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BÖLÜM 1

GİRİŞ

Hermann Hankel (1839-1873), 19. yy ortalarında yaşamı̧s karmaşık sayısistemleri, fonksi-

yonlar teorisi ve matematik tarihi üzerine yaptı̆gıönemli çalı̧smalarıyla matematik bilimi-

ne katkısağlamı̧stır. Karmaşık sayısistemlerindeki en önemli katkısıgerçek, karmaşık ve

hiper karmaşık sayısistemleri hakkında yapmı̧s olduğu detaylıçalı̧smalar ve sonuçların

yer aldı̆gı(Hankel 1867) eseridir. Fonksiyonlar teorisi üzerine yaptı̆gıçalı̧smalar arasında

(Hankel 1882) ve (Hankel 1871) makaleleri bulunmaktadır. (Hankel 1882) makalesiyle

Riemann’ın integrallenebilirlik kriterini yeniden formüle etmi̧s ve nokta kümelerin ölçüm

teorisi özellikleri üzerine sonuçlar elde etmi̧stir ve (Hankel 1871) Ersch-Gruber Encyk-

lopädie için yazdı̆gı "Grenze" makalesinde Bernard Bolzano’nun sonsuz seriler üzerine

çalı̧smalarının önemini ilk kez ortaya koymuş ve sonsuz sayıda noktada türevlenemeyen

sürekli bir fonksiyon örneği vermi̧stir. Ayrıca Hankel, Mathematische Annalendeki bir

dizi makalede Hankel fonksiyonlarıveya üçüncü tür Bessel fonksiyonlarıolarak bilinen

fonksiyonların önemini göstermi̧stir (Crowe 2023).

Hermann Hankel’in matematiksel analize yaptı̆gı sayısız katkılar arasında sadece ori-

jine olan mesafeye bağlı fonksiyonların, yani radyal simetriye sahip fonksiyonların in-

celenmesinde kullanılan Hankel dönüşümü de yer alır. Hankel dönüşümlerinin çekirdeği

silindirik simetriye sahip Bessel fonksiyonlarından oluşmaktadır ve Hankel dönüşümü ile

Fourier dönüşümü arasında doğal bir ili̧ski mevcuttur. Dairesel simetrik bir fonksiyonun

Fourier dönüşümü dairesel simetrik olduğundan Hankel dönüşümü iki boyutlu Fourier

dönüşümünün dairesel simetrik bir versiyonu olarak bilinmektedir. Sıfırıncımertebeden

Hankel dönüşümü, Fourier-Bessel dönüşümü olarak da adlandırılır.

Bilim ve mühendisliğin birçok farklıalanında uygulamalara sahip Hankel dönüşümü; dalga

yayılım problemleri ve silindirik simetriye sahip problemler gibi uygulamalarda önemli

bir rol oynamaktadır. Örneğin uygun geometriye sahip ses dalgalarının yayılımı, ı̧sık

dalgalarının yayılımıve ısıiletimi ile ilgili problemlerin çözümünde Hankel dönüşümün-
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den yararlanılmaktadır (Arfken 1985, p. 795, Baddour 2019, Baruch 2013, Debnath and

Bhatta 2010, p. 315, Goodman 1996, pp. 10− 12).

1.1 TEZİN KAPSAM VE ÖNEMİ

Hankel dönüşümü, r ≥ 0 için tanımlanmı̧s olan f(r) fonksiyonunun ν. mertebeden Hankel

dönüşümü

Fν(s) = Hν {f(r)} =

∞∫
0

rf(r)Jν(sr)dr (1.1)

olarak tanımlanır. Burada Jν , ν. mertebeden birinci tür Bessel fonksiyonudur. Hν ope-

ratörü ν. mertebeden Hankel dönüşümü operatörü olarak adlandırılır ve Fν(s), r deği̧ske-

nine bağlıf fonksiyonunun Hankel dönüşümüdür. Bunun yanında Fν(s) verildiğinde f(r)

fonksiyonunu elde etmek için ters Hankel dönüşümü

f(r) = H−1
ν {Fν(s)} =

∞∫
0

sFν(s)Jν(sr)ds (1.2)

olarak ifade edilir, H−1
ν operatörü ters Hankel dönüşümü operatörü olarak adlandırılır.

Tezde ilk olarak, Hankel dönüşümlerinin çekirdeğini oluşturan Bessel fonksiyonlarının

tanımı ve temel özellikleri ifade edilmi̧stir. Bessel diferansiyel denkleminin çözümleri

araştırılmı̧s birinci, ikinci ve üçüncü tür Bessel fonksiyonlarıelde edilmi̧stir. Hankel dönü-

şümlerinin çekirdeğinde birinci tür Bessel fonksiyonlarıkullanıldı̆gıdan, devamında birinci

tür Bessel fonksiyonun yineleme bağıntılarıispatlarıyla birlikte sunulmuş ve bu fonksiyon-

lar için bazıintegral gösterimleri ifade edilmi̧stir. Bessel fonksiyonunun yineleme bağın-

tıları, Hankel dönüşümlerinde çözüm süreçlerini basitleştirmek ve hesaplamalarıkolay-

laştırmak için kullanılır. Tezin ikinci bölümünde Hankel integral teoremi verilmi̧s, bu

teorem kullanılarak Hankel dönüşüm çiftleri tanımlanmı̧s ve böylece Hankel dönüşümü

ve ters Hankel dönüşümü tanımlarıelde edilmi̧stir. Hankel dönüşümünün tanımının ardın-

dan, Fourier dönüşümüyle olan ili̧skisi incelenmi̧stir. İki deği̧skenli Fourier dönüşümünden

sıfırıncımertebeden Hankel dönüşümü elde edilmi̧s, ardından n.mertebeden Hankel dönü-

şümü ile Fourier dönüşümü arasındaki ili̧ski incelenmi̧stir. Hankel dönüşümünün temel

özellikleri ispatlarıyla birlikte sunulmuş, Hankel dönüşümünün tanımıve özelliklerinin

kullanılmasıyla bazı fonksiyonların Hankel dönüşümünün hesabına yönelik örnekler ve-

rilmi̧stir. Son bölümde Hankel dönüşümünün uygulamalarıbağlamında, Bessel diferan-

siyel operatörünün Hankel dönüşümü incelenmi̧stir. Daha sonra ısıiletimi, elektrik yüklü
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disk ve elektrostatik ile ilgili bazıproblemler ele alınmı̧s, Hankel dönüşümü ve ters Hankel

dönüşümü kullanılarak bu problemlerin çözümleri araştırılmı̧stır.

1.2 BESSEL FONKSİYONLARI

Bu bölümde

52f ≡ ∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0 (1.3)

(1.3) ile verilen Laplace denkleminin silindirik koordinatlarındaki ifadesinden yararlanıla-

rak üretilen Bessel diferansiyel denklemi ve bu denklemin çözümleri olan Bessel fonksi-

yonlarıve özellikleri ele alınacaktır.

1.2.1 Bessel Diferansiyel Denklemi

(1.3) ile verilen üç boyutlu Laplace denklemi

x = r cos θ, y = r sin θ, z = z

deği̧sken dönüşümü ile (r, θ, z) silindirik koordinatlarına geçilirse,

52f ≡ ∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2 +
∂2f

∂z2
= 0 (1.4)

denklemi elde edilir. Denklemin,

f(r, θ, z) = R(r)Φ(θ)Z(z)

biçimindeki deği̧skenlere ayrılabilir çözümü için türevler

∂f

∂r
=
dR

dr
Φ(θ)Z(z),

∂2f

∂r2
=
d2R

dr2
Φ(θ)Z(z),

∂2f

∂θ2 =
d2Φ

dθ2 R(r)Z(z),
∂2f

∂z2
=
d2Z

dz2
R(r)Φ(θ)

olacağından değerler (1.4) denkleminde yerine yazıldı̆gında,

d2R

dr2
Φ(θ)Z(z) +

1

r

dR

dr
Φ(θ)Z(z) +

1

r2

d2Φ

dθ2 R(r)Z(z) +
d2Z

dz2
R(r)Φ(θ) = 0 (1.5)

elde edilir. Buradan R(r)Φ(θ)Z(z) 6= 0 olduğundan (1.5) denklemi R(r)Φ(θ)Z(z) ile

bölünür ve düzenlenirse,

d2R

R(r)dr2
+

1

r

dR

R(r)dr
+

1

r2

d2Φ

Φ(θ)dθ2 +
d2Z

Z(z)dz2
= 0

1

R(r)

(
d2R

dr2
+

1

r

dR

dr

)
+

1

r2

d2Φ

Φ(θ)dθ2 +
d2Z

Z(z)dz2
= 0 (1.6)
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denklemi elde edilir. Elde edilen denklemde z deği̧skenine bağlı son terim bir sabite

eşitlenip C ile gösterilir ve üçüncü terimdeki d2Φ
Φ(θ)dθ2

ifadesi diğer terimlerden bağımsız

olduğundan D sabitine eşitlenirse sırasıyla

d2Z

Z(z)dz2
= CZ, (1.7)

d2Φ

Φ(θ)dθ2 = DΦ (1.8)

olur. Bu eşitlikler (1.6) denkleminde yerine yazılır ve denklem r2R(r) ile çarpılırsa,

1

R(r)

(
d2R

dr2
+

1

r

dR

dr

)
+

1

r2
DΦ(θ) + CZ(z) = 0

r2d
2R

dr2
+ r

dR

dr
+DΦ(θ)R(r) + Cr2Z(z)R(r) = 0

r2d
2R

dr2
+ r

dR

dr
+
(
DΦ(θ) + Cr2Z(z)

)
R(r) = 0 (1.9)

elde edilir. C = k2 ve D = −ν2 eşitlikleri (1.7), (1.8) ve (1.9) denklemlerinde yerine

yazılırsa,

d2Z

Z(z)dz2
= k2Z, (1.10)

d2Φ

Φ(θ)dθ2 = −ν2Φ, (1.11)

r2d
2R

dr2
+ r

dR

dr
+
(
k2r2Z(z)− ν2Φ(θ)

)
R(r) = 0 (1.12)

olur ve (1.10) ve (1.11) denklemlerin çözümleri sırasıyla

Z(z) = Ae−kz +Bekz,

Φ(θ) = E cos νθ + F sin νθ

şeklindedir. Buradan (1.12) denkleminde t = kr dönüşümü yardımıyla

dt

dr
= k,

dR

dr
=
dR

dt

dt

dr
=⇒ dR

dr
=
dR

dt
k;

d

dr

(
dR

dr

)
=

d

dr

(
dR

dt

dt

dr

)
,

d2R

dr2
=

(
d

dr

dR

dt

)
dt

dr
+

(
d

dr

dt

dr

)
dR

dt
=⇒ d2R

dr2
= k2d

2R

dt2
;

deği̧skenleri oluşur ve bu deği̧skenler (1.12) denkleminde yerine yazılır ve düzenlenirse,

t2
d2R

dt2
+ t

dR

dt
+
(
t2 − ν2

)
R = 0

d2R

dt2
+

1

t

dR

dt
+

(
1−

(ν
t

)2
)
R = 0 (1.13)

denklemi elde edilir. (1.13) denklemi Bessel diferansiyel denklemi olarak bilinir. Bu den-

klemin çözümleri olan fonksiyonlara ν. mertebeden Bessel fonksiyonlarıveya silindirik

fonksiyonlar denir (Boyce and Diprima 2001, p. 280, Watson 1966, p. 124).
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1.2.2 Bessel Diferansiyel Denkleminin Çözümü

x2d
2u

dx2
+ x

du

dx
+
(
x2 − ν2

)
u = 0 (1.14)

ile verilen ν indeksli Bessel diferansiyel denklemi ikinci mertebeden bir lineer diferansiyel

denklem olup genel çözümü

u(x) = C1u1(x) + C2u2(x)

şeklindedir, burada u1(x) ve u2(x) lineer bağımsız fonksiyonlardır. ν ∈ Z olduğunda bu

notasyon n harfi ile gösterilecektir. ν indeksli Bessel operatörü

Oν = x2 d
2

dx2
+ x

d

dx
+ x2 − ν2

ile gösterilirse (1.14) denklemi Oνu = 0 şeklinde yazılabilir. (1.14) denkleminin çözümü

Frobenius yöntemiyle incelenecektir. a0 6= 0 olmak üzere (1.14) denkleminin çözümü seri

formunda,

u(x) =
∞∑
m=0

amx
m+α (1.15)

olarak araştırılacaktır. am katsayılarınıve α değerini belirlemek için (1.15) eşitliğinden

elde edilen

u′(x) =
∞∑
m=0

am (m+ α)xm+α−1,

u′′(x) =

∞∑
m=0

am (m+ α) (m+ α− 1)xm+α−2,

birinci ve ikinci türevleri (1.14) denkleminde yerine yazılır ve x deği̧skeninin aynıkuvvet-

ten olan terimlerine göre düzenlenirse,

Oνu = x2

∞∑
m=0

am (m+ α) (m+ α− 1)xm+α−2

+x
∞∑
m=0

am (m+ α)xm+α−1 +
(
x2 − ν2

)
u

=
[
α (α− 1) + α− ν2

]
α0x

α +
[
α (α + 1) + (α + 1)− ν2

]
a1x

α+1

+
{[

(α + 2) (α + 1) + (α + 2)− ν2
]
a2 + a0

}
xα+2 + ...

