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Fatma Saba KOÇKAN

DOKTORA TEZİ
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Düşük Çözünürlüklü Sensörlerle Biyometri başlıklı çalışmada veri toplama ve veri
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LAŞIMLAR 24
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4.3 EKG ile Doğrulama için Kullanılan Alternatif Yaklaşımlar . . . . . 48
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F Birinci Dereceden Baum-Welch İstatistiği
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CNN Konvolüsyonel Sinir Ağı (Convolutional Neural Network)
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TV Toplam Değişkenlik Uzayı (Total Variability Space)

UART Evrensel Asenkron Alıcı/Verici (Universal Asynchronous
Receiver/Transmitter)

UBM Evrensel Arka Plan Modeli (Universal Background Model)
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Şekil 1.5 AliveCore EKG mobil sensörü [2] . . . . . . . . . . . . . . . . . 16
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Şekil 2.4 GFCC özniteliklerinin çıkarılması işlemi blok diyagramı . . . . . 29
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Şekil 5.13 Geliştirme seti: 23 bireyin i-vektörlerinin 2 boyutlu t-SNE
projeksiyonu (BMD-2) . . . . . . . . . . . . . . . . . . . . . . . 79
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değerlerinde sistem performansı (ECG-ID) - GFCC . . . . . . . 66

Tablo 5.3 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
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değerlerinde sistem performansı (BMD-2) - MFCC . . . . . . . . 83

xiii



Tablo 5.17 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
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ÖZET

Düşük Çözünürlüklü Sensörlerle Biyometri

Fatma Saba KOÇKAN

Elektronik ve Haberleşme Mühendisliği Anabilim Dalı
Doktora Tezi

Danışman: Doç. Dr. Bülent BOLAT

Kişisel veri güvenliğinin kritik önem taşıdığı dijital çağda, geleneksel biyometrik
yöntemlerin mobil cihazlarda yaşadığı güvenlik kısıtları, daha güvenilir ve güçlü
kimlik doğrulama yaklaşımlarına olan ihtiyacı artırmaktadır. Bu kapsamda
gerçekleştirilen çalışma, mobil cihazlarda kullanılmak üzere, düşük çözünürlüklü
sensörlerden elde edilen elektrokardiyogram (EKG) verilerine dayanan yenilikçi
bir kimlik doğrulama yöntemi önermektedir.

EKG, kalp aktivitesinden elde edilen elektriksel sinyaller aracılığıyla bireye özgü
biyometrik özellikler sunan bir tekniktir. Kalp atışının ritmik ve bireye has
özellikleri, EKG’yi kimlik doğrulama ve insan tanıma uygulamaları için ideal bir
veri kaynağı haline getirmektedir.

Önerilen yöntemde, son on yılda konuşmacı tanıma alanında başarılı sonuçlar
elde eden i-vektör yaklaşımından yararlanılmaktadır. i-vektörler, veri sıkıştırma
ve özellik çıkarımı süreçlerinde etkinlik sağlayarak, kimlik doğrulama ve
tanıma sistemlerinin verimliliğini artırmaktadır. Çalışmada, EKG verilerinden
elde edilen öznitelikler arasında Mel Frekansı Kepstral Katsayıları (MFCC) ve
Gammatone Frekansı Kepstral Katsayıları (GFCC) kullanılmaktadır. MFCC, ses
sinyalinin kısa süreli güç spektrumunu temsil ederken, GFCC, insan kulağının
frekans çözünürlüğünü modelleyerek daha doğal bir özellik çıkarımını mümkün
kılmaktadır.

Bireysel EKG sinyallerinden elde edilen öznitelikler kullanılarak oluşturulan
i-vektörler, kosinüs mesafesi ölçümü ile puanlanmış ve bu sayede kimlik doğrulama
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işlemi gerçekleştirilmiştir. Kosinüs mesafesi, vektörler arasındaki açısal farkı
ölçerek benzerlik değerlendirmesi yapmada etkili bir metrik olarak öne çıkmaktadır.

Deneysel sonuçlar, önerilen yöntemin yüksek doğruluk oranlarıyla mobil cihazlar
için pratik çözümler sunma potansiyelini ortaya koymakta; yöntem, güvenilirliğini
ve uygulanabilirliğini doğrulamaktadır.

Bu tez, biyometrik kimlik doğrulama alanında EKG verilerinin kullanımını
yaygınlaştırmayı amaçlamakta ve mobil güvenlik çözümlerine özgün yaklaşımlar
kazandırmayı hedeflemektedir. Ayrıca, önerilen yöntemin gelecekte daha
güvenli ve kullanıcı dostu biyometrik sistemlerin geliştirilmesine önemli katkılar
sağlayacağı öngörülmektedir.

Anahtar Kelimeler: Biyometrik kimlik doğrulama, elektrokardiyogram,
gammatone frekans kepstrum katsayısı (GFCC), i-vector, mel frekans kepstrum
katsayısı (MFCC).

YILDIZ TEKNİK ÜNİVERSİTESİ
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ABSTRACT

Biometrics with Low Resolution Sensors

Fatma Saba KOÇKAN

Department of Electronics and Communication Engineering
Doctor of Philosophy Thesis

Supervisor: Assoc. Prof. Dr. Bülent BOLAT

In the digital age, where personal data security is of critical importance, the security
limitations of traditional biometric methods on mobile devices have increased
the need for more reliable and robust identity authentication approaches. In this
context, this study proposes an innovative identity verification method based on
electrocardiogram (ECG) data acquired from low-resolution sensors, designed for
use on mobile devices.

ECG is a technique that provides individual-specific biometric features through
electrical signals generated by cardiac activity. The rhythmic and unique
characteristics of heartbeats make ECG an ideal data source for identity verification
and human recognition applications.

In the proposed method, the i-vector approach—which has achieved successful
results in speaker recognition over the past decade—is utilized. I-vectors enhance
the efficiency of authentication and identification systems by enabling effective
data compression and feature extraction. In this study, Mel Frequency Cepstral
Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) are
employed as feature extraction techniques from ECG data. While MFCC represents
the short-term power spectrum of audio signals, GFCC models the frequency
resolution of the human ear, thereby enabling a more natural feature extraction
process.

The i-vectors, derived from individual ECG signals, are scored using cosine distance
measurement, thus facilitating the identity verification process. Cosine distance
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stands out as an effective metric by quantifying the angular difference between
vectors for similarity evaluation.

Experimental results demonstrate that the proposed method, with its high accuracy
rates, reveals significant potential in providing practical solutions for mobile
devices, thereby confirming its reliability and applicability.

This thesis aims to promote the widespread use of ECG data in the field of biometric
authentication and to introduce innovative approaches to mobile security solutions.
Furthermore, it is anticipated that the proposed method will contribute significantly
to the development of safer and more user-friendly biometric systems in the future.

Keywords: Biometric authentication, electrocardiogram, gammatone frequency
cepstrum coefficient (GFCC), i-vector, mel frequency cepstrum coefficient
(MFCC).

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
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1
GİRİŞ

Teknolojideki hızlı ilerlemeler, günlük yaşamımızda önemli dönüşümlere neden
olarak mobil cihazların kullanımını küresel ölçekte yaygınlaştırmıştır. Mobil
cihazlar yalnızca iletişim aracı olmaktan çıkmış; sosyal medya, finansal işlemler,
sağlık ve eğitim gibi birçok alanda hayatımızın ayrılmaz bir parçası hâline gelmiştir.
Akıllı telefonların kullanımının hızla artması ve kullanıcıların günlük hayatlarında
bu cihazlara ayırdıkları sürenin giderek yükselmesi, mobil teknolojilerin insan
yaşamını şekillendirmede ne derece etkili olduğunu açıkça göstermektedir.

Mobil cihazların artan kullanımı, kişisel ve hassas verilere yönelik tehditleri
de artırmıştır [1]. Özellikle son dönemde mobil cihazları hedef alan siber
saldırıların artması, kişisel veri güvenliğinin önemini ve korunması ihtiyacının
kritik bir noktaya ulaştığını ortaya koymaktadır. Mobil cihazlarda geleneksel kimlik
doğrulama yöntemleri (PIN, desen veya grafiksel şifreler), kullanıcı tarafından
belirlenen şifrenin güvenlik seviyesine bağlı olarak farklılık göstermekle birlikte,
günümüzün karmaşıklaşan tehditlerine karşı yetersiz kalmaktadır [2]. Bu nedenle
kullanıcılar, daha güçlü ve güvenilir olan biyometrik doğrulama yöntemlerine
yönelmiştir.

Biyometrik doğrulama yöntemleri, bireylerin benzersiz fizyolojik ve davranışsal
özniteliklerini temel alarak, geleneksel yöntemlere göre daha güvenli bir doğrulama
sağlamaktadır [3]. Parmak izi, yüz veya iris tanıma gibi popüler yöntemlerin
kolayca taklit edilebilme riskleri bulunmaktadır. Parmak izi yöntemleri yapay
malzemeler kullanılarak, yüz tanıma yöntemleri ise fotoğraf veya video gibi
basit yöntemlerle aldatılabilmektedir. Benzer şekilde, ses tanıma sistemlerinin
kayıtlar aracılığıyla kandırılması mümkündür. Bu bağlamda, canlılık doğrulaması
sunan; benzersiz elektrofizyolojik yapısı nedeniyle taklit edilmesi oldukça güç
olan elektrokardiyogram (EKG) tabanlı biyometrik doğrulama yöntemleri ön plana
çıkmaktadır.

Elektrokardiyogram (EKG), kalbin elektriksel aktivitesinden elde edilen ve
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bireye özgü fizyolojik öznitelikleri içeren biyolojik sinyallerdir. Kalp atışlarının
kişiye özgü ritmik yapısı nedeniyle EKG, evrensellik, eşsizlik, süreklilik ve
elde edilebilirlik gibi temel biyometrik kriterleri karşılamaktadır. Son yıllarda
yapılan çalışmalar, düşük maliyetli ve düşük çözünürlüklü sensörlerle bile kısa
süreli EKG kayıtlarının mobil cihazlarda güvenilir kimlik doğrulama amacıyla
kullanılabileceğini ortaya koymuştur. Bu tez çalışmasının temel amacı da, mobil
cihazlarda kullanılmak üzere düşük çözünürlüklü sensörlerle kısa süreli kaydedilen
EKG sinyallerinin biyometrik doğrulamadaki etkinliğini araştırmaktır.

Bu amaç doğrultusunda, EKG sinyallerindeki bireye özgü özniteliklerin temsilinde
Mel Frekansı Kepstral Katsayıları (MFCC) ve Gammatone Frekansı Kepstral
Katsayıları (GFCC) gibi gelişmiş sinyal işleme tekniklerinden yararlanılmıştır.
MFCC yöntemi, sinyallerin kısa süreli güç spektrumunu temsil ederek öznitelik
çıkarırken, GFCC yöntemi ise insan kulağının doğal frekans çözünürlüğüne yakın
bir öznitelik çıkarımı sağlamaktadır. Bu yöntemlerin birlikte kullanılması, EKG
sinyallerinin ayrıştırıcı gücünü belirgin biçimde artırmaktadır.

Çalışmada ayrıca, konuşmacı tanıma alanında başarıyla kullanılan ve biyometrik
sistemlerde etkinliği kanıtlanmış olan i-vektör yaklaşımından yararlanılmıştır. Bu
yöntem, kısa ve düşük çözünürlüklü EKG verilerinde dahi yüksek doğruluk
sağlayarak, mobil cihazların sınırlı kaynakları açısından uygun, hafif, güvenilir ve
hızlı bir doğrulama yöntemi sunmaktadır.

Sonuç olarak, bu tez kapsamında geliştirilen yöntemle, mobil cihazlarda düşük
çözünürlüklü sensörlerle elde edilen kısa süreli EKG verileri kullanılarak, mevcut
teknolojilere kıyasla daha güvenilir, kullanıcı dostu ve hızlı bir biyometrik
doğrulama sistemi sunmak hedeflenmiştir. Yapılan deneysel çalışmalar da, önerilen
yöntemin yüksek doğruluk ve pratik uygulanabilirlik sağlayabileceğini göstermiştir.

1.1 Biyometri ve Kavramsal Temeller
Biyometri, bireylerin ölçülebilir fizyolojik veya davranışsal özniteliklerine
dayanarak kimlik tanımlama ve doğrulama yapan yöntemler bütünüdür. Bu
yöntemler, bireye özgü, unutulması veya kaybedilmesi mümkün olmayan ve tahmin
edilmesi güç yapılar sunar. Bu nedenle biyometri, güvenlik sistemlerinde yaygın
olarak tercih edilen bir alan haline gelmiştir [4].

Ancak her insan özelliği biyometrik olarak değerlendirilemez. Bir özelliğin
biyometrik öznitelik olarak kabul edilebilmesi için, aşağıdaki temel kriterlere sahip
olması gerekmektedir:
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• Evrensellik: Karakteristiğin tüm bireylerde bulunması,

• Eşsizlik: Her bireye özgü, birbirinden farklı olması,

• Süreklilik: Zaman içinde yeterince sabit kalması,

• Elde Edilebilirlik: Pratikte ölçülebilir ve kaydedilebilir olması [4–7].

Bunun yanı sıra, bir özelliğin biyometrik sistemlerde etkin bir şekilde
kullanılabilmesi için şu ek gereklilikler de göz önünde bulundurulmalıdır:

• Performans: Özelliğin doğru, hızlı ve sağlam ölçümlere olanak tanıması;
çevresel ve işlevsel etkilere karşı dayanıklı olması,

• Kabul Edilebilirlik: Bireylerin, özniteliklerin ölçümü ve kullanımı
konusunda itirazda bulunmaması,

• Kandırılmaya Karşı Dayanıklılık: Özelliğin kolayca taklit edilememesi [6,
7].

Farklı insan özniteliklerinin daha iyi tanımlanabilmesi amacıyla, fizyolojik
yöntemler, vücut üzerindeki konumlarına göre kategorize edilmektedir. Bu
kategoriler aşağıdaki gibi sınıflandırılabilir:

• El bölgesi öznitelikleri,

• Yüz bölgesi öznitelikleri,

• Göz ve perioküler bölge öznitelikleri,

• Davranışsal öznitelikler,

• Mediko-kimyasal öznitelikler [7].

Şekil 1.1’de, biyometrik yöntemlerin sınıflandırılması şematik olarak
sunulmaktadır.

1.2 Mobil Biyometrik Uygulamalar
Mobil cihazlarda, parmak izi, ses, iris, yüz, avuç izi, diş, yürüyüş ve imza tanıma
gibi çeşitli biyometrik yöntemler kullanılmaktadır. Ancak bu yöntemler; uygulama
alanı, donanım ihtiyacı, kararlılık ve doğruluk gibi kriterler açısından farklılıklar
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Şekil 1.1 Biyometrik yöntemlerin sınıflandırılması [7]

göstermektedir. Dolayısıyla, kullanıcılar için yüksek tanıma performansı, kolay
kullanım ve güvenilirlik sunan ideal bir biyometrik yöntemin belirlenmesi hâlen
zorlu bir problem olarak karşımıza çıkmaktadır [8].

Özellikle, parmak izi tanıma, mobil cihazlarda en çok tercih edilen biyometrik
yöntemlerden biri olarak öne çıkmaktadır. Bununla birlikte, parmak izinin
bozulması ya da sahte parmak izi kullanılması gibi durumlar, kimlik doğrulama
sürecinde hata oranlarını artırarak güvenlik açıklarına neden olabilmektedir. Ticari
cep telefonlarında, parmak izi doğrulamasının bu tür zayıflıkları gözlemlenmiştir
[2].

Mobil cihazlarda ek donanıma ihtiyaç duymadan çalışan yüz ve iris tanıma
teknikleri de literatürde yaygın biçimde uygulanmaktadır. Ancak bu sistemlerin
performansı, genellikle uygun ışık koşullarında elde edilen kaliteli görüntülere bağlı
olarak değişiklik göstermektedir [8].

Ayrıca, ses tanıma yöntemleri çevresel gürültüye duyarlı olup, ses kayıtları
yoluyla yanıltılma riski taşımaktadır [9]. Mobil yürüme tanıma sistemleri ise
yerleşik ivmeölçer verilerine dayanarak gerçekleştirilmektedir; ancak bu sistemler
henüz istenilen güvenilirlik düzeyine ulaşamamış olup, doğru şekilde eğitilmiş bir
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saldırgan tarafından kandırılma ihtimali mevcuttur [10, 11].

Kalp, doğal ve güvenilir bir biyometrik öznitelik olarak kabul edilmektedir. Son
zamanlarda, elektrokardiyogram (EKG) tabanlı biyometrik tanıma sistemleri, hem
sinyallerin canlı bir vücuttan elde edilmesinden kaynaklanan güvenlik üstünlüğü
hem de biyometrik bilgilerin kamufle edilebilme özelliği sayesinde önemli bir
ilgi odağı haline gelmiştir. EKG sinyalleri, biyolojik işlevlere dayandığından,
diğer biyometrik verilere kıyasla atlatılması veya taklit edilmesi çok daha güçtür
[12]. Bu özellik, EKG tabanlı tanıma sistemlerinin, bireylerin kalp atışlarını
benzersiz biyometrik öznitelik olarak kullanarak kimlik doğrulama ve tanımlama
sağlamasında önemli bir rol oynamaktadır.

1.3 Elektrokardiyogram (EKG) ve Biyometrik Öznitelikler
Elektrokardiyogram (EKG), kalbin ritim, frekans, atım düzeni, yayılım ve tekrar
eden elektriksel aktivitelerinin vücut yüzeyinden kaydedilmesiyle elde edilen
biyolojik sinyallerdir. Bu yöntem, kalp ritmi, damar hastalıkları, kalp krizi ve
kardiyak hipertrofi gibi durumların tespitinde değerli klinik bilgiler sunar.

Kalp kası (miyokard), kendi kendine kasılma özelliğine sahiptir. Kalbin sinüs
düğümünden çıkan düzenli uyarılar, özel iletim yolları aracılığıyla kas hücrelerine
aktarılır [13]. Dinlenme halindeki hücreler elektriksel olarak polarizeyken, gelen
uyarılar nedeniyle depolarize olarak kasılır ve kısalır. Böylece, kalp odacıklarını
çevreleyen miyokard, bütünsel bir büzülme yaşayarak içindeki kanı büyük ve küçük
dolaşıma gönderir. Bu kasılma sürecine sistol denir; sistol sonrası hücreler hızla
eski elektrik yüklerine kavuşarak yeniden polarize olur ve bu süreç, kalp atım sayısı
kadar tekrarlanır.

Kalbin elektriksel faaliyeti sonucunda ortaya çıkan potansiyel farklar, çevre dokular
ve özellikle kan aracılığıyla tüm vücuda yayılır. Vücut üzerinde yerleştirilen
elektrotlar, bu farkları kaydederek elektrokardiyogram eğrileri oluşturur. Her
bölgedeki potansiyel farklarının kaydedilmesi, ilgili bölgeye ait derivasyon (lead)
kavramını ortaya çıkarır. Normal bir EKG, I, II, III, aVR, aVL, aVF, V1, V2, V3,
V4, V5 ve V6 olmak üzere toplam 12 derivasyonu içerir [14, 15].

Şekil 1.2’de, 12 derivasyonlu EKG konfigürasyonu gösterilmiştir. Bu şema,
elektrotların vücut üzerindeki yerleşimini ve her bir derivasyonun kalbin hangi
bölgesini temsil ettiğini ayrıntılı biçimde sunar.
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Şekil 1.2 (a) 12 derivasyonlu sistemde elektrot yerleşimi, (b) 12 derivasyonlu
EKG, (c) Einthoven üçgeni [16]
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EKG derivasyonları genel olarak şu şekilde sınıflandırılır:

• I, II, III derivasyonları: Frontal düzlemde kalbin elektriksel aktivitesini
ölçer.

• aVR, aVL, aVF derivasyonları: Ekstremite derivasyonları olarak bilinir;
yine frontal düzlemde kalbin aktivitesini değerlendirir.

• V1, V2, V3, V4, V5, V6 derivasyonları: Göğüs (horizontal) düzlemde
kalbin elektriksel aktivitesini kaydeder.

Her bir derivasyon, kalbin belirli bölgelerinden elde edilen sinyalleri temsil eder:

• I derivasyonu: Sol atriyum ve sol ventrikülün lateral duvarı,

• II ve III derivasyonları: Sağ atriyum ve sol ventrikülün inferior (alt) duvarı,

• aVR: Sağ atriyum,

• aVL: Sol ventrikülün lateral duvarı,

• aVF: Kalbin inferior (alt) duvarı,

• V1 ve V2: Sağ ventrikül ve septum,

• V3 ve V4: Anterior (ön) duvar,

• V5 ve V6: Sol ventrikülün lateral duvarı.

Einthoven üçgeni, EKG derivasyonlarının geometrik ilişkilerini açıklayan temel bir
kavramdır. Üç elektrot arasındaki bağlantıları tanımlayan bu üçgen, derivasyon I, II
ve III ile temsil edilmektedir:

• Derivasyon I (Lead I): Sol kol ile sağ kol arasındaki voltaj farkını ölçer ve
kalbin sağ-sol (lateral) aktivitesini yansıtır.

• Derivasyon II (Lead II): Sağ kol ile sol bacak arasındaki voltaj farkını
kaydeder; kalbin üst-alt (inferior) aktivitesini gösterir.

• Derivasyon III (Lead III): Sol kol ile sol bacak arasındaki voltaj farkını
ölçer; kalbin inferior-lateral aktivitesini temsil eder.
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Bu üç derivasyon, Einthoven üçgeninin temelini oluşturur ve kalbin elektriksel
aktivitesini farklı açılardan değerlendirmeye olanak tanır.

Şekil 1.3’te, tipik bir EKG eğrisi yer almaktadır. EKG sinyalleri, temel olarak P,
QRS ve T dalgalarından oluşmaktadır [2]. P dalgası, atriyumların kasılması sonucu
ortaya çıkar; QRS kompleksi, atriyum kasılmasının sona erdiğini ve ventrikül
kasılmasının başladığını; T dalgası ise ventriküllerin kasılmasının sona erdiğini
ifade eder.

Bu dalga formları, insan anatomisinin benzersiz özniteliklerine bağlı olarak ortaya
çıktığından, EKG biyometrisi evrensellik, ölçülebilirlik, tekillik ve kalıcılık gibi
temel kriterleri karşılamaktadır [17].

Şekil 1.3 Elektrokardiyogram

Normal bir EKG işareti için Şekil 1.3’te belirtilen öznitelik değerleri şöyledir [18,
19]:

• RR intervali: 0.6–1 s,

• QRS kompleksi: 0.06–0.10 s,

• P dalga süresi: 0.08–0.12 s,

• PR intervali: 0.12–0.2 s,

• PR segmenti: 0.05–0.12 s,

• ST segmenti: 0.08–0.12 s,

• T dalga süresi: 0.16 s,

• QT intervali: 0.35–0.4 s.
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1.4 Tezin Amacı ve Kapsamı
Bu tez çalışmasının temel amacı, düşük çözünürlüklü sensörler kullanarak EKG
tabanlı biyometrik kimlik doğrulamanın mümkün olup olmadığını araştırmaktır.
Önerilen yöntem, mobil cihazlarda kullanım için optimize edilerek kullanıcı dostu
ve güvenilir bir doğrulama çerçevesi sunmayı hedeflemektedir. EKG sinyallerinin
benzersiz karakteristikleri sayesinde, kimlik doğrulama süreçlerinin güvenilirliğini
artırmak ve geleneksel yöntemlere kıyasla daha sağlam bir güvenlik mekanizması
sağlamak amaçlanmaktadır.

Mobil cihazlarda EKG tabanlı kimlik doğrulamada başlıca önem taşıyan
parametreler arasında, elektrot sayısı, sensör kalitesi, kaydedilen sinyal süresi ile
yanlış kabul oranı (FAR) ve doğru kabul oranı (TAR) gibi performans metrikleri
bulunmaktadır. Özellikle yüksek maliyetli tıbbi cihazlar yerine, düşük maliyetli
ve düşük çözünürlüklü sensörlere yönelik ilgi artmaktadır. Bu tezin temel odağı,
düşük maliyetli sensörlerden alınan EKG verilerini kullanarak mobil cihazlar için
güvenilir ve pratik biyometrik doğrulama yöntemleri geliştirmektir.

Mobil sağlık hizmetlerindeki ilerlemeler ve giyilebilir cihazların yaygınlaşması,
kullanıcıların kalp atışı verilerini gerçek zamanlı olarak takip etmelerini
kolaylaştırmıştır. Bu tez, giyilebilir cihazlar veya basit mobil EKG sensörleri
aracılığıyla toplanan düşük çözünürlüklü verilerin kimlik doğrulama amacıyla
kullanılma potansiyelini incelemekte ve oluşturulan küçük bir veritabanı üzerinde
geliştirilen algoritmaların performansını değerlendirmektedir.

Literatürde, kısa süreli ve düşük çözünürlüklü EKG kayıtlarının mobil uygulamalar
için biyometrik kimlik doğrulama amacıyla kapsamlı olarak incelenmediği
görülmektedir. Bu tez çalışmasında, teorik ve uygulamalı yöntemler birlikte ele
alınarak, mobil cihazlarda düşük maliyetli sensörlerden elde edilen kısa EKG
kayıtları ile güvenilir ve pratik bir biyometrik doğrulama çerçevesi geliştirilmesi
hedeflenmiştir. Böylece, mevcut literatürdeki önemli bir boşluk doldurulacak ve
mobil biyometrik sistemlerin uygulanabilirliği artırılacaktır.

1.5 Literatür Özeti
Literatürde yer alan araştırmalar, EKG temelli kimlik doğrulamanın güvenilir bir
biyometri metodu olduğunu göstermektedir. Bildiğimiz kadarıyla, Biel ve diğ. [20]
tarafından, EKG biyometrisi için sinyal şekline dayalı bir yöntemi kullanan ilk
yaklaşım sunulmuştur. Bu çalışmada, sınıflandırma için zaman, genlik ve eğimle
ilgili öznitelikler çıkarılmış; sonuçlar, EKG kullanılarak belirlenmiş bir gruptan bir
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kişinin tanınabileceğini göstermektedir. Ayrıca, yalnızca bir ölçüm kanalının EKG
kimlik doğrulaması için yeterli olduğu sonucuna varılmıştır.

İsrail ve diğ. [13] tarafından yapılan bir çalışmada, kalp hızı değişikliklerinin
EKG öznitelikleri üzerindeki etkisi incelenmiştir. Deneyler, farklı endişe
durumlarında ve farklı elektrot yerleştirme pozisyonlarında 20 saniye süreyle 29
katılımcının EKG sinyalleri üzerinden gerçekleştirilmiştir. Sonuçlar, elektrotların
konumlandırılmasından bağımsız olarak ve denekler çeşitli stres durumlarına maruz
kalmış olsalar bile doğru bir sınıflamanın mümkün olduğunu göstermiştir. Ayrıca,
kalp atış hızındaki değişimlerin EKG özniteliklerine etkisini azaltmak için doğrusal
normalizasyonun kullanılabileceği analiz edilmiştir.

EKG biyometrisinin önemli bir sorunu, bir kaydın ne kadar süreyle geçerli
kalabileceğidir. Bu endişeyi ele almak için, Wübbeler ve diğ. [21] tarafından,
bir veritabanına dayalı EKG doğrulama şeması gerçekleştirilmiştir. Bu veritabanı,
aydan yıla kadar değişen zaman aralıklarında kaydedilen verilerden oluşmakta
ve 74 katılımcıya ait kayıtları içermektedir. Şablonları oluşturmak için Lead-I,
Lead-II ve Lead-III sinyallerinin 10 saniyelik kayıtları birleştirilmiştir. Kimlik
doğrulama işlemi, en yakın komşu algoritması kullanılarak gerçekleştirilmiş ve
doğru kabul oranı %98,10 olarak elde edilmiştir. Sonuç olarak, bu çalışmada
EKG biyometrisinin, oluşturulan bir kayıt şablonundan uzun yıllar sonra dahi
geçerliliğini koruduğu ortaya konulmuştur.

Bir başka çalışma, Singh ve Singh tarafından sunulmuştur [22]. Bu çalışmada,
her kalp atışından zaman, genlik ve açılara dayalı olarak 20 öznitelik çıkarılmıştır.
Kayıt şablonu ile kimlik doğrulama şablonu arasındaki her öznitelik için Öklid
uzaklığı hesaplanmıştır. Deney, en az 3 dakika boyunca 73 katılımcının kaydedilmiş
verileriyle MIT-BIH Physionet veritabanından elde edilmiştir. Bu çalışmanın
performansı, yanlış kabul oranı (FAR) %7 ve doğru kabul oranı (TAR) %82 olarak
rapor edilmiştir. Elde edilen sonuçlar, EKG biyometrisinin, parmak izi ve yüz
tanıma gibi yöntemlerle birleştirildiğinde daha da iyileştirilebileceğini göstermiş;
multimodal sistem ise %99,00 doğru kabul oranı üretmiştir.

