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COMPARATIVE ANALYSIS OF PREDICTIVE MODELS FOR  

ENERGY CONSUMPTION IN ELECTRIC VEHICLES 

SUMMARY 

This study investigates energy consumption prediction for electric vehicles (EVs), a 

critical area of study to address challenges like range anxiety and improve the 

efficiency of EVs in real world conditions. Limitations in range estimate and energy 

management that prevent EVs from being widely adopted must be addressed as EVs 

become more and more important in lowering greenhouse gas emissions and reducing 

dependency on fossil fuels. This study evaluates the performance of three advanced 

machine learning models Support Vector Regression (SVR), eXtreme Gradient 

Boosting (XGBoost) and Long Short-Term Memory (LSTM) networks, using real 

world data to develop accurate predictive models for energy consumption. 

The analysis is based on the Vehicle Energy Dataset (VED), which provide a 

comprehensive set of energy and driving statistics from several car models, including 

hybrid, plug-in hybrid and battery electric vehicles. The dataset, collected over a year 

in diverse driving conditions, includes key parameters such as GPS trajectories, speed, 

state of charge (SOC) and ambient temperature factors. Its comprehensive nature 

ensures the applicability of the models developed in this study to real world scenarios. 

A detailed methodology was employed, starting with rigorous data preprocessing to 

ensure the quality and consistency of the dataset. This involved steps such as cleaning, 

normalization and feature selection, which are crucial for optimizing the performance 

of the machine learning models. Each of the three models selected for this study offers 

unique advantages: SVR effectively captures both linear and nonlinear relationships; 

XGBoost excels in handling feature interactions and structured data and LSTM 

networks are well suited for analyzing time series data and identifying sequential 

dependencies. 

The findings indicate the potential of machine learning approaches to estimate EV 

energy use with high accuracy. These predictions not only mitigate range anxiety but 

also enable the development of adaptive energy management systems that optimize 

battery performance and improve overall user experience. These developments also 

help EV customers make accurate decisions about charging and route planning. 

This research highlights the importance of integrating high quality datasets like VED 

with robust machine learning models to advance EV technology. This research 

advances the larger objective of developing an efficient and sustainable transportation 

system by addressing current problems in energy forecasting. Future work could focus 

on enhancing hybrid model approaches, expanding datasets to include more diverse 

driving conditions and developing real time adaptable prediction systems, significantly 

closing the gap between existing constraints and the expanding demands of EV 

adoption. 
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ELEKTRİKLİ ARAÇLARDA ENERJİ TÜKETİMİ  

TAHMİNLEME MODELLERİNİN KARŞILAŞTIRMALI ANALİZİ 

ÖZET 

Bu tez elektrikli araçlar için enerji tüketimi tahminini araştırmakta ve menzil kaygısı 

zorluklarının üstesinden gelmek ve elektrikli araçların gerçek dünya koşullarındaki 

verimliliğini artırmak için kritik bir çalışma alanına odaklanmaktadır. Elektrikli 

araçlar, sera gazı emisyonlarını azaltmak ve fosil yakıtlara bağımlılığı azaltmak için 

giderek daha önemli bir rol oynamaktadır. Ancak, menzil tahmini ve enerji 

yönetimindeki sınırlamalar elektrikli araçların daha geniş çapta benimsenmesini 

engellemektedir. Bu çalışmada, elektrikli araçların enerji tüketimini tahmin etmek için 

makine öğrenimi modelleri geliştirilmiş ve performansları karşılaştırılmıştır. 

Çalışmada, Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost) 

ve Long Short-Term Memory (LSTM) olmak üzere üç farklı makine öğrenimi modeli 

kullanılmış ve enerji tüketimini tahmin etme yetenekleri değerlendirilmiştir.  

Model geliştirme sürecinde, gerçek dünya sürüş verilerini içeren Vehicle Energy 

Dataset (VED) kullanılmıştır. Bir yıl boyunca farklı sürüş koşullarında toplanan bu 

veri seti GPS rotaları, hız, şarj seviyesi ve ortam sıcaklığı gibi temel parametreleri 

içermektedir. Veri setinin kapsamlı yapısı, bu çalışmada geliştirilen modellerin gerçek 

dünya senaryolarına uygulanabilirliğini sağlamaktadır. Araç hızı, ortam sıcaklığı, 

iklimlendirme sistemlerinin enerji tüketimi, batarya gerilimi ve batarya akımı gibi 

değişkenler veri setinde yer almakta olup enerji tüketimi tahmin modellerinin eğitimi 

için temel giriş değişkenleri olarak kullanılmıştır. 

Çalışmada, elektrikli araçların enerji tüketimini belirlemek amacıyla batarya akımı ve 

batarya gerilimi kullanılarak enerji tüketimi hesaplamaları yapılmıştır. Elektrikli 

araçlarda anlık güç tüketimi, batarya gerilimi ve batarya akımının çarpımı ile 

hesaplanmaktadır. Anlık güç tüketiminin belirlenmesi, belirli bir süre boyunca enerji 

tüketimini hesaplamak için temel bir adımdır. Enerji tüketimi, anlık güç değerlerinin 

zaman ile integrali alınarak hesaplanmıştır. Çalışmada kullanılan VED veri setinde 

batarya gerilimi ve akım değerleri belirli aralıklarla kaydedildiğinden, enerji tüketimi 

hesaplaması gerçekleştirilmiştir. 

Çalışmada, veri temizleme, normalizasyon ve özellik seçimi gibi adımları içeren 

kapsamlı bir veri ön işleme süreci gerçekleştirilmiştir. Eksik veya hatalı veriler 

temizlenmiş, özellik mühendisliği teknikleri ile model performansını artıracak 

değişkenler belirlenmiştir. Veri temizleme aşamasında, eksik ve hatalı veriler tespit 

edilerek uygun yöntemlerle işlenmiştir. Veri temizleme işlemi sırasında ayrıca kopya 

kayıtların kaldırılması ve aykırı değerlerin tespit edilerek model performansını 

olumsuz etkileyebilecek girdilerin veri setinden çıkarılması sağlanmıştır. 

Özellik mühendisliği aşamasında, modelin tahmin doğruluğunu artırmaya yardımcı 

olacak en önemli değişkenler belirlenmiş. Bu süreçte, değişkenler arasındaki 
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korelasyon analizleri yapılarak, gereksiz veya yüksek korelasyonlu değişkenler 

elenmiş, modelde aşırı öğrenmeyi engellemek adına yalnızca anlamlı değişkenler 

kullanılmıştır.  

Veri setinin eğitim ve test verisi olarak bölünmesi aşamasında, modelin genelleme 

yeteneğinin doğru bir şekilde değerlendirilebilmesi için veri seti %80 eğitim ve %20 

test oranında bölünmüştür. Veri bölme işlemi, rastgele seçilen veriler yerine zaman 

serisi analizine uygun bir şekilde yapılmış, böylece eğitim verilerinin gelecekteki test 

verileriyle zaman açısından örtüşmemesi sağlanmıştır. Ek olarak, model doğruluğunu 

daha iyi ölçebilmek için çapraz doğrulama yöntemi uygulanmış ve 5-katlı çapraz 

doğrulama süreci kullanılarak modelin farklı veri bölümlerindeki performansı test 

edilmiştir. 

Her model, tahmin doğruluğunu artırmak amacıyla hiperparametre optimizasyonu 

sürecinden geçirilmiş ve en iyi performansa ulaşacak şekilde ayarlanmıştır. 

Hiperparametre optimizasyonu, modelin öğrenme sürecinde en iyi parametre 

kombinasyonunu belirleyerek tahmin doğruluğunu artırmayı amaçlamaktadır. Bu 

süreçte Grid Search ve Random Search gibi yaygın kullanılan teknikler uygulanmıştır. 

SVR modeli için çekirdek tipi, düzenleme parametresi ve hata toleransı gibi kritik 

hiperparametreler optimize edilmiştir. Grid Search yöntemi kullanılarak RBF (Radial 

Basis Function) ve lineer çekirdek seçenekleri test edilmiş, optimum düzenleme 

parametresi ve hata toleransı değerleri belirlenmiştir. Modelin aşırı öğrenmemesi için 

uygun çekirdek fonksiyonu seçilmiş ve çapraz doğrulama ile modelin genelleme 

yeteneği test edilmiştir. 

XGBoost modeli için öğrenme oranı, maksimum derinlik, ağaç sayısı ve alt örnekleme 

oranı gibi hiperparametreler optimize edilmiştir. Random Search yöntemi kullanılarak 

geniş bir hiperparametre alanı taranmış ve en iyi parametre kombinasyonu 

belirlenmiştir. Modelin aşırı uyum göstermesini engellemek için erken durdurm kriteri 

uygulanmış ve optimum iterasyon sayısı belirlenerek modelin performansı 

artırılmıştır. 

LSTM modeli için gizli katman sayısı, nöron sayısı, öğrenme oranı, optimizasyon 

fonksiyonu ve toplu işleme boyutu gibi hiperparametreler optimize edilmiştir. LSTM 

modelinin zaman serisi verilerine uyumunu en iyi hale getirmek için Adam algoritması 

seçilmiş, en düşük hata değerlerini veren öğrenme oranı seçilmiştir. Modelin daha 

verimli öğrenebilmesi için geri yayılım sürecinde sönümleme ve L2 düzenleme 

teknikleri kullanılarak aşırı öğrenme önlenmiştir. 

Tüm modellerde hiperparametre optimizasyonu uygulanarak en iyi kombinasyonlar 

belirlenmiş ve tahmin doğruluğu maksimize edilmiştir. Çapraz doğrulama ile test 

edilen bu modellerin performansı, R², RMSE ve MAE gibi metrikleri ile 

değerlendirilmiş ve elde edilen sonuçlara göre en başarılı model belirlenmiştir. 

Elde edilen sonuçlara göre, LSTM modeli zaman serisi verilerindeki bağımlılıkları 

başarılı bir şekilde yakalayarak en yüksek doğruluk oranına ulaşmıştır LSTM 

modelinin en iyi performansı sergilemesinin temel sebebi, zaman serisi verilerinde 

bağımlılıkları başarılı bir şekilde öğrenebilme yeteneğidir. Elektrikli araçların enerji 

tüketimi, zamana bağlı değişkenleri içeren bir süreçtir. Araç hızındaki değişimler ve 
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ortam sıcaklığı gibi faktörler geçmiş değerleriyle doğrudan ilişkilidir. LSTM, geçmiş 

zamandaki girdileri hatırlayarak enerji tüketimi tahmininde daha iyi bir genelleme 

sağlayabilir. Bu özellik, özellikle araç hızındaki değişimlerin enerji tüketimi 

üzerindeki etkisini değerlendirme noktasında kritik bir avantaj sunar. 

