda, FCNN bu tür 

zorluklarla başa çıkmak için etkili bir modeldir.  

Bu çalışmada kullanılan veriler, on gönüllüden elde edilmiştir ve FCNN, daha 

az karmaşık olmasına rağmen, bu verileri karmaşık modellere kıyasla daha iyi 

işleyebilmektedir. FCNN'nin maliyet ve hız açısından avantajları da önemli bir 

faktördür: Bu model, hesaplamaları hızlı bir şekilde gerçekleştirmek için yüksek enerji 

gereksinimi duymaz. Böylece eğitim ve doğrulama süreçlerini daha hızlı 

tamamlayabilir ve büyük hesaplama maliyetleri olmadan daha iyi performans 

sergileyebilir. 

Bu nedenle, FCNN'nin sahip olduğu bu özellikler göz önünde bulundurularak, 

son işlem olan parmak hareketlerini sınıflandırma işlemine karar verilmiştir. EMG 

sinyallerindeki karmaşık zamansal veriler ve doğrusal olmama durumlarıyla etkili bir 

şekilde başa çıkabilen bu modelin seçilmesi, sınıflandırma işleminin daha hızlı 

tamamlanmasını sağlayacak, daha iyi performans ve daha yüksek doğrulukla sonuç 

verecektir. 
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3.3.3. Katmanların Yapısı 

Derin öğrenme modellerinde modele düzgün öğrenme yeteneği kazandıran ana 

bileşen, içindeki katmanlardır. Bu çalışmada kullandığımız FCNN modeli birkaç 

katmandan oluşmaktadır ve her katman verilerin sınıflandırılması, analiz edilmesi ve 

işlenmesinde belirli bir rol oynamaktadır. FCNN modeli üç bölümden oluşur: giriş 

katmanı, gizli katmanlar ve çıkış katmanı. 

3.3.3.1. Giriş Katmanı (Input Layer) 

Yapay sinir ağı modeli olarak kabul edilen Tam Evrişimli Sinir Ağı (FCNN) 

yapısının ilk katmanı olan giriş katmanı, modele sunulan verilerle bağlıdır. Bu bölümde, 

giriş verisi olarak EMG sinyallerinden elde edilen özellikler kullanılmıştır. 

Özniteliklerin elde edilmesinde kullanılan TDD, CNN, LSTM ve MI yöntemleriyle 30 

farklı öznitelik ortaya çıkmıştır. 

Giriş katmanının görevi, 30 adet özniteliğiöğrenme sürecine uygun bir şekilde 

FCNN modelinin gizli katmanlarına aktarmaktır. Böylece modelin gizli katmanlarına 

veri girilmesine yönelik bir yöntem sağlanmaktadır. 

 

𝑿 = 𝒙𝟏 + 𝒙𝟐 + ⋯ + 𝒙𝟑𝟎  (3.26) 

 

3.3.3.1.1. Giriş Katmanının Yapısı 

Giriş katmanında kullanılan yapı, veriyi işlemek için 128 nörondan 

oluşmaktadır. Her nöron, giriş verilerinin tamamıyla bağlantılıdır. Yani, 30 farklı 

özniteliğe sahip bir veri seti düşünüldüğünde, her bir öznitelik, 128 nörondan her birine 

bağlıdır. Bu sayede, tüm öznitelikler, nöronlar aracılığıyla işlenerek modelin öğrenme 

sürecine katkıda bulunur. 

Matematiksel olarak bu işlem şöyle ifade edilir: Her nöron, tüm giriş 

özniteliklerini toplar ve her bir özniteliğe karşılık gelen bir w ağırlık ile çarpar. Sonra 

bu toplama bir de kutuplama (bias) adı verilen sabit bir sayı eklenir. Yani her nöron için 

bu işlem şu şekilde yapılır: 

𝒛𝒋 = ∑ 𝒘𝒋𝒊𝒙𝒊 + 𝒃𝒋
𝟑𝟎
𝒊=𝟏   (3.27) 
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𝑤𝑗𝑖 , giriş öznitelikleri ile nöron arasındaki bağlantının ağırlığıdır. Bu ağırlıklar, 

her giriş özniteliğinin önemini belirler. 𝑥𝑖, giriş verisinin i’inci özniteliğidir. Yani veri 

setinizdeki her öznitelik (örneğin, EMG sinyali verisi) bu işlemde yer alır. 𝑏𝑗, her nöron 

için eklenen sabit bir terimdir. Bu terim, nöronun verdiği cevabı ayarlamak için 

kullanılır. 

Yani her nöron, 30 özniteliği birer birer alır, onları belirli ağırlıklarla çarpar, 

toplar ve sonra bu toplama bir sabit ekler. Bu işlem, giriş verilerini daha anlamlı bir 

hale getirmek için yapılır. 

3.3.3.1.2. Aktivasyon Fonksiyonu: ReLU 

Her nöron, aldığı bu toplam değeri doğrudan kullanmaz. Bunun yerine, bir 

aktivasyon fonksiyonu kullanarak bu değeri işler. Burada kullanılan aktivasyon 

fonksiyonu ReLU (Rectified Linear Unit) adını taşır. Bu fonksiyon, nöronun aldığı 

değerin pozitif mi negatif mi olduğunu kontrol eder. 

Eğer nöronun aldığı değer sıfırdan büyükse, bu değer olduğu gibi kullanılır. 

Eğer sıfırdan küçükse, sonuç sıfır olur. 

 

𝒇(𝒛𝒋) = 𝐦𝐚𝐱(𝟎, 𝒛𝒋)  (3.28) 

Bu formül, nörona gelen değerin sıfırdan büyük olup olmadığını kontrol eder. 

Sıfırdan büyükse, değeri değiştirmeden alır. Ama sıfır veya daha küçük bir sayı 

geldiyse, bu değeri sıfıra çevirir. Bu, sinir ağının öğrenme sürecini kolaylaştıran bir 

tekniktir, çünkü sadece önemli olan verilerle çalışır. 

3.3.3.1.3. Giriş Katmanında Öğrenme Süreci 

Her nöronun öğrenme sürecinde, ağırlıklar 𝑤𝑗𝑖  ve bias 𝑏𝑗 adı verilen iki temel 

parametre sürekli olarak güncellenir. Bu güncellemeler, sinir ağının hata yapmasını en 

aza indirmek için geri yayılım (backpropagation) algoritmasıyla yapılır. 

Ağırlıkların güncellenmesi 

𝒘𝒋𝒊 ← 𝒘𝒋𝒊 − 𝛈
𝛛𝐋

𝛛𝒘𝒋𝒊
   (3.29) 
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 Bias terimin güncellenmesi 

𝒃𝒋 ← 𝒃𝒋 − 𝛈
𝛛𝐋

𝛛𝒃𝒋
 (3.30) 

 

η , öğrenme oranıdır; bu, modelin öğrenme hızını belirler. Küçük değerler daha 

yavaş öğrenmeye, büyük değerler ise daha hızlı öğrenmeye neden olur. L, modelin hata 

miktarını ölçen kayıp fonksiyonudur. Bu fonksiyon, modelin yaptığı hataları belirler. 