Aziz ve diğ. tarafından yapılan bir çalışmada [12], EKG tabanlı bir biyometrik
kimlik doğrulama sistemi önerilmiştir. Önerilen yöntem, ham EKG sinyallerinden
gürültüleri kaldırmak ve ilgi alanını belirlemek için deneysel mod dekompozisyonu
(EMD) kullanmıştır. Zaman, frekans ve istatistiksel alan özniteliklerinin
bir kombinasyonu ile farklı veri sınıflarını ayırt etmek amacıyla öznitelikler
çıkarılmıştır. Seçilen öznitelikler, sekiz sınıflandırma yöntemi ile test edilmiş;
sonuçlara göre, destek vektör makineleri (SVM-C) %98,72’lik bir sınıflandırma
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doğruluğuna ulaşarak, 10 katlı çapraz doğrulama stratejisi ile en yüksek doğruluğu
elde etmiştir. Bu çalışmanın veritabanı, 14 katılımcıdan elde edilmiştir. Deneysel
analiz, önerilen yöntemin diğer çalışmalarla karşılaştırıldığında güvenilir, doğru ve
hesaplama açısından daha az maliyetli olduğunu ortaya koymuştur.

Pal ve diğ. [23] tarafından sunulan çalışmada, EKG analizi için etkili bir yöntem
önerilmektedir. Bu yöntem, sinyali düzeltmek ve dalga formunun tüm temel
özniteliklerini çıkarmak amacıyla geliştirilmiştir. Çalışmada, EKG sinyallerini
gürültüden arındırmak için FIR yüksek geçişli bir filtre kullanılmış; R tepe noktaları
Haar dalga dönüşümü ile belirlenmiştir. EKG dalga formunun baskın referans
noktalarından biri olan, eğri altındaki alan adı verilen yeni bir öznitelik sınıfı, aralık
öznitelikleri, genlik öznitelikleri ve açı öznitelikleri gibi diğer bilinen öznitelik
sınıfları ile birlikte hesaplanmıştır. Pal ve diğ., QT veritabanında %99,49, PTB
veritabanında %98,96 ve MIT-BIH aritmisi veritabanının alt kümesinde %98,48
kimlik doğrulama performansı rapor etmişlerdir.

Bu çalışma [24], AlexNet ve GoogleNet ağlarının önceden eğitilmiş versiyonlarının
birleşimini kullanarak EKG verileri ile kişi tanımlamayı önermektedir. Ağları
eğitmeden önce, tek boyutlu EKG verileri filtrelenip iki boyutlu bir formata
dönüştürülmektedir. Bu çalışmada kullanılan veritabanı, MIT-BIH Aritmi
veritabanından alınan on EKG sinyalini içermektedir. Performans değerlendirmesi,
önerilen birleşim yönteminin, AlexNet ve GoogleNet’in bireysel performanslarını
geride bırakarak ortalama %96,6 doğruluk oranına ulaştığını göstermektedir.
Bu sonuçlar, konvolüsyonel sinir ağlarının (CNN’lerin) geleneksel makine
öğrenme yöntemlerine kıyasla daha yüksek doğruluk ve üstün öznitelik çıkarımı
sağladığını vurgulamaktadır. Bu araştırma, EKG sinyallerinin biyometrik
doğrulamada kullanılmasının etkinliğini ve derin öğrenme yöntemlerinin bu
alandaki potansiyelini ortaya koymaktadır.

Çalışmada [25], minimal ön işleme ile ham EKG verilerini işleyen yeni bir
EKG tabanlı biyometrik tanımlama yöntemi önerilmiştir. Bu yöntem, çeşitli
uygulama bağlamlarında yeterli doğruluğu sağlarken, hesaplama maliyetini düşük
tutacak şekilde tasarlanmıştır. Deep-ECG olarak bilinen derin öğrenme modeli,
minimal ön işleme yapılmış EKG sinyallerini işleyebilecek şekilde uyarlanmıştır.
Çalışmada SHAREE veritabanı kullanılmış; bu veritabanı, kontrolsüz koşullar
altında toplanmış 139 bireyin 24 saatlik Holter kayıtlarını içermektedir. Üç
deney gerçekleştirilmiş ve bu deneylerde minimal ön işlemenin, son teknoloji
yöntemlerle elde edilen tanımlama doğruluğu ve sonuçlarla karşılaştırılması
yapılmıştır. Sonuçlar, minimal ön işlemenin hesaplama maliyetlerini önemli ölçüde
azalttığını ve biyometrik tanımlama sistemlerinde yüksek etkinliği koruduğunu
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göstermiştir.

2 saniyelik EKG segmentleri kullanılarak, yöntem bireysel uçlarda %80’in üzerinde
ve birden fazla uçta %90’ın üzerinde doğruluk elde etmiştir. %80’in üzerinde
doğruluk elde etmek için gerekli olan minimum eğitim örneği sayısının, bu EKG
segmenti süresiyle kişi başına 100 olduğu bulunmuştur. Özetle, çalışma, önerilen
yöntemin gerçek zamanlı uygulamalarda etkili bir şekilde uygulanabileceğini ve
giyilebilir cihazlarda verimli kullanılabileceğini göstermektedir.

Bu çalışma [26], Covid-19 pandemisi nedeniyle fiziksel temasın kabul edilemez
hale gelmesiyle artan sosyal mesafeyi koruma ihtiyacına cevap vermek üzere,
EKG tabanlı biyometrik doğrulama yöntemlerinin güvenliğini araştırmaktadır.
Saldırganın, kurbanın kısa bir EKG şablonunu yakalayarak sahte EKG sinyalleri
oluşturduğu bir GAN tabanlı sunum saldırısı geliştirilmiştir. EKG-ID veritabanı
kullanılarak gerçekleştirilen deneylerde, önerilen saldırı %91,70 ortalama
tanımlama oranı ile başarılı bulunmuştur. Bu çalışma, EKG biyometrik
sistemlerinin güvenliğini artırmak için sinir ağı mimarisi tabanlı yeni bir derin
öğrenme çerçevesi de önermektedir.

Bu çalışma [27], bir EKG sinyalinin kısa bir segmentinin zaman-frekans alanı
temsilinin, biyometrik tanıma için nasıl etkili bir şekilde kullanılabileceğini
araştırmıştır. Mevcut derin öğrenme tabanlı tanıma sistemlerinde genellikle yüksek
tanıma doğruluğu elde etmek için uzun EKG sinyal segmentleri kullanılırken, bu
çalışmada R-dalgası etrafındaki 0.5 saniyelik kısa bir segment kullanılarak çok
oturumlu verilerde mükemmel tanıma doğruluğu elde edilmiş ve mevcut yöntemler
aşılmıştır.

Kısa bir EKG sinyal segmentinin zaman-frekans alanı temsili, tanıma yeteneğini
artırmak için önemlidir ve daha az karmaşık CNN modellerinin biyometrik
tanımada etkili olabileceğini göstermektedir. Araştırmacılara göre, bu yaklaşım
ticari ve kamu uygulamaları için sağlam, güvenilir ve kabul edilebilir bir
kimlik doğrulama sistemi geliştirmeye yardımcı olabilir. Ayrıca, EKG sinyalinin
güvenilirliğini artırmak için daha büyük, çok oturumlu veri kümelerinde kısa
segmentlerin performansını belirlemek üzere daha fazla araştırma gereklidir.
Gelecekteki çalışmaların, farklı kardiyak koşullar altındaki tanıma performansını
incelemeyi ve sinyaldeki değişikliklere karşı dayanıklı, daha sofistike derin
öğrenme modelleri geliştirmeyi hedeflediği belirtilmiştir.

Bu çalışma [28], bireysel kimlik doğrulama için EKG sinyallerini kullanarak
tek kalp atışı ile kimlik doğrulama sağlayan bir 1D konvolüsyonel sinir ağı
(1D-CNN) çerçevesi önermektedir. MIT-BIH Normal Sinüs Ritmi (NSRDB),
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MIT-BIH Aritmi (MIT-ARR), ECG-ID ve MIMIC-III veritabanları üzerinde
yapılan değerlendirmelerde; NSRDB (18 denek, doğruluk %99,26), MIT-ARR (27
denek, doğruluk %98,82), MIMIC-III (83 denek, doğruluk %98,71) ve ECG-ID (90
denek, doğruluk %95,69) veritabanlarında yüksek doğruluk oranlarına ulaşılmıştır.

Ayrıca, SMOTE algoritması kullanılarak dengelenmiş veritabanında NSRDB ve
MIT-ARR veritabanlarında %100 doğruluk, kesinlik, duyarlılık ve F1-skoru elde
edilmiştir. Karışık veritabanında (MIXED-1: 173 denek, %98,44 doğruluk;
MIXED-2: 200 denek, %95,59 doğruluk; MIXED-3: 218 denek, %93,38 doğruluk)
performans, %99,6’nın üzerinde kalmıştır. Bu sonuçlar, önerilen çerçevenin
biyometrik kimlik doğrulama için yüksek doğruluk ve güvenilirlik sağladığını
göstermektedir.

Biyosinyal tabanlı kullanıcı tanıma teknolojileri, yüz ve parmak izi tabanlı
yöntemlerin sınırlamalarına alternatif olarak gelişmekte olup, mevcut biosinyal
veritabanlarının (DB) kısıtlamalarını aşmak amacıyla yeni nesil çözümler
sunmaktadır. Çoğu DB, veri çeşitliliği ve oturumlar arası değişkenlik analizini
sınırlayan, tek oturumda az sayıda katılımcıdan veri toplama eğilimindedir. Bu
çalışma, elektrokardiyogram (EKG) ve elektromiyogram (EMG) sinyallerini içeren,
çoklu oturumlarla kaydedilmiş ve denek sayısı açısından daha kapsamlı olan
CSU_MBDB1 ve CSU_MBDB2 veritabanlarını tanıtmaktadır.

Denekler, birden fazla oturumda ve oturumlar arasında en az bir gün süreyle, rahat
bir ortamda altı farklı jest yaparken kaydedilmiştir. Bu DB’ler, çeşitli uygulamalara
uyum sağlayabilecek şekilde tasarlanmış olup, deneyler sırasında %66,39 doğruluk
oranı elde edilmiştir. Bu sonuçlar, sinyal işleme ve gelişmiş ağ tasarımları ile
performansın artırılma potansiyelini göstermektedir. Ayrıca, bu veritabanları, EKG
ve EMG’nin doğrusal olmayan özniteliklerini incelemek için de değerli bir kaynak
olarak öne çıkmaktadır [29].

Bu çalışmada [30], biyometrik kimlik doğrulama için elektrokardiyogram (EKG)
sinyallerinin etkinliği incelenmiştir. ECG-BA-CNN (konvolüsyonel sinir ağı
kullanarak EKG tabanlı kimlik doğrulama) yöntemi önerilmiştir. Biosec1
veritabanında, CNN modeli %97, CNN+LSTM modeli %99 doğruluk elde ederken;
Biosec2 veritabanında ise CNN modeli %95, CNN+LSTM modeli %97 doğruluk
göstermiştir. Özel veritabanında, tek oturumda %98, iki oturumda ise %87,1
doğruluk sağlanmıştır. EKG sinyalleri normalize edilip, CNN çekirdek tabanlı
bir yaklaşımla öznitelikler çıkarılmıştır. Sonuçlar, EKG sinyallerinin biyometrik
kimlik doğrulamada yüksek doğruluk ve güvenlik sağladığını göstermiştir. Bu
bulgular, gelişmiş sinir ağı mimarileri ile entegre edilen EKG tabanlı sistemlerin
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güvenilir kullanıcı kimlik doğrulama sağlayabileceğini vurgulamaktadır.

Uzaktan sağlık izleme (RHM), hasta kimliğinin ve sağlık kayıtlarının güvenliği
açısından büyük önem taşımaktadır. Her bireyin benzersiz olan EKG deseni,
biyometrik tanımlama için kullanılabilir. Bu çalışmada [31], dijital diferansiyel ve
yumuşatma filtreleri ile işlenen ve CEEMDAN ile ayrıştırılan bir EKG tabanlı hasta
tanımlama sistemi önerilmiştir. Ayrıca, LSTM tabanlı sınıflandırıcı kullanılarak
sekiz ayrı EKG veritabanında testler gerçekleştirilmiş; ortalama doğruluk %99,59
olup, çoğu veritabanında %99,5’in üzerinde, AFDB’de ise %99,1 doğruluk
raporlanmıştır. Çapraz oturum senaryolarında, CNN modeli %69,35, LSTM
modeli ise %89,21 doğruluk göstermiştir. Gelecek çalışmalarda, zaman ve frekans
analizleri ile doğruluğun artırılması hedeflenmektedir.

Tıbbi cihazlarda kullanılan EKG sensörleri, mobil biyometrik kimlik doğrulama
uygulamaları için uygun değildir; çünkü bu cihazlar yüksek maliyetli ve büyük
boyutludur. Bu nedenle, mobil cihazlarda düşük maliyetli ve düşük çözünürlüklü
sensörlerin kullanılması önem taşımaktadır. Son dönemde, mobil sağlık cihazlarına
olan ilgi artmış; bu bağlamda, giyilebilir cihazlar aracılığıyla elde edilen düşük
çözünürlüklü EKG sinyallerinin kimlik doğrulama uygulamalarında kullanılması,
mobil biyometri alanında önemli bir gelişme sağlamaktadır.

Bu çalışmada [32], elektrokardiyogram (EKG) sinyallerinin biyometrik kimlik
doğrulama için potansiyelini değerlendiren bir araştırma sunmaktadır. Çalışmanın
odak noktası, kalp biyometrisinin benzersizliğini ve kalıcılığını doğrulamak ve
geniş, çok oturumlu bir veritabanı üzerinde bu süreci test etmektir. Veritabanı,
hem ham EKG sinyallerini hem de demografik bilgileri içermekte olup, farklı
demografik gruplar arasında tanıma performansını değerlendirmek amacıyla
kullanılmıştır. Çalışmanın bulguları, özellik mühendisliğine dayalı kimlik
doğrulama yöntemi ve derin öğrenme modelleri ile elde edilmiştir. Kimlik
doğrulama sürecinde, eğitim ve test setlerinin farklı oturumlardan alınmasının
performansı düşürdüğü; derin öğrenme modelinin ise çok oturumlu veritabanında
yüksek tanıma başarısı sağladığı, ancak oturumlar arası zaman farkının bu başarıyı
etkilediği belirlenmiştir. Sonuç olarak, EKG sinyallerinin biyometrik kimlik
doğrulama ve tanımlama için uygun bir aday olduğu, uzun süreli oturumlar arasında
dahi kabul edilebilir performans sergilediği sonucuna varılmıştır.

Tantinger ve diğ. [33], bir giysinin içine entegre edilmiş bir tekstil elektroduyla
ölçülen bir EKG’nin insan kimliği için uygun olup olmadığını araştırmıştır.
Almanya’nın Erlangen şehrindeki Fraunhofer IIS Entegre Devreler Enstitüsü’nde
geliştirilen FitnessSHIRT, mobil EKG verilerini toplamak için kullanılmıştır. Bu
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çalışmaya, ortalama yaşları 26,3; ortalama boyu 183,2 cm ve ortalama ağırlığı 78,8
kg olan sağlıklı 10 erkek katılmıştır.

Farklı ölçüm sistemlerinin etkisini dışlamak amacıyla, aynı FitnessSHIRT sistemi
kullanılmış; üç ölçüm, 10 dakikalık sürelerle yapılmış ve her ölçüm arasında en
az yedi günlük bir ara verilmiştir. Ön işlenmiş EKG segmentlerinden öznitelikleri
çıkarmak için üç farklı yaklaşım kullanılmıştır (referans noktaları, otokorelasyon
ve ayrık kosinüs dönüşümü kombinasyonu ile dalgacık dönüşümü). Araştırmacılar,
stabil bir kimlik doğrulaması için QRS kompleksinin özniteliklerinin en önemli
bilgileri içerdiği sonucuna varmışlardır.

Bu nedenle, dalgacık dönüşümü kullanılarak öznitelik çıkarma en iyi sonuçları
sağlamıştır. Ancak, sınıflandırma sonuçlarının stabilitesi, EKG sinyalindeki
bölümlerin zamansal farklılıkları (özellikle P ve T dalgalarının topolojisi) nedeniyle
sınırlıdır. Ayrıca, üç seansta değişen elektrot pozisyonları doğrulama oranını
düşürmüştür. Bu etkileri telafi etmek için daha fazla araştırma yapılması
gerekmektedir.

Choi ve diğ. [17], Neurosky tarafından üretilen CardioChip sensöründen (Şekil
1.4) elde edilen gürültülü elektrokardiyogramlar kullanılarak biyometrik kimlik
doğrulaması sunmuştur. Mobil sensörlerden alınan EKG verilerinde bulunan farklı
sesleri azaltmak amacıyla bir kademeli filtre oluşturulmuş ve pratik uygulamalarda
yeterli performans elde edilmiştir. Ayrıca, önerilen kimlik doğrulama yaklaşımı,
birbirine karşı tek destek vektör makineleri (SVM) sınıflayıcılarının birleşiminden
oluşan bir topluluk temelinde sunulmuştur. Sensörün belirsizliğine rağmen,
önerilen yaklaşım, 175 birey üzerinde tek kalp atışı için %4,46 ve 15 saniyelik bir
test aralığı için %1,87’lik bir eşit hata oranı (EER) üretmiştir.

Şekil 1.4 KardioChip adlı EKG algılama modülü [17]
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Arteaga-Falconi ve diğ. [2] ise bir mobil biyometrik doğrulama algoritması
önermiştir. Bu algoritma, bir mobil telefon kılıfındaki (Şekil 1.5) kalp monitörü
aracılığıyla alınan EKG verilerine dayanmaktadır. Algoritma, on farklı zamanda ve
koşulda on katılımcı ile test edilmiş ve ayrıca Physionet veritabanından 73 kayıtla da
değerlendirilmiştir. Önerilen algoritmanın, 4 saniyelik sinyal alımı ile %1,41 yanlış
kabul oranı (FAR) ve %81,82 doğru kabul oranı (TAR) sağladığı gözlemlenmiştir.

Şekil 1.5 AliveCore EKG mobil sensörü [2]

Chen ve Chen [34] tarafından sunulan çalışmada, yapay sinir ağı modelleri
kullanılarak bir doğrulama yöntemi tanıtılmıştır. EKG sinyal kaydı, örnekleme hızı
512 Hz olan yerleşik bir BMD101 çipi (Şekil 1.6) ile gerçekleştirilmiş ve farklı
fiziksel koşullar altında 50 bireyden toplanmıştır. Bu çalışma, kabul ve reddetme
hata performansını dengeleyebilen iki yapay sinir ağı modeliyle iki aşamalı bir
doğrulama algoritması önermektedir. Sadece 3 saniye içinde 3 atış kullanılarak
yapılan doğrulama, 50 denekten oluşan bir grup için ortalama yanlış kabul oranı
(FAR) ve yanlış reddetme oranı (FRR) değerlerini %10’un altına, kohortun küçük
grupları (30’dan az) için ise %5,00’in altına düşürmektedir.

Zhang ve Wu [35] ise akıllı telefonlar gibi mobil cihazlar için uygun, pratik bir EKG
tabanlı kimlik doğrulama yöntemi sunmuştur. İlk olarak, her kalp döngüsünden kalp
atımları çıkarılmakta; ardından her kalp atımı, daha önce tespit edilen referanslar
ile bölünmüş PQ, QRS ve JT segmentlerine ayrılarak düzeltilmektedir. Son olarak,
öznitelik boyutu, ayrık kosinüs dönüşümü ile 80’e indirilmektedir. Kullanıcılar, ilk
kez EKG şablonlarını kaydetmek için sadece 20 saniye ve sonrasında doğrulamak
için yaklaşık 4 saniye harcarlar. 85 sağlıklı katılımcının EKG kayıtları, Physionet’te
yaygın olarak kullanılan veritabanlarından seçilmiştir. Doğrulama deneylerinde, 85
katılımcıdan elde edilen ortalama eşit hata oranı (EER) %1,57 olarak belirlenmiş;
kimlik doğrulama deneylerinin doğruluk oranı, sinir ağı sınıflayıcısı ile %96,6 ve
SVM ile %97,7 olarak hesaplanmıştır. Her katılımcının saklaması gereken şablon
boyutu ise sadece 160 bayttır.
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Şekil 1.6 EKG ölçüm cihazı [34]

EKG sinyalleri, mobil veya giyilebilir cihazlardan toplanabilir ve hareket, sinyal
alım türü vb. nedenlerle gürültü tarafından bozulabilir. Bu durum, yakalanan
sinyal kalitesi ile kullanım kolaylığı arasında bir denge oluşturur. Kang ve
diğerleri [36], kayıt ve kimlik doğrulama aşamalarında çıkarılan şablonların çapraz
korelasyonunun kullanımını önermiştir. Önerilen algoritmalar, doğrulama için
giyilebilir bir saatte (Şekil 1.7) uygulanmıştır. Deneylerin sonunda, 3 saniyelik
doğrulama süresi ve 30 saniyelik kayıt süresi kullanılarak, yanlış kabul oranı (FAR)
%5,2 ve yanlış reddetme oranı (FRR) %1,9 olarak hesaplanmıştır.

Şekil 1.7 EKG ölçümü için giyilebilir saat [36]
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Elektrokardiyogram (EKG) sinyalleri, akıllı ev ortamlarının güvenliğini artırmak
için biyometrik doğrulamada kullanılmaktadır. Bu çalışma, EKG sinyallerinin
benzersiz özniteliklerinden yararlanarak kullanıcı kimliğini doğrulamayı
amaçlamaktadır. Giyilebilir sensörlerle toplanan EKG sinyallerinden öznitelikler
çıkarılarak bir şablon oluşturulur ve bu öznitelik vektörü, kullanıcının kimliğini
doğrulamak için kullanılır. EKG tabanlı biyometrik sistem, sahtecilik ve DDoS
saldırılarına karşı dayanıklıdır ve akıllı evler için yüksek güvenlik sağlamaktadır.
Sınıflandırma için destek vektör makinesi (SVM) algoritmaları kullanılmıştır. Bu
yöntem, EKG sinyalleriyle akıllı ev IoT ortamlarının güvenliğini artırmada etkili
olmuştur [37].

Bu çalışma [38] ise, giyilebilir cihazlarda kullanıcı kimliğini doğrulamak için
PhotoPlethysmoGram (PPG) ve Elektrokardiyogram (EKG) sinyallerini kullanan
SOMEONE topluluk öğrenme yöntemini sunmaktadır. Algoritma, bu sinyalleri
işleyerek kullanıcıları tanımakta ve F1 skoru, hassasiyet, yanlış kabul oranı (FAR)
ve yanlış reddetme oranı (FRR) gibi metriklerde üstün performans sergilemektedir.
MIMIC veritabanındaki EKG sinyalleri için SOMEONE, %97,3 F1 skoru, %97,4
hassasiyet, %0,1 FAR ve %2,7 FRR elde etmiştir. CapnoBase veritabanındaki
PPG sinyalleri için %80,1 F1 skoru, %80,7 hassasiyet, %0,4 FAR ve %19,3 FRR;
CAPNO veritabanındaki EKG sinyalleri için %86 F1 skoru, %86,3 hassasiyet, %0,3
FAR ve %13,7 FRR; CAPNO veritabanındaki PPG sinyalleri için ise %94 F1 skoru,
%94,1 hassasiyet, %0,1 FAR ve %5,9 FRR elde edilmiştir. Bu çalışma, PPG
ve EKG sinyallerini kullanarak akıllı ev IoT ortamlarının güvenliğini artırmanın
etkinliğini göstermektedir.

Bu çalışma [39] ise, tıbbi ve giyilebilir cihazlardan toplanan elektrokardiyogram
(EKG) sinyallerini kullanarak çeşitli biyometrik doğrulama modellerinin
performansını değerlendirmektedir. Önerilen yöntem, mobil cihazlar için
önemli olan kısa kayıt süresiyle hızlı eğitim modellerine odaklanmaktadır. İki
kamu veritabanı kullanılarak, farklı örnek uzunlukları ve eğitim seti boyutları ile
çeşitli sınıflandırma modelleri araştırılmıştır. Sonuçlar, istatistiksel yöntemlerin
hiper düzlem ayırıcılardan daha iyi performans gösterdiğini ortaya koymuştur.
Naive Bayes (NB) sınıflandırıcısı en iyi eşit hata oranını (EER) elde ederken,
Derin Öğrenme (DL) modeli, gerekli kayıt örneklerini ve doğrulama süresini
azaltmada üstünlük sağlamıştır. DL modeli, E-HOL veritabanında %5,76 EER
ve WeSAD veritabanında %7,07 EER elde etmiş ve sadece 5 saniyelik kayıt
verisi ile bu sonuçlara ulaşmıştır. Bu sonuçlar, önerilen yöntemin kısa kayıt
süreleriyle bile tıbbi ve giyilebilir EKG kaydediciler için sağlam kimlik doğrulama
sağlayabileceğini göstermektedir. Çalışma, EKG biyometriğinin özellikle
giyilebilir cihazlarda gelecekteki doğrulama yöntemleri için geçerli bir seçenek
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olduğunu sonucuna varmaktadır.

Chun ve diğ. [40] ise, kişinin EKG atımlarını elde etmek için iki elektrodlu
giyilebilir bir EKG sensörü (Nymi bandı) (Şekil 1.8) kullanmakta ve diğer EKG
bilgilerine erişimi olmayan giyilebilir cihazlar için yeni bir EKG tabanlı kullanıcı
doğrulama yöntemi önermektedir. Önerilen yöntem, karmaşık STFT (kısa süreli
Fourier dönüşümü) ve basit Öklid uzaklığı kullanmaktadır. Çalışmada, giyilebilir
EKG sensörlerinden alınan 15 bireyin EKG verileri üzerinde gerçekleştirilen
testlerde, %0,9 EER elde edilmiş; halka açık ECG-ID veritabanındaki 89 birey için
ise %2,2 EER sağlanmıştır.

Şekil 1.8 Nymi band kullanılarak EKG ölçümü [40]

Nawawi ve diğ. [41] ise, gerçek dünya senaryolarında biyometrik doğrulama için
giyilebilir akıllı tekstil gömleklerden elde edilen EKG sinyallerinin güvenilirliğini
araştırmıştır. Çalışmada, 22 katılımcıdan (18 erkek, 4 kadın) veri toplanmış ve bu
veriler, düşük geçişli Butterworth filtreleri kullanılarak işlenmiştir. Öznitelikler,
QRS segmentasyonu yöntemi kullanılarak çıkarılmış ve Q destek vektör makinesi
(QSVM) sınıflandırıcısı ile analiz edilmiştir. Çalışma, beş farklı senaryoyu
değerlendirmiştir:

• Senaryo A: Aynı oturumdan alınan eğitim ve test verileri kullanılarak
gerçekleştirilen senaryoda, %99,27 doğruluk (ACC), %92,77 doğru kabul
oranı (TAR) ve %0,40 yanlış kabul oranı (FAR) elde edilmiştir.

• Senaryo B: 30 gün arayla toplanan verilerle eğitim ve test yapılması
durumunda %93,59 doğruluk, %30,81 TAR ve %2,84 FAR raporlanmıştır.

• Senaryo C: Bir oturumdan alınan verilerle eğitim yapılıp, başka bir
oturumdan alınan verilerle test yapılması durumunda %99,20 doğruluk,
%90,32 TAR ve %0,27 FAR elde edilmiştir.

• Senaryo D: Bilinen aktivitelerle eğitim ve test yapılması durumunda %99,63
doğruluk, %97,14 TAR ve %0,14 FAR sonuçları elde edilmiştir.
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• Senaryo E: Farklı aktivitelerle eğitim ve test yapılması durumunda %88,86
doğruluk, %44,56 TAR ve %6,05 FAR elde edilmiştir.

Bu bulgular, zamansal değişkenlik ve farklı aktivite koşullarına rağmen, giyilebilir
cihazlarla kullanıldığında EKG biyometriğinin yüksek doğruluk sağlayabileceğini
göstermektedir.