XGBoost modeli ise ağaç tabanlı bir model olup, değişkenler arasındaki ilişkileri 

öğrenmede oldukça etkilidir, ancak zaman serisi verilerindeki ardışık bağımlılıkları 

doğrudan modelleyemez. XGBoost, veriler arasında güçlü korelasyonları yakalayarak 

tahmin doğruluğunu artırabilir, ancak zamanla değişen dinamik ilişkileri doğrudan 

modelleyemez. Bununla birlikte, değişkenlerin belirli anlık kombinasyonlarına bağlı 

olarak enerji tüketimi değişimlerini iyi bir şekilde yakalayabilir, ancak geçmiş 

değerleri hesaba katmada LSTM kadar etkili değildir. 

SVR modeli ise doğrusal ve doğrusal olmayan ilişkileri belirli bir düzeye kadar 

öğrenebilse de, yüksek boyutlu ve karmaşık zaman serisi verilerinde yeterince esnek 

değildir. SVR, belirli çekirdek fonksiyonları ile doğrusal olmayan yapıları 

modelleyebilir, ancak verilerdeki uzun süreli bağımlılıkları ve zamana bağlı 

değişimleri doğrudan öğrenme kapasitesi sınırlıdır. Ayrıca, SVR veri ölçeğine oldukça 

duyarlı olduğu için geniş veri setlerinde ve değişkenler arası etkileşimlerin yoğun 

olduğu durumlarda, genelleme konusunda yetersiz kalmaktadır. 

Bu çalışma, makine öğrenimi modellerinin elektrikli araçların enerji tüketimini tahmin 

etme konusundaki etkinliğini ortaya koymuştur. Özellikle LSTM modelinin zaman 

bağımlı verileri başarılı bir şekilde işleyerek en iyi sonuçları verdiği gösterilmiştir. 

Geliştirilen modellerin doğru enerji tüketimi tahminleri yapabilmesi, elektrikli araç 

kullanıcılarının daha güvenilir menzil tahminleri elde etmelerine ve rota 

planlamalarını daha bilinçli yapmalarına olanak sağlamaktadır. Ayrıca, bu tahminlerin 

batarya yönetim sistemleri ile entegre edilerek, elektrikli araçların şarj sürelerinin 

optimize edilmesine ve şebeke yükünün daha iyi yönetilmesine katkı sağlayacaktır. 

Sonuç olarak, tez kapsamında geliştirilen makine öğrenimi modelleri, elektrikli 

araçların enerji tüketimini tahmin etme sürecinde güçlü ve etkili araçlar olarak 

değerlendirilmiştir. Özellikle LSTM modeli, zaman serisi verileriyle çalışmada üstün 

performans sergileyerek enerji tüketimi tahmininde en doğru sonuçları elde etmiştir. 

Çalışmada geliştirilen modeller, EV teknolojisinin daha geniş bir kullanıcı kitlesine 

yayılmasını sağlayacak doğru menzil tahmini ve enerji yönetimi sistemleri için önemli 

bir temel oluşturmaktadır. Gelecekte yapılacak çalışmalar, daha büyük ve çeşitli veri 

kümeleri kullanarak tahmin doğruluğunu artırmaya, hibrit modelleme tekniklerini 

uygulamaya ve gerçek zamanlı enerji tahmin sistemlerini daha geniş çapta 

uygulamaya odaklanmalıdır. Bu doğrultuda yapılan çalışmalar, elektrikli araçların 

kullanım verimliliğini artırarak sürdürülebilir ulaşım sistemlerinin yaygınlaşmasına 

katkı sağlamaktadır. 
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1 

 INTRODUCTION 

The growing adoption of electric vehicles (EVs) is a critical element in global 

strategies aimed at reducing greenhouse gas emissions and transitioning to sustainable 

transportation system (Ullah et al., 2022). Despite their environmental benefits 

significant barrier to widespread EV acceptance remains range anxiety drivers’ fear of 

insufficient battery charge to complete their journey (J. Wang, 2016). This challenge 

is rooted in the limited driving range of current EV models and the variability of real 

world driving conditions, which can complicate range estimation. 

While extensive research has been conducted on EV energy consumption and 

prediction, there is a pressing need for experimental comparisons of model based and 

data driven prediction techniques (Shen, Zhou, Yu, et al., 2023). To address this gap, 

this thesis focuses on a comparative analysis of different methodologies for predicting 

EV energy consumption using real world data. By evaluating the performance and 

accuracy of these approaches, the study aims to identify the most effective methods 

for energy consumption prediction. 

 Electric Vehicles 

EVs are increasingly being recognized as a sustainable alternative to conventional 

internal combustion engine (ICE) vehicles. Their adoption is driven by a combination 

of environmental, economic and policy related factors. EVs have the potential to 

significantly reduce greenhouse gas emissions and dependence on fossil fuels, aligning 

with global efforts to combat climate change (Krogh et al., 2015). The switch to EVs 

has been further accelerated by government incentives, emissions reduction laws, 

rising fuel prices and increased environmental awareness (Adnane et al., 2023; Skuza 

& Jurecki, 2022). 

Key advantages of EVs include their lower carbon footprint, increased energy 

efficiency and operational benefits. EVs produce zero tailpipe emissions and offer 

advanced features such as energy recuperation and a near ideal speed-torque profile, 
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which contribute to their overall efficiency (Yuan et al., 2024). However, despite these 

benefits several challenges impede their widespread adoption. 

A significant limitation is the restricted driving range of EVs, which is constrained by 

current battery capacities when compared to the ranges of traditional ICE vehicles (J. 

Wang, 2016). Infrastructure and charging time are other problems. EVs require 

considerably longer charging times than the refueling times for conventional vehicles 

and the number of available charging stations is still limited compared to gas stations 

(J. Wang, 2016). These challenges collectively impact drivers’ acceptance of EVs and 

hinder their widespread adoption. 

To address these challenges, researchs have focused on several key areas. Improving 

energy efficiency through optimized vehicle components and driving strategies is a 

critical area of development. Accurate energy consumption prediction models are 

being developed to provide real time estimations of energy usage (X. Xu et al., 2019; 

J. Zhang et al., 2020). Route planning algorithms aim to identify the most energy 

efficient paths for EVs, while advancements in battery technology seek to increase 

driving range and reduce costs  (J. Wang, 2016). 

The transition to EVs represents a vital step toward achieving a sustainable 

transportation system. While EVs offer significant environmental and operational 

advantages, continued research and development are necessary to address persistent 

challenges related to range anxiety, energy efficiency and infrastructure limitations. 

By overcoming these barriers, EVs can become a viable and widely accepted 

alternative to traditional ICE vehicles (J. Wang, 2016). 

 Range Estimation  

Range estimation is a complex and critical component of EV technology. Accurate 

range estimation enables drivers to plan their trips effectively, reduces range anxiety 

and promotes confidence in EV technology (Albuquerque, 2022; Feng et al., 2024). 

Analyzing a variety of dynamic variables, such as battery SOC, driving conditions, 

environmental influences  and vehicle parameters are necessary for range estimation. 

This section explores the challenges of range anxiety, the various estimation models 

used for range prediction and the methodologies employed to improve their accuracy 

and reliability. 
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1.2.1 Range anxiety  

Range anxiety is one of the most significant psychological barriers to the widespread 

adoption of EVs (J. Wang, 2016; Z. Xu et al., 2024). It refers to the fear that an EV's 

driving range may be insufficient to reach a destination or charging point, causing 

stress and inconvenience for drivers. This concern is amplified by the relatively shorter 

range of EVs compared to traditional ICE vehicles, longer charging times and the 

uneven availability of charging infrastructure (Liu et al., 2021; Mediouni et al., 2022; 

Ullah et al., 2022; J. Wang, 2016). These factors create uncertainty and hesitation 

among potential EV users, impacting their willingness to adopt this sustainable 

technology. 

A significant consequence of range anxiety is the reduced usable battery capacity. 

Many EV drivers maintain a 20–30% battery buffer to avoid running out of charge, 

even though their vehicles are designed to use the entire battery capacity (Shen, Zhou, 

Yu, et al., 2023; Ullah et al., 2022). While this precaution minimizes the risk of being 

stranded, it also restricts the vehicle’s effective range, limiting the benefits of EV 

technology. Additionally, range anxiety often influences drivers’ route planning 

behaviors. Drivers often select less convenient routes with frequent stops for charging 

because they are worried about running out of battery power. 

Hesitancy toward long trips is another notable impact of range anxiety (Z. Xu et al., 

2024). EV owners may avoid long distance travel, particularly in areas with meager 

charging infrastructure. This reluctance limits the utility of EVs for intercity travel and 

reinforces concerns about their practicality for everyday use. Moreover, the fear of 

being stranded adds a layer of mental stress to the driving experience, diminishing user 

confidence and satisfaction with EV technology (Z. Xu et al., 2024). 

Several factors contribute to the prevalence of range anxiety. Inaccurate range 

estimation is a primary concern, as many EVs display predicted ranges based on ideal 

conditions without accounting for variables such as weather, terrain and individual 

driving styles (Ullah et al., 2022). This discrepancy between the predicted and actual 

range reduces trust to the technology. The degree of range anxiety varies among 

drivers, a phenomenon known as heterogeneous range anxiety (Z. Xu et al., 2024). For 

instance, new EV drivers, who may lack familiarity with their vehicle's capabilities, 

are often more prone to anxiety compared to experienced users. The limited 
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availability of charging infrastructure, particularly in rural or underdeveloped areas, 

amplifies range anxiety and restricts the mobility and appeal of EVs. 

Efforts to mitigate range anxiety focus on technological advancements and 

infrastructure improvements. Accurate energy consumption prediction, which 

incorporates real time data on driving conditions, road types, weather and traffic, can 

significantly enhance the reliability of range estimates (Ullah et al., 2022; J. Wang, 

2016; Z. Xu et al., 2024) . Personalized range estimation models that consider 

individual driving behaviors also reduce prediction errors and build driver confidence. 

