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Bu tez caligmasinda, basit kirislerin dogal frekansi iizerindeki mesnet eksantrikliginin
etkisi incelenmistir. Geleneksel kiris teorileri, mesnetlerinin Tarafsiz Eksen (TE)
diizlemde yer aldig1 varsayimina dayanir; ancak pratikte mesnetler bu diizlemden farkl
konumlarda olabilir. Bu farklili§in etkisini incelemek amaciyla ¢aligmada analitik ve
sayisal yontemler kullanilmistir.

Eksantrik mesnetli kirislerin serbest titresim davranigini tanimlayan hareket (diferansiyel
denklem) denklemi, Hamilton prensibi kullanilarak elde edilmistir. Hareket denklemi
coziilerek kiris frekanslar1 analitik olarak hesaplanmistir. Eksantrik mesnetli kirislerin
frekanslari, sayisal bir yontem olan sonlu elemanlar yontemi kullanilarak da
hesaplanmistir. Analitik ve sayisal yontemlerle hesaplanan frekans degerleri
karsilastirilmistir.
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In this thesis study, the effect of support eccentricity on the natural frequency of simple
beams is investigated. Traditional beam theories are based on the assumption that the
supports are located in the Neutral Axis (NA) plane; however, in practice, the supports
may be positioned differently from this plane. Analytical and numerical methods were
used to examine the effect of this difference.

The equation of motion (differential equation) describing the free vibration behavior of
beams with eccentric supports was derived using Hamilton's principle. By solving the
equation of motion, the beam frequencies were calculated analytically. Additionally, the
frequencies of beams with eccentric supports were calculated using a numerical method,
specifically the finite element method. The frequency values calculated through analytical
and numerical methods were compared.
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ONSOZ

Calismamin her asamasinda bana yol gosteren, bilgi birikimi ve tecriibelerinden
yararlanirken gostermis oldugu hosgoriisii ve sabriyla destegini hi¢ eksik etmeyen
danigsman hocam Sayin Prof. Dr. Hakan Tacettin Tiirker’e sonsuz tesekkiirlerimi sunarim.
Calismalarim boyunca maddi ve manevi destekleriyle beni higbir zaman yalniz
birakmayan, her zaman yanimda olan ve bugiinlere gelmemde biiylik pay1 olan sevgili
aileme, sonsuz siikranlarimi sunarim. Destekleri ve anlayisiyla her zaman yanimda
oldugu i¢in Aizhan Abilkhaiyrkyzy’na tesekkiir ederim.

Egitim hayatimin her kademesinde beni destekleyen ve gectigimiz aylarda aramizdan
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1. GIRIS

Kiitle ve esnekligi sahip olan her cisim salinim hareketi yapabilir. Aslinda duyma, gérme,
konusma, yliriime, nefes alma gibi pek c¢ok insan faaliyeti bu salinim hareketine
dayanmaktadir. Isitme kulak zarmin titresimiyle, gorme 151k dalgalarinin titresimiyle,
konusma girtlaktaki titresimlerle, yiirlime bacaklarin ve kollarin salinimiyla, nefes alma
ise akcigerlerin yaptig1 periyodik hareket ile gerceklesir. Bu periyodik hareket, sistemin
dinamik Ozellikleri hakkinda Onemli bilgiler saglar ve sistemin davraniginin

anlasilmasinda biiyiik 6neme sahiptir.

Miihendislikte; mekanik ve yapisal sistemlerin titresim davranmigini anlamak, farkl
yapilarin ve makinelerin gilivenli bir sekilde tasarlanmasi, insa edilmesi ve isletilmesi
acisindan biiylik bir 6nem arz eder. Mekanik ve yapisal elemanlarda ve sistemlerde
gerceklesen hasarlarda bazen titresimlerin rolii biiyiik olabilir. Ornegin, kopriiler, binalar
ve barajlar gibi yapilarin 6nemli hasarlarinin bir¢ogu, riizgar kaynakl titresimler veya
depremlerde meydana gelen salimimli yer hareketiyle iliskilidir. Bu nedenle, titresim
analizi, miihendislik yapilarinin giivenligi, verimliligi ve dayaniklilig1 agisindan kritik bir
Oneme sahiptir. Yapilarin dinamik performansini optimize etmek, titresim kaynakli
hasarlar1 belirlemek ve makine ile yap1 elemanlarinda hasarlar1 6nlemek amaciyla yaygin
olarak kullanilan bu yoOntem, sistemlerin uzun Omiirli ve giivenli calismasinin

saglanmasinda 6nemli bir yere sahiptir.

Miihendislik uygulamalarinda serbest titresim, bir sistemin baslangic kosullar
dogrultusunda, dis bir kuvvet etkisi olmaksizin gergeklestirdigi hareket olarak tanimlanir.
Salinimli davranigin bir gostergesidir ve sistem bilesenleri arasindaki kinetik ve
potansiyel enerjilerin tekrarl degisimi sonucu ortaya ¢ikar ve zellikle yap1 elemanlarinin
dogal frekanslarimi belirlemek i¢in kullanilir. Dogal frekans, bir sistemin 6zelliklerine
bagli olarak her yapi i¢in benzersizdir. Dogal frekanslarin dogru bir sekilde hesaplanmasi,
yapilarin glivenligi acisindan son derece dnemlidir ¢linkii sistemlerin benzer frekanslarla
calismasi durumunda rezonans olusabilir ve bu da yapilarin hasar gérmesine veya

cokmesine yol acabilir.



Kirisler, miihendislik yapilarinda yaygin olarak kullanilan elemanlardir. Kirislerin serbest
titresim analizi, miithendislik uygulamalarinda siklikla ihtiya¢ duyulan bir konudur.
Klasik kiris teorileri, kiriglerin dogal frekanslarin1 hesaplamak i¢in kullanilan en temel
yaklasimlardir. Bu teorilerde, kirisin bir eksen boyunca uzanan bir yapi olarak kabul
edilmesi ve mesnetlerin genellikle kirisin TE diizleminde yer aldig1 varsayilir. Euler-
Bernoulli ve Timoshenko kiris teorileri gibi yaklagimlar, klasik sinir kosullarina sahip

kirislerin dogal frekanslarini hesaplamak i¢in yaygin olarak kullanilir.

Klasik kirig teorilerinin kabul ettigi, mesnetlerin kirisin TE diizleminde bulundugu
varsayimi pratikte her zaman gecerli degildir ve 6zellikle eksantrik mesnet durumlarinda
gecerliligini yitirir. Eksantriklik, bir kirisin mesnet noktalarinin TE diizlemden farkli bir
konumda yer almasi durumunu ifade eder. Eksantrik mesnetlenmis kirislerin analizinde,
mesnetlerin dogru konumlarinin modele dahil edilmesi biiylik 6nem tasir ¢linkii mesnet
eksantrikligi, kiriglerin serbest titresim 6zelliklerini ve dolayisiyla dogal frekanslarini

dogrudan etkiler.

Son yillarda yapilan aragtirmalar, mesnet eksantrikliginin kirislerin dogal frekanslari
tizerinde Onemli bir etkiye sahip oldugunu gostermektedir. Bu nedenle, eksantrik
mesnetlerin kiriglerin dogal frekanslar1 {izerindeki etkilerinin dogru bir sekilde
anlasilmasi, daha giivenilir tasarim ve analizler yapilabilmesi i¢in kritiktir. Eksantrikligin
dogal frekanslar iizerindeki etkisini tam olarak tahmin etmek i¢in detayli analizlere

ithtiya¢ duyulmaktadir.

Bir sistemin titresimli analizi ya zaman alaninda ya da frekans alaninda yapilabilir. Zaman
alaninda, bir titresim hareketinin bagimsiz degiskeni zamandir. Bu durumda, sistem bir
dizi zamana bagh diferansiyel denklem olarak modellenebilir. Bir titresim sisteminin
modeli, ya kuvvet-momentum orani iligkileri (Newton’un ikinci yasasi) ya da Hamilton
prensibi gibi kinetik ve potansiyel enerji kavramlarimi kullanan yaklagimlarla formiile

edilebilir.

Bu calismada, farkli mesnet eksantriklikleri ve smir kosullarmin kirislerin dinamik

davranigina etkisi incelenmistir. Eksantrik mesnetli kirigin serbest titresim davranisini



tanimlayan hareket denklemi ¢ikartilmis ve denklem ¢oziilerek frekanslar hesaplanmustir.
Calisma kapsaminda ¢ikartilan analitik denklemlerle bulunan frekanslar, SE analizleri ile

hesaplanan frekanslarla karsilastirilmistir.



2. KURAMSAL TEMELLER VE KAYNAK ARASTIRMASI

Bu boliim, aragtirmanin kuramsal altyapisini ve ilgili literatiirdeki bilgi birikimini
sunmay! amaglamaktadir. ilk olarak Onceki calismalar incelenerek, arastirmanin
temellendigi mevcut bilgi birikimi ortaya konmustur. Daha sonra, titresim analizi ile ilgili
temel kavramlar ve miihendislik uygulamalar1 kapsamli bir sekilde verilmistir. Titresim
analizi bashig1 altinda, titresim kavraminin 6nemi, tarihsel gelisimi, insaat mithendisligi
ve diger alanlardaki uygulamalar1 ile sistemlerin matematiksel modelleme ve
siiflandirma yontemleri ele alinmistir. Son olarak Euler-Bernoulli kiriglerinin serbest

titresim analizi ve eksantrik mesnetli kirisler sunulmustur.

2.1. Onceki Calismalarin Incelenmesi

Bircok arastirmaci eksantrik olarak mesnetlenmis kirislerin titresim analizini incelemis
ve bu konuda ¢esitli teoriler gelistirmistir. Dwaikat ve Kodur (2010), ¢elik kiriglerin
yangin kosullar1 altinda sergiledigi davraniglarin, kirisin eksantrik mesnetlenme
durumundan Onemli Olgiide etkilendigini gostermistir. Bu ¢alismada, eksantrik
mesnetlenmis celik kirislerin yangin altinda maruz kaldiklar1 termal genlesme ve bu
genlesme sonucunda olusan kuvvetlerin kirisin genel performansi iizerindeki etkisi
incelenmistir. Radice, (2012) ise eksantrik mesnetli basit kirislerin dogal frekanslari
tizerindeki etkisini arastirmis ve eksantrik mesnetlerin kirisin notral ekseninden alt kenara
kaydirtlmasi durumunda, dogal frekanslarin %55 oraninda arttifini tespit etmistir. Bu
sonuclar, eksantrik mesnetlerin dogal frekanslar iizerindeki onemli etkisini ortaya
koymaktadir. Eltaher vd. (2013), fonksiyonel olarak derecelendirilmis makro ve nano
kirislerin serbest titresim Ozelliklerinin, notral eksenin konumuna bagli olarak nasil
degistigini gostermislerdir. Bu calismada, malzeme 06zelliklerinin eksen boyunca
degisiminin, kirisin dogal frekanslar1 lizerindeki etkisinin belirgin oldugu vurgulanmstir.
Aymi sekilde Wang vd. (2017) baska bir calismasinda, fonksiyonel olarak
derecelendirilmis kirislerin orta diizlem ve notral diizlem formiilasyonlarina dayali
titresim analizleri karsilastirilmis, her iki formiilasyonun da benzer sonuglar verdigi,
ancak noétral diizlem formiilasyonunun belirli sinir kosullari altinda daha zor uygulanabilir
oldugu vurgulanmistir. Fernando vd. (2018), katmanli kiriglerin titresim analizlerinde,

mesnet konumlarinin kiris yiiksekligi boyunca degistirildiginde elde edilen sonuglari
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incelemis ve bu durumun dogal frekanslar iizerinde belirgin bir degisim yarattigini
gostermistir. Bu ¢aligmada, genellestirilmis kiris elemanlari, kompozit kabuk elemanlari
ve li¢ boyutlu kat1 elemanlar kullanilarak yapilan modellemeler, eksantrik mesnetlerin
dogal frekans degisimlerine yol actigmmi dogrulamistir. Tiirker’in (2022) gelistirdigi
modifiye kirig teorisi ise, eksantrik olarak mesnetlenmis kirislerin egilme analizlerini
daha dogru bir sekilde tahmin etmek icin kullanilmis ve bu teorinin SE ¢oziimleri ile
dogrulandigi belirtilmistir. Analizler, eksantrik mesnetlerin kiriglerin rijitligi iizerindeki
onemli etkisini ortaya koymaktadir. Son olarak Li vd. (2023), basit kirislerin serbest
titresim analizinde eksantrik mesnetlerin dogal frekanslar tizerindeki etkilerini arastirmis
ve bu mesnetlerin kirislerin genel titresim davranisini nasil degistirdigini gostermistir.
Calisma, eksantrik mesnetlerin yalnizca yerel degil, ayn1 zamanda yerel olmayan bir etki

yarattiZini ortaya koymustur.

2.2. Titresim Analizi

Diizensizliklerden arinmis ve nispeten diisiik frekanslarda gerceklesen tekrarli hareketler
genellikle salinim olarak adlandirilir. Titresim ise mekanik bir sistemin tekrarlayan,
periyodik veya salinimli tepkisidir. Bir titresim dongiisiiniin tekrar etme hizina frekans
denir. Ancak, diizensiz ve rastgele davranis sergileyen, yiiksek frekansl ve diisiik genlikli

saliimlar da genellikle titresim sinifina girer.

Bir miihendislik sistemi, bir baslangi¢ etkisiyle harekete gegirilip, sonrasinda herhangi
bir zorlayict uyarim olmadan serbestce hareket etmesine izin verildiginde, belirli bir
frekansta titresim yapma ve belirli bir geometrik sekli koruma egiliminde olacaktir. Bu
frekans sistemin dogal frekansi olarak adlandirilir ve sistemin hareketli parcalarinin
karsilik gelen sekli (veya hareket orani) mod sekli olarak adlandirilir. Titresimli bir
sistemin herhangi bir rastgele hareketi, dogal frekanslar1 ve mod sekilleri ile ifade

edilebilir (de Silva, 2006).

Miihendislik yapilarmin titresim altindaki tasariminda 6nemli bir adim, yapinin mod
sekilleri ve dogal frekanslar1 gibi titresim modal 6zelliklerinin degerlendirilmesidir. Bu
modal bilgiler, dinamik uyarimlara maruz kalan bir yapinin tasariminda ve istenmeyen

titresimlerin bastirilmasinda 6nemli bir rol oynar (Jin vd., 2015).