𝛛𝒘𝒋𝒊, ∂𝑏𝑗 ağırlıklar ve bias terimleri üzerindeki türevlerdir. Yani bu türevler, modelin 

hatayı nasıl en aza indireceğini belirler. 

3.3.3.1.4. Giriş Katmanının Önemi 

Giriş katmanı, modelin ham veriyi alıp anlamlı hale getirdiği ilk aşamadır. Bu 

katmanda sinir ağı, verideki tüm öznitelikleri analiz ederek bunları işlenebilir bir yapıya 

dönüştürür. Bu çalışmada giriş katmanının temel ihtiyacı, EMG sinyallerinden elde 

edilen özniteliklerin modelin derin katmanlarına aktarılmasıdır. Giriş katmanındaki tam 

bağlantılı mimarinin özelliği, her giriş özniteliğini diğer özniteliklere 

bağlayabilmesidir. Bu özellikle biyomedikal sinyal analizinde önemlidir; çünkü bu 

verilerdeki önemli modeller girdi katmanı tarafından modelin sonraki aşamalarına 

taşınır. Bunu yaparken girdi katmanı, veriyi işleyerek anlamlı hale getirerek sinir ağının 

derin katmanlarına ilettiği için modelin en önemli parçasını oluşturur. Buna göre sinir 

ağı, verilerdeki karmaşık ilişkileri anlamaya başlar. 

3.3.3.2. Gizli Katmanlar (Hidden Layers) 

Gizli katmanlar, sinir ağı modelinin öğrenme yeteneğini artıran katmanlardır. 

Giriş katmanından gelen veriler bu katmanlarda işlenir ve daha karmaşık bilgiler 

çıkarılabilir.  

3.3.3.2.1. Gizli katman yapısı 

Birinci gizli katman, tamamı giriş katmanındaki tüm nöronlara bağlı olan 128 

nörondan oluşur. İkinci gizli katman ise bu yapı sayesinde her aşamada verileri işler, 

daha gelişmiş öznitelikler çıkarır. Verilerdeki önemli bilgileri son katmana aktarır 

Gizli katmanlar, sinir ağı modelinin öğrenme kapasitesini artıran katmanlardır. 

Giriş katmanından gelen veriler, bu katmanlarda işlenir ve daha karmaşık bilgiler 
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çıkarılabilir hale gelir. Bu modelde iki gizli katman bulunur ve her ikisi de ReLU 

aktivasyon fonksiyonuyla donatılmıştır. Bu fonksiyon, modelin doğrusal olmayan 

ilişkileri öğrenmesine yardımcı olur. Gizli katmanlar sayesinde model, daha derin ve 

karmaşık yapıları öğrenebilir. 

Gizli Katman Yapısında, ilk gizli katman 128 nörondan oluşur ve giriş 

katmanındaki tüm nöronlarla tam bağlantılıdır. İkinci gizli katman ise 64 nöron içerir. 

Bu yapı sayesinde model, her aşamada veriyi işleyip daha ileri seviyede öznitelikler 

çıkarır ve verinin içindeki önemli bilgileri son katmana taşır. 

𝒛𝒋
𝒍 = ∑ 𝒘𝒋𝒊

𝒍𝒂𝒊
𝒍−𝟏 + 𝒃𝒋

𝒍𝒏𝒍−𝟏
𝒊=𝟏    (3.31) 

 

𝑧𝑗
𝑙, 𝑙. katmandaki j. nöronun, aktivasyon fonksiyonuna uygulanmadan önceki 

toplam girdisidir. 𝑤𝑗𝑖
𝑙 , 𝑙. katmandaki j. nöron ile bir önceki 𝑙−1. katmandaki i. nöron 

arasındaki bağlantının ağırlığıdır. 𝑎𝑖
𝑙−1, bir önceki katmandaki i. nöronun aktivasyon 

değeridir.  

𝑏𝑗
𝑙
,  𝑙 . katmandaki j. nöronun bias terimidir. Bu yapıyla, her katman bir önceki 

katmandan gelen verileri işler ve bu bilgiyi daha ileri seviyede kullanır. 

3.3.3.2.2. Aktivasyon Fonksiyonu: ReLU 

Her gizli katmanda, ReLU (Rectified Linear Unit) aktivasyon fonksiyonu 

kullanılır. ReLU, modelin doğrusal olmayan ilişkileri öğrenmesini sağlar. ReLU şu 

şekilde çalışır: 

 

𝒇(𝒛𝒋
𝒍) = 𝐦𝐚𝐱(𝟎, 𝒛𝒋

𝒍)   (3.32) 

 

Yani, bir nöronun aldığı değer pozitifse olduğu gibi kullanılır, negatifse sıfıra 

dönüştürülür. Bu basit ama güçlü fonksiyon, karmaşık yapıları öğrenmek için çok 

etkilidir. 
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ReLU’nun avantajları: 

1. Doğrusal Olmayan İlişkileri Öğrenme: ReLU, modelin doğrusal olmayan 

yapıları daha iyi öğrenmesine olanak tanır. 

2. Gradyan Sönmesi Probleminin Azaltılması: Diğer aktivasyon fonksiyonlarına 

göre, ReLU daha derin sinir ağlarında gradyan sönmesi problemini azaltır ve 

modelin öğrenme kapasitesini artırır. 

3.3.3.2.3. Düğüm Seyreltme (Dropout) Tekniği  

Gizli katmanlarda aşırı öğrenmeyi (uyumu) (overfitting) önlemek için Düğüm 

Seyreltme tekniği kullanılmıştır. Düğüm Seyreltme , eğitim sırasında rastgele bazı 

nöronları devre dışı bırakarak modelin daha genel öğrenme yapmasını sağlar. Bu teknik 

sayesinde model, aşırı öğrenme eğiliminden kurtularak daha iyi genelleme kapasitesi 

kazanır. 

 

𝒂𝒋
𝒍 = {

𝟎, 𝒓𝒋 ≤ 𝒑

𝒇(𝒛𝒋
𝒍), 𝒓𝒋 > 𝒑

  (3.33) 

 

𝑟𝑗 , 0 ile 1 arasında rastgele bir sayıdır. p, düğüm seyreltme oranını ifade eder. 

Bu modelde, %30 düğüm seyreltme  uygulanmıştır, yani eğitim sırasında gizli 

katmandaki nöronların yarısı devre dışı bırakılmaktadır.  𝑎𝑗
𝑙, gizli katmandaki j. 

nöronun düğüm seyreltme  uygulandıktan sonraki aktivasyon değeridir. 

Bu yöntem, modelin her eğitim adımında farklı nöron kombinasyonlarıyla 

çalışmasını sağlar ve bu sayede aşırı öğrenmenin önüne geçilir. 

