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Yiiksek Lisans Tezi
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Lisansiistii Egitim Enstitiisii

Elektrik-Elektronik Miihendisligi Anabilim Dalh

Damisman: Do¢.Dr. Yiicel KOCYiC}iT

Bu caligma, EMG sinyalleri ve derin 6grenme modeli kullanilarak parmak
hareketlerinin  smiflandirilmasina odaklanmaktadir. Elektromiyografi sinyalleri,
kaslarin elektriksel aktivitesini kaydeden biyomedikal sinyallerdir ve bu sinyaller
analiz ederek, protez uzuvlarin tiretilmesi, kosullarin teshis edilmesi ve hatta protez
uzuvlarm kontrol edilmesi gibi ¢esitli alanlarda kullanilir. Bu ¢alismada kullanilan
veriler, on saglikli goniilliiden toplanan verilerdir. Her goniillii, parmak hareketiyle
ilgili yedi gorevi gerceklestirdi ve her gorev bes kez tamamlandi; bu, tiim gontilliilerden
alinan toplam deney sayisinin 350 oldugu anlamina geliyor. Elektromiyografi sinyalleri
kullanilarak verileri kaydedildi ve daha sonra bu veriler islenerek kullanilabilir hale
getirildi. Bu ¢alismada veriler islendikten sonra siniflandirmaya hazir hale getirilmistir.
Oncelikle her bir parmaga ait veriler ayrilinmistir ve bazi parmaga bir kanaldan fazla
ait oldugu i¢in FastICA yontemi kullanarak bu kanallarin verileri teke diistirmiistiir.
Daha sonra, zaman alani tanimlayicilar1 (TDD), evrisimli sinir ag1 (CNN) ve uzun kisa
sireli bellek (LSTM) kullanilarak belirli 6znitelikler c¢ikarildi. Bu 6znitelikler
cikarildiktan sonra siniflandirma islemi i¢cin en onemli Oznitelikler karsilikli bilgi
yontemi (MI) kullanilarak secilmistir. Bu siirecin ardindan tam baglantili sinir ag1
modelinin (FCNN) secilerek siniflandirma gerceklenirmistir. Modelin etkili bir sekilde
Ogrenilmesi ve yiiksek dogruluk oranlarinin elde edilmesi nedeniyle siniflandirma
islemi basarili olmustur. Bu sonuglar elde edildikten sonra derin 6grenme modellerinin
yasamsal belirtilerin ve EMG sinyallerinin smiflandirilmasinda etkili bir arag
olabilecegi sonucuna varilabilir. Bu ¢alismadan, Derin 6grenme ile siniflama ve analiz
alanlarda etkili katkilar saglayabilecegi sonucuna varilabilir.

Anahtar Kelimeler: Elektromiyografi, parmak hareketleri siniflandirmasi,
derin 6grenme, konvoliisyonel sinir aglari, uzun kisa stireli bellek, ger¢ek zamanl
sinyal igleme, bagimsiz bilesen analizi.
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ABSTRACT

M.Sc.

Yasin ALI
Manisa Celal Bayar University

Graduate Education School

Department of Electrical and Electronic Engineering

Supervisor: Assoc. Prof. Dr. Yiicel KOCYIGIT

This study focuses on the classification of finger movements using EMG signals
and deep learning model. Electromyography signals are biomedical signals that record
the electrical activity of muscles, and these signals are analyzed and used in various
fields such as the production of prosthetic limbs, diagnosing conditions, and even
controlling prosthetic limbs. The data used in this study is the data collected from ten
healthy volunteers. Each volunteer performed seven tasks related to finger movements,
and each task was completed five times; this means that the total number of experiments
from all volunteers is 350. The data was recorded using electromyography signals, and
then these data were processed and made usable. In this study, the data was made ready
for classification after being processed. First, the data belonging to each finger was
separated, and since more than one channel belonged to some fingers, the FastICA
method was used to reduce the data of these channels to one. Then, specific features
were extracted using time domain descriptors (TDD), convolutional neural network
(CNN), and long short-term memory (LSTM). After extracting these features, the most
important features for the classification process were selected using the mutual
information method (MI). After this process, the classification was performed by
selecting the fully connected neural network model (FCNN). The classification process
was successful due to the effective learning of the model and the high accuracy rates.
After these results were obtained, it can be concluded that deep learning models can be
an effective tool in the classification of vital signs and EMG signals. It can be concluded
from this study that deep learning can provide effective contributions to the fields of
classification and analysis.

Keywords: Electromyography, finger movement classification, deep learning,
convolutional neural networks, long short-term memory, real-time signal processing,
independent component analysis



1. GIRIS

Son yillarda, 6znitelikle derin 6grenme tekniklerine erisimle birlikte yapay zeka
alaninda gelismeler ilerleme kaydetti. Derin 6grenme, basit ve kiiciik veri kiimelerinde
one ¢ikan makine Ogreniminin aksine, biiyliik veri kiimelerinden 6nemli kaliplari
cikarma konusunda iistiindiir. Derin 6grenme, zamansal veri analizi alani, hayati sinyal
isleme alan1 ve goriintii isleme alan1 gibi bir¢ok alanda ilerleme ve devrim getirmistir
[1]. Elektromiyografi (EMG) sinyalleri, insan kaslarinin elektriksel aktivitesini
kaydeden hayati tibbi sinyallerdir. Bu sinyalleri, kaslarin ne zaman ve nasil ¢aligtigini
detayli olarak kaydederler; siniflandirma ve analiz siiregleri, teshis alanlari, protez uzuv
iretimi ve rehabilitasyon siiregleri [2]. Derin 6grenme modelleri, sinyalleri isleme ve
veri kiimelerinden veri ¢ikarma konusunda miikemmel performansa sahiptir. Ornegin
CNN modeli ve LSTM modeli onemli oOzniteliklerin ¢ikarilmasinda istiinliik
gostermektedir. CNN, sinyallerin uzaysal 6zniteliklerini 6grenirken, LSTM zaman
icindeki bagimliliklar1 yakalamada en etkili yontemdir. Bu modeller biiyiik veri
setlerinin islenmesi, analiz edilmesi ve siniflandirilmasinda etkili ve giiclii performans
gostermektedir [3]. Ayrica bu ¢aligmada, 10 saglikli goniilliiden toplanan her parmak
icin EMG sinyalleri kullanildiktan sonra siniflama isleminin basarili olmasi i¢in derin
ogrenme modelleri ve diger araclar kullanildi. ilkinde verileri ayirip kullanilabilir hale
getirmek i¢in Fast Independent Component Analysis (FastICA) kullanildi. Daha sonra
simiflandirma siireci i¢in 6nemli Ozniteliklerin ¢ikarilmast amaciyla zaman alani
tanimlayicilar1 (Time Domain Descriptors) TDD ve derin 6grenme modelleri Evrigimli
Sinir Ag1 (Convolutional Neural Networks) ve uzun kisa siireli bellek (Long Short-
Term Memory) LSTM kullanildi. Segilen 6znitelikler arasindan en 6nemli 6znitelikleri
se¢mek ic¢in karsilikli bilgi (Mutual Information) MI kullanildi. Yiiksek siniflandirma
sonucu gosteren derin 6grenme modeli, tam baglantili sinir ag1 (Fully Connected Neural
Networks) FCNN kullanilarak smiflandirma islemi gerceklenmistir. Derin 6grenme
modelleri, makine 6grenimi modelin aksine biiyiik veri setlerinden 6grenme yetenekleri
sayesinde EMG sinyallerinin analizinde yiiksek dogruluk saglarken, sinyallerin daha
genis Olcekte kullanilmasina da olanak taniyor [4]. Bu ¢alisma, EMG sinyallerini
kullanarak parmak hareketlerini siniflandirmada derin 6grenme teknikleri
kullanilmaktadir. Bu biyomedikal miihendisligi, rehabilitasyon ve protez kontrol

sistemleri gibi alanlara 6nemli katkilar saglanir.



1.1. Literatiir Taramasi: EMG Sinyalleri ve Derin Ogrenme Yontemleri

Kaslarin elektriksel aktivitesini izlemek icin elektromiyografi sinyalleri
kullanilir. Bu sinyal biyomedikal sinyaldir ve robotik, protez cihazlar, teshis vakalar
ve diger alanlarda kullanilmaktadir. 2000’11 yillardan itibaren, Kas hareketleri dogru
tahmin amaci ile kullanilan bir yontemdir. Kas aktivasyonundan elde edilen sinyalin
islenmesi ve smiflamasi igin en uygun yontemler ve modeller secilmektedir. Bu
modelden biri derin 6grenme modelidir. Derin 6grenme modeli smiflama ve
Oznitelikler ¢ikarmak icin yaygin bir yoldur 6znitelikle gorsellerin simiflamasi ya da
EMG sinyalin islemesi ve siniflamasi. Derin 6grenme ile EMG sinyallerin siniflamasi,
son yillarda sik¢a kullanilan modeldir ¢iinkii elde edilen sonuglar ¢ok yiiksek dogruluk
gosterir ve Oznitelik ¢ikarma alaninda kendine bir yol ¢izerek simdilik sik¢a kullanilan
yontem oldu. Buda protez alanlarda, teshislerde, hastaliklarda ve farkli biyomedikal

calismalarda biiyiik fayda katt.

EMG sinyallerin siniflama alaninda sik¢a ve yaygin kullanilan modelden biri
Convolutional Neural Networks (CNN) modelidir. Derin 6grenme algoritmasi CNN,
cok genis alaninda kullanilmakta, 6zellikle goriintli ve sinyal islemesinde sinyallerin
uzaysal Oznitelikleri 6grenme imkani ile biiyiik basar1 saglar. Biyomedikal verilerde

kullaninca, ham sinyallerden direkt anlamli 6znitelikler ¢cikarma yetenegi sahiptir [5].

2016 yilinda Atzori ve arkadaslari, ylizey elektromiyografisi (SEMQG) ile elde
edilen verileri kullanarak protez uzuvlar1 kontrol etmek i¢in derin Ogrenme
yontemlerini denediler. Atzori tarafindan yiiriitiilen bu ¢calismada 67 saglikli kisi ve 11
ampute kisi kullanildi. Siniflandirmada evrisimsel sinir aglari kullanilmis ve bu
siiflandirma sonucunda saglikl bireylerde %66, ampute bireylerde ise %38 dogruluk
oranina ulagilmistir. Dolayisiyla CNN'in sahada daha yiliksek dogruluk elde etme

yetenegine sahip oldugu sonucuna varilmistir [6].

2024 yilinda Triwiyanto et al. Ve ark. Yiizey EMG sinyallerini kullanarak el
hareketi siniflandirma performansini artirmak i¢in bir derin O6grenme modeli
gelistirdiler. Bu veriler on saglikli kisiden elde edildi. Bu ¢alismada smiflandirma
isleminde dogruluk oran1 yaklasik %97'ye ulasan evrisimli sinir aglar1 kullanilmis olup
bu dogruluk diger yontemlere gore daha yiiksektir. Dolayisiyla bu ¢alismada CNN'in
ham sEMG verilerini dahi islemede iyi oldugu sonucuna varilabilir. Oznitelik ¢ikarma

olmadan [7].



Reza Azhiri ve ark. “EMG Sinyallerinin Tekrarlayan Sinir Aglar1 (RNN'ler)
Araciligiyla Ger¢ek Zamanli Siniflandirilmast” adli bir ¢calisma yapmislar ve EMG
sinyallerinin gercek zamanli smiflandirilmasinda tekrarlayan sinir aglarini
kullanmiglardir. Bu ¢alismada, zaman-frekans alan1 boyunca 6zniteliklerin ¢ikarilmasi
icin ayrik bir dalgacik déniisiimii kullamlmstir. Oznitelikler ¢ikarildiktan sonra
RNN'ler kullanilarak siniflandirilmis ve 600 milisaniye igerisinde %96'luk dogruluk
orani elde edilmistir. Bu da RNN modellerinin hiz ve dogruluk ag¢isindan daha iyi

sonuglar verebilecegini dogrulamaktadir [8].

EMG sinyallerin smiflamasinda sadece derin Ogrenme algoritmalari
kullanilmiyor, farkli algoritmalarda kullanilir ve bu algoritmalarda makine 6grenme
algoritmalar1 ve modelleridir. Bu algoritmalardan Destek Vektér Makineleri (SVM),
Yapay sinir aglar1 (ANN) ve Rastgele Ormanlar (Random Forest) gibi geleneksel

algoritmalar, kiiciik verileri i¢in daha uygun ve yiiksek sonuglar1 verirler.

Lee ve ark. (2022) tarafindan gerceklestirilen calismada, elektromiyogram (EMG)
sinyallerinin kullanildig1 el ve parmak hareketlerinin yapay sinir aglari (ANN) ile
smiflandirilmasi incelenmistir. Calismada, 10 saglikli katilimcidan ii¢ farklih EMG
kanal1 lizerinden veriler toplanmis ve katilimcilar 10 farkli el ve parmak hareketi
gerceklestirmistir. Elde edilen verilerden zaman-domain (TD) o6znitelikleri
cikarilarak, ANN, destek vektor makineleri (SVM), rastgele orman (RF) ve lojistik

regresyon (LR) algoritmalari ile siniflandirma yapilmistir [9].

Sonuglara gore ANN, %94 dogruluk oraniyla en iyi performansi gosterirken,
SVM %387,6, RF %83,1 ve LR %53,9 dogruluk oranlarina ulagmistir. Calismada
Ann’inin, diger yontemlere kiyasla bireysel farkliliklardan en az etkilendigi ve
katilimcilar arast dogruluk farkinin daha az oldugu vurgulanmigstir. Ayrica, sadece TD
ozniteliklerinin kullanilmasiyla diger calismalara kiyasla kanal basimna daha fazla
hareket tanimlanmis ve bu yontemle sistemin kullanim kolayliginin ve hesaplama

yiukiiniin azaltildig1 belirtilmistir.