Bu çalışma [42] ise, mobil sensörler kullanarak düşük maliyetli ve yüksek
performanslı bir EKG tabanlı biyometrik tanıma sistemi tasarlamayı
amaçlamaktadır. Proje, sinyal alma, tanıma algoritması simülasyonu ve
mobil uygulamada uygulanma olmak üzere üç aşamaya ayrılmıştır. MATLAB
kullanılarak geliştirilen ve Physionet PTB veritabanındaki EKG sinyalleriyle test
edilen yöntem, ön işleme, öznitelik çıkarma, boyut indirgeme ve sınıflandırma
adımlarını içermektedir. Sonuçlar, %82 tanımlama oranı, %16,4 EER, %16 FAR
ve %18 FRR ile umut verici sonuçlar göstermiştir. Bu sonuçlar, EKG sinyallerinin
mobil cihazlarda biyometrik tanıma için etkili olabileceğini ortaya koymaktadır.
Sistemin her adımının optimize edilmesi ve veritabanının genişletilmesi ile
tanımlama oranının artırılabileceği belirtilmektedir. Çalışma, mobil uygulamalar
için EKG tabanlı biyometrik sistemlerin potansiyelini göstermekte ve daha fazla
araştırma gerektirdiğini vurgulamaktadır.

1.5.1 Literatürde i-vektörlerin EKG ile Kullanımı

Konuşma ve konuşmacı tanımada i-vektörlerin başarısından ilham alınarak, EKG
sinyallerinde hastaya özgü bilgileri göstermek amacıyla i-vektörler uygulanmıştır.
AAMI (Association for the Advancement of Medical Instrumentation) önerisine
göre, 15 kalp atışı tipi beş sınıfa ayrılır; normal sinüs atımları (N), supraventriküler
ektopik atımlar (S), ventriküler ektopik atımlar (V), normalin füzyonu ve
ventriküler ektopik vuruş (F) ve bilinmeyen vuruş tipi (Q). Bu çalışmada
ANSI/AAMI EC57 standardının önerdiği gibi, iki aritmi sınıfının (Sınıf S ve
V) sınıflandırma performansını değerlendirmeye odaklanılmıştır. İki farklı test
uygulanmış; S sınıfı %99,1 ve %98,8, V sınıfı ise %99,7 ve %98,8 doğruluk (ACC)
oranlarıyla sınıflandırılmıştır [43, 44].

Diğer bir çalışmada [45], i-vektör, normal/anormal kalp sesi sınıflandırma görevi
için uyarlanmıştır. İlk olarak, MFCC öznitelik vektörleri kalp ses kayıtlarından
çıkarılmış, daha sonra bireylerin kalp sesi karakteristiğine dayalı öznitelikler elde
etmek için i-vektör yöntemi kullanılmıştır. Deneysel sonuçlar, önerilen yöntemin,
Physionet 2016 veri kümesindeki temel sistemle karşılaştırıldığında modifiye
doğruluk temelinde %16’lık bir performans artışı sağlayabildiğini göstermektedir.
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Xian ve diğ. [46] ise, konuşmacı tanıma alanındaki başarıdan ilham alarak,
EKG tanımlaması için i-vektör modellerinin kullanımını araştırmışlardır. Bu
çalışma, değişkenlik sorunlarını ele almak amacıyla çeşitli telafi yöntemlerini
kullanan i-vektör modellerinin performansını değerlendirmeye odaklanmıştır.
Değerlendirme, beyazlatma, doğrusal diskriminant analizi (LDA), sınıf içi
kovaryans normalizasyonu (WCCN) gibi farklı telafi yöntemlerini içeren tek
yaklaşım ile WCCN-beyazlatma, LDA-beyazlatma, WCCN-LDA gibi sıralı
yaklaşımlar için önyargısız protokol (protokol 1) ve tüm özne protokolü (protokol
2) kapsamında gerçekleştirilmiştir. Deneysel değerlendirme, 310 EKG kaydıyla 90
konuyu içeren Physionet’ten ECG-ID veritabanı kullanılarak yapılmıştır. Sonuçlar,
sıralı yaklaşımın tek yaklaşıma göre üstün performans sergilediğini, ayrıca daha az
Gauss bileşeni gerektirdiği için hesaplama süresini azalttığını göstermektedir.

Yukarıda özetlenen çalışmalar, EKG tabanlı biyometrik doğrulamanın
güvenilirliğini kanıtlamakla birlikte, çoğu yüksek çözünürlüklü veriler veya
belirli koşullar altında gerçekleştirilmiştir. Ayrıca, mobil cihazlarda gerçek zamanlı
kullanım ve düşük çözünürlüklü sensörlerden alınan veriler üzerinde sınırlı sayıda
çalışma bulunmaktadır. Bu bilgiler ışığında, kısa EKG kayıtlarıyla (örneğin 5
saniye) ve düşük maliyetli sensörlerle yüksek doğruluk oranı elde etmenin hâlen
geniş kapsamlı bir araştırma boşluğunu oluşturduğu söylenebilir. Dolayısıyla,
mevcut tez çalışması, mobil biyometrik doğrulamada ekonomik, hızlı ve güvenilir
bir alternatif sunmayı hedeflemektedir.

1.6 Hipotez
Bu tezde, düşük çözünürlüklü sensörlerle elde edilen EKG verilerinin mobil
cihazlarda biyometrik kimlik doğrulama amacıyla kullanılabileceği hipotezi test
edilmektedir. Önerilen yaklaşım, Mel Frekans Kepstral Katsayıları (MFCC) ve
Gammatone Frekans Kepstral Katsayıları (GFCC) gibi gelişmiş öznitelik çıkarma
tekniklerini, i-vektör temsili ile bir araya getirerek yüksek doğruluk ve düşük
işlem süresi sağlamayı amaçlamaktadır. Aşağıda, hipotezin dayanak noktaları
özetlenmiştir:

Gelişmiş Öznitelik Çıkarımı (MFCC ve GFCC)

• MFCC, EKG sinyallerinin zamansal ve frekanssal bileşenlerini etkili şekilde
temsil edebilir.

• GFCC, insan işitsel modeline benzer şekilde, düşük frekans bantlarında ayrım
gücünü artırarak MFCC’yi tamamlar.
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• İki yöntemin birlikte kullanımı, tek başına elde edilebilen öznitelik setinden
daha güvenilir ve kapsamlı bir öznitelik uzayı sunar.

i-vektör Temsili ve Boyut İndirgeme

• Konuşmacı tanımada popüler olan i-vektör yaklaşımının, EKG
sinyallerindeki kişiye özgü bilgiyi düşük boyutlu bir uzayda temsil
edeceği öngörülmektedir.

• Evrensel arka plan modeli (UBM) ve toplam değişkenlik uzayının (TV)
kullanımı, verideki karmaşık varyasyonları kapsayarak kimlik doğrulama
performansını artırabilir.

• LDA veya WCCN gibi boyut indirgeme ve normalizasyon yöntemleri,
i-vektör uzayında ek ayrım gücü sağlayacaktır.

Kosinüs Mesafesi ve Alternatif Benzerlik Ölçütleri

• i-vektörler arasındaki benzerlik için kosinüs mesafesinin, EKG verisinin
karakteristik farklılıklarını yakalamada etkili olacağı öngörülmektedir.

• Öklid mesafesi, Manhattan mesafesi, Pearson korelasyonu veya dinamik
zaman esnetme (DTW) gibi alternatif ölçütlerin de değerlendirilerek en
uygun eşik ve benzerlik metriklerinin belirlenmesi hedeflenmektedir.

Mobil Kullanılabilirlik ve Düşük Çözünürlüklü Sensörler

• EKG kayıtlarının yalnızca 5 saniyeye indirgenmesi, mobil cihazlarda işlem
ve hafıza kullanımını azaltarak gerçek zamanlı doğrulamanın önünü açar.

• Canlı kalp atışından elde edilen biyometrik veri, sahtecilik girişimlerine karşı
yüksek direnç gösterir.

• Düşük maliyetli sensörlerin ürettiği kısıtlı çözünürlüklü verilerde dahi, uygun
ön işleme ve zengin öznitelik çıkarma (MFCC+GFCC) süreçleriyle tatmin
edici ayrıştırma yapılabileceği düşünülmektedir.

Alternatif Yaklaşımlar ve Karşılaştırmalı Değerlendirme

• Destek vektör makineleri (SVM), çok katmanlı algılayıcı (MLP),
konvolüsyonel sinir ağları (CNN) ve tekrarlayan sinir ağları (RNN)
gibi yöntemlerin de EKG tabanlı kimlik doğrulamada başarılı olduğu
bilinmektedir.
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• Önerilen i-vektör tabanlı yaklaşım, bu yöntemlerle karşılaştırılarak tez
çalışmasının konumunu netleştirecektir.

Hipotezin temel varsayımı, kalp atışlarının bireylere özgü benzersiz desenler
içerdiği ve MFCC ile GFCC gibi yöntemlerle bu desenlerin i-vektör uzayında
yüksek doğrulukla ayrıştırılabileceğidir. Böylece, mobil cihazlarda düşük
maliyetli sensörlerle gerçek zamanlı ve güvenilir kimlik doğrulama mümkün
olacaktır. Ardından, kosinüs mesafesi tabanlı (veya alternatif ölçütlere dayalı)
benzerlik analizi ile kısa EKG kayıtlarında dahi yüksek doğruluk oranıyla kimlik
doğrulama yapılabileceği düşünülmektedir. Böylelikle, mobil cihazlarda düşük
maliyetli sensörlerle gerçek zamanlı, pratik ve güvenilir bir biyometrik doğrulama
mekanizması geliştirme hedefi gerçekleştirilebilecektir.
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2
ELEKTROKARDİYOGRAM (EKG)

BİYOMETRİSİ: KİMLİK DOĞRULAMADA
TEMEL İLKELER VE YÖNTEMSEL

YAKLAŞIMLAR

Elektrokardiyogram (EKG) biyometrisi, kalbin elektriksel aktivitesinden elde
edilen sinyaller kullanılarak bireylerin tanımlanmasını sağlayan yenilikçi bir
yöntemdir. Her bireyin kalp atışlarındaki kendine has ritmik ve morfolojik
öznitelikler, bu yöntemin diğer biyometrik tekniklerden ayrışmasını sağlar.
Özellikle, EKG sinyallerinin canlılık garantisi sunması, sahteciliğe karşı ek bir
güvenlik katmanı oluşturur. Ayrıca, sinyalin dinamik ve zamansal değişimleri,
gelişmiş sinyal işleme ve makine öğrenimi teknikleriyle entegre edildiğinde yüksek
doğruluklu tanımlama imkanı sağlar.

Mobil cihazlar ve giyilebilir teknolojiler, gerçek zamanlı uygulamalara uygun,
ekonomik ve güvenilir çözümler sunarak, kişisel veri güvenliğinin kritik önem
taşıdığı günümüz dijital dünyasında önemli bir rol oynar. Bu bağlamda,
EKG biyometrisi, hem yüksek performansı hem de uygulama kolaylığı ile öne
çıkmaktadır.

Bu bölümde, EKG biyometrisinin temel prensipleri ve kavramsal altyapısı ele
alınacaktır. Sinyalin ön işleme, öznitelik çıkarma ve sınıflandırma süreçleri
üzerinden; bu yöntemin hangi problemlere çözüm sunduğu ve hangi avantajları
sağladığı kapsamlı biçimde incelenecektir. Böylece, EKG biyometrisinin
tercih edilme nedenleri, sunduğu yenilikçi yaklaşımların hangi alanlarda fark
yaratabileceği ve mevcut sistemlere kıyasla hangi açılardan üstünlük sağladığı
ortaya konulacaktır.

Bir EKG tabanlı kimlik doğrulama algoritması genel olarak üç temel adımdan
oluşur:
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1. Ön İşleme: EKG sinyalindeki gürültülerin giderilmesi ve sinyal kalitesinin
artırılması amaçlanır. Bu aşamada, taban hattı kayması, güç hattı girişimleri
ve kas gürültüsü gibi etkenler çeşitli filtreleme yöntemleriyle (örneğin, bant
geçiren filtreler, dalgacık dönüşümü) temizlenir.

2. Öznitelik Çıkarma: Ön işleme sonrası elde edilen temiz sinyalden, kimlik
tanımlama için kritik morfolojik ve frekanssal öznitelikler çıkarılır. Örneğin,
QRS kompleksi ve diğer dalga formlarının öznitelikleri bu adımda elde edilir.

3. Sınıflandırma: Çıkarılan öznitelikler kullanılarak, farklı bireylerin
tanımlanması ve kimlik doğrulama işlemi gerçekleştirilir. Bu aşamada, k-en
yakın komşu (kNN), destek vektör makineleri (SVM) veya diğer makine
öğrenimi yöntemleri uygulanabilir.

Ayrıca, sinyal yakalama işlemi, mobil ve giyilebilir cihazların (örneğin, akıllı
telefonlar, saatler, bileklikler vb.) arkasına veya önüne monte edilebilen, iki kuru
lead-I tipi elektrottan alınan EKG sinyallerinin kaydedilmesiyle gerçekleştirilir.

2.1 Ön İşleme: Gürültü Giderme ve R-Peak Tespiti ile EKG
Sinyal Segmentasyonu

EKG kaydında karşılaşılabilecek en önemli gürültü kaynakları; taban hattı kayması,
güç hattı girişimi ve kas gürültüsüdür.

• Taban hattı kayması: EKG işareti kaydedilirken, kalp ile elektrot arasındaki
kişinin hareketi, nefes alıp vermesi ve elektrotun vücut yüzeyine tam
oturmaması sonucu oluşan değişimlerden kaynaklanır. Bu kayma, genellikle
1 Hz’in altındaki frekanslarda meydana gelir.

• Güç hattı girişimleri: 50/60 Hz şebeke frekansına bağlı olarak ortaya çıkan
gürültülerdir.

• Kas gürültüsü: Yüksek frekanslı gürültü, kişinin hareketi ve iskelet
kaslarının kasılmasıyla oluşur.

Ön işleme aşamasında, EKG sinyallerindeki gürültüyü gidermek için literatürde
yaygın olarak bant geçiren filtreler ve dalgacık dönüşümü gibi teknikler
kullanılmaktadır.

Ön işleme adımından sonra, EKG sinyalinin anlamlı bileşenlerinin
ayrıştırılabilmesi için dalga formu segmentasyonu gerçekleştirilir. Bu işlem,
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öncelikle R-tepe noktalarının tespiti ve sonrasında sinyalin normalizasyonuna
dayanır. R-tepe noktası, gürültü kaynaklarından en az etkilenen ve sinyalin en
belirgin noktasıdır. Bu noktaların tespiti için dalgacık dönüşümü (WT), Hilbert
dönüşümü (HT) ve Pan-Tompkins algoritması (PT) gibi yöntemler sıklıkla
kullanılmaktadır.

Belirlenen R tepeleri, sinyalin segmentlere ayrılmasını sağlar; bu segmentler
üzerinden QRS kompleksi gibi morfolojik öznitelikler çıkarılarak tanımlama
yapılır. QRS kompleksi, ventriküllerin kasılmasını yansıttığından ve kalp
hastalıklarından kaynaklanan anormalliklere karşı nispeten stabil olduğundan,
öznitelik çıkarımında en yaygın kullanılan bileşendir.

Dalgacık dönüşümü (WT), sinyalin zaman ve frekans alanındaki detaylarını ortaya
çıkarmada güçlü bir araç olup, anlık değişikliklerin tespiti ve sinyalin sıkıştırılması
için idealdir [47, 48]. Elektrokardiyogram gibi biyomedikal sinyallerin analizinde,
WT sinyalin farklı frekans bileşenlerini ve bunların zaman içindeki evrimini
ayrıntılı olarak sunar.

Hilbert dönüşümü (HT) ise, bir sinyalin analitik formunu elde etmek amacıyla
kullanılır. HT, sinyalin genlik ve faz bileşenlerini ayırarak fazın zaman
içindeki değişimini analiz etmeye olanak tanır [49, 50]. Bu özellik, özellikle
QRS komplekslerinin tespitinde ve R-tepe noktalarının belirlenmesinde yararlı
olmaktadır.

Pan-Tompkins algoritması, QRS komplekslerinin tespiti için geliştirilen ve genlik,
genişlik ile eğim ölçütlerini temel alan pratik bir yöntemdir [51]. Algoritma; bant
geçiren filtreleme, türev alma, kare alma, entegrasyon ve eşik belirleme adımlarını
içerir. Şekil 2.1’de Pan-Tompkins algoritmasının akış şeması gösterilmektedir.

Şekil 2.1 Pan-Tompkins algoritması

Şekil 2.2’de, Pan-Tompkins algoritması kullanılarak veritabanımızdaki bir EKG
sinyaline ait referans noktaların belirlenmesine ilişkin bir örnek yer almaktadır [52].

2.2 Öznitelik Çıkarma Yöntemleri
Öznitelik çıkarma algoritmaları, referans noktalara dayalı (fiducial-based) ve
referans noktalara dayalı olmayan (non-fiducial-based) yöntemler olarak iki
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Şekil 2.2 Pan-Tompkins algoritması yardımıyla referans noktaların belirlenmesi
[52]

kategoride değerlendirilebilir. Referans noktalardan elde edilen öznitelikler,
genellikle genlik, zaman, alan ve açı gibi bileşenleri içerirken; referans
noktalara dayalı olmayan öznitelikler, EKG sinyalinin Fourier dönüşümü, dalgacık
katsayıları, otokorelasyon katsayıları ve ayrık kosinüs dönüşümü kullanılarak elde
edilir.

Bu çalışma kapsamında, Mel Frekans Kepstral Katsayıları (MFCC) ve Gammatone
Frekans Kepstral Katsayıları (GFCC) kullanılarak öznitelik vektörleri oluşturulmuş;
bu öznitelikler, Gauss karışım modeli (GMM) tabanlı evrensel arka plan modeli
(UBM) kullanılarak i-vektörlere dönüştürülmüştür.

2.2.1 Mel Frekansı Kepstrum Katsayıları (MFCC)

Mel Frekansı Kepstral Katsayıları (MFCC), sinyal işleme alanında, özellikle
konuşma tanımada yaygın olarak kullanılan güçlü bir algoritmadır. Temel olarak,
kepstrum, konvolüsyondan toplamaya geçiş sağlayan bir homomorfik dönüşümdür.
"Mel" terimi, kepstrum ekseninin, insan kulağına dayalı algısal bir işitsel ölçek olan
Mel ölçeğinde ölçeklendirildiğini ifade eder [53]. MFCC hesaplaması şu adımları
içerir: ön-vurgulama, çerçeveleme, pencereleme, Fourier Dönüşümü (FFT),
Mel Filtre Bankası ve Ayrık Kosinüs Dönüşümü (DCT). MFCC özniteliklerinin
çıkarılması için adımlar Şekil 2.3’te gösterilmektedir.

Başlangıçta, giriş sinyali x[n] ön vurgulanmaktadır. "Ön vurgu" kavramı, yüksek
frekanslı bileşenlerin güçlendirilmesi anlamına gelir; sinyal, yüksek geçiren bir
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Şekil 2.3 MFCC özniteliklerinin çıkarılması işlemi blok diyagramı

filtreden geçirilir. Filtrenin çıktısı aşağıdaki gibidir:

p[n] = x[n]− 0.97× x[n− 1]. (2.1)

Çerçeveleme olarak adlandırılan bir sonraki adımda, ön-vurgulanan sinyal, aynı
uzunlukta kısa süreli çerçevelere (örneğin, 25 ms) bölünür ve her çerçeveye
sürekliliği sağlamak için bir pencereleme fonksiyonu uygulanır. Bu işlem şu şekilde
yapılır:

h[n] = p[n]×

(
0.54− 0.46× cos

( 2πn

N − 1

))
, 0 < n < N − 1, (2.2)

burada her çerçevedeki örnek sayısı N ile gösterilir. Daha sonra, her çerçevenin
Hızlı Fourier Dönüşümü (FFT) alınarak frekans alanına dönüştürülür:

H[k] =
N−1∑
n=0

h[n] e−j 2πkn
N . (2.3)

Bu adımda, Fourier dönüşümü alınmış sinyal, Mel-filtre bankası olarak adlandırılan
bir dizi üçgen bant geçiren filtreden geçirilerek Mel spektrumu hesaplanır:

X[l] = log

(
klu∑

k=kll

|H[k]|Wl(k)

)
, l = 0, 1, . . . , L− 1, (2.4)

burada H[k] karmaşık Fourier dönüşümünün mutlak değeri, Wl(k) l’nci üçgen
filtredir ve kll ile klu sırasıyla l’nci filtrenin alt ve üst kesme frekanslarıdır.

Mel ölçeği, yaklaşık olarak 1 kHz’nin altındaki frekans aralığında doğrusal, 1
kHz’nin üzerindeki frekans aralığında ise logaritmik bir ölçek sunar. Aşağıdaki
denklem, hertz cinsinden verilen frekansı Mel ölçeğine dönüştürür:

F (mel) = 2595× log10

(
1 +

f

700

)
. (2.5)
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Son adım, MFCC üretmek için DCT’nin uygulanmasıdır [45]:

C[m] =
L∑
l=1

X[l] cos

[
πm(l − 0.5)

L

]
, m = 1, . . . ,M − 1. (2.6)

2.2.2 Gammatone Frekansı Kepstrum Katsayıları (GFCC)

Gammatone filtre bankası, koklea simülasyonu için kullanılan bir filtre
grubudur. Bir Gammatone filtresinin dürtü yanıtı, insan işitme filtresinin genlik
karakteristiklerine oldukça benzer. Gammatone filtre bankası, insan kulağının
önemli bir parçası olan baziler zarının filtreleme karakteristiklerini en iyi şekilde
simüle edebilir.

Bir Gammatone filtresinin darbe cevabı aşağıdaki gibi tanımlanır:

g(t) = Kt(n−1)e−2πBt cos(2πfct+ ϕ), (2.7)

burada K genlik kazancını, n filtre sırasını, B filtre bant genişliğini, fc hertz
(Hz) cinsinden merkezi frekansı ve ϕ faz kaymasını ifade eder [54, 55]. Merkez
frekanslar, filtre bankasının sınırları arasında eşit aralıklı olarak eşdeğer dikdörtgen
bant genişliği (ERB) ölçeğinde yer alır [56]. Gammatone filtresinin bant genişliği,
B = 1.019 × ERB(fc) şeklinde verilir ve herhangi bir frekans f (Hz) için ERB
(Hz) şu şekilde hesaplanır:

ERB(f) =

[( f

EarQ

)p
+ (Bmin)

p

]1/p
, (2.8)

burada EarQ yüksek frekanslarda asimptotik filtre kalitesini, Bmin düşük
frekanslarda minimum bant genişliğini ve p genellikle 1 veya 2’yi ifade eder.
Literatürde üç farklı ERB filtre modeli önerilmiştir: Greenwood, p = 1, EarQ =

7.23 ve Bmin = 22.85 değerlerini; p = 1, EarQ = 9.26 ve Bmin =

24.7 değerleri, Glasberg ve Moore parametreleri olarak bilinir; Lyon ise, düşük
frekanslarda p = 2, EarQ = 8 ve Bmin = 125 (daha geniş bant genişliği)
parametreleriyle orta keskinlikte filtreler önermiştir [57, 58]. Çalışmamızda,
Greenwood’un parametreleri kullanılmıştır.

Şekil 2.4 GFCC özniteliklerinin çıkarılması işlemi blok diyagramı

GFCC, Şekil 2.4’te gösterildiği gibi, MFCC’nin bir modifikasyonu olarak
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tanımlanabilir. İlk olarak, ses sinyalleri kısa çerçevelere bölünür. Daha sonra,
her çerçeve için FFT uygulanarak çerçeve spektrumu analiz edilir. Ardından,
Gammatone filtresi, sinyalin FFT’sine uygulanarak, algısal olarak anlamlı ses
frekansları vurgulanır. Son adımda, log fonksiyonu ve ayrık kosinüs dönüşümü
uygulanır. GFCC, aşağıdaki gibi hesaplanabilir:

GFCCm =

√
2

N

N∑
n=1

log10
(
Xn

)
cos

[
πn

N

(
m− 1

2

)]
, 1 ≤ m ≤ M, (2.9)

burada Xn sinyalin n’inci spektral bandındaki enerjiyi, N Gammatone filtresinin
sayısını ve m GFCC’nin sayısını ifade eder [54, 58].

GFCC ile MFCC arasındaki temel farklar, her iki yöntemin sinyal özniteliklerini
yakalama ve sıkıştırma yaklaşımlarında yatmaktadır. MFCC, insan baziler zarının
tepkisini yaklaşık olarak modellemek amacıyla üçgen filtre bankaları kullanırken;
GFCC, insan işitme sisteminin frekans seçiciliğini daha doğru simüle edebilmek
için Gammatone filtre bankası kullanır. Ayrıca, MFCC sinyalin dinamik aralığını
azaltmak amacıyla logaritmik sıkıştırma uygular; bu sıkıştırma, yüksek enerji
bileşenlerinde doyuma neden olabilir ve özellikle EKG sinyallerinde (örneğin,
1–35 Hz aralığındaki QRS kompleksi gibi) ince spektral farklılıkları maskeleyebilir
[59]. Buna karşın, GFCC yöntemi, kübik sıkıştırma kullanarak, doğrusal olmayan
karakteristikleri ve ince amplitüd farklılıklarını daha iyi korur; böylece, sinyaldeki
kritik detayların ayırt edilebilirliği artırılır [60, 61]. Her iki yöntemin hesaplama
maliyetleri benzer düzeyde olmakla birlikte, GFCC’nin bu sıkıştırma stratejisi,
özellikle EKG tabanlı biyometrik tanımlamada daha belirgin enerji geçişleri ve
zengin spektral dağılım sağlayarak, bireysel özniteliklerin korunmasına katkıda
bulunabilir [54, 58].

2.3 i-vektör ve İlgili Yöntemler
i-vektör yaklaşımı başlangıçta konuşmacı tanıma uygulamaları için geliştirilmiş
olsa da, son yıllarda dil tanımlama, müzik türü sınıflandırması, cinsiyet tanıma,
yaş tahmini, duygu tanıma, ses sahnesi sınıflandırması, otomatik konuşmacı
doğrulama sistemlerinde sahtekarlık tespiti ve imza doğrulama gibi farklı alanlarda
da uygulanmaktadır [62].

Klasik faktör analizi teorisi, iki faktör ve bunlara karşılık gelen iki bağımsız
uzaya dayanmaktadır. Ancak, i-vektör yöntemi bu iki ayrı alanı tek bir uzay
kullanarak değiştirmektedir. Bu yöntem, bir örneğe ait öznitelik vektörlerini,
toplam değişkenlik uzayı (TV) adı verilen düşük boyutlu bir vektör uzayına eşler.
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TV, kovaryans matrisindeki en büyük özdeğerlere karşılık gelen özvektörlerden
oluşan bir matris tarafından tanımlanmaktadır [63].

Süpervektör M , konuşma sinyallerinin temsilinde önemli bir rol oynar. Bu vektör,
konuşma sinyalinden elde edilen özniteliklerin, Evrensel Arka Plan Modeli (UBM)
ile maksimum posteriori (MAP) adaptasyonu sonucunda elde edilen Gauss Karışım
Modeli (GMM) ortalama vektörlerinin arka arkaya eklenmesiyle oluşturulur.
Matematiksel olarak şu şekilde ifade edilir:

M = m+ Tw, (2.10)

burada m, UBM modelinin ortalama vektörlerinin arka arkaya eklenmesiyle
elde edilen süpervektörü, T düşük ranklı ve sütunları konuşmacı farklılıklarını
modelleyen bir matrisi, w ise sinyalden elde edilen i-vektörü temsil etmektedir.