= a0

(
α2 − ν2

)
xα + a1

[
(α + 1)2 − ν2

]
xα+1

+
∞∑
m=2

{
am
[
(m+ α)2 − ν2

]
+ am−2

}
xα+m (1.16)
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elde edilir. Burada Oνu = 0 olduğu için (1.16) eşitliğinde yer alan tüm katsayılar sıfır

olur, yani (
α2 − ν2

)
a0 = 0,[

(α + 1)2 − ν2
]
a1 = 0,[

(m+ α)2 − ν2
]
am + am−2 = 0, m = 2, 3, 4, . . .

olur. m nin çift ve tek değerleri için, sırasıyla

a0

(
α2 − ν2

)
= 0,[

(α + 2)2 − ν2
]
a2 + a0 = 0,[

(α + 4)2 − ν2
]
a4 + a2 = 0,

... (1.17)

[
(α + 1)2 − ν2

]
a1 = 0,[

(α + 3)2 − ν2
]
a3 + a1 = 0,

... (1.18)

denklem sistemleri elde edilir. Burada a0 6= 0 olduğundan (1.17) sistemindeki ilk eşitlikten

(α2 − ν2) = 0, yani α = ±ν olur. (1.17) sistemindeki ikinci ve sonraki eşitliklerden çift

indisli am katsayılarıa0 katsayısına bağlıolarak

a2 = − a0

4(α + 1)
,

a4 = − a2

8(α + 2)
=

a0

4.8.(α + 1)(α + 2)
,

...

yineleme bağıntılarıile ifade edilir. Ayrıca am = 0, m = 1, 3, 5, ... olarak alınmasıduru-

munda (1.18) denklem sistemindeki eşitlikler sağlanır.

Böylece, α = ν olarak alınırsa, (1.14) denkleminin bir özel çözümü

u1(x) = a0x
ν

[
1− x2

4.1.(ν + 1)
+

x4

42.2!(ν + 1)(ν + 2)

− x6

43.3!(ν + 1)(ν + 2)(ν + 3)
+ ...

]
ve α = −ν olarak alınırsa, (1.14) denkleminin diğer bir özel çözümü

u2(x) = a′0x
−ν
[
1− x2

4.1.(−ν + 1)
+

x4

42.2!(−ν + 1)(−ν + 2)

− x6

43.3!(−ν + 1)(−ν + 2)(−ν + 3)
+ ...

]
6



olarak elde edilir. a0 ve a′0 sabitleri genellikle

a0 =
1

2νΓ(ν + 1)
, a′0 =

1

2−νΓ(−ν + 1)
.

olarak kabul edilir. Gamma fonksiyonunun xΓ(x) = Γ(x+1) özelliği dikkate alınırsa u1(x)

serisi yardımıyla ν mertebeden birinci tür Bessel fonksiyonu veya silindirik fonksiyon

Jν(x) =
(x

2

)ν ∞∑
m=0

(−1)m (x/2)2m

m!Γ(ν +m+ 1)
(1.19)

ve benzer olarak, u2(x) serisi yardımıyla −ν mertebeden birinci tür Bessel fonksiyonu

J−ν(x) =
(x

2

)−ν ∞∑
m=0

(−1)m (x/2)2m

m!Γ(−ν +m+ 1)
(1.20)

olarak tanımlanır. Özel olarak ν = 0 için (1.19) ve (1.20) eşitliklerinden

J0(x) =
∞∑
m=0

(−1)m (x/2)2m

m!Γ(m+ 1)
=

∞∑
m=0

(−1)m (x/2)2m

(m!)2 (1.21)

elde edilir (Korenev 2002, p. 7).

ν /∈ Z için Jν(x) ve J−ν(x) fonksiyonlarılineer bağımsızdır. Eğer ν = n ∈ Z ise

Γ(n) = (n− 1)!

olduğundan Jn(x) fonksiyonu

Jn(x) =
∞∑
m=0

(−1)m x2m+n

22m+nm! (n+m)!

şeklinde yazılabilir. ν = 0, 1, ...5 için birinci tür Bessel fonksiyonlarının grafĭgi Şekil 1.1’de

verilmi̧stir.
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Şekil 1.1 Birinci tür Bessel fonksiyonlarıν = 0, 1, ..., 5.
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ν → n ∈ Z olmasıdurumunda Jn(x) ve J−n(x) fonksiyonlarıarasında

J−n(x) = (−1)n Jn(x) (1.22)

bağıntısıolur. Gerçekten de, eğer k pozitif bir tamsayıveya sıfırsa, s→ k iken 1
Γ(−s) → 0

olduğundan n ∈ Z+ için (1.20) serisinin ilk n terimi sıfıra eşit olur. Bu yüzden (n+ 1) .

terimden başlatılarak seri yeniden yazılırsa,

J−n(x) =
(−1)n (x/2)−n+2n

n!Γ(−n+ n+ 1)
+

(−1)n+1 (x/2)−n+2n+2

(n+ 1)!Γ(−n+ n+ 2)
+ ...

= (−1)n
[

(x/2)n

n!0!
− (x/2)n+2

1! (n+ 1)!
+

(x/2)n+4

2! (n+ 2)!
− ...

]
= (−1)n Jn(x)

olduğu görülür.

ν /∈ Z için Bessel denkleminin genel çözümü

u = B1Jν(x) +B2J−ν(x)

şeklinde ifade edilebilir. Bu durumda

Zν(x) = C1Jν(x) + C2J−ν(x)

olmak üzere

u = B3Jν(x) +B4Zν(x)

fonksiyonu da Bessel denkleminin bir çözümüdür. Burada C2 6= 0 olmak üzere, B1, B2,

B3, B4, C1 ve C2, x deği̧skenine bağlıdeğildir.

Eğer C1 = cot νπ ve C2 = − csc νπ olarak alınırsa, Yν(x) ile gösterilen,

Yν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
(1.23)

fonksiyonu elde edilir. Bu fonksiyona genellikle Neumann fonksiyonu olarak bilinir aynı

zamanda ν mertebeli ikinci tür Bessel fonksiyonu veya silindirik fonksiyon olarak da

adlandırılır.

ν → n ∈ Z için (1.23) eşitliğinin sağ tarafında 0
0
belirsizliği olup L’Hospital kuralıile,

Yn(x) = lim
ν→n

∂
∂ν

[Jν(x) cos νπ − J−ν(x)]
∂
∂ν

sin νπ
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fonksiyonu tanımlanır. ν = 0, 1, ...5 için ikinci tür Bessel fonksiyonlarının grafĭgi Şekil

1.2’de verilmi̧stir. Yν(x) ve Jν(x) fonksiyonlarıtamsayıdahil ν nin herhangi bir değeri

için Bessel denkleminin temel çözüm sistemini oluştururlar.
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Şekil 1.2 İkinci tür Bessel fonksiyonlarıν = 0, 1, ..., 5.

Birinci ve ikinci tür Bessel fonksiyonlarının herhangi bir lineer birleşimi de Bessel denk-

leminin bir çözümü olup

H(1)
ν (x) = Jν(x) + iYν(x), (1.24)

H(2)
ν (x) = Jν(x)− iYν(x) (1.25)

fonksiyonlarıüçüncü tür Bessel fonksiyonlarıveya silindirik fonksiyonlar olarak adlandırılır.

Ayrıca bu fonksiyonlar sırasıyla birinci ve ikinci tür Hankel fonsiyonlarıolarak da ad-

landırılır (Korenev 2002, pp. 7-11).

1.3 BESSEL FONKSİYONLARININ ÖZELLİKLERİ

1.3.1 Bessel Fonksiyonlarının Yineleme Bağıntıları

Birinci tür Bessel fonksiyonlarıiçin bilinen bazıönemli yineleme bağıntılarıaşağıda ve-

rilmi̧stir:
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2ν

x
Jν(x) = Jν+1(x) + Jν−1(x), (1.26)

2J ′ν(x) = Jν−1(x)− Jν+1(x), (1.27)

xJ ′ν(x) = νJν(x)− xJν+1(x), (1.28)

xJ ′ν(x) = xJν−1(x)− νJν(x), (1.29)
d

dx
{xνJν(x)} = xνJν−1(x), (1.30)

d

dx

{
x−νJν(x)

}
= −x−νJν+1(x). (1.31)

Bu bağıntıların ispatıν ∈ Z için verilecektir. Bessel fonksiyonlarının üreten fonksiyonu

e
1
2
x(t− 1

t )

olup bu fonksiyonun t nin fonksiyonu olarak Laurent serisine açılımıyapıldı̆gında tν teri-

minin katsayısıx argümanına bağlıν. mertebeden Bessel fonksiyonudur ve

e
1
2
x(t− 1

t ) =
∞∑

ν=−∞
tνJν(x) (1.32)

olur (Watson 1966, p. 14). (1.32) ile verilen eşitliğin her iki tarafının t deği̧skenine göre

türevi alınır ve gerekli düzenlemeler yapılırsa,

1

2
x

(
1 +

1

t2

)
e
1
2
x(t− 1

t ) =
∞∑

ν=−∞
νtν−1Jν(x)

1

2
x

(
1 +

1

t2

) ∞∑
ν=−∞

tνJν(x) =
∞∑

ν=−∞
νtν−1Jν(x)

1

2
x

( ∞∑
ν=−∞

tνJν(x) +
∞∑

ν=−∞
tν−2Jν(x)

)
=

∞∑
ν=−∞

νtν−1Jν(x)

1

2
x

( ∞∑
ν=−∞

tν+1Jν(x) +
∞∑

ν=−∞
tν−1Jν(x)

)
=

∞∑
ν=−∞

νtνJν(x)

Jν+1(x) + Jν−1(x) =
2ν

x
Jν(x)

olur, böylece (1.26) bağıntısıelde edilmi̧s olur.

(1.32) eşitliğinin her iki tarafının x deği̧skenine göre türevi alınır ve gerekli düzenlemeler
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yapılırsa,

1

2

(
t− 1

t

)
e
1
2
x(t− 1

t ) =
∞∑

ν=−∞
tνJ ′ν(x)

1

2

(
t− 1

t

) ∞∑
ν=−∞

tνJν(x) =
∞∑

ν=−∞
tνJ ′ν(x)

1

2

( ∞∑
ν=−∞

tν+1Jν(x)−
∞∑

ν=−∞
tν−1Jν(x)

)
=

∞∑
ν=−∞

tνJ ′ν(x)

Jν−1(x)− Jν+1(x) = 2J ′ν(x)

olur ve (1.27) bağıntısıelde edilir. Elde edilen (1.26), (1.27) bağıntılarında sırasıyla Jν−1(x)

ve Jν+1(x) terimleri yok edilerek,

xJν+1(x) = νJν(x)− xJ ′ν(x),

xJν−1(x) = νJν(x) + xJ ′ν(x)

eşitlikleri ve böylece (1.28) ve (1.29) bağıntılarıelde edilir. (1.27) bağıntısında özel olarak

ν = 0 alınır ve (1.22) eşitliğinde ν = 1 alınırsa, sırasıyla

2J ′0(x) = J−1(x)− J1(x),

J−1(x) = −J1(x)

olur ve bu eşitliklerden J−1(x) yok edilerek

J ′0(x) = −J1(x) (1.33)

elde edilir.

(1.29) bağıntısının her iki yanıxν−1 ile çarpılır ve düzenlenirse,

xνJ ′ν(x) = xνJν−1(x)− νxν−1Jν(x)

xνJ ′ν(x) + νxν−1Jν(x) = xνJν−1(x)

d

dx
{xνJν(x)} = xνJν−1(x)

ile (1.30) bağıntısıve aynışekilde (1.28) bağıntısının her iki yanıx−ν−1 ile çarpılıp düzen-

lenirse,

x−νJ ′ν(x) = x−ν−1νJν(x)− x−νJν+1(x)

x−νJ ′ν(x)− x−ν−1νJν(x) = −x−νJν+1(x)

d

dx

{
x−νJν(x)

}
= −x−νJν+1(x)

11



ile (1.31) bağıntısıelde edilir.

(1.27) bağıntısının özel bir durumu olarak her iki tarafının x e göre türev alınır ve 2 ile

çarpılırsa,

22J ′′ν (x) = 2J ′ν−1(x)− 2J ′ν+1(x)

eşitliği elde edilir. Benzer şekilde k. mertebeden türev için,

2kJ (k)
ν (x) =

k∑
m=0

(−1)m
(
r

m

)
Jn−k+2m(x)

elde edilir.

Elde edilen bu bağıntılar Jν(x) için yineleme bağıntılarıdır. İkinci ve üçüncü tür Bessel

fonksiyonlarıiçin benzer yineleme bağıntılarıverilebilir (Watson 1966).

1.3.2 Bessel Fonksiyonlarının İntegral Gösterimi

Bu kısımda birinci tür Bessel fonksiyonu için bazıintegral gösterimleri ifade edilecektir.

Öncelikle, ν ∈ Z için Bessel tarafından Jν(x) fonksiyonunun tanımıolarak da alınan

Jν(x) =
1

2π

∫ 2π

0

cos(νθ − x sin θ)dθ (1.34)

eşitliğinin doğru olduğu gösterilecektir.

