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SIMGELER VE KISALTMALAR DiZiNi

Bu ¢alismada kullanilmis bazi simgeler ve kisaltmalar, yanda agiklamalar1 verilmek tizere

asagida listelenmistir.

Simgeler Aciklama

M Diferensiyellenebilir manifold
g Riemann metrigi

\Y Lineer konneksiyon

/R Tiirev doniistimii

[.] Lie braket operatorii

|4 Dikey distribiisyon

H Yatay distribiisyon

U] 1-form

(1,1) tipinde tensor alant

()] 2-form



1. GIRIS

Bilim ve teknolojideki gelismelerin sonucunda, geometri zamanla c¢esitli alanlara
ayrilmistir. Bu alanlardan birisi olan diferansiyel geometri, matematigin tiirev igslemini
kullanarak geometrik problemleri c¢ozen, diferansiyel hesaplamalarin geometriye
uygulandigi bir kolu olmustur. Egriler, yiizeyler ve manifoldlar, modern matematigin en
aktif kullanim alanlarindan biri olan diferansiyel geometrinin inceledigi temel konularin
basinda gelmektedir. Manifoldlar arasinda diferansiyellenebilir doniisiimler tanimlanarak,
manifoldlarin geometrik yapilarini incelemek ve karsilagtirmak miimkiin olmustur. Bu

sayede manifoldlarin temel 6zellikleri ve geometrisi daha anlasilir hale gelmistir.

Riemann manifoldlarin geometrik 6zelliklerini karsilastirmak i¢in kullanilan doniisiimlerin

cesitliliginin az olmas1 6nemli bir eksiklik olarak karsimiza ¢ikmaktadir.

Riemann geometride, izometrik immersiyonlar ve Riemann submersiyon doniisiimleri
olmak {izere iki temel déniisiim vardir. Iki manifold arasindaki izometrik immersiyon
dontisimii kiigiik boyuttan daha yiiksek boyuta tanimlanirken, Riemann submersiyon

dontistimii ise yliksek boyutlu manifolddan diisiik boyutlu manifolda tanimlanur.

Submersiyon teoerisinde Izometrik immersiyonlarin  karsiligi  olan Riemann
submersiyonlar, O’Neill (O’Neill, 1966) ve Gray (Gray,1967) tarafindan 1966 ve 1967
yillarinda ,birbirinden bagimsiz olarak c¢alisilmistir . Giintimiizde ise, O’Neill in teorisi
daha ¢ok kullanilmaktadir. Temel amaci negatif egrilikli manifoladlar1 incelemek olan
Riemann submersiyonlarin, diger manifoldlarin 6zelliklerini de incelemede kullanish
oldugu goriilmiistiir. Manifoldlarin 6zelligine gore birgok farkli Riemann submersiyon
tanim1 yapildi. Anti invaryant (Lee,2013), yar1 invaryant (Akyol, Sar1 ve Aksoy, 2017),
slant (Erken ve Murathan, 2016), yar1 slant (Akyol,2017), quaternionik (Ianus ,Mazzocco
and Vilcu,2008), hemi slant (Akyol ve Giindiizalp, 2016), ve pointwise slant (Lee ve
Sahin,2014) Riemann submersiyonlar da bulunmaktadir. Riemann submersiyonlar fizikte
Kaluza-Klein teoride, siiper kiitle ¢ekim, sicim ve Yung Mills teorilerde kullanilmaktadir

(lanus ve Visinescu,1987).

Son yillarda anti invaryant &€& —Riemann submersiyonlarn bir genellemesi olarak Akyol



ve arkadaglar1 hemen hemen kontak metrik manifoldlardan yari invaryant &€& —Riemann

submersiyon kavramini tanimlayarak bu tiir doniisiimlerin geometrisini arastirdilar (Akyol,

Sar1 ve Aksoy, 2017).

Negatif egrilikli manifoldlar1 inceleyen Bishop ve O'Neill olup, warped carpim
manifoldlar1 olarak isimlendirdikleri yeni bir ¢alisma alanini ortaya ¢ikarttilar. Buradan
hareketle S. Tanno ise hemen hemen degme manifoldlar1 siniflamay1 basarmistir. Bir
hemen hemen degme manifold N de ¢ karakteristik vektor alanini igeren diizlem Kkesitinin

kesitsel egriligi sabit ve ¢ olmak {izere,

1. ¢ > 0ise N sabit kesitsel egrilikli Sasakian manifoldtur,
2. ¢ = 0ise N sabit kesitsel egrilikli bir Kaehler manifolddur,

3. ¢ < 0ise N reel ile kompleks diizlemin warped garpimi

olarak yazilir (Tanno, 1969).

Kenmotsu buradaki tigiincti durumu 1972°de incelemis ve Sasakian olmayan yeni bir yap1
tanimlamistir. Bu yapinin, bir Kaehler manifold ile bir agik araligin warped ¢arpimi olarak
yazilabildigini gostermistir. 1981°de, Kenmotsu‘nun tanimladigi bu yeni yap1 Janssens ve

Vanhecke tarafindan Kenmotsu manifoldu olarak isimlendirilmistir.

Bu tez ¢alismasinda ilk defa Kenmotsu Manifoldlardan Riemann manifoldlara yar1 slant

€L —Riemann submersiyonlar ¢alisilmistir.

Tezin ikinci bolimiinde temel kavramlar ele alindi. Uciincii boliimiinde bir Kenmotsu
Manifolddan bir Riemann manifolda tanimli yar1 slant & —Riemann submersiyon
tanimlandi ve Orneklerle agiklandi. Dordiincii bolimde tanimdan ortaya ¢ikan
distribiisyonlarin ~ geometrik  6zellikleri incelendi. Besinci boliimde tanimlanan
Submersiyon dontistimiiniin Total Umbilikligi ve Total Geodezikligi ele alindi. Son olarak
bir Kenmotsu space formun yar1 slant && —Riemann submersiyon i¢in egrilik 6zellikleri
elde edildi ve yar1 slant &' —Riemann submersiyon tanimindan ortaya c¢ikan

distribiisyonlarin total geodezik olmas1 durumunda Einstein olduklari gdsterildi.



2. TEMEL KAVRAMLAR

Bu béliim bes alt boliimden olusmaktadir. Ik kissmda Riemann submersiyon ve Kenmotsu
manifold tanimlar1 verilmistir. Ikinci bélimde Riemann manifoldlarin altmanifoldlart
tanimlanarak immersiyon ve izometrik immersiyon kavramlari kisaca agiklanmistir. Ugiincii
boliimde submersiyon ifadesi tanimlanmistir. Dordiincii boliimde hemen hemen degme
metrik manifoldlara yer verilmistir. Son boliimde ise Kenmotsu manifoldu ve Kenmotsu
manifoldlarinin altmanifoldlar1 incelenmistir.

2.1. Tanimlar

2.1.1. Tamm M, diferansiyellenebilir bir manifold ve M de tanimli C* vektér alanlarinin

uzay1 y(M) olsun, C*- fonksiyonlarinin uzayi ise C* (M, R) olmak iizere,

g: x(M) X x(M) - C*(M, R) (2.1)

doniistimii 2-lineer, simetrik ve pozitif tanimli ise g ye M iizerinde bir Riemann metrigi ve

(M, g) ikilisine de Riemann manifoldu denir (Hacisalihoglu, 1983).

2.1.2. Tamim M ve N iki Riemann manifoldlar1 arasmda

Y:M > N (2.2)

bir C*- dontisiimiiniin tiirev dontistimii

Yo x(M) - x(N) (2.3)

seklinde gosterilir. Bu dontisiimiin her u € M noktasinda

'LIJ*u! TuM - Tw*(u)N (24)

lineer doniistimiinii vardir.



V(WIS =V (o) (2.5)

dontisiimiinde, f bir fonksiyon ve V bir vektor alan1 olmak iizere, bu doniisiime ¥ nin u

noktasindaki tiirev doniisiimii denir (Yano ve Kon, 1984).

2.1.3. Tanim M bir diferansiyellenebilir manifold tizerinde iki vektor alan1 W, ve W, olsun.
f € C* (M, R) fonksiyonu ele alalim.

L1: (M) X x (M) — x(M) (2.6)

icin [Wy, Wo1f = Wy (Wof) — W, (W,f) seklinde tanimli [, ] fonksiyonuna W, ve W, nin
Lie (parantez) operatorii denir. Lie operatorii asagida verilen 6zellikleri saglar (Yano ve Kon,
1984). v W, Wy, L € y(M)) ve V f,g € C*(M, R) olmak iizere,

I Wy, W] = —[W,, W]
ii. [aW, + bW,, L] = a[Wy, L] + b[W,, L]
i, [[Wy, W], L] + [[Wy, L], Wy | + [[L, W4], W,] = 0

iv.  [fwy, gWs,] = fIW,, Wy] + f(W )W, — g(Wo )W

2.1.4. Tamim M, bir Riemann manifold ve M {izerinde vektor alanlarinin uzayi y(M) olmak

lizere,

Vix(M) X x(M) — x(M) 2.7)

olmak iizere V(U,V) = V,V seklinde tanimh fonksiyon VU,V,Z € y(M))ve V f,g €
C” (M, R) i¢in

i. VU+VZ = VUZ + VVZ

iv.  UyfV =U[f]V + f7,V



V. [U, V] = VUV - VVU

Vi, Ug(V,2) = g(VyV,Z) + g(V,VyZ)

sartlar1 saglaniyorsa V ya M iizerinde bir Riemann konneksiyonu V' ya da U ya gore

kovaryant tiirev operatorii denir (Yano ve Kon, 1984).

2.1.5. Tanim M bir diferansiyellenebilir manifold olsun. VW;, W,, W5 € y(M) i¢in

R:x(M) x x(M) X (M) — x(M) (2.8)

OImak uzere R(Wl, Wz, W3) = R(Wl, Wz)W3 = le VWZ W3 - VWZ le W3 a V[W1‘W21W3 ye

V konneksiyonunun egrilik tensorii denir (Yano ve Kon, 1984).
2.1.6. Tanim M bir diferansiyellenebilir manifold olsun. VW, W,, W5, W, € y(M) icin
K: x(M) x x(M) X x(M) X x(M) - C*(M,R) (2.9)

olmak tizere KWy, Wy, W3, W,) = g(R(Wy, W,)W5, W,) seklinde verilen esitlige M
tizerinde Riemann Chiristoffel egrilik tensorii denir (Yano ve Kon, 1984).