5



2.2.1. Titresim analizinin 6nemi

Miihendislik yapilari; mimari yapilar, ucaklar, roketler, otomobiller, tiirbinler, gemiler ve
denizaltilar gibi karmasik ortamlarda ¢alisarak c¢esitli dinamik yiiklere maruz kalir. Bu
durum, yapilarin titresimli davranis géstermesine neden olabilir. Bu tiir uygulamalarda,
titresimlerin  yol agtigit malzeme yorgunlugu, miihendislik yapilarmi ¢dkmeyle

sonuglanabilecek bir risk ile kars1 karsiya getirebilir.

Titresim uygulamalari; ingaat, iretim, makine, havacilik ve uzay, mekatronik ve elektrik-
elektronik gibi miihendislik alanlarinin bircogunda yer almaktadir. Insaat mithendisligi
alaninda titresimlerin 6nemi biiyiiktiir. Bu alanda bir¢ok felaket niteligindeki olay,
titresimlerin yikic1 etkisini gdzler oniine sermistir. Ornegin, {inlii Tacoma Narrows
Kopriisii, 1940 yilinda, riizgarin kopriiniin dogal frekanslarindan biriyle uyumlu bir dis
periyodik frekans olusturmasi sonucu siddetli rezonansa maruz kalarak ¢Okmiistiir.
Bir¢ok miihendislik sistemi i¢in rezonans, istenmeyen ve yikici sonuglara yol acabilecek
bir durumdur. Ayrica mimari yapilarda olusan titresimlerin yarattig giiriiltii; insanlarda
huzursuzluk, rahatsizlik ve verimlilik kaybina yol agmaktadir. Bu nedenlerle, yap1
titresimlerini anlamak ve bu titresimleri uygun tasarim yontemleriyle azaltmak, giivenilir,
emniyetli ve uzun Omiirlii yapisal performans i¢in biiyilk 6nem tagimaktadir (Jin vd.,

2015).

Titresim tasarimi ve kontrolii, yapilarin, makinelerin ve endiistriyel siireglerin yiiksek
performansin1 korumak ve iiretim verimliligini artirmak ve servis siirelerini uzatmak
acisindan kritik bir 6nem tagimaktadir. Titresimler "iyi" veya "koti" etkiler gosterebilir.
Iyi etki gosteren titresimler faydali bir amaca hizmet ederken, kotii etki gosteren
titresimler rahatsi1z edici veya hasar birakan etkilere neden olabilir ve bu titresimler dogal
olarak meydana gelebilecegi gibi insan kaynakli nedenlerle de ortaya ¢ikabilmektedir
(Balachandran, 2019). Titresim analizlerinin temel hedefleri, istenmeyen titresimleri
bastirmak veya bunlarin ortadan kaldirilmasi ve istenen titresim sekilleri ile seviyelerini

tiretmektir (de Silva, 2006).

Kirigler, plakalar ve kabuklar, bircok miihendislik yapisi ve makinenin temel yapisal

elemanlarini olusturur. Yapilarin bir¢ogu, bir veya daha fazla kiris bileseni igerir; 6rnegin

6



celik cerceveli yapilar, kopriiler ve binalar bunlara 6rnek verilebilir. Ayrica birgok yap1
baslangicta kiris olarak modellenebilir. Ornegin, bir yay tahtasi veya bir riizgar enerji
jeneratoriiniin destekleri, bir konsol kiris olarak, bir iist ge¢it ya da kopriiniin agiklig1 basit
bir kiris olarak degerlendirilebilir. Bu elemanlarin titresim 6zelliklerinin detayli bir
bicimde anlagilmasi, yapilarin titresimlerinin tahmin edilmesi ve diigiik titresim ve
gliriiltii yayilim ozelliklerine sahip uygun yapilar tasarlanmasi bakimindan biiyiik bir

oneme sahiptir (Jin vd., 2015).

2.2.2. Titresimin kisa bir tarihi

Titresim teorisinin temelleri, miizik aletlerinin tasarimi ve gelistirilmesine kadar
uzanmaktadir. Davullar, fliitler ve telli ¢calgilar gibi enstriimanlarin, Cin ve Hindistan’da
M.O. binlerce y1l éncesine dayandigi bilinmektedir. Ornegin, Misirlilar M.O. 3000 y1l1
civarinda arplar kullanirken, Yunan filozof ve matematik¢i Pythagoras (M.O. 582-502),
demircilerin iirettigi seslerle deneyler yapmis ve bu sesleri miizik ile fizik arasinda
anlamlandirmaya ¢alismistir. Cinliler ise M.S. 2. yiizyilda deprem titresimlerini tespit
etmek icin mekanik bir sismograf gelistirmistir. Modern titresim teorisinin temelleri,
cesitli bilim insanlar1 ve matematikgilerin ¢calismalariyla atilmistir. Robert Hooke (1635—
1703) iplerin titresimleri lizerine deneyler yaparken, Sir Isaac Newton (1642-1727)
titresimleri analiz etmek i¢in hareket yasalarimi ve kalkiiliisii gelistirmistir. Daniel
Bernoulli (1700-1782) ve Leonard Euler (1707-1783) kiris titresimlerini incelemis,
Joseph Lagrange (1736-1813) dinamik denklemleri formiile etmek ic¢in enerji
yontemlerini arasgtirmigtir. Charles Coulomb (1736-1806) torsiyonel titresimler ve
stirtinme konularina odaklanirken Joseph Fourier (1768—1830) sinyal frekans analizinin
teorisini gelistirmistir. Simeon-Dennis Poisson (1781-1840) ise membranlar ve elastik
malzemelerin titresimlerini analiz etmistir. Sanayi Devrimi ile birlikte, buhar tiirbinleri
ve diger doner makinelerin gelisimi, titresim analizi, tasarimi ve kontrolii alaninda
yenilikleri zorunlu hale getirmistir. Glinimiiz titresim tekniklerinin bircok yonii, bu
donemdeki gelismelerden etkilenmistir. Daha yakin donemde o6ne ¢ikan ve Onemli
katkilar sunan isimler arasinda Rankine (1820-1872), saftlarin kritik hizlar1 {izerine
yaptig1 ¢aligmalarla taninmistir. Kirchhoft (1824—1887), levhalarin titresimlerini detayli
bir sekilde analiz etmistir. Rayleigh (1842—1919), ses ve titresim teorisine 6nemli katkilar

saglamis ve dogal titresimleri belirlemek i¢in hesaplama yontemleri gelistirmistir. De
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Laval (1845-1913), donen disklerin dengeleme sorunlar1 {izerinde ¢alismistir. Poincare
(1854-1912), dogrusal olmayan titresimleri analiz eden ¢alismalariyla dikkat ¢ekmistir.
Stodola (1859-1943), rotorlar, yataklar ve siirekli sistemlerin titresimleri iizerine
kapsamli arastirmalar yapmistir. Ayrica Timoshenko (1878-1972), Den Hartog (1901—
1989), Clough (1920-2014) ve Crandall (1903—-1994), titresim uygulamalar1 ve bu
alandaki literatiire degerli katkilar sunmus miihendisler arasinda yer almaktadir (de Silva,

2006).

2.2.3. Titresim analizinin insaat mithendisligi ve diger alanlarda uygulamalar:

Titresim analizi, iki ana uygulama alanin1 kapsamaktadir. Bunlardan birincisi; istenmeyen
titresimlerin bastirilmast veya ortadan kaldirilmasi, ikincisi ise gerekli tiir ve
seviyelerdeki yararli titresimlerin iiretilmesidir. Zararli ve istenmeyen titresim Ornekleri
arasinda sunlar yer alir: Depremlerin sonucunda ortaya ¢ikan yapisal hareketler, kopriiler
veya rayli sistemlerle araclar arasinda meydana gelen dinamik etkilesimler, insaat
ekipmanlarinin olusturdugu giiriiltii, makinelerden destek yapilarina ya da gevreye
yayilan titresimler ve dinamik yiikleme sonucunda olusan kabul edilemez hareketler ile

malzeme yorgunluguna bagli hasar ve ¢cokmeler.

Ornegin; bir ulasim araci ile koprii arasindaki dinamik etkilesimler, hem yapisal
problemlere hem de siiriis kalitesinde diisiise neden olabilir. Bu tiir kara ulasim
sistemlerinin gelistirilmesi sirasinda, titresimle ilgili detayli analiz ve 6zenli tasarim kritik
bir 6neme sahiptir. Titresim miktarlarinin azaltilmasi, giirtiltii kirliligini azaltir ve daha
iyl bir ¢aligma ortami saglar. Ayrica yiiksek performans ve {iiretim verimliliginin
korunmasinin yani sira kullanici ve operator konforunu artirarak endiistriyel makinelerin

kullanim 6mri uzar.

Faydali titresim tiirleri arasinda miizik aletlerinin iirettigi titresimler, fizik tedavi ve tibbi
alanlarda kullanilan cihazlar, endiistriyel karistiricilar, parca besleyiciler ve ayiricilar gibi
titresim ekipmanlar1 ile matkaplar ve yiizey cilalama cihazlar1 gibi malzeme isleme
araglar1 yer almaktadir.

Titresim farkli mithendislik disiplinlerinde genis bir uygulama alanina sahiptir. Insaat

miithendisligi yapilarinin; 6rnegin kopriiler, rayli sistemler, yiiksek binalar ve bacalar gibi
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yapilarin modal analiz ve tasarimina yonelik ¢alismalar dogrudan titresim teorisi ve

uygulamalarini igermektedir.

Kara ulasim sistemlerinde, araglarin titresim analizi prensiplerine uygun olarak
tasarlanmasi, yalnizca yapisal dayaniklilik ve islevselligin saglanmasi agisindan degil,
ayni zamanda siiriis kalitesi ve konfor diizeylerinin iyilestirilmesi i¢in de gereklidir.
Ulasim sistemlerinin tasariminda, farkli frekanslar ve seyahat siireleri i¢in ivmenin kok-
ortalama-kare (RMS) seviyelerine getirilen sinirlar belirlenerek, siirlis konforu ve kalite

standartlar1 tanimlanir.

Havacilik sektoriinde, ugaklarin mekanik ve yapisal bilesenleri, optimum titresim
performans1 saglayacak sekilde tasarlanmaktadir. Ornegin, helikopterlerde rotor
dengesizliklerinden kaynaklanan titresimler, uygun tasarim ve dengeleme yontemleriyle
azaltilabilir. Gemi titresimleri ise yapisal tasarimin yani sira pervane ve diimen
tasarimiyla kontrol altina almabilir. Igten yanmali motorlarda titresimlerin azaltilmasi,

Ozel titresim bastirma tasarim prensiplerinin uygulanmasiyla miimk{indiir.

Uretim ve imalat miihendisligi alaninda, mekanik titresimler, iiriin kalitesi ve proses
verimliligi iizerinde dogrudan etkili olmaktadir. Ornegin makine tezgahlarinda olusan
titresimler, yalnizca {rlinlerin boyutsal hassasiyetini ve ylizey kalitesini olumsuz
etkilemekle kalmaz, ayn1 zamanda hizli1 asinmaya ve takim kirilmalarina neden olabilir.
Titresimler yalnizca makinelerin omriinii kisaltmakla kalmaz, ayni zamanda iiretim
makinelerinde diger mekanik problemlere de neden olur ve siirekli bakim yapilmasini
gerektirir. Uretim siireglerinde titresimlerden kaynaklanan durus siireleri (iiretim
kayiplari) ve bunlarin maliyetleri oldukca yiiksek olabilir. Ayrica, iiretim makinelerindeki
titresimler giiriiltii sorunlarina yol acarak, destek yapilari tizerinden diger islemlere iletilip
bu siireglerin performansini olumsuz etkileyebilir. Genel olarak, titresimler {iretim

stireclerinin performansini diisiiriir ve verimliligi azaltir.

Agir insaat makineleri; 6rnegin ekskavatorler, vingler, darbe ve sikistirma makineleri ile
buldozerler, giivenlik, dayaniklilik ve yapisal biitiinliikk acisindan biiyliik 6énem tasir.

Dinamik yiiklemeler genellikle rastgele bir dogaya sahip olsa da motor kaynakli



titresimler ve makinelerin gerceklestirdigi operasyonlarin iglevsel tekrar1 oldukca
belirgindir. Titresim ve yorulma esasli bir tasarim yaklasimi, yapilarin performansini
siirdlirebilmesi, Omriiniin uzatilmasi ve bakim masraflarinin azaltilmasi agisindan kritik

bir rol oynar.

2.2.4. Titresimli yapilarin siniflandirilmasi ve matematiksel modellemesi

Titresimler su tlirlerde siniflandirilabilir (Kelly, 2000):

1. Sonlimsiiz ve soniimlii titresim: Bir sistemin titresimi sirasinda siirtiinme veya benzeri
direngler sebebiyle enerji kaybi yoksa, sistem "sOniimsiiz" olarak adlandirilir. Eger
soniimleme nedeniyle enerji kaybi varsa, sistem "sOniimlii" olarak nitelendirilir.
Sontimleme ihmal edildiginde sistem analizi daha basit hale gelir, ancak sistem rezonans

noktasina yakin ¢alisiyorsa soniimleme etkisinin hesaba katilmasi kritik bir 6nem tasr.

2. Serbest ve zorlanmis titresim: Bir sistem, yalnizca baglangigtaki bir etki sebebiyle (dis
bir kuvvet uygulanmaksizin) titresiyorsa, bu durum "serbest titresim" olarak adlandirilir.
Buna karsilik, bir sistem harici bir kuvvetin etkisiyle titresiyorsa, bu "zorlanmais titresim"

olarak ifade edilir.

3. Dogrusal ve dogrusal olmayan titresim: Eger titresen bir sistemin bilesenleri (kiitle,
yay, damper gibi) dogrusal davranis sergiliyorsa, titresim "dogrusal" olarak adlandirilir.
Ancak, bilesenlerden herhangi birinin dogrusal olmayan davranis géstermesi durumunda,
sistemin titresimi "dogrusal olmayan titresim" olarak tanimlanir. Dogrusal titresimler
dogrusal diferansiyel denklemlerle tanimlanirken, dogrusal olmayan titresimler dogrusal

olmayan diferansiyel denklemlerle ifade edilir.

