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ONSOZ

Tezimin bu asamaya gelmesinde bana destek olan bir¢ok kisiye tesekkiir etmek
isterim. Oncelikle, arastirmam siiresince bana sagladiklar1 destek ve olanaklar icin
Eliar Elektronik firmasina sonsuz tesekkiirlerimi sunarim. Firmanin katkilari,
caligmamin basarisinda biiyiik bir rol oynamistir.

Ailem ve esim her zaman yanimda olarak bana gii¢ verdi. Zorlu siireglerde
gosterdikleri sabir, anlayis ve sevgi icin onlara minnettarim. Her adimda beni
destekledikleri i¢in, bu tezin bir parcasi olarak onlarin emeklerini de gormekteyim.

Ayrica, tez savunmam sirasinda degerli katkilari, yapici elestirileri ve yol gosterici
degerlendirmeleriyle calismamin gelismesine yardimci olan izleme komitesi ve jiiri
iiyeleri hocalarima da igten tesekkiirlerimi sunarim.

Son olarak, danismanim Saym Mustafa DOGAN'a tesekkiirii bir borg bilirim. Kendisi,
bilgi birikimi ve stirekli destegiyle bu tezin olusumunda bana rehberlik etti. Verdigi
degerli oneriler ve gosterdigi yol, calismamin kalitesini artirdi ve beni her zaman
motive etti.

Bu tez, bahsi gegen kisilerin ve kurumlarin katkilariyla hayat bulmustur. Her birine
ayr ayr1 tesekkiir eder, siikranlarimi sunarim.

Ocak 2025 Mehmet ERDOGAN
(Elektrik Miihendisi)
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GERCEK ZAMAN-IMGE iSLEME TEMELLI KUMAS KALITE KONTROL
SISTEMI

OZET

Tekstil sektoriinde liretimin her asamasinda kalite kontrol, kiiresel pazarda rekabet
edebilmek i¢in hayati bir unsurdur. Manuel kumas kusur incelemesinin sorunlari,
hassasiyet eksikligi ve zaman alic1 olmasidir. Bu nedenle erken ve dogru kumas hatasi
belirlenmesi, kalite kontroliin kritik bir asamasidir. Basaril1 bir otomatik kumas hata
inceleme sistemi olusturmak igin iki ana zorluk vardir: kusur tespiti ve kusur
simiflandirilmasi. Geleneksel olarak, kumas kusurlariin siniflandirilmasi verimsiz ve
emek yogun bir siire¢ olan insan gorsel muayenesiyle yapilmaktadir. Artan kumas hata
cesitliligi nedeniyle, kumas tirtinlerinin kalitesini garanti altina almak i¢in daha yiiksek
dogrulukla hatalar1 siniflandirabilen etkili yontemlerin gelistirilmesi gerekmektedir.
Tekstil kumas malzemeleri ve {iriinleri i¢in otomatik kalite glivencesi, ger¢ek diinya
uygulamalarindaki en karmasik algoritmalarin  kullanildigi  yapay gorme
problemlerinden biridir [1-3].

Orme islemi sirasinda, kumas ipliginin kalitesindeki ve iiretim ile ¢alisma
kosullarindaki rastgele degisiklikler genellikle boyut, sekil, goriiniim ve renk
bakimindan degisen dinamik hatalara yol agar. Tekstil {iriin kalitesinde gorsel
denetimden kaynaklanan ekonomik faydalar ¢ok biiyiiktiir ve tiriin kalite giivencesi
icin otomatik bilgisayarli goriintii isleme ¢oziimlerine yapilan yatirimlart hakl
cikarmaktadir. En yetenekli denetcilerin bile kumas hatalarinin yalnmizca yaklasik
%70'in1 tespit edebildigi ve kumas hatalarinin iiretilen kumaslarin degerini yaklasik
%45-65 oraninda azalttig1 tahmin edilmektedir. Mevcut tespit sistemlerinin maliyetleri
onemli dl¢giide yiiksektir ve tespit edebildikleri kusur tiirleri oldukga sinirlidir. Diistik
maliyetli yiiksek hizli bilgisayarlar, yiiksek ¢oziiniirliikli dijital kameralar ve diisiik
maliyetli depolamanin artan kullanilabilirligi, giicli otomatik tekstil denetim
¢oziimlerinin gelisecegini ve yayginlasacagimi gostermektedir [4-6].

Tez caligmasinda, histogram tabanli yontemler, renk tabanli yaklagimlar, goriintii
segmentasyon teknigi, frekans doniisiimii ile algilama, doku tabanli kusur algilama,
goriintli morfolojisi islemleri ve derin 6grenme yontemlerine iliskin kapsamli bir genel
¢Oziim tizerinde durulmaktadir. Arastirma, farkli kumas kusurlarini tespit etmek icin
bilgisayarla gérme ve dijital goriintii isleme uygulamalar1 kullanarak akan kumaslarda
hata tespiti i¢in gergek zamanli ve yiiksek performansli c¢alisan algoritmalar
gerektirmektedir. Bu nedenle, grafik karti tabanli gelistirmeler ile tespit ve
siiflandirma yapacak, ayrica farkli yontemler kullanarak kumasin hiz ve genislik
bilgilerini de hesaplayarak hata geometrisini kaydetmeyi hedeflemektedir.
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REAL TIME-IMAGE PROCESSING BASED FABRIC QUALITY CONTROL
SYSTEM

SUMMARY

Quality control at every stage of production in the textile industry is a vital factor for
competing in the global market. The textile industry’s reliance on high-quality
production demands a robust inspection system to ensure minimal defects in fabric
products. Traditionally, manual inspection methods have been the primary approach
to fabric defect detection. However, these methods suffer from critical limitations,
such as a lack of precision and high time consumption. These shortcomings often lead
to missed defects or inconsistencies in inspection outcomes, highlighting the need for
more reliable and efficient solutions. Consequently, early and accurate fabric defect
identification has become a critical phase of quality control in the textile production
process, ensuring consistent product quality and meeting customer expectations [1-3].

The primary challenges in developing a successful automatic fabric defect inspection
system are defect detection and defect classification. Defect detection involves
identifying anomalies on the fabric surface, while defect classification requires
categorizing these anomalies into predefined types based on their characteristics.
Manual methods, which involve human visual inspection, are inherently inefficient
and labor-intensive. These methods also pose challenges related to inspector fatigue
and subjective judgment, which can result in variability and errors in defect detection.
With the increasing diversity and complexity of fabric defects, such traditional
approaches are no longer sufficient. Thus, the development of automatic methods
capable of achieving higher accuracy in defect detection and classification has become
imperative for maintaining product quality and meeting global market demands.

Automatic quality assurance for textile materials and products represents one of the
most complex artificial vision problems. This complexity arises from the need to
analyze dynamic and variable defect patterns in real time. The implementation of
advanced algorithms in real-world applications has shown promising results in
addressing these challenges. Several state-of-the-art approaches leverage
developments in artificial intelligence, digital image processing, and computer vision
technologies to create innovative solutions for automatic defect inspection systems.
These technologies provide the capability to process large volumes of data, identify
intricate defect patterns, and adapt to various production conditions. By integrating
these advanced methodologies, the industry can achieve significant improvements in
precision, reliability, and speed compared to manual inspection.
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During the knitting process, random variations in yarn quality and operational
conditions often result in dynamic defects. These defects differ significantly in their
size, shape, appearance, and color, making their detection a complex task. For instance,
defects such as holes, slubs, stains, or misalignments may vary across different fabric
types and production conditions. Such variability necessitates the use of adaptive
algorithms capable of handling a wide range of defect types and severities. Moreover,
the economic implications of these defects are substantial, as fabric defects can reduce
the value of the produced materials by approximately 45-65%. This loss impacts not
only the profitability of manufacturers but also the perception of quality by customers.
Furthermore, it is estimated that even the most skilled inspectors can detect only about
70% of fabric defects during manual inspections. These limitations underscore the
necessity of investing in automated solutions for fabric quality assurance, which can
address both economic and operational challenges in the industry [4-6].

The adoption of automated computer vision-based systems for textile quality control
has several economic and operational advantages. These systems enable the detection
and classification of a wider range of defects while significantly reducing the time and
labor involved. Additionally, advancements in low-cost, high-speed computing, high-
resolution digital cameras, and efficient data storage solutions have made automated
inspection systems increasingly accessible and practical. With the reduction in costs
associated with these technologies, small- and medium-sized enterprises are now able
to implement advanced inspection systems that were previously cost-prohibitive. As
these technologies continue to evolve, the adoption of powerful automated textile
inspection solutions is expected to become more widespread, leading to higher
standards of quality control across the industry. Furthermore, automated systems
ensure consistent inspection quality, reducing the likelihood of customer complaints
and returns, thereby strengthening brand reputation and customer loyalty.

The methodologies explored in this thesis are designed to address these multifaceted
challenges. By presenting a comprehensive general solution for automatic fabric defect
detection and classification, the research aims to improve existing systems
significantly. The proposed methodologies incorporate a variety of techniques,
including histogram-based methods, color-based approaches, image segmentation
techniques, frequency transformation-based detection, texture-based defect detection,
image morphology operations, and deep learning algorithms. Each of these approaches
contributes to enhancing the system's ability to identify and classify defects with
greater accuracy and efficiency. For instance, histogram-based methods provide a
statistical foundation for identifying anomalies, while frequency transformation
techniques, such as Fourier and wavelet analysis, allow for the detection of periodic
defects. Deep learning methods, on the other hand, introduce adaptability and precision
by leveraging large datasets and training neural networks to recognize intricate
patterns. Texture-based detection, combined with image morphology operations,
further refines the accuracy by capturing microstructural differences in fabric surfaces.
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To ensure real-time performance, the research focuses on developing high-
performance algorithms capable of processing flowing fabric data. These algorithms
leverage computer vision and digital image processing technologies to analyze the
fabric surface dynamically. Additionally, the thesis explores the use of graphics card-
based enhancements to accelerate computation and improve overall system
performance. By integrating these techniques, the system not only detects defects but
also records their geometry by calculating the speed and width information of the
fabric. This detailed analysis enables manufacturers to trace defects back to specific
stages in the production process, facilitating targeted interventions and process
improvements. Moreover, real-time monitoring systems allow for immediate feedback
and corrective actions, minimizing waste and downtime in production lines.

In conclusion, the economic and operational advantages of automated fabric defect
inspection systems make them an indispensable tool for modern textile production. By
addressing the limitations of manual inspection and leveraging advanced technologies,
this thesis aims to contribute to the development of efficient, reliable, and cost-
effective solutions for ensuring high-quality textile products. The integration of
innovative methodologies and cutting-edge technologies underscores the potential for
transformative advancements in fabric quality assurance, paving the way for a more
competitive and sustainable textile industry. The outcomes of this research are
expected to have a far-reaching impact, not only in improving defect detection rates
but also in enhancing the overall efficiency and sustainability of textile manufacturing
processes. Furthermore, the successful implementation of such systems will encourage
ongoing innovation, setting new benchmarks for quality and reliability in the textile
industry.
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1. GIRIS

Tekstil endiistrisinde liretimin her asamasinda kalite kontrol, kiiresel pazarda varligini
stirdiirebilmek i¢in kilit bir unsurdur. Manuel kumas kusuru incelemesinin sorunlari,
hassasiyet eksikligi ve yiiksek zaman tiiketimidir; bu yiizden erken ve dogru kumas
kusuru tespiti, kalite kontroliin 6nemli bir agsamasidir. Basarili bir otomatik kumas
kusuru inceleme sistemi elde etmek icin ¢bziilmesi gereken iki ana zorluk vardir:
Kumas hata tespiti ve kusur siniflandirilmasi. Kumas kusur siniflandirmasi, geleneksel
olarak verimsiz ve yogun emek gerektiren insan gorsel muayenesiyle yapilmaktadir.
Artan kumas kusurlar ¢esitliligi ile birlikte, kumas {riinlerinin kalitesinin
saglanmasina katkida bulunabilecek daha yiiksek bir dogrulukla kusurlar
smiflandirmak icin etkili yontemler gelistirmek gerekmektedir. Tekstil kumas tiretimi
gerceklestiren firmalar acisindan yiiksek kalite giivencesinin saglanmasi, gercek
endiistriyel uygulamalarda karsilasilan en zorlu bilgisayarla gérme problemlerinden

biri olarak 6ne ¢ikmaktadir.

1.1 Tezin Amaci

Kumas {izerinde kamera ile hata kontrolli yapan sistemin amaci, liretim siirecinde
ortaya c¢ikabilecek hatalarin tespit edilmesi, kaydedilmesi, siniflandirilmasi ve
raporlanmasidir. Bu sistem, yiiksek ¢oziiniirliikli kameralar kullanarak kumastaki
kusurlart otomatik olarak algilamakta ve bu hatalarin detaylarin1 kayit altina
almaktadir. Ardindan, tespit edilen hatalar belirli kategorilere ayrilarak simiflandirilir
ve sistematik bir sekilde depolanir. Toplanan veriler, operatorlere anlik olarak bildirilir
ve diizenli araliklarla firmalara rapor olarak sunulmaktadir. Bu sayede, kalite kontrol

stirecleri iyilestirilir ve iretim verimliligi arttirilmasi amaglanmaktadir.

1.2 Literatiir Arastirmasi

“Kumas Hatalarinin Isil Goériintiilleme ve Goriintii Isleme Teknikleri ile Tespit
Edilmesi” adli Kazim Yildiz tarafindan 2014 yilinda yayimlanan doktora tezinde

kumas hata denetimi ile ilgili iki farkli calisma gergeklestirilmistir. i1k calisma hatali



kumas goriintiilerine, goriintli isleme algoritmalari uygulanmigtir. Hatali alanin
tespitinden sonra sekilsel ve histogram Ozellikleri c¢ikarilmistir. Bu 6zellikler
kullanillarak  Fuzzy C-Means (FCM) algoritmasi ile kiimeleme islemi
gerceklestirilmistir. Ayrica tespit edilen hatanin kumas tizerindeki dikey ve yatay
koordinatlarmin belirlenmesi de gergeklestirilmistir. Ikinci ¢alisma ise kaydedilen
video iizerinde hatali goriintiiniin tespiti yapilmistir. Hata, K En Yakin Komsu
(KEYK), Bayes Aglar1 (BA) ve Karar Agaglar1 (KA) algoritmalar1 kullanilarak anlik
olarak smiflandirilmistir. Ayrica hatanin yeri, cinsi ve kumasin hangi metresinde yer

aldig1 belirlenmistir [93].

“Yuvarlak Orgii Makineleri i¢in Goriintii Isleme Tabanli Kumas Hatas1 Tespit
Sistemi” adli Kazim Hanbay tarafindan 2016 yilinda yayimlanan doktora tezinde
yuvarlak 6rgii makinesi ilizerinde ger¢ek zamanli ¢alisabilen bir kumas hatasi tespit
sistemi gelistirilmistir. Bu sistem goriintii elde etme diizeneginin kurulmasi; kumas
veri tabaninin ingasi, hata tespit yontemlerinin gelistirilmesi; liretim esnasinda hata
tespit siireglerini igermektedir. Tez silirecinde yapilan ¢alismalar neticesinde 6 farkl
kumas tipi ve 10 farkli kumas hatasini iceren yeni bir kumas veri tabani inga edilmistir.
Bu gorintiilerin uzaysal ve frekans alaninda Oznitelikleri elde edilmis ve
simiflandirilma islemleri gergeklestirilmistir. Tezin en 6nemli katkist 6 yeni 6znitelik
¢ikarma yontemini literatiire kazandirmis olmasidir: GDF-HOG, Eig(Hess)-HOG,
ikinci mertebe HOG, Eig(Hess)-CoHOG, GM-CoHOG ve yiizey etiketleme temelli
CoHOG. Her bir yontemin klasik yontemler ile karsilagtirmali olarak sagladigi
istiinliikler ve eksiklikler tez icerisinde detayli bir sekilde irdelenmistir. Uzaysal
alandaki bu yontemlere ek olarak, Fourier, dalgacik ve shearlet doniisiim yontemleri
kullanilarak spektral kumag goriintiilerinin belirli istatistiksel dznitelikleri ¢ikarilmig
ve smiflandiriimalart saglanmustir.  Simiflandirict  olarak  Yapay Sinir Aglari

kullanilmustir [94].

“Development of a New Software for Fabric Defect Detection and Classification
Using Image Processing and Machine Learning Methods” adli Ahmad Mones
NAWAF tarafindan 2019 yilinda yayimlanan yiiksek lisans tezinde, kumas
yiizeyindeki hatalar1 otomatik olarak tespit etmek ve siniflandirmak igin goriintii
isleme ve derin 6grenme yontemlerine dayali bir uygulama olusturmaktir. Kusur
tespitinde Fourier doniisiimii (DFT), Gabor filtreleri kullanilmis, Fast-R CNN

siniflandirmada  kullanilmigtir.  Ortalama kare hatalari (RMSE'ler) tespit ve



siniflandirma hatalarint hesaplamak ic¢in kullanilmistir. Elde edilen sonuglara
dayanarak, goriintli isleme yoOntemlerinin, 6zellikle DFT'nin hata tespitinde kabul

edilebilir bir dogrulukla kullanilabilecegi kanitlanmistir [95].

“Real time fabric defect detection system on an embedded DSP platform” adli Jagdish
Lal Raheja, Bandla Ajay, Ankit Chaudhary tarafindan 2013 yilinda yayimlanan
makalede, endiistriyel kumas Tlretimlerinde, kiiciik kusurlar1 bulmak igin
otomatiklestirilmis gergek zamanli bir sistem sunulmustur. Hatali {irtinleri nakil
etmeyerek maliyet tasarrufu saglayacak ve aymi zamanda sadece kusurlu {iriinleri
gondererek kaliteli kumaslarin sirket imajin1 olusturmasina yardimer olacaktir.
GOmiili bir DSP platformunda uygulanan ger¢ek zamanli bir kumas hatasi tespit
sistemi (FDDS) burada sunulmaktadir. Kumag goriintiistiniin dokusal 6zellikleri, gri
seviye es olusum matrisine (GLCM) dayali olarak ¢ikarilir. Kusur tespiti i¢in
pencerenin tiim gorilintii izerinde hareket ettigi ve kumag goriintiisiiniin GLCM'sinden
bir dokusal enerji hesapladig: bir kayan pencere teknigi kullanilir. Enerji degerleri bir
referansla karsilastirilir ve bir esigin 6tesindeki sapmalar kusur olarak rapor edilir ve
ayrica bir pencere ile gorsel olarak temsil edilir. Uygulama, bir TI TMS320DM642
platformunda gerceklestirilir ve kod gelistirici stiidyo yazilimi kullanilarak
programlanir. Bu uygulamanin ger¢ek zamanli ¢iktis1 bir monitérde izlenme

yapilmasina olanak vermektedir [96].

“Automatic Fabric Defect Detection Using Cascaded Mixed Feature Pyramid with
Guided Localization” adli Henry Y.T. Ngan, Grantham K.H. Pang, Nelson H.C. Yung
tarafindan 2011 yilinda yayimlanan makalede, optik goriintii veri setlerinde kumas
hatasi tespiti sistematik olarak incelenmistir. Genel veri kiimelerinin aksine, kusurlu
goriintiiler cok dlgekli, giiriiltiilii ve bulaniktir. Arka 151k yogunlugu da gorsel algi icin
hassas olacaktir. Biiyiik 6l¢ekli kumas hatasi veri kiimeleri, bu dengesiz sorunlari ele
almak i¢in endiistriyel uygulamada tespit gereksinimlerini karsilamak i¢in toplanir,
secilir ve kullanilir. Daha iyi genelleme yapmak i¢in gelistirilmis iki agamali bir hata
dedektorii olusturulmugtur. Yiginlanmis 6zellik piramidi aglari, birinci asamada
derinlemesine karma blogun enterpolasyonunda capraz 6lgek hata modellerini bir
araya getirmek igin ayarlamir. Ozellik haritalarim paylasarak, merkezlilik ve sekil
dallari, onerilen kilavuzlu sabitleyicileri filtrelemek ve iyilestirmek i¢in kademeli
modiilleri deforme olabilen evrigimle birlestirir. Dengeli 6rneklemeden sonra, ikinci

asamadaki kumas kusur goriintiileri arasindaki etkilesimleri karakterize etmek icin,



ilgilenilen bolge i¢in konuma duyarli havuzlama yoluyla oneriler asagi 6rneklenir.
Deneyler, uctan uca mimarinin, mevcut dedektorlere kiyasla bolge tabanli nesne

dedektorlerinin tikanmis kusur performansini iyilestirdigini gostermektedir [97].

“Motif-based defect detection for patterned fabric” adli Henry Y.T. Ngan, Grantham
K.H. Pang, Nelson H.C. Yung tarafindan 2018 yilinda yayimlanan makalede, 2B
desenli dokudaki 17 duvar kagidi grubundan 16'sinda kusurlari tespit etmek igin
genellestirilmis bir motif tabanli yontem Onerilmektedir. Makalede cogu desenli
dokunun kafeslere ve bilesenlerine- motiflere ayristirilabilecegini varsayar. Ardindan,
hareketli ¢ikarma enerjisini ve farkli motifler arasindaki varyansini hesaplamak igin
motiflerin simetri 6zelligini kullanir. Bu degerlerin bir dizi hatasiz model tizerinden
dagilimim1 6grenerek, kusurlu ve hatasiz modelleri ayirt etmek i¢in sinir kosullar
belirlenebilir. Bu makale, yontemin teorik temellerini sunmakta ve motifler ile kafes
arasindaki iligkileri tanimlamaktadir; buradan hareketle ¢ikarma enerjisi ad1 verilen
yeni bir kavram, motifin dairesel kaydirma matrisler ile kendisi arasinda norm o6lgiisii
kullanilarak tiiretilmistir. Bu yazida, hareketli ¢ikarma enerjisinin kusurlu motifin
kusur bilgisini arttirdigr gdosterilmistir. Varyansi ile birlikte, kusurlu ve hatasiz
motifleri siniflandirmak i¢in karar sinirlarinin ¢izildigi bir enerji varyans alan1 daha da
tanimlanir. Desenli kumastan olusan 16 duvar kagidi grubu ii¢ ana gruba
dontstiiriilebildiginden, 6nerilen yontem bu ii¢ ana grup iizerinden degerlendirilir ve
bu ii¢ ana gruptan 160 hatasiz kafes numunesi karar smirlarim1 tanimlamak igin
kullanilir, 140 hatasiz ve 113 test i¢in kullanilan hatali numunelerdir. Onerilen yontem
icin %93,32'lik genel bir tespit basar1 orani elde edilmistir. Daha 6nce sunulan bagka
higbir genellestirilmis yaklasim bu basar1 oranina ulasamaz ve bu nedenle bu sonug

daha once yayinlanan diger tiim yaklagimlardan daha iyi performans gdstermektedir

[98].

“Fabric defect detection via low-rank decomposition with gradient information and
structured graph algorithm” adli Boshan Shi, Jiuzhen Liang, Lan Di, Chen Chen,
Zhenjie Hou tarafindan 2021 yilinda yayimlanan makalede, diisiik asamal1 ayrigtirma
modeli, bir matrisin hatasiz bolgeyi (arka plan) temsil eden ve kusur alanini (6n plan)
tanimlayan seyrek bir matrise ayristirildigi kumas hatasi algilama potansiyelini
gosterir. Ancak yine de iki eksiklik vardir. Ilk olarak, kusurlu gériintiiniin dokusu
yiiksek gradyan Ozelligine sahip oldugunda, mevcut model ile elde edilen seyrek

matris hala ¢ok sayida tespit edilmemis bolgelerin kenarlarini muhafaza etmektedir.



Ikinci olarak, 6nceki bilgilerin kesin olmamasi nedeniyle, cogu model, kiigiik kusur
alan1 veya birden fazla dongii igeren kusur alani ile ugrasirken, kusur blogu etrafindaki
kusursuz noktalar1 yanlis degerlendirecektir. Bu problemleri ¢6zmek i¢in, bu makale,
gradyan bilgisinin diisik kademeli ayristirilmasina ve yapilandirilmis grafik
algoritmasina dayanan bir kumas hatasi algilama yontemi ortaya koymaktadir: 1)
Yapilandirilmis grafik algoritmasi, kumas kusur goriintiisiiniin 6zelliklerine gore,
kumas kusur goriintiisii, yerel 6zellik ve kusurlu hasar siiresi ile hatasiz bloga ayrilir.
2) Birlestirme isleminde, kafes ici birlestirmeyi tesvik etmek ve kusurlu bloklarin ve
cevredeki kusurlu olmayan bloklarin birlesmesini 6nlemek i¢in mevcut blokta bulunan
dongii sayisina gore uyarlanabilir bir esik ayarlanir. 3) Segmentasyon sonuglarindan
hesaplanan hata 6n bilgisi, hatasiz bolgeyi zayiflatmak ve seyrek terim altindaki kusur
alanin1 vurgulamak i¢in matris ayrismasina rehberlik etmek i¢in kullanilir. Model
standart bir veritabani tizerinde degerlendirilmistir ve en son dort yontemle
karsilagtirilmistir. Bu yontemin toplam TPR ve fpr degerleri, en iyi performans olan

kutu, y1ldiz ve nokta veri tabanlarinda sirasiyla %87,3 ve %1,21'dir [99].

“Fabric defect detection systems and methods—A systematic literature review” adl
Kazim Hanbay, Muhammed Fatih Talu, Omer Faruk Ozgiiven tarafindan 2016 yilinda
yayimlanan makalede, kumas hatasi tespit yontemlerinin kapsamli bir literatiir
incelemesini sunmaktadir. ilk olarak, kamera ve lens gibi temel goriintii elde etme
sistemi bilesenlerini kisaca agiklamaktadir. Hata tespit yontemleri yapisal, istatistiksel,
spektral, model tabanli, 6grenme, hibrit ve karsilastirma ¢alismalar1 olarak yedi sinifa
ayrilir. Bu yontemler dogruluk, hesaplama maliyeti, giivenilirlik, donme / 6l¢gekleme
degismezligi, ¢evrimici / ¢evrimdisi calisma yetenegi ve giiriiltii hassasiyeti gibi
kriterlere gore degerlendirilir. Her yaklasimin giiglii ve zayif yonleri karsilastirmali
olarak vurgulanmaktadir. Ayrica makinelerde dokuma ve Orme yodntemlerinin
kullanilabilirligi arastirilmistir. Mevcut inceleme calismalari, tekstil ve bilgisayar
gorilisii alaninda arastirma yapan okuyucular i¢in kumas hatasi tespit sistemleri
hakkinda yeterli bilgi saglamamaktadir. Goriintli elde etme sisteminin verimli bir
sekilde kurulmasi i¢in bir dizi bilgi eklenmistir. Ozellikle lens ve 151k kaynag1 se¢imi

matematiksel olarak ifade edilmektedir [1].