 

3.3.3.2.4. Parametre Öğrenimi ve Geri Yayılım 

Gizli katmanlardaki her bir nöron, aldığı bilgileri işledikten sonra ağırlıklarını 

günceller. Bu işlem, geri yayılım (backpropagation) algoritmasıyla yapılır. Modelin 

kayıp fonksiyonu (örneğin, categorical crossentropy), her nöronun ağırlık ve bias 

terimlerine göre türev alınarak optimize edilir. Bu güncelleme işlemi şu şekilde yapılır: 
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Ağırlık güncellemesi: 

𝒘𝒋𝒊
𝒍 ← 𝒘𝒋𝒊

𝒍 − 𝛈
𝛛𝐋

𝛛𝒘𝒋𝒊
𝒍 ( 3.34) 

 

Bias güncellemesi: 

𝒃𝒋
𝒍 ← 𝒃𝒋

𝒍 − 𝛈
𝛛𝐋

𝛛𝒃𝒋
𝒍 ( 3.35) 

 

L, kayıp fonksiyonudur. η, öğrenme oranıdır ve modelin ne kadar hızlı 

öğrendiğini belirler. Türevler, modelin hatasını minimize etmek için ağırlıklar 

ve biaslar üzerinde yapılan güncellemeleri gösterir. 

3.3.3.2.5. Gizli Katmanların Rolü 

Gizli katmanlar, modelin verilerdeki gizli paternleri öğrenmesine yardımcı olur. 

İlk gizli katman, giriş katmanından gelen bilgileri işler ve veriyi daha anlamlı hale 

getirir. İkinci gizli katman ise bu bilgileri daha derin seviyede işleyerek sınıflandırma 

için gerekli olan bilgilere ulaşır. 

İlk Gizli Katman: 128 nörondan oluşur. Giriş katmanındaki bilgileri alıp işler. 

ReLU aktivasyon fonksiyonu, bu nöronların doğrusal olmayan yapıları öğrenmesini 

sağlar. Ayrıca %30 düğüm seyreltme kullanılarak modelin aşırı öğrenme yapması 

engellenir. 

İkinci Gizli Katman: 64 nörondan oluşur ve ilk katmandan gelen bilgileri daha 

detaylı bir şekilde işler. Bu katmanda da ReLU aktivasyon fonksiyonu kullanılır ve %30 

düğüm seyreltme uygulanır. 

Gizli katmanlar, modelin daha karmaşık paternleri öğrenmesini sağlayan önemli 

bileşenlerdir. ReLU aktivasyon fonksiyonları, doğrusal olmayan ilişkileri öğrenmede 

etkilidir. Dropout tekniği ile modelin aşırı öğrenme eğilimleri engellenir ve daha genel 

bir öğrenme sağlanır. Sonuç olarak, gizli katmanlar, modelin eğitim ve test verilerinde 

daha iyi performans göstermesine katkıda bulunur. 
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3.3.3.3. Çıkış Katmanı (Output Layer) 

Çıkış katmanı, modelin son aşamasıdır ve burada model, veriyi işleyip nihai 

kararını verir. Bu çalışmada, 5 farklı parmak hareketini tahmin etmek amacıyla çıkış 

katmanında 5 nöron bulunmaktadır. Her nöron bir parmak hareketini temsil eder ve 

model, bu hareketlerden her biri için bir olasılık değeri tahmin eder. Bu tahminler 

Softmax aktivasyon fonksiyonu kullanılarak normalize edilir. Softmax sayesinde, bu 

olasılıkların toplamı her zaman 1 olur. 

3.3.3.3.1. Çıkış Katmanının Yapısı 

Çıkış katmanındaki her nöron, modelin sınıflandırması gereken 5 farklı parmak 

hareketine karşılık gelen olasılıkları hesaplar. Bu nöronlar, gizli katmanlardan gelen 

bilgileri kullanarak tahminler yapar. Her bir nöron şu matematiksel formülle çalışır: 

𝒐𝒋 = ∑ 𝒘𝒋𝒊
𝑳𝒂𝒊

𝑳−𝟏 + 𝒃𝒋
𝑳𝒏𝑳−𝟏

𝒊=𝟏   ( 3.36) 

 

𝑜𝑗 , j. inci sınıfa (parmak hareketine) ait aktivasyon değeridir; yani bu, ilgili 

nöronun çıkardığı sonuçtur.   𝑤𝑗𝑖
𝐿, j. nöron ile önceki katmandaki i. nöron arasındaki 

bağlantının ağırlığıdır. 𝑎𝑖
𝐿−1, bir önceki katmandan gelen aktivasyon değeridir. 𝑏𝑗

𝐿
, j. 

nöronun bias terimidir. 

Bu hesaplanan değerler, her parmak hareketine karşılık gelen bir skor gibi 

düşünülebilir. Bu skorlar, Softmax fonksiyonu aracılığıyla olasılıklara dönüştürülür. 

3.3.3.3.2. Softmax Aktivasyon Fonksiyonu 

Çıkış katmanında, modelin tahmin ettiği her sınıf için bir olasılık değeri 

döndürülür ve bu olasılıklar Softmax fonksiyonu ile hesaplanır. Softmax fonksiyonu, 

her bir sınıfın olasılığını hesaplayarak, tüm sınıfların olasılıklarının toplamını 1 olacak 

şekilde normalize eder. Bu, modelin her sınıf için olasılıkları belirlemesini sağlar. Yani, 

model her bir sınıfın (örneğin, her bir parmak hareketinin) ne kadar olası olduğunu 

öğrenir ve en yüksek olasılığa sahip sınıfı tahmin olarak verir. Bu şekilde model, hangi 

sınıfın daha olası olduğunu belirleyerek, sınıflandırma kararını verir. Softmax 

matematiksel olarak şöyle tanımlanır: 

𝑷(𝒚 = 𝒋|𝒙) =
𝒆

𝒐𝒋

∑ 𝒆𝒐𝒌𝑪
𝒌=𝟏

 (3.37) 
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𝑃(𝑦 = 𝑗|𝑥), modelin giriş verisinin j. sınıfa ait olma olasılığını gösterir. 𝑜𝑗, j. sınıf için 

hesaplanan skor (lojit) değeridir. C, toplam sınıf sayısıdır (bu çalışmada 5 sınıf vardır). 

3.3.3.3.3. Çıkış Katmanının Hesaplanması 

Çıkış katmanında, gizli katmanlardan gelen veriler işlenir ve ardından Softmax 

fonksiyonuna uygulanır. Örneğin, model sinyalleri aldıktan sonra şu şekilde skorlar 

üretir: 

𝒐𝟏,𝒐𝟐,𝒐𝟑,𝒐𝟒,𝒐𝟓 (3.38) 

Bu skorlar Softmax fonksiyonuna girerek her sınıf için bir olasılık oluşturulur.  

➢ 𝑃( 𝑦 = 1 ∣∣ 𝑥 ) = (Başparmak hareketi) 

➢ 𝑃( 𝑦 = 2 ∣∣ 𝑥 ) = (İşaret parmağı hareketi) 

➢ 𝑃( 𝑦 = 3 ∣∣ 𝑥 ) = (Orta parmak hareketi) 

➢ 𝑃( 𝑦 = 4 ∣∣ 𝑥 ) = (Yüzük parmağı hareketi) 

➢ 𝑃( 𝑦 = 5 ∣∣ 𝑥 ) = (Serçe parmak hareketi) 

Bu tahminlere göre, model en yüksek olasılığı seçer. 

