
I

Direnc Pekaslan

Supervisors: Dr. Dawn Walker Dr.Daniele Tartarini

This report is submitted in partial fulfilment of the requirement

 for the degree of MSc in Advanced Computer Science by Direnc Pekaslan

September 2015

DEPARTMENT OF COMPUTER SCIENCE,

FACULTY OF ENGINEERING,

THE UNIVERSITY OF SHEFFIELD

COM 6906

Machine Learning System to recognise cancer

from a gene-expression profile

II

Signed Declaration

All sentences or passages quoted in this dissertation from other people's work have

been specifically acknowledged by clear cross-referencing to author, work and

page(s). Any illustrations which are not the work of the author of this dissertation

have been used with the explicit permission of the originator and are specifically

acknowledged. I understand that failure to do this amount to plagiarism and will be

considered grounds for failure in this dissertation and the degree examination as a

whole.

Name: Direnc Pekaslan

Signature: __________________

Date: September 2015.

III

Abstract

Cancer is the leading cause of death by disease in the world. In 2012, there were 32.6 million people

(within five years of diagnosis) who were suffering from cancerous diseases and 8.2 million of these

resulted in death (www1, 2015; www2, 2015). Due to the unique response of each patient to treatment,

clinicians need accurate information of diagnosis and prognosis in order to be able to tailor treatment

successfully. The purpose of this project is to develop an accurate computational tool which can

predict information such as the stage, metastasis capability and/or typology of cancer from a publicly

available gene-expression profile based on machine learning techniques. In this report, relevant

literatures that have used a multilayer neural network in gene expression datasets to classify and

predict survivability and identify biomarkers of cancer are investigated. A summary of the main

findings suggests that a multilayer neural network is capable of accurate classification and prediction

in cancer gene expression profiles.

IV

ACKNOWLEGEMENTS

I would like to express my gratitude to my supervisors, Dr Dawn Walker and Dr Daniele Tartarini, for

their generous help and precious guidance without which this project would not have been possible.

I also express my appreciation to my family for their unconditional support throughout my life.

V

Contents
Chapter 1 ... 1

Introduction ... 1

1.1 Goals ... 1

1.2 Objectives ... 1

1.3 Structure of the dissertation ... 2

Chapter 2 ... 3

Background and Literature review ... 3

2.1 Cancer Disease .. 3

 2.1.1 Detection/Diagnosing Cancer ... 4

 2.1.2 Gene expression profiling and DNA microarray ... 5

 2.1.3 Genomic dataset .. 7

2.2 Machine Learning ... 7

 2.2.1 Artificial Neural Networks ... 7

 2.2.1.1 Single Layer Neural Network .. 9

 2.2.1.2 Single Layer Neural Network Optimisation ... 11

 2.2.1.3 Multilayer Artificial Neural Networks ... 13

 2.2.1.4 Feedforward propagation in Multilayer Artificial Neural Networks 14

 2.2.1.5 Backpropagation in Multilayer ANNs .. 15

 2.3 Literature Review... 17

 2.3.1 Multilayer ANN comparison with other data mining methods in cancer.............. 17

 2.3.2 Biomarker in specific cancer type and Multilayer ANNs 19

 2.3.3 Predict survivability in cancer by using Multilayer ANNs 22

Chapter 3 ... 24

Requirement and Analysis ... 24

3.1 Requirements ... 24

3.2 Analysis .. 25

 3.2.1 Dataset ... 25

 3.2.2 Programming Language Choose ... 26

 3.2.3 The Network Design ... 26

 3.2.4 Training Network ... 26

 3.2.5 Best Practice Development ... 26

3.3 Testing and Evaluation ... 27

 3.3.1 Testing the Correctness of the Training Set ... 27

VI

 3.3.2 Avoiding Over-Training ... 27

 3.3.3 Unit Testing ... 28

3.4 Testing Network Correctness/ Network Evaluation .. 28

3.5 Profiling/Performance Evaluation ... 29

3.6 The Library Cunernet .. 29

Chapter 4 ... 30

System Design .. 30

4.1 System Overview ... 30

4.2 Selecting and Pre-process of Dataset .. 30

4.3 Developing Design ... 31

4.4 Software Design ... 32

4.5 Neural Network Design .. 32

 4.5.1 Feedforward Algorithm .. 32

 4.5.2 Backpropagation Algorithm .. 33

Chapter 5 ... 36

Implementation, Testing and Evaluation .. 36

5.1 Training Implementation ... 36

5.2 Software Implementation ... 38

5.3 Testing .. 39

 5.3.1 Over-training control ... 39

 5.3.2 Unit Testing ... 41

5.4 Testing Network Correctness and Evaluation .. 42

 5.4.1 Classification ... 43

 5.4.2 Diagnostic Classification .. 46

 5.4.3 ClassDiagnosis:.. 47

 5.4.4 Testing Network with Other Datasets ... 50

5.5 Profiling code ... 50

Chapter6 .. 55

Conclusion ... 55

6.1 Future works ... 56

References .. 57

Appendices ... 64

VII

Glossary:

DNA: Base hereditary biological instruction for all eukaryotic cells which are composed of

nucleotides (WWW8, 2015)

RNA: Ribonucleic acid carries transmits genetic information from DNA to proteins.

Nucleotides: Structural components of DNA and RNA.

mRNA: Messenger RNA is a molecule that is complementary to one of the DNA strands of a gene.

cDNA: Complementary DNA is synthesized molecule from mRNA.

Probe: A probe is a single-stranded sequence of DNA or RNA (WWW12, 2015)

Gene expression: A process of encoding new functional product from a gene to be assembled to a

protein molecule (WWW12 , 2015).

VIII

List of Figures

Figure 2.1: Cancer cell proliferation……………………………………………………………………...3

Figure 2.2 Cancer Metastasis……………………………………………………………………………..4

Figure 2.3: Protein synthesis……………………………………………………………………………...5

Figure 2.4: Microarray Technique procedures……………………………………………………………6

Figure 2.5: Neuron structure………………………………………………………………………………8

Figure 2.6: Connected neuron through……………………………………………………………………8

Figure 2.7: A Single Layer Network………………………………………………………………………9

Figure 2.8: The classification with NOT, AND OR in the perceptron.. …………………………………10

Figure 2.9: Decision boundary……………………………………………………………………………10

Figure 2.10: Error descending…………………………………………………………………………….12

Figure 2.11: Single Layer Neural Network Data Classification…………………………………………..12

Figure 2.12: A Multilayer Neural Network………………………………………………………………13

Figure 2.13: Test accuracy rate in four approaches………………………………………………………18

Figure 2.14 Cluster tree diagram of a tumour sample…………………………………………………….23

Figure 2.15: The linkages of top 10 for Ki-67……………………………………………………………22

Figure 2.16: Depicted Ki67 common genes………………………………………………………………22

Figure 2.17 DLBCL,,FL,Ovarian Cancer Survival statistics………………………………………..……23

Figure 4.1 Pre-processing dataset… ……………………………………………………………….……31

Figure 4.2: Updating weights by using momentum and not using momentum……………………..……35

Figure 5.1 The used network structure……………………………………………………………...……36

Figure 5.2 Training Procedures……………………………………………………………………...……37

Figure 5.3 Cunernet library testing procedures starts…………….……………………………….……38

Figure 5.4 Cunernet library training procedures starts……………………………………………...……38

Figure 5.5: Over-Training Testing………………………………………………………………….…….40

Figure 5.6 MSE calculations………………………………………………………………………...……41

Figure5.7: Classification procedures………….……………………………………………………..……44

Figure5.8 Diagnosis procedures……………………………………………………………………..……47

IX

Figure 5.9: ClassDiagnosis Procedures……………………………………………………………………48

Figure 5.10 : Code optimisation…………………………………………………………………………...51

Figure 5.11: Wall time against neuron number on single layer …………………………………………..52

Figure 5.12: The comparison between multi/single layer against to neuron number……………….……52

Figure 5.13: The vector operations(red),inner product(blue) proportions in software…………………..53

Figure 5.14 Vector operations distribution………………..…………………………………………….….53

X

List of Tables

Table 2.1: NHS treatment cost…………………………………………………………………4

Table 3.1: The Requirements of The Project………………………………………………………25

Table 5.1: Unit Test Results……………………………………………………………………….42

Table 5.2: The test samples cancer category distribution……………………………………………42

Table 5.3: Classification Result……………………………………………………………………46

Table5.4: The trained network classification and diagnosis results….………………………………49

Figure 5.5: Comparison of the presented study network and Khan et.(2001), paper results………..49

1

Chapter 1

Introduction

Cancer is the leading cause of death by disease in the world. In 2012, there were 32.6 million people

(within five years of diagnosis) who were suffering from cancerous diseases and 8.2 million of these

resulted in death (www1, 2015; www2, 2015).

Today, cancer tumours can be categorised into 100 different types and they are usually named by the

name of the organ in which they appear. Also, those named tumours are classified into different

subtypes based on similarities in their genetic characteristics. Although cancer subtypes can be the

same for different people and the treatment of them can be classified as chemotherapy, radiotherapy,

radiation, hormonal therapy and so on, each patient’s response is unique to the administered

treatments (www3, 2015). This suggests that tailoring treatment individually has a significant role in

the cure of cancer; however, tailoring treatment requires accurate information on the cancer subtypes

in the early stages. Previous studies have shown that the technique called gene expression profiling

has the capability (Brown & Botstein, 1999) to understand cancer subgroups, metastasis (which is the

spreading capability of a tumour) or the recurrence possibility of cancer by using computer

simulations and the present study seeks to develop a computational tool for investigating gene

expression profiling to give accurate information to clinicians.

1.1 Goals

The main aim of this project is to develop a computational tool that can be trained by publicly

available gene expression profiles and then the trained tool will be able to predict information like the

stage, metastasis capability and/or typology of cancer accurately with given gene expression profiles.

The second part of the project will be analysing performance of serial tool code and profiling

investigations to make software faster to implement it on GPU in the future

1.2 Objectives

As objectives of project, it is intended to achieve that;

 Developing an open-source software library, named CUNERNET (that is, CUDA Neural

Network) using C++11 language.

● Designing a neural network software in serial algorithms which can be trained by any suitable

gene expression profiles and can be extended to a multilayer neural network structure.

● Using proper software development techniques such as a concurrent versioning system,

continuous integration and unit testing to release the software with BSD3 license and reach

the widest possible community.

 Pre-processing/choosing available gene expression datasets for training and testing.

 Training the neural network software by giving the obtained dataset with

feedforward/backpropagation algorithms.

 Testing the trained tool by a given gene expression profile for prediction.

 Optimising/re-implementing the written codes using the Google Performance Analysis Tool.

 Identifying/implementing parts of the algorithm on GPU using CUDA.

 Comparing the timing results of GPU and CPU implementations.

2

1.3 Structure of the dissertation

The rest of the dissertation is structures as follows;

2 Background information and literature review: detailed background information about gene

expression profiling and the neural network technique in machine learning.

3 Requirement analysis: analyses the requirements of the project, configuration and environment

settings

4 System design : Describes the chosen design techniques along with both the benefits and

drawbacks

5 Implementation, testing and evaluation: This chapter will describe neural network training

implementation with Cunernet, testing results, and finally an evaluation of work will be explained.

6 Discussion and future works: A critical discussion of findings; the achieved goals are discussed

and possible directions for future research are recommended.

3

Chapter 2

Background and Literature review

This chapter starts by describing the terminology, discussing the theory of relevant topics to the

project, and describing previous studies that have been conducted on cancer diagnosis/detection by

using the machine learning technique on gene expression profiles.

2.1 Cancer Disease

Our bodies consist of more than a hundred million cells (www13) and each cell contains

chromosomes that consist of long strings of DNA (deoxyribonucleic acid) in their nucleus. DNA is a

basic hereditary biological instruction for all eukaryotic cells and it is made up thousands of genes

that determine cell behaviours, such as death or division, by encoding RNA or producing proteins

(www13), which will be explained in Section 2.1.2 in detail. During cell division, those genes may be

damaged (gene mutation) and thereafter the damaged gene may stop instructing the cell properly

which leads to abnormal cell proliferation (www14) (see Figure 2.1).

Figure 2.1: Cancer cell proliferation: After a gene damaged, the cell division/die procedure is unbalanced which cause to cell

proliferation (www14).

Due to this abnormal proliferation/accumulation, a tumour develops and might spread to other organs

through the bloodstream, a process which is known as metastasis (see Figure 2.2) which can be called

cancer disease.

4

Figure 2.2 Cancer Metastasis;Cell proliferation, tumour developing and metastasis (www14).

2.1.1 Detection/Diagnosing Cancer

Different cancer types can be seen in any part of the human body and it is also possible that different

groups of cancer can appear in the same organ (www4, 2015; Curtis et al., 2012). Today it is known

that there are more than 200 different cancer types (www15, 2015). However recent studies have

revealed that there are still many cancer subgroups to be discovered and classified. Curtis et al.’s

study, which was conducted using gene expression profiles, proved that breast cancer consists of at

least ten different diseases (Curtis et al., 2012) and another genomic study has shown that breast

cancer of type HER2+ can be further classified into four different subtypes (Prat et al., 2014). Despite

the fact that different types of tumour/cancer may occur in the same organ, each one of those groups

responds to drugs in different ways and requires completely different treatments (Garnett et al., 2012).

As studies have shown, gene expression profiles have a significant ability to distinguish/detect

different subgroups of cancer which is crucial and accurate information that can be used to tailor

cancer treatments (Geeleher, Cox & Huang, 2014; Sotiriou & Piccart, 2007).

In addition to accurate detection, cancer diagnosis in the early stages also has an important impact on

its successful treatment (www5, 2015). Cancer classifications are done by clinicians depending on

size of tumour and the quantity of spreading in other organs. Typically there are four levels for

staging cancer, ranging from Stage I small cancer located in a single organ, to Stage IV cancer of

substantial size spread in different organs (i.e. metastases) (www6, 2014). According to Cancer

Research UK, the chance of lung cancer patients surviving is 70% in the case of diagnosing at stage I

over one year. However this percentage drops to less than 15% if it is diagnosed at stage IV (www7,

2014). In addition, the ten-year survival chance for colorectal cancer is 94% if detected at stage I,

whereas it is only 4% at stage IV (www7, 2014). Furthermore, Cancer Research UK stated that more

than 1200 patients’ lives would be saved by a 1% rise in cancers diagnosed at stages I or II in the five

years following diagnosis (www7, 2014).

Apart from reducing mortality, early detection has some additional advantages which relate to the cost

of treatment. A report which was prepared by the Incisive Health Team for Cancer Research UK

showed that total treatment cost per cancer patient can vary enormously depending on which stage it

is diagnosed at (see Table 2.1) (Incisive Health, 2014).

 Table 2.1: NHS wide cost associated with the colon cancer treatment pathway, including recurrence (Incisive Health,2014)

5

In the light of these facts, early and accurate cancer diagnosis is vital both for successful treatment

and to reduce costs.

Studies have proved that early/accurate diagnosis can only be achievable by investigating molecular

level elements rather than waiting for cancer cells to accumulate and spread to surrounding tissues,

thereby making a tumour recognisable (www6, 2014). At the time of this research, the number of

publications (7510 regarding Machine Learning and Cancer searches in PubMed) provides evidence

that gene expression profiling is a highly reliable and promising approach to the accurate prediction

of cancer (Ross et al., 2000; Kourou et al., 2015).

2.1.2 Gene expression profiling and DNA microarray

The code of DNA is made up four chemical bases: adenine (A), guanine (G), cytosine (C) and

thymine (T), and by pairing these chemicals, the two-strand helix structure of DNA is built up. As

described in section 2.1, DNA contains instructions to develop, survive and reproduce for organisms

and these functions can be carried out by producing proteins. The genes, segments of DNA, encode

the instructions to create protein molecules (WWW8, 2015). In order to produce proteins, enzyme

RNA polymerase encodes DNA. After that, through the encoding process (transcription), pre-mRNA

and messenger RNA (mRNA) are produced respectively. The produced mRNA carries some

sequences to the ribosome where the actual production of protein will take place. After the mRNA

sequences reach the ribosome, a reading process (translation) is initiated by the ribosome. By this

reading process, protein molecules can be produced in a wild polypeptide form depending on the

sequences of mRNA (WWW8, 2015).

Figure 2.3: Protein synthesis through the process of transcription and transaction (www9, 2015)

The wild polypeptide produced by the ribosome in the translation process folds up spontaneously in

its three-dimension shape according to Anfinsen’s dogma (Anfinsen, 1973). The function of the

protein is determined by its shape and a misfolded shape leads to a defective protein. The localized

6

accumulation of these misfolded proteins causes some diseases such as neurodegeneration, diabetes

and Alzheimer’s. Xu et al. (2011) stated that misfolded shape aggregation may also be a reason for

cancer diseases (Xu et al., 2011).

In biological terms, gene expression can be defined as the process of translation into mRNA or to

protein, and this definition can be broadened to include the synthesising of a new functional product

from DNA genes.

These manufactured products (proteins) govern the cell functions, and the quantity of a particular

protein can reflect the activity/function of the cell. Therefore, determination of these expressed genes

gives a picture of cellular function, and this is defined as gene expression profiling (www10, 2014).

A technique to quantify thousands of gene expressions simultaneously is called microarray

technology. The processes of microarray are implemented as described next.

First, spots of a solid surface are filled by specific DNA sequences, known as probes. Second, mRNA

is taken from a body cell (RNA extraction in Figure 2.4) and by reverse transcriptase enzyme it is

converted to cDNA (Yang, 2002). Because messenger RNA is produced by transformation from the

DNA strand, it gives mRNA the capability of binding to the DNA again (nature.com, 2015). After the

reverse transcriptase process, fluorescent nucleotides are attached to the cDNA in order to identify

when they are binded to probes on the solid surface (Schena et al., 1995). Thereafter, the researcher

places the labelled cDNAs into a DNA microarray slide. Some particular cDNAs bind to their

complementary part of DNA, which is known as hybridization (Schena et al., 1995). By scanning the

surface, intense fluorescents are identified and if there is a particularly intense spot on the solid

surface, it indicates that the area is producing many molecules of mRNA (Schena et al., 1995). By

examining the whole surface in terms of the quantity of fluorescents, scientists can gain a more

accurate understanding of thousands of gene activities. Consequently the data obtained from gene

expression profiling is called gene expression signature, and the gene expression level refers to the

amount of detected mRNA in the sample.

Figure 2.4: Microarray Technique procedures as follow; mRNA are isolated and cDNA is made. Then cDNA is

labelled with fluorescent nucleotides thereafter the labelled cDNA is put to glass slide and the slide is scanned by laser

followed by computer analysis of the intensity image (www11, 2015).

7

2.1.3 Genomic dataset

The main three concerns in cancer prediction/prognosis are cancer susceptibility (that is, risk

assessment), cancer recurrence and cancer survivability. Naturally these three predictions could be

conducted by considering multiple clinical factors such as the age of the patient, the grade and size of

the tumour and so on. However these ‘macro-scale’ clinical factors are generally inadequate for

accurate prediction/diagnosis. In order to obtain an accurate diagnosis, specific information on either

the tumour or the patient’s own genes becomes a requisite. Due to these micro-scale factors,

biomarkers in certain genes can be diagnosed more accurately (Cruz & Wishart, 2006; Colozza et al.,

2005).

There are many approaches which have been implemented on genomic datasets statistically and

biologically in order to expand knowledge of the molecular basis of cancer, such as real-time

polymerase chain reaction (McLendon et al., 2008; Fortunato et al., 2014). However these approaches

face some difficulties such as the high dimensional nature of the data or noisy characteristics of the

data (Pal et al., 2007). Considering the ML (machine learning) capability in high-dimensional data, it

can be said that ML is particularly well-suited to implementation on genomic datasets in respect of

high proteomic and genomic measurements (Cruz & Wishart, 2006).

2.2 Machine Learning

Machine learning is a scientific discipline that provides computers with the ability to distinguish

patterns in datasets, even though the datasets are comprised of high-dimensional, noisy and complex

data (Cruz & Wishart, 2006). Depending on the learning algorithm or implementation procedures, the

machine learning area can be classified into a number of broad categories: supervised, unsupervised,

semi-supervised, reinforcement learning and so on.

Artificial Neural Network (ANN) is one of the popular methods to recognise patterns in data s

through sequential training procedures that will be explained in the next sections (Basu,

Bhattacharyya, & Kim, 2010).

2.2.1 Artificial Neural Networks

The brain consists of a large number of inter-connected neurons that receive a number of biological

signals to dendrites and pass this information on through their axon. Artifical Neural Networks (ANN)

systems have been inspired by those biological systems. The main part of ANN, known as a

perceptron, mimics the neurons in the brain. It receives some input values from the environment and

that corresponds to dendrites part and after the received values are subjected to an activation function

that that will be explained in the next section, the output value is obtained end of the perceptron that

corresponds to axon (see Figure 2.5).

8

Figure 2.5: Neuron structure with dendrites, cell body and axon (left), Perceptron design, which

mimics neurons, with inputs (right) (www17).

The output of neuron can be calculated as;

𝑦 = 𝑓(∑ 𝑥𝑖𝑤𝑖

𝑛

1

) 2.1

In the brain system, when information reaches the terminal axon point, it passes to the other neurons

through connection areas which are called synapses. By connecting millions of neurons through the

synapses, the brain is formed. An ANN in fact consists of systems have been inspired by those

biological systems. In an ANN, the neurons are connected and organised in layers (see Figure 2.6).

Depending on the number of layers, the ANN is called either a single layer or a multilayer neural

network.

Figure 2.6: Connected neuron through the synapses for both the brain (left) and ANN systems (right)

(www17)

The neural network model was first created in 1943 by Warren McCulloch and Walter Pitts

(McCulloch and Pitts, 1943). The model was based on multiplication of inputs and weights (Eq 2.1)

then the output is produced by a linear threshold function. However this model could only produce

binary outputs that makes is simplistic model. After this creation, the next promising study was

9

conducted by Frank Rosenblatt. Rosenblatt discovered perceptron networks by applying an extra

value (bias) to the sum of inputs and weights. Rosenblatt also made weights adjustable which can be

used to minimise error between perceptron and real output. Since the perceptron was able to classify a

continuous-valued input into one of two classes; it made a big contribution to pattern recognition area

(Hagan, Demuth and Beale, 1996).