2020 yilinda Sanjay Kumar ve ark. ylizey EMG sinyalleri ile parmak hareketleri
arasindaki dogrusal olmayan iliskileri inceleyen ve bu iliskileri belirli uygulamalarda
kullanilabilecek sekilde modelleyen bir ¢aligsma yiiriittiiler. Toplanip bir veri seti haline
getirilen veriler, arastirmacilarin gelistirdikleri modelde daha sonra protez uzuv

gelistirme ve daha verimli hale getirme alanlarinda kullanilmak iizere parmak
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hareketlerini smiflandirmak ic¢in kullanildi [10]. Bu calismada (derin &grenme
kullanilarak parmak hareketlerinin siniflandirilmasi) Sanjay ve arkadaslarinin yaptigi

calismadan elde edilen veriler kullanilmistir.

Kaslar ve parmak hareketleri arasindaki dogrusal olmayan iliskileri 6grenmek
icin MRD modeli egitilmistir. Veri setlerindeki modelin siirekli iyilestirilmesi ile egitim
siireci gergeklestirilir. Bu grupta SGD gibi optimizasyon algoritmalari ve model
parametremizin giincellenmesi her defasinda egitim siirecinin sonunda tekrarlanir.
Egitim siirecinin sonunda kas aktivasyonu ile parmak hareketleri arasindaki iligkileri

ogrenen bir model yapilmistir [10].

Test silirecinde modelin performansi gesitli istatistiksel ol¢iimler kullanilarak
analiz edilmis ve modelin basarisi ortalama karesel hata, ortalama mutlak hata ve
korelasyon katsayis1 gibi c¢esitli Ol¢iimler kullanilarak degerlendirilmigtir. Model
sonuglari, modelin parmak hareketlerini %91'e kadar korelasyon katmani tahmin
edebildigini ve ayrica bu modelin dogrusal olmayan sinerjileri ¢ikarmanin etkili bir

yolu oldugunu kanitladigini gosterdi [10].

Derin 6grenme modelleri yalnizca siiflama icin degil, ayn1 zamanda 6znitelik
cikariminda da yiiksek katki saglamaktadir. CNN ve LSTM gibi modeller, daha yiiksek

siniflama basarisi elde edebilmek i¢in anlamli 6znitelikler ¢ikarabilmektedir.

Ali Ar'nm 2023 yilinda "Derin Ogrenme ve Zaman Alam Tanmimlayicilarna
Dayali Ozellik Cikartimi Kullanilarak EMG Sinyali Siniflandirmasi ve El Kavrama
Hareketi Tanima" baslikli ¢alismasinda TDD, CNN ve LSTM modelleri kullanilarak
Oznitelikler ¢ikarilmis, bu 6znitelikler MRMR yo6ntemiyle anlamli olanlar1 se¢ilmis ve
SVM ile siniflandirma yapilmistir. Yapilan siniflandirmanin dogrulugu ise %98.34

olarak elde edilmistir [11].



2. GENEL BILGILER

2.1. Yiizey Elektromiyografi

Yiizey Elektromiyografi (Surface Electromyography, sEMG), kaslarin
elektriksel aktivitesini invaziv olmayan bir yontemle 6lgmek amaciyla kullanilan
ndrofizyolojik bir tekniktir. Bu yontemde, elektrotlar cilt ilizerine yerlestirilir ve altta
bulunan kaslarin elektriksel sinyalleri kaydedilir. sSEMG, kaslarin motor birimlerinden
kaynaklanan aksiyon potansiyellerini toplar ve bu sinyaller, kas aktivitesinin
zamanlamasi, siddeti ve koordinasyonu hakkinda bilgi verir. Klinik ortamlarda, spor
bilimlerinde ve rehabilitasyon siire¢lerinde sikca kullanilan sEMG, kas
fonksiyonlarinin degerlendirilmesi ve kas-iskelet sistemi hastaliklarinin teshisi i¢in

onemli bir aragtir [12].

2.1.1. Yiizey Elektromiyografi'nin Tarihgesi ve Gelisimi

Elektromiyografi (EMG), 19. yiizyilin sonlarindan itibaren kaslarin elektriksel
aktivitesini incelemek igin gelistirilen yontemlerin basinda gelir. ilk calismalar, kaslarin
elektriksel potansiyellerinin kayit altma alinmasi lizerine odaklanmis ve yiizey
elektrotlarinin kullanilmaya baglanmasiyla SEMG'nin temelleri atilmigstir. 20. yiizyilin
ortalarinda teknolojideki gelismeler sayesinde SEMG daha hassas ve giivenilir bir
teknik haline gelmistir. Bugiin, SEMG cihazlar1 dijital sinyal isleme teknikleri ile
calisarak daha detayl analizlere olanak tanimaktadir. Ayrica, modern biyomedikal
miihendislik uygulamalar1 sayesinde, SEMG sadece kas aktivitesinin 6l¢iilmesinde
degil, ayn1 zamanda insan-makine arayiizii ve protez kontrol sistemlerinde de kullanilir

hale gelmistir [12].

2.1.2. Yiizey Elektromiyografi'nin Temel ilkeleri

sEMG’nin temel prensibi, kaslar calisirken motor birimlerden yayilan
elektriksel sinyallerin cilt ylizeyine kadar ulagmasi ve yiizey elektrotlariyla bu
sinyallerin kaydedilmesidir. Bir kasin kasilmas1 sirasinda motor noronlar, kas liflerine
elektriksel uyarilar gonderir ve bu elektriksel aktivite aksiyon potansiyelleri seklinde

cilde yansir. SEMG cihazlar1 bu aksiyon potansiyellerini kaydeder ve analiz eder [13].



Olgiim sirasinda kullanilan elektrotlarm yerlesimi, cilt ve kas arasindaki
dokularin 6znitelikleri, sinyalin kalitesini ve dogrulugunu etkileyebilir. Bu nedenle,
dogru elektrot yerlesimi ve sinyal isleme teknikleri, giivenilir sonuglar elde etmek i¢in

kritik 6neme sahiptir.

Sekil 2.1Yiizey Elektrotlar

2.2. Veri seti

Veri seti, belirli bir amacla toplanan ve analiz edilmeye hazir olan organize
verilerdir. Cesitli degiskenler veya gozlemler igerebilir ve sayisal, kategorik ya da
metinsel olabilir. Bilimsel arastirmalarda veri setinin kalitesi, boyutu ve cesitliligi
aragtirmanin basarisinda kritik rol oynar. Genellikle tablolar halinde diizenlenir; satirlar
gozlemleri, siitunlar ise bu gozlemlerde Olciilen 6znitelikleri temsil eder. SEMG gibi

calismalarda veri setleri, kas aktivitesini 6l¢en sinyalleri igerebilir.

Veri seti olusturma siireci, arastirma amacina uygun dogru verilerin
toplanmasiyla baslar. SEMG c¢alismalarinda, elektrotlarin dogru yerlestirilmesi ve
cihazlarm uygun kullanimi veri kalitesi i¢in Onemlidir. Ayrica, denek se¢imi ve
ornekleme yontemleri veri setinin temsil giiciinii ve genellenebilirligini etkiler. Veri
analiz siireci ise ham verilerin islenmesi, eksik verilerin tamamlanmasi ve ardindan
istatistiksel yontemlerle anlamli sonuglar ¢ikarilmasi gibi adimlar igerir. Veri setinin

kalitesi, aragtirma sonuglariin dogrulugunu ve tekrarlanabilirligini etkiler.
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Sekil 2.2Veri Seti Ornegi

2.3. Parmak hareketlerin siniflamasi

Parmak hareketlerinin siniflandirilmasi, insan-makine etkilesimi, protez
kontrolii, sanal ger¢eklik uygulamalar1 ve nérobilim alanlarinda énemli bir arastirma
konusudur. Parmak hareketleri, 6znitelikle el becerileri gerektiren gorevlerde dnemli
rol oynar ve bu hareketlerin dogru bir sekilde siniflandirilmasi, robotik sistemlerde veya
biyomedikal cihazlarda basarili bir insan-makine arayiizii saglamak ag¢isindan kritik
oneme sahiptir. Bu siniflandirma, genellikle hareket verilerinin toplanmasi ve bu

verilerin farkli algoritmalar kullanilarak analiz edilmesi ile gerceklestirilir.

Parmak  hareketlerinin  siiflandirilmasi  siireci, hareket  verilerinin
toplanmasiyla baglar. Bu veriler genellikle elektromiyografi (EMG) sinyalleri,
ivmedlgerler ve jiroskoplar gibi cihazlarla toplanir. EMG sinyalleri, parmaklarin kas
aktivitesini kaydederken; ivmedlger ve jiroskoplar, hareketin uzaydaki konumu ve hizi
gibi verileri saglar. Toplanan verilerden sinyal genligi, frekansi, ivme ve ag1 gibi

Oznitelikler ¢ikarilarak siniflandirma algoritmalarina iletilir.



Smiflandirma asamasinda c¢esitli algoritmalar kullanilir. Destek Vektor
Makineleri (SVM), dogrusal olmayan problemlerde basarili olup hareket verilerini
simiflara ayirir. Yapay Sinir Aglart (ANN), Oznitelikle derin O6grenme tabanli
algoritmalar, karmasik hareketleri 6grenmede etkilidir. K-En Yakin Komsu (KNN)
algoritmasi, hareketlerin siniflandirilmasinda en yakin komsular1 temel alir. Bu

algoritmalar, parmak hareketlerini taniyarak sistemlerin daha dogru ¢aligmasini saglar.



3. MATERYAL VE YONTEMLER
3.1. Materyal

3.1.1. Veri Toplama ve On Islemesi Siireci

Sanjay Kumar Dwivedi ve ark. tarafinda bir veri set toplanildi. Calismada
toplanan veriler, yaglari1 26 ila 31 arasinda degisen 10 saglikli goniilliiden kaydedilmistir
[10]. Goniilliiler her bir parmak hareketini yaparken, parmaklardaki kas aktivasyonu
EMG sinyali olarak kaydedilmistir. Ayn1 anda kinematik verileri toplamak igin
parmaklara 23 farkli eklem noktasi yerlestirilmistir. Boylece hem kas aktivasyonuna ait
veriler hem de kinematik veriler toplandi.Parmaklara ait EMG sinyalleri Sekil 3.1 ‘de
gosterildigi gibi elektrot baglantilari yapilarak elde edilmistir. Bu elektrotlar farkli kanallari
olusturmak Gzere Tablo 3.1°’de verilen el/parmak hareketlerine ait kas gruplarinin Gzerine

yerlestirilmistir.

Arastirmanin temelini olusturan ve kaydedilen verilerin kalitesini dogrudan
etkileyen kritik agsama veri toplama siirecidir. Bu siiregte elde edilen ve toplanan veriler,

ileride modellerin egitimi ve degerlendirilmesi i¢in kullanilir.

Channel 1

Channel 8

90

SO

) ey

Ch |
Channel 5 il

Channel 7

Sekil 3.1 Veri Setin toplamasinda kullanilan kanallar



Tablo 3.1Yiizey Elektrotlarin Hangi Kaslarin Uzerinde Yerlestirildigini
Belirlenmesi

Kanal Hedef Kas El/Parmak

1 Bas parmak uzun abdiiktor kasi (APL) Bas parm ak abdiiksiyonu,
ekstansiyonu

2 Radius bilek biikiicii kas1 (FCR) Bilek, el fleksiyonu

3 Yiizeysel parmak biikiicii kas (FDS) 2-5. parmak PIP fleksiyonu

4 Derin parmak biikiicii kas (FDP) 2-5. parmak DIP fleksiyonu

5 Parmak ekstansor kas1 (ED) 2-5. parmak ekstansiyonu

6 Isaret parmag1 ekstansor kasi (EI) Isaret parmag1

7 Ulnar bilek ekstansor kast (ECU) Bilek ekstansiyonu ve abdiiksiyonu

8 Radius bilek ekstansor kas1 (ECR) Bilek ve bas parmak

3.1.1.1. Kas Aktivasyonlarinin Kaydedilmesi

Kas aktivasyonunu o6l¢mek i¢in kullanilan en yaygin yontem, yiizeysel
elektromiyografi(sSEMG)dir. Veri toplama caligsmasinda, dogru ve kaliteli bir sekilde
sEMG sinyallerini kaydetmek icin Ag-AgCl bipolar aktif elektrotlar kullanilmasina
karar verilmistir. Bu elektrotlar, kas liflerinin dogrultusuna uygun bir sekilde 6nkol
bolgesindeki 8 farkli kasin {izerine yerlestirilirken, her elektrotla diger elektrot arasinda
20 mm mesafe birakilmistir. 20 mm mesafesi sinyallerin kalitesini optimize etmek i¢in

secilmistir.

Veri toplama sirasinda, Digitex Lab. Co. Ltd. tarafindan iiretilen BA1104 pre-
amplifikator ve TU-4 telemetri iinitesi kas aktivasyonlarin1 hassas bir sekilde
kaydetmek i¢in kullanilmistir. BA1104 pre-amplifikator, daha hassas verilerin
toplanmasini saglamak i¢in SEMG sinyallerini kuvvetlendirir . Bundan sonra TU-4
telemetri linitesi kuvvetlendirilen sinyalleri kablosuz olarak aliciya aktarir ve elde
edilen sSEMG sinyaller, 1Hz ile 1kHz arasinda bir frekans araliginda kaydedilir. Boylece
kas aktivasyonlarinin dogru bir sekilde izlenmesine yeterli frekans c¢oziiniirligi
saglanir. Daha sonra sinyaller 12bit ¢6ziirliiklii bir A/D doniistiiriicii ile analog halden
dijital hale gelir. Bu islem, sEMG sinyallerinin ileride analiz edebilmesi ve

islenebilmesi i¢in hazirlanmistir.
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3.1.2. Verilerin On islenmesi

Toplanan ham veriler, dogrudan modellemeye uygun hale getirilebilmesi i¢in
bir dizi 6n isleme adimindan gegirilmistir. Bu adimlar, sSEMG verilerinin islenmesi ve

kinematik verilerin islenmesi olarak iki ana baslik altinda incelenmistir.

