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OZET

Diisiik Coziiniirliiklii Sensorlerle Biyometri
Fatma Saba KOCKAN

Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Doktora Tezi

Danigsman: Dog. Dr. Biilent BOLAT

Kisisel veri giivenliginin kritik onem tasidig1 dijital ¢cagda, geleneksel biyometrik
yontemlerin mobil cihazlarda yasadigi giivenlik kisitlari, daha giivenilir ve giiclii
kimlik dogrulama yaklagimlarina olan ihtiyact artirmaktadir. Bu kapsamda
gerceklestirilen ¢alisma, mobil cihazlarda kullanilmak iizere, diisiik ¢oziiniirliikli
sensoOrlerden elde edilen elektrokardiyogram (EKG) verilerine dayanan yenilik¢i

bir kimlik dogrulama yontemi 6nermektedir.

EKG, kalp aktivitesinden elde edilen elektriksel sinyaller aracilifiyla bireye 6zgii
biyometrik ©zellikler sunan bir tekniktir. Kalp atisinin ritmik ve bireye has
ozellikleri, EKG’yi kimlik dogrulama ve insan tanima uygulamalar1 icin ideal bir

veri kaynagi haline getirmektedir.

Onerilen yontemde, son on yilda konusmaci tanima alaninda basarili sonuglar
elde eden i-vektor yaklasimindan yararlanilmaktadir. i-vektorler, veri sikistirma
ve Ozellik c¢ikarimi siireclerinde etkinlik saglayarak, kimlik dogrulama ve
tanima sistemlerinin verimliligini artirmaktadir. Calismada, EKG verilerinden
elde edilen 6znitelikler arasinda Mel Frekansi Kepstral Katsayilar1 (MFCC) ve
Gammatone Frekansi Kepstral Katsayilar1 (GFCC) kullanilmaktadir. MFCC, ses
sinyalinin kisa siireli giic spektrumunu temsil ederken, GFCC, insan kulaginin
frekans ¢Oziiniirliiglinii modelleyerek daha dogal bir 6zellik ¢ikarimini miimkiin
kilmaktadir.

Bireysel EKG sinyallerinden elde edilen oznitelikler kullanilarak olusturulan

i-vektorler, kosiniis mesafesi 6l¢timii ile puanlanmis ve bu sayede kimlik dogrulama
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islemi gerceklestirilmistir. Kosiniis mesafesi, vektorler arasindaki acisal farki

Olcerek benzerlik degerlendirmesi yapmada etkili bir metrik olarak one ¢ikmaktadir.

Deneysel sonuclar, onerilen yontemin yiiksek dogruluk oranlariyla mobil cihazlar
icin pratik ¢coziimler sunma potansiyelini ortaya koymakta; yontem, giivenilirligini

ve uygulanabilirligini dogrulamaktadir.

Bu tez, biyometrik kimlik dogrulama alaninda EKG verilerinin kullanimim
yayginlastirmay1 amaglamakta ve mobil giivenlik ¢oziimlerine 6zgiin yaklasimlar
kazandirmay1 hedeflemektedir. Ayrica, Onerilen yontemin gelecekte daha
giivenli ve kullanic1 dostu biyometrik sistemlerin gelistirilmesine onemli katkilar

saglayacag1 ongoriilmektedir.

Anahtar Kelimeler: Biyometrik kimlik dogrulama, -elektrokardiyogram,
gammatone frekans kepstrum katsayist (GFCC), i-vector, mel frekans kepstrum
katsayis1 (MFCC).
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ABSTRACT

Biometrics with Low Resolution Sensors
Fatma Saba KOCKAN

Department of Electronics and Communication Engineering
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In the digital age, where personal data security is of critical importance, the security
limitations of traditional biometric methods on mobile devices have increased
the need for more reliable and robust identity authentication approaches. In this
context, this study proposes an innovative identity verification method based on
electrocardiogram (ECG) data acquired from low-resolution sensors, designed for

use on mobile devices.

ECG is a technique that provides individual-specific biometric features through
electrical signals generated by cardiac activity.  The rhythmic and unique
characteristics of heartbeats make ECG an ideal data source for identity verification

and human recognition applications.

In the proposed method, the i-vector approach—which has achieved successful
results in speaker recognition over the past decade—is utilized. I-vectors enhance
the efficiency of authentication and identification systems by enabling effective
data compression and feature extraction. In this study, Mel Frequency Cepstral
Coefficients (MFCC) and Gammatone Frequency Cepstral Coefficients (GFCC) are
employed as feature extraction techniques from ECG data. While MFCC represents
the short-term power spectrum of audio signals, GFCC models the frequency
resolution of the human ear, thereby enabling a more natural feature extraction

process.

The i-vectors, derived from individual ECG signals, are scored using cosine distance

measurement, thus facilitating the identity verification process. Cosine distance
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stands out as an effective metric by quantifying the angular difference between

vectors for similarity evaluation.

Experimental results demonstrate that the proposed method, with its high accuracy
rates, reveals significant potential in providing practical solutions for mobile

devices, thereby confirming its reliability and applicability.

This thesis aims to promote the widespread use of ECG data in the field of biometric
authentication and to introduce innovative approaches to mobile security solutions.
Furthermore, it is anticipated that the proposed method will contribute significantly

to the development of safer and more user-friendly biometric systems in the future.

Keywords: Biometric authentication, electrocardiogram, gammatone frequency
cepstrum coefficient (GFCC), i-vector, mel frequency cepstrum coefficient
(MFCO).
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1

GIRIS

Teknolojideki hizli ilerlemeler, giinliik yasamimizda 6nemli doniisiimlere neden
olarak mobil cihazlarin kullanimim kiiresel Olgekte yayginlastirmisti.  Mobil
cihazlar yalnizca iletisim araci olmaktan ¢ikmis; sosyal medya, finansal islemler,
saglik ve egitim gibi bir¢ok alanda hayatimizin ayrilmaz bir parcasi haline gelmistir.
Akilli telefonlarin kullaniminin hizla artmasi ve kullanicilarin giinliik hayatlarinda
bu cihazlara ayirdiklar siirenin giderek yiikselmesi, mobil teknolojilerin insan

yasamini sekillendirmede ne derece etkili oldugunu agik¢a gostermektedir.

Mobil cihazlarin artan kullanimi, kisisel ve hassas verilere yonelik tehditleri
de artirmistir [1]]. Ozellikle son donemde mobil cihazlari hedef alan siber
saldirilarin artmasi, kisisel veri giivenliginin onemini ve korunmasi ihtiyacinin
kritik bir noktaya ulastigini ortaya koymaktadir. Mobil cihazlarda geleneksel kimlik
dogrulama yontemleri (PIN, desen veya grafiksel sifreler), kullanici tarafindan
belirlenen sifrenin giivenlik seviyesine baglh olarak farklilik gostermekle birlikte,
giinlimiiziin karmagiklasan tehditlerine kars1 yetersiz kalmaktadir [2]. Bu nedenle
kullanicilar, daha giiclii ve giivenilir olan biyometrik dogrulama yodntemlerine

yonelmistir.

Biyometrik dogrulama yontemleri, bireylerin benzersiz fizyolojik ve davranigsal
Ozniteliklerini temel alarak, geleneksel yontemlere gore daha giivenli bir dogrulama
saglamaktadir [3]. Parmak izi, yliz veya iris tanima gibi popiiler yontemlerin
kolayca taklit edilebilme riskleri bulunmaktadir. Parmak izi yontemleri yapay
malzemeler kullanilarak, yiiz tanima yontemleri ise fotograf veya video gibi
basit yontemlerle aldatilabilmektedir. Benzer sekilde, ses tanima sistemlerinin
kayitlar araciligryla kandirilmasi miimkiindiir. Bu baglamda, canlilik dogrulamasi
sunan; benzersiz elektrofizyolojik yapisi nedeniyle taklit edilmesi oldukga gii¢
olan elektrokardiyogram (EKG) tabanli biyometrik dogrulama yontemleri on plana

cikmaktadir.

Elektrokardiyogram (EKG), kalbin elektriksel aktivitesinden elde edilen ve



bireye 0zgii fizyolojik Oznitelikleri iceren biyolojik sinyallerdir. Kalp atiglarinin
kisiye oOzgii ritmik yapis1 nedeniyle EKG, evrensellik, essizlik, siireklilik ve
elde edilebilirlik gibi temel biyometrik kriterleri karsilamaktadir. Son yillarda
yapilan caligmalar, diisiik maliyetli ve diisiik ¢oziiniirliiklii sensorlerle bile kisa
siireli EKG kayitlarinin mobil cihazlarda giivenilir kimlik dogrulama amaciyla
kullanilabilecegini ortaya koymustur. Bu tez calismasinin temel amaci da, mobil
cihazlarda kullanilmak iizere diisiik ¢oziiniirliiklii sensorlerle kisa siireli kaydedilen

EKG sinyallerinin biyometrik dogrulamadaki etkinligini aragtirmaktr.

Bu ama¢ dogrultusunda, EKG sinyallerindeki bireye 6zgii 6zniteliklerin temsilinde
Mel Frekanst Kepstral Katsayilar1 (MFCC) ve Gammatone Frekansi Kepstral
Katsayilar1 (GFCC) gibi gelismis sinyal isleme tekniklerinden yararlanilmistir.
MFCC yo6ntemi, sinyallerin kisa siireli gii¢ spektrumunu temsil ederek Oznitelik
cikarirken, GFCC yontemi ise insan kulaginin dogal frekans ¢oziiniirliigiine yakin
bir Oznitelik ¢ikarimi saglamaktadir. Bu yontemlerin birlikte kullanilmasi, EKG

sinyallerinin ayristiric giiclinii belirgin bicimde artirmaktadir.

Calismada ayrica, konugsmaci tanima alaninda basariyla kullanilan ve biyometrik
sistemlerde etkinligi kanitlanmis olan i-vektor yaklasimindan yararlanilmigtir. Bu
yontem, kisa ve diisiik c¢oziiniirlikli EKG verilerinde dahi yiliksek dogruluk
saglayarak, mobil cihazlarin sinirli kaynaklar1 agisindan uygun, hafif, giivenilir ve

hizli bir dogrulama yontemi sunmaktadir.

Sonug olarak, bu tez kapsaminda gelistirilen yontemle, mobil cihazlarda diisiik
coziiniirlikli sensorlerle elde edilen kisa siireli EKG verileri kullanilarak, mevcut
teknolojilere kiyasla daha giivenilir, kullanict dostu ve hizli bir biyometrik
dogrulama sistemi sunmak hedeflenmistir. Yapilan deneysel ¢alismalar da, 6nerilen

yontemin yiiksek dogruluk ve pratik uygulanabilirlik saglayabilecegini gostermistir.

1.1 Biyometri ve Kavramsal Temeller

Biyometri, bireylerin Olciilebilir fizyolojik veya davramigsal Ozniteliklerine
dayanarak kimlik tanimlama ve dogrulama yapan yontemler biitiiniidiir. Bu
yontemler, bireye 0zgii, unutulmasi veya kaybedilmesi miimkiin olmayan ve tahmin
edilmesi gii¢ yapilar sunar. Bu nedenle biyometri, giivenlik sistemlerinde yaygin

olarak tercih edilen bir alan haline gelmistir [4]].

Ancak her insan o6zelligi biyometrik olarak degerlendirilemez. Bir 6zelligin
biyometrik 6znitelik olarak kabul edilebilmesi i¢in, asagidaki temel kriterlere sahip

olmasi1 gerekmektedir:



* Evrensellik: Karakteristigin tiim bireylerde bulunmasi,
 Essizlik: Her bireye 6zgii, birbirinden farkli olmasi,

e Siireklilik: Zaman icinde yeterince sabit kalmasi,

Elde Edilebilirlik: Pratikte olciilebilir ve kaydedilebilir olmasi [4-7]].

Bunun yani sira, bir 6zelligin biyometrik sistemlerde etkin bir gsekilde

kullanilabilmesi i¢in su ek gereklilikler de géz oniinde bulundurulmalidar:

* Performans: Ozelligin dogru, hizli ve saglam olgiimlere olanak tanimast;

cevresel ve islevsel etkilere kars1 dayanikli olmasi,

e Kabul Edilebilirlik: Bireylerin, Ozniteliklerin ol¢iimii ve kullanim

konusunda itirazda bulunmamasi,

« Kandirilmaya Kars1 Dayamkhihk: Ozelligin kolayca taklit edilememesi [6,
71

Farkli insan Ozniteliklerinin daha iyi tamimlanabilmesi amaciyla, fizyolojik
yontemler, viicut ilizerindeki konumlarina gore kategorize edilmektedir. Bu

kategoriler asagidaki gibi siniflandirilabilir:

El bolgesi 6znitelikleri,
* Yiiz bolgesi Oznitelikleri,
» GOz ve periokiiler bolge oznitelikleri,

* Davranmigsal 6znitelikler,

Mediko-kimyasal 6znitelikler [[7].

Sekil [I.Ifde, biyometrik yontemlerin siniflandirilmasi  sematik  olarak

sunulmaktadir.

1.2 Mobil Biyometrik Uygulamalar
Mobil cihazlarda, parmak izi, ses, iris, yiiz, avug izi, dis, yiiriiylls ve imza tanima
gibi cesitli biyometrik yontemler kullanilmaktadir. Ancak bu yontemler; uygulama

alani, donamim ihtiyaci, kararlilik ve dogruluk gibi kriterler acisindan farkliliklar
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Sekil 1.1 Biyometrik yontemlerin siniflandirilmasi 7]

gostermektedir. Dolayisiyla, kullanicilar i¢in yiiksek tanima performansi, kolay
kullanim ve giivenilirlik sunan ideal bir biyometrik yontemin belirlenmesi halen

zorlu bir problem olarak karsimiza ¢ikmaktadir [8].

Ozellikle, parmak izi tanima, mobil cihazlarda en ¢ok tercih edilen biyometrik
yontemlerden biri olarak One c¢ikmaktadir. Bununla birlikte, parmak izinin
bozulmasi ya da sahte parmak izi kullanilmasi gibi durumlar, kimlik dogrulama
siirecinde hata oranlarimi artirarak giivenlik agiklarina neden olabilmektedir. Ticari

cep telefonlarinda, parmak izi dogrulamasinin bu tiir zayifliklar1 gdzlemlenmistir

[2].

Mobil cihazlarda ek donamima ihtiya¢ duymadan calisan yiiz ve iris tanima
teknikleri de literatiirde yaygin bicimde uygulanmaktadir. Ancak bu sistemlerin
performansi, genellikle uygun 151k kosullarinda elde edilen kaliteli goriintiilere baglh
olarak degisiklik gostermektedir [8].

Ayrica, ses tanima yoOntemleri cevresel giiriiltiiye duyarli olup, ses kayitlari
yoluyla yaniltilma riski tagimaktadir [9]. Mobil yiirlime tanima sistemleri ise
yerlesik ivmeolger verilerine dayanarak gerceklestirilmektedir; ancak bu sistemler

heniiz istenilen giivenilirlik diizeyine ulasamamis olup, dogru sekilde egitilmis bir



saldirgan tarafindan kandirilma ihtimali mevcuttur [10} 11].

Kalp, dogal ve giivenilir bir biyometrik 6znitelik olarak kabul edilmektedir. Son
zamanlarda, elektrokardiyogram (EKG) tabanli biyometrik tanima sistemleri, hem
sinyallerin canli bir viicuttan elde edilmesinden kaynaklanan giivenlik istiinliigii
hem de biyometrik bilgilerin kamufle edilebilme 0zellii sayesinde Onemli bir
ilgi odagi haline gelmistir. EKG sinyalleri, biyolojik islevlere dayandigindan,
diger biyometrik verilere kiyasla atlatilmasi1 veya taklit edilmesi ¢ok daha giictiir
[12]. Bu ozellik, EKG tabanli tanima sistemlerinin, bireylerin kalp atiglarim
benzersiz biyometrik 6znitelik olarak kullanarak kimlik dogrulama ve tanimlama

saglamasinda 6nemli bir rol oynamaktadir.

1.3 Elektrokardiyogram (EKG) ve Biyometrik Oznitelikler

Elektrokardiyogram (EKG), kalbin ritim, frekans, atim diizeni, yayilim ve tekrar
eden elektriksel aktivitelerinin viicut yiizeyinden kaydedilmesiyle elde edilen
biyolojik sinyallerdir. Bu yontem, kalp ritmi, damar hastaliklari, kalp krizi ve

kardiyak hipertrofi gibi durumlarin tespitinde degerli klinik bilgiler sunar.

Kalp kast (miyokard), kendi kendine kasilma ozelligine sahiptir. Kalbin siniis
diigtimiinden ¢ikan diizenli uyarilar, 6zel iletim yollar1 araciligiyla kas hiicrelerine
aktarilir [13]]. Dinlenme halindeki hiicreler elektriksel olarak polarizeyken, gelen
uyarilar nedeniyle depolarize olarak kasilir ve kisalir. Boylece, kalp odaciklarim
cevreleyen miyokard, biitiinsel bir biiziilme yasayarak i¢indeki kan1 biiyiik ve kiigiik
dolasima gonderir. Bu kasilma siirecine sistol denir; sistol sonrasi hiicreler hizla
eski elektrik yiiklerine kavusarak yeniden polarize olur ve bu siire¢, kalp atim sayisi

kadar tekrarlanir.

Kalbin elektriksel faaliyeti sonucunda ortaya ¢ikan potansiyel farklar, cevre dokular
ve Ozellikle kan aracilifiyla tiim viicuda yayilir. Viicut {izerinde yerlestirilen
elektrotlar, bu farklar1 kaydederek elektrokardiyogram egrileri olusturur. Her
bolgedeki potansiyel farklarinin kaydedilmesi, ilgili bolgeye ait derivasyon (lead)
kavramin ortaya ¢ikarir. Normal bir EKG, I, 11, III, aVR, aVL, aVF, V1, V2, V3,
V4, V5 ve V6 olmak iizere toplam 12 derivasyonu igerir |14, |15].

Sekil [T.2]de, 12 derivasyonlu EKG konfigiirasyonu gosterilmistir. Bu sema,
elektrotlarin viicut iizerindeki yerlesimini ve her bir derivasyonun kalbin hangi

bolgesini temsil ettigini ayrintilt bicimde sunar.



12 Derivasyonlu
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Ekstremite (kol ve bacak)
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Sekil 1.2 (a) 12 derivasyonlu sistemde elektrot yerlesimi, (b) 12 derivasyonlu
EKG, (c) Einthoven ii¢geni



EKG derivasyonlar1 genel olarak su sekilde siniflandirilir:

o I, I, IIT derivasyonlari: Frontal diizlemde kalbin elektriksel aktivitesini

Olcer.

* aVR, aVL, aVF derivasyonlari: Ekstremite derivasyonlar1 olarak bilinir;

yine frontal diizlemde kalbin aktivitesini degerlendirir.

* V1, V2, V3, V4, V5, V6 derivasyonlari: Gogiis (horizontal) diizlemde
kalbin elektriksel aktivitesini kaydeder.

Her bir derivasyon, kalbin belirli bolgelerinden elde edilen sinyalleri temsil eder:

* I derivasyonu: Sol atriyum ve sol ventrikiiliin lateral duvari,

o II ve III derivasyonlari: Sag atriyum ve sol ventrikiiliin inferior (alt) duvari,
e aVR: Sag atriyum,

¢ aVL: Sol ventrikiiliin lateral duvari,

e aVF: Kalbin inferior (alt) duvari,

* V1 ve V2: Sag ventrikiil ve septum,

¢ V3 ve V4: Anterior (6n) duvar,

¢ V5 ve V6: Sol ventrikiiliin lateral duvari.

Einthoven iiggeni, EKG derivasyonlarinin geometrik iligkilerini aciklayan temel bir
kavramdir. Ug elektrot arasindaki baglantilari tanimlayan bu iicgen, derivasyon I, II

ve III ile temsil edilmektedir:

* Derivasyon I (Lead I): Sol kol ile sag kol arasindaki voltaj farkini 6lger ve
kalbin sag-sol (lateral) aktivitesini yansitir.

* Derivasyon II (Lead II): Sag kol ile sol bacak arasindaki voltaj farkini
kaydeder; kalbin iist-alt (inferior) aktivitesini gosterir.

* Derivasyon III (Lead III): Sol kol ile sol bacak arasindaki voltaj farkini

Olcer; kalbin inferior-lateral aktivitesini temsil eder.



Bu ii¢ derivasyon, Einthoven iicgeninin temelini olusturur ve kalbin elektriksel

aktivitesini farkli acilardan degerlendirmeye olanak tanir.

Sekil [I.3[te, tipik bir EKG egrisi yer almaktadir. EKG sinyalleri, temel olarak P,
QRS ve T dalgalarindan olusmaktadir [2]. P dalgasi, atriyumlarin kasilmasi sonucu
ortaya ¢ikar; QRS kompleksi, atriyum kasilmasinin sona erdigini ve ventrikiil
kasilmasinin bagladigini; T dalgasi ise ventrikiillerin kasilmasinin sona erdigini

ifade eder.

Bu dalga formlari, insan anatomisinin benzersiz 6zniteliklerine bagl olarak ortaya
ciktigindan, EKG biyometrisi evrensellik, olgiilebilirlik, tekillik ve kalicilik gibi
temel kriterleri karsilamaktadir [[17]].

PR | ST

Sekil 1.3 Elektrokardiyogram

Normal bir EKG isareti i¢in Sekil [[.3te belirtilen 6znitelik degerleri soyledir [18]
19]:

RR intervali: 0.6-1 s,

* QRS kompleksi: 0.06-0.10 s,
* P dalga siiresi: 0.08-0.12 s,

¢ PR intervali: 0.12-0.2 s,

* PR segmenti: 0.05-0.12 s,

* ST segmenti: 0.08-0.12 s,

T dalga siiresi: 0.16 s,

QT intervali: 0.35-0.4 s.



1.4 Tezin Amaci ve Kapsamm

Bu tez calismasinin temel amaci, diisiik ¢oziiniirliiklii sensorler kullanarak EKG
tabanli biyometrik kimlik dogrulamanin miimkiin olup olmadigini aragtirmaktir.
Onerilen yontem, mobil cihazlarda kullanim igin optimize edilerek kullanici dostu
ve giivenilir bir dogrulama ¢ergevesi sunmay1 hedeflemektedir. EKG sinyallerinin
benzersiz karakteristikleri sayesinde, kimlik dogrulama siire¢lerinin giivenilirligini
artirmak ve geleneksel yontemlere kiyasla daha saglam bir giivenlik mekanizmasi

saglamak amaclanmaktadir.

Mobil cihazlarda EKG tabanli kimlik dogrulamada baglica ©nem tasiyan
parametreler arasinda, elektrot sayisi, sensor kalitesi, kaydedilen sinyal siiresi ile
yanlis kabul oran1 (FAR) ve dogru kabul orani1 (TAR) gibi performans metrikleri
bulunmaktadir. Ozellikle yiiksek maliyetli tibbi cihazlar yerine, diisiik maliyetli
ve diisiik coziiniirliiklii sensorlere yonelik ilgi artmaktadir. Bu tezin temel odagi,
diisiik maliyetli sensorlerden alinan EKG verilerini kullanarak mobil cihazlar icin

giivenilir ve pratik biyometrik dogrulama yontemleri gelistirmektir.

Mobil saglik hizmetlerindeki ilerlemeler ve giyilebilir cihazlarin yayginlagmasi,
kullanicilarin  kalp atis1  verilerini gercek zamanl olarak takip etmelerini
kolaylastirmigtir. Bu tez, giyilebilir cihazlar veya basit mobil EKG sensorleri
aracilifiyla toplanan diisiik ¢oziiniirliiklii verilerin kimlik dogrulama amaciyla
kullanilma potansiyelini incelemekte ve olusturulan kiigiik bir veritabani {izerinde

gelistirilen algoritmalarin performansini degerlendirmektedir.

Literatiirde, kisa siireli ve diisiik ¢coziiniirlikli EKG kayitlarinin mobil uygulamalar
icin biyometrik kimlik dogrulama amaciyla kapsamli olarak incelenmedigi
goriilmektedir. Bu tez ¢aligmasinda, teorik ve uygulamali yontemler birlikte ele
alinarak, mobil cihazlarda diisiik maliyetli sensorlerden elde edilen kisa EKG
kayitlar ile giivenilir ve pratik bir biyometrik dogrulama cercevesi gelistirilmesi
hedeflenmistir. Boylece, mevcut literatiirdeki onemli bir bosluk doldurulacak ve

mobil biyometrik sistemlerin uygulanabilirligi artirilacaktir.

1.5 Literatiir Ozeti

Literatiirde yer alan arastirmalar, EKG temelli kimlik dogrulamanin giivenilir bir
biyometri metodu oldugunu gostermektedir. Bildigimiz kadariyla, Biel ve dig. [20]
tarafindan, EKG biyometrisi icin sinyal sekline dayali bir yontemi kullanan ilk
yaklagim sunulmusgtur. Bu calismada, siniflandirma i¢in zaman, genlik ve egimle

ilgili dznitelikler ¢ikarilmig; sonuclar, EKG kullanilarak belirlenmis bir gruptan bir



kisinin taninabilecegini gostermektedir. Ayrica, yalnizca bir 6l¢iim kanalinin EKG

kimlik dogrulamasi i¢in yeterli oldugu sonucuna varilmistir.

Israil ve dig. [13] tarafindan yapilan bir calismada, kalp hizi degisikliklerinin
EKG o0znitelikleri iizerindeki etkisi incelenmistir. ~ Deneyler, farkli endise
durumlarinda ve farkli elektrot yerlestirme pozisyonlarinda 20 saniye siireyle 29
katilimcinin EKG sinyalleri iizerinden gerceklestirilmistir. Sonuclar, elektrotlarin
konumlandirilmasindan bagimsiz olarak ve denekler cesitli stres durumlarina maruz
kalmis olsalar bile dogru bir siniflamanin miimkiin oldugunu gostermistir. Ayrica,
kalp atis hizindaki degisimlerin EKG 6zniteliklerine etkisini azaltmak i¢in dogrusal

normalizasyonun kullanilabilecegi analiz edilmistir.

EKG biyometrisinin 6nemli bir sorunu, bir kaydin ne kadar siireyle gecerli
kalabilecegidir. Bu endiseyi ele almak icin, Wiibbeler ve dig. [21] tarafindan,
bir veritabanina dayali EKG dogrulama semasi1 gerceklestirilmistir. Bu veritabani,
aydan yila kadar degisen zaman araliklarinda kaydedilen verilerden olusmakta
ve 74 katilimciya ait kayitlar1 icermektedir. Sablonlar1 olusturmak icin Lead-I,
Lead-II ve Lead-IIl sinyallerinin 10 saniyelik kayitlar1 birlestirilmistir. Kimlik
dogrulama islemi, en yakin komsu algoritmasi kullanilarak gergeklestirilmis ve
dogru kabul oram1 %98,10 olarak elde edilmistir. Sonug¢ olarak, bu ¢alismada
EKG biyometrisinin, olusturulan bir kayit sablonundan uzun yillar sonra dahi

gecerliligini korudugu ortaya konulmustur.

Bir bagka calisma, Singh ve Singh tarafindan sunulmustur [22]]. Bu c¢alismada,
her kalp atisindan zaman, genlik ve acilara dayali olarak 20 6znitelik ¢ikarilmistir.
Kayit sablonu ile kimlik dogrulama sablonu arasindaki her 6znitelik icin Oklid
uzaklig1 hesaplanmistir. Deney, en az 3 dakika boyunca 73 katilimcinin kaydedilmisg
verileriyle MIT-BIH Physionet veritabanindan elde edilmistir. Bu g¢alismanin
performansi, yanlis kabul orani (FAR) %7 ve dogru kabul orani (TAR) %82 olarak
rapor edilmigtir. Elde edilen sonuglar, EKG biyometrisinin, parmak izi ve yiiz
tamima gibi yontemlerle birlestirildiginde daha da iyilestirilebilecegini gostermis;

multimodal sistem ise %99,00 dogru kabul orani iiretmistir.

Aziz ve dig. tarafindan yapilan bir calismada [12]], EKG tabanli bir biyometrik
kimlik dogrulama sistemi 6nerilmistir. Onerilen yontem, ham EKG sinyallerinden
giirtiltiileri kaldirmak ve ilgi alanini belirlemek i¢in deneysel mod dekompozisyonu
(EMD) kullanmistir. Zaman, frekans ve istatistiksel alan Ozniteliklerinin
bir kombinasyonu ile farkli veri siiflarin1 ayirt etmek amaciyla Oznitelikler
cikarilmigtir.  Secilen Oznitelikler, sekiz siniflandirma yontemi ile test edilmis;
sonucglara gore, destek vektor makineleri (SVM-C) %98,72’lik bir siniflandirma
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dogruluguna ulasarak, 10 kath ¢apraz dogrulama stratejisi ile en yiiksek dogrulugu
elde etmistir. Bu calismanin veritabani, 14 katilimcidan elde edilmistir. Deneysel
analiz, onerilen yontemin diger calismalarla karsilastirildiginda giivenilir, dogru ve

hesaplama ag¢isindan daha az maliyetli oldugunu ortaya koymustur.

Pal ve dig. (23] tarafindan sunulan calismada, EKG analizi i¢in etkili bir yontem
onerilmektedir. Bu yontem, sinyali diizeltmek ve dalga formunun tiim temel
Ozniteliklerini ¢ikarmak amaciyla gelistirilmistir. Calismada, EKG sinyallerini
giiriiltiiden arindirmak i¢in FIR yiiksek gecisli bir filtre kullanilmis; R tepe noktalar
Haar dalga doniisiimii ile belirlenmistir. EKG dalga formunun baskin referans
noktalarindan biri olan, egri altindaki alan ad1 verilen yeni bir 6znitelik sinifi, aralik
oznitelikleri, genlik Oznitelikleri ve ac1 Oznitelikleri gibi diger bilinen Oznitelik
siniflar1 ile birlikte hesaplanmustir. Pal ve dig., QT veritabaninda %99,49, PTB
veritabaninda %98,96 ve MIT-BIH aritmisi veritabaninin alt kiimesinde %98,48

kimlik dogrulama performansi rapor etmiglerdir.

Bu calisma [24]], AlexNet ve GoogleNet aglarinin 6nceden egitilmis versiyonlarinin
birlesimini kullanarak EKG verileri ile kisi tanimlamay1 Onermektedir. Aglar
egitmeden Once, tek boyutlu EKG verileri filtrelenip iki boyutlu bir formata
doniistiiriilmektedir.  Bu calismada kullanilan veritabani, MIT-BIH Aritmi
veritabanindan alinan on EKG sinyalini icermektedir. Performans degerlendirmesi,
Onerilen birlesim yonteminin, AlexNet ve GoogleNet’in bireysel performanslarini
geride birakarak ortalama %96,6 dogruluk oramina ulastigini gostermektedir.
Bu sonuclar, konvoliisyonel sinir aglarinin (CNN’lerin) geleneksel makine
o0grenme yontemlerine kiyasla daha yiiksek dogruluk ve iistiin 6znitelik ¢ikarimi
sagladigint vurgulamaktadir. ~ Bu arastirma, EKG sinyallerinin biyometrik
dogrulamada kullanilmasinin etkinligini ve derin O6grenme yontemlerinin bu

alandaki potansiyelini ortaya koymaktadir.

Calismada [25], minimal On isleme ile ham EKG verilerini isleyen yeni bir
EKG tabanli biyometrik tanimlama yontemi Onerilmistir. Bu yOntem, cesitli
uygulama baglamlarinda yeterli dogrulugu saglarken, hesaplama maliyetini diisiik
tutacak sekilde tasarlanmigtir. Deep-ECG olarak bilinen derin 68renme modeli,
minimal 6n isleme yapilmig EKG sinyallerini isleyebilecek sekilde uyarlanmistir.
Calismada SHAREE veritaban1 kullanilmig; bu veritabani, kontrolsiiz kogullar
altinda toplanmg 139 bireyin 24 saatlik Holter kayitlarmi icermektedir. Ug
deney gerceklestirilmis ve bu deneylerde minimal 6n islemenin, son teknoloji
yontemlerle elde edilen tanimlama dogrulugu ve sonuglarla karsilastiriimasi
yapilmistir. Sonuglar, minimal 6n iglemenin hesaplama maliyetlerini 6nemli dl¢iide

azalttigin1 ve biyometrik tanimlama sistemlerinde yiiksek etkinligi korudugunu
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gostermistir.

2 saniyelik EKG segmentleri kullanilarak, yontem bireysel u¢larda %80’in tizerinde
ve birden fazla ucta %90’1n iizerinde dogruluk elde etmistir. %80’in {izerinde
dogruluk elde etmek i¢in gerekli olan minimum egitim 6rnegi sayisinin, bu EKG
segmenti siiresiyle kisi bagma 100 oldugu bulunmustur. Ozetle, calisma, 6nerilen
yontemin ger¢ek zamanli uygulamalarda etkili bir sekilde uygulanabilecegini ve

giyilebilir cihazlarda verimli kullanilabilecegini gostermektedir.

Bu calisma [26]], Covid-19 pandemisi nedeniyle fiziksel temasin kabul edilemez
hale gelmesiyle artan sosyal mesafeyi koruma ihtiyacina cevap vermek iizere,
EKG tabanli biyometrik dogrulama yoOntemlerinin giivenligini aragtirmaktadir.
Saldirganin, kurbanin kisa bir EKG sablonunu yakalayarak sahte EKG sinyalleri
olusturdugu bir GAN tabanli sunum saldiris1 gelistirilmisti. EKG-ID veritabani
kullanilarak gerceklestirilen deneylerde, Onerilen saldirt %91,70 ortalama
tanimlama orami ile basarili bulunmustur.  Bu c¢alisma, EKG biyometrik
sistemlerinin giivenligini artirmak i¢in sinir ag1 mimarisi tabanli yeni bir derin

o0grenme cercevesi de onermektedir.

Bu calisma [27], bir EKG sinyalinin kisa bir segmentinin zaman-frekans alam
temsilinin, biyometrik tanima ic¢in nasil etkili bir sekilde kullanilabilecegini
arastirmistir. Mevcut derin 6grenme tabanli tanima sistemlerinde genellikle yiiksek
tanima dogrulugu elde etmek i¢in uzun EKG sinyal segmentleri kullanilirken, bu
calismada R-dalgasi etrafindaki 0.5 saniyelik kisa bir segment kullanilarak ¢ok
oturumlu verilerde miikemmel tanima dogrulugu elde edilmis ve mevcut yontemler

asilmustir.

Kisa bir EKG sinyal segmentinin zaman-frekans alani temsili, tanima yetenegini
artirmak icin Onemlidir ve daha az karmagitk CNN modellerinin biyometrik
tanimada etkili olabilecegini gostermektedir. Arastirmacilara gore, bu yaklasim
ticari ve kamu uygulamalar1 i¢in saglam, giivenilir ve kabul edilebilir bir
kimlik dogrulama sistemi gelistirmeye yardimci olabilir. Ayrica, EKG sinyalinin
giivenilirligini artirmak i¢in daha biiylik, ¢cok oturumlu veri kiimelerinde kisa
segmentlerin performansim1 belirlemek iizere daha fazla arastirma gereklidir.
Gelecekteki calismalarin, farkli kardiyak kosullar altindaki tanima performansini
incelemeyi ve sinyaldeki degisikliklere karst dayanmikli, daha sofistike derin

ogrenme modelleri gelistirmeyi hedefledigi belirtilmistir.

Bu calisma [28], bireysel kimlik dogrulama i¢in EKG sinyallerini kullanarak
tek kalp atis1 ile kimlik dogrulama saglayan bir 1D konvoliisyonel sinir agi
(1D-CNN) cercevesi onermektedir. MIT-BIH Normal Siniis Ritmi (NSRDB),
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MIT-BIH Aritmi (MIT-ARR), ECG-ID ve MIMIC-III veritabanlar1 {izerinde
yapilan degerlendirmelerde; NSRDB (18 denek, dogruluk %99,26), MIT-ARR (27
denek, dogruluk %98,82), MIMIC-III (83 denek, dogruluk %98,71) ve ECG-ID (90
denek, dogruluk %95,69) veritabanlarinda yiiksek dogruluk oranlarina ulagilmistir.

Ayrica, SMOTE algoritmas1 kullanilarak dengelenmis veritabaninda NSRDB ve
MIT-ARR veritabanlarinda %100 dogruluk, kesinlik, duyarlilik ve F1-skoru elde
edilmigtir.  Karisik veritabaninda (MIXED-1: 173 denek, %98,44 dogruluk;
MIXED-2: 200 denek, %95,59 dogruluk; MIXED-3: 218 denek, %93,38 dogruluk)
performans, %99,6’nin {izerinde kalmistir. Bu sonuclar, Onerilen c¢ercevenin
biyometrik kimlik dogrulama icin yiiksek dogruluk ve giivenilirlik sagladigim

gostermektedir.

Biyosinyal tabanli kullanici tanima teknolojileri, yliz ve parmak izi tabanh
yontemlerin simirlamalarina alternatif olarak gelismekte olup, mevcut biosinyal
veritabanlarimin  (DB) kisitlamalarim1  agsmak amaciyla yeni nesil ¢oziimler
sunmaktadir. Cogu DB, veri ¢esitliligi ve oturumlar aras1 degiskenlik analizini
siirlayan, tek oturumda az sayida katilimcidan veri toplama egilimindedir. Bu
caligma, elektrokardiyogram (EKG) ve elektromiyogram (EMG) sinyallerini iceren,
coklu oturumlarla kaydedilmis ve denek sayisi acisindan daha kapsamli olan
CSU_MBDB1 ve CSU_MBDB?2 veritabanlarini1 tanitmaktadir.

Denekler, birden fazla oturumda ve oturumlar arasinda en az bir giin siireyle, rahat
bir ortamda alt1 farkli jest yaparken kaydedilmistir. Bu DB’ler, ¢esitli uygulamalara
uyum saglayabilecek sekilde tasarlanmis olup, deneyler sirasinda %66,39 dogruluk
orani elde edilmistir. Bu sonuglar, sinyal isleme ve gelismis ag tasarimlart ile
performansin artirilma potansiyelini gostermektedir. Ayrica, bu veritabanlari, EKG
ve EMG’nin dogrusal olmayan 6zniteliklerini incelemek icin de degerli bir kaynak
olarak one ¢cikmaktadir [29].

Bu calismada [30], biyometrik kimlik dogrulama i¢in elektrokardiyogram (EKG)
sinyallerinin etkinligi incelenmisti. ECG-BA-CNN (konvoliisyonel sinir agi
kullanarak EKG tabanli kimlik dogrulama) yontemi Onerilmistir. ~ Biosecl
veritabaninda, CNN modeli %97, CNN+LSTM modeli %99 dogruluk elde ederken;
Biosec2 veritabaninda ise CNN modeli %95, CNN+LSTM modeli %97 dogruluk
gostermistir. Ozel veritabaninda, tek oturumda %98, iki oturumda ise %87,1
dogruluk saglanmistir. EKG sinyalleri normalize edilip, CNN cekirdek tabanli
bir yaklagimla 6znitelikler ¢cikarilmistir. Sonuglar, EKG sinyallerinin biyometrik
kimlik dogrulamada yiiksek dogruluk ve giivenlik sagladigin1 gostermistir. Bu

bulgular, gelismis sinir ag1 mimarileri ile entegre edilen EKG tabanli sistemlerin
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giivenilir kullanict kimlik dogrulama saglayabilecegini vurgulamaktadir.

Uzaktan saglik izleme (RHM), hasta kimliginin ve saglik kayitlarinin giivenligi
acisindan biiylikk onem tasimaktadir. Her bireyin benzersiz olan EKG deseni,
biyometrik tanimlama icin kullanilabilir. Bu ¢alismada [31]], dijital diferansiyel ve
yumusatma filtreleri ile islenen ve CEEMDAN ile ayristirilan bir EKG tabanli hasta
tanimlama sistemi Onerilmistir. Ayrica, LSTM tabanl siniflandirict kullanilarak
sekiz ayr1 EKG veritabaninda testler gerceklestirilmis; ortalama dogruluk %99,59
olup, ¢ogu veritabaninda %99,5’in lizerinde, AFDB’de ise %99,1 dogruluk
raporlanmigtir.  Capraz oturum senaryolarinda, CNN modeli %69,35, LSTM
modeli ise %89,21 dogruluk gostermistir. Gelecek calismalarda, zaman ve frekans

analizleri ile dogrulugun artirilmasi hedeflenmektedir.

Tibbi cihazlarda kullanilan EKG sensorleri, mobil biyometrik kimlik dogrulama
uygulamalar1 i¢in uygun degildir; ¢linkii bu cihazlar yiiksek maliyetli ve biiyiik
boyutludur. Bu nedenle, mobil cihazlarda diisiik maliyetli ve diisiik ¢oziintirliiklii
sensorlerin kullanilmasi 6nem tagimaktadir. Son donemde, mobil saglik cihazlarina
olan ilgi artmig; bu baglamda, giyilebilir cihazlar aracilifiyla elde edilen diisiik
coziiniirlikli EKG sinyallerinin kimlik dogrulama uygulamalarinda kullanilmasi,

mobil biyometri alaninda 6nemli bir gelisme saglamaktadir.

Bu calismada [32], elektrokardiyogram (EKG) sinyallerinin biyometrik kimlik
dogrulama i¢in potansiyelini degerlendiren bir arastirma sunmaktadir. Calismanin
odak noktasi, kalp biyometrisinin benzersizligini ve kaliciligim1 dogrulamak ve
genis, ¢cok oturumlu bir veritabani iizerinde bu siireci test etmektir. Veritabani,
hem ham EKG sinyallerini hem de demografik bilgileri icermekte olup, farkli
demografik gruplar arasinda tanima performansini degerlendirmek amaciyla
kullanilmigtir.  Calismanin bulgulari, 06zellik miihendisligine dayali kimlik
dogrulama yontemi ve derin 68renme modelleri ile elde edilmigtir. Kimlik
dogrulama siirecinde, egitim ve test setlerinin farkli oturumlardan alinmasinin
performansi diisiirdiigii; derin 6grenme modelinin ise ¢ok oturumlu veritabaninda
yiiksek tanima basaris1 sagladigi, ancak oturumlar aras1 zaman farkinin bu basariy1
etkiledigi belirlenmistir.  Sonug¢ olarak, EKG sinyallerinin biyometrik kimlik
dogrulama ve tanimlama i¢in uygun bir aday oldugu, uzun siireli oturumlar arasinda

dahi kabul edilebilir performans sergiledigi sonucuna varilmistir.

Tantinger ve dig. [33]], bir giysinin i¢ine entegre edilmis bir tekstil elektroduyla
Olciilen bir EKG’nin insan kimligi i¢in uygun olup olmadigini arastirmistir.
Almanya’nin Erlangen sehrindeki Fraunhofer IIS Entegre Devreler Enstitiisii’nde
gelistirilen FitnessSHIRT, mobil EKG verilerini toplamak i¢in kullanilmigtir. Bu
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caligmaya, ortalama yaglar1 26,3; ortalama boyu 183,2 cm ve ortalama agirlig1 78,8

kg olan saglikli 10 erkek katilmigtir.

Farkl1 6l¢iim sistemlerinin etkisini diglamak amaciyla, aym FitnessSHIRT sistemi
kullanilmug; i¢ 6l¢iim, 10 dakikalik siirelerle yapilmis ve her 6l¢iim arasinda en
az yedi giinliik bir ara verilmistir. On islenmis EKG segmentlerinden 6znitelikleri
cikarmak icin ii¢ farkli yaklagim kullanilmistir (referans noktalari, otokorelasyon
ve ayrik kosiniis doniisiimii kombinasyonu ile dalgacik doniisiimii). Arastirmacilar,
stabil bir kimlik dogrulamasi i¢cin QRS kompleksinin 6zniteliklerinin en 6nemli

bilgileri icerdigi sonucuna varmislardir.

Bu nedenle, dalgacik doniistimii kullanilarak 6znitelik c¢ikarma en iyi sonuclari
saglamistir.  Ancak, smiflandirma sonuglarinin stabilitesi, EKG sinyalindeki
boliimlerin zamansal farkliliklari (6zellikle P ve T dalgalarinin topolojisi) nedeniyle
stirhdir.  Ayrica, ii¢ seansta de8isen elektrot pozisyonlar1 dogrulama oranini
disirmistiir. ~ Bu etkileri telafi etmek icin daha fazla arastirma yapilmasi

gerekmektedir.

Choi ve dig. [I7], Neurosky tarafindan iiretilen CardioChip sensoriinden ($ekil
[[.4) elde edilen giiriiltiilii elektrokardiyogramlar kullanilarak biyometrik kimlik
dogrulamasi sunmustur. Mobil sensorlerden alinan EKG verilerinde bulunan farkl
sesleri azaltmak amaciyla bir kademeli filtre olugturulmus ve pratik uygulamalarda
yeterli performans elde edilmistir. Ayrica, Onerilen kimlik dogrulama yaklasimu,
birbirine kars1 tek destek vektor makineleri (SVM) siniflayicilarinin birlesiminden
olusan bir topluluk temelinde sunulmustur. Sensoriin belirsizligine ragmen,
Onerilen yaklasim, 175 birey iizerinde tek kalp atis1 icin %4,46 ve 15 saniyelik bir
test aralig1 i¢in %1,87’lik bir esit hata oran1 (EER) iiretmistir.

Sekil 1.4 KardioChip adl1 EKG algilama modiili
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Arteaga-Falconi ve dig. [2] ise bir mobil biyometrik dogrulama algoritmasi
onermistir. Bu algoritma, bir mobil telefon kilifindaki (Sekil [I.5) kalp monitorii
araciligiyla alinan EKG verilerine dayanmaktadir. Algoritma, on farkli zamanda ve
kosulda on katilimci ile test edilmis ve ayrica Physionet veritabanindan 73 kayitla da
degerlendirilmistir. Onerilen algoritmanin, 4 saniyelik sinyal alimi ile %1,41 yanlis
kabul oran1 (FAR) ve %81,82 dogru kabul oran1 (TAR) sagladig1 gozlemlenmistir.

Sekil 1.5 AliveCore EKG mobil sensdrii

Chen ve Chen [34] tarafindan sunulan ¢aligmada, yapay sinir agi modelleri
kullanilarak bir dogrulama yontemi tanitilmistir. EKG sinyal kaydi, 6rnekleme hizi
512 Hz olan yerlesik bir BMDI101 ¢ipi (Sekil [[.6) ile gergeklestirilmis ve farkli
fiziksel kosullar altinda 50 bireyden toplanmistir. Bu calisma, kabul ve reddetme
hata performansin1 dengeleyebilen iki yapay sinir ag1 modeliyle iki asamali bir
dogrulama algoritmas1 onermektedir. Sadece 3 saniye i¢inde 3 atig kullanilarak
yapilan dogrulama, 50 denekten olusan bir grup ic¢in ortalama yanlis kabul orani
(FAR) ve yanlis reddetme orani (FRR) degerlerini %10’un altina, kohortun kiiciik
gruplar1 (30’dan az) i¢in ise %5,00’in altina diisiirmektedir.

Zhang ve Wu [35] ise akill telefonlar gibi mobil cihazlar i¢in uygun, pratik bir EKG
tabanh kimlik dogrulama yontemi sunmustur. i1k olarak, her kalp dongiisiinden kalp
atimlar1 ¢ikarilmakta; ardindan her kalp atimi, daha once tespit edilen referanslar
ile boliinmiis PQ, QRS ve JT segmentlerine ayrilarak diizeltilmektedir. Son olarak,
Oznitelik boyutu, ayrik kosiniis doniisiimii ile 80’e indirilmektedir. Kullanicilar, ilk
kez EKG sablonlarin1 kaydetmek icin sadece 20 saniye ve sonrasinda dogrulamak
icin yaklagik 4 saniye harcarlar. 85 saglikli katilimcinin EKG kayitlari, Physionet’te
yaygin olarak kullanilan veritabanlarindan secilmistir. Dogrulama deneylerinde, 85
katilimcidan elde edilen ortalama esit hata oranm1 (EER) %1,57 olarak belirlenmis;
kimlik dogrulama deneylerinin dogruluk orani, sinir ag1 siiflayicisi ile %96,6 ve
SVM ile %97,7 olarak hesaplanmistir. Her katilimcinin saklamas1 gereken sablon

boyutu ise sadece 160 bayttir.
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Sekil 1.6 EKG 6lgiim cihazt

EKG sinyalleri, mobil veya giyilebilir cihazlardan toplanabilir ve hareket, sinyal
alim tiirii vb. nedenlerle giiriiltii tarafindan bozulabilir. Bu durum, yakalanan
sinyal kalitesi ile kullamim kolayli§1 arasinda bir denge olusturur. Kang ve
digerleri [36], kay1t ve kimlik dogrulama asamalarinda ¢ikarilan sablonlarin ¢apraz
korelasyonunun kullanimini 6nermistir. Onerilen algoritmalar, dogrulama igin
giyilebilir bir saatte (Sekil [I.7) uygulanmigtir. Deneylerin sonunda, 3 saniyelik
dogrulama siiresi ve 30 saniyelik kayit siiresi kullanilarak, yanlis kabul oran1 (FAR)

%35,2 ve yanlis reddetme oran1 (FRR) %1,9 olarak hesaplanmistir.

Sekil 1.7 EKG 6l¢iimii icin giyilebilir saat
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Elektrokardiyogram (EKG) sinyalleri, akilli ev ortamlarinin giivenligini artirmak
icin biyometrik dogrulamada kullanilmaktadir. Bu c¢alisma, EKG sinyallerinin
benzersiz Ozniteliklerinden yararlanarak kullanici  kimligini dogrulamay1
amaglamaktadir. Giyilebilir sensorlerle toplanan EKG sinyallerinden 6znitelikler
cikarilarak bir sablon olusturulur ve bu 6znitelik vektorii, kullanicinin kimligini
dogrulamak i¢in kullanilir. EKG tabanli biyometrik sistem, sahtecilik ve DDoS
saldirilarina karsit dayaniklidir ve akilli evler icin yiiksek giivenlik saglamaktadir.
Smiflandirma i¢in destek vektdr makinesi (SVM) algoritmalar: kullanilmigtir. Bu
yontem, EKG sinyalleriyle akilli ev [oT ortamlarinin giivenligini artirmada etkili

olmustur [37].

Bu calisma [38]] ise, giyilebilir cihazlarda kullanici kimliini dogrulamak igin
PhotoPlethysmoGram (PPG) ve Elektrokardiyogram (EKG) sinyallerini kullanan
SOMEONE topluluk 6grenme yontemini sunmaktadir. Algoritma, bu sinyalleri
isleyerek kullanicilar1 tanimakta ve F1 skoru, hassasiyet, yanlis kabul orani (FAR)
ve yanlis reddetme orani (FRR) gibi metriklerde iistiin performans sergilemektedir.
MIMIC veritabanindaki EKG sinyalleri icin SOMEONE, %97,3 F1 skoru, %97,4
hassasiyet, %0,1 FAR ve %2,7 FRR elde etmistir. CapnoBase veritabanindaki
PPG sinyalleri i¢in %80,1 F1 skoru, %80,7 hassasiyet, %0,4 FAR ve %19,3 FRR;
CAPNO veritabanindaki EKG sinyalleri i¢in %86 F1 skoru, %86,3 hassasiyet, %0,3
FAR ve %13,7 FRR; CAPNO veritabanindaki PPG sinyalleri i¢in ise %94 F1 skoru,
%94,1 hassasiyet, %0,1 FAR ve %5,9 FRR elde edilmistir. Bu calisma, PPG
ve EKG sinyallerini kullanarak akilli ev IoT ortamlarinin giivenligini artirmanin

etkinligini gostermektedir.

Bu calisma [39] ise, tibbi ve giyilebilir cihazlardan toplanan elektrokardiyogram
(EKG) sinyallerini kullanarak c¢esitli biyometrik dogrulama modellerinin
performansini degerlendirmektedir. Onerilen yontem, mobil cihazlar igin
onemli olan kisa kayit siiresiyle hizli egitim modellerine odaklanmaktadir. ki
kamu veritaban1 kullanilarak, farkli 6rnek uzunluklar1 ve egitim seti boyutlari ile
cesitli siniflandirma modelleri arastirilmigtir. Sonuglar, istatistiksel yontemlerin
hiper diizlem ayiricilardan daha iyi performans gosterdigini ortaya koymustur.
Naive Bayes (NB) siniflandiricis1 en iyi esit hata oranim1 (EER) elde ederken,
Derin Ogrenme (DL) modeli, gerekli kayit 6rneklerini ve dogrulama siiresini
azaltmada istiinliik saglamistir. DL modeli, E-HOL veritabaninda %35,76 EER
ve WeSAD veritabaninda %7,07 EER elde etmis ve sadece 5 saniyelik kayit
verisi ile bu sonuclara ulagsmistir. Bu sonuclar, Onerilen yontemin kisa kayit
stireleriyle bile tibbi ve giyilebilir EKG kaydediciler i¢in saglam kimlik dogrulama
saglayabilecegini gostermektedir. Calisma, EKG biyometriginin Ozellikle

giyilebilir cihazlarda gelecekteki dogrulama yontemleri icin gegerli bir secenek
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oldugunu sonucuna varmaktadir.

Chun ve dig. ise, kisinin EKG atimlarin1 elde etmek icin iki elektrodlu
giyilebilir bir EKG sensorii (Nymi bandi) (Sekil [1.8) kullanmakta ve diger EKG
bilgilerine erisimi olmayan giyilebilir cihazlar i¢in yeni bir EKG tabanl kullanici
dogrulama yontemi onermektedir. Onerilen yontem, karmasik STFT (kisa siireli
Fourier doniisiimii) ve basit Oklid uzaklig1 kullanmaktadir. Calismada, giyilebilir
EKG sensorlerinden alman 15 bireyin EKG verileri lizerinde gerceklestirilen
testlerde, %0,9 EER elde edilmis; halka acik ECG-ID veritabanindaki 89 birey i¢in
ise %2,2 EER saglanmustir.

Sekil 1.8 Nymi band kullanilarak EKG 6l¢iimii

Nawawi ve dig. ise, gercek diinya senaryolarinda biyometrik dogrulama i¢in
giyilebilir akill tekstil gomleklerden elde edilen EKG sinyallerinin giivenilirligini
arastirmistir. Calismada, 22 katilimcidan (18 erkek, 4 kadin) veri toplanmis ve bu
veriler, diisiik gecisli Butterworth filtreleri kullanilarak islenmistir. Oznitelikler,
QRS segmentasyonu yontemi kullanilarak ¢ikarilmis ve Q destek vektor makinesi
(QSVM) smiflandiricisi ile analiz edilmistir.  Calisma, bes farkli senaryoyu

degerlendirmisgtir:

* Senaryo A: Ayni oturumdan alian egitim ve test verileri kullanilarak
gerceklestirilen senaryoda, %99,27 dogruluk (ACC), %92,77 dogru kabul
orani (TAR) ve %0,40 yanlis kabul oran1 (FAR) elde edilmistir.

* Senaryo B: 30 giin arayla toplanan verilerle egitim ve test yapilmasi
durumunda %93,59 dogruluk, %30,81 TAR ve %?2,84 FAR raporlanmustir.

* Senaryo C: Bir oturumdan alinan verilerle egitim yapilip, baska bir
oturumdan alinan verilerle test yapilmasi durumunda %99,20 dogruluk,
990,32 TAR ve %0,27 FAR elde edilmistir.

* Senaryo D: Bilinen aktivitelerle egitim ve test yapilmasi durumunda %99,63
dogruluk, %97,14 TAR ve %0,14 FAR sonuclar elde edilmisgtir.
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* Senaryo E: Farkli aktivitelerle e8itim ve test yapilmast durumunda %88,86
dogruluk, %44,56 TAR ve %6,05 FAR elde edilmistir.

Bu bulgular, zamansal degiskenlik ve farkli aktivite kosullarina ragmen, giyilebilir
cihazlarla kullanildiginda EKG biyometriginin yiiksek dogruluk saglayabilecegini
gostermektedir.

Bu calisma [42] ise, mobil sensorler kullanarak diisiik maliyetli ve yiiksek
performansli bir EKG tabanli biyometrik tanmima sistemi tasarlamay1
amaglamaktadir. Proje, sinyal alma, tanima algoritmas: simiilasyonu ve
mobil uygulamada uygulanma olmak {iizere ii¢ asamaya ayrilmistir. MATLAB
kullanilarak gelistirilen ve Physionet PTB veritabanindaki EKG sinyalleriyle test
edilen yontem, On isleme, Oznitelik ¢ikarma, boyut indirgeme ve siniflandirma
adimlarini icermektedir. Sonuclar, %82 tanimlama orani, %16,4 EER, %16 FAR
ve %18 FRR ile umut verici sonuglar gostermistir. Bu sonuclar, EKG sinyallerinin
mobil cihazlarda biyometrik tanima icin etkili olabilecegini ortaya koymaktadir.
Sistemin her adimmin optimize edilmesi ve veritabaninin genisletilmesi ile
tanimlama oraninin artirilabilecegi belirtilmektedir. Calisma, mobil uygulamalar
icin EKG tabanli biyometrik sistemlerin potansiyelini gostermekte ve daha fazla

arastirma gerektirdigini vurgulamaktadir.

1.5.1 Literatiirde i-vektorlerin EKG ile Kullanimi

Konugma ve konusmaci tanimada i-vektorlerin basarisindan ilham alinarak, EKG
sinyallerinde hastaya 0zgii bilgileri gdstermek amaciyla i-vektorler uygulanmustir.
AAMI (Association for the Advancement of Medical Instrumentation) Onerisine
gore, 15 kalp atigi tipi bes sinifa ayrilir; normal siniis atimlar1 (N), supraventrikiiler
ektopik atimlar (S), ventrikiiler ektopik atimlar (V), normalin fiizyonu ve
ventrikiiler ektopik vurus (F) ve bilinmeyen vurus tipi (Q). Bu c¢alismada
ANSI/AAMI ECS57 standardinin 6nerdigi gibi, iki aritmi smnifinin (Smf S ve
V) siniflandirma performansini degerlendirmeye odaklanilmistir. Iki farkli test
uygulanmis; S siifi %99,1 ve %98,8, V sinifi ise %99,7 ve %98,8 dogruluk (ACC)

oranlartyla stniflandirilmugtir [43] 44].

Diger bir calismada [45], 1-vektor, normal/anormal kalp sesi siniflandirma gorevi
icin uyarlanmistir. Ik olarak, MFCC oznitelik vektorleri kalp ses kayitlarindan
cikarilmig, daha sonra bireylerin kalp sesi karakteristigine dayali dznitelikler elde
etmek icin i-vektor yontemi kullanilmistir. Deneysel sonuclar, 6nerilen yontemin,
Physionet 2016 veri kiimesindeki temel sistemle karsilastirildiginda modifiye

dogruluk temelinde % 16’11k bir performans artig1 saglayabildigini gdstermektedir.
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Xian ve dig. [46] ise, konugsmaci tanima alanindaki basaridan ilham alarak,
EKG tanimlamasi ic¢in i-vektor modellerinin kullanimini aragtirmislardir.  Bu
calisma, degiskenlik sorunlarim1 ele almak amaciyla ¢esitli telafi yontemlerini
kullanan i-vektor modellerinin performansini degerlendirmeye odaklanmistir.
Degerlendirme, beyazlatma, dogrusal diskriminant analizi (LDA), simf igi
kovaryans normalizasyonu (WCCN) gibi farkli telafi yontemlerini iceren tek
yaklasim ile WCCN-beyazlatma, LDA-beyazlatma, WCCN-LDA gibi siral
yaklasimlar i¢in 6nyargisiz protokol (protokol 1) ve tiim 6zne protokolii (protokol
2) kapsaminda gerceklestirilmistir. Deneysel degerlendirme, 310 EKG kaydiyla 90
konuyu iceren Physionet’ten ECG-ID veritabani kullanilarak yapilmistir. Sonuglar,
sirali yaklagimin tek yaklagima gore iistiin performans sergiledigini, ayrica daha az

Gauss bileseni gerektirdigi icin hesaplama siiresini azalttigin1 gostermektedir.

Yukarida Ozetlenen c¢alismalar, EKG tabanli biyometrik dogrulamanin
giivenilirligini kanitlamakla birlikte, cogu yiiksek ¢Oziiniirliiklii veriler veya
belirli kosullar altinda gerceklestirilmistir. Ayrica, mobil cihazlarda gercek zamanh
kullanim ve diisiik ¢oziiniirliiklii sensorlerden alinan veriler tizerinde sinirh sayida
calisma bulunmaktadir. Bu bilgiler 1s1g8inda, kisa EKG kayitlariyla (6rnegin 5
saniye) ve diisilk maliyetli sensorlerle yiiksek dogruluk orani elde etmenin hélen
genis kapsamli bir arastirma boslugunu olusturdugu soylenebilir. Dolayisiyla,
mevcut tez calismasi, mobil biyometrik dogrulamada ekonomik, hizli ve giivenilir

bir alternatif sunmay1 hedeflemektedir.

1.6 Hipotez

Bu tezde, diisiik ¢oziiniirliiklii sensorlerle elde edilen EKG verilerinin mobil
cihazlarda biyometrik kimlik dogrulama amaciyla kullanilabilecegi hipotezi test
edilmektedir. Onerilen yaklasim, Mel Frekans Kepstral Katsayilar1 (MFCC) ve
Gammatone Frekans Kepstral Katsayilar1 (GFCC) gibi gelismis 6znitelik ¢ikarma
tekniklerini, i-vektor temsili ile bir araya getirerek yiiksek dogruluk ve diigiik
islem siiresi saglamayir amaclamaktadir. Asagida, hipotezin dayanak noktalari

Ozetlenmigtir:

Gelismis Oznitelik Cikarimi (MFCC ve GFCC)

* MFCC, EKG sinyallerinin zamansal ve frekanssal bilesenlerini etkili sekilde

temsil edebilir.

* GFCC, insan isitsel modeline benzer sekilde, diisiik frekans bantlarinda ayrim

giiclinii artirarak MFCC’yi tamamlar.
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» Iki yontemin birlikte kullanimi, tek basina elde edilebilen 6znitelik setinden

daha giivenilir ve kapsamli bir 6znitelik uzay1 sunar.

i-vektor Temsili ve Boyut Indirgeme
e Konugmaci tamimada popiiler olan i-vektor yaklasgiminin, EKG
sinyallerindeki kisiye oOzgii bilgiyi diisik boyutlu bir uzayda temsil

edecegi ongoriilmektedir.

* Evrensel arka plan modeli (UBM) ve toplam degiskenlik uzaymin (TV)
kullanimi, verideki karmasik varyasyonlar1 kapsayarak kimlik dogrulama

performansini artirabilir.

* LDA veya WCCN gibi boyut indirgeme ve normalizasyon yoOntemleri,
i-vektor uzayinda ek ayrim giicli saglayacaktir.

Kosiniis Mesafesi ve Alternatif Benzerlik Olciitleri

e i-vektorler arasindaki benzerlik i¢in kosiniis mesafesinin, EKG verisinin

karakteristik farkliliklarin1 yakalamada etkili olacagi ongoriilmektedir.

o Oklid mesafesi, Manhattan mesafesi, Pearson korelasyonu veya dinamik
zaman esnetme (DTW) gibi alternatif Olgiitlerin de degerlendirilerek en

uygun esik ve benzerlik metriklerinin belirlenmesi hedeflenmektedir.

Mobil Kullamlabilirlik ve Diisiik Coziiniirliiklii Sensorler

* EKG kayitlarinin yalmizca 5 saniyeye indirgenmesi, mobil cihazlarda islem

ve hafiza kullanimini azaltarak gercek zamanli dogrulamanin 6niinii agar.

* Canli kalp atisindan elde edilen biyometrik veri, sahtecilik girisimlerine kars1

yiiksek diren¢ gosterir.

 Diisiik maliyetli sensorlerin tirettigi kisith ¢oziiniirliiklii verilerde dahi, uygun
on igleme ve zengin Oznitelik ¢ikarma (MFCC+GFCC) siirecleriyle tatmin
edici ayristirma yapilabilecegi diisiiniilmektedir.

Alternatif Yaklasimlar ve Karsilastirmali Degerlendirme
* Destek vektor makineleri (SVM), cok katmanh algilayict (MLP),
konvoliisyonel sinir aglart (CNN) ve tekrarlayan sinir aglart (RNN)
gibi yontemlerin de EKG tabanli kimlik dogrulamada basarili oldugu

bilinmektedir.
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e Onerilen i-vektor tabanli yaklasim, bu yontemlerle karsilastirilarak tez

calismasinin konumunu netlestirecektir.

Hipotezin temel varsayimi, kalp atiglarinin bireylere 6zgii benzersiz desenler
icerdigi ve MFCC ile GFCC gibi yontemlerle bu desenlerin i-vektor uzayinda
yiiksek dogrulukla ayristirilabilecegidir. ~ Bdylece, mobil cihazlarda diisiik
maliyetli sensorlerle gercek zamanli ve giivenilir kimlik dogrulama miimkiin
olacaktir. Ardindan, kosiniis mesafesi tabanli (veya alternatif Olgiitlere dayalr)
benzerlik analizi ile kisa EKG kayitlarinda dahi yiiksek dogruluk oranmiyla kimlik
dogrulama yapilabilecegi diisiiniilmektedir. Boylelikle, mobil cihazlarda diisiik
maliyetli sensorlerle gercek zamanli, pratik ve giivenilir bir biyometrik dogrulama

mekanizmasi gelistirme hedefi gerceklestirilebilecektir.
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2

ELEKTROKARDIYOGRAM (EKG)
BIYOMETRISi: KIMLIK DOGRULAMADA
TEMEL ILKELER VE YONTEMSEL
YAKLASIMLAR

Elektrokardiyogram (EKG) biyometrisi, kalbin elektriksel aktivitesinden elde
edilen sinyaller kullanilarak bireylerin tanimlanmasmni saglayan yenilik¢i bir
yontemdir. Her bireyin kalp atislarindaki kendine has ritmik ve morfolojik
Oznitelikler, bu yontemin diger biyometrik tekniklerden ayrismasini saglar.
Ozellikle, EKG sinyallerinin canlilik garantisi sunmasi, sahtecilige karsi ek bir
giivenlik katmami olusturur. Ayrica, sinyalin dinamik ve zamansal degisimleri,
gelismis sinyal isleme ve makine 6&renimi teknikleriyle entegre edildiginde yiiksek

dogruluklu tanimlama imkan saglar.

Mobil cihazlar ve giyilebilir teknolojiler, gercek zamanli uygulamalara uygun,
ekonomik ve giivenilir ¢oziimler sunarak, kisisel veri giivenliginin kritik 6nem
tasidigr giiniimiiz dijital diinyasinda ©nemli bir rol oynar. = Bu baglamda,
EKG biyometrisi, hem yiiksek performansi hem de uygulama kolaylig1 ile 6ne

cikmaktadir.

Bu boliimde, EKG biyometrisinin temel prensipleri ve kavramsal altyapisi ele
alinacaktir.  Sinyalin 6n isleme, Oznitelik ¢ikarma ve smiflandirma siiregleri
izerinden; bu yontemin hangi problemlere ¢6ziim sundugu ve hangi avantajlari
sagladigi kapsamli bi¢imde incelenecektir. Boylece, EKG biyometrisinin
tercih edilme nedenleri, sundugu yenilik¢i yaklasimlarin hangi alanlarda fark
yaratabilecegi ve mevcut sistemlere kiyasla hangi agilardan istiinliik sagladigi

ortaya konulacaktir.

Bir EKG tabanli kimlik dogrulama algoritmast genel olarak ii¢ temel adimdan

olusur:
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1. On Isleme: EKG sinyalindeki giiriiltiilerin giderilmesi ve sinyal kalitesinin
artirilmast amaglanir. Bu asamada, taban hatti kaymasi, gii¢ hatt1 girisimleri
ve kas giiriiltiisii gibi etkenler ¢esitli filtreleme yontemleriyle (6rnegin, bant

geciren filtreler, dalgacik doniisiimii) temizlenir.

2. Oznitelik Cikarma: On isleme sonrasi elde edilen temiz sinyalden, kimlik
tamimlama igin kritik morfolojik ve frekanssal dznitelikler ¢ikarilir. Ornegin,

QRS kompleksi ve diger dalga formlarinin 6znitelikleri bu adimda elde edilir.

3. Smiflandirma:  Cikarilan Oznitelikler kullanilarak, farkli bireylerin
tanimlanmas1 ve kimlik dogrulama islemi gerceklestirilir. Bu asamada, k-en
yakin komsu (kNN), destek vektor makineleri (SVM) veya diger makine

0grenimi yontemleri uygulanabilir.

Ayrica, sinyal yakalama iglemi, mobil ve giyilebilir cihazlarin (6rnegin, akilh
telefonlar, saatler, bileklikler vb.) arkasina veya oniine monte edilebilen, iki kuru

lead-I tipi elektrottan alinan EKG sinyallerinin kaydedilmesiyle gerceklestirilir.

2.1 On Isleme: Giiriiltii Giderme ve R-Peak Tespiti ile EKG
Sinyal Segmentasyonu

EKG kaydinda karsilasilabilecek en 6nemli giiriiltii kaynaklari; taban hatt1 kaymast,

gii¢ hatt1 girisimi ve kas giiriiltiistidiir.

* Taban hatti kaymasi: EKG isareti kaydedilirken, kalp ile elektrot arasindaki
kisinin hareketi, nefes alip vermesi ve elektrotun viicut yilizeyine tam
oturmamast sonucu olusan degisimlerden kaynaklanir. Bu kayma, genellikle

1 Hz’in altindaki frekanslarda meydana gelir.

* Gii¢ hatt1 girisimleri: 50/60 Hz sebeke frekansina bagh olarak ortaya ¢ikan

giirtiltiilerdir.
» Kas giiriiltiisii:  Yiiksek frekansli giiriiltii, kisinin hareketi ve iskelet

kaslarinin kasilmasiyla olusur.

On isleme asamasinda, EKG sinyallerindeki giiriiltiiyii gidermek icin literatiirde
yaygin olarak bant geciren filtreler ve dalgacik doniisiimii gibi teknikler

kullanilmaktadir.

On isleme adimmdan sonra, EKG sinyalinin anlamli bilesenlerinin

ayrigtirillabilmesi i¢in dalga formu segmentasyonu gerceklestirilir.  Bu islem,
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oncelikle R-tepe noktalarinin tespiti ve sonrasinda sinyalin normalizasyonuna
dayanir. R-tepe noktasi, giiriiltii kaynaklarindan en az etkilenen ve sinyalin en
belirgin noktasidir. Bu noktalarin tespiti icin dalgacik doniisiimii (WT), Hilbert
dontistimii (HT) ve Pan-Tompkins algoritmasi (PT) gibi yontemler siklikla

kullanilmaktadir.

Belirlenen R tepeleri, sinyalin segmentlere ayrilmasini saglar; bu segmentler
tizerinden QRS kompleksi gibi morfolojik Oznitelikler c¢ikarilarak tanimlama
yapilir. QRS kompleksi, ventrikiillerin kasilmasini yansittifindan ve kalp
hastaliklarindan kaynaklanan anormalliklere karsi nispeten stabil oldugundan,

Oznitelik ¢ikariminda en yaygin kullanilan bilegendir.

Dalgacik doniisiimii (WT), sinyalin zaman ve frekans alanindaki detaylarini ortaya
cikarmada giiclii bir ara¢ olup, anlik degisikliklerin tespiti ve sinyalin sikigtiritlmasi
icin idealdir [47, 48]]. Elektrokardiyogram gibi biyomedikal sinyallerin analizinde,
WT sinyalin farkli frekans bilesenlerini ve bunlarin zaman i¢indeki evrimini

ayrintili olarak sunar.

Hilbert doniisiimii (HT) ise, bir sinyalin analitik formunu elde etmek amaciyla
kullanilir. ~ HT, sinyalin genlik ve faz bilesenlerini ayirarak fazin zaman
icindeki degisimini analiz etmeye olanak tanir [49, 50]. Bu ozellik, 6zellikle
QRS komplekslerinin tespitinde ve R-tepe noktalarinin belirlenmesinde yararli

olmaktadir.

Pan-Tompkins algoritmasi, QRS komplekslerinin tespiti i¢in gelistirilen ve genlik,
geniglik ile egim oOlciitlerini temel alan pratik bir yontemdir [51]. Algoritma; bant
geciren filtreleme, tiirev alma, kare alma, entegrasyon ve esik belirleme adimlarini

icerir. Sekil [2.1de Pan-Tompkins algoritmasinin akis semasi gosterilmektedir.

Wﬂ Ban}:iGlt?;;iren —»| TurevAlma |—»| KareAlma |—»| Birlestirme |—|Esik Ayarlama
EKG

Sekil 2.1 Pan-Tompkins algoritmasi

Sekil 2.2]de, Pan-Tompkins algoritmasi kullanilarak veritabanimizdaki bir EKG

sinyaline ait referans noktalarin belirlenmesine iligkin bir 6rnek yer almaktadir [52]].

2.2 Oznitelik Cikarma Yontemleri

Oznitelik c¢ikarma algoritmalari, referans noktalara dayali (fiducial-based) ve

referans noktalara dayali olmayan (non-fiducial-based) yontemler olarak iki
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Sekil 2.2 Pan-Tompkins algoritmas1 yardimiyla referans noktalarin belirlenmesi
[52]

kategoride degerlendirilebilir.  Referans noktalardan elde edilen oznitelikler,
genellikle genlik, zaman, alan ve aci gibi bilesenleri icerirken; referans
noktalara dayali olmayan Oznitelikler, EKG sinyalinin Fourier doniisiimii, dalgacik
katsayilari, otokorelasyon katsayilar1 ve ayrik kosiniis doniisiimii kullanilarak elde

edilir.

Bu calisma kapsaminda, Mel Frekans Kepstral Katsayilart (MFCC) ve Gammatone
Frekans Kepstral Katsayilar1 (GFCC) kullanilarak 6znitelik vektorleri olusturulmus;
bu 6znitelikler, Gauss karisim modeli (GMM) tabanli evrensel arka plan modeli

(UBM) kullanilarak i-vektorlere doniistiiriilmiistiir.

2.2.1 Mel Frekansi Kepstrum Katsayilar1 (MFCC)
Mel Frekans1 Kepstral Katsayilar1 (MFCC), sinyal isleme alaninda, ozellikle

konugma tanimada yaygin olarak kullanilan giiclii bir algoritmadir. Temel olarak,
kepstrum, konvoliisyondan toplamaya gecis saglayan bir homomorfik doniistimdiir.
"Mel" terimi, kepstrum ekseninin, insan kulagina dayali algisal bir isitsel 6l¢ek olan
Mel ol¢eginde odlceklendirildigini ifade eder [53]]. MFCC hesaplamasi su adimlari
icerir:  On-vurgulama, cerceveleme, pencereleme, Fourier Doniisiimii (FFT),
Mel Filtre Bankas1 ve Ayrik Kosiniis Doniisiimii (DCT). MFCC 6zniteliklerinin
¢tkarilmasi igin adimlar Sekil 2.3]te gosterilmektedir.

Baglangicta, girig sinyali #[n] 6n vurgulanmaktadir. "On vurgu" kavrami, yiiksek

frekansh bilesenlerin giiclendirilmesi anlamina gelir; sinyal, yliksek geciren bir
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Hizhi Fourier | | MelFiltre | | AynkKosinis| _  MFCC
Déniistimii Bankas! Dontislimu Ozelligi

—»| On-vurgulama |—»| Cergeveleme [—»| Pencereleme |—»

EKG Sinyali

Sekil 2.3 MFCC 6zniteliklerinin ¢ikarilmasi islemi blok diyagrami

filtreden gecirilir. Filtrenin ¢iktist agsagidaki gibidir:

pln] = z[n] — 0.97 x z[n — 1]. (2.1)

Cerceveleme olarak adlandirilan bir sonraki adimda, 6n-vurgulanan sinyal, ayni
uzunlukta kisa siireli ¢ercevelere (Orne8in, 25 ms) boliiniir ve her cerceveye
stirekliligi saglamak icin bir pencereleme fonksiyonu uygulanir. Bu islem su sekilde

yapilir:

2mn
N -1

hin] = pln] x (0.54 —0.46 x cos< )) 0<n<N-1, (22

burada her cercevedeki 6rnek sayis1 N ile gosterilir. Daha sonra, her ¢ercevenin
Hizli Fourier Doniisiimii (FFT) alinarak frekans alanina doniistiiriiliir:

H[E] =) hnle ™~ . (2.3)

Bu adimda, Fourier doniisiimii alinmis sinyal, Mel-filtre bankasi olarak adlandirilan

bir dizi iiggen bant geciren filtreden gecirilerek Mel spektrumu hesaplanir:
klu
X[l]zlog(z |H[k;]|Wl(l<;)>, 1=0,1,...,L—1, (2.4)
k=ky,

burada H[k] karmagik Fourier doniisiimiiniin mutlak degeri, W;(k) I’nci iiggen

filtredir ve ky; ile k;, sirasiyla [’nci filtrenin alt ve iist kesme frekanslaridir.

Mel olgegi, yaklasik olarak 1 kHz’nin altindaki frekans araliginda dogrusal, 1
kHz’nin iizerindeki frekans aralifinda ise logaritmik bir 6l¢ek sunar. Asagidaki

denklem, hertz cinsinden verilen frekans1 Mel 6lcegine doniistiiriir:

F(mel) = 2595 x logm(l + %) 2.5)
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Son adim, MFCC iiretmek i¢in DCT nin uygulanmasidir [45]]:

mm(l — 0.5)
L

], m=1,...,M—1. (2.6)

2.2.2 Gammatone Frekansi Kepstrum Katsayilar1 (GFCC)

Gammatone filtre bankasi, koklea simiilasyonu ic¢in kullamilan bir filtre
grubudur. Bir Gammatone filtresinin diirtii yaniti, insan isitme filtresinin genlik
karakteristiklerine olduk¢a benzer. Gammatone filtre bankasi, insan kulaginin
onemli bir parcasi olan baziler zarinin filtreleme karakteristiklerini en iyi sekilde

simiile edebilir.

Bir Gammatone filtresinin darbe cevabi asagidaki gibi tanimlanir:
g(t) = Kt Ve 2Bt cos(2n fot + ¢), (2.7)

burada K genlik kazancini, n filtre sirasini, B filtre bant genigligini, f. hertz
(Hz) cinsinden merkezi frekansi1 ve ¢ faz kaymasim ifade eder [54, |55]]. Merkez
frekanslar, filtre bankasinin sinirlar1 arasinda esit aralikli olarak esdeger dikdortgen
bant genisligi (ERB) 6lceginde yer alir [56]. Gammatone filtresinin bant genisligi,
B = 1.019 x ERB(f.) seklinde verilir ve herhangi bir frekans f (Hz) icin ERB
(Hz) su sekilde hesaplanir:

1/p

; (2.8)

ERB(S) = | (525) "+ By

burada Far() yiiksek frekanslarda asimptotik filtre kalitesini, B,,;, diisiik
frekanslarda minimum bant genisli§ini ve p genellikle 1 veya 2’yi ifade eder.
Literatiirde ii¢ farkli ERB filtre modeli 6nerilmistir: Greenwood, p = 1, Far@) =
7.23 ve B, = 22.85 degerlerini; p = 1, Far@Q = 9.26 ve B,

24.7 degerleri, Glasberg ve Moore parametreleri olarak bilinir; Lyon ise, diisiik
frekanslarda p = 2, FarQ) = 8 ve B, = 125 (daha genis bant genisligi)
parametreleriyle orta keskinlikte filtreler onermistir [S7, [58]. Calismamizda,

Greenwood’un parametreleri kullanilmistir.

Hizl Fourier Gamaton Ayrik Kosiniis GFCC
—*| Cerceveleme =) Pencereleme | Déniisiimii | | Filtre Bankasi| | Dénisima |~ Ozelligi

EKG Sinyali
Sekil 2.4 GFCC 6zniteliklerinin ¢ikarilmasi iglemi blok diyagrami
GFCC, Sekil 2.47te gosterildigi gibi, MFCC’nin bir modifikasyonu olarak
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tanimlanabilir. 1lk olarak, ses sinyalleri kisa cercevelere boliiniir. Daha sonra,
her cerceve i¢in FFT uygulanarak cerceve spektrumu analiz edilir. Ardindan,
Gammatone filtresi, sinyalin FFT’sine uygulanarak, algisal olarak anlamli ses
frekanslar1 vurgulanir. Son adimda, log fonksiyonu ve ayrik kosiniis doniisiimii

uygulanir. GFCC, asagidaki gibi hesaplanabilir:

2 N ™ 1
GFCac,, = \/; ;loglo(Xn) COS [W (m - 5)] , 1<m< M, 2.9

burada X,, sinyalin n’inci spektral bandindaki enerjiyi, N Gammatone filtresinin

sayisini ve . GFCC’nin sayisim ifade eder [54, 58|].

GFCC ile MFCC arasindaki temel farklar, her iki yontemin sinyal 6zniteliklerini
yakalama ve sikistirma yaklasimlarinda yatmaktadir. MFCC, insan baziler zarinin
tepkisini yaklasik olarak modellemek amaciyla ticgen filtre bankalar1 kullanirken;
GFCC, insan isitme sisteminin frekans seciciligini daha dogru simiile edebilmek
icin Gammatone filtre bankasi kullanir. Ayrica, MFCC sinyalin dinamik araligini
azaltmak amaciyla logaritmik sikistirma uygular; bu sikistirma, yiiksek enerji
bilesenlerinde doyuma neden olabilir ve 6zellikle EKG sinyallerinde (drnegin,
1-35 Hz araligindaki QRS kompleksi gibi) ince spektral farkliliklart maskeleyebilir
[59]. Buna karsin, GFCC yontemi, kiibik sikistirma kullanarak, dogrusal olmayan
karakteristikleri ve ince amplitiid farkliliklarin1 daha iyi korur; boylece, sinyaldeki
kritik detaylarin ayirt edilebilirligi artirilir [60, |61]]. Her iki yontemin hesaplama
maliyetleri benzer diizeyde olmakla birlikte, GFCC’nin bu sikistirma stratejisi,
ozellikle EKG tabanli biyometrik tanimlamada daha belirgin enerji gegisleri ve
zengin spektral dagilim saglayarak, bireysel Ozniteliklerin korunmasina katkida
bulunabilir [|54, 58]].

2.3 i-vektor ve Ilgili Yontemler

i-vektor yaklasimi baglangicta konusmact tanima uygulamalar: igin gelistirilmis
olsa da, son yillarda dil tanimlama, miizik tiirii siniflandirmasi, cinsiyet tanima,
yas tahmini, duygu tanima, ses sahnesi simiflandirmasi, otomatik konugmaci
dogrulama sistemlerinde sahtekarlik tespiti ve imza dogrulama gibi farkli alanlarda

da uygulanmaktadir [|62].

Klasik faktor analizi teorisi, iki faktor ve bunlara karsilik gelen iki bagimsiz
uzaya dayanmaktadir. Ancak, i-vektor yontemi bu iki ayri alami tek bir uzay
kullanarak degistirmektedir. Bu yontem, bir Orne8e ait Oznitelik vektorlerini,

toplam degiskenlik uzay1 (TV) ad1 verilen diisiik boyutlu bir vektor uzayina esler.
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TV, kovaryans matrisindeki en biiyiik 6zdegerlere karsilik gelen 6zvektorlerden

olusan bir matris tarafindan tanmimlanmaktadir [63]].

Siipervektor M, konugma sinyallerinin temsilinde 6nemli bir rol oynar. Bu vektor,
konugma sinyalinden elde edilen 6zniteliklerin, Evrensel Arka Plan Modeli (UBM)
ile maksimum posteriori (MAP) adaptasyonu sonucunda elde edilen Gauss Karisim
Modeli (GMM) ortalama vektorlerinin arka arkaya eklenmesiyle olusturulur.

Matematiksel olarak su sekilde ifade edilir:
M=m+Tw, (2.10)

burada m, UBM modelinin ortalama vektorlerinin arka arkaya eklenmesiyle
elde edilen siipervektorii, 7' diisiik rankli ve siitunlart konugsmaci farkliliklarini

modelleyen bir matrisi, w ise sinyalden elde edilen i-vektorii temsil etmektedir.

UBM, genellikle Gauss Karistm Modeli (GMM) kullanilarak hesaplanir. GMM,
bir veri kiimesinin karmasik dagilimini temsil etmek icin kullanilan istatistiksel
bir modeldir. UBM, konugmaci tanima sistemlerinde yaygin olarak kullanilan
bir model olup, konusma verilerinin genel 6zniteliklerini 68renir ve temsil eder.

UBM’nin matematiksel ifadesi su sekildedir:

K
k=1
P(z | Ausm), UBM tarafindan modellenen verilerin olasilik yogunluk

fonksiyonunu temsil eder. Burada, >, belirli bir bilesen (k) i¢in konusma
Ozniteliklerinin varyansini ve 0znitelikler arasindaki iligkiyi tanimlar; 11, ise bilesen
k’ya ait ortalama vektorii gosterir; 7y her bir Gauss bileseninin agirligini ifade eder;
N(z | pg,Xg) verilen py ve X altinda verinin gergeklesme olasilifini belirten
Gauss dagilimmi temsil eder. Oznitelik vektorii #, UBM tarafindan modellenen
konusma verisini ve Ay UBM parametrelerini igeren bir parametre vektoriinii

ifade eder.

i-vektorlerin tahmini, Baum-Welch istatistiklerine (sifirinct dereceden N ve birinci
dereceden F') dayanmaktadir. Bu istatistikler, verilen bir sinyal icin UBM ve Mel
Frekans Kepstral Katsayilar1 (MFCC) 6znitelikleri kullanilarak ¢ikarilir:

N.=> P(c|y.N), (2.12)
t
Fo=> Plc|yn Ny — pe), (2.13)
t
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¢ =1,...,C GMM bilesen indeksleri; P(c | y, A), karigim bileseni ¢’nin vektor
y, y1 tiretme olasiligini; x. 1se UBM karigim bileseni ¢’nin ortalamasini temsil eder.

Verilen bir sinyal i¢in i-vektor su denklem kullanilarak elde edilir:
w= (I+T'S'NT) ' T'S'NF, (2.14)

burada I, C'F' x C'F boyutunda birim matrisidir; N, ' x F' bloklarina sahip bir
diagonal matristir ve her bir blok N.I (¢ = 1,2,...,C) seklindedir; ¥ ise T

tarafindan yakalanamayan artik degiskenligi temsil eden kovaryans matrisidir [64]].

UBM, biyometrik kimlik dogrulama sistemlerinde kullanilan bir referans modelidir
[65]]. Verilen bir veri kiimesindeki tiim bireylerin ortak oOzniteliklerinin
istatistiksel bir Ozetini saglar. Diger bir deyisle, EKG verilerinden elde edilen
Oznitelikler, her bireyin EKG verilerine 6zgii Oznitelikleri kapsar. UBM, bu
Ozniteliklerin genellestirilmis istatistiksel modelini olusturarak, farkli bireyler
arasindaki benzerlikleri ve farkliliklar1 belirler [66]]. Bir kullanicinin 6znitelikleri
ile UBM arasindaki fark, kullanicinin benzersiz biyometrik 6zniteliklerini agiklar
ve kimlik dogrulama siirecinde kullanilir. UBM’nin olusturulmasi i¢in, 6znitelikler
tizerinde Gauss Karisim Modeli-Beklenti Maksimizasyonu uygulanir. Dolayisiyla,

T’ matrisi, Ozniteliklerin Baum-Welch istatistikleri kullanilarak hesaplanabilir [|64].

Toplam degiskenlik uzayinda, i-vektorlerin iki yaygin normalizasyon teknigi; sinif
ici kovaryans normalizasyonu (WCCN) ve dogrusal diskriminant analiz (LDA)’dur.
WCCN, simif i¢i kovaryansin tersini kullanarak kosiniis ¢cekirdegini normalize eder.
LDA ise, degiskenlik etkilerini en aza indirmek ve siniflar arasindaki varyansi
maksimize etmek i¢in Ozniteliklerin lineer kombinasyonlarini hesaplamaya ¢aligir
(64,167, 68].

2.3.1 Dogrusal Diskriminant Analiz (LDA)

Dogrusal diskriminant analizi (LDA), smiflandirma ve boyut indirgeme
problemlerinde yaygin olarak kullanilan bir makine 6grenimi ve istatistiksel
tekniktir. Temel amaci, veri kiimesindeki siniflar1 birbirinden ayirt edebilmek icin

en iyi Oznitelik alt kiimesini bulmaktir [[69-71]].

LDA, bir siniflandiric1 olarak kullanildiginda, veri 6zniteliklerini kullanarak bir
veya daha fazla sinifa ait Ornekleri ayirt etmek icin bir karar simifi olusturur.
Bu, veri kiimesindeki simiflar arasindaki farkliliklart maksimize etmek amaciyla
Ozniteliklerin lineer kombinasyonunu hesaplamak iizere kullanilan denetimli bir

0grenme yontemidir.
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LDA’nin bir diger onemli kullanim1 boyut indirgeme islemidir. Boyut indirgeme,
veri kiimesinin boyutunu azaltarak verinin karmasikligini diisiirmeyi ve modelin
daha verimli calismasini saglamay1 amaglar. LDA, veri kiimesindeki oznitelikleri

birbirinden ayirt etme yetenegi sayesinde boyut indirgeme icin etkili bir aragtir.

LDA, veri kiimesinin dagilimini ve siniflar arasindaki ayrimlar1 hesaba katarak, veri
Ozniteliklerini en iyi sekilde temsil eden bir alt uzay bulur. Bu alt uzay, verinin

siiflar arasinda maksimum ayrim saglayacak sekilde optimize edilir.

2.3.2 Smuf ici Kovaryans Normalizasyonu (WCCN)

Simuf i¢i kovaryans normalizasyonu (WCCN), veri kiimesindeki simiflar arasindaki
varyasyonlar1 dengelemek i¢in kullanilan bir tekniktirr ~ WCCN, her sinifin
kovaryans matrisini hesaplar ve bu matrisleri birlestirerek toplu bir kovaryans
matrisi olusturur. Boylece, siniflar arasindaki kovaryans farklar1 azaltilir ve

siniflandirma algoritmalar1 daha tutarli sonuglar verir [64, 71].

2.4 Smflandirma Yéntemleri ve Benzerlik Olciitleri

EKG tabanli biyometrik dogrulama sistemlerinde, sinyalin zamansal ve frekansal
ozniteliklerinin etkili bicimde cikarilmasiyla elde edilen oOznitelik vektorleri
tizerinden kimlik dogrulama gerceklestirilir. Bu dogrulama islemlerinde,

siniflandirma algoritmalar1 ve benzerlik olciitleri kritik rol oynamaktadir.

Literatiirde yaygin olarak kullanilan yontemler arasinda; destek vektdr makineleri
(SVM), ¢cok katmanl algilayici (MLP), rastgele orman (RF), konvoliisyonel sinir
aglar1 (CNN) ve tekrarlayan sinir aglar1 (RNN) yer almaktadir. Bu yontemler, hem
dogrusal hem de dogrusal olmayan iligkilerin modellenmesinde; kiiciik ve biiyiik
veri kiimelerinin islenmesinde, ayrica giiriiltiili ve degisken sinyal kosullarinda

yiiksek performans sunmalar1 nedeniyle tercih edilmektedir.

Bu calismada, EKG sinyallerinden elde edilen i-vektorlerin benzerlik skorlari
temel alinarak biyometrik kimlik dogrulama gergeklestirilmistir. Ana benzerlik
oOlciitii olarak kosiniis mesafesi kullanilmig ve basarili sonuglar elde edilmistir.
Bununla birlikte, Oznitelik vektorlerinin karsilastirilmasinda daha kapsamli bir
degerlendirme yapmak amaciyla Oklid, Manhattan, Pearson korelasyonu ve
dinamik zaman esnetme (DTW) gibi alternatif benzerlik ol¢iitleri de incelenmis ve

performanslar1 karsilastirilmistir.

Asagidaki boliimlerde, so6z konusu smiflandirma yontemlerinin ve benzerlik
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Olciitlerinin temel prensipleri, matematiksel ifadeleri ve EKG tabanli biyometrik

dogrulamadaki uygulama alanlar1 detayli olarak ele alinacaktir.

2.4.1 Destek Vektor Makineleri (SVM)
Destek vektor makineleri (Support Vector Machines, SVM), siniflandirma ve

regresyon problemlerinde yaygin olarak kullanilan giiclii bir denetimli 6grenme
algoritmasidir. SVM’nin temel amaci, veri noktalarmi siniflar arasinda en iyi
sekilde ayiracak bir karar sinirt (hiperdiizlem) belirlemektir. Bu hiperdiizlem,
simniflarin en yakin veri noktalarina olan mesafeyi (marjin) maksimize edecek
sekilde optimize edilir [72]]. Matematiksel olarak, SVM’nin optimizasyon problemi
su sekilde ifade edilir:

N
1 9
min - |[w] +O;§i, (2.15)

burada:

w: Hiperdiizlemin agirlik vektoriinii ve siniflar arasindaki ayrimi tanimlar.

b: Hiperdiizlemin sabiti olup, hiperdiizleme olan kaymay1 belirler.

&;: Hata terimlerini ifade eder; dogrusal olmayan siniflandirmada marjine

diisen veya yanlis siniflandirilan veri noktalarini temsil eder.

C': Hiperparametre olup, hata toleransi ile hiperdiizlemin marjin genigligi

arasindaki dengeyi kontrol eder.

N: Egitim veri kiimesindeki toplam 6rnek sayisini ifade eder [[73]].

Dogrusal olmayan veri kiimeleri i¢in, kernel fonksiyonlar1 kullanilarak veriler
daha yiiksek boyutlu bir uzaya doniistiiriiliir; bu doniisiim, karmasik siniflandirma
problemlerinin daha basit bicimde ¢oziilebilmesini saglar. Kernel fonksiyonlarinda
x ve y terimleri, veri kiimesindeki iki farkli veri noktas1 (6znitelik vektorleri) olarak

ifade edilir. SVM’de yaygin olarak kullanilan kernel fonksiyonlar1 sunlardir:

 Dogrusal Kernel: K (z,y) = 2"y,

¢ Polinomsal Kernel: K (z,y) = (z"y + r)?, burada r sabit, d ise polinomun

derecesidir.

* RBF Kernel (Radial Basis Function): K (z,y) = exp(—||x —y||?), burada

~ kernel fonksiyonunun genigligini kontrol eden bir parametredir [74]].
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Kernel fonksiyonlar1 sayesinde SVM, dogrusal olmayan smiflandirma
problemlerinde de etkili ¢oziimler sunar. SVM, ozellikle simirli veritabanlarinda
yiiksek dogruluk oranlari sunmasi ve agir1 6grenme (overfitting) riskini minimize
etme yetenegi ile dikkat cekmektedir. Bununla birlikte, giiriiltiilii veri kiimelerinde
kararlilik gostermesi, SVM’nin biyometrik kimlik dogrulama sistemlerinde
giivenilir bir yontem olarak kullanilmasimi1 saglamaktadir. Literatiirde, parmak izi,
yiiz ve EKG gibi biyometrik sistemlerin yani1 sira, metin igleme, goriintii tanima ve
tibbi veri analizi gibi farkli alanlarda da yaygin olarak tercih edilmektedir. Ayrica,
finans ve ekonomi alaninda hisse senedi fiyat tahmini ve kredi risk analizi gibi

problemlerde de etkili bir ¢cdziim yontemi sunmaktadir [75].

SVM’nin avantajlar1 arasinda dogrusal olmayan verilerdeki siniflandirma bagarisi,
kernel fonksiyonlarinin sagladigr esneklik ve kiiciik veritabanlariyla etkili
caligabilmesi yer almaktadir. Bununla birlikte, biiyiik veritabanlarinda
egitim siiresinin uzamasi, islem maliyetinin yiiksekligi ve hiperparametre
optimizasyonunun zorluklart SVM’nin sinirlamalar1 arasinda sayilabilir. Ayrica,
cok smifli problemler i¢in birden fazla siniflandirici kullanilmasi gerektiginden,
siniflar arasinda dengesizlige yol agma riski bulunmaktadir. Bu nedenlerle,
SVM’nin kullanim alani, problem tiiriine ve veritabaninin biiyiikliigiine gore
dikkatlice degerlendirilmelidir [76].

2.4.2 Cok Katmanh Algilayic1 (MLP)
Cok katmanli algilayic1 (Multi-Layer Perceptron, MLP), yapay sinir aglarinin temel

yapi taslarindan biri olup, sitniflandirma ve regresyon problemlerinde yaygin olarak
kullanilan bir yontemdir. MLP, ileri beslemeli bir yapidadir ve giris verilerinin
katmanlar boyunca iglenmesiyle 0grenme gerceklestirir. Temel olarak, bir giris

katmani, bir veya daha fazla gizli katman ve bir ¢ikis katmanindan olusur [[77]].

MLP’nin ¢calisma prensibi, her bir néronun giris sinyallerini agirliklandirarak ve bir
aktivasyon fonksiyonu kullanarak iglenmis bir ¢ikti iiretmesine dayanir. Bu islem,

asagidaki matematiksel ifade ile tanimlanabilir:

y=1f (Z w;z; + b> , (2.16)
i=1

burada:

e x;: Girdi sinyalleri,

* w;: Girdi sinyallerine atanan agirliklar,
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e b: Bias terimi,

e f: Aktivasyon fonksiyonu.

Gizli katmanlarda yaygin olarak kullanilan aktivasyon fonksiyonlar1 arasinda
sigmoid, tanh ve ReLLU (Rectified Linear Unit) bulunmaktadir. Bu fonksiyonlar,

dogrusal olmayan iligkilerin modellenmesini saglar.

MLP’nin egitimi, geri yayilim (backpropagation) algoritmasi ve optimizasyon
teknikleri kullanilarak gerceklestirilir. Modelin hata fonksiyonu, problem tiiriine
baghh olarak capraz entropi veya ortalama kare hata (MSE) olarak secilir.
Optimizasyon siirecinde ise genellikle Stokastik Gradyan Inisi (SGD) ve tiirevleri
(6rnegin, Adam, RMSProp) kullanilir [[77].

Bununla birlikte, MLP’nin performansi genellikle hiperparametre optimizasyonuna
(6rnegin, katman sayisi, noron sayisi, 0grenme hizi) baghdir. Ayrica, biiyilik
veritabanlarinda egitim siiresi uzayabilir ve asir1 68renme (overfitting) riski
artabilir. Bu durumlar1 6nlemek i¢in diizenlilestirme yontemleri (6rnegin, L2 cezasi,
dropout) kullanilmaktadir. MLP’nin avantajlar1 arasinda dogrusal olmayan iligkileri
modelleme kapasitesi, kiiciik veritabanlarinda yiiksek performans gostermesi ve
genis bir uygulama alanina sahip olmasi yer alir. Ancak, biiyiik veritabanlarinda
egitim siliresinin uzamasi ve hiperparametre optimizasyonunun zorlugu gibi

dezavantajlar1 bulunmaktadir [[78-80].

2.4.3 Rastgele Orman (RF)

Rastgele orman (Random Forest, RF), birden fazla karar agacinin (decision
tree) topluluk (ensemble) yaklasimiyla bir araya getirilmesiyle olusturulan giiclii
bir makine 6grenimi yontemidir. Her bir karar agaci, veri kiimesinden tekrar
secmeli ornekleme (bootstrap) yontemiyle olusturulan alt veri kiimesi iizerinde
egitilir. Boylece, farkli agaclar farkl parcalardan 68renerek modelin agir1 6grenme
(overfitting) egilimi azalulir. Ayrica, agaclardaki her diigiimde rastgele segilen
bir alt Oznitelik kiimesi kullanilarak agaclar arasindaki benzerlik (korelasyon)
disurtlir [81, |82]. Karar agaclarinda en iyi boliinme noktasi, ¢ogunlukla Gini
indeksi veya bilgi kazanc1 (information gain) gibi metriklerle belirlenir. Ornegin,

Gini indeksi su sekilde ifade edilebilir:

G=)> pr(l—pr), (2.17)

I
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burada py, ilgili diigiimdeki verilerin & siifina ait olma olasiligini gosterir. Topluluk
icindeki tiim agaclarin c¢iktilari, siniflandirma problemlerinde ¢ogunluk oylamasi,
regresyon problemlerinde ise ortalama alinmasi yoluyla birlestirilir. Agac sayist,
maksimum derinlik ve 6znitelik alt kiimesi boyutu gibi hiperparametreler, RF’nin

performansinda kritik rol oynar.

EKG tabanli biyometrik dogrulamada, RF 6zellikle giiriiltiilii veya degisken sinyal
kosullarinda yiiksek dogruluk oranlar1 sunmasiyla dikkat cekmektedir. Literatiirde,
dalgacik (wavelet) veya istatistiksel tabanli Oznitelik ¢ikarma yoOntemlerinin
ardindan RF ile yapilan siniflandirma deneylerinde basarili sonuglar elde edildigi
rapor edilmistir [83]. Ote yandan, birden ¢ok karar agacinin egitimi nedeniyle
bellek ve hesaplama maliyeti artabilir; bu nedenle veri biiyiikliigii ve hiperparametre

secimi bakimindan titiz bir yaklagim gereklidir.

2.4.4 Konvoliisyonel Sinir Aglar1 (CNN)

Konvoliisyonel sinir aglar1 (Convolutional Neural Networks, CNN), ozellikle
goriintii ve zaman serisi verilerinde otomatik Oznitelik ¢ikarimi yapabilen derin
0grenme mimarilerinden biridir. CNN’nin temelinde, giris verisiyle gerceklestirilen
evrisim (convolution) islemi yer alir. 1-boyutlu (1D) bir evrisim ornegi asagidaki
gibi ifade edilebilir:

K-1
Yi= ) Tipk- Wi+, (2.18)
k=0

burada z;,, giris verisinin ¢ + k& konumundaki degeri, w;, 6grenilen filtre agirligini
(kernel) ve b bias terimini ifade eder. Bu islem, farkli konumlardaki oriintiileri
yakalayarak modelin 6grenmesine katki saglar. Ardindan, havuzlama (pooling)
katmanlar1 ile boyut kiiciiltmesi yapilarak daha soyut 6znitelik temsilleri elde edilir
[84].

EKG sinyalleri gibi zaman serisi verilerinde, 1D konvoliisyon filtreleri dalga
formu iizerinde kaydirilarak sinyalin farkli segmentlerindeki frekans ve sekil
bilesenleri otomatik olarak 6grenilebilir. Literatiirde, bu yontemle el ile 06znitelik
cikarma adiminin biiyiik olciide azaltildig1 ve giiriiltiiye karst dayaniklt modeller
olusturuldugu rapor edilmistir [85, 86]]. Boylece, EKG tabanli biyometrik
dogrulamada CNN yaklagimlariyla yiiksek dogruluklar elde edilmekte; farkli

bireylerin kalp atis karakteristikleri konvoliisyon katmanlarinda yakalanmaktadir.
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2.4.5 Tekrarlayan Sinir Aglar1 (RNN)

Tekrarlayan sinir aglar1 (Recurrent Neural Networks, RNN), siral1 veriler arasindaki
bagimliliklar1 modellemek i¢in tasarlanmis bir yapay sinir ag tiiriidiir. RNN’lerde,
her zaman adiminda hesaplanan gizli durum (hidden state) bir sonraki adima
aktarilir. Klasik bir RNN giincellemesi asagidaki basit denklemle ifade edilebilir:

hy = U<th e+ Win he_t + bh), (2.19)

burada h; giincel gizli durum, x; giris vektorii, Wy, ve Wy, agirlik matrisleri, by,
bias terimi ve o(-) aktivasyon fonksiyonudur [87]. Ancak, klasik RNN yapilart

uzun sekanslarda gradyan kaybolmasi (vanishing gradient) sorununa kars hassastir.

Bu sorunu hafifletmek amaciyla LSTM (Long Short-Term Memory) ve GRU
(Gated Recurrent Unit) gibi kapili (gated) mekanizmalara sahip RNN modelleri
geligtirilmisgtir. EKG sinyalleri, zamana bagh bir dizi halinde oldugundan, RNN
tabanli yaklasimlar kalp atis1 dongiilerindeki ardisik yapiyr (6rnegin, P-QRS-T
komplekslerinin siralamasi) yakalamada etkilidir [88, 89]. Bu sayede, EKG tabanl
kimlik dogrulama sistemlerinde RNN ve tiirevleri, 6zellikle zaman icindeki kalp

atis1 oriintiilerini dikkate alarak yiiksek dogruluk sunabilmektedir.

2.4.6 Kosiniis Mesafesi (Cosine Distance)

i-vektorlerin - simmiflandirilmasinda, kosiniis cekirdek fonksiyonu etkili bir
siniflandiricidir [[71]].  Kosinlis mesafesi, iki vektor arasindaki acisal farki
Olcer ve benzerlikleri belirler. w; ve ws i-vektorleri arasindaki kosiniis ¢ekirdek
fonksiyonu su sekilde tanimlanir:

cos(wy, wy) = M (2.20)

Rl ffw]

Burada, (wy, w9) iki vektoriin i¢ ¢arpimint; |[w; || ve ||ws]| ise vektorlerin normlarini
temsil eder. Iki verinin i-vektorleri aynmi yonii gosteriyorsa, kosiniis mesafesi 1
degerini alir; zit yonleri isaret ederse -1 degerini alir. Kosiniis mesafesi, 6zellikle

yiiksek boyutlu veri kiimelerinde benzerlik dlgiitii olarak etkili bir yontemdir.
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2.4.7 OKklid Mesafesi (Euclidean Distance)

Oklid mesafesi, iki i-vektor arasindaki diiz ¢izgi uzakligim 6lgmek igin kullanilan

temel bir yontemdir. Matematiksel olarak su sekilde ifade edilir:

deuclidean (.CL', y) = (22 1)

burada © = (x1,29,...,2,) Ve y = (Y1,Y2,.-.,Yn) i-vektorleridir; n ise
i-vektorlerin boyutunu ifade eder [90]. Oklid mesafesi, iki vektor arasindaki
genlik farklarim1 dogrudan hesaba katmasiyla genellikle etkili bir yontem olarak
kabul edilir. Ancak, yontemin genlik Ol¢egine duyarli olmasi nedeniyle, farklh

biiytikliikteki i-vektorlerin karsilagtirilmasinda normalizasyon gereklidir.

2.4.8 Manhattan Mesafesi (Manhattan Distance)

Manhattan mesafesi, iki i-vektor arasindaki her bir bilesen i¢in mutlak farklarin

toplamini 6l¢en bir yontemdir ve asagidaki formiille hesaplanir [91]:

dmanhattan('ra y) = Z |"L’1 - yz| (222)
=1

Bu yontem, 6zellikle aykir1 degerlere karst Oklid mesafesine kiyasla daha az duyarl
olmasiyla 6ne cikar. Ayrica, verilerin her bir bilesenini ayr1 ayr1 degerlendirme
imkan1 sunar. Ancak, farkli bilesenlerin iligkili oldugu durumlarda bu yontemin

performansi sinirh kalabilir.

2.4.9 Pearson Korelasyonu (Pearson Correlation)

Pearson korelasyonu, iki i-vektor arasindaki dogrusal iliskiyi 6lgmek i¢in kullanilan

bir yontemdir ve su sekilde ifade edilir [92]:

2 i (i — %)y — 9)
V@i = 1)/ (i = )

burada z ve ¥y swrasiyla z ve y vektorlerinin ortalamalarimi temsil eder. Bu

(2.23)

7npearson(x7 y) =

yontem, vektorlerin biiyiikliik farklarim g6z ardi ederek yonelim benzerliklerini
Olcmesiyle dikkat ceker. Bu oOzelligi sayesinde, farkli olceklerdeki verilerin
kargilastirilmasina olanak tanir; ancak, dogrusal olmayan iligskiler bu yontemle

yeterince degerlendirilemez.
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2.4.10 Dinamik Zaman Esnetme (Dynamic Time Warping, DTW)

Dinamik zaman esnetme (DTW), iki zaman serisi veya vektor arasindaki
benzerlikleri, zamanlama farkliliklarin1 dikkate alarak 6l¢en bir yontemdir [93].

DTW, asagidaki maliyet fonksiyonu iizerinden hesaplanir:

K
DTW (X,Y) = min <Z d(z;,, yjk)> : (2.24)

k=1

Bu yontemin en Onemli avantaji, zamanlama kaymalarini telafi ederek sinyalleri
hizalama yetenegidir. Ozellikle, zaman serileri arasinda esnek karsilastirmalar
yapilmasini saglar ve zamanlamaya duyarli biyometrik sistemlerde etkili bir
¢Oziim sunar. Ancak, hesaplama maliyetinin yiiksek olmasi yontemin onemli bir

dezavantajidir.
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3

VERITABANLARI

Bu calismada kullanilan veri kaynaklart ve donanimlar detayli bir sekilde
aciklanmistir.  Uc¢ ana veritabam1 ve bunlarin elde edilmesi icin kullanilan
donanimlar tanimlanmusgtir. [k olarak, ECG-ID veritabani tanitilmis; daha sonra
daha biiyiik bir veritabani olan Heartprint sunulmug; ardindan BMDI101 EKG

sensOr modiiliiyle elde ettigimiz kayitlarla olusturdugumuz veritabanina gecilmistir.

3.1 ECG-ID Veritabam

ECG-ID Veritabani, Tatiana Lugovaya tarafindan olusturulmus ve PhysioBank’a
katkida bulunulmustur [94]]. Bu veritabani, 90 goniilliiden alinan toplam 310
EKG kaydindan olusan bir settir. Lugovaya, bu EKG’leri yiiksek lisans tezinde

kullanmistir.

Kayaitlar, 13 ile 75 yaslari arasindaki 44 erkek ve 46 kadin goniilliiden alinmistir. Bu
goniilliiler, yazarin 6grencileri, meslektaglar1 ve arkadaslaridir. Her birey i¢in kayit
sayis1 2 ile 20 arasinda degismekte; bu kayitlar, bir giin i¢cinde toplanan iki kayittan,
alt1 ay boyunca periyodik olarak toplanan yirmiye kadar cesitlilik gostermektedir.
EKG kayaitlari, 12-bit ¢oziiniirliikkte ve 500 Hz 6rnekleme frekansinda kaydedilmis

olup, her bir kayit 20 saniye siirmektedir.

Bu calismada, 6nerilen yontemi analiz etmek amaciyla, yeterli sayida kayda sahip
20 bireyden alinan, her biri 10 kayit iceren EKG verileri kullanilmistir. Bu EKG
kayitlari, rastgele olarak gelistirme, egitim ve test verileri seklinde boliinmiistiir. Bu

yaklasim, veritabaninin dengeli ve temsili bir 6rneklemle kullanilmasini saglamistir.

3.2 Heartprint Veritabam
Heartprint [32], 2012 yilindan itibaren, on yil boyunca gergeklestirilen ¢oklu

oturumlar kapsaminda, dinlenme ve okuma kosullarinda elde edilen 1539 kayittan
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olusan bir EKG biyometrik veritabanidir. Veritabani, 130 erkek ve 69 kadin
olmak iizere toplam 199 bireyden elde edilmis olup, ¢esitli demografik siniflari,

cinsiyetleri, etnik kokenleri ve yas gruplarini kapsamaktadir.

Heartprint veritabani sinyalleri, Tayvan’in Taoyuan sehrinde gelistirilen ve Sekil
B.1}de gosterilen DailyCare BioMedical, Inc. iiretimi ReadMyHeart adli el tipi
bir EKG cihazi ile kaydedilmistir. Bu cihaz, her iki elin bagparmaklari arasindaki
potansiyel farkim dlgerek tek kanalli (lead 1) EKG kaydr almakta ve sinyali 250
Hz frekansinda orneklemektedir. ReadMyHeart cihazi, iki kuru iletken elektrot
kullanarak sinyali alir, dijitallestirir ve EKG kaydin1 bilgisayara .txt uzantili metin

dosyasi olarak aktarmaktadir.

Sekil 3.1 ReadMyHeart el tipi EKG cihazi [95]

3.3 BMDI101 EKG Sensor Modiiliiyle Elde Edilen Veritabani

Mobil ve giyilebilir cihazlar i¢in tasarlanan BMDI101 EKG sensor modiilii
kullanilarak EKG sinyalleri toplanmisti. Bu sensor, NeuroSky’in BMDI101
yonga setine sahip 3. nesil biyo-sinyal algilama ve isleme sistem-on-chip kitidir.
BMD101, tasinabilir uygulamalar i¢in uygun, ¢ok kiiciik form faktoriine ve diisiik

gii¢ titkketimine sahip bir ¢oziimdiir.

BMDI101, gelismis bir analog 6n u¢ devresi ve esnek, giicli bir dijital
sinyal igleme yapisi ile tasarlanmistir. Bu cihaz, diisiik giiriiltiilii amplifikator
(LNA) ve analog-dijital doniistiiriicii (ADC) gibi ana bilesenler sayesinde, pV’
seviyesinden mV seviyesine kadar degisen biyo-sinyal girislerini igleyebilir.
BMD101, 16-bit yiiksek c¢oziiniirliiklii bir ADC kullanarak bu biyo-sinyalleri
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dijitale doniistiirebilmektedir.

BMD101’in diisiik sistem giiriiltiisii ve programlanabilir kazanci, hassas biyo-sinyal
verilerini giivenilir bir sekilde toplamak i¢in idealdir. Ayrica, UART (57600 Baud
Rate) arabirimleri aracilifiyla iletisim kurabilir; bu da BMD101’in harici cihazlarla

kolayca entegre edilebilmesini saglar.

Sekil [3.2]de gosterilen Sichiray BMD101 EKG sensoér modiilii ile yapilan
calismamizda, EKG verileri parmak uclarindan, lead I konfigiirasyonunda
kaydedilmistir. Bu veritabani, 23 farkli bireyden cesitli zaman araliklarinda
toplanan kayitlardan olusturulmustur. Her bir bireyden alinan kayitlar, farkli sayida
ve farkli siirelerde olup, bu da veritabaninin cesitliligini ve kapsamini artirmaktadar.
Bu veriler, 16-bit ¢coziiniirliikte, 512 Hz 6rnekleme frekansinda ve 20 saniyelik EKG
kay1t segmentleri seklinde kullanilmagtir.

Bu veritabani, c¢alismamizin temelini olusturmakta ve Onerdigimiz EKG
biyometrik kimlik dogrulama algoritmasinin gelistirilmesi ve test edilmesi i¢in
kullanilmaktadir. BMD101 sensorii ve elde edilen veriler, mobil giivenlik
uygulamalarinda biyometrik kimlik dogrulamanin pratik ve etkili bir yolunu

saglama potansiyeline sahiptir.

Sekil 3.2 BMD101 EKG sensor modiilii

Bu calismada kullanilan ii¢ farkli veritabani, EKG tabanli biyometrik kimlik
dogrulamanin farkli senaryolarda nasil performans gosterdigini kapsamli bir
sekilde incelememize olanak tanimaktadir. ECG-ID veritabani, bireylerin farkli
zamanlardaki EKG varyasyonlarini analiz etmek icin kullanilirken; Heartprint
veritabani, dinlenme ve okuma gibi kontrollii ortamlarda uzun siireli takip edilen
bireylerin kimlik dogrulama performansini degerlendirmeye olanak saglamaktadir.
Ote yandan, BMD101 sensorii ile olusturulan veritabani, gergek mobil ortamda kisa

stireli ve diisiik c¢oziiniirlikli EKG kayitlariyla biyometrik kimlik dogrulamanin
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pratik uygulanabilirligini test etmeyi hedeflemektedir. Cesitli zaman araliklarinda,
farkli kogsullarda toplanmig bu veritabanlari, Onerilen yontemin dogrulugunu
artirmak ve mobil cihazlar i¢in giivenilir biyometrik kimlik dogrulama sistemlerinin

geligtirilmesine katki saglamak amaciyla kullanilmaktadir.
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4

METODOLOJI

4.1 On isleme

EKG isaretleri, 0.1-100 Hz arasinda bir frekans bandina ve 0 mV ile 1 mV arasinda
bir genlik degerine sahiptir. Medikal alanda etkili EKG bilgisi 0.7-40 Hz araliginda
iken, biyometrik alanda bu aralik 1-35 Hz olarak kabul edilmektedir. Sekil @.1]de,
orneklendirilmis bir EKG sinyalinin orijinal zaman serisi, bu sinyalin spektrogrami
ve gilic spektrumu goriilmektedir.

Orijinal EKG Sinyali

Genlik

Il Il
0 500 1000 1500 2000 2500 3000 3500 4000
Ormek Sayisi
Spectrogram
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=
L] L]
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—0.05 e
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Sekil 4.1 Bir EKG sinyalinin orijinal zaman serisi, spektrogrami ve gii¢c spektrumu

EKG kayitlarindaki giiriiltii kaynaklariyla basa ¢ikmak i¢in kayitlar su sekilde
filtrelenmistir:
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» Ilk olarak, taban hatt: kaymasini ortadan kaldirmak icin, kesme frekans1 1 Hz

olan Chebyshev-I tipi bir yiiksek gecis filtresi kullanilmigtir.

* Gii¢ hatt1 parazitini gidermek i¢in, 50-60 Hz araliginda bir gecis bandina
sahip Chebyshev-II tipi bir bant durdurma filtresi kullanilmistir.

» Kas giirtiltiisiiyle basa ¢ikmak i¢in, kesme frekans1 100 Hz olan eliptik bir
diisiik gecis filtresi kullanilmasgtir.

* Son adimda, bir yumusatma iglemi gerceklestirilmistir.

On isleme algoritmas1 uygulandiktan sonra, EKG sinyallerindeki taban hatti
kaymasi ve diger giiriiltiilerin basariyla azaltildig1 gozlemlenmistir. Sekil {.2]de,
Onerilen 6n isleme algoritmasinin bir EKG kayd tizerindeki etkisi gosterilmektedir.

Bu adimlar sonucunda, temizlenmis ve daha analiz edilebilir EKG sinyalleri elde

edilmistir.
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Sekil 4.2 On isleme algoritma uygulamasi

4.2 Onerilen Yontem: Oznitelik Cikarmm ve i-vektor Temsili

4.2.1 Oznitelik Cikarim

On isleme sonrasinda, oznitelik olarak kullanilmak iizere Mel Frekans Kepstral
Katsayilart (MFCC) ve Gammatone Frekans Kepstral Katsayilarnn (GFCC)
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tiretilmektedir.

MFCC ve GFCC, veritabanina bagl olarak 1 veya 0.5 saniyelik pencere boyutu ve
0.25 veya 0.1 saniyelik kayma 6l¢iisii kullanilarak EKG verilerinden elde edilmistir.
Spektral bant sayisi, veritabanina bagl olarak MFCC i¢in 20 veya 24, GFCC i¢in
ise 16, 20 veya 40 olarak ayarlanmistir. Biyometrik bilgiyi yakalamak amaciyla,

frekans aralig1 1-35 Hz ile sinirlandirilmstir.

Sonug olarak, veritabanina bagli olarak MFCC ve GFCC i¢in ayn ayr1 13x77
veya 13x145 boyutlarinda 6znitelik vektorleri olusturulmus; ardindan, ortalama ve

varyans ayarlamasi yapilarak 6znitelik vektorleri normalize edilmistir.

4.2.2 i-vektorlerin Elde Edilmesi

Sekil 43| 6nerilen i-vektor yonteminin blok diyagramini gostermektedir.

Gelistirme
Ozellikleri

UBM

Y
BW istatistikleri

v

h 4
TV Altuzay

A 4
i-vektorler

Skor

Test i-vektcrleri Kaytt i-vektorleri

Sekil 4.3 i-vektor algoritmasi blok diyagrami

Gelistirme verilerinden Oznitelik vektorleri elde edildikten sonra, GMM-EM
algoritmasi farkli sayida karigimla (nmix = [8, 16, 32, 64, 128, 256]) uygulanmakta
ve her karigim i¢cin bir UBM (Universal Background Model) elde edilmektedir.
1-vektor modelinin Baum-Welch istatistikleri, gelistirme verilerinden elde edilen

oznitelik vektorleri kullanilarak hesaplanmaktadir.
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Calismanin baslangicinda, toplam degiskenlik alt uzay:r T sirasiyla 100, 200, 300
ve 400 boyutlari i¢in 6grenilmistir. Ancak, ilerleyen asamalarda iki veritabanimizin
sinirl boyutu nedeniyle yalnizca 100 boyutunun, Heartprint veritabani icin ise 200
boyutunun kullanilmasi uygun goriilmiistiir. Daha sonra, Baum-Welch istatistikleri,

UBM ve T matrisi kullanilarak i-vektorler hesaplanmaktadir.

Farkli siniflar arasindaki ayrimi daha iyi saglamak amaciyla, gelistirme verilerinden
elde edilen i-vektorlere LDA uygulanmakta ve ortaya ¢ikan 1/ matrisi, egitim

verilerinin i-vektorlerine uygulanarak bireysel i-vektor modelleri olusturulmaktadir.

Test i-vektorleri ile egitim verilerinden elde edilen modeller arasindaki benzerlik
skoru, kosinlis mesafesi kullanilarak hesaplanmaktadir. Sisteme erigim
bagvurusunda bulunan kisinin, erisim izni olan bir birey olarak kabul edilip
edilmeyecegi, belirlenen esik degere gore tespit edilmektedir. En iyi esik degeri,

0.95 ile 0.5 arasinda deneme-yanilma yontemiyle belirlenmektedir.

Her bir deney i¢in, performans degerlendirme metriklerini elde etmek amaciyla
farkli e8itim ve test verileri kullanilarak deneyler, Heartprint veritabani icin 4 kez,

diger veritabanlari i¢cin 10 kez tekrarlanmaktadir.

4.3 EKG ile Dogrulama icin Kullanilan Alternatif Yaklasimlar

Bu boliimde, literatiirde yaygin olarak kullanilan cesitli makine 6grenimi ve
derin 6grenme yontemlerinin (SVM, MLP, RF, CNN ve RNN) EKG tabanh
dogrulama sistemlerine uygulanig siirecleri detayli bir sekilde ele alinmaktadir.
Amacimiz, her bir yontemin modelleme, Oznitelik c¢ikarimi ve hiperparametre
optimizasyonu asamalarindaki adimlarimi agiklayarak, onerilen i-vektor tabanli
yontem ile karsilastirilabilecek bir temel saglamaktir. Performans analizleri,

ilerleyen boliimlerde ele alinacaktir.

Bu kapsamda, tiim yontemler i¢in ortak bir veri hazirlama ve 6znitelik ¢ikarimi
siireci benimsenmis; hiperparametre optimizasyonu ise Bayes optimizasyonu ile
gerceklestirilmistir.  Her bir yontemde, MFCC ve GFCC oznitelikleri ayr1 ayri
optimize edilip Ozniteliklere ait parametreler belirlendikten sonra, bu 6zniteliklerin
birlestirilmesiyle elde edilen 6zniteliklerin yontemlerdeki performansi analiz

edilmistir.

EKG sinyallerindeki taban hatt1 kaymasi, gii¢ hatti paraziti ve kas giiriiltiisii gibi
istenmeyen bilesenlerin azaltilmasi icin uygulanan filtreler, On Isleme boliimiinde

aciklandig1 sekilde burada da uygulanmistir.
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4.3.1 Oznitelik Cikarim ve Normalizasyon

EKG sinyallerinden 5 saniyelik kesitler alinarak, Mel Frekans Kepstral Katsayilari
(MFCC) ve Gammatone Frekans Kepstral Katsayilar1 (GFCC) tiiretilmistir. Bu
siirecte, asagidaki parametre kombinasyonlari gelistirme verisi iizerinde test

edilmistir:

* Pencere siiresi: 0.5s,0.75 s, 1 s veya 2 s,
» Kayma siiresi: 0.1s,0.255s,0.5 s veya 1 s,
* Bant sayisi: 20, 30 veya 40,

* Bant genisligi: 0.1, 1 veya 1.5.

Denemeler sonucunda, yanlis kabul oran1 (FAR) temel alinarak en uygun 6znitelik
ayarlar1 belirlenmis ve bu ayarlar kullanilarak MFCC ile GFCC vektorleri

birlestirilerek nihai 6znitelik vektorleri olusturulmustur.

Elde edilen 6znitelik vektorlerinin istatistiksel uyumu icin, egitim setinin ortalama
ve standart sapmasi kullanilarak tiim veri (gelistirme ve test) z-skor normalizasyonu
yontemiyle aym Olcege doniistiiriilmiistiir. Bu sayede, farkli kayitlar arasindaki
Olcek farklar1 azaltilmis ve Ozniteliklerin model performansina etkisi optimize

edilmistir.

4.3.2 Kullanmic1 Bazli Model Kurma ve Hiperparametre Arayisi

Bu c¢alismada, kullanici bazli bir modelleme yaklasimi benimsenmistir. Her bir
katilimcinin verileri “pozitif simif”, diger katilimcilarin verileri ise “negatif simif”
olarak tammmlanmugtir. Negatif Ornek sayisi, pozitif 6rnek sayisinin belirli bir
kat1 olacak sekilde sinirlandirilarak, veri dengesizliginin olumsuz etkileri en aza
indirilmigtir. Bu yapi, sistemin her bir kullanici i¢in 6zellestirilmis dogrulama

modelleri olusturmasina olanak saglamistir.

Hiperparametre arayisi, gelistirme verisi tizerinde 3 katli capraz dogrulama (CV)
yontemi ile gerceklestirilmigstir. Optimizasyon siirecinde, modellerin yanlig kabul
oran1 (FAR) degerini en diisiik seviyeye indirmesi hedeflenmistir. Her katilimciya
ait en iyi parametre kombinasyonlar1 belirlendikten sonra, ayni parametreler
kullanilarak egitim verisi iizerinde nihai modeller olusturulmusg ve test verisinde
ACC, FAR, TAR ve EER gibi performans metrikleri raporlanmustir.
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4.3.3 SVM Modelleme ve Hiperparametre Optimizasyonu
Bu calismada, destek vektor makineleri (SVM) kullanilarak kisi bazli EKG

dogrulama modeli gelistirilmistir.  Modelleme siirecinde, EKG sinyallerinden
tiretilen Mel Frekans Kepstral Katsayilari (MFCC) ve Gammatone Frekans
Kepstral Katsayilar1 (GFCC) kullanilmistir. Oznitelik ¢ikarim siirecinde yapilan
optimizasyonlar sonucunda, SVM modeli i¢cin en uygun MFCC ve GFCC

parametreleri asagidaki gibi belirlenmistir:

* MFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:

20, bant genisligi: 1.

* GFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:

20, bant genisligi: 0.1.

Bu oznitelikler birlestirilerek nihai 6znitelik vektorleri olusturulmus ve tiim veri,

z-skor normalizasyonu yontemiyle ayni dlgege getirilmistir.

SVM  hiperparametre  optimizasyonu,  kullanic1 bazli bir yaklasimla
gerceklestirilmistir. Her kullanici i¢in ayr1 bir model olusturulmus ve Bayes
optimizasyonu yardimiyla SVM’nin en uygun hiperparametreleri belirlenmistir.

Optimize edilen hiperparametreler su sekildedir:

* Kisitlama Parametresi (C): [0.1, 10]

Pozitif Simif Agirhgr: [50, 300]

* Negatif Simif Agirhik Carpani: [2, 10|

Cekirdek Olcegi (KernelScale): [0.1,10]

* Polinom Derecesi (Polynomial c¢ekirdek icin): [2, 10]

Yapilan testlerde, cekirdek fonksiyonlar1 arasinda polinomial ¢ekirdek fonksiyonu,
en diisiik yanlis kabul oran1 (FAR) degerleriyle diger cekirdek fonksiyonlarina gore
daha iyi performans gostermistir. Bu nedenle, nihai analizlerde polinomial ¢ekirdek

fonksiyonu tercih edilmistir.

4.3.4 MLP Modelleme ve Hiperparametre Optimizasyonu
Bu caligmada, ¢ok katmanli yapay sinir aglart (MLP) kullanilarak kisi bazli EKG

dogrulama modeli gelistirilmistir. Modelleme siirecinde, EKG sinyallerinden
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tiiretilen Mel Frekans Kepstral Katsayilari (MFCC) ve Gammatone Frekans
Kepstral Katsayilart (GFCC) kullanilmustir. Oznitelik ¢ikarim siirecinde yapilan
optimizasyonlar sonucunda, MLP modeli i¢in en uygun MFCC ve GFCC
parametreleri asagidaki gibi belirlenmistir:

* MFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:
20, bant genisligi: 1.
* GFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:

30, bant genigligi: 0.1.

Bu oznitelikler birlestirilerek nihai 6znitelik vektorleri olusturulmus ve tiim veri,

z-skor normalizasyonu yontemiyle dl¢eklendirilmisgtir.

MLP  hiperparametre  optimizasyonu,  kullanict bazli bir yaklasimla
gerceklestirilmistir.  Her kullanici i¢in ayri1 bir model olusturulmus ve Bayes
optimizasyonu yardimiyla MLP’nin en uygun hiperparametreleri belirlenmistir.

Optimize edilen hiperparametreler su sekildedir:

* Gizli Katmanlardaki Noron Sayisi: [10, 500]

* Katman Sayist: [1, 5]

Pozitif Simif Agirhgr: [50, 500]

* Negatif Simif Agirhik Carpani: [5, 100]
MLP modeli, kullanic1 bazli bir yapr ile tasarlanmistir. Her bir kullanicinin verileri
pozitif sinif, diger kullanicilarin verileri ise negatif sinif olarak etiketlenmistir.
Veri dengesizligini azaltmak amaciyla, negatif ornek sayisi, pozitif 6rnek sayisinin
belirli bir katiyla sinirlandirilmisti. Model egitimi i¢in kullanilan MLP yapist,
belirlenen hiperparametrelerle her kullaniciya 6zel olarak tasarlanmis olup,
asagidaki bilesenlerden olusmaktadir:

* Tam baglantili (fully connected) katmanlar,

 Sigmoid aktivasyon fonksiyonlari,

* Cikis katmaninda iki sinifli dogrulama i¢in softmax aktivasyon fonksiyonu.
Test verisi lizerinde yapilan analizlerde, Yanlis Kabul Oram1 (FAR), Dogru Kabul

Orani (TAR) ve Esit Hata Oran1 (EER) gibi performans metrikleri kullanilarak

sonuglar raporlanmistir.
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4.3.5 RF Modelleme ve Hiperparametre Optimizasyonu
Bu calismada, rastgele orman (RF) algoritmasi kullanilarak kisi bazli EKG

dogrulama modeli gelistirilmistir.  Modelleme siirecinde, EKG sinyallerinden
tiretilen Mel Frekans Kepstral Katsayilari (MFCC) ve Gammatone Frekans
Kepstral Katsayilar1 (GFCC) kullanilmistir. Oznitelik ¢ikarim siirecinde yapilan
optimizasyonlar sonucunda, RF modeli i¢in en uygun MFCC ve GFCC

parametreleri asagidaki gibi belirlenmistir:

* MFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:
20, bant genisligi: 1.

* GFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:

20, bant genisligi: 0.1.

Bu 6znitelikler birlestirilerek nihai 6znitelik vektorleri olusturulmug ve tiim veri,

z-skor normalizasyonu yontemiyle 6l¢eklendirilmistir.

RF  hiperparametre  optimizasyonu,  kullanict  bazli bir yaklagimla
gerceklestirilmistir.  Her kullanici i¢in ayri bir model olusturulmus ve Bayes
optimizasyonu yardimiyla RF’nin en uygun hiperparametreleri belirlenmistir.

Optimize edilen hiperparametreler su sekildedir:

* Agac Sayis1 (NumTrees): [20, 200]
* En Fazla Bolme Sayis1 (MaxNumSplits): [2, 50]

+ Orneklenmis Degisken Sayis1 (NumVariablesToSample): [1, nFeatures]

Bolme Kriteri (SplitCriterion): gdi, deviance, twoing
* Pozitif Stmf Agirhigi: [50, 300]

* Negatif Simif Agirhik Carpani: [5, 50]

RF modeli, kullanic1 bazli bir yapi ile tasarlanmistir. Her bir kullanicinin verileri
pozitif sinif, diger kullanicilarin verileri ise negatif sinif olarak etiketlenmistir.
Veri dengesizligini azaltmak amaciyla, negatif ornek sayisi, pozitif 6rnek sayisinin
belirli bir kati ile sinirlandirilmigtir.  Model egitimi i¢in kullamilan RF yapisi,

belirlenen hiperparametrelerle her kullaniciya 6zel olarak optimize edilmistir.

Test verisi iizerinde yapilan analizlerde, yanlis kabul oram1 (FAR), dogru kabul

oran1 (TAR) ve esit hata oran1 (EER) gibi performans metrikleri kullanilarak
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sonuglar raporlanmigtir.  Bayes optimizasyonu sonucunda elde edilen en iyi
parametre kombinasyonlarinin dogrulama performansi, RF modelinin kullanici

bazli dogrulama i¢in uygun bir yontem oldugunu gostermektedir.

4.3.6 CNN Modelleme ve Hiperparametre Optimizasyonu

Bu calismada, konvoliisyonel sinir agi (CNN) tabanli iki farkli model
geligtirilmigtir.  CNN, katmanlar arasinda O8renilen filtreler aracilifiyla girig
verilerindeki uzamsal ve zamansal iligkileri 6grenmeye odaklanan derin 6grenme
yontemlerinden biridir. Bu yontem, 6zellikle zaman serisi ve goriintii verilerinde
yiiksek performans gostermesiyle bilinmektedir. Calismamizda, birinci modelde
EKG sinyalleri dogrudan kullanilirken, ikinci modelde EKG sinyallerinden tiiretilen
Mel Frekans Kepstral Katsayilar1t (MFCC) ve Gammatone Frekans Kepstral
Katsayilar1 (GFCC) ile islem yapilmugtir.

4.3.6.1 1D-CNN Tabanh Model

Bu yontemde, EKG sinyalleri dogrudan giris verisi olarak kullanilmigtir. Egitim,
dogrulama ve test setleri, kisi bazli veri bolme stratejisiyle olusturulmus ve negatif

siif ornek sayisi, pozitif sinifin beg kati olacak sekilde sinirlandirilmistir.

ID-CNN modeli, ardigtk konvoliisyon katmanlarindan olusmaktadir. Her
konvoliisyon katmaninda filtreler yardimiyla sinyallerden oznitelikler ¢ikarilmis,
bu 6znitelikler batch normalization, ReL.U aktivasyonu ve max pooling islemleriyle
desteklenmistir. Modelin ¢ikis katmaninda, iki siniflt dogrulama islemi i¢in softmax
aktivasyonu kullanilmistir. Hiperparametre optimizasyonunda, Yanlis Kabul Oram

(FAR) minimize edilmistir. Optimize edilen parametreler su sekilde belirlenmistir:

Filtre Sayis1 (NumFilters): [32, 128],
* Cekirdek Boyutu (KernelSize): [3, 7],
* Konvoliisyon Katman Sayis1 (NumLayers): [2, 4],

* Maksimum Epoch Sayis1i (MaxEpochs): [20, 50].

Model, test seti iizerinde Yanlis Kabul Oranmi1 (FAR), Dogru Kabul Orani (TAR)
ve Esit Hata Oran1 (EER) gibi metriklerle degerlendirilmis ve etkili sonuclar elde
edilmistir.
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4.3.6.2 MFCC ve GFCC Tabanh 2D-CNN Modeli
Bu yontemde, EKG sinyallerinden MFCC ve GFCC o6znitelikleri ¢ikarilarak model

girigine verilmistir. Cikarilan 6znitelikler, zaman-frekans matrisleri olarak organize
edilmis ve iki kanalda birlestirilmistir. Oznitelik ¢ikarim sirasinda kullanilan

parametreler su sekilde belirlenmistir:

* MFCC Parametreleri: Pencere siiresi 2 s, kayma siiresi 0.5 s, bant sayis1 20,
bant genigligi 1.

* GFCC Parametreleri: Pencere siiresi 2 s, kayma siiresi 0.5 s, bant sayis1 20,
bant genigligi 0.1.

2D-CNN modeli, ardisik konvoliisyon katmanlari ile yapilandirilmistir. Model,
batch normalization ve ReLU aktivasyonuyla desteklenen konvoliisyon
katmanlarini, max pooling islemleriyle birlestirerek Oznitelikleri daha soyut
bir temsil haline getirir. Global ortalama havuzlama yerine, Oznitelikleri daha
detayli isleyebilmek amaciyla diizlestirme (flatten) ve tam baglantili (fully
connected) katmanlar kullanilmistir. Bu yap1, modelin derin 6grenme kapasitesini
artirmaktadir. Hiperparametre optimizasyonunda Bayes optimizasyonu kullanilarak

asagidaki parametreler optimize edilmistir:

* Filtre Sayis1 (NumPFilters): [32, 128],
* Cekirdek Boyutu (FilterSize): (3, 5],
» Konvoliisyon Katman Sayis1 (NumConvs): |2, 3],

* Maksimum Epoch Sayis1 (MaxEpochs): [20, 50].

4.3.6.3 CNN Performans Degerlendirmesi

Her iki model, test verisi iizerinde Yanhis Kabul Oranmi (FAR), Dogru Kabul
Oran1 (TAR) ve Esit Hata Oran1 (EER) metrikleri kullanilarak degerlendirilmistir.
2D-CNN modeli, MFCC ve GFCC 0zniteliklerini entegre ederek zaman-frekans
bilgisini daha etkili bir sekilde islemis; bu sayede 1D-CNN modeline kiyasla daha

yiiksek dogrulama basarisi elde edilmistir.

Sonu¢ olarak, CNN tabanli bu iki yontem, EKG tabanli kimlik dogrulama
sistemlerinde giiclii performans sergilemis ve Ozellikle MFCC ile GFCC
Ozniteliklerinin entegrasyonu dogrulama basari oranint 6nemli 6lciide artirmigtir.
Bu bulgular, EKG sinyallerinin biyometrik kimlik dogrulama sistemlerinde etkin

bir sekilde kullanilabilecegini ortaya koymaktadir.
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4.3.7 RNN Modelleme ve Hiperparametre Optimizasyonu
Bu calismada, tekrarlayan sinir aglar1 (RNN) tabanli bir model kullanilarak

kisi bazli EKG dogrulama sistemi gelistirilmistir. RNN, 0zellikle zaman serisi
verilerindeki ardisik iligkileri 6grenmek icin giiclii bir derin 6grenme mimarisi
olarak one ¢ikmaktadir. Modelleme siirecinde, EKG sinyallerinden tiiretilen Mel
Frekans Kepstral Katsayilar1 (MFCC) ve Gammatone Frekans Kepstral Katsayilari
(GFCC) oznitelikleri c¢ikarilmig ve giris verisi olarak kullanilmistir. Kullanici
bazli bir yaklasimla her katilimciya 6zel modeller olusturulmus ve hiperparametre

optimizasyonu Bayes optimizasyonu yontemiyle gerceklestirilmistir.

Modelde giris verisi olarak EKG sinyallerinden tiiretilen MFCC ve GFCC
oznitelikleri kullanilmugtir. Oznitelik ¢ikarim sirasinda kullanilan parametreler

asagidaki gibidir:

* MFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:

20, bant genisligi: 1.

* GFCC Parametreleri: Pencere siiresi: 2 s, kayma siiresi: 0.5 s, bant sayisi:

30, bant genisligi: 0.1.

Elde edilen oznitelikler, her bir EKG sinyaline karsilik gelen zaman-frekans
temsillerini olusturmus ve RNN modeli i¢in giris dizileri haline getirilmistir.
Egitim, dogrulama ve test setleri, kisi bazli veri bolme stratejisi ile olusturulmus

ve tiim veri z-skor normalizasyonu yontemiyle 6l¢eklendirilmigtir.

Bu ¢alismada kullanilan ¢ift yonlii Gated Tekrarlayan Birim (Bi-GRU; Bidirectional
Gated Recurrent Unit) tabanli RNN modeli su bilesenlerden olugsmaktadir:

* Birinci Bi-GRU Katmani: Gizli birim sayist 50 ile 150 arasinda optimize
edilmistir.

* Dropout Katmam: ilk Bi-GRU katmanindan sonra, 0 ile 0.3 arasinda

optimize edilen dropout oran1 uygulanmaistir.

+ Ikinci Bi-GRU Katmam: Gizli birim sayist 50 ile 150 arasinda optimize

edilmistir.

* Dropout Katmam: Ikinci Bi-GRU katmanindan sonra tekrar dropout

uygulanmustir.

+ Tam Baglantih Katman (Fully Connected): Iki simifli dogrulama icin iki

noron igerir.
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* Softmax Katmani: Cikis katmaninda, sinif olasiliklar1 hesaplanmagtir.

Optimize edilen hiperparametreler sunlardir:

* Birinci Bi-GRU Katmanindaki Gizli Birim Sayisi: 50 ile 150 arasinda.
« Ikinci Bi-GRU Katmammndaki Gizli Birim Sayisi: 50 ile 150 arasinda.
 Ogrenme Oram (Learning Rate): 1 x 10~*ile 1 x 10~ arasinda.

e Maksimum Epoch Sayisi: 50 ile 100 arasinda.

Mini Batch Boyutu: 16 ile 32 arasinda.

* Dropout Oram: 0 ile 0.3 arasinda.

Cift yonli GRU tabanli RNN modeli, o6zellikle zaman serisi verilerinin
Ogrenilmesinde yiiksek dogrulama basaris1 gostermistir. Bayes optimizasyonu
ile belirlenen hiperparametreler, modelin genel dogrulama performansini artirmig
ve EKG tabanli biyometrik dogrulama sistemlerinde RNN’nin etkili bir yontem

oldugunu ortaya koymustur.

4.3.8 Son Degerlendirme
Tim bu yontemler (SVM, MLP, RF, CNN ve RNN) ortak bir veri hazirlama

ve Oznitelik cikarma cercevesi iizerinde, farkli O0grenme mekanizmalar1 ve
hiperparametre ayarlar ile uygulanmistir. Elde edilen sonuglar, esit hata oram
(EER), yanlis kabul orami (FAR) ve dogru kabul oran1 (TAR) gibi performans
metrikleri kullamlarak degerlendirilmektedir. Ozellikle Heartprint veri kiimesi
tizerinden gerceklestirilen genellenebilirlik analizleri, onerilen yontemlerin mobil
biyometrik dogrulama sistemlerinde yiiksek dogruluk ve giivenilirlik sagladigim
gostermektedir. Bu kapsamli degerlendirme, sistemin farkli kosullar altinda nasil
performans gosterdigini net bir sekilde ortaya koyarken, gelistirilen modellerin

mobil ve giyilebilir cihazlarda pratik olarak uygulanabilecegini de kanitlamaktadir.

4.4 Performans Degerlendirme Metrikleri

Biyometrik sistemlerin dogrulugu ve giivenilirligi, belirli performans metrikleri
kullanilarak degerlendirilmektedir. Bu boliimde, biyometrik sistemlerde yaygin
olarak kullanilan performans metrikleri ve bu metriklerin matematiksel formiilleri

ele alinmaktadir.
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4.4.1 Dogru Kabul Oram (TAR)
Dogru kabul orani (TAR), biyometrik sistemin dogru bir sekilde tamdig1 gercek

pozitiflerin oranim ifade eder. Bu metrik, sistemin gercek kullanicilari tanima

bagarisini gosterir:

Dogru Kabul Edilen Dogru Pozitifler TP

TAR = = .
Toplam Dogru Pozitifler TP+ FN

4.1)

Burada,

e TP (True Positives): Sistemin dogru bir sekilde kabul ettifi gercek

kullanicilar.

* F'N (False Negatives): Sistemin yanlis bir sekilde reddetti8i gercek

kullanicilar.

Yiiksek bir TAR, sistemin gercek kullanicilar yiiksek dogrulukla tanidigini gosterir.

4.4.2 Yanhs Kabul Orani (FAR)
Yanlis kabul orani1 (FAR), biyometrik sistemin yanlis bir sekilde kabul ettigi yanlis

pozitiflerin oranim1 ifade eder. Bu metrik, sistemin yetkisiz kigsileri kabul etme

egilimini ortaya koyar:

Yanlis Kabul Edilen Yanlis Pozitifler FP
Toplam Yanlis Pozitifler ~ FP+TN’

FAR = (4.2)

Burada,

e F'P (False Positives): Sistemin yanlig bir sekilde kabul ettii yetkisiz

kullanicilar.

* T'N (True Negatives): Sistemin dogru bir sekilde reddettigi yetkisiz

kullanicilar.

Diisiik bir FAR, sistemin yetkisiz kisileri diisiik bir oranda kabul ettigini gosterir.

4.4.3 Dogru Reddetme Orani (TRR)
Dogru reddetme orami (TRR), biyometrik sistemin dogru bir sekilde reddettigi

gercek negatiflerin oranini ifade eder. Bu metrik, sistemin yetkisiz kisileri tantmada
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bagarisini gosterir:

Dogru Reddedilen Ger¢ek Negatifler TN
Toplam Gergek Negatifler TN+ FP’

TRR = (4.3)

Yiiksek bir TRR, sistemin yetkisiz kisileri yiiksek dogrulukla reddettigini gosterir.

4.4.4 Yanhs Reddetme Oram (FRR)
Yanlis reddetme orani (FRR), biyometrik sistemin yanlis bir sekilde reddettigi

gercek pozitiflerin oranini ifade eder. Bu metrik, sistemin gercek kullanicilar1 yanlig

bir sekilde reddetme egilimini gosterir:

Yanlis Reddedilen Gergek Pozitifler FN

FRR = = .
Toplam Gergek Pozitifler TP+ FN

4.4)

Diisiik bir FRR, sistemin gercek kullanicilar1 yiiksek dogrulukla kabul ettigini

gosterir.

4.4.5 Dogruluk (ACC)

Dogruluk (ACC), biyometrik sistemin genel performansini Olgcer ve dogru
tanimlanan toplam orneklerin oranimi ifade eder. Bu metrik, sistemin hem gercek

kullanicilar1 tanima hem de yetkisiz kisileri reddetme basarisini gosterir:

_ Dogru Tamumlanan Ornekler B TP+TN

ACC - = )
Toplam Ornekler TP+TN+ FP+ FN

4.5)

Yiiksek bir dogruluk, biyometrik sistemin genel performansinin yiiksek oldugunu

gosterir.

Biyometrik  sistemlerde performans degerlendirme metrikleri, sistemin
dogrulugunu ve giivenilirligini objektif bir sekilde O6lgmek i¢in kritik Oneme
sahiptir. Bu metrikler, sistemin hem gercek kullanicilar1 tanima hem de yetkisiz
kisileri reddetme basarisin1 degerlendirmek amaciyla kullanilir. Yiiksek TAR, TRR
ve ACC degerleri ile diisilk FAR ve FRR degerleri, biyometrik sistemin giivenilir

ve etkili oldugunu gosterir.

Esit hata oran1 (EER) ve alic1 isletim karakteristigi (ROC) egrileri, biyometrik

sistemlerin performansini degerlendirmede onemli diger metriklerdir.
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4.4.6 Esit Hata Oran1 (EER)

Esit hata oran1 (EER), biyometrik sistemin yanlis kabul oran1 (FAR) ile yanlis
reddetme oraninin (FRR) esit oldugu noktay: ifade eder. EER, bu iki hata tiirliniin
birbirine kars1 hassasiyetini dengelemektedir. Biyometrik sistemin performansinin
yiikksek olmasi icin diisiik bir EER degeri istenir. EER genellikle ROC egrisi

tizerinde FAR ve FRR oranlarinin kesistigi noktada bulunur.

4.4.7 Ala Isletim Karakteristigi (ROC)

ROC egrisi, biyometrik sistemin farkli esik de8erlerine kars1 yanlis kabul oram
(FAR) ile dogru kabul oran1 (TAR) arasindaki iligkiyi gosteren bir grafiktir. Bu
egri, biyometrik sistemin performansini gorsel olarak degerlendirmede kullanilir.
Eger sistem, egrinin sol iist kosesine daha yakinsa, o kadar 1yi performans gosterir;
bu durumda diisiik FAR ve yiiksek TAR elde edilir. Sistemin performansi, ROC
egrisinin altindaki alan (Area Under the Curve, AUC) ile de 6lciilebilir. AUC degeri,
ROC egrisinin altinda kalan alanin yiizdesini temsil eder; dolayisiyla daha yiiksek
bir AUC, sistemin daha iyi performans gosterdigini ifade eder. AUC, ROC egrisinin

esik degerlerinden bagimsiz olarak genel performansi dl¢gmektedir.
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S

DENEYSEL SONUCLAR

Bu bolimde, onerilen EKG tabanli biyometrik kimlik dogrulama sisteminin
deneysel sonuglari sunulmaktadir.  Oncelikle, i-vektor yaklasimmin yami sira
SVM, MLP, REF, CNN ve RNN gibi alternatif yontemler icin kullanilan veri
boliimlendirme stratejisi, on isleme, Oznitelik ¢cikarma ve modelleme adimlari
aciklanmigtir. ECG-ID ve BMDI101 veritabanlarinda elde edilen performans
sonuglarinin yani sira, en kapsaml karsilastirma Heartprint veritabani iizerinden
yapilmistir. Her veritabani i¢cin ROC egrileri, FAR, TAR ve ACC gibi metrikler
analiz edilerek, sistemin basarimi farkli ag¢ilardan degerlendirilmistir.

5.1 Veri Bolme Stratejisi

Her bir EKG veri kiimesi, i-vektor yaklasiminin gereksinimlerini karsilamak ve veri

sizintisin1 6nlemek amaciyla ii¢ ayri, ortiismeyen alt kilmeye ayrilmistir.

* Gelistirme Seti: Global model parametrelerinin 6grenilmesi icin kullanilir.
Ozellikle, evrensel arka plan modelinin (UBM) egitimi ve toplam degiskenlik
matrisinin (T) tahmini bu asamada gerceklestirilir. Bdylece, tiim veri

kiimesinin genel niteliklerine dayali saglam bir temel olusturulur.

* Egitim Seti: Gelistirme setinden elde edilen global parametreler kullanilarak,
her birey icin 6zellestirilmis kullanici modelleri bu alt kiimede egitilir. Bu
sekilde, her kullanicinin kendine 6zgii verisi kullanilarak kisisellestirilmis

kimlik dogrulama modelleri olusturulur.

* Test Seti: Modelin nihai performansini objektif bir sekilde 6l¢mek amaciyla,
optimizasyon ve egitim asamalarinda kullanilmayan verilerden olusur. Test
seti sayesinde, modelin genellenebilirligi ve gercek hayata uyarlanabilirligi

degerlendirilir.

Veri bolme islemi, her deneyde rastgele olarak tekrarlanmis ve farkli dagilimlar
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kullanilarak modellerin sonuglar1 {iizerindeki olas1 rastlantisal etkiler en aza
indirgenmeye calisilmistir. Bu yaklasim, i-vektor yontemi yani sira SVM, MLP, RF,
CNN ve RNN gibi alternatif yontemler i¢in de ayni sekilde uygulanmistir. Boylece,

tiim yontemler arasinda adil ve tutarli bir karsilagtirma olanagi saglanmustir.

Alternatif yontemler (SVM, MLP, REF, CNN, RNN) i¢in hiperparametre
optimizasyonu gelistirme setinde gerceklestirilmis; en uygun kullanic1 bazl
parametreler, egitim setinde model kurulumu icin kullanilmigtir.  Son olarak,
her modelin gercek performans test seti lizerinde Olciilmiistiir. Bu strateji, veri
sizintisim1 Onler, verilerin dengeli kullanimini saglar ve modellerin gercek diinya

performansini kapsamli bi¢imde degerlendirir.

5.2 i-vektor Yonteminin Genel Adimlari

Onerilen i-vektor yontemi, tiim veri tabanlarinda tutarli bir bicimde uygulanmis ve

asagidaki temel adimlar izlemistir:

1. On Isleme ve Oznitelik Cikarma:
Her bir EKG sinyali, Bolim 2 ve Boliim 4’te ayrintili olarak aciklanan 6n
isleme adimlarindan gecirilmis ve sonrasinda hem MFCC hem de GFCC

Oznitelikleri ¢ikarilmagtir.

2. GMM-EM ile UBM Egitimi:
Gelistirme setinde, 8’den 256’ya kadar farkli karisim sayilar icin Gauss
karistm modelleri (GMM) egitilerek evrensel arkaplan modeli (UBM)

olusturulmustur.

3. Toplam Degiskenlik (T) Matrisi:
T matrisinin boyutlar1 100, 200, 300 ve 400 olarak denenmis; daha kiiciik
veri tabanlarinda 100, Heartprint gibi daha genis veri tabanlarinda ise 200

boyutlu matris tercih edilmistir.

4. i-vektor Cikarimi ve LDA:
Baum-Welch istatistikleri yardimiyla i-vektorler elde edilmis; simif ayrimini
giiclendirmek amaciyla dogrusal diskriminant analizi (LDA) ile boyut

indirgeme uygulanmistir.

5. Puanlama:
Test asamasinda, elde edilen i-vektorler ile kayithh modeller arasindaki
kosiniis benzerlik degerleri hesaplanmis ve 0.5-0.95 araliginda degisen esik

degerleri kullanilarak kabul/red kararlar1 verilmistir.
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6. Tekrarlh Denemeler ve Nihai Olciitler:
Her bir deney, farkli rastgele veri bolmeleriyle birden fazla kez (6rnegin,
10 tekrar) yiriitilmiistiir. Elde edilen dogruluk (ACC), yanlis kabul orani
(FAR), dogru kabul orani (TAR), yanlis reddetme oranmi (FRR) ve esit
hata oram1 (EER) Ol¢iimlerinin ortalamalart alinarak, sistemin genellenebilir

performansi daha saglam bir bicimde tahmin edilmistir.

7. Veri Toplama :
Tiim veri tabanlarinda 3, 4 ve 5 saniyelik EKG kayitlar iizerinde deneyler
gerceklestirilmistir. Bu sayede, yontemin mobil veya kisith kaynaklara sahip

cihazlarda da uygulanabilirligi arastirilmistir.

Bu yapi, i-vektor tabanli yaklasimin her veritabaninda ayni is akigiyla nasil
uygulandigin1 net bir sekilde gostermektedir. Her veritabani icin elde edilen
deneysel sonuglar ve performans analizleri, yukaridaki adimlar {izerinden

sunulmaktadir.

5.2.1 Veri Gorsellestirme

i-vektor dagilimlarin1 elde etmek icin kullanilan t-SNE (t-dagilimli Stokastik
Komsu Gomme) yontemi, yiiksek boyutlu verileri iki veya ii¢ boyutlu diizlemde
gorsellestirmek amaciyla kullanilan dogrusal olmayan bir boyut indirgeme
teknigidir. Algoritmanin temel prensibi, yiiksek boyutlu uzayda veri noktalarinin
birbirlerine olan benzerliklerini Gauss kosullu olasiliklariyla ifade etmek ve diigiik
boyutlu uzayda ise afir kuyruklu Student-t dagilimi kullanarak benzerlikleri
modellemektir. Bu iki dagilim arasindaki fark, Kullback—Leibler sapmasi
kullanilarak minimize edilir ve bdylece noktalarin diisiik boyutlu uzaydaki

konumlar1 optimize edilir [96].

Yiiksek boyuttaki yakin komguluk yapisini diisiik boyuta aktarirken ortaya cikan
"y1g1lma problemi" (crowding problem), Student-t dagiliminin agir kuyruklu yapisi
sayesinde azaltilir; bu sayede, merkezden uzak veri noktalarina daha anlaml
olasiliklar atayarak, yiiksek boyutta farkli olan noktalarin diisiik boyutta da
ayrigsmast saglanir. Bu nedenle t-SNE, biyomedikal sinyallerin (6rnegin EKG)

kiimelenme ve siniflandirma amacli gorsellestirilmesinde siklikla tercih edilir.

Ote yandan, t-SNE ¢iktilarindaki eksenler dogrudan fiziksel veya matematiksel
anlam tasimamakta; yalnizca veri noktalar1 arasindaki goreceli uzaklik iligkilerini
temsil etmektedir. Algoritmanin konveks olmayan optimizasyonu ve rastgele

baglangic kosullarina duyarliligit nedeniyle, ¢ikti uzaymin eksen yonelimleri ve
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Olcekleri degiskenlik gosterebilir. Bu nedenle, t-SNE grafikleri yorumlanirken,
eksenlerin mutlak degerleri yerine veri noktalarinin goreceli konumlar1 ve

kiimelerin yapis1 esas alinmalidir [97]].

5.3 ECG-ID Veritabam Performans Analizi
Ik olarak, bu calismada ECG-ID veritabanindan segilen 20 bireye ait 200 EKG

kaydindan (birey basina on kayit) olusturdu§umuz veri seti kullamilmistir. Her
birey icin 6 EKG kaydi gelistirme seti olarak sec¢ilmis ve UBM ile T matrisi
hesaplanmigtir. Kalan 4 EKG kaydi ise sistemin performansini degerlendirmek i¢in

kullanilmustr.

Degerlendirme sirasinda, test edilecek bireyin kayitlarinin %751 rastgele olarak
egitim verisi olarak secilmigtir. Diger bir deyisle, test edilecek bireye ait 3 EKG
kaydi model olusturmak i¢in kullanilmis ve kalan kayitlar (bu kayitlardan biri test

edilen bireye aittir) test verisi olarak degerlendirilmistir.

ECG-ID veritabam iizerinde gerceklestirilen deneylerde, manuel optimizasyon
sonucu asagidaki parametreler kullanilarak MFCC ve GFCC o6znitelikleri
cikarilmigtir:

* Pencere Boyutu: 1 s,

* Kayma: 0.25 s,

MFCC/GFCC Bant Sayisi: 20/20,

* Frekans Arahg:: 1-35 Hz,

* Toplam Degiskenlik Boyutu: 100,

* Calisma Sayis1 (Tekrar Sayisi): 10.
Sekil [5.1] ve Sekil [5.2] 20 bireyin sirasiyla gelistirme seti ile egitim-test seti i¢in
MFCC ve GFCC uygulamalarina ait i-vektor dagilimlarini gostermektedir. Her
birey farkli bir renk ile temsil edilmis; her nokta ise tek bir i-vektore karsilik

gelmektedir.  Grafiklerde, bireylere 6zgii kiimelerin net bicimde ayrilabildigi

gozlemlenmektedir.

Tablo Tablo [5.2] ve Tablo [5.3]ile Tablo [5.4] Tablo[5.5] ve Tablo [5.6] farkli EKG
kayit siirelerinde elde edilen, sirasiyla en yiiksek dogruluk (ACC) ve esit hata oranm

(EER) bazli sonuglar1 temsil etmektedir.
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Tablo[5.1] Tablo[5.2] ve Tablo[5.3]incelendiginde, en yiiksek ACC ile en diisiikk FAR
degerlerine ulagsmak ic¢in en uygun yapilandirmanin, hem MFCC hem de GFCC
Ozniteliklerinin kullanildigi, 5 saniyelik sinyal siiresi ve 16 karisim sayist oldugu
goriilmektedir. Bu durumu gosteren ROC egrisi ve EER grafigi sirastyla Sekil [5.3]
ve Sekil [5.4]te verilmistir.

Tablo 5.1 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk degerlerinde
sistem performansi (ECG-ID) - MFCC

Karisim Sayisi ACC(%) TAR(%) FAR(%)

99.20 #0.062 94.00 +2.108 0.73 +0.072
99.09 +0.075 93.00 +4.216 0.83 =0.125
99.61 =+0.068 77.50 +5401 0.10 =0.035
08.94 +0.107 92.50 +2.635 0.98 =+0.122
99.03 0.097 91.00 +4.595 0.87 =+0.131
00.28 +0.142 85.00 *5.774 0.53 =£0.126
08.66 +0.093 84.00 £4.595 1.14 =+0.094
908.73 +0.093 80.50 +£7.619 1.03 =+0.132

s
3
4
5
3
4
5
3
4
5 98.88 #0.102 57.50 +8.580 0.58 +0.068
3
4
S
3
4
5
3
4
5

8

16

32

98.81 =*0.087 79.50 £5.986 0.93 =+0.111
98.96 +0.106 79.00 =+6.146 0.78 =+0.111
99.45 #0.076 86.50 £5.798 0.38 =+0.076
98.69 +0.071 77.50 +4.249 1.03 =0.055
98.73 +0.115 71.50 #£5.798 091 =+0.122
99.36 +0.074 84.00 +£5.164 0.43 +0.034
98.46 +0.053 62.00 +7.888 1.06 =+0.079
98.64 +0.128 18.50 +£8.182 0.30 =+0.064
99.03 +0.061 79.50 +4.972 0.72 +0.065

64

128

256
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Tablo 5.2 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk degerlerinde
sistem performansi (ECG-ID) - GFCC

Karisim Sayis1 s ACC(%) TAR(%) FAR(%)
3 99.06 +0.134 72.00 +7.888 0.58 =+0.127
8 4 99.08 +0.089 96.00 +4.595 0.87 =+0.044
5 9933 +0.092 9250 5401 0.58 =x0.068
3 99.05 +#0.126 80.00 #5.270 0.70 =0.124
16 4 9925 +0.127 86.50 +4.743 0.58 =+0.127
5 99.12 £0.116 73.00 £5.375 0.53 =+0.109
3 99.04 £0.051 86.00 3944 0.79 =+0.000
32 4 99.09 #0.043 90.00 £3.333 0.79 =+0.000
5 99.10 #0.048 90.50 +£3.689 0.79 =+0.000
3 99.11 =#0.119 8250 +6.346 0.67 =0.107
64 4 99.01 #0.080 87.00 +6.325 0.83 =+0.077
5 99.06 =#0.147 72.00 =+£10.328 0.58 =+0.127
3 98.95 £0.096 73.50 #5.798 0.72 0.122
128 4 99.03 +0.097 81.00 =+5.676 0.74 =+0.115
5 99.08 =#0.133 67.50 +8.250 0.51 =0.108
3 98.94 +0.102 78.00 +£7.888 0.79 =+0.000
256 4 99.01 +0.156 69.50 +8.317 0.61 =*0.111
5 99.15 #0.112 87.00 £5.869 0.69 =+0.071
1
0.95
0.9
0.85
©
< |
08| x0
Y 0.815
0.75 |
0.7 &
0.65 ' : ' '
0 0.05 0.1 0.15 0.2 0.25

FAR

Sekil 5.3 En yiiksek dogruluga dayali ROC Egrisi (Sinyal siiresi: 5 s, Karigim
sayist: 16, ECG-1D)
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Tablo 5.3 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk degerlerinde
sistem performansi (ECG-ID) - MFCC+GFCC

ACC(%) TAR(%) FAR(%)
99.02 +0.078 86.50 =+4.116 0.82 +0.071
99.15 #0.037 94.50 +£2.838 0.79 +0.000
99.12 #0.055 92.00 =+4.216 0.79 =0.000
99.17 #0.101 74.50 #£6.433 0.51 =0.076
99.17 #0.118 82.00 #£5.375 0.61 =#0.111
99.76 +0.062 81.50 +4.743 0.00 =*0.000
99.21 #0.108 85.50 +4.463 0.61 =0.067
99.27 #0.110 94.50 =+4.575 0.67 =#0.121

Karisim Sayis1 s
3
4
5
3
4
5
3
4
5 99.49 #0.104 85.00 =+£5.774 0.32 +0.065
3
4
5
3
4
5
3
4
5

8

16

32

99.24 +0.130 88.00 +£5.375 0.61 =+0.103
99.07 #0.075 88.50 #£5.798 0.79 #+0.000
99.47 +0.094 83.00 +£5.375 0.31 =*0.062
99.11 #0.115 70.00 £7.454 0.51 =0.108
99.08 +0.143 77.00 +£7.528 0.63 +0.104
99.55 #0.057 82.00 =#4.830 0.22 +0.044
99.05 #0.137 57.00 +6.749 0.40 +0.095
98.93 +0.082 81.50 +£7.472 0.84 =*0.111
99.40 *0.114 72.00 =+£7.888 0.24 +0.034
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256
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Error
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Sekil 5.4 Kimlik dogrulama esigine iliskin FAR ve FRR performanslari (Sinyal
siiresi: 5 s, Karisim sayist: 16, ECG-ID)
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Benzer sekilde, Tablo [5.4] Tablo [5.5] ve Tablo [5.6] incelendiginde, EER agisindan
en uygun ¢alisma noktalarinin belirlendigi goriilmektedir. En yiiksek ACC ve en
diisik FAR degerlerine ulagsmak icin, hem MFCC hem de GFCC 6zniteliklerinin
kullanildig1, 5 saniyelik sinyal siiresi ve 32 karisim sayisi en uygun yapilandirmay1
saglamaktadir. Bu durumu gosteren ROC egrisi ve EER grafigi ise sirasiyla Sekil
[5.5] ve Sekil [5.6/da sunulmustur.

Tablo 5.4 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (ECG-ID) - MFCC

Karisim Sayis1 s ACC(%) TAR(%) FAR(%)

3 98.55 +0.119 100.00 =0.000 1.47 =0.121

8 4 96.66 +0.221 97.00 +2.582 3.34 +0.219
5 9502 +0.247 9450 +2.838 4.97 +0.256

3 98.19 +£0.105 100.00 #0.000 1.83 =+0.107

16 4 9337 0.275 9450 +2.838 6.64 =+0.267
5 96.75 #0256 9750 £2.635 3.26 +0.276

3 96.82 £0.120 96.50 =+4.116 3.17 =0.161

32 4 9229 +0.376 93.00 #4216 7.72 +0.413
5 9744 #0217 9750 £2.635 256 =+0.227

3 9659 +0.098 98.50 +2.415 343 =+0.107

64 4 91.53 #0427 89.00 +4.595 843 +0.470
5 9327 #0.184 93.00 4216 6.72 =£0.164

3 96.66 +£0.187 97.00 +2.582 3.35 =+0.204

128 4 91.66 0.210 92.00 +4.830 8.35 =+0.249
5 96.74 #0.175 97.00 +2.582 3.26 =+0.181

3 9494 +0.173 90.50 +4.972 5.01 =0.182

256 4 9595 +0.231 96.50 +£3.375 4.05 +0.224
5 9469 £0.091 94.00 +4.595 5.30 =£0.104
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Tablo 5.5 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (ECG-ID) - GFCC

Karisim Sayis1 s ACC(%) TAR(%) FAR(%)
3 96.16 +0.211 97.50 +2.635 3.86 +0.199
8 4 9750 +0.160 97.50 =+2.635 2.50 =0.167
5 97.65 +£0.152 97.50 +2.635 2.35 +0.139
3 9508 +£0.205 96.00 +3.162 4.93 +0.187
16 4 9530 #0.179 95.50 =+4.378 4.70 +£0.202
5 9503 =#0.182 9550 +3.689 4.98 +0.186
3 9374 +0.424 9400 +2.108 6.26 =+0.447
32 4 97.06 =+0.155 97.00 £3.496 293 +£0.162
5 97.01 =+0.236 98.50 +2.415 3.01 =+£0.255
3 9544 +0.191 95.00 =+4.082 4.56 =+0.213
64 4 9854 +0.063 9850 =+2.415 1.46 =+0.081
5 98.68 £0.140 98.50 +2.415 1.32 =+0.140
3 9429 +£0.303 9550 +3.689 5.73 +0.324
128 4 9547 +0.227 97.00 £2.582 4.55 +£0.229
5 9487 #0.184 9550 +£3.689 5.14 +0.202
3 9352 +0.267 93.00 +5.375 647 +0.306
256 4 9458 +0.182 93.50 #3375 5.40 +0.192
5 97.62 +0.179 97.00 #4.216 2.38 =+0.144
1 __/ - '_ o - ' o T
0.95 | || X 0.00592105
Y 0.975
09|
0.85 b
0.8
4
< 075
0.7
0.65 [
0.6 f
0.55 |}
0.5 : : : : ' ' '
0 002 004 006 008 0.1 012 014  0.16

FAR

Sekil 5.5 EER noktasina dayali ROC Egrisi (Sinyal siiresi: 5 s, Karigim sayist: 32,
ECG-ID)
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Tablo 5.6 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (ECG-ID) - MFCC+GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

97.81
98.60
98.94

+0.080
+0.070
+0.088

99.50
99.50
99.50

+1.581 2.22
+1.581 1.41
+1.581 1.07

+0.070
+0.064
+0.082

16

97.00
94.10
96.01

+0.320
+0.250
+0.282

93.50
94.50
92.00

+3.375 2.95
+2.838 5091
+2.582 3.93

+0.303
+0.232
+0.272

32

96.19
99.24

+0.320
+0.250
+0.063

94.50
97.00
97.50

+3.375 3.79
+2.838 0.73
+2.635 0.59

+0.303
+0.232
+0.054

64

97.56
98.53
98.14

+0.144
+0.034
+0.283

98.50
98.00
93.00

+2.415 2.45
+2.582 1.46
+4.216 1.80

+0.134
+0.042
+0.299

128

95.49
97.55
96.10

+0.383
+0.118
+0.127

97.00
97.00
94.50

+2.582 4.53
+2.582 2.45
+2.838 3.87

+0.406
+0.102
+0.135

256

95.75
94.84

S
3
4
5
3
4
5
3
4
5 99.38
3
4
5
3
4
5
3
4
5 94.66

+0.239
+0.357
+0.270

96.00
93.00
94.50

+3.944 425
+4.216 5.14
+2.838 5.34

+0.283
+0.410
+0.290

0.5

045

047

0.35

03 r

0.25

Error

——FAR

0.7

0.75 0.8

Threshold

0.85 0.9

0.95

Sekil 5.6 Kimlik dogrulama esigine iliskin FAR ve FRR performanslari (Sinyal
siiresi: 5 s, Karisim sayist: 32, ECG-ID)
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5.4 BMDI101 Veritabani Performans Analizi
Bu calismada, goniillii katilimcilardan kisisel olarak topladigimiz 6zel BMD101

veri kiimesi lizerinde Onerilen yontem degerlendirilmisti. BMDI101 sensorii,
mobil cihazlara entegre edilebilir yapisiyla gercek diinya uygulanabilirligini
test etme amacimiza dogrudan katki saglasa da, bu calismada gercek zamanh
testler gerceklestirilmemistir.  S6z konusu veri kiimesi, iki farkli senaryoda
(BMD-1 ve BMD-2) yiiriitiilen deneyleri desteklemis; hem onerilen metodolojinin
dogrulugunu hem de analiz bilesenlerinin, ger¢ek¢ci mobil uygulama kosullarina

benzer ortamlarda etkinligini degerlendirmemize imkan tanimaisgtir.

BMDI101 veritabani i¢in manuel optimizasyonla elde edilen parametreler asagida

listelenmistir:

* Pencere Boyutu: 1 s

* Kayma: 0.25 s

MFCC/GFCC Bant Sayisi: 20/16
* Frekans Araligi: 1-35 Hz
* Toplam Degiskenlik Boyutu: 100

* Calisma Sayisi (Tekrar): 10

Bu yaklasim, BMDI101 sensoriiniin taginabilir cihazlara entegrasyon potansiyelini
yansitmakta ve deneysel sonuclarin pratik kullanim senaryolarina 151k tutabilecek

sekilde analiz edilmesine imkan tanimaktadir.

Calismanin ilk asamasinda olusturulan veritabaninda, farkli sayida EKG kaydina
sahip 22 birey bulunmaktadir. Gelistirme setinde, veritabanindaki bu 22 bireyin
toplamda 170 EKG verisi kullanilarak UBM ve T matrisi hesaplanmaktadir. Bu
hesaplamalar, sistemin genel yapisini ve performans parametrelerini belirlemede
temel bir islev gormektedir. Geriye, 10 EKG kaydi bulunan 6 birey kalmaktadir.
Bu 6 bireyin EKG kayitlarinin %601 rastgele secilerek bireye 6zgii modeller
olusturulmakta ve kalan %40’1 test seti olarak ayrilmaktadir. ~ Bu ayrim,
sistemimizin gercek diinya kosullarinda ne kadar etkili ¢alisabilecegini 6l¢me firsati

sunmaktadir.

Sekil ve Sekil 22 bireyin sirasiyla gelistirme seti ve egitim-test seti i¢in
MFCC ve GFCC uygulamalarinin vektor dagilimlarini gostermektedir. Tablo
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Sekil 5.7 Gelistirme seti: 22 bireyin i-vektorlerinin 2 boyutlu t-SNE projeksiyonu

(BMD-1)
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Sekil 5.8 Egitim-test seti: 6 bireyin i-vektorlerinin 2 boyutlu t-SNE projeksiyonu

(BMD-1)
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Tablo [5.8] ve Tablo [5.9] en yiiksek dogruluk degerine; Tablo [5.10] Tablo [5.11] ve
Tablo esit hata oranina (EER) dayali sonuglar gostermektedir.

Tablo Tablo [5.8] ve Tablo[5.9]incelendiginde, en yiiksek ACC ve en diisiik FAR
elde etmek i¢in uygun yapilandirmanin, hem MFCC hem de GFCC 6zniteliklerinin,
4 saniyelik sinyal siiresi ve 64 karisim sayisi ile kullanilmasiyla saglandig: aciktir.
ROC egrisi ve EER grafigi sirastyla Sekil [5.9) ve Sekil [5.10]da gosterilmektedir.

Tablo 5.7 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk degerlerinde
sistem performans1 (BMD-1) - MFCC

ACC(%) TAR(%) FAR(%)
96.54 +0.478 67.92 £3.953 1.17 #0.360
9790 +0.455 71.67 +£6.149 0.00 =#0.000
97.87 *0.270 71.67 £3.287 0.03 +0.105
96.51 =#0.505 63.75 #£5.215 0.87 =+0.358
96.17 *0.417 71.67 +6.455 1.87 #0.391
95.62 +0.767 55.00 #£8.517 1.13 =+0.422
96.88 +0.608 74.58 +4.143 1.33 =+0.588
97.44 +0.438 6542 +£5.909 0.00 =0.000

Karisim Sayis1 s
3
4
5
3
4
5
3
4
5 98.24 +0.545 87.50 +5.893 0.90 =+0.316
3
4
5
3
4
5
3
4
5

8

16

32

9722 #0.252 62.50 +£3.402 0.00 =0.000
97.10 #0.686 78.33 £3.829 1.40 =0.562
97.35 #0332 74.58 +4.585 0.83 +0.283
95.40 *0.513 4292 +6.227 0.40 =+0.263
96.98 +0.631 65.00 =#£7.658 0.47 =*0.172
9735 #0362 74.17 £3.829 0.80 =*0.172
94.69 #0.664 56.25 #4910 2.23 =+0.446
9593 +0.540 5042 +6.038 0.43 =+0.225
95.59 +0.484 71.25 +4.585 2.47 +0.322

64

128

256
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Tablo 5.8 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk degerlerinde
sistem performans1 (BMD-1) - GFCC

Karisim Sayis1 s ACC(%) TAR(%) FAR(%)
3 9725 #0572 86.25 £3953 1.87 =+0.549
8 4 98.36 +0.358 83.75 #4988 047 +0.233
5 97.78 #£1.207 95.83 #5556 2.07 +£1.359
3 96.70 +0.798 8542 +6.875 240 =0.516
16 4 97775 #0.293 87.50 £5.556 143 +0.274
5 97.87 #0447 76.67 +7.136 043 +0.225
3 96.11 =£0.508 52.08 +6.588 0.37 =+0.246
32 4 9753 +0.784 69.58 +10.025 0.23 +0.274
5 98.02 0911 73.33 £12.298 0.00 =£0.000
3 9444 +0965 48.75 £7.620 1.90 =+0.630
64 4 95.65 =+0.397 56.67 5270 123 #0.353
5 9562 =£0.767 81.67 +4.891 3.27 =+0.699
3 9568 +0.682 46.67 =+6.747 040 =+0.263
128 4 96.76 #0.671 56.25 +9.054 0.00 =+0.000
5 96.08 =+0.583 5833 +£7.607 0.90 =0.316
3 9383 +0.525 3750 +5.893 1.67 =0.314
256 4 9340 0417 15.83 #4730 0.40 =+0.263
5 9293 +0.492 2250 +5958 1.43 +0.446
0.9
0.8 ]
X0
?::_: | Y 0.7875
0.6
0.5
0.4

0 002 004 006 008 01 012 014 016 018 0.2
FAR

Sekil 5.9 En yiiksek dogruluga dayali ROC Egrisi (Sinyal siiresi: 4 s, Karisim
sayist: 64, BMD-1)

74



Tablo 5.9 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk degerlerinde
sistem performansi (BMD-1) - MFCC+GFCC

Karisim Sayisi ACC(%) TAR(%) FAR(%)

95.15 =#0.583 48.75 #3953 1.13 +0.422
9596 *1.083 79.58 +6.350 2.73 +1.098
95.31 #1.189 82.50 +£5.827 3.67 +1.227
9546 +£1.365 90.83 +£5.827 4.17 #1.509
96.73 *1.110 9792 2946 3.37 +£1.356
96.36 *1.283 9250 +3.829 3.33 +1.499
97.59 #0455 7792 +6.227 0.83 +0.236
98.27 +0.260 82.50 +£3.287 0.47 +0.233

S
3
4
5
3
4
5
3
4
5 9630 +1.209 86.67 +4.730 2.93 +1.205
3
4
5
3
4
5
3
4
5

8

16

32

9793 +0.583 87.50 +4.392 1.23 +0.417
98.43 #0.397 78.75 +£5.361 0.00 =+0.000
9790 +0.379 81.67 +4.025 0.80 =*0.281
97.62 0370 73.75 +4.831 0.47 *0.281
97.84 +0.356 80.00 #4.730 0.73 =*0.306
97.35 +0.838 88.33 +£5.122 1.93 +0.843
9429 +0.509 51.25 +6.818 2.27 +0.625
96.79 +0.441 62.92 +6.646 0.50 =*0.176
95.22 *0.826 61.25 +4.831 2.07 =+0.872

64

128

256
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Sekil 5.10 Kimlik dogrulama esigine iligkin FAR ve FRR performanslar1 (Sinyal
siiresi: 4 s, Karisim sayisi: 64, BMD-1)
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Benzer sekilde, Tablo[5.10] Tablo[5.11|ve Tablo[5.12]incelendiginde, EER agisindan

en uygun ¢alisma noktalarinin belirlendigi goriilmektedir. En yiiksek ACC ve en

diisik FAR elde etmek icin, GFCC ozniteliklerinin 5 saniyelik sinyal siiresi ve 8
karisim sayis1 ile kullanilmas1 uygun yapilandirmayi saglamaktadir. ROC egrisi ve
EER grafigi ise Sekil [5.11] ve Sekil [5.127de gosterilmektedir.

Tablo 5.10 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (BMD-1) - MFCC

ACC(%) TAR(%) FAR(%)
87.75 #0.743 87.08 +4.585 12.20 =+0.849
90.65 +0.824 91.67 #3928 9.43 +0.771
94.94 +1.359 9250 *2.635 4.87 =*1.390
87.99 #0.762 92.08 +£5.361 1233 =+0.816
91.70 *1.177 90.42 +4.414 8.20 +1.209
88.43 +0.957 92.08 +£5.710 11.87 =+1.113
88.98 *1.574 91.25 #4988 11.20 =#1.657
93.30 #0977 91.25 +4.585 6.53 +0.971

Karnisim Sayis1 s
3
4
5
3
4
5
3
4
S5 9444 +£0.651 9542 +4988 5.63 +0.949
3
4
5
3
4
5
3
4
5

8

16

32

85.28 £1.470 8542 +5.642 1473 +1.570
90.19 *1.572 90.83 £3.287 9.87 +1.541
93.43 #1350 92.50 #4303 6.50 *1.326
82.13 *1.737 86.25 +£2.812 1820 +1.827
88.21 =+*1.424 87.50 =+6.211 11.73 +£1.530
89.23 *1.264 91.67 £5.556 1097 1418
85.46 *1.313 84.58 +£3.953 1447 +1.492
89.32 #1.100 87.50 +£3.402 10.53 =#1.239
91.57 #0.618 90.42 £5.909 8.33 +0.667

64

128

256
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Tablo 5.11 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi1 (BMD-1) - GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

94.26
96.48
97.78

+1.660
+1.311
+1.207

92.92
95.83
95.83

+3.953
+3.402
+5.556

5.63
3.47
2.07

+1.829
+1.239
+1.359

16

91.79
96.57
96.60

+1.236
+0.608
+0.436

93.75
96.25
97.92

+6.875
+3.648
+2.196

8.37
3.40
3.50

+1.212
+0.584
+0.451

32

91.48
94.94
95.717

+2.149
+0.945
+1.294

90.00
93.33
94.17

+4.891
+4.479
+4.025

8.40
4.93
4.10

+2.148
+1.131
+1.516

64

88.27
91.20
92.07

+1.268
+0.745
+1.040

91.67
89.58
90.00

+5.893
+2.946
+4.025

12.00
8.67
.77

+1.133
+0.875
+1.248

128

83.40
88.80
86.94

+1.371
+0.943
+2.314

89.17
87.50
90.00

+5.958
+4.392
+4.025

17.07
11.10
13.30

+1.447
+1.218
+2.570

256

S
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5

81.94
82.50
78.12

+1.887
+1.484
+1.724

83.75
78.75
80.83

+5.361
+6.038
+5.625

18.20
17.20
22.10

+2.207
+1.687
+1.833

Tablo 5.12 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (BMD-1) - MFCC+GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

91.20
95.19
94.66

+0.888
+0.786
+0.836

91.25
91.25
92.08

+4.143
+3.648
+3.074

8.80
4.50
5.13

+0.892
+0.878
+0.892

16

92.96
96.73
95.37

+0.858
+1.110
+0.965

92.92
97.92
95.83

+4.414
+2.946
+3.402

7.03
3.37
4.67

+0.962
+1.356
+1.227

32

90.86
95.12
94.29

+1.010
+0.560
+0.912

90.42
95.42
96.67

+2.812
+3.074
+3.829

9.10
4.90
5.90

+1.144
+0.649
+1.055

64

92.72
96.51
96.94

+0.851
+0.461
+1.002

93.75
96.25
95.00

+3.541
+3.648
+3.829

7.37
3.47
2.90

+0.808
+0.613
+1.187

128

93.70
95.19
96.02

+0.786
+0.441
+1.221

97.08
95.83
95.83

+3.953
+2.778
+2.778

6.57
4.87
3.97

+0.704
+0.502
+1.319

256

S
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5

85.71
93.55
89.35

+1.350
+0.981
+1.582

80.83
89.58
92.92

+8.146
+8.391
+3.430

13.90
6.13
10.93

+1.633
+1.135
+1.684
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Sekil 5.11 EER noktasina dayalt ROC Egrisi (Sinyal siiresi: 5 s, Karigim sayisi: 8,
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Sekil 5.12 Kimlik dogrulama esigine iliskin FAR ve FRR performanslar1 (Sinyal
stiresi: 5 s, Karisim sayisi: 8, BMD-1)
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Ikinci senaryoda, veritabanindaki 23 bireyin 187 EKG verisi kullanilarak UBM ve
T matrisi hesaplanmaktadir. Ardindan, toplamda 100 veri iceren 10 bireyden alinan
her biri 10 EKG kaydi ile sistemin performansi test edilmektedir. Test edilecek
birey icin verilerin %601 egitim verisi olarak rastgele secilmekte, kalani ise test

verisi olarak kullanilmaktadir.

Sekil [5.13] ve Sekil [5.14] 23 bireyin sirastyla gelistirme seti ve egitim-test seti i¢in
MFCC ve GFCC uygulamalarinin vektdr dagilimlarimi gostermektedir. Tablo [5.13]
Tablo[5.14] ve Tablo[5.15] en yiiksek dogruluk degerlerini; diger yandan Tablo[5.16]
Tablo [5.17) ve Tablo [5.18] ise esit hata oran1 (EER) géz 6niinde bulundurularak

olusturulan sonuclar1 géstermektedir.
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Sekil 5.13 Gelistirme seti: 23 bireyin i-vektorlerinin 2 boyutlu t-SNE projeksiyonu
(BMD-2)

Tablo [5.13] Tablo [5.14] ve Tablo [5.15] incelendiginde, en yiiksek ACC elde etmek
ve FAR degerini en aza indirmek i¢in uygun yapilandirmanin, 5 saniyelik sinyal
stiresi ve 16 karisim sayisi ile GFCC 0zniteliklerinin kullanilmasini icerdigi ortaya
¢tkmaktadir. ROC egrisi ve EER grafigi sirasiyla Sekil [5.15] ve Sekil [5.16/da

gosterilmektedir.
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Sekil 5.14 Egitim-test seti: 10 bireyin i-vektorlerinin 2 boyutlu t-SNE

projeksiyonu (BMD-2)

Tablo 5.13 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk
degerlerinde sistem performansi (BMD-2) - MFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

96.66
97.47
97.55

+0.182
+0.316
+0.270

27.75
55.25
54.00

+3.426
+4.158
+4.743

0.28
0.66
0.51

+0.108
+0.279
+0.159

16

96.77
97.73
97.41

+0.214
+0.101
+0.159

27.00
57.00
59.00

+4.684
+3.873
+3.575

0.13
0.46
0.88

+0.102
+0.110
+0.133

32

96.82
97.01
97.83

+0.117
+0.162
+0.280

35.25
37.75
73.50

+2.486
+2.993
+4.116

0.44
0.36
1.09

+0.091
+0.137
+0.195

64

96.52
97.02
97.70

+0.449
+0.395
+0.202

45.50
52.75
60.00

+5.986
+6.396
+2.887

1.21
1.01
0.62

+0.294
+0.243
+0.159

128

96.19
96.73
97.09

+0.212
+0.279
+0.262

22.25
35.00
37.00

+3.217
+4.410
+3.873

0.52
0.52
0.24

+0.139
+0.166
+0.126

256

s
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5

96.62
96.62
96.90

+0.172
+0.239
+0.406

35.75
42.25
45.50

+2.899
+4.632
+7.246

0.68
0.97
0.81

+0.133
+0.223
+0.174
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Tablo 5.14 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk
degerlerinde sistem performansi1 (BMD-2) - GFCC

Karisim Sayis1 s ACC(%) TAR(%) FAR(%)
3 9707 £0.326 4525 =+6.816 0.62 =+0.217
8 4 9745 +0.301 60.25 3810 0.90 =+0.192
5 96.79 £0.172 43.50 +£3.764 0.84 +0.107
3 9720 £0.266 41.00 £5.676 0.30 =+0.105
16 4 9794 +0.208 62.25 +3.810 048 +0.129
5 98.52 +0.137 65.25 £3.217 0.00 =0.000
3 97.62 +£0.152 5625 +3.773 0.54 =+0.110
32 4 9720 +0.293 6250 +5.137 1.26 +0.223
5 97.99 +0.215 66.00 +5.297 0.59 +0.229
3 9690 =£0.106 30.00 #£3.118 0.12 =+0.063
64 4 97.18 +0.267 50.00 +4.714 0.72 +0.218
5 97.87 +0.256 58.50 #3944 0.38 =+0.175
3 96.85 +0.225 41.50 +3.375 0.69 =+0.172
128 4 97.09 +0.289 43.50 +4.595 0.53 =+0.164
5 97.13 #0313 54.25 +4.091 097 =+0.246
3 96.19 +0.212 1050 =+4.972 0.00 =0.000
256 4 9690 +0.272 45.00 =*4.249 0.79 +0.243
5 9634 +£0.208 29.00 £3.944 0.67 =+0.117
1 e - 5
0.9t
0.8
0.7
X0
o 00 Y 0.6525
Fost
0.4 [
0.3
0.2%
0.1 : : : : :
0 0.05 0.1 0.15 0.2 0.25 0.3
FAR

Sekil 5.15 En yiiksek dogruluga dayalt ROC Egrisi (Sinyal siiresi: 5 s, Karigim
sayist: 8, BMD-2)
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Tablo 5.15 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk
degerlerinde sistem performansi (BMD-2) - MFCC+GFCC

Karisim Sayisi ACC(%) TAR(%) FAR(%)

98.40 +0.235 69.25 #£5.007 0.30 =*0.129
98.41 #0.177 62.75 +4.158 0.00 +*0.000
98.35 *0.202 64.75 #4480 0.16 =+0.094

8

97.67 =*0.277 53.00 +4.684 0.34 =+0.110
98.12 +0.213 62.50 +4.249 0.30 =#0.091
98.39 +0.177 65.50 +4.684 0.14 =+0.075

16

96.88 +0.392 49.25 +£5.780 1.00 =+0.203

32 9793 +0.293 57.00 #£5.503 0.26 =*0.139

97.07 #0.226 31.25 #£5.303 0.00 =0.000
97.70 +0.280 68.75 #£5.035 1.01 =#0.212
9798 +0.365 75.75 +£5.534 1.03 £0.174

64

97.15 *0.206 42.25 #4923 0.41 =*0.118
97.84 +0.213 52.25 +4.322 0.13 =+0.088
97.84 #0.181 59.25 +4.866 0.44 =+0.117

128

96.59 +0.345 44.75 #4923 1.11 #0.240
97.83 #0.196 55.50 #£3.689 0.29 =+0.078
98.03 *0.289 60.25 +6.816 0.29 =+0.078

s
3
4
5
3
4
5
3
4
5 97.72 #0.266 56.00 #5.676 0.42 +0.146
3
4
5
3
4
5
3
256 4
5

0.9

—*—FAR

0.8r

0.7

06

057

Error

L

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Threshold

Sekil 5.16 Kimlik dogrulama esigine iligkin FAR ve FRR performanslar: (Sinyal
stiresi: 5 s, Karisim sayisi: 8, BMD-2)
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Tablo 5.16 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansit (BMD-2) - MFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

89.55
92.21
91.62

+0.732
+(0.513
+0.361

87.00
90.50
91.75

+3.689
+3.873
+3.736

10.33
7.71
8.39

+0.764
+0.540
+0.324

16

85.52
87.46
90.52

+1.034
+0.986
+0.817

87.00
88.00
89.25

+3.689
+3.689
+4.572

14.54
12.57
9.42

+1.038
+0.979
+0.806

32

89.43
91.81
91.63

+0.704
+0.476
+0.497

87.00
92.00
91.75

+2.838
+1.972
+1.687

10.47
8.20
8.38

+0.789
+0.554
+0.532

64

84.90
90.13
90.53

+0.575
+0.684
+0.440

87.75
86.50
88.50

+4.480
+5.426
+3.764

15.22
9.71
9.38

+0.595
+0.640
+0.436

128

89.70
90.62
89.87

+0.648
+0.704
+0.486

88.50
92.75
92.75

+4.441
+3.623
+3.623

10.24
9.48
10.26

+0.599
+0.644
+0.527

256

S
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5

88.32
88.12
88.54

+1.045
+0.999
+1.057

85.00
92.00
92.00

+2.887
+3.073
+3.689

11.53
12.06
11.61

+1.085
+1.052
+1.090

Tablo [5.16] Tablo ve Tablo [5.18] esit hata oramt (EER) icin en uygun

calisma noktalarim1 gostermektedir.

En yiiksek ACC elde etmek ve FAR

degerini en aza indirmek i¢in uygun yapilandirmanin, hem MFCC hem de GFCC

oznitelikleri kullanilarak 4 saniyelik sinyal siiresi ve 8 karigim sayisi ile saglandigi
goriilmektedir. ROC egrisi ve EER grafigi sirasiyla Sekil ve Sekil [5.18[de

gosterilmektedir.
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Tablo 5.17 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi1 (BMD-2) - GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

88.82
89.79
91.74

+0.881
+0.514
+0.577

90.25
92.75
93.00

+4.480
+3.623
+2.297

11.24
10.34
8.31

+0.744
+0.493
+0.641

16

86.29
87.63
88.51

+0.885
+0.667
+0.806

83.00
90.25
92.50

+3.689
+4.480
+3.727

13.57
12.49
11.67

+0.965
+0.609
+0.806

32

87.53
87.81
91.36

+0.597
+0.598
+0.762

87.25
89.25
89.25

+2.189
+3.129
+5.007

12.46
12.26
8.54

+0.630
+0.658
+0.814

64

83.80
87.81
92.90

+1.572
+1.129
+(0.512

85.50
92.50
91.75

+3.689
+2.887
+3.344

16.28
12.40
7.04

+1.757
+1.190
+0.497

128

84.95
88.23
88.37

+0.795
+0.720
+0.715

81.25
86.25
89.00

+6.264
+4.751
+3.375

14.89
11.68
11.66

+0.913
+0.743
+0.729

256

S
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5

84.01
85.18
85.48

+1.207
+0.932
+0.743

80.50
79.50
87.25

+3.291
+3.873
+3.426

15.83
14.57
14.60

+1.241
+0.988
+0.752

Tablo 5.18 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (BMD-2) - MFCC+GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

88.79
94.43
93.63

+0.862
+0.414
+0.559

92.25
89.75
92.25

+2.486
+3.810
+3.217

11.37
5.37
6.31

+0.861
+0.549
+0.615

16

86.91
91.38
92.59

+0.716
+0.723
+0.484

90.25
90.50
92.75

+5.197
+4.534
+3.426

13.23
8.58
7.42

+0.690
+0.755
+0.494

32

91.07
92.29
94.15

+0.495
+0.306
+0.410

91.75
95.75
91.75

+2.648
+3.344
+4.091

8.96
7.87
5.74

+0.535
+0.339
+0.457

64

89.50
93.89
93.62

+0.675
+0.577
+0.620

86.50
90.25
91.25

+2.934
+4.480
+5.035

10.37
5.94
6.28

+0.667
+0.577
+0.572

128

88.38
89.51
92.64

+0.506
+0.405
+0.511

91.00
93.25
89.25

+2.415
+2.372
+3.736

11.73
10.66
7.21

+0.565
+0.427
+0.481

256

S
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5
3
4
5

85.94
88.79
91.90

+0.663
+0.671
+0.643

87.25
92.25
91.50

+2.751
+3.623
+3.375

14.12
11.37
8.08

+0.723
+0.646
+0.673
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Sekil 5.17 EER noktasina dayali ROC Egrisi (Sinyal siiresi: 4 s, Karigim sayisi: 8,
BMD-2)
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Sekil 5.18 Kimlik dogrulama esigine iliskin FAR ve FRR performanslar1 (Sinyal
stiresi: 4 s, Karisim sayisi: 8, BMD-2)
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5.5 Heartprint Veritabani Performans Analizi

Heartprint veritabani, bu arastirmanin son asamasinda kullanilan genis ve kapsamli
bir biyometrik veri setidir. Bu veritabani, 199 bireye ait toplam 1539 EKG kaydim
icermektedir. Yiiksek katilimcr sayisi ve cesitliligi sayesinde, sistem performansi

giivenilir bir sekilde dlgiilebilmektedir.

Veri kiimesinde katilimcilarin  kayit sayilarindaki farkliliklar g6z Oniinde
bulundurularak, katilimeilar iki ana gruba ayrilmistir. Kaydi en az 10 olan 108
katilimer “yeterli veri” kategorisinde, kaydi 10’dan az olan 91 katilimci ise “verisi
kisitli” kategorisinde ele alinmistir. Yeterli veriye sahip her bir katilimcinin 6 EKG
kaydi gelistirme (optimizasyon) verisi olarak ayrilmis, kalan kayitlar ise %80 egitim
ve %20 test oraninda boliinmiistiir. Verisi kisitli olan 91 katilimciya ait tiim kayitlar
dogrudan test verisine dahil edilmistir. Bu strateji, modellerin genellenebilirligini
kapsaml bir sekilde degerlendirmeyi ve sistem tasariminda dengeli veri kullanimini

saglamay1 amag¢lamaktadir.
Heartprint veritabani icin i-vektor yontemi, asagidaki parametreler manuel olarak

optimize edilerek kullanilmuistir:

* Pencere boyutu: 0.5 s

* Kayma: 0.1 s

MFCC/GFCC bant sayisi: 24/40
* Frekans araligi: 1-35 Hz
* Toplam degiskenlik boyutu: 200

* Calisma saysi (tekrar): 4

Sekil [5.19] ve Sekil [5.20, Heartprint veritabani icin sirasiyla gelistirme seti ve
egitim-test seti lizerinde uygulanan MFCC ve GFCC ozniteliklerinin i-vektor
dagilimlarini gostermektedir. Tablo [5.19] Tablo [5.20] ve Tablo [5.21] en yiiksek
dogruluk degerlerini, Tablo [5.22] Tablo [5.23] ve Tablo [5.24] ise esit hata oranini

(EER) g6z 6niinde bulunduran sonuclari ortaya koymaktadir.

Tablo [5.I9/dan Tablo [5.24fe kadar yer alan tiim tablolar, detayli olarak
incelendiginde, en yiiksek ACC elde etmek ve FAR degerini en aza indirmek
icin en uygun yapilandirmanin iki durum i¢inde, 5 saniyelik bir sinyal siiresi ve

karisim sayis1 32 olarak uygulanmasiyla hem MFCC hem de GFCC 6zniteliklerinin
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Sekil 5.19 Gelistirme seti: 108 bireyin i-vektorlerinin 2 boyutlu t-SNE
projeksiyonu (Heartprint)
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Sekil 5.20 Egitim-test seti: 199 bireyin i-vektorlerinin 2 boyutlu t-SNE
projeksiyonu (Heartprint)
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Tablo 5.19 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk
degerlerinde sistem performansi (Heartprint) - MFCC

MFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

99.80
99.80
99.80

+0.005
+0.003
+0.004

11.46
12.96
14.12

+2.216
+2.105
+2.088

0.00
0.00
0.00

+0.001
+0.002
+0.001

16

99.79
99.81
99.82

+0.012
+0.002
+0.009

24.88
31.48
32.64

+4.266
+2.420
+2.891

0.03
0.03
0.03

+0.005
+0.006
+0.005

32

99.80
99.82
99.83

+0.008
+0.007
+0.007

24.88
29.63
30.44

+2.311
+0.845
+1.576

0.03
0.02
0.02

+0.002
+0.005
+0.003

64

99.79
99.81
99.82

+0.004
+0.013
+0.010

9.26
29.63
31.02

+2.299
+3.317
+1.134

0.00
0.03
0.03

+0.000
+0.005
+0.006

128

99.80
99.81
99.82

+0.005
+0.010
+0.004

20.37
24.19
27.08

+1.134
+3.056
+0.802

0.02
0.02
0.02

+0.004
+0.003
+0.002

256

99.79
99.79
99.81

+0.005
+0.002
+0.005

12.04
16.44
19.91

+1.813
+0.964
+0.378

0.01
0.02
0.01

+0.002
+0.003
+0.003
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Tablo 5.20 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk
degerlerinde sistem performansi (Heartprint) - GFCC

GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

99.79
99.79
99.80

+0.005
+0.005
+0.005

8.45
9.03
20.83

+2.342
+2.686
+1.464

0.00
0.00
0.02

+0.001
+0.001
+0.002

16

99.81
99.81
99.83

+0.005
+0.006
+0.003

21.76
23.61
28.47

+2.299
+2.803
+1.626

0.02
0.02
0.01

+0.002
+0.001
+0.002

32

99.80
99.81
99.83

+0.007
+0.009
+0.009

15.51
33.68
38.43

+2.841
+2.683
+3.295

0.01
0.04
0.03

+0.003
+0.003
+0.003

64

99.80
99.81
99.81

+0.004
+0.004
+0.014

16.90
19.10
38.66

+1.712
+1.788
+3.433

0.00
0.00
0.05

+0.003
+0.001
+0.007

128

99.80
99.81
99.81

+0.004
+0.004
+0.006

14.47
28.94
29.17

+2.049
+1.225
+1.000

0.01
0.03
0.03

+0.002
+0.003
+0.005

256

99.79
99.79
99.80

+0.002
+0.005
+0.005

9.14
11.34
11.92

+1.433
+2.345
+2.402

0.00
0.00
0.00

+0.001
+0.000
+0.001
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Tablo 5.21 Sinyal edinim siiresine gore elde edilen en yiiksek dogruluk

degerlerinde sistem performansi (Heartprint) - MFCC+GFCC

MFCC+GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

99.80
98.41
99.82

+0.004
+0.177
+0.002

23.96
29.40
32.64

+2.216
+1.439
+1.712

0.03
0.03
0.03

+0.003
+0.004
+0.006

16

99.80
99.80
99.80

+0.007
+0.005
+0.004

13.43
14.70
17.13

+3.185
+3.171
+1.773

0.00
0.00
0.01

+0.001
+0.002
+0.001

32

99.81
99.82
99.84

+0.004
+0.005
+0.007

15.86
37.85
42.82

+1.866
+1.530
+2.891

0.00
0.04
0.04

+0.001
+0.005
+0.001

64

99.81
99.82
99.83

+0.007
+0.007
+0.004

16.09
20.83
46.18

+3.410
+3.423
+2.248

0.00
0.00
0.05

+0.000
+0.001
+0.004

128

99.79
99.80
99.81

+0.007
+0.006
+0.003

11.46
15.28
19.79

+2.117
+2.536
+1.027

0.00
0.00
0.01

+0.002
+0.001
+0.004

256

99.79
99.80
99.81

+0.008
+0.004
+0.004

11.81
16.09
20.60

+3.219
+2.216
+2.088

0.01
0.01
0.01

+0.002
+0.003
+0.003
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Tablo 5.22 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (Heartprint) - MFCC

MFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

89.04
89.52
90.14

+0.182
+0.114
+0.150

88.77
90.39
91.90

+3.989
+3.730
+2.088

10.96
10.49
9.87

+0.186
+0.122
+0.153

16

90.09
90.60
91.05

+0.149
+0.149
+0.121

88.43
91.90
93.40

+3.163
+2.284
+2.342

9.91
9.41
8.96

+0.151
+0.153
+0.124

32

89.93
90.64
94.32

+0.060
+0.068
+0.069

90.97
92.71
91.32

+3.059
+2.402
+3.613

10.08
9.36
5.68

+0.065
+0.070
+0.073

64

88.79
89.81
93.93

+0.156
+0.070
+0.085

91.20
92.13
91.55

+1.927
+1.773
+3.033

11.22
10.19
6.06

+0.159
+0.074
+0.089

128

90.05
91.03
91.54

+0.054
+0.089
+0.059

92.82
93.17
94.56

+3.636
+5.284
+4.316

9.96
8.97
8.47

+0.060
+0.097
+0.059

256

88.46
89.03
89.12

+0.180
+0.125
+0.123

86.23
87.38
90.51

+3.238
+3.368
+3.733

11.54
10.97
10.89

+0.177
+0.127
+0.127
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Tablo 5.23 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)
degerlerinde sistem performansi (Heartprint) - GFCC

GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

89.94
90.58
91.00

+0.039
+0.040
+0.106

88.89
91.67
92.94

+3.799
+3.185
+3.410

10.06
9.43
9.01

+0.041
+0.043
+0.111

16

88.64
89.28
89.82

+0.151
+0.108
+0.126

88.77
91.44
92.01

+2.787
+1.712
+1.027

11.37
10.73
10.19

+0.154
+0.109
+0.126

32

89.49
90.14
94.00

+0.083
+0.073
+0.084

87.62
92.36
91.09

+3.431
+2.220
£3.009

10.51
9.86
6.00

+0.089
+0.074
+0.088

64

88.93
89.76
90.34

+0.044
+0.066
+0.142

89.58
92.13
93.29

+1.389
+1.648
+0.964

11.08
10.25
9.67

+0.043
+0.069
+0.140

128

87.46
93.03
93.39

+0.105
+0.036
+0.039

90.51
89.93
88.89

+2.345
+2.961
+3.230

12.55
6.97
6.60

+0.104
+0.035
+0.032

256

91.74
91.69
91.79

+0.098
+0.082
+0.111

71.53
73.38
80.32

+3.675
+2.522
+2.018

8.22
8.28
8.19

+0.099
+0.085
+0.114
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Tablo 5.24 Sinyal edinim siiresine gore elde edilen esit hata oran1 (EER)

degerlerinde sistem performansi (Heartprint) - MFCC+GFCC

MFCC+GFCC

Karisim Sayisi

ACC(%)

TAR(%)

FAR(%)

8

88.13
88.60
92.42

+0.097
+0.117
+0.103

91.55
91.09
91.32

+1.866
+2.490
+2.372

11.88
11.40
7.58

+0.100
+0.121
+0.107

16

87.89
91.65
91.89

+0.128
+0.061
+0.034

88.43
88.08
88.66

+1.927
+2.709
+2.988

12.11
8.35
8.10

+0.131
+0.062
+0.037

32

90.38
94.30
94.39

+0.100
+0.046
+0.069

92.25
92.82
93.17

+4.095
+2.739
+4.095

9.63
5.70
5.61

+0.103
+0.051
+0.077

64

92.35
92.67
92.79

+0.071
+0.073
+0.040

91.09
93.06
94.79

+2.656
+1.927
+0.876

7.65
7.33
7.22

+0.076
+0.073
+0.042

128

89.69
89.55
89.26

+0.038
+0.091
+0.076

85.88
87.04
91.55

+3.263
+2.105
+2.937

10.30
10.44
10.75

+0.035
+0.094
+0.074

256

88.72
87.93
87.47

+0.151
+0.146
+0.205

81.25
85.07
90.51

+3.790
+1.433
+2.791

11.27
12.07
12.55

+0.154
+0.146
+0.200
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Sekil 5.21 En yiiksek dogruluga ve EER noktasina dayali ROC Egrisi (Sinyal
siiresi: 5 s, Karisim sayisi: 32, Heartprint)
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Sekil 5.22 Kimlik dogrulama esigine iligkin FAR ve FRR performanslar1 (Sinyal
siiresi: 5 s, Karisim sayisi: 32, Heartprint)
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kullanilmasini icerdigi ortaya ¢cikmaktadir. ROC egrisi ve EER grafigi Sekil [5.21]ve
Sekil [5.22]de gosterilmektedir.

Bu cesitlendirilmis egitim ve test seti yapisi, genis ve degisken bir veritabaninda
algoritmanin  performansint  Olgerek  biyometrik dogrulama  sistemlerinin
giivenilirligini ve etkinligini artirmada kritik bir rol oynamaktadir. Ozellikle,
insan biyometrisinin degiskenligi ve cevresel faktorler goz oniine alindiginda, bu
deney sistemimizin farkli senaryolara nasil tepki verdigini anlamamiza olanak
tanimaktadir. Elde edilen bilgiler, sistemin daha da optimize edilmesi ve daha genis

Olcekte uygulanabilirliginin artirilmasi agisindan degerlidir.

Ayrica, bu c¢alisma, EKG verilerine dayali biyometrik kimlik dogrulama
sistemlerinin gelistirilmesi ve optimize edilmesi i¢in Onemli veriler sunmakta;
kisa siireli kayitlarin bile yiliksek dogruluk oranlariyla kullanilabilecegini

gostermektedir.

5.6 Sinyal Siiresine Dayal Performans Degerlendirmesi

Heartprint veritabaninda, EER noktasina dayali olarak kayit ve dogrulama sinyal
siirelerinin performans analizi yapilmistir. Tablo [5.24]de sunulan sonuglara gore,
en yiiksek dogruluk ve en diisiik yanlis kabul oranini elde etmek icin en uygun
yapilandirma noktasi referans alinarak, sinyal edinim siirelerinin degistirilmesiyle

sistem performansi degerlendirilmistir.

Tablo 5.25 Heartprint veritabanindaki 199 bireyin onerilen yontemin farkli kayit
ve dogrulama siirelerinde performans analizi (MFCC ve GFCC 6zniteliklerinin
birlestirilmesi ve karigim sayisi: 32)

Kayit Dogrulama
Uzunlugu (s) Uzunlugu (s) ACC (%) TAR (%) FAR (%)
15 15 95.94 96.30 4.06
15 10 95.74 97.72 4.27
15 5 95.58 94.56 4.42
10 10 95.32 97.69 4.68
10 5 95.14 94.79 4.86
5 5 94.39 93.17 5.61

Tablo [5.25]da gosterildigi iizere, kayit ve dogrulama siirelerinin arttik¢a sistemin
dogrulugu artmakta ve yanlig kabul oran1 azalmaktadir. Ancak, pratik uygulamalar
ve mobil cihazlarda kullanici konforu ile islem siiresi gibi faktorler gbz 6niinde
bulunduruldugunda, 5 saniyelik siirelerin kabul edilebilir oldugu sonucuna

varimugtir.

Bu boliimde, Heartprint veritaban1 yapilandirmasi detayli olarak yeniden ele
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Tablo 5.26 Heartprint veritabanindaki 108 bireyin 6nerilen yontemin farkli kayit
ve dogrulama siirelerinde performans analizi (MFCC ve GFCC 6zniteliklerinin
birlestirilmesi ve karigim sayisi: 32)

Kayit Dogrulama
Uzunlugu (s) Uzunlugu (s) ACC (%) TAR (%) FAR (%)
15 15 96.16 96.30 3.84
15 10 95.92 97.22 4.10
15 5 95.69 94.56 4.31
10 10 95.47 97.69 4.56
10 5 95.21 94.79 4.79
5 5 94.36 93.17 5.64

alinmakta ve sistem performansinin kapsamli bir degerlendirmesi sunulmaktadir.
Veritabani, 199 bireye ait toplam 1539 EKG kaydini icermekte olup, bu bireylerden
108’inin 10 ve iizeri kayda sahip olmasi nedeniyle bu 108 birey hem gelistirme hem
de egitim setlerinde kullanilmigtir. Kalan 91 bireyin tiim EKG kayaitlari ise test seti
olarak degerlendirilmistir. Bu yapilandirma, ¢alismanin kapsamini ve performans

Olctimiinde kullanilan yontemlerin ayrintilarini net bir sekilde ortaya koymaktadir.

Tablo @] ve Tablo @], onerilen yontemin farkli veri bolme stratejileri altinda,
199 ve 108 birey lizerinden elde edilen performans sonuglarini karsilagtirmali olarak
sunmaktadir. Her iki tabloda da, MFCC ve GFCC o6zniteliklerinin birlestirilmesi
ile 32 karigim sayist kullanilarak, farkli kayit ve dogrulama siirelerindeki sistem

performansi detayli olarak incelenmistir.

Ozellikle Tablo gelistirme ve egitim setlerinde yer alan 108 bireyin yani sira,
test asamasina eklenen 91 yeni birey lizerinden elde edilen sonu¢lari ortaya koyarak,
sistemin daha Once karsilasilmamis bireylerle performansini degerlendirmemize
olanak tanimaktadir. Tablo [5.26] ise, sadece gelistirme ve egitim setlerinde

kullanilan 108 birey iizerinden test yapilan sonug¢lari sunmaktadir.

Yapilan karsilagtirmalar, 108 bireylik kiiciik veri seti ile 199 bireylik genisletilmis
veri seti arasinda, Ozellikle yanlis kabul orani (FAR) iizerinde kii¢iik ancak
anlamli bir farklihk oldugunu gostermektedir. Bu durum, sisteme daha Once
tanimadig1 91 yeni bireyin eklenmesinden kaynaklanmakta olup, genisletilmis veri
setinin sistemin genellestirme yetenegini yansittigin1 gostermektedir. Bu bulgular,
biyometrik dogrulama sistemlerinin yeni bireylerle etkilesimini ve genellestirme

kabiliyetini daha iyi anlamamiza olanak saglamaktadir.
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5.7 Alternatif Yaklasimlarin Performans Analizi

Kimlik dogrulama sistemlerinde, EKG (Elektrokardiyogram) verilerinin benzersiz
biyometrik Oznitelikler sunmasi, Onemli bir potansiyel saglamaktadir.  Bu
calismada, EKG verilerine dayali olarak gelistirdigimiz yontemin performansini,
diger makine 0grenmesi ve derin 68renme teknikleriyle karsilastirdik. Destek
Vektor Makinesi (SVM), Cok Katmanli Algilayic1 (MLP), Rastgele Orman (RF),
Bir Boyutlu Konvoliisyonel Sinir Aglar1 (CNN 1D), Iki Boyutlu Konvoliisyonel
Sinir Aglart (CNN 2D) ve Tekrarlayan Sinir Aglart (RNN) gibi yontemler,
Heartprint veritabani {izerinde test edilmistir. Bu karsilastirmada, dogruluk (ACC),
gercek kabul oran1 (TAR), yanlis kabul oran1 (FAR) ve esit hata oran1 (EER) gibi
kritik metrikler temel alinmistir. Tablo[5.27] elde edilen sonuglar1 6zetlemektedir.

Tablo 5.27 Heartprint veritabani iizerinde EKG tabanli kimlik dogrulama
yontemlerinin performanslari

Yontem ACC(%) TAR(%) FAR(%) EER(%)

Onerilen Yon. 9439 +0.07 93.17 #4.09 561 #0.08 622 2.1
SVM 90.80 *1.00 94.80 *1.90 920 150 7.00 =£1.70
MLP 72.17 256 75.28 +4.57 27.84 255 2628 +3.53
RF 88.50 #1.20 91.70 #2.50 11.50 #1.20 990 *1.70
CNN 1D 84.57 #£1.17 84.29 =*1.31 1543 =*1.17 15.56 =*1.23
CNN 2D 87.56 +0.02 87.76 +0.02 1243 +0.02 12.33 =+0.02
RNN 86.43 +0.81 86.41 =+0.82 13.57 =+0.81 13.58 =+0.82

Tablo [5.27de 6zetlenen sonuglar, 6nerilen yontemin Heartprint veritaban iizerinde
9%94.39 dogruluk (ACC) ve %93.17 gercek kabul oran1 (TAR) ile 6ne ¢iktigini
gostermektedir. Ayrica, %5.61 yanlis kabul oran1 (FAR) ve %6.22 esit hata orani
(EER) elde edilmistir; bu da yontemin hem yiiksek dogruluk hem de diisiik hata

oranlar1 acisindan son derece giivenilir oldugunu ortaya koymaktadir.

Kargilagtirma sonuglari, SVM, MLP, RE, 1D-CNN, 2D-CNN ve RNN gibi alternatif
yaklagimlarin performanslariyla birlikte sunulmustur. Onerilen yontemin ACC
ve TAR degerleri, diger yontemlere kiyasla daha iistiin performans sergilemekte;
ozellikle MLP ve CNN 1D gibi yontemlerde gozlemlenen daha yiiksek hata

oranlari, onerilen yaklagimin avantajini vurgulamaktadir.

Bu veriler, onerilen yontemin yalmizca yiiksek dogruluk saglamakla kalmayip,
aynt zamanda sistemin genel hata oranlarmm diisiirmede de etkili oldugunu
gostermektedir. Elde edilen bulgular, i-vektor tabanli Oznitelik c¢ikarim
yontemlerinin EKG tabanli biyometrik kimlik dogrulamada saglam bir temel
olusturdugunu ve gelecekteki calismalar icin, bu yontemlerin diger yaklagimlarla

entegrasyonunun sistem performansini daha da artirabilecegini ortaya koymaktadir.
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5.8 Benzerlik Olciitleri Performans Analizi

Bu calismada, i-vektorlerin farkli benzerlik olciitleriyle karsilastirilmasi yoluyla,
kimlik dogrulama sistemine etkileri incelenmistir.  Kosiniis mesafesi, Oklid
mesafesi, Manhattan mesafesi, Pearson korelasyonu ve dinamik zaman esnetme
(DTW) kullanilarak hesaplanan benzerlik skorlarinin, dogruluk (ACC), yanlis kabul
orant (FAR) ve yanlis reddetme oran1 (FRR) metrikleri {izerindeki etkileri Tablo
[5.28] de sunulmustur.

Tablo 5.28 i-vektorlerin farkli benzerlik ol¢iitleriyle karsilagtiriimasi

Benzerlik Olciitii ACC FAR FRR
Kosiniis Mesafesi 9439 561 6.83
Oklid Mesafesi 96.21 3.78 10.30
Manhattan Mesafesi 94.65 534 11.57
Pearson Korelasyonu 93.10 690 7.64

DTW (Dynamic Time Warping) 97.99 1.92 43.75

Bu sonuclar, farkli benzerlik olciitlerinin i-vektor karsilastirmalarinda farkl
performans sergiledigini gostermekte ve dogrulama sisteminin gereksinimlerine

uygun Olciitiin dikkatle secilmesinin dnemini ortaya koymaktadir.

5.9 Sonuclar

Tablo [5.29] ve Tablo [5.30] de tiim deneylerin sirastyla en yiiksek dogruluk ve esit
hata oran1 (EER) i¢in en uygun ¢alisma noktalarin1 6zetlenmektedir.

Tablo 5.29 En yiiksek dogruluga dayali 6nerilen yontemin 6zeti

sznitelik IZ‘;‘:;‘*S[;‘I‘; Te;;flgey FAR (%) FRR (%) ACC (%) Siire (s)
MFCC 6% 6 0.90 1250 9824 5
GFCC 2 6 0.00 2667  98.02 5
MFCC+GFCC 2 6 0.00 2125  98.43 4
MFCC 3 10 1.09 2650  97.83 5
GFCC 23 10 0.00 3475  98.52 5
MFCC+GFCC 23 10 0.00 3725 9841 4
MFCC 20 20 0.10 2250 9961 5
GFCC 20 20 0.58 7.50 99.33 5
MFCC+GFCC 20 20 0.00 1850  99.76 5
MFCC 199 199 0.02 6956 99.83 5
GFCC 199 199 0.03 6157  99.83 5
MFCC+GFCC 199 199 0.04 5718 99.84 5

Deneysel bulgular, MFCC ve GFCC ozniteliklerinin tek bagma kullanildiginda

tatmin edici sonuglar sagladigini gostermistir.  Ancak, bu Ozniteliklerin EKG
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Tablo 5.30 Esit hata oran1 (EER) i¢in optimal ¢alisma noktasina dayali onerilen
yontemin Ozeti

Veritabam1  Test Birey

oznitelik Birey Saysi Sayisi FAR (%) FRR (%) ACC (%) Siire (s)
MFCC 22 6 4.87 7.50 94.94 5
GFCC 22 6 2.07 4.17 97.78 5
MFCC+GFCC 22 6 29 5 96.94 5
MFCC 23 10 7.71 9.50 92.21 4
GFCC 23 10 6.32 9.50 93.54 4
MFCC+GFCC 23 10 5.37 10.25 94.43 4
MFCC 20 20 1.47 0 98.55 3
GFCC 20 20 1.32 1.50 98.68 5
MFCC+GFCC 20 20 0.59 2.50 99.38 5
MFCC 199 199 5.68 8.68 94.32 5
GFCC 199 199 6.0 8.91 94.0 5
MFCC+GFCC 199 199 5.61 6.83 94.39 5

dogrulama siirecinde entegre edilmesi, dogruluk oranimi (ACC) artirirken, yanlig
kabul oranini (FAR) diisiirmede daha etkili olmustur.

Elde edilen sonuglar, mobil platformlarda EKG dogrulamas: iizerine yapilan son
caligmalarla kargilagtirillmig ve parmak tabanli EKG dogrulamasi ile ilgili bulgular
Tablo[5.31Fde 6zetlenmektedir.

Tablo 5.31 Mobil platformlarda parmak iizerinden elde edilen EKG
algoritmalarinin kargsilagtirilmasi

Algoritma Birey Sayist  FAR (%) FRR (%) I?z ?lgrnrltllg?l(:) Uzulifgg‘:l ©
Artega-Falconi ve dig. [2] 10 1.41 18 4 30
Chen ve Chen [34] 10 2.7 3 <3 N/A
Onerilen Alg. (Lab.) 6 2.07 4.17 5 5
Onerilen Alg. (Lab.) 10 5.37 10.25 4 4
Onerilen Alg. 20 0.59 2.5 5 5
Onerilen Alg. 199 5.61 6.83 5 5

Kang ve dig. [36] 28 52 1.9 5 30
Chen ve Chen [34] 30 6 6 3 N/A
Artega-Falconi ve dig. [2] 73 1.29 15.07 4 30

Onerilen yontem, literatiirdeki calismalara kiyasla mobil platformlarda giivenligi
artiran ve kullanict dostu bir deneyim sunan umut verici sonuglar ortaya
koymaktadir.  Diisiik FAR, yetkisiz erisimlerin minimize edilmesiyle mobil
giivenligi artirirken; diisiik FRR, gercek kullanicilarin hatali reddedilme olasiligini
azaltarak memnuniyeti desteklemektedir. Ayrica, yoOntemin 4-5 saniyelik
dogrulama ve kayait siireleri, mobil cihazlar icin ideal bir performans saglamaktadir.
Bu bulgular, sistemimizin mobil biyometrik dogrulamada giivenilir ve kullanic

odakl1 bir ¢6ziim sunabilecegini gostermektedir.
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SONUC

Bu calisma, EKG biyometrik kimlik dogrulama algoritmasinin mobil giivenlik
uygulamalarinda kullanilabilirligini ve etkinligini kapsamli bir gekilde
degerlendirmistir  Hem ECG-ID hem de Heartprint veritabanlarinin yani
sira, Ozgiin Ol¢iimler alinarak olusturulan veri setleri {izerinde gerceklestirilen
deneyler, Onerilen yontemin yiiksek basariyla uygulanabilecegini gostermektedir.
Yiiksek dogruluk oranlar1 ve kisa sinyal edinme siireleri, bu yontemin mobil
cihazlarda etkili bir ¢6ziim sundugunu agik¢a ortaya koymaktadir. Bu bulgular,
yontemin mobil giivenlik alaninda onemli bir yenilik ve pratik bir ¢6ziim olarak

one c¢ikabilecegini vurgulamaktadir.

Deney sonuglari, onerilen EKG biyometrik kimlik dogrulama algoritmasinin
giivenilirligini ve etkinligini giiclii bir sekilde desteklemektedir. ECG-ID ve
Heartprint veritabanlar tizerindeki testlerin yani sira, 6zel veri setiyle elde edilen
sonuglar, algoritmanin farkli veri kaynaklarinda tutarli ve yiiksek performans
sergiledigini dogrulamaktadir. Bu durum, yontemin sadece teorik olarak degil,

pratik uygulamalarda da basarili oldugunu kanitlamaktadir.

Calismada kullanilan makine ©Ogrenmesi ve derin O6grenme yoOntemlerinin
karsilagtirmal1 analizi, her bir yontemin giiclii ve zay1f yonlerini ortaya koymustur.
Onerilen yontemin bazi metriklerde diger yontemlere gore daha iyi sonuglar verdigi
gozlemlense de, performans farklarinin sinirli oldugu durumlar da dikkat ¢ekmistir.
Bu durum, EKG tabanli kimlik dogrulama siireclerinde daha karmagik oznitelik
¢ikarim tekniklerinin kullanimma duyulan ihtiyaci gostermektedir.  Ozellikle,
1-vektor tabanli yaklagimlarin derin 68renme modelleriyle sentezlenmesi, hem

siniflandirma hem de genel dogruluk performansini artirma potansiyeline sahiptir.

Calisma siirecinde, parametre optimizasyonu ve yeterli EKG kaydin1 igeren veri
setlerine erisim en biiyiik engeller arasinda yer almistir. Kisisel EKG kayitlarinin
yeterliligi ve parametrelerin manuel ayarlanmasi, caligmanin ilerlemesindeki

onemli zorluklardi. Bu durum, algoritmalarin otomatik hiperparametre
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optimizasyonu ve daha genis, cesitlilik arz eden veri setlerinin kullanilmasini
gerektirmektedir. Bu dogrultuda, gelecekte yapilacak ¢alismalar bu sinirlamalarin

istesinden gelmeye odaklanabilir.

Onerilen yontemin kisa sinyal edinme siireleri, mobil cihazlarda hafizada minimal
yer kaplamasini saglar. Bu 0zellik, kullanicilarin cihazlarina hizli ve kolay
erisim saglamalarina olanak tanmiyarak giinliik kullanimda biiyiik pratiklik sunar
ve kullanici deneyimini olumlu yonde etkiler. Ayrica, mobil cihazlarda saldiri
sayisinin genellikle sinirli olmasi, veri setinin boyutunu makul seviyelerde tutmay1
miimkiin kilmaktadir. Ancak, algoritmanin daha genis ve cesitli veri setleri iizerinde
test edilmesi, genellestirilebilirlik ve giivenilirlik agisindan 6nemlidir.  Aym
zamanda, i-vektorler gibi ileri diizey tekniklerin mevcut yontemlerle birlestirilmesi,
yalnizca dogruluk oranlarinin artirilmasina degil, ayn1 zamanda hata oranlarinin da
daha diisiik seviyelere ¢ekilmesine yardimci olabilir. Boyle bir entegrasyon, EKG
tabanli kimlik dogrulamanin hem teorik hem de pratik performansini daha ileriye

tasiyabilir.

Bu gelistirmeler, EKG biyometrik kimlik dogrulama teknolojisinin mobil giivenlik
alaninda daha da etkili hale gelmesine katki saglayacaktir. Gelecekte, algoritmanin
gelistirilmesi ve daha genis capta benimsenmesiyle mobil cihazlarin giivenlik
seviyelerinin artmasi ve kullanict deneyiminin iyilestirilmesi miimkiin olacaktir. Bu
calisma, EKG biyometrik kimlik dogrulamanin mobil giivenlikte 6nemli bir yenilik

ve pratik ¢oziim sunabilecegini net bir sekilde ortaya koymaktadir.
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