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ÖZET 

 

Bu tez çalışmasında yarı invaryant ξ⊥−Riemann submersiyonların bir genellemesi olan yarı slant 

ξ⊥−Riemann submersiyonlar çalışıldı. Kenmotsu Manifoldlar için yarı slant ξ⊥−Riemann 

submersiyon tanımlandı ve örneklerle incelendi. Yarı slant ξ⊥−Riemann submersiyon tanımından 

ortaya çıkan distribüsyonların ve submersiyon dönüşümünün geometrisi incelendi. Ayrıca Kenmotsu 

space formun yarı slant ξ⊥−Riemann submersiyonlar için distribüsyonların eğrilik özellikleri 

araştırıldı ve bu distribüsyonların Einstein olma şartları elde edildi. 
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In this thesis, semi-slant ξ⊥−Riemannian submersions, which are a generalization of semi invariant

ξ⊥−Riemannian submersions, were studied. Semi-slant ξ⊥−Riemannian submersions for

Kenmotsu manifolds was defined and examined with examples. The geometry of the 

distribution and submersion transformations resulting from the semi-slant ξ⊥−Riemannian

submersions definition was examined. In addition the curvature properties of the distributions for the 

semi-slant ξ⊥−Riemannian submersions of the Kenmotsu space form were investigated and the

Einstein conditions for these distributions were obtained. 

Number of pages  : 55 

Keywords        : Riemannian submersion, Kenmotsu manifold, Semi-slant submersion 

Supervisor  : Assoc. Prof. Dr. Ramazan SARI 



vi 
 

ÖN SÖZ VE TEŞEKKÜR 

 

Bu tezin hazırlanma aşamasında, çalışmalarım süresince desteklerini esirgemeyen, 

çalışmalarımda bana yön veren ve tez yazımım sırasında değerli zamanını ayırarak yardım 

eden tez danışmanım sayın Doç. Dr. Ramazan SARI’ya teşekkürü borç bilirim. Bu dönem 

boyunca her konuda desteklerini esirgemeyen manevi gücüm eşim Adem KÜR ile 

çocuklarım İrem ve Eren Şükrü’ye, annem ve babama minnetlerimi belirtmek isterim. Aynı 

zamanda bu süreçte ve ders dönemim boyunca fikir alışverişlerinde bulunduğum sınıf 

arkadaşlarım ve arkadaşım Leman KARABIYIK’a teşekkür ederim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

İÇİNDEKİLER 

 

     Sayfa 

ÖZET………………………………………………………………….………….…....       iv 

 

ABSTRACT……………………………………………………………………....…...        v 

 

ÖN SÖZ VE TEŞEKKÜR ……………………………………………………………..     vi 

 

İÇİNDEKİLER ...……..…………………………………………………….……...…..    vii 

 

SİMGELER VE KISALTMALAR DİZİNİ …………………………….……………..   viii 

 

1. GİRİŞ …………………………………………………………………………...…...       1 

 

2. TEMEL KAVRAMLAR ……………………………………………………….…...       3 

 

     2.1. Tanımlar ………………………………………………….……………….……      3 

 

     2.2. İmmersiyon …………………………………………………………….…...….       5 

 

     2.3. Submersiyon ………………………………………………………….…..........       6 

 

     2.4. Hemen Hemen Değme Metrik Manifoldlar ……………………………..……...   10 

 

3. KENMOTSU MANİFOLDLAR İLE ξ⊥- RİEMANN SUBMERSİYON .......….….     13 

 

4. LİFLERİN GEOMETRİSİ …...……………………………………………………..     18 

 

5. SUBMERSİYONLARIN GEOMETRİSİ ………………………….…….…….…...     41 

 

6. KENMOTSU SPACE FORM İLE 𝝃⊥-RİEMANN SUBMERSİYON ......….............    45 

 

7. SONUÇ VE ÖNERİLER………………………………….……………………..…...     52 

 

KAYNAKLAR ………………………….………………………………………..…....     53 

 

ÖZGEÇMİŞ …………………….………………………………………….…………..     56 
 

 
 
 
 
 
 
 
 
 



viii 
 

SİMGELER VE KISALTMALAR DİZİNİ 

 

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, yanda açıklamaları verilmek üzere 

aşağıda listelenmiştir. 

                                                                                                                                         

Simgeler Açıklama 

 

𝑀 Diferensiyellenebilir manifold 

 

𝑔 Riemann metriği 

 

∇ Lineer konneksiyon 

 

𝜓∗ Türev dönüşümü 

 

[,] Lie braket operatörü 

 

𝑉 Dikey distribüsyon 

 

ℋ Yatay distribüsyon 

 

𝜂 1-form 

 

𝜑 (1,1) tipinde tensör alanı 

 

Φ 2-form 
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1. GİRİŞ 

 

Bilim ve teknolojideki gelişmelerin sonucunda, geometri zamanla çeşitli alanlara 

ayrılmıştır. Bu alanlardan birisi olan diferansiyel geometri, matematiğin türev işlemini 

kullanarak geometrik problemleri çözen, diferansiyel hesaplamaların geometriye 

uygulandığı bir kolu olmuştur. Eğriler, yüzeyler ve manifoldlar, modern matematiğin en 

aktif kullanım alanlarından biri olan diferansiyel geometrinin incelediği temel konuların 

başında gelmektedir. Manifoldlar arasında diferansiyellenebilir dönüşümler tanımlanarak, 

manifoldların geometrik yapılarını incelemek ve karşılaştırmak mümkün olmuştur. Bu 

sayede manifoldların temel özellikleri ve geometrisi daha anlaşılır hale gelmiştir. 

 

Riemann manifoldların geometrik özelliklerini karşılaştırmak için kullanılan dönüşümlerin 

çeşitliliğinin az olması önemli bir eksiklik olarak karşımıza çıkmaktadır. 

 

Riemann geometride, izometrik immersiyonlar ve Riemann submersiyon dönüşümleri 

olmak üzere iki temel dönüşüm vardır. İki manifold arasındaki izometrik immersiyon 

dönüşümü küçük boyuttan daha yüksek boyuta tanımlanırken, Riemann submersiyon 

dönüşümü ise yüksek boyutlu manifolddan düşük boyutlu manifolda tanımlanır. 

 

Submersiyon teoerisinde İzometrik immersiyonların karşılığı olan Riemann 

submersiyonlar, O’Neill (O’Neill, 1966) ve Gray (Gray,1967) tarafından 1966 ve 1967 

yıllarında ,birbirinden bağımsız olarak çalışılmıştır . Günümüzde ise, O’Neill in teorisi 

daha çok kullanılmaktadır. Temel amacı negatif eğrilikli manifoladları incelemek olan 

Riemann submersiyonların, diğer manifoldların özelliklerini de incelemede kullanışlı 

olduğu görülmüştür. Manifoldların özelliğine göre birçok farklı Riemann submersiyon 

tanımı yapıldı. Anti invaryant (Lee,2013), yarı invaryant (Akyol, Sarı ve Aksoy, 2017), 

slant (Erken ve Murathan, 2016), yarı slant (Akyol,2017), quaternionik (Ianus ,Mazzocco 

and Vilcu,2008), hemi slant (Akyol ve Gündüzalp, 2016), ve pointwise slant (Lee ve 

Şahin,2014)  Riemann submersiyonlar da bulunmaktadır. Riemann submersiyonlar fizikte 

Kaluza-Klein teoride, süper kütle çekim, sicim ve Yung Mills teorilerde kullanılmaktadır 

(Ianus ve Visinescu,1987). 

 

Son yıllarda anti invaryant ξ⊥ −Riemann submersiyonların bir genellemesi olarak Akyol 
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ve arkadaşları hemen hemen kontak metrik manifoldlardan yarı invaryant ξ⊥ −Riemann 

submersiyon kavramını tanımlayarak bu tür dönüşümlerin geometrisini araştırdılar (Akyol, 

Sarı ve Aksoy, 2017). 

 

Negatif eğrilikli manifoldları inceleyen Bishop ve O'Neill olup, warped çarpım 

manifoldları olarak isimlendirdikleri yeni bir çalışma alanını ortaya çıkarttılar. Buradan 

hareketle S. Tanno ise hemen hemen değme manifoldları sınıflamayı başarmıştır. Bir 

hemen hemen değme manifold 𝑁 de 𝜉 karakteristik vektör alanını içeren düzlem kesitinin 

kesitsel eğriliği sabit ve 𝑐 olmak üzere, 

 

1. 𝑐 >  0 ise 𝑁 sabit kesitsel eğrilikli Sasakian manifoldtur, 
 

2. 𝑐 =  0 ise 𝑁 sabit kesitsel eğrilikli bir Kaehler manifolddur, 
 

3. 𝑐 <  0 ise 𝑁 reel ile kompleks düzlemin warped çarpımı 

 

olarak yazılır (Tanno, 1969). 

 

Kenmotsu buradaki üçüncü durumu 1972’de incelemiş ve Sasakian olmayan yeni bir yapı 

tanımlamıştır. Bu yapının, bir Kaehler manifold ile bir açık aralığın warped çarpımı olarak 

yazılabildiğini göstermiştir. 1981‘de, Kenmotsu‘nun tanımladığı bu yeni yapı Janssens ve 

Vanhecke tarafından Kenmotsu manifoldu olarak isimlendirilmiştir. 

 

Bu tez çalışmasında ilk defa Kenmotsu Manifoldlardan Riemann manifoldlara yarı slant  

ξ⊥ −Riemann submersiyonlar çalışılmıştır. 

 

Tezin ikinci bölümünde temel kavramlar ele alındı. Üçüncü bölümünde bir Kenmotsu 

Manifolddan bir Riemann manifolda tanımlı yarı slant ξ⊥ −Riemann submersiyon 

tanımlandı ve örneklerle açıklandı. Dördüncü bölümde tanımdan ortaya çıkan 

distribüsyonların geometrik özellikleri incelendi. Beşinci bölümde tanımlanan 

Submersiyon dönüşümünün Total Umbilikliği ve Total Geodezikliği ele alındı. Son olarak 

bir Kenmotsu space formun yarı slant ξ⊥ −Riemann submersiyon için eğrilik özellikleri 

elde edildi ve yarı slant ξ⊥ −Riemann submersiyon tanımından ortaya çıkan 

distribüsyonların total geodezik olması durumunda Einstein oldukları gösterildi. 
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2. TEMEL KAVRAMLAR 

 

Bu bölüm beş alt bölümden oluşmaktadır. İlk kısımda Riemann submersiyon ve Kenmotsu 

manifold tanımları verilmiştir. İkinci bölümde Riemann manifoldların altmanifoldları 

tanımlanarak immersiyon ve izometrik immersiyon kavramları kısaca açıklanmıştır. Üçüncü 

bölümde submersiyon ifadesi tanımlanmıştır. Dördüncü bölümde hemen hemen değme 

metrik manifoldlara yer verilmiştir. Son bölümde ise Kenmotsu manifoldu ve Kenmotsu 

manifoldlarının altmanifoldları incelenmiştir. 

 

2.1. Tanımlar 

 

2.1.1. Tanım 𝑀, diferansiyellenebilir bir manifold ve 𝑀 de tanımlı 𝐶∞ vektör alanlarının 

uzayı 𝜒(𝑀) olsun, 𝐶∞- fonksiyonlarının uzayı ise 𝐶∞(𝑀,ℝ) olmak üzere, 

 

                                           𝑔: 𝜒(𝑀) × 𝜒(𝑀) → 𝐶∞(𝑀,ℝ)                                           (2.1) 

  

dönüşümü 2-lineer, simetrik ve pozitif tanımlı ise 𝑔 ye 𝑀 üzerinde bir Riemann metriği ve 

(𝑀, 𝑔) ikilisine de Riemann manifoldu denir (Hacısalihoğlu, 1983). 

 

2.1.2. Tanım 𝑀 ve 𝑁 iki Riemann manifoldları arasında 

   

   𝜓:𝑀 → 𝑁  (2.2) 

                                                                               

bir 𝐶∞- dönüşümünün türev dönüşümü 

                                     

 𝜓∗: 𝜒(𝑀) → 𝜒(𝑁)   (2.3) 

                                                             

şeklinde gösterilir. Bu dönüşümün her 𝑢 ∈  𝑀 noktasında 

                               

 𝜓∗𝑢: 𝑇𝑢𝑀 → 𝑇𝜓∗(𝑢)𝑁  (2.4) 

                                                     

lineer dönüşümünü vardır.  
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                      𝜓∗𝑢(𝑉)(𝑓) = 𝑉(𝑓 ∘ 𝜓)                    (2.5) 

 

dönüşümünde, 𝑓 bir fonksiyon ve 𝑉 bir vektör alanı olmak üzere,  bu dönüşüme 𝜓 nin 𝑢 

noktasındaki türev dönüşümü denir (Yano ve Kon, 1984). 

 

2.1.3. Tanım 𝑀 bir diferansiyellenebilir manifold üzerinde iki vektör alanı 𝑊1 ve 𝑊2 olsun. 

𝑓 ∈ 𝐶∞(𝑀,ℝ) fonksiyonu ele alalım. 

                                                                                   

                                                  [, ]: 𝜒(𝑀) × 𝜒(𝑀) → 𝜒(𝑀)                                              (2.6)    

                                                                                   

için [𝑊1, 𝑊2]𝑓 = 𝑊1 (𝑊2𝑓) − 𝑊2 (𝑊1𝑓) şeklinde tanımlı [, ] fonksiyonuna 𝑊1 ve 𝑊2 nin 

Lie (parantez) operatörü denir. Lie operatörü aşağıda verilen özellikleri sağlar (Yano ve Kon, 

1984). ∀ 𝑊1,𝑊2, 𝐿 ∈ 𝜒(𝑀)) ve ∀ 𝑓, 𝑔 ∈ 𝐶∞(𝑀,ℝ) olmak üzere, 

 

i. [𝑊1,𝑊2] = −[𝑊2,𝑊1] 
 

ii. [𝑎𝑊1 + 𝑏𝑊2, 𝐿] = 𝑎[𝑊1, 𝐿] + 𝑏[𝑊2, 𝐿] 
 

iii. [[𝑊1,𝑊2], 𝐿] + [[𝑊2, 𝐿],𝑊1] + [[𝐿,𝑊1],𝑊2] = 0 

 

iv. [𝑓𝑊1, 𝑔𝑊2] = 𝑓[𝑊1,𝑊2] + 𝑓(𝑊1𝑔)𝑊2 − 𝑔(𝑊2𝑓)𝑊1 
  

2.1.4. Tanım 𝑀, bir Riemann manifold ve 𝑀 üzerinde vektör alanlarının uzayı 𝜒(𝑀) olmak 

üzere, 

 

                                             ∇: 𝜒(𝑀)  × 𝜒(𝑀)  → 𝜒(𝑀)                                                    (2.7) 

                                                                                                      

olmak üzere 𝛻(𝑈, 𝑉) = 𝛻𝑈𝑉 şeklinde tanımlı fonksiyon  ∀𝑈, 𝑉, 𝑍 ∈ 𝜒(𝑀))ve ∀ 𝑓, 𝑔 ∈

𝐶∞(𝑀,ℝ) için 

 

i. ∇𝑈+𝑉Z = ∇𝑈Z + ∇𝑉Z 
 

ii. ∇𝑈(V + Z) = ∇𝑈V + ∇𝑈Z 
 

iii. ∇𝑓𝑈V = 𝑓∇𝑈V  
 

iv. 𝛻𝑈𝑓𝑉 = 𝑈[𝑓]𝑉 + 𝑓𝛻𝑈𝑉  
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v. [𝑈, 𝑉] = 𝛻𝑈𝑉 − 𝛻𝑉𝑈 
 

vi. 𝑈𝑔(𝑉, 𝑍) = 𝑔(∇𝑈V , Z) + 𝑔(𝑉, ∇𝑈Z ) 

 

şartları sağlanıyorsa ∇ ya 𝑀 üzerinde bir Riemann konneksiyonu 𝛻𝑈’ ya da 𝑈 ya göre 

kovaryant türev operatörü denir (Yano ve Kon, 1984). 

 

2.1.5. Tanım 𝑀 bir diferansiyellenebilir manifold olsun. ∀𝑊1,𝑊2,𝑊3 ∈ 𝜒(𝑀) için  

  

                                                   𝑅: 𝜒(𝑀)  × 𝜒(𝑀) × 𝜒(𝑀)  → 𝜒(𝑀)                                   (2.8) 

 

olmak üzere 𝑅(𝑊1,𝑊2,𝑊3) = 𝑅(𝑊1,𝑊2)𝑊3 = 𝛻𝑊1
𝛻𝑊2

𝑊3 − 𝛻𝑊2
𝛻𝑊1

𝑊3 − 𝛻[𝑊1,𝑊2]𝑊3 ye 

𝛻 konneksiyonunun eğrilik tensörü denir (Yano ve Kon, 1984). 

 

2.1.6. Tanım 𝑀 bir diferansiyellenebilir manifold olsun. ∀𝑊1,𝑊2,𝑊3,𝑊4 ∈ 𝜒(𝑀) için 

 

                                  𝐾 ∶  𝜒(𝑀) ×  𝜒(𝑀)  ×  𝜒(𝑀)  ×  𝜒(𝑀)  → 𝐶∞(𝑀, ℝ)                     (2.9) 

 

olmak üzere 𝐾(𝑊1,𝑊2,𝑊3,𝑊4)  =  𝑔(𝑅(𝑊1,𝑊2)𝑊3,𝑊4) şeklinde verilen eşitliğe 𝑀 

üzerinde Riemann Chiristoffel eğrilik tensörü denir (Yano ve Kon, 1984). 

  

2.1.7. Tanım 𝑀 bir diferansiyellenebilir manifold ve 𝑔 de 𝑀 üzerinde tanımlı Riemann 

metriği olsun. Bir 𝑝 ∈  𝑀 𝑖ç𝑖𝑛 𝑇𝑝𝑀 tanjant uzayın iki boyutlu alt uzayı 𝛱 ise ∀𝑈, 𝑉 ∈ 𝛱 

tanjant vektörleri için 

 

                                                        𝐾(Π) =
𝑔(𝑅(𝑈,𝑉)𝑈,𝑉)

𝑔(𝑈,𝑈)𝑔(𝑉,𝑉)−𝑔(𝑈,𝑉)2
                                    (2.10) 

 

eşitliğine 𝛱 düzleminin kesitsel eğriliği denir (Yano ve Kon, 1984). 

 

2.2. İmmersiyon 

 

2.2.1. Tanım 𝑀 ve 𝑀′ sırasıyla 𝑚 ve 𝑛 boyutlu iki Riemann manifoldu olmak üzere                                                             

                                             𝑓 ∶  𝑀 →  𝑀′                                                              (2.11) 
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bir 𝐶∞- dönüşümü için, 

                                                                                                                   

                                                             𝑏𝑜𝑦𝑓∗(𝑇𝑝𝑀) = 𝑚                                                             (2.12) 

 

ise 𝑓 nin 𝑝 ∈ 𝑀 noktasındaki rankı 𝑚 dir denir. Eğer 𝑏𝑜𝑦(𝑀)  =  𝑟𝑎𝑛𝑘(𝑓) ise 𝑓’ye 

immersiyon denir. Burada 𝑀, 𝑀′ nin immersed alt manifoldu olup 𝑓 birebir ise imbedding 

denir. Burada 𝑀 ye 𝑀′ nün gömülen alt manifoldu ya da sadece altmanifoldu denir 

(Hacısalihoğlu,1983). 

