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ABSTRACT

CONSTITUTIVE MODELING AND EXPERIMENTAL IDENTIFICATION
OF MATERIAL PARAMETERS OF VISCOELASTIC MATERIALS BY

VARIABLE ORDER NON-INTEGER DERIVATIVES

Çakır, Muhammed

Ph.D., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ergin Tönük

Co-Supervisor: Prof. Dr. Hamdullah Yücel

March 2025, 161 pages

Polymeric materials are widely used due to their ease of manufacture, low density,

and cost-effectiveness. Their viscoelastic properties, such as stress relaxation and

creep, arise from their long molecular chains. Traditional rheological models de-

scribing these properties often require numerous parameters, as they rely on multiple

springs and dashpots with estimated constants. An alternative approach is fractional

calculus, which employs non-integer derivatives and integrals to simplify the model-

ing process. This method reduces the number of required parameters while providing

a more consistent representation of mechanical behavior by allowing the order of dif-

ferentiation to vary between 0 and 1—representing purely elastic and purely viscous

behavior, respectively.

The mechanical properties of viscoelastic materials are strongly influenced by en-

vironmental factors and loading/deformation history, necessitating a variable-order

fractional model rather than a constant-order one. In this study, fractional-order vis-

coelastic models are applied to materials such as PE300, PTFE, and EVA, utilizing
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tensile test data. Theoretical models and MATLAB-based simulations are validated

through comparisons with experimental results and finite element analysis (FEA). To

further enhance predictive accuracy, user-defined material subroutines are developed

for the commercial finite element solver ABAQUS, incorporating both constant-order

and variable-order formulations.

Further verification of the proposed approach is conducted using the tensile test data

obtained from a tensile testing machine equipped with non-contact strain measure-

ment devices. The methodology is assessed by simulating tensile tests providing

a comprehensive evaluation of the parameter estimation method. Additionally, the

effectiveness of the user material subroutine is examined by comparing simulation

results with experimental data, ensuring the reliability of the proposed framework.

Keywords: Viscoelasticity, Fractional Calculus, Variable Order
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ÖZ

VİSKOELASTİK MALZEMELERİN DEĞİŞKEN-TAM SAYI OLMAYAN
TÜREVLERİ İLE KURAMSAL MODELLENMESİ VE DENEYSEL

OLARAK MALZEME PARAMETRELERİNİN BELİRLENMESİ

Çakır, Muhammed

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ergin Tönük

Ortak Tez Yöneticisi: Prof. Dr. Hamdullah Yücel

Mart 2025 , 161 sayfa

Polimerik malzemeler, üretim kolaylıkları, düşük yoğunlukları ve maliyet etkinlikleri

nedeniyle yaygın olarak kullanılmaktadır. Gerilme gevşemesi ve sünme gibi visko-

elastik özellikleri, uzun moleküler zincirlerinden kaynaklanmaktadır. Bu özellikleri

tanımlayan geleneksel reolojik modeller, birden fazla yay ve sönümleyici içeren, tah-

mini sabit değerler kullanan yapıları nedeniyle genellikle çok sayıda parametre ge-

rektirmektedir. Alternatif bir yaklaşım olarak kesirli türevli hesaplama, modelleme

sürecini basitleştirmek amacıyla tam sayı olmayan türevler ve integraller kullanmak-

tadır. Bu yöntem, türev mertebesinin 0 ile 1 arasında değişmesine olanak tanıyarak

gerekli parametre sayısını azaltmakta ve mekanik davranışı daha tutarlı bir biçimde

temsil etmektedir; burada 0 mertebe tamamen elastik, 1 mertebe ise tamamen viskoz

davranışı simgelemektedir.

Viskoelastik malzemelerin mekanik özellikleri, çevresel faktörler ile yükleme/defor-

masyon geçmişinden büyük ölçüde etkilendiğinden, sabit mertebeli bir model ye-
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rine değişken mertebeli bir kesirli türevli model kullanılması gerekmektedir. Bu ça-

lışmada, PE300, PTFE ve EVA gibi malzemelere çekme testi verileri kullanılarak

kesirli mertebeli viskoelastik modeller uygulanmıştır. Teorik modeller ve MATLAB

tabanlı benzetimler, deneysel sonuçlar ile sonlu elemanlar analizi karşılaştırmaları ya-

pılarak doğrulanmıştır. Öngörü hassasiyetini daha da artırmak amacıyla, ticari sonlu

elemanlar çözücüsü ABAQUS için hem sabit mertebeli hem de değişken mertebeli

formulasyonları içeren kullanıcı malzeme alt programları (UMAT) geliştirilmiştir.

Önerilen yaklaşımın ek doğrulaması, temassız gerinim ölçer cihazlarla donatılmış

çekme testi makinesinden elde edilen veriler kullanılarak gerçekleştirilmiştir. Ayrıca,

kullanıcı malzeme alt programının etkinliği, simülasyon sonuçlarının deneysel veri-

lerle karşılaştırılmasıyla incelenmiş, böylece önerilen yöntemlerin güvenilirliği sağ-

lanmıştır.

Anahtar Kelimeler: Viskoelastisite, Kesirli Türev, Değişken Mertebe
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CHAPTER 1

INTRODUCTION

Deformation of viscoelastic materials is path-dependent, i.e., non-conservative. Mainly

most polymeric materials and biological tissues are viscoelastic under certain condi-

tions. Their response to load and deformation is dependent on the time and history

of deformation. Two major characteristics of viscoelastic materials are creep behav-

ior under constant stress and stress relaxation behavior under constant deformation.

The effects of these two basic responses can simultaneously be observed in any case

of loading and deformation. Given the expanding use of polymer technology such

as in [6], the characterization of viscoelastic materials has become essential, and an

accurate description of material behavior is crucial.

The mechanical behavior of viscoelastic materials depends on internal and external

variables. Since the viscoelastic materials exhibit memory dependence, their behav-

ior is influenced by the prior history of deformation and/or stress. Information about

the strain and stress states is stored in the complex and elongated polymer chains in

the form of residual stress and it corresponds to the internal variables. Internal vari-

ables are not the only variable affecting the viscoelastic response. The majority of

the polymeric materials are greatly affected by external disturbances. These distur-

bances include temperature fluctuations and changes in the ambient pH level which

can promote chemical reactions that affect the mechanical behavior of the material.

1.1 Research Questions and Approach

In this thesis, the mechanical behavior of viscoelastic materials is modeled using a

fractional viscoelasticity approach. Specifically, the primary research question ad-
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dressed is how to effectively model and determine the mechanical properties of vis-

coelastic materials. To answer this question, the study encompasses three main com-

ponents: the theoretical derivation of the mathematical model for the viscoelastic ma-

terials, the experimental determination of fractional viscoelasticity parameters, and

the development of a user material subroutine in the Abaqus software, which is the

well-known finite element software in the engineering [7]. Together, these compo-

nents aim to provide a comprehensive framework for capturing and analyzing the

fractional viscoelastic behavior of materials.

1.2 Structure of the Thesis

The chapters that comprise this thesis are as follows: In Chapter 2, the available lit-

erature is presented. Chapter 3 describes the fractional viscoelastic material model

for the quasi-static loading. The methods used in Chapter 4 to ascertain the mate-

rial parameters are presented. The developed concepts are simulated in a commercial

finite element software by implementing the developed user material subroutine in

Chapter 5, and the experimental studies to obtain the fractional viscoelastic material

parameters are presented in Chapter 6. In Chapter 7, a detailed discussion of the find-

ings and presentation of the core results is provided. Also, a comprehensive analysis

of the implications of these results is provided.
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CHAPTER 2

LITERATURE REVIEW

In this section, it is aimed to present an overview of studies on the fractional vis-

coelastic behavior of materials. The studies on the non-integer constant-order and

variable-order viscoelastic models are visited. We do not limit the scope of this work

to a specific class of viscoelastic materials. Yet, a class of materials obeying the

fractional-order viscoelastic constitutive law or variable-order fractional viscoelastic-

ity is examined in this study. Therefore the present chapter aims to deliver a broader

view of the field.

Many real materials do not follow the same load-deformation path when they are

loaded and unloaded. The extent of the difference between the two paths is called

hysteresis which tells the energy recovered during the material restoring is less than

the energy used during deforming. The materials showing this path-dependent behav-

ior are called viscoelastic materials. Due to the intricate sub-continuum anisotropy of

materials, viscoelastic behavior is prominently observed in biological tissues, poly-

mers, concrete, asphalt mixtures, and the Earth’s crust. The path dependence adds

unique vibration damping property to polymeric materials with considerably low spe-

cific weight. It makes also them good candidates for biomechanical applications.

The two basic responses of a viscoelastic material are relaxation and creep. The

earliest efforts to model these behaviors generally depend on the utilization of lin-

ear springs and dashpots and their various series or parallel arranged combinations.

The simplest viscoelastic material models built with the rheological element are the

Maxwell fluid [8], the Kelvin solid [9], and Zener’s standard linear solid models [10].

Since these models are constructed upon basic ideal mechanical elements, i.e., springs

and dashpots, the constitutive models include the integer-order derivatives of stress
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or strain. These models only consider the stress and strain as a function of time.

Therefore, these models and their variations constitute linear viscoelastic behavior.

Constitutive equations extracted from the utilization of spring–dashpot elements in-

corporate the ordinary differential equations. Mainardi and Spada [11] presented the

formulation of the classical mechanical viscoelastic model and the fractional coun-

terparts. To capture a more realistic behavior, the number of rheological elements

used to construct the constitutive behavior should be increased [12]. However, com-

plex rheological models that involve an increased number of parameters complicate

the experimental calibration of the necessary material properties. Specifically, as the

complexity of the model increases, so does the number of tests required to determine

the material properties of each mechanical element [13, 14]. On the contrary, the frac-

tional modeling requires less number of parameters to be tuned. Fractional calculus is

a powerful tool for modeling viscoelastic phenomena requiring a considerably small

number of parameters. Therefore, the fractional modeling of viscoelastic behavior

simplifies the constitutive model with relatively fewer material parameters therein.

Sasso et al. [15] experimentally showed the superiority of the fractional model over

the generalized Maxwell and generalized Voigt models under small deformations of

rubber and polypropylene.

Furthermore, it has been well-established that real materials exhibit behavior that de-

viates from the exponential decay which is typical of solutions in linear viscoelastic-

ity, instead displaying power-law responses. This deviation is captured by non-integer

differential equations, as experimentally demonstrated by Nutting [16]. The ability of

fractional calculus to model this non-exponential decay behavior is particularly ad-

vantageous, as it more accurately reflects the complex viscoelastic characteristics of

real materials, thus providing a more comprehensive framework for capturing mate-

rial responses under various loading conditions.

There are numerous works on harmonic loading problems, frequency response, and

vibration-damping studies of the viscoelastic materials in the literature. In this study,

we keep the harmonic loading problems out of the scope and limit our effort to capture

viscoelastic behavior under constant rate mechanical loading. Therefore, the studies

concerning frequency domain analysis and harmonic problems are almost untouched
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in this study.

2.1 Overview of the Methods Employed to Model Viscoelasticity

In this section, we will deliver a short introduction to the classical methods and inte-

gral methods in the viscoelastic modeling.

There are several methods proposed to define viscoelastic behavior. The validity of

such methods is generally restricted to very narrow conditions. The classical vis-

coelastic method employs rheological elements, springs, and dashpots, and investi-

gates their effect on the material response. A more analytical method is the integral

method which introduces a convolution product of stress or strain function with a

properly defined kernel function. In such a method, a proper definition of the kernel

plays a crucial role in the stress-strain relationship [17, 18, 19, 20].

Early contributors mainly focused on the linear viscoelastic behavior, which was de-

veloped using the simple rheological elements, Hookean linear spring, and Newtonian

linear viscous dashpot, and their series, parallel, or other combinations are utilized.

For detailed analysis and mathematical background of the classical viscoelastic mod-

els, the reader may refer to landmark books of Flügge [9] and Findley [21] on the

classical rheological viscoelasticity. Some of the most commonly employed models

are the Maxwell model, the Kelvin-Voigt model, Zener’s model, the standard lin-

ear elastic solid model, Burger’s model, and the generalized Maxwell model. The

drawbacks of the integer order classical rheological models are discussed by Di Paola

et al. [22, 23]. The relaxation and creep tests show that integer-order models can-

not precisely describe the creep and relaxation phenomenon for the basic viscoelastic

models. In such models, the stress tends to decrease to zero when the time is extended

to infinity under the constant deformation which is contrary to numerous experimen-

tal data. Irrespective of how many elementary spring dashpot elements have been

used, the kernel of the hereditary integral is always an exponential function. From

the above properties of classical viscoelastic models, the conclusion can be drawn

that they could be suitable only for a short period of loading with considerable in-

accuracy. The kernel function in terms of a power-law growth/decay function can
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better portray the realistic creep/relaxation behavior as Nutting [16] and Gemant [24]

suggested.

Ingman et al. [25] further draw the attention of the researchers to one of the drawbacks

of modeling the viscoelasticity with classical rheological tools. That is the material

evolution cannot be captured by such a method since the rheological elements do not

allow the material change but only allow a load-deformation state.

Given the limitations of classical viscoelastic models, particularly their inability to ac-

curately capture long-term material behavior and evolution, more advanced method-

ologies are required. One such approach is the hereditary (convolution) integral

method, which offers a more nuanced framework for modeling viscoelastic behav-

ior.

2.1.1 Hereditary (Convolution) Integral Method

Volterra introduced the hereditary integral method in the early 1900s as a branch of

linear hereditary viscoelasticity [26] by adopting integral equations. In linear vis-

coelasticity, the stress and strain are directly related to the time variable. One of the

notable advantages of the convolution integral method is the flexibility in selecting the

kernel function. A properly chosen kernel function enables the modeling of material

evolution and enhances accuracy in predicting long-term behavior.

Pipkin et al. [27] extended the study of viscoelasticity to the nonlinear regime using

a series integral representation. Unlike linear viscoelasticity, which considers relax-

ation and creep functions as dependent only on time, their approach incorporated the

entire deformation or loading history of the material.

The hereditary integral method, based on the Boltzmann superposition principle, ana-

lytically relates stress and strain by incorporating the complete loading or deformation

history of the material. Essentially, the Boltzmann superposition principle introduces

a memory effect in the stress-strain relationship. This method utilizes a singular ker-

nel function convolved with an independent state variable, such as stress or strain

history [28]. A suitable choice of the kernel function can transform the hereditary

integral into a fractional differential operator [23]. The general form of the hereditary
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Figure 2.1: Boltzmann Superposition Principle

integral is given by:

Stress =
∫ t

0

(Relaxation Term)× (history of deformation) · dτ. (2.1)

In linear viscoelasticity, the complete mechanical characterization of a material can

be obtained using the creep compliance function or the relaxation modulus. Notably,

the creep compliance function does not necessarily require specific spring or dashpot

models; instead, it can be directly derived from experimental data, providing a com-

prehensive description of material behavior. The foundation of linear viscoelasticity

can be explained as follows.

For a uniaxial loading case, the strain resulting from an initial constant step load, σ0,

is given by ε(t = [0+, τ ]) = σ0C(t), where C(t) represents the creep function. If

an infinitesimally small incremental load ∆σ is applied at a later time, τ , the result-

ing strain is ε(t = [τ,∞]) = ∆σC(t − τ). This process is illustrated in Fig. 2.1.

Consequently, the total strain is then expressed as:

ε(t) = σ0C(t) + ∆σC(t− τ). (2.2)

The ability to add responses in this manner stems from the linearity of the material,

where the combined effect of multiple causes is equivalent to the sum of individual

effects. This principle is known as the Boltzmann Superposition Principle.

The summation of two loads can be generalized to an infinite number of infinitesimal
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loads, each of magnitude dσi. The total response is then given by:

ε(t) = σ0C(t) +
∞∑
i=1

dσiC(t− τi)

= σ0C(t) +

∫ t

0

C(t− τ)

(
dσ

dt

)
t=τ

dτ.

(2.3)

The integral in Eq. 2.3 is referred to as the hereditary integral. By following a similar

approach and utilizing the relaxation function R(t) and incremental strain ∆ε, the

stress function can be formulated as:

σ(t) = ε0R(t) +

∫ t

0

R(t− τ)

(
dε

dt

)
t=τ

dτ. (2.4)

The functions C(t) and R(t) appearing in Eqs. 2.3-2.4 represent the creep and relax-

ation functions, respectively. Assuming the material is initially stress- and strain-free,

the initial terms vanish. The fundamental relations of linear viscoelasticity are thus

given as:

σ(t) =

∫ t

0

R(t− τ)ε̇(τ)dτ, (2.5a)

ε(t) =

∫ t

0

C(t− τ)σ̇(τ)dτ. (2.5b)

The equation set above represents the convolution integral formulation of the vis-

coelastic constitutive model. The first terms inside the integral, which serve as kernel

functions, play a crucial role in viscoelastic modeling [29].

The kernels of the Eq. 2.5, creep and stress relaxation functions, are not entirely in-

dependent. Their relationship can be derived using the Laplace transform of Eq. 2.5.

The product of the creep and relaxation functions in the Laplace domain is expressed

as:

C̃(s)R̃(s) =
1

s2
. (2.6)

2.1.2 Fractional Viscoelasticity

The constitutive model based on simple rheological elements typically incorporates

ordinary derivatives (i.e., integer-order) of stress or strain. Therefore, the solutions of
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such governing equations yield stress-strain responses that are exponential functions

of time. However, experimental observations by Nutting [16] on viscoelastic ma-

terials revealed that their stress-strain relationships are better represented by power

functions of time rather than exponential functions. To capture intermediate modes

of creep or relaxation more accurately, an increased number of rheological elements

must be used in the model. This, however, introduces a significant limitation: the

physical properties of each added element must be determined experimentally, of-

ten requiring multiple experiments to accurately characterize the material response.

As the complexity of the model increases, the determination of necessary parameters

becomes increasingly challenging, potentially making the process impractical.

This limitation of integer-order models underscores the need for a more sophisti-

cated approach, specifically the incorporation of fractional derivatives. It is crucial

to emphasize that the concept of material memory cannot be adequately captured

by integer-order, local differential operators. Unlike ordinary derivatives, fractional

derivatives are non-local operators that depend not only on the value of the function

at a specific point and its immediate vicinity but also on the entire history of the

function [30]. This memory-dependent characteristic of fractional derivatives makes

them particularly well-suited for modeling time- and history-dependent phenomena,

such as creep and relaxation, which are commonly observed in viscoelastic materials.

As such, fractional derivatives offer a more comprehensive and accurate framework

for describing the stress-strain relationship in viscoelastic materials, effectively ad-

dressing the shortcomings of integer-order models by incorporating the full history of

material response.

2.2 Studies on Fractional Order Viscoelasticity

The idea of non-integer order calculus emerged from correspondence between Leib-

niz and L’Hôpital in 1695. The question was the foundation of the non-integer order

calculus: How should one take the half derivative of a function x? The answer of

Leibniz was as inspiring as the question itself: "... One day useful consequences will

be drawn".
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Following their perspective, numerous great scientists have contributed to the field of

non-integer order calculus, commonly known as fractional calculus. However, it was

not until the 1930s that fractional calculus began to be employed as a tool for solving

real-world problems rather than being regarded solely as an abstract mathematical

concept. To the best of our knowledge, the pioneering application of fractional cal-

culus to the study of viscoelastic behavior was introduced by Gemant [24], building

upon the earlier observations of Nutting [16]. Nutting proposed that the stress-strain

relationship for a viscoelastic material subjected to a constant stress should follow a

power-law behavior, formulated as

ε(t) = kσ0t
n, (2.7)

where k and n are material constants, and σ0 represents the applied constant stress.

However, a fundamental limitation of this formulation emerges as t→∞, leading to

an unbounded strain ε → ∞. This contradicts the observed behavior of most solid

continua, which exhibit finite deformation under sustained loading.

In real materials, deviations from purely linear elastic behavior are often observed,

particularly under prolonged loading or displacement. Prior to the advent of fractional

viscoelasticity, modeling such behavior was primarily based on two approaches: clas-

sical rheological models and the introduction of time effects within the linear stress-

strain relationship. The latter approach, grounded in the Boltzmann superposition

principle, inherently accounts for the history dependence of the material. That is, the

mechanical response of the material is influenced by its prior deformation history.

This approach introduces a time-dependent fading memory effect, characterized by

a suitable kernel function, leading to the hereditary integral formulation of Volterra

type:

ε(t) =

∫ t

0

C(t− τ)σ̇(τ)dτ, (2.8a)

σ(t) =

∫ t

0

R(t− τ)ε̇(τ)dτ. (2.8b)

The hereditary integrals in Eq. 2.8 are analogous to the fractional derivative when a
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power-law kernel function is selected.

The first known application of fractional calculus to mechanical problems was pro-

posed by Gemant in 1936 [24]. Gemant suggested that, contrary to previous beliefs,

experimental evidence indicates that viscoelastic materials such as rubber and poly-

mers obey a power-law decay rather than an exponential decay. Scott Blair et al. [31]

argued that fractional calculus represents a powerful framework for modeling the vis-

coelastic behavior of real materials. Since viscoelastic materials exhibit mechanical

behavior that is intermediate between purely elastic and purely viscous responses,

they proposed that the order of differentiation should assume a value between 0 and

1. Based on this hypothesis, they introduced the first non-integer order differentiation

model for viscoelastic problems.

The development of fractional viscoelasticity has evolved through a series of signifi-

cant contributions that have progressively refined the understanding of complex ma-

terial behavior. Early work by Slonimsky [32] provided a theoretical investigation of

the relaxation process in polymeric molecules, demonstrating that a viscoelastic poly-

mer chain constitutes an intermediate state between purely elastic and purely viscous

behavior. This insight laid an early foundation for the field.

Building on these ideas, Smit and de Vries [1] introduced rheological models that

incorporated fractional derivatives. They successfully formulated a stress–strain re-

lationship for a fractional viscoelastic material subjected to a constant strain rate,

ε̇ = ϵ, and derived expressions for stress relaxation and creep in terms of non-integer

derivative orders:

σ(t) =
Eθα

Γ(2− α)
ϵ̇α ε1−α, (2.9a)

ε(t) =
σ0

EθαΓ(1 + α)
tα, (2.9b)

where Γ(•) is the gamma function, α is the fractional order, and E and θ denote

the elastic and viscous material parameters, respectively. Under constant stress σ0,

the creep function obtained in Eq. 2.9a replicates the power-law form originally sug-

gested by Nutting. However, experiments on the nylon yarns revealed that the linear

non-integer order model could not capture the entire deformation spectrum; the frac-

tional order was observed to depend not only on time but also implicitly on the de-
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Figure 2.2: Fitted Fractional Order to Nylon Yarns by Smit and de Vries [1]

formation. Figure 2.2 (adapted from [1, Fig. 8a]) illustrates this dependency, thereby

establishing Smit and de Vries as early pioneers of variable-order fractional viscoelas-

ticity.