UBM, genellikle Gauss Karışım Modeli (GMM) kullanılarak hesaplanır. GMM,
bir veri kümesinin karmaşık dağılımını temsil etmek için kullanılan istatistiksel
bir modeldir. UBM, konuşmacı tanıma sistemlerinde yaygın olarak kullanılan
bir model olup, konuşma verilerinin genel özniteliklerini öğrenir ve temsil eder.
UBM’nin matematiksel ifadesi şu şekildedir:

P (x | λUBM) =
K∑
k=1

πk N(x | µk,Σk), (2.11)

P (x | λUBM), UBM tarafından modellenen verilerin olasılık yoğunluk
fonksiyonunu temsil eder. Burada, Σk belirli bir bileşen (k) için konuşma
özniteliklerinin varyansını ve öznitelikler arasındaki ilişkiyi tanımlar; µk ise bileşen
k’ya ait ortalama vektörü gösterir; πk her bir Gauss bileşeninin ağırlığını ifade eder;
N(x | µk,Σk) verilen µk ve Σk altında verinin gerçekleşme olasılığını belirten
Gauss dağılımını temsil eder. Öznitelik vektörü x, UBM tarafından modellenen
konuşma verisini ve λUBM UBM parametrelerini içeren bir parametre vektörünü
ifade eder.

i-vektörlerin tahmini, Baum-Welch istatistiklerine (sıfırıncı dereceden N ve birinci
dereceden F ) dayanmaktadır. Bu istatistikler, verilen bir sinyal için UBM ve Mel
Frekans Kepstral Katsayıları (MFCC) öznitelikleri kullanılarak çıkarılır:

Nc =
∑
t

P (c | yt, λ), (2.12)

Fc =
∑
t

P (c | yt, λ)(yt − µc), (2.13)
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c = 1, . . . , C GMM bileşen indeksleri; P (c | yt, λ), karışım bileşeni c’nin vektör
yt’yi üretme olasılığını; µc ise UBM karışım bileşeni c’nin ortalamasını temsil eder.
Verilen bir sinyal için i-vektör şu denklem kullanılarak elde edilir:

w =
(
I + T t Σ−1NT

)−1
T t Σ−1NF, (2.14)

burada I , CF × CF boyutunda birim matrisidir; N , F × F bloklarına sahip bir
diagonal matristir ve her bir blok Nc I ( c = 1, 2, . . . , C) şeklindedir; Σ ise T

tarafından yakalanamayan artık değişkenliği temsil eden kovaryans matrisidir [64].

UBM, biyometrik kimlik doğrulama sistemlerinde kullanılan bir referans modelidir
[65]. Verilen bir veri kümesindeki tüm bireylerin ortak özniteliklerinin
istatistiksel bir özetini sağlar. Diğer bir deyişle, EKG verilerinden elde edilen
öznitelikler, her bireyin EKG verilerine özgü öznitelikleri kapsar. UBM, bu
özniteliklerin genelleştirilmiş istatistiksel modelini oluşturarak, farklı bireyler
arasındaki benzerlikleri ve farklılıkları belirler [66]. Bir kullanıcının öznitelikleri
ile UBM arasındaki fark, kullanıcının benzersiz biyometrik özniteliklerini açıklar
ve kimlik doğrulama sürecinde kullanılır. UBM’nin oluşturulması için, öznitelikler
üzerinde Gauss Karışım Modeli-Beklenti Maksimizasyonu uygulanır. Dolayısıyla,
T matrisi, özniteliklerin Baum-Welch istatistikleri kullanılarak hesaplanabilir [64].

Toplam değişkenlik uzayında, i-vektörlerin iki yaygın normalizasyon tekniği; sınıf
içi kovaryans normalizasyonu (WCCN) ve doğrusal diskriminant analiz (LDA)’dır.
WCCN, sınıf içi kovaryansın tersini kullanarak kosinüs çekirdeğini normalize eder.
LDA ise, değişkenlik etkilerini en aza indirmek ve sınıflar arasındaki varyansı
maksimize etmek için özniteliklerin lineer kombinasyonlarını hesaplamaya çalışır
[64, 67, 68].

2.3.1 Doğrusal Diskriminant Analiz (LDA)

Doğrusal diskriminant analizi (LDA), sınıflandırma ve boyut indirgeme
problemlerinde yaygın olarak kullanılan bir makine öğrenimi ve istatistiksel
tekniktir. Temel amacı, veri kümesindeki sınıfları birbirinden ayırt edebilmek için
en iyi öznitelik alt kümesini bulmaktır [69–71].

LDA, bir sınıflandırıcı olarak kullanıldığında, veri özniteliklerini kullanarak bir
veya daha fazla sınıfa ait örnekleri ayırt etmek için bir karar sınıfı oluşturur.
Bu, veri kümesindeki sınıflar arasındaki farklılıkları maksimize etmek amacıyla
özniteliklerin lineer kombinasyonunu hesaplamak üzere kullanılan denetimli bir
öğrenme yöntemidir.
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LDA’nın bir diğer önemli kullanımı boyut indirgeme işlemidir. Boyut indirgeme,
veri kümesinin boyutunu azaltarak verinin karmaşıklığını düşürmeyi ve modelin
daha verimli çalışmasını sağlamayı amaçlar. LDA, veri kümesindeki öznitelikleri
birbirinden ayırt etme yeteneği sayesinde boyut indirgeme için etkili bir araçtır.

LDA, veri kümesinin dağılımını ve sınıflar arasındaki ayrımları hesaba katarak, veri
özniteliklerini en iyi şekilde temsil eden bir alt uzay bulur. Bu alt uzay, verinin
sınıflar arasında maksimum ayrım sağlayacak şekilde optimize edilir.

2.3.2 Sınıf İçi Kovaryans Normalizasyonu (WCCN)

Sınıf içi kovaryans normalizasyonu (WCCN), veri kümesindeki sınıflar arasındaki
varyasyonları dengelemek için kullanılan bir tekniktir. WCCN, her sınıfın
kovaryans matrisini hesaplar ve bu matrisleri birleştirerek toplu bir kovaryans
matrisi oluşturur. Böylece, sınıflar arasındaki kovaryans farkları azaltılır ve
sınıflandırma algoritmaları daha tutarlı sonuçlar verir [64, 71].

2.4 Sınıflandırma Yöntemleri ve Benzerlik Ölçütleri
EKG tabanlı biyometrik doğrulama sistemlerinde, sinyalin zamansal ve frekansal
özniteliklerinin etkili biçimde çıkarılmasıyla elde edilen öznitelik vektörleri
üzerinden kimlik doğrulama gerçekleştirilir. Bu doğrulama işlemlerinde,
sınıflandırma algoritmaları ve benzerlik ölçütleri kritik rol oynamaktadır.

Literatürde yaygın olarak kullanılan yöntemler arasında; destek vektör makineleri
(SVM), çok katmanlı algılayıcı (MLP), rastgele orman (RF), konvolüsyonel sinir
ağları (CNN) ve tekrarlayan sinir ağları (RNN) yer almaktadır. Bu yöntemler, hem
doğrusal hem de doğrusal olmayan ilişkilerin modellenmesinde; küçük ve büyük
veri kümelerinin işlenmesinde, ayrıca gürültülü ve değişken sinyal koşullarında
yüksek performans sunmaları nedeniyle tercih edilmektedir.

Bu çalışmada, EKG sinyallerinden elde edilen i-vektörlerin benzerlik skorları
temel alınarak biyometrik kimlik doğrulama gerçekleştirilmiştir. Ana benzerlik
ölçütü olarak kosinüs mesafesi kullanılmış ve başarılı sonuçlar elde edilmiştir.
Bununla birlikte, öznitelik vektörlerinin karşılaştırılmasında daha kapsamlı bir
değerlendirme yapmak amacıyla Öklid, Manhattan, Pearson korelasyonu ve
dinamik zaman esnetme (DTW) gibi alternatif benzerlik ölçütleri de incelenmiş ve
performansları karşılaştırılmıştır.

Aşağıdaki bölümlerde, söz konusu sınıflandırma yöntemlerinin ve benzerlik
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ölçütlerinin temel prensipleri, matematiksel ifadeleri ve EKG tabanlı biyometrik
doğrulamadaki uygulama alanları detaylı olarak ele alınacaktır.

2.4.1 Destek Vektör Makineleri (SVM)

Destek vektör makineleri (Support Vector Machines, SVM), sınıflandırma ve
regresyon problemlerinde yaygın olarak kullanılan güçlü bir denetimli öğrenme
algoritmasıdır. SVM’nin temel amacı, veri noktalarını sınıflar arasında en iyi
şekilde ayıracak bir karar sınırı (hiperdüzlem) belirlemektir. Bu hiperdüzlem,
sınıfların en yakın veri noktalarına olan mesafeyi (marjin) maksimize edecek
şekilde optimize edilir [72]. Matematiksel olarak, SVM’nin optimizasyon problemi
şu şekilde ifade edilir:

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi, (2.15)

burada:

• w: Hiperdüzlemin ağırlık vektörünü ve sınıflar arasındaki ayrımı tanımlar.

• b: Hiperdüzlemin sabiti olup, hiperdüzleme olan kaymayı belirler.

• ξi: Hata terimlerini ifade eder; doğrusal olmayan sınıflandırmada marjine
düşen veya yanlış sınıflandırılan veri noktalarını temsil eder.

• C: Hiperparametre olup, hata toleransı ile hiperdüzlemin marjin genişliği
arasındaki dengeyi kontrol eder.

• N : Eğitim veri kümesindeki toplam örnek sayısını ifade eder [73].

Doğrusal olmayan veri kümeleri için, kernel fonksiyonları kullanılarak veriler
daha yüksek boyutlu bir uzaya dönüştürülür; bu dönüşüm, karmaşık sınıflandırma
problemlerinin daha basit biçimde çözülebilmesini sağlar. Kernel fonksiyonlarında
x ve y terimleri, veri kümesindeki iki farklı veri noktası (öznitelik vektörleri) olarak
ifade edilir. SVM’de yaygın olarak kullanılan kernel fonksiyonları şunlardır:

• Doğrusal Kernel: K(x, y) = x⊤y,

• Polinomsal Kernel: K(x, y) = (x⊤y + r)d, burada r sabit, d ise polinomun
derecesidir.

• RBF Kernel (Radial Basis Function): K(x, y) = exp(−γ∥x−y∥2), burada
γ kernel fonksiyonunun genişliğini kontrol eden bir parametredir [74].
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Kernel fonksiyonları sayesinde SVM, doğrusal olmayan sınıflandırma
problemlerinde de etkili çözümler sunar. SVM, özellikle sınırlı veritabanlarında
yüksek doğruluk oranları sunması ve aşırı öğrenme (overfitting) riskini minimize
etme yeteneği ile dikkat çekmektedir. Bununla birlikte, gürültülü veri kümelerinde
kararlılık göstermesi, SVM’nin biyometrik kimlik doğrulama sistemlerinde
güvenilir bir yöntem olarak kullanılmasını sağlamaktadır. Literatürde, parmak izi,
yüz ve EKG gibi biyometrik sistemlerin yanı sıra, metin işleme, görüntü tanıma ve
tıbbi veri analizi gibi farklı alanlarda da yaygın olarak tercih edilmektedir. Ayrıca,
finans ve ekonomi alanında hisse senedi fiyat tahmini ve kredi risk analizi gibi
problemlerde de etkili bir çözüm yöntemi sunmaktadır [75].

SVM’nin avantajları arasında doğrusal olmayan verilerdeki sınıflandırma başarısı,
kernel fonksiyonlarının sağladığı esneklik ve küçük veritabanlarıyla etkili
çalışabilmesi yer almaktadır. Bununla birlikte, büyük veritabanlarında
eğitim süresinin uzaması, işlem maliyetinin yüksekliği ve hiperparametre
optimizasyonunun zorlukları SVM’nin sınırlamaları arasında sayılabilir. Ayrıca,
çok sınıflı problemler için birden fazla sınıflandırıcı kullanılması gerektiğinden,
sınıflar arasında dengesizliğe yol açma riski bulunmaktadır. Bu nedenlerle,
SVM’nin kullanım alanı, problem türüne ve veritabanının büyüklüğüne göre
dikkatlice değerlendirilmelidir [76].

2.4.2 Çok Katmanlı Algılayıcı (MLP)

Çok katmanlı algılayıcı (Multi-Layer Perceptron, MLP), yapay sinir ağlarının temel
yapı taşlarından biri olup, sınıflandırma ve regresyon problemlerinde yaygın olarak
kullanılan bir yöntemdir. MLP, ileri beslemeli bir yapıdadır ve giriş verilerinin
katmanlar boyunca işlenmesiyle öğrenme gerçekleştirir. Temel olarak, bir giriş
katmanı, bir veya daha fazla gizli katman ve bir çıkış katmanından oluşur [77].

MLP’nin çalışma prensibi, her bir nöronun giriş sinyallerini ağırlıklandırarak ve bir
aktivasyon fonksiyonu kullanarak işlenmiş bir çıktı üretmesine dayanır. Bu işlem,
aşağıdaki matematiksel ifade ile tanımlanabilir:

y = f

(
n∑

i=1

wixi + b

)
, (2.16)

burada:

• xi: Girdi sinyalleri,

• wi: Girdi sinyallerine atanan ağırlıklar,
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• b: Bias terimi,

• f : Aktivasyon fonksiyonu.

Gizli katmanlarda yaygın olarak kullanılan aktivasyon fonksiyonları arasında
sigmoid, tanh ve ReLU (Rectified Linear Unit) bulunmaktadır. Bu fonksiyonlar,
doğrusal olmayan ilişkilerin modellenmesini sağlar.

MLP’nin eğitimi, geri yayılım (backpropagation) algoritması ve optimizasyon
teknikleri kullanılarak gerçekleştirilir. Modelin hata fonksiyonu, problem türüne
bağlı olarak çapraz entropi veya ortalama kare hata (MSE) olarak seçilir.
Optimizasyon sürecinde ise genellikle Stokastik Gradyan İnişi (SGD) ve türevleri
(örneğin, Adam, RMSProp) kullanılır [77].

Bununla birlikte, MLP’nin performansı genellikle hiperparametre optimizasyonuna
(örneğin, katman sayısı, nöron sayısı, öğrenme hızı) bağlıdır. Ayrıca, büyük
veritabanlarında eğitim süresi uzayabilir ve aşırı öğrenme (overfitting) riski
artabilir. Bu durumları önlemek için düzenlileştirme yöntemleri (örneğin, L2 cezası,
dropout) kullanılmaktadır. MLP’nin avantajları arasında doğrusal olmayan ilişkileri
modelleme kapasitesi, küçük veritabanlarında yüksek performans göstermesi ve
geniş bir uygulama alanına sahip olması yer alır. Ancak, büyük veritabanlarında
eğitim süresinin uzaması ve hiperparametre optimizasyonunun zorluğu gibi
dezavantajları bulunmaktadır [78–80].

2.4.3 Rastgele Orman (RF)

Rastgele orman (Random Forest, RF), birden fazla karar ağacının (decision

tree) topluluk (ensemble) yaklaşımıyla bir araya getirilmesiyle oluşturulan güçlü
bir makine öğrenimi yöntemidir. Her bir karar ağacı, veri kümesinden tekrar
seçmeli örnekleme (bootstrap) yöntemiyle oluşturulan alt veri kümesi üzerinde
eğitilir. Böylece, farklı ağaçlar farklı parçalardan öğrenerek modelin aşırı öğrenme
(overfitting) eğilimi azaltılır. Ayrıca, ağaçlardaki her düğümde rastgele seçilen
bir alt öznitelik kümesi kullanılarak ağaçlar arasındaki benzerlik (korelasyon)
düşürülür [81, 82]. Karar ağaçlarında en iyi bölünme noktası, çoğunlukla Gini
indeksi veya bilgi kazancı (information gain) gibi metriklerle belirlenir. Örneğin,
Gini indeksi şu şekilde ifade edilebilir:

G =
K∑
k=1

pk(1− pk), (2.17)
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burada pk, ilgili düğümdeki verilerin k sınıfına ait olma olasılığını gösterir. Topluluk
içindeki tüm ağaçların çıktıları, sınıflandırma problemlerinde çoğunluk oylaması,
regresyon problemlerinde ise ortalama alınması yoluyla birleştirilir. Ağaç sayısı,
maksimum derinlik ve öznitelik alt kümesi boyutu gibi hiperparametreler, RF’nin
performansında kritik rol oynar.

EKG tabanlı biyometrik doğrulamada, RF özellikle gürültülü veya değişken sinyal
koşullarında yüksek doğruluk oranları sunmasıyla dikkat çekmektedir. Literatürde,
dalgacık (wavelet) veya istatistiksel tabanlı öznitelik çıkarma yöntemlerinin
ardından RF ile yapılan sınıflandırma deneylerinde başarılı sonuçlar elde edildiği
rapor edilmiştir [83]. Öte yandan, birden çok karar ağacının eğitimi nedeniyle
bellek ve hesaplama maliyeti artabilir; bu nedenle veri büyüklüğü ve hiperparametre
seçimi bakımından titiz bir yaklaşım gereklidir.

2.4.4 Konvolüsyonel Sinir Ağları (CNN)

Konvolüsyonel sinir ağları (Convolutional Neural Networks, CNN), özellikle
görüntü ve zaman serisi verilerinde otomatik öznitelik çıkarımı yapabilen derin
öğrenme mimarilerinden biridir. CNN’nin temelinde, giriş verisiyle gerçekleştirilen
evrişim (convolution) işlemi yer alır. 1-boyutlu (1D) bir evrişim örneği aşağıdaki
gibi ifade edilebilir:

yi =
K−1∑
k=0

xi+k · wk + b, (2.18)

burada xi+k giriş verisinin i + k konumundaki değeri, wk öğrenilen filtre ağırlığını
(kernel) ve b bias terimini ifade eder. Bu işlem, farklı konumlardaki örüntüleri
yakalayarak modelin öğrenmesine katkı sağlar. Ardından, havuzlama (pooling)
katmanları ile boyut küçültmesi yapılarak daha soyut öznitelik temsilleri elde edilir
[84].

EKG sinyalleri gibi zaman serisi verilerinde, 1D konvolüsyon filtreleri dalga
formu üzerinde kaydırılarak sinyalin farklı segmentlerindeki frekans ve şekil
bileşenleri otomatik olarak öğrenilebilir. Literatürde, bu yöntemle el ile öznitelik
çıkarma adımının büyük ölçüde azaltıldığı ve gürültüye karşı dayanıklı modeller
oluşturulduğu rapor edilmiştir [85, 86]. Böylece, EKG tabanlı biyometrik
doğrulamada CNN yaklaşımlarıyla yüksek doğruluklar elde edilmekte; farklı
bireylerin kalp atış karakteristikleri konvolüsyon katmanlarında yakalanmaktadır.
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2.4.5 Tekrarlayan Sinir Ağları (RNN)

Tekrarlayan sinir ağları (Recurrent Neural Networks, RNN), sıralı veriler arasındaki
bağımlılıkları modellemek için tasarlanmış bir yapay sinir ağı türüdür. RNN’lerde,
her zaman adımında hesaplanan gizli durum (hidden state) bir sonraki adıma
aktarılır. Klasik bir RNN güncellemesi aşağıdaki basit denklemle ifade edilebilir:

ht = σ
(
Wxh xt +Whh ht−1 + bh

)
, (2.19)

burada ht güncel gizli durum, xt giriş vektörü, Wxh ve Whh ağırlık matrisleri, bh
bias terimi ve σ(·) aktivasyon fonksiyonudur [87]. Ancak, klasik RNN yapıları
uzun sekanslarda gradyan kaybolması (vanishing gradient) sorununa karşı hassastır.

Bu sorunu hafifletmek amacıyla LSTM (Long Short-Term Memory) ve GRU
(Gated Recurrent Unit) gibi kapılı (gated) mekanizmalara sahip RNN modelleri
geliştirilmiştir. EKG sinyalleri, zamana bağlı bir dizi halinde olduğundan, RNN
tabanlı yaklaşımlar kalp atışı döngülerindeki ardışık yapıyı (örneğin, P-QRS-T
komplekslerinin sıralaması) yakalamada etkilidir [88, 89]. Bu sayede, EKG tabanlı
kimlik doğrulama sistemlerinde RNN ve türevleri, özellikle zaman içindeki kalp
atışı örüntülerini dikkate alarak yüksek doğruluk sunabilmektedir.

2.4.6 Kosinüs Mesafesi (Cosine Distance)

i-vektörlerin sınıflandırılmasında, kosinüs çekirdek fonksiyonu etkili bir
sınıflandırıcıdır [71]. Kosinüs mesafesi, iki vektör arasındaki açısal farkı
ölçer ve benzerlikleri belirler. w1 ve w2 i-vektörleri arasındaki kosinüs çekirdek
fonksiyonu şu şekilde tanımlanır:

cos(w1, w2) =
⟨w1, w2⟩

∥w1∥ · ∥w2∥
(2.20)

Burada, ⟨w1, w2⟩ iki vektörün iç çarpımını; ∥w1∥ ve ∥w2∥ ise vektörlerin normlarını
temsil eder. İki verinin i-vektörleri aynı yönü gösteriyorsa, kosinüs mesafesi 1
değerini alır; zıt yönleri işaret ederse -1 değerini alır. Kosinüs mesafesi, özellikle
yüksek boyutlu veri kümelerinde benzerlik ölçütü olarak etkili bir yöntemdir.
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2.4.7 Öklid Mesafesi (Euclidean Distance)

Öklid mesafesi, iki i-vektör arasındaki düz çizgi uzaklığını ölçmek için kullanılan
temel bir yöntemdir. Matematiksel olarak şu şekilde ifade edilir:

deuclidean(x, y) =

√√√√ n∑
i=1

(xi − yi)2, (2.21)

burada x = (x1, x2, . . . , xn) ve y = (y1, y2, . . . , yn) i-vektörleridir; n ise
i-vektörlerin boyutunu ifade eder [90]. Öklid mesafesi, iki vektör arasındaki
genlik farklarını doğrudan hesaba katmasıyla genellikle etkili bir yöntem olarak
kabul edilir. Ancak, yöntemin genlik ölçeğine duyarlı olması nedeniyle, farklı
büyüklükteki i-vektörlerin karşılaştırılmasında normalizasyon gereklidir.

2.4.8 Manhattan Mesafesi (Manhattan Distance)

Manhattan mesafesi, iki i-vektör arasındaki her bir bileşen için mutlak farkların
toplamını ölçen bir yöntemdir ve aşağıdaki formülle hesaplanır [91]:

dmanhattan(x, y) =
n∑

i=1

|xi − yi|. (2.22)

Bu yöntem, özellikle aykırı değerlere karşı Öklid mesafesine kıyasla daha az duyarlı
olmasıyla öne çıkar. Ayrıca, verilerin her bir bileşenini ayrı ayrı değerlendirme
imkanı sunar. Ancak, farklı bileşenlerin ilişkili olduğu durumlarda bu yöntemin
performansı sınırlı kalabilir.

2.4.9 Pearson Korelasyonu (Pearson Correlation)

Pearson korelasyonu, iki i-vektör arasındaki doğrusal ilişkiyi ölçmek için kullanılan
bir yöntemdir ve şu şekilde ifade edilir [92]:

rpearson(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
√∑n

i=1(yi − ȳ)2
, (2.23)

burada x̄ ve ȳ sırasıyla x ve y vektörlerinin ortalamalarını temsil eder. Bu
yöntem, vektörlerin büyüklük farklarını göz ardı ederek yönelim benzerliklerini
ölçmesiyle dikkat çeker. Bu özelliği sayesinde, farklı ölçeklerdeki verilerin
karşılaştırılmasına olanak tanır; ancak, doğrusal olmayan ilişkiler bu yöntemle
yeterince değerlendirilemez.
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2.4.10 Dinamik Zaman Esnetme (Dynamic Time Warping, DTW)

Dinamik zaman esnetme (DTW), iki zaman serisi veya vektör arasındaki
benzerlikleri, zamanlama farklılıklarını dikkate alarak ölçen bir yöntemdir [93].
DTW, aşağıdaki maliyet fonksiyonu üzerinden hesaplanır:

DTW (X, Y ) = min

(
K∑
k=1

d(xik , yjk)

)
. (2.24)

Bu yöntemin en önemli avantajı, zamanlama kaymalarını telafi ederek sinyalleri
hizalama yeteneğidir. Özellikle, zaman serileri arasında esnek karşılaştırmalar
yapılmasını sağlar ve zamanlamaya duyarlı biyometrik sistemlerde etkili bir
çözüm sunar. Ancak, hesaplama maliyetinin yüksek olması yöntemin önemli bir
dezavantajıdır.
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3
VERİTABANLARI

Bu çalışmada kullanılan veri kaynakları ve donanımlar detaylı bir şekilde
açıklanmıştır. Üç ana veritabanı ve bunların elde edilmesi için kullanılan
donanımlar tanımlanmıştır. İlk olarak, ECG-ID veritabanı tanıtılmış; daha sonra
daha büyük bir veritabanı olan Heartprint sunulmuş; ardından BMD101 EKG
sensör modülüyle elde ettiğimiz kayıtlarla oluşturduğumuz veritabanına geçilmiştir.

3.1 ECG-ID Veritabanı
ECG-ID Veritabanı, Tatiana Lugovaya tarafından oluşturulmuş ve PhysioBank’a
katkıda bulunulmuştur [94]. Bu veritabanı, 90 gönüllüden alınan toplam 310
EKG kaydından oluşan bir settir. Lugovaya, bu EKG’leri yüksek lisans tezinde
kullanmıştır.

Kayıtlar, 13 ile 75 yaşları arasındaki 44 erkek ve 46 kadın gönüllüden alınmıştır. Bu
gönüllüler, yazarın öğrencileri, meslektaşları ve arkadaşlarıdır. Her birey için kayıt
sayısı 2 ile 20 arasında değişmekte; bu kayıtlar, bir gün içinde toplanan iki kayıttan,
altı ay boyunca periyodik olarak toplanan yirmiye kadar çeşitlilik göstermektedir.
EKG kayıtları, 12-bit çözünürlükte ve 500 Hz örnekleme frekansında kaydedilmiş
olup, her bir kayıt 20 saniye sürmektedir.

Bu çalışmada, önerilen yöntemi analiz etmek amacıyla, yeterli sayıda kayda sahip
20 bireyden alınan, her biri 10 kayıt içeren EKG verileri kullanılmıştır. Bu EKG
kayıtları, rastgele olarak geliştirme, eğitim ve test verileri şeklinde bölünmüştür. Bu
yaklaşım, veritabanının dengeli ve temsili bir örneklemle kullanılmasını sağlamıştır.

3.2 Heartprint Veritabanı
Heartprint [32], 2012 yılından itibaren, on yıl boyunca gerçekleştirilen çoklu
oturumlar kapsamında, dinlenme ve okuma koşullarında elde edilen 1539 kayıttan
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oluşan bir EKG biyometrik veritabanıdır. Veritabanı, 130 erkek ve 69 kadın
olmak üzere toplam 199 bireyden elde edilmiş olup, çeşitli demografik sınıfları,
cinsiyetleri, etnik kökenleri ve yaş gruplarını kapsamaktadır.

Heartprint veritabanı sinyalleri, Tayvan’ın Taoyuan şehrinde geliştirilen ve Şekil
3.1’de gösterilen DailyCare BioMedical, Inc. üretimi ReadMyHeart adlı el tipi
bir EKG cihazı ile kaydedilmiştir. Bu cihaz, her iki elin başparmakları arasındaki
potansiyel farkını ölçerek tek kanallı (lead I) EKG kaydı almakta ve sinyali 250
Hz frekansında örneklemektedir. ReadMyHeart cihazı, iki kuru iletken elektrot
kullanarak sinyali alır, dijitalleştirir ve EKG kaydını bilgisayara .txt uzantılı metin
dosyası olarak aktarmaktadır.

Şekil 3.1 ReadMyHeart el tipi EKG cihazı [95]

3.3 BMD101 EKG Sensör Modülüyle Elde Edilen Veritabanı
Mobil ve giyilebilir cihazlar için tasarlanan BMD101 EKG sensör modülü
kullanılarak EKG sinyalleri toplanmıştır. Bu sensör, NeuroSky’ın BMD101
yonga setine sahip 3. nesil biyo-sinyal algılama ve işleme sistem-on-chip kitidir.
BMD101, taşınabilir uygulamalar için uygun, çok küçük form faktörüne ve düşük
güç tüketimine sahip bir çözümdür.

BMD101, gelişmiş bir analog ön uç devresi ve esnek, güçlü bir dijital
sinyal işleme yapısı ile tasarlanmıştır. Bu cihaz, düşük gürültülü amplifikatör
(LNA) ve analog-dijital dönüştürücü (ADC) gibi ana bileşenler sayesinde, µV

seviyesinden mV seviyesine kadar değişen biyo-sinyal girişlerini işleyebilir.
BMD101, 16-bit yüksek çözünürlüklü bir ADC kullanarak bu biyo-sinyalleri
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dijitale dönüştürebilmektedir.

BMD101’in düşük sistem gürültüsü ve programlanabilir kazancı, hassas biyo-sinyal
verilerini güvenilir bir şekilde toplamak için idealdir. Ayrıca, UART (57600 Baud
Rate) arabirimleri aracılığıyla iletişim kurabilir; bu da BMD101’in harici cihazlarla
kolayca entegre edilebilmesini sağlar.