“A visual long-short-term memory based integrated CNN model for fabric defect
image classification” adl1 Yudi Zhao, Kuangrong Hao, Haibo He, Xuesong Tang, Bing

Wei tarafindan 2020 yilinda yayimmlanan makalede anlatilan, kumas kusur



siniflandirmasi, geleneksel olarak verimsiz ve yogun emek gerektiren insan gorsel
muayenesiyle elde edilmesine bir ¢oziim getirmeye ¢alismaktadir. Bu nedenle, bu
sorunu ¢ozmek icin akilli ve otomatik yontemler kullanmak, sicak bir arastirma konusu
haline geldigi belirtilmektedir. Artan kumas kusurlar1 gesitliligi ile birlikte, kumas
iriinlerinin kalitesinin saglanmasina katkida bulunabilecek daha yiiksek bir dogrulukla
kusurlar1 simiflandirmak igin etkili yontemler tasarlamak onem kazanmistir. Kumas
kusurunun doku arka planinda agik olmadigi ve bir¢ok tiiriiniin ayirt edilemeyecek
kadar kafa karistirict oldugu goz 6niine alindiginda, bu makalede gorsel bir uzun-kisa
stireli  bellek (visual long-short-term memory) tabanli entegre CNN modeli
onerilmistir. Insan gorsel algis1 ve gorsel bellek mekanizmasindan esinlenerek, iig
ozellik kategorisi ¢ikarilir; bunlar, y18ilmis evrisimli otomatik kodlayicilar (stacked
convolutional auto-encoders) tarafindan ¢ikarilan gorsel algi (visual perception)
bilgileri, gorsel kisa siireli bellek (visual short-term memory) ile karakterize edilir. S1g
evrisimli sinir ag1 (convolutional neural network) ve yerel olmayan sinir aglari ile
karakterize edilen gorsel uzun siireli bellek (visual long-term memory) bilgileri ile ti¢
kumas hatas1 veri setine iligkin deneysel sonuclar, dnerilen modelin kumas hatasi
siiflandirmast ile ilgili mevcut son teknoloji yontemlere rekabetci sonuglar sagladigi

gosterilmistir [99].

“Fabric defect detection using morphological filters” adli1 K.L. Mak, P. Peng, K.F.C.
Yiu tarafindan 2009 yilinda yayimlanan makalede, dokuma kumaslar i¢in otomatik
hata algilama sorununu ¢ozmek i¢in morfolojik filtrelere dayali yeni bir hata tespit
semas! Onerilmektedir. Onerilen semada, tekstil kumasinin nemli doku 6zellikleri
onceden egitilmis bir Gabor dalgacik ag1 kullanilarak ¢ikarilmistir. Bu doku 6zellikleri
daha sonra kumas arka planini ¢ikarmak ve kusurlar1 izole etmek igin sonraki
morfolojik islemde yapilandirma elemanlarinin yapimint kolaylagtirmak ic¢in
kullanilir. Onerilen hata tespit semast yalmzca birkag morfolojik filtre
gerektirdiginden, ilgili hesaplama yiikii miktar1 énemli degildir. Onerilen semanin
performansi, farkli tipte yaygin kumas kusurlaria sahip ¢ok ¢esitli homojen tekstil
goriintiileri kullanilarak degerlendirilir. Elde edilen test sonuclari, diisiikk yanlis
alarmlarla dogru hata tespiti sergiler, bdylece onerilen tespit semasinin etkinligini ve
saglamligin1 gosterir. Ek olarak, dnerilen tespit semasi, prototipli otomatik bir denetim

sistemi kullanilarak gergek zamanli olarak daha da degerlendirilir [100].



“Automatic fabric defect detection with a wide-and-compact network™ adli Yuyuan
Li, Dong Zhang, Dah-Jye Lee tarafindan 2019 yilinda yayimlanan makalede, kumas
hatalarinin otomatik tespiti, tekstil endiistrisi i¢in 6nemli bir siire¢ oldugu i¢in hata
algilama modeli sunulmustur. Tespit dogrulugunun yani sira, kaynaklart sinirlt bir
sistem i¢in otomatik bir kumas hatasi algilama ¢oziimii, islem siiresi ve basitlik
acisindan {iistiin performans gerektirir. Bu makale, birka¢ yaygin doku kusurunun
tespiti icin kompakt bir evrisimli sinir ag1 mimarisi dnermektedir. Onerilen mimari,
ag1 optimize etmek i¢in ¢ok katmanli algilayiciya sahip birkag mikro mimari kullanir.
Bir mikro mimarinin ana bileseni, kompakt bir modelde algilama dogrulugunu
tyilestirmek icin ¢ok Olgekli analiz, filtre ayristirma, ¢oklu konum havuzlama ve
parametre azaltma teknikleri kullanilarak olusturulur. Deneysel sonuclar, ana akim
evrisimli sinir ag1 mimarileri ile karsilastirildiginda, 6nerilen agin ¢cok daha kii¢iik bir
model boyutuyla algilama dogrulugu agisindan {istiin performans elde ettigini
gostermektedir. Yalnizca kumas kusurlarinin tespiti i¢in degil, ayn1 zamanda birkag

genel veri kiimesinde nesne tanima i¢in de iyi ¢alistigi gosterilmektedir [101].

“Automated defect detection in uniform and structured fabrics using Gabor filters and
PCA” adli Lucia Bissi, Giuseppe Baruffa, Pisana Placidi, Elisa Ricci, Andrea
Scorzoni, Paolo Valigi tarafindan 2013 yilinda yayimlanan makalede, TILDA goriintii
veri tabaninda test edilmis, tek tip ve yapilandirilmis kumaslarda doku kusur tespiti
i¢cin gelistirilen algoritmay1 agiklamaktadir. Onerilen yaklasim, karmasik bir simetrik
Gabor filtre bankasina ve Ana Bilesen Analizine (Principal Component Analysis)
dayanan bir 6zellik ¢ikarma asamasinda ve Oklid Ozellik normuna ve bununla
karsilagtirmali olarak bir kusur tamimlama asamasma gore kumas tipine Ozel
parametrelerle yapilandirilmistir. Analizler, tek pikselleri dikkate almak yerine yama
bazinda gerceklestirilmektedir. Performans, insan gozlemciler tarafindan tespit edilen
referans kusur konumlari olarak kullanilarak, goériiniir doku ve 1zgara benzeri yapilara
sahip tek tip dokulu kumaslar ve kumaslarla degerlendirilmistir. Sonuclar,
algoritmanin ¢ogu durumda onceki yaklasimlardan daha iyi performans gosterdigini,
%98,8'lik bir algilama oranina ve %0,20-0,37 gibi diisiik bir yanlis alarm oranina
ulastigin1 gosterirken, agir yapilandirilms iplikler i¢in yanlis algilama oran1 %5 kadar

diisiik olabilmektedir [102].

“Defect Detection of Industrial Products based on Improved Hough Transform”

baghkli 2018 yilinda Qingcai Ge, M.F., Xu, J tarafindan hazirlanan c¢alisma,



endiistriyel tiretim siireclerinde merkezi simetri dagilim kurallarina sahip iiriinlerin
kusurlarini tespit etmek i¢in gelistirilmis bir Hough doniisiimii yontemi sunmaktadir.
Calismada, geleneksel yontemlerin sinirlamalari analiz edilmis ve endistriyel
iiriinlerin merkezi bolgesinden baglayarak algilama hedefinin bulundugu yoéne dogru
yonlii kiimeleme yaklasimi dnerilmistir. i1k olarak, ilgi bdlgesinin (ROI) konturu ve
merkezi belirlenmis, ardindan kontur iizerindeki noktalara Hough doniistimi
uygulanmistir. Merkezi alan iizerinden gecen dogrularin kisit kurallarina uygun olarak
oylama yapilmis ve oylama alaninda elde edilen tepe noktalar1 kullanilarak endiistriyel
iriin bilesenlerindeki kusurlar tespit edilmistir. Deneysel sonuglar, Onerilen
algoritmanin yiiksek anti-parazit yetenegine sahip oldugunu ve algilama hedefi ile arka
plan arasindaki benzerlikten kaynaklanan algilanamazlik sorunlarimi ¢6zebildigini
gostermektedir. Ayrica, bu yontemin geleneksel Hough yontemine kiyasla belirgin bir
sekilde daha dayanikli oldugu belirtilmistir. Bu ¢alisma, merkezi simetri dagilim
kurallarina sahip endiistriyel parcalarin algilanmasinda gergek zamanli islem
gerceklestirebilen ve geleneksel yontemlerin bosluklarini dolduran bir yaklagim
sunmaktadir. Deneysel sonuglar, yontemin merkezi simetri kurallarina uygun
endiistriyel tUriinleri kararlilikla algilayabildigini ve endiistriyel iiretim siireclerinde

uygulanabilir oldugunu kanitlamaktadir [54].

“Fabric defect detection using Discrete Curvelet Transform” adli Anandan P, R S
Sabeenian tarafindan 2018 yilinda yayimlanan makalede, moda pazarinda kumas
secimine yoOnelik artan miisteri talebiyle birlikte, kumas dokusu c¢ok ¢esitli hale
gelmekte ve bu calismada da hatasiz kumasin kontrolii i¢in Curvelet Doniigiimi
kullanarak bir ¢6ziim sunulmaktadir. GLCM tabanli, dalgacik temelli, ayrica egri ¢izgi
temelli tekniklerin karsilastirmali bir calismasi da eklenmistir. Planlanan teknikle elde
edilen yiiksek dogruluk, kumas hatasi i¢in ekonomik bir ¢6ziim 6nermektedir. Bu
calisma, ilk belgelenen, malzeme kusuru meselesini ele almak icin dijital egri
doniisiimii  olarak adlandirilan yepyeni bir ¢oklu-¢oziiniirliikklii analiz aracinin
olasiliklarini arastirmak i¢in diizenlenmesidir. Taniyici, goriintli toplama cihazi ile
dijital kumas resimlerini alir ve bu goriintiiyli Ayrik Egrilik (Curvelet) Doniistimii
kullanarak ikili gériintiiye déniistiiriir. Onerilen algoritmik kural MATLAB'da simiile
edilmistir. Onerilen hata tespit modelinin performansi, ¢esitli ger¢ek kumas drnekleri

ile derinlemesine deneyler araciligtyla degerlendirilmistir. Planlanan algilama modeli



etkili olmaya ve algilama dogrulugu ve yanlis alarm agisindan bazi temsili algilama

modellerinden iistiin olmaya calisilmistir [45].

“Computer vision-based fabric defect analysis and measurement” adli A. Kumar
tarafindan yilinda 2011 yayimnlanan boliimde, tekstil kumas malzemeleri ve iiriinleri
icin otomatik kalite giivencesi, ger¢ek diinya uygulamalarindaki en zorlu bilgisayarla
gérme sorunlarmdan biri oldugu anlatilmaktadir. Orme isleminde, kumas ipliginin
kalitesindeki, iretim ve ¢alisma kosullarindaki rastgele degisiklikler, genellikle boyut,
sekil, gbriinlim ve renk bakimindan degisen dinamik olarak doldurulmus kusurlara
neden olur. Tekstil {iriin kalitesi igin gorsel incelemeden kaynaklanan ekonomik
faydalar ¢ok biiyiiktiir ve {liriin kalite giivencesi i¢in otomatiklestirilmis goriintii isleme
tabanli ¢ozlimlere yapilan yatirimi gerekli hale getirmektedir. Son giinlerde piyasada
bulunan bazi1 kumas kontrol makineleri pazara girmistir. Bununla birlikte, maliyetleri
onemli 6l¢iide daha yiiksektir ve tespit edilebilen kusur araliklar1 oldukga sinirhidir.
Diisiik maliyetli yliksek hizli bilgisayarlarin, yiliksek ¢ozliniirliiklii dijital kameralarin
ve diisiik maliyetli depolamanin artan kullanilabilirligi, saglam otomatik tekstil
denetim ¢6ziimlerinin yakin gelecekte popiiler hale gelmesi i¢in biiylik umutlar

yarattig1 anlatilmaktadir [2].

“Automated Fabric Defect Inspection: A Survey of Classifiers” adl1 Md. Tarek Habib,
Rahat Hossain Faisal, M. Rokonuzzaman, Farruk Ahmed tarafindan 2014 yilinda
yayimlanan makalede, tekstil endiistrisinde liretimin her asamasinda kalite kontrol, son
derece rekabetci kiiresel pazarda varligini siirdiirmek igin kilit bir faktor haline geldigi
belirtilmektedir. Manuel kumag hatasi incelemesinin sorunlari, hassasiyet eksikligi ve
yliksek zaman tiiketimidir; burada erken ve dogru kumas hatasi tespiti, kalite kontroliin
onemli bir agsamasidir. Bilgisayarli goriintii islemeye dayali, yani otomatik kumas hata
denetim sistemleri, farkli iilkelerdeki bir¢ok arastirmaci tarafindan bu sorunlari
cozmek icin ¢ok faydali oldugu diisiintilmektedir. Basarili bir otomatik kumas hatasi
inceleme sistemi elde etmek i¢in ¢6ziilmesi gereken iki biiyiik zorluk, kusur tespiti ve
smiflandirilmasidir. Bu c¢alismada, otomatik kumas kusur siniflandirmasi ig¢in
kullanilan farkli teknikleri tartisilmig, ardindan otomatik kumas kusur kontrol
sistemlerinde kullanilan siniflandiricilarin bir aragtirmasi gosterilmis ve son olarak bu
siniflandiricilar performans olgiitlerini kullanarak karsilagtirilmistir. Bu ¢aligmanin,

bu alandaki birgok potansiyel secenegi anlamak ve degerlendirmek i¢in otomatik



kumas hata denetimi alanindaki aragtirmacilar i¢in ¢ok yararli olmasi beklenmektedir

[103].

“ImageNet Classification with Deep Convolutional Neural Networks” baslikli
calisma, 1,2 milyon yiiksek ¢oziintirliiklii goriintiiyti 1000 farkli sinifa siniflandirmak
icin biiylik ve derin bir evrigimli sinir ag1 (CNN) egitmistir. Arastirma, ImageNet
LSVRC-2010 yarismasinda test verileri tizerinde %37,5 top-1 ve %17,0 top-5 hata
oranlarma ulasarak, onceki durumu 6nemli 6lgiide agmistir. 60 milyon parametre ve
650.000 norona sahip olan ag, bes evrisim katmani, maksimum havuzlama katmanlari,
i¢c tam baglantili katman ve son olarak 1000 yonlii bir softmax igerir. Egitim siirecini
hizlandirmak i¢in doygunlasmayan néronlar ve GPU tabanli hizli evrisim islemleri
kullanilmigtir. Asir1 6grenmeyi azaltmak i¢in tam baglantili katmanlarda “dropout”
diizenleme yontemi uygulanmistir. Caligma, ILSVRC-2012 yarismasinda modelin bir
varyantiyla %15,3 top-5 hata oraniyla birinci olmus, ikinci en iyi girisin %26,2 hata
oranini geride birakmistir. Bu ¢alisma, derin evrisimli sinir aglarinin bilgisayarl gort
toplulugu tizerindeki etkisini kanitlamis ve Google, Facebook, Microsoft gibi bir¢cok
sirketin derin 6grenme teknolojilerini benimsemesini saglamistir. Daha iyi donanim,
daha fazla gizli katman ve teknik yenilikler ile 2015 yilina kadar derin sinir aglarinin
hata orani ii¢ kat daha azaltilmis ve insan performansina olduk¢a yaklasmistir. Bu
basarida FeiFei ve ekibinin genis bir etiketli veri seti olusturma cabalarinin etkili

oldugu vurgulanmaktadir [62].

“Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive
Review” adl1 Agsa Rasheed, Bushra Zafar, Amina Rasheed, Nouman Ali, Muhammad
Sajid, Saadat Hanif Dar, Usman Habib, Tehmina Shehryar ve Muhammad Tariq
Mahmood tarafindan 2020 yilinda yayimlanan makalede, ¢esitli uygulamali alanlarda
ve otomatiklestirilmis liretim siirecinde bilgisayarla gorii ve dijital goriintii islemenin
farkli uygulamalar1 bulunmaktadir. Tekstil endiistrisinde, herhangi bir tekstil
iirlinliniin kalitesi ve fiyat1 otomatik kusur tespitinin verimliligine ve etkinligine baglh
oldugundan, kumas kusur tespiti zorlu bir gorev olarak kabul edilir. Onceden, tekstil
endiistrisinde kumas tretim siirecindeki kusurlari tespit etmek i¢in manuel insan
cabast uygulanmaktadir. Konsantrasyon eksikligi, insan yorgunlugu ve zaman
tiketimi, manuel kumas hatas1 tespit islemi ile iliskili ana dezavantajlardir.
Bilgisayarla gorme ve dijital goriintii islemeye dayali uygulamalar, yukarida

bahsedilen sinirlamalar1 ve dezavantajlari ele alabilir. Son yirmi yildan bu yana, bu
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sinirlamalar1 gidermek i¢in ¢esitli arastirma makalelerinde ¢esitli bilgisayar goriisii
temelli uygulamalar 6nerilmistir. Bu derleme yazisinda, kumas hatalarini tespit etmek
icin tekstil endiistrisindeki uygulamalarla birlikte cesitli bilgisayarla gérmeye dayali
yaklasimlar hakkinda ayrintili bir ¢alisma sunulmasi hedeflenmektedir. Onerilen
caligma, histogram tabanli yaklasimlar, renk tabanli yaklagimlar, goriintii bolimleme
tabanli yaklasimlar, frekans etki alani islemleri, doku tabanli hata algilama, seyrek
ozellik tabanli islem, goriintii morfolojisi islemleri ve son derin 6grenme egilimlerine
iliskin ayrmtili bir genel bakis sunmaktadir. Otomatik kumas hatasi tespiti icin
performans degerlendirme kriterleri de sunulmakta ve tartisilmaktadir. Mevcut
yayinlanmis arastirmalarla iligskili dezavantajlar ve smirlamalar ayrintili olarak
tartisilir ve gelecekteki olasi arastirma yonlerinden de bahsedilmektedir. Arastirma
caligmasi, farkli kumas kusurlarimi tespit etmek i¢in bilgisayarla gorme ve dijital

goriintli isleme uygulamalar1 hakkinda kapsamli ayrintilar saglamaktadir [104].

“Real-time Texture Error Detection on Textured Surfaces with Compressed Sensing”
adli Tobias Bottger tarafindan 2014 yilinda yayimlanan calismada sikistirilmis
Algilama (Compressed Sensing) cercevesinde gri tonlamaya cevirip dokulardaki
kusurlar1 tespit etmek ve yerini belirlemek i¢in gercek zamanli bir yaklasim
sunulmaktadir. Doku simiflandirmasindaki son sonuclardan esinlenerck, doku
tanimlamast i¢in sikistirilmis yerel gri tonlamali yamalar kullanilmaktadir. Ik adimda,
bir hatasiz doku 6rneginden ¢ikarilan 6znitelikler ile bir Gauss Karigim modeli egitilir.
Ikinci adimda, doku drneklerinin yenilik tespiti, her pikselin egitim siirecinde elde
edilen olabilirlik ile karsilastirilmasiyla gerceklestirilir. Denetim asamasi, gercek
zamanl kusur tespiti ve lokalizasyonu saglamak i¢in ¢ok Olgekli bir cergeveye
yerlestirilmistir. Doku hatas tespiti i¢in sikistirilmis gri 6lgekli yamalarin performansi,
iki bagimsiz veri kiimesi iizerinde degerlendirilmektedir. Onerilen yontem, dogruluk
ve hiz agisindan sikigtirlmamis gri Olgekli yamalarin performansini  geride

birakabilmektedir [105].

“Fabric Defect Detection Using Activation Layer Embedded Convolutional Neural
Network” adli Wenbin Ouyang, Jue Hou ve Bugao Xu tarafindan 2019 yilinda
yayimmlanan c¢alismada, goriintii 6n isleme, kumas motifi belirleme, hata haritas
olusturma ve evrisimli sinir aglar1 (CNN'ler) tekniklerini birlestirerek bir tezgah iistii
kumas kusur inceleme sistemi i¢in bir derin 6grenme algoritmasi gelistirilmistir. Hatal

kumas iiretiminin ana nedeni dokuma tezgahi arizalarindan kaynaklanmaktadir. Bir

11



kumas kontrol sistemi, kalite giivencesi icin kumas kusurlarini tespit etmek icgin
kullanilan 6zel bir bilgisayarli gérme sistemidir. Bir CNN'ye yeni bir ¢ift yonlii
potansiyel aktivasyon katmani tanitilmis ve bu da karmasik 6zelliklere ve dengesiz
veri kiimesine sahip kumasglar iizerinde yliksek kusur segmentasyonu dogruluguna yol
acmistir. Mevcut goriintiilerdeki kusurlari saptamanin ortalama kesinligi ve geri
cagrilmasi, piksel diizeyinde sirastyla %90'in ve %80'in lizerine ulasarak ve halka agik

bir veri kiimesinden kusurlarin sayisini sayma dogrulugu %98'i agsmaktadir [106].

“Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis:
Actively and Incrementall” baslikli C. Tajbakhsh, J.Y.S., Gurudu, B tarindan
hazirlanan ¢alisma, biyomedikal goriintiillemede anotasyon maliyetlerini azaltmak i¢in
aktif 6grenme ve transfer 6grenimini birlestiren yenilik¢i bir yontem olan AIFT'yi
(Active, Incremental Fine-Tuning) sunmaktadir. Calismada, 6nceden egitilmis bir
CNN ile baglanarak anotasyon i¢in "degerli" orneklerin se¢ilmesi ve ardindan yeni
anotasyonlarin iteratif olarak dahil edilerek CNN performansinin kademeli olarak
iyilestirilmesi amaclanmistir. Ug¢ farkli biyomedikal gériintiileme uygulamasinda
yapilan degerlendirmeler, anotasyon maliyetinin en az yar1 yariya azaltilabilecegini
gostermektedir. Calismada ayrica, farkli aktif se¢im yontemlerinin yedi temel desenle
simiflandirilabilecegi ve bu simiflarin gercek klinik uygulamalarda performans
karsilastirmalarinin yapilabilecegi vurgulanmistir. Bu makale, anotasyon maliyetini
disiirmek i¢in gelistirilen AIFT yonteminin biyomedikal goriintiileme alanindaki
etkinligini kanitlamakta ve 0Ozellikle aktif Ogrenme ile transfer Ogreniminin

entegrasyonunun klinik uygulamalara katki saglayabilecegini gostermektedir [87].

“Learning Transferable Architectures for Scalable Image Recognition” baslikli B.
Zoph, V.V., Shlens, J tarafindan yapilan ¢alisma, sinir ag1 mimarilerinin veri setine
0zel olarak 6grenilmesini saglayan bir yontem sunmaktadir. Calismada, biiyiik veri
setleri lizerindeki mimari aramanin maliyetli olmasi sebebiyle, kiigiik bir veri setinde
bir mimari yap1 tas1 arama ve bu yapiy1 biiyiikk veri setlerine aktarma yoOntemi
onerilmistir. “NASNet search space” ad1 verilen yeni bir arama alani tasarimi ile bu
aktarilabilirlik saglanmistir. CIFAR-10 veri setinde en iyi evrisim katmani bulunmus
ve bu katman, ImageNet veri setine aktarilmigtir. Ayrica, NASNet modellerinde
genellestirmeyi onemli Olgiide iyilestiren ScheduledDropPath adli bir diizenleme
teknigi tanitilmistir. CIFAR-10 {izerinde %2,4 hata oraniyla, ImageNet iizerinde ise

%82,7 top-1 dogruluk oraniyla insan tasarimi modellerin iizerinde performans
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sergilenmistir. NASNet, %28 daha diisiik hesaplama maliyetiyle onceki en iyi
modellerden daha yiiksek dogruluk saglamigtir. Ayrica, Ogrenilen goriintii
ozelliklerinin diger bilgisayarli gorii problemlerine aktarilabilir oldugu gosterilmistir.
COCO veri setinde Faster-RCNN cergevesiyle %43,1 mAP ile nesne algilamada
mevcut durumu asmaktadir. Bu ¢alisma, veri setlerinden olgeklenebilir evrisimsel
hiicrelerin 6grenilebilecegini ve bu hiicrelerin ¢oklu goriintii siniflandirma gorevlerine
aktarilabilecegini gostermektedir. NASNet mimarileri, mobil uygulamalardan yiiksek
dogruluk gerektiren gorevler igin 6l¢eklenebilir bir yapiya sahiptir ve hem CIFAR-10
hem de ImageNet veri setlerinde, hesaplama maliyeti daha diisiik olmasina ragmen,
insan tasarimi modellerin performansini agmaktadir. Ogrenilen mimariler, goriintii
simiflandirma ve nesne algilama gibi ¢esitli bilgisayarli gorii problemlerinde 6nemli

avantajlar saglamaktadir [88].

1.3 Hipotez

Orme islemi sirasinda kumas ipliginin kalitesi ile iiretim ve ¢alisma kosullarindaki
rastgele degisiklikler, genellikle boyut, sekil, goriiniim ve renk bakimindan degisen
dinamik kusurlara neden olmaktadir. Mevcut gorsel kalite kontrol yontemleri, kumas
kusurlarinin yalnizca bir kismini tespit edebilmekte ve bu kusurlar, tiretilen kumaslarin
degerini 6nemli Ol¢lide azaltmaktadir. Ayrica, mevcut otomatik tespit sistemlerinin
yliksek maliyetleri ve smirli kusur araliklari, tekstil endiistrisinde etkin ve uygun
maliyetli ¢oztimler gelistirilmesini zorunlu kilmaktadir. Giiniimiizde diisiik maliyetli,
yiiksek islem giicline sahip islemciler, yiiksek ¢ozlniirliikli hizli kameralar ve bulut
tabanli depolama ¢oziimleri gibi teknolojilerin artan erisilebilirligi, otomatik tekstil

kalite kontrol sistemlerinin yayginlagsmasina olanak saglamaktadir.

Bu tez calismasinda, kumas kusurlarini tespit etmek icin otomatik goriintii isleme
tabanli bir sistemin gelistirilmesi ve etkinliginin arastirilmasi hedeflenmektedir.
Onerilen sistem, 6n isleme, filtreleme, frekans alami islemleri, derin dgrenme
yontemleri gibi gesitli tekniklerle desteklenecektir. Sistem, hizli kameralarla elde
edilen verilerin grafik islem birimleri (GPU) tabanli hesaplama giicliyle islenmesi
yoluyla, akan kumaslarda gercek zamanli kusur tespiti ve siniflandirma
gerceklestirecek; ayn1 zamanda kumasin hiz ve yon bilgilerini analiz ederek hata

geometrisini kaydetme islevini yerine getirecektir.
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Bu dogrultuda, otomatik goriintii isleme tabanli sistemlerin, manuel denetim
yontemlerine kiyasla daha yiiksek dogruluk, verimlilik ve izlenebilirlik saglayarak

tekstil endiistrisinde kalite kontrol siireclerinde yenilik yaratacagi dngoriilmektedir.
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2. MATERYAL VE YONTEMLER

2.1 Kamera Diizenegi

2.1.1 Alan tarama kameralari

Alan tarama kameralari, statik veya diisiik hizda hareket eden kumas yiizeylerinin
incelenmesinde siklikla tercih edilen optik sistemlerdir. Bu kameralar, kumas ylizeyini
tek bir karede yiiksek ¢oziiniirliikle goriintiileyerek ayrintili analiz yapilmasina olanak
saglamaktadir. Ancak, pozlama siiresi hareketli nesnelerde bulanikliga yol acabilecegi
icin, genellikle statik yiizeylerin analizi i¢cin daha uygun kabul edilmektedir. Cesitli alt
tiirleri bulunan alan tarama kameralari, farkli analiz gereksinimlerine yanit verebilecek

sekilde yapilandirilabilmektedir.

2.1.1.1 UV (Ultraviyole) kameralar

UV kameralar, kumas yiizeylerini ultraviyole 1s1k altinda goriintiileyerek ciplak gozle
algilanamayan detaylarin tespit edilmesine olanak tanimaktadir. Kimyasal islemlerden
kaynaklanan yiizey kusurlari, ince iplik problemleri veya diisiik kontrastli bolgelerin
analizi gibi durumlar i¢in ideal bir ¢6ziim sunmaktadir. Alan tarama teknolojisi
temelinde ¢alisan bu kameralar, 6zellikle ayrintili ylizey analizlerinde yaygin olarak

tercih edilmektedir.

