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Abstract

Cancer is the leading cause of death by disease in the world. In 2012, there were 32.6 million people
(within five years of diagnosis) who were suffering from cancerous diseases and 8.2 million of these
resulted in death (www1, 2015; wwwz2, 2015). Due to the unique response of each patient to treatment,
clinicians need accurate information of diagnosis and prognosis in order to be able to tailor treatment
successfully. The purpose of this project is to develop an accurate computational tool which can
predict information such as the stage, metastasis capability and/or typology of cancer from a publicly
available gene-expression profile based on machine learning techniques. In this report, relevant
literatures that have used a multilayer neural network in gene expression datasets to classify and
predict survivability and identify biomarkers of cancer are investigated. A summary of the main
findings suggests that a multilayer neural network is capable of accurate classification and prediction
in cancer gene expression profiles.
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Glossary:

DNA: Base hereditary biological instruction for all eukaryotic cells which are composed of
nucleotides (WWWS8, 2015)

RNA: Ribonucleic acid carries transmits genetic information from DNA to proteins.

Nucleotides: Structural components of DNA and RNA.

mMRNA: Messenger RNA is a molecule that is complementary to one of the DNA strands of a gene.
cDNA: Complementary DNA is synthesized molecule from mRNA.

Probe: A probe is a single-stranded sequence of DNA or RNA (WWW12, 2015)

Gene expression: A process of encoding new functional product from a gene to be assembled to a
protein molecule (WWW12 , 2015).
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Chapter 1

Introduction

Cancer is the leading cause of death by disease in the world. In 2012, there were 32.6 million people
(within five years of diagnosis) who were suffering from cancerous diseases and 8.2 million of these
resulted in death (www1, 2015; wwwz2, 2015).

Today, cancer tumours can be categorised into 100 different types and they are usually named by the
name of the organ in which they appear. Also, those named tumours are classified into different
subtypes based on similarities in their genetic characteristics. Although cancer subtypes can be the
same for different people and the treatment of them can be classified as chemotherapy, radiotherapy,
radiation, hormonal therapy and so on, each patient’s response is unique to the administered
treatments (www3, 2015). This suggests that tailoring treatment individually has a significant role in
the cure of cancer; however, tailoring treatment requires accurate information on the cancer subtypes
in the early stages. Previous studies have shown that the technique called gene expression profiling
has the capability (Brown & Botstein, 1999) to understand cancer subgroups, metastasis (which is the
spreading capability of a tumour) or the recurrence possibility of cancer by using computer
simulations and the present study seeks to develop a computational tool for investigating gene
expression profiling to give accurate information to clinicians.

1.1 Goals

The main aim of this project is to develop a computational tool that can be trained by publicly
available gene expression profiles and then the trained tool will be able to predict information like the
stage, metastasis capability and/or typology of cancer accurately with given gene expression profiles.

The second part of the project will be analysing performance of serial tool code and profiling
investigations to make software faster to implement it on GPU in the future

1.2 Objectives
As objectives of project, it is intended to achieve that;

e Developing an open-source software library, named CUNERNET (that is, CUDA Neural
Network) using C++11 language.

e Designing a neural network software in serial algorithms which can be trained by any suitable
gene expression profiles and can be extended to a multilayer neural network structure.

e Using proper software development techniques such as a concurrent versioning system,
continuous integration and unit testing to release the software with BSD3 license and reach
the widest possible community.

e Pre-processing/choosing available gene expression datasets for training and testing.

Training the neural network software by giving the obtained dataset with

feedforward/backpropagation algorithms.

Testing the trained tool by a given gene expression profile for prediction.

Optimising/re-implementing the written codes using the Google Performance Analysis Tool.

Identifying/implementing parts of the algorithm on GPU using CUDA.

Comparing the timing results of GPU and CPU implementations.



1.3 Structure of the dissertation
The rest of the dissertation is structures as follows;

2 Background information and literature review: detailed background information about gene
expression profiling and the neural network technigue in machine learning.

3 Requirement analysis: analyses the requirements of the project, configuration and environment
settings

4 System design : Describes the chosen design techniques along with both the benefits and
drawbacks

5 Implementation, testing and evaluation: This chapter will describe neural network training

implementation with Cunernet, testing results, and finally an evaluation of work will be explained.

6 Discussion and future works: A critical discussion of findings; the achieved goals are discussed
and possible directions for future research are recommended.



Chapter 2
Background and Literature review

This chapter starts by describing the terminology, discussing the theory of relevant topics to the
project, and describing previous studies that have been conducted on cancer diagnosis/detection by
using the machine learning technigue on gene expression profiles.

2.1 Cancer Disease

Our bodies consist of more thana hundred million cells (www13) and each cell contains
chromosomes that consist of long strings of DNA (deoxyribonucleic acid) in their nucleus. DNA is a
basic hereditary biological instruction for all eukaryotic cells and it is made up thousands of genes
that determine cell behaviours, such as death or division, by encoding RNA or producing proteins
(www13), which will be explained in Section 2.1.2 in detail. During cell division, those genes may be
damaged (gene mutation) and thereafter the damaged gene may stop instructing the cell properly
which leads to abnormal cell proliferation (www14) (see Figure 2.1).

Cells with
damaged

Cancer cell
division

/N 78 Z\ N

In normal cells,
cell division
eventually stops

Figure 2.1: Cancer cell proliferation: After a gene damaged, the cell division/die procedure is unbalanced which cause to cell
proliferation (www14).

Due to this abnormal proliferation/accumulation, a tumour develops and might spread to other organs
through the bloodstream, a process which is known as metastasis (see Figure 2.2) which can be called
cancer disease.



Blood vessel

Figure 2.2 Cancer Metastasis;Cell proliferation, tumour developing and metastasis (www14).

2.1.1 Detection/Diagnosing Cancer

Different cancer types can be seen in any part of the human body and it is also possible that different
groups of cancer can appear in the same organ (www4, 2015; Curtis et al., 2012). Today it is known
that there are more than 200 different cancer types (www15, 2015). However recent studies have
revealed that there are still many cancer subgroups to be discovered and classified. Curtis et al.’s
study, which was conducted using gene expression profiles, proved that breast cancer consists of at
least ten different diseases (Curtis et al., 2012) and another genomic study has shown that breast
cancer of type HER2+ can be further classified into four different subtypes (Prat et al., 2014). Despite
the fact that different types of tumour/cancer may occur in the same organ, each one of those groups
responds to drugs in different ways and requires completely different treatments (Garnett et al., 2012).
As studies have shown, gene expression profiles have a significant ability to distinguish/detect
different subgroups of cancer which is crucial and accurate information that can be used to tailor
cancer treatments (Geeleher, Cox & Huang, 2014; Sotiriou & Piccart, 2007).

In addition to accurate detection, cancer diagnosis in the early stages also has an important impact on
its successful treatment (www5, 2015). Cancer classifications are done by clinicians depending on
size of tumour and the quantity of spreading in other organs. Typically there are four levels for
staging cancer, ranging from Stage | small cancer located in a single organ, to Stage 1V cancer of
substantial size spread in different organs (i.e. metastases) (www6, 2014). According to Cancer
Research UK, the chance of lung cancer patients surviving is 70% in the case of diagnosing at stage |
over one year. However this percentage drops to less than 15% if it is diagnosed at stage IV (www7,
2014). In addition, the ten-year survival chance for colorectal cancer is 94% if detected at stage I,
whereas it is only 4% at stage 1V (www?7, 2014). Furthermore, Cancer Research UK stated that more
than 1200 patients’ lives would be saved by a 1% rise in cancers diagnosed at stages I or II in the five
years following diagnosis (www7, 2014).

Apart from reducing mortality, early detection has some additional advantages which relate to the cost
of treatment. A report which was prepared by the Incisive Health Team for Cancer Research UK
showed that total treatment cost per cancer patient can vary enormously depending on which stage it
is diagnosed at (see Table 2.1) (Incisive Health, 2014).

Total cost per-patient | Number of patients Total cost to the NHS
Stage 1 £3,747 .63 2,931 £10,988,326.24
Stage 2 £9,810.70 7,237 £71,010,832.78
Stage 3 £13,974.87 7,450 £104,132,075.80
Stage 4 £12,518.58 5,690 £71,235,854.18

Table 2.1: NHS wide cost associated with the colon cancer treatment pathway, including recurrence (Incisive Health,2014)
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In the light of these facts, early and accurate cancer diagnosis is vital both for successful treatment
and to reduce costs.

Studies have proved that early/accurate diagnosis can only be achievable by investigating molecular
level elements rather than waiting for cancer cells to accumulate and spread to surrounding tissues,
thereby making a tumour recognisable (www6, 2014). At the time of this research, the number of
publications (7510 regarding Machine Learning and Cancer searches in PubMed) provides evidence
that gene expression profiling is a highly reliable and promising approach to the accurate prediction
of cancer (Ross et al., 2000; Kourou et al., 2015).

2.1.2 Gene expression profiling and DNA microarray

The code of DNA is made up four chemical bases: adenine (A), guanine (G), cytosine (C) and
thymine (T), and by pairing these chemicals, the two-strand helix structure of DNA is built up. As
described in section 2.1, DNA contains instructions to develop, survive and reproduce for organisms
and these functions can be carried out by producing proteins. The genes, segments of DNA, encode
the instructions to create protein molecules (WWWS8, 2015). In order to produce proteins, enzyme
RNA polymerase encodes DNA. After that, through the encoding process (transcription), pre-mRNA
and messenger RNA (mRNA) are produced respectively. The produced mRNA carries some
sequences to the ribosome where the actual production of protein will take place. After the mRNA
sequences reach the ribosome, a reading process (translation) is initiated by the ribosome. By this
reading process, protein molecules can be produced in a wild polypeptide form depending on the
sequences of mMRNA (WWWS8, 2015).

DNA f b . B
| /f N Aﬂ’f ,6/ ,«’ é “« v P 3 li ) \ 4
y'& {5 _)",,Af f’L[’U‘A‘H \ J‘ ,;’y ‘q QA‘
pre-mana TTTTTTTTTTTTTTIORL L‘ RSy, T
A TTTTTTTVITTTTTT VTSI VTV TN VOTTVOTTIOImT
C

mRNA [ IUTNNNENTANAAay L
} ]\ Translation
t—_- /X Ribosome

polypeptide

Figure 2.3: Protein synthesis through the process of transcription and transaction (www?9, 2015)

The wild polypeptide produced by the ribosome in the translation process folds up spontaneously in
its three-dimension shape according to Anfinsen’s dogma (Anfinsen, 1973). The function of the
protein is determined by its shape and a misfolded shape leads to a defective protein. The localized
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accumulation of these misfolded proteins causes some diseases such as neurodegeneration, diabetes
and Alzheimer’s. Xu et al. (2011) stated that misfolded shape aggregation may also be a reason for
cancer diseases (Xu et al., 2011).

In biological terms, gene expression can be defined as the process of translation into MRNA or to
protein, and this definition can be broadened to include the synthesising of a new functional product
from DNA genes.

These manufactured products (proteins) govern the cell functions, and the quantity of a particular
protein can reflect the activity/function of the cell. Therefore, determination of these expressed genes
gives a picture of cellular function, and this is defined as gene expression profiling (www210, 2014).
A technique to quantify thousands of gene expressions simultaneously is called microarray
technology. The processes of microarray are implemented as described next.

First, spots of a solid surface are filled by specific DNA sequences, known as probes. Second, mRNA
is taken from a body cell (RNA extraction in Figure 2.4) and by reverse transcriptase enzyme it is
converted to cDNA (Yang, 2002). Because messenger RNA is produced by transformation from the
DNA strand, it gives mRNA the capability of binding to the DNA again (nature.com, 2015). After the
reverse transcriptase process, fluorescent nucleotides are attached to the cDNA in order to identify
when they are binded to probes on the solid surface (Schena et al., 1995). Thereafter, the researcher
places the labelled cDNAs into a DNA microarray slide. Some particular cDNAs bind to their
complementary part of DNA, which is known as hybridization (Schena et al., 1995). By scanning the
surface, intense fluorescents are identified and if there is a particularly intense spot on the solid
surface, it indicates that the area is producing many molecules of mRNA (Schena et al., 1995). By
examining the whole surface in terms of the quantity of fluorescents, scientists can gain a more
accurate understanding of thousands of gene activities. Consequently the data obtained from gene
expression profiling is called gene expression signature, and the gene expression level refers to the
amount of detected mRNA in the sample.

- -
.- 2

oee oo
1 1 RNA extraction
e .
—_— =" S
T T CDNA seachon;
CTP-Cy3 CTP-Cy5 purification and
s labeling by IVT
N N fpms e b A A0

o i Cy5-
labeled labeled
cRNA cRNA

<—{ hybridization
glass slide .
array —
(one cDNA or long 7\\ \;
oligonucleotides
per gene) =
l washing

1 laser scanning

computer
analyses

e
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Figure 2.4: Microarray Technique procedures as follow; mRNA are isolated and cDNA is made. Then cDNA is
labelled with fluorescent nucleotides thereafter the labelled cDNA is put to glass slide and the slide is scanned by laser
followed by computer analysis of the intensity image (www11, 2015).



2.1.3 Genomic dataset

The main three concerns in cancer prediction/prognosis are cancer susceptibility (that is, risk
assessment), cancer recurrence and cancer survivability. Naturally these three predictions could be
conducted by considering multiple clinical factors such as the age of the patient, the grade and size of
the tumour and so on. However these ‘macro-scale’ clinical factors are generally inadequate for
accurate prediction/diagnosis. In order to obtain an accurate diagnosis, specific information on either
the tumour or the patient’s own genes becomes a requisite. Due to these micro-scale factors,
biomarkers in certain genes can be diagnosed more accurately (Cruz & Wishart, 2006; Colozza et al.,
2005).

There are many approaches which have been implemented on genomic datasets statistically and
biologically in order to expand knowledge of the molecular basis of cancer, such as real-time
polymerase chain reaction (McLendon et al., 2008; Fortunato et al., 2014). However these approaches
face some difficulties such as the high dimensional nature of the data or noisy characteristics of the
data (Pal et al., 2007). Considering the ML (machine learning) capability in high-dimensional data, it
can be said that ML is particularly well-suited to implementation on genomic datasets in respect of
high proteomic and genomic measurements (Cruz & Wishart, 2006).

2.2 Machine Learning

Machine learning is a scientific discipline that provides computers with the ability to distinguish
patterns in datasets, even though the datasets are comprised of high-dimensional, noisy and complex
data (Cruz & Wishart, 2006). Depending on the learning algorithm or implementation procedures, the
machine learning area can be classified into a number of broad categories: supervised, unsupervised,
semi-supervised, reinforcement learning and so on.

Acrtificial Neural Network (ANN) is one of the popular methods to recognise patterns in data s
through sequential training procedures that will be explained in the next sections (Basu,
Bhattacharyya, & Kim, 2010).

2.2.1 Artificial Neural Networks

The brain consists of a large number of inter-connected neurons that receive a number of biological
signals to dendrites and pass this information on through their axon. Artifical Neural Networks (ANN)
systems have been inspired by those biological systems. The main part of ANN, known as a
perceptron, mimics the neurons in the brain. It receives some input values from the environment and
that corresponds to dendrites part and after the received values are subjected to an activation function
that that will be explained in the next section, the output value is obtained end of the perceptron that
corresponds to axon (see Figure 2.5).



Input§

/ x, \

Kyp—* —*Yi

Function

terminal axon

Figure 2.5: Neuron structure with dendrites, cell body and axon (left), Perceptron design, which
mimics neurons, with inputs (right) (www17).

The output of neuron can be calculated as;

y=FO xw) 21
1

In the brain system, when information reaches the terminal axon point, it passes to the other neurons
through connection areas which are called synapses. By connecting millions of neurons through the
synapses, the brain is formed. An ANN in fact consists of systems have been inspired by those
biological systems. In an ANN, the neurons are connected and organised in layers (see Figure 2.6).
Depending on the number of layers, the ANN is called either a single layer or a multilayer neural
network.