Caputo and Mainardi [33] extended Zener’s standard linear solid model [10]—which

consists of a Maxwell arm connected in parallel with a Kelvin branch—by converting

the integer-order formulation to a fractional-order one. Their four-parameter model

is expressed as

σ(t) + a
dασ

dtα
= mε(t) + b

dαε

dtα
. (2.10)

This formulation permits the derivation of various material models by appropriately

adjusting the parameters a, b, m, and α. For example, setting a = m = 0 reduces the

model to the fractional Scott–Blair model, whereas choosing a = 0 or m = 0 yields

the fractional Voigt or fractional Maxwell models, respectively [26, 34]. In addition,

Caputo and Mainardi introduced an alternative fractional derivative definition, leading
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to the widely used Caputo-type fractional derivative operator:

CDf(t) =
1

Γ(1− α)

∫ t

0

f (n)(τ)

(t− τ)α
dτ, 0 < α < 1, n = ⌈α⌉, (2.11)

where the prescript, CD•, denotes the Caputo type derivative.

Subsequent work by Bagley and Torvik [35] generalized the standard linear solid

model further by proposing a five-parameter viscoelastic model. They reformulated

the model in a general form:

σ(t) +
M∑

m=1

bmD
β
m

[
σ(t)

]
= E0ϵ(t) +

N∑
n=1

EnD
α
n

[
ϵ(t)
]
, (2.12)

noting that higher-order derivatives are not required since a first-order approximation

sufficiently portrays the mechanical properties of many viscoelastic materials. Under

the condition that α and β are equal—a requirement proven by Heymans et al. [36]

based on thermodynamic admissibility—the model reduces to a four-parameter form

with parameters b, E0, E1, and α [37].

Lion et al. [38] further investigated the thermodynamical properties of various frac-

tional viscoelastic constitutive models, studying the Clausius–Duhem inequality in

three-dimensional formulations. Ezzat et al. [39] developed a coupled fractional

thermo-viscoelastic constitutive model that incorporates a point heat source. This

model is based on a governing equation that includes both stress relaxation and ther-

mal relaxation terms, following the formulation of Christensen [8]:

σij =

∫ t

0

Rijkl(t− τ)
∂εkl
∂τ

dτ −
∫ t

0

γij(t− τ)
∂θ

∂τ
dτ. (2.13)

Subsequently, Ezzat et al. [40] developed a model in which stress relaxation time

and thermal relaxation time are treated separately using a Rabotnov-type constitutive

equation. The resulting stress–strain relationship is expressed as

σij = R̂β

(
εij −

e

3
δij

)
+ R̂α

(
e− 3αT T̂

)
δij, (2.14)

where R̂β represents the structural relaxation function, R̂α denotes the thermal re-

laxation function, e = εii is the volumetric strain, αT is the coefficient of thermal

expansion, and T̂ is a function that characterizes the thermal difference relative to a

reference temperature.
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Some researchers have examined the interconnection between linear viscoelasticity

and fractional viscoelasticity. For instance, the physical basis of fractional models

has been linked to hierarchical arrangements of springs and dashpots. This connection

is illustrated by the work of Schiessel et al. [12, 41] and Heymans et al. [42]. They

demonstrated the physical connection between fractional modeling and hierarchically

arranged ladder or tree models composed of springs and dashpots. In such viscoelastic

models, an infinite number of parallel spring-dashpot branches ultimately converge to

a formulation based on fractional calculus.

Other noteworthy contributions include the unification of n–fold integration with

integer-order numerical differentiation using strip matrices as proposed by Podlubny

[43]. These studies underscore the relevance of fractional models in capturing com-

plex mechanical behavior.

Koeller also [19] established a link between linear viscoelasticity and fractional cal-

culus by starting from Volterra’s integral equation for materials with memory. In his

work, the creep and relaxation functions are expressed in terms of the Mittag–Leffler

function, and the idea of substituting dashpot elements with spring–pot elements in

classical models was introduced. Koeller further advanced the field by proposing a

tensor representation of stress and strain based on the Riesz representation. Sun et

al. [44] compared the memory properties of constant- and variable-order models,

concluding that while integer-order models may suffice for systems with short-time

memory, constant-order fractional models are required to capture long-term memory

effects. They also noted that an inappropriately chosen trigonometric order function

may yield unrealistic system responses.

Su et al. [45] adopted using transfer function idea in the fractional viscoelastic mod-

els. The authors demonstrate that generalized fractional models can be constructed

by integrating two selected viscoelastic models, thereby facilitating the development

of models with fewer parameters. This approach enhances the flexibility and effi-

ciency of viscoelastic modeling. The proposed methodology is validated through the

application of the transfer function to experimental data from various materials, con-

firming its effectiveness in capturing complex viscoelastic behaviors. Furthermore,

the study establishes a clear connection between the transfer function and viscoelas-
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tic responses, providing a foundation for future research aimed at refining modeling

techniques and expanding their applicability to a broader range of materials. They

suggested that the method is suitable for time-varying viscosity fluids such as printer

ink, and hydrogenated castor oil. Su et al. [46] proposed an atlas for viscoelastic

models. The atlas shown in Fig. 2.3 may be quite guiding on how to start modeling

the viscoelastic materials.
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Figure 2.3: An Atlas for Viscoelastic Modeling

These advances provide a natural transition from the classical viscoelastic formula-

tions to the variable order models that capture evolving material states under load. In

this context, researchers have begun linking the fractional order directly to material

response.

Samko & Ross [47] extended the fractional constant order problems to the variable

order in 1993. Thus the variable-order fractional calculus has emerged from their

study. Generally speaking, the fractional derivative order can be a function of time,
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space, or both [48, 49]. Furthermore, some common differentiation and integration

properties, i.e., semi-group property, may no longer hold if the fractional order be-

comes a function rather than a constant number [47]. This property further compli-

cates the numerical handling of the problems. The variable-order fractional calculus

is the direct extension of the constant-order fractional calculus. They also showed the

relation between the Riemann-Liouville and Marchaud-type variable-order fractional

derivatives,

RL
0D

β(t)
t f(t) =

1

Γ(1− β(t))

d

dt

∫ t

0

(t− τ)−β(t)f(τ)dτ, (2.15)

M
0Dβ(t)

t f(t) =
f(t)

Γ(1− β(t))tβ(t)
+

β(t)

Γ(1− β(t))

∫ t

0

f(t)− f(τ)

(t− τ)1+β(t)
dτ, (2.16)

RL
0D

β(t)f(t) = M
0Dt

β(t)f(t) +
β′(t)

Γ(1− β(t)

∫ t

0

f(τ) ln (t− τ)

(t− τ)β(t)
dτ. (2.17)

Di Paola et al. [50] provided the discretization of the Scott-Blair constitutive model

by the Grünwald-Letkinov method in the matrix form of the stresses and strains.

The same method was also employed by Podlubny [43]. The stress-strain relation is

presented by,

σ(t) = Eα(t)(
C
0D

α(t)
t ε)(t), (2.18)

which is then written in two alternative forms,

σ(t) =

∫ t

0

Eα(t)

Γ(1− α(t))
(t− τ)−α(t)ε̇(τ)dτ, (2.19a)

σ(t) =

∫ t

0

Eα(τ)

Γ(1− α(τ))
(t− τ)−α(τ)ε̇(τ)dτ. (2.19b)

It is clear from Eq. 2.19, that the material parameter Eα and derivative order α are

expressed as a function of integration variable τ and time variable. They presented a

step-by-step approach to predict the response of variable-order and material parame-

ters of viscoelastic PET.

A novel approach to the variable fractional order viscoelastic models was presented

by Ingman et al. [25], who defined the fractional order parameter as a state function,

S(t). This dynamic order, expressed as

σ(t) = Dα(S(t))ε(t), (2.20)
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reflects the variable interplay between elastic and viscous effects during loading.

Their work on modeling the contact problem of a hard spherical object indenting

a viscoelastic body demonstrated that the fractional order may be a power function of

time, for instance, α(t) = 1−2−t, with the corresponding contact radius and pressure

dependent on the applied load.

Lorenzo and Hartley [51] conceptualized the variable-order fractional operators in

the spirit of previous experimental studies that Lorenzo performed, which reveals the

dependence of the fractional order on the temperature, which was generally taken as

a constant number until that time. They offered three different fractional operators in

terms of the fractional order as,

C1 type : 0D
−α(t)
t f(t) =

∫ t

0

(t− τ)α(t)−1

Γ(α(t))
f(τ)dτ,

C2 type : 0D
−α(t)
t f(t) =

∫ t

0

(t− τ)α(τ)−1

Γ(α(τ))
f(τ)dτ,

C3 type : 0D
−α(t)
t f(t) =

∫ t

0

(t− τ)α(t−τ)−1

Γ(α(t− τ))
f(τ)dτ.

(2.21)

The order function is formed as α(t, τ), where t is the time variable and τ is the

integration variable. The main difference between the proposed variable order types

is the contribution of the history of the order itself. They used transfer blocks and

switching structures to indicate the differences between the models. From the above

models, the first model (C1) loses the memory of the order of the past steps, while

the second model (C2) remembers the past history of the order with a fading memory

of the distant past of the order as the time increases. The last model (C3) completely

remembers the past history of the order.

These theoretical studies, along with the establishment of a solid mathematical foun-

dation, significantly accelerated further research in the field. As a result, researchers

focused on analyzing the analytical solutions to both small and finite strain problems

incorporating the fractional viscoelastic material models.

To advance this motivation, Drapaca et al. [52] introduced continuum mechanics for-

mulations within the framework of fractional calculus. Similarly, Di Paola et al. [22]

derived an analytical expression for the fractional Euler-Bernoulli viscoelastic beam

under various loading conditions. Also Sumelka et al. [53, 54, 55] formulated frac-
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tional elasticity under the continuum mechanics framework in their three subsequent

papers. Sumelka and Blaszczyk [53] developed the fractional continua concept with

the generalization of the classical continuum approach.

Xiao et al. [56] extended the fractional viscoelastic Zener model to the fractional vis-

coplastic model. They developed a finite deformation fractional model to describe the

viscoplastic behavior of amorphous polymers near the glass transition temperature.

Adolfson and Enelund [57] studied the fractional viscoelastic model for large de-

formation. Starting from the deformation kinematics, they formulated the stress and

strain definitions by using Lagrangian kinematics. The elastic formulations were con-

verted to inelastic descriptions of stress and strains. They calculated the viscoelastic

response of two example cases. A tube is subjected to constant internal pressure, and

a viscoelastic bar is subjected to step-wise defined three different load levels. Their

investigations showed that the material response was highly affected by the viscoelas-

tic order.

Malesza et al. [58] developed an analytical solution to the differential equations con-

taining variable order operators. The numerical solutions of variable order differential

equations were compared with the analytical solutions developed using the switching

order scheme method. The transfer functions of the derivative order were either con-

nected by a series or parallel arrangement in various configurations. By the time the

switch between the order transfer functions was changed, thus, at each time step, the

derivative order took up a new value depending on the state of the switches.

The application of fractional calculus extends beyond quasi-static loading conditions.

Numerous studies in the literature have explored its effectiveness in dynamic load-

ing scenarios, demonstrating its broad applicability in modeling complex mechanical

behavior. For example, several researchers have investigated fractional-order mod-

els to describe the response of materials subjected to oscillatory, impact, and other

time-dependent loading conditions. To illustrate this, we cite several notable works

here.

Makris et al. [59] used a two-parameter fractional rheological model by converting

the Maxwell and Kelvin-Voigt model using spring–pot elements. They allowed the
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derivative of the fractional element to change between (0,2). At the limit values, the

Scott-Blair element (spring–pot) behaves like either a spring for the case of α = 0

or an inerter (for vibration isolation purposes) for the case of α = 2. This property

allows to capture of the inertial effects alone. We remark that in such a case, a unit

analysis in the constitutive equation is needed. It is physically unclear what material

actually represents the behavior modeled in this study.

Eldred et al. [60] developed a mathematical model for a viscoelastic bar subjected to

a sinusoidal axial load. They solved the problem numerically using a three-parameter

Kelvin–Voigt model and obtained the numerical solution by adopting the Grünwald

finite difference scheme proposed by Oldham and Spanier [61]. In addition, they

compared the computational performance of the Grünwald finite difference scheme

with that of a scheme derived from the Riemann–Liouville fractional derivative defi-

nition.

2.2.1 Applications in the Field of Finite Element Method

Building upon these theoretical advancements, fractional viscoelasticity has also been

incorporated into finite element (FE) formulations and their applications to analyze

complex structures. In this context, various studies have explored the implementation

of fractional constitutive models within the FE framework to better capture the time-

dependent behavior of viscoelastic materials.

Wei and Shimizu [62] studied the time-domain FE formulation of a viscoelastic con-

tinuum considering the structural dynamics. The Riemann-Liouville fractional op-

erator was considered as a special case of Stieltjes convolution in their study. They

constructed the FE model based on the fractional Kelvin-Voigt model by treating the

elastic volumetric deformation and viscoelastic volumetric deformation cases sepa-

rately.

From a numerical standpoint, Eldred et al. [60] modeled a viscoelastic bar under sinu-

soidal axial load using a three-parameter Kelvin–Voigt model. They employed Grün-

wald finite difference scheme [61] proposed by Oldham and Spanier. They compared

its performance with schemes based on the Riemann–Liouville definition.
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Schmidt and Gaul [63] extracted the finite element formulation for Delrin (polyacetal)

material converting the integer order 3-parameter model to the fractional form for the

dynamic loading cases. They demonstrated that fractional modeling provides a better

fit with the experimental results obtained in the frequency domain.

The torsional deformation of viscoelastic beams was also studied by Colinas-Armijo

et al. [64]. The labeled line elementless method (LEM) was used to eliminate the

requirement of discretization of the domain as an alternative to the boundary element

method (BEM) and finite element method (FEM). The analytical formulation for the

fractional viscoelastic beams was presented in their work.

A fractional viscoelastic Timoshenko beam under static load was modeled by Pirrotta

et al. [65]. The beam material was taken as a single fractional spring–pot element.

The numerical solution for the time response of deformation was developed. Sumelka

et al. [66] studied the fractional Euler-Bernoulli beams, which find a significant area

of applications in micro and nano electromechanical (MEMS) devices. The contin-

uum mechanics approach was adapted to the fractional viscoelastic beam deflection

problem.

A FEM application of fractional viscoelasticity was made by Alotta et al. [67]. They

present a brief formulation of the fractional viscoelastic creep and stress relaxation

behavior of a fractional Kelvin-Voigt model. They implemented their formulation to

the UMAT subroutine in commercial FEA code Abaqus [7]. They also showed the

correspondence between the analytical and FEA results.

Alotta et al. [68] split the volumetric and deviatoric contributions of the relaxation

term by additive decomposition of the relaxation modulus,

Rijkl(t) =

(
KR(t)−

2

3
GR(t)

)
δijδkh +GR(t)(δikδjh + δihδjk), (2.22)

where GR(t) is the deviatoric relaxation function and KR(t) is the volumetric relax-

ation functions, respectively. Both relaxation functions were defined as power-law

functions with different parameters. The key aspect of their work is that when the

relaxation modulus is decomposed to the volumetric and deviatoric components, the

Poisson’s ratio can be expressed as a time-dependent function. From the expressions

of the stress and strain tensors, they obtained the viscoelastic Poisson’s ratio. They
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have reported that when directional anisotropy holds for the material single relax-

ation/creep function does not suffice. Therefore multiple Poisson’s ratio definitions

are always required for the anisotropic materials. An important feature of the vis-

coelastic Poisson’s ratio is that it exhibits different behavior under creep and relax-

ation tests.

Alotta et al. [69] stated that the significance of fractional viscoelasticity over the other

methods employed in the viscoelastic modeling is reducing the mechanical parame-

ters. They also reported that the mechanical model of the spring–pot element could

be obtained through the classical viscoelasticity by an infinite sequence of elements

connected in a proper sequence with the serial or parallel arrangement [70]. The

authors defined the relaxation modulus composed of volumetric and deviatoric con-

tributions, which the same authors developed previously [68, 71]. The authors outline

a remarkable feature of fractional viscoelasticity. The spring–pot element alone can-

not precisely capture the viscoelastic response of different materials. For example,

when the shear creep of some soils is considered, the FKV model should be em-

ployed. Certain types of polyethylene, such as ultra-high molecular weight polyethy-

lene (UHMWPE), are effectively modeled using the fractional model (FM), while

biological tissues are best represented by the fractional-standard linear solid (FSLS)

model. They discretized the fractional derivative using the Grünwald-Letkinov pro-

cedure. They developed a UMAT subroutine and its formulation for the fractional

viscoelastic models for 3D FEA. Alotta et al. [72] estimated the UHMWPE wear rate

used in the osteoarthritic prosthesis application using the fractional-order model. The

wear predicted by the fractional viscoelastic model was found almost tenfold higher

than the one estimated by the elastoplastic wear model.

After reviewing the theoretical foundations of fractional viscoelasticity, it becomes

imperative to examine the experimental studies that both validate and extend these

models. Experimental investigations offer invaluable insights into the practical be-

havior of viscoelastic materials and serve to bridge the gap between theoretical pre-

dictions and real-world applications. In the following discussion, key experimental

studies are reviewed that demonstrate the applicability of the theoretical models and

open new avenues for future research in the field.
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2.2.2 Experimental Studies in the Literature

Advancements in the theoretical material models have paved the way for more com-

prehensive investigations into material behavior. As a result, researchers have in-

creasingly focused on exploring the applicability of fractional-order viscoelasticity to

a wide range of materials. This research spans diverse fields, encompassing materials

that exhibit complex mechanical responses. Notably, studies have been conducted on

biological tissues, where viscoelastic properties play a crucial role in physiological

functions. Similarly, investigations have extended to synthetic viscoelastic materials

such as polymeric materials, adhesives, and even geological materials, including the

Earth’s crust. These developments highlight the growing significance of fractional-

order viscoelasticity in understanding the mechanical behavior of various natural and

engineered materials.

Glöckle et al. [73] studied the relaxation characteristics of protein chains which are

modeled with fractional differential equations based on Zener’s model. The fractional

order of differentiation shows an apparent sensitivity to the thermal disturbances [74].

In another study [75] of the same authors the relaxation function of the fractional

differential equation presented in H-fox functions.

Makris [76] contributed by examining the constitutive behavior of fractional vis-

coelastic models and by introducing viscoelastic compressibility, notably expressing

the viscoelastic Poisson function via Mittag–Leffler functions.

Heymans et al. [36] demonstrated the effectiveness of the Zener model containing

a fractional order damping element (spring–pot) for tensile loading of amorphous

polycarbonate at various temperatures. According to the authors, Zener’s model can

better describe the rubbery glassy transition of a viscoelastic material. They demon-

strated the contributions of the strain softening (rejuvenation) and temperature to the

non-linear fractional viscoelastic model.

Ramirez and Coimbra [77] studied the constitutive relation for linear viscoelastic

materials with the help of variable-order fractional calculus. A critical point under-

lined in their study is that unlike the integer-order models or constant-order models,

variable-order elements eliminate the need for more elements in series or parallel
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combinations. The reason for that is that the variation freedom of the derivative order

helps to capture any intermediate equivalent value between 0 and 1. They developed

a statistical mechanical model under the constant strain rate compression deformation

of composite and epoxy resins. However, it is important to note that the fractional-

order parameter is considered as a function of dimensionless time, specifically t̄·ln(t̄).
This assumption becomes unrealistic as the order approaches zero, making it incon-

sistent with the actual physical phenomena.

Di Paola et al. [23] studied the two polymers designated as Aerstop CN20 and Aer-

stop VX5 for their stress relaxation and creep behavior. They used a two-parameter

fractional-order model, which is derived from the well-known Boltzmann stress su-

perposition principle. The material parameters, the fractional order, and the relax-

ation term are determined from the fit procedure. The specimens are loaded under

isothermal conditions until their 10 percent and 30 percent ultimate tensile strength.

The creep and stress relaxation responses are sufficiently well estimated by the two-

parameter fractional order viscoelastic model.

Müller et al. [2] experimentally investigated the viscoelastic properties of polypropy-

lene. They developed an experimental procedure including monotonic loading, cyclic

loading, and relaxation tests as shown in the Figs. 2.4 and 2.5.

Figure 2.4: Monotonic Loading and Relaxation Tests [2]

They performed the experimental studies at three strain rate levels to reveal the strain

rate dependence of the material. All the experiments were done at a constant temper-

ature of 296 K, slightly above the glass transition temperature of polypropylene, 271

K. They modeled the constitutive behavior of the PP with fractional standard linear
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Figure 2.5: Cyclic Loading Tests [2]

Figure 2.6: Interconversion of Generalized Maxwell Model to Fractional SLS Model

[2]

solid model by converting the Weichert model [78]. To capture the long-term and

short-term relaxation response of the material, a second fractional Maxwell arm was

attached to the fractional SLS model as shown in Fig. 2.6. With this modification, the

four-parameter viscoelastic model was extended to the six-parameter one. The devel-

oped nonlinear viscoelastic model was adapted to FE code Marc with a generalization

to multi-dimension.

The thermomechanical behavior of amorphous thermoplastics was described by Lei

et al. [3]. They developed two Maxwell models as shown in Fig. 2.7 having two

parallel fractional elements to capture the glassy and the rubbery regimes at once

for various thermoplastics such as PMMA, PMA, and PPP near and above the glass
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Figure 2.7: Lei’s Fractional Model [3]

transition temperature under the small strain setting. They stated that the fractional

Zener model can better describe the relaxation modulus of thermosetting polymers.

They also estimated the storage and loss modulus of the same materials with the

proposed model. The stress-strain relationship is then expressed as,

σ = Egϵeg︸ ︷︷ ︸
σg

+Erϵer︸ ︷︷ ︸
σr

, (2.23)

where, Eg, Er denote the glassy and rubbery moduli, respectively. Subscripts •r and

•r, denote the rubbery and glassy properties, respectively.

The stress relaxation behavior of glassy polymers was studied by Xiang et al. [79].