2.1.1.2 Termal ve IR (Kizilotesi) kameralar

Termal kameralar, kumasg yiizeyindeki sicaklik farkliliklarini algilayarak yiizey ve alt
katman kusurlarinin detayli bir sekilde analiz edilmesini saglamaktadir. Kizil6tesi 151k
spektrumunda ¢alisan bu kameralar, 6zellikle kumasin iiretim asamasinda maruz
kaldigi 1s1l siireglerden kaynaklanan kusurlarin  tespitinde yiiksek etkinlik
gostermektedir. Is1 gecisleri, malzeme yogunlugu farkliliklart ve mikro diizeydeki
hatalarin analizi i¢in kullanilabilmektedir. Ayrica, yiizey alti katmanlarinda meydana

gelen iplik kopmalari, yabanci maddeler veya dokusal bozukluklar gibi problemlerin
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tespitinde etkili bir aractir. Goriiniir olmayan kusurlar1 ve materyal yogunlugu

farkliliklarini algilayarak daha kapsamli bir degerlendirme imkani sunmaktadir.

2.1.1.3 Renk kameralari

Renk kameralari, kumas lizerindeki renk varyasyonlarinit ve baski hatalarini tespit
etmek amaciyla kullanilan 6nemli bir goriintiileme teknolojisidir. Bu kameralar,
ozellikle desenli veya renkli kumaglarda, renk solmalari, homojen olmayan renk
dagilimlar1 ve istenmeyen renk degisimlerini algilamada yiiksek dogruluk
saglamaktadir. Renk analizine dayali yontemlerle, kumasin estetik ve kalite

standartlarin1 degerlendirmek i¢in etkili bir ¢6ziim sunmaktadir.

2.1.2 Cizgi tarama kameralari

Cizgi tarama kameralari, hareketli kumaslarin analizi i¢in optimize edilmis, yiiksek
hizl1 goriintiileme sistemleridir. Bu kameralar, kumas yiizeyinden akis yoniinde ¢izgi
formunda veri toplayarak detayli ve yiiksek ¢oziiniirliiklii gériintiiler elde edilmesini
saglamaktadir. Enkoder sistemi ile senkronize bir sekilde ¢alisarak kumasin hareket
hizina uyum saglar ve dogrusal taramalar sirasinda bulanikli§i en aza indirir. Bu
ozellikleri sayesinde, hizli iiretim hatlarinda ve bulanikligin kabul edilemez oldugu
uygulamalarda yaygin olarak kullanilmaktadir. Giintimiizde, 140 kHz gibi yiiksek
frekanslarla ¢alisan ¢izgi tarama kameralari, tekstil sektoriinde ileri seviye analizler

i¢in etkin bir arag¢ olarak one ¢ikmaktadir.

2.1.3 Hiperspektral kameralar

Hiperspektral kameralar, kumas ylizeyindeki spektral yansimalar1 detayli bir sekilde
analiz ederek genis bir spektral bant araliginda yiiksek ¢oziintirlikli veri
saglamaktadir. Bu kameralar, renk varyasyonlarini, malzeme anormalliklerini ve
homojen olmayan bolgeleri tespit etme konusunda son derece etkili bir performans
sergilemektedir. Ozellikle doku analizi ve mikro diizeydeki kusurlarin algilanmasi
gereken durumlarda tercih edilen hiperspektral kameralar, kumas yiizeyinin optik

ozelliklerinin ayrintili incelenmesi i¢in ileri diizey bir teknolojik ara¢ sunmaktadir.
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2.1.4 Multispektral kameralar

Multispektral kameralar, hiperspektral kameralara benzer sekilde spektral bantlarda
caligmakla birlikte, daha sinirli sayida spektral bilgi saglamaktadir. Ekonomik bir
alternatif olarak one ¢ikan bu kameralar, kumas tizerindeki renk ve doku kusurlarinin
tespiti i¢in etkili bir ¢6ziim sunmaktadir. Renk hatalarinin, baski kusurlarinin ve yiizey

anormalliklerinin belirlenmesi gibi uygulamalarda yaygin olarak kullanilmaktadir.

2.1.5 3D goriintiileme kameralari

3D goriintiileme kameralari, kumas yiizeyinin derinlik bilgilerini analiz ederek doku
ve profil hatalarini tespit etmek icin kullanilan ileri diizey goriintiileme sistemleridir.
Lazer tabanli sistemler veya stereo kamera teknolojileri aracilifiyla, kumas
ylizeyindeki ¢ikintilar, dalgalanmalar ve ¢ukurlar ti¢ boyutlu olarak detayl bir sekilde
incelenebilmektedir. Bu kameralar, 06zellikle karmasik yiizey yapilarima sahip

kumaslarin detayli analizinde yiiksek dogruluk ve etkinlik saglamaktadir.

2.1.6 Endiistriyel akillh kameralar

Endiistriyel akilli kameralar, gomiilii goriintii isleme sistemlerine sahip, gergek
zamanl analiz yapabilen gelismis sistemlerdir. Bu kameralar, yerlesik derin 6grenme
algoritmalar1 sayesinde kumas kusurlarin1 otomatik olarak tespit ederek
siniflandirabilmektedir. Alan tarama veya ¢izgi tarama ozellikleriyle entegre edilerek
hizli tiretim hatlarinda verimliligi arttirmaktadir. Kumas kusuru tespiti, siniflandirma

ve hata tiirlerine yonelik ¢6ziimleme i¢in siklikla tercih edilmektedir.

Sonug olarak, alan tarama kameralarinin statik kumas analizi i¢in daha uygun oldugu,
hareketli kumas analizi i¢in ise ¢izgi tarama kameralarinin tercih edilmesi gerektigi
goriilmektedir. Bununla birlikte, giiniimiiz teknolojisinde diisiik pozlama stirelerinin
yiiksek aydinlatma kosullari ile birlestirilmesi durumunda, alan tarama kameralarinin

hareketli kumasg analizinde de etkin bir sekilde kullanilabilecegi 6ngériilmektedir [7].

2.1.7 Lensler

Uygun kamera se¢iminin ardindan, analizin gereksinimlerini karsilayacak uygun bir

lens se¢imi yapilmasi gerekmektedir. Bir kameranin gorlis alan1 ve goriintiileme
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kapasitesi, kullanilan lensin ozelliklerine gore sekillenmektedir. Bundan dolayi,
caligma mesafesi, goriis alan1 ve sensor boyutu gibi parametreler dikkate alinarak, en
uygun lens se¢imi gergeklestirilmelidir. Elde edilecek goriintiiniin boyutlari, sekli ve
netligi, secilen lensin optik o6zellikleriyle dogrudan iliskilidir ve bu segim, analiz

sonuglarinin dogrulugunu dogrudan etkileyebilmektedir.

Sekil 2.1 : Lens galisma bigimi.

Bu nedenle odak uzakligi f degeri hesaplanmalidir. f degeri asagidaki formiille
hesaplanabilir:

f=2xg 2.1)
Burada B ve G, sirasiyla goriintii boyutunu ve nesne boyutunu temsil etmektedir. Sekil
2.1, goriintii ve nesne mesafesi ile lens odak uzunlugu (f) arasindaki geometrik
iligkileri gostermektedir. Her bir lensin sabit odak uzunlugu (FFL) degeri
bulunmaktadir ve f ile hesaplanan degeri i¢in f — 2 < FFL < f + 2 esitligini saglayan

lenslerin FFL degerleri arasindan herhangi biri tercih edilmektedir.

Bu formiilasyon, nesne ve kamera arasindaki belirsiz mesafeyi i¢eren bir odak uzakligi
Olciisiinii resmi olarak tanimlamaktadir. Ayrica, optimal goriintii kalitesini saglamak
icin biiylitme faktorii de dikkate alinmaktadir. Endistriyel goriinti isleme
uygulamalarinda, biiyiitme faktorii genellikle >1:10 (sensor boyutu: nesne boyutu)
olmaktadir. Bu oran, endiistriyel uygulamalarda istenen detay seviyesini elde etmek

icin kritik bir parametre olarak 6ne ¢ikmaktadir.

2.2 Goriintii Isleme Donanmimlar

Yapay gorme uygulamalari, gesitli fiziksel platformlarda uygulanabilir ve genis bir
cihaz yelpazesi igermektedir. Bu platformlar arasinda, PC tabanli sistemler, 3D ve

coklu kamera 2D uygulamalari i¢in tasarlanmis 6zel goriintii denetleyicileri, bagimsiz
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calisan goriintiileme sistemleri ve temel goriintii sensorleri bulunmaktadir. Uygun
yapay gorme platformunun se¢imi, genellikle uygulamanin gereksinimleri, gelistirme
ortami, teknik yetenekler, sistem mimarisi ve maliyet gibi faktorlere bagli olarak

belirlenmektedir.

2.2.1 PC tabanh goriintii isleme sistemleri

PC tabanli sistemler, dogrudan baglantili kameralar veya goriintii toplama kartlari ile
kolayca arayiiz olusturabilen ve yapilandirilabilir yapay goérme uygulama
yazilimlariyla desteklenen esnek bir platform sunmaktadir. Bu sistemler, Python,
Visual C/C++, Visual Basic ve Java gibi yaygin olarak kullanilan programlama
dillerinin yani sira, grafik tabanli programlama ortamlarini kullanarak 6zel kod
gelistirme imkan1 saglamaktadir. Ancak, bu tiir sistemlerin gelistirme stireci genellikle
karmasik olmakta ve uzun zaman gerektirmektedir. Bu nedenle, PC tabanli yapay
gorme platformlar genellikle biiyiik 6lgekli kurulumlarda tercih edilmekte ve ileri

diizey goriintii isleme uzmanlari ile deneyimli programecilara hitap etmektedir.

2.2.2 Gomiilii goriintii isleme sistemleri

Goriintli isleme kontrolorleri, PC tabanli sistemlerin tiim giiciinii ve esnekligini
sunarken, zorlu fabrika ortamlarinin gereksinimlerine daha iyi uyum saglayabilecek
bir yapisal dayanikliliga sahiptir. Bu kontrolorler, 6zellikle 3D ve ¢oklu kamera 2D
uygulamalar1 i¢in daha kolay bir yapilandirma imkani1 sunmakta ve tek seferlik
gorevler icin sinirli zaman ile biitge kosullarinda etkili bir ¢6ziim olusturmaktadir.
Ayrica, daha karmasik uygulamalarin uygun maliyetli bir sekilde gelistirilmesine

olanak taniyarak hem esneklik hem de performans agisindan avantaj saglamaktadir.

2.2.3 Bagimsiz goriintii isleme sistemleri

Bagimsiz goriintii isleme sistemleri, uygun maliyetli olmalarinin yani sira hizli ve
kolay bir sekilde gelistirme yapilmasina olanak taniyan kompakt c¢o6ziimler
sunmaktadir. Bu sistemler genellikle kamera sensori, islemci ve iletisim altyapisi ile
entegre sekilde tasarlanmistir. Baz1 modeller, harici aydinlatma destegi ve otomatik

odaklama i¢in gerekli optik bilesenleri de igermektedir. Kompakt yapilar1 sayesinde,
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fabrika ortamlarinda farkli noktalarda kolayca kurulabilmekte ve uygun maliyet

avantaj1 saglamaktadir.

Bagimsiz goriintlii isleme sistemlerinin en Onemli avantajlarindan biri, tretim
stirecindeki kusurlarin erken tespit edilmesini ve ekipman sorunlarinin hizla
belirlenmesini saglamalaridir. Bu sistemler, yerlesik Ethernet iletisim altyapisi
sayesinde birden fazla sistemin bir ag lizerinden birbirine baglanmasina ve ana bir
bilgisayar tarafindan yonetilmesine olanak tanimaktadir. Bdylece, kullanicilar
yalnizca tiretim siireglerinde goérme sistemlerini etkin bir sekilde kullanmakla kalmaz,
aynt zamanda sistemler arasinda veri aligverisi yaparak tiim fabrika genelinde
Olceklenebilir bir goriis sistemi ag1 olusturabilmektedir. Bu ag, fabrika ve kurumsal
aglara kolayca entegre edilerek TCP/IP protokoliine sahip is istasyonlar1 iizerinden
goriis sonuglari, goriintiiler, istatistiksel veriler ve diger bilgilerin uzaktan izlenmesini

miumkiin kilmaktadir.

Bagimsiz sistemler hem basit yonlendirmeli kurulumlar hem de gelismis programlama
ve komut dosyasi olusturma imkani sunan yapilandirilabilir ortamlarla donatilmistir.
Bazi sistemler, daha fazla kontrol ve goriintii uygulama verilerinin iglenmesi i¢gin esnek
gelistirme ortamlar1 saglayarak hem ek gii¢ gereksinimlerini karsilar hem de karmasik

uygulamalarin kolaylikla uygulanmasina olanak tanimaktadir.

2.3 Haberlesme Arayiizleri

Goriintiileme sistemlerinde kamera sensorlerinin siirekli artan veri isleme kapasiteleri,
haberlesme arayiizlerinin se¢imini kritik bir unsur haline getirmistir. Uygun bir arayiiz
secimi, sistemin performansini, kurulum kolayligini ve maliyet etkinligini dogrudan
etkilemektedir. Giiniimiizde, USB, Gigabit Ethernet (GigE) ve Camera Serial Interface
(CSI) gibi arayiizler, farkli uygulama alanlara yonelik olarak tercih edilmektedir.
Asagida, bu araylizlerin teknik 6zellikleri, avantajlar1 ve dezavantajlar1 ayritili bir

sekilde incelenmistir.

2.3.1 CSI haberlesme

Camera Serial Interface (CSI), gémiilii sistemlerde yiiksek performans ve diistik gii¢
tilkketimi gereksinimlerini karsilamak i¢in gelistirilmis bir haberlesme arayiiziidiir.

MIPI (Mobile Industry Processor Interface) standartlar1 ¢cergevesinde gelistirilen CSI,
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mobil cihazlar, drone'lar, robotik sistemler ve diger entegre ¢ézlimlerde yaygin olarak

kullanilmaktadir.

CSI-2 standardi, paralel veri aktarimi saglayan 1 ila 4 veri hatti tizerinden galisir ve
her bir veri hattt basina yaklasik 2,5 Gbit/s aktarim hizina ulasabilmektedir. Bu
ozellikler, gercek zamanli goriinti isleme ve diisiik gilic tiikketimi gerektiren
uygulamalar i¢in oldukca ideal bir yap1 sunmaktadir. Ayrica, CSI araylizii minimal
donanim gereksinimi ve kompakt tasarimi ile gdmiilii sistemlerde kolay entegrasyon

imkan1 saglamaktadir.

2.3.2 USB haberlesme

USB (Universal Serial Bus) standardi, yiiksek hizda veri aktarimi ve kolay kullanim
sunan bir haberlesme arayiiziidiir. ilk olarak 1996 yilinda USB 1.0 standard: ile
tanitilmis ve giinlimiize kadar USB 3.2 Gen 2x2’ye kadar bir dizi iyilestirme
gecirmistir. USB 3.0 ve sonraki siirtimleri, 5 Gbit/s, 10 Gbit/s ve 20 Gbit/s bant
genisligi sunmaktadir. Bu hizlar, modern goriintiileme sistemleri i¢in yeterli veri
aktarim hizin1 saglamaktadir. Ancak, farkli USB standartlar1 arasinda yapilan isim

degisiklikleri, 6zellikle kullanicilar i¢in kafa karistirici olabilmektedir.

USB’nin en 6nemli avantaji, "tak ve ¢alistir" 6zelligi sayesinde kolay kurulum imkan1
sunmasidir. Cogu bilgisayar birden fazla USB baglanti1 noktasina sahip olup, ek bir
yapilandirma gerektirmeden cihazlar ¢alistirilabilmektedir. Bununla birlikte, USB
baglantilarinin maksimum kablo uzunlugu 10 metre ile siirhidir, bu da uzun mesafeli

uygulamalarda sinirlayici bir unsur olusturabilmektedir.

2.3.3 GigE haberlesme

Gigabit Ethernet (GigE), 6zellikle endiistriyel uygulamalarda yaygin olarak kullanilan
bir haberlesme arayiiziidiir. USB’nin kablo uzunlugu kisitlamalarinin aksine, GigE
baglantilar1 100 metreye kadar uzanabilir, bu da fabrika otomasyonu ve uzun menzilli
izleme uygulamalari i¢in onemli bir avantaj sunmaktadir. Daha yiiksek hiz
gereksinimleri i¢in 10/25 GigE standartlar1 gelistirilmistir. Ancak bu standartlar,
CAT6 kablolar ve ozel ag ekipmanlari gibi ilave donanim gereksinimlerini
beraberinde getirmektedir. GigE’nin bir diger avantaji, birden fazla kameranin ayni ag

lizerinde bir araya getirebilmesidir. Ag anahtarlar1 araciligiyla kameralar kolayca
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yonetilebilmekte ve genis alanlara esnek bir sekilde konumlandirilabilmektedir.
Bununla birlikte, GigE arayiiziiniin kullanim1 IP adresi yapilandirmasi ve ag baglanti

noktasi tahsisi gibi ek islemleri gerektirmektedir [8].

Haberlesme arayiizlerinin 6zelliklerinin karsilastirilmasi Cizelge 2.1°de verilmektedir.

Cizelge 2.1 : Kamera haberlesmesi karsilagtirmast.

Ozellik USB GigE CSI
Bant Genisligi 520 Gbit/s 1-25 Ghit/s 2b5eﬁ§rifés
Kablo Uzunlugu 10 metre 100 metre <1 metre
Kurulum Kolayligi Yiiksek Orta Yiiksek
Giig Tiiketimi Orta Orta-Yiiksek Diisiik
Uygulama Alam i uygulamalr sistmler

2.4 Aydinlatma Cesitleri

Aydinlatma, bir¢ok yapay gorme ve goriintii elde etme sistemi i¢in kritik bir bilesen
olarak degerlendirilmektedir. Ozellikle otomatik kumas kontrol sistemlerinde; &n
aydinlatma, arka aydinlatma, fiber optik aydinlatma ve yapisal aydinlatma teknikleri
gibi farkli aydinlatma semalar1 kullanilmaktadir. On aydinlatma teknigi, genellikle
kalin kumaslardaki hatalarin tespitinde tercih edilmekte olup, aydinlatma kaynagi
kamera ile ayni tarafta, kumasin Oniine yerlestirilmektedir. Arka aydinlatma teknigi
ise yar1 saydam kumas tiirlerinde, 6rnegin siiprem kumaslarda, golgelenme etkilerini
ortadan kaldirarak daha belirgin bir goriintii elde etmek i¢in kullanilmaktadir. Kumasin
arkasina yerlestirilen ¢izgi 151k kaynagi, 6n aydinlatmaya kiyasla daha yiiksek

kontrastli goriintiiler sunabilmektedir.

Fiber optik aydinlatma, belirli bir 6l¢iiden biiylik kumas goriintiileri i¢in ekonomik
olmamaktadir. Yapisal aydinlatma sistemlerinde ise kizil6tesi 151k ve yiiksek kare hizli
kameralar kullanilarak kusurlu ve hatasiz kumas goriintiilerinin birbirinden
ayristirilmast miimkiin hale gelmektedir. Literatiirde, floresan, halojen ve 151k yayan
diyot (LED) 151k kaynaklarinin yaygin olarak kullanildig1 goriilmektedir. Kaliteli bir
goriintii elde edebilmek i¢in 151k kaynaginin genisligi dnemli bir parametre olarak 6ne

cikmaktadir. Is1g1in optimal genisligi, asagidaki formiil yardimiyla belirlenebilir:
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Isik genisligi (mm) = 151k alan1 + (2 * kamera ¢aligma mesafesi) (2.2)

Elektromanyetik spektrumda, insan gozii yalnizca 400-700 nm dalga boyu araligindaki
radyasyonlar1 algilayabilmektedir. LED aydinlatma, bu dalga boyu araligina yakin bir
151k spektrumu saglayarak, insan géziine benzer algilama 6zellikleri sunmaktadir. Bu
ozelliklerinden dolayi, son yillarda gelistirilen kumas kontrol sistemlerinde, etkin ve
basarili yapay gorme uygulamalari i¢in hat LED aydinlatma yaygin olarak tercih
edilmektedir. LED aydinlatmanin verimli bir sekilde kullanimi, 151k genisliginin
yukarida verilen formiile gore dogru sekilde belirlenmesiyle miimkiin hale

gelmektedir.

2.5 Test Diizenegi

Yuvarlak 6rme makinas1 hareketini yapacak bir test diizenegi kurularak, goriintii
algilama islemleri yapilmasi planlanmistir. Orme makinesinin érme asamasindaki
kumas hareketlerini taklit edebilmek amaciyla, Sekil 2.2°deki gorselde gosterilen
prototip tasarlanmis ve iiretilmistir. Prototip kamera ve aydinlatma sisteminin monte

edildigi bir adet dogrusal hareketli eksen bulunmaktadir.

Sekil 2.2 : Prototip sasi montaj goriintiisii.

Orme makinelerinde kumas, a1k en veya tiip formunda iiretilmektedir. Acik en calisan
makinelerde, tlip formunda oriilen kumas kesilerek, alt kisimda bulunan topa

sartlmaktadir. Kumasin kesilmeden 6nce maruz kaldigi gerilimi simiile edebilmek
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amactyla, bir doner eksen ve iizerinde bir tambur kullanilmaktadir. Orme makinesinde
iiretilen kumasin ¢ap1 yaklasik 80 cm olup, kullanilan tamburun ¢ap1 da bu 6lgiiye
esdegerdir. Bu yap1, kumasin 6riilme anindaki gergek ¢alisma kosullarint modellemeyi

saglamaktadir.

Orme hareketini gercege uygun sekilde simule edebilmek i¢in dogrusal eksen iizerinde
bulunan kamera 3 m/dk ile asagiya dogru hareket ederken, tambur da eszamanli olarak
34 devir/dk hizla dondiiriilmiis ve bdylece dorme asamasindaki kumas goriintiisii
olusturulmustur. Yukari-asagi hareket step motor kontroliiyle saglanmistir. Tamburun
donmesi i¢in kullanilan motor Sekil 2.3°de, yukar1 asag1 hareketi gerceklestiren step

motor ise Sekil 2.4’de gosterilmektedir.

SN €

Sekil 2.3 : Taban tambur motor goriintiisii.
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Sekil 2.4 : Prototip birlestirilmis goriintii.

24



Maksimum donme hizlarinda goriintii aliminin gergeklestirilebilmesi amaciyla
monochrome global shutter 6zellikli olan kameralar kullanmaya karar verilmistir. Bu
kamera ile hareket halinde iken 100 us pozlama siiresi (shutter speed) ile goriintiide
bozulma olmadan fotograflar alinabilmis ve elde edilen goriintiiler birlestirilerek 0.5

mm ¢Oziiniirliigiinde goriintiiler olusturulmustur.

Sekil 2.5’de goriildiigii lizere, aydinlatma i¢in LED’lerin kumasa yaklastirilabildigi ve
ac1 verilebildigi bir tasarim uygulanmis; bu sayede alt-iist, yan ve UV aydinlatmalari
bagimsiz olarak kontrol edilebilmesiyle, farkli hata tiirlerinin daha belirgin hale

getirilerek goriintiilenmesi saglanmistir.

Sekil 2.5 : Aydinlatma sistemi.

Sekil 2.6’de goriildiigii iizere, sistem; 10 katmani, kontrolcii katmani ve yazilim
katman1 olmak iizere iic temel katman ile Ozetlenmistir. IO katmaninda, saha
ekipmanlarinin baglandig1 pano igerisindeki kontrol elemanlar1 ile bu katmanin
kontrolcii ve yazilim katmanlarina olan baglantilar1 gosterilmektedir. Yazilim
katmaninda, 10’larin kontrolii i¢in web tabanli Node-RED programlama arayiizii
kullanilmigtir. Node-RED’in 10T uyumlulugu sayesinde farkli donanimlar ile etkili
sekilde haberlesme saglanabilmektedir. Python programlama dili i¢in Spyder 5 editorii
tercih edilmistir. Bu editoriin tercih edilme nedeni, akademik ¢aligmalarda yaygin
olarak kullanilan editdrlere benzemesi ve degisken analizlerinin kolaylikla
yapilabilmesine olanak saglamasidir. Python ortaminda hem kamera hem de hiz
enkoderine ait veriler islenerek goriintii birlestirme algoritmasi calistirilmaktadir.
Ayrica, gorilintli isleme ve makine 6grenmesine dayali hata tespit algoritmalarinin

gelistirilmesinde de Python aktif olarak kullanilmaktadir.
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Nodered
10 kontrol arayuzu
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Yazihim Katmani

letson
Nano

Python Editor
Spyders

1 f

Kamera

Sekil 2.6 : Denetleyici yapisi.

Prototip tiim sistem goriintiisii Sekil 2.7°de gosterilmektedir.

Sekil 2.7 : Sistem genel gortinim.
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2.6 Goriintii Veri Setinin Hazirlanmasi

Bir goriintli isleme uygulamasinda, veri algilama; c¢evreden gorsel bilgi toplayip
sistemin kullanimina sunan temel bir adimdir. Bu siireg, sistemin ¢esitli uygulamalarda
gorsel verileri analiz etmesine ve yorumlamasina olanak tanimaktadir. Veri algilama,
sistem i¢in ham veri girisini saglar; kameralar veya diger sensorler araciligtyla goriintii
ya da video karelerini yakalayarak, sonraki isleme ve analiz agamalari i¢in bir temel

olusturmaktadir.

Elde edilen verilerin kalitesi ve dogrulugu, sistemin genel performansin1 dogrudan
etkilemektedir. Yiksek kaliteli, net ve uygun sekilde kalibre edilmis goriintiiler, analiz
ve karar verme siirecinde daha dogru ve giivenilir sonuglar elde edilmesine katkida
bulunmaktadir. Doner sistemlerde, makine hizi nedeniyle bulaniklik ve yetersiz
aydinlatma gibi sorunlar ortaya ¢ikabilmektedir. Test diizeneginde donme hizi kontrol
edilebilir olsa da gercek bir 6rgli makinesinde kullanilan kamera sisteminin yakalama
frekansina uyum saglamasi ve mevcut aydinlatma kosullarina gore optimize edilmesi
gerekmektedir. Etkili bir kusur tespit sisteminin gelistirilebilmesi igin, goriis sistemi;
aydinlatma degisimleri, hareket kaynakli bulaniklik, lens yiizeyindeki toz ve yag gibi
cesitli cevresel faktorlere karst dinamik bir sekilde uyum saglayabilecek sekilde
yapilandirilmalidir. Siirekli ve ¢esitli veri toplama islemleri, sistemi bu tiir zorluklara
kars1 egitmek ve hassas ayarlar yapmak i¢in kritik 6neme sahiptir. Gergek zamanl
analiz gerektiren uygulamalarda, veri toplamanin verimli bir sekilde gergeklestirilmesi
esastir. Bu sayede sistem, bilgiyi zamaninda yakalayarak isleyebilmekte; hizli yanitlar
ve kararlar iiretebilmektedir. Ozetle, veri toplama, bir gériintii isleme sisteminin
isleyisinde kritik bir baslangic adimidir. Elde edilen verilerin kalitesi, miktar1 ve
cesitliligi; sistemin gorevlerini dogru sekilde yerine getirme, farkli ¢evresel kosullara
uyum saglama ve cesitli uygulamalar icin anlamli ¢iktilar {iretme yetkinligini

dogrudan etkilemektedir.

