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FOREWORD

The study presented here explores energy consumption prediction for EVs, a topic that
addresses critical challenges such as range anxiety and energy efficiency in real-world
driving scenarios. As global efforts intensify to transition towards greener
transportation, the insights gained from this research aim to enhance the usability and
acceptance of EVs, contributing to the advancement of this transformative technology.
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COMPARATIVE ANALYSIS OF PREDICTIVE MODELS FOR
ENERGY CONSUMPTION IN ELECTRIC VEHICLES

SUMMARY

This study investigates energy consumption prediction for electric vehicles (EVs), a
critical area of study to address challenges like range anxiety and improve the
efficiency of EVs in real world conditions. Limitations in range estimate and energy
management that prevent EVs from being widely adopted must be addressed as EVs
become more and more important in lowering greenhouse gas emissions and reducing
dependency on fossil fuels. This study evaluates the performance of three advanced
machine learning models Support Vector Regression (SVR), eXtreme Gradient
Boosting (XGBoost) and Long Short-Term Memory (LSTM) networks, using real
world data to develop accurate predictive models for energy consumption.

The analysis is based on the Vehicle Energy Dataset (VED), which provide a
comprehensive set of energy and driving statistics from several car models, including
hybrid, plug-in hybrid and battery electric vehicles. The dataset, collected over a year
in diverse driving conditions, includes key parameters such as GPS trajectories, speed,
state of charge (SOC) and ambient temperature factors. Its comprehensive nature
ensures the applicability of the models developed in this study to real world scenarios.

A detailed methodology was employed, starting with rigorous data preprocessing to
ensure the quality and consistency of the dataset. This involved steps such as cleaning,
normalization and feature selection, which are crucial for optimizing the performance
of the machine learning models. Each of the three models selected for this study offers
unique advantages: SVR effectively captures both linear and nonlinear relationships;
XGBoost excels in handling feature interactions and structured data and LSTM
networks are well suited for analyzing time series data and identifying sequential
dependencies.

The findings indicate the potential of machine learning approaches to estimate EV
energy use with high accuracy. These predictions not only mitigate range anxiety but
also enable the development of adaptive energy management systems that optimize
battery performance and improve overall user experience. These developments also
help EV customers make accurate decisions about charging and route planning.

This research highlights the importance of integrating high quality datasets like VED
with robust machine learning models to advance EV technology. This research
advances the larger objective of developing an efficient and sustainable transportation
system by addressing current problems in energy forecasting. Future work could focus
on enhancing hybrid model approaches, expanding datasets to include more diverse
driving conditions and developing real time adaptable prediction systems, significantly
closing the gap between existing constraints and the expanding demands of EV
adoption.
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_ELEKTRIiKLI ARACLARDA ENERJI TUKETIMi o
TAHMINLEME MODELLERININ KARSILASTIRMALI ANALIZi

OZET

Bu tez elektrikli araglar i¢in enerji tilketimi tahminini arastirmakta ve menzil kaygisi
zorluklariin tiistesinden gelmek ve elektrikli araglarin gercek diinya kosullarindaki
verimliligini artirmak i¢in kritik bir calisma alanina odaklanmaktadir. Elektrikli
araglar, sera gazi emisyonlarini azaltmak ve fosil yakitlara bagimlilig1 azaltmak i¢in
giderek daha onemli bir rol oynamaktadir. Ancak, menzil tahmini ve enerji
yonetimindeki smirlamalar elektrikli araclarin daha genis capta benimsenmesini
engellemektedir. Bu ¢alismada, elektrikli araglarin enerji tikketimini tahmin etmek igin
makine Ogrenimi modelleri gelistirilmis ve performanslart karsilastirilmistir.
Calismada, Support Vector Regression (SVR), eXtreme Gradient Boosting (XGBoost)
ve Long Short-Term Memory (LSTM) olmak tizere ii¢ farkli makine 6grenimi modeli
kullanilmis ve enerji tiiketimini tahmin etme yetenekleri degerlendirilmistir.

Model gelistirme siirecinde, gercek diinya siiriis verilerini igeren Vehicle Energy
Dataset (VED) kullanilmistir. Bir y1l boyunca farkl siiriis kosullarinda toplanan bu
veri seti GPS rotalari, hiz, sarj seviyesi ve ortam sicakligi gibi temel parametreleri
icermektedir. Veri setinin kapsamli yapisi, bu ¢alismada gelistirilen modellerin gergek
diinya senaryolarina uygulanabilirligini saglamaktadir. Ara¢ hizi, ortam sicakligi,
iklimlendirme sistemlerinin enerji tiiketimi, batarya gerilimi ve batarya akimi gibi
degiskenler veri setinde yer almakta olup enerji tiikketimi tahmin modellerinin egitimi
i¢cin temel giris degiskenleri olarak kullanilmistir.

Calismada, elektrikli araglarin enerji titkketimini belirlemek amaciyla batarya akimi ve
batarya gerilimi kullanilarak enerji tilketimi hesaplamalari yapilmistir. Elektrikli
araclarda anlik giic tiiketimi, batarya gerilimi ve batarya akimimin carpimi ile
hesaplanmaktadir. Anlik gii¢ tiiketiminin belirlenmesi, belirli bir siire boyunca enerji
tilketimini hesaplamak icin temel bir adimdir. Enerji tiikketimi, anlik gii¢ degerlerinin
zaman ile integrali alinarak hesaplanmistir. Calismada kullanilan VED veri setinde
batarya gerilimi ve akim degerleri belirli araliklarla kaydedildiginden, enerji tikketimi
hesaplamasi gergeklestirilmistir.

Calismada, veri temizleme, normalizasyon ve Ozellik se¢imi gibi adimlar1 igeren
kapsamli bir veri 6n isleme siireci gerceklestirilmistir. Eksik veya hatali veriler
temizlenmis, Ozellik miihendisligi teknikleri ile model performansini artiracak
degiskenler belirlenmistir. Veri temizleme asamasinda, eksik ve hatali veriler tespit
edilerek uygun yontemlerle islenmistir. Veri temizleme islemi sirasinda ayrica kopya
kayitlarin kaldirilmasi ve aykiri degerlerin tespit edilerek model performansini
olumsuz etkileyebilecek girdilerin veri setinden ¢ikarilmasi saglanmistir.

Ozellik miithendisligi asamasinda, modelin tahmin dogrulugunu artirmaya yardimeci
olacak en Onemli degiskenler belirlenmis. Bu siiregte, degiskenler arasindaki
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korelasyon analizleri yapilarak, gereksiz veya yiiksek korelasyonlu degiskenler
elenmis, modelde asir1 6grenmeyi engellemek adina yalnizca anlamli degiskenler
kullanilmistir.

Veri setinin egitim ve test verisi olarak boliinmesi asamasinda, modelin genelleme
yeteneginin dogru bir sekilde degerlendirilebilmesi i¢in veri seti %80 egitim ve %20
test oraninda boliinmiistiir. Veri bélme islemi, rastgele secilen veriler yerine zaman
serisi analizine uygun bir sekilde yapilmis, bdylece egitim verilerinin gelecekteki test
verileriyle zaman agisindan ortiismemesi saglanmistir. Ek olarak, model dogrulugunu
daha iyi Ol¢ebilmek icin capraz dogrulama yontemi uygulanmis ve 5-kathi gapraz
dogrulama siireci kullanilarak modelin farkli veri boliimlerindeki performansi test
edilmistir.

Her model, tahmin dogrulugunu artirmak amaciyla hiperparametre optimizasyonu
siirecinden gecirilmis ve en 1iyi performansa ulasacak sekilde ayarlanmistir.
Hiperparametre optimizasyonu, modelin 6grenme siirecinde en iyi parametre
kombinasyonunu belirleyerek tahmin dogrulugunu artirmayr amaglamaktadir. Bu
stirecte Grid Search ve Random Search gibi yaygin kullanilan teknikler uygulanmistir.

SVR modeli igin gekirdek tipi, diizenleme parametresi ve hata toleransi gibi kritik
hiperparametreler optimize edilmistir. Grid Search yontemi kullanilarak RBF (Radial
Basis Function) ve lineer cekirdek segenekleri test edilmis, optimum diizenleme
parametresi ve hata toleransi degerleri belirlenmistir. Modelin asir1 6grenmemesi igin
uygun cekirdek fonksiyonu seg¢ilmis ve ¢apraz dogrulama ile modelin genelleme
yetenegi test edilmistir.

XGBoost modeli i¢in 6grenme orani, maksimum derinlik, aga¢ sayisi ve alt 6rnekleme
orani gibi hiperparametreler optimize edilmistir. Random Search yontemi kullanilarak
genis bir hiperparametre alani taranmis ve en 1iyi parametre kombinasyonu
belirlenmistir. Modelin agir1 uyum gostermesini engellemek i¢in erken durdurm Kriteri
uygulanmis ve optimum iterasyon sayist belirlenerek modelin performansi
artirilmastir.

LSTM modeli i¢in gizli katman sayisi, ndron sayisi, 6grenme orani, optimizasyon
fonksiyonu ve toplu isleme boyutu gibi hiperparametreler optimize edilmistir. LSTM
modelinin zaman serisi verilerine uyumunu en iyi hale getirmek i¢in Adam algoritmasi
secilmis, en diisiik hata degerlerini veren 6grenme orani secilmistir. Modelin daha
verimli &grenebilmesi i¢in geri yayilim siirecinde sonimleme ve L2 dizenleme
teknikleri kullanilarak asir1 6grenme 6nlenmistir.

Tidm modellerde hiperparametre optimizasyonu uygulanarak en iyi kombinasyonlar
belirlenmis ve tahmin dogrulugu maksimize edilmistir. Capraz dogrulama ile test
edilen bu modellerin performansi, R?, RMSE ve MAE gibi metrikleri ile
degerlendirilmis ve elde edilen sonuglara gore en basarili model belirlenmistir.