2.1.7. Tanim M bir diferansiyellenebilir manifold ve g de M {izerinde tanimli Riemann
metrigi olsun. Bir p € M igin T,M tanjant uzaym iki boyutlu alt uzay: IT ise VU,V € Il

tanjant vektorleri igin

gRUWVIUY)
gUngWV,V)-gU,v)?

K(I) = (2.10)

esitligine IT diizleminin kesitsel egriligi denir (Yano ve Kon, 1984).

2.2. immersiyon

2.2.1. Tanim M ve M' sirastyla m ve n boyutlu iki Riemann manifoldu olmak tizere
f:M->M (2.11)



bir C*°- dontistimii i¢in,

boyf.(T,M) = m (2.12)

ise f nin p € M noktasindaki ranki m dir denir. Eger boy(M) = rank(f) ise f’ye
immersiyon denir. Burada M, M' nin immersed alt manifoldu olup f birebir ise imbedding
denir. Burada M ye M’ niin gémiilen alt manifoldu ya da sadece altmanifoldu denir
(Hacisalihoglu,1983).

2.2.2. Tanim (M, g) ve (M', g") iki Riemann manifold ve f : M — M' immersiyon olsun.
VYW, W, € x(M) igin

gWy, Wy) = g'(f.(W1), f.(W2))) (2.13)

esitliginde f,”ye izometrik immersiyon denir (Hacisalihoglu,1983).

2.2.3. Tamim M, bir Riemann manifold olsun. M nin her noktasindaki teget uzayina,bir alt
uzay karsilik getiren D doniisiimiine manifold tizerinde bir distribiisyon denir. (Duggal ve
Bejancu.1996).

2.3. Submersiyon

2.3.1. Tanim (M, gy) ve (N, gy) sirastyla m ve n boyutlu iki Riemann manifold olmak

uzere,

l)[): (M' gM) - (N'gN) (214)

icin ranky,(x) = boyN ise Y’ ye x € M noktasinda bir submersiyon denir. Vx € M
icin 1 bir submersiyon ise y’ye M iizerinde bir submersiyon denir.

m ve n pozitif dogal sayilar ve m > n olmak iizere

P:Rm - R (2.15)



doniisiimii i¢in

Y (u,uz, ... um) = (U, uz, ... un) (2.16)

ile verilsin. Bir u € Rm

Y. (x) (v, v2,...vm) = (V1,V2,...Vn) (2.17)

oldugundan 1, diferansiyeli Ortendir. Dolayisiyla projeksiyon donilisimii  bir

submersiyondur.

2.3.1. Ornek

P:R® > R3 (2.18)

Ui+Uy Uz+Uy u5+u6) (2.19)

(u1'u2'u3iu4)_)( \/E ) \/E ) \/E

doniisiimiinde {u1,u2,us,us,usus}, R® nin koordinat sistemini gdstermektedir. Déniisiimiin

Jakobiyen matrisi i, olmak iizere,

(2.20)

s o i

L
V2
0
0

o Sl o
o Sl o

sll"‘ (e} o
sll"‘ (e} o
—

—————]

elde edilir. Dolayisiyla rank 1, = boyR3 = 3 dir. Bu da ¢ déniisiimiiniin bir submersiyon

oldugunu gosterir.

2.3.2. Tamim M ve N sirasiyla m ve n boyutlu Riemann manifold ve ¢y : M — N ye bir
submersiyon olsun. Vu € N igin ¥ ~1(u), (m — n)-boyutlu, M nin bir altmanifoldudur.
(m — n)-boyutlu altmanifolda submersiyon doniisiimiiniin lifleri denir.

2.3.3. Tamim M ve N sirasiyla m ve n boyutlu iki Riemann manifold, i : M — N ye bir

submersiyon olsun. Herhangi bir u € M igin M deki V ve H distriibisyonunu



Vy =V, (@) = ¢ek ., = {U € T,M: Y, (U) = 0} € T,M (2.21)

Ve
Hy=H, W)=V, LcT,M (2.22)
verilsin. Vu uzayina ’nin u noktasindaki dikey uzay1 denir. M deki g metrigine gore Vu

dikey uzayinin dik tiimleyeni olan #;, uzayina ise ’nin u noktasindaki yatay uzay denir.

Boylece M Riemann manifoldu Vu € M igin
TM=V,®H, =V, BV," (2.23)
ortogonal ayrisimina sahiptir.
Vu = cekih,y (2.24)
ile tamimlanir ve V,,’e  submersiyonun dikey distriibisyonu denir.
H, =V," (2.25)
seklinde tanimlanan distribiisyona ise submersiyonun yatay distriibisyonu denir.
2.3.1. Teorem M ve N sirasiyla m ve n boyutlu iki Riemann manifold, v : M — N ye bir
submersiyon ve M’nin dikey distriibisyonu V olsun. Bu durumda vy (p) =xvep € M igin

her V) dikey distriibisyonu 1~ (w) in tanjant uzay: ile gakisir (Falcitelli ve digerleri, 2003).

2.3.4. Tanim (M, gy ) ve (N, gy) sirastyla m ve n boyutlu iki Riemann manifold olmak

iizere, Y : (M, gy) — (N, gy) igin

a) Vp € M igin, ., tirev doniistimii maksimal ranka sahip,

b) Vp € M noktasinda i, doniigiimii yatay vektorlerinin uzunlugunu korur.



sartlar1 saglanir ise 1 doniisiimiine Riemann submersiyon denir.

Vp € M igin y,ptiirev doniisiimii 7, yatay uzayindan Ty, N iizerine bir izometridir, yani

U,V € H, igin

gM(U’ V) = gNl[)*p(l/)*pUﬂ l/)*pV) (226)

dir (O’Neill ve digerleri 1966, 2004).

2.3.1. Onerme (M, g) Ve (N, gy) sirastyla m ve n boyutlu iki Riemann manifold ve

Y (M, gu) — (N, gn) (2.27)

bir Riemann submersiyonu olmak tizere V ve V' sirasiyla M ve N nin Riemann
konneksiyonlar1 ise, M tizerindeki U,V temel vektor alanlart U’, V' temel vektor alanlarina

bagli olsun. Bu durumda,

i gUV)=9'WW, V)
ii.  h[U,V] temel vektor alan1 h[U’,V']] vektor alanina i - baglidir.
iii.  h(VyV) temel vektor alani ve h(V';/V") 3 — baghdir.
iv.  Herhangi bir V €V, icin [U, V]] dikey vektor alamdir (Falcitelli ve

digerleri, 2003).

Riemann submersiyonlar T ve A ile gosterilen O‘Neill tensorleriyle karakterizedir.
VE,,E, € T'(TM) igin

T(Ey, E;) = HVyh VE, + VVyt HE, (2.28)
A(E;, Ey) = HVyp VE, + V3 HE, (2.29)

esitlikleri vardir (O’Neill, 1966).
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2.3.1. Lemma (M, gy) ve (N, gy) iki Riemann manifoldu ve

Y: (M, gu) — (N, gn) (2.30)

bir Riemann submersiyonu olmak iizere X,Y € ¢ek(y,)* ve W,V € cek(y,) igin

wWW = TvW + VyW (2.31)
VvX = hVvX + TvX (2.32)
VxV = AxV + vVxV (2.33)
VxY = hVxY + AxY (2.34)

dir.

2.4. Hemen Hemen Degme Metrik Manifoldlar

2.4.1. Tanim M, (2n + 1) —boyutlu diferansiyellenebilir manifoldu igin, M iizerinde n 1-
form , & bir vektor alani ve ¢, (1,1) tipinde tensor alani olsun.Y W € y(M) igin

n@ =1 (2.35)

ve

P*W = —W + n(W)¢ (2.36)

ozellikleri saglaniyorsa, (¢,&,n) ya M iizerinde hemen hemen degme yapi, bu yap ile
birlikte M manifolduna da hemen hemen degme manifold denir (Yano ve Kon, 1984).
2.4.2. Tanim (M, ¢, &, 1) hemen hemen degme manifold olsun. M {izerinde bir g Riemann

metrigi Vv Wy, W, € y(M) i¢in

nWy) = gy, $) (2.37)
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ve

gleWy, oW5) = g(Wy, Wy) — n(Wy)n(W,) (2.38)

esitligi saglaniyor ise (¢, &,7n,g) ye hemen hemen degme metrik yapi, (M, ¢,¢&,n,g) de

hemen hemen degme metrik manifold denir (Yano ve Kon, 1984).

244, Tannm (M, @,&,7n,g) hemen hemen degme metrik manifold olsun. Bu durumda
VYU,V € y(M) igin,

DU, V) =g, V) (2.39)

olarak tanimlanan ¢ doniistimiine hemen hemen degme manifoldun 2-formu denir (Yano ve
Kon, 1984).

2.4.5. Tanm (M, @, &,7n, g ) hemen hemen degme metrik manifold olsun. ¢ nin Nijenhuis

tensor alani [¢, @] olmak iizere,

[, ] +2dnAE=0 (2.40)

ise hemen hemen degme manifolda normal denir. M, hemen hemen degme metrik manifold

normal ise M ye degme normal metrik manifold denir (Yano ve Kon, 1984).

2.4.6. Tanim (M, ¢, &, n, g ) hemen hemen degme manifold olsun. Eger M hemen hemen

degme manifoldu normal #,; 1-form kapali (dn =0) ve

dd = 2n A D (2.41)

ise hemen hemen degme manifolda Kenmotsu manifold denir (Kenmotsu, 1972).

2.4.1. Teorem (M, @, §,7, g) hemen hemen degme manifold olsun. M hemen hemen degme

manifoldunun bir Kenmotsu manifoldu olmasi i¢in gerek ve yeter sart, V U,V € y(M) igin
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(Vup)V = g(eU, V)¢ — n(V)pU (2.42)

olmasidir (Kenmotsu, 1972).