 

3.3.3.3.4. Kayıp Fonksiyonu: Categorical Crossentropy 

Modelin tahmin ettiği olasılıkların ne kadar doğru olduğunu anlamak için 

Categorical Crossentropy kayıp fonksiyonu kullanılır. Bu fonksiyon, modelin tahmin 

ettiği olasılıklar ile gerçek değerler arasındaki farkı ölçer. Eğer model, doğru sınıfı 

yüksek bir olasılıkla tahmin ederse kayıp düşük olur; yanlış tahmin ederse kayıp artar. 

𝑳 = − ∑ 𝒚𝒊 𝐥𝐨𝐠(𝒚̂𝒊)
𝑪
𝒊=𝟏  (3.39) 

 

L, kayıp fonksiyonudur. 𝑦𝑖, doğru sınıfa ait etiket (bir-hot encoded, yani doğru 

sınıf için 1, diğerleri için 0 olur). 𝑦̂𝑖, modelin tahmin ettiği olasılıktır. 

Model, bu kayıp fonksiyonu ile hatalarını hesaplayarak geri yayılım süreciyle 

öğrenmeye devam eder. 
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3.3.3.3.5. Geri Yayılım ve Ağırlık Güncellemeleri 

Çıkış katmanında hesaplanan kayıp, modelin tüm katmanlarındaki ağırlıkların 

güncellenmesini sağlar. Geri yayılım algoritması şu şekilde işler: 

1. Çıkış katmanında hesaplanan kayıp, her nöronun ağırlıkları ve bias terimleri 

üzerinden türevi alınarak hesaplanır. 

2. Bu türev, gizli katmanlara geri iletilir ve tüm katmanlarda ağırlık güncellemeleri 

yapılır. 

3. Bu süreç modelin doğru tahminler yapmasını sağlar. 

3.3.3.3.6. Çıkış Katmanın Sonuç ve Değerlendirme 

Çıkış katmanı, modelin nihai kararlarını verdiği yerdir. Softmax aktivasyon 

fonksiyonu, modelin tahmin ettiği skorları olasılıklara çevirir ve her sinyal için hangi 

sınıfın daha olası olduğunu belirler. Modelin tahmin ettiği olasılıkların doğruluğu, 

Categorical Crossentropy kayıp fonksiyonu ile ölçülür ve geri yayılım algoritmasıyla 

hatalar düzeltilir. 

Sonuç olarak, 5 nöronlu çıkış katmanı, her parmak hareketi için bir tahmin 

üretir. Softmax aktivasyon fonksiyonu, tahmin edilen skorları olasılık olarak normalize 

eder. Categorical Crossentropy kayıp fonksiyonu, modelin hatalarını minimize etmeye 

çalışır. 

3.4. Modelin Derlenmesi (Compile) 

Modelin derlenmesi, modelin nasıl çalışacağını belirleyen önemli bir adımdır. 

Bu aşamada, modelin hataları nasıl hesaplayacağını, nasıl öğrenip optimize edileceğini 

ve performansının nasıl değerlendirileceğini tanımlıyoruz. Bu çalışmada, derleme 

sürecinde üç ana bileşen kullanılmıştır: kayıp fonksiyonu (loss), optimizasyon 

algoritması (optimizer). 

3.4.1.  Kayıp Fonksiyonu: Categorical Crossentropy 

Kayıp fonksiyonu, modelin tahminleri ile gerçek sonuçlar arasındaki farkı ölçer. 

Bu farkı minimize ederek modelin daha doğru öğrenmesini sağlar. Çok sınıflı bir 

sınıflandırma problemi üzerinde çalıştığımız için Categorical Crossentropy kayıp 

fonksiyonu kullanılır. 



38 

 

𝑳 = − ∑ ∑ 𝒚𝒊𝒄 𝐥𝐨𝐠 (𝒚̂𝒊𝒄 )
𝑪
𝒄=𝟏

𝑵
𝒊=𝟏    (3.40) 

 

N, eğitimdeki örneklerin sayısını gösterir. C, sınıf sayısını ifade eder. 𝑦𝑖𝑐 , 

gerçek sınıf etiketini gösterir (bir-hot kodlaması kullanılarak; doğru sınıf için 1, 

diğerleri için 0 olur). 𝑦̂𝑖𝑐 , modelin sınıf ccc için tahmin ettiği olasılık değeridir. 

Bu fonksiyon, modelin her sınıf için tahmin ettiği olasılık ile gerçek sınıf 

arasında bir fark hesaplar. Amaç, bu farkı tüm sınıflar için mümkün olduğunca 

azaltmaktır. 

3.4.2. Optimizasyon Algoritması: Adam 

Optimizasyon algoritması, modelin ağırlıklarının her adımda nasıl 

güncelleneceğini belirler. Bu çalışmada Adam optimizasyon algoritması kullanılmıştır. 

Adam hem gradyan inişi hem de momentum tabanlı bir algoritmadır ve modelin 

öğrenme hızını dinamik olarak ayarlar. 

Adam algoritmasının temel mantığı, modelin hatalarını en aza indirmek için 

ağırlıkları güncellemek üzerine kuruludur. Gradyanlar ve moment hesaplamaları 

yaparak ağırlıkları günceller ve bu süreç, şu adımlarla gerçekleştirilir: 

3.4.2.1. Gradyanın momentum hesaplaması 

𝒎𝒕 = 𝜷
𝟏

𝒎𝒕−𝟏 + (𝟏 − 𝜷𝟏)𝒈𝒕   (3.41) 

 

𝒗𝒕 = 𝜷
𝟐

𝒗𝒕−𝟏 + (𝟏 − 𝜷
𝟐

)𝒈𝒕
𝟐  (3.42) 

𝑔𝑡   , modelin her adımda hesapladığı gradyandır. 𝑚𝑡, gradyanın momentumu 

(ilk moment tahmini). 𝑣𝑡, gradyanın karesel momentumu (ikinci moment tahmini). 

𝛽
1
ve 𝛽

2
, genellikle sırasıyla 0.9 ve 0.999 olarak seçilen hiper parametrelerdir. 

 

3.4.2.2. Ağırlıkların güncellenmesi 

 

𝒎̂𝒕 =
𝒎𝒕

𝟏−𝜷𝟏
𝒕       (3.43) 

 



39 

 

 𝒗̂𝒕 =
𝒗𝒕

𝟏−𝜷𝟐
𝒕    (3.44) 

 

𝛉𝒕 = 𝛉𝒕−𝟏 −
𝛈∙𝒎̂𝒕

√𝒗̂𝒕+𝛜
   (3.45) 

θ𝑡 , modelin ağırlıklarıdır. η, öğrenme oranıdır. ϵ, sıfıra bölme hatasından 

kaçınmak için kullanılan küçük bir sabittir. 

Adam, ağırlıkları bu şekilde optimize ederek modelin hızlı ve stabil bir şekilde 

öğrenmesini sağlar, özellikle büyük veri setlerinde oldukça etkilidir. 