2.2.1.1 Single Layer Neural Network

A single layer neural network basically consists of a set of perceptron and it predicts patterns by

separating data linearly (see Figure 2.11). As can be seen in Figure 2.7, there are neurons which

receive multiple inputs that are typically in the range [0, 1] and represented by 𝑥𝑖. The taken input

values are multiplied by the value of weights (𝑤𝑖) linearly. The weight is a connection value and it

can either amplify or deamplify input values. In case of the linear combination 𝑛𝑒𝑡𝑗 (Eq. 2.2) it ends

up with zero, and there is another constant value which is called the bias neuron. The bias neuron can

be described as a coefficient value in a function to provide consistency to the calculations. If the bias

neuron value is set to 1, it does not receive any value from other neurons. During the process, the bias

neuron value (1) is multiplied by the connected weight value and the result of the multiplication,

which is the weight 𝑤0, is the sum with linear combination (Eq. 2.2). After linear combination of

weights and 𝑤0 , the result is included to an activation function 𝑓(.) (Eq. 2.3) which is used to

determine the output of neuron 𝑦𝑗 by comparing the result and the threshold value (𝑡). Calculations

for a single layer neural network are as follows:

 Multiplication of input values and following weights;

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑝𝑖 + 𝑤𝑗0
𝑑
𝑖=1 (2.2)

 The result of linear multiplication (2.2) are included to an activation function

𝑦𝑗 = 𝑓(𝑛𝑒𝑡𝑗) = {1𝑖𝑓𝑛𝑒𝑡𝑗 > 𝑡; 0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2.3)

Figure 2.7: A Single Layer Network that takes linear input vector 𝒙 and multiplies it by the

connected weights vector𝒘to get 𝒏𝒆𝒕𝒋 value. Finally, the output value (𝒚𝒋) is decided by using

activation function (𝒇(𝒏𝒆𝒕𝒋))

10

The calculations is done by using the activation function which so far can only form AND,OR and

NOT classifications. The example below shows two inputs and one output single layer;

Figure 2.8: The classification with NOT, AND OR in the perceptron

As Figure 2.8 shows, an implementation such as Eqs 2.2 and 2.3 𝑛𝑒𝑡 = 𝑤1𝑥1 + 𝑤2𝑥2 and 𝑜𝑢𝑡 =
𝑓(𝑛𝑒𝑡) is only capable of NOT, AND OR classification that can only separate data by drawing a

straight line, as is illustrated in Figure 2.9 for AND - OR classification.

Figure 2.9: Decision boundary for AND - OR classification.

11

2.2.1.2 Single Layer Neural Network Optimisation

As it is shown above, the data can be classified with a straight line by the single layer neural network

model. However, in the case of using further data points or high dimensional data, this line does not

separate them at the first step. That is why, based on the error value between network ouput and real

output, the network has to be optimised step by step. The optimisation network is implemented

through the training process which is done by calculating the error of the network (Eq. 2.4) and using

the gradient of descent of the error function to update the weight values (Eq. 2.9), which can

eventually result in minimising the error in the network (see Figure 2.11).

The mathematical steps of the optimisation network are as follows;

The error function of the network is;

𝐸(𝑤) = ∑

ℎ

𝑦=0

(𝑦𝑗 − 𝑜𝑗)
2

(2.4)

The gradient of descent of the error function is found in order to get the direction in error

minimisation (see Figure 2.10):

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
.
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖

(2.5)

This derivation function can be evaluated as;

−𝜕𝐸

𝜕𝑛𝑒𝑡𝑗
=

−𝜕𝐸

𝜕𝑦𝑗
.

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
= (𝑦𝑗 − 𝑜𝑗)𝑓′(𝑛𝑒𝑡𝑗)(2.6) 𝑡ℎ𝑎𝑡 𝑖𝑠𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝛿𝑗

and derivative of 𝑛𝑒𝑡𝑗𝑤𝑖𝑡ℎ𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑠𝑒𝑞𝑢𝑎𝑙𝑖𝑛𝑝𝑢𝑡𝑣𝑎𝑙𝑢𝑒𝑥𝑖

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= 𝑥𝑖(2.7)

By combining equations 2.6 and 2.7, the gradient of descent of the error function can be written as

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖(2.8)

After the gradient of descent of the error is found, it is multiplied by a given value (the learning rate)

to manage step length in the descending process (see Figure 2.10). Then the weight changing value

(Eq. 2.9) is calculated by multiplying learning rate (𝜂), 𝛿 and input value 𝑥𝑖 ;

∆𝑤𝑖 = −𝜂
𝜕𝐸

𝜕𝑤
= 𝜂𝛿𝑗 𝑥𝑖 = 𝜂(𝑦𝑗 − 𝑜𝑗)𝑓′(𝑛𝑒𝑡𝑗) 𝑥𝑖(2.9)

𝛿𝑗 is the error between real output and the network output

∆𝑤𝑖 is the weight changing value of 𝑖𝑡ℎ neuron

𝜂 is a given learning rate.

12

Thereafter, by updating the weight values (Eq. 2.10) with the weight changing values one by one, the

error minimisation is implemented (see Figure 2.10) and the network can converged or classified data

as shown in Figure 2.11.

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖(2.10)

Figure 2.10: Error descending; gradient descent of error is calculated (Eq.2.4) and each step length (delta weight) is found by

multiplying gradient descent with learning rate (Eq. 2.8). The weight is updated according to the found delta weight (Eq. 2.9)

and finally desired minimum error is reached by repeating those processes.

Figure 2.11: Single Layer Neural Network Data Classification; after each weight updating steps, the

error of model (distance between data and straight line) tends to reduce. By reaching the desired error

value, the data is separated as requested.

13

Although the discovery of single layer neural networks made a big contribution to the pattern

recognition field, it had some limitations (Minsky & Papert, 1970). Minsky and Papert stated that a

single layer neural network is incapable of XOR classification (Minsky & Papert, 1970). XOR is a

boolean classifier which is true for two variables if and only if one of the variables is true and the

other is false, which provides the ability to obtain a non-linear result in a neural network and it can

only be implemented with more than one layer of neurons due to its requirements. Although the fact

that it was incapable of XOR led to the discontinuation of neural network research for a time, the

advent of multilayer neural networks and backpropagation provided XOR implementation and ANN

research was recommenced (Rumelhart & McClelland, 1986; Hagan, Demuth & Beale, 1996). It is

worth noting that, in addition to XOR implementation, a multilayer neural network can also use other

non-linear/linear functions for activation such as sigmoid, sigmoid stepwise, hyperbolic tangent,

Gaussian or Elliot activation functions, which can provide better performances (Isa et al., 2010).

2.2.1.3 Multilayer Artificial Neural Networks

In the multilayer ANN, connected neurons are organised into layers, and even though there are a

couple of connectivity designs in multilayer ANN such as a recurrent neural network, the most

common design is feedforward, which was used in the present study as well. In the feedforward

design, each neuron in a layer is connected to all the other neurons which are in the other layers next

to it. Every neuron receives values either from the environment or from other neurons. The neurons

that take values from environments are known as input neurons, other nodes that take values from

different nodes are called hidden layer neurons, and the rest of the nodes that have an impact on the

environment are known as output neurons, as shown in Figure 2.12 (Floreano & Mattiussi, 2008 ;

Haykin, 2007).

Figure 2.12: A Multilayer Neural Network Structure designed with ‘d’ number input, ‘h’

number hidden and ‘c’ number output neurons. Each neuron is connected to all the neurons in

the layer next to it.

14

𝑥𝑖𝑖s the input to the neuron

𝑤𝑗𝑖 is the weight from 𝑖𝑡ℎneuron (from input to hidden)

𝑛𝑒𝑡𝑗 is the net input to the following nodes

𝑓𝑗 is the activation function

𝑤𝑗0is the bias value

h refers to the hidden layer neuron number

𝑤𝑘𝑗 is the weight from 𝑗𝑡ℎ neuron (from hidden to output)

c refers to output layer neuron number

𝑛𝑒𝑡𝑘is the net input value to the 𝑘𝑡ℎ output neuron that can be any neuron in output layer

𝑧𝑘is the output of neuron

2.2.1.4 Feedforward propagation in Multilayer Artificial Neural Networks

As already stated mentioned before feedforward propagation is the most frequently used network

structure in many applications. The propagation calculations are similar to single layer neuron

network feedforward. Firstly input values are taken as a vector (𝑥) and this is multiplied by the next

layer neuron weights (𝑤) one by one (Eq 2.11). After completing the multiplication for each hidden

layer neuron (except the bias neuron), the obtained 𝑛𝑒𝑡𝑗 values are included in the activation function

𝑓𝑗. Thereafter the propagation continue from hidden to output neurons using the same procedures;

taking all hidden neuron values as vector (𝑦) and multiplying them by the output neuron weights

values (𝑤) (Eq 2.13). At the end of the propagation, network output values (𝑧) are obtained with

activation function 𝑓 (.) (Eq 2.14) (Haykin,2007).

The mathematical feed forward propagation for Multilayer ANN is done as follow;

● Each input value is multiplied by the following weight values (𝑤𝑗𝑖) one by one and summed

up with bias neuron values (𝑤𝑗0. 1). This process is repeated for all the hidden neurons to

calculate 𝑛𝑒𝑡𝑗 values ;

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑤𝑗0

𝑑

𝑖

 (2.11)

● After that the 𝑛𝑒𝑡𝑗 values are included to activation function 𝑓𝑖(.) to calculate hidden neuron values

(𝑦𝑗)

𝑦𝑗 = 𝑓𝑖(𝑛𝑒𝑡𝑗) (2.12)

15

● After completing the linear multiplication and activation function (Eq 2.11 and 2.12), the hidden

neuron values (𝑦𝑗) are ready to be multiplied by the next following weight values (𝑤𝑘𝑗) and summed

it with bias value (𝑤𝑘0)

𝑛𝑒𝑡𝑘 = ∑ 𝑤𝑘𝑗𝑦𝑗 + 𝑤𝑘0

ℎ

𝑗

 (2.13)

● Finally, as was done before, each hidden neuron values (𝑛𝑒𝑡𝑘) are put in to the activation

function 𝑓𝑖(.) again to obtained network output values (𝑧𝑘)

𝑧𝑘 = 𝑓𝑘(𝑛𝑒𝑡𝑘) (2.14)

Once a structure is built, in order to obtain the desired output values, the ANNs are trained by

adjusting the weight. In the training procedure, some values (the output of which is already known)

are given to input layer nodes and the output of those inputs is compared with real output value which

is represented by𝑧𝑘. The comparison result gives the error (𝛿𝑘) in the network and it is calculated as:

𝛿𝑘 = (𝑧𝑘 − 𝑜𝑘)

Then, according to the calculated error, the weights are adjusted to get the minimum error as it is

stated in the single layer neuron subtitle. After converging the network, the outputs of the network

should be the same value as or close to the desired output values. However, optimising a multi-layer

network has some disadvantages concerning the hidden layer error calculation (Russell & Norvig,

1995). Because the training data do not convey what value should be owned by hidden layers, an

algorithm called backpropagation is used to calculate the error of the hidden nodes (Russell & Norvig,

1995).

2.2.1.5 Backpropagation in Multilayer ANNs

The backpropagation model is implemented backwards from output to input nodes in order to obtain

the error of the nodes and to adjust weights (Bishop, 2006). The procedure of backpropagation is done

by taking the derivative of the error function (Eqs 2.16 and 2.22) with respect to the connected

weights and updating the weights according to the gradient descent direction.

The weight-changing steps from output to hidden layer is the same as for single layer neurons;

First, the error function is defined;

𝐸(𝑤) = ∑𝑐
𝑘=1 (𝑜𝑘 − 𝑧𝑘)2 (2.15)

And gradient descent of it is done by taking derivative with respect to weight;

𝜕𝐸

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 =

𝜕𝐸

𝜕𝑧𝑘
.

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
 (2.16)

The evaluation of this derivation can be done as;

−
𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
= −

𝜕𝐸

𝜕𝑧𝑘
.

𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘
= (𝑜𝑘 − 𝑧𝑘)𝑓′(𝑛𝑒𝑡𝑘) 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝛿𝑘 (2.17)

16

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= 𝑦𝑗 (2.18)

The gradient is formed by combining 2.18 and 2.18 as;

𝜕𝐸

𝜕𝑤𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡𝑘
.
𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
= 𝛿𝑘𝑦𝑗 (2.19)

After the derivative of weight function has been found, it is multiplied by the learning rate and finally

the weight changing can be found

∆𝑤 = − 𝜂
𝜕𝐸

𝜕𝑤𝑘𝑗
= 𝜂𝛿𝑘𝑦𝑗 = 𝜂(𝑡𝑘 − 𝑧𝑘)𝑓′(𝑛𝑒𝑡𝑘) (2.20)

By following, the weight changing value is added to weight to optimise network between output and

hidden layer;

𝑤𝑘𝑗(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + ∆𝑤𝑘𝑗(𝑛) (2.21)

So far, the mathematical procedure is the same as for a single layer neural network for updating

weights. However, when it comes to weight changing between hidden and input neurons, some extra

calculations are needed because the hidden layer error is a ‘black box’ in a multilayer ANN.

As was done previously, derivation of error function with respect to the belonging weight value (𝑤𝑗𝑖)

is calculated;

𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗
.
𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
 (2.22)

However, the 𝛿𝑗 calculation step differs from equations 2.6 or 2.17. This time, the 𝛿𝑗 calculation will

involve all the weights (𝑤𝑘𝑗) from the hidden output layers;

𝜕𝐸

𝜕𝑦𝑗
=

𝜕

𝜕𝑦𝑗
[
1

2
∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2]

= − ∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2
𝜕𝑧𝑘

𝜕𝑦𝑗

= − ∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2
𝜕𝑧𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗

= − ∑

𝑐

𝑘=1

(𝑧𝑘 − 𝑜𝑘)2𝑓′(𝑛𝑒𝑡𝑘)𝑤𝑘𝑗 (2.23)

From the equation 2.17; 𝛿𝑘 = (𝑧𝑘 − 𝑜𝑘)𝑓′(𝑛𝑒𝑡𝑘) can be substituted in Eq 2.23 and the 𝛿𝑗 value is

evaluated as;

 𝛿𝑗 = 𝑓′(𝑛𝑒𝑡𝑗) ∑𝑐
𝑘=1 𝑤𝑘𝑗𝛿𝑘 (2.24)

Which makes weight changing is;

17

∆𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑦𝑖 = 𝜂𝑓′(𝑛𝑒𝑡𝑗)[∑

𝑐

𝑘=1

𝑤𝑘𝑗𝛿𝑘] 𝑥𝑖 (2.25)

After weight changing is calculated, finally weights are updated conventionally;

𝑤𝑗𝑖(𝑛 + 1) = 𝑤𝑗𝑖(𝑛) + ∆𝑤𝑗𝑖(𝑛) (2.26)

All in all, by adjusting the weight values with specific protocols, the errors can be minimised and the

desired output can be obtained accurately.

Consequently, multilayer ANNs with feed and backpropagation were the answer to the limitation of

neural networks and today they can handle different types of classification or pattern recognition

problem (Hagan, Demuth & Beale, 1996; Kourou et al., 2015).

2.3 Literature Review

ANNs have been used in cancer detection/classification/diagnosis for almost the last two decades

(Cruz & Wishart, 2006). This chapter investigates and partially compares previous studies that have

been conducted on cancer diagnosis/prognosis in terms of data mining methods comparison,

biomarker identification and survivability prediction in gene expression profiles.

2.3.1 Multilayer ANN comparison with other data mining methods in cancer

One of the preliminary studies was that conducted by Cho and Won (2003), who attempted to

precisely classify cancer by using/comparing machine learning systems on three different microarray

datasets. In the first dataset (leukaemia cancer) 38 out of 72 samples, in the second dataset (colon

cancer) 40 out of 62 samples, and in the third dataset (lymphoma cancer) 22 out of 47 samples were

tested to classify cancer using multilayer ANNs , k-nearest neighbour, support vector machine and

self-organising map. Multilayer ANNs were structured with 5~15 hidden nodes and two output nodes,

and it was implemented with backpropagation. The multilayer ANNs’ recognition rates were

calculated as 85.3% for leukaemia, 70.1% for the colon dataset and 69.7% for the lymphoma dataset.

The results of the study showed that multilayer ANNs and KNN had the best recognition rate among

other data mining methods, which shows that multilayer ANNs are quite a promising method for

classifying cancer on gene expression profile compared with other data mining methods.

Another recent study was that of Chou et al. (2013) in which breast cancer microarray databases were

used in order to predict five-year recurrence (Chou et al., 2013). During the experiment, three types of

data mining method (ANNs, decision trees (DT) and logistic regression (LR)) were used and their

findings were compared. Different datasets were pooled which had been taken from the Gene

Expression Omnibus (GEO) and the US National Library of Medicine (NCBI). First, 5945 datasets

were collected and filtered by Homo sapiens and breast cancer cases, without complete survival and

redundancy. After choosing the same type of microarray chips (HG-U133A), four datasets were left to

train. Although those databases had 922 subjects, because of missing values and effectiveness, only

data from 757 patients were used in the experiment. Before merging datasets, they were pre-processed

using the GC Robust Multi-array Average (GCRMA) method and R language software in order to

eliminate unnecessary or irrelevant features and to combine multiple probes. During the data mining

implementation process, SPSS Clementine 10.1 software was used and the ANN over-training

prevention parameter was set at 80%. It was also implemented with a 20-fold cross-validation.

18

In order to measure the results of Chou et al.’s study, the term ACC (the number of correct

predictions / total number of cases) was defined which presented the correct prediction of breast

cancer recurrence numbers in five years. At the end of the study, the 21 most-associated genes were

obtained and the ANN models displayed the best ACC score. Consequently, it can be stated that this

experiment had some speciality in terms of merging datasets and comparing data mining methods.

When similar studies were investigated, it was found that Sotiriou et al. had 34 cases and that Ivshina

et al.’s dataset had 90 cases, whereas the present study used 757 cases (Sotiriou et al., 2006; Ivshina

et al., 2006). It can therefore be said that this current experiment has a particular advantage in regard

to examining a large number of cases. On the other hand, this particular advantage might be a

limitation of the study depending on the classifying of the cases. Misclassified cases can cause a

heterogeneity which means that irrelevant features might be grouped in the same dataset which would

lead to misleading results. Despite the fact that the elimination process was carried out punctiliously,

the features of cases such as phenotype definition, population ethnicity or genetic heterogeneity might

not be classified correctly. Apart from dataset merging, in terms of understanding which method has

a better accuracy among data mining methods, it can be concluded that this study is a good example to

prove that multilayer ANNs produce better results than other methods.

Another study was conducted by Chu et al. by pooling microarray databases (Chu et al., 2014). The

aim of that study was to investigate the gene expression profiles of colorectal (CRC) cancer by

implementing and comparing four different machine learning methods (Multilayer ANNs, Prediction

Analysis of Microarray (PAM), Classification and Regression Trees (CART), and C5.0,). At the

beginning of the study, 190 different datasets were taken from the Gene Expression Omnibus (GEO).

After an elimination procedure, 16 datasets comprising 1186 colorectal tumour tissues remained (53

adenoma tissues, 521 adenocarcinoma tissues, 533 primary colorectal tumour tissues and 79 hepatic

tissues with metastatic colorectal tumours). Before the implementation of data mining methods, the

datasets were pre-processed using the GCRMA method as had been done in the previous Chu et al.

study. Because the 1186 cases were comprised of four different subgroups with different numbers of

cases, the training data percentage was set according to the number of cases (62% for adenoma tissues,

85% for adenocarcinoma and primary colorectal tumour tissues and 52% for hepatic tissues) and an

overall four-fold cross-validation was used. The data mining methods were implemented using SPSS

Clementine 10.1 software. ANN was trained with a quick backpropagation algorithm on Clementine

10.1. At the end of the study, eight genes which were highly related to CRC were identified. The

accuracy rates result of the study can be seen in Figure 2.13;

Figure 2.13: Test accuracy rate in four approaches (Chu et al., 2014).

Chu et al. stated that multilayer ANN showed the best model stability among the other approaches.

Because limited patient enrolment numbers might limit the power of machine learning approaches,

this study also has similar extra features for merging databases and the number of cases , as was

mentioned in Chou et al.’s study described above.

19

2.3.2 Biomarker in specific cancer type and Multilayer ANNs

Pal et al. (2007) conducted a study to classify childhood cancers, known as small round blue cell

tumours (SRBCTs). A dataset with 2308 genes from glass-slide cDNA microarrays was used in the

study. The main aim of the study was to identify biomarkers in order to enable more accurate

diagnostic prediction of the four categories of SRBCT. Since a cancer type which displays cellular

differences within a single cell might lead to misdiagnosis and SRBCT is one of those cancer types

(heterogeneous), the possibility of misdiagnosis becomes high likely with this dataset (Heppner,

1984). The previous methods were tending to reduce genes which were irrelevant to a specific cancer

type. However, those previously used methods were unable to detect subtle non-linear interaction

between genes and ultimately ended up with more genes than necessary (Pal et al., 2007). To address

this limitation, Pal et al. used multilayer ANNs and fuzzy clustering methods to detect the required

genes accurately. The dataset in this study consisted of 88 samples, of which 63 were used for training

and 25 for blind testing. Multilayer ANNs were constructed as 2308 input nodes (for each gene one

neuron), four output nodes (for each category one neuron) and 150 hidden nodes and four to-detect

related genes. At the first training, twenty genes were found using multilayer ANNs. In the next stage

of the procedure, those twenty genes were trained and reduced to ten genes using the same method.

Thereafter, the twenty first found genes were clustered using a non-Euclidean relational fuzzy c-

means algorithm to compare and confirm whether the second ten genes were related to a specific

cancer subgroup or not. After combining the second multilayer ANNs implementation and fuzzy

clustering, the number of genes was reduced from ten to seven. At the end of study when the seven

identified genes were investigated, it was seen that three of those seven genes (NAB2, LSB and EHDI)

had not been identified by any other method as important (Pal et al., 2007). Consequently, it can be

stated that the detected seven biomarker genes are enough to classify and diagnose the four categories

of childhood cancers with 100% accuracy.

Although multilayer ANN could have been optimised in terms of the number of nodes, it can be

concluded that Pal et al.’s study resulted in success in respect of its accuracy percentage and

identifying three novel genes that had not been detected previously as important. In addition, double

checking by using fuzzy clustering had some benefit in terms of preventing false biomarker detection.