Probabilistic models that present predictions with confidence intervals can help drivers 

better understand and manage uncertainties (Petkevicius et al., 2021). Expanding 

charging networks and improving charging speeds are equally critical for addressing 

concerns about range limitations. Furthermore, tools that optimize routes for energy 

efficiency and charging availability can help drivers plan trips more effectively, 

reducing the stress associated with range anxiety. 

Range anxiety is a complex problem due to the limitations in current EV technology 

and infrastructure. Addressing this challenge requires a combination of accurate range 

estimation methods, improved charging infrastructure and strategies to enhance driver 

trust and confidence in EV technology. By mitigating range anxiety, EVs can become 

a more viable and attractive alternative to ICE vehicles, accelerating the transition to 

sustainable transportation (Shen, Zhou, Yu, et al., 2023; Ullah et al., 2022). 

1.2.2 Estimation models 

Estimation models are essential for predicting the range of EVs and enhancing the 

overall driving experience. These models analyze various dynamic factors such as 

driving behavior, environmental conditions, vehicle specifications and battery 

parameters to estimate energy consumption and the remaining driving range. 

Estimation models can be categorized into analytical, statistical and machine learning 

(ML) based approaches, each offering unique advantages and limitations (Liu et al., 

2021). 

Analytical models rely on the principles of vehicle dynamics and powertrain efficiency 

to estimate energy consumption. These models calculate the energy required to 

overcome forces like rolling resistance, aerodynamic drag and gravitational pull during 

uphill driving while accounting for regenerative braking and motor efficiency (Shen, 
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Zhou, Yu, et al., 2023). This is clearly indicated in  Figure 1.1, different forces acting 

on a vehicle moving uphill on an inclined road. It includes forces such as gravity, 

normal force, traction force, aerodynamic resistance, rolling resistance and inertia 

(Albuquerque, 2022). These forces influence the vehicle's motion, energy 

consumption and overall performance, particularly in varying terrain conditions. 

Understanding these interactions is crucial for optimizing vehicle efficiency and 

energy management. Analytical models are computationally efficient and provide a 

solid theoretical framework for understanding energy consumption. However, their 

simplicity can be a limitation, as they often fail to capture the complex interactions of 

real world driving conditions, such as variations in traffic, road surfaces and weather. 

 

Figure 1.1 : Main influencing forces on a moving vehicle (Fi , inertial force; 

Ft,tractive force; Fg , gravitational force; Frr , rear rolling resistance force; Ffr ,front 

rolling resistance force; Far , aerodynamic (air) drag; Fn, normal force; CG, center of 

gravity; α,the road slope) (Albuquerque, 2022). 

Statistical models use historical data to identify patterns and relationships between key 

parameters and energy consumption. For example, linear regression models can 

establish dependencies between variables like speed, acceleration and battery 

consumption. While statistical models are relatively simple and interpretable, they rely 

on assumptions about linearity and error distributions. These assumptions may not 

hold in dynamic, real world conditions with nonlinear relationships, leading to reduced 

accuracy and potential biases in predictions.  
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Machine learning models have emerged as a robust solution for EV range prediction, 

offering flexibility and adaptability to complex datasets. These models can capture 

intricate, nonlinear relationships between input features and energy consumption, 

making them particularly effective for real world applications. Machine learning 

approaches can be further divided into single models, ensemble models, hybrid models 

and deep learning (DL) models. The instantaneous power consumption of an electric 

vehicle battery is shown in equation 1.1.  

𝑃(𝑡) =  𝑉𝑏(𝑡) 𝑥 𝐼𝑏(𝑡) (1.1) 

where power P(t) at any given time (t) is determined by the product of the battery 

voltage Vb(t) and the battery current Ib(t). Equation 1.2 calculates the total energy 

consumption over a given time period. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑉𝑏(𝑡) 𝑥 𝐼𝑏(𝑡)
𝑡0

𝑡=0

𝑑𝑡 (1.2) 

The total energy consumption Etotal over a time period from t=0 to t=t0 is determined 

by integrating P(t), given as the product of Vb(t) and Ib(t) over time. This integral 

represents the accumulation of power over the specified duration, providing a measure 

of the total energy consumed, expressed in Watthours.  

Single models, such as Support Vector Regression (SVR), Artificial Neural Networks 

(ANNs) and Decision Trees (DTs), use a single algorithm for prediction tasks. While 

these models are effective in handling specific use cases, their standalone performance 

may be limited in highly dynamic scenarios. Ensemble models, such as Random Forest 

(RF) and eXtreme Gradient Boosting (XGBoost), combine the outputs of multiple 

models to improve accuracy and robustness. By leveraging the strengths of many 

algorithms and mitigating individual weaknesses, ensemble methods provide 

enhanced predictive capabilities. 

Hybrid models combine machine learning techniques with other methods, such as 

optimization algorithms, to enhance performance. For instance, hybrid approaches 

may integrate linear regression with nonlinear neural networks or use metaheuristic 

algorithms to optimize model parameters. This combination allows hybrid models to 
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balance simplicity and complexity, improving prediction accuracy across diverse 

conditions (Chou & Tran, 2018). 

DL models, including Long Short-Term Memory (LSTM) networks and Transformer 

architectures, excel at capturing temporal dependencies in time series data. These 

models are particularly well suited for EV range prediction, as they can analyze 

sequential patterns in driving data, such as changes in speed and energy consumption 

over a trip. Their ability to handle large datasets and learn complex relationships 

enables DL models to achieve high accuracy, particularly when trained on real world 

driving data (Sulaiman & Mustaffa, 2024). As shown in Figure 1.2, energy 

consumption on EVs are highly depending on vehicle speed profile (Yan et al., 2024). 

 

Figure 1.2 : Effect of average speed on energy consumption (Yan et al., 2024). 

To further enhance the performance of machine learning models, advanced techniques 

such as feature selection, data augmentation and transfer learning are often employed. 

Feature selection identifies the most relevant parameters for modeling, improving 

prediction accuracy while reducing computational complexity (Chou & Tran, 2018). 

Data augmentation expands training datasets by creating synthetic samples, enhancing 

the diversity and robustness of the models. Transfer learning allows models trained on 

existing EV data to be adapted to new vehicle types or scenarios, ensuring their 

applicability across diverse conditions. 

Evaluating the performance of these estimation models is critical for understanding 

their effectiveness. Metrics such as Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), Mean Absolute Percentage Error (MAPE) and R-squared (R²) are 

commonly used to assess prediction accuracy and model fit. Each metric provides 

unique insights, helping researchers and developers refine their models for optimal 

performance (Feng et al., 2024). 
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Despite their advancements, estimation models face challenges such as data quality, 

model generalization and real time adaptability. High quality datasets with detailed 

features like SOC, driving conditions and environmental factors are essential for 

accurate predictions. Models must also generalize effectively to different 

topographies, driving styles and EV models, ensuring broad applicability. 

Furthermore, real time adaptability is crucial for responding to changes in traffic, road 

conditions and driver behavior. 

Estimation models are a cornerstone of EV range prediction, each contributing unique 

strengths to the task. By combining advancements in analytical, statistical and machine 

learning approaches, alongside innovative techniques like hybrid and DL models, 

researchers and manufacturers can develop more accurate, reliable and adaptive range 

prediction systems. These systems are essential for addressing range anxiety and 

supporting the widespread adoption of EVs. 

 Literature Review 

The literature on EVs covers a wide range of topics, including energy consumption 

modeling, prediction techniques, influencing factors and the application of ML in 

improving these processes. This section synthesizes key findings and emerging trends 

from the reviewed sources, highlighting the complexities and advancements in EV 

energy consumption prediction and related areas. 

Real world driving data is a critical component for accurate EV energy consumption 

analysis and prediction. Numerous studies emphasize the limitations of laboratory 

based tests, which often fail to reflect actual driving conditions. Real world datasets 

provide insights into how various factors affect energy consumption, offering a more 

comprehensive understanding of EV performance (Achariyaviriya et al., 2024; Shen, 

Zhou, Yu, et al., 2023). 

Several key factors significantly influence EV energy consumption. Ambient 

temperature plays a major role, with studies noting a substantial increase in energy 

usage at lower temperatures. For instance, a study reported a 100% rise in energy 

consumption when the ambient temperature dropped from 20°C to 0°C 

(Achariyaviriya et al., 2024). Similarly, trip length impacts energy efficiency, with 

shorter trips consuming up to 10% more energy per unit distance for distances below 
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16 kilometers (Achariyaviriya et al., 2024). Traffic conditions also have a notable 

effect, with congestion increasing energy consumption by as much as 40%. Driving 

behavior, including aggressive acceleration and braking, can raise energy usage by up 

to 16%. Road grade greatly also affects energy consumption, with a 3% incline 

increasing usage by 50%, while descending grades can reduce consumption by 80% 

(Holden et al., 2020). Vehicle auxiliary loads, such as climate control systems, interact 

with ambient temperature to further influence energy demands (Ullah et al., 2021). 

Table 1.1 summarizes key factors influencing energy consumption in EVs, 

highlighting the impact of environmental conditions, driving behavior and vehicle 

related characteristics. Temperature extremes significantly affect energy consumption 

with both cold and hot conditions increasing energy demands, especially due to HVAC 

usage. External conditions such as wind resistance, road inclination and traffic 

congestion further contribute to variations in energy consumption. Additionally, 

driving behavior and vehicle load play a role, where aggressive driving and added 

weight lead to higher consumption. These insights emphasize the importance of 

optimizing energy efficiency through smart driving strategies, route planning and 

adaptive vehicle control systems. 

Table 1.1 : Summary of energy consumption by the factors analysed (Skuza & 

Jurecki, 2022). 

Type of factor  Energy consumption  Energy consumption  

Negative temperatures  -20C to 0 ~6% -14%  

High temperature  45C ~33% - 58%  

HVAC heating (in winter)  - ~52% - 94%  

HVAC cooling (in summer)  - ~11% - 17%  

Wind 15 km/h ~5% - 14% 

Inclination  %3 ~50%  

Route length  4-16 km ~15-29%  

Traffic conditions 

(proportion of stopping time)  

%12-18 stop to 

%24-34 
~20%  

Load  +250 kg ~7%  

Driving style  Agressive ~17%  
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Lastly, driving speed significantly impacts energy consumption patterns, with hybrid 

EVs emitting less CO2 at lower speeds. As Figure 1.3 shows, there is significant gap 

for CO2 emisions between BEV, HEV and ICEV for both urban and highway roads. 

