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ÖZET 

 

Yüksek Lisans Tezi 

 

EKSANTRİK OLARAK MESNETLENEN KİRİŞLERİN SERBEST TİTREŞİM 

ANALİZİ  

 

Niyazi ORAL 

 

Bursa Uludağ Üniversitesi  

Fen Bilimleri Enstitüsü 

İnşaat Mühendisliği Anabilim Dalı 

 

Danışman: Prof. Dr. Hakan Tacettin TÜRKER 

 

Bu tez çalışmasında, basit kirişlerin doğal frekansı üzerindeki mesnet eksantrikliğinin 

etkisi incelenmiştir. Geleneksel kiriş teorileri, mesnetlerinin Tarafsız Eksen (TE) 

düzlemde yer aldığı varsayımına dayanır; ancak pratikte mesnetler bu düzlemden farklı 

konumlarda olabilir. Bu farklılığın etkisini incelemek amacıyla çalışmada analitik ve 

sayısal yöntemler kullanılmıştır.  

Eksantrik mesnetli kirişlerin serbest titreşim davranışını tanımlayan hareket (diferansiyel 

denklem) denklemi, Hamilton prensibi kullanılarak elde edilmiştir. Hareket denklemi 

çözülerek kiriş frekansları analitik olarak hesaplanmıştır. Eksantrik mesnetli kirişlerin 

frekansları, sayısal bir yöntem olan sonlu elemanlar yöntemi kullanılarak da 

hesaplanmıştır. Analitik ve sayısal yöntemlerle hesaplanan frekans değerleri 

karşılaştırılmıştır. 

 

Anahtar Kelimeler: Basit mesnetler, doğal frekanslar, eksantriklik, kirişler, sınır 

koşulları, titreşim 
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ABSTRACT 
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FREE VIBRATION ANALYSIS OF ECCENTRICALLY SUPPORTED BEAMS 

 

Niyazi ORAL 

 

Bursa Uludağ University 

Graduate School of Natural and Applied Sciences  

Department of Civil Engineering 

 

Supervisor: Prof. Dr. Hakan Tacettin TÜRKER 

 

In this thesis study, the effect of support eccentricity on the natural frequency of simple 

beams is investigated. Traditional beam theories are based on the assumption that the 

supports are located in the Neutral Axis (NA) plane; however, in practice, the supports 

may be positioned differently from this plane. Analytical and numerical methods were 

used to examine the effect of this difference. 

The equation of motion (differential equation) describing the free vibration behavior of 

beams with eccentric supports was derived using Hamilton's principle. By solving the 

equation of motion, the beam frequencies were calculated analytically. Additionally, the 

frequencies of beams with eccentric supports were calculated using a numerical method, 

specifically the finite element method. The frequency values calculated through analytical 

and numerical methods were compared. 

 

Key words: Simple supports, natural frequencies, eccentricity, beams, boundary 

conditions, vibration 
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1. GİRİŞ 

 

Kütle ve esnekliği sahip olan her cisim salınım hareketi yapabilir. Aslında duyma, görme, 

konuşma, yürüme, nefes alma gibi pek çok insan faaliyeti bu salınım hareketine 

dayanmaktadır. İşitme kulak zarının titreşimiyle, görme ışık dalgalarının titreşimiyle, 

konuşma gırtlaktaki titreşimlerle, yürüme bacakların ve kolların salınımıyla, nefes alma 

ise akciğerlerin yaptığı periyodik hareket ile gerçekleşir. Bu periyodik hareket, sistemin 

dinamik özellikleri hakkında önemli bilgiler sağlar ve sistemin davranışının 

anlaşılmasında büyük öneme sahiptir. 

 

Mühendislikte; mekanik ve yapısal sistemlerin titreşim davranışını anlamak, farklı 

yapıların ve makinelerin güvenli bir şekilde tasarlanması, inşa edilmesi ve işletilmesi 

açısından büyük bir önem arz eder. Mekanik ve yapısal elemanlarda ve sistemlerde 

gerçekleşen hasarlarda bazen titreşimlerin rolü büyük olabilir. Örneğin, köprüler, binalar 

ve barajlar gibi yapıların önemli hasarlarının birçoğu, rüzgar kaynaklı titreşimler veya 

depremlerde meydana gelen salınımlı yer hareketiyle ilişkilidir. Bu nedenle, titreşim 

analizi, mühendislik yapılarının güvenliği, verimliliği ve dayanıklılığı açısından kritik bir 

öneme sahiptir. Yapıların dinamik performansını optimize etmek, titreşim kaynaklı 

hasarları belirlemek ve makine ile yapı elemanlarında hasarları önlemek amacıyla yaygın 

olarak kullanılan bu yöntem, sistemlerin uzun ömürlü ve güvenli çalışmasının 

sağlanmasında önemli bir yere sahiptir. 

 

Mühendislik uygulamalarında serbest titreşim, bir sistemin başlangıç koşulları 

doğrultusunda, dış bir kuvvet etkisi olmaksızın gerçekleştirdiği hareket olarak tanımlanır. 

Salınımlı davranışın bir göstergesidir ve sistem bileşenleri arasındaki kinetik ve 

potansiyel enerjilerin tekrarlı değişimi sonucu ortaya çıkar ve özellikle yapı elemanlarının 

doğal frekanslarını belirlemek için kullanılır. Doğal frekans, bir sistemin özelliklerine 

bağlı olarak her yapı için benzersizdir. Doğal frekansların doğru bir şekilde hesaplanması, 

yapıların güvenliği açısından son derece önemlidir çünkü sistemlerin benzer frekanslarla 

çalışması durumunda rezonans oluşabilir ve bu da yapıların hasar görmesine veya 

çökmesine yol açabilir. 
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Kirişler, mühendislik yapılarında yaygın olarak kullanılan elemanlardır. Kirişlerin serbest 

titreşim analizi, mühendislik uygulamalarında sıklıkla ihtiyaç duyulan bir konudur. 

Klasik kiriş teorileri, kirişlerin doğal frekanslarını hesaplamak için kullanılan en temel 

yaklaşımlardır. Bu teorilerde, kirişin bir eksen boyunca uzanan bir yapı olarak kabul 

edilmesi ve mesnetlerin genellikle kirişin TE düzleminde yer aldığı varsayılır. Euler-

Bernoulli ve Timoshenko kiriş teorileri gibi yaklaşımlar, klasik sınır koşullarına sahip 

kirişlerin doğal frekanslarını hesaplamak için yaygın olarak kullanılır. 

 

Klasik kiriş teorilerinin kabul ettiği, mesnetlerin kirişin TE düzleminde bulunduğu 

varsayımı pratikte her zaman geçerli değildir ve özellikle eksantrik mesnet durumlarında 

geçerliliğini yitirir. Eksantriklik, bir kirişin mesnet noktalarının TE düzlemden farklı bir 

konumda yer alması durumunu ifade eder. Eksantrik mesnetlenmiş kirişlerin analizinde, 

mesnetlerin doğru konumlarının modele dahil edilmesi büyük önem taşır çünkü mesnet 

eksantrikliği, kirişlerin serbest titreşim özelliklerini ve dolayısıyla doğal frekanslarını 

doğrudan etkiler.  

 

Son yıllarda yapılan araştırmalar, mesnet eksantrikliğinin kirişlerin doğal frekansları 

üzerinde önemli bir etkiye sahip olduğunu göstermektedir. Bu nedenle, eksantrik 

mesnetlerin kirişlerin doğal frekansları üzerindeki etkilerinin doğru bir şekilde 

anlaşılması, daha güvenilir tasarım ve analizler yapılabilmesi için kritiktir. Eksantrikliğin 

doğal frekanslar üzerindeki etkisini tam olarak tahmin etmek için detaylı analizlere 

ihtiyaç duyulmaktadır. 

 

Bir sistemin titreşimli analizi ya zaman alanında ya da frekans alanında yapılabilir. Zaman 

alanında, bir titreşim hareketinin bağımsız değişkeni zamandır. Bu durumda, sistem bir 

dizi zamana bağlı diferansiyel denklem olarak modellenebilir. Bir titreşim sisteminin 

modeli, ya kuvvet-momentum oranı ilişkileri (Newton’un ikinci yasası) ya da Hamilton 

prensibi gibi kinetik ve potansiyel enerji kavramlarını kullanan yaklaşımlarla formüle 

edilebilir. 

 

Bu çalışmada, farklı mesnet eksantriklikleri ve sınır koşullarının kirişlerin dinamik 

davranışına etkisi incelenmiştir. Eksantrik mesnetli kirişin serbest titreşim davranışını 
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tanımlayan hareket denklemi çıkartılmış ve denklem çözülerek frekanslar hesaplanmıştır. 

Çalışma kapsamında çıkartılan analitik denklemlerle bulunan frekanslar, SE analizleri ile 

hesaplanan frekanslarla karşılaştırılmıştır. 
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2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI 

 

Bu bölüm, araştırmanın kuramsal altyapısını ve ilgili literatürdeki bilgi birikimini 

sunmayı amaçlamaktadır. İlk olarak önceki çalışmalar incelenerek, araştırmanın 

temellendiği mevcut bilgi birikimi ortaya konmuştur. Daha sonra, titreşim analizi ile ilgili 

temel kavramlar ve mühendislik uygulamaları kapsamlı bir şekilde verilmiştir. Titreşim 

analizi başlığı altında, titreşim kavramının önemi, tarihsel gelişimi, inşaat mühendisliği 

ve diğer alanlardaki uygulamaları ile sistemlerin matematiksel modelleme ve 

sınıflandırma yöntemleri ele alınmıştır. Son olarak Euler-Bernoulli kirişlerinin serbest 

titreşim analizi ve eksantrik mesnetli kirişler sunulmuştur. 

 

2.1. Önceki Çalışmaların İncelenmesi 

 

Birçok araştırmacı eksantrik olarak mesnetlenmiş kirişlerin titreşim analizini incelemiş 

ve bu konuda çeşitli teoriler geliştirmiştir. Dwaikat ve Kodur (2010), çelik kirişlerin 

yangın koşulları altında sergilediği davranışların, kirişin eksantrik mesnetlenme 

durumundan önemli ölçüde etkilendiğini göstermiştir. Bu çalışmada, eksantrik 

mesnetlenmiş çelik kirişlerin yangın altında maruz kaldıkları termal genleşme ve bu 

genleşme sonucunda oluşan kuvvetlerin kirişin genel performansı üzerindeki etkisi 

incelenmiştir. Radice, (2012) ise eksantrik mesnetli basit kirişlerin doğal frekansları 

üzerindeki etkisini araştırmış ve eksantrik mesnetlerin kirişin nötral ekseninden alt kenara 

kaydırılması durumunda, doğal frekansların %55 oranında arttığını tespit etmiştir. Bu 

sonuçlar, eksantrik mesnetlerin doğal frekanslar üzerindeki önemli etkisini ortaya 

koymaktadır. Eltaher vd. (2013), fonksiyonel olarak derecelendirilmiş makro ve nano 

kirişlerin serbest titreşim özelliklerinin, nötral eksenin konumuna bağlı olarak nasıl 

değiştiğini göstermişlerdir. Bu çalışmada, malzeme özelliklerinin eksen boyunca 

değişiminin, kirişin doğal frekansları üzerindeki etkisinin belirgin olduğu vurgulanmıştır. 

Aynı şekilde Wang vd. (2017) başka bir çalışmasında, fonksiyonel olarak 

derecelendirilmiş kirişlerin orta düzlem ve nötral düzlem formülasyonlarına dayalı 

titreşim analizleri karşılaştırılmış, her iki formülasyonun da benzer sonuçlar verdiği, 

ancak nötral düzlem formülasyonunun belirli sınır koşulları altında daha zor uygulanabilir 

olduğu vurgulanmıştır. Fernando vd. (2018), katmanlı kirişlerin titreşim analizlerinde, 

mesnet konumlarının kiriş yüksekliği boyunca değiştirildiğinde elde edilen sonuçları 
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incelemiş ve bu durumun doğal frekanslar üzerinde belirgin bir değişim yarattığını 

göstermiştir. Bu çalışmada, genelleştirilmiş kiriş elemanları, kompozit kabuk elemanları 

ve üç boyutlu katı elemanlar kullanılarak yapılan modellemeler, eksantrik mesnetlerin 

doğal frekans değişimlerine yol açtığını doğrulamıştır. Türker’in (2022) geliştirdiği 

modifiye kiriş teorisi ise, eksantrik olarak mesnetlenmiş kirişlerin eğilme analizlerini 

daha doğru bir şekilde tahmin etmek için kullanılmış ve bu teorinin SE çözümleri ile 

doğrulandığı belirtilmiştir. Analizler, eksantrik mesnetlerin kirişlerin rijitliği üzerindeki 

önemli etkisini ortaya koymaktadır. Son olarak Li vd. (2023), basit kirişlerin serbest 

titreşim analizinde eksantrik mesnetlerin doğal frekanslar üzerindeki etkilerini araştırmış 

ve bu mesnetlerin kirişlerin genel titreşim davranışını nasıl değiştirdiğini göstermiştir. 

Çalışma, eksantrik mesnetlerin yalnızca yerel değil, aynı zamanda yerel olmayan bir etki 

yarattığını ortaya koymuştur. 

 

2.2. Titreşim Analizi 

 

Düzensizliklerden arınmış ve nispeten düşük frekanslarda gerçekleşen tekrarlı hareketler 

genellikle salınım olarak adlandırılır. Titreşim ise mekanik bir sistemin tekrarlayan, 

periyodik veya salınımlı tepkisidir. Bir titreşim döngüsünün tekrar etme hızına frekans 

denir. Ancak, düzensiz ve rastgele davranış sergileyen, yüksek frekanslı ve düşük genlikli 

salınımlar da genellikle titreşim sınıfına girer. 

 

Bir mühendislik sistemi, bir başlangıç etkisiyle harekete geçirilip, sonrasında herhangi 

bir zorlayıcı uyarım olmadan serbestçe hareket etmesine izin verildiğinde, belirli bir 

frekansta titreşim yapma ve belirli bir geometrik şekli koruma eğiliminde olacaktır. Bu 

frekans sistemin doğal frekansı olarak adlandırılır ve sistemin hareketli parçalarının 

karşılık gelen şekli (veya hareket oranı) mod şekli olarak adlandırılır. Titreşimli bir 

sistemin herhangi bir rastgele hareketi, doğal frekansları ve mod şekilleri ile ifade 

edilebilir (de Silva, 2006). 

 

Mühendislik yapılarının titreşim altındaki tasarımında önemli bir adım, yapının mod 

şekilleri ve doğal frekansları gibi titreşim modal özelliklerinin değerlendirilmesidir. Bu 

modal bilgiler, dinamik uyarımlara maruz kalan bir yapının tasarımında ve istenmeyen 

titreşimlerin bastırılmasında önemli bir rol oynar (Jin vd., 2015). 



6 

 

2.2.1. Titreşim analizinin önemi 

 

Mühendislik yapıları; mimari yapılar, uçaklar, roketler, otomobiller, türbinler, gemiler ve 

denizaltılar gibi karmaşık ortamlarda çalışarak çeşitli dinamik yüklere maruz kalır. Bu 

durum, yapıların titreşimli davranış göstermesine neden olabilir. Bu tür uygulamalarda, 

titreşimlerin yol açtığı malzeme yorgunluğu, mühendislik yapılarını çökmeyle 

sonuçlanabilecek bir risk ile karşı karşıya getirebilir. 

 

Titreşim uygulamaları; inşaat, üretim, makine, havacılık ve uzay, mekatronik ve elektrik-

elektronik gibi mühendislik alanlarının birçoğunda yer almaktadır. İnşaat mühendisliği 

alanında titreşimlerin önemi büyüktür. Bu alanda birçok felaket niteliğindeki olay, 

titreşimlerin yıkıcı etkisini gözler önüne sermiştir. Örneğin, ünlü Tacoma Narrows 

Köprüsü, 1940 yılında, rüzgarın köprünün doğal frekanslarından biriyle uyumlu bir dış 

periyodik frekans oluşturması sonucu şiddetli rezonansa maruz kalarak çökmüştür. 

Birçok mühendislik sistemi için rezonans, istenmeyen ve yıkıcı sonuçlara yol açabilecek 

bir durumdur. Ayrıca mimari yapılarda oluşan titreşimlerin yarattığı gürültü; insanlarda 

huzursuzluk, rahatsızlık ve verimlilik kaybına yol açmaktadır. Bu nedenlerle, yapı 

titreşimlerini anlamak ve bu titreşimleri uygun tasarım yöntemleriyle azaltmak, güvenilir, 

emniyetli ve uzun ömürlü yapısal performans için büyük önem taşımaktadır (Jin vd., 

2015). 