Another study has been carried out to identify sign DNA methylation biomarkers in ovarian cancer

(Wei et al., 2006). It is recognised that abnormal DNA methylation is a contributor to neoplasia in the

human body. Correspondingly, detection of different combinations of methylated loci can be an

important biomarker. Wei et al. (2006) focused on identifying methylated loci signs to reduce early

stages ovarian cancer cases’ progression-free survival (PFS). For datasets, forty advanced-stage

epithelial ovarian tumours and seven normal adjacent ovarian tissues were taken from the Cooperative

Human Tissue Network (Columbus, OH), the Western Infirmary and Stobhill General Hospital

(Glasgow, UK), and the Cedar-Sinai Medical Centre (Los Angeles, CA). In the experiment, although

there was a 811 CGI microarray at the first stage, by using Significance Analyse Microarray (SAM)

for filtering, this number was reduced to a 112 CGI microarray. Then multilayer neural network and

support vector machine methods, as assessed by ten-fold cross-validation, were implemented on these

112 microarray samples to identify methylated loci prognostics. As a consequence, both the

multilayer neural network and the support vector machine methods showed 100% classification

accuracy for the detection of different combinations of methylated loci. According to the fact that the

detected biomarker has a crucial role in the accurate diagnosis of the cancer subgroup, the study’s

accuracy result proves that a multilayer neural network is highly effective at providing useful

information to clinicians.

A further similar study that aimed to predict the occurrence of lymph node metastasis in oesophageal

cancer by analysis using multilayer ANNs was that of Kan et al. (2004). For the microarray datasets,

twenty-eight independent primary tumours samples which had been under surgery at Kyoto

University Hospital were chosen. Candidate genes which had been taken from patients were included

in the SAM filtering process that can statistically extract differences. By the SAM filtering, the

20

number of genes was reduced from 8064 to 30-120. After that, multilayer ANNs were applied with

feed/backpropagation and leave-one-out cross-validation. The multilayer ANNs were constructed

with two hidden layers, which differed from other studies. The number of input nodes equalled the

number of genes used; the first hidden layer consisted of four nodes and the second hidden had ten

nodes (bottle-neck type), and the number of output nodes was set which showed the presence of

lymph as 1, and 0 otherwise. After training the neural network, the results showed that the predictive

accuracy of lymph node metastasis was 77% over 120 filtered genes. When the neural network was

tested with 60 genes, the accuracy rate extended to 86%. In the light of these results, it can be

concluded that multilayer ANNs can predict the occurrence of lymph node metastasis in oesophageal

cancer to a certain extent. Since the study had two hidden layers, it can be an indicator for the

prediction ability of networks with extra hidden layers. Also, this study shows the advantages of SAM

filtering for the gene filtering processes.

Another study by Abd El-Rehim et al. (2005) aimed to analyse protein expression in categories of

breast cancer tissue samples by applying immunohistochemistry (IHC) and the ANN classification

method (Abd El-Rehim et al., 2005). A sample of 1076 breast cancer cases from the Nottingham

Tenovus Primary Breast Carcinoma Series were tested in order to detect biomarkers which are

indicators of breast cancer. At the beginning of the study, IHC was applied to tissue microarrays

(TMA) to cluster samples formulated in terms of similarity. Further analyses of the cluster data were

carried out using multilayer ANNs. The ANN architecture was built from 13 input, 60 hidden and 6

output nodes. The multilayer ANN categorized the cases into groups and examined the driving

biomarker in each group. Using these methodologies, six main clusters were identified by IHC, as

shown in Figure 2.14, and the multilayer ANNs could predict 1, 2, 4, 5 and 6 classes with 100%

accuracy whereas class 3 was predicted with 99.57% accuracy. When all the classes were analysed by

the means and the standard deviation (SD) of the mean of expression of the markers in each group and

multilayer ANN, it was found that a discriminating marker which is related to epithelial cell lineage,

differentiation, hormone/growth factor receptors and gene products could be detected successfully. As

a result of this study, Abd El-Rehim et al. (2005) stated that two of the important discriminator

proteins (CK18 and CK5/6) identified were related to the mammary gland anatomy and cellular

structure of its parenchymal tissue (Abd El-Rehim et al., 2005). Consequently it can be said that the

multilayer ANN method with IHC clustering can give essential clues to tailoring the treatment of

breast cancer.

21

Figure 2.14 Cluster tree diagram of a tumour sample. Clusters are arranged from left to right,

starting from cluster 1 and ending at cluster 6.

A subsequent study was conducted by Agarwal et al. (2014). Since there had been great interest in Ki-

67 as a proliferation marker with both prognostic and predictive value in breast cancer, the main aim

of their study was the identification of common genes predictive of Ki-67 expression in three different

microarray breast cancer datasets by using multilayer ANNs with feedforward, backpropagation and

cross-validation. It should be noted that unlike most other studies, another cross-validation method,

which is named ‘Monte-Carlo’ was used in this experiment. The Monte-Carlo cross-validation

method has the ability to avoid over-fitting of the data and is more steady than leave-one-out cross-

validation (Xu, Liang & Du, 2004). The multilayer ANN consisted of two hidden nodes and the

sigmoid function. The datasets were collected from the Nottingham breast cancer microarray (training

set), the Uppsala breast cancer cohort (test set) and the METABRIC cohort (validation set). By using

ANN, the top 200 probes for Ki-67 status were identified for each dataset. As a second phase, a non-

reductionist approach network growth strategy was implemented in order to make the Ki-67 system

more precise in breast cancer analysis. In this approach, the open-access online database Search Tool

for the Retrieval of Interacting Genes/Proteins (STRING, Version 9.1) was used to determine linkages

between the top ten proteins interacting with Ki-67 and in turn between each of the top ten and their

top ten genes, as shown in Figure 2.15. Thereafter, those findings were compared with the results of

the first phase in order to identify the common genes. As shown in Figure 2.16, 64 unique genes were

identified across all three cohorts.

22

Figure 2.15: The linkages of top 10 for Ki-67 (Agarwal et al., 2014) Figure 2.16: Depicted Ki67 common genes in 3

breast cancer dataset (Agarwal et al., 2014)

Agarwal et al. (2014) stated that in a comparison of the 64 genes with previous studies, there was a

significant overlap with other similar signatures such as CEP55, CENPA, CENPE and spindle

checkpoint proteins such as TPX2, AURKB, CDC20, which might contribute to tumour progression.

However eight of the twenty most common genes for KI-67 were not listed among these 64 genes

(Agarwal et al., 2014) so it can be concluded that the study result could have been more precise.

Additionally, the ANN approach could have been used rather than STRING to predict associations for

Ki-67 due to the flexibility of ANN.

2.3.3 Predict survivability in cancer by using Multilayer ANNs

A study by Chen, Yang and Chiu (2009) sought to predict survival time in diffuse large B-Cell

lymphoma (DLBCL), follicular lymphoma (FL) and ovarian cancer patients by using multilayer

ANNs (Chen, Yang & Chiu, 2009). The datasets were obtained from Shipp’s study for DLBCL, as 58

untreated patients, Dave’s study for FL, as 95 untreated patients, and from Duke University Medical

Centre and the H. Lee Moffitt Cancer Centre and Research Institute including 69 deaths from ovarian

cancer (Shipp et al. 2002; Dave et al., 2004). The gathered dataset was pre-processed using BRB-

Array Tools. Then, in order to optimise the ANN architecture, the dataset was divided into two groups

of 90% and 10%. The 90% of the data group was used for training with a commercial software

(STATISTICA version 8.0) and the rest of the data (the 10% group) was used for testing. During the

training process, inputs were initialised randomly and at the end of the calculation the obtained output

was compared with known survival time. The process was then repeated by altering the weights

between nodes until the error was reduced to a negligible rate. To optimise ANN, it was tested with 5

to 30 hidden nodes. However, the multilayer ANNs can overfit the training data rather than decrease

the generalisation accuracy, so the multilayer ANN’s architecture was determined by trial and error.

At the end of study, the result was calculated as follows: for the DLCBL data set, differences between

values and estimator (RMSE) were identified as 2.68, and the linear relationship between values and

estimator (correlation coefficient) was calculated as 0.956. Additionally, some genes (D63879_at

(KIAA0156), HG1879-HT1919_at (ARHQ), U41815_at (NUP98) and X77366_at (TCF11)) which

are related to cancer were reported. For the FL dataset; RMSE was calculated as 27.69, and

correlation coefficient was 0.771 whereas these values were 17.23 and 0.868 respectively for the

ovarian cancer dataset as shown in Figure 2.17 for the three datasets.

23

Figure 2.17 : DLBCL (left) survival time observation and prediction results , FL (middle) survival time observation

and predictions tresult, Ovarian cancer (right) survival time observation and prediction results (Cheb, Yang

andChiu., 2009)

Chen, Yang and Chiu (2009) therefore declared the prediction of ANNs to be accurate and acceptable.

However, the findings could have been improved by comparison with other study results as was done

by Agarwal et al. (2014).

Another similar study was conducted with validating gene expression profiles in order to obtain

clinical outcomes of breast cancer (Lancashire et al., 2009). The study hypothesized that a gene

expression signature would be capable of predicting survival with some accuracy. Considering the

difficulty of breast cancer heterogeneity, multilayer ANNs with backpropagation and Monte-Carlo

cross-validation methods were implemented. In the multilayer ANNs’ structure, the number of hidden

layer nodes was restricted to five and the output nodes gave evidence of metastasis based on a

YES/NO sigmoidal function.

Research has been done on Van’t Veer’s dataset which used breast cancer disease samples. In the

experiment, 78 samples were used initially and were divided into 60% for training, 20% for validation

and 20% for blind testing independently. Consequently, nine genes were obtained that prognosed

with 98% sensitivity. Since the capability of predicting metastases has a high degree of accuracy, in a

further stage, another 295 patient cohort dataset (NKI295) was validated. The obtained nine gene

signatures were applied to classify this series of cases. The discovery was made that the data were

able to be divided into the proper groups which had been defined by the original 70-gene signature.

Consequently it can be observed that this study resulted in a high degree of accuracy and affirmation

of these findings.

This chapter has investigated previous relevant studies in terms of the comparison of data mining

methods, biomarker identification and survivability prediction in gene expression profiles using a

multilayer neural network. It can be concluded that a multilayer neural network is the most plausible

method among other data mining methods for the classification/prediction/identification of cancer

cases accurately, which proves that this method would be helpful for uncovering hidden patterns in a

dataset that can help clinicians in their decision-making.

24

Chapter 3

 Requirement and Analysis

This chapter will first describe the requirements of the project and then the means of overcoming the

challenges will be explained in the analysis part. The test results of the tool and the evaluation

process will also be explained.

3.1 Requirements

As mentioned in section 1.1, the main aim of this project is to develop a computational tool that will

be trained by cancer datasets, and after training it will be able to predict information such as

metastasis capability, and the stage and/or typology of cancer depending on the training dataset.

The requirements of this project can be split into three categories; functional, software

implementation and non-functional.

● First, the dataset that will be used in the project should have the requisite qualifications such

as completed input and outputs values or genes that are highly related to cancer subtypes. In

order to classify cancer accurately the tool should be trained with genes that are related to

specific cancer types. Considering that there are plenty of publicly available gene expression

datasets on the web and that these datasets include variety of genes/features, we should ensure

that our dataset consists of the necessary genes. Therefore a small blue cell tumour (SRBCTs)

dataset which was part of Khan et al.,(2001) study is used in the present project.

 Second, as can be seen in the literature review, generally studies have used SPSS or other

commercial software in multilayer layer neural network training. Considering that our project

network will be licensed under BSD3 to provide the ability of re-structuring in terms of

calculation methods or layer/neuron numbers, commercial/non-commercial products are not

used for the implementation of a neural network.

 Third, the tool should have high prediction accuracy in cancer. However, machine learning

systems are prone to overtraining (the tendency of fitting data excessively), which causes a

decrease in prediction correctness. Therefore a technique called cross-validation has to be

performed in the training process to avoid overtraining and to obtain high-accuracy results.

 Due to the need for the tool to be robust, unit testing should be implemented on codes to

ensure that process is carried out properly, and also the code should be tested by a

performance analysis tool to detect and fix any code bottlenecks.

 Additionally, after completion the testing of the tool, it will be released as a library called

Cunernet with a BSD3 licence to reach the widest community. In that way, the tool might be

made use of by any communities or contributors who might wish to be involved in the further

development process.

 Furthermore, the latest standards of C++ language should be performed because the tool will

be implemented on CUDA using the Thrust library.

● Finally, since the tool will be used by other users, compiling and verifying code changing

should be done before uploading any written code.

The functional requirements and software implementation and the non-functional requirements can be

outlined as shown in Table 3.1

25

Functional Requirements

1 The tool should predict cancer information(metastasis capability, stage, topology) with

high accuracy (95% or above preferably)

2 The dataset should only have the required genes/features

3 The used libraries should be under BSD-like licence.

4 The tool should be flexible in terms of implementing different learning rules and updating

protocols, neuron numbers in layers or input/ output vector size.

5 By implementing unit testing , the code should be made robust

Software Implementation

 1 The tool should be developed by using best practice developing techniques to release as

an open source

2 The user should be capable of deciding the implementation (training/testing) and the

network structure (multilayer/single layer)

3 The basic network values such as learning rate, momentum or input vector size in data set

should be passed by the user

4 The developed tool will be released named as the Cunernet library under the BSD licence.

5 Cmake cross-platform compilation software should be used to manage the building

process of the tool.

6 The Thrust library should be used in regard to implementation codes on CUDA as a

project extension

6 The Cunernet has to be implemented as self-contained shared library to be included in

other projects

Non-functional Requirements

1 The code should be analysed in terms of performance by using performance analysis tool

(gperftools) and according to analysis result it should be optimised.

2 The Operating System of machine should be Linux 64-bit with installed CUDA 7.0

3 The tool should be compiled using g++ 4.8

Table 3.1 The Requirements of The Project

3.2 Analysis

By analysing of the requirements of the project, the following stages should be followed in the project:

3.2.1 Dataset

The used SRBCTs dataset, which is publicly available, includes four distinct categories

(rhabdomyosarcoma (RMS), Burkitt lymphomas (BL) subset of NHL, neuroblastoma (NB), and the

Ewing family of tumours (EWS)) and consist of 88 samples (25 RMS, 11 BL, 18 NB and 29 EWS).

Each sample includes 96 genes, which are highly related to those four categories mentioned above.

Khan et al.,(2001) split the88 samples into training (63) and test sets (25). After training their network,

the 25 test samples were classified with 100% and diagnosed 23 over 25 sample could be diagnosed

correctly (2 samples Test Sample 10 and Test Sample 20 were not diagnosed).

Due to the 96 genes high relevance to the SRBCT cancer types, being publicly available and showing

promising result, the SRBCTs dataset will be chosen to train and test our network.

26

3.2.2 Programming Language Choose

Due to the flexibility and licence issues, own Multilayer Neural Network software will be developed

in C++11 language. Concerning that the written code will be optimised by Google Performance

Analysis tool to achieve a better performance, C++ was a proper choice. Additionally as an extension

of project the software will be implemented on GPU by using Thrust library in the future, it can be

said that C++11 was the most proper language to develop our tool. In the light of C++11 and Google

Performance tool using requirements, the project environment is chosen as Linux 64 bit operating

system with CUDA7.0

3.2.3 The Network Design

 In the present study the structure of the network will be limited to linear perceptron, but the software

will be designed to be extended to multilayer neural network depending on passed information from

the user. Also the learning algorithm of software will be implemented same as Khan et al.,(2001)

(updating weights every 10 samples) and in addition that, different optimisation algorithms such as

batch and stochastic learning will be added to software code as an optional choice.

3.2.4 Training Network

In the training procedure of the network, 63 samples over 88 will be taken to train our network and

three-fold cross validation will be implemented in order to avoid over training, as was done by Khan

et al., (2001).

 The procedures for training with cross validation will be;

● First the 63 sample dataset will be shuffled and split into three equal part

● After that, any two of three parts will be taken as a training set and the remaining 21 samples

are used as the validation set.

● First, the training set (42 samples) will be subjected to training procedures and the other 21

validation set, will be kept out of training.

● The training procedures will be repeated 100 times with the same training and validation

datasets.

● After 100 times completion, another 21 samples from the dataset will be chosen as a

validation and the other 42 samples will be used as training.

● The 100 times training procedures will be repeated again with the new chosen compound of

42 samples.

● These steps will be repeated three times and each time a different fold (21 samples) will be

chosen as validation set. By doing that over-training in network will be prevented

● End of these stages one iteration will be completed and by shuffling the 63 samples again

iteration will be started.

3.2.5 Best Practice Development

 Owing to the intention to release the tool an open source library, the best practices of open source

development techniques will be used. All code development processes will be done on the web

application hosting service Bitbucket. To manage code changing on Bitbucket, the “git” revision

systems will be used and each code changing steps will be uploaded to the Bitbucket page with an

explanatory note to be a guide for the history of the code development or a guide for further studies.

Also, in the case of getting an major errors, the project codes will be able to be rolled back by tracking

the history on Bitbucket.

Due to the fact that documentation is an important way to communicate with other developers, the

code comments will be written base on Doxygen rules and The Doxygen tool will be used to generate

documents as html or pdf automatically which will be found in the doc folder on the Bitbucket

27

project page. The generated document will be an easy guide to examine code in regard to functions or

variables for potential contributors and also for the current author in the future.

In order to deal with compiling source code fields in different directories, the CMake cross-platform

software will be used to manage the building processes. Additionally, by providing readme files will

be written to guide how to compile/run The Cunernet that files can be found in the project folder on

Bitbucket.

3.3 Testing and Evaluation

In this section, the present study classification and diagnosis method will be described rather than

Khan et al., (2001) classification/diagnosis method. However in section 5.4.1 Classification and 5.4.2

Diagnosis Khan et a., (2001) methods will be described and implemented along with the present study

classification/diagnosis method.

3.3.1 Testing the Correctness of the Training Set

As described above, 63 samples will be used to train the network and after each training dataset was

trained, its correctness will be calculated. The correctness calculation will be done by comparing real

output data and the network output data for each sample.

During the correctness checking, training set samples will be subjected feedforward propagation and

then the network output vector will be obtained one by one. (In our case the network output vector has

four elements with regard to the four cancer categories is searched) After obtaining output vector, the

highest value of vector will be checked whether it has 98% weight in sum of all four values. In the

case of the percentage being 98% or more, the index of this value will be compared to real output

highest value index. If both indexes are the same, that means the network classified the sample

correctly and correct number will be iterated with one. These processes will be implemented to all

samples in the training set and after finishing all samples, the correctness percentages of training set

will be calculated by dividing correct match and the dataset size number (Eq 3.1). The pseudo code of

these processes can be seen in Pseudo Algorithm 1 Testing correctness of a data set.

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑁𝑢𝑚𝑏𝑒𝑟

𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝑆𝑎𝑚𝑝𝑙𝑒 𝑁𝑢𝑚𝑏𝑒𝑟
 (3.1)

3.3.2 Avoiding Over-Training

 Furthermore, as it mentioned in the Analysis part, three fold cross validation will be used to prevent

over-training network. Avoiding over-training will be done as follow;

● A network model will be defined for testing

● At the beginning of the iteration, the dataset (63 samples) will be shuffled and split into 3

fold

● As it is explained in 3.2, the two folds (training set) will be subjected to training process and

the other third fold will be kept as validation set (without training network)

● End of this process the MSE (i.e. mean square error) for both training set and validation set

will be calculated

● This training and MSE calculations will be repeated 100 times and the MSE values obtained

will be stored to the vectors.

● At the end of 100 times, two vectors within the 100 MSE value elements will be obtained and

written to a file

● Then the network model is set as a new beginning and the dataset will be split again after

shuffling uniquely.

28

By repeating these steps 50 times, a 100 vectors (50 for training,50 for validation) that each of them

has 100 MSE values will be obtained and plotted (see Figure 5.6) by using python script which can be

found in the script folder on Bitbucket project page. By plotting a graph, the existence of over–

training will be tested and, in the case of that the validation errors have a decreasing trend, it will be

ensured that there is no sign for over-training in the network.

3.3.3 Unit Testing

As a part of unit testing, a relatively small dataset (4 inputs and 2 outputs) will be created manually.

This dataset will be given to the network for training, as shown in Figure 5.2. During the training

processes the used input vectors, network outputs values, network weight changings will be written

files and checked manually to see whether process/multiplications are done as required.

When the network outputs and real outputs comparison file will be examined, it should be seen that

the network outputs values are close to the real output values in each iteration, which means that the

network would be converging as required.

3.4 Testing Network Correctness/ Network Evaluation

During the training process, the used network models will be saved to files which can be found in

data/models directory on Bitbucket page. After completing the training of the network, the proper

network model will be reloaded from one of those model files to test network correctness with the test

dataset. In the current study, the test dataset consists of 25 samples with 5 “noise sample” (that is not

belonging to one of the four cancer categories).

In network testing, each sample will be given to the reloaded network and subjected to feedforward

propagation one by one. After this feedforward propagation, the network output vector will be

obtained and its classification/diagnosis will be done according to a percentage weight in the sum of

all elements, as explained in Section 3.3.1. (The percentage weight number will be decided after trials)

For each correct diagnosis, the number of correct samples will be iterated with one and at the end of

all samples the correct number will be divided by the test dataset sample number (25) to gather the

percentage accuracy of the network. After obtaining the network accuracy, using a list of correct

classified/prognosis samples, it will be compared with the results of Khan et al. (2001) to understand

whether the present study network works as requested, and whether it is better or worse than other

study networks.

 The pseudo code of testing correctness can be seen below;

Pseudo Algorithm 1 Testing correctness of a data set

1:procedure:checkOutputCorrectness
2:
3: for each inputVec , realOutputVec in DataSet do
4:
5: feedforward(inputVec);
6:
7: outputVec <- getOutput();
8:
9: sum <- sum(outputVec);
10:
11: highest <- getHighestValue(outputVec);

29

12:
13: if highest > sum *0.98 then
14:
15: if index in outputVec == index in realOutputVec then correctNumber++;
16:
17: correctness = correctNumber/ DataSet.size;

After the network correctness has been approved by comparison with the results of Khan et al. (2001),

the other study cancer datasets will be used to affirm the correctness of the network training and

testing.

