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GERÇEK ZAMAN-İMGE İŞLEME TEMELLİ KUMAŞ KALİTE KONTROL 

SİSTEMİ 

ÖZET 

Tekstil sektöründe üretimin her aşamasında kalite kontrol, küresel pazarda rekabet 

edebilmek için hayati bir unsurdur. Manuel kumaş kusur incelemesinin sorunları, 

hassasiyet eksikliği ve zaman alıcı olmasıdır. Bu nedenle erken ve doğru kumaş hatası 

belirlenmesi, kalite kontrolün kritik bir aşamasıdır. Başarılı bir otomatik kumaş hata 

inceleme sistemi oluşturmak için iki ana zorluk vardır: kusur tespiti ve kusur 

sınıflandırılması. Geleneksel olarak, kumaş kusurlarının sınıflandırılması verimsiz ve 

emek yoğun bir süreç olan insan görsel muayenesiyle yapılmaktadır. Artan kumaş hata 

çeşitliliği nedeniyle, kumaş ürünlerinin kalitesini garanti altına almak için daha yüksek 

doğrulukla hataları sınıflandırabilen etkili yöntemlerin geliştirilmesi gerekmektedir. 

Tekstil kumaş malzemeleri ve ürünleri için otomatik kalite güvencesi, gerçek dünya 

uygulamalarındaki en karmaşık algoritmaların kullanıldığı yapay görme 

problemlerinden biridir [1-3]. 

Örme işlemi sırasında, kumaş ipliğinin kalitesindeki ve üretim ile çalışma 

koşullarındaki rastgele değişiklikler genellikle boyut, şekil, görünüm ve renk 

bakımından değişen dinamik hatalara yol açar. Tekstil ürün kalitesinde görsel 

denetimden kaynaklanan ekonomik faydalar çok büyüktür ve ürün kalite güvencesi 

için otomatik bilgisayarlı görüntü işleme çözümlerine yapılan yatırımları haklı 

çıkarmaktadır. En yetenekli denetçilerin bile kumaş hatalarının yalnızca yaklaşık 

%70'ini tespit edebildiği ve kumaş hatalarının üretilen kumaşların değerini yaklaşık 

%45-65 oranında azalttığı tahmin edilmektedir. Mevcut tespit sistemlerinin maliyetleri 

önemli ölçüde yüksektir ve tespit edebildikleri kusur türleri oldukça sınırlıdır. Düşük 

maliyetli yüksek hızlı bilgisayarlar, yüksek çözünürlüklü dijital kameralar ve düşük 

maliyetli depolamanın artan kullanılabilirliği, güçlü otomatik tekstil denetim 

çözümlerinin gelişeceğini ve yaygınlaşacağını göstermektedir [4-6]. 

Tez çalışmasında, histogram tabanlı yöntemler, renk tabanlı yaklaşımlar, görüntü 

segmentasyon tekniği, frekans dönüşümü ile algılama, doku tabanlı kusur algılama, 

görüntü morfolojisi işlemleri ve derin öğrenme yöntemlerine ilişkin kapsamlı bir genel 

çözüm üzerinde durulmaktadır. Araştırma, farklı kumaş kusurlarını tespit etmek için 

bilgisayarla görme ve dijital görüntü işleme uygulamaları kullanarak akan kumaşlarda 

hata tespiti için gerçek zamanlı ve yüksek performanslı çalışan algoritmaları 

gerektirmektedir. Bu nedenle, grafik kartı tabanlı geliştirmeler ile tespit ve 

sınıflandırma yapacak, ayrıca farklı yöntemler kullanarak kumaşın hız ve genişlik 

bilgilerini de hesaplayarak hata geometrisini kaydetmeyi hedeflemektedir.  
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REAL TIME-IMAGE PROCESSING BASED FABRIC QUALITY CONTROL 

SYSTEM 

SUMMARY 

Quality control at every stage of production in the textile industry is a vital factor for 

competing in the global market. The textile industry’s reliance on high-quality 

production demands a robust inspection system to ensure minimal defects in fabric 

products. Traditionally, manual inspection methods have been the primary approach 

to fabric defect detection. However, these methods suffer from critical limitations, 

such as a lack of precision and high time consumption. These shortcomings often lead 

to missed defects or inconsistencies in inspection outcomes, highlighting the need for 

more reliable and efficient solutions. Consequently, early and accurate fabric defect 

identification has become a critical phase of quality control in the textile production 

process, ensuring consistent product quality and meeting customer expectations [1-3]. 

 

The primary challenges in developing a successful automatic fabric defect inspection 

system are defect detection and defect classification. Defect detection involves 

identifying anomalies on the fabric surface, while defect classification requires 

categorizing these anomalies into predefined types based on their characteristics. 

Manual methods, which involve human visual inspection, are inherently inefficient 

and labor-intensive. These methods also pose challenges related to inspector fatigue 

and subjective judgment, which can result in variability and errors in defect detection. 

With the increasing diversity and complexity of fabric defects, such traditional 

approaches are no longer sufficient. Thus, the development of automatic methods 

capable of achieving higher accuracy in defect detection and classification has become 

imperative for maintaining product quality and meeting global market demands. 

 

Automatic quality assurance for textile materials and products represents one of the 

most complex artificial vision problems. This complexity arises from the need to 

analyze dynamic and variable defect patterns in real time. The implementation of 

advanced algorithms in real-world applications has shown promising results in 

addressing these challenges. Several state-of-the-art approaches leverage 

developments in artificial intelligence, digital image processing, and computer vision 

technologies to create innovative solutions for automatic defect inspection systems. 

These technologies provide the capability to process large volumes of data, identify 

intricate defect patterns, and adapt to various production conditions. By integrating 

these advanced methodologies, the industry can achieve significant improvements in 

precision, reliability, and speed compared to manual inspection. 
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During the knitting process, random variations in yarn quality and operational 

conditions often result in dynamic defects. These defects differ significantly in their 

size, shape, appearance, and color, making their detection a complex task. For instance, 

defects such as holes, slubs, stains, or misalignments may vary across different fabric 

types and production conditions. Such variability necessitates the use of adaptive 

algorithms capable of handling a wide range of defect types and severities. Moreover, 

the economic implications of these defects are substantial, as fabric defects can reduce 

the value of the produced materials by approximately 45-65%. This loss impacts not 

only the profitability of manufacturers but also the perception of quality by customers. 

Furthermore, it is estimated that even the most skilled inspectors can detect only about 

70% of fabric defects during manual inspections. These limitations underscore the 

necessity of investing in automated solutions for fabric quality assurance, which can 

address both economic and operational challenges in the industry [4-6]. 

 

The adoption of automated computer vision-based systems for textile quality control 

has several economic and operational advantages. These systems enable the detection 

and classification of a wider range of defects while significantly reducing the time and 

labor involved. Additionally, advancements in low-cost, high-speed computing, high-

resolution digital cameras, and efficient data storage solutions have made automated 

inspection systems increasingly accessible and practical. With the reduction in costs 

associated with these technologies, small- and medium-sized enterprises are now able 

to implement advanced inspection systems that were previously cost-prohibitive. As 

these technologies continue to evolve, the adoption of powerful automated textile 

inspection solutions is expected to become more widespread, leading to higher 

standards of quality control across the industry. Furthermore, automated systems 

ensure consistent inspection quality, reducing the likelihood of customer complaints 

and returns, thereby strengthening brand reputation and customer loyalty. 

 

The methodologies explored in this thesis are designed to address these multifaceted 

challenges. By presenting a comprehensive general solution for automatic fabric defect 

detection and classification, the research aims to improve existing systems 

significantly. The proposed methodologies incorporate a variety of techniques, 

including histogram-based methods, color-based approaches, image segmentation 

techniques, frequency transformation-based detection, texture-based defect detection, 

image morphology operations, and deep learning algorithms. Each of these approaches 

contributes to enhancing the system's ability to identify and classify defects with 

greater accuracy and efficiency. For instance, histogram-based methods provide a 

statistical foundation for identifying anomalies, while frequency transformation 

techniques, such as Fourier and wavelet analysis, allow for the detection of periodic 

defects. Deep learning methods, on the other hand, introduce adaptability and precision 

by leveraging large datasets and training neural networks to recognize intricate 

patterns. Texture-based detection, combined with image morphology operations, 

further refines the accuracy by capturing microstructural differences in fabric surfaces. 
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To ensure real-time performance, the research focuses on developing high-

performance algorithms capable of processing flowing fabric data. These algorithms 

leverage computer vision and digital image processing technologies to analyze the 

fabric surface dynamically. Additionally, the thesis explores the use of graphics card-

based enhancements to accelerate computation and improve overall system 

performance. By integrating these techniques, the system not only detects defects but 

also records their geometry by calculating the speed and width information of the 

fabric. This detailed analysis enables manufacturers to trace defects back to specific 

stages in the production process, facilitating targeted interventions and process 

improvements. Moreover, real-time monitoring systems allow for immediate feedback 

and corrective actions, minimizing waste and downtime in production lines. 

 

In conclusion, the economic and operational advantages of automated fabric defect 

inspection systems make them an indispensable tool for modern textile production. By 

addressing the limitations of manual inspection and leveraging advanced technologies, 

this thesis aims to contribute to the development of efficient, reliable, and cost-

effective solutions for ensuring high-quality textile products. The integration of 

innovative methodologies and cutting-edge technologies underscores the potential for 

transformative advancements in fabric quality assurance, paving the way for a more 

competitive and sustainable textile industry. The outcomes of this research are 

expected to have a far-reaching impact, not only in improving defect detection rates 

but also in enhancing the overall efficiency and sustainability of textile manufacturing 

processes. Furthermore, the successful implementation of such systems will encourage 

ongoing innovation, setting new benchmarks for quality and reliability in the textile 

industry. 
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1.  GİRİŞ  

Tekstil endüstrisinde üretimin her aşamasında kalite kontrol, küresel pazarda varlığını 

sürdürebilmek için kilit bir unsurdur. Manuel kumaş kusuru incelemesinin sorunları, 

hassasiyet eksikliği ve yüksek zaman tüketimidir; bu yüzden erken ve doğru kumaş 

kusuru tespiti, kalite kontrolün önemli bir aşamasıdır. Başarılı bir otomatik kumaş 

kusuru inceleme sistemi elde etmek için çözülmesi gereken iki ana zorluk vardır: 

Kumaş hata tespiti ve kusur sınıflandırılması. Kumaş kusur sınıflandırması, geleneksel 

olarak verimsiz ve yoğun emek gerektiren insan görsel muayenesiyle yapılmaktadır. 

Artan kumaş kusurları çeşitliliği ile birlikte, kumaş ürünlerinin kalitesinin 

sağlanmasına katkıda bulunabilecek daha yüksek bir doğrulukla kusurları 

sınıflandırmak için etkili yöntemler geliştirmek gerekmektedir. Tekstil kumaş üretimi 

gerçekleştiren firmalar açısından yüksek kalite güvencesinin sağlanması, gerçek 

endüstriyel uygulamalarda karşılaşılan en zorlu bilgisayarla görme problemlerinden 

biri olarak öne çıkmaktadır.  

1.1 Tezin Amacı 

Kumaş üzerinde kamera ile hata kontrolü yapan sistemin amacı, üretim sürecinde 

ortaya çıkabilecek hataların tespit edilmesi, kaydedilmesi, sınıflandırılması ve 

raporlanmasıdır. Bu sistem, yüksek çözünürlüklü kameralar kullanarak kumaştaki 

kusurları otomatik olarak algılamakta ve bu hataların detaylarını kayıt altına 

almaktadır. Ardından, tespit edilen hatalar belirli kategorilere ayrılarak sınıflandırılır 

ve sistematik bir şekilde depolanır. Toplanan veriler, operatörlere anlık olarak bildirilir 

ve düzenli aralıklarla firmalara rapor olarak sunulmaktadır. Bu sayede, kalite kontrol 

süreçleri iyileştirilir ve üretim verimliliği arttırılması amaçlanmaktadır. 

1.2 Literatür Araştırması 

“Kumaş Hatalarının Isıl Görüntüleme ve Görüntü İşleme Teknikleri ile Tespit 

Edilmesi” adlı Kazım Yıldız tarafından 2014 yılında yayımlanan doktora tezinde 

kumaş hata denetimi ile ilgili iki farklı çalışma gerçekleştirilmiştir. İlk çalışma hatalı 
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kumaş görüntülerine, görüntü işleme algoritmaları uygulanmıştır. Hatalı alanın 

tespitinden sonra şekilsel ve histogram özellikleri çıkarılmıştır. Bu özellikler 

kullanılarak Fuzzy C-Means (FCM) algoritması ile kümeleme işlemi 

gerçekleştirilmiştir. Ayrıca tespit edilen hatanın kumaş üzerindeki dikey ve yatay 

koordinatlarının belirlenmesi de gerçekleştirilmiştir. İkinci çalışma ise kaydedilen 

video üzerinde hatalı görüntünün tespiti yapılmıştır. Hata, K En Yakın Komşu 

(KEYK), Bayes Ağları (BA) ve Karar Ağaçları (KA) algoritmaları kullanılarak anlık 

olarak sınıflandırılmıştır. Ayrıca hatanın yeri, cinsi ve kumaşın hangi metresinde yer 

aldığı belirlenmiştir [93].  

“Yuvarlak Örgü Makineleri için Görüntü İşleme Tabanlı Kumaş Hatası Tespit 

Sistemi” adlı Kazım Hanbay tarafından 2016 yılında yayımlanan doktora tezinde 

yuvarlak örgü makinesi üzerinde gerçek zamanlı çalışabilen bir kumaş hatası tespit 

sistemi geliştirilmiştir. Bu sistem görüntü elde etme düzeneğinin kurulması; kumaş 

veri tabanının inşası, hata tespit yöntemlerinin geliştirilmesi; üretim esnasında hata 

tespit süreçlerini içermektedir. Tez sürecinde yapılan çalışmalar neticesinde 6 farklı 

kumaş tipi ve 10 farklı kumaş hatasını içeren yeni bir kumaş veri tabanı inşa edilmiştir. 

Bu görüntülerin uzaysal ve frekans alanında öznitelikleri elde edilmiş ve 

sınıflandırılma işlemleri gerçekleştirilmiştir. Tezin en önemli katkısı 6 yeni öznitelik 

çıkarma yöntemini literatüre kazandırmış olmasıdır: GDF-HOG, Eig(Hess)-HOG, 

ikinci mertebe HOG, Eig(Hess)-CoHOG, GM-CoHOG ve yüzey etiketleme temelli 

CoHOG. Her bir yöntemin klasik yöntemler ile karşılaştırmalı olarak sağladığı 

üstünlükler ve eksiklikler tez içerisinde detaylı bir şekilde irdelenmiştir. Uzaysal 

alandaki bu yöntemlere ek olarak, Fourier, dalgacık ve shearlet dönüşüm yöntemleri 

kullanılarak spektral kumaş görüntülerinin belirli istatistiksel öznitelikleri çıkarılmış 

ve sınıflandırılmaları sağlanmıştır. Sınıflandırıcı olarak Yapay Sinir Ağları 

kullanılmıştır [94].  

“Development of a New Software for Fabric Defect Detection and Classification 

Using Image Processing and Machine Learning Methods” adlı Ahmad Mones 

NAWAF tarafından 2019 yılında yayımlanan yüksek lisans tezinde, kumaş 

yüzeyindeki hataları otomatik olarak tespit etmek ve sınıflandırmak için görüntü 

işleme ve derin öğrenme yöntemlerine dayalı bir uygulama oluşturmaktır. Kusur 

tespitinde Fourier dönüşümü (DFT), Gabor filtreleri kullanılmış, Fast-R CNN 

sınıflandırmada kullanılmıştır. Ortalama kare hataları (RMSE'ler) tespit ve 
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sınıflandırma hatalarını hesaplamak için kullanılmıştır. Elde edilen sonuçlara 

dayanarak, görüntü işleme yöntemlerinin, özellikle DFT'nin hata tespitinde kabul 

edilebilir bir doğrulukla kullanılabileceği kanıtlanmıştır [95].  

“Real time fabric defect detection system on an embedded DSP platform” adlı Jagdish 

Lal Raheja, Bandla Ajay, Ankit Chaudhary tarafından 2013 yılında yayımlanan 

makalede, endüstriyel kumaş üretimlerinde, küçük kusurları bulmak için 

otomatikleştirilmiş gerçek zamanlı bir sistem sunulmuştur. Hatalı ürünleri nakil 

etmeyerek maliyet tasarrufu sağlayacak ve aynı zamanda sadece kusurlu ürünleri 

göndererek kaliteli kumaşların şirket imajını oluşturmasına yardımcı olacaktır. 

Gömülü bir DSP platformunda uygulanan gerçek zamanlı bir kumaş hatası tespit 

sistemi (FDDS) burada sunulmaktadır. Kumaş görüntüsünün dokusal özellikleri, gri 

seviye eş oluşum matrisine (GLCM) dayalı olarak çıkarılır. Kusur tespiti için 

pencerenin tüm görüntü üzerinde hareket ettiği ve kumaş görüntüsünün GLCM'sinden 

bir dokusal enerji hesapladığı bir kayan pencere tekniği kullanılır. Enerji değerleri bir 

referansla karşılaştırılır ve bir eşiğin ötesindeki sapmalar kusur olarak rapor edilir ve 

ayrıca bir pencere ile görsel olarak temsil edilir. Uygulama, bir TI TMS320DM642 

platformunda gerçekleştirilir ve kod geliştirici stüdyo yazılımı kullanılarak 

programlanır. Bu uygulamanın gerçek zamanlı çıktısı bir monitörde izlenme 

yapılmasına olanak vermektedir [96].  

