
T.C.
YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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Prof. Dr. Gökhan BİLGİN ve Sayın Prof. Dr. Selçuk SEVGEN hocalarıma değerli
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2.2 Çekişmeli Üretici Ağ (ÇÜA) Mimarileri . . . . . . . . . . . . . . . 9
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viii



KISALTMA LİSTESİ
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OKH Ortalama Karesel Hata

OMH Ortalama Mutlak Hata

ReLU Düzeltilmiş Doğrusal Birim
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Şekil 2.6 Seg2Pix mimarisinin kullanımına genel bakış. Seg2Pix mimarisi
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elde edilir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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(b) StyleGAN2 mimarisindeki üretici ağ. Yapılan iyileştirme ile
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Şekil 2.11 CycleGAN mimarisine genel bakış. . . . . . . . . . . . . . . . . 26
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Şekil 2.14 Varyasyonel otomatik kodlayıcı mimarisine genel bakış. . . . . . 33
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Şekil 3.2 Yeniden ölçeklendirilen ve üretilen çizgi sanatı görüntüleri. (a)

Veri setinin orta sıralarında bulunan örnek görüntü. (b) Veri
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Şekil 3.3 Kıyaslama yaparken yaptığımız işlemlerin kısa bir özetini
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modifikasyonu (Line2Pix). Bizim eklediğimiz katmanları
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boyutu (kernel size) olarak 1x1, adım (stride) olarak 1 değerini
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kullanılmıştır. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Tablo 3.4 Mimarilere bilgisayar girdisi (Şekil 3.11) verilerek üretilen
görüntülere ait OKH skorları. Mimarilerin eğitiminde
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çıktıları kullanıyoruz. . . . . . . . . . . . . . . . . . . . . . . . 65
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ÖZET

Çekişmeli Üretici Ağlar ile Sıfırdan İki Boyutlu
Karakter Üretimi ve Karakter Renklendirilmesinde

PixelSight Bloklarının Kullanımıyla Çeşitlilik ve
Kalitenin Artırılması

Volkan Can BACAKSIZ

Bilgisayar Mühendisliği Anabilim Dalı
Yüksek Lisans Tezi

Danışman: Dr. Öğr. Üyesi Oğuz ALTUN

Yaptığımız tez çalışmasında, iki boyutlu karakter üretimini otomatikleştirmeye
odaklanan çalışmaları gözden geçirdik. Henüz bu alanda kullanılmamasına rağmen
potansiyel olarak uygulanabilir olabilecek çalışmaları da tartıştık. İki boyutlu
karakter üretimin sürecinde kullanılan mimarilere yönelik iyileştirmeler sunduk.

Konunun daha iyi anlaşılmasını sağlamak için, iki boyutlu karakterleri ve bunların
üretim süreçlerini tanıttık. 2B karakterlerin üretim süreçleri, özellikle ÇÜA
mimarilerinin ortaya çıkmasıyla birlikte önemli ölçüde gelişmiştir. ÇÜA ve
VOK tabanlı mimarilere odaklanarak iki boyutlu karakterler için kullanılan temel
mimarileri tartıştık. Ayrıca, gelecekteki çalışmalarda kullanılabilecek mimarilerden
bahsediyoruz ve bahsettiğimiz mimarilerin neden uygun seçenekler olabileceğini
kısaca açıkladık.

Karakter renklendirme için MANGAN mimarisini ve Pix2Pix mimarisinin çeşitli
modifikasyonlarını karşılaştırdık. Karşılaştırdığımız Pix2Pix modifikasyonları
arasında Isola vd. tarafından önerilen orijinal Pix2Pix mimarisi, Serpa ve
Rodrigues tarafından önerilen Pix2Pix mimarisi, Jiang ve Sweetser tarafından
önerilen Pix2Pix mimarisi, Coutinho ve Chaimowicz tarafından önerilen Pix2Pix
mimarisi bulunmaktadır. Renklendirme için yaptığımız karşılaştırmada, en iyi
sonuçları Isola vd. tarafından önerilen orijinal Pix2Pix mimarisi ile elde ettik.
Bu nedenle, geliştirmelerimizi Isola vd. tarafından önerilen mimariyi temel alarak
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gerçekleştirdik. Pixel VQ-VAE mimarisindeki PixelSight bloklarından esinlenerek,
üretecin ilk katmanına ve ayırıcının son katmanına 1x1 konvolüsyonlar ekledik.
Yaptığımız eklemeler sonucunda görüntünün bir bütün olarak renklendirilmesini
önledik. Ayrıca, eğitim setindeki renk baskınlığının etkisini HSV histogramı
yardımıyla ortaya koyduk. Gerçek dünya verileri ile deneyler yaparak sonuçlarını
paylaştık.

Karakter üretimi için DKÇÜA mimarisini kullandık. DKÇÜA mimarisi ile karakter
üretiminde sapmalarla karşılaştık. Sapmaların önüne geçebilmek amacıyla tarihsel
ortalama tekniğinden esinlenen bir yöntem kullanarak eğitim sırasında sapmaları
önledik. Pixel VQ-VAE mimarisindeki PixelSight bloklarından esinlenerek,
DKÇÜA mimarisinin ayırıcı ağına 1x1 konvolüsyon ekledik. Çeşitliliği
ve çıktı kalitesini artırdık. Değerlendirme yöntemlerinin karakter üretimini
değerlendirmekte yetersiz kaldığına değindik. Düşüncemiz doğrultusunda kullanıcı
anketi ile karakter üretimine ait deneyimizi tekrar değerlendirdik.

Anahtar Kelimeler: Karakter üretim süreci otomasyonu, piksel sanatı, karakter
üretimi, ÇÜA, VOK.

YILDIZ TEKNİK ÜNİVERSİTESİ
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ABSTRACT

Enhancing Diversity and Quality in Two-Dimensional
Character Generation and Character Coloring using

Generative Adversarial Networks with PixelSight
Blocks

Volkan Can BACAKSIZ

Department of Computer Engineering
Master of Science Thesis

Supervisor: Asst. Prof. Oğuz ALTUN

In this thesis, we reviewed studies focused on automating the generation of
two-dimensional characters. To enhance understanding of the topic, we introduced
two-dimensional characters and their production processes. We discussed the
core architectures used for two-dimensional characters, focusing on GAN and
VAE-based models. Additionally, we mentioned architectures that could be utilized
in future research and briefly explained why these architectures may be suitable
options.

We compared the MANGAN architecture and various modifications of the Pix2Pix
architecture for character coloring. In our comparison, the best results were
achieved with the Pix2Pix architecture proposed by Isola et al., which was the
original Pix2Pix architecture. Therefore, we based our improvements on this
architecture. Inspired by the PixelSight blocks in the Pixel VQ-VAE architecture,
we added 1x1 convolutions to the first layer of the generator and the last layer
of the discriminator. This enhancement led to progress in terms of similarity and
preventing the image from being colored as a whole. We used an HSV histogram to
analyze color dominance in the training set and showed its impact on results. Also,
we experimented with real-world data.

We used the DCGAN architecture for character generation. During character
generation with the DCGAN architecture, we encountered deviations. To prevent
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these deviations, we implemented a method inspired by the historical averaging
technique, which helped to mitigate deviations during training. Inspired by the
PixelSight blocks from the Pixel VQ-VAE architecture, we incorporated a 1x1
convolution into the discriminator network of the DCGAN architecture. This
modification enhanced diversity and output quality. We also addressed the
insufficiency of current evaluation methods in assessing character generation. Based
on this, we reassessed our character generation experiment using a user survey.

Keywords: Character generation process automation, pixel art, character
generation, GAN, VAE.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
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1
GİRİŞ

Karakter üretim süreci ile ilgili önemli bilgileri açıklayıcı bir şekilde ele
aldık. Karakter üretim sürecinde karşılaşılabilecek terimleri ve aşamaları
detaylandırdık. Literatürde genellikle oyunlarla ilgili çalışmalar bulunması
nedeniyle, açıklamalarımızı oyun süreçleri üzerinden yürüttük.

1.1 2 Boyutlu (2B) Çizim
2 boyutlu (2 dimensional) çizimler birçok farklı alanda kullanılan bir tasarım
biçimidir. Teknolojinin gelişmesiyle beraber farklı tasarım biçimleri ortaya
çıkmıştır. 3 boyutlu (3B) çizimler 2B çizimlere kıyasla daha fazla kullanılır hale
gelmiştir. Ancak 2B çizimler hala geçerliliğini korumaktadır. Özellikle 2B çizimler
kullanılarak ortaya konan oyunlar ve çizgi romanlar popülerliğini korumaktadır.

Oyunlarda gerçekçi 3B (3 dimensional) çizimlere sahip olmak her zaman iyi
olmayabilir. Çünkü oyunlarda hayal gücüne dayalı bir üretim bulunmaktadır.
Yapılmak ve kullanıcıya aktarılmak istenen deneyim, bazen 2B çizimleri
gerektirebileceği gibi, 2B çizimler maliyet açısından da avantajlı olmasından
kaynaklı kullanılabilmektedir.

2B çizimler 3B çizimler için referans olarak da kullanılabilmektedir. 3B bir karakter
çizilirken 2B olarak çizilen bir karakterin yan görüntüsü, 3B karakteri oluştururken,
karakterin derinliğini oluşturmakta yardımcı olacaktır. 3B çizim için özellikle
oyunlarda referans olarak 2B çizimlerin kullanılması yaygın bir yöntemdir.

1.1.1 Piksel Sanatı

Oyun veya çizgi romanların 2B olarak ortaya konması durumunda 2B
karakterler kullanılır (Şekil 1.1.a). 2B karakterler üretilirken farklı sanat tarzları
kullanılabilmektedir. Piksel sanatı (pixel art) da bu sanat tarzlarından biridir (Şekil
1.1.b). Piksel sanatı dijital dünya özelinde kullanılır. Piksel sanatı başlangıçta
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sınırlı grafik özellikleri için tercih edilmiştir [1]. Sınırlı grafik özelliklerine çok iyi
uyum sağladığından o dönemlerde daha yaygın kullanılmıştır. Gelişen teknolojiyle
beraber piksel sanatı da gelişmiştir. Başlangıçtaki kadar yaygın olmasa da daha
erişilebilir ve maliyet açısından daha uygulanabilir olmasından dolayı bağımsız
oyun üreticileri tarafından kullanılması, ve retro oyun stili severlerin tercih etmesi
nedeniyle hala yaygın bir sanat tarzıdır.

(a) (b)

Şekil 1.1 (a) 2B karakter yüzü [2]. (b) Piksel sanatı karakter [3].

Dijital bir ortamda görüntünün temel birimi piksel (pixel) olarak adlandırılır [4].
Bir piksel kabaca kare bir bloktur. Kare bloklar birleşerek bir görüntüyü oluşturur.
Piksellerin birleşmesi ile oluşturulan bu görüntü piksel sanatı olarak adlandırılır.
Piksel sanatı oluşturulurken sınırlı sayıda piksel kullanıldığı için yoğun bir emek ve
çaba ister [1, 5]. Oldukça hassas ve kusursuz bir yapıya sahiptir [6]. Ekrandaki
her bir pikselin kasıtlı olarak yerleştirilmesi gerekir [7]. Bu süreç zamana mal
olmaktadır. Piksel sanatı, zaman ve beceri açısından belirli gereksinimler taşısa
da, maliyet açısından tasarruf sağlar. Kısaca piksel sanatı dijital ortamın en küçük
görüntü birimi olan pikselleri sınırlı sayıda kullanarak 2B görüntü ve animasyon
oluşturulmasını sağlayan dijital bir sanattır [8].

Piksel sanatı teknolojinin gelişmesiyle beraber gelişmiştir. Geçmişte 8 bit (byte)
ve 16 bit gibi sınırlandırmalarla karşı karşıya olan piksel sanatı bu kısıtlamalardan
kurtulmuştur [8]. Yaklaşık olarak 16 milyon farklı renk ile renklendirilebilir
[4]. Dolayısıyla kullanıcıya aktarılmak istenen görüntüde bir kayıp olmamaktadır.
Bu gelişmeler bağımsız oyun yapımcılarının bu tarzı kullanmasına olanak sağlar.
Çünkü çağın gerisinde kalmış bir sanat türü değildir. Aksine piksel sanatı temel bir
görüntünün üzerine hayal kurulabilmesini sağlar. Gücünü bu etkisinden alır.
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1.2 Karakter Üretim Süreci
Genel olarak bakıldığında oyun yapımı uzun ve zorlu aşamaları bulunan bir süreçtir
[9]. Bu süreçlerden biri de tasarım aşamasıdır. Çünkü oyunlar içerisinde iletişim
halinde olan binlerce farklı sanat varlığı (asset) bulunabilir [10, 11]. Gelişen
teknoloji ile beraber tasarım aşamasındaki maliyet de önemli ölçüde artmıştır [12].
Oyunlar oyun türleri, konsept ve oyun geliştirici ekibin bütçesi gibi nedenlerle farklı
tasarım tarzlarına yönelebilmektedir [13]. Bu tarzlardan biri olan 2 boyutlu çizimler
beceri ve zaman gerektirirken maliyetten tasarruf sağlar [14]. Bu nedenle bağımsız
oyun geliştiricilerin gözdesidir. Günümüz dünyasında piksel sanatı genel olarak
retro oyunlar için kullanılır. Aynı zamanda bağımsız oyunlar tarafından da daha az
maliyetle stil sahibi oyunlar ortaya çıkarmak için kullanılır.

1.2.1 Karakter Üretimi

Oyunlarda kullanıcılarla etkileşimi sağlayan ana unsur ekrandaki görüntüdür [15,
16]. Ekrandaki görüntüyle beraber tema ve hissiyatın aktarılması önemlidir
[17]. Hissiyat olarak bakıldığında karakter üretimi oldukça önemlidir. İnsanlar
ekrandaki karakterlere kişilik atamaya meyillidir. Oyunlarda da durum tam olarak
böyledir. Özellikle oyunda ana karakter bulunuyorsa, ana karakter tüm oyun
deneyimine etki edecektir [18]. Çünkü oyuncu doğrudan ana karakter ile etkileşim
içerisindedir. Oyuncunun oyunla veya ana karakterle bağ kurabilmesi oyunun tekrar
oynanabilirliğini güçlendirecektir.

Ana karakterin yanı sıra oyunda bulunan diğer karakterlerin de önemi
azımsanmayacak seviyededir. Düşman karakterlerin tasarımları, oyuncu olmayan
karakterlerin (Non-player character (NPC)) tasarımları özenle gerçekleştirilir.
Oyundaki karakter çeşitliliği fazla olabileceği gibi, az sayıda da olabilir. Özellikle
çeşitli karakterlere sahip oyunlarda otomasyon daha ön plana çıkacaktır.

Karakterler taşıdıkları özelliklerle uyum içerisinde olan bir görünüme sahip
olmalıdır. Bu durum bazı oyunlar için geçerli olmasa da çoğunlukla geçerliliğini
korumaktadır. Atik olan bir oyun karakterinin daha zayıf olması beklenirken, güçlü
ancak çeviklik konusunda sıkıntıları olan bir oyun karakterinin daha yapılı olması
beklenir. Yapılan karakter tiplemesi ile bağdaşan özellikler kullanıcının tezatlık
yaşamaması için önemlidir.

1.2.2 Karakter Renklendirmesi

Herhangi bir karaktere ait renklendirme işlemi yapılırken dikkat edilmesi
gereken bazı unsurlar bulunmaktadır. Oyunun teması, arka planla bir uyum
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içerisinde olurken aynı zamanda ayırt edilebiliyor olması ve karakter üzerinde
kullanılan renklerin birbiriyle uyumlu olması gibi unsurlar dikkat edilmesi gereken
unsurlardan bazılarıdır. Kötü bir karakter renklendirmesi, iyi bir karakteri bile kötü
gösterebilir.

Renklendirme için farklı yöntemler bulunmaktadır. Tek renk tonunu kullanarak
renklendirme sağlanabileceği gibi, farklı renkler ile de renklendirme yapılabilir.
Farklı renklendirme çeşitlerini gözlemleme süresini kısaltmak tasarımcıya ilham
olabileceği için karakter renklendirmesi ile alakalı otomasyon çalışmaları önem
taşımaktadır.

Sadece renklendirme üzerine olan çalışmalarda tasarımcı otomasyon ile üretilen
renklendirilmiş karakterleri kullanmak zorunda değildir. Kullanılabilir olması
ilk önceliklerden biri olsa da, tasarımcıya ilham kaynağı olması da büyük bir
önem taşımaktadır. Otomasyon tarafından kullanılan renk paleti beğenilirse,
karakter otomasyon tarafından kullanılan renk paleti ile tasarımcı tarafından
renklendirilebilir.

1.2.3 Karaktere Ait Animasyon Oluşturma

Karakter üretiminin yanı sıra, karaktere ait animasyon üretimi de zor ve yoğun
bir süreçtir [19]. Özellikle 2B hareketli çizim (sprite) üretimi, zorluğundan
dolayı oyun geliştirme süreci için büyük bir yük oluşturur [20]. Hareketli çizim
bir karakterin veya bir nesnenin animasyonunu oluşturmak için kullanılan bir
yöntemdir. Animasyon için ekrana yansıması gereken görüntüler tek tek çizilir ve
art arda oynatılır (Şekil 1.2). 2B hareketli çizim üretim süreci tüm oyun tasarım
sürecinde olduğu gibi referans toplanmasını da gerektiren bir arama süreciyle
başlar [21]. Animasyonu yapılacak hareketin her bir karesinin ölçülü biçimde
çizilmesi gerekir. Çizilen kareler belirli aralıklarla oynatılarak akıcılık sağlanır.
Aynı zamanda animasyonlar döngü olarak da oynatılabilir. Animasyonlar arasında
geçiş yumuşak olmalı, fark edilmemelidir.

Şekil 1.2 Oyun karakteri hareketli çizimi [3]. Şekil 1.1.b’de gösterilen karaktere ait
hareketli çizimdir.

Animasyonlar etkileşimi sağlayan kısımlara sahip olabileceği için uzunlukları da
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önemlidir. Saldırı animasyonunun uzun olması, oyun içerisinde bulunan diğer bir
sanat varlığına vurulduğunda oluşacak etkinin, animasyon tamamlanmadan önce
ortaya çıkmasına neden olur. Henüz saldırı animasyonu bitmemiş iken, oluşacak
etki görülmüş olur. Kullanıcıya aktarılan hissiyatın büyük oranda kırılmasına neden
olan bu durum, oyun motorları (game engine) içerisinde çözülebilir. Ancak dikkat
edilmesi gereken bir husustur.

1.3 Karakter Üretiminin Otomasyonlaştırılması
Tanıttığımız ve zorluklarından bahsettiğimiz karakter üretim sürecinin
otomasyonlaştırılması oldukça önemlidir. Karakter üretim süreci ile ilgili
otomasyon geliştirmek tasarımcının iş yükünü azaltacaktır. Aynı zamanda
tasarımcıya ilham kaynağı olabilme potansiyelini taşımaktadır. Otomasyonun
gerçekleştirilmesi sürece ayrılan maliyetin ve zamanın azalmasını sağlayacaktır.
Sağlanan avantaj sayesinde geliştirilen projelerin süresinde ve kalitesinde
iyileştirme sağlanabilir.

2B karakter sürecini otomatikleştirmek isteyen çalışmalar genel olarak görüntüden
görüntüye (image to image (I2I)) mimarilere yönelmişlerdir. Görüntüden görüntüye
mimariler girdi (input) olarak görüntü isteyen ve çıktı (output) olarak da
görüntü veren mimarilerdir. Bir görüntüden yeni bir görüntüyü elde etmek için
kullanılabilirler. Aynı zamanda varyasyon üretimi için de görüntüden görüntüye
mimariler yaygın olarak kullanılmaktadır.

Bu tez çalışmasında, konunun daha iyi anlaşılmasını sağlamak için 2B karakterleri
ve 2B karakterlerin üretim sürecini tanıttık. Karakterlerin üretimi ve süreçleri,
görüntü işlemedeki ilerlemelere benzer şekilde, özellikle çekişmeli üretici ağ
(ÇÜA) mimarisinin ortaya çıkmasıyla birlikte gelişmiştir. Çekişmeli üretici ağ
ve varyasyonel otomatik kodlayıcı (VOK) tabanlı çalışmalara odaklanarak 2B
karakterler için kullanılan temel mimarileri tartıştık. Ek olarak, gelecekteki
çalışmalarda kullanılabilecek mimarilerden bahsettik ve önerdiğimiz mimarilerin
neden uygulanabilir seçenekler olabileceğini kısaca açıkladık. Bu şekilde,
mevcut kaynakları bir araya getirdik ve karakter üretim süreci alanında
gelecekte yapılacak çalışmalar için mevcut çalışmalar hakkında temel bilgiler
sağladık. Araştırmamızda çekişmeli üretici ağ mimarilerine daha fazla odaklandık.
Yapacağımız iyileştirmelerde piksel vektör kuantize edilmiş varyasyonel otomatik
kodlayıcı (Pixel VQ-VAE) mimarisinde yapılan yeniliklerden ilham aldığımız için
varyasyonel otomatik kodlayıcı mimarilerine (variational autoencoder) de değindik.
Aynı zamanda varyasyonel otomatik kodlayıcı mimarilerinin de karakter üretim
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sürecinde kullanıldığı çalışmalardan bahsettik.

Karakter boyama süreci için özellikle Pix2Pix alanında yapılan çalışmaları
kıyasladık. Karakter üretim süreci için ise derin konvolüsyonel çekişmeli üretici
ağ (DKÇÜA) mimarisinde sonuçlar elde ettik.