(1.34) ile verilen eşitlikteki integrasyon aralı̆gıikiye bölünür ve daha sonra ikinci integralde

θ yerine 2π − θ yazılırsa,

Jν(x) =
1

2π

∫ π

0

cos(νθ − x sin θ)dθ +
1

2π

∫ 2π

π

cos(νθ − x sin θ)dθ

=
1

2π

∫ π

0

cos(νθ − x sin θ)dθ − 1

2π

∫ 0

π

cos (ν (2π − θ)− x sin (2π − θ)) dθ

=
1

2π

∫ π

0

cos(νθ − x sin θ)dθ +
1

2π

∫ π

0

cos (2πν − νθ + x sin θ) dθ

=
1

2π

∫ π

0

cos(νθ − x sin θ)dθ +
1

2π

∫ π

0

cos (νθ − x sin θ) dθ

=
1

π

∫ π

0

cos(νθ − x sin θ)dθ (1.35)

olur. Ayrıca, (1.34) eşitliğinde yer alan integrand 2π periyoduna sahip olduğundan her-

hangi bir α değeri için (1.34) eşitliği,

Jν(x) =
1

2π

∫ 2π+α

α

cos(νθ − x sin θ)dθ
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şeklinde yazılabilir.

(1.34) eşitliğini ispatlamak için (1.32) eşitliğini t−ν−1 ile çarpıp orjini pozitif yönlü çevreleyen

bir eğri boyunca kontür integrali alınırsa

1

2πi

∮ (0+)

t−ν−1e
1
2
x(t− 1

t )dt =
1

2πi

∞∑
m=−∞

Jm(x)

∮ (0+)

tm−ν−1dt (1.36)

olur ve∮ (0+)

tkdt =

 0 , k 6= −1

2πi , k = −1

olduğundan yukarıdaki (1.36) eşitliğinin sağ tarafındaki integral m = ν hariç sıfır olur ve

1

2πi

∮ (0+)

t−ν−1e
1
2
x(t− 1

t )dt = Jν(x)

elde edilir. Kontür olarak yarıçapıbir birim olan çember alınır ve t = e−iθ yazılırsa

Jν(x) =
1

2πi

∫ α

2π+α

eiθ(ν+1)e
1
2
x(e−iθ−eiθ)(−ie−iθ)dθ

=
1

2π

2π+α∫
α

ei(νθ−x sin θ)dθ

gösterimi elde edilir. Özel olarak, α = 0 için

Jν(x) =
1

2π

2π∫
0

ei(νθ−x sin θ)dθ

olur. α = −π için, integrasyon aralı̆gıikiye bölünür ve daha sonra ilk integralde θ yerine

−θ alınırsa,

Jν(x) =
1

2π

π∫
−π
ei(νθ−x sin θ)dθ

=
1

2π

0∫
−π
ei(νθ−x sin θ)dθ +

1

2π

π∫
0

ei(νθ−x sin θ)dθ

=
1

2π

π∫
0

(
ei(νθ−x sin θ) + e−i(νθ−x sin θ)

)
dθ

=
1

π

∫ π

0

cos(νθ − x sin θ)dθ

elde edilir ve (1.35) eşitliği gösterilmi̧s olur. Böylece (1.34) eşitliğinin doğruluğu da gös-

terilmi̧s olur (Watson 1966, p. 20, Zill and Shanahan 2009, p. 225).
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Birinci tür Bessel fonksiyonlarının diğer bazıintegral gösterimleri aşağıdaki çizelge 1.1 ile

verilmi̧stir.

Çizelge 1.1 Bessel fonksiyonlarıiçin bazıintegral gösterimleri

J0(z) = 1
π

∫ π
0

cos(z cos θ)dθ = 1
π

∫ π
0

cos(z sin θ)dθ, (Bessel)

Jn(z) = i−n

π

∫ π
0
eiz cos θ cos(nθ)dθ, n ∈ Z, (Bessel)

Jν(z) =
( 12 z)

ν

π
1
2 Γ(ν+ 1

2)

∫ π
0

cos(z cos θ) (sin θ)2ν dθ, <ν > −1
2

(Poisson)

Jν(x) =
2( 12 z)

ν

π
1
2 Γ(ν+ 1

2)

∫ 1

0
(1− t2)

ν− 1
2 cos(zt)dt, <ν > −1

2
(Poisson)

Jν(z) = 1
π

∫ π
0

cos(z sin θ − νθ)dθ (Schläfli)

− sin(νπ)
π

∫∞
0
e−z sinh t−νtdt, |phz| < 1

2
π,

Jν(x) = 2
π

∫∞
0

sin(x cosh t− 1
2
νπ) cosh (νt) dt, (Mehler-Sonine)

|<ν| < 1, x > 0,

Jν(z) = 1
2πi

∫∞+πi

∞−πi e
z sinh t−νtdt, |phz| < 1

2
π, (Schläfli-Sommerfeld)
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BÖLÜM 2

HANKEL DÖNÜŞÜMÜ

Bu bölümde, Hankel integral teoremi yardımıyla Hankel dönüşüm çifti tanımlanacaktır.

Hankel dönüşümünün Fourier dönüşümü ile ili̧skisi incelenerek Fourier dönüşümünden

Hankel dönüşümü ve ters Hankel dönüşümü elde edilecektir. Ayrıca, Hankel dönüşümünün

temel özellikleri ispatlarıile birlikte verilecek ve bazıfonksiyonların Hankel dönüşümünün

hesaplanmasına ili̧skin örnekler incelenecektir.

2.1 HANKEL İNTEGRAL TEOREMİ

Bu bölümde (Sneddon 1951) kaynağıtemel alınarak Hankel integral teoremi yardımıyla

Hankel dönüşüm çifti tanımlanacaktır.

Tanım 2.1.1 f :[a, b] → R bir fonksiyon ve [c, d] , [a, b] aralı̆gının kapalı bir alt aralı̆gı

olsun. Ĕger

S =

{
n∑
i=1

|f(xi)− f(xi−1)| : {xi : 1 ≤ i ≤ n} , xi ∈ [c, d]

}
kümesi sınırlı ise f fonksiyonunun [c, d] aralı̆gındaki varyasyonu V (f, [c, d]) = supS

olarak tanımlanır. Ĕger S sınırsız ise f fonksiyonunun varyasyonu sonsuzdur (∞) denir.

Ĕger V (f, [c, d]) sonlu ise f fonksiyonu [c, d] üzerinde sınırlıvaryasyondur denir (Rudin

1976, p. 113).

Teorem 2.1.2 (Hankel İntegral Teoremi) Ĕger
∫∞

0
f(y)dy integrali mutlak yakınsak-

sa ve f(y) fonksiyonu x noktasının komşulŭgunda sınırlıvaryasyona sahipse, ν ≥ −1
2
için∫ ∞

0

Jν(xu) (xu)
1
2 du

∫ ∞
0

Jν(yu) (yu)
1
2 f(y)dy =

1

2
[f (x+ 0) + f(x− 0)] (2.1)

eşitlĭgi săglanır.

Bu teoremin ispatıiçin öncelikle gerekli bazılemmalar ifade edilerek ispatlarıverilecektir.
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Lemma 1 Ĕger λ pozitif ve sonlu bir sayıise∫ λ

0

xJν(ax)Jν(bx)dx =
λ

a2 − b2
[aJν+1(λa)Jν(λb)− bJν+1(λb)Jν(λa)]

eşitlĭgi săglanır.

İspat. Eğer

Iν(ε) =

∫ λ

ε

xJν(ax)Jν(bx)dx

olarak ifade edilir,

Iν(ε) =

∫ λ

ε

xνx−νxJν(ax)Jν(bx)dx

=

∫ λ

ε

xν+1Jν(ax)x−νJν(bx)dx (2.2)

olduğu dikkate alınır ve (1.30)-(1.31) eşitlikleri kullanılırsa kısmi integrasyon uygulanarak,

Iν(ε) =

∫ λ

ε

1

a
x−νJν(bx)

d

dx

(
xν+1Jν+1(ax)

)
dx

=
1

a
x−νJν(bx)xν+1Jν+1(ax)

∣∣∣∣λ
ε

−
∫ λ

ε

1

a
xν+1Jν+1(ax) (−b)x−νJν+1(bx)dx

=
1

a
x−νJν(bx)xν+1Jν+1(ax)

∣∣∣∣λ
ε

+
b

a

∫ λ

ε

xJν+1(ax)Jν+1(bx)dx

=
x

a
Jν(bx)Jν+1(ax)

∣∣∣λ
ε

+
b

a

∫ λ

ε

xJν+1(ax)Jν+1(bx)dx

=
λ

a
Jν(bλ)Jν+1(aλ)− ε

a
Jν(bε)Jν+1(aε) +

b

a
Iν+1(ε)

elde edilir.

Iν = lim
ε→0

Iν (ε)

olmak üzere ε→ 0 için,

Iν =
λ

a
Jν+1(aλ)Jν(bλ) +

b

a
Iν+1 (2.3)

eşitliği elde edilir. (2.3) eşitliğinde a ve b yer deği̧stirilirse

Iν =
λ

b
Jν+1(bλ)Jν(aλ) +

a

b
Iν+1 (2.4)

olduğu görülür. (2.3) ve (2.4) eşitliklerinden Iν+1 yok edilerek

(a2 − b2)

ab
Iν =

λ

b
Jν+1(aλ)Jν(bλ)− λ

a
Jν+1(bλ)Jν(aλ)
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veya

Iν =
λ

a2 − b2
[aJν+1(λa)Jν(λb)− bJν+1(λb)Jν(λa)]

olduğu görülür.

Bu durumda eğer

Hν (α, β) =

∫ λ

0

Jν(xu) (xu)
1
2 du

∫ α

β

Jν(yu) (yu)
1
2 f(y)dy (2.5)

olarak alınırsa,∫ λ

0

Jν(xu) (xu)
1
2 du

∫ ∞
0

Jν(yu) (yu)
1
2 f(y)dy

= Hν (∞, x+ δ) +Hν (x+ δ, x) +Hν (x, x− δ) +Hν (x− δ, 0)

yazılabilir. Şimdi λ→∞ için Hν (α, β) integralinin davranı̧sıincelenecektir.

Lemma 2 Ĕger δ küçük bir pozitif sayıve∫ ∞
0

f(y)dy

integrali mutlak yakınsak ise, λ→∞ için

Hν (x− δ, 0) → 0,

Hν (∞, x+ δ) → 0

olur.

İspat. (2.5) eşitliği α = x− δ, β = 0 için

Hν (x− δ, 0) =

∫ λ

0

Jν(xu) (xu)
1
2 du

∫ x−δ

0

Jν(yu) (yu)
1
2 f(y)dy

= x
1
2

∫ x−δ

0

y
1
2f(y)dy

∫ λ

0

Jν(xu)Jν(yu)udu

şeklinde ifade edilir ve eşitliğin sağ tarafındaki integral için Lemma 1 kullanılırsa

Hν (x− δ, 0) = x
1
2λ

∫ x−δ

0

xJν+1(λx)Jν(λy)− yJν+1(λy)Jν(λx)

x2 − y2
y
1
2f(y)dy (2.6)

elde edilir.

z � 1 için

Jν(z) =
A cos z −B sin z

z
1
2

+O
(
z−

3
2

)
(2.7)
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olup (2.6) eşitliğinde (2.7) kullanılırsa, herhangi sabit x ve δ için

Hν (x− δ, 0) = O(λ
1
2 )

∫ x−δ

0

Jν(λy)

x2 − y2
y
1
2f(y)dy +O(λ

1
2 )

∫ x−δ

0

Jν+1(λy)

x2 − y2
y
3
2f(y)dy

olur.∫ x−δ

0

Jν(λy)

x2 − y2
y
1
2f(y)dy =

∫ x−δ

1
λ

y
1
2Jν(λy)

f(y)

x2 − y2
dy +

∫ 1
λ

0

y
1
2Jν(λy)

f(y)

x2 − y2
dy (2.8)

yazılır ve (2.8) eşitliğinin sağ tarafındaki ikinci terim,
∫∞

0
|f(y)| dy integrali yakınsak, yani∫∞

0
f(y)dy integrali mutlak yakınsak olduğunda,

∫ 1
λ

0

y
1
2Jν(λy)

f(y)

x2 − y2
dy = O

[∫ 1
λ

0

(λy)ν y
1
2 |f(y)| dy

]
(2.9)

= O

[
λν
∫ 1

λ

0

yν+ 1
2 |f(y)| dy

]

= O

[
λ−

1
2

∫ 1
λ

0

|f(y)| dy
]

= O
(
λ−

1
2

)
olur. (2.8) eşitliğinin sağ tarafındaki birinci terim için de (2.7) eşitliği kullanılarak∫ x−δ

1
λ

y
1
2Jν(λy)

f(y)

x2 − y2
dy = λ−

1
2

∫ x−δ

1
λ

(A cosλy +B sinλy)
f(y)

x2 − y2
dy

= O
(
λ−

1
2

)
elde edilir. Böylece,

Hν (x− δ, 0) = O(λ−
1
2 )

sonucuna ulaşılır ve λ→∞ için

Hν (x− δ, 0)→ 0 (2.10)

olduğu görülür. λ→∞ için

Hν (∞, x+ δ)→ 0 (2.11)

ifadesinin ispatıbenzerdir.
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Lemma 3 Ĕger f(y) fonksiyonu yeterince küçük δ için (x− δ, x+ δ) aralı̆gı üzerinde

sınırlıvaryasyona sahipse ve ν ≥ −1
2
ise λ→∞, δ → 0 için

Hν (x+ δ, x) → 1

2
f(x+ 0),

Hν (x, x− δ) → 1

2
f(x− 0)

săglanır.