Elde edilen sonuclara gére, LSTM modeli zaman serisi verilerindeki bagimliliklar
basarili bir sekilde yakalayarak en yiiksek dogruluk oranina ulagmistir LSTM
modelinin en 1yi performansi sergilemesinin temel sebebi, zaman serisi verilerinde
bagimliliklar basarili bir sekilde 6grenebilme yetenegidir. Elektrikli araglarin enerji
tilketimi, zamana bagli degiskenleri igeren bir siirectir. Ara¢ hizindaki degisimler ve

XXiv



ortam sicakligi gibi faktorler gecmis degerleriyle dogrudan iligkilidir. LSTM, ge¢mis
zamandaki girdileri hatirlayarak enerji tiiketimi tahmininde daha iyi bir genelleme
saglayabilir. Bu ozellik, oOzellikle ara¢ hizindaki degisimlerin enerji tiiketimi
Uzerindeki etkisini degerlendirme noktasinda kritik bir avantaj sunar.

XGBoost modeli ise aga¢ tabanli bir model olup, degiskenler arasindaki iliskileri
ogrenmede oldukga etkilidir, ancak zaman serisi verilerindeki ardisik bagimliliklar
dogrudan modelleyemez. XGBoost, veriler arasinda giiclii korelasyonlar1 yakalayarak
tahmin dogrulugunu artirabilir, ancak zamanla degisen dinamik iliskileri dogrudan
modelleyemez. Bununla birlikte, degiskenlerin belirli anlik kombinasyonlarina bagli
olarak enerji tiikketimi degisimlerini iyi bir sekilde yakalayabilir, ancak ge¢mis
degerleri hesaba katmada LSTM kadar etkili degildir.

SVR modeli ise dogrusal ve dogrusal olmayan iliskileri belirli bir diizeye kadar
Ogrenebilse de, yiiksek boyutlu ve karmasik zaman serisi verilerinde yeterince esnek
degildir. SVR, belirli ¢ekirdek fonksiyonlari ile dogrusal olmayan yapilar
modelleyebilir, ancak verilerdeki uzun siireli bagimliliklar1 ve zamana bagh
degisimleri dogrudan 6grenme kapasitesi sinirlidir. Ayrica, SVR veri 6l¢egine oldukga
duyarli oldugu i¢in genis veri setlerinde ve degiskenler arasi etkilesimlerin yogun
oldugu durumlarda, genelleme konusunda yetersiz kalmaktadir.

Bu ¢alisma, makine 6grenimi modellerinin elektrikli araglarin enerji tiketimini tahmin
etme konusundaki etkinligini ortaya koymustur. Ozellikle LSTM modelinin zaman
bagimli verileri basarili bir sekilde isleyerek en iyi sonuglar1 verdigi gosterilmistir.
Gelistirilen modellerin dogru enerji tiiketimi tahminleri yapabilmesi, elektrikli arag
kullanicilarinin  daha giivenilir menzil tahminler1 elde etmelerine ve rota
planlamalarini daha bilingli yapmalarina olanak saglamaktadir. Ayrica, bu tahminlerin
batarya yonetim sistemleri ile entegre edilerek, elektrikli araglarin sarj siirelerinin
optimize edilmesine ve sebeke yiikiiniin daha iyi yonetilmesine katki saglayacaktir.

Sonug olarak, tez kapsaminda gelistirilen makine 6grenimi modelleri, elektrikli
araglarin enerji tiiketimini tahmin etme siirecinde gii¢lii ve etkili araclar olarak
degerlendirilmistir. Ozellikle LSTM modeli, zaman serisi verileriyle ¢calismada iistiin
performans sergileyerek enerji tiiketimi tahmininde en dogru sonuglari elde etmistir.
Calismada gelistirilen modeller, EV teknolojisinin daha genis bir kullanici kitlesine
yayilmasini saglayacak dogru menzil tahmini ve enerji yonetimi sistemleri i¢in dnemli
bir temel olusturmaktadir. Gelecekte yapilacak ¢alismalar, daha biiyiik ve gesitli veri
kiimeleri kullanarak tahmin dogrulugunu artirmaya, hibrit modelleme tekniklerini
uygulamaya ve gercek zamanli enerji tahmin sistemlerini daha genis capta
uygulamaya odaklanmalidir. Bu dogrultuda yapilan caligmalar, elektrikli araglarin
kullanim verimliligini artirarak siirdiiriilebilir ulagim sistemlerinin yayginlasmasina
katk1 saglamaktadir.
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1. INTRODUCTION

The growing adoption of electric vehicles (EVs) is a critical element in global
strategies aimed at reducing greenhouse gas emissions and transitioning to sustainable
transportation system (Ullah et al., 2022). Despite their environmental benefits
significant barrier to widespread EV acceptance remains range anxiety drivers’ fear of
insufficient battery charge to complete their journey (J. Wang, 2016). This challenge
is rooted in the limited driving range of current EV models and the variability of real

world driving conditions, which can complicate range estimation.

While extensive research has been conducted on EV energy consumption and
prediction, there is a pressing need for experimental comparisons of model based and
data driven prediction techniques (Shen, Zhou, Yu, et al., 2023). To address this gap,
this thesis focuses on a comparative analysis of different methodologies for predicting
EV energy consumption using real world data. By evaluating the performance and
accuracy of these approaches, the study aims to identify the most effective methods
for energy consumption prediction.

1.1 Electric Vehicles

EVs are increasingly being recognized as a sustainable alternative to conventional
internal combustion engine (ICE) vehicles. Their adoption is driven by a combination
of environmental, economic and policy related factors. EVs have the potential to
significantly reduce greenhouse gas emissions and dependence on fossil fuels, aligning
with global efforts to combat climate change (Krogh et al., 2015). The switch to EVs
has been further accelerated by government incentives, emissions reduction laws,
rising fuel prices and increased environmental awareness (Adnane et al., 2023; Skuza
& Jurecki, 2022).

Key advantages of EVs include their lower carbon footprint, increased energy
efficiency and operational benefits. EVs produce zero tailpipe emissions and offer

advanced features such as energy recuperation and a near ideal speed-torque profile,



which contribute to their overall efficiency (Yuan et al., 2024). However, despite these
benefits several challenges impede their widespread adoption.

A significant limitation is the restricted driving range of EVs, which is constrained by
current battery capacities when compared to the ranges of traditional ICE vehicles (J.
Wang, 2016). Infrastructure and charging time are other problems. EVs require
considerably longer charging times than the refueling times for conventional vehicles
and the number of available charging stations is still limited compared to gas stations
(J. Wang, 2016). These challenges collectively impact drivers’ acceptance of EVs and
hinder their widespread adoption.

To address these challenges, researchs have focused on several key areas. Improving
energy efficiency through optimized vehicle components and driving strategies is a
critical area of development. Accurate energy consumption prediction models are
being developed to provide real time estimations of energy usage (X. Xu et al., 2019;
J. Zhang et al., 2020). Route planning algorithms aim to identify the most energy
efficient paths for EVs, while advancements in battery technology seek to increase

driving range and reduce costs (J. Wang, 2016).

The transition to EVs represents a vital step toward achieving a sustainable
transportation system. While EVs offer significant environmental and operational
advantages, continued research and development are necessary to address persistent
challenges related to range anxiety, energy efficiency and infrastructure limitations.
By overcoming these barriers, EVs can become a viable and widely accepted
alternative to traditional ICE vehicles (J. Wang, 2016).

1.2 Range Estimation

Range estimation is a complex and critical component of EV technology. Accurate
range estimation enables drivers to plan their trips effectively, reduces range anxiety
and promotes confidence in EV technology (Albuquerque, 2022; Feng et al., 2024).
Analyzing a variety of dynamic variables, such as battery SOC, driving conditions,
environmental influences and vehicle parameters are necessary for range estimation.
This section explores the challenges of range anxiety, the various estimation models
used for range prediction and the methodologies employed to improve their accuracy

and reliability.



1.2.1 Range anxiety

Range anxiety is one of the most significant psychological barriers to the widespread
adoption of EVs (J. Wang, 2016; Z. Xu et al., 2024). It refers to the fear that an EV's
driving range may be insufficient to reach a destination or charging point, causing
stress and inconvenience for drivers. This concern is amplified by the relatively shorter
range of EVs compared to traditional ICE vehicles, longer charging times and the
uneven availability of charging infrastructure (Liu et al., 2021; Mediouni et al., 2022;
Ullah et al., 2022; J. Wang, 2016). These factors create uncertainty and hesitation
among potential EV users, impacting their willingness to adopt this sustainable
technology.

A significant consequence of range anxiety is the reduced usable battery capacity.
Many EV drivers maintain a 20-30% battery buffer to avoid running out of charge,
even though their vehicles are designed to use the entire battery capacity (Shen, Zhou,
Yu, etal., 2023; Ullah et al., 2022). While this precaution minimizes the risk of being
stranded, it also restricts the vehicle’s effective range, limiting the benefits of EV
technology. Additionally, range anxiety often influences drivers’ route planning
behaviors. Drivers often select less convenient routes with frequent stops for charging
because they are worried about running out of battery power.

Hesitancy toward long trips is another notable impact of range anxiety (Z. Xu et al.,
2024). EV owners may avoid long distance travel, particularly in areas with meager
charging infrastructure. This reluctance limits the utility of EVs for intercity travel and
reinforces concerns about their practicality for everyday use. Moreover, the fear of
being stranded adds a layer of mental stress to the driving experience, diminishing user

confidence and satisfaction with EV technology (Z. Xu et al., 2024).

Several factors contribute to the prevalence of range anxiety. Inaccurate range
estimation is a primary concern, as many EVs display predicted ranges based on ideal
conditions without accounting for variables such as weather, terrain and individual
driving styles (Ullah et al., 2022). This discrepancy between the predicted and actual
range reduces trust to the technology. The degree of range anxiety varies among
drivers, a phenomenon known as heterogeneous range anxiety (Z. Xu et al., 2024). For
instance, new EV drivers, who may lack familiarity with their vehicle's capabilities,

are often more prone to anxiety compared to experienced users. The limited



availability of charging infrastructure, particularly in rural or underdeveloped areas,
amplifies range anxiety and restricts the mobility and appeal of EVs.