 

Figure 1.3 : The normalized wheel to wheel (WTW) and tank to wheel (TTW) CO2 

emissions of the test vehicles for each route mode (Achariyaviriya et al., 2024). 

Road grade and driving behavior remain critical factors, with numerous studies 

quantifying their impacts on energy consumption. Regenerative braking has also been 

a focus of research, as this technology improves energy efficiency by recovering 

energy during braking events. 

The application of ML in predicting EV energy consumption and range has gained 

significant attention in recent years. Artificial intelligence (AI) based forecasting 

methods, including ML and DL techniques, have been extensively reviewed and 

compared for their effectiveness in energy prediction (Adnane et al., 2023; Jui et al., 

2024). Commonly used ML algorithms include Artificial Neural Networks (ANN), 

Support Vector Machines (SVM), RF and LSTM networks (Chou & Tran, 2018; Shin 

& Woo, 2022; Ullah et al., 2021; Yang et al., 2022). These models are capable of 

capturing complex relationships in large datasets, making them ideal for energy 

consumption prediction. 
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Hybrid models, which combine multiple ML techniques or integrate ML with other 

methods, have emerged as a powerful approach. Ensemble models, such as RF and 

Gradient Boosting, improve prediction accuracy by aggregating the outputs of multiple 

algorithms. Some studies have explored the use of direct function ANN to 

simultaneously predict multiple energy parameters, comparing these models to inverse 

function approaches (Bouktif et al., 2018; Chou & Tran, 2018). 

ANNs have been employed to develop engine fuel consumption maps for conventional 

vehicles, which were then compared to parallel hybrid vehicle models. These 

comparisons demonstrated a notable reduction in fuel consumption and carbon dioxide 

emissions for hybrid vehicles, showcasing the potential of ANNs to enhance energy 

efficiency and reduce environmental impact (Adedeji, 2023). Similarly, ANNs have 

been applied in the design and simulation of pure electric vehicle parameters, where a 

single model has been shown to accurately predict multiple outputs simultaneously, 

further emphasizing their versatility. 

Innovations in ANN applications have also led to the development of inverse and 

direct function models. Inverse function models use outputs for prediction and 

estimation tasks, while direct function models utilize virtual functions as inputs to 

generate multiple outputs. A notable example is the direct function ANN model, which 

integrates calculated virtual functions to predict various energy parameters, including 

city, highway and combined electric consumption, within a single framework 

(Achariyaviriya et al., 2023). This approach has been shown to achieve higher 

accuracy compared to traditional inverse function models, making it a promising tool 

for comprehensive energy consumption analysis. 

Time series forecasting methods, particularly for short term load prediction, have been 

applied to energy consumption analysis in both buildings and microgrids (Wazirali et 

al., 2023). Data driven models emphasize the importance of preprocessing and feature 

selection to improve model performance. Predictive cruise control (PCC) systems, 

which use intelligent driving assistance to optimize energy usage, have also been 

highlighted as a promising area for reducing energy consumption (Gao et al., 2023). 

Model optimization techniques, such as hyperparameter tuning, are commonly used to 

improve the performance of these predictive models. Studies often evaluate these 
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models using metrics such as MAE, MAPE and RMSE to ensure consistent and 

comparable performance (Bouktif et al., 2018; Ribeiro et al., 2020). 

The reviewed studies utilize a variety of datasets for training and testing predictive 

models, including real world EV tracking data, traffic flow information, weather data 

and geographic parameters (Adnane et al., 2023). 

Emerging trends in EV energy consumption prediction highlight the growing 

importance of ML and data driven methods. These techniques enable the processing 

of large and complex datasets allowing for quick and adaptive decision making [5]. 

However, challenges remain, particularly regarding the standardization of forecasting 

models (Chou & Tran, 2018). A common database for comparing models is needed to 

facilitate more accurate evaluations. 

The quality and quantity of training data are critical for ML model accuracy. Datasets 

must include detailed features such as driving conditions, vehicle parameters, weather 

and driver behavior to ensure reliable predictions (Chou & Tran, 2018). Real time 

adaptability is another challenge, as models must dynamically adjust to changes in 

conditions and individual driving habits (Ribeiro et al., 2020). Longitudinal studies are 

needed to assess the long term impacts of integrating advanced technologies, such as 

renewable energy sources, into smart grids (Kiasari et al., 2024). 

Interpretability remains a key issue in ML based models. While these models often 

provide highly accurate predictions, their "black box" nature makes it difficult to 

understand the underlying factors influencing their outputs (Ribeiro et al., 2020). 

Techniques that improve model transparency are essential for building trust and 

enabling practical applications. 

Research has explored energy consumption and prediction across various types of 

EVs. Hybrid Electric Vehicles (HEVs) have been a focus, with studies examining 

energy management strategies, fuel consumption modeling and performance 

comparisons with conventional vehicles (Jui et al., 2024). Battery Electric Vehicles 

(BEVs) have also received attention, particularly regarding their energy consumption 

and driving range under different conditions (De Cauwer et al., 2015).  
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 Purpose of Thesis 

The purpose of this study is to evaluate and compare the performance of three 

advanced machine learning models SVR, XGBoost and LSTM networks in predicting 

energy consumption for EVs using real world data. Accurate energy consumption 

prediction is essential for addressing range limitations, a critical concern among EV 

users and enhancing EV efficiency in real world driving scenarios. 

This study uses detailed driving data collected from a Nissan Leaf 2013 model, one of 

the widely studied electric vehicles due to accessibility of data. By leveraging this real 

world dataset, the study aims to provide a robust comparison of SVR, XGBoost and 

LSTM models examining their effectiveness in capturing complex patterns and 

interactions that influence EV energy consumption. Each model represents a unique 

approach to machine learning, with SVR being a powerful regression method suitable 

for capturing linear and nonlinear relationships, XGBoost as a highly optimized 

boosting algorithm known for its performance in tabular data and handling feature 

interactions and LSTM as a recurrent neural network (RNN) specifically designed to 

capture temporal dependencies and sequential patterns in time series data. 

The performance of these models is evaluated on several metrics to determine their 

accuracy in estimating energy consumption, which is essential for predicting the 

remaining driving range of an EV. Reliable range predictions help decrease range 

anxiety among EV users, enhancing their driving experience and trust in EV 

technology. Accurate range prediction based on real world data further supports the 

development of adaptive energy management systems that can optimize battery usage, 

inform drivers of energy saving practices and improve overall EV performance. 
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 THEORETICAL BACKGROUND 

 Fundamentals of Electric Vehicles 

EVs are a transformative innovation in the transportation industry, offering a 

sustainable alternative to conventional ICE vehicles. EVs capacity to drastically cut 

greenhouse gas emissions and reliance on fossil fuels are becoming more popular. This 

shift is further supported by government incentives, stricter emissions regulations, 

rising fuel costs and growing awareness of environmental sustainability (Ullah et al., 

2021). Compared to ICE vehicles, EVs offer enhanced energy efficiency, lower noise 

pollution and zero tailpipe emissions, positioning them as a critical component of the 

global effort to mitigate climate change and reduce urban pollution (J. Wang, 2016). 

EVs come in various forms, each suited to specific use cases. BEVs rely entirely on 

electricity stored in high capacity batteries and produce no emissions during operation. 

HEVs combine an electric motor and battery system with an internal combustion 

engine, allowing them to switch seamlessly between power sources for greater fuel 

efficiency. Plug-in Hybrid Electric Vehicles (PHEVs) represent a hybrid category that 

can be charged externally while also utilizing an ICE, offering extended range 

flexibility (Z. Wang et al., 2024). These variations demonstrate the versatility of EV 

technology in meeting diverse transportation needs. 

EVs differentiate with their advanced powertrain systems. The battery system is the 

primary energy source, with lithium-ion batteries being the most commonly used due 

to their high energy density, long cycle life and relatively low self-discharge rates 

(Yang et al., 2022). The SOC of the battery is a crucial parameter that determines the 

remaining driving range and impacts the overall efficiency of the vehicle (Nabi et al., 

2023). Integrated with the motor is a power electronics control system, which regulates 

the flow of energy between the battery and motor, optimizing performance under 

varying driving conditions. Also, EVs are equipped with regenerative braking systems, 

which capture and convert kinetic energy during braking into electrical energy stored 

in the battery, enhancing overall energy efficiency (Skuza & Jurecki, 2022). 
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Energy consumption in EVs is influenced by a complex interplay of factors. Vehicle 

characteristics, such as weight, aerodynamics and rolling resistance, directly affect 

energy efficiency. Environmental conditions, temperature, wind resistance and road 

gradients play a significant role in determining energy use during a trip. Driver 

behavior such as acceleration patterns, average speed and braking intensity further 

adds variability to consumption. Driving conditions, including traffic congestion and 

trip length, also contribute to fluctuating energy demands (Feng et al., 2024; Zhu et 

al., 2024). These dynamic factors underscore the importance of accurate energy 

consumption prediction for optimizing vehicle performance and mitigating range 

anxiety. A framework illustrates in Figure 2.1 for predicting energy consumption in 

EVs by integrating historical driving data, environmental factors and ML techniques. 

It involves segmenting driving data, predicting driving conditions, extracting relevant 

features and optimizing an XGBoost model for accurate energy consumption forecasts. 

The final model uses real time vehicle data to provide future energy consumption 

predictions, improving efficiency and range estimation. 

 

Figure 2.1 : Machine learning based energy consumption prediction framework (J. 

Zhang et al., 2020). 

EV energy consumption prediction has evolved through two primary approaches. 

Traditional model based methods rely on principles of physics and vehicle dynamics 

to estimate energy use, providing a foundational understanding of how forces like drag, 
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rolling resistance and gradient affect performance. In contrast, data driven techniques, 

particularly those utilizing ML, analyze historical and real time data to uncover 

patterns and relationships that influence energy consumption (Shen, Zhou, Yu, et al., 

2023). ML based models, such as those employing LSTM networks or ensemble 

methods, have shown remarkable promise in capturing the nonlinear, multifaceted 

nature of EV energy consumption (Feng et al., 2024; Ullah et al., 2021). LSTM 

structural unit shown in Figure 2.2. 