3.5. Modelin Eğitimi ve Doğrulaması 

Modelin eğitim ve doğrulaması, yapay sinir ağının verilerle öğrenme işlemi 

yaptığı ve bu öğrenme sürecinin ardından modelin ne kadar başarılı olduğunu anlamaya 

çalıştığımız aşamalardır. Bu süreçlerde, model önce verilerle eğitilir ve sonra öğrenilen 

bilgilerin test verileri üzerinde ne kadar başarılı olduğuna bakılır. Eğitim ve doğrulama 

işlemleri, modelin başarısını anlamak için hayati öneme sahiptir. 

3.5.1. Etiketlerin Kategorik Hale Getirilmesi 

Modelin çok sınıflı bir sınıflandırma problemi ile karşılaştığında, etiketlerin bir-

hot kodlama yöntemi ile kategorik hale getirilmesi gerekir. Bir-hot kodlama, her sınıfı 

bir vektör olarak temsil eder. Örneğin, 5 sınıflı bir problemde birinci sınıf şu şekilde 

kodlanır: 

𝒚 = [𝟏, 𝟎, 𝟎, 𝟎, 𝟎] ( 3.46) 

Bu, modelin her sınıf için olasılık tahmin etmesini sağlar. Her bir sınıfın 1 ya da 

0 olarak gösterildiği bu yapıyla, model doğru sınıfı tahmin etmeye çalışır. 

3.5.2. Modelin Doğrulaması 

Doğrulama, modelin hiç görmediği test verileri üzerinde performansını test 

etme aşamasıdır. Eğitim sırasında model, verileri öğrenir ve bu bilgileri test setine 

uygulayarak ne kadar doğru tahmin yaptığını gösterir. Doğrulama aşaması, modelin 

genelleme yapma yeteneğini ölçer. Eğer model, eğitim verilerine çok fazla uyum 

sağladıysa (aşırı öğrenme), test verileri üzerinde düşük performans gösterebilir. 

Doğrulama performansı, eğitim sırasında modelin öğrendiği bilgilerin yeni 

veriler üzerinde ne kadar başarılı olduğunu anlamamızı sağlar 
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3.5.3. Performans Metrikleri: Doğruluk, Kesinlik, Anma ve F1 Skoru  

Modelin performansını değerlendirmek için doğruluk (accuracy) metriği 

kullanılır. Doğruluk, modelin yaptığı tahminlerin ne kadarının doğru olduğunu gösterir 

ve şu şekilde hesaplanır: 

𝐃𝐨ğ𝐫𝐮𝐥𝐮𝐤 =
𝐃𝐏 + 𝐃𝐍

𝐃𝐏 + 𝐃𝐍 + 𝐘𝐏 + 𝐘𝐍 
    (3.47) 

 

Bu metrik, modelin tahmin ettiği örneklerin ne kadarının doğru olduğunu ölçer. 

Çok sınıflı sınıflandırma problemlerinde doğruluk, modelin genel başarısını 

değerlendirmenin temel yollarından biridir. 

 

DP (Doğru Pozitif): Modelin pozitif olarak doğru tahmin ettiği örnekler. 

DN (Doğru Negatif): Modelin negatif olarak doğru tahmin ettiği örnekler. 

YP (Yanlış Pozitif): Modelin pozitif tahmin yaptığı ama aslında negatif olan örnekler. 

YN (Yanlış Negatif): Modelin negatif tahmin yaptığı ama aslında pozitif olan örnekler. 

Modelin başarısını sadece doğruluk (accuracy) metriği ile ölçmek yeterli 

değildir. Öznitelikle dengesiz veri setlerinde doğruluk metriği, sınıflar arasındaki 

dengesizlikleri gizleyebilir. Bu nedenle, modelin her sınıf için ne kadar iyi performans 

gösterdiğini anlamak için kesinlik (precision), duyarlılık (recall) ve F1-skor gibi 

metrikler kullanılır. 

Precision (Kesinlik): Modelin belirli bir sınıfı pozitif olarak tahmin ettiğinde, 

bu tahminlerin ne kadar doğru olduğunu gösterir.  

 

𝐊𝐞𝐬𝐢𝐧𝐥𝐢𝐤 =
𝐃𝐏

𝐃𝐏+𝐘𝐏
   (3.48) 

Modelin tahmin ettiği pozitif sınıfların ne kadarının gerçekten doğru olduğunu gösterir. 

Duyarlılık: Modelin gerçekten pozitif olan sınıfların ne kadarını doğru tahmin 

ettiğini gösterir.  
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Duyarlılık =
𝐃𝐏 

𝐃𝐏 + 𝐘𝐍
   (3.49) 

Modelin ne kadar doğru pozitif bulduğunu gösterir. 

F1-Skor: Kesinlik ve Duyarlılığ’ın harmonik ortalamasıdır. Öznitelikle kesinlik 

ve duyarlılık arasında bir denge kurmak istendiğinde faydalıdır.  

𝐅𝟏 − 𝐒𝐤𝐨𝐫 = 𝟐 ⋅
𝐊𝐞𝐬𝐢𝐧𝐥𝐢𝐤⋅𝐃𝐮𝐲𝐚𝐫𝐥ı𝐥ı𝐤

𝐊𝐞𝐬𝐢𝐧𝐥𝐢𝐤+𝐃𝐮𝐲𝐚𝐫𝐥ı𝐥ı𝐤
   (3.50) 

 

Bu metrikler, modelin her sınıf için ne kadar başarılı olduğunu ve genel 

performansını anlamak için önemlidir. 

 

3.5.4. Sonuç ve Değerlendirme 

Modelin eğitim ve doğrulama süreci tamamlandıktan sonra, eğitim seti 

üzerindeki performans ve doğrulama seti üzerindeki performans karşılaştırılır. Eğer 

model eğitim verileri üzerinde çok başarılı, ancak test verileri üzerinde düşük 

performans gösteriyorsa, model aşırı öğrenme yapmış olabilir. Bu durumda model, 

yalnızca eğitim verilerini ezberlemiş ve genelleme yeteneği kazanamamış demektir. 

Doğruluk ile, kesinlik, anma ve F1-skor gibi metrikler de analiz edilmelidir. Bu 

metrikler, modelin her sınıfta ne kadar başarılı olduğunu ve sınıflar arasındaki 

dengesizlikleri nasıl yönettiğini gösterir. Sonuç olarak, eğitim ve doğrulama süreçleri 

modelin genel başarısını ve yeni veriler üzerindeki performansını anlamamıza yardımcı 

olur. 
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4. ARAŞTIRMA BULGULARI VE TARTIŞMA 

4.1. Ön İşleme Sonuçları 

4.1.1. TDD Öznitelikleri 

Tablo 3.3 ‘de sunulan TDD öznitelikleri, literatürde sıklıkla kullanılan ve parmak 

hareketlerinin karakteristiklerini etkili bir şekilde tanımlayan ölçütlerdir. Başparmağın 

tek bir denemesi için hesaplanan TDD özniteliklerinin görsel olarak sunulduğu Şekil 

4.1, bu özniteliklerin parmak hareketinin farklı aşamalarında nasıl değiştiğini 

göstermektedir. Bu sayede, seçilen özniteliklerin parmak hareketinin hangi yönlerini 

temsil ettiği daha iyi anlaşılmaktadır. Çalışma kapsamında tüm parmaklar için benzer 

analizler yapılmış olup, elde edilen sonuçlar genel olarak parmak hareketlerinin 

karakteristik özniteliklerini temsil etmektedir. 