 

Titreşim tasarımı ve kontrolü, yapıların, makinelerin ve endüstriyel süreçlerin yüksek 

performansını korumak ve üretim verimliliğini artırmak ve servis sürelerini uzatmak 

açısından kritik bir önem taşımaktadır. Titreşimler "iyi" veya "kötü" etkiler gösterebilir. 

İyi etki gösteren titreşimler faydalı bir amaca hizmet ederken, kötü etki gösteren 

titreşimler rahatsız edici veya hasar bırakan etkilere neden olabilir ve bu titreşimler doğal 

olarak meydana gelebileceği gibi insan kaynaklı nedenlerle de ortaya çıkabilmektedir  

(Balachandran, 2019). Titreşim analizlerinin temel hedefleri, istenmeyen titreşimleri 

bastırmak veya bunların ortadan kaldırılması ve istenen titreşim şekilleri ile seviyelerini 

üretmektir (de Silva, 2006). 

 

Kirişler, plakalar ve kabuklar, birçok mühendislik yapısı ve makinenin temel yapısal 

elemanlarını oluşturur. Yapıların birçoğu, bir veya daha fazla kiriş bileşeni içerir; örneğin 
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çelik çerçeveli yapılar, köprüler ve binalar bunlara örnek verilebilir. Ayrıca birçok yapı 

başlangıçta kiriş olarak modellenebilir. Örneğin, bir yay tahtası veya bir rüzgar enerji 

jeneratörünün destekleri, bir konsol kiriş olarak, bir üst geçit ya da köprünün açıklığı basit 

bir kiriş olarak değerlendirilebilir. Bu elemanların titreşim özelliklerinin detaylı bir 

biçimde anlaşılması, yapıların titreşimlerinin tahmin edilmesi ve düşük titreşim ve 

gürültü yayılım özelliklerine sahip uygun yapılar tasarlanması bakımından büyük bir 

öneme sahiptir (Jin vd., 2015). 

 

2.2.2. Titreşimin kısa bir tarihi 

 

Titreşim teorisinin temelleri, müzik aletlerinin tasarımı ve geliştirilmesine kadar 

uzanmaktadır. Davullar, flütler ve telli çalgılar gibi enstrümanların, Çin ve Hindistan’da 

M.Ö. binlerce yıl öncesine dayandığı bilinmektedir. Örneğin, Mısırlılar M.Ö. 3000 yılı 

civarında arplar kullanırken, Yunan filozof ve matematikçi Pythagoras (M.Ö. 582–502), 

demircilerin ürettiği seslerle deneyler yapmış ve bu sesleri müzik ile fizik arasında 

anlamlandırmaya çalışmıştır. Çinliler ise M.S. 2. yüzyılda deprem titreşimlerini tespit 

etmek için mekanik bir sismograf geliştirmiştir. Modern titreşim teorisinin temelleri, 

çeşitli bilim insanları ve matematikçilerin çalışmalarıyla atılmıştır. Robert Hooke (1635–

1703) iplerin titreşimleri üzerine deneyler yaparken, Sir Isaac Newton (1642–1727) 

titreşimleri analiz etmek için hareket yasalarını ve kalkülüsü geliştirmiştir. Daniel 

Bernoulli (1700–1782) ve Leonard Euler (1707–1783) kiriş titreşimlerini incelemiş, 

Joseph Lagrange (1736–1813) dinamik denklemleri formüle etmek için enerji 

yöntemlerini araştırmıştır. Charles Coulomb (1736–1806) torsiyonel titreşimler ve 

sürtünme konularına odaklanırken Joseph Fourier (1768–1830) sinyal frekans analizinin 

teorisini geliştirmiştir. Simeon-Dennis Poisson (1781–1840) ise membranlar ve elastik 

malzemelerin titreşimlerini analiz etmiştir. Sanayi Devrimi ile birlikte, buhar türbinleri 

ve diğer döner makinelerin gelişimi, titreşim analizi, tasarımı ve kontrolü alanında 

yenilikleri zorunlu hale getirmiştir. Günümüz titreşim tekniklerinin birçok yönü, bu 

dönemdeki gelişmelerden etkilenmiştir. Daha yakın dönemde öne çıkan ve önemli 

katkılar sunan isimler arasında Rankine (1820–1872), şaftların kritik hızları üzerine 

yaptığı çalışmalarla tanınmıştır. Kirchhoff (1824–1887), levhaların titreşimlerini detaylı 

bir şekilde analiz etmiştir. Rayleigh (1842–1919), ses ve titreşim teorisine önemli katkılar 

sağlamış ve doğal titreşimleri belirlemek için hesaplama yöntemleri geliştirmiştir. De 
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Laval (1845–1913), dönen disklerin dengeleme sorunları üzerinde çalışmıştır. Poincare 

(1854–1912), doğrusal olmayan titreşimleri analiz eden çalışmalarıyla dikkat çekmiştir. 

Stodola (1859–1943), rotorlar, yataklar ve sürekli sistemlerin titreşimleri üzerine 

kapsamlı araştırmalar yapmıştır. Ayrıca Timoshenko (1878–1972), Den Hartog (1901–

1989), Clough (1920–2014) ve Crandall (1903–1994), titreşim uygulamaları ve bu 

alandaki literatüre değerli katkılar sunmuş mühendisler arasında yer almaktadır (de Silva, 

2006). 

 

2.2.3. Titreşim analizinin inşaat mühendisliği ve diğer alanlarda uygulamaları 

 

Titreşim analizi, iki ana uygulama alanını kapsamaktadır. Bunlardan birincisi; istenmeyen 

titreşimlerin bastırılması veya ortadan kaldırılması, ikincisi ise gerekli tür ve 

seviyelerdeki yararlı titreşimlerin üretilmesidir. Zararlı ve istenmeyen titreşim örnekleri 

arasında şunlar yer alır: Depremlerin sonucunda ortaya çıkan yapısal hareketler, köprüler 

veya raylı sistemlerle araçlar arasında meydana gelen dinamik etkileşimler, inşaat 

ekipmanlarının oluşturduğu gürültü, makinelerden destek yapılarına ya da çevreye 

yayılan titreşimler ve dinamik yükleme sonucunda oluşan kabul edilemez hareketler ile 

malzeme yorgunluğuna bağlı hasar ve çökmeler.  

 

Örneğin; bir ulaşım aracı ile köprü arasındaki dinamik etkileşimler, hem yapısal 

problemlere hem de sürüş kalitesinde düşüşe neden olabilir. Bu tür kara ulaşım 

sistemlerinin geliştirilmesi sırasında, titreşimle ilgili detaylı analiz ve özenli tasarım kritik 

bir öneme sahiptir. Titreşim miktarlarının azaltılması, gürültü kirliliğini azaltır ve daha 

iyi bir çalışma ortamı sağlar. Ayrıca yüksek performans ve üretim verimliliğinin 

korunmasının yanı sıra kullanıcı ve operatör konforunu artırarak endüstriyel makinelerin 

kullanım ömrü uzar. 

 

Faydalı titreşim türleri arasında müzik aletlerinin ürettiği titreşimler, fizik tedavi ve tıbbi 

alanlarda kullanılan cihazlar, endüstriyel karıştırıcılar, parça besleyiciler ve ayırıcılar gibi 

titreşim ekipmanları ile matkaplar ve yüzey cilalama cihazları gibi malzeme işleme 

araçları yer almaktadır.  

Titreşim farklı mühendislik disiplinlerinde geniş bir uygulama alanına sahiptir. İnşaat 

mühendisliği yapılarının; örneğin köprüler, raylı sistemler, yüksek binalar ve bacalar gibi 
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yapıların modal analiz ve tasarımına yönelik çalışmalar doğrudan titreşim teorisi ve 

uygulamalarını içermektedir. 

 

Kara ulaşım sistemlerinde, araçların titreşim analizi prensiplerine uygun olarak 

tasarlanması, yalnızca yapısal dayanıklılık ve işlevselliğin sağlanması açısından değil, 

aynı zamanda sürüş kalitesi ve konfor düzeylerinin iyileştirilmesi için de gereklidir. 

Ulaşım sistemlerinin tasarımında, farklı frekanslar ve seyahat süreleri için ivmenin kök-

ortalama-kare (RMS) seviyelerine getirilen sınırlar belirlenerek, sürüş konforu ve kalite 

standartları tanımlanır. 

 

Havacılık sektöründe, uçakların mekanik ve yapısal bileşenleri, optimum titreşim 

performansı sağlayacak şekilde tasarlanmaktadır. Örneğin, helikopterlerde rotor 

dengesizliklerinden kaynaklanan titreşimler, uygun tasarım ve dengeleme yöntemleriyle 

azaltılabilir. Gemi titreşimleri ise yapısal tasarımın yanı sıra pervane ve dümen 

tasarımıyla kontrol altına alınabilir. İçten yanmalı motorlarda titreşimlerin azaltılması, 

özel titreşim bastırma tasarım prensiplerinin uygulanmasıyla mümkündür. 

 

Üretim ve imalat mühendisliği alanında, mekanik titreşimler, ürün kalitesi ve proses 

verimliliği üzerinde doğrudan etkili olmaktadır. Örneğin makine tezgahlarında oluşan 

titreşimler, yalnızca ürünlerin boyutsal hassasiyetini ve yüzey kalitesini olumsuz 

etkilemekle kalmaz, aynı zamanda hızlı aşınmaya ve takım kırılmalarına neden olabilir. 

Titreşimler yalnızca makinelerin ömrünü kısaltmakla kalmaz, aynı zamanda üretim 

makinelerinde diğer mekanik problemlere de neden olur ve sürekli bakım yapılmasını 

gerektirir. Üretim süreçlerinde titreşimlerden kaynaklanan duruş süreleri (üretim 

kayıpları) ve bunların maliyetleri oldukça yüksek olabilir. Ayrıca, üretim makinelerindeki 

titreşimler gürültü sorunlarına yol açarak, destek yapıları üzerinden diğer işlemlere iletilip 

bu süreçlerin performansını olumsuz etkileyebilir. Genel olarak, titreşimler üretim 

süreçlerinin performansını düşürür ve verimliliği azaltır. 

 

Ağır inşaat makineleri; örneğin ekskavatörler, vinçler, darbe ve sıkıştırma makineleri ile 

buldozerler, güvenlik, dayanıklılık ve yapısal bütünlük açısından büyük önem taşır. 

Dinamik yüklemeler genellikle rastgele bir doğaya sahip olsa da motor kaynaklı 
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titreşimler ve makinelerin gerçekleştirdiği operasyonların işlevsel tekrarı oldukça 

belirgindir. Titreşim ve yorulma esaslı bir tasarım yaklaşımı, yapıların performansını 

sürdürebilmesi, ömrünün uzatılması ve bakım masraflarının azaltılması açısından kritik 

bir rol oynar. 

 

2.2.4. Titreşimli yapıların sınıflandırılması ve matematiksel modellemesi 

 

Titreşimler şu türlerde sınıflandırılabilir (Kelly, 2000):  

 

1. Sönümsüz ve sönümlü titreşim: Bir sistemin titreşimi sırasında sürtünme veya benzeri 

dirençler sebebiyle enerji kaybı yoksa, sistem "sönümsüz" olarak adlandırılır. Eğer 

sönümleme nedeniyle enerji kaybı varsa, sistem "sönümlü" olarak nitelendirilir. 

Sönümleme ihmal edildiğinde sistem analizi daha basit hale gelir, ancak sistem rezonans 

noktasına yakın çalışıyorsa sönümleme etkisinin hesaba katılması kritik bir önem taşır. 

 

2. Serbest ve zorlanmış titreşim: Bir sistem, yalnızca başlangıçtaki bir etki sebebiyle (dış 

bir kuvvet uygulanmaksızın) titreşiyorsa, bu durum "serbest titreşim" olarak adlandırılır. 

Buna karşılık, bir sistem harici bir kuvvetin etkisiyle titreşiyorsa, bu "zorlanmış titreşim" 

olarak ifade edilir. 

 

3. Doğrusal ve doğrusal olmayan titreşim: Eğer titreşen bir sistemin bileşenleri (kütle, 

yay, damper gibi) doğrusal davranış sergiliyorsa, titreşim "doğrusal" olarak adlandırılır. 

Ancak, bileşenlerden herhangi birinin doğrusal olmayan davranış göstermesi durumunda, 

sistemin titreşimi "doğrusal olmayan titreşim" olarak tanımlanır. Doğrusal titreşimler 

doğrusal diferansiyel denklemlerle tanımlanırken, doğrusal olmayan titreşimler doğrusal 

olmayan diferansiyel denklemlerle ifade edilir. 

 

Titreşimli bir yapı, çıktının (yanıtın) girdilere (uyarılara) ve yapı parametrelerine (örneğin 

kütle, rijitlik, sönümleme) bağlı olduğu dinamik bir sistemdir. Sistemin uyarılması ve 

verilen tepki zamana bağlıdır. Titreşim analizi, verilen bir uyarım karşısında sistemin 

vereceği tepkinin belirlenmesini içerir. Genelde bu süreç, matematiksel modelleme, 

hareket denklemlerinin çıkarılması ve bu hareket denklemlerinin çözülmesini içerir. 

Matematiksel modellemede amaç, sistemi yöneten denklemleri oluşturabilmek için temel 
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özelliklerini temsil etmektir. Bu modeller, sistemi makul bir basitlikte tanımlayacak 

şekilde seçilir. Sistemin özelliklerine bağlı olarak matematiksel model doğrusal ya da 

doğrusal olmayan bir yapıda olabilir. Doğrusal modeller, çözüm kolaylığı ve hızlı 

hesaplama imkanı sağlar. Doğrusal olmayan modeller ise doğrusal yaklaşımla 

açıklanamayan bazı kritik sistem davranışlarını ortaya koyar. 

 

Sistemin hareket denklemlerini oluşturmak için D'Alembert ilkesi, Newton'un ikinci 

hareket kanunu veya Hamilton ilkesi gibi çeşitli yöntemlerden faydalanılabilir. Bu 

denklemler, sistemin dinamik davranışını ifade eder ve çözümü için farklı teknikler 

kullanılabilir. Denklemlerin çözüm yöntemi, genellikle ilgili denklemlerin karmaşıklığına 

bağlıdır ve analitik (kapalı form) çözümler veya sayısal yöntemlerle elde edilebilir.  

 

2.3. Euler-Bernoulli Kirişlerinin Serbest Titreşimi 

 

Kirişler, en temel yapısal elemanlardan biridir. Bir kiriş genellikle bir boyutunun diğer 

boyutlara göre belirgin şekilde daha büyük olduğu yapısal bileşenler olarak tanımlanır. 

(Qatu, 2004). Mühendislik uygulamalarında geniş bir kullanım alanına sahip olan kirişler, 

boyutlarına ve şekillerine bağlı olarak adlandırılır ve bunların davranışlarını analiz etmek 

için çeşitli teoriler geliştirilmiştir. 

 

Kiriş teorileri; kirişler, kolonlar, uçak kanatları ve köprüler, kemerler gibi ince yapılı 

cisimlerin yapısal davranışlarını incelemek için yaygın bir şekilde kullanılır (Simitses & 

Hodges, 2006). Bu teorilerin en büyük avantajı, üç boyutlu bir problemi yalnızca kiriş 

eksenine bağlı bir değişkenler kümesine indirgemesidir. Bu yaklaşımla elde edilen bir 

boyutlu yapısal elemanlar, iki boyutlu plaka/kabuk elemanlar veya üç boyutlu katı 

elemanlara kıyasla daha basit ve hesaplama açısından daha verimlidir. Bu özellikleri göz 

önüne alındığında kiriş teorileri, yapıların statik ve dinamik analizinde oldukça tercih 

edilir hale gelir (Carrera vd., 2011). 

 

İnce kirişlerin enine titreşimlerine ilişkin hareket denklemi, 1735 yılında Daniel Bernoulli 

tarafından türetilmiş ve bu denklemin çeşitli mesnet koşulları altındaki ilk çözümleri 1744 

yılında Euler tarafından sunulmuştur. Bu yaklaşım, Euler-Bernoulli veya ince kiriş teorisi 

olarak bilinmektedir. Rayleigh ise döner eylemsizlik etkisini de içeren bir kiriş teorisi 
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geliştirmiştir. Timoshenko (1921), döner eylemsizlik ve kesme deformasyonunun 

etkilerini de içeren, Timoshenko veya kalın kiriş teorisi olarak bilinen daha gelişmiş bir 

titreşim teorisi ortaya koymuştur (Rao, 2007). 

 

İnce veya Euler-Bernoulli kirişi uzun prizmatik bir yapı elemanı olarak tanımlanır. Bu 

teori, bazı temel varsayımlar ve basitleştirmeler çerçevesinde uygulanır. Bunlar aşağıdaki 

gibidir. 