2.4.1 Sonu¢ (M, @, &,1, g) bir Kenmotsu manifoldu olsun. Bu takdirde, vV U,V € y(M) igin

Vué = —U (2.43)

dir.
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3. KENMOTSU MANIFOLDLAR iLE £:-RIEMANN SUBMERSIYON

Bu boliimde Kenmotsu manifoldlardan Riemann manifoldlara yari slant & —Riemann

submersiyon tanimi verildi ve 6rneklerle agiklandi.
3.1. Tanim (M, ¢, & ,n, gu) bir Kenmotsu manifold, (N, gy) bir Riemann manifold,  :

M — N bir Riemann submersiyon ve ¢ , cek(3p,)’anormal olsun. D; ve D, iki ortogonal

tiimleyen distriblisyon olmak {izere,
cek (¥.) = D1®D; , ¢(Dy) =Dy (3.1)

ve X € I'(D,) igin ¢(D,) ile D, arasindaki ag1 8 olup, sabitise i Riemann submersiyonuna

yari slant &+ —Riemann submersiyon denir. Burada 6’ya submersiyonun slant agis1 denir.

Y, bir Kenmotsu manifolddan, bir Riemann manifolda taniml yari slant &' —Riemann

submersiyon olsun. U € TI'(¢ek (1,)) igin
U=PU+QU (3.2)

yazilabilir. Burada PU € I'(D;) ve QU €T(D,) dir. Diger taraftan , VZ € I'(cek(¥),)),
HZ € T'(cek(P,)?t) icin

7 =VZ+HZ (3.3)
esitligi vardir. Burada Z € I'(TM) dir. Benzer sekilde V € I'(¢cek(3),)) icin
oV =V + wV (3.4)

yazabiliriz ki burada ¢V ve wV sirasiyla, @V nin dikey ve yatay pargalaridir. Diger taraftan
X € T'(¢ek(y)t) icin

@X = BX + CX (3.5)
yazilabilir. Burada BX ve CX, @X in dikey ve yatay parcalaridir. Yatay distribiisyon
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sek(P.)* = wD,Du (3.6)

seklinde yazilabilir. Burada u, wD, ‘nin ortogonal tiimleyenidir. Her iki distribiiyon da
invaryant distribiisyondur. Diger taraftan; U;,V; € I'(cek(,)) ve X € I'(cek(y,)t) icin

g1(wUy, X) = —g1(Uy, BX) 3.7)
ve

91(¢UL, V1) = —g1(Uy, V1) (3:8)
yazilabilir.
3.1. Ornek Bir Kenmotsu manifolddan Riemann manifolda tanimli her invariant Riemann
submersiyon 8 = 0 slant acili, Dg = 0} slant distriibiisyonu ile yar1 slant &€~ —Riemann

submersiyondur.

3.2. Ornek Bir Kenmotsu manifolddan Riemann manifolda tanimli her slant Riemann

submersiyon, D = 0 invariant distriibiisyonu ile yar1 slant £ —Riemann submersiyondur.

3.3. Ornek R? iizerinde Kenmotsu yapiyi

4 4 9 90\ _ yv4 9 _y 9 4 i
a
n=dz=2 (3.10)
gre =dz @ dz+ e ?2Y}  dx' ® dx' + dy' ® dy* (3.11)

ile tanimlayalim. Bu yap1 i¢in bir ¢ bazini

0 d 0 d d 0
{e = ezﬁ,g2 = ezﬁ,% = ezﬁ,a} = ezﬁ,% = eza—yl,s6 = eza—yz,e7 =
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ef—,eg =€’ —,6g = — (3.12)

olarak secelim. R® {izerindeki Kartezyen koordinatlar (ul,uz’vl,vz,z) olmak tizere ggs

Riemann metrigini
grs = € 2Y2 (du' @ du' + dv' ® dv)) + dz ® dz (3.13)

seklinde belirleyelim. F: R% - R icin F(xq, X, X3, X4, Y1, Y2, V3, Var Z) = (X1 + x5, 71 +
Y, SIN AX3 — COS AXy4, V4, Z) seklinde tanimli bir submersiyon olsun. Burada o € (O,g) dir.

Doniistimiin matrisi

1 o0 0 00 0 0 0
[0 0O O 0 1 1 0 0 Of
F.=l0 0 sina —cosa 0 0 0 0 0 (3.14)
lO 0 0 0 0 0 0 1 OJ
0 O 0 0 0 0 0 0 1

seklindedir. Burada

(;ekE,( = Sp{Zl =& — &y Zz = & — &g, Z3 = —cosaé&Ez — sina &4, Z4 = 87} (315)

dir. Diger taraftan cekF,- = Sp{H, = &, + &5, H, = €5 + g5, H; = sina &5 —
cosagy, Hy = €g, Hs = &9} seklindedir. @’nin  tanimindan @Z; = —Z,,@Z, = Z;
seklindedir. Dolayisiyla D; = span{Z;, Z,} segilirse D; invaryant distriibiisyon olur. Benzer
sekilde, gro(®z3,24) = cosa Ve gro(@z4,23) = cosa oldugundan D, = Sp{Z3,Z,}
segilirse, D,, 8 = a slant acili slant distriibiisyon olur. Dolayisiyla F,6 slant agil1 bir yar
slant submersiyon olur. Simdi yatay vektorlerin boyunun korunup korunmadigini

inceleyelim. Gerekli hesaplamalar yapilirsa

grs (F<H1, F<H1)=ggs (H1, H1), ggs (F+<H2, FxH2) =ggo (H2, H2), (3.16)

grs (F<H3, FxH3) = ggo (H3, H3), ggs (F*Ha, FxH1)=ggo (Ha, Ha), (3.17)
grs (F+Hs, FxHs)=ggo (Hs, Hs) (3.18)
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bulunur. Buradan i = 1, ...,5 olmak tizere

grs (F+Hi, F+Hi) = ggro (Hi, Hi) (3.19)

bulunur. Dolayisiyla yatay vektorlerin de boyu korunmus olur ki F bir yart slant

£ —Riemann submersiyondur.

3.1.Lemma (M, ¢, & ,n, gy) bir Kenmotsu manifold, (N, gy) bir Riemann manifold y: M —
N  bir yar1 slant & — Riemann submersiyon olsun. Bu durumda, V X, Y € I'(¢ek (¥, )1)
ve U,V € I'(¢ek (3,)) igin

BT,V + ¢pVyV = VoV + TywV (3.20)

Iu (U, VE+ CTHV + wVyV = TyepV + KV 0V (3.21)
¢TyX + BYYX —n(X)U = VyBX + T,CX (3.22)
wTyX + CVMX = T;BX + HVMCX (3.23)

Iu (U, V) — wAxY + CHVYY = AxBY + V¥ CY + n(Y)X (3.24)
PAyY + BHVYY = VV¥BY + Ay CY (3.25)

seklindedir.

Ispat ¥ U,V € I'cek (,) icin (2.42) ve (3.4) esitlikleri kullanilirsa

Igu(U,VIE=n(V)U = V¢V + VHwV — pVIV (3.26)

bulunur. Buradan (3.26) da, (2.31), (2.32), (3.4) ve (3.5) denklemleri ayni anda isleme tabi

tutulursa

gu(U,V)E = TV + wVy¢V + TywV + KV wV — BT,V — CT,V
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—pVyV — wVyV (3.27)

elde edilir. (3.27) de ki dikey ve yatay parcalar1 karsilastirdigimizda (3.20) ve (3.21)

esitliklerini elde ederiz. Digerleri de benzer sekilde ispatlanabilir.

3.1. Teorem (M, @,&,n,gy) bir Kenmotsu manifold, (N, gy) bir Riemann manifold
Y:M — N bir yari slant €& — Riemann submersiyon olsun. O halde, V W € I'(D,) igin

¢*W = —cos?0W (3.28)

esitligi var olup, 8 , D, distriiblisyonunun slant agisidir.

3.1. Sonu¢ (M, @, & ,1, gy ) bir Kenmotsu manifold, (N, gy) bir Riemann manifold ¢: M —

N bir yann slant &' —Riemann submersiyon olsun. Her W;,W, € I'(D,) ig¢in

Iu(PWy, dW,) = cos?0.gy (W, Wy) (3.29)

ve

Iu(@Wy, wW,) = sin?6 gy (W1, W5) (3.30)

seklindedir.
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4. LIFLERIN GEOMETRISI

Bu boéliimde distribiisyonlarin integrallenebilirlik ve total geodeziklikleri ile ilgili teoremler

verilmis ve ispatlar1 yapilmaistir.

4.1. Teorem (M, ¢, & ,n,gy) bir Kenmotsu manifold, (N, gy) bir Riemann manifold ve
Y:M - N bir yarn slant & — Riemann submersiyon olsun. D; distribiisyonunun

integrallenebilir olmasi i¢in gerek ve yeter sart V U,V € I'(D,) igin

olmasidir.

Ispat VU,V € T(D,), K €T(D,), X € I'(cek(y,)*t) igin
gu([U, V], K) = gu(VyV,K) = gu (WU, K) (4.2)
seklindedir. Buradan (2.38) esitligi kullanilirsa
gu(U,V],K) = gu(oVyV, oK) + n(VyVIn(K) — gu(@WwU, oK) —n(VyU)n(K) (4.3)
bulunur. VyV = VeV — (Vy@)V oldugundan
Iu([U, VLK) = gu(VyoV — (Vy@)V, oK) — gu(VyoU — (W)U, 9K) (4.4)
veya

gu([U,V],K) = gu(VyeV,pK) — QM((Vufp)V' ‘PK)

—gu(WyoU, oK) + gu((Vy@)U, 9K) (4.5)

yazilabilir. Buradan (2.42) kullanilirsa
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Iu([U,V],K) = gu(VyoV, oK) — gu(eU,V)gu (&, oK) + n(V)gu(eU, K)

—gu(VyoU, oK) + gy (oV, U)g(&, oK) —n(U) gu(eV, oK) (4.6)

elde edilir. Diger taraftan (V) = 0 oldugundan

Iu([U,V],K) = gu(VyeV,9K) — gu(VyeU, oK) 4.7

bulunur. (3.4) esitligi kullanilirsa

gu([U,V],K) = gu(VyeV,¢K) + gu(VyeV, wkK)

—gu(WyoU , oK) — gu(VyoU, wK) (4.8)

yazilabilir. Buradan

gM([Ul V],K) = gM(QDVUV' ¢K) +gM(VU(pVJ (J)K)