3.1.2.1. sEMG Verilerinin islenmesi

Bu adimda, ham sEMG verilerinin kas aktivasyonlarini1 dogru bir sekilde temsil
edebilmesi i¢in ¢esitli 6n isleme adimlar1 uygulanmistir. Uygulanan 6n igleme adimlari,

sinyallerin filtrelenmesi, normalizasyonu ve diizlestirilmesini icermektedir.

Bant geciren filtrelemede, 10 Hz ile 500 Hz arasinda calisan 4. dereceden
Butterworth filtresi kullanilarak ham sEMG sinyalleri filtrelendi. Bu filtreleme islemi,
sinyaldeki diisiik frekansh giiriiltiileri ve yiiksek frekanslh parazitleri ortadan kaldirarak
kas aktivasyonlarmin daha net bir sekilde elde edilmesini saglar. Yiiksek frekansl
giiriiltiilerin yan1 sira hareketlerden kaynaklanan diisiik frekans bilesenlerini de yok

ederek, kas aktivasyonlarinin dogru bir sekilde analiz edilmesine olanak tanir.[10]

Diizlestirme ve normalize etme adiminda, dogrultma (rectifier) islemi ile dnceki
adimdan filtrelenmis sinyaller pozitif degerlere ¢evrilmis ve her bir sinyal, ilgili kas
icin elde edilen maksimum sEMG degeri ile normalize edilmistir. Kaslardan elde edilen
sinyallerin karsilastirabilir hale gelmesi ve kas aktivasyon seviyelerinin dogru bir
sekilde degerlendirilmesi i¢in normalize etme islemi uygulanir. Kas aktivasyonlarinin

her bir kas i¢in standart bir 6l¢iimle ifade etmesi i¢in bu islem yapilir.

Normalize isleminden sonra sinyaller, algcak gegiren filtreleme isleminde, 4Hz
kesim frekans1 olan sifir fazli bir algak gegiren filtre ile siiziilmiistiir. Kas aktivasyon
sinyallerini daha diizlestirmek ve olasi giiriiltiiyii azaltmak igin bu filtre yontemi
kullanilir. Yani bu filtreleme islemi sinyaldeki ani dalgalar ve yiiksek frekans giiriiltiiyii

kaldirir ve sinyal daha stabil hale gelir.

On isleme adimlar1, ham SEMG sinyallerinden kas aktivasyonunu basaril1 bir
sekilde tahmin etmek i¢in gerekli olan islenmis verilerin elde edilmesine yonelik olarak
gergeklestirilir. Bu islenmis veriler, kas aktivasyonu modelinde kullanilacak verilerin
temelini olusturur. SEMG sinyalleri bu sekilde islendiginde, modelin dogruluk orani

artar ve kinematik verilerle olan iligkiyi gii¢lendirir.
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3.1.3. Sonu¢ Degerlendirme

Veri toplama ve 0n isleme siireci, bu ¢alismanin temel bilesenlerinden biridir.
sEMG sinyalleri ve kinematik verilerin dogru bir sekilde toplanmasi ve islenmesi,
modelin dogrulugunu ve giivenilirligini dogrudan etkileyen faktorlerdir. Elde edilen
veriler, yiiksek boyutlu sinyallerin diislik boyutlu temsillerinin olusturulmasinda ve bu
temsillerin, karmagik motor kontrol gorevlerinde kullanilmasinda biiyiik rol oynamuistir.
Bu siireg, kas aktivasyonlar ile parmak kinematikleri arasindaki iliskilerin dogru bir
sekilde c¢ikarilmasim1 saglamakta ve bu iligskilerin daha ileri analizler igin

kullanilabilmesine olanak tanimaktadir.

3.2. Yontemler

3.2.1. Veri Toplama ve Hazirhk

Calismamizda, 10 farkh katilimer (9 erkek, 1 kadin) tizerinde gerceklestirilen
bir deneyde elde edilen veri seti kullanilmistir. Her katilimci, 7 farkli gorevi 5 kez
tekrarlayarak toplam 35 deneme gerceklestirmistir. Veri seti, katilimcilarin hareketlerini
tanimlayan kinematik veriler ve kas aktivitelerini gosteren elektromiyografi (EMG)
sinyallerinden olusmaktadir. Bu degisken, her bir deneme ve gorev i¢in 5x7 boyutunda
bir matris seklinde organize edilmistir. Caligmamizda, parmak hareketleriyle ilgili 5
goreve odaklanildigindan, bu matris 5x5 boyutuna indirgenmistir. Matrisin her bir
hiicresi, 8 farkli kas kanalindan alinan 4000 &rneklik bir sinyal icermektedir. Bu
kanallarin bazilari, sadece parmak hareketleriyle degil, elin diger bolgelerindeki

hareketlerle de iliskilidir.

Tablo 3.2 Parmaklara Ait Kanallarin Belirlemesi

Parmak Kanall | Kanal2 | Kanal3 | Kanal4 | Kanal5 | Kanal6 | Kanal7 | Kanal8

Basgparmak -

Isaret
Orta
Yiiziik
Serce

Aragtirmanin odak noktasi parmak hareketleri oldugu icin, veri analizini
kolaylastirmak ve sonuglarin daha giivenilir olmas1 amaciyla toplam veri setinden

sadece parmaklara ait 5 kanal se¢ilmistir. Bu kanallar, Tablo 3.2'de listelenmistir.
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Veri analizinde, her parmagin hareketini ayr1 ayr1 takip etmek i¢in farkli bir
yaklasim benimsenmistir. Isaret parmagi i¢in dzel bir kanal olusturulurken, orta, yiiziik
ve ser¢e parmaklarin sinyalleri birlestirilerek tek bir kanalda toplanmistir. Elde edilen
bu kanallar, FastICA yontemi ile bagimsiz bilesenlere ayristirilarak 4000x1 boyutunda
tek boyutlu sinyaller elde edilmistir.

3.2.1.1. Bagmmsiz Bilesen Analizi (Fast Independent Component
Analysis, FastICA)

Caligmada, cok kanalli gozlemlenen parmak hareket verilerinden anlamli
bilesenleri ¢ikarmak i¢in FastICA algoritmasi kullanilmistir. FastICA, diger ICA
algoritmalarma goére daha hizli ve verimli oldugu i¢in tercih edilmistir. Bu algoritma,
karisik sinyallerden, parmak hareketleriyle dogrudan iliskili olan fizyolojik sinyalleri
temsil eden bagimsiz bilesenleri basarili bir sekilde ¢ikarir [14, 15]. Oznitelikle orta,
yliziik ve serce parmaklarindan elde edilen 3, 4, 5 kanallarinin birlestirilerek tek bir
kanala indirgenmesi, farkli parmaklardan elde edilen sinyallerin farkli gii¢ ve giiriiltii
seviyelerine sahip olmasindan kaynaklanan dengesizligi gidererek, sonraki analizler
icin daha homojen bir veri seti elde etmeyi amaclar. Bu adim, veri 6n isleme siirecinde

onemli bir rol oynar.

X=AS (3.1)

X matrisi, 4000 zaman 6rnegi i¢in 3 farkli sensérden alinan verileri igerir. Bu
veriler, A matrisi ad1 verilen bir karigim matrisi ile karigtirilmig haldedir. A matrisi,
orijinal sinyallerin nasil bir araya gelerek gozlemlenen sinyalleri olusturdugunu
gosterir. FastICA algoritmasi, bu karigimi ¢ozerek orijinal sinyallere karsilik gelen
bagimsiz bilesenleri (S matrisi) elde eder. S matrisi, 4000 zaman Ornegi ve tek bir
bilesenden olusur. Bu bilesenler, sinyallerin temel yapi taglarini olusturur ve sinyallerin

kokeni hakkinda 6nemli bilgiler verir.

X11 X12 X13
X X X
X= o 3.2)

X4000,1 X40002 X4000,3
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aiq
A=|axn 3.3)
asq

bagimsiz bilesen matrisini elde etmek i¢in karistirma matrisinin tersini bulmak gerekir.

ve denklem su sekilde olur.

S=wXx 34
W, karistirma matrisinin tersidir ve bagimsiz bilesenleri elde etmek ig¢in

kullanilir. Bu matris, 1x3 boyutundadir.

w=471 3.5
W=Wi1 Wiz Wi3) (3.6)

X11 X12 X13
X X X
S=MWiu1 Wiz Wi3) :21 :22 22 3.7

X1000,1 X40002 X4000,3

s=[ " (3.8)

$4000,1

S matris, parmak hareketlerinden elde edilen EMG sinyallerinin bagimsiz
bilesenlerini temsil etmektedir. FastiCA algoritmasini kullandiktan sonra elde edilen
bilesenler, daha sonra analiz edilmek ve kaydetmek icin, orijinal sinyallerin
karisimindan bagimsiz olarak ayristirilmistir. Bu adimla, tiim parmaklarm verileri
birbirine benzer boyutlu hale getirilmistir, yani tiim parmaklarin verileri artik
4000x 1boyutundadir. Bu islem verileri 6n islemeden 6nce dengeli ve basit hale

getirmistir.
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3.2.1.2. Egitim ve Test Verilerinin Ayrilmasi

FastICA’dan sonra 6n islemeyi gegmeden Once, veri setini egitim ve test olmak
iizere ikiye ayirmaktir. Egitim seti, modelin 6grenmesi i¢in kullanilirken; test seti,
modelin hi¢ goérmedigi verilerden olusur. Bu, modelin sadece egitim verilerini
ogrenmesini degil, daha once goérmedigi veriler iizerinde de dogru tahmin yapip
yapamayacagini test etmemizi saglar. Veri setinin belirli bir orani (%70 egitim ve %30

test) bu sekilde egitim ve test olarak ayrilmistir.

3.2.2. Veri On isleme

Veri 6n isleme adiminda, elde edilen ham veriler, daha anlamli ve kullanislt hale
getirilmek {izere g¢esitli yontemlere tabi tutulur. Bu siirecte, oncelikle Zaman Alani
Tanimlayicilar1 (Time Domain Descriptors), Evrisimli Sinir Ag1 (Convolutional Neural
Network, CNN) ve Uzun-Kisa Siireli Bellek (Long Short-Term Memory, LSTM) gibi
derin 6grenme modelleri kullanilarak verilerden farkli 6znitelikler ¢ikarilir. Bu
Oznitelikler, verinin zaman i¢indeki degisimlerini ve kaliplarini yansitir. Daha sonra,
Kargilikli Bilgi (Mutual Information) yontemi ile bu 6znitelikler arasindaki iliskiler
incelenerek, siniflandirma i¢in en énemli ve ayirt edici 6znitelikler segilir. Bu sayede,
secilen Oznitelikler kullanilarak yapilan siniflandirma islemlerinde daha basarili

sonugclar elde edilir.

3.2.2.1. Zaman Alam1 Tanimlayicilar1 (Time Domain Descriptors, TDD)

Parmak hareketlerinin karakteristik 6zniteliklerini ortaya ¢ikarmak i¢in, her bir
deneyden elde edilen veriler lizerinde Zaman Alan1 Tanimlayicilar1 (TDD) yontemi
uygulanmistir. TDD, bir sinyalin ortalamasi, varyansi, tepe degeri gibi zamanla ilgili
istatistiksel Ozniteliklerini ifade eder [16]. Bu yontem sayesinde, her bir deney igin
Tablo 3.3 ’de belirlenen 22 farkli TDD 0zniteligi hesaplanmistir. Bu 6znitelikler,
parmak hareketlerinin hizlanmasi, yavaslamasi, diizenliligi gibi farkli yonlerini temsil
eder. Elde edilen bu 6znitelikler, derin 6grenme modelinin egitiminde giris verisi olarak
kullanilir. Bdylece, model, parmak hareketlerinin bu farkli 6zniteliklerini 6grenerek

daha dogru siiflandirmalar yapabilir.
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Tablo 3.3TDD ile Cikarilacak 22 Oznitelik

Oznitelik Adx

Aciklama

Mean

Sinyalin ortalama degeri

Standard Deviation

Sinyalin standart sapmasi

Maximum Value

Sinyalin maksimum degeri

Minimum Value

Sinyalin minimum degeri

RMS (Root Mean Square)

Sinyalin karekok ortalamasi

MAV (Mean Absolute Value)

Sinyalin ortalama mutlak degeri

Waveform Length

Sinyalin dalga boyu

Zero Crossings

Sinyalin sifir gegisleri sayisi

Slope Sign Changes Egimin isaret degisikliklerinin sayis1
Skewness Sinyalin ¢arpiklik degeri

Kurtosis Sinyalin basiklik degeri

Variance Sinyalin varyansi

Energy Sinyalin enerji degeri

Entropy Sinyalin entropisi

Mean Absolute Difference

Ortalama mutlak fark

Max Absolute Difference

Maksimum mutlak fark

Median

Sinyalin medyan degeri

Range

Sinyalin aralig1 (maksimum-

minimum)

P25 (Percentile 25)

Sinyalin 25. yiizdelik dilimi

P75 (Percentile 75)

Sinyalin 75. yiizdelik dilimi

IQR (Interquartile Range)

Ceyrekler arasi aralik (P75- P25)

ZCR (Zero Crossing Rate)

Sifir gegis orani
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Mean: Sinyalin ortalama degeri

mean = %Z’i"zl X; (3.9)

2.0
15 /\1
104
0.5
0.0

-0.5

-L.0 4

-1.5

Sekil 3.2TDD'nin Ortalama Sinyali

StandardDeviation: Sinyalin standart sapmasi

1
std = \/NZ?'zl(xi — mean)? (3.10)

0.5 1
0.4 4
0.3
0.2 1

kY

0 10 20 30 40 50

Sekil 3.3TDD'nin Srandart Sapmasi
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Tablo 3.4 TDD Ozniteliklerin Denklemleri

Oznitelik

Denklem

Ortalama

Standart Sapma

1 N
NZ(xi — mean)?
i=1

Maksimum Deger

Max = max(x;)

Minimum Deger

min = min(x;)