Titresimli bir yap1, ¢iktinin (yanitin) girdilere (uyarilara) ve yap1 parametrelerine (6rnegin
kiitle, rijitlik, soniimleme) bagli oldugu dinamik bir sistemdir. Sistemin uyarilmasi ve
verilen tepki zamana baghdir. Titresim analizi, verilen bir uyarim karsisinda sistemin
verecegi tepkinin belirlenmesini igerir. Genelde bu siireg, matematiksel modelleme,
hareket denklemlerinin ¢ikarilmasi ve bu hareket denklemlerinin ¢oziilmesini igerir.

Matematiksel modellemede amag, sistemi yoneten denklemleri olusturabilmek i¢in temel
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ozelliklerini temsil etmektir. Bu modeller, sistemi makul bir basitlikte tanimlayacak
sekilde secilir. Sistemin Ozelliklerine bagli olarak matematiksel model dogrusal ya da
dogrusal olmayan bir yapida olabilir. Dogrusal modeller, ¢6ziim kolaylig1 ve hizl
hesaplama imkani saglar. Dogrusal olmayan modeller ise dogrusal yaklasimla

aciklanamayan bazi kritik sistem davraniglarini ortaya koyar.

Sistemin hareket denklemlerini olusturmak i¢in D'Alembert ilkesi, Newton'un ikinci
hareket kanunu veya Hamilton ilkesi gibi ¢esitli yontemlerden faydalanilabilir. Bu
denklemler, sistemin dinamik davranisimi ifade eder ve ¢oziimii i¢in farkli teknikler
kullanilabilir. Denklemlerin ¢6ziim yontemi, genellikle ilgili denklemlerin karmagikligina

baglhdir ve analitik (kapali form) ¢éziimler veya sayisal yontemlerle elde edilebilir.

2.3. Euler-Bernoulli Kirislerinin Serbest Titresimi

Kirisler, en temel yapisal elemanlardan biridir. Bir kiris genellikle bir boyutunun diger
boyutlara gore belirgin sekilde daha biiyiik oldugu yapisal bilesenler olarak tanimlanir.
(Qatu, 2004). Miihendislik uygulamalarinda genis bir kullanim alanina sahip olan kirisler,
boyutlarina ve sekillerine bagli olarak adlandirilir ve bunlarin davranislarini analiz etmek

i¢in ¢esitli teoriler gelistirilmistir.

Kiris teorileri; kirisler, kolonlar, ugak kanatlar1 ve kopriiler, kemerler gibi ince yapili
cisimlerin yapisal davranislarini incelemek icin yaygin bir sekilde kullanilir (Simitses &
Hodges, 2006). Bu teorilerin en biiylik avantaji, iic boyutlu bir problemi yalnizca kiris
eksenine bagli bir degiskenler kiimesine indirgemesidir. Bu yaklagimla elde edilen bir
boyutlu yapisal elemanlar, iki boyutlu plaka/kabuk elemanlar veya ii¢ boyutlu kati
elemanlara kiyasla daha basit ve hesaplama agisindan daha verimlidir. Bu 6zellikleri géz
Oniline alindiginda kiris teorileri, yapilarin statik ve dinamik analizinde oldukga tercih

edilir hale gelir (Carrera vd., 2011).

Ince kirislerin enine titresimlerine iliskin hareket denklemi, 1735 yilinda Daniel Bernoulli
tarafindan tiiretilmis ve bu denklemin ¢esitli mesnet kosullar1 altindaki ilk ¢oziimleri 1744
yilinda Euler tarafindan sunulmustur. Bu yaklasim, Euler-Bernoulli veya ince kiris teorisi

olarak bilinmektedir. Rayleigh ise doner eylemsizlik etkisini de igeren bir kiris teorisi
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gelistirmistir. Timoshenko (1921), doner eylemsizlik ve kesme deformasyonunun
etkilerini de igeren, Timoshenko veya kalin kirig teorisi olarak bilinen daha gelismis bir

titresim teorisi ortaya koymustur (Rao, 2007).

Ince veya Euler-Bernoulli kirisi uzun prizmatik bir yap1 elemani olarak tanimlanir. Bu
teori, bazi temel varsayimlar ve basitlestirmeler ¢ercevesinde uygulanir. Bunlar asagidaki

gibidir.

Sadece diiz kirisler i¢in gegerlidir, boylamasina eksen boyunca uzama gergeklesmez,
boylamasina eksen etrafinda burulma olusmaz, deformasyonlar tek bir diizlemde
meydana gelir, yani simetrik egilme varsayilir, deformasyonlar kiigiik oldugu kabul edilir,

kirisin kesitleri basit sekillere sahiptir.

Klasik kiris egilme teorileri, kesme rijit ve kesme esnek modeller olarak ikiye ayrilir.
Kesme rijit kiris, diger adiyla ince veya Euler-Bernoulli kirisi, kesme kuvvetlerinden
kaynaklanan kesme deformasyonlarini ihmal eder. Bu teoriye gore, deformasyondan 6nce
kiris eksenine dik olan bir kesit diizlemi, deformasyon sonrasinda da eksene dik kalir.
Ayrica, kesit diizlemlerinin deformasyon sonrasinda da diiz ve egrilmemis olarak kaldig1
varsayilir. Bu iki temel varsayim, Bernoulli hipotezi olarak bilinir. Genel olarak bu
modelde kesit diizlemlerinin kirigin merkez hattina rijit sekilde bagli oldugu kabul edilir.
Dolayisiyla merkez hattindaki bir degisiklik tim deformasyonu etkiler. Ayrica kesit
diizlemlerinin geometrik boyutlariin sabit kaldig:1 varsayilir. Timoshenko kirisi veya
Levinson kirisi gibi kesme esnek Kkirigler ise, egilme deformasyonun yaninda kesme
deformasyonlarini da dikkate alir. Bu modellerde kesit diizlemleri, deformasyon sirasinda
dikey eksene gore bir y acist kadar doner. Ancak, uzunlugunun kesit boyutuna orani 10
ila 20 kat daha biiyiik olan homojen kirislerde, kesme etkisi genellikle ilk yaklasimda
ihmal edilebilir (Ochsner, 2021). Sik kullanilan dért farkli kiris modeli Cizelge 2.1°de

verilmistir.
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Cizelge 2.1. iliskili etkilerle birlikte dort farkl kiris modeli

Kiris modeli Egilme |Yanal Kayma Donme
momenti | yerdegistirme | deformasyonu | ataleti
Euler-Bernoulli v v X X
Rayleigh v v X v
Shear v v v X
Timoshenko v v v v

2.4. Eksantrik Mesnetli Kirisler

Miihendislik uygulamalarinda, bir yap: i¢in ¢esitli olas1 siir kisitlama durumlariyla
karsilagilabilir. Yapisal smir kosullari, yapmin dis ortamdan aldigi deformasyon
kisitlamasini temsil ettikleri icin elde edilen dogal frekanslar iizerinde biiyiik bir etkiye
sahiptir. Sik karsilasilan sinir kosullar1 arasinda; sabit, ankastre ve kayic1t mesnetli uglar,

serbest uclar ve elastik mesnetler bulunur.

Eksantrik mesnetli kirisler, mesnetlerin kirisin merkez ekseni disinda bir konuma
yerlestirildigi tasiyict elemanlar olarak tanimlanabilir. Klasik kiris teorilerinde,
mesnetlerin kirigin tarafsiz ekseni boyunca yerlestirildigi varsayilir. Ancak miihendislik

uygulamalarinda bu varsayim ¢ogu zaman karsilanmaz.

Eksantrik mesnetli kirigler; kopriiler, endiistriyel yapilar ve binalar gibi bircok
miihendislik uygulamasinda karsimiza ¢ikmaktadir. Sekil 2.1°de bir koprii yapisinda
kullanilan celik kirisler goriilmektedir. Kirigler, mesnet ayaklarna eksantrik olarak

oturmaktadir.
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Sekil 2.1 Eksantrik mesnetli kirisler
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3. MATERYAL VE YONTEM

Materyal ve Ydntem béliimiiniin organizasyonu su sekilde diizenlenmistir: Oncelikle, 3.1
numarali alt bolimde serbest titresim davranisini yoneten hareket denklemi, Hamilton
prensibi kullamlarak elde edilmistir. Ilk olarak 3.1.1 numaral1 alt boliimde mesnetlerin
TE’de bulunma durumu i¢in hareket denklemlerinin ¢ikarilmasi yapilmistir. Daha sonra
3.1.2 numarali alt boliimde eksantrik mesnetli olma durumu i¢in bir kirisin serbest
titresim davranigini yoneten hareket denklemi ¢ikarilmis ve bu hareket denklemi
coziilerek eksantrik mesnetli kirisin frekans denklemi tiiretilmistir. Sonraki boliim olan
3.2 numarali alt boliimde, Sonlu Elemanlar (SE) analizleri yer almaktadir. Bu boliimde
ilk olarak, analitik olarak elde edilen frekans denklemlerinin dogrulanmasi i¢in kullanilan
SE metodunun detaylar1 agiklanmigtir. Sonrasinda petek kirislerin modellenmesi ele
alinmistir. Son olarak mesnetlenmesi bulonlarla saglanan kirislerin modellenmesi ele

alinmis ve bu modelleme siireci detaylandirilmistir.

3.1. Hareket Denkleminin Cikartilmasi
3.1.1. Mesnetlerin TE’de bulunma durumu

TE’de bulunma durumu, kirisin mesnetlerinin tarafsiz eksen ¢izgisi lizerinde yer almasi
durumunu ifade etmektedir. Bu alt baslik altinda mesnetlerin tarafsiz eksende bulunma
durumu i¢in hareket denklemleri ¢ikartilmistir. Sekil 3.1°de mesnetleri tarafsiz eksenin
tizerinde bulunan basit bir kirig gosterilmistir. Bu kirislerin hareket denklemleri Hamilton

Prensibi kullanilarak ¢ikartilmastir.

Sekil 3.1. Mesnetleri TE’de bulunan kirig
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Hamilton prensibi Denklem (3.1) ile ifade edilebilir (Meirovitch, 1967).

t2

5f(U—T—W)dt=0 3.1)

Kinetik enerji Denklem (3.2) ile ifade edilebilir.

!
= %pr aw(x t) dx (3.2)
0

Denklem (3.2)’nin varyasyonu Denklem (3.3)’de goriildiigii gibidir.

ow(x,t) ddw(x, t)
5.[Tdt —.[ pr % ot dx (3.3)

t1

Denklem (3.3) zayif formdadir. Gii¢lii form i¢in kismi integrasyon yontemi uygulanirsa

Denklem (3.4) elde edilir.

t2 t2

2
6det=—praW—m6w(x,t) dt (3.4)

at?
t1 t1

Potansiyel enerji Denklem (3.5) ile ifade edilebilir.

l
1 Zw(x, t)
= EJEI TxZ dx (3.5)
0
Denklem (3.5)’in varyasyonu alinirsa, Denklem (3.6) elde edilir.

l

t2 t2
02w(x, t) 0%26w(x, t)
5[Udt=J JEI dx |dt
t1 t1 0

Ox2 Ox2 (3.6)
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Denklem (3.6) zayif formdadir. Giiglii form igin iki defa kismi integrasyon yontemi

uygulanmalidir. Ik uygulanista (3.7) elde edilir.

£l 0%w(x,t) d6w(x,t)
0x? 0x

l

!
3w(x,t) d6w(x,t)
J. El pp 9% dx (3.7)

0
0

Ikinci uygulanista ise Denklem (3.8) elde edilir.

23w(x,t
—EIM(Sw(x, )15 +jEI

0*w(x,t)
pp: “axt dw(x,t)dx (3.8)

0
0

Boylelikle potansiyel enerji ifadesinin gii¢lii formu Denklem (3.9)’daki gibi elde edilir.

t2
0%w(x,t) 06w(x,t) : 23w(x, t)
= EI —El———— :
5 J Udt 92 T Fpe Sw(x, t)lo
t1 0
(3.9)
0*w(x, t)
+ .f E176W(x, t) dx
0
D1s yiikler tarafindan yapilan is Denklem (3.10) ile ifade edilebilir.
l
W = ffw(x, t)dx (3.10)
0
W’nin varyasyonu alinirsa Denklem (3.11) elde edilir.
t2 t2 /1
10) J Wdt = f ff&w(x,t)dx dt (3.11)
t1 t1 \0

Denklem (3.4), (3.9) ve (3.11)’i Denklem (3.1)’de yerine koyarak Denklem (3.12) elde

edilir.
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t2
6f(U—T—W)dt
t1

l

t2
_ J (Ela w(x, t) 96w (x, t)

- dx2 0x

t1 0

23w(x, t)

_EIT(SW(X,t)%) dt (3.12)

!

2*w(x, t) 0°w(x, t)
+ j <El—ax4 +'DA—at2
0

— fow(x, t)) ow(x,t)dx |dt

Denklem (3.12)’deki iki katli integralin sifir olabilmesi yalnizca "dw" katsayisinin sifira
esitlenmesiyle miimkiindiir. Bu durumda Denklem (3.13) elde edilir ve bu denklem

hareket denklemi olmaktadir.

0*w(x, t) 02w(x,t)

Sinir kosullari ise geriye kalan terimlerin sifira esitlenmesi yoluyla elde edilir ve Denklem

(3.14) ve (3.15)’de verilmektedir.

gy W0 1) 08w (x, £) ! o

32 x|, (3.14)
23w(x,t)
—El—F—bw(x, =0 (3.15)

Serbest titresimde dis yiiklerin sifir oldugu varsayilir ve Denklem (3.16) elde edilir.
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*w(x, t 2*w(x, t
Ow) | 0wt _

El Ox* Jot?

0 (3.16)

Uniform bir kiris i¢in Denklem (3.16), Denklem (3.17)’deki gibi ifade edilebilir.

*w(x,t) 9%?w(x,t)
2 _
ot T 0

(3.17)

Burada ¢ = \/57_,: olarak ifade edilmektedir. Yer degistirme bileseni degiskenlerine

ayristirma yontemi ile Denklem (3.18)’deki gibi ifade edilebilir.
w(x,t) = W()T(t) (3.18)
Denklem (3.18)’1, Denklem (3.17)’de yerine koyarak (3.19) elde edilir.

, 1 W 1 9Ty
“Wa axt T 9z  *7¢ (3.19)

Burada a = w? ’dir. Buradan Denklem (3.20) ve (3.21) olarak iki adi diferansiyel

denklem elde edilir.