AN . mboloXle
- - g BERAASDAN N 5
R A0

synapse synapses

Figure 2.6: Connected neuron through the synapses for both the brain (left) and ANN systems (right)
(Wwww17)

The neural network model was first created in 1943 by Warren McCulloch and Walter Pitts
(McCulloch and Pitts, 1943). The model was based on multiplication of inputs and weights (Eq 2.1)
then the output is produced by a linear threshold function. However this model could only produce
binary outputs that makes is simplistic model. After this creation, the next promising study was
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conducted by Frank Rosenblatt. Rosenblatt discovered perceptron networks by applying an extra
value (bias) to the sum of inputs and weights. Rosenblatt also made weights adjustable which can be
used to minimise error between perceptron and real output. Since the perceptron was able to classify a
continuous-valued input into one of two classes; it made a big contribution to pattern recognition area
(Hagan, Demuth and Beale, 1996).

2.2.1.1 Single Layer Neural Network

A single layer neural network basically consists of a set of perceptron and it predicts patterns by
separating data linearly (see Figure 2.11). As can be seen in Figure 2.7, there are neurons which
receive multiple inputs that are typically in the range [0, 1] and represented by x;. The taken input
values are multiplied by the value of weights (w;) linearly. The weight is a connection value and it
can either amplify or deamplify input values. In case of the linear combination net; (Eq. 2.2) it ends
up with zero, and there is another constant value which is called the bias neuron. The bias neuron can
be described as a coefficient value in a function to provide consistency to the calculations. If the bias
neuron value is set to 1, it does not receive any value from other neurons. During the process, the bias
neuron value (1) is multiplied by the connected weight value and the result of the multiplication,
which is the weight wy, is the sum with linear combination (Eq. 2.2). After linear combination of
weights and wy, the result is included to an activation function f(.) (Eq. 2.3) which is used to
determine the output of neuron y; by comparing the result and the threshold value (t). Calculations
for a single layer neural network are as follows:

e Multiplication of input values and following weights;
netj = Z?:l Wjixpi + Wjo (22)
e The result of linear multiplication (2.2) are included to an activation function

y; = f(net;) = {lifnet; > t; 0otherwise (2.3)

Yj=f(net j}

Figure 2.7: A Single Layer Network that takes linear input vector x and multiplies it by the
connected weights vectorwto get net; value. Finally, the output value (y;) is decided by using

activation function (f(net;))



The calculations is done by using the activation function which so far can only form AND,OR and
NOT classifications. The example below shows two inputs and one output single layer;

NOT AND OR
X1 Out X1 X2 Out X1 X2 Out
0 1 0 0 0 O 0 O
1 0 1 0 o 1 1
1 0 0 1 0 1
1 1 1 1 1 1

Treshold Treshold
08

Figure 2.8: The classification with NOT, AND OR in the perceptron

As Figure 2.8 shows, an implementation such as Egs 2.2 and 2.3 net = w;x; + wyx, and out =
f(net )is only capable of NOT, AND OR classification that can only separate data by drawing a
straight line, as is illustrated in Figure 2.9 for AND - OR classification.

AND OR

(0, 0) (0, 1) (0, 0) (0, 1)

Figure 2.9: Decision boundary for AND - OR classification.
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2.2.1.2 Single Layer Neural Network Optimisation

As it is shown above, the data can be classified with a straight line by the single layer neural network
model. However, in the case of using further data points or high dimensional data, this line does not
separate them at the first step. That is why, based on the error value between network ouput and real
output, the network has to be optimised step by step. The optimisation network is implemented
through the training process which is done by calculating the error of the network (Eqg. 2.4) and using
the gradient of descent of the error function to update the weight values (Eq. 2.9), which can
eventually result in minimising the error in the network (see Figure 2.11).

The mathematical steps of the optimisation network are as follows;

The error function of the network is;

h
2
Ew =) (-9) @4
y=0
The gradient of descent of the error function is found in order to get the direction in error

minimisation (see Figure 2.10):

0E _ OF onet; _OE 2y, onet;
aW]l_anet] ' aW]l _ayjanet] aW]l

(2.5)

This derivation function can be evaluated as;

—0E —0E 0y , )
et = 5y, " omet, = (yj — oj)f (netj)(2.6) that isdenoted by §;

and derivative of net;withrespectweightisequalinputvaluex;

onet; — (27)
aWji = Xl

By combining equations 2.6 and 2.7, the gradient of descent of the error function can be written as

0E _ OE Jy; Onet;
aWji f)yjanetj aW]l

After the gradient of descent of the error is found, it is multiplied by a given value (the learning rate)
to manage step length in the descending process (see Figure 2.10). Then the weight changing value
(Eg. 2.9) is calculated by multiplying learning rate (1), 6 and input value x; ;

OE ,
Aw; = o= n8; xi =n(y; —o;)f'(net;) x;(2.9)

6; isthe error between real output and the network output

Aw; is the weight changing value of i** neuron

7 is a given learning rate.
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Thereafter, by updating the weight values (Eq. 2.10) with the weight changing values one by one, the
error minimisation is implemented (see Figure 2.10) and the network can converged or classified data

as shown in Figure 2.11.

w; =w; + AWL(Z].O)

Eiw) A

Desired minimum
Error

Figure 2.10: Error descending; gradient descent of error is calculated (Eq.2.4) and each step length (delta weight) is found by
multiplying gradient descent with learning rate (Eq. 2.8). The weight is updated according to the found delta weight (Eq. 2.9)
and finally desired minimum error is reached by repeating those processes.

y Dy wix; + w y
A \
* + + + + ¥
o + + . +
© 0 o w;,=w; +dw; o o oo w; = w; + Aw;
T@\LN oo @] + o
_ oo s+ ., e > CEECE N R >
- - o = X ° o ™ X
© o + o+ © o R

d
s Wy + Wy

L

i
S Wix; + Wy

Figure 2.11: Single Layer Neural Network Data Classification; after each weight updating steps, the
error of model (distance between data and straight line) tends to reduce. By reaching the desired error
value, the data is separated as requested.
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Although the discovery of single layer neural networks made a big contribution to the pattern
recognition field, it had some limitations (Minsky & Papert, 1970). Minsky and Papert stated that a
single layer neural network is incapable of XOR classification (Minsky & Papert, 1970). XOR is a
boolean classifier which is true for two variables if and only if one of the variables is true and the
other is false, which provides the ability to obtain a non-linear result in a neural network and it can
only be implemented with more than one layer of neurons due to its requirements. Although the fact
that it was incapable of XOR led to the discontinuation of neural network research for a time, the
advent of multilayer neural networks and backpropagation provided XOR implementation and ANN
research was recommenced (Rumelhart & McClelland, 1986; Hagan, Demuth & Beale, 1996). It is
worth noting that, in addition to XOR implementation, a multilayer neural network can also use other
non-linear/linear functions for activation such as sigmoid, sigmoid stepwise, hyperbolic tangent,
Gaussian or Elliot activation functions, which can provide better performances (Isa et al., 2010).

2.2.1.3 Multilayer Avrtificial Neural Networks

In the multilayer ANN, connected neurons are organised into layers, and even though there are a
couple of connectivity designs in multilayer ANN such as a recurrent neural network, the most
common design is feedforward, which was used in the present study as well. In the feedforward
design, each neuron in a layer is connected to all the other neurons which are in the other layers next
to it. Every neuron receives values either from the environment or from other neurons. The neurons
that take values from environments are known as input neurons, other nodes that take values from
different nodes are called hidden layer neurons, and the rest of the nodes that have an impact on the
environment are known as output neurons, as shown in Figure 2.12 (Floreano & Mattiussi, 2008 ;
Haykin, 2007).

z1=f(net}) ¢ =f(net,)

h

h

A et ZZ Wi ¥ T Wi _,,--*,, nety = Z Wij¥j + Wio

J 4

Bias xG=l

Figure 2.12: A Multilayer Neural Network Structure designed with ‘d’ number input, ‘h’
number hidden and ‘c’ number output neurons. Each neuron is connected to all the neurons in
the layer next to it.
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x;is the input to the neuron

wj; is the weight from i*"neuron (from input to hidden)

net; is the net input to the following nodes

fj is the activation function

wjois the bias value

h refers to the hidden layer neuron number

wy; Is the weight from j** neuron (from hidden to output)

c refers to output layer neuron number

net,is the net input value to the k" output neuron that can be any neuron in output layer

7, is the output of neuron

2.2.1.4 Feedforward propagation in Multilayer Artificial Neural Networks

As already stated mentioned before feedforward propagation is the most frequently used network
structure in many applications. The propagation calculations are similar to single layer neuron
network feedforward. Firstly input values are taken as a vector (x) and this is multiplied by the next
layer neuron weights (w) one by one (Eq 2.11). After completing the multiplication for each hidden
layer neuron (except the bias neuron), the obtained net; values are included in the activation function
fj- Thereafter the propagation continue from hidden to output neurons using the same procedures;
taking all hidden neuron values as vector (y) and multiplying them by the output neuron weights
values (w) (Eq 2.13). At the end of the propagation, network output values (z) are obtained with
activation function £ (.) (Eq 2.14) (Haykin,2007).

The mathematical feed forward propagation for Multilayer ANN is done as follow;

e Each input value is multiplied by the following weight values (w;;) one by one and summed
up with bias neuron values (wj,.1). This process is repeated for all the hidden neurons to
calculate net; values ;

d
netj = ijixl- + WjO (211)
i

After that the net; values are included to activation function f;(.) to calculate hidden neuron values
;)
yj = fl-(netj) (2.12)
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e After completing the linear multiplication and activation function (Eq 2.11 and 2.12), the hidden
neuron values (y;) are ready to be multiplied by the next following weight values (w; ;) and summed
it with bias value (wy)

h
netk = Z Wk]y] + Wko (213)
J

e Finally, as was done before, each hidden neuron values (net;) are put in to the activation
function f;(.) again to obtained network output values (z;)

7 = fr(nety) (2.14)

Once a structure is built, in order to obtain the desired output values, the ANNs are trained by
adjusting the weight. In the training procedure, some values (the output of which is already known)
are given to input layer nodes and the output of those inputs is compared with real output value which

is represented byz, . The comparison result gives the error (Sk ) in the network and it is calculated as:

Ok = (zx — ok)

Then, according to the calculated error, the weights are adjusted to get the minimum error as it is
stated in the single layer neuron subtitle. After converging the network, the outputs of the network
should be the same value as or close to the desired output values. However, optimising a multi-layer
network has some disadvantages concerning the hidden layer error calculation (Russell & Norvig,
1995). Because the training data do not convey what value should be owned by hidden layers, an
algorithm called backpropagation is used to calculate the error of the hidden nodes (Russell & Norvig,
1995).

2.2.1.5 Backpropagation in Multilayer ANNs

The backpropagation model is implemented backwards from output to input nodes in order to obtain
the error of the nodes and to adjust weights (Bishop, 2006). The procedure of backpropagation is done
by taking the derivative of the error function (Eqs 2.16 and 2.22) with respect to the connected
weights and updating the weights according to the gradient descent direction.

The weight-changing steps from output to hidden layer is the same as for single layer neurons;
First, the error function is defined;

EW) =Y (or—2z)?  (215)

And gradient descent of it is done by taking derivative with respect to weight;

0E  0E oOnety 0E 0z, Onety
Owy; Onety Owy; 0z Onety 0wy

(2.16)

The evaluation of this derivation can be done as;

OE _ JE 0z _ ' met hichis . (217
onet, azklanetk_(ok zx)f'(nety) whichis 6y (2.17)
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dnety

; 2.18

The gradient is formed by combining 2.18 and 2.18 as;

0E  0E Onety
aij - Onetk' aWk]

= 8.y, (2.19)

After the derivative of weight function has been found, it is multiplied by the learning rate and finally
the weight changing can be found

Aw = —1n =néry; = Nty — zx)f' (nety) (2.20)

aij

By following, the weight changing value is added to weight to optimise network between output and
hidden layer;

So far, the mathematical procedure is the same as for a single layer neural network for updating
weights. However, when it comes to weight changing between hidden and input neurons, some extra
calculations are needed because the hidden layer error is a ‘black box’ in a multilayer ANN.

As was done previously, derivation of error function with respect to the belonging weight value (wy;)
is calculated;

0E OE 0y; Onet;
aWji B ay] anetj ' aW]l

(2.22)

However, the §; calculation step differs from equations 2.6 or 2.17. This time, the &; calculation will
involve all the weights (wy ;) from the hidden output layers;

9E 9 1x ,
ay] - ay] [2 & (Zk Ok) ]

C

9]

=—Z (Zk—Ok)Za_Zk

k=1 Vi

C 9z, onet

2 Zy nety

= — Zy — 0

kZl S dnety 0y;

c

== i o (etwy  (2.23)

k=1

From the equation 2.17; &), = (zx — ox)f'(nety) can be substituted in Eq 2.23 and the §; value is
evaluated as;

6 =f'(net)) L= wij0r (2.24)

Which makes weight changing is;
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c
Awj; = néjy; = Uf'(netj)[z w6kl x;  (2.25)
k=1

After weight changing is calculated, finally weights are updated conventionally;

All in all, by adjusting the weight values with specific protocols, the errors can be minimised and the
desired output can be obtained accurately.

Consequently, multilayer ANNs with feed and backpropagation were the answer to the limitation of
neural networks and today they can handle different types of classification or pattern recognition
problem (Hagan, Demuth & Beale, 1996; Kourou et al., 2015).

2.3 Literature Review

ANNs have been used in cancer detection/classification/diagnosis for almost the last two decades
(Cruz & Wishart, 2006). This chapter investigates and partially compares previous studies that have
been conducted on cancer diagnosis/prognosis in terms of data mining methods comparison,
biomarker identification and survivability prediction in gene expression profiles.

2.3.1 Multilayer ANN comparison with other data mining methods in cancer

One of the preliminary studies was that conducted by Cho and Won (2003), who attempted to
precisely classify cancer by using/comparing machine learning systems on three different microarray
datasets. In the first dataset (leukaemia cancer) 38 out of 72 samples, in the second dataset (colon
cancer) 40 out of 62 samples, and in the third dataset (lymphoma cancer) 22 out of 47 samples were
tested to classify cancer using multilayer ANNs , k-nearest neighbour, support vector machine and
self-organising map. Multilayer ANNSs were structured with 5~15 hidden nodes and two output nodes,
and it was implemented with backpropagation. The multilayer ANNs’ recognition rates were
calculated as 85.3% for leukaemia, 70.1% for the colon dataset and 69.7% for the lymphoma dataset.
The results of the study showed that multilayer ANNs and KNN had the best recognition rate among
other data mining methods, which shows that multilayer ANNs are quite a promising method for
classifying cancer on gene expression profile compared with other data mining methods.

Another recent study was that of Chou et al. (2013) in which breast cancer microarray databases were
used in order to predict five-year recurrence (Chou et al., 2013). During the experiment, three types of
data mining method (ANNS, decision trees (DT) and logistic regression (LR)) were used and their
findings were compared. Different datasets were pooled which had been taken from the Gene
Expression Omnibus (GEO) and the US National Library of Medicine (NCBI). First, 5945 datasets
were collected and filtered by Homo sapiens and breast cancer cases, without complete survival and
redundancy. After choosing the same type of microarray chips (HG-U133A), four datasets were left to
train. Although those databases had 922 subjects, because of missing values and effectiveness, only
data from 757 patients were used in the experiment. Before merging datasets, they were pre-processed
using the GC Robust Multi-array Average (GCRMA) method and R language software in order to
eliminate unnecessary or irrelevant features and to combine multiple probes. During the data mining
implementation process, SPSS Clementine 10.1 software was used and the ANN over-training
prevention parameter was set at 80%. It was also implemented with a 20-fold cross-validation.
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In order to measure the results of Chou et al.’s study, the term ACC (the number of correct
predictions / total number of cases) was defined which presented the correct prediction of breast
cancer recurrence numbers in five years. At the end of the study, the 21 most-associated genes were
obtained and the ANN models displayed the best ACC score. Consequently, it can be stated that this
experiment had some speciality in terms of merging datasets and comparing data mining methods.
When similar studies were investigated, it was found that Sotiriou et al. had 34 cases and that lvshina
et al.’s dataset had 90 cases, whereas the present study used 757 cases (Sotiriou et al., 2006; Ivshina
et al., 2006). It can therefore be said that this current experiment has a particular advantage in regard
to examining a large number of cases. On the other hand, this particular advantage might be a
limitation of the study depending on the classifying of the cases. Misclassified cases can cause a
heterogeneity which means that irrelevant features might be grouped in the same dataset which would
lead to misleading results. Despite the fact that the elimination process was carried out punctiliously,
the features of cases such as phenotype definition, population ethnicity or genetic heterogeneity might
not be classified correctly. Apart from dataset merging, in terms of understanding which method has
a better accuracy among data mining methods, it can be concluded that this study is a good example to
prove that multilayer ANNs produce better results than other methods.