Karekok Ortalamsi N
RMS =— » x?
=1
Ortalama Mutlak Deger 1<
MAV = NZ 1]
=1
Dalga Formu Uzunlugu =
|xi+1 xll
i=1
N—1

Sifir Gegisleri

i=1

Egeri Yon Degisiklikleri

1

i=1

Carpiklik

1
Nzﬁv:l(xi - mean)3
std3

Basiklik

1
NZ’Ll(xi - mean)“
std*
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Tablo 3.5. TDD Ozniteliklerin Denklemleri

Oznitelik Denklem

Sinyalin varyans1

1 N
NZ(xi — mean)?
i=1

Sinyalin enerji degeri N
Energy = Z x?
i=1

Sinyalin entropisi N
—Z(xiz) log(x? + 1e — 12)
i=1

Ortalama mutlak fark 1 N-1
N _dl 1Z|xi+1 - xil
i=1

Maksimum mutlak fark max(|x;41 — x;])

Sinyalin medyan degeri Median = median(x;)

Sinyalin aralig1 (maksimum- Range = max — min

minimum)

Sinyalin 25. ylizdelik dilimi P25 = percentile(x;, 25)

Sinyalin 75. yiizdelik dilimi P75 = percentile(x;,75)
Ceyrekler arasi aralik (P75- percentile(x;,75)

P25) — percentile(x;, 25)
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3.2.2.2.  Evrisimli Sinir Ag1 (Convolutional Neural Network, CNN)
3.2.2.2.1. CNN Mimarisi ve Temel Tlkeler

CNN modeli, otomatik bir gekilde sinyal verilerinden 6znitelikler ¢ikarir. Girig
katmani, sinyal verilerini CNN modeli i¢in uygun hale doniistiiriir. Sonra da Conv1D
katman1 kullanarak sinyallerdeki paternler dgrenilir ve en 6nemli 6znitelikleri elde
etmek ve c¢ikarmak i¢in filtreler uygulanir. Veri boyutlarini kiigiiltmek ve onemli
bilgileri 6zetlemek i¢in Havuzlama (Pooling) katmani1 kullanilir. Evrisim ve Havuzlama
isleminden elde edilen 6zniteliklerin haritalarin1 Diizlestirme katmani (Flatten Layer)
diizlestirir [17]. Cikarilan 6zniteliklerden ileri diizeyde 6znitelikler hesaplamak i¢in
Dense katmanlar1 kullanilir. Bu adimlardan sonra CNN modeli anlamli 6znitelikler

cikarmis olur ve Oznitelik se¢imi ve siniflama i¢in hazirlanmis olur.

3.2.2.2.2. Giris (Input) Katmam

Giris katmaninda, CNN'in kullanilabilmesi ve ¢alisabilmesi i¢in sinyaller uygun
formata getirilir; bu format ii¢ boyutludur. Dolayisiyla, sinyaller ii¢ boyutlu formata
doniistiiriiliir. Sinyallerin bu sekilde islenmesi, CNN'in sinyaldeki zaman serisinden

oOriintiiler (paternler) ¢ikarmasini saglar.

X ={xq,x3, ..., X3} 3.11)

X;, sinyalin i. zaman dilimindeki degerini ifade eder ve n sinyalin toplam

uzunlugudur.

3.2.2.2.3. Evrisimli Katman (Convolutional Layer)

Evrisimli katman, CNN'in en Onemli boliimlerinden biridir. Bu katman,
sinyaldeki oriintiileri analiz etmek ve tanimak i¢in kiiciik filtreler uygular. Bu filtreler,
sinyallerin {izerinde kayarak kiiglik boliimlerini inceler [18]. Boylece, filtreleme
isleminde kullanilan filtreler, sinyalleri analiz ederek onemli 6znitelikleri basaril1 bir
sekilde cikarir. Evrisim islemi sirasinda, filtre ile sinyal arasinda carpma islemi
gergeklestirilir ve her seferinde yeni bir Oznitelik haritas1 elde edilir. Bu haritalar,

sinyaldeki farkli 6riintiilerin ve frekans bilesenlerinin gorsellestirilmesini saglar.

SH=X«W)®) =3, wi Xt +i-1) (3.12)
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X(t), giris sinyalini, W (i), filtrenin (i ). agirhgm ifade eder. " * " semboli,

evrisim islemini temsil eder.

3.2.2.2.4. Aktivasyon Fonksiyonu (ReLU)

Dogrusal olmayan aktivasyon fonksiyonu, CNN'de evrisim katmanindan sonra
uygulanir. Bu ¢alismada kullanilan aktivasyon fonksiyonu ReLU fonksiyonudur. ReLU
sik¢a ve yaygin bir sekilde kullanilan fonksiyondur. ReLU, sinyallerdeki sadece negatif
degerler iizerinde ¢alisarak tiim negatif degerleri sifirlar ve pozitif degerleri oldugu gibi

birakir.

f(x) = max(0, x) (3.13)
x, evrisim katmanindan gelen bir degeri ifade eder. Eger x negatifse, ReLU

ciktist sifir olur. Eger x pozitifse, ReLU ¢iktist x ile ayni1 olur.

3.2.2.2.5. Maksimum Havuzlama (Max Pooling) Katmam

Evrisim katmanindan sonra gelen havuzlama katmani, boyutlar1 kii¢iiltmek ve
modelin daha verimli bir sekilde ¢aligmasini saglamak i¢in kullanilir. Havuzlama
islemi, sinyalin belirli bolgelerden en yiiksek degeri alarak sinyali 6zetler. Bu sayede
model, hesaplamada fazla yilik harcamaz ve 6nemli bilgileri koruyarak asir1 6grenme
(overfitting) riskini azaltir. Havuzlama teknigi olarak en yaygin kullanilan yontem max
pooling'dir. Max pooling, yiiksek frekansli bilesenleri daha iyi korudugu i¢in tercih

edilen bir yontemdir.

y(t) = max{S(t + i)|i = 0,..,p—1} (3.14)

p, havuzlama penceresinin boyutunu ifade eder.

3.2.2.2.6. Diizlestirme Katmam (Flatten Layer)

Genellikle havuzlama ve evrisim katmanlarindan ¢ikan veriler ¢cok boyutlu veri
yapilaridir. Bu ¢ikiglarin baglanti katmanlarina gegmeden 6nce diizlestirilmesi gerekir.
Cok boyutlu verilerin tek boyutlu hale doniistiiriilmesi icin diizlestirme katmani

uygulanir. Bu islem, bir sinyalin 0Oznitelik haritasinin tek boyutlu bir vektore
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doniistiiriilmesini saglar. Sinyalde n tane 6znitelik haritasi bulunur ve her bir haritada
m tane deger vardir. Bu islemden elde edilen vektor, 6znitelik haritasi ile deger sayisinin

carpimiyla elde edilir; dolayisiyla m*n boyutunda bir vektor olusturulur.

3.2.2.2.7. Tam Baglantih Katman (Fully Connected Layer)

Tam baglantili katman, her bir néronun giris verilerini agirliklandirarak toplar
ve ReLU aktivasyon fonksiyonu ile isleyerek ileri diizeyde bilgi ¢ikarir [19]. Bu
calismada tam bagli katman sadece 6znitelik ¢ikarimi yapmaktadir. Siiflama islemi
olsaydi, egitim siireci gerceklesecekti; ancak burada yalnizca Oznitelik c¢ikarimi

gerceklestirilmektedir.

z = Zlilzl W;* X; + b (3.15)

w;, agirliklary; x;, giris degerlerini ve b, bias terimini ifade eder. Bu toplama

islemi sonrasi, aktivasyon fonksiyonu uygulanir.

a = RelLU(z) (3.16)

3.2.2.2.8. Cikis Katmani (Output Layer)

Oznitelik ¢gikarma islemi, sinyallerin farkli ydnlerinin analiz etmesine yardimei
olur. Cikarillan Oznitelikler ise sinyalin farkli paternlerini ve bilesenlerini temsil

etmektedir.

exp (z ]-)
Ti=1xp(z)

P(y =jlx) = 3.17)

exp (z]-), siif j i¢in hesaplanan degeri ifade eder ve toplam K smif vardir. Bu

islem, her sinifin olasiligini hesaplanir ve siniflandirma problemleri i¢in kullanilir.

3.2.2.3. Uzun-Kisa Siireli Bellek (Long Short-Term Memory, LSTM)

Yontemi ve yapisi

Zaman serisi verilerinde uzun vadeli bagimliliklart modellemek i¢in kullanilan

LSTM, tekrarlayan sinir aglarinin (RNN) bir tiiriidiir. Bu model, gereksiz bilgileri
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unutmak ve 6nemli bilgileri bellekte tutmak i¢in hiicre durumu ile giris kapisi, unutma

kapis1 ve ¢ikis kapis1 kullanir [20, 21].

3.2.2.3.1. Hiicre Durumu

Hiicre durumu, bu modelin en énemli bilesenlerinden biridir; ¢linkii yalnizca
zaman serisindeki taginan bilgileri temsil etmekle kalmaz, ayni zamanda LSTM nin
hafizas1 gorevini de iistlenir. Gegmis bilgilerin siirekli giincel kalmasini saglamak icin,

zamanin her ilerlemesinde hiicre durumu giincellenir ve bu sayede bilgileri korur.

C,=f, Ci_q+i, C, (3.18)

C;, mevcut zaman adimindaki hiicre durumu, C;_;, 6nceki zaman adimindaki
hiicre durumu, C,_;, unutma kapismin ¢iktis1, i,, giris kapisinin ciktisi, C;, hiicre

durumu.

3.2.2.3.2. Unutma Kapisi (Forget Gate)

Hiicre durumundaki bilgilerin ne kadar kaybedilecegi ve ne kadar korunacagi,

unutma kapisi tarafindan belirlenir.

fe = o(Wy - [hg_1y,x,] + by) (3.19)

f¢, unutma kapisinin ¢iktisi, Wy, unutma kapismin agirlik matrisi, hg_q3, bir
onceki zaman adimindaki gizli durum, x;, mevcut zaman adimindaki giris, by, unutma

kapisiin kutuplama terimi, o, sigmoid aktivasyon fonksiyonudur.

3.2.2.3.3. Giris Kapis1 (Input Gate)

Bu kapi, yeni bilgilerden hangilerinin hiicre durumuna eklenecegini belirler. Bu

stirec, her zaman adiminda bilgilerin nasil iglendigini kontrol eder.

Giris kapinin ¢iktisi.

i = o(W; - [hy_1y,x] + by) (3:20)
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C, =tanh(W; - [hy_qy, x| + b¢) (3.21)

Bu islem, mevcut hiicre durumunu giris kapisinin ¢iktist ile giinceller ve

hiicreye eklenecek yeni hiicre durumu adayini hesaplar.

i,, giris kapisiin ¢iktis1, C;, hiicre durumu adayi, W; ve W, giris kapismnin
agirhk matrisleri, b; ve b, giris kapisinin kutuplama terimleri, tanh , hiperbolik

tanjant aktivasyon fonksiyonudur.

3.2.2.34. Hiicre Durumunun Giincellenmesi

Giincellenmis hiicre durumu

Ce= [+ C{t—l} + i E;
3.22)

C¢, yeni hiicre durumu, f ;, unutma kapisinin ¢iktis1, Cy,_q3, bir dnceki hiicre

durumu, i,, giris kapisinin ¢iktis1, C, yeni hiicre durumu adayidar.

3.2.2.3.5. Cikis Kapisi1 (Output Gate)

Bu kapi, hiicrede depolanan bilgilerin ne kadarmin disartya aktarilacaginm
belirler. Cikis kapisi, modelin tahmin islemini gergeklestirmek ic¢in kullanilacak
bilgileri kontrol eder. Modelin ¢ikisi, ¢ikis kapisinin ¢iktisi, hiicre durumu ve gizli

durumdan olusur.

0, = 6 (W, - [hg_1), x| + b,) (3.23)

ht = Ot 'tanh(ct) (3.24)

0¢, ¢ikis kapisinin ¢iktisi, h, yeni gizli durumdur.
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3.2.2.3.6. Oznitelik ¢1karma sonucu

Yukaridaki modelleri ve yontemleri kullanarak gerekli 6znitelikler basarili bir
sekilde secilir ve verileilerin sayis1 azaltilmis olur. Sonug olarak toplamda 118 6zellik

elde edilir: 22 TDD, 64 CNN ve 32 LSTM.

3.2.2.4. Karsihkh Bilgi (Mutual Information, MI)

On isleme asamasinda, TDD, CNN ve LSTM kullanilarak toplamda ¢ok sayida
Oznitelik elde edilmistir. Bu say1 smiflama i¢in yeterli olsa da, daha net ve yliksek
sonuglar elde etmek amaciyla Karsilikli Bilgi yontemi uygulanmaktadir. Bu yontem, en
onemli Ozniteliklerin secilmesini saglayarak, Oznitelik sayisini azaltir. Bdoylece,
simiflama islemi daha kolay hale gelir ve performans artis1 saglanir; ayrica asiri

ogrenme (overfitting) riskinden kaginilmis olur.

3.2.24.1. Karsihikh Bilgi Hesaplamasi

Bu hesaplama, bir 6zelligin hedef degisken iizerindeki etkisini géstermek i¢in o
Ozniteligin hedef degiskenle olan karsilikli bilgi miktarini hesaplar. Bu sayede, hangi
Ozniteliklerin hedef degiskenle daha fazla iliskili oldugu belirlenir ve en Onemli

oznitelikler segilerek smiflama performansi artirilabilir.

P(x;,
IX5¥) = Sex, Zyer Py, y) log (1) (3.25)

X Oznitelik, Y hedef degisken, p(x, y) ortak olasilik dagilimi, p(x) ve p(y) ise

marjinal olasilik dagilimlaridir.