 

Sadece düz kirişler için geçerlidir, boylamasına eksen boyunca uzama gerçekleşmez, 

boylamasına eksen etrafında burulma oluşmaz, deformasyonlar tek bir düzlemde 

meydana gelir, yani simetrik eğilme varsayılır, deformasyonlar küçük olduğu kabul edilir, 

kirişin kesitleri basit şekillere sahiptir. 

 

Klasik kiriş eğilme teorileri, kesme rijit ve kesme esnek modeller olarak ikiye ayrılır. 

Kesme rijit kiriş, diğer adıyla ince veya Euler-Bernoulli kirişi, kesme kuvvetlerinden 

kaynaklanan kesme deformasyonlarını ihmal eder. Bu teoriye göre, deformasyondan önce 

kiriş eksenine dik olan bir kesit düzlemi, deformasyon sonrasında da eksene dik kalır. 

Ayrıca, kesit düzlemlerinin deformasyon sonrasında da düz ve eğrilmemiş olarak kaldığı 

varsayılır. Bu iki temel varsayım, Bernoulli hipotezi olarak bilinir. Genel olarak bu 

modelde kesit düzlemlerinin kirişin merkez hattına rijit şekilde bağlı olduğu kabul edilir. 

Dolayısıyla merkez hattındaki bir değişiklik tüm deformasyonu etkiler. Ayrıca kesit 

düzlemlerinin geometrik boyutlarının sabit kaldığı varsayılır. Timoshenko kirişi veya 

Levinson kirişi gibi kesme esnek kirişler ise, eğilme deformasyonun yanında kesme 

deformasyonlarını da dikkate alır. Bu modellerde kesit düzlemleri, deformasyon sırasında 

dikey eksene göre bir γ açısı kadar döner. Ancak, uzunluğunun kesit boyutuna oranı 10 

ila 20 kat daha büyük olan homojen kirişlerde, kesme etkisi genellikle ilk yaklaşımda 

ihmal edilebilir (Öchsner, 2021). Sık kullanılan dört farklı kiriş modeli Çizelge 2.1’de 

verilmiştir. 
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Çizelge 2.1. İlişkili etkilerle birlikte dört farklı kiriş modeli 

 

Kiriş modeli Eğilme 

momenti 

Yanal  

yerdeğiştirme 

Kayma 

deformasyonu 

Dönme 

ataleti 

Euler-Bernoulli ✓ ✓ X X 

Rayleigh ✓ ✓ X ✓ 

Shear ✓ ✓ ✓ X 

Timoshenko ✓ ✓ ✓ ✓ 

 

2.4. Eksantrik Mesnetli Kirişler 

 

Mühendislik uygulamalarında, bir yapı için çeşitli olası sınır kısıtlama durumlarıyla 

karşılaşılabilir. Yapısal sınır koşulları, yapının dış ortamdan aldığı deformasyon 

kısıtlamasını temsil ettikleri için elde edilen doğal frekanslar üzerinde büyük bir etkiye 

sahiptir. Sık karşılaşılan sınır koşulları arasında; sabit, ankastre ve kayıcı mesnetli uçlar, 

serbest uçlar ve elastik mesnetler bulunur. 

 

Eksantrik mesnetli kirişler, mesnetlerin kirişin merkez ekseni dışında bir konuma 

yerleştirildiği taşıyıcı elemanlar olarak tanımlanabilir. Klasik kiriş teorilerinde, 

mesnetlerin kirişin tarafsız ekseni boyunca yerleştirildiği varsayılır. Ancak mühendislik 

uygulamalarında bu varsayım çoğu zaman karşılanmaz. 

 

Eksantrik mesnetli kirişler; köprüler, endüstriyel yapılar ve binalar gibi birçok 

mühendislik uygulamasında karşımıza çıkmaktadır. Şekil 2.1’de bir köprü yapısında 

kullanılan çelik kirişler görülmektedir. Kirişler, mesnet ayaklarına eksantrik olarak 

oturmaktadır.  
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Şekil 2.1 Eksantrik mesnetli kirişler 
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3. MATERYAL VE YÖNTEM 

 

Materyal ve Yöntem bölümünün organizasyonu şu şekilde düzenlenmiştir: Öncelikle, 3.1 

numaralı alt bölümde serbest titreşim davranışını yöneten hareket denklemi, Hamilton 

prensibi kullanılarak elde edilmiştir. İlk olarak 3.1.1 numaralı alt bölümde mesnetlerin 

TE’de bulunma durumu için hareket denklemlerinin çıkarılması yapılmıştır. Daha sonra 

3.1.2 numaralı alt bölümde eksantrik mesnetli olma durumu için bir kirişin serbest 

titreşim davranışını yöneten hareket denklemi çıkarılmış ve bu hareket denklemi 

çözülerek eksantrik mesnetli kirişin frekans denklemi türetilmiştir. Sonraki bölüm olan 

3.2 numaralı alt bölümde, Sonlu Elemanlar (SE) analizleri yer almaktadır. Bu bölümde 

ilk olarak, analitik olarak elde edilen frekans denklemlerinin doğrulanması için kullanılan 

SE metodunun detayları açıklanmıştır. Sonrasında petek kirişlerin modellenmesi ele 

alınmıştır. Son olarak mesnetlenmesi bulonlarla sağlanan kirişlerin modellenmesi ele 

alınmış ve bu modelleme süreci detaylandırılmıştır.  

 

3.1. Hareket Denkleminin Çıkartılması 

 

3.1.1. Mesnetlerin TE’de bulunma durumu 

 

TE’de bulunma durumu, kirişin mesnetlerinin tarafsız eksen çizgisi üzerinde yer alması 

durumunu ifade etmektedir. Bu alt başlık altında mesnetlerin tarafsız eksende bulunma 

durumu için hareket denklemleri çıkartılmıştır. Şekil 3.1’de mesnetleri tarafsız eksenin 

üzerinde bulunan basit bir kiriş gösterilmiştir. Bu kirişlerin hareket denklemleri Hamilton 

Prensibi kullanılarak çıkartılmıştır. 

 

 
 

Şekil 3.1. Mesnetleri TE’de bulunan kiriş 
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Hamilton prensibi Denklem (3.1) ile ifade edilebilir (Meirovitch, 1967). 

 

 

𝛿 ∫ (𝑈 −  𝑇 −  𝑊)

𝑡2

𝑡1

𝑑𝑡 =  0 (3.1) 

 

Kinetik enerji Denklem (3.2) ile ifade edilebilir. 

 

 

𝑇 =
1

2
∫ 𝜌𝐴 (

𝜕𝑤(𝑥, 𝑡)

𝜕𝑡
)

2

𝑑𝑥

𝑙

0

 (3.2) 

 

Denklem (3.2)’nin varyasyonu Denklem (3.3)’de görüldüğü gibidir. 

 

 

𝛿 ∫ 𝑇

𝑡2

𝑡1

𝑑𝑡 = ∫ ( ∫ 𝜌𝐴
𝜕𝑤(𝑥, 𝑡)

𝜕𝑡

𝜕𝛿𝑤(𝑥, 𝑡)

𝜕𝑡
𝑑𝑡

𝑡2

𝑡1

)

𝑙

0

𝑑𝑥 (3.3) 

 

Denklem (3.3) zayıf formdadır. Güçlü form için kısmi integrasyon yöntemi uygulanırsa 

Denklem (3.4) elde edilir. 

 

 

𝛿 ∫ 𝑇

𝑡2

𝑡1

𝑑𝑡 = − ∫ 𝜌𝐴
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
𝛿𝑤(𝑥, 𝑡) 𝑑𝑡

𝑡2

𝑡1

 (3.4) 

 

Potansiyel enerji Denklem (3.5) ile ifade edilebilir. 

 

 

𝑈 =
1

2
∫ 𝐸𝐼 (

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
)

2

𝑑𝑥

𝑙

0

 (3.5) 

 

Denklem (3.5)’in varyasyonu alınırsa, Denklem (3.6) elde edilir. 

 

 

𝛿 ∫ 𝑈

𝑡2

𝑡1

𝑑𝑡 = ∫ (∫ 𝐸𝐼
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2

𝜕2𝛿𝑤(𝑥, 𝑡)

𝜕𝑥2
𝑑𝑥

𝑙

0

)

𝑡2

𝑡1

𝑑𝑡 (3.6) 
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Denklem (3.6) zayıf formdadır. Güçlü form için iki defa kısmi integrasyon yöntemi 

uygulanmalıdır. İlk uygulanışta (3.7) elde edilir. 

 

 

𝐸𝐼
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2

𝜕𝛿𝑤(𝑥, 𝑡)

𝜕𝑥
|

0

𝑙

− ∫ 𝐸𝐼
𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3

𝜕𝛿𝑤(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥

𝑙

0

 (3.7) 

 

İkinci uygulanışta ise Denklem (3.8) elde edilir. 

 

 

−𝐸𝐼
𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
𝛿𝑤(𝑥, 𝑡)|0

𝑙 + ∫ 𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
𝛿𝑤(𝑥, 𝑡) 𝑑𝑥

𝑙

0

 (3.8) 

 

Böylelikle potansiyel enerji ifadesinin güçlü formu Denklem (3.9)’daki gibi elde edilir. 

 

 

𝛿 ∫ 𝑈

𝑡2

𝑡1

𝑑𝑡 = 𝐸𝐼
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2

𝜕𝛿𝑤(𝑥, 𝑡)

𝜕𝑥
|

0

𝑙

− 𝐸𝐼
𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
𝛿𝑤(𝑥, 𝑡)|0

𝑙

+ ∫ 𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
𝛿𝑤(𝑥, 𝑡) 𝑑𝑥

𝑙

0

 

(3.9) 

 

Dış yükler tarafından yapılan iş Denklem (3.10) ile ifade edilebilir. 

 

 

𝑊 = ∫ 𝑓𝑤(𝑥, 𝑡) 𝑑𝑥

𝑙

0

 (3.10) 

 

W’nin varyasyonu alınırsa Denklem (3.11) elde edilir. 

 

 

𝛿 ∫ 𝑊

𝑡2

𝑡1

𝑑𝑡 = ∫ (∫ 𝑓𝛿𝑤(𝑥, 𝑡)𝑑𝑥

𝑙

0

) 𝑑𝑡

𝑡2

𝑡1

 (3.11) 

 

Denklem (3.4), (3.9) ve (3.11)’i Denklem (3.1)’de yerine koyarak Denklem (3.12) elde 

edilir. 
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𝛿 ∫ (𝑈 −  𝑇 −  𝑊)

𝑡2

𝑡1

𝑑𝑡

= ∫ ((𝐸𝐼
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2

𝜕𝛿𝑤(𝑥, 𝑡)

𝜕𝑥
|

0

𝑙𝑡2

𝑡1

− 𝐸𝐼
𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
𝛿𝑤(𝑥, 𝑡)|0

𝑙 ) 𝑑𝑡

+ ∫ (𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2

𝑙

0

− 𝑓𝛿𝑤(𝑥, 𝑡)) 𝛿𝑤(𝑥, 𝑡) 𝑑𝑥) 𝑑𝑡 

(3.12) 

 

Denklem (3.12)’deki iki katlı integralin sıfır olabilmesi yalnızca "𝛿𝑤" katsayısının sıfıra 

eşitlenmesiyle mümkündür. Bu durumda Denklem (3.13) elde edilir ve bu denklem 

hareket denklemi olmaktadır. 

 

 
𝐸𝐼

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝑓𝛿𝑤(𝑥, 𝑡) (3.13) 

 

Sınır koşulları ise geriye kalan terimlerin sıfıra eşitlenmesi yoluyla elde edilir ve Denklem 

(3.14) ve (3.15)’de verilmektedir. 

 

 
𝐸𝐼

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2

𝜕𝛿𝑤(𝑥, 𝑡)

𝜕𝑥
|

0

𝑙

= 0 (3.14) 

 

 
−𝐸𝐼

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
𝛿𝑤(𝑥, 𝑡)|0

𝑙 = 0 (3.15) 

 

Serbest titreşimde dış yüklerin sıfır olduğu varsayılır ve Denklem (3.16) elde edilir. 
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𝐸𝐼

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0 (3.16) 

 

Uniform bir kiriş için Denklem (3.16), Denklem (3.17)’deki gibi ifade edilebilir. 

 

 
𝑐2

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0 (3.17) 

 

Burada 𝑐 = √
𝐸𝐼

𝜌𝐴
 olarak ifade edilmektedir. Yer değiştirme bileşeni değişkenlerine 

ayrıştırma yöntemi ile Denklem (3.18)’deki gibi ifade edilebilir.  

 

 𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑇(𝑡) (3.18) 

 

Denklem (3.18)’i, Denklem (3.17)’de yerine koyarak (3.19) elde edilir. 

 

 
𝑐2

1

𝑊(𝑥)

𝜕4𝑊(𝑥)

𝜕𝑥4
= −

1

𝑇(𝑡)

𝜕2𝑇(𝑡)

𝜕𝑡2
= 𝑎 = 𝜔2 (3.19) 

 

Burada 𝑎 = 𝜔2 ’dir. Buradan Denklem  (3.20) ve (3.21) olarak iki adi diferansiyel 

denklem elde edilir. 

 

 𝜕4𝑊(𝑥)

𝜕𝑥4
− 𝛽4𝑊(𝑥) = 0 (3.20) 

 

 𝜕2𝑇(𝑡)

𝜕𝑡2
+ 𝜔2𝑇(𝑡) = 0 (3.21) 

 

Burada 𝛽4 =
𝜔2

𝑐2  olarak ifade edilmektedir. Bu durumda açısal frekans Denklem 

(3.22)’deki gibi ifade edilebilir. 

 

 

𝜔 = 𝛽2√
𝐸𝐼

𝜌𝐴
= (𝛽𝑙)2√

𝐸𝐼

𝜌𝐴𝑙4
 (3.22) 
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Denklem (3.21)’in çözümü Denklem (3.23) şeklindedir. 

 

 𝑇(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) (3.23) 

 

Burada A ve B başlangıç koşullarından bulunabilecek sabitlerdir. Denklem (3.20)’nin 

çözümü Denklem (3.24) şeklindedir ve sistemin mod şekillerini tanımlayan genel çözüm 

formunu vermektedir. Bu ifade, serbest titreşim modlarının şekillerini tanımlamakta olup, 

sistemin başlangıç koşullarına göre belirlenen C1,  C2, C3, C4 katsayıları ile parametrizedir 

 

 𝑊(𝑥) = 𝐶1 𝑐𝑜𝑠ℎ(𝛽𝑥) + 𝐶2 𝑠𝑖𝑛ℎ(𝛽𝑥) + 𝐶3 𝑐𝑜𝑠(𝛽𝑥) + 𝐶4 𝑠𝑖𝑛(𝛽𝑥) (3.24) 

 

Denklem (3.24)’ün bir diğer ifadesi Denklem (3.25) şeklinde de ifade edilebilir. 

 

 𝑊(𝑥) = 𝐶1 (𝑐𝑜𝑠(𝛽𝑥) + 𝑐𝑜𝑠ℎ(𝛽𝑥)) + 𝐶2 (𝑐𝑜𝑠(𝛽𝑥) − 𝑐𝑜𝑠ℎ(𝛽𝑥))

+ 𝐶3 (𝑠𝑖𝑛(𝛽𝑥) + 𝑠𝑖𝑛ℎ(𝛽𝑥)) + 𝐶4 (𝑠𝑖𝑛(𝛽𝑥) − 𝑠𝑖𝑛ℎ(𝛽𝑥)) 
(3.25) 

 

İki ucu sabit veya bir ucu sabit bir ucu kayıcı mesnetli kiriş: 

 

Enine yer değiştirme ve eğilme momenti sabit mesnetli bir uçta sıfırdır. Dolayısıyla, sınır 

koşulları Denklem (3.26), (3.27), (3.28) ve (3.29)’daki gibi olmaktadır. 

 

 𝑊(0) = 0 (3.26) 

 

 
𝐸𝐼

𝜕2𝑊

𝜕𝑥2
(0) = 0 (3.27) 

 

 𝑊(𝑙) = 0 (3.28) 

 

 
𝐸𝐼

𝜕2𝑊

𝜕𝑥2
(𝑙) = 0 (3.29) 

 

Denklem (3.25)’in çözümü için Denklem (3.26) ve (3.27) kullanıldığında C1+C2=0 elde 

edilir. 
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Denklem (3.25)’in çözümü için Denklem (3.28) ve (3.29) kullanıldığında Denklem (3.30) 

ve (3.31) elde edilir. 