Renklendirme için yaptığımız kıyaslamada en iyi sonucu veren Pix2Pix mimarisi
üzerinden ilerledik ve renklendirme sırasında görüntünün bir bütün olarak
renklendirilmesini engelledik. Aynı zamanda orijinale yakın görüntü üretimi
açısından da daha iyi sonuçlar elde ettik. Ek olarak, eğitim setindeki
renk baskınlığının sonuçlar üzerindeki etkisini gösterdik. Gerçek dünya
verilerinin renklendirilmesine dair deneyler yaptık. Gerçek dünya verilerinin
renklendirilmesini iyileştirmek amacıyla yeni çizgi sanatı görüntüsü oluşturma
yöntemi önerdik. Karakter üretim sürecinde ise, eğitim sırasında meydana gelen
sapmaları önledik. Çıktı kalitesini ve çeşitliliği artırdık. Değerlendirme yöntemine
olan ihtiyacı detaylandırdık. Kullanıcılar aracılığı ile çıktıları değerlendirdik.
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2
YÖNTEMLER

2B karakter üretimi için farklı alanlarda çalışmalar yapılmıştır. Özellikle
sıfırdan karakter üretimi ve animasyon hareketli çizimi üretimi konusunda
oyunlarla ilişkilendirilmiş makale sayısı oldukça fazladır. Oyunları geliştirme
sürecinde yardımcı olması amacıyla farklı yazılımlar kullanılır. Bunlardan biri
de prosedürel içerik üretimi (PİÜ) olarak tanımlanmıştır [22]. Prosedürel içerik
üretimi (procedural content generation (PCG)), içerik üretme işlemlerinin
otomatikleştirilmesidir [23]. Oyunlar için bakıldığında oyun içeriğini
otomatikleştiren yazılımlar olarak yorumlanabilir. Makine öğrenmesi, prosedürel
içerik üretimi yazılımlarında yaygın olarak kullanılmaktadır. Makine öğrenmesi
ile prosedürel içerik üretimi yazılımlarının beraber kullanılması, makine öğrenimi
ile prosedürel içerik üretimi (MÖPİÜ) olarak da adlandırılmaktadır [24–26].
Makine öğrenimi ile prosedürel içerik üretimi (procedural content generation
via machine learning (PCGML)) yazılımlarında farklı derin öğrenme yöntemleri
kullanılabilir. Prosedürel içerik üretimi ve makine öğrenimi ile prosedürel içerik
üretimi kavramları ile bu konuda araştırma yapmak, araştırmanın derinliğini
artıracaktır.

Prosedürel içerik üretimi yazılımlarının kullanılmasının çoğunlukla asıl nedeni el
emeğinin azaltılmasıdır [27]. El emeğinin azaltılmasına bağlı olarak zaman ve
maliyetten tasarruf sağlanır. Bu nedenle son yıllarda prosedürel içerik üretimi
kullanımının popülaritesi artmaktadır. Bunun yanı sıra prosedürel içerik üretimi
yazılımları tasarımcıların yaratıcılıklarını artırmaktadır. Çünkü insanlar birbirini
taklit etme eğilimindedir. Prosedürel içerik üretimi yazılımları tam olarak kullanıma
uygun bir sonuç üretmese de, tasarımcıya bir ilham kaynağı sunabilir. Prosedürel
içerik üretimi yazılımları oyunlardaki bölüm tasarlama, oynanış ve karakter
tasarımında kullanılabilir [28].

2B karakterlerin üretim sürecine yardımcı olabilmek amacıyla farklı mimariler
benimsenmiştir. Amacımız bu mimarileri açıklamak, yapılan çalışmalardan
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bahsetmek, bu konuda kullanılabileceğini düşündüğümüz ancak henüz
kullanılmamış mimarilere değinmektir.

2.1 Optimizasyon Yöntemleri
Mimarileri açıklama kısmına girmeden hemen önce bu mimarilerde yaygın olarak
kullanılan stokastik gradyan iniş (SGİ) ve Adam optimizasyon yöntemlerini
açıkladık. Stokastik gradyan iniş (stochastic gradient descent (SGD)) yöntemi derin
öğrenmede çokça kullanılan bir optimizasyon yöntemidir. Stokastik gradyan iniş
optimizasyon yöntemi her bir eğitim seti için güncelleme yapar. Bu sayede yerel
minimuma daha erken sürede ulaşması beklenir.

θt+1 = θt − α∇θL(θt;xt, yt) (2.1)

Stokastik gradyan iniş yöntemi, Denklem 2.1’de gösterilmiştir [29, 30]. θt+1

hesaplanacak olan parametrelerdir. θt güncel parametrelerdir. α öğrenme
katsayısını temsil eder. Öğrenme katsayısı sayesinde öğrenme işleminin hızı
ayarlanabilir. ∇θL(θt;xt, yt) ifadesi ise rastgele seçilen örneklere göre kayıp
fonksiyonunun gradyanını temsil eder. (θt;xt, yt) ifadesinde bulunan xt girdiyi
(input), yt ise etiketi (label) belirtir. Stokastik gradyan iniş yönteminde öğrenme
katsayısı sabit tutulur.

Daha hızlı yakınsaması ile bilinen Adam yöntemi, birden çok denklem ile
tanımlanmaktadır:

mt+1 = β1mt + (1− β1)gt+1 (2.2)

vt+1 = β2vt + (1− β2)g
2
t+1 (2.3)

θt+1 = θt − αt+1
mt+1√
vt+1 + ϵ̂

(2.4)

mt+1 birinci momentumu gösterir (Denklem 2.2) [31, 32]. Momentum
hesaplanırken daha önce hesaplanan gradyanlar dikkate alınır. β1 bir hiper
parametredir (hyperparameter). mt bir önceki momentum değerini gösterir ve β1

parametresi önceki momentumun önemini ayarlar. gt+1 ise gradyanı gösterir.
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Denklem 2.3’te bulunan vt+1 ise ikinci momentumu ifade eder. İkinci momentum
hesaplanırken β1’e benzer bir parametre olan β2 kullanılır. Gradyanın karesi ve
bir adım önceki ikinci momentum dikkate alınarak hesaplama yapılır. Gradyanın
karesini almak aslında gradyanın kendisi ile Hadamard çarpımına denk gelir (g2t =

gt⊙gt). Hiper parametreler için sıklıkla β1 = 0.9, β2 = 0.999 ve ϵ = 10−8 değerleri
kullanılır.

Adam optimizasyon yöntemi, stokastik gradyan inişe kıyasla daha kötü genelleme
yapmasına rağmen daha hızlı yakınsaması nedeniyle tercih edilmektedir. Stokastik
gradyan iniş yöntemi gibi, Adam yönteminin de uygulaması kolaydır, verimlidir
ve düşük bellek gerektirir. Adam yöntemi bu özellikleri sayesinde gürültülü
gradyanlarla başa çıkmak için uygun hale gelir [33].

Genelleme konusunda stokastik gradyan iniş yöntemi daha iyi çalışmaktadır. Ancak
çekişmeli üretici ağ ve pekiştirmeli öğrenme (reinforcement learning) mimarileri
için Adam yönteminin genellemeyi kötü yapması göz ardı edilebilir. Aynı
zamanda Adam optimizasyon yönteminin çok tercih edilmesinin bir diğer nedeni
de ayarlanabilirlik ölçeğinin yüksek olmasıdır.

2.2 Çekişmeli Üretici Ağ (ÇÜA) Mimarileri
İlk olarak klasik üretken çekişmeli ağları tanıttık ve ardından özellikle
problemimizle ilgili çekişmeli üretici ağ versiyonlarını gözden geçirdik.

2.2.1 Klasik Çekişmeli Üretici Ağ (ÇÜA)

Ian Goodfellow vd. [34–36] tarafından ortaya atılan bir mimaridir. Popüler olarak
gürültüden kullanılabilir bir veri elde edilmek için kullanılır. Elde edilecek veri,
görüntü veya vektör gibi farklı çeşitlerde olabilir. Çekişmeli üretici ağ (generative
adversarial network (GAN)) mimarisi temel alınarak yapılan çalışmalarla beraber
görüntüden görüntü üretme çalışmalarında önemli gelişmeler sağlanmıştır [37].

Çekişmeli üretici ağ mimarisi 2 farklı yapay sinir ağı içerir (Şekil 2.1). Bu
sinir ağlarından biri üretici ağ (generator) olarak adlandırılır. Üretici ağı girdi
olarak verilen görüntü veya gürültüden yeni görüntüler üretir. Yapılmak istenen
işleme göre üretilen görüntü farklı çekişmeli üretici ağ mimarileriyle beraber
yönlendirilebilir. Çekişmeli üretici ağ mimarisindeki diğer sinir ağı ise ayırıcı ağ
(discriminator) olarak adlandırılır. Bu ağın görevi ise üretici tarafından üretilen
görüntüyü gerçek veya sahte olarak yorumlamaktır. Olasılığa dayalı olarak ayrım
yapılır. Yapılan bu işlem sonucunda yorum üretici ağın eğitiminde kullanılır.
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Dolayısıyla ayırıcı ağın çıktısı (output) ile eğitilen üretici ağı bir sonraki çıktısını
günceller ve kendisini geliştirir. Bu şekilde hem üretici ağ hem de ayırıcı ağ
birbiriyle çekişerek gelişim sağlar. Çekişmeli üretici ağ mimarisi bu temel üzerine
kuruludur.

Girdi
(Gürültü)

Üretici Ağ Çıktı

Ayırıcı Ağ

Gerçek Veri
Ayırıcı Ağ

Kaybı

Üretici Ağ
Kaybı

Şekil 2.1 Çekişmeli üretici ağ mimarisine genel bakış.

Çekişmeli üretici ağ mimarisinin kurulu olduğu temel aslında sıfır toplamlı
oyun (zero-sum game) olarak bilinen bir oyun teorisi (game theory) kavramına
dayanmaktadır [34]. Üretici ağ, ayırıcı ağı yanıltmak için daha gerçekçi görüntüler
üretirken, ayırıcı ağ ise görüntüleri daha iyi ayırt etmeye çalışır. Sıfır toplamlı oyun
kuramı bu rekabeti içerir. Sıfır toplamlı oyun teorisinde, bir katılımcının kazançları
diğer bir katılımcının kayıpları ile dengelenir.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.5)

Çekişmeli üretici ağ mimarisi Denklem 2.5’te gösterilen maliyet fonksiyonu
(objective function) üzerinden eğitimini sürdürür. Denklemde G (generator) üretici
ağı, D (discriminator) ise ayırıcı ağı temsil eder. x gerçek verileri belirtir. z

gürültüyü belirtmektedir. Ex∼pdata(x) ifadesi gerçek veriler içerisinden rastgele bir
x değerinin beklenen değerini gösterir. Ez∼pz(z) ifadesi rastgele bir gürültünün
beklenen değerini sembolize etmektedir. D(x) ayırıcı ağın gerçek veri için verdiği
çıktıyı gösterir. Ayırıcı ağ gerçek veriyi doğru bir şekilde ayırt etmeyi başardıkça
bu değer 1’e yaklaşır. log(1 − D(G(z))) ifadesindeki G(z) değeri üreticinin
z girdisi ile ürettiği çıktıyı temsil eder. D(G(z)) ifadesi ile beraber üreticinin
ürettiği çıktının ayırıcı ağa verilmesi sonucu elde edilen çıktılar ayırıcı ağ tarafından
ayırt edilmeye çalışılır. Ayırıcı ağ sahte veriyi doğru ayırt ettikçe D(G(z)) 0
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değerine yaklaşacaktır. 1 − D(G(z)) değeriyle beraber ayırıcı ağın sahte veriyi
ayırt edemediği durumlar elde edilir. Logaritma kullanarak hesaplama daha hassas
hale getirilir.

Üretici ağ, θg parametrelerini ayarlayarak V (D,G) değer fonksiyonunu en
aza indirmeyi amaçlar. Ayırıcı ağ, θd parametrelerini ayarlayarak aynı değer
fonksiyonunu V (D,G) maksimize etmeyi amaçlar.

Başka bir deyişle, D ve G, V ile iki oyunculu bir sıfır toplamlı oyun oynar [34]. Ian
Goodfellow vd. [34], oyunu yinelemeli bir sayısal yaklaşım kullanarak uygulamayı
önermektedir: iç döngüde, G’yi sabit tutarak k adımları için D’yi optimize ederler
ve dış döngüde, D’yi sabit tutarak G’yi bir adım için optimize ederler.

Ayrıca, ayırıcı ağın sabit tutulması sonucu, üretici ağın optimizasyon problemi şu
hale gelir:

min
θg

Ez∼pz(z)[log(1−D(G(z; θg)))] (2.6)

Yazarlar ayrıca erken öğrenme aşamalarında log(1 −D(G(z))) değerini minimize
etmek yerine logD(G(z)) değerini maksimize etmeyi önermektedir. Düşük
performanslı bir G ile D sahte görüntüleri kolayca reddedebilir ve log(1 −
D(G(z)))’nin doygunluğa ulaşmasına ve zayıf gradyanlar sağlamasına neden
olabilir.

Klasik çekişmeli üretici ağ mimarisi genellikle stokastik gradyan inişi ile optimize
edilir.

2.2.2 Derin Konvolüsyonel Çekişmeli Üretici Ağ (DKÇÜA)

Çekişmeli üretici ağ mimarisini baz alarak ortaya çıkmış bir mimaridir. Derin
konvolüsyonel çekişmeli üretici ağ (deep convolutional generative adversarial
network (DCGAN)) mimarisi çekişmeli üretici ağ mimarisinin aksine görüntü
üzerinde işlem yapmak için daha idealdir [38]. Derin konvolüsyonel çekişmeli
üretici ağ mimarisinin, çekişmeli üretici ağ mimarisine göre farkı üretici ağ
ve ayırıcı ağ içerisinde evrişimler (convolutions) bulundurmasıdır (Şekil 2.2).
Halihazırda görüntü işlemede kullanılan evrişimler sayesinde görüntünün önemli
özellikleri elde edilir. Bu özellikler çekişmeli üretici ağ mimarisine entegre edilerek
süreç ilerler. Entegre edilen evrişim ağları sayesinde çekişmeli üretici ağ mimarisi
daha kararlı bir hale gelir. Üretici içerisinde ters evrişimler bulunurken, ayırıcı ağ
içerisinde evrişimler kullanılmaktadır. Bu yapısı sayesinde derin konvolüsyonel
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Üretici Ağ

Ayırıcı Ağ

Girdi

Ters Evrişim 

Evrişim 

Çıktı

Şekil 2.2 Derin konvolüsyonel çekişmeli üretici ağ mimarisine genel bakış.

çekişmeli üretici ağ mimarisi, görüntü ile alakalı çalışmalarda çekişmeli üretici ağ
mimarisine göre daha iyi sonuçlar vermektedir.

Derin konvolüsyonel çekişmeli üretici ağ mimarisinde yaygın olarak kullanılan bir
teknik olan toplu normalizasyon (batch normalization), çıktıların daha hızlı ve daha
yüksek kalitede üretilmesine yardımcı olur [39]. Derin konvolüsyonel çekişmeli
üretici ağ mimarisinin Adam yöntemiyle optimize edilmesinin daha iyi sonuçlar
verdiği gösterilmiştir [40].

Derin konvolüsyonel çekişmeli üretici ağ mimarisi maliyet fonksiyonu olarak
klasik çekişmeli üretici ağ mimarisinin kullandığı maliyet fonksiyonunu kullanır
(Denklem 2.5). Temel fark derin konvolüsyonel çekişmeli üretici ağ mimarisi
içerisinde derin konvolüsyon ağlarının bulunmasıdır.

Horsley ve Perez-Liebana [41] derin konvolüsyonel çekişmeli üretici ağ mimarisini
kullanarak karakter üretimine odaklanmıştır. Derin konvolüsyonel çekişmeli
üretici ağ mimarisinin piksel sanatında karakter üretiminde kullanılabileceğini
göstermiştir. Yaptıkları çalışmada görüldüğü üzere, derin konvolüsyonel çekişmeli
üretici ağ mimarisi, piksel sanatı ile karakter üretiminde başarılı gözükmektedir.
Ayrıca, yaptıkları çalışmada optimizasyonu Adam yöntemi ile sağlamışlardır.
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2.2.3 Koşullu Çekişmeli Üretici Ağ (KÇÜA)

Koşullu çekişmeli üretici ağ (conditional generative adversarial network (CGAN))
mimarisi verilen koşula göre yönlendirilebilen bir çekişmeli üretici ağ mimarisidir
(Şekil 2.3) [42]. Çekişmeli üretici ağ mimarisinde üretilen verilerde, veriler bir
koşula bağlanamaz ve yönlendirilemez. Ancak bu mimari ile beraber üretilmek
istenen veri belirli bir koşula (condition) bağlanır. Bu sayede veri üretimi yapılırken
yönlendirme sağlanmaya çalışılır. Veri üzerinde etki etmesi istenen koşul hem
üretici ağ hem de ayırıcı ağ üzerinde etkilidir.

Üretici Ağ

X
(Koşul)

Z
(Girdi)

X
(Koşul)

Y
(Gerçek Veri)

Ayırıcı Ağ

Şekil 2.3 Koşullu çekişmeli üretici ağ mimarisine genel bakış [42].

Koşullu çekişmeli üretici ağ mimarisi girdi olarak çekişmeli üretici ağ mimarisinde
olduğu gibi bir gürültü alır. Ancak bu gürültüye ek olarak bu gürültüye uygulanması
istenen koşulu da girdi olarak almaktadır. Dolayısıyla koşullu çekişmeli üretici
ağ mimarisi ve koşullu çekişmeli üretici ağ mimarisini baz alarak ortaya çıkan
mimarilerde gürültünün yanı sıra bir koşul girdisi olmak zorundadır. Verilen
koşul sayesinde mimarinin üretmesi istenen çıktıyı anlaması ve bu istenen çıktıya
yaklaşacak biçimde sonuçlar üretmesi beklenir.

LCGAN(G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))] (2.7)

Koşullu çekişmeli üretici ağ mimarisi Denklem 2.7’de belirtilen maliyet
fonksiyonunu kullanır. Maliyet fonksiyonu genel olarak klasik çekişmeli üretici ağ
mimarisi baz alındığından benzerlik taşımaktadır. Ancak D(x, y) ve D(x,G(x, z))

ifadeleri farklılığı oluşturmaktadır. D(x, y) ifadesi ayırıcı ağın gerçek verinin
koşula ait olup olmadığını değerlendirdiğini gösterir. G(x, z) ifadesi ile üretici ağın
x koşul verisi ile z olarak belirtilen giriş türünü (gürültü veya giriş görüntüsü) girdi
olarak aldığı belirtilir. Üretici ağ bu işlem sonucunda z girdisinden bir çıktı üretir
ve D(x,G(x, z)) ayırıcı ağın, üretici ağ tarafından üretilen çıktıyı koşul ile beraber
değerlendirdiğini belirtmektedir. Maliyet fonksiyonunda belirtildiği üzere üretici
ağ ürettiği verileri koşula uygun bir biçimde gerçek veriye benzetmeye çalışır.
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Dolayısıyla üretilen çıktılar koşullandırılabilir ve yönlendirilebilir.

Coelho vd. [43] MANGAN ismini verdikleri mimariyi koşullu çekişmeli
üretici ağ mimarisinden etkilenerek düzenlemişlerdir. MANGAN mimarisinde
konvolüsyonel ağları kullanmışlardır. Yaptıkları çalışma ile çizgi sanatını (line
art) boyamayı hedeflemişlerdir. Çizgi sanatı görüntülerini ise orijinal görüntülere
uyarlanabilir eşik (adaptive threshold) yöntemini uygulayarak elde etmişlerdir.
Koşullu çekişmeli üretici ağ mimarisinde olduğu gibi MANGAN mimarisi de bir
koşula göre ilerleme sağlamaktadır. Bu nedenle girdi olarak verilen el çiziminin
yanında bir koşul girdisi gerekmektedir. Coelho vd. [43] koşul girdisi için orijinal
görüntülerden elde ettikleri renk ipucu (color hint) görüntüsü kullanmışlardır. Renk
ipucu görüntüsü, orijinal görüntünün renk dağılımını içerir. Mimarilerine girdi
olarak hem çizgi sanatı çizimi hem de renk ipucu görüntüsü verdiklerinde, çıktı
olarak oldukça başarılı sonuçlar elde etmişlerdir. MANGAN mimarisinde Adam
yöntemi ile optimizasyon sağlanmaktadır.

Hui Ren vd. [44] koşullu çekişmeli üretici ağ mimarisini iki aşamalı bir
şekilde kullanarak renklendirme yapmayı denemişlerdir. Yaptıkları çalışmada ilk
aşamada birkaç özellik noktasında renk bilgisinin öğrenilmesini sağlamışlardır. Bu
işlem sonucunda görüntünün gri tonlamalı hali veya piksel düzeyinde ayrışmış
(pixel-level parsing) hali ortaya konur. İkinci aşamada ise renklendirme işleminin
yapılması sağlanır. Yaptıkları çalışma ile bu alanda yapılan önceki çalışmalara
kıyasla ilerleme kaydetmişlerdir. Çalışmada Adam yöntemi ile optimizasyon
sağlamışlardır.

2.2.4 Pix2Pix

Pix2Pix mimarisi koşullu çekişmeli üretici ağ mimarisini temel alan bir mimaridir
[45]. Pix2Pix mimarisi görüntülerin belirli bir görüntüye çevrilmesi için kullanılır.
Pix2Pix mimarisi koşullu çekişmeli üretici ağ mimarisinde de olduğu gibi bir
koşula bağlıdır. Dolayısıyla girdinin yanı sıra koşul girdisini de içermelidir.
Pix2Pix mimarisi genel hatlarıyla şunları içerir: U-Net üretici ağı, yama tabanlı
(patch-based) ayırıcı ağ ve L1 kayıp fonksiyonu (loss function).

U-Net Üretici Ağı (Şekil 2.4) [46]: Kodlayıcı (encoder) ve çözücüden (decoder)
oluşur. Kodlayıcı her bir adımda görüntünün özelliklerini çıkartır ve boyutunu
azaltır. Çözücü ise görüntüyü eski boyutuna getirme görevini yapar. Dolayısıyla
üretici ağ verilen girdiyi anlar ve üretici ağ için girdiyi çıkış alanına anlamlı bir
biçimde çevirmeyi olanaklı kılar. Bu üretici ağ sayesinde görüntünün kullanışlı
verileri tutulurken, diğer verileri elenir. Daha kaliteli ve kullanışlı bir görüntü elde
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edilir. U-Net üretici ağı başka çekişmeli üretici ağ mimarilerinde de kullanılabilir.

UBağlantıları Atla
(Skip Connections)

Kodlayıcı Çözücü

Şekil 2.4 U-Net üretici ağı [46].

Yama Tabanlı Ayırıcı Ağ (Şekil 2.5) [47]: Klasik ayırıcı ağlar görüntüyü bir
bütün olarak ele alır. Bu nedenle gerçek veya sahte olarak sınıflandırma yaparken
görüntünün tamamını değerlendirir. Ancak yama tabanlı ayırıcı ağ, görüntüyü
küçük parçalara böler. Böldüğü bu parçaları ayrı ayrı sınıflandırır. Dolayısıyla
eğitim esnasında ayırıcı ağın sahte olan parçalara odaklanılması sağlanır.