İspat. Eğer f(y) fonksiyonu (x− δ, x+ δ) aralı̆gında sınırlıvaryasyona sahipse (x < y ≤ x+ δ)

y−ν−
1
2f(y) fonksiyonu da sınırlıvaryasyona sahiptir ve

y−ν−
1
2f(y) = x−ν−

1
2f(x+ 0) + χ1 (y)− χ2 (y)

yazılabilir. Burada, χ1 (y) ve χ2 (y) fonksiyonlarıy deği̧skenine bağlıpozitif artan fonksi-

yonlardır ve her biri δ ya bağlıolan pozitif bir ε sayısından küçüktür. (2.5) eşitliğinde

α = x+ δ ve β = x için integral düzenlenirse

Hν (x+ δ, x) = x−νf(x+ 0)

∫ λ

0

Jν(xu)udu

∫ x+δ

x

Jν(yu)yν+1dy

+x
1
2

∫ λ

0

uJν(xu)du

∫ x+δ

x

Jν(yu)yν+1 [χ1 (y)− χ2 (y)] dy

elde edilir.

Hν (x+ δ, x) = x−νf(x+ 0)

∫ λ

0

Jν(xu)udu

∫ x+δ

x

Jν(yu)yν+1dy (2.12)

+x
1
2

∫ λ

0

uJν(xu)du

∫ x+δ

x

Jν(yu)yν+1χ1 (y) dy

−x 1
2

∫ λ

0

uJν(xu)du

∫ x+δ

x

Jν(yu)yν+1χ2 (y) dy

ile verilen eşitliğin sağ tarafındaki birinci terim (1.30) kullanılarak,

x−νf(x+ 0)

∫ λ

0

Jν(xu)udu

∫ x+δ

x

Jν(yu)yν+1dy

= x−νf(x+ 0)

∫ λ

0

Jν(xu)
[
Jν+1 (xu+ δu) (x+ δ)ν+1

−Jν+1 (xu)xν+1
]
du

= x−νf(x+ 0)

[
(x+ δ)ν+1

∫ λ

0

Jν(xu)Jν+1 (xu+ δu) du

−xν+1

∫ λ

0

Jν(xu)Jν+1 (xu) du

]
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şeklinde düzenlenir ve bu terim

∫ ∞
0

Jν(ax)Jν+1 (x) dx =


aν , 0 < a < 1

1
2

, a = 1

0 , a > 1

eşitliğinden λ→∞ için

x−νf(x+ 0)

(
xν − 1

2
xν
)

=
1

2
f(x+ 0) (2.13)

değerine yakınsar. (2.12) eşitliğininin χ1 (y) fonksiyonunu içeren terimi x < ξ < x+ δ için

x
1
2

∫ λ

0

Jν(xu)udu

∫ x+δ

x

Jν(yu)yν+1χ1 (y) dy

= x
1
2χ1 (x+ δ)

∫ x+δ

ξ

yν+1dy

∫ λ

0

Jν(xu)Jν(yu)udu

= x
1
2χ1 (x+ δ)

∫ λ

0

Jν(xu)udu

∫ x+δ

ξ

yν+1Jν(yu)dy

olarak yazılabilir. Burada∫ x+δ

ξ

yν+1Jν(yu)dy

ifadesi, Bessel fonksiyonunun∫ α

0

xnJn−1(x)dx = [xnJn (x)]α0 = αnJn (α) , n > 0

özelliği kullanılarak,∫ x+δ

ξ

yν+1Jν(yu)dy =
1

u

[
(x+ δ)ν+1 Jν+1 (xu+ δu)− ξν+1Jν+1 (ξu)

]
olarak yazılır ve

x
1
2

∫ λ

0

uJν(xu)du

∫ x+δ

x

Jν(yu)yν+1χ1 (y) dy

= x
1
2χ1 (x+ δ)

∫ λ

0

Jν(xu)du
[
(x+ δ)ν+1 Jν+1 (xu+ δu)− ξν+1Jν+1 (ξu)

]
= x

1
2 (x+ δ)ν+1 χ1 (x+ δ)

∫ λ

0

Jν(xu)Jν+1 (xu+ δu) du

−x 1
2 ξν+1χ1 (x+ δ)

∫ λ

0

Jν(xu)Jν+1 (ξu) du

elde edilir. Şimdi eğer x ≥ x0 > 0, y ≥ x0, ν ≥ −1
2
ise tüm λ değerleri için∫ λ

0

Jν(xu)Jν+1 (yu) du = O (1)
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olup χ1 (y) fonksiyonunu içeren terim ε mertebedendir ve tüm λ değerleri için δ → 0 iken

sıfıra yakınsar.

Benzer olarak, χ2 (y) fonksiyonunu içeren (2.12) eşitliğindeki üçüncü terim δ → 0 ve

λ→∞ için sıfıra yakınsar. Bu nedenle (2.13) eşitliğinden, δ → 0 ve λ→∞ iken

Hν (x+ δ, x)→ 1

2
f(x+ 0) (2.14)

olduğu görülür. Lemmanın ikinci kısmı, δ → 0 ve λ→∞ iken

Hν (x, x− δ)→ 1

2
f(x− 0), (2.15)

olduğu, benzer şekilde ispatlanabilir.

İspat (Hankel İntegral Teoreminin ispatı). Teoremin ispatıLemma 2 ve Lemma 3

uygulanarak doğrudan gösterilebilir. Eğer∫ λ

0

Jν(xu) (xu)
1
2 du

∫ ∞
0

Jν(yu) (yu)
1
2 f(y)dy

= Hν (∞, x+ δ) +Hν (x+ δ, x) +Hν (x, x− δ) +Hν (x− δ, 0)

eşitliği yazılır ve δ sayısı, f(y) fonksiyonu x − δ ≤ y ≤ x + δ üzerinde sınırlıvaryasyona

sahip olacak şekilde küçük seçilirse ν ≥ −1
2
için Lemma 2 ve Lemma 3’te yer alan tüm

şartlar sağlanır. λ→∞ ve δ → 0 için (2.10) , (2.11) , (2.14) ve (2.15) kullanılarak Hankel

integral teoreminin ispatıtamamlanır.

Eğer f(x) fonksiyonu x noktasında sürekliyse

f (x+ 0) = f(x− 0) = f(x)

olduğundan (2.1) eşitliği,

f(x) =

∫ ∞
0

Jν(xu) (xu)
1
2 du

∫ ∞
0

Jν(yu) (yu)
1
2 f(y)dy

şeklinde yazılır. Burada f(x) yerine x
1
2 f(x) ifadesi yazılırsa,

x
1
2 f(x) =

∫ ∞
0

Jν(xu) (xu)
1
2 du

∫ ∞
0

Jν(yu) (yu)
1
2 y

1
2 f(y)dy

x
1
2 f(x) = x

1
2

∫ ∞
0

Jν(xu)u
1
2du

∫ ∞
0

Jν(yu)u
1
2yf(y)dy

f(x) =

∫ ∞
0

Jν(xu)udu

∫ ∞
0

Jν(yu)yf(y)dy
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olur ve

f̄(u) =

∫ ∞
0

Jν(yu)yf(y)dy (2.16)

olarak alınırsa

f(x) =

∫ ∞
0

Jν(xu)uf̄(u)du (2.17)

olduğu görülür. Burada (2.16) ve (2.17) eşitlikleri Hankel dönüşüm çifti olarak adlandırılır

(Sneddon 1951, pp. 48− 53).

Tanım 2.1.3 0 < y <∞ olmak üzere f(y) fonksiyonunun Hankel dönüşümü

Fν(u) = Hν {f(y)} =

∫ ∞
0

f(y)yJν(uy)dy (2.18)

eşitlĭgi ile tanımlanır. Jν fonksiyonu ν. mertebeden birinci tür Bessel fonksiyonu olmak

üzere, yJν(uy) fonksiyonuna Hankel dönüşümünün çekirdek fonksiyonu, Hν {f(y)} =

Fν(u) fonksiyonuna ise f(y) fonksiyonunun ν. mertebeden Hankel dönüşümü denir (Piessens

2010, p. 9/2).

Tanım 2.1.4 (Ters Hankel Dönüşümü) 0 < y < ∞ olmak üzere f(y) fonksiyonunun

Hankel Dönüşümü

Fν(u) = Hν {f(y)} =

∫ ∞
0

f(y)yJν(uy)dy

olmak üzere, Fν (u) fonksiyonunun ters Hankel dönüşümü olan f(y) fonksiyonunu veren

integral dönüşümü

f(y) = H−1
ν {Fν(u)} =

∫ ∞
0

Fν(u)uJν(yu)du (2.19)

ile verilir.

2.2 HANKEL DÖNÜŞÜMÜNÜN FOURİER DÖNÜŞÜMÜ İLE BAĞIN-

TISI

Bu bölümde iki boyutlu Fourier dönüşümünün sıfırıncımertebeden Hankel dönüşümüne eş

değer olduğu gösterilecek ardından n. mertebeden Hankel dönüşümü ile Fourier dönüşümü

arasındaki ili̧ski incelenecektir.
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Fourier dönüşümü tanımından iki deği̧skenli f(y, z) fonksiyonunun Fourier ve ters Fourier

dönüşümü sırasıyla,

F (q, r) = F {f(y, z)} =

∫ ∞
−∞

∫ ∞
−∞

f(y, z)ei(qy+rz)dydz, (2.20)

f(y, z) = F−1 {F (q, r)} =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

F (q, r)e−i(qy+rz)dqdr (2.21)

eşitlikleriyle ifade edilir ve bu eşitliklerde kartezyen sistemden kutupsal sisteme geçi̧s için,

q = s cosα,

r = s sinα, 0 ≤ α < 2π, 0 ≤ s <∞

y = x cos θ,

z = x sin θ, 0 ≤ θ < 2π, 0 ≤ x <∞

olmak üzere,

qy + rz = s (cosα)x (cos θ) + s (sinα)x (sin θ)

= sx cosα cos θ + sx sinα sin θ

= sx(cosα cos θ + sinα sin θ)

= sx cos(α− θ)

dönüşümleri tanımlanır ve (2.20) ve (2.21) eşitlikleri sırasıyla,

F (s, α) =

∫ ∞
0

∫ 2π

0

f(x, θ)eisx cos(α−θ)xdθdx (2.22)

f(x, θ) =
1

4π2

∫ ∞
0

∫ 2π

0

F (s, α)e−isx cos(α−θ)sdαds (2.23)

şeklinde ifade edilir.

(2.22) eşitliğinde f(x, θ) fonksiyonu dairesel simetri gösteren bir fonksiyon, yani verilen

f(x, θ) ifadesi θ açısından bağımsız olmasıdurumunda; f(x, θ) = f(x) olup ϕ = α−θ− π
2

deği̧sken deği̧simi uygulandı̆gında,

F (s, α) =

∫ ∞
0

∫ 2π

0

f(x)eisx cos(α−θ)xdθdx

=

∫ ∞
0

xf(x)

[∫ 2π

0

eisx cos(α−θ)dθ

]
dx

=

∫ ∞
0

xf(x)

[∫ 2π

0

eisx cos(ϕ+π
2

)dϕ

]
dx

=

∫ ∞
0

xf(x)

[∫ 2π

0

e−isx sinϕdϕ

]
dx
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olur ve burada∫ 2π

0

e−isx sinϕdϕ = 2πJ0 (sx)

olduğundan eşitlik

F (s) = 2π

∫ ∞
0

xf(x)J0 (sx) dx (2.24)

şeklinde yazılır. (2.24) eşitliliğinde, integral f(x) fonsiyonunun sıfırıncımertebeden Hankel

dönüşümünü verir ve

F (s) = 2πF0(s)

olduğu görülür.

(2.23) eşitliğinde F (s) yerine 2πF0(s) yazılırsa,

f(x, θ) =
1

4π2

∫ ∞
0

∫ 2π

0

2πF0(s)e−isx cos(α−θ)sdαds

=
1

2π

∫ ∞
0

sF0(s)

[∫ 2π

0

e−isx cos(α−θ)dα

]
ds

olur ve eşitliğin sağ tarafında ψ = θ − α + π
2
için dönüşümü uygulanırsa

f(x) =
1

2π

∫ ∞
0

sF0(s)

[∫ 2π

0

e−isx cos(ψ−π
2

)dψ

]
ds

=
1

2π

∫ ∞
0

sF0(s)

[∫ 2π

0

e−isx sinψdψ

]
ds

elde edilir. Bessel fonksiyonunun integral gösteriminden

f(x) =
1

2π

∫ ∞
0

sF0(s)2πJ0 (sx) ds

yazılır ve

f(x) =

∫ ∞
0

sF0(s)J0 (sx) ds = H−1
0 {F0(s)}

eşitliğiyle Fourier dönüşümü ile sıfırıncımertebeden ters Hankel dönüşümü arasındaki

ili̧ski gösterilmi̧s olur.