Şekil 3.2’de gösterilen Sichiray BMD101 EKG sensör modülü ile yapılan
çalışmamızda, EKG verileri parmak uçlarından, lead I konfigürasyonunda
kaydedilmiştir. Bu veritabanı, 23 farklı bireyden çeşitli zaman aralıklarında
toplanan kayıtlardan oluşturulmuştur. Her bir bireyden alınan kayıtlar, farklı sayıda
ve farklı sürelerde olup, bu da veritabanının çeşitliliğini ve kapsamını artırmaktadır.
Bu veriler, 16-bit çözünürlükte, 512 Hz örnekleme frekansında ve 20 saniyelik EKG
kayıt segmentleri şeklinde kullanılmıştır.

Bu veritabanı, çalışmamızın temelini oluşturmakta ve önerdiğimiz EKG
biyometrik kimlik doğrulama algoritmasının geliştirilmesi ve test edilmesi için
kullanılmaktadır. BMD101 sensörü ve elde edilen veriler, mobil güvenlik
uygulamalarında biyometrik kimlik doğrulamanın pratik ve etkili bir yolunu
sağlama potansiyeline sahiptir.

Şekil 3.2 BMD101 EKG sensör modülü

Bu çalışmada kullanılan üç farklı veritabanı, EKG tabanlı biyometrik kimlik
doğrulamanın farklı senaryolarda nasıl performans gösterdiğini kapsamlı bir
şekilde incelememize olanak tanımaktadır. ECG-ID veritabanı, bireylerin farklı
zamanlardaki EKG varyasyonlarını analiz etmek için kullanılırken; Heartprint
veritabanı, dinlenme ve okuma gibi kontrollü ortamlarda uzun süreli takip edilen
bireylerin kimlik doğrulama performansını değerlendirmeye olanak sağlamaktadır.
Öte yandan, BMD101 sensörü ile oluşturulan veritabanı, gerçek mobil ortamda kısa
süreli ve düşük çözünürlüklü EKG kayıtlarıyla biyometrik kimlik doğrulamanın

43



pratik uygulanabilirliğini test etmeyi hedeflemektedir. Çeşitli zaman aralıklarında,
farklı koşullarda toplanmış bu veritabanları, önerilen yöntemin doğruluğunu
artırmak ve mobil cihazlar için güvenilir biyometrik kimlik doğrulama sistemlerinin
geliştirilmesine katkı sağlamak amacıyla kullanılmaktadır.
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4
METODOLOJİ

4.1 Ön İşleme
EKG işaretleri, 0.1–100 Hz arasında bir frekans bandına ve 0 mV ile 1 mV arasında
bir genlik değerine sahiptir. Medikal alanda etkili EKG bilgisi 0.7–40 Hz aralığında
iken, biyometrik alanda bu aralık 1–35 Hz olarak kabul edilmektedir. Şekil 4.1’de,
örneklendirilmiş bir EKG sinyalinin orijinal zaman serisi, bu sinyalin spektrogramı
ve güç spektrumu görülmektedir.

Şekil 4.1 Bir EKG sinyalinin orijinal zaman serisi, spektrogramı ve güç spektrumu

EKG kayıtlarındaki gürültü kaynaklarıyla başa çıkmak için kayıtlar şu şekilde
filtrelenmiştir:
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• İlk olarak, taban hattı kaymasını ortadan kaldırmak için, kesme frekansı 1 Hz
olan Chebyshev-I tipi bir yüksek geçiş filtresi kullanılmıştır.

• Güç hattı parazitini gidermek için, 50–60 Hz aralığında bir geçiş bandına
sahip Chebyshev-II tipi bir bant durdurma filtresi kullanılmıştır.

• Kas gürültüsüyle başa çıkmak için, kesme frekansı 100 Hz olan eliptik bir
düşük geçiş filtresi kullanılmıştır.

• Son adımda, bir yumuşatma işlemi gerçekleştirilmiştir.

Ön işleme algoritması uygulandıktan sonra, EKG sinyallerindeki taban hattı
kayması ve diğer gürültülerin başarıyla azaltıldığı gözlemlenmiştir. Şekil 4.2’de,
önerilen ön işleme algoritmasının bir EKG kaydı üzerindeki etkisi gösterilmektedir.
Bu adımlar sonucunda, temizlenmiş ve daha analiz edilebilir EKG sinyalleri elde
edilmiştir.

Şekil 4.2 Ön işleme algoritma uygulaması

4.2 Önerilen Yöntem: Öznitelik Çıkarımı ve i-vektör Temsili
4.2.1 Öznitelik Çıkarımı

Ön işleme sonrasında, öznitelik olarak kullanılmak üzere Mel Frekans Kepstral
Katsayıları (MFCC) ve Gammatone Frekans Kepstral Katsayıları (GFCC)
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türetilmektedir.

MFCC ve GFCC, veritabanına bağlı olarak 1 veya 0.5 saniyelik pencere boyutu ve
0.25 veya 0.1 saniyelik kayma ölçüsü kullanılarak EKG verilerinden elde edilmiştir.
Spektral bant sayısı, veritabanına bağlı olarak MFCC için 20 veya 24, GFCC için
ise 16, 20 veya 40 olarak ayarlanmıştır. Biyometrik bilgiyi yakalamak amacıyla,
frekans aralığı 1–35 Hz ile sınırlandırılmıştır.

Sonuç olarak, veritabanına bağlı olarak MFCC ve GFCC için ayrı ayrı 13×77
veya 13×145 boyutlarında öznitelik vektörleri oluşturulmuş; ardından, ortalama ve
varyans ayarlaması yapılarak öznitelik vektörleri normalize edilmiştir.

4.2.2 i-vektörlerin Elde Edilmesi

Şekil 4.3, önerilen i-vektör yönteminin blok diyagramını göstermektedir.

Şekil 4.3 i-vektör algoritması blok diyagramı

Geliştirme verilerinden öznitelik vektörleri elde edildikten sonra, GMM-EM
algoritması farklı sayıda karışımla (nmix = [8, 16, 32, 64, 128, 256]) uygulanmakta
ve her karışım için bir UBM (Universal Background Model) elde edilmektedir.
i-vektör modelinin Baum-Welch istatistikleri, geliştirme verilerinden elde edilen
öznitelik vektörleri kullanılarak hesaplanmaktadır.
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Çalışmanın başlangıcında, toplam değişkenlik alt uzayı T sırasıyla 100, 200, 300
ve 400 boyutları için öğrenilmiştir. Ancak, ilerleyen aşamalarda iki veritabanımızın
sınırlı boyutu nedeniyle yalnızca 100 boyutunun, Heartprint veritabanı için ise 200
boyutunun kullanılması uygun görülmüştür. Daha sonra, Baum-Welch istatistikleri,
UBM ve T matrisi kullanılarak i-vektörler hesaplanmaktadır.

Farklı sınıflar arasındaki ayrımı daha iyi sağlamak amacıyla, geliştirme verilerinden
elde edilen i-vektörlere LDA uygulanmakta ve ortaya çıkan V matrisi, eğitim
verilerinin i-vektörlerine uygulanarak bireysel i-vektör modelleri oluşturulmaktadır.

Test i-vektörleri ile eğitim verilerinden elde edilen modeller arasındaki benzerlik
skoru, kosinüs mesafesi kullanılarak hesaplanmaktadır. Sisteme erişim
başvurusunda bulunan kişinin, erişim izni olan bir birey olarak kabul edilip
edilmeyeceği, belirlenen eşik değere göre tespit edilmektedir. En iyi eşik değeri,
0.95 ile 0.5 arasında deneme-yanılma yöntemiyle belirlenmektedir.

Her bir deney için, performans değerlendirme metriklerini elde etmek amacıyla
farklı eğitim ve test verileri kullanılarak deneyler, Heartprint veritabanı için 4 kez,
diğer veritabanları için 10 kez tekrarlanmaktadır.

4.3 EKG ile Doğrulama için Kullanılan Alternatif Yaklaşımlar
Bu bölümde, literatürde yaygın olarak kullanılan çeşitli makine öğrenimi ve
derin öğrenme yöntemlerinin (SVM, MLP, RF, CNN ve RNN) EKG tabanlı
doğrulama sistemlerine uygulanış süreçleri detaylı bir şekilde ele alınmaktadır.
Amacımız, her bir yöntemin modelleme, öznitelik çıkarımı ve hiperparametre
optimizasyonu aşamalarındaki adımlarını açıklayarak, önerilen i-vektör tabanlı
yöntem ile karşılaştırılabilecek bir temel sağlamaktır. Performans analizleri,
ilerleyen bölümlerde ele alınacaktır.

Bu kapsamda, tüm yöntemler için ortak bir veri hazırlama ve öznitelik çıkarımı
süreci benimsenmiş; hiperparametre optimizasyonu ise Bayes optimizasyonu ile
gerçekleştirilmiştir. Her bir yöntemde, MFCC ve GFCC öznitelikleri ayrı ayrı
optimize edilip özniteliklere ait parametreler belirlendikten sonra, bu özniteliklerin
birleştirilmesiyle elde edilen özniteliklerin yöntemlerdeki performansı analiz
edilmiştir.

EKG sinyallerindeki taban hattı kayması, güç hattı paraziti ve kas gürültüsü gibi
istenmeyen bileşenlerin azaltılması için uygulanan filtreler, Ön İşleme bölümünde
açıklandığı şekilde burada da uygulanmıştır.
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4.3.1 Öznitelik Çıkarımı ve Normalizasyon

EKG sinyallerinden 5 saniyelik kesitler alınarak, Mel Frekans Kepstral Katsayıları
(MFCC) ve Gammatone Frekans Kepstral Katsayıları (GFCC) türetilmiştir. Bu
süreçte, aşağıdaki parametre kombinasyonları geliştirme verisi üzerinde test
edilmiştir:

• Pencere süresi: 0.5 s, 0.75 s, 1 s veya 2 s,

• Kayma süresi: 0.1 s, 0.25 s, 0.5 s veya 1 s,

• Bant sayısı: 20, 30 veya 40,

• Bant genişliği: 0.1, 1 veya 1.5.

Denemeler sonucunda, yanlış kabul oranı (FAR) temel alınarak en uygun öznitelik
ayarları belirlenmiş ve bu ayarlar kullanılarak MFCC ile GFCC vektörleri
birleştirilerek nihai öznitelik vektörleri oluşturulmuştur.

Elde edilen öznitelik vektörlerinin istatistiksel uyumu için, eğitim setinin ortalama
ve standart sapması kullanılarak tüm veri (geliştirme ve test) z-skor normalizasyonu
yöntemiyle aynı ölçeğe dönüştürülmüştür. Bu sayede, farklı kayıtlar arasındaki
ölçek farkları azaltılmış ve özniteliklerin model performansına etkisi optimize
edilmiştir.

4.3.2 Kullanıcı Bazlı Model Kurma ve Hiperparametre Arayışı

Bu çalışmada, kullanıcı bazlı bir modelleme yaklaşımı benimsenmiştir. Her bir
katılımcının verileri “pozitif sınıf”, diğer katılımcıların verileri ise “negatif sınıf”
olarak tanımlanmıştır. Negatif örnek sayısı, pozitif örnek sayısının belirli bir
katı olacak şekilde sınırlandırılarak, veri dengesizliğinin olumsuz etkileri en aza
indirilmiştir. Bu yapı, sistemin her bir kullanıcı için özelleştirilmiş doğrulama
modelleri oluşturmasına olanak sağlamıştır.

Hiperparametre arayışı, geliştirme verisi üzerinde 3 katlı çapraz doğrulama (CV)
yöntemi ile gerçekleştirilmiştir. Optimizasyon sürecinde, modellerin yanlış kabul
oranı (FAR) değerini en düşük seviyeye indirmesi hedeflenmiştir. Her katılımcıya
ait en iyi parametre kombinasyonları belirlendikten sonra, aynı parametreler
kullanılarak eğitim verisi üzerinde nihai modeller oluşturulmuş ve test verisinde
ACC, FAR, TAR ve EER gibi performans metrikleri raporlanmıştır.
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4.3.3 SVM Modelleme ve Hiperparametre Optimizasyonu

Bu çalışmada, destek vektör makineleri (SVM) kullanılarak kişi bazlı EKG
doğrulama modeli geliştirilmiştir. Modelleme sürecinde, EKG sinyallerinden
türetilen Mel Frekans Kepstral Katsayıları (MFCC) ve Gammatone Frekans
Kepstral Katsayıları (GFCC) kullanılmıştır. Öznitelik çıkarımı sürecinde yapılan
optimizasyonlar sonucunda, SVM modeli için en uygun MFCC ve GFCC
parametreleri aşağıdaki gibi belirlenmiştir:

• MFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
20, bant genişliği: 1.

• GFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
20, bant genişliği: 0.1.

Bu öznitelikler birleştirilerek nihai öznitelik vektörleri oluşturulmuş ve tüm veri,
z-skor normalizasyonu yöntemiyle aynı ölçeğe getirilmiştir.

SVM hiperparametre optimizasyonu, kullanıcı bazlı bir yaklaşımla
gerçekleştirilmiştir. Her kullanıcı için ayrı bir model oluşturulmuş ve Bayes
optimizasyonu yardımıyla SVM’nin en uygun hiperparametreleri belirlenmiştir.
Optimize edilen hiperparametreler şu şekildedir:

• Kısıtlama Parametresi (C): [0.1, 10]

• Pozitif Sınıf Ağırlığı: [50, 300]

• Negatif Sınıf Ağırlık Çarpanı: [2, 10]

• Çekirdek Ölçeği (KernelScale): [0.1, 10]

• Polinom Derecesi (Polynomial çekirdek için): [2, 10]

Yapılan testlerde, çekirdek fonksiyonları arasında polinomial çekirdek fonksiyonu,
en düşük yanlış kabul oranı (FAR) değerleriyle diğer çekirdek fonksiyonlarına göre
daha iyi performans göstermiştir. Bu nedenle, nihai analizlerde polinomial çekirdek
fonksiyonu tercih edilmiştir.

4.3.4 MLP Modelleme ve Hiperparametre Optimizasyonu

Bu çalışmada, çok katmanlı yapay sinir ağları (MLP) kullanılarak kişi bazlı EKG
doğrulama modeli geliştirilmiştir. Modelleme sürecinde, EKG sinyallerinden
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türetilen Mel Frekans Kepstral Katsayıları (MFCC) ve Gammatone Frekans
Kepstral Katsayıları (GFCC) kullanılmıştır. Öznitelik çıkarımı sürecinde yapılan
optimizasyonlar sonucunda, MLP modeli için en uygun MFCC ve GFCC
parametreleri aşağıdaki gibi belirlenmiştir:

• MFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
20, bant genişliği: 1.

• GFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
30, bant genişliği: 0.1.

Bu öznitelikler birleştirilerek nihai öznitelik vektörleri oluşturulmuş ve tüm veri,
z-skor normalizasyonu yöntemiyle ölçeklendirilmiştir.

MLP hiperparametre optimizasyonu, kullanıcı bazlı bir yaklaşımla
gerçekleştirilmiştir. Her kullanıcı için ayrı bir model oluşturulmuş ve Bayes
optimizasyonu yardımıyla MLP’nin en uygun hiperparametreleri belirlenmiştir.
Optimize edilen hiperparametreler şu şekildedir:

• Gizli Katmanlardaki Nöron Sayısı: [10, 500]

• Katman Sayısı: [1, 5]

• Pozitif Sınıf Ağırlığı: [50, 500]

• Negatif Sınıf Ağırlık Çarpanı: [5, 100]

MLP modeli, kullanıcı bazlı bir yapı ile tasarlanmıştır. Her bir kullanıcının verileri
pozitif sınıf, diğer kullanıcıların verileri ise negatif sınıf olarak etiketlenmiştir.
Veri dengesizliğini azaltmak amacıyla, negatif örnek sayısı, pozitif örnek sayısının
belirli bir katıyla sınırlandırılmıştır. Model eğitimi için kullanılan MLP yapısı,
belirlenen hiperparametrelerle her kullanıcıya özel olarak tasarlanmış olup,
aşağıdaki bileşenlerden oluşmaktadır:

• Tam bağlantılı (fully connected) katmanlar,

• Sigmoid aktivasyon fonksiyonları,

• Çıkış katmanında iki sınıflı doğrulama için softmax aktivasyon fonksiyonu.

Test verisi üzerinde yapılan analizlerde, Yanlış Kabul Oranı (FAR), Doğru Kabul
Oranı (TAR) ve Eşit Hata Oranı (EER) gibi performans metrikleri kullanılarak
sonuçlar raporlanmıştır.

51



4.3.5 RF Modelleme ve Hiperparametre Optimizasyonu

Bu çalışmada, rastgele orman (RF) algoritması kullanılarak kişi bazlı EKG
doğrulama modeli geliştirilmiştir. Modelleme sürecinde, EKG sinyallerinden
türetilen Mel Frekans Kepstral Katsayıları (MFCC) ve Gammatone Frekans
Kepstral Katsayıları (GFCC) kullanılmıştır. Öznitelik çıkarımı sürecinde yapılan
optimizasyonlar sonucunda, RF modeli için en uygun MFCC ve GFCC
parametreleri aşağıdaki gibi belirlenmiştir:

• MFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
20, bant genişliği: 1.

• GFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
20, bant genişliği: 0.1.

Bu öznitelikler birleştirilerek nihai öznitelik vektörleri oluşturulmuş ve tüm veri,
z-skor normalizasyonu yöntemiyle ölçeklendirilmiştir.

RF hiperparametre optimizasyonu, kullanıcı bazlı bir yaklaşımla
gerçekleştirilmiştir. Her kullanıcı için ayrı bir model oluşturulmuş ve Bayes
optimizasyonu yardımıyla RF’nin en uygun hiperparametreleri belirlenmiştir.
Optimize edilen hiperparametreler şu şekildedir:

• Ağaç Sayısı (NumTrees): [20, 200]

• En Fazla Bölme Sayısı (MaxNumSplits): [2, 50]

• Örneklenmiş Değişken Sayısı (NumVariablesToSample): [1, nFeatures]

• Bölme Kriteri (SplitCriterion): gdi, deviance, twoing

• Pozitif Sınıf Ağırlığı: [50, 300]

• Negatif Sınıf Ağırlık Çarpanı: [5, 50]

RF modeli, kullanıcı bazlı bir yapı ile tasarlanmıştır. Her bir kullanıcının verileri
pozitif sınıf, diğer kullanıcıların verileri ise negatif sınıf olarak etiketlenmiştir.
Veri dengesizliğini azaltmak amacıyla, negatif örnek sayısı, pozitif örnek sayısının
belirli bir katı ile sınırlandırılmıştır. Model eğitimi için kullanılan RF yapısı,
belirlenen hiperparametrelerle her kullanıcıya özel olarak optimize edilmiştir.

Test verisi üzerinde yapılan analizlerde, yanlış kabul oranı (FAR), doğru kabul
oranı (TAR) ve eşit hata oranı (EER) gibi performans metrikleri kullanılarak
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sonuçlar raporlanmıştır. Bayes optimizasyonu sonucunda elde edilen en iyi
parametre kombinasyonlarının doğrulama performansı, RF modelinin kullanıcı
bazlı doğrulama için uygun bir yöntem olduğunu göstermektedir.

4.3.6 CNN Modelleme ve Hiperparametre Optimizasyonu

Bu çalışmada, konvolüsyonel sinir ağı (CNN) tabanlı iki farklı model
geliştirilmiştir. CNN, katmanlar arasında öğrenilen filtreler aracılığıyla giriş
verilerindeki uzamsal ve zamansal ilişkileri öğrenmeye odaklanan derin öğrenme
yöntemlerinden biridir. Bu yöntem, özellikle zaman serisi ve görüntü verilerinde
yüksek performans göstermesiyle bilinmektedir. Çalışmamızda, birinci modelde
EKG sinyalleri doğrudan kullanılırken, ikinci modelde EKG sinyallerinden türetilen
Mel Frekans Kepstral Katsayıları (MFCC) ve Gammatone Frekans Kepstral
Katsayıları (GFCC) ile işlem yapılmıştır.

4.3.6.1 1D-CNN Tabanlı Model

Bu yöntemde, EKG sinyalleri doğrudan giriş verisi olarak kullanılmıştır. Eğitim,
doğrulama ve test setleri, kişi bazlı veri bölme stratejisiyle oluşturulmuş ve negatif
sınıf örnek sayısı, pozitif sınıfın beş katı olacak şekilde sınırlandırılmıştır.

1D-CNN modeli, ardışık konvolüsyon katmanlarından oluşmaktadır. Her
konvolüsyon katmanında filtreler yardımıyla sinyallerden öznitelikler çıkarılmış,
bu öznitelikler batch normalization, ReLU aktivasyonu ve max pooling işlemleriyle
desteklenmiştir. Modelin çıkış katmanında, iki sınıflı doğrulama işlemi için softmax
aktivasyonu kullanılmıştır. Hiperparametre optimizasyonunda, Yanlış Kabul Oranı
(FAR) minimize edilmiştir. Optimize edilen parametreler şu şekilde belirlenmiştir:

• Filtre Sayısı (NumFilters): [32, 128],

• Çekirdek Boyutu (KernelSize): [3, 7],

• Konvolüsyon Katman Sayısı (NumLayers): [2, 4],

• Maksimum Epoch Sayısı (MaxEpochs): [20, 50].

Model, test seti üzerinde Yanlış Kabul Oranı (FAR), Doğru Kabul Oranı (TAR)
ve Eşit Hata Oranı (EER) gibi metriklerle değerlendirilmiş ve etkili sonuçlar elde
edilmiştir.
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4.3.6.2 MFCC ve GFCC Tabanlı 2D-CNN Modeli

Bu yöntemde, EKG sinyallerinden MFCC ve GFCC öznitelikleri çıkarılarak model
girişine verilmiştir. Çıkarılan öznitelikler, zaman-frekans matrisleri olarak organize
edilmiş ve iki kanalda birleştirilmiştir. Öznitelik çıkarımı sırasında kullanılan
parametreler şu şekilde belirlenmiştir:

• MFCC Parametreleri: Pencere süresi 2 s, kayma süresi 0.5 s, bant sayısı 20,
bant genişliği 1.

• GFCC Parametreleri: Pencere süresi 2 s, kayma süresi 0.5 s, bant sayısı 20,
bant genişliği 0.1.

2D-CNN modeli, ardışık konvolüsyon katmanları ile yapılandırılmıştır. Model,
batch normalization ve ReLU aktivasyonuyla desteklenen konvolüsyon
katmanlarını, max pooling işlemleriyle birleştirerek öznitelikleri daha soyut
bir temsil haline getirir. Global ortalama havuzlama yerine, öznitelikleri daha
detaylı işleyebilmek amacıyla düzleştirme (flatten) ve tam bağlantılı (fully
connected) katmanlar kullanılmıştır. Bu yapı, modelin derin öğrenme kapasitesini
artırmaktadır. Hiperparametre optimizasyonunda Bayes optimizasyonu kullanılarak
aşağıdaki parametreler optimize edilmiştir:

• Filtre Sayısı (NumFilters): [32, 128],

• Çekirdek Boyutu (FilterSize): [3, 5],

• Konvolüsyon Katman Sayısı (NumConvs): [2, 3],

• Maksimum Epoch Sayısı (MaxEpochs): [20, 50].

4.3.6.3 CNN Performans Değerlendirmesi

Her iki model, test verisi üzerinde Yanlış Kabul Oranı (FAR), Doğru Kabul
Oranı (TAR) ve Eşit Hata Oranı (EER) metrikleri kullanılarak değerlendirilmiştir.
2D-CNN modeli, MFCC ve GFCC özniteliklerini entegre ederek zaman-frekans
bilgisini daha etkili bir şekilde işlemiş; bu sayede 1D-CNN modeline kıyasla daha
yüksek doğrulama başarısı elde edilmiştir.

Sonuç olarak, CNN tabanlı bu iki yöntem, EKG tabanlı kimlik doğrulama
sistemlerinde güçlü performans sergilemiş ve özellikle MFCC ile GFCC
özniteliklerinin entegrasyonu doğrulama başarı oranını önemli ölçüde artırmıştır.
Bu bulgular, EKG sinyallerinin biyometrik kimlik doğrulama sistemlerinde etkin
bir şekilde kullanılabileceğini ortaya koymaktadır.

54



4.3.7 RNN Modelleme ve Hiperparametre Optimizasyonu

Bu çalışmada, tekrarlayan sinir ağları (RNN) tabanlı bir model kullanılarak
kişi bazlı EKG doğrulama sistemi geliştirilmiştir. RNN, özellikle zaman serisi
verilerindeki ardışık ilişkileri öğrenmek için güçlü bir derin öğrenme mimarisi
olarak öne çıkmaktadır. Modelleme sürecinde, EKG sinyallerinden türetilen Mel
Frekans Kepstral Katsayıları (MFCC) ve Gammatone Frekans Kepstral Katsayıları
(GFCC) öznitelikleri çıkarılmış ve giriş verisi olarak kullanılmıştır. Kullanıcı
bazlı bir yaklaşımla her katılımcıya özel modeller oluşturulmuş ve hiperparametre
optimizasyonu Bayes optimizasyonu yöntemiyle gerçekleştirilmiştir.

Modelde giriş verisi olarak EKG sinyallerinden türetilen MFCC ve GFCC
öznitelikleri kullanılmıştır. Öznitelik çıkarımı sırasında kullanılan parametreler
aşağıdaki gibidir:

• MFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
20, bant genişliği: 1.

• GFCC Parametreleri: Pencere süresi: 2 s, kayma süresi: 0.5 s, bant sayısı:
30, bant genişliği: 0.1.

Elde edilen öznitelikler, her bir EKG sinyaline karşılık gelen zaman-frekans
temsillerini oluşturmuş ve RNN modeli için giriş dizileri haline getirilmiştir.
Eğitim, doğrulama ve test setleri, kişi bazlı veri bölme stratejisi ile oluşturulmuş
ve tüm veri z-skor normalizasyonu yöntemiyle ölçeklendirilmiştir.

Bu çalışmada kullanılan çift yönlü Gated Tekrarlayan Birim (Bi-GRU; Bidirectional
Gated Recurrent Unit) tabanlı RNN modeli şu bileşenlerden oluşmaktadır:

• Birinci Bi-GRU Katmanı: Gizli birim sayısı 50 ile 150 arasında optimize
edilmiştir.

• Dropout Katmanı: İlk Bi-GRU katmanından sonra, 0 ile 0.3 arasında
optimize edilen dropout oranı uygulanmıştır.

• İkinci Bi-GRU Katmanı: Gizli birim sayısı 50 ile 150 arasında optimize
edilmiştir.

• Dropout Katmanı: İkinci Bi-GRU katmanından sonra tekrar dropout
uygulanmıştır.

• Tam Bağlantılı Katman (Fully Connected): İki sınıflı doğrulama için iki
nöron içerir.
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• Softmax Katmanı: Çıkış katmanında, sınıf olasılıkları hesaplanmıştır.

Optimize edilen hiperparametreler şunlardır:

• Birinci Bi-GRU Katmanındaki Gizli Birim Sayısı: 50 ile 150 arasında.

• İkinci Bi-GRU Katmanındaki Gizli Birim Sayısı: 50 ile 150 arasında.

• Öğrenme Oranı (Learning Rate): 1× 10−4 ile 1× 10−3 arasında.

• Maksimum Epoch Sayısı: 50 ile 100 arasında.

• Mini Batch Boyutu: 16 ile 32 arasında.

• Dropout Oranı: 0 ile 0.3 arasında.

Çift yönlü GRU tabanlı RNN modeli, özellikle zaman serisi verilerinin
öğrenilmesinde yüksek doğrulama başarısı göstermiştir. Bayes optimizasyonu
ile belirlenen hiperparametreler, modelin genel doğrulama performansını artırmış
ve EKG tabanlı biyometrik doğrulama sistemlerinde RNN’nin etkili bir yöntem
olduğunu ortaya koymuştur.

4.3.8 Son Değerlendirme

Tüm bu yöntemler (SVM, MLP, RF, CNN ve RNN) ortak bir veri hazırlama
ve öznitelik çıkarma çerçevesi üzerinde, farklı öğrenme mekanizmaları ve
hiperparametre ayarları ile uygulanmıştır. Elde edilen sonuçlar, eşit hata oranı
(EER), yanlış kabul oranı (FAR) ve doğru kabul oranı (TAR) gibi performans
metrikleri kullanılarak değerlendirilmektedir. Özellikle Heartprint veri kümesi
üzerinden gerçekleştirilen genellenebilirlik analizleri, önerilen yöntemlerin mobil
biyometrik doğrulama sistemlerinde yüksek doğruluk ve güvenilirlik sağladığını
göstermektedir. Bu kapsamlı değerlendirme, sistemin farklı koşullar altında nasıl
performans gösterdiğini net bir şekilde ortaya koyarken, geliştirilen modellerin
mobil ve giyilebilir cihazlarda pratik olarak uygulanabileceğini de kanıtlamaktadır.