Gortintiiler farkli boyutlarda kirpilmis ve onceden egitilmis bir model ilizerinden
gecirilerek, hatali ve hatasiz olmak tizere iki ayr1 klasor altinda kayit altina alinmastir.
Her bir kirpilan parca, resim iizerindeki konum bilgisine gore adlandirilarak
kaydedilmistir. Hazirlanan bu veri seti, farkli yontemlerde kullanilmak {izere

depolanmakta ve saklanmaktadir. Klasor altinda yer alan goriintiiler, gozle yapilan
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siiflandirmalara gore yeniden diizenlenmistir. Siiflandirilmis hata tiirlerine iliskin

ornekler Sekil 2.8’de sunulmaktadir.

Sekil 2.8 : Hatali kumas veri seti (delik, hatasiz, igne kirilmasi, likra kagigi, may izi).



3. iISTATIKSEL VE SPEKTRAL HATA TANIMA ALGORITMALARI

3.1 Sobel, Prewitt, Roberts, Canny Kenar Algillama Algoritmalari

Gorlntiiyt tek renkliye (grayscale) doniistiirdiikten sonra, kenar bulma algoritmalari
arasinda en yaygin kullanilan yontemlerden biri Sobel kenar bulma filtresidir. Sekil
3.1°de gosterilen c¢ekirdek matrisler (konvoliisyon matrisleri), goriintiideki dikey,
yatay ve kosegen kenarlarin tespit edilmesi i¢in kullanilmaktadir. Sobel operatori,
gorlintli lizerindeki kenarlara karsilik gelen yliksek frekansli bolgeleri (keskin
kenarlar1) belirlemek amaciyla etkili bir sekilde uygulanmaktadir. Bu operator, 3x3
boyutunda bir konvoliisyon matrisinden olusmaktadir ve kenar belirleme islemlerinde

yaygin olarak tercih edilmektedir.

-1 0 | +1 +1 [ +2 | +1

-2 | 0| +2 0|0 ]| O

-1 0 | +1 -1 -2 | -1
Gx Gy

Sekil 3.1 : Sobel konvoliisyon matrisi.

Bu matrisler, yatay ve dikey olarak goriinen kenarlar1 ayr1 ayri ortaya ¢ikaracak sekilde
diizenlenmistir. Matrisler goriintiiler tizerine tekrar tekrar bagimsiz olarak
uygulanabilmektedir. Béylece kullanilan farkli operatorler igin her bir pikselin degeri

ayr1 ayr1 elde edilmektedir [9].

Bu durumda 0 derece yatay duran ¢izgileri, 90 derece ise dikey duran cizgileri
gosterecektir. Egik duran cizgilerde diger agilar1 olusturacaktir. Burada sifir derece
cizgide alt kisim siyahtan, Gist kisim beyaza dogru gecisi gostermektedir. O derecenin
bir benzeri olan yine yatay duran ¢izgi 180 derecede ise iist kisim siyah bdlgeden alt

kisim beyaz bolgeye dogru bir gegisi gosterecektir. Acilar saatin tersi yoniine gore
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Ol¢iilmektedir. Burada, Gx konvoliisyon matrisi tek basina kullanildiginda, yalnizca
yatay diizlemdeki renk degisimlerini algilayacagindan, ortaya ¢ikan cizgiler dikey
yonde goriilmektedir. Benzer sekilde, Gy konvoliisyon matrisi tek bagina
kullanildiginda yukaridan asagiya (6rnegin siyah-beyaz gecislerinde) renk gecislerini
algilar ve bu durumda ortaya ¢ikan cizgiler yatay olarak goriiniir. Goriintii lizerindeki
cizgilerin yalnizca yatay ya da dikey degil, dogal yonelimleriyle algilanabilmesi i¢in
Gx ve Gy konvoliisyon matrislerinin yukarida verilen formiile gore birlikte
kullanilmas1 gerekmektedir. Aym sekilde, daha Once belirtilen agiya bagl kenar
belirleme formiilii de benzer amaglarla kullanilabilmektedir. Bu yontem ile, resim
iizerinde belirli agilarda bulunan kenar ya da ¢izgilerin belirgin hale getirilmesi

mimkiin olmaktadir.

Iki matrisi ayn1 anda kullanmak i¢in ve matris iizerindeki noktalar1 asagidaki sekilde

temsil etmek i¢in hesaplama yapilirsa Sekil 3.2’deki matrisler elde edilmektedir.

Pi| P2| Ps -1 1 0 | +1 +1 | +2 | +1

Pa| Ps| Ps -2 0 | +2 00| O

P:| Ps| Ps -1 0 | +1 -1 1-2 |-1
Gx Gy

Sekil 3.2 : Sobel konvoliisyon matrisi hesaplanmasi.

Buradaki her bir ¢ekirdek matrisi ve daha sonra bu c¢ekirdek matris kullanilarak
pikselin sobel degeri yaklasik formiilii benzer sekilde kullanilarak hesaplanmaktadir:
|GX| = |_P1 + P3 - 2P4_ + 2P6 - P7 + Pgl

(3.1)
|Gyl = |P; + 2P, + P; — P, — 2P; — By

Prewitt algoritmasi, Sobel algoritmasina benzer sekilde calismakta olup, yalnizca
cekirdek matrislerinde kiiclik farkliliklar igermektedir. Bu ydntemde kullanilan
cekirdek matrisler agagida gosterildigi gibidir ve kenar tespiti sirasinda elde edilen
sonuglar, gorlintlinlin her bolgesinde ayni diizeyde olmayabilir. Sekil 3.3’te Prewitt

¢ekirdek matrisleri sunulmaktadir [10].
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-1 0 | +1 0| O 0
-1 0 | +1 -1 1-11-1
Gx Gy

Sekil 3.3 : Prewitt ¢cekirdek matrisleri.

Robert Cross algoritmasi, basit ve hizli bir kenar algilama yontemi olarak One
cikmaktadir. Sekil 3.4'te gosterilen iki boyutlu gecislerin hesaplanmasini saglayarak,
gri tonlamali bir goriintii tizerinde islem gergeklestirmekte ve keskin kenarlar1 belirgin
bir sekilde ortaya ¢ikarmaktadir. Bu algoritma, tespit ettigi kenarlar1 oldukga ince bir
sekilde gosterebilme oOzelligine sahiptir. Islem, 90 derece aciyla birbirine dik
konumlandirilmig 2x2 boyutundaki iki ¢ekirdek matris yardimiyla uygulanmaktadir.
Robert Cross algoritmasi, kullanim agisindan Sobel operatoriine benzemekle birlikte

daha kii¢iik bir ¢ekirdek kullanarak daha basit bir hesaplama sunmaktadir.

+1 0 0 +1 P P.

0 | -1 1] 0 P.| P.

Gx Gy

Sekil 3.4 : Robert Cross konvolisyon matrisleri.

Sobel algoritmasinda kullanilan konvoliisyon matrisleri, genellikle x ve y eksenlerine
gore hizalanmistir. Ancak, Robert Cross algoritmasinda matrislerin ydnleri,
goriintliniin 1zgarasina 45 derece ve 135 derece aciyla yerlestirilmistir. Bu nedenle,
kullanilan formiiller yine Gx ve Gy seklinde ifade edilmekle birlikte, bu yonlerin
1zgaraya gore egimli oldugu, yani 45 derece ve 135 derece agiyla durdugu kabul
edilmektedir. Bu farkli hizalama, Robert Cross algoritmasinin, goriintii tizerinde egik
kenarlarin algilanmasinda daha etkin olmasini saglamaktadir. Bu operator, yalnizca 4
piksel tizerinde islem yaptig1 icin, ¢ikis degerinin tam olarak hangi piksele karsihk

geldigi net olarak belirlenememektedir. Bu nedenle yalzinca yarim piksellik bir kayma
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miimkiin olabilmektedir. Uygulama sirasinda, referans piksel olarak sol tist kosedeki

ilk piksel esas alhinmistir.

Canny operatorii, kenar algilama stirecinde birden fazla asamadan olusan sofistike ve
etkili bir yontemdir. Bu yontemde ilk olarak, elde edilen goriintii Gauss filtresi ile
evrisim uygulanarak dizlestirilir ve boylece goruntiideki giiralta azaltihr. Daha
sonra, gorinti uzerinde ytksek birinci uzamsal tirevleri vurgulamak amaciyla,
Roberts Cross operatorii gibi basit bir iki boyutlu birinci tiirev operatori
uygulanmaktadir. Bu islem sonucunda, kenarlar gradyan biytiklik goriintiisiinde

belirgin gikintilar seklinde ortaya ¢ikmaktadir.

Algoritma, bu gikintilarin tepe noktalarint izleyerek kenarlar1 daha ince bir ¢izgi
halinde gostermek icin maksimal olmayan bastirma adi verilen bir islem
uygulamaktadir. Bu asamada, belirlenen esik degerinin tizerinde olmayan tim
pikseller sifira ayarlanmaktadir. izleme siireci, histerezis olarak bilinen bir yaklasim
ile iki esik degeri (T1 ve T2, burada T1 > T2) tarafindan kontrol edilmektedir. izleme,
yalnmizca T1'den yiiksek bir sirtta baslar ve bu noktadan itibaren, sirtin ytksekligi
T2'nin altina diisene kadar her iki yonde de devam ettirilir. Bu histerezis yaklasimi,
giarilti kaynakh kenarlarin bolinerek birden fazla kenar pargasina ayrilmasin

onlemeye yardimci olmaktadir.

Canny operatoriintin etkisi, tg¢ temel parametreye baghdir: Gauss cekirdeginin
genisligi ve tst-alt esik degerleri. Yumusatma asamasinda kullanmlan Gauss
cekirdeginin genisligi artinldiginda, algilayicinin giiriiltiye duyarlhihg: azahr, ancak
bu durum ince ayrintilarin bir kisminin kaybolmasina yol acabilmektedir. Ayrica,
Gauss genisligi arttikca algilanan kenarlardaki lokalizasyon hatalarinda da hafif bir

artis gozlemlenmektedir.

Genellikle, iyi sonuclar igin st izleme esigi oldukga yiiksek, alt esik ise oldukca
diistiik olarak ayarlanmahdir. Alt esigin yiiksek degerlere ayarlanmasi sonucunda
giiriiltiilii kenarlann kirilmasina neden olmaktadir. Ust esigin cok diisiik verilmesi

sonucu, ciktida goriinen yanhs kenar parcalarinin sayisin arttirmaktadir.

Temel Canny operatoriiyle ilgili bir sorun, gradyan biytklik gorintiisiinde ti¢ sirtin
bulustugu yerler olan Y seklindeki kavsaklardir. Bu tiir baglantilar, bir kenarin tam
olarak gorillemedigi ve kismen kapatildigi durumlarda olusabilmektedir. izleme

algoritmasi, bu cikintilardan ikisini tek bir ¢izgi parcasi olarak degerlendirebilir;
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tictincii kenar ise bu dogru parcasina yaklasan ancak tam olarak baglanmayan bir kenar

parcasi seklinde algilanabilir [11].

3.2 Kontur Algoritmasi

Literatiirde, kontur izleme amaciyla kullanilan bir¢ok farkli algoritma bulunmaktadir.
Bunlar arasinda en yaygin olanlar1 Kare izleme algoritmasi ve Moore-Komsu izleme
algoritmasidir. Bu yontemler, uygulanabilirlik acisindan oldukca kolaydir ve bu
nedenle herhangi bir nesnenin dis hatlarini izlemek amaciyla yaygin olarak tercih
edilmektedir. Ancak, bu algoritmalarin sahip oldugu bazi sinirlhiliklar, 6zellikle belirli
baglant: tiirlerine kars1 duyarsiz olmalar1 nedeniyle, genis bir model sinifinin ¢evresini

dogru sekilde izleyememelerine neden olmaktadir.

Kare Izleme ve Moore-Komsu algoritmalari, dzellikle kumas yiizeylerinde yer alan
delikleri yok sayma egilimindedir. Eger delik igceren bir desen goriintiisii analiz
ediliyorsa, bu algoritmalar yalnizca dis konturu takip eder ve i¢ bosluklar1 gormezden
gelmektedir. Bu durum baz1 uygulamalarda tolere edilebilir olsa da, karakter tanima
gibi daha hassas uygulamalarda, karakteri tanimlayan i¢ konturlarin da algilanmasi
gerekmektedir. Bu algoritma ile her bir delik belirlenmeli ve ardindan her deligin
konturu lizerinde ayr1 ayri kontur izleme algoritmalar1 uygulanarak genel kontur yapisi

tam olarak ¢ikarilmalidir [12].

3.2.1 Kare izleme algoritmasi

Kare izleme algoritmasinin temelinde oldukca basit bir fikir yatmaktadir. Bu
algoritma, ikili bir desenin dis hatlarini ¢ikarmaya yonelik gelistirilen ilk yontemlerden
biri olarak kabul edilmektedir. Algoritma, dijital bir model iizerinde ¢alisir; bu model,
siyah piksellerden olusan bir seklin, beyaz piksellerden olusan bir arka plan iizerinde
yer aldig1 bir 1zgaray1 temsil etmektedir. Siireg, bir siyah pikselin bulunup "baglangi¢"
pikseli olarak ilan edilmesiyle baglamaktadir. "Baslangic" pikselinin tespiti, birkag
farkli yontemle gergeklestirilebilir. Ornegin, 1zgaranim sol alt kdsesinden baslanarak
her piksel siitunu, alttan yukar1 dogru taranmaktadir. En soldaki siitundan baslayarak
saga dogru ilerlemekte ve siyah bir pikselle karsilagildiginda, bu piksel "baslangig"
pikseli olarak ilan etmektedir. Bu baslangi¢c noktasindan itibaren, algoritma deseni

izleyerek dis hatlar1 belirlemektedir.
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Baslangi¢ pikseli belirlendikten sonra, kontur izleme islemi siyah pikseller iizerinden
yiiriitiilmektedir. Algoritma, siyah bir piksele ulasildiginda sola; beyaz bir piksele
ulagildiginda ise her seferinde saga doniis gerceklestirerek islemi siirdiirmektedir.
Izleme siireci, baslangi¢ pikseline yeniden ulasildiginda tamamlanmaktadir. Bu

slirecte lizerinden gecilen siyah pikseller, desenin dis konturunu olusturmaktadir.

Kare izleme algoritmasinda, izleme yoniiniin dogru sekilde stirdiiriilmesi algoritmanin
basarimi agisindan kritik bir unsurdur. “Yon duygusu” olarak tanimlanan bu kavram,
her bir piksele hangi yonden girildiginin dikkate alinmasi ile yon degisimlerinin dogru
sekilde hesaplanmasini saglamaktadir. Yapilan her doniis, mevcut konuma ve giris
yoOniine gore belirlenmektedir. Bu nedenle, algoritmanin dogru calisabilmesi i¢in
mevcut yon bilgisinin siirekli olarak giincellenmesi ve sonraki adimlarin bu bilgiye

dayal1 olarak kesin bi¢imde hesaplanmasi gerekmektedir.

3.2.2 Moore-Neighbor takip algoritmasi

Bir pikselin Moore komsulugu, P noktasindaki, o pikselle bir kdse veya kenar1 bulunan
8 pikseli temsil etmektedir. Bu pikseller, asagidaki Resim 11'de gosterildigi tizere P1,
P2, P3, P4, P5, P6, P7 ve P8 olarak adlandirilmaktadir.

Sekil 3.5°de verilen Moore algoritmasi (8-komsu veya dolayli komsu olarak da

bilinmektedir) literatiirde sik¢a kullanilan 6nemli bir kavramdir.

F1 ] P2 | P53
PR P | P4
P7 | P6 | P5

Sekil 3.5 : Moore piksel kiimesi.

Bir dijital model, yani siyah piksellerden olusan bir nesne, beyaz piksellerden olugan
bir arka plan lizerinde 1zgara yapisinda tanimlandiginda, kontur izleme algoritmasinin
baslatilabilmesi i¢in Oncelikle baslangic pikselinin tespit edilmesi gerekmektedir.
Baslangic pikseli, cesitli yontemlerle belirlenebilir. Bu ¢alismada kullanilan yontem,
1zgaranin sol alt kdsesinden baglanarak, her slitunun alttan yukar1 dogru taranmasi ve

en soldaki siitundan saga dogru ilerlenerek ilk karsilasilan siyah pikselin baglangic
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pikseli olarak atanmasidir. Baslangi¢ pikseli belirlendikten sonra, modelin dig
konturunu izlemek amaciyla saat yoniinde izleme islemi gergeklestirilir. izleme yonii

bir kez belirlendikten sonra sabit kalmali, algoritmanin genelligi korunmalidir.

Izleme islemi sirasinda, her siyah piksele (P) ulasildiginda, algoritma bir dnceki
konumda bulunan beyaz piksele geri doner ve ardindan P pikselinin Moore komsulugu
saat yoniinde taranarak kontrol edilir. Komsuluk igerisinde tespit edilen ilk siyah
piksel, kontur izleme yolunun bir sonraki adimi olarak segilir. Bu islem, baslangi¢
pikseli ikinci kez ziyaret edilene kadar devam eder. Izleme siireci sonunda {izerinden

gecilen tiim siyah pikseller, ilgili nesnenin dis konturunu tanimlamaktadir [13].

3.3 Egrilik Algoritmasi

Egrilik algoritmasi, piksel alt1 ¢6ziliniirliikte dogru goriintii egriliklerini hesaplayan ve
gorsel algimiza uygun egrilik haritasinin bir gorsellestirmesini  saglamaktadir.
Egrilikler, bagimsiz yumusatildiktan sonra dogrudan bir goriintiiniin diiz ¢izgileri

tizerinde degerlendirilmektedir [14-16].

Egriliklerin gorsel algidaki rolii uzun siiredir tartisilmakta ve egrilikleri dogru bir
sekilde tahmin etmek igin ¢ok sayida girisimde bulunulmaktadir. Sekil 3.6'da
gosterilen hatali kumas resmi tizerinde, taslagi ¢izilen algoritmanin kapsamli tanimi

ve uygulanmasi hedeflenmektedir [17].

Egriligin gorsel algidaki rolii ilk olarak norolojik temellere dayanarak gorsel uyarinin
fazlasiyla gereksiz oldugunu ve “bilginin konturlar boyunca ve daha sonra yoniiniin
degistigi bir kontur iizerindeki noktalarda yogunlastigini savunan Attneave tarafindan
glindeme getirilmistir [18]. Hatali kumag resmi ve konturlara ayrilmak iizere Canny

filtresi uygulanmis hali Sekil 3.7°de goriilmektedir.

0

20 1

D1 R —

0 5 s 75 100 125 150 175

Sekil 3.6 : Hatali resim goriintiisii.
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Sekil 3.7 : Hatali resim Canny kenar metodu uygulanmis resmi.

Asada ve Brady, Attneave'in fikrini uygulayarak egrilik ilkel ¢izim kavramini ortaya
koymuslardir. Bu yaklasim, sekillerin ¢ok o6l¢ekli bir yorumuna dayanmaktadir:
Nesnelerin dis hatlari, egrilikte 6nemli degisiklik noktalari olan diigiimler araciligiyla
egri cizgilerle temsil edilmektedir. Bu diigiimler, Gauss'un birinci ve ikinci derece
tiirevleri kullanilarak belirlenmektedir. S6z konusu temsil, desteklenen dlgek uzay1
fikrini takip etmektedir ve egriligin dogru bir sekilde hesaplanabilmesi i¢in giderek

daha karmasik islemler gerektirmektedir.

Bu siirecte karsilasilan iki temel zorluk bulunmaktadir:

(1) Egriligin hesaplanmasi gereken konturlarin dogru bir sekilde ¢ikarilmast,
(i1) Konturlarin topolojik ve topografik 6zellikleri korunarak yumusatilmasi.

Ham goriintiiler lizerinde dogrudan egrilik hesaplamalari, sonlu 1zgaralarda kullanilan
fark yaklagimlarina dayandigi i¢in hala yeterince giivenilir degildir. Bu yontemler,
ortalama egrilik ile goriintii hareketini simiile etmek agisindan belirli bir verimlilige
sahip olsa da gergek egrilik haritasinin gorsellestirilmesi s6z konusu oldugunda
yetersiz kalmaktadir. Ayrica, ¢apraz cizgiler boyunca sahte salinimlar meydana
gelmektedir. Gortntii egrilikleri, diizlestirme sonrasi ¢ift dogrusal enterpolasyonla
hesaplanarak her ¢oziiniirliikte hassas gorsellestirme saglanabilmektedir. Ancak,
orijinal goriintilye veya gorlintli yumusatildiktan sonra uygulanan sonlu fark

semalariin tatmin edici sonuglar vermedigi gozlemlenmistir [19,20].

3.3.1 Ayrik egrilik algoritmasi

Ayrik egrilikleri hesaplamak i¢in daha onceki ¢ogu yaklagimlar sonlu fark semalar:
yaklasimlarina dayanmaktadir. Ancak bu yaklasimlar, grid degerlerine dayal

olduklar1 icin yatay ve dikey c¢izgiler boyunca sahte salimimlara yol agmaktadir.
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Asagida, dogrudan seviye cizgilerinde ayrik egrilikleri hesaplamak i¢in bir formiil
sunulmaktadir. Bu formiil kullanilarak gelistirilen algoritma 6ncesinde kenar algilama
ve kontur olusturma islemleri gerceklestirilir. Ardindan elde edilen konturlar ile ayrik

egrilik fonksiyonu ¢alistirilarak tespit yapilmaktadir.

Her bir seviye ¢izgisinin, sirali koseleri ile tanimlanan bir ¢okgen olarak saklandigini
ve strekli bir seviye ¢izgisinin ayriklastirilmasindan olugmaktadir. Kolaylik olmasi
icin, A'ya olan bagimlilig1 diisiiriilerek, genel olarak bir seviye ¢izgisini X = {P;(X;, ¥j)}
ile Po = Pn olarak gosterilmektedir. Herhangi bir P;j kosesinde, smirlandirilmis
yarigapin tersi olarak ayri bir egrilik «(P;j) hesaplanabilir. Daha kesin olarak, her j =0,
1, - - -, Ni¢in ardisik Ui¢ Pj-1, Pj, Pj+1 noktasi tarafindan belirlenen iiggeni goz oniinde
bulundurur, rj salinimli daire (osculating circle) yarigapini hesaplar ve (isaretli) ayrik
egriligi tamimlayabilir. Bir egri tizerinde alinan noktalar ile olusturulan bir 6rnek Sekil

3.8”de verilmektedir [14].

k(B) = +1/r (3.2)

Diizey ¢izgisinin, gorlintiiniin gradyani sol tarafta olacak sekilde yonlendirilmesi

gerekmektedir.

n = Dy/||Dyll (3.3)

A B

Sekil 3.8 : Goriintiiniin egimi sol tarafinda olacak sekilde, saat yoniinde
yonlendirilmis (kirmizi ok) diiz bir ¢izgi pargasi, sinirlanmis yarigapin tersi olarak,
seviye ¢izgisinin ayriklastirilmasi ve her bir tepe noktasinda ayrik egriligin
hesaplanmasi.

Pj noktasindaki ayrik egrilik su sekilde verilmektedir:
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—2sing;  —2det(P;P;_1P;Pj.q)

K(P) = = (3.4)
O = oyl ™ o TR Bl By
burada 6;£(P;P;_1,P;P;j.1) acisidir ve sag tarafin pay: terimi igerir.
Xj—1 —Xj  Xjy1 — Xj
det(P;P;_y, P;Pjy1) = det (Yj—1 Y Vjs1— yj) (3.5)

Ucgenin cevreleyen cemberinin merkezi C ve 0 =£(PjPj+1, P,C) olsun. C noktas iki

dik agiortay tizerinde oldugundan,

rjcos6 = ” Hl” (3.6)

COS(H + 6) —M = || ]+1|| ve r_ = ||P -1P; ||a11n1rsa her iki denklem

arasinda rj'y1 ortadan kaldirarak ve bir toplamin kosiniisiinii genisleterek, su sonuca

varilmaktadir:
(rycos0; — r_)cos8 = r,sinb;sinf (3.7)
Boylece;
r,.c0S60; —1_
tanf = ——2 = (3.8)
7,.5inb;
Elde edilir;
1 12+ 1.2 — 2ry1_cosb; P:P;
= /1 + tan?6 = VT - ” J _’“” (3.9)
|cos6| Ty |sm9] | o |szn6'j|

Kosiniis yasasini son esitlikle birlestirdigimiz takdirde,

R L |
|k(P)| 7/ 2|sm9| (3.10)

Onermenin son esitligi vektdr garpim 6zelliginden gelmektedir.

det(Pij_lePjH) = r+r_sin(9j) (3.11)
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Bu 6nermeler kullanilarak gelistirilen Ayrik egrilik fonksiyonu Sekil 3.6°daki hatali
kumas goriintiisii ve Canny kenar tespiti ile Sekil 3.7 elde edildikten sonra, kontur
algoritmasi kullanilarak her bir kenarlarin parga olarak elde edilmesi gerekmektedir.
Daha sonra elde edilen 5 nokta iizerindeki her bir kontur ayrik egrilik fonksiyonu i¢in
kullanilarak egrilik degerleri hesaplanmaktadir. Sekil 3.9’de kontur algoritmasinin

sonucunda elde edilen her bir par¢anin resimleri verilmistir.

Sekil 3.9 : Kontur uygulanmis hatali kumas resim parcalari.

Elde edilen konturlar sonucunda DiscreateCurvature fonksiyonunun hesapladigi

degerlerden elde edilen dis a1, yarigap grafigi Sekil 3.10°da gosterilmektedir.

;200 . °
175
5.0
125
10.0
75 -
5.0 .
L ] ]
25 LI ] anl
LN * M8 MRl & L
- M 9 a8 B 80 @ L ]
0.0 L ] L ] a8 B @ L
50 100 150 200 250 300 350
1

Sekil 3.10 : 0j, salimml1 daire (osculating circle) yarigap: grafigi.

39



Elde edilen konturlar sonucunda DiscreateCurvature fonksiyonunun hesapladigi

degerlerden elde edilen yaricap grafigi Sekil 3.11°de gosterilmektedir.

?'r 200 1 TR Cr (- ODOO: fO (OO O
_ 17.5
15.0 1
12.5 1

10.0

51e om - e @
50 wese .

25 [ e [
- OIENTCODOCCMI OO 0 0D 0000 60 O 0 00

OO 30 O D L1 L. ] L] L

00 weam & & LR L] -e L]
T T T T T

o 20 40 60 B0 100 120 140 160

n

Sekil 3.11 : Kontur iizerindeki noktalarin yarigap degerleri grafigi.

Elde edilen konturlar sonucunda DiscreateCurvature fonksiyonunun hesapladigi

degerlerden elde edilen dis ag1 (6;) grafigi Sekil 3.12’de gosterilmektedir.

g.

7 350 A
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100 A

Sekil 3.12 : Kontur iizerindeki noktalarin ac1 degerleri grafigi.

DiscreateCurvature fonksiyonu kontur dizileri girdisi ile ¢alisarak hesaplandigi her bir

Pj noktasi icin yarigap(rj), a1t degeri(0) ve dis ac1 (6j) degerleri hesaplamaktadir.