MI yontemi kullanildiginda, hesaplama sonucuna gore 6znitelikler siralanir ve
en yiiksek degere sahip olanlar secilir. Bu ¢alismada, fazla sayida 6znitelik segmemek
amaciyla 30 6zellik belirlenmistir. Bu secim, siniflama iglemi i¢in daha uygun hale

gelir ve daha yiiksek performans gosterir.
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Sekil 3.5 MI ile Secilen ikinci Oznitelik

3.3. Derin Ogrenme Modeli Tasarimi

Son yillarda yapay zeka ve makine 6grenimi alaninda yapilan gelismeler,
verilerin islenmesi ve analizi konusunda biiyiik katkilar saglamistir. Bu alandaki
yenilikler devam ederken, dikkat ¢ekici yontemler arasinda derin &grenme One
cikmaktadir. Derin 6grenme, makine 6greniminden dnemli 6l¢iide farklidir; ¢linkii gok
katmanlt sinir aglar1 kullanarak biiyiik ve karmagik veri kiimeleriyle baga
cikabilmektedir. Oysa makine Ogrenimi, bazen biiyiik veri islemede zorluk ve

gecikmelerle karsilasabilir.

Derin 6grenme, verilerdeki dogrusal olmayan yapilarin modellenmesinde ¢ok
katmanli bir yap1 kullanarak, karmasik ve biiylik veri setleri iizerinde olumlu ve basarili
sonuclar elde edilmesine yardimeci olur. Bu nedenle bir¢ok arastirmaci, biiyiik veri

setlerine sahip olduklarinda derin 6grenme yontemlerini tercih etmektedir.
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Derin 6grenme, 6zellikle goriintii ve ses isleme gibi analiz alanlarinda yaygin
bir sekilde kullanilmaktadir. Makine 6grenimiyle karsilastirildiginda, derin 6grenme,
tibbi sinyallerin analizi gibi zaman serisi verileriyle ¢alisirken de benzersiz sonuclar
ortaya koymaktadir. Bu ¢alismada, parmak hareketlerinin siniflandirilmasi icin EMG

sinyalleri kullanilarak derin 6grenme uygulanmstir.

Oznitelik ¢ikarma adiminda TDD ile birlikte derin 6grenmenin iki modeli olan
CNN ve LSTM kullanilmistir. Deneysel smiflama agamasinda ise SVM ve KNN
algoritmalartyla yiiksek sonuglar elde edilmistir. Bu durum, derin 6grenmenin pozitif

etkisini ve basarili bir sekilde 6zniteliklerin ¢ikarildigini géstermektedir.

3.3.1. Tam Baglantil Sinir Ag1 (Fully Connected Neural Networks FCNN)

nin Diger Modellerle Karsilastirilmasi

Evrisimli Sinir Ag1 (CNN) mimarisi, genellikle goriintii isleme ve iki boyutlu
veri setlerinde yaygin olarak kullanilir. CNN, verinin uzaysal paternlerini 6grenmek
i¢in filtreler kullanir ve sinir aginin her katmani, verideki belirli 6znitelikleri ¢ikarmaya
odaklanir. Ancak CNN, zaman serisi veriler lizerinde ¢ok etkili degildir; ¢iinkii zamanla
degisen sinyallerde uzaysal paternlerden c¢ok, ardisik verilerin birbiriyle olan iligkileri

Onemlidir.

Yinelemeli Sinir Ag1 (Recurrent Neural Network, RNN) ise zaman serisi
verilerinin analiz edilmesinde, 6zellikle uzun vadeli sonuglarin 6grenilmesinde basarili
sonuglar vermekte ve oldukca uygun olup goz alic1 bir performans sergilemektedir.
Ancak egitim sirasinda uzun serilerde dogru sonuglara ulasmanin zorluk derecesini
etkileyebilecek bir sorun (gardiyan kaybi1) yasayabilir. RNN modelleri i¢inde bu sorunu
¢ozen veya dnemli 6lgiide sorunu azaltan ancak maliyeti genellikle yiiksek olan LSTM

modeli bulunmaktadir.

FCNN ise her bir néronun bir dnceki katmandaki tiim néronlara bagl oldugu
bir yapiya sahip olmasi ve sinyallerdeki dogrusal olmayan kaliplar1 6grenebilmesi
nedeniyle 6grenmede daha iyi sonuglar vermektedir. Bu modeli en ¢ok farklilastiran
ozellik, ozellikle bu c¢aligmanin temelini olusturan EMG verileri gibi zaman serisi
verilerindeki hesaplamalarin biiylik hizidir. Bu modelin yetenegi, hesaplama hizi ve

dogrusal olmayan iliskileri 6grenme yeteneginin yiiksek olmasi, EMG verilerinin
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siiflandirilmasinda daha iyi sonuglar elde edilmesine yardimci olmaktadir. Bu
nedenle, her bir ndéronun 6nceki tiim hiicrelere bagli olmasi avantaji ve hesaplama
slirecinin basitligi ve hizi, bu modeli bu ¢alismada kullanilacak en iyi se¢im haline

getirmektedir [22].

3.3.2. FCNN'nin Bu Calismada Secilme Nedeni

Genel olarak EMG sinyalleri kaslarin elektriksel aktivitelerini kaydeder ve bu sinyaller
cogu zaman elektriksel aktiviteleri kaydederken kaslarin yaptigi harekete baglh olarak
farkli paternler ve giriiltiiler igerir. Bu verinin dogasinda dogrusal olmayan ve
karmasik paternler bulunmasi nedeniyle, bu calismada en ¢ok tercih edilen model
FCNN olmustur. Cilinkii FCNN, dogrusal olmayan paternler ve karmasik verilerle fazla
zaman harcamadan islem yapabilme yetenegine sahiptir. Ayrica, bu model, karmagsik
verilerin daha hizli ve verimli bir sekilde 6grenilmesini saglayan, miikemmel sonuglar

elde edilmesini miimkiin kilan katman yapisina sahiptir.

FCNN'nin bu ¢alismaya biiyiik 6l¢iide yardimei olacak birgok dnemli 6zelligi
bulunmaktadir. Ozellikle, parmak veya kas hareketlerinden elde edilen EMG
sinyallerindeki zamana baglh degisiklikleri analiz etmek i¢in, zaman serisi verilerindeki
dogrusal olmayan iliskilerin 6grenilmesi gibi kritik bir rol oynamaktadir. Ayrica,
verilerin boyutu ve karmasikligi da g6z oniinde bulunduruldugunda, FCNN bu tiir
zorluklarla basa ¢ikmak igin etkili bir modeldir.

Bu ¢alismada kullanilan veriler, on goniilliiden elde edilmistir ve FCNN, daha
az karmasik olmasma ragmen, bu verileri karmasik modellere kiyasla daha iyi
isleyebilmektedir. FCNN'nin maliyet ve hiz agisindan avantajlar1 da 6nemli bir
faktordiir: Bu model, hesaplamalar1 hizli bir sekilde gergeklestirmek icin yiiksek enerji
gereksinimi  duymaz. Bdylece egitim ve dogrulama siireclerini daha hizhi
tamamlayabilir ve biiylik hesaplama maliyetleri olmadan daha iyi performans

sergileyebilir.

Bu nedenle, FCNN'nin sahip oldugu bu 6zellikler gbz 6niinde bulundurularak,
son islem olan parmak hareketlerini siniflandirma islemine karar verilmistir. EMG
sinyallerindeki karmasik zamansal veriler ve dogrusal olmama durumlariyla etkili bir
sekilde basa cikabilen bu modelin secilmesi, smiflandirma isleminin daha hizh
tamamlanmasini saglayacak, daha iyi performans ve daha yiiksek dogrulukla sonug

verecektir.
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3.3.3. Katmanlarin Yapisi

Derin 6grenme modellerinde modele diizgilin 6grenme yetenegi kazandiran ana
bilesen, i¢indeki katmanlardir. Bu calismada kullandigimiz FCNN modeli birkag
katmandan olusmaktadir ve her katman verilerin siniflandirilmasi, analiz edilmesi ve
islenmesinde belirli bir rol oynamaktadir. FCNN modeli ii¢ boliimden olusur: giris

katmani, gizli katmanlar ve ¢ikis katmani.

3.3.3.1. Giris Katmam (Input Layer)

Yapay sinir ag1 modeli olarak kabul edilen Tam Evrisimli Sinir Ag1 (FCNN)
yapisinin ilk katmani olan giris katmani, modele sunulan verilerle baglidir. Bu boliimde,
giris verisi olarak EMG sinyallerinden elde edilen o6zellikler kullanilmistir.
Ozniteliklerin elde edilmesinde kullanilan TDD, CNN, LSTM ve MI yéntemleriyle 30
farkli 6znitelik ortaya ¢ikmustir.

.....

FCNN modelinin gizli katmanlarina aktarmaktir. Bdylece modelin gizli katmanlarina

veri girilmesine yonelik bir yontem saglanmaktadir.

X:.X1+x2+“'+X30 (3.26)

3.3.3.1.1. Giris Katmaninin Yapisi

Giris katmaninda kullanilan yap1, veriyi islemek icin 128 ndrondan
olusmaktadir. Her ndron, giris verilerinin tamamiyla baglantilidir. Yani, 30 farkli
Oznitelige sahip bir veri seti diistiniildiiglinde, her bir 6znitelik, 128 ndrondan her birine
baglidir. Bu sayede, tiim 6znitelikler, ndronlar araciligiyla islenerek modelin 6§renme

suirecine katkida bulunur.

Matematiksel olarak bu islem sOyle ifade edilir: Her ndron, tiim giris
Ozniteliklerini toplar ve her bir 6znitelige karsilik gelen bir w agirlik ile ¢arpar. Sonra
bu toplama bir de kutuplama (bias) ad1 verilen sabit bir say1 eklenir. Yani her néron igin

bu islem su sekilde yapilir:

Z]' = 2?21 W]-ixl- + b] (3.27)
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wj;, giris Oznitelikleri ile ndron arasindaki baglantinin agirhigidir. Bu agirliklar,
her girig 6zniteliginin 6nemini belirler. x;, girig verisinin i’inci dzniteligidir. Yani veri
setinizdeki her 6znitelik (6rnegin, EMG sinyali verisi) bu islemde yer alir. b;, her néron

icin eklenen sabit bir terimdir. Bu terim, néronun verdigi cevabi ayarlamak icin

kullanilir.

Yani her noron, 30 6zniteligi birer birer alir, onlar1 belirli agirliklarla carpar,
toplar ve sonra bu toplama bir sabit ekler. Bu islem, giris verilerini daha anlamli bir

hale getirmek i¢in yapilir.
3.3.3.1.2. Aktivasyon Fonksiyonu: ReLU

Her néron, aldig1 bu toplam degeri dogrudan kullanmaz. Bunun yerine, bir
aktivasyon fonksiyonu kullanarak bu degeri isler. Burada kullanilan aktivasyon
fonksiyonu ReLU (Rectified Linear Unit) adin1 tasir. Bu fonksiyon, néronun aldigi

degerin pozitif mi negatif mi oldugunu kontrol eder.

Eger néronun aldig1 deger sifirdan biiyiikse, bu deger oldugu gibi kullanilir.

Eger sifirdan kiiciikse, sonug sifir olur.

f(z;) = max(0,z;) (3.28)
Bu formiil, nérona gelen degerin sifirdan biiylik olup olmadigini kontrol eder.
Sifirdan biiylikse, degeri degistirmeden alir. Ama sifir veya daha kiiciik bir say1
geldiyse, bu degeri sifira ¢evirir. Bu, sinir aginin 6grenme siirecini kolaylastiran bir

tekniktir, ¢linkii sadece 6nemli olan verilerle ¢aligir.

3.3.3.1.3. Giris Katmaninda Ogrenme Siireci

Her noronun 6grenme siirecinde, agirliklar wy; ve bias b; adi verilen iki temel
parametre siirekli olarak giincellenir. Bu giincellemeler, sinir aginin hata yapmasini en

aza indirmek i¢in geri yayilim (backpropagation) algoritmasiyla yapilir.

Agirliklarin gilincellenmesi

L
Wji < Wi —1

j it~ Mo, (3.29)
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Bias terimin giincellenmesi

oL

bj = bj —my, (3.30)

N, 6grenme oranidir; bu, modelin 6grenme hizini belirler. Kiigiik degerler daha
yavag 0grenmeye, biiyiik degerler ise daha hizl1 6grenmeye neden olur. L, modelin hata
miktarin1 6lgen kayip fonksiyonudur. Bu fonksiyon, modelin yaptig1 hatalar1 belirler.
owj;, db i agirliklar ve bias terimleri lizerindeki tiirevlerdir. Yani bu tiirevler, modelin

hatay1 nasil en aza indirecegini belirler.

3.3.3.14. Giris Katmanmimn Onemi

Giris katmani, modelin ham veriyi alip anlamli hale getirdigi ilk asamadir. Bu
katmanda sinir a8, verideki tiim 6znitelikleri analiz ederek bunlari islenebilir bir yapiya
doniistiirtir. Bu ¢aligmada giris katmaninin temel ihtiyaci, EMG sinyallerinden elde
edilen 6zniteliklerin modelin derin katmanlarina aktarilmasidir. Giris katmanindaki tam
baglantili mimarinin  6zelligi, her giris Ozniteligini  diger Ozniteliklere
baglayabilmesidir. Bu 6zellikle biyomedikal sinyal analizinde onemlidir; ¢linkii bu
verilerdeki onemli modeller girdi katmani tarafindan modelin sonraki asamalarina
tasinir. Bunu yaparken girdi katmani, veriyi isleyerek anlamli hale getirerek sinir aginin
derin katmanlarina ilettigi icin modelin en 6dnemli pargasini olusturur. Buna gore sinir

ag1, verilerdeki karmasik iligkileri anlamaya baslar.
3.3.3.2.  Gizli Katmanlar (Hidden Layers)

Gizli katmanlar, sinir ag1 modelinin 6grenme yetenegini artiran katmanlardir.
Giris katmanindan gelen veriler bu katmanlarda islenir ve daha karmasik bilgiler

cikarilabilir.