 

Şekil 4.1 TDD Öznitelikler 
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4.1.2.  CNN Öznitelikler 

 Genellikle, CNN modeli öğrenme aşamasında filtre ağırlıklarını verileri 

kullanarak optimize eder. Bu optimizasyon süreci, modelin daha doğru ve genel 

özellikler öğrenmesine olanak tanır. Fakat bu çalışmada CNN modeli sinyalden önemli 

bilgiler çıkarma işlemi yapar ve bu bilgileri anlamlı vektör haline getirir. Sinyalin 

üzerinde uygulanan bu işlem, belirli örüntülerin, zaman aralıklarının ve frekans 

bileşenlerinin tanımasını sağlar.  CNN modelinin işlenmesi sonunda, her bir deneme 

için 64 adet öznitelik çıkarılmış olur. Bu, ileride gerçekleştirilecek öznitelik seçimi, 

analiz ve sınıflama işlemleri için daha faydalı ve düzenli bir veri seti elde edilmesini 

sağlar. Baş parmak için elde edilen ilk iki öznitelik Şekil 4.2 ve Şekil 4.3, CNN modelin 

başarılı bir şekilde öznitelikleri çıkardığını gösterir. 

 

 

Şekil 4.2CNN'nin Çıkardığı İlk Öznitelik 
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Şekil 4.3 CNN'nin Çıkardığı İkinci Öznitelik 

 

 

4.1.3. LSTM Öznitelikler 

LSTM modeli ile elde edilen özniteliklerin sayısı 32’dir. Bu model, her sinyalin 

zaman içindeki paternlerini temsil eden öznitelik vektörlerini oluşturur. Elde edilen 

öznitelikler, sınıflama aşamasında büyük katkı sağlayacaktır. 

 

 

Şekil 4.4 LSTM'in Çıkardığı İlk Öznitelik 
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Şekil 4.5 LSTM'in Çıkardığı İkinci Öznitelik 

 

LSTM modeli ile elde edilen özellikler, sinyal verilerindeki zaman içindeki 

bağımlılıkları başarılı bir şekilde yakalayarak, her sinyal için anlamlı ve 

yoğunlaştırılmış özellikler sunar. Bu, karmaşık ilişkilerin ve dinamiklerin daha iyi 

anlaşılmasına yardımcı olur. 

 

4.1.4. MI ile Öznitelik seçimi 

TDD, CNN ve LSTM ile her parmağın denemesinden çıkarılan 118 adet 

öznitelikten, daha anlamlı öznitelikleri elde etmek için Mutual information yöntemi 

kullanarak Şekil 4.6’da gösterilen sadece 30 öznitelik seçilir. Bu yöntem, sınıflama 

işlemini kolaylaştırır ve yüksek doğruluğa elde etmekte yardımcı olur. 
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Şekil 4.6 MI ile Seçilen İlk 30 Öznitelik 

 

4.2. Makine Öğrenmesi Modelleri ile Sınıflandırma 

Bu adımda, sınıflama modeli oluşturmadan ön işleme adımdan elde edilen 

öznitelikleri farklı yöntemler ile sınıflamayı gerçekleşerek, Burada kullanılacak 

modeller, Destek Vektör Makineleri (SVM) ve K-En Yakın Komşu Algoritması (KNN). 

Sınıflama eğitimi ve testi daha başarılı sonuç vermek ve iyice eğitmek için, eğitim %70 

test ise %30 olarak ayrıldı. 
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Tablo 4.1 SVM Eğitim Performansı  

 

 

 

 

 

Tablo 4.1 de SVM eğitim performansı verilmektedir. Eğitim doğruluk oranı 

%95 olup başparmak hariç diğer parmaklarda kesinlik oranları oldukça yüksektir. 

Duyarlılık oranları da orta ve yüzük parmaklarda nispeten düşük olup genelde 

yüksektir.  

Tablo 4.2  SVM Test Performansı 

 

Tablo 4.2 de ise SVM test performansı verilmektedir. Test doğruluk oranı %95 

olup başparmak hariç diğer parmaklarda kesinlik oranlarının %100 olduğu 

görülmektedir. Duyarlılık oranları da orta, yüzük ve serçe parmaklarda nispeten düşük 

olup başparmak ve işaret parmakta %100 oranındadır.  

 

 

 

 

 

 

Parmak Kesinlik Duyarlılık  F1-skor Doğruluk 

Başparmak 83 100 91 

95 

İşaret 100 97 99 

Orta 100 91 96 

Yüzük 97 91 94 

Serçe 100 97 99 

Parmak Kesinlik Duyarlılık  F1-skor Doğruluk 

Başparmak 79 100 88 

95 

İşaret 100 100 100 

Orta 100 93 97 

Yüzük 100 87 93 

Serçe 100 93 97 
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Tablo 4.3 KNN Eğitim Performansı  

 

 

Tablo 4.4 KNN Test Performansı 

 

Tablo 4.3 ve Tablo 4.4’te KNN ile sınıflama doğru bir şekilde gerçekleşmiş ve 

sonuçla eğitim %97 iken test %93 olarak belirlendi. 

Bu sonuçlara göre SVM ile KNN modelleri kullanarak çok yüksek doğruluk 

oranları elde ederek özniteliklerin ön işlemesinin doğru ve başarılı bir şekilde elde 

ettiğimizi göstermektedir. 

4.3. FCNN ile Sınıflama Sonuçları 

Çalışmamızda, FCNN modeli ve eklenen yöntemleri kullanarak eğitim 

doğruluğu %100 olarak elde edilirken, test doğruluk oranı %99 olarak elde edildi ve bu 

çok yüksek bir doğruluk orandır. Her beş parmağın performansı değerlendirmek için 

doğruluk, kesinlik, Duyarlılık ve F1 skor kullanılmıştır. Eğitim performansı da kesinlik, 

duyarlılık ve F1 skoru, beş parmak için %100 olarak elde edilmiştir. 

  

 

Parmak Kesinlik Duyarlılık  F1-skor Doğruluk 

Başparmak 90 100 95 

97 

İşaret 100 97 99 

Orta 100 97 99 

Yüzük 97 94 96 

Serçe 100 97 99 

Parmak Kesinlik Duyarlılık  F1-skor Doğruluk 

Başparmak 83 100 91 

93 

İşaret 94 100 97 

Orta 100 87 93 

Yüzük 93 87 90 

Serçe 100 93 97 
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Tablo 4.5 FCNN Eğitim Performansı 

Parmak Kesinlik Duyarlılık  F1-skor Doğruluk 

Başparmak 100 100 100 

100 

İşaret 100 100 100 

Orta 100 100 100 

Yüzük 100 100 100 

Serçe 100 100 100 

 

Modelin eğitim sonuçlarından model iyice öğrenmiştir. Tablo 4.5’te FCNN 

Eğitim Performansı doğruluk oranı %100 olarak bulunurken Tablo 4.6’da FCNN Test 

Performansı doğruluk oranı %99 olarak belirlenmiştir. 