Another study was conducted by Chu et al. by pooling microarray databases (Chu et al., 2014). The
aim of that study was to investigate the gene expression profiles of colorectal (CRC) cancer by
implementing and comparing four different machine learning methods (Multilayer ANNSs, Prediction
Analysis of Microarray (PAM), Classification and Regression Trees (CART), and C5.0,). At the
beginning of the study, 190 different datasets were taken from the Gene Expression Omnibus (GEO).
After an elimination procedure, 16 datasets comprising 1186 colorectal tumour tissues remained (53
adenoma tissues, 521 adenocarcinoma tissues, 533 primary colorectal tumour tissues and 79 hepatic
tissues with metastatic colorectal tumours). Before the implementation of data mining methods, the
datasets were pre-processed using the GCRMA method as had been done in the previous Chu et al.
study. Because the 1186 cases were comprised of four different subgroups with different numbers of
cases, the training data percentage was set according to the number of cases (62% for adenoma tissues,
85% for adenocarcinoma and primary colorectal tumour tissues and 52% for hepatic tissues) and an
overall four-fold cross-validation was used. The data mining methods were implemented using SPSS
Clementine 10.1 software. ANN was trained with a quick backpropagation algorithm on Clementine
10.1. At the end of the study, eight genes which were highly related to CRC were identified. The
accuracy rates result of the study can be seen in Figure 2.13;

LW -

. ‘lest accuracy AMMN  CART  C50.winnow FPAM

(.96 4

Maximum 1000 0.996 1.0:400 0.994
03 09496 0978 [L9EE 0981

0.94 Median 0992 0971 0,951 0.975
Q1 (.984 0.963 574 0969
Minimum 0972 0.936 0912 0.953

092 4 Mean 0.991 0,971 0,981 0,975

" Standard 0006 0011 0010 0.008
Deviation

0.90 ANN: artificial newral network  CART: classification and regression trees

. r T T 1
ANN CART C5.0_winnow PAM C5.0: one of decision tree PAM: prediction analysis of microarray
Figure 2.13: Test accuracy rate in four approaches (Chu et al., 2014).

Chu et al. stated that multilayer ANN showed the best model stability among the other approaches.
Because limited patient enrolment numbers might limit the power of machine learning approaches,
this study also has similar extra features for merging databases and the number of cases , as was
mentioned in Chou et al.’s study described above.
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2.3.2 Biomarker in specific cancer type and Multilayer ANNs

Pal et al. (2007) conducted a study to classify childhood cancers, known as small round blue cell
tumours (SRBCTS). A dataset with 2308 genes from glass-slide cDNA microarrays was used in the
study. The main aim of the study was to identify biomarkers in order to enable more accurate
diagnostic prediction of the four categories of SRBCT. Since a cancer type which displays cellular
differences within a single cell might lead to misdiagnosis and SRBCT is one of those cancer types
(heterogeneous), the possibility of misdiagnosis becomes high likely with this dataset (Heppner,
1984). The previous methods were tending to reduce genes which were irrelevant to a specific cancer
type. However, those previously used methods were unable to detect subtle non-linear interaction
between genes and ultimately ended up with more genes than necessary (Pal et al., 2007). To address
this limitation, Pal et al. used multilayer ANNs and fuzzy clustering methods to detect the required
genes accurately. The dataset in this study consisted of 88 samples, of which 63 were used for training
and 25 for blind testing. Multilayer ANNs were constructed as 2308 input nodes (for each gene one
neuron), four output nodes (for each category one neuron) and 150 hidden nodes and four to-detect
related genes. At the first training, twenty genes were found using multilayer ANNSs. In the next stage
of the procedure, those twenty genes were trained and reduced to ten genes using the same method.
Thereafter, the twenty first found genes were clustered using a non-Euclidean relational fuzzy c-
means algorithm to compare and confirm whether the second ten genes were related to a specific
cancer subgroup or not. After combining the second multilayer ANNs implementation and fuzzy
clustering, the number of genes was reduced from ten to seven. At the end of study when the seven
identified genes were investigated, it was seen that three of those seven genes (NAB2, LSB and EHDI)
had not been identified by any other method as important (Pal et al., 2007). Consequently, it can be
stated that the detected seven biomarker genes are enough to classify and diagnose the four categories
of childhood cancers with 100% accuracy.

Although multilayer ANN could have been optimised in terms of the number of nodes, it can be
concluded that Pal et al.’s study resulted in success in respect of its accuracy percentage and
identifying three novel genes that had not been detected previously as important. In addition, double
checking by using fuzzy clustering had some benefit in terms of preventing false biomarker detection.

Another study has been carried out to identify sign DNA methylation biomarkers in ovarian cancer
(Wei et al., 2006). It is recognised that abnormal DNA methylation is a contributor to neoplasia in the
human body. Correspondingly, detection of different combinations of methylated loci can be an
important biomarker. Wei et al. (2006) focused on identifying methylated loci signs to reduce early
stages ovarian cancer cases’ progression-free survival (PFS). For datasets, forty advanced-stage
epithelial ovarian tumours and seven normal adjacent ovarian tissues were taken from the Cooperative
Human Tissue Network (Columbus, OH), the Western Infirmary and Stobhill General Hospital
(Glasgow, UK), and the Cedar-Sinai Medical Centre (Los Angeles, CA). In the experiment, although
there was a 811 CGI microarray at the first stage, by using Significance Analyse Microarray (SAM)
for filtering, this number was reduced to a 112 CGI microarray. Then multilayer neural network and
support vector machine methods, as assessed by ten-fold cross-validation, were implemented on these
112 microarray samples to identify methylated loci prognostics. As a consequence, both the
multilayer neural network and the support vector machine methods showed 100% classification
accuracy for the detection of different combinations of methylated loci. According to the fact that the
detected biomarker has a crucial role in the accurate diagnosis of the cancer subgroup, the study’s
accuracy result proves that a multilayer neural network is highly effective at providing useful
information to clinicians.

A further similar study that aimed to predict the occurrence of lymph node metastasis in oesophageal
cancer by analysis using multilayer ANNs was that of Kan et al. (2004). For the microarray datasets,
twenty-eight independent primary tumours samples which had been under surgery at Kyoto
University Hospital were chosen. Candidate genes which had been taken from patients were included
in the SAM filtering process that can statistically extract differences. By the SAM filtering, the
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number of genes was reduced from 8064 to 30-120. After that, multilayer ANNs were applied with
feed/backpropagation and leave-one-out cross-validation. The multilayer ANNs were constructed
with two hidden layers, which differed from other studies. The number of input nodes equalled the
number of genes used; the first hidden layer consisted of four nodes and the second hidden had ten
nodes (bottle-neck type), and the number of output nodes was set which showed the presence of
lymph as 1, and O otherwise. After training the neural network, the results showed that the predictive
accuracy of lymph node metastasis was 77% over 120 filtered genes. When the neural network was
tested with 60 genes, the accuracy rate extended to 86%. In the light of these results, it can be
concluded that multilayer ANNs can predict the occurrence of lymph node metastasis in oesophageal
cancer to a certain extent. Since the study had two hidden layers, it can be an indicator for the
prediction ability of networks with extra hidden layers. Also, this study shows the advantages of SAM
filtering for the gene filtering processes.

Another study by Abd El-Rehim et al. (2005) aimed to analyse protein expression in categories of
breast cancer tissue samples by applying immunohistochemistry (IHC) and the ANN classification
method (Abd EI-Rehim et al., 2005). A sample of 1076 breast cancer cases from the Nottingham
Tenovus Primary Breast Carcinoma Series were tested in order to detect biomarkers which are
indicators of breast cancer. At the beginning of the study, IHC was applied to tissue microarrays
(TMA) to cluster samples formulated in terms of similarity. Further analyses of the cluster data were
carried out using multilayer ANNs. The ANN architecture was built from 13 input, 60 hidden and 6
output nodes. The multilayer ANN categorized the cases into groups and examined the driving
biomarker in each group. Using these methodologies, six main clusters were identified by IHC, as
shown in Figure 2.14, and the multilayer ANNs could predict 1, 2, 4, 5 and 6 classes with 100%
accuracy whereas class 3 was predicted with 99.57% accuracy. When all the classes were analysed by
the means and the standard deviation (SD) of the mean of expression of the markers in each group and
multilayer ANN, it was found that a discriminating marker which is related to epithelial cell lineage,
differentiation, hormone/growth factor receptors and gene products could be detected successfully. As
a result of this study, Abd EI-Rehim et al. (2005) stated that two of the important discriminator
proteins (CK18 and CK5/6) identified were related to the mammary gland anatomy and cellular
structure of its parenchymal tissue (Abd EI-Rehim et al., 2005). Consequently it can be said that the
multilayer ANN method with IHC clustering can give essential clues to tailoring the treatment of
breast cancer.
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Figure 2.14 Cluster tree diagram of a tumour sample. Clusters are arranged from left to right,
starting from cluster 1 and ending at cluster 6.

A subsequent study was conducted by Agarwal et al. (2014). Since there had been great interest in Ki-
67 as a proliferation marker with both prognostic and predictive value in breast cancer, the main aim
of their study was the identification of common genes predictive of Ki-67 expression in three different
microarray breast cancer datasets by using multilayer ANNs with feedforward, backpropagation and
cross-validation. It should be noted that unlike most other studies, another cross-validation method,
which is named ‘Monte-Carlo’ was used in this experiment. The Monte-Carlo cross-validation
method has the ability to avoid over-fitting of the data and is more steady than leave-one-out cross-
validation (Xu, Liang & Du, 2004). The multilayer ANN consisted of two hidden nodes and the
sigmoid function. The datasets were collected from the Nottingham breast cancer microarray (training
set), the Uppsala breast cancer cohort (test set) and the METABRIC cohort (validation set). By using
ANN, the top 200 probes for Ki-67 status were identified for each dataset. As a second phase, a non-
reductionist approach network growth strategy was implemented in order to make the Ki-67 system
more precise in breast cancer analysis. In this approach, the open-access online database Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING, Version 9.1) was used to determine linkages
between the top ten proteins interacting with Ki-67 and in turn between each of the top ten and their
top ten genes, as shown in Figure 2.15. Thereafter, those findings were compared with the results of
the first phase in order to identify the common genes. As shown in Figure 2.16, 64 unique genes were
identified across all three cohorts.
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Figure 2.15: The linkages of top 10 for Ki-67 (Agarwal et al., 2014) Figure 2.16: Depicted Ki67 common genes in 3
breast cancer dataset (Agarwal et al., 2014)

Agarwal et al. (2014) stated that in a comparison of the 64 genes with previous studies, there was a
significant overlap with other similar signatures such as CEP55, CENPA, CENPE and spindle
checkpoint proteins such as TPX2, AURKB, CDC20, which might contribute to tumour progression.
However eight of the twenty most common genes for KI-67 were not listed among these 64 genes
(Agarwal et al., 2014) so it can be concluded that the study result could have been more precise.
Additionally, the ANN approach could have been used rather than STRING to predict associations for
Ki-67 due to the flexibility of ANN.

2.3.3 Predict survivability in cancer by using Multilayer ANNs

A study by Chen, Yang and Chiu (2009) sought to predict survival time in diffuse large B-Cell
lymphoma (DLBCL), follicular lymphoma (FL) and ovarian cancer patients by using multilayer
ANNSs (Chen, Yang & Chiu, 2009). The datasets were obtained from Shipp’s study for DLBCL, as 58
untreated patients, Dave’s study for FL, as 95 untreated patients, and from Duke University Medical
Centre and the H. Lee Moffitt Cancer Centre and Research Institute including 69 deaths from ovarian
cancer (Shipp et al. 2002; Dave et al., 2004). The gathered dataset was pre-processed using BRB-
Array Tools. Then, in order to optimise the ANN architecture, the dataset was divided into two groups
of 90% and 10%. The 90% of the data group was used for training with a commercial software
(STATISTICA version 8.0) and the rest of the data (the 10% group) was used for testing. During the
training process, inputs were initialised randomly and at the end of the calculation the obtained output
was compared with known survival time. The process was then repeated by altering the weights
between nodes until the error was reduced to a negligible rate. To optimise ANN, it was tested with 5
to 30 hidden nodes. However, the multilayer ANNs can overfit the training data rather than decrease
the generalisation accuracy, so the multilayer ANN’s architecture was determined by trial and error.
At the end of study, the result was calculated as follows: for the DLCBL data set, differences between
values and estimator (RMSE) were identified as 2.68, and the linear relationship between values and
estimator (correlation coefficient) was calculated as 0.956. Additionally, some genes (D63879 at
(KIAA0156), HG1879-HT1919_at (ARHQ), U41815 at (NUP98) and X77366_at (TCF11)) which
are related to cancer were reported. For the FL dataset; RMSE was calculated as 27.69, and
correlation coefficient was 0.771 whereas these values were 17.23 and 0.868 respectively for the
ovarian cancer dataset as shown in Figure 2.17 for the three datasets.
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Chen, Yang and Chiu (2009) therefore declared the prediction of ANNSs to be accurate and acceptable.
However, the findings could have been improved by comparison with other study results as was done
by Agarwal et al. (2014).

Another similar study was conducted with validating gene expression profiles in order to obtain
clinical outcomes of breast cancer (Lancashire et al., 2009). The study hypothesized that a gene
expression signature would be capable of predicting survival with some accuracy. Considering the
difficulty of breast cancer heterogeneity, multilayer ANNs with backpropagation and Monte-Carlo
cross-validation methods were implemented. In the multilayer ANNSs’ structure, the number of hidden
layer nodes was restricted to five and the output nodes gave evidence of metastasis based on a
YES/NO sigmoidal function.

Research has been done on Van’t Veer’s dataset which used breast cancer disease samples. In the
experiment, 78 samples were used initially and were divided into 60% for training, 20% for validation
and 20% for blind testing independently. Consequently, nine genes were obtained that prognosed
with 98% sensitivity. Since the capability of predicting metastases has a high degree of accuracy, in a
further stage, another 295 patient cohort dataset (NKI295) was validated. The obtained nine gene
signatures were applied to classify this series of cases. The discovery was made that the data were
able to be divided into the proper groups which had been defined by the original 70-gene signature.
Consequently it can be observed that this study resulted in a high degree of accuracy and affirmation
of these findings.

This chapter has investigated previous relevant studies in terms of the comparison of data mining
methods, biomarker identification and survivability prediction in gene expression profiles using a
multilayer neural network. It can be concluded that a multilayer neural network is the most plausible
method among other data mining methods for the classification/prediction/identification of cancer
cases accurately, which proves that this method would be helpful for uncovering hidden patterns in a
dataset that can help clinicians in their decision-making.
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Chapter 3

Requirement and Analysis

This chapter will first describe the requirements of the project and then the means of overcoming the
challenges will be explained in the analysis part. The test results of the tool and the evaluation
process will also be explained.

3.1 Requirements

As mentioned in section 1.1, the main aim of this project is to develop a computational tool that will
be trained by cancer datasets, and after training it will be able to predict information such as
metastasis capability, and the stage and/or typology of cancer depending on the training dataset.

The requirements of this project can be split into three categories; functional, software
implementation and non-functional.

First, the dataset that will be used in the project should have the requisite qualifications such
as completed input and outputs values or genes that are highly related to cancer subtypes. In
order to classify cancer accurately the tool should be trained with genes that are related to
specific cancer types. Considering that there are plenty of publicly available gene expression
datasets on the web and that these datasets include variety of genes/features, we should ensure
that our dataset consists of the necessary genes. Therefore a small blue cell tumour (SRBCTS)
dataset which was part of Khan et al.,(2001) study is used in the present project.