3.5 Profiling/Performance Evaluation

The bottleneck of written serial code will be tested/monitored by using the performance testing tool

and Linux time function. The Google Performance Analysis CPU profiler, that can be found on

https://code.google.com/p/gperftools/, tool will be used to monitor unit time for each function/method

relative to total unit (calles) of software. According to the gathered results from gperftools, the code

parts will be changed/replaced to optimise it and after each changing the function time will be used to

check total wall time reduction. Due to the total wall time may change depends on hardware current

work load, the software will be run several times and average of wall time will be taken to compare

reduction time.

In addition, the total spent time against neuron numbers will be tested on both single and multilayer

neural networks and the effect of neuron/network structure on the spent time will be examined by

plotting graphs.

Also it should be mentioned the intention that the Thrust library will be used to implement the

software on CUDA in the future, regarding to the compability of Thrust library, the gperftool is

chosen for performance analysis.

3.6 The Library Cunernet

The Cunernet is a library that can be downloaded from the Bitbucket project page and by typing

simple commands it can be compiled/installed;

In order to compile and install;

● ./cmake.local

In order to compile and run;

● source local/share/CUNNET/CUNNET.conf

● ./cmake.test

The library has to be compiled using g++ 4.8 under linux 64bit to ensure compatibility with Cuda 7.0.

To contribute it, the functionalities have to be added to the /src/cunnet directory and the cmake file

(/src/cunnet/CmakeLists.txt) has to be edited by adding a new source file name. It is good practice to

create a new test for each functionality implemented. Every new test has to be coded as the template

used in "/src/tests/test_main" and ./cmake.test script file should be modified.

https://code.google.com/p/gperftools/

30

Chapter 4

 System Design

This chapter describes chosen design techniques along with both the benefits and drawbacks.

4.1 System Overview

The project design parts can be divided in different main steps as pre-processing/choosing dataset,

developing design in terms of using feedforward, backpropagation and updating weights protocols in

serial code and also software design.

4.2 Selecting and Pre-process of Dataset

A gene expression dataset is a repository consists of microarray gene expressions that is explained in

2.1.2. Today there are many gene expression cancer datasets publicly available on the web thanks to

projects. “The Cancer Genome Atlas” (www16, 2015) and “Gene Expression Omnibus” (www17,

2015) can be listed as two of the main projects for creating datasets. Basically a specific cancer

dataset is created by collecting variety of genes/features, which have affinity with specific cancer

types, from cancer patients’ microarray sets and collected data are stored to a database properly. After

the creation of a cancer dataset, it might published online and can be accessed on the project web

pages.

 Even though a dataset’s genes are related to cancer categories, the high number of genes (being

high-dimensional) can pose some challenge for the accuracy of cancer category detection. For

instance, whilst those extra features might mislead the machine learning calibration, they can also

cause an overwhelmingly inaccurate calculation in the system as is shown in Figure 5.7. Consequently,

the training process might be concluded as having a wrongly calibrated network which is not capable

of detecting cancer subtypes accurately (Yu & Liu, 2003). Therefore, depending on the characteristics

of the dataset, it should be pre-processed; however there are different methods for pre-processing a

dataset to find the exact features and each of them might result in a relatively different list of genes.

Bearing in mind the possibility of differences on the gene list, using the identical SRBCTs of a

childhood dataset from Khan et al.’s (2001) study would be the correct choice to test the present

study’s results and improvements. As discussed briefly in Section 3.2, there were 88 samples with

6567 genes at the beginning of pre-processing in Khan et al.’s study. As a first step of pre-processing,

these 6567 genes were filtered using image analysis on gene expression profiling, as was shown in

Figure 2.2. After implementing the red/relatively red intensity filtering method, which shows the

relative rank of genes and cancer subtypes, 2308 genes remained and then a principal component

analysis algorithm (PCA), which reduces the dimensionality of data, was applied to the remaining

2308 genes. Finally ten components were left to train/calibrate their neural network, and as result of

that study (Khan et al., 2001), 96 genes which were relevant to four cancer subtypes were found.

The stages of pre-processing can be seen in Figure 4.1

31

Figure 4.1 Pre-processing dataset; 6567 genes are filtered by image analysis filtering ,the remained 2308 genes data

dimensionality is reduced by principal component analysis and then 96 genes were found by (Khan et al., 2001) 96 genes

have been found.

In the present study, the extracted 96 genes will be used as dataset in order to train and test our neural

network. By doing that the results of project can be compared and possible improvements will be

identified.

4.3 Developing Design

First, the programming languages will be considered for neural network development. Even though

pyhton language has some libraries such as PyBrain for neural network, C++ will be more suitable

choice for development on both serial and parallel algorithms due to the project will be implemented

on CUDA by using Thrust library and also for the reason of using Google Performance tools to

optimise code.

The development tool that will be named the “Cunernet”, will be released as an open-source library.

Therefore software development best practice techniques will be used. The development process will

be practised on the Bitbucket web application service by using “git” which provides opportunity to

roll back the code by tracking its history. Additionally, the code history and tool itself might be used

as a guide for further developments with regard to the tool will be released as open-source on

Bitbucket page. Also, the codes’ comments are written base on Doxygen rules, and it is used to

generate documents of code as an html or pdf file by using the make-doc.sh file which can be found in

the data folder on Bitbucket project.

In reference to the extensibility of the software design, even though the network will be run as a single

layer neural network in the present work, it will be capable of extending to a multilayer neural

network depending on the typed information from users. In addition, as backpropagation weight

updating protocols, weights will be updated every ten samples (as Khan et al. (2001) did), but two of

the main learning algorithms (stochastic and batch) will be also added to the software code as an

optional features. The pseudo-code backpropagation protocols can be seen in Pseudo Algorithm 5

Updating Weights;

Regarding the compilation of the Cunernet library, the Cmake open-source software will be used,

which can compile several programming files from a tree-type directory. The compilation procedures

will be written in a readme file and will be found on the Bitbucket project page.

After finishing the developing, a unit test will be performed to determine whether the software is

working as requested. The unit testing implementation will be done by creating a small dataset, with

four input and two output element vectors, and the output of the network will be checked during the

training processes with the created dataset.

32

4.4 Software Design

The software should be run on a 64-bit Linux operation system with CUDA 7.0. After downloading

the Cunernet software from Bitbucket, the user will be able to compile and run the software with basic

commands that are written in the readme file on the Bitbucket page.

The files will be designed as a tree directory. A folder src will contain the source code files, a data

folder will include datasets or written files that are created during training/testing. Also. local will be

the target installation folder in which Cmake outputs binaries will be stored. In addition, scripts for

drawing line graphs and so on will be located in a script folder. All the folders can be found on the

Bitbucket project page.

When the software is compiled and run, a command panel will ask for some information such as

training/testing, network structure (single/multilayer), dataset file name to train the network, gene

number in dataset and learning rate with momentum values

In this step, the Cunernet software will be able to be trained/tested by any suitable dataset by passing

different dataset file names and gene numbers into the given file.

4.5 Neural Network Design

As mentioned in the Chapter 2, neural networks are a suitable machine learning systems for detecting

cancer subtypes accurately. The main restriction of this system can be stated as that

● it requires hardware which should be able to do high computations

● Regarding to high computations requisite, obtaining results may take relatively long time

On the other hand by optimising algorithms and by reducing dimensionality of dataset with correct

pre-processing methods, the time can be reduced significantly and an accurate result can be gathered

in favourable time.

4.5.1 Feedforward Algorithm

During the network building process, weights will be initialised randomly from a certain range. The

range of weight values can be expressed as [r,-r] and it will be able to be calculated as follow;

𝑟 =
0.1

𝐹𝑖
 4.1

Fi: Number of connected neuron to the 𝑖𝑡ℎneuron

After network creation and the weights initialisation, the feedforward algorithm will be implemented

according to formula 2.1 as shown in the Pseudo Algorithm 2 Feedforward Propagation;

33

Pseudo Algorithm 2 Feedforward Propagation

1:procedure:feedforward
2:
3: for each inputVector in Dataset do
4:
5: for each layer in in network do
6:
7: for each neuron in layer do
8: weightVector <- getWeights OfNeuron(neuron)
9: sum=inner_product(inputVector , weightVector)
10: sum=function(sum)
11:

Figure 4.2 Pseudo code of feed forward propagation; for each neurons’ weight vectors in layers is

multiplied by input vector in dataset.

4.5.2 Backpropagation Algorithm

For the next step of the project, backpropagation has been chosen as an optimisation algorithm. As

discussed in Chapter 2, this algorithm works by taking derivative of error function (Eq 2.4) with

respect to network weight and then those weight values are updated depending on the protocol that is

explained below. Pseudo Algorithm 3 Backpropagation

Pseudo Algorithm 3 Backpropagation

1:procedure:backpropagation
2: Begin initialise realOutputVector , i<-0;
3:
4: Since backpropagation function is called right after feedforward, the
5: output of network can be called by getOutput() function directly
6: outputVec <- getOutput();
7:
8: for each element in realOutputVec do
9: i <- i+1
10: deltaVector[i]<- (realOutputVec[i]- outputVec[i]) * previousNeuronValues.
 * (1- previousNeuronValues);
11:
12: calculateWeightChanging(deltaVector);

Figure 4.3 Pseudo code of Backpropagation; after obtaining output vector of network, it is

ssubstracted with real output vector that comes from dataset. After that is multiplied by

previous neuron value and 1-previous neuron which equivalent to derivative of neuron net

value (Equation 2.16)

34

4.5.2.1 Updating Weights - Training Protocols

As can be seen in Pseudo Algorithm 3 Backpropagation line 14, the function

“calculateWeightChanging” is called to store weight changes after the delta vector of the network is

calculated. The pseudo code of the calculateWeightChanging function as follow;

Pseudo Algorithm 4 Weight changes calculations

1:procedure: calculateWeightChanging
2: Begin initialise deltaVector ,previousNeuronValues , i<-0,k<-0;
3:
4:
5: for each neuron in layer do
6: i <- i+1
7: k <- 0;
8:
9: for each weightDelta in neuron do
10: k <- k+1
11:
12: Weight changing is implemented (Eq 2.10)
13: weightDelta = learningRate* previousNeuronValues [k]*deltaVector[i] +
 momentum* weightDelta
14:

Figure 4.4 Pseudo code of calculateWeightChanging function; After calculation delta values in bakpropagation

function, it is passed to calculateWeightChange function and in every neuron weightDelta value is updated by

multiplying learning rate, previous neuton values, delta values, and momentum (Equation 2.8).

On line 13, there is an addition term momentum (α) which differs from Eq 2.10. The momentum

parameter determines the quantity value to add weights by using previous and current weight values

(Eq. 4.3).

∆𝑤𝑖 = 𝜂 (𝑦𝑗 − 𝑜𝑗)𝑓′(𝑛𝑒𝑡𝑗) 𝑥𝑖 + 𝛼∆𝑤𝑖 (4.2)

𝑤𝑖 = 𝑤𝑖 + ∆𝑤𝑖 (4.3)

 The advantages of momentum is that due to ∆𝑤 values depending on learning rate and derivative of

error function (Eq. 2.10), in the case of derivative of error tending to be smaller value, there should be

a parameter to make descending step bigger. By making steps bigger the error minima can be reached

in fewer steps. The difference between using and not using momentum can be seen in Figure 4.2;

35

Figure 4.2: Updating weights by using momentum (right) and not using momentum (left); as it is seen in Figure 2.10;

the desired point (the centre of contour plot in this case) is getting be more closer in each weight update. Each arrow

above represents a step toward to centre and in the case of not using momentum; due to gradient descent is

decreasing while approaching to centre, the steps are getting be smaller which cause to more calculation burden that

takes more time network to converge. On the other hand when momentum is used, even though gradient descent is a

small number value, momentum balances the step length and the network is converged faster with less calculation

As can be seen, the steps of descending are getting smaller and smaller (left) because the derivative

of error function tends to be smaller and that causes more iteration, however by using momentum

(right) the steps become more stable and the minimum point of error function is reached faster than

without using the momentum method.

Considering the advantages of momentum, it is used in the project weight updating protocols which

will be implemented every 10 samples in the way as that was done by Khan et al., study (2001). In

regarding to weight update regularity, there couple of different update protocol and considering to

future usign of Cunernet Library, the main two of those protocol (batch, stochastic) also will be

added to the project software and those will be able to be used as optional.

36

Chapter 5

 Implementation, Testing and Evaluation

This chapter will describe the training implementation of the neural network, the Cunernet software

implementation and the test results, and finally an evaluation of the work will be presented.

5.1 Training Implementation

The project network in training/testing procedures is restricted to the single layer neural network as it

has been done in Khan et al., (2001) study. The dataset is read from the given dataset and input layer

neuron numbers is set to 96 due to the each sample has 96 genes values and also 4 output neuron is

created in context of the output vectors have 4 elements (Figure 5.1)

Figure 5.1 The used network structure; training set consist of 42 samples and each sample has input (96) and output

(4) vector. While input vector has 96 elements correpond to genes, the output vector has 4 elements corresponds to

category of cancer. (presence of category is represented by 1 , 0 otherwise in output vector). In training procedures,

input vector of sample is given to the network and the network output vector (y) is obtained. Thereafter obtained

output vector and the real output vector, mentioned above, is substracted and through the calculations mentioned in

Chapter 2, backpropagation is implemented. These procedures is repeated untill all samples is used.

After the network is built, training procedures is started by reserving 63 over 88 samples to train

network while the remaining 25 samples are used to test network correctness. In the beginning of

training network, 63 samples are shuffled and in context of cross validation it is split into three-fold.

While any two of three folds (42 samples) is labelled as training set, the other 21 samples set as

validation. The training set is given to the network through the feedforward, backpropagation and

every 10 samples the weights of network is updated (Eq. 4.4) as it explained in Chapter 4. These

procedures is implemented 100 times by using same training set and at the end of 100 times repetition

37

the network is saved to a file with its weight to be used in testing. This process is repeated 3 times

and each time different 21 samples are used as validation. After finishing 3 folds using three different

network is collected and 1 iteration is completed. After finishing 1 iteration, whole procedures is

started again with shuffling whole dataset and splitting to 3 folds again. The training of network is

completed after 1250 iteration as it has been done in Khan et al., (2001) study. The performed tasks

by each block of flowchart can be seen in Figure 5.2

Figure 5.2 Training Procedures; after obtaining 63x96 dataset, it has been split to 3 folds and while 2 of 3 is used as

training 100 times, the other 1 fold remained as validation. Thereafter the validation fold is changed and these

procedures is repeated three times with different validation sets in each. After completion 3 times changing, 1

iteration is accomplished and the all training network stage is finished after 1250 iterations as it has been done in

Khan et al., (2001).

38

5.2 Software Implementation

The Library Cunernet is written by using C++11 language in object oriented programming paradigm.

It can be downloaded from the Bitbucket project page and easy to compile with commands that are

written in the readme file.

After compiling and launching software, the question “Training or Testing?” is asked that determines

whether it is going to be run to train or test network.

 If Testing is chosen, a dataset name should be given with gene number in it. After passing proper

information, the question for classification or diagnosis is asked. In this step there is a third option

(classdiagnosis) is added as an extra to the Khan et al.,(2001) methods (Figure 5.3). By choosing

“classify”, the saved networks in training are testes on samples one by one. When “diagnose” is

chosen it asks the training sample number to calculate distance threshold, that explained in 5.4 Testing

Network Correctness and Evaluation, after giving training sample number it starts calculate distances

and end of it diagnosis result is given to the command panel (Khan et al., 2001), When

“classdiagnosis” the testing procedures is typed it starts trying each saved network with all samples in

given dataset and end of trying all networks the best result is given to the panel..

Figure 5.3 Cunernet library testing procedures starts. By giving proper information classification started. Also

diagnosise and classdiagnosis could have been chosen.

 If the Training is chosen, the dataset name with its gene number and also learning rate momentum

values information is asked (Figure 5.4).

Figure 5.4 Cunernet library training procedures starts by passign proper information.

39

After giving that information, the iteration number, and the average sum square error value and the

correctness percentage of the training datasets are shown to the user, as can be seen in the panel above.

During this training process, the procedures that are explained in Figure 5.2 are implemented. As is

shown in the flowchart, every training and validation set used are recorded to the file

(train_validation.csv”) and also before changing folds (see Figure 5.2) the updated network structures

are written to files and named as ‘model’iterationNo’.csv’ (for example, ‘model44.csv, ‘model45.csv’

and so on) in each fold-changing step. At the end of the training procedure, the 3750-model network

is written to files and in testing implementation those files are reloaded to test the network correctness

with the remaining 25 samples as was explained in Section 5.4 in detail (the files can be found in the

Bitbucket project data folder).

5.3 Testing

In this section, first the over-training control procedures, unit testing and profiling code operations

will be defined. Then the main 25 samples used for determining the trained network correctness

testing will be explained, with the results.

5.3.1 Over-training control

In order to check for the existence of over-training in the calibration process, a sample low

dimensional dataset was created from the 63x96 dataset used and it was given to the network. During

the creation of the low dimensional dataset, various functions which are explained below were used

from the Neural Network toolbox Gene Expression Analysis example (MATLAB Neural Network

Toolbox Release,R2014a).

● Genevarfilter: Filtering genes with small profile variance in dataset

● Geneentropyfilter: Removing genes with low entropy expression values in dataset

● Genelowvalfilter: Removing gene profiles with low absolute values

● Generangefilter: Removing gene profiles with small profile ranges

● Processpca: Reducing dimension of data by using orthogonal transformation.

After filtering genes on Matlab, the processpca was used as a final function to reduce the

dimensionality of the rest of the data and a sample dataset consisting of ten components (63x10) was

obtained and used in the network calibration procedure.

At the beginning of over-training control, the network is structured as 10 input and 4 output neurons

and the weights are initialised. Then the prepared dataset (63x10) is split 3 folds and two of them

used as training set in calibration operations feedforward ,backpropagation and updating weights. The

remained one fold is kept as validation and only feedforward propagation is used on this validation set.

This operations are implemented 100 times and each time MSE (i.e. mean square error) is calculated

(Eq. 5.1) for both the training and validation set. After the calculated MSE values are stored in two

vectors separately, at the end of 100 iterations these vectors are written as the errLog.file file and the

over-training procedures are relaunched by initialising the network with the same weights and

shuffling the data (see Figure 5.5).

40

𝐸 =
1

2𝑁𝑝
∑

𝑁𝑝

𝑝=1

 ∑

𝑖

(𝑦𝑖
𝑝

− 𝑜𝑖
𝑝

)2 (5.1)

 N_p : number of sample in dataset

Figure 5.5: Over-Training Testing;The network is initialised with chosen values between [r,-r], then the

dataset is split to 3 folds and any two of them is used as training set. The network is trained by using the

chosen training set and thereafter MSE values are calculated for both the chosen trainign , validation sets

and the calculated MSE values are stored to two different vector seperately. By using same training and

validation sets, same procedure is repeated 100 times and each time 2 MSE values (for validation and

training) are added to the two vectors seperately. At the end of 100 repetation, 2 vectors with a hundred

MSE values (1 for training 1 for validation) are obtained and written to a file to drawn later on. These

vectors with 100 MSE elements will be shown in Figure 5.6 as one line for each vector (purple for training

and grey for validation). By doing that 1 main iteration is completed and after 2 vectors are cleared, the

weight are re loadeded to network and second main iteration procedures are re-run by shuffling data

uniquely. This main iteration is repeated 50 times to obtain enough statistical informatino of network

over-training. At the end of this testing as 50 for each sets we got 100 vectors in total.

In order to obtain enough statistical information, the procedures above is repeated 50 times and by

doing that 100 vectors (50 for training , 50 for validation sets) are obtained in the file errLog.csv.

These 100 vectors ,each corerespond to the one line, are used to check whether over training exist or

not. By using a python script (plotTrainAndValidate.py) that can be found in scripts folder on

Bitbucket project, the error values are plotted on a line graph (Figure 5.6)

41

Figure 5.6 MSE calculations; By using same training and validation sets, the MSE values of both (for training and

validation) is calculated 100 times and stored to two vectors.At the end of this repetiton, two vectors that have 100

MSE values in each is created. This processes are repeated 50 times and 100 different vectors (50 for

training(purple),50 for validation(grey)) are collected and plotted.

As can be seen in Figure 5.6, whilst the errors of the training set (purple) decreased through the 100

repetitions, the validation errors (grey) also decreased similarly. Because there was no increase in

validation errors, it can be said that there is no sign of over-training in the network training.

5.3.2 Unit Testing

Unit testing is a method to check procedures of software whether it is suitable for use or not. Unit test

is implemented in order to test the correctness of the present study software training procedures by

creating datasets and training network manually.

The dataset was structured as four input elements and two output elements which led to four-neuron

input and two-neuron output layers. To start testing, the input vectors are given to the network one by

one and the training procedures in Figure 5.2 are followed. During the training of the network, both

network output elements and real output elements are written to a file in each iteration to monitor the

behaviour of the network.

42

Iteration 150

Fold 3

Train Set

Network Output Dataset Real Output

0.000125 0.999875 0 1

0.98782 0.012209 1 0

0.995976 0.004032 1 0

0.996673 0.003331 1 0

0.996673 0.003331 1 0

0.99812 0.001877 1 0

0.000174 0.999826 0 1

0.005957 0.994041 0 1

0.971165 0.028866 1 0

0.995976 0.004032 1 0

0.94422 0.055724 1 0

0.997726 0.002272 1 0

0.283181 0.716934 0 1

0.992811 0.007204 1 0

Validate Set

Network Output Real Output

0.933273 0.066712 1 0

0.99812 0.001877 1 0

0.002515 0.997477 0 1

0.00073 0.999271 0 1

0.96682 0.033206 1 0

0.996673 0.003331 1 0
Table 5.1:Unit Test Results; The network outputs are converging to the dataset real output values by getting be more

and more close to then (1 or 0).

As the example in Table 5.1 shows, the output vectors of the network converged to the real output

values for both the training and the validation sets, which shows that training the network worked as

required and is therefore appropriate for use in real examples.

5.4 Testing Network Correctness and Evaluation

After these training procedures are done, the obtained network models are reloaded from the files and

tested on 25 test samples which consist of 6 NB, 6 EWS, 3 BL,5 RMS and 5 different cancer subtype

as noise information. It is worth to remain that, these 25 samples is seperated from 88 samples

dataset at the beginning of training procedures and they are never involved training procedures which

means completely new for the network.