 

2.2.2. Tanım (𝑀, 𝑔) ve (𝑀′, 𝑔′) iki Riemann manifold ve 𝑓 ∶  𝑀 →  𝑀′ immersiyon olsun. 

∀𝑊1,𝑊2 ∈ 𝜒(𝑀) için 

 

                                           𝑔(𝑊1,𝑊2) = 𝑔′(𝑓∗(𝑊1), 𝑓∗(𝑊2)))                                        (2.13) 

                                                                                                                    

eşitliğinde 𝑓∗’ye izometrik immersiyon denir (Hacısalihoğlu,1983). 

 

2.2.3. Tanım 𝑀, bir Riemann manifold olsun. 𝑀 nin her noktasındaki teğet uzayına,bir alt 

uzay karşılık getiren 𝐷 dönüşümüne manifold üzerinde bir distribüsyon denir. (Duggal ve 

Bejancu.1996). 

 

2.3. Submersiyon 

 

2.3.1. Tanım (𝑀,  𝑔𝑀) ve (𝑁, 𝑔𝑁) sırasıyla 𝑚 ve 𝑛 boyutlu iki Riemann manifold olmak 

üzere,                                                                                    

 

                                                 𝜓: (𝑀,  𝑔𝑀)   → (𝑁, 𝑔𝑁)                                                 (2.14) 

 

için 𝑟𝑎𝑛𝑘𝜓∗(𝑥) =  𝑏𝑜𝑦𝑁 ise 𝜓’ ye 𝑥 ∈  𝑀 noktasında bir submersiyon denir. ∀𝑥 ∈  𝑀 

için 𝜓 bir submersiyon ise 𝜓’ye 𝑀 üzerinde bir submersiyon denir. 

𝑚 ve 𝑛 pozitif doğal sayılar ve 𝑚 >  𝑛 olmak üzere 

 

                                                 𝜓∶ ℝ𝑚 → ℝ𝑛                                                      (2.15) 
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dönüşümü için  

                                 

                                     𝜓∶ (𝑢1, 𝑢2, . . . 𝑢𝑚) → (𝑢1, 𝑢2, . . . 𝑢𝑛)                                 (2.16) 

                                                                   

ile verilsin. Bir 𝑢 ∈ ℝ𝑚 

 

                                                                                                    𝜓∗(𝑥) (𝑣1, 𝑣2, . . . 𝑣𝑚) = (𝑣1, 𝑣2, . . . 𝑣𝑛)                               (2.17) 

 

olduğundan 𝜓∗ diferansiyeli örtendir. Dolayısıyla projeksiyon dönüşümü bir 

submersiyondur.  

 

2.3.1. Örnek   

 

                                                 𝜓:ℝ6 → ℝ3                                                 (2.18) 

 

                                                 (𝑢1, 𝑢2, 𝑢3, 𝑢4) → (
𝑢1+𝑢2

√2
,
𝑢3+𝑢4

√2
,
𝑢5+𝑢6

√2
)                        (2.19)  

 

𝑑önüşümünde {𝑢1,𝑢2,𝑢3,𝑢4,𝑢5,𝑢6}, ℝ6 nın koordinat sistemini göstermektedir. Dönüşümün 

Jakobiyen matrisi 𝜓∗ olmak üzere, 

 

                                           𝜓∗ =

[
 
 
 
 

1

√2

1

√2
0 0 0 0

0 0
1

√2

1

√2
0 0

0 0 0 0
1

√2

1

√2]
 
 
 
 

                                     (2.20) 

 

elde edilir. Dolayısıyla 𝑟𝑎𝑛𝑘 𝜓∗ = boyℝ3 = 3 dir. Bu da 𝜓 dönüşümünün bir submersiyon 

olduğunu gösterir. 

 

2.3.2. Tanım 𝑀 ve 𝑁 sırasıyla 𝑚 ve 𝑛 boyutlu Riemann manifold ve 𝜓 ∶  𝑀 →  𝑁 ye bir 

submersiyon olsun. ∀ 𝑢 ∈  𝑁 için 𝜓−1(𝑢), (𝑚 − 𝑛)-boyutlu, 𝑀’nin bir altmanifoldudur.     

(𝑚 − 𝑛)-boyutlu altmanifolda submersiyon dönüşümünün lifleri denir. 

2.3.3. Tanım 𝑀 ve 𝑁 sırasıyla m ve n boyutlu iki Riemann manifold, 𝜓 ∶  𝑀 →  𝑁 ye bir 

submersiyon olsun. Herhangi bir 𝑢 ∈  𝑀 için 𝑀 deki 𝒱 𝑣𝑒 ℋ distrübisyonunu 
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                      𝒱𝑢 = 𝒱𝑢(𝜓) = çek 𝜓∗𝑢  =  {U ∈ T𝑢M ∶ 𝜓∗𝑢(U) = 0} ⊂ T𝑢M                 (2.21) 

 

ve 

 

                                                   ℋ𝑢 = ℋ𝑢 (𝜓) = 𝒱𝑢 ⊥ ⊂ T𝑢M                                     (2.22) 

 

verilsin. 𝒱𝑢 uzayına 𝜓’nin u noktasındaki dikey uzayı denir. 𝑀 deki 𝑔 metriğine göre 𝒱𝑢 

dikey uzayının dik tümleyeni olan ℋ𝑢 uzayına ise 𝜓’nin u noktasındaki yatay uzayı denir. 

Böylece 𝑀 Riemann manifoldu ∀ 𝑢 ∈  𝑀 için 

                                                                                 

                                            𝑇𝑢M = 𝒱𝑢 ⊕ ℋ𝑢 = 𝒱𝑢 ⊕ 𝒱𝑢
⊥

                                     (2.23) 

  

ortogonal ayrışımına sahiptir.      

         

                                                     𝒱u = çek𝜓∗u                                                       (2.24)  

 

ile tanımlanır ve 𝒱𝑢’e   submersiyonun dikey distrübisyonu denir. 

 

                                                           ℋ𝑢 = 𝒱𝑢
⊥

                                                          (2.25) 

 

şeklinde tanımlanan distribüsyona ise submersiyonun yatay distrübisyonu denir.  

 

2.3.1. Teorem 𝑀 ve 𝑁 sırasıyla 𝑚 ve 𝑛 boyutlu iki Riemann manifold, ψ ∶ 𝑀 → 𝑁 ye bir 

submersiyon ve 𝑀’nin dikey distrübisyonu 𝒱 olsun. Bu durumda ψ (𝑝) = 𝑥 ve 𝑝 ∈  𝑀 için 

her 𝒱𝑝 dikey distrübisyonu 𝜓−1(𝑢) in tanjant uzayı ile çakışır (Falcitelli ve diğerleri, 2003).  

 

2.3.4. Tanım (𝑀,  𝑔𝑀) ve (𝑁, 𝑔𝑁) sırasıyla 𝑚 ve 𝑛 boyutlu iki Riemann manifold olmak 

üzere, 𝜓 ∶  (𝑀,  𝑔𝑀)  →  (𝑁, 𝑔𝑁) için 

 

a) ∀𝑝 ∈ 𝑀 için, 𝜓∗𝑝 türev dönüşümü maksimal ranka sahip, 

 

       b) ∀𝑝 ∈ 𝑀 noktasında 𝜓∗𝑝 dönüşümü yatay vektörlerinin uzunluğunu korur. 
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şartları sağlanır ise 𝜓dönüşümüne Riemann submersiyon denir.  

 

∀ 𝑝 ∈  𝑀 için 𝜓∗𝑝türev dönüşümü ℋ𝑝 yatay uzayından T𝜓∗𝑝
𝑁 üzerine bir izometridir, yani 

𝑈, 𝑉 ∈ ℋ𝑝 için 

 

                                                     𝑔𝑀(𝑈, 𝑉) = 𝑔𝑁𝜓∗𝑝
(𝜓∗𝑝𝑈,𝜓∗𝑝𝑉)                               (2.26) 

 

dir (O’Neill ve diğerleri 1966, 2004).            

 

2.3.1. Önerme (𝑀, 𝑔𝑀) ve (𝑁, 𝑔𝑁) sırasıyla 𝑚 ve 𝑛 boyutlu iki Riemann manifold ve 

 

                                         𝜓  ∶ (𝑀, 𝑔𝑀) → (𝑁, 𝑔𝑁)                                      (2.27)  

 

bir Riemann submersiyonu olmak üzere 𝛻 ve 𝛻′ sırasıyla 𝑀 ve 𝑁 nin Riemann 

konneksiyonları ise, 𝑀 üzerindeki 𝑈, 𝑉 temel vektör alanları 𝑈′, 𝑉′ temel vektör alanlarına 

bağlı olsun. Bu durumda, 

 

i. 𝑔(𝑈, 𝑉) = 𝑔′(𝑈′, 𝑉′) ∘ 𝜓 

 

ii. ℎ[𝑈, 𝑉] temel vektör alanı ℎ[𝑈′, 𝑉′]] vektör alanına 𝜓 - bağlıdır.  

 

iii. ℎ(∇𝑈𝑉) temel vektör alanı ve ℎ(𝛻′
𝑈′𝑉′) 𝜓 – bağlıdır. 

 

iv. Herhangi bir 𝑉 ∈ 𝒱𝑝  için [𝑈, 𝑉]] dikey vektör alanıdır (Falcitelli ve  

 

diğerleri, 2003).    

                                                                       

Riemann submersiyonlar  𝒯 ve 𝒜 ile gösterilen O‘Neill tensörleriyle karakterizedir. 

∀𝐸1, 𝐸2  ∈  Г(𝑇𝑀) için 

 

                                              𝒯(𝐸1, 𝐸2) = ℋ∇𝒱𝐸1

𝑀1 𝒱𝐸2 + 𝒱∇𝒱𝐸1

𝑀1 ℋ𝐸2                            (2.28) 

 

                                             𝒜(𝐸1, 𝐸2) = ℋ∇ℋ𝐸1

𝑀1 𝒱𝐸2 + 𝒱∇ℋ𝐸1

𝑀1 ℋ𝐸2                          (2.29)      

                                                                                                               

eşitlikleri vardır (O’Neill, 1966). 
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2.3.1. Lemma (𝑀, 𝑔𝑀) ve (𝑁, 𝑔𝑁)  iki Riemann manifoldu ve 

 

                                      𝜓 ∶ (𝑀, 𝑔𝑀) → (𝑁, 𝑔𝑁)                                            (2.30) 

 

bir Riemann submersiyonu olmak üzere 𝑋, 𝑌 ∈ ç𝑒𝑘(𝜓∗)
⊥ ve 𝑊,𝑉 ∈ ç𝑒𝑘(𝜓∗) için 

 

 ∇𝑉𝑊 = 𝑇𝑉𝑊 + ∇̂𝑉𝑊 (2.31) 

 

 ∇𝑉𝑋 = ℎ∇𝑉𝑋 + 𝑇𝑉𝑋 (2.32) 

                                                                                                                                                                               

 ∇𝑋𝑉 = 𝐴𝑋𝑉 + 𝑣∇𝑋𝑉 (2.33) 

                                  

 ∇𝑋𝑌 = ℎ∇𝑋𝑌 + 𝐴𝑋𝑌 (2.34) 

dır. 

  

2. 4.  Hemen Hemen Değme Metrik Manifoldlar 

 

2.4.1. Tanım 𝑀, (2𝑛 + 1) −boyutlu diferansiyellenebilir manifoldu için, 𝑀 üzerinde 𝜂 1-

form , 𝜉 bir vektör alanı ve 𝜑, (1,1) tipinde tensör alanı olsun.∀ 𝑊 ∈ 𝜒(𝑀) için 

                                                                                      𝜂(𝜉) = 1                                               (2.35) 

  

ve  

 

                                                                      𝜑2W = −W + 𝜂(W)𝜉                                                (2.36) 

 

özellikleri sağlanıyorsa, (𝜑, 𝜉, 𝜂) ya 𝑀 üzerinde hemen hemen değme yapı, bu yapı ile 

birlikte 𝑀 manifolduna da hemen hemen değme manifold denir (Yano ve Kon, 1984). 

2.4.2. Tanım (𝑀, 𝜑, 𝜉, 𝜂 ) hemen hemen değme manifold olsun. 𝑀 üzerinde bir 𝑔 Riemann 

metriği  ∀ 𝑊1,𝑊2 ∈ 𝜒(𝑀) için 

                                                   

           𝜂(𝑊1) = 𝑔(𝑊1, 𝜉)                                                                     (2.37) 
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ve 

                                            

                                       𝑔(𝜑𝑊1, 𝜑𝑊2) = 𝑔(𝑊1, 𝑊2) – 𝜂(𝑊1)𝜂(𝑊2)                                  (2.38) 

 

eşitliği sağlanıyor ise (𝜑, 𝜉, 𝜂, 𝑔) ye hemen hemen değme metrik yapı, (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) de 

hemen hemen değme metrik manifold denir (Yano ve Kon, 1984). 

 

2.4.4. Tanım (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) hemen hemen değme metrik manifold olsun. Bu durumda  

∀ 𝑈, 𝑉 ∈ 𝜒(𝑀) için,  

 

                                                         Φ(𝑈, 𝑉) = 𝑔(𝑈, 𝜑𝑉)                                                 (2.39) 

                                                                                                      

olarak tanımlanan 𝜑 dönüşümüne hemen hemen değme manifoldun 2-formu denir (Yano ve 

Kon, 1984). 

 

2.4.5. Tanım  (𝑀, 𝜑, 𝜉, 𝜂, 𝑔 ) hemen hemen değme metrik manifold olsun. 𝜑 nin Nijenhuis 

tensör alanı [𝜑, 𝜑] olmak üzere, 

 

 [𝜑, 𝜑] + 2𝑑𝜂 ∧ 𝜉 = 0 (2.40) 

                                                                                                      

ise hemen hemen değme manifolda normal denir. 𝑀, hemen hemen değme metrik manifold 

normal ise 𝑀 ye değme normal metrik manifold denir (Yano ve Kon, 1984). 

 

2.4.6. Tanım (𝑀, 𝜑, 𝜉, 𝜂, 𝑔 ) hemen hemen değme manifold olsun. Eğer 𝑀 hemen hemen 

değme manifoldu normal η; 1-form kapalı (𝑑𝜂 = 0) ve 

 

                                                                          𝑑Φ = 2η ∧ Φ                                                      (2.41)    

                                                                                                           

ise hemen hemen değme manifolda Kenmotsu manifold denir (Kenmotsu, 1972). 

 

2.4.1. Teorem (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) hemen hemen değme manifold olsun. 𝑀 hemen hemen değme 

manifoldunun bir Kenmotsu manifoldu olması için gerek ve yeter şart, ∀ 𝑈, 𝑉 ∈ 𝜒(𝑀) için 
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         (∇𝑈𝜑)𝑉 = 𝑔(𝜑𝑈, 𝑉)𝜉 − 𝜂(𝑉)𝜑𝑈 (2.42) 

 

olmasıdır (Kenmotsu, 1972). 

 

2.4.1 Sonuç (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) bir Kenmotsu manifoldu olsun. Bu takdirde, ∀ 𝑈, 𝑉 ∈ 𝜒(𝑀) için 

 

                                                                ∇𝑈𝜉 = −𝜑2𝑈                                                              (2.43) 

 

dır. 
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3. KENMOTSU MANİFOLDLAR İLE 𝛏⊥-RİEMANN SUBMERSİYON 

 

Bu bölümde Kenmotsu manifoldlardan Riemann manifoldlara  yarı slant ξ⊥ −Riemann 

submersiyon tanımı verildi ve örneklerle açıklandı. 

 

3.1. Tanım (𝑀, 𝜑, 𝜉 , 𝜂,  𝑔𝑀) bir Kenmotsu manifold, (𝑁, 𝑔𝑁) bir Riemann manifold, 𝜓 ∶

𝑀 →  𝑁 bir Riemann submersiyon ve 𝜉 , ç𝑒𝑘(𝜓∗)’a normal olsun. 𝐷1 ve 𝐷2 iki ortogonal 

tümleyen distribüsyon olmak üzere, 

 

 çek (𝜓∗) =  𝐷1⨁𝐷2 , 𝜑(𝐷1) = 𝐷1 (3.1) 

 

ve 𝑋 ∈ Γ(𝐷2) için 𝜑(𝐷1) ile 𝐷2 arasındaki açı 𝜃 olup, sabit ise 𝜓 Riemann submersiyonuna 

yarı slant ξ⊥ −Riemann submersiyon denir. Burada 𝜃’ya submersiyonun slant açısı denir. 

 

𝜓, bir Kenmotsu manifolddan, bir Riemann manifolda tanımlı yarı slant ξ⊥ −Riemann 

submersiyon olsun.  𝑈 ∈ Г(çek (𝜓∗)) için 

 

 𝑈 = 𝑃𝑈 + 𝑄𝑈 (3.2) 

                                        

yazılabilir. Burada 𝑃𝑈 ∈ Γ(𝐷1) ve 𝑄𝑈 ∈ Γ(𝐷2) dır. Diğer taraftan , 𝒱𝑍 ∈ Γ(ç𝑒𝑘(𝜓∗)), 

ℋ𝑍 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥) için 

                                        

 𝑍 =𝒱𝑍 + ℋ𝑍 (3.3) 

        

eşitliği vardır. Burada  𝑍 ∈ Γ(𝑇𝑀) dir. Benzer şekilde 𝑉 ∈ Γ(ç𝑒𝑘(𝜓∗)) için 

 

 𝜑𝑉 = 𝜙𝑉 + 𝜔𝑉 (3.4) 

 

yazabiliriz ki burada 𝜙𝑉 ve 𝑤𝑉 sırasıyla, 𝜑𝑉 nin dikey ve yatay parçalarıdır. Diğer taraftan 

𝑋 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥) için 

 

 𝜑𝑋 = 𝐵𝑋 + 𝐶𝑋 (3.5) 

yazılabilir. Burada 𝐵𝑋 ve 𝐶𝑋, 𝜑𝑋 in dikey ve yatay parçalarıdır. Yatay distribüsyon  
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 ç𝑒𝑘(𝜓∗)
⊥ = 𝑤𝐷2⨁𝜇   (3.6) 

 

şeklinde yazılabilir. Burada 𝜇, 𝑤𝐷2 ‘nin ortogonal tümleyenidir. Her iki distribüyon da 

invaryant distribüsyondur. Diğer taraftan; 𝑈1, 𝑉1 ∈ Γ(ç𝑒𝑘(𝜓∗)) ve 𝑋 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥) için  

 

                                                        𝑔1(𝜔𝑈1, 𝑋) = −𝑔1(𝑈1, 𝐵𝑋)                                                (3.7) 

 

ve  

              

                                                       𝑔1(𝜙𝑈1, 𝑉1) = −𝑔1(𝑈1, 𝜙𝑉1)                                             (3.8) 

                                                                                      

yazılabilir.  

 

3.1. Örnek  Bir Kenmotsu manifolddan Riemann manifolda tanımlı her invariant Riemann 

submersiyon 𝜃 = 0 slant açılı, 𝐷𝜃 = 0} slant distrübüsyonu ile yarı slant ξ⊥ −Riemann 

submersiyondur. 