4.4 Performans Değerlendirme Metrikleri
Biyometrik sistemlerin doğruluğu ve güvenilirliği, belirli performans metrikleri
kullanılarak değerlendirilmektedir. Bu bölümde, biyometrik sistemlerde yaygın
olarak kullanılan performans metrikleri ve bu metriklerin matematiksel formülleri
ele alınmaktadır.
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4.4.1 Doğru Kabul Oranı (TAR)

Doğru kabul oranı (TAR), biyometrik sistemin doğru bir şekilde tanıdığı gerçek
pozitiflerin oranını ifade eder. Bu metrik, sistemin gerçek kullanıcıları tanıma
başarısını gösterir:

TAR =
Doğru Kabul Edilen Doğru Pozitifler

Toplam Doğru Pozitifler
=

TP

TP + FN
. (4.1)

Burada,

• TP (True Positives): Sistemin doğru bir şekilde kabul ettiği gerçek
kullanıcılar.

• FN (False Negatives): Sistemin yanlış bir şekilde reddettiği gerçek
kullanıcılar.

Yüksek bir TAR, sistemin gerçek kullanıcıları yüksek doğrulukla tanıdığını gösterir.

4.4.2 Yanlış Kabul Oranı (FAR)

Yanlış kabul oranı (FAR), biyometrik sistemin yanlış bir şekilde kabul ettiği yanlış
pozitiflerin oranını ifade eder. Bu metrik, sistemin yetkisiz kişileri kabul etme
eğilimini ortaya koyar:

FAR =
Yanlış Kabul Edilen Yanlış Pozitifler

Toplam Yanlış Pozitifler
=

FP

FP + TN
. (4.2)

Burada,

• FP (False Positives): Sistemin yanlış bir şekilde kabul ettiği yetkisiz
kullanıcılar.

• TN (True Negatives): Sistemin doğru bir şekilde reddettiği yetkisiz
kullanıcılar.

Düşük bir FAR, sistemin yetkisiz kişileri düşük bir oranda kabul ettiğini gösterir.

4.4.3 Doğru Reddetme Oranı (TRR)

Doğru reddetme oranı (TRR), biyometrik sistemin doğru bir şekilde reddettiği
gerçek negatiflerin oranını ifade eder. Bu metrik, sistemin yetkisiz kişileri tanımada
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başarısını gösterir:

TRR =
Doğru Reddedilen Gerçek Negatifler

Toplam Gerçek Negatifler
=

TN

TN + FP
. (4.3)

Yüksek bir TRR, sistemin yetkisiz kişileri yüksek doğrulukla reddettiğini gösterir.

4.4.4 Yanlış Reddetme Oranı (FRR)

Yanlış reddetme oranı (FRR), biyometrik sistemin yanlış bir şekilde reddettiği
gerçek pozitiflerin oranını ifade eder. Bu metrik, sistemin gerçek kullanıcıları yanlış
bir şekilde reddetme eğilimini gösterir:

FRR =
Yanlış Reddedilen Gerçek Pozitifler

Toplam Gerçek Pozitifler
=

FN

TP + FN
. (4.4)

Düşük bir FRR, sistemin gerçek kullanıcıları yüksek doğrulukla kabul ettiğini
gösterir.

4.4.5 Doğruluk (ACC)

Doğruluk (ACC), biyometrik sistemin genel performansını ölçer ve doğru
tanımlanan toplam örneklerin oranını ifade eder. Bu metrik, sistemin hem gerçek
kullanıcıları tanıma hem de yetkisiz kişileri reddetme başarısını gösterir:

ACC =
Doğru Tanımlanan Örnekler

Toplam Örnekler
=

TP + TN

TP + TN + FP + FN
. (4.5)

Yüksek bir doğruluk, biyometrik sistemin genel performansının yüksek olduğunu
gösterir.

Biyometrik sistemlerde performans değerlendirme metrikleri, sistemin
doğruluğunu ve güvenilirliğini objektif bir şekilde ölçmek için kritik öneme
sahiptir. Bu metrikler, sistemin hem gerçek kullanıcıları tanıma hem de yetkisiz
kişileri reddetme başarısını değerlendirmek amacıyla kullanılır. Yüksek TAR, TRR
ve ACC değerleri ile düşük FAR ve FRR değerleri, biyometrik sistemin güvenilir
ve etkili olduğunu gösterir.

Eşit hata oranı (EER) ve alıcı işletim karakteristiği (ROC) eğrileri, biyometrik
sistemlerin performansını değerlendirmede önemli diğer metriklerdir.
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4.4.6 Eşit Hata Oranı (EER)

Eşit hata oranı (EER), biyometrik sistemin yanlış kabul oranı (FAR) ile yanlış
reddetme oranının (FRR) eşit olduğu noktayı ifade eder. EER, bu iki hata türünün
birbirine karşı hassasiyetini dengelemektedir. Biyometrik sistemin performansının
yüksek olması için düşük bir EER değeri istenir. EER genellikle ROC eğrisi
üzerinde FAR ve FRR oranlarının kesiştiği noktada bulunur.

4.4.7 Alıcı İşletim Karakteristiği (ROC)

ROC eğrisi, biyometrik sistemin farklı eşik değerlerine karşı yanlış kabul oranı
(FAR) ile doğru kabul oranı (TAR) arasındaki ilişkiyi gösteren bir grafiktir. Bu
eğri, biyometrik sistemin performansını görsel olarak değerlendirmede kullanılır.
Eğer sistem, eğrinin sol üst köşesine daha yakınsa, o kadar iyi performans gösterir;
bu durumda düşük FAR ve yüksek TAR elde edilir. Sistemin performansı, ROC
eğrisinin altındaki alan (Area Under the Curve, AUC) ile de ölçülebilir. AUC değeri,
ROC eğrisinin altında kalan alanın yüzdesini temsil eder; dolayısıyla daha yüksek
bir AUC, sistemin daha iyi performans gösterdiğini ifade eder. AUC, ROC eğrisinin
eşik değerlerinden bağımsız olarak genel performansı ölçmektedir.
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5
DENEYSEL SONUÇLAR

Bu bölümde, önerilen EKG tabanlı biyometrik kimlik doğrulama sisteminin
deneysel sonuçları sunulmaktadır. Öncelikle, i-vektör yaklaşımının yanı sıra
SVM, MLP, RF, CNN ve RNN gibi alternatif yöntemler için kullanılan veri
bölümlendirme stratejisi, ön işleme, öznitelik çıkarma ve modelleme adımları
açıklanmıştır. ECG-ID ve BMD101 veritabanlarında elde edilen performans
sonuçlarının yanı sıra, en kapsamlı karşılaştırma Heartprint veritabanı üzerinden
yapılmıştır. Her veritabanı için ROC eğrileri, FAR, TAR ve ACC gibi metrikler
analiz edilerek, sistemin başarımı farklı açılardan değerlendirilmiştir.

5.1 Veri Bölme Stratejisi
Her bir EKG veri kümesi, i-vektör yaklaşımının gereksinimlerini karşılamak ve veri
sızıntısını önlemek amacıyla üç ayrı, örtüşmeyen alt kümeye ayrılmıştır.

• Geliştirme Seti: Global model parametrelerinin öğrenilmesi için kullanılır.
Özellikle, evrensel arka plan modelinin (UBM) eğitimi ve toplam değişkenlik
matrisinin (T) tahmini bu aşamada gerçekleştirilir. Böylece, tüm veri
kümesinin genel niteliklerine dayalı sağlam bir temel oluşturulur.

• Eğitim Seti: Geliştirme setinden elde edilen global parametreler kullanılarak,
her birey için özelleştirilmiş kullanıcı modelleri bu alt kümede eğitilir. Bu
şekilde, her kullanıcının kendine özgü verisi kullanılarak kişiselleştirilmiş
kimlik doğrulama modelleri oluşturulur.

• Test Seti: Modelin nihai performansını objektif bir şekilde ölçmek amacıyla,
optimizasyon ve eğitim aşamalarında kullanılmayan verilerden oluşur. Test
seti sayesinde, modelin genellenebilirliği ve gerçek hayata uyarlanabilirliği
değerlendirilir.

Veri bölme işlemi, her deneyde rastgele olarak tekrarlanmış ve farklı dağılımlar
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kullanılarak modellerin sonuçları üzerindeki olası rastlantısal etkiler en aza
indirgenmeye çalışılmıştır. Bu yaklaşım, i-vektör yöntemi yanı sıra SVM, MLP, RF,
CNN ve RNN gibi alternatif yöntemler için de aynı şekilde uygulanmıştır. Böylece,
tüm yöntemler arasında adil ve tutarlı bir karşılaştırma olanağı sağlanmıştır.

Alternatif yöntemler (SVM, MLP, RF, CNN, RNN) için hiperparametre
optimizasyonu geliştirme setinde gerçekleştirilmiş; en uygun kullanıcı bazlı
parametreler, eğitim setinde model kurulumu için kullanılmıştır. Son olarak,
her modelin gerçek performansı test seti üzerinde ölçülmüştür. Bu strateji, veri
sızıntısını önler, verilerin dengeli kullanımını sağlar ve modellerin gerçek dünya
performansını kapsamlı biçimde değerlendirir.

5.2 i-vektör Yönteminin Genel Adımları
Önerilen i-vektör yöntemi, tüm veri tabanlarında tutarlı bir biçimde uygulanmış ve
aşağıdaki temel adımları izlemiştir:

1. Ön İşleme ve Öznitelik Çıkarma:
Her bir EKG sinyali, Bölüm 2 ve Bölüm 4’te ayrıntılı olarak açıklanan ön
işleme adımlarından geçirilmiş ve sonrasında hem MFCC hem de GFCC
öznitelikleri çıkarılmıştır.

2. GMM-EM ile UBM Eğitimi:
Geliştirme setinde, 8’den 256’ya kadar farklı karışım sayıları için Gauss
karışım modelleri (GMM) eğitilerek evrensel arkaplan modeli (UBM)
oluşturulmuştur.

3. Toplam Değişkenlik (T) Matrisi:
T matrisinin boyutları 100, 200, 300 ve 400 olarak denenmiş; daha küçük
veri tabanlarında 100, Heartprint gibi daha geniş veri tabanlarında ise 200
boyutlu matris tercih edilmiştir.

4. i-vektör Çıkarımı ve LDA:
Baum-Welch istatistikleri yardımıyla i-vektörler elde edilmiş; sınıf ayrımını
güçlendirmek amacıyla doğrusal diskriminant analizi (LDA) ile boyut
indirgeme uygulanmıştır.

5. Puanlama:
Test aşamasında, elde edilen i-vektörler ile kayıtlı modeller arasındaki
kosinüs benzerlik değerleri hesaplanmış ve 0.5–0.95 aralığında değişen eşik
değerleri kullanılarak kabul/red kararları verilmiştir.
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6. Tekrarlı Denemeler ve Nihai Ölçütler:
Her bir deney, farklı rastgele veri bölmeleriyle birden fazla kez (örneğin,
10 tekrar) yürütülmüştür. Elde edilen doğruluk (ACC), yanlış kabul oranı
(FAR), doğru kabul oranı (TAR), yanlış reddetme oranı (FRR) ve eşit
hata oranı (EER) ölçümlerinin ortalamaları alınarak, sistemin genellenebilir
performansı daha sağlam bir biçimde tahmin edilmiştir.

7. Veri Toplama :
Tüm veri tabanlarında 3, 4 ve 5 saniyelik EKG kayıtları üzerinde deneyler
gerçekleştirilmiştir. Bu sayede, yöntemin mobil veya kısıtlı kaynaklara sahip
cihazlarda da uygulanabilirliği araştırılmıştır.

Bu yapı, i-vektör tabanlı yaklaşımın her veritabanında aynı iş akışıyla nasıl
uygulandığını net bir şekilde göstermektedir. Her veritabanı için elde edilen
deneysel sonuçlar ve performans analizleri, yukarıdaki adımlar üzerinden
sunulmaktadır.

5.2.1 Veri Görselleştirme

i-vektör dağılımlarını elde etmek için kullanılan t-SNE (t-dağılımlı Stokastik
Komşu Gömme) yöntemi, yüksek boyutlu verileri iki veya üç boyutlu düzlemde
görselleştirmek amacıyla kullanılan doğrusal olmayan bir boyut indirgeme
tekniğidir. Algoritmanın temel prensibi, yüksek boyutlu uzayda veri noktalarının
birbirlerine olan benzerliklerini Gauss koşullu olasılıklarıyla ifade etmek ve düşük
boyutlu uzayda ise ağır kuyruklu Student-t dağılımı kullanarak benzerlikleri
modellemektir. Bu iki dağılım arasındaki fark, Kullback–Leibler sapması
kullanılarak minimize edilir ve böylece noktaların düşük boyutlu uzaydaki
konumları optimize edilir [96].

Yüksek boyuttaki yakın komşuluk yapısını düşük boyuta aktarırken ortaya çıkan
"yığılma problemi" (crowding problem), Student-t dağılımının ağır kuyruklu yapısı
sayesinde azaltılır; bu sayede, merkezden uzak veri noktalarına daha anlamlı
olasılıklar atayarak, yüksek boyutta farklı olan noktaların düşük boyutta da
ayrışması sağlanır. Bu nedenle t-SNE, biyomedikal sinyallerin (örneğin EKG)
kümelenme ve sınıflandırma amaçlı görselleştirilmesinde sıklıkla tercih edilir.

Öte yandan, t-SNE çıktılarındaki eksenler doğrudan fiziksel veya matematiksel
anlam taşımamakta; yalnızca veri noktaları arasındaki göreceli uzaklık ilişkilerini
temsil etmektedir. Algoritmanın konveks olmayan optimizasyonu ve rastgele
başlangıç koşullarına duyarlılığı nedeniyle, çıktı uzayının eksen yönelimleri ve
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ölçekleri değişkenlik gösterebilir. Bu nedenle, t-SNE grafikleri yorumlanırken,
eksenlerin mutlak değerleri yerine veri noktalarının göreceli konumları ve
kümelerin yapısı esas alınmalıdır [97].

5.3 ECG-ID Veritabanı Performans Analizi
İlk olarak, bu çalışmada ECG-ID veritabanından seçilen 20 bireye ait 200 EKG
kaydından (birey başına on kayıt) oluşturduğumuz veri seti kullanılmıştır. Her
birey için 6 EKG kaydı geliştirme seti olarak seçilmiş ve UBM ile T matrisi
hesaplanmıştır. Kalan 4 EKG kaydı ise sistemin performansını değerlendirmek için
kullanılmıştır.

Değerlendirme sırasında, test edilecek bireyin kayıtlarının %75’i rastgele olarak
eğitim verisi olarak seçilmiştir. Diğer bir deyişle, test edilecek bireye ait 3 EKG
kaydı model oluşturmak için kullanılmış ve kalan kayıtlar (bu kayıtlardan biri test
edilen bireye aittir) test verisi olarak değerlendirilmiştir.

ECG-ID veritabanı üzerinde gerçekleştirilen deneylerde, manuel optimizasyon
sonucu aşağıdaki parametreler kullanılarak MFCC ve GFCC öznitelikleri
çıkarılmıştır:

• Pencere Boyutu: 1 s,

• Kayma: 0.25 s,

• MFCC/GFCC Bant Sayısı: 20/20,

• Frekans Aralığı: 1–35 Hz,

• Toplam Değişkenlik Boyutu: 100,

• Çalışma Sayısı (Tekrar Sayısı): 10.

Şekil 5.1 ve Şekil 5.2, 20 bireyin sırasıyla geliştirme seti ile eğitim-test seti için
MFCC ve GFCC uygulamalarına ait i-vektör dağılımlarını göstermektedir. Her
birey farklı bir renk ile temsil edilmiş; her nokta ise tek bir i-vektöre karşılık
gelmektedir. Grafiklerde, bireylere özgü kümelerin net biçimde ayrılabildiği
gözlemlenmektedir.

Tablo 5.1, Tablo 5.2 ve Tablo 5.3 ile Tablo 5.4, Tablo 5.5 ve Tablo 5.6, farklı EKG
kayıt sürelerinde elde edilen, sırasıyla en yüksek doğruluk (ACC) ve eşit hata oranı
(EER) bazlı sonuçları temsil etmektedir.
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Şekil 5.1 Geliştirme seti: 20 bireyin i-vektörlerinin 2 boyutlu t-SNE projeksiyonu
(ECG-ID)

Şekil 5.2 Eğitim-test seti: 20 bireyin i-vektörlerinin 2 boyutlu t-SNE projeksiyonu
(ECG-ID)
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Tablo 5.1, Tablo 5.2 ve Tablo 5.3 incelendiğinde, en yüksek ACC ile en düşük FAR
değerlerine ulaşmak için en uygun yapılandırmanın, hem MFCC hem de GFCC
özniteliklerinin kullanıldığı, 5 saniyelik sinyal süresi ve 16 karışım sayısı olduğu
görülmektedir. Bu durumu gösteren ROC eğrisi ve EER grafiği sırasıyla Şekil 5.3
ve Şekil 5.4’te verilmiştir.

Tablo 5.1 Sinyal edinim süresine göre elde edilen en yüksek doğruluk değerlerinde
sistem performansı (ECG-ID) - MFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 99.20 ±0.062 94.00 ±2.108 0.73 ±0.072

8 4 99.09 ±0.075 93.00 ±4.216 0.83 ±0.125
5 99.61 ±0.068 77.50 ±5.401 0.10 ±0.035
3 98.94 ±0.107 92.50 ±2.635 0.98 ±0.122

16 4 99.03 ±0.097 91.00 ±4.595 0.87 ±0.131
5 99.28 ±0.142 85.00 ±5.774 0.53 ±0.126
3 98.66 ±0.093 84.00 ±4.595 1.14 ±0.094

32 4 98.73 ±0.093 80.50 ±7.619 1.03 ±0.132
5 98.88 ±0.102 57.50 ±8.580 0.58 ±0.068
3 98.81 ±0.087 79.50 ±5.986 0.93 ±0.111

64 4 98.96 ±0.106 79.00 ±6.146 0.78 ±0.111
5 99.45 ±0.076 86.50 ±5.798 0.38 ±0.076
3 98.69 ±0.071 77.50 ±4.249 1.03 ±0.055

128 4 98.73 ±0.115 71.50 ±5.798 0.91 ±0.122
5 99.36 ±0.074 84.00 ±5.164 0.43 ±0.034
3 98.46 ±0.053 62.00 ±7.888 1.06 ±0.079

256 4 98.64 ±0.128 18.50 ±8.182 0.30 ±0.064
5 99.03 ±0.061 79.50 ±4.972 0.72 ±0.065
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Tablo 5.2 Sinyal edinim süresine göre elde edilen en yüksek doğruluk değerlerinde
sistem performansı (ECG-ID) - GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 99.06 ±0.134 72.00 ±7.888 0.58 ±0.127

8 4 99.08 ±0.089 96.00 ±4.595 0.87 ±0.044
5 99.33 ±0.092 92.50 ±5.401 0.58 ±0.068
3 99.05 ±0.126 80.00 ±5.270 0.70 ±0.124

16 4 99.25 ±0.127 86.50 ±4.743 0.58 ±0.127
5 99.12 ±0.116 73.00 ±5.375 0.53 ±0.109
3 99.04 ±0.051 86.00 ±3.944 0.79 ±0.000

32 4 99.09 ±0.043 90.00 ±3.333 0.79 ±0.000
5 99.10 ±0.048 90.50 ±3.689 0.79 ±0.000
3 99.11 ±0.119 82.50 ±6.346 0.67 ±0.107

64 4 99.01 ±0.080 87.00 ±6.325 0.83 ±0.077
5 99.06 ±0.147 72.00 ±10.328 0.58 ±0.127
3 98.95 ±0.096 73.50 ±5.798 0.72 ±0.122

128 4 99.03 ±0.097 81.00 ±5.676 0.74 ±0.115
5 99.08 ±0.133 67.50 ±8.250 0.51 ±0.108
3 98.94 ±0.102 78.00 ±7.888 0.79 ±0.000

256 4 99.01 ±0.156 69.50 ±8.317 0.61 ±0.111
5 99.15 ±0.112 87.00 ±5.869 0.69 ±0.071

Şekil 5.3 En yüksek doğruluğa dayalı ROC Eğrisi (Sinyal süresi: 5 s, Karışım
sayısı: 16, ECG-ID)
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Tablo 5.3 Sinyal edinim süresine göre elde edilen en yüksek doğruluk değerlerinde
sistem performansı (ECG-ID) - MFCC+GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 99.02 ±0.078 86.50 ±4.116 0.82 ±0.071

8 4 99.15 ±0.037 94.50 ±2.838 0.79 ±0.000
5 99.12 ±0.055 92.00 ±4.216 0.79 ±0.000
3 99.17 ±0.101 74.50 ±6.433 0.51 ±0.076

16 4 99.17 ±0.118 82.00 ±5.375 0.61 ±0.111
5 99.76 ±0.062 81.50 ±4.743 0.00 ±0.000
3 99.21 ±0.108 85.50 ±4.463 0.61 ±0.067

32 4 99.27 ±0.110 94.50 ±4.575 0.67 ±0.121
5 99.49 ±0.104 85.00 ±5.774 0.32 ±0.065
3 99.24 ±0.130 88.00 ±5.375 0.61 ±0.103

64 4 99.07 ±0.075 88.50 ±5.798 0.79 ±0.000
5 99.47 ±0.094 83.00 ±5.375 0.31 ±0.062
3 99.11 ±0.115 70.00 ±7.454 0.51 ±0.108

128 4 99.08 ±0.143 77.00 ±7.528 0.63 ±0.104
5 99.55 ±0.057 82.00 ±4.830 0.22 ±0.044
3 99.05 ±0.137 57.00 ±6.749 0.40 ±0.095

256 4 98.93 ±0.082 81.50 ±7.472 0.84 ±0.111
5 99.40 ±0.114 72.00 ±7.888 0.24 ±0.034

Şekil 5.4 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 5 s, Karışım sayısı: 16, ECG-ID)
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Benzer şekilde, Tablo 5.4, Tablo 5.5 ve Tablo 5.6 incelendiğinde, EER açısından
en uygun çalışma noktalarının belirlendiği görülmektedir. En yüksek ACC ve en
düşük FAR değerlerine ulaşmak için, hem MFCC hem de GFCC özniteliklerinin
kullanıldığı, 5 saniyelik sinyal süresi ve 32 karışım sayısı en uygun yapılandırmayı
sağlamaktadır. Bu durumu gösteren ROC eğrisi ve EER grafiği ise sırasıyla Şekil
5.5 ve Şekil 5.6’da sunulmuştur.

Tablo 5.4 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (ECG-ID) - MFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 98.55 ±0.119 100.00 ±0.000 1.47 ±0.121

8 4 96.66 ±0.221 97.00 ±2.582 3.34 ±0.219
5 95.02 ±0.247 94.50 ±2.838 4.97 ±0.256
3 98.19 ±0.105 100.00 ±0.000 1.83 ±0.107

16 4 93.37 ±0.275 94.50 ±2.838 6.64 ±0.267
5 96.75 ±0.256 97.50 ±2.635 3.26 ±0.276
3 96.82 ±0.120 96.50 ±4.116 3.17 ±0.161

32 4 92.29 ±0.376 93.00 ±4.216 7.72 ±0.413
5 97.44 ±0.217 97.50 ±2.635 2.56 ±0.227
3 96.59 ±0.098 98.50 ±2.415 3.43 ±0.107

64 4 91.53 ±0.427 89.00 ±4.595 8.43 ±0.470
5 93.27 ±0.184 93.00 ±4.216 6.72 ±0.164
3 96.66 ±0.187 97.00 ±2.582 3.35 ±0.204

128 4 91.66 ±0.210 92.00 ±4.830 8.35 ±0.249
5 96.74 ±0.175 97.00 ±2.582 3.26 ±0.181
3 94.94 ±0.173 90.50 ±4.972 5.01 ±0.182

256 4 95.95 ±0.231 96.50 ±3.375 4.05 ±0.224
5 94.69 ±0.091 94.00 ±4.595 5.30 ±0.104
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Tablo 5.5 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (ECG-ID) - GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 96.16 ±0.211 97.50 ±2.635 3.86 ±0.199

8 4 97.50 ±0.160 97.50 ±2.635 2.50 ±0.167
5 97.65 ±0.152 97.50 ±2.635 2.35 ±0.139
3 95.08 ±0.205 96.00 ±3.162 4.93 ±0.187

16 4 95.30 ±0.179 95.50 ±4.378 4.70 ±0.202
5 95.03 ±0.182 95.50 ±3.689 4.98 ±0.186
3 93.74 ±0.424 94.00 ±2.108 6.26 ±0.447

32 4 97.06 ±0.155 97.00 ±3.496 2.93 ±0.162
5 97.01 ±0.236 98.50 ±2.415 3.01 ±0.255
3 95.44 ±0.191 95.00 ±4.082 4.56 ±0.213

64 4 98.54 ±0.063 98.50 ±2.415 1.46 ±0.081
5 98.68 ±0.140 98.50 ±2.415 1.32 ±0.140
3 94.29 ±0.303 95.50 ±3.689 5.73 ±0.324

128 4 95.47 ±0.227 97.00 ±2.582 4.55 ±0.229
5 94.87 ±0.184 95.50 ±3.689 5.14 ±0.202
3 93.52 ±0.267 93.00 ±5.375 6.47 ±0.306

256 4 94.58 ±0.182 93.50 ±3.375 5.40 ±0.192
5 97.62 ±0.179 97.00 ±4.216 2.38 ±0.144

Şekil 5.5 EER noktasına dayalı ROC Eğrisi (Sinyal süresi: 5 s, Karışım sayısı: 32,
ECG-ID)
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Tablo 5.6 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (ECG-ID) - MFCC+GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 97.81 ±0.080 99.50 ±1.581 2.22 ±0.070

8 4 98.60 ±0.070 99.50 ±1.581 1.41 ±0.064
5 98.94 ±0.088 99.50 ±1.581 1.07 ±0.082
3 97.00 ±0.320 93.50 ±3.375 2.95 ±0.303

16 4 94.10 ±0.250 94.50 ±2.838 5.91 ±0.232
5 96.01 ±0.282 92.00 ±2.582 3.93 ±0.272
3 96.19 ±0.320 94.50 ±3.375 3.79 ±0.303

32 4 99.24 ±0.250 97.00 ±2.838 0.73 ±0.232
5 99.38 ±0.063 97.50 ±2.635 0.59 ±0.054
3 97.56 ±0.144 98.50 ±2.415 2.45 ±0.134

64 4 98.53 ±0.034 98.00 ±2.582 1.46 ±0.042
5 98.14 ±0.283 93.00 ±4.216 1.80 ±0.299
3 95.49 ±0.383 97.00 ±2.582 4.53 ±0.406

128 4 97.55 ±0.118 97.00 ±2.582 2.45 ±0.102
5 96.10 ±0.127 94.50 ±2.838 3.87 ±0.135
3 95.75 ±0.239 96.00 ±3.944 4.25 ±0.283

256 4 94.84 ±0.357 93.00 ±4.216 5.14 ±0.410
5 94.66 ±0.270 94.50 ±2.838 5.34 ±0.290

Şekil 5.6 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 5 s, Karışım sayısı: 32, ECG-ID)
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5.4 BMD101 Veritabanı Performans Analizi
Bu çalışmada, gönüllü katılımcılardan kişisel olarak topladığımız özel BMD101
veri kümesi üzerinde önerilen yöntem değerlendirilmiştir. BMD101 sensörü,
mobil cihazlara entegre edilebilir yapısıyla gerçek dünya uygulanabilirliğini
test etme amacımıza doğrudan katkı sağlasa da, bu çalışmada gerçek zamanlı
testler gerçekleştirilmemiştir. Söz konusu veri kümesi, iki farklı senaryoda
(BMD-1 ve BMD-2) yürütülen deneyleri desteklemiş; hem önerilen metodolojinin
doğruluğunu hem de analiz bileşenlerinin, gerçekçi mobil uygulama koşullarına
benzer ortamlarda etkinliğini değerlendirmemize imkân tanımıştır.

BMD101 veritabanı için manuel optimizasyonla elde edilen parametreler aşağıda
listelenmiştir:

• Pencere Boyutu: 1 s

• Kayma: 0.25 s

• MFCC/GFCC Bant Sayısı: 20/16

• Frekans Aralığı: 1–35 Hz

• Toplam Değişkenlik Boyutu: 100

• Çalışma Sayısı (Tekrar): 10

Bu yaklaşım, BMD101 sensörünün taşınabilir cihazlara entegrasyon potansiyelini
yansıtmakta ve deneysel sonuçların pratik kullanım senaryolarına ışık tutabilecek
şekilde analiz edilmesine imkân tanımaktadır.