Efforts to mitigate range anxiety focus on technological advancements and
infrastructure improvements. Accurate energy consumption prediction, which
incorporates real time data on driving conditions, road types, weather and traffic, can
significantly enhance the reliability of range estimates (Ullah et al., 2022; J. Wang,
2016; Z. Xu et al., 2024) . Personalized range estimation models that consider
individual driving behaviors also reduce prediction errors and build driver confidence.
Probabilistic models that present predictions with confidence intervals can help drivers
better understand and manage uncertainties (Petkevicius et al., 2021). Expanding
charging networks and improving charging speeds are equally critical for addressing
concerns about range limitations. Furthermore, tools that optimize routes for energy
efficiency and charging availability can help drivers plan trips more effectively,
reducing the stress associated with range anxiety.

Range anxiety is a complex problem due to the limitations in current EV technology
and infrastructure. Addressing this challenge requires a combination of accurate range
estimation methods, improved charging infrastructure and strategies to enhance driver
trust and confidence in EV technology. By mitigating range anxiety, EVs can become
a more viable and attractive alternative to ICE vehicles, accelerating the transition to
sustainable transportation (Shen, Zhou, Yu, et al., 2023; Ullah et al., 2022).

1.2.2 Estimation models

Estimation models are essential for predicting the range of EVs and enhancing the
overall driving experience. These models analyze various dynamic factors such as
driving behavior, environmental conditions, vehicle specifications and battery
parameters to estimate energy consumption and the remaining driving range.
Estimation models can be categorized into analytical, statistical and machine learning
(ML) based approaches, each offering unique advantages and limitations (Liu et al.,
2021).

Analytical models rely on the principles of vehicle dynamics and powertrain efficiency
to estimate energy consumption. These models calculate the energy required to
overcome forces like rolling resistance, aerodynamic drag and gravitational pull during

uphill driving while accounting for regenerative braking and motor efficiency (Shen,



Zhou, Yu, et al., 2023). This is clearly indicated in Figure 1.1, different forces acting
on a vehicle moving uphill on an inclined road. It includes forces such as gravity,
normal force, traction force, aerodynamic resistance, rolling resistance and inertia
(Albuquerque, 2022). These forces influence the vehicle's motion, energy
consumption and overall performance, particularly in varying terrain conditions.
Understanding these interactions is crucial for optimizing vehicle efficiency and
energy management. Analytical models are computationally efficient and provide a
solid theoretical framework for understanding energy consumption. However, their
simplicity can be a limitation, as they often fail to capture the complex interactions of

real world driving conditions, such as variations in traffic, road surfaces and weather.

Figure 1.1 : Main influencing forces on a moving vehicle (Fi, inertial force;
Fi.tractive force; Fg, gravitational force; Fr, rear rolling resistance force; Fs ,front
rolling resistance force; Fa , aerodynamic (air) drag; Fn, normal force; CG, center of
gravity; a.the road slope) (Albuquerque, 2022).

Statistical models use historical data to identify patterns and relationships between key
parameters and energy consumption. For example, linear regression models can
establish dependencies between variables like speed, acceleration and battery
consumption. While statistical models are relatively simple and interpretable, they rely
on assumptions about linearity and error distributions. These assumptions may not
hold in dynamic, real world conditions with nonlinear relationships, leading to reduced

accuracy and potential biases in predictions.



Machine learning models have emerged as a robust solution for EV range prediction,
offering flexibility and adaptability to complex datasets. These models can capture
intricate, nonlinear relationships between input features and energy consumption,
making them particularly effective for real world applications. Machine learning
approaches can be further divided into single models, ensemble models, hybrid models
and deep learning (DL) models. The instantaneous power consumption of an electric

vehicle battery is shown in equation 1.1.
P(t) = Vy(6) X I,(8) (1.1)

where power P(t) at any given time (t) is determined by the product of the battery
voltage Vp(t) and the battery current Ip(t). Equation 1.2 calculates the total energy

consumption over a given time period.

s = ft V() x 1,() dt 12)

=0

The total energy consumption Ewta OVer a time period from t=0 to t=to is determined
by integrating P(t), given as the product of Vp(t) and In(t) over time. This integral
represents the accumulation of power over the specified duration, providing a measure

of the total energy consumed, expressed in Watthours.

Single models, such as Support Vector Regression (SVR), Artificial Neural Networks
(ANNSs) and Decision Trees (DTs), use a single algorithm for prediction tasks. While
these models are effective in handling specific use cases, their standalone performance
may be limited in highly dynamic scenarios. Ensemble models, such as Random Forest
(RF) and eXtreme Gradient Boosting (XGBoost), combine the outputs of multiple
models to improve accuracy and robustness. By leveraging the strengths of many
algorithms and mitigating individual weaknesses, ensemble methods provide

enhanced predictive capabilities.

Hybrid models combine machine learning techniques with other methods, such as
optimization algorithms, to enhance performance. For instance, hybrid approaches
may integrate linear regression with nonlinear neural networks or use metaheuristic

algorithms to optimize model parameters. This combination allows hybrid models to



balance simplicity and complexity, improving prediction accuracy across diverse
conditions (Chou & Tran, 2018).

DL models, including Long Short-Term Memory (LSTM) networks and Transformer
architectures, excel at capturing temporal dependencies in time series data. These
models are particularly well suited for EV range prediction, as they can analyze
sequential patterns in driving data, such as changes in speed and energy consumption
over a trip. Their ability to handle large datasets and learn complex relationships
enables DL models to achieve high accuracy, particularly when trained on real world
driving data (Sulaiman & Mustaffa, 2024). As shown in Figure 1.2, energy
consumption on EVs are highly depending on vehicle speed profile (Yan et al., 2024).
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Figure 1.2 : Effect of average speed on energy consumption (Yan et al., 2024).

To further enhance the performance of machine learning models, advanced techniques
such as feature selection, data augmentation and transfer learning are often employed.
Feature selection identifies the most relevant parameters for modeling, improving
prediction accuracy while reducing computational complexity (Chou & Tran, 2018).
Data augmentation expands training datasets by creating synthetic samples, enhancing
the diversity and robustness of the models. Transfer learning allows models trained on
existing EV data to be adapted to new vehicle types or scenarios, ensuring their

applicability across diverse conditions.

Evaluating the performance of these estimation models is critical for understanding
their effectiveness. Metrics such as Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error (MAPE) and R-squared (R?) are
commonly used to assess prediction accuracy and model fit. Each metric provides
unique insights, helping researchers and developers refine their models for optimal

performance (Feng et al., 2024).



Despite their advancements, estimation models face challenges such as data quality,
model generalization and real time adaptability. High quality datasets with detailed
features like SOC, driving conditions and environmental factors are essential for
accurate predictions. Models must also generalize effectively to different
topographies, driving styles and EV models, ensuring broad applicability.
Furthermore, real time adaptability is crucial for responding to changes in traffic, road

conditions and driver behavior.

Estimation models are a cornerstone of EV range prediction, each contributing unique
strengths to the task. By combining advancements in analytical, statistical and machine
learning approaches, alongside innovative techniques like hybrid and DL models,
researchers and manufacturers can develop more accurate, reliable and adaptive range
prediction systems. These systems are essential for addressing range anxiety and

supporting the widespread adoption of EVs.

1.3 Literature Review

The literature on EVs covers a wide range of topics, including energy consumption
modeling, prediction techniques, influencing factors and the application of ML in
improving these processes. This section synthesizes key findings and emerging trends
from the reviewed sources, highlighting the complexities and advancements in EV

energy consumption prediction and related areas.

Real world driving data is a critical component for accurate EV energy consumption
analysis and prediction. Numerous studies emphasize the limitations of laboratory
based tests, which often fail to reflect actual driving conditions. Real world datasets
provide insights into how various factors affect energy consumption, offering a more
comprehensive understanding of EV performance (Achariyaviriya et al., 2024; Shen,
Zhou, Yu, et al., 2023).

Several key factors significantly influence EV energy consumption. Ambient
temperature plays a major role, with studies noting a substantial increase in energy
usage at lower temperatures. For instance, a study reported a 100% rise in energy
consumption when the ambient temperature dropped from 20°C to 0°C
(Achariyaviriya et al., 2024). Similarly, trip length impacts energy efficiency, with

shorter trips consuming up to 10% more energy per unit distance for distances below



16 kilometers (Achariyaviriya et al., 2024). Traffic conditions also have a notable
effect, with congestion increasing energy consumption by as much as 40%. Driving
behavior, including aggressive acceleration and braking, can raise energy usage by up
to 16%. Road grade greatly also affects energy consumption, with a 3% incline
increasing usage by 50%, while descending grades can reduce consumption by 80%
(Holden et al., 2020). Vehicle auxiliary loads, such as climate control systems, interact
with ambient temperature to further influence energy demands (Ullah et al., 2021).
Table 1.1 summarizes key factors influencing energy consumption in EVs,
highlighting the impact of environmental conditions, driving behavior and vehicle
related characteristics. Temperature extremes significantly affect energy consumption
with both cold and hot conditions increasing energy demands, especially due to HVAC
usage. External conditions such as wind resistance, road inclination and traffic
congestion further contribute to variations in energy consumption. Additionally,
driving behavior and vehicle load play a role, where aggressive driving and added
weight lead to higher consumption. These insights emphasize the importance of
optimizing energy efficiency through smart driving strategies, route planning and

adaptive vehicle control systems.

Table 1.1 : Summary of energy consumption by the factors analysed (Skuza &
Jurecki, 2022).