 

3.2. Örnek Bir Kenmotsu manifolddan Riemann manifolda tanımlı her slant Riemann 

submersiyon, 𝐷 = 0 invariant distrübüsyonu ile yarı slant ξ⊥ −Riemann submersiyondur. , 

 

3.3. Örnek  ℝ9 üzerinde Kenmotsu yapıyı 

 

      𝜑 (∑ (𝑋𝑖
𝜕

𝜕𝑥𝑖
+ 𝑌𝑖

𝜕

𝜕𝑦𝑖
)4

i=1 + 𝑍
𝜕

𝜕𝑧
) = ∑ (𝑌𝑖

𝜕

𝜕𝑥𝑖
− 𝑋𝑖

𝜕

𝜕𝑦𝑖
)4

𝑖=1 + ∑ (𝑌𝑖𝑦
𝑖 𝜕

𝜕𝑧
)4

𝑖=1             (3.9) 

 

                                                          𝜂 = 𝑑𝑧, 𝜉 =
𝜕

𝜕𝑧
                                                      (3.10) 

 

                            𝑔ℝ9 = 𝑑𝑧 ⊗ 𝑑𝑧 + 𝑒−2𝑧 ∑ 𝑑𝑥𝑖4
𝑖=1 ⊗ 𝑑𝑥𝑖 + 𝑑𝑦𝑖 ⊗ 𝑑𝑦𝑖                     (3.11) 

 

ile tanımlayalım. Bu yapı için bir φ bazını 

 

{ 𝜀1 = ez
𝜕

𝜕𝑥1
, 𝜀2 = ez

𝜕

𝜕𝑥2
, 𝜀3 = ez

𝜕

𝜕𝑥3
, 𝜀4 = ez

𝜕

𝜕𝑥4
, 𝜀5 = ez

𝜕

𝜕𝑦1
, 𝜀6 = ez

𝜕

𝜕𝑦2
, 𝜀7 = 
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                                          ez 𝜕

𝜕𝑦3 , 𝜀8 = ez 𝜕

𝜕𝑦4 , 𝜀9 =
𝜕

𝜕𝑧
 }                                                     (3.12) 

 

olarak seçelim. ℝ5 üzerindeki Kartezyen koordinatlar (𝑢1, 𝑢2,𝑣1, 𝑣2,𝑧) olmak üzere 𝑔ℝ5 

Riemann metriğini 

 

                            𝑔ℝ5 = e−2z ∑ (𝑑𝑢𝑖2
𝑖=1 ⊗ 𝑑𝑢𝑖 + 𝑑𝑣𝑖 ⊗ 𝑑𝑣𝑖) +  𝑑𝑧 ⊗ 𝑑𝑧                  (3.13) 

 

şeklinde belirleyelim. 𝐹: ℝ9 → ℝ5 için 𝐹(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑧) = (𝑥1 + 𝑥2, 𝑦1 +

𝑦2, 𝑠𝑖𝑛 𝛼𝑥3 − 𝑐𝑜𝑠 𝛼𝑥4, 𝑦4, 𝑧) şeklinde tanımlı bir submersiyon olsun. Burada  α ∈ (0,
π

2
) dir. 

Dönüşümün matrisi 

 

                                  𝐹∗ =

[
 
 
 
 
1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 sin 𝛼 − cos𝛼 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1]

 
 
 
 

                       (3.14) 

 

şeklindedir. Burada 

 

     ç𝑒𝑘𝐹∗ = 𝑆𝑝{𝑍1 = 𝜀1 − 𝜀2, 𝑍2 = 𝜀5 − 𝜀6, 𝑍3 = −𝑐𝑜𝑠 𝛼 𝜀3 − 𝑠𝑖𝑛 𝛼 𝜀4, 𝑍4 = 𝜀7}      (3.15) 

 

dir. Diğer taraftan ç𝑒𝑘𝐹∗
⊥ = Sp{𝐻1 = 𝜀1 + 𝜀2, 𝐻2 = 𝜀5 + 𝜀6, 𝐻3 = 𝑠𝑖𝑛 𝛼 𝜀3 −

𝑐𝑜𝑠 𝛼𝜀4 ,  𝐻4 = 𝜀8,  𝐻5 = 𝜀9} şeklindedir. φ’nin tanımından φ𝑍1 = −𝑍2, φ𝑍2 = 𝑍1 

şeklindedir. Dolayısıyla 𝐷1 = 𝑠𝑝𝑎𝑛{𝑍1, 𝑍2} seçilirse 𝐷1 invaryant distrübüsyon olur. Benzer 

şekilde, 𝑔ℝ9(φ𝑧3, 𝑧4) = cos𝛼 ve 𝑔ℝ9(φ𝑧4, 𝑧3) = cos𝛼 olduğundan 𝐷2 = 𝑆𝑝{𝑍3, 𝑍4} 

seçilirse, 𝐷2, 𝜃 =  𝛼 slant açılı slant distrübüsyon olur. Dolayısıyla 𝐹,𝜃 slant açılı bir yarı 

slant submersiyon olur. Şimdi yatay νektörlerin boyunun korunup korunmadığını 

inceleyelim. Gerekli hesaplamalar yapılırsa 

        

                   𝑔ℝ5 (𝐹*𝐻1, 𝐹*𝐻1)=𝑔ℝ9 (𝐻1, 𝐻1),  𝑔ℝ5 (𝐹*𝐻2, 𝐹*𝐻2) =𝑔ℝ9 (𝐻2, 𝐻2),        (3.16) 

 

                  𝑔ℝ5 (𝐹*𝐻3, 𝐹*𝐻3) =  𝑔ℝ9 (𝐻3, 𝐻3), 𝑔ℝ5 (𝐹*𝐻4, 𝐹*𝐻4)=𝑔ℝ9 (𝐻4, 𝐻4),         (3.17) 

                   𝑔ℝ5 (𝐹*𝐻5, 𝐹*𝐻5)=𝑔ℝ9 (𝐻5, 𝐻5)                            (3.18) 
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bulunur. Buradan 𝑖 = 1,… ,5 olmak üzere 

 

                                         𝑔ℝ5 (𝐹*𝐻𝑖, 𝐹*𝐻𝑖) = 𝑔ℝ9 (𝐻𝑖, 𝐻𝑖)                                            (3.19) 

 

bulunur. Dolayısıyla yatay vektörlerin de boyu korunmuş olur ki 𝐹 bir yarı slant 

ξ⊥ −Riemann submersiyondur. 

 

3.1. Lemma (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold, (𝑁, 𝑔𝑁) bir Riemann manifold 𝜓:𝑀 →

𝑁    bir yarı slant  ξ⊥ − Riemann submersiyon olsun. Bu durumda, ∀ 𝑋, 𝑌 ∈ Γ(çek (𝜓∗ )
⊥) 

ve 𝑈, 𝑉 ∈ Γ(çek (𝜓∗)) için 

 

                                            𝐵𝒯𝑈𝑉 + 𝜙∇̂𝑈𝑉 = ∇̂𝑈𝜙𝑉 + 𝒯𝑈𝜔𝑉                                      (3.20) 

 

                             𝑔𝑀(𝑈, 𝑉)𝜉 + 𝐶𝒯𝑈𝑉 + 𝜔∇̂𝑈𝑉 = 𝒯𝑈𝜙𝑉 + ℋ∇𝑈
𝑀𝜔𝑉                           (3.21) 

 

                                  𝜙𝒯𝑈𝑋 + 𝐵∇𝑈
𝑀𝑋 − 𝜂(𝑋)𝑈 = ∇̂𝑈𝐵𝑋 + 𝒯𝑈𝐶𝑋                                (3.22) 

                                                                                                                                                                                             

                                        𝜔𝒯𝑈𝑋 + 𝐶∇𝑈
𝑀𝑋 = 𝒯𝑈𝐵𝑋 + ℋ∇𝑈

𝑀𝐶𝑋                                  (3.23) 

 

                        𝑔𝑀(𝑈, 𝑉)𝜉 − 𝜔𝒜𝑋𝑌 + 𝐶ℋ∇𝑋
𝑀𝑌 = 𝒜𝑋𝐵𝑌 + ∇𝑋

𝑀𝐶𝑌 + 𝜂(𝑌)𝑋              (3.24) 

 

                                      𝜙𝒜𝑋𝑌 + 𝐵ℋ∇𝑋
𝑀𝑌 = 𝒱∇𝑋

𝑀𝐵𝑌 + 𝒜𝑋𝐶𝑌                            (3.25) 

 

şeklindedir. 

 

İspat  ∀ 𝑈, 𝑉 ∈ Γçek (𝜓∗)  için (2.42) ve (3.4) eşitlikleri kullanılırsa 

 

                            𝑔𝑀(𝑈, 𝑉)𝜉 − 𝜂(𝑉)𝑈 = ∇𝑈
𝑀𝜙𝑉 + ∇𝑈

𝑀𝜔𝑉 − 𝜙∇𝑈
𝑀𝑉                           (3.26) 

 

bulunur. Buradan (3.26) da, (2.31), (2.32), (3.4) ve (3.5) denklemleri aynı anda işleme tabi 

tutulursa 

 

𝑔𝑀(𝑈, 𝑉)𝜉 = 𝒯𝑈𝜙𝑉 + 𝜔∇̂𝑈𝜙𝑉 + 𝒯𝑈𝜔𝑉 + ℋ∇𝑈
𝑀𝜔𝑉 − 𝐵𝒯𝑈𝑉 − 𝐶𝒯𝑈𝑉 
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                                      −𝜙∇̂𝑈𝑉 − 𝜔∇̂𝑈𝑉                                                                      (3.27) 

                     

elde edilir. (3.27) de ki dikey ve yatay parçaları karşılaştırdığımızda (3.20) ve (3.21) 

eşitliklerini elde ederiz. Diğerleri de benzer şekilde ispatlanabilir. 

 

3.1. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold, (𝑁, 𝑔𝑁) bir Riemann manifold 

𝜓: 𝑀 → 𝑁    bir yarı slant  ξ⊥ − Riemann submersiyon olsun. O halde,  ∀ 𝑊 ∈ Γ(𝐷2)  için  

 

                                                  𝜙2𝑊 = −𝑐𝑜𝑠2𝜃𝑊                                                       (3.28) 

                           

eşitliği var olup, 𝜃 , 𝐷2 distrübüsyonunun slant açısıdır. 

 

3.1. Sonuç (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold, (𝑁, 𝑔𝑁) bir Riemann manifold 𝜓: 𝑀 →

𝑁 bir yarı slant ξ⊥ −Riemann submersiyon olsun. Her 𝑊1,𝑊2 ∈ Γ(𝐷2) için               

 

                                           𝑔𝑀(𝜙𝑊1, 𝜙𝑊2) = 𝑐𝑜𝑠2𝜃𝑔𝑀(𝑊1,𝑊2)                                (3.29) 

 

ve 

 

                                        𝑔𝑀(𝜔𝑊1, 𝜔𝑊2) = 𝑠𝑖𝑛2𝜃𝑔𝑀(𝑊1,𝑊2)                                    (3.30)   

                                                                          

şeklindedir.  
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4. LİFLERİN GEOMETRİSİ 

 

Bu bölümde distribüsyonların integrallenebilirlik ve total geodeziklikleri ile ilgili teoremler 

verilmiş ve ispatları yapılmıştır. 

 

4.1. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold, (𝑁, 𝑔𝑁) bir Riemann manifold ve                                         

𝜓:𝑀 → 𝑁 bir yarı slant ξ⊥ − Riemann submersiyon olsun. 𝐷1 distribüsyonunun 

integrallenebilir olması için gerek ve yeter şart  ∀ 𝑈, 𝑉 ∈ Γ(𝐷1) için  

 

                                    (∇𝜓∗)(U,φV) − (∇𝜓∗)(𝑉, φ𝑈) ∉ 𝜓∗𝜇                                         (4.1) 

 

olmasıdır. 

 

İspat  ∀ 𝑈, 𝑉 ∈ Γ(𝐷1), 𝐾 ∈ Γ(𝐷2), 𝑋 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥) için 

 

                                     𝑔𝑀([𝑈, 𝑉], 𝐾) = 𝑔𝑀(𝛻𝑈𝑉, 𝐾) − 𝑔𝑀(𝛻𝑉𝑈,𝐾)                             (4.2) 

 

şeklindedir. Buradan (2.38) eşitliği kullanılırsa 

 

𝑔𝑀([𝑈, 𝑉], 𝐾) = 𝑔𝑀(𝜑𝛻𝑈𝑉, 𝜑𝐾) +  𝜂(𝛻𝑈𝑉)𝜂(𝐾) − 𝑔𝑀(𝜑𝛻𝑉𝑈,𝜑𝐾) − 𝜂(𝛻𝑉𝑈)𝜂(𝐾) (4.3) 

                                                                               

bulunur. 𝜑∇𝑈𝑉 = ∇𝑈𝜑𝑉 − (∇𝑈𝜑)𝑉 olduğundan 

 

       𝑔𝑀([𝑈, 𝑉], 𝐾) = 𝑔𝑀(𝛻𝑈𝜑𝑉 − (𝛻𝑈𝜑)𝑉, 𝜑𝐾) − 𝑔𝑀(𝛻𝑉𝜑𝑈 − (𝛻𝑉𝜑)𝑈, 𝜑𝐾)           (4.4) 

 

veya 

 

 𝑔𝑀([𝑈, 𝑉], 𝐾) =  𝑔𝑀(𝛻𝑈𝜑𝑉,𝜑𝐾) − 𝑔𝑀((𝛻𝑈𝜑)𝑉, 𝜑𝐾) 

 

                                                    − 𝑔𝑀(𝛻𝑉𝜑𝑈 , 𝜑𝐾) + 𝑔𝑀((𝛻𝑉𝜑)𝑈, 𝜑𝐾)                (4.5) 

 

yazılabilir. Buradan (2.42) kullanılırsa 
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𝑔𝑀([𝑈, 𝑉], 𝐾) =  𝑔𝑀(𝛻𝑈𝜑𝑉,𝜑𝐾) − 𝑔𝑀(𝜑𝑈, 𝑉)𝑔𝑀(𝜉, 𝜑𝐾) + 𝜂(𝑉)𝑔𝑀(𝜑𝑈, 𝜑𝐾)

−𝑔𝑀(∇VφU ,φK) + 𝑔𝑀(𝜑𝑉, 𝑈)g(𝜉, φK) − 𝜂(𝑈)𝑔𝑀(𝜑𝑉,φK)   (4.6)

elde edilir. Diğer taraftan 𝜂(𝑉) = 0 olduğundan 

𝑔𝑀([𝑈, 𝑉], 𝐾) =   𝑔𝑀(𝛻𝑈𝜑𝑉,𝜑𝐾) − 𝑔𝑀(𝛻𝑉𝜑𝑈 , 𝜑𝐾) (4.7) 

bulunur. (3.4) eşitliği kullanılırsa 

 𝑔𝑀([𝑈, 𝑉], 𝐾)  =  𝑔𝑀(𝛻𝑈𝜑𝑉,𝜙𝐾) + 𝑔𝑀(𝛻𝑈𝜑𝑉,𝜔𝐾)

−𝑔𝑀(𝛻𝑉𝜑𝑈 , 𝜙𝐾) − 𝑔𝑀(𝛻𝑉𝜑𝑈,𝜔𝐾)  (4.8) 

yazılabilir. Buradan   

 𝑔𝑀([𝑈, 𝑉], 𝐾) =  𝑔𝑀(𝜑𝛻𝑈𝑉, 𝜙𝐾) + 𝑔𝑀(𝛻𝑈𝜑𝑉,𝜔𝐾)

− 𝑔𝑀(𝜑𝛻𝑉𝑈 , 𝜙𝐾) − 𝑔𝑀(𝛻𝑉𝜑𝑈,𝜔𝐾)  (4.9) 

olup (3.8) den 

𝑔𝑀([𝑈, 𝑉], 𝐾) =  −𝑔𝑀(𝛻𝑈𝑉, 𝜑𝜙𝐾) + 𝑔𝑀(𝒱𝛻𝑈𝜑𝑉 + ℋ𝛻𝑈𝜑𝑉,𝜔𝐾)

+𝑔𝑀(∇VU , φ𝜙𝐾) − 𝑔𝑀(𝒱∇VφU + ℋ∇VφU,𝜔𝐾)    (4.10)

yazılır. Yeniden (3.4) kullanılırsa 

𝑔𝑀([𝑈, 𝑉], 𝐾) =  −𝑔𝑀(𝛻𝑈𝑉, 𝜙𝜙𝐾 + 𝜔𝜙𝐾) + 𝑔𝑀(𝒱𝛻𝑈𝜑𝑉,𝜔𝐾) + 𝑔𝑀(ℋ𝛻𝑈𝜑𝑉, 𝜔𝐾)

+𝑔𝑀(𝛻𝑉𝑈 , 𝜙𝜙𝐾 + 𝜔𝜙𝐾) − 𝑔𝑀(𝒱𝛻𝑉𝜑𝑈,𝜔𝐾) − 𝑔𝑀(ℋ𝛻𝑉𝜑𝑈,𝜔𝐾) (4.11)

olduğundan  (3.28) eşitliğinden 

𝑔𝑀([U, V], K) = −𝑔𝑀(∇UV,−𝑐𝑜𝑠2𝜃𝐾 + 𝜔𝜙𝐾) + 𝑔𝑀(𝒱∇UφV,𝜔𝐾) + 𝑔𝑀(ℋ∇UφV,𝜔𝐾)

+𝑔𝑀(∇VU ,−𝑐𝑜𝑠2𝜃𝐾 + 𝜔𝜙𝐾) − 𝑔𝑀(𝒱∇VφU,𝜔𝐾)

− 𝑔𝑀(ℋ∇VφU,𝜔𝐾)  (4.12) 



20 

bulunur. Buradan 

𝑔𝑀([𝑈, 𝑉], 𝐾)   =  𝑐𝑜𝑠2𝜃𝑔𝑀([𝑈, 𝑉], 𝐾) + 𝑔𝑀(𝛻𝑈𝑉,𝜔𝜙𝐾) + 𝑔𝑀(ℋ𝛻𝑈𝜑𝑉, 𝜔𝐾)

−𝑔𝑀(∇VU,𝜔𝜙𝐾) − 𝑔𝑀(ℋ∇VφU,𝜔𝐾)                                  (4.13)

bulunur. Buradan 

(1 − 𝑐𝑜𝑠2𝜃)𝑔𝑀([𝑈, 𝑉], 𝐾) = 𝑔𝑀(𝛻𝑈𝑉,𝜔𝜙𝐾) + 𝑔𝑀(𝐻𝛻𝑈𝜑𝑉,𝜔𝐾)

+𝑔𝑀(∇VU,𝜔𝜙𝐾) − 𝑔𝑀(H∇VφU,𝜔𝐾)       (4.14) 

yazılabilir. O halde 

𝑠𝑖𝑛2𝜃𝑔𝑀([𝑈, 𝑉], 𝐾) = 𝑔𝑀(∇UV,𝜔𝜙𝐾) + 𝑔𝑁(𝜓∗∇UφV,𝜓∗𝜔𝐾)

−𝑔𝑁(𝜓∗∇VφU,𝜓∗𝜔𝐾) (4.15) 

𝑠𝑖𝑛2𝜃𝑔𝑀([𝑈, 𝑉], 𝐾) = 𝑔𝑁((∇𝜓∗)(𝑈, φV) − (∇𝜓∗)(𝑉, φU), 𝜓∗𝜔𝐾)        (4.16) 

elde edilir.  0 < 𝜃 <
𝜋

2
 olduğundan, sol tarafın sıfır olması için gerek ve yeter şart sağ taraf 

sıfır olmalıdır ki bu da ispatı tamamlar. 