— gu(eW U, dK) — gu(VyoU, wK) (4.9)

olup (3.8) den

Iu(U,V],K) = —gu(VyV, 9pK) + gy (VVy@V + HVyeV, wK)

+9u (WU, 09K) — gu(VVy@U + HVyeU, wK) (4.10)

yazilir. Yeniden (3.4) kullanilirsa

gu(U,V],K) = —gu(VyV, K + wpK) + gu(VVyeV,wK) + gy(HVyeV, wK)

+9u (WU, dppK + wpK) — gu(VVyoU, wK) — gy (HVyeU, wK) (4.11)
oldugundan (3.28) esitliginden
Iu([U,V],K) = —gu(VyV, —cos?0K + wpK) + gy (VVyeV, wK) + gy(HVyeV, wK)

+gu(VyU,—cos?0K + wpK) — gy (VVyoU, wK)

— gu(HVyoeU, wK) (4.12)
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bulunur. Buradan
Iu((U,V],K) = cos?*0gy([U,V],K) + gu(VyV, wdK) + gu(HVyeV, wK)
—9gu(VyU, wdK) — gy (HVyeU, wK) (4.13)
bulunur. Buradan
1- COSZH)QM([U; V1K) = gu(VyV,wpK) + gy (HVy @V, wK)
+9u (WU, wpK) — gy (HVyoU,wK)  (4.14)
yazilabilir. O halde

sin*0gy([U,V],K) = gu(VyV, 09K) + gy (. VyeV, P.wK)

—9n . VyoU, Y.0K) (4.15)
sin*0gy ([U, V], K) = gn((Vp.) (U, V) = (V) (V, @U), .wK)  (4.16)

elde edilir. 0 <0 < % oldugundan, sol tarafin sifir olmasi i¢in gerek ve yeter sart sag taraf

sifir olmalidir ki bu da ispat1 tamamlar.

4.2. Teorem (M, @, & ,n,gy) bir Kenmotsu manifold (N, gy) bir Riemann manifold ve
Y:M > N bir yart slant & — Riemann submersiyon olsun. D, distribiisyonunun

integrallenebilir olmasi i¢in gerek ve yeter sart V K,L € I'(D,) ve VU,V € I'(D;) i¢in

InW.TxdL + H (V,wK) — T, ¢K + H (V,wK), P.wU) — gy (@.oL, P, Ty @U)
+gn (Y. 0K, P, T oU) = gM(WK¢L - /V\L(I)K' (I)U)

—N(wU)(g($L, K) — gu($K, L)) (4.17)
olmasidir.

Ispat Y K,L €T(D,) veV U,V eT(D,) icin gy([K,L],U) = 0 olmalidir. Buradan

Iu([K,L],U) = gy(VkL — V,K,U) = gu(VxL,U) — gy (V. K, U) (4.18)
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yazilabilir. (2.38) kullanilirsa,

Iu([K,L],U) = gu(9VkL,@U) + n(VgL)n(U)

—gu(@V,K, U) —n(V,K)n(U) (4.19)

olur. Diger taraftan n(U) = 0 oldugundan

Iu([K, L], U) = gu(@VkL, pU) — gu(@V,K, pU) (4.20)

elde edilir. (3.4) esitligi kullanilirsa

Iu (K, L], U) = gy (@VkL, ¢U + wU) — gy (@V,.K, U + wU) (4.21)

bulunur. O halde (4.21) esitligi

—gu(VxoL — (Vk@)L, $U + wl) (4.22)

seklinde yazilabilir. Buradan

Iu([K L], U) = gy (VkoL — (Vk@)L, dU) + gy (VgL — (Vk@)L, wU)

—gu (oL — (Vk@)L, dU) — gy (VkoL — (Vg @)L, wU) (4.23)

elde edilir. (4.23) esitliginde (2.42) kullanilirsa

Iu([K L], U) = gu(VkoL, dU) — gu(gu (@K, L)§ — n(L)@K, dU) + gy (VkoL, wU)
—gu(Gu (@K, L)E —n(L) @K, wl) — gu (Vi @K, $U)
+9m(Gu (oL, K)E = n(K)oL, pU) — gy (VLeK, w U)

+gm (oL, K)§ — n(K) oL, wU) (4.24)

yazilir. (L) = 0 oldugundan
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Iu([K L], U) = gy (VkoL, dU) + gy (VkoL, wU) — gy (@K, L)g(§ wU)
— gu(VLeK, dU) — gy (VLoK o U) — gy (oL, K) gy (§ »U) (4.25)

bulunur. Diger taraftan (4.25) de (3.4) kullanilirsa

Iu([K, L], U) = gu(VkdL, dU) + gu (VkwL, ¢U) + gu(VkdL, wU)

+9u(VxwL, w U) (4.26)

elde edilir. Simdi wL € H ve ¢U € V oldugu kullanilirsa, g(wL, dU) = 0 olur. K yoniinde

tiirev alinarak elde edilen ifade yerine yazilirsa

Iu([K,L],U) = gy(VkdL, pU) + gy (VkwL, U) + gy (VkdL, wU) + gy (Vxwl, wU)

—9u(VL9K, wU) + gy (VL,wK, wU) + gy (@L, K)gu($, wU) (4.27)

elde edilir. (2.31) ve (2.32) esitlikleri kullanilirsa

gu([K L], U) = gy (TK¢L + ﬁK(I)L' ¢U) + 9um ((”L' TxdU + ﬁK(I)U)
+9um (T SL + Vg dL, wU) + gy (wK, V,pU)
+gu (TLOK + V., 0K, 0U) + gy (T,0K + H (V,wK), wU)

+9m (L, K)g(§, wU) (4.28)

bulunur. Buradan

gu([K,L],U) = gy (WK(I)L: cl)U) + gu (WL, TxpU) + gy (TxPL, wU)
+gu(H (V,0K), 0U) — gy (6K, L)n(wU) — g (V. $K, ¢U)
+gu (WK, T,@U) + gy (T, $K, wU) + gy (HV,wK, wU)

+9m (PL, K)n(wU) (4.29)

olup (3.4) ve pL € V,K € V den
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gu([K, L], U) = gy (Vk L — VoK, dU) + g (T pL + H (V, wK)
T, K + H(V,wK), wU) — gy(wL, TxpU) + gy (wK, T oU)

—Nn(wU)(g(¢L, K) — gu (9K, L)) (4.30)

yazilabilir. Gerekli diizenlemeler yapilirsa

gu([K, L1, U) = gu(VkpL — V,pK, dU + gy (Y. TxdL + H (V,wK) — T, pK

—n(wU)(gu(PL,K) — gu(¢K, L)) (4.31)

elde edilir ki bu da istenendir.

4.3. Teorem (M, @, & ,n, gy) bir Kenmotsu manifold (N, gy) bir Riemann manifold ve
Y: M — N bir yar1 slant & — Riemann submersiyon olsun. D; in total geodezik olmast i¢in
gerek ve yeter sart VU,V € I'(D;), X € T'(¢cek(y,)) ve K € I'(D,) igin

Iu(TyV, pwK) = —gyW.TyV, m.0dK) — gy @.TyV, lp*sz) (4.32)

ve

v .oV, Y. TyBX) + gy .0V, Y. H(VyCX) = —gu ($V, Vy BX)—gu ($V, Ty CX)

+gu(V, U)n(X) (4.33)
esitliklerinin saglanmasidir.

Ispat Total geodezik olmasi i¢in her U,V € I'(D,), X € I'(¢cek(y,)') ve K, L € I'(D,) igin
VyV € T'(D,) olmalhdir. O halde gy (VyV,K) =0 ve gyn(VyU,X) =0 saglanmalidir.
eVyV = VeV — (Vye)V ve (2.42) kullanilirsa,

Iu(VyV, K) = gy (VyoV, oK) — gu(gu(eU,V)E—n(V)eU, ¢K) (4.34)

yazilabilir. Buradan
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Iu(VyV,K) = gu(Vy@V, oK) — gu(@U, V) gy oK) + gu(m(V)oU, @K)  (4.35)

olup gu (€ @K) yerine —gy (K, @) yazilabileceginden ve bu ifade de sifir oldugundan
Iu(VyV,K) yerine gy (oVyV, @K) yazilir.

Diger taraftan (3.4) kullanilirsa
Iu(VuV,K) = gu(@VyV, oK) + gu(eVyV, wK) (4.36)
elde edilir. (4.36) da (3.8) esitligi kullanilirsa
Iu(VyV,K) = =gu(VyV, 9dK) — gu (VyV, pwK) (4.37)
yazilir. Tekrardan (3.4) esitligi kullanilirsa
Iu(VyV,K) = —gu(VyV, ddK + 0dK) — gy (VyV, poK + wwK) (4.38)
bulunur. O halde

Iu(VyV,K) = —gu(VyV, (I)ZK) — Iu(VyV, wdpK) — gy (VyV, dwK — gy (VyV, U)ZK)
=—gu(VyV, —COSZGK) = gu(VyV, wdK) — gy (VyV, dwK)

olup (4.39) da (2.31) kullanilirsa

Iu(VyV, K) = cos20 gy (VyV, K) — gu(TyV + VyV, wdK) — gy (TyV + VyV, dpwK)

—gu(TyV + VvV, w?K) (4.40)

elde edilir. Buradan
(1= cos?0)gu(VyV,K) = —gu(TyV, 0dK) — gu(TyV, doK) — gu(TyV, »?K)  (4.41)

veya
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SinZHgM(VUV, K) = —gu(TyV, wdpK) — gy (TyV, pwK) — gy (TyV, w? K) (4.42)

bulunur. sin?6g,,(VyV,K) # 0 oldugundan esitligin sag tarafi sifir olmahdir.