 

Figure 2.2 : Structural unit of LSTM (X. Zhang et al., 2022). 

Battery performance is a key challenge, as factors like energy density, state of health 

(SOH) and capacity degrade over time, reducing overall efficiency and range. Real 

world energy consumption variability due to differing driving conditions further 

complicates the development of standardized energy models (Nabi et al., 2023; Yang 

et al., 2022). 

Ongoing research is directed toward overcoming these challenges and advancing EV 

technology. Efforts are focused on improving battery materials and designs to enhance 

energy density and durability, developing sophisticated energy management systems 

and refining energy consumption prediction models with the help of ML (Ullah et al., 

2022). As the transportation sector continues to evolve, EVs are poised to play a 

pivotal role in achieving sustainable mobility, underscoring the importance of 

continued innovation and infrastructure development (J. Wang, 2016). 

 Factors Affecting Energy Consumption 

Energy consumption in EVs is influenced by a wide array of interconnected factors, 

which can be broadly categorized into vehicle related, environmental, driver related 
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and driving condition factors. Understanding and optimizing these factors is crucial 

for improving energy efficiency and extending the driving range (Mediouni et al., 

2022; Ullah et al., 2022). 

Vehicle specific characteristics play a critical role in determining energy consumption. 

Key parameters include the vehicle's weight, the efficiency of its components and the 

use of auxiliary systems. Vehicle weight significantly impacts energy demand, as 

heavier vehicles require more energy for acceleration and maintaining speed. 

Reducing vehicle mass through lightweight materials and design innovations is an 

effective strategy to lower overall energy consumption (Liu et al., 2021). Auxiliary 

systems, such as heating, ventilation and air conditioning (HVAC), also contribute to 

energy usage. These systems, especially under extreme temperatures, can significantly 

reduce the vehicle's range (Ullah et al., 2022). The type of tire used may have a minor 

impact on energy consumption. While differences in tire design, such as rolling 

resistance, tread pattern and material composition, can influence how efficiently a 

vehicle moves, their effect on overall energy consumption is generally small compared 

to other factors like vehicle speed, weight and driving behavior (Pokharel et al., 2021).  

Battery system specifications, including energy density, capacity and SOH are 

fundamental determinants of energy consumption. The SOC of the battery directly 

influences energy usage and driving range. In addition, motor and drivetrain 

efficiency, rolling resistance determined by tire pressure and design and the vehicle’s 

aerodynamic profile all contribute to the energy efficiency of the EV (Mediouni et al., 

2022). SOC of a battery is a key parameter that represents the remaining capacity of 

the battery relative to its full charge as seen in equation 2.1. 

𝑆𝑂𝐶 =
𝑄𝑡

𝑄0
𝑥100% (2.1) 

where Qt is the charge remaining in the battery at a given time and Q0 is the total charge 

capacity of the battery when fully charged. This equation expresses SOC as a 

percentage, indicating how much usable energy is left before the battery needs to be 

recharged. 

There is a direct linear relationship between battery current and energy consumption 

in electric vehicles. As the battery current increases, energy consumption also rises, 

reflecting the proportional demand for power during higher current usage. Conversely, 
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when the battery current decreases, energy consumption correspondingly reduces 

(Achariyaviriya et al., 2023).  

Energy use is significantly impacted by external environmental factors. Ambient 

temperature is one of the most significant factors, affecting both battery performance 

and auxiliary system usage (J. Zhang et al., 2020). In colder climates, energy 

consumption rises due to increased HVAC usage and reduced battery efficiency, while 

in excessively hot conditions, air conditioning demands may lower energy efficiency 

(Skuza & Jurecki, 2022). 

Road conditions, the surface quality and slope, further influence energy consumption. 

Uphill driving and uneven road surfaces increase energy requirements, while downhill 

slopes can reduce consumption and facilitate regenerative braking (Ullah et al., 2021). 

Traffic congestion with its stop and go patterns increases energy usage by making the 

trip take longer. 

Route planning and charging habits also play a role. Choosing energy efficient routes 

with fewer inclines and less congestion can help conserve energy. Charging strategies, 

including the timing and frequency of charges, can affect battery longevity and energy 

efficiency (Feng et al., 2024). 

Trip characteristics and operational factors have a direct effect on energy consumption. 

Average speed, speed variability and average acceleration are key indicators of energy 

usage (Feng et al., 2024). Driving cycles' standardized patterns used to simulate typical 

driving conditions may differ significantly from real world conditions, affecting 

energy predictions. Longer trips generally require more energy but efficient driving 

during extended journeys can offset consumption to some extent (Skuza & Jurecki, 

2022). 

It is important to note that many of these factors interact in nonlinear ways, creating 

complex dependencies that can amplify or mitigate energy consumption under varying 

conditions. For instance, environmental factors such as temperature can compound 

vehicle related inefficiencies, while regenerative breaking can counterbalance the 

impact of steep inclines. 
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2.2.1 Driving behavior 

Driving behavior has a profound effect on the energy consumption of EVs. The way a 

driver handles acceleration and braking in response to real time driving conditions 

directly impacts the vehicle’s kinematic changes. Behaviors such as rapid acceleration, 

abrupt braking and inconsistent speeds are characteristic of aggressive driving styles, 

which can lead to a significant reduction in driving range, sometimes by as much as 

35%. On the other hand, adopting energy efficient driving habits like smooth 

acceleration, steady cruising and strategic use of regenerative braking can extend the 

range by up to 27% (Feng et al., 2024). 

The energy demand during driving often varies depending on specific vehicle states, 

such as starting, accelerating, cruising, decelerating and idling. For example, starting 

and accelerating typically require the most energy, while effective braking techniques 

can facilitate energy recovery through regenerative systems. Drivers who frequently 

engage in hard braking generally achieve lower levels of energy regeneration 

compared to those with more controlled braking habits (J. Zhang et al., 2020). These 

personal driving patterns affect how energy is consumed and managed during trips. In 

Figure 2.3 shows, sample of 5 main profiles distribution with velocity changes. 

 

Figure 2.3 : Example of trip fragment, micro-fragments and the corresponding 

kinematic fragments (J. Zhang et al., 2020). 
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Quantifying and analyzing driving behavior often involves assessing parameters such 

as acceleration and deceleration rates, which can then be used to classify driving styles. 

Clustering methods categorize driving patterns into distinct groups, such as high or 

low acceleration and deceleration combinations, providing insights into the 

relationship between driving styles and energy consumption (J. Zhang et al., 2020). 

2.2.2 Environmental conditions 

Environmental factors play a pivotal role in shaping the energy consumption of EVs. 

Ambient temperature is particularly influential, as it directly affects battery 

performance and the operation of auxiliary systems. Energy consumption generally 

increases in colder temperatures, where battery efficiency declines and HVAC 

demands rise. Conversely, extremely high temperatures can also reduce range due to 

increased cooling requirements (Mediouni et al., 2022). Studies suggest that the 

optimal temperature range for minimizing energy consumption is between 15°C and 

20°C (J. Zhang et al., 2020). Figure 2.4 illustrates the relationship between SOC and 

distance traveled under varying ambient temperature conditions. The distribution 

suggests that SOC depletes more rapidly in extreme temperatures, particularly at lower 

temperatures where energy consumption is higher due to reduced battery efficiency. 

 

Figure 2.4 : Comparison of energy consumption per unit distance traveled in 

different temperature zones (Feng et al., 2024). 
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Road conditions also significantly affect energy efficiency. Uphill driving demands 

greater energy expenditure, whereas downhill driving offers opportunities for energy 

recovery through regenerative braking. Additionally, the road surface influences 

rolling resistance, with smoother surfaces requiring less energy (Mediouni et al., 2022; 

J. Wang, 2016; X. Xu et al., 2019). 

Weather conditions, such as rain or snow, create additional challenges by altering road 

traction and driving dynamics, which can increase energy demand (Petkevicius et al., 

2021). Traffic patterns, ranging from free flowing conditions to severe congestion, also 

have a cascading impact on energy use. These factors often interact in nonlinear ways, 

making it challenging to predict energy consumption accurately across varying 

environmental conditions. 

 Range Estimation Techniques 

Range estimation techniques for EVs are critical for predicting energy consumption 

and providing accurate estimations of driving range. These techniques play a pivotal 

role in mitigating range anxiety, optimizing energy use and enhancing the overall 

driving experience. Range estimation methods can be broadly classified into three 

categories: data driven models, physical models and hybrid models. Each approach 

leverages unique methodologies to address the challenges associated with energy 

consumption prediction, with strengths and limitations that make them suitable for 

different applications. 

2.3.1 Data driven models 

Data driven models, often referred to as "black box" approaches, rely on ML and DL 

,which is a subset of ML, techniques to predict energy consumption based on historical 

and real time data (Heinrich & Pruckner, 2022). These models learn complex patterns 

from data without requiring explicit knowledge of vehicle dynamics or physical 

principles. 

Machine learning algorithms such as SVR, RF, Gaussian Process Regression and 

XGBoost have been widely applied in energy consumption estimation (Achariyaviriya 

et al., 2024). Advanced neural network architectures, including LSTM networks (Feng 

et al., 2024) and Convolutional Neural Networks (CNN) (Chen et al., 2023) are 
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frequently used for modeling sequential data and predicting battery SOH or energy 

consumption (Wazirali et al., 2023). 

Figure 2.5 outlines a process for estimating the SOH of a battery through data 

preprocessing, model training and evaluation. Raw battery data undergoes 

preprocessing, including voltage normalization and dataset structuring, before being 

split into training, validation and test sets. Machine learning models, including CNN, 

LSTM and a hybrid CNN-LSTM, are trained to estimate voltage and predict battery 

capacity, which are key indicators of SOH. The final stage involves evaluating model 

performance to ensure accurate and reliable SOH estimation, essential for effective 

Battery Management Systems (BMS) in EVs. 

 

Figure 2.5 : Battery SOH prediction framework (Safavi et al., 2024). 