04W (x)

G~ BW) =0 (3.20)
62

;;E” +w?T(t) =0 (3.21)

2
Burada p* = (;)—2 olarak ifade edilmektedir. Bu durumda acisal frekans Denklem

(3.22)’deki gibi ifade edilebilir.

0=p? |[E = gy | 2 2
o — (3.22)
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Denklem (3.21)’in ¢6ziimii Denklem (3.23) seklindedir.
T(t) = Acos(wt) + B sin(wt) (3.23)
Burada A ve B baslangi¢ kosullarindan bulunabilecek sabitlerdir. Denklem (3.20)’nin
¢Oziimii Denklem (3.24) seklindedir ve sistemin mod sekillerini tanimlayan genel ¢6ziim
formunu vermektedir. Bu ifade, serbest titresim modlarinin sekillerini tanimlamakta olup,
sistemin baslangi¢ kosullarina gore belirlenen Ci, Caz, C3, Ca katsayilari ile parametrizedir
W(x) = C, cosh(Bx) + C, sinh(Bx) + C5 cos(Bx) + C, sin(Bx) (3.24)

Denklem (3.24)’iin bir diger ifadesi Denklem (3.25) seklinde de ifade edilebilir.

W (x) = Cy (cos(Bx) + cosh(Bx)) + C, (cos(Bx) — cosh(Bx))
+ C; (sin(Bx) + sinh(fx)) + C, (sin(Bx) — sinh(Bx)) (3.25)

iki ucu sabit veya bir ucu sabit bir ucu kayici mesnetli kiris:

Enine yer degistirme ve egilme momenti sabit mesnetli bir ucta sifirdir. Dolayisiyla, sinir

kosullar1 Denklem (3.26), (3.27), (3.28) ve (3.29)’daki gibi olmaktadir.

w(0) =0 (3.26)
2
El=—(0)=0 (3.27)
W =0 (3.28)
2w
El—— () =0 (3.29)

Denklem (3.25)’in ¢6ziimii icin Denklem (3.26) ve (3.27) kullanildiginda C;+C>=0 elde

edilir.
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Denklem (3.25)’in ¢6zlimii i¢in Denklem (3.28) ve (3.29) kullanildiginda Denklem (3.30)
ve (3.31) elde edilir.

C; (sin(Bl) + sinh(Bl)) + C, (sin(Bl) — sinh(Bl)) =0 (3.30)
—C3 (sin(Bl) — sinh(Bl)) — C4 (sin(Bl) + sinh(B1)) =0 (3.31)

Denklem (3.30) ve (3.31) ile tanimlanan bu homojen lineer denklem sistemi, yalnizca
sifirdan farkli ¢6ziimler i¢eriyorsa anlamli olacaktir. Bu durum, matrisin determinantinin

sifir olmasi gerektigini ifade eder. Bu durumda Denklem (3.32) elde edilir.

sin(Bl) sinh(Bl) =0 (3.32)

S=0 olmadigi siirece, sinh(B1) ifadesinin sifira esit olmadigi agiktir. f=0 durumu 6zel bir
durum olarak ele alinmaz, ¢iinkii bu durumda Denklem (3.22) geregince =0 olacaktir
ve bu da kirisin hareketsiz oldugu ve herhangi bir titresimin meydana gelmedigi anlamina

gelir. Dolayisiyla, f#0 varsayimi altinda frekans denklemi (3.33)’deki gibi olur.

sin(Bl) =0 (3.33)

Denklem (3.33)’iin kokleri (3.34)’deki bulunur.

Bpl=nm  n=1,2.. (3.34)

Denklem (3.22)’de kokler yerine konursa iki ucu sabit veya bir ucu sabit bir ucu kayici
mesnetli kiris i¢in titresimin dogal frekanslar1t Denklem (3.35)’deki gibi elde edilir. Bu
denklem belirtildigi gibi, mesnetlerin TE’de bulunmasi durumunda hem sabit-sabit hem

de sabit-kayict mesnetli bir kirisin frekanslar1 i¢in kullanilabilir.

El El

wn = (Bpl)? AT~ n’m? AT (3.35)

21



Bir ucu sabit diger ucu ankastre mesnetli Kkiris:

Bu kiris i¢in smir kosullart su sekilde verilebilir: Ankastre mesnetli bir ugta, enine yer
degistirme ve donme; sabit mesnetli bir ugta, enine yer degistirme ve egilme momenti
stfirdir. Kiris x = 0'da sabit ve x = ['de ankastre mesnetli ise, sinir kosullar1 Denklem

(3.36), (3.37), (3.38) ve (3.39)’daki gibi ifade edilir.

W) =0 (3.36)
aw
T D=0 (3.37)
wi =0 (3.38)
2
El—— ) =0 (3.39)

Denklem (3.25)’in ¢6ziimii i¢in Denklem (3.36) kullanildiginda (3.40) elde edilir.
Ci+C3=0 (3.40)
Denklem (3.25)’in ¢6zlimii i¢in Denklem (3.37) kullanilirsa (3.41) elde edilir.
B(C;+C) =0 (3.41)
Boylece Denklem (3.25), (3.42)’deki gibi olur.
W(x) = C;(cos(Bx) — cos h(Bx)) + C,(sin(Bx) — sin h(Bx)) (3.42)

Denklem (3.25)’in ¢6ziimii i¢in Denklem (3.38) ve (3.39) kullanildiginda (3.43) ve (3.44)
elde edilir.
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Ci(cos(Bl) — cos h(Bl)) + C,(sin(Bl) — sinh(Bl)) =0 (3.43)

—C;(cos(Bl) + cos h(Bl)) — Cy(sin(Bl) + sinh(Bl)) =0 (3.44)

Daha 6nce de belirtildigi gibi Denklem (3.43) ve (3.44) ile tanimlanan bu homojen lineer
denklem sistemi, yalnizca sifirdan farkli ¢ézliimler igeriyorsa anlamli olacaktir. Bu durum,

matrisin determinantinin sifir olmasi gerektigini ifade eder. Bu durumda Denklem (3.45)

elde edilir.
cos(Bl) sin h(Bl) — sin(Bl) cos h(Bl) =0 (3.45)
Denklem (3.45)’in kokleri Denklem (3.46)’daki gibi olur.
Bnl = (n + i) T n=12.. (3.46)

Denklem (3.22)’de kdkler yerine konursa bir ucu ankastre bir ucu sabit mesnetli kiris igin

titresimin dogal frekanslari Denklem (3.47)’deki gibi olur.

1 \° | EI
wn=<<n+z>n> AT (3.47)

3.1.2. Eksantrik mesnetli olma durumu

Eksantrisite, kirisin mesnetlerinin Tarafsiz Eksen (TE)’den farkli bir konumda yer almasi
durumudur. Eksantrik olarak mesnetlenen basit bir kirig Sekil 3.2°de gosterilmistir. 1 ve
2 mesnet numaralaridir. TE ile mesnetler arasindaki mesafeler er ve e2 olarak
adlandirilmistir. Calismada, Euler-Bernoulli Kiris Teorisi’nin kabulleri dikkate alinmis ve
kayma deformasyonlar1 ihmal edilmistir. Eksantrik mesnetli kiriglerin serbest titresim
davranisini tanimlayan hareket (diferansiyel) denklemi, Hamilton prensibi kullanilarak
elde edilmistir. Hareket denklemi c¢oziilerek kiris frekanslar1 analitik olarak

hesaplanmustir.
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Sekil 3.2. Eksantrik olarak mesnetlenen basit kiris

Euler-Bernoulli kiris teorisine dayanarak, kesme deformasyonu ve donme ataleti etkisi
thmal edildiginde, boyuna yer degistirme Denklem (3.48) ile ve egilme yer degistirmesi
Denklem (3.49) ile tanimlanir (Radice, 2012). Burada uo(x, t) ve wo(X, t) tarafsiz

eksendeki yer degistirme bilesenleridir.

ow,(x, t)

- (3.48)

U(x,z,t) = up(x,t) —z

W(x,zt) = wy(x,t) (3.49)

Kiriste olusan gerinim bileseni Denklem (3.50) ile ifade edilir. Burada birinci terim
boyuna gerinim bilesenini tanimlarken, ikinci terim ise egilmeden kaynaklanan gerinim

bilesenini tanimlar.

ouy(x, t) 02wy (x, t)
0x 2T ox2

&(x,2) = (3.50)

Gerilme, Hooke yasasina gore gerinim ile iligskilendirilirse Denklem (3.51)'de gosterildigi

sekilde ifade edilir.

ouy(x, t) _, 02wy (x, t))

9% 92 (3.51)

0,(x,z) =Ee,(x,z) = E(
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Serbest titresimde dig yiik yani W=0 oldugu i¢in Hamilton Prensibi Denklem (3.52)’deki
gibi ifade edilir.

t2
5f(U—T)dt=o (3.52)
t1

Potansiyel enerji ise Denklem (3.53) ile ifade edilebilir.
h/2
1 l
U= E,I- f 0,&:D dzdx (3.53)
0

-h/2

Denklem (3.50) ve (3.51), Denklem (3.53)’de yerine konursa Denklem (3.54) elde edilir.

U—IJZEA<auO)2d +1flE1 9°wo 2al
2, ox) T2 0 0x? * (3.54)

Dogrusal elastik biinye iliskisi varsayildiginda, i¢ kuvvet ve egilme momenti Denklem

(3.55)’deki gibi tanimlanabilir.

W
M, = El —

du
Nx ZEA— y W

— (3.55)

3
Burada [ = % olarak ifade edilmektedir. Denklem (3.55)’deki i¢ kuvvet ve egilme

momenti ifadeleri yerlerine konursa Denklem (3.56) elde edilir.

1t Oy L 92w,
U—E J()NxadX‘FfOMywdx (356)

Denklem (3.56)’nin varyasyonu alinirsa Denklem (3.57) elde edilir.

_(t 96u, Lo 928w,
oU = .l(; wadX‘FJ; Mywdx (357)
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Denklem (3.57) zayif formdadir. Giiglii form igin birinci terim 1 ikinci terime ise 2 defa

kismi integrasyon yontemi uygulanmalidir. Ik uygulanista (3.58) elde edilir.

5U = N.su | fl(s aNxd swe|'  [LOM, dSw,
= NxOUplp Ouoax X Y ox 1y J, ox ox (3.58)
Ikinci terime bir defa daha uygulanirsa Denklem (3.59) elde edilir.
L) dswo|' oM, |
6U:Nx6u0|0—f0 dug ox x + M, 7% 0— 9% dw .
(3.59)

L oo*M
+L6W062dx

Tiirevli olan Nx ve M,’den kurtulmak i¢in Denklem (3.59)’da Nxve M, ifadeleri yerlerine
konursa Denklem (3.60) elde edilir.

t2

2 P LG LT 66w0 :
t1 0 ox? d0x lo
t1
: (3.60)
E163W05 +flEla4W05 dx|dt
ax3 0 o Jo  Ox* Wo &

Kinetik enerji Denklem (3.61) ile ifade edilebilir.

f f ’:,22 [ZZ (aavf) lbdde (3.61)

Denklem (3.48) ve (3.49), Denklem (3.61)’de yerine konursa Denklem (3.62) elde edilir.

f f v %—zaw" bdzdx +— f f " —° bdzdx (342
h/2 axat h/2 :

Denklem (3.62)’nin varyasyonu alinirsa Denklem (3.63) elde edilir.
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5T—bf fh/z aw0)<au0 66W0>d p
w2 at “oxat) \ae ~ “axae )

"2 dw, d6w,
+ bf J p—— bdzdx
njz Ot Ot

(3.63)

Integral islemleri yapilirsa Denklem (3.64) elde edilir.

ST — flb h 302w, 626W0+h6u066u0 p +Jl bhaw 6w, 04
P\12 Btox otox ot ot )T ) PP Tar ¢ (3.64)

Denklem (3.64)’teki 1. terime x’e gore kismi integrasyon yontem uygulanirsa Denklem

(3.65) elde edilir.

t2
6Tdt = bp

tl

t2 3 1
f [h 92w, A5,

fl h® 93w, déw,
12 Jdtdx Ot

), 12 atax? ot

(3.65)

+flb (h6u066u0+h(3w066w0d ) 9
o P\ Tae at ot

Denklem (3.65) #’ye gore kismi integrasyon yontemi uygulamak iizere diizenlenirse

Denklem (3.66) elde edilir.

t26Tdt b h 62W065W0
o ~ PP | 12 Beax ot
L n? 63W0 6w,
—b —%dt)d (3.66)
pf <ft1 12 atox? ot ) g
auo dou, dw,y 06w,
+bpj Ut ot ot "o )dt dx

Denklem (3.66)’da 2. ve 3. terim i¢in kismi integrasyon yontemi uygulanirsa Denklem

(3.67) elde edilir.
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t2 1

ft26Tdt—b fh362w066w0
o ~ PP | 12 Beax ot

tl
+b fl h 0w, 5
P )\ 712 araxz

2 h3 9w,
-I;1 12 9t20x2

t2

t1

6w0dt> dx

t2

+b jl[hau"s
p —bu
o| ot °

tl

F 2t o dt+<haW05 )tz
T e at °"°
t2 aZW
_ h 20
T

t1

6W0dtl dx

(3.67)

Denklem (3.60) ve (3.67), Denklem (3.52)’de yerine konursa Denklem (3.68) elde edilir.

t2
f (6U — 6T)dt
t1
= Jtzjl poh 20 _ gy )
— ) \P e axz ) °H

d*w, h3 0%w, 92w,
+ | EI b + bph dwy | dxdt

oxt P12 Brzox? at?
+ft2 (N Sus + M MW“)l g o
A Yo M Tax M, 9x3 O

h 3 02w, 06w,
12 dtdx ot

l
.f
0

<b p 2o s )tz d

l
]dt
0

) h363w05 bhaw06
P2 Broxz o~ PP OWo

t2

t1

28

(3.68)



Denklem (3.68)’den diferansiyel hareket denklemleri ve smir kosullari elde edilir.

Denklem (3.69) boyuna yer degistirmeyi ve Denklem (3.70) egilme yer degistirmesini

ifade eder. Burada a = \E olarak verilir.