Second, as can be seen in the literature review, generally studies have used SPSS or other
commercial software in multilayer layer neural network training. Considering that our project
network will be licensed under BSD3 to provide the ability of re-structuring in terms of
calculation methods or layer/neuron numbers, commercial/non-commercial products are not
used for the implementation of a neural network.

Third, the tool should have high prediction accuracy in cancer. However, machine learning
systems are prone to overtraining (the tendency of fitting data excessively), which causes a
decrease in prediction correctness. Therefore a technique called cross-validation has to be
performed in the training process to avoid overtraining and to obtain high-accuracy results.
Due to the need for the tool to be robust, unit testing should be implemented on codes to
ensure that process is carried out properly, and also the code should be tested by a
performance analysis tool to detect and fix any code bottlenecks.

Additionally, after completion the testing of the tool, it will be released as a library called
Cunernet with a BSD3 licence to reach the widest community. In that way, the tool might be
made use of by any communities or contributors who might wish to be involved in the further
development process.

Furthermore, the latest standards of C++ language should be performed because the tool will
be implemented on CUDA using the Thrust library.

Finally, since the tool will be used by other users, compiling and verifying code changing
should be done before uploading any written code.

The functional requirements and software implementation and the non-functional requirements can be
outlined as shown in Table 3.1
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Functional Requirements

The tool should predict cancer information(metastasis capability, stage, topology) with
high accuracy (95% or above preferably)

The dataset should only have the required genes/features

The used libraries should be under BSD-like licence.

The tool should be flexible in terms of implementing different learning rules and updating
protocols, neuron numbers in layers or input/ output vector size.

By implementing unit testing , the code should be made robust

Software Implementation

1 | The tool should be developed by using best practice developing techniques to release as
an open source

The user should be capable of deciding the implementation (training/testing) and the
network structure (multilayer/single layer)

The basic network values such as learning rate, momentum or input vector size in data set
should be passed by the user

The developed tool will be released named as the Cunernet library under the BSD licence.

Cmake cross-platform compilation software should be used to manage the building
process of the tool.

The Thrust library should be used in regard to implementation codes on CUDA as a
project extension

The Cunernet has to be implemented as self-contained shared library to be included in
other projects

Non-functional Requirements

The code should be analysed in terms of performance by using performance analysis tool
(gperftools) and according to analysis result it should be optimised.

The Operating System of machine should be Linux 64-bit with installed CUDA 7.0

The tool should be compiled using g++ 4.8

Table 3.1 The Requirements of The Project

3.2 Analysis
By analysing of the requirements of the project, the following stages should be followed in the project:
3.2.1 Dataset

The used SRBCTs dataset, which is publicly available, includes four distinct categories
(rhabdomyosarcoma (RMS), Burkitt lymphomas (BL) subset of NHL, neuroblastoma (NB), and the
Ewing family of tumours (EWS)) and consist of 88 samples (25 RMS, 11 BL, 18 NB and 29 EWS).
Each sample includes 96 genes, which are highly related to those four categories mentioned above.

Khan et al.,(2001) split the88 samples into training (63) and test sets (25). After training their network,
the 25 test samples were classified with 100% and diagnosed 23 over 25 sample could be diagnosed
correctly (2 samples Test Sample 10 and Test Sample 20 were not diagnosed ).

Due to the 96 genes high relevance to the SRBCT cancer types, being publicly available and showing
promising result, the SRBCTs dataset will be chosen to train and test our network.
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3.2.2 Programming Language Choose

Due to the flexibility and licence issues, own Multilayer Neural Network software will be developed
in C++11 language. Concerning that the written code will be optimised by Google Performance
Analysis tool to achieve a better performance, C++ was a proper choice. Additionally as an extension
of project the software will be implemented on GPU by using Thrust library in the future, it can be
said that C++11 was the most proper language to develop our tool. In the light of C++11 and Google
Performance tool using requirements, the project environment is chosen as Linux 64 bit operating
system with CUDA7.0

3.2.3 The Network Design

In the present study the structure of the network will be limited to linear perceptron, but the software
will be designed to be extended to multilayer neural network depending on passed information from
the user. Also the learning algorithm of software will be implemented same as Khan et al.,(2001)
(updating weights every 10 samples) and in addition that, different optimisation algorithms such as
batch and stochastic learning will be added to software code as an optional choice.

3.2.4 Training Network

In the training procedure of the network, 63 samples over 88 will be taken to train our network and
three-fold cross validation will be implemented in order to avoid over training, as was done by Khan
etal., (2001).

The procedures for training with cross validation will be;

e First the 63 sample dataset will be shuffled and split into three equal part

e After that, any two of three parts will be taken as a training set and the remaining 21 samples
are used as the validation set.

e First, the training set (42 samples) will be subjected to training procedures and the other 21
validation set, will be kept out of training.

e The training procedures will be repeated 100 times with the same training and validation
datasets.

e After 100 times completion, another 21 samples from the dataset will be chosen as a
validation and the other 42 samples will be used as training.

e The 100 times training procedures will be repeated again with the new chosen compound of
42 samples.

e These steps will be repeated three times and each time a different fold (21 samples) will be
chosen as validation set. By doing that over-training in network will be prevented

e End of these stages one iteration will be completed and by shuffling the 63 samples again
iteration will be started.

3.2.5 Best Practice Development

Owing to the intention to release the tool an open source library, the best practices of open source
development techniques will be used. All code development processes will be done on the web
application hosting service Bitbucket. To manage code changing on Bitbucket, the “git” revision
systems will be used and each code changing steps will be uploaded to the Bitbucket page with an
explanatory note to be a guide for the history of the code development or a guide for further studies.
Also, in the case of getting an major errors, the project codes will be able to be rolled back by tracking
the history on Bitbucket.

Due to the fact that documentation is an important way to communicate with other developers, the
code comments will be written base on Doxygen rules and The Doxygen tool will be used to generate
documents as html or pdf automatically which will be found in the doc folder on the Bitbucket
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project page. The generated document will be an easy guide to examine code in regard to functions or
variables for potential contributors and also for the current author in the future.

In order to deal with compiling source code fields in different directories, the CMake cross-platform
software will be used to manage the building processes. Additionally, by providing readme files will
be written to guide how to compile/run The Cunernet that files can be found in the project folder on
Bitbucket.

3.3 Testing and Evaluation

In this section, the present study classification and diagnosis method will be described rather than
Khan et al., (2001) classification/diagnosis method. However in section 5.4.1 Classification and 5.4.2
Diagnosis Khan et a., (2001) methods will be described and implemented along with the present study
classification/diagnosis method.

3.3.1 Testing the Correctness of the Training Set

As described above, 63 samples will be used to train the network and after each training dataset was
trained, its correctness will be calculated. The correctness calculation will be done by comparing real
output data and the network output data for each sample.

During the correctness checking, training set samples will be subjected feedforward propagation and
then the network output vector will be obtained one by one. (In our case the network output vector has
four elements with regard to the four cancer categories is searched) After obtaining output vector, the
highest value of vector will be checked whether it has 98% weight in sum of all four values. In the
case of the percentage being 98% or more, the index of this value will be compared to real output
highest value index. If both indexes are the same, that means the network classified the sample
correctly and correct number will be iterated with one. These processes will be implemented to all
samples in the training set and after finishing all samples, the correctness percentages of training set
will be calculated by dividing correct match and the dataset size number (Eq 3.1). The pseudo code of
these processes can be seen in Pseudo Algorithm 1 Testing correctness of a data set.

correctNumber

(3.1)

Correctness percentage =
p g Dataset Sample Number

3.3.2 Avoiding Over-Training

Furthermore, as it mentioned in the Analysis part, three fold cross validation will be used to prevent
over-training network. Avoiding over-training will be done as follow;

e A network model will be defined for testing

e At the beginning of the iteration, the dataset (63 samples) will be shuffled and split into 3
fold

e Asitisexplained in 3.2, the two folds (training set) will be subjected to training process and
the other third fold will be kept as validation set (without training network)

e End of this process the MSE (i.e. mean square error) for both training set and validation set
will be calculated

e This training and MSE calculations will be repeated 100 times and the MSE values obtained
will be stored to the vectors.

e At the end of 100 times, two vectors within the 100 MSE value elements will be obtained and
written to a file

e Then the network model is set as a new beginning and the dataset will be split again after
shuffling uniquely.
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By repeating these steps 50 times, a 100 vectors (50 for training,50 for validation) that each of them
has 100 MSE values will be obtained and plotted (see Figure 5.6) by using python script which can be
found in the script folder on Bitbucket project page. By plotting a graph, the existence of over—
training will be tested and, in the case of that the validation errors have a decreasing trend, it will be
ensured that there is no sign for over-training in the network.

3.3.3 Unit Testing

As a part of unit testing, a relatively small dataset (4 inputs and 2 outputs) will be created manually.
This dataset will be given to the network for training, as shown in Figure 5.2. During the training
processes the used input vectors, network outputs values, network weight changings will be written
files and checked manually to see whether process/multiplications are done as required.

When the network outputs and real outputs comparison file will be examined, it should be seen that
the network outputs values are close to the real output values in each iteration, which means that the
network would be converging as required.

3.4 Testing Network Correctness/ Network Evaluation

During the training process, the used network models will be saved to files which can be found in
data/models directory on Bitbucket page. After completing the training of the network, the proper
network model will be reloaded from one of those model files to test network correctness with the test
dataset. In the current study, the test dataset consists of 25 samples with 5 “noise sample” (that is not
belonging to one of the four cancer categories).

In network testing, each sample will be given to the reloaded network and subjected to feedforward
propagation one by one. After this feedforward propagation, the network output vector will be
obtained and its classification/diagnosis will be done according to a percentage weight in the sum of
all elements, as explained in Section 3.3.1. (The percentage weight number will be decided after trials)
For each correct diagnosis, the number of correct samples will be iterated with one and at the end of
all samples the correct number will be divided by the test dataset sample number (25) to gather the
percentage accuracy of the network. After obtaining the network accuracy, using a list of correct
classified/prognosis samples, it will be compared with the results of Khan et al. (2001) to understand
whether the present study network works as requested, and whether it is better or worse than other
study networks.

The pseudo code of testing correctness can be seen below;

Pseudo Algorithm 1 Testing correctness of a data set

1:procedure:checkOutputCorrectness

. for each inputVec, realOutputVec in DataSet do
feedforward(inputVec);
outputVec <- getOutput();

sum <- sum(outputVec);

REYONI RN

e

highest <- getHighestValue(outputVec);
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12:

13: if highest > sum *0.98 then

14:

15: if index in outputVec == index in realOutputVec then correctNumber++;
16:

17: correctness = correctNumber/ DataSet.size;

After the network correctness has been approved by comparison with the results of Khan et al. (2001),
the other study cancer datasets will be used to affirm the correctness of the network training and
testing.

3.5 Profiling/Performance Evaluation

The bottleneck of written serial code will be tested/monitored by using the performance testing tool
and Linux time function. The Google Performance Analysis CPU profiler, that can be found on
https://code.google.com/p/gperftools/, tool will be used to monitor unit time for each function/method
relative to total unit (calles) of software. According to the gathered results from gperftools, the code
parts will be changed/replaced to optimise it and after each changing the function time will be used to
check total wall time reduction. Due to the total wall time may change depends on hardware current
work load, the software will be run several times and average of wall time will be taken to compare
reduction time.

In addition, the total spent time against neuron numbers will be tested on both single and multilayer
neural networks and the effect of neuron/network structure on the spent time will be examined by
plotting graphs.

Also it should be mentioned the intention that the Thrust library will be used to implement the
software on CUDA in the future, regarding to the compability of Thrust library, the gperftool is
chosen for performance analysis.

3.6 The Library Cunernet

The Cunernet is a library that can be downloaded from the Bitbucket project page and by typing
simple commands it can be compiled/installed:;

In order to compile and install;

e ./cmake.local
In order to compile and run;

e source local/share/ CUNNET/CUNNET.conf
e ./cmake.test

The library has to be compiled using g++ 4.8 under linux 64bit to ensure compatibility with Cuda 7.0.
To contribute it, the functionalities have to be added to the /src/cunnet directory and the cmake file
(/src/cunnet/CmakelLists.txt) has to be edited by adding a new source file name. It is good practice to
create a new test for each functionality implemented. Every new test has to be coded as the template
used in "/src/tests/test_main™ and ./cmake.test script file should be modified.
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Chapter 4

System Design

This chapter describes chosen design techniques along with both the benefits and drawbacks.
4.1 System Overview

The project design parts can be divided in different main steps as pre-processing/choosing dataset,
developing design in terms of using feedforward, backpropagation and updating weights protocols in
serial code and also software design.

4.2 Selecting and Pre-process of Dataset

A gene expression dataset is a repository consists of microarray gene expressions that is explained in
2.1.2. Today there are many gene expression cancer datasets publicly available on the web thanks to
projects. “The Cancer Genome Atlas” (www16, 2015) and “Gene Expression Omnibus” (www17,
2015) can be listed as two of the main projects for creating datasets. Basically a specific cancer
dataset is created by collecting variety of genes/features, which have affinity with specific cancer
types, from cancer patients’ microarray sets and collected data are stored to a database properly. After
the creation of a cancer dataset, it might published online and can be accessed on the project web
pages.

Even though a dataset’s genes are related to cancer categories, the high number of genes (being
high-dimensional) can pose some challenge for the accuracy of cancer category detection. For
instance, whilst those extra features might mislead the machine learning calibration, they can also
cause an overwhelmingly inaccurate calculation in the system as is shown in Figure 5.7. Consequently,
the training process might be concluded as having a wrongly calibrated network which is not capable
of detecting cancer subtypes accurately (Yu & Liu, 2003). Therefore, depending on the characteristics
of the dataset, it should be pre-processed; however there are different methods for pre-processing a
dataset to find the exact features and each of them might result in a relatively different list of genes.
Bearing in mind the possibility of differences on the gene list, using the identical SRBCTs of a
childhood dataset from Khan et al.’s (2001) study would be the correct choice to test the present
study’s results and improvements. As discussed briefly in Section 3.2, there were 88 samples with
6567 genes at the beginning of pre-processing in Khan et al.’s study. As a first step of pre-processing,
these 6567 genes were filtered using image analysis on gene expression profiling, as was shown in
Figure 2.2. After implementing the red/relatively red intensity filtering method, which shows the
relative rank of genes and cancer subtypes, 2308 genes remained and then a principal component
analysis algorithm (PCA), which reduces the dimensionality of data, was applied to the remaining
2308 genes. Finally ten components were left to train/calibrate their neural network, and as result of
that study (Khan et al., 2001), 96 genes which were relevant to four cancer subtypes were found.

The stages of pre-processing can be seen in Figure 4.1
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Figure 4.1 Pre-processing dataset; 6567 genes are filtered by image analysis filtering ,the remained 2308 genes data
dimensionality is reduced by principal component analysis and then 96 genes were found by (Khan et al., 2001) 96 genes
have been found.

In the present study, the extracted 96 genes will be used as dataset in order to train and test our neural
network. By doing that the results of project can be compared and possible improvements will be
identified.

4.3 Developing Design

First, the programming languages will be considered for neural network development. Even though
pyhton language has some libraries such as PyBrain for neural network, C++ will be more suitable
choice for development on both serial and parallel algorithms due to the project will be implemented
on CUDA by using Thrust library and also for the reason of using Google Performance tools to
optimise code.

The development tool that will be named the “Cunernet”, will be released as an open-source library.
Therefore software development best practice techniques will be used. The development process will
be practised on the Bitbucket web application service by using “git” which provides opportunity to
roll back the code by tracking its history. Additionally, the code history and tool itself might be used
as a guide for further developments with regard to the tool will be released as open-source on
Bitbucket page. Also, the codes’ comments are written base on Doxygen rules, and it is used to
generate documents of code as an html or pdf file by using the make-doc.sh file which can be found in
the data folder on Bitbucket project.