“Automatic Fabric Defect Detection Using Cascaded Mixed Feature Pyramid with 

Guided Localization” adlı Henry Y.T. Ngan, Grantham K.H. Pang, Nelson H.C. Yung 

tarafından 2011 yılında yayımlanan makalede, optik görüntü veri setlerinde kumaş 

hatası tespiti sistematik olarak incelenmiştir. Genel veri kümelerinin aksine, kusurlu 

görüntüler çok ölçekli, gürültülü ve bulanıktır. Arka ışık yoğunluğu da görsel algı için 

hassas olacaktır. Büyük ölçekli kumaş hatası veri kümeleri, bu dengesiz sorunları ele 

almak için endüstriyel uygulamada tespit gereksinimlerini karşılamak için toplanır, 

seçilir ve kullanılır. Daha iyi genelleme yapmak için geliştirilmiş iki aşamalı bir hata 

dedektörü oluşturulmuştur. Yığınlanmış özellik piramidi ağları, birinci aşamada 

derinlemesine karma bloğun enterpolasyonunda çapraz ölçek hata modellerini bir 

araya getirmek için ayarlanır. Özellik haritalarını paylaşarak, merkezlilik ve şekil 

dalları, önerilen kılavuzlu sabitleyicileri filtrelemek ve iyileştirmek için kademeli 

modülleri deforme olabilen evrişimle birleştirir. Dengeli örneklemeden sonra, ikinci 

aşamadaki kumaş kusur görüntüleri arasındaki etkileşimleri karakterize etmek için, 



4 

ilgilenilen bölge için konuma duyarlı havuzlama yoluyla öneriler aşağı örneklenir. 

Deneyler, uçtan uca mimarinin, mevcut dedektörlere kıyasla bölge tabanlı nesne 

dedektörlerinin tıkanmış kusur performansını iyileştirdiğini göstermektedir [97].  

“Motif-based defect detection for patterned fabric” adlı Henry Y.T. Ngan, Grantham 

K.H. Pang, Nelson H.C. Yung tarafından 2018 yılında yayımlanan makalede, 2B 

desenli dokudaki 17 duvar kâğıdı grubundan 16'sında kusurları tespit etmek için 

genelleştirilmiş bir motif tabanlı yöntem önerilmektedir. Makalede çoğu desenli 

dokunun kafeslere ve bileşenlerine- motiflere ayrıştırılabileceğini varsayar. Ardından, 

hareketli çıkarma enerjisini ve farklı motifler arasındaki varyansını hesaplamak için 

motiflerin simetri özelliğini kullanır. Bu değerlerin bir dizi hatasız model üzerinden 

dağılımını öğrenerek, kusurlu ve hatasız modelleri ayırt etmek için sınır koşulları 

belirlenebilir. Bu makale, yöntemin teorik temellerini sunmakta ve motifler ile kafes 

arasındaki ilişkileri tanımlamaktadır; buradan hareketle çıkarma enerjisi adı verilen 

yeni bir kavram, motifin dairesel kaydırma matrisler ile kendisi arasında norm ölçüsü 

kullanılarak türetilmiştir. Bu yazıda, hareketli çıkarma enerjisinin kusurlu motifin 

kusur bilgisini arttırdığı gösterilmiştir. Varyansı ile birlikte, kusurlu ve hatasız 

motifleri sınıflandırmak için karar sınırlarının çizildiği bir enerji varyans alanı daha da 

tanımlanır. Desenli kumaştan oluşan 16 duvar kâğıdı grubu üç ana gruba 

dönüştürülebildiğinden, önerilen yöntem bu üç ana grup üzerinden değerlendirilir ve 

bu üç ana gruptan 160 hatasız kafes numunesi karar sınırlarını tanımlamak için 

kullanılır, 140 hatasız ve 113 test için kullanılan hatalı numunelerdir. Önerilen yöntem 

için %93,32'lik genel bir tespit başarı oranı elde edilmiştir. Daha önce sunulan başka 

hiçbir genelleştirilmiş yaklaşım bu başarı oranına ulaşamaz ve bu nedenle bu sonuç 

daha önce yayınlanan diğer tüm yaklaşımlardan daha iyi performans göstermektedir 

[98].  

“Fabric defect detection via low-rank decomposition with gradient information and 

structured graph algorithm” adlı Boshan Shi, Jiuzhen Liang, Lan Di, Chen Chen, 

Zhenjie Hou tarafından 2021 yılında yayımlanan makalede, düşük aşamalı ayrıştırma 

modeli, bir matrisin hatasız bölgeyi (arka plan) temsil eden ve kusur alanını (ön plan) 

tanımlayan seyrek bir matrise ayrıştırıldığı kumaş hatası algılama potansiyelini 

gösterir. Ancak yine de iki eksiklik vardır. İlk olarak, kusurlu görüntünün dokusu 

yüksek gradyan özelliğine sahip olduğunda, mevcut model ile elde edilen seyrek 

matris hala çok sayıda tespit edilmemiş bölgelerin kenarlarını muhafaza etmektedir. 
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İkinci olarak, önceki bilgilerin kesin olmaması nedeniyle, çoğu model, küçük kusur 

alanı veya birden fazla döngü içeren kusur alanı ile uğraşırken, kusur bloğu etrafındaki 

kusursuz noktaları yanlış değerlendirecektir. Bu problemleri çözmek için, bu makale, 

gradyan bilgisinin düşük kademeli ayrıştırılmasına ve yapılandırılmış grafik 

algoritmasına dayanan bir kumaş hatası algılama yöntemi ortaya koymaktadır: 1) 

Yapılandırılmış grafik algoritması, kumaş kusur görüntüsünün özelliklerine göre, 

kumaş kusur görüntüsü, yerel özellik ve kusurlu hasar süresi ile hatasız bloğa ayrılır. 

2) Birleştirme işleminde, kafes içi birleştirmeyi teşvik etmek ve kusurlu blokların ve 

çevredeki kusurlu olmayan blokların birleşmesini önlemek için mevcut blokta bulunan 

döngü sayısına göre uyarlanabilir bir eşik ayarlanır. 3) Segmentasyon sonuçlarından 

hesaplanan hata ön bilgisi, hatasız bölgeyi zayıflatmak ve seyrek terim altındaki kusur 

alanını vurgulamak için matris ayrışmasına rehberlik etmek için kullanılır. Model 

standart bir veritabanı üzerinde değerlendirilmiştir ve en son dört yöntemle 

karşılaştırılmıştır. Bu yöntemin toplam TPR ve fpr değerleri, en iyi performans olan 

kutu, yıldız ve nokta veri tabanlarında sırasıyla %87,3 ve %1,21'dir [99].  

“Fabric defect detection systems and methods—A systematic literature review” adlı 

Kazım Hanbay, Muhammed Fatih Talu, Ömer Faruk Özgüven tarafından 2016 yılında 

yayımlanan makalede, kumaş hatası tespit yöntemlerinin kapsamlı bir literatür 

incelemesini sunmaktadır. İlk olarak, kamera ve lens gibi temel görüntü elde etme 

sistemi bileşenlerini kısaca açıklamaktadır. Hata tespit yöntemleri yapısal, istatistiksel, 

spektral, model tabanlı, öğrenme, hibrit ve karşılaştırma çalışmaları olarak yedi sınıfa 

ayrılır. Bu yöntemler doğruluk, hesaplama maliyeti, güvenilirlik, dönme / ölçekleme 

değişmezliği, çevrimiçi / çevrimdışı çalışma yeteneği ve gürültü hassasiyeti gibi 

kriterlere göre değerlendirilir. Her yaklaşımın güçlü ve zayıf yönleri karşılaştırmalı 

olarak vurgulanmaktadır. Ayrıca makinelerde dokuma ve örme yöntemlerinin 

kullanılabilirliği araştırılmıştır. Mevcut inceleme çalışmaları, tekstil ve bilgisayar 

görüşü alanında araştırma yapan okuyucular için kumaş hatası tespit sistemleri 

hakkında yeterli bilgi sağlamamaktadır. Görüntü elde etme sisteminin verimli bir 

şekilde kurulması için bir dizi bilgi eklenmiştir. Özellikle lens ve ışık kaynağı seçimi 

matematiksel olarak ifade edilmektedir [1].  

“A visual long-short-term memory based integrated CNN model for fabric defect 

image classification” adlı Yudi Zhao, Kuangrong Hao, Haibo He, Xuesong Tang, Bing 

Wei tarafından 2020 yılında yayımlanan makalede anlatılan, kumaş kusur 
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sınıflandırması, geleneksel olarak verimsiz ve yoğun emek gerektiren insan görsel 

muayenesiyle elde edilmesine bir çözüm getirmeye çalışmaktadır. Bu nedenle, bu 

sorunu çözmek için akıllı ve otomatik yöntemler kullanmak, sıcak bir araştırma konusu 

haline geldiği belirtilmektedir. Artan kumaş kusurları çeşitliliği ile birlikte, kumaş 

ürünlerinin kalitesinin sağlanmasına katkıda bulunabilecek daha yüksek bir doğrulukla 

kusurları sınıflandırmak için etkili yöntemler tasarlamak önem kazanmıştır. Kumaş 

kusurunun doku arka planında açık olmadığı ve birçok türünün ayırt edilemeyecek 

kadar kafa karıştırıcı olduğu göz önüne alındığında, bu makalede görsel bir uzun-kısa 

süreli bellek (visual long-short-term memory) tabanlı entegre CNN modeli 

önerilmiştir. İnsan görsel algısı ve görsel bellek mekanizmasından esinlenerek, üç 

özellik kategorisi çıkarılır; bunlar, yığılmış evrişimli otomatik kodlayıcılar (stacked 

convolutional auto-encoders) tarafından çıkarılan görsel algı (visual perception) 

bilgileri, görsel kısa süreli bellek (visual short-term memory) ile karakterize edilir. Sığ 

evrişimli sinir ağı (convolutional neural network) ve yerel olmayan sinir ağları ile 

karakterize edilen görsel uzun süreli bellek (visual long-term memory) bilgileri ile üç 

kumaş hatası veri setine ilişkin deneysel sonuçlar, önerilen modelin kumaş hatası 

sınıflandırması ile ilgili mevcut son teknoloji yöntemlere rekabetçi sonuçlar sağladığı 

gösterilmiştir [99].  

“Fabric defect detection using morphological filters” adlı K.L. Mak, P. Peng, K.F.C. 

Yiu tarafından 2009 yılında yayımlanan makalede, dokuma kumaşlar için otomatik 

hata algılama sorununu çözmek için morfolojik filtrelere dayalı yeni bir hata tespit 

şeması önerilmektedir. Önerilen şemada, tekstil kumaşının önemli doku özellikleri 

önceden eğitilmiş bir Gabor dalgacık ağı kullanılarak çıkarılmıştır. Bu doku özellikleri 

daha sonra kumaş arka planını çıkarmak ve kusurları izole etmek için sonraki 

morfolojik işlemde yapılandırma elemanlarının yapımını kolaylaştırmak için 

kullanılır. Önerilen hata tespit şeması yalnızca birkaç morfolojik filtre 

gerektirdiğinden, ilgili hesaplama yükü miktarı önemli değildir. Önerilen şemanın 

performansı, farklı tipte yaygın kumaş kusurlarına sahip çok çeşitli homojen tekstil 

görüntüleri kullanılarak değerlendirilir. Elde edilen test sonuçları, düşük yanlış 

alarmlarla doğru hata tespiti sergiler, böylece önerilen tespit şemasının etkinliğini ve 

sağlamlığını gösterir. Ek olarak, önerilen tespit şeması, prototipli otomatik bir denetim 

sistemi kullanılarak gerçek zamanlı olarak daha da değerlendirilir [100].  
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“Automatic fabric defect detection with a wide-and-compact network” adlı Yuyuan 

Li, Dong Zhang, Dah-Jye Lee tarafından 2019 yılında yayımlanan makalede, kumaş 

hatalarının otomatik tespiti, tekstil endüstrisi için önemli bir süreç olduğu için hata 

algılama modeli sunulmuştur. Tespit doğruluğunun yanı sıra, kaynakları sınırlı bir 

sistem için otomatik bir kumaş hatası algılama çözümü, işlem süresi ve basitlik 

açısından üstün performans gerektirir. Bu makale, birkaç yaygın doku kusurunun 

tespiti için kompakt bir evrişimli sinir ağı mimarisi önermektedir. Önerilen mimari, 

ağı optimize etmek için çok katmanlı algılayıcıya sahip birkaç mikro mimari kullanır. 

Bir mikro mimarinin ana bileşeni, kompakt bir modelde algılama doğruluğunu 

iyileştirmek için çok ölçekli analiz, filtre ayrıştırma, çoklu konum havuzlama ve 

parametre azaltma teknikleri kullanılarak oluşturulur. Deneysel sonuçlar, ana akım 

evrişimli sinir ağı mimarileri ile karşılaştırıldığında, önerilen ağın çok daha küçük bir 

model boyutuyla algılama doğruluğu açısından üstün performans elde ettiğini 

göstermektedir. Yalnızca kumaş kusurlarının tespiti için değil, aynı zamanda birkaç 

genel veri kümesinde nesne tanıma için de iyi çalıştığı gösterilmektedir [101].  

“Automated defect detection in uniform and structured fabrics using Gabor filters and 

PCA” adlı Lucia Bissi, Giuseppe Baruffa, Pisana Placidi, Elisa Ricci, Andrea 

Scorzoni, Paolo Valigi tarafından 2013 yılında yayımlanan makalede, TILDA görüntü 

veri tabanında test edilmiş, tek tip ve yapılandırılmış kumaşlarda doku kusur tespiti 

için geliştirilen algoritmayı açıklamaktadır. Önerilen yaklaşım, karmaşık bir simetrik 

Gabor filtre bankasına ve Ana Bileşen Analizine (Principal Component Analysis) 

dayanan bir özellik çıkarma aşamasında ve öklid özellik normuna ve bununla 

karşılaştırmalı olarak bir kusur tanımlama aşamasına göre kumaş tipine özel 

parametrelerle yapılandırılmıştır. Analizler, tek pikselleri dikkate almak yerine yama 

bazında gerçekleştirilmektedir. Performans, insan gözlemciler tarafından tespit edilen 

referans kusur konumları olarak kullanılarak, görünür doku ve ızgara benzeri yapılara 

sahip tek tip dokulu kumaşlar ve kumaşlarla değerlendirilmiştir. Sonuçlar, 

algoritmanın çoğu durumda önceki yaklaşımlardan daha iyi performans gösterdiğini, 

%98,8'lik bir algılama oranına ve %0,20–0,37 gibi düşük bir yanlış alarm oranına 

ulaştığını gösterirken, ağır yapılandırılmış iplikler için yanlış algılama oranı %5 kadar 

düşük olabilmektedir [102].  

“Defect Detection of Industrial Products based on Improved Hough Transform” 

başlıklı 2018 yılında Qingcai Ge, M.F., Xu, J tarafından hazırlanan çalışma, 
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endüstriyel üretim süreçlerinde merkezi simetri dağılım kurallarına sahip ürünlerin 

kusurlarını tespit etmek için geliştirilmiş bir Hough dönüşümü yöntemi sunmaktadır. 

Çalışmada, geleneksel yöntemlerin sınırlamaları analiz edilmiş ve endüstriyel 

ürünlerin merkezi bölgesinden başlayarak algılama hedefinin bulunduğu yöne doğru 

yönlü kümeleme yaklaşımı önerilmiştir. İlk olarak, ilgi bölgesinin (ROI) konturu ve 

merkezi belirlenmiş, ardından kontur üzerindeki noktalara Hough dönüşümü 

uygulanmıştır. Merkezi alan üzerinden geçen doğruların kısıt kurallarına uygun olarak 

oylama yapılmış ve oylama alanında elde edilen tepe noktaları kullanılarak endüstriyel 

ürün bileşenlerindeki kusurlar tespit edilmiştir. Deneysel sonuçlar, önerilen 

algoritmanın yüksek anti-parazit yeteneğine sahip olduğunu ve algılama hedefi ile arka 

plan arasındaki benzerlikten kaynaklanan algılanamazlık sorunlarını çözebildiğini 

göstermektedir. Ayrıca, bu yöntemin geleneksel Hough yöntemine kıyasla belirgin bir 

şekilde daha dayanıklı olduğu belirtilmiştir. Bu çalışma, merkezi simetri dağılım 

kurallarına sahip endüstriyel parçaların algılanmasında gerçek zamanlı işlem 

gerçekleştirebilen ve geleneksel yöntemlerin boşluklarını dolduran bir yaklaşım 

sunmaktadır. Deneysel sonuçlar, yöntemin merkezi simetri kurallarına uygun 

endüstriyel ürünleri kararlılıkla algılayabildiğini ve endüstriyel üretim süreçlerinde 

uygulanabilir olduğunu kanıtlamaktadır [54]. 

“Fabric defect detection using Discrete Curvelet Transform” adlı Anandan P, R S 

Sabeenian tarafından 2018 yılında yayımlanan makalede, moda pazarında kumaş 

seçimine yönelik artan müşteri talebiyle birlikte, kumaş dokusu çok çeşitli hale 

gelmekte ve bu çalışmada da hatasız kumaşın kontrolü için Curvelet Dönüşümü 

kullanarak bir çözüm sunulmaktadır. GLCM tabanlı, dalgacık temelli, ayrıca eğri çizgi 

temelli tekniklerin karşılaştırmalı bir çalışması da eklenmiştir. Planlanan teknikle elde 

edilen yüksek doğruluk, kumaş hatası için ekonomik bir çözüm önermektedir. Bu 

çalışma, ilk belgelenen, malzeme kusuru meselesini ele almak için dijital eğri 

dönüşümü olarak adlandırılan yepyeni bir çoklu-çözünürlüklü analiz aracının 

olasılıklarını araştırmak için düzenlenmesidir. Tanıyıcı, görüntü toplama cihazı ile 

dijital kumaş resimlerini alır ve bu görüntüyü Ayrık Eğrilik (Curvelet) Dönüşümü 

kullanarak ikili görüntüye dönüştürür. Önerilen algoritmik kural MATLAB'da simüle 

edilmiştir. Önerilen hata tespit modelinin performansı, çeşitli gerçek kumaş örnekleri 

ile derinlemesine deneyler aracılığıyla değerlendirilmiştir. Planlanan algılama modeli 
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etkili olmaya ve algılama doğruluğu ve yanlış alarm açısından bazı temsili algılama 

modellerinden üstün olmaya çalışılmıştır [45]. 