Data driven models use a wide range of features, including driving conditions (e.g., 

speed, acceleration and road grade) (X. Xu et al., 2019), battery parameters (e.g., 

constant current charging time, charging capacity and voltage curves) (Chen et al., 

2023) and environmental factors (e.g., ambient temperature, wind velocity and 

precipitation). By analyzing these variables, these models can provide accurate 

predictions of energy consumption under varying conditions. 

Ensemble methods, such as Ensemble Stacked Generalization (ESG), further improve 

prediction accuracy by combining the outputs of multiple base models which shown 

in Figure 2.6.  
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Figure 2.6 : Hybrid ESG method flowchart (Ullah et al., 2021). 

Hybrid machine learning techniques, which integrate different ML methods or 

optimization algorithms, enhance forecasting accuracy by leveraging the strengths of 

individual techniques (Z. Zhang et al., 2024). 

Federated Learning (FL) is a cutting edge approach for developing energy 

consumption models while preserving data privacy. In FL, local models are trained 

directly on data from individual EVs without sharing raw data externally (Yan et al., 

2024). These models can be implemented in two structures: centralized and 

decentralized which are both shown in Figure 2.7 and Figure 2.8. In a centralized setup, 

each vehicle trains its model locally and sends updates to a central server, which 
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aggregates the results to create a global model. Alternatively, in a decentralized 

structure, vehicles communicate directly with one another, collaboratively refining 

their models. Transfer learning further enhances energy consumption prediction by 

applying knowledge from well studied EV models to newer models with limited data, 

assuming the variables of both models share a similar distribution. Additionally, data 

decomposition techniques like Variational Mode Decomposition (VMD) are 

employed to break down complex time series data into high and low frequency 

components, enabling more accurate analysis and identification of underlying patterns 

that influence energy consumption (Cheng et al., 2023). 

 

Figure 2.7 : Centralized FL architecture (Cheng et al., 2023). 

 

 

Figure 2.8 : Decentralized FL architecture (Cheng et al., 2023). 

2.3.2 Physical models 

Physical models, also known as "white box" or model based approaches, are grounded 

in the principles of physics and engineering. These models use mathematical equations 
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to simulate the dynamics of EV energy consumption, incorporating factors such as 

rolling resistance, aerodynamic drag, gravitational forces and battery characteristics 

(Liu et al., 2021). 

Physical models are advantageous for their strong theoretical foundations and 

interpretability. They offer a detailed understanding of the physical processes affecting 

energy consumption, making them particularly useful for diagnostic and optimization 

purposes (Shen, Zhou, Yu, et al., 2023). For instance, models based on longitudinal 

vehicle dynamics calculate the power required at the wheels by considering forces 

acting on the vehicle. Battery models, such as Lithium-Ion battery and electrochemical 

mechanism models, simulate energy usage and regenerative processes (Chen et al., 

2023). 

Despite their strengths, physical models face challenges in calibration. Accurate 

parameterization requires detailed knowledge of vehicle specific characteristics, which 

can be labor intensive to obtain. Additionally, physical models may require significant 

computational resources, especially for real time applications (Shen, Zhou, Yu, et al., 

2023). 

Examples of physical models include equivalent circuit models (ECM) for battery 

SOH estimation and mathematical formulations that describe battery power 

consumption under different conditions (Chen et al., 2023). 

2.3.3 Hybrid models 

Hybrid models combine the strengths of both data driven and physical approaches to 

create robust and versatile prediction frameworks. These models often integrate 

physical insights with the flexibility and adaptability of ML methods. Figure 2.9 

illustrates a hybrid modeling approach that integrates both data driven and physical 

models for improved prediction accuracy. Historical data is used to train multiple 

models, each capturing different aspects of the system’s behavior. These models are 

optimized through an optimizer to enhance their performance. The trained models are 

then combined using a model combiner, which integrates insights from multiple 

sources to generate refined predictions. Additionally, live data is incorporated to 

update and improve the model in real time, ensuring adaptability to changing 

conditions (Chou & Tran, 2018). 
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Figure 2.9 : Single phase hybrid model (Chou & Tran, 2018). 

For instance, a hybrid model may use a physical model to simulate battery power 

during short trips and employ machine learning to predict cumulative trip level energy 

consumption. This approach leverages the interpretability of physical models while 

addressing their limitations through data driven refinement. Hybrid models also use 

machine learning to optimize the parameters of physical models, thereby improving 

their accuracy and adaptability (Zhu et al., 2024). 

Some hybrid models incorporate optimization algorithms with machine learning or 

integrate time series analysis to capture temporal dependencies in driving data. Modal 

decomposition techniques, such as Empirical Mode Decomposition (EMD), are used 

to analyze complex signals, enhancing the robustness of hybrid approaches (Wazirali 

et al., 2023). 

Hybrid models are particularly effective when data availability is limited or when the 

complexity of real world conditions necessitates combining multiple methodologies 

(Shen, Zhou, Ahn, et al., 2023). They strike a balance between computational 

efficiency and prediction accuracy, making them ideal for practical applications. 
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 METHODOLOGY 

 Dataset Description 

The Vehicle Energy Dataset (VED) is a comprehensive dataset designed to capture 

detailed insights into real world driving energy consumption patterns. It was developed 

through a collaborative effort involving the University of Michigan, Argonne National 

Lab and Idaho National Lab and spans data collected between November 2017 and 

November 2018. The dataset includes approximately 374,000 miles of driving data 

recorded across diverse road types, ranging from highways to dense urban 

environments, in Ann Arbor, Michigan. The dataset’s large scale, covering 383 

vehicles, provides a robust foundation for analyzing energy consumption trends in 

various driving and environmental conditions (Oh et al., 2019). Vehicle ID 10,455 and 

541 are EVs in that dataset and also unique number of trips shown in Figure 3.1. 

 

Figure 3.1 : VED unique trips count in 3 EVs. 

VED contains data for four major categories of vehicles, ICEs, HEVs, PHEVs and 

EVs. The EV’s in VED are identical 2013 Nissan Leaf which have 24 kWh battery. 

This diversity ensures a comprehensive representation of vehicle types, driving 

behaviors and energy consumption patterns. The dataset spans all seasons, capturing 

the influence of weather and environmental factors on vehicle energy consumption. 
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Data collection was conducted using onboard OBD-II loggers, which recorded time 

series data of various vehicle parameters and operational metrics. These features 

enable researchers to explore the interactions between vehicle dynamics, driver 

behavior and environmental conditions in shaping energy usage. 

In addition to the original VED dataset, an extended version known as eVED was 

developed to enhance the dataset’s utility (S. Zhang et al., 2022). eVED includes 

enriched data features such as road elevation, speed limits, intersections and traffic 

signal locations. This additional information allows for more precise analyses of the 

influence of road characteristics and driving conditions on energy consumption. Both 

the VED and eVED datasets are publicly available and have been widely adopted for 

energy consumption modeling and prediction research. Table 3.1 provides an 

overview of the time stamped dynamic data collected for energy consumption analysis 

in EVs. 

Table 3.1 : Contents of time stamped dynamic data. 

Data Name   Data Type Sampling 

Time 

GPS  Latitude / Longitude (deg) 3 sec  

Outside Air Temperature  

(C) 
- 60 sec  

Auxiliary Power  

(HVAC) 

AirCon Power (kW) 60 sec 

Heater Power (W) 60 sec 

Battery Info  

Battery SOC (%) 60 sec 

Battery Voltage (V) 5 sec  

Battery Current (A) 1 sec  

The dataset includes key parameters such as GPS coordinates, ambient temperature, 

HVAC and battery related metrics like SOC, voltage and current, each recorded at 

different sampling intervals. This structured data allows for a comprehensive analysis 

of how environmental conditions, vehicle performance and energy usage interact over 

time (Oh et al., 2019). 

The VED dataset includes a rich array of features and parameters that reflect both static 

vehicle characteristics and dynamic operational metrics. Static data captures the 
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inherent properties of each vehicle, including its make, model and year, as well as key 

specifications such as weight and engine configuration. These features provide a 

foundational understanding of how different vehicle types contribute to energy 

consumption under similar driving conditions. Figure 3.2 illustrates the unique vehicle 

speed distribution. 

 

Figure 3.2 : Speed distribution of EVs in VED. 

Dynamic data, consists of time series measurements that detail real time vehicle 

operations. Key parameters include GPS based location data, speed, fuel or energy 

consumption and auxiliary power usage, such as HVAC systems. Battery related 

metrics, including the SOC are particularly important for understanding the energy 

dynamics of EVs shown in Figure 3.3.  

 

Figure 3.3 : Distribution of SOC on EVs in VED. 
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The features and parameters in the VED dataset enable the development of robust 

models for predicting energy consumption and analyzing driving patterns. By 

integrating diverse data sources and metrics, the dataset supports comprehensive 

research to improve the efficiency and range of electric vehicles. 

 Model Development 

The model development process involved implementing three different machine 

learning approaches XGBoost, SVR and LSTM networks to predict the energy 

consumption of EV batteries. Each method was chosen for its unique advantages in 

modeling structured data, including gradient boosting, nonlinear regression and 

sequential data modeling. 

3.2.1 Selection of algorithms 

XGBoost was utilized as a gradient boosting algorithm to model the energy 

consumption using features such as vehicle speed, outside air temperature, air 

conditioning power, heater power, battery current and battery voltage. The dataset was 

split into training and testing subsets and the model was trained using the 

“XGBRegressor” implementation. To optimize the hyperparameters, GridSearchCV 

was employed, exploring combinations of the number of estimators, maximum tree 

depth, learning rate, subsample fraction and column sampling fraction. The model was 

evaluated on the test set and performance metrics, including RMSE and R², were 

computed to assess prediction accuracy. The gradient boosting approach demonstrated 

its ability to model nonlinear relationships and interactions between features, yielding 

strong predictive performance. Table 3.2 shows the best parameters of XGBoost 

Regressor. 

Table 3.2 : XGBRegressor the best parameters. 

Model subsample n 

estimators 

min child 

weight 

max 

depth 

learning   

rate 
gamma 

colsample 

bytree 
reg lambda 

XGBoost 0.8 500 5 6 0.01 0 1 1 

The second approach involved SVR, a nonlinear regression method particularly suited 

for capturing complex relationships in smaller datasets. A pipeline was created with a 

“StandardScaler” to normalize feature distributions and the SVR model with a radial 

basis function (RBF) kernel. Hyperparameters, including the regularization parameter 
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(C), epsilon-insensitive loss (ε) and kernel coefficient (γ) were optimized using 

GridSearchCV with three-fold cross validation. This ensured the model was fine tuned 

to balance bias and variance. Once the model was trained, predictions were made on 

the test set and metrics such as RMSE and R² were calculated. The SVR model showed 

its efficacy in handling nonlinear patterns in the dataset, providing competitive 

accuracy compared to XGBoost. The best parameters of SVR shown in Table 3.3. 