Type of factor Energy consumption Energy consumption
Negative temperatures -20°Cto 0 ~6% -14%
High temperature 45°C ~33% - 58%
HVAC heating (in winter) - ~52% - 94%
HVAC cooling (in summer) - ~11% - 17%
Wind 15 km/h ~5% - 14%
Inclination %3 ~50%
Route length 4-16 km ~15-29%
Traffic conditions %12-18 stop to ~20%
(proportion of stopping time) %24-34 0
Load +250 kg ~7%
Driving style Agressive ~17%




Lastly, driving speed significantly impacts energy consumption patterns, with hybrid
EVs emitting less CO- at lower speeds. As Figure 1.3 shows, there is significant gap
for CO2 emisions between BEV, HEV and ICEV for both urban and highway roads.
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Figure 1.3 : The normalized wheel to wheel (WTW) and tank to wheel (TTW) CO-
emissions of the test vehicles for each route mode (Achariyaviriya et al., 2024).

Road grade and driving behavior remain critical factors, with numerous studies
quantifying their impacts on energy consumption. Regenerative braking has also been
a focus of research, as this technology improves energy efficiency by recovering

energy during braking events.

The application of ML in predicting EV energy consumption and range has gained
significant attention in recent years. Artificial intelligence (Al) based forecasting
methods, including ML and DL techniques, have been extensively reviewed and
compared for their effectiveness in energy prediction (Adnane et al., 2023; Jui et al.,
2024). Commonly used ML algorithms include Artificial Neural Networks (ANN),
Support Vector Machines (SVM), RF and LSTM networks (Chou & Tran, 2018; Shin
& Woo, 2022; Ullah et al., 2021; Yang et al., 2022). These models are capable of
capturing complex relationships in large datasets, making them ideal for energy

consumption prediction.
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Hybrid models, which combine multiple ML techniques or integrate ML with other
methods, have emerged as a powerful approach. Ensemble models, such as RF and
Gradient Boosting, improve prediction accuracy by aggregating the outputs of multiple
algorithms. Some studies have explored the use of direct function ANN to
simultaneously predict multiple energy parameters, comparing these models to inverse
function approaches (Bouktif et al., 2018; Chou & Tran, 2018).

ANNSs have been employed to develop engine fuel consumption maps for conventional
vehicles, which were then compared to parallel hybrid vehicle models. These
comparisons demonstrated a notable reduction in fuel consumption and carbon dioxide
emissions for hybrid vehicles, showcasing the potential of ANNs to enhance energy
efficiency and reduce environmental impact (Adedeji, 2023). Similarly, ANNs have
been applied in the design and simulation of pure electric vehicle parameters, where a
single model has been shown to accurately predict multiple outputs simultaneously,
further emphasizing their versatility.

Innovations in ANN applications have also led to the development of inverse and
direct function models. Inverse function models use outputs for prediction and
estimation tasks, while direct function models utilize virtual functions as inputs to
generate multiple outputs. A notable example is the direct function ANN model, which
integrates calculated virtual functions to predict various energy parameters, including
city, highway and combined electric consumption, within a single framework
(Achariyaviriya et al., 2023). This approach has been shown to achieve higher
accuracy compared to traditional inverse function models, making it a promising tool

for comprehensive energy consumption analysis.

Time series forecasting methods, particularly for short term load prediction, have been
applied to energy consumption analysis in both buildings and microgrids (Wazirali et
al., 2023). Data driven models emphasize the importance of preprocessing and feature
selection to improve model performance. Predictive cruise control (PCC) systems,
which use intelligent driving assistance to optimize energy usage, have also been

highlighted as a promising area for reducing energy consumption (Gao et al., 2023).

Model optimization techniques, such as hyperparameter tuning, are commonly used to
improve the performance of these predictive models. Studies often evaluate these
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models using metrics such as MAE, MAPE and RMSE to ensure consistent and
comparable performance (Bouktif et al., 2018; Ribeiro et al., 2020).

The reviewed studies utilize a variety of datasets for training and testing predictive
models, including real world EV tracking data, traffic flow information, weather data

and geographic parameters (Adnane et al., 2023).

Emerging trends in EV energy consumption prediction highlight the growing
importance of ML and data driven methods. These techniques enable the processing
of large and complex datasets allowing for quick and adaptive decision making [5].
However, challenges remain, particularly regarding the standardization of forecasting
models (Chou & Tran, 2018). A common database for comparing models is needed to

facilitate more accurate evaluations.

The quality and quantity of training data are critical for ML model accuracy. Datasets
must include detailed features such as driving conditions, vehicle parameters, weather
and driver behavior to ensure reliable predictions (Chou & Tran, 2018). Real time
adaptability is another challenge, as models must dynamically adjust to changes in
conditions and individual driving habits (Ribeiro et al., 2020). Longitudinal studies are
needed to assess the long term impacts of integrating advanced technologies, such as
renewable energy sources, into smart grids (Kiasari et al., 2024).

Interpretability remains a key issue in ML based models. While these models often
provide highly accurate predictions, their "black box" nature makes it difficult to
understand the underlying factors influencing their outputs (Ribeiro et al., 2020).
Techniques that improve model transparency are essential for building trust and

enabling practical applications.

Research has explored energy consumption and prediction across various types of
EVs. Hybrid Electric Vehicles (HEVS) have been a focus, with studies examining
energy management strategies, fuel consumption modeling and performance
comparisons with conventional vehicles (Jui et al., 2024). Battery Electric Vehicles
(BEVs) have also received attention, particularly regarding their energy consumption

and driving range under different conditions (De Cauwer et al., 2015).
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1.4 Purpose of Thesis

The purpose of this study is to evaluate and compare the performance of three
advanced machine learning models SVR, XGBoost and LSTM networks in predicting
energy consumption for EVs using real world data. Accurate energy consumption
prediction is essential for addressing range limitations, a critical concern among EV

users and enhancing EV efficiency in real world driving scenarios.

This study uses detailed driving data collected from a Nissan Leaf 2013 model, one of
the widely studied electric vehicles due to accessibility of data. By leveraging this real
world dataset, the study aims to provide a robust comparison of SVR, XGBoost and
LSTM models examining their effectiveness in capturing complex patterns and
interactions that influence EV energy consumption. Each model represents a unique
approach to machine learning, with SVR being a powerful regression method suitable
for capturing linear and nonlinear relationships, XGBoost as a highly optimized
boosting algorithm known for its performance in tabular data and handling feature
interactions and LSTM as a recurrent neural network (RNN) specifically designed to

capture temporal dependencies and sequential patterns in time series data.

The performance of these models is evaluated on several metrics to determine their
accuracy in estimating energy consumption, which is essential for predicting the
remaining driving range of an EV. Reliable range predictions help decrease range
anxiety among EV users, enhancing their driving experience and trust in EV
technology. Accurate range prediction based on real world data further supports the
development of adaptive energy management systems that can optimize battery usage,

inform drivers of energy saving practices and improve overall EV performance.
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2. THEORETICAL BACKGROUND
2.1 Fundamentals of Electric Vehicles

EVs are a transformative innovation in the transportation industry, offering a
sustainable alternative to conventional ICE vehicles. EVs capacity to drastically cut
greenhouse gas emissions and reliance on fossil fuels are becoming more popular. This
shift is further supported by government incentives, stricter emissions regulations,
rising fuel costs and growing awareness of environmental sustainability (Ullah et al.,
2021). Compared to ICE vehicles, EVs offer enhanced energy efficiency, lower noise
pollution and zero tailpipe emissions, positioning them as a critical component of the
global effort to mitigate climate change and reduce urban pollution (J. Wang, 2016).

EVs come in various forms, each suited to specific use cases. BEVs rely entirely on
electricity stored in high capacity batteries and produce no emissions during operation.
HEVs combine an electric motor and battery system with an internal combustion
engine, allowing them to switch seamlessly between power sources for greater fuel
efficiency. Plug-in Hybrid Electric Vehicles (PHEVS) represent a hybrid category that
can be charged externally while also utilizing an ICE, offering extended range
flexibility (Z. Wang et al., 2024). These variations demonstrate the versatility of EV
technology in meeting diverse transportation needs.

EVs differentiate with their advanced powertrain systems. The battery system is the
primary energy source, with lithium-ion batteries being the most commonly used due
to their high energy density, long cycle life and relatively low self-discharge rates
(Yang et al., 2022). The SOC of the battery is a crucial parameter that determines the
remaining driving range and impacts the overall efficiency of the vehicle (Nabi et al.,
2023). Integrated with the motor is a power electronics control system, which regulates
the flow of energy between the battery and motor, optimizing performance under
varying driving conditions. Also, EVs are equipped with regenerative braking systems,
which capture and convert kinetic energy during braking into electrical energy stored

in the battery, enhancing overall energy efficiency (Skuza & Jurecki, 2022).
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Energy consumption in EVs is influenced by a complex interplay of factors. Vehicle
characteristics, such as weight, aerodynamics and rolling resistance, directly affect
energy efficiency. Environmental conditions, temperature, wind resistance and road
gradients play a significant role in determining energy use during a trip. Driver
behavior such as acceleration patterns, average speed and braking intensity further
adds variability to consumption. Driving conditions, including traffic congestion and
trip length, also contribute to fluctuating energy demands (Feng et al., 2024; Zhu et
al., 2024). These dynamic factors underscore the importance of accurate energy
consumption prediction for optimizing vehicle performance and mitigating range
anxiety. A framework illustrates in Figure 2.1 for predicting energy consumption in
EVs by integrating historical driving data, environmental factors and ML techniques.
It involves segmenting driving data, predicting driving conditions, extracting relevant
features and optimizing an XGBoost model for accurate energy consumption forecasts.
The final model uses real time vehicle data to provide future energy consumption

predictions, improving efficiency and range estimation.
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Figure 2.1 : Machine learning based energy consumption prediction framework (J.
Zhang et al., 2020).