“Computer vision-based fabric defect analysis and measurement” adlı A. Kumar 

tarafından yılında 2011 yayınlanan bölümde, tekstil kumaş malzemeleri ve ürünleri 

için otomatik kalite güvencesi, gerçek dünya uygulamalarındaki en zorlu bilgisayarla 

görme sorunlarından biri olduğu anlatılmaktadır. Örme işleminde, kumaş ipliğinin 

kalitesindeki, üretim ve çalışma koşullarındaki rastgele değişiklikler, genellikle boyut, 

şekil, görünüm ve renk bakımından değişen dinamik olarak doldurulmuş kusurlara 

neden olur. Tekstil ürün kalitesi için görsel incelemeden kaynaklanan ekonomik 

faydalar çok büyüktür ve ürün kalite güvencesi için otomatikleştirilmiş görüntü işleme 

tabanlı çözümlere yapılan yatırımı gerekli hale getirmektedir. Son günlerde piyasada 

bulunan bazı kumaş kontrol makineleri pazara girmiştir. Bununla birlikte, maliyetleri 

önemli ölçüde daha yüksektir ve tespit edilebilen kusur aralıkları oldukça sınırlıdır. 

Düşük maliyetli yüksek hızlı bilgisayarların, yüksek çözünürlüklü dijital kameraların 

ve düşük maliyetli depolamanın artan kullanılabilirliği, sağlam otomatik tekstil 

denetim çözümlerinin yakın gelecekte popüler hale gelmesi için büyük umutlar 

yarattığı anlatılmaktadır [2].  

“Automated Fabric Defect Inspection: A Survey of Classifiers” adlı Md. Tarek Habib, 

Rahat Hossain Faisal, M. Rokonuzzaman, Farruk Ahmed tarafından 2014 yılında 

yayımlanan makalede, tekstil endüstrisinde üretimin her aşamasında kalite kontrol, son 

derece rekabetçi küresel pazarda varlığını sürdürmek için kilit bir faktör haline geldiği 

belirtilmektedir. Manuel kumaş hatası incelemesinin sorunları, hassasiyet eksikliği ve 

yüksek zaman tüketimidir; burada erken ve doğru kumaş hatası tespiti, kalite kontrolün 

önemli bir aşamasıdır. Bilgisayarlı görüntü işlemeye dayalı, yani otomatik kumaş hata 

denetim sistemleri, farklı ülkelerdeki birçok araştırmacı tarafından bu sorunları 

çözmek için çok faydalı olduğu düşünülmektedir. Başarılı bir otomatik kumaş hatası 

inceleme sistemi elde etmek için çözülmesi gereken iki büyük zorluk, kusur tespiti ve 

sınıflandırılmasıdır. Bu çalışmada, otomatik kumaş kusur sınıflandırması için 

kullanılan farklı teknikleri tartışılmış, ardından otomatik kumaş kusur kontrol 

sistemlerinde kullanılan sınıflandırıcıların bir araştırması gösterilmiş ve son olarak bu 

sınıflandırıcıları performans ölçütlerini kullanarak karşılaştırılmıştır. Bu çalışmanın, 

bu alandaki birçok potansiyel seçeneği anlamak ve değerlendirmek için otomatik 
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kumaş hata denetimi alanındaki araştırmacılar için çok yararlı olması beklenmektedir 

[103].  

“ImageNet Classification with Deep Convolutional Neural Networks” başlıklı 

çalışma, 1,2 milyon yüksek çözünürlüklü görüntüyü 1000 farklı sınıfa sınıflandırmak 

için büyük ve derin bir evrişimli sinir ağı (CNN) eğitmiştir. Araştırma, ImageNet 

LSVRC-2010 yarışmasında test verileri üzerinde %37,5 top-1 ve %17,0 top-5 hata 

oranlarına ulaşarak, önceki durumu önemli ölçüde aşmıştır. 60 milyon parametre ve 

650.000 nörona sahip olan ağ, beş evrişim katmanı, maksimum havuzlama katmanları, 

üç tam bağlantılı katman ve son olarak 1000 yönlü bir softmax içerir. Eğitim sürecini 

hızlandırmak için doygunlaşmayan nöronlar ve GPU tabanlı hızlı evrişim işlemleri 

kullanılmıştır. Aşırı öğrenmeyi azaltmak için tam bağlantılı katmanlarda “dropout” 

düzenleme yöntemi uygulanmıştır. Çalışma, ILSVRC-2012 yarışmasında modelin bir 

varyantıyla %15,3 top-5 hata oranıyla birinci olmuş, ikinci en iyi girişin %26,2 hata 

oranını geride bırakmıştır. Bu çalışma, derin evrişimli sinir ağlarının bilgisayarlı görü 

topluluğu üzerindeki etkisini kanıtlamış ve Google, Facebook, Microsoft gibi birçok 

şirketin derin öğrenme teknolojilerini benimsemesini sağlamıştır. Daha iyi donanım, 

daha fazla gizli katman ve teknik yenilikler ile 2015 yılına kadar derin sinir ağlarının 

hata oranı üç kat daha azaltılmış ve insan performansına oldukça yaklaşmıştır. Bu 

başarıda FeiFei ve ekibinin geniş bir etiketli veri seti oluşturma çabalarının etkili 

olduğu vurgulanmaktadır [62]. 

“Fabric Defect Detection Using Computer Vision Techniques: A Comprehensive 

Review” adlı Aqsa Rasheed, Bushra Zafar, Amina Rasheed, Nouman Ali, Muhammad 

Sajid, Saadat Hanif Dar, Usman Habib, Tehmina Shehryar ve Muhammad Tariq 

Mahmood tarafından 2020 yılında yayımlanan makalede, çeşitli uygulamalı alanlarda 

ve otomatikleştirilmiş üretim sürecinde bilgisayarla görü ve dijital görüntü işlemenin 

farklı uygulamaları bulunmaktadır. Tekstil endüstrisinde, herhangi bir tekstil 

ürününün kalitesi ve fiyatı otomatik kusur tespitinin verimliliğine ve etkinliğine bağlı 

olduğundan, kumaş kusur tespiti zorlu bir görev olarak kabul edilir. Önceden, tekstil 

endüstrisinde kumaş üretim sürecindeki kusurları tespit etmek için manuel insan 

çabası uygulanmaktadır. Konsantrasyon eksikliği, insan yorgunluğu ve zaman 

tüketimi, manuel kumaş hatası tespit işlemi ile ilişkili ana dezavantajlardır. 

Bilgisayarla görme ve dijital görüntü işlemeye dayalı uygulamalar, yukarıda 

bahsedilen sınırlamaları ve dezavantajları ele alabilir. Son yirmi yıldan bu yana, bu 
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sınırlamaları gidermek için çeşitli araştırma makalelerinde çeşitli bilgisayar görüşü 

temelli uygulamalar önerilmiştir. Bu derleme yazısında, kumaş hatalarını tespit etmek 

için tekstil endüstrisindeki uygulamalarla birlikte çeşitli bilgisayarla görmeye dayalı 

yaklaşımlar hakkında ayrıntılı bir çalışma sunulması hedeflenmektedir. Önerilen 

çalışma, histogram tabanlı yaklaşımlar, renk tabanlı yaklaşımlar, görüntü bölümleme 

tabanlı yaklaşımlar, frekans etki alanı işlemleri, doku tabanlı hata algılama, seyrek 

özellik tabanlı işlem, görüntü morfolojisi işlemleri ve son derin öğrenme eğilimlerine 

ilişkin ayrıntılı bir genel bakış sunmaktadır. Otomatik kumaş hatası tespiti için 

performans değerlendirme kriterleri de sunulmakta ve tartışılmaktadır. Mevcut 

yayınlanmış araştırmalarla ilişkili dezavantajlar ve sınırlamalar ayrıntılı olarak 

tartışılır ve gelecekteki olası araştırma yönlerinden de bahsedilmektedir. Araştırma 

çalışması, farklı kumaş kusurlarını tespit etmek için bilgisayarla görme ve dijital 

görüntü işleme uygulamaları hakkında kapsamlı ayrıntılar sağlamaktadır [104].  

“Real-time Texture Error Detection on Textured Surfaces with Compressed Sensing” 

adlı Tobias Böttger tarafından 2014 yılında yayımlanan çalışmada sıkıştırılmış 

Algılama (Compressed Sensing) çerçevesinde gri tonlamaya çevirip dokulardaki 

kusurları tespit etmek ve yerini belirlemek için gerçek zamanlı bir yaklaşım 

sunulmaktadır. Doku sınıflandırmasındaki son sonuçlardan esinlenerek, doku 

tanımlaması için sıkıştırılmış yerel gri tonlamalı yamalar kullanılmaktadır. İlk adımda, 

bir hatasız doku örneğinden çıkarılan öznitelikler ile bir Gauss Karışım modeli eğitilir. 

İkinci adımda, doku örneklerinin yenilik tespiti, her pikselin eğitim sürecinde elde 

edilen olabilirlik ile karşılaştırılmasıyla gerçekleştirilir. Denetim aşaması, gerçek 

zamanlı kusur tespiti ve lokalizasyonu sağlamak için çok ölçekli bir çerçeveye 

yerleştirilmiştir. Doku hatası tespiti için sıkıştırılmış gri ölçekli yamaların performansı, 

iki bağımsız veri kümesi üzerinde değerlendirilmektedir. Önerilen yöntem, doğruluk 

ve hız açısından sıkıştırılmamış gri ölçekli yamaların performansını geride 

bırakabilmektedir [105].  

“Fabric Defect Detection Using Activation Layer Embedded Convolutional Neural 

Network” adlı Wenbin Ouyang, Jue Hou ve Bugao Xu tarafından 2019 yılında 

yayımlanan çalışmada, görüntü ön işleme, kumaş motifi belirleme, hata haritası 

oluşturma ve evrişimli sinir ağları (CNN'ler) tekniklerini birleştirerek bir tezgâh üstü 

kumaş kusur inceleme sistemi için bir derin öğrenme algoritması geliştirilmiştir. Hatalı 

kumaş üretiminin ana nedeni dokuma tezgâhı arızalarından kaynaklanmaktadır. Bir 
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kumaş kontrol sistemi, kalite güvencesi için kumaş kusurlarını tespit etmek için 

kullanılan özel bir bilgisayarlı görme sistemidir. Bir CNN'ye yeni bir çift yönlü 

potansiyel aktivasyon katmanı tanıtılmış ve bu da karmaşık özelliklere ve dengesiz 

veri kümesine sahip kumaşlar üzerinde yüksek kusur segmentasyonu doğruluğuna yol 

açmıştır. Mevcut görüntülerdeki kusurları saptamanın ortalama kesinliği ve geri 

çağrılması, piksel düzeyinde sırasıyla %90'ın ve %80'in üzerine ulaşarak ve halka açık 

bir veri kümesinden kusurların sayısını sayma doğruluğu %98'i aşmaktadır [106]. 

“Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: 

Actively and Incrementall” başlıklı C. Tajbakhsh, J.Y.S., Gurudu, B tarından 

hazırlanan çalışma, biyomedikal görüntülemede anotasyon maliyetlerini azaltmak için 

aktif öğrenme ve transfer öğrenimini birleştiren yenilikçi bir yöntem olan AIFT'yi 

(Active, Incremental Fine-Tuning) sunmaktadır. Çalışmada, önceden eğitilmiş bir 

CNN ile başlanarak anotasyon için "değerli" örneklerin seçilmesi ve ardından yeni 

anotasyonların iteratif olarak dahil edilerek CNN performansının kademeli olarak 

iyileştirilmesi amaçlanmıştır. Üç farklı biyomedikal görüntüleme uygulamasında 

yapılan değerlendirmeler, anotasyon maliyetinin en az yarı yarıya azaltılabileceğini 

göstermektedir. Çalışmada ayrıca, farklı aktif seçim yöntemlerinin yedi temel desenle 

sınıflandırılabileceği ve bu sınıfların gerçek klinik uygulamalarda performans 

karşılaştırmalarının yapılabileceği vurgulanmıştır. Bu makale, anotasyon maliyetini 

düşürmek için geliştirilen AIFT yönteminin biyomedikal görüntüleme alanındaki 

etkinliğini kanıtlamakta ve özellikle aktif öğrenme ile transfer öğreniminin 

entegrasyonunun klinik uygulamalara katkı sağlayabileceğini göstermektedir [87]. 

“Learning Transferable Architectures for Scalable Image Recognition” başlıklı B. 

Zoph, V.V., Shlens, J tarafından yapılan çalışma, sinir ağı mimarilerinin veri setine 

özel olarak öğrenilmesini sağlayan bir yöntem sunmaktadır. Çalışmada, büyük veri 

setleri üzerindeki mimari aramanın maliyetli olması sebebiyle, küçük bir veri setinde 

bir mimari yapı taşı arama ve bu yapıyı büyük veri setlerine aktarma yöntemi 

önerilmiştir. “NASNet search space” adı verilen yeni bir arama alanı tasarımı ile bu 

aktarılabilirlik sağlanmıştır. CIFAR-10 veri setinde en iyi evrişim katmanı bulunmuş 

ve bu katman, ImageNet veri setine aktarılmıştır. Ayrıca, NASNet modellerinde 

genelleştirmeyi önemli ölçüde iyileştiren ScheduledDropPath adlı bir düzenleme 

tekniği tanıtılmıştır. CIFAR-10 üzerinde %2,4 hata oranıyla, ImageNet üzerinde ise 

%82,7 top-1 doğruluk oranıyla insan tasarımı modellerin üzerinde performans 
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sergilenmiştir. NASNet, %28 daha düşük hesaplama maliyetiyle önceki en iyi 

modellerden daha yüksek doğruluk sağlamıştır. Ayrıca, öğrenilen görüntü 

özelliklerinin diğer bilgisayarlı görü problemlerine aktarılabilir olduğu gösterilmiştir. 

COCO veri setinde Faster-RCNN çerçevesiyle %43,1 mAP ile nesne algılamada 

mevcut durumu aşmaktadır. Bu çalışma, veri setlerinden ölçeklenebilir evrişimsel 

hücrelerin öğrenilebileceğini ve bu hücrelerin çoklu görüntü sınıflandırma görevlerine 

aktarılabileceğini göstermektedir. NASNet mimarileri, mobil uygulamalardan yüksek 

doğruluk gerektiren görevler için ölçeklenebilir bir yapıya sahiptir ve hem CIFAR-10 

hem de ImageNet veri setlerinde, hesaplama maliyeti daha düşük olmasına rağmen, 

insan tasarımı modellerin performansını aşmaktadır. Öğrenilen mimariler, görüntü 

sınıflandırma ve nesne algılama gibi çeşitli bilgisayarlı görü problemlerinde önemli 

avantajlar sağlamaktadır [88]. 

1.3 Hipotez 

Örme işlemi sırasında kumaş ipliğinin kalitesi ile üretim ve çalışma koşullarındaki 

rastgele değişiklikler, genellikle boyut, şekil, görünüm ve renk bakımından değişen 

dinamik kusurlara neden olmaktadır. Mevcut görsel kalite kontrol yöntemleri, kumaş 

kusurlarının yalnızca bir kısmını tespit edebilmekte ve bu kusurlar, üretilen kumaşların 

değerini önemli ölçüde azaltmaktadır. Ayrıca, mevcut otomatik tespit sistemlerinin 

yüksek maliyetleri ve sınırlı kusur aralıkları, tekstil endüstrisinde etkin ve uygun 

maliyetli çözümler geliştirilmesini zorunlu kılmaktadır. Günümüzde düşük maliyetli, 

yüksek işlem gücüne sahip işlemciler, yüksek çözünürlüklü hızlı kameralar ve bulut 

tabanlı depolama çözümleri gibi teknolojilerin artan erişilebilirliği, otomatik tekstil 

kalite kontrol sistemlerinin yaygınlaşmasına olanak sağlamaktadır. 

Bu tez çalışmasında, kumaş kusurlarını tespit etmek için otomatik görüntü işleme 

tabanlı bir sistemin geliştirilmesi ve etkinliğinin araştırılması hedeflenmektedir. 

Önerilen sistem, ön işleme, filtreleme, frekans alanı işlemleri, derin öğrenme 

yöntemleri gibi çeşitli tekniklerle desteklenecektir. Sistem, hızlı kameralarla elde 

edilen verilerin grafik işlem birimleri (GPU) tabanlı hesaplama gücüyle işlenmesi 

yoluyla, akan kumaşlarda gerçek zamanlı kusur tespiti ve sınıflandırma 

gerçekleştirecek; aynı zamanda kumaşın hız ve yön bilgilerini analiz ederek hata 

geometrisini kaydetme işlevini yerine getirecektir. 
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Bu doğrultuda, otomatik görüntü işleme tabanlı sistemlerin, manuel denetim 

yöntemlerine kıyasla daha yüksek doğruluk, verimlilik ve izlenebilirlik sağlayarak 

tekstil endüstrisinde kalite kontrol süreçlerinde yenilik yaratacağı öngörülmektedir. 
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2.  MATERYAL VE YÖNTEMLER 

2.1 Kamera Düzeneği 

2.1.1 Alan tarama kameraları 

Alan tarama kameraları, statik veya düşük hızda hareket eden kumaş yüzeylerinin 

incelenmesinde sıklıkla tercih edilen optik sistemlerdir. Bu kameralar, kumaş yüzeyini 

tek bir karede yüksek çözünürlükle görüntüleyerek ayrıntılı analiz yapılmasına olanak 

sağlamaktadır. Ancak, pozlama süresi hareketli nesnelerde bulanıklığa yol açabileceği 

için, genellikle statik yüzeylerin analizi için daha uygun kabul edilmektedir. Çeşitli alt 

türleri bulunan alan tarama kameraları, farklı analiz gereksinimlerine yanıt verebilecek 

şekilde yapılandırılabilmektedir. 