 

 𝐶3 (𝑠𝑖𝑛(𝛽𝑙) + 𝑠𝑖𝑛ℎ(𝛽𝑙)) + 𝐶4 (𝑠𝑖𝑛(𝛽𝑙) − 𝑠𝑖𝑛ℎ(𝛽𝑙)) = 0 (3.30) 

 

 −𝐶3 (𝑠𝑖𝑛(𝛽𝑙) − 𝑠𝑖𝑛ℎ(𝛽𝑙)) − 𝐶4 (𝑠𝑖𝑛(𝛽𝑙) + 𝑠𝑖𝑛ℎ(𝛽𝑙)) = 0 (3.31) 

 

Denklem (3.30) ve (3.31) ile tanımlanan bu homojen lineer denklem sistemi, yalnızca 

sıfırdan farklı çözümler içeriyorsa anlamlı olacaktır. Bu durum, matrisin determinantının 

sıfır olması gerektiğini ifade eder. Bu durumda Denklem (3.32) elde edilir. 

 

 𝑠𝑖𝑛(𝛽𝑙) 𝑠𝑖𝑛ℎ(𝛽𝑙) = 0 (3.32) 

 

β=0 olmadığı sürece, 𝑠𝑖𝑛ℎ(𝛽𝑙) ifadesinin sıfıra eşit olmadığı açıktır. β=0 durumu özel bir 

durum olarak ele alınmaz, çünkü bu durumda Denklem (3.22) gereğince ω=0 olacaktır 

ve bu da kirişin hareketsiz olduğu ve herhangi bir titreşimin meydana gelmediği anlamına 

gelir. Dolayısıyla, β≠0 varsayımı altında frekans denklemi (3.33)’deki gibi olur. 

 

 𝑠𝑖𝑛(𝛽𝑙) = 0 (3.33) 

 

Denklem (3.33)’ün kökleri (3.34)’deki bulunur. 

 

 𝛽𝑛𝑙 = 𝑛𝜋           𝑛 = 1, 2 … (3.34) 

 

Denklem (3.22)’de kökler yerine konursa iki ucu sabit veya bir ucu sabit bir ucu kayıcı 

mesnetli kiriş için titreşimin doğal frekansları Denklem (3.35)’deki gibi elde edilir. Bu 

denklem belirtildiği gibi, mesnetlerin TE’de bulunması durumunda hem sabit-sabit hem 

de sabit-kayıcı mesnetli bir kirişin frekansları için kullanılabilir. 

 

 

𝜔𝑛 = (𝛽𝑛𝑙)2√
𝐸𝐼

𝜌𝐴𝑙4
= 𝑛2𝜋2√

𝐸𝐼

𝜌𝐴𝑙4
 (3.35) 
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Bir ucu sabit diğer ucu ankastre mesnetli kiriş: 

 

Bu kiriş için sınır koşulları şu şekilde verilebilir: Ankastre mesnetli bir uçta, enine yer 

değiştirme ve dönme; sabit mesnetli bir uçta, enine yer değiştirme ve eğilme momenti 

sıfırdır. Kiriş x = 0'da sabit ve x = l'de ankastre mesnetli ise, sınır koşulları Denklem 

(3.36), (3.37), (3.38) ve (3.39)’daki gibi ifade edilir. 

 

 𝑊(0) = 0 (3.36) 

 

 𝑑𝑊

𝜕𝑥
(0) = 0 (3.37) 

 

 𝑊(𝑙) = 0 (3.38) 

 

 
𝐸𝐼

𝜕2𝑊

𝜕𝑥2
(𝑙) = 0 (3.39) 

 

Denklem (3.25)’in çözümü için Denklem (3.36) kullanıldığında (3.40) elde edilir. 

 

 𝐶1 + 𝐶3 = 0 (3.40) 

 

Denklem (3.25)’in çözümü için Denklem (3.37) kullanılırsa (3.41) elde edilir. 

 

 𝛽(𝐶2 + 𝐶4) = 0 (3.41) 

 

Böylece Denklem (3.25), (3.42)’deki gibi olur. 

 

 𝑊(𝑥) = 𝐶1(𝑐𝑜𝑠(𝛽𝑥) − 𝑐𝑜𝑠 ℎ(𝛽𝑥)) + 𝐶2(𝑠𝑖𝑛(𝛽𝑥) − 𝑠𝑖𝑛 ℎ(𝛽𝑥)) (3.42) 

 

Denklem (3.25)’in çözümü için Denklem (3.38) ve (3.39) kullanıldığında (3.43) ve (3.44) 

elde edilir. 
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 𝐶1(𝑐𝑜𝑠(𝛽𝑙) − 𝑐𝑜𝑠 ℎ(𝛽𝑙)) + 𝐶2(𝑠𝑖𝑛(𝛽𝑙) − 𝑠𝑖𝑛 ℎ(𝛽𝑙)) = 0 (3.43) 

 

 −𝐶1(𝑐𝑜𝑠(𝛽𝑙) + 𝑐𝑜𝑠 ℎ(𝛽𝑙)) − 𝐶2(𝑠𝑖𝑛(𝛽𝑙) + 𝑠𝑖𝑛 ℎ(𝛽𝑙)) = 0 (3.44) 

 

Daha önce de belirtildiği gibi Denklem (3.43) ve (3.44) ile tanımlanan bu homojen lineer 

denklem sistemi, yalnızca sıfırdan farklı çözümler içeriyorsa anlamlı olacaktır. Bu durum, 

matrisin determinantının sıfır olması gerektiğini ifade eder. Bu durumda Denklem (3.45) 

elde edilir. 

 

 𝑐𝑜𝑠(𝛽𝑙) 𝑠𝑖𝑛 ℎ(𝛽𝑙) − 𝑠𝑖𝑛(𝛽𝑙) 𝑐𝑜𝑠 ℎ(𝛽𝑙) = 0 (3.45) 

 

Denklem (3.45)’in kökleri Denklem (3.46)’daki gibi olur. 

 

 𝛽𝑛𝑙 = (𝑛 +
1

4
) 𝜋           𝑛 = 1, 2 … (3.46) 

 

Denklem (3.22)’de kökler yerine konursa bir ucu ankastre bir ucu sabit mesnetli kiriş için 

titreşimin doğal frekansları Denklem (3.47)’deki gibi olur. 

 

 

𝜔𝑛 = ((𝑛 +
1

4
) 𝜋)

2

√
𝐸𝐼

𝜌𝐴𝑙4
 (3.47) 

 

3.1.2. Eksantrik mesnetli olma durumu 

 

Eksantrisite, kirişin mesnetlerinin Tarafsız Eksen (TE)’den farklı bir konumda yer alması 

durumudur.  Eksantrik olarak mesnetlenen basit bir kiriş Şekil 3.2’de gösterilmiştir. 1 ve 

2 mesnet numaralarıdır. TE ile mesnetler arasındaki mesafeler e1 ve e2 olarak 

adlandırılmıştır. Çalışmada, Euler-Bernoulli Kiriş Teorisi’nin kabulleri dikkate alınmış ve 

kayma deformasyonları ihmal edilmiştir. Eksantrik mesnetli kirişlerin serbest titreşim 

davranışını tanımlayan hareket (diferansiyel) denklemi, Hamilton prensibi kullanılarak 

elde edilmiştir. Hareket denklemi çözülerek kiriş frekansları analitik olarak 

hesaplanmıştır. 

 



24 

 

 
 

Şekil 3.2. Eksantrik olarak mesnetlenen basit kiriş 

 

Euler-Bernoulli kiriş teorisine dayanarak, kesme deformasyonu ve dönme ataleti etkisi 

ihmal edildiğinde, boyuna yer değiştirme Denklem (3.48) ile ve eğilme yer değiştirmesi 

Denklem (3.49) ile tanımlanır (Radice, 2012). Burada u0(x, t) ve w0(x, t) tarafsız 

eksendeki yer değiştirme bileşenleridir.  

 

 
𝑈(𝑥, 𝑧, 𝑡) =  𝑢0(𝑥, 𝑡) − 𝑧

𝜕𝑤0(𝑥, 𝑡)

𝜕𝑥
 (3.48) 

 

 𝑊(𝑥, 𝑧, 𝑡) =  𝑤0(𝑥, 𝑡) (3.49) 

 

Kirişte oluşan gerinim bileşeni Denklem (3.50) ile ifade edilir. Burada birinci terim 

boyuna gerinim bileşenini tanımlarken, ikinci terim ise eğilmeden kaynaklanan gerinim 

bileşenini tanımlar. 

 

 
𝜀𝑥(𝑥, 𝑧) =  

𝜕𝑢0(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑥2
 (3.50) 

 

Gerilme, Hooke yasasına göre gerinim ile ilişkilendirilirse Denklem (3.51)'de gösterildiği 

şekilde ifade edilir. 

 

 
𝜎𝑥(𝑥, 𝑧) = 𝐸𝜀𝑥(𝑥, 𝑧) = 𝐸 (

𝜕𝑢0(𝑥, 𝑡)

𝜕𝑥
− 𝑧

𝜕2𝑤0(𝑥, 𝑡)

𝜕𝑥2
) (3.51) 
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Serbest titreşimde dış yük yani W=0 olduğu için Hamilton Prensibi Denklem (3.52)’deki 

gibi ifade edilir. 

 

 

𝛿 ∫ (𝑈 −  𝑇 )

𝑡2

𝑡1

𝑑𝑡 =  0 (3.52) 

 

Potansiyel enerji ise Denklem (3.53) ile ifade edilebilir. 

 

 

𝑈 =
1

2
∫ ∫ 𝜎𝑥𝜀𝑥𝑏 𝑑𝑧𝑑𝑥

ℎ/2

−ℎ/2

𝑙

0

 (3.53) 

 

Denklem (3.50) ve (3.51), Denklem (3.53)’de yerine konursa Denklem (3.54) elde edilir. 

 

 
𝑈 =

1

2
∫ 𝐸𝐴 (

𝜕𝑢0

𝜕𝑥
)

2

𝑑𝑥
𝑙

0

+
1

2
∫ 𝐸𝐼 (

𝜕2𝑤0

𝜕𝑥2
)

2

𝑑𝑥
𝑙

0

 (3.54) 

 

Doğrusal elastik bünye ilişkisi varsayıldığında, iç kuvvet ve eğilme momenti Denklem 

(3.55)’deki gibi tanımlanabilir. 

 

 
𝑁𝑥 = 𝐸𝐴

𝜕𝑢0

𝜕𝑥
 , 𝑀𝑦 = 𝐸𝐼

𝜕2𝑤0

𝜕𝑥2
 (3.55) 

 

Burada 𝐼 =
𝑏ℎ3

12
 olarak ifade edilmektedir. Denklem (3.55)’deki iç kuvvet ve eğilme 

momenti ifadeleri yerlerine konursa Denklem (3.56) elde edilir. 

 

 
𝑈 =

1

2
(∫ 𝑁𝑥

𝜕𝑢0

𝜕𝑥
𝑑𝑥

𝑙

0

+ ∫ 𝑀𝑦

𝜕2𝑤0

𝜕𝑥2
𝑑𝑥

𝑙

0

) (3.56) 

 

Denklem (3.56)’nın varyasyonu alınırsa Denklem (3.57) elde edilir. 

 
𝛿𝑈 = ∫ 𝑁𝑥

𝜕𝛿𝑢0

𝜕𝑥
𝑑𝑥

𝑙

0

+ ∫ 𝑀𝑦

𝜕2𝛿𝑤0

𝜕𝑥2
𝑑𝑥

𝑙

0

 (3.57) 
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Denklem (3.57) zayıf formdadır. Güçlü form için birinci terim 1 ikinci terime ise 2 defa 

kısmi integrasyon yöntemi uygulanmalıdır. İlk uygulanışta (3.58) elde edilir. 

 

 
𝛿𝑈 = 𝑁𝑥𝛿𝑢0|0

𝑙 − ∫ 𝛿𝑢0

𝜕𝑁𝑥

𝜕𝑥
𝑑𝑥

𝑙

0

+ 𝑀𝑦

𝜕𝛿𝑤0

𝜕𝑥
|

0

𝑙

− ∫
𝜕𝑀𝑦

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑥
𝑑𝑥

𝑙

0

 (3.58) 

 

İkinci terime bir defa daha uygulanırsa Denklem (3.59) elde edilir. 

 

 
𝛿𝑈 = 𝑁𝑥𝛿𝑢0|0

𝑙 − ∫ 𝛿𝑢0

𝜕𝑁𝑥

𝜕𝑥
𝑑𝑥

𝑙

0

+ 𝑀𝑦

𝜕𝛿𝑤0

𝜕𝑥
|

0

𝑙

−
𝜕𝑀𝑦

𝜕𝑥
𝛿𝑤0|

0

𝑙

+ ∫ 𝛿𝑤0

𝜕2𝑀𝑦

𝜕𝑥2
𝑑𝑥

𝑙

0

 

(3.59) 

 

Türevli olan Nx ve My’den kurtulmak için Denklem (3.59)’da Nx ve My ifadeleri yerlerine 

konursa Denklem (3.60) elde edilir. 

 

 

∫ 𝛿𝑈𝑑𝑡
𝑡2

𝑡1

= ∫ [𝑁𝑥𝛿𝑢0|0
𝑙 − ∫ 𝐸𝑏ℎ

𝜕2𝑢0

𝜕𝑥2
𝛿𝑢0 𝑑𝑥

𝑙

0

+ 𝑀𝑦

𝜕𝛿𝑤0

𝜕𝑥
|

0

𝑙
𝑡2

𝑡1

− 𝐸𝐼
𝜕3𝑤0

𝜕𝑥3
𝛿𝑤0|

0

𝑙

+ ∫ 𝐸𝐼
𝜕4𝑤0

𝜕𝑥4
𝛿𝑤0 𝑑𝑥

𝑙

0

] 𝑑𝑡 

(3.60) 

 

Kinetik enerji Denklem (3.61) ile ifade edilebilir. 

 

 
𝑇 =

1

2
∫ ∫ 𝜌

ℎ/2

−ℎ/2

𝑙

0

[(
𝜕𝑈

𝜕𝑡
)

2

+ (
𝜕𝑊

𝜕𝑡
)

2

] 𝑏𝑑𝑧𝑑𝑥 (3.61) 

 

Denklem (3.48) ve (3.49), Denklem (3.61)’de yerine konursa Denklem (3.62) elde edilir. 

 

 
𝑇 =

1

2
∫ ∫ 𝜌

ℎ/2

−ℎ/2

𝑙

0

(
𝜕𝑢0

𝜕𝑡
− 𝑧

𝜕𝑤0

𝜕𝑥𝜕𝑡
)

2

𝑏𝑑𝑧𝑑𝑥 +
1

2
∫ ∫ 𝜌

ℎ/2

−ℎ/2

𝑙

0

(
𝜕𝑤0

𝜕𝑡
)

2

𝑏𝑑𝑧𝑑𝑥 (3.62) 

 

Denklem (3.62)’nin varyasyonu alınırsa Denklem (3.63) elde edilir. 
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𝛿𝑇 = 𝑏 ∫ ∫ 𝜌

ℎ/2

−ℎ/2

𝑙

0

(
𝜕𝑢0

𝜕𝑡
− 𝑧

𝜕𝑤0

𝜕𝑥𝜕𝑡
) (

𝜕𝑢0

𝜕𝑡
− 𝑧

𝜕𝛿𝑤0

𝜕𝑥𝜕𝑡
) 𝑑𝑧𝑑𝑥

+ 𝑏 ∫ ∫ 𝜌
ℎ/2

−ℎ/2

𝑙

0

𝜕𝑤0

𝜕𝑡

𝜕𝛿𝑤0

𝜕𝑡
𝑏𝑑𝑧𝑑𝑥 

(3.63) 

 

İntegral işlemleri yapılırsa Denklem (3.64) elde edilir. 

 

 
𝛿𝑇 = ∫ 𝑏𝜌 (

ℎ

12

3 𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕2𝛿𝑤0

𝜕𝑡𝜕𝑥
+ ℎ

𝜕𝑢0

𝜕𝑡

𝜕𝛿𝑢0

𝜕𝑡
) 𝑑𝑥

𝑙

0

+ ∫ 𝜌𝑏ℎ
𝜕𝑤0

𝜕𝑡

𝜕𝛿𝑤0

𝜕𝑡
𝑑𝑥

𝑙

0

 (3.64) 

 

Denklem (3.64)’teki 1. terime x’e göre kısmi integrasyon yöntem uygulanırsa Denklem 

(3.65) elde edilir. 