EV energy consumption prediction has evolved through two primary approaches.
Traditional model based methods rely on principles of physics and vehicle dynamics

to estimate energy use, providing a foundational understanding of how forces like drag,
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rolling resistance and gradient affect performance. In contrast, data driven techniques,
particularly those utilizing ML, analyze historical and real time data to uncover
patterns and relationships that influence energy consumption (Shen, Zhou, Yu, et al.,
2023). ML based models, such as those employing LSTM networks or ensemble
methods, have shown remarkable promise in capturing the nonlinear, multifaceted
nature of EV energy consumption (Feng et al., 2024; Ullah et al., 2021). LSTM

structural unit shown in Figure 2.2.
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Figure 2.2 : Structural unit of LSTM (X. Zhang et al., 2022).

Battery performance is a key challenge, as factors like energy density, state of health
(SOH) and capacity degrade over time, reducing overall efficiency and range. Real
world energy consumption variability due to differing driving conditions further
complicates the development of standardized energy models (Nabi et al., 2023; Yang
etal., 2022).

Ongoing research is directed toward overcoming these challenges and advancing EV
technology. Efforts are focused on improving battery materials and designs to enhance
energy density and durability, developing sophisticated energy management systems
and refining energy consumption prediction models with the help of ML (Ullah et al.,
2022). As the transportation sector continues to evolve, EVs are poised to play a
pivotal role in achieving sustainable mobility, underscoring the importance of

continued innovation and infrastructure development (J. Wang, 2016).

2.2 Factors Affecting Energy Consumption

Energy consumption in EVs is influenced by a wide array of interconnected factors,

which can be broadly categorized into vehicle related, environmental, driver related
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and driving condition factors. Understanding and optimizing these factors is crucial
for improving energy efficiency and extending the driving range (Mediouni et al.,
2022; Ullah et al., 2022).

Vehicle specific characteristics play a critical role in determining energy consumption.
Key parameters include the vehicle's weight, the efficiency of its components and the
use of auxiliary systems. Vehicle weight significantly impacts energy demand, as
heavier vehicles require more energy for acceleration and maintaining speed.
Reducing vehicle mass through lightweight materials and design innovations is an
effective strategy to lower overall energy consumption (Liu et al., 2021). Auxiliary
systems, such as heating, ventilation and air conditioning (HVAC), also contribute to
energy usage. These systems, especially under extreme temperatures, can significantly
reduce the vehicle's range (Ullah et al., 2022). The type of tire used may have a minor
impact on energy consumption. While differences in tire design, such as rolling
resistance, tread pattern and material composition, can influence how efficiently a
vehicle moves, their effect on overall energy consumption is generally small compared

to other factors like vehicle speed, weight and driving behavior (Pokharel et al., 2021).

Battery system specifications, including energy density, capacity and SOH are
fundamental determinants of energy consumption. The SOC of the battery directly
influences energy usage and driving range. In addition, motor and drivetrain
efficiency, rolling resistance determined by tire pressure and design and the vehicle’s
aerodynamic profile all contribute to the energy efficiency of the EV (Mediouni et al.,
2022). SOC of a battery is a key parameter that represents the remaining capacity of
the battery relative to its full charge as seen in equation 2.1.

Q¢
So0C = Q—xlOO% (2.1)

0
where Qq is the charge remaining in the battery at a given time and Qo is the total charge
capacity of the battery when fully charged. This equation expresses SOC as a
percentage, indicating how much usable energy is left before the battery needs to be

recharged.

There is a direct linear relationship between battery current and energy consumption
in electric vehicles. As the battery current increases, energy consumption also rises,

reflecting the proportional demand for power during higher current usage. Conversely,
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when the battery current decreases, energy consumption correspondingly reduces
(Achariyaviriya et al., 2023).

Energy use is significantly impacted by external environmental factors. Ambient
temperature is one of the most significant factors, affecting both battery performance
and auxiliary system usage (J. Zhang et al., 2020). In colder climates, energy
consumption rises due to increased HVAC usage and reduced battery efficiency, while
in excessively hot conditions, air conditioning demands may lower energy efficiency
(Skuza & Jurecki, 2022).

Road conditions, the surface quality and slope, further influence energy consumption.
Uphill driving and uneven road surfaces increase energy requirements, while downhill
slopes can reduce consumption and facilitate regenerative braking (Ullah et al., 2021).
Traffic congestion with its stop and go patterns increases energy usage by making the

trip take longer.

Route planning and charging habits also play a role. Choosing energy efficient routes
with fewer inclines and less congestion can help conserve energy. Charging strategies,
including the timing and frequency of charges, can affect battery longevity and energy

efficiency (Feng et al., 2024).

Trip characteristics and operational factors have a direct effect on energy consumption.
Average speed, speed variability and average acceleration are key indicators of energy
usage (Feng et al., 2024). Driving cycles' standardized patterns used to simulate typical
driving conditions may differ significantly from real world conditions, affecting
energy predictions. Longer trips generally require more energy but efficient driving
during extended journeys can offset consumption to some extent (Skuza & Jurecki,
2022).

It is important to note that many of these factors interact in nonlinear ways, creating
complex dependencies that can amplify or mitigate energy consumption under varying
conditions. For instance, environmental factors such as temperature can compound
vehicle related inefficiencies, while regenerative breaking can counterbalance the

impact of steep inclines.
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2.2.1 Driving behavior

Driving behavior has a profound effect on the energy consumption of EVs. The way a
driver handles acceleration and braking in response to real time driving conditions
directly impacts the vehicle’s kinematic changes. Behaviors such as rapid acceleration,
abrupt braking and inconsistent speeds are characteristic of aggressive driving styles,
which can lead to a significant reduction in driving range, sometimes by as much as
35%. On the other hand, adopting energy efficient driving habits like smooth
acceleration, steady cruising and strategic use of regenerative braking can extend the
range by up to 27% (Feng et al., 2024).

The energy demand during driving often varies depending on specific vehicle states,
such as starting, accelerating, cruising, decelerating and idling. For example, starting
and accelerating typically require the most energy, while effective braking techniques
can facilitate energy recovery through regenerative systems. Drivers who frequently
engage in hard braking generally achieve lower levels of energy regeneration
compared to those with more controlled braking habits (J. Zhang et al., 2020). These
personal driving patterns affect how energy is consumed and managed during trips. In
Figure 2.3 shows, sample of 5 main profiles distribution with velocity changes.
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Figure 2.3 : Example of trip fragment, micro-fragments and the corresponding
kinematic fragments (J. Zhang et al., 2020).
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Quantifying and analyzing driving behavior often involves assessing parameters such
as acceleration and deceleration rates, which can then be used to classify driving styles.
Clustering methods categorize driving patterns into distinct groups, such as high or
low acceleration and deceleration combinations, providing insights into the

relationship between driving styles and energy consumption (J. Zhang et al., 2020).

2.2.2 Environmental conditions

Environmental factors play a pivotal role in shaping the energy consumption of EVs.
Ambient temperature is particularly influential, as it directly affects battery
performance and the operation of auxiliary systems. Energy consumption generally
increases in colder temperatures, where battery efficiency declines and HVAC
demands rise. Conversely, extremely high temperatures can also reduce range due to
increased cooling requirements (Mediouni et al., 2022). Studies suggest that the
optimal temperature range for minimizing energy consumption is between 15°C and
20°C (J. Zhang et al., 2020). Figure 2.4 illustrates the relationship between SOC and
distance traveled under varying ambient temperature conditions. The distribution
suggests that SOC depletes more rapidly in extreme temperatures, particularly at lower

temperatures where energy consumption is higher due to reduced battery efficiency.
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Figure 2.4 : Comparison of energy consumption per unit distance traveled in
different temperature zones (Feng et al., 2024).
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Road conditions also significantly affect energy efficiency. Uphill driving demands
greater energy expenditure, whereas downhill driving offers opportunities for energy
recovery through regenerative braking. Additionally, the road surface influences
rolling resistance, with smoother surfaces requiring less energy (Mediouni et al., 2022;
J. Wang, 2016; X. Xu et al., 2019).

Weather conditions, such as rain or snow, create additional challenges by altering road
traction and driving dynamics, which can increase energy demand (Petkevicius et al.,
2021). Traffic patterns, ranging from free flowing conditions to severe congestion, also
have a cascading impact on energy use. These factors often interact in nonlinear ways,
making it challenging to predict energy consumption accurately across varying

environmental conditions.

2.3 Range Estimation Techniques

Range estimation techniques for EVs are critical for predicting energy consumption
and providing accurate estimations of driving range. These techniques play a pivotal
role in mitigating range anxiety, optimizing energy use and enhancing the overall
driving experience. Range estimation methods can be broadly classified into three
categories: data driven models, physical models and hybrid models. Each approach
leverages unique methodologies to address the challenges associated with energy
consumption prediction, with strengths and limitations that make them suitable for

different applications.

2.3.1 Data driven models

Data driven models, often referred to as "black box™ approaches, rely on ML and DL
,which is a subset of ML, techniques to predict energy consumption based on historical
and real time data (Heinrich & Pruckner, 2022). These models learn complex patterns
from data without requiring explicit knowledge of vehicle dynamics or physical

principles.

Machine learning algorithms such as SVR, RF, Gaussian Process Regression and
XGBoost have been widely applied in energy consumption estimation (Achariyaviriya
etal., 2024). Advanced neural network architectures, including LSTM networks (Feng
et al., 2024) and Convolutional Neural Networks (CNN) (Chen et al., 2023) are
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frequently used for modeling sequential data and predicting battery SOH or energy
consumption (Wazirali et al., 2023).

Figure 2.5 outlines a process for estimating the SOH of a battery through data
preprocessing, model training and evaluation. Raw battery data undergoes
preprocessing, including voltage normalization and dataset structuring, before being
split into training, validation and test sets. Machine learning models, including CNN,
LSTM and a hybrid CNN-LSTM, are trained to estimate voltage and predict battery
capacity, which are key indicators of SOH. The final stage involves evaluating model
performance to ensure accurate and reliable SOH estimation, essential for effective
Battery Management Systems (BMS) in EVs.
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Figure 2.5 : Battery SOH prediction framework (Safavi et al., 2024).