Girdi

Tahminler

(Predictio
ns)

Şekil 2.5 Yama tabanlı ayırıcı ağ [47]. Görüntüdeki küçük parçalardan gerçek ve
sahte tahminleri (predictions) yapılır.

L1 Kayıp Fonksiyonu [48]: Gerçek değerler ile tahmini değerler arasındaki farkın
mutlak değerlerinin ortalamasıdır. L1 kayıp fonksiyonunun Pix2Pix mimarisinde
tercih edilmesinin nedeni çıktıyı daha az bulanık halde ortaya koymasıdır. Denklem
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2.8’de bulunan y istenen değeri (gerçek değer) gösterir. G(x, z) ifadesi ile beraber
üretici ağın verdiği çıktı temsil edilmektedir. Üretici ağa yönlendirilen x koşul
olarak, z ise girdi olarak yorumlanabilir. Yapılan işlem sonucu istenen değer ile
üretici ağın verdiği çıktının farkı L1 normu ile hesaplanır.

LL1(G) = Ex,y,z [∥y −G(x, z)∥1] (2.8)

Nihai Pix2Pix maliyet fonksiyonu Denklem 2.9’da gösterilmiştir. L1 kayıp
fonksiyonu ile koşullu çekişmeli üretici ağ maliyet fonksiyonu birleştirildiğinde
Pix2Pix maliyet fonksiyonunu verir. Denklemdeki λ parametresi L1 kayıp
fonksiyonunun önemini ayarlar. Pix2Pix mimarisi optimizasyon için Adam
optimizasyon yönteminden yararlanır.

argmin
G

max
D

LCGAN(G,D) + λLL1(G) (2.9)

Serpa ve Rodrigues [49] Pix2Pix mimarisindeki alt örnekleme (downsampling)
işlemine ekstra bir konvolüsyon katmanı eklemişlerdir. L1 kayıp fonksiyonu yerine
L2 kayıp fonksiyonunu tercih etmişlerdir [48]. Aynı zamanda sızıntılı düzeltilmiş
doğrusal birim (Leaky ReLU) aktivasyon fonksiyonu yerine ise üssel doğrusal
birim (ELU) aktivasyon fonksiyonunu kullanmışlardır [50, 51]. Yaptıkları bu
değişikliklerle beraber animasyon üretimi ve renklendirmesi için önemli sonuçlar
elde etmişlerdir. Ancak özellikle renklendirme için sorunların olduğunu belirtmişler
ve belirttikleri sorunları göstermişlerdir.

Jiang ve Sweetser [52] Pix2Pix mimarisini YUV renk uzayı (color space) ile
birleştirerek karakter renklendirmesi üzerine çalışma yapmıştır. Bu işlemi yaparken
öncelikle bir veri seti hazırlamaya çalışmıştır. Bu veri setini hazırlarken orijinal
görüntüleri RGB renk uzayından YUV renk uzayına geçirmişlerdir. YUV renk
uzayını kullanma nedenleri, bu renk uzayının insan algısına daha yakın bir renk
uzayı olması ve iletim hatalarını azaltmasıdır [53, 54]. YUV renk uzayına
geçirmiş oldukları görüntünün Y kanalından bir gri görüntü elde edilmiştir. Girdi
olarak elde ettikleri bu gri görüntüyü, hedef olarak ise görüntünün orijinalini
kullanmışlardır. YUV renk uzayında öğrenme işlemini gerçekleştirmişlerdir.
Çalışmada da bahsedildiği üzere girdi ve hedef olarak verilen görüntülerin Y
(luminance (parlaklık)) kanalının değerleri eşittir. Bu yüzden mimari sadece
U (chrominance blue (mavi renk bileşeni)) ve V (chrominance red (kırmızı
renk bileşeni)) kanallarını öğrenmeye çalışacaktır. Bu düşünce ile beraber
gerçekleştirdikleri çalışmada karakter renklendirme için başarılı sonuçlar ortaya

16



koymuşlardır. Stokastik gradyan iniş ve ADAM optimizasyon yöntemleri için farklı
çıktılar aldıklarını da belirtmişlerdir.

Coutinho ve Chaimowicz [55, 56] Pix2Pix mimarisinde bulunan toplu
normalleştirme yöntemi yerine örnek normalizasyon (instance normalization)
yöntemini kullanmayı tercih etmişlerdir. Bu tercihleri ile beraber değiştirdikleri ve
çalışmalarında detaylı olarak açıkladıkları mimarilerini kullanarak, karakterin farklı
yönlere bakan çizimlerini elde etmek üzerine çalışmışlardır. Girdi olarak bir yöne
bakan karakter, koşul yani hedef olarak ise girdi olarak verilen karakterin farklı yöne
bakan hallerini vermişlerdir. Yaptıkları başarılı çalışmanın birçok farklı sonucunu
paylaşmışlardır.

2.2.5 Seg2Pix

C. W. Seo ve Y. Seo [57] tarafından ortaya atılmış bir mimaridir. Pix2pix mimarisi
yerine geliştirdikleri Seg2Pix mimarisini çalışmalarında kullanmışlardır (Şekil 2.6).
Seg2Pix için girdi vermeden önce küresel hapsetme (trap ball) segmentasyonu
kullanarak girdi olarak kullanılacak görüntüden segment görüntü elde edilmektedir
[58]. Daha sonra segment görüntü ve girdi görüntü birleştirilerek mimariye
aktarılır. Bu mimaride öz dikkat katmanı (self attention layer) eklenmesinin
faydası gözlemlenmektedir. Öz dikkat katmanı görüntüde birbirine uzak olan piksel
bağlılıklarını, yani görüntünün bütünündeki bütünlüğü korumaktadır. Sıradan
konvolüsyon bunu sağlamaz. Dolayısıyla öz dikkat katmanı mimarinin daha iyi
bir şekilde çalışmasını sağlar.

Girdi
Görüntü

Küresel
Hapsetme

Segmentasyonu

Birleştirme Seg2Pix

Segment
Görüntü

(İlk Çıktı)
Birleştirme

Boyanmış
Görüntü

(İkinci Çıktı)
Boyama

Segmentasyon

Küresel
Hapsedilmiş

Segment
Görüntü

Şekil 2.6 Seg2Pix mimarisinin kullanımına genel bakış [57]. Seg2Pix mimarisi 2
farklı işlem için kullanılır. İlk işleminde segment görüntü elde edilir. İkinci

işlemde ise istenilen çıktı olan boyanmış görüntü elde edilir.

Öz dikkat katmanı ile beraber girişler 1x1 konvolüsyonlardan geçirilir [59].
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Konvolüsyonlar sonucunda sorgu (query (f(x))), anahtar (key (g(x))) ve değer
(value (h(x))) matrisleri oluşur. Öncelikle sorgu ve anahtar matrislerinin iç
çarpımı ile dikkat haritası (attention map) oluşturulur. Dikkat haritası ile değer
matrisinin iç çarpımı sonucu ise öz dikkat haritası (self attention map) oluşturulur
ve süreç sonlanır. Öz dikkat katmanı artık sinir ağı (ResNet) bloğundan önce
kullanılmaktadır [60]. Karmaşıklık sorunu nedeniyle Seg2Pix mimarisinde sadece
üretici ağda kullanılmıştır.

Seg2Pix mimarisi, Pix2Pix varyasyonu bir mimari olduğu için Pix2Pix genel
maliyet fonksiyonunu kullanmaktadır (Denklem 2.9). Yapılan çalışmada Adam
optimizasyonundan yararlanılmıştır.

Seg2Pix mimarisi karakter renklendirme işlemini gerçekleştirmek için ortaya
atılmış bir mimaridir. Çizgi sanatı bir çizimi renklendirmek amaçlanmıştır.
Mimaride girdi olarak çizgi sanatı çizimin yanı sıra küresel hapsetme
segmentasyonu yöntemi ile hazırlanmış segment görüntü verilir. Elde edilen
segment görüntü çizgi sanatı çizimden elde edilmektedir. Segment görüntü ile
çizgi sanatı mimariye verilir. Çıktı olarak yeni bir segment görüntü elde edilir.
Başlangıçta girdi olarak verilen çizgi sanatı çizim ile, mimariden çıktı olarak alınan
segment görüntü birleştirilir. Birleştirilen bu çizimler mimariye verilir ve son çıktı
olarak boyanmış görüntü elde edilir. Seg2Pix mimarisi, özellikle öz dikkat katmanı
kullanımı ile beraber, Pix2Pix mimarisine göre daha iyi başarı skoru elde etmiştir.

2.2.6 Çok Ayırıcılı Çekişmeli Üretici Ağ (ÇAÇÜA)

Çok ayırıcılı çekişmeli üretici ağ (multi discriminator generative adversarial
network (MDGAN)) mimarisi 2 farklı ayırıcı ağ içeren bir çekişmeli üretici ağ
varyasyonudur (Şekil 2.7) [20]. Hong vd. [20] tarafından ortaya konulmuş bir
mimaridir. İçerisinde bulunan 2 farklı ayırıcı ağ ile üretilen veriyi 2 farklı yönden
inceleyip, farklı yönler üzerinden ayrım yapabilmesiyle öne çıkmaktadır. Bu sayede
verilerin daha iyi bir şekilde yönlendirilmesini ve çeşitlendirilmesini sağlar. Aynı
zamanda çok ayırıcılı çekişmeli üretici ağ mimarisi, iki farklı ayırmayı yapan ayırıcı
ağ verisiyle eğitilen bir üretici ağa sahip olduğundan, üretici ağ eşlemeyi öğrenme
yeteneğine sahiptir.

LD1 = Es,q,b(∥s−D1(c1)∥ − ∥s−D1(G(s, b))∥) (2.10)

LD2 = Ec1,c2,s,b(logD2(c1, c2) + log(1−D2(c1, G(s, b)))) (2.11)
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Girdi 1

Girdi 2

Üretici Ağ

Ayırıcı Ağ 1

Ayırıcı Ağ 2

Çıktı

Şekil 2.7 Çok ayırıcılı çekişmeli üretici ağ mimarisine genel bakış [20].

LG = Es,b,c1(∥s−D1(G(s, b))∥+ logD2(c1, G(s, b))) (2.12)

Çok ayırıcılı çekişmeli üretici ağ mimarisinin denklemini açıklamadan önce
kullanılan sembolleri açıklamanın anlaşılırlığı artıracağını düşünüyoruz. Kullanılan
semboller orijinal makaledeki örnek çalışmadan alınmıştır. s, bir karaktere ait
iskelet sistemini temsil etmektedir. b, bir karakterin bedenini yani temelini
ifade eder. c1 ve c2 ifadeleri karakter veri setinden elde edilen 2 farklı küçük
yığından (minibatch) örnekleri temsil etmektedir. Mimari içerisinde iki farklı
ayırıcı ağ bulunur. İlk ayırıcı ağ (D1) görüntüden iskelet sistemi elde etmeyi
öğrenir. Öğrenme işlemini gerçekleştirirken Denklem 2.10’da gösterilen maliyet
fonksiyonunu kullanmaktadır. Fonksiyonda s−D1(c1) ifadesi iskelet örnekleri (s)
ile c1 örneklerinin farkını gösterir. s−D1(G(s, b)) ise üretici ağ tarafından üretilen
karakterlerin iskelet örnekleri ile oluşan farkıdır. Ayırıcı ağ iskelet verilerini hem
gerçek verilerle hem de sahte olarak üretilen verilerle karşılaştırır. Elde ettiği iki
sonucun farkı ile eğitimini sağlamaya çalışır.

Mimarideki ikinci ayırıcı ağ (D2) renk kullanımını kontrol etmektedir. Renklerin
aynı olup olmadığı konusunda ayrım yapmaktadır. Denklem 2.11’de bulunan
D2(c1, c2) ifadesinde ayırıcı ağ tarafından c1 örneği ile c2 örneğinin renklerinin
kıyaslaması yapılır. D2(c1, G(s, b)) ifadesinde ise c1 örneği ile üretici ağ tarafından
üretilen görüntü karşılaştırılır. Bu sayede üretilen görüntünün rengi değerlendirilir.

Denklem 2.12’de gösterildiği üzere üretici ağ maliyet fonksiyonu D1 ve D2 ayırıcı
ağlarında bulunan üretici ağ (G)) fonksiyonlarının geçtiği ifadelerin toplamıdır.
Bu sayede üretici ağ iki alanda birden gelişim sağlayabilmektedir. Mimaride
optimizasyonu sağlamak için ise stokastik gradyan iniş yöntemi kullanılmıştır.

Geliştirilen çok ayırıcılı çekişmeli üretici ağ mimarisi ile animasyon üretimi
gerçekleştirmeye çalışılmıştır. Yapılan çalışmada üretici ağ için 2 farklı girdi
bulunmaktadır. Bu girişlerde yapılan işlemlerde bilgi kaybının azaltılması için
U-Net mimarisi üretici ağa entegre edilmiştir. Üretici ağın birden çok girişi birbiri
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ile eşlemeyi öğrenmesi sağlanır. Mimaride bulunan 2 farklı ayırıcı ağ, üretici
ağ tarafından üretilen veriyi farklı alan bazında kontrol eder. Bu sayede üretilen
görüntü 1 yerine 2 farklı açıdan ilerleme sağlar. Çalışma sonuçlarıyla başarısını
ortaya koymuştur.

2.2.7 Yaratıcı Çekişmeli Üretici Ağ (YÇÜA)

Yaratıcı çekişmeli üretici ağ (creative generative adversarial network (CAN))
mimarisi sanatsal çalışmalar ortaya koyabilmesi amacıyla sunulmuş bir çekişmeli
üretici ağ mimarisidir (Şekil 2.8) [61]. Yaratıcı çekişmeli üretici ağ mimarisinde
girdi görüntünün yanı sıra sanatsal çalışmalar stil etiketleriyle (style label) beraber
ayırıcı ağa verilir. Ayırıcı ağ ise girdi olarak verilen görüntünün sanat olup
olmadığını kontrol eder. Ayrıca görüntünün verilen stil etiketine uygun bir eser
olup olmadığını kontrol eder. Böylelikle ayırıcı ağ girdiyi sınıflandırır ve bunlarla
beraber geri dönüş sağlar. Yapılan sınıflandırma ve kontrole göre ilerleme sağlanır.
Yaratıcı çekişmeli üretici ağ mimarisi stil etiketlerini üretimde kullanmaz. Stil
etiketlerini sınıflandırma yaparken kullanır. Doğal olarak yaratıcı çekişmeli üretici
ağ mimarisinde üretim koşullu olarak değerlendirilmemelidir.

Üretici Ağ

Ayırıcı Ağ

Sanat/Sanat Değil

Sanat Stili
Sınıflandırması

Girdi

Stil Etiketli Görüntüler

Çıktı

Şekil 2.8 Yaratıcı çekişmeli üretici ağ mimarisine genel bakış [61]. Yaratıcı
çekişmeli üretici ağ mimarisinde özellikle ayırıcı ağın işlevi çok önemlidir. Ayırıcı
ağ, kendisine verilen üretici ağ çıktısının sanat olup olmadığını değerlendirir. Aynı

zamanda üretilen görüntünün hangi sanat stiline (art style) ait olduğunu
sınıflandırır.

Yaratıcı çekişmeli üretici ağ mimarisi, çekişmeli üretici ağ mimarisine göre daha
karmaşık bir yapı ve formüle sahiptir. Elgammal vd. [61] tarafından ortaya
konan yaratıcı çekişmeli üretici ağ mimarisinin etkinliğinin ölçülebilmesi amacıyla
sanatçıya ait sanatlar ve yaratıcı çekişmeli üretici ağ mimarisi, çekişmeli üretici ağ
mimarisi ile üretilen sanatların insanlar üzerinde bıraktığı etki göz önüne alınmıştır.
Sonuçlar, başarılı olduğunu göstermektedir.
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min
G

max
D

V (G,D) =Ex,ĉ∼pdata [logDr(x) + logDc(c = ĉ|x)] +

Ez∼pz [log(1−Dr(G(z)))−
K∑
k=1

(
1

K
log(Dc(ck|G(z)))+

(1− 1

K
) log(1−Dc(ck|G(z))))]

(2.13)

Yaratıcı çekişmeli üretici ağ mimarisinin genel maliyet fonksiyonu Denklem 2.13’te
gösterilmiştir. Dr ayırıcı ağın gerçek ve sahte ayrımı yaptığını, Dc ise ayırıcı ağın
sınıf etiketlerine uygunluğunu kontrol ettiğini göstermektedir. Dolayısıyla Dr(x)

ifadesi gerçek verilerin (x) gerçekliğini kontrol eder. Dc(c = ĉ|x) ifadesi ise ayırıcı
ağın, gerçek verilerin doğru sınıf etiketlerine sahip olmasını kontrol ettiğini gösterir.
Bu sayede ayırıcı ağ, gerçek veri ve bu gerçek veriye ait doğru sınıf etiketlerini tanır.
Sınıf etiketleri ile gerçek veri arasındaki ilişkiyi öğrenir.

Denklemde Dr(G(z) ifadesi sayesinde ayırıcı ağ, üretici ağın ürettiği veriyi gerçek
veya sahte olarak sınıflandırır. z ifadesi mimaride girdi olarak verilen gürültüyü
temsil etmektedir. 1

K
log(Dc(ck|G(z)) ifadesi ile üretilen verinin bir sınıfa ait

olma olasılığı kontrol edilir. (1 − 1
K
) log(1 − Dc(ck|G(z)) ifadesi ise üretilen

verinin sınıfa ait olmama olasılığı kontrol edilir. Mimari, üretilen verinin sınıflara
ait olmama olasılığını kontrol ederek, verinin doğru sınıfa ait olma olasılığını
arttırmayı amaçlamıştır. Son olarak, mimaride optimizasyon yöntemi olarak Adam
yöntemi kullanılmıştır.

Gelecek çalışmalarda bu mimarinin karakter üretiminde kullanılabileceğini
öngörüyoruz. 2 boyutlu karakterlerin kullanıldığı alanlarda da tasarımcıların
kendine has bir stili bulunur. Üretilebilecek karakterlerin belirli bir stile bağlı
kalınarak üretilmesi görüntü olarak bütünlük sağlayacaktır. Yaratıcı çekişmeli
üretici ağ mimarisi bu neden göze alındığında karakter üretim süreci otomasyonu
için öne çıkabilecek bir yapıya sahiptir.

2.2.8 Stil Çekişmeli Üretici Ağ 2 (StyleGAN2)

Stil çekişmeli üretici ağ 2 (style generative adversarial network 2 (StyleGAN2))
mimarisi stil çekişmeli üretici ağ (style generative adversarial network (StyleGAN))
mimarisinin geliştirilmiş halidir [62, 63]. StyleGAN2 mimarisini açıklamak
için kabaca StyleGAN mimarisini de açıklamanın uygun olacağını düşünüyoruz.
StyleGAN mimarisinde üretici ağ içerisinde üretim yapılırken klasik bir şekilde
gürültü kullanılır ve stil blokları ile işlemler toparlanır (Şekil 2.14.a). Ancak
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bu gürültü girişinin yanı sıra gizli uzayı (latent space) da girdi olarak kullanılır.
Uzayın içinde bulunan vektörler istenen stile uygun üretim yapılmasını sağlamak
için kullanılır. Aynı zamanda uzayın içerisinde bulunan vektörler afin dönüşüm
(affine transformation) yardımıyla her konvolüsyon katmanının sonunda kullanılan
uyarlanabilir örnek normalizasyon (adaptive instance normalization (AdaIN))
işleminde kullanılır [64]. Son olarak StyleGAN mimarisinde gizli uzay içerisinde
bulunan iki farklı vektör karıştırılarak da kullanılabilir.
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Şekil 2.9 (a) StyleGAN mimarisindeki üretici ağ [62]. Üretici ağ içerisinde
normalizasyon işlemi modülasyondan hemen sonra gerçekleşir. (b) StyleGAN2

mimarisindeki üretici ağ [62]. Yapılan iyileştirme ile beraber normalizasyon işlemi
ile modülasyon işleminin bağlantısı koparılır.

AdaIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (2.14)

Uyarlanabilir örnek normalizasyon yöntemi sayesinde stil transfer edilirken
içeriği korunur. Uyarlanabilir örnek normalizasyon yöntemi Denklem 2.14’te
gösterilmiştir. xi girdi verisinin özellik haritasındaki i. kanalı (channel),y ise stili
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temsil eder. xi matrisinden xi matrisinin ortalaması çıkarılır ve yine xi matrisinin
standart sapmasına bölünür. Böylece normalizasyon sağlanır. ys,i hedef stilin
i. kanalına ait matrisin standart sapmasını, yb,i ise hedef stilin i. kanalına ait
ortalamasını ifade eder. ys,i ile elde edilen normalizasyon çarpılır ve ölçeklendirilir.
Son olarak sonuç yb,i ile toplanır ve kaydırma sağlanır. Bu sayede hedef stile göre
girdi verisi yönlendirilecektir.

StyleGAN2 mimarisi ise StyleGAN mimarisinde yapılan değişiklikler ve
iyileştirmelerle ortaya çıkmıştır (Şekil 2.9.b) [65]. StyleGAN2 mimarisinde
uyarlanabilir örnek normalizasyonu yöntemi 2’ye ayrılarak kullanılmıştır:
Normalizasyon (normalization) ve modülasyon (modulation). Bunun yapılmasının
nedeni stil bloklarının (style blocks) daha iyi bir şekilde ayrılmasını sağlamaktır.
Gürültü ekleme kısmı uyarlanabilir örnek normalizasyon yönteminde bulunan
normalizasyon kısmından sonraya alınmıştır ve stil dışında gerçekleşir. Böylece
stillerin daha çok vurgulanması sağlanmaya çalışılmıştır. Bunun yanı sıra stil
bloklarında kullanılan stil vektörlerinin ağırlıkları ayarlanabilir hale getirilmiştir.

Genel olarak üretici ağ fonksiyonu içerisinde değişiklik yapıldığından, StyleGAN
mimarisi geleneksel çekişmeli üretici ağ mimarisi ile aynı genel maliyet
fonksiyonuna sahiptir. Ancak üretici ağ (G) fonksiyonunun içeriği değiştirilmiştir.
StyleGAN2 mimarisi içinde aynı durum geçerlidir. Bahsettiğimiz değişiklikler
sayesinde StyleGAN2 mimarisi veri çeşitlendirmesi için kullanılabilir.