Şimdi n. mertebeden Hankel dönüşümü ile Fourier dönüşümü arasında ili̧ski için (2.22)

eşitliğinde f(x, θ) fonksiyonu için θ yerine f(x)e−inθ yazılırsa ve ϕ = α− θ− π
2
dönüşümü
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uygulanırsa,

F (s, α) =

∫ ∞
0

∫ 2π

0

f(x)e−inθeisx cos(α−θ)xdθdx

=

∫ ∞
0

xf(x)

[∫ 2π

0

ei(−nθ+sx cos(α−θ))dθ

]
dx

=

∫ ∞
0

xf(x)

[∫ 2π

0

ei(n(ϕ−α+π
2

)+sx cos(ϕ+π
2

))dϕ

]
dx

=

∫ ∞
0

xf(x)

[∫ 2π

0

ei(n(ϕ−α+π
2

)−sx sinϕ)dϕ

]
dx

=

∫ ∞
0

xf(x)ein(
π
2
−α)

[∫ 2π

0

ei(nϕ−sx sinϕ)dϕ

]
dx

olur ve burada∫ 2π

0

ei(nϕ−sx sinϕ)dϕ = 2πJn (sx)

olduğundan eşitlik

F (s, α) =

∫ ∞
0

xf(x)ein(
π
2
−α)2πJn (sx) dx

= 2πein(
π
2
−α)

∫ ∞
0

xf(x)Jn (sx) dx (2.25)

şeklinde yazılır. (2.25) eşitliğinde, integral f(x) fonsiyonunun Hn {f(x)} = Fn(s) Hankel

dönüşümünü verir ve

F (s, α) = 2πein(
π
2
−α)Fn(s)

olduğu görülür.

(2.23) eşitliğinde f(x, θ) = f(x)e−inθ yazılır ve F (s, α) yerine 2πein(
π
2
−α)Fn(s) yazılırsa,

f(x)e−inθ =
1

4π2

∫ ∞
0

∫ 2π

0

2πein(
π
2
−α)Fn(s)e−isx cos(α−θ)sdαds

=
1

2π

∫ ∞
0

sFn(s)

[∫ 2π

0

ein(
π
2
−α)−isx cos(α−θ)dα

]
ds

olur ve eşitliğin sağ tarafında ψ = θ − α + π
2
için dönüşümü uygulanırsa

f(x)e−inθ =
1

2π

∫ ∞
0

sFn(s)

[∫ 2π

0

ein(ψ−θ)−isx cos(ψ−π
2

)dψ

]
ds

=
1

2π

∫ ∞
0

sFn(s)e−inθ
[∫ 2π

0

ei(nψ−sx sinψ)dψ

]
ds

elde edilir. Bessel fonksiyonunun integral gösteriminden

f(x)e−inθ =
1

2π

∫ ∞
0

sFn(s)e−inθ2πJn (sx) ds
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yazılır ve

f(x)e−inθ = e−inθ
∫ ∞

0

sFn(s)Jn (sx) ds

f(x) =

∫ ∞
0

sFn(s)Jn (sx) ds

olduğu görülür. Böylelikle Hn {f(x)} = Fn(s) fonksiyonunun ters Hankel dönüşümü olan

f(x) fonksiyonunu veren ters Hankel dönüşümü elde edilmi̧s olur (Davies 2001, p. 230).

2.3 HANKEL DÖNÜŞÜMÜNÜN TEMEL ÖZELLİKLERİ

Bu bölümde Hankel dönüşümünün temel i̧slemsel özellikleri ispatlarıile birlikte verilecek-

tir.

Teorem 2.3.1 r > 0, α ve β iki sabit sayı, Hν {f(r)} = Fν(s) ve Hν {g(r)} = Gν(s)

olmak üzere,

a. Lineerlik Özellĭgi:

Hν {αf(r) + βg(r)} = αFν(s) + βGν(s).

b. Ölçekleme (Scaling) Özellĭgi :

Hν {f(ar)} =
1

a2
Fν(

s

a
), a > 0. (2.26)

c. r ile Bölme Özellĭgi:

Hν

{
r−1f(r)

}
=

s

2ν
[Fν+1(s) + Fν−1(s)] , ν ≥ 1.

İspat.

a. Eşitliğin ispatıiçin αf(r) + βg(r) ifadesinin Hankel dönüşümü alınır ve düzenlenirse

Hν {αf(r) + βg(r)} =

∫ ∞
0

r(αf(r) + βg(r))Jν(rs)dr

=

∫ ∞
0

(rαf(r)Jν(rs) + rβg(r)Jν(rs))dr

= α

∫ ∞
0

rf(r)Jν(rs)dr + β

∫ ∞
0

rg(r)Jν(rs)dr

= αFν(s) + βGν(s)

elde edilir. Böylece Hankel dönüşümünün lineer olduğu görülür.

b. Eşitliğin ispatıiçin f(ar) fonksiyonunun Hankel dönüşümü

Hν {f(ar)} =

∫ ∞
0

rf(ar)Jν(rs)dr (2.27)
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ile verilir. (2.27) eşitliğinde ar = k dönüşümü yapılırsa,

Hν {f(ar)} =

∫ ∞
0

k

a
f(k)Jν(

ks

a
)
1

a
dk

=
1

a2

∫ ∞
0

kf(k)Jν(
k

a
s)dk

=
1

a2
Fν(

s

a
)

elde edilir (Debnath and Bhatta 2010 p. 319).

c. Eşitliğin ispatıiçin r−1f(r) ifadesinin Hankel dönüşümü

Hν

{
r−1f(r)

}
=

∫ ∞
0

r
1

r
f(r)Jν(rs)dr =

∫ ∞
0

f(r)Jν(rs)dr (2.28)

ile verilir. Bessel fonksiyonunun yineleme bağıntısıolan (1.26) eşitliğinden x = rs için

Jν(rs) =
rs

2ν
(Jν+1(rs) + Jν−1(rs) (2.29)

elde edilir. Oluşan Jν(rs) eşitliğini (2.28) eşitliğinde yerine yazılırsa,

Hν

{
r−1f(r)

}
=

∫ ∞
0

f(r)
s

2ν
[rJν+1(rs) + rJν−1(rs)] dr

=
s

2ν

∫ ∞
0

f(r) [rJν+1(rs) + rJν−1(rs)] dr

=
s

2ν

[∫ ∞
0

f(r)rJν+1(rs)dr +

∫ ∞
0

f(r)rJν−1(rs)dr

]
=

s

2ν
[Fν+1(s) + Fν−1(s)]

elde edilir (Piessens 2010, p. 9/4).

Teorem 2.3.2 (Türevin Hankel Dönüşümü) ν > 1 içinHν {f(r)} = Fν(s) dönüşümü

var ve rf(r) fonksiyonu için lim
r→0

rf(r) = 0, lim
r→∞

rf(r) = 0 ise f(r) fonksiyonunun

türevinin Hankel dönüşümü

Hν {f ′(r)} =
s

2ν
[(ν − 1)Fν+1(s)− (ν + 1)Fν−1(s)] (2.30)

eşitlĭgi ile verilir.

İspat. Hν {f(r)} = Fν(s) olmak üzere f ′(r) ifadesinin uygun şartlarda Hankel dönüşümü

Hν {f ′(r)} =

∫ ∞
0

f ′(r)rJν(rs)dr
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ile verilir. Verilen denklemde kısmi integrasyon uygulandı̆gında,

Hν {f ′(r)} = rJν(rs)f(r)|∞0 −
∫ ∞

0

f(r)
d

dr
(rJν(rs)) dr

= −
∫ ∞

0

[Jν(rs) + rsJ ′ν(rs)] f(r)dr (2.31)

olur. Bessel fonksiyonunun yineleme bağıntısıolan (1.29) eşitliğinde x = sr alınıp eşitliğin

her iki tarafına Jν(sr) fonksiyonu eklenirse,

rsJ ′ν(sr) = −νJν(sr) + rsJν−1(sr)

rsJ ′ν(sr) + Jν(sr) = Jν(sr)− νJν(sr) + rsJν−1(sr)

= (1− ν) Jν(sr) + rsJν−1(sr) (2.32)

eşitliği elde edilir. Elde edilen eşitlik (2.31) eşitliğinde yerine yazılırsa,

Hν {f ′(r)} = −
∫ ∞

0

[(1− ν) Jν(sr) + rsJν−1(sr)] f(r)dr

=

∫ ∞
0

(ν − 1)Jν(sr)f(r)dr −
∫ ∞

0

rsJν−1(sr)f(r)dr

=

∫ ∞
0

(ν − 1)Jν(sr)f(r)dr − sFν−1(s) (2.33)

olur. Jν(sr) Bessel fonksiyonunun yineleme bağıntıntısıolan (1.26) eşitliğinden x = sr

için,

Jν(sr) =
sr

2ν
[Jν−1(sr) + Jν+1(sr)]

olur ve (2.33) eşitliğinde yerine yazılırsa ve düzenlenirse,

Hν {f ′(r))} =

∫ ∞
0

(ν − 1)Jν(sr)f(r)dr − sFν−1(s)

=
s(ν − 1)

2ν

∫ ∞
0

r [Jν−1(sr) + Jν+1(sr)] f(r)dr − sFν−1(s)

=
s(ν − 1)

2ν

[∫ ∞
0

rJν−1(sr)f(r)dr +

∫ ∞
0

rJν+1(sr)f(r)dr

]
− sFν−1(s)

=
s(ν − 1)

2ν
[Fν−1(s) + Fν+1(s)]− sFν−1(s)

=
s

2ν
[(ν − 1)Fν−1(s) + (ν − 1)Fν+1(s)− 2νFν−1(s)]

=
s

2ν
[(ν − 1)Fν+1(s)− (ν + 1)Fν−1(s)]

elde edilir. Böylece bir fonksiyonun Hankel dönüşümü ile bu fonksiyonun türevinin Hankel

dönüşümü arasındaki bağıntıyıveren eşitlik elde edilir (Debnath and Bhatta 2010 p. 320).
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Buradan hareketle f(r) fonksiyonunun ikinci türevinin Hankel dönüşümünü veren bağıntı,

Hν {f ′′(r)} =
s

2ν
[(ν − 1)Hν+1 {f ′(r)} − (ν + 1)Hν−1 {f ′(r)}] ,

=
s

2ν

[
(ν − 1)

(
s

2 (ν + 1)
[νFν+2(s)− (ν + 2)Fν(s)]

)
−(ν + 1)

(
s

2 (ν − 1)
[(ν − 2)Fν(s)− νFν−2(s)]

)]
,

=
s2

4

ν − 1

ν (ν + 1)
[νFν+2(s)− (ν + 2)Fν(s)]

−s
2

4

ν + 1

ν (ν − 1)
[(ν − 2)Fν(s)− νFν−2(s)] ,

=
s2

4

(ν − 1)Fν+2(s)

ν + 1
− s2

4

(ν − 1)(ν + 2)Fν(s)

ν (ν + 1)

−s
2

4

(ν + 1)(ν − 2)Fν(s)

ν (ν − 1)
+
s2

4

(ν + 1)Fν−2(s)

ν − 1
,

=
s2

4

(ν − 1)Fν+2(s)

ν + 1
− s2

4

(ν − 1)2(ν + 2)Fν(s)

ν (ν + 1) (ν − 1)

−s
2

4

(ν + 1)2(ν − 2)Fν(s)

ν (ν + 1) (ν − 1)
+
s2

4

(ν + 1)Fν−2(s)

ν − 1
,

olur ve

Hν {f ′′(r)} =
s2

4

[
ν + 1

ν − 1
Fν−2(s)− 2

ν2 − 3

ν2 − 1
Fν(s) +

ν − 1

ν + 1
Fν+2(s)

]
(2.34)

eşitliği ile verilir (Debnath and Bhatta 2010 p. 321).

Sonuç 2.3.3 (2.30) formülü kullanılarak ν = 1, 2, 3 için elde edilen formüller aşăgıda

verilmiştir;

H1

{
d

dr
f(r)

}
= −sF0(s),

H2

{
d

dr
f(r)

}
=

s

4
[F3(s)− 3F1(s)] ,

H3

{
d

dr
f(r)

}
=

s

6
[2F4(s)− 4F2(s)] .

Teorem 2.3.4 (Parseval Teoremi) Hν {f(r)} = Fν(s) ve Hν {g(r)} = Gν(s) olmak

üzere,∫ ∞
0

sFν(s)Gν(s)ds =

∫ ∞
0

rf(r)g(r)dr (2.35)

băgıntısıgeçerlidir.
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İspat. (2.35) eşitliğinin sol tarafındaGν(s) fonksiyonu yerine Hankel dönüşümünün tanımın-

dan,

Gν(s) =

∫ ∞
0

rg(r)J(rs)dr

eşitliği yazılırsa,∫ ∞
0

sFν(s)Gν(s)ds =

∫ ∞
0

sFν(s)

∫ ∞
0

rg(r)J(rs)drds

elde edilir. İntegrallerin mutlak yakınsaklık koşulundan integral sırasıyer deği̧stirebilir

böylece∫ ∞
0

sFν(s)Gν(s)ds =

∫ ∞
0

rg(r)

(∫ ∞
0

sFν(s)J(rs)ds

)
dr

yazılır ve buradan Fν(s) fonksiyonu için ters Hankel dönüşümü tanımından

f(r) =

∫ ∞
0

sFν(s)J(rs)ds

olup,∫ ∞
0

sFν(s)Gν(s)ds =

∫ ∞
0

rg(r)f(r)dr

eşitliği elde edilir. Elde edilen son eşitlikle (2.35) Parseval bağıntısıgösterilmi̧s olur (Deb-

nath and Bhatta 2010 p. 319).

2.4 HANKEL DÖNÜŞÜMÜ ÖRNEKLERİ

Bu bölümde bazıfonksiyonların Hankel dönüşümü, Hankel dönüşümü tanımından ve özel-

liklerinden yararlanılarak verilecektir.