Data driven models use a wide range of features, including driving conditions (e.g.,
speed, acceleration and road grade) (X. Xu et al., 2019), battery parameters (e.g.,
constant current charging time, charging capacity and voltage curves) (Chen et al.,
2023) and environmental factors (e.g., ambient temperature, wind velocity and
precipitation). By analyzing these variables, these models can provide accurate

predictions of energy consumption under varying conditions.

Ensemble methods, such as Ensemble Stacked Generalization (ESG), further improve
prediction accuracy by combining the outputs of multiple base models which shown
in Figure 2.6.
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Figure 2.6 : Hybrid ESG method flowchart (Ullah et al., 2021).

Hybrid machine learning techniques, which integrate different ML methods or
optimization algorithms, enhance forecasting accuracy by leveraging the strengths of
individual techniques (Z. Zhang et al., 2024).

Federated Learning (FL) is a cutting edge approach for developing energy
consumption models while preserving data privacy. In FL, local models are trained
directly on data from individual EVs without sharing raw data externally (Yan et al.,
2024). These models can be implemented in two structures: centralized and
decentralized which are both shown in Figure 2.7 and Figure 2.8. In a centralized setup,

each vehicle trains its model locally and sends updates to a central server, which
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aggregates the results to create a global model. Alternatively, in a decentralized
structure, vehicles communicate directly with one another, collaboratively refining
their models. Transfer learning further enhances energy consumption prediction by
applying knowledge from well studied EV models to newer models with limited data,
assuming the variables of both models share a similar distribution. Additionally, data
decomposition techniques like Variational Mode Decomposition (VMD) are
employed to break down complex time series data into high and low frequency
components, enabling more accurate analysis and identification of underlying patterns

that influence energy consumption (Cheng et al., 2023).
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Figure 2.7 : Centralized FL architecture (Cheng et al., 2023).
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Figure 2.8 : Decentralized FL architecture (Cheng et al., 2023).
2.3.2 Physical models

Physical models, also known as "white box" or model based approaches, are grounded

in the principles of physics and engineering. These models use mathematical equations
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to simulate the dynamics of EV energy consumption, incorporating factors such as
rolling resistance, aerodynamic drag, gravitational forces and battery characteristics
(Liu et al., 2021).

Physical models are advantageous for their strong theoretical foundations and
interpretability. They offer a detailed understanding of the physical processes affecting
energy consumption, making them particularly useful for diagnostic and optimization
purposes (Shen, Zhou, Yu, et al., 2023). For instance, models based on longitudinal
vehicle dynamics calculate the power required at the wheels by considering forces
acting on the vehicle. Battery models, such as Lithium-lon battery and electrochemical
mechanism models, simulate energy usage and regenerative processes (Chen et al.,
2023).

Despite their strengths, physical models face challenges in calibration. Accurate
parameterization requires detailed knowledge of vehicle specific characteristics, which
can be labor intensive to obtain. Additionally, physical models may require significant
computational resources, especially for real time applications (Shen, Zhou, Yu, et al.,
2023).

Examples of physical models include equivalent circuit models (ECM) for battery
SOH estimation and mathematical formulations that describe battery power

consumption under different conditions (Chen et al., 2023).

2.3.3 Hybrid models

Hybrid models combine the strengths of both data driven and physical approaches to
create robust and versatile prediction frameworks. These models often integrate
physical insights with the flexibility and adaptability of ML methods. Figure 2.9
illustrates a hybrid modeling approach that integrates both data driven and physical
models for improved prediction accuracy. Historical data is used to train multiple
models, each capturing different aspects of the system’s behavior. These models are
optimized through an optimizer to enhance their performance. The trained models are
then combined using a model combiner, which integrates insights from multiple
sources to generate refined predictions. Additionally, live data is incorporated to
update and improve the model in real time, ensuring adaptability to changing
conditions (Chou & Tran, 2018).

26



o O @ - o 2

Model 1 Model 2 Model n Optimizer

A
©; —

Model Combiner

Batch training

v

Real-time predictions

Predictions
Figure 2.9 : Single phase hybrid model (Chou & Tran, 2018).

For instance, a hybrid model may use a physical model to simulate battery power
during short trips and employ machine learning to predict cumulative trip level energy
consumption. This approach leverages the interpretability of physical models while
addressing their limitations through data driven refinement. Hybrid models also use
machine learning to optimize the parameters of physical models, thereby improving

their accuracy and adaptability (Zhu et al., 2024).

Some hybrid models incorporate optimization algorithms with machine learning or
integrate time series analysis to capture temporal dependencies in driving data. Modal
decomposition techniques, such as Empirical Mode Decomposition (EMD), are used
to analyze complex signals, enhancing the robustness of hybrid approaches (Wazirali
et al., 2023).

Hybrid models are particularly effective when data availability is limited or when the
complexity of real world conditions necessitates combining multiple methodologies
(Shen, Zhou, Ahn, et al., 2023). They strike a balance between computational

efficiency and prediction accuracy, making them ideal for practical applications.
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3. METHODOLOGY
3.1 Dataset Description

The Vehicle Energy Dataset (VED) is a comprehensive dataset designed to capture
detailed insights into real world driving energy consumption patterns. It was developed
through a collaborative effort involving the University of Michigan, Argonne National
Lab and Idaho National Lab and spans data collected between November 2017 and
November 2018. The dataset includes approximately 374,000 miles of driving data
recorded across diverse road types, ranging from highways to dense urban
environments, in Ann Arbor, Michigan. The dataset’s large scale, covering 383
vehicles, provides a robust foundation for analyzing energy consumption trends in
various driving and environmental conditions (Oh et al., 2019). Vehicle ID 10,455 and

541 are EVs in that dataset and also unique number of trips shown in Figure 3.1.
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Figure 3.1 : VED unique trips count in 3 EVs.

VED contains data for four major categories of vehicles, ICEs, HEVs, PHEVs and
EVs. The EV’s in VED are identical 2013 Nissan Leaf which have 24 kWh battery.
This diversity ensures a comprehensive representation of vehicle types, driving
behaviors and energy consumption patterns. The dataset spans all seasons, capturing

the influence of weather and environmental factors on vehicle energy consumption.
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Data collection was conducted using onboard OBD-I11 loggers, which recorded time
series data of various vehicle parameters and operational metrics. These features
enable researchers to explore the interactions between vehicle dynamics, driver

behavior and environmental conditions in shaping energy usage.

In addition to the original VED dataset, an extended version known as eVED was
developed to enhance the dataset’s utility (S. Zhang et al., 2022). eVED includes
enriched data features such as road elevation, speed limits, intersections and traffic
signal locations. This additional information allows for more precise analyses of the
influence of road characteristics and driving conditions on energy consumption. Both
the VED and eVED datasets are publicly available and have been widely adopted for
energy consumption modeling and prediction research. Table 3.1 provides an
overview of the time stamped dynamic data collected for energy consumption analysis
in EVs.

Table 3.1 : Contents of time stamped dynamic data.

Data Name Data Type Sampling
Time
GPS Latitude / Longitude (deg) 3 sec
Outside AerTemperature ] 60 sec
(°C)
Auxiliary Power AirCon Power (kW) 60 sec
(HVAC) Heater Power (W) 60 sec
Battery SOC (%) 60 sec
Battery Info Battery Voltage (V) 5 sec
Battery Current (A) 1 sec

The dataset includes key parameters such as GPS coordinates, ambient temperature,
HVAC and battery related metrics like SOC, voltage and current, each recorded at
different sampling intervals. This structured data allows for a comprehensive analysis
of how environmental conditions, vehicle performance and energy usage interact over
time (Oh et al., 2019).

The VED dataset includes a rich array of features and parameters that reflect both static

vehicle characteristics and dynamic operational metrics. Static data captures the
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inherent properties of each vehicle, including its make, model and year, as well as key
specifications such as weight and engine configuration. These features provide a
foundational understanding of how different vehicle types contribute to energy
consumption under similar driving conditions. Figure 3.2 illustrates the unique vehicle

speed distribution.
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Figure 3.2 : Speed distribution of EVs in VED.

Dynamic data, consists of time series measurements that detail real time vehicle
operations. Key parameters include GPS based location data, speed, fuel or energy
consumption and auxiliary power usage, such as HVAC systems. Battery related
metrics, including the SOC are particularly important for understanding the energy

dynamics of EVs shown in Figure 3.3.
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Figure 3.3 : Distribution of SOC on EVs in VED.
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The features and parameters in the VED dataset enable the development of robust
models for predicting energy consumption and analyzing driving patterns. By
integrating diverse data sources and metrics, the dataset supports comprehensive

research to improve the efficiency and range of electric vehicles.

3.2 Model Development

The model development process involved implementing three different machine
learning approaches XGBoost, SVR and LSTM networks to predict the energy
consumption of EV batteries. Each method was chosen for its unique advantages in
modeling structured data, including gradient boosting, nonlinear regression and

sequential data modeling.

3.2.1 Selection of algorithms

XGBoost was utilized as a gradient boosting algorithm to model the energy
consumption using features such as vehicle speed, outside air temperature, air
conditioning power, heater power, battery current and battery voltage. The dataset was
split into training and testing subsets and the model was trained using the
“XGBRegressor” implementation. To optimize the hyperparameters, GridSearchCV
was employed, exploring combinations of the number of estimators, maximum tree
depth, learning rate, subsample fraction and column sampling fraction. The model was
evaluated on the test set and performance metrics, including RMSE and R2, were
computed to assess prediction accuracy. The gradient boosting approach demonstrated
its ability to model nonlinear relationships and interactions between features, yielding
strong predictive performance. Table 3.2 shows the best parameters of XGBoost

Regressor.
Table 3.2 : XGBRegressor the best parameters.
n min child max learning colsample
Model subsample estimators weight depth rate gamma bytree reg lambda
XGBoost 0.8 500 5 6 0.01 0 1 1

The second approach involved SVR, a nonlinear regression method particularly suited
for capturing complex relationships in smaller datasets. A pipeline was created with a
“StandardScaler” to normalize feature distributions and the SVR model with a radial

basis function (RBF) kernel. Hyperparameters, including the regularization parameter
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(C), epsilon-insensitive loss (¢) and kernel coefficient (y) were optimized using
GridSearchCV with three-fold cross validation. This ensured the model was fine tuned
to balance bias and variance. Once the model was trained, predictions were made on
the test set and metrics such as RMSE and R? were calculated. The SVR model showed
its efficacy in handling nonlinear patterns in the dataset, providing competitive
accuracy compared to XGBoost. The best parameters of SVR shown in Table 3.3.