Abdal vd. [66] tarafından yapılan çalışmadan etkilenerek bu mimarilerin veya
bu mimarilerden esinlenerek ortaya çıkarılabilecek mimarilerin karakterlere ait
varyasyon üretiminde kullanılabileceğini düşünüyoruz. Örneğin hazırlanmış bir
karaktere gözlük takılması veya Coutinho ve Chaimowicz tarafından yapılan
çalışmada olduğu gibi karakterin farklı pozisyonlara bakan varyasyonlarının elde
edilmesi gibi çalışmalar bahsettiğimiz StyleGAN mimarisi ve StyleGAN2 mimarisi
ile yapılabilir [55].

2.2.9 Bağlamsal Çekişmeli Üretici Ağ (BÇÜA)

Bağlamsal çekişmeli üretici ağ (contextual generative adversarial network)
mimarisi çizim üzerine yoğunlaşan bir mimaridir [67]. Normalde çizim ile uğraşan
mimariler, üretici ağ ile üretim yaparken el çizimi veya çizgi sanatından boyanmış
görüntüyü elde ederler. Bu görüntü kıyaslanırken, görüntünün gerçek boyaması
ile kıyaslanır. Ancak bağlamsal çekişmeli üretici ağ mimarisinde bir bağlam
oluşturulmaya çalışılır. Üretici ağ ile üretim yapılırken üretimin yanında verilen
çizimde görüntüde bulunur (Şekil 2.10). Kıyaslama yapılırken ise görüntünün
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orijinal hali ile çizim halinin birleşiminden oluşan bir görüntü ile kıyaslama
yapılır. Aynı zamanda mimaride verilen girdi görüntüsü için üretici ağ (G) ve
ayırıcı ağ (D) ağırlıkları değiştirilmeden güncellemeler yapılmaktadır. Yapılan
bu değişikliklerle beraber mimarinin el çizimi veya çizgi sanatı konusunda öne
çıkabileceğini düşünüyoruz. Bu nedenle gelecek çalışmalarda özellikle karakter
renklendirme alanında kullanılabileceğini öngörüyoruz.

Çizim
(Çizgi Sanatı)

Gürültü

Girdi Görüntü

Üretici Ağ Çizim
(Çizgi Sanatı)

Çıktı Görüntü

Üretilmiş
Görüntü

Çizim
(Çizgi Sanatı)

Gerçek Görüntü

Gerçek
Görüntü

Ayırıcı Ağ

Şekil 2.10 Bağlamsal çekişmeli üretici ağ mimarisine genel bakış. Bağlamsal
çekişmeli üretici ağ mimarisinde girdi olarak kullanılan görüntüde el çizimi ile

üretilecek kısım birleştirilerek verilir.

Bağlamsal çekişmeli üretici ağ mimarisi, üretici ağ ve ayırıcı ağ yapısı olarak
genel bir yapı kullanır. Toplu normalleştirme ve konvolüsyon katmanları kullanılır.
Üretici ağın son katmanı haricinde aktivasyon fonksiyonu olarak Leaky ReLU
kullanılır. Çıkış katmanı için ise tanh aktivasyon fonksiyonu tercih edilmiştir.
Ayırıcı ağda ise son katmanda softmax aktivasyon fonksiyonu kullanılmıştır.

Lcontextual(z) = DKL(M ⊙ y,M ⊙G(z)) (2.15)

Bağlamsal çekişmeli üretici ağ mimarisi bağlamsal (contextual) ve algısal
(perceptual) kayıptan oluşmaktadır. Bağlamsal kayıp Denklem 2.15’te
gösterilmiştir. M maske matrisini temsil etmektedir. Maske matrisini oluştururken,
önemli olan görsel noktalarını dikkate almak büyük önem taşımaktadır. ⊙ sembolü
Hadamard çarpımını temsil etmektedir.y girdi görüntüdeki gürültü olmayan kısmı,
yani el çizimi veya çizgi sanatı kısmını ifade eder. z ise girdi görüntüdeki
gürültüdür. DKL(M ⊙ y,M ⊙ G(z)) ifadesi ayırıcı ağın, üretici ağ tarafından
üretilen görüntü ile y verisinin maske ile Hadamard çarpımına tabi tutulması
sonucu KL sapmasına (Kullback-Leibler divergence) göre benzerliğini yorumlar
[68]. KL sapması, bir olasılık dağılımının ikinci bir olasılık dağılımından nasıl
farklılaştığının bir ölçüsüdür [68].
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DKL(q ∥ p) = Ex∼q(x)

[
log

q(x)

p(x)

]
(2.16)

KL sapması Denklem 2.16 üzerinde gösterilen biçimde hesaplanır. q(x) ve p(x)

ifadeleri olasılık dağılımlarını temsil eder. KL sapması,p için optimize edilmiş bir
kod kullanarak q’dan örnekleri kodlamak için gereken beklenen ekstra bit sayısını
ölçer. Bu, q’ya yaklaşmak için p kullanıldığında kaybedilen bilginin bir ölçüsüdür.
KL sapması negatif değildir ve yalnızca her yerde q = p ise sıfırdır.

Lperceptual(z) = log(1−D(G(z))) (2.17)

Algısal kayıp Denklem 2.17’de gösterilmiştir. Algısal kayıp ile ayırıcı ağ, üretici
ağın ürettiği verinin sahteliğini yorumlar. Bu sayede üretici ağın daha gerçekçi
üretimler yapması teşvik edilir.

LContextualGAN(z) = Lcontextual(z) + λLperceptual(z) (2.18)

Algısal kayıp ile bağlamsal kayıp toplamı bağlamsal çekişmeli üretici ağ
mimarisinin genel maliyet fonksiyonunu oluşturur (Denklem 2.18). λ ile üretilecek
görüntünün girdi görüntüye benzerliği ayarlanır. λ değerinin düşük olması
daha benzer görüntüler oluşmasını sağlayacaktır. Bağlamsal çekişmeli üretici ağ
mimarisinde optimizasyon yöntemi olarak Adam yöntemi tercih edilmiştir.

2.2.10 Döngü Tutarlı Çekişmeli Üretici Ağ (CycleGAN)

Döngü tutarlı çekişmeli üretici ağ (cycle-consistent generative adversarial network
(CycleGAN)) mimarisi Pix2Pix mimarisini baz alarak ortaya çıkmış bir mimaridir
[69]. CycleGAN mimarisi sayesinde giriş görüntüsünden beklenen çıkış elde
edilebilirken, aynı zamanda çıktı görüntüden giriş görüntüsünün tarzında bir
görüntü de elde edilebilir (Şekil 2.11). Dolayısıyla çapraz öğrenme sağlanmış olur.
Mimarinin temel amacı ise görüntünün eşlenmeden uygulanmasını sağlamaktır.
Pix2Pix mimarisinde her bir görüntü için gerçek görüntünün de eklenmesi
gereklidir. Girdi görüntü ile elde edilmesi beklenen görüntü eşlenmiş olur. Ancak
CycleGAN mimarisinde 2 farklı veri seti eşlenmeden kullanılabilir.

CycleGAN mimarisinde 2 üretici ağ ve 2 ayırıcı ağ bulunmaktadır. Bu
sayede çapraz öğrenme sağlanır. Mimaride bulunan üretici ağda artık sinir
ağı blokları kullanılır [60]. Tüm mimari boyunca Pix2Pix mimarisinde tercih
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Şekil 2.11 CycleGAN mimarisine genel bakış [69].

edilen toplu normalleştirme yerine örnek normalizasyon kullanılmaktadır [70].
Kayıp fonksiyonu olarak döngü tutarlılık kaybı (cycle consistency loss) kullanılır.
Oluşturulan bu mimari ile beraber görüntüler eşlenmeden aralarında dönüşüm
yapılabilir.

LGAN(GXY , DY , X, Y ) =Ey∼pdata(y) [logDY (y)] +

Ex∼pdata(x) [log(1−DY (GXY (x)))]
(2.19)

LGAN(GY X , DX , Y,X) =Ex∼pdata(x) [logDX(x)] +

Ey∼pdata(y) [log(1−DX(GY X(y)))]
(2.20)

CycleGAN mimarisinde alanlar arası üretim yaparken kullanılan çekişme kaybı
(adversarial loss) fonksiyonu örneği Denklem 2.19’da gösterilmiştir. Denklem
X alanından Y alanına üretim yaparken kullanılır ve Denklem 2.5’te tanıttığımız
çekişmeli üretici ağ denklemine oldukça benzemektedir. Y alanında üretim
yapılmak istendiği için ayırıcı ağ, Y alanındaki verilere göre ayrım yapmaktadır. Y
alanındaki veriden X alanındaki bir veri elde etmek istendiğinde kullanılan çekişme
kaybı ise Denklem 2.20’de gösterilmiştir.

CycleGAN mimarisi X ve Y alanlarında veri üretmeyi sağlayan çekişme kaybı
fonksiyonu dışında döngü tutarlılık kaybı içerir. Döngü tutarlılık kaybı sayesinde
bir alandan diğer alana çevrilen görüntü, tekrar orijinal alanına çevrildiğinde orijinal
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görüntüye yakınlık sağlanmaya çalışılır.

Lcyc(GXY , GY X) =Ex∼pdata(x) [∥GY X(GXY (x))− x∥1] +

Ey∼pdata(y) [∥GXY (GY X(y))− y∥1]
(2.21)

Döngü tutarlılık kaybı Denklem 2.21’de belirtilmiştir. GY X(GXY (x)) − x ifadesi
ile X alanındaki bir görüntüden önce GXY (x) ile Y alanında bir görüntü elde edilir.
GY X(y) olarak elde edilen ifade ile Y alanından tekrar X alanında görüntü üretilir.
Son olarak orijinal alanına döndürülen görüntü ile orijinal görüntü (x) arasındaki
fark L1 norm yöntemiyle incelenir. Yapılan inceleme ile işlenerek orijinal alanına
döndürülen görüntünün orijinal görüntü ile benzer kalması sağlanmaya çalışılır.

L(GXY , GY X , DX , DY ) =LGAN(GXY , DY , X, Y )+

LGAN(GY X , DX , Y,X)+

λLcyc(GXY , GY X)

(2.22)

CycleGAN mimarisinin genel maliyet fonksiyonu ise bahsettiğimiz tüm kayıp
değerlerinin toplamıdır (Denklem 2.22). λ parametresi mimarideki tutarlılığı
kontrol eder. λ parametresi küçük ise döngü tutarlılık kaybının önemi azalır. Bu
nedenle üretilen görüntüler daha gerçekçi olurken dönüşümlerde zayıflık yaşanması
beklenir. λ parametresinin değeri büyük olduğunda ise dönüşümlerdeki tutarlılığın
yüksek olması ancak üretilen görüntülerin gerçekçiliğinde problemler olması
beklenir. CycleGAN mimarisi optimizasyon yöntemi olarak ise Adam yöntemini
kullanır.

Wong [71] CycleGAN mimarisi ile karakterlere ait varyasyon üretme çalışması
yapmıştır. Yaptığı bu çalışmada Pokémon karakterlerine ait veri setini kullanmıştır.
Pokémon dünyasında karakterler sahip oldukları element tipine göre farklı
renk paletinde bir çizime sahiptirler. Yapılan bu çalışma ile Wong Pokémon
karakterlerinin element tiplerine göre dönüşümlerini elde etmeye çalışmış ve
başarmıştır. Bu çalışma CycleGAN mimarisinin varyasyon için kullanılabileceğini
kanıtlar niteliktedir.

2.2.11 Alanlar Arası İlişkileri Keşfeden Çekişmeli Üretici Ağ (DiscoGAN)

Alanlar arası ilişkileri keşfeden çekişmeli üretici ağ (Discover Cross-Domain
Relations with Generative Adversarial Networks (DiscoGAN)), iki farklı alan
arasında çapraz öğrenmeyi sağlayan iki üretici ağı ve iki ayırıcı ağı olan bir
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mimaridir (Şekil 2.12) [72]. Üretici ağ girdiden yeni veriler üretir ve iki farklı
üretici ağ vardır [73]. X ve Y olarak gösterilen iki alanı ele alarak örnek üzerinden
DiscoGAN mimarisini açıklamak anlaşılabilirliği arttıracaktır. X alanında bulunan
ve X gerçek olarak adlandırılan veriler, bir klasik çekişmeli üretici ağ mimarisi
kullanılarak Y alanına dönüştürülür ve Y alanında üretilmiş Y üretilmiş verisi
elde edilir. Üretilen Y verisi daha sonra tekrar X alanına dönüştürülerek X sahte
verisi elde edilir. X gerçek ve X sahte arasındaki karşılaştırma, çekişmeli üretici
ağ mimarisini eğitmek için kayıp fonksiyonda kullanılır [74]. Bu süreç üretici
ağlardan birini oluşturur. Diğer üretici ağ da benzer şekilde çalışır, Y alanından
veri alır (Y gerçek olarak adlandırılır), X üretilmiş adı verilen X alanında bir
veri üretir ve ardından Y sahte verisi üretir. Kayıp fonksiyonu, Y gerçek ve Y
sahte karşılaştırılarak hesaplanır. Özetle, DiscoGAN mimarisinin her biri aynı
süreci izleyen iki üretici ağı vardır. DiscoGAN üretici ağları klasik çekişmeli
üretici ağ mimarisini kullandığı için klasik çekişmeli üretici ağ mimarisini anlamak
DiscoGAN mimarisini anlamak için çok önemlidir.

X Alanı
X gerçek

Y Alanı
Y üretilmiş

Üretici Ağ
(GYX)

X Alanı
X sahte

Y Alanı
Y gerçek

X Alanı
X üretilmiş

Üretici Ağ
(GXY)

Y Alanı
Y sahte

KayıpX

KayıpY

Ayırıcı Ağ
(DX)

Ayırıcı Ağ
(DY)

Üretici Ağ
(GXY)

Üretici Ağ
(GYX)

Şekil 2.12 DiscoGAN mimarisine genel bakış [72].

DiscoGAN iki üretici ağ içerdiği gibi iki ayırıcı ağ içerir. Ayırıcı ağlardan biri,
kayıp fonksiyonu ve eğitimi için girdi olarak Y üretilmiş ve Y gerçek olarak
adlandırdığımız verilerini kullanır. Diğer ayırıcı ağ, eğitimi için X üretilmiş ve
X gerçek olarak adlandırdığımız verileri kullanır.

LGANY
= −Ex∼px [logDY (GXY (x))] (2.23)
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LCONSTX
= d(GY X ◦GXY (x), x) (2.24)

DiscoGAN mimarisi, üretici ağ için klasik çekişmeli üretici ağ kaybını kullanır
(Denklem 2.23). CycleGAN mimarisine benzer olmakla birlikte döngü tutarlılık
kaybı içermez. Döngü tutarlılık kaybı yerine yeniden üretim kaybı (reconstruction
loss) olarak isimlendirilen kayıp fonksiyonunu içerir (Denklem 2.24). Yeniden
üretim kaybı X alanından Y alanına dönüştürülen verinin tekrar X alanına
döndürülmesi sonucu, orijinal X alanındaki görüntü ile Y alanından dönüştürülerek
X alanında elde edilen görüntünün farkını ele alır.

LGANX
= −Ey∼py [logDX(GY X(y))] (2.25)

LCONSTY
= d(GXY ◦GY X(y), y) (2.26)

LG = LGANY
+ LCONSTX

+ LGANX
+ LCONSTY

(2.27)

İki farklı alan için dönüşümler yapmaya odaklı bir mimari olan DiscoGAN
mimarisinde iki üretici ağ vardır. Diğer üretici ağ ise Denklem 2.25’te belirtilen
kayıp fonksiyonunu ve Denklem 2.26’da gösterilen yeniden üretim kaybını kullanır.
Mimarideki toplam üretici ağ kayıp fonksiyonu Denklem 2.27’de gösterildiği gibi
tüm üretici ağ denklemlerinin toplamını içerir.

LDX
= −Ex∼Px [logDX(x)]− Ey∼Py [log(1−DX(GY X(y)))] (2.28)

LDY
= −Ey∼Py [logDY (y)]− Ex∼Px [log(1−DY (GXY (x)))] (2.29)

LD = LDX
+ LDY

(2.30)

DiscoGAN mimarisi, ayırıcı ağ kaybı olarak klasik çekişmeli üretici ağ
mimarisindeki ayırıcı ağ kaybını kullanmaktadır. X alanında kullanılan ayırıcı
ağın kayıp fonksiyonu Denklem 2.28’de gösterilmiştir. Mimaride iki ayırıcı ağ
bulunduğu için Y alanı için kullanılan diğer ayırıcı ağa ait kayıp fonksiyonu ise
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Denklem 2.29’da sunulmuştur. İki ayırıcı ağa ait kayıp fonksiyonlarının toplamı
mimariye ait ayırıcı ağ kaybını ifade eder (Denklem 2.30). DiscoGAN mimarisinde
optimizasyonu sağlamak için Adam yöntemi kullanılmıştır.

DiscoGAN mimarisinin karakter üretim aşamasında yapılabilecek olan
çalışmalarda kullanabileceğini öngörüyoruz. Çünkü yaptığı çapraz öğrenme
işleminin bir sağlama gibi olduğu düşünüyoruz. Dolayısıyla çizgi sanatı
görüntüsünden boyalı bir görüntü elde edildiğinde, bu görüntünün tekrar çizgi
sanatı görüntüye çevrilmesi ile sağlama yapılmış olacaktır. DiscoGAN mimarisinin
sağladığı bu özellik, karakter tasarımcılarının çizgi sanatı görüntüsünü manipüle
etmelerine ve ayarlamalar yapmalarına olanak tanıyarak onlara daha fazla kontrol
ve esneklik sağlar. Özellikle kontrol sağlamasından dolayı çapraz öğrenme
özelliğine sahip olması oldukça önemlidir.

2.2.12 Yıldız Çekişmeli Üretici Ağ (StarGAN)

Yıldız çekişmeli üretici ağ (Star generative adversarial network (StarGAN))
mimarisi farklı alanları tek başına öğrenebilen bir çekişmeli üretici ağ mimarisidir
[75]. Farklı alanları ve verilen farklı alanların arasındaki etkileşimi öğrenir
(Şekil 2.13). Böylelikle farklı alanların aynı anda işlenmesi için gereken model
karmaşıklığından sıyrılır. StarGAN mimarisinde ayırıcı ağ, hem sınıflandırma hem
de gerçek ve sahte veri ayrımını yapar.

A

E B

D C

Üretici Ağ

Alan

B

B Alanı

Şekil 2.13 StarGAN mimarisinde kullanılan üretici ağ [75]. Üretici ağ içerisinde
farklı alanlar arasında bağlantı kurulur.

StarGAN mimarisi sabit bir dönüşüm öğrenmek yerine görüntüyü esnek bir şekilde
farklı alanlara çevirmeyi öğrenir. Çevirme işlemini gerçekleştirebilmek için alan
bilgileri kullanılır. Alan bilgileri etiketlerle temsil edilir, eğitim sırasında model
etiketi kullanarak esnek dönüşümü sağlar.
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Ladv = Ex [logDsrc(x)] + Ex,c [log(1−Dsrc(G(x, c)))] (2.31)

StarGAN çekişme kaybı, sınıflama kaybı (classification loss) ve yeniden üretim
kaybından oluşan maliyet fonksiyonuna sahiptir. Çekişme kaybı Denklem 2.31’de
gösterilmiştir. Çekişme kaybı ile üretilen görüntüler gerçeğe yaklaştırılmaya
çalışılır. Dsrc(x) ifadesi ile ayırıcı ağ girdiyi temsil eden x verisini değerlendirir.
Dsrc(G(x, c)) ifadesi ile c alan bilgisi ve x girdisi ile üretici ağ bir veri üretir. Daha
sonra ayırıcı ağ bu veriyi değerlendirir. Çekişmeli üretici ağ mimarilerinde bulunan
kayıp fonksiyonlarına oldukça benzer bir kayıp fonksiyonudur.

Lr
cls = Ex,c′ [− logDcls(c

′|x)] (2.32)

Lf
cls = Ex,c [− logDcls(c|G(x, c))] (2.33)

Sınıflama kaybı olarak iki farklı kayıp kullanılır. Ayırıcı ağ tarafından Denklem
2.32’de gösterilen ve ayırıcı ağın gerçek girdileri orijinal alan bilgilerine (c′)

göre sınıflandırmayı öğrenmesini sağlayan sınıflama kaybı kullanılır. Üretici ağ
ise Denklem 2.33’te gösterilen sınıflama kaybını kullanır. Üretici ağ tarafından
kullanılan sınıflama kaybında üretici ağ tarafından alan bilgisi ve girdi veriden
üretilen veriler sınıflandırılır. Üretici ağ denklemi minimize ederek sınıflandırmanın
doğruluğunu sağlamaya çalışır.

Lrec = Ex,c,c′ [∥x−G(G(x, c), c′)∥1] (2.34)

StarGAN mimarisinde üretici ağ tarafından kullanılan yeniden oluşturma kaybı
Denklem 2.34’de gösterilmiştir. G(G(x, c), c′) ifadesi ile öncelikle üretici ağa x

girdi verisi ve hedef alan verisi (c) verilir. Hedef alanda üretilen veri, x girdisine ait
orijinal alan bilgisi olan c′ ile beraber üretici ağa verilerek orijinal alanda tekrardan
üretilir ve girdi verisi ile farkı alınarak, görüntünün yeniden oluşturulduğunda ne
kadar iyi oluşturulduğu incelenmiş olur. L1 normu kullanılarak fark kontrolü
yapılır.

LD = −Ladv + λclsLr
cls (2.35)
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LG = Ladv + λclsLf
cls + λrecLrec (2.36)

Tüm denklemleri açıkladığımız StarGAN mimarisinde ayırıcı ağ maliyet
fonksiyonu Denklem 2.35’te, üretici ağ maliyet fonksiyonu ise Denklem 2.36’da
gösterilmiştir. λcls ile λrec birer hiper parametredir (hyperparameter). λcls

sınıflandırmanın ve λrec ise yeniden oluşturmanın önemini ayarlamak için kullanılır.
Mimarinin açıklandığı orijinal makaledeki tüm deneylerde λcls parametresi 1 değeri
ile, λrec ifadesi 10 değeri ile kullanılmıştır. StarGAN mimarisinde optimizasyon
Adam yöntemi ile sağlanmıştır.