4.2. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold (𝑁, 𝑔𝑁) bir Riemann manifold ve         

𝜓: 𝑀 → 𝑁  bir yarı slant  ξ⊥ − Riemann submersiyon olsun. D2  distribüsyonunun

integrallenebilir olması için gerek ve yeter şart  ∀ 𝐾, 𝐿 ∈ 𝛤(𝐷2) ve ∀ 𝑈, 𝑉 ∈ 𝛤(𝐷1)  için  

𝑔𝑁(𝜓∗𝑇𝐾ϕL + ℋ(∇𝐿ωK) − 𝑇𝐿ϕK + ℋ(∇𝐿ωK),𝜓∗ωU) − 𝑔𝑁(𝜓∗ωL,𝜓∗T𝐾φU)

+𝑔𝑁(𝜓∗ωK,𝜓∗𝑇𝐿φU) = 𝑔𝑀(∇̂𝐾ϕL − ∇̂𝐿ϕK,ϕU)

− η(ωU)(g(ϕL, K) − 𝑔𝑀(ϕK, L))    (4.17) 

olmasıdır. 

İspat   ∀ 𝐾, 𝐿 ∈ Γ(D2)   ve ∀ 𝑈, 𝑉 ∈ Γ(D1)  için  𝑔𝑀([𝐾, 𝐿], 𝑈) = 0 olmalıdır. Buradan

𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝛻𝐾𝐿 − 𝛻𝐿𝐾,𝑈) = 𝑔𝑀(𝛻𝐾𝐿, 𝑈) − 𝑔𝑀(𝛻𝐿𝐾,𝑈)         (4.18) 
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yazılabilir. (2.38) kullanılırsa,     

 

𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝜑𝛻𝐾𝐿, 𝜑𝑈) + 𝜂(𝛻𝐾𝐿)𝜂(𝑈) 
 

                                     −𝑔𝑀(𝜑𝛻𝐿𝐾,𝜑𝑈) − 𝜂(𝛻𝐿𝐾)𝜂(𝑈)                     (4.19) 

                                     

olur. Diğer taraftan  𝜂(𝑈) = 0 olduğundan 

 

                          𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝜑𝛻𝐾𝐿, 𝜑𝑈) − 𝑔𝑀(𝜑𝛻𝐿𝐾,𝜑𝑈)                             (4.20) 

 

elde edilir.  (3.4) eşitliği kullanılırsa      

 

               𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝜑𝛻𝐾𝐿, 𝜙𝑈 + 𝜔𝑈) − 𝑔𝑀(𝜑𝛻𝐿𝐾,𝜙𝑈 + 𝜔𝑈)                   (4.21) 

                                                  

bulunur. O halde (4.21) eşitliği  

 

𝑔𝑀([K, L], U) = 𝑔𝑀(∇KφL − (∇Kφ)L , ϕU + ωU)  
 

                                                      −𝑔𝑀(∇KφL − (∇Kφ)L , ϕU + ωU)                        (4.22) 

    

şeklinde yazılabilir. Buradan     

  

𝑔𝑀([K, L], U) = 𝑔𝑀(∇KφL − (∇Kφ)L , ϕU) + 𝑔𝑀(∇KφL − (∇Kφ)L,ωU) 
  

                               −𝑔𝑀(φL − (∇Kφ)L, ϕU) − 𝑔𝑀(∇KφL − (∇Kφ)L,ωU)           (4.23) 

       

elde edilir. (4.23) eşitliğinde (2.42) kullanılırsa 

 

𝑔𝑀([K, L], U) = 𝑔𝑀(∇KφL , ϕU) − 𝑔𝑀(𝑔𝑀(φK, L)ξ − η(L)φK, ϕU) + 𝑔𝑀(∇KφL,ωU) 

 

−𝑔𝑀(𝑔𝑀(φK, L)ξ − η(L)φK,ωU) − 𝑔𝑀(∇LφK,ϕU) 
 

+𝑔𝑀(𝑔𝑀(φL, K)ξ − η(K)φL,ϕU) − 𝑔𝑀(∇LφK,ω U) 
 

                               +𝑔𝑀(g(φL, K)ξ − η(K)φL,ωU)                                                     (4.24) 

                                                       

yazılır. 𝜂(𝐿) = 0 olduğundan 
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𝑔𝑀([K, L], U) = 𝑔𝑀(∇KφL , ϕU) + 𝑔𝑀(∇KφL,ωU) − 𝑔𝑀(φK, L)g(ξ,ωU) 
  

                                    − 𝑔𝑀(∇LφK,ϕU) − 𝑔𝑀(∇LφK,ω U) − 𝑔𝑀(φL, K)𝑔𝑀(ξ, ωU) (4.25) 

 

bulunur. Diğer taraftan (4.25) de  (3.4) kullanılırsa 

 

𝑔𝑀([K, L], U) = 𝑔𝑀(∇KϕL , ϕU) + 𝑔𝑀(∇KωL,ϕU) + 𝑔𝑀(∇KϕL,ωU) 

 

                                         +𝑔𝑀(∇KωL,ω U)                                                                  (4.26) 

 

elde edilir. Şimdi ωL ϵ ℋ ve ϕU ϵ 𝒱 olduğu kullanılırsa, g(ωL, ϕU) = 0 olur. 𝐾 yönünde 

türev alınarak elde edilen ifade yerine yazılırsa  

 

𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝛻𝐾𝜙𝐿 , 𝜙𝑈) + 𝑔𝑀(𝛻𝐾𝜔𝐿,𝜙𝑈) + 𝑔𝑀(𝛻𝐾𝜙𝐿,𝜔𝑈) + 𝑔𝑀(𝛻𝐾𝜔𝐿,𝜔𝑈) 
 

                 −𝑔𝑀(𝛻𝐿𝜑𝐾,𝜔𝑈) + 𝑔𝑀(𝛻𝐿𝜔𝐾,𝜔𝑈) + 𝑔𝑀(𝜑𝐿, 𝐾)𝑔𝑀(𝜉, 𝜔𝑈)          (4.27) 

                                                                                                                                                                            

elde edilir. (2.31) ve (2.32) eşitlikleri kullanılırsa 

 

                 𝑔𝑀([K, L], U) = 𝑔𝑀(𝑇𝐾ϕL + ∇̂𝐾ϕL,ϕU) + 𝑔𝑀(ωL, 𝑇𝐾ϕU + ∇̂𝐾ϕU) 

  

                                          +𝑔𝑀(𝑇𝐾ϕL + ∇̂𝐾ϕL,ωU) + 𝑔𝑀(ωK, ∇𝐿φU) 

 

                                          +𝑔𝑀(𝑇𝐿ϕK + ∇̂𝐿ϕK,ωU) + 𝑔𝑀(𝑇𝐿ωK + ℋ(∇𝐿ωK),ωU) 

 

                                          +𝑔𝑀(φL, K)g(ξ, ωU)                                                           (4.28) 

 

bulunur. Buradan  

 

  𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(∇̂𝐾ϕL,ϕU) + 𝑔𝑀(ωL, 𝑇𝐾ϕU) + 𝑔𝑀(𝑇𝐾ϕL,ωU)  
 

                                             +𝑔𝑀(ℋ(∇𝐿ωK),ωU) − 𝑔𝑀(ϕK, L)𝜂(ωU) − 𝑔𝑀(∇̂𝐿ϕK,ϕU) 

                                               

                                             +𝑔𝑀(ωK, T𝐿φU) + 𝑔𝑀(𝑇𝐿ϕK,ωU) + 𝑔𝑀(ℋ∇𝐿ωK,ωU) 
 

                                           +𝑔𝑀(ϕL, K)η(ωU)                                                            (4.29) 

 

olup (3.4) ve 𝜙𝐿 ∈ 𝑉,𝐾 ∈ 𝑉 den    
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𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝛻̂𝐾𝜙𝐿 − 𝛻̂𝐿𝜙𝐾,𝜙𝑈) + 𝑔𝑀(𝑇𝐾𝜙𝐿 + ℋ(𝛻𝐿𝜔𝐾)

−𝑇𝐿𝜙𝐾 + ℋ(𝛻𝐿𝜔𝐾),𝜔𝑈) − 𝑔𝑀(𝜔𝐿, 𝑇𝐾𝜙𝑈) + 𝑔𝑀(𝜔𝐾, 𝑇𝐿𝜑𝑈)

−𝜂(𝜔𝑈)(𝑔(𝜙𝐿, 𝐾) − 𝑔𝑀(𝜙𝐾, 𝐿))  (4.30) 

yazılabilir. Gerekli düzenlemeler yapılırsa   

𝑔𝑀([𝐾, 𝐿], 𝑈) = 𝑔𝑀(𝛻̂𝐾𝜙𝐿 − 𝛻̂𝐿𝜙𝐾,𝜙𝑈 + 𝑔𝑁(𝜓∗𝑇𝐾𝜙𝐿 + ℋ(𝛻𝐿𝜔𝐾) − 𝑇𝐿𝜙𝐾

+ℋ(𝛻𝐿𝜔𝐾,𝜓∗𝜔𝑈) − 𝑔𝑁(𝜓∗𝜔𝐿,𝜓∗𝑇𝐾𝜙𝑈) + 𝑔𝑁(𝜓∗𝜔𝐾,𝜓∗𝑇𝐿𝜑𝑈)

− 𝜂(𝜔𝑈)(𝑔𝑀(𝜙𝐿, 𝐾) − 𝑔𝑀(𝜙𝐾, 𝐿)) (4.31) 

elde edilir ki bu da istenendir.

4.3. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold (𝑁, 𝑔𝑁) bir Riemann manifold ve

𝜓: 𝑀 → 𝑁 bir yarı slant  ξ⊥ − Riemann submersiyon olsun. 𝐷1 in total geodezik olması için

gerek ve yeter şart  ∀ 𝑈, 𝑉 ∈ 𝛤(𝐷1),  𝑋 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥) ve  𝐾 ∈ Γ(𝐷2) için

𝑔𝑀(𝑇𝑈𝑉,ϕωK) = −𝑔𝑁(𝜓∗𝑇𝑈𝑉, 𝜋∗ωϕK) − 𝑔𝑁(𝜓∗𝑇𝑈𝑉,𝜓∗ω
2K) (4.32) 

ve 

𝑔𝑁(𝜓∗ωV,𝜓∗𝑇𝑈𝐵𝑋) + 𝑔𝑁(𝜓∗ωV,𝜓∗𝐻(∇̂𝑈𝐶𝑋) = −𝑔𝑀(ϕV, ∇̂𝑈𝐵𝑋)−𝑔𝑀(ϕV, 𝑇𝑈𝐶𝑋)

+𝑔𝑀(V, U)𝜂(𝑋) (4.33) 

eşitliklerinin sağlanmasıdır.

İspat Total geodezik olması için her 𝑈, 𝑉 ∈ 𝛤(𝐷1), 𝑋 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥)  ve 𝐾, 𝐿 ∈ 𝛤(𝐷2) için

∇𝑈𝑉 ∈ Γ(𝐷1) olmalıdır. O halde 𝑔𝑀(∇𝑈𝑉,𝐾) = 0 ve  𝑔𝑀(∇𝑉𝑈, 𝑋) = 0 sağlanmalıdır. 

𝜑∇𝑈𝑉 = ∇𝑈𝜑𝑉 − (∇𝑈𝜑)𝑉 ve (2.42) kullanılırsa,     

𝑔𝑀(∇𝑈𝑉,𝐾) = 𝑔𝑀(∇𝑈φ𝑉,φ𝐾) − 𝑔𝑀(𝑔𝑀(φU, V)ξ − 𝜂(𝑉)φU,φ𝐾) (4.34) 

yazılabilir. Buradan  
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𝑔𝑀(∇𝑈𝑉,𝐾) = 𝑔𝑀(∇𝑈φ𝑉,φ𝐾) − 𝑔𝑀(φU, V)𝑔𝑀(ξ, φ𝐾) + 𝑔𝑀(𝜂(𝑉)φU,φ𝐾)      (4.35) 

olup 𝑔𝑀(ξ, φ𝐾) yerine −𝑔𝑀(K, φξ) yazılabileceğinden ve bu ifade de sıfır olduğundan

𝑔𝑀(∇𝑈𝑉,𝐾) yerine  𝑔𝑀(φ∇𝑈𝑉, φ𝐾)  yazılır. 

Diğer taraftan (3.4) kullanılırsa    

𝑔𝑀(∇𝑈𝑉,𝐾) = 𝑔𝑀(φ∇𝑈𝑉,ϕK) + 𝑔𝑀(φ∇𝑈𝑉, ωK)         (4.36) 

elde edilir. (4.36) da (3.8) eşitliği kullanılırsa 

𝑔𝑀(∇𝑈𝑉,𝐾) = −𝑔𝑀(∇𝑈𝑉, φϕK) − 𝑔𝑀(∇𝑈𝑉,φωK)       (4.37) 

yazılır. Tekrardan (3.4) eşitliği kullanılırsa      

𝑔𝑀(∇𝑈𝑉,𝐾) = −𝑔𝑀(∇𝑈𝑉, ϕϕK + ωϕK) − 𝑔𝑀(∇𝑈𝑉,ϕωK + ωωK) (4.38) 

bulunur. O halde 

𝑔𝑀(∇𝑈𝑉,𝐾) = −𝑔𝑀(∇𝑈𝑉, ϕ2K) − 𝑔𝑀(∇𝑈𝑉,ωϕK) − 𝑔𝑀(∇𝑈𝑉, ϕωK − 𝑔𝑀(∇𝑈𝑉,ω2K)

= −𝑔𝑀(∇𝑈𝑉,−𝑐𝑜𝑠2θK) − 𝑔𝑀(∇𝑈𝑉,ωϕK) − 𝑔𝑀(∇𝑈𝑉,ϕωK)

−𝑔𝑀(∇𝑈𝑉,ω2K) (4.39) 

olup (4.39) da (2.31) kullanılırsa 

𝑔𝑀(∇𝑈𝑉,𝐾) = 𝑐𝑜𝑠2𝜃𝑔𝑀(∇𝑈𝑉,𝐾) − 𝑔𝑀(𝑇𝑈𝑉 + ∇̂𝑈𝑉,ωϕK) − 𝑔𝑀(𝑇𝑈𝑉 + ∇̂𝑈𝑉,ϕωK)

−𝑔𝑀(𝑇𝑈𝑉 + ∇̂𝑈𝑉, ω2K)                                                                      (4.40)

elde edilir. Buradan   

(1 − 𝑐𝑜𝑠2𝜃)𝑔𝑀(∇𝑈𝑉,𝐾) = −𝑔𝑀(𝑇𝑈𝑉,ωϕK) − 𝑔𝑀(𝑇𝑈𝑉,ϕωK) − 𝑔𝑀(𝑇𝑈𝑉,ω2K)    (4.41)

veya 
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𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑈𝑉,𝐾) = −𝑔𝑀(𝑇𝑈𝑉,ωϕK) − 𝑔𝑀(𝑇𝑈𝑉,ϕωK) − 𝑔𝑀(𝑇𝑈𝑉,ω2K)               (4.42) 

 

bulunur. 𝑠𝑖𝑛2𝜃𝑔𝑀(∇𝑈𝑉,𝐾) ≠ 0 olduğundan eşitliğin sağ tarafı sıfır olmalıdır.  

 

                    −𝑔𝑀(𝑇𝑈𝑉,ωϕK) − 𝑔𝑀(𝑇𝑈𝑉,ϕωK) − 𝑔𝑀(𝑇𝑈𝑉,ω2K) = 0                      (4.43) 

 

veya    

                                                              

                 𝑔𝑀(𝑇𝑈𝑉,ϕωK) = −𝑔𝑁(𝜓∗𝑇𝑈𝑉,𝜓∗ωϕK) − 𝑔𝑁(𝜓∗𝑇𝑈𝑉,𝜓∗ω
2K)               (4.44) 

 

elde edilir. Diğer taraftan   𝑋 ∈ (ç𝑒𝑘(𝜓∗)
⊥)  için 

 

                𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) − 𝑔𝑀(∇𝑈φ)𝑉,φ𝑋) + 𝜂(∇𝑈𝑉)𝜂(𝑋)            (4.45) 

 

bulunur. (2.42) kullanılırsa  

 

 𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) −𝑔𝑀(𝑔𝑀(φU, 𝑉)𝜉 − 𝜂(𝑉)φ(𝑈),φ𝑋) 
  

                                      +𝜂(∇𝑈𝑉)𝜂(𝑋)                                                                        (4.46) 

 

yazılır. Buradan 

 

𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) −𝑔𝑀(φU, 𝑉)𝑔𝑀(𝜉, φ𝑋) + 𝜂(∇𝑈𝑉)𝜂(𝑋)   (4.47) 

 

bulunur. 𝑔𝑀(𝜉, φ𝑋)  yerine −𝑔𝑀(φ𝜉, 𝑋) ifadesi yazılıp bu da sıfıra eşit olduğundan    

                                                                                                       

                               𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) + 𝜂(∇𝑈𝑉)𝜂(𝑋)                             (4.48) 

 

elde edilir. 𝜂(∇𝑈𝑉) yerine  g(∇𝑈𝑉, 𝜉)   yazılırsa      

  

                           𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) + 𝑔𝑀(∇𝑈𝑉, 𝜉)𝜂(𝑋)                       (4.49) 

 

bulunur. (4.49) da (2.43) ve (3.8) kullanılırsa     
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𝑔𝑀(∇𝑈𝑉, 𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) − 𝑔𝑀(𝑉, 𝜑2𝑈)𝜂(𝑋) = 𝑔𝑀(∇𝑈φ𝑉,φ𝑋) 
                        

            + 𝑔𝑀(φ𝑉,φ𝑈)𝜂(𝑋)                                                              (4.50) 

 

 yazılır. Buradan Riemann konneksiyon olma şartı  kullanılırsa    

 

           𝑔𝑀(∇𝑈𝑉, 𝑋) = U𝑔𝑀(φ𝑉,φ𝑋) + 𝑔𝑀(φ𝑉, ∇𝑈φ𝑋) + 𝑔𝑀(𝑉, 𝑈)𝜂(𝑋)                  (4.51) 

                                     

bulunur. (2.38) eşitliği kullanılırsa       

      

                            U𝑔𝑀(φ𝑉,φ𝑋) = 𝑈(𝑔𝑀(V, X) − 𝜂(𝑋)𝜂(𝑉))                                      (4.52)         

                           

yazılabilir. O halde (3.4) eşitliği kullanılırsa     

 

                      𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(φ𝑉, ∇𝑈(𝐵𝑋 + 𝐶𝑋)) + 𝑔𝑀(V, U)𝜂(𝑋)                    (4.53) 

    

veya  

 

             𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(φ𝑉, ∇𝑈𝐵𝑋) − 𝑔𝑀(φ𝑉, ∇𝑈𝐶𝑋) + 𝑔𝑀(V, U)𝜂(𝑋)            (4.54) 

                                                                                        

elde edilir. Buradan (2.31) denklemi kullanılırsa    

 

                               𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(φ𝑉, 𝑇𝑈𝐵𝑋 + ∇̂𝑈𝐵𝑋) 

 

                                                       −𝑔𝑀 (φ𝑉, 𝑇𝑈𝐶𝑋 + 𝐻(∇̂𝑈𝐶𝑋)) + 𝑔𝑀(V, U)𝜂(𝑋)   (4.55) 

                                                               

bulunur. Buradan (3.4) den    

 

                         𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(ϕV + ωV, 𝑇𝑈𝐵𝑋 + ∇̂𝑈𝐵𝑋) 

 

 −𝑔𝑀 (ϕV + ωV, 𝑇𝑈𝐶𝑋 + ℋ(∇̂𝑈𝐶𝑋)) +𝑔𝑀(V, U)𝜂(𝑋) (4.56) 

                          

veya   

        

𝑔𝑀(∇𝑈𝑉, 𝑋) = −𝑔𝑀(ϕV, ∇̂𝑈𝐵𝑋) − 𝑔𝑀(ωV, 𝑇𝑈𝐵𝑋) − 𝑔𝑀(ωV,ℋ(∇̂𝑈𝐶𝑋)) 
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−𝑔𝑀(ϕV, 𝑇𝑈𝐶𝑋) + 𝑔𝑀(V, U)𝜂(𝑋)  (4.57) 

elde edilir. Buradan  

𝑔𝑁(𝜓∗ωV,𝜓∗𝑇𝑈𝐵𝑋) + 𝑔𝑁 (𝜓∗ωV,𝜓∗𝐻(∇̂𝑈𝐶𝑋)) = −𝑔𝑀(ϕV, ∇̂𝑈𝐵𝑋)−𝑔𝑀(ϕV, 𝑇𝑈𝐶𝑋)

+𝑔𝑀(V, U)𝜂(𝑋)                           (4.58) 

bulunur ki bu da bize istenileni verir. 