Ewing Family of tumours
EWS

Rhabdomyosarcoma
RMS

Burkitt lymphomas
BL

Neuroblastoma
NB

Noise

6 Samples 5 Samples 3 Samples 6 Samples 5 Samples

Table 5.2: The test samples cancer category distribution in 25 samples

43

According to 4 different cancer category is included in the test dataset, the output of each sample

consist of 4 elements and while category of cancer is denoted by 1 the rest of three elements is

denoted by 0. For instance if the first element of output is 1 it shows that this sample is EWS type.

As it mentioned above, testing has 3 options; first two is classification and diagnosis methods which

have been used in Khan et al., (2001) study and classDiagnosis method that is used in the presented

study as an extra. The procedures in classification and dianosis are as follow;

5.4.1 Classification

As in the Khan et al., (2001) did, a term average vote is used in the classification process. To find

average votes, firstly a network over 1250 saved network is reloaded and one sample is taken form

dataset. Feedforward propagation is implemented by using the taken sample and the network output is

gathered. Thereafter a second network over 1250 is reloaded and by using same sample, feedforward

is implemented on the second reloaded network. The gathered second network output is accumulated

with the first gathered network output. After reloading 1250 network with accumulation network

outputs, the average vote for the first taken sample is obtained and all procedures are implemented for

all samples one by one to obtain all averate votes of samples.

After obtaining all samples average votes, the classification is done by checking maximum value

number index in the average vote vector. Since the network has 4 output neurons, which correspond

to 4 cancer category (EWS,RMS,BL,NB), the average vote vector has 4 element as well. The real/

target output vector, which are in the dataset, shows the presence of cancer with 1 and 0 otherwise.

For instance a vector with elements 1,0,0,0 indicates that the sample has EWS category cancer.

Therefore if maximum value in obtained average output vector is in the first index, it is classified as

EWS, second for RMS, third for BL and latly fourth for NB.

44

Figure5.7: Classification procedures; a sampe is given to the saved 1250 network by feedforward propagation.

Thereafter the outputs are accumulated for each network and after using all saved networks, the accumulated

outputs are divided by the network number to find average vote of the used sample. These procedures are done for

all samples and according to the maximum element index of average vote vector it is classified.

After finishing the classification of the Cunernet Library it can be seen that all samples are classified

with 100% accuracy that means all samples in dataset of 88 samples is classified correctly (see Table

5.3) as was done by Khan et al., (2001) study. Also it should be noted that, the “noise” samples are

classified as noise in the Cunernet library classification. The classification of noise is done according

to the weight of maximum number in the four element vector. If the maximum number has a less than

98% weight then it is labelled as noise. (The 98% threshold was decided after several trials) At the

end of trials it is seen that 5 over 5 noise samples is classified correctly while Khan et al., (2001) did

not classify none of them.

Real Network Classification Network Outputs

Output Output EWS RMS NB BL

Sample 1 0 0 Matched 0.999999 9.26E-06 1.28E-06 7.54E-05

Sample 2 0 0 Matched 0.999994 8.24E-06 3.81E-05 2.52E-05

Sample 3 0 0 Matched 0.999999 7.03E-05 1.02E-07 4.93E-07

Sample 4 0 0 Matched 0.999996 0.0001377 7.96E-09 1.39E-07

Sample 5 0 0 Matched 1 7.50E-07 1.03E-07 6.76E-06

Sample 6 0 0 Matched 1 1.86E-07 3.02E-07 1.21E-05

Sample 7 0 0 Matched 1 9.71E-06 6.16E-08 3.63E-07

Sample 8 0 0 Matched 1 4.71E-08 1.35E-07 1.29E-06

Sample 9 0 0 Matched 1 2.59E-09 1.03E-08 1.69E-06

Sample 10 0 0 Matched 0.999428 0.0001402 5.30E-12 2.25E-08

45

Sample 11 0 0 Matched 1 1.59E-07 1.95E-06 6.41E-05

Sample 12 0 0 Matched 1 1.85E-07 5.96E-06 2.39E-06

Sample 13 0 0 Matched 1 1.59E-06 2.70E-06 3.65E-07

Sample 14 0 0 Matched 1 6.82E-07 3.25E-07 1.32E-05

Sample 15 0 0 Matched 0.999944 6.85E-06 0.000435 2.49E-05

Sample 16 0 0 Matched 0.999018 0.0001302 0.0003298 0.0002025

Sample 17 0 0 Matched 0.99931 0.0005445 0.0002998 0.000369

Sample 18 0 0 Matched 0.999831 0.0001134 8.36E-05 0.0001262

Sample 19 0 0 Matched 0.999963 6.51E-05 3.24E-05 6.66E-05

Sample 20 0 0 Matched 1 4.42E-06 2.92E-06 4.00E-06

Sample 21 0 0 Matched 0.99952 3.30E-05 0.0013769 6.46E-05

Sample 22 0 0 Matched 0.999618 5.54E-05 0.0009757 0.0004503

Sample 23 0 0 Matched 0.998753 0.0006452 0.0002926 9.89E-05

Sample 24 3 3 Matched 9.77E-05 2.73E-05 0.0001647 0.999963

Sample 25 3 3 Matched 0.000262342 3.13E-05 0.0004996 0.999769

Sample 26 3 3 Matched 4.94E-05 3.01E-05 5.85E-05 0.99998

Sample 27 3 3 Matched 8.01E-05 1.38E-05 4.81E-05 0.999955

Sample 28 3 3 Matched 0.000123608 0.0008356 0.0007692 0.999382

Sample 29 3 3 Matched 0.000281674 0.0002109 0.0003967 0.999878

Sample 30 3 3 Matched 0.000160402 0.0003014 0.0001588 0.999756

Sample 31 3 3 Matched 0.000195608 0.0002678 0.0006139 0.999087

Sample 32 2 2 Matched 1.09E-06 5.90E-05 0.993575 2.29E-06

Sample 33 2 2 Matched 6.07E-07 8.10E-05 0.993075 0.0001272

Sample 34 2 2 Matched 8.80E-08 0.0048147 0.990776 9.28E-08

Sample 35 2 2 Matched 0.00075952 3.95E-05 0.993535 0.0005605

Sample 36 2 2 Matched 7.76E-05 8.42E-05 0.993505 0.0002416

Sample 37 2 2 Matched 5.10E-05 5.32E-05 0.991245 0.0002521

Sample 38 2 2 Matched 0.000266827 1.25E-05 0.993562 0.0001695

Sample 39 2 2 Matched 0.000257855 2.19E-06 0.993594 8.66E-05

Sample 40 2 2 Matched 8.06E-05 0.0002301 0.992751 0.0002164

Sample 41 2 2 Matched 0.00117653 4.54E-05 0.992208 4.89E-05

Sample 42 2 2 Matched 0.000538316 1.27E-05 0.993155 0.0001874

Sample 43 2 2 Matched 4.59E-06 0.0004662 0.993459 6.50E-06

Sample 44 1 1 Matched 6.35E-09 0.999997 1.67E-05 1.27E-07

Sample 45 1 1 Matched 8.07E-05 0.999623 1.97E-05 1.12E-06

Sample 46 1 1 Matched 1.19E-05 0.999968 3.10E-06 5.61E-07

Sample 47 1 1 Matched 1.87E-05 0.999583 2.89E-06 7.95E-08

Sample 48 1 1 Matched 5.41E-06 0.999252 0.0008625 2.60E-06

Sample 49 1 1 Matched 8.44E-06 0.998939 0.0013327 1.35E-05

Sample 50 1 1 Matched 1.12E-05 0.999456 0.0008092 6.35E-06

Sample 51 1 1 Matched 0.000749966 0.999184 0.0006292 4.45E-06

Sample 52 1 1 Matched 5.92E-06 0.999277 0.0006634 1.06E-06

Sample 53 1 1 Matched 0.000285102 0.999078 4.92E-05 7.15E-07

Sample 54 1 1 Matched 7.84E-08 0.999994 9.67E-08 3.37E-06

Sample 55 1 1 Matched 3.33E-05 0.999993 6.92E-09 1.23E-08

Sample 56 1 1 Matched 0.000436614 0.999953 1.11E-06 4.02E-06

Sample 57 1 1 Matched 1.07E-06 0.999973 2.64E-07 7.93E-10

Sample 58 1 1 Matched 9.77E-05 1 7.77E-07 2.29E-08

Sample 59 1 1 Matched 5.74E-05 0.99992 1.15E-08 4.90E-09

Sample 60 1 1 Matched 1.84E-07 0.999997 1.67E-08 5.25E-08

Sample 61 1 1 Matched 0.000619259 0.999953 8.29E-07 7.31E-08

Sample 62 1 1 Matched 0.00059364 0.99977 2.54E-06 3.92E-09

Sample 63 1 1 Matched 7.39E-11 1 6.73E-11 5.71E-11

Test 1 2 2 Matched 0.0120638 2.28E-06 0.993532 0.0004412

Test 2 0 0 Matched 0.999628 4.51E-05 0.0001844 4.66E-05

Test 3 -1 -1 Matched 0.549998 0.0031857 0.0009182 0.0072279

Test 4 1 1 Matched 4.44E-10 1 9.80E-08 5.69E-08

Test 5 -1 -1 Matched 0.0851901 0.0038741 0.0185478 0.0755261

Test 6 0 0 Matched 1 1.31E-07 2.68E-06 1.55E-05

Test 7 3 3 Matched 0.000272146 2.50E-05 0.0001219 0.999985

Test 8 2 2 Matched 0.000172695 3.73E-06 0.993592 3.12E-05

Test 9 -1 -1 Matched 0.640664 0.150756 3.31E-05 0.0080591

Test 10 1 1 Matched 5.37E-09 0.999971 1.64E-10 7.10E-08

Test 11 -1 -1 Matched 0.454711 0.0033484 0.0102645 0.0056509

46

Test 12 0 0 Matched 1 2.13E-07 6.02E-06 1.33E-07

Test 13 -1 -1 Matched 0.768471 0.938202 1.77E-06 3.13E-05

Test 14 2 2 Matched 1.09E-05 2.15E-10 0.9936 0.0026604

Test 15 3 3 Matched 6.52E-05 3.29E-08 1.46E-06 0.999999

Test 16 2 2 Matched 8.81E-06 1.42E-09 0.9936 0.0001355

Test 17 1 1 Matched 9.75E-07 0.999978 4.06E-06 1.32E-07

Test 18 3 3 Matched 0.00299425 0.0005032 0.0012095 0.997766

Test 19 0 0 Matched 1 3.49E-08 1.24E-06 7.85E-06

Test 20 0 0 Matched 0.849812 9.23E-05 9.05E-08 0.0006389

Test 21 0 0 Matched 0.999386 0.0001503 6.09E-12 2.45E-08

Test 22 1 1 Matched 1.30E-07 0.999999 5.60E-07 2.81E-07

Test 23 2 2 Matched 6.58E-05 8.30E-08 0.986638 2.91E-05

Test 24 1 1 Matched 3.16E-06 0.999999 2.78E-08 6.08E-08

Test 25 2 2 Matched 3.52E-06 1.80E-11 0.9936 0.0003068

 #################################
 Classification is done with 100% accuracy
 ###########################
 Table 5.3; Classification Result; Real output column represent the real diagnosis and 0 for EWS, 1 for RMS, 2 for

NB , 3 for BL and -1 for noise samples. Network output column represent the classification result of the Cunernet.

5.4.2 Diagnostic Classification

In diagnostic classification, a term “distance” is used as was done by Khan et al., (2001). First, a

sample from training dataset is given to the 3750 saved network and this sample’s output is obtained

by feedforward propagation. Then the distance (Eq. 5.2) of this sample is calculated and accumulated

as is in Figure 5.8. This calculation/accumulation was implemented all training samples and at the end

of it, the samples are grouped by classification result and 95% of the total distance was taken as a

threshold value. Then the test samples’ distance were calculated on all 3750 saved networks and if

their distance is less than calculated threshold value, it is diagnosed, otherwise it is labelled as noise.

47

Figure5.8 Diagnosis procedures; Each samples’ distance is calculated. 95% of training samples distances are

calculated as an treshold values for each cancer category. Thereafter each test sample’s distance calculated and

according to classification type treshold values it is checked wheter less or more than. In the case of being less than

treshold value (95% of sum of training samples distances) it is diagnosed otherwise set as a noise.

𝒅 = 𝟏/𝟐 ∑

𝟒

𝒊=𝟏

(𝒚𝒊 − 𝒐𝒊)
𝟐 𝟓. 𝟐

At the end of these diagnosing procedures, our Cunernet Library diagnosed all samples with a 96%

accuracy, the same result as that achieved by Khan et al., (2001) (see Appendix Table 1).

5.4.3 ClassDiagnosis:

In this method, one reloaded network is given by all samples at once and the each saved network

correctness is considered separately. The steps of this method are followed;

● Firstly a network over 3750 is reloaded.

● A sample is given to the reloaded network and feedforward is implemented

48

● The network output of this sample is obtained and it is classified according to the highest

number in the obtained vector.

● To diagnose this obtained vector. The highest value weight in all four element is checked

● If the highest value weight is ore than 98% than is it diagnosed according to the highes value

index the diagnosis result is checked with real diagnosis.

● Thereafter by using same reloaded network, second sample is given to the network and same

procedures are done.

● At the end of all samples, the reloaded network is correctness accuracy is calculated

according to correct diagnosed sample number.

● Than second network is reloaded and all samples is given to the second network again.

● At the end of calculating all network correctness accuracy, the network which has a highest

accuracy is chosen to be shown.

Figure 5.9: ClassDiagnosis Procedures; The saved network are taken 25 samples one by one. If the output of network

has a value which has 98% or more weight in all four values, it is diagnosed and compared to real output value. If

none of the four values has 98% weight, it is diagnosed as noise sample and compared to real output value. Overall

all matches are sum and divided by 25 to gain accuracy percentage of trained/reloaded network.

As can be seen in Table 5.4, the results of comparison show that the network has classified 20

samples with 100% accuracy and 24 samples of the 25 have been diagnosed correctly. Only “Test

49

sample 20” was diagnosed as noise, whereas it was a EWS sample. Apart from that, all 24 samples

were diagnosed correctly which is identical to Khan et al., study (2001) results. The comparison table

between the presented study and that of Khan et al., (2001) study can be seen in Table 5.5.

Samples Network Output Vector Real

 EWS RMS NB BL Classification Diagnosis Diagnosis

TEST.1 0.019555 9.63E-05 0.999209 0.00221758 NB NB NB-C

TEST.2 0.980755 0.000515 0.00672988 0.00042237 EWS EWS EWS-C
TEST.3 0.589736 0.017952 0.0174805 0.0473966 EWS - OsteosarcomaC

TEST.4 9.23E-09 1 1.31E-06 1.32E-06 RMS RMS RMS-T

TEST.5 0.229616 0.023906 0.0380616 0.0629722 EWS - Sarcoma
TEST.6 0.999853 2.99E-05 6.86E-05 0.00017739 EWS EWS EWS-T

TEST.7 0.00636 0.001244 0.00285877 0.99905 BL BL BL-C

TEST.8 0.00155 0.000152 0.999619 0.00020646 NB NB NB-C
TEST.9 0.254191 0.522688 0.0006668 0.049363 RMS - Sk. Muscle

TEST.10 5.77E-07 0.99997 6 5.00E-07 8.37E-05 RMS RMS RMS-T

TEST.11 0.626072 0.006254 0.0319496 0.0444521 EWS - Prostate Ca.-C
TEST.12 0.999737 5.74E-05 0.00603079 0.00020536 EWS EWS EWS-T

TEST.13 0.065958 0.997101 6.42E-05 0.00299387 RMS - Sk. Muscle

TEST.14 0.000148 4.80E-07 0.999963 0.00575246 NB NB NB-T
TEST.15 7.16E-05 4.53E-06 0.00023765 0.999998 BL BL BL-C

TEST.16 0.000144 1.41E-06 0.999993 0.00135978 NB NB NB-T

TEST.17 1.15E-05 0.999881 6.79E-05 3.96E-05 RMS RMS RMS-T
TEST.18 0.035959 0.003953 0.0105931 0.984807 BL BL BL-C

TEST.19 0.999958 6.75E-06 5.64E-05 0.00015527 EWS EWS EWS

TEST.20 0.230137 0.016949 4.98E-05 0.0267939 EWS - EWS-T
TEST.21 0.99246 0.005905 9.38E-07 0.00121645 EWS EWS EWS

TEST.22 1.46E-05 0.999998 2.95E-06 0.00025175 RMS RMS RMS-T
TEST.23 0.000559 9.06E-05 0.981119 0.00327278 NB NB NB-T

TEST.24 2.20E-05 0.999993 1.05E-05 4.32E-05 RMS RMS RMS-T

TEST.25 0.000148 6.42E-08 0.999995 0.00122402 NB NB NB-T

Table5.4: The trained network classification and diagnosis results which are compared by real diagnosis results on

the right column.

 Presented Study Results Khan et al., Paper Results

Samples Real

 Real

 Classification Diagnosis Diagnosis
Classific

ation
Diagnosis Diagnosis

TEST.1 NB NB NB-C NB NB NB-C

TEST.2 EWS EWS EWS-C EWS EWS EWS-C

TEST.3 EWS - Osteosarcoma-C RMS - Osteosarcoma-C

TEST.4 RMS RMS RMS-T RMS RMS RMS-T

TEST.5 EWS - Sarcoma NB - Sarcoma

TEST.6 EWS EWS EWS-T EWS EWS EWS-T

TEST.7 BL BL BL-C BL BL BL-C

TEST.8 NB NB NB-C NB NB NB-C
TEST.9 RMS - Sk. Muscle RMS - Sk. Muscle

TEST.10 RMS RMS RMS-T RMS - RMS-T

TEST.11 EWS - Prostate Ca.-C EWS - Prostate Ca.-C
TEST.12 EWS EWS EWS-T EWS EWS EWS-T

TEST.13 RMS - Sk. Muscle RMS - Sk. Muscle

TEST.14 NB NB NB-T NB NB NB-T
TEST.15 BL BL BL-C BL BL BL-C

TEST.16 NB NB NB-T NB NB NB-T

TEST.17 RMS RMS RMS-T RMS RMS RMS-T
TEST.18 BL BL BL-C BL BL BL-C

TEST.19 EWS EWS EWS EWS EWS EWS

TEST.20 EWS - EWS-T EWS - EWS-T
TEST.21 EWS EWS EWS EWS EWS EWS

TEST.22 RMS RMS RMS-T RMS RMS RMS-T

TEST.23 NB NB NB-T NB NB NB-T
TEST.24 RMS RMS RMS-T RMS RMS RMS-T

TEST.25 NB NB NB-T NB NB NB-T

Table 5.5: Comparison of the presented study network and Khan et., paper results.

50

5.4.4 Testing Network with Other Datasets

For the second dataset, Tibshirani et al., (2001) study SRBCT dataset that consist of 43 genes is taken

to train and test the presented study network.

For this dataset (88x43) apart from cross validation handling, all procedures mentioned above is

implemented identically. While in Khan et al., (2001) has used 3 fold cross validation, Tibshirani et

al., (2001) preferred to use 10 fold cross validation and that is why fold number is set as 10 in the

presented study as well. The results of this datasets shows that, the Cunernet tool has 100%

classification accuracy (including noises samples) (Appendix Table 2) as it has been achieved in

Tibshirani et al.,(2001) and 95.4% diagnosis accuracy (Appendix Table 3)

As a third dataset, Pal et al., (2007) SRBCT , with again 88 samples and with only 7 genes, is used on

our network and It should be noted that due to the a few number of genes as the Pal et al., study have

used multilayer, in the presented study Multilayer Neural Network is also used for this dataset. After

training network, the classification result is obtained as 97.7%(Appendix Table 4) over all cancerous

samples and also 4 noise samples over 5 is classified correctly. In addition that, all samples are

diagnosed by 95.4% accuracy rate (Appendix Table 5).

Even though the accuracy results may differs from studies due to using different methods, the

presented study achvieves promising results which proCves that the unnet library is suitable to be

used in the field.

5.5 Profiling code

Considering that one of the aim of project is developing a better tool to detect cancer, finding and

fixing performance bottlenecks of code is vital .Therefore as it mentioned in Chapter 4 “Google

Performance Analysis Tool” is used in order to find bottleneck of code.

All of the benchmarks and opimisations are done on the workstation NVIDIA K40 GPU (12GB ram

and 2880cores) with Ubuntu 14.04, 64 bits 128Gibi RAM and the number of training iteration is set

to 100 in each training attempt. Thereafter gperftools CPUProfiler tool is used to gather units/calles

numbers of each function/method and according to those result the code is optimised. Thereafter linux

time command is used to gather average total wall time of software by runnin it several time .

At the first step of gperftool monitoring, 25000 unit is obtained as an average of 5 different run

software and in order to improve performance the following changing is implemeted;

● vectors lenght are allocated before storing information

● Function returns are done by move() funtion

● push_back are replaced by emplace_back during value storing to vectors.

Consequentlt unit numbers are reduced to 20000 in average. Afterwards;

● parameters are passed by references to functions rather than passing directly

● Lastly “sigmoid” function is made as inline function.

After these changing, unit number decreased to 19000 and as a result the code optimisation it is made

more efficint by around 28%. Furthermore total wall time of software is monitored during these

changing and in order to find average total wall time of the software it is run 10 times after each

changing. Finally it is obseved that, total spent time is reduced from 105 to 86.5 as each reducing step

can be in in Figure 5.10

51

Figure 5.10 : Code optimisation by reversing vector size before storing, returning result by using move function ,

making functions inline and passing parameters by their references

After training optimisation is done, testing part of software is optimised by taking classification and

diagnosis seperately. During optimisation testing code, same techniques are used with traning

optimisations. Such as passing parameter by references,returning values with move function or

reserving vectors size before storing. Before and after optimissation techniques are implemeneted, the

Cunernet software run 5 times to get average spent wall time of software. At the end of classification

optimisation the wall time is reduced from 48.09 to 42.19 and diagnosis wall time is decreased from

132.15 to 123.94.