 

Tablo 4.6 FCNN Test Sınıflama Performansı 

Parmak Kesinlik Duyarlılık  F1-skor Doğruluk 

Başparmak 100 100 100 

99 

İşaret 100 100 100 

Orta 100 93 97 

Yüzük 94 100 97 

Serçe 100 100 100 

 

Modelin sınıflama sonuçları oldukça iyi ve yüksek görünmektedir. Test verileri 

doğru tahmin yaptığını incelemek için Şekil 4.7’de Karışıklık matrisi, modelin her sınıf 

için ne kadar doğru veya yanlış tahmin yaptığını tablo halinde özetleyen bir görseldir. 
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Şekil 4.7 Karışıklık Matrisi 

Bu matrise göre, model test verisinde oldukça başarılı. Sadece orta parmak 

sınıfındaki bir örnek yanlış tahmin edilmiş, diğer tüm örnekler doğru sınıflandırılmış. 

Bu durumda modelin doğruluğu oldukça yüksek ve sınıflar arasında karışıklık minimal 

düzeyde. 

 

4.4. Modellerin Karşılaştırması 

FCNN modeli uygulamadan, öznitelik seçiminden sonra kullanılan SVM ve 

KNN modeller, yine yüksek doğruluk oranları verilmişler fakat FCNN gibi değil. SVM 

ile sınıflama test doğruluk oranı %95 iken, KNN ile sınıflama test oranı %93 olarak 

elde edilmiştir. Eğitim oranları ise FCNN ile model eğitimi 100% iken, SVM ile %95 

ve KNN ile model eğitim oranı %97 olarak eğitilmiştir. 
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Şekil 4.7 Modellerin Doğruluk Karşılaştırılması 

 

FCNN modelimiz hem eğitim hem de test aşamasında diğer sınıflama 

modellerden daha yüksek sonuç verilmiştir. En yüksek sonuç İşaret parmağın 

sonucuydu ve kullanılan üç modelden FCNN %100, SVM %100 ve KNN %97 F1-

Score olarak elde edilmiştir, fakat diğer parmaklar için karışık sonuçlar verilmiştir ve 

en düşük başarı oranı, SVM’de %88 baş parmağı , KNN’de %90 yüzük  parmağı  ve 

FCNN’ de %93 orta parmağın nasibinden çıktı. Bu sonuçlar hiç düşük değildir sadece 

aynı modelin F1-Score oranında parmakların arasında en düşüktü. Böylece FCNN diğer 

iki sınıflama modellerden bütün 5 parmakların sınıflamasında daha iyi sonuç ve daha 

yüksek doğruluk ve performans elde etmektedir. FCNN diğer modellerden eğitimde 

daha fazla süre alırsa’da sonuçları daha yüksek vermektedir. Ve daha fazla süre alma 

sebebi FCNN bir derin öğrenme modelidir yani çok katmanlı ve derin yapıya sahip ve 

öznitelikleri otomatik olarak öğretir ve büyük veri setleri için daha uygun. 
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Şekil 4.8 FCNN, SVM ve KNN Performans  Karşılaştırılması 

 

4.5. Aşırı Öğrenme Durumunun İrdelenmesi 

Modelin aşırı öğrenme yapmadığını anlamanın iki yolu vardır. İlk yol, eğitim 

ve doğrulama kayıplarını incelemektir. Eğitim ve doğrulama kayıpları benzer bir 

şekilde azalıyorsa ve birbirine yakınsa, modelin aşırı öğrenme yapmadığını demektir. 

Şekil 4.10  aşırı öğrenme olmadığını gösterir. Fakat doğrulama kaybı bir noktadan sonra 

yükselmeye başlarsa, bu durum modelin eğitim verisini aşırı öğrenmeye başladığını 

gösterebilir. 
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Şekil 4.9 Eğitim ve Doğrulama Kayıpları 

İkinci yol ise eğitim ve doğrulama doğruluklarını karşılaştırmaktır. Şekil 4.11, 

Eğitim ve doğrulama doğruluklarının yüksek ve birbirine yakın olması, modelin veriyi 

aşırı öğrenmeden genelleme yapabildiğini ifade eder. Ancak eğitim doğruluğu çok 

yüksekken doğrulama doğruluğu düşükse, modelin aşırı öğrenme yaptığı düşünülebilir. 

 

Şekil 4.10 Eğitim ve Doğrulama Doğrulukları 
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4.5.1. Literatür ile Karşılaştırma 

Literatürde etiketlenen çalışmalarda farklı veri setler kullanılmıştır. Bu 

çalışmada kullanılan veri setini toplayanlar, veri seti üzerinde farklı yöntemleri 

kullanarak sınıflama işlemini gerçekleştirilmişler. Literatürdeki çalışmaların farklı 

derin öğrenme ve makine öğrenme modelleri kullanarak çok iyi ve yüksek sonuçları 

elde etmişler. 

4.5.2. Farklı veri seti 

 Atzori (2016) çalışmasında CNN yöntemi kullanarak en yüksek doğruluk oranı %75 

olarak elde edilmiştir (Şekil 4.12). Triwiyanto et al. (2024) çalışmasında CNN 

kullanarak yaklaşık %97 doğruluk elde ederken(Şekil 4.13),  Reza Bagherian Azhiri 

çalışmasında RNN yöntemi (Şekil 4.14)  kullanarak oda %96 sonuç elde ederek iyi 

sonuçlar elde etmiştir. Makine öğrenme yöntemleri kullanarak çalışmayı gerçekleştiren 

Kyung Hyun Lee ve arkadaşları en son ANN ile %94 olarak elde edilmiştir [6, 7, 8, 9].  

 

Şekil 4.11 CNN ile 3 Data setin Doğruluğu 
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Şekil 4.12 CNN, KNN, SVM, LDA ve DT Sınıflama Doğruluğu 

 

Şekil 4.13 RNN Çalışmanın Sınıflama Sonuçları 

 

 

Şekil 4.14 ANN, SVM, RF ve LR Sınıflama Doğruluğu 
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Bu sonuçlar başka veri setlerine ait olsa bile sonuçları bu çalışma için önemlidir; 

çünkü bu çalışmalarda görülen sonuçlar çok iyi olmasına rağmen bizim çalışmada 

kullandığımız FCNN modeli daha yüksek sonuçlar vermiştir. 