Cizelge 3.1 : Egrilik karmagsiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
50 102
Kusursuz 0422 0445 152
52 22
~ Kusurlu 0623 910 74
5 Toplam
3 102 124 226
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Egrilik algoritmast kullanilarak elde edilen karmagsiklik matrisi Cizelge 3.1°de

verilmektedir. Dogruluk orani %32 olarak elde edilmistir.

3.3.2 Modifiye edilmis ayrik egrilik algoritmasi

Standart egrilik algoritmasinda, egri boyunca ardisik 3 nokta segilmektedir. Ancak, bu
secim asir1 yarigap degerlerine neden olmaktadir. Bu nedenle, makul yaricap degerleri
elde etmek icin algoritmay1 egrinin geometrisini kontrol ederek degistirilmistir. Bu
giincellemeyi uygulayabilmek i¢in, konkav geometri (6rnegin, f*’(x)<0) veya konveks
geometri (0rnegin, °(x)>0) i¢in egri fonksiyonunun ikinci tlirevini incelenmesi

planlanmaktadir.

Bu algoritma pseudo kod olarak algoritma 1’de anlatilmistir.

Algoritma 1: Modifiye Edilmis Ayrik Egrilik Algoritmasi

Require: image (n x n) # nonempty
if Filter selection type then
filteredimage = filter(image)
end if
contours «— findContours(filteredimage) >Countourlarin ¢ikarilmasi
while N < len(counters) do
ClIList = DiscreateCurvature(counters)
return(rj,theta,thetaj,kpj) > Yaricap ve a¢1 degerleri
end while
while m < CIList do
if thetajis < 180 then > Konveks konkav kontrolii
dircurv =1
else if thetajis > 180 then
dircurv =2
else if thetajis = 180 then
dircurv =3
end if
dircurv is changed append values to the ClListedge
end while
while m < ClIListedge do
if ClListedge is between x1 <rj <yl, al < thetaj < b1typel then
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Algoritma 1: Modifiye Edilmis Ayrik Egrilik Algoritmasi

defect type is hole or oil > Dairesel hata tespiti
end if
if ClListedge is between x2 <rj <y2, a2 < thetaj < b2 then
defect type is vertical or horizontal > Yatay dikey hata tespiti
end if
end while

Yeni 3 nokta secimi, Sekil 3.13'de gosterildigi gibi kapsama alanint maksimize ederek
gergeklestirilir. Boylece, egrilikler daha dogru bir sekilde hesaplanir. Ayrica, daha

hizli islem i¢in toplam nokta sayis1 6nemli 6l¢iide azaltilmistir.

Sekil 3.13 : (A) Ornek egri, (B) standart egrilik, (C) optimize edilmis egrilik, (D)
verimli egrilik.
3 nokta yapisi kullanilarak ayrik egrilik algoritmasi ile ag1 ve yaricap degerlerinin
hesaplanmasin1 gostermektedir. Sekil 3.13A, hesaplamalarin degerlendirilecegi bir
ornek egriyi gostermektedir. Sekil 3.13B, noktalarin ardisik secildigi yaygin egriligi
gostermektedir. Noktalar ¢ok yakin oldugunda, yiliksek yaricap degerine ve yanlis ag1
hesaplamalarina neden olur. Sekil 3.13C ve 3.13D'de, daha dogru ve optimal sonuglar

elde etmek i¢in farkli yontemler sunulmaktadir.

Cizelge 3.2 : Modifiye edilmis egrilik karmagiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
Kusursuz (ylo(i% 0/3;'9 152
ko 6 68
Q
g Kusurlu 03 0430 74
O Toplam 114 112 226
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Sonuglar, Onerilen yeni yontemin egrilik algoritmasi ile daha dogru sonuglar elde
edilebilecegini gostermektedir ve bu sonuglar Cizelge 3.2'deki karisiklik matrisinde
gosterilmistir. Dogruluk orani1 %78 olarak elde edilmistir. Bu sekilde, kusur tespiti igin
kullanilabilecegi belirtilmektedir. Bu nedenle, bu yaklasimi gelistirmek icin

calismalara devam edilecektir.
3.4 Spektral Yontemler

3.4.1 Gabor doniisiimii

Gabor doéniisiimii, kisa siireli Fourier doniisiimiiniin 6zel bir halidir. Zamanla degisen
bir sinyalin yerel boliimlerinin siniizoidal frekansini ve faz igerigini belirlemek i¢in
kullanilmaktadir. Doniistiiriilecek fonksiyon 6nce bir pencere fonksiyonu olarak kabul
edilebilecek bir Gauss fonksiyonu ile ¢arpilmakta ve elde edilen fonksiyon daha sonra
zaman-frekans analizini tiiretmek icin bir Fourier dontisimi ile donistiirilmektedir

[21-22].

Pencere islevi, analiz edilen zamana yakin sinyalin daha yiiksek agirli§a sahip olacagi

anlamina gelir. Bir x(t) sinyalinin Gabor doniisiimii su formiille tanimlanmaktadir:

G() = f(t,w) (3.15)

_ f f(0)e Wig(t — T)dr (3.16)

Gabor filtreleri, bilgisayarla gérme ve dijital goriintii isleme yoOntemleri
karsilastirilmast sonucu farkli dogruluk oranlari arasinda degisen bu yontemlerden en
iyi sonug veren yontemlerden oldugu belirtilmistir. Ancak bircok hata iceren kumas

goriintiilerinde Gabor filtreleri yaklagimi da yiiksek dogruluk oranina sahip yontem

oldugu ifade edilmektedir [23,24,25].

Asagidaki g() fonksiyonu, filtre igerisinde kullanilacak Gabor ¢ekirdegi olusturmasini
saglamaktadir. Bu denklemde, A siniizoidal faktoriin dalga boyunu temsil eder, 0
normalin bir Gabor islevinin paralel seritlerine yonelimini temsil eder, iy faz ofseti, o
Gauss zarfinin standart sapmasidir ve y uzamsal en-boy oranmidir ve Gabor

fonksiyonunun desteginin eliptikligini belirtmektedir [26,27].
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(x,V;2,0 ) = XHvyn (2n
gX;Y; ) ;LP;G;Y —eXp 20-2 eXp 1 T[}\ ll] (317)

Bu algoritma pseudo kod olarak algoritma 2’de anlatilmistir.

Algoritma 2: Gabor Déniisiimii Algoritmasi

Require: image (n x n) # nonempty
kernel « getGaborKernel ((ksize, ksize), o, 0, A, vy, 9)

if Filter selection type then
filteredimage = f ilter(image)
end if
Gaborimage < filter2D (image, kernel) > Gabor Déntisiimii
while (n % n) < GaborTransformImage () do

Sum the energy density of all pixels. > Enerji yogunlugu hesabi
density

end while
if Energy density is > Threshold Energy then
Image is defected

end if

A: Kosiniis carpaninin dalga boyunu belirleyen katsayidir. Katsaymin 1 olmasi
durumunda kosiniis ifadesi siirekli 1 olacagindan (cos(2.pi.x') =1) katsay1 2 veya daha

biiylik bir tamsay1 se¢ilmelidir.

0: Teta dogrudan formiil i¢erisinde goriinmese de Gabor filtresinin aslinda en 6nemli
degiskenlerinden biridir. Bu degisken x' ve y' degerlerinin hesaplanmasinda kullanilir
ve olusturulmak istenen Gabor g¢ekirdeginin yonelim agisidir. x' ve y' degiskenleri

verilen bir teta degeri i¢in asagidaki formiil ile hesaplanmaktadir.

[;] - [—Cgfn((ee)) iéﬁgg] [ﬂ (3.18)

¢: Fi agis1 olusturulacak ¢ekirdek matrisinin faz acisidir. Bu deger degistirilerek filtre

x ekseninde otelenmektedir.
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o: Sigma degeri Gaussian fonksiyonun standart sapmasini belirleyen katsayidir. Bu
parametre Gaussian fonksiyonun agikligini belirlediginden bu degerin kiigiik se¢ilmesi

ile Gabor dalgaciklar1 bir birlerine yaklasacaktir.

v: Bu deger de verilen standart sapma degerinin y' icin belirlenmesinin saglamaktadir.
Bu degerin 1 olmasi durumunda olusacak cekirdek matris x ve y icin esit standart
sapmaya sahip olduklarindan esit uzunlukta olacakken, farkli bir oran se¢ildiginde

¢ekirdek matris dikdortgene benzer bir sekilde olusacaktir.

X, y: Bu iki deger olusturulacak 2 boyutlu c¢ekirdek matrisin koordinatlarini temsil
etmektedir. NxN biiyiikliikte bir ¢ekirdek matris i¢in x ve y degerleri [-(N-1)/2,(N-
1)/2] araliginda gezilerek ¢ekirdek matris hesaplanmaktadir [28,29].

Sekil 3.14, Sekil 3.15, Sekil 3.16 ve Sekil 3.17°de ham kumas goriintiisii ve gabor

filtresi sonucu verilmektedir.

Sekil 3.14 : Hatali kumas ve gabor filtresi uygulanmis goriintiisii (1).

Sekil 3.15 : Hatali kumas ve gabor filtresi uygulanmig goriintiisii (2).
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Sekil 3.16 : Hatali kumas ve gabor filtresi uygulanmis goriintiisii (3).

Sekil 3.17 : Hatali kumas ve gabor filtresi uygulanmis goriintiisii (4).

Python {izerinde istatistiksel ve spektral yontemlerin test edilebilmesi amaciyla bir test
arayiizli gelistirilmistir. Bu arayiiz, farkli resimler iizerinde fonksiyon parametrelerinin
kolayca degistirilmesine olanak taniyarak, kullanicilarin ¢esitli analiz senaryolarini
hizl1 bir sekilde test etmesini saglamaktadir. Ayni1 zamanda, farkli kumas 6rneklerinin
incelenmesi ve ¢esitli dokular iizerindeki etkilerin karsilagtirmali olarak
degerlendirilmesine imkan tanimaktadir. Boylece, yontemlerin farkli kumas tiirlerine
adaptasyonu ve performanslarinin karsilastirilmasi kolaylagsmaktadir. Sekil 3.18 ve
3.19'da bu arayiiziin kullaniciya sundugu test ortami ve 6rnek kullanim senaryolari

gosterilmektedir.
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w1 image = o X WS TrackBar = o X

lamda: 73 '

Select...ge: 0 '
FilterType: 0 '
Select...ch: 0 '
Show_SS:0 |y
CannylLow: 0 '

CannyHigh: 0 '

Sekil 3.18 : Kumas hata test arayiizii (1).

[ image - [m} X ! TrackBar - a X
Gabor ksize: 18 []

theta: 48 '

lamda: 37 '

Select...ge: 10 '
FilterType: 1 .
Select...ch: 0 [ ]
Show_S5:0

CannyLow: 31 '

CannyHigh: 233 '

Sekil 3.19 : Kumas hata test arayiizii (2).

Gabor yontemi ile elde edilen sonuglar ve karmasiklik matrisi Cizelge 3.3’de

verilmistir. Dogruluk orani %90 olarak elde edilmistir.

Cizelge 3.3 : Gabor doniistiimii karmagiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
132 29 152
Kusursuz 0658 %9
A
% Kusurlu (Vil O/Z 32 “
O Toplam 133 93 226
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3.4.2 Curvelet doniisiimii

Candes ve Donoho tarafindan tanitilan Curvelet Donilisiimi, ozellikle goriinti
verilerindeki anizotropik Ozellikler ve egrisel tekillikler gibi zorluklarin iistesinden
gelmede Wavelet Doniisiimiine kiyasla onemli basari saglamaktadir. Wavelet
Dontistimii, noktasal tekillikleri yakalamada oldukga etkiliyken, egrisel 6zellikleri ve
geometrileri temsil etmede zorlanmaktadir [30, 31]. Bu sinirlama, wavelet'lerin
izotropik Ol¢eklendirme dogasindan kaynaklanmaktadir ve dogal goriintiilerin

geometrisi ile uyumlu olmamaktadir.

Curvelet Doniisiimii ise, anizotropik dl¢eklendirme ve yon hassasiyeti kullanarak
kenarlar, konturlar ve diger geometrik olarak karmasik yapilar icin ideal bir analiz
saglamaktadir [32]. Doniisiim, temel fonksiyonlarini egrisel tekilliklere hizalayarak bu
tir ozelliklerin seyrek ve verimli bir temsilini sunmaktadir. Bu 6zellik, goriintii
giiriiltiisiiniin giderilmesi, kenar algilama, doku béliitleme ve goriintii sikistirma gibi
saglam goriintii analizi gerektiren uygulamalarda Curvelet Doniisiimiinii 6nemli bir

arag haline getirmektedir [33].

Curvelet Doniistimiiniin temel ilkesi, bir goriintiiyii belirli geometrik 6zellikleri birden
fazla 6l¢ek ve yonde temsil eden bir dizi katsayiya ayirabilmesinden gelmektedir. Bu
ayristirma siireci, Curvelet temel fonksiyonlarinin goriintiiniin geometrik yapisina gore
uzatilmig ve yonlendirilmis olmasini saglayan anizotropik 6l¢eklendirme yontemiyle
gergeklestirilir.  Anizotropik Olgekleme yasast "genislik ~ uzunluk®"' olarak
tanimlanmakta olup, Curvelet Doniislimiiniin uzatilmis yapilara dogal olarak uyum
saglamasini miimkiin kilmaktadir. Bu 6zellik, 6zellikle yumusak egriler veya uzatilmis
kenarlar1 igeren senaryolarda, geleneksel doniisiim tekniklerine kiyasla iistiin

performans sergilemesini saglamaktadir [34, 35].

3.4.2.1 Matematiksel temeller

Curvelet, doniisiimi, yiiksek anizotropik 6zellige sahip 6zel bir iki boyutlu dalgacik
doniisiimiidiir. Diger yerellestirilmis dalgacik dontisiimleri gibi, ¢cok olcekli analiz,
zaman-frekans siirlamasi ve yonsel sinirlama saglamaktadir. Ancak, klasik dalgacik
doniisiimiinden farkli olarak, Curvelet doniisiimii daha hassas bir agisal ayristirma
sunarak Ozellikle egri kenarlar1 ve dogrusal olmayan yapilar1 daha etkili bir sekilde

temsil edebilmektedir.

48



Sekil 3.20, Curvelet doniisiimiiniin bu 6nemli 6zelliklerinden birini gorsel olarak
ortaya koymaktadir. Bu doniisiim, geleneksel dalgacik doniisiimlerine kiyasla
kenarlar1 daha seyrek bir sekilde temsil etmekte ve bdylece yiiksek dogrulukla kenar

tespiti ve yap1 analizi gergeklestirebilmektedir.

(a) (b)

Sekil 3.20 : . a) Dalgacik Dontisiimii b) Curvelet Doniisiimiinde kenarlarin temsili.

Uzayda bir Curvelet, 6l¢ek (j), konum (b) ve yon (0) bilesenlerine gore su sekilde ifade

edilir:

W pe(x) = 2_T3j‘l‘ (D,—Rgl(x - b)) (3.19)

(27 0) -1 _ (cos® sind
D]_<0 27072 Ro _(—sine cose) (3.20)

Matematiksel olarak Ayrik Curvelet Doniisiimii, f(x) fonksiyonunun Curvelet
katsayilarina ayristirilmasi olarak tanimlanir. Curvelet doniisiimii asagidaki sekilde

hesaplanmaktadir:

c(,Lk) = (f(x), ®{j, 1,6} ) (3.21)

Burada:
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j @ Curvelet'in 6l¢egini,
] : yonelim (veya aciy1),
k : uzamsal konumu,

¢j,1k: Curvelet baz fonksiyonu.
Bu ayristirma, giris fonksiyonunu ¢oklu oOlgekli ve coklu yonlii bilesenlere

ayirmaktadir. Her bilesen, belirli bir 6lcek ve ydnde fonksiyonun geometrik

ozelliklerine karsilik gelmektedir [33,36].

Curvelet doniigiimii, enerji korunumu ilkesine uyar:

2
167 = ) ey (3.22)
jLk

Bu, doniistimiin kayipsiz oldugunu gostermektedir [37,38].

3.4.2.2 Anizotropik dl¢eklendirme

Curvelet Doniisiimiiniin ayirt edici 6zelliklerinden biri, anizotropik ol¢eklendirme
kullanmasidir. Wavelet'lerde oldugu gibi tiim ydnleri esit sekilde ele alan izotropik
Olceklendirme yerine, Curvelet Doniisiimii temel fonksiyonlar1 anizotropik bir sekilde

Olgeklendirmektedir:

Width ~ Length? (3.23)

Bu olgeklendirme, Curvelet elemanlarinin goriintiideki egrisel veya uzatilmis
ozelliklerle hizalanmasini saglamaktadir. Bu sayede doniisiim, bu tiir 6zellikleri
izotropik doniisiimlere kiyasla daha seyrek ve dogru bir sekilde temsil edebilmektedir
[39,40].

3.4.2.3 Curvelet doniisiimiiniin uygulamalari

Wavelet'lerin izotropik ve nokta benzeri tekillikler icin ideal olmasina karsin,
Curvelet'ler anizotropiktir ve ¢izgi ile egri tekilliklerini analiz etmek i¢in daha uygun
olmaktadir. Bu 6zellik, Curvelet Doniisimiinii, hata tespiti ve 6zellik ¢ikarimi gibi
uygulamalar i¢in O6zellikle degerli kilmaktadir [41, 42]. Bu c¢alismada Curvelet
Doéniistimii, Uniform Discrete Curvelet Transform (UDCT) yontemi kullanilarak
uygulanmistir. UDCT, Curvelet katsayilarini verimli bir sekilde hesaplamakta ve

goriintliniin ¢ok Olcekli, ok yonlii bir analizini miimkiin kilmaktadir. Her dlgek, ince
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ayrintilardan kaba yapilara kadar belirli bir boyuttaki 6zellikleri yakalarken, yon
bantlar1 belirli yonelimlere kars1 hassasiyeti artirmaktadir. Bu ayristirma, goriintiiniin
geometrik yapisinin kapsamli bir sekilde analiz edilmesini saglamaktadir [43].

Curvelet doniisiimii pseudo kod olarak algoritma 3’de anlatilmistir.

Algoritma 3: Curvelet Déniisiimii Algoritmasi

Require: image (n x n) # nonempty
# Curvelet doniisiimiinii uygula

apply_curvelet_transform(image, nscales, nbands_per_direction)

return transform, coefficients > Curvelet Katsayilari
# Goriintliyii yeniden olustur

reconstructed_image(transform, coefficients) > Yapilandirilmis Goriintii
# Yeniden olusturma farkini analiz et

diff=analyze_reconstruction(image, reconstructed_image) > Fark analizi
# Kusurlar belirginlestir ve isaretle

defects = highlight_defects(image, diff, threshold)

Curvelet doniisiimiinde kritik bir parametre, goriintiinlin analiz edildigi dlgek veya
¢cOziinlirlik seviyelerinin sayisini belirleyen nscales parametresidir. Bu g¢alismada
nscales = 5 olarak se¢ilmis olup, bu deger, goriintiiniin bes farkli ¢oziiniirliik seviyesine
boliindiigiinii ifade etmektedir. Bu dlgeklendirme, doniisiimiin hem kii¢iik kusurlar
gibi ince detaylar1 hem de daha biiyiik diizensizlikler veya desenler gibi genis olcekli

yapilar1 yakalayabilmesini saglamaktadir.

Diger 6nemli bir parametre ise, her bir dl¢ek icerisinde yer alan yon bantlarinin sayisini
belirleyen yon basina bant sayisidir. Curvelet doniisiimii dogasi geregi yonelimlidir ve
bu parametre, yon analizi hassasiyetini kontrol etmektedir. Bu ¢alismada nbands per
direction = 32 olarak belirlenmis olup, bu se¢im yiiksek yon hassasiyeti saglamaktadir.
Bu ayar, farkli yonlerdeki oOzelliklerin hassas tespitini saglayarak Curvelet

doniistimiinii karmagik yapilar1 analiz etmede etkili kilmaktadir.

Asagida, Curvelet doniligiimiiniin  uygulandigi goriintiilerin  analiz  sonuglar1

sunulmaktadir. Sekil 3.21'de sirasiyla orijinal goriintli, fark haritas1 ve islenmis
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goriintiiler gosterilmektedir. Bu gorseller, doniisiimiin 6l¢cek ve yon bilesenleriyle

kusur tespitine katkisini gdstermektedir.

Sekil 3.21 : Orijinal goriintii, fark haritasi ve islenmis goriintiiler.

Curvelet doniigiimii, transform.forward(image) yontemi ile gerceklestirilmektedir. Bu
yontem, goriintiiyii Curvelet temsiline doniistirmektedir. Daha sonra, transform
backward(coefficients) yontemi kullanilarak, Curvelet katsayilariyla goriintii tekrar

olusturmaktadir. Bu yeniden olusturulan goriintli, yalnizca Curvelet katsayilari



tarafindan yakalanan bilgileri icermekte ve boylece giiriiltii ve ilgisiz ayritilar etkili

bir sekilde filtrelenmektedir [44-46].

3.4.2.4 Curvelet doniisiimiiniin uygulamalarinda iyilestirmeler

Curvelet dontigiimii, 6zellikle coklu 6lgek ve yon duyarliligi sayesinde parazitleri
azaltmada etkili bir yontemdir. Goriintii lizerindeki parazitler genellikle yiiksek
frekansli bilesenler olarak yer alirken, Curvelet doniisiimii bu bilesenleri farkli
Olceklere ve yonlere ayirmaktadir. Parazitleri filtrelemek igin yiiksek frekansh
katsayilar esik degerine gore sifirlanarak veya baskilanarak islenmektedir. Boylece,
diisiik frekansh bilesenlerde yer alan asil yapisal 6zellikler korunurken, parazit etkisi
onemli Olgiide azaltilmaktadir. Sonug olarak, yeniden insa edilen goriintii hem daha
net hem de parazitlerden arindirilmis bir yapiya sahip olur ve bu da 6zellikle dokusal

analiz veya hata tespiti gibi uygulamalar i¢in biiyilik avantaj saglamaktadir.

Asagida, Sekil 3.22, Sekil 3.23, Sekil 3.24 ve Sekil 3.25’de Curvelet filtreleme islemi

uygulanmamis ve parazitleri hala iceren farkl tiplerde goriintiiler bulunmaktadir.

Sekil 3.22 : Orijinal goriinti, filtresiz fark haritasi ve fark isaretlenmis goriintii.
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Sekil 3.23 : Orijinal goriinti, filtresiz fark haritasi ve fark isaretlenmis goriintii.

Sekil 3.24 : Orijinal goriinti, filtresiz fark haritasi ve fark isaretlenmis goriintii.
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Sekil 3.25 : Orijinal goriinti, filtresiz fark haritasi ve fark isaretlenmis goriintii.

Asagida, Sekil 3.26, Sekil 3.27, Sekil 3.28 ve Sekil 3.29’de Curvelet filtreleme islemi

uygulanmig ve parazitlerden biiyiik 6l¢iide arindirilmis goriintiiler bulunmaktadir.

Sekil 3.26 : Orijinal goriinti, filtreli fark haritasi ve fark isaretlenmis goriintii.

Sekil 3.27 : Orijinal goriinti, filtreli fark haritasi ve fark isaretlenmis goriintii.

) )

Sekil 3.28 : Orijinal goriinti, filtreli fark haritasi ve fark isaretlenmis goriintii.
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Sekil 3.29 : Orijinal goriinti, filtreli fark haritas: ve fark isaretlenmis goriintii.
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Curvelet doniigiimiiniin uygulanmasi sonrasi elde edilen karmasiklik matrisi ise

Cizelge 3.4’de verilmistir. Dogruluk orani %80 olarak elde edilmistir.

Cizelge 3.4 : Curvelet doniistimii Karmasiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
Kusursuz 0/102524 0/§ g 4 152
! 13 61
Q
1 Kusurlu %6 %426 74
O Toplam 135 91 226

Bu uygulamada kullanilan parametreler (nscales=5 ve nbands per direction=32),
hesaplama verimliligi ve 0zellik hassasiyeti arasinda bir denge saglamaktadir. Bu
kombinasyon hem ince hatalar1 hem de daha biiyik, daha yapilandirilmis

diizensizlikleri tespit ederek goriintiiniin kapsamli bir analizini miimkiin kilmaktadar.

3.4.3 Hough doniisiimii

Hough Doniisiimii, Paul Hough tarafindan 1962 yilinda tanitilan, parametrik sekilleri
(cizgiler, daireler ve elipsler gibi) goriintiilerde algilamak i¢in tasarlanmis temel bir
ozellik c¢ikarim teknigidir. Geleneksel kenar algilama yontemleri yalnizca piksel
diizeyindeki yogunluk gradyanlarina dayanirken, Hough Doniisiimii kenar noktalarini
goriintii uzaymndan daha yiiksek boyutlu bir parametre uzayina esleyerek
caligmaktadir. Bu esleme, yontemin giiriiltiilii veri, eksik sekiller veya kismi ortiisme
gibi zorlu kosullarda bile sekilleri tanimlamasina olanak tanimaktadir. Bu dayaniklilik,
Hough Déniistimiinii endiistriyel denetim, medikal goriintiileme, bilgisayarla gorii ve

otonom navigasyon gibi birgok alanda 6nemli bir ara¢ haline getirmistir [47-49].

Hough Doniisiimiiniin giicii, parametrik bir denklemin tanimladig: tiim olas1 sekilleri
sistematik olarak kesfetme yeteneginde yatmaktadir. Ornegin, bir ¢izgi algilama
durumunda, Kartezyen koordinatlardaki y=mx+by ¢izgi denklemi, su polar forma

doniistiiriilmektedir:

p=xcosB+ysind (3.24)
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Bu doniisiim, sonsuz egimler ile ilgili sorunlar1 ¢cézmekte ve ¢izgi algilama i¢in daha
kararli bir temsil saglamaktadir. Goriintii uzayindaki her bir kenar noktasi, parametre
uzayinda bir siniizoidal egriye atanmakta ve bu egrilerin kesisimleri tespit edilen
cizginin parametrelerine karsilik gelmektedir. Bu prensip, daireler ((x —a)? +
(y —b)? =1?) ve elipsler gibi diger geometrilere, parametre uzaymm boyutunu

artirarak genisletilebilmektedir [50].

Parametre uzayinin ayrik bir temsili olan biriktirici dizi (accumulator array), belirli
parametrelere sahip sekillerin varligim1 gosteren tepe noktalarini igermektedir. Bu
biriktirme mekanizmasi, Hough Doniisiimiiniin giiriiltii veya sekil par¢alanmasi gibi
durumlarda bile dayanikli bir sekilde caligmasin1 saglamaktadir. Bu 6zellik, 6zellikle
tekstil kusur tespiti ve kalite kontroliinde uyarlanabilirligini ortaya koymaktadir [51].
3.4.3.1 Matematiksel temeller

Cizgi algilama

Kartezyen koordinatlarda bir ¢izgi su denklemle ifade edilmektedir:

y =mx +b (3.25)

Ancak, sonsuz egim degerleri gibi sorunlarla basa ¢ikmak i¢in bu denklem polar

koordinatlara su sekilde doniistiiriilmektedir:

p=xcosB+ysind (3.26)

Burada:
p, orjjinden ¢izgiye olan dik mesafeyi,
0, X-ekseni ile ¢izgiye dik olan dogrunun arasindaki agiy1 ifade etmektedir.