0%u, 0%u,
TR P (3.69)
0*w, 02w, h3 9%w,
El g ToPh g ~ PP 17 Grogat = (3.70)

64W0
0t20x2

Denklem (3.70)’teki 3. terim pl seklinde yazilabilir ve bu terim donme ataletinin

etkisini ifade eder. Bu c¢alismada Euler-Bernoulli kiris teorisinin varsayimlart gecerli
kabul edildigi icin donme ataletinin etkisi ve dolayisiyla 3. terim ihmal edilmistir.

Boylelikle Denklem (3.70), (3.71)’deki gibi ifade edilebilir.

+ bph =0 (3.71)

Sonrasinda bu diferansiyel denklemlerin ¢6ziimiine gecilir. Denklem (3.69)

degiskenlerine ayirma yontemi ile Denklem (3.72) seklinde ifade edilebilir.
up(x,t) = UCT(t) (3.72)
Denklem (3.72)’yi Denklem (3.69)’da yerine koyarak Denklem (3.73) elde edilir.

1 0°T(t) 1 9*U(®)
a2T(t) otz U(x) oxz ¢ (3.73)

Buradan sirastyla zamana bagli ve uzaya bagli, Denklem (3.74) ve (3.75) elde edilir.

92T (t)
ot?

+w?T() =0 (3.74)
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02U(x) w?
922 +§U(x)=0 (3.75)

Denklem (3.74)’iin ¢oziimii (3.76)’daki gibi elde edilir.
T(t) = Acos(wt) + B sin(wt) (3.76)

Burada A ve B baslangic kosullarindan bulunabilecek sabitlerdir. Denklem (3.75)’in
¢oziimii Denklem (3.77) seklindedir.

U(x) = D, cos (% x) + D, sin (%x) (3.77)

Egilme yer degistirmesinin diferansiyel denklemi olan Denklem (3.71)’in ¢oziimiine

gegilir.
Uniform bir kiris icin Denklem (3.71), Denklem (3.78)’deki gibi ifade edilebilir.

*w(x,t) 9%w(x,t)
2 ’ Y
ot T 0

(3.78)

Burada ¢ = ’5—; olarak verilir. Yer degistirme bileseni degiskenlerine ayristirma yontemi

ile Denklem (3.79)’daki gibi ifade edilebilir.
w(x, t) = W(x)T(t) (3.79)
Denklem (3.79)’u, Denklem (3.78)’de yerine koyarak (3.80) elde edilir.

, 1 ‘w1 9T,
‘ W) oxt T a2 ¢ (3.80)

Burada k = w? *dir. Burada Denklem (3.81) ve (3.82) olarak iki adi diferansiyel denklem
elde edilir.
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04w (x)

PP BW(x) =0 (3.81)
92T
atﬁ” + w?T(t) =0 (3.82)

Denklem (3.82)’nin ¢oziimii (3.74)’lin ¢6ziimi ile aynidir ve (3.76)’da verilmistir.

Denklem (3.81)’in ¢6ziimii, Denklem (3.83) seklindedir ve sistemin mod sekillerini
tanimlayan genel ¢6ziim formunu vermektedir. Bu ifade, serbest titresim modlarinin
sekillerini tanimlamakta olup, sistemin baslangi¢ kosullarina gore belirlenen Ci, Cz, Cs,

C4 katsayilart ile tanimlidur.
W (x) = C, cosh(Bx) + C, sinh(fx) + C5 cos(Bx) + C, sin(Bx) (3.83)

Mesnet bolgesindeki kiris deformasyonu Sekil 3.3’te gosterilmistir. Sinir kosullari, bu

davranig g6z oniinde bulundurularak belirlenmistir.

dw,
d0x

Sekil 3.3. Yer degistirme iliskisi

Sekil 3.3’te gosterilen sinir kosulu Denklem (3.84)’deki gibi ifade edilebilir.
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aw,

— =0
Uy +e— (3.84)

Sabit mesnetin olusturdugu kisitlama kuvvetinin orta diizleme aktarilmasiyla, sinirdaki i¢

kuvvetler N ve egilme momentleri M hesaplanabilir. Denklem (3.84)’lin varyasyonu

aliarak, Denklem (3.68)’de yerine konursa Denklem (3.85) elde edilir.

X=L
My —eNy)| =0 (3.85)

Bir kirigin kayict mesnetli olan ucunda x yoniindeki hareket belirsizdir ve Denklem
(3.84)’e benzer bir durum mevcut degildir. Denklem (3.84) teki iliski sadece eksantrik de
olabilen sabit mesnet olma durumunda mevcuttur. Bu ¢aligmanin analitik kisminda 3 tip

mesnetlenme durumu icin sinir kosullar1 asagida verilmistir.

Sinir kosullar1 su sekildedir: Eksantrik sabit mesnet olma durumunda Denklem (3.86)’da,
kayict mesnetli olma durumunda (3.87)’de, ankastre mesnet olma durumunda (3.88)’de

verilmistir.

adw,
u0+eW:0;W0:0pMy_eNx:0 (3.86)
N, =0,M, =0,wy =0 (3.87)
adw,
Uy =0,wy = O,W (3.88)

Denklem (3.55), (3.72) ve (3.79); Denklem (3.86), (3.87), (3.88)’de yerine kondugunda

tic kombinasyon i¢in asagidaki sinir kosullari elde edilir.

Her iki mesnetin de eksantrik sabit mesnetli olma durumunda sinir kosullari:
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ow;(0) a2w;(0) aU;(0)
U;(0) + e, o 0, w;(0) =0, I oz h P 0
3.89)
ow; (L) 2w;(L) oU; (L) (
U;(L) + e, o 0, Wi (L) =0, I oz e,bh P 0

Bir mesnetin eksantrik sabit mesnet, diger mesnetin kayic1 mesnet olma durumunda

sinir kosullari:

ow; (0 a2w;(0) auU; (0
Ui(0)+€1 a)g )=0, Wi(0)=0, I?—el a)E )=0
3.90)
aU; (L %W, (L (
L()=0, W;(L) =0, J=o

0x

Bir mesnetin ankastre mesnet, diger mesnetin sabit mesnet olmasi1 durumunda sinir

kosullari:
aW;(0) 92w;(0) aU;(0)
U;(0) + e, alx =0, Wi(0)=0 I axlz —e;bh———==0
oWi(L) (3.91)
Ui(L)=0, Wi(L)=0, ———=0

0x

Cikarilan egilme yer degistirmesi denklemi 4 bilinmeyen igerirken, boyuna yer
degistirme denklemleri 2 bilinmeyen icerir. Dolayistyla toplamda 6 bilinmeyenin ¢oziimii
icin 6 smir kosuluna ihtiya¢ duyulur. Bu iki yer degistirme modu, birbirinden bagimsiz
olmayip eksantrik mesnetleme nedeniyle baglanmis bir sekilde hareket eder. Bu durum,
Sekil 3.4’te goriildiigii gibi boyuna yer degistirme U(x) ve egilme yer degistirme W (x)
etkilerinin etkilesimi sonucu ortaya ¢ikan birlesik yer degistirme ile aciklanabilir.
Eksantrik mesnetlenme durumunda elde edilen boyuna yer degistirme ve egilme yer
degistirmesi diferansiyel denklemleri ¢ikarilan sinir kosullar1 kullanilarak Mathematica

programi ile ¢oziilmiis ve eksantrik mesnetli kirisin agisal frekans tliretilmistir.
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Sekil 3.4. Yer degistirmeler A) Boyuna B) Egilme C) Birlesik yer degistirme

Eksantrik sabit-sabit mesnetli sistem i¢in karakteristik denklem, Denklem (3.92)’de

verilmistir.

1 LplY/4g L(pA)Y* Vo LAY Vo
_ 2 3/4011/4GQn 272 Y "y 1/4
aZE\ﬁze EVAT [plw? (al®/*pl*/*Sin[ pijapiza 1(—4de BV E eevw

2L Ve Lw
+A(l+e EVHVE )EV4(e? + ezz)\/ECos[F] + 2a(-1

2L(pA) Y V@ Lw
+e EV/4I/A )13/4(pA)1/4Sin[7])—2AE1/4eleZ\/5(—a(—1

2L(pA) Vo LA e L
+e EVHIE [3/4(pA)V4 4 Ae EVAHI/A El/‘*eleZ\/ESin[—w]) (3.92)
a

L(pA)1/4\/5 2L(pA) Vo

+ AEY*wCos[ J(—a(—1+e EV*/* )(ey?

E1/411/4-
2413/4 1/4 Lw
+ e,2)[°7*(pA) Cos[;] +A(1

2L(AY Vo Lw
+ e EV4/% )El/“elzezzx/aSin[?]))

Eksantrik sabit-kayict mesnetli sistemin karakteristik denklemi, Denklem (3.93)’te

verilmistir.
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1 _L(pA)Y*Vw
ppae Bt (a1
a

2L(pAY*Vw Lo . L(pA)Y*Vw
TEAri/a \[3/4 3Cos[—]Sin[——757—
+ e EYV4I/4 [3/*(pA)w>Cos| a |Sin E1/4]1/4

+ 2AEY*e,2(pA)3*w7/%((—1 (3.93)

2L(pA)Y/*Vw L(pA)l/“\/a
/411/ 1 -
+e EV4Y%* )Cos| i/a]1/4 -1

LEAYo LA Ne L
+ e E/411/4 )SIH[W] SID[T])

Ankastre-sabit mesnetli sistemin karakteristik denklemi, Denklem (3.94)’te verilmistir.

1 _L(eAY*aw L(pAY*Vw
aE3/4\/T

e EVA/E (—24EY%e 2 [(pA)w?(—2e EVIVF 4 (1

2L(pA) V& L(pA)*Vw Lo
+ e EY4ri/4 )COS[WD 05[7]

2L(pA)Y*Vw L(pA)l/‘*\/E
= 2al3/4(pA)3/4w3/2((—1 + e E/41/4 )COS[W

(3.94)

2LEO™NG LAY Lw
— /411/ in[———————NDSin[—
(1+e EY4Y/* )Sin[ i/4]1/4 1)Sin[ " 1))

3.2. Sonlu Elemanlar Analizi

Herhangi bir miihendislik probleminin ¢6ziimii i¢in ii¢ temel yontem bulunmaktadir:
Analitik yontem, sayisal yontem ve deneysel yontem (Tajima vd., 2009). Sonlu elemanlar
metodu (SEM), belirli sonuglar elde etmek i¢in gerilmeye tabi tutulan ve analiz edilen bir
malzeme veya tasarimin bilgisayar modelinden olusan, yapilari analiz etmek igin

kullanilan sayisal bir yontemdir (Zienkiewicz vd., 2005).

Bu caligmada gerceklestirilen sonlu elemanlar (SE) analizlerinde, ticari SE yazilimi
Abaqus (2012) kullanilmistir. Analizlerde 1 kesitli ve dikdortgen kesitli kirigler
modellenmistir. Bu iki kirisin modellenmesinde “S4” tipi kabuk (shell) eleman (bkz. Sekil
3.5 ve Sekil 3.6) kullanilmistir. Malzeme modeli dogrusal elastik olarak tanimlanmis ve

malzemenin homojen izotropik oldugu kabul edilmistir.
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Sekil 3.5. Kabuk eleman ile olusturulan I kiris modeli

Bu c¢alisma kapsaminda kirislerin diizlem dis1 davraniglart ve frekanslart incelenmedigi
icin modelleme siirecinde kirislerin diizlem dis1 hareketleri tutulmustur. Bu sayede
yalnizca diizlem i¢i modlar ve frekanslar elde edilmistir. Modellerde ag (mesh)

biiytikliiklerini belirlemek i¢in uyum (convergence) analizi gerceklestirilmistir.

Sinir sartlarinin tanimlanmasi: Sabit mesnetli uglarda donmeler serbest birakilmig yer
degistirmeler kisitlanmistir. Kayici mesnete sahip uclarda donmeler ve z yoniindeki yer

degistirme serbest birakilmis diger yonlerdeki yer degistirmeler kisitlanmistir.

Literatiirde bu konuda calisan arastirmacilarla sonuglarin karsilastirilabilmesi ve analitik
olarak elde edilen frekans denklemlerinin dogrulanmasi amaciyla literatiirde kullanilan
(Li vd., 2023; Fernando vd., 2018) kiris orneklerinin 6zellikleri dikdortgen kesitli kirig
modellerinde kullanilmistir. Kirislerin uzunlugu (L), yiiksekligi (h), genisligi (b),
elastisite modiilii (E), yogunlugu (p), Poisson orani (v) gibi geometrik ve malzeme

ozellikleri Cizelge 3.1°de sunulmustur.

Cizelge 3.1. Dikdortgen kesitli kiriglerin geometrik ve malzeme 6zellikleri

Kiris Tipi L h b E p v
(mm) | (mm) | (mm) | (GPa) | (kg/m?)
Dikdortgen kesitli | 762 12,7 | 50,8 | 69 2730 0,33

Tanimlanan dikdortgen kesitli kirig modeli Sekil 3.6’te goriilmektedir.
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Sekil 3.6. Kabuk eleman ile olusturulan dikdortgen kesitli kiris modeli (kabuk kalinlig
gosterimi ile)

Bu o6zelliklerin disinda I ve Petek kiris modellerinde kullanilan geometrik ve malzeme

ozellikleri Cizelge 3.2’de verilmistir.

3.2.1. Petek Kkirislerin modellenmesi

Tipik bir petek kiris i¢in Griinbauer BV (2024) kaynaginda belirtilen boyutlar, ¢elik
iretim standardim temsil etmekte olup, petek kirislerin boyutlandirilmasinda
kullanilmaktadir. Bu dlgiiler ve agilar minimum ya da maksimumu degerleri ifade
etmemekte, tek tip boyutlar1 temsil etmektedir. Ilgili boyutlar ve geometrik detaylar Sekil
3.7°de gosterilmistir.

H=13xh

h h h
4 2 4
Sekil 3.7. Tipik petek kiris boyutlar1 (Griinbauer BV, 2024)

Bu boyutlar dikkate alinarak ¢izilen kirisin 6lgekli goriiniisii Sekil 3.8’de goriilmektedir.
Petek kirisin enine kesit boyutlar1 ise Sekil 3.12°de verilmistir.
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Sekil 3.8. Petek kiris SE modelinin genel goriiniisii

Petek kiriglerin eksantrisitenin ¢aligilabilmesi i¢in degisken eksantrisite durumlar1 gz
Oniine alinmis ve sonlu elemanlar modellerinde mesnetin oldugu konuma goére tanimlama

yapilmistir. Bu mesnetlenme durumlar1 ve incelenmeleri Boliim 4.3’te verilmistir.