Çalışmanın ilk aşamasında oluşturulan veritabanında, farklı sayıda EKG kaydına
sahip 22 birey bulunmaktadır. Geliştirme setinde, veritabanındaki bu 22 bireyin
toplamda 170 EKG verisi kullanılarak UBM ve T matrisi hesaplanmaktadır. Bu
hesaplamalar, sistemin genel yapısını ve performans parametrelerini belirlemede
temel bir işlev görmektedir. Geriye, 10 EKG kaydı bulunan 6 birey kalmaktadır.
Bu 6 bireyin EKG kayıtlarının %60’ı rastgele seçilerek bireye özgü modeller
oluşturulmakta ve kalan %40’ı test seti olarak ayrılmaktadır. Bu ayrım,
sistemimizin gerçek dünya koşullarında ne kadar etkili çalışabileceğini ölçme fırsatı
sunmaktadır.

Şekil 5.7 ve Şekil 5.8, 22 bireyin sırasıyla geliştirme seti ve eğitim-test seti için
MFCC ve GFCC uygulamalarının vektör dağılımlarını göstermektedir. Tablo 5.7,
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Şekil 5.7 Geliştirme seti: 22 bireyin i-vektörlerinin 2 boyutlu t-SNE projeksiyonu
(BMD-1)

Şekil 5.8 Eğitim-test seti: 6 bireyin i-vektörlerinin 2 boyutlu t-SNE projeksiyonu
(BMD-1)
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Tablo 5.8 ve Tablo 5.9, en yüksek doğruluk değerine; Tablo 5.10, Tablo 5.11 ve
Tablo 5.12, eşit hata oranına (EER) dayalı sonuçları göstermektedir.

Tablo 5.7, Tablo 5.8 ve Tablo 5.9 incelendiğinde, en yüksek ACC ve en düşük FAR
elde etmek için uygun yapılandırmanın, hem MFCC hem de GFCC özniteliklerinin,
4 saniyelik sinyal süresi ve 64 karışım sayısı ile kullanılmasıyla sağlandığı açıktır.
ROC eğrisi ve EER grafiği sırasıyla Şekil 5.9 ve Şekil 5.10’da gösterilmektedir.

Tablo 5.7 Sinyal edinim süresine göre elde edilen en yüksek doğruluk değerlerinde
sistem performansı (BMD-1) - MFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 96.54 ±0.478 67.92 ±3.953 1.17 ±0.360

8 4 97.90 ±0.455 71.67 ±6.149 0.00 ±0.000
5 97.87 ±0.270 71.67 ±3.287 0.03 ±0.105
3 96.51 ±0.505 63.75 ±5.215 0.87 ±0.358

16 4 96.17 ±0.417 71.67 ±6.455 1.87 ±0.391
5 95.62 ±0.767 55.00 ±8.517 1.13 ±0.422
3 96.88 ±0.608 74.58 ±4.143 1.33 ±0.588

32 4 97.44 ±0.438 65.42 ±5.909 0.00 ±0.000
5 98.24 ±0.545 87.50 ±5.893 0.90 ±0.316
3 97.22 ±0.252 62.50 ±3.402 0.00 ±0.000

64 4 97.10 ±0.686 78.33 ±3.829 1.40 ±0.562
5 97.35 ±0.332 74.58 ±4.585 0.83 ±0.283
3 95.40 ±0.513 42.92 ±6.227 0.40 ±0.263

128 4 96.98 ±0.631 65.00 ±7.658 0.47 ±0.172
5 97.35 ±0.362 74.17 ±3.829 0.80 ±0.172
3 94.69 ±0.664 56.25 ±4.910 2.23 ±0.446

256 4 95.93 ±0.540 50.42 ±6.038 0.43 ±0.225
5 95.59 ±0.484 71.25 ±4.585 2.47 ±0.322

73



Tablo 5.8 Sinyal edinim süresine göre elde edilen en yüksek doğruluk değerlerinde
sistem performansı (BMD-1) - GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 97.25 ±0.572 86.25 ±3.953 1.87 ±0.549

8 4 98.36 ±0.358 83.75 ±4.988 0.47 ±0.233
5 97.78 ±1.207 95.83 ±5.556 2.07 ±1.359
3 96.70 ±0.798 85.42 ±6.875 2.40 ±0.516

16 4 97.75 ±0.293 87.50 ±5.556 1.43 ±0.274
5 97.87 ±0.447 76.67 ±7.136 0.43 ±0.225
3 96.11 ±0.508 52.08 ±6.588 0.37 ±0.246

32 4 97.53 ±0.784 69.58 ±10.025 0.23 ±0.274
5 98.02 ±0.911 73.33 ±12.298 0.00 ±0.000
3 94.44 ±0.965 48.75 ±7.620 1.90 ±0.630

64 4 95.65 ±0.397 56.67 ±5.270 1.23 ±0.353
5 95.62 ±0.767 81.67 ±4.891 3.27 ±0.699
3 95.68 ±0.682 46.67 ±6.747 0.40 ±0.263

128 4 96.76 ±0.671 56.25 ±9.054 0.00 ±0.000
5 96.08 ±0.583 58.33 ±7.607 0.90 ±0.316
3 93.83 ±0.525 37.50 ±5.893 1.67 ±0.314

256 4 93.40 ±0.417 15.83 ±4.730 0.40 ±0.263
5 92.93 ±0.492 22.50 ±5.958 1.43 ±0.446

Şekil 5.9 En yüksek doğruluğa dayalı ROC Eğrisi (Sinyal süresi: 4 s, Karışım
sayısı: 64, BMD-1)
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Tablo 5.9 Sinyal edinim süresine göre elde edilen en yüksek doğruluk değerlerinde
sistem performansı (BMD-1) - MFCC+GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 95.15 ±0.583 48.75 ±3.953 1.13 ±0.422

8 4 95.96 ±1.083 79.58 ±6.350 2.73 ±1.098
5 95.31 ±1.189 82.50 ±5.827 3.67 ±1.227
3 95.46 ±1.365 90.83 ±5.827 4.17 ±1.509

16 4 96.73 ±1.110 97.92 ±2.946 3.37 ±1.356
5 96.36 ±1.283 92.50 ±3.829 3.33 ±1.499
3 97.59 ±0.455 77.92 ±6.227 0.83 ±0.236

32 4 98.27 ±0.260 82.50 ±3.287 0.47 ±0.233
5 96.30 ±1.209 86.67 ±4.730 2.93 ±1.205
3 97.93 ±0.583 87.50 ±4.392 1.23 ±0.417

64 4 98.43 ±0.397 78.75 ±5.361 0.00 ±0.000
5 97.90 ±0.379 81.67 ±4.025 0.80 ±0.281
3 97.62 ±0.370 73.75 ±4.831 0.47 ±0.281

128 4 97.84 ±0.356 80.00 ±4.730 0.73 ±0.306
5 97.35 ±0.838 88.33 ±5.122 1.93 ±0.843
3 94.29 ±0.509 51.25 ±6.818 2.27 ±0.625

256 4 96.79 ±0.441 62.92 ±6.646 0.50 ±0.176
5 95.22 ±0.826 61.25 ±4.831 2.07 ±0.872

Şekil 5.10 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 4 s, Karışım sayısı: 64, BMD-1)
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Benzer şekilde, Tablo 5.10, Tablo 5.11 ve Tablo 5.12 incelendiğinde, EER açısından
en uygun çalışma noktalarının belirlendiği görülmektedir. En yüksek ACC ve en
düşük FAR elde etmek için, GFCC özniteliklerinin 5 saniyelik sinyal süresi ve 8
karışım sayısı ile kullanılması uygun yapılandırmayı sağlamaktadır. ROC eğrisi ve
EER grafiği ise Şekil 5.11 ve Şekil 5.12’de gösterilmektedir.

Tablo 5.10 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (BMD-1) - MFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 87.75 ±0.743 87.08 ±4.585 12.20 ±0.849

8 4 90.65 ±0.824 91.67 ±3.928 9.43 ±0.771
5 94.94 ±1.359 92.50 ±2.635 4.87 ±1.390
3 87.99 ±0.762 92.08 ±5.361 12.33 ±0.816

16 4 91.70 ±1.177 90.42 ±4.414 8.20 ±1.209
5 88.43 ±0.957 92.08 ±5.710 11.87 ±1.113
3 88.98 ±1.574 91.25 ±4.988 11.20 ±1.657

32 4 93.30 ±0.977 91.25 ±4.585 6.53 ±0.971
5 94.44 ±0.651 95.42 ±4.988 5.63 ±0.949
3 85.28 ±1.470 85.42 ±5.642 14.73 ±1.570

64 4 90.19 ±1.572 90.83 ±3.287 9.87 ±1.541
5 93.43 ±1.350 92.50 ±4.303 6.50 ±1.326
3 82.13 ±1.737 86.25 ±2.812 18.20 ±1.827

128 4 88.21 ±1.424 87.50 ±6.211 11.73 ±1.530
5 89.23 ±1.264 91.67 ±5.556 10.97 ±1.418
3 85.46 ±1.313 84.58 ±3.953 14.47 ±1.492

256 4 89.32 ±1.100 87.50 ±3.402 10.53 ±1.239
5 91.57 ±0.618 90.42 ±5.909 8.33 ±0.667
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Tablo 5.11 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (BMD-1) - GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 94.26 ±1.660 92.92 ±3.953 5.63 ±1.829

8 4 96.48 ±1.311 95.83 ±3.402 3.47 ±1.239
5 97.78 ±1.207 95.83 ±5.556 2.07 ±1.359
3 91.79 ±1.236 93.75 ±6.875 8.37 ±1.212

16 4 96.57 ±0.608 96.25 ±3.648 3.40 ±0.584
5 96.60 ±0.436 97.92 ±2.196 3.50 ±0.451
3 91.48 ±2.149 90.00 ±4.891 8.40 ±2.148

32 4 94.94 ±0.945 93.33 ±4.479 4.93 ±1.131
5 95.77 ±1.294 94.17 ±4.025 4.10 ±1.516
3 88.27 ±1.268 91.67 ±5.893 12.00 ±1.133

64 4 91.20 ±0.745 89.58 ±2.946 8.67 ±0.875
5 92.07 ±1.040 90.00 ±4.025 7.77 ±1.248
3 83.40 ±1.371 89.17 ±5.958 17.07 ±1.447

128 4 88.80 ±0.943 87.50 ±4.392 11.10 ±1.218
5 86.94 ±2.314 90.00 ±4.025 13.30 ±2.570
3 81.94 ±1.887 83.75 ±5.361 18.20 ±2.207

256 4 82.50 ±1.484 78.75 ±6.038 17.20 ±1.687
5 78.12 ±1.724 80.83 ±5.625 22.10 ±1.833

Tablo 5.12 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (BMD-1) - MFCC+GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 91.20 ±0.888 91.25 ±4.143 8.80 ±0.892

8 4 95.19 ±0.786 91.25 ±3.648 4.50 ±0.878
5 94.66 ±0.836 92.08 ±3.074 5.13 ±0.892
3 92.96 ±0.858 92.92 ±4.414 7.03 ±0.962

16 4 96.73 ±1.110 97.92 ±2.946 3.37 ±1.356
5 95.37 ±0.965 95.83 ±3.402 4.67 ±1.227
3 90.86 ±1.010 90.42 ±2.812 9.10 ±1.144

32 4 95.12 ±0.560 95.42 ±3.074 4.90 ±0.649
5 94.29 ±0.912 96.67 ±3.829 5.90 ±1.055
3 92.72 ±0.851 93.75 ±3.541 7.37 ±0.808

64 4 96.51 ±0.461 96.25 ±3.648 3.47 ±0.613
5 96.94 ±1.002 95.00 ±3.829 2.90 ±1.187
3 93.70 ±0.786 97.08 ±3.953 6.57 ±0.704

128 4 95.19 ±0.441 95.83 ±2.778 4.87 ±0.502
5 96.02 ±1.221 95.83 ±2.778 3.97 ±1.319
3 85.71 ±1.350 80.83 ±8.146 13.90 ±1.633

256 4 93.55 ±0.981 89.58 ±8.391 6.13 ±1.135
5 89.35 ±1.582 92.92 ±3.430 10.93 ±1.684
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Şekil 5.11 EER noktasına dayalı ROC Eğrisi (Sinyal süresi: 5 s, Karışım sayısı: 8,
BMD-1)

Şekil 5.12 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 5 s, Karışım sayısı: 8, BMD-1)

78



İkinci senaryoda, veritabanındaki 23 bireyin 187 EKG verisi kullanılarak UBM ve
T matrisi hesaplanmaktadır. Ardından, toplamda 100 veri içeren 10 bireyden alınan
her biri 10 EKG kaydı ile sistemin performansı test edilmektedir. Test edilecek
birey için verilerin %60’ı eğitim verisi olarak rastgele seçilmekte, kalanı ise test
verisi olarak kullanılmaktadır.

Şekil 5.13 ve Şekil 5.14, 23 bireyin sırasıyla geliştirme seti ve eğitim-test seti için
MFCC ve GFCC uygulamalarının vektör dağılımlarını göstermektedir. Tablo 5.13,
Tablo 5.14 ve Tablo 5.15, en yüksek doğruluk değerlerini; diğer yandan Tablo 5.16,
Tablo 5.17 ve Tablo 5.18 ise eşit hata oranı (EER) göz önünde bulundurularak
oluşturulan sonuçları göstermektedir.

Şekil 5.13 Geliştirme seti: 23 bireyin i-vektörlerinin 2 boyutlu t-SNE projeksiyonu
(BMD-2)

Tablo 5.13, Tablo 5.14 ve Tablo 5.15 incelendiğinde, en yüksek ACC elde etmek
ve FAR değerini en aza indirmek için uygun yapılandırmanın, 5 saniyelik sinyal
süresi ve 16 karışım sayısı ile GFCC özniteliklerinin kullanılmasını içerdiği ortaya
çıkmaktadır. ROC eğrisi ve EER grafiği sırasıyla Şekil 5.15 ve Şekil 5.16’da
gösterilmektedir.

79



Şekil 5.14 Eğitim-test seti: 10 bireyin i-vektörlerinin 2 boyutlu t-SNE
projeksiyonu (BMD-2)

Tablo 5.13 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
değerlerinde sistem performansı (BMD-2) - MFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 96.66 ±0.182 27.75 ±3.426 0.28 ±0.108

8 4 97.47 ±0.316 55.25 ±4.158 0.66 ±0.279
5 97.55 ±0.270 54.00 ±4.743 0.51 ±0.159
3 96.77 ±0.214 27.00 ±4.684 0.13 ±0.102

16 4 97.73 ±0.101 57.00 ±3.873 0.46 ±0.110
5 97.41 ±0.159 59.00 ±3.575 0.88 ±0.133
3 96.82 ±0.117 35.25 ±2.486 0.44 ±0.091

32 4 97.01 ±0.162 37.75 ±2.993 0.36 ±0.137
5 97.83 ±0.280 73.50 ±4.116 1.09 ±0.195
3 96.52 ±0.449 45.50 ±5.986 1.21 ±0.294

64 4 97.02 ±0.395 52.75 ±6.396 1.01 ±0.243
5 97.70 ±0.202 60.00 ±2.887 0.62 ±0.159
3 96.19 ±0.212 22.25 ±3.217 0.52 ±0.139

128 4 96.73 ±0.279 35.00 ±4.410 0.52 ±0.166
5 97.09 ±0.262 37.00 ±3.873 0.24 ±0.126
3 96.62 ±0.172 35.75 ±2.899 0.68 ±0.133

256 4 96.62 ±0.239 42.25 ±4.632 0.97 ±0.223
5 96.90 ±0.406 45.50 ±7.246 0.81 ±0.174
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Tablo 5.14 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
değerlerinde sistem performansı (BMD-2) - GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 97.07 ±0.326 45.25 ±6.816 0.62 ±0.217

8 4 97.45 ±0.301 60.25 ±3.810 0.90 ±0.192
5 96.79 ±0.172 43.50 ±3.764 0.84 ±0.107
3 97.20 ±0.266 41.00 ±5.676 0.30 ±0.105

16 4 97.94 ±0.208 62.25 ±3.810 0.48 ±0.129
5 98.52 ±0.137 65.25 ±3.217 0.00 ±0.000
3 97.62 ±0.152 56.25 ±3.773 0.54 ±0.110

32 4 97.20 ±0.293 62.50 ±5.137 1.26 ±0.223
5 97.99 ±0.215 66.00 ±5.297 0.59 ±0.229
3 96.90 ±0.106 30.00 ±3.118 0.12 ±0.063

64 4 97.18 ±0.267 50.00 ±4.714 0.72 ±0.218
5 97.87 ±0.256 58.50 ±3.944 0.38 ±0.175
3 96.85 ±0.225 41.50 ±3.375 0.69 ±0.172

128 4 97.09 ±0.289 43.50 ±4.595 0.53 ±0.164
5 97.13 ±0.313 54.25 ±4.091 0.97 ±0.246
3 96.19 ±0.212 10.50 ±4.972 0.00 ±0.000

256 4 96.90 ±0.272 45.00 ±4.249 0.79 ±0.243
5 96.34 ±0.208 29.00 ±3.944 0.67 ±0.117

Şekil 5.15 En yüksek doğruluğa dayalı ROC Eğrisi (Sinyal süresi: 5 s, Karışım
sayısı: 8, BMD-2)
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Tablo 5.15 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
değerlerinde sistem performansı (BMD-2) - MFCC+GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 98.40 ±0.235 69.25 ±5.007 0.30 ±0.129

8 4 98.41 ±0.177 62.75 ±4.158 0.00 ±0.000
5 98.35 ±0.202 64.75 ±4.480 0.16 ±0.094
3 97.67 ±0.277 53.00 ±4.684 0.34 ±0.110

16 4 98.12 ±0.213 62.50 ±4.249 0.30 ±0.091
5 98.39 ±0.177 65.50 ±4.684 0.14 ±0.075
3 96.88 ±0.392 49.25 ±5.780 1.00 ±0.203

32 4 97.93 ±0.293 57.00 ±5.503 0.26 ±0.139
5 97.72 ±0.266 56.00 ±5.676 0.42 ±0.146
3 97.07 ±0.226 31.25 ±5.303 0.00 ±0.000

64 4 97.70 ±0.280 68.75 ±5.035 1.01 ±0.212
5 97.98 ±0.365 75.75 ±5.534 1.03 ±0.174
3 97.15 ±0.206 42.25 ±4.923 0.41 ±0.118

128 4 97.84 ±0.213 52.25 ±4.322 0.13 ±0.088
5 97.84 ±0.181 59.25 ±4.866 0.44 ±0.117
3 96.59 ±0.345 44.75 ±4.923 1.11 ±0.240

256 4 97.83 ±0.196 55.50 ±3.689 0.29 ±0.078
5 98.03 ±0.289 60.25 ±6.816 0.29 ±0.078

Şekil 5.16 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 5 s, Karışım sayısı: 8, BMD-2)
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Tablo 5.16 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (BMD-2) - MFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 89.55 ±0.732 87.00 ±3.689 10.33 ±0.764

8 4 92.21 ±0.513 90.50 ±3.873 7.71 ±0.540
5 91.62 ±0.361 91.75 ±3.736 8.39 ±0.324
3 85.52 ±1.034 87.00 ±3.689 14.54 ±1.038

16 4 87.46 ±0.986 88.00 ±3.689 12.57 ±0.979
5 90.52 ±0.817 89.25 ±4.572 9.42 ±0.806
3 89.43 ±0.704 87.00 ±2.838 10.47 ±0.789

32 4 91.81 ±0.476 92.00 ±1.972 8.20 ±0.554
5 91.63 ±0.497 91.75 ±1.687 8.38 ±0.532
3 84.90 ±0.575 87.75 ±4.480 15.22 ±0.595

64 4 90.13 ±0.684 86.50 ±5.426 9.71 ±0.640
5 90.53 ±0.440 88.50 ±3.764 9.38 ±0.436
3 89.70 ±0.648 88.50 ±4.441 10.24 ±0.599

128 4 90.62 ±0.704 92.75 ±3.623 9.48 ±0.644
5 89.87 ±0.486 92.75 ±3.623 10.26 ±0.527
3 88.32 ±1.045 85.00 ±2.887 11.53 ±1.085

256 4 88.12 ±0.999 92.00 ±3.073 12.06 ±1.052
5 88.54 ±1.057 92.00 ±3.689 11.61 ±1.090

Tablo 5.16, Tablo 5.17 ve Tablo 5.18, eşit hata oranı (EER) için en uygun
çalışma noktalarını göstermektedir. En yüksek ACC elde etmek ve FAR
değerini en aza indirmek için uygun yapılandırmanın, hem MFCC hem de GFCC
öznitelikleri kullanılarak 4 saniyelik sinyal süresi ve 8 karışım sayısı ile sağlandığı
görülmektedir. ROC eğrisi ve EER grafiği sırasıyla Şekil 5.17 ve Şekil 5.18’de
gösterilmektedir.
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Tablo 5.17 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (BMD-2) - GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 88.82 ±0.881 90.25 ±4.480 11.24 ±0.744

8 4 89.79 ±0.514 92.75 ±3.623 10.34 ±0.493
5 91.74 ±0.577 93.00 ±2.297 8.31 ±0.641
3 86.29 ±0.885 83.00 ±3.689 13.57 ±0.965

16 4 87.63 ±0.667 90.25 ±4.480 12.49 ±0.609
5 88.51 ±0.806 92.50 ±3.727 11.67 ±0.806
3 87.53 ±0.597 87.25 ±2.189 12.46 ±0.630

32 4 87.81 ±0.598 89.25 ±3.129 12.26 ±0.658
5 91.36 ±0.762 89.25 ±5.007 8.54 ±0.814
3 83.80 ±1.572 85.50 ±3.689 16.28 ±1.757

64 4 87.81 ±1.129 92.50 ±2.887 12.40 ±1.190
5 92.90 ±0.512 91.75 ±3.344 7.04 ±0.497
3 84.95 ±0.795 81.25 ±6.264 14.89 ±0.913

128 4 88.23 ±0.720 86.25 ±4.751 11.68 ±0.743
5 88.37 ±0.715 89.00 ±3.375 11.66 ±0.729
3 84.01 ±1.207 80.50 ±3.291 15.83 ±1.241

256 4 85.18 ±0.932 79.50 ±3.873 14.57 ±0.988
5 85.48 ±0.743 87.25 ±3.426 14.60 ±0.752

Tablo 5.18 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (BMD-2) - MFCC+GFCC

Karışım Sayısı s ACC(%) TAR(%) FAR(%)
3 88.79 ±0.862 92.25 ±2.486 11.37 ±0.861

8 4 94.43 ±0.414 89.75 ±3.810 5.37 ±0.549
5 93.63 ±0.559 92.25 ±3.217 6.31 ±0.615
3 86.91 ±0.716 90.25 ±5.197 13.23 ±0.690

16 4 91.38 ±0.723 90.50 ±4.534 8.58 ±0.755
5 92.59 ±0.484 92.75 ±3.426 7.42 ±0.494
3 91.07 ±0.495 91.75 ±2.648 8.96 ±0.535

32 4 92.29 ±0.306 95.75 ±3.344 7.87 ±0.339
5 94.15 ±0.410 91.75 ±4.091 5.74 ±0.457
3 89.50 ±0.675 86.50 ±2.934 10.37 ±0.667

64 4 93.89 ±0.577 90.25 ±4.480 5.94 ±0.577
5 93.62 ±0.620 91.25 ±5.035 6.28 ±0.572
3 88.38 ±0.506 91.00 ±2.415 11.73 ±0.565

128 4 89.51 ±0.405 93.25 ±2.372 10.66 ±0.427
5 92.64 ±0.511 89.25 ±3.736 7.21 ±0.481
3 85.94 ±0.663 87.25 ±2.751 14.12 ±0.723

256 4 88.79 ±0.671 92.25 ±3.623 11.37 ±0.646
5 91.90 ±0.643 91.50 ±3.375 8.08 ±0.673
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Şekil 5.17 EER noktasına dayalı ROC Eğrisi (Sinyal süresi: 4 s, Karışım sayısı: 8,
BMD-2)

Şekil 5.18 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 4 s, Karışım sayısı: 8, BMD-2)
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5.5 Heartprint Veritabanı Performans Analizi
Heartprint veritabanı, bu araştırmanın son aşamasında kullanılan geniş ve kapsamlı
bir biyometrik veri setidir. Bu veritabanı, 199 bireye ait toplam 1539 EKG kaydını
içermektedir. Yüksek katılımcı sayısı ve çeşitliliği sayesinde, sistem performansı
güvenilir bir şekilde ölçülebilmektedir.

Veri kümesinde katılımcıların kayıt sayılarındaki farklılıklar göz önünde
bulundurularak, katılımcılar iki ana gruba ayrılmıştır. Kaydı en az 10 olan 108
katılımcı “yeterli veri” kategorisinde, kaydı 10’dan az olan 91 katılımcı ise “verisi
kısıtlı” kategorisinde ele alınmıştır. Yeterli veriye sahip her bir katılımcının 6 EKG
kaydı geliştirme (optimizasyon) verisi olarak ayrılmış, kalan kayıtlar ise %80 eğitim
ve %20 test oranında bölünmüştür. Verisi kısıtlı olan 91 katılımcıya ait tüm kayıtlar
doğrudan test verisine dahil edilmiştir. Bu strateji, modellerin genellenebilirliğini
kapsamlı bir şekilde değerlendirmeyi ve sistem tasarımında dengeli veri kullanımını
sağlamayı amaçlamaktadır.

Heartprint veritabanı için i-vektör yöntemi, aşağıdaki parametreler manuel olarak
optimize edilerek kullanılmıştır:

• Pencere boyutu: 0.5 s

• Kayma: 0.1 s

• MFCC/GFCC bant sayısı: 24/40

• Frekans aralığı: 1–35 Hz

• Toplam değişkenlik boyutu: 200

• Çalışma sayısı (tekrar): 4

Şekil 5.19 ve Şekil 5.20, Heartprint veritabanı için sırasıyla geliştirme seti ve
eğitim-test seti üzerinde uygulanan MFCC ve GFCC özniteliklerinin i-vektör
dağılımlarını göstermektedir. Tablo 5.19, Tablo 5.20 ve Tablo 5.21 en yüksek
doğruluk değerlerini, Tablo 5.22, Tablo 5.23 ve Tablo 5.24 ise eşit hata oranını
(EER) göz önünde bulunduran sonuçları ortaya koymaktadır.