2.1.1.1 UV (Ultraviyole) kameralar 

UV kameralar, kumaş yüzeylerini ultraviyole ışık altında görüntüleyerek çıplak gözle 

algılanamayan detayların tespit edilmesine olanak tanımaktadır. Kimyasal işlemlerden 

kaynaklanan yüzey kusurları, ince iplik problemleri veya düşük kontrastlı bölgelerin 

analizi gibi durumlar için ideal bir çözüm sunmaktadır. Alan tarama teknolojisi 

temelinde çalışan bu kameralar, özellikle ayrıntılı yüzey analizlerinde yaygın olarak 

tercih edilmektedir. 

2.1.1.2 Termal ve IR (Kızılötesi) kameralar 

Termal kameralar, kumaş yüzeyindeki sıcaklık farklılıklarını algılayarak yüzey ve alt 

katman kusurlarının detaylı bir şekilde analiz edilmesini sağlamaktadır. Kızılötesi ışık 

spektrumunda çalışan bu kameralar, özellikle kumaşın üretim aşamasında maruz 

kaldığı ısıl süreçlerden kaynaklanan kusurların tespitinde yüksek etkinlik 

göstermektedir. Isı geçişleri, malzeme yoğunluğu farklılıkları ve mikro düzeydeki 

hataların analizi için kullanılabilmektedir. Ayrıca, yüzey altı katmanlarında meydana 

gelen iplik kopmaları, yabancı maddeler veya dokusal bozukluklar gibi problemlerin 
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tespitinde etkili bir araçtır. Görünür olmayan kusurları ve materyal yoğunluğu 

farklılıklarını algılayarak daha kapsamlı bir değerlendirme imkânı sunmaktadır. 

2.1.1.3 Renk kameraları 

Renk kameraları, kumaş üzerindeki renk varyasyonlarını ve baskı hatalarını tespit 

etmek amacıyla kullanılan önemli bir görüntüleme teknolojisidir. Bu kameralar, 

özellikle desenli veya renkli kumaşlarda, renk solmaları, homojen olmayan renk 

dağılımları ve istenmeyen renk değişimlerini algılamada yüksek doğruluk 

sağlamaktadır. Renk analizine dayalı yöntemlerle, kumaşın estetik ve kalite 

standartlarını değerlendirmek için etkili bir çözüm sunmaktadır. 

2.1.2 Çizgi tarama kameraları 

Çizgi tarama kameraları, hareketli kumaşların analizi için optimize edilmiş, yüksek 

hızlı görüntüleme sistemleridir. Bu kameralar, kumaş yüzeyinden akış yönünde çizgi 

formunda veri toplayarak detaylı ve yüksek çözünürlüklü görüntüler elde edilmesini 

sağlamaktadır. Enkoder sistemi ile senkronize bir şekilde çalışarak kumaşın hareket 

hızına uyum sağlar ve doğrusal taramalar sırasında bulanıklığı en aza indirir. Bu 

özellikleri sayesinde, hızlı üretim hatlarında ve bulanıklığın kabul edilemez olduğu 

uygulamalarda yaygın olarak kullanılmaktadır. Günümüzde, 140 kHz gibi yüksek 

frekanslarla çalışan çizgi tarama kameraları, tekstil sektöründe ileri seviye analizler 

için etkin bir araç olarak öne çıkmaktadır. 

2.1.3 Hiperspektral kameralar 

Hiperspektral kameralar, kumaş yüzeyindeki spektral yansımaları detaylı bir şekilde 

analiz ederek geniş bir spektral bant aralığında yüksek çözünürlüklü veri 

sağlamaktadır. Bu kameralar, renk varyasyonlarını, malzeme anormalliklerini ve 

homojen olmayan bölgeleri tespit etme konusunda son derece etkili bir performans 

sergilemektedir. Özellikle doku analizi ve mikro düzeydeki kusurların algılanması 

gereken durumlarda tercih edilen hiperspektral kameralar, kumaş yüzeyinin optik 

özelliklerinin ayrıntılı incelenmesi için ileri düzey bir teknolojik araç sunmaktadır. 
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2.1.4 Multispektral kameralar 

Multispektral kameralar, hiperspektral kameralara benzer şekilde spektral bantlarda 

çalışmakla birlikte, daha sınırlı sayıda spektral bilgi sağlamaktadır. Ekonomik bir 

alternatif olarak öne çıkan bu kameralar, kumaş üzerindeki renk ve doku kusurlarının 

tespiti için etkili bir çözüm sunmaktadır. Renk hatalarının, baskı kusurlarının ve yüzey 

anormalliklerinin belirlenmesi gibi uygulamalarda yaygın olarak kullanılmaktadır. 

2.1.5 3D görüntüleme kameraları 

3D görüntüleme kameraları, kumaş yüzeyinin derinlik bilgilerini analiz ederek doku 

ve profil hatalarını tespit etmek için kullanılan ileri düzey görüntüleme sistemleridir. 

Lazer tabanlı sistemler veya stereo kamera teknolojileri aracılığıyla, kumaş 

yüzeyindeki çıkıntılar, dalgalanmalar ve çukurlar üç boyutlu olarak detaylı bir şekilde 

incelenebilmektedir. Bu kameralar, özellikle karmaşık yüzey yapılarına sahip 

kumaşların detaylı analizinde yüksek doğruluk ve etkinlik sağlamaktadır. 

2.1.6 Endüstriyel akıllı kameralar 

Endüstriyel akıllı kameralar, gömülü görüntü işleme sistemlerine sahip, gerçek 

zamanlı analiz yapabilen gelişmiş sistemlerdir. Bu kameralar, yerleşik derin öğrenme 

algoritmaları sayesinde kumaş kusurlarını otomatik olarak tespit ederek 

sınıflandırabilmektedir. Alan tarama veya çizgi tarama özellikleriyle entegre edilerek 

hızlı üretim hatlarında verimliliği arttırmaktadır. Kumaş kusuru tespiti, sınıflandırma 

ve hata türlerine yönelik çözümleme için sıklıkla tercih edilmektedir. 

Sonuç olarak, alan tarama kameralarının statik kumaş analizi için daha uygun olduğu, 

hareketli kumaş analizi için ise çizgi tarama kameralarının tercih edilmesi gerektiği 

görülmektedir. Bununla birlikte, günümüz teknolojisinde düşük pozlama sürelerinin 

yüksek aydınlatma koşulları ile birleştirilmesi durumunda, alan tarama kameralarının 

hareketli kumaş analizinde de etkin bir şekilde kullanılabileceği öngörülmektedir [7].  

2.1.7 Lensler 

Uygun kamera seçiminin ardından, analizin gereksinimlerini karşılayacak uygun bir 

lens seçimi yapılması gerekmektedir. Bir kameranın görüş alanı ve görüntüleme 
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kapasitesi, kullanılan lensin özelliklerine göre şekillenmektedir. Bundan dolayı, 

çalışma mesafesi, görüş alanı ve sensör boyutu gibi parametreler dikkate alınarak, en 

uygun lens seçimi gerçekleştirilmelidir. Elde edilecek görüntünün boyutları, şekli ve 

netliği, seçilen lensin optik özellikleriyle doğrudan ilişkilidir ve bu seçim, analiz 

sonuçlarının doğruluğunu doğrudan etkileyebilmektedir. 

 

Şekil 2.1 : Lens çalışma biçimi. 

Bu nedenle odak uzaklığı f değeri hesaplanmalıdır. f değeri aşağıdaki formülle 

hesaplanabilir: 

𝑓 =
𝐵

𝐺
𝑥𝑔 (2.1) 

Burada B ve G, sırasıyla görüntü boyutunu ve nesne boyutunu temsil etmektedir. Şekil 

2.1, görüntü ve nesne mesafesi ile lens odak uzunluğu (f) arasındaki geometrik 

ilişkileri göstermektedir. Her bir lensin sabit odak uzunluğu (FFL) değeri 

bulunmaktadır ve f ile hesaplanan değeri için f − 2 ≤ FFL ≤ f + 2 eşitliğini sağlayan 

lenslerin FFL değerleri arasından herhangi biri tercih edilmektedir. 

Bu formülasyon, nesne ve kamera arasındaki belirsiz mesafeyi içeren bir odak uzaklığı 

ölçüsünü resmi olarak tanımlamaktadır. Ayrıca, optimal görüntü kalitesini sağlamak 

için büyütme faktörü de dikkate alınmaktadır. Endüstriyel görüntü işleme 

uygulamalarında, büyütme faktörü genellikle >1:10 (sensör boyutu: nesne boyutu) 

olmaktadır. Bu oran, endüstriyel uygulamalarda istenen detay seviyesini elde etmek 

için kritik bir parametre olarak öne çıkmaktadır. 

2.2 Görüntü İşleme Donanımları 

Yapay görme uygulamaları, çeşitli fiziksel platformlarda uygulanabilir ve geniş bir 

cihaz yelpazesi içermektedir. Bu platformlar arasında, PC tabanlı sistemler, 3D ve 

çoklu kamera 2D uygulamaları için tasarlanmış özel görüntü denetleyicileri, bağımsız 
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çalışan görüntüleme sistemleri ve temel görüntü sensörleri bulunmaktadır. Uygun 

yapay görme platformunun seçimi, genellikle uygulamanın gereksinimleri, geliştirme 

ortamı, teknik yetenekler, sistem mimarisi ve maliyet gibi faktörlere bağlı olarak 

belirlenmektedir. 

2.2.1 PC tabanlı görüntü işleme sistemleri 

PC tabanlı sistemler, doğrudan bağlantılı kameralar veya görüntü toplama kartları ile 

kolayca arayüz oluşturabilen ve yapılandırılabilir yapay görme uygulama 

yazılımlarıyla desteklenen esnek bir platform sunmaktadır. Bu sistemler, Python, 

Visual C/C++, Visual Basic ve Java gibi yaygın olarak kullanılan programlama 

dillerinin yanı sıra, grafik tabanlı programlama ortamlarını kullanarak özel kod 

geliştirme imkânı sağlamaktadır. Ancak, bu tür sistemlerin geliştirme süreci genellikle 

karmaşık olmakta ve uzun zaman gerektirmektedir. Bu nedenle, PC tabanlı yapay 

görme platformları genellikle büyük ölçekli kurulumlarda tercih edilmekte ve ileri 

düzey görüntü işleme uzmanları ile deneyimli programcılara hitap etmektedir. 

2.2.2 Gömülü görüntü işleme sistemleri 

Görüntü işleme kontrolörleri, PC tabanlı sistemlerin tüm gücünü ve esnekliğini 

sunarken, zorlu fabrika ortamlarının gereksinimlerine daha iyi uyum sağlayabilecek 

bir yapısal dayanıklılığa sahiptir. Bu kontrolörler, özellikle 3D ve çoklu kamera 2D 

uygulamaları için daha kolay bir yapılandırma imkânı sunmakta ve tek seferlik 

görevler için sınırlı zaman ile bütçe koşullarında etkili bir çözüm oluşturmaktadır. 

Ayrıca, daha karmaşık uygulamaların uygun maliyetli bir şekilde geliştirilmesine 

olanak tanıyarak hem esneklik hem de performans açısından avantaj sağlamaktadır. 

2.2.3 Bağımsız görüntü işleme sistemleri 

Bağımsız görüntü işleme sistemleri, uygun maliyetli olmalarının yanı sıra hızlı ve 

kolay bir şekilde geliştirme yapılmasına olanak tanıyan kompakt çözümler 

sunmaktadır. Bu sistemler genellikle kamera sensörü, işlemci ve iletişim altyapısı ile 

entegre şekilde tasarlanmıştır. Bazı modeller, harici aydınlatma desteği ve otomatik 

odaklama için gerekli optik bileşenleri de içermektedir. Kompakt yapıları sayesinde, 
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fabrika ortamlarında farklı noktalarda kolayca kurulabilmekte ve uygun maliyet 

avantajı sağlamaktadır. 

Bağımsız görüntü işleme sistemlerinin en önemli avantajlarından biri, üretim 

sürecindeki kusurların erken tespit edilmesini ve ekipman sorunlarının hızla 

belirlenmesini sağlamalarıdır. Bu sistemler, yerleşik Ethernet iletişim altyapısı 

sayesinde birden fazla sistemin bir ağ üzerinden birbirine bağlanmasına ve ana bir 

bilgisayar tarafından yönetilmesine olanak tanımaktadır. Böylece, kullanıcılar 

yalnızca üretim süreçlerinde görme sistemlerini etkin bir şekilde kullanmakla kalmaz, 

aynı zamanda sistemler arasında veri alışverişi yaparak tüm fabrika genelinde 

ölçeklenebilir bir görüş sistemi ağı oluşturabilmektedir. Bu ağ, fabrika ve kurumsal 

ağlara kolayca entegre edilerek TCP/IP protokolüne sahip iş istasyonları üzerinden 

görüş sonuçları, görüntüler, istatistiksel veriler ve diğer bilgilerin uzaktan izlenmesini 

mümkün kılmaktadır. 

Bağımsız sistemler hem basit yönlendirmeli kurulumlar hem de gelişmiş programlama 

ve komut dosyası oluşturma imkânı sunan yapılandırılabilir ortamlarla donatılmıştır. 

Bazı sistemler, daha fazla kontrol ve görüntü uygulama verilerinin işlenmesi için esnek 

geliştirme ortamları sağlayarak hem ek güç gereksinimlerini karşılar hem de karmaşık 

uygulamaların kolaylıkla uygulanmasına olanak tanımaktadır.  

2.3 Haberleşme Arayüzleri 

Görüntüleme sistemlerinde kamera sensörlerinin sürekli artan veri işleme kapasiteleri, 

haberleşme arayüzlerinin seçimini kritik bir unsur hâline getirmiştir. Uygun bir arayüz 

seçimi, sistemin performansını, kurulum kolaylığını ve maliyet etkinliğini doğrudan 

etkilemektedir. Günümüzde, USB, Gigabit Ethernet (GigE) ve Camera Serial Interface 

(CSI) gibi arayüzler, farklı uygulama alanlarına yönelik olarak tercih edilmektedir. 

Aşağıda, bu arayüzlerin teknik özellikleri, avantajları ve dezavantajları ayrıntılı bir 

şekilde incelenmiştir. 

2.3.1 CSI haberleşme  

Camera Serial Interface (CSI), gömülü sistemlerde yüksek performans ve düşük güç 

tüketimi gereksinimlerini karşılamak için geliştirilmiş bir haberleşme arayüzüdür. 

MIPI (Mobile Industry Processor Interface) standartları çerçevesinde geliştirilen CSI, 
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mobil cihazlar, drone'lar, robotik sistemler ve diğer entegre çözümlerde yaygın olarak 

kullanılmaktadır. 

CSI-2 standardı, paralel veri aktarımı sağlayan 1 ila 4 veri hattı üzerinden çalışır ve 

her bir veri hattı başına yaklaşık 2,5 Gbit/s aktarım hızına ulaşabilmektedir. Bu 

özellikler, gerçek zamanlı görüntü işleme ve düşük güç tüketimi gerektiren 

uygulamalar için oldukça ideal bir yapı sunmaktadır. Ayrıca, CSI arayüzü minimal 

donanım gereksinimi ve kompakt tasarımı ile gömülü sistemlerde kolay entegrasyon 

imkânı sağlamaktadır. 

2.3.2 USB haberleşme 

USB (Universal Serial Bus) standardı, yüksek hızda veri aktarımı ve kolay kullanım 

sunan bir haberleşme arayüzüdür. İlk olarak 1996 yılında USB 1.0 standardı ile 

tanıtılmış ve günümüze kadar USB 3.2 Gen 2x2’ye kadar bir dizi iyileştirme 

geçirmiştir. USB 3.0 ve sonraki sürümleri, 5 Gbit/s, 10 Gbit/s ve 20 Gbit/s bant 

genişliği sunmaktadır. Bu hızlar, modern görüntüleme sistemleri için yeterli veri 

aktarım hızını sağlamaktadır. Ancak, farklı USB standartları arasında yapılan isim 

değişiklikleri, özellikle kullanıcılar için kafa karıştırıcı olabilmektedir. 

USB’nin en önemli avantajı, "tak ve çalıştır" özelliği sayesinde kolay kurulum imkânı 

sunmasıdır. Çoğu bilgisayar birden fazla USB bağlantı noktasına sahip olup, ek bir 

yapılandırma gerektirmeden cihazlar çalıştırılabilmektedir. Bununla birlikte, USB 

bağlantılarının maksimum kablo uzunluğu 10 metre ile sınırlıdır, bu da uzun mesafeli 

uygulamalarda sınırlayıcı bir unsur oluşturabilmektedir. 

2.3.3 GigE haberleşme 

Gigabit Ethernet (GigE), özellikle endüstriyel uygulamalarda yaygın olarak kullanılan 

bir haberleşme arayüzüdür. USB’nin kablo uzunluğu kısıtlamalarının aksine, GigE 

bağlantıları 100 metreye kadar uzanabilir, bu da fabrika otomasyonu ve uzun menzilli 

izleme uygulamaları için önemli bir avantaj sunmaktadır. Daha yüksek hız 

gereksinimleri için 10/25 GigE standartları geliştirilmiştir. Ancak bu standartlar, 

CAT6 kablolar ve özel ağ ekipmanları gibi ilave donanım gereksinimlerini 

beraberinde getirmektedir. GigE’nin bir diğer avantajı, birden fazla kameranın aynı ağ 

üzerinde bir araya getirebilmesidir. Ağ anahtarları aracılığıyla kameralar kolayca 
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yönetilebilmekte ve geniş alanlara esnek bir şekilde konumlandırılabilmektedir. 