In reference to the extensibility of the software design, even though the network will be run as a single
layer neural network in the present work, it will be capable of extending to a multilayer neural
network depending on the typed information from users. In addition, as backpropagation weight
updating protocols, weights will be updated every ten samples (as Khan et al. (2001) did), but two of
the main learning algorithms (stochastic and batch) will be also added to the software code as an
optional features. The pseudo-code backpropagation protocols can be seen in Pseudo Algorithm 5
Updating Weights;

Regarding the compilation of the Cunernet library, the Cmake open-source software will be used,
which can compile several programming files from a tree-type directory. The compilation procedures
will be written in a readme file and will be found on the Bitbucket project page.

After finishing the developing, a unit test will be performed to determine whether the software is
working as requested. The unit testing implementation will be done by creating a small dataset, with
four input and two output element vectors, and the output of the network will be checked during the
training processes with the created dataset.
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4.4 Software Design

The software should be run on a 64-bit Linux operation system with CUDA 7.0. After downloading
the Cunernet software from Bitbucket, the user will be able to compile and run the software with basic
commands that are written in the readme file on the Bitbucket page.

The files will be designed as a tree directory. A folder src will contain the source code files, a data
folder will include datasets or written files that are created during training/testing. Also. local will be
the target installation folder in which Cmake outputs binaries will be stored. In addition, scripts for
drawing line graphs and so on will be located in a script folder. All the folders can be found on the
Bitbucket project page.

When the software is compiled and run, a command panel will ask for some information such as
training/testing, network structure (single/multilayer), dataset file name to train the network, gene
number in dataset and learning rate with momentum values

In this step, the Cunernet software will be able to be trained/tested by any suitable dataset by passing
different dataset file names and gene numbers into the given file.

4.5 Neural Network Design

As mentioned in the Chapter 2, neural networks are a suitable machine learning systems for detecting
cancer subtypes accurately. The main restriction of this system can be stated as that

e it requires hardware which should be able to do high computations

e Regarding to high computations requisite, obtaining results may take relatively long time
On the other hand by optimising algorithms and by reducing dimensionality of dataset with correct
pre-processing methods, the time can be reduced significantly and an accurate result can be gathered
in favourable time.

4.5.1 Feedforward Algorithm

During the network building process, weights will be initialised randomly from a certain range. The
range of weight values can be expressed as [r,-r] and it will be able to be calculated as follow;
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After network creation and the weights initialisation, the feedforward algorithm will be implemented
according to formula 2.1 as shown in the Pseudo Algorithm 2 Feedforward Propagation;
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Pseudo Algorithm 2 Feedforward Propagation

1:procedure:feedforward

2:

3:  for each inputVector in Dataset do

4:

5: for each layer in in network do

6:

7: for each neuron in layer do

8: weightVector <- getWeights OfNeuron(neuron)
9: sum=inner_product(inputVector , weightVector )
10: sum=function(sum)

11:

Figure 4.2 Pseudo code of feed forward propagation; for each neurons’ weight vectors in layers is
multiplied by input vector in dataset.

4.5.2 Backpropagation Algorithm

For the next step of the project, backpropagation has been chosen as an optimisation algorithm. As
discussed in Chapter 2, this algorithm works by taking derivative of error function (Eq 2.4) with
respect to network weight and then those weight values are updated depending on the protocol that is
explained below. Pseudo Algorithm 3 Backpropagation

Pseudo Algorithm 3 Backpropagation

1:procedure:backpropagation
2:  Begin initialise realOutputVector, i<-0;

outputVec <- getOutput();

i<-i+l
0: deltaVector([i]<- (realOutputVec|[i]- outputVec|[i]) * previousNeuronValues.
* (1- previousNeuronValues);

6
7:
8: for each element in realOutputVec do
9.
1

11:
12: calculateWeightChanging(deltaVector);

Figure 4.3 Pseudo code of Backpropagation; after obtaining output vector of network, it is
ssubstracted with real output vector that comes from dataset. After that is multiplied by
previous neuron value and 1-previous neuron which equivalent to derivative of neuron net
value (Equation 2.16)
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4.5.2.1 Updating Weights - Training Protocols

As can be seen in Pseudo Algorithm 3 Backpropagation line 14, the function
“calculateWeightChanging” is called to store weight changes after the delta vector of the network is
calculated. The pseudo code of the calculateWeightChanging function as follow;

Pseudo Algorithm 4 Weight changes calculations

1:procedure: calculateWeightChanging

2: Begin initialise deltaVector ,previousNeuronValues , i<-0,k<-0;

3:

4:

5: for each neuron in layer do

6: i<-i+l

7: k<-0;

8:

9: for each weightDelta in neuron do

10: k <- k+1

11:

12: Weight changing is implemented (Eq 2.10)

13: weightDelta =learningRate* previousNeuronValues [k]*deltaVector[i] +
momentum®* weightDelta

14:

Figure 4.4 Pseudo code of calculateWeightChanging function; After calculation delta values in bakpropagation
function, it is passed to calculateWeightChange function and in every neuron weightDelta value is updated by
multiplying learning rate, previous neuton values, delta values, and momentum (Equation 2.8).

On line 13, there is an addition term momentum (o) which differs from Eq 2.10. The momentum
parameter determines the quantity value to add weights by using previous and current weight values
(Eq. 4.3).

Aw; =1 (yj — 0))f ' (net)) x; + alw; (4.2)

w; = Wi + AWi (43)

The advantages of momentum is that due to Aw values depending on learning rate and derivative of
error function (Eq. 2.10), in the case of derivative of error tending to be smaller value, there should be
a parameter to make descending step bigger. By making steps bigger the error minima can be reached
in fewer steps. The difference between using and not using momentum can be seen in Figure 4.2;

34




Figure 4.2: Updating weights by using momentum (right) and not using momentum (left); as it is seen in Figure 2.10;
the desired point (the centre of contour plot in this case) is getting be more closer in each weight update. Each arrow
above represents a step toward to centre and in the case of not using momentum; due to gradient descent is
decreasing while approaching to centre, the steps are getting be smaller which cause to more calculation burden that
takes more time network to converge. On the other hand when momentum is used, even though gradient descent is a
small number value, momentum balances the step length and the network is converged faster with less calculation

As can be seen, the steps of descending are getting smaller and smaller (left) because the derivative
of error function tends to be smaller and that causes more iteration, however by using momentum
(right) the steps become more stable and the minimum point of error function is reached faster than
without using the momentum method.

Considering the advantages of momentum, it is used in the project weight updating protocols which
will be implemented every 10 samples in the way as that was done by Khan et al., study (2001). In
regarding to weight update regularity, there couple of different update protocol and considering to
future usign of Cunernet Library, the main two of those protocol (batch, stochastic) also will be
added to the project software and those will be able to be used as optional.
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Chapter 5

Implementation, Testing and Evaluation

This chapter will describe the training implementation of the neural network, the Cunernet software
implementation and the test results, and finally an evaluation of the work will be presented.

5.1 Training Implementation

The project network in training/testing procedures is restricted to the single layer neural network as it
has been done in Khan et al., (2001) study. The dataset is read from the given dataset and input layer
neuron numbers is set to 96 due to the each sample has 96 genes values and also 4 output neuron is
created in context of the output vectors have 4 elements (Figure 5.1)

[OD 01 02 03 ]«
Yo = f (net) Y1 = f (net) Y2 = f (net) Y3 =f (net)
"y a

EWS RMS NB | BL
—

L input vector_1 output vector_1
- input vector_2 output vector_2
[4b] input vector_3 output vector_3
w
(@)
=
=
@

—
—
[ input vector_42 || output vector_42

Figure 5.1 The used network structure; training set consist of 42 samples and each sample has input (96) and output
(4) vector. While input vector has 96 elements correpond to genes, the output vector has 4 elements corresponds to
category of cancer. (presence of category is represented by 1, 0 otherwise in output vector). In training procedures,
input vector of sample is given to the network and the network output vector (y) is obtained. Thereafter obtained
output vector and the real output vector, mentioned above, is substracted and through the calculations mentioned in
Chapter 2, backpropagation is implemented. These procedures is repeated untill all samples is used.

After the network is built, training procedures is started by reserving 63 over 88 samples to train
network while the remaining 25 samples are used to test network correctness. In the beginning of
training network, 63 samples are shuffled and in context of cross validation it is split into three-fold.
While any two of three folds (42 samples) is labelled as training set, the other 21 samples set as
validation. The training set is given to the network through the feedforward, backpropagation and
every 10 samples the weights of network is updated (Eqg. 4.4) as it explained in Chapter 4. These
procedures is implemented 100 times by using same training set and at the end of 100 times repetition
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the network is saved to a file with its weight to be used in testing. This process is repeated 3 times
and each time different 21 samples are used as validation. After finishing 3 folds using three different
network is collected and 1 iteration is completed. After finishing 1 iteration, whole procedures is
started again with shuffling whole dataset and splitting to 3 folds again. The training of network is
completed after 1250 iteration as it has been done in Khan et al., (2001) study. The performed tasks
by each block of flowchart can be seen in Figure 5.2

‘ Data Set 88x96 J

Test Training Data
25x96 63x96

Shuffling and
Spliting 3 Fold

HOrganise/Change foldsD-

""""" [Shuffling and splitting dataset to 3 folds

Training set _
4zxe6 || Changing folds 3 times

X3 L

Validat
ion
21x96

___________________________ -Repeated 100 times
X 100 |

Network Training

Traning

Feedforward

Backpropagation

| Updating weights every 10 samples

“|The used Training and Validation set is written to the file
The trained network structure (with weights) is written to the file

]

R

Trained Network

El'esting the trained network

Figure 5.2 Training Procedures; after obtaining 63x96 dataset, it has been split to 3 folds and while 2 of 3 is used as
training 100 times, the other 1 fold remained as validation. Thereafter the validation fold is changed and these
procedures is repeated three times with different validation sets in each. After completion 3 times changing, 1
iteration is accomplished and the all training network stage is finished after 1250 iterations as it has been done in
Khan et al., (2001).
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5.2 Software Implementation

The Library Cunernet is written by using C++11 language in object oriented programming paradigm.
It can be downloaded from the Bitbucket project page and easy to compile with commands that are
written in the readme file.

After compiling and launching software, the question “Training or Testing? " is asked that determines
whether it is going to be run to train or test network.

If Testing is chosen, a dataset name should be given with gene number in it. After passing proper
information, the question for classification or diagnosis is asked. In this step there is a third option
(classdiagnosis) is added as an extra to the Khan et al.,(2001) methods (Figure 5.3). By choosing
“classify”, the saved networks in training are testes on samples one by one. When “diagnose” is
chosen it asks the training sample number to calculate distance threshold, that explained in 5.4 Testing
Network Correctness and Evaluation, after giving training sample number it starts calculate distances
and end of it diagnosis result is given to the command panel (Khan et al., 2001), When
“classdiagnosis” the testing procedures is typed it starts trying each saved network with all samples in
given dataset and end of trying all networks the best result is given to the panel..

#2 acp14dp@CSE-cse-server: ~/DEVELOP_CLONE/dw-msc-3-2015 : - — q [E=NEE

Figure 5.3 Cunernet library testing procedures starts. By giving proper information classification started. Also
diagnosise and classdiagnosis could have been chosen.

If the Training is chosen, the dataset name with its gene number and also learning rate momentum
values information is asked (Figure 5.4).

Figure 5.4 Cunernet library training procedures starts by passign proper information.
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After giving that information, the iteration number, and the average sum square error value and the
correctness percentage of the training datasets are shown to the user, as can be seen in the panel above.
During this training process, the procedures that are explained in Figure 5.2 are implemented. As is
shown in the flowchart, every training and validation set used are recorded to the file
(train_validation.csv”) and also before changing folds (see Figure 5.2) the updated network structures
are written to files and named as ‘model’iterationNo’.csv’ (for example, ‘model44.csv, ‘model45.csv’
and so on) in each fold-changing step. At the end of the training procedure, the 3750-model network

is written to files and in testing implementation those files are reloaded to test the network correctness
with the remaining 25 samples as was explained in Section 5.4 in detail (the files can be found in the
Bitbucket project data folder).

5.3 Testing

In this section, first the over-training control procedures, unit testing and profiling code operations
will be defined. Then the main 25 samples used for determining the trained network correctness
testing will be explained, with the results.

5.3.1 Over-training control

In order to check for the existence of over-training in the calibration process, a sample low
dimensional dataset was created from the 63x96 dataset used and it was given to the network. During
the creation of the low dimensional dataset, various functions which are explained below were used
from the Neural Network toolbox Gene Expression Analysis example (MATLAB Neural Network
Toolbox Release,R2014a).

Genevarfilter: Filtering genes with small profile variance in dataset
Geneentropyfilter: Removing genes with low entropy expression values in dataset
Genelowvalfilter: Removing gene profiles with low absolute values
Generangefilter: Removing gene profiles with small profile ranges

Processpca: Reducing dimension of data by using orthogonal transformation.

After filtering genes on Matlab, the processpca was used as a final function to reduce the
dimensionality of the rest of the data and a sample dataset consisting of ten components (63x10) was
obtained and used in the network calibration procedure.

At the beginning of over-training control, the network is structured as 10 input and 4 output neurons
and the weights are initialised. Then the prepared dataset (63x10) is split 3 folds and two of them

used as training set in calibration operations feedforward ,backpropagation and updating weights. The
remained one fold is kept as validation and only feedforward propagation is used on this validation set.
This operations are implemented 100 times and each time MSE (i.e. mean square error) is calculated
(Eq. 5.1) for both the training and validation set. After the calculated MSE values are stored in two
vectors separately, at the end of 100 iterations these vectors are written as the errLog.file file and the
over-training procedures are relaunched by initialising the network with the same weights and
shuffling the data (see Figure 5.5).
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Updating Weigths
H MSE Calculation ]} ------------------------------------- [Equation 5.1

- Every time the calculated MSE values
(Training and Validation)are stored totwo vectors

After 100 times repeating,the preapared two vectors
(for training and validatio) is written to the file

Figure 5.5: Over-Training Testing; The network is initialised with chosen values between [r,-r], then the
dataset is split to 3 folds and any two of them is used as training set. The network is trained by using the
chosen training set and thereafter MSE values are calculated for both the chosen trainign , validation sets
and the calculated MSE values are stored to two different vector seperately. By using same training and
validation sets, same procedure is repeated 100 times and each time 2 MSE values (for validation and
training) are added to the two vectors seperately. At the end of 100 repetation, 2 vectors with a hundred
MSE values (1 for training 1 for validation) are obtained and written to a file to drawn later on. These
vectors with 100 MSE elements will be shown in Figure 5.6 as one line for each vector (purple for training
and grey for validation). By doing that 1 main iteration is completed and after 2 vectors are cleared, the
weight are re loadeded to network and second main iteration procedures are re-run by shuffling data
uniguely. This main iteration is repeated 50 times to obtain enough statistical informatino of network
over-training. At the end of this testing as 50 for each sets we got 100 vectors in total.

In order to obtain enough statistical information, the procedures above is repeated 50 times and by
doing that 100 vectors (50 for training , 50 for validation sets) are obtained in the file errLog.csv.
These 100 vectors ,each corerespond to the one line, are used to check whether over training exist or
not. By using a python script (plotTrainAndValidate.py) that can be found in scripts folder on
Bitbucket project, the error values are plotted on a line graph (Figure 5.6)
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Figure 5.6 MSE calculations; By using same training and validation sets, the MSE values of both (for training and
validation) is calculated 100 times and stored to two vectors.At the end of this repetiton, two vectors that have 100
MSE values in each is created. This processes are repeated 50 times and 100 different vectors (50 for
training(purple),50 for validation(grey)) are collected and plotted.

As can be seen in Figure 5.6, whilst the errors of the training set (purple) decreased through the 100
repetitions, the validation errors (grey) also decreased similarly. Because there was no increase in
validation errors, it can be said that there is no sign of over-training in the network training.

5.3.2 Unit Testing

Unit testing is a method to check procedures of software whether it is suitable for use or not. Unit test
is implemented in order to test the correctness of the present study software training procedures by
creating datasets and training network manually.