—gu(TyV, wdK) = gy (TyV, dwK) — gy (TyV, w?*K) = 0 (4.43)

veya

Iu(TyV, dwK) = —gy Q. TyV, Y. wdK) — gy W TyV, . w?K) (4.44)

elde edilir. Diger taraftan X € (¢cek(y,)1) igin

In(VyV, X) = gu(VyoV, X) — gu(Vy @)V, X) + n(VyV)n(X) (4.45)

bulunur. (2.42) kullanilirsa

In(VyV, X) = gu(VyoV, X) —gu(gu(eU,V)E —n(V)e), X)

+n(VyVIn(X) (4.46)

yazilir. Buradan

In(VuV, X) = gu(VyoV, X) —gu(eU,V)gu (&, oX) + n(VyVIn(X) (4.47)

bulunur. gy (&, @X) yerine —gy, (¢, X) ifadesi yazilip bu da sifira esit oldugundan

Iu(VyV, X) = gu(VyoV, X) + n(VyV)n(X) (4.48)

elde edilir. n(VyV) yerine g(V,V,§&) yazilirsa

Igu(VyV, X) = gu(VyoV, 0X) + gu(VyV, $n(X) (4.49)

bulunur. (4.49) da (2.43) ve (3.8) kullanilirsa
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Iu(VyV, X) = gu(VyoV, X) — gu(V, p*UIn(X) = gu(VyoV, @X)

+ gu(@V, eU)n(X) (4.50)

yazilir. Buradan Riemann konneksiyon olma sart1 kullanilirsa
Iu(VuV, X) = Ugu(@V, 9X) + gu(@V, Vy@X) + gu(V, U)n(X) (4.51)
bulunur. (2.38) esitligi kullanilirsa
Ugn @V, X) = U(gu(V,X) = nCOn¥)) (4.52)
yazilabilir. O halde (3.4) esitligi kullanilirsa
Iu(VuV, X) = =gu(V, Vy(BX + CX)) + g (V, U)n(X) (4.53)
veya
Iu(VuV, X) = —gu(@V,VyBX) — gu(@V,VyCX) + g (V, U)n(X) (4.54)
elde edilir. Buradan (2.31) denklemi kullanilirsa

Iu(VyV, X) = —gu(@V, TyBX + VyBX)

—gu (@V, TyCX + H(VyCX)) + gu(V, U(X) (4.55)
bulunur. Buradan (3.4) den

Iu(VyV, X) = —gu(dV + oV, TyBX + VyBX)

—gu (@V + 0V, TyCX + 3£(V4CX) ) +gu (V, U1 (X) (4.56)

veya

Iu(VuV, X) = —gu(dV,VyBX) — gu(wV, TyBX) — gy (wV, X (V,CX))
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—gu(PV, Ty CX) + gu (V, U)n(X) (4.57)

elde edilir. Buradan

In .oV, . TyBX) + gy (0.0V, 9. H(VyCX) ) = =gu($V, TyBX)—gu ($V, Ty CX)
+gu(V, U)n(X) (4.58)

bulunur ki bu da bize istenileni verir.

4.4. Teorem (M, @, & ,n,gy) bir Kenmotsu manifold (N, gy) bir Riemann manifold ve

Y: M - N bir yar1 slant &+ — Riemann submersiyon olsun. D, 1n total geodezik olmast igin
gerek ve yeter sart VU € I'(D;), X € I'(cek(y,)%) ve V K,L € I'(D,) igin

InW.TgL, Y. wdU) + gy (. wL, P, H Vi wl) = K gy (oL, wU) — gy (@L, TxwU)

+9u (@K, L)n(wl) (4.59)
ve
N HVwdL, . X) — gy H VL, P.CX) = gy (TywL, BX)
—n(VgL)n(X) (4.60)
olmasidir.

Ispat D, total geodezik ise K, L € T'(D,) igin Vi L € I'(D,) olmalidir. Bunun i¢in U € T'(D;)
ve X € cek () icin gy (Vi L, U) = 0 ve gy (VgL,X) = 0 oldugunu gostermeliyiz. V U €
I'(D;) igin (2.38) den

Iu(VkL,U) = gu(@ViL, @U) —n(VgL)n(U) (4.61)
olup (3.4) kullanilirsa

Iu(VgL,U) = gu(@VkL, dU) + gy (@VgL, ®U) (4.62)

yazilir. Burada VgL yerine VgL — (Vg @)L kullanilirsa
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Iu(VkL, U) = —gu(VkL, dpU) + gy (Vg oL — (Vx@)L, wU) (4.63)

bulunur. Buradan (3.4) kullanilirsa

Iu(VgL,U) = —gu(VgL, *U) — gy (Vi L, wdpU)

+9u (Vg oL, wU) — gy (Vg @)L, wU) (4.64)

bulunur. (4.64) de gy (L, wU) nun K yoniinde tiirevi alinip, (3.28) ve (2.48) esitlikleri

kullanilirsa

Iu (VgL U) = =gy (Vg L, —cos*6U) — gy (Vi L, odU) + Kgy (oL, wU)

—9m(@L, Vg + g (@K, L) gu (& wU) (4.65)

bulunur. (2.39) esitliginden

Iu (Vi L, U) = cos?0gy (Vi L, U) — gy (TxL + VL, 0dpU) + Kgy (wL, oU)

—gu(@L, TxwU + HViwU) + gy (@K, L)n(wU) (4.66)
veya

(1~ c0s28) g (VixL, U) = —gu (T L, 0pU) + Kgyy (wL, ©U) — gy (oL, TewU)

—gu (0L, HVgwU) + gu (@K, L)n(wl) (4.67)
yazilabilir. Buradan

sin?0gy (VgL U) = —gy(.TxL, P.wdU) + Kgy (oL, wU) — gy (@L, TxwU)

—gn (W oL, Y. HVwU) + gy (9K, L)n(wU) (4.68)

bulunur. sin?@ # 0 oldugundan esitligin sag tarafi sifir olmalidir. O halde

InW.TeL, P.wdpU) + gy (. oL, P HVwl) = Kgy (oL, wU) — gy (@L, TxwU)

+9u (@K, L)n(wU) (4.69)
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elde edilir. Diger taraftan (2.38) kullanilirsa

Iu (VgL X) = gu(Vg oL — (Vx @)L, X) — n(VgL)n(X) (4.70)

yazilabilir. Buradan

Iu(VkL, X) = gu(Vg oL, X) — gy (Vx @)L, @X) — n(Vg L)n(X) (4.71)

olup (3.4) ve (2.42) kullanilirsa

Iu VgL, X) = gu(VgdL, X) + gy (VxwL, X) — gy (gu (@K, L)E

—n(L)eK, @X)n (Vg L)n(X) (4.72)

bulunur. Buradan (3.5) kullanilirsa

In(VgL, X) = =gu(@VxdL, X) + gu(VxwL, (BX + CX)) — gu (@K, L) gu (&, X)

+9u (ML) @K, @X) —n(VxL)n(X) (4.73)

veya

Iu(VkL, X) = =gu(Vg@$L, X) + gy (Vg wL, BX + gy (Vg wL, CX)

—n(VgL)n(X) (4.74)

yazilir. O halde (3.4) esitliginden

In (VgL X) = =gy (VgL X) — gy (wdL, X) + gy (Vg wL, BX)

+gu(VgwL, CX — n(VgL)n(X) (4.75)

bulunur. Buradan (4.75) de (2.32) esitligi kullanilirsa

Iu(VgL, X) = =gy (Vgcos?0L,X) — gy (TxwdL + HVwdpL, X)

+gu(TxwL + HViwL, BX) + gy (TywL + HViwL, CX)
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—n(VgL)n(X) (4.76)

yazilabilir. O halde

Igu(VgL, X) = COSZ@QM(VKL’ X) — gu(TxwodL,X) — gy (HVgwdL, X)
+ gy (TxwL, BX) + gy (HViwL, BX) + gy (TxwL, CX)

+gu(HVgwL, CX) —n(ViL)n(X) (4.77)
veya

(1- COSZG)QM(VKL: X) = —gu(TxwoL,X) — gy (HViwoL, X)
+ gy (TxwL, BX) + gy (HViwL, BX)

—n (Vg L)n(X) (4.78)
bulunur. ¥ bir Riemann submersiyon oldugundan

sin?0gy (VgL X) = —gy . HVgwdL, .X) + gy (TxwL, BX)

+9ny W HVgwL, P.CX) — n(VL)n(X) (4.79)

yazilabilir.0 < 8 < g i¢in sin%0 # 0 oldugundan, sol tarafin sifir olmast i¢in gerek ve yeter

sart sag tarafin sifir olmasidir. O halde

elde edilir. D,’nin total geodezik olmasi i¢in gerek ve yeter sart (4.69) ve (4.80) in

saglanmasidir.

4.5. Teorem (M, ,¢,n,gy) bir Kenmotsu manifold (N, gy) bir Riemann manifold ve
Y: M — N bir yan slant & — Riemann submersiyon olsun. ¢ek (y,)* m total geodezik
olmasi icin gerek ve yeter sart V X, Y € I'(¢cek (¥,)1),U € T'(D;),V € I'(D,) igin
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gu(BY, VVx¢U) + gu(BY, AxwU) = —gy(¥.CY, 1. AxpU)

ve

In W AxBY, Y. wV) — gy HV,CY, P, wV) = gy (VxY, wdv) (4.82)

olmasidir.

Ispat ¥ X,Y € cek(y,)*, U € T(D;),V € T'(D,) olsun. cek (y,)* 1n total geodezik olmasi
icin gy (VxY,U) = 0 ve gy (VyY,V) = 0 olmalidir. ilk olarak g,,(VyY,U) = 0 durumunu
inceleyelim. (2.38) den

Iu(VxY,U) = gu(@VxY, @U) = n(Vx¥)n(U) (4.83)

yazilabilir. n(U) = 0 ve @VxY nin esitligi kullanilirsa

Iu(VxY, U) = gu(VxoY, U) — gu((Vx@)Y, @U) (4.84)

yazilir. Diger taraftan g, (@Y, @U) = 0 oldugundan X g,, (@Y, @U) = 0 olup buradan

Iu(Vx@Y, @U) + gy (@Y, Vx@U) = 0 (4.89)

veya

Iu(Vx@Y,eU) = —gu (@Y, VxeU) (4.86)

bulunur. gy (VxY, U) nin —gy, (@Y, Vx@U) esit oldugundan (4.86) da (3.5) kullanilirsa

gu(VxY,U) = —gu(BY + CY,Vx@U) (4.87)

yazilir. Buradan

gu(VxY,U) = —gu(BY,Vx@U) — gy (CY,Vxo@U) (4.88)
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olup (3.4) ten

Iu(VxY,U) = —gu(BY, Vx (U + wl))

—gu(CY, (Vx (U + wl)) (4.89)

veya

gu(VxY,U) = —gy(BY,Vx$U) — gy (BY, VxywU)