Örnek 2.4.1 (Debnath and Bhatta 2010, p. 318) r > 0 olmak üzere, f(r) = e−ar

r

fonksiyonunun sıfırıncımertebeden Hankel dönüşümü

H0

{
e−ar

r

}
=

∫ ∞
0

e−ar

r
rJ0(sr)dr =

∫ ∞
0

e−arJ0(sr)dr (2.36)

olup burada J0(sr) Bessel fonksiyonu yerine (1.21) seri açılımıyazılır ve ar = t dönüşümü
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yapılırsa,

H0

{
e−ar

r

}
=

∫ ∞
0

e−ar
∞∑
k=0

(−1)k
(
sr
2

)2k

(k!)2 dr

=
∞∑
k=0

(−1)k
(
s
2

)2k

(k!)2

∫ ∞
0

e−arr2kdr

=
∞∑
k=0

(−1)k
(
s
2

)2k

(k!)2

∫ ∞
0

e−t
(
t

a

)2k
1

a
dt

=
∞∑
k=0

(−1)k
(
s
2

)2k

(k!)2 a2k+1

∫ ∞
0

e−tt2kdt (2.37)

olur. (2.37) eşitlĭginin săg tarafındaki integralde Gamma fonksiyonunun

Γ (z) =

∫ ∞
0

e−ttz−1dt

tanımından∫ ∞
0

e−tt2kdt = Γ(2k + 1) = (2k)!

olup (2.37) eşitlĭginde yerine yazılırsa,

H0

{
e−ar

r

}
=

1

a

∞∑
k=0

(−1)k (2k)!s2k

22k (k!)2 a2k

=
1

a

(
1− 1

2

(s
a

)2

+
3

8

(s
a

)4

− ...
)

=
1

a

(
1 +

(s
a

)2
)− 1

2

=
1√

s2 + a2
(2.38)

elde edilir.

Örnek 2.4.2 (Debnath and Bhatta 2010, p. 318) r > 0 olmak üzere, f(r) = e−ar

r

fonksiyonunun birinci mertebeden Hankel dönüşümü

H1

{
e−ar

r

}
=

∫ ∞
0

e−ar

r
rJ1(sr)dr =

∫ ∞
0

e−arJ1(sr)dr

olup Bessel fonksiyonu için verilen (1.33) eşitlĭginden yararlanılarak J1(sr) fonksiyonu

yerine

J1(sr) = −J ′0(sr)
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eşiti yazılır ve sr = z dönüşümü yapılırsa,

H1

{
e−ar

r

}
= −

∫ ∞
0

e−a
z
sJ ′0(z)

1

s
dz = −1

s

∫ ∞
0

e−a
z
sJ ′0(z)dz

olur. Elde edilen eşitlikte kısmi integrasyon uygulanır ve düzenlenirse,

H1

{
e−ar

r

}
= −1

s

(
e−a

z
sJ0(z)

∣∣∞
0
−
∫ ∞

0

−a
s
e−a

z
sJ0(z)dz

)
= −1

s

(
−J0(0) +

a

s

∫ ∞
0

e−a
z
sJ0(z)dz

)
(2.39)

elde edilir.

Bessel fonksiyonu için (1.21) seri açılımından yararlanılarak,

J0(r) =
∞∑
k=0

(−1)k

k!Γ(k + 1)

(r
2

)2k

=

∞∑
k=0

(
−1

4
r2
)k

k!k!

=

(
−1

4
r2
)0

0!0!
+

(
−1

4
r2
)1

1!1!
+

(
−1

4
r2
)2

2!2!
+ ...

= 1 +

(
−1

4
r2
)1

1
+

(
−1

4
r2
)2

4
+ ...

olur ve r = 0 için

J0(0) = 1 + 0 + 0 + ... = 1

oldŭgu görülür.

(2.39) eşitlĭginde J0(0) = 1 yerine yazılır ve z = sr dönüşümü yapılırsa,

H1

{
e−ar

r

}
= −1

s

(
−1 +

a

s

∫ ∞
0

e−a
z
sJ0(z)dz

)
=

1

s
− a

s2

∫ ∞
0

e−a
z
sJ0(z)dz

=
1

s
− a

s2

∫ ∞
0

e−arJ0(sr)sdr

=
1

s
− a

s

∫ ∞
0

e−arJ0(sr)dr

eşitlĭgi elde edilir. Eşitlĭgin săg tarafındaki integral için Örnek 2.4.1′den yararlanılarak

fonksiyonun birinci mertebeden Hankel dönüşümünün

H1

{
e−ar

r

}
=

1

s
− a

s
√
a2 + s2

oldŭgu görülür.
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Örnek 2.4.3 r > 0 olmak üzere, f(r) = 1
r
fonksiyonunun sıfırıncımertebeden Hankel

dönüşümü

H0

{
1

r

}
=

∫ ∞
0

1

r
rJ0(sr)dr =

∫ ∞
0

J0(sr)dr =
1

s

olup burada
∫∞

0
J0(t)dt = 1 özellĭginden (Piessens 2010, p. 1/38) yararlanılmı̧stır. Ayrıca

Örnek 2.4.1’den, a = 0 olmak üzere,

H0

{
1

r

}
= H0

{
e−0r

r

}
=

∫ ∞
0

e−0rJ0(sr)dr

=

∫ ∞
0

J0(sr)dr

=
1√

s2 + 02

=
1

s

elde edilir.

Örnek 2.4.4 r > 0 olmak üzere,

f(r) =
d

dr

e−ar

r
= − 1

r2
e−ra − 1

r
e−raa

fonksiyonunun birinci mertebeden Hankel dönüşümünü hesaplayabilmek için öncelikle tanım

yardımıyla

H1

{
d

dr

e−ar

r

}
=

∫ ∞
0

d

dr

(
e−ar

r

)
rJ1(sr)dr

yazılır ve (2.30) eşitlĭgi ile verilen Hankel türev özellĭginden yararlanılırsa, f(r) fonksi-

yonunun birinci mertebeden Hankel dönüşümü,

H1

{
d

dr

e−ar

r

}
=

s

2
[(1− 1)F1+1(s)− (1 + 1)F1−1(s)]

= −sF0(s) (2.40)

olarak bulunur. Burada F0(s) ifadesi, e−ar

r
fonksiyonunun sıfırıncı mertebeden Hankel

dönüşümünü belirtir öyle ki bu dönüşüm Örnek 2.4.1’den yararlanılarak,

F0(s) = H0

{
e−ar

r

}
=

1√
a2 + s2

olup (2.40) eşitlĭginde yerine yazılırsa,

H1

{
d

dr

e−ar

r

}
=

−s√
a2 + s2

elde edilir.
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Örnek 2.4.5 a > 0 olmak üzere, f(r) = e−ar fonksiyonunun sıfırıncımertebeden Hankel

dönüşümü için tanım kullanılarak,

H0 {f(r)} =

∫ ∞
0

e−arrJ0(sr)dr

yazılır, bu eşitlik

H0 {f(r)} = − d

da

∫ ∞
0

e−arJ0(sr)dr = − d

da
H0

{
e−ar

r

}
şeklinde düzenlenir ve Örnek 2.4.1 kullanılırsa

H0

{
e−ar

}
= − d

da

(
1√

s2 + a2

)
=

a√
(s2 + a2)3

elde edilir.

Örnek 2.4.6 a > 0 olmak üzere, f(r) = e−ar
2
fonksiyonunun sıfırıncımertebeden Hankel

dönüşümü için

H0

{
e−ar

2
}

=

∫ ∞
0

e−ar
2

rJ0(sr)dr (2.41)

yazılıp burada J0(sr) Bessel fonksiyonunun (1.21) seri açılımında x = sr yazılırsa

J0(sr) =
∞∑
k=0

(
−1

4
(sr)2)k

k!Γ(k + 1)
=
∞∑
k=0

(−1)k
(
sr
2

)2k

(k!)2

olur ve böylece

H0

{
e−ar

2
}

=

∫ ∞
0

e−ar
2
∞∑
k=0

(−1)k
(
sr
2

)2k

(k!)2 rdr =
∞∑
k=0

(−1)k s2k

22k (k!)2

∫ ∞
0

e−ar
2

rr2kdr

oldŭgu görülür. Şimdi sırasıyla r2 = t ve at = m dönüşümleri uygulanırsa,

H0

{
e−ar

2
}

=
1

2

∞∑
k=0

(−1)k s2k

22k (k!)2

∫ ∞
0

e−attkdt

=
1

2

∞∑
k=0

(−1)k s2k

22k (k!)2

∫ ∞
0

e−m
(m
a

)k (1

a

)
dm

=
1

2

∞∑
k=0

(−1)k s2k

22k (k!)2

(
1

ak+1

∫ ∞
0

e−mmkdm

)
olur ve Gamma fonksiyonunun

Γ (z) =

∫ ∞
0

e−ttz−1dt
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tanımından yararlanılarak gerekli düzenlemeler yapıldı̆gında

H0

{
e−ar

2
}

=
1

2

∞∑
k=0

(−1)k s2k

22k (k!)2

1

ak+1
Γ (k + 1)

=
1

2

∞∑
k=0

(−1)k s2k

22k (k!)2

k!

ak+1

=
1

2

∞∑
k=0

(−1)k s2k

22k (k!) ak+1

=
1

2a

∞∑
k=0

(−1)k
(
s2

4a

)k
k!

elde edilir. Böylece e−ar
2
fonksiyonunun Hankel dönüşümü,

H0

{
e−ar

2
}

=
1

2a
e−

s2

4a (2.42)

elde edilir.

Özel olarak a = 1
2
alınırsa, f(r) = e−

r2

2 fonksiyonunun sıfırıncı mertebeden Hankel

dönüşümü

H0

{
e−

1
2
r2
}

=

∫ ∞
0

e−
r2

2 rJ0(sr)dr = e−
s2

2

olur.

Örnek 2.4.7 (Piessens 2010, p. 9/5) a > 0, ν > −1
2
için, f(r) =

 rν , r ≤ a

0 , r > a

fonksiyonunun ν. mertebeden Hankel dönüşümü için tanım yardımıyla

Hν {f(r)} =

∫ ∞
0

f(r)rJν (rs) dr

=

∫ a

0

rνrJν (rs) dr +

∫ ∞
a

0rJν (rs) dr

=

∫ a

0

rν+1Jν (rs) dr

yazılır ve burada rs = x dönüşümüyle,

Hν {f(r)} =

∫ as

0

(x
s

)ν+1

Jν (x)
1

s
dx =

1

sν+2

∫ as

0

xν+1Jν (x) dx (2.43)

elde edilir. Bessel fonksiyonunun için bilinen (1.30) băgıntısından

d

dx

{
xν+1Jν+1(x)

}
= xν+1Jν(x)
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olup (2.43) eşitlĭginde yerine yazıldı̆gında

Hν {f(r)} =
1

sν+2

∫ as

0

d

dx

(
xν+1Jν+1 (x)

)
dx

=
1

sν+2
xν+1Jν+1 (x)

∣∣as
0

=
1

sν+2
(as)ν+1 Jν+1 (as)

=
1

s
aν+1Jν+1 (as)

elde edilir.

Örnek 2.4.8 (Davies 2001, p.232) 0 < a < b ve ν > −1
2
olmak üzere,∫ ∞

0

Jν+1 (ar) Jν+1 (br)

r
dr (2.44)

integralini hesaplayabilmek için Örnek 2.4.7′den yararlanarak Fν(s) ve Gν(s) fonksiyonları

aşăgıdaki biçimde tanımlansın

Fν(s) =
Jν+1 (as)

s
ve Gν(s) =

Jν+1 (bs)

s
.

Bu durumda

f(r) =

 rν

aν+1
, r ≤ a

0 , r > a
ve g(r) =

 rν

bν+1
, r ≤ b

0 , r > b

olmak üzere, Hankel dönüşümü tanımından,

Fν(s) =
Jν+1 (as)

s
= Hν {f(r)} ,

Gν(s) =
Jν+1 (bs)

s
= Hν {g(r)}

olur. (2.44) integralini hesaplayabilmek için (2.35) Parseval băgıntısıkullanılırsa,∫ ∞
0

Jν+1 (as) Jν+1 (bs)

s
ds =

∫ ∞
0

sFν(s)Gν(s)ds

=

∫ ∞
0

rf(r)g(r)dr

olur ve buradan a < b için,∫ ∞
0

Jν+1 (as) Jν+1 (bs)

s
ds =

∫ a

0

r
rν

aν+1

rν

bν+1
dr

=
1

(ab)ν+1

∫ a

0

r(2ν+1)dr

=
1

(ab)ν+1

a(2ν+2)

2ν + 2

=
(a
b

)ν+1 1

2 (ν + 1)

elde edilir.
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Örnek 2.4.9 f(r) = δ (r − a) fonksiyonunun sıfırıncımertebeden Hankel dönüşümü için

H0 {f(r)} =

∫ ∞
0

rδ (r − a) J0 (sr) dr

olup Dirac delta fonksiyonunun∫ ∞
−∞

f(x)δ (x− x0) dx = f(x0)

özellĭginden (Kanwal 2004, p. 4) yararlanılırsa,

H0 {δ (r − a)} =

∫ ∞
0

rδ (r − a) J0 (sr) dr = aJ0 (as)

elde edilir.