They developed a constitutive model based on Marchaud’s fractional derivative defi-

nition,

MDα(t)
c f(t) =

f(t)

Γ(1− α(t))(t− c)α(t)
+

α(t)

Γ(1− α(t))

∫ t

c

f(t)− f(τ)

(t− τ)1+α(t)
dτ. (2.24)

PETG specimens were subjected to compressive strains of ε = 0.15, 0.35, and 0.60

at 40, 55, and 70 ◦C temperatures, all of which below the glass transition temperature

of Tg = 80 ◦C after 30 minutes heat treatment above the glass transition temper-

ature. Deformations for each specimen were kept constant for 30 minutes. They

adopted four different definitions for variable fractional order; piecewise constant,

linear, trigonometric, and exponential functions of time. The variable order models
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are detailed in Eq. 2.25:

V 1 : α(t) =

a, t ∈ [0, 1],

b, t ∈ (1, 30],

V 2 : α(t) = at+ b,

V 3 : α(t) = a · sin(bt) + c · cos(bt),

V 4 : α(t) = a · ebt.

(2.25)

Under the constant temperature, the order function was best approximated by the V2

model since temperature increases the polymer chain mobility. Therefore, the stress-

strain relationship for their model was expressed as

σ(t) = Eθat+b ε0t
−at−b

Γ(1− at− b)
. (2.26)

The developed variable order constitutive model and experimental study were com-

pared with Sweeney’s [80], Fancy’s [81], and Nutting’s [16] models. The variable

order constitutive model can better estimate the stress relaxation behavior under dif-

ferent strain levels and temperatures.

Experimental studies have primarily been conducted on synthetic materials, limiting

the scope of investigation. However, biological tissues have also become a significant

focus in fractional viscoelasticity research. Due to their complex mechanical prop-

erties, including time-dependent deformation and stress relaxation, fractional-order

models have been increasingly applied to better understand their behavior.

The quasilinear viscoelastic (QLV) model was proposed by Fung [82]. QLV as a

special case of fully nonlinear viscoelastic theory [83]. Although the rheological vis-

coelastic models and Fung’s QLV model were widely used in experimental studies

until 2005, Doehring et al. [84] may be the first who apply the fractional calculus on

biological tissues successfully. They applied fractional calculus to model heart valve

tissue for 1D uniaxial tension loading cases. They used both QLV theory and frac-

tional order viscoelasticity and compared results for the same tissue. The FOV model

was found better at modeling the aortic heart valve than the QLV model according to

experimental evidence. Fung’s QLV model is described by

σ(t) =

∫ t

−∞
R(t− τ)

∂σe(ε)

∂ε
dε(τ), (2.27)
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where σe(ε) is defined as the instantaneous elastic response and R(t) is the reduced

relaxation function. Here, a proper assumption for the relaxation function plays a

crucial role in the correct estimation of the stress function. Craiem et al. [85] assumed

the kernel function appearing in Fung’s QLV model in the form of a power function

as follows,

R(t) = C1 + C2 · t−α. (2.28)

Freed and Diethelm [86, 87] investigated the human heel pad using fractional vis-

coelasticity in their two consecutive works. They showed that fractional calculus has

excellent potential for modeling the relaxation and creep behavior of isotropic soft

tissue.

Craiem et al. [85] and Craiem et al. [88] studied arterial viscoelasticity in two differ-

ent works. They reported that the QLV modeling can successfully display the arterial

mechanics. However, the FOV modeling is reportedly superior to the integer-order

models and the QLV model in terms of prediction of actual material response. They

used the fractional order Kelvin-Voigt model and standard linear elastic solid model

with fractional spring–pot element to model the stress relaxation of the human aorta.

Grahovac and Zigic [89] modeled the muscle force relaxation of the hamstring mus-

cle group based on Zener’s model. The muscle extension was characterized by ramp

extension in 16 seconds with a holding time of 100 seconds. The fractional differen-

tial equation was solved by Laplace transform. Grünwald’s finite difference method

was adopted to handle the fractional differentiation numerically. The experimental

data was approximated by the seven-term exponential Prony series. The fractional

model showed better confidence with the experimental results.

Libertaux and Pascon [90] studied the test results of an unconfined brain tissue com-

pression from a previous work of others. They modeled the tissue with both convolution-

based hyperviscoelasticity and fractional differential viscoelasticity. The parameters

of the models are determined with stochastic optimization. The primary outcomes

of their study are as follows. The single Mittag-Leffler function does not suffice

to characterize the relaxation process of the brain tissue. However, adding another

Mittag-Leffler function with different characteristic time and order would burden the

computational speed. The fractional differential model is better at capturing the re-
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laxation process.

Meral et al. [91] studied two tissue-mimicking materials under harmonic loading and

compared the fractional and integer order viscoelastic models. Ramirez and Coimbra

[92] compared different definitions of variable order derivative operators for the dy-

namic properties of a viscoelastic oscillator. Rossikhin and Shitikova [93] presented

an extensive review study on the applications of fractional dynamic problems of solid

mechanics. In a most recent review study on the variable-order fractional operators

and some of their applications are presented by Patnaik et al. in [49].

An experimental investigation of postmortem brain tissue of an animal was performed

by Bentil and Dupaix [94]. They modeled the brain tissue by a fractional Zener vis-

coelastic constitutive model. They conducted unconfined compressive stress relax-

ation tests on the brain tissue with different postmortem ages at 1 mm/min and 5

mm/min deformation rates. One of the research questions in their work is whether

the fractional order can portray tissue degradation. They concluded that brain tissue

degradation can be related to stiffness constants of the fractional Zener model. To

that extent, they could not correlate tissue degeneration with postmortem age of the

tissue with the fractional order.

Petekkaya & Tönük [95] conducted an experimental investigation on the viscoelastic

properties of living human compound tissue. They measured the force-displacement

response of the forearm bulk soft tissue with a hemispherical indentor assuming the

isotropic tissue behavior. The constitutive behavior was modeled with a fractional

Zener model by Demirci & Tönük [96], and material parameters were extracted. The

accuracy of the model predictions for relaxation and creep behaviors was compared

with the solutions obtained using the Prony series. A better agreement was reported

in the case of fractional Zener-type viscoelastic modeling of the material behavior.

The viscoelastic properties of cancerous breast tissue are investigated by Carmichael

et al. [97]. Breast tissue cells isolated from the highly-invasive and non-invasive

stages of breast cancer were tested with an atomic force microscope at about 9±3mN

load, which corresponds to a 2 − 3 µm indentation of the corresponding cells. They

modeled the Hertz contact force both by the SLS model and the fractional Zener

model. The least-squares fitting procedure revealed that the fractional Zener model
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could reflect the actual force response better than the former when the human breast

cells are considered.

Dai et al. [98] compared experimental and numerical stress relaxation curve fit results

of a mammal lung. For the modeling of the lung tissue, the fractional standard linear

solid, standard linear solid, and generalized Maxwell models are utilized, and material

parameters are extracted. The stress relaxation experiments are performed with a

cylindrical indentor geometry. The fractional standard linear solid model was better

at modeling the stress relaxation behavior though it requires fewer parameters to be

determined.

The creep and relaxation behavior of the human knee ligaments and tendons (ham-

string and patellar) are investigated by Bologna et al. [99]. As a critical result pre-

sented by the authors is that the numerical values of fractional orders are different in

relaxation and creep modes of loading. This observation is commented as "relaxation

runs faster than creep".

Traver et al. [100] used linear elastic, Kelvin-Voigt, Zener’s standard linear elastic

model, and fractional Kelvin Voigt model to capture in-vivo flexural behavior of the

toenail plates for clinical purposes. Force relaxation and creep data of the twenty

subjects showed that fractional-order modeling is superior to the other models when

the root mean squared error (RMSE) value of the curve fit results is considered.

Fractional viscoelastic modeling further finds a good basis for most rock-based mate-

rials, earth crust geophysics, and soil-based materials such as clay. For instance, Peng

et al. [101] simulated the wellbore creep behavior, and Wu et al. [102] developed a

variable fractional order creep model for rock-based materials. Xu et al. [103] investi-

gated the creep behavior of soils. Han et al. [104] adopted a variable-order fractional

viscoelastic model based on the Scott-Blair model for the stress relaxation behavior

of rock. The order function and the mechanical parameters are determined through

analysis of the log-log stress-strain data. This approach involves fitting the model to

the experimental data by examining the relationship between stress and strain on a

logarithmic scale, which facilitates the accurate determination of the fractional order

function and relevant mechanical parameters. They proposed the order function to be
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an exponential decay function of the normalized function of strain as follows,

α(t) = e
−
ε(t)

ε0 , (2.29)

where ε0 is the normalization factor of strain, and ε(t) is the strain function.

They unveiled that the rock materials represent different material behaviors at differ-

ent deformation levels. The derivative order shifts its form at each deformation level,

making it a piece-wise varying order function. Wu et al. [105] studied the creep

behavior of the salt rock. They developed a short-memory approach to the problem.

The creep behavior of the salt rock was split into three stages, namely, transient creep,

steady creep, and accelerated creep. The model remembers only the strain in the cur-

rent stage of creep. They assumed the fractional-order α(t) is constant at every stage.

Also, they used the strain information at the previous stage. The parameters in the

viscoelastic constitutive model were obtained from curve fitting results by taking the

logarithm of strain and time data.

Xu and Jiang [106] studied the time-dependent creep behavior of polymer and rock.

The authors employed an interior-point algorithm for inverse identification of mate-

rial parameters contained in the fractional model, despite there being possible other

alternatives such as the Levenberg-Marquardt method, the genetic algorithm, and the

Bayesian method.

Bouras et al. [107] studied the non-linear creep behavior of concrete both under dif-

ferent constant temperatures and increasing temperatures based on the variable order

fractional viscoelastic models. They obtained curve fit expressions of the fractional

order in terms of temperature data. The model they developed showed a good agree-

ment with the experimental evidence, especially at elevated temperatures. However,

near room temperature, the model weakly displayed the exact behavior for different

concrete mixtures.

Fractional viscoelasticity serves as a versatile tool for modeling a wide range of ma-

terials, including adhesives, shape memory polymers, and propellants. Its ability to

capture complex time-dependent mechanical behavior makes it particularly useful for

materials that exhibit both elastic and viscous characteristics. By providing a more

accurate representation of material responses, fractional viscoelasticity has gained
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increasing attention in various engineering and scientific applications.

Li et al. [108] proposed a variable-order fractional viscoelasticity model for shape

memory polymers. The physical properties of such materials undergo a dramatic

shift under the effect of the internal structure changes. Such changes are always

triggered by an external stimulus such as light or temperature exposure. Based on

the fractional Zener model, they benefited from Lorenzo’s [51] C1 type of derivative

definition. Their material model consists only of time-fractional-order differential

equations. If the spatially non-homogeneity is considered and long-term spatial con-

tribution is sought, a partial fractional differential equation with a space-time frac-

tional differential operator would be employed as per their suggestion. They used

the Levenberg-Marquardt regularization method to find the variable order with an

iterative process.

Colinas-Armijo et al. [109] investigated epoxy resin subjected to random tempera-

ture changes. They employed the fractional Maxwell model and adopted the time-

temperature superposition principle. The experimental data were taken from the pre-

vious work of the first author. They obtained the material parameters, including the

fractional order in terms of the temperature. The fractional order was expressed as a

power function of the temperature, while the other material parameters were shown

as a linear function of temperature.

Esmonde and Holm [110] investigated the dynamic fractional viscoelastic proper-

ties of the two adhesive substances, cyanoacrylate adhesive, and methacrylate resin.

They adopted a method that assumes a change from a particular fractional rheologi-

cal model to another appropriate model during the curing process. For instance, the

Maxwell model is selected as a starting model of methacrylate at the beginning of

cure, the end of cure is modeled with the SLS model. The transition between the two

models is governed by a transition function formulated by the ratio of the final state

to the initial state.

Fang et al. [4] applied the fractional calculus to obtain the viscoelastic material be-

havior of the solid propellants used in solid rocket motors. Although the mechanical

behavior of the solid propellants is highly affected by side factors such as strain rate,

load type, temperature, humidity, and aging, they did not include these factors in their
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study. They proposed a generalized Maxwell model consisting of an equilibrium part

and a non-equilibrium part. The equilibrium part is represented by a linear spring.

The non-equilibrium part comprises two Maxwell branches connected in parallel,

one of which is used to model rubbery behavior. The other one is used to capture the

glassy behavior of the propellant; see Fig. 2.8.

Figure 2.8: Fang’s Model [4]

They obtained the dynamic material properties experimentally. The stress relaxation

and its fractional counterpart are compared with the seven-term Prony series solution.

Dynamic experiments revealed that the fractional model could accurately portray the

glass transition region and the stress relaxation behavior.

2.2.3 Parameter Estimation Studies in the Literature

Because the behavior of the viscoelastic material highly depends on the order func-

tion, a precise definition of the order is always a key characteristic. Tabatabaei et

al. [5] studied the order identification process in soft tissue. They adopted an adap-

tive method to determine the value of the fractional-order and other parameters in the

fractional-order viscoelastic material model. To test their algorithm they produced

synthetic data on the fractional order. Subsequently, Gaussian white noise was added

to the fractional order. Then, they tested their algorithm on the noisy fractional order

data. Fig. 2.9 illustrates the Gaussian noise added synthetically produced fractional

order data (dashed line) and the fractional order determined by their algorithm (con-

tinuous line).
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Figure 2.9: Gaussian White Noise Data on Fractional Order [5]

The developed method was experimentally verified with an indentation test apparatus

with collected force-displacement data. The measured strain and model estimate is

presented in Fig. 2.10.

The top of Fig. 2.10 shows the discrepancy between the measured and inversely

calculated strain response of the soft tissue, whereas the corresponding estimates for

the fractional order are shown at the bottom of Fig. 2.10.

Meng et al. [111] used variable-order fractional calculus to model the post-yield

phase of some ductile metallic materials and soil. They successfully showed that

the variable-order fractional modeling can simulate strain hardening and softening at

constant strain rates tension and compression tests. The derivative order is found to

be zero near the small strains, but it portrays a linear dependence on the strain level.

It is observed from the obtained results in [111], that the order function is triggered

when the deformation exceeds a certain level.

Meng et al. [112] formulated the variable order Scott-Blair model and its strain de-

pendence under a constant rate of deformation. The fractional order was assumed to
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Figure 2.10: Measured Strain (Top) and VO-Viscoelastic Model Estimates (Bottom)

[5]
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be linearly dependent on time and strain. The model parameters were extracted at dif-

ferent temperatures and strain rates for PC material. To eliminate the physical aging

and reset the thermal history, the specimens were held at 150 ◦C temperature for 30

min. The test temperatures are chosen between 20 ◦C and 140 ◦C. The specimens

were kept at the test temperature for 30 minutes prior to the experiment to ensure

thermal equilibrium. The compression tests were performed at two different strain

rates. The material parameters are extracted to simulate the strain hardening behavior

above the strain ε = 0.5.

Meng et al. [113] used a piece-wise definition for the variable fractional order for the

constitutive model of polymeric materials under uni-axial loading cases for constant

strain rates. They assumed the fractional order takes up a new value at each time

increment. The parameters, including the fractional order of the material described by

a spring–pot element (Scott-Blair model), were found from the curve fit of logarithmic

stress and logarithmic strain data. The method was tested with small and large strain

settings at low to mid strain rates under tension (Polyurea) and compression (PET).

The constant fractional-order model was not found effective for the specimens under

large deformation. However, under small deformations, the constant-order fractional

viscoelastic model captured the material behavior well enough. The experimental

evidence showed that the fractional order changes its behavior after a certain strain

level is reached for a particular material at different deformation speeds. The variable

fractional order from the applied strain is determined from the formulation presented

in their work. Meng et al. [114] also investigated the description of the fractional-

order amorphous glassy polymers under compressive strain. The function for the

variable order was proposed as a linear function of time. The fractional orders of

PETG and PMMA materials undergo three regimes during the deformations.

2.2.4 Numerical Studies in the Literature

Although many of the studies mentioned earlier primarily focus on strong numerical

solutions, this section is dedicated to exploring various numerical approaches.

The studies addressing the numerical aspects of fractional differential equations can

broadly be classified into three primary areas: (1) solving fractional differential equa-
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tions using various numerical methods, (2) efforts on optimizing numerical solvers

by efficiently managing memory properties and reducing computational costs, and

(3) determining the physical parameters of the fractional system.

One of the early contributions to numerical methods was made by Oldham and Spanier

[61], who introduced techniques for numerical differentiation and integration. Build-

ing upon this, Diethelm [115] developed an algorithm for solving fractional generic

differential equations of constant fractional orders, and later, Diethelm et al. [116]

extended this work by employing a predictor-corrector algorithm. This approach

generalized the Adams integrator, a method commonly used for solving first-order

problems numerically. In a similar vein, Adolfsson et al. [117] utilized an internal

variable formulation of stress. To manage the high computational cost associated with

the growing and accessing of stored data at each time step, and to reduce the memory

requirements needed for numerical computations, they introduced sparse quadrature.

Diethelm et al. [118] further contributed by presenting a variety of numerical algo-

rithms aimed at solving different fractional differential equations. Their work also in-

cluded a scheme for the computation of the Mittag-Leffler function and its derivatives.

Valerio and da Costa [119] provided numerical approximations for different variable-

order fractional derivatives, utilizing a fuzzy interference engine to approximate the

derivatives of functions with variable orders. Additionally, Li [120] proposed a highly

efficient method for numerically solving fractional differential equations, specifically

by analytically expressing Caputo derivatives through cubic B-spline wavelets, in

conjunction with a generalized wavelet collocation method.

In parallel, researchers have continually sought ways to reduce computational costs,

often focusing on optimizing memory usage. Several studies have addressed this chal-

lenge with innovative techniques. For instance, Podlubny [121] introduced the fixed

memory principle, which helps streamline memory usage. Similarly, Ford & Simp-

son [122] and Diethelm & Freed [123] adopted logarithmic memory, a technique that

further optimizes computational resources. Deng [124] proposed the short memory

method, which was later explored by Libertiaux [90]. More recently, Tavasani et

al. [125] applied shifted Chebyshev polynomials to solve the Caputo-Prabhakar-like

fractional derivative of varying order.
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In the same line of thought, El Hamidi & Tfayli [126] investigated the identification

of order in the fractional differential equations, while Beltempo et al. [127] focused

on the aging behavior of materials. They developed a numerical scheme for fractional

viscoelastic materials, which accounts for hereditary aging effects. Du & Liang [128]

introduced two new approximations for fractional derivatives of variable order, offer-

ing further improvements in computational accuracy. Similarly, Tavares et al. [129]

developed a numerical solution for variable-order fractional partial differential equa-

tions. Another notable contribution was made by Bhrawy et al. [130], who developed

a numerical algorithm for solving fractional differential equations involving variable-

order Caputo derivatives.

For more extensive theoretical analysis, the reader may refer to the comprehensive

works of Lai et al. [131] and Anastassiou et al. [132], which provide in-depth details

on numerical methods applied to constant and variable-order fractional differential

equations.

2.2.5 Review Studies

The first comprehensive review study on the field was published by Freed [28] under

NASA. The theory of fractional viscoelasticity, mathematical and numerical tools de-

veloped until their time included in their work. The formulations of the isotropic and

transversely isotropic viscoelastic models are presented. Surguladze [133] published

another review with a mathematics point of view, including certain applications on

the topic.

Samko [134] conducted a review study on the mathematical framework of variable-

order fractional modeling. Chen et al. [78] presented an overview study of the simple

rheological models and their formulations.

Comprehensive review studies by Freed [28] and Surguladze [133] summarized the

theoretical and numerical tools developed in the field, while Lorenzo and Hartley [51]

advanced the concept of variable-order fractional operators by relating the fractional

order to temperature variations.

References [135] and [136] present further details on the mathematical background
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of the theory, applications, and even more details. A recent review study is presented

by Bonfanti et al. [137] provided a summary table of studies concerning the studies

on the real materials. Also, they have provided benchmark material data for each of

the traditional and fractional models. Yang et al. [138] recently published a book

containing in-depth mathematical analysis. It also discusses the existing fractional

operators, their derivations, many features, and the theoretical basis of the field.

As a concluding remark for this section, several key insights can be drawn from the

literature survey:

• Most polymeric materials undergo significant changes in their properties once

the glass transition temperature is reached. As such, temperature change plays

a crucial role in variable fractional-order viscoelasticity.

• A noticeable gap in the literature exists regarding the characterization of fractional-

order behavior based on real experimental data.

• Variable-order fractional viscoelasticity shows great potential for accurately

capturing the mechanical behavior of viscoelastic materials, particularly by

considering both internal and external variables simultaneously.

• The application of the variable fractional-order viscoelasticity concept to com-

mercial finite element analysis software, specifically using user material sub-

routines, remains largely unexplored.

This study will specifically focus on the last three outcomes listed above. By delving

into these areas, we aim to provide a detailed analysis and deeper insights into their

implications for practical applications.

In the following chapters, we will address the material characterization, parameter es-

timation, and finite element analysis (FEA) applications of the proposed concepts.
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CHAPTER 3

MODELING OF THE VISCOELASTIC BEHAVIOR BY FRACTIONAL

CALCULUS

The general fractional viscoelastic model is Scott-Blair’s single spring-pot model.

The model represents an intermediate behavior between linear elastic solid and vis-

cous fluid. The variable fractional order model has the substantial property of contin-

uous adaptability from a purely linear elastic case to a purely viscous state and vice

versa. For such states the adaptation of the fractional order permits it may take up

values between 0 and 1 which could continuously change by internal and/or external

variables. The adaptation property inherent in the variable fractional-order viscoelas-

tic model significantly simplifies the formulation of the mechanical model. In con-

trast, a model with multiple rheological elements would typically require complex

configurations of springs and dashpots. Such configurations demand accurate esti-

mation of each individual parameter, which is much more challenging. The variable

fractional order viscoelastic model is superior in these aspects over classical rheolog-

ical and constant fractional order viscoelastic models.

The rheological model representing the constant fractional order spring-pot element

is illustrated by a square element, as shown in Fig. 3.1. This constitutive model in-

volves three material constants: E (elasticity constant), θ (viscous parameter), and α

(fractional order). In the literature, the fractional characteristic number Ef is com-

monly employed, which denotes the product of these three material parameters. To

denote the variability on the fractional order an arrow is put on the square element as

shown in Fig. 3.2.

The model itself is a single mechanical element capable of capturing the elastic and

viscous behavior at the same time. Similar to the rheological viscoelasticity, the use
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E

σ(t) = E
d0

dt0
ε(t)

Ef , α
α = 1α = 0

σ(t) = Ef
dα

dtα
ε(t)

η

σ(t) = η
d1

dt1
ε(t)

Figure 3.1: Fractional Spring-pot Element

of Scott-Blair’s spring-pot element can be used in combination with the linear elastic

springs and dashpots in series and parallel branches to construct complicated models.