4.4. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold (𝑁, 𝑔𝑁) bir Riemann manifold ve          

𝜓: 𝑀 → 𝑁 bir yarı slant  ξ⊥ − Riemann submersiyon olsun. 𝐷2 ın total geodezik olması için

gerek ve yeter şart  ∀ U ∈ Γ(𝐷1),  𝑋 ∈ Γ(ç𝑒𝑘(𝜓∗)
⊥)  ve  ∀ 𝐾, L ∈ Γ(𝐷2) için

𝑔𝑁(𝜓∗𝑇𝐾𝐿, 𝜓∗ωϕU) + 𝑔𝑁(𝜓∗ω𝐿, 𝜓∗ℋ∇𝐾ωU) = 𝐾𝑔𝑀(ωL,ωU) − 𝑔𝑀(φ𝐿, 𝑇𝐾ωU)

        +𝑔𝑀(𝜑𝐾, 𝐿)𝜂(ω𝑈)                 (4.59) 

ve 

𝑔𝑁(𝜓∗ℋ∇𝐾ωϕL,𝜓∗𝑋) − 𝑔𝑁(𝜓∗ℋ∇𝐾ωL,𝜓∗𝐶𝑋) = 𝑔𝑀(𝑇𝐾ωL,𝐵𝑋)

−𝜂(∇𝐾𝐿)𝜂(𝑋)          (4.60) 

olmasıdır. 

İspat  𝐷2 total geodezik ise 𝐾, L ∈ Γ(𝐷2) için ∇𝐾𝐿 ∈ Γ(𝐷2)  olmalıdır. Bunun için U ∈ Γ(𝐷1) 

ve X ∈ çek (𝜓∗)
⊥ için 𝑔𝑀(∇𝐾𝐿, 𝑈) = 0 ve 𝑔𝑀(∇𝐾𝐿, 𝑋) = 0 olduğunu göstermeliyiz. ∀ U ∈

Γ(𝐷1) için (2.38) den

𝑔𝑀(∇𝐾𝐿, 𝑈) = 𝑔𝑀(φ∇𝐾𝐿, φ𝑈) − 𝜂(∇𝐾𝐿)𝜂(𝑈) (4.61) 

olup (3.4) kullanılırsa    

𝑔𝑀(∇𝐾𝐿, 𝑈) = 𝑔𝑀(φ∇𝐾𝐿, ϕU) + 𝑔𝑀(φ∇𝐾𝐿,ωU) (4.62) 

yazılır. Burada φ∇𝐾𝐿 yerine ∇𝐾φL − (∇𝐾φ)L kullanılırsa 
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                     𝑔𝑀(∇𝐾𝐿, 𝑈) = −𝑔𝑀(∇𝐾𝐿, φϕU) + 𝑔𝑀(∇𝐾φL − (∇𝐾φ)L,ωU)             (4.63) 

 

bulunur. Buradan (3.4) kullanılırsa 

 

𝑔𝑀(∇𝐾𝐿, 𝑈) = −𝑔𝑀(∇𝐾𝐿, ϕ2U) − 𝑔𝑀(∇𝐾𝐿,ωϕU) 
                       

                                                                +𝑔𝑀(∇𝐾φL,ωU) − 𝑔𝑀((∇𝐾φ)L,ωU)                    (4.64) 

                                                                                                                                                                                                                                                                                                                                                                                                                                    

bulunur. (4.64) de 𝑔𝑀(φL,ωU) nun K yönünde türevi alınıp, (3.28) ve (2.48) eşitlikleri 

kullanılırsa    

 

𝑔𝑀(∇𝐾𝐿, 𝑈) = −𝑔𝑀(∇𝐾𝐿,−cos2θU) − 𝑔𝑀(∇𝐾𝐿,ωϕU) + K𝑔𝑀(φL,ωU) 
 

                                             −𝑔𝑀(φL, ∇𝐾ω + 𝑔𝑀(φK, L)𝑔𝑀(ξ,ωU)                                       (4.65) 
  

bulunur. (2.39) eşitliğinden  

 

𝑔𝑀(∇𝐾𝐿, 𝑈) = cos2θ𝑔𝑀(∇𝐾𝐿, U) − 𝑔𝑀(𝑇𝐾𝐿 + ∇̂𝐾𝐿, ωϕU) + K𝑔𝑀(ωL,ωU) 

 

                                  −𝑔𝑀(φL, 𝑇𝐾ωU + ℋ∇𝐾ωU) + 𝑔𝑀(φK, L)𝜂(ωU)                     (4.66) 

                                                                                                                                                

veya         

 

(1 − cos2θ)𝑔𝑀(∇𝐾𝐿, U) = −𝑔𝑀(𝑇𝐾𝐿,ωϕU) + K𝑔𝑀(ωL,ωU) − 𝑔𝑀(φL, 𝑇𝐾ωU) 
 

                                                     −𝑔𝑀(ωL,ℋ∇𝐾ωU) + 𝑔𝑀(φK, L)𝜂(ωU)                  (4.67) 

                                                                                                                

yazılabilir. Buradan  

 

𝑠𝑖𝑛2θ𝑔𝑀(∇𝐾𝐿, U) = −𝑔𝑁(𝜓∗𝑇𝐾𝐿, 𝜓∗ωϕU) + K𝑔𝑀(ωL,ωU) − 𝑔𝑀(φL, 𝑇𝐾ωU) 
 

                                           −𝑔𝑁(𝜓∗ωL,𝜓∗ℋ∇𝐾ωU) + 𝑔𝑀(φK, L)𝜂(ωU)                    (4.68) 

                                                                                                                                                                                                                                                                

bulunur. 𝑠𝑖𝑛2θ ≠ 0 olduğundan eşitliğin sağ tarafı sıfır olmalıdır. O halde 

 

𝑔𝑁(𝜓∗𝑇𝐾𝐿, 𝜓∗ωϕU) + 𝑔𝑁(𝜓∗ωL,𝜓∗ℋ∇𝐾ωU) = K𝑔𝑀(ωL,ωU) − 𝑔𝑀(φL, 𝑇𝐾ωU) 
 

                                        +𝑔𝑀(φK, L)𝜂(ωU)                                                          (4.69) 
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elde edilir. Diğer taraftan (2.38) kullanılırsa 

 

𝑔𝑀(∇𝐾𝐿, 𝑋) = 𝑔𝑀(∇𝐾φ𝐿 − (∇𝐾φ)𝐿, φ𝑋) − 𝜂(∇𝐾𝐿)𝜂(𝑋)              (4.70) 

 

yazılabilir. Buradan     

 

                     𝑔𝑀(∇𝐾𝐿, 𝑋) = 𝑔𝑀(∇𝐾φ𝐿,φ𝑋) − 𝑔𝑀(∇𝐾φ)𝐿, φ𝑋) − 𝜂(∇𝐾𝐿)𝜂(𝑋)         (4.71) 

                                                                            

olup (3.4) ve (2.42) kullanılırsa 

 

𝑔𝑀(∇𝐾𝐿, 𝑋) = 𝑔𝑀(∇𝐾ϕL,φ𝑋) + 𝑔𝑀(∇𝐾ωL,φ𝑋) − 𝑔𝑀(𝑔𝑀(φK, L)𝜉 

 

                                        −𝜂(𝐿)φK,φ𝑋)𝜂(∇𝐾𝐿)𝜂(𝑋)                                                 (4.72) 

 

bulunur. Buradan (3.5) kullanılırsa    

 

𝑔𝑀(∇𝐾𝐿, 𝑋) = −𝑔𝑀(φ∇𝐾ϕL,𝑋) + 𝑔𝑀(∇𝐾ωL, (B𝑋 + 𝐶𝑋)) − 𝑔𝑀(φK, L)𝑔𝑀(𝜉, φ𝑋) 
 

                               +𝑔𝑀(𝜂(𝐿)φK,φ𝑋) − 𝜂(∇𝐾𝐿)𝜂(𝑋)                                                (4.73) 

 

veya     

 

𝑔𝑀(∇𝐾𝐿, 𝑋) = −𝑔𝑀(∇𝐾φϕL,𝑋) + 𝑔𝑀(∇𝐾ωL, B𝑋 + 𝑔𝑀(∇𝐾ωL, 𝐶𝑋) 

 

                                           −𝜂(∇𝐾𝐿)𝜂(𝑋)                                                                      (4.74) 

      

yazılır. O halde (3.4) eşitliğinden 

 

𝑔𝑀(∇𝐾𝐿, 𝑋) = −𝑔𝑀(∇𝐾ϕ2L, X) − 𝑔𝑀(ωϕL,𝑋) + 𝑔𝑀(∇𝐾ωL, B𝑋) 
 

                                            +𝑔𝑀(∇𝐾ωL, CX − 𝜂(∇𝐾𝐿)𝜂(𝑋)                                         (4.75) 

 

bulunur. Buradan (4.75) de  (2.32) eşitliği kullanılırsa   

 

𝑔𝑀(∇𝐾𝐿, 𝑋) = −𝑔𝑀(∇𝐾𝑐𝑜𝑠2θL, X) − 𝑔𝑀(𝑇𝐾ωϕL + ℋ∇𝐾ωϕL, 𝑋) 
 

                                  +𝑔𝑀(𝑇𝐾ωL + ℋ∇𝐾ωL, B𝑋) + 𝑔𝑀(𝑇𝐾ωL + ℋ∇𝐾ωL, 𝐶𝑋) 
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−𝜂(∇𝐾𝐿)𝜂(𝑋) (4.76) 

yazılabilir. O halde 

𝑔𝑀(∇𝐾𝐿, 𝑋) = 𝑐𝑜𝑠2θ𝑔𝑀(∇𝐾L, X) − 𝑔𝑀(𝑇𝐾ωϕL, X) − 𝑔𝑀(ℋ∇𝐾ωϕL,𝑋)

+𝑔𝑀(𝑇𝐾ωL,BX) + 𝑔𝑀(ℋ∇𝐾ωL, BX) + 𝑔𝑀(𝑇𝐾ωL, CX)

+𝑔𝑀(ℋ∇𝐾ωL, 𝐶𝑋) − 𝜂(∇𝐾𝐿)𝜂(𝑋) (4.77) 

veya     

(1 − 𝑐𝑜𝑠2θ)𝑔𝑀(∇𝐾L, X) = −𝑔𝑀(𝑇𝐾ωϕL, X) − 𝑔𝑀(ℋ∇𝐾ωϕL,𝑋)

+𝑔𝑀(𝑇𝐾ωL,BX) + 𝑔𝑀(ℋ∇𝐾ωL, B𝑋)

+𝑔𝑀(𝑇𝐾ωL, CX) + 𝑔𝑀(ℋ∇𝐾ωL, 𝐶𝑋)

−𝜂(∇𝐾𝐿)𝜂(𝑋) (4.78) 

bulunur. 𝜓 bir Riemann submersiyon olduğundan 

𝑠𝑖𝑛2θ𝑔𝑀(∇𝐾L, X) =  −𝑔𝑁(𝜓∗ℋ∇𝐾ωϕL,𝜓∗𝑋) + 𝑔𝑀(𝑇𝐾ωL, BX)

+𝑔𝑁(𝜓∗ℋ∇𝐾ωL,𝜓∗𝐶𝑋) − 𝜂(∇𝐾𝐿)𝜂(𝑋) (4.79) 

yazılabilir. 0 < 𝜃 <
𝜋

2
için 𝑠𝑖𝑛2θ ≠ 0 olduğundan, sol tarafın sıfır olması için gerek ve yeter

şart sağ tarafın  sıfır olmasıdır. O halde 

𝑔𝑁(𝜓∗ℋ∇𝐾ωϕL,𝜓∗𝑋) − 𝑔𝑁(𝜓∗ℋ∇𝐾ωL,𝜓∗𝐶𝑋) = 𝑔𝑀(𝑇𝐾ωL, BX) − 𝜂(∇𝐾𝐿)𝜂(𝑋)   (4.80)

elde edilir. 𝐷2’nin total geodezik olması için gerek ve yeter şart (4.69) ve (4.80) in 

sağlanmasıdır.    

4.5. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold (𝑁, 𝑔𝑁) bir Riemann manifold ve   

𝜓: 𝑀 → 𝑁 bir yarı slant  ξ⊥ − Riemann submersiyon olsun. çek (𝜓∗)
⊥  ın total geodezik

olması için gerek ve yeter şart ∀ 𝑋, 𝑌 ∈ Γ(çek (𝜓∗)
⊥), 𝑈 ∈ Γ(𝐷1), 𝑉 ∈ Γ(𝐷2)  için
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𝑔𝑀(B𝑌, 𝒱∇𝑋ϕU) + 𝑔𝑀(B𝑌, 𝐴𝑋ωU) = −𝑔𝑁(𝜓∗𝐶𝑌, 𝜓∗𝐴𝑋ϕU) 
 

                                                                        −𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗H∇𝑋ωU)           (4.81) 

 

ve 

 

                      𝑔𝑁(𝜓∗𝐴𝑋BY,𝜓∗ωV) − 𝑔𝑁(𝜓∗ℋ∇𝑋CY, 𝜓∗ωV) = 𝑔𝑀(∇𝑋𝑌,ωϕv)           (4.82) 

 

olmasıdır. 

 

İspat   ∀ 𝑋, 𝑌 ∈ çek(𝜓∗)
⊥ ,  𝑈 ∈ Γ(𝐷1), 𝑉 ∈ Γ(𝐷2) olsun. çek (𝜓∗)

⊥  ın total geodezik olması 

için 𝑔𝑀(∇𝑋𝑌, 𝑈) = 0 ve 𝑔𝑀(∇𝑋𝑌, 𝑉) = 0 olmalıdır. İlk olarak 𝑔𝑀(∇𝑋𝑌, 𝑈) = 0  durumunu 

inceleyelim. (2.38)  den 

 

                               𝑔𝑀(∇𝑋𝑌, 𝑈) = 𝑔𝑀(φ∇𝑋𝑌, φ𝑈) − 𝜂(∇𝑋𝑌)𝜂(𝑈)                             (4.83)  

 

yazılabilir. 𝜂(𝑈) = 0 ve φ∇𝑋𝑌 nin eşitliği kullanılırsa             

 

                         𝑔𝑀(∇𝑋𝑌, 𝑈) = 𝑔𝑀(∇𝑋φ𝑌, φ𝑈) − 𝑔𝑀((∇𝑋φ)𝑌,φ𝑈)                           (4.84)  

                           

yazılır. Diğer taraftan  𝑔𝑀(φ𝑌,φ𝑈) = 0 olduğundan 𝑋𝑔𝑀(φ𝑌,φ𝑈) = 0 olup buradan     

 

                                 𝑔𝑀(∇𝑋φ𝑌, φ𝑈) + 𝑔𝑀(φ𝑌, ∇𝑋φ𝑈) = 0                                 (4.85) 

 

veya 

 

                                           𝑔𝑀(∇𝑋φ𝑌, φ𝑈) = −𝑔𝑀(φ𝑌, ∇𝑋φ𝑈)                                (4.86) 

 

bulunur. 𝑔𝑀(∇𝑋𝑌, 𝑈) nin −𝑔𝑀(φ𝑌, ∇𝑋φ𝑈) eşit olduğundan (4.86) da (3.5)  kullanılırsa    

                         

𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌 + 𝐶𝑌, ∇𝑋φ𝑈)                                  (4.87) 

 

yazılır. Buradan  

 

                            𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌, ∇𝑋φ𝑈) − 𝑔𝑀(𝐶𝑌, ∇𝑋φ𝑈)                          (4.88) 
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olup (3.4) ten    

 

𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌, ∇𝑋(ϕU + ωU)) 
 

                                                               −𝑔𝑀(𝐶𝑌, (∇𝑋(ϕU + ωU))                             (4.89) 

 

veya   

                                      

   𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌, ∇𝑋ϕU ) − 𝑔𝑀(B𝑌, ∇𝑋ωU) 
  

                                                      −𝑔𝑀(𝐶𝑌, ∇𝑋ϕU) − 𝑔𝑀(𝐶𝑌, ∇𝑋ωU)                     (4.90) 

 

yazılabilir. O halde (2.33) ve (2.34) den 

 

𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌, 𝒱∇𝑋ϕU + 𝐴𝑋ϕU ) − 𝑔𝑀(B𝑌, 𝐴𝑋ωU + ℋ∇𝑋ωU) 
 

                                     −𝑔𝑀(𝐶𝑌, 𝒱∇𝑋ϕU + 𝐴𝑋ϕU) − 𝑔𝑀(𝐶𝑌, 𝐴𝑋ωU + ℋ∇𝑋ωU)     (4.91) 

 

veya 

 

  𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌, 𝒱∇𝑋ϕU) − 𝑔𝑀(B𝑌, 𝐴𝑋ϕU ) − 𝑔𝑀(B𝑌, 𝐴𝑋ωU) 

 

                            −𝑔𝑀(B𝑌,ℋ∇𝑋ωU) − 𝑔𝑀(𝐶𝑌, 𝒱∇𝑋ϕU) − 𝑔𝑀(𝐶𝑌, 𝐴𝑋ϕU) 
                                     

        −𝑔𝑀(𝐶𝑌, 𝐴𝑋ωU) − 𝑔𝑀(𝐶𝑌,ℋ∇𝑋ωU)                                  (4.92) 

 

bulunur.  𝑔𝑀(∇𝑋𝑌, 𝑈) = 0 olduğundan 

 

𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(B𝑌, 𝒱∇𝑋ϕU) − 𝑔𝑀(B𝑌, 𝐴𝑋ωU) 
                                              

                                                   −𝑔𝑀(𝐶𝑌, 𝐴𝑋ϕU) −𝑔𝑀(𝐶𝑌,ℋ∇𝑋ωU)                    (4.93) 