Table 3.3 : SVR best parameters. 

Model gamma epsilon C 

SVR scale 0.1 1 

The third approach employed a LSTM network to capture temporal dependencies in 

the energy consumption data. Unlike XGBoost and SVR, LSTM leverages the 

sequential nature of the data by using historical energy consumption values to predict 

future values. The target variable, energy consumption, was scaled to a range of [0, 1] 

using MinMaxScaler to ensure stability during training. Sequential data structures 

were constructed by creating overlapping windows of fixed length, with each sequence 

containing 30 past energy consumption values as input and the next energy 

consumption value as the target. The LSTM model architecture consisted of two 

stacked LSTM layers. The first LSTM layer returned sequences, allowing the second 

layer to process the temporal representation further. The output of the LSTM layers 

was passed through a dense layer, the final layer producing a single energy 

consumption prediction. The model was compiled using the Adam optimizer and the 

loss function was MSE. Early stopping was employed to halt training if the loss did 

not improve for 20 consecutive epochs, preventing overfitting. The model was 

evaluated on the test set and predictions were inverse transformed to their original 

scale for performance metrics computation. Table 3.4 shows the layers and parameters 

of LSTM. 

Table 3.4 : LSTM best parameters. 

Model 
First Layer Second Layer Dense Layer 

Optimizer 
Units Dropout Units Dropout Neurons Activation 

LSTM 64 0.2 32 0.2 16 ReLu Adam 
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Each model was evaluated using the same set of performance metrics to ensure 

consistency in comparison. The R² score quantified the proportion of variance 

explained by the model, while RMSE, MAE and MSE provided insights into the error 

magnitude. XGBoost excelled in handling nonlinear interactions and feature 

importance, SVR demonstrated robustness with smaller datasets and LSTM 

effectively captured temporal patterns in sequential data. This comprehensive 

approach enabled a robust comparison of different modeling techniques, paving the 

way for an integrated predictive system for battery energy consumption estimation. 

3.2.2 Input-output mapping 

The input-output mapping for predicting energy consumption involved defining the 

relationship between operational features (inputs) and the target variable (output). The 

chosen features were selected based on their relevance to the battery’s state and their 

potential to influence energy consumption. These inputs and outputs were consistently 

structured for all three algorithms to ensure comparability and consistency in 

modeling. 

Input Variables: 

• Vehicle Speed [km/h]: Represents the driving behavior and energy 

consumption rate. 

• Outside Air Temperature (OAT) [°C]: Influences battery performance, as 

temperature fluctuations affect energy efficiency and battery health. 

• Air Conditioning Power [kWatt]: Reflects the additional load on the battery 

due to climate control systems. 

• Heater Power [Watt]: Represents another auxiliary load affecting energy 

consumption. 

• HV Battery Current [A]: Directly indicates the flow of electrical current from 

or to the battery. 

• HV Battery Voltage [V]: Provides insights into the battery’s charging state and 

health. 

 

 



35 

Output Variable:  

• Energy Consumption (Wh): Represents the total electrical energy used by the 

vehicle, influenced by driving behavior, environmental conditions and 

auxiliary power demands. 

For LSTM, energy consumption was normalized to the range [0, 1] using 

MinMaxScaler to improve numerical stability and convergence during training. 

For XGBoost and SVR, the input-output mapping involved a direct regression task 

where the six input features were fed into the model and the predicted energy 

consumption was compared against the actual energy consumption for error 

minimization. The mapping followed a tabular structure where each row represented 

one observation, with the six features as inputs and the output. 

The input-output mapping for LSTM was framed as a time series problem to leverage 

the sequential nature of energy consumption data. The model was provided with 

sequences of 30 consecutive values as inputs, representing historical patterns and 

tasked to predict the energy consumption value at the next time step. This mapping 

allowed LSTM to capture temporal dependencies, which were not explicitly modeled 

by XGBoost or SVR. 

By establishing a consistent input-output mapping across the three algorithms, the 

predictive frameworks could be compared on equal footing, offering insights into their 

respective abilities to capture the relationship between operational parameters and the 

energy consumption of EVs. 

3.2.3 Training and validation 

The training and validation process was designed to optimize the predictive 

performance of the models to achieve this, the dataset was split into training and testing 

subsets and appropriate validation strategies were employed for each algorithm. 

The dataset was divided into training and testing sets, with 80% of the data allocated 

for training and 20% reserved for testing. This split ensured that the models could learn 

the underlying patterns from the training data while being evaluated on unseen data 

during testing. For the LSTM model, overlapping sequences were generated from the 

training set to create time series inputs for the model, where each sequence comprised 
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30 historical energy consumption values as inputs and the next energy consumption 

value as the target. 

XGBoost was trained using the XGBRegressor implementation. GridSearchCV was 

utilized for hyperparameter optimization, exploring combinations of the number of 

estimators, maximum tree depth, learning rate, subsampling ratio and column 

sampling fraction. The model was trained to minimize the MSE on the training data. 

Cross validation with three folds was used to evaluate the model during training, 

ensuring robust performance across different subsets of the training data. 

For SVR, the input features were first normalized using StandardScaler to ensure 

consistent scaling. The model was encapsulated in a pipeline with the RBF kernel, 

which is well suited for capturing nonlinear relationships. GridSearchCV was 

employed to optimize the hyperparameters, including the regularization parameter (C), 

epsilon-insensitive loss (ε) and kernel coefficient (γ). Three fold cross validation was 

conducted during the training phase to identify the best combination of 

hyperparameters, reducing the risk of overfitting. 

The model architecture consisted of two stacked LSTM layers, followed by dense 

layers to produce a single output. Energy consumption values were scaled to the range 

[0, 1] to improve training stability. The model was compiled with the Adam optimizer 

and mean squared error as the loss function. Early stopping was employed, monitoring 

the loss on the training set and halting training if no improvement was observed over 

ten consecutive epochs. This mechanism prevented overfitting and ensured efficient 

training. 

All models were validated using their respective cross validation methods and 

subsequently tested on the 20% holdout test set. Predictions from each model were 

compared against the actual energy consumption values in the test set. For LSTM, 

predictions were inverse transformed to their original scale using the same scaler 

applied during preprocessing. 

The combination of cross validation during training and evaluation on an independent 

test set ensured that the models were both optimized and generalizable. This systematic 

approach to training and validation provided a fair and comprehensive comparison of 

the performance of XGBoost, SVR and LSTM models in predicting energy 

consumption for electric vehicle batteries. 
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 Performance Metrics for Model Evaluation 

The evaluation of predictive models for estimating energy consumption requires a 

systematic assessment of their accuracy and generalization capabilities. To achieve 

this, a set of well established performance metrics was employed, including MSE and 

RMSE (Chicco et al., 2021). These metrics collectively provided a comprehensive 

understanding of the models' ability to replicate actual energy consumption values and 

minimize errors. 

The R² is a statistical measure that explains the proportion of variance in the dependent 

variable that can be attributed to the independent variables. It quantifies the goodness 

of fit of the model, where an R² value closer to 1 indicates that the model can explain 

most of the variability in the target variable. For regression tasks such as energy 

consumption prediction, R² offers valuable insights into how well the model performs 

relative to a baseline mean model which shown in equation 3.1. 

𝑅2 = 1 −
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑚
𝑖=1

∑ (𝑌 − 𝑌𝑖)
2

𝑚
𝑖=1

 
(3.1) 

• Xi represents the predicted values, 

• Yi represents the actual values, 

• Y̅ is the mean of the actual values, 

• m is the total number of observations. 

MAE measures the average magnitude of errors between predicted and actual values 

without considering their direction. It provides an intuitive understanding of the 

model’s performance by directly reflecting the average deviation. A lower MAE 

signifies a model capable of consistently making accurate predictions. However, it 

does not penalize larger errors as strongly as squared-error metrics, making it less 

sensitive to outliers shown in equation 3.2. 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑋𝑖 − 𝑌𝑖|

𝑚

𝑖=1

 (3.2) 

MSE extends the evaluation by calculating the average squared difference between 

predicted and actual values. By squaring the errors, MSE amplifies the impact of larger 
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deviations, making it particularly useful when larger errors are more critical to address 

as shown in equation 3.3. However, the squared nature of the metric means its scale 

differs from the original data, which may reduce interpretability. 

𝑀𝑆𝐸 =
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

 (3.3) 

RMSE, derived as the square root of MSE, addresses the scale issue by expressing 

errors in the same units as the target variable. RMSE is widely used as a benchmark 

metric for regression models because it offers a balanced assessment of error 

magnitude while maintaining sensitivity to larger deviations which can be seen in 

equation 3.4. A lower RMSE indicates a model capable of closely approximating 

actual target values with minimal deviations. 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑(𝑋𝑖 − 𝑌𝑖)2

𝑚

𝑖=1

 (3.4) 

These metrics were applied consistently across XGBoost, SVR and LSTM models. 

Predictions generated by the models were compared against actual target values from 

the test set, ensuring a fair and transparent evaluation process. For the LSTM model, 

predictions were inverse transformed to their original scale before metric computation 

to maintain consistency. By leveraging these metrics, the performance of the three 

modeling approaches was rigorously assessed, enabling a robust comparison and 

identification of the most effective algorithm for energy consumption prediction. 
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 RESULTS AND DISCUSSION 

 Model Evaluation 

The evaluation of the predictive models SVR, XGBoost and LSTM was conducted to 

assess their performance in predicting energy consumption for electric vehicle 

batteries. Each model was trained and tested using the same dataset, ensuring a fair 

comparison. The metrics employed for evaluation included the R², MAE, MSE and 

RMSE. These metrics collectively provided insights into the accuracy, precision and 

reliability of the models' predictions which shown in Table 4.1. 

Table 4.1 : Comparison of energy consumption prediction metrics for SVR, 

XGBoost and LSTM. 