 

 

∫ 𝛿𝑇𝑑𝑡
𝑡2

𝑡1

= 𝑏𝜌 ∫ [
ℎ

12

3 𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑡
|

0

𝑙

− ∫
ℎ

12

3 𝜕3𝑤0

𝜕𝑡𝜕𝑥2

𝜕𝛿𝑤0

𝜕𝑡
𝑑𝑥

𝑙

0

𝑡2

𝑡1

+ ∫ 𝑏𝜌 (ℎ
𝜕𝑢0

𝜕𝑡

𝜕𝛿𝑢0

𝜕𝑡
+ ℎ

𝜕𝑤0

𝜕𝑡

𝜕𝛿𝑤0

𝜕𝑡
𝑑𝑥)

𝑙

0

] 𝑑𝑡 

(3.65) 

 

Denklem (3.65) t’ye göre kısmi integrasyon yöntemi uygulamak üzere düzenlenirse 

Denklem (3.66) elde edilir. 

 

 

∫ 𝛿𝑇𝑑𝑡
𝑡2

𝑡1

= 𝑏𝜌 ∫
ℎ

12

3 𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑡
|

0

𝑙𝑡2

𝑡1

− 𝑏𝜌 ∫ (∫
ℎ

12

3 𝜕3𝑤0

𝜕𝑡𝜕𝑥2

𝜕𝛿𝑤0

𝜕𝑡
𝑑𝑡

𝑡2

𝑡1

) 𝑑𝑥
𝑙

0

+ 𝑏𝜌 ∫ [∫ (ℎ
𝜕𝑢0

𝜕𝑡

𝜕𝛿𝑢0

𝜕𝑡
+ ℎ

𝜕𝑤0

𝜕𝑡

𝜕𝛿𝑤0

𝜕𝑡
) 𝑑𝑡

𝑡2

𝑡1

] 𝑑𝑥
𝑙

0

 

(3.66) 

 

Denklem (3.66)’da 2. ve 3. terim için kısmi integrasyon yöntemi uygulanırsa Denklem 

(3.67) elde edilir. 
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∫ 𝛿𝑇𝑑𝑡
𝑡2

𝑡1

= 𝑏𝜌 ∫
ℎ

12

3 𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑡
|

0

𝑙𝑡2

𝑡1

+ 𝑏𝜌 ∫ (−
ℎ

12

3 𝜕3𝑤0

𝜕𝑡𝜕𝑥2
𝛿𝑤0|

𝑡1

𝑡2𝑙

0

+ ∫
ℎ

12

3 𝜕4𝑤0

𝜕𝑡2𝜕𝑥2
𝛿𝑤0𝑑𝑡

𝑡2

𝑡1

) 𝑑𝑥

+ 𝑏𝜌 ∫ [ℎ
𝜕𝑢0

𝜕𝑡
𝛿𝑢0|

𝑡1

𝑡2𝑙

0

− ∫ ℎ
𝜕2𝑢0

𝜕𝑡2
𝛿𝑢0𝑑𝑡 +

𝑡2

𝑡1

(ℎ
𝜕𝑤0

𝜕𝑡
𝛿𝑤0)|

𝑡1

𝑡2

− ∫ ℎ
𝜕2𝑤0

𝜕𝑡2
𝛿𝑤0𝑑𝑡

𝑡2

𝑡1

] 𝑑𝑥 

(3.67) 

 

Denklem (3.60) ve (3.67), Denklem (3.52)’de yerine konursa Denklem (3.68) elde edilir. 

 

 
∫ (𝛿𝑈 − 𝛿𝑇)𝑑𝑡

𝑡2

𝑡1

=  ∫ ∫ [(𝑏𝜌ℎ
𝜕2𝑢0

𝜕𝑡2
− 𝐸𝑏ℎ

𝜕2𝑢0

𝜕𝑥2
) 𝛿𝑢0

𝑙

0

𝑡2

𝑡1

+ (𝐸𝐼
𝜕4𝑤0

𝜕𝑥4
− 𝑏𝜌

ℎ

12

3 𝜕4𝑤0

𝜕𝑡2𝜕𝑥2
+ 𝑏𝜌ℎ

𝜕2𝑤0

𝜕𝑡2
) 𝛿𝑤0] 𝑑𝑥𝑑𝑡

+ ∫ [(𝑁𝑥𝛿𝑢0 + 𝑀𝑦

𝜕𝛿𝑤0

𝜕𝑥
)|

0

𝑙

− 𝐸𝐼
𝜕3𝑤0

𝜕𝑥3
𝛿𝑤0|

0

𝑙𝑡2

𝑡1

− 𝑏𝜌
ℎ

12

3 𝜕2𝑤0

𝜕𝑡𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑡
|

0

𝑙

] 𝑑𝑡

+ ∫ [(𝑏𝜌
ℎ

12

3 𝜕3𝑤0

𝜕𝑡𝜕𝑥2
𝛿𝑤0 − 𝑏𝜌ℎ

𝜕𝑤0

𝜕𝑡
𝛿𝑤0)|

𝑡1

𝑡2𝑙

0

− (𝑏𝜌ℎ
𝜕𝑢0

𝜕𝑡
𝛿𝑢0)|

𝑡1

𝑡2

] 𝑑𝑥 

(3.68) 
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Denklem (3.68)’den diferansiyel hareket denklemleri ve sınır koşulları elde edilir. 

Denklem (3.69) boyuna yer değiştirmeyi ve Denklem (3.70) eğilme yer değiştirmesini 

ifade eder. Burada  𝑎 = √
𝐸

𝜌
 olarak verilir. 

 

 𝜕2𝑢0

𝜕𝑡2
− 𝑎2

𝜕2𝑢0

𝜕𝑥2
= 0 (3.69) 

 

 
𝐸𝐼

𝜕4𝑤0

𝜕𝑥4
+ 𝑏𝜌ℎ

𝜕2𝑤0

𝜕𝑡2
− 𝑏𝜌

ℎ

12

3 𝜕4𝑤0

𝜕𝑡2𝜕𝑥2
= 0 (3.70) 

 

Denklem (3.70)’teki 3. terim 𝜌𝐼
𝜕4𝑤0

𝜕𝑡2𝜕𝑥2 şeklinde yazılabilir ve bu terim dönme ataletinin 

etkisini ifade eder. Bu çalışmada Euler-Bernoulli kiriş teorisinin varsayımları geçerli 

kabul edildiği için dönme ataletinin etkisi ve dolayısıyla 3. terim ihmal edilmiştir.  

Böylelikle Denklem (3.70), (3.71)’deki gibi ifade edilebilir. 

 

 
𝐸𝐼

𝜕4𝑤0

𝜕𝑥4
+ 𝑏𝜌ℎ

𝜕2𝑤0

𝜕𝑡2
= 0 (3.71) 

 

Sonrasında bu diferansiyel denklemlerin çözümüne geçilir. Denklem (3.69) 

değişkenlerine ayırma yöntemi ile Denklem (3.72) şeklinde ifade edilebilir. 

 

 𝑢0(𝑥, 𝑡) = 𝑈(𝑥)𝑇(𝑡) (3.72) 

 

Denklem (3.72)’yi Denklem (3.69)’da yerine koyarak Denklem (3.73) elde edilir. 

 

 1

𝑎2𝑇(𝑡)

𝜕2𝑇(𝑡)

𝜕𝑡2
=

1

𝑈(𝑥)

𝜕2𝑈(𝑥)

𝜕𝑥2
= −𝜔2 (3.73) 

 

Buradan sırasıyla zamana bağlı ve uzaya bağlı, Denklem (3.74) ve (3.75)  elde edilir.  

 

 𝜕2𝑇(𝑡)

𝜕𝑡2
+ 𝜔2𝑇(𝑡) = 0 (3.74) 
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 𝜕2𝑈(𝑥)

𝜕𝑥2
+

𝜔2

𝑎2
𝑈(𝑥) = 0 (3.75) 

 

Denklem (3.74)’ün çözümü (3.76)’daki gibi elde edilir. 

 

 𝑇(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) (3.76) 

 

Burada A ve B başlangıç koşullarından bulunabilecek sabitlerdir. Denklem (3.75)’in 

çözümü Denklem (3.77) şeklindedir. 

 

 𝑈(𝑥) = 𝐷1 cos (
𝜔

𝑎
𝑥) + 𝐷2 sin (

𝜔

𝑎
𝑥) (3.77) 

 

Eğilme yer değiştirmesinin diferansiyel denklemi olan Denklem (3.71)’in çözümüne 

geçilir.  

 

Uniform bir kiriş için Denklem (3.71), Denklem (3.78)’deki gibi ifade edilebilir. 

 

 
𝑐2

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 0 (3.78) 

 

Burada 𝑐 = √
𝐸𝐼

𝜌𝐴
 olarak verilir. Yer değiştirme bileşeni değişkenlerine ayrıştırma yöntemi 

ile Denklem (3.79)’daki gibi ifade edilebilir.  

 

 𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑇(𝑡) (3.79) 

 

Denklem (3.79)’u, Denklem (3.78)’de yerine koyarak (3.80) elde edilir. 

 

 
𝑐2

1

𝑊(𝑥)

𝜕4𝑊(𝑥)

𝜕𝑥4
= −

1

𝑇(𝑡)

𝜕2𝑇(𝑡)

𝜕𝑡2
= 𝑘 = 𝜔2 (3.80) 

 

Burada 𝑘 = 𝜔2 ’dir. Burada Denklem (3.81) ve (3.82) olarak iki adi diferansiyel denklem 

elde edilir. 
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 𝜕4𝑊(𝑥)

𝜕𝑥4
− 𝛽4𝑊(𝑥) = 0 (3.81) 

 

 𝜕2𝑇(𝑡)

𝜕𝑡2
+ 𝜔2𝑇(𝑡) = 0 (3.82) 

 

Denklem (3.82)’nin çözümü (3.74)’ün çözümü ile aynıdır ve (3.76)’da verilmiştir. 

 

Denklem (3.81)’in çözümü, Denklem (3.83) şeklindedir ve sistemin mod şekillerini 

tanımlayan genel çözüm formunu vermektedir. Bu ifade, serbest titreşim modlarının 

şekillerini tanımlamakta olup, sistemin başlangıç koşullarına göre belirlenen C1,  C2, C3, 

C4 katsayıları ile tanımlıdır. 

 

 𝑊(𝑥) = 𝐶1 𝑐𝑜𝑠ℎ(𝛽𝑥) + 𝐶2 𝑠𝑖𝑛ℎ(𝛽𝑥) + 𝐶3 𝑐𝑜𝑠(𝛽𝑥) + 𝐶4 𝑠𝑖𝑛(𝛽𝑥) (3.83) 

 

Mesnet bölgesindeki kiriş deformasyonu Şekil 3.3’te gösterilmiştir. Sınır koşulları, bu 

davranış göz önünde bulundurularak belirlenmiştir. 

 

 
 

Şekil 3.3. Yer değiştirme ilişkisi 

 

Şekil 3.3’te gösterilen sınır koşulu Denklem (3.84)’deki gibi ifade edilebilir. 
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𝑢0 + 𝑒

𝜕𝑤0

𝜕𝑥
= 0 (3.84) 

 

Sabit mesnetin oluşturduğu kısıtlama kuvvetinin orta düzleme aktarılmasıyla, sınırdaki iç 

kuvvetler N ve eğilme momentleri M hesaplanabilir. Denklem (3.84)’ün varyasyonu 

alınarak, Denklem (3.68)’de yerine konursa Denklem (3.85) elde edilir. 

 

 (𝑀𝑦 − 𝑒𝑁𝑥)|
𝑥=0

𝑥=𝐿
= 0 (3.85) 

 

Bir kirişin kayıcı mesnetli olan ucunda x yönündeki hareket belirsizdir ve Denklem 

(3.84)’e benzer bir durum mevcut değildir. Denklem (3.84)‘teki ilişki sadece eksantrik de 

olabilen sabit mesnet olma durumunda mevcuttur. Bu çalışmanın analitik kısmında 3 tip 

mesnetlenme durumu için sınır koşulları aşağıda verilmiştir. 

 

Sınır koşulları şu şekildedir: Eksantrik sabit mesnet olma durumunda Denklem (3.86)’da, 

kayıcı mesnetli olma durumunda (3.87)’de, ankastre mesnet olma durumunda (3.88)’de 

verilmiştir. 

 

 
𝑢0 + 𝑒

𝜕𝑤0

𝜕𝑥
= 0, 𝑤0 = 0, 𝑀𝑦 − 𝑒𝑁𝑥 = 0 (3.86) 

 

 𝑁𝑥 = 0, 𝑀𝑦 = 0, 𝑤0 = 0 (3.87) 

 

 
𝑢0 = 0, 𝑤0 = 0,

𝜕𝑤0

𝜕𝑥
 (3.88) 

 

Denklem (3.55), (3.72) ve (3.79); Denklem (3.86), (3.87), (3.88)’de yerine konduğunda 

üç kombinasyon için aşağıdaki sınır koşulları elde edilir. 

 

Her iki mesnetin de eksantrik sabit mesnetli olma durumunda sınır koşulları: 
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𝑈𝑖(0) + 𝑒1

𝜕𝑊𝑖(0)

𝜕𝑥
= 0, 𝑊𝑖(0) = 0, 𝐼

𝜕2𝑊𝑖(0)

𝜕𝑥2
− 𝑒1𝑏ℎ

𝜕𝑈𝑖(0)

𝜕𝑥
= 0 

𝑈𝑖(𝐿) + 𝑒2

𝜕𝑊𝑖(𝐿)

𝜕𝑥
= 0, 𝑊𝑖(𝐿) = 0, 𝐼

𝜕2𝑊𝑖(𝐿)

𝜕𝑥2
− 𝑒2𝑏ℎ

𝜕𝑈𝑖(𝐿)

𝜕𝑥
= 0 

(3.89) 

 

Bir mesnetin eksantrik sabit mesnet, diğer mesnetin kayıcı mesnet olma durumunda 

sınır koşulları: 

 

 
𝑈𝑖(0) + 𝑒1

𝜕𝑊𝑖(0)

𝜕𝑥
= 0, 𝑊𝑖(0) = 0, 𝐼

𝜕2𝑊𝑖(0)

𝜕𝑥2
− 𝑒1𝑏ℎ

𝜕𝑈𝑖(0)

𝜕𝑥
= 0 

𝜕𝑈𝑖(𝐿)

𝜕𝑥
= 0, 𝑊𝑖(𝐿) = 0,

𝜕2𝑊𝑖(𝐿)

𝜕𝑥2
= 0 

(3.90) 

 

Bir mesnetin ankastre mesnet, diğer mesnetin sabit mesnet olması durumunda sınır 

koşulları: 

 

 
𝑈𝑖(0) + 𝑒1

𝜕𝑊𝑖(0)

𝜕𝑥
= 0, 𝑊𝑖(0) = 0, 𝐼

𝜕2𝑊𝑖(0)

𝜕𝑥2
− 𝑒1𝑏ℎ

𝜕𝑈𝑖(0)

𝜕𝑥
= 0 

𝑈𝑖(𝐿) = 0, 𝑊𝑖(𝐿) = 0,
𝜕𝑊𝑖(𝐿)

𝜕𝑥
= 0 

(3.91) 

 

Çıkarılan eğilme yer değiştirmesi denklemi 4 bilinmeyen içerirken, boyuna yer 

değiştirme denklemleri 2 bilinmeyen içerir. Dolayısıyla toplamda 6 bilinmeyenin çözümü 

için 6 sınır koşuluna ihtiyaç duyulur. Bu iki yer değiştirme modu, birbirinden bağımsız 

olmayıp eksantrik mesnetleme nedeniyle bağlanmış bir şekilde hareket eder.  Bu durum, 

Şekil 3.4’te görüldüğü gibi boyuna yer değiştirme 𝑈(𝑥) ve eğilme yer değiştirme 𝑊(𝑥) 

etkilerinin etkileşimi sonucu ortaya çıkan birleşik yer değiştirme ile açıklanabilir. 

Eksantrik mesnetlenme durumunda elde edilen boyuna yer değiştirme ve eğilme yer 

değiştirmesi diferansiyel denklemleri çıkarılan sınır koşulları kullanılarak Mathematica 

programı ile çözülmüş ve eksantrik mesnetli kirişin açısal frekans türetilmiştir. 

 

 

 



34 

 

 
A 

 

 
B 

 

 
C 

 

Şekil 3.4. Yer değiştirmeler A) Boyuna B) Eğilme C) Birleşik yer değiştirme 

 

Eksantrik sabit-sabit mesnetli sistem için karakteristik denklem, Denklem (3.92)’de 

verilmiştir.  