 

ve 

 

    𝑔𝑀(B𝑌, 𝒱∇𝑋ϕU) + 𝑔𝑀(B𝑌, 𝐴𝑋ωU) = −𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗𝐴𝑋ϕU) 

           

                                            −𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗ℋ∇𝑋ωU)          (4.94) 
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elde edilir. Diğer yandan (2.38) den ve  g(∇𝑋𝑌, 𝑉) = 0 olduğundan  

 

                           𝑔𝑀(∇𝑋𝑌, 𝑉) = 𝑔𝑀(φ∇𝑋𝑌,φ𝑉) − 𝜂(∇𝑋𝑌)𝜂(𝑉)                                  (4.95)     

                                                                                                                                                               

elde edilir. Buradan (3.4) kullanılırsa    

 

                                       𝑔𝑀(∇𝑋𝑌, 𝑉) = 𝑔𝑀(∇𝑋φ𝑌,ϕV + ωV)                                     (4.96) 

 

veya 

 

     𝑔𝑀(∇𝑋𝑌, 𝑈) = −𝑔𝑀(φ∇𝑋𝑌,ϕV) + 𝑔𝑀(∇𝑋φ𝑌,ωV)                    (4.97) 

 

bulunur. (4.97) de (3.8)  eşitliği kullanılırsa      

                                     

                                    𝑔𝑀(∇𝑋𝑌, 𝑉) = 𝑔𝑀(∇𝑋𝑌,φϕV) + 𝑔𝑀(∇𝑋φ𝑌,ωV)                     (4.98) 

 

yazılabilir. Buradan (3.4) ve (3.5) kullanılırsa 

 

𝑔𝑀(∇𝑋𝑌, 𝑉) = 𝑔𝑀(∇𝑋𝑌,ϕ2V + ωϕv) + 𝑔𝑀(∇𝑋(B𝑌 + 𝐶𝑌),ωV) 

 

                        = 𝑔𝑀(∇𝑋𝑌,ϕ2V) + 𝑔𝑀(∇𝑋𝑌,ωϕv) + 𝑔𝑀(∇𝑋B𝑌,ωV) 
    

                                           +𝑔𝑀(∇𝑋𝐶𝑌,ωV)                                                                 (4.99) 

 

elde edilir. (2.34) ve (3.28) den     

  

              𝑔𝑀(∇𝑋𝑌, 𝑉) = 𝑔𝑀(∇𝑋𝑌, 𝑐𝑜𝑠2θV) + 𝑔𝑀(∇𝑋𝑌, ωϕV) 
 

+𝑔𝑀(𝐴𝑋BY + ℋ∇𝑋BY,ωV) + 𝑔𝑀(𝐴𝑋CY + ℋ∇𝑋CY,ωV)    (4.100) 

    

yazılır.  Buradan 

 

              (1 − 𝑐𝑜𝑠2θ)𝑔𝑀(∇𝑋𝑌, V) = 𝑔𝑀(∇𝑋𝑌,ωϕv) + 𝑔𝑀(𝐴𝑋BY,ωV) + 𝑔𝑀(ℋ∇𝑋BY,ωV) 
 

                                              +𝑔𝑀(𝐴𝑋CY,ωV) + 𝑔𝑀(ℋ∇𝑋CY,ωV)                            (4.101) 
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(𝑠𝑖𝑛2θ)𝑔𝑀(∇𝑋𝑌, V) = 𝑔𝑀(∇𝑋𝑌,ωϕv) + 𝑔𝑀(𝐴𝑋BY,ωV)

+𝑔𝑀(ℋ∇𝑋CY,ωV)   (4.102) 

bulunur. 𝑠𝑖𝑛2θ ≠ 0 olduğundan, eşitliğin sağ tarafı sıfır olmalıdır. O halde

−𝑔𝑁(𝜓∗𝐴𝑋BY, 𝜓∗ωV) − 𝑔𝑁(𝜓∗ℋ∇𝑋CY, 𝜓∗ωV) = 𝑔𝑀(∇𝑋𝑌,ωϕv)         (4.103) 

elde edilir. çek (𝜓∗)
⊥   ın total geodezik olması için gerek ve yeter şart (4.94) ve (4.103) ün

sağlanmasıdır. 

4.6. Teorem (M,φ, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold (𝑁, 𝑔𝑁)bir Riemann manifold ve

𝜓:𝑀 → 𝑁 bir yarı slant ξ⊥ − Riemann submersiyon olsun. 𝑋, 𝑌 ∈ çek (𝜓∗)
⊥,

𝑈 ∈ Γ(𝐷1), 𝑉 ∈ Γ(𝐷2)  için çek (𝜓∗)
⊥  in integrallenebilir olması için gerek ve yeter şart

𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗𝐴𝑋ϕU) + 𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗ℋ∇𝑋ωU) − 𝑔𝑁(𝜓∗𝐶𝑋,𝜓∗𝐴𝑌ϕU)

−𝑔𝑁(𝜓∗CX, 𝜓∗ℋ∇𝑌 ωU) = −𝑔𝑀(𝐵𝑌, ∇𝑋ϕU) − 𝑔𝑀(BY, 𝐴𝑋ωU)

+𝑔𝑀(𝐵𝑋, V∇𝑌ϕU) + 𝑔𝑀(BX, 𝐴𝑌ωU)       (4.104) 

ve 

𝑔𝑀([𝑌, 𝑋], ωϕV) = −𝑔𝑁(𝜓∗𝐴𝑋𝐵𝑌, 𝜓∗ωV) − 𝑔𝑁(𝜓∗ℋ∇𝑋CY, 𝜓∗ωV)

+𝑔𝑁(𝜓∗𝐴𝑌𝐵𝑋,𝜓∗ωV) + 𝑔𝑁(𝜓∗ℋ∇𝑌𝐶𝑋,𝜓∗ωV)      (4.105) 

olmasıdır. 

İspat ∀ 𝑋, 𝑌 ∈ çek (𝜓∗)
⊥, 𝑈 ∈ Γ(𝐷1), 𝑉 ∈ Γ(𝐷2) için 𝑔𝑀([𝑋, 𝑌], 𝑈) = 0 ve 𝑔𝑀([𝑋, 𝑌], 𝑉) =

0 olması durumlarını inceleyelim. (2.38) eşitliğinden    

𝑔𝑀([𝑋, 𝑌], 𝑈) = 𝑔𝑀(φ∇𝑋𝑌,φ𝑈) − 𝜂(∇𝑋𝑌)𝜂(𝑈)

−𝑔𝑀(φ∇𝑌𝑋,φ𝑈) − 𝜂(∇𝑌𝑋)𝜂(𝑈)       (4.106)

bulunur. Buradan 
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𝑔𝑀([𝑋, 𝑌], 𝑈) = 𝑔𝑀(∇𝑋φ𝑌 − (∇𝑋φ)𝑌,φ𝑈) − 𝑔𝑀(∇𝑌φ𝑋 − (∇𝑌φ)𝑋,φ𝑈)   (4.107)

yazılabilir. Buradan 

𝑔𝑀([𝑋, 𝑌], 𝑈) = 𝑔𝑀(∇𝑋φ𝑌,φ𝑈) − 𝑔𝑀((∇𝑋φ)𝑌,φ𝑈)

−𝑔𝑀(∇𝑌φ𝑋,φ𝑈) + 𝑔𝑀(∇𝑌φ)𝑋,φ𝑈)     (4.108) 

bulunur. Buradan (2.42)  eşitliği kullanılırsa   

𝑔𝑀([𝑋, 𝑌], 𝑈) = 𝑔𝑀(∇𝑋φ𝑌,φ𝑈) − 𝑔𝑀(𝑔𝑀(φX, Y)𝜉 − 𝜂(𝑋)φY,φ𝑈)

−𝑔𝑀(∇𝑌φ𝑋,φ𝑈) + 𝑔𝑀(𝑔𝑀(φY, X)𝜉 − 𝜂(𝑌)φX,φ𝑈)       (4.109) 

    elde edilir. 𝜂(𝑌) = 0 olduğundan        

𝑔𝑀([𝑋, 𝑌], 𝑈) = 𝑔𝑀(∇𝑋φ𝑌,φ𝑈) − 𝑔𝑀(φX, Y)g(𝜉, φ𝑈)

−𝑔𝑀(∇𝑌φ𝑋,φ𝑈) + 𝑔𝑀(φY, X)𝑔𝑀(𝜉, φ𝑈)   (4.110) 

veya 

𝑔𝑀([𝑋, 𝑌], 𝑈) = − 𝑔𝑀(𝜑𝑌, ∇𝑋φ𝑈) + 𝑔𝑀(φ𝑋, ∇𝑌φ𝑈) (4.111) 

bulunur. O halde (3.5) kullanılırsa  

𝑔𝑀([𝑋, 𝑌], 𝑈) = − 𝑔𝑀(𝐵𝑌 + 𝐶𝑌, ∇𝑋(ϕU + ωU))

+𝑔𝑀(𝐵𝑋 + 𝐶𝑋, ∇𝑌(ϕU + ωU)) (4.112) 

yazılır. Buradan (3.4) eşitliği kullanılırsa 

𝑔𝑀([𝑋, 𝑌], 𝑈) = −𝑔𝑀(𝐵𝑌, ∇𝑋ϕU) − 𝑔𝑀(𝐶𝑌, ∇𝑋ϕU) − 𝑔𝑀(BY, ∇𝑋ωU)

−𝑔𝑀(CY, ∇𝑋ωU) + 𝑔𝑀(𝐵𝑋, ∇𝑌ϕU) + 𝑔𝑀(𝐶𝑋, ∇𝑌ϕU)

+𝑔𝑀(BX, ∇𝑌 ωU) + 𝑔𝑀(CX, ∇𝑌 ωU) (4.113) 
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yazılabilir. (2.33 ) ve (2.34) eşitliklerinden 

 

𝑔𝑀([𝑋, 𝑌], 𝑈) = −𝑔𝑀(𝐵𝑌, 𝒱∇𝑋ϕU + 𝐴𝑋ϕU) − 𝑔𝑀(𝐶𝑌, 𝒱∇𝑋ϕU + 𝐴𝑋ϕU) 
 

                             −𝑔𝑀(BY, 𝐴𝑋ωU + ℋ∇𝑥ωU) − 𝑔𝑀(CY, 𝐴𝑋ωU + ℋ∇𝑋ωU) 
                         

                           +𝑔𝑀(𝐵𝑋, 𝒱∇𝑌ϕU + 𝐴𝑌ϕU) + 𝑔𝑀(𝐶𝑋, 𝒱∇𝑌ϕU + 𝐴𝑌ϕU)  
 

                       +𝑔𝑀(BX, 𝒱∇𝑌 ωU + 𝐴𝑌ωU) + 𝑔𝑀(CX, 𝐴𝑌ωU + ℋ∇𝑌 ωU)(4.114) 

                    

elde edilir. Buradan 

 

𝑔𝑀([𝑋, 𝑌], 𝑈) = −𝑔𝑀(𝐵𝑌, 𝒱∇𝑋ϕU) − 𝑔𝑀(BY, 𝐴𝑋ωU) − 𝑔𝑀(𝐶𝑌, 𝐴𝑋ϕU) 
 

                               −𝑔𝑀(𝐶𝑌,ℋ∇𝑋ωU) + 𝑔𝑀(𝐵𝑋, 𝒱∇𝑌ϕU) + 𝑔𝑀(𝐶𝑋, 𝐴𝑌ϕU) 
 

                                           +𝑔𝑀(BX, 𝐴𝑌ωU) + 𝑔𝑀(CX,ℋ∇𝑌 ωU)                              (4.115) 

 

bulunur ki 𝑔𝑀([𝑋, 𝑌], 𝑈) =  0 olduğundan gerekli düzenlemeler yapılırsa 

 

𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗𝐴𝑋ϕU) + 𝑔𝑁(𝜓∗𝐶𝑌,𝜓∗ℋ∇𝑋ωU) − 𝑔𝑁(𝜓∗𝐶𝑋,𝜓∗𝐴𝑌ϕU)   
                         

−𝑔𝑁(𝜓∗CX, 𝜓∗ℋ∇𝑌 ωU) = −𝑔𝑀 (𝐵𝑌, ∇𝑋ϕU) − 𝑔𝑀(BY, 𝐴𝑋ωU) 
 

                                                                   +𝑔𝑀(𝐵𝑋, 𝒱∇𝑌ϕU) + 𝑔𝑀(BX, 𝐴𝑌ωU)       (4.116) 

 

elde edilir. Diğer taraftan Lie braket, konneksiyonun metrikle bağdaşma, bilineerlik 

özellikleri ve  (2.38) eşitliği kullanılırsa     

 

𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑔𝑀(φ∇𝑋𝑌, φ𝑉) − 𝜂(∇𝑋𝑌)𝜂(𝑉) − 𝑔𝑀(φ∇𝑌𝑋,φ𝑉) − 𝜂(∇𝑌𝑋)𝜂(𝑉) (4.117) 

                                               

bulunur. (2.37) ve (3.4) eşitliklerinden   

 

                      𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑔𝑀(φ∇𝑋𝑌, ϕV + ωV) − 𝑔𝑀(φ∇𝑌𝑋,ϕV + ωV)          (4.118) 

                                                                                                                            

yazılır.  O halde      

 

𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑔𝑀(φ∇𝑋𝑌,ϕV) + 𝑔𝑀(φ∇𝑋𝑌,ωV) 
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−𝑔𝑀(φ∇𝑌𝑋,ϕV) − 𝑔𝑀(φ∇𝑌𝑋,ωV) (4.119) 

bulunur. (3.4) eşitliğinden 

𝑔𝑀([𝑋, 𝑌], 𝑉) = −𝑔𝑀(∇𝑋𝑌,φϕV) + 𝑔𝑀(∇𝑋φ𝑌,ωV)

+𝑔𝑀(∇𝑌𝑋,φϕV) − 𝑔𝑀(∇𝑌φ𝑋,ωV) (4.120) 

yazılabilir. (4.120) de (3.4)  eşitliği kullanılırsa 

𝑔𝑀([𝑋, 𝑌], 𝑉) = −𝑔𝑀(∇𝑋𝑌,ϕϕV + ωϕV) + 𝑔𝑀(∇𝑋φ𝑌,ωV)

+𝑔𝑀(∇𝑌𝑋,ϕϕV + ωϕV) − 𝑔𝑀(∇𝑌φ𝑋,ωV) (4.121) 

veya 

𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑔𝑀(∇𝑋𝑌,ϕ2V) − 𝑔𝑀(∇𝑋𝑌,ωϕv) + 𝑔𝑀(∇𝑋φY,ωV)

+𝑔𝑀(∇𝑌𝑋,ϕ2V) + 𝑔𝑀(∇𝑌𝑋,ωϕV) − 𝑔𝑀(∇𝑌φ𝑋,ωV)      (4.122) 

bulunur. (3.5) ve (3.28) eşitliklerinden 

𝑔𝑀([𝑋, 𝑌], 𝑉) = −𝑔𝑀(∇𝑋𝑌, cos2θV) − 𝑔𝑀(∇𝑋𝑌,ωϕv) + 𝑔𝑀(∇𝑋(BY + CY),ωV)

+𝑔𝑀(∇𝑌𝑋, 𝑐𝑜𝑠2θV) + 𝑔𝑀(∇𝑌𝑋,ωϕv)

−𝑔𝑀(∇𝑌(B𝑋 + 𝐶𝑋),ωV) (4.123) 

yazılır. O halde    

𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑐𝑜𝑠2θ𝑔𝑀(∇𝑌𝑋, 𝑉)−𝑐𝑜𝑠2θ𝑔𝑀(∇𝑋𝑌, 𝑉) + 𝑔𝑀(∇𝑌𝑋,ωϕv)

−𝑔𝑀(∇𝑋𝑌,ωϕv + 𝑔𝑀(∇𝑋BY,ωV) + 𝑔𝑀(∇𝑋CY,ωV)

−𝑔𝑀(∇𝑌B𝑋,ωV) + 𝑔𝑀(∇𝑌𝐶𝑋,ωV)           (4.124) 

elde edilir.  (2.33) ve (2.34) den 
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𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑐𝑜𝑠2θ(𝑔𝑀(∇𝑌𝑋 − ∇𝑋𝑌, 𝑉) + 𝑔𝑀(∇𝑌𝑋 − ∇𝑋𝑌,ωϕv) + 𝑔𝑀(𝒱∇𝑋BY 
 

                               +𝐴𝑋𝐵𝑌,ωV) + 𝑔𝑀(𝐴𝑋𝐶𝑌 + ℋ∇𝑋CY,ωV) − 𝑔𝑀(𝒱∇𝑌B𝑋 + 𝐴𝑌𝐵𝑋,ωV 
 

                              −𝑔𝑀(𝐴𝑌𝐶𝑋 + ℋ∇𝑌𝐶𝑋,ωV)                                                                   (4.125) 

  

bulunur. Buradan lie braket özelliği kullanılırsa    

 

𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑐𝑜𝑠2θ𝑔𝑀([𝑋, 𝑌], 𝑉) + 𝑔𝑀([𝑌, 𝑋], ωϕv) + 𝑔𝑀(𝒱∇𝑋BY,ωV) 
 

                    +𝑔𝑀(𝐴𝑋𝐵𝑌,ωV) + 𝑔𝑀(𝐴𝑋𝐶𝑌,ωV) + 𝑔𝑀(ℋ∇𝑋CY,ωV 
 
                                            −𝑔𝑀(𝒱∇𝑌B𝑋,ωV) − 𝑔𝑀(𝐴𝑌𝐵𝑋,ωV) 

 
                                  −𝑔𝑀(𝐴𝑌𝐶𝑋,ωV) − 𝑔𝑀(ℋ∇𝑌𝐶𝑋,ωV)                                        (4.126) 

 

elde edilir. Gerekli düzenlemeler yapılırsa    

 

(1 − 𝑐𝑜𝑠2θ)𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑔𝑀([𝑌, 𝑋], ωϕV)) + 𝑔𝑀(𝐴𝑋𝐵𝑌,ωV) 

 
                                                                           +𝑔𝑀(ℋ∇𝑋CY,ωV) − 𝑔𝑀(𝐴𝑌𝐵𝑋,ωV) 
 
                                                                           −𝑔𝑀(ℋ∇𝑌𝐶𝑋,ωV)                                     (4.127) 

  

veya 

 

𝑠𝑖𝑛2θ𝑔𝑀([𝑋, 𝑌], 𝑉) = 𝑔𝑀([𝑌, 𝑋], ωϕV) + 𝑔𝑁(𝜓∗𝐴𝑋𝐵𝑌, 𝜓∗ωV) 
                                    

                                                  +𝑔𝑁(𝜓∗ℋ∇𝑋𝐶𝑌,𝜓∗ωV) − 𝑔𝑁(𝜓∗𝐴𝑌𝐵𝑋, 𝜓∗ωV) 
 

                                                               −𝑔𝑁(𝜓∗ℋ∇𝑌𝐶𝑋,𝜓∗ωV)                                           (4.128) 

 

elde edilir. 𝑠𝑖𝑛2θ ≠ 0  olduğundan sağ taraf sıfır olmalıdır. O halde 

 

𝑔𝑀([𝑌, 𝑋], ωϕV) = −𝑔𝑁(𝜓∗𝐴𝑋𝐵𝑌, 𝜓∗ωV) − 𝑔𝑁(𝜓∗ℋ∇𝑋CY, 𝜓∗ωV) 
 

                                                 +𝑔𝑁(𝜓∗𝐴𝑌𝐵𝑋,𝜓∗ωV) + 𝑔𝑁(𝜓∗ℋ∇𝑌𝐶𝑋,𝜓∗ωV)        (4.129) 

 

elde edilir. Buradan çek (𝜓∗)
⊥  ın integrallenebilir olması için gerek ve yeter şart (4.116) ve 

(4.129) un sağlanmasıdır. 
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4.7. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔𝑀) bir Kenmotsu manifold (𝑁, 𝑔𝑁) bir Riemann manifold ve                                       

𝜓: 𝑀 → 𝑁 bir yarı slant  ξ⊥ − Riemann submersiyon olsun. ∀ 𝑈, 𝑉 ∈ çek𝜓∗ 𝑋 ∈ çek (𝜓∗)
⊥  

için çek(𝜓∗)   ın total geodezik olması için gerek ve yeter şart   

 

                     𝑔𝑀(ωϕV, ∇𝑈X) = 𝑔𝑁(𝜓∗ωV,𝜓∗𝐴𝑈𝐵𝑋) + 𝑔𝑁(𝜓∗ωV,𝜓∗ℋ∇𝑈𝐶𝑋)        (4.130) 

 

olmasıdır. 