Model   R2 MAE MSE RMSE 

SVR  0.5149 0.7783 1.6009 1.2653 

XGBoost 0.6038 0.8166 1.3796 1.1745 

LSTM 0.6571 0.7008 1.1591 1.0766 

For SVR, the model demonstrated a moderate predictive capability with an R² score 

of 0.5149, indicating the variance in energy consumption could be explained by the 

model. The MAE and RMSE values were 0.7783 and 1.2653, highlighting the model's 

ability to produce relatively consistent predictions with moderate error margins. 

However, its performance was surpassed by the other models in terms of both accuracy 

and error reduction. 

XGBoost, a gradient boosting framework, achieved an R² score of 0.6038, signifying 

that it explained the variance in the target variable. Despite its higher R² compared to 

SVR, the MAE and RMSE values of 0.8166 and 1.1745 suggested that while the model 

captured the broader patterns in the data, it struggled with precise predictions, 

particularly for outliers or extreme values. Also, XGBoost learning curve illustrated in 

Figure 4.1. In this figure, training error and testing error values getting closer to each 

other with incrementation of training set size. That type of trends indicates a better 

generalized model. 
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Figure 4.1 : XGBoost learning curve. 

Figure 4.2 presents the structure of the decision tree model used in XGBoost for 

predicting energy consumption. The tree begins with the root node, which represents 

the most influential feature in this case, the EV battery current as it has the highest 

impact on energy consumption. As the model progresses downward, it makes recursive 

splits based on different feature values. Each decision node refines the dataset by 

directing data points along different branches depending on threshold values.  

The tree structure illustrates how XGBoost captures complex, nonlinear relationships 

between input variables and energy consumption. At each split, the model selects the 

feature that maximally reduces error, ensuring that the most relevant attributes are 

prioritized. The process continues until the model reaches the leaf nodes, where final 

predictions are made. These leaf nodes contain energy consumption values, which are 

computed based on the statistical properties of the grouped data points.  

This visualization highlights the interpretability of XGBoost's decision-making 

process, demonstrating how multiple factors interact to influence energy consumption. 

By leveraging such a structured approach, the model effectively identifies patterns and 

dependencies, enabling accurate energy consumption predictions for EVs in varying 

driving and environmental conditions.
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Figure 4.2 : XGBoost tree visualization.
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The LSTM model outperformed the other two approaches, achieving an R² score of 

0.6571, indicating better alignment between predicted and actual energy consumption 

values. The MAE and RMSE values of 0.7008 and 1.0766 reflected its superior ability 

to minimize both overall and individual errors. The MSE value of 1.1591 further 

confirmed the model’s improved accuracy and ability to generalize across the test 

dataset. Predicted values in LSTM model shown in Figure 4.3. 

 

Figure 4.3 : LSTM energy consumption prediction graph. 

 Proposed Model 

Based on the evaluation and comparative analysis, the LSTM model emerged as the 

proposed solution for energy consumption prediction in EV batteries. Its performance 

metrics confirmed its superiority in handling sequential data, minimizing errors and 

accurately predicting energy consumption values. The model's architecture and 

training process enabled it to adapt to the complexities of the dataset, making it highly 

reliable for real world applications. 

 Impact of Driving Conditions 

Driving conditions, including variations in speed, external temperature and auxiliary 

power usage, were found to significantly influence energy consumption predictions. 

The LSTM model demonstrated resilience under varying driving conditions, 

effectively accounting for the temporal dependencies introduced by these factors. In 
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contrast, SVR and XGBoost exhibited limitations in capturing the dynamic nature of 

energy consumption under fluctuating driving conditions, leading to higher error rates. 

The analysis underscores the importance of considering driving conditions in energy 

consumption prediction models. The LSTM model's ability to integrate sequential data 

with external factors makes it an ideal candidate for predictive applications in battery 

management systems, particularly for electric vehicles operating under diverse and 

challenging conditions. 

Figure 4.4 provides insights into the relationships between key factors influencing EV 

performance. It highlights how variables such as vehicle speed, external temperature, 

air conditioning and heater power, battery current and voltage interact with one 

another. Notably, environmental factors like outside air temperature show a strong 

inverse correlation with heater power, indicating increased energy consumption in 

colder conditions. 

 

Figure 4.4 : Pearson correlation matrix. 
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Additionally, battery current and voltage exhibit a moderate positive correlation, 

reflecting their interdependence in power management. Other relationships, such as 

the weak correlation between vehicle speed and auxiliary power consumption, suggest 

that energy usage is influenced by multiple dynamic factors rather than a single 

variable. This analysis underscores the complexity of EV energy consumption and the 

importance of comprehensive models for accurate predictions and efficient energy 

management. 
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 CONCLUSION 

This study makes significant contributions to the field of EV energy consumption 

prediction, focusing on machine learning based models for accurate and efficient 

battery management and range estimation. 

One of the major contributions of this research is the comparative analysis of three 

distinct machine learning models SVR, XGBoost and LSTM for EV energy 

consumption prediction. The study highlights the strengths and limitations of each 

model. 

LSTM emerged as the most effective model, demonstrating superior accuracy in 

capturing temporal dependencies and sequential energy consumption patterns. 

XGBoost showed strong feature learning capabilities, particularly in handling complex 

relationships between variables, though it lacked the ability to process sequential data 

efficiently. 

SVR exhibited the lowest performance, proving less effective in dealing with the high 

dimensional, nonlinear nature of EV energy consumption data. 

This study successfully developed an LSTM-based prediction model that achieves 

high accuracy in estimating EV energy consumption, outperforming traditional 

statistical and ML approaches. A detailed analysis of real world EV energy 

consumption, ensuring that the models were trained and validated on realistic, practical 

datasets rather than simulated data with VED. 

Energy consumption calculations based on battery current and voltage, providing an 

accurate estimation methodology that aligns with actual EV operation. Robust 

validation through cross validation techniques, ensuring the model’s generalizability 

across different driving conditions. The use of real world data enhances the practical 

applicability of the research and ensures that the developed models can be effectively 

deployed in commercial EV systems. 

The study also contributes to the advancement of predictive maintenance techniques 

for EV batteries. Identify patterns in battery degradation and energy consumption, 
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allowing early detection of performance issues. Support proactive maintenance 

planning, reducing unexpected failures and increasing battery lifespan. Enhance 

vehicle reliability, making EVs more attractive to consumers and fleet operators. This 

approach improves cost efficiency and sustainability by minimizing battery waste and 

ensuring optimal energy utilization. 

 Practical Application of This Study 

This study demonstrated the effectiveness of XGBoost, SVR and LSTM models in 

predicting the energy consumption of EVs using real world driving data. A 

comparative analysis of these models revealed that the LSTM model outperformed the 

others. LSTM ability to leverage sequential dependencies and capture temporal 

patterns in energy consumption. The XGBoost model, while effective at detecting 

complex relationships, lacked the sequential processing capability required for time 

dependent predictions. Similarly, SVR struggled with high dimensional, non-linear 

relationships, making it the least effective model for energy consumption forecasting. 

The practical application of this research lies in its potential integration into BMS for 

real time energy prediction, route optimization and efficiency improvements. Accurate 

forecasting of energy consumption is crucial for reducing range anxiety, enhancing 

battery lifespan and optimizing EV performance. By implementing the LSTM model 

into an onboard BMS, EVs can dynamically adjust their energy management strategies 

in response to changing driving conditions, ensuring optimal battery utilization and 

more reliable range estimations. 

A key achievement of this study was the successful implementation and validation of 

ML based models using the VED. The dataset provided a rich source of real world 

driving behavior, capturing variables such as speed, battery current, voltage, 

temperature and auxiliary power consumption. This allowed for the development of 

robust, data driven models that can be directly applied in real world EV applications. 

 Future Directions in Research 

This study has made significant progress in EV energy consumption prediction, there 

are still several opportunities for future improvements that can further refine predictive 

accuracy and real world applicability. 
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One major direction for future research is dataset enrichment, where additional 

environmental and contextual variables, such as road elevation, real time traffic 

congestion, road surface conditions and weather variability, could be integrated into 

the models. For example, elevation data could enhance accuracy in hilly terrain, while 

real time traffic flow data could improve route planning and adaptive energy 

estimation. 

Moreover, incorporating Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle 

(V2V) communication could enable real time, dynamic updates in energy predictions. 

By allowing EVs to share anonymized data on driving conditions and energy 

consumption, ML models could continuously adapt and refine their predictions based 

on changing external factors. FL could also play a crucial role in privacy preserving 

model improvements, where EVs collaboratively update their models without 

exchanging sensitive raw driving data. 

Another important research avenue is the development of hybrid modeling approaches 

that combine physics based models with ML techniques. While ML models provide 

superiority at pattern recognition, they lack interpretability, making their deployment 

in safety critical applications challenging. A hybrid approach ,where ML models are 

guided by first principles physics based models, could improve both accuracy and 

explainability. 

Additionally, real time adaptive learning is an area of growing interest. Most energy 

consumption models are trained on prerecorded datasets, which may not account for 

sudden changes in driver behavior or environmental conditions. Implementing online 

learning techniques that update model parameters in real time, based on incoming 

sensor data, could significantly improve prediction reliability.  

Another challenge in EV energy prediction is generalizability across different vehicle 

models. Currently, most models are trained on specific vehicle types, making them 

less adaptable to new EV models. Future research should explore transfer learning 

techniques, where a model trained on a widely used EV dataset could be fine tuned for 

new models with minimal additional data collection. 
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 Implications for Electric Vehicle Technology 

The findings of this study have profound implications for the evolution of electric 

vehicle technology. Accurate energy consumption prediction models are pivotal for 

improving battery efficiency, extending vehicle range and minimizing energy wastage. 

By integrating these models into advanced BMS, electric vehicles can dynamically 

adapt to real time conditions, optimizing energy consumption based on driving patterns 

and auxiliary loads. 

Furthermore, the study highlights the potential for machine learning to enhance user 

experience in electric vehicles. With precise energy consumption predictions, drivers 

can make informed decisions regarding trip planning, reducing range anxiety and 

promoting confidence in electric vehicle adoption. This technology could also support 

predictive maintenance, identifying potential battery degradation before it impacts 

vehicle performance. 

The study underscores the need for continued research and collaboration between 

academia, industry and policymakers to unlock the full potential of machine learning 

in revolutionizing electric vehicle technology. 
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