Goriintiideki her bir kenar pikseli (x,y), parametre uzayinda (p, 0) bir siniizoidal
egriye katkida bulunmaktadir. Bu egrilerin kesigsimleri, birden ¢ok kenar pikselinin
kolektif kanitim1 temsil ettii icin tespit edilen ¢izginin parametrelerine karsilik

gelmektedir [52].
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Biriktirici dizi

Biriktirici dizi, parametre uzayinin ayrik bir temsilidir. Kenar algilanmis goriintiideki
her piksel, lizerinden gegen tiim olasi ¢izgiler i¢in biriktirici dizinin ilgili hiicrelerini
arttirmaktadir. Biriktirici dizideki tepe noktalari, goriintiideki en olasi ¢izgilerin
parametrelerini (p,0) temsil etmektedir. Bu oylama mekanizmasi, birden fazla
pikselden elde edilen birlesik kanitlara dayandigi i¢in, giiriiltii ve eksik veriler

karsisinda yiiksek diizeyde dayaniklilik saglamaktadir [53, 54].
Daire algilama

Bilinen bir yarigapa r ve bilinmeyen bir merkez (a, b) noktasina sahip bir daire su

denklemle ifade edilmektedir:

(x—a)+(y—-»b)?=r? (3.27)

Merkezi (a, b) parametrelestirerek, her kenar pikseli belirli bir r i¢in (a, b) uzayindaki
biriktirici diziye oy katkisinda bulunmaktadir. Bu ii¢ boyutlu parametre uzayindaki
(a,b,r) tepe noktalari, tespit edilen dairelerin parametrelerini gostermektedir. Bu
yaklasim, parametre uzaymin boyutunu genisleterek degisen yaricapli daireleri

islemek i¢in de genellestirilebilmektedir [55].

3.4.3.2 Hough doniisiimiiniin kumas kusur tespitindeki uygulamalari

Hough Doéniisiimii, giriiltili ve pargalanmis kenar verilerini bir araya getirme
yetenegi sayesinde, tekstil kusur tespitinde kullanilabilecek bir ara¢ haline gelmistir

ve tekstil liretimindeki kalite kontrol siireclerini iyilestirme potansiyeli bulunmaktadir.

Bu ¢alismada, sonsuz ¢izgiler yerine ¢izgi segmentlerini algilamak i¢in standart Hough
Déniigiimiiniin  bir uzantis1 olan HoughLinesP ydntemi kullanilmistir. Onemli

parametreler sunlardir:

p: Piksel cinsinden parametre uzayinin ¢oziiniirligi,

0: Aci1 ¢oziiniirligii (radyan cinsinden),

threshold: Bir ¢izginin algilanmasi i¢in gereken minimum oy sayis,

minLineLength: Cizgi segmentinin gecerli sayilmast i¢in gereken minimum uzunluk

(piksel cinsinden),

57



maxLineGap: Cizgi segmentlerini tek bir ¢izgi olarak kabul etmek i¢in izin verilen

maksimum bosluk.

Bu calismada kullanilan parametreler rtho=1, theta=n/180 (1 derece ¢oOziiniirliik),
threshold=5, minLineLength=2 piksel ve maxLineGap=10 olarak ayarlanmistir.

Hough doniisiimii algoritmasi pseudo kod olarak algoritma 4’de anlatilmistir.

Kenar algilama islemi Canny algoritmasi kullanilarak gergeklestirilmis ve ardindan
Hough Doniisiimii uygulanarak dogrusal o6zellikler belirlenmistir. Bu 6zellikler,
orijinal gorilintii lizerine mavi c¢izgilerle isaretlenmis olarak gorsellestirilmistir. Bu
yaklagim, dogrusal kusurlar1 etkili bir sekilde vurgulayarak, yapilandirilmis

diizensizlikleri algilamada yontemin dayanikliligim ortaya koymaktadir [56,57].

Sekil 3.30, Hough Doniistimii kullanilarak kusur tespit siirecinin adim adim
gorsellestirmesini sunmaktadir. Ik goriintii, analiz edilen belirli bir alan1 vurgulayan
orijinal goriintiiden kirpilmis ilgi bolgesini vermektedir. Ikinci grafik, Canny

algoritmasi kullanilarak gergeklestirilen kenar tespiti sonucunu gostermektedir.

Algoritma 4: Hough Déniisiimii Algoritmasi

Require: image (n x n) # nonempty
if Filter selection type then

filteredimage = filter(image)
end if
edges« Canny(image, treasholdl, treashold2) > Canny kenar alg.

lines,holes = HoughLinesP(edges, rho, theta, threshold, minLineLength,

maxLineGap) > Hough doniistimii
# Kusurlar1 belirginlestir ve igaretle
defects = highlight_defects(image, threshold)
if Energy density is > Threshold Energy then
Image is defected

end if
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Bu goriintiide kenarlar, siyah bir arka plan iizerinde parlak beyaz cizgiler olarak
vurgulanmig olup, 6nemli yogunluk degisikliklerini temsil etmektedir. Bu adim,
goriintii verilerini sadelestirerek temel yapisal ozellikleri izole etmekte ve Hough

Déniistimii i¢in uygun giris verisini hazirlamaktadir.
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Sekil 3.30 : Orijinal goriintii, kenar filtresi uygulanmis goriintii, ¢ikis goriintiisii.

Uciincii goriintii, Hough Doniisiimii ile tanimlanan dogrusal &zelliklerin orijinal

goriintiiniin lizerine mavi ¢izgilerle isaretlendigi tespit edilen kusurlar1 gostermektedir.
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Hough Doéniisiimiiniin uygulanmasinin ardindan elde edilen karisiklik matrisi Cizelge

3.5'de sunulmaktadir. Dogruluk oran1 %87 olarak elde edilmistir.

Cizelge 3.5 : Hough doniistimii karmagiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
Kusursuz ()i)?é?’g 0/1098 152
5 12 62
]
1 Kusurlu %5 0428 74
O Toplam 145 81 226
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4. OGRENME TABANLI HATA TANIMA ALGORITMALARI

Evrisimli sinir aglar1 (ESA), yapay sinir aglarinin 6zellikle goriintii siniflandirma ve
bilgisayarli gorii gibi problemlerde kullanilan 6zel bir arastirma alanidir. Bir evrisimli
Sekil 4.1°de de goriilecegi lizere sinir ag1 evrigim, ortaklama, tam baglant1 gibi

katmanlardan olusmaktadir [58].

Tam baglant:

Evrisim O ¢
o Ortaklama  __.---"~
Gird R

\ VAN
Y

Oznitelik Cikarimi Siniflandirma

Sekil 4.1 : Basit bir ESA mimarisi.
4.1 Evrisim Katmani

Evrisimli sinir aglarinda bir goriintiiniin piksel matrisinden cikarilan 6zellikler bu
katmandaki evrigim iglemi sayesinde meydana gelmektedir. Evrisim isleminde filtre
(kernel) ad1 verilen 3x3, 5x5 vb. boyutlardaki agirlik matrisleri goriintii iizerinde
gezdirilmektedir. Agin her egitim turu sonunda bu filtrelerin iizerindeki agirlik

degerleri giincellenmekte ve filtrelerde 6grenme islemi gergeklesmektedir [59].

Filtreleme islemi bir gorlintiiniin sol iist kismindan baslayarak filtrenin saga
kaydirilmasi sureti ile gerceklestirilir. Filtre uygulamada agirlik matrisi ile girdi
matrisinin filtre ile ortiisen kismindaki degerler birbirleri ile carpilmaktadir (Hadamard
carpimi). Goriintiiniin en sagina gelindiginde ise filtre tekrar goriintliniin soluna ancak

alttaki hiicrelerine gelmekte ve saga kaydirma islemi devam etmektedir. Kaydirma
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islemi (stride) genelde 1 piksel olarak uygulansa da bu deger ESA mimarisi ve girdi
matrisinin Ozelliklerine gore model tasarimcisi tarafindan degistirilebilmektedir.
Bunun yaninda bazen goriintii matrisi, filtre boyutu ve kaydirma degerlerindeki
uyumsuzluklar olabilmektedir. Bu durumda genellikle gdriintii matrisinin dis tarafi
doldurulmaktadir. Padding adi verilen bu islemde goriintii ¢evresine yeni piksel
degerleri eklenir. Ornegin padding degeri p, doldurma isleminin 0 degeri ile olacag:
diistiniiliirse, bu c¢ercevenin p piksel kadar biiyiitillerek yeni piksellerin 0 ile
doldurulacagi anlamina gelmektedir. Doldurma islemi komsu piksellerin klonlanmasi

(same-padding) ile de gergeklestirilebilmektedir [60,61].

Agm ilk evrisim katmanlarinda kenar, kose, ¢izgi gibi basit 6zellikler 6grenilirken
daha derin evrisim katmanlarinda karmasik oOzellikler Ogrenilmektedir. Evrisim
katmaninin ¢iktilariin bulundugu matris aktivasyon haritast olarak adlandirilir.
Goriintli boyutu olan bir evrisim islemi sonrasi elde edilen aktivasyon haritasinin
genisligi (W,,.), yiikksekligi (Hyy¢) ve derinligi ( Dgye);

Wout = Wy, —F+2P)/S+1

Hout = (Hin —F+ ZP)/S +1 (4.2
Dout =K

Formiilleri ile hesaplanmaktadir. Burada degeri boyutundaki filtrenin boyut uzunluk
degerini, P padding (doldurma) degerini, S kaydirma (stride) degerini ve K filtre
sayisini ifade etmektedir. Sekil 4.2°de evrisim islemi, filtre ve aktivasyon haritasi

gosterilmektedir [62].

2 2
2 1 2 1
0 0 5 0 TN
1 0 2 ‘ 1 g 2
ST 0 1
0 2 0 ‘ 0 2 0 ’
1 1 1 1\
0 0 o 0 (N
2 2 / ‘ 2 N2
1 1 Filtre (kernel) A 1
i ) ! ) ; Aktivasyon haritas

Sekil 4.2 : Evrisim islemi, filtre ve aktivasyon haritasi.
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4.2 ReLU Aktivasyon Fonksiyonu

ReLU (rectified linear unit) aktivasyon fonksiyonu 6zellikle ESA’larda yaygin olarak

kullanilmaktadir. Formiili;

F(z)=max(0,z) (4.2)

olarak tanimlanmaktadir ve grafigi Sekil 4.3’de gosterilmektedir.
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Sekil 4.3 : ReLLU fonksiyonu.

Relu aktivasyon fonksiyonu ile aktivasyon haritasindaki 6zellikler negatif olmayan
degerlerden olusan yeni bir Ozellik haritasina aktarilmaktadir. Relu aktivaston
fonksiyonun avantaji kolay tirev almabilir bir fonksiyon olmasindan

kaynaklanmaktadir.

4.3 Ortaklama Katmam

Ortaklama katmani genellikle aktivasyon fonksiyonu ile sonraki evrigim katmani
arasinda yer almaktadir. Bu katmanda aktivasyon fonksiyonu ile elde edilen yeni
ozellik haritas1 daha kiigiik boyuta indirgenmektedir. Resim 4.4’de 2 x 2 havuz
biiyiikliigii ve 2 kaydirma (stride) degerli maksimum ortaklama ve ortalama ortaklama

ornegi verilmektedir [63].
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Maksimum Ortaklama

Ortalama Ortaklama

34 55 25 166 34 14 18 28
0 45 50 44 0 100 38 12
88 88 7 2 17 17 5 1
88 88 22 4 17 17 30 4
2x2
— Havuz
Buyiikligi
55 166 37 24
88 22 17 10

Sekil 4.4 : Maksimum ortaklama ve ortalama ortaklama 6rnegi.
4.4 Y1gin Normallestirme

Yigin normallestirme (batch normalization) Szegedy ve loffe (2015) tarafindan
onerilen ve dahili ortak degisken kaymasini (internal covariate shift) azaltip derin ag
egitiminin hizlandirilmasini saglayan bir tekniktir. Genellikle evrisim katmani ile
aktivasyon katmani arasinda kullanilmaktadir. Burada ¢iktilar kii¢iik yiginlar (mini
batch) halinde normalize edilerek hesaplama maliyeti diisiiriilmektedir. Boylelikle
egitim siiresi kisalmaktadir. Ayrica bu teknikle ag daha stabil, diizenli ve kararl héle

gelmektedir.

4.5 Unutma

Unutma (drop-out) da yigin normallestirme gibi sinir agini diizenlilestirme
(regularization) metotlarindan biridir. Unutma isleminde, Sekil 4.5’de gorildigi
iizere, her egitim iterasyonunda katmanlardan belli bir oranda rastgele diigiim
silinmektedir. Agin ¢ok biiyiikk ve karmagik, veri sayisinin az oldugu durumlarda
ezberleme riski ile karsilasilmaktadir. Unutma teknigi ile ezberleme problemine karsi

model daha direncli hale getirilmektedir [64,65].
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Sekil 4.5 : Standard sinir ag1 ve unutma islemi uygulanmais sinir agi.

4.6 Diizlestirme Katmam

Bir ESA’da evrisim ve ortaklama islemlerinden sonra elde edilen aktivasyon
haritalarinin tek boyutlu bir vektor haline doniistiirme isleminin gerceklestigi katmana
diizlestirme katmani adi1 verilmektedir. Diizlestirme isleminden sonra tek boyutlu hale
getirilen veri tam bagh katmana gonderilir. Sekil 4.6’da diizlestirme yapilan bir matris

ornegi verilmistir.

2
4
y
2 - 1 0
0 2 5 :{> 2
1 7 9 5
y
7
9

Sekil 4.6 : Diizlestirme islemi 6rnegi.
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4.7 Tam Bagh Katman

Diizlestirme isleminden sonra, 6nceki katmanlardan tek boyutlu bir vektor halinde
gelen bilgi artik smiflandirma igin hazir olmaktadir. Siniflandirma igleminin
yapilacagi bu katmana tam bagli katman adi verilmektedir. Resim 4.7°de tam bagl

katman ve ikili siniflandirma 6rnegi verilmistir [66].

Diizlestirme Ji

Gérdnti girdisi y
0.9 Y

Sekil 4.7 : ikili siniflandirma 6rneginde tam bagli katman (Sreenivas vd. 2020).
4.8 Transfer Ogrenme

Transfer 6grenme ya da 6grenme aktarimi, daha once egitilmis bir modelden 6zellik
ve agirlik gibi degerlerin baska bir modele aktarilmasidir. Bu aktarim imkani ile
yiiksek basarili modelleri ¢ok kisa zamanda elde etmek miimkiin olmaktadir. Ayrica
biiytik olcekli verilerde daha once egitilmis modeller daha sonra farkli veri setlerinde

egitildiginde de yiiksek basar1 gosterebilmektedir (Rawat ve Wang 2017).

Ince ayar (fine tuning): Derin transfer 6grenmede ince ayar terimi bir evrisimsel sinir
agidaki agirliklarin yeni bir problemde de gilincellenmesine izin verilmesi anlamina
gelmektedir. Bir baska deyisle ince ayar, daha dnce ImageNet (Deng vd. 2009) gibi
bir veri setinde egitilmis evrigsimli sinir aginin transfer edilerek parametrelerinin

yeniden egitilmesi islemi olarak belirtilmektedir [67,68].

Goriintli siniflandirma ve nesne tespiti gibi problemlerde 1000 sinifli ImageNet veri

setinde egitilen ESA’lar pratikte siklikla kullanilmaktadir. Bu ESA’lar ImageNet’te
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egitildikten sonra agirliklar1 daha sonra kullanilmak {izere kaydedilmekte ve
modellerde tekrar tekrar kullanilmaktadir. Transfer 6grenmede kullanilan modellerin
egitimi i¢in farkli ince ayar (fine-tuning) stratejileri bulunmaktadir. Bu stratejiler,
Sekil 4.8’de de goriilecegi iizere evrisim bloklarindaki agirliklarin sabitlenmesi
(freezing), evrisim katmanlarindan bazilarinin sabit bazilarinin egitime agilmasi ve

evrisim katmanlarimin tiimiiniin egitilebilir se¢ilmesinden olusmaktadir.

Strateji 1 Strateji 2 Strateji 3

Bazi katmanlann

Tum modelin egitimi egitimi digerlerin
dondurulmasi

Evrisim katmanlarinin
dondurulmasi

Giris Giris Giris

Dondurulmus

B cciimis

Tahmin Tahmin Tahmin
Sekil 4.8 : Farkli ince ayar stratejileri.

Bu tez calismasinda en son gelistirilmis ESA mimarilerinden XCeption, InceptionV3,
ResNet50V2, XCeption ve DenseNetl121 incelenmistir. Zaman ve hesaplama maliyeti
kisitlarindan dolayr XCeption, InceptionV3 ve ResNet50V2 modelleri ImageNet’te
egitilen diger ESA mimarilerine gore daha uygun boyutlu ve diisiik parametre
sayilarina sahip olmalar1 nedeniyle secilmistir. ResNet50V2 mimarisi ise kumas
hatalarinin simiflandirilmasinda alinan veriler ile egitilmesi ile tercih edilmistir.

Cizelge 4.1°de incelenen modeller, boyutlar1 ve parametre sayilari sunulmaktadir [69].

67



Cizelge 4.1 : Kullanilan ESA modelleri, boyutlar1 ve parametre sayilari.

Model Boyut Parametre sayisi
(MB) (milyon)
Xception 88 22.9
ResNet50V2 B 98 25,6
InceptionV3 C 92 23,8
Vggl19 549 143,7
DenseNet121 33 8,1

ESA ile egitilen model {izerine kumaslar tespit algoritmasindan gegirilerek hatali skoru
yiksek olan alanlar isaretlenmis ve skoru bu alan iizerinde isaretlenmistir. Bu tespiti
yapilan basit model ve kumas 6rnekleri asagida gosterilmektedir. Daha sonra model

Resnet50V?2 ile testleri yapilacaktir.

4.9 Derin Ogrenme Uygulamalar1

4.9.1 Basit ESA model uygulamasi

Bu calismada, basit bir derin 6grenme modeli kullanilarak goriintii siniflandirma
gorevi ele alinacaktir. Bu model, Evrisimli Sinir Ag1 (ESA) mimarisine dayali olup,

daha karmasik yapilar yerine daha temel ve geleneksel bir yapi ile egitilecektir.

4.9.1.1 Model mimarisi

Model, daha basit bir ESA yapisi kullanilarak insa edilmistir. Modelin katmanlari
asagidaki gibi agiklanmaktadir:

Giris Katmani (Input Layer): Modelin ilk katmani, 32x32x1 boyutlarinda gri tonlamali
goriintiileri kabul etmektedir. Bu katman, her bir goriintiiyii giris olarak alir ve modelin

ilk katmanina iletilmesini saglamaktadir.

[lk Konvoliisyonel Katman (Conv2D): Ilk konvoliisyonel katman, 32x32x32
boyutlarinda ¢ikiglar iiretmektedir. Bu katman, giris goriintiisiine filtreler (kernels)
uygulanarak goriintiideki 6zellikleri ¢ikarmaktadir. Burada kullanilan 320 parametre

filtrelerin sayisin1 vermektedir.

Ik Batch Normalization Katmani (BatchNormalization): Batch normalization,
modelin egitim siirecini hizlandirmakta ve daha stabil hale getirmektedir. Bu katman,

her konvoliisyon katmaninin ¢ikisinit normalize ederek, 6grenme hizini arttirmakta ve

68



asirt  Ogrenmeyi (overfitting) engellemektedir. Bu katmanda 128 parametre

bulunmaktadir.

Ikinci Konvoliisyonel Katman (Conv2D 1): ikinci konvoliisyonel katman, yine
32x32x32 boyutlarinda ¢ikislar liretmektedir. Bu katman da ayni sekilde giris
goriintiisiindeki  6zellikleri ¢ikarmaya devam etmektedir. Bu katmanda 9,248

parametre bulunmaktadir.

Ikinci Batch Normalization Katmam (BatchNormalization 1): Ikinci batch
normalization katmani da ayni islevi gorerek modelin egitim siirecini optimize

etmektedir. Bu katmanda 128 parametre bulunmaktadir.

Max Pooling Katmani (MaxPooling2D): Bu katman, goriintiideki 6nemli 6zellikleri
sikistirarak modelin daha hizli 6grenmesini Saglamaktadir. Max pooling katmani,
32x32 boyutundaki goriintiiyli 16x16 boyutuna indirgemektedir. Bu katman, 2x2

pencerelerle en yiiksek degerleri segerek boyut kiiciiltme islemi yapmaktadir.

Ucgiincii Konvoliisyonel Katman (Conv2D 2): Ugiincii konvoliisyonel katman, daha
fazla 6zellik ¢ikarimi yapmak i¢in 16x16x64 boyutlarinda bir ¢ikis tiretmektedir. Bu

katmanda 18,496 parametre bulunmaktadir.

Uciincii Batch Normalization Katmam (BatchNormalization 2): Ugiincii batch
normalization katmani, daha stabil bir egitim siireci igin ¢iktiy1 normalize etmektedir.

Bu katmanda 256 parametre bulunmaktadir.

Dordiincii Konvoliisyonel Katman (Conv2D_3): Dordiincii konvoliisyonel katman da
16x16x64 boyutlarinda ¢ikislar iiretmektedir. Bu katman, goriintiideki daha derin

ozellikleri ¢ikartmaktadir. Bu katmanda 36,928 parametre bulunmaktadir.

Dérdiincii Batch Normalization Katmani (BatchNormalization_3): Bu katman, tigiincii
batch normalization katmani gibi egitim siirecini hizlandirmakta ve daha stabil hale

getirmektedir. Bu katmanda 256 parametre bulunmaktadir.

Ikinci Max Pooling Katmani (MaxPooling2D 1): Bu katman, ikinci bir max pooling
islemi uygulayarak 16x16 boyutundaki goriintiiyii 8x8 boyutuna indirgemektedir. Bu

islem, 6zelliklerin daha kompakt bir hale gelmesini saglamaktadir.

Flatten Katmani (Flatten): Flatten katmani, 3D boyutlarinda olan veriyi tek bir vektore
dontstiirmektedir. Bu vektor, 4096 elemandan olusur ve modelin sonraki katmanlarina

aktarilmaktadir.
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Dense Katmani (Dense): Son olarak, modelin ¢ikis katmani olan Dense katmani
kullanilmaktadir. Bu katman, 2 sinif (binary classification) i¢in olasilik tahminleri
iiretmektedir. Son katmanda 8,194 parametre bulunmaktadir. Aktivasyon fonksiyonu

olarak softmax kullanilmakta ve her sinif i¢in bir olasilik degeri saglamaktadir [70,71].

Katmanlar1 agiklanan bu basit model katmanlar1 Sekil 4.9°da verilmistir. Bu modelin
toplam parametresi 73.954, egitilebilir parametresi 73.570 ve egitilemez parametresi

384°dir. ESA modeli pseudo kod olarak algoritma 5’de anlatilmistir.

Algoritma 5: ESA Algoritmasi

Require: Her tiirde ve sinifla farkli dizine boliinmiis gorseller bulunmalidir.
names and image (n X n) # nonempty.
#Verinin Hazirlanmasi
val_ds = tf .keras.preprocessing.image_dataset_ f rom_directory(parameters)
class_names = train_ds.class_names
#Model Egitimi
model = Sequential()
model.add(Conv2D), model.add(MaxPooling2D)
model.add(Conv2D), model.add(MaxPooling2D)
model.add(Conv2D), model.add(MaxPooling2D)
model.add(Dropout(Parameter))
model.add(Flatten())
model.add(Dense(512, activation = ’relu’))
model.add(Dropout(Parameter))
model.add(Dense(5, activation = ’softmax’))
model.compile()
# Model Hata Tanimasi
pred = model.predict(image)

print(pred)
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input_1 (InputLayer)

Output shape: (None, 32, 32, 1)

Input shape: (Mone, 32, 32, 1) Output shape: (None, 32, 32, 32)

batch_normalization (BatchMormalization)

Input shape: (None, 32, 32, 32) | Output shape: (None, 32, 32, 32)

convad_1 (

Input shape: (Mone, 32, 32, 32) Output shape: (Mone, 32, 32, 32)

batch_normalization_1 (BatchMormalizat

Input shape: (None, 32, 32, 32) | Output shape: (None, 32, 32, 32)

max_pooling2d Paooling2

Input shape: (None, 32, 32, 32) Cutput shape: (Mone, 16, 16, 32)

Input shape: (None, 16, 16, 32) | Output shape: (None, 16, 16, 64)

batch_normalization_2 (| hNormaliza

Input shape: (None, 16, 16, 64) | Output shape: (None, 16, 16, 64)

convad_3 (

Input shape: (None, 16, 16, 64) | Output shape: (None, 16, 16, 64)

batch_normalization_3 (| hNormalizati

Input shape: (None, 16, 16, 84) | Output shape: (None, 16, 16, 64)

max_pooling2d_1 (Max ingz2D)

Input shape: (Mone, 18, 16, 64) Output shape: (None, 8, 8, 64)

flatten (Flatten)

Input shape: (None, 8, 8, 84) | Output shape: (Nene, 4096)

dense (Dense)

Input shape: (None, 4096) Output shape: (None, 2)

Sekil 4.9 : Model: "model_basic"
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4.9.1.2 Modelin degerlendirilmesi ve tahmin yapilmasi

Model egitildikten sonra, test verisi iizerinden tahminler yapilmistir. Bu asamada,
belirli bir smif (6rnegin, KIRIKIGNE) icinden rastgele se¢ilen bir goriintii modele
verilmis ve model bu goriintii i¢in bir tahmin yapmistir. Modelin tahmin ettigi sinif,
en yiiksek olasiliga sahip olan sinif olarak belirlenmistir. Cizelge 4.2’de karmasiklik
matrisi verilmistir ve dogruluk oran1 %93 olarak elde edilmistir.

Cizelge 4.2 : ESA karmagiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
145 7 152
Kusursuz 0465 %3
5 9 65 74
O
e Kusurlu %4 0628
O  Toplam 154 72 226

Tahmin sonuglari, modelin dogrulugunu test etmek ic¢in gercek siniflar ile
karsilagtirilmistir. Ayrica, egitim siirecindeki dogruluk ve kayip grafikleri, modelin
performansin1 gorsellestirerek hangi epoch’ta daha iyi sonuglar elde edildigini
gostermistir. Bu model ¢alismasi sonucu hatali tespit edilmis bolgeler isaretli resimler

Sekil 4.10, Sekil 4.11, Sekil 4.12, Sekil 4.13, Sekil 4.14 ve Sekil 4.15°de verilmektedir.

B

Sekil 4.10 : ESA ile hata tespiti (1).
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Sekil 4.11 : ESA ile hata tespiti (2).

Sekil 4.12 : ESA ile hata tespiti (3).
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Sekil 4.13 : ESA ile hata tespiti (4).

Sekil 4.14 : ESA ile hata tespiti (5).
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Sekil 4.15 : ESA ile hata tespiti (7).
4.9.2 RestNet50 model uygulamasi

Bu boliimde, goriintii siniflandirma goérevinde kullanilacak olan derin 6grenme
modelinin mimarisi, veri hazirlik siireci, egitim asamalar1 ve modelin performans
degerlendirilmesi ayrintili olarak ele alinmistir. Caligmanin temelinde, ResNet50
mimarisi kullanilmaktadir. Bu model, transfer 6grenme (transfer learning) teknigi ile
egitilmekte, yani ResNet50 modeli, 6nceden ImageNet veri kiimesi tizerinde egitilmis
ve daha sonra belirli bir gorev i¢in 6zellestirilmis bir model olarak kullanilmaktadir.
Modelin egitim siireci, dogruluk ve kayip gibi metrikler araciligiyla
degerlendirilecektir. Ayrica, modelin tahmin yetenekleri ve genel basarisi test
edilecektir [72,73].