Örnek 2.4.10 f(r) = sin ar
r

fonksiyonunun sıfırıncımertebeden Hankel dönüşümü için

tanımdan,

H0 {f(r)} =

∫ ∞
0

sin ar

r
rJ0 (sr) dr =

∫ ∞
0

sin arJ0 (sr) dr (2.45)

yazılır ve

e−iar = cos ar − i sin ar

− sin ar = Im e−iar

özdeşlĭgi kullanılırsa

H0 {f(r)} =

∫ ∞
0

sin arJ0 (sr) dr

= − Im

∫ ∞
0

e−iarJ0 (sr) dr

= − Im
1√

(ia)2 + s2

= − Im
1√

s2 − a2

=

 0, s > a

Im i√
a2−s2 , s < a

elde edilir. Buradan fonksiyonun sıfırıncımertebeden Hankel dönüşümü

H0

{
sin ar

r

}
=

 0 , s > a

1√
a2−s2 , s < a

olur.
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BÖLÜM 3

HANKEL DÖNÜŞÜMÜNÜN UYGULAMALARI

Bu bölümde Bessel diferansiyel operatörünün Hankel dönüşümü incelenecek, ardından

Hankel dönüşümünün bazısınır değer problemlerine uygulanmasına yer verilecektir.

3.1 BESSELDİFERANSİYELOPERATÖRÜNÜNHANKELDÖNÜŞÜMÜ

Bessel diferansiyel operatöratörü

∆ν =
d2

dr2
+

1

r

d

dr
−
(ν
r

)2

(3.1)

ile verilsin. (3.1) eşitliği ile verilen Bessel diferansiyel operatörü için f(r) fonksiyonu

lim
r→∞

f(r) = 0

özelliğine sahip keyfi bir fonksiyon olmak üzere

∆νf(r) =
d2f(r)

dr2
+

1

r

df(r)

dr
−
(ν
r

)2

f(r)

olup Hankel dönüşümü,

Hν {∆νf(r)} =

∫ ∞
0

(
d2f(r)

dr2
+

1

r

df(r)

dr
−
(ν
r

)2

f(r)

)
rJν(rs)dr

= Hν

{
d2f(r)

dr2

}
+Hν

{
1

r

df(r)

dr

}
−Hν

{
ν2

r2
f(r)

}
(3.2)

olur. (3.2) eşitliğinin sağ tarafındaki birinci terimi ele alınırsa,

Hν

{
d2f(r)

dr2

}
=

∫ ∞
0

d2f(r)

dr2
rJν(rs)dr

= rJν(rs)
df(r)

dr

∣∣∣∣∞
0

−
∫ ∞

0

d

dr
[rJν(rs)]

df(r)

dr
dr
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olup r →∞ için rJν(rs)→ 0 olduğundan,

Hν

{
d2f(r)

dr2

}
= −

∫ ∞
0

[Jν(rs) + srJ ′(rs)]
df(r)

dr
dr

= −
∫ ∞

0

(
1

r

df(r)

dr

)
rJν(rs)− s

∫ ∞
0

rJ ′(rs)
df(r)

dr
dr

= −
∫ ∞

0

(
1

r

df(r)

dr

)
rJν(rs)− s

{
rJ ′(rs)f(r)|∞0 −

∫ ∞
0

d

dr
[rJ ′(rs)] f(r)dr

}
= −Hν

{
1

r

df(r)

dr

}
+ s

∫ ∞
0

d

dr
[rJ ′(rs)] f(r)dr (3.3)

elde edilir. Şimdi, Jν(r) fonksiyonu (1.14) ile verilen Bessel diferansiyel operatörünün bir

çözümü olduğundan,

r
d2Jν(r)

dr2
+
dJν(r)

dr
+

(
1− ν2

r2

)
rJν(r) = 0

d

dr
(rJ ′(r)) +

(
1− ν2

r2

)
rJν(r) = 0

şeklinde yazılabilir ve r → rs için,

1

s

d

dr
(rsJ ′(rs)) +

(
1− ν2

s2r2

)
rsJν(sr) = 0

d

dr
(rJ ′(rs)) +

(
1− ν2

s2r2

)
rsJν(sr) = 0

d

dr
(rJ ′(rs)) = −

(
1− ν2

s2r2

)
rsJν(sr)

d

dr
(rJ ′(rs)) =

ν2

sr
Jν(sr)− rsJν(sr) (3.4)

elde edilir. Elde edilen (3.4) eşitliği (3.3) ifadesinde yerine yazılırsa,

Hν

{
d2f(r)

dr2

}
= −Hν

{
1

r

df(r)

dr

}
+ s

∫ ∞
0

(
ν2

sr
Jν(sr)− rsJν(sr)

)
f(r)dr (3.5)

elde edilir. (3.5) eşitliğinin sağ tarafındaki ikinci terim düzenlendiğinde,

s

∫ ∞
0

(
ν2

sr
Jν(sr)− rsJν(sr)

)
f(r)dr

= s

∫ ∞
0

ν2

sr
Jν(sr)f(r)dr − s

∫ ∞
0

rsJν(sr)f(r)dr

=

∫ ∞
0

ν2

r2
f(r)rJν(sr)dr − s2

∫ ∞
0

rJν(sr)f(r)dr

= Hν

{
ν2

r2
f(r)

}
− s2Fν(s)

olur ve (3.5) eşitliğinde yerine yazılırsa

Hν

{
d2f(r)

dr2

}
= −Hν

{
1

r

df(r)

dr

}
+Hν

{
ν2

r2
f(r)

}
− s2Fν(s)
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olur ve buradan (3.2) eşitliğinde yerine yazılırsa,

Hν {∆νf(r)} = Hν

{
d2f(r)

dr2

}
+Hν

{
1

r

df(r)

dr

}
−Hν

{
ν2

r2
f(r)

}
= −Hν

{
1

r

df(r)

dr

}
+Hν

{
ν2

r2
f(r)

}
− s2Fν(s)

+Hν

{
1

r

df(r)

dr

}
−Hν

{
ν2

r2
f(r)

}
Hν {∆νf(r)} = −s2Fν(s) (3.6)

elde edilir. Böylece Bessel diferansiyel operatörünün ν. mertebeden Hankel dönüşümü

(3.6) eşitliği ile elde edilmi̧s olur (Piessens 2010, p. 9/3).

3.2 ISI İLETİMİ

Isıdenklemi bir malzeme içindeki ısıtransferini tanımlar ve ısıtransferi alanında temel

bir denklemdir. Sabit termal iletkenlik durumunda genel ısıdenklemi,

∂2ν

∂x2
+
∂2ν

∂y2
+
∂2ν

∂z2
+
ėgen
k

=
1

α

∂ν

∂t
(3.7)

şeklinde yazılabilir. Burada α = k
ρc
malzemenin termal difüzyon katsayısıdır ve genellikle

birim hacim başına belirtilen ėgen ise ortamdaki ısıüretim hızını temsil eder. (3.7) ile

verilen genel ısıdenklemi Fourier-Biot denklemi olarak bilinir ve bu denklem durağan

durumda

∂2ν

∂x2
+
∂2ν

∂y2
+
∂2ν

∂z2
+
ėgen
k

= 0, (Poisson Denklemi)

zamana bağımlıve ısıüretimi olmayan durumda,

∂2ν

∂x2
+
∂2ν

∂y2
+
∂2ν

∂z2
=

1

α

∂ν

∂t
, (Difüzyon Denklemi)

durağan ve ısıüretimi olmayan durumda,

∂2ν

∂x2
+
∂2ν

∂y2
+
∂2ν

∂z2
= 0, (Laplace Denklemi)

formlarına indirgenir (Çengel and Ghajar 2015). Ayrıca (3.7) ile verilen genel ısıiletim

denklemi

x = r cosϕ, y = r sinϕ, z = z
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koordinat dönüşümü ile düzenlenirse,

1

r

∂

∂r

(
kr
∂ν

∂r

)
+

1

r2

∂

∂ϕ

(
k
∂ν

∂ϕ

)
+

∂

∂z

(
k
∂ν

∂z

)
+ ėgen = ρc

∂ν

∂t
(3.8)

eşitliği ile silindirik koordinatlarda ifade edilir. Buradan yola çıkarak dairesel bir diskte

verilen ısıiletim problemi aşağıdaki şekilde ele alınsın.

z = 0 düzlemindeki a yarıçaplı dairesel bir diskten, z > 0 yarı sonsuz uzayına birim

alana birim zamanda sabit bir Q hızıyla yayılmasıdurumu ele alınacaktır. Burada diskin

dı̧sında kalan z = 0 düzleminin yalıtılmı̧s olduğu kabul edilecektir. Alanın ısıiletkenlik

katsayısıκ ve sıcaklık fonksiyonu ν(r, z) olmak üzere, sınır koşulları

−κ∂ν(r, z)

∂z
= Q, r < a, z = 0 (3.9)

−κ∂ν(r, z)

∂z
= 0, r > a, z = 0 (3.10)

olarak verilir. (3.8) genel ısı iletim denkleminden, durağan ve ısıüretimi olmayan du-

rumda, ∂ν
∂t

= 0, ėgen = 0 olduğundan

1

r

∂

∂r

(
r
∂v

∂r

)
+

∂

∂z

(
∂v

∂z

)
= 0

1

r

(
∂v

∂r
+ r

∂2v

∂r2

)
+

∂

∂z

(
∂v

∂z

)
= 0

∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2
= 0 (3.11)

denklemi elde edilir. Şimdi (3.11) denkleminin her iki tarafının sıfırıncımertebeden Hankel

dönüşümü alındı̆gında,

H0

{
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

}
=

∫ ∞
0

(
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

)
rJ0 (sr) dr

=

∫ ∞
0

(
∂2v

∂r2
+

1

r

∂v

∂r

)
rJ0 (sr) dr +

∫ ∞
0

∂2v

∂z2
rJ0 (sr) dr

= −s2V (s, z) +

∫ ∞
0

∂2v

∂z2
rJ0 (sr) dr

= −s2V (s, z) +
∂2

∂z2

∫ ∞
0

vrJ0 (sr) dr

= −s2V (s, z) +
∂2

∂z2
V

=

(
∂2

∂z2
− s2

)
V (s, z)

= 0
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adi diferansiyel denklemi elde edilir. Burada V (s, z) fonksiyonu v(r, z) fonksiyonunun

sıfırıncımertebeden Hankel dönüşümü,

V (s, z) =

∫ ∞
0

v(r, z)rJ0 (sr) dr,

olup elde edilen(
∂2

∂z2
− s2

)
V (s, z) = 0

ikinci mertebeden lineer diferansiyel denkleminin genel çözümünün

V (s, z) = c1(s)esz + c2(s)e−sz

olduğu görülür. Şimdi, bu genel çözümden (3.9) ve (3.10) ile verilen sınır koşullarını

sağlayan bir özel çözüm araştırılacaktır. Diskin dı̧sında kalan z = 0 düzleminin yalıtılmı̧s

olmasından

V (s, 0) =

∫ ∞
0

v(r, 0)rJ0 (sr) dr

=

∫ a

0

v(r, 0)rJ0 (sr) dr +

∫ ∞
a

v(r, 0)rJ0 (sr) dr

=

∫ a

0

v(r, 0)rJ0 (sr) dr

yazılabilir. (3.9) ve (3.10) ile verilen sınır koşullarından

∂V

∂z
(s, 0) =

∂

∂z

∫ a

0

v(r, 0)rJ0 (sr) dr

−κ∂V
∂z

(s, 0) = −κ
∫ a

0

∂v

∂z
(r, 0)rJ0 (sr) dr

=

∫ a

0

−κ∂v
∂z

(r, 0)rJ0 (sr) dr

=

∫ a

0

QrJ0 (sr) dr

= Q

∫ a

0

d

dr

(r
s
J1 (sr)

)
dr

= Q
a

s
J1 (sa) (3.12)

olur.

z →∞ iken V (s, z) sonlu olduğundan c1 = 0 olacağından

V (s, z) = c2e
−sz

∂V (s, z)

∂z
= −sc2e

−sz
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yazılabilir ve z = 0 için

∂V

∂z
(s, 0) = −sc2

−κ∂V
∂z

(s, 0) = κsc2

olur. Bu durumda (3.12) eşitliğinden

κsc2 = Q
a

s
J1 (sa)

c2(s) =
Qa

κs2
J1 (sa)

elde edilir. Böylece V (s, z) özel çözümünün

V (s, z) =
Qa

κs2
J1 (sa) e−sz (3.13)

olduğu görülür. (3.13) eşitliğinin her iki tarafına ters Hankel dönüşümü uygulandı̆gında,

ele alınan ısıiletimi probleminin istenen çözümü

v(r, z) =

∫ ∞
0

V (s, z)sJ0 (sr) ds

=

∫ ∞
0

(
Qa

κs2
J1 (sa) e−sz

)
sJ0 (sr) ds

v(r, z) =
Qa

κ

∫ ∞
0

1

s
e−szJ1 (sa) J0 (sr) ds (3.14)

olarak elde edilir (Piessens 2010, p. 9/7).

0 < r < 1 ve 0 < z < 0.1 olmak üzere, Q = 0.1, a = 0.5, κ = 0.026 alınarak, (3.14)

fonksiyonunun grafĭgi Şekil 3.1’de gösterilmi̧stir.
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Şekil 3.1 Isıiletimi problemi için v(r, z) çözümü.
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3.3 ELEKTRİK YÜKLÜ DİSK

Yarıçapıbir birim, merkezi üç boyutlu uzaydaki orijininde ve ekseni z-ekseni olan elektrik

yüklü düz dairesel bir disk tarafından üretilen elektrik potansiyel, v(r, z) olsun.