Furthermore the wall time with different neuron numbers on single layer network is monitored to

observe effect of neuron number against to wall time. According to the network input neuron number

can be set by passing information on the command panel, the datasets with variety of genes number is

created to train network. To create these different dataset, firstly the SRBCT dataset with 2308 genes

is downloaded from the web site; http://research.nhgri.nih.gov/microarray/Supplement/ . Thereafter

by running the Matlab filtering functions Genevarfilter, Geneentropyfilter, Genelowvalfilter, and

finally by using Generangefilter repeteadly 2308 genes are reduced gradually and the datasets with

55,127,141,241,368,694 and 1307 genes are stored files in each step to be used. It should be noted

that in regarding to monitoring wall time, SRBCT dataset is not compulsory to be used, any other

datasets that have different genes numbers could be used to see effect of neuron number on total time.

After creation different datasets,train option is chosen on the Cunernet command line and the dataset

name is given one by one with gene number in it. The result of wall times against the used gene

numbers shows that increasing neuron number (x axis) is affects the taken time (y axis) significantly

on a single layer neural network (Figure 5.11).

52

Figure 5.11: The comparison between increasing neuron number and the wall time of running software on single

layer neural network.

Thereafter, considering to extensibility of software, the five of the created datasets (mentioned abpve)

with 55,93,141,175 and 241 genes is used on Multilayer Neural Network. It is worth the mentioned

again that any dataset with different gene numbers, that cause to different neuron numbers, can be

used in terms of comparing wall time against to neuron numbers.The created datasets are used with

the same training procedures and wall time against to neuron numbers is drawn in Figure 5.12;

Figure 5.12: The comparison between increasing neuron number against to the spent wall time of the software. The

red line represent multilayer neural network implementation and the blue line for single layer neural network.

As it can be seen in Figure 5.12 the neuron number affects spent time enourmously. For the

comparison single layer and multi layer network on 241 genes number dataset, it is seen that the time

on multilayer neurol network is 20 times more than the time on single layer neurol network.

53

In addition to neuron number against time, Khan et al., (2001) study dataset with 96 genes on single

layer neural network is taken as a sample and the each function time ise examined by using Google

Performance Analysis tool to understand which parts can be implemented on CUDA in the future.

During using gperftools, the iteration of training process is set to 100 and end of it the the list of

functions with spent time on CPU is obtained. According to this list, it is seen that while just inner

vector product costs 10% of overall time, the other vector operations (Figure 5.14) cost 47% as it can

be seen in Figure 5.13.

Figure 5.13: The vector operations(red),inner product(blue) proportions in software.

Figure 5.10 Vector operations distrubiton by percentages on all vector calculations.

54

Regarding to vector operations/calculations,that are generally vector/matrix multiplication with

iteration, takes big amount of time in software, these parts can be implemented on CUDA by using

Thrust library. It is worth to mention that, the software code is writen by using std vector containers

which can be converted to Thrust vector calculation easily. Taking into account that vector

calculations/operations takes big amount of time and the code of software is capable of to be

converted Thrust, plenty of time can be saved effortlessly by implementing it on CUDA in the future.

55

Chapter6

Conclusion

This project proposed to develop an open source library called Cunernet which uses gene

expression profiles to train artificial neural network system in order to detect cancer information

such as metastasis, biomarkers and so on which can help clinicians to tailor cancer treatments

effectively.

Differences of this project from other studies can be stated that the used/developed tool will be

released as open source and it can be used by any one while it can also be contributed through the

Bitbucket project page.

Because the Cunernet artificial neural network library will be able to be used with different datasets,

it is designed in a flexible manner in terms of structure (single/ multilayer), learning method

(stochastic/batch/semi-batch) and neuron numbers, learning rate and momentum values. In addition,

since the project will be implemented on CUDA by using Thrust library in the future, it is written in

C++11 in object oriented paradigm with vector containers. Writing code in object oriented

paradigm and using vector containers enables code to be implemented on thrust/CUDA

easily/effortlessly. Considering that the intention is to release this tool under the BSD3 Licence as

an open source, the best development techniques are used along the development. Each code

changing step was uploaded to the Bitbucket project page by using git. Also readme file is written

to guide user how to compile/run/test the software and instructions are given to show how to

contribute to the Cunernet on the project page.

Due to the fact that correct training procedure sequences may vary, a study procedures that has been

done by Khan et al., (2001) is mainly followed in the presented study in order to compare result

correctness accuracy. Also considering that the dataset may vary in regarding to genes or genes

number, SRBCT dataset (88x96) from the same study (Khan et., 2001) is taken to train our neural

network and at the end of training/testing stages, our study results are compared with Khan et al.,

(2001) results.

Even though single layer neural network was trained by SRBCT Khan et al.,(2001) study dataset as

it has been done in the Khan et al., (2001) study, multilayer neural network is also used during Pal

et al., (2007) study dataset to be trained and tested. Throughout the training network cross

validation methods are used to identify and prevent over training and a part of dataset was used to

test network correctness known as blind testing.

During the blind testing, Khan et al., (2001) methodology was used; “average vote” calculations for

classifications and “distance” calculations for diagnosis. It is worth mentioning that as an extra to

Khan et al (2001) procedures, the noise samples were also classified correctly in the classification

steps by The Cunernet Library.

After training, the cross validation, classification and diagnosis steps followed those of Khan et

al.,(2001), as an extra to Khan’s methods, another blind test (classification and diagnosis) method

was implemented to prove the correctness of the network in the present study. The Cunernet library

training/testing which was done by using Khan et al.’s dataset (88x96) has shown that the Cunernet

library and the Khan et al., study results has same levels of accuracy for both classification and

diagnosis. In addition that the network is trained and tested by 2 other SRBCT dataset with 43 and

7 genes from Tibshirani et al., (2001) and Pal et al., (2007) studies respectively. The accuracy f the

results obtained was 100% for classification and 95.4% for diagnosis with Tibshirani et al., (2001)

56

study dataset and 97.7% classification and 95.4% diagnosis for Pal e al., (2007) dataset. Even

though the non-diagnosed samples may vary due to shuffling dataset randomly, the accuracy

percentage of results proves that The Cunernet library is suitable for general use.

After finishing coding,training and testing part in C++11 serial algorithm, the performance

monitoring/analysis are done by Google Performance Analysis Tool and linux time function.

According to result of monitoring the code is optimised with replacing/changing some code parts

and also after each code changing the effect of it on the wall time is checked by using time function

by running software several times. At the end average of wall time is collected and the effectiveness

of code optimisation is seen.

6.1 Future works

The Cunernet Library could not be implemented on CUDA by using Thrust library. However by

transforming standard vector containers to the Thrust vectors, it can be implemented on CUDA

easily and considering from profiling section that, vector calculation takes a part of the running

time and implementing vector calculations on CUDA would reduce the spent vector calculations

times significantly

Also, in consideration of the fact that end-users will use this tool after releasing, a graphical user

interface would make managing library much easier. Furthermore, other artificial neural network

features such as online learning algorithms or different activation functions codes can be added and

those can be used during training optionally in the future.

Apart from those suggestions, even though the results obtained were satisfactory with 3 different

SRBCT datasets, it can still be tested by any other dataset on both single layer or multilayer

network to classify different cancer types and also to approve suitability of the Cunernet Library. In

addition that since the data format in the project is compatible with Matlab it can be integrated to it

easily.

57

References

Abd El-Rehim, D., Ball, G., Pinder, S., Rakha, E., Paish, C., Robertson, J., Macmillan, D., Blamey, R.

and Ellis, I. (2005). High-throughput protein expression analysis using tissue microarray technology

of a large well-characterised series identifies biologically distinct classes of breast cancer confirming

recent cDNA expression analyses. International Journal of Cancer, 116(3), pp.340-350.

Agarwal, D., Kergosien, M., Boocock, D., Rees, R. and Ball, G. (2014). A systems biology approach

to identify proliferative biomarkers and pathways in breast cancer. 2014 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM), pp.1-7.

Anfinsen, C. (1973). Principles that Govern the Folding of Protein Chains. Science, 181(4096),

pp.223-230.

Basu, J. K., Bhattacharyya, D., and Kim, T. H. (2010). Use of artificial neural network in pattern

recognition. International journal of software engineering and its applications, 4(2).

Bishop, C. (2006). Pattern recognition and machine learning. New York: Springer.

Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012). Global cancer transitions according to

the Human Development Index (2008–2030): a population-based study. The Lancet Oncology, 13(8),

pp.790-801.

Brown, P. and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays.

Nat Genet, 21, pp.33-37.

Chen, Y., Yang, W. and Chiu, H. (2009). Artificial Neural Network Prediction for Cancer Survival

Time by Gene Expression Data. 2009 3rd International Conference on Bioinformatics and

Biomedical Engineering, pp.1-4.

Cho, S., and Won, H. (2003). Machine Learning in DNA Microarray Analysis for Cancer

Classification. In Y.-P. P. Chen (Ed.), Proceedings of the First Asia-Pacific bioinformatics conference

on Bioinformatics 2003, Machine Learning in DNA Microarray Analysis for Cancer Classification, 19,

pp.189–198.

Chou, H., Yao, C., Su, S., Lee, C., Hu, K., Terng, H., Shih, Y., Chang, Y., Lu, Y., Chang, C.,

Wahlqvist, M., Wetter, T. and Chu, C. (2013). Gene expression profiling of breast cancer

survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks

and decision trees. BMC Bioinformatics, 14(1), p.100.

 Chu, C., Yao, C., Chang, Y., Chou, H., Chou, Y., Chen, K., Terng, H., Huang, C., Lee, C., Su, S., Liu,

Y., Lin, F., Wetter, T. and Chang, C. (2014). Gene Expression Profiling of Colorectal Tumors and

Normal Mucosa by Microarrays Meta-Analysis Using Prediction Analysis of Microarray, Artificial

Neural Network, Classification, and Regression Trees. Disease Markers, 2014, pp.1-11.

12 Colozza, M., Cardoso, F., Sotiriou, C., Larsimont, D. and Piccart, M. (2005). Bringing Molecular

Prognosis and Prediction to the Clinic. Clinical Breast Cancer, 6(1), pp.61-76.

58

13 Cruz, J. A., & Wishart, D. S. (2006). Applications of Machine Learning in Cancer Prediction and

Prognosis. Cancer Informatics, 2, pp. 59–77.

14 Curtis, C., Shah, S., Chin, S., Turashvili, G., Rueda, O., Dunning, M., Speed, D., Lynch, A.,

Samarajiwa, S., Yuan, Y., Gräf, S., Ha, G., Haffari, G., Bashashati, A., Russell, R., McKinney, S.,

Caldas, C., Aparicio, S., Curtis†, C., Shah, S., Caldas, C., Aparicio, S., Brenton, J., Ellis, I., Huntsman,

D., Pinder, S., Purushotham, A., Murphy, L., Caldas, C., Aparicio, S., Caldas, C., Bardwell, H., Chin,

S., Curtis, C., Ding, Z., Gräf, S., Jones, L., Liu, B., Lynch, A., Papatheodorou, I., Sammut, S., Wishart,

G., Aparicio, S., Chia, S., Gelmon, K., Huntsman, D., McKinney, S., Speers, C., Turashvili, G.,

Watson, P., Ellis, I., Blamey, R., Green, A., Macmillan, D., Rakha, E., Purushotham, A., Gillett, C.,

Grigoriadis, A., Pinder, S., di Rinaldis, E., Tutt, A., Murphy, L., Parisien, M., Troup, S., Caldas, C.,

Chin, S., Chan, D., Fielding, C., Maia, A., McGuire, S., Osborne, M., Sayalero, S., Spiteri, I.,

Hadfield, J., Aparicio, S., Turashvili, G., Bell, L., Chow, K., Gale, N., Huntsman, D., Kovalik, M., Ng,

Y., Prentice, L., Caldas, C., Tavaré, S., Curtis, C., Dunning, M., Gräf, S., Lynch, A., Rueda, O.,

Russell, R., Samarajiwa, S., Speed, D., Markowetz, F., Yuan, Y., Brenton, J., Aparicio, S., Shah, S.,

Bashashati, A., Ha, G., Haffari, G., McKinney, S., Langerød, A., Green, A., Provenzano, E., Wishart,

G., Pinder, S., Watson, P., Markowetz, F., Murphy, L., Ellis, I., Purushotham, A., Børresen-Dale, A.,

Brenton, J., Tavaré, S., Caldas, C. and Aparicio, S. (2012). The genomic and transcriptomic

architecture of 2,000 breast tumours reveals novel subgroups. Nature.

Dave, S., Wright, G., Tan, B., Rosenwald, A., Gascoyne, R., Chan, W., Fisher, R., Braziel, R., Rimsza,

L., Grogan, T., Miller, T., LeBlanc, M., Greiner, T., Weisenburger, D., Lynch, J., Vose, J., Armitage,

J., Smeland, E., Kvaloy, S., Holte, H., Delabie, J., Connors, J., Lansdorp, P., Ouyang, Q., Lister, T.,

Davies, A., Norton, A., Muller-Hermelink, H., Ott, G., Campo, E., Montserrat, E., Wilson, W., Jaffe,

E., Simon, R., Yang, L., Powell, J., Zhao, H., Goldschmidt, N., Chiorazzi, M. and Staudt, L. (2004).

Prediction of Survival in Follicular Lymphoma Based on Molecular Features of Tumor-Infiltrating

Immune Cells. New England Journal of Medicine, 351(21), pp.2159-2169.

Floreano, D. and Mattiussi, C. (2008). Bio-inspired artificial intelligence. Cambridge, Mass.: MIT

Press.

Fortunato, O., Boeri, M., Verri, C., Conte, D., Mensah, M., Suatoni, P., Pastorino, U. and Sozzi, G.

(2014). Assessment of Circulating microRNAs in Plasma of Lung Cancer Patients. Molecules, 19(3),

pp.3038-3054.

Garnett, M., Edelman, E., Heidorn, S., Greenman, C., Dastur, A., Lau, K., Greninger, P., Thompson,

I., Luo, X., Soares, J., Liu, Q., Iorio, F., Surdez, D., Chen, L., Milano, R., Bignell, G., Tam, A.,

Davies, H., Stevenson, J., Barthorpe, S., Lutz, S., Kogera, F., Lawrence, K., McLaren-Douglas, A.,

Mitropoulos, X., Mironenko, T., Thi, H., Richardson, L., Zhou, W., Jewitt, F., Zhang, T., O’Brien, P.,

Boisvert, J., Price, S., Hur, W., Yang, W., Deng, X., Butler, A., Choi, H., Chang, J., Baselga, J.,

Stamenkovic, I., Engelman, J., Sharma, S., Delattre, O., Saez-Rodriguez, J., Gray, N., Settleman, J.,

Futreal, P., Haber, D., Stratton, M., Ramaswamy, S., McDermott, U. and Benes, C. (2012).

Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 483(7391),

pp.570-575.

Geeleher, P., Cox, N. and Huang, R. (2014). Clinical drug response can be predicted using baseline

gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol, 15(3), p.R47.

Hagan, M., Demuth, H. and Beale, M. (1996). Neural network design. Boston: PWS Pub.

Haykin, S. (1994). Neural networks. New York: Macmillan.

Heppner, G. H. (1984). Tumor heterogeneity. Cancer research, 44(6), pp. 2259-2265.

59

Incisive Health, (2014). Saving lives, averting costs. [online] Incisive Health, pp.Annex 5 page:69.

Available at: http://www.incisivehealth.com/uploads/Saving%20lives%20averting%20costs.pdf

[Accessed 20 Apr. 2015].

Isa, I., Omar, S., Saad, Z. and Osman, M. (2010). Performance Comparison of Different Multilayer

Perceptron Network Activation Functions in Automated Weather Classification. 2010 Fourth Asia

International Conference on Mathematical/Analytical Modelling and Computer Simulation, pp.71-75.

Ivshina, A., George, J., Senko, O., Mow, B., Putti, T., Smeds, J., Lindahl, T., Pawitan, Y., Hall, P.,

Nordgren, H., Wong, J., Liu, E., Bergh, J., Kuznetsov, V. and Miller, L. (2006). Genetic

Reclassification of Histologic Grade Delineates New Clinical Subtypes of Breast Cancer. Cancer

Research, 66(21), pp.10292-10301.

Kan, T., Shimada, Y., Sato, F., Ito, T., Kondo, K., Watanabe, G., Maeda, M., Yamasaki, S., Meltzer,

S. and Imamura, M. (2004). Prediction of Lymph Node Metastasis with Use of Artificial Neural

Networks Based on Gene Expression Profiles in Esophageal Squamous Cell Carcinoma. Annals of

Surgical Oncology, 11(12), pp.1070-1078.

Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., ... & Meltzer, P.

S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling

and artificial neural networks. Nature medicine, 7(6), 673-679.

Kourou, K., Exarchos, T., Exarchos, K., Karamouzis, M. and Fotiadis, D. (2015). Machine learning

applications in cancer prognosis and prediction. Computational and Structural Biotechnology Journal,

13, pp.8-17.

Lancashire, L., Powe, D., Reis-Filho, J., Rakha, E., Lemetre, C., Weigelt, B., Abdel-Fatah, T., Green,

A., Mukta, R., Blamey, R., Paish, E., Rees, R., Ellis, I. and Ball, G. (2009). A validated gene

expression profile for detecting clinical outcome in breast cancer using artificial neural networks.

Breast Cancer Res Treat, 120(1), pp.83-93.

Maltarollo, Vinícius Gonçalves, Albérico Borges Ferreira da Silva, and Káthia Maria

Honório. Applications of artificial neural networks in chemical problems. INTECH Open

Access Publisher, 2013.

MATLAB and Bioinformatics Toolbox Release R2014a, The MathWorks, Inc., Natick,

Massachusetts, United States.

McCulloch, W. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5(4), pp.115-133.

McLendon, R., Friedman, A., Bigner, D., Van Meir, E., Brat, D., M. Mastrogianakis, G., Olson, J.,

Mikkelsen, T., Lehman, N., Aldape, K., Alfred Yung, W., Bogler, O., VandenBerg, S., Berger, M.,

Prados, M., Muzny, D., Morgan, M., Scherer, S., Sabo, A., Nazareth, L., Lewis, L., Hall, O., Zhu, Y.,

Ren, Y., Alvi, O., Yao, J., Hawes, A., Jhangiani, S., Fowler, G., San Lucas, A., Kovar, C., Cree, A.,

Dinh, H., Santibanez, J., Joshi, V., Gonzalez-Garay, M., Miller, C., Milosavljevic, A., Donehower, L.,

Wheeler, D., Gibbs, R., Cibulskis, K., Sougnez, C., Fennell, T., Mahan, S., Wilkinson, J., Ziaugra, L.,

Onofrio, R., Bloom, T., Nicol, R., Ardlie, K., Baldwin, J., Gabriel, S., Lander, E., Ding, L., Fulton, R.,

McLellan, M., Wallis, J., Larson, D., Shi, X., Abbott, R., Fulton, L., Chen, K., Koboldt, D., Wendl,

M., Meyer, R., Tang, Y., Lin, L., Osborne, J., Dunford-Shore, B., Miner, T., Delehaunty, K.,

Markovic, C., Swift, G., Courtney, W., Pohl, C., Abbott, S., Hawkins, A., Leong, S., Haipek, C.,

Schmidt, H., Wiechert, M., Vickery, T., Scott, S., Dooling, D., Chinwalla, A., Weinstock, G., Mardis,

60

E., Wilson, R., Getz, G., Winckler, W., Verhaak, R., Lawrence, M., O’Kelly, M., Robinson, J., Alexe,

G., Beroukhim, R., Carter, S., Chiang, D., Gould, J., Gupta, S., Korn, J., Mermel, C., Mesirov, J.,

Monti, S., Nguyen, H., Parkin, M., Reich, M., Stransky, N., Weir, B., Garraway, L., Golub, T.,

Meyerson, M., Chin, L., Protopopov, A., Zhang, J., Perna, I., Aronson, S., Sathiamoorthy, N., Ren, G.,

Yao, J., Wiedemeyer, W., Kim, H., Won Kong, S., Xiao, Y., Kohane, I., Seidman, J., Park, P.,

Kucherlapati, R., Laird, P., Cope, L., Herman, J., Weisenberger, D., Pan, F., Van Den Berg, D., Van

Neste, L., Mi Yi, J., Schuebel, K., Baylin, S., Absher, D., Li, J., Southwick, A., Brady, S., Aggarwal,

A., Chung, T., Sherlock, G., Brooks, J., Myers, R., Spellman, P., Purdom, E., Jakkula, L., Lapuk, A.,

Marr, H., Dorton, S., Gi Choi, Y., Han, J., Ray, A., Wang, V., Durinck, S., Robinson, M., Wang, N.,

Vranizan, K., Peng, V., Van Name, E., Fontenay, G., Ngai, J., Conboy, J., Parvin, B., Feiler, H.,

Speed, T., Gray, J., Brennan, C., Socci, N., Olshen, A., Taylor, B., Lash, A., Schultz, N., Reva, B.,

Antipin, Y., Stukalov, A., Gross, B., Cerami, E., Qing Wang, W., Qin, L., Seshan, V., Villafania, L.,

Cavatore, M., Borsu, L., Viale, A., Gerald, W., Sander, C., Ladanyi, M., Perou, C., Neil Hayes, D.,

Topal, M., Hoadley, K., Qi, Y., Balu, S., Shi, Y., Wu, J., Penny, R., Bittner, M., Shelton, T.,

Lenkiewicz, E., Morris, S., Beasley, D., Sanders, S., Kahn, A., Sfeir, R., Chen, J., Nassau, D., Feng,

L., Hickey, E., Zhang, J., Weinstein, J., Barker, A., Gerhard, D., Vockley, J., Compton, C., Vaught, J.,

Fielding, P., Ferguson, M., Schaefer, C., Madhavan, S., Buetow, K., Collins, F., Good, P., Guyer, M.,

Ozenberger, B., Peterson, J. and Thomson, E. (2008). Comprehensive genomic characterization

defines human glioblastoma genes and core pathways. Nature, 455(7216), pp.1061-1068.

Minsky, M. and Papert, S. (1969). Perceptrons; an introduction to computational geometry.

Cambridge, Mass.: MIT Press.

National Cancer Institute,. (2015). What Is Cancer?. Retrieved 15 April 2015, from

http://www.cancer.gov/cancertopics/what-is-cancer

Pal, N., Aguan, K., Sharma, A. and Amari, S. (2007). Discovering biomarkers from gene expression

data for predicting cancer subgroups using neural networks and relational fuzzy clustering. BMC

Bioinformatics, 8(1), p.5.