 

İspat ∀ 𝑈, 𝑉 ∈ çek𝜓∗ 𝑋 ∈ çek (𝜓∗)
⊥  için (3.4) kullanılırsa 

 

                               𝑔𝑀( ∇𝑈𝑉, 𝑋) = −𝑔𝑀(ϕV, ∇𝑈φX) − 𝑔𝑀(ωV, ∇𝑈φX)                    (4.131) 

 

bulunur. Buradan     

 

                                 𝑔𝑀( ∇𝑈𝑉, 𝑋) = 𝑔𝑀(φϕV, ∇𝑈X) − 𝑔𝑀(ωV, ∇𝑈φX)                     (4.132) 

                                                                                                          

olduğundan (3.4) eşitliği kullanılırsa 

 

                  𝑔𝑀( ∇𝑈𝑉, 𝑋) = 𝑔𝑀(ϕ2V, ∇𝑈X) + 𝑔𝑀(ωϕV, ∇𝑈X) − 𝑔𝑀(ωV, ∇𝑈φX)       (4.133)  

 

olup buradan 

 

              𝑔𝑀( ∇𝑈𝑉, 𝑋) = 𝑔𝑀(−𝑐𝑜𝑠2θV, ∇𝑈X) + 𝑔𝑀(ωϕV, ∇𝑈X) − 𝑔𝑀(ωV, ∇𝑈φX)   (4.134) 

 

yazılabilir. (4.134) de (3.5) kullanılırsa       

 

𝑔𝑀( ∇𝑈𝑉, 𝑋) = −𝑐𝑜𝑠2θ𝑔𝑀(V, ∇𝑈X) + 𝑔𝑀(ωϕV, ∇𝑈X) 
                                                 

                                                       −𝑔𝑀(ωV, ∇𝑈(BX + CX))                                       (4.135) 

 

bulunur. Buradan  

 

𝑔𝑀( ∇𝑈𝑉, 𝑋) = 𝑐𝑜𝑠2θ𝑔𝑀(∇𝑈X, V) + 𝑔𝑀(ωϕV, ∇𝑈X) 
           

                                                       −𝑔𝑀(ωV, ∇𝑈𝐵𝑋) − 𝑔𝑀(ωV, ∇𝑈𝐶𝑋)                     (4.136) 
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olup  (2.32) ve (2.34) den

𝑔𝑀( ∇𝑈𝑉, 𝑋) − 𝑐𝑜𝑠2θ𝑔𝑀(∇𝑈X, V) = 𝑔𝑀(ωϕV, ∇𝑈X) − 𝑔𝑀(ωV, 𝒱∇𝑈𝐵𝑋 + 𝐴𝑈𝐵𝑋)

   −𝑔𝑀(ωV, 𝐴𝑈𝐶𝑋 + ℋ∇𝑈𝐶𝑋)                     (4.137) 

elde edilir. Buradan 

(1 − 𝑐𝑜𝑠2θ)𝑔𝑀(∇𝑈X, V) = 𝑔𝑀(ωϕV, ∇𝑈X) − 𝑔𝑀(ωV, 𝒱∇𝑈𝐵𝑋) − 𝑔𝑀(ωV, 𝐴𝑈𝐵𝑋)

−𝑔𝑀(ωV, 𝐴𝑈𝐶𝑋) − 𝑔𝑀(ωV,ℋ∇𝑈𝐶𝑋)                     (4.138)

yazılabilir. (4.138) Denkleminde gerekli düzenlemeler yapılırsa sin2θ𝑔𝑀(∇𝑈X, V) =

𝑔𝑀(ωϕV, ∇𝑈X) − 𝑔𝑀(ωV, 𝐴𝑈𝐵𝑋) − 𝑔𝑀(ωV,ℋ∇𝑈𝐶𝑋) olup 𝜓  Riemann submersiyon

olduğundan 

sin2θ𝑔𝑀(∇𝑈X, V) = 𝑔𝑀(ωϕV, ∇𝑈X) − 𝑔𝑁(𝜓∗ωV, 𝜓∗𝐴𝑈𝐵𝑋)

−𝑔𝑁(𝜓∗ωV,𝜓∗ℋ∇𝑈𝐶𝑋) (4.139) 

bulunur.  sin2θ ≠ 0 olduğundan sağ taraf sıfır olmalıdır. O halde;

𝑔𝑀(ωϕV, ∇𝑈X) = 𝑔𝑁(𝜓∗ωV,𝜓∗𝐴𝑈𝐵𝑋) + 𝑔𝑁(𝜓∗ωV,𝜓∗ℋ∇𝑈𝐶𝑋)   (4.140) 

elde edilir. 
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5. SUBMERSİYONLARIN GEOMETRİSİ

Bu bölümde bir yarı slant  ξ⊥ −Riemann submersiyonun total umbilik liflerini ve total

geodeziklik şartlarını inceleyeceğiz. İlk olarak yarı slant  ξ⊥ −Riemann submersiyonun total

umbilik olması için yeni bir şart verelim: 

𝜓 iki Riemann manifold arasında Riemann submersiyon olsun. ∀ V,W ∈ çek (𝜓∗) için

𝑇𝑉𝑊 = 𝑔(𝑉,𝑊)𝐻 ise 𝜓 Riemann Submersiyonu total umbilik liflere sahiptir denir. Burada

𝐻 liflerin ortalama eğrilik vektörüdür.  

5.1. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu manifold (𝑁, 𝑔𝑁) bir Riemann manifold ve

𝜓:𝑀 → 𝑁 bir total umbilik lifler ile yarı slant  ξ⊥ − Riemann submersiyon olsun. Bu taktirde

ortalama eğrilik  𝐻 için  𝐻 ∈ Γ(wD2)’ dır. 

İspat 𝑊1,𝑊2 ∈ Γ(𝐷1)  için konneksiyonun özelliğinden (∇𝑊1
φ)𝑊2 − ∇𝑊1

(φ𝑊2) yerine

−φ∇𝑊1
𝑊2

  yazılıp   (2.42) ve (2.31) kullanılırsa

𝑔̂(φ𝑊1,𝑊2)𝜉 + 𝜂(𝑊2)φ𝑊1 − 𝑇𝑊1
φ𝑊2 − ∇̂𝑊1

φ𝑊2 = −𝜑(𝑇𝑊1
𝑊2 + ∇̂𝑊1

𝑊2)

(5.1) 

elde edilir. (3.4), (3.5) eşitlikleri kullanılırsa    

𝑔̂(φ𝑊1,𝑊2)𝜉 − 𝑇𝑊1
φ𝑊2 − ∇̂𝑊1

φ𝑊2 = −𝐵𝑇𝑊1
𝑊2 − 𝐶𝑇𝑊1

𝑊2 − ϕ∇̂𝑊1
𝑊2 −

ω∇̂𝑊1
𝑊2        (5.2) 

yazılabilir. 𝐿𝜖𝜇 alınarak      

𝑔̂(φ𝑊1,𝑊2)𝑔̂(𝐿, 𝜉) − 𝑔̂(𝑇𝑊1
φ𝑊2, L) − 𝑔𝑀(∇̂𝑊1

φ𝑊2, L)

= −𝑔̂(𝐵𝑇𝑊1
𝑊2, L) − 𝑔̂(𝐶𝑇𝑊1

𝑊2, L)

−𝑔𝑀(ϕ∇̂𝑊1
𝑊2, 𝐿) − 𝑔𝑀(ω∇̂𝑊1

𝑊2, 𝐿) (5.3)

bulunur ve (3.8) kullanılırsa  
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                                    𝑔̂(φ𝑊1,𝑊2)g(𝜉, 𝑍) − 𝑔̂(𝑇𝑊1
φ𝑊2, L) = 𝑔̂(𝑇𝑊1

𝑊2, 𝐶L)                     

(5.4)   

                                                                                                                                                                                                                                                      

yazılır. 𝑇𝑊1
𝑊2 = 𝑔̂(𝑊1,𝑊2)𝐻 olduğundan    

                       𝑔̂(φ𝑊1,𝑊2)𝑔̂(𝜉, 𝑍) − 𝑔̂(𝑔𝑀(𝑊1, φ𝑊2)H, L) = 𝑔̂(𝑔̂(𝑊1,𝑊2)H,φL)           

(5.5) 

 

elde edilir. Buradan  

 

                  𝑔̂(𝜑𝑊1,𝑊2)𝑔̂(𝜉, 𝑍) = 𝑔̂(𝑊1, 𝜑𝑊2)𝑔̂(𝐻, 𝐿) + 𝑔̂(𝑊1,𝑊2)𝑔̂(𝐻, 𝜑𝐿)               

(5.6) 

 

veya   

 

                  −𝑔̂(φ𝑊2,𝑊1)𝑔̂(𝜉, 𝑍) = −𝑔̂(𝑊1, φ𝑊2)𝑔̂(H, L) + 𝑔̂(𝑊2,𝑊1)𝑔̂(H,φL)          

(5.7) 

                                        

bulunur. 𝑊1 ve 𝑊2 nin yeri değiştirilirerek  (5.6) ve (5.7) taraf tarafa toplanırsa 

 

                                          2𝑔̂(𝜑𝑊1,𝑊2) = −2𝑔̂(𝜑𝑊1,𝑊2)𝑔̂(𝐻, 𝐿)                                  

(5.8) 

                                  

bulunur. Buradan 𝑔̂(𝐻, 𝐿) = 0 olmalıdır. Bu da bize gösterir ki  𝐻 ∈  Г(𝑤𝐷2) dır.  

 

Şimdi, yarı slant ξ⊥ −Riemann submersiyonun total geodezik olması durumunu inceleyelim. 

𝜓 iki Riemann manifold arasında diferansiyellenebilir bir dönüşüm olsun. Eğer ∇𝜓∗ = 0 ise 

𝜓’ye total geodezik dönüşüm denir. 

 

5.2. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu manifold (𝑁, 𝑔̅) bir Riemann manifold ve                                         

𝜓: 𝑀 → 𝑁 bir total umbilik lifler ile yarı slant  ξ⊥ − Riemann submersiyon olsun. 𝜓’nin total 

geodezik olması için ∀ 𝑋 ∈ Γ(çek (𝜓∗)
⊥), 𝑍 = 𝑍1 + 𝑍2 𝑍 ∈ 𝛤(𝑇𝑀) 𝑍1 ∈ Γ(çek(𝜓∗))  𝑍2 ∈

Γ(çek(𝜓∗ )
⊥)   için      
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−∇𝑋𝜓∗𝑍2 = ∇𝑋𝜓∗𝑍2 + 𝜓∗(𝐶(A𝑋ϕZ1 + ℋ∇𝑋ωZ1 + A𝑋BZ2 + ℋ∇𝑋𝐶Z2)

+ω(𝒱∇𝑋ϕZ1 + A𝑋ωZ1 + 𝒱∇𝑋BZ2 + A𝑋CZ2 

−𝜂(Z2)𝐶𝑋 − 𝜂(𝑋)𝜂(Z2) − 𝑔𝑀(Z2, 𝐶𝑋)𝜉 (5.9) 

olmasıdır. 

İspat  𝑋 ∈ Γ(çek (𝜓∗)
⊥), 𝑍 ∈ 𝛤(𝑇𝑀) için

(∇𝑋φ)Z − ∇𝑋(φZ) = −φ∇𝑋𝑍 (5.10) 

olup, her iki taraf  φ  ile işleme tabi tutulursa, 

φ(∇𝑋φ)Z = φ∇𝑋(φZ) − φ2∇𝑋𝑍 (5.11) 

elde edilir. Buradan (2.36) eşitliği kullanılırsa 

∇𝑋𝑍 = φ(∇𝑋φ)Z − φ∇𝑋φZ + 𝜂(∇𝑋𝑍)𝜉 (5.12) 

olur. O halde 

 ∇(𝜓∗)(𝑋, 𝑍) = ∇𝑋𝜓∗𝑍 − 𝜓∗(φ(∇𝑋φ)Z − φ∇𝑋φZ + 𝜂(∇𝑋𝑍)𝜉 (5.13) 

veya 

∇(𝜓∗)(𝑋, 𝑍) = ∇𝑋𝜓∗𝑍 − 𝜓∗(φ(𝑔𝑀(φX, Z)𝜉 − 𝜂(𝑍)φX) − φ(∇𝑋φ)Z + 𝜂(∇𝑋𝑍)𝜉      (5.14)

yazılabilir.  𝑍 = 𝑍1 + 𝑍2 olup burada 𝑍1 𝑣𝑒 𝑍2
 dikey ve yatay parçaları göstermektedir. 

Buradan  

∇(𝜓∗)(𝑋, 𝑍) = ∇𝑋𝜓∗𝑍 − 𝜓∗(φ(𝑔𝑀(φX, Z)𝜉 − 𝜂(𝑍)φX) − φ∇𝑋φZ1

−φ∇𝑋φZ2 + 𝜂(∇𝑋𝑍)𝜉) (5.15) 

veya 

∇(𝜓∗)(𝑋, 𝑍) = ∇𝑋𝜓∗𝑍 − 𝜓∗(φ(𝑔𝑀(φX, Z)𝜉 − 𝜂(𝑍)φX) − φ∇𝑋φZ1
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                                             −φ∇𝑋φBZ2  − φ∇𝑋φCZ2 + 𝜂(∇𝑋𝑍)𝜉)                           (5.16) 

 

bulunur. Buradan 

 

∇(𝜓∗)(𝑋, 𝑍) = ∇𝑋𝜓∗𝑍 − 𝜓∗(−𝜂(𝑍)φ2 − φ∇𝑋ϕZ1 − φ∇𝑋ωZ1)
 

 

                                              −φ∇𝑋BZ2 − φ∇𝑋CZ2 + 𝜂(∇𝑋𝑍)𝜉)                                 (5.17) 

 

veya 

 

∇(𝜓∗)(𝑋, 𝑍) = ∇𝑋𝜓∗𝑍 − 𝜓∗(−𝜂(𝑍)φ2 − φ𝒱∇𝑋ϕZ1 − φA𝑋ϕZ1 − φℋ∇𝑋ωZ1 
 

−φ𝒱∇𝑋BZ2 − φ∇𝑋BZ2 − φA𝑋BZ2 − φA𝑋CZ2 
    

                                  − φℋ∇𝑋CZ2 + 𝜂(∇𝑋𝑍)𝜉)                                                           (5.18) 

 

bulunur. (3.3), (3.4) ve (3.5) eşitliklerinden 

 

    (∇𝑋𝜓∗)𝑍 = ∇𝑋𝜓∗𝑍 − 𝜓∗(−𝜂(𝑍)φ2 − ϕ𝒱∇𝑋ϕZ1 − ω𝒱∇𝑋ϕZ1 − BA𝑋ϕZ1 − CA𝑋ϕZ1 
 

    −ϕA𝑋ωZ1 − ωA𝑋ωZ1 − 𝐵ℋ∇𝑋ωZ1 − 𝐶ℋ∇𝑋ωZ1 − φ𝒱∇𝑋BZ2  
 

    +ϕ𝒱∇𝑋BZ2 − ω𝒱∇𝑋BZ2 − BA𝑋BZ2 − CA𝑋𝐵Z2 − ϕA𝑋CZ2  
 

                          −ωA𝑋CZ2 − 𝐵ℋ∇𝑋CZ2 − 𝐶ℋ∇𝑋CZ2 + 𝜂(∇𝑋𝑍)𝜉                                            (5.19)         

                                                                                                         

elde edilir. Gerekli düzenlemeler yapılırsa 

 

(∇𝑋𝜓∗)𝑍 = ∇𝑋𝜓∗𝑍 − 𝜓∗(𝜂(Z2 ) − 𝜂(Z2 )𝜂(X)𝜉 − ω𝒱∇𝑋ϕZ1 − CA𝑋ϕZ1 − ϕA𝑋ωZ1 
 

                        −𝐶ℋ∇𝑋ωZ1 − ω𝒱∇𝑋BZ2 – CA𝑋𝐵Z2  
 

                      –ωA𝑋CZ2 − 𝐶ℋ∇𝑋CZ2 + 𝜂(∇𝑋𝑍)𝜉                                                                                     (5.20) 

                                                                                                                                                                       

bulunur ki bu da istenendir. 
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6. KENMOTSU SPACE FORM İLE 𝛏⊥-RİEMANN SUBMERSİYON

Bu bölümde semi slant ξ⊥ −Riemann submersiyonun tanımından ortaya çıkan

distrübüsyonların eğrilik özelliklerini ve Einstein olma şartlarını inceleyeceğiz. Sabit 𝜑 

kesitsel eğrilikli Kenmotsu manifolda Kenmotsu Space Form denir. Sabit kesitsel eğrilik c 

olmak üzere Kenmotsu space formun Riemann eğrilik tensörü  

𝑅(𝑈1, 𝑈2, 𝑈3, 𝑈4) =
𝑐 − 3

4
{𝑔(𝑈1, 𝑈2)𝑔𝑀(𝑈3, 𝑈4) − g(𝑈1, 𝑈3)𝑔𝑀(𝑈2, 𝑈4)}

+
𝑐+1

4
{𝑔(𝑈2, 𝑈4)𝜂(𝑈1)𝜂(𝑈3) − g(𝑈1, 𝑈4)𝜂(𝑈2)𝜂(𝑈3)

+𝑔(𝑈1, 𝑈3)𝜂(𝑈2)𝜂(𝑈4) − g(𝑈2, 𝑈3)𝜂(𝑈1)𝜂(𝑈4)

+𝑔(𝜑𝑈2, 𝑈3)g(𝜑𝑈1, 𝑈4) − g(𝜑𝑈1, 𝑈3)g(𝜑𝑈2, 𝑈4)

− 2𝑔(𝜑𝑈1, 𝑈2)𝑔𝑀(𝜑𝑈3, 𝑈4) + g(𝑇𝑈1
𝑈3, 𝑇𝑈2

𝑈4)

−𝑔(𝑇𝑈2
𝑈3, 𝑇𝑈1

𝑈4)} (6.1) 

şeklinde tanımlıdır. {𝑒1, … , 𝑒2𝑝, 𝑒2𝑝+1, … , 𝑒2𝑝+2𝑞, 𝑒2𝑝+2𝑞+1} 𝑀’nin bir ortanormal çatısı 

olsun.  O zaman 𝐷 = 𝑆𝑝{𝑒1, … , 𝑒2𝑝}, 𝐷𝜃 = 𝑆𝑝{𝑒2𝑝+1, … , 𝑒2𝑝+2𝑞} ve 𝜉 = 𝑠𝑝{𝑒2𝑝+2𝑞+1} 

şeklinde seçebiliriz. Burada 𝑏𝑜𝑦𝐷 = 2𝑝, 𝑏𝑜𝑦𝐷𝜃 = 2𝑞’dur. 