However, adding extra mechanical elements in the rheological models causes compli-

cated mathematical models to be solved to obtain accurate mechanical responses. Fur-

thermore, rheological models comprising springs and dashpots are capable of produc-

ing mechanical responses which are exponential functions of time [14, 96]. Nutting’s

[16] observation suggests that viscoelastic materials show mechanical responses that

could be better represented by decaying or growing functions of time.

Since the derivation, finite element analysis applications, and parameter estimation

get even more complicated, we limit the complexity of the viscoelastic model in this

study by a single Scott-Blair’s spring-pot element and add variability property on the

fractional order. Variable order spring-pot element has three material properties as

shown in Fig. 3.2. Those properties are elastic constant E [MPa], viscous parameter

θ [s−β], and fractional variable order β(t).

The fractional characteristic function, Ef (t), is derived from the elasticity constant,

the viscous constant, and the fractional order sequence.

In this chapter, we present the methods we adopted to calculate the stress and strain

responses of the viscoelastic material. The method is introduced starting with the

constant-order case and then extended to the variable-order material model. Analyt-

ical solutions of the constant-order viscoelastic model to the proposed problems are

40



Ef (t) = Eθβ(t)

β(t)

σ(t) = Eθβ(t)
dβ(t)

dtβ(t)
ε(t)

Figure 3.2: Variable Order Spring-pot Element

also derived. The suggested loading conditions form the foundation for the experi-

mental problems, providing the theoretical framework upon which the experimental

setup and analysis are built. These problems serve as a basis for validating the models

and methodologies used in the study.

3.1 Modeling the Constant Fractional Order Viscoelastic Behavior

The analytical solution of the constant-order fractional Scott-Blair viscoelasticity

model can be easily derived for mathematically simple, easy-to-apply, and well-

behaved strain histories. In this section, the mathematical tools used to extract the

stress-strain responses of the constant fractional-order viscoelastic Scott-Blair model

will be presented in the context of practical application. These methods can also

be applied to other detailed material models, such as the Fractional Kelvin-Voigt

Model, the Fractional Maxwell Model, and similar. During the development of an-

alytical solutions, the Caputo definition of fractional derivatives, differentiation with

the Riemann-Liouville operator of fractional derivatives, and integral transformations

can be employed whenever necessary.

In the following section, we will present the mathematical tools and derivations re-

quired to obtain the stress or strain histories for several simple load/deformation his-

tories, to extract the material responses.
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3.1.1 Ramp Stress Problem

In a load-controlled test, the mechanical load is applied via a feedback-controlled

mechanism. Now we investigate an application of a ramp load as a case study and its

analytical solution is derived.

A ramp load with a load rate of S is applied as a function of time, σ(t) = S · t,

S · t = EθαDαε(t). (3.1)

Writing out in the expanded form gives us,

S · t = Eθα
∫ t

0

(t− τ)−αε̇(τ)dτ. (3.2)

The unknown, ε(t), can be obtained through Laplace transformation. Using the

Laplace transform of a constant order fractional derivative of a generic function, f(t),

L(C0Dα
t f(t); s) = sαF (s)− sα−1f(0), (3.3)

where s denotes the Laplace variable [139]. The stress-strain relation can be ex-

pressed in the Laplace domain as follows,

S

Eθα
1

s2
= s−αε̃(s). (3.4)

Solving for strain and taking the inverse Laplace transform, we obtain,

ε(t) =
S

Eθα
tα+1

Γ(2 + α)
=

σ(t)tα

EθαΓ(2 + α)
. (3.5)

Here, σ(t) represents the stress at time t, E is the elastic modulus, ε denotes the strain

the material is subjected to, α is the constant fractional order, and θ is the viscous

parameter.

3.1.2 Stress Relaxation Problem

Stress relaxation is one of the important phenomena observed in the viscoelastic mate-

rials. The relaxation characteristics are evaluated by applying a constant deformation

on the material. This implies that the strain function is constant in time, meaning that

ε(t) = ϵ and we have,

σ(t) = Eθα(C0D
α
t ε)(t) = Eθα

1

Γ(1− α)

∫ t

0

(t− τ)−α ε̇(τ)︸︷︷︸
ε(t)=ϵ

dτ = 0. (3.6)
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If this is the case, Caputo definition of the fractional derivative does not work. This

is due to the derivative term appearing in the integral producing zero value when dif-

ferentiated as shown in Eq. 2.11, thereby indicating an absence of stress relaxation

in the material. This limitation represents a drawback of the Caputo definition. Con-

sequently, the Riemann-Liouville (RL) definition should be employed. RL definition

involves computing the derivative outside the integral rather than inside the integra-

tion. The solution is obtained as

σ(t) = Eθα(RL
0D

α
t ε)(t) = Eθα

1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αϵdτ. (3.7)

After appropriately changing the variable t − τ = u and −dτ = du, and solving for

the stress, the solution is derived as follows,

σ(t) =
Eϵ

Γ(1− α)

(
t

θ

)−α

. (3.8)

3.1.3 Ramp Strain Loading Problem

The mechanical testing equipment allows position-controlled tests. Such equipment

applies load by controlling the displacement exerted on the material. The simplest

position-controlled test is the ramp load. The ramp load can be defined as

ε(t) = ϵ · t, (3.9)

where ϵ is the constant strain rate. Writing out the stress-strain relationship, we get

σ(t) = Eθα C
0D

α
t ε(t). (3.10)

and
C
0D

α
t ε(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−αε̇(τ)dτ

=
1

Γ(1− α)

∫ t

0

(t− τ)−αϵdτ

=
ϵt−α+1

Γ(2− α)
.

(3.11)

The above solution is obtained by proper change of variables t− τ = u, and −dτ =

du. Then the stress-time relation is obtained as follows

σ(t) = Eϵθα
t1−α

Γ(2− α)
. (3.12)
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If the RL definition of fractional derivative is applied, we obtain,

σ(t) = Eθα RL
0D

α
t ε(t)

= Eθα
1

Γ(1− α)

d

dt

∫ t

0

(t− τ)−αϵdτ

=
Eθαϵt−α+1

Γ(2− α)
=

Eθαε(t)t−α

Γ(2− α)
,

(3.13)

as expected.

3.1.4 Creep Problem

The creep test is one of the most commonly employed tests in the viscoelastic ma-

terials. The test is performed at constant load while deformation on the specimen is

being recorded. Assuming the material is subjected to a uniform stress with σ(t) = S,

recalling the material model,

σ(t) = EθαDαε(t) (3.14)

and setting the stress function to a constant value σ(t) = S,

S

Eθα
= Dαε(t), (3.15)

Laplace transformation gives us,

L
(

S

Eθα
; s

)
= L(Dαε(t); s), (3.16)

S

Eθα
1

s
= sαε̃(s). (3.17)

Then rearranging and solving for the strain in the Laplace domain, we get

ε̃(s) =
1

sα+1

S

Eθα
→ Γ(α + 1)

sα+1

S

Γ(α + 1)Eθα
. (3.18)

Last, inverse Laplace transform produces the strain solution in the time domain as,

ε(t) =
tαS

Γ(α + 1)Eθα
. (3.19)

Alternatively, the inversion of the derivative operator will yield the same result,

IαS = EθαD−αDαε(t), (3.20)
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ε(t) =
S

Eθα
tα

Γ(α)α
=

Stα

EθαΓ(α + 1)
. (3.21)

Note that, an important relation between the creep compliance and stress relaxation

modulus in the Laplace domain is

R̃(s)C̃(s) =
1

s2
. (3.22)

The creep compliance is then expressed as

C(t) =
tα

EθαΓ(1 + α)
. (3.23)

3.1.5 Generic Strain History

The stress-strain behavior of a fractional viscoelastic material can be calculated by

the Grünwald-Letnikov fractional derivative. The method uses a backward difference

scheme to calculate the stress response for a prescribed strain history [140].

The stress and strain response of a viscoelastic material is calculated by Eq. 3.24,

σ(t) = Ef (
CDαε)(t)

ε(t) = E−1
f (CD−ασ)(t)

, 0 ≤ α ≤ 1, (3.24)

where Ef is the fractional constant number denoting for Eθα, the symbol D stands

for the fractional derivative operator, and the D−α is the fractional integration oper-

ator. For the constant fractional-order mathematical model, the fractional derivative

operator is mathematically inverse of the fractional integral operator. It is essential

here to provide a mathematical description of the constant fractional order derivative

and fractional integral operators, respectively by,

CDαf(t) =

∫ t

0

(t− τ)−α

Γ(1− α)
ḟ(τ)dτ , α = [0, 1] (3.25)

and

Iαf(t) = D−αf(t) =

∫ t

0

(t− τ)α−1

Γ(α)
f(τ)dτ , α = [0, 1]. (3.26)

As one may recognize, Eq. 3.25 looks like an integral operation rather than a classical-

integer order derivative operation.
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If the fractional derivative concept is applied to the COFSB model viscoelasticity

stress-strain relationship, it reads

σ(t) =
Ef

Γ(1− α)

∫ t

0

(t− τ)−αε̇(τ)dτ,

ε(t) =
1

EfΓ(α)

∫ t

0

(t− τ)α−1σ(τ)dτ.

(3.27)

For the mathematically simple functions, the stress-strain relationship can easily be

derived from the Eq. 3.27. Riemann-Liouville and Caputo-type fractional opera-

tors can be expressed in discretized form by employing the Grünwald-Letnikov finite

difference scheme. Recalling the Riemann-Liouville (1850) and Caputo (1967) defi-

nitions of the fractional derivative,

RLDαf(t) =


1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)

(t− τ)α+1−m
dτ ; m− 1 ≤ α < m,

dmf

dtm
; α = m.

(3.28)

CDαf(t) =


1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m
dτ ; m− 1 ≤ α < m,

dmf(t)

dtm
; α = m,

(3.29)

where m is the next integer greater than α so that, m = ⌈α⌉.

The backward difference Grünwald-Letnikov (1868) derivative is expressed as

GLDf(t) = lim
N→∞

(
t

N

)−α N−1∑
j=0

Aj+1f

(
t− j

t

N

)
, (3.30)

where Aj+1 are the Grünwald coefficients expressed by the recursive formula

Aj+1 =
Γ(j − α)

Γ(−α)Γ(j + 1)
. (3.31)

Application of these generic definitions to the stress-strain relationship of a viscoelas-

tic continuum subjected to a strain history of εn reads [141]

σn = Ef
GLDαεn = Ef∆t−αΩ(n×n)(α)εn, (3.32)

where GLDα(•) is the constant order Grünwald-Letnikov fractional derivative op-

erator. The matrix appearing in Eq. 3.32 stores the Grünwald coefficients and is
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expressed as,

Ω(n×n)(α) =


ω1(α) 0 . . . 0

ω2(α) ω1(α) 0
. . .

... . . . 0

ωn(α) ωn−1(α) . . . ω2(α) ω1(α)

 . (3.33)

The entries that appeared in the lower band triangular strip matrix, Ω(α), used to

calculate the Grünwald-Letnikov fractional derivative can be found by using the re-

cursion formula,
ω1(α) = 1 ; j = 1,

ω2(α) = α ; j = 2,

ωj+1(α) = ωj(α)
j − 1− α

j
; j > 2.

(3.34)

In the above description of the formulation of the stress using the strain, the history

of deformation is divided into n time steps so that,

σ(t), ε(t) = 0 for t ≤ 0. (3.35)

Constant time step discretization is assumed, meaning that the time progression oc-

curs in uniform intervals. Specifically, the time steps are defined as:

tj = j∆t for j = 1, 2, 3, . . . , n. (3.36)

This approach assumes a constant time increment, ∆t, between each discrete time

point. The use of constant time steps ensures a straightforward numerical implemen-

tation. While this method simplifies the formulation, it may also introduce certain

limitations in terms of capturing transient behaviors that could require finer time res-

olution in specific cases.

Thus, the stresses at every time step σT
n = [σ1, σ2, . . . , σn] are calculated using

the strain history εTn = [ε1, ε2, . . . , εn] expressed as one-dimensional arrays. We

underline that the validity of the above model is limited by the following cases;

• Material should be initially stress/strain-free. The model loses its validity in the

multi-step problems.

• The model is developed for the fixed time step problems. The formulation

may not maintain its accuracy in cases involving non-uniform or adaptive time

increments.
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3.2 Modeling the Variable Fractional Order Viscoelastic Behavior

As discussed in Chapter 2, different variable order fractional viscoelasticity models

are proposed in the literature. The VO fractional viscoelastic model adopted in this

study is as follows,

σ(t) = Ef (t)(
CDβ(t)ε)(t) = Ef (t)

∫ t

0

(t− τ)−β(t)

Γ(1− β(t))
ε̇(τ)dτ. (3.37)

The VOF viscoelastic model adopted in this study readily portrays the fading mem-

ory property of viscoelastic material. The other alternative forms of VOF viscoelastic

models discussed previously should add the contribution of the history of the past

parameters. Since there is no known mechanical example of such a material remem-

bering the past states of the material parameters, those models are excluded from this

work.

The adopted model portrays the memory of the past strain history only. The above

form of fractional viscoelasticity is the generalization of the constant order fractional

spring-pot element.

For the mathematically simple strain functions (i.e., strain history) and description of

the fractional order, it is easy to calculate the stress response. A comparable method

to constant order fractional viscoelasticity is needed to calculate the stress response

for the generic strain history. The variable order Grünwald matrix shall be denoted by

Ψ(β(t)) to distinguish it from the constant order Grünwald coefficients matrix Ω(α)

to prevent confusion. For the same reason, the notation used to denote fractional order

is switched to another symbol, β with a variability notifier for the time, β(t). Similar

to the constant order fractional viscoelastic model, Ψ(n×n)(β(t)) is an n size square

lower triangular strip matrix that is described by Podlubny in [43, 142],

σn = Ψ(n×n)(β(t))εn. (3.38)

Since the fractional order does not have a constant number in the course of analysis,

the fractional characteristic number is no longer constant but is an explicit function of

fractional order or an implicit function of time. Therefore, expressing the fractional

characteristic number at every increment,

ηi = Ef i∆t−βi

i for Ef i = Eθβi (3.39)
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the Grünwald-Letnikov derivative in matrix form reads

Ψ(β(t)) =


η1ω1(β1) 0 . . . 0

η2ω2(β2) η2ω1(β2) 0
. . .

... . . . 0

ηnωn(βn) ηnωn−1(βn) . . . ηnω2(βn) ηnω1(βn)

 . (3.40)

Then, the stress is then formulated by

σ(t) =


η1ω1(β1) 0 . . . 0

η2ω2(β2) η2ω1(β2) 0
. . .

... . . . 0

ηnωn(βn) ηnωn−1(βn) . . . ηnω2(βn) ηnω1(βn)




ε1

ε2
...

εn

 . (3.41)

We note that although the constant order fractional derivative is the inverse of the

fractional integration operator of the constant order, the same is not valid for the

variable order model [47, 143].

The algorithms used to calculate the stress response of a variable fractional order vis-

coelastic continuum under a generic strain history are presented as Alg.1 and Alg.2.
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Algorithm 1 Calculation of VO Grünwald Coefficients
Require:

n ≥ 1, ▷ Length of the discretized time data defined as 1D vector array

β(i), ▷ β(i) is the stored/calculated values of variable fractional order for every

time step i, expressed in a vector array form

Ensure: Dimensional conformity

length(T ) = n, ▷ T is total time

length(β) = n,

Initialize:

ω(1) = 1 ▷ First term of the Grünwald coefficients

if n ≥ 1 then

for j = 1 : n do

ω(j + 1) = ω(j)
j − 1− β(i)

j
▷ β(i) corresponds the fractional order at ith

time step

if j + 1 > n− 1 then break

end if

end for

end if
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Algorithm 2 Calculation of Stress Response of a VOFSB Viscoelastic Model
Require:

E, θ, βj, t, dt, T, ϵ, ε

Compute:

ε = ϵt, ▷ Strain history

[t]1×n = [0 : dt : T ], ▷ Time discretization

Eβj = Eθβj , ▷ Fractional characteristic numbers at each time increment

Initialize: Grünwald Coefficient Matrix

[Ψ]n×n = zeros(n),

for k = 1 : n do ▷ Row

Compute: Grünwald Coefficients as n length vector arrays

[ω]1×n = using, ALGORITHM 1← (β(k), n) ▷ Algorithm uses βk and n to

compute n size vector array containing Grünwald coefficients

for i = 1 : k do ▷ Column

η(k) = Eβ(k)dt
−β(k)

Ψ(k, i) = ω(k − i+ 1)η(k) ▷ Constructing Grünwald Matrix

end for

end for

[σ]n×1 = [Ψ]n×n [ε]n×1 ▷ Stress response obtained as a 1D vector array containing

the stress values corresponding to every time/strain increments
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The flowchart of Algs. 1 and 2 is also depicted in Figure 3.3.

The presented algorithms are used to calculate the stress response of the viscoelastic

material from generic material parameters. The same algorithm is valid for both CO

and VO fractional viscoelastic material if the fractional order is provided properly.

Then, these parameters are determined back from the synthetic experimental test data.

The generic material data is not required to match the real material parameters except

a natural condition on the definition of the fractional order, 0 ≤ β(t) ≤ 1. Therefore,

algorithms are tested with simple strain histories and physically reasonable material

parameters.

It should be emphasized that deriving an analytical solution for the variable order

fractional viscoelastic Scott-Blair model is challenging, even when considering sim-

ple strain history. The Laplace transformation is also another alternative method

for solving variable fractional order differential equations. However, because the

mathematical complexity of the fractional order adds highly complex relations in the

Laplace domain when adopted, it becomes non-invertible in terms of algebraically

known functions. The Laplace transform of a variable fractional order derivative of a

function is derived by Scarpi [139]

L(S0D
β(t)
t )f(t); s) = ssA(s)F (s)− ssA(s)−1f(0), (3.42)

where

A(s) = L(β(t); s) =
∫ ∞

0

e−stβ(t)dt. (3.43)

Recent studies have focused on variable fractional-order viscoelasticity, with several

researchers following Scarpi’s formulation based on the use of Laplace transforms

[144, 145]. However, to the best of our knowledge, parameter estimation studies

based on experimental data have not yet been addressed.

In the next chapter, parameter estimation studies and the obtaining the fractional or-

ders from the synthetic test data will be discussed in detail.
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Start

E, θ, βj, t, dt, T, ϵ

t = 0 : dt : T

ε = ϵt

Ψ = zeros(n)

Eβj
= Eθβj

n = length(t)

i, k = 1

Ψ Matrix

σ(t) = Ψε(t)

η(k) = Eβ(k)dt
−β(k)

w(1) = 1

j = 1;

Output

Stop

Grünwald

w(j + 1) = w(j)
j − 1− βk

j

w(n)

AssembleΨ(k, i) = w(k − i+ 1)η(k)

k > n

k ≤ n

j = j + 1

j + 1 ≤ n− 1

i ≤ k

j + 1 > n− 1

i = i+ 1

i > k

Figure 3.3: Flow Chart of Stress Calculation of a VOF Viscoelastic Material
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CHAPTER 4

MATERIAL PARAMETER ESTIMATION STUDIES

Obtaining the material parameters from conventional mechanical tests is the key stage

in this study. The main viscoelastic material parameters to be determined are the

fractional order, β(t), and viscoelastic characteristic function, Ef (t). The material

parameter Ef (t) is the viscoelastic fractional material parameter function expressed

as a function of time. The fractional viscoelastic characteristic function is defined

as the product of the elastic constant and instantaneous fractional power of the vis-

cous parameter. The variability of the fractional order provides a good mathematical

model that can adapt the material parameters to the altering conditions [145]. This

property gives flexibility to the material model. Therefore, the combined effect of

internal and external variables can be accurately assessed through the variable frac-

tional viscoelastic modeling technique providing a comprehensive understanding of

their interplay and impact on the overall system response. The spectrum of fractional

order variation spans from purely viscous behavior to purely linear elastic behavior.

This adaptive behavior of the material model allows for the reduction of mathemati-

cal complexity by reducing the number of parameters to be tuned experimentally as

compared to the integer-order viscoelastic rheology models.

σ(t) = Eθβ(t) CDβ(t)ε(t) = Ef (t)
CDβ(t)ε(t) , 0 ≤ β(t) ≤ 1. (4.1)

Eq. 4.1 implies that there are only three material parameters when β(t) is constant,

i.e., β(t) = α, which simplifies the model to the constant-order fractional viscoelas-

tic model. However, if variable-order fractional viscoelasticity is considered the un-

knowns are E, θ, βi. It is important to note that when considering the entire dataset,

the number of unknown material parameters for a discrete dataset of size n increases

to n + 2. This increase arises because the fractional order is independent of strain,

55



stress, or prior load state fractional orders.

Internal or external variables may have an impact on the variability of the fractional

order. The amount of strain, strain rate, and temperature changes, independently or

in combination, can change the variable order in any range between 0 and 1. In this

chapter, we present our approach to how the trend of order can be captured.

4.1 Constant Order Parameter Estimation Study

The viscoelastic materials represent constant order fractional viscoelastic behavior

under certain conditions. As an example to this phenomenon, around room temper-

ature polymeric chains are so-called frozen, and especially at small strains most of

the viscoelastic materials exhibit linear elastic behavior [146]. Increasing the strain

on the material causes a slip in intermolecular chains and even strengthens the poly-

meric chains. In these two states of deformation, an observable change in the material

behavior takes place. Because of this phenomenon, the constant order fractional vis-

coelastic model does not suffice to represent the material behavior. The stress is cal-

culated for a COFSB model as long as the strain and fractional characteristic number,

Ef , are known,

σ(t) = Ef
CDαε(t). (4.2)

As suggested in [113], assuming a constant strain rate loading subjected to the speci-

men with the following relation ε(t) = ϵt, reduces the effort in parameter estimation

greatly, since the time rate of change of strain appearing in the constant order frac-

tional model produces a constant number, ε̇(t) = ϵ. Other forms of strain function

will complicate the form of stress function, also it is even harder to obtain experi-

mentally. Therefore, we adopt a constant rate deformation load to perform parameter

estimation studies. Recalling the stress-strain relation by Eq. 4.3

σ(t) = Ef

∫ t

0

(t− τ)−α

Γ(1− α)
ε̇(τ)dτ (4.3)

for a constant rate of deformation load, the strain can be expressed as a function of

time as

ε(t) = ϵt, (4.4)
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and inserting the strain rate into the Eq. 4.3, the stress response of COFSB viscoelas-

tic material is obtained as

σ(t) =
Efϵ

Γ(2− α)
t1−α. (4.5)

This presents an analytical method for constant strain rate loading that can be exe-

cuted using a displacement-controlled universal tension testing apparatus. Using Eq.