4.9.2.1 Veri hazirh@

Modelin dogru bir sekilde egitilebilmesi i¢in verilerin uygun sekilde hazirlanmasi
gerekmektedir. Bu asama, veri kiimesinin yiiklenmesi, gorsellerin 6n islenmesi ve
egitim ile dogrulama kiimesine ayrilmasi1 gibi adimlar1 igermektedir. Veri kiimesi, her
biri farkl bir sinifi temsil eden alt dizinlere ayrilmis olan goriintiilerden olugmaktadir.
Verilerin uygun sekilde yiiklenmesi icin TensorFlow ve Keras kiitiiphanelerinin

sundugu image dataset from_directory fonksiyonu kullanilmaktadir. Bu fonksiyon,
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dizindeki her alt klasorii bir sinif olarak kabul etmekte ve her simif i¢in goriintiilerin

bir veri kiimesini olusturmaktadir.

Egitim ve dogrulama kiimeleri, toplam veri kiimesinin %60’1 ve %40’1 oraninda
ayrilmaktadir. Egitim verisi, modelin 6grenme siirecini gergeklestirdigi veri kiimesi
iken, dogrulama verisi modelin egitim silireci sirasinda egitimin ne kadar

genellestirilebilir oldugunu kontrol etmek i¢in kullanilmaktadir.

Veri kiimesindeki her goriintii, modelin giris boyutuna uygun hale gelmesi i¢in
yeniden boyutlandirilmaktadir. Bu ¢alismada, her bir goriintii 180x180 piksel
boyutlarina getirilmektedir. Goriintiilerin boyutlar1 yeniden ayarlandiginda, ayni
zamanda veri kiimesinin batch size parametresi ile mini-batch'ler halinde islenmesi
gerekmektedir. Bu, verilerin kii¢iik gruplar halinde modele beslenmesini ve modelin

parametrelerinin adim adim giincellenmesini saglamaktadir [74].

4.9.2.2 Model mimarisi

Modelin temeli olarak ResNet50 (Residual Network) kullanilmaktadir. ResNet50,
derin 6grenme alaninda yaygin olarak kullanilan ve 50 katmanli bir konvoliisyonel
sinir ag1 (CNN) modelidir. Bu model, residual connection ad1 verilen bir mekanizmay1
kullanmaktadir. Bu, agin daha derin katmanlarinda meydana gelen kayiplarin
(vanishing gradients) istesinden gelmeye yardimci olmaktadir. Yani, katmanlar
arasinda dogrudan baglantilar (skip connections) kullanilarak modelin daha derin

katmanlarinda 6grenme yapilmasi saglamaktadir [75].

ResNet50 modelinin, ImageNet gibi biiylik veri kiimeleri lizerinde 6nceden egitilmis
agirliklarla yiiklenmesi, transfer 6grenme (transfer learning) tekniginin bir 6rnegidir.
Bu, modelin genelleme yetenegini artirir ve egitim siirecinde biiyiik bir hiz kazanci
saglamaktadir. ResNet50 modelinin en iist katmanlari (include top=False) kaldirilarak
sadece Onceden Ogrenilmis Ozellik ¢ikarici katmanlari kullanmaktadir. Bdoylece,
modelin daha genel 6zellikleri 6grenmesi saglanmakta; kendi siniflandirma katmanlari
sonradan eklenerek ozellestirilmektedir [76]. RestNet50 katmanlar1 Sekil 4.16’da

verilmektedir.

Layer (type) Output Shape Param #
input layer (InputLayer) | (None, 180, 180, 3) | 0
convl pad (ZeroPadding2D) | (None, 186, 186, 3) | 0

Sekil 4.16: RestNet50 modeli
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convl conv (Conv2D) | (None, 90, 90, 64) | 9,472

convl bn | (None, 90, 90, 64) | 256

(BatchNormalization) |

convl relu (Activation) | (None, 90, 90, 64) | 0

pooll pad (ZeroPadding2D) | (None, 92, 92, 64) | 0

pooll pool (MaxPooling2D) | (None, 45, 45, 64) | 0

conv2 blockl 1 conv | (None, 45, 45, 64) | 4,160

(Conv2D) | |

conv2 blockl 1 bn | (None, 45, 45, 64) | 256

(BatchNormalization) |

conv2 blockl 1 relu | (None, 45, 45, 64) | 0

(Activation) | |

conv2 blockl 2 conv | (None, 45, 45, 64) | 36,928

(Conv2D) | |

conv2 blockl 2 bn | (None, 45, 45, 64) | 256

(BatchNormalization) |

conv2 blockl 2 relu | (None, 45, 45, 64) | 0

(Activation) | |

conv2 blockl 0 conv | (None, 45, 45, 256) | 16,640

(Conv2D) | |

conv2 blockl 3 conv | (None, 45, 45, 256) | 16, 640

(Conv2D) | |

conv5 block3 add (Add) | (None, 6, 6, 2048) | 0
| |

conv5 block3 out | (None, 6, 6, 2048) | 0

(Activation) | |

avg_pool | (None, 2048) | 0

(GlobalAveragePooling2D) |

dense (Dense) | (None, 512) | 1,049,088

dense_1 (Dense) | (None, 5) | 2,565

Total params: 24,639,365 (93.99 MB)
Trainable params: 1,051,653 (4.01 MB)
Non-trainable params: 23,587,712 (89.98 MB)

Sekil 4.16 : RestNet50 modeli. (devami)

Modelin son katmanlarinda, ResNet50'nin ¢ikis katmanina bir Dense katmani
eklenmektedir. Bu katman, 512 noronla donatilir ve ReLU aktivasyon fonksiyonu ile
aktivasyon yapilmaktadir. Bu, modelin daha karmasik oOzellikler 6grenmesini
saglamaktadir. Cikis katmaninda ise, modelin tahmin yapabilmesi i¢in siniflandirma
yapilacak siniflarin sayisina bagl olarak 5 sinif i¢in softmax aktivasyon fonksiyonu
kullanilmaktadir. Softmax, ¢ok smifli siniflandirma problemlerinde yaygin olarak
kullanilan bir aktivasyon fonksiyonudur ve her smif i¢in bir olasilik degeri

tretmektedir [77].

Ayrica, ResNet50’nin dnceden egitilmis agirliklarini kullanarak modelin transfer
Ogrenme asamasinda, bu agirliklarin dondurulmasi saglanabilmektedir. Yani, bu

katmanlarin agirliklar1 egitim sirasinda giincellenmemektedir. Bu, modelin daha hizl
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ogrenmesini ve daha az veriye ihtiya¢ duymasini saglamaktadir. RestNet50 mimarisi
Sekil 4.17°da verilmektedir.

GiRIS

)

| Zero Padding |

CONV

ReLu
Max Pool
Conv Block
ID Block
Conv Block

Conv Block

ID Block
Conv Block
ID Block

Avg Pool

Sekil 4.17 : RestNet50 mimarisi.

4.9.2.3 Modelin egitimi

Flattening

(&)
TH

CIKIS

SN

Modelin egitim siirecinde, Adam optimizer kullanilmaktadir. Adam, 6grenme oranini

her parametre i¢in otomatik olarak ayarlayan bir optimizasyon algoritmasidir ve

genellikle derin 6grenme problemlerinde yaygin olarak tercih edilmektedir. Kayip

fonksiyonu olarak ise sparse categorical crossentropy kullanilmaktadir. Bu kayip

fonksiyonu, c¢ok smnifli simiflandirma problemleri i¢in uygun bir tercihtir, ¢linkii

modelin tahmin ettigi sinifin dogru sinifla ne kadar ortiistiigiinii 6lgmektedir [78,79].

Model Loss

0.45

0.40

0.35 A

0.30 +

Loss

0.25 +

0.20

0.15 +

0.10 4

— frain
—— validation

0.0

2.5

T
5.0 1.5 10.0
Epochs

12.5

T T
15.0 17.5

Sekil 4.18 : ResNet50 model kayip grafigi.
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Model Accuracy
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Sekil 4.19 : RestNet50 model dogrulugu.

Modelin egitimi 20 epoch boyunca yapilmaktadir. Bu siirecte, egitim verileri modelin
agirliklarimi  optimize ederken, dogrulama verileri modelin performansini
degerlendirmek amaciyla kullanilmaktadir. Egitim sirasinda, modelin dogruluk
(accuracy) ve kayip (loss) metrikleri izlenmektedir. Bu metrikler, modelin egitim
siirecindeki basarisin1  gorsellestirmekte ve modelin hangi epoch’ta daha iyi
performans gosterdigini anlamaya yardimci olmaktadir. Egitim sirasinda, modelin
dogruluk (accuracy) ve kayip (loss) metrikleri degisimi Sekil 4.18 ve Sekil 4.19°de
verilmektedir [79].

4.9.2.4 Modelin degerlendirilmesi ve tahmin yapilmasi

Modelin egitilme siireci tamamlandiktan sonra, test verileri lizerinde tahminler
gerceklestirilmektedir. Bu asamada, belirli bir kusur smifina (6rnegin, KIRIKIGNE)
ait rastgele secilen bir gorlinti modelin girisine verilerek tahmin siireci
baglatilmaktadir. Model, bu goriintilye yonelik bir smiflandirma iglemi
gergeklestirmekte ve en yiiksek olasiliga sahip sinifi tahmin olarak belirlemektedir.
Tahmin siireci, ResNet-50 modelinin son ¢ikis katmaninda yer alan softmax
aktivasyon fonksiyonu araciligiyla her bir smif ic¢in olasilik degerlerinin

hesaplanmasiyla gergeklestirilmektedir. Model, en yiiksek olasilik degerine sahip

79



smifi tahmin olarak dondiirerek giris goriintiisiiniin ilgili kategoriye ait oldugunu

belirlemektedir.

Modelin tahmin dogrulugu, gercek etiketler ile karsilagtirilarak degerlendirilmektedir.
Modelin smiflandirma performansi, siniflandirma dogrulugu, hata oranlar1 ve diger

degerlendirme metrikleri kullanilarak ayrintili bir sekilde analiz edilmektedir [80].

4.9.2.5 Sonug ve ileri adimlar

Bu boliimde, goriintii stniflandirma gorevinde kullanilan bir derin 6grenme modelinin
gelistirilmesi ve egitilmesi silireci ayrintili olarak anlatilmistir. ResNet50 modeli,
transfer 6grenme yaklasimi ile egitilmis ve modelin basar1 oran1 degerlendirilmistir.
Egitim ve dogrulama siireglerinde elde edilen dogruluk ve kayip grafiklerinin

gorsellestirilmesi, modelin performansin1 degerlendirmemize olanak saglamaktadir.
Hatasiz siniflandirilmis bir goriintiiniin testi ve sonucu Sekil 4.20’da verilmektedir.

7

L285_8.png

(1, 18@, 180, 3)

1/1 1s 1s/step

[[2.889851B8e-83 9.8514838=-81 2.83176562-84 1.1555868e-82 1.1868521e-85]]
The predicted class is HATASIZ

Sekil 4.20 : RestNet50 ile hata siniflandirma.

KIRIKIGNE simiflandirilmis  bir goriintiiniin testi ve sonucu Sekil 4.21°de

verilmektedir.
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2998 2.png

(1, 186, 188, 3)

1/1 Bs 348ms/step

[[2.4482263e-B6 8.4118281e-85 9.99892352-81 2.1142954e-85 2.2894864e-117]
The predicted class is KIRIKIGME

Sekil 4.21 : RestNet50 ile hata siniflandirma.

DELIK siiflandirilmig bir goriintiiniin testi ve sonucu Sekil 4.22°de verilmektedir.
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2994 4.png

(1, 18@, 188, 3)

1/1 @s 283ms/step

[[9.9988678e-81 4.4435841e-85 1.4328873e-84 §.719332%e-89 3.3288173e-12]]
The predicted class is DELIK

Sekil 4.22 : RestNet50 ile hata siniflandirma.

Gelecek ¢alismalarda, modelin dogrulugunu daha da artirmak i¢in veri artirma (data
augmentation) yontemleri uygulamasi diisiiniilmektedir. Bu, modelin daha fazla
cesitlilikle egitilmesini saglayarak, asir1 6grenme (overfitting) riskini azaltacaktir.
Ayrica, modelin ince ayar (fine-tuning) yapilmasi, yani ResNet50'nin daha fazla
katmaninin egitim siirecine dahil edilmesi, modelin daha 1yi genelleme yapabilmesi
icin etkili bir yontemdir. Bu tiir iyilestirmeler, modelin daha karmasik ve gesitli veri
kiimeleri tizerinde basarili performans gostermesini saglayacaktir [81]. Cizelge 4.3°de

karmasiklik matrisi verilmistir ve dogruluk orani %96 hesaplanmustir.

Cizelge 4.3 : Restnet50 karmasiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
Kusursuz 148 4 152
%65 %2
5 3 71 74
(]
%” Kusurlu 062 0631
O Toplam 151 75 226
4.9.3 YoloV5 uygulamasi

(You Only Look Once) algoritmasi, nesne tespiti i¢in kullanilan, regresyon tabanl bir
algoritmadir. Algoritma, goriintiiniin bir bolimiinii se¢mek yerine, tiim goriintii
tizerinde tek bir ¢alistirmada sinif ve sinirlayici kutu tahmini yapmaktadir. Bu yoniiyle,
R-CNN gibi bolge bazli algoritmalardan ayrilmaktadir. R-CNN algoritmalari, 6nce
nesnelerin bulunabilecegi bolgeleri belirlemekte, ardindan bu bolgelerde ayri ayri
Evrisimsel Sinir Aglar1 (CNN) kullanarak siniflandirma islemi gerceklestirmektedir.
Ancak, bu yontem resmin iki ayri islemden gegmesine neden olmakta ve diisiik FPS
(Frame Per Second) oranlariyla sonuglanarak gercek zamanli uygulamalar igin yetersiz
kalmaktadir [82].
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4.9.3.1 Veri setini hazirlama

YOLOVS ile model egitimi i¢in veri seti olusturmak kritik bir adimdir. Bu siirecte
kullanilacak goriintiiler tizerinde hatalarin isaretlenmesi gerekmektedir. Bunun igin
Labellmg veya Makesense.ai gibi araclar kullanilarak, goriintii tizerindeki hatali
bolgeler segilmekte ve hata tiplerine gore etiketlenmektedir. Bu islem sayesinde igne
kirg, delik, likra kagagi, may izi ve yag izi gibi farkli hata tiirleri
tanimlanabilmektedir. Ornek bir hata etiketleme islemi Sekil 4.23’de gdsterilmistir
[83].

I Rect

. Needle Break
. Needle Break

YOLO V2 image 91.png

Sekil 4.23 : YOLOV5 ile hata etiketleme.

Etiketleme tamamlandiktan sonra veri seti, egitim (%70) ve test (%30) olarak iki gruba
ayrilmaktadir. Her grup icin ayr1 klasorler olusturulmakta ve bu klasorler i¢inde de
images (goriintiiler) ve labels (etiketler) adinda alt klasorler eklenmektedir. Goriintiiler

images klasoriine, etiket dosyalari ise labels klasoriine kaydedilmektedir.

4.9.3.2 Ortam kurulumu

Modelin egitilecegi ortam, ihtiyaca gore bir bilgisayar, bulut sunucusu veya gelistirme
kartlar1 tizerinde hazirlanabilmektedir. Ortamin kolay ydnetimi ve tasinabilirligi i¢in
Docker imajlar1 kullanilabilmektedir. YOLOVS'in egitim ve test agamalarinda GPU
kullanimin etkinlestirmek i¢in PyTorch ve OpenCV Kkiitiiphanelerinin GPU siiriimleri
kurularak test edilmektedir. Egitim sirasinda siif tiirleri, data.yaml dosyasinda

belirtilmektedir. Bu siniflar, etiketleme sirasinda kullanilan sirayla tanimlanmaktadir.
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4.9.3.3 Modelin egitimi

Gorlinti igleme modelini egitmek i¢in hazirlanan egitim verisi kullanilmaktadir.
Gorlntiilerin  boyutlari, renk kanallar1 ve formati uygun sekilde ayarlanmasi
gerekmektedir. Ayrica goriintiilerdeki nesnelerin konum ve tiir bilgilerini igeren

etiketleme islemi dogru bir sekilde hazirlanmalidir.

Model egitimi i¢in temel parametrelerin (6rnegin, goriintii boyutu, batch size, epoch
sayis1, kullanilan modelin onceden egitilmis agirlik dosyasi yolu gibi) ayarlanmasi
gerekmektedir.  Parametrelerin = tanimlanmasmin ~ ardindan  egitim  islemi
baslatilmaktadir. Bu siliregte model, egitim verisini kullanarak kendini optimize
etmektedir. Modelin performansi dogruluk orani (accuracy), IoU (Intersection over
Union) gibi metriklerle degerlendirilmektedir. Egitim tamamlandiginda, model

dosyasi gergek zamanli ya da offline islemlerde kullanilabilir hale gelmektedir [84].

4.9.3.4 Egitilmis model ile kusur tanima

Kumasg hatalarini tespit etmek i¢in YOLOVS ile birlikte gelen detect.py dosyasi
giincellenerek kullanilabilmektedir. Bu dosya, ger¢ek zamanli kamera gorintiileri,
videolar, resimler, online video baglantilar1 ve farkli akis protokolleri gibi cesitli giris
tirlerini desteklemektedir. Cizelge 4.4’de karmasiklik matrisi verilmistir ve dogruluk

oran1 %95 hesaplanmustir.

Cizelge 4.4 : YOLOV5 karmasiklik matrisi.

Tahmin
Kusursuz Kusurlu Toplam
Kusursuz (yl:é% O/S 3 152
5 5 69
Q
& Kusurlu 042 9430 74
O Toplam 151 75 226

GPU kullanilarak yapilan tespit islemi, donanim 6zelliklerine bagli olarak yiiksek
performansl ve gergek zamanli sonuglar sunmaktadir. Ornegin, tespit edilen hatalarin
konumu, tiirii ve zaman1 gibi bilgiler anlik olarak ekranda gosterilmekte ve bir veri
tabanina kaydedilmektedir. Sekil 4.24, bu islemin bir 6rnegini gostermektedir. Sekil

4.25°de veri tabanindaki kayitlar kullanilarak ge¢misteki hatalarin raporlanmasi ve
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analizi yapilmaktadir. Bu analizler, kumas iiretim siireglerinde kalite kontrolii artirmak

icin kullanilmaktadir.

Detected Faults

19:59:35 - 10/6/2023 1 NEEDLE_BREAK, 3 HOLES,
19:59:35 - 10/6/2023 1 HOLE,
19:59:34 - 10/6/2023 2 MAYs, 1 OIL, 1 HOLE,
19:59:34 - 10/6/2023 1 MAY,

19:59:33 - 10/6/2023 4 NEEDLE_BREAKs,
19:59:33 - 10/6/2023 1 MAY,

19:59:32 - 10/6/2023 2 NEEDLE_BREAKSs, 1 HOLE,

19:59:32 - 10/6/2023 2 NEEDLE BREAKs, 1 HOLE,
19:59:31 - 10/6/2023 2 NEEDLE_BREAKS, 2 HOLEs,
19:59:31 - 10/6/2023 2 HOLEs,

19:59:31 - 10/6/2023
19:59:30 - 10/6/2023 2 NEEDLE_BREAKS, 2 HOLES,
19:59:30 - 10/6/2023 2 NEEDLE BREAKs,
19:59:29 - 10/6/2023 2 HOLESs,

19:59:29 - 10/6/2023 2 HOLEs,

19:59:28 - 10/6/2023

g - 10/6/2023

19: -10/6/2023
19:59:26 - 10/6/2023
19:59:25 - 10/6/2023 2 HOLEs,
19:59:25 - 10/6/2023
19:59:24 - 10/6/2023 1 HOLE,
19:59:24 - 10/6/2023 1 HOLE,
19:59:23 - 10/6/2023

Sekil 4.25 : YOLOVS5 ile hata sonuglar1 ve ge¢mis hata raporu.
4.9.4 Otoenkoder anomali tespiti uygulamasi

Anomali tespiti, son yillarda derin 6grenme alaninda yogun olarak aragtirilan konular
arasinda yer almaktadir. Goriintiilerdeki anomalilerin tespiti amaciyla Autoencoder
(Otoenkoder) tabanli bir model ele alinmistir. Anomali tespiti, belirli bir veri
kiimesindeki normal 6rneklerden farkli olan Orneklerin belirlenmesi islemidir. Bu
model, her bir gorlintliyli normal veya anormal olarak siniflandirmak i¢in yeniden
yapilandirma hatasi ve ¢ekirdek yogunluk tahmini (Kernel Density Estimation - KDE)

yontemlerini kullanmaktadir. Anomali tespiti egitimi, hazirlanan veri seti tizerinde
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gerceklestirilmekte olup, kullanilan yontem farkli goriintii  kiimelerine de

uygulanabilmektedir [85].

4.9.4.1 Veri kiimesi ve egitim

Modelin egitimi igin test sisteminden elde edilen veri seti kullanilmistir ve bu veri seti,
her bir gorselin ya normal (hatasiz) ya da anormal (parazitli) oldugunu belirten

etiketleri bulunmaktadir. Veri kiimesi, ii¢ ana alt gruba ayrilmaktadir:
e Egitim veri kiimesi (train HATASIZ),
e Test veri kiimesi (test HATASIZ),
e Anomali (hatali) veri kiimesi (DELIK,KIRIKIGNE).

Veri setinden elde edilen gorseller, modelin egitim siirecinde kullanilacak sekilde
64x64 piksel boyutunda yeniden boyutlandirilmistir. ImageDataGenerator sinifi,

verilerin 6l¢eklendirilmesi ve diizgiin bir sekilde beslenmesi i¢in kullanilmistir [86].

4.9.4.2 Modelin yapilandirilmasi

Model, Autoencoder mimarisi ile tasarlanmistir. Autoencoder, bir goriintlyi
sikistirarak (encode) daha kii¢lik bir boyuta indirgemeyi ve ardindan bu sikistirilmis
veriyi kullanarak (decode) orijinal goriintiiyii yeniden olusturmay1 amaglamaktadir.
Bu modelin basarisi, 6zellikle bottleneck (sise boynu) katmanindaki sikistirilmis

ozelliklerin dogru sekilde ¢ikarilmasiyla 6l¢iilmektedir [87].
Modelin temel katmanlar1 su sekilde yapilandirilmistir:

e Encoder: Konvoliisyonel katmanlar, her seferinde 0&zelliklerin sayisini
azaltarak daha kiiclik boyutlarda sikistirilmis bir temsil (latent space)
olusturmaktadir. Her konvoliisyonel katmandan sonra MaxPooling2D

katmanlari ile boyut kiiciiltme islemi yapilmaktadir.

e Decoder: Encoder'dan almman sikistirtlmis veriler, tersine dondistiiriilerek
orijinal ~ goriintliniin  yeniden olusturulmasini  saglamaktadir. Burada

UpSampling2D katmanlar1 kullanilarak goriintii boyutlar1 bilytitiilmektedir.

Katmanlar1 agiklanan bu sequential model Sekil 4.26°de verilmektedir. Bu modelin
toplam parametresi 52.067(203.39 KB), egitilebilir parametresi 52.067(203.39 KB) ve

egitilemez parametresi 0’dr.
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convad (Conv

Input shape: (None, 64, 64, 3) | Oulput shape: (None, 64, 64, 64)

max_pooling2d (MaxPooling2D)

Input shape: (None, 64, 64, 64) Output shape: (None, 32, 32, 64)

Input shape: (None, 16, 16, 32) | Cutput shape: (None, 16, 16, 16)

max_pooling2d_2 (MaxPooling2)

Input shape: (None, 16, 16, 16) | Output shape; (None, 8, 8, 16)

conv2d_3 (Conv2D

Input shape: (Mone, 8, 8, 16) | Output shape: (None, 8, 8, 16)

up_sampling2d (UpSampling2D)

Input shape: (None, 8, 8, 16) | Output shape: (None, 16, 16, 16)

conv2d_4 (Conv2D)

Input shape: (None, 16, 16, 16) | Cutput shape: (Mone, 16, 16, 32)

up_sampling2d_1 (UpSampling2D)

Input shape: (None, 16, 16, 32) | Output shape: (Mone, 32, 32, 32)

conv2d_5 (Conv2D)

Input shape: (None, 32, 32, 32) Qutput shape: (None, 32, 32, 64)

up_sampling2d_2 (UpSampling

Input shape: (None, 32, 32, 64) | Output shape: (None, 64, 64, 64)

conv2d_6 (Conv2D)

Input shape: (None, 64, 64, 64) Output shape: (None, 64, 64, 3)

Sekil 4.26 : Anomali tanima modeli.
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Model, Adam optimizasyon algoritmast ve mean squared error (MSE) kayip
fonksiyonu ile egitilmistir. Egitim sirasinda, modelin dogrulugu ve kayb1 izlenmis ve

ogrenme stireci Sekil 4.27°da gorsellestirilmektedir.

Training and validation loss

0.006 - Training loss
— Validation loss
0.005

0.004 1

0.003 ~

Loss

0.002 ~

0.001 A

0.000 -

T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs

Sekil 4.27 : Egitim model dogrulugu ve kaybi.

4.9.4.3 Anomali tespiti icin latent alanin Kullanimi

Modelin en kritik bileseni, encoder katmaninin ¢iktis1 olan latent space (gizli uzay)’dir.
Bu latent alan, her goriintii i¢in yiiksek boyutlu bir vektor olarak temsil edilmekte olup,
anomali tespiti siirecinde temel bir rol oynamaktadir. Anomali tespiti igin, bu
vektorlerin yogunluk dagilimi incelenmektedir. Normal ve anormal goriintiilere ait
vektorlerin yogunluklar1 arasinda belirgin bir fark gozlemlenmekte olup, bu fark

anomali tespiti i¢in ayirt edici bir 6zellik olarak kullanilabilmektedir [88].
Cekirdek yogunluk tahmini (KDE)

Kernel Density Estimation (KDE), bir veri kiimesindeki her bir 6rnegin yogunlugunu
modellemek amaciyla kullanilan istatistiksel bir tekniktir. Bu ¢aligmada, scikit-learn
kiitiiphanesinde yer alan KernelDensity sinifi kullanilarak latent alan vektdrlerinin

yogunlugu tahmin edilmektedir. Egitim verisi iizerinde KDE modeli egitildikten sonra,
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test verisine ait her bir goriintiiniin karsilik gelen yogunlugu hesaplanmaktadir.
Anomali tespiti silirecinde, normal goriintiiler genellikle daha yiiksek yogunluk
degerlerine  sahipken, anormal goriintiler diisik yogunluk degerleriyle

tanimlanmaktadir [88].
Yeniden yapilandirma hatasi

Bir diger dnemli metrik yeniden yapilandirma hatasidir. Bu hata, model tarafindan
yeniden olusturulan goriintii ile orijinal goriintii arasindaki farki ifade etmektedir.
Anormal bir goriintli, modelin orijinal halini daha diisiik dogrulukla yeniden
olusturmasina neden olmakta ve bu durum yiiksek yeniden yapilandirma hatasi ile

sonu¢lanmaktadir [89,90].
Anomali tespiti

Gorlntiilerin anomali olup olmadigimi belirlemek i¢in hem yeniden yapilandirma
hatas1 hem de yogunluk bilgileri birlikte kullanilmaktadir. Belirli bir esik degeri
(threshold) ile bu iki metrik karsilastirllmaktadir. Eger bir goriintii, her iki metrik
acisindan da belirli esiklerin disindaysa, bu goriinti anormal olarak
siiflandiriimaktadir. Sekil 4.28’de delik tipi hatali bir goriintii anomali tespiti

yapilmis ve anomali olarak tespit edilmistir.

fconteﬁt;drivefMyDriuejtesthnumalijELIKIilages!ZBB?E.png
]

10

20

60

0 10 20 30 40 S0 60

1/1 1s 935ms/step

1/1 @s 2oms/step

The image is an anomaly

pensity: 7@85.8775364551278

Reconstructicn Errcr: @.88148385195638111323

Sekil 4.28 : Anomali hata tespiti.
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Sekil 4.29°de hatasiz bir goriintii anomali tespiti yapilmigs ve anomali degil olarak
tespit edilmistir.
Good/normal image verification

fcontent/drive/MyDrivestest/anomaly /ftest _HATASIZ/images/2992_5.png
o

10

20

60
0 10 20 30 40 50 60
1/1 @8s 28ms/step
1/1 a8s 41ms/step

The image is MOT an anomaly
Density: 706.880912758477
Reconstructicn Errcr: 8.2886544£12181219753

Sekil 4.29 : Anomali olmayan hata tespiti.