StarGAN mimarisinin karakterlerle ilgili yapılabilecek gelecek çalışmalarda
kullanılmaya yatkın olduğunu düşünüyoruz. Çünkü oyun veya çizgi roman
alanlarında oluşturulan karakterlerin teması ve çizim tarzı tutarlı olmalıdır.
Dolayısıyla büyük bir veri kümesinde, aynı tarz görüntüler sınıflandırılabilir. Renk
ve tarz olarak uyumu sağlanabilir. Bu sayede üretilen karakterler birbirinden ayrı
dünyalara hitap etmemiş olacaktır. Bunun bütünlüğü sağlamak açısından oldukça
önemli olduğunu düşünüyoruz.

2.3 Varyasyonel Otomatik Kodlayıcı (VOK) Mimarileri
İlk olarak klasik varyasyonel otomatik kodlayıcı mimarisini tanıttık ve ardından
problemimizle ilgili varyasyonel otomatik kodlayıcı versiyonlarını gözden geçirdik.

2.3.1 Klasik Varyasyonel Otomatik Kodlayıcı (VOK)

Varyasyonel otomatik kodlayıcı (variational autoencoder (VAE)) mimarisi olasılık
dağılımlarını ve klasikleşmiş otomatik kodlayıcı (autoencoder) mimarisinden
yararlanarak yeni veriler üretmeyi sağlar (Şekil 2.14) [76–79]. Otomatik kodlayıcı
mimarisi içerisinde bir kodlayıcı ve bir çözücü bulundurur. Kodlayıcı ile
veri sıkıştırılır ve gizli uzay vektörü oluşturulur. Çözücü ile gizli uzaydan
yararlanılarak veri en az kayıpla tekrar üretilmeye çalışılır. Varyasyonel otomatik
kodlayıcı ile sıkıştırılan veriden olasılıksal dağılımlar yardımıyla yeni veriler elde
edilebilmektedir.

LV AE = Eqϕ(z|x) [log pθ(x|z)]−DKL [qϕ(z|x)||pθ(z)] (2.37)

Varyasyonel otomatik kodlayıcı maliyet fonksiyonu Denklem 2.37’de
gösterilmiştir. ϕ parametreleri ifade eder. qϕ(z|x) girdi olan x verisinin z dağılımına
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Şekil 2.14 Varyasyonel otomatik kodlayıcı mimarisine genel bakış.

dönüşmesini temsil eder. Dönüştürme yapılırken ϕ parametreleri dikkate alınır.
pθ(x|z) ifadesi ile z dağılımından x verisi tekrar elde edilir. DKL [qϕ(z|x)||pθ(z)]
ifadesi, elde edilen z dağılımının, modelde seçilen z dağılımıyla arasındaki KL
sapması farkını ölçer [68]. KL sapması yöntemine Bölüm 2.2.9 değinilmiştir.
Varyasyonel otomatik kodlayıcı mimarisi Denklem 2.37’yi kullanarak yeni veriler
oluşturur.

2.3.2 Vektör Kuantize Edilmiş Varyasyonel Otomatik Kodlayıcı (VK-VOK)

Vektör kuantize edilmiş varyasyonel otomatik kodlayıcı (vector quantized
variational encoder (VQ-VAE)) mimarisi varyasyonel otomatik kodlayıcı
mimarisini temel alır [80]. Varyasyonel otomatik kodlayıcı mimarisinde de
bulunan kodlayıcı ve çözücü katmanları arasında vektör kuantizasyon katmanı
(vector quantization layer) bulundurur. Vektör kuantizasyon katmanında bir kod
defteri (codebook) bulunur. Kod defteri eğitim boyunca güncellenerek veriler
için ortalama temsil değerleri içerir. Mimariye verilen girdi bu kod defterindeki
en yakın indeks (index) ile kuantize edilir. Bu işlemler sonucunda kuantize
edilen veri çözücüde kullanılır ve çözücü girdi verisine benzer yeni bir veri üretir.
Vektör kuantize edilmiş varyasyonel otomatik kodlayıcı mimarisinin içerisinde
bulunan kod defteri, olasılık dağılımlarına bağımlılıktan kaçınmaya yardımcı olur
[81]. Ancak, vektör kuantize edilmiş varyasyonel otomatik kodlayıcı mimarisi
olasılıklardan bağımsız hale gelmez. Kod defteri ile birlikte, vektör kuantize
edilmiş varyasyonel otomatik kodlayıcı mimarisi olasılıkların yönlendirilmesine
izin verir.

LV Q−V AE = log p(x|zq(x)) + ∥sg [ze(x)]− e∥22 + β ∥ze(x)− sg[e]∥22 (2.38)

Vektör kuantize edilmiş varyasyonel otomatik kodlayıcı mimarisi Denklem 2.38’de
gösterilen fonksiyon ile üretimi gerçekleştirmektedir. x girdi olarak verilen veriyi
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Şekil 2.15 Vektör kuantize edilmiş varyasyonel otomatik kodlayıcı mimarisine
genel bakış.

ifade eder. e ise gömülü uzay (embedded space) içerisindeki vektörleri temsil eder.
p(x|zq(x)) ifadesi yeniden üretim kaybını ifade eder. Modelin yeniden oluşturduğu
veriyi ne kadar iyi seviyede oluşturduğunu inceler. ∥sg [ze(x)]− e∥22 ifadesindeki
sg gradyan durduran fonksiyondur (stop gradient function). Gradyan durduran
fonksiyon sayesinde ara değişkenler belirli değerlerde sabit tutulabilmektedir.
Dolayısıyla sg [ze(x)] ifadesinde de belirtildiği üzere, x giriş verisi için kodlayıcının
çıktısını temsil eden ze(x) değeri gradyan hesaplamalarından etkilenmez. Bu
sayede gömülü uzay içerisinde güncelleme sağlanırken, kodlayıcı çıkışları
güncellenmeyecektir.

İfadenin tamamında gömülü uzay içerisindeki en yakın vektöre kuantize yapıldığı
belirtilir ve minimize edilmeye çalışılır (kod defteri kaybı (codebook loss)). Son
olarak β ∥ze(x)− sg[e]∥22 ifadesinde gizli uzaya dönüştürülen girdinin gömülü
uzay içerisinde bulunan vektöre yakın olması sağlanmaya çalışılır (bağlılık
kaybı (commitment loss)). β parametresi bağlılık kaybının önemini kontrol
edebileceğimiz bir parametredir ve genel olarak 0.25 değeri ile kullanılır. Vektör
kuantize edilmiş varyasyonel otomatik kodlayıcı mimarisinde Adam optimizasyon
yöntemi kullanılır [82].

2.3.3 Piksel Vektör Kuantize Edilmiş Varyasyonel Otomatik Kodlayıcı (Pixel
VQ-VAE)

Piksel vektör kuantize edilmiş varyasyonel otomatik kodlayıcı (pixel vector
quantized variational encoder (Pixel VQ-VAE)) mimarisi, vektör kuantize edilmiş
varyasyonel otomatik kodlayıcı mimarisini baz alan bir mimaridir [83]. Saravanan
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ve Guzdial [83] tarafından ortaya atılan bu mimaride VK-VOK mimarisine ek
olarak 2 ek katman daha bulundurur (Şekil 2.16). Ek olarak bulunan katmanlardan
ilki her pikseli ayrı ayrı değerlendirmek ve model karmaşıklığını azaltmak adına
kullanılan PixelSight bloğudur. PixelSight bloklarının içerisinde 1x1 evrişimler
(konvolüsyonlar) bulunur. PixelSight bloklarında ReLU aktivasyon fonksiyonu
ve toplu normalleştirme kullanılmıştır. Diğer eklenen katman ise uyarlayıcı
katmandır (adapter layer). Uyarlayıcı katman VK-VOK mimarisinde bulunan bir
problemi çözer. Sıkıştırılmış halde bulunan verinin açılması sonucu verinin boyutu
sınırlandırılırken kullanılır. Pixel VQ-VAE mimarisinde optimizasyonu sağlamak
amacıyla ise Adam optimizer kullanılır.
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Şekil 2.16 Piksel vektör kuantize edilmiş varyasyonel otomatik kodlayıcı
mimarisine genel bakış [83].

Pixel VQ-VAE mimarisi genel olarak vektör kuantize edilmiş varyasyonel otomatik
kodlayıcı mimarisi ile aynı denklemi kullanmaktadır. Mimarinin temel farkı
kullandığı ekstra katmanlarla piksel odaklı çalışmasıdır. Dolayısıyla piksel
bazındaki değişimlerde daha iyi sonuçlar vermektedir.

Saravanan ve Guzdial [83] ortaya koyduğu bu mimari ile piksel çizimlerinin üzerine
yoğunlaşmışlardır. Karakterin farklı varyasyonlarını üretme ve karakter oluşturma
üzerine denemeleri bulunmaktadır. Bu denemelerin başarılı sonuçlar verdiğini
göstererek, ortaya çıkardıkları mimarinin önemini ortaya koymuşlardır.

2.3.4 Koşullu Varyasyonel Otomatik Kodlayıcı (KVOK)

Koşullu varyasyonel otomatik kodlayıcı (conditional variational autoencoder
(CVAE)) mimarisi varyasyonel otomatik kodlayıcı mimarisini temel alarak
geliştirilmiştir. Koşullu varyasyonel otomatik kodlayıcı mimarisi bir koşula bağlıdır
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ve üretilen verinin yönlendirilmesini olanaklı kılar (Şekil 2.17) [84]. Girdi olarak
verilen görüntünün yanı sıra koşulun da mimariye verilmesi gerekir. Aynı zamanda
verilen koşul çözücü ile işleme girerken de kullanılır. Bu sayede koşula yönelik bir
üretim yapılması beklenir.
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Şekil 2.17 Koşullu varyasyonel otomatik kodlayıcı mimarisine genel bakış.

LCV AE = −Eqθ(z|x,y) [log pϕ(y|x, z)] +DKL [qθ(z|x, y)||pϕ(z|x)] (2.39)

Koşullu varyasyonel otomatik kodlayıcı mimarisi Denklem 2.39’de gösterilen
fonksiyonu kullanmaktadır [85, 86]. x mimariye verilen girdi, y hedeflenen veridir,
yani koşul olarak yorumlanabilir. z gizli değişkendir (latent variable). pϕ(y|x, z)
ifadesi x ve z girdisi ile oluşturulan y verisinin incelenmesini temsil eder. İnceleme
ile y verisinin ne kadar iyi bir çıktı olduğu incelenir. DKL [qθ(z|x, y)||pϕ(z|x)]
üretilen gizli değişken (z) değerinin önceden belirlenen dağılımla olan farkını ölçer.
Bu sayede değerler arasındaki yakınlık ölçülür. Amaç, önceden belirlenen dağılıma
yaklaşarak mimarinin performansını iyileştirmektir. Koşullu varyasyonel otomatik
kodlayıcı mimarisi optimizasyon yöntemi olarak stokastik gradyan iniş yöntemini
kullanır.

Gonzalez vd. [35] koşullu varyasyonel otomatik kodlayıcı mimarisini kullanarak
Pokémon oyununa ait karakterlerin farklı varyasyonlarını üretmeye çalışmışlardır.
Koşullu varyasyonel otomatik kodlayıcı mimarisinde görüntülere ait tekil kodlama
(one-hot-encoded) yöntemiyle çevrilen etiketlerle koşullanma sağlanmıştır. Yapılan
bu çalışma ile varyasyon üretme sürecinde bir gelişme sağlanmıştır. Ancak henüz
oyun geliştirme süreci için uygun olmadığından bahsedilmektedir.
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3
DENEYLER

Bu bölümde karakter üretimi sürecinde kullanılan çeşitli mimarileri karşılaştırdık
ve yaptığımız iyileştirmeleri açıkladık. Karakter üretim sürecinin iki farklı
alanında deneyler gerçekleştirdik: Karakter renklendirme ve karakter üretimi. Bu
deneylerden elde ettiğimiz bulguları paylaştık ve sonuçları değerlendirdik.

3.1 Karakter Renklendirme
Karakter renklendirme zorlu bir süreç olmasının yanı sıra oldukça zahmetli bir
süreçtir. Bu sürecin otomatikleştirilmesi, bu alanda çalışan veya vakit harcayan
insanlar için oldukça önemlidir. Karakter renklendirme alanında yapılan çalışmaları
incelerken, özellikle Pix2Pix mimarisine ve onun üzerinde yapılan değişikliklere
yoğunlaştık. Pix2Pix mimarisinin ilerlemelerin temelini oluşturduğunu ve karakter
renklendirmesi için en ideal yaklaşımlardan biri olduğunu düşünüyoruz.

Kullanılacak Veri Setinin
Hazırlanması

Karakter Renklendirme

Mimarilerin
Karşılaştırılması

Sorunların Tanımlanması

İyileştirmeler Gerçek Dünya Verileriyle
Test Süreci

Şekil 3.1 Çalışmamızın akış diyagramı.

Karakter renklendirme işleminde deneylerimizi yaparken kullandığımız mimariler:

• Coelho vd. [43] tarafından ortaya konan MANGAN mimarisi (Bölüm 2.2.3).

• Isola vd. [45] tarafından ortaya konan orijinal Pix2Pix mimarisi (Bölüm
2.2.4).
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• Coutinho ve Chaimowicz [55] tarafından ortaya konan Pix2Pix mimarisi
(Bölüm 2.2.4).

• Serpa ve Rodrigues [49] tarafından ortaya konan Pix2Pix mimarisi (Bölüm
2.2.4).

• Jiang ve Sweetser [52] tarafından ortaya konan Pix2Pix mimarisi (Bölüm
2.2.4).

MANGAN mimarisi dışında kalan mimarilerde Pix2Pix mimarisi üzerine
yoğunlaştık.

Çalışmalarından yararlandığımız makalelerde ortaya konan mimariler, karakter
renklendirmek amacıyla kullanıldı. Mimarileri kullanırken mimarilerin her biri
için en iyi sonucu elde etmeye özen gösterdik. Bu nedenle mimarileri kullanırken
belirli eğitim aralıklarında test veri seti ile eğitilen modeli kullanarak çıktılar elde
ettik. Elde ettiğimiz çıktılar arasından mimariler için en iyi çıktıları göz önünde
bulundurarak değerlendirmemizi gerçekleştirdik.

3.1.1 Kullanılacak Veri Setinin Hazırlanması

Deneylerimiz için Anime yüz veri setini (AYV) kullandık [2]. Anime yüz veri
setinden (Anime Face Dataset (AFC)) toplam 21.000 görüntüyü kullanmak üzere
aldık. Aldığımız görüntülerden 20.000 görüntüyü eğitim için, 1.000 görüntüyü ise
test için kullandık.

Şekil 3.2.a ve Şekil 3.2.b veri kümesinden iki örneği göstermektedir.

Veri kümesini işlemeden önce, tüm görüntüleri 256x256 boyutuna ölçeklendirdik.

Kullandığımız anime yüz veri setindeki her görüntü için çizgi sanatına ihtiyacımız
vardı, ancak anime yüz veri seti çizgi sanatı görüntüleri içermiyordu. Bu nedenle,
orijinal görüntülerden çizgi sanatı oluşturmak için çeşitli yöntemler araştırdık.
MANGAN [43] mimarisinde kullanılan ve amaçlarımız için gerekli olan çizgi
sanatı görüntüyü üretmemizi sağlayan uyarlanabilir eşik yöntemini seçtik (Şekil
3.2, Bölüm 2.2.3). Oluşturulan çizgi sanatı görüntülerini deneylerimiz için girdi
olarak kullandık. Gelecekteki çalışmalar, daha iyi çıktılar elde etmek için çizgi
sanatı üretme yöntemlerini geliştirebilir veya değiştirebilir.
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Or൴j൴nal Görüntü 256x256 Görüntü Ç൴zg൴ Sanatı

(a)

(b)

Şekil 3.2 Yeniden ölçeklendirilen ve üretilen çizgi sanatı görüntüleri. (a) Veri
setinin orta sıralarında bulunan örnek görüntü. (b) Veri setinin sonlarına doğru

örnek görüntü.

Şekil 3.3 Kıyaslama yaparken yaptığımız işlemlerin kısa bir özetini içeren şema.
Mimarilerin girdilerinin daha iyi anlaşılmasını sağlayacaktır. Jiang ve Sweetser

[52] tarafından ortaya atılan Pix2Pix mimarisini kullanırken yaptıkları çalışmadaki
gibi, YUV renk uzayının Y kanalından çizgi sanatı üretme yönteminden

yararlanmadık. Bunun yerine ürettiğimiz çizgi sanatını YUV renk uzayına
çevirerek kullandık. Bunu deneylerimizde girdi olarak büyük farklılıkların önüne

geçmek için yaptık.

39



3.1.2 Mimarilerin Karşılaştırılması

Deneylerimizde kullanacağımız mimarilerin girişleri için ayarladığımız çizgi sanatı
görüntüleri ile beraber gereken girdileri karşılar hale geldik (Şekil 3.3). Temelde
Pix2Pix mimarilerini kullanan çalışmalar için giriş verisi olarak orijinal görüntü ile
beraber elde ettiğimiz çizgi sanatı çizimlerini kullandık. MANGAN [43] mimarisi
için ise elde ettiğimiz çizgi sanatı görüntülerinin yanı sıra orijinal çalışmada
belirtilen renk ipucu görüntüsünü mimariye girdi olarak verdik. Tüm girdileri
ayarladıktan sonra mimarilerin oluşturduğu en iyi çıktı görüntülerini paylaştık.

Mimarilerden elde ettiğimiz sonuçlara göre karakter renklendirme işleminin
otomatikleştirilmesi için temellerin atıldığını düşünüyoruz (Şekil 3.4). Ancak
orijinal görüntüye benzerlik anlamında sonuçlara bakıldığında görülebileceği
üzere, tam anlamıyla istenen kalitede bir sonuç elde edilememektedir. Özellikle
gölgelendirme yapılan alanlarda sorun yaşanmaktadır. Bunun yanı sıra girdi
olarak verilen orijinal görüntü ile birebir aynı renkler ve görüntü kalitesi elde
edilememektedir. Orijinal görüntüye yakınsama anlamında sorunlar yaşanmaktadır.

Şekil 3.4 Mimarilerin orijinal görüntüye benzerlik anlamında ürettiği en iyi
çıktılar. OKH değerlendirme yöntemi baz alınmıştır (Tablo 3.1).

Tablo 3.1 Mimarilere ait OKH skorları. MANGAN [43] mimarisinin ürettiği
görüntüler çok gürültülü olduğu için dahil edilmemiştir.

Mimari
Şekil 3.4’deki
Örnek Görüntü
OKH Skoru

4 Farklı Görüntü
İçin OKH Skor
Ortalaması

Isola vd. [45] Pix2Pix 71,56 83,38
Coutinho ve Chaimowicz [55] Pix2Pix 71,15 83,74
Serpa ve Rodrigues [49] Pix2Pix 71,25 83,92
Jiang ve Sweetser [52] Pix2Pix 73,16 83,87

Sonuçları nesnel bir inceleme sunmak amacıyla ortalama karesel hata (mean
squared error (MSE)) yöntemiyle inceledik. En iyi OKH (ortalama karesel hata)
sonuçlarına sahip üretilen görüntüleri Şekil 3.4’de paylaştık. Örnek bir test
görüntüsünün yanı sıra 4 farklı test görüntüsü için ortalama OKH değerlerini de

40



hesapladık. Tablo 3.1’de OKH değerlerini paylaştık. OKH değeri bizim için önemli
olmakla beraber, OKH değeri bozuk üretilen görüntüler için hatalı değerler ortaya
koyabilmektedir. Daha iyi bir ölçüt olabilme ihtimalini göz önüne alarak OKH
ile değerlendirmenin yanı sıra ortalama mutlak hata (mean absolute error (MAE))
yöntemi ile değerlendirmeyi de denedik. Ancak OMH (ortalama mutlak hata) ile
değerlendirmelerimizde en az hataya sahip görüntüler eğitimin başında üretilen
ilk görüntüler olarak belirlendi. Bu nedenle çalışmamız boyunca OKH değerleri
üzerinden ilerlemeye karar verdik.

Tablo 3.1’de görülebileceği üzere örnek görüntü için en iyi skoru alan mimari
Coutinho ve Chaimowicz [55] tarafından ortaya konan Pix2Pix mimarisidir. Ancak
ortalama OKH olarak Isola vd. [45] Pix2Pix mimarisi daha iyi sonuç almıştır. Aynı
zamanda Serpa ve Rodrigues [49] Pix2Pix mimarisi de örnek görüntü için, Isola vd.
[45] Pix2Pix mimarisinden daha iyi sonuç almıştır. Ancak üretilen görüntüye Şekil
3.4’de baktığımızda görüntüde kısmi bozukluklar bulunmaktadır. Aynı zamanda
mimarinin ürettiği diğer görüntülerde de bozukluklar meydana gelmiştir. Serpa ve
Rodrigues [49] Pix2Pix mimarisinin ürettiği görüntülerdeki bozuklukları dikkate
alarak, aynı zamanda 4 farklı test görüntüsü için ortalama OKH değeri olarak daha
iyi sonuçlar üretmesini göz önüne alarak Isola vd. [45] Pix2Pix mimarisini en iyi
mimari olarak belirledik. Deneylerimize en iyi mimari olarak belirlediğimiz Isola
vd. [45] Pix2Pix mimarisi ile devam ettik.

Şekil 3.5 Isola vd. [45] tarafından ortaya konan Pix2Pix mimarisinin orijinal
görüntüye yakın bir görüntü ürettikten sonra, ilerleyen adımlarda ürettiği

görüntüler.

Mimarileri kullanarak ürettikleri çıktıları görsel olarak değerlendirdik.
İncelememizin sonuçlarını paylaşırken deneylerimize devam etmeye karar
verdiğimiz Isola vd. [45] Pix2Pix mimarisini kullandık. İncelemeyi
gerçekleştirmemizin amacı, üretilen görüntülerin orijinal görüntülere yaklaştıktan
sonraki aşamalarında oluşan değişimlerini değerlendirmekti. İncelememiz
sonucunda görsel olarak orijinal görüntüye yaklaşılan alanlarda görüntünün genel
anlamda orijinal görüntüye benzer olmaktan çok çabuk saptığını fark ettik. Daha iyi
anlaşılabilmesi için Şekil 3.5’te orijinal Pix2Pix mimarisinin ürettiği görüntülerden
örnek çıktıları paylaştık.
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3.1.3 Sorunların Tanımlanması

Orijinale benzer üretilen görüntü çeşitliliğinin ve üretilen görüntü kalitesinin
sağlanmasının önüne geçen durumları görebilmek amacıyla eğitimin farklı
aşamalarında teste soktuğumuz mimarilerin ürettikleri görüntüleri inceledik.
İncelemelerimiz sonucunda 2 farklı konu başlığını ele aldık.