Prat, A., Bianchini, G., Thomas, M., Belousov, A., Cheang, M., Koehler, A., Gomez, P., Semiglazov,

V., Eiermann, W., Tjulandin, S., Byakhow, M., Bermejo, B., Zambetti, M., Vazquez, F., Gianni, L.

and Baselga, J. (2014). Research-Based PAM50 Subtype Predictor Identifies Higher Responses and

Improved Survival Outcomes in HER2-Positive Breast Cancer in the NOAH Study. Clinical Cancer

Research, 20(2), pp.511-521.

Ross, D., Scherf, U., Eisen, M., Perou, C., Rees, C., Spellman, P., Iyer, V., Jeffrey, S., Van de Rijn,

M., Waltham, M., Pergamenschikov, A., Lee, J., Lashkari, D., Shalon, D., Myers, T., Weinstein, J.,

Botstein, D. and Brown, P. (2000). Systematic variation in gene expression patterns in human cancer

cell lines. Nat Genet, 24(3), pp.227-235.

Rumelhart, D. and McClelland, J. (1986). Parallel distributed processing. Cambridge, Mass.: MIT

Press.

Russell, S. and Norvig, P. (1995). Artificial intelligence. Englewood Cliffs, N.J.: Prentice Hall.

Schena, M., Shalon, D., Davis, R. and Brown, P. (1995). Quantitative Monitoring of Gene Expression

Patterns with a Complementary DNA Microarray. Science, 270(5235), pp.467-470.

Shipp, M., Ross, K., Tamayo, P., Weng, A., Kutok, J., Aguiar, R., Gaasenbeek, M., Angelo, M.,

Reich, M., Pinkus, G., Ray, T., Koval, M., Last, K., Norton, A., Lister, T., Mesirov, J., Neuberg, D.,

Lander, E., Aster, J. and Golub, T. (2002). Diffuse large B-cell lymphoma outcome prediction by

gene-expression profiling and supervised machine learning. Nature Medicine, 8(1), pp.68-74.

http://www.cancer.gov/cancertopics/what-is-cancer
http://www.cancer.gov/cancertopics/what-is-cancer
http://www.cancer.gov/cancertopics/what-is-cancer

61

Sibi, P., Jones, S. A., & Siddarth, P. (2013). Analysis of Different Activation Functions Using Back

Propagation Neural Networks. Journal of Theoretical and Applied Information Technology, 47(3),

pp.1264-1268.

Stewart BW, Wild CP, 2014. World Cancer Report 2014. Lyon, France: International Agency for

Research on Cancer.

Sotiriou, C. and Piccart, M. (2007). Taking gene-expression profiling to the clinic: when will

molecular signatures become relevant to patient care?. Nat Rev Cancer, 7(7), pp.545-553.

Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer

types by shrunken centroids of gene expression. Proceedings of the National Academy of

Sciences, 99(10), pp.6567-6572.

Wei, S., Paik, H., Kim, Y., Baldwin, R., Liyanarachchi, S., Li, L., Wang, Z., Wan, J., Davuluri, R.,

Karlan, B., Gifford, G., Brown, R., Kim, S., Huang, T. and Nephew, K. (2006). Prognostic DNA

Methylation Biomarkers in Ovarian Cancer. Clinical Cancer Research, 12(9), pp.2788-2794.

WIDROW, B. and HOFF, M. (1960). ADAPTIVE SWITCHING CIRCUITS. Ft. Belvoir: Defense

Technical Information Center.

www1, (2015). Worldwide cancer mortality statistics : Cancer Research UK.

[online]Cancerresearchuk.org. Available at: http://www.cancerresearchuk.org/cancer-

info/cancerstats/world/mortality/ [Accessed 9 May 2015].

www2, (2015). Fact Sheets by Cancer. [online] Globocan.iarc.fr. Available at:

http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx [Accessed 10 May 2015].

www3, (2015). What are the different types of cancer treatment?. [online] Cancer.org. Available at:

http://www.cancer.org/treatment/understandingyourdiagnosis/talkingaboutcancer/whensomeone

youworkwithhascancer/when-someone-you-work-with-has-cancer-questions-and-answers-

about-cancer-treatment [Accessed 10 May 2015].

www4, (2015). WHO | Cancer. [online] Who.int. Available at:

http://www.who.int/mediacentre/factsheets/fs297/en/ [Accessed 9 May 2015].

www5, (2015). WHO | Early detection of cancer. [online] Who.int. Available at:

http://www.who.int/cancer/detection/en/ [Accessed 9 May 2015].

www6, (2014). Stages of cancer. [online] Cancer Research UK. Available at:

http://www.cancerresearchuk.org/about-cancer/what-is-cancer/stages-of-cancer [Accessed 9

May 2015].

www7, (2015). [online] Available at:

http://www.cancerresearchuk.org/sites/default/files/cruk_research_strategy.pdf [Accessed 9 May

2015].

www8, (2015). DNA Is a Structure That Encodes Biological Information | Learn Science at Scitable.

[online] Nature.com. Available at: http://www.nature.com/scitable/topicpage/DNA-Is-a-

Structure-that-Encodes-Information-6493050 [Accessed 9 May 2015].

62

www9, (2015). Translation: DNA to mRNA to Protein | Learn Science at Scitable. [online]

Nature.com. Available at: http://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-

protein-393 [Accessed 9 May 2015].

www10, (2014). Gene expression profiling : Latest content : nature.com. [online] Nature.com.

Available at: http://www.nature.com/subjects/gene-expression-profiling [Accessed 9 May 2015].

www11, (2015). Leukemia - Figure 1 for article: DNA microarrays for comparison of gene

expression profiles between diagnosis and relapse in precursor-B acute lymphoblastic leukemia:

choice of technique and purification influence the identification of potential diagnostic markers.

[online] Nature.com. Available at:

http://www.nature.com/leu/journal/v17/n7/fig_tab/2402974f1.html [Accessed 9 May 2015].

WWW12, (2015). Talking Glossary of Genetic Terms. [online] Genome.gov. Available at:

http://www.genome.gov/glossary/ [Accessed 10 May 2015].

WWW13 (2014). How cancer starts. [online] Available at:

http://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts

[Accessed 15 Aug. 2015].

www14 Rise.duke.edu, (2015). [online] Available at:

http://rise.duke.edu/seek/pages/page.html?0205 [Accessed 15 Aug. 2015].

www15 Cancer Research UK, (2015). Cancer incidence for common cancers. [online]

Available at: http://www.cancerresearchuk.org/health-professional/cancer-

statistics/incidence/common-cancers-compared#heading-Zero [Accessed 16 Aug. 2015].

www 16Ncbi.nlm.nih.gov, (2015). Home - GEO - NCBI. [online] Available at:

http://www.ncbi.nlm.nih.gov/geo/ [Accessed 18 Aug. 2015].

www17 Tcga-data.nci.nih.gov, (2015). The Cancer Genome Atlas - Data Portal. [online]

Available at: https://tcga-dta.nci.nih.gov/tcga/ [Accessed 18 Aug. 2015].

www18, Webpages.ttu.edu, (2015). Neural Network Basics. [online] Available at:

http://www.webpages.ttu.edu/dleverin/neural_network/neural_networks.html [Accessed

26 Aug. 2015].

Xu, J., Reumers, J., Couceiro, J., De Smet, F., Gallardo, R., Rudyak, S., Cornelis, A., Rozenski, J.,

Zwolinska, A., Marine, J., Lambrechts, D., Suh, Y., Rousseau, F. and Schymkowitz, J. (2011). Gain

of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical

Biology, 7(5), pp.285-295.

Xu, Q., Liang, Y. and Du, Y. (2004). Monte Carlo cross-validation for selecting a model and

estimating the prediction error in multivariate calibration. Journal of Chemometrics, 18(2), pp.112-

120.

Yang, Y. (2002). Normalization for cDNA microarray data: a robust composite method addressing

single and multiple slide systematic variation. Nucleic Acids Research, 30(4), pp.15e-15.

Yu, L., & Liu, H. (2003, August). Feature selection for high-dimensional data: A fast

correlation-based filter solution. In ICML (Vol. 3, pp. 856-863).

63

64

Appendices

SAMPLES Distance Network Real Diagnosis
 Diagnosis Diagnosis Result

Sample 1 4.77E-06 EWS EWS MATCHED
Sample 2 9.16E-06 EWS EWS MATCHED
Sample 3 3.35E-06 EWS EWS MATCHED
Sample 4 1.22E-05 EWS EWS MATCHED
Sample 5 5.71E-08 EWS EWS MATCHED
Sample 6 1.48E-07 EWS EWS MATCHED
Sample 7 7.23E-08 EWS EWS MATCHED
Sample 8 8.87E-09 EWS EWS MATCHED
Sample 9 6.50E-09 EWS EWS MATCHED
Sample 10 0.00103251 EWS EWS MATCHED
Sample 11 4.21E-06 EWS EWS MATCHED
Sample 12 9.06E-06 EWS EWS MATCHED
Sample 13 3.37E-07 EWS EWS MATCHED
Sample 14 1.36E-07 EWS EWS MATCHED
Sample 15 0.000315283 EWS EWS MATCHED
Sample 16 0.0176963 EWS EWS MATCHED
Sample 17 0.0012619 EWS EWS MATCHED
Sample 18 0.00033273 EWS EWS MATCHED
Sample 19 7.66E-05 EWS EWS MATCHED
Sample 20 1.76E-06 EWS EWS MATCHED
Sample 21 0.0135463 EWS EWS MATCHED
Sample 22 0.00329583 EWS EWS MATCHED
Sample 23 0.00499266 EWS EWS MATCHED
Sample 24 0.00107803 BL BL MATCHED
Sample 25 0.00293074 BL BL MATCHED
Sample 26 0.000392999 BL BL MATCHED
Sample 27 0.000366348 BL BL MATCHED
Sample 28 0.00272902 BL BL MATCHED
Sample 29 0.00463481 BL BL MATCHED
Sample 30 0.000699677 BL BL MATCHED
Sample 31 0.00312532 BL BL MATCHED
Sample 32 4.00019 NB NB MATCHED
Sample 33 4.09755 NB NB MATCHED
Sample 34 5.94444 NB NB MATCHED
Sample 35 3.99983 NB NB MATCHED
Sample 36 4.00028 NB NB MATCHED
Sample 37 4.46107 NB NB MATCHED
Sample 38 4.00012 NB NB MATCHED
Sample 39 3.99991 NB NB MATCHED
Sample 40 4.00185 NB NB MATCHED
Sample 41 4.01289 NB NB MATCHED
Sample 42 4.00298 NB NB MATCHED
Sample 43 4.00049 NB NB MATCHED
Sample 44 1.35E-05 RMS RMS MATCHED
Sample 45 0.000232219 RMS RMS MATCHED
Sample 46 4.15E-06 RMS RMS MATCHED
Sample 47 0.000196219 RMS RMS MATCHED
Sample 48 0.00818687 RMS RMS MATCHED
Sample 49 0.0150234 RMS RMS MATCHED
Sample 50 0.0019113 RMS RMS MATCHED
Sample 51 0.00366908 RMS RMS MATCHED
Sample 52 0.00145155 RMS RMS MATCHED
Sample 53 0.00322221 RMS RMS MATCHED
Sample 54 6.94E-06 RMS RMS MATCHED
Sample 55 0.000213505 RMS RMS MATCHED
Sample 56 0.00076945 RMS RMS MATCHED
Sample 57 4.29E-06 RMS RMS MATCHED
Sample 58 0.0053966 RMS RMS MATCHED
Sample 59 0.000808874 RMS RMS MATCHED
Sample 60 2.94E-08 RMS RMS MATCHED
Sample 61 0.0137728 RMS RMS MATCHED
Sample 62 0.0282319 RMS RMS MATCHED
Sample 63 1.38E-14 RMS RMS MATCHED

65

TESTS Distance Network Real Diagnosis
 Diagnosis Diagnosis Result

(Test 1) 12.3335 NB NB MATCHED
(Test 2) 0.00134764 EWS EWS MATCHED
(Test 3) 570.176 NOISE NOISE MATCHED
(Test 4) 6.03E-08 RMS RMS MATCHED
(Test 5) 25.2863 NOISE NOISE MATCHED
(Test 6) 0.000567549 EWS EWS MATCHED
(Test 7) 0.00882391 BL BL MATCHED
(Test 8) 11.9997 NB NB MATCHED
(Test 9) 814.101 NOISE NOISE MATCHED
(Test 10) 5.32E-06 RMS RMS MATCHED
(Test 11) 392.901 NOISE NOISE MATCHED
(Test 12) 0.186486 NOISE EWS No Matched
(Test 13) 2784.12 NOISE NOISE MATCHED
(Test 14) 12.0148 NB NB MATCHED
(Test 15) 0.00393535 BL BL MATCHED
(Test 16) 12 NB NB MATCHED
(Test 17) 1.77E-05 RMS RMS MATCHED
(Test 18) 0.0578823 NOISE BL No Matched
(Test 19) 0.000500264 EWS EWS MATCHED
(Test 20) 43.1108 NOISE EWS No Matched
(Test 21) 0.0224923 EWS EWS MATCHED
(Test 22) 4.19E-06 RMS RMS MATCHED
(Test 23) 12.512 NB NB MATCHED
(Test 24) 2.93E-05 RMS RMS MATCHED
(Test 25) 12.0002 NB NB MATCHED

Table 1: Diagnostic Classification :by using 96 genes dataset from Khan et al., (2001) study.

 Real Network Classification Network Outputs

 Output Output

Sample 1 0 0 Matched 1 0.000119 1.22E-06 5.06E-05
Sample 2 0 0 Matched 0.999993 1.02E-05 1.75E-05 0.000115
Sample 3 0 0 Matched 0.999991 0.000158 1.52E-05 3.96E-05
Sample 4 0 0 Matched 0.999984 0.000408 2.02E-07 0.000367
Sample 5 0 0 Matched 0.999997 9.15E-05 2.28E-06 9.32E-05
Sample 6 0 0 Matched 1 3.43E-06 2.06E-06 9.58E-05
Sample 7 0 0 Matched 1 6.84E-06 9.96E-08 4.42E-06
Sample 8 0 0 Matched 1 2.37E-06 7.58E-07 5.91E-05
Sample 9 0 0 Matched 1 8.47E-07 5.21E-07 4.35E-07
Sample 10 0 0 Matched 0.998486 0.000787 3.13E-07 9.66E-05
Sample 11 0 0 Matched 0.999999 8.58E-06 3.70E-05 9.61E-05
Sample 12 0 0 Matched 1 5.40E-06 1.54E-05 3.39E-06
Sample 13 0 0 Matched 1 3.88E-06 4.40E-06 9.49E-06
Sample 14 0 0 Matched 0.999994 6.20E-06 3.43E-05 1.50E-05
Sample 15 0 0 Matched 0.999893 2.62E-05 8.45E-05 0.000176
Sample 16 0 0 Matched 0.99862 0.000638 2.67E-05 0.000875
Sample 17 0 0 Matched 0.998552 0.000427 0.001277 0.000481
Sample 18 0 0 Matched 0.999936 0.000165 0.000231 0.000366
Sample 19 0 0 Matched 0.999987 9.83E-05 9.01E-05 0.000136
Sample 20 0 0 Matched 1 2.45E-05 1.37E-05 8.76E-07
Sample 21 0 0 Matched 0.999832 5.62E-06 0.000629 7.36E-05
Sample 22 0 0 Matched 0.999751 0.000246 0.000734 0.000308
Sample 23 0 0 Matched 0.997778 0.000517 0.001197 0.000594
Sample 24 3 3 Matched 2.66E-05 2.11E-05 3.14E-05 0.999983
Sample 25 3 3 Matched 9.97E-05 2.66E-05 0.000187 0.999893
Sample 26 3 3 Matched 0.000206728 0.000337 0.000343 0.999801
Sample 27 3 3 Matched 0.00263174 0.001841 0.001977 0.997815

66

Sample 28 3 3 Matched 0.000168041 0.000559 4.29E-05 0.999929
Sample 29 3 3 Matched 0.00238886 0.002353 0.001782 0.997295
Sample 30 3 3 Matched 0.000133111 0.000291 2.48E-05 0.999913
Sample 31 3 3 Matched 0.000613028 0.000737 0.000641 0.998694
Sample 32 2 2 Matched 1.03E-05 0.000152 0.999709 2.11E-06
Sample 33 2 2 Matched 2.46E-05 0.000814 0.999554 8.77E-05
Sample 34 2 2 Matched 2.65E-07 0.001683 0.999103 8.02E-08
Sample 35 2 2 Matched 0.000556433 0.000324 0.99904 0.001313
Sample 36 2 2 Matched 2.71E-05 2.04E-05 0.999988 0.000114
Sample 37 2 2 Matched 0.00146565 0.00116 0.997142 0.00087
Sample 38 2 2 Matched 9.35E-05 4.91E-05 0.999216 0.000642
Sample 39 2 2 Matched 4.84E-06 9.91E-06 0.999991 9.61E-05
Sample 40 2 2 Matched 3.50E-05 0.000471 0.999519 0.000113
Sample 41 2 2 Matched 0.00238453 0.000399 0.99856 0.000241
Sample 42 2 2 Matched 0.000636234 5.00E-05 0.999616 0.000243
Sample 43 2 2 Matched 5.44E-06 0.001867 0.999313 2.26E-05
Sample 44 1 1 Matched 1.41E-07 0.999998 1.92E-06 5.50E-08
Sample 45 1 1 Matched 0.000214327 0.99985 2.98E-05 1.18E-05
Sample 46 1 1 Matched 3.61E-05 0.999969 3.80E-05 1.30E-06
Sample 47 1 1 Matched 2.07E-05 0.997515 0.001829 7.53E-07
Sample 48 1 1 Matched 0.000134179 0.999845 5.04E-05 4.79E-05
Sample 49 1 1 Matched 1.11E-05 0.999234 0.000953 0.000185
Sample 50 1 1 Matched 3.58E-05 0.999525 0.000636 3.14E-05
Sample 51 1 1 Matched 0.000453 0.998465 0.000143 0.000494
Sample 52 1 1 Matched 1.24E-05 0.999647 0.000825 7.90E-06
Sample 53 1 1 Matched 0.000153873 0.998548 9.64E-05 0.000235
Sample 54 1 1 Matched 8.08E-07 0.999996 7.17E-08 9.88E-05
Sample 55 1 1 Matched 1.01E-05 0.999974 4.55E-08 2.73E-06
Sample 56 1 1 Matched 0.000572478 0.999948 6.06E-07 0.000847
Sample 57 1 1 Matched 5.25E-06 0.999986 2.86E-06 1.05E-08
Sample 58 1 1 Matched 1.21E-06 0.999998 3.18E-08 4.53E-06
Sample 59 1 1 Matched 3.42E-05 0.999939 1.96E-06 3.48E-08
Sample 60 1 1 Matched 2.48E-06 0.999999 2.62E-07 1.47E-07
Sample 61 1 1 Matched 0.00021953 0.99987 7.63E-07 2.28E-05
Sample 62 1 1 Matched 0.000672211 0.9994 6.58E-06 4.04E-07
Sample 63 1 1 Matched 2.57E-08 0.999989 5.04E-07 1.53E-15
Sample 64 2 2 Matched 0.0154646 7.75E-05 0.992284 0.000267
Sample 65 0 0 Matched 0.999794 0.000487 0.000186 1.20E-05
Sample 66 -1 -1 Matched 0.598503 0.001732 0.053345 0.022861
Sample 67 1 1 Matched 8.33E-08 1 1.09E-07 4.17E-09
Sample 68 -1 -1 Matched 0.116673 0.016672 0.005149 0.137668
Sample 69 0 0 Matched 1 1.22E-06 4.78E-05 9.60E-06
Sample 70 3 3 Matched 0.000403787 7.40E-05 8.62E-06 0.999981
Sample 71 2 2 Matched 4.04E-05 3.75E-05 0.999868 8.61E-05
Sample 72 -1 -1 Matched 0.0469618 0.841103 3.47E-07 0.865525
Sample 73 1 1 Matched 8.80E-08 0.999983 3.39E-08 4.86E-09
Sample 74 -1 -1 Matched 0.413516 0.026146 0.003504 0.184362
Sample 75 0 0 Matched 0.99998 6.58E-06 2.58E-06 0.005912
Sample 76 -1 -1 Matched 0.00659524 0.984814 9.44E-11 0.992397
Sample 77 2 2 Matched 2.44E-06 4.59E-06 0.99975 0.005545
Sample 78 3 3 Matched 9.52E-05 5.44E-05 0.000135 0.999953
Sample 79 2 2 Matched 3.78E-07 4.17E-07 0.999999 0.000112
Sample 80 1 1 Matched 4.76E-05 0.999933 1.12E-06 9.17E-06
Sample 81 3 3 Matched 0.022206 0.003932 0.000773 0.99497
Sample 82 0 0 Matched 1 0.002072 1.29E-07 0.000119
Sample 83 0 0 Matched 0.278143 0.042726 0.000137 0.001357
Sample 84 0 0 Matched 0.998408 0.000829 3.45E-07 0.000104
Sample 85 1 1 Matched 1.58E-06 0.999999 1.35E-08 0.000709
Sample 86 2 2 Matched 2.25E-07 2.01E-06 0.999744 7.12E-05
Sample 87 1 1 Matched 7.11E-07 0.999994 1.05E-06 2.68E-07
Sample 88 2 2 Matched 7.78E-07 2.37E-07 0.999997 0.000317