Bununla birlikte, GigE arayüzünün kullanımı IP adresi yapılandırması ve ağ bağlantı 

noktası tahsisi gibi ek işlemleri gerektirmektedir [8]. 

Haberleşme arayüzlerinin özelliklerinin karşılaştırılması Çizelge 2.1’de verilmektedir. 

Çizelge 2.1 : Kamera haberleşmesi karşılaştırması. 

Özellik USB GigE CSI 

Bant Genişliği 5–20 Gbit/s  1–25 Gbit/s  
2,5 Gbit/s 

per lane 

Kablo Uzunluğu 10 metre 100 metre <1 metre 

Kurulum Kolaylığı Yüksek Orta Yüksek 

Güç Tüketimi Orta Orta-Yüksek Düşük 

Uygulama Alanı 
Genel 

kullanım 

Endüstriyel 

uygulamalar  

Gömülü 

sistemler 

2.4 Aydınlatma Çeşitleri 

Aydınlatma, birçok yapay görme ve görüntü elde etme sistemi için kritik bir bileşen 

olarak değerlendirilmektedir. Özellikle otomatik kumaş kontrol sistemlerinde; ön 

aydınlatma, arka aydınlatma, fiber optik aydınlatma ve yapısal aydınlatma teknikleri 

gibi farklı aydınlatma şemaları kullanılmaktadır. Ön aydınlatma tekniği, genellikle 

kalın kumaşlardaki hataların tespitinde tercih edilmekte olup, aydınlatma kaynağı 

kamera ile aynı tarafta, kumaşın önüne yerleştirilmektedir. Arka aydınlatma tekniği 

ise yarı saydam kumaş türlerinde, örneğin süprem kumaşlarda, gölgelenme etkilerini 

ortadan kaldırarak daha belirgin bir görüntü elde etmek için kullanılmaktadır. Kumaşın 

arkasına yerleştirilen çizgi ışık kaynağı, ön aydınlatmaya kıyasla daha yüksek 

kontrastlı görüntüler sunabilmektedir.  

Fiber optik aydınlatma, belirli bir ölçüden büyük kumaş görüntüleri için ekonomik 

olmamaktadır. Yapısal aydınlatma sistemlerinde ise kızılötesi ışık ve yüksek kare hızlı 

kameralar kullanılarak kusurlu ve hatasız kumaş görüntülerinin birbirinden 

ayrıştırılması mümkün hâle gelmektedir. Literatürde, floresan, halojen ve ışık yayan 

diyot (LED) ışık kaynaklarının yaygın olarak kullanıldığı görülmektedir. Kaliteli bir 

görüntü elde edebilmek için ışık kaynağının genişliği önemli bir parametre olarak öne 

çıkmaktadır. Işığın optimal genişliği, aşağıdaki formül yardımıyla belirlenebilir:  
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Işık genişliği (mm) = ışık alanı + (2 ∗ kamera çalışma mesafesi) (2.2 ) 

Elektromanyetik spektrumda, insan gözü yalnızca 400-700 nm dalga boyu aralığındaki 

radyasyonları algılayabilmektedir. LED aydınlatma, bu dalga boyu aralığına yakın bir 

ışık spektrumu sağlayarak, insan gözüne benzer algılama özellikleri sunmaktadır. Bu 

özelliklerinden dolayı, son yıllarda geliştirilen kumaş kontrol sistemlerinde, etkin ve 

başarılı yapay görme uygulamaları için hat LED aydınlatma yaygın olarak tercih 

edilmektedir. LED aydınlatmanın verimli bir şekilde kullanımı, ışık genişliğinin 

yukarıda verilen formüle göre doğru şekilde belirlenmesiyle mümkün hâle 

gelmektedir. 

2.5 Test Düzeneği 

Yuvarlak örme makinası hareketini yapacak bir test düzeneği kurularak, görüntü 

algılama işlemleri yapılması planlanmıştır. Örme makinesinin örme aşamasındaki 

kumaş hareketlerini taklit edebilmek amacıyla, Şekil 2.2’deki görselde gösterilen 

prototip tasarlanmış ve üretilmiştir. Prototip kamera ve aydınlatma sisteminin monte 

edildiği bir adet doğrusal hareketli eksen bulunmaktadır.  

 

Şekil 2.2 : Prototip şasi montaj görüntüsü. 

Örme makinelerinde kumaş, açık en veya tüp formunda üretilmektedir. Açık en çalışan 

makinelerde, tüp formunda örülen kumaş kesilerek, alt kısımda bulunan topa 

sarılmaktadır. Kumaşın kesilmeden önce maruz kaldığı gerilimi simüle edebilmek 
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amacıyla, bir döner eksen ve üzerinde bir tambur kullanılmaktadır. Örme makinesinde 

üretilen kumaşın çapı yaklaşık 80 cm olup, kullanılan tamburun çapı da bu ölçüye 

eşdeğerdir. Bu yapı, kumaşın örülme anındaki gerçek çalışma koşullarını modellemeyi 

sağlamaktadır. 

Örme hareketini gerçeğe uygun şekilde simule edebilmek için doğrusal eksen üzerinde 

bulunan kamera 3 m/dk ile aşağıya doğru hareket ederken, tambur da eşzamanlı olarak 

34 devir/dk hızla döndürülmüş ve böylece örme aşamasındaki kumaş görüntüsü 

oluşturulmuştur. Yukarı-aşağı hareket step motor kontrolüyle sağlanmıştır. Tamburun 

dönmesi için kullanılan motor Şekil 2.3’de, yukarı aşağı hareketi gerçekleştiren step 

motor ise Şekil 2.4’de gösterilmektedir. 

 

Şekil 2.3 : Taban tambur motor görüntüsü. 

 

Şekil 2.4 : Prototip birleştirilmiş görüntü. 
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Maksimum dönme hızlarında görüntü alımının gerçekleştirilebilmesi amacıyla 

monochrome global shutter özellikli olan kameralar kullanmaya karar verilmiştir. Bu 

kamera ile hareket halinde iken 100 µs pozlama süresi (shutter speed) ile görüntüde 

bozulma olmadan fotoğraflar alınabilmiş ve elde edilen görüntüler birleştirilerek 0.5 

mm çözünürlüğünde görüntüler oluşturulmuştur. 

Şekil 2.5’de görüldüğü üzere, aydınlatma için LED’lerin kumaşa yaklaştırılabildiği ve 

açı verilebildiği bir tasarım uygulanmış; bu sayede alt-üst, yan ve UV aydınlatmaları 

bağımsız olarak kontrol edilebilmesiyle, farklı hata türlerinin daha belirgin hâle 

getirilerek görüntülenmesi sağlanmıştır. 

 

Şekil 2.5 : Aydınlatma sistemi. 

Şekil 2.6’de görüldüğü üzere, sistem; IO katmanı, kontrolcü katmanı ve yazılım 

katmanı olmak üzere üç temel katman ile özetlenmiştir. IO katmanında, saha 

ekipmanlarının bağlandığı pano içerisindeki kontrol elemanları ile bu katmanın 

kontrolcü ve yazılım katmanlarına olan bağlantıları gösterilmektedir. Yazılım 

katmanında, IO’ların kontrolü için web tabanlı Node-RED programlama arayüzü 

kullanılmıştır. Node-RED’in IoT uyumluluğu sayesinde farklı donanımlar ile etkili 

şekilde haberleşme sağlanabilmektedir. Python programlama dili için Spyder 5 editörü 

tercih edilmiştir. Bu editörün tercih edilme nedeni, akademik çalışmalarda yaygın 

olarak kullanılan editörlere benzemesi ve değişken analizlerinin kolaylıkla 

yapılabilmesine olanak sağlamasıdır. Python ortamında hem kamera hem de hız 

enkoderine ait veriler işlenerek görüntü birleştirme algoritması çalıştırılmaktadır. 

Ayrıca, görüntü işleme ve makine öğrenmesine dayalı hata tespit algoritmalarının 

geliştirilmesinde de Python aktif olarak kullanılmaktadır. 
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Şekil 2.6 : Denetleyici yapısı. 

Prototip tüm sistem görüntüsü Şekil 2.7’de gösterilmektedir. 

 

Şekil 2.7 : Sistem genel görünüm. 
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2.6 Görüntü Veri Setinin Hazırlanması 

Bir görüntü işleme uygulamasında, veri algılama; çevreden görsel bilgi toplayıp 

sistemin kullanımına sunan temel bir adımdır. Bu süreç, sistemin çeşitli uygulamalarda 

görsel verileri analiz etmesine ve yorumlamasına olanak tanımaktadır. Veri algılama, 

sistem için ham veri girişini sağlar; kameralar veya diğer sensörler aracılığıyla görüntü 

ya da video karelerini yakalayarak, sonraki işleme ve analiz aşamaları için bir temel 

oluşturmaktadır. 

Elde edilen verilerin kalitesi ve doğruluğu, sistemin genel performansını doğrudan 

etkilemektedir. Yüksek kaliteli, net ve uygun şekilde kalibre edilmiş görüntüler, analiz 

ve karar verme sürecinde daha doğru ve güvenilir sonuçlar elde edilmesine katkıda 

bulunmaktadır. Döner sistemlerde, makine hızı nedeniyle bulanıklık ve yetersiz 

aydınlatma gibi sorunlar ortaya çıkabilmektedir. Test düzeneğinde dönme hızı kontrol 

edilebilir olsa da gerçek bir örgü makinesinde kullanılan kamera sisteminin yakalama 

frekansına uyum sağlaması ve mevcut aydınlatma koşullarına göre optimize edilmesi 

gerekmektedir. Etkili bir kusur tespit sisteminin geliştirilebilmesi için, görüş sistemi; 

aydınlatma değişimleri, hareket kaynaklı bulanıklık, lens yüzeyindeki toz ve yağ gibi 

çeşitli çevresel faktörlere karşı dinamik bir şekilde uyum sağlayabilecek şekilde 

yapılandırılmalıdır. Sürekli ve çeşitli veri toplama işlemleri, sistemi bu tür zorluklara 

karşı eğitmek ve hassas ayarlar yapmak için kritik öneme sahiptir. Gerçek zamanlı 

analiz gerektiren uygulamalarda, veri toplamanın verimli bir şekilde gerçekleştirilmesi 

esastır. Bu sayede sistem, bilgiyi zamanında yakalayarak işleyebilmekte; hızlı yanıtlar 

ve kararlar üretebilmektedir. Özetle, veri toplama, bir görüntü işleme sisteminin 

işleyişinde kritik bir başlangıç adımıdır. Elde edilen verilerin kalitesi, miktarı ve 

çeşitliliği; sistemin görevlerini doğru şekilde yerine getirme, farklı çevresel koşullara 

uyum sağlama ve çeşitli uygulamalar için anlamlı çıktılar üretme yetkinliğini 

doğrudan etkilemektedir. 

Görüntüler farklı boyutlarda kırpılmış ve önceden eğitilmiş bir model üzerinden 

geçirilerek, hatalı ve hatasız olmak üzere iki ayrı klasör altında kayıt altına alınmıştır. 

Her bir kırpılan parça, resim üzerindeki konum bilgisine göre adlandırılarak 

kaydedilmiştir. Hazırlanan bu veri seti, farklı yöntemlerde kullanılmak üzere 

depolanmakta ve saklanmaktadır. Klasör altında yer alan görüntüler, gözle yapılan 
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sınıflandırmalara göre yeniden düzenlenmiştir. Sınıflandırılmış hata türlerine ilişkin 

örnekler Şekil 2.8’de sunulmaktadır. 

 

Şekil 2.8 : Hatalı kumaş veri seti (delik, hatasız, iğne kırılması, likra kaçığı, may izi). 
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3.  İSTATİKSEL VE SPEKTRAL HATA TANIMA ALGORİTMALARI 

3.1 Sobel, Prewitt, Roberts, Canny Kenar Algılama Algoritmaları 

Görüntüyü tek renkliye (grayscale) dönüştürdükten sonra, kenar bulma algoritmaları 

arasında en yaygın kullanılan yöntemlerden biri Sobel kenar bulma filtresidir. Şekil 

3.1’de gösterilen çekirdek matrisler (konvolüsyon matrisleri), görüntüdeki dikey, 

yatay ve köşegen kenarların tespit edilmesi için kullanılmaktadır. Sobel operatörü, 

görüntü üzerindeki kenarlara karşılık gelen yüksek frekanslı bölgeleri (keskin 

kenarları) belirlemek amacıyla etkili bir şekilde uygulanmaktadır. Bu operatör, 3×3 

boyutunda bir konvolüsyon matrisinden oluşmaktadır ve kenar belirleme işlemlerinde 

yaygın olarak tercih edilmektedir. 

 

Şekil 3.1 : Sobel konvolüsyon matrisi. 

Bu matrisler, yatay ve dikey olarak görünen kenarları ayrı ayrı ortaya çıkaracak şekilde 

düzenlenmiştir. Matrisler görüntüler üzerine tekrar tekrar bağımsız olarak 

uygulanabilmektedir. Böylece kullanılan farklı operatörler için her bir pikselin değeri 

ayrı ayrı elde edilmektedir [9].  

Bu durumda 0 derece yatay duran çizgileri, 90 derece ise dikey duran çizgileri 

gösterecektir. Eğik duran çizgilerde diğer açıları oluşturacaktır. Burada sıfır derece 

çizgide alt kısım siyahtan, üst kısım beyaza doğru geçişi göstermektedir. 0 derecenin 

bir benzeri olan yine yatay duran çizgi 180 derecede ise üst kısım siyah bölgeden alt 

kısım beyaz bölgeye doğru bir geçişi gösterecektir. Açılar saatin tersi yönüne göre 
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ölçülmektedir. Burada, Gx konvolüsyon matrisi tek başına kullanıldığında, yalnızca 

yatay düzlemdeki renk değişimlerini algılayacağından, ortaya çıkan çizgiler dikey 

yönde görülmektedir. Benzer şekilde, Gy konvolüsyon matrisi tek başına 

kullanıldığında yukarıdan aşağıya (örneğin siyah-beyaz geçişlerinde) renk geçişlerini 

algılar ve bu durumda ortaya çıkan çizgiler yatay olarak görünür. Görüntü üzerindeki 

çizgilerin yalnızca yatay ya da dikey değil, doğal yönelimleriyle algılanabilmesi için 

Gx ve Gy konvolüsyon matrislerinin yukarıda verilen formüle göre birlikte 

kullanılması gerekmektedir. Aynı şekilde, daha önce belirtilen açıya bağlı kenar 

belirleme formülü de benzer amaçlarla kullanılabilmektedir. Bu yöntem ile, resim 

üzerinde belirli açılarda bulunan kenar ya da çizgilerin belirgin hâle getirilmesi 

mümkün olmaktadır. 

İki matrisi aynı anda kullanmak için ve matris üzerindeki noktaları aşağıdaki şekilde 

temsil etmek için hesaplama yapılırsa Şekil 3.2’deki matrisler elde edilmektedir. 

 

Şekil 3.2 : Sobel konvolüsyon matrisi hesaplanması. 

Buradaki her bir çekirdek matrisi ve daha sonra bu çekirdek matris kullanılarak 

pikselin sobel değeri yaklaşık formülü benzer şekilde kullanılarak hesaplanmaktadır: 

|Gx| = |−P1 + P3 − 2P4 + 2P6 − P7 + P9| 
 

|Gy| = |P1 + 2P2 + P3 − P7 − 2P8 − P9| 
(3.1) 

 

Prewitt algoritması, Sobel algoritmasına benzer şekilde çalışmakta olup, yalnızca 

çekirdek matrislerinde küçük farklılıklar içermektedir. Bu yöntemde kullanılan 

çekirdek matrisler aşağıda gösterildiği gibidir ve kenar tespiti sırasında elde edilen 

sonuçlar, görüntünün her bölgesinde aynı düzeyde olmayabilir. Şekil 3.3’te Prewitt 

çekirdek matrisleri sunulmaktadır [10]. 
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Şekil 3.3 : Prewitt çekirdek matrisleri. 

Robert Cross algoritması, basit ve hızlı bir kenar algılama yöntemi olarak öne 

çıkmaktadır. Şekil 3.4'te gösterilen iki boyutlu geçişlerin hesaplanmasını sağlayarak, 

gri tonlamalı bir görüntü üzerinde işlem gerçekleştirmekte ve keskin kenarları belirgin 

bir şekilde ortaya çıkarmaktadır. Bu algoritma, tespit ettiği kenarları oldukça ince bir 

şekilde gösterebilme özelliğine sahiptir. İşlem, 90 derece açıyla birbirine dik 

konumlandırılmış 2×2 boyutundaki iki çekirdek matris yardımıyla uygulanmaktadır. 

Robert Cross algoritması, kullanım açısından Sobel operatörüne benzemekle birlikte 

daha küçük bir çekirdek kullanarak daha basit bir hesaplama sunmaktadır. 

 

Şekil 3.4 : Robert Cross konvolisyon matrisleri. 

Sobel algoritmasında kullanılan konvolüsyon matrisleri, genellikle x ve y eksenlerine 

göre hizalanmıştır. Ancak, Robert Cross algoritmasında matrislerin yönleri, 

görüntünün ızgarasına 45 derece ve 135 derece açıyla yerleştirilmiştir. Bu nedenle, 

kullanılan formüller yine Gx ve Gy şeklinde ifade edilmekle birlikte, bu yönlerin 

ızgaraya göre eğimli olduğu, yani 45 derece ve 135 derece açıyla durduğu kabul 

edilmektedir. Bu farklı hizalama, Robert Cross algoritmasının, görüntü üzerinde eğik 

kenarların algılanmasında daha etkin olmasını sağlamaktadır. Bu operatör, yalnızca 4 

piksel üzerinde işlem yaptığı için, çıkış değerinin tam olarak hangi piksele karşılık 

geldiği net olarak belirlenememektedir. Bu nedenle yalzınca yarım piksellik bir kayma 
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mümkün olabilmektedir. Uygulama sırasında, referans piksel olarak sol üst köşedeki 

ilk piksel esas alınmıştır. 