3.1.3.1 Veri Setinin Renk Dağılımı

Şekil 3.6 (a) Eğitim verisinin HSV renk uzayında ton parametresine ait histogramı.
(b) HSV renk uzayında doygunluk ve değer parametrelerini göz ardı ettiğimizde

ton parametresinin bir döngü içerisinde olduğu bilinmektedir. Ton (H) parametresi
360 değeri ile beraber aslında başa dönmektedir. Histogramın daha kolay

okunabilmesi amacıyla okunabilirliğe göre düzenleme yaptık ve çok az pikselde
bulunan ton parametresinin değerlerini histogramdan kaldırdık. (c) Eğitimin

başlangıcında üretilen görüntüler. Renk baskınlığının eğitimin ilk adımlarındaki
etkisini ortaya koymak için paylaştık.

İlk sorun olarak eğitimin ilk adımlarından başlayarak ilerleyen birçok adımda
renklendirme işleminin belirli renk tonlarında kaldığını fark ettik. Belirli renk
tonlarında renklendirme işleminin sürdürülmesinin orijinal görüntüye benzerlik
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durumu için sorun olabileceğini düşünüyoruz. Düşüncemizin ve incelememizin
doğruluğundan emin olmak amacıyla eğitim veri setinin, HSV renk uzayında renk
tonlarının histogramını incelemeye karar verdik [87].

Eğitim veri setimizi HSV renk uzayında incelerken siyah renk tonlarının ve
beyaz renk tonlarının bu renklendirme tonlamasına etki etmemesi için eşik değeri
belirledik. Eşik değeri belirleyerek görüntünün arka planında bulunan beyaz renk
tonlarının ve karakterin çiziminde kullanılan siyah renk tonlarının baskınlığını
elemeyi amaçladık. Sonuç olarak elde ettiğimiz histograma baktığımızda,
düşündüğümüz gibi eğitim veri setinde baskın olan renk tonlarının özellikle
eğitimin ilk adımlarında görüntü içerisinde de baskın olduğunu gösterdik (Şekil
3.6). Baskınlığın önüne geçilebilmesi için gelecekte yapılacak çalışmalarda
renk tonları açısından daha iyi dağılıma sahip bir veri seti kullanılabileceğini
düşünüyoruz. Aynı zamanda yaptığımız inceleme sayesinde renklendirilmek
istenen karakterin belirli bir renk teması içerisinde renklendirilmesi istendiğinde,
kullanılacak veri seti ile bir renk paleti sağlanabileceğini gösterdik.

Yaptığımız HSV renk uzayı incelemesi için HSV renk uzayının detaylarını
açıklıyoruz [88]. HSV renk uzayı içerisinde ton (hue(H)), doygunluk (saturation(S))
ve değer (value(V)) parametrelerini bulunduran bir renk uzayıdır. Ton parametresi
rengin tonuna biçilen değeri tutar. Doygunluk parametresi rengin doygunluğunu
ve değer parametresi ise renge ait parlaklık değerini belirtir. Siyah ve beyaz
tonlarını elimine etmek amacıyla doygunluk ve değer parametrelerinde eşik
belirledik. Eşik değerimize HSV renk uzayındaki renkleri inceleyerek karar
verdik. İncelememiz sonucunda doygunluk ve değer parametrelerinin yüzde
40 değerinin altında kaldıklarında renk tonlarının beyaza veya siyaha kaydığını
düşünüyoruz. Yaptığımız denemeler sonucunda eşik değerimizi yüzde 40 olarak
belirledik. Belirlediğimiz eşik değerini koşul olarak kullanarak veri setimizdeki
tüm görüntülerin her bir pikselini ait oldukları renk tonuna yani ton parametresine
ekledik.

3.1.3.2 Görüntünün Bir Bütün Olarak Renklendirilmesi

Çıktıları incelemeye devam ederken göze çarpan 2. bir sorunla daha karşılaştık.
Elde ettiğimiz çıktıları incelemeye devam ettiğimizde üretilen görüntülerin önemli
bir çoğunluğunun bir bütün olarak renk değiştirdiğini gördük. Aynı zamanda
renklendirme işlemi yapılırken kullandığımız mimarilerin karakterin tamamına
yönelik boyama yaptığını fark ettik. Şekil 3.5’te paylaştığımız Isola vd. [45]
tarafından ortaya konan Pix2Pix mimarisinin ürettiği görüntüler incelendiğinde de
görüntünün bir bütün olarak renklendirildiği görülmektedir.
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Karakterin tamamına yönelik boyama yapılmasının dolaylı bir şekilde mimariler
tarafından üretilen görüntülerde kaliteyi düşürdüğünü düşünüyoruz. Yapılan
renklendirmelerin bir bütün olarak yapılması, minimal değişiklikleri sağlayamamak
anlamına gelmektedir. Minimal değişikliklerin sağlanamaması üretilen görüntünün
orijinale yaklaşması durumunda, minimal değişikliklerle kalitenin ve orijinal
görüntüye yakınlığın artmasının önüne geçmektedir. Özellikle orijinal görüntüye
yakın bir görüntü oluşturulan adımdan sonra, mimarinin görüntünün renklerini bir
bütün olarak değiştirmeye yönelmesinin, orijinal görüntüye daha yakın sonuçlar
üretilememesine neden olduğunu düşünüyoruz. Tez çalışmamızda kaliteyi, orijinale
yakınlığı ve üretilen görüntülerde minimal değişiklikleri sağlayarak orijinale yakın
görüntü çeşitliliğini de artırabilmek amacıyla bu sorunun üzerine gittik.

3.1.4 İyileştirmeler

Görüntünün bir bütün olarak boyanması problemini çözmek için bazı denemeler
yaptık. Deneylerimizi yaparken Isola vd. [45] Pix2Pix mimarisini kullandık
(Şekil 3.7.a). Isola vd. [45] tarafından ortaya konan orijinal Pix2Pix mimarisini
kullanmamızın nedeni, Bölüm 3.1.2’de belirttiğimiz gibi en iyi sonuçları aldığımız
mimari olmasından kaynaklanmaktadır.

256x256x3

Giriş Verisi

256x256x3

U-Net Üretici
Ağ

256x256x3
Giriş Verisi

Yama Tabanlı
Ayırıcı Ağ

konv.
1x1x3, s=1

256x256x1

konv.
1x1x30, s=1

30x30x1

Yeni Ayırıcı
Ağ Çıktısı

256x256x3

Giriş Verisi

256x256x3

Üretici Ağ
Çıktısı

U-Net Üretici
Ağ

256x256x3

Giriş Verisi

Yama Tabanlı
Ayırıcı Ağ

30x30x1

Ayırıcı Ağ
Çıktısı

(b)(a)

Yeni Üretici Ağ

Yeni
Ayırıcı

Ağ

30x30x30

Yeni Üretici
Ağ Çıktısı

Şekil 3.7 (a) Orijinal Pix2Pix Mimarisi [45]. (b) Ortaya koyduğumuz Pix2Pix
modifikasyonu (Line2Pix). Bizim eklediğimiz katmanları kırmızı renkle

renklendirdik. Genel olarak kodlamayı Pix2Pix mimarisinden aldık. Mimarimizi
daha iyi anlaşılabilmesi için görsel olarak ortaya koyduk. Yaptığımız eklemelerde
çekirdek boyutu (kernel size) olarak 1x1, adım (stride) olarak 1 değerini kullandık.
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Kalite ve orijinale yakın görüntü çeşitliliğini artırmak amacıyla, aynı zamanda
görüntünün bir bütün olarak renklendirilmesi problemini çözebilmek amacıyla
Saravanan ve Guzdial [83] tarafından önerilen PixelSight bloklarını Pix2Pix
mimarisine uyarlamaya karar verdik (Şekil 3.7.b). Uyarlamayı yapabilmek
amacıyla üretici ağ girişine ve ayırıcı ağ çıkışına 1x1 evrişim katmanları
(konvolüsyonlar) ekledik. Üretici ağ girişine eklediğimiz 1x1 evrişim katmanı
ile beraber model karmaşıklığını azaltmayı hedefledik. Aynı zamanda giriş
verimizde kenar kısımları önemli olduğu için, giriş verimizdeki gereksiz olabilecek
özelliklerden uzaklaşmayı amaçladık. Mimarinin giriş görüntüsünü yorumlayarak
kullanmasını sağladık.

Ayırıcı ağ için Isola vd. [45] tarafından ortaya konan orijinal Pix2Pix mimarisinde
70x70 algılama alanı (receptive field) kullanılmıştır. Isola vd. [45] Pix2Pix
makalesinde de belirtildiği üzere farklı algılama alanları denenerek 70x70 tercih
edilmiştir. Ayırıcı ağ çıkış katmanında ise 30x30x1 çıktısı verilmektedir. Mimaride
değişikliğe giderek çıkış katmanını 30x30x30 olacak şekilde güncelledik. Elde
ettiğimiz 30x30x30 çıktısına 1x1x30 evrişim uygulayarak 30x30x1 çıktısını elde
ettik. Kısaca orijinal Pix2Pix mimarisinin çıktı aldığı katmanda, 30 farklı
değerlendirme sağladık ve daha sonra sağladığımız değerlendirmelerden tek bir
sonuç elde etmeye odaklandık. Yaptığımız ekleme sayesinde 70x70 algılama
alanını değiştirmeden, mimarinin daha fazla değerlendirme yapmasına olanak
sağladık.

Şekil 3.8 Mimarilerin eğitimin başlangıç aşamalarındaki renk değişimleri. Ortaya
koyduğumuz Line2Pix mimarisinin renklendirmeye başlamak için ihtiyaç duyduğu

eğitim süresi daha fazladır. Minimal değişikliklere izin vermemiz sonucu eğitim
süreleri uzamıştır.

Yaptığımız değişimlerle beraber daha tutarlı bir öğrenmenin önünü açtık. Ortaya
koyduğumuz Line2Pix mimarisi ile daha fazla değerlendirme yaparak görüntünün
daha iyi değerlendirilmesinin önünü açtık. Daha iyi değerlendirme sağlayarak,
mimarinin minimal değişimlere yönelmesini sağladık.

Line2Pix mimarisi ile beraber kaliteyi ve orijinale benzer anlamda üretilen görüntü
çeşitliliğini artırdık. Orijinal görüntüye yakın bir görüntü üretildikten sonra,
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Şekil 3.9 Yaptığımız iyileştirmeler sonucunda orijinal görüntüye yaklaşılan üretim
adımından sonraki adımlarda üretilen örnek görüntüler.

Şekil 3.10 Yaptığımız iyileştirmeler sonucunda 2 farklı görüntümüz için OKH
yöntemine göre üretilmiş en iyi görüntüler. Görüntülere ait OKH skorları Tablo
3.2’de paylaşılmıştır. (a) Orijinal Pix2Pix mimarisi ile üretilen görüntüde yüz

bölgesinde mavi renk tonları bulunmaktadır. (b) Line2Pix mimarimiz ile üretilen
görüntünün hem yüz rengi, hem de saç rengi orijinal görüntüye daha yakındır.

Tablo 3.2 Şekil 3.10’da paylaştığımız görüntülere ait OKH skorları. Aynı zamanda
4 farklı test görüntümüz için aldığımız OKH skorlarının ortalamasını paylaştık.

Mimari
Şekil 3.10.a’daki
Örnek Görüntü
OKH Skoru

Şekil 3.10.b’deki
Örnek Görüntü
OKH Skoru

4 Farklı Görüntü
İçin OKH Skor
Ortalaması

Isola vd. [45] Pix2Pix 69,92 87,67 82,55
Ortaya Koyduğumuz Line2Pix 66,07 83,71 80,2
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ilerleyen adımlarda daha uzun süre boyunca minimal değişikliklerle orijinale
yaklaşılmasını sağladık (Şekil 3.9). Değerlendirme metodu olarak OKH yöntemini
kullanmaya devam ettik. Orijinale yakınlık olarak OKH yöntemiyle en iyi skoru
alan görüntüleri Şekil 3.10’da paylaştık. OKH yöntemi ile elde ettiğimiz sonuçları
Tablo 3.2’de paylaştık. OKH yönteminde sorunlar yaşanabildiği için çıktıları
aynı zamanda gözle de kontrol ettik. Isola vd. ([45]) Pix2Pix mimarisine göre
daha uzun süren eğitimlerle daha iyi sonuçlar aldık. Yaptığımız değişikliklerle
adım sayısı aynı kalsa da, eklediğimiz yeni katmanlar nedeniyle eğitim süreci
daha yavaş ilerlemektedir. Kısacası eğitimde adım başına düşen süre uzamıştır.
Minimal değişikliklerin önünü açarak, daha istikrarlı ve daha tutarlı bir öğrenme
sağladığımız için Isola vd. [45] Pix2Pix mimarisine göre daha uzun eğitim
sürelerine ihtiyaç duyduk (Şekil 3.8).

Mimarimiz orijinal Pix2Pix mimarisi tabanlıdır ve aynı maliyet fonksiyonunu
(Bölüm 2.2.4) kullanmaktadır (Şekil 3.7.b). Adam yöntemi (Bölüm 2.1) ile
optimizasyon sağlanmıştır. Öğrenme katsayısı (learning rate) değeri olarak 2e − 4

değeri kullanılmıştır. Diğer hiper parametreler için β1 = 0.5, β2 = 0.999,
ϵ = 1e− 07 değerleri kullanılmıştır.

3.1.5 Gerçek Dünya Verileriyle Test Süreci

Karakter renklendirmesi ile ilgili son deneyimizde gerçek dünya verileri üzerinde
denemeler gerçekleştirdik. Gerçek dünya verileri ile çalışmaları yaparken,
mimarilerin test sürecinde girdi olarak gerçek dünya verilerine yakın çizimlerle
çalıştık. Ancak mimarilerin eğitim süreçlerinde, elimizde çok fazla gerçek dünya
verilerine yakın çizim ve çıktı olmadığı için farklı yöntemlere başvurduk.

3.1.5.1 Uyarlanabilir Eşik Yöntemi ile Eğitim

Gerçek dünya verileri ile test sürecimizde ilk olarak mimarileri eğitirken orijinal
görüntülerden uyarlanabilir eşik yöntemi ile elde ettiğimiz çizgi sanatı görüntüleri
kullandık. Uyarlanabilir eşik yöntemi ile elde ettiğimiz çizgi sanatı görüntülerle
eğittiğimiz mimarileri, kendi el çizimlerimiz ile oluşturduğumuz görüntüler ile
test ettik. El çizimlerimizi yaparken uyarlanabilir eşik yöntemi ile elde ettiğimiz
çizimlere benzemesine özen gösterdik (Şekil 3.11).

El çizimlerimize ait görüntünün bilgisayara aktarıldığında soluk kaldığını fark
ettik. Bu nedenle, daha iyi sonuçlar üretebileceğini düşündüğümüz için bilgisayar
ortamında çizimi yeniden yapılandırdık (Şekil 3.11). Yeniden yapılandırılmış
çizimle beraber mimarilerimizi test ettik (Şekil 3.12).
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Uyarlanab൴l൴r Eş൴k
Yöntem൴ ൴le Elde
Ed൴len Ç൴zg൴ Sanatı

Kağıt Üzer൴ndek൴
Ç൴z൴m൴m൴z

B൴lg൴sayarda
Yapılandırılmış
Ç൴z൴m൴m൴zGörüntü

Şekil 3.11 Bize ait olan el çizimleri.

Şekil 3.12 Bize ait olan el çizimlerini (Şekil 3.11) test verisi olarak
kullandığımızda ürettiğimiz sonuçlar. Girdi olarak kullandığımız kağıt ve

bilgisayar çizimleri Şekil 3.11’de görülebilir. Kağıt girdisi ile üretilen sonuçlara ait
OKH skorlarını Tablo 3.3’te, bilgisayar girdisine ait OKH skorlarını Tablo 3.4’te
paylaştık. Mimarilerin eğitiminde uyarlanabilir eşik yöntemiyle elde edilen çizgi

sanatı görüntüler kullanılmıştır.

Tablo 3.3 Mimarilere kağıt girdisi (Şekil 3.11) verilerek üretilen görüntülere ait
OKH skorları. Mimarilerin eğitiminde uyarlanabilir eşik yöntemiyle elde edilen

çizgi sanatı görüntüler kullanılmıştır.

Mimari
Şekil 3.12’de Paylaşılan
Görüntüye Ait
OKH Skoru

4 Farklı Görüntü
İçin Ortalama
OKH Skoru

Isola vd. [45] Pix2Pix 77,62 86,48
Ortaya Koyduğumuz Line2Pix 99,3 100,13
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Tablo 3.4 Mimarilere bilgisayar girdisi (Şekil 3.11) verilerek üretilen görüntülere
ait OKH skorları. Mimarilerin eğitiminde uyarlanabilir eşik yöntemiyle elde edilen

çizgi sanatı görüntüler kullanılmıştır.

Mimari
Şekil 3.12’de Paylaşılan
Görüntüye Ait
OKH Skoru

4 Farklı Görüntü
İçin Ortalama
OKH Skoru

Isola vd. [45] Pix2Pix 79,17 87,97
Ortaya Koyduğumuz Line2Pix 93,76 97,32

Yaptığımız deney sonuçları üretilen görüntüleri OKH yöntemi ile
değerlendirdiğimizde orijinal Pix2Pix mimarisinin daha iyi sonuçlar aldığını
gördük (Tablo 3.3, Tablo 3.4). Ancak paylaştığımız Şekil 3.12’de de görüldüğü
üzere ortaya koyduğumuz Line2Pix mimarisinin renklendirme işlemini daha iyi
bir şekilde yaptığı gözükmektedir. Isola vd. [45] Pix2Pix mimarisi görüntünün
yapısını bozarken, ortaya koyduğumuz Line2Pix mimarisi görüntünün yapısını
bozmamaktadır. Dolayısıyla yaptığımız iyileştirmelerin etkisi de yaptığımız deney
ile daha net bir şekilde görülebilmektedir.

Ortaya koyduğumuz Line2Pix mimarisi renklendirme işlemini yapmaya çalışsa da
kaliteli bir şekilde sağlayamamıştır. Ancak görüntüyü renklendirmeye odaklanmış
ve gerekli yerlerin renk değişimlerini sağlamaya çalışmıştır. Eğitim verilerindeki
çizgi sanatı görüntüsü ile test sürecindeki çizgi sanatı görüntüsü farklı olduğu için
sonuçların kalitesiz olmasının normal olduğunu düşünüyoruz.

3.1.5.2 Yeni Çizgi Sanatı Görüntüsü Oluşturma Yöntemi

Gerçek dünya verileri ile çalışırken kötü sonuçlar elde ettiğimiz için, el çizimi ile
ortaya koyduğumuz çizgi sanatı görüntülerine yakın görüntüler elde edebileceğimiz
bir yönteme ihtiyaç duyduk. İhtiyacımız doğrultusunda mimarileri eğitirken,
uyarlanabilir eşik yöntemi ile elde ettiğimiz çizgi sanatı görüntüler yerine el çizimi
ile ortaya koyduğumuz çizgi sanatına daha benzer çizgi sanatı görüntüler elde etmek
için denemeler yaptık.

Ortaya koyduğumuz GSO yöntemi ile orijinal görüntüye önce bulanıklık (blur)
filtresini uyguladık. Ardından Sobel filtresi ile kenarları çıkarttık. Bulanıklık filtresi
ile daha iyi sonuçlar elde ettiğimiz için bulanıklık filtresini kullandık. Son olarak
elde ettiğimiz görüntüyü Otsu yöntemi ile filtreledik ve el çizimlerimize oldukça
benzer bir çizgi sanatı görüntü çıktısını elde ettik (Şekil 3.13). Ortaya koyduğumuz
GSO yöntemi ile bazı kenar algılama yöntemlerinin karşılaştırmasını sunduk (Şekil
3.13).
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Şekil 3.13 Yeni çizgi sanatı görüntüsü oluşturma yöntemimiz ve kenar algılama
yöntemleri.

3.1.5.3 Yeni Çizgi Sanatı Görüntüsü Oluşturma Yöntemi ile Eğitim

Ortaya koyduğumuz GSO yöntemi ile tüm veri setine ait çizgi sanatı görüntülerini
oluşturduk. Oluşturduğumuz yeni çizgi sanatı görüntülerle mimarileri baştan
eğittik. Eğittiğimiz mimariler ile kağıt üzerindeki ve bilgisayar ortamında
yapılandırdığımız el çizimlerimizi kullanarak renklendirme için denemeler yaptık.
OKH yöntemine göre elde ettiğimiz en iyi çıktıları Şekil 3.14’te paylaştık. Kağıt
girdisi ile elde ettiğimiz OKH skorlarını Tablo 3.5’te, bilgisayar girdisi ile elde
ettiğimiz OKH skorlarını Tablo 3.6’da paylaştık. Yeni çizgi sanatı görüntüsü
oluşturma yöntemimiz ile beraber mimarilerin ürettikleri görüntülerin daha iyi
olduğu görünmektedir.

Şekil 3.14 Mimarileri yeni çizgi sanatı oluşturma yöntemimizle elde ettiğimiz
çizgi sanatı görüntülerle eğittikten sonra, kağıt ve bilgisayar çizimlerini girdi

olarak verdiğimizde mimarilerden elde ettiğimiz görüntüler. Girdi olarak
kullandığımız kağıt ve bilgisayar çizimleri Şekil 3.11’de görülebilir.

Tablo 3.5 Mimarilere kağıt girdisi (Şekil 3.11) verilerek üretilen görüntülere ait
OKH skorları. Mimarilerin eğitiminde yeni çizgi sanatı oluşturma yöntemiyle elde

edilen çizgi sanatı görüntüler kullanılmıştır.

Mimari
Şekil 3.14’te Paylaşılan
Görüntüye Ait
OKH Skoru

4 Farklı Görüntü
İçin Ortalama
OKH Skoru

Isola vd. [45] Pix2Pix 90,32 94,83
Ortaya Koyduğumuz Line2Pix 87,19 93,75
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Tablo 3.6 Mimarilere bilgisayar girdisi (Şekil 3.11) verilerek üretilen görüntülere
ait OKH skorları. Mimarilerin eğitiminde yeni çizgi sanatı oluşturma yöntemiyle

elde edilen çizgi sanatı görüntüler kullanılmıştır.