Table 3.3 : SVR best parameters.

Model gamma epsilon C

SVR scale 0.1 1

The third approach employed a LSTM network to capture temporal dependencies in
the energy consumption data. Unlike XGBoost and SVR, LSTM leverages the
sequential nature of the data by using historical energy consumption values to predict
future values. The target variable, energy consumption, was scaled to a range of [0, 1]
using MinMaxScaler to ensure stability during training. Sequential data structures
were constructed by creating overlapping windows of fixed length, with each sequence
containing 30 past energy consumption values as input and the next energy
consumption value as the target. The LSTM model architecture consisted of two
stacked LSTM layers. The first LSTM layer returned sequences, allowing the second
layer to process the temporal representation further. The output of the LSTM layers
was passed through a dense layer, the final layer producing a single energy
consumption prediction. The model was compiled using the Adam optimizer and the
loss function was MSE. Early stopping was employed to halt training if the loss did
not improve for 20 consecutive epochs, preventing overfitting. The model was
evaluated on the test set and predictions were inverse transformed to their original
scale for performance metrics computation. Table 3.4 shows the layers and parameters
of LSTM.

Table 3.4 : LSTM best parameters.

First Layer Second Layer Dense Layer L
Model Optimizer
Units Dropout Units Dropout Neurons Activation
LSTM 64 0.2 32 0.2 16 RelLu Adam
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Each model was evaluated using the same set of performance metrics to ensure
consistency in comparison. The R? score quantified the proportion of variance
explained by the model, while RMSE, MAE and MSE provided insights into the error
magnitude. XGBoost excelled in handling nonlinear interactions and feature
importance, SVR demonstrated robustness with smaller datasets and LSTM
effectively captured temporal patterns in sequential data. This comprehensive
approach enabled a robust comparison of different modeling techniques, paving the

way for an integrated predictive system for battery energy consumption estimation.

3.2.2 Input-output mapping

The input-output mapping for predicting energy consumption involved defining the
relationship between operational features (inputs) and the target variable (output). The
chosen features were selected based on their relevance to the battery’s state and their
potential to influence energy consumption. These inputs and outputs were consistently
structured for all three algorithms to ensure comparability and consistency in

modeling.
Input Variables:

e Vehicle Speed [km/h]: Represents the driving behavior and energy

consumption rate.

e Outside Air Temperature (OAT) [°C]: Influences battery performance, as

temperature fluctuations affect energy efficiency and battery health.

e Air Conditioning Power [kWatt]: Reflects the additional load on the battery
due to climate control systems.

e Heater Power [Watt]: Represents another auxiliary load affecting energy

consumption.

e HYV Battery Current [A]: Directly indicates the flow of electrical current from
or to the battery.

e HV Battery Voltage [V]: Provides insights into the battery’s charging state and
health.
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Output Variable:

e Energy Consumption (Wh): Represents the total electrical energy used by the
vehicle, influenced by driving behavior, environmental conditions and

auxiliary power demands.

For LSTM, energy consumption was normalized to the range [0, 1] using

MinMaxScaler to improve numerical stability and convergence during training.

For XGBoost and SVR, the input-output mapping involved a direct regression task
where the six input features were fed into the model and the predicted energy
consumption was compared against the actual energy consumption for error
minimization. The mapping followed a tabular structure where each row represented

one observation, with the six features as inputs and the output.

The input-output mapping for LSTM was framed as a time series problem to leverage
the sequential nature of energy consumption data. The model was provided with
sequences of 30 consecutive values as inputs, representing historical patterns and
tasked to predict the energy consumption value at the next time step. This mapping
allowed LSTM to capture temporal dependencies, which were not explicitly modeled
by XGBoost or SVR.

By establishing a consistent input-output mapping across the three algorithms, the
predictive frameworks could be compared on equal footing, offering insights into their
respective abilities to capture the relationship between operational parameters and the

energy consumption of EVs.

3.2.3 Training and validation

The training and validation process was designed to optimize the predictive
performance of the models to achieve this, the dataset was split into training and testing

subsets and appropriate validation strategies were employed for each algorithm.

The dataset was divided into training and testing sets, with 80% of the data allocated
for training and 20% reserved for testing. This split ensured that the models could learn
the underlying patterns from the training data while being evaluated on unseen data
during testing. For the LSTM model, overlapping sequences were generated from the

training set to create time series inputs for the model, where each sequence comprised
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30 historical energy consumption values as inputs and the next energy consumption
value as the target.

XGBoost was trained using the XGBRegressor implementation. GridSearchCV was
utilized for hyperparameter optimization, exploring combinations of the number of
estimators, maximum tree depth, learning rate, subsampling ratio and column
sampling fraction. The model was trained to minimize the MSE on the training data.
Cross validation with three folds was used to evaluate the model during training,

ensuring robust performance across different subsets of the training data.

For SVR, the input features were first normalized using StandardScaler to ensure
consistent scaling. The model was encapsulated in a pipeline with the RBF kernel,
which is well suited for capturing nonlinear relationships. GridSearchCV was
employed to optimize the hyperparameters, including the regularization parameter (C),
epsilon-insensitive loss (g) and kernel coefficient (y). Three fold cross validation was
conducted during the training phase to identify the best combination of

hyperparameters, reducing the risk of overfitting.

The model architecture consisted of two stacked LSTM layers, followed by dense
layers to produce a single output. Energy consumption values were scaled to the range
[0, 1] to improve training stability. The model was compiled with the Adam optimizer
and mean squared error as the loss function. Early stopping was employed, monitoring
the loss on the training set and halting training if no improvement was observed over
ten consecutive epochs. This mechanism prevented overfitting and ensured efficient

training.

All models were validated using their respective cross validation methods and
subsequently tested on the 20% holdout test set. Predictions from each model were
compared against the actual energy consumption values in the test set. For LSTM,
predictions were inverse transformed to their original scale using the same scaler

applied during preprocessing.

The combination of cross validation during training and evaluation on an independent
test set ensured that the models were both optimized and generalizable. This systematic
approach to training and validation provided a fair and comprehensive comparison of
the performance of XGBoost, SVR and LSTM models in predicting energy

consumption for electric vehicle batteries.
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3.3 Performance Metrics for Model Evaluation

The evaluation of predictive models for estimating energy consumption requires a
systematic assessment of their accuracy and generalization capabilities. To achieve
this, a set of well established performance metrics was employed, including MSE and
RMSE (Chicco et al., 2021). These metrics collectively provided a comprehensive
understanding of the models' ability to replicate actual energy consumption values and

minimize errors.

The R2 s a statistical measure that explains the proportion of variance in the dependent
variable that can be attributed to the independent variables. It quantifies the goodness
of fit of the model, where an R? value closer to 1 indicates that the model can explain
most of the variability in the target variable. For regression tasks such as energy
consumption prediction, R2 offers valuable insights into how well the model performs

relative to a baseline mean model which shown in equation 3.1.

XX - 1)?
— 2
(Y -1)

R*=1 (3.1)

Xi represents the predicted values,

e Y represents the actual values,

e Y is the mean of the actual values,

e mis the total number of observations.

MAE measures the average magnitude of errors between predicted and actual values
without considering their direction. It provides an intuitive understanding of the
model’s performance by directly reflecting the average deviation. A lower MAE
signifies a model capable of consistently making accurate predictions. However, it
does not penalize larger errors as strongly as squared-error metrics, making it less

sensitive to outliers shown in equation 3.2.

m
1
MAEz—E X; -,
™ 1I i = Yil (3.2)
l:

MSE extends the evaluation by calculating the average squared difference between

predicted and actual values. By squaring the errors, MSE amplifies the impact of larger
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deviations, making it particularly useful when larger errors are more critical to address
as shown in equation 3.3. However, the squared nature of the metric means its scale

differs from the original data, which may reduce interpretability.

m
1
—_ . V)2
MSE = mzl(xl ) (3.3)
i=

RMSE, derived as the square root of MSE, addresses the scale issue by expressing
errors in the same units as the target variable. RMSE is widely used as a benchmark
metric for regression models because it offers a balanced assessment of error
magnitude while maintaining sensitivity to larger deviations which can be seen in
equation 3.4. A lower RMSE indicates a model capable of closely approximating

actual target values with minimal deviations.

m
1
RMSE = EZ(Xi —Y))2 (3.4)
i=1

These metrics were applied consistently across XGBoost, SVR and LSTM models.
Predictions generated by the models were compared against actual target values from
the test set, ensuring a fair and transparent evaluation process. For the LSTM model,
predictions were inverse transformed to their original scale before metric computation
to maintain consistency. By leveraging these metrics, the performance of the three
modeling approaches was rigorously assessed, enabling a robust comparison and

identification of the most effective algorithm for energy consumption prediction.
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4, RESULTS AND DISCUSSION
4.1 Model Evaluation

The evaluation of the predictive models SVR, XGBoost and LSTM was conducted to
assess their performance in predicting energy consumption for electric vehicle
batteries. Each model was trained and tested using the same dataset, ensuring a fair
comparison. The metrics employed for evaluation included the R?, MAE, MSE and
RMSE. These metrics collectively provided insights into the accuracy, precision and

reliability of the models' predictions which shown in Table 4.1.

Table 4.1 : Comparison of energy consumption prediction metrics for SVR,
XGBoost and LSTM.