Modelin basarisin1 degerlendirmek i¢in hem normal veri kiimesi hem de anomali veri
kiimesi iizerindeki yeniden yapilandirma hatas1 hesaplanmaktadir. Sonuglar, modelin
normal goriintiileri ne kadar dogru bir sekilde yeniden yapilandirdigin1 ve anormal

gorintiileri dogru bir sekilde tespit edip etmedigini gostermektedir.
Asagidaki adimlar uygulanarak modelin dogrulugu degerlendirilmistir:

Egitim ve dogrulama kaybi: Egitim sirasinda modelin kaybi izlenmis ve egitim

stirecinde hangi epoch'ta modelin daha 1yi sonuglar verdigi gorsellestirilmistir.

Anomali ve normal goriintiilerin dogrulugu: Modelin dogrulugu, rastgele segilen
anormal ve normal goriintiiler lizerinde test edilmistir. Bu goriintiiler, model tarafindan

anomali veya normal olarak dogru bir sekilde siniflandirilmigtir [91].

Modelin tahmin etti§i ve ger¢ek siniflar1 karsilastirarak sonuclar elde edilmistir.
Anomali goriintiiler i¢cin model, yiiksek bir yeniden yapilandirma hatasi ve diisiik bir

yogunluk skoru iiretmistir. Normal goriintiiler ise diisiik bir yeniden yapilandirma
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hatas1 ve yiiksek bir yogunluk skoru ile tanimlanmistir. Modelin dogrulugu, esik
degerlerine gore degiskenlik gostermektedir ve bu esikler deneysel olarak

ayarlanabilmektedir [92].

Bu c¢alismada kullanilan Autoencoder tabanli model, farkli uygulamalarda da
kullanilan bir yontemdir. Gelecekte, modelin daha genis veri kiimeleri iizerinde test
edilmesi ve daha fazla parametre ile optimize edilmesi ile daha basarili sonuglar

alinmasi hedeflenmektedir.

90



5. DENEYSEL DUZENEK

Sistemin en iyi sekilde ¢alismasi i¢in Onerilen yontemler performans, isleme zamani,
hedeflenen basar1 oranina gore optimum g¢alisacak bir model olusturulmasi
hedeflenmektedir. Ger¢ek zamanli ¢alisacak bu sistem 6n isleme adimi ile hatali olan
bolgeleri tespit ederek eleme yapacak, hata skorlar1 yiiksek bolgeler bu yontemler ile

islenerek smiflandirma yapilmaktadir.

Hata tespiti siirecinde 6n isleme (preprocessing) adimi, veri setinin kalitesini artirmak
ve hata tespit algoritmalarinin daha etkili calismasini saglamak i¢in kritik bir 6neme
sahiptir. On isleme, veri setindeki giiriiltiiyii azaltma, 6zellik ¢ikarma, normalizasyon
gibi islemleri icermektedir. Preproses islemleri, hata tespit sistemlerinin giivenilirligini
ve performansini artirarak endiistriyel uygulamalarda daha etkili ve kesin sonuglar
elde edilmesine olanak tanimaktadir. Raspberry Pi 4, Camera Serial Interface (CSI)
protokolii araciligiyla kamera modiilii iizerinden goriintii elde ederek, bu verileri
Ethernet iizerinden Jetson Nano'ya aktarmaktadir. Jetson Nano lizerinde, CUDA
destekli sinir ag1 modelleri kullanilarak elde edilen goriintiiler islenmekte ve hata
tespiti ile siniflandirma islemleri gergeklestirilmektedir. CPU tabanli ¢alisma sirasinda
1 frame isleme siiresi 1800ms zaman alirken CUDA destegi ile beraber islemesi
140ms’ye kadar diisiirlilmiistiir. Sonraki asamada Jetson Nano ile goriintiiler

haberlesme ile alinarak bu islemler calisilmustr.

Saha denemeleri kapsaminda, 6grenme tabanli hata tespit algoritmasi farkli kumas
tipleri tizerinde test edilerek, gesitli kumas yapilart ve hata tiirlerine adaptasyon
kapasitesi degerlendirilmistir. Bu denemeler, algoritmalarin kumas tiirlerine gore
optimizasyonunu ve cesitli hata tiirlerini (Delik, Igne Kinig, Likra Kagig, May
Cizgisi, Yag Lekesi) yiiksek oranda basariyla tespit edebilmeyi saglamstir.

Algoritmalarin saha denemeleri sirasinda toplanan veriler, gercek calisma kosullar
altinda algoritma performansinin degerlendirilmesine ve gerekli tuning islemlerinin
yapilmasina olanak tanimustir. Bu siireg, algoritma parametrelerinin ger¢cek zamanh
caligma kosullarina en uygun sekilde ayarlanarak, sistem performansinin maksimize

edilmesini saglamistir. Sistem saha testleri sonucunda: 0.2 mm/piksel ¢oziiniirliigiinde
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saniyede 8-9 frame isleyebilir hale gelmistir. Bu sonuglar 30 rpm ile donen ve 3 m/dk
ile akan kumas lizerinde g¢alisabilme imkani saglamistir. Bu sistem modeli genel

goriiniimii Sekil 5.1°de verilmektedir.

Gérintii Algilama Gériintii Isleme

Kamera .

CSl

\ 4

Makina Hiz _____ | Gorantu Algilama
Bilgisi (Raspberry Pi)

Sekil 5.1 : Sistem modeli.

GPU Goruntu
] Ethernetms=d|  isleme

(Jetson Nano)

Panel ya da
Tablet
L

Anlik ve Gegmis Takip

Algoritmalarin saha denemeleri sirasinda toplanan veriler, gergek calisma kosullar
altinda algoritma performansinin degerlendirilmesine ve gerekli tuning islemlerinin
yapilmasina olanak tanimistir. Bu siireg, algoritma parametrelerinin ger¢ek zamanl
caligma kosullarina en uygun sekilde ayarlanarak, sistem performansinin maksimize

edilmesini saglanmistir.

Sekil 5.2, bir goriintii algilama ve isleme sisteminin isleyisini iki temel bilesen
tizerinden agiklamaktadir: goriintii algilama cihazi ve goriintii isleme cihazi. Goriintii
algilama cihazi, Raspberry Pi 4 kullanilarak ¢alismakta olup, makinenin hiz bilgisine
dayali olarak goriintii yakalama islemini gergeklestirmektedir. Bu bilesen, makinenin
hizina bagli olarak goriintii yakalama frekansini1 (FPS) hesaplamakta ve belirlenen
zaman araliklarinda goriintli kaydetmektedir. Goriintli algilama siireci, yakalama
islemi baslamadan 6nce aydinlatma sisteminin aktif hale getirilmesi ile baglamakta,
goriintii kaydi tamamlandiktan sonra ise sistem kapatilmaktadir. Algilanan goriintiiler,

daha ileri diizeyde islenmek iizere Gériintii Isleme Cihazina iletilmektedir.
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Goriintii Isleme Cihazi, Jetson Nano donanimi kullanilarak iletilen gériintiilerin
analizinden sorumludur. Bu siirecte, sistem Oncelikle yeni bir goriintiiniin alinip
alinmadigini kontrol etmektedir. Yeni bir goriintii algilandiginda, 6n isleme asamasi
uygulanmaktadir. On isleme, goriintiideki giiriiltiiyii azaltmay1 ve analize uygun hale
getirmeyi amaglamaktadir. On isleme asamasiin ardindan, islenen goriintii iizerinde
anomali tespiti gerceklestirilmekte ve bu anomaliler arasindan gergek hatalar
belirlenmektedir. Hata tespit siirecini takiben, bir karar algoritmasi devreye girerek
uygun aksiyonlarin alinmasini saglamaktadir. Son asamada, kullaniciya gerekli
uyarilar iletilmekte ve durumun gerektirdigi sekilde makinenin durdurulmasi veya

diizeltici islemlerin bagslatilmas: gibi miidahaleler gerceklestirilmektedir.

Goranta Algilama Cihaz Gorunta Isleme Cihaz

Raspberry Pi4 . Jetzon Nano
Makine Hiz Bilgisi Gortintd yakalama )
Fps Hesal eni Resim

Geldi mi

Gérantl
Algilama

Zamani Gériinti Edinme

h

On Isleme

Anomaly Tespiti

Aydinlatma Ag

Gériunti Yakalama

Hata Tespiti

Aydinlatma Kapat

¥

b

Karar Algoritmas:
Garantd Gonder g
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[
=

Uyan ve Izlem

Sekil 5.2 : Sistem Calisma Diyagrami.
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6. SONUCLAR VE GELECEK CALISMALAR

Gergeklestirilen calismalar sonucunda, kullanilan yoOntemlerin  performansi,
hassasiyeti ve uygulanabilirligi kapsamli bir sekilde degerlendirilmis, bu dogrultuda
belirli kosullar altinda hangi yontemin daha etkili oldugu analiz edilmistir. Asagida,
hata matrisi temel alinarak hesaplanan performans skorlar1 ve isleme siireleri
sunulmaktadir. Kusurlu kumaslarin goriintiileri, gelismis kamera-optik sistemleri
araciligiyla elde edilmis, tanimlama algoritmalari ise ¢esitli yaklasimlar kullanilarak
gelistirilmis ve test edilmistir. Deneysel veriler dogrultusunda farkli yontemlerin

performanslari karsilagtirmali olarak incelenmistir.

Orme fabrikalarindan toplanan kusurlu kumaslar, is yeri test diizenegine entegre
edilerek iiretim sistemleri ile benzer bir ¢alisma ortami olusturulmustur. Yakalanan
goriintiilerde igne kingi, kelebek ve yag lekesi gibi cesitli fiziksel kusurlar tespit
edilmistir. Her hata tiirtine iliskin sonuglar, tim modeller igin Cizelge 6.1°de
sunulmakta olup, elde edilen bulgular dogrultusunda belirli hata tiirlerinin hangi model

ile daha etkin bir sekilde tespit edilebilecegi ortaya konulmaktadir.

Cizelge 6.1 : Hata tiplerinde basar1 orani. (Egrilik Algoritmasi, Modifiye Egrilik
Algoritmasi, Gabor Doniisiimii, Curvelet Dontistimii, Hough Dontistimii, Evrisimli Sinir
Ag1, RestNet50, YoloVb).

YOntem Delik Igne King1t  May Izi Likra K. Yag Izi
EA 0,32 0,39 0,56 0,49 0,29
MDEA 0,78 0,82 0,74 0,81 0,60
GD 0,81 0,99 0,99 0,85 0,78
CD 0,85 0,78 0,75 0,70 0,84
HD 0,92 0,78 0,71 0,85 0,78
ESA (CNN) 0,91 0,90 0,88 0,82 0,92
RestNet50 0,96 0,95 0,92 0,87 0,95
YoloV5 0,94 0,95 0,92 0,86 0,94

Son olarak, farkli yaklagimlar i¢in karigiklik matrisi ve skorlar elde edilmistir.
Deneysel test sonuglari, dogruluk ve hassasiyet degerlerini karsilastirmak amaciyla
Cizelge 6.2°de sunulan hata basari orani verileri, farkli yontemlerin hata tespiti
performanslarint karsilagtirmali olarak gostermektedir. Sonuglara gore, geleneksel

yontemler arasinda en yliksek dogruluk orani (%91) ve en iyi F1 skoru (%94) Gabor
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Doniistimii  (GD) yontemiyle elde edilmistir. Ancak, islem siiresi agisindan
degerlendirildiginde GD yalnizca 110 ms ile olduk¢a hizli bir performans
sergilemektedir. Derin 6grenme tabanli yontemler arasinda ise en yiiksek basar1 orani
RestNet50 (%96 dogruluk, %95 F1 skoru) ile elde edilirken, islem stiresi 1340 ms ile
diger yontemlere kiyasla daha uzun siirmektedir. YoloV5 yontemi, %95 dogruluk ve
%93 F1 skoru ile yiiksek performans sunarken, 127 ms iglem siiresi ile hizli bir
alternatif olusturmaktadir. Geleneksel yontemler arasinda Hough Doniisimii (HD),
%387 dogruluk ve 38 ms islem siiresi ile diisiik islem maliyeti avantajina sahiptir. Genel
olarak, derin 6grenme tabanli yontemler daha yiiksek dogruluk oranlar1 saglarken,
islem siiresi acisindan bazi geleneksel yontemlere kiyasla daha fazla hesaplama

maliyeti gerektirdigi goriilmektedir.

Cizelge 6.2 : Hata basar1 orani. (Egrilik Algoritmasi, Modifiye Egrilik Algoritmasi,
Gabor Doniigiimii, Curvelet Dontistimii, Hough Dontistimii, Evrigimli Sinir Ag1,
RestNet50, YoloV5).

Yontem Acc F1 Precision Recall Process Time
EA 0,32 0,39 0,56 0,29 203ms
MDEA 0,78 0,82 0,74 0,92 295ms
GD 0,91 0,94 0,89 0,99 110ms
CD 0,80 0,65 0,81 0,72 1150ms

HD 0,87 0,77 0,85 0,84 38ms

ESA (CNN) 0,93 0,89 0,91 0,89 1080ms
RestNet50 0,96 0,95 0,95 0,95 1340ms
YoloV5 0,95 0,93 0,92 0,93 127ms

Makinenin tespit edebilecegi hatalarin en az 1 mm boyutunda olmasi durumunda,
dogru bir algilama gergeklestirebilmek i¢in en az 4 piksel ¢ozlniirliigiinde goriinti
alimmasi gerekmektedir. Bu gereksinim, makinenin giinliik kapasitesi ile birlikte
degerlendirildiginde, giinliik olarak yaklasik 50-60 GB veri islenmesi ve depolanmasi
gerekliligini ortaya koymaktadir. Gergek zamanli calisma hedefi gbz Oniinde
bulunduruldugunda, 6nerilen kesik egrilik algoritmasinin, islenen ve saklanan veri
miktar1 agisindan Ogrenme tabanli algoritmalara kiyasla daha avantajli oldugu

sonucuna varilmistir.

Hatali goriintiiler {lizerinde gergeklestirilen test sonuclar1 incelendiginde, 96x200
piksel boyutundaki bir goriintiiniin 57.600 bayt veri igerdigi, buna karsin 638 noktada
cikarilan ozelliklerin yalnizca 5.100 bayt veri gerektirdigi belirlenmistir. Bu durum,
veri sikistirma oranini iyilestirerek sistemin gercek zamanli calisma yetenegini

artirmaktadir.
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Hatali kumas tespiti i¢in dnerilen egrilik algoritmasi, bu sorun i¢in 6zel olarak yapilan
gelistirmelerle birlikte hatali kumas goriintiisii lizerinde uygulanmis ve elde edilen
sonuglar sunulmustur. Her nokta i¢in egim alinarak, konveks veya konkav olup
olmadig1 kontrol edilmistir ve akilli se¢cim algoritmasi ile glincellenerek bir egrilik
fonksiyonu elde edilmistir. Elde edilen dis yarigap ve a¢1 degerleri ile hata tespiti i¢in

orta seviye dogrulukla kullanilabilecegi gosterilmistir.

Gabor doniisiimii, hata tiirline 6zgli parametre ayarlar1 ile dikey ve yatay hatalarin
tespitinde yiiksek basar1 oranlarina ulasabilmektedir. Bununla birlikte, dikey ve yatay
hatalardaki bu basarili sonuglara ragmen, ¢apraz ve diger tiirdeki hatalarin tespitinde
beklenen performans: sergileyememektedir. Farkli kumas tiirleri i¢in benzer basari
diizeyine ulagabilmek amaciyla, parametrelerin giincellenmesi ve optimizasyonu

gerekmektedir.

Curvelet Dontigiimii, yag lekesi kusurlarmin tespitinde giiglii bir performans
sergilemis ve %84 dogruluk oranina ulasarak delik tespiti i¢cin gosterdigi basariya
yakin bir sonug¢ elde etmistir. Bu durum, Curvelet Donilistimiiniin 6zellikle ince
dokularin ve desenlerin kritik oldugu kusur tiirlerinde etkili bir yontem oldugunu
gostermektedir. Bununla birlikte, yontemin goriintiiye doniisiim uygulayip ardindan
yeniden olusturmasi nedeniyle yiiksek dogruluk orami saglasa da gergek zamanli

uygulamalar i¢in yeterli hizda ¢aligmasinin zor oldugu degerlendirilmektedir.

Bununla birlikte, Hough Doniisiimii, delik tespitinde en yiiksek dogruluk oranini elde
ederek en iyi performansi gostermis, ancak diger kusur tiirlerinde orta seviyede
dogruluk saglamistir. Cogu kusur tiirlinde 6grenme tabanli modeller diger yontemleri
geride biraksa da Curvelet Doniisiimii yag kusurlarinin tespitinde 6ne ¢ikmaktadir. Bu
durum, belirli kusur analizlerinin gerekli oldugu uygulamalarda Curvelet
Doéniislimiiniin  avantaj sagladigimi gostermektedir. Bu yontemlerin bir araya
getirilmesiyle daha giiclii bir hata tespit mekanizmasi olusturulabilir. Curvelet
Doéniistimii, goriintiiyli 6n isleyerek kenarlari ve egrileri belirginlestirirken, Hough
Dontisiimii sekil tespiti asamasinda daha yiiksek dogruluk saglayabilmektedir.
Curvelet Doniistimii ve Hough Doniisiimii, goriintii isleme alaninda iki farkli ancak
giiclii paradigmay1 temsil etmektedir. Curvelet Doniisiimii, egri 6zelliklerin ¢ok dlgekli
ve yonlii analizine olanak tanirken, Hough Doniigiimii parametrik sekillerin tespitinde

istlin performans gostermektedir. Bu iki yontemin birlestirilmesi, 6zellikle kusur
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tespiti  gerektiren endiistriyel uygulamalarda hata analizinin dogrulugunu

arttirtlabilmektedir.

Ogrenme tabanli kumas kusur tespit yontemleri, diger geleneksel yaklasimlara kiyasla
yliksek dogruluk oranlar1 saglamakla birlikte, biiylik miktarda egitim verisi ve yiiksek
islem giicii gerektirmektedir. Yeterli miktarda egitim verisinin bulunmadigi
durumlarda, en yiiksek basar1 oranlar1 genellikle ResNet-50 gibi 6nceden egitilmis
derin 6grenme modelleri kullanilarak elde edilmistir. Yerel hata tespiti i¢in yiiksek
performanslt donanimin kullanilmas: gerekmektedir. Bu donanim gereksinimleri
saglandiginda, yiiksek dogruluk orani sunan 6grenme tabanli yaklagimlar etkin bir
sekilde uygulanabilecektir. Gergeklestirilen tiim hesaplama ve testler, ger¢ek zamanli
hata tespiti i¢in donanim se¢iminin kritik bir Oneme sahip oldugunu ortaya
koymaktadir. Cizelge 6.2'de sunulan islem stiresi sonuglari, Raspberry Pi gibi standart
bir gelistirme kart1 ve Google Colab ortaminda hesaplanmistir. Ardindan, tiim testler
GPU destekli bir gomiilii sistem tizerinde gerceklestirilmis ve bu sistemin performansi
diger donanimlarla karsilastirilmistir. Yapilan testler sonucunda, gémiilii sistemin
daha yiiksek performans sundugu ve gercek zamanl isleme kriterlerine daha yakin
sonuglar sagladig belirlenmistir. GPU iizerinde ¢alisan 6grenme tabanli hata tespit
yontemi, tek bir goriintli i¢cin yaklasik 110-130 ms siirede islem yapmaktadir. Elde
edilen bu sonuglar, neredeyse gercek zamanli bir gémiilii sistem uygulamasi

gelistirmek igin yeterli islem hizina ulasildigini gostermektedir.

Farkl1 tekniklerin birlestirilmesiyle, genis bir kusur yelpazesine uyum saglayabilen,
yiiksek dogruluk ve performans sunan entegre bir sistem gelistirilmistir. 1k asamada,
goriintiilerin  6n islenmesi sirasinda detaylarin belirginlestirilmesi saglanmus,
sonrasinda sekil ve kusur tespiti i¢cin hassas analizler gerceklestirilmistir. Bunun
iizerine, ileri diizey algoritmalarin kullanimiyla, farkli kusur tiirlerinde etkili bir
sekilde calisan ve yliksek dogruluk saglayan bir yapi olusturulmustur. Donanim
iizerinde yapilan testler, sistemin ger¢ek zamanli ¢alismaya uygun oldugunu ve yiiksek
bagar1 kriterlerini karsiladigini gostermistir. Bu yaklasimlar bir araya getirilerek, kusur

tespiti ve siiflandirmasi icin etkin ve uygulanabilir bir {iriin ortaya konmustur.

Geligstirilen sistemin basarisi, yalnizca kullanilan algoritmalarin dogruluguna degil,
ayn1 zamanda maliyet ve performans dengesine de dayanmaktadir. Sistem, yliksek
performanslt donanim gereksinimini azaltmak i¢in 6n isleme asamasinda detaylar

optimize eden tekniklerden faydalanmaktadir. Bu, goriintiilerin dogru bir sekilde
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analiz edilmesini saglarken islem ylkiini disiiriir ve ag maliyetini azaltmaktadir.
Ozellikle 6grenme tabanli yontemler, egitim icin biiyiik veri setleri ve yiiksek islem
giicli gerektirdiginden, 6n isleme yontemleri hem verimliligi artirabilir hem de daha
diisiik maliyetle uygulanabilirlik saglayabilmektedir. Ayrica, ag yapisinin karmagsikligi
ve biiyikliigli, sistemin maliyetini ve ger¢cek zamanli performansini dogrudan
etkilemektedir. Bu nedenle, dogru 6n isleme tekniklerinin se¢imi, donanim ve ag
maliyeti lizerindeki ytikii azaltirken, yiiksek dogruluk ve hizli sonuglar elde edilmesini
miimkiin kilmaktadir. Bu yaklasim, maliyet, performans ve esneklik agisindan

sistemin endiistriyel uygulanabilirligini artirmaktadir.

6.1 Gelecek Uygulama Alam

Kumas hata tespitinde yapay zeka ve makine 6grenimi teknolojilerinin daha yaygin ve
etkin bir sekilde kullanilmasi beklenmektedir. Bu baglamda, yerli ve uluslararasi
bir¢ok girisim, gelismis goriintii isleme ve analiz teknikleri ile hatalar1 daha hizli ve
dogru bir sekilde tespit etmeye odaklanmaktadir. Tiirkiye'deki ve diinya genelindeki
yenilik¢i sirketler, tekstil fabrikalarima entegre edilebilen akilli kamera sistemleri
gelistirerek tiretim hatlarinda gercek zamanli hata tespiti gerceklestirebilmektedir. Bu
sistemler, iretim siireglerinde verimliligi artinrken ayni zamanda maliyetleri
diigsiirmekte ve insan hatasint minimize ederek kalite kontrol siireclerini optimize
etmektedir. Bu tiir teknolojiler, kumas kalitesinde standartlar1 ytikselterek miisteri
memnuniyetini  artirmakta ve  tekstil endiistrisinin  dijital ~ dOniisimiini

hizlandirmaktadir.

Bu teknolojik ilerlemeler, ayn1 zamanda uluslararas1 rekabet ortaminda 6nemli bir
avantaj saglamaktadir. Ozellikle, hata tespit sistemlerinin makine &grenimi
algoritmalariyla desteklenmesi, karmagsik hatalarin bile yiiksek dogrulukla tespit
edilmesini miimkiin kilmaktadir. Bunun yani sira, sistemlerin siirekli olarak 6grenme
ve gelisme kapasitesi sayesinde, tekstil endiistrisinde kalite kontrol siirecleri daha
esnek ve dinamik bir yapiya kavusacaktir. Bu tiir yenilik¢i ¢ozlimler, yalnizca
verimliligi artirmakla kalmayip, siirdiiriilebilir iiretim hedeflerine ulasilmasina da
katki saglamaktadir. Sonu¢ olarak, kumas hata tespitinde yapay zeka ve makine
Ogrenimi tabanl ¢oziimler, tekstil endiistrisinin gelecegini sekillendirerek, sektorde

kiiresel standartlarin belirlenmesinde 6ncii bir rol oynayacaktir.
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Gelecekte, kumas hata tespitinde generative Al ve biiyiik dil modelleri (LLM'ler)
onemli bir rol alacagi beklenmektedir. Generative Al, dogal dil isleme ve 6grenme
yetenekleriyle, hata tespit sistemlerine daha akilli analiz ve raporlama yetenekleri
kazandirabilir. Ozellikle, kumas iizerinde tespit edilen kusurlarin smiflandiriimasi, bu
kusurlarin olusma nedenlerinin analiz edilmesi ve ¢dziim Onerilerinin sunulmasi gibi
islemler, generative Al'nin sagladigi gelismis baglam anlama ve veri iiretme
yetenekleri sayesinde daha hizli ve etkili hale gelebilir. Ger¢ek zamanli veri
analitigiyle, generative Al, iiretim siireglerinden gelen biiylik miktarda veriyi
isleyebilir, hata tiirleri hakkinda detayli raporlar olusturabilir ve bu bilgileri
operatorlere agiklayici bir sekilde sunabilir. Boylece, hata tespit ve miidahale siirecleri

daha bilingli ve proaktif bir sekilde yiiriitiilebilir.

Ayrica, generative Al, kumas lretiminde siirdiiriilebilirlik ve verimliligi artirma
potansiyeline sahiptir. Uretim hattinda biriken gecmis verileri analiz ederek kusur
olusumunun nedenlerini 6nceden tahmin edebilir ve iyilestirme Onerileri sunabilir.
Bunun yaninda, iiretim silirecinde olusan hatalarin detayli siniflandirmasi, kusurlu
kumaglarin geri donilisim veya yeniden isleme slireglerine yonlendirilmesini
saglayabilir. Generative Al, dijital ikiz teknolojileri ve artirilmis gerceklik (AR) ile
entegre edildiginde, operatorlere hatalarin gorsellestirilmesi ve ¢oziim Onerilerinin
interaktif bir sekilde sunulmasi gibi yenilik¢i yontemler sunabilir. Bu gelismeler,
tekstil endiistrisinde kaliteyi artirirken, atik oranlarini azaltarak gevresel etkilerin de

minimuma indirilmesine katki saglayacaktir.
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EK A: Saha Test Gorlntuleri

Sekil A.1 : Saha Test Gériintiileri: (a)Tek Plaka. (b)Cift Plaka. (c)Ustten Baglant1 (d)
tek plaka
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