4.4, the stress in terms of strain is calculated in an alternative form

σ(ε) =
Efϵ

α

Γ(2− α)
ε1−α, (4.6)

where the material parameters Ef and α can be determined by curve fitting the exper-

imental data to the Eq. 4.5 or Eq. 4.6.

4.2 Variable Order Parameter Estimation Study

The variation of the fractional order needs to be handled in a different strategy. We

first recall the stress-strain relation given in the VOFSB model

σ(t) =

∫ t

0

Eθβ(t)

Γ(1− β(t))
(t− τ)−β(t)ε̇(τ)dτ, (4.7)

under the generic strain and fractional order history.

The derivative order is assumed to be constant within a time increment for sufficiently

small time intervals. In other words, after every time increment, the derivative order

takes a new value as given in Table 4.1, while it is constant during a particular time

increment.

Table 4.1: Description of the Variation of Fractional Order Over Time

Order Time

β1 0 < t < t1

β2 t1 < t < t2
...

...

βn tn−1 < t < tn

Determining material parameters under arbitrary or random strain histories poses sig-

nificant challenges due to the considerable nonlinearity of the problem. Hence, a
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methodological approach is adopted for parameter estimation studies under constant

strain rate deformation. Opting for constant strain rate deformation simplifies the

complexity of the problem, as the rate of the strain yields a straightforward quantity:

the crosshead displacement velocity of the uniaxial simple tension test apparatus di-

vided by the gage length of the tensile test specimen. Imposing the constant strain

rate in the Eq. 4.3 stress-strain relation for a VOFSB viscoelastic model becomes,

σ(t) =

∫ t

0

(
Eθβ(t)

Γ(1− β(t))
ϵ

)
(t− τ)−β(t)dτ. (4.8)

The expression enclosed in brackets,
(

Eθβ(t)

Γ(1−β(t))
ϵ
)

, in Eq. 4.8 remains unaffected by

the integration variable, τ , yet it still remains dependent on both order and time. Upon

integration, it takes the following form:

σ(t) =
Eθβ(t)ϵ

Γ(2− β(t))
t1−β(t). (4.9)

This represents the analytical representation of stress in terms of time. The progres-

sion of the fractional order β is not ascertainable unless it is defined as a constant

order. To obtain the sequential pattern of the fractional order, we need to solve a

nonlinear regression problem. The details of the approach are as follows.

Since the bracketed term in Eq. 4.8 is independent of the integration kernel and is a

power function, (t − τ)−β(t), its integration will produce a power function, as well.

Therefore, the solution should be sought in the form of a power function of time as

shown in Eq. 4.10,

Sk(t) = κkt
(1−βk). (4.10)

Moreover, the bracketed term in Eq. 4.8 should behave like a penalty term, κk, as

shown in Eq. 4.10, adjusting the curve fit for each time increment.

To implement this concept, first, the stress-time data is fitted using the nonlinear least

squares method to obtain the sequence of the fractional order. Afterwards, a nonlinear

constrained optimization approach is employed to determine the material parameters

E and θ, ensuring that the solution satisfies the given constraints. This optimization

process allows for the precise calibration of the material properties, which are crucial

for the accuracy of the model.

Given that the fractional order is permitted to vary at each time increment, and stress

is influenced by the history of previous load states, curve fitting is conducted for each
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time increment using the stress-time data from the onset of the stress history up to

that specific increment.

We minimize the following nonlinear regression problem,

min
(∑

∥ F (xk)− yk ∥2
)
. (4.11)

Here, yk represents the stress values at each data point, and the objective is to fit F (xk)

to these observed stress values at each discrete time increment. At every increment

of the computation, the solver takes up a new β value and proceeds the computation

to minimize the sum of squares of the error.

The function denoted as F (xk), presented in Eq. 4.11 is a nonlinear function defined

in MATLAB as,

σ(t) = κt1−β, (4.12)

which is used to model the data by Eq. 4.10.

The method also takes into account the long-term fading memory property of the

fractional viscoelasticity by shifting the starting point of the curve fitting data. The

contribution of the distant past of the strain to the current stress is less dominant than

the recent past history of the strain. This is evident from the Grünwald constants when

the Eq. 3.34 is expanded. If the time is taken long enough the direct contribution of

the distant past strain history tends to lose its significance to the calculation of the

current stress. Nevertheless, the contribution of the distant past strains still remains

in the more recent past stress history implicitly.

In the scope of the above explanation, the negligible contribution of the far past his-

tory of the load states is excluded from the parameter estimation study. The negligible

contribution of the distant past can be explained as follows. Considering the Eqs. 3.32,

3.33, and 3.34, for a generic value of fractional order, ωi(α) approaches to the zero

as index i grows. As the index grows and ωi gets even smaller the contribution of the
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earliest strains, for instance ε1, ε2, ..., loses its significance.

σ1 = ω1ε1

σ2 = ω2ε1 + ω1ε2

σ3 = ω3ε1 + ω2ε2 + ω1ε3

...

(4.13)

Eq. 4.13 illustrates the forgetting property of the distant past of the deformation.

On this basis, during the parameter estimation study, we propose a window-shifting

method.

However, the method does inherit some limitations. As the curve fitting technique

necessitates more than two data points, obtaining fractional orders from the very last

several data points becomes impractical. Moreover, theoretically, the extensive de-

formation history should still influence the subsequent load state. Nonetheless, our

method truncates the earliest data of the load states, implicitly representing their exis-

tence through the shifted data points. The fractional order estimation method is based

on the sliding window method. The method uses a data window of size h to fit the

data to the power function of time. The size of the window should be a minimum of

three because curve fitting requires a minimum of three points. The data window is

then shifted some distance to calculate a new fit to find the next value of the fractional

order. Both the window size and the shift length are two important parameters impact-

ing the fractional order estimation study. The curve fitting method is schematically

illustrated in Fig. 4.1.

Once the sequence of fractional orders is determined through nonlinear regression,

a subsequent nonlinear constrained optimization is performed to find the remaining

material properties, E and θ.

In this subsequent process, the fractional orders obtained from the previous step are

used to prepare an objective function. The function to be minimized is given by:

f = |σ̃n(E, θ, εn, βn)− σn|, (4.14)

where σ̃n represents the estimated stress history, and σn is the original stress history.
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Figure 4.1: Illustration of the Fractional Order Estimation Method

The optimization code finds the best values for the material parameters by minimizing

the objective function, 4.14.

This approach ensures that the material properties E and θ are optimized by min-

imizing the discrepancy between the predicted and actual stress histories, thereby

providing the best fit to the data.

To solve the nonlinear constrained optimization problem, the fmincon function, a

standard solver in MATLAB, is employed. fmincon is designed to handle problems

where the objective function and constraints are nonlinear, providing robust solutions

through built-in algorithms. The function iteratively updates the solution by mini-

mizing the objective function while ensuring that the constraints are satisfied. The

optimization code is prepared as follows:

An anonymous function, Eq. 4.14, is defined to compute the norm of the difference

between the predicted values of the model and the imposed (measured) data. The

norm of the difference between these predictions and the imposed data represents the

error to be minimized.
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Then, the error function with the constraints is defined as follows:

Error(ϕ) =

∥SS(ϕ, t)− S∥2

[E, θ] ≥ [0, 0]
, (4.15)

where SS(ϕ, t) represents the predicted values from the model (Eq. 4.12), dependent

on the parameter vector ϕ = [E, θ], and time t, while S is the vector of observed

values of stress at every time increment. The term ∥ · ∥2 denotes the Euclidean norm,

which quantifies the magnitude of the discrepancy between the predicted and actual

values. The objective of the optimization process is to minimize this error. To solve

the constrained optimization problem, the interior-point method is employed.

The algorithm and parameters therein that MATLAB uses are described as follows,

min
x
f(x);



c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

, (4.16)

where f(x) is the definite function to be minimized or maximized which returns a

scalar. ub, lb are upper and lower bounds respectively, b and beq are vectors contain-

ing the parameters to define the inequality and equality constraints, A and Aeq are

inequality and equality matrices, c(x) and ceq(x) are functions that return vectors,

f(x), c(x), and ceq(x) can be nonlinear functions. Since there are no linear equality

or inequality constraints the constraint terms are defined as empty sets, [].

Since the model requires mechanical material parameters, a lower bound constraint is

imposed on the solver to ensure physical feasibility. Specifically, the two-parameter

lower bounds are set to non-negative values, reflecting the inherent non-negativity of

material properties. Thefore, the lower bound constraints are imposed in the solver as

zero.

Unlike other constrained optimization problems, where parameters such as A, b, c

define linear and nonlinear constraints, the present study deals only with parameter

estimation subject to simple bounds. The optimization is performed solely on param-
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eter estimation with bounds without enforcing additional constraints. Thus, matrix A

and vectors b, c are not required for this approach.

This constraint is incorporated into the optimization problem to prevent the solver

from exploring parameter values that are mechanically unrealistic. By enforcing these

bounds, the solution space is restricted to values that are both feasible and meaning-

ful within the context of mechanical material modeling. This approach enhances the

robustness of the optimization process and ensures that the resulting parameter esti-

mates are consistent with the physical principles.

Given that the structure of the stress function is pre-established, the unidentified frac-

tional orders are substituted with the determined orders obtained in the previous step.

Consequently, the remaining unknown parameters, namely E and θ, are then deduced

through a nonlinear constrained optimization. Upon completing the identification of

the material parameters, the stress response of the material is calculated from the

identified parameters and the imposed strain history.

4.2.1 Verification of the Parameter Estimation Method from Synthetic Test

Data

In the preceding section, we outline the methodology for determining material prop-

erties. To validate this approach, we consider seven possible scenarios for the frac-

tional order. Synthetic test data is then generated using these fractional order and the

generic material properties. Subsequently, we apply our methodology to the synthetic

test data to inversely derive the pattern of the fractional order, which is imposed on

the model to calculate the stress response of the hypothetical material.

During the generation of the synthetic test data, the material parameters are hypothet-

ically selected as E = 1 MPa, θ = 0.05 s−β , and a strain rate of ϵ = 0.1 s−1. The

stress response of the hypothetical material is then calculated from Eq. 3.24 for each

synthetic dataset, utilizing the fractional order models constructed in Table 4.2.

The following fractional order models are proposed for investigating fractional order

estimation studies, as summarized in Table 4.2. Each model represents a different

approach to varying the fractional order over time, allowing for a comprehensive
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analysis of material behavior. These models are crucial for understanding the impact

of fractional order variations on material responses, which are integral to accurate

parameter estimation in viscoelastic systems.

Table 4.2: Overview of Different Fractional Order Models

Model Description Variable Order Model

Constant order β(t) = 0.5

Constant then linearly increasing in time β(t̂[0, 0.5]) = 0; β(t̂[0.5, 1]) = [0, 0.7]

Linearly varying order β(t̂[0, 1]) = [0, 0.3]

Order quadratic in time β(t) = 0.001t2 + 0.05t

Order harmonic in time (sine function) β(t) = 0.5 + sin
(
3π
4
t− π

2

)
/2

Order harmonic in time (cosine function) β(t) = 0.5 + cos
(
3π
4
t− π

2

)
/2

Constant then linearly decreasing in time β(t̂[0, 0.5]) = 0.3; β(t̂[0.5, 1]) = [0.3, 0.1]

The t̂ used in the Table 4.2 denotes normalized time variable.

The parameter estimation study is conducted by examining seven cases of hypotheti-

cal variable fractional order forms. The sequence of the fractional orders is generated

to test the efficiency of the method. Subsequently, the material parameters E, θ are

inserted into the model to calculate the stress response for the ramp deformation. By

following the method developed in this study the imposed material parameters can be

precisely obtained for the constant order and piece-wise constant order models.

However, the sudden changes in the fractional order cannot be captured well in rel-

atively short times. Because the finite difference method employed in this study uti-

lizes Grünwald constants. The Grünwald constants do not approximate the value of

the fractional order instantly. It is clear from the Fig. 4.2, several data points are

required to converge to the constant fractional order. In the early times of the defor-

mation, there is a slight difference between the imposed and predicted values of the

fractional order, and it converges slowly, as shown in Fig. 4.2.

The algorithm demonstrates limited adaptability to abrupt shifts in the fractional or-

der. This behavior can be attributed to the stress calculation technique employed,

namely the Grünwald-Letnikov (GL) method. In other words, there should be enough
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increments to find the target value. In the variable order model, the target value of the

fractional order changes as well.

Figure 4.2: Constant Order Estimation Study

The same phenomenon is also observable in Fig. 4.3 and Fig. 4.4. Order estimation

slightly adapts the updated value of the fractional order as observed from the figures.

The model could predict the orders with considerable accuracy when the initially

constant and the linearly changing fractional order as seen in Fig. 4.3 – Fig. 4.8.

Figs. 4.3 and 4.4 suggest that during the linear change in the fractional order, the

parameter estimation exhibits both undershooting and overshooting behaviors as the

deformation progresses.
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Figure 4.3: Piecewise Constant Order Estimation Study

In terms of the trend of the fractional order, Case 3 and Case 7 have somewhat op-

posite behaviors. In Case 3, the fractional order increases from 0 to 0.7 after half of

the deformation has occurred, as shown in Fig. 4.4. In contrast, Case 7 starts with a

constant order, 0.3, and then decreases to 0.1, as illustrated in Fig. 4.8. In these two

opposite cases, the performance of the determination of the fractional order displays a

similar performance. The RMSE error is calculated as 0.03 for both of the two cases.

In Case 3, which differs from Case 1 and Case 7 due to its initial fractional order

value, the estimation converges to the imposed value more rapidly compared to the

scenario where the fractional order remains constant and non-zero. This suggests that

the deviation from the purely elastic region, which initiates the nonlinearity in the

stress response, influences the convergence time of the parameter estimation.
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Figure 4.4: Linearly Varying Order Estimation Study

Figure 4.5: Quadratic in Time Order Estimation Study
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Figure 4.6: Harmonic in Time Order Estimation Study

Figure 4.7: Harmonic in Time Order Estimation Study

Among the investigated cases, the least consistent behavior is observed in Case 6 as
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seen in Fig. 4.7. This case stands out as the most unique among the other models.

The fractional order starts at 0.5 and then rises harmonically to 1 before decreasing

to a value of 0.8. Throughout this trend, the lowest correlation is observed between

the imposed and predicted fractional order values. However, it is noteworthy that the

difference between the estimated and imposed values remains nearly constant until

approaching the inflection point of the imposed data curve. The estimation curve

follows a phase-lag trend relative to the imposed values of the fractional orders.

Figure 4.8: Constant Linearly Decreasing in Time Order Estimation Study

The parameter estimation study from the synthetic test data results indicates that if the

change in the fractional order is linear in time, the root mean squared error between

the imposed stress, yi in Eq. 4.17, and predicted stress, ŷi in Eq. 4.17, from the

determined fractional order is on the order of 0.01. Higher-order nonlinearity impairs

the performance of the parameter estimation study.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2

n
. (4.17)

In the synthetic test data, the time increment for the Grünwald step size is selected as

∆t = 0.1 s, resulting in a data size of n = 101 for a 10 s analysis.
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4.2.2 Parameter Estimation Studies Other Potential Approaches

The parameter estimation method we developed works effectively, except for the frac-

tional orders that are defined to change harmonically over time. However, to reduce

the uncertainty associated with this method, we explored alternative approaches for

identifying material parameters. Our efforts primarily focused on finding an analyti-

cal method to generate the sequence of fractional orders. Below, we present the two

approaches we pursued.

In the first method, we followed Meng et al.’s [114] formulation, the CO fractional

derivative of a function is expressed as,

Dαf(t) = g(t, α). (4.18)

It can be expressed by the finite sum for t0 = 0 and total time is equally divided by n

increments,

Dαf(t) =
n∑

k=1

[g(tk, α)− g(tk−1, α)] + g(0, α). (4.19)

The material is assumed to be initially stress and strain-free. Upon this assumption,

the last term vanishes. Extending this formulation to the variable order formulation

needs updating the resultant function,

Dβ(t)f(t) =
n∑

k=1

[g(tk, βk)− g(tk−1, βk)], (4.20)

such that,

Dβkf(t) = g(tk, βk). (4.21)

The stress is then computed from,

σ(t) = Eθβ(t)Dβ(t)ε(t) = EθβkDβkε(t) =
n∑

k=1

[σ(tk, βk)− σ(tk−1, βk)]. (4.22)

Upon application of the strain history as ε(t) = ϵt, we get,

σ(ε) =
n∑

k=1

E(ϵθ)βk
ε1−βk

k − ε1−βk

k−1

Γ(2− βk)
. (4.23)

Meng et al. [113] expressed the stress as a finite sum of the strain difference for

constant strain rate deformation,

σ(ε) =
n∑

k=1

E(ϵθ)βk
ε1−βk

k − ε1−βk

k−1

Γ(2− βk)
. (4.24)
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The stress increment at two subsequent increments is obtained as,

σ(εk)− σ(εk−1) = E(ϵθ)βk
ε1−βk

k − ε1−βk

k−1

Γ(2− βk)
. (4.25)

For k = 1, we have,

σ(ε1) = E(ϵθ)β1
ε1−β1

Γ(2− β1)
= ηε1−β1

1 . (4.26)

Taking the logarithm of both sides, we obtain,

lnσ(ε) = ln η + (1− β1) ln ε. (4.27)

As reported by Meng et al. in [113], after computing the lnσ − ln ε data from the

experimentally obtained σ−ε data, logarithmic data is fitted to a straight line at every

increment. Then βk is obtained for the entire time history. However, the method

did not work well in either synthetic or experimental data. Because the fractional

order cannot be determined from the stress difference at two subsequent strain data.

Meaning that,

log(σ(εk)− σ(εk−1)) = log

(
E(ϵθ)βk

ε1−βk

k − ε1−βk

k−1

Γ(2− βk)

)
, (4.28)

log(∆σk) = log

(
E(ϵθ)βk

Γ(2− βk)

)
+ log(ε1−βk

k − ε1−βk

k−1 ). (4.29)

In Eq. 4.29, the latter term on the right-hand side of the equation includes two strain

values corresponding to the kth and k − 1th increments. Unlike Meng’s method, the

εk−1 terms are found to be significant values that cannot be disregarded after the first

step anymore because ε(0) = 0 and ε(t ≥ 0) ̸= 0. Therefore taking the logarithm of

the Eq. 4.29 does not work to produce the straight line fitting between the two data

points.

Another alternative potential method can be developed by following Burlon et al.’s

[141] stress formulation for the variable order viscoelastic material subjected to a

generic strain history,

σn = ηnωn(βn)ε1 + ηnωn−1(βn)ε2 + · · ·+ ηnω1(βn)εn. (4.30)

For n = 1,

σ1 = η1ω1(β1)ε1. (4.31)
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For n = 2,

σ2 = η2ω2(β2)ε1 + η2ω1(β2)ε2. (4.32)

and for n = 3,

σ3 = η3ω3(β3)ε1 + η3ω2(β3)ε2 + η3ω1(β3)ε3. (4.33)

For the subsequent stress increments,

∆σn = σn − σn−1

= ηnωn(βn)ε1 + ηnωn−1(βn)ε2 + · · ·+ ηnω1(βn)εn − . . .

− ηn−1ωn−1(βn−1)ε1 + ηn−1ωn−2(βn−1)ε2 + · · ·+ ηn−1ω1(βn−1)εn−1.

(4.34)

In this study, we have attempted to obtain the unknown parameters, E, θ, and βk,

from Eq. 4.34. However, this equation involves handling numerous unknowns simul-

taneously. To show the problem more clearly, investigating the first three points of

the stress-strain data is enough to portray how hard it is to determine the unknown pa-

rameters. The first three stress values corresponding to the strain values the material

is subjected to are expressed as,

σ1 = η1ω1(β1)ε1, (4.35a)

σ2 = η2ω2(β2)ε1 + η2ω1(β2)ε2, (4.35b)

σ3 = η3ω3(β3)ε1 + η3ω2(β3)ε2 + η3ω1(β3)ε3. (4.35c)

In Eq. 4.35-a the unknowns are η1 and β1. Since the ωi is a dependent variable, once

the βn sequence is known, all ωi(βn) can be determined. Therefore in Eq. 4.35-b

ω2(β2) and ω1(β2) are not two distinct unknowns, but two unknowns dependent on

β2. It means two unknowns still exist in each equation. However, there are still two

unknowns for each stress value for each strain. To illustrate this pattern, it is suf-

ficient to examine the first few points. At the first stress increment, the unknowns

are η1 and ω1. At subsequent increments, the unknowns evolve accordingly: at the

second increment, η2 and ω2 remain undetermined, and so forth for each subsequent

stress increment. This sequence of unknowns continues, with each new increment

introducing a new pair of unknowns corresponding to the respective strain and stress

values. One may easily distinguish that the sequence of the fractional order does

not accept any rule. In other words, the value of the fractional variable order at a

particular time step may not be influenced by the preceding history of the fractional

72



order, thereby impacting the Grünwald coefficients accordingly. The Grünwald coef-

ficients ωn change at each time increment and for each value of the fractional order

βk. Given that, βi ̸= βi+1, it follows that ωn(βi) ̸= ωn(βi+1). This lack of correla-

tion in the Grünwald coefficients hinders the derivation of the sequence of fractional

orders from the previous steps. This reveals the fact that, it is necessary to solve

each equation in Eq. 4.35 separately to determine the unknown fractional order at

each particular time increment, as each equation contains two unknowns. Therefore,

conducting a parameter estimation study using the above method is not feasible with

the available mathematical and numerical methods and, hence remains as an open

research question.
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CHAPTER 5

USER MATERIAL SUBROUTINE DEVELOPMENT

To the best of our knowledge, the material model developed in this study is not avail-

able as a predefined option in any existing finite element analysis software. For users

who wish to apply a variable fractional order viscoelastic model to analyze complex

structures, it is necessary to implement a UMAT (User Material) subroutine. In the

present chapter, a detailed derivation of the variable fractional order spring-pot ele-

ment is provided for the homogeneous and isotropic material.

The methodology outlined here is designed to be flexible and can be extended to

accommodate similar material models. This approach offers a valuable tool for re-

searchers and engineers seeking to incorporate advanced viscoelastic models into

their finite element analyses.

The user material subroutine (UMAT) is essential for defining the constitutive behav-

ior of materials within finite element analysis software. When a user-defined material

model is implemented, UMAT is invoked at each material calculation point within the

elements. This subroutine can also accommodate solution-dependent state variables,

allowing for dynamic updates based on the current state of the solution. During each

increment, the solver updates both the stresses and these state variables to reflect their

values at the end of the increment. Additionally, UMAT is required to provide the

material Jacobian matrix, ∂∆σ/∂∆ε, which is crucial for defining the mechanical

constitutive model and ensuring accurate numerical analysis.