Canny operatörü, kenar algılama sürecinde birden fazla aşamadan oluşan sofistike ve 

etkili bir yöntemdir. Bu yöntemde ilk olarak, elde edilen görüntü Gauss filtresi ile 

evrişim uygulanarak düzleştirilir ve böylece görüntüdeki gürültü azaltılır. Daha 

sonra, görüntü üzerinde yüksek birinci uzamsal türevleri vurgulamak amacıyla, 

Roberts Cross operatörü gibi basit bir iki boyutlu birinci türev operatörü 

uygulanmaktadır. Bu işlem sonucunda, kenarlar gradyan büyüklük görüntüsünde 

belirgin çıkıntılar şeklinde ortaya çıkmaktadır. 

Algoritma, bu çıkıntıların tepe noktalarını izleyerek kenarları daha ince bir çizgi 

halinde göstermek için maksimal olmayan bastırma adı verilen bir işlem 

uygulamaktadır. Bu aşamada, belirlenen eşik değerinin üzerinde olmayan tüm 

pikseller sıfıra ayarlanmaktadır. İzleme süreci, histerezis olarak bilinen bir yaklaşım 

ile iki eşik değeri (T1 ve T2, burada T1 > T2) tarafından kontrol edilmektedir. İzleme, 

yalnızca T1'den yüksek bir sırtta başlar ve bu noktadan itibaren, sırtın yüksekliği 

T2'nin altına düşene kadar her iki yönde de devam ettirilir. Bu histerezis yaklaşımı, 

gürültü kaynaklı kenarların bölünerek birden fazla kenar parçasına ayrılmasını 

önlemeye yardımcı olmaktadır. 

Canny operatörünün etkisi, üç temel parametreye bağlıdır: Gauss çekirdeğinin 

genişliği ve üst-alt eşik değerleri. Yumuşatma aşamasında kullanılan Gauss 

çekirdeğinin genişliği artırıldığında, algılayıcının gürültüye duyarlılığı azalır, ancak 

bu durum ince ayrıntıların bir kısmının kaybolmasına yol açabilmektedir. Ayrıca, 

Gauss genişliği arttıkça algılanan kenarlardaki lokalizasyon hatalarında da hafif bir 

artış gözlemlenmektedir. 

Genellikle, iyi sonuçlar için üst izleme eşiği oldukça yüksek, alt eşik ise oldukça 

düşük olarak ayarlanmalıdır. Alt eşiğin yüksek değerlere ayarlanması sonucunda 

gürültülü kenarların kırılmasına neden olmaktadır. Üst eşiğin çok düşük verilmesi 

sonucu, çıktıda görünen yanlış kenar parçalarının sayısını arttırmaktadır.  

Temel Canny operatörüyle ilgili bir sorun, gradyan büyüklük görüntüsünde üç sırtın 

buluştuğu yerler olan Y şeklindeki kavşaklardır. Bu tür bağlantılar, bir kenarın tam 

olarak görülemediği ve kısmen kapatıldığı durumlarda oluşabilmektedir. İzleme 

algoritması, bu çıkıntılardan ikisini tek bir çizgi parçası olarak değerlendirebilir; 
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üçüncü kenar ise bu doğru parçasına yaklaşan ancak tam olarak bağlanmayan bir kenar 

parçası şeklinde algılanabilir [11]. 

3.2 Kontur Algoritması 

Literatürde, kontur izleme amacıyla kullanılan birçok farklı algoritma bulunmaktadır. 

Bunlar arasında en yaygın olanları Kare İzleme algoritması ve Moore-Komşu izleme 

algoritmasıdır. Bu yöntemler, uygulanabilirlik açısından oldukça kolaydır ve bu 

nedenle herhangi bir nesnenin dış hatlarını izlemek amacıyla yaygın olarak tercih 

edilmektedir. Ancak, bu algoritmaların sahip olduğu bazı sınırlılıklar, özellikle belirli 

bağlantı türlerine karşı duyarsız olmaları nedeniyle, geniş bir model sınıfının çevresini 

doğru şekilde izleyememelerine neden olmaktadır. 

Kare İzleme ve Moore-Komşu algoritmaları, özellikle kumaş yüzeylerinde yer alan 

delikleri yok sayma eğilimindedir. Eğer delik içeren bir desen görüntüsü analiz 

ediliyorsa, bu algoritmalar yalnızca dış konturu takip eder ve iç boşlukları görmezden 

gelmektedir. Bu durum bazı uygulamalarda tolere edilebilir olsa da, karakter tanıma 

gibi daha hassas uygulamalarda, karakteri tanımlayan iç konturların da algılanması 

gerekmektedir. Bu algoritma ile her bir delik belirlenmeli ve ardından her deliğin 

konturu üzerinde ayrı ayrı kontur izleme algoritmaları uygulanarak genel kontur yapısı 

tam olarak çıkarılmalıdır [12]. 

3.2.1 Kare izleme algoritması 

Kare izleme algoritmasının temelinde oldukça basit bir fikir yatmaktadır. Bu 

algoritma, ikili bir desenin dış hatlarını çıkarmaya yönelik geliştirilen ilk yöntemlerden 

biri olarak kabul edilmektedir. Algoritma, dijital bir model üzerinde çalışır; bu model, 

siyah piksellerden oluşan bir şeklin, beyaz piksellerden oluşan bir arka plan üzerinde 

yer aldığı bir ızgarayı temsil etmektedir. Süreç, bir siyah pikselin bulunup "başlangıç" 

pikseli olarak ilan edilmesiyle başlamaktadır. "Başlangıç" pikselinin tespiti, birkaç 

farklı yöntemle gerçekleştirilebilir. Örneğin, ızgaranın sol alt köşesinden başlanarak 

her piksel sütunu, alttan yukarı doğru taranmaktadır. En soldaki sütundan başlayarak 

sağa doğru ilerlemekte ve siyah bir pikselle karşılaşıldığında, bu piksel "başlangıç" 

pikseli olarak ilan etmektedir. Bu başlangıç noktasından itibaren, algoritma deseni 

izleyerek dış hatları belirlemektedir.  
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Başlangıç pikseli belirlendikten sonra, kontur izleme işlemi siyah pikseller üzerinden 

yürütülmektedir. Algoritma, siyah bir piksele ulaşıldığında sola; beyaz bir piksele 

ulaşıldığında ise her seferinde sağa dönüş gerçekleştirerek işlemi sürdürmektedir. 

İzleme süreci, başlangıç pikseline yeniden ulaşıldığında tamamlanmaktadır. Bu 

süreçte üzerinden geçilen siyah pikseller, desenin dış konturunu oluşturmaktadır. 

Kare izleme algoritmasında, izleme yönünün doğru şekilde sürdürülmesi algoritmanın 

başarımı açısından kritik bir unsurdur. “Yön duygusu” olarak tanımlanan bu kavram, 

her bir piksele hangi yönden girildiğinin dikkate alınması ile yön değişimlerinin doğru 

şekilde hesaplanmasını sağlamaktadır. Yapılan her dönüş, mevcut konuma ve giriş 

yönüne göre belirlenmektedir. Bu nedenle, algoritmanın doğru çalışabilmesi için 

mevcut yön bilgisinin sürekli olarak güncellenmesi ve sonraki adımların bu bilgiye 

dayalı olarak kesin biçimde hesaplanması gerekmektedir. 

3.2.2 Moore-Neighbor takip algoritması 

Bir pikselin Moore komşuluğu, P noktasındaki, o pikselle bir köşe veya kenarı bulunan 

8 pikseli temsil etmektedir. Bu pikseller, aşağıdaki Resim 11'de gösterildiği üzere P1, 

P2, P3, P4, P5, P6, P7 ve P8 olarak adlandırılmaktadır. 

Şekil 3.5’de verilen Moore algoritması (8-komşu veya dolaylı komşu olarak da 

bilinmektedir) literatürde sıkça kullanılan önemli bir kavramdır. 

 

Şekil 3.5 : Moore piksel kümesi. 

Bir dijital model, yani siyah piksellerden oluşan bir nesne, beyaz piksellerden oluşan 

bir arka plan üzerinde ızgara yapısında tanımlandığında, kontur izleme algoritmasının 

başlatılabilmesi için öncelikle başlangıç pikselinin tespit edilmesi gerekmektedir. 

Başlangıç pikseli, çeşitli yöntemlerle belirlenebilir. Bu çalışmada kullanılan yöntem, 

ızgaranın sol alt köşesinden başlanarak, her sütunun alttan yukarı doğru taranması ve 

en soldaki sütundan sağa doğru ilerlenerek ilk karşılaşılan siyah pikselin başlangıç 
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pikseli olarak atanmasıdır. Başlangıç pikseli belirlendikten sonra, modelin dış 

konturunu izlemek amacıyla saat yönünde izleme işlemi gerçekleştirilir. İzleme yönü 

bir kez belirlendikten sonra sabit kalmalı, algoritmanın genelliği korunmalıdır. 

İzleme işlemi sırasında, her siyah piksele (P) ulaşıldığında, algoritma bir önceki 

konumda bulunan beyaz piksele geri döner ve ardından P pikselinin Moore komşuluğu 

saat yönünde taranarak kontrol edilir. Komşuluk içerisinde tespit edilen ilk siyah 

piksel, kontur izleme yolunun bir sonraki adımı olarak seçilir. Bu işlem, başlangıç 

pikseli ikinci kez ziyaret edilene kadar devam eder. İzleme süreci sonunda üzerinden 

geçilen tüm siyah pikseller, ilgili nesnenin dış konturunu tanımlamaktadır [13]. 

3.3 Eğrilik Algoritması 

Eğrilik algoritması, piksel altı çözünürlükte doğru görüntü eğriliklerini hesaplayan ve 

görsel algımıza uygun eğrilik haritasının bir görselleştirmesini sağlamaktadır. 

Eğrilikler, bağımsız yumuşatıldıktan sonra doğrudan bir görüntünün düz çizgileri 

üzerinde değerlendirilmektedir [14-16]. 

Eğriliklerin görsel algıdaki rolü uzun süredir tartışılmakta ve eğrilikleri doğru bir 

şekilde tahmin etmek için çok sayıda girişimde bulunulmaktadır. Şekil 3.6'da 

gösterilen hatalı kumaş resmi üzerinde, taslağı çizilen algoritmanın kapsamlı tanımı 

ve uygulanması hedeflenmektedir [17]. 

Eğriliğin görsel algıdaki rolü ilk olarak nörolojik temellere dayanarak görsel uyarının 

fazlasıyla gereksiz olduğunu ve “bilginin konturlar boyunca ve daha sonra yönünün 

değiştiği bir kontur üzerindeki noktalarda yoğunlaştığını savunan Attneave tarafından 

gündeme getirilmiştir [18]. Hatalı kumaş resmi ve konturlara ayrılmak üzere Canny 

filtresi uygulanmış hali Şekil 3.7’de görülmektedir. 

 

Şekil 3.6 : Hatalı resim görüntüsü. 
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Şekil 3.7 : Hatalı resim Canny kenar metodu uygulanmış resmi. 

Asada ve Brady, Attneave'in fikrini uygulayarak eğrilik ilkel çizim kavramını ortaya 

koymuşlardır. Bu yaklaşım, şekillerin çok ölçekli bir yorumuna dayanmaktadır: 

Nesnelerin dış hatları, eğrilikte önemli değişiklik noktaları olan düğümler aracılığıyla 

eğri çizgilerle temsil edilmektedir. Bu düğümler, Gauss'un birinci ve ikinci derece 

türevleri kullanılarak belirlenmektedir. Söz konusu temsil, desteklenen ölçek uzayı 

fikrini takip etmektedir ve eğriliğin doğru bir şekilde hesaplanabilmesi için giderek 

daha karmaşık işlemler gerektirmektedir.  

Bu süreçte karşılaşılan iki temel zorluk bulunmaktadır: 

(i) Eğriliğin hesaplanması gereken konturların doğru bir şekilde çıkarılması, 

(ii) Konturların topolojik ve topografik özellikleri korunarak yumuşatılması. 

Ham görüntüler üzerinde doğrudan eğrilik hesaplamaları, sonlu ızgaralarda kullanılan 

fark yaklaşımlarına dayandığı için hâlâ yeterince güvenilir değildir. Bu yöntemler, 

ortalama eğrilik ile görüntü hareketini simüle etmek açısından belirli bir verimliliğe 

sahip olsa da gerçek eğrilik haritasının görselleştirilmesi söz konusu olduğunda 

yetersiz kalmaktadır. Ayrıca, çapraz çizgiler boyunca sahte salınımlar meydana 

gelmektedir. Görüntü eğrilikleri, düzleştirme sonrası çift doğrusal enterpolasyonla 

hesaplanarak her çözünürlükte hassas görselleştirme sağlanabilmektedir. Ancak, 

orijinal görüntüye veya görüntü yumuşatıldıktan sonra uygulanan sonlu fark 

şemalarının tatmin edici sonuçlar vermediği gözlemlenmiştir [19,20]. 

3.3.1 Ayrık eğrilik algoritması  

Ayrık eğrilikleri hesaplamak için daha önceki çoğu yaklaşımlar sonlu fark şemaları 

yaklaşımlarına dayanmaktadır. Ancak bu yaklaşımlar, grid değerlerine dayalı 

oldukları için yatay ve dikey çizgiler boyunca sahte salınımlara yol açmaktadır. 
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Aşağıda, doğrudan seviye çizgilerinde ayrık eğrilikleri hesaplamak için bir formül 

sunulmaktadır. Bu formül kullanılarak geliştirilen algoritma öncesinde kenar algılama 

ve kontur oluşturma işlemleri gerçekleştirilir. Ardından elde edilen konturlar ile ayrık 

eğrilik fonksiyonu çalıştırılarak tespit yapılmaktadır. 

Her bir seviye çizgisinin, sıralı köşeleri ile tanımlanan bir çokgen olarak saklandığını 

ve sürekli bir seviye çizgisinin ayrıklaştırılmasından oluşmaktadır. Kolaylık olması 

için, λ'ya olan bağımlılığı düşürülerek, genel olarak bir seviye çizgisini Σ = {Pj (xj, yj)} 

ile P0 = PN olarak gösterilmektedir. Herhangi bir Pj köşesinde, sınırlandırılmış 

yarıçapın tersi olarak ayrı bir eğrilik κ(Pj) hesaplanabilir. Daha kesin olarak, her j = 0, 

1, · · ·, N için ardışık üç Pj−1, Pj, Pj+1 noktası tarafından belirlenen üçgeni göz önünde 

bulundurur, rj salınımlı daire (osculating circle) yarıçapını hesaplar ve (işaretli) ayrık 

eğriliği tanımlayabilir. Bir eğri üzerinde alınan noktalar ile oluşturulan bir örnek Şekil 

3.8’de verilmektedir [14].  

κ(Pj) = ±1/rj (3.2) 

Düzey çizgisinin, görüntünün gradyanı sol tarafta olacak şekilde yönlendirilmesi 

gerekmektedir. 

𝑛 = 𝐷𝑢/‖𝐷𝑢‖ (3.3) 

 

Şekil 3.8 : Görüntünün eğimi sol tarafında olacak şekilde, saat yönünde 

yönlendirilmiş (kırmızı ok) düz bir çizgi parçası, sınırlanmış yarıçapın tersi olarak, 

seviye çizgisinin ayrıklaştırılması ve her bir tepe noktasında ayrık eğriliğin 

hesaplanması. 

Pj noktasındaki ayrık eğrilik şu şekilde verilmektedir: 
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𝐾(𝑃𝑗) ≔
−2 𝑠𝑖𝑛𝜃𝑗

‖𝑃𝑗−1𝑃𝑗+1‖
=

−2𝑑𝑒𝑡(𝑃𝑗𝑃𝑗−1𝑃𝑗𝑃𝑗+1)

‖𝑃𝑗−1𝑃𝑗‖‖𝑃𝑗𝑃𝑗+1‖‖𝑃𝑗−1𝑃𝑗+1‖
 (3.4) 

burada  𝜃𝑗∠(𝑃𝑗𝑃𝑗−1,𝑃𝑗𝑃𝑗+1) açısıdır ve sağ tarafın payı terimi içerir. 