Kutupsal koordinatlarda potansiyel

∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2
= 0 (3.15)

Laplace denkleminini ve

v(r, z) = v0, 0 ≤ r < 1, z = 0

∂v(r, z)

∂z
= 0, r > 1, z = 0

(3.16)

sınır koşullarınısağlar. Burada v0 diskin potansiyelidir. Bir önceki bölümde olduğu gibi

H0

{
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

}
= −s2V (s, z) +

∂2

∂z2
V (s, z) (3.17)

bulunur, burada

V (s, z) = H0 {v(r, z)} =

∫ ∞
0

v(r, z)rJ0 (sr) dr.

Bu durumda (3.15) denkleminin her iki tarafının sıfırıncımertebeden Hankel dönüşümü

alınırsa,

H0

{
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

}
= H0 {0}

−s2V (s, z) +
∂2

∂z2
V (s, z) = 0(

∂2

∂z2
− s2

)
V (s, z) = 0

elde edilir. Bu denklemin V (s, z) genel çözümü

V (s, z) = c1(s)esz + c2(s)e−sz

olup z →∞ iken V (s, z)→ 0 olduğundan c1 = 0 elde edilir ve

V (s, z) = c2(s)e−sz (3.18)

yazılabilir. (3.18) eşitliğinden, (2.19) ile verilen ters Hankel dönüşümünün tanımıkul-

lanılarak,

v(r, z) =

∫ ∞
0

V (s, z)sJ0 (sr) ds

=

∫ ∞
0

c2(s)e−szsJ0 (sr) ds (3.19)
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eşitliği yazılır. Problemin çözümü için (3.16) sınır koşullarıdikkate alınırsa,

v(r, 0) =

∫ ∞
0

c2(s)sJ0 (sr) ds, 0 ≤ r < 1

v0 =

∫ ∞
0

c2(s)sJ0 (sr) ds

ve

∂v

∂z
(r, 0) =

∂

∂z

(∫ ∞
0

c2e
−szsJ0 (sr) ds

)∣∣∣∣
z=0

, r > 1

0 = −
∫ ∞

0

c2(s)s2J0 (sr) ds

elde edilir. Bu sınır koşullarından, Hankel dönüşüm çizelge (Ek A) yardımıyla

c2(s) =
2v0

π

sin s

s2

olarak bulunur. Buradan (3.19) eşitliğinde c2 yerine yazılırsa, istenilen

v(r, z) =
2v0

π

∫ ∞
0

sin s

s
e−szJ0 (sr) ds (3.20)

çözümü elde edilir (Piessens 2010, p. 9/6).

0 < r < 3 ve 0 < z < 3 olmak üzere, v0 = 1 alınarak, (3.20) fonksiyonunun grafĭgi Şekil

3.2’de gösterilmi̧stir.
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Şekil 3.2 Elektrik yüklü disk problemi için v(r, z) çözümü.
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3.4 BİR ELEKTROSTATİK PROBLEM

z = ±l de bulunan iki yalıtılmı̧s yatay plaka arasında r = z = 0 noktasındaki bir q

noktasal yükü tarafından üretilen elektrostatik potansiyel orijin noktasında tekil davranı̧s

gösterir. Bu davranı̧sıveren denklem

υ(r, z) = φ(r, z) + q(r2 + z2)−
1
2 (3.21)

şeklindedir, burada φ(r, z) fonksiyonu polar koordinatlardaki

∇2φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2
= 0 (3.22)

Laplace denklemini sağlar ve sınır koşulları

φ(r,±l) + q(r2 + l2)−
1
2 = 0 (3.23)

şeklinde ifade edilir. (3.22) denkleminin her iki tarafının sıfırıncı mertebeden Hankel

dönüşümü alınırsa,

H0

{
∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2

}
=

∂2

∂z2
Φ(s, z)− s2Φ(s, z)

=

(
∂2

∂z2
− s2

)
Φ(s, z)

= 0

denklemi elde edilir, burada

Φ(s, z) = H0 {φ(r, z)} =

∫ ∞
0

φ(r, z)rJ0 (sr) dr.

Bu denklemin genel çözümü

Φ(s, z) = c1e
sz + c2e

−sz

olup (3.23) sınır koşullarıdikkate alındı̆gında Hankel dönüşüm tablosu (Ek A) yardımıyla

Φ(s,±l) =

∫ ∞
0

φ(r,±l)rJ0 (sr) dr

= −
∫ ∞

0

q(r2 + l2)−
1
2 rJ0 (sr) dr

= −qe
−sl

s
(3.24)

olduğu görülür ve genel çözümden

Φ(s,±l) = c1(s)e±ls + c2(s)e∓ls (3.25)
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yazılabilir. Bu durumda (3.24) ve (3.25) eşitliklerinden,

c1e
±ls + c2e

∓ls = −qe
−sl

s

c1e
sl + c2e

−sl = −qe
−sl

s

c1e
−sl + c2e

sl = −qe
−sl

s

c1(s) = c2(s) = − qe−sl

2s cosh(sl)

olur ve buradan

Φ(s, z) = −qe
−sl cosh(sz)

s cosh(sl)
(3.26)

elde edilir. Böylece ters Hankel dönüşümü tanımıkullanılarak,

φ(r, z) = H−1
0 {Φ(s, z)}

=

∫ ∞
0

(
−qe

−sl cosh(sz)

s cosh(sl)

)
sJ0(sr)ds

= −q
∫ ∞

0

e−sl cosh(sz)

cosh(sl)
J0(sr)ds

elde edilir. Elde edilen φ(r, z) fonksiyonu (3.21) eşitliğinde yerine yazıldı̆gında,

υ(r, z) = φ(r, z) + q(r2 + z2)−
1
2

= −q
∫ ∞

0

e−sl cosh(sz)

cosh(sl)
J0(sr)ds+ q(r2 + z2)−

1
2

elde edilir (Piessens 2010, p. 9/8).
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EK AÇIKLAMALAR 

 

EK A: Hankel Dönüşüm Tabloları 

 

Çizelge A.1 Hankel Dönüşüm Tablosu (Sıfırıncı mertebeden) 

𝑓(𝑟) 𝐻0{𝑓(𝑟)} = 𝐹0(𝑠) 

1

𝑟
 

1

𝑠
 

                           𝑟−𝜇,    
1

2
< 𝜇 < 2 21−𝜇

Γ(1 −
𝜇
2)

Γ(
𝜇
2)

1

𝑠2−𝜇
 

ℎ(𝑎 − 𝑟) 
𝑎

𝑠
𝐽1(𝑎𝑠) 

𝑒−𝑎𝑟 

 

𝑎

(𝑠2 + 𝑎2)
3
2

 

𝑒−𝑎𝑟

𝑟
 

1

√𝑠2 + 𝑎2
 

1 − 𝑒−𝑎𝑟

𝑟2
 𝑙𝑜𝑔 (

𝑎 + √𝑠2 + 𝑎2

𝑠
) 
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𝑙𝑜𝑔 (1 +
𝑎2

𝑟2) 
2

𝑠
[
1

𝑠
− 𝑎𝐾1(𝑎𝑠)] 

𝑠𝑖𝑛𝑟

𝑟
 

1

√1 − 𝑠2
,    𝑠 < 1

0,    s˃1

 

𝑠𝑖𝑛𝑟

𝑟2
 

𝜋

2
,         𝑠 ≤ 1

𝑎𝑟𝑐𝑠𝑖𝑛
1

𝑠
,       𝑠 > 1

 

sin (𝑎𝑟)

𝑟2 + 𝑏2
 

𝜋

2
𝑒−𝑎𝑏𝐼0(𝑏𝑠),       0 < 𝑠 < 𝑎 

cos (𝑎𝑟)

𝑟2 + 𝑏2
 cos ℎ(𝑎𝑏) 𝐾0(bs),       𝑎 < 𝑠 < ∞ 

𝑒−𝑎2𝑟2
 

𝑒−𝑠2/4𝑎2

2𝑎2
 

1

𝑟(𝑟 + 𝑎)
 

𝜋

2
[𝐇𝟎(as) − Y0(𝑎𝑠)] 

1

𝑟2 + 𝑎2
 𝐾0(𝑎𝑠) 

1

𝑟(𝑟2 + 𝑎2)
 

𝜋

2𝑎
[I0(as) − 𝐋𝟎(𝑎𝑠)] 

1

1 + 𝑟4
 −Kei(s) 
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𝑟3

1 + 𝑟4
 𝐾𝑒𝑟(𝑠) 

1

√𝑟2 + 𝑎2
 

𝑒−𝑎𝑠

𝑠
 

1

√𝑟4 + 𝑎4
 𝐾0(𝑎𝑠/√2)𝐽0(𝑎𝑠/√2) 

1 − 𝐽0(𝑎𝑟)

𝑟2
 

𝑙𝑜𝑔
𝑎

𝑠
,     𝑠 ≤ 𝑎

0,          𝑠 ≥ 𝑎

 

𝑎

𝑟
𝐽1(𝑎𝑟) 

1,    0 < 𝑠 < 𝑎

0  ,     𝑠 > 𝑎
 

1

𝑟
𝐽0(2√𝑎𝑟) 

1

𝑠
𝐽0 (

𝑎

𝑠
) 
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Çizelge A.2 Hankel Dönüşüm Tablosu (v. mertebeden) 

𝑓(𝑟) 𝐻𝑣{𝑓(𝑟)} = 𝐹𝑣(𝑠) 

1

𝑟
 

1

𝑠
 

                           𝑟−𝜇,    
1

2
< 𝜇 < 𝑣 + 2 

21−𝜇

𝑠2−𝜇

Γ(
𝑣 + 2 − 𝜇

2
)

Γ(
𝑣 + 𝜇

2 )
 

𝑥𝑣(𝑎2 − 𝑟2)𝜇ℎ(𝑎 − 𝑟),   𝜇 > −1 2𝜇𝑎𝜇+𝑣+1𝑠−𝜇−1Γ(𝜇 + 1)𝐽𝑣+𝜇+1(𝑎𝑠) 

𝑠𝑖𝑛𝑎𝑟

𝑟
 

1

√𝑠2 − 𝑎2
sin (𝑣 𝑎𝑟𝑐 sin (

𝑎

𝑠
)) ,               𝑠 > 𝑎

cos (
𝑛𝑣

2
)

1

√𝑎2 − 𝑠2

𝑠𝑣

(𝑎 + √𝑎2 − 𝑠2)
𝑣 ,    𝑠 < 𝑎

 

𝑠𝑖𝑛𝑎𝑟

𝑟2
 

𝑠𝑣𝑣−1

(𝑎 + √𝑎2 − 𝑠2)
𝑣 sin

𝑣𝜋

2
,    𝑠 ≤ 𝑎

𝑣−1 sin (𝑣 𝑎𝑟𝑐 sin (
𝑎

𝑠
)) ,    𝑠 > 𝑎

 

𝑒−𝑎𝑟

𝑟
 

(√𝑠2 + 𝑎2 − 𝑎)
𝑣

𝑠𝑣√𝑠2 + 𝑎2
 

𝑒−𝑎𝑟

𝑟2
 

(√𝑠2 + 𝑎2 − 𝑎)
𝑣

𝑣𝑠𝑣
 

𝑟𝑣−1𝑒−𝑎𝑟 
(2𝑠)𝑣Γ(𝑣 + 1/2)

((𝑠2 + 𝑎2)𝑣+1/2√𝜋)
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𝑟𝑣𝑒−𝑎𝑟 
2𝑎(2𝑠)𝑣Γ(𝑣 + 3/2)

(𝑠2 + 𝑎2)𝑣+3/2√𝜋
 

𝑒−𝑎2𝑟2
𝑟𝑣 

𝑠𝑣

(2𝑎2)𝑣+1
𝑒𝑥𝑝 (−

𝑠2

4𝑎2) 

𝑒−𝑎2𝑟2
𝑟𝜇 

Γ((𝑣 + 𝜇 + 2)/2) (
1
2

𝑠
𝑎

)
𝑣

2𝑎𝜇+2Γ(𝑣 + 1)
x1𝐹1 (

𝑣 + 𝜇 + 2

2
;

𝑣 + 1; −
𝑠2

4𝑎2

) 

𝑟𝑣

(𝑟2 + 𝑎2)𝜇+1
 

𝑠𝜇𝑎𝑣−𝜇

2𝜇Γ(𝜇 + 1)
𝐾𝑣−𝜇(𝑎𝑠) 

𝑟𝑣+2

(𝑟4 + 4𝑎4)𝑣+
1
2

 
(

1
2 𝑠)

𝑣

√π

2(2𝑎)2𝑣−2Γ (𝑣 +
1
2)

𝐽𝑣−1(𝑎𝑠)𝐾𝑣−1(𝑎𝑠) 

𝑟𝜇−𝑣𝐽𝜇(𝑎𝑟) 

0,                        0 < 𝑠 < 𝑎

2𝜇−𝑣+1𝑎𝜇(𝑠2 − 𝑎2)𝑟−𝜇−1

𝑠𝑣Γ(v − 𝜇)
 ,         𝑎 < 𝑠

 

 

Çizelge A.1’de Hankel dönüşümünün v=0 durumunu ifade eder. Tablo A.2’de Hankel 

dönüşümünün v. mertebeden genel durumunu ifade eder. Bu tablolarda  ℎ(𝑥) birim adım 

fonksiyonudur. I𝑣 ve 𝐾𝑣 değiştirilmiş Bessel fonksiyonlardır, 𝐋𝟎 ve 𝐇𝟎 Struve fonksiyonlardır 

ve 𝐾𝑒𝑟 ve 𝐾𝑒𝑖 Kelvin fonksiyonlarıdır (Abramowitz and Stegun 1965). 
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