The dataset was structured as four input elements and two output elements which led to four-neuron
input and two-neuron output layers. To start testing, the input vectors are given to the network one by
one and the training procedures in Figure 5.2 are followed. During the training of the network, both
network output elements and real output elements are written to a file in each iteration to monitor the
behaviour of the network.
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Iteration 150

Fold 3
Train Set
Network Output Dataset Real Output
0.000125 0.999875 0 1
0.98782 0.012209 1 0
0.995976 0.004032 1 0
0.996673 0.003331 1 0
0.996673 0.003331 1 0
0.99812 0.001877 1 0
0.000174 0.999826 0 1
0.005957 0.994041 0 1
0.971165 0.028866 1 0
0.995976 0.004032 1 0
0.94422 0.055724 1 0
0.997726 0.002272 1 0
0.283181 0.716934 0 1
0.992811 0.007204 1 0
Validate Set
Network Output Real Output
0.933273 0.066712 0
0.99812 0.001877 1 0
0.002515 0.997477 0 1
0.00073 0.999271 0 1
0.96682 0.033206 1 0
0.996673 0.003331 1 0

Table 5.1:Unit Test Results; The network outputs are converging to the dataset real output values by getting be more
and more close to then (1 or 0).

As the example in Table 5.1 shows, the output vectors of the network converged to the real output
values for both the training and the validation sets, which shows that training the network worked as
required and is therefore appropriate for use in real examples.

5.4 Testing Network Correctness and Evaluation

After these training procedures are done, the obtained network models are reloaded from the files and
tested on 25 test samples which consist of 6 NB, 6 EWS, 3 BL,5 RMS and 5 different cancer subtype
as noise information. It is worth to remain that, these 25 samples is seperated from 88 samples
dataset at the beginning of training procedures and they are never involved training procedures which
means completely new for the network.

Ewing Family of tumours Rhabdomyosarcoma | Burkitt lymphomas Neuroblastoma Noise
EWS RMS BL NB
6 Samples 5 Samples 3 Samples 6 Samples 5 Samples

Table 5.2: The test samples cancer category distribution in 25 samples
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According to 4 different cancer category is included in the test dataset, the output of each sample
consist of 4 elements and while category of cancer is denoted by 1 the rest of three elements is
denoted by 0. For instance if the first element of output is 1 it shows that this sample is EWS type.

As it mentioned above, testing has 3 options; first two is classification and diagnosis methods which
have been used in Khan et al., (2001) study and classDiagnosis method that is used in the presented
study as an extra. The procedures in classification and dianosis are as follow;

5.4.1 Classification

As in the Khan et al., (2001) did, a term average vote is used in the classification process. To find
average votes, firstly a network over 1250 saved network is reloaded and one sample is taken form
dataset. Feedforward propagation is implemented by using the taken sample and the network output is
gathered. Thereafter a second network over 1250 is reloaded and by using same sample, feedforward
is implemented on the second reloaded network. The gathered second network output is accumulated
with the first gathered network output. After reloading 1250 network with accumulation network
outputs, the average vote for the first taken sample is obtained and all procedures are implemented for
all samples one by one to obtain all averate votes of samples.

After obtaining all samples average votes, the classification is done by checking maximum value
number index in the average vote vector. Since the network has 4 output neurons, which correspond
to 4 cancer category (EWS,RMS,BL,NB), the average vote vector has 4 element as well. The real/
target output vector, which are in the dataset, shows the presence of cancer with 1 and 0 otherwise.
For instance a vector with elements 1,0,0,0 indicates that the sample has EWS category cancer.
Therefore if maximum value in obtained average output vector is in the first index, it is classified as
EWS, second for RMS, third for BL and latly fourth for NB.
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Figure5.7: Classification procedures; a sampe is given to the saved 1250 network by feedforward propagation.
Thereafter the outputs are accumulated for each network and after using all saved networks, the accumulated
outputs are divided by the network number to find average vote of the used sample. These procedures are done for
all samples and according to the maximum element index of average vote vector it is classified.

After finishing the classification of the Cunernet Library it can be seen that all samples are classified
with 100% accuracy that means all samples in dataset of 88 samples is classified correctly (see Table
5.3) as was done by Khan et al., (2001) study. Also it should be noted that, the “noise” samples are
classified as noise in the Cunernet library classification. The classification of noise is done according
to the weight of maximum number in the four element vector. If the maximum number has a less than
98% weight then it is labelled as noise. (The 98% threshold was decided after several trials) At the
end of trials it is seen that 5 over 5 noise samples is classified correctly while Khan et al., (2001) did
not classify none of them.

Real Network Classification Network Outputs

Output Output EWS RMS NB BL
Sample 1 0 0 | Matched 0.999999 9.26E-06 1.28E-06 7.54E-05
Sample 2 0 0 | Matched 0.999994 8.24E-06 3.81E-05 2.52E-05
Sample 3 0 0 | Matched 0.999999 7.03E-05 1.02E-07 4.93E-07
Sample 4 0 0 | Matched 0.999996  0.0001377 7.96E-09 1.39€-07
Sample 5 0 0 | Matched 1 7.50E-07 1.03E-07 6.76E-06
Sample 6 0 0 | Matched 1 1.86E-07 3.02E-07 1.21E-05
Sample 7 0 0 | Matched 1 9.71E-06 6.16E-08 3.63E-07
Sample 8 0 0 | Matched 1 4.71E-08 1.35E-07 1.29E-06
Sample 9 0 0 | Matched 1 2.59E-09 1.03E-08 1.69E-06
Sample 10 0 0 | Matched 0.999428  0.0001402 5.30E-12 2.25E-08
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Test 12 0 0 | Matched 1 2.13E-07 6.02E-06 1.33E-07
Test 13 -1 -1 | Matched 0.768471 0.938202 1.77E-06 3.13E-05
Test 14 2 2 | Matched 1.09E-05 2.15E-10 0.9936 0.0026604
Test 15 3 3 | Matched 6.52E-05 3.29E-08 1.46E-06 0.999999
Test 16 2 2 | Matched 8.81E-06 1.42E-09 0.9936 0.0001355
Test 17 1 1 | Matched 9.75E-07 0.999978 4.06E-06 1.32E-07
Test 18 3 3 | Matched 0.00299425 0.0005032 0.0012095 0.997766
Test 19 0 0 | Matched 1 3.49E-08 1.24E-06 7.85E-06
Test 20 0 0 | Matched 0.849812 9.23E-05 9.05E-08 0.0006389
Test 21 0 0 | Matched 0.999386 0.0001503 6.09E-12 2.45E-08
Test 22 1 1 | Matched 1.30E-07 0.999999 5.60E-07 2.81E-07
Test 23 2 2 | Matched 6.58E-05 8.30E-08 0.986638 2.91E-05
Test 24 1 1 | Matched 3.16E-06 0.999999 2.78E-08 6.08E-08
Test 25 2 2 | Matched 3.52E-06 1.80E-11 0.9936 0.0003068

Classification is done with 100% accuracy

HHHHHFHHH R
Table 5.3; Classification Result; Real output column represent the real diagnosis and 0 for EWS, 1 for RMS, 2 for
NB, 3 for BL and -1 for noise samples. Network output column represent the classification result of the Cunernet.

5.4.2 Diagnostic Classification

In diagnostic classification, a term “distance” is used as was done by Khan et al., (2001). First, a
sample from training dataset is given to the 3750 saved network and this sample’s output is obtained
by feedforward propagation. Then the distance (Eq. 5.2) of this sample is calculated and accumulated
as is in Figure 5.8. This calculation/accumulation was implemented all training samples and at the end
of it, the samples are grouped by classification result and 95% of the total distance was taken as a
threshold value. Then the test samples’ distance were calculated on all 3750 saved networks and if
their distance is less than calculated threshold value, it is diagnosed, otherwise it is labelled as noise.

46



input vector_1 output vector_1
© input vector_2 output vector_2
E input vector_3 output vector_3
(]
[=)]
=
=
]
—
= [ input vector_63 output vector_63
} i
i
X 3750

Trained Network

yo y1 y2 y3
EWS RMS BL NB |

Figure5.8 Diagnosis procedures; Each samples’ distance is calculated. 95% of training samples distances are
calculated as an treshold values for each cancer category. Thereafter each test sample’s distance calculated and
according to classification type treshold values it is checked wheter less or more than. In the case of being less than
treshold value (95% of sum of training samples distances) it is diagnosed otherwise set as a noise.

4

d= 1/22 (i —0;)% 5.2

i=1

At the end of these diagnosing procedures, our Cunernet Library diagnosed all samples with a 96%
accuracy, the same result as that achieved by Khan et al., (2001) (see Appendix Table 1).

5.4.3 ClassDiagnosis:

In this method, one reloaded network is given by all samples at once and the each saved network
correctness is considered separately. The steps of this method are followed;

e Firstly a network over 3750 is reloaded.
e A sample is given to the reloaded network and feedforward is implemented
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e The network output of this sample is obtained and it is classified according to the highest
number in the obtained vector.

e To diagnose this obtained vector. The highest value weight in all four element is checked

e If the highest value weight is ore than 98% than is it diagnosed according to the highes value
index the diagnosis result is checked with real diagnosis.

e Thereafter by using same reloaded network, second sample is given to the network and same
procedures are done.

e At the end of all samples, the reloaded network is correctness accuracy is calculated
according to correct diagnosed sample number.

e Than second network is reloaded and all samples is given to the second network again.

e At the end of calculating all network correctness accuracy, the network which has a highest
accuracy is chosen to be shown.

input vector_1 output vector_1
input vector_2 output vector_2
input vector_3 output vector_3

Test Set

x 3750

[ input vector_25 output vector_25

Trained Network

r r—

+ +
Classified Noise sample
and and

Compare results

Compare results

Figure 5.9: ClassDiagnosis Procedures; The saved network are taken 25 samples one by one. If the output of network
has a value which has 98% or more weight in all four values, it is diagnosed and compared to real output value. If
none of the four values has 98% weight, it is diagnosed as noise sample and compared to real output value. Overall
all matches are sum and divided by 25 to gain accuracy percentage of trained/reloaded network.

As can be seen in Table 5.4, the results of comparison show that the network has classified 20
samples with 100% accuracy and 24 samples of the 25 have been diagnosed correctly. Only “Test
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sample 20” was diagnosed as noise, whereas it was a EWS sample. Apart from that, all 24 samples
were diagnosed correctly which is identical to Khan et al., study (2001) results. The comparison table
between the presented study and that of Khan et al., (2001) study can be seen in Table 5.5.

Samples Network Output Vector Real

EWS RMS NB BL Classification | Diagnosis Diagnosis
TEST.1 0.019555 9.63E-05 0.999209  0.00221758 | NB NB NB-C
TEST.2 0.980755 0.000515 0.00672988  0.00042237 | EWS EWS EWS-C
TEST.3 0.589736 0.017952 0.0174805 0.0473966 | EWS - OsteosarcomaC
TEST.4 9.23E-09 1 1.31E-06 1.32E-06 | RMS RMS RMS-T
TEST.5 0.229616 0.023906 0.0380616 0.0629722 | EWS - Sarcoma
TEST.6 0.999853 2.99E-05 6.86E-05  0.00017739 | EWS EWS EWS-T
TEST.7 0.00636 0.001244  0.00285877 0.99905 | BL BL BL-C
TEST.8 0.00155 0.000152 0.999619  0.00020646 | NB NB NB-C
TEST.9 0.254191 0.522688 0.0006668 0.049363 | RMS - Sk. Muscle
TEST.10 5.77E-07  0.99997 6 5.00E-07 8.37E-05 | RMS RMS RMS-T
TEST.11 0.626072 0.006254 0.0319496 0.0444521 | EWS - Prostate Ca.-C
TEST.12 0.999737 5.74E-05 0.00603079  0.00020536 | EWS EWS EWS-T
TEST.13 0.065958 0.997101 6.42E-05  0.00299387 | RMS - Sk. Muscle
TEST.14 0.000148 4.80E-07 0.999963  0.00575246 | NB NB NB-T
TEST.15 7.16E-05 453E-06 0.00023765 0.999998 | BL BL BL-C
TEST.16 0.000144 1.41E-06 0.999993  0.00135978 | NB NB NB-T
TEST.17 1.15E-05 0.999881 6.79E-05 3.96E-05 | RMS RMS RMS-T
TEST.18 0.035959 0.003953 0.0105931 0.984807 | BL BL BL-C
TEST.19 0.999958 6.75E-06 5.64E-05  0.00015527 | EWS EWS EWS
TEST.20 0.230137 0.016949 4.98E-05 0.0267939 | EWS - EWS-T
TEST.21 0.99246 0.005905 9.38E-07  0.00121645 | EWS EWS EWS
TEST.22 1.46E-05 0.999998 2.95E-06  0.00025175 | RMS RMS RMS-T
TEST.23 0.000559 9.06E-05 0.981119  0.00327278 | NB NB NB-T
TEST.24 2.20E-05 0.999993 1.05E-05 4.32E-05 | RMS RMS RMS-T
TEST.25 0.000148 6.42E-08 0.999995  0.00122402 | NB NB NB-T

Table5.4: The trained network classification and diagnosis results which are compared by real diagnosis results on
the right column.

Presented Study Results Khan et al., Paper Results

Samples Real Real
Classification | Diagnosis Diagnosis ;Ztli?)snSIflc Diagnosis Diagnosis

TEST.1 NB NB NB-C NB NB NB-C
TEST.2 EWS EWS EWS-C EWS EWS EWS-C
TEST.3 EWS - Osteosarcoma-C RMS - Osteosarcoma-C
TEST.4 RMS RMS RMS-T RMS RMS RMS-T
TEST.5 EWS - Sarcoma NB - Sarcoma
TEST.6 EWS EWS EWS-T EWS EWS EWS-T
TEST.7 BL BL BL-C BL BL BL-C
TEST.8 NB NB NB-C NB NB NB-C
TEST.9 RMS - Sk. Muscle RMS - Sk. Muscle
TEST.10 | RMS RMS RMS-T RMS - RMS-T
TEST.11 | EWS - Prostate Ca.-C EWS - Prostate Ca.-C
TEST.12 | EWS EWS EWS-T EWS EWS EWS-T
TEST.13 | RMS - Sk. Muscle RMS - Sk. Muscle
TEST.14 | NB NB NB-T NB NB NB-T
TEST.15 | BL BL BL-C BL BL BL-C
TEST.16 | NB NB NB-T NB NB NB-T
TEST.17 | RMS RMS RMS-T RMS RMS RMS-T
TEST.18 | BL BL BL-C BL BL BL-C
TEST.19 | EWS EWS EWS EWS EWS EWS
TEST.20 | EWS - EWS-T EWS - EWS-T
TEST.21 | EWS EWS EWS EWS EWS EWS
TEST.22 | RMS RMS RMS-T RMS RMS RMS-T
TEST.23 | NB NB NB-T NB NB NB-T
TEST.24 | RMS RMS RMS-T RMS RMS RMS-T
TEST.25 | NB NB NB-T NB NB NB-T

Table 5.5: Comparison of the presented study network and Khan et., paper results.
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5.4.4 Testing Network with Other Datasets

For the second dataset, Tibshirani et al., (2001) study SRBCT dataset that consist of 43 genes is taken
to train and test the presented study network.

For this dataset (88x43) apart from cross validation handling, all procedures mentioned above is
implemented identically. While in Khan et al., (2001) has used 3 fold cross validation, Tibshirani et
al., (2001) preferred to use 10 fold cross validation and that is why fold number is set as 10 in the
presented study as well. The results of this datasets shows that, the Cunernet tool has 100%
classification accuracy (including noises samples) (Appendix Table 2) as it has been achieved in
Tibshirani et al.,(2001) and 95.4% diagnosis accuracy (Appendix Table 3)

As a third dataset, Pal et al., (2007) SRBCT , with again 88 samples and with only 7 genes, is used on
our network and It should be noted that due to the a few number of genes as the Pal et al., study have
used multilayer, in the presented study Multilayer Neural Network is also used for this dataset. After
training network, the classification result is obtained as 97.7%(Appendix Table 4) over all cancerous
samples and also 4 noise samples over 5 is classified correctly. In addition that, all samples are
diagnosed by 95.4% accuracy rate (Appendix Table 5).