Tablo 5.19’dan Tablo 5.24’e kadar yer alan tüm tablolar, detaylı olarak
incelendiğinde, en yüksek ACC elde etmek ve FAR değerini en aza indirmek
için en uygun yapılandırmanın iki durum içinde, 5 saniyelik bir sinyal süresi ve
karışım sayısı 32 olarak uygulanmasıyla hem MFCC hem de GFCC özniteliklerinin
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Şekil 5.19 Geliştirme seti: 108 bireyin i-vektörlerinin 2 boyutlu t-SNE
projeksiyonu (Heartprint)

Şekil 5.20 Eğitim-test seti: 199 bireyin i-vektörlerinin 2 boyutlu t-SNE
projeksiyonu (Heartprint)
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Tablo 5.19 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
değerlerinde sistem performansı (Heartprint) - MFCC

MFCC
Karışım Sayısı s ACC(%) TAR(%) FAR(%)

3 99.80 ±0.005 11.46 ±2.216 0.00 ±0.001
8 4 99.80 ±0.003 12.96 ±2.105 0.00 ±0.002

5 99.80 ±0.004 14.12 ±2.088 0.00 ±0.001
3 99.79 ±0.012 24.88 ±4.266 0.03 ±0.005

16 4 99.81 ±0.002 31.48 ±2.420 0.03 ±0.006
5 99.82 ±0.009 32.64 ±2.891 0.03 ±0.005
3 99.80 ±0.008 24.88 ±2.311 0.03 ±0.002

32 4 99.82 ±0.007 29.63 ±0.845 0.02 ±0.005
5 99.83 ±0.007 30.44 ±1.576 0.02 ±0.003
3 99.79 ±0.004 9.26 ±2.299 0.00 ±0.000

64 4 99.81 ±0.013 29.63 ±3.317 0.03 ±0.005
5 99.82 ±0.010 31.02 ±1.134 0.03 ±0.006
3 99.80 ±0.005 20.37 ±1.134 0.02 ±0.004

128 4 99.81 ±0.010 24.19 ±3.056 0.02 ±0.003
5 99.82 ±0.004 27.08 ±0.802 0.02 ±0.002
3 99.79 ±0.005 12.04 ±1.813 0.01 ±0.002

256 4 99.79 ±0.002 16.44 ±0.964 0.02 ±0.003
5 99.81 ±0.005 19.91 ±0.378 0.01 ±0.003
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Tablo 5.20 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
değerlerinde sistem performansı (Heartprint) - GFCC

GFCC
Karışım Sayısı s ACC(%) TAR(%) FAR(%)

3 99.79 ±0.005 8.45 ±2.342 0.00 ±0.001
8 4 99.79 ±0.005 9.03 ±2.686 0.00 ±0.001

5 99.80 ±0.005 20.83 ±1.464 0.02 ±0.002
3 99.81 ±0.005 21.76 ±2.299 0.02 ±0.002

16 4 99.81 ±0.006 23.61 ±2.803 0.02 ±0.001
5 99.83 ±0.003 28.47 ±1.626 0.01 ±0.002
3 99.80 ±0.007 15.51 ±2.841 0.01 ±0.003

32 4 99.81 ±0.009 33.68 ±2.683 0.04 ±0.003
5 99.83 ±0.009 38.43 ±3.295 0.03 ±0.003
3 99.80 ±0.004 16.90 ±1.712 0.00 ±0.003

64 4 99.81 ±0.004 19.10 ±1.788 0.00 ±0.001
5 99.81 ±0.014 38.66 ±3.433 0.05 ±0.007
3 99.80 ±0.004 14.47 ±2.049 0.01 ±0.002

128 4 99.81 ±0.004 28.94 ±1.225 0.03 ±0.003
5 99.81 ±0.006 29.17 ±1.000 0.03 ±0.005
3 99.79 ±0.002 9.14 ±1.433 0.00 ±0.001

256 4 99.79 ±0.005 11.34 ±2.345 0.00 ±0.000
5 99.80 ±0.005 11.92 ±2.402 0.00 ±0.001

89



Tablo 5.21 Sinyal edinim süresine göre elde edilen en yüksek doğruluk
değerlerinde sistem performansı (Heartprint) - MFCC+GFCC

MFCC+GFCC
Karışım Sayısı s ACC(%) TAR(%) FAR(%)

3 99.80 ±0.004 23.96 ±2.216 0.03 ±0.003
8 4 98.41 ±0.177 29.40 ±1.439 0.03 ±0.004

5 99.82 ±0.002 32.64 ±1.712 0.03 ±0.006
3 99.80 ±0.007 13.43 ±3.185 0.00 ±0.001

16 4 99.80 ±0.005 14.70 ±3.171 0.00 ±0.002
5 99.80 ±0.004 17.13 ±1.773 0.01 ±0.001
3 99.81 ±0.004 15.86 ±1.866 0.00 ±0.001

32 4 99.82 ±0.005 37.85 ±1.530 0.04 ±0.005
5 99.84 ±0.007 42.82 ±2.891 0.04 ±0.001
3 99.81 ±0.007 16.09 ±3.410 0.00 ±0.000

64 4 99.82 ±0.007 20.83 ±3.423 0.00 ±0.001
5 99.83 ±0.004 46.18 ±2.248 0.05 ±0.004
3 99.79 ±0.007 11.46 ±2.117 0.00 ±0.002

128 4 99.80 ±0.006 15.28 ±2.536 0.00 ±0.001
5 99.81 ±0.003 19.79 ±1.027 0.01 ±0.004
3 99.79 ±0.008 11.81 ±3.219 0.01 ±0.002

256 4 99.80 ±0.004 16.09 ±2.216 0.01 ±0.003
5 99.81 ±0.004 20.60 ±2.088 0.01 ±0.003
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Tablo 5.22 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (Heartprint) - MFCC

MFCC
Karışım Sayısı s ACC(%) TAR(%) FAR(%)

3 89.04 ±0.182 88.77 ±3.989 10.96 ±0.186
8 4 89.52 ±0.114 90.39 ±3.730 10.49 ±0.122

5 90.14 ±0.150 91.90 ±2.088 9.87 ±0.153
3 90.09 ±0.149 88.43 ±3.163 9.91 ±0.151

16 4 90.60 ±0.149 91.90 ±2.284 9.41 ±0.153
5 91.05 ±0.121 93.40 ±2.342 8.96 ±0.124
3 89.93 ±0.060 90.97 ±3.059 10.08 ±0.065

32 4 90.64 ±0.068 92.71 ±2.402 9.36 ±0.070
5 94.32 ±0.069 91.32 ±3.613 5.68 ±0.073
3 88.79 ±0.156 91.20 ±1.927 11.22 ±0.159

64 4 89.81 ±0.070 92.13 ±1.773 10.19 ±0.074
5 93.93 ±0.085 91.55 ±3.033 6.06 ±0.089
3 90.05 ±0.054 92.82 ±3.636 9.96 ±0.060

128 4 91.03 ±0.089 93.17 ±5.284 8.97 ±0.097
5 91.54 ±0.059 94.56 ±4.316 8.47 ±0.059
3 88.46 ±0.180 86.23 ±3.238 11.54 ±0.177

256 4 89.03 ±0.125 87.38 ±3.368 10.97 ±0.127
5 89.12 ±0.123 90.51 ±3.733 10.89 ±0.127
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Tablo 5.23 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (Heartprint) - GFCC

GFCC
Karışım Sayısı s ACC(%) TAR(%) FAR(%)

3 89.94 ±0.039 88.89 ±3.799 10.06 ±0.041
8 4 90.58 ±0.040 91.67 ±3.185 9.43 ±0.043

5 91.00 ±0.106 92.94 ±3.410 9.01 ±0.111
3 88.64 ±0.151 88.77 ±2.787 11.37 ±0.154

16 4 89.28 ±0.108 91.44 ±1.712 10.73 ±0.109
5 89.82 ±0.126 92.01 ±1.027 10.19 ±0.126
3 89.49 ±0.083 87.62 ±3.431 10.51 ±0.089

32 4 90.14 ±0.073 92.36 ±2.220 9.86 ±0.074
5 94.00 ±0.084 91.09 ±3.009 6.00 ±0.088
3 88.93 ±0.044 89.58 ±1.389 11.08 ±0.043

64 4 89.76 ±0.066 92.13 ±1.648 10.25 ±0.069
5 90.34 ±0.142 93.29 ±0.964 9.67 ±0.140
3 87.46 ±0.105 90.51 ±2.345 12.55 ±0.104

128 4 93.03 ±0.036 89.93 ±2.961 6.97 ±0.035
5 93.39 ±0.039 88.89 ±3.230 6.60 ±0.032
3 91.74 ±0.098 71.53 ±3.675 8.22 ±0.099

256 4 91.69 ±0.082 73.38 ±2.522 8.28 ±0.085
5 91.79 ±0.111 80.32 ±2.018 8.19 ±0.114
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Tablo 5.24 Sinyal edinim süresine göre elde edilen eşit hata oranı (EER)
değerlerinde sistem performansı (Heartprint) - MFCC+GFCC

MFCC+GFCC
Karışım Sayısı s ACC(%) TAR(%) FAR(%)

3 88.13 ±0.097 91.55 ±1.866 11.88 ±0.100
8 4 88.60 ±0.117 91.09 ±2.490 11.40 ±0.121

5 92.42 ±0.103 91.32 ±2.372 7.58 ±0.107
3 87.89 ±0.128 88.43 ±1.927 12.11 ±0.131

16 4 91.65 ±0.061 88.08 ±2.709 8.35 ±0.062
5 91.89 ±0.034 88.66 ±2.988 8.10 ±0.037
3 90.38 ±0.100 92.25 ±4.095 9.63 ±0.103

32 4 94.30 ±0.046 92.82 ±2.739 5.70 ±0.051
5 94.39 ±0.069 93.17 ±4.095 5.61 ±0.077
3 92.35 ±0.071 91.09 ±2.656 7.65 ±0.076

64 4 92.67 ±0.073 93.06 ±1.927 7.33 ±0.073
5 92.79 ±0.040 94.79 ±0.876 7.22 ±0.042
3 89.69 ±0.038 85.88 ±3.263 10.30 ±0.035

128 4 89.55 ±0.091 87.04 ±2.105 10.44 ±0.094
5 89.26 ±0.076 91.55 ±2.937 10.75 ±0.074
3 88.72 ±0.151 81.25 ±3.790 11.27 ±0.154

256 4 87.93 ±0.146 85.07 ±1.433 12.07 ±0.146
5 87.47 ±0.205 90.51 ±2.791 12.55 ±0.200
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Şekil 5.21 En yüksek doğruluğa ve EER noktasına dayalı ROC Eğrisi (Sinyal
süresi: 5 s, Karışım sayısı: 32, Heartprint)

Şekil 5.22 Kimlik doğrulama eşiğine ilişkin FAR ve FRR performansları (Sinyal
süresi: 5 s, Karışım sayısı: 32, Heartprint)
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kullanılmasını içerdiği ortaya çıkmaktadır. ROC eğrisi ve EER grafiği Şekil 5.21 ve
Şekil 5.22’de gösterilmektedir.

Bu çeşitlendirilmiş eğitim ve test seti yapısı, geniş ve değişken bir veritabanında
algoritmanın performansını ölçerek biyometrik doğrulama sistemlerinin
güvenilirliğini ve etkinliğini artırmada kritik bir rol oynamaktadır. Özellikle,
insan biyometrisinin değişkenliği ve çevresel faktörler göz önüne alındığında, bu
deney sistemimizin farklı senaryolara nasıl tepki verdiğini anlamamıza olanak
tanımaktadır. Elde edilen bilgiler, sistemin daha da optimize edilmesi ve daha geniş
ölçekte uygulanabilirliğinin artırılması açısından değerlidir.

Ayrıca, bu çalışma, EKG verilerine dayalı biyometrik kimlik doğrulama
sistemlerinin geliştirilmesi ve optimize edilmesi için önemli veriler sunmakta;
kısa süreli kayıtların bile yüksek doğruluk oranlarıyla kullanılabileceğini
göstermektedir.

5.6 Sinyal Süresine Dayalı Performans Değerlendirmesi
Heartprint veritabanında, EER noktasına dayalı olarak kayıt ve doğrulama sinyal
sürelerinin performans analizi yapılmıştır. Tablo 5.24’de sunulan sonuçlara göre,
en yüksek doğruluk ve en düşük yanlış kabul oranını elde etmek için en uygun
yapılandırma noktası referans alınarak, sinyal edinim sürelerinin değiştirilmesiyle
sistem performansı değerlendirilmiştir.

Tablo 5.25 Heartprint veritabanındaki 199 bireyin önerilen yöntemin farklı kayıt
ve doğrulama sürelerinde performans analizi (MFCC ve GFCC özniteliklerinin

birleştirilmesi ve karışım sayısı: 32)

Kayıt
Uzunluğu (s)

Doğrulama
Uzunluğu (s) ACC (%) TAR (%) FAR (%)

15 15 95.94 96.30 4.06
15 10 95.74 97.72 4.27
15 5 95.58 94.56 4.42
10 10 95.32 97.69 4.68
10 5 95.14 94.79 4.86
5 5 94.39 93.17 5.61

Tablo 5.25’da gösterildiği üzere, kayıt ve doğrulama sürelerinin arttıkça sistemin
doğruluğu artmakta ve yanlış kabul oranı azalmaktadır. Ancak, pratik uygulamalar
ve mobil cihazlarda kullanıcı konforu ile işlem süresi gibi faktörler göz önünde
bulundurulduğunda, 5 saniyelik sürelerin kabul edilebilir olduğu sonucuna
varılmıştır.

Bu bölümde, Heartprint veritabanı yapılandırması detaylı olarak yeniden ele
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Tablo 5.26 Heartprint veritabanındaki 108 bireyin önerilen yöntemin farklı kayıt
ve doğrulama sürelerinde performans analizi (MFCC ve GFCC özniteliklerinin

birleştirilmesi ve karışım sayısı: 32)

Kayıt
Uzunluğu (s)

Doğrulama
Uzunluğu (s) ACC (%) TAR (%) FAR (%)

15 15 96.16 96.30 3.84
15 10 95.92 97.22 4.10
15 5 95.69 94.56 4.31
10 10 95.47 97.69 4.56
10 5 95.21 94.79 4.79
5 5 94.36 93.17 5.64

alınmakta ve sistem performansının kapsamlı bir değerlendirmesi sunulmaktadır.
Veritabanı, 199 bireye ait toplam 1539 EKG kaydını içermekte olup, bu bireylerden
108’inin 10 ve üzeri kayda sahip olması nedeniyle bu 108 birey hem geliştirme hem
de eğitim setlerinde kullanılmıştır. Kalan 91 bireyin tüm EKG kayıtları ise test seti
olarak değerlendirilmiştir. Bu yapılandırma, çalışmanın kapsamını ve performans
ölçümünde kullanılan yöntemlerin ayrıntılarını net bir şekilde ortaya koymaktadır.

Tablo 5.25 ve Tablo 5.26, önerilen yöntemin farklı veri bölme stratejileri altında,
199 ve 108 birey üzerinden elde edilen performans sonuçlarını karşılaştırmalı olarak
sunmaktadır. Her iki tabloda da, MFCC ve GFCC özniteliklerinin birleştirilmesi
ile 32 karışım sayısı kullanılarak, farklı kayıt ve doğrulama sürelerindeki sistem
performansı detaylı olarak incelenmiştir.

Özellikle Tablo 5.25, geliştirme ve eğitim setlerinde yer alan 108 bireyin yanı sıra,
test aşamasına eklenen 91 yeni birey üzerinden elde edilen sonuçları ortaya koyarak,
sistemin daha önce karşılaşılmamış bireylerle performansını değerlendirmemize
olanak tanımaktadır. Tablo 5.26 ise, sadece geliştirme ve eğitim setlerinde
kullanılan 108 birey üzerinden test yapılan sonuçları sunmaktadır.

Yapılan karşılaştırmalar, 108 bireylik küçük veri seti ile 199 bireylik genişletilmiş
veri seti arasında, özellikle yanlış kabul oranı (FAR) üzerinde küçük ancak
anlamlı bir farklılık olduğunu göstermektedir. Bu durum, sisteme daha önce
tanımadığı 91 yeni bireyin eklenmesinden kaynaklanmakta olup, genişletilmiş veri
setinin sistemin genelleştirme yeteneğini yansıttığını göstermektedir. Bu bulgular,
biyometrik doğrulama sistemlerinin yeni bireylerle etkileşimini ve genelleştirme
kabiliyetini daha iyi anlamamıza olanak sağlamaktadır.
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5.7 Alternatif Yaklaşımların Performans Analizi
Kimlik doğrulama sistemlerinde, EKG (Elektrokardiyogram) verilerinin benzersiz
biyometrik öznitelikler sunması, önemli bir potansiyel sağlamaktadır. Bu
çalışmada, EKG verilerine dayalı olarak geliştirdiğimiz yöntemin performansını,
diğer makine öğrenmesi ve derin öğrenme teknikleriyle karşılaştırdık. Destek
Vektör Makinesi (SVM), Çok Katmanlı Algılayıcı (MLP), Rastgele Orman (RF),
Bir Boyutlu Konvolüsyonel Sinir Ağları (CNN 1D), İki Boyutlu Konvolüsyonel
Sinir Ağları (CNN 2D) ve Tekrarlayan Sinir Ağları (RNN) gibi yöntemler,
Heartprint veritabanı üzerinde test edilmiştir. Bu karşılaştırmada, doğruluk (ACC),
gerçek kabul oranı (TAR), yanlış kabul oranı (FAR) ve eşit hata oranı (EER) gibi
kritik metrikler temel alınmıştır. Tablo 5.27, elde edilen sonuçları özetlemektedir.

Tablo 5.27 Heartprint veritabanı üzerinde EKG tabanlı kimlik doğrulama
yöntemlerinin performansları

Yöntem ACC(%) TAR(%) FAR(%) EER(%)
Önerilen Yön. 94.39 ±0.07 93.17 ±4.09 5.61 ±0.08 6.22 ±2.01
SVM 90.80 ±1.00 94.80 ±1.90 9.20 ±1.50 7.00 ±1.70
MLP 72.17 ±2.56 75.28 ±4.57 27.84 ±2.55 26.28 ±3.53
RF 88.50 ±1.20 91.70 ±2.50 11.50 ±1.20 9.90 ±1.70
CNN 1D 84.57 ±1.17 84.29 ±1.31 15.43 ±1.17 15.56 ±1.23
CNN 2D 87.56 ±0.02 87.76 ±0.02 12.43 ±0.02 12.33 ±0.02
RNN 86.43 ±0.81 86.41 ±0.82 13.57 ±0.81 13.58 ±0.82

Tablo 5.27’de özetlenen sonuçlar, önerilen yöntemin Heartprint veritabanı üzerinde
%94.39 doğruluk (ACC) ve %93.17 gerçek kabul oranı (TAR) ile öne çıktığını
göstermektedir. Ayrıca, %5.61 yanlış kabul oranı (FAR) ve %6.22 eşit hata oranı
(EER) elde edilmiştir; bu da yöntemin hem yüksek doğruluk hem de düşük hata
oranları açısından son derece güvenilir olduğunu ortaya koymaktadır.

Karşılaştırma sonuçları, SVM, MLP, RF, 1D-CNN, 2D-CNN ve RNN gibi alternatif
yaklaşımların performanslarıyla birlikte sunulmuştur. Önerilen yöntemin ACC
ve TAR değerleri, diğer yöntemlere kıyasla daha üstün performans sergilemekte;
özellikle MLP ve CNN 1D gibi yöntemlerde gözlemlenen daha yüksek hata
oranları, önerilen yaklaşımın avantajını vurgulamaktadır.

Bu veriler, önerilen yöntemin yalnızca yüksek doğruluk sağlamakla kalmayıp,
aynı zamanda sistemin genel hata oranlarını düşürmede de etkili olduğunu
göstermektedir. Elde edilen bulgular, i-vektör tabanlı öznitelik çıkarım
yöntemlerinin EKG tabanlı biyometrik kimlik doğrulamada sağlam bir temel
oluşturduğunu ve gelecekteki çalışmalar için, bu yöntemlerin diğer yaklaşımlarla
entegrasyonunun sistem performansını daha da artırabileceğini ortaya koymaktadır.
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5.8 Benzerlik Ölçütleri Performans Analizi
Bu çalışmada, i-vektörlerin farklı benzerlik ölçütleriyle karşılaştırılması yoluyla,
kimlik doğrulama sistemine etkileri incelenmiştir. Kosinüs mesafesi, Öklid
mesafesi, Manhattan mesafesi, Pearson korelasyonu ve dinamik zaman esnetme
(DTW) kullanılarak hesaplanan benzerlik skorlarının, doğruluk (ACC), yanlış kabul
oranı (FAR) ve yanlış reddetme oranı (FRR) metrikleri üzerindeki etkileri Tablo
5.28’de sunulmuştur.

Tablo 5.28 i-vektörlerin farklı benzerlik ölçütleriyle karşılaştırılması

Benzerlik Ölçütü ACC FAR FRR
Kosinüs Mesafesi 94.39 5.61 6.83
Öklid Mesafesi 96.21 3.78 10.30
Manhattan Mesafesi 94.65 5.34 11.57
Pearson Korelasyonu 93.10 6.90 7.64
DTW (Dynamic Time Warping) 97.99 1.92 43.75

Bu sonuçlar, farklı benzerlik ölçütlerinin i-vektör karşılaştırmalarında farklı
performans sergilediğini göstermekte ve doğrulama sisteminin gereksinimlerine
uygun ölçütün dikkatle seçilmesinin önemini ortaya koymaktadır.

5.9 Sonuçlar
Tablo 5.29 ve Tablo 5.30’ de tüm deneylerin sırasıyla en yüksek doğruluk ve eşit
hata oranı (EER) için en uygun çalışma noktalarını özetlenmektedir.

Tablo 5.29 En yüksek doğruluğa dayalı önerilen yöntemin özeti

öznitelik Veritabanı
Birey Sayısı

Test Birey
Sayısı FAR (%) FRR (%) ACC (%) Süre (s)

MFCC 22 6 0.90 12.50 98.24 5
GFCC 22 6 0.00 26.67 98.02 5
MFCC+GFCC 22 6 0.00 21.25 98.43 4
MFCC 23 10 1.09 26.50 97.83 5
GFCC 23 10 0.00 34.75 98.52 5
MFCC+GFCC 23 10 0.00 37.25 98.41 4
MFCC 20 20 0.10 22.50 99.61 5
GFCC 20 20 0.58 7.50 99.33 5
MFCC+GFCC 20 20 0.00 18.50 99.76 5
MFCC 199 199 0.02 69.56 99.83 5
GFCC 199 199 0.03 61.57 99.83 5
MFCC+GFCC 199 199 0.04 57.18 99.84 5

Deneysel bulgular, MFCC ve GFCC özniteliklerinin tek başına kullanıldığında
tatmin edici sonuçlar sağladığını göstermiştir. Ancak, bu özniteliklerin EKG
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Tablo 5.30 Eşit hata oranı (EER) için optimal çalışma noktasına dayalı önerilen
yöntemin özeti

öznitelik Veritabanı
Birey Sayısı

Test Birey
Sayısı FAR (%) FRR (%) ACC (%) Süre (s)

MFCC 22 6 4.87 7.50 94.94 5
GFCC 22 6 2.07 4.17 97.78 5
MFCC+GFCC 22 6 2.9 5 96.94 5
MFCC 23 10 7.71 9.50 92.21 4
GFCC 23 10 6.32 9.50 93.54 4
MFCC+GFCC 23 10 5.37 10.25 94.43 4
MFCC 20 20 1.47 0 98.55 3
GFCC 20 20 1.32 1.50 98.68 5
MFCC+GFCC 20 20 0.59 2.50 99.38 5
MFCC 199 199 5.68 8.68 94.32 5
GFCC 199 199 6.0 8.91 94.0 5
MFCC+GFCC 199 199 5.61 6.83 94.39 5

doğrulama sürecinde entegre edilmesi, doğruluk oranını (ACC) artırırken, yanlış
kabul oranını (FAR) düşürmede daha etkili olmuştur.

Elde edilen sonuçlar, mobil platformlarda EKG doğrulaması üzerine yapılan son
çalışmalarla karşılaştırılmış ve parmak tabanlı EKG doğrulaması ile ilgili bulgular
Tablo 5.31’de özetlenmektedir.

Tablo 5.31 Mobil platformlarda parmak üzerinden elde edilen EKG
algoritmalarının karşılaştırılması

Algoritma Birey Sayısı FAR (%) FRR (%) Doğrulama
Uzunluğu (s)

Kayıt
Uzunluğu (s)

Artega-Falconi ve diğ. [2] 10 1.41 18 4 30
Chen ve Chen [34] 10 2.7 3 ≤3 N/A
Önerilen Alg. (Lab.) 6 2.07 4.17 5 5
Önerilen Alg. (Lab.) 10 5.37 10.25 4 4
Önerilen Alg. 20 0.59 2.5 5 5
Önerilen Alg. 199 5.61 6.83 5 5
Kang ve diğ. [36] 28 5.2 1.9 5 30
Chen ve Chen [34] 30 6 6 3 N/A
Artega-Falconi ve diğ. [2] 73 1.29 15.07 4 30

Önerilen yöntem, literatürdeki çalışmalara kıyasla mobil platformlarda güvenliği
artıran ve kullanıcı dostu bir deneyim sunan umut verici sonuçlar ortaya
koymaktadır. Düşük FAR, yetkisiz erişimlerin minimize edilmesiyle mobil
güvenliği artırırken; düşük FRR, gerçek kullanıcıların hatalı reddedilme olasılığını
azaltarak memnuniyeti desteklemektedir. Ayrıca, yöntemin 4-5 saniyelik
doğrulama ve kayıt süreleri, mobil cihazlar için ideal bir performans sağlamaktadır.
Bu bulgular, sistemimizin mobil biyometrik doğrulamada güvenilir ve kullanıcı
odaklı bir çözüm sunabileceğini göstermektedir.
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6
SONUÇ

Bu çalışma, EKG biyometrik kimlik doğrulama algoritmasının mobil güvenlik
uygulamalarında kullanılabilirliğini ve etkinliğini kapsamlı bir şekilde
değerlendirmiştir. Hem ECG-ID hem de Heartprint veritabanlarının yanı
sıra, özgün ölçümler alınarak oluşturulan veri setleri üzerinde gerçekleştirilen
deneyler, önerilen yöntemin yüksek başarıyla uygulanabileceğini göstermektedir.
Yüksek doğruluk oranları ve kısa sinyal edinme süreleri, bu yöntemin mobil
cihazlarda etkili bir çözüm sunduğunu açıkça ortaya koymaktadır. Bu bulgular,
yöntemin mobil güvenlik alanında önemli bir yenilik ve pratik bir çözüm olarak
öne çıkabileceğini vurgulamaktadır.

Deney sonuçları, önerilen EKG biyometrik kimlik doğrulama algoritmasının
güvenilirliğini ve etkinliğini güçlü bir şekilde desteklemektedir. ECG-ID ve
Heartprint veritabanları üzerindeki testlerin yanı sıra, özel veri setiyle elde edilen
sonuçlar, algoritmanın farklı veri kaynaklarında tutarlı ve yüksek performans
sergilediğini doğrulamaktadır. Bu durum, yöntemin sadece teorik olarak değil,
pratik uygulamalarda da başarılı olduğunu kanıtlamaktadır.

Çalışmada kullanılan makine öğrenmesi ve derin öğrenme yöntemlerinin
karşılaştırmalı analizi, her bir yöntemin güçlü ve zayıf yönlerini ortaya koymuştur.
Önerilen yöntemin bazı metriklerde diğer yöntemlere göre daha iyi sonuçlar verdiği
gözlemlense de, performans farklarının sınırlı olduğu durumlar da dikkat çekmiştir.
Bu durum, EKG tabanlı kimlik doğrulama süreçlerinde daha karmaşık öznitelik
çıkarım tekniklerinin kullanımına duyulan ihtiyacı göstermektedir. Özellikle,
i-vektör tabanlı yaklaşımların derin öğrenme modelleriyle sentezlenmesi, hem
sınıflandırma hem de genel doğruluk performansını artırma potansiyeline sahiptir.

Çalışma sürecinde, parametre optimizasyonu ve yeterli EKG kaydını içeren veri
setlerine erişim en büyük engeller arasında yer almıştır. Kişisel EKG kayıtlarının
yeterliliği ve parametrelerin manuel ayarlanması, çalışmanın ilerlemesindeki
önemli zorluklardı. Bu durum, algoritmaların otomatik hiperparametre
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optimizasyonu ve daha geniş, çeşitlilik arz eden veri setlerinin kullanılmasını
gerektirmektedir. Bu doğrultuda, gelecekte yapılacak çalışmalar bu sınırlamaların
üstesinden gelmeye odaklanabilir.

Önerilen yöntemin kısa sinyal edinme süreleri, mobil cihazlarda hafızada minimal
yer kaplamasını sağlar. Bu özellik, kullanıcıların cihazlarına hızlı ve kolay
erişim sağlamalarına olanak tanıyarak günlük kullanımda büyük pratiklik sunar
ve kullanıcı deneyimini olumlu yönde etkiler. Ayrıca, mobil cihazlarda saldırı
sayısının genellikle sınırlı olması, veri setinin boyutunu makul seviyelerde tutmayı
mümkün kılmaktadır. Ancak, algoritmanın daha geniş ve çeşitli veri setleri üzerinde
test edilmesi, genelleştirilebilirlik ve güvenilirlik açısından önemlidir. Aynı
zamanda, i-vektörler gibi ileri düzey tekniklerin mevcut yöntemlerle birleştirilmesi,
yalnızca doğruluk oranlarının artırılmasına değil, aynı zamanda hata oranlarının da
daha düşük seviyelere çekilmesine yardımcı olabilir. Böyle bir entegrasyon, EKG
tabanlı kimlik doğrulamanın hem teorik hem de pratik performansını daha ileriye
taşıyabilir.

Bu geliştirmeler, EKG biyometrik kimlik doğrulama teknolojisinin mobil güvenlik
alanında daha da etkili hale gelmesine katkı sağlayacaktır. Gelecekte, algoritmanın
geliştirilmesi ve daha geniş çapta benimsenmesiyle mobil cihazların güvenlik
seviyelerinin artması ve kullanıcı deneyiminin iyileştirilmesi mümkün olacaktır. Bu
çalışma, EKG biyometrik kimlik doğrulamanın mobil güvenlikte önemli bir yenilik
ve pratik çözüm sunabileceğini net bir şekilde ortaya koymaktadır.
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