—gum(CY,VxdU) — gy (CY, VywU) (4.90)

yazilabilir. O halde (2.33) ve (2.34) den

Iu(VxY, U) = —gyu(BY, VVxdpU + Ay dU) — gy (BY, AxwU + HVywU)

— gy (CY, VU4 U + Ay dU) — gy (CY, AxwU + HVy0lU)  (4.91)

veya

gu(VxY,U) = —gy(BY, VVxdU) — gy (BY,AxdU ) — gy (BY, AxwU)
—gu(BY, HVywU) — gy (CY,VVxdU) — gy (CY, Ax$U)

bulunur. gy (VxY,U) = 0 oldugundan

gu(VxY,U) = —gu(BY,VVxdpU) — gy (BY, AxwU)

—gu(CY, AxdpU) —gu (CY, HVywU) (4.93)

ve

gu(BY, VVydU) + gy (BY, AywU) = —gy(¥).CY, ), Ay PU)

—gn(.CY, . HVywU) (4.94)
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elde edilir. Diger yandan (2.38) den ve g(VxY,V) = 0 oldugundan

Iu(VxY, V) = gy (@VxY, V) —n(Vx¥)n(V) (4.95)

elde edilir. Buradan (3.4) kullanilirsa

Igu(VxY, V) = gy (Vx@Y, $pV + wV) (4.96)

veya

Igu(VxY,U) = —gu(eVxY, dV) + gy (Vx@Y, wV) (4.97)

bulunur. (4.97) de (3.8) esitligi kullanilirsa

Iu(VxY, V) = gu(Vx¥, @dV) + gy (Vx @Y, ®V) (4.98)

yazilabilir. Buradan (3.4) ve (3.5) kullanilirsa

gu(VxY, V) = gu(VxY, $?V + wdv) + gu (Vx(BY + CY), wV)

= gu(VxY, d*V) + gu (VxY, wdv) + gy (VxBY, wV)

+gu(VxCY,wV) (4.99)

elde edilir. (2.34) ve (3.28) den

In(VxY,V) = gy(VxY,cos?0V) + gy (VxY, wdV)

+gu(AxBY + HV4BY, wV) + gy (AxCY + HV,CY,wV) (4.100)

yazilir. Buradan

(1 = c0s%0) gy (V4Y,V) = gy (VxY, wdv) + gy (AxBY, ®V) + gy (HV4BY, wV)

+gu(AxCY, wV) + gy (HV4CY, wV) (4.101)
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(sin®0) g (VxY, V) = gu(VxY, 0dpv) + gy (AxBY, wV)

+gu(HVxCY, wV) (4.102)

bulunur. sin?6 # 0 oldugundan, esitligin sag tarafi sifir olmalidir. O halde

—gn (. AxBY, Y. wV) — gy (Y. HVCY, P.wV) = gy (VxY, wdpv) (4.103)

elde edilir. cek (1,)1 1n total geodezik olmasi igin gerek ve yeter sart (4.94) ve (4.103) iin

saglanmasidir.

4.6. Teorem (M, o, ¢&,n,gy) bir Kenmotsu manifold (N, gy)bir Riemann manifold ve
Y:M —> N bir yarn slant & — Riemann submersiyon olsun. X,Y € cek ()",

U eT(D,),V € I'(D,) igin gek (¥,)* in integrallenebilir olmasi i¢in gerek ve yeter sart

—gnW.CX, P HVy wU) = —gy(BY, VxdU) — gy (BY, AxwU)

+gu (BX,VVy$U) + gy (BX, AyolU)  (4.104)

ve

gM([Y!X]ﬂ(Dq)V) = _gN(l/J*AXBYl l/)*(DV) - gN(lp*}[VXCY' lp*ﬂ)v)

olmasidir.

IspatV¥ X,Y € cek (.)*, U € T(Dy), V € T'(Dy) icin gy ([X, Y], U) = 0 ve gy ([X,Y],V) =

0 olmas1 durumlarini inceleyelim. (2.38) esitliginden

gu([X, Y], U) = gu(@VxY,@U) —n(VxY)n(U)

—gm(@VyX, oU) — n(VyX)n(U) (4.106)

bulunur. Buradan
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gu(X, YL U) = gu(VxY — (Vx@)Y, @U) — gu(VyeX — (Vy@)X, @U) (4.107)

yazilabilir. Buradan

Iu([X, Y], U) = gu(Vx@Y, @U) — gu(Vx@)Y, @U)

—gu(Vy@X, @U) + gu(Vy@)X, @U)

bulunur. Buradan (2.42) esitligi kullanilirsa

Iu([X, Y], U) = gu(VxoY, oU) — gu(gu(@X,Y)§ — n(X) @Y, @U)

—gu(Vy X, oU) + gu(gu (@Y, X)¢ —n(YV)@X, U)

elde edilir. n(Y) = 0 oldugundan

Iu([X, Y], U0) = gu(Vx@Y, @U) — gu (X, Y)g(, @U)

—gu(Vy@X, U) + gu (@Y, X)gu (&, @U)

veya

Iu(X, Y], U) = — gu (@Y, Vx@U) + gu(@X,VyeU)

bulunur. O halde (3.5) kullanilirsa

+gu(BX + CX,Vy ($U + 0l))

yazilir. Buradan (3.4) esitligi kullanilirsa

gu([X, Y], U) = —gu(BY,VxdU) — gy (CY,VxdpU) — gy (BY, VxwlU)

—gu(CY,VywU) + gy (BX, VydU) + gy (CX, Vy$U)

+gu (BX,Vy wU) + gy (CX, Vy wU)

(4.108)

(4.109)

(4.110)

(4.111)

(4.112)

(4.113)
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yazilabilir. (2.33 ) ve (2.34) esitliklerinden

gu([X, Y], U) = —gu(BY, VVxdU + AxpU) — gy (CY, VVxdU + Ax$pU)
—gu(BY, AywU + HV,,wU) — gy (CY, AxywU + HVywU)
+9u(BX,VVydU + AydU) + g, (CX, VVydU + Ay dU)

+9u (BX, VVy 0U + AyoU) + gy (CX, 4y 0U + HVy wU)(4.114)

elde edilir. Buradan

gu([X,Y],U) = —gu(BY,VVxdpU) — gy (BY, AxwU) — gy (CY, Ax$U)
—gu(CY, HVywU) + gy (BX,VV,0dU) + gy (CX, Ay pU)

+ gy (BX, AywU) + gy (CX, HVy ) (4.115)

bulunur ki g, ([X,Y],U) = 0 oldugundan gerekli diizenlemeler yapilirsa

—gn(W.CX, P HVy wU) = —gy (BY, Vx¢U) — gy (BY, Aywl)

+gu(BX, VVydU) + gy (BX, AyU)  (4.116)

elde edilir. Diger taraftan Lie braket, konneksiyonun metrikle bagdasma, bilineerlik

ozellikleri ve (2.38) esitligi kullanilirsa

gu([X,YLV) = gu(@VxY, @V) —n(VxYIn(V) — gu(eVyX, @V) —n(VyX)n(V) (4.117)

bulunur. (2.37) ve (3.4) esitliklerinden

gu([X,YLV) = gu(@VxY, dV + wV) — gu(@VyX, $pV + 0V) (4.118)

yazilir. O halde

Iu([X, YL V) = gu(@VxY, dV) + gy (@VxY, V)
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—gu(@VyX, dpV) — gy (@Vy X, wV) (4.119)

bulunur. (3.4) esitliginden

Iu([X, Y], V) = =gu(VxY, edV) + gy (Vx oY, wV)

+gu (Vv X, V) — gu (Vy@X, wV) (4.120)

yazilabilir. (4.120) de (3.4) esitligi kullanilirsa

Iu([X, Y], V) = =gu(VxY, bV + 0dpV) + gy (Vx@Y, ®V)

+u (Vv X, OOV + 0dV) — gy (Vy @X, V) (4.121)

veya

gu(X, YL V) = gu(VxY, $*V) — gy (VxY, 0wdv) + gy (Vx @Y, wV)

+9u (Vv X, &2V) + gy (Vy X, wdV) — gy (Vy@X, 0V)  (4.122)

bulunur. (3.5) ve (3.28) esitliklerinden

gu([X, Y1, V) = —gu(VxY, cos*0V) — gy (VxY, wdpv) + gy (Vx(BY + CY), wV)
+gu(Vy X, cos28V) + gy (Vy X, 0dv)

—9gu(Vy(BX + CX), wV) (4.123)

yazilir. O halde

In([X, YL, V) = cos?8gy (VyX,V)—cos?8gy (VxY,V) + gu (Vv X, 0dv)
_gM(VXY' (D(I)V + gM(VxBY, (.l)V) + gM(VXCYJ (.l)V)

—gu(VyBX, V) + gy (VyCX, 02V) (4.124)

elde edilir. (2.33) ve (2.34) den
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gu([X, YL, V) = cos?0(gu(VyX — VxY,V) + gu(VyX — VxY, 0dv) + gy (VV,BY

— g (AyCX + HVyCX, wV) (4.125)
bulunur. Buradan lie braket 6zelligi kullanilirsa

gM([X' Y],V) = CoszegM([Xl Y]) V) + gM([YJX]'(*)q)V) + gM(VVXBY' (*)V)
+ gy (AxBY, wV) + gy (AxCY,wV) + gy (HV4CY, oV
—gu(VVyBX, wV) — gn (AyBX, V)

—gu(AyCX, V) — gyu(HV,CX, ®V) (4.126)

elde edilir. Gerekli diizenlemeler yapilirsa

(1 — cos?0) gu([X, Y1, V) = gu([Y,X], 0dV)) + gy (AxBY, ®V)
+ gy (HV4CY, wV) — gy (AyBX, wV)

— g (HVyCX, V) (4.127)
veya

SinzegM([Xl Y], V) = gM([Y' X], w(I)V) + gN(lp*AXBYJ l/)*(DV)

elde edilir. sin?0 # 0 oldugundan sag taraf sifir olmalidir. O halde

gM([Y,X],(D(I)V) = _gN(l/)*AXBY' l/)*(x)V) - gN(l/)*}[VXCYr lp*wv)

+9n W, AyBX, Y. wV) + gy (W HVy CX, P wV) (4.129)

elde edilir. Buradan ¢ek (1,)* 1n integrallenebilir olmasi igin gerek ve yeter sart (4.116) ve

(4.129) un saglanmasidir.
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4.7. Teorem (M, @, & ,n,gy) bir Kenmotsu manifold (N, gy) bir Riemann manifold ve
Y: M — N bir yar1 slant €& — Riemann submersiyon olsun. vV U,V € ¢eky, X € cek ()
icin ¢ek(1),) 1n total geodezik olmasi i¢in gerek ve yeter sart

olmasidir.