Even though the accuracy results may differs from studies due to using different methods, the
presented study achvieves promising results which proCves that the unnet library is suitable to be
used in the field.

5.5 Profiling code

Considering that one of the aim of project is developing a better tool to detect cancer, finding and
fixing performance bottlenecks of code is vital .Therefore as it mentioned in Chapter 4 “Google
Performance Analysis Tool” is used in order to find bottleneck of code.

All of the benchmarks and opimisations are done on the workstation NVIDIA K40 GPU (12GB ram
and 2880cores) with Ubuntu 14.04, 64 bits 128Gibi RAM and the number of training iteration is set
to 100 in each training attempt. Thereafter gperftools CPUProfiler tool is used to gather units/calles
numbers of each function/method and according to those result the code is optimised. Thereafter linux
time command is used to gather average total wall time of software by runnin it several time .

At the first step of gperftool monitoring, 25000 unit is obtained as an average of 5 different run
software and in order to improve performance the following changing is implemeted;

e vectors lenght are allocated before storing information

e Function returns are done by move() funtion

e push_back are replaced by emplace_back during value storing to vectors.
Consequentlt unit numbers are reduced to 20000 in average. Afterwards;

e parameters are passed by references to functions rather than passing directly

e Lastly “sigmoid” function is made as inline function.
After these changing, unit number decreased to 19000 and as a result the code optimisation it is made
more efficint by around 28%. Furthermore total wall time of software is monitored during these
changing and in order to find average total wall time of the software it is run 10 times after each
changing. Finally it is obseved that, total spent time is reduced from 105 to 86.5 as each reducing step
can be in in Figure 5.10
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Figure 5.10 : Code optimisation by reversing vector size before storing, returning result by using move function ,
making functions inline and passing parameters by their references

After training optimisation is done, testing part of software is optimised by taking classification and
diagnosis seperately. During optimisation testing code, same techniques are used with traning
optimisations. Such as passing parameter by references,returning values with move function or
reserving vectors size before storing. Before and after optimissation techniques are implemeneted, the
Cunernet software run 5 times to get average spent wall time of software. At the end of classification
optimisation the wall time is reduced from 48.09 to 42.19 and diagnosis wall time is decreased from
132.15t0 123.94.

Furthermore the wall time with different neuron numbers on single layer network is monitored to
observe effect of neuron number against to wall time. According to the network input neuron number
can be set by passing information on the command panel, the datasets with variety of genes number is
created to train network. To create these different dataset, firstly the SRBCT dataset with 2308 genes
is downloaded from the web site; http://research.nhgri.nih.gov/microarray/Supplement/ . Thereafter
by running the Matlab filtering functions Genevarfilter, Geneentropyfilter, Genelowvalfilter, and
finally by using Generangefilter repeteadly 2308 genes are reduced gradually and the datasets with
55,127,141,241,368,694 and 1307 genes are stored files in each step to be used. It should be noted
that in regarding to monitoring wall time, SRBCT dataset is not compulsory to be used, any other
datasets that have different genes numbers could be used to see effect of neuron number on total time.

After creation different datasets,train option is chosen on the Cunernet command line and the dataset
name is given one by one with gene number in it. The result of wall times against the used gene
numbers shows that increasing neuron number (x axis) is affects the taken time (y axis) significantly
on a single layer neural network (Figure 5.11).
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Figure 5.11: The comparison between increasing neuron number and the wall time of running software on single
layer neural network.

Thereafter, considering to extensibility of software, the five of the created datasets (mentioned abpve)
with 55,93,141,175 and 241 genes is used on Multilayer Neural Network. It is worth the mentioned
again that any dataset with different gene numbers, that cause to different neuron numbers, can be
used in terms of comparing wall time against to neuron numbers.The created datasets are used with
the same training procedures and wall time against to neuron numbers is drawn in Figure 5.12;

Spent Time on Multilayer and Single Layer Neural Network against to Neuron Number
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Figure 5.12: The comparison between increasing neuron number against to the spent wall time of the software. The
red line represent multilayer neural network implementation and the blue line for single layer neural network.

As it can be seen in Figure 5.12 the neuron number affects spent time enourmously. For the
comparison single layer and multi layer network on 241 genes number dataset, it is seen that the time
on multilayer neurol network is 20 times more than the time on single layer neurol network.

52



In addition to neuron number against time, Khan et al., (2001) study dataset with 96 genes on single
layer neural network is taken as a sample and the each function time ise examined by using Google
Performance Analysis tool to understand which parts can be implemented on CUDA in the future.
During using gperftools, the iteration of training process is set to 100 and end of it the the list of
functions with spent time on CPU is obtained. According to this list, it is seen that while just inner
vector product costs 10% of overall time, the other vector operations (Figure 5.14) cost 47% as it can
be seen in Figure 5.13.

Distribution of vector, inner prouct and others

inner
product
10%

Figure 5.13: The vector operations(red ),inner product(blue) proportions in software.
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Figure 5.10 Vector operations distrubiton by percentages on all vector calculations.
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Regarding to vector operations/calculations,that are generally vector/matrix multiplication with
iteration, takes big amount of time in software, these parts can be implemented on CUDA by using
Thrust library. It is worth to mention that, the software code is writen by using std vector containers
which can be converted to Thrust vector calculation easily. Taking into account that vector
calculations/operations takes big amount of time and the code of software is capable of to be
converted Thrust, plenty of time can be saved effortlessly by implementing it on CUDA in the future.
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Chapter6

Conclusion

This project proposed to develop an open source library called Cunernet which uses gene
expression profiles to train artificial neural network system in order to detect cancer information
such as metastasis, biomarkers and so on which can help clinicians to tailor cancer treatments
effectively.

Differences of this project from other studies can be stated that the used/developed tool will be
released as open source and it can be used by any one while it can also be contributed through the
Bitbucket project page.

Because the Cunernet artificial neural network library will be able to be used with different datasets,
it is designed in a flexible manner in terms of structure (single/ multilayer), learning method
(stochastic/batch/semi-batch) and neuron numbers, learning rate and momentum values. In addition,
since the project will be implemented on CUDA by using Thrust library in the future, it is written in
C++11 in object oriented paradigm with vector containers. Writing code in object oriented
paradigm and using vector containers enables code to be implemented on thrust/ CUDA
easily/effortlessly. Considering that the intention is to release this tool under the BSD3 Licence as
an open source, the best development techniques are used along the development. Each code
changing step was uploaded to the Bitbucket project page by using git. Also readme file is written
to guide user how to compile/run/test the software and instructions are given to show how to
contribute to the Cunernet on the project page.

Due to the fact that correct training procedure sequences may vary, a study procedures that has been
done by Khan et al., (2001) is mainly followed in the presented study in order to compare result
correctness accuracy. Also considering that the dataset may vary in regarding to genes or genes
number, SRBCT dataset (88x96) from the same study (Khan et., 2001) is taken to train our neural
network and at the end of training/testing stages, our study results are compared with Khan et al.,
(2001) results.

Even though single layer neural network was trained by SRBCT Khan et al.,(2001) study dataset as
it has been done in the Khan et al., (2001) study, multilayer neural network is also used during Pal
et al., (2007) study dataset to be trained and tested. Throughout the training network cross
validation methods are used to identify and prevent over training and a part of dataset was used to
test network correctness known as blind testing.

During the blind testing, Khan et al., (2001) methodology was used; “average vote” calculations for
classifications and “distance” calculations for diagnosis. It is worth mentioning that as an extra to
Khan et al (2001) procedures, the noise samples were also classified correctly in the classification
steps by The Cunernet Library.

After training, the cross validation, classification and diagnosis steps followed those of Khan et
al.,(2001), as an extra to Khan’s methods, another blind test (classification and diagnosis) method
was implemented to prove the correctness of the network in the present study. The Cunernet library
training/testing which was done by using Khan et al.’s dataset (88x96) has shown that the Cunernet
library and the Khan et al., study results has same levels of accuracy for both classification and
diagnosis. In addition that the network is trained and tested by 2 other SRBCT dataset with 43 and
7 genes from Tibshirani et al., (2001) and Pal et al., (2007) studies respectively. The accuracy f the
results obtained was 100% for classification and 95.4% for diagnosis with Tibshirani et al., (2001)
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study dataset and 97.7% classification and 95.4% diagnosis for Pal e al., (2007) dataset. Even
though the non-diagnosed samples may vary due to shuffling dataset randomly, the accuracy
percentage of results proves that The Cunernet library is suitable for general use.

After finishing coding,training and testing part in C++11 serial algorithm, the performance
monitoring/analysis are done by Google Performance Analysis Tool and linux time function.
According to result of monitoring the code is optimised with replacing/changing some code parts
and also after each code changing the effect of it on the wall time is checked by using time function
by running software several times. At the end average of wall time is collected and the effectiveness
of code optimisation is seen.

6.1 Future works

The Cunernet Library could not be implemented on CUDA by using Thrust library. However by
transforming standard vector containers to the Thrust vectors, it can be implemented on CUDA
easily and considering from profiling section that, vector calculation takes a part of the running
time and implementing vector calculations on CUDA would reduce the spent vector calculations
times significantly

Also, in consideration of the fact that end-users will use this tool after releasing, a graphical user
interface would make managing library much easier. Furthermore, other artificial neural network
features such as online learning algorithms or different activation functions codes can be added and
those can be used during training optionally in the future.

Apart from those suggestions, even though the results obtained were satisfactory with 3 different
SRBCT datasets, it can still be tested by any other dataset on both single layer or multilayer
network to classify different cancer types and also to approve suitability of the Cunernet Library. In
addition that since the data format in the project is compatible with Matlab it can be integrated to it
easily.
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Appendices

SAMPLES Distance Network Real Diagnosis
Diagnosis Diagnosis Result
Sample 1 4.77E-06 | EWS EWS MATCHED
Sample 2 9.16E-06 | EWS EWS MATCHED
Sample 3 3.35E-06 | EWS EWS MATCHED
Sample 4 1.22E-05 | EWS EWS MATCHED
Sample 5 5.71E-08 | EWS EWS MATCHED
Sample 6 1.48E-07 | EWS EWS MATCHED
Sample 7 7.23E-08 | EWS EWS MATCHED
Sample 8 8.87E-09 | EWS EWS MATCHED
Sample 9 6.50E-09 | EWS EWS MATCHED
Sample 10 0.00103251 | EWS EWS MATCHED
Sample 11 4.21E-06 | EWS EWS MATCHED
Sample 12 9.06E-06 | EWS EWS MATCHED
Sample 13 3.37E-07 | EWS EWS MATCHED
Sample 14 1.36E-07 | EWS EWS MATCHED
Sample 15 0.000315283 | EWS EWS MATCHED
Sample 16 0.0176963 | EWS EWS MATCHED
Sample 17 0.0012619 | EWS EWS MATCHED
Sample 18 0.00033273 | EWS EWS MATCHED
Sample 19 7.66E-05 | EWS EWS MATCHED
Sample 20 1.76E-06 | EWS EWS MATCHED
Sample 21 0.0135463 | EWS EWS MATCHED
Sample 22 0.00329583 | EWS EWS MATCHED
Sample 23 0.00499266 | EWS EWS MATCHED
Sample 24 0.00107803 | BL BL MATCHED
Sample 25 0.00293074 | BL BL MATCHED
Sample 26 0.000392999 | BL BL MATCHED
Sample 27 0.000366348 | BL BL MATCHED
Sample 28 0.00272902 | BL BL MATCHED
Sample 29 0.00463481 | BL BL MATCHED
Sample 30 0.000699677 | BL BL MATCHED
Sample 31 0.00312532 | BL BL MATCHED
Sample 32 4.00019 | NB NB MATCHED
Sample 33 4.09755 | NB NB MATCHED
Sample 34 5.94444 | NB NB MATCHED
Sample 35 3.99983 | NB NB MATCHED
Sample 36 4.00028 | NB NB MATCHED
Sample 37 4.46107 | NB NB MATCHED
Sample 38 4.00012 | NB NB MATCHED
Sample 39 3.99991 | NB NB MATCHED
Sample 40 4.00185 | NB NB MATCHED
Sample 41 4.01289 | NB NB MATCHED
Sample 42 4.00298 | NB NB MATCHED
Sample 43 4.00049 | NB NB MATCHED
Sample 44 1.35E-05 | RMS RMS MATCHED
Sample 45 0.000232219 | RMS RMS MATCHED
Sample 46 4.15E-06 | RMS RMS MATCHED
Sample 47 0.000196219 | RMS RMS MATCHED
Sample 48 0.00818687 | RMS RMS MATCHED
Sample 49 0.0150234 | RMS RMS MATCHED
Sample 50 0.0019113 | RMS RMS MATCHED
Sample 51 0.00366908 | RMS RMS MATCHED
Sample 52 0.00145155 | RMS RMS MATCHED
Sample 53 0.00322221 | RMS RMS MATCHED
Sample 54 6.94E-06 | RMS RMS MATCHED
Sample 55 0.000213505 | RMS RMS MATCHED
Sample 56 0.00076945 | RMS RMS MATCHED
Sample 57 4.29E-06 | RMS RMS MATCHED
Sample 58 0.0053966 | RMS RMS MATCHED
Sample 59 0.000808874 | RMS RMS MATCHED
Sample 60 2.94E-08 | RMS RMS MATCHED
Sample 61 0.0137728 | RMS RMS MATCHED
Sample 62 0.0282319 | RMS RMS MATCHED
Sample 63 1.38E-14 | RMS RMS MATCHED
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TESTS Distance Network Real Diagnosis
Diagnosis Diagnosis Result
(Test 1) 12.3335 | NB NB MATCHED
(Test 2) 0.00134764 | EWS EWS MATCHED
(Test 3) 570.176 | NOISE NOISE MATCHED
(Test 4) 6.03E-08 | RMS RMS MATCHED
(Test 5) 25.2863 | NOISE NOISE MATCHED
(Test 6) 0.000567549 | EWS EWS MATCHED
(Test 7) 0.00882391 | BL BL MATCHED
(Test 8) 11.9997 | NB NB MATCHED
(Test 9) 814.101 | NOISE NOISE MATCHED
(Test 10) 5.32E-06 | RMS RMS MATCHED
(Test 11) 392.901 | NOISE NOISE MATCHED
(Test 12) 0.186486 | NOISE EWS No Matched
(Test 13) 2784.12 | NOISE NOISE MATCHED
(Test 14) 12.0148 | NB NB MATCHED
(Test 15) 0.00393535 | BL BL MATCHED
(Test 16) 12 | NB NB MATCHED
(Test 17) 1.77E-05 | RMS RMS MATCHED
(Test 18) 0.0578823 | NOISE BL No Matched
(Test 19) 0.000500264 | EWS EWS MATCHED
(Test 20) 43.1108 | NOISE EWS No Matched
(Test 21) 0.0224923 | EWS EWS MATCHED
(Test 22) 4.19E-06 | RMS RMS MATCHED
(Test 23) 12.512 | NB NB MATCHED
(Test 24) 2.93E-05 | RMS RMS MATCHED
(Test 25) 12.0002 | NB NB MATCHED

Table 1: Diagnostic Classification :by using 96 genes dataset from Khan et al., (2001) study.