The Jacobian matrix plays a pivotal role in computing strain measures from the de-

formation gradient tensor. In the UMAT subroutine, the strain tensor is derived from

the deformation gradient, with the Jacobian matrix being essential for this process.
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Accurate computation of the strain tensor is crucial for precise modeling of material

behavior under deformation. Additionally, UMAT can be used in conjunction with

the user subroutine USDFLD to redefine field variables before they are processed.

However, the integration of USDFLD is not covered in this work and falls outside the

scope of the current study.

5.1 UMAT Development for Constant Order Scott-Blair Model

The three-dimensional response of a material requires a complete description of the

material parameters, including volumetric and deviatoric responses. The stress-strain

relation is expressed as in the well-known classical viscoelasticity equation

σ(t) =

∫ t

0

R(t)ε̇(τ)dτ, (5.1)

where R(t) is the relaxation function. If expressed in the indicial notation, the stress-

strain relation takes the form

σij(t) =

∫ t

0

Rijkl(t− τ)ε̇kl(τ)dτ, (5.2)

where Rijkl is the fourth-order stress relaxation tensor. Alotta et al. [69] described

the relaxation modulus in terms of its volumetric and deviatoric counterparts

Rijkl(t) =

[
KR(t)−

2

3
GR(t)

]
δijδkl +GR(t) [δikδjl + δilδjk] , (5.3)

where KR corresponds to volumetric (bulk) and GR corresponds to the deviatoric

(shear) relaxation modulus. The bulk modulus and shear modulus in the linear elastic-

ity convert to fractional bulk modulus function and fractional shear modulus function

as follows

KR(t) =
Kβt

−β

Γ(1− β)
, GR(t) =

Gαt
−α

Γ(1− α)
. (5.4)

One may notice tilde, in the most generalized form, the bulk modulus and shear mod-

ulus are functions of time and fractional parameters, α and β. The fractional parame-

ters in the bulk response and deviatoric response are not necessarily equal. However,

to the best of our knowledge, no such material shows different relaxation behaviors

in volumetric and deviatoric responses reported in the literature. Furthermore, from

a theoretical point of view, equating the fractional order parameters corresponding to
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volumetric and bulk behavior does not violate any physical law. Therefore, they will

be assumed to be identical to each other in our further investigations.

It is necessary to underline a notation difference in this chapter. In the finite element

routine, we prefer to denote Grünwald coefficients by λ, differently from the Chap-

ter 3. The notation difference is necessary to distinguish it from ω which corresponds

to the numerical solution.

When Eq. 5.3 and Eq. 5.1 are combined and expanded, normal and shear stress

responses are obtained in terms of their fractional volumetric and fractional deviatoric

functions,

σij(t) = 2Gα(D
αε̃ij)(t) + 3Kβ(D

β ε̄)(t) , i = j ; {1, 2, 3} ,

τij(t) = Gα(D
αγij)(t) , i ̸= j ; {1, 2, 3},

(5.5)

where ε̄ =
∑3

1 εii/3 is mean strain and ε̃ij(t) = εij(t)− ε̄(t)δij is deviatoric strain.

The time discretization of the constant fractional order derivative operator is defined

by the Grünwald-Letnikov derivative in Eq. 5.6

(GLDαf)(t) = (GLDαf)(k∆t) = lim
∆t→0

∆t−α

k+1∑
j=1

λ
(α)
j f (k−j+2). (5.6)

The binomial coefficients in the Grünwald-Letnikov derivative is described as,

λ
(α)
j+1 =

j − 1− α

j
λ
(α)
j ; λ

(α)
1 = 1. (5.7)

Returning to Eq. 5.5, the time discretization of the normal and shear components is

performed as follows:

At the increment k + 1,

σ
(k+1)
ij = 2Gα∆t−α

k+1∑
j=1

λ
(α)
j ε̃

(k−j+2)
ij + 3Kβ∆t−β

k+1∑
j=1

λ
(β)
j ε̄(k−j+2) ; i = j,

τ
(k+1)
ij = Gα∆t−α

k+1∑
j=1

λ
(α)
j γ

(k−j+2)
ij ; i ̸= j.

(5.8)

The normal and shear stress increments can then be formulated as

∆σ
(k+1)
ii = σ

(k+1)
ii − σ

(k)
ii , ∆τ

(k+1)
ij = τ

(k+1)
ij − τ

(k)
ij . (5.9)
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To find the stress increments, the summation upper limits should be adjusted. Rear-

ranging Eq. 5.8 to perform the calculations between the two subsequent time incre-

ments,

σ
(k+1)
ij = 2Gα∆t−α

k∑
j=1

λ
(α)
j ε̃

(k−j+2)
ij + 2Gα∆t−αλ

(α)
k+1ε̃

(1)
ij ,

+ 3Kβ∆t−β

k∑
j=1

λ
(β)
j ε̄(k−j+2) + 3Kβ∆t−βλ

(β)
k+1ε̄

(1) ; i = j

τ
(k+1)
ij = Gα∆t−α

k∑
j=1

λ
(α)
j γ

(k−j+2)
ij +Gα∆t−αλ

(α)
k+1γ

(1)
ij ; i ̸= j.

(5.10)

Now to find the difference between two subsequent increments by subtracting the

stress at (k)th increment from (k + 1)th increment,

∆σ
(k+1)
ii = σ

(k+1)
ii − σ

(k)
ii (5.11)

yields to the normal and shear stress increments,

∆σ
(k+1)
ij = 2Gα∆t−α

k∑
j=1

λ
(α)
j ∆ε̃

(k−j+2)
ij + 2Gα∆t−αλ

(α)
k+1ε̃

(1)
ij

+ 3Kβ∆t−β

k∑
j=1

λ
(β)
j ∆ε̄(k−j+2) + 3Kβ∆t−βλ

(β)
k+1ε̄

(1) ; i = j,

∆τ
(k+1)
ij = Gα∆t−α

k∑
j=1

λ
(α)
j ∆γ

(k−j+2)
ij +Gα∆t−αλ

(α)
k+1γ

(1)
ij ; i ̸= j.

(5.12)

Substituting the definitions of the deviatoric and mean strain terms, the difference

between the two subsequent time steps at (k)th and (k + 1)th becomes,

∆σ
(k+1)
ij =

4

3
Gα∆t−α

k∑
j=1

λ
(α)
j

(
∆ε

(k−j+2)
11 − ∆ε

(k−j+2)
22 +∆ε

(k−j+2)
33

2

)

+Kβ∆t−β

k∑
j=1

λ
(β)
j ∆ε(k−j+2)

v

+ [2Gα∆t−αλ
(α)
k+1ε̃

(1)
ij + 3Kβ∆t−βλ

(β)
k+1ε̄

(1)] ; i = j,

∆τ
(k+1)
ij = Gα∆t−α

k∑
j=1

λ
(α)
j ∆γ

(k−j+2)
ij + [Gα∆t−αλ

(α)
k+1γ

(1)
ij ] ; i ̸= j.

(5.13)

The bracketed terms in the above equations will not contribute to the Jacobian.
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Recalling the definitions of the deviatoric and mean stresses,

ε̃ij(t) = εij(t)− ε̄(t)δij , ε̄ =
∑ εii

3
(5.14)

∂∆σ
(k+1)
ii

∂∆ε
(k+1)
ii

=
4

3
Gα∆t−αλ

(α)
1 +Kβ∆t−βλ

(β)
1 , (5.15)

∂∆σ
(k+1)
ii

∂∆ε
(k+1)
jj

= −2

3
Gα∆t−αλ

(α)
1 +Kβ∆t−βλ

(β)
1 , (5.16)

∂∆σ
(k+1)
ij

∂∆γ
(k+1)
ij

= Gα∆t−αλ
(α)
1 , (5.17)

where λ
(α)
1 = λ

(β)
1 = 1.

As a side note, the same relations can be directly obtained from the indicial represen-

tation of the stress,

σij(t) =

∫
[(KR −

2

3
GR)δijδkl +GR(δikδjl + δilδjk)]ε̇kl(τ)dτ. (5.18)

The formulation outlined above is essential for characterizing the constant order frac-

tional material behavior. To benchmark and evaluate the material subroutine, this

study selects the ramp-hold relaxation and ramp-hold creep problems for compara-

tive analysis. An analytical solution for these problems is sought to establish a ref-

erence against which the performance of the material subroutine can be tested. This

approach ensures a rigorous validation of the subroutine by comparing its results with

well-established analytical solutions, thereby assessing its accuracy and reliability.

In the parameter estimation study we assume fraction order for the volumetric and

shear response of the material is governed by the same fractional order, β(t).

5.1.1 Analytical Solution to Ramp-Hold Relaxation

The displacement function is a ramp-hold type characteristic so that the strain func-

tion becomes

εxx(t) = ϵ[t ·H(t)− t ·H(t− 1)−H(t− 1)]. (5.19)

Given the stress-strain relationship

σij(t) =

∫ t

0

Rijkl(t− τ)ε̇kl(τ)dτ, (5.20)
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and the relaxation functions

KR(t) =
Kβt

−β

Γ(1− β)
, GR(t) =

Gβt
−β

Γ(1− β)
, (5.21)

the derivative of the strain function becomes

ε̇kl(t) = ϵ(H(t)−H(t− 1))δkl. (5.22)

Furthermore, the relaxation function is expressed as

Rijkl(t) = [KR(t)−
2

3
GR(t)]δijδkl +GR(t)(δikδjl + δilδjk). (5.23)

Replacing the i, j indices with x and expressing the normal component of the stress

in x direction, we obtain

σxx(t) =

∫ t

0

[(
Kβ −

2

3
Gβ

)
(t− τ)−β

Γ(1− β)
δkl + 2

Gβ(t− τ)−β

Γ(1− β)
δxkδxl

]
ε̇kl(τ)dτ.

(5.24)

Performing the indicial operations, and assuming the applied strain in x direction

yield

σxx(t) =

∫ t

0

[
Kβ(t− τ)−β

Γ(1− β)
+

4

3

Gβ(t− τ)−β

Γ(1− β)

]
ϵ(H(τ)−H(τ − 1))dτ. (5.25)

After integrating, the stress response can then be obtained as,

σxx(t) =

[
Kβ

t1−β

Γ(2− β)
+

4

3
Gβ

t1−β

Γ(2− β)

]
ϵH(t)

−
[
Kβ

(t− 1)1−β

Γ(2− β)
+

4

3
Gβ

(t− 1)1−β

Γ(2− β)

]
ϵH(t− 1).

(5.26)

5.1.2 Analytical Solution to Ramp-Hold Creep

In the creep test, the load is kept constant and strain is recorded. Application of the

load requires a physical ramp-hold characteristic. Therefore, the stress is imposed as

σxx(t) = σ(t ·H(t)− t ·H(t− 1) +H(t− 1)), (5.27)

σtH(t)− σtH(t− 1) + σH(t− 1) =

∫ t

0

Rxxkl(t− τ)ε̇kl(τ)dτ. (5.28)

Laplace transforming yields to,

σ

s2
− σe−s

s2
− σe−s

s2
+

σe−s

s2
= R̂xxkl · s · ε̂kl. (5.29)
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Rearranging
σ(1− e−s)

s3
= R̂xxklε̂kl (5.30)

and inserting in the viscoelastic stress-strain relationship and Laplace transforming

yields

ε̂(s) =
σ

Kβ +
4
3
Gβ

1− e−s

s2+β
. (5.31)

Last, an application of inverse transforming gives us

εxx(t) =
σ

Kβ +
4
3
Gβ

tβ+1 − (t− 1)β+1H(t− 1)

Γ(2 + β)
. (5.32)

5.1.3 Benchmark Studies for the FE Simulation and Analytical Results

We have already derived Eqs. 5.26 and 5.32 in an effort to extract the analytical

solutions to the ramp-hold type stress relaxation and creep problems. The COF vis-

coelastic model can also be applied to more comprehensive load/deformation prob-

lems by assuming the proper mathematical formulations of the description of the load

or displacement.

Generic material properties are assumed to show the correspondence between the

derived analytical and developed numerical solutions.

Eq. 5.15, Eq. 5.16, and Eq. 5.17 are coded as UMAT (user material) subroutine

in FORTRAN language. The subroutine code is called externally in the commercial

Abaqus finite element analysis software. The routine calculates the material response

as formulated in Eqs. 5.15, 5.16, 5.17. For the FE model and the analysis, the SI-

metric consistent unit system is chosen as [m, N, kg, s, Pa, J, kg/m3].

To test the UMAT routine, a side length of 0.1m cubical part is generated and meshed

as a single element. An eight-noded hexahedral solid element (C3D8) is created in

Abaqus for the fast track of the problem. A step time of 10 seconds with 0.1 seconds

increment size is chosen, see Fig. 5.2. Therefore the analysis time is planned to be

completed in 101 increments of equal time intervals, see Fig. 5.1. Simultaneously,

the analytical solutions to the investigated problems are implemented in MATLAB

according to the specifications outlined in the finite element model.
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Figure 5.1: Definition of the Load Step

Figure 5.2: Definition of Total Analysis Time

The material parameters Kβ , Gβ , and α are specified in the material definition menu

in Abaqus as shown in Fig. 5.3. The bulk modulus and shear modulus are selected to

be 5 · 109 Pa and 3.75 · 109 Pa, respectively. The fractional order is selected to be as

β = 0.3.

For the creep test 1·107 Pa surface pressure is applied on the free surface of the cubical

element as shown in Fig. 5.4. The opposing face of the cubical element is assigned as

XSym boundary condition. In the Abaqus, the ramp-hold type stress or displacement

is defined by the proper definition of load characteristics in the Amplitude feature.

In our runs, the ramp of the load/displacement is defined between 0-1 seconds and

1-10 seconds the load/displacement is kept the same in the hold time. The target hold

stress and the hold displacement are selected as 107 Pa and 0.01 m, respectively.

The analyses are conducted on a personal computer equipped with the following hard-

ware configuration: an Intel Core i7 3.4 GHz processor, 16 GB of RAM, an SSD
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Figure 5.3: Definition of the Material Properties

Figure 5.4: XSym Boundary Condition
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utilizing the SATA III communication protocol, and storage performance metrics of

468.51 MB/s for sequential read and 410.21 MB/s for write operations. A typical

analysis requires 1.8 seconds of CPU time, which is equivalent to the time needed

for analyzing the built-in viscoelastic model with the solver using the one-term Prony

series approximation.

The ramp-hold stress and ramp-hold displacement results are calculated both analyt-

ically and numerically by using the Abaqus. The responses are presented in Fig. 5.5

and Fig. 5.6. The applied strain history is plotted in Fig. 5.5 as the dashed-dotted line.

The right axis shows the applied strain while the left axis shows the stress response

of the material using the CO-UMAT code. It is clear from the figure that, at the early

stages of the loading, the analytical result and the FE result deviate with a small error.

The source of the error stems from the fact that the Grünwald-Letnikov derivative is

an approximation rather than an exact representation. This approximation can intro-

duce discrepancies between the theoretical model and practical observations. Conse-

quently, the accuracy of the derived results may be affected. Therefore increasing the

time or decreasing the time steps reduces the error.

The same observation is valid for Fig. 5.6. This time, the CO-UMAT code has been

tested using a ramp-hold creep test, which simulates mechanical creep testing. Al-

though the FE results and the analytical solution exhibit discrepancies at the initial

stages of loading, they swiftly converge to the same value at later stages of the analy-

sis.

The comparison between the subroutine (FEA) results and the analytical results re-

veals that both methods yield comparable estimations. The minor discrepancy ob-

served between the numerical and analytical outcomes is attributed to the use of a

finite difference approach for calculating the Grünwald-Letnikov derivative. This

method represents a numerical approximation rather than an exact differentiation of

the constant fractional order derivative of the function in question.
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Figure 5.5: COFSB Model Response Against Ramp-Hold Strain

5.2 UMAT Development for Variable Order Model

The stress-strain relationship is presented in the previous section. In this section,

derivations for the variable order fractional viscoelasticity will be presented. As dis-

cussed before the stress-strain relationship for a viscoelastic continuum is given as

σij(t) =

∫ t

0

R̃ijkl(t− τ)ε̇ij(τ)dτ, (5.33)

where R̃ijkl denotes the fourth order variable order fractional relaxation tensor func-

tion. The relaxation function has been shown as Rijkl without a tilde, previously.

We intend to emphasize the relaxation function constituted of variable fractional or-

der. Here the description of the variable order fractional relaxation tensor function is

expressed by its variable order (VO) bulk modulus, K̃R(t), and VO shear modulus,

G̃R(t):

R̃ijkl(t) = [K̃R(t)−
2

3
G̃R(t)]δijδkl + G̃R(t)[δikδjl + δilδjk]. (5.34)
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Figure 5.6: COFSB Model Response Against Ramp-Hold Stress

Assuming the fractional order depends only on the time variable, the VO bulk modu-

lus and the VO shear modulus at every time increment are then expressed as

K̃R(t) = K̃Ri
=

Kβt
−βi

Γ(1− βi)
, G̃R(t) = G̃Ri

=
Gβt

−βi

Γ(1− βi)
. (5.35)

In Eq. 5.35, Kβ , and Gβ are bulk modulus and shear modulus constants, respectively.

Now, the necessary definitions are complete to express the normal and shear stress

formulations. When the above are combined and expanded, normal and shear stress

responses of the VO fractional viscoelastic continuum are obtained in terms of their

VO fractional volumetric and VO fractional deviatoric functions,

σij(t) = 2G̃β(D
β(t)ε̃ij)(t) + 3K̃β(D

β(t)ε̄)(t) ; i = j,

τij(t) = G̃β(D
β(t)γij)(t) ; i ̸= j,

(5.36)

where ε̃ij(t) = εij(t) − ε̄(t)δij and ε̄ =
∑3

1 εii/3. The time discretization of the

variable order fractional derivative operator can be expressed as Grünwald-Letnikov

definition of the fractional derivative using the finite difference method,

(V O−GLDβ(t)f)(t) = (V O−GLDβ(t)f)(k∆t) = lim
∆t→0

k+1∑
j=1

∆t−βj λ̃
(βj)
j f (k−j+2). (5.37)
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The binomial coefficients of a variable order are expressed [43, 147] as λ̃
(βj)
j . For

each particular time increment, the fractional order takes its j th value, and the whole

sequence of variable order binomial coefficients is calculated corresponding to that

order value. Therefore, the binomial coefficients for the variable order fractional

derivative are expressed as,

λ̃
(βj+1)
j+1 =

j − 1− βj

j
λ̃
(βj)
j with λ̃

(βj)
1 = 1. (5.38)

The calculation method of the variable order binomial coefficients is already pre-

sented in Alg.1.

The above definitions constitute the foundation of the VO stress formulations. Then,

the stress formulation of variable order fractional continuum is expressed as for the

(k + 1)th time increment

σ
(k+1)
ij = 2

k+1∑
j=1

G̃
(j)
βj
∆t−βj λ̃

(βj)
j ε̃

(k−j+2)
ij + 3

k+1∑
j=1

K̃
(j)
βj
∆t−βj λ̃

(βj)
j ε̄(k−j+2),

τ
(k+1)
ij =

k+1∑
j=1

G̃
(j)
βj
∆t−βj λ̃

(βj)
j γ

(k−j+2)
ij .

(5.39)

As we have done in the constant order model, the upper bound of the finite summa-

tions in the stress formulations should be made equal to perform calculations.

Rearranging by expanding the (k + 1)(th) term in the summation 5.39, we get

σ
(k+1)
ij = 2

k∑
j=1

G̃
(j)
βj
∆t−βj λ̃

(βj)
j ε̃

(k−j+2)
ij + 2G̃

(k+1)
βj

∆t−βk+1λ̃
(βk+1)
k+1 ε̃

(1)
ij

+ 3
k∑

j=1

G̃
(j)
βj
∆t−βj λ̃

(βj)
j ε̄(k−j+2) + 3K̃

(k+1)
βj

∆t−βk+1λ̃
(βk+1)
k+1 ε

(1)
ij ,

τ
(k+1)
ij =

k∑
j=1

G̃
(j)
βj
∆t−βj λ̃

(βj)
j γ

(k−j+2)
ij + G̃

(k+1)
βj

∆t−βk+1λ̃
(βk+1)
k+1 γ

(1)
ij .

(5.40)

If the two subsequent stresses are written in the form,

∆σ
(k+1)
ii = σ

(k+1)
ii − σ

(k)
ii ,

∆τ
(k+1)
ii = τ

(k+1)
ii − τ

(k)
ii ,

(5.41)

then the stress increment is obtained. To obtain the stress increment at two subsequent

stress increments, the deviatoric and mean strains should be written in open form to
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perform the calculations.

∆σ
(k+1)
ij = 2

k∑
j=1

G̃βj
∆t−βj λ̃

(βj)
j ∆ε̃

(k−j+2)
ij + 2G̃

(k+1)
βj

∆t−βk+1λ̃
(βk+1)
k+1 ε̃

(1)
ij

+ 3
k∑

j=1

K̃βj
∆t−βj λ̃

(βj)
j ∆ε̄(k−j+2) + 3K̃

(k+1)
βj

∆t−βk+1λ̃
(βk+1)
k+1 ϵ

(1)
ij ,

∆τ
(k+1)
ij =

k∑
j=1

G̃βj
∆t−βj λ̃

(βj)
j ∆γ

(k−j+2)
ij + G̃βj

∆t−βk+1λ̃
(βk+1)
k+1 γ

(1)
ij .

(5.42)

Expanding the deviatoric and mean strains yields to,

∆σ
(k+1)
ij =

4

3

k∑
j=1

G̃βj
∆t−βj λ̃

(βj)
j

(
∆ε

(k−j+2)
11 − ∆ε

(k−j+2)
22 +∆ε

(k−j+2)
33

2

)

+
k∑

j=1

K̃βj
∆t−βj λ̃

(βj)
j ∆ε(k+1)

v

+ [2G̃βj
∆t−βj λ̃

(βj)
k+1ε̃

(1) + 3K̃βj
∆t−βj λ̃

(βj)
k+1ε̄

(1)],

∆τ
(k+1)
ij =

k∑
j=1

G̃βj
∆t−βj λ̃

(βj)
j ∆γ

(k−j+2)
ij + [G̃βj

∆t−βj λ̃
(βk+1)
k+1 γ

(1)
ij ].