Model R? MAE MSE RMSE
SVR 0.5149 0.7783 1.6009 1.2653
XGBoost 0.6038 0.8166 1.3796 1.1745
LSTM 0.6571 0.7008 1.1591 1.0766

For SVR, the model demonstrated a moderate predictive capability with an R2 score
of 0.5149, indicating the variance in energy consumption could be explained by the
model. The MAE and RMSE values were 0.7783 and 1.2653, highlighting the model's
ability to produce relatively consistent predictions with moderate error margins.
However, its performance was surpassed by the other models in terms of both accuracy

and error reduction.

XGBoost, a gradient boosting framework, achieved an R? score of 0.6038, signifying
that it explained the variance in the target variable. Despite its higher R2 compared to
SVR, the MAE and RMSE values of 0.8166 and 1.1745 suggested that while the model
captured the broader patterns in the data, it struggled with precise predictions,
particularly for outliers or extreme values. Also, XGBoost learning curve illustrated in
Figure 4.1. In this figure, training error and testing error values getting closer to each
other with incrementation of training set size. That type of trends indicates a better

generalized model.
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Figure 4.1 : XGBoost learning curve.

Figure 4.2 presents the structure of the decision tree model used in XGBoost for
predicting energy consumption. The tree begins with the root node, which represents
the most influential feature in this case, the EV battery current as it has the highest
impact on energy consumption. As the model progresses downward, it makes recursive
splits based on different feature values. Each decision node refines the dataset by

directing data points along different branches depending on threshold values.

The tree structure illustrates how XGBoost captures complex, nonlinear relationships
between input variables and energy consumption. At each split, the model selects the
feature that maximally reduces error, ensuring that the most relevant attributes are
prioritized. The process continues until the model reaches the leaf nodes, where final
predictions are made. These leaf nodes contain energy consumption values, which are

computed based on the statistical properties of the grouped data points.

This visualization highlights the interpretability of XGBoost's decision-making
process, demonstrating how multiple factors interact to influence energy consumption.
By leveraging such a structured approach, the model effectively identifies patterns and
dependencies, enabling accurate energy consumption predictions for EVs in varying

driving and environmental conditions.
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Figure 4.2 : XGBoost tree visualization.
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The LSTM model outperformed the other two approaches, achieving an R? score of
0.6571, indicating better alignment between predicted and actual energy consumption
values. The MAE and RMSE values of 0.7008 and 1.0766 reflected its superior ability
to minimize both overall and individual errors. The MSE value of 1.1591 further
confirmed the model’s improved accuracy and ability to generalize across the test

dataset. Predicted values in LSTM model shown in Figure 4.3.
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Figure 4.3 : LSTM energy consumption prediction graph.
4.2 Proposed Model

Based on the evaluation and comparative analysis, the LSTM model emerged as the
proposed solution for energy consumption prediction in EV batteries. Its performance
metrics confirmed its superiority in handling sequential data, minimizing errors and
accurately predicting energy consumption values. The model's architecture and
training process enabled it to adapt to the complexities of the dataset, making it highly

reliable for real world applications.

4.3 Impact of Driving Conditions

Driving conditions, including variations in speed, external temperature and auxiliary
power usage, were found to significantly influence energy consumption predictions.
The LSTM model demonstrated resilience under varying driving conditions,

effectively accounting for the temporal dependencies introduced by these factors. In
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contrast, SVR and XGBoost exhibited limitations in capturing the dynamic nature of
energy consumption under fluctuating driving conditions, leading to higher error rates.

The analysis underscores the importance of considering driving conditions in energy
consumption prediction models. The LSTM model's ability to integrate sequential data
with external factors makes it an ideal candidate for predictive applications in battery
management systems, particularly for electric vehicles operating under diverse and

challenging conditions.

Figure 4.4 provides insights into the relationships between key factors influencing EV
performance. It highlights how variables such as vehicle speed, external temperature,
air conditioning and heater power, battery current and voltage interact with one
another. Notably, environmental factors like outside air temperature show a strong
inverse correlation with heater power, indicating increased energy consumption in

colder conditions.

Correlation Matrix
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0.8

OAT[DegC] - -0.6

- 0.4
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Air Conditioning Power[Watts] -

Figure 4.4 : Pearson correlation matrix.
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Additionally, battery current and voltage exhibit a moderate positive correlation,
reflecting their interdependence in power management. Other relationships, such as
the weak correlation between vehicle speed and auxiliary power consumption, suggest
that energy usage is influenced by multiple dynamic factors rather than a single
variable. This analysis underscores the complexity of EV energy consumption and the
importance of comprehensive models for accurate predictions and efficient energy
management.
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5. CONCLUSION

This study makes significant contributions to the field of EV energy consumption
prediction, focusing on machine learning based models for accurate and efficient

battery management and range estimation.

One of the major contributions of this research is the comparative analysis of three
distinct machine learning models SVR, XGBoost and LSTM for EV energy
consumption prediction. The study highlights the strengths and limitations of each

model.

LSTM emerged as the most effective model, demonstrating superior accuracy in

capturing temporal dependencies and sequential energy consumption patterns.

XGBoost showed strong feature learning capabilities, particularly in handling complex
relationships between variables, though it lacked the ability to process sequential data

efficiently.

SVR exhibited the lowest performance, proving less effective in dealing with the high

dimensional, nonlinear nature of EV energy consumption data.

This study successfully developed an LSTM-based prediction model that achieves
high accuracy in estimating EV energy consumption, outperforming traditional
statistical and ML approaches. A detailed analysis of real world EV energy
consumption, ensuring that the models were trained and validated on realistic, practical

datasets rather than simulated data with VED.

Energy consumption calculations based on battery current and voltage, providing an
accurate estimation methodology that aligns with actual EV operation. Robust
validation through cross validation techniques, ensuring the model’s generalizability
across different driving conditions. The use of real world data enhances the practical
applicability of the research and ensures that the developed models can be effectively

deployed in commercial EV systems.

The study also contributes to the advancement of predictive maintenance techniques
for EV batteries. Identify patterns in battery degradation and energy consumption,
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allowing early detection of performance issues. Support proactive maintenance
planning, reducing unexpected failures and increasing battery lifespan. Enhance
vehicle reliability, making EVs more attractive to consumers and fleet operators. This
approach improves cost efficiency and sustainability by minimizing battery waste and

ensuring optimal energy utilization.

5.1 Practical Application of This Study

This study demonstrated the effectiveness of XGBoost, SVR and LSTM models in
predicting the energy consumption of EVs using real world driving data. A
comparative analysis of these models revealed that the LSTM model outperformed the
others. LSTM ability to leverage sequential dependencies and capture temporal
patterns in energy consumption. The XGBoost model, while effective at detecting
complex relationships, lacked the sequential processing capability required for time
dependent predictions. Similarly, SVR struggled with high dimensional, non-linear
relationships, making it the least effective model for energy consumption forecasting.

The practical application of this research lies in its potential integration into BMS for
real time energy prediction, route optimization and efficiency improvements. Accurate
forecasting of energy consumption is crucial for reducing range anxiety, enhancing
battery lifespan and optimizing EV performance. By implementing the LSTM model
into an onboard BMS, EVs can dynamically adjust their energy management strategies
in response to changing driving conditions, ensuring optimal battery utilization and

more reliable range estimations.

A key achievement of this study was the successful implementation and validation of
ML based models using the VED. The dataset provided a rich source of real world
driving behavior, capturing variables such as speed, battery current, voltage,
temperature and auxiliary power consumption. This allowed for the development of

robust, data driven models that can be directly applied in real world EV applications.

5.2 Future Directions in Research

This study has made significant progress in EV energy consumption prediction, there
are still several opportunities for future improvements that can further refine predictive

accuracy and real world applicability.
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One major direction for future research is dataset enrichment, where additional
environmental and contextual variables, such as road elevation, real time traffic
congestion, road surface conditions and weather variability, could be integrated into
the models. For example, elevation data could enhance accuracy in hilly terrain, while
real time traffic flow data could improve route planning and adaptive energy

estimation.

Moreover, incorporating Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle
(V2V) communication could enable real time, dynamic updates in energy predictions.
By allowing EVs to share anonymized data on driving conditions and energy
consumption, ML models could continuously adapt and refine their predictions based
on changing external factors. FL could also play a crucial role in privacy preserving
model improvements, where EVs collaboratively update their models without

exchanging sensitive raw driving data.

Another important research avenue is the development of hybrid modeling approaches
that combine physics based models with ML techniques. While ML models provide
superiority at pattern recognition, they lack interpretability, making their deployment
in safety critical applications challenging. A hybrid approach ,where ML models are
guided by first principles physics based models, could improve both accuracy and

explainability.

Additionally, real time adaptive learning is an area of growing interest. Most energy
consumption models are trained on prerecorded datasets, which may not account for
sudden changes in driver behavior or environmental conditions. Implementing online
learning techniques that update model parameters in real time, based on incoming

sensor data, could significantly improve prediction reliability.

Another challenge in EV energy prediction is generalizability across different vehicle
models. Currently, most models are trained on specific vehicle types, making them
less adaptable to new EV models. Future research should explore transfer learning
techniques, where a model trained on a widely used EV dataset could be fine tuned for

new models with minimal additional data collection.
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5.3 Implications for Electric Vehicle Technology

The findings of this study have profound implications for the evolution of electric
vehicle technology. Accurate energy consumption prediction models are pivotal for
improving battery efficiency, extending vehicle range and minimizing energy wastage.
By integrating these models into advanced BMS, electric vehicles can dynamically
adapt to real time conditions, optimizing energy consumption based on driving patterns

and auxiliary loads.

Furthermore, the study highlights the potential for machine learning to enhance user
experience in electric vehicles. With precise energy consumption predictions, drivers
can make informed decisions regarding trip planning, reducing range anxiety and
promoting confidence in electric vehicle adoption. This technology could also support
predictive maintenance, identifying potential battery degradation before it impacts

vehicle performance.

The study underscores the need for continued research and collaboration between
academia, industry and policymakers to unlock the full potential of machine learning

in revolutionizing electric vehicle technology.
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