3.3.3.2.1. Gizli katman yapis1

Birinci gizli katman, tamami girig katmanindaki tiim néronlara bagl olan 128
norondan olusur. ikinci gizli katman ise bu yap1 sayesinde her asamada verileri isler,

daha gelismis 6znitelikler ¢ikarir. Verilerdeki 6nemli bilgileri son katmana aktarir

Gizli katmanlar, sinir ag1 modelinin 6grenme kapasitesini artiran katmanlardir.

Giris katmanindan gelen veriler, bu katmanlarda islenir ve daha karmasik bilgiler
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cikarilabilir hale gelir. Bu modelde iki gizli katman bulunur ve her ikisi de ReLU
aktivasyon fonksiyonuyla donatilmistir. Bu fonksiyon, modelin dogrusal olmayan
iliskileri 6grenmesine yardimci olur. Gizli katmanlar sayesinde model, daha derin ve

karmasik yapilar1 6grenebilir.

Gizli Katman Yapisinda, ilk gizli katman 128 noérondan olusur ve giris
katmanindaki tiim néronlarla tam baglantilidir. Tkinci gizli katman ise 64 noron igerir.
Bu yap1 sayesinde model, her asamada veriyi isleyip daha ileri seviyede Oznitelikler

cikarir ve verinin i¢indeki 6nemli bilgileri son katmana tasir.

2! =37 witla " + b)f (3.31)

Zjl, [. katmandaki j. néronun, aktivasyon fonksiyonuna uygulanmadan onceki
toplam girdisidir. Wjil, [. katmandaki j. noron ile bir dnceki [—1. katmandaki i. néron
arasindaki baglantinin agirhigidir. a;'~1, bir 6nceki katmandaki i. néronun aktivasyon
degeridir.
bjl, . katmandaki j. noronun bias terimidir. Bu yapiyla, her katman bir onceki

katmandan gelen verileri isler ve bu bilgiyi daha ileri seviyede kullanir.

3.3.3.2.2. Aktivasyon Fonksiyonu: ReLU

Her gizli katmanda, ReLU (Rectified Linear Unit) aktivasyon fonksiyonu
kullanilir. ReLU, modelin dogrusal olmayan iliskileri 6grenmesini saglar. ReLU su

sekilde ¢aligir:

f(z;') = max(0,z;") (3.32)

Yani, bir néronun aldig1 deger pozitifse oldugu gibi kullanilir, negatifse sifira
dontstiiriiliir. Bu basit ama gii¢lii fonksiyon, karmasik yapilar1 6grenmek igin ¢ok

etkilidir.
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ReLU’nun avantajlar::

1. Dogrusal Olmayan iliskileri Ogrenme: ReLU, modelin dogrusal olmayan

yapilar1 daha 1yi 6grenmesine olanak tanir.

2. Gradyan Sonmesi Probleminin Azaltilmasi: Diger aktivasyon fonksiyonlarina
gore, ReLU daha derin sinir aglarinda gradyan sonmesi problemini azaltir ve

modelin 6grenme kapasitesini artirir.

3.3.3.2.3. Diigiim Seyreltme (Dropout) Teknigi

Gizli katmanlarda asir1 6grenmeyi (uyumu) (overfitting) dnlemek icin Diigiim
Seyreltme teknigi kullanilmistir. Diigiim Seyreltme , egitim sirasinda rastgele bazi
noronlari devre dis1 birakarak modelin daha genel 6grenme yapmasini saglar. Bu teknik
sayesinde model, asir1 6grenme egiliminden kurtularak daha iyi genelleme kapasitesi

kazanir.

al

0, r; <p
1 = 3.33)

f(z!'), rj>p

75, 0 ile 1 arasinda rastgele bir sayidir. p, diiglim seyreltme oranini ifade eder.
Bu modelde, %30 digiim seyreltme uygulanmistir, yani egitim sirasinda gizli
katmandaki noéronlarin yarist1 devre disi birakilmaktadir. ajl, gizli katmandaki j.

ndronun diigiim seyreltme uygulandiktan sonraki aktivasyon degeridir.

Bu yontem, modelin her egitim adimida farkli ndéron kombinasyonlartyla

calismasini saglar ve bu sayede asir1 6grenmenin oniine gegcilir.

3.3.3.2.4. Parametre Ogrenimi ve Geri Yayihm

Gizli katmanlardaki her bir noron, aldig: bilgileri isledikten sonra agirliklarini
giinceller. Bu islem, geri yayilim (backpropagation) algoritmasiyla yapilir. Modelin
kayip fonksiyonu (Ornegin, categorical crossentropy), her néronun agirlik ve bias

terimlerine gore tiirev almarak optimize edilir. Bu giincelleme islemi su sekilde yapilir:
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Agirlik glincellemesi:

oL
wjil < Wjil -1 W (3.34)
Bias giincellemesi:
oL
b' « bj' =5 (3.35)

J

L, kayip fonksiyonudur. 1, 6grenme oranidir ve modelin ne kadar hizl
ogrendigini belirler. Tiirevler, modelin hatasin1 minimize etmek i¢in agirliklar

ve biaslar iizerinde yapilan giincellemeleri gosterir.

3.3.3.2.5. Gizli Katmanlarin Roli

Gizli katmanlar, modelin verilerdeki gizli paternleri 6grenmesine yardimei olur.
Ik gizli katman, giris katmanmdan gelen bilgileri isler ve veriyi daha anlamli hale
getirir. Ikinci gizli katman ise bu bilgileri daha derin seviyede isleyerek smiflandirma

icin gerekli olan bilgilere ulagir.

[k Gizli Katman: 128 ndrondan olusur. Giris katmanindaki bilgileri alip isler.
ReLU aktivasyon fonksiyonu, bu ndronlarin dogrusal olmayan yapilar1 6grenmesini
saglar. Ayrica %30 diiglim seyreltme kullanilarak modelin asir1 6grenme yapmasi

engellenir.

Ikinci Gizli Katman: 64 nérondan olusur ve ilk katmandan gelen bilgileri daha
detayl1 bir sekilde isler. Bu katmanda da ReL.U aktivasyon fonksiyonu kullanilir ve %30

diiglim seyreltme uygulanir.

Gizli katmanlar, modelin daha karmasik paternleri 6grenmesini saglayan énemli
bilesenlerdir. ReLU aktivasyon fonksiyonlari, dogrusal olmayan iliskileri 6grenmede
etkilidir. Dropout teknigi ile modelin asir1 6grenme egilimleri engellenir ve daha genel
bir 6grenme saglanir. Sonug olarak, gizli katmanlar, modelin egitim ve test verilerinde

daha iy1 performans gostermesine katkida bulunur.
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3.3.3.3. Cikis Katmanm (Output Layer)

Cikis katmani, modelin son asamasidir ve burada model, veriyi isleyip nihai
kararim verir. Bu ¢alismada, 5 farkli parmak hareketini tahmin etmek amaciyla ¢ikis
katmaninda 5 noron bulunmaktadir. Her néron bir parmak hareketini temsil eder ve
model, bu hareketlerden her biri i¢in bir olasilik degeri tahmin eder. Bu tahminler
Softmax aktivasyon fonksiyonu kullanilarak normalize edilir. Softmax sayesinde, bu

olasiliklarin toplami1 her zaman 1 olur.

3.3.3.3.1. Cikis Katmaninin Yapisi

Cikis katmanindaki her néron, modelin siniflandirmasi gereken 5 farkli parmak
hareketine karsilik gelen olasiliklar1 hesaplar. Bu noronlar, gizli katmanlardan gelen

bilgileri kullanarak tahminler yapar. Her bir néron su matematiksel formiille ¢aligir:

0]' = Z:Z‘Il WjiLa,-L_l + b]L (3.36)

0j, j. inci smifa (parmak hareketine) ait aktivasyon degeridir; yani bu, ilgili
noronun ¢ikardigl sonugtur. le-L, J. noron ile 6nceki katmandaki i. néron arasindaki

baglantinm agirhigidir. a;X~1, bir 6nceki katmandan gelen aktivasyon degeridir. bjL, ]-

noronun bias terimidir.

Bu hesaplanan degerler, her parmak hareketine karsilik gelen bir skor gibi

diisiintilebilir. Bu skorlar, Softmax fonksiyonu araciligiyla olasiliklara dontistiiriiliir.

3.3.3.3.2. Softmax Aktivasyon Fonksiyonu

Cikis katmaninda, modelin tahmin ettigi her siif icin bir olasilik degeri
dondiiriiliir ve bu olasiliklar Softmax fonksiyonu ile hesaplanir. Softmax fonksiyonu,
her bir sinifin olasiligini hesaplayarak, tiim smniflarin olasiliklariin toplamini 1 olacak
sekilde normalize eder. Bu, modelin her sinif i¢in olasiliklar1 belirlemesini saglar. Yani,
model her bir siifin (6rnegin, her bir parmak hareketinin) ne kadar olast oldugunu
Ogrenir ve en yiiksek olasiliga sahip sinifi tahmin olarak verir. Bu sekilde model, hangi
smifin daha olasi oldugunu belirleyerek, siniflandirma kararint verir. Softmax

matematiksel olarak sOyle tanimlanir:

%j

POy =il = 5

1%

(3.37)
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P(y = jlx), modelin giris verisinin j. sinifa ait olma olasiligim gdsterir. o;, j. smif i¢in

hesaplanan skor (lojit) degeridir. C, toplam siuf sayisidir (bu caligmada 5 sinif vardir).

3.3.3.3.3. Cikis Katmaninin Hesaplanmasi

Cikis katmaninda, gizli katmanlardan gelen veriler islenir ve ardindan Softmax
fonksiyonuna uygulanir. Ornegin, model sinyalleri aldiktan sonra su sekilde skorlar

uretir:

01,0, 030,405 (3.38)

Bu skorlar Softmax fonksiyonuna girerek her sinif i¢in bir olasilik olusturulur.
> P(y =1]x) = (Bagparmak hareketi)
> P(y =2|x) = (Isaret parmag1 hareketi)
> P(y = 3]|x) = (Orta parmak hareketi)
> P(y =4]x) = (Yizik parmag hareketi)
> P(y =5]x) = (Ser¢e parmak hareketi)

Bu tahminlere gore, model en yiiksek olasilig1 seger.

3.3.3.34. Kayip Fonksiyonu: Categorical Crossentropy

Modelin tahmin ettigi olasiliklarin ne kadar dogru oldugunu anlamak i¢in
Categorical Crossentropy kayip fonksiyonu kullanilir. Bu fonksiyon, modelin tahmin
ettigi olasiliklar ile gercek degerler arasindaki farki Olger. Eger model, dogru sinifi

yiiksek bir olasilikla tahmin ederse kay1p diisiik olur; yanlis tahmin ederse kayip artar.

L=-Y%,y;log®) (3.39)

L, kayip fonksiyonudur. y;, dogru sinifa ait etiket (bir-hot encoded, yani dogru

smif i¢in 1, digerleri igin O olur). ¥;, modelin tahmin ettigi olasiliktir.

Model, bu kayip fonksiyonu ile hatalarin1 hesaplayarak geri yayilim siireciyle

O0grenmeye devam eder.
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3.3.3.3.5. Geri Yayilhm ve Agirhik Giincellemeleri

Cikis katmaninda hesaplanan kayip, modelin tiim katmanlarindaki agirliklarin

giincellenmesini saglar. Geri yayilim algoritmasi su sekilde isler:

1. Cikis katmaninda hesaplanan kayip, her ndronun agirliklar1 ve bias terimleri

iizerinden tiirevi alinarak hesaplanir.

2. Butiirev, gizli katmanlara geri iletilir ve tiim katmanlarda agirlik giincellemeleri

yapilir.
3. Busiire¢ modelin dogru tahminler yapmasini saglar.

3.3.3.3.6. Cikis Katmanin Sonuc ve Degerlendirme

Cikis katmani, modelin nihai kararlarmi verdigi yerdir. Softmax aktivasyon
fonksiyonu, modelin tahmin ettigi skorlar1 olasiliklara ¢evirir ve her sinyal i¢in hangi
simifin daha olas1 oldugunu belirler. Modelin tahmin ettigi olasiliklarin dogrulugu,
Categorical Crossentropy kayip fonksiyonu ile dlgiiliir ve geri yayilim algoritmasiyla

hatalar duzeltilir.

Sonug olarak, 5 noronlu ¢ikis katmani, her parmak hareketi i¢cin bir tahmin
iretir. Softmax aktivasyon fonksiyonu, tahmin edilen skorlar olasilik olarak normalize
eder. Categorical Crossentropy kayip fonksiyonu, modelin hatalarini minimize etmeye

calisir.

3.4. Modelin Derlenmesi (Compile)

Modelin derlenmesi, modelin nasil ¢alisacagini belirleyen 6nemli bir adimdir.
Bu agsamada, modelin hatalar1 nasil hesaplayacagini, nasil 6grenip optimize edilecegini
ve performansinin nasil degerlendirilecegini tanimliyoruz. Bu c¢alismada, derleme
stirecinde ii¢ ana bilesen kullanilmistir: kayip fonksiyonu (loss), optimizasyon

algoritmasi (optimizer).

3.4.1. Kayip Fonksiyonu: Categorical Crossentropy

Kay1p fonksiyonu, modelin tahminleri ile ger¢ek sonuglar arasindaki farki 6lger.
Bu farki minimize ederek modelin daha dogru 6grenmesini saglar. Cok smiflt bir
smiflandirma problemi iizerinde c¢alistigimiz icin Categorical Crossentropy kayip

fonksiyonu kullanilir.
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L=- Z?:l Zg=1 Yic log (yic) (3.40)

N, egitimdeki Orneklerin sayisini gosterir. C, sinif sayisini ifade eder. y;.,
gergek smif etiketini gosterir (bir-hot kodlamasi kullanilarak; dogru smnif igin 1,

digerleri i¢in 0 olur). ¥;., modelin sinif ccc i¢in tahmin ettigi olasilik degeridir.

Bu fonksiyon, modelin her smif i¢in tahmin ettigi olasilik ile gercek smif
arasinda bir fark hesaplar. Amag, bu farki tim smiflar i¢in miimkiin oldugunca

azaltmaktir.