67

Table 2: Classification Result , the SRBCT dataset with 43 genes from Tibshirani et al., (2001) study

is classified with 100% accuracy by using 10 fold cross validation

 Distance Network Real Diagnosis

 Diagnosis Diagnosis Result

Sample 1 1.45E-06 EWS EWS MATCHED
Sample 2 5.06E-06 EWS EWS MATCHED
Sample 3 2.24E-05 EWS EWS MATCHED
Sample 4 0.000119311 EWS EWS MATCHED
Sample 5 3.60E-06 EWS EWS MATCHED
Sample 6 8.40E-07 EWS EWS MATCHED
Sample 7 1.01E-07 EWS EWS MATCHED
Sample 8 6.04E-07 EWS EWS MATCHED
Sample 9 9.57E-10 EWS EWS MATCHED
Sample 10 0.0302619 EWS EWS MATCHED
Sample 11 1.49E-06 EWS EWS MATCHED
Sample 12 4.41E-08 EWS EWS MATCHED
Sample 13 4.20E-07 EWS EWS MATCHED
Sample 14 1.84E-05 EWS EWS MATCHED
Sample 15 0.00018317 EWS EWS MATCHED
Sample 16 0.00617019 EWS EWS MATCHED
Sample 17 0.00164225 EWS EWS MATCHED
Sample 18 0.000128348 EWS EWS MATCHED
Sample 19 3.25E-05 EWS EWS MATCHED
Sample 20 2.52E-06 EWS EWS MATCHED
Sample 21 0.000173172 EWS EWS MATCHED
Sample 22 0.00126992 EWS EWS MATCHED
Sample 23 0.00581252 EWS EWS MATCHED
Sample 24 0.000173586 BL BL MATCHED
Sample 25 0.000588761 BL BL MATCHED
Sample 26 0.00241238 BL BL MATCHED
Sample 27 0.0149355 BL BL MATCHED
Sample 28 0.000271029 BL BL MATCHED
Sample 29 0.0238363 BL BL MATCHED
Sample 30 0.000402575 BL BL MATCHED
Sample 31 0.00228334 BL BL MATCHED
Sample 32 0.00219025 NB NB MATCHED
Sample 33 0.0336043 NB NB MATCHED
Sample 34 0.265397 NB NB MATCHED
Sample 35 0.00556229 NB NB MATCHED
Sample 36 0.000117115 NB NB MATCHED
Sample 37 0.0692739 NB NB MATCHED
Sample 38 0.00562344 NB NB MATCHED
Sample 39 0.000107489 NB NB MATCHED
Sample 40 0.00214072 NB NB MATCHED
Sample 41 0.00553467 NB NB MATCHED
Sample 42 0.000731026 NB NB MATCHED
Sample 43 0.0156168 NB NB MATCHED
Sample 44 1.56E-07 RMS RMS MATCHED
Sample 45 0.000445586 RMS RMS MATCHED
Sample 46 1.19E-05 RMS RMS MATCHED
Sample 47 0.00384546 RMS RMS MATCHED
Sample 48 8.81E-05 RMS RMS MATCHED
Sample 49 0.00166123 RMS RMS MATCHED
Sample 50 0.00048605 RMS RMS MATCHED
Sample 51 0.0349973 RMS RMS MATCHED
Sample 52 0.000384416 RMS RMS MATCHED
Sample 53 0.0753344 RMS RMS MATCHED
Sample 54 3.91E-06 RMS RMS MATCHED

68

Sample 55 1.56E-05 RMS RMS MATCHED
Sample 56 0.000248781 RMS RMS MATCHED
Sample 57 5.19E-07 RMS RMS MATCHED
Sample 58 1.92E-07 RMS RMS MATCHED
Sample 59 3.07E-06 RMS RMS MATCHED
Sample 60 1.17E-07 RMS RMS MATCHED
Sample 61 3.14E-05 RMS RMS MATCHED
Sample 62 0.000800142 RMS RMS MATCHED
Sample 63 2.77E-11 RMS RMS MATCHED

 Distance Network Real Diagnosis
 Diagnosis Diagnosis Result

Sample 64 0.182286 NB NB MATCHED
Sample 65 0.161505 NOISE EWS No Matched

Sample 66 304.061 NOISE NOISE MATCHED
Sample 67 9.00E-10 RMS RMS MATCHED
Sample 68 31.5552 NOISE NOISE MATCHED
Sample 69 2.14E-06 EWS EWS MATCHED
Sample 70 0.00285675 BL BL MATCHED
Sample 71 0.00081042 NB NB MATCHED
Sample 72 2610.99 NOISE NOISE MATCHED
Sample 73 3.06E-08 RMS RMS MATCHED
Sample 74 495.435 NOISE NOISE MATCHED
Sample 75 0.0113069 EWS EWS MATCHED
Sample 76 3705.4 NOISE NOISE MATCHED
Sample 77 0.100186 NB NB MATCHED
Sample 78 0.00340232 BL BL MATCHED
Sample 79 0.000456761 NB NB MATCHED
Sample 80 1.21E-05 RMS RMS MATCHED
Sample 81 0.698487 NOISE BL No Matched

Sample 82 0.000336146 EWS EWS MATCHED
Sample 83 1078.04 NOISE EWS No Matched

Sample 84 0.211844 NOISE EWS No Matched

Sample 85 0.000600993 RMS RMS MATCHED
Sample 86 0.00020763 NB NB MATCHED
Sample 87 1.13E-07 RMS RMS MATCHED
Sample 88 0.00128197 NB NB MATCHED

Table 3: Diagnosis Result: the SRBCT dataset with 43 genes from Tibshirani et al., (2001) study is

diagnosed with 95.4% accuracy.

 Real Network
Classification

 Network Outputs

 Output Output

Sample 1 0 0 Matched 0.996814 0.002321 0.000265 0.003934
Sample 2 0 0 Matched 0.996834 0.002309 0.000264 0.003913
Sample 3 0 0 Matched 0.996839 0.002319 0.000259 0.003915
Sample 4 0 0 Matched 0.996844 0.002309 0.000256 0.003924
Sample 5 0 0 Matched 0.996816 0.002329 0.000262 0.003936
Sample 6 0 0 Matched 0.996812 0.00231 0.000268 0.003933
Sample 7 0 0 Matched 0.995448 0.002509 0.000369 0.005746
Sample 8 0 0 Matched 0.99674 0.00224 0.0003 0.003961
Sample 9 0 0 Matched 0.996784 0.002306 0.000275 0.003953
Sample 10 0 0 Matched 0.990821 0.00621 0.000317 0.010853
Sample 11 0 0 Matched 0.996853 0.00232 0.000253 0.003907

69

Sample 12 0 0 Matched 0.996822 0.002321 0.000264 0.003925
Sample 13 0 0 Matched 0.996688 0.002258 0.000297 0.00404
Sample 14 0 0 Matched 0.996541 0.002249 0.000362 0.003978
Sample 15 0 0 Matched 0.996706 0.002249 0.000318 0.003928
Sample 16 0 0 Matched 0.996515 0.001922 0.000442 0.00409
Sample 17 0 0 Matched 0.995737 0.001898 0.000387 0.005875
Sample 18 0 0 Matched 0.996564 0.00221 0.00036 0.003975
Sample 19 0 0 Matched 0.99646 0.00216 0.000384 0.004059
Sample 20 0 0 Matched 0.996817 0.002292 0.000274 0.003912
Sample 21 0 0 Matched 0.993007 0.00046 0.014874 0.003831
Sample 22 0 0 Matched 0.935942 0.004645 0.008998 0.006882
Sample 23 0 0 Matched 0.989371 0.005007 0.000569 0.007091
Sample 24 3 3 Matched 0.026632 0.009925 0.002573 0.975082
Sample 25 3 3 Matched 0.018321 0.004993 0.007077 0.979489
Sample 26 3 3 Matched 0.006012 0.015336 0.005776 0.985489
Sample 27 3 3 Matched 0.009541 0.00965 0.00491 0.986958
Sample 28 3 3 Matched 0.010033 0.012502 0.006387 0.978461
Sample 29 3 3 Matched 0.011458 0.007312 0.00636 0.98515
Sample 30 3 3 Matched 0.016902 0.00697 0.003456 0.986724
Sample 31 3 3 Matched 0.003736 0.014186 0.011615 0.986321
Sample 32 2 2 Matched 0.005568 0.00449 0.995073 0.006157
Sample 33 2 2 Matched 0.009945 0.00441 0.990494 0.005774
Sample 34 2 2 Matched 0.005142 0.004798 0.995273 0.006109
Sample 35 2 2 Matched 0.007587 0.004254 0.992763 0.006367
Sample 36 2 2 Matched 0.006839 0.004352 0.99459 0.005743
Sample 37 2 2 Matched 0.007405 0.011349 0.982771 0.004981
Sample 38 2 2 Matched 0.010568 0.003567 0.992531 0.005824
Sample 39 2 2 Matched 0.008387 0.004213 0.993296 0.005656
Sample 40 2 2 Matched 0.018135 0.005252 0.987673 0.00351
Sample 41 2 2 Matched 0.006588 0.004703 0.993329 0.006261
Sample 42 2 2 Matched 0.027902 0.002453 0.986505 0.005463
Sample 43 2 2 Matched 0.007426 0.006475 0.992758 0.004252
Sample 44 1 1 Matched 0.003574 0.995125 0.00342 0.005441
Sample 45 1 1 Matched 0.003676 0.995016 0.003249 0.00546
Sample 46 1 1 Matched 0.003581 0.995111 0.003369 0.005438
Sample 47 1 1 Matched 0.005459 0.987474 0.01119 0.003342
Sample 48 1 1 Matched 0.004212 0.994611 0.003155 0.005449
Sample 49 1 1 Matched 0.003817 0.99482 0.003595 0.00519
Sample 50 1 1 Matched 0.006623 0.991422 0.002457 0.007691
Sample 51 1 1 Matched 0.007856 0.990479 0.002269 0.007759
Sample 52 1 1 Matched 0.004835 0.993427 0.003175 0.00593
Sample 53 1 1 Matched 0.004123 0.994273 0.003232 0.005863
Sample 54 1 1 Matched 0.003708 0.995002 0.003314 0.00545
Sample 55 1 1 Matched 0.003825 0.994928 0.00318 0.00546
Sample 56 1 1 Matched 0.006968 0.993173 0.002499 0.005512
Sample 57 1 1 Matched 0.004332 0.994433 0.002978 0.005573
Sample 58 1 1 Matched 0.017415 0.978645 0.002199 0.007352
Sample 59 1 1 Matched 0.005062 0.993141 0.002858 0.006476
Sample 60 1 1 Matched 0.003589 0.995118 0.00332 0.005433
Sample 61 1 1 Matched 0.005364 0.990381 0.00474 0.005102
Sample 62 1 1 Matched 0.004323 0.993918 0.003403 0.005475
Sample 63 1 1 Matched 0.009504 0.989803 0.002701 0.004799
Sample 64 2 2 Matched 0.005116 0.004791 0.995238 0.006178
Sample 65 0 0 Matched 0.995306 0.002075 0.000506 0.00513
Sample 66 -1 -1 Matched 0.165492 0.003666 0.009118 0.776272
Sample 67 1 1 Matched 0.003602 0.995057 0.003364 0.005434
Sample 68 -1 0 No Matched 0.989069 0.008562 0.00036 0.009015
Sample 69 0 0 Matched 0.99685 0.002314 0.000255 0.003908
Sample 70 3 3 Matched 0.139182 0.002805 0.002289 0.983741
Sample 71 2 2 Matched 0.065118 0.004361 0.97696 0.00246
Sample 72 -1 -1 Matched! 0.107593 0.011737 0.004499 0.773208
Sample 73 1 0 No Matched 0.818622 0.065164 0.000413 0.070138
Sample 74 -1 -1 Matched! 0.020224 0.45701 0.005151 0.157963

70

Sample 75 0 0 Matched 0.996856 0.00232 0.000251 0.003906
Sample 76 -1 -1 Matched 0.087778 0.008677 0.002882 0.917461
Sample 77 2 2 Matched 0.009817 0.002731 0.992306 0.008478
Sample 78 3 3 Matched 0.017045 0.0063 0.004623 0.985604
Sample 79 2 2 Matched 0.006246 0.004328 0.99477 0.006096
Sample 80 1 1 Matched 0.003582 0.994977 0.003587 0.00542
Sample 81 3 3 Matched 0.008843 0.008212 0.00654 0.9874
Sample 82 0 0 Matched 0.99685 0.00232 0.000255 0.003909
Sample 83 0 3 No Matched 0.067289 0.118475 0.002468 0.468791
Sample 84 0 0 Matched 0.990644 0.006291 0.000319 0.011044
Sample 85 1 1 Matched 0.00363 0.995086 0.00324 0.005427
Sample 86 2 2 Matched 0.011302 0.002979 0.991996 0.007044
Sample 87 1 1 Matched 0.00383 0.994877 0.003153 0.005516
Sample 88 2 2 Matched 0.005937 0.004359 0.994964 0.006188

Table 4: Classification result, by using SRCT dataset with 7 genes from Pal et al.,(2007) study. This

dataset is used on Multilayer Neural Network and the classification is resulted in 97.7% accuracy.

 Diagnosis Diagnosis Result

Sample 1 0.388625 EWS EWS MATCHED
Sample 2 0.384804 EWS EWS MATCHED
Sample 3 0.381141 EWS EWS MATCHED
Sample 4 0.376803 EWS EWS MATCHED
Sample 5 0.386558 EWS EWS MATCHED
Sample 6 0.390694 EWS EWS MATCHED
Sample 7 0.58031 EWS EWS MATCHED
Sample 8 0.410624 EWS EWS MATCHED
Sample 9 0.397596 EWS EWS MATCHED
Sample 10 0.854101 EWS EWS MATCHED
Sample 11 0.374333 EWS EWS MATCHED
Sample 12 0.38708 EWS EWS MATCHED
Sample 13 0.408077 EWS EWS MATCHED
Sample 14 0.452754 EWS EWS MATCHED
Sample 15 0.428048 EWS EWS MATCHED
Sample 16 0.464219 EWS EWS MATCHED
Sample 17 0.46353 EWS EWS MATCHED
Sample 18 0.457797 EWS EWS MATCHED
Sample 19 0.472322 EWS EWS MATCHED
Sample 20 0.392583 EWS EWS MATCHED
Sample 21 1.49421 EWS EWS MATCHED
Sample 22 10.5997 EWS EWS MATCHED
Sample 23 1.26975 EWS EWS MATCHED
Sample 24 5.57074 BL BL MATCHED
Sample 25 4.08905 BL BL MATCHED
Sample 26 3.73232 BL BL MATCHED
Sample 27 3.40453 BL BL MATCHED
Sample 28 3.9487 BL BL MATCHED
Sample 29 3.52176 BL BL MATCHED
Sample 30 3.98311 BL BL MATCHED
Sample 31 3.5523 BL BL MATCHED
Sample 32 0.387964 NB NB MATCHED
Sample 33 0.79381 NB NB MATCHED
Sample 34 0.34609 NB NB MATCHED
Sample 35 0.611812 NB NB MATCHED
Sample 36 0.433219 NB NB MATCHED
Sample 37 1.4296 NB NB MATCHED
Sample 38 0.656074 NB NB MATCHED
Sample 39 0.48204 NB NB MATCHED
Sample 40 0.901303 NB NB MATCHED
Sample 41 0.519648 NB NB MATCHED
Sample 42 1.58025 NB NB MATCHED

71

Sample 43 0.505193 NB NB MATCHED
Sample 44 0.705105 RMS RMS MATCHED
Sample 45 0.659873 RMS RMS MATCHED
Sample 46 0.682418 RMS RMS MATCHED
Sample 47 1.43015 RMS RMS MATCHED
Sample 48 0.690635 RMS RMS MATCHED
Sample 49 0.77066 RMS RMS MATCHED
Sample 50 0.778246 RMS RMS MATCHED
Sample 51 0.805794 RMS RMS MATCHED
Sample 52 0.784169 RMS RMS MATCHED
Sample 53 0.727093 RMS RMS MATCHED
Sample 54 0.684445 RMS RMS MATCHED
Sample 55 0.655431 RMS RMS MATCHED
Sample 56 0.694926 RMS RMS MATCHED
Sample 57 0.681097 RMS RMS MATCHED
Sample 58 1.78257 RMS RMS MATCHED
Sample 59 0.760929 RMS RMS MATCHED
Sample 60 0.661035 RMS RMS MATCHED
Sample 61 0.932684 RMS RMS MATCHED
Sample 62 0.740913 RMS RMS MATCHED
Sample 63 0.984347 RMS RMS MATCHED

 Distance Network Real Diagnosis
 Diagnosis Diagnosis Result

Sample 64 1.75277 NB NB MATCHED
Sample 65 1.64822 EWS EWS MATCHED
Sample 66 1191.3 NOISE NOISE MATCHED
Sample 67 2.40363 RMS RMS MATCHED
Sample 68 1839.12 NOISE NOISE MATCHED
Sample 69 0.869795 EWS EWS MATCHED

Sample 70 46.558 NOISE BL
No
Matched

Sample 71 13.1437 NOISE NB
No
Matched

Sample 72 1154.92 NOISE NOISE MATCHED

Sample 73 2913.35 NOISE RMS
No
Matched

Sample 74 443.98 NOISE NOISE MATCHED
Sample 75 0.857647 EWS EWS MATCHED
Sample 76 1606.55 NOISE NOISE MATCHED
Sample 77 2.87532 NB NB MATCHED
Sample 78 11.0218 BL BL MATCHED
Sample 79 2.04084 NB NB MATCHED
Sample 80 2.50392 RMS RMS MATCHED
Sample 81 10.1616 BL BL MATCHED
Sample 82 0.872569 EWS EWS MATCHED

Sample 83 2073.01 NOISE EWS
No
Matched

Sample 84 2.52033 EWS EWS MATCHED
Sample 85 2.32747 RMS RMS MATCHED
Sample 86 2.62351 NB NB MATCHED
Sample 87 2.3921 RMS RMS MATCHED
Sample 88 1.81133 NB NB MATCHED

Table 5: Diagnosis result, by using SRCT dataset with 7 genes from Pal et al.,(2007) study. This

dataset is used on Multilayer Neural Network and the diagnosis is resulted in 95.4% accuracy

	Figure 2.1: Cancer cell proliferation……………………………………………………………………...3
	Figure 2.2 Cancer Metastasis……………………………………………………………………………..4
	Figure 2.3: Protein synthesis……………………………………………………………………………...5
	Figure 2.4: Microarray Technique procedures……………………………………………………………6
	Figure 2.5: Neuron structure………………………………………………………………………………8
	Figure 2.6: Connected neuron through……………………………………………………………………8
	Figure 2.7: A Single Layer Network………………………………………………………………………9
	Figure 2.8: The classification with NOT, AND OR in the perceptron.. …………………………………10
	Figure 2.9: Decision boundary……………………………………………………………………………10
	Figure 2.10: Error descending…………………………………………………………………………….12
	Figure 2.11: Single Layer Neural Network Data Classification…………………………………………..12
	Figure 2.12: A Multilayer Neural Network………………………………………………………………13
	Figure 2.13: Test accuracy rate in four approaches………………………………………………………18
	Figure 2.14 Cluster tree diagram of a tumour sample…………………………………………………….23
	Figure 2.15: The linkages of top 10 for Ki-67……………………………………………………………22
	Figure 2.16: Depicted Ki67 common genes………………………………………………………………22
	Figure 2.17 DLBCL,,FL,Ovarian Cancer Survival statistics………………………………………..……23
	Figure 4.1 Pre-processing dataset… ……………………………………………………………….……31
	Figure 4.2: Updating weights by using momentum and not using momentum……………………..……35
	Figure 5.1 The used network structure……………………………………………………………...……36
	Figure 5.2 Training Procedures……………………………………………………………………...……37
	Figure 5.3 Cunernet library testing procedures starts…………….……………………………….……38
	Figure 5.4 Cunernet library training procedures starts……………………………………………...……38
	Figure 5.5: Over-Training Testing………………………………………………………………….…….40
	Figure 5.6 MSE calculations………………………………………………………………………...……41
	Figure5.7: Classification procedures………….……………………………………………………..……44
	Figure5.8 Diagnosis procedures……………………………………………………………………..……47
	Figure 5.9: ClassDiagnosis Procedures……………………………………………………………………48
	Figure 5.10 : Code optimisation…………………………………………………………………………...51
	Figure 5.11: Wall time against neuron number on single layer …………………………………………..52
	Figure 5.12: The comparison between multi/single layer against to neuron number……………….……52
	Figure 5.13: The vector operations(red),inner product(blue) proportions in software…………………..53
	Figure 5.14 Vector operations distribution………………..…………………………………………….….53
	Chapter 1
	Introduction
	1.1 Goals
	1.2 Objectives
	1.3 Structure of the dissertation
	The rest of the dissertation is structures as follows;

	Chapter 2
	Background and Literature review
	2.1 Cancer Disease
	2.1.1 Detection/Diagnosing Cancer
	2.1.2 Gene expression profiling and DNA microarray
	2.1.3 Genomic dataset
	2.2 Machine Learning
	2.2.1 Artificial Neural Networks
	2.2.1.1 Single Layer Neural Network
	2.2.1.2 Single Layer Neural Network Optimisation
	2.2.1.3 Multilayer Artificial Neural Networks
	2.2.1.4 Feedforward propagation in Multilayer Artificial Neural Networks
	2.2.1.5 Backpropagation in Multilayer ANNs
	2.3 Literature Review
	2.3.1 Multilayer ANN comparison with other data mining methods in cancer
	2.3.2 Biomarker in specific cancer type and Multilayer ANNs
	2.3.3 Predict survivability in cancer by using Multilayer ANNs

	Chapter 3
	Requirement and Analysis
	3.1 Requirements
	3.2 Analysis
	3.2.1 Dataset
	3.2.2 Programming Language Choose
	3.2.3 The Network Design
	3.2.4 Training Network
	3.2.5 Best Practice Development
	3.3 Testing and Evaluation
	In this section, the present study classification and diagnosis method will be described rather than Khan et al., (2001) classification/diagnosis method. However in section 5.4.1 Classification and 5.4.2 Diagnosis Khan et a., (2001) methods will be de...
	3.3.1 Testing the Correctness of the Training Set
	3.3.2 Avoiding Over-Training
	3.3.3 Unit Testing
	3.4 Testing Network Correctness/ Network Evaluation
	3.5 Profiling/Performance Evaluation
	3.6 The Library Cunernet

	Chapter 4
	System Design
	4.1 System Overview
	4.2 Selecting and Pre-process of Dataset
	4.3 Developing Design
	4.4 Software Design
	4.5 Neural Network Design
	4.5.1 Feedforward Algorithm
	4.5.2 Backpropagation Algorithm

	Chapter 5
	Implementation, Testing and Evaluation
	5.1 Training Implementation
	5.2 Software Implementation
	5.3 Testing
	5.3.1 Over-training control
	5.3.2 Unit Testing
	5.4 Testing Network Correctness and Evaluation
	5.4.1 Classification
	5.4.2 Diagnostic Classification
	5.4.3 ClassDiagnosis:
	5.4.4 Testing Network with Other Datasets
	5.5 Profiling code

	Chapter6
	Conclusion
	6.1 Future works

	References
	Appendices