Mimari
Şekil 3.14’te Paylaşılan
Görüntüye Ait
OKH Skoru

4 Farklı Görüntü
İçin Ortalama
OKH Skoru

Isola vd. [45] Pix2Pix 88,92 93,86
Ortaya Koyduğumuz Line2Pix 87,85 93,59

3.2 Karakter Üretimi
Sıfırdan karakter üretimi otomasyonu, oyun ve çizgi romanlar için oldukça önemli
bir adım olma potansiyeline sahiptir. Karakter renklendirme sürecinde olduğu gibi
karakter üretimi de tasarımcıya fikir verme açısından kullanılabilir. Bu bölümde
tez çalışmamızda Bölüm 1.1.1 bahsettiğimiz piksel sanatı tarzındaki karakterlerle
deneyi gerçekleştirdik.

Kullandığımız veri setinde farklı yöne bakan karakterler bulunmaktadır [89]. Veri
setinde bulunan verilerin sadece yüzü ekrana dönük olanlarını kullandık.

3.2.1 Deney Süreci ve İyileştirmeler

Deneylerimizde, veri setimizle eğitilmiş derin konvolüsyonel çekişmeli üretici ağ
(Bölüm 2.2.2) mimarisini kullandık (Şekil 3.15.a). Horsley ve Perez-Liebana
[41] tarafından yapılan çalışmadan esinlenerek DKÇÜA mimarisini karakter
üretiminde kullanmaya karar verdik. Inkawich [90] tarafından oluşturulan
DKÇÜA mimarisini temel alarak deneylerimizi gerçekleştirdik. Kullanmakta
olduğumuz derin konvolüsyonel çekişmeli üretici ağ mimarisinde, oluşturulan
görüntüleri paylaşmadan önce birçok kez eğitim denemeleri gerçekleştirdik. Eğitim
denemelerimiz sırasında zaman zaman DKÇÜA mimarisinde sapmalarla karşılaştık
ve bu da gürültülü görüntülere yol açtı. Sapma sorununu çözmek için DKÇÜA
mimarisine tarihsel ortalama yönteminden (historical averaging method) esinlenen
bir değişiklik önerdik [91].

θt+1 = (1− α)θt + αθ′t+1 (3.1)

Ortaya koyduğumuz yöntem Denklem 3.1’de gösterilmiştir. θt+1 geçmiş ağırlıklarla
yeni ağırlıkların işleme girmesi sonucu elde edilen yeni ağırlıklardır. θt geçmiş
ağırlıkları temsil eder. θ′t ise hesaplamalar sonrası yeni adımda elde edilen,
geçmiş ağırlıklarla henüz işleme girmemiş ağırlıkları temsil eden ifadedir. α hiper
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parametresi henüz hesaplamada kullanılmayan ağırlık değerlerinin (θ′t) önemini
belirtir. Çalışmamızda α = 0.3 değerini kullanıyoruz. Uyguladığımız yöntem
sayesinde geçmiş ağırlıklara bağlı kalarak ağırlık güncellemesi yapabiliyoruz
ve sapmanın etkisini azaltmaya yardımcı olduğunu düşünüyoruz. Mimariyi
sunduğumuz yöntem ile birden çok kez eğitmeye çalıştık. Görüntü üretmeye
başladıktan sonra tekrar gürültü üretmedik. Dolayısıyla sapmaya rastlamadık ve
bu nedenle sapmayı büyük ölçüde önlediğimize inanıyoruz.

Üretici Ağ

Ayırıcı Ağ

Girdi
1x1x100

Çıktı
1x1x1

Üretici Ağ

Ayırıcı Ağ

1x1x30

konv.
1x1x30,

s=1

(a) (b)

Yeni
Ayırıcı
Ağ

Yeni
Çıktı
1x1x1

Girdi
1x1x100

Şekil 3.15 (a) DKÇÜA mimarisine genel bakış [90]. (b) Karakter üretimi için
ortaya koyduğumuz mimarimize genel bakış.

Üretilen karakterlerin kalitesini artırabileceğini düşündüğümüz için ayırıcı ağ
çıkış katmanında üretilen sonucu 1x1x30 olarak güncelledik. Güncellememiz
sayesinde ayırıcı ağın farklı incelemeler yapmasını sağlamaya çalıştık. 30 farklı
değerlendirme sağlayan ayırıcı ağa son katman olarak 1x1 evrişim ekledik ve farklı
değerlendirmeler arasında karar vermesini sağladık (Şekil 3.15.b). Çalışmamızı
yaparken PixelSight bloklarından esinlendik [83]. Çalışmamızın sonuçlarını
paylaştık (Şekil 3.16).

3.2.2 Kullandığımız Parametreler

Ortaya koyduğumuz DKÇÜA mimarisi ÇÜA mimarisiyle aynı maliyet fonksiyonu
(Bölüm 2.2.1) üzerinden işlemlerini sürdürür. Yaptığımız değişiklikler fonksiyonlar
içerisinde olduğundan dolayı maliyet fonksiyonu değişmeyecektir. Yığın
boyutu (batch size) 128 olarak belirlenmiştir. Tüm resimler 64x64 olarak
ölçeklendirilmiştir. Adam yöntemi ile optimizasyon sağlanmıştır ve parametreler
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Der൴n Konvolüsyonel
Çek൴şmel൴ Üret൴c൴
Ağ (DKÇÜA)

İy൴leşt൴rmeler൴m൴z
Sonucu DKÇÜA

Şekil 3.16 Karakter üretimi için kullandığımız mimarilerden elde ettiğimiz örnek
çıktılar.

için öğrenme katsayısı = 2e − 4, β1 = 0.5, β2 = 0.999, ϵ = 1e − 08 değerleri
kullanılmıştır. Sapmalardan kurtulmak amacıyla eklediğimiz yöntemde α = 0.3

değerini kullandık (Denklem 3.1).

3.2.3 Kullanıcı Aracılığı ile Değerlendirme

Eğitim sırasında, yapay zeka modelinin belirli bir veri grubunu işlemesine adım
denir. Tüm veri seti model tarafından bir kez işlendiğinde ise bu sürece döngü adı
verilir. Her 100 döngüde 1 çıktı aldık. Genellikle en iyi çıktıyı sağlayan 2000 ile
7000 döngü (epoch) aralığına odaklanarak değerlendirme yaptık.

Değerlendirme yöntemi olarak Fréchet başlangıç mesafesi (Frêchet Inception
Distance (FID)) [92] veya başlangıç skoru (Inception Score (IS)) [91] yöntemlerini
tercih etmedik. Fréchet başlangıç mesafesi (FBM) yöntemini tercih etmeme
nedenimiz çeşitlilik arttıkça kötü skor vermesinden kaynaklanmaktadır. Diğer
bir yöntem olan başlangıç skoru (BS), çeşitliliği dikkate alsa da, karakter
üretimindeki sanatsallığı dikkate alamaz. Tüm değerlendirme yöntemlerini
incelememekle beraber karakter üretimini değerlendirmede kullanılabilecek
ve standart oluşturabilecek bir değerlendirme yöntemine ihtiyaç olduğunu
düşünüyoruz.

Elde ettiğimiz çıktıların daha kaliteli ve çeşitli olduğuna inanıyoruz. FBM ve BM
değerlendirme yöntemleri hakkındaki fikirlerimizden dolayı, elde ettiğimiz çıktıları
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kullanıcı anketi aracılığıyla değerlendirdik. Anketi hazırlarken mimarilerin en iyi
çıktıları ürettiği aralık olan 2000-7000 döngü aralığındaki çıktılarını kullandık.
Anket için mimarilerin 2000-7000 döngü aralığında ürettiği en yüksek kaliteli ve
en çeşitli çıktıları kullandık. Kullanıcılardan görüntü kalitesi, ana hat belirginliği
ve renk uyumuna göre seçim yapmalarını istedik. Son olarak, kullanıcılardan tercih
ettikleri karakteri seçmelerini istedik (Tablo 3.7).

Tablo 3.7 Yaptığımız ankete ait sonuçlar.

Değerlendirme Alanı DKÇÜA İyileştirmelerimiz
Sonucu DKÇÜA

Görüntü Kalitesi 42,75% 57,25%
Ana Hat Belirginliği 42,75% 57,25%
Renk Uyumu 42,35% 57,65%
Tercih Edilen Karakter 39,22% 60,78%
Toplam 41,67% 58,33%

Toplam 51 katılımcı ile gerçekleştirilen anketin sonuçlarını sunduk (Tablo 3.7).
Anket, mimarilerden elde edilen en kaliteli ve en çeşitli 16 çıktı kullanılarak
hazırlanmıştır. Toplam 30 farklı soru grubu oluşturulmuş ve her grup için 4 farklı
alanda yanıt istenmiştir. Her katılımcıya 5 soru grubu gösterilmiş ve cevapları
alınmıştır. Dolayısıyla değerlendirilen alana ilişkin yüzdeler 255 oy, “Toplam”
satırına ilişkin yüzdeler ise 1.020 oy üzerinden hesaplanmıştır. Kullanıcıların farklı
alanlarda verdikleri tüm oyları toplu olarak değerlendirdik ve değerlendirmemizin
sonucunu tablodaki “Toplam” satırında gösterdik. Ankette, iyileştirmelerimiz
sonucu ortaya koyduğumuz DKÇÜA mimarisinde daha iyi sonuçlar aldığımız için
α = 0.3 değerini kullandık.

Anketimizin sonuçlarını dikkate alarak mimarileri değerlendirdiğimizde olumlu
kullanıcı geri bildirimleri aldık. Öğrenmeyi daha fazla değerlendirme üzerinden
sağlayarak, daha kaliteli karakterler ürettiğimizi düşünüyoruz. DKÇÜA
mimarisinde yaptığımız değişikliklerin, üretilen karakterleri kullanıcılar için daha
çekici hale getirdiğini anket sonuçları ile gösterdik. Ortaya koyduğumuz bulguların
gelecekteki araştırmalar için fikir verebileceğine inanıyoruz.
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4
SONUÇ

Tez çalışmamızda, karakter renklendirme ve sıfırdan karakter üretimi için deneyler
yaptık.

Karakter renklendirme süreci için MANGAN mimarisi [43] ve Pix2Pix
modifikasyonlarını karşılaştırdık. Isola vd. [45] tarafından ortaya konulan orijinal
Pix2Pix mimarisi, Serpa ve Rodrigues [49] tarafından ortaya konulan Pix2Pix
mimarisi, Jiang ve Sweetser [52] tarafından ortaya konulan Pix2Pix mimarisi,
Coutinho ve Chaimowicz [55] tarafından ortaya konulan Pix2Pix mimarisi, karakter
renklendirme deneylerinde kullandığımız Pix2Pix modifikasyonlarıdır.

Yaptığımız deneyler sonucunda en iyi sonucu Isola vd. [45] tarafından
ortaya konulan Pix2Pix mimarisi ile elde ediyoruz. Elde ettiğimiz sonuçları
incelediğimizde bazı sorunların öne çıktığını fark ettik ve paylaştık.

Karakter renklendirme sürecinin otomasyonunu sağlamak için kullanılan
mimarilerde, eğitimde kullanılacak olan veri setinin renk baskınlığının etkisine
değindik. Veri setinin renk baskınlığını histogram yöntemini kullanarak gösterdik
ve sonuçlara olan etkisini ortaya koyduk. Ortaya koyduğumuz renk baskınlığı
problemi için çözüm yöntemi olarak daha dengeli dağılıma sahip bir veri seti
kullanmayı önerdik.

Karakter renklendirme sürecinde fark ettiğimiz diğer bir sorun görüntünün bir bütün
olarak renklendirilmesi olduğunu örneklerle gösterdik. Renklendirme işleminin
bütün bir şekilde yapılmasının önüne geçmek ve kaliteyi artırmak amacıyla Pixel
VQ-VAE mimarisinde kullanılan PixelSight bloklarını [83] Isola vd. [45] tarafından
ortaya konulan orijinal Pix2Pix mimarisine entegre ettik. Üretici ağ girişine ve
ayırıcı ağ çıkışına 1x1 konvolüsyonlar ekleyerek entegre işlemini gerçekleştirdik.
Eklediğimiz konvolüsyonlar sayesinde sorunun önüne geçtiğimizi gösterdik.

Karakter renklendirme ile alakalı son olarak gerçek dünya verileri ile deneyler
gerçekleştirdik. Gerçek dünya verilerinin doğru bir şekilde renklendirilmesinde
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mimarilerin eğitiminde kullanılan çizgi sanatı görüntülerin önemini ortaya koyduk.
Gerçek dünya verilerinin daha iyi işlenebilmesi için yeni bir çizgi sanatı görüntüsü
oluşturma yöntemi önerdik. Önerdiğimiz yöntem ile orijinal görüntüye sırasıyla
bulanıklık filtresi ve Sobel filtresi uygulayıp, Otsu yöntemi ile eşiklendirerek
çizgi sanatı görüntüsü elde ettik. Eğitimde yeni çizgi sanatı görüntülerimizi
kullandığımızda ürettiğimiz sonuçların daha iyi renklendirildiğini gösterdik.

Sıfırdan karakter üretimi için Horsley ve Perez-Liebana [41] tarafından yapılan
çalışmadan esinlenerek, DKÇÜA mimarisi ile deneylerimizi gerçekleştirdik.
Başlangıçta bazı eğitim denemelerimizde sapmalarla karşılaştık. DKÇÜA mimarisi
bir süre ilerleme kaydettikten sonra tekrar gürültü üretmeye başlıyordu. Sapmaların
önüne geçebilmek amacıyla tarihsel ortalama yönteminden esinlenerek, mimarideki
ağırlıkları güncellerken eski ağırlıklara bağlı kaldık. Uyguladığımız yöntem ile
sapmaların önüne geçtik.

DKÇÜA mimarisi ile gerçekleştirdiğimiz deneylerde elde ettiğimiz sonuçlara
baktığımızda kaliteyi artırmamız gerektiğini düşündük. Kaliteyi artırmayı sağlamak
amacıyla ayırıcı ağ mimarisinde değişiklikler yaptık. Ayırıcı ağ çıkışına 1x1
konvolüsyon koyarak mimarinin daha fazla değerlendirme yapmasını sağladık.

DKÇÜA mimarisi ile iyileştirmelerimiz sonucu ortaya koyduğumuz DKÇÜA
mimarisi tarafından üretilen çıktıları, kullanıcı anketi aracılığıyla yeniden
değerlendirdik. İyileştirmelerle ortaya koyduğumuz DKÇÜA mimarimiz tarafından
üretilen karakterlerin, standart DKÇÜA mimarisi tarafından üretilenlere göre %140
daha fazla tercih edildiğini gösterdik.
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9781482252309. erişim adresi: https://books.google.com.tr/
books?id=n0zRrQEACAAJ.

[8] T. Zufri, D. Hilman, O. Frans ve diğ., “Research on the Application of Pixel
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A
Karakter Renklendirme Deneyinin Detayları

A.1 Değerlendirme
Karakter renklendirme deneyimizde Bölüm 3.1.2’de mimarilerin sonuçlarını OKH
yöntemiyle değerlendirdik. OKH yönteminin bize göre kötü sonuçlar verdiği
durumlarda, fikirlerimizi belirttik. Mimarileri ürettikleri görseller üzerinden OKH
yöntemi ve tek tek inceleyerek değerlendirmemizin temel nedeni, FBM yöntemi
ile değerlendirme yapmanın karakter üretiminde bahsettiğimiz (Bölüm 3.2.3)
nedenlerden dolayı yetersiz kalmasıdır. Literatürde yapılan çalışmalarda da üretilen
görüntüler detaylı bir şekilde incelenmiş ve yapılan katkılar görüntüler üzerinden
anlatılmaya çalışılmıştır.

Üretilen görsellere ait şeffaflık oluşturması için Bölüm 3.1.2’de yaptığımız
mimarilere ait karşılaştırmaların FBM skorlarını Tablo A.1’de paylaştık.

Tablo A.1 Bölüm 3.1.2’de kullandığımız mimarilerin ürettiği çıktılara ait FBM
skorları. 20.000 - 40.000 adım aralığındaki çıktıları kullandık.

Mimari FBM Skoru

Isola vd. [45] Pix2Pix Mimarisi 69,04
Serpa ve Rodrigues [49] Pix2Pix Mimarisi 121,64
Jiang ve Sweetser [52] Pix2Pix Mimarisi 80,3
Coutinho ve Chaimowicz [55] Pix2Pix Mimarisi 82,31

Tablo A.1’de paylaştığımız FBM skorlarına göre Isola vd. [45] Pix2Pix mimarisi
en kaliteli ve orijinal görüntülere en yakın çıktıları üretmektedir.

Isola vd. [45] tarafından ortaya konan orijinal Pix2Pix mimarisi üzerine yaptığımız
iyileştirmelerimiz sonucu ortaya koyduğumuz mimarimize ait FBM skor değerini
Tablo A.2’de paylaştık. FBM değerlendirme yöntemine göre daha kötü bir skor
elde ettiğimiz açıkça görülse de minimal değişimlerin önünü açtık. Aynı zamanda
daha iyi çıktı almak için daha uzun eğitim sürelerine ihtiyacımız olduğundan
bahsetmiştik. Mimarimizin daha uzun eğitim süresine ihtiyaç duyması da aldığımız
kötü sonuca etki etmiştir.
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Tablo A.2 Mimarimize ait FBM skoru. 20.000 - 40.000 adım aralığındaki çıktıları
kullanıyoruz.

Mimari FBM Skoru

Isola vd. [45] Pix2Pix Mimarisi 69,04
Ortaya Koyduğumuz Line2Pix Mimarisi 76,4

A.2 Mimari
Bölüm 3.1.4’te ortaya koyduğumuz mimarinin detaylarını paylaştık.
Anlaşılabilirliği artırmak amacıyla yararlandığımız orijinal Pix2Pix mimarisine ait
detayları da paylaştık. Eklemelerimizi kırmızı renkle renklendirerek daha anlaşılır
biçimde göstermeye çalıştık.

A.2.1 Üretici Ağ
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Giriş Verisi

256x256x3

Üretici Ağ
Çıktısı

U-Net Üretici Ağ

Şekil A.1 Isola vd. [45] Pix2Pix mimarisinde kullanılan üretici ağ.

Isola vd. [45] tarafından ortaya konan Pix2Pix mimarisinde kullanılan üretici ağ
mimarisini Şekil A.1’de paylaştık.

Isola vd. [45] tarafından ortaya konan Pix2Pix mimarisinde iyileştirmeler yaparak
ortaya koyduğumuz Pix2Pix mimarisinde kullandığımız üretici ağ mimarisini Şekil
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A.2’de paylaştık.
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Şekil A.2 Ortaya koyduğumuz Line2Pix mimarisinde kullanılan üretici ağ.
Eklemelerimiz kırmızı renkle renklendirilmiştir.

A.2.2 Ayırıcı Ağ
Isola vd. [45] tarafından ortaya konan Pix2Pix mimarisinde kullanılan ayırıcı ağ
mimarisini Şekil A.3’te paylaştık.

Isola vd. [45] tarafından ortaya konan Pix2Pix mimarisinde iyileştirmeler yaparak
ortaya koyduğumuz Pix2Pix mimarisinde kullandığımız ayırıcı ağ mimarisini Şekil
A.4’te paylaştık.

A.3 Mimarilere Ait Kodlama Detayları
Bölüm 3.1.4’te ortaya koyduğumuz mimarinin detaylarını paylaştık. Daha detaylı
bir açıklama gösterebilmek adına bazı kod detaylarını sunduk.
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25
6x

25
6x

6

256x256x3
Giriş Verisi

256x256x3

Üretici Ağ
Çıktısı

ekleme
konv.

4x4, s=2

12
8x

12
8x

64

...konv.
4x4, s=2

31
x3

1x
51

2

konv.
4x4, s=1 30x30x1

Ayırıcı Ağ
Çıktısı

Yama Tabanlı Ayırıcı Ağ

Şekil A.3 Isola vd. [45] Pix2Pix mimarisinde kullanılan ayırıcı ağ.
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256x256x3
Giriş Verisi

ekleme
konv.

4x4, s=2

12
8x

12
8x

64

...konv.
4x4, s=2

31
x3

1x
51

2
konv.

4x4, s=1

Yama Tabanlı Ayırıcı Ağ

256x256x3

Yeni Üretici
Ağ Çıktısı

30x30x30

Ayırıcı Ağ
Çıktısı

konv. 1x1x30,
s=1

30x30x1

Yeni Ayırıcı
Ağ Çıktısı

Yeni Ayırıcı Ağ

Şekil A.4 Ortaya koyduğumuz Line2Pix mimarisinde kullanılan ayırıcı ağ.
Eklemelerimiz kırmızı renkle renklendirilmiştir.

Üretici ağ içerisinde kullandığımız kod bloğunu Sözde Kod A.1’de
detaylandırıyoruz. Kalın harflerle yazılan kod satırları üretici ağ mimarisine
eklediğimiz değişiklikleri temsil etmektedir.

Ayırıcı ağ içerisinde kullandığımız kod bloğunu Sözde Kod A.2’de
detaylandırıyoruz. Kalın harflerle yazılan kod satırları ayırıcı ağ mimarisine
eklediğimiz değişiklikleri temsil etmektedir.
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1 üretici ağı başlat:
2 girdi katmanı boyutu: [256, 256, 3]
3 alt örnekleme katmanları oluştur:
4 alt örnekleme (1, 1, 1, Leaky ReLU, yok)
5 alt örnekleme (64, 4, 2, Leaky ReLU, var)
6 alt örnekleme (128, 4, 2, Leaky ReLU, var)
7 alt örnekleme (256, 4, 2, Leaky ReLU, var)
8 alt örnekleme (512, 4, 2, Leaky ReLU, var)
9 alt örnekleme (512, 4, 2, Leaky ReLU, var)

10 alt örnekleme (512, 4, 2, Leaky ReLU, var)
11 alt örnekleme (512, 4, 2, Leaky ReLU, var)
12 alt örnekleme (512, 4, 2, Leaky ReLU, var)
13 üst örnekleme katmanları oluştur:
14 üst örnekleme (512, 4, 2, ReLU, var, 0.5)
15 üst örnekleme (512, 4, 2, ReLU, var, 0.5)
16 üst örnekleme (512, 4, 2, ReLU, var, 0.5)
17 üst örnekleme (512, 4, 2, ReLU, var, yok)
18 üst örnekleme (256, 4, 2, ReLU, var, yok)
19 üst örnekleme (128, 4, 2, ReLU, var, yok)
20 üst örnekleme (64, 4, 2, ReLU, var, yok)
21 üst örnekleme (3 (çıktı kanalı), 4, 2, ReLU, yok, yok)

Sözde Kod A.1 Üretici ağ içerisindeki kod bloğuna ait sözde kod. Alt örnekleme
katmanları için: alt örnekleme (filtre, çekirdek boyutu, adım, aktivasyon

fonksiyonu, toplu normalleştirme). Üst örnekleme katmanları için: (filtre, çekirdek
boyutu, adım, aktivasyon fonksiyonu, toplu normalleştirme, bırakma (dropout)

değeri).