3.2.2. Bulonlu birlesimlerin modellenmesi

Bu c¢alismada bulonlu kirislerden kasit, iki ucunda moment aktarmayan bulonlu
birlesimlere sahip kirislerdir. Bu kirigler, bulonlar iizerinden sabit mesnetli kabul
edilmistir. Birden fazla bulona sahip birlesimlere bulon grubu ifadesi kullanilmigtir.
Calismada, bulon gruplarinin merkezinin TE'de olma durumu (eksantrik olmayan bulon
grubu) ve bulon grubunun merkezinin TE'de olmama durumu (eksantrik bulon grubu)
dikkate alinmistir. Birlesimlerde bulon sayis1 1’den 5’e degismekle birlikte, bulon ¢ap1
20 mm, kenara olan uzaklik 30 mm ve bulonlar arasi1 mesafe 60 mm'dir. Yapilan
kiyaslamalarda dikkate alinan kirislerin her iki ucundaki bulon sayisi, bulonlarin yerlesim
sekilleri ve mesnetlenmeleri aynidir. Bulon grubunda, bulon sayist ve bulon grubunun
eksantrisitesi, frekans hesaplamalarinda parametreler (degiskenler) olarak belirlenmistir.
Dikkate alinan farkli bulon sayisi ve farkli eksantrisite durumlar1 Sekil 3.9, Sekil 3.10
Sekil 3.11°de verilmistir.
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Sekil 3.9. Tek bulonlarin yerlesimi A) TE {izerinde B) Eksantrik
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Sekil 3.10. TE {izerinde yerlesimli bulon gruplari

30, 30 A, 30
g0 C ilo ilo
2 2 8 2
o) Il o) ~ | O 2 ()
8 g 2
‘o o o
2 8
o (o)
TE TE F——————- TE  fog—————- TE

Sekil 3.11. Eksantrik yerlesimli bulon gruplari

Bulonlu birlesimli kirislerde, I kiris ve petek kirislerin dogal frekanslar1 incelenmistir.

Kirisin enine kesit boyutlar1 Sekil 3.12°de verilmistir.
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Sekil 3.12. Enine kesit boyutlar1

Bolim 4.4’te sonuglar1 verilen bulonlu birlesimler, i¢i dolu (I kirig) ve bosluklu (petek)
kirislerde caligilmistir. Bulonlu birlesimler i¢in I ve petek olmak tizere temel olarak 2 tip
kiris modeli iizerinde analizler yapilmistir. Olusturulan petek kiris modeli Sekil 3.8’de

verilmisti.

Bulonlu birlesimli kirislerin (I ve Petek) malzemesi olarak ¢elik kullanilmistir. Kiriglerin
kesit yiiksekligi (d), baslik kalinligi (t¢), govde kalinlig1 (tw), baslik genisligi (b) olmak
tizere bulonlu birlesimli kirisler icin kullanilan geometrik ve malzeme 6zellikleri Cizelge

3.2’de verilmistir.

Cizelge 3.2. I ve petek kirislerin geometrik ve malzeme 6zellikleri

Kiris Tipi L d tr tw b E p v
(mm) | (mm) | (mm) | (mm) | (mm) | (GPa) | (kg/m?)
I ve Petek | 8250 | 550 17,2 11,1 210 200 7850 0,30

Bulonlu birlesimli kirislerin sinir sartlari, bulonlarin merkezinde ii¢ dogrultudaki yer
degistirmeler sabitlenerek (sabit mesnet tanimi) belirlenmistir. Ornegin merkezi olarak

mesnetlenmis bes bulonlu bir I kesitli kirisin bir ucu Sekil 3.13’te verilmistir.
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Sekil 3.13. Agirlik merkezleri tarafsiz eksen iizerinde olan bes bulonlu I kiris
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4. BULGULAR VE TARTISMA

Bulgular ve Tartisma boliimiinde, eksantrik mesnetli kirislerin dinamik davranislari
lizerine yapilan calismalar sunulmustur. {lk olarak, 4.1 numarali alt bdliimde, eksantrik
mesnetli bir kiris i¢in elde edilen denklemlerin, literatiir, SEM ve mesnetlenmesi TE
tizerinde olan bir kirisin frekans denklemi ile dogrulanmasi gercgeklestirilmistir.
Sonrasinda 4.2 numarali alt boliimde mesnet eksantrisitesinin Kkiriglerin frekansi
tizerindeki etkisi detayli bir sekilde analiz edilmistir. 4.3 numarali alt boliimde, petek
kirislerde eksantrisitenin frekansa etkisi incelenmistir. 4.4 numarali alt boliimde,

eksantrik yerlestirilen bulon grubunun kirislerin frekansi tizerindeki etkisi gosterilmistir.

4.1. Eksantrik Mesnetli Bir Kiris i¢cin Elde Edilen Denklemlerin Dogrulanmasi

Eksantrik mesnetin tarafsiz eksene olan mesafesinin kiris yiiksekliginde boliinmesi

normalize edilmis eksantrisiteyi tanimlar ve bu ifade Denklem (4.1)’de verilmistir.

ehy, == (4.1)

n burada, sol mesnet icin 1 sag mesnet i¢in 2 olmak {lizere mesnet numarasini ifade

etmektedir. Iki ugtaki e degerinin ayn1 olmas1 durumunda ise eh = %1 = %2 seklinde ifade

edilir.

Cikarilan denklemlerin dogrulugunu irdelemek i¢in Boliim 3.1.2°de tiiretilen analitik
denklemlerle bulunan frekans degerleri dnce literatiirde verilen 6rneklerin sonuglart ile
kiyaslanmistir. Bu kiyaslamalar asagida mesnetlenme durumlarina goére sirasiyla

verilmistir.

Eksantrik sabit-sabit mesnetli olma durumu i¢in ¢ikarilan Denklem (3.92) ile elde edilen
1. mod frekans degerleri, farkli eksantrisite durumlar1 (e#) i¢in Fernando vd., (2018)
calismasinda verilen O6rnegin sonuglari ile kiyaslanmistir. Sonuclar Cizelge 4.1°de
verilmistir. S6z konusu Ornege ait bilgiler Bolim 3.2’de sunulan Cizelge 3.1°de

verilmigtir. Sonuglarin oldukea iyi uyustugu goriilmektedir.
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Cizelge 4.1. Sabit-sabit mesnetlenme durumunda analitik sonuglarin literatiir ile
kiyaslanmasi

Mod | eh Analitik | Fernando | Analitik-Fernando
%Hata

0 49,86 49,86 0,00

0,125 |53,39 53,39 0,00

1 0,25 |61,71 61,71 0,00

0,375 | 71,09 71,10 0,01

0,5 79,48 79,46 0,03

Sabit-kayict mesnetli olma durumu i¢in ¢ikarilan Denklem (3.93) ile elde edilen 1. mod
frekans degerleri, farkli eksantrisite durumlar1 (ek) i¢in Li vd., (2023) ve Fernando vd.,
(2018) caligmalarinda verilen 6rnegin sonuglart ile kiyaslanmistir. Sonuclar Cizelge
4.2°de verilmistir. S6z konusu 6rnege ait bilgiler Boliim 3.2°de sunulan Cizelge 3.1°de

verilmistir. Sonuglarin oldukga 1yi uyustugu goriilmektedir.

Cizelge 4.2. Sabit-kayic1 mesnetlenme durumunda analitik sonuclarin literatiir ile
kiyaslanmasi

Mod | eh | Analitik |Li Analitik-Li %Hata | Fernando | Analitik-Fernando %oHata
1 0 (49,86 49,85 |0,02 49,84 0,04
0,5149,83 49,81 |0,04 49,77 0,12

Ankastre-sabit mesnetli olma durumu i¢in ¢ikarilan Denklem (3.94) ile elde edilen 1. mod
frekans degerleri, farkli eksantrisite durumlar1 (ek) icin Fernando vd., (2018)
calismasinda verilen Ornegin sonuglari ile kiyaslanmistir. Sonuglar Cizelge 4.3’te
verilmistir. S6z konusu oOrnege ait bilgiler Bolim 3.2°de sunulan Cizelge 3.1°de

verilmistir. Sonuglarin oldukga iyi uyustugu goriilmektedir.

Cizelge 4.3. Ankastre-sabit mesnetlenme durumunda analitik sonuglarin literatiir ile
kiyaslanmasi

Mod | eh; Analitik | Fernando | Analitik-Fernando %Hata
0 77,89 77,89 0,00
0,125 |78,87 78,89 0,03
1 0,25 (81,48 81,44 0,05
0,375 |85,06 85,08 0,02
0,5 88,90 89,11 0,24
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Diger dogrulama SEM ile olmustur. Analitik denklemlerin SEM ile kiyaslamasi1 yapilmis
ve Cizelge 4.4’te verilmistir. SEM ile bulunan dogal frekanslar Boliim 3.2°de detaylari
verilen dikdortgen kesitli SE modelinin analizi ile elde edilmistir. Sonuglarin oldukga iyi

uyustugu goriilmektedir.

Cizelge 4.4. Eksantrik mesnetli bir kiris i¢in elde edilen denklemlerin SEM ile
dogrulanmasi

Mod | Mesnetlenme eh fanalitik fsem fanatitik-Tsem
Durumu %Hata
1
Sabit-sabit 0 49,86 49,90 0,08
0,5 79,48 78,09 1,75
1 Sabit-k 0 49,86 49,90 0,08
abit-kayicr 05 49,83 49,89 0,12
1
Ankastre-sabit 0 77,89 7 LE8 i
0,5 88,90 88,61 0,33

Bir diger dogrulama mesnetlerin TE’de bulunma durumlari i¢in Boliim 3.1.1°de ¢ikarilan
Denklem (3.35) ve (3.47) ile yapilmistir. Dogrulamada dikddrtgen kesitler icin Cizelge
4.5’te verilen dikdortgen kesitli kirisin malzeme 6zellikleri kullanilmigtir. Karsilagtirma

Cizelge 4.5’te verilmistir. Sonuglarin olduke¢a iyi uyustugu goriilmektedir.

Cizelge 4.5. Eksantrik mesnetli bir kiris i¢in elde edilen denklemlerin mesnetlerin TE
olma durumu i¢in ¢ikarilan denklemler ile dogrulanmasi

Mod | Mesnetlenme eh Mesnetlerin TE’de Eksantrik %Hata
Durumu Bulunma durumu icin Mesnetler i¢in
fanalitik fanaritik
1 Sabit-sabit veya| 0 49,84 49,86 0,04
sabit-kayici
1 | Ankastre-sabit | O 77,87 77,89 0,06

4.2. Mesnet Eksantrisitesinin Kirislerin Frekansi Uzerindeki Etkisi

Bu alt bolimde; mesnet eksantrisitesinin kirislerin frekans1 tizerindeki etkisini
incelemede kullanilan sabit-sabit, sabit-kayici, ankastre-sabit siir sartlari literatiirde
klasik smir sartlar1 olarak tanimlanmaktadir. Klasik sinir sartlari, kirislerde titresim

analizlerinde en yaygin kullanilanlaridir (Fernandes da Silva vd., 2015).
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Dogal frekanslar, bu sinir sartlarina gore degisken eksantrisite durumlarinda Bolim

3.1°de tiiretilen frekans denklemleriyle analitik olarak elde edilmistir.

Sonuglarin degerlendirilmesinde kullanilan fy normalize edilmis dogal frekans degerini
ifade etmektedir. Bu deger mesnetlerin eksantrik (eh # 0) olmasi durumunda elde edilen
dogal frekanslarin, mesnetlerin TE iizerinde (eh = 0) olmasi durumunda elde edilen
dogal frekanslara boliinmesiyle Denklem (4.2)’deki gibi elde edilir. Burada i mod

numarasini ifade etmektedir.

_ fehio,i

fu (4.2)

B feh=0,i
4.2.1. ki ucu sabit mesnetli Kkiris

Eksantrisite etkisi, sabit-sabit mesnetlenme tiirii i¢in 4 farkli durumda incelenmistir. Bu

mesnetlenme durumlar1 asagida verilmistir.

Durum-1: eh=0; 0,125; 0,25; 0,375; 0,5 olma durumu.

Durum-2: ehi=0; 0,125; 0,25; 0,375; 0,5 ve eh>=0 olma durumu.

Durum-3: eh1=0; 0,125; 0,25; 0,375; 0,5 ve eh>=-0,5 olma durumu.

Durum-4: eh=0; 0,125; 0,25; 0,375; 0,5 ve farkli L/h oranlarinda eksantrisite etkisinin

incelendigi durum.

Durum-1, 2, 3 ig¢in Cizelge 3.1°de verilen geometrik oOzellikler kullanilmis olup
L/h=60tir. Durum-4 i¢in ise malzeme ozellikleri Cizelge 3.1°deki gibi olup degisken L/h
oranlar1 i¢in kesit sabit birakilarak kirislerin L degeri ile oynanmistir. 4 durum igin

incelemeler asagidaki gibidir.

Durum-1: Cizelge 4.6’da bu durum i¢in ilk bes modun dogal frekanslar1 verilmistir. Bu

cizelgedeki degerler Sekil 4.1 ¢izdirilerek irdelenmistir.
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Cizelge 4.6. Durum-1’de ilk bes modun dogal frekansi

Mod | eh fanalitik
0 49,86
0,125 |53,39

1 0,25 |61,71
0,375 |71,09
0,5 79,48
0 199,45
0,125 199,41

2 0,25 1199,31
0,375 199,14
0,5 198,81
0 448,75
0,125 | 452,41

3 0,25 462,00
0,375 |476,76
0,5 492,78
0 797,79
0,125 | 797,21

4 0,25 795,48
0,375 | 792,57
0,5 788,46
0 1246,54
0,125 |1249,83

5 0,25 |1259,26
0,375 |1273,61
0,5 1291,22

Sekil 4.1’de mesnetlenme durumu 1 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi verilmistir. Sonuclar incelendiginde en biiylik degisiklik 1,56 ile
mod-1"de olup ileri modlara gidildik¢e eksantrisite etkisinin azaldig1 goriilmiistiir. Mod-
3 ve mod-5 i¢in eksantrisite etkisi 1,1’in altina kalmaktadir. Bununla birlikte ¢ift sayili
modlar i¢in eksantrikligin dogal frekans tizerindeki etkisi, tek sayili modlardaki gibi
degildir. Eksantrikligin ¢ift sayili frekanslar iizerinde neredeyse higbir etkisi

bulunmamaktadir.