3.4.2. Optimizasyon Algoritmasi: Adam

Optimizasyon algoritmasi, modelin agirliklarinin  her adimda nasil
giincellenecegini belirler. Bu calismada Adam optimizasyon algoritmasi kullanilmistir.
Adam hem gradyan inisi hem de momentum tabanli bir algoritmadir ve modelin

ogrenme hizin1 dinamik olarak ayarlar.

Adam algoritmasinin temel mantigi, modelin hatalarini en aza indirmek i¢in
agirliklart giincellemek tiizerine kuruludur. Gradyanlar ve moment hesaplamalar

yaparak agirliklart giinceller ve bu siireg, su adimlarla gergeklestirilir:

3.4.2.1. Gradyanin momentum hesaplamasi

m,=Bm_,+(1—-B19, (3.41)

vy =B,vq + 1- ﬁz)gtz (3.42)
gt » modelin her adimda hesapladig1 gradyandir. m;, gradyanin momentumu

(ilk moment tahmini). v;, gradyanin karesel momentumu (ikinci moment tahmini).

B,ve B,, genellikle sirastyla 0.9 ve 0.999 olarak segilen hiper parametrelerdir.

3.4.2.2. Agirhklarin giincellenmesi

i, = —L (3.43)
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D, = —& (3.44)

nm;

Jorte

0;, modelin agirliklaridir. n, 68renme oranidir. €, sifira bolme hatasindan

0,=0,_,— (3.45)

kaginmak i¢in kullanilan kii¢iik bir sabittir.

Adam, agirliklart bu sekilde optimize ederek modelin hizli ve stabil bir sekilde

O0grenmesini saglar, 6zellikle biiyiik veri setlerinde oldukca etkilidir.

3.5. Modelin Egitimi ve Dogrulamasi

Modelin egitim ve dogrulamasi, yapay sinir aginin verilerle 6grenme islemi
yaptig1 ve bu 6grenme siirecinin ardindan modelin ne kadar basarili oldugunu anlamaya
calistigimiz asamalardir. Bu siireglerde, model 6nce verilerle egitilir ve sonra 6grenilen
bilgilerin test verileri lizerinde ne kadar basarili olduguna bakilir. Egitim ve dogrulama

islemleri, modelin basarisini anlamak i¢in hayati 6neme sahiptir.

3.5.1. Etiketlerin Kategorik Hale Getirilmesi

Modelin ¢ok sinifl bir siniflandirma problemi ile karsilastiginda, etiketlerin bir-
hot kodlama yontemi ile kategorik hale getirilmesi gerekir. Bir-hot kodlama, her sinifi
bir vektor olarak temsil eder. Ornegin, 5 smifli bir problemde birinci smif su sekilde

kodlanir:
y =1[1,0,0,0,0] (3.46)
Bu, modelin her sinif i¢in olasilik tahmin etmesini saglar. Her bir sinifin 1 ya da
0 olarak gosterildigi bu yapiyla, model dogru sinifi tahmin etmeye ¢aligir.
3.5.2. Modelin Dogrulamasi

Dogrulama, modelin hi¢ gérmedigi test verileri {izerinde performansini test
etme asamasidir. Egitim sirasinda model, verileri 68renir ve bu bilgileri test setine
uygulayarak ne kadar dogru tahmin yaptigini1 gosterir. Dogrulama asamasi, modelin
genelleme yapma yetenegini Olcer. Eger model, egitim verilerine ¢ok fazla uyum

sagladiysa (asir1 6grenme), test verileri lizerinde diislik performans gdsterebilir.

Dogrulama performansi, egitim sirasinda modelin 6grendigi bilgilerin yeni

veriler lizerinde ne kadar basarili oldugunu anlamamizi saglar
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3.5.3. Performans Metrikleri: Dogruluk, Kesinlik, Anma ve F1 Skoru

Modelin performansini degerlendirmek icin dogruluk (accuracy) metrigi
kullanilir. Dogruluk, modelin yaptig1 tahminlerin ne kadarinin dogru oldugunu gosterir

ve su sekilde hesaplanir:

DP + DN
DP + DN + YP + YN

Dogruluk = (3.47)

Bu metrik, modelin tahmin ettigi 6rneklerin ne kadarinin dogru oldugunu dlger.
Cok smifli siniflandirma problemlerinde dogruluk, modelin genel basarisini

degerlendirmenin temel yollarindan biridir.

DP (Dogru Pozitif): Modelin pozitif olarak dogru tahmin ettigi 6rnekler.

DN (Dogru Negatif): Modelin negatif olarak dogru tahmin ettigi 6rnekler.

YP (Yanlis Pozitif): Modelin pozitif tahmin yaptig1 ama aslinda negatif olan ornekler.
YN (Yanlis Negatif): Modelin negatif tahmin yaptig1 ama aslinda pozitif olan 6rnekler.

Modelin basarisin1 sadece dogruluk (accuracy) metrigi ile Olgmek yeterli
degildir. Oznitelikle dengesiz veri setlerinde dogruluk metrigi, siniflar arasindaki
dengesizlikleri gizleyebilir. Bu nedenle, modelin her siif i¢in ne kadar iyi performans
gosterdigini anlamak i¢in kesinlik (precision), duyarlilik (recall) ve F1-skor gibi

metrikler kullanilir.

Precision (Kesinlik): Modelin belirli bir sinifi pozitif olarak tahmin ettiginde,

bu tahminlerin ne kadar dogru oldugunu gosterir.

Kesinlik = _DP_

DP+YP (3.48)

Modelin tahmin ettigi pozitif siniflarin ne kadarinin gergekten dogru oldugunu gosterir.

Duyarlilik: Modelin gergekten pozitif olan siniflarin ne kadarii dogru tahmin

ettigini gosterir.
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DP
DP + YN

Duyarhhk = (3.49)

Modelin ne kadar dogru pozitif buldugunu gosterir.

F1-Skor: Kesinlik ve Duyarlil1g’in harmonik ortalamasidir. Oznitelikle kesinlik

ve duyarlilik arasinda bir denge kurmak istendiginde faydalidir.

Kesinlik-Duyarhlik
Kesinlik+Duyarlilik

F1 — Skor = 2 - (3.50)

Bu metrikler, modelin her siif i¢in ne kadar basarili oldugunu ve genel

performansini anlamak i¢in 6nemlidir.

3.5.4. Sonug ve Degerlendirme

Modelin egitim ve dogrulama siireci tamamlandiktan sonra, egitim seti
iizerindeki performans ve dogrulama seti lizerindeki performans karsilastirilir. Eger
model egitim verileri iizerinde c¢ok basarili, ancak test verileri iizerinde diisiik
performans gosteriyorsa, model asir1 6grenme yapmis olabilir. Bu durumda model,

yalnizca egitim verilerini ezberlemis ve genelleme yetenegi kazanamamis demektir.

Dogruluk ile, kesinlik, anma ve Fl-skor gibi metrikler de analiz edilmelidir. Bu
metrikler, modelin her sinifta ne kadar basarili oldugunu ve smiflar arasindaki
dengesizlikleri nasil yonettigini gosterir. Sonug olarak, egitim ve dogrulama siiregleri
modelin genel basarisini ve yeni veriler lizerindeki performansini anlamamiza yardime1

olur.
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4. ARASTIRMA BULGULARI VE TARTISMA
4.1. On Isleme Sonuclan

4.1.1. TDD Oznitelikleri

Tablo 3.3 ‘de sunulan TDD o6znitelikleri, literatiirde siklikla kullanilan ve parmak
hareketlerinin karakteristiklerini etkili bir sekilde tanimlayan olgiitlerdir. Bagparmagin
tek bir denemesi icin hesaplanan TDD 06zniteliklerinin gorsel olarak sunuldugu Sekil
4.1, bu Ozniteliklerin parmak hareketinin farkli asamalarinda nasil degistigini
gostermektedir. Bu sayede, se¢ilen Ozniteliklerin parmak hareketinin hangi yonlerini
temsil ettigi daha iyi anlagilmaktadir. Caligma kapsaminda tiim parmaklar i¢in benzer
analizler yapilmis olup, elde edilen sonucglar genel olarak parmak hareketlerinin

karakteristik 6zniteliklerini temsil etmektedir.

Sekil 4.1 TDD Oznitelikler
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4.1.2. CNN Oznitelikler

Genellikle, CNN modeli 6grenme asamasinda filtre agirliklarini verileri
kullanarak optimize eder. Bu optimizasyon siireci, modelin daha dogru ve genel
ozellikler 6grenmesine olanak tanir. Fakat bu ¢alismada CNN modeli sinyalden 6nemli
bilgiler ¢ikarma islemi yapar ve bu bilgileri anlamli vektdr haline getirir. Sinyalin
lizerinde uygulanan bu islem, belirli Oriintiilerin, zaman araliklarinin ve frekans
bilesenlerinin tanimasini saglar. CNN modelinin islenmesi sonunda, her bir deneme
icin 64 adet 6znitelik ¢ikarilmis olur. Bu, ileride gergeklestirilecek Oznitelik secimi,
analiz ve smiflama islemleri i¢in daha faydali ve diizenli bir veri seti elde edilmesini
saglar. Bas parmak i¢in elde edilen ilk iki 6znitelik Sekil 4.2 ve Sekil 4.3, CNN modelin

basaril bir sekilde 6znitelikleri ¢ikardigini gosterir.

CNN Feature 1

0.40 4

0.35 4

0.30

0.25 4

0.20 4

CNN Value

0.15 ~

0.10 ~

0.05 4

0.00 +

0 10 20 30 40 50
Sample

Sekil 4.2CNN'nin Cikardigi i1k Oznitelik
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CNN Feature 2
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Sekil 4.3 CNN'nin Cikardig Ikinci Oznitelik

4.1.3. LSTM Oznitelikler

LSTM modeli ile elde edilen 6zniteliklerin sayis1 32°dir. Bu model, her sinyalin
zaman i¢indeki paternlerini temsil eden 6znitelik vektorlerini olusturur. Elde edilen

oznitelikler, siniflama asamasinda biiyiik katki saglayacaktir.

LSTM Feature 1

0.05 - N

0.04 1

0.03 A

LSTM Value

0.02

| b

0.00

Sample
Sekil 4.4 LSTM'in Cikardig ilk Oznitelik
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LSTM Feature 2

0.14 1 W

0.08 4

LSTM Value
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Sekil 4.5 LSTM'in Cikardig ikinci Oznitelik

LSTM modeli ile elde edilen o6zellikler, sinyal verilerindeki zaman igindeki
bagimliliklar1 basarili bir sekilde yakalayarak, her sinyal i¢in anlamli ve
yogunlastirilmig 6zellikler sunar. Bu, karmasik iliskilerin ve dinamiklerin daha iyi

anlagilmasina yardimci olur.

4.1.4. MI ile Oznitelik secimi

TDD, CNN ve LSTM ile her parmagin denemesinden c¢ikarilan 118 adet
Oznitelikten, daha anlamli 6znitelikleri elde etmek i¢in Mutual information yontemi
kullanarak Sekil 4.6’da gosterilen sadece 30 Oznitelik secilir. Bu yontem, siniflama

islemini kolaylastirir ve yiiksek dogruluga elde etmekte yardimci olur.
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Sekil 4.6 MI ile Secilen i1k 30 Oznitelik

4.2. Makine Ogrenmesi Modelleri ile Simiflandirma

Bu adimda, smiflama modeli olusturmadan On isleme adimdan elde edilen

Oznitelikleri farkli yontemler ile simiflamayi gercekleserek, Burada kullanilacak

modeller, Destek Vektor Makineleri (SVM) ve K-En Yakin Komsu Algoritmas1 (KNN).

Smiflama egitimi ve testi daha basarili sonug vermek ve iyice egitmek icin, egitim %70

test ise %30 olarak ayrildi.




Tablo 4.1 SVM Egitim Performansi

Parmak Kesinlik Duyarlilik Fl-skor | Dogruluk
Bagparmak 83 100 91

Isaret 100 97 99

Orta 100 91 96 95
Yiiziik 97 91 94

Serge 100 97 99

Tablo 4.1 de SVM egitim performansi verilmektedir. Egitim dogruluk orani
%95 olup basparmak hari¢ diger parmaklarda kesinlik oranlar1 oldukca yiiksektir.

Duyarlilik oranlar1 da orta ve yiiziik parmaklarda nispeten diisiik olup genelde

yiiksektir.
Tablo 4.2 SVM Test Performansi
Parmak Kesinlik Duyarhhk F1-skor Dogruluk
Bagparmak 79 100 88
Isaret 100 100 100
Orta 100 93 97 95
Yiiziik 100 87 93
Serce 100 93 97

Tablo 4.2 de ise SVM test performansi verilmektedir. Test dogruluk oran1 %95
olup basparmak hari¢c diger parmaklarda kesinlik oranlarmin %100 oldugu
goriilmektedir. Duyarlilik oranlar1 da orta, yiizlik ve serce parmaklarda nispeten diistik

olup bagparmak ve isaret parmakta %100 oranindadir.
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Tablo 4.3 KNN Egitim Performansi

Parmak Kesinlik Duyarhhk F1-skor Dogruluk
Basparmak 90 100 95

Isaret 100 97 99

Orta 100 97 99 97
Yiiziik 97 94 96

Serce 100 97 99

Tablo 4.4 KNN Test Performansi

Parmak Kesinlik Duyarhhk Fl-skor | Dogruluk
Basparmak 83 100 91

Isaret 94 100 97

Orta 100 87 93 93
Yiiziik 93 87 90

Serge 100 93 97

Tablo 4.3 ve Tablo 4.4°te KNN ile siniflama dogru bir sekilde gergeklesmis ve
sonucla egitim %97 iken test %93 olarak belirlendi.

Bu sonuglara gore SVM ile KNN modelleri kullanarak ¢ok yiiksek dogruluk
oranlart elde ederek O6zniteliklerin 6n igslemesinin dogru ve basarili bir sekilde elde

ettigimizi gostermektedir.