6.1. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir Riemann manifold         

𝜓: 𝑀 → 𝑁 bir yarı slant  ξ⊥ − Riemann submersiyon olsun.  O halde, ∀ 𝑊1,𝑊2,𝑊3,𝑊4 ∈

𝛤(𝐷) için 

𝑅(𝑊1,𝑊2,𝑊3,𝑊4) =
𝑐 − 3

4
{ 𝑔̂(𝑊3,𝑊1)𝑉(𝑊2,𝑊4) − 𝑔̂(𝑊2,𝑊1)𝑔̂(𝑊3,𝑊4)}

+
𝑐+1

4
{ 𝑔̂(φ𝑊3,𝑊1)𝑔̂(φ𝑊2,𝑊4) − 𝑔̂(φ𝑊2,𝑊1)𝑔̂(φ𝑊3,𝑊4)

 

−2 𝑔̂(φ𝑊2,𝑊3)𝑔̂(φ𝑊1,𝑊4)} + 𝑔̂(𝑇𝑊1
𝑊2, 𝑇𝑊3

𝑊4)

− 𝑔̂(𝑇𝑊3
𝑊1, 𝑇𝑊2

𝑉) (6.2) 

ve
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𝐾(𝑊1,𝑊2) =
𝑐 − 3

4
{𝑔̂2(𝑊1,𝑊2) − 1} +

𝑐 + 1

4
{−3𝑔̂2(𝑊2, φ𝑊1)}

 

 +𝑔̂(𝑇𝑊1
𝑊1, 𝑇𝑊2

𝑊2) − 𝑔̂(𝑇𝑊2
𝑊1, 𝑇𝑊1

𝑊2) (6.3) 

eşitlikleri sağlanır.

İspat    𝑊1 ∈ Γ(𝐷)  için   𝜂(𝑊1) = 0’dır. (6.1) den

𝑅(𝑊1,𝑊2,𝑊3,𝑊4) =
𝑐 − 3

4
{ 𝑔̂(𝑊3,𝑊1)𝑉(𝑊2,𝑊4) − 𝑔̂(𝑊2,𝑊1)𝑔̂(𝑊3,𝑊4)}

 +
𝑐+1

4
{ { 𝑔̂(φ𝑊3,𝑊1)𝑔̂(φ𝑊2,𝑊4) − 𝑔̂(φ𝑊2,𝑊1)𝑔̂(φ𝑊3,𝑊4)

 

−2 𝑔̂(φ𝑊2,𝑊3)𝑔̂(φ𝑊1,𝑊4)} + 𝑔̂(𝑇𝑊1
𝑊2, 𝑇𝑊3

𝑊4)

− 𝑔̂(𝑇𝑊3
𝑊1, 𝑇𝑊2

𝑉) (6.4)

elde edilir.  Diğer taraftan (6.1) de 𝑊1 = 𝑊2
  ve 𝑊3 = 𝑊4

  alınırsa  

𝐾(𝑊1,𝑊2) =
𝑐 − 3

4
{𝑔̂(𝑊2,𝑊1)𝑔̂(𝑊1,𝑊2) − 𝑔̂(𝑊1,𝑊1)𝑔̂(𝑊2,𝑊2)}

 

 +
𝑐+1

4
{𝑔̂(𝑊2,𝑊2)𝜂(𝑊1)𝜂(𝑊1) − 𝑔̂(𝑊1,𝑊2)𝜂(𝑊2)𝜂(𝑊1)

 

+𝑔̂(𝑊1,𝑊1)𝜂(𝑊2)𝜂(𝑊2) − 𝑔̂(𝑊2,𝑊1)𝜂(𝑊1)𝜂(𝑊2)
 

+𝑔̂(φ𝑊2,𝑊1)𝑔̂(φ𝑊1,𝑊2) − 𝑔̂(φ𝑊1,𝑊1)𝑔̂(φ𝑊2,𝑊2)

 −2𝑔̂(φ𝑊1,𝑊2)𝑔̂(φ𝑊1,𝑊2)} + 𝑔̂(𝑇𝑊1
𝑊1, 𝑇𝑊2

𝑊2)

−𝑔̂(𝑇𝑉𝑊1, 𝑇𝑊1
𝑊2) (6.5) 

bulunur ve  𝜂(𝑊1) = 0 olduğundan (6.3) elde edilir.

6.1. Sonuç (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir Riemann manifold       

𝜓: 𝑀 → 𝑁  bir yarı slant  ξ⊥ −Riemann   submersiyon olsun. 𝐷 total geodezik ise 𝐷’in  skaler

eğriliği 
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𝜏 =

𝑐 − 3

4
(2p − 1) +

3(𝑐 + 1)

4
∙ 2𝑝 

(6.6) 

 

 

olarak bulunur. 

 

6.2. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir Riemann manifold                                         

𝜓: 𝑀 → 𝑁  bir yarı slant  ξ⊥ −Riemann submersiyon olsun. ∀ 𝑊1,𝑊2 ∈ 𝛤(𝐷) için Ricci 

eğriliği 

 

𝑆(𝑊1,𝑊2) = ((
𝑐 − 3

4
) (2p − 1) +

3(𝑐 + 1)

4
) 𝑔̂(𝑊1,𝑊2)

 

 
                                                                  +∑ (2𝑝

𝑖=1 𝑔̂(𝑇𝑒𝑖
𝑊1, 𝑇𝑊2

𝑒𝑖) − 𝑔̂(𝑇𝑊1
𝑊2, 𝑇𝑒𝑖

𝑒𝑖))                        

(6.7) 

 

şeklindedir. 

 

İspat Skaler eğriliğin izinin Ricci eğriliği olduğunu biliyoruz. Yani 

 

 
𝑆(𝑊1,𝑊2) = ∑𝑅(𝑒𝑖,𝑊1,𝑊2,

𝑛

𝑖=1

𝑒𝑖)
 

 

(6.8) 

 

Burada {𝑒1, … , 𝑒2𝑝} 𝐷 nin ortonormal bazı, 𝑊1,𝑊2 ∈ 𝛤(𝐷) olup    

 

  𝑆(𝑊1,𝑊2) = ∑
𝑐 − 3

4

2𝑝

i=0

{𝑔̂(𝑊1,𝑊2)𝑔̂(𝑒𝑖, 𝑒𝑖) − 𝑔̂(𝑒𝑖,𝑊2)𝑔̂(𝑊1, 𝑒𝑖)} 
 

 
                                                         +

𝑐+1

4
𝑔̂(φ𝑊1,𝑊2)𝑔̂(φ𝑒𝑖, 𝑒𝑖) − 𝑔̂(φ𝑒𝑖,𝑊2)𝑔̂(φ𝑊1, 𝑒𝑖)  

 
                          −2𝑔̂(φ𝑒𝑖,𝑊1)𝑔̂(φ𝑊2, 𝑒𝑖)} + 𝑔̂(𝑇𝑒𝑖

𝑊2, 𝑇𝑊1
𝑒𝑖) − 𝑔̂(𝑇𝑊1

𝑊2, 𝑇𝑒𝑖
𝑒𝑖) (6.9) 

                                                          

yazılır. 𝑔𝑀(φ𝑒𝑖, 𝑒𝑖) = 0 dır. Buradan  

                 

                             𝑆(𝑊1,𝑊2) =
𝑐−3

4
{2p𝑔̂(𝑊1,𝑊2) − 𝑔̂(𝑊2,𝑊1)} +

𝑐+1

4
{𝑔̂(φ𝑊1, φ𝑊2) 
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                                      +2𝑔̂(φ𝑊2, φ𝑊1)} + 𝑔̂(𝑇𝑒𝑖
𝑊2, 𝑇𝑊1

𝑒𝑖) − 𝑔̂(𝑇𝑊1
𝑊2, 𝑇𝑒𝑖

𝑒𝑖)          (6.10) 

 

elde edilir. Buradan   

 

𝑆(𝑊1,𝑊2) =
𝑐 − 3

4
{(2p − 1)𝑔̂(𝑊1,𝑊2)} +

𝑐 + 1

4
{3𝑔̂(φ𝑊1, φ𝑊2)} 

 

                                                       +𝑔̂(𝑇𝑒𝑖
𝑊2, 𝑇𝑊1

𝑒𝑖) − 𝑔̂(𝑇𝑊1
𝑊2, 𝑇𝑒𝑖

𝑒𝑖)                                       (6.11)             

 

 bulunur. O halde     

 

𝑆(𝑊1,𝑊2) =
𝑐 − 3

4
{(2p − 1)𝑔̂(𝑊1,𝑊2)}  +

𝑐 + 1

4
{3𝑔̂(φ𝑊1, φ𝑊2)}

 

         

                                               +∑ (2𝑝
𝑖=1 𝑔̂(𝑇𝑊1

𝑊2, 𝑇𝑊𝑒𝑖) − 𝑔̂(𝑇𝑊1
𝑊2, 𝑇𝑒𝑖

𝑒𝑖))                           (6.12) 

 

olduğundan Ricci Eğriliği    

 

𝑆(𝑊1,𝑊2) = ((
𝑐 − 3

4
) (2p − 1) +

3(𝑐 + 1)

4
) 𝑔̂(𝑊1,𝑊2)

 

 

                                                           +∑ (2𝑝
𝑖=1 𝑔̂(𝑇𝑒𝑖

𝑊2, 𝑇𝑊1
𝑒𝑖) − 𝑔̂(𝑇𝑊1

𝑊2, 𝑇𝑒𝑖
𝑒𝑖))                   (6.13)   

                                                                     

olarak elde edilir. 

 

6.2. Sonuç (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir Riemann manifold                                         

𝜓: 𝑀 → 𝑁 bir yarı slant ξ⊥ − Riemann submersiyon olsun. 𝐷 total geodezik ise 𝐷 

Einsteindir.  

 

6.3. Teorem (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir Riemann manifold                                         

𝜓: 𝑀 → 𝑁 bir yarı slant ξ⊥ −Riemann submersiyon olsun. ∀ 𝐿1, 𝐿2, 𝐿3, 𝐿4 ∈ Γ(𝐷𝜃) için 

Riemann eğriliği 

 

𝑅( 𝐿1, 𝐿2, 𝐿3, 𝐿4) =
𝑐 − 3

4
{𝑔̂(𝐿1, 𝐿2)𝑔̂(𝐿3, 𝐿4) − 𝑔̂(𝐿1, 𝐿4)𝑔̂(𝐿2, 𝐿3)}
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+
𝑐+1

4
{𝑔̂(φ𝐿2, 𝐿4)𝑔̂(φ𝐿1, 𝐿3) − 𝑔̂(φ𝐿1, 𝐿4)𝑔̂(φ𝐿2, 𝐿3)

 

−2𝑔̂(φ𝐿1, 𝐿2)𝑔̂(φ𝐿4, 𝐿3)} + 𝑔̂(𝑇𝐿1
𝐿4, 𝑇𝐿2

𝐿3)

−𝑔̂(𝑇𝐿2
𝐿4, 𝑇𝐿1

𝐿3) (6.14)

ve kesitsel eğrilik 

𝐾(𝐿1, 𝐿2) =
𝑐 − 3

4
{𝑔̂2(𝐿1, 𝐿2) − 1} +

𝑐 + 1

4
{−3𝑔̂2(φ𝐿1, 𝐿2)}

 

+𝑔̂(𝑇𝐿1
𝐿1, 𝑇𝐿2

𝐿2) − 𝑔̂(𝑇𝐿2
𝐿1, 𝑇𝐿1

𝐿2) (6.15) 

şeklinde tanımlıdır. 

İspat 𝐿1, 𝐿2, 𝐿3, 𝐿4 ∈ Γ(𝐷𝜃) için (6.1) kullanılırsa 

𝑅(𝐿1, 𝐿2, 𝐿3, 𝐿4) =
𝑐 − 3

4
{𝑔̂(𝐿1, 𝐿2)𝑔̂(𝐿3, 𝐿4) − 𝑔̂(𝐿1, 𝐿4)𝑔̂(𝐿2, 𝐿3)}

+
𝑐 + 1

4
{𝑔̂(𝐿2, 𝐿3)𝜂(𝐿1)𝜂(𝐿4) 

−𝑔̂(𝐿1, 𝐿3)𝜂(𝐿2)𝜂(𝐿4) + 𝑔̂(𝐿1, 𝐿4)𝜂(𝐿2)𝜂(𝐿3)
 

−𝑔̂(𝐿2, 𝐿4)𝜂(𝐿1)𝜂(𝐿3) + 𝑔̂(φ𝐿2, 𝐿4)𝑔𝑀(φ𝐿1, 𝐿3)

−𝑔̂(φ𝐿1, 𝐿4)𝑔̂(φ𝐿2, 𝐿3) − 2𝑔̂(φ𝐿2, 𝐿1)𝑔̂(φ𝐿4, 𝐿3)}
 

+𝑔𝑀(𝑇𝐿1
𝐿4, 𝑇𝐿2

𝐿3) − 𝑔̂(𝑇𝐿2
𝐿4, 𝑇𝐿1

𝐿3)           (6.16) 

olarak bulunur. Diğer taraftan 

𝐾(𝐿1, 𝐿2) =
𝑐 − 3

4
{𝑔̂(𝐿1, 𝐿2)𝑔̂(𝐿1, 𝐿2) − 𝑔̂(𝐿1, 𝐿1)𝑔̂(𝐿2, 𝐿2)}

 

 +
𝑐+1

4
{𝑔̂(φ𝐿2, 𝐿1)𝑔̂(φ𝐿1, 𝐿2) + 2𝑔̂(φ𝐿1, 𝐿2)𝑔̂(φ𝐿1, 𝐿2)}

 

 +𝑔̂(𝑇𝐿1
𝐿1, 𝑇𝐿2

𝐿2) − 𝑔̂(𝑇𝐿2
𝐿1, 𝑇𝐿1

𝐿2) (6.17) 

veya 

𝐾(𝐿1, 𝐿2) =
𝑐−3

4
{𝑔̂2(𝐿1, 𝐿2) − 1} +

𝑐+1

4
{−𝑔̂2(𝐿2, φ𝐿1)
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−2𝑔̂2(φ𝐿1, 𝐿2)} + 𝑔̂(𝑇𝐿1
𝐿1, 𝑇𝐿2

𝐿2) − 𝑔̂(𝑇𝐿2
𝐿1, 𝑇𝐿1

𝐿2)       (6.18) 

elde edilir. 

6.4. Teorem  (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir Riemann manifold 

𝜓: 𝑀 → 𝑁 bir yarı slant  ξ⊥ − Riemann submersiyon olsun. ∀ 𝐿1, 𝐿2 ∈ Γ(𝐷𝜃) ve 𝐷𝜃 total

geodezik ise Ricci eğriliği 

𝑆(𝐿1, 𝐿2) = (
𝑐−3

4
(2q − 1) +

3(𝑐+1)

4
)𝑔̂(𝐿1, 𝐿2) (6.19) 

şeklindedir. 

İspat  ∀ 𝐿1, 𝐿2 ∈ Γ(𝐷𝜃)   için 

 𝑆(𝐿1, 𝐿2) = ∑ 𝑅(𝑒𝑖, 𝐿1, 𝐿2,
2𝑞
𝑖=1 𝑒𝑖) 

 = ∑
𝑐−3

4

2𝑞
𝑖=1 {𝑔̂(𝐿1, 𝐿2)g(𝑒𝑖, 𝑒𝑖) − 𝑔̂(𝑒𝑖, 𝐿2)𝑔𝑀(𝐿1, 𝑒𝑖)}

 

 +
𝑐+1

4
{𝑔̂(φ𝐿1, 𝐿2)𝑔̂(φ𝑒𝑖, 𝑒𝑖) − 2𝑔̂(φ𝑒𝑖, 𝐿1)𝑔̂(φ𝐿2, 𝑒𝑖)}

 

+𝑔̂(𝑇𝑒𝑖
𝐿2, 𝑇𝐿1

𝑒𝑖) − 𝑔̂(𝑇𝐿1
𝐿2, 𝑇𝑒𝑖

𝑒𝑖) (6.20) 

yazılabilir. 𝑔̂(φ𝑒𝑖, 𝑒𝑖) = 0 olduğundan

−2𝑔̂(φ𝑒𝑖, 𝐿1)𝑔̂(φ𝐿2, 𝑒𝑖) = 2𝑔̂(𝑒𝑖, φ𝐿1)𝑔̂(φ𝐿2, 𝑒𝑖) = 2𝑔̂(φ𝐿2, φ𝐿1)           (6.21) 

elde edilir.𝑔̂(𝑒𝑖, 𝑒𝑖) = 2𝑞 olup

𝑆(𝐿1, 𝐿2) = (
𝑐 − 3

4
) (2q − 1)𝑔̂(𝐿1, 𝐿2) +

3(𝑐 + 1)

4
).3𝑔̂(φ𝐿1, φ𝐿2)

 

 +𝑔̂(𝑇𝑒𝑖
𝐿2, 𝑇𝐿1

𝑒𝑖) − 𝑔̂(𝑇𝐿1
𝐿2, 𝑇𝑒𝑖

𝑒𝑖) (6.22) 

𝐷𝜃 total geodezik ise 𝑇𝐿1
𝐿2 = 0 dır.
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6.3. Sonuç (𝑀, 𝜑, 𝜉 , 𝜂, 𝑔̂) bir Kenmotsu space form ve (𝑁, 𝑔̅) bir  Riemann manifold  𝜓∶ 𝑀 

→ 𝑁 bir yarı slant ξ⊥ −Riemann submersiyon olsun. 𝐷𝜃 distribüsyonu total geodezik ise

𝐷𝜃 Einstein’dir. 
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7. SONUÇ VE ÖNERİLER

Bu tez çalışmasında Kenmotsu manifoldlardan Riemann manifoldlara yarı slant  

ξ⊥ −Riemann submersiyonlarla ilgili teoremler ispatlandı. Öncelikle temel kavramlar ile

Kenmotsu manifoldun alt manifoldlarının tanım ve teoremleri, daha sonra Kenmotsu 

manifoldun yarı slant alt manifoldunun submersiyonunun tanım ve teoremlerine yer verildi. 

Daha sonra liflerin geometrisi, Riemann submersiyonun total umbilikliği ve total 

geodezikliği, son olarak da eğrilik özellikleri incelenip teoremler ispatlandı. 

Literatüre ilk defa Türkçe kaynak olarak kazandırılan bu tez çalışmasından hareketle değme 

manifold tabanlı diğer manifoldların yarı-invaryant, yarı-slant, pseudo (hemi)- slant, bi-slant, 

generik altmanifoldlarından hemen hemen değme manifoldlara tanımlı submersiyon 

dönüşümü çalışılabilir. 
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