 

 
−

1

𝑎2E√I
2𝑒

−
𝐿ρl1 4⁄ √𝜔

E1 4⁄ I1 4⁄ √ρl𝜔2(𝑎I3 4⁄ ρl1 4⁄ Sin[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
](−4𝐴𝑒

𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ E1 4⁄ 𝑒1𝑒2√𝜔

+ 𝐴(1 + 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )E1 4⁄ (𝑒1
2 + 𝑒2

2)√𝜔Cos[
𝐿𝜔

𝑎
] + 2𝑎(−1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )I3 4⁄ (ρA)1 4⁄ Sin[
𝐿𝜔

𝑎
]) − 2𝐴E1 4⁄ 𝑒1𝑒2√𝜔(−𝑎(−1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )I3 4⁄ (ρA)1 4⁄ + 𝐴𝑒
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ E1 4⁄ 𝑒1𝑒2√𝜔Sin[
𝐿𝜔

𝑎
])

+ 𝐴E1 4⁄ √𝜔Cos[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
](−𝑎(−1 + 𝑒

2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )(𝑒1
2

+ 𝑒2
2)I3 4⁄ (ρA)1 4⁄ Cos[

𝐿𝜔

𝑎
] + 𝐴(1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )E1 4⁄ 𝑒1
2𝑒2

2√𝜔Sin[
𝐿𝜔

𝑎
])) 

(3.92) 

 

Eksantrik sabit-kayıcı mesnetli sistemin karakteristik denklemi, Denklem (3.93)’te 

verilmiştir. 
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 1

𝑎2EI3 4⁄
𝑒

−
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ (4𝑎(−1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )I3 4⁄ (ρA)𝜔3Cos[
𝐿𝜔

𝑎
]Sin[

𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
]

+ 2𝐴E1 4⁄ 𝑒1
2(ρA)3 4⁄ 𝜔7 2⁄ ((−1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )Cos[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
] − (1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )Sin[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
])Sin[

𝐿𝜔

𝑎
]) 

(3.93) 

 

Ankastre-sabit mesnetli sistemin karakteristik denklemi, Denklem (3.94)’te verilmiştir. 

 

 1

𝑎E3 4⁄ √I
𝑒

−
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ (−2𝐴E1 4⁄ 𝑒1
2√(ρA)𝜔2(−2𝑒

𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ + (1

+ 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )Cos[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
])Cos[

𝐿𝜔

𝑎
]

− 2𝑎I3 4⁄ (ρA)3 4⁄ 𝜔3 2⁄ ((−1 + 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )Cos[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
]

− (1 + 𝑒
2𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄ )Sin[
𝐿(ρA)1 4⁄ √𝜔

E1 4⁄ I1 4⁄
])Sin[

𝐿𝜔

𝑎
]) 

(3.94) 

 

3.2. Sonlu Elemanlar Analizi 

 

Herhangi bir mühendislik probleminin çözümü için üç temel yöntem bulunmaktadır: 

Analitik yöntem, sayısal yöntem ve deneysel yöntem (Tajima vd., 2009). Sonlu elemanlar 

metodu (SEM), belirli sonuçlar elde etmek için gerilmeye tabi tutulan ve analiz edilen bir 

malzeme veya tasarımın bilgisayar modelinden oluşan, yapıları analiz etmek için 

kullanılan sayısal bir yöntemdir (Zienkiewicz vd., 2005). 

 

Bu çalışmada gerçekleştirilen sonlu elemanlar (SE) analizlerinde, ticari SE yazılımı 

Abaqus (2012) kullanılmıştır. Analizlerde I kesitli ve dikdörtgen kesitli kirişler 

modellenmiştir. Bu iki kirişin modellenmesinde “S4” tipi kabuk (shell) eleman (bkz. Şekil 

3.5 ve Şekil 3.6) kullanılmıştır. Malzeme modeli doğrusal elastik olarak tanımlanmış ve 

malzemenin homojen izotropik olduğu kabul edilmiştir.  
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Şekil 3.5. Kabuk eleman ile oluşturulan I kiriş modeli  

 

Bu çalışma kapsamında kirişlerin düzlem dışı davranışları ve frekansları incelenmediği 

için modelleme sürecinde kirişlerin düzlem dışı hareketleri tutulmuştur. Bu sayede 

yalnızca düzlem içi modlar ve frekanslar elde edilmiştir. Modellerde ağ (mesh) 

büyüklüklerini belirlemek için uyum (convergence) analizi gerçekleştirilmiştir.  

 

Sınır şartlarının tanımlanması: Sabit mesnetli uçlarda dönmeler serbest bırakılmış yer 

değiştirmeler kısıtlanmıştır. Kayıcı mesnete sahip uçlarda dönmeler ve z yönündeki yer 

değiştirme serbest bırakılmış diğer yönlerdeki yer değiştirmeler kısıtlanmıştır. 

 

Literatürde bu konuda çalışan araştırmacılarla sonuçların karşılaştırılabilmesi ve analitik 

olarak elde edilen frekans denklemlerinin doğrulanması amacıyla literatürde kullanılan 

(Li vd., 2023; Fernando vd., 2018) kiriş örneklerinin özellikleri dikdörtgen kesitli kiriş 

modellerinde kullanılmıştır. Kirişlerin uzunluğu (L), yüksekliği (h), genişliği (b), 

elastisite modülü (E), yoğunluğu (ρ), Poisson oranı (ν) gibi geometrik ve malzeme 

özellikleri  Çizelge 3.1’de sunulmuştur.  

 

Çizelge 3.1. Dikdörtgen kesitli kirişlerin geometrik ve malzeme özellikleri 

 
Kiriş Tipi L  

(mm) 

h  

(mm) 

b  

(mm) 

E  

(GPa) 

ρ  

(kg/m³) 

ν 

Dikdörtgen kesitli  762 12,7 50,8 69 2730 0,33 

 

Tanımlanan dikdörtgen kesitli kiriş modeli Şekil 3.6’te görülmektedir. 
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Şekil 3.6. Kabuk eleman ile oluşturulan dikdörtgen kesitli kiriş modeli (kabuk kalınlığı 

gösterimi ile) 

 

Bu özelliklerin dışında I ve Petek kiriş modellerinde kullanılan geometrik ve malzeme 

özellikleri Çizelge 3.2’de verilmiştir. 

  

3.2.1. Petek kirişlerin modellenmesi 

 

Tipik bir petek kiriş için Grünbauer BV (2024) kaynağında belirtilen boyutlar, çelik 

üretim standardını temsil etmekte olup, petek kirişlerin boyutlandırılmasında 

kullanılmaktadır. Bu ölçüler ve açılar minimum ya da maksimumu değerleri ifade 

etmemekte, tek tip boyutları temsil etmektedir. İlgili boyutlar ve geometrik detaylar Şekil 

3.7’de gösterilmiştir. 

 

 
 

Şekil 3.7. Tipik petek kiriş boyutları (Grünbauer BV, 2024) 

 

Bu boyutlar dikkate alınarak çizilen kirişin ölçekli görünüşü Şekil 3.8’de görülmektedir. 

Petek kirişin enine kesit boyutları ise Şekil 3.12’de verilmiştir. 
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Şekil 3.8. Petek kiriş SE modelinin genel görünüşü  

 

Petek kirişlerin eksantrisitenin çalışılabilmesi için değişken eksantrisite durumları göz 

önüne alınmış ve sonlu elemanlar modellerinde mesnetin olduğu konuma göre tanımlama 

yapılmıştır. Bu mesnetlenme durumları ve incelenmeleri Bölüm 4.3’te verilmiştir. 

 

3.2.2. Bulonlu birleşimlerin modellenmesi 

 

Bu çalışmada bulonlu kirişlerden kasıt, iki ucunda moment aktarmayan bulonlu 

birleşimlere sahip kirişlerdir. Bu kirişler, bulonlar üzerinden sabit mesnetli kabul 

edilmiştir. Birden fazla bulona sahip birleşimlere bulon grubu ifadesi kullanılmıştır. 

Çalışmada, bulon gruplarının merkezinin TE'de olma durumu (eksantrik olmayan bulon 

grubu) ve bulon grubunun merkezinin TE'de olmama durumu (eksantrik bulon grubu) 

dikkate alınmıştır. Birleşimlerde bulon sayısı 1’den 5’e değişmekle birlikte, bulon çapı 

20 mm, kenara olan uzaklık 30 mm ve bulonlar arası mesafe 60 mm'dir. Yapılan 

kıyaslamalarda dikkate alınan kirişlerin her iki ucundaki bulon sayısı, bulonların yerleşim 

şekilleri ve mesnetlenmeleri aynıdır. Bulon grubunda, bulon sayısı ve bulon grubunun 

eksantrisitesi, frekans hesaplamalarında parametreler (değişkenler) olarak belirlenmiştir. 

Dikkate alınan farklı bulon sayısı ve farklı eksantrisite durumları Şekil 3.9, Şekil 3.10  

Şekil 3.11’de verilmiştir.  
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A                                       B 

 

Şekil 3.9. Tek bulonların yerleşimi A) TE üzerinde B) Eksantrik 

 

 

 
 

Şekil 3.10. TE üzerinde yerleşimli bulon grupları 

 

 
 

Şekil 3.11. Eksantrik yerleşimli bulon grupları 

 

Bulonlu birleşimli kirişlerde, I kiriş ve petek kirişlerin doğal frekansları incelenmiştir. 

Kirişin enine kesit boyutları Şekil 3.12’de verilmiştir. 
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Şekil 3.12. Enine kesit boyutları 

 

Bölüm 4.4’te sonuçları verilen bulonlu birleşimler, içi dolu (I kiriş) ve boşluklu (petek) 

kirişlerde çalışılmıştır. Bulonlu birleşimler için I ve petek olmak üzere temel olarak 2 tip 

kiriş modeli üzerinde analizler yapılmıştır. Oluşturulan petek kiriş modeli Şekil 3.8’de 

verilmişti.  

 

Bulonlu birleşimli kirişlerin (I ve Petek) malzemesi olarak çelik kullanılmıştır.  Kirişlerin  

kesit yüksekliği (d), başlık kalınlığı (tf), gövde kalınlığı (tw), başlık genişliği (b)  olmak 

üzere bulonlu birleşimli kirişler için kullanılan geometrik ve malzeme özellikleri  Çizelge 

3.2’de verilmiştir.  

 

Çizelge 3.2. I ve petek kirişlerin geometrik ve malzeme özellikleri 

 
Kiriş Tipi L 

(mm) 

d 

(mm) 

tf 

(mm) 

tw 

(mm) 

b 

(mm) 

E 

(GPa) 

ρ 

(kg/m³) 

ν 

I ve Petek 8250 550 17,2 11,1 210 200 7850 0,30 

 

Bulonlu birleşimli kirişlerin sınır şartları, bulonların merkezinde üç doğrultudaki yer 

değiştirmeler sabitlenerek (sabit mesnet tanımı) belirlenmiştir. Örneğin merkezi olarak 

mesnetlenmiş beş bulonlu bir I kesitli kirişin bir ucu Şekil 3.13’te verilmiştir.  
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Şekil 3.13. Ağırlık merkezleri tarafsız eksen üzerinde olan beş bulonlu I kiriş 
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4. BULGULAR VE TARTIŞMA 

 

Bulgular ve Tartışma bölümünde, eksantrik mesnetli kirişlerin dinamik davranışları 

üzerine yapılan çalışmalar sunulmuştur. İlk olarak, 4.1 numaralı alt bölümde, eksantrik 

mesnetli bir kiriş için elde edilen denklemlerin, literatür, SEM ve mesnetlenmesi TE 

üzerinde olan bir kirişin frekans denklemi ile doğrulanması gerçekleştirilmiştir. 

Sonrasında 4.2 numaralı alt bölümde mesnet eksantrisitesinin kirişlerin frekansı 

üzerindeki etkisi detaylı bir şekilde analiz edilmiştir. 4.3 numaralı alt bölümde, petek 

kirişlerde eksantrisitenin frekansa etkisi incelenmiştir. 4.4 numaralı alt bölümde, 

eksantrik yerleştirilen bulon grubunun kirişlerin frekansı üzerindeki etkisi gösterilmiştir. 

 

4.1. Eksantrik Mesnetli Bir Kiriş İçin Elde Edilen Denklemlerin Doğrulanması 

 

Eksantrik mesnetin tarafsız eksene olan mesafesinin kiriş yüksekliğinde bölünmesi 

normalize edilmiş eksantrisiteyi tanımlar ve bu ifade Denklem (4.1)’de verilmiştir. 

 

 𝑒ℎ𝑛 =
𝑒𝑛

ℎ
 (4.1) 

 

n burada, sol mesnet için 1 sağ mesnet için 2 olmak üzere mesnet numarasını ifade 

etmektedir. İki uçtaki e değerinin aynı olması durumunda ise 𝑒ℎ =
𝑒1

ℎ
=

𝑒2

ℎ
 şeklinde ifade 

edilir. 

 

Çıkarılan denklemlerin doğruluğunu irdelemek için Bölüm 3.1.2’de türetilen analitik 

denklemlerle bulunan frekans değerleri önce literatürde verilen örneklerin sonuçları ile 

kıyaslanmıştır. Bu kıyaslamalar aşağıda mesnetlenme durumlarına göre sırasıyla 

verilmiştir. 

 

Eksantrik sabit-sabit mesnetli olma durumu için çıkarılan Denklem (3.92) ile elde edilen 

1. mod frekans değerleri, farklı eksantrisite durumları (eh) için Fernando vd., (2018) 

çalışmasında verilen örneğin sonuçları ile kıyaslanmıştır. Sonuçlar Çizelge 4.1’de 

verilmiştir. Söz konusu örneğe ait bilgiler Bölüm 3.2’de sunulan Çizelge 3.1’de 

verilmiştir. Sonuçların oldukça iyi uyuştuğu görülmektedir. 
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Çizelge 4.1. Sabit-sabit mesnetlenme durumunda analitik sonuçların literatür ile 

kıyaslanması 

 
Mod eh Analitik Fernando Analitik-Fernando 

%Hata 

1 

0 49,86 49,86 0,00 

0,125 53,39 53,39 0,00 

0,25 61,71 61,71 0,00 

0,375 71,09 71,10 0,01 

0,5 79,48 79,46 0,03 

 

Sabit-kayıcı mesnetli olma durumu için çıkarılan Denklem (3.93) ile elde edilen 1. mod 

frekans değerleri, farklı eksantrisite durumları (eh) için Li vd., (2023) ve Fernando vd., 

(2018) çalışmalarında verilen örneğin sonuçları ile kıyaslanmıştır. Sonuçlar Çizelge 

4.2’de verilmiştir. Söz konusu örneğe ait bilgiler Bölüm 3.2’de sunulan Çizelge 3.1’de 

verilmiştir. Sonuçların oldukça iyi uyuştuğu görülmektedir. 

 

Çizelge 4.2. Sabit-kayıcı mesnetlenme durumunda analitik sonuçların literatür ile 

kıyaslanması 

 
Mod eh Analitik Li Analitik-Li %Hata Fernando Analitik-Fernando %Hata 

1 

  

0 49,86 49,85 0,02 49,84 0,04 

0,5 49,83 49,81 0,04 49,77 0,12 

 

Ankastre-sabit mesnetli olma durumu için çıkarılan Denklem (3.94) ile elde edilen 1. mod 

frekans değerleri, farklı eksantrisite durumları (eh) için Fernando vd., (2018) 

çalışmasında verilen örneğin sonuçları ile kıyaslanmıştır. Sonuçlar Çizelge 4.3’te 

verilmiştir. Söz konusu örneğe ait bilgiler Bölüm 3.2’de sunulan Çizelge 3.1’de 

verilmiştir. Sonuçların oldukça iyi uyuştuğu görülmektedir. 

 

Çizelge 4.3. Ankastre-sabit mesnetlenme durumunda analitik sonuçların literatür ile 

kıyaslanması 

 
Mod eh2 Analitik Fernando Analitik-Fernando %Hata 

1 

0 77,89 77,89 0,00 

0,125 78,87 78,89 0,03 

0,25 81,48 81,44 0,05 

0,375 85,06 85,08 0,02 

0,5 88,90 89,11 0,24 
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Diğer doğrulama SEM ile olmuştur. Analitik denklemlerin SEM ile kıyaslaması yapılmış 

ve Çizelge 4.4’te verilmiştir. SEM ile bulunan doğal frekanslar Bölüm 3.2’de detayları 

verilen dikdörtgen kesitli SE modelinin analizi ile elde edilmiştir. Sonuçların oldukça iyi 

uyuştuğu görülmektedir. 