Ispat Vv U,V € ceky, X € cek (,)?! icin (3.4) kullanilirsa

In(VyV, X) = —=gu($V,Vy@X) — gy (oV, Vy@X) (4.131)

bulunur. Buradan

gu(VyV, X) = gu(@edV,VyX) — gy (wV, VyeX) (4.132)

oldugundan (3.4) esitligi kullanilirsa

Iu(VyV, X) = gu(d*V,VyX) + gy (0dV, VyX) — gy (oV,VyeX)  (4.133)

olup buradan

Iu(VyV, X) = gu(—cos?8V,VyX) + gy (0dV, VyX) — gy (oV, Vy@X) (4.134)

yazilabilir. (4.134) de (3.5) kullanilirsa

gu(VyV, X) = —COSZGQM(V, VyX) + gu(wdpV, VyX)

—gu(wV,Vy(BX + CX)) (4.135)

bulunur. Buradan

Iu(VyV,X) = cos?6gy (VyX, V) + gy (wdV, VyX)

—gu(wV,VyBX) — gy (wV,V,CX) (4.136)
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olup (2.32) ve (2.34) den

Iu(VyV,X) = cos?6gy (VyX,V) = gy (wdV, VyX) — gy (wV, VVyBX + AyBX)

—gy(wV, AyCX + HV,CX) (4.137)

elde edilir. Buradan

(1 = cos?*8) gy (VyX, V) = gu(wdV,VyX) — gy(wV, VVyBX) — gy (wV, AyBX)

yazilabilir. (4.138) Denkleminde gerekli diizenlemeler yapilirsa sin?0g,,(V,X,V) =

Iu(@dV,VyX) — gy(wV,AyBX) — gy (wV,HV,;CX) olup ¥ Riemann submersiyon

oldugundan

SinzegM(vUX: V) = gy(wdV,VyX) — gy @0V, P, AyBX)

bulunur. sin?@ # 0 oldugundan sag taraf sifir olmalidir. O halde;

Iu(wdpV,VyX) = gy@. 0wV, P, AyBX) + gy (.0V, P, HV;CX) (4.140)

elde edilir.
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5. SUBMERSIYONLARIN GEOMETRISI

Bu béliimde bir yar1 slant & —Riemann submersiyonun total umbilik liflerini ve total
geodeziklik sartlarini inceleyecegiz. Ilk olarak yari slant &+ —Riemann submersiyonun total

umbilik olmasi i¢in yeni bir sart verelim:

Y iki Riemann manifold arasinda Riemann submersiyon olsun. V V,W € cek (1,) i¢in
TyW = g(V,W)H ise y Riemann Submersiyonu total umbilik liflere sahiptir denir. Burada

H liflerin ortalama egrilik vektoriidiir.

5.1. Teorem (M, @,¢,n,g) bir Kenmotsu manifold (N, gy) bir Riemann manifold ve
Y: M — N bir total umbilik lifler ile yar1 slant & — Riemann submersiyon olsun. Bu taktirde

ortalama egrilik H i¢cin H € I'(wD,)’ dur.

Ispat Wy, W, € T(D,) icin konneksiyonun &zelliginden (Vw, @)W, — Vy, (W) yerine
—@Vy, W, yazilip (2.42) ve (2.31) kullanilirsa

GleW, W5)¢ + n(Wy) W, — Ty, @W, — ’V\Wl(-PWZ = —@(Ty, W, + ﬁWlwz)
(5.1)

elde edilir. (3.4), (3.5) esitlikleri kullanilirsa

GleW,, W5)¢ — Ty, W, — vWICPWZ = =BTy, W, — CTy, W, — ¢vW1W2 -
wVy, Wy (5.2)

yazilabilir. Leu alinarak

GloWy, W) G(L, &) — G(Tw, @W5, L) — g (Viw, W5, L)
= —g(BTy,W,,L) — g(CTy, W5, L)

—gM(d)’V\W1 Wa, L) — gu (Uﬁwl W, L) (5.3)

bulunur ve (3.8) kullanilirsa
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gleWy, W)g(€,2) — §(Ty, oW, L) = (T, W,, CL)
(5.4)

yazilir. Ty, W, = g(W;, W,)H oldugundan
g\((pwl' WZ)g(S;' Z) - g(gM (Wli (pWZ)H! L) = g(g(wlr WZ)H' (pL)

(5.5)

elde edilir. Buradan

g(¢W1i Wz).ﬁ(sz» Z) = g\(Wl' ¢W2)g(H, L) + g(W1; WZ)g(HI (,DL)
(5.6)

veya

—.Q((PWZ, Wl)g\(fi Z) = _g(er (pWZ)g\(Hr L) + g(WZI Wl)g(H' (pL)
5.7)

bulunur. W; ve W, nin yeri degistirilirerek (5.6) ve (5.7) taraf tarafa toplanirsa

2§(W1,W,) = =2G(pWy, W,)g(H, L)
(5.8)

bulunur. Buradan g(H, L) = 0 olmalidir. Bu da bize gosterir ki H € T'(wD,) dur.

Simdi, yar1 slant & —Riemann submersiyonun total geodezik olmas1 durumunu inceleyelim.
1 iki Riemann manifold arasinda diferansiyellenebilir bir doniisiim olsun. Eger Vi, = 0 ise

’ye total geodezik doniisiim denir.

5.2. Teorem (M,p,&,n,g) bir Kenmotsu manifold (N, g) bir Riemann manifold ve
Y: M — N bir total umbilik lifler ile yar1 slant & — Riemann submersiyon olsun. 1 nin total
geodezik olmasi icinV X € T'(cek (W,)1),Z =2, + Z, Z € I'(TM) Z, € T(¢cek(y,)) Z, €
I'(gek(ip. 1) igin



V. Zy = Vyh.Zo + Y. (C(AxdZy + HVywZ, + AxBZ, + HV4CZ,)
+0(VVx$Zy + AywZ, + VVyBZ, + AyCZ,

—N(Z)CX —n(XIn(Zy) — gu(Z,, CX)E

olmasidir.

Ispat X € T'(¢ek (Y )1), Z € I'(TM) igin

(Vx@)Z — Vx(9Z) = —pVxZ

olup, her iki taraf ¢ ile isleme tabi tutulursa,

O(Vx@)Z = @Vx(9Z) — @*VxZ

elde edilir. Buradan (2.36) esitligi kullanilirsa

VxZ = @(Vx@)Z — @Vx@Z + n(VxZ)$
olur. O halde

VW)X, Z2) = Vxh.Z — .(@(Vx@)Z — @Vx@Z + n(VxZ)§

veya
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(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

V)X, Z2) = VxhZ — . (@(gu(@X,2)§ —n(Z)eX) — @(Vx@)Z +n(VxZ)¢ (5.14)

yazilabilir. Z = Z; + Z, olup burada Z, ve Z, dikey ve yatay parcalar1 gostermektedir.

Buradan

V@)X, Z2) = Vxh.Z — . ((gu(@X, 2)§ —n(Z)eX) — oVx@Z,
—@Vx@Z, +1n(VxZ)$§)

veya

V@)X, Z) = Vxp.Z — P.(@(gu(@X, 2)¢ —n(Z) eX) — @Vx@Z,

(5.15)
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—@Vx@BZ, — @Vx@CZ, +n(VxZ)$) (5.16)

bulunur. Buradan

VW)X, 2) = V3. Z — P.(—n(Z)9* — VxdZ; — VxwZ;)

—@VyxBZ, — @VxCZ, +n(VxZ)$) (5.17)

veya

V)X, Z) = Vx.Z — . (—1(2)@* — @VVxdZ; — @AxHZy — @HVxwZ,
_(pVVXBZZ - (pV)(BZZ — (prBZZ o (pAXCZ2

— @HV,CZ; +1(VxZ)E) (5.18)
bulunur. (3.3), (3.4) ve (3.5) esitliklerinden
(Vx$p)Z = Vxh.Z = . (—1(2) 9 — GVVxPZ; — wVVxdZy — BAxPZ; — CAxZ,
—q)Ax(Dzl - (DAx(Dzl - B:}[VX(DZI - C}[VX(DZI - (pVVXBZZ

+¢VVXBZ2 - (DVVXBZZ - BAxBZZ - CAxBZZ - (I)AXCZ2

—wAxCZ, — BHVyxCZ, — CHV4xCZ, +n(VxZ)¢ (5.19)
elde edilir. Gerekli diizenlemeler yapilirsa
(Vx)Z =V Z = h.(n(Z) — n(Z2 In(X)§ — 0VVxdZ; — CAxdZ; — Ay wZ,

—CHVywZ, — wVVyBZ, - CAyBZ,

bulunur ki bu da istenendir.
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6. KENMOTSU SPACE FORM ILE ¢-"RIEMANN SUBMERSiYON

Bu boliimde semi slant &' —Riemann submersiyonun tamimindan ortaya ¢ikan
distriibiisyonlarin egrilik 6zelliklerini ve Einstein olma sartlarini inceleyecegiz. Sabit ¢
kesitsel egrilikli Kenmotsu manifolda Kenmotsu Space Form denir. Sabit kesitsel egrilik ¢

olmak iizere Kenmotsu space formun Riemann egrilik tensorii

c—3
R(U,,U,, U3, Uy) = T{Q(Up Uz)gn(Us, Uy) — g(Uy, U3) gn(Uz, Uy) '}

c+1

+——{9 (U2, U )n(U1)n(Us) — g(Uy, Uy)n(U2)n(Us)
+9 U1, Us)n(U2)n(Us) — 8(Uz, Us)n(U1)n(Us)
+9(9U,, U3)g(oUy, Us) — g(@Uy, Us)g(@Uz, Uy)
— 29(@Uy, U)gu (9Us, Us) + g(Tu, Us, Ty, Us)
~9(Tu,Us, Ty, Us)} (6.1)

seklinde tanimlidir. {eq, ..., €p, €2p41, -+ + €2p42q) €2p+2q+1} M nin bir ortanormal ¢atis:

olsun. O zaman D = Sp{ey, ... ,€2p}, Do = SD{€2p41, s €2p+2¢) V€ & = SP{€2p12g+1}

seklinde secebiliriz. Burada boyD = 2p, boyDg = 2q’dur.