1 ayırıcı ağı başlat:
2 girdi katmanı boyutu: [256, 256, 3]
3 hedef (koşul) katmanı boyutu: [256, 256, 3]
4 ayırıcı ağ girdi (girdi + hedef) boyutu: [256, 256, 6]
5 alt örnekleme (64, 4, 2, Leaky ReLU, yok)
6 alt örnekleme (128, 4, 2, Leaky ReLU, var)
7 alt örnekleme (256, 4, 2, Leaky ReLU, var)
8 alt örnekleme (512, 4, 1, Leaky ReLU, var)
9 alt örnekleme (30, 4, 1, Leaky ReLU, var)

10 alt örnekleme (1, 1, 1, yok, yok)

Sözde Kod A.2 Ayırıcı ağ içerisindeki kod bloğuna ait sözde kod. Alt örnekleme
katmanları için: alt örnekleme (filtre, çekirdek boyutu, adım, aktivasyon

fonksiyonu, toplu normalleştirme). Boşluk için: boşluk (yükseklik, genişlik).
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B
Karakter Üretimi Deneyinin Detayları

B.1 Mimari Detayları
B.1.1 Mimarilerin Görselleştirilmesi
DKÇÜA mimarisi [38, 90] ile DKÇÜA mimarisinde iyileştirmeler yaparak ortaya
koyduğumuz DKÇÜA mimarisine ait görseller sunduk. Mimarilerin ve yaptığımız
çalışmanın daha iyi anlaşılmasını sağlamaya çalıştık.

Kullandığımız DKÇÜA mimarisini [90] detaylı olarak Şekil B.1’de paylaştık.

ters konv.
4x4, s=2

ters konv.
4x4, s=2 ... ters konv.

4x4, s=2

4x4x512
8x8x256

64x64x3Üretici Ağ

ters konv.
4x4, s=1

Girdi

1x1x100

konv.
4x4, s=2...konv.

4x4, s=2
konv.

4x4, s=2
konv.

4x4, s=1

64x64x3

8x8x256
4x4x512

Çıktı

1x1x1

Ayırıcı Ağ

Şekil B.1 Kullandığımız DKÇÜA mimarisi [90].

DKÇÜA mimarisine yaptığımız iyileştirmelerle ortaya koyduğumuz DKÇÜA
mimarisini detaylı olarak Şekil B.2’de paylaştık.
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Üretici Ağ
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4x4, s=2...konv.

4x4, s=2
konv.

4x4, s=2
konv.

4x4, s=1

64x64x3

8x8x256
4x4x512

Yeni Çıktı
1x1x1
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ters konv.
4x4, s=2

ters konv.
4x4, s=2 ... ters konv.

4x4, s=2

4x4x512
8x8x256

64x64x3

ters konv.
4x4, s=1

Girdi
1x1x100

konv.
1x1x30,

s=1

1x1x30

Yeni
Ayırıcı
Ağ

Şekil B.2 Ortaya koyduğumuz DKÇÜA mimarisi. Eklemelerimiz kırmızı renkle
renklendirilmiştir.

B.1.2 Mimarilere Ait Kodlamalar
Bölüm 3.2’de ele aldığımız karakter üretimi deneyinde oluşturduğumuz mimarinin
kodlamalarını paylaştık. Mimariye ait üretici ağ sözde kod bloğunu Sözde Kod
B.1’de gösterdik.

1 üretici ağı başlat:
2 girdi katmanı boyutu: [1, 1, 100]
3 üst örnekleme (100, 512, 4, 1, 0, ReLU, var)
4 üst örnekleme (512, 256, 4, 2, 1, ReLU, var)
5 üst örnekleme (256, 128, 4, 2, 1, ReLU, var)
6 üst örnekleme (128, 64, 4, 2, 1, ReLU, var)
7 üst örnekleme (64, 3, 4, 2, 1, tanh, yok)

Sözde Kod B.1 Üretici ağ içerisindeki kod bloğuna ait sözde kod. Üst örnekleme
katmanları için: üst örnekleme (girdi boyutu, çıktı boyutu, çekirdek boyutu, adım,

boşluk, aktivasyon fonksiyonu, toplu normalleştirme).

Mimariye ait ayırıcı ağ sözde kod bloğunu Sözde Kod B.2’de gösterdik. Kalın
harflerle yazılan kod satırları ayırıcı ağ mimarisine eklediğimiz değişiklikleri temsil
etmektedir.
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1 ayırıcı ağı başlat:
2 girdi katmanı boyutu: [64, 64, 3]
3 alt örnekleme (3, 64, 4, 2, 1, Leaky ReLU, yok)
4 alt örnekleme (64, 128, 4, 2, 1, Leaky ReLU, var)
5 alt örnekleme (128, 256, 4, 2, 1, Leaky ReLU, var)
6 alt örnekleme (256, 512, 4, 2, 1, Leaky ReLU, var)
7 alt örnekleme (512, 30, 4, 1, 0, Leaky ReLU, yok)
8 alt örnekleme (30, 1, 1, 1, 0, sigmoid, yok)

Sözde Kod B.2 Ayırıcı ağ içerisindeki kod bloğuna ait sözde kod. Alt örnekleme
katmanları için: alt örnekleme (girdi boyutu, çıktı boyutu, çekirdek boyutu, adım,

boşluk, aktivasyon fonksiyonu, toplu normalleştirme).

B.2 Ankete İlişkin Detaylar
Bu bölümde hazırladığımız anketin detaylarını paylaştık. Ankete ait soruları ve
kullanıcıya yönelttiğimiz bu soruların cevaplarına ait detaylarını paylaşarak anket
hakkında şeffaf olduğumuzu göstermeyi amaçladık.

Anketi hazırlarken seçtiğimiz karakterlerin, mimariler tarafından üretilen en kaliteli
çıktılar arasından seçildiği unutulmamalıdır. Kaliteli çıktılar arasında da birbirine
benzer olan çıktıları kullanmamayı tercih ettik. Her bir mimari için 16 farklı çıktı
seçtik ve seçtiğimiz çıktılar ile 5 farklı form oluşturduk. Anket sonuçlarının bir
bütün olarak değerlendirildiği tabloya Bölüm 3.2.3’te (Tablo 3.7) değinilmiştir.

B.2.1 1. Form
İlk formumuzu detaylı olarak açıklamanın anlaşılabilirlik açısından daha iyi
olacağını düşünüyoruz. Hazırladığımız diğer 5 form, 1. form üzerinde yaptığımız
işlemlere benzer işlemlere sahiptir. 1. formda kullanılan mimarilerden elde edilmiş
karakterleri Şekil B.3’te inceleyebilmeniz için sunduk. Şekil B.3 üzerinde bulunan
her bir görüntü (Şekil B.3.1) yöneltilen soru grubuna ait mimarilerin oluşturduğu
karakterleri göstermektedir.

Şekil B.3 ile formda kullanılan her soru grubuna ait olan mimarilerin çıktılarından
elde edilen görüntüleri paylaştık. Kullanıcılar anketteki sorularda görüntü
üzerindeki numaralandırılmış karakterlerden birini tercih etmiştir. Her formda
olduğu gibi 1. formda da 5 farklı görüntü ile beraber soru gruplarını
oluşturduk. Kullanılan görüntülerdeki karakterlerin sıralamasını daha güvenilir bir
anket oluşturmak amacıyla değiştirdik. Değişiklik sonucu Şekil B.3’te bulunan
görüntülerdeki karakterlerin hangi mimarilere ait olduğunu Tablo B.1’de gösterdik.

1. form ile anketimize 13 kullanıcı katılmıştır. Kullanıcıların 1. form görüntülerine
karşılık verdiği oyların sayılarını ve yüzdelerini Tablo B.2’de paylaştık.
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(1)

(2)

(3)

(4)

(5)

Şekil B.3 1. formda kullanılan karakter grupları.
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Tablo B.1 Şekil B.3’te bulunan karakterlerin ait olduğu mimariler.

Karakter Grubu DKÇÜA İyileştirmelerimiz
Sonucu DKÇÜA

Şekil B.3.1 1 2
Şekil B.3.2 2 1
Şekil B.3.3 2 1
Şekil B.3.4 2 1
Şekil B.3.5 1 2

Tablo B.2 1. forma ait sonuçlar.

Değerlendirme
Alanı DKÇÜA İyileştirmelerimiz

Sonucu DKÇÜA

Görüntü Kalitesi 35 (%54) 30 (%46)
Ana Hat Belirginliği 32 (%49) 33 (%51)
Renk Uyumu 37 (%57) 28 (%43)
Tercih Edilen Karakter 32 (%49) 33 (%51)

B.2.2 2. Form
2. formumuza 11 kişi katılım sağlamıştır. Şekil B.4’te formda kullanılan karakter
gruplarını gösterdik. Karakterlerin hangi mimarilere ait olduğuna dair bilgiyi Tablo
B.3’te paylaştık. 2. forma katılan kullanıcıların verdiği oylarla ortaya çıkan
sonuçları Tablo B.4’te sunduk.

73



(1)

(2)

(3)

(4)

(5)

Şekil B.4 2. formda kullanılan karakter grupları.
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Tablo B.3 Şekil B.4’te bulunan karakterlerin ait olduğu mimariler.

Karakter Grubu DKÇÜA İyileştirmelerimiz
Sonucu DKÇÜA

Şekil B.4.1 2 1
Şekil B.4.2 2 1
Şekil B.4.3 2 1
Şekil B.4.4 1 2
Şekil B.4.5 1 2

Tablo B.4 2. forma ait sonuçlar.

Değerlendirme
Alanı DKÇÜA İyileştirmelerimiz

Sonucu DKÇÜA

Görüntü Kalitesi 20 (%36) 35 (%64)
Ana Hat Belirginliği 20 (%36) 35 (%64)
Renk Uyumu 21 (%38) 34 (%62)
Tercih Edilen Karakter 21 (%38) 34 (%62)

B.2.3 3. Form
3. formumuza 14 kişi katılım sağlamıştır. Şekil B.5’te formda kullanılan karakter
gruplarını gösterdik. Karakterlerin hangi mimarilere ait olduğuna dair bilgiyi Tablo
B.5’te paylaştık. 3. forma katılan kullanıcıların verdiği oylarla ortaya çıkan
sonuçları Tablo B.6’da sunduk.
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(1)

(2)

(3)

(4)

(5)

Şekil B.5 3. formda kullanılan karakter grupları.
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Tablo B.5 Şekil B.5’te bulunan karakterlerin ait olduğu mimariler.

Karakter Grubu DKÇÜA İyileştirmelerimiz
Sonucu DKÇÜA

Şekil B.5.1 2 1
Şekil B.5.2 1 2
Şekil B.5.3 1 2
Şekil B.5.4 2 1
Şekil B.5.5 2 1

Tablo B.6 3. forma ait sonuçlar.

Değerlendirme
Alanı DKÇÜA İyileştirmelerimiz

Sonucu DKÇÜA

Görüntü Kalitesi 31 (%44) 39 (%56)
Ana Hat Belirginliği 32 (%46) 38 (%54)
Renk Uyumu 27 (%39) 43 (%61)
Tercih Edilen Karakter 24 (%34) 46 (%66)

B.2.4 4. Form
4. formumuza 7 kişi katılım sağlamıştır. Şekil B.5’te formda kullanılan karakter
gruplarını gösterdik. Karakterlerin hangi mimarilere ait olduğuna dair bilgiyi Tablo
B.7’de paylaştık. 4. forma katılan kullanıcıların verdiği oylarla ortaya çıkan
sonuçları Tablo B.8’de sunduk.
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(1)

(2)

(3)

(4)

(5)

Şekil B.6 4. formda kullanılan karakter grupları.
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Tablo B.7 Şekil B.6’da bulunan karakterlerin ait olduğu mimariler.

Karakter Grubu DKÇÜA İyileştirmelerimiz
Sonucu DKÇÜA

Şekil B.6.1 2 1
Şekil B.6.2 1 2
Şekil B.6.3 1 2
Şekil B.6.4 2 1
Şekil B.6.5 1 2

Tablo B.8 4. forma ait sonuçlar.

Değerlendirme
Alanı DKÇÜA İyileştirmelerimiz

Sonucu DKÇÜA

Görüntü Kalitesi 13 (%37) 22 (%63)
Ana Hat Belirginliği 14 (%40) 21 (%60)
Renk Uyumu 12 (%34) 23 (%66)
Tercih Edilen Karakter 14 (%40) 21 (%60)

B.2.5 5. Form
5. formumuza 6 kişi katılım sağlamıştır. Şekil B.7’de formda kullanılan karakter
gruplarını gösterdik. Karakterlerin hangi mimarilere ait olduğuna dair bilgiyi Tablo
B.9’da paylaştık. 5. forma katılan kullanıcıların verdiği oylarla ortaya çıkan
sonuçları Tablo B.10’da sunduk.
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(1)

(2)

(3)

(4)

(5)

Şekil B.7 5. formda kullanılan karakter grupları.
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Tablo B.9 Şekil B.7’de bulunan karakterlerin ait olduğu mimariler.

Karakter Grubu DKÇÜA İyileştirmelerimiz
Sonucu DKÇÜA

Şekil B.7.1 1 2
Şekil B.7.2 1 2
Şekil B.7.3 1 2
Şekil B.7.4 2 1
Şekil B.7.5 1 2

Tablo B.10 5. forma ait sonuçlar.

Değerlendirme
Alanı DKÇÜA İyileştirmelerimiz

Sonucu DKÇÜA

Görüntü Kalitesi 10 (%33) 20 (%67)
Ana Hat Belirginliği 10 (%33) 20 (%67)
Renk Uyumu 11 (%37) 19 (%63)
Tercih Edilen Karakter 9 (%30) 21 (%70)
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C
Terminoloji

2 dimensional (2D)
2 boyutlu (2B)

3 dimensional (3D)
3 boyutlu (3B)

adaptive instance normalization (AdaIN)
uyarlanabilir örnek normalizasyon

adaptive threshold method
uyarlanabilir eşik yöntemi

adversarial loss
çekişme kaybı

affine transformation
afin dönüşüm

anime face dataset (AFC)
anime yüz veri seti (AYV)

art style
sanat stili

asset
sanat varlığı

attention map
dikkat haritası

autoencoder
otomatik kodlayıcı

batch normalization
toplu normalleştirme

batch size
yığın boyutu

blur bulanıklık
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byte bit

codebook
kod defteri

codebook loss
kod defteri kaybı

channel
kanal

chrominance blue
mavi renk bileşeni

chrominance red
kırmızı renk bileşeni

classification loss
sınıflama kaybı

color hint
renk ipucu

color space
renk uzayı

commitment loss
bağlılık kaybı

condition
koşul

conditional generative adversarial network (CGAN)
koşullu Çekişmeli Üretici Ağ (KÇÜA)

contextual generative adversarial network
bağlamsal çekişmeli üretici ağ (BÇÜA)

contextual loss
bağlamsal kayıp

convolutions
evrişim, konvolüsyon

creative generative adversarial network (CAN)
yaratıcı çekişmeli üretici ağ (YÇÜA)

cycle-consistency loss
döngü tutarlılık kaybı

cycle-consistent generative adversarial network (CycleGAN)
döngü tutarlı çekişmeli üretici ağ

decoder
çözücü
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deep convolutional neural network (DCGAN)
derin konvolüsyonel çekişmeli üretici ağ (DKÇÜA)

discover cross-domain relations with generative adversarial networks (Disco-
GAN)
alanlar arası ilişkileri keşfeden çekişmeli üretici ağ

discriminator
ayırıcı ağ

downsampling
alt örnekleme

dropout
bırakma

edge detection
kenar algılama

embedded space
gömülü uzay

encoder
kodlayıcı

epoch
döngü

filter
filtre

Fréchet inception distance (FID)
Fréchet başlangıç mesafesi (FBM)

game engine
oyun motoru

game theory
oyun teorisi

generative adversarial network (GAN)
çekişmeli üretici ağ (ÇÜA)

generator
üretici ağ

Hadamard product
Hadamard çarpımı

historical averaging method
tarihsel ortalama yöntemi

hue (H)
ton
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hyperparameter
hiper parametre

image to image (I2I)
görüntüden görüntüye

inception score (IS)
başlangıç skoru (BS)

index
indeks

input
girdi

instance normalization
örnek normalizasyon

kernel size
çekirdek boyutu

key matrix
anahtar matrisi

Kullback-Leibler divergence
Kullback-Leibler sapması

label
etiket

latent space
gizli uzay

latent variable
gizli değişken

learning rate
öğrenme katsayısı

line art
çizgi sanatı

loss function
kayıp fonksiyonu

luminance
parlaklık

mean absolute error (MAE)
ortalama mutlak hata (OMH)

mean squared error (MSE)
ortalama karesel hata (OKH)
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minibatch
küçük yığın

modulation
modülasyon

multi discriminator generative adversarial network (MDGAN)
çok ayırıcılı çekişmeli üretici ağ (ÇAÇÜA)

non-player character (NPC)
oyuncu olmayan karakter

normalization
normalizasyon

objective function
maliyet fonksiyonu

one-hot-encoded
tekil kodlama

output
çıktı

patch based
yama tabanlı

perceptual loss
algısal kayıp

pixel
piksel

pixel art
piksel sanatı

pixel-level parsing
piksel düzeyinde ayrışma

pixel vector quantized variational autoencoder (Pixel VQ-VAE)
piksel vektör kuantize edilmiş varyasyonel otomatik kodlayıcı

predictions
tahminler

procedural content generation (PCG)
prosedürel içerik üretimi (PİÜ)

procedural content generation via machine learning (PCGML)
makine öğrenimi ile prosedürel içerik üretimi (MÖPİÜ)

query matrix
sorgu matrisi
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receptive field
algılama alanı

reconstruction loss
yeniden üretim kaybı

reinforcement learning
pekiştirmeli öğrenme

residual network (ResNet)
artık sinir ağı

saturation (S)
doygunluk

self attention map
öz dikkat haritası

skip connections
bağlantıları atlama

sprite
hareketli çizim

star generative adversarial networks (StarGAN)
yıldız çekişmeli üretici ağ

stochastic gradient descent (SGD)
stokastik gradyan inişi (SGİ)

stop gradient function
gradyan durduran fonksiyon

stride
adım

style blocks
stil blokları

style label
stil etiketi

style generative adversarial network (Style GAN)
stil çekişmeli üretici ağ

style generative adversarial network 2 (Style GAN 2)
stil çekişmeli üretici ağ 2

trapped ball segmentation
küresel hapsetme segmentasyonu

upsample
üst örnekleme
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value (V)
değer

value matrix
değer matrisi

variational autoencoder (VAE)
varyasyonel otomatik kodlayıcı (VOK)

vector quantization layer
vektör kuantizasyon katmanı

vector quantized variational encoder (VQ-VAE)
vektör kuantize edilmiş varyasyonel otomatik kodlayıcı (VK-VOK)

zero-sum game
sıfır toplamlı oyun
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https://www.izdas.org/_files/ugd/d0a9b7_54d8893211274c9b8be17ccba730
4266.pdf

89


	SİMGE LİSTESİ
	KISALTMA LİSTESİ
	ŞEKİL LİSTESİ
	TABLO LİSTESİ
	ÖZET
	ABSTRACT
	GİRİŞ
	2 Boyutlu (2B) Çizim
	Piksel Sanatı

	Karakter Üretim Süreci
	Karakter Üretimi
	Karakter Renklendirmesi
	Karaktere Ait Animasyon Oluşturma

	Karakter Üretiminin Otomasyonlaştırılması

	YÖNTEMLER
	Optimizasyon Yöntemleri
	Çekişmeli Üretici Ağ (ÇÜA) Mimarileri
	Klasik Çekişmeli Üretici Ağ (ÇÜA)
	Derin Konvolüsyonel Çekişmeli Üretici Ağ (DKÇÜA)
	Koşullu Çekişmeli Üretici Ağ (KÇÜA)
	Pix2Pix
	Seg2Pix
	Çok Ayırıcılı Çekişmeli Üretici Ağ (ÇAÇÜA)
	Yaratıcı Çekişmeli Üretici Ağ (YÇÜA)
	Stil Çekişmeli Üretici Ağ 2 (StyleGAN2)
	Bağlamsal Çekişmeli Üretici Ağ (BÇÜA)
	Döngü Tutarlı Çekişmeli Üretici Ağ (CycleGAN)
	Alanlar Arası İlişkileri Keşfeden Çekişmeli Üretici Ağ (DiscoGAN)
	Yıldız Çekişmeli Üretici Ağ (StarGAN)

	Varyasyonel Otomatik Kodlayıcı (VOK) Mimarileri
	Klasik Varyasyonel Otomatik Kodlayıcı (VOK)
	Vektör Kuantize Edilmiş Varyasyonel Otomatik Kodlayıcı (VK-VOK)
	Piksel Vektör Kuantize Edilmiş Varyasyonel Otomatik Kodlayıcı (Pixel VQ-VAE)
	Koşullu Varyasyonel Otomatik Kodlayıcı (KVOK)


	DENEYLER
	Karakter Renklendirme
	Kullanılacak Veri Setinin Hazırlanması
	Mimarilerin Karşılaştırılması
	Sorunların Tanımlanması
	İyileştirmeler
	Gerçek Dünya Verileriyle Test Süreci

	Karakter Üretimi
	Deney Süreci ve İyileştirmeler
	Kullandığımız Parametreler
	Kullanıcı Aracılığı ile Değerlendirme


	SONUÇ
	KAYNAKÇA
	Karakter Renklendirme Deneyinin Detayları
	Değerlendirme
	Mimari
	Üretici Ağ
	Ayırıcı Ağ

	Mimarilere Ait Kodlama Detayları

	Karakter Üretimi Deneyinin Detayları
	Mimari Detayları
	Mimarilerin Görselleştirilmesi
	Mimarilere Ait Kodlamalar

	Ankete İlişkin Detaylar
	1. Form
	2. Form
	3. Form
	4. Form
	5. Form


	Terminoloji
	TEZDEN ÜRETİLMİŞ YAYINLAR