 

Çizelge 4.4. Eksantrik mesnetli bir kiriş için elde edilen denklemlerin SEM ile 

doğrulanması 

 
Mod Mesnetlenme 

Durumu 

eh fanalitik fSEM fanalitik-fSEM 

%Hata 

1 
Sabit-sabit 

0 49,86 49,90 0,08 

0,5 79,48 78,09 1,75 

1 
Sabit-kayıcı 

0 49,86 49,90 0,08 

0,5 49,83 49,89 0,12 

1 
Ankastre-sabit 

0 77,89 77,94 0,06 

0,5 88,90 88,61 0,33 

 

Bir diğer doğrulama mesnetlerin TE’de bulunma durumları için Bölüm 3.1.1’de çıkarılan 

Denklem (3.35) ve (3.47) ile yapılmıştır. Doğrulamada dikdörtgen kesitler için Çizelge 

4.5’te verilen dikdörtgen kesitli kirişin malzeme özellikleri kullanılmıştır. Karşılaştırma 

Çizelge 4.5’te verilmiştir. Sonuçların oldukça iyi uyuştuğu görülmektedir. 

 

Çizelge 4.5. Eksantrik mesnetli bir kiriş için elde edilen denklemlerin mesnetlerin TE 

olma durumu için çıkarılan denklemler ile doğrulanması 

 
Mod Mesnetlenme 

Durumu 

eh Mesnetlerin TE’de 

Bulunma durumu için 

fanalitik 

Eksantrik 

Mesnetler için 

fanalitik 

%Hata 

1 Sabit-sabit veya 

sabit-kayıcı 

0 49,84 49,86 0,04 

1 Ankastre-sabit 0 77,87 77,89 0,06 

 

4.2. Mesnet Eksantrisitesinin Kirişlerin Frekansı Üzerindeki Etkisi 

 

Bu alt bölümde; mesnet eksantrisitesinin kirişlerin frekansı üzerindeki etkisini 

incelemede kullanılan sabit-sabit, sabit-kayıcı, ankastre-sabit sınır şartları literatürde 

klasik sınır şartları olarak tanımlanmaktadır. Klasik sınır şartları, kirişlerde titreşim 

analizlerinde en yaygın kullanılanlarıdır (Fernandes da Silva vd., 2015).  
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Doğal frekanslar, bu sınır şartlarına göre değişken eksantrisite durumlarında Bölüm 

3.1’de türetilen frekans denklemleriyle analitik olarak elde edilmiştir. 

 

Sonuçların değerlendirilmesinde kullanılan 𝑓𝑁 normalize edilmiş doğal frekans değerini 

ifade etmektedir. Bu değer mesnetlerin eksantrik (𝑒ℎ ≠ 0) olması durumunda elde edilen 

doğal frekansların, mesnetlerin TE üzerinde (𝑒ℎ = 0) olması durumunda elde edilen 

doğal frekanslara bölünmesiyle Denklem (4.2)’deki gibi elde edilir. Burada i mod 

numarasını ifade etmektedir. 

 

 
𝑓𝑁 =

𝑓𝑒ℎ≠0,𝑖

𝑓𝑒ℎ=0,𝑖
 (4.2) 

 

4.2.1. İki ucu sabit mesnetli kiriş 

 

Eksantrisite etkisi, sabit-sabit mesnetlenme türü için 4 farklı durumda incelenmiştir. Bu 

mesnetlenme durumları aşağıda verilmiştir. 

 

Durum-1: eh=0; 0,125; 0,25; 0,375; 0,5 olma durumu. 

Durum-2: eh1=0; 0,125; 0,25; 0,375; 0,5 ve eh2=0 olma durumu. 

Durum-3: eh1=0; 0,125; 0,25; 0,375; 0,5 ve eh2=-0,5 olma durumu. 

Durum-4: eh=0; 0,125; 0,25; 0,375; 0,5 ve farklı L/h oranlarında eksantrisite etkisinin 

incelendiği durum. 

 

Durum-1, 2, 3 için Çizelge 3.1’de verilen geometrik özellikler kullanılmış olup 

L/h=60’tır. Durum-4 için ise malzeme özellikleri Çizelge 3.1’deki gibi olup değişken L/h 

oranları için kesit sabit bırakılarak kirişlerin L değeri ile oynanmıştır. 4 durum için 

incelemeler aşağıdaki gibidir. 

 

Durum-1: Çizelge 4.6’da bu durum için ilk beş modun doğal frekansları verilmiştir. Bu 

çizelgedeki değerler Şekil 4.1 çizdirilerek irdelenmiştir. 
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Çizelge 4.6. Durum-1’de ilk beş modun doğal frekansı 

 
Mod eh fanalitik 

1 

0 49,86 

0,125 53,39 

0,25 61,71 

0,375 71,09 

0,5 79,48 

2 

0 199,45 

0,125 199,41 

0,25 199,31 

0,375 199,14 

0,5 198,81 

3 

0 448,75 

0,125 452,41 

0,25 462,00 

0,375 476,76 

0,5 492,78 

4 

0 797,79 

0,125 797,21 

0,25 795,48 

0,375 792,57 

0,5 788,46 

5 

0 1246,54 

0,125 1249,83 

0,25 1259,26 

0,375 1273,61 

0,5 1291,22 

 

Şekil 4.1’de mesnetlenme durumu 1 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi verilmiştir. Sonuçlar incelendiğinde en büyük değişiklik 1,56 ile 

mod-1’de olup ileri modlara gidildikçe eksantrisite etkisinin azaldığı görülmüştür. Mod-

3 ve mod-5 için eksantrisite etkisi 1,1’in altına kalmaktadır. Bununla birlikte çift sayılı 

modlar için eksantrikliğin doğal frekans üzerindeki etkisi, tek sayılı modlardaki gibi 

değildir. Eksantrikliğin çift sayılı frekanslar üzerinde neredeyse hiçbir etkisi 

bulunmamaktadır. 
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Şekil 4.1. Mesnetlenme durumu 1 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi 

 

Şekil 4.2'de kirişin birinci ve ikinci mod şekilleri gösterilmiştir. Birinci mod şekli, kirişin 

pozitif ve negatif yönlerde tüm uzunluğu boyunca hareket gerçekleştirdiği temel bir 

titreşim modunu tanımlar. İkinci mod şekli ise kirişin hem pozitif hem de negatif yer 

değiştirmeler arasında dengeyi koruduğu daha karmaşık bir titreşim modunu tanımlar. 

Birinci modda, kirişin tüm uzunluğu boyunca aynı yönde hareket etmesi nedeniyle, 

eksantriklikten kaynaklanan asimetrik etkiler kirişin genel dinamik davranışı üzerinde 

daha belirgin bir rol oynamaktadır. Bunun sonucunda, eksantrisitenin artmasıyla birlikte 

birinci modun doğal frekansında daha fazla değişiklik gözlemlenmektedir. İkinci modda 

ise kirişin farklı bölgeleri zıt yönlerde hareket ettiğinden bu karşıt hareketler 

eksantrisitenin etkisini büyük ölçüde dengelemektedir. Özellikle kısalan ve uzayan 

bölgelerin simetrik olması nedeniyle eksantrisitenin frekans üzerindeki etkisi minimal 

düzeyde kalmaktadır. Bu durum, ikinci modda eksantrisite etkisinin büyük oranda 

azalmasına neden olmaktadır. Diğer bir ifadeyle ikinci modda kirişin kısalma ve uzama 

bölgeleri birbirini dengelediği için eksantrisite değişmesine rağmen frekansta kayda 

değer bir değişim görülmemektedir. 

 

 

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 0.125 0.25 0.375 0.5

f N

eh

Mod-1

Mod-2

Mod-3

Mod-4

Mod-5
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Şekil 4.2. Durum-1’de ilk iki mod şekli 

 

Durum 2: Çizelge 4.7’de bu durum için ilk beş modun doğal frekansları verilmiştir. Bu 

çizelgedeki değerler Şekil 4.3 çizdirilerek irdelenmiştir. 

 

Çizelge 4.7. Durum-2’de ilk beş modun doğal frekansı 

 
Mod eh1 eh2 fanalitik 

1 

0 

0,000 

49,86 

0,125 50,78 

0,25 53,19 

0,375 56,37 

0,5 59,65 

2 

0 

0,000 

199,45 

0,125 200,37 

0,25 202,96 

0,375 206,79 

0,5 211,30 

3 

0 

0,000 

448,75 

0,125 449,63 

0,25 452,17 

0,375 456,08 

0,5 460,96 

4 

0 

0,000 

797,79 

0,125 798,54 

0,25 799,30 

0,375 800,74 

0,5 808,72 

5 

0 

0,000 

1246,54 

0,125 1246,99 

0,25 1248,33 

0,375 1250,49 

0,5 1253,38 

 

Mesnetlenme durumu 2 için normalize eksantrisite ile normalize frekans değerlerinin 

değişimi ise Şekil 4.3’te verilmiştir. Mod-1 ve eh=0,5 için Durum-1’de 1,56 olan fN 

değeri, Durum-2’de 1,19’a düşmüştür. Yani iki ucun eksantrik olma durumuna göre bir 

bir ucun eksantrik olması; eksantrisite etkisinin %37 azalmasına sebep olmuştur. Çift 
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numaralı modlar olan mod-2 ve mod-4 için Durum-1’de minimal düzeyde kalan 

eksantrisite etkisi, durum-2’de daha fazladır. Mod-2 ve mod-4 için eksantrisite etkisi 

sırasıyla 1,06 oranında (fN=1,00→1,06) ve 1,01 (fN=1,00→1,01) oranında olmaktadır. 

Mod-3 ve mod-5’te ise durum-1’e benzer şekilde eksantrisitenin etkisi azalmakta ve 

1,03’ün altında kalmaktadır. 

 

 
 

Şekil 4.3. Mesnetlenme durumu 2 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi 

 

Durum-3: Bu durumda bir uçtaki mesnet eksantrisitesi eh=-0,5’te sabit tutularak diğer 

uçtaki mesnet eksantrisitesi değiştirilmiştir. Bu durum için ilk beş modun doğal frekansı 

Çizelge 4.8’de verilmiştir. Bu çizelgedeki değerler Şekil 4.4 çizdirilerek irdelenmiştir. 
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Çizelge 4.8. Durum-3’te ilk beş modun doğal frekansı 

 
Mod eh1 eh2 fanalitik 

1 

0,000 

-0,500 

59,65 

0,125 55,27 

0,250 52,14 

0,375 50,36 

0,500 49,83 

2 

0,000 

-0,500 

211,30 

0,125 217,73 

0,250 224,76 

0,375 231,85 

0,500 238,53 

3 

0,000 

-0,500 

460,96 

0,125 454,94 

0,250 450,37 

0,375 447,37 

0,500 445,93 

4 

0,000 

-0,500 

808,72 

0,125 816,71 

0,250 825,41 

0,375 834,50 

0,500 843,65 

5 

0,000 

-0,500 

1253,38 

0,125 1244,44 

0,250 1236,04 

0,375 1228,33 

0,500 1221,44 

 

Şekil 4.4’te mesnetlenme durumu 3 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi verilmiştir. Mod-3 ve mod-5’te eksantrisite etkisinin 1,04’ün 

altında kalması ile birlikte; mod-1, mod-3 ve mod-5’e bakıldığında; eh1, 0’dan 0,5’e 

doğru gittikçe yani mesnet-1 mesnet-2’den uzaklaştıkça eksantrisite etkisinin azaldığı 

gözlemlenmektedir. Durum-1 ve durum-2’ye göre bu farklı bir sonuçtur. Yani durum-1 

ve durum-2’de tek sayılı modlarda eh arttıkça artan eksantrisite etkisi durum-3’te azalan 

bir davranış göstermektedir.   

 

Mod-2 ve mod-4’e bakıldığında ise durum-2’ye benzer şekilde eh1=0,5’e doğru 

yaklaştıkça eksantrisite etkisi artmaktadır. Bu etki, Şekil 4.4’e bakıldığında sırasıyla 1,13 

(fN=1,06→1,19) ve 1,04 (fN=1,01→1,05) oranında olmaktadır. Bu sonuçlar Durum-2 ile 
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kıyaslandığında şunu ifade etmektedir: İki mesnetin eh değerinin toplamı mutlak olarak 

arttıkça çift sayılı modlarda eksantrisite etkisi bir o kadar artmaktadır.                                 

 

 
 

Şekil 4.4. Mesnetlenme durumu 3 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi 

 

Durum-4: Bu durumda farklı L/h oranlarının eksantrisiteye etkisini incelemek amacıyla 

L/h=2-10 aralığında değişen kirişlerin doğal frekansları, ilk mod için analitik yöntem ve 

SEM ile bulunmuş ve Çizelge 4.9’da verilmiştir. Bu çizelgedeki değerler Şekil 4.5 ve 

Şekil 4.6 çizdirilerek irdelenmiştir. 
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Çizelge 4.9. Durum-4’te ilk modun doğal frekansı 

 
L/h eh fanalitik fSEM 

2 

0,000 44852,69 31628,00 

0,125 44875,00 34000,00 

0,250 47463,00 36732,00 

0,375 53310,00 39424,00 

0,500 59610,00 41360,00 

4 

0,000 11218,00 10103,00 

0,125 11978,00 10720,00 

0,250 13747,00 12023,00 

0,375 15730,00 13382,00 

0,500 17506,00 14453,00 

6 

0,000 4986,16 4753,90 

0,125 5332,33 5054,20 

0,250 6143,87 5746,30 

0,375 7057,55 6490,30 

0,500 7875,28 7101,80 

8 

0,000 2803,29 2730,40 

0,125 2804,72 2908,40 

0,250 3001,19 3326,60 

0,375 3462,59 3783,10 

0,500 3982,80 4167,00 

10 

0,000 1795,02 1764,60 

0,125 1921,28 1881,90 

0,250 2218,02 2159,30 

0,375 2552,81 2464,80 

0,500 2852,15 2725,10 

 

Farklı L/h oranlarında, analitik denklemle bulunan frekans ile sonlu elemanlar (SE) 

analiziyle elde edilen frekans arasındaki hata oranları, eksantrisitenin (eh) değişimine 

bağlı olarak Şekil 4.5’te gösterilmiştir. Burada %hata Denklem (4.3)’teki gibi elde 

edilmiştir. 

 

 
%ℎ𝑎𝑡𝑎 =

|𝑓𝑆𝐸𝑀 − 𝑓𝐴|

𝑓𝐴
∗ 100 (4.3) 
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Şekil 4.5. Mesnetlenme durumu 4 için normalize eksantrisite ile %hata’nın değişimi 

 

Şekil 4.6 farklı L/h oranlarında normalize eksantrisitenin, normalize edilmiş ilk mod 

doğal frekansı üzerindeki etkisini göstermektedir. Burada L/h 2‘den 10’a gittikçe 

eksantrisite etkisi artmaktadır. L/h=2 olduğunda 1,31 olan eksantrisite oranı L/h=10 iken 

1,54’e yükselmektedir. Ayrıca, düşük eh değerlerinde (eh < 0,125) farklı L/h oranları 

arasında belirgin bir fark olmadığını, ancak eh değerinin 0,125'i geçtikten sonra bu 

farkların arttığı görülmektedir. 

 

 
 

Şekil 4.6. Mesnetlenme durumu 4 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi 
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Şekil 4.7 analitik yöntem ile bulunan frekansların SEM ile bulunan frekanslara 

bölünmesiyle elde edilen fanalitik/fSEM oranının L/h’ye bağlı olarak nasıl değiştiğini ve 

farklı eh değerlerinde etkilerini incelemektedir. Burada, analitik ve SEM sonuçları 

arasındaki fark L/h=2 iken 1,57’dir ve L/h=10 iken 1,05’e düştüğü görülmektedir. Bu fark 

Bölüm 2.3’te verilen kabullerin etkisi olarak; çıkarılan hareket denklemlerinde kesme 

deformasyonu ve dönme ataleti etkilerinin ihmal edilmesinden kaynaklanmaktadır. L/h 

oranı arttıkça, bu etkilerle karşılaştırıldığında eğilme daha belirgin hale gelmekte ve hata 

oranı azalmaktadır.   

 

 
 

Şekil 4.7. Mesnetlenme durumu 4 için L/h ile fanalitik/fSEM oranının değişimi 

 

4.2.2. Bir ucu sabit diğer ucu kayıcı mesnetli kiriş 

 

Literatürün (Fernando vd., 2018; Li vd., 2023) bildirdiğine göre bir ucu sabit diğer ucu 

kayıcı mesnetlenme durumu için eksantrisite etkisi minimal düzeydedir. Burada tek 

durum dikkate alınmıştır. 

 

Durum-5: eh=0 ve 0,5 olma durumu. 