Real Network Classification Network Outputs
Output Output
Sample 1 0 0 | Matched 1 0.000119 1.22E-06 5.06E-05
Sample 2 0 0 | Matched 0.999993 1.02E-05 1.75E-05  0.000115
Sample 3 0 0 | Matched 0.999991  0.000158 1.52E-05 3.96E-05
Sample 4 0 0 | Matched 0.999984  0.000408 2.02E-07  0.000367
Sample 5 0 0 | Matched 0.999997 9.15E-05 2.28E-06 9.32E-05
Sample 6 0 0 | Matched 1 3.43E-06 2.06E-06 9.58E-05
Sample 7 0 0 | Matched 1 6.84E-06 9.96E-08 4.42E-06
Sample 8 0 0 | Matched 1 2.37E-06 7.58E-07 5.91E-05
Sample 9 0 0 | Matched 1 8.47E-07 5.21E-07 4.35E-07
Sample 10 0 0 | Matched 0.998486  0.000787 3.13E-07 9.66E-05
Sample 11 0 0 | Matched 0.999999 8.58E-06 3.70E-05 9.61E-05
Sample 12 0 0 | Matched 1 5.40E-06 1.54E-05 3.39E-06
Sample 13 0 0 | Matched 1 3.88E-06 4.40E-06 9.49E-06
Sample 14 0 0 | Matched 0.999994 6.20E-06 3.43E-05 1.50E-05
Sample 15 0 0 | Matched 0.999893 2.62E-05 8.45E-05 0.000176
Sample 16 0 0 | Matched 0.99862  0.000638 2.67E-05  0.000875
Sample 17 0 0 | Matched 0.998552  0.000427 0.001277  0.000481
Sample 18 0 0 | Matched 0.999936  0.000165 0.000231  0.000366
Sample 19 0 0 | Matched 0.999987 9.83E-05 9.01E-05 0.000136
Sample 20 0 0 | Matched 1 2.45E-05 1.37E-05 8.76E-07
Sample 21 0 0 | Matched 0.999832 5.62E-06  0.000629 7.36E-05
Sample 22 0 0 | Matched 0.999751  0.000246  0.000734  0.000308
Sample 23 0 0 | Matched 0.997778 0.000517 0.001197 0.000594
Sample 24 3 3 | Matched 2.66E-05 2.11E-05 3.14E-05  0.999983
Sample 25 3 3 | Matched 9.97E-05 2.66E-05 0.000187  0.999893
Sample 26 3 3 | Matched 0.000206728  0.000337 0.000343  0.999801
Sample 27 3 3 | Matched 0.00263174 0.001841  0.001977 0.997815
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1.29E-07
0.000137
3.45E-07
1.35E-08
0.999744
1.05E-06
0.999997

0.999929
0.997295
0.999913
0.998694
2.11E-06
8.77E-05
8.02E-08
0.001313
0.000114
0.00087
0.000642
9.61E-05
0.000113
0.000241
0.000243
2.26E-05
5.50E-08
1.18E-05
1.30E-06
7.53E-07
4.79E-05
0.000185
3.14E-05
0.000494
7.90E-06
0.000235
9.88E-05
2.73E-06
0.000847
1.05E-08
4.53E-06
3.48E-08
1.47E-07
2.28E-05
4.04E-07
1.53E-15
0.000267
1.20E-05
0.022861
4.17E-09
0.137668
9.60E-06
0.999981
8.61E-05
0.865525
4.86E-09
0.184362
0.005912
0.992397
0.005545
0.999953
0.000112
9.17E-06
0.99497
0.000119
0.001357
0.000104
0.000709
7.12E-05
2.68E-07
0.000317




Table 2: Classification Result , the SRBCT dataset with 43 genes from Tibshirani et al., (2001) study
is classified with 100% accuracy by using 10 fold cross validation

Distance Network Real Diagnosis
Diagnosis | Diagnosis | Result

Sample 1 1.45E-06 | EWS EWS MATCHED
Sample 2 5.06E-06 | EWS EWS MATCHED
Sample 3 2.24E-05 | EWS EWS MATCHED
Sample 4 | 0.000119311 | EWS EWS MATCHED
Sample 5 3.60E-06 | EWS EWS MATCHED
Sample 6 8.40E-07 | EWS EWS MATCHED
Sample 7 1.01E-07 | EWS EWS MATCHED
Sample 8 6.04E-07 | EWS EWS MATCHED
Sample 9 9.57E-10 | EWS EWS MATCHED
Sample 10 0.0302619 | EWS EWS MATCHED
Sample 11 1.49E-06 | EWS EWS MATCHED
Sample 12 4.41E-08 | EWS EWS MATCHED
Sample 13 4.20E-07 | EWS EWS MATCHED
Sample 14 1.84E-05 | EWS EWS MATCHED
Sample 15 0.00018317 | EWS EWS MATCHED
Sample 16 0.00617019 | EWS EWS MATCHED
Sample 17 0.00164225 | EWS EWS MATCHED
Sample 18 | 0.000128348 | EWS EWS MATCHED
Sample 19 3.25E-05 | EWS EWS MATCHED
Sample 20 2.52E-06 | EWS EWS MATCHED
Sample 21 | 0.000173172 | EWS EWS MATCHED
Sample 22 0.00126992 | EWS EWS MATCHED
Sample 23 0.00581252 | EWS EWS MATCHED
Sample 24 | 0.000173586 | BL BL MATCHED
Sample 25 | 0.000588761 | BL BL MATCHED
Sample 26 0.00241238 | BL BL MATCHED
Sample 27 0.0149355 | BL BL MATCHED
Sample 28 | 0.000271029 | BL BL MATCHED
Sample 29 0.0238363 | BL BL MATCHED
Sample 30 | 0.000402575 | BL BL MATCHED
Sample 31 0.00228334 | BL BL MATCHED
Sample 32 0.00219025 | NB NB MATCHED
Sample 33 0.0336043 | NB NB MATCHED
Sample 34 0.265397 | NB NB MATCHED
Sample 35 0.00556229 | NB NB MATCHED
Sample 36 | 0.000117115 | NB NB MATCHED
Sample 37 0.0692739 | NB NB MATCHED
Sample 38 0.00562344 | NB NB MATCHED
Sample 39 | 0.000107489 | NB NB MATCHED
Sample 40 0.00214072 | NB NB MATCHED
Sample 41 0.00553467 | NB NB MATCHED
Sample 42 | 0.000731026 | NB NB MATCHED
Sample 43 0.0156168 | NB NB MATCHED
Sample 44 1.56E-07 | RMS RMS MATCHED
Sample 45 | 0.000445586 | RMS RMS MATCHED
Sample 46 1.19E-05 | RMS RMS MATCHED
Sample 47 0.00384546 | RMS RMS MATCHED
Sample 48 8.81E-05 | RMS RMS MATCHED
Sample 49 0.00166123 | RMS RMS MATCHED
Sample 50 0.00048605 | RMS RMS MATCHED
Sample 51 0.0349973 | RMS RMS MATCHED
Sample 52 | 0.000384416 | RMS RMS MATCHED
Sample 53 0.0753344 | RMS RMS MATCHED
Sample 54 3.91E-06 | RMS RMS MATCHED

67



Sample 55 1.56E-05 | RMS RMS MATCHED
Sample 56 | 0.000248781 | RMS RMS MATCHED
Sample 57 5.19E-07 | RMS RMS MATCHED
Sample 58 1.92E-07 | RMS RMS MATCHED
Sample 59 3.07E-06 | RMS RMS MATCHED
Sample 60 1.17E-07 | RMS RMS MATCHED
Sample 61 3.14E-05 | RMS RMS MATCHED
Sample 62 | 0.000800142 | RMS RMS MATCHED
Sample 63 2.77E-11 | RMS RMS MATCHED
Distance Network Real Diagnosis
Diagnosis Diagnosis Result
Sample 64 0.182286 | NB NB MATCHED
Sample 65 0.161505 | NOISE EWS No Matched
Sample 66 304.061 | NOISE NOISE MATCHED
Sample 67 9.00E-10 | RMS RMS MATCHED
Sample 68 31.5552 | NOISE NOISE MATCHED
Sample 69 2.14E-06 | EWS EWS MATCHED
Sample 70 0.00285675 | BL BL MATCHED
Sample 71 0.00081042 | NB NB MATCHED
Sample 72 2610.99 | NOISE NOISE MATCHED
Sample 73 3.06E-08 | RMS RMS MATCHED
Sample 74 495.435 | NOISE NOISE MATCHED
Sample 75 0.0113069 | EWS EWS MATCHED
Sample 76 3705.4 | NOISE NOISE MATCHED
Sample 77 0.100186 | NB NB MATCHED
Sample 78 0.00340232 | BL BL MATCHED
Sample 79 | 0.000456761 | NB NB MATCHED
Sample 80 1.21E-05 | RMS RMS MATCHED
Sample 81 0.698487 | NOISE BL No Matched
Sample 82 | 0.000336146 | EWS EWS MATCHED
Sample 83 1078.04 | NOISE EWS No Matched
Sample 84 0.211844 | NOISE EWS No Matched
Sample 85 | 0.000600993 | RMS RMS MATCHED
Sample 86 0.00020763 | NB NB MATCHED
Sample 87 1.13E-07 | RMS RMS MATCHED
Sample 88 0.00128197 | NB NB MATCHED

Table 3: Diagnosis Result: the SRBCT dataset with 43 genes from Tibshirani et al., (2001) study is
diagnosed with 95.4% accuracy.

Real Network . Network Outputs
Classification

Output | Output
Sample 1 0 0 | Matched 0.996814 0.002321 0.000265 0.003934
Sample 2 0 0 | Matched 0.996834 0.002309 0.000264 0.003913
Sample 3 0 0 | Matched 0.996839 0.002319 0.000259 0.003915
Sample 4 0 0 | Matched 0.996844 0.002309 0.000256 0.003924
Sample 5 0 0 | Matched 0.996816 0.002329 0.000262 0.003936
Sample 6 0 0 | Matched 0.996812 0.00231 0.000268 0.003933
Sample 7 0 0 | Matched 0.995448 0.002509 0.000369 0.005746
Sample 8 0 0 | Matched 0.99674 0.00224 0.0003  0.003961
Sample 9 0 0 | Matched 0.996784 0.002306 0.000275 0.003953
Sample 10 0 0 | Matched 0.990821 0.00621 0.000317 0.010853
Sample 11 0 0 | Matched 0.996853 0.00232  0.000253  0.003907
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Sample 75 0 0 | Matched 0.996856 0.00232  0.000251 0.003906
Sample 76 -1 -1 | Matched 0.087778 0.008677  0.002882 0.917461
Sample 77 2 2 | Matched 0.009817 0.002731 0.992306 0.008478
Sample 78 3 3 | Matched 0.017045 0.0063 0.004623 0.985604
Sample 79 2 2 | Matched 0.006246  0.004328 0.99477  0.006096
Sample 80 1 1 | Matched 0.003582  0.994977  0.003587 0.00542
Sample 81 3 3 | Matched 0.008843  0.008212 0.00654 0.9874
Sample 82 0 0 | Matched 0.99685 0.00232  0.000255  0.003909
Sample 83 0 3 | No Matched 0.067289 0.118475 0.002468  0.468791
Sample 84 0 0 | Matched 0.990644 0.006291 0.000319 0.011044
Sample 85 1 1 | Matched 0.00363  0.995086 0.00324  0.005427
Sample 86 2 2 | Matched 0.011302 0.002979 0.991996 0.007044
Sample 87 1 1 | Matched 0.00383 0.994877 0.003153 0.005516
Sample 88 2 2 | Matched 0.005937 0.004359 0.994964 0.006188

Table 4: Classification result, by using SRCT dataset with 7 genes from Pal et al.,(2007) study. This
dataset is used on Multilayer Neural Network and the classification is resulted in 97.7% accuracy.

Diagnosis Diagnosis Result
Sample 1 0.388625 | EWS EWS MATCHED
Sample 2 0.384804 | EWS EWS MATCHED
Sample 3 0.381141 | EWS EWS MATCHED
Sample 4 0.376803 | EWS EWS MATCHED
Sample 5 0.386558 | EWS EWS MATCHED
Sample 6 0.390694 | EWS EWS MATCHED
Sample 7 0.58031 | EWS EWS MATCHED
Sample 8 0.410624 | EWS EWS MATCHED
Sample 9 0.397596 | EWS EWS MATCHED
Sample 10 0.854101 | EWS EWS MATCHED
Sample 11 0.374333 | EWS EWS MATCHED
Sample 12 0.38708 | EWS EWS MATCHED
Sample 13 0.408077 | EWS EWS MATCHED
Sample 14 0.452754 | EWS EWS MATCHED
Sample 15 0.428048 | EWS EWS MATCHED
Sample 16 0.464219 | EWS EWS MATCHED
Sample 17 0.46353 | EWS EWS MATCHED
Sample 18 0.457797 | EWS EWS MATCHED
Sample 19 0.472322 | EWS EWS MATCHED
Sample 20 0.392583 | EWS EWS MATCHED
Sample 21 1.49421 | EWS EWS MATCHED
Sample 22 10.5997 | EWS EWS MATCHED
Sample 23 1.26975 | EWS EWS MATCHED
Sample 24 5.57074 | BL BL MATCHED
Sample 25 4.08905 | BL BL MATCHED
Sample 26 3.73232 | BL BL MATCHED
Sample 27 3.40453 | BL BL MATCHED
Sample 28 3.9487 | BL BL MATCHED
Sample 29 3.52176 | BL BL MATCHED
Sample 30 3.98311 | BL BL MATCHED
Sample 31 3.5523 | BL BL MATCHED
Sample 32 0.387964 | NB NB MATCHED
Sample 33 0.79381 | NB NB MATCHED
Sample 34 0.34609 | NB NB MATCHED
Sample 35 0.611812 | NB NB MATCHED
Sample 36 0.433219 | NB NB MATCHED
Sample 37 1.4296 | NB NB MATCHED
Sample 38 0.656074 | NB NB MATCHED
Sample 39 0.48204 | NB NB MATCHED
Sample 40 0.901303 | NB NB MATCHED
Sample 41 0.519648 | NB NB MATCHED
Sample 42 1.58025 | NB NB MATCHED
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Sample 43 0.505193 | NB NB MATCHED
Sample 44 0.705105 | RMS RMS MATCHED
Sample 45 0.659873 | RMS RMS MATCHED
Sample 46 0.682418 | RMS RMS MATCHED
Sample 47 1.43015 | RMS RMS MATCHED
Sample 48 0.690635 | RMS RMS MATCHED
Sample 49 0.77066 | RMS RMS MATCHED
Sample 50 0.778246 | RMS RMS MATCHED
Sample 51 0.805794 | RMS RMS MATCHED
Sample 52 0.784169 | RMS RMS MATCHED
Sample 53 0.727093 | RMS RMS MATCHED
Sample 54 0.684445 | RMS RMS MATCHED
Sample 55 0.655431 | RMS RMS MATCHED
Sample 56 0.694926 | RMS RMS MATCHED
Sample 57 0.681097 | RMS RMS MATCHED
Sample 58 1.78257 | RMS RMS MATCHED
Sample 59 0.760929 | RMS RMS MATCHED
Sample 60 0.661035 | RMS RMS MATCHED
Sample 61 0.932684 | RMS RMS MATCHED
Sample 62 0.740913 | RMS RMS MATCHED
Sample 63 0.984347 | RMS RMS MATCHED
Distance Network Real Diagnosis
Diagnosis Diagnosis Result
Sample 64 1.75277 | NB NB MATCHED
Sample 65 1.64822 | EWS EWS MATCHED
Sample 66 1191.3 | NOISE NOISE MATCHED
Sample 67 2.40363 | RMS RMS MATCHED
Sample 68 1839.12 | NOISE NOISE MATCHED
Sample 69 0.869795 | EWS EWS MATCHED
No
Sample 70 46.558 | NOISE BL Matched
No
Sample 71 13.1437 | NOISE NB Matched
Sample 72 1154.92 | NOISE NOISE MATCHED
No
Sample 73 2913.35 | NOISE RMS Matched
Sample 74 443.98 | NOISE NOISE MATCHED
Sample 75 0.857647 | EWS EWS MATCHED
Sample 76 1606.55 | NOISE NOISE MATCHED
Sample 77 2.87532 | NB NB MATCHED
Sample 78 11.0218 | BL BL MATCHED
Sample 79 2.04084 | NB NB MATCHED
Sample 80 2.50392 | RMS RMS MATCHED
Sample 81 10.1616 | BL BL MATCHED
Sample 82 0.872569 | EWS EWS MATCHED
No
Sample 83 2073.01 | NOISE EWS Matched
Sample 84 2.52033 | EWS EWS MATCHED
Sample 85 2.32747 | RMS RMS MATCHED
Sample 86 2.62351 | NB NB MATCHED
Sample 87 2.3921 | RMS RMS MATCHED
Sample 88 1.81133 | NB NB MATCHED

Table 5: Diagnosis result, by using SRCT dataset with 7 genes from Pal et al.,(2007) study. This
dataset is used on Multilayer Neural Network and the diagnosis is resulted in 95.4% accuracy
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