46



16

15
14 —a—Mod-1
2 —+—Mod-2
<13
—%— Mod-3
1.2 —<— Mod-4
—e— Mod-5
1.1
1.0 ﬁ’/r/:
0 0.125 0.25 0.375 0.5

eh

Sekil 4.1. Mesnetlenme durumu 1 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi

Sekil 4.2'de kirisin birinci ve ikinci mod sekilleri gosterilmistir. Birinci mod sekli, kirisin
pozitif ve negatif yonlerde tiim uzunlugu boyunca hareket gergeklestirdigi temel bir
titresim modunu tanimlar. Ikinci mod sekli ise kirisin hem pozitif hem de negatif yer
degistirmeler arasinda dengeyi korudugu daha karmasik bir titresim modunu tanimlar.
Birinci modda, kirisin tiim uzunlugu boyunca ayni yonde hareket etmesi nedeniyle,
eksantriklikten kaynaklanan asimetrik etkiler kirigin genel dinamik davranisi iizerinde
daha belirgin bir rol oynamaktadir. Bunun sonucunda, eksantrisitenin artmasiyla birlikte
birinci modun dogal frekansinda daha fazla degisiklik gdzlemlenmektedir. ikinci modda
ise kirisin farkli bolgeleri zit yonlerde hareket ettiginden bu karsit hareketler
eksantrisitenin etkisini biiyiik dl¢iide dengelemektedir. Ozellikle kisalan ve uzayan
bolgelerin simetrik olmasi nedeniyle eksantrisitenin frekans iizerindeki etkisi minimal
diizeyde kalmaktadir. Bu durum, ikinci modda eksantrisite etkisinin biiylik oranda
azalmasina neden olmaktadir. Diger bir ifadeyle ikinci modda kirisin kisalma ve uzama
bolgeleri birbirini dengeledigi i¢in eksantrisite degismesine ragmen frekansta kayda

deger bir degisim goriillmemektedir.
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Sekil 4.2. Durum-1"de ilk iki mod sekli

Durum 2: Cizelge 4.7’ de bu durum i¢in ilk bes modun dogal frekanslar1 verilmistir. Bu

cizelgedeki degerler Sekil 4.3 ¢izdirilerek irdelenmistir.

Cizelge 4.7. Durum-2’de ilk bes modun dogal frekansi

Mod |eh; eh; fanalitik
0 49,86
0,125 50,78

1 0,25 0,000 |53,19
0,375 56,37
0,5 59,65
0 199,45
0,125 200,37

2 0,25 0,000 |202,96
0,375 206,79
0,5 211,30
0 448,75
0,125 449,63

3 0,25 0,000 452,17
0,375 456,08
0,5 460,96
0 797,79
0,125 798,54

4 0,25 0,000 |799,30
0,375 800,74
0,5 808,72
0 1246,54
0,125 1246,99

5 0,25 0,000 |1248,33
0,375 1250,49
0,5 1253,38

Mesnetlenme durumu 2 i¢in normalize eksantrisite ile normalize frekans degerlerinin
degisimi ise Sekil 4.3’te verilmistir. Mod-1 ve eh=0,5 i¢in Durum-1’de 1,56 olan fv
degeri, Durum-2’de 1,19’a diigmiistiir. Yani iki ucun eksantrik olma durumuna gore bir

bir ucun eksantrik olmasi; eksantrisite etkisinin %37 azalmasina sebep olmustur. Cift
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numarali modlar olan mod-2 ve mod-4 i¢in Durum-1’de minimal diizeyde kalan
eksantrisite etkisi, durum-2’de daha fazladir. Mod-2 ve mod-4 i¢in eksantrisite etkisi
sirastyla 1,06 oraninda (fA=1,00—1,06) ve 1,01 (fA~=1,00—1,01) oraninda olmaktadir.
Mod-3 ve mod-5’te ise durum-1’e benzer sekilde eksantrisitenin etkisi azalmakta ve

1,03 1in altinda kalmaktadir.

1.20
1.15
—a— Mod-1
~"_Z
1.10 —+— Mod-2
—%— Mod-3
—»— Mod-4
1.05 —e— Mod-5
1.00 —— —*
0 0.125 0.25 0.375 0.5
eh2=0 ehl

Sekil 4.3. Mesnetlenme durumu 2 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi

Durum-3: Bu durumda bir ugtaki mesnet eksantrisitesi eh=-0,5’te sabit tutularak diger
uctaki mesnet eksantrisitesi degistirilmistir. Bu durum i¢in ilk bes modun dogal frekansi

Cizelge 4.8 de verilmistir. Bu cizelgedeki degerler Sekil 4.4 ¢izdirilerek irdelenmistir.
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Cizelge 4.8. Durum-3’te ilk bes modun dogal frekansi

Mod eh; eh, fanatitik
0,000 59,65
0,125 55,27

1 0,250 -0,500 [52,14
0,375 50,36
0,500 49,83
0,000 211,30
0,125 217,73

2 0,250 -0,500 [224,76
0,375 231,85
0,500 238,53
0,000 460,96
0,125 454,94

3 0,250 -0,500 |450,37
0,375 447,37
0,500 445,93
0,000 808,72
0,125 816,71

4 0,250 -0,500 |825,41
0,375 834,50
0,500 843,65
0,000 1253,38
0,125 1244,44

5 0,250 -0,500 |1236,04
0,375 1228,33
0,500 1221,44

Sekil 4.4’te mesnetlenme durumu 3 icin normalize eksantrisite ile normalize frekans
degerlerinin degisimi verilmistir. Mod-3 ve mod-5’te eksantrisite etkisinin 1,04’iin
altinda kalmasi ile birlikte; mod-1, mod-3 ve mod-5’e bakildiginda; ehl, 0’dan 0,5’e
dogru gittikce yani mesnet-1 mesnet-2’den uzaklastik¢a eksantrisite etkisinin azaldigi
gbzlemlenmektedir. Durum-1 ve durum-2’ye gore bu farkli bir sonuctur. Yani durum-1
ve durum-2’de tek sayili modlarda e/ arttikga artan eksantrisite etkisi durum-3’te azalan

bir davranis gostermektedir.

Mod-2 ve mod-4’e bakildiginda ise durum-2’ye benzer sekilde ehi=0,5’e dogru
yaklastik¢a eksantrisite etkisi artmaktadir. Bu etki, Sekil 4.4’e bakildiginda sirasiyla 1,13
(f7=1,06—1,19) ve 1,04 (f~=1,01—1,05) oraninda olmaktadir. Bu sonug¢lar Durum-2 ile
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kiyaslandiginda sunu ifade etmektedir: Tki mesnetin es degerinin toplami mutlak olarak

arttik¢a ¢ift sayili modlarda eksantrisite etkisi bir o kadar artmaktadir.

1.20

1.16

E 1.12
1.08
1.04
—
0 0.125 0.25 0.375 0.5
eh2=-0.5 eh1

Sekil 4.4. Mesnetlenme durumu 3 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi

Durum-4: Bu durumda farkli L/h oranlarinin eksantrisiteye etkisini incelemek amaciyla
L/h=2-10 araliginda degisen kirislerin dogal frekanslari, ilk mod i¢in analitik yontem ve
SEM ile bulunmus ve Cizelge 4.9°da verilmistir. Bu cizelgedeki degerler Sekil 4.5 ve
Sekil 4.6 cizdirilerek irdelenmistir.
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Cizelge 4.9. Durum-4’te ilk modun dogal frekansi

L/h |eh Fanalitik fsem
0,000 44852,69 | 31628,00
0,125 44875,00 | 34000,00
2 0,250 47463,00 | 36732,00
0,375 53310,00 | 39424,00
0,500 59610,00 | 41360,00
0,000 11218,00|10103,00
0,125 11978,00| 10720,00
4 0,250 13747,00|12023,00
0,375 15730,00 | 13382,00
0,500 17506,00 | 14453,00
0,000 4986,16 |4753,90
0,125 5332,33 |5054,20
6 0,250 6143,87 |5746,30
0,375 7057,55 |6490,30
0,500 7875,28 |7101,80
0,000 2803,29 |2730,40
0,125 2804,72 |2908,40
8 0,250 3001,19 |3326,60
0,375 3462,59 |3783,10
0,500 3982,80 |4167,00
0,000 1795,02 |1764,60
0,125 1921,28 |1881,90
10 {0,250 2218,02 |2159,30
0,375 2552,81 |2464,80
0,500 2852,15 |2725,10

Farkli L/h oranlarinda, analitik denklemle bulunan frekans ile sonlu elemanlar (SE)
analiziyle elde edilen frekans arasindaki hata oranlari, eksantrisitenin (e4) degisimine
bagl olarak Sekil 4.5’te gosterilmistir. Burada %hata Denklem (4.3)’teki gibi elde

edilmistir.

Y%hata = 'fs’”;c—_ﬁ“l +100 (4.3)

A
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Sekil 4.5. Mesnetlenme durumu 4 icin normalize eksantrisite ile %hata’nin degisimi

Sekil 4.6 farkli L/h oranlarinda normalize eksantrisitenin, normalize edilmis ilk mod
dogal frekansi lizerindeki etkisini gOstermektedir. Burada L/h 2°‘den 10’a gittikge
eksantrisite etkisi artmaktadir. L/h=2 oldugunda 1,31 olan eksantrisite oran1 L/h=10 iken
1,54’e yiikselmektedir. Ayrica, diisikk ek degerlerinde (es < 0,125) farkli L/h oranlari
arasinda belirgin bir fark olmadigini, ancak e degerinin 0,125t gectikten sonra bu

farklarin arttig1 goriilmektedir.

16
1.5
1.4
—a—L/h=2
H—Z
1.3 —+L/h=4
—x—L/h=6
1.2 —%—L/h=8
. —e—L/h=10
1.0
0 0.125 0.25 0.375 0.5

eh

Sekil 4.6. Mesnetlenme durumu 4 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi
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Sekil 4.7 analitik yontem ile bulunan frekanslarin SEM ile bulunan frekanslara
boliinmesiyle elde edilen fanaiiik/fsem oranmin L/h’ye bagli olarak nasil degistigini ve
farkl1 eh degerlerinde etkilerini incelemektedir. Burada, analitik ve SEM sonuglar1
arasindaki fark L/h=2 iken 1,57 dir ve L/h=10 iken 1,05’e diistiigii goriilmektedir. Bu fark
Boliim 2.3’te verilen kabullerin etkisi olarak; ¢ikarilan hareket denklemlerinde kesme
deformasyonu ve donme ataleti etkilerinin ihmal edilmesinden kaynaklanmaktadir. L/h
orani arttik¢a, bu etkilerle karsilastirildiginda egilme daha belirgin hale gelmekte ve hata

orani azalmaktadir.

1.6
1.5
1.4
= —a—eh=0
w
\g 13 —+—eh=0.125
H_% —%—eh=0.250
1.2 —x—eh=0.375
—e—eh=0.500
1.1
1.0
2 4 6 8 10

L/h

Sekil 4.7. Mesnetlenme durumu 4 i¢in L/h ile fanaiiit/fsem oraninin degisimi

4.2.2. Bir ucu sabit diger ucu kayic1 mesnetli Kiris

Literatiiriin (Fernando vd., 2018; Li vd., 2023) bildirdigine gore bir ucu sabit diger ucu
kayic1 mesnetlenme durumu igin eksantrisite etkisi minimal diizeydedir. Burada tek
durum dikkate alinmustur.

Durum-5: e4=0 ve 0,5 olma durumu.

Bu durum i¢in ilk bes modun dogal frekans1 Cizelge 4.10°da verilmistir. Dogal frekanslar,

literatiirde bildirilen sonuclar ile uyumludur.
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Cizelge 4.10. Durum-5’te ilk bes modun dogal frekans1

Mod |eh |fanaitik
1 0 49,86
0,5149,83
2 0 199,45
0,5/198,89
3 0 448,75
0,5|445,75
4 0 |797,79
0,5|786,27
5 0 |1246,54
0,5(1197,90

4.2.3. Bir ucu ankastre diger ucu sabit mesnetli Kiris

Eksantrisite etkisi, bir ucu ankastre diger ucu sabit mesnetlenme tiirii i¢in tek durumda

incelenmistir. Bu durum su sekildedir:

Durum-6: eh= 0; 0,125; 0,25; 0,375; 0,5 olma durumu.

Cizelge 4.11°de bu durum i¢in ilk bes modun dogal frekanslar1 verilmistir. Bulunan dogal

frekanslar literatiir ile kiyaslanmis ve uyumlu sonuglar elde edildigi gézlemlenmistir.

Sekil 4.8’de mesnetlenme durumu 6 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi verilmistir. Mod-1 ve eh=0,5 i¢in Durum-1’de 1,56 olan fv Durum-
7°de 1,14’e diismiistiir. Yani iki ucun eksantrik olma durumuna gore bir ucun ankastre bir
ucun eksantrik sabit mesnetli olmasi eksantrisite etkisinin %42 azalmasina sebep
olmustur. Cift numarali modlar olan mod-1 ve mod-4’te, eksantrisite; Durum-2’deki
oranlara yakin degerlerde etki gdstermistir. e~2=0,5; mod-3 ve mod-5’te ise durum-1 ve

durum-2’ye benzer sekilde eksantrisitenin etkisi daha azdir ve 1,03’iin altindadir.
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Cizelge 4.11. Durum-6’da ilk bes modun dogal frekansi

Mod eh, fanalitik

0 77,89
0,125 |78,87

1 0,25 81,48
0,375 |85,06
0,5 88,90

0 252,42
0,125 |253,34
2 0,25 255,93
0,375 |259,82
0,5 264,48
0 526,66
0,125 |527,52
3 0,25 530,01
0,375 |533,86
0,5 538,73
0 900,63
0,125 |901,32
4 0,25 903,37
0,375 (906,63
0,5 910,88
0 1374,31
0,125 |1374,64
5 0,25 1375,62
0,375 [1377,22
0,5 1379,38

1.15

1.12

—a— Mod-1
1.09

—+—Mod-2

—x— Mod-3
1.06
—»%—Mod-4

1.03 —e— Mod-5

1.00 —— —
0 0.125 0.25 0.375 0.5
eh,

Sekil 4.8. Mesnetlenme durumu 6 i¢in normalize eksantrisite ile normalize frekans
degerlerinin degisimi
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4.3. Mesnet Eksantrisitesinin Petek Kirislerin Frekans1 Uzerindeki Etkisi

Bu alt baslikta mesnet eksantrisitesinin petek kiriglerin frekansi lizerindeki etkisini
irdeleyebilmek i¢in L/h=5 ve 7 durumlarinda SE analizleri yapilmistir. Cizelge 4.12°de
petek kirisin sabit-sabit mesnetlenmesi i¢in degisken eksantrisite durumunda ilk bes

modun dogal frekans1 verilmistir.