4.5.3. Aynı Veri Seti ile Yapılan Çalışmalar 

Bu çalışmada kullanılan veri setini toplayan Sanjay Kumar Dwivedi, MRD 

modeli ile sınıflama gerçekleştirmiştir. Çalışmada, toplanan veri seti iki tür veriden 

oluşmaktadır: kas aktivasyonu verileri ve kinematik hareket verileri. Araştırmacılar, bu 

iki veri setini birleştirerek MRD modeli ile  Tablo 4.7’de görülen %91 doğruluk oranına 

ulaşmışlardır. 

Tablo 4.7 MRD Çalışmasının Sınıflama Sonuçları 

Regression 

Methods 

RMSE Correlation 

coefficient(p) 

R-Square Time(ms) 

LR- RD 8.08 ±1.28 0.50 ±0.08 0.31 ±0.13 0.000,09 ±0.000,1 

LR- Full 7.66 ±1.22 0.57 ±0.07 0.38 ±0.12 0.000,43 ±0.000,10 

ANN-RD 6.64± 1.19 0.68± 0.04 0.46 ±0.10 0.06 ±0.002 

ANN- Full 5.07 ±0.90 0.82± 0.04 0.68 ±0.07 0.09 ±0.010 

Prosed 

Method 

3.4 ±0.89 0.91 ±0.03 0.84 ±0.05 2.6 ±0.79 

 

FCNN yöntemiyle, yalnızca kas aktivasyonu verileri kullanılarak sınıflama 

gerçekleştirilmiş ve bu yöntemle daha yüksek bir sınıflama doğruluğu elde edilmiştir; 

başarı oranı %99 olarak belirlenmiştir. Kas aktivasyonunun seçilmesinin sebebi, 

dünyada sınıflama, robotik uygulamalar, teşhis ve testler üzerine yapılan çalışmaların 

çoğunun EMG verileri üzerinde yoğunlaşmasıdır. Bu nedenle, gerçekleştirilen 

çalışmanın daha kullanışlı ve faydalı olması beklenmektedir. 

4.6. Analiz ve Yorumlar 

Bu çalışmanın amacı, derin öğrenme yöntemleri ile parmak hareketlerinin 

sınıflanmasıdır. Derin öğrenme ile en yüksek ve en iyi sonuçları elde edebilmek için üç 

farklı yöntem kullanılmıştır. Özniteliklerden yalnızca TDD 22 özniteliği yeterli 
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bulunmamış, bu nedenle CNN ve LSTM derin öğrenme modelleri de uygulanmıştır. 

Öznitelikler seçildikten sonra, sınıflama işlemi FCNN derin öğrenme modeli ile 

gerçekleştirilmiştir. Bu yaklaşım, daha başarılı ve yüksek doğruluklu sonuçlar elde 

edilmesini sağlamış ve çalışmanın amacına ulaşılmasına katkı sunmuştur. Elde edilen 

başarı, tüm parmaklar için geçerli olup, kesinlik, doğruluk ve modelin eğitim 

performansı açısından yüksek bir başarı oranı göstermektedir. 

Modelin aşırı öğrenme (overfitting) riskinden korunması amacıyla Dropout, 

veriyi %70 ve %30 oranında ayırma, havuzlama (pooling), eğitim ve doğrulama 

kayıplarının karşılaştırılması, ayrıca eğitim ve doğrulama doğruluklarının izlenmesi 

gibi yöntemler kullanılmıştır. Bu yöntemler sayesinde, eğitim performansı aşırı 

öğrenme olmadan artmış ve model etkin bir şekilde öğrenmiştir. Eğitimde %100 

doğruluk ve testte %99 doğruluk elde edilmesi arasındaki küçük fark, aşırı öğrenme 

olmadığını göstermektedir. 
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5. SONUÇ VE ÖNERİLER  

Bu çalışmada, öznitelik seçimi ve sınıflama işlemleri Spyder uygulaması ve 

Python dili kullanılarak gerçekleştirilmiştir. Bu yöntem, aşırı öğrenme olmadan, diğer 

yöntemler ve modellere göre daha yüksek doğruluk ve performans sergilemiştir. Her 

bir parmak için performans ve doğruluk değerlendirildiğinde, FCNN modelinin eğitimi 

%100 doğruluk sağlamış ve toplam test doğruluğu %99 olarak kaydedilmiştir. 

Parmakların doğruluğu ise, baş, işaret, yüzük ve serçe  %100 iken, orta parmak %93 ile 

en düşük doğruluk oranına sahip olarak sınıflanmıştır. 

TDD zaman serisi ile öznitelikleri kolay ve basit bir şekilde elde edilebilir ve 

bunu yetmeden derin öğrenme modeli CNN ile başarılı 64 öznitelik elde edilmiştir 

dahada öznitelikleri kaçırmamak için yine derin öğrenme modeli LSTM’i kullanarak 

32 öznitelik elde edildi toplam olarak 118 öznitelik yapar. Bu 118 özniteliklerden en 

önemli öznitelikleri seçmek için MI yöntemi kullanıldı ve 30 tane öznitelik seçilmiştir. 

Böylece sınıflama aşamasına geldiğinde özniteliklerin sayısı az fakat en önemlisi 

seçildi ve böyle FCNN modeli ile sınıflama yüksek doğruluk ve performans gösterildi. 

Bu çalışmada çok zaman ve güç harç edildi ve bu başarı sonuçlara ulaştıkça yeni 

bilgiler öğrenildi ve çok hatalar ile karşılaştık. Burada aynı alanda çalışma yapacak 

araştırmacılar için birkaç önerilere bulunuyor. 

Parmak hareketlerinin sınıflaması üzerinde çalışmak isteyenler, öncelikle veri 

setini dikkatlice araştırmalı ve en uygun veri setini seçmelidir. Veri seti seçildikten 

sonra, bu veri setini iyice anlamalı ve üzerinde yapılan önceki çalışmaları incelemelidir. 

Ayrıca, veri setinin toplanmasında hangi cihazların ve yöntemlerin kullanıldığını 

öğrenmek önemlidir. Bu adımlar çok kritik olup, yalnızca bu aşama bile zaman alıcı 

olabilir ve birkaç hafta sürebilir. 

Sınıflama modelini seçmeden önce önemli özniteliklerin belirlenmesi, en kritik 

adımlardan biri olabilir. Özniteliklerin çıkarılması için kullanılan teknikleri ve 

modelleri aramak ve denemek, zaman alıcı ve yorucu bir süreçtir çünkü özniteliklerin 

belirlenmesi için pek çok farklı yöntem bulunmaktadır. Bu nedenle, bu tür 

araştırmalarda en yaygın kullanılan teknik ve yöntemleri öncelikli olarak denemek daha 

verimli olacaktır. Böylece, hızlı bir şekilde uygun öznitelik çıkarımı ve seçimi 

yapılabilir.Uygun sınıflama modelini arama aşamasında, her denenen modelin 

sonuçları kaydedilmelidir. Çünkü sonuçlar ne kadar düşük olursa olsun, bu veriler 
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önemli olabilir; bazen modelin başarısızlığı, modelden değil, veri setinden ya da 

öznitelik çıkarım yöntemlerinden kaynaklanabilir. Ayrıca, modeli kullanırken sonuçları 

iyileştirebilecek ek yöntemler uygulanmalıdır. 
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