4.3. FCNN ile Simiflama Sonuclari

Calismamizda, FCNN modeli ve eklenen yontemleri kullanarak egitim
dogrulugu %100 olarak elde edilirken, test dogruluk orani1 %99 olarak elde edildi ve bu
cok yiiksek bir dogruluk orandir. Her bes parmagin performansi degerlendirmek igin
dogruluk, kesinlik, Duyarlilik ve F1 skor kullanilmistir. Egitim performansi da kesinlik,

duyarlhlik ve F1 skoru, bes parmak i¢in %100 olarak elde edilmistir.
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Tablo 4.5 FCNN Egitim Performansi

Parmak Kesinlik Duyarhhk | F1-skor Dogruluk
Basparmak 100 100 100

[saret 100 100 100

Orta 100 100 100 100
Yiiziik 100 100 100

Serge 100 100 100

Modelin egitim sonuglarindan model iyice 6grenmistir. Tablo 4.5’te FCNN
Egitim Performansi dogruluk oran1 %100 olarak bulunurken Tablo 4.6’da FCNN Test

Performans1 dogruluk orani %99 olarak belirlenmistir.

Tablo 4.6 FCNN Test Siniflama Performansi

Parmak Kesinlik Duyarhhk | Fl1-skor Dogruluk
Basparmak 100 100 100

Isaret 100 100 100

Orta 100 93 97 99
Yiiziik 94 100 97

Serge 100 100 100

Modelin siniflama sonuglar1 oldukea iyi ve yiiksek goriinmektedir. Test verileri
dogru tahmin yaptigini incelemek i¢in Sekil 4.7’ de Karigiklik matrisi, modelin her sinif

icin ne kadar dogru veya yanlig tahmin yaptigini tablo halinde 6zetleyen bir gorseldir.
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Confusion Matrix for Test Set Predictions
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Sekil 4.7 Karisiklik Matrisi

Bu matrise gore, model test verisinde oldukca basarili. Sadece orta parmak
siifindaki bir 6rnek yanlis tahmin edilmis, diger tiim 6rnekler dogru siniflandirilmais.
Bu durumda modelin dogrulugu oldukea yiiksek ve siniflar arasinda karisiklik minimal

diizeyde.

4.4. Modellerin Karsilagtirmasi

FCNN modeli uygulamadan, 6znitelik se¢iminden sonra kullanilan SVM ve
KNN modeller, yine yliksek dogruluk oranlar1 verilmisler fakat FCNN gibi degil. SVM
ile siniflama test dogruluk oran1 %95 iken, KNN ile siniflama test oran1 %93 olarak
elde edilmistir. Egitim oranlar1 ise FCNN ile model egitimi 100% iken, SVM ile %95

ve KNN ile model egitim oran1 %97 olarak egitilmistir.
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Sekil 4.7 Modellerin Dogruluk Karsilastirilmasi

FCNN modelimiz hem egitim hem de test asamasinda diger siniflama
modellerden daha yiiksek sonug¢ verilmisti. En yiiksek sonuc Isaret parmagmn
sonucuydu ve kullanilan ti¢ modelden FCNN %100, SVM %100 ve KNN %97 F1-
Score olarak elde edilmistir, fakat diger parmaklar i¢in karisik sonuglar verilmistir ve
en diisiik basar1 orani, SVM’de %88 bas parmagi , KNN’de %90 yiiziik parmagi ve
FCNN’ de %93 orta parmagin nasibinden ¢ikti. Bu sonuglar hic¢ diisiik degildir sadece
ayni modelin F1-Score oraninda parmaklarin arasinda en diisiiktii. Boylece FCNN diger
iki siniflama modellerden biitiin 5 parmaklarin smiflamasinda daha iyi sonug¢ ve daha
yiksek dogruluk ve performans elde etmektedir. FCNN diger modellerden egitimde
daha fazla siire alirsa’da sonuglar1 daha yiiksek vermektedir. Ve daha fazla siire alma
sebebi FCNN bir derin 6grenme modelidir yani ¢ok katmanli ve derin yapiya sahip ve

Oznitelikleri otomatik olarak 6gretir ve biiyiik veri setleri i¢in daha uygun.
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Sekil 4.8 FCNN, SVM ve KNN Performans Karsilastirilmasi

4.5. Asir1 Ogrenme Durumunun irdelenmesi

Modelin asir1 grenme yapmadigini anlamanin iki yolu vardir. i1k yol, egitim
ve dogrulama kayiplarini incelemektir. Egitim ve dogrulama kayiplar1 benzer bir
sekilde azaliyorsa ve birbirine yakinsa, modelin asir1 6grenme yapmadigimi demektir.
Sekil 4.10 asir1 6grenme olmadigini gosterir. Fakat dogrulama kaybi bir noktadan sonra
ylikselmeye baslarsa, bu durum modelin egitim verisini asir1 6grenmeye basladigini

gosterebilir.
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Sekil 4.9 Egitim ve Dogrulama Kayiplar:

Ikinci yol ise egitim ve dogrulama dogruluklarini karsilastirmaktir. Sekil 4.11,
Egitim ve dogrulama dogruluklariin yiiksek ve birbirine yakin olmasi, modelin veriyi
asir1 0grenmeden genelleme yapabildigini ifade eder. Ancak egitim dogrulugu ¢ok

yliksekken dogrulama dogrulugu diisiikse, modelin asir1 6grenme yaptig1 diistiniilebilir.
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Sekil 4.10 Egitim ve Dogrulama Dogruluklari
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4.5.1. Literatiir ile Karsilastirma

Literatiirde etiketlenen caligmalarda farkli veri setler kullanilmistir. Bu
caligmada kullanilan veri setini toplayanlar, veri seti iizerinde farkli yontemleri
kullanarak smiflama islemini gergeklestirilmisler. Literatiirdeki caligmalarin farkli
derin 6grenme ve makine 6grenme modelleri kullanarak ¢ok iyi ve yiiksek sonuglari

elde etmisler.

4.5.2. Farkh veri seti

Atzori (2016) calismasinda CNN yontemi kullanarak en yiliksek dogruluk orant %75
olarak elde edilmistir (Sekil 4.12). Triwiyanto et al. (2024) calismasinda CNN
kullanarak yaklagik %97 dogruluk elde ederken(Sekil 4.13), Reza Bagherian Azhiri
calismasinda RNN yontemi (Sekil 4.14) kullanarak oda %96 sonug elde ederek iyi
sonugclar elde etmistir. Makine 6grenme yontemleri kullanarak ¢aligmay1 gergeklestiren

Kyung Hyun Lee ve arkadaglar1 en son ANN ile %94 olarak elde edilmistir [6, 7, 8, 9].
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Sekil 4.11 CNN ile 3 Data setin Dogrulugu
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Sekil 4.12 CNN, KNN, SVM, LDA ve DT Simiflama Dogrulugu
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Bu sonuglar baska veri setlerine ait olsa bile sonuglar1 bu ¢alisma i¢in 6nemlidir;
¢linkli bu caligsmalarda goriilen sonuglar ¢cok iyi olmasina ragmen bizim calismada

kullandigimiz FCNN modeli daha yiiksek sonuglar vermistir.

4.5.3. Ayni Veri Seti ile Yapilan Calismalar

Bu caligmada kullanilan veri setini toplayan Sanjay Kumar Dwivedi, MRD
modeli ile smiflama gergeklestirmistir. Calismada, toplanan veri seti iki tiir veriden
olusmaktadir: kas aktivasyonu verileri ve kinematik hareket verileri. Arastirmacilar, bu

iki veri setini birlestirerek MRD modeli ile Tablo 4.7°de goriilen %91 dogruluk oranina

ulagsmiglardir.

Tablo 4.7 MRD Calismasinin Siniflama Sonuglari
Regression | RMSE Correlation R-Square Time(ms)
Methods coefficient(p)
LR-RD 8.08 £1.28 | 0.50 +0.08 0.31 £0.13 | 0.000,09 £0.000,1
LR- Full 7.66 £1.22 | 0.57 £0.07 0.38 £0.12 | 0.000,43 +0.000,10
ANN-RD 6.64+ 1.19 | 0.68+ 0.04 0.46 £0.10 | 0.06 £0.002
ANN- Full 5.07 £0.90 | 0.82+ 0.04 0.68 £0.07 | 0.09 £0.010
Prosed 3.4 £0.89 0.91 £0.03 0.84 £0.05 | 2.6 £0.79
Method

FCNN yontemiyle, yalnizca kas aktivasyonu verileri kullanilarak smiflama
gerceklestirilmis ve bu yontemle daha yiiksek bir siniflama dogrulugu elde edilmistir;
basar1 orant %99 olarak belirlenmistir. Kas aktivasyonunun secilmesinin sebebi,
diinyada smiflama, robotik uygulamalar, teshis ve testler ilizerine yapilan ¢aligsmalarin
cogunun EMG verileri lizerinde yogunlagmasidir. Bu nedenle, gergeklestirilen

calismanin daha kullanigh ve faydali olmas1 beklenmektedir.

4.6. Analiz ve Yorumlar

Bu caligmanin amaci, derin 6grenme yontemleri ile parmak hareketlerinin
siiflanmasidir. Derin 6grenme ile en yiiksek ve en iyi sonuglari elde edebilmek i¢in ii¢

farkli yontem kullanilmistir. Ozniteliklerden yalnizca TDD 22 6zniteligi yeterli
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bulunmamis, bu nedenle CNN ve LSTM derin 6grenme modelleri de uygulanmstir.
Oznitelikler secildikten sonra, smiflama islemi FCNN derin &grenme modeli ile
gerceklestirilmistir. Bu yaklasim, daha basarili ve yiiksek dogruluklu sonuglar elde
edilmesini saglamis ve ¢alismanin amacina ulasilmasina katki sunmustur. Elde edilen
bagari, tim parmaklar i¢in gegerli olup, kesinlik, dogruluk ve modelin egitim

performansi acisindan yiiksek bir basar1 oran1 géstermektedir.

Modelin asir1 6grenme (overfitting) riskinden korunmasi amaciyla Dropout,
veriyl %70 ve %30 oraninda ayirma, havuzlama (pooling), egitim ve dogrulama
kayiplarinin karsilagtirilmasi, ayrica egitim ve dogrulama dogruluklarimin izlenmesi
gibi yontemler kullanilmistir. Bu yontemler sayesinde, egitim performansi asiri
O0grenme olmadan artmig ve model etkin bir sekilde 6grenmistir. Egitimde %100
dogruluk ve testte %99 dogruluk elde edilmesi arasindaki kii¢lik fark, asir1 6grenme

olmadigini gostermektedir.
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5. SONUC VE ONERILER

Bu c¢aligmada, 6znitelik se¢imi ve siniflama islemleri Spyder uygulamasi ve
Python dili kullanilarak gerceklestirilmistir. Bu yontem, asir1 6grenme olmadan, diger
yontemler ve modellere gore daha yiiksek dogruluk ve performans sergilemistir. Her
bir parmak i¢in performans ve dogruluk degerlendirildiginde, FCNN modelinin egitimi
%100 dogruluk saglamig ve toplam test dogrulugu %99 olarak kaydedilmistir.
Parmaklarin dogrulugu ise, bas, isaret, yiiziik ve ser¢e %100 iken, orta parmak %93 ile

en diisiik dogruluk oranina sahip olarak siniflanmstir.

TDD zaman serisi ile 6znitelikleri kolay ve basit bir sekilde elde edilebilir ve
bunu yetmeden derin 6grenme modeli CNN ile basarili 64 6znitelik elde edilmigtir
dahada Oznitelikleri kagirmamak i¢in yine derin 6grenme modeli LSTM’1 kullanarak
32 Oznitelik elde edildi toplam olarak 118 6znitelik yapar. Bu 118 6zniteliklerden en
onemli 0znitelikleri se¢cmek icin MI yontemi kullanildi ve 30 tane 6znitelik secilmistir.
Boylece smiflama agamasina geldiginde ozniteliklerin sayisi az fakat en Onemlisi

secildi ve boyle FCNN modeli ile siniflama yiiksek dogruluk ve performans gosterildi.

Bu ¢alismada ¢ok zaman ve gii¢ harg edildi ve bu basar1 sonuglara ulastik¢a yeni
bilgiler 6grenildi ve ¢ok hatalar ile karsilastik. Burada ayni alanda ¢alisma yapacak

arastirmacilar i¢in birkag onerilere bulunuyor.

Parmak hareketlerinin siniflamasi iizerinde ¢alismak isteyenler, oncelikle veri
setini dikkatlice arastirmali ve en uygun veri setini se¢melidir. Veri seti secildikten
sonra, bu veri setini iyice anlamali ve lizerinde yapilan nceki ¢aligmalari incelemelidir.
Ayrica, veri setinin toplanmasinda hangi cihazlarin ve ydntemlerin kullanildigim
ogrenmek onemlidir. Bu adimlar ¢ok kritik olup, yalnizca bu agama bile zaman alict

olabilir ve birka¢ hafta siirebilir.

Siniflama modelini segmeden 6nce 6nemli 6zniteliklerin belirlenmesi, en kritik
adimlardan biri olabilir. Ozniteliklerin ¢ikarilmasi i¢in kullanilan teknikleri ve
modelleri aramak ve denemek, zaman alic1 ve yorucu bir siiregtir ¢iinkii 6zniteliklerin
belirlenmesi i¢in pek ¢ok farkli yontem bulunmaktadir. Bu nedenle, bu tiir
arastirmalarda en yaygin kullanilan teknik ve yontemleri 6ncelikli olarak denemek daha
verimli olacaktir. Bdylece, hizli bir sekilde uygun Oznitelik cikarimi ve secimi
yapilabilir.Uygun siniflama modelini arama asamasinda, her denenen modelin

sonuclart kaydedilmelidir. Ciinkii sonuclar ne kadar diisiik olursa olsun, bu veriler
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onemli olabilir; bazen modelin basarisizligi, modelden degil, veri setinden ya da
Oznitelik ¢ikarim yontemlerinden kaynaklanabilir. Ayrica, modeli kullanirken sonuglari

tyilestirebilecek ek yontemler uygulanmalidir.
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