6.1. Teorem (M,¢p,&,n,g) bir Kenmotsu space form ve (N, g) bir Riemann manifold
Y: M — N bir yar slant & — Riemann submersiyon olsun. O halde, Vv Wy, W,, W3, W, €
I'(D) igin

c—3
R(WlJ WZJ W3' W4-) = T { g(W3' Wl)V(WZ' W4—) - g(WZ' Wl)g(WSr W4—)}

c+1

+ T{ G(eW3, W) g(eWp, W,) — g(@W,, W) g(eWs5, W,)
=2 G(eW,, W3)g(eW;, W)} + g(Twl Wy, Tw, W4)

- g(ng W1, Tw, V) (6.2)

ve
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c—3 c+1 R
KWy, W,) = T{QZ(WL W,) -1} + T{—SQZ(WZ,(PWl)}

+9(Tyw, Wy, Ty, Wo) — G(Tw, Wy, Ty, W2) (6.3)

esitlikleri saglanir.

Ispat Wy € T(D) igin n(W;) = 0’dir. (6.1) den

c—3_ R R
R(Wy, Wy, W3, W,) = T {GW3, WDV (W, W) — G(Wo, W) g (W3, W)}

c+1

+ T{ { G(eW3, W) G(eWo, W,) — G(eW,, W) G (W3, W,)
=2 G(oeW,, W3)g(eWy, W,)} + gA(Twl Wy, Ty, W4)

elde edilir. Diger taraftan (6.1) de W; = W, ve W; = W, alinirsa

c—3
K(Wp Wz) = T{Q(WZ' W1)§(W1' Wz) - g(Wl' W1)§(Wz; Wz)}

c+1

+—— LGWo, Wo)n(W)n(Wh) — g (W1, Wo)n(Wo)n(W)
+g (W1, W)n(W)n(W) — G(W2, Wi)n(Wi)n(W2)
+g(@Wo, W) g(@Ws, W2) — G(oWy, W1) G (W, W)
—2G (W, Wy) G(oWy, Wy)} + §(Tw, Wy, Tw, W)

_ﬁ(TVWL TW1W2) (6.5)

bulunur ve n(W;) = 0 oldugundan (6.3) elde edilir.

6.1. Sonu¢ (M,p,&,n,g) bir Kenmotsu space form ve (N, g) bir Riemann manifold
Y: M — N bir yarislant &€& —Riemann submersiyon olsun. D total geodezik ise D’in skaler

egriligi
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C_
4

3(c+1) (6.6)

3(2p—1)+

T =

olarak bulunur.

6.2. Teorem (M, @,¢,n,g) bir Kenmotsu space form ve (N, g) bir Riemann manifold
Y: M - N bir yan slant & —Riemann submersiyon olsun. v W;, W, € I'(D) igin Ricci

egriligi
c—3 3(c+1))\ .
somwy) = [ (S7) @p -0+ == ) gow,,wy)
+ 22 (G(Te,Wh, Tw, &) — §(Tu, W, T )
(6.7)
seklindedir.

Ispat Skaler egriligin izinin Ricci egriligi oldugunu biliyoruz. Yani

n
SOW,, W) = ) R(ei, Wy, W e0)

=1

(6.8)

Burada {el, ) ezp} D nin ortonormal bazi, W;, W, € I'(D) olup

2p
c—3
S W) = D == (G(Wy, Wy)ger, ) — Glew, Wa)§ (W, e}

i=0
+%!’]\((PW1, W,)G(pe;, e;) — G(pe;, W) g(oWy, e;)
—2§(pe, W) G(oWy, )} + §(Te,Wa, Ty, €;) — §(Tw, Wa, Toe:) (6.9)

yazilir. gy (@e;, e;) = 0 dir. Buradan

S(W, Wy) = 2 02pg (Wi, Wy) — G(Wo, W} + = {g(@Wy, @W,)
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+2g(W,, @W1)} + g(TeiWZ' Twlei) - §(TW1W2, Teiei) (6.10)

elde edilir. Buradan

SWa, W) = 2 (20 — DGR, W)} + o (33 (oW, @)
+9(TeWa, Tw, €1) — §(Tw,Wa, To,€;) (6.11)
bulunur. O halde
c—3 c+1
S(Wy, W) = T{(Zp - DgW, W)} + TB@((PWL oW,)}
+ 22, (G(Tw, Wa, Twey) = G(Tw, Wa, Tee1)) (6.12)

oldugundan Ricci Egriligi

-3 3 1
S(Wy, W) = ((CT) (2p—1)+ %) GWy, W)
+ 3P (G(ToWa, Tw, &) — §(Tu, W, T ) (6.13)

olarak elde edilir.

6.2. Sonu¢ (M,p,&,n,g) bir Kenmotsu space form ve (N, g) bir Riemann manifold
Y: M - N bir yan slant & — Riemann submersiyon olsun. D total geodezik ise D

Einsteindir.
6.3. Teorem (M, @, & ,n,g) bir Kenmotsu space form ve (N, g) bir Riemann manifold

Y: M - N bir yan slant & —Riemann submersiyon olsun. V Ly, L,, L3, Ly € T(Dy) igin

Riemann egriligi

c—3
R( Llf LZ' L3, L4-) = T {g (Ll' Lz)g(l@' L4—) - g(Ll' L4)g(L21 L3)}



49

c+1

t {9(@Ly, L) G(@Ly,L3) — G(@Ly, Ly)G(@Ly, L3)

—2G(@Ly,Ly)G(@Ly, L3)} + !j(TL1 Ly, TL2L3)
_g\(TL2 Ly, Ty, L3) (6.14)

ve kesitsel egrilik

c—3 c+1 .
K(Ly,Ly) = T{gz(lq, L) -1} + T{_392((PL1: L,)}
+§(Ty L1, Tr,Ly) — §(Ty, Ly, Ty Ly) (6.15)

seklinde tanimlidir.

Ispat Ly, Ly, Ls, L, € T'(Dp) igin (6.1) kullamilirsa

c—3
R(Lp Ly, L3, L4) = T {.Q(Lp Lz)g(L3; L4) - .Q(Lb L4)§(L2: L3)}

1
+%{g(L2,L3)77(L1)n(L4)

=g (Ly, L)n(L)n(Ly) + gLy, Ly)n(Lz)n(L3)
=g (L, L (L)n(Ls) + G(@Ly, La) gu(@Ly, L3)
—g(@Ly1, L) G(@Ly, L3) — 2G(@Ly, L) G(@Ly, L3)}

+9m (TL1L4' TL2L3) - g(TLZ Ly Ty, L3) (6.16)

olarak bulunur. Diger taraftan

c—3
K(Ly, Ly) = T{Q(LL Lz)g(lq' Ly) — ﬁ(L1, L1)g(L2; L,)}

c+1

+ e {9(@Ly, L) G(@Ly, Ly) + 2G(Ly, L) G(@Ly, L)}

+§(Ty, Ly, To,Ly) — §(Ty, Ly, Ty, Ly) (6.17)
veya

c+1

KLy, L2) = {37 (Ly, L) — 13 + S {=3% (Lo, oLy)
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—2G%(@Lq, L)} + g(TLlLll TLsz) - g(TL2L1: TL1L2) (6.18)
elde edilir.

6.4. Teorem (M, q,&,n,g) bir Kenmotsu space form ve (N, g) bir Riemann manifold
Y: M — N bir yan slant & — Riemann submersiyon olsun. V L,, L, € I'(Dg) Ve Dy total
geodezik ise Ricci egriligi

3(c+1)
4

S(Ly,Ly) = (5229 — 1) + =52) g (L, Ly) (6.19)

seklindedir.
Ispat ¥ Ly, L, € T(Dy) igin
S(Ly, L) = %% R(ey Ly, Ly, €;)
-3 A
= Zizgl CT{Q (L1, Ly)g(e;, e) — g(ei, L) gu(Ly, €)}
c+1

+—-19(@L1, L2) G (e, e;) — 2(pe;, L) G(@Lo, €;)}

+G(To, L2, Tr,e1) — G(Ti Lo Te,e:) (6.20)
yazilabilir. §(¢e;, e;) = 0 oldugundan
—29(pe;, L1)gG(oLy, ;) = 2g(e;, L) G(oLy, €;) = 2G(@Lo, @Lq) (6.21)

elde edilir.g(e;, e;) = 2q olup

S La) = () 24 - DGy, 1) +

3(c+1). _
4 T)BQ(CPLL(PLZ)

+9(Te, L Ty e) — G(To, L2, Teyer) (6.22)

Dy total geodezik ise T, L, = 0 dur.
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6.3. Sonu¢ (M, ¢, ¢ ,n, §) bir Kenmotsu space form ve (N, g) bir Riemann manifold y: M
— N bir yar slant £ —Riemann submersiyon olsun. Dy distribiisyonu total geodezik ise

Dy Einstein’dir.
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7. SONUC VE ONERILER

Bu tez calismasinda Kenmotsu manifoldlardan Riemann manifoldlara yar1 slant
£ —Riemann submersiyonlarla ilgili teoremler ispatlandi. Oncelikle temel kavramlar ile
Kenmotsu manifoldun alt manifoldlarinin tanim ve teoremleri, daha sonra Kenmotsu
manifoldun yari slant alt manifoldunun submersiyonunun tanim ve teoremlerine yer verildi.
Daha sonra liflerin geometrisi, Riemann submersiyonun total umbilikligi ve total

geodezikligi, son olarak da egrilik 6zellikleri incelenip teoremler ispatlandi.

Literatiire ilk defa Tiirk¢e kaynak olarak kazandirilan bu tez ¢aligmasindan hareketle degme
manifold tabanli diger manifoldlarin yari-invaryant, yari-slant, pseudo (hemi)- slant, bi-slant,
generik altmanifoldlarindan hemen hemen degme manifoldlara tanimlt submersiyon

doniisiimii calisilabilir.
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