Cizelge 4.12. Sabit-sabit mesnetlenme durumunda petek kiris i¢in ilk bes modun dogal
frekansi

Mod | eh fsem
0 95,22
0,125 | 96,26
1 0,25 (99,39
0,375 | 103,3
0,5 106,06
0 248,16
0,125 |247,84
2 0,25 |246,37
0,375 |243,21
0,5 238,85
0 395,39
0,125 [395,67
3 0,25 [396,6
0,375 [397,93
0,5 398,95
0 519,82
0,125 |542,26
4 0,25 |542,41
0,375 |542,73
0,5 542,68
0 640,8
0,125 |640,77
5 0,25 |640,16
0,375 | 638,98
0,5 637,43

Sekil 4.9°da petek kiris icin normalize eksantrisite ile normalize frekans degerlerinin
degisimi verilmistir. Sonuclar incelendiginde en biiyiik degisiklik L/h=7 mod-1 durumu

icin 1,11 olarak bulunmugtur. Sonrasinda ise L/h=5 iken 1. mod’da eksantrisite etkisi 1,07
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olarak tespit edilmistir. L/h=5"in ileri modlarina gidildik¢e eksantrisite etkisinin petek

kirisin frekanslarinda minimal bir etki yarattig1 goriilmektedir.

1.12
1.08
—a&—L/h=7 Mod-1
_ L/h=7 Mod-2
= 1.04
—%— L/h=7 Mod-3
L/h=7 Mod-4
1.00 & 2* » * » —&—L/h=7 Mod-5
L/h=5 Mod-1
0.96
0 0.125 0.25 0.375 0.5

eh

Sekil 4.9. Petek kiris i¢in normalize eksantrisite ile normalize frekans degerlerinin
degisimi

4.4. Bulonlu Birlesimli Kirislerin Frekans Analizi

Bu alt boliimde; I ve petek kiris olmak iizere iki farkli kiris tipinin, degisken bulon sayis1
ve yerlesimleri altinda SEM ile dogal frekanslar1 bulunmustur ve bu parametrelerin
eksantrisiteye etkisi incelenmistir. Hesaplamalarda L/h=5 alinmistir. Dikkate alinan farkl
bulon sayisi ve farkli eksantrisite durumlar1 Boliim 3.2.2°de verilen Sekil 3.9, Sekil 3.10

Sekil 3.11°de goriilmektedir.

Bulon grubunun TE’de olmasi durumunda ve birden fazla bulon olmasi durumlarinda
bulon merkezinin yeri degismedigi i¢in e~=0 olarak alinmistir. Birden fazla bulon olmasi
durumunda ve bulonlarin eksantrik (eh#0) yerlesmesi durumunda ise ek degerinin
hesaplanmasi1 Denklem (4.4) kullanilarak yapilmistir. Burada ey,,;,,, degeri TE’e en uzak
olan bulonun uzunlugunu ifade etmektedir. Bahsedilen yerlesim sekli Sekil 3.9b’de

goriilmektedir.

€hulon
eh = ——

h (4.4)
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I ve petek kirislerin; farkli bulon sayilarina, eksantrik (eh#0) ve TE eksen iizerinde
(eh=0) yerlesimlerine gore SEM ile bulunan birinci mod dogal frekanslar1 Cizelge 4.13°te

verilmistir.

Cizelge 4.13. Kirislerin eksantrik ve TE iizerinde yerlesimli olmasi durumunda birinci
mod dogal frekanslari

Kiris Bulon | eh fsem
Sayisi

| 1 0 190,23
| 1 0,41 |198,64
| 2 0 197,20
| 2 0,41 |[208,18
| 3 0 202,47
| 3 0,41 [213.,48
I 4 0 208,28
[ 4 0,41 [217,88
| 5 0 215,16
| 5 0,41 (222,56
Petek 1 0 160,99
Petek 1 0,41 162,78
Petek 2 0 164,19
Petek 2 0,41 |[166,72
Petek 3 0 166,56
Petek 3 0,41 (169,41
Petek 4 0 169,08
Petek 4 0,41 |172,00
Petek 5 0 172,00
Petek 5 0,41 |[174,56

Cizelge 4.13’te verilen dogal frekans sonuglar1 asagida iki kisimda irdelenmistir.

Eksantrik yerlesen bulon grubunda bulon sayisinin etkisi:

Burada ilk olarak iki ucu Sekil 3.9a’da verildigi gibi mesnetlenen kiris ile iki ucu sirastyla
Sekil 3.11°de wverildigi gibi mesnetlenen kirislerin birinci mod dogal frekanslar
kiyaslanmis ve Sekil 4.10 elde edilmistir. Burada frekans, bagl oldugu parametrelerle

€
1

birlikte fep, ;5 seklinde tanimlanmistir ve “#” bulon sayisini, mod numarasini ifade
etmektedir. » bulon sayisini ifade etmektedir ve n= 1, 2, 3, 4, 5 olmak iizere, %hata

Denklem (4.5)’teki gibi hesaplanmustir.
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Y%hata = |f0.41,1,n - f0,1,1| %100 (45)

fO,l,l

I ve petek kirisler i¢in eksantrik 1 bulonlu durumda sirasiyla %4,4 ve %1,1 hata vardir.
Bu durum eksantristenin etkisinin I kiriglerde daha fazla oldugunu gostermektedir.
Eksantrik 5 bulonlu durumda %17 ve %8,5’a kadar yiikselmektedir. Artis %’lerine

bakildiginda bulon sayisinin artmasi I kirigse daha fazla etki etmektedir.

20
16

12

—— | Kiris

%Hata

8 Petek Kiris

1 2 3 4 5
Bulon Sayisi

Sekil 4.10. Eksantrik yerlesen bulonlarda bulon sayisina gore %hatanin degisimi
(mesnetlerin TE’de olma durumu ile kiyaslandiginda)

Sonraki kiyaslama da ise iki ucu Sekil 3.9b’de verildigi gibi mesnetlenen kiris ile iki ucu
strastyla Sekil 3.11°de verildigi gibi mesnetlenen kirislerin birinci mod dogal frekanslari
kiyaslanmis ve Sekil 4.11 elde edilmistir. Burada %bhata Denklem (4.6)’daki gibi

hesaplanmustir.

_ |f0.41,1,n+1 - f0.4-1,1,1| +100

Y%hata = (4.6)

f0.41,1,1

Bu kiyaslama, eksantrik durumda bir bulonla birden fazla bulon olmasinin senaryoyu
nasil degistirdigini gostermektedir. 2 bulonlu durumda I ve petek kiris i¢in de hata orani

strastyla %5 ve %2,5 olmaktadir. %hata, I kiriste bulon sayisinin artistyla birlikte daha
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hizl bir artis gostermektedir ve 5 bulonlu durumda I kiriste hata oran1 %12, petek kiriste
ise %7,2 seviyesindedir. Bu sonuglar, artis %’lerine bakildiginda eksantrik durumda
bulon sayisinin artmasi I kirise daha fazla etki etmektedir ve 5 bulondan sonra %10’un

tizerine ¢ikmaktadir.

14
12

10

—— | Kirig

%Hata

Petek Kiris

Bulon Sayisi

Sekil 4.11. Eksantrik yerlesen bulon grubunda bulon sayisina gére %hatanin degisimi
(eh=0,41 tek bulonlu yerlesim ile kiyaslandiginda)

TE iizerinde yerlesen bulon grubunda bulon sayisinin etkisi:

Burada iki ucu Sekil 3.9a’da verildigi gibi mesnetlenen kiris ile iki ucu sirasiyla Sekil
3.10°da verildigi gibi mesnetlenen kiriglerin birinci mod dogal frekanslar1 kiyaslanmis ve

Sekil 4.12 elde edilmistir. Burada %hata Denklem (4.7)’deki gibi hesaplanmustir.

Yohata = |fo,1,n+1 - fo,1,1| 100 @7

f0,1,1

Bu kiyaslama, bulonlarin agirlik merkezi tarafsiz eksenin tizerinde olmasi durumunda ve
birden fazla bulon olmasi durumunda eksantrisite etkisinin ne diizeyde oldugunu
incelemektedir. 2 bulonlu durumda hata oranlar1 her iki kiris tipi i¢in de %4’{in altindadir.
Bulon sayis1 arttikca I kiristeki hata orani petek kirise gore daha yiiksek seviyelere
ulagsmistir ve 5 bulonlu durumda I kiristeki hata %13 petek kiriste %7’dir. Bulonlarin
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agirlik merkezi tarafsiz eksenin {izerinde olsa da birden fazla bulonun dogal frekanslar

etkiledigi goriilmektedir.

15
12
< 9
©
=
> —m— | Kiris
6 —@— Petek Kirig
3
0
2 3 4 5
Bulon Sayisi

Sekil 4.12. TE {izerinde yerlesen bulon grubunda bulon sayisina gore %hatanin degisimi
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5. SONUC

Bu caligmada, farkli kiris tipleri, mesnet sartlar1 ve geometrik Ozellikler altinda

eksantrisitenin etkisi incelenmistir. Analitik yontemler kullanilarak farkli modlar igin

dogal frekanslar belirlenmis ve elde edilen sonuglar literatiirdeki caligmalar ve sonlu

elemanlar yontemi (SE) ile karsilastirllmistir. Calisma kapsaminda ulasilan temel

sonuclar agagida 6zetlenmistir:

Analitik denklemlerin dogrulanmasi:

Hamilton prensibi ile elde edilen ve eksantrik mesnetli kirislerin frekanslarini
veren diferansiyel denklemlerin ¢oztimleri, literatiirdeki c¢alismalar ve SE
analizleri ile karsilagtirllmis ve sonuglarin yiiksek uyum gosterdigi tespit
edilmistir. Bu dogrultuda, tiiretilen analitik denklemlerin dogrulugu
kanitlanmistir.

Eksantrisitenin mesnet kosullarina etkisi:

Farkli mesnet kosullar1 altinda eksantrisitenin etkisi degerlendirildiginde,
ankastre-sabit mesnet kosullarinda dogal frekanslarda %14 artis, sabit-sabit
mesnet kosullarinda ise %56’ya varan frekans artiglar1 gdzlemlenmistir. Ayrica,
her iki ucun eksantrik olmast durumuna kiyasla, bir ucun ankastre, diger ucun
eksantrik olmasi durumunda eksantrisite etkisinin %42 azaldig1 belirlenmistir.
Sabit-kayict mesnet kosullarinda ise literatiirdeki ¢alismalarla uyumlu sonuglar
elde edilmis olup, eksantrisitenin dogal frekanslar lizerindeki etkisinin minimal
seviyede oldugu goriilmiistiir.

Mod sekillerine gore eksantrisitenin etkisi:

Calisma kapsaminda ilk bes mod incelenmis ve birinci modda eksantrisitenin
dogal frekanslar tizerinde belirgin bir fark yarattig1 gézlemlenmistir. Daha yiiksek
modlara gecildik¢e eksantrisitenin etkisinin azaldig: tespit edilmistir.

L/h oraninin eksantrisite etkisine katkist:

Farkli L/h oranlarinda eksantrisitenin dogal frekanslar iizerindeki etkisi
incelenmis ve L/h orani arttik¢a eksantrisitenin etkisinin de arttig1r goriilmiistiir.
Analitik ve SE sonuglarinin kiyaslanmasi amaciyla fanaiiti/fsem orani incelenmis
ve L/h orani arttikga bu oranin 1’e yaklastigi, yani analitik ve SE sonuglariin

birbirine yakinsadigi tespit edilmistir. Bu durum, Euler-Bernoulli teorisinin
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kabullerinden kaynaklanmaktadir. Ciinkii tiiretilen analitik denklemler, diisiik L/h
oranlarinda kayma deformasyonlarini dikkate almadigi i¢in, SE analizlerinden
elde edilen sonug¢lardan sapma gostermektedir. Ancak L/h orami arttik¢a egilme
etkisi baskin hale gelmekte ve analitik denklemler ile SE analizleri arasinda daha
iyi bir uyum saglanmaktadir.

Eksantrisitenin petek kirislerdeki etkisi:

Mesnet eksantrisitesinin petek kirislerin dogal frekanslarina olan etkisi sabit-sabit
mesnet kosullarinda L/h = 7 ve L/h = 5 i¢in incelenmistir. En biiyiik degisimin
birinci modda meydana geldigi ve eksantrisitenin frekans tizerindeki etkisinin
sirastyla 1,11 ve 1,07 oraninda oldugu belirlenmistir. Daha yiiksek modlara
gecildikee eksantrisitenin petek kirislerin frekanslar izerindeki etkisinin minimal
seviyeye indigi gorilmiistiir.

Eksantrisitenin bulonlu birlesimli kirislerdeki etkisi:

L/h =5 i¢in I kesitli ve petek kirislerde, farkli bulon sayilarinin ve yerlesimlerinin
eksantrisiteye etkisi incelenmistir. Tarafsiz eksenin tizerinde bulunan bulonlar i¢in
hali hazirda var olan dogal frekans denklemlerinin, eksantrik durumda basarili
tahmin yapamadigi tespit edilmistir. Ozellikle, frekanslarda %17’ye varan
sapmalar gozlemlenmistir. Ayrica, bulonlarin agirlik merkezinin tarafsiz eksen
tizerinde oldugu, ancak birden fazla bulonun bulundugu durumlarda, dogal
frekanslarda %13’e varan degisimler oldugu belirlenmistir. Bu sonug, bulonlarin
agirlik merkezi tarafsiz eksen lizerinde olsa bile, bulon sayisinin artmasinin dogal

frekanslar lizerinde 6nemli degisimlere yol agtigini géstermektedir.
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