 

Bu durum için ilk beş modun doğal frekansı Çizelge 4.10’da verilmiştir. Doğal frekanslar, 

literatürde bildirilen sonuçlar ile uyumludur. 
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Çizelge 4.10. Durum-5’te ilk beş modun doğal frekansı 

 
Mod eh fanalitik 

1 0 49,86 

  0,5 49,83 

2 0 199,45 

  0,5 198,89 

3 0 448,75 

  0,5 445,75 

4 0 797,79 

  0,5 786,27 

5 0 1246,54 

  0,5 1197,90 

 

4.2.3. Bir ucu ankastre diğer ucu sabit mesnetli kiriş 

 

Eksantrisite etkisi, bir ucu ankastre diğer ucu sabit mesnetlenme türü için tek durumda 

incelenmiştir. Bu durum şu şekildedir: 

 

Durum-6: eh= 0; 0,125; 0,25; 0,375; 0,5 olma durumu. 

 

Çizelge 4.11’de bu durum için ilk beş modun doğal frekansları verilmiştir. Bulunan doğal 

frekanslar literatür ile kıyaslanmış ve uyumlu sonuçlar elde edildiği gözlemlenmiştir. 

 

Şekil 4.8’de mesnetlenme durumu 6 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi verilmiştir. Mod-1 ve eh=0,5 için Durum-1’de 1,56 olan fN Durum-

7’de 1,14’e düşmüştür. Yani iki ucun eksantrik olma durumuna göre bir ucun ankastre bir 

ucun eksantrik sabit mesnetli olması eksantrisite etkisinin %42 azalmasına sebep 

olmuştur. Çift numaralı modlar olan mod-1 ve mod-4’te, eksantrisite; Durum-2’deki 

oranlara yakın değerlerde etki göstermiştir. eh=0,5; mod-3 ve mod-5’te ise durum-1 ve 

durum-2’ye benzer şekilde eksantrisitenin etkisi daha azdır ve 1,03’ün altındadır.  
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Çizelge 4.11. Durum-6’da ilk beş modun doğal frekansı 

 
Mod eh2 fanalitik 

1 

0 77,89 

0,125 78,87 

0,25 81,48 

0,375 85,06 

0,5 88,90 

2 

0 252,42 

0,125 253,34 

0,25 255,93 

0,375 259,82 

0,5 264,48 

3 

0 526,66 

0,125 527,52 

0,25 530,01 

0,375 533,86 

0,5 538,73 

4 

0 900,63 

0,125 901,32 

0,25 903,37 

0,375 906,63 

0,5 910,88 

5 

0 1374,31 

0,125 1374,64 

0,25 1375,62 

0,375 1377,22 

0,5 1379,38 

 

 
 

Şekil 4.8. Mesnetlenme durumu 6 için normalize eksantrisite ile normalize frekans 

değerlerinin değişimi 
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4.3. Mesnet Eksantrisitesinin Petek Kirişlerin Frekansı Üzerindeki Etkisi 

 

Bu alt başlıkta mesnet eksantrisitesinin petek kirişlerin frekansı üzerindeki etkisini 

irdeleyebilmek için L/h=5 ve 7 durumlarında SE analizleri yapılmıştır. Çizelge 4.12’de 

petek kirişin sabit-sabit mesnetlenmesi için değişken eksantrisite durumunda ilk beş 

modun doğal frekansı verilmiştir.  

 

Çizelge 4.12. Sabit-sabit mesnetlenme durumunda petek kiriş için ilk beş modun doğal 

frekansı 

 
Mod eh fSEM 

1 

0 95,22 

0,125 96,26 

0,25 99,39 

0,375 103,3 

0,5 106,06 

2 

0 248,16 

0,125 247,84 

0,25 246,37 

0,375 243,21 

0,5 238,85 

3 

0 395,39 

0,125 395,67 

0,25 396,6 

0,375 397,93 

0,5 398,95 

4 

0 519,82 

0,125 542,26 

0,25 542,41 

0,375 542,73 

0,5 542,68 

5 

0 640,8 

0,125 640,77 

0,25 640,16 

0,375 638,98 

0,5 637,43 

 

Şekil 4.9’da petek kiriş için normalize eksantrisite ile normalize frekans değerlerinin 

değişimi verilmiştir. Sonuçlar incelendiğinde en büyük değişiklik L/h=7 mod-1 durumu 

için 1,11 olarak bulunmuştur. Sonrasında ise L/h=5 iken 1. mod’da eksantrisite etkisi 1,07 
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olarak tespit edilmiştir. L/h=5’in ileri modlarına gidildikçe eksantrisite etkisinin petek 

kirişin frekanslarında minimal bir etki yarattığı görülmektedir. 

 

 
 

Şekil 4.9. Petek kiriş için normalize eksantrisite ile normalize frekans değerlerinin 

değişimi 

 

4.4. Bulonlu Birleşimli Kirişlerin Frekans Analizi 

 

Bu alt bölümde; I ve petek kiriş olmak üzere iki farklı kiriş tipinin, değişken bulon sayısı 

ve yerleşimleri altında SEM ile doğal frekansları bulunmuştur ve bu parametrelerin 

eksantrisiteye etkisi incelenmiştir. Hesaplamalarda L/h=5 alınmıştır. Dikkate alınan farklı 

bulon sayısı ve farklı eksantrisite durumları Bölüm 3.2.2’de verilen Şekil 3.9, Şekil 3.10  

Şekil 3.11’de görülmektedir. 

 

Bulon grubunun TE’de olması durumunda ve birden fazla bulon olması durumlarında 

bulon merkezinin yeri değişmediği için eh=0 olarak alınmıştır. Birden fazla bulon olması 

durumunda ve bulonların eksantrik (eh≠0) yerleşmesi durumunda ise eh değerinin 

hesaplanması Denklem (4.4) kullanılarak yapılmıştır. Burada 𝑒𝑏𝑢𝑙𝑜𝑛 değeri TE’e en uzak 

olan bulonun uzunluğunu ifade etmektedir. Bahsedilen yerleşim şekli Şekil 3.9b’de 

görülmektedir. 

 

 𝑒ℎ =
𝑒𝑏𝑢𝑙𝑜𝑛

ℎ
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 I ve petek kirişlerin; farklı bulon sayılarına, eksantrik (eh≠0) ve TE eksen üzerinde 

(eh=0) yerleşimlerine göre SEM ile bulunan birinci mod doğal frekansları Çizelge 4.13’te 

verilmiştir.  

 

Çizelge 4.13. Kirişlerin eksantrik ve TE üzerinde yerleşimli olması durumunda birinci 

mod doğal frekansları  

 
Kiriş Bulon 

Sayısı 

eh fSEM 

I 1 0 190,23 

I 1 0,41 198,64 

I 2 0 197,20 

I 2 0,41 208,18 

I 3 0 202,47 

I 3 0,41 213,48 

I 4 0 208,28 

I 4 0,41 217,88 

I 5 0 215,16 

I 5 0,41 222,56 

Petek 1 0 160,99 

Petek 1 0,41 162,78 

Petek 2 0 164,19 

Petek 2 0,41 166,72 

Petek 3 0 166,56 

Petek 3 0,41 169,41 

Petek 4 0 169,08 

Petek 4 0,41 172,00 

Petek 5 0 172,00 

Petek 5 0,41 174,56 

 

Çizelge 4.13’te verilen doğal frekans sonuçları aşağıda iki kısımda irdelenmiştir. 

 

Eksantrik yerleşen bulon grubunda bulon sayısının etkisi: 

 

Burada ilk olarak iki ucu Şekil 3.9a’da verildiği gibi mesnetlenen kiriş ile iki ucu sırasıyla 

Şekil 3.11’de verildiği gibi mesnetlenen kirişlerin birinci mod doğal frekansları 

kıyaslanmış ve Şekil 4.10 elde edilmiştir. Burada frekans, bağlı olduğu parametrelerle 

birlikte 𝑓𝑒ℎ,𝑖,𝑛 şeklinde tanımlanmıştır ve “n” bulon sayısını, “i” mod numarasını ifade 

etmektedir. n bulon sayısını ifade etmektedir ve n= 1, 2, 3, 4, 5 olmak üzere, %hata 

Denklem (4.5)’teki gibi hesaplanmıştır. 
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%ℎ𝑎𝑡𝑎 =

|𝑓0.41,1,𝑛 − 𝑓0,1,1|

𝑓0,1,1
∗ 100 (4.5) 

 

I ve petek kirişler için eksantrik 1 bulonlu durumda sırasıyla %4,4 ve %1,1 hata vardır. 

Bu durum eksantristenin etkisinin I kirişlerde daha fazla olduğunu göstermektedir. 

Eksantrik 5 bulonlu durumda %17 ve %8,5’a kadar yükselmektedir. Artış %’lerine 

bakıldığında bulon sayısının artması I kirişe daha fazla etki etmektedir.  

 

 
 

Şekil 4.10. Eksantrik yerleşen bulonlarda bulon sayısına göre %hatanın değişimi 

(mesnetlerin TE’de olma durumu ile kıyaslandığında) 

 

Sonraki kıyaslama da ise iki ucu Şekil 3.9b’de verildiği gibi mesnetlenen kiriş ile iki ucu 

sırasıyla Şekil 3.11’de verildiği gibi mesnetlenen kirişlerin birinci mod doğal frekansları 

kıyaslanmış ve Şekil 4.11 elde edilmiştir. Burada %hata Denklem (4.6)’daki gibi 

hesaplanmıştır. 

 

 
%ℎ𝑎𝑡𝑎 =

|𝑓0.41,1,𝑛+1 − 𝑓0.41,1,1|

𝑓0.41,1,1
∗ 100 (4.6) 

 

Bu kıyaslama, eksantrik durumda bir bulonla birden fazla bulon olmasının senaryoyu 

nasıl değiştirdiğini göstermektedir. 2 bulonlu durumda I ve petek kiriş için de hata oranı 

sırasıyla %5 ve %2,5 olmaktadır. %hata, I kirişte bulon sayısının artışıyla birlikte daha 
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hızlı bir artış göstermektedir ve 5 bulonlu durumda I kirişte hata oranı %12, petek kirişte 

ise %7,2 seviyesindedir. Bu sonuçlar, artış %’lerine bakıldığında eksantrik durumda 

bulon sayısının artması I kirişe daha fazla etki etmektedir ve 5 bulondan sonra %10’un 

üzerine çıkmaktadır.  

 

 
 

Şekil 4.11. Eksantrik yerleşen bulon grubunda bulon sayısına göre %hatanın değişimi 

(eh=0,41 tek bulonlu yerleşim ile kıyaslandığında) 

 

TE üzerinde yerleşen bulon grubunda bulon sayısının etkisi: 

 

Burada iki ucu Şekil 3.9a’da verildiği gibi mesnetlenen kiriş ile iki ucu sırasıyla Şekil 

3.10’da verildiği gibi mesnetlenen kirişlerin birinci mod doğal frekansları kıyaslanmış ve 

Şekil 4.12 elde edilmiştir. Burada %hata Denklem (4.7)’deki gibi hesaplanmıştır. 

 

 
%ℎ𝑎𝑡𝑎 =

|𝑓0,1,𝑛+1 − 𝑓0,1,1|

𝑓0,1,1
∗ 100 (4.7) 

 

Bu kıyaslama, bulonların ağırlık merkezi tarafsız eksenin üzerinde olması durumunda ve 

birden fazla bulon olması durumunda eksantrisite etkisinin ne düzeyde olduğunu 

incelemektedir. 2 bulonlu durumda hata oranları her iki kiriş tipi için de %4’ün altındadır. 

Bulon sayısı arttıkça I kirişteki hata oranı petek kirişe göre daha yüksek seviyelere 

ulaşmıştır ve 5 bulonlu durumda I kirişteki hata %13 petek kirişte %7’dir. Bulonların 
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ağırlık merkezi tarafsız eksenin üzerinde olsa da birden fazla bulonun doğal frekansları 

etkilediği görülmektedir. 

 

 
 

Şekil 4.12. TE üzerinde yerleşen bulon grubunda bulon sayısına göre %hatanın değişimi 
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5. SONUÇ 

 

Bu çalışmada, farklı kiriş tipleri, mesnet şartları ve geometrik özellikler altında 

eksantrisitenin etkisi incelenmiştir. Analitik yöntemler kullanılarak farklı modlar için 

doğal frekanslar belirlenmiş ve elde edilen sonuçlar literatürdeki çalışmalar ve sonlu 

elemanlar yöntemi (SE) ile karşılaştırılmıştır. Çalışma kapsamında ulaşılan temel 

sonuçlar aşağıda özetlenmiştir: 

• Analitik denklemlerin doğrulanması: 

Hamilton prensibi ile elde edilen ve eksantrik mesnetli kirişlerin frekanslarını 

veren diferansiyel denklemlerin çözümleri, literatürdeki çalışmalar ve SE 

analizleri ile karşılaştırılmış ve sonuçların yüksek uyum gösterdiği tespit 

edilmiştir. Bu doğrultuda, türetilen analitik denklemlerin doğruluğu 

kanıtlanmıştır. 

• Eksantrisitenin mesnet koşullarına etkisi: 

Farklı mesnet koşulları altında eksantrisitenin etkisi değerlendirildiğinde, 

ankastre-sabit mesnet koşullarında doğal frekanslarda %14 artış, sabit-sabit 

mesnet koşullarında ise %56’ya varan frekans artışları gözlemlenmiştir. Ayrıca, 

her iki ucun eksantrik olması durumuna kıyasla, bir ucun ankastre, diğer ucun 

eksantrik olması durumunda eksantrisite etkisinin %42 azaldığı belirlenmiştir. 

Sabit-kayıcı mesnet koşullarında ise literatürdeki çalışmalarla uyumlu sonuçlar 

elde edilmiş olup, eksantrisitenin doğal frekanslar üzerindeki etkisinin minimal 

seviyede olduğu görülmüştür. 

• Mod şekillerine göre eksantrisitenin etkisi: 

Çalışma kapsamında ilk beş mod incelenmiş ve birinci modda eksantrisitenin 

doğal frekanslar üzerinde belirgin bir fark yarattığı gözlemlenmiştir. Daha yüksek 

modlara geçildikçe eksantrisitenin etkisinin azaldığı tespit edilmiştir. 

• L/h oranının eksantrisite etkisine katkısı: 

Farklı L/h oranlarında eksantrisitenin doğal frekanslar üzerindeki etkisi 

incelenmiş ve L/h oranı arttıkça eksantrisitenin etkisinin de arttığı görülmüştür. 

Analitik ve SE sonuçlarının kıyaslanması amacıyla fanalitik/fSEM  oranı incelenmiş 

ve L/h oranı arttıkça bu oranın 1’e yaklaştığı, yani analitik ve SE sonuçlarının 

birbirine yakınsadığı tespit edilmiştir. Bu durum, Euler-Bernoulli teorisinin 
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kabullerinden kaynaklanmaktadır. Çünkü türetilen analitik denklemler, düşük L/h 

oranlarında kayma deformasyonlarını dikkate almadığı için, SE analizlerinden 

elde edilen sonuçlardan sapma göstermektedir. Ancak L/h oranı arttıkça eğilme 

etkisi baskın hale gelmekte ve analitik denklemler ile SE analizleri arasında daha 

iyi bir uyum sağlanmaktadır. 

• Eksantrisitenin petek kirişlerdeki etkisi: 

Mesnet eksantrisitesinin petek kirişlerin doğal frekanslarına olan etkisi sabit-sabit 

mesnet koşullarında L/h = 7 ve L/h = 5 için incelenmiştir. En büyük değişimin 

birinci modda meydana geldiği ve eksantrisitenin frekans üzerindeki etkisinin 

sırasıyla 1,11 ve 1,07 oranında olduğu belirlenmiştir. Daha yüksek modlara 

geçildikçe eksantrisitenin petek kirişlerin frekansları üzerindeki etkisinin minimal 

seviyeye indiği görülmüştür. 

• Eksantrisitenin bulonlu birleşimli kirişlerdeki etkisi: 

L/h = 5 için I kesitli ve petek kirişlerde, farklı bulon sayılarının ve yerleşimlerinin 

eksantrisiteye etkisi incelenmiştir. Tarafsız eksenin üzerinde bulunan bulonlar için 

hali hazırda var olan doğal frekans denklemlerinin, eksantrik durumda başarılı 

tahmin yapamadığı tespit edilmiştir. Özellikle, frekanslarda %17’ye varan 

sapmalar gözlemlenmiştir. Ayrıca, bulonların ağırlık merkezinin tarafsız eksen 

üzerinde olduğu, ancak birden fazla bulonun bulunduğu durumlarda, doğal 

frekanslarda %13’e varan değişimler olduğu belirlenmiştir. Bu sonuç, bulonların 

ağırlık merkezi tarafsız eksen üzerinde olsa bile, bulon sayısının artmasının doğal 

frekanslar üzerinde önemli değişimlere yol açtığını göstermektedir. 
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