𝑑𝑒𝑡(𝑃𝑗𝑃𝑗−1, 𝑃𝑗𝑃𝑗+1) ≔ 𝑑𝑒𝑡 (
𝑥𝑗−1 − 𝑥𝑗 𝑥𝑗+1 − 𝑥𝑗

𝑦𝑗−1 − 𝑦𝑗 𝑦𝑗+1 − 𝑦𝑗
) (3.5) 

Üçgenin çevreleyen çemberinin merkezi C ve θ =∠(PjPj+1, PjC) olsun. C noktası iki 

dik açıortay üzerinde olduğundan, 

𝑟𝑗𝑐𝑜𝑠𝜃 ≔
‖𝑃𝑗𝑃𝑗+1‖

2
 (3.6) 

𝑟𝑗𝑐𝑜𝑠(𝜃𝑗 + 𝜃) ≔
‖𝑃𝑗−1𝑃𝑗‖

2
𝑟+ = ‖𝑃𝑗𝑃𝑗+1‖  ve 𝑟− = ‖𝑃𝑗−1𝑃𝑗‖ alınırsa, her iki denklem 

arasında rj'yi ortadan kaldırarak ve bir toplamın kosinüsünü genişleterek, şu sonuca 

varılmaktadır: 

(𝑟+𝑐𝑜𝑠𝜃𝑗 − 𝑟−)𝑐𝑜𝑠𝜃 = 𝑟+𝑠𝑖𝑛𝜃𝑗𝑠𝑖𝑛𝜃 (3.7) 

Böylece; 

tanθ =
𝑟+𝑐𝑜𝑠𝜃𝑗 − 𝑟−

𝑟+𝑠𝑖𝑛𝜃𝑗
 (3.8) 

 

 

Elde edilir; 

1

|𝑐𝑜𝑠𝜃|
= √1 + 𝑡𝑎𝑛2𝜃 =

√𝑟+
2 + 𝑟−

2 − 2𝑟+𝑟−𝑐𝑜𝑠𝜃𝑗

𝑟+|𝑠𝑖𝑛𝜃𝑗|
=

‖𝑃𝑗𝑃𝑗+1‖

𝑟+|𝑠𝑖𝑛𝜃𝑗|
 (3.9) 

 

Kosinüs yasasını son eşitlikle birleştirdiğimiz takdirde, 

1

|𝐾(𝑃𝐽)|
= 𝑟𝑗 =

‖𝑃𝑗−1𝑃𝑗+1‖

2|𝑠𝑖𝑛𝜃𝑗|
 

 

(3.10) 

Önermenin son eşitliği vektör çarpım özelliğinden gelmektedir. 

det(𝑃𝑗𝑃𝑗−1𝑃𝑗𝑃𝑗+1) = 𝑟+𝑟−𝑠𝑖𝑛(𝜃𝑗) (3.11) 
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Bu önermeler kullanılarak geliştirilen Ayrık eğrilik fonksiyonu Şekil 3.6‘daki hatalı 

kumaş görüntüsü ve Canny kenar tespiti ile Şekil 3.7 elde edildikten sonra, kontur 

algoritması kullanılarak her bir kenarların parça olarak elde edilmesi gerekmektedir. 

Daha sonra elde edilen 5 nokta üzerindeki her bir kontur ayrık eğrilik fonksiyonu için 

kullanılarak eğrilik değerleri hesaplanmaktadır. Şekil 3.9’de kontur algoritmasının 

sonucunda elde edilen her bir parçanın resimleri verilmiştir. 

 

Şekil 3.9 :  Kontur uygulanmış hatalı kumaş resim parçaları. 

Elde edilen konturlar sonucunda DiscreateCurvature fonksiyonunun hesapladığı 

değerlerden elde edilen dış açı, yarıçap grafiği Şekil 3.10’da gösterilmektedir. 

 

Şekil 3.10 :  θj, salınımlı daire (osculating circle) yarıçapı grafiği. 
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Elde edilen konturlar sonucunda DiscreateCurvature fonksiyonunun hesapladığı 

değerlerden elde edilen yarıçap grafiği Şekil 3.11’de gösterilmektedir.  

 

Şekil 3.11 : Kontur üzerindeki noktaların yarıçap değerleri grafiği. 

Elde edilen konturlar sonucunda DiscreateCurvature fonksiyonunun hesapladığı 

değerlerden elde edilen dış açı (θj) grafiği Şekil 3.12’de gösterilmektedir. 

 

Şekil 3.12 : Kontur üzerindeki noktaların açı değerleri grafiği. 

DiscreateCurvature fonksiyonu kontur dizileri girdisi ile çalışarak hesaplandığı her bir 

Pj noktası için yarıçap(rj), açı değeri(θ) ve dış açı (θj) değerleri hesaplamaktadır. 

Çizelge 3.1 : Eğrilik karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
 

 Kusursuz Kusurlu  Toplam 

Kusursuz 
50 

%22 

102 

%45 
152 

Kusurlu 
52 

%23 

22 

%10 
74 

Toplam 
102 124 226 
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Eğrilik algoritması kullanılarak elde edilen karmaşıklık matrisi Çizelge 3.1’de 

verilmektedir. Doğruluk oranı %32 olarak elde edilmiştir. 

3.3.2 Modifiye edilmiş ayrık eğrilik algoritması  

Standart eğrilik algoritmasında, eğri boyunca ardışık 3 nokta seçilmektedir. Ancak, bu 

seçim aşırı yarıçap değerlerine neden olmaktadır. Bu nedenle, makul yarıçap değerleri 

elde etmek için algoritmayı eğrinin geometrisini kontrol ederek değiştirilmiştir. Bu 

güncellemeyi uygulayabilmek için, konkav geometri (örneğin, f’’(x)<0) veya konveks 

geometri (örneğin, f’’(x)>0) için eğri fonksiyonunun ikinci türevini incelenmesi 

planlanmaktadır.  

Bu algoritma pseudo kod olarak algoritma 1’de anlatılmıştır. 

Algoritma 1: Modifiye Edilmiş Ayrık Eğrilik Algoritması 

Require: image (n × n) ≠ nonempty 

if Filter selection type then 

filteredimage = filter(image) 

end if 

contours ← findContours(filteredimage)            ▷Countourların çıkarılması 

while N ≤ len(counters) do 

CIList = DiscreateCurvature(counters)  

return(rj,theta,thetaj,kpj)          ▷ Yarıçap ve açı değerleri 

end while 

while m ≤ CIList do 

if thetajis < 180 then             ▷ Konveks konkav kontrolü 

dircurv = 1 

else if thetajis > 180 then 

dircurv = 2 

else if thetajis = 180 then 

dircurv = 3 

end if 

dircurv is changed append values to the CIListedge 

end while 

while m ≤ CIListedge do 

if CIListedge is between x1 < rj < y1, a1 < thetaj < b1type1 then 
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Algoritma 1: Modifiye Edilmiş Ayrık Eğrilik Algoritması 

defect type is hole or oil         ▷ Dairesel hata tespiti 

end if 

if CIListedge is between x2 < rj < y2, a2 < thetaj < b2 then 

defect type is vertical or horizontal      ▷ Yatay dikey hata tespiti 

end if 

end while 

Yeni 3 nokta seçimi, Şekil 3.13'de gösterildiği gibi kapsama alanını maksimize ederek 

gerçekleştirilir. Böylece, eğrilikler daha doğru bir şekilde hesaplanır. Ayrıca, daha 

hızlı işlem için toplam nokta sayısı önemli ölçüde azaltılmıştır. 

 

Şekil 3.13 : (A) Örnek eğri, (B) standart eğrilik, (C) optimize edilmiş eğrilik, (D) 

verimli eğrilik. 

3 nokta yapısı kullanılarak ayrık eğrilik algoritması ile açı ve yarıçap değerlerinin 

hesaplanmasını göstermektedir. Şekil 3.13A, hesaplamaların değerlendirileceği bir 

örnek eğriyi göstermektedir. Şekil 3.13B, noktaların ardışık seçildiği yaygın eğriliği 

göstermektedir. Noktalar çok yakın olduğunda, yüksek yarıçap değerine ve yanlış açı 

hesaplamalarına neden olur. Şekil 3.13C ve 3.13D'de, daha doğru ve optimal sonuçlar 

elde etmek için farklı yöntemler sunulmaktadır. 

Çizelge 3.2 : Modifiye edilmiş eğrilik karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
108 

%48 

44 

%19 
152 

Kusurlu 
6 

%3 

68 

%30 
74 

Toplam 114 112 226 
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Sonuçlar, önerilen yeni yöntemin eğrilik algoritması ile daha doğru sonuçlar elde 

edilebileceğini göstermektedir ve bu sonuçlar Çizelge 3.2'deki karışıklık matrisinde 

gösterilmiştir. Doğruluk oranı %78 olarak elde edilmiştir. Bu şekilde, kusur tespiti için 

kullanılabileceği belirtilmektedir. Bu nedenle, bu yaklaşımı geliştirmek için 

çalışmalara devam edilecektir. 

3.4 Spektral Yöntemler 

3.4.1 Gabor dönüşümü 

Gabor dönüşümü, kısa süreli Fourier dönüşümünün özel bir halidir. Zamanla değişen 

bir sinyalin yerel bölümlerinin sinüzoidal frekansını ve faz içeriğini belirlemek için 

kullanılmaktadır. Dönüştürülecek fonksiyon önce bir pencere fonksiyonu olarak kabul 

edilebilecek bir Gauss fonksiyonu ile çarpılmakta ve elde edilen fonksiyon daha sonra 

zaman-frekans analizini türetmek için bir Fourier dönüşümü ile dönüştürülmektedir 

[21-22]. 

Pencere işlevi, analiz edilen zamana yakın sinyalin daha yüksek ağırlığa sahip olacağı 

anlamına gelir. Bir x(t) sinyalinin Gabor dönüşümü şu formülle tanımlanmaktadır: 

G(f) = f̂g(t, w) (3.15) 

= ∫ f(τ)e−jwτg(t − τ)dτ
+

−

 (3.16) 

Gabor filtreleri, bilgisayarla görme ve dijital görüntü işleme yöntemleri 

karşılaştırılması sonucu farklı doğruluk oranları arasında değişen bu yöntemlerden en 

iyi sonuç veren yöntemlerden olduğu belirtilmiştir. Ancak birçok hata içeren kumaş 

görüntülerinde Gabor filtreleri yaklaşımı da yüksek doğruluk oranına sahip yöntem 

olduğu ifade edilmektedir [23,24,25]. 

Aşağıdaki 𝑔() fonksiyonu, filtre içerisinde kullanılacak Gabor çekirdeği oluşturmasını 

sağlamaktadır. Bu denklemde, 𝜆 sinüzoidal faktörün dalga boyunu temsil eder, 𝜃 

normalin bir Gabor işlevinin paralel şeritlerine yönelimini temsil eder, 𝜓 faz ofseti, 𝜎 

Gauss zarfının standart sapmasıdır ve 𝛾 uzamsal en-boy oranıdır ve Gabor 

fonksiyonunun desteğinin eliptikliğini belirtmektedir [26,27]. 
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g(x, y; λ, θ, ψ, σ, γ) = exp (−
x′2 + γ2y′2

2σ2
) exp (i (2π

x′

λ
+ ψ)) 

 

(3.17) 

Bu algoritma pseudo kod olarak algoritma 2’de anlatılmıştır. 

Algoritma 2: Gabor Dönüşümü Algoritması 

Require: image (n × n) ≠ nonempty 

kernel ← getGaborKernel ((ksize, ksize), σ, θ, λ, γ, φ) 

if Filter selection type then 

filteredimage = f ilter(image) 

end if 

Gaborimage ← f ilter2D (image, kernel)                       ▷ Gabor Dönüşümü 

while (n × n) ≤ GaborTransformImage () do 

Sum the energy density of all pixels.      ▷ Enerji yoğunluğu hesabı 

density 

end while 

if Energy density is ≥ Threshold Energy then 

Image is defected 

end if 

λ: Kosinüs çarpanının dalga boyunu belirleyen katsayıdır. Katsayının 1 olması 

durumunda kosinüs ifadesi sürekli 1 olacağından (cos(2.pi.x') =1) katsayı 2 veya daha 

büyük bir tamsayı seçilmelidir. 

θ: Teta doğrudan formül içerisinde görünmese de Gabor filtresinin aslında en önemli 

değişkenlerinden biridir. Bu değişken x' ve y' değerlerinin hesaplanmasında kullanılır 

ve oluşturulmak istenen Gabor çekirdeğinin yönelim açısıdır.  x' ve y' değişkenleri 

verilen bir teta değeri için aşağıdaki formül ile hesaplanmaktadır. 

[
𝑥′

𝑦′] = [
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)
] [

𝑥
𝑦] (3.18) 

φ: Fi açısı oluşturulacak çekirdek matrisinin faz açısıdır. Bu değer değiştirilerek filtre 

x ekseninde ötelenmektedir. 
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σ: Sigma değeri Gaussian fonksiyonun standart sapmasını belirleyen katsayıdır. Bu 

parametre Gaussian fonksiyonun açıklığını belirlediğinden bu değerin küçük seçilmesi 

ile Gabor dalgacıkları bir birlerine yaklaşacaktır. 

γ: Bu değer de verilen standart sapma değerinin y' için belirlenmesinin sağlamaktadır. 

Bu değerin 1 olması durumunda oluşacak çekirdek matris x ve y için eşit standart 

sapmaya sahip olduklarından eşit uzunlukta olacakken, farklı bir oran seçildiğinde 

çekirdek matris dikdörtgene benzer bir şekilde oluşacaktır. 

x, y: Bu iki değer oluşturulacak 2 boyutlu çekirdek matrisin koordinatlarını temsil 

etmektedir. NxN büyüklükte bir çekirdek matris için x ve y değerleri [-(N-1)/2,(N-

1)/2] aralığında gezilerek çekirdek matris hesaplanmaktadır [28,29]. 

Şekil 3.14, Şekil 3.15, Şekil 3.16 ve Şekil 3.17’de ham kumaş görüntüsü ve gabor 

filtresi sonucu verilmektedir. 

 
 

Şekil 3.14 : Hatalı kumaş ve gabor filtresi uygulanmış görüntüsü (1). 

 

 
 

Şekil 3.15 : Hatalı kumaş ve gabor filtresi uygulanmış görüntüsü (2). 
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Şekil 3.16 : Hatalı kumaş ve gabor filtresi uygulanmış görüntüsü (3). 

 

 
 

Şekil 3.17 : Hatalı kumaş ve gabor filtresi uygulanmış görüntüsü (4). 

Python üzerinde istatistiksel ve spektral yöntemlerin test edilebilmesi amacıyla bir test 

arayüzü geliştirilmiştir. Bu arayüz, farklı resimler üzerinde fonksiyon parametrelerinin 

kolayca değiştirilmesine olanak tanıyarak, kullanıcıların çeşitli analiz senaryolarını 

hızlı bir şekilde test etmesini sağlamaktadır. Aynı zamanda, farklı kumaş örneklerinin 

incelenmesi ve çeşitli dokular üzerindeki etkilerin karşılaştırmalı olarak 

değerlendirilmesine imkân tanımaktadır. Böylece, yöntemlerin farklı kumaş türlerine 

adaptasyonu ve performanslarının karşılaştırılması kolaylaşmaktadır. Şekil 3.18 ve 

3.19'da bu arayüzün kullanıcıya sunduğu test ortamı ve örnek kullanım senaryoları 

gösterilmektedir. 
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Şekil 3.18 : Kumaş hata test arayüzü (1). 

 

Şekil 3.19 : Kumaş hata test arayüzü (2). 

Gabor yöntemi ile elde edilen sonuçlar ve karmaşıklık matrisi Çizelge 3.3’de 

verilmiştir. Doğruluk oranı %90 olarak elde edilmiştir. 

Çizelge 3.3 : Gabor dönüşümü karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
132 

%58 

29 

%9 

152 

Kusurlu 
1 

%1 

73 

%32 

74 

Toplam 133 93 226 
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3.4.2 Curvelet dönüşümü 

Candes ve Donoho tarafından tanıtılan Curvelet Dönüşümü, özellikle görüntü 

verilerindeki anizotropik özellikler ve eğrisel tekillikler gibi zorlukların üstesinden 

gelmede Wavelet Dönüşümüne kıyasla önemli başarı sağlamaktadır. Wavelet 

Dönüşümü, noktasal tekillikleri yakalamada oldukça etkiliyken, eğrisel özellikleri ve 

geometrileri temsil etmede zorlanmaktadır [30, 31]. Bu sınırlama, wavelet'lerin 

izotropik ölçeklendirme doğasından kaynaklanmaktadır ve doğal görüntülerin 

geometrisi ile uyumlu olmamaktadır. 

Curvelet Dönüşümü ise, anizotropik ölçeklendirme ve yön hassasiyeti kullanarak 

kenarlar, konturlar ve diğer geometrik olarak karmaşık yapılar için ideal bir analiz 

sağlamaktadır [32]. Dönüşüm, temel fonksiyonlarını eğrisel tekilliklere hizalayarak bu 

tür özelliklerin seyrek ve verimli bir temsilini sunmaktadır. Bu özellik, görüntü 

gürültüsünün giderilmesi, kenar algılama, doku bölütleme ve görüntü sıkıştırma gibi 

sağlam görüntü analizi gerektiren uygulamalarda Curvelet Dönüşümünü önemli bir 

araç haline getirmektedir [33]. 

Curvelet Dönüşümünün temel ilkesi, bir görüntüyü belirli geometrik özellikleri birden 

fazla ölçek ve yönde temsil eden bir dizi katsayıya ayırabilmesinden gelmektedir. Bu 

ayrıştırma süreci, Curvelet temel fonksiyonlarının görüntünün geometrik yapısına göre 

uzatılmış ve yönlendirilmiş olmasını sağlayan anizotropik ölçeklendirme yöntemiyle 

gerçekleştirilir. Anizotropik ölçekleme yasası "genişlik ∼ uzunluk²" olarak 

tanımlanmakta olup, Curvelet Dönüşümünün uzatılmış yapılara doğal olarak uyum 

sağlamasını mümkün kılmaktadır. Bu özellik, özellikle yumuşak eğriler veya uzatılmış 

kenarları içeren senaryolarda, geleneksel dönüşüm tekniklerine kıyasla üstün 

performans sergilemesini sağlamaktadır [34, 35]. 

3.4.2.1 Matematiksel temeller 

Curvelet, dönüşümü, yüksek anizotropik özelliğe sahip özel bir iki boyutlu dalgacık 

dönüşümüdür. Diğer yerelleştirilmiş dalgacık dönüşümleri gibi, çok ölçekli analiz, 

zaman-frekans sınırlaması ve yönsel sınırlama sağlamaktadır. Ancak, klasik dalgacık 

dönüşümünden farklı olarak, Curvelet dönüşümü daha hassas bir açısal ayrıştırma 

sunarak özellikle eğri kenarları ve doğrusal olmayan yapıları daha etkili bir şekilde 

temsil edebilmektedir. 
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Şekil 3.20, Curvelet dönüşümünün bu önemli özelliklerinden birini görsel olarak 

ortaya koymaktadır. Bu dönüşüm, geleneksel dalgacık dönüşümlerine kıyasla 

kenarları daha seyrek bir şekilde temsil etmekte ve böylece yüksek doğrulukla kenar 

tespiti ve yapı analizi gerçekleştirebilmektedir. 