(5.43)

The bracketed terms in the above equations will not contribute to the Jacobian. Hence

we obtain

For k = 0, λ̃0 = 1,

∂∆σ
(k+1)
ii

∂∆ε
(k+1)
ii

=
4

3
G̃βj

∆t−βj λ̃
(βj)
1 + K̃βj

∆t−βj λ̃
(βj)
1 ,

∂∆σ
(k+1)
ii

∂∆ε
(k+1)
jj

= −2

3
G̃βj

∆t−βj λ̃
(βj)
1 + K̃βj

∆t−βj λ̃
(βj)
1 ,

∂∆σ
(k+1)
ij

∂∆γ
(k+1)
ij

= G̃βj
∆t−βλ̃

(βj)
1 .

(5.44)

5.2.1 Benchmark Studies for Variable Order UMAT (VO-UMAT) Code

CO-UMAT benchmark test with the ramp-hold stress and ramp-hold strain has shown

that the maximum error is observed during the ramp of the load. Loading for the creep

and the stress relaxation causes fast convergence of the solution. The efficiency of the
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code should be tested in the worst possible scenario. Because of this motivation, the

benchmarking of the VO-UMAT code is done for ramp loading only.

The generic material parameters are selected to test the code. The bulk modulus and

shear modulus constants are selected as 500 MPa and 375 MPa, respectively. The rate

of displacement is applied as 0.01 mm/s for the single cubical element that has a side

length of 0.1 mm.

The code is constructed so flexibly that by imposing the history of the fractional

order as a vector array in the FORTRAN environment the whole theoretical domain

of the fractional viscoelastic continuum can be analyzed for load and displacement

responses. This corresponds to the fractional order can be varied from 0 to 1. At

marginal values of the fractional order, the model should portray purely elastic and

purely viscous behaviors, respectively.

To assess the efficiency of the VO-UMAT code, eight distinct cases are investigated.

A summary of these cases is provided in the Table 5.1. The VO-UMAT code is

tested across a spectrum ranging from purely elastic to purely viscous behaviors.

Additionally, the efficiency of the VO-UMAT code is evaluated for both the CO and

VO cases.

Table 5.1: Summary of Investigated Cases for Definition of the Fractional Order

Case Behavior Type Equation for β(t) Figure

1 Purely Elastic β(t) = 0 Fig. 5.7

2 Purely Viscous β(t) = 1 Fig. 5.8

3 COF Viscoelastic β(t) = 0.3 Fig. 5.9

4 COF Viscoelastic β(t) = 0.5 Fig. 5.10

5 COF Viscoelastic β(t) = 0.8 Fig. 5.11

6 VOF Viscoelastic β(t) = 0.04tH(t) Fig. 5.12

7 VOF Viscoelastic β(t) = (0.4− 0.04t)H(t) Fig. 5.13

8 VOF Viscoelastic β(t) = 0.4H(t)− 0.06(t− 5)H(t− 5) Fig. 5.14

The cases from 1-5 correspond to the constant fractional order material models. Cases

6-8 represent four different possibilities that the fractional order may vary. The VO
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fractional models are selected to yield hardening and the softening behavior of the

material. The analytical solutions corresponding to the FEA results calculated using

the VO-UMAT code are compared in Figs. 5.7—5.14. The maximum error calculated

between the analytical solution and FEA results is printed on the plot for each case.

Also, the trend of the fractional order is printed as a subplot in the main plot area in

each case.

The perfectly elastic case is illustrated in Fig. 5.7. For a fractional order of β(t) = 0,

the analytical solution corresponds to Hooke’s law. The analytical solution presented

in Chapter 3 is compared with the VO-UMAT result, demonstrating excellent agree-

ment between the two methods.

Figure 5.7: Case-1 VO-UMAT Benchmark Result

The UMAT code also accurately simulates the dashpot behavior. The dashpot behav-

ior is also simulated in Abaqus. Fig. 5.8 presents a comparison between the analytical

and VO-UMAT results for Case 2. When the fractional order is set to unity for the

entire time period, β(t) = 1, the stress response aligns perfectly with the analytical

solution.
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Figure 5.8: Case-2 VO-UMAT Benchmark Result

Figure 5.9: Case-3 VO-UMAT Benchmark Result
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Cases 3, 4, and 5 examine the efficiency of the method for constant fractional-order

scenarios. In the benchmarking study, fractional orders of 0.3, 0.5, and 0.8 are se-

lected. Each case exhibits excellent agreement with the corresponding analytical so-

lution as shown in Figs. 5.9, 5.10, and 5.11.

Figure 5.10: Case-4 VO-UMAT Benchmark Result
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Figure 5.11: Case-5 VO-UMAT Benchmark Result

Cases 1 to 5 represent the constant fractional order cases where Case-1 and Case-2

have special meaning. Case-1 represents the ideal Hookean solid (β(t) = 0, Fig. 5.7),

while Case-2 represents the Newtonian liquid (β(t) = 1, Fig. 5.8). The VO-UMAT

code is capable of calculating the material response with great agreement with the

analytical solution for the ramp displacement.

The computed stress error between the VO-UMAT result and analytical solution is

calculated as:

Error = |σAnalytical Solution − σVO-UMAT Result|. (5.45)

Case 6 represents the softening behavior of the fractional viscoelastic material. The

fractional order linearly increases starting from the purely elastic case as shown in

Fig. 5.12.
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Figure 5.12: Case-6 VO-UMAT Benchmark Result

Case 7 and Case 8 represent two different hardening behavior. For the former, the

fractional order and the time are directly inverse proportional as shown in Fig. 5.13.

The latter represents the hardening behavior that is triggered after some time. In other

words, the fractional order remains constant at 0.4 until the 5 s, then gradually reduces

to 0.1.

In cases 6, 7, and 8 the amount of error between the analytical solution and the FEA

result is calculated at around 1%.
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Figure 5.13: Case-7 VO-UMAT Benchmark Result

Figure 5.14: Case-8 VO-UMAT Benchmark Result
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CHAPTER 6

EXPERIMENTAL VERIFICATION

In Chapter 4 the efficiency of the parameter estimation method is shown with the

synthetic test data. The models assumed in Chapter 4 have sudden changes in the

fractional order trend. From the mechanical engineering perspective, such abrupt

changes are not anticipated. Therefore, the developed model is expected to predict

the material parameters with an even improved uncertainty.

In this chapter, the experimental validation of fractional viscoelastic materials is in-

vestigated through a systematic two-stage approach. The primary objective is to as-

sess the mechanical response of these materials under controlled loading conditions

and to establish a reliable correlation with the proposed material model.

In the first stage, tensile tests are conducted on the specimens using a universal ten-

sile testing machine without any specialized auxiliary equipment. This initial phase

provides fundamental stress-strain data, serving as a baseline for further analysis.

However, a more comprehensive validation requires additional experimental insights.

In the second stage, the focus shifts towards correlating the material model with

the estimated material parameters and the user-defined material subroutine (UMAT)

code. A key aspect of this correlation is the determination of the instantaneous Pois-

son’s ratio, which is crucial for an accurate definition of the material behavior. To

fully characterize the material properties, both bulk and shear properties must be ex-

tracted, necessitating the simultaneous measurement of lateral contraction and axial

elongation.

A significant challenge in this context arises from the limitations of conventional

strain gauges. Since most strain gauges are restricted to measuring strains below ap-
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proximately ε ≤ 3%, they are unsuitable for tests involving higher strain levels. Given

that the test strain exceeds this limit, a contactless strain measurement method is em-

ployed to ensure accurate and reliable data acquisition. This approach enables precise

strain evaluation without the constraints imposed by contact type sensor limitations,

thereby enhancing the fidelity of the experimental results. However, contactless mea-

surement methods do inherently carry certain measurement uncertainties as well. In

the upcoming section, we will discuss these uncertainties in detail.

By adopting this rigorous methodology, the study aims to provide a robust exper-

imental foundation for the validation of fractional viscoelastic models, ultimately

contributing to the broader understanding of the mechanical behavior of such ma-

terials.

6.1 Experimental Studies with Simple Tension Test

Experimental investigations have been performed using a Zwick/Roell Z020 uniaxial

tension testing apparatus, as depicted in Fig. 6.1. PTFE, PE300, and Ethylene Vinyl

Acetate (EVA) which is commercially known as hot glue silicone are selected as the

tensile test materials. Their glass transition temperature is well below the room tem-

perature according to the literature and supplier data. The test samples are prepared

from either sheet material or round bars. To remove residual stresses from the surface

of the bulk material, a machining process is applied to remove at least 60% of the

initial thickness from all sides of the material. The dimensions of the specimens are

specified according to ASTM D638-14 standards [148]. Following the machining, the

specimens are conditioned in a laboratory environment at a temperature of 23 ± 2◦

for a duration exceeding 96 hours before testing, in accordance with Procedure A

described in ASTM D618 [149].

The specimens are subjected to predetermined constant strain rate deformations by

configuring the test equipment to operate in displacement-controlled loading mode.
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Figure 6.1: Uniaxial Tension Test Equipment Zwick/Roell Z020

PE300, PTFE, and EVA uniaxial tension test specimens are fabricated in order to

obtain the material parameters. The PE300 and EVA specimens are round-shaped

standard test specimens with a gage length of 158 mm and 20 mm, respectively. Their

crossectional diameters are 9.97 mm and 11.05 mm. The crosshead displacement

velocity is set for each specimen according to its initial gage length so that the rate

of strain value is to be as specified in Table 6.1 for each specimen. PTFE specimens

are dogbone shaped with a cross-sectional area of 41.9 mm2 and 41.15 mm2, a gage

length of 38.6 mm and 38.75 mm. PTFE specimens are subjected to two different

strain rates to see the effect of strain rate. Round and dogbone shape specimens and
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the tension test environment are presented in Fig. 6.2 and Fig. 6.3.

Figure 6.2: PE300 Round Specimen

Figure 6.3: PTFE Dogbone Specimen
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The estimated pattern of the fractional order against strain is plotted for each of

PE300, PTFE, and EVA. PE300 shows linear elastic behavior until 0.018 strain level.

The linear elastic behavior can be distinguished from Fig. 6.4. Obviously, the frac-

tional order being zero portrays the linear elastic behavior which is evident in Fig. 6.4

and Fig. 6.5.

The fitted material parameters are presented in Table 6.1. Using the estimated material

parameters and the variable-order fractional constitutive equation, the stress-strain

responses for each specimen are computed.

To validate the material parameter estimation process, the coefficient of determina-

tion, commonly known as R-squared (R2), is computed using Eq. 6.1. The R2 metric

quantifies the goodness of fit between the experimental data and the model predic-

tions.

R2 = 1− sum squared regression (SSR)
total sum of squares (SST)

= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (6.1)

where yi represents the actual measured values of the dependent variable y at each

data point, ȳ is the mean of the observed values, and ŷi denotes the predicted values

derived from the regression model based on the independent variables.

Table 6.1: Estimated Material Properties

Material E (MPa) θ (s−βi) ε̇ (s−1)

PE300 745.57 0.023784 0.2

PTFE-1 129.83 0.000796 0.1

PTFE-2 198.81 0.0426 1.0

EVA 2.44 0.1344 0.2

The stress response of the material is computed from the estimated parameters, and

the experimental stress-strain data are plotted together for a comprehensive verifica-

tion study. To evaluate the accuracy of the material parameter estimation, discrep-
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ancies between the calculated and measured stress responses are presented in the

corresponding stress-strain diagrams (see Figs. 6.5, 6.7, 6.9, and 6.11). Furthermore,

for each test instance, the R-squared values are computed to quantify the goodness

of fit. Additionally, the estimation error in the stress measurements is illustrated on

the right axis of the diagrams. The analysis reveals that the error remains consistently

below 1 MPa across all tested instances, highlighting the reliability of the estimation

process.

Figure 6.4: PE300 Order-Strain Relation

As observed from Fig. 6.5, PE300 exhibits an initial toeing region. In the initial toe-

ing region, the model generates negative fractional orders, which are approximated

to zero for the alignment with the initial assumption. In the absence of such a con-

straint, the fractional order tends to be affected by significant noise at the early stages

of the application of the deformation. By disregarding the negative fractional or-

der, in alignment with our initial assumption, more consistent and reliable results are

achieved.

The estimated stress error in PE300 remains below 1 MPa, with the greatest discrep-

ancy observed in the initial toeing region, as illustrated in Fig. 6.5. In the regions

located outside the initial toeing zone, the relative error between the measured and
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estimated stresses demonstrates a high level of confidence.

Figure 6.5: PE300 Experimental and Calculated Stress Strain

Figure 6.6: PTFE-1 Order-Strain Relation
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Figure 6.7: PTFE-1 Experimental and Calculated Stress Strain

The PTFE-1 specimen is tested to assess the large deformation performance of the

developed model. Compared to PTFE-2, PTFE-1 is subjected to a slower deformation

rate. The strain rate is ε̇ = 1.0 s−1 for the PTFE-1 specimen, which is ten times higher

than that of the PTFE-2 specimen (ε̇ = 0.1 s−1).

Another key difference between the two specimens is that PTFE-1 is pulled up to a

strain of ε = 3.7, whereas PTFE-2 is deformed only up to ε = 0.18. In both cases, the

specimens exhibit nearly perfect linear elastic behavior up to approximately ε = 0.05.

These observations are derived from the data presented in Figs. 6.7 and 6.9.

The estimated fractional orders indicate that the change in fractional order for PTFE-1

is less pronounced than for PTFE-2, see Figs. 6.6 and 6.8. The error in the estimated

response of the PTFE-1 specimen is higher than that observed for PTFE-2. This dis-

crepancy may arise due to the large deformation experienced by the PTFE-1 specimen

during loading.
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Figure 6.8: PTFE-2 Order-Strain Relation

Figure 6.9: PTFE-2 Experimental and Calculated Stress-Strain

The hot glue material test demonstrates excellent agreement between the measured

and calculated stresses, with an overall error of less than 0.001 MPa. The model ef-

fectively estimates the fractional orders. Notably, a unique conclusion drawn from
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the testing of this material is the near absence of a purely elastic region. This obser-

vation implies that the material exhibits significant time-dependent behavior even at

the onset of deformation.

Especially, Fig. 6.10 clearly illustrates minor noise-like deviations in the fractional

order, particularly at strains below ε = 0.5. A similar phenomenon is barely ob-

servable in the PE300 specimen, as seen in Fig. 6.4, but it is more pronounced and

dramatic in Fig. 6.10.

Figure 6.10: EVA Order-Strain Relation
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Figure 6.11: EVA Experimental and Calculated Stress-Strain

PTFE-1 and PTFE-2 specimens exhibit a distinct pattern when the fractional order

is examined. Initially, the PTFE specimens display linear elastic behavior during the

early stages of deformation; however, the fractional order subsequently exhibits an

abrupt jump to a higher value, followed by a gradual increase over deformation. In

contrast, the fractional order versus strain diagrams for PE300 and EVA materials do

not show such sudden jumps, indicating a more continuous evolution of the fractional

order with strain.

Overall, the proposed method shows significant promise in accurately estimating real

material parameters. It remains effective even in the presence of small, nonsystematic

deviations in the fractional order. This approach appears to outperform the method

employed by authors in [5]. A major advantage of the current method is that it does

not require a predetermined functional form for the fractional order. In contrast, much

of the existing literature on parameter identification in fractional viscoelasticity relies

on the assumption of a predefined form for this variable order [79, 104, 109, 150, 151].

Next, we extend our experimental test campaign by incorporating the instantaneous

material properties derived from the measurements taken from the longitudinal and

transverse deformation.
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6.2 Experimental Studies with Video Equipment

In the preceding section, the sequence of the fractional order and the material param-

eters are determined based on a one-dimensional simple tension test. On the other

side, the stress-strain response of the VO-UMAT code for the material is evaluated

for a single cubical element.

While the tension test provided valuable insights into the material behavior under uni-

axial stress, it does not account for the volumetric response of the material, which is

crucial for a more comprehensive understanding of its mechanical properties. This

section, however, presents the parameter estimation studies that incorporate the vol-

umetric behavior of the material, specifically addressing the influence of transverse

strain and therefore the instantaneous Poisson’s ratio. This more complete approach

allows for a better approximation of the mechanical behavior of the material and en-

ables a deeper analysis of its response under various loading states.

PE300 is selected as the test material for this experimental campaign due to its fa-

vorable manufacturability in the form of a standard dogbone-shaped flat specimen.

The flat shape is a natural requirement for video measurement of the specimens. The

rationale behind this selection lies in the challenges encountered in manufacturing

the specimen coupons with alternative materials such as PTFE and EVA. Given their

lower stiffness compared to PE300, fabricating ASTM E8-compliant test specimens

with precise tolerances proved to be difficult. In contrast, PE300 exhibits sufficient

rigidity to allow successful machining within the tolerances specified by the standards

[152], ensuring reliable specimen geometry and consistency in mechanical testing.

The specimen has a thickness of 5 mm, a width of 12.5 mm, and a gage length of

140 mm conforming to the dimensional requirements outlined in ASTM E8.

Two different uniaxial tensile testing machines are employed in the experimental stud-

ies. Although both machines were manufactured by Instron, they differ in terms of

load capacity and auxiliary equipment. Specifically, each machine is designed to

accommodate different levels of force. Strain measurements are conducted using a

Video Extensometer (V-Ext) in one machine, while the other utilized a Digital Image

Correlation (DIC) system, depending on the specific test configuration.
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Figure 6.12: Specimens for V-Ext (Left) and DIC (Right) Tests

The crosshead velocity for the specimens is adjusted according to the values shown

in Table 6.2. The tensile tests are conducted at three different strain rates.

The V-Ext machine is equipped with a 350 kN load cell, whereas the DIC machine

is equipped with a 100 kN load cell. The V-Ext machine is also equipped with a

wide-angle view camera and integrated software that uses gauge markers as reference

points to track their positions throughout the test. In contrast, the DIC machine uti-

lizes two Dantec wide-angle view cameras, each dedicated to capturing the specimen

surface deformation for the longitudinal and transverse directions separately. The

DIC system pre-processes the speckle patterns applied to the specimen surface, iden-

tifies the grid points, and records their displacements in longitudinal and transverse

directions over time. This tracking process is supported by an external software, Is-
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Figure 6.13: DIC Test Setup

tra4D.v4.10, which facilitates the analysis of the captured data. The DIC test setup is

shown in Fig. 6.13.

For clarity, the specimen tested in the machine equipped with V-Ext will be referred

to as V-Ext, while the specimens tested in the machine equipped with DIC equipment

will be denoted as DIC-1, DIC-2, and DIC-3. This notation is adopted to ensure

consistency and ease of reference throughout the analysis.

A total of four specimens are tested in the V-Ext and DIC test setup. The V-Ext

specimen is subjected to a strain rate of 0.01 s−1, while the three DIC specimens are

tested at strain rates of 0.01 s−1, 0.001 s−1, and 0.005 s−1, respectively. Table 6.2

provides a detailed summary of these strain rates.
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Table 6.2: Strain Rates Used in the Experimental Study

Specimen Strain Rate (s−1)

V-Ext 0.01

DIC-1 0.01

DIC-2 0.001

DIC-3 0.005

Regarding data collection, in the V-Ext test, both video sampling and data acquisition

occur at intervals of 0.1 s. In contrast, the DIC test machine records load data at

the same interval of 0.1 s, but images are captured at a frequency of two frames per

second.

The applied stress is calculated using the load data obtained from the load cell for both

experiments. In the V-Ext test, strain in both the longitudinal and transverse directions

is determined from the displacement data of the gauge marks. In the DIC test, the

region of interest for longitudinal and transverse strain measurements is manually

selected within the Istra software. The software then computes the strain values along

with the associated uncertainties in the calculations.

Using the applied stress and the longitudinal video extensometer data, the parameter

estimation study is performed for each specimen as described in Chapter 4. Subse-

quently, the estimated parameters are substituted back into the constitutive equation,

Eq. 3.41, to compute the stress-strain response via an inverse calculation.

Furthermore, an Abaqus model is developed to evaluate the performance of the VO-

UMAT code. During the development process, several technical challenges have

emerged, which offer valuable lessons and help refine our approach. A compre-

hensive discussion of the model, along with an in-depth analysis of the encountered

challenges, is provided in a dedicated section.
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6.2.1 Abaqus Model and VO-UMAT Implementation

For the finite element analysis, the tensile test specimen exhibits pronounced geo-

metrical symmetry, which we exploited to reduce computational costs. Fig. 6.14

illustrates the orthogonal symmetry planes in the half-model of the specimen. Con-

sequently, only one-quarter of the model as depicted in Figure 6.14 is used for mesh

generation. The remaining partitions are excluded from the model to ensure an effi-

cient use of computational resources. The controlled displacement and the symmetry

boundary conditions are imposed on the reduced model.

Figure 6.14: Orthogonal Symmetry Planes of the Model

For the mesh structure of the model, we employ cubical elements, namely first-order

constant strain elements (C3D8) and second-order linear strain elements (C3D20R),

to investigate the impact of element type on the computational results. Fig. 6.15

illustrates an example mesh structure of the analyzed model, along with the mirror

image of the elements used to complete the domain in the half model. This approach

not only clarifies the element configuration but also ensures that the full domain is

accurately represented, thereby enhancing the reliability of the simulation outcomes.
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To fully define the problem, symmetry boundary conditions corresponding to the XY,

YZ, and XZ symmetry planes are imposed simultaneously on the model. This en-

sures that the computational domain accurately reflects the inherent symmetries of

the problem, thereby simplifying the analysis and reducing computational costs.

Figure 6.15: Comparison of Mesh Structures: 1/8 Model (Left) versus 1/2 Model

(Right)

At this point, we would like to highlight a challenge encountered during the im-

plementation of the VO-UMAT code. Instantaneous bulk and shear modulus terms

appear in the VO-UMAT formulation, as shown in Eq. 5.44. Therefore, the instan-

taneous Poisson’s ratio needs to be computed for each data point for the VO-UMAT

code.

Instantaneous bulk and shear modulus are computed from the calculated sequence

of the Poisson’s ratio by extending the relations commonly used in elastic material

properties:

K(t) =
Ef (t)

3(1− 2ν(t))
G(t) =

Ef (t)

2(1 + ν(t))
. (6.2)

Due to uncertainties inherent in non-contact video measurement methods, as well as

other experimental uncertainties, the instantaneous Poisson’s ratio is computed to ex-

ceed its physically plausible limit, especially in the V-Ext test. Consequently, these

calculated values are initially set to a constant value of 0.48 to perform the Abaqus

VO-UMAT implementation of the V-Ext data. However, abrupt fluctuations in the

instantaneous Poisson’s ratio led to convergence errors, causing the analysis to termi-

nate prematurely. To overcome this issue, a curve-fitting approach is employed for
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the instantaneous Poisson’s ratio for V-Ext and DIC specimens, thereby enhancing

the stability of the simulation. The experimentally computed Poisson’s ratio is fitted

to a power function of time. In addressing the convergence problem, the motivation

for fitting Poisson’s ratio to a power function stems from the constitutive model we

initially assumed. Since this model exhibits a strong dependence on a power func-

tion of time and the calculated Poisson’s ratio follows a similar trend, we adopt a

power function of time for Poisson’s ratio. For each experimental time data point, the

Poisson’s ratio entered into the VO-UMAT model is recalculated.

Subsequently, the fitted values are manually entered into the designated section of

the VO-UMAT code (see Appendix-A), where they are used to calculate the instanta-

neous bulk and shear moduli. This approach overcome the stability problems.

After addressing these issues and incorporating the definition of the instantaneous

Poisson’s ratio within the VO-UMAT code, we proceed to evaluate the mesh depen-

dence of the model. This analysis is performed to ensure that the numerical results

are robust and not unduly influenced by the finite element discretization.

A mesh convergence study is performed to assess the mesh sensitivity of the problem

by systematically refining the mesh. The characteristic element size is gradually re-

duced from 5 mm to 0.5 mm, and the impact on the analysis results is summarized

in Table 6.3. For post-processing purposes, the node corresponding to the centroidal

node of the full model is selected. Table 6.3 summarizes the element sizes, number

of elements, computed axial stress at the centroidal node, and computational time.
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Table 6.3: Comparison of Element Types and Sizes in the VO-UMAT Analyses

Element Type Element Size (mm) No. of Elements σ11(MPa) CPU Time (s)

C3D20R

5 13 25.33 0.3

4 34 25.50 1.6

3 44 25.97 2.0

2 136 26.27 4.2

1 1407 26.50 40.0

0.5 9380 26.53 383.3

C3D8

5 13 23.60 0.7

4 34 23.70 0.9

3 44 24.10 1.1

2 136 24.60 1.2

1 1407 25.36 6.6

0.5 9380 25.49 48.4

The characteristic element size and the convergence of the axial stress result, σ11,

are plotted as a function of CPU time in Fig. 6.16. The mesh convergence test is

conducted using the test parameters of the DIC-2 test. As a reference, the axial stress

measured in the DIC-2 test at a strain level of 0.08 is 27.29 MPa. The difference

between the measured and stress calculated by VO-UMAT using C3D20R elements

of size 0.5 mm is 0.76 MPa.

In addition, Fig. 6.17 presents a comparison based on the number of elements used in

the analysis.

115



Figure 6.16: Mesh Convergence Study by Element Size

Figure 6.17: Mesh Convergence Study by the Number of Elements
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It is evident from these figures that reducing the element size beyond 1 mm does not

result in a significant change in the calculated stress, but it does lead to a dramatic

increase in computational effort. This trend is observed for both element types, C3D8

and C3D20R.

Moreover, the mesh convergence study indicates that the C3D8 elements tend to pro-

duce slightly less stress. C3D20R elements yield results that more closely approxi-

mate the experimental data.

A typical result is presented in Fig. 6.18. In the figure, both deformed and undeformed

configurations of the reduced model are illustrated. A uniform stress distribution is

clearly observed around the gauge zone of the specimen.

Figure 6.18: Stress Distribution on the Reduced Model

6.2.2 Comparison of Analytical, UMAT, and Experimental Results

For all test cases, the stress-strain responses obtained from the machine travel data,

as well as from either the video extensometer or digital image correlation results,

are plotted in Figs. 6.19, 6.25, 6.28, and 6.32. For improved visualization, absolute

values are used when plotting the transverse strain in all test cases. Similarly, V-Ext

and DIC test data are presented in Figs. 6.20, 6.26, 6.29, and 6.33, respectively.
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The stress-strain response of the V-Ext test is plotted in Fig. 6.19. The strain in the

longitudinal and the transverse directions are plotted in Fig. 6.20.

Among the four tests, the least noise in the calculated Poisson’s ratio is observed in

the V-Ext data. However, during the early stages of the V-Ext test, the computed

Poisson’s ratio exhibits physically implausible values. As the test progresses, the

Poisson’s ratio values stabilize and follow a power-law decay trend. Fig. 6.22 shows

the correlation between the video extensometer data, model fit calculation, and VO-

UMAT calculation. At the onset of loading, a deviation is observed between the

model fit and the VO-UMAT calculations compared to the extensometer data. This

discrepancy may be attributed to initial measurement uncertainty, Poisson’s ratio es-

timation, or transient effects in the material response. In higher strains, VO-UMAT

overshoots the video extensometer data.

The maximum stress error between the video extensometer data and the VO-UMAT

result is approximately 1.35 MPa. The variable fractional orders exhibit a linear elas-

tic response at the onset of deformation. At higher strain levels, small deviations from

the general trend become clearly noticeable, as illustrated in Fig. 6.22.

Figure 6.19: V-Ext Test Stress-Strain Response
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The applied stress is determined by dividing the instantaneous load by the initial

cross-sectional area of the specimen. The axial strain is computed either from the

crosshead displacement or from the displacement of gauge points along the load axis,

as recorded by a video extensometer. Fig. 6.19 demonstrates that the strain measured

using the V-Ext method is consistently higher than the strain calculated from the

machine travel data. This discrepancy is commonly observed in the experimental

studies that employ an extensometer.

Figure 6.20: V-Ext Test Longitudinal Strain vs Transverse Strain

The longitudinal and transverse strain values are calculated from the corresponding

displacement results measured by video extensometer. Fig. 6.20 presents the abso-

lute value of the transverse strain for better demonstration purposes. The slope of the

transverse strain does not correspond to the general trend observed in the longitudinal

strain at the onset of loading. It becomes more evident when the Poisson’s ratio is

calculated using the strains derived from the video extensometer data. The computed

values of Poisson’s ratio up to 1.2 s exceed 0.5, which suggests the presence of mea-

surement errors in the video extensometer data. However, after approximately 1 s

from the start of the test, a consistent trend in Poisson’s ratio is observed as shown
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in Fig. 6.21. However, the uncertainty in the measurements in the longitudinal and

transverse directions could not be evaluated in the video extensometer test setup.

Figure 6.21: V-Ext Test Poisson’s Ratio
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Figure 6.22: V-Ext Test, Stress-Strain Responses Comparison Study

Unlike the V-Ext data, the DIC method also provided strain uncertainty in longitudi-

nal and transverse directions. For the DIC-1 test the strain uncertainty in the trans-

verse direction is around 1300 µε, and stabilized during the course of the test. In the

longitudinal direction data uncertainty drops to around 500 µε, and seems to approach

600 µε as the test advances. The strain uncertainty is calculated by Istra software as

shown in Fig. 6.23.

121



Figure 6.23: DIC-1 Test Strain Uncertainty

The DIC method estimates the Poisson’s ratio with noticeable noise, as seen in Fig. 6.24,

but all values remain within a physically reasonable range. A power-law decay curve

fit is applied to the calculated Poisson’s ratio. As mentioned earlier, the fitted values

are then used as input for the VO-UMAT model to enhance the stability and accuracy

of the numerical simulations.
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Figure 6.24: DIC-1 Test Poisson’s Ratio

The maximum stress error between the DIC-1 data and the VO-UMAT result is found

approximately 1.13 MPa from Fig. 6.27.

Although the strain rates applied to the V-Ext and DIC-1 specimens are the same,

Figs. 6.19 and 6.25 clearly reveal a deviation in the stress responses between the

DIC-1 and V-Ext tests. Notably, the V-Ext specimen exhibits a stiffer behavior. This

discrepancy can be attributed to a violation of the prescribed thermal conditioning

protocol as per ASTM. The V-Ext specimen is not allowed to stay long enough in the

laboratory environment before testing but is immediately subjected to the test after

staying in the cold environment prior to the test. This observation underscores the

significant impact that proper thermal conditioning has on the test results.
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Figure 6.25: DIC-1 Test Stress-Strain Response

Figure 6.26: DIC1 Test Longitudinal Strain vs Transverse Strain
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Figure 6.27: DIC-1 Test, Stress-Strain Responses Comparison Study

Although the stress-strain plot in Fig. 6.28 and the longitudinal-transverse strain plots

do not show any noisy trend as shown in Fig. 6.29, a high experimental noise mea-

sured in the calculated Poisson’s ratio.

125



Figure 6.28: DIC-2 Test Stress-Strain Response

Figure 6.29: DIC-2 Test Longitudinal Strain vs Transverse Strain
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In contrast to the other tests, the first several data points of the DIC-2 test exhibit

a significantly noisy behavior in the calculated Poisson’s ratio. Nevertheless, the

overall trend is consistent with a power-law decay function. The maximum stress

error between the DIC data and the VO-UMAT result is found less than 1.0 MPa

from Fig. 6.31

Figure 6.30: DIC-2 Test Poisson’s Ratio
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Figure 6.31: DIC-2 Test, Stress-Strain Responses Comparison Study

The stress-strain response derived from the DIC-3 data deviates from both the VO-

UMAT result and the model estimate at the early stages of the test. This discrepancy

is potentially attributable to the use of the approximated Poisson’s ratio value. The

fractional order estimated by the model contains less noisy data as shown in Fig. 6.35

compared to the DIC-2 test, in Fig. 6.31.
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Figure 6.32: DIC-3 Test Stress-Strain Response

Figure 6.33: DIC3 Test Longitudinal Strain vs Transverse Strain
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Figure 6.34: DIC-3 Test Poisson’s Ratio

Figure 6.35: DIC-3 Test, Stress-Strain Responses Comparison Study
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For comparison purposes, stress-strain data obtained from both the V-Ext and DIC

tests are employed to determine the material parameters when modeled using the

constant fractional order viscoelastic Scott-Blair’s spring-pot (COFSB) model. In ref-

erence to the analytical approach we have already derived in Eq. 4.6, for determining

the stress response of the material under constant strain rate loading, the stress-strain

data from each test are utilized to derive the material parameters. To achieve this, the

stress-strain data are fitted to Eq. 4.6 using the least-squares method in conjunction

with the Levenberg-Marquardt algorithm, facilitating the determination of the frac-

tional characteristic number, Ef , and the constant fractional order, α. Figures 6.22,

6.27, 6.31, and 6.35 show the performance of constant order compared to variable

order modeling the viscoelastic behavior.

By analyzing Figs. 6.22, 6.27, 6.31, and 6.35, it is evident that the COFSB model

estimates exhibit a significant estimation error in comparison to the variable-order

viscoelastic model. Model comparison studies further indicate that the relative error

between the CO model and the VO model reflects the divergence behavior as defor-

mation progresses. Additionally, the CO model exhibits a stiffer response at the initial

stages of deformation, leading to a higher relative error.

As a concluding remark for this section, the VO-UMAT model shows a strong cor-

relation with the experimental data. Also, the variable-order fractional viscoelastic

model is superior to the constant fractional viscoelastic model. Furthermore, using

the curve-fit values for the Poisson’s ratio at each increment did not lead to significant

deviations from the experimental measurements.
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CHAPTER 7

CONCLUSIONS AND DISCUSSIONS

The studies presented in this thesis primarily focus on two specific aspects that repre-

sent original contributions to the field of fractional viscoelasticity:

• Variable order fractional spring-pot model parameter estimation studies,

• User material subroutine code in Abaqus for the variable order fractional spring-

pot model.

Initially, we have approached the parameter estimation problem by seeking an ana-

lytical method of determination of the fractional order sequence. However, the pa-

rameter estimation studies conducted with the analytical tools have not consistently

provided a reliable solution under the specified loading conditions. Given the ambi-

guity regarding whether the fractional order is dependent on strain rate for particu-

lar viscoelastic materials, it is essential to determine the sequence of the fractional

variable order under just one constant strain rate deformation. Nevertheless, some

researchers [77, 113] suggest that the fractional order may not be entirely indepen-

dent of strain rate, which limits the available mathematical tools for determining the

fractional order sequence. Alternative to determining the fractional order sequence

analytically, we have proposed using an approach of combined use of least squares

curve fitting and nonlinear constrained optimization to determine the elastic constant,

viscous constant, and the sequence of the fractional order.

The effectiveness of the VO model is demonstrated through a comparison with the

CO model estimates. The superiority of the VO fractional viscoelastic model is high-

lighted in the comparative study of the V-Ext and DIC test methods in Chapter 6.
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Although our proposed method effectively estimates the fractional order sequence,

its validity is limited to constant rate deformations. Employing a constant rate of

deformation is indeed the most convenient approach for determining material param-

eters experimentally, but extending this method to parameter estimation under stress

relaxation and creep behavior would necessitate complex formulations and its exper-

imental validation would require specialized experimental setups. For instance, to

study stress relaxation in a variable order fractional viscoelastic model, the speci-

men would need to be subjected to a constant strain, which implies that temperature

variations during stress relaxation would be necessary due to the absence of strain de-

pendence in such cases. This type of experiment would require a uniaxial tension test

with specific tooling in a thermal chamber. For this reason, we have identified these

scenarios as potential areas for further research and excluded them from the scope of

this work. An extensive experimental campaign could be beneficial for a complete

description of the fractional viscoelastic behavior.

The studies on the constant order parameter estimation using synthetic test data reveal

that the incorporation of Grünwald constants hinders the estimation of the fractional

orders instantly. A convergence period is always required for the solution. When

there is a sudden change in the fractional order, the model cannot adapt well, result-

ing in errors near the points of fractional order change. Additionally, for harmonic

variations in fractional order, the error is slightly higher compared to models with

linearly changing orders.

Studying with real experimental data revealed us hardening and softening behavior

of the material can be well estimated by the variable order fractional spring-pot ele-

ment. The inverse calculation of the stress response, derived from the applied strain

history, demonstrates a remarkable agreement with the empirical data. This corre-

spondence not only validates the accuracy of our inverse analysis methodology but

also reinforces the reliability of the stress-strain model we have employed. The strong

alignment between the predicted stress responses and the actual measurements under-

scores the effectiveness of our approach and enhances the credibility of our results.

Such consistency provides a solid foundation for future research and applications in

this domain.
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One of the significant contributions of this study is the development of user material

subroutine codes. These two subroutines are developed for both constant fractional

order and variable fractional order spring-pot models. Their formulations are detailed

in Chapter 5. The VO-UMAT formulation and its associated code represent the most

comprehensive form of fractional viscoelasticity, encompassing the full spectrum of

fractional viscoelastic behaviors, including both purely elastic and pure viscous re-

sponses. The VO-UMAT subroutine code provided in Appendix A effectively cap-

tures both constant and variable fractional order behaviors. The results from both the

approximate solution and the Abaqus analysis, incorporating the VO-UMAT model,

show a high degree of agreement, further validating the reliability and accuracy of

the formulation developed for the VO-UMAT subroutine. Such consistency between

different analytical approaches to variable order patterns reinforces the credibility of

our findings and provides a strong foundation for further investigation in this area.

The volumetric behavior of PE300 is closely approximated by the VO-UMAT model,

even when the Poisson’s ratio values are replaced by the curve-fit values. Experimen-

tal studies have demonstrated that the Poisson’s ratio is not constant over time. In

particular, if both the bulk and shear moduli are defined using the same fractional or-

der, the Poisson’s ratio would either remain constant or vary linearly with time. This

behavior becomes evident upon recalling Eq. 5.4:

KR(t) =
Kβ(t)t

−β(t)

Γ(1− β(t))
, GR(t) =

Gα(t)t
−α(t)

Γ(1− α(t))
.

The observed trend in the Poisson ratio suggests that the definition of the fractional

order for shear and bulk terms should be distinct. Previously, we have assumed that

β(t) = α(t). However, despite the noise in the calculated Poisson’s ratio and the

inherent uncertainty in the data, the overall trend indicates that defining two sepa-

rate fractional orders would better align with the experimental results. These distinct

fractional orders should independently govern the bulk and shear moduli, ultimately

yielding the experimentally observed power-law behavior of Poisson’s ratio.

When the definitions of the bulk and shear moduli (given in Eq. 6.2) are substituted

into Eq. 7.1 under the assumption of a common fractional order, the terms containing

the fractional order becomes a common factor, therefore, will cancel each other out.
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ν(t) =
3K(t)− 2G(t)

2(3K(t) +G(t))
(7.1)

As a result, Poisson’s ratio loses its dependence on the fractional order. However,

the Poisson’s ratio estimated in this study exhibits a strong correlation with time,

indicating that it retains significant time-dependent terms.

This finding indirectly points to the necessity of employing distinct fractional orders

for the bulk and shear moduli in order to accurately capture the material behavior.

7.1 Future Directions

The studies presented in this work offer a novel perspective on the parameter estima-

tion method of fractional viscoelastic modeling of materials. The parameter estima-

tion method proposed in this study can be further developed by systematically eval-

uating the discrepancy between the estimated and measured stress responses at each

time step. Incorporating a correction loop into the estimation process can help reduce

this discrepancy by allowing for real-time adjustments to the estimated fractional or-

der. This iterative approach aims to minimize the error and enhance the accuracy of

the parameter estimation.

As discussed in the text, using a constant strain rate deformation is likely the most

convenient method for parameter estimation. However, a more comprehensive ap-

proach is required to address a wider range of loading conditions. Our methodology

is valid only for the constant rate of deformation case. A convenient parameter esti-

mation method could be developed to address arbitrary or random loading conditions.

Moreover, alternative parameter estimation methods have been explored, but could

not be fully addressed in this research. Further research is required to advance the

development of potential parameter estimation methods. Additionally, while not cov-

ered in the current study, random variations in the fractional order due to external

or internal factors represent another important area for future research. A dedicated

investigation is needed to examine how randomness on the fractional order influences

material response and its parameter estimation study.
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The proposed parameter estimation method shows promise for real-time application,

suggesting its potential utility in in-situ scenarios.

Our primary hypothesis states that the mechanical response of a viscoelastic material

could be effectively captured using the variable-order fractional spring-pot model.

The developed user material subroutine for the Abaqus model is readily extendable

to more complex variable-order fractional viscoelastic models, such as the variable-

order fractional Kelvin-Voigt model or the variable-order Maxwell model.
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APPENDICES

A. VARIABLE ORDER UMAT SUBROUTINE CODE

C Variable order UMAT code for 3D FRACTIONAL Variable Order Scott Blair Element

C Muhammed Cakir, METU

C Ergin Tonuk (Dr.), METU

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,

2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

C

INCLUDE 'ABA_PARAM.INC'

C

CHARACTER*80 CMNAME

DIMENSION STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),

2 DDSDDT(NTENS),DRPLDE(NTENS),

3 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

4 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

DIMENSION SVector(NTENS)

COMMON str(101,1,8,6)

real*8 bnm,eps,epsvol,Tshr,TBulk,VO(101)

dimension bnm(kinc+1),eps(kinc+1,ntens),epsvol(kinc+1),

1 Tshr(3)

C

C The "CommonBlock" must be modified according to the model size (number of elements) and

C the total number of steps.

C For the entries related to the Bulk Modulus, Shear Modulus, and Poisson Ratio,

C the corresponding variables and their dimensions must be defined in the preamble,

C with a suitable variable assigned to each.

C

str(kinc,noel,npt,1:ntens)=stran(1:ntens)

eps(1:kinc,1:ntens)=str(1:kinc,noel,npt,1:ntens)

C DEFINITION OF VARIABLE ORDER STARTS HERE ***

WRITE(*, *) 'ORDER:', VO(kinc)

C DEFINITION OF VARIABLE ORDER ENDS HERE ***

bnm(1)=1

do k=1,kinc
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bnm(k+1)=(k-1-VO(kinc))*bnm(k)/(k)

end do

C

eps(kinc+1,1:ntens)=eps(kinc,1:ntens)+dstran(1:ntens)

epsvol=sum(eps(:,1:ndi),dim=2)

C

TBulk=0.0

do k1=1,kinc+1

TBulk=TBulk+props(1)*epsvol(kinc-k1+2)*bnm(k1)/(dtime**VO(kinc))

end do

C

do k2=1,ndi

Tshr(k2)=0.0

do k1=1,kinc+1

Tshr(k2)=Tshr(k2)+props(2)*eps(kinc-k1+2,k2)*bnm(k1)/(dtime**VO(kinc))

end do

end do

Tshr=Tshr*4.0/3.0

C

SumTshr=sum(Tshr)

C

do k2=1,ndi

SVector(k2)=TBulk+Tshr(k2)-(SumTshr-Tshr(k2))/2.0

end do

C

do k2=1,ndi

I1=ndi+k2

SVector(I1)=0.0

do k1=1,kinc+1

SVector(I1)=SVector(I1)+props(2)*eps(kinc-k1+2,I1)*bnm(k1)/(dtime**VO(kinc))

end do

end do

C

stress=SVector

C

term1=props(1)/(dtime**VO(kinc))

term2=props(2)/(dtime**VO(kinc))

term3=term1+4.0*term2/3.0

C

do k1=1,ndi

ddsdde(k1,k1)=term3

end do

C

term4=term1-2.0*term2/3.0

C

do k1=2,ndi

do k2=1,k1-1
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ddsdde(k1,k2)=term4

ddsdde(k2,k1)=term4

end do

end do

C

do k1=1,ndi

k2=ndi+k1

ddsdde(k2,k2)=term2

end do

C

RETURN

END
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B. CALCULATION OF THE GRÜNWALD CONSTANTS OF ALG.1, EQ. 3.33

function [ w ] = VO_wcoeffsU( beta,n )

% beta is the Variable Order Fractional order at particular time instant

w(1)=1;

if n>1

for j=1:n

w(j+1)=w(j)*(j-1-beta)/j;

if j+1>n-1; break

end

end

end

end
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C. CALCULATION OF THE STRESS RESPONSE OF A VARIABLE ORDER

FRACTIONAL VISCOELASTIC MATERIAL AS PER ALG.2, EQ. 3.34

% VO MODEL

% VOF Scott Blair Model

%%% MATERIAL DEFINITION STARTS HERE %%%

% Define material parameters E(1x1), theta(1x1), beta(1xn)

% Define problem dt(1x1), T(1xn), t(1xn), c(1x1)

%%% MATERIAL DEFINITION ENDS HERE %%%

eps = c*t; % Calculate Strain history

n = length(eps);

Ebeta = E*theta.^beta;

w(1)=1;

eta = Ebeta.*dt.^(-beta);

VOUp = zeros(n);

W = zeros(n);

for k = 1:n % row

w = VO_wcoeffsU(beta(k),n); %% Calculation of Grünwald constants

for i = 1:k % column

VOUP(k,i) = w(k-i+1)*eta(k);

end

end

for h = 1:n

eta(h) = Ebeta(h)*dt.^(-beta(h));

end

S = (VOUp*eps');
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