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Abstract 

 

Cancer is the leading cause of death by disease in the world. In 2012, there were 32.6 million people 

(within five years of diagnosis) who were suffering from cancerous diseases and 8.2 million of these 

resulted in death (www1, 2015; www2, 2015). Due to the unique response of each patient to treatment, 

clinicians need accurate information of diagnosis and prognosis in order to be able to tailor treatment 

successfully. The purpose of this project is to develop an accurate computational tool which can 

predict information such as the stage, metastasis capability and/or typology of cancer from a publicly 

available gene-expression profile based on machine learning techniques.  In this report, relevant 

literatures that have used a multilayer neural network in gene expression datasets to classify and 

predict survivability and identify biomarkers of cancer are investigated. A summary of the main 

findings suggests that a multilayer neural network is capable of accurate classification and prediction 

in cancer gene expression profiles. 
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Glossary:   
 

DNA: Base hereditary biological instruction for all eukaryotic cells which are composed of 

nucleotides (WWW8, 2015) 

RNA: Ribonucleic acid carries transmits genetic information from DNA to proteins. 

Nucleotides: Structural components of DNA and RNA. 

mRNA: Messenger RNA is  a molecule that is complementary to one of the DNA strands of a gene. 

cDNA: Complementary DNA is  synthesized molecule from mRNA. 

Probe: A probe is a single-stranded sequence of DNA or RNA (WWW12, 2015) 

Gene expression: A process of encoding new functional product from a gene to be assembled to a 

protein molecule (WWW12 , 2015). 
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Chapter 1 
 

Introduction   
 

Cancer is the leading cause of death by disease in the world. In 2012, there were 32.6 million people 

(within five years of diagnosis) who were suffering from cancerous diseases and 8.2 million of these 

resulted in death (www1, 2015; www2, 2015).  

 

Today, cancer tumours can be categorised into 100 different types and they are usually named by the 

name of the organ in which they appear. Also, those named tumours are classified into different 

subtypes based on similarities in their genetic characteristics. Although cancer subtypes can be the 

same for different people and the treatment of them can be classified as chemotherapy, radiotherapy, 

radiation, hormonal therapy and so on, each patient’s response is unique to the administered 

treatments (www3, 2015). This suggests that tailoring treatment individually has a significant role in 

the cure of cancer; however, tailoring treatment requires accurate information on the cancer subtypes 

in the early stages. Previous studies have shown that the technique called gene expression profiling 

has the capability (Brown & Botstein, 1999) to understand cancer subgroups, metastasis (which is the 

spreading capability of a tumour) or the recurrence possibility of cancer by using computer 

simulations and the present study seeks to develop a computational tool for investigating gene 

expression profiling to give accurate information to clinicians.  

 

 

1.1  Goals  

 

The main aim of this project is to develop a computational tool that can be trained by publicly 

available gene expression profiles and then the trained tool will be able to predict information like the 

stage, metastasis capability and/or typology of cancer accurately with given gene expression profiles.   

 

The second part of the project will be analysing performance of serial tool code and profiling 

investigations to make software faster to implement it on GPU in the future 

 

 

 

1.2 Objectives 

As objectives of project, it is intended to achieve that; 

 Developing an open-source software library, named CUNERNET (that is, CUDA Neural 

Network) using C++11 language. 

● Designing a neural network software in serial algorithms which can be trained by any suitable 

gene expression profiles and can be extended to a multilayer neural network structure. 

● Using proper software development techniques such as a concurrent versioning system, 

continuous integration and unit testing to release the software with BSD3 license and reach 

the widest possible community.  

 Pre-processing/choosing available gene expression datasets for training and testing.  

 Training the neural network software by giving the obtained dataset with 

feedforward/backpropagation algorithms. 

 Testing the trained tool by a given gene expression profile for prediction. 

 Optimising/re-implementing the written codes using the Google Performance Analysis Tool. 

 Identifying/implementing parts of the algorithm on GPU using CUDA. 

 Comparing the timing results of GPU and CPU implementations. 
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1.3 Structure of the dissertation 

 

The rest of the dissertation is structures as follows; 

 

2 Background information and literature review: detailed background information about gene 

expression profiling and the neural network technique in machine learning. 

 

3 Requirement analysis: analyses the requirements of the project, configuration and environment 

settings 

 

 

4 System design : Describes the chosen design techniques along with both the benefits and 

drawbacks 

 

5 Implementation, testing and evaluation:  This chapter will describe neural network training 

implementation with Cunernet, testing results, and finally an evaluation of work will be explained. 

 

 

6 Discussion and future works: A critical discussion of findings; the achieved goals are discussed 

and possible directions for future research are recommended. 
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Chapter 2  
 

Background and Literature review 

 

 

This chapter starts by describing the terminology, discussing the theory of relevant topics to the 

project, and describing previous studies that have been conducted on cancer diagnosis/detection by 

using the machine learning technique on gene expression profiles. 

 

 

  

2.1 Cancer Disease  
 

Our bodies consist of more than a hundred million cells (www13) and each cell contains 

chromosomes that consist of long strings of DNA (deoxyribonucleic acid) in their nucleus. DNA is a 

basic hereditary biological instruction for all eukaryotic cells and it is made up thousands of genes 

that determine cell behaviours, such as death or division, by encoding RNA or producing proteins 

(www13), which will be explained in Section 2.1.2 in detail. During cell division, those genes may be 

damaged (gene mutation) and thereafter the damaged gene may stop instructing the cell properly 

which leads to abnormal cell proliferation (www14) (see Figure 2.1).  

 

 
Figure 2.1: Cancer cell proliferation: After a gene damaged, the cell division/die procedure is unbalanced which cause to cell 

proliferation  (www14). 
 

 

Due to this abnormal proliferation/accumulation, a tumour develops and might spread to other organs 

through the bloodstream, a process which is known as metastasis (see Figure 2.2) which can be called 

cancer disease.  
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Figure 2.2 Cancer Metastasis;Cell proliferation, tumour developing and metastasis (www14). 

 

 

 

2.1.1 Detection/Diagnosing Cancer  

Different cancer types can be seen in any part of the human body and it is also possible that different 

groups of cancer can appear in the same organ (www4, 2015; Curtis et al., 2012). Today it is known 

that there are more than 200 different cancer types (www15, 2015). However recent studies have 

revealed that there are still many cancer subgroups to be discovered and classified. Curtis et al.’s 

study, which was conducted using gene expression profiles, proved that breast cancer consists of at 

least ten different diseases (Curtis et al., 2012) and  another genomic study has shown that breast 

cancer of type HER2+ can be further classified into four different subtypes (Prat et al., 2014). Despite 

the fact that different types of tumour/cancer may occur in the same organ, each one of those groups 

responds to drugs in different ways and requires completely different treatments (Garnett et al., 2012). 

As studies have shown, gene expression profiles have a significant ability to distinguish/detect 

different subgroups of cancer which is crucial and accurate information that can be used to tailor 

cancer treatments (Geeleher, Cox & Huang, 2014; Sotiriou & Piccart, 2007). 

In addition to accurate detection, cancer diagnosis in the early stages also has an important impact on 

its successful treatment (www5, 2015). Cancer classifications are done by clinicians depending on 

size of tumour and the quantity of spreading in other organs. Typically there are four levels for 

staging cancer, ranging from Stage I small cancer located in a single organ, to Stage IV cancer of 

substantial size spread in different organs (i.e. metastases) (www6, 2014).  According to Cancer 

Research UK, the chance of lung cancer patients surviving is 70% in the case of diagnosing at stage I 

over one year. However this percentage drops to less than 15% if it is diagnosed at stage IV (www7, 

2014). In addition, the ten-year survival chance for colorectal cancer is 94% if detected at stage I, 

whereas it is only 4% at stage IV (www7, 2014). Furthermore, Cancer Research UK stated that more 

than 1200 patients’ lives would be saved by a 1% rise in cancers diagnosed at stages I or II in the five 

years following diagnosis (www7, 2014).  

Apart from reducing mortality, early detection has some additional advantages which relate to the cost 

of treatment. A report which was prepared by the Incisive Health Team for Cancer Research UK 

showed that total treatment cost per cancer patient can vary enormously depending on which stage it 

is diagnosed at (see Table 2.1) (Incisive Health, 2014).  

   Table 2.1: NHS wide cost associated with the colon cancer treatment pathway, including recurrence (Incisive Health,2014) 
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In the light of these facts, early and accurate cancer diagnosis is vital both for successful treatment 

and to reduce costs.  

Studies have proved that early/accurate diagnosis can only be achievable by investigating molecular 

level elements rather than waiting for cancer cells to accumulate and spread to surrounding tissues, 

thereby making a tumour recognisable (www6, 2014). At the time of this research, the number of 

publications (7510 regarding Machine Learning and Cancer searches in PubMed) provides evidence 

that gene expression profiling is a highly reliable and promising approach  to the accurate prediction 

of cancer (Ross et al., 2000; Kourou et al., 2015).  

 

2.1.2 Gene expression profiling and DNA microarray 
 

The code of DNA is made up four chemical bases: adenine (A), guanine (G), cytosine (C) and 

thymine (T), and by pairing these chemicals, the two-strand helix structure of DNA is built up. As 

described in section 2.1, DNA contains instructions to develop, survive and reproduce for organisms 

and these functions can be carried out by producing proteins. The genes, segments of DNA, encode 

the instructions to create protein molecules (WWW8, 2015).  In order to produce proteins, enzyme 

RNA polymerase encodes DNA. After that, through the encoding process (transcription), pre-mRNA 

and messenger RNA (mRNA) are produced respectively. The produced mRNA carries some 

sequences to the ribosome where the actual production of protein will take place.  After the mRNA 

sequences reach the ribosome, a reading process (translation) is initiated by the ribosome. By this 

reading process, protein molecules can be produced in a wild polypeptide form depending on the 

sequences of mRNA (WWW8, 2015). 

 

 
Figure 2.3: Protein synthesis through the process of transcription and transaction (www9, 2015) 

 

 

The wild polypeptide produced by the ribosome in the translation process folds up spontaneously in 

its three-dimension shape according to Anfinsen’s dogma (Anfinsen, 1973). The function of the 

protein is determined by its shape and a misfolded shape leads to a defective protein. The localized 
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accumulation of these misfolded proteins causes some diseases such as neurodegeneration, diabetes 

and Alzheimer’s. Xu et al. (2011) stated that misfolded shape aggregation may also be a reason for 

cancer diseases (Xu et al., 2011). 

 

In biological terms, gene expression can be defined as the process of translation into mRNA or to 

protein, and this definition can be broadened to include the synthesising of a new functional product 

from DNA genes. 

 

These manufactured products (proteins) govern the cell functions, and the quantity of a particular 

protein can reflect the activity/function of the cell. Therefore, determination of these expressed genes 

gives a picture of cellular function, and this is defined as gene expression profiling (www10, 2014).  

A technique to quantify thousands of gene expressions simultaneously is called microarray 

technology. The processes of microarray are implemented as described next. 

 

First, spots of a solid surface are filled by specific DNA sequences, known as probes. Second, mRNA 

is taken from a body cell (RNA extraction in Figure 2.4) and by reverse transcriptase enzyme it is 

converted to cDNA (Yang, 2002). Because messenger RNA is produced by transformation from the 

DNA strand, it gives mRNA the capability of binding to the DNA again (nature.com, 2015). After the 

reverse transcriptase process, fluorescent nucleotides are attached to the cDNA in order to identify 

when they are binded to probes on the solid surface (Schena et al., 1995). Thereafter, the researcher 

places the labelled cDNAs into a DNA microarray slide.  Some particular cDNAs bind to their 

complementary part of DNA, which is known as hybridization (Schena et al., 1995). By scanning the 

surface, intense fluorescents are identified and if there is a particularly intense spot on the solid 

surface, it indicates that the area is producing many molecules of mRNA (Schena et al., 1995). By 

examining the whole surface in terms of the quantity of fluorescents, scientists can gain a more 

accurate understanding of thousands of gene activities. Consequently the data obtained from gene 

expression profiling is called gene expression signature, and the gene expression level refers to the 

amount of detected mRNA in the sample. 

 

  
Figure 2.4: Microarray Technique procedures as follow; mRNA are isolated and cDNA is made. Then cDNA is 

labelled with fluorescent nucleotides thereafter the labelled cDNA is put to glass slide and the slide is scanned by laser 

followed by computer analysis of the intensity image (www11, 2015). 
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2.1.3 Genomic dataset 
 

The main three concerns in cancer prediction/prognosis are cancer susceptibility (that is, risk 

assessment), cancer recurrence and cancer survivability. Naturally these three predictions could be 

conducted by considering multiple clinical factors such as the age of the patient, the grade and size of 

the tumour and so on.  However these ‘macro-scale’ clinical factors are generally inadequate for 

accurate prediction/diagnosis. In order to obtain an accurate diagnosis, specific information on either 

the tumour or the patient’s own genes becomes a requisite. Due to these micro-scale factors, 

biomarkers in certain genes can be diagnosed more accurately (Cruz & Wishart, 2006; Colozza et al., 

2005). 

 

There are many approaches which have been implemented on genomic datasets statistically and 

biologically in order to expand knowledge of the molecular basis of cancer, such as real-time 

polymerase chain reaction (McLendon et al., 2008; Fortunato et al., 2014). However these approaches 

face some difficulties such as the high dimensional nature of the data or noisy characteristics of the 

data (Pal et al., 2007). Considering the ML (machine learning) capability in high-dimensional data, it 

can be said that ML is particularly well-suited to implementation on genomic datasets in respect of 

high proteomic and genomic measurements (Cruz & Wishart, 2006). 

 

 

2.2 Machine Learning 

Machine learning is a scientific discipline that provides computers with the ability to distinguish 

patterns in datasets, even though the datasets are comprised of high-dimensional, noisy and complex 

data (Cruz & Wishart, 2006). Depending on the learning algorithm or implementation procedures, the 

machine learning area can be classified into a number of broad categories: supervised, unsupervised, 

semi-supervised, reinforcement learning and so on. 

Artificial Neural Network (ANN) is one of the popular methods to recognise patterns in data s 

through sequential training procedures that will be explained in the next sections (Basu, 

Bhattacharyya, & Kim, 2010). 

 

2.2.1 Artificial Neural Networks 

The brain consists of a large number of inter-connected neurons that receive a number of  biological 

signals to dendrites and pass this information on through their axon. Artifical Neural Networks (ANN) 

systems have been inspired by those biological systems. The main part of ANN, known as a 

perceptron, mimics the neurons in the brain. It receives some input values from the environment and 

that corresponds to dendrites part and after the received values are subjected to an activation function 

that that will be explained in the next section, the output value is obtained end of the perceptron that 

corresponds to axon (see Figure 2.5).   
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Figure 2.5: Neuron structure with dendrites, cell body and axon (left), Perceptron design, which 

mimics neurons, with inputs (right) (www17). 

 

The output of neuron can be calculated as; 

𝑦 = 𝑓(∑ 𝑥𝑖𝑤𝑖

𝑛

1

)   2.1 

 

In the brain system, when information reaches the terminal axon point, it passes to the other neurons 

through connection areas which are called synapses. By connecting millions of neurons through the 

synapses, the brain is formed. An ANN in fact consists of systems have been inspired by those 

biological systems. In an ANN, the neurons are connected and organised in layers (see Figure 2.6). 

Depending on the number of layers, the ANN is called either a single layer or a multilayer neural 

network. 

 

Figure 2.6: Connected neuron through the synapses for both the brain (left) and ANN systems (right) 

(www17) 

The neural network model was first created in 1943 by Warren McCulloch and Walter Pitts 

(McCulloch and Pitts, 1943). The model was based on multiplication of inputs and weights (Eq 2.1) 

then the output is produced by a linear threshold function. However this model could only produce 

binary outputs that makes is simplistic model.  After this creation, the next promising study was 
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conducted by Frank Rosenblatt. Rosenblatt discovered perceptron networks by applying an extra 

value (bias) to the sum of inputs and weights. Rosenblatt also made weights adjustable which can be 

used to minimise error between perceptron and real output. Since the perceptron was able to classify a 

continuous-valued input into one of two classes; it made a big contribution to pattern recognition area 

(Hagan, Demuth and Beale, 1996).  

 

2.2.1.1 Single Layer Neural Network  

A single layer neural network basically consists of a set of perceptron and it predicts patterns by 

separating data linearly (see Figure 2.11). As can be seen in Figure 2.7, there are neurons which 

receive multiple inputs that are typically in the range [0, 1] and represented by 𝑥𝑖. The taken input 

values are multiplied by the value of weights (𝑤𝑖) linearly. The weight is a connection value and it 

can either amplify or deamplify input values. In case of the linear combination 𝑛𝑒𝑡𝑗 (Eq. 2.2) it ends 

up with zero, and there is another constant value which is called the bias neuron. The bias neuron can 

be described as a coefficient value in a function to provide consistency to the calculations. If the bias 

neuron value is set to 1, it does not receive any value from other neurons. During the process, the bias 

neuron value (1) is multiplied by the connected weight value and the result of the multiplication, 

which is the weight 𝑤0, is the sum with linear combination (Eq. 2.2). After linear combination of 

weights and 𝑤0 , the result is included to an activation function 𝑓(. ) (Eq. 2.3) which is used to 

determine the output of neuron 𝑦𝑗 by comparing the result and the threshold value (𝑡). Calculations 

for a single layer neural network are as follows: 

 Multiplication of input values and following weights; 

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑝𝑖 + 𝑤𝑗0
𝑑
𝑖=1     (2.2) 

 The result of linear multiplication (2.2) are included to an activation function 

𝑦𝑗 = 𝑓(𝑛𝑒𝑡𝑗) = {1𝑖𝑓𝑛𝑒𝑡𝑗 > 𝑡; 0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (2.3) 

 

Figure 2.7: A Single Layer Network that takes linear input vector 𝒙 and multiplies it by the 

connected weights vector𝒘to get  𝒏𝒆𝒕𝒋 value. Finally, the output value (𝒚𝒋) is decided by using 

activation function (𝒇(𝒏𝒆𝒕𝒋)) 
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The calculations is done by using the activation function which so far can only form AND,OR and 

NOT classifications.  The example below shows two inputs and one output single layer; 

 

Figure 2.8: The classification with NOT, AND OR in the perceptron 

 

As Figure 2.8 shows, an implementation such as Eqs 2.2 and 2.3 𝑛𝑒𝑡 = 𝑤1𝑥1 + 𝑤2𝑥2 and 𝑜𝑢𝑡 =
𝑓(𝑛𝑒𝑡 ) is only capable of NOT, AND OR classification that can only separate data by drawing a 

straight line, as is illustrated in Figure 2.9 for AND - OR classification. 

 

 

Figure 2.9: Decision boundary for AND - OR classification. 
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2.2.1.2 Single Layer Neural Network Optimisation 

As it is shown above, the data can be classified with a straight line by the single layer neural network 

model. However, in the case of using further data points or high dimensional data, this line does not 

separate them at the first step. That is why, based on the error value between network ouput and real 

output, the network has to be optimised step by step. The optimisation network is implemented 

through the training process which is done by calculating the  error of the network (Eq. 2.4) and using 

the gradient of descent of the error function to update the weight values (Eq. 2.9), which can 

eventually result in minimising the error in the network (see Figure 2.11). 

The mathematical steps of the optimisation network are as follows;  

The error function of the network is; 

𝐸(𝑤) = ∑

ℎ

𝑦=0

(𝑦𝑗 − 𝑜𝑗)
2

(2.4) 

The gradient of descent of the error function is found in order to get the direction in error 

minimisation (see Figure 2.10): 

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
.
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

(2.5) 

This derivation function can be evaluated as;  

−𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
=

−𝜕𝐸

𝜕𝑦𝑗
.

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
= (𝑦𝑗 − 𝑜𝑗)𝑓′(𝑛𝑒𝑡𝑗)(2.6) 𝑡ℎ𝑎𝑡 𝑖𝑠𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝛿𝑗  

and derivative of 𝑛𝑒𝑡𝑗𝑤𝑖𝑡ℎ𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑠𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑝𝑢𝑡𝑣𝑎𝑙𝑢𝑒𝑥𝑖 

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖(2.7) 

By combining equations 2.6 and 2.7, the gradient of descent of the error function can be written as 

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖(2.8) 

 

After the gradient of descent of the error is found, it is multiplied by a given value (the learning rate) 

to manage step length in the descending process (see Figure 2.10). Then the weight changing value 

(Eq. 2.9) is calculated by multiplying learning rate (𝜂), 𝛿 and input value 𝑥𝑖 ;  

∆𝑤𝑖 = −𝜂
𝜕𝐸

𝜕𝑤
= 𝜂𝛿𝑗 𝑥𝑖 = 𝜂(𝑦𝑗 − 𝑜𝑗)𝑓′(𝑛𝑒𝑡𝑗) 𝑥𝑖(2.9) 

𝛿𝑗  is the error between real output and the network output 

∆𝑤𝑖 is the weight changing value of 𝑖𝑡ℎ neuron 

𝜂 is a given learning rate. 
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Thereafter, by updating the weight values (Eq. 2.10) with the weight changing values one by one, the 

error minimisation is implemented (see Figure 2.10) and the network can converged or classified data 

as shown in Figure 2.11. 

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖(2.10)  

 

Figure 2.10: Error descending; gradient descent of error is calculated (Eq.2.4) and each step length (delta weight) is found by 

multiplying gradient descent with learning rate (Eq. 2.8). The weight is updated according to the found delta weight (Eq. 2.9) 

and finally  desired minimum error is reached by repeating those processes.   

 

 

 

Figure 2.11: Single Layer Neural Network Data Classification; after each weight updating steps, the 

error of model (distance between data and straight line) tends to reduce. By reaching the desired error 

value, the data is separated as requested.  
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Although the discovery of single layer neural networks made a big contribution to the pattern 

recognition field, it had some limitations (Minsky & Papert, 1970). Minsky and Papert stated that a 

single layer neural network is incapable of XOR classification (Minsky & Papert, 1970). XOR is a 

boolean classifier which is true for two variables if and only if one of the variables is true and the 

other is false, which provides the ability to obtain a non-linear result in a neural network and it can 

only be implemented with more than one layer of neurons due to its requirements. Although the fact 

that it was incapable of XOR led to the discontinuation of neural network research for a time, the 

advent of multilayer neural networks and backpropagation provided XOR implementation and ANN 

research was recommenced (Rumelhart & McClelland, 1986; Hagan, Demuth & Beale, 1996). It is 

worth noting that, in addition to XOR implementation, a multilayer neural network can also use other 

non-linear/linear functions for activation such as sigmoid, sigmoid stepwise, hyperbolic tangent, 

Gaussian or Elliot activation functions, which can provide better performances (Isa et al., 2010). 

2.2.1.3 Multilayer Artificial Neural Networks  

In the multilayer ANN, connected neurons are organised into layers, and even though there are a 

couple of connectivity designs in multilayer ANN such as a recurrent neural network, the most 

common design is feedforward, which was used in the present study as well. In the feedforward 

design, each neuron in a layer is connected to all the other neurons which are in the other layers next 

to it. Every neuron receives values either from the environment or from other neurons.  The neurons 

that take values from environments are known as input neurons, other nodes that take values from 

different nodes are called hidden layer neurons, and the rest of the nodes that have an impact on the 

environment are known as output neurons, as shown in Figure 2.12 (Floreano & Mattiussi, 2008 ; 

Haykin, 2007).  

 

Figure 2.12: A Multilayer Neural Network Structure designed with ‘d’ number input, ‘h’ 

number hidden and ‘c’ number output neurons. Each neuron is connected to all the neurons in 

the layer next to it. 
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𝑥𝑖𝑖s the input to the neuron 

𝑤𝑗𝑖 is the weight from 𝑖𝑡ℎneuron (from input to hidden) 

𝑛𝑒𝑡𝑗 is the net input to the following nodes 

𝑓𝑗 is the activation function 

𝑤𝑗0is the bias value  

h refers to the hidden layer neuron number 

𝑤𝑘𝑗 is the weight from 𝑗𝑡ℎ neuron  (from hidden to output) 

c refers to output layer neuron number 

𝑛𝑒𝑡𝑘is the net input value to the 𝑘𝑡ℎ output neuron that can be any neuron in output layer 

𝑧𝑘is the output of neuron 

 

 

2.2.1.4 Feedforward propagation in Multilayer Artificial Neural Networks  

As already stated mentioned before feedforward propagation is the most frequently used network 

structure in many applications. The propagation calculations are similar to single layer neuron 

network feedforward. Firstly input values are taken as a vector (𝑥) and this is multiplied by the next 

layer neuron weights (𝑤) one by one (Eq 2.11). After completing the multiplication for each hidden 

layer neuron (except the bias neuron), the obtained 𝑛𝑒𝑡𝑗 values are included in the activation function 

𝑓𝑗. Thereafter the propagation continue from hidden to output neurons using the same procedures; 

taking all hidden neuron values as vector (𝑦) and multiplying them by the output neuron weights 

values (𝑤) (Eq 2.13). At the end of the propagation, network output values (𝑧) are obtained with 

activation function 𝑓 (. ) (Eq 2.14) (Haykin,2007).  

The mathematical feed forward propagation for Multilayer ANN is done as follow; 

● Each input value is multiplied by the following weight values (𝑤𝑗𝑖) one by one and summed 

up with bias neuron values (𝑤𝑗0. 1). This process is repeated for all the hidden neurons to 

calculate 𝑛𝑒𝑡𝑗 values ; 

 

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑤𝑗0

𝑑

𝑖

     (2.11) 

 

● After that the 𝑛𝑒𝑡𝑗 values are included to activation function  𝑓𝑖(. ) to calculate hidden neuron values 

(𝑦𝑗) 

𝑦𝑗 = 𝑓𝑖(𝑛𝑒𝑡𝑗)      (2.12) 
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● After completing the linear multiplication and activation function (Eq 2.11 and 2.12), the hidden 

neuron values (𝑦𝑗) are ready to be multiplied by the next following weight values (𝑤𝑘𝑗)  and summed 

it with bias value (𝑤𝑘0) 

𝑛𝑒𝑡𝑘 = ∑ 𝑤𝑘𝑗𝑦𝑗 + 𝑤𝑘0

ℎ

𝑗

     (2.13) 

 

● Finally,  as was done before, each  hidden neuron values (𝑛𝑒𝑡𝑘) are put in to the activation 

function 𝑓𝑖(. )  again to obtained network output values (𝑧𝑘) 

 

𝑧𝑘 = 𝑓𝑘(𝑛𝑒𝑡𝑘)           (2.14) 

 

Once a structure is built, in order to obtain the desired output values, the ANNs are trained by 

adjusting the weight. In the training procedure, some values (the output of which is already known) 

are given to input layer nodes and the output of those inputs is compared with real output value which 

is represented by𝑧𝑘. The comparison result gives the error (𝛿𝑘 ) in the network and it is calculated as: 

𝛿𝑘 = (𝑧𝑘 − 𝑜𝑘) 

 

Then, according to the calculated error, the weights are adjusted to get the minimum error as it is 

stated in the single layer neuron subtitle. After converging the network, the outputs of the network 

should be the same value as or close to the desired output values. However, optimising a multi-layer 

network has some disadvantages concerning the hidden layer error calculation (Russell & Norvig, 

1995). Because the training data do not convey what value should be owned by hidden layers, an 

algorithm called backpropagation is used to calculate the error of the hidden nodes (Russell & Norvig, 

1995).   

2.2.1.5 Backpropagation in Multilayer ANNs 

The backpropagation model is implemented backwards from output to input nodes in order to obtain 

the error of the nodes and to adjust weights (Bishop, 2006). The procedure of backpropagation is done 

by taking the derivative of the error function (Eqs 2.16 and 2.22) with respect to the connected 

weights and updating the weights according to the gradient descent direction.  

The weight-changing steps from output to hidden layer is the same as for single layer neurons; 

First, the error function is defined; 

𝐸(𝑤) = ∑𝑐
𝑘=1 (𝑜𝑘 − 𝑧𝑘)2         (2.15) 

And gradient descent of it is done by taking derivative with respect to weight; 

𝜕𝐸

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 =  

𝜕𝐸

𝜕𝑧𝑘
.

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
       (2.16) 

The evaluation of this derivation can be done as; 

−
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
= −

𝜕𝐸

𝜕𝑧𝑘
.

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
= (𝑜𝑘 − 𝑧𝑘)𝑓′(𝑛𝑒𝑡𝑘)  𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝛿𝑘  (2.17) 
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𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= 𝑦𝑗       (2.18) 

The gradient is formed by combining 2.18 and 2.18 as; 

𝜕𝐸

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= 𝛿𝑘𝑦𝑗  (2.19) 

After the derivative of weight function has been found, it is multiplied by the learning rate and finally 

the weight changing can be found 

∆𝑤 = − 𝜂
𝜕𝐸

𝜕𝑤𝑘𝑗
= 𝜂𝛿𝑘𝑦𝑗 = 𝜂(𝑡𝑘 − 𝑧𝑘)𝑓′(𝑛𝑒𝑡𝑘)          (2.20) 

By following, the weight changing value is added to weight to optimise network between output and 

hidden layer; 

𝑤𝑘𝑗(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + ∆𝑤𝑘𝑗(𝑛)    (2.21) 

So far, the mathematical procedure is the same as for a single layer neural network for updating 

weights. However, when it comes to weight changing between hidden and input neurons, some extra 

calculations are needed because the hidden layer error is a ‘black box’ in a multilayer ANN. 

As was done previously, derivation of error function with respect to the belonging weight value (𝑤𝑗𝑖) 

is calculated; 

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
.
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
     (2.22)    

However, the 𝛿𝑗 calculation step differs from equations 2.6 or 2.17. This time, the 𝛿𝑗 calculation will 

involve all the weights (𝑤𝑘𝑗) from the hidden output layers; 

𝜕𝐸

𝜕𝑦𝑗
=

𝜕

𝜕𝑦𝑗
[
1

2
∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2] 

= − ∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2
𝜕𝑧𝑘

𝜕𝑦𝑗
 

= − ∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2
𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗
 

= − ∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2𝑓′(𝑛𝑒𝑡𝑘)𝑤𝑘𝑗       (2.23) 

 

From the equation 2.17;   𝛿𝑘 = (𝑧𝑘 − 𝑜𝑘)𝑓′(𝑛𝑒𝑡𝑘)  can be substituted in Eq 2.23 and the  𝛿𝑗  value is 

evaluated as; 

 𝛿𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) ∑𝑐
𝑘=1 𝑤𝑘𝑗𝛿𝑘     (2.24) 

Which makes weight changing is; 
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∆𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑦𝑖 = 𝜂𝑓′(𝑛𝑒𝑡𝑗)[∑

𝑐

𝑘=1

𝑤𝑘𝑗𝛿𝑘] 𝑥𝑖         (2.25) 

After weight changing is calculated, finally weights are updated conventionally; 

𝑤𝑗𝑖(𝑛 + 1) = 𝑤𝑗𝑖(𝑛) + ∆𝑤𝑗𝑖(𝑛)      (2.26) 

 

All in all, by adjusting the weight values with specific protocols, the errors can be minimised and the 

desired output can be obtained accurately. 

Consequently, multilayer ANNs with feed and backpropagation were the answer to the limitation of 

neural networks and today they can handle different types of classification or pattern recognition 

problem (Hagan, Demuth & Beale, 1996; Kourou et al., 2015). 

 

2.3 Literature Review  

ANNs have been used in cancer detection/classification/diagnosis for almost the last two decades 

(Cruz & Wishart, 2006). This chapter investigates and partially compares previous studies that have 

been conducted on cancer diagnosis/prognosis in terms of data mining methods comparison, 

biomarker identification and survivability prediction in gene expression profiles.  

 

2.3.1 Multilayer ANN comparison with other data mining methods in cancer 

One of the preliminary studies was that conducted by Cho and Won (2003), who attempted to 

precisely classify cancer by using/comparing machine learning systems on three different microarray 

datasets. In the first dataset (leukaemia cancer)  38 out of 72 samples, in the second dataset (colon 

cancer)  40 out of 62 samples, and in the third dataset (lymphoma cancer) 22 out of 47 samples were 

tested to classify cancer using multilayer ANNs , k-nearest neighbour, support vector machine and 

self-organising map. Multilayer ANNs were structured with 5~15 hidden nodes and two output nodes, 

and it was implemented with backpropagation. The multilayer ANNs’ recognition rates were 

calculated as 85.3% for leukaemia, 70.1% for the colon dataset and 69.7% for the lymphoma dataset. 

The results of the study showed that multilayer ANNs and KNN had the best recognition rate among 

other data mining methods, which shows that multilayer ANNs are quite a promising method for 

classifying cancer on gene expression profile compared with other data mining methods. 

Another recent study was that of Chou et al. (2013) in which breast cancer microarray databases were 

used in order to predict five-year recurrence (Chou et al., 2013). During the experiment, three types of 

data mining method (ANNs, decision trees (DT) and logistic regression (LR)) were used and their 

findings were compared. Different datasets were pooled which had been taken from the Gene 

Expression Omnibus (GEO) and the US National Library of Medicine (NCBI). First, 5945 datasets 

were collected and filtered by Homo sapiens and breast cancer cases, without complete survival and 

redundancy. After choosing the same type of microarray chips (HG-U133A), four datasets were left to 

train. Although those databases had 922 subjects, because of missing values and effectiveness, only 

data from 757 patients were used in the experiment. Before merging datasets, they were pre-processed 

using the GC Robust Multi-array Average (GCRMA) method and R language software in order to 

eliminate unnecessary or irrelevant features and to combine multiple probes. During the data mining 

implementation process, SPSS Clementine 10.1 software was used and the ANN over-training 

prevention parameter was set at 80%. It was also implemented with a 20-fold cross-validation. 
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In order to measure the results of Chou et al.’s study, the term ACC (the number of correct 

predictions / total number of cases) was defined which presented the correct prediction of breast 

cancer recurrence numbers in five years. At the end of the study, the 21 most-associated genes were 

obtained and the ANN models displayed the best ACC score. Consequently, it can be stated that this 

experiment had some speciality in terms of merging datasets and comparing data mining methods. 

When similar studies were investigated, it was found that Sotiriou et al. had 34 cases and that Ivshina 

et al.’s dataset had 90 cases, whereas the present study used 757 cases (Sotiriou et al., 2006; Ivshina 

et al., 2006). It can therefore be said that this current experiment has a particular advantage in regard 

to examining a large number of cases. On the other hand, this particular advantage might be a 

limitation of the study depending on the classifying of the cases. Misclassified cases can cause a  

heterogeneity which means that irrelevant features might be grouped in the same dataset which would 

lead to misleading results.  Despite the fact that the elimination process was carried out punctiliously, 

the features of cases such as phenotype definition, population ethnicity or genetic heterogeneity might 

not be classified correctly.  Apart from dataset merging, in terms of understanding which method has 

a better accuracy among data mining methods, it can be concluded that this study is a good example to 

prove that multilayer ANNs produce better results than other methods. 

Another study was conducted by Chu et al. by pooling microarray databases (Chu et al., 2014). The 

aim of that study was to investigate the gene expression profiles of colorectal (CRC) cancer by 

implementing and comparing four different machine learning methods (Multilayer ANNs, Prediction 

Analysis of Microarray (PAM), Classification and Regression Trees (CART), and C5.0,). At the 

beginning of the study, 190 different datasets were taken from the Gene Expression Omnibus (GEO). 

After an elimination procedure, 16 datasets comprising 1186 colorectal tumour tissues remained (53 

adenoma tissues, 521 adenocarcinoma tissues, 533 primary colorectal tumour tissues and 79 hepatic 

tissues with metastatic colorectal tumours). Before the implementation of data mining methods, the 

datasets were pre-processed using the GCRMA method as had been done in the previous Chu et al. 

study. Because the 1186 cases were comprised of four different subgroups with different numbers of 

cases, the training data percentage was set according to the number of cases (62% for adenoma tissues, 

85% for adenocarcinoma and primary colorectal tumour tissues and 52% for hepatic tissues) and an 

overall four-fold cross-validation was used. The data mining methods were implemented using SPSS 

Clementine 10.1 software.  ANN was trained with a quick backpropagation algorithm on Clementine 

10.1. At the end of the study, eight genes which were highly related to CRC were identified. The 

accuracy rates result of the study can be seen in Figure 2.13; 

 

Figure 2.13: Test accuracy rate in four approaches (Chu et al., 2014). 
 

Chu et al. stated that multilayer ANN showed the best model stability among the other approaches. 

Because limited patient enrolment numbers might limit the power of machine learning approaches, 

this study also has similar extra features for merging databases and the number of cases , as was 

mentioned in Chou et al.’s study described above. 
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2.3.2 Biomarker in specific cancer type and Multilayer ANNs 

Pal et al. (2007) conducted a study to classify childhood cancers, known as small round blue cell 

tumours (SRBCTs). A dataset with 2308 genes from glass-slide cDNA microarrays was used in the 

study. The main aim of the study was to identify biomarkers in order to enable more accurate 

diagnostic prediction of the four categories of SRBCT. Since a cancer type which displays cellular 

differences within a single cell might lead to misdiagnosis and SRBCT is one of  those cancer types 

(heterogeneous), the possibility of misdiagnosis becomes high likely with this dataset (Heppner, 

1984). The previous methods were tending to reduce genes which were irrelevant to a specific cancer 

type. However, those previously used methods were unable to detect subtle non-linear interaction 

between genes and ultimately ended up with more genes than necessary (Pal et al., 2007).  To address 

this limitation, Pal et al. used multilayer ANNs and fuzzy clustering methods to detect the required 

genes accurately. The dataset in this study consisted of 88 samples, of which 63 were used for training 

and 25 for blind testing.  Multilayer ANNs were constructed as 2308 input nodes (for each gene one 

neuron), four output nodes (for each category one neuron) and 150 hidden nodes and four to-detect 

related genes. At the first training, twenty genes were found using multilayer ANNs. In the next stage 

of the procedure, those twenty genes were trained and reduced to ten genes using the same method. 

Thereafter, the twenty first found genes were clustered using a non-Euclidean relational fuzzy c-

means algorithm to compare and confirm whether the second ten genes were related to a specific 

cancer subgroup or not.  After combining the second multilayer ANNs implementation and fuzzy 

clustering, the number of genes was reduced from ten to seven. At the end of study when the seven 

identified genes were investigated, it was seen that three of those seven genes (NAB2, LSB and EHDI) 

had not been identified by any other method as important (Pal et al., 2007). Consequently, it can be 

stated that the detected seven biomarker genes are enough to classify and diagnose the four categories 

of childhood cancers with 100% accuracy.  

Although multilayer ANN could have been optimised in terms of the number of nodes, it can be 

concluded that Pal et al.’s study resulted in success in respect of its accuracy percentage and 

identifying three novel genes that had not been detected previously as important. In addition, double 

checking by using fuzzy clustering had some benefit in terms of preventing false biomarker detection. 

Another study has been carried out to identify sign DNA methylation biomarkers in ovarian cancer 

(Wei et al., 2006).  It is recognised that abnormal DNA methylation is a contributor to neoplasia in the 

human body. Correspondingly, detection of different combinations of methylated loci can be an 

important biomarker. Wei et al. (2006) focused on identifying methylated loci signs to reduce early 

stages ovarian cancer cases’ progression-free survival (PFS). For datasets, forty advanced-stage 

epithelial ovarian tumours and seven normal adjacent ovarian tissues were taken from the Cooperative 

Human Tissue Network (Columbus, OH), the Western Infirmary and Stobhill General Hospital 

(Glasgow, UK), and the Cedar-Sinai Medical Centre (Los Angeles, CA). In the experiment, although 

there was a 811 CGI microarray at the first stage, by using Significance Analyse Microarray (SAM) 

for filtering, this number was reduced to a 112 CGI microarray. Then multilayer neural network and 

support vector machine methods, as assessed by ten-fold cross-validation, were implemented on these 

112 microarray samples to identify methylated loci prognostics.  As a consequence, both the 

multilayer neural network and the support vector machine methods showed 100% classification 

accuracy for the detection of different combinations of methylated loci. According to the fact that the 

detected biomarker has a crucial role in the accurate diagnosis of the cancer subgroup, the study’s 

accuracy result proves that a multilayer neural network is highly effective at providing useful 

information to clinicians. 

 

A further similar study that aimed to predict the occurrence of lymph node metastasis in oesophageal 

cancer by analysis using multilayer ANNs was that of Kan et al. (2004). For the microarray datasets, 

twenty-eight independent primary tumours samples which had been under surgery at Kyoto 

University Hospital were chosen. Candidate genes which had been taken from patients were included 

in the SAM filtering process that can statistically extract differences. By the SAM filtering, the 
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number of genes was reduced from 8064 to 30-120. After that, multilayer ANNs were applied with 

feed/backpropagation and leave-one-out cross-validation. The multilayer ANNs were constructed 

with two hidden layers, which differed from other studies. The number of input nodes equalled the 

number of genes used; the first hidden layer consisted of four nodes and the second hidden had ten 

nodes (bottle-neck type), and the number of output nodes was set which showed the presence of 

lymph as 1, and 0 otherwise. After training the neural network, the results showed that the predictive 

accuracy of lymph node metastasis was 77% over 120 filtered genes. When the neural network was 

tested with 60 genes, the accuracy rate extended to 86%. In the light of these results, it can be 

concluded that multilayer ANNs can predict the occurrence of lymph node metastasis in oesophageal 

cancer to a certain extent. Since the study had two hidden layers, it can be an indicator for the 

prediction ability of networks with extra hidden layers. Also, this study shows the advantages of SAM 

filtering for the gene filtering processes. 

 

Another study by Abd El-Rehim et al. (2005) aimed to analyse protein expression in categories of 

breast cancer tissue samples by applying immunohistochemistry (IHC) and the ANN classification 

method (Abd El-Rehim et al., 2005). A sample of 1076 breast cancer cases from the Nottingham 

Tenovus Primary Breast Carcinoma Series were tested in order to detect biomarkers which are 

indicators of breast cancer. At the beginning of the study, IHC was applied to tissue microarrays 

(TMA) to cluster samples formulated in terms of similarity.  Further analyses of the cluster data were 

carried out using multilayer ANNs. The ANN architecture was built from 13 input, 60 hidden and 6 

output nodes. The multilayer ANN categorized the cases into groups and examined the driving 

biomarker in each group. Using these methodologies, six main clusters were identified by IHC, as 

shown in Figure 2.14, and the multilayer ANNs could predict 1, 2, 4, 5 and 6 classes with 100% 

accuracy whereas class 3 was predicted with 99.57% accuracy. When all the classes were analysed by 

the means and the standard deviation (SD) of the mean of expression of the markers in each group and 

multilayer ANN, it was found that a discriminating marker which is related to epithelial cell lineage, 

differentiation, hormone/growth factor receptors and gene products could be detected successfully. As 

a result of this study, Abd El-Rehim  et al. (2005) stated that two of the important discriminator 

proteins (CK18 and CK5/6) identified were related to the mammary gland anatomy and cellular 

structure of its parenchymal tissue (Abd El-Rehim et al., 2005).  Consequently it can be said that the 

multilayer ANN method with IHC clustering can give essential clues to tailoring the treatment of 

breast cancer. 
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Figure 2.14 Cluster tree diagram of a tumour sample. Clusters are arranged from left to right, 

starting from cluster 1 and ending at cluster 6. 

  

A subsequent study was conducted by Agarwal et al. (2014). Since there had been great interest in Ki-

67 as a proliferation marker with both prognostic and predictive value in breast cancer, the main aim 

of their study was the identification of common genes predictive of Ki-67 expression in three different 

microarray breast cancer datasets by using multilayer ANNs with feedforward, backpropagation and 

cross-validation. It should be noted that unlike most other studies, another cross-validation method, 

which is named ‘Monte-Carlo’ was used in this experiment. The Monte-Carlo cross-validation 

method has the ability to avoid over-fitting of the data and is more steady than leave-one-out cross-

validation (Xu, Liang & Du, 2004). The multilayer ANN consisted of two hidden nodes and the 

sigmoid function. The datasets were collected from the Nottingham breast cancer microarray (training 

set), the Uppsala breast cancer cohort (test set) and the METABRIC cohort (validation set). By using 

ANN, the top 200 probes for Ki-67 status were identified for each dataset. As a second phase, a non-

reductionist approach network growth strategy was implemented in order to make the Ki-67 system 

more precise in breast cancer analysis. In this approach, the open-access online database Search Tool 

for the Retrieval of Interacting Genes/Proteins (STRING, Version 9.1) was used to determine linkages 

between the top ten proteins interacting with Ki-67 and in turn between each of the top ten and their 

top ten genes, as shown in Figure 2.15. Thereafter, those findings were compared with the results of 

the first phase in order to identify the common genes. As shown in Figure 2.16, 64 unique genes were 

identified across all three cohorts. 
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Figure 2.15: The linkages of top 10 for Ki-67 (Agarwal et al., 2014)        Figure 2.16: Depicted Ki67 common genes in 3 

breast                                                                         cancer dataset (Agarwal et al., 2014) 

Agarwal et al. (2014) stated that in a comparison of the 64 genes with previous studies, there was a 

significant overlap with other similar signatures such as CEP55, CENPA, CENPE and spindle 

checkpoint proteins such as TPX2, AURKB, CDC20, which might contribute to tumour progression. 

However eight of the twenty most common genes for KI-67 were not listed among these 64 genes 

(Agarwal et al., 2014) so it can be concluded that the study result could have been more precise. 

Additionally, the ANN approach could have been used rather than STRING to predict associations for 

Ki-67 due to the flexibility of ANN.   

 

2.3.3 Predict survivability in cancer by using Multilayer ANNs 

A study by Chen, Yang and Chiu (2009) sought to predict survival time in diffuse large B-Cell 

lymphoma (DLBCL), follicular lymphoma (FL) and ovarian cancer patients by using multilayer 

ANNs (Chen, Yang & Chiu, 2009).  The datasets were obtained from Shipp’s study for DLBCL, as 58 

untreated patients, Dave’s study for FL, as 95 untreated patients, and from Duke University Medical 

Centre and the H. Lee Moffitt Cancer Centre and Research Institute including 69 deaths from ovarian 

cancer (Shipp et al. 2002; Dave et al., 2004).  The gathered dataset was pre-processed using BRB-

Array Tools. Then, in order to optimise the ANN architecture, the dataset was divided into two groups 

of 90% and 10%. The 90% of the data group was used for training with a commercial software 

(STATISTICA version 8.0) and the rest of the data (the 10% group) was used for testing. During the 

training process, inputs were initialised randomly and at the end of the calculation the obtained output 

was compared with known survival time. The process was then repeated by altering the weights 

between nodes until the error was reduced to a negligible rate. To optimise ANN, it was tested with 5 

to 30 hidden nodes. However, the multilayer ANNs can overfit the training data rather than decrease 

the generalisation accuracy, so the multilayer ANN’s architecture was determined by trial and error. 

At the end of study, the result was calculated as follows: for the DLCBL data set, differences between 

values and estimator (RMSE) were identified as 2.68, and the linear relationship between values and 

estimator (correlation coefficient) was calculated as 0.956. Additionally, some genes (D63879_at 

(KIAA0156), HG1879-HT1919_at (ARHQ), U41815_at (NUP98) and X77366_at (TCF11)) which 

are related to cancer were reported. For the FL dataset; RMSE was calculated as 27.69, and 

correlation coefficient was 0.771 whereas these values were 17.23 and 0.868 respectively for the 

ovarian cancer dataset as shown in Figure 2.17 for the three datasets. 
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Figure 2.17 : DLBCL (left) survival time observation and prediction results , FL (middle) survival time observation 

and predictions tresult, Ovarian cancer (right) survival time observation and prediction results (Cheb, Yang 

andChiu., 2009) 

Chen, Yang and Chiu (2009) therefore declared the prediction of ANNs to be accurate and acceptable. 

However, the findings could have been improved by comparison with other study results as was done 

by Agarwal et al. (2014). 

Another similar study was conducted with validating gene expression profiles in order to obtain 

clinical outcomes of breast cancer (Lancashire et al., 2009). The study hypothesized that a gene 

expression signature would be capable of predicting survival with some accuracy. Considering the 

difficulty of breast cancer heterogeneity, multilayer ANNs with backpropagation and Monte-Carlo 

cross-validation methods were implemented. In the multilayer ANNs’ structure, the number of hidden 

layer nodes was restricted to five and the output nodes gave evidence of metastasis based on a 

YES/NO sigmoidal function. 

Research has been done on Van’t Veer’s dataset which used breast cancer disease samples. In the 

experiment, 78 samples were used initially and were divided into 60% for training, 20% for validation 

and 20% for blind testing independently.  Consequently, nine genes were obtained that prognosed 

with 98% sensitivity. Since the capability of predicting metastases has a high degree of accuracy, in a 

further stage, another 295 patient cohort  dataset (NKI295) was validated. The obtained nine gene 

signatures were applied to classify this series of cases. The discovery was made that the data were 

able to be divided into the proper groups which had been defined by the original 70-gene signature. 

Consequently it can be observed that this study resulted in a high degree of accuracy and affirmation 

of these findings. 

This chapter has investigated previous relevant studies in terms of the comparison of data mining 

methods, biomarker identification and survivability prediction in gene expression profiles using a 

multilayer neural network. It can be concluded that a multilayer neural network is the most plausible 

method among other data mining methods for the classification/prediction/identification of cancer 

cases accurately, which proves that this method would be helpful for uncovering hidden patterns in a 

dataset that can help clinicians in their decision-making. 
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Chapter 3 

 

 Requirement and Analysis 

This chapter will first describe the requirements of the project and then the means of overcoming the 

challenges will be explained in the analysis part.  The test results of the tool and the evaluation 

process will also be explained.  

3.1 Requirements  

As mentioned in section 1.1, the main aim of this project is to develop a computational tool that will 

be trained by cancer datasets, and after training it will be able to predict information such as 

metastasis capability, and the stage and/or typology of cancer depending on the training dataset.  

The requirements of this project can be split into three categories; functional, software 

implementation and non-functional. 

● First, the dataset that will be used in the project should have the requisite qualifications such 

as completed input and outputs values or genes that are highly related to cancer subtypes. In 

order to classify cancer accurately the tool should be trained with genes that are related to 

specific cancer types. Considering that there are plenty of publicly available gene expression 

datasets on the web and that these datasets include variety of genes/features, we should ensure 

that our dataset consists of the necessary genes. Therefore a small blue cell tumour (SRBCTs) 

dataset which was part of Khan et al.,(2001) study is used in the present project. 

 Second, as can be seen in the literature review, generally studies have used SPSS or other 

commercial software in multilayer layer neural network training. Considering that our project 

network will be licensed under BSD3 to provide the ability of re-structuring in terms of 

calculation methods or layer/neuron numbers, commercial/non-commercial products are not 

used for the implementation of a neural network. 

 Third, the tool should have high prediction accuracy in cancer. However, machine learning 

systems are prone to overtraining (the tendency of fitting data excessively), which causes a 

decrease in prediction correctness. Therefore a technique called cross-validation has to be 

performed in the training process to avoid overtraining and to obtain high-accuracy results.   

 Due to the need for the tool to be robust, unit testing should be implemented on codes to 

ensure that process is carried out properly, and also the code should be tested by a 

performance analysis tool to detect and fix any code bottlenecks. 

 Additionally, after completion the testing of the tool, it will be released as a library called 

Cunernet with a BSD3 licence to reach the widest community. In that way, the tool might be 

made use of by any communities or contributors who might wish to be involved in the further 

development process.  

 Furthermore, the latest standards of C++ language should be performed because the tool will 

be implemented on CUDA using the Thrust library. 

● Finally, since the tool will be used by other users, compiling and verifying code changing 

should be done before uploading any written code. 

  

The functional requirements and software implementation and the non-functional requirements can be 

outlined as shown in Table 3.1 
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Functional Requirements 

1 The tool should predict cancer information(metastasis capability, stage,  topology) with 

high accuracy (95% or above preferably) 

2 The dataset should only have the required genes/features 

3 The used libraries should be under BSD-like licence. 

4 The tool should be flexible in terms of implementing different learning rules and updating 

protocols, neuron numbers in layers or input/ output vector size. 

5 By implementing unit testing , the code should be made robust 

  

  

Software Implementation 

 1 The tool should be developed  by using best practice developing techniques to release as 

an open source 

2 The user should be capable of deciding the implementation (training/testing) and  the 

network structure (multilayer/single layer)  

3 The basic network values such as learning rate, momentum or input vector size in data set 

should be  passed by the user 

4 The developed tool will be released named as the Cunernet library under the BSD licence. 

5 Cmake cross-platform compilation software should be used to manage the building 

process of the tool. 

6 The Thrust library should be used  in regard to implementation codes on CUDA as a 

project extension 

6 The Cunernet has to be implemented as self-contained shared library to be included in 

other projects 

  

Non-functional Requirements 

1 The code should be analysed in terms of performance by using  performance analysis tool 

(gperftools) and according to analysis result it should be optimised. 

2 The  Operating System of machine should be Linux 64-bit with installed CUDA 7.0 

3 The tool should be compiled using g++ 4.8 
 

Table 3.1 The Requirements of The Project 

 

3.2 Analysis 

By analysing of the requirements of the project, the following stages should be followed in the project: 

3.2.1 Dataset 

The used SRBCTs dataset, which is publicly available, includes four distinct categories 

(rhabdomyosarcoma (RMS), Burkitt lymphomas (BL) subset of NHL, neuroblastoma (NB), and the 

Ewing family of tumours (EWS)) and consist of 88 samples (25 RMS, 11 BL, 18 NB and 29 EWS). 

Each sample includes 96 genes, which are highly related to those four categories mentioned above. 

Khan et al.,(2001) split the88 samples into training (63) and test sets (25). After training their network,  

the 25 test samples were classified with 100%  and diagnosed 23 over 25 sample could be diagnosed 

correctly (2 samples Test Sample 10 and Test Sample 20 were not diagnosed ).  

Due to the 96 genes high relevance to the SRBCT cancer types, being publicly available and showing 

promising result, the SRBCTs dataset will be chosen to train and test our network. 
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3.2.2 Programming Language Choose  

Due to the flexibility and licence issues, own Multilayer Neural Network software will be developed 

in C++11 language. Concerning that the written code will be optimised by Google Performance 

Analysis tool to achieve a better performance, C++ was a proper choice.  Additionally as an extension 

of project the software will be implemented on GPU by using Thrust library in the future,  it can be 

said that C++11 was the most proper language to develop our tool. In the light of C++11 and Google 

Performance tool using requirements, the project environment is chosen as Linux 64 bit operating 

system with CUDA7.0  

3.2.3 The Network Design 

 In the present study the structure of the network will be limited to linear perceptron, but the software 

will be designed to be extended to multilayer neural network depending on passed information from 

the user. Also the learning algorithm of software will be implemented same as Khan et al.,(2001) 

(updating weights every 10 samples) and in addition that, different optimisation algorithms such as 

batch and stochastic learning will be added to software code as an optional choice. 

3.2.4 Training Network 

In the training procedure of the network, 63 samples over 88 will be taken to train our network and 

three-fold cross validation will be implemented in order to avoid over training, as was done by Khan 

et al., (2001). 

 The procedures for training with cross validation will be; 

● First the 63 sample dataset will be shuffled and  split into three equal part  

● After that, any two of three parts will be taken as a training set and the remaining 21 samples 

are used as the validation set. 

● First, the training set (42 samples) will be subjected to training procedures and the other 21 

validation set, will be kept out of training. 

● The training procedures will be repeated 100 times with the same training and validation 

datasets.  

● After 100 times completion, another 21 samples from the dataset will be chosen as a 

validation and the other 42 samples will be used as training. 

● The 100 times training procedures will be repeated again with the new chosen compound of 

42 samples.  

● These steps will be repeated three times and each time a different fold (21 samples) will be 

chosen as validation set. By doing that over-training in network will be prevented 

● End of these stages one iteration will be completed and by shuffling the 63 samples again 

iteration will be started.  

3.2.5 Best Practice Development 

 Owing to the intention to release the tool an open source library, the best practices of open source 

development techniques will be used. All code development processes will be done on the web 

application hosting service Bitbucket.  To manage code changing on Bitbucket, the “git” revision 

systems will be used and each code changing steps will be uploaded to the Bitbucket page with an 

explanatory note to be a guide for the history of the code development or a guide for further studies. 

Also, in the case of getting an major errors, the project codes will be able to be rolled back by tracking 

the history on Bitbucket. 

Due to the fact that documentation is an important way to communicate with other developers, the 

code comments will be written base on Doxygen rules and The Doxygen tool will be used to generate 

documents  as html or pdf automatically which will be found in the doc folder on the Bitbucket 
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project page. The generated document will be an easy guide to examine code in regard to functions or 

variables for potential contributors and also for the current author in the future. 

In order to deal with compiling source code fields in different directories, the CMake cross-platform 

software will be used to manage the building processes. Additionally, by providing readme files will 

be written to guide how to compile/run The Cunernet that files can be found  in the project folder on 

Bitbucket.  

 

3.3 Testing and Evaluation 

In this section, the present study classification and diagnosis method will be described rather than 

Khan et al., (2001) classification/diagnosis method. However in section 5.4.1 Classification and 5.4.2 

Diagnosis Khan et a., (2001) methods will be described and implemented along with the present study 

classification/diagnosis method.   

3.3.1 Testing the Correctness of the Training Set  

As described above, 63 samples will be used to train the network and after each training dataset was 

trained, its correctness will be calculated. The correctness calculation will be done by comparing real 

output data and the network output data for each sample.  

During the correctness checking, training set samples will be subjected feedforward propagation and 

then the network output vector will be obtained one by one. (In our case the network output vector has 

four elements with regard to the four cancer categories is searched) After obtaining output vector, the 

highest value of vector will be checked whether it has 98% weight in sum of all four values.  In the 

case of the percentage being 98% or more, the index of this value will be compared to real output 

highest value index.  If both indexes are the same, that means the network classified the sample 

correctly and correct number will be iterated with one. These processes will be implemented to all 

samples in the training set and after finishing all samples, the correctness percentages of training set 

will be calculated by dividing correct match and the dataset size number (Eq 3.1). The pseudo code of 

these processes can be seen in Pseudo Algorithm 1 Testing correctness of a data set. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =   
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚𝑏𝑒𝑟

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟
     (3.1) 

 

3.3.2 Avoiding Over-Training 

 Furthermore, as it mentioned in the Analysis part, three fold cross validation will be used to prevent 

over-training network. Avoiding over-training will be done as follow; 

● A network model will be defined for testing 

● At the beginning of the iteration,  the dataset (63 samples) will be shuffled and split into 3 

fold 

● As it is explained in 3.2, the two folds (training set) will be subjected to training process and 

the other third fold will be kept as validation set (without training network)  

● End of this process the MSE (i.e. mean square error)  for both training set and validation set 

will be calculated 

● This training and MSE calculations will be repeated 100 times and the  MSE values obtained 

will be stored to the vectors. 

● At the end of 100 times,  two vectors within the 100 MSE value elements will be obtained and 

written to a file 

● Then the network model is set as a new beginning and the dataset will be split again after 

shuffling uniquely. 
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By repeating these steps 50 times, a 100 vectors (50 for training,50 for validation) that each of them 

has 100 MSE values will be obtained and plotted (see Figure 5.6) by using python script which can be 

found in the script folder on Bitbucket project page. By plotting a graph, the existence of over–

training will be tested and, in the case of  that the validation errors have a decreasing trend, it will be 

ensured that there is no sign for over-training in the network. 

 

3.3.3 Unit Testing  

As a part of unit testing, a relatively small dataset (4 inputs and 2 outputs) will be created manually. 

This dataset will be given to the network for training, as shown in Figure 5.2.  During the training 

processes the used input vectors, network outputs values, network weight changings will be written 

files and checked manually to see whether process/multiplications are done as required.  

When the network outputs and real outputs comparison file will be examined, it should  be seen that 

the network outputs values are close to the real output values in each iteration, which means that the 

network would be converging as required. 

3.4 Testing Network Correctness/ Network Evaluation 

During the training process, the used network models will be saved to files which can be found in 

data/models directory on Bitbucket page. After completing the training of the network, the proper 

network model will be reloaded from one of those model files to test network correctness with the test 

dataset. In the current study, the test dataset consists of 25 samples with 5 “noise sample” (that is not 

belonging to one of the four cancer categories). 

In network testing, each sample will be given to the reloaded network and subjected to feedforward 

propagation one by one. After this feedforward propagation, the network output vector will be 

obtained and its classification/diagnosis will be done according to a percentage weight in the sum of 

all elements, as explained in Section 3.3.1. (The percentage weight number will be decided after trials) 

For each correct diagnosis, the number of correct samples will be iterated with one and at the end of 

all samples the correct number will be divided by the test dataset sample number (25) to gather the 

percentage accuracy of the network. After obtaining the network accuracy, using a list of correct 

classified/prognosis samples, it will be compared with the results of Khan et al. (2001) to understand 

whether the present study network works as requested, and whether it is better or worse than other 

study networks. 

 

 The pseudo code of testing correctness can be seen below; 

Pseudo Algorithm 1 Testing correctness of a data set 

 
1:procedure:checkOutputCorrectness 
2: 
3:       for each inputVec , realOutputVec in DataSet do 
4:        
5:               feedforward(inputVec); 
6: 
7:   outputVec <- getOutput(); 
8: 
9:            sum <- sum(outputVec); 
10: 
11: highest <- getHighestValue(outputVec); 
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12: 
13: if highest > sum *0.98 then 
14: 
15:                    if index in outputVec == index in realOutputVec then  correctNumber++; 
16: 
17:      correctness = correctNumber/ DataSet.size; 
 

 

After the network correctness has been approved by comparison with the results of Khan et al. (2001), 

the other study cancer datasets will be used to affirm the correctness of the network training and 

testing. 

 

3.5 Profiling/Performance Evaluation 

The bottleneck of written serial code will be tested/monitored by using the performance testing tool 

and Linux time function. The Google Performance Analysis CPU profiler, that can be found on 

https://code.google.com/p/gperftools/,  tool will be used to monitor unit time for each function/method 

relative to total unit (calles) of software. According to the gathered results from gperftools, the code 

parts will be changed/replaced to optimise it and after each changing the function time will be used to 

check total wall time reduction. Due to the total wall time may change depends on hardware current 

work load, the software will be run several times and average of wall time will be taken to compare 

reduction time.  

In addition, the total spent time against neuron numbers will be tested on both single and multilayer 

neural networks and the effect of neuron/network structure on the spent time will be examined by 

plotting graphs. 

Also it should be mentioned the intention that the Thrust library will be used to implement the 

software on CUDA in the future, regarding to the compability of Thrust library, the gperftool is 

chosen for performance analysis. 

 

3.6 The Library Cunernet 

The Cunernet is a library that can be downloaded from the Bitbucket project page and by typing 

simple commands it can be compiled/installed; 

In order to compile and install;   

● ./cmake.local 

In order to compile and run; 

● source local/share/CUNNET/CUNNET.conf 

● ./cmake.test 

 

The library has to be compiled using g++ 4.8 under linux 64bit to ensure compatibility with Cuda 7.0. 

To contribute it, the functionalities have to be added to the /src/cunnet directory and the cmake file 

(/src/cunnet/CmakeLists.txt) has to be edited by adding a new source file name. It is good practice to 

create a new test for each functionality implemented. Every new test has to be coded as the template 

used in "/src/tests/test_main" and  ./cmake.test script file should be modified. 

https://code.google.com/p/gperftools/
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Chapter 4  
  

 System Design 

 
This chapter describes chosen design techniques along with both the benefits and drawbacks. 

4.1 System Overview 

The project design parts can be divided in different main steps as pre-processing/choosing dataset, 

developing design in terms of using feedforward, backpropagation and updating weights protocols in 

serial code and also software design. 

 

4.2 Selecting and Pre-process of  Dataset 

A gene expression dataset is a repository consists of microarray gene expressions that is explained in 

2.1.2. Today there are many gene expression cancer datasets publicly available on the web thanks to 

projects. “The Cancer Genome Atlas” (www16, 2015) and “Gene Expression Omnibus” (www17, 

2015) can be listed as two of the main projects for creating datasets. Basically a specific cancer 

dataset is created by collecting variety of genes/features, which have affinity with specific cancer 

types, from cancer patients’ microarray sets and collected data are stored to a database properly. After 

the creation of a cancer dataset, it might published online and can be accessed on the project web 

pages. 

   Even though a dataset’s genes are related to cancer categories, the high number of genes (being 

high-dimensional) can pose some challenge for the accuracy of cancer category detection. For 

instance, whilst those extra features might mislead the machine learning calibration, they can also 

cause an overwhelmingly inaccurate calculation in the system as is shown in Figure 5.7. Consequently, 

the training process might be concluded as having a wrongly calibrated network which is not capable 

of detecting cancer subtypes accurately (Yu & Liu, 2003). Therefore, depending on the characteristics 

of the dataset, it should be pre-processed; however there are different methods for pre-processing a 

dataset to find the exact features and each of them might result in a relatively different list of genes.  

Bearing in mind the possibility of differences on the gene list, using the identical SRBCTs of a 

childhood dataset from Khan et al.’s (2001) study would be the correct choice to test the present 

study’s results and improvements.  As discussed briefly in Section 3.2, there were 88 samples with 

6567 genes at the beginning of pre-processing in Khan et al.’s study. As a first step of pre-processing, 

these 6567 genes were filtered using image analysis on gene expression profiling, as was shown in 

Figure 2.2. After implementing the red/relatively red intensity filtering method, which shows the 

relative rank of genes and cancer subtypes, 2308 genes remained and then a principal component 

analysis algorithm (PCA), which reduces the dimensionality of data, was applied to the remaining 

2308 genes. Finally ten components were left to train/calibrate their neural network, and as result of 

that study (Khan et al., 2001), 96 genes which were relevant to four cancer subtypes were found.  

 

The stages of pre-processing can be seen in Figure 4.1 
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Figure 4.1 Pre-processing dataset;  6567 genes are filtered by image analysis filtering ,the remained 2308 genes data 

dimensionality is reduced by principal component analysis and then 96 genes were found by (Khan et al., 2001) 96 genes 

have been found. 

 

In the present study, the extracted 96 genes will be used as dataset in order to train and test our neural 

network. By doing that the results of project can be compared and possible improvements will be 

identified. 

4.3 Developing Design  

 

First, the programming languages will be considered for neural network development. Even though 

pyhton language has some libraries such as PyBrain for neural network, C++ will be more suitable 

choice for development on both serial and parallel algorithms due to the project will be implemented 

on CUDA by using Thrust library and also for the reason of using Google Performance tools to 

optimise code.  

The development tool that will be named the “Cunernet”, will be released as an open-source library. 

Therefore software development best practice techniques will be used. The development process will 

be practised on the Bitbucket web application service by using “git” which provides opportunity to 

roll back the code by tracking its history. Additionally, the code history and tool itself might be used 

as a guide for further developments with regard to the tool will be released as open-source on 

Bitbucket page. Also, the codes’ comments are written base on Doxygen rules, and it is used to 

generate documents of code as an html or pdf file by using the make-doc.sh file which can be found in 

the data folder on Bitbucket project.   

In reference to the extensibility of the software design, even though the network will be run as a single 

layer neural network in the present work, it will be capable of extending to a multilayer neural 

network depending on the typed information from users. In addition, as backpropagation weight 

updating protocols, weights will be updated every ten samples (as Khan et al. (2001) did), but two of 

the main learning algorithms (stochastic and batch) will be also added to the software code as an 

optional features. The pseudo-code backpropagation protocols can be seen in Pseudo Algorithm 5 

Updating Weights; 

Regarding the compilation of the Cunernet library, the Cmake open-source software will be used, 

which can compile several programming files from a tree-type directory. The compilation procedures 

will be written in a readme file and will be found on the Bitbucket project page. 

After finishing the developing, a unit test will be performed to determine whether the software is 

working as requested. The unit testing implementation will be done by creating a small dataset, with 

four input and two output element vectors, and the output of the network will be checked during the 

training processes with the created dataset. 
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4.4 Software Design  

The software should be run on a 64-bit Linux operation system with CUDA 7.0. After downloading 

the Cunernet software from Bitbucket, the user will be able to compile and run the software with basic 

commands that are written in the readme file on the Bitbucket page. 

The files will be designed as a tree directory. A folder src will contain the source code files, a data 

folder will include datasets or written files that are created during training/testing. Also. local will be 

the target installation folder in which Cmake outputs binaries will be stored. In addition, scripts for 

drawing line graphs and so on will be located in a script folder. All the folders can be found on the 

Bitbucket project page. 

When the software is compiled and run, a command panel will ask for some information such as 

training/testing, network structure (single/multilayer), dataset file name to train the network, gene 

number in dataset and learning rate with momentum values 

In this step, the Cunernet software will be able to be trained/tested by any suitable dataset by passing 

different dataset file names and gene numbers into the given file. 

4.5 Neural Network Design 

As mentioned in the Chapter 2, neural networks are a suitable machine learning systems for detecting 

cancer subtypes accurately. The main restriction of this system can be stated as that  

● it requires hardware which should be able to do high computations 

● Regarding to high computations requisite, obtaining results may take relatively long time  

On the other hand by optimising algorithms and by reducing dimensionality of dataset with correct 

pre-processing methods, the time can be reduced significantly and an accurate result can be gathered 

in favourable time. 

4.5.1 Feedforward Algorithm 

During the network building process, weights will be initialised randomly from a certain range. The 

range of weight values can be expressed as [r,-r] and it will be able to be calculated as follow; 

𝑟 =
0.1

𝐹𝑖 
     4.1   

Fi: Number of connected neuron to the 𝑖𝑡ℎneuron 

After network creation and the weights initialisation, the feedforward algorithm will be implemented 

according to formula 2.1 as shown in the Pseudo Algorithm 2 Feedforward Propagation; 
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Pseudo Algorithm 2 Feedforward Propagation 
 
1:procedure:feedforward 
2: 
3:       for each inputVector  in Dataset do 
4:        
5: for each layer in in network do 
6:                                
7:                 for each neuron in layer do 
8:   weightVector <- getWeights OfNeuron(neuron) 
9:                         sum=inner_product(inputVector , weightVector ) 
10:   sum=function(sum)  
11: 

Figure 4.2 Pseudo code of feed forward propagation; for each neurons’ weight vectors in layers is 

multiplied by input vector in dataset. 

 

 

4.5.2 Backpropagation Algorithm 

 

For the next step of the project, backpropagation has been chosen as an optimisation algorithm. As 

discussed in Chapter 2, this algorithm works by taking derivative of error function (Eq 2.4) with 

respect to network weight and then those weight values are updated depending on the protocol that is 

explained below. Pseudo Algorithm 3 Backpropagation 

 

Pseudo Algorithm 3 Backpropagation 
 
1:procedure:backpropagation 
2:        Begin initialise realOutputVector , i<-0; 
3: 
4:       Since backpropagation function is called right after feedforward, the 
5:       output of network can be  called by getOutput() function directly  
6:       outputVec <- getOutput(); 
7:         
8:     for each element in realOutputVec do 
9:              i <- i+1 
10:             deltaVector[i]<- (realOutputVec[i]- outputVec[i]) * previousNeuronValues.  
                 * (1- previousNeuronValues); 
11:               
12:    calculateWeightChanging(deltaVector); 

Figure 4.3 Pseudo code of Backpropagation; after obtaining output vector of network, it is 

ssubstracted with real output vector that comes from dataset. After that is  multiplied by 

previous neuron value and 1-previous neuron which equivalent to derivative of neuron net 

value (Equation 2.16)  
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4.5.2.1 Updating Weights - Training Protocols 

As can be seen in Pseudo Algorithm 3 Backpropagation  line 14, the function 

“calculateWeightChanging” is called to store weight changes after the delta vector of the network is 

calculated. The pseudo code of the calculateWeightChanging function as follow; 

 

Pseudo Algorithm 4 Weight changes calculations 
 
1:procedure: calculateWeightChanging 
2:        Begin initialise deltaVector ,previousNeuronValues , i<-0,k<-0; 
3: 
4:           
5:         for each neuron  in layer do 
6:    i <- i+1 
7:    k <- 0; 
8: 
9:    for each weightDelta  in neuron  do 
10:  k <- k+1 
11: 
12:  Weight changing is implemented (Eq 2.10) 
13:  weightDelta  = learningRate* previousNeuronValues [k]*deltaVector[i] +  
      momentum* weightDelta   
14: 

Figure 4.4 Pseudo code of calculateWeightChanging function; After calculation delta values in bakpropagation 

function, it is passed to calculateWeightChange function and in every neuron weightDelta value is updated by 

multiplying learning rate, previous neuton values, delta values, and momentum (Equation 2.8).  

On line 13, there is an addition term momentum (α) which differs from Eq 2.10. The momentum 

parameter determines the quantity value to add weights by using previous and current weight values 

(Eq. 4.3). 

∆𝑤𝑖 = 𝜂 (𝑦𝑗 − 𝑜𝑗)𝑓′(𝑛𝑒𝑡𝑗) 𝑥𝑖 +  𝛼∆𝑤𝑖            (4.2) 

𝑤𝑖 =  𝑤𝑖 +  ∆𝑤𝑖            (4.3) 

 

 

 The advantages of momentum is that due to ∆𝑤 values depending on learning rate and derivative of 

error function (Eq. 2.10), in the case of derivative of error tending to be smaller value, there should be 

a parameter to make descending step bigger. By making steps bigger the error minima can be reached 

in fewer steps. The difference between  using and not using momentum can be seen in Figure 4.2; 
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Figure 4.2: Updating weights by using momentum (right) and not using momentum (left); as it is seen in Figure 2.10; 

the desired point (the centre of contour plot in this case) is getting be more closer in each weight update. Each arrow 

above represents a step toward to centre and in the case of not using momentum; due to gradient descent is 

decreasing while approaching to centre, the steps are getting be smaller which cause to more calculation burden that 

takes more time network to converge. On the other hand when momentum is used, even though gradient descent is a 

small number value, momentum balances the step length and the network is converged faster with less calculation   
  

 

As can be seen, the steps of descending are getting smaller and smaller (left) because the  derivative 

of error function tends to be smaller and  that causes more iteration, however by using momentum 

(right) the steps become more stable and the minimum point of error function is reached faster than 

without using the momentum method. 

 

 

Considering the advantages of momentum, it is used in the project weight updating protocols which 

will be implemented every 10 samples  in the way as that was done by Khan et al., study (2001). In 

regarding to weight update regularity, there couple of different update protocol and considering to 

future usign of Cunernet Library, the main two of those protocol  (batch, stochastic) also will be 

added to the project software and those will be able to be used as optional.  
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Chapter 5 

 

 Implementation, Testing and Evaluation 

This chapter will describe the training implementation of the neural network, the Cunernet software 

implementation and the test results, and finally an evaluation of the work will be presented. 

5.1 Training Implementation 

The project network in training/testing procedures is restricted to the single layer neural network as it 

has been done in Khan et al., (2001) study. The dataset is read from the given dataset and input layer 

neuron numbers is set to 96 due to the each sample has 96 genes values and also 4 output neuron is 

created  in context of  the output vectors have 4 elements (Figure 5.1) 

 

Figure 5.1  The used network structure; training set consist of 42 samples and each sample has input (96) and output 

(4) vector. While input vector has 96 elements correpond to genes, the output vector has 4 elements corresponds to 

category of cancer. (presence of category is represented by 1 , 0 otherwise in output vector). In training procedures, 

input vector of sample is given to the network and the network output vector (y) is obtained. Thereafter obtained 

output vector and the real output vector, mentioned above, is substracted  and through the calculations mentioned in 

Chapter 2, backpropagation is implemented. These procedures is repeated untill all samples is used. 

After the network is built, training procedures is started by reserving 63 over 88 samples to train 

network while the remaining 25 samples are used to test network correctness. In the beginning of 

training network, 63 samples are shuffled and in context of cross validation it is split into three-fold. 

While any two of three folds (42 samples) is labelled as training set, the other 21 samples set as 

validation. The training set is given to the network through the feedforward, backpropagation and 

every 10 samples the weights of network is updated (Eq. 4.4) as it explained in Chapter 4. These 

procedures is implemented 100 times by using same training set and at the end of 100 times repetition 
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the network is saved to a file with its weight to be used in testing.  This process is repeated 3 times 

and each time different 21 samples are used as validation. After finishing 3 folds using three different 

network is collected and 1 iteration is completed. After finishing 1 iteration, whole procedures is 

started again with shuffling whole dataset and splitting to 3 folds again. The training of network is 

completed after 1250 iteration as it has been done in Khan et al., (2001) study. The performed tasks 

by each block of flowchart can be seen in Figure 5.2 

 

Figure 5.2 Training Procedures; after obtaining 63x96 dataset, it has been split to 3 folds and while 2 of 3 is used as 

training 100 times, the other 1 fold remained as validation. Thereafter the validation fold is changed and these 

procedures is repeated three times with different validation sets in each. After completion 3 times changing, 1 

iteration is  accomplished and the all training network stage is  finished after 1250 iterations as it has been done in 

Khan et al., (2001).  
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5.2 Software Implementation 

The Library Cunernet is written by using C++11 language in object oriented programming paradigm. 

It can be downloaded from the Bitbucket project page and easy to compile with commands that are 

written in the readme file.  

After compiling and launching software, the question “Training or Testing?” is asked that determines 

whether it is going to be run to train or test network.  

 If Testing is chosen, a  dataset name should be given with gene number in it. After passing proper 

information, the question for classification or diagnosis is asked. In this step there is a third option 

(classdiagnosis) is added as an extra to the Khan et al.,(2001)  methods (Figure 5.3).  By choosing 

“classify”, the saved networks in training are testes on samples one by one. When “diagnose” is 

chosen it asks the training sample number to calculate distance threshold, that explained in 5.4 Testing 

Network Correctness and Evaluation, after giving training sample number it starts calculate distances 

and end of it diagnosis result is given to the command panel (Khan et al., 2001), When 

“classdiagnosis” the testing procedures  is typed it starts trying each saved network with all samples in 

given dataset and end of trying all networks the best result is given to the panel..  

 

Figure 5.3 Cunernet library testing procedures starts. By giving proper information classification started. Also 

diagnosise and classdiagnosis could have been chosen. 

 If the Training is chosen, the dataset name with its gene number and also learning rate momentum 

values information is asked (Figure 5.4).  

 

Figure 5.4 Cunernet library training procedures starts by passign proper information. 
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After giving that information, the iteration number, and the average sum square error value and the 

correctness percentage of the training datasets are shown to the user, as can be seen in the panel above. 

During this training process, the procedures that are explained in Figure 5.2 are implemented. As is 

shown in the flowchart, every training and validation set used  are recorded to the file 

(train_validation.csv”) and also before changing folds (see Figure 5.2) the updated network structures 

are written to files and named as ‘model’iterationNo’.csv’ (for example, ‘model44.csv, ‘model45.csv’ 

and so on) in each fold-changing step. At the end of the training procedure, the 3750-model network 

is written to files and in testing implementation those files are reloaded to test the network correctness 

with the remaining 25 samples as was explained in Section 5.4  in detail (the files can be found in the 

Bitbucket project data folder).  

 

 

5.3 Testing   

In this section, first the over-training control procedures, unit testing and profiling code operations 

will be defined. Then the main 25 samples used for determining the trained network correctness 

testing will be explained, with the results. 

 

5.3.1 Over-training control 

In order to check for the existence of over-training in the calibration process, a sample low 

dimensional dataset was created from the 63x96 dataset used and it was given to the network. During 

the creation of the low dimensional dataset, various functions which are explained below were used 

from the Neural Network toolbox Gene Expression Analysis example (MATLAB Neural Network 

Toolbox Release,R2014a).   

 

● Genevarfilter: Filtering genes with small profile variance in dataset 

● Geneentropyfilter: Removing genes with low entropy expression values in dataset 

● Genelowvalfilter: Removing gene profiles with low absolute values 

● Generangefilter: Removing gene profiles with small profile ranges  

● Processpca: Reducing dimension of data by using orthogonal transformation.  

 

After filtering genes on Matlab, the processpca was used as a final function to reduce the 

dimensionality of the rest of the data and a sample dataset consisting of ten components (63x10) was 

obtained and used in the network calibration procedure.  

At the beginning of over-training control, the network is structured as 10 input and 4 output neurons 

and the weights are initialised. Then  the prepared dataset (63x10) is split 3 folds and two of them 

used as training set in calibration operations feedforward ,backpropagation  and updating weights. The 

remained one fold is kept as validation and only feedforward propagation is used on this validation set. 

This operations are implemented 100 times and each time MSE (i.e. mean square error) is calculated 

(Eq. 5.1) for both the training and validation set. After the calculated MSE values are stored in two 

vectors separately, at the end of 100 iterations these vectors are written as the errLog.file file and the 

over-training procedures are relaunched by initialising the network with the same weights and 

shuffling the data (see Figure 5.5).      
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    N_p : number of sample in dataset 

Figure 5.5: Over-Training Testing;The network is initialised with chosen values between [r,-r], then the 

dataset is split to 3 folds and any two of them is used as training set. The network is trained by using the 

chosen training set and thereafter MSE values are calculated for both the chosen trainign , validation sets 

and the calculated MSE values are stored to two different vector seperately. By using same training and 

validation sets, same procedure is repeated 100 times and each time 2 MSE values (for validation and 

training) are added to the two vectors seperately. At the end of 100 repetation, 2 vectors with  a hundred 

MSE values (1 for training 1 for validation) are obtained and written to a file to drawn later on. These 

vectors with 100 MSE elements will be shown in Figure 5.6 as one line for each vector (purple for training 

and grey for validation).  By doing that  1 main iteration is completed and after 2 vectors are cleared, the 

weight are re loadeded to network and second main iteration procedures are re-run by shuffling data 

uniquely.  This main iteration is repeated 50 times to obtain enough statistical informatino of network 

over-training. At the end of this testing as 50 for each sets we got 100 vectors in total. 

 

In order to obtain enough statistical information, the procedures above is repeated  50 times and by 

doing that 100 vectors (50 for training , 50 for validation sets) are obtained in the file errLog.csv. 

These 100 vectors ,each corerespond to the one line, are used to check whether over training exist or 

not. By using a python script (plotTrainAndValidate.py) that can be found in scripts folder on 

Bitbucket project, the error values are plotted on a line graph (Figure 5.6)   
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Figure 5.6 MSE calculations; By using same training and validation sets, the MSE values of both (for training and 

validation) is calculated 100 times and stored to two vectors.At the end of this repetiton, two vectors that have 100 

MSE values in each is created. This processes are repeated 50 times and 100 different vectors (50 for 

training(purple),50 for validation(grey)) are collected and plotted. 

 

As can be seen in Figure 5.6, whilst the errors of the training set (purple) decreased through the 100 

repetitions, the validation errors (grey) also decreased similarly.  Because there was no increase in 

validation errors, it can be said that there is no sign of over-training in the network training. 

 

5.3.2 Unit Testing 

 

Unit testing is a method to check procedures of software whether it is suitable for use or not. Unit test 

is implemented in order to test the correctness of the present study software training procedures by 

creating datasets and training network manually. 

The dataset was structured as four input elements and two output elements which led to four-neuron 

input and two-neuron output layers. To start testing, the input vectors are given to the network one by 

one and the training procedures in Figure 5.2 are followed. During the training of the network, both 

network output elements and real output elements are written to a file in each iteration to monitor the 

behaviour of the network.  
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Iteration 150   

Fold 3       

Train Set       

Network Output  Dataset Real Output  

0.000125 0.999875 0 1 

0.98782 0.012209 1 0 

0.995976 0.004032 1 0 

0.996673 0.003331 1 0 

0.996673 0.003331 1 0 

0.99812 0.001877 1 0 

0.000174 0.999826 0 1 

0.005957 0.994041 0 1 

0.971165 0.028866 1 0 

0.995976 0.004032 1 0 

0.94422 0.055724 1 0 

0.997726 0.002272 1 0 

0.283181 0.716934 0 1 

0.992811 0.007204 1 0 

Validate Set     

Network Output  Real Output 

0.933273 0.066712 1 0 

0.99812 0.001877 1 0 

0.002515 0.997477 0 1 

0.00073 0.999271 0 1 

0.96682 0.033206 1 0 

0.996673 0.003331 1 0 
Table 5.1:Unit Test Results; The network outputs are converging to the dataset real output values by getting be more 

and more close to then (1 or 0). 

As the example in Table 5.1 shows, the output vectors of the network converged to the real output 

values for both the training and the validation sets, which shows that training the network worked as 

required and is therefore appropriate for use in real examples. 

 

5.4 Testing Network Correctness and Evaluation 

After these training procedures are done, the obtained network models are reloaded from the files and 

tested on 25 test samples which consist of  6 NB, 6 EWS, 3 BL,5 RMS and 5 different cancer subtype 

as noise information.   It is worth to remain that, these 25 samples is seperated from 88 samples 

dataset at the beginning of training procedures and they are never involved training procedures which 

means completely new for the network. 

Ewing Family of tumours 
EWS 

Rhabdomyosarcoma  
RMS 

Burkitt lymphomas 
BL 

Neuroblastoma  
NB 

Noise 

6 Samples 5 Samples 3 Samples 6 Samples 5 Samples 

Table 5.2: The test samples cancer category distribution in 25 samples 
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According to 4 different cancer category is included in the test dataset, the output of each sample 

consist of 4 elements and while category of cancer is denoted by 1 the rest of three elements is 

denoted by 0. For instance if the first element of output is 1 it shows that this sample is EWS type. 

As it mentioned above, testing has 3 options; first two is classification and  diagnosis methods which 

have been used in Khan et al., (2001) study and classDiagnosis method that is used in the presented 

study as an extra.  The procedures in classification and dianosis are as follow; 

 

 

5.4.1 Classification 

As in the Khan et al., (2001) did, a term average vote is used in the classification process. To find 

average votes,  firstly a network over 1250 saved network is reloaded and one sample is taken form 

dataset. Feedforward propagation is implemented by using the taken sample and the network output is 

gathered. Thereafter a second network over 1250 is reloaded and by using same sample, feedforward 

is implemented on the second reloaded network. The gathered second network output is accumulated 

with the first gathered network output. After reloading 1250 network with accumulation network 

outputs, the average vote for the first taken sample is obtained and all procedures are implemented for 

all samples one by one to obtain all averate votes of samples. 

After obtaining all samples average votes, the classification is done by checking maximum value 

number index in the average vote vector. Since the network has 4 output neurons, which correspond 

to 4 cancer category (EWS,RMS,BL,NB), the average vote vector has 4 element as well. The real/ 

target output vector, which are in the dataset, shows the presence of cancer with 1 and 0 otherwise. 

For instance a vector with elements 1,0,0,0 indicates that the sample has EWS category cancer. 

Therefore if  maximum value in obtained average output vector is in the first index, it is classified as 

EWS, second for RMS, third for BL and latly fourth for NB. 
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Figure5.7: Classification procedures; a sampe is given to the saved 1250 network by feedforward propagation. 

Thereafter the outputs are accumulated for each network and after using all saved networks, the accumulated 

outputs are divided by the network number to find average vote of the used sample. These procedures are done for 

all samples and according to the maximum element index of average vote vector it is classified. 

 

After finishing the classification of the Cunernet Library it can be seen that all samples are classified 

with 100% accuracy that means all samples in dataset of 88 samples is classified correctly (see Table 

5.3) as was done by Khan et al., (2001) study. Also it should be noted that, the “noise” samples are 

classified as noise in the Cunernet library classification. The classification of noise is done according 

to the weight of maximum number in the four element vector. If the maximum number has a less than 

98% weight then it is labelled as noise. (The 98% threshold was decided after several trials) At the 

end of trials it is seen that 5 over 5 noise samples is classified correctly  while Khan et al., (2001) did 

not classify none of them. 

  
Real Network Classification   Network Outputs   

  
Output Output   EWS RMS NB BL 

Sample 1 0 0 Matched 0.999999 9.26E-06 1.28E-06 7.54E-05 

Sample 2 0 0 Matched 0.999994 8.24E-06 3.81E-05 2.52E-05 

Sample 3 0 0 Matched 0.999999 7.03E-05 1.02E-07 4.93E-07 

Sample 4 0 0 Matched 0.999996 0.0001377 7.96E-09 1.39E-07 

Sample 5 0 0 Matched 1 7.50E-07 1.03E-07 6.76E-06 

Sample 6 0 0 Matched 1 1.86E-07 3.02E-07 1.21E-05 

Sample 7 0 0 Matched 1 9.71E-06 6.16E-08 3.63E-07 

Sample 8 0 0 Matched 1 4.71E-08 1.35E-07 1.29E-06 

Sample 9 0 0 Matched 1 2.59E-09 1.03E-08 1.69E-06 

Sample 10 0 0 Matched 0.999428 0.0001402 5.30E-12 2.25E-08 
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Sample 11 0 0 Matched 1 1.59E-07 1.95E-06 6.41E-05 

Sample 12 0 0 Matched 1 1.85E-07 5.96E-06 2.39E-06 

Sample 13 0 0 Matched 1 1.59E-06 2.70E-06 3.65E-07 

Sample 14 0 0 Matched 1 6.82E-07 3.25E-07 1.32E-05 

Sample 15 0 0 Matched 0.999944 6.85E-06 0.000435 2.49E-05 

Sample 16 0 0 Matched 0.999018 0.0001302 0.0003298 0.0002025 

Sample 17 0 0 Matched 0.99931 0.0005445 0.0002998 0.000369 

Sample 18 0 0 Matched 0.999831 0.0001134 8.36E-05 0.0001262 

Sample 19 0 0 Matched 0.999963 6.51E-05 3.24E-05 6.66E-05 

Sample 20 0 0 Matched 1 4.42E-06 2.92E-06 4.00E-06 

Sample 21 0 0 Matched 0.99952 3.30E-05 0.0013769 6.46E-05 

Sample 22 0 0 Matched 0.999618 5.54E-05 0.0009757 0.0004503 

Sample 23 0 0 Matched 0.998753 0.0006452 0.0002926 9.89E-05 

Sample 24 3 3 Matched 9.77E-05 2.73E-05 0.0001647 0.999963 

Sample 25 3 3 Matched 0.000262342 3.13E-05 0.0004996 0.999769 

Sample 26 3 3 Matched 4.94E-05 3.01E-05 5.85E-05 0.99998 

Sample 27 3 3 Matched 8.01E-05 1.38E-05 4.81E-05 0.999955 

Sample 28 3 3 Matched 0.000123608 0.0008356 0.0007692 0.999382 

Sample 29 3 3 Matched 0.000281674 0.0002109 0.0003967 0.999878 

Sample 30 3 3 Matched 0.000160402 0.0003014 0.0001588 0.999756 

Sample 31 3 3 Matched 0.000195608 0.0002678 0.0006139 0.999087 

Sample 32 2 2 Matched 1.09E-06 5.90E-05 0.993575 2.29E-06 

Sample 33 2 2 Matched 6.07E-07 8.10E-05 0.993075 0.0001272 

Sample 34 2 2 Matched 8.80E-08 0.0048147 0.990776 9.28E-08 

Sample 35 2 2 Matched 0.00075952 3.95E-05 0.993535 0.0005605 

Sample 36 2 2 Matched 7.76E-05 8.42E-05 0.993505 0.0002416 

Sample 37 2 2 Matched 5.10E-05 5.32E-05 0.991245 0.0002521 

Sample 38 2 2 Matched 0.000266827 1.25E-05 0.993562 0.0001695 

Sample 39 2 2 Matched 0.000257855 2.19E-06 0.993594 8.66E-05 

Sample 40 2 2 Matched 8.06E-05 0.0002301 0.992751 0.0002164 

Sample 41 2 2 Matched 0.00117653 4.54E-05 0.992208 4.89E-05 

Sample 42 2 2 Matched 0.000538316 1.27E-05 0.993155 0.0001874 

Sample 43 2 2 Matched 4.59E-06 0.0004662 0.993459 6.50E-06 

Sample 44 1 1 Matched 6.35E-09 0.999997 1.67E-05 1.27E-07 

Sample 45 1 1 Matched 8.07E-05 0.999623 1.97E-05 1.12E-06 

Sample 46 1 1 Matched 1.19E-05 0.999968 3.10E-06 5.61E-07 

Sample 47 1 1 Matched 1.87E-05 0.999583 2.89E-06 7.95E-08 

Sample 48 1 1 Matched 5.41E-06 0.999252 0.0008625 2.60E-06 

Sample 49 1 1 Matched 8.44E-06 0.998939 0.0013327 1.35E-05 

Sample 50 1 1 Matched 1.12E-05 0.999456 0.0008092 6.35E-06 

Sample 51 1 1 Matched 0.000749966 0.999184 0.0006292 4.45E-06 

Sample 52 1 1 Matched 5.92E-06 0.999277 0.0006634 1.06E-06 

Sample 53 1 1 Matched 0.000285102 0.999078 4.92E-05 7.15E-07 

Sample 54 1 1 Matched 7.84E-08 0.999994 9.67E-08 3.37E-06 

Sample 55 1 1 Matched 3.33E-05 0.999993 6.92E-09 1.23E-08 

Sample 56 1 1 Matched 0.000436614 0.999953 1.11E-06 4.02E-06 

Sample 57 1 1 Matched 1.07E-06 0.999973 2.64E-07 7.93E-10 

Sample 58 1 1 Matched 9.77E-05 1 7.77E-07 2.29E-08 

Sample 59 1 1 Matched 5.74E-05 0.99992 1.15E-08 4.90E-09 

Sample 60 1 1 Matched 1.84E-07 0.999997 1.67E-08 5.25E-08 

Sample 61 1 1 Matched 0.000619259 0.999953 8.29E-07 7.31E-08 

Sample 62 1 1 Matched 0.00059364 0.99977 2.54E-06 3.92E-09 

Sample 63 1 1 Matched 7.39E-11 1 6.73E-11 5.71E-11 

Test 1 2 2 Matched 0.0120638 2.28E-06 0.993532 0.0004412 

Test 2 0 0 Matched 0.999628 4.51E-05 0.0001844 4.66E-05 

Test 3 -1 -1 Matched 0.549998 0.0031857 0.0009182 0.0072279 

Test 4 1 1 Matched 4.44E-10 1 9.80E-08 5.69E-08 

Test 5 -1 -1 Matched 0.0851901 0.0038741 0.0185478 0.0755261 

Test 6 0 0 Matched 1 1.31E-07 2.68E-06 1.55E-05 

Test 7 3 3 Matched 0.000272146 2.50E-05 0.0001219 0.999985 

Test 8 2 2 Matched 0.000172695 3.73E-06 0.993592 3.12E-05 

Test 9 -1 -1 Matched 0.640664 0.150756 3.31E-05 0.0080591 

Test 10 1 1 Matched 5.37E-09 0.999971 1.64E-10 7.10E-08 

Test 11 -1 -1 Matched 0.454711 0.0033484 0.0102645 0.0056509 
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Test 12 0 0 Matched 1 2.13E-07 6.02E-06 1.33E-07 

Test 13 -1 -1 Matched 0.768471 0.938202 1.77E-06 3.13E-05 

Test 14 2 2 Matched 1.09E-05 2.15E-10 0.9936 0.0026604 

Test 15 3 3 Matched 6.52E-05 3.29E-08 1.46E-06 0.999999 

Test 16 2 2 Matched 8.81E-06 1.42E-09 0.9936 0.0001355 

Test 17 1 1 Matched 9.75E-07 0.999978 4.06E-06 1.32E-07 

Test 18 3 3 Matched 0.00299425 0.0005032 0.0012095 0.997766 

Test 19 0 0 Matched 1 3.49E-08 1.24E-06 7.85E-06 

Test 20 0 0 Matched 0.849812 9.23E-05 9.05E-08 0.0006389 

Test 21 0 0 Matched 0.999386 0.0001503 6.09E-12 2.45E-08 

Test 22 1 1 Matched 1.30E-07 0.999999 5.60E-07 2.81E-07 

Test 23 2 2 Matched 6.58E-05 8.30E-08 0.986638 2.91E-05 

Test 24 1 1 Matched 3.16E-06 0.999999 2.78E-08 6.08E-08 

Test 25 2 2 Matched 3.52E-06 1.80E-11 0.9936 0.0003068 

         ################################# 
     Classification is done with 100%  accuracy 
     ########################### 
     Table 5.3; Classification Result; Real output column represent the real diagnosis and 0 for EWS, 1 for RMS, 2 for 

NB , 3 for BL and -1 for noise samples. Network output column represent the classification result of the Cunernet. 

 

 

5.4.2 Diagnostic Classification 

In diagnostic classification, a term “distance” is used as was done by Khan et al., (2001). First, a 

sample from training dataset is given to the 3750 saved network and this sample’s output is obtained 

by feedforward propagation. Then the distance (Eq. 5.2)  of this sample is calculated and accumulated 

as is in Figure 5.8. This calculation/accumulation was implemented all training samples and at the end 

of it, the samples are grouped by classification result and 95% of the total distance was taken as a 

threshold value. Then the test samples’ distance were calculated on all 3750 saved networks and if 

their distance is less than calculated threshold value, it is diagnosed, otherwise it is labelled as noise.  
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Figure5.8 Diagnosis procedures;  Each samples’ distance is calculated. 95% of training samples distances are 

calculated as an treshold values for each cancer category. Thereafter each test sample’s distance calculated and 

according to classification type treshold values it is checked wheter less or more than. In the case of being less than 

treshold value (95% of sum of training samples distances) it is diagnosed otherwise set as a noise. 

𝒅 = 𝟏/𝟐 ∑

𝟒

𝒊=𝟏

(𝒚𝒊 − 𝒐𝒊 )
𝟐     𝟓. 𝟐  

 

At the end of these diagnosing procedures, our Cunernet Library diagnosed all samples with a 96% 

accuracy, the same result as that achieved by Khan et al., (2001) (see Appendix  Table 1).  

 

5.4.3 ClassDiagnosis:    

In this method, one reloaded network is given by all samples at once and the each saved network 

correctness is considered separately. The steps of this method are followed; 

● Firstly a network over 3750 is reloaded. 

● A sample is given to the reloaded network and feedforward is implemented  



48 
 

● The network output of this sample is obtained and it is classified according to the highest 

number in the obtained vector. 

● To diagnose this obtained vector. The highest value weight in all four element is checked 

● If the highest value weight is ore than 98% than is it diagnosed according to the highes value 

index the diagnosis result is checked with real diagnosis. 

● Thereafter by using same reloaded network, second sample is given to the network and same 

procedures are done. 

● At the end of all samples, the reloaded network is correctness accuracy is calculated 

according to correct diagnosed sample number. 

● Than second network is reloaded and all samples is given to the second network again. 

● At the end of calculating all network correctness accuracy, the network which has a highest 

accuracy is chosen to be shown. 

 

 

 

Figure 5.9: ClassDiagnosis Procedures;  The saved network are taken 25 samples one by one. If the output of network 

has a value which has 98% or more weight in all four values, it is diagnosed  and compared to real output value. If 

none of the four values has 98% weight, it is diagnosed  as noise sample and compared to real output value. Overall 

all matches are sum and divided by 25 to gain accuracy percentage of trained/reloaded network. 

 

As can be seen in Table 5.4, the results of comparison show that the network has classified 20 

samples with 100% accuracy and 24 samples of the 25 have been diagnosed correctly. Only “Test 
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sample 20” was diagnosed as noise, whereas it was a EWS sample. Apart from that, all 24 samples 

were diagnosed correctly which is identical to Khan et al., study (2001) results. The comparison table 

between the presented study and that of Khan et al., (2001) study can be seen in Table 5.5. 

Samples      Network  Output Vector        Real 

   EWS     RMS              NB              BL Classification Diagnosis      Diagnosis 

TEST.1 0.019555 9.63E-05 0.999209 0.00221758 NB NB NB-C 

TEST.2 0.980755 0.000515 0.00672988 0.00042237 EWS EWS EWS-C 
TEST.3 0.589736 0.017952 0.0174805 0.0473966 EWS - OsteosarcomaC 

TEST.4 9.23E-09 1 1.31E-06 1.32E-06 RMS RMS RMS-T 

TEST.5 0.229616 0.023906 0.0380616 0.0629722 EWS - Sarcoma 
TEST.6 0.999853 2.99E-05 6.86E-05 0.00017739 EWS EWS EWS-T 

TEST.7 0.00636 0.001244 0.00285877 0.99905 BL BL BL-C 

TEST.8 0.00155 0.000152 0.999619 0.00020646 NB NB NB-C 
TEST.9 0.254191 0.522688 0.0006668 0.049363 RMS - Sk. Muscle 

TEST.10 5.77E-07 0.99997 6 5.00E-07 8.37E-05 RMS RMS RMS-T 

TEST.11 0.626072 0.006254 0.0319496 0.0444521 EWS - Prostate Ca.-C 
TEST.12 0.999737 5.74E-05 0.00603079 0.00020536 EWS EWS EWS-T 

TEST.13 0.065958 0.997101 6.42E-05 0.00299387 RMS - Sk. Muscle 

TEST.14 0.000148 4.80E-07 0.999963 0.00575246 NB NB NB-T 
TEST.15 7.16E-05 4.53E-06 0.00023765 0.999998 BL BL BL-C 

TEST.16 0.000144 1.41E-06 0.999993 0.00135978 NB NB NB-T 

TEST.17 1.15E-05 0.999881 6.79E-05 3.96E-05 RMS RMS RMS-T 
TEST.18 0.035959 0.003953 0.0105931 0.984807 BL BL BL-C 

TEST.19 0.999958 6.75E-06 5.64E-05 0.00015527 EWS EWS EWS 

TEST.20 0.230137 0.016949 4.98E-05 0.0267939 EWS - EWS-T 
TEST.21 0.99246 0.005905 9.38E-07 0.00121645 EWS EWS EWS 

TEST.22 1.46E-05 0.999998 2.95E-06 0.00025175 RMS RMS RMS-T 
TEST.23 0.000559 9.06E-05 0.981119 0.00327278 NB NB NB-T 

TEST.24 2.20E-05 0.999993 1.05E-05 4.32E-05 RMS RMS RMS-T 

TEST.25 0.000148 6.42E-08 0.999995 0.00122402 NB NB NB-T 

Table5.4: The trained network classification and diagnosis results which are compared by real diagnosis results on 

the right column. 

 

       Presented Study Results      Khan et al., Paper Results 

Samples        Real 
 

     Real 

  Classification Diagnosis      Diagnosis 
Classific

ation 
Diagnosis      Diagnosis 

TEST.1 NB NB NB-C NB NB NB-C 

TEST.2 EWS EWS EWS-C EWS EWS EWS-C 

TEST.3 EWS - Osteosarcoma-C RMS - Osteosarcoma-C 

TEST.4 RMS RMS RMS-T RMS RMS RMS-T 

TEST.5 EWS - Sarcoma NB - Sarcoma 

TEST.6 EWS EWS EWS-T EWS EWS EWS-T 

TEST.7 BL BL BL-C BL BL BL-C 

TEST.8 NB NB NB-C NB NB NB-C 
TEST.9 RMS - Sk. Muscle RMS - Sk. Muscle 

TEST.10 RMS RMS RMS-T RMS - RMS-T 

TEST.11 EWS - Prostate Ca.-C EWS - Prostate Ca.-C 
TEST.12 EWS EWS EWS-T EWS EWS EWS-T 

TEST.13 RMS - Sk. Muscle RMS - Sk. Muscle 

TEST.14 NB NB NB-T NB NB NB-T 
TEST.15 BL BL BL-C BL BL BL-C 

TEST.16 NB NB NB-T NB NB NB-T 

TEST.17 RMS RMS RMS-T RMS RMS RMS-T 
TEST.18 BL BL BL-C BL BL BL-C 

TEST.19 EWS EWS EWS EWS EWS EWS 

TEST.20 EWS - EWS-T EWS - EWS-T 
TEST.21 EWS EWS EWS EWS EWS EWS 

TEST.22 RMS RMS RMS-T RMS RMS RMS-T 

TEST.23 NB NB NB-T NB NB NB-T 
TEST.24 RMS RMS RMS-T RMS RMS RMS-T 

TEST.25 NB NB NB-T NB NB NB-T 

Table 5.5: Comparison of the presented study network and Khan et., paper results. 
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5.4.4 Testing Network with Other Datasets 

For the second dataset, Tibshirani et al., (2001) study SRBCT dataset that consist of 43 genes is taken 

to train and test the presented study network.  

For this dataset (88x43) apart from cross validation handling, all procedures mentioned above is 

implemented identically. While in Khan et al., (2001) has used 3 fold cross validation, Tibshirani et 

al., (2001) preferred to use 10 fold cross validation and that is why fold number is set as 10 in the 

presented study as well. The results of this datasets shows that, the Cunernet tool has  100% 

classification accuracy (including noises samples) (Appendix Table 2) as it has been achieved in 

Tibshirani et al.,(2001) and  95.4% diagnosis accuracy (Appendix  Table 3) 

As a third dataset, Pal et al., (2007) SRBCT , with again 88 samples and with only 7 genes, is used on 

our network and It should be noted that due to the a few number of genes as  the Pal et al., study have 

used multilayer, in the presented study Multilayer Neural Network is also used for this dataset. After 

training network, the classification result is obtained as 97.7%(Appendix  Table 4)  over all cancerous 

samples and also 4 noise samples over 5 is classified correctly. In addition that, all samples are 

diagnosed by 95.4% accuracy rate (Appendix  Table 5).  

 

Even though the accuracy results may differs from studies due to using different methods, the 

presented study achvieves promising results which proCves that the unnet library is suitable to be 

used in the field. 

5.5 Profiling code 

Considering that one of the aim of project is developing a better tool to detect cancer, finding and 

fixing performance bottlenecks of code is vital .Therefore  as it mentioned in Chapter 4  “Google 

Performance Analysis Tool” is used in order to find bottleneck of code.  

All of the benchmarks and opimisations are done on the workstation NVIDIA K40 GPU (12GB ram 

and 2880cores) with Ubuntu 14.04, 64 bits 128Gibi RAM and  the number of training iteration is set 

to 100  in each training attempt.  Thereafter gperftools CPUProfiler tool is used to gather units/calles  

numbers of each function/method and according to those result the code is optimised. Thereafter linux 

time command is used to gather average total wall time of software by runnin it several time .  

At the first step of gperftool monitoring, 25000 unit is obtained as an average of  5 different run 

software and in order to improve performance the following changing is implemeted; 

●  vectors lenght are allocated before storing information 

● Function returns are done by move() funtion  

● push_back are replaced by emplace_back during value storing to vectors.  

Consequentlt unit numbers are reduced to 20000 in average. Afterwards; 

● parameters  are passed by references to functions rather than passing directly 

● Lastly “sigmoid” function is made as inline function.  

After these changing, unit number decreased to 19000 and as a result the code optimisation it is made 

more efficint by around 28%. Furthermore total wall time of software is monitored during these 

changing and in order to find average total wall time of the software it is run 10 times after each 

changing. Finally it is obseved that, total spent time is reduced from 105 to 86.5 as each reducing step 

can be in in Figure 5.10 
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Figure 5.10 : Code optimisation by reversing vector size before storing, returning result by using move function , 

making functions inline and passing parameters by their references 

 

After training optimisation is done, testing part of software is optimised by taking classification and 

diagnosis seperately. During optimisation testing code, same techniques are used with traning 

optimisations. Such as passing parameter by references,returning values with move function or 

reserving vectors size before storing.  Before and after optimissation techniques are implemeneted, the 

Cunernet software run 5 times to get average spent wall time of software. At the end of classification 

optimisation the wall time is reduced from 48.09 to 42.19 and diagnosis wall time is decreased from 

132.15 to 123.94. 

Furthermore the  wall time with different neuron numbers on single layer network is monitored to 

observe effect of neuron number against to wall time. According to the network input neuron number 

can be set by passing information on the command panel, the datasets with variety of genes number is 

created to train network. To create these different dataset, firstly the SRBCT dataset with 2308 genes 

is downloaded from the web site; http://research.nhgri.nih.gov/microarray/Supplement/ . Thereafter 

by running the Matlab filtering functions Genevarfilter, Geneentropyfilter, Genelowvalfilter, and 

finally by using Generangefilter repeteadly 2308 genes are reduced gradually and the datasets with  

55,127,141,241,368,694 and 1307 genes are stored files in each step to be used.   It should be noted 

that  in regarding to monitoring wall time, SRBCT dataset is not compulsory to be used, any other 

datasets that have different genes numbers could be used to see effect of neuron number on total time.  

After creation different datasets,train option is chosen on the Cunernet command line and the dataset 

name is given one by one with gene number in it.  The result of wall times against the used gene 

numbers shows that increasing neuron number (x axis) is affects the taken time (y axis) significantly 

on a single layer neural network (Figure 5.11).  
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Figure 5.11: The comparison between increasing neuron number and the wall time of running software on single 

layer neural network. 

 

Thereafter, considering to extensibility of software, the five of the created datasets (mentioned abpve) 

with 55,93,141,175 and 241 genes  is used on Multilayer Neural Network. It is worth the mentioned 

again that any dataset with different gene numbers, that cause to different neuron numbers, can be 

used in terms of comparing wall time against to neuron numbers.The created datasets are used with 

the same training procedures and wall time against to neuron numbers is drawn in Figure 5.12; 

 

Figure 5.12: The comparison between increasing neuron number against to the spent wall time of the software. The 

red line represent multilayer neural network implementation and the blue line for single layer neural network.  

As it can be seen in Figure 5.12 the neuron number affects spent time enourmously.  For the 

comparison single layer and multi layer network on 241 genes number dataset, it is seen that the time 

on multilayer neurol network is 20 times more than the time on single layer neurol network.  
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In addition to neuron number against time,  Khan et al., (2001) study dataset with 96 genes on single 

layer neural network is taken as a sample and the each function time ise examined by using Google 

Performance Analysis tool  to understand which parts can be implemented on CUDA in the future. 

During using gperftools, the iteration of training process is set to 100 and end of it the the list of 

functions with spent time on CPU is obtained. According to this list, it is seen that while just inner 

vector product costs 10% of overall time, the other  vector operations (Figure 5.14) cost 47% as it can 

be seen in Figure 5.13. 

 

Figure 5.13: The vector operations(red ),inner product(blue) proportions in software.  

 

Figure 5.10 Vector operations distrubiton by percentages on all vector calculations. 
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Regarding to vector operations/calculations,that are generally vector/matrix multiplication with 

iteration, takes big amount of time in software, these parts can be implemented on CUDA  by using 

Thrust library. It is worth to mention that,  the software code is writen by using std vector containers 

which can be converted to Thrust vector calculation easily. Taking into account that vector 

calculations/operations takes big amount of time and the code of software is capable of to be 

converted Thrust, plenty of time can be saved effortlessly by implementing it on  CUDA in the future. 
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Chapter6  

 

Conclusion 

This project proposed to develop an open source library called Cunernet which uses gene 

expression profiles to train artificial neural network system in order to detect cancer information 

such as metastasis, biomarkers and so on which can help clinicians to tailor cancer treatments 

effectively.  

Differences of this project from other studies can be stated that the used/developed tool will be 

released as open source and it can be used by any one while it can also be contributed through the 

Bitbucket project page.  

Because the Cunernet artificial neural network library will be able to be used with different datasets, 

it is designed in a flexible manner in terms of structure (single/ multilayer), learning method 

(stochastic/batch/semi-batch) and neuron numbers, learning rate and momentum values. In addition, 

since the project will be implemented on CUDA by using Thrust library in the future, it is written in 

C++11 in object oriented paradigm with vector containers. Writing code in object oriented 

paradigm and using vector containers enables code to be implemented on thrust/CUDA 

easily/effortlessly.  Considering that the intention is to release this tool under the BSD3 Licence as 

an open source, the best development techniques are used along the development. Each code 

changing step was uploaded to the Bitbucket project page by using git. Also readme file is written 

to guide user how to compile/run/test the software and instructions are given to show how to 

contribute to the Cunernet on the project page.  

Due to the fact that correct training procedure sequences may vary, a study procedures that has been 

done by Khan et al., (2001) is mainly followed in the presented study  in order to compare result 

correctness accuracy. Also considering that the dataset may vary in regarding to genes or genes 

number,  SRBCT dataset (88x96) from the same study (Khan et., 2001) is taken to train our neural 

network and at the  end of training/testing stages, our study results are compared with Khan et al., 

(2001) results. 

Even though single layer neural network was trained by SRBCT Khan et al.,(2001) study dataset as 

it has been done in the Khan et al., (2001) study, multilayer neural network is also used during Pal 

et al., (2007) study dataset to be trained and tested.  Throughout the training network cross 

validation methods are used to identify and prevent over training and a part of dataset was used to 

test network correctness known as blind testing. 

During the blind testing, Khan et al., (2001) methodology was used; “average vote” calculations for 

classifications and “distance” calculations for diagnosis. It is worth mentioning that as an extra to 

Khan et al (2001)  procedures, the noise samples were also classified correctly in the classification 

steps by The Cunernet Library.   

After training, the cross validation, classification and diagnosis steps  followed those of Khan et 

al.,(2001), as an extra to Khan’s methods, another blind test (classification and diagnosis) method 

was implemented to prove the correctness of the network in the present study. The Cunernet library 

training/testing  which was done by using Khan et al.’s dataset (88x96) has shown that the Cunernet 

library and the Khan et al., study results has same levels of accuracy for both classification and 

diagnosis. In addition that the network is trained and tested  by 2 other SRBCT dataset with 43 and 

7 genes from Tibshirani et al., (2001) and Pal et al., (2007) studies respectively. The accuracy  f the 

results obtained was 100% for classification and 95.4% for diagnosis with Tibshirani et al., (2001) 
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study dataset and 97.7% classification and 95.4% diagnosis for Pal e al., (2007) dataset.  Even 

though the non-diagnosed samples may vary due to shuffling dataset randomly, the accuracy 

percentage of results proves that The Cunernet library is suitable for general use. 

After finishing coding,training and testing part in C++11 serial algorithm, the performance 

monitoring/analysis  are done by Google Performance Analysis Tool and linux time function. 

According to result of monitoring the code is optimised with replacing/changing some code parts 

and also after each code changing the effect of it on the wall time is checked by using time function 

by running software several times. At the end average of wall time is collected and the effectiveness 

of  code optimisation is seen. 

 

  

6.1 Future works 

The Cunernet Library could not be implemented on CUDA by using Thrust library. However by 

transforming standard vector containers to the Thrust vectors, it can be implemented on CUDA 

easily and considering from profiling section that, vector calculation takes a part of the running 

time and implementing vector calculations on CUDA would reduce the spent vector calculations 

times significantly 

Also, in consideration of the fact that end-users will use this tool after releasing, a graphical user 

interface would make managing library much easier. Furthermore, other artificial neural network 

features such as online learning algorithms or different activation functions codes can be added and 

those can be used during training optionally in the future. 

Apart from those suggestions, even though the results obtained were satisfactory with 3 different 

SRBCT datasets, it can still be tested by any other dataset on both single layer or multilayer 

network to classify different cancer types and also to approve suitability of the Cunernet Library. In 

addition that since the data format in the project is compatible with Matlab it can be integrated to it 

easily.  
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Appendices 

 

SAMPLES   Distance Network Real Diagnosis 
      Diagnosis Diagnosis Result 

Sample 1 4.77E-06 EWS EWS MATCHED 
Sample 2 9.16E-06 EWS EWS MATCHED 
Sample 3 3.35E-06 EWS EWS MATCHED 
Sample 4 1.22E-05 EWS EWS MATCHED 
Sample 5 5.71E-08 EWS EWS MATCHED 
Sample 6 1.48E-07 EWS EWS MATCHED 
Sample 7 7.23E-08 EWS EWS MATCHED 
Sample 8 8.87E-09 EWS EWS MATCHED 
Sample 9 6.50E-09 EWS EWS MATCHED 
Sample 10 0.00103251 EWS EWS MATCHED 
Sample 11 4.21E-06 EWS EWS MATCHED 
Sample 12 9.06E-06 EWS EWS MATCHED 
Sample 13 3.37E-07 EWS EWS MATCHED 
Sample 14 1.36E-07 EWS EWS MATCHED 
Sample 15 0.000315283 EWS EWS MATCHED 
Sample 16 0.0176963 EWS EWS MATCHED 
Sample 17 0.0012619 EWS EWS MATCHED 
Sample 18 0.00033273 EWS EWS MATCHED 
Sample 19 7.66E-05 EWS EWS MATCHED 
Sample 20 1.76E-06 EWS EWS MATCHED 
Sample 21 0.0135463 EWS EWS MATCHED 
Sample 22 0.00329583 EWS EWS MATCHED 
Sample 23 0.00499266 EWS EWS MATCHED 
Sample 24 0.00107803 BL BL MATCHED 
Sample 25 0.00293074 BL BL MATCHED 
Sample 26 0.000392999 BL BL MATCHED 
Sample 27 0.000366348 BL BL MATCHED 
Sample 28 0.00272902 BL BL MATCHED 
Sample 29 0.00463481 BL BL MATCHED 
Sample 30 0.000699677 BL BL MATCHED 
Sample 31 0.00312532 BL BL MATCHED 
Sample 32 4.00019 NB NB MATCHED 
Sample 33 4.09755 NB NB MATCHED 
Sample 34 5.94444 NB NB MATCHED 
Sample 35 3.99983 NB NB MATCHED 
Sample 36 4.00028 NB NB MATCHED 
Sample 37 4.46107 NB NB MATCHED 
Sample 38 4.00012 NB NB MATCHED 
Sample 39 3.99991 NB NB MATCHED 
Sample 40 4.00185 NB NB MATCHED 
Sample 41 4.01289 NB NB MATCHED 
Sample 42 4.00298 NB NB MATCHED 
Sample 43 4.00049 NB NB MATCHED 
Sample 44 1.35E-05 RMS RMS MATCHED 
Sample 45 0.000232219 RMS RMS MATCHED 
Sample 46 4.15E-06 RMS RMS MATCHED 
Sample 47 0.000196219 RMS RMS MATCHED 
Sample 48 0.00818687 RMS RMS MATCHED 
Sample 49 0.0150234 RMS RMS MATCHED 
Sample 50 0.0019113 RMS RMS MATCHED 
Sample 51 0.00366908 RMS RMS MATCHED 
Sample 52 0.00145155 RMS RMS MATCHED 
Sample 53 0.00322221 RMS RMS MATCHED 
Sample 54 6.94E-06 RMS RMS MATCHED 
Sample 55 0.000213505 RMS RMS MATCHED 
Sample 56 0.00076945 RMS RMS MATCHED 
Sample 57 4.29E-06 RMS RMS MATCHED 
Sample 58 0.0053966 RMS RMS MATCHED 
Sample 59 0.000808874 RMS RMS MATCHED 
Sample 60 2.94E-08 RMS RMS MATCHED 
Sample 61 0.0137728 RMS RMS MATCHED 
Sample 62 0.0282319 RMS RMS MATCHED 
Sample 63 1.38E-14 RMS RMS MATCHED 
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TESTS   Distance Network Real Diagnosis 
      Diagnosis Diagnosis Result 

(Test 1) 12.3335 NB NB MATCHED 
(Test 2) 0.00134764 EWS EWS MATCHED 
(Test 3) 570.176 NOISE NOISE MATCHED 
(Test 4) 6.03E-08 RMS RMS MATCHED 
(Test 5) 25.2863 NOISE NOISE MATCHED 
(Test 6) 0.000567549 EWS EWS MATCHED 
(Test 7) 0.00882391 BL BL MATCHED 
(Test 8) 11.9997 NB NB MATCHED 
(Test 9) 814.101 NOISE NOISE MATCHED 
(Test 10) 5.32E-06 RMS RMS MATCHED 
(Test 11) 392.901 NOISE NOISE MATCHED 
(Test 12) 0.186486 NOISE EWS No Matched 
(Test 13) 2784.12 NOISE NOISE MATCHED 
(Test 14) 12.0148 NB NB MATCHED 
(Test 15) 0.00393535 BL BL MATCHED 
(Test 16) 12 NB NB MATCHED 
(Test 17) 1.77E-05 RMS RMS MATCHED 
(Test 18) 0.0578823 NOISE BL No Matched 
(Test 19) 0.000500264 EWS EWS MATCHED 
(Test 20) 43.1108 NOISE EWS No Matched 
(Test 21) 0.0224923 EWS EWS MATCHED 
(Test 22) 4.19E-06 RMS RMS MATCHED 
(Test 23) 12.512 NB NB MATCHED 
(Test 24) 2.93E-05 RMS RMS MATCHED 
(Test 25) 12.0002 NB NB MATCHED 

Table 1: Diagnostic Classification :by using 96 genes dataset from Khan et al., (2001) study. 

 

 

 

    Real Network Classification   Network Outputs   

    Output Output           

Sample 1 0 0 Matched 1 0.000119 1.22E-06 5.06E-05 
Sample 2 0 0 Matched 0.999993 1.02E-05 1.75E-05 0.000115 
Sample 3 0 0 Matched 0.999991 0.000158 1.52E-05 3.96E-05 
Sample 4 0 0 Matched 0.999984 0.000408 2.02E-07 0.000367 
Sample 5 0 0 Matched 0.999997 9.15E-05 2.28E-06 9.32E-05 
Sample 6 0 0 Matched 1 3.43E-06 2.06E-06 9.58E-05 
Sample 7 0 0 Matched 1 6.84E-06 9.96E-08 4.42E-06 
Sample 8 0 0 Matched 1 2.37E-06 7.58E-07 5.91E-05 
Sample 9 0 0 Matched 1 8.47E-07 5.21E-07 4.35E-07 
Sample 10 0 0 Matched 0.998486 0.000787 3.13E-07 9.66E-05 
Sample 11 0 0 Matched 0.999999 8.58E-06 3.70E-05 9.61E-05 
Sample 12 0 0 Matched 1 5.40E-06 1.54E-05 3.39E-06 
Sample 13 0 0 Matched 1 3.88E-06 4.40E-06 9.49E-06 
Sample 14 0 0 Matched 0.999994 6.20E-06 3.43E-05 1.50E-05 
Sample 15 0 0 Matched 0.999893 2.62E-05 8.45E-05 0.000176 
Sample 16 0 0 Matched 0.99862 0.000638 2.67E-05 0.000875 
Sample 17 0 0 Matched 0.998552 0.000427 0.001277 0.000481 
Sample 18 0 0 Matched 0.999936 0.000165 0.000231 0.000366 
Sample 19 0 0 Matched 0.999987 9.83E-05 9.01E-05 0.000136 
Sample 20 0 0 Matched 1 2.45E-05 1.37E-05 8.76E-07 
Sample 21 0 0 Matched 0.999832 5.62E-06 0.000629 7.36E-05 
Sample 22 0 0 Matched 0.999751 0.000246 0.000734 0.000308 
Sample 23 0 0 Matched 0.997778 0.000517 0.001197 0.000594 
Sample 24 3 3 Matched 2.66E-05 2.11E-05 3.14E-05 0.999983 
Sample 25 3 3 Matched 9.97E-05 2.66E-05 0.000187 0.999893 
Sample 26 3 3 Matched 0.000206728 0.000337 0.000343 0.999801 
Sample 27 3 3 Matched 0.00263174 0.001841 0.001977 0.997815 
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Sample 28 3 3 Matched 0.000168041 0.000559 4.29E-05 0.999929 
Sample 29 3 3 Matched 0.00238886 0.002353 0.001782 0.997295 
Sample 30 3 3 Matched 0.000133111 0.000291 2.48E-05 0.999913 
Sample 31 3 3 Matched 0.000613028 0.000737 0.000641 0.998694 
Sample 32 2 2 Matched 1.03E-05 0.000152 0.999709 2.11E-06 
Sample 33 2 2 Matched 2.46E-05 0.000814 0.999554 8.77E-05 
Sample 34 2 2 Matched 2.65E-07 0.001683 0.999103 8.02E-08 
Sample 35 2 2 Matched 0.000556433 0.000324 0.99904 0.001313 
Sample 36 2 2 Matched 2.71E-05 2.04E-05 0.999988 0.000114 
Sample 37 2 2 Matched 0.00146565 0.00116 0.997142 0.00087 
Sample 38 2 2 Matched 9.35E-05 4.91E-05 0.999216 0.000642 
Sample 39 2 2 Matched 4.84E-06 9.91E-06 0.999991 9.61E-05 
Sample 40 2 2 Matched 3.50E-05 0.000471 0.999519 0.000113 
Sample 41 2 2 Matched 0.00238453 0.000399 0.99856 0.000241 
Sample 42 2 2 Matched 0.000636234 5.00E-05 0.999616 0.000243 
Sample 43 2 2 Matched 5.44E-06 0.001867 0.999313 2.26E-05 
Sample 44 1 1 Matched 1.41E-07 0.999998 1.92E-06 5.50E-08 
Sample 45 1 1 Matched 0.000214327 0.99985 2.98E-05 1.18E-05 
Sample 46 1 1 Matched 3.61E-05 0.999969 3.80E-05 1.30E-06 
Sample 47 1 1 Matched 2.07E-05 0.997515 0.001829 7.53E-07 
Sample 48 1 1 Matched 0.000134179 0.999845 5.04E-05 4.79E-05 
Sample 49 1 1 Matched 1.11E-05 0.999234 0.000953 0.000185 
Sample 50 1 1 Matched 3.58E-05 0.999525 0.000636 3.14E-05 
Sample 51 1 1 Matched 0.000453 0.998465 0.000143 0.000494 
Sample 52 1 1 Matched 1.24E-05 0.999647 0.000825 7.90E-06 
Sample 53 1 1 Matched 0.000153873 0.998548 9.64E-05 0.000235 
Sample 54 1 1 Matched 8.08E-07 0.999996 7.17E-08 9.88E-05 
Sample 55 1 1 Matched 1.01E-05 0.999974 4.55E-08 2.73E-06 
Sample 56 1 1 Matched 0.000572478 0.999948 6.06E-07 0.000847 
Sample 57 1 1 Matched 5.25E-06 0.999986 2.86E-06 1.05E-08 
Sample 58 1 1 Matched 1.21E-06 0.999998 3.18E-08 4.53E-06 
Sample 59 1 1 Matched 3.42E-05 0.999939 1.96E-06 3.48E-08 
Sample 60 1 1 Matched 2.48E-06 0.999999 2.62E-07 1.47E-07 
Sample 61 1 1 Matched 0.00021953 0.99987 7.63E-07 2.28E-05 
Sample 62 1 1 Matched 0.000672211 0.9994 6.58E-06 4.04E-07 
Sample 63 1 1 Matched 2.57E-08 0.999989 5.04E-07 1.53E-15 
Sample 64 2 2 Matched 0.0154646 7.75E-05 0.992284 0.000267 
Sample 65 0 0 Matched 0.999794 0.000487 0.000186 1.20E-05 
Sample 66 -1 -1 Matched 0.598503 0.001732 0.053345 0.022861 
Sample 67 1 1 Matched 8.33E-08 1 1.09E-07 4.17E-09 
Sample 68 -1 -1 Matched 0.116673 0.016672 0.005149 0.137668 
Sample 69 0 0 Matched 1 1.22E-06 4.78E-05 9.60E-06 
Sample 70 3 3 Matched 0.000403787 7.40E-05 8.62E-06 0.999981 
Sample 71 2 2 Matched 4.04E-05 3.75E-05 0.999868 8.61E-05 
Sample 72 -1 -1 Matched 0.0469618 0.841103 3.47E-07 0.865525 
Sample 73 1 1 Matched 8.80E-08 0.999983 3.39E-08 4.86E-09 
Sample 74 -1 -1 Matched 0.413516 0.026146 0.003504 0.184362 
Sample 75 0 0 Matched 0.99998 6.58E-06 2.58E-06 0.005912 
Sample 76 -1 -1 Matched 0.00659524 0.984814 9.44E-11 0.992397 
Sample 77 2 2 Matched 2.44E-06 4.59E-06 0.99975 0.005545 
Sample 78 3 3 Matched 9.52E-05 5.44E-05 0.000135 0.999953 
Sample 79 2 2 Matched 3.78E-07 4.17E-07 0.999999 0.000112 
Sample 80 1 1 Matched 4.76E-05 0.999933 1.12E-06 9.17E-06 
Sample 81 3 3 Matched 0.022206 0.003932 0.000773 0.99497 
Sample 82 0 0 Matched 1 0.002072 1.29E-07 0.000119 
Sample 83 0 0 Matched 0.278143 0.042726 0.000137 0.001357 
Sample 84 0 0 Matched 0.998408 0.000829 3.45E-07 0.000104 
Sample 85 1 1 Matched 1.58E-06 0.999999 1.35E-08 0.000709 
Sample 86 2 2 Matched 2.25E-07 2.01E-06 0.999744 7.12E-05 
Sample 87 1 1 Matched 7.11E-07 0.999994 1.05E-06 2.68E-07 
Sample 88 2 2 Matched 7.78E-07 2.37E-07 0.999997 0.000317 
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Table 2: Classification Result , the SRBCT dataset with 43 genes from  Tibshirani et al., (2001) study 

is classified with 100% accuracy by using 10 fold cross validation  

    Distance Network Real Diagnosis 

      Diagnosis Diagnosis Result 

Sample 1 1.45E-06 EWS EWS MATCHED 
Sample 2 5.06E-06 EWS EWS MATCHED 
Sample 3 2.24E-05 EWS EWS MATCHED 
Sample 4 0.000119311 EWS EWS MATCHED 
Sample 5 3.60E-06 EWS EWS MATCHED 
Sample 6 8.40E-07 EWS EWS MATCHED 
Sample 7 1.01E-07 EWS EWS MATCHED 
Sample 8 6.04E-07 EWS EWS MATCHED 
Sample 9 9.57E-10 EWS EWS MATCHED 
Sample 10 0.0302619 EWS EWS MATCHED 
Sample 11 1.49E-06 EWS EWS MATCHED 
Sample 12 4.41E-08 EWS EWS MATCHED 
Sample 13 4.20E-07 EWS EWS MATCHED 
Sample 14 1.84E-05 EWS EWS MATCHED 
Sample 15 0.00018317 EWS EWS MATCHED 
Sample 16 0.00617019 EWS EWS MATCHED 
Sample 17 0.00164225 EWS EWS MATCHED 
Sample 18 0.000128348 EWS EWS MATCHED 
Sample 19 3.25E-05 EWS EWS MATCHED 
Sample 20 2.52E-06 EWS EWS MATCHED 
Sample 21 0.000173172 EWS EWS MATCHED 
Sample 22 0.00126992 EWS EWS MATCHED 
Sample 23 0.00581252 EWS EWS MATCHED 
Sample 24 0.000173586 BL BL MATCHED 
Sample 25 0.000588761 BL BL MATCHED 
Sample 26 0.00241238 BL BL MATCHED 
Sample 27 0.0149355 BL BL MATCHED 
Sample 28 0.000271029 BL BL MATCHED 
Sample 29 0.0238363 BL BL MATCHED 
Sample 30 0.000402575 BL BL MATCHED 
Sample 31 0.00228334 BL BL MATCHED 
Sample 32 0.00219025 NB NB MATCHED 
Sample 33 0.0336043 NB NB MATCHED 
Sample 34 0.265397 NB NB MATCHED 
Sample 35 0.00556229 NB NB MATCHED 
Sample 36 0.000117115 NB NB MATCHED 
Sample 37 0.0692739 NB NB MATCHED 
Sample 38 0.00562344 NB NB MATCHED 
Sample 39 0.000107489 NB NB MATCHED 
Sample 40 0.00214072 NB NB MATCHED 
Sample 41 0.00553467 NB NB MATCHED 
Sample 42 0.000731026 NB NB MATCHED 
Sample 43 0.0156168 NB NB MATCHED 
Sample 44 1.56E-07 RMS RMS MATCHED 
Sample 45 0.000445586 RMS RMS MATCHED 
Sample 46 1.19E-05 RMS RMS MATCHED 
Sample 47 0.00384546 RMS RMS MATCHED 
Sample 48 8.81E-05 RMS RMS MATCHED 
Sample 49 0.00166123 RMS RMS MATCHED 
Sample 50 0.00048605 RMS RMS MATCHED 
Sample 51 0.0349973 RMS RMS MATCHED 
Sample 52 0.000384416 RMS RMS MATCHED 
Sample 53 0.0753344 RMS RMS MATCHED 
Sample 54 3.91E-06 RMS RMS MATCHED 
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Sample 55 1.56E-05 RMS RMS MATCHED 
Sample 56 0.000248781 RMS RMS MATCHED 
Sample 57 5.19E-07 RMS RMS MATCHED 
Sample 58 1.92E-07 RMS RMS MATCHED 
Sample 59 3.07E-06 RMS RMS MATCHED 
Sample 60 1.17E-07 RMS RMS MATCHED 
Sample 61 3.14E-05 RMS RMS MATCHED 
Sample 62 0.000800142 RMS RMS MATCHED 
Sample 63 2.77E-11 RMS RMS MATCHED 

    Distance Network Real Diagnosis 
      Diagnosis Diagnosis Result 

Sample 64 0.182286 NB   NB MATCHED 
Sample 65 0.161505 NOISE EWS No Matched 

Sample 66 304.061 NOISE NOISE MATCHED 
Sample 67 9.00E-10 RMS RMS MATCHED 
Sample 68 31.5552 NOISE NOISE MATCHED 
Sample 69 2.14E-06 EWS EWS MATCHED 
Sample 70 0.00285675 BL BL MATCHED 
Sample 71 0.00081042 NB NB MATCHED 
Sample 72 2610.99 NOISE NOISE MATCHED 
Sample 73 3.06E-08 RMS RMS MATCHED 
Sample 74 495.435 NOISE NOISE MATCHED 
Sample 75 0.0113069 EWS EWS MATCHED 
Sample 76 3705.4 NOISE NOISE MATCHED 
Sample 77 0.100186 NB  NB MATCHED 
Sample 78 0.00340232 BL BL MATCHED 
Sample 79 0.000456761 NB NB MATCHED 
Sample 80 1.21E-05 RMS RMS MATCHED 
Sample 81 0.698487 NOISE BL No Matched 

Sample 82 0.000336146 EWS EWS MATCHED 
Sample 83 1078.04 NOISE EWS No Matched 

Sample 84 0.211844 NOISE EWS No Matched 

Sample 85 0.000600993 RMS RMS MATCHED 
Sample 86 0.00020763 NB NB MATCHED 
Sample 87 1.13E-07 RMS RMS MATCHED 
Sample 88 0.00128197 NB NB MATCHED 

 

Table 3: Diagnosis Result: the SRBCT dataset with 43 genes from  Tibshirani et al., (2001) study is 

diagnosed with 95.4% accuracy. 

 

 

 

    Real Network 
Classification 

  Network Outputs   

    Output Output         

Sample 1 0 0 Matched 0.996814 0.002321 0.000265 0.003934 
Sample 2 0 0 Matched 0.996834 0.002309 0.000264 0.003913 
Sample 3 0 0 Matched 0.996839 0.002319 0.000259 0.003915 
Sample 4 0 0 Matched 0.996844 0.002309 0.000256 0.003924 
Sample 5 0 0 Matched 0.996816 0.002329 0.000262 0.003936 
Sample 6 0 0 Matched 0.996812 0.00231 0.000268 0.003933 
Sample 7 0 0 Matched 0.995448 0.002509 0.000369 0.005746 
Sample 8 0 0 Matched 0.99674 0.00224 0.0003 0.003961 
Sample 9 0 0 Matched 0.996784 0.002306 0.000275 0.003953 
Sample 10 0 0 Matched 0.990821 0.00621 0.000317 0.010853 
Sample 11 0 0 Matched 0.996853 0.00232 0.000253 0.003907 
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Sample 12 0 0 Matched 0.996822 0.002321 0.000264 0.003925 
Sample 13 0 0 Matched 0.996688 0.002258 0.000297 0.00404 
Sample 14 0 0 Matched 0.996541 0.002249 0.000362 0.003978 
Sample 15 0 0 Matched 0.996706 0.002249 0.000318 0.003928 
Sample 16 0 0 Matched 0.996515 0.001922 0.000442 0.00409 
Sample 17 0 0 Matched 0.995737 0.001898 0.000387 0.005875 
Sample 18 0 0 Matched 0.996564 0.00221 0.00036 0.003975 
Sample 19 0 0 Matched 0.99646 0.00216 0.000384 0.004059 
Sample 20 0 0 Matched 0.996817 0.002292 0.000274 0.003912 
Sample 21 0 0 Matched 0.993007 0.00046 0.014874 0.003831 
Sample 22 0 0 Matched 0.935942 0.004645 0.008998 0.006882 
Sample 23 0 0 Matched 0.989371 0.005007 0.000569 0.007091 
Sample 24 3 3 Matched 0.026632 0.009925 0.002573 0.975082 
Sample 25 3 3 Matched 0.018321 0.004993 0.007077 0.979489 
Sample 26 3 3 Matched 0.006012 0.015336 0.005776 0.985489 
Sample 27 3 3 Matched 0.009541 0.00965 0.00491 0.986958 
Sample 28 3 3 Matched 0.010033 0.012502 0.006387 0.978461 
Sample 29 3 3 Matched 0.011458 0.007312 0.00636 0.98515 
Sample 30 3 3 Matched 0.016902 0.00697 0.003456 0.986724 
Sample 31 3 3 Matched 0.003736 0.014186 0.011615 0.986321 
Sample 32 2 2 Matched 0.005568 0.00449 0.995073 0.006157 
Sample 33 2 2 Matched 0.009945 0.00441 0.990494 0.005774 
Sample 34 2 2 Matched 0.005142 0.004798 0.995273 0.006109 
Sample 35 2 2 Matched 0.007587 0.004254 0.992763 0.006367 
Sample 36 2 2 Matched 0.006839 0.004352 0.99459 0.005743 
Sample 37 2 2 Matched 0.007405 0.011349 0.982771 0.004981 
Sample 38 2 2 Matched 0.010568 0.003567 0.992531 0.005824 
Sample 39 2 2 Matched 0.008387 0.004213 0.993296 0.005656 
Sample 40 2 2 Matched 0.018135 0.005252 0.987673 0.00351 
Sample 41 2 2 Matched 0.006588 0.004703 0.993329 0.006261 
Sample 42 2 2 Matched 0.027902 0.002453 0.986505 0.005463 
Sample 43 2 2 Matched 0.007426 0.006475 0.992758 0.004252 
Sample 44 1 1 Matched 0.003574 0.995125 0.00342 0.005441 
Sample 45 1 1 Matched 0.003676 0.995016 0.003249 0.00546 
Sample 46 1 1 Matched 0.003581 0.995111 0.003369 0.005438 
Sample 47 1 1 Matched 0.005459 0.987474 0.01119 0.003342 
Sample 48 1 1 Matched 0.004212 0.994611 0.003155 0.005449 
Sample 49 1 1 Matched 0.003817 0.99482 0.003595 0.00519 
Sample 50 1 1 Matched 0.006623 0.991422 0.002457 0.007691 
Sample 51 1 1 Matched 0.007856 0.990479 0.002269 0.007759 
Sample 52 1 1 Matched 0.004835 0.993427 0.003175 0.00593 
Sample 53 1 1 Matched 0.004123 0.994273 0.003232 0.005863 
Sample 54 1 1 Matched 0.003708 0.995002 0.003314 0.00545 
Sample 55 1 1 Matched 0.003825 0.994928 0.00318 0.00546 
Sample 56 1 1 Matched 0.006968 0.993173 0.002499 0.005512 
Sample 57 1 1 Matched 0.004332 0.994433 0.002978 0.005573 
Sample 58 1 1 Matched 0.017415 0.978645 0.002199 0.007352 
Sample 59 1 1 Matched 0.005062 0.993141 0.002858 0.006476 
Sample 60 1 1 Matched 0.003589 0.995118 0.00332 0.005433 
Sample 61 1 1 Matched 0.005364 0.990381 0.00474 0.005102 
Sample 62 1 1 Matched 0.004323 0.993918 0.003403 0.005475 
Sample 63 1 1 Matched 0.009504 0.989803 0.002701 0.004799 
Sample 64 2 2 Matched 0.005116 0.004791 0.995238 0.006178 
Sample 65 0 0 Matched 0.995306 0.002075 0.000506 0.00513 
Sample 66 -1 -1 Matched 0.165492 0.003666 0.009118 0.776272 
Sample 67 1 1 Matched 0.003602 0.995057 0.003364 0.005434 
Sample 68 -1 0 No Matched 0.989069 0.008562 0.00036 0.009015 
Sample 69 0 0 Matched 0.99685 0.002314 0.000255 0.003908 
Sample 70 3 3 Matched 0.139182 0.002805 0.002289 0.983741 
Sample 71 2 2 Matched 0.065118 0.004361 0.97696 0.00246 
Sample 72 -1 -1 Matched! 0.107593 0.011737 0.004499 0.773208 
Sample 73 1 0 No Matched 0.818622 0.065164 0.000413 0.070138 
Sample 74 -1 -1 Matched! 0.020224 0.45701 0.005151 0.157963 
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Sample 75 0 0 Matched 0.996856 0.00232 0.000251 0.003906 
Sample 76 -1 -1 Matched 0.087778 0.008677 0.002882 0.917461 
Sample 77 2 2 Matched 0.009817 0.002731 0.992306 0.008478 
Sample 78 3 3 Matched 0.017045 0.0063 0.004623 0.985604 
Sample 79 2 2 Matched 0.006246 0.004328 0.99477 0.006096 
Sample 80 1 1 Matched 0.003582 0.994977 0.003587 0.00542 
Sample 81 3 3 Matched 0.008843 0.008212 0.00654 0.9874 
Sample 82 0 0 Matched 0.99685 0.00232 0.000255 0.003909 
Sample 83 0 3 No Matched 0.067289 0.118475 0.002468 0.468791 
Sample 84 0 0 Matched 0.990644 0.006291 0.000319 0.011044 
Sample 85 1 1 Matched 0.00363 0.995086 0.00324 0.005427 
Sample 86 2 2 Matched 0.011302 0.002979 0.991996 0.007044 
Sample 87 1 1 Matched 0.00383 0.994877 0.003153 0.005516 
Sample 88 2 2 Matched 0.005937 0.004359 0.994964 0.006188 

 

Table 4: Classification result, by using SRCT dataset with 7 genes from Pal et al.,(2007) study. This 

dataset is used on Multilayer Neural Network and the classification is resulted in 97.7% accuracy. 

 

 

      Diagnosis Diagnosis Result 

Sample 1 0.388625 EWS EWS MATCHED 
Sample 2 0.384804 EWS EWS MATCHED 
Sample 3 0.381141 EWS EWS MATCHED 
Sample 4 0.376803 EWS EWS MATCHED 
Sample 5 0.386558 EWS EWS MATCHED 
Sample 6 0.390694 EWS EWS MATCHED 
Sample 7 0.58031 EWS EWS MATCHED 
Sample 8 0.410624 EWS EWS MATCHED 
Sample 9 0.397596 EWS EWS MATCHED 
Sample 10 0.854101 EWS EWS MATCHED 
Sample 11 0.374333 EWS EWS MATCHED 
Sample 12 0.38708 EWS EWS MATCHED 
Sample 13 0.408077 EWS EWS MATCHED 
Sample 14 0.452754 EWS EWS MATCHED 
Sample 15 0.428048 EWS EWS MATCHED 
Sample 16 0.464219 EWS EWS MATCHED 
Sample 17 0.46353 EWS EWS MATCHED 
Sample 18 0.457797 EWS EWS MATCHED 
Sample 19 0.472322 EWS EWS MATCHED 
Sample 20 0.392583 EWS EWS MATCHED 
Sample 21 1.49421 EWS EWS MATCHED 
Sample 22 10.5997 EWS EWS MATCHED 
Sample 23 1.26975 EWS EWS MATCHED 
Sample 24 5.57074 BL BL MATCHED 
Sample 25 4.08905 BL BL MATCHED 
Sample 26 3.73232 BL BL MATCHED 
Sample 27 3.40453 BL BL MATCHED 
Sample 28 3.9487 BL BL MATCHED 
Sample 29 3.52176 BL BL MATCHED 
Sample 30 3.98311 BL BL MATCHED 
Sample 31 3.5523 BL BL MATCHED 
Sample 32 0.387964 NB NB MATCHED 
Sample 33 0.79381 NB NB MATCHED 
Sample 34 0.34609 NB NB MATCHED 
Sample 35 0.611812 NB NB MATCHED 
Sample 36 0.433219 NB NB MATCHED 
Sample 37 1.4296 NB NB MATCHED 
Sample 38 0.656074 NB NB MATCHED 
Sample 39 0.48204 NB NB MATCHED 
Sample 40 0.901303 NB NB MATCHED 
Sample 41 0.519648 NB NB MATCHED 
Sample 42 1.58025 NB NB MATCHED 
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Sample 43 0.505193 NB NB MATCHED 
Sample 44 0.705105 RMS RMS MATCHED 
Sample 45 0.659873 RMS RMS MATCHED 
Sample 46 0.682418 RMS RMS MATCHED 
Sample 47 1.43015 RMS RMS MATCHED 
Sample 48 0.690635 RMS RMS MATCHED 
Sample 49 0.77066 RMS RMS MATCHED 
Sample 50 0.778246 RMS RMS MATCHED 
Sample 51 0.805794 RMS RMS MATCHED 
Sample 52 0.784169 RMS RMS MATCHED 
Sample 53 0.727093 RMS RMS MATCHED 
Sample 54 0.684445 RMS RMS MATCHED 
Sample 55 0.655431 RMS RMS MATCHED 
Sample 56 0.694926 RMS RMS MATCHED 
Sample 57 0.681097 RMS RMS MATCHED 
Sample 58 1.78257 RMS RMS MATCHED 
Sample 59 0.760929 RMS RMS MATCHED 
Sample 60 0.661035 RMS RMS MATCHED 
Sample 61 0.932684 RMS RMS MATCHED 
Sample 62 0.740913 RMS RMS MATCHED 
Sample 63 0.984347 RMS RMS MATCHED 

    Distance Network Real Diagnosis 
      Diagnosis Diagnosis Result 

Sample 64 1.75277 NB NB MATCHED 
Sample 65 1.64822 EWS EWS MATCHED 
Sample 66 1191.3 NOISE NOISE MATCHED 
Sample 67 2.40363 RMS RMS MATCHED 
Sample 68 1839.12 NOISE NOISE MATCHED 
Sample 69 0.869795 EWS EWS MATCHED 

Sample 70 46.558 NOISE BL 
No 
Matched 

Sample 71 13.1437 NOISE NB 
No 
Matched 

Sample 72 1154.92 NOISE NOISE MATCHED 

Sample 73 2913.35 NOISE RMS 
No 
Matched 

Sample 74 443.98 NOISE NOISE MATCHED 
Sample 75 0.857647 EWS EWS MATCHED 
Sample 76 1606.55 NOISE NOISE MATCHED 
Sample 77 2.87532 NB NB MATCHED 
Sample 78 11.0218 BL BL MATCHED 
Sample 79 2.04084 NB NB MATCHED 
Sample 80 2.50392 RMS RMS MATCHED 
Sample 81 10.1616 BL BL MATCHED 
Sample 82 0.872569 EWS EWS MATCHED 

Sample 83 2073.01 NOISE EWS 
No 
Matched 

Sample 84 2.52033 EWS EWS MATCHED 
Sample 85 2.32747 RMS RMS MATCHED 
Sample 86 2.62351 NB NB MATCHED 
Sample 87 2.3921 RMS RMS MATCHED 
Sample 88 1.81133 NB NB MATCHED 

Table 5: Diagnosis result, by using SRCT dataset with 7 genes from Pal et al.,(2007) study. This 

dataset is used on Multilayer Neural Network and the diagnosis is resulted in 95.4% accuracy 
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