 

Şekil 3.20 : . a) Dalgacık Dönüşümü b) Curvelet Dönüşümünde kenarların temsili. 

Uzayda bir Curvelet, ölçek (𝑗), konum (b) ve yön (θ) bileşenlerine göre şu şekilde ifade 

edilir: 

Ψj,b,θ(x) = 2
−3j

4 Ψ (DjRθ
−1(x − b)) (3.19) 

Dj = (2−j 0
0 2−j/2

) , 𝑅θ
−1 = ( 𝑐𝑜𝑠θ 𝑠𝑖𝑛θ

−𝑠𝑖𝑛θ 𝑐𝑜𝑠θ
) 

 
(3.20) 

Matematiksel olarak Ayrık Curvelet Dönüşümü, f(x) fonksiyonunun Curvelet 

katsayılarına ayrıştırılması olarak tanımlanır. Curvelet dönüşümü aşağıdaki şekilde 

hesaplanmaktadır: 

c(j, l, k)  =  ⟨f(x), Φ{j, l, θ} ⟩ (3.21) 

Burada: 
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𝑗 : Curvelet'in ölçeğini, 

l : yönelim (veya açıyı), 

k : uzamsal konumu, 

ϕj,l,k: Curvelet baz fonksiyonu. 

Bu ayrıştırma, giriş fonksiyonunu çoklu ölçekli ve çoklu yönlü bileşenlere 

ayırmaktadır. Her bileşen, belirli bir ölçek ve yönde fonksiyonun geometrik 

özelliklerine karşılık gelmektedir [33,36]. 

Curvelet dönüşümü, enerji korunumu ilkesine uyar: 

|f|2 = ∑|cj,l,k|
2

j,l,k

 (3.22) 

Bu, dönüşümün kayıpsız olduğunu göstermektedir [37,38]. 

3.4.2.2 Anizotropik ölçeklendirme 

Curvelet Dönüşümünün ayırt edici özelliklerinden biri, anizotropik ölçeklendirme 

kullanmasıdır. Wavelet'lerde olduğu gibi tüm yönleri eşit şekilde ele alan izotropik 

ölçeklendirme yerine, Curvelet Dönüşümü temel fonksiyonları anizotropik bir şekilde 

ölçeklendirmektedir: 

𝑊𝑖𝑑𝑡ℎ ∼ Length2 (3.23) 

Bu ölçeklendirme, Curvelet elemanlarının görüntüdeki eğrisel veya uzatılmış 

özelliklerle hizalanmasını sağlamaktadır. Bu sayede dönüşüm, bu tür özellikleri 

izotropik dönüşümlere kıyasla daha seyrek ve doğru bir şekilde temsil edebilmektedir 

[39,40]. 

3.4.2.3 Curvelet dönüşümünün uygulamaları 

Wavelet'lerin izotropik ve nokta benzeri tekillikler için ideal olmasına karşın, 

Curvelet'ler anizotropiktir ve çizgi ile eğri tekilliklerini analiz etmek için daha uygun 

olmaktadır. Bu özellik, Curvelet Dönüşümünü, hata tespiti ve özellik çıkarımı gibi 

uygulamalar için özellikle değerli kılmaktadır [41, 42]. Bu çalışmada Curvelet 

Dönüşümü, Uniform Discrete Curvelet Transform (UDCT) yöntemi kullanılarak 

uygulanmıştır. UDCT, Curvelet katsayılarını verimli bir şekilde hesaplamakta ve 

görüntünün çok ölçekli, çok yönlü bir analizini mümkün kılmaktadır. Her ölçek, ince 
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ayrıntılardan kaba yapılara kadar belirli bir boyuttaki özellikleri yakalarken, yön 

bantları belirli yönelimlere karşı hassasiyeti artırmaktadır. Bu ayrıştırma, görüntünün 

geometrik yapısının kapsamlı bir şekilde analiz edilmesini sağlamaktadır [43]. 

Curvelet dönüşümü pseudo kod olarak algoritma 3’de anlatılmıştır. 

Algoritma 3: Curvelet Dönüşümü Algoritması 

Require: image (n × n) ≠ nonempty 

 # Curvelet dönüşümünü uygula 

apply_curvelet_transform(image, nscales, nbands_per_direction) 

return transform, coefficients          ▷ Curvelet Katsayıları 

# Görüntüyü yeniden oluştur 

reconstructed_image(transform, coefficients)             ▷ Yapılandırılmış Görüntü 

 # Yeniden oluşturma farkını analiz et 

diff=analyze_reconstruction(image, reconstructed_image)          ▷ Fark analizi 

# Kusurları belirginleştir ve işaretle 

defects = highlight_defects(image, diff, threshold) 

 

Curvelet dönüşümünde kritik bir parametre, görüntünün analiz edildiği ölçek veya 

çözünürlük seviyelerinin sayısını belirleyen nscales parametresidir. Bu çalışmada 

nscales = 5 olarak seçilmiş olup, bu değer, görüntünün beş farklı çözünürlük seviyesine 

bölündüğünü ifade etmektedir. Bu ölçeklendirme, dönüşümün hem küçük kusurlar 

gibi ince detayları hem de daha büyük düzensizlikler veya desenler gibi geniş ölçekli 

yapıları yakalayabilmesini sağlamaktadır. 

Diğer önemli bir parametre ise, her bir ölçek içerisinde yer alan yön bantlarının sayısını 

belirleyen yön başına bant sayısıdır. Curvelet dönüşümü doğası gereği yönelimlidir ve 

bu parametre, yön analizi hassasiyetini kontrol etmektedir. Bu çalışmada nbands per 

direction = 32 olarak belirlenmiş olup, bu seçim yüksek yön hassasiyeti sağlamaktadır. 

Bu ayar, farklı yönlerdeki özelliklerin hassas tespitini sağlayarak Curvelet 

dönüşümünü karmaşık yapıları analiz etmede etkili kılmaktadır. 

Aşağıda, Curvelet dönüşümünün uygulandığı görüntülerin analiz sonuçları 

sunulmaktadır. Şekil 3.21'de sırasıyla orijinal görüntü, fark haritası ve işlenmiş 
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görüntüler gösterilmektedir. Bu görseller, dönüşümün ölçek ve yön bileşenleriyle 

kusur tespitine katkısını göstermektedir. 

 

 

 

 

Şekil 3.21 : Orijinal görüntü, fark haritası ve işlenmiş görüntüler. 

Curvelet dönüşümü, transform.forward(image) yöntemi ile gerçekleştirilmektedir. Bu 

yöntem, görüntüyü Curvelet temsiline dönüştürmektedir. Daha sonra, transform 

backward(coefficients) yöntemi kullanılarak, Curvelet katsayılarıyla görüntü tekrar 

oluşturmaktadır. Bu yeniden oluşturulan görüntü, yalnızca Curvelet katsayıları 
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tarafından yakalanan bilgileri içermekte ve böylece gürültü ve ilgisiz ayrıntılar etkili 

bir şekilde filtrelenmektedir [44-46]. 

3.4.2.4 Curvelet dönüşümünün uygulamalarında iyileştirmeler 

Curvelet dönüşümü, özellikle çoklu ölçek ve yön duyarlılığı sayesinde parazitleri 

azaltmada etkili bir yöntemdir. Görüntü üzerindeki parazitler genellikle yüksek 

frekanslı bileşenler olarak yer alırken, Curvelet dönüşümü bu bileşenleri farklı 

ölçeklere ve yönlere ayırmaktadır. Parazitleri filtrelemek için yüksek frekanslı 

katsayılar eşik değerine göre sıfırlanarak veya baskılanarak işlenmektedir. Böylece, 

düşük frekanslı bileşenlerde yer alan asıl yapısal özellikler korunurken, parazit etkisi 

önemli ölçüde azaltılmaktadır. Sonuç olarak, yeniden inşa edilen görüntü hem daha 

net hem de parazitlerden arındırılmış bir yapıya sahip olur ve bu da özellikle dokusal 

analiz veya hata tespiti gibi uygulamalar için büyük avantaj sağlamaktadır. 

Aşağıda, Şekil 3.22, Şekil 3.23, Şekil 3.24 ve Şekil 3.25’de Curvelet filtreleme işlemi 

uygulanmamış ve parazitleri hala içeren farklı tiplerde görüntüler bulunmaktadır. 

 

Şekil 3.22 : Orijinal görüntü, filtresiz fark haritası ve fark işaretlenmiş görüntü. 

 

Şekil 3.23 : Orijinal görüntü, filtresiz fark haritası ve fark işaretlenmiş görüntü. 

 

Şekil 3.24 : Orijinal görüntü, filtresiz fark haritası ve fark işaretlenmiş görüntü. 
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Şekil 3.25 : Orijinal görüntü, filtresiz fark haritası ve fark işaretlenmiş görüntü. 

Aşağıda, Şekil 3.26, Şekil 3.27, Şekil 3.28 ve Şekil 3.29’de Curvelet filtreleme işlemi 

uygulanmış ve parazitlerden büyük ölçüde arındırılmış görüntüler bulunmaktadır. 

 

Şekil 3.26 : Orijinal görüntü, filtreli fark haritası ve fark işaretlenmiş görüntü. 

 

Şekil 3.27 : Orijinal görüntü, filtreli fark haritası ve fark işaretlenmiş görüntü. 

 

Şekil 3.28 : Orijinal görüntü, filtreli fark haritası ve fark işaretlenmiş görüntü. 

 

Şekil 3.29 : Orijinal görüntü, filtreli fark haritası ve fark işaretlenmiş görüntü. 
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Curvelet dönüşümünün uygulanması sonrası elde edilen karmaşıklık matrisi ise 

Çizelge 3.4’de verilmiştir. Doğruluk oranı %80 olarak elde edilmiştir. 

Çizelge 3.4 : Curvelet dönüşümü karmaşıklık matrisi. 

  Tahmin 
G

er
çe

k
  

  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
122 

%54 

30 

%14 
152 

Kusurlu 
13 

%6 

61 

%26 
74 

Toplam 135 91 226 

 

Bu uygulamada kullanılan parametreler (nscales=5 ve nbands per direction=32), 

hesaplama verimliliği ve özellik hassasiyeti arasında bir denge sağlamaktadır. Bu 

kombinasyon hem ince hataları hem de daha büyük, daha yapılandırılmış 

düzensizlikleri tespit ederek görüntünün kapsamlı bir analizini mümkün kılmaktadır. 

3.4.3 Hough dönüşümü 

Hough Dönüşümü, Paul Hough tarafından 1962 yılında tanıtılan, parametrik şekilleri 

(çizgiler, daireler ve elipsler gibi) görüntülerde algılamak için tasarlanmış temel bir 

özellik çıkarım tekniğidir. Geleneksel kenar algılama yöntemleri yalnızca piksel 

düzeyindeki yoğunluk gradyanlarına dayanırken, Hough Dönüşümü kenar noktalarını 

görüntü uzayından daha yüksek boyutlu bir parametre uzayına eşleyerek 

çalışmaktadır. Bu eşleme, yöntemin gürültülü veri, eksik şekiller veya kısmi örtüşme 

gibi zorlu koşullarda bile şekilleri tanımlamasına olanak tanımaktadır. Bu dayanıklılık, 

Hough Dönüşümünü endüstriyel denetim, medikal görüntüleme, bilgisayarla görü ve 

otonom navigasyon gibi birçok alanda önemli bir araç haline getirmiştir [47-49]. 

Hough Dönüşümünün gücü, parametrik bir denklemin tanımladığı tüm olası şekilleri 

sistematik olarak keşfetme yeteneğinde yatmaktadır. Örneğin, bir çizgi algılama 

durumunda, Kartezyen koordinatlardaki y=mx+by çizgi denklemi, şu polar forma 

dönüştürülmektedir: 

ρ = x cos θ + y sin θ (3.24) 
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Bu dönüşüm, sonsuz eğimler ile ilgili sorunları çözmekte ve çizgi algılama için daha 

kararlı bir temsil sağlamaktadır. Görüntü uzayındaki her bir kenar noktası, parametre 

uzayında bir sinüzoidal eğriye atanmakta ve bu eğrilerin kesişimleri tespit edilen 

çizginin parametrelerine karşılık gelmektedir. Bu prensip, daireler ((𝑥 − 𝑎)2 +

(𝑦 − 𝑏)2 = 𝑟2)  ve elipsler gibi diğer geometrilere, parametre uzayının boyutunu 

artırarak genişletilebilmektedir [50]. 

Parametre uzayının ayrık bir temsili olan biriktirici dizi (accumulator array), belirli 

parametrelere sahip şekillerin varlığını gösteren tepe noktalarını içermektedir. Bu 

biriktirme mekanizması, Hough Dönüşümünün gürültü veya şekil parçalanması gibi 

durumlarda bile dayanıklı bir şekilde çalışmasını sağlamaktadır. Bu özellik, özellikle 

tekstil kusur tespiti ve kalite kontrolünde uyarlanabilirliğini ortaya koymaktadır [51]. 

3.4.3.1 Matematiksel temeller 

Çizgi algılama 

Kartezyen koordinatlarda bir çizgi şu denklemle ifade edilmektedir: 

𝑦 =  𝑚𝑥 +  𝑏 (3.25) 

Ancak, sonsuz eğim değerleri gibi sorunlarla başa çıkmak için bu denklem polar 

koordinatlara şu şekilde dönüştürülmektedir: 

ρ = x cos θ + y sin θ (3.26) 

Burada: 

𝜌, orijinden çizgiye olan dik mesafeyi, 

θ, x-ekseni ile çizgiye dik olan doğrunun arasındaki açıyı ifade etmektedir. 

Görüntüdeki her bir kenar pikseli (𝑥, 𝑦), parametre uzayında (ρ, θ)  bir sinüzoidal 

eğriye katkıda bulunmaktadır. Bu eğrilerin kesişimleri, birden çok kenar pikselinin 

kolektif kanıtını temsil ettiği için tespit edilen çizginin parametrelerine karşılık 

gelmektedir [52]. 
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Biriktirici dizi  

Biriktirici dizi, parametre uzayının ayrık bir temsilidir. Kenar algılanmış görüntüdeki 

her piksel, üzerinden geçen tüm olası çizgiler için biriktirici dizinin ilgili hücrelerini 

arttırmaktadır. Biriktirici dizideki tepe noktaları, görüntüdeki en olası çizgilerin 

parametrelerini  (𝜌, 𝜃)  temsil etmektedir. Bu oylama mekanizması, birden fazla 

pikselden elde edilen birleşik kanıtlara dayandığı için, gürültü ve eksik veriler 

karşısında yüksek düzeyde dayanıklılık sağlamaktadır [53, 54]. 

Daire algılama 

Bilinen bir yarıçapa r ve bilinmeyen bir merkez (𝑎, 𝑏) noktasına sahip bir daire şu 

denklemle ifade edilmektedir: 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 (3.27) 

Merkezi (𝑎, 𝑏) parametreleştirerek, her kenar pikseli belirli bir r için (𝑎, 𝑏) uzayındaki 

biriktirici diziye oy katkısında bulunmaktadır. Bu üç boyutlu parametre uzayındaki 

(𝑎, 𝑏, 𝑟)  tepe noktaları, tespit edilen dairelerin parametrelerini göstermektedir. Bu 

yaklaşım, parametre uzayının boyutunu genişleterek değişen yarıçaplı daireleri 

işlemek için de genelleştirilebilmektedir [55]. 

3.4.3.2 Hough dönüşümünün kumaş kusur tespitindeki uygulamaları 

Hough Dönüşümü, gürültülü ve parçalanmış kenar verilerini bir araya getirme 

yeteneği sayesinde, tekstil kusur tespitinde kullanılabilecek bir araç haline gelmiştir 

ve tekstil üretimindeki kalite kontrol süreçlerini iyileştirme potansiyeli bulunmaktadır. 

Bu çalışmada, sonsuz çizgiler yerine çizgi segmentlerini algılamak için standart Hough 

Dönüşümünün bir uzantısı olan HoughLinesP yöntemi kullanılmıştır. Önemli 

parametreler şunlardır: 

ρ: Piksel cinsinden parametre uzayının çözünürlüğü, 

θ: Açı çözünürlüğü (radyan cinsinden), 

threshold: Bir çizginin algılanması için gereken minimum oy sayısı, 

minLineLength: Çizgi segmentinin geçerli sayılması için gereken minimum uzunluk 

(piksel cinsinden), 
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maxLineGap: Çizgi segmentlerini tek bir çizgi olarak kabul etmek için izin verilen 

maksimum boşluk. 

Bu çalışmada kullanılan parametreler rho=1, theta=π/180 (1 derece çözünürlük), 

threshold=5, minLineLength=2 piksel ve maxLineGap=10 olarak ayarlanmıştır. 

Hough dönüşümü algoritması pseudo kod olarak algoritma 4’de anlatılmıştır. 

Kenar algılama işlemi Canny algoritması kullanılarak gerçekleştirilmiş ve ardından 

Hough Dönüşümü uygulanarak doğrusal özellikler belirlenmiştir. Bu özellikler, 

orijinal görüntü üzerine mavi çizgilerle işaretlenmiş olarak görselleştirilmiştir. Bu 

yaklaşım, doğrusal kusurları etkili bir şekilde vurgulayarak, yapılandırılmış 

düzensizlikleri algılamada yöntemin dayanıklılığını ortaya koymaktadır [56,57]. 

Şekil 3.30, Hough Dönüşümü kullanılarak kusur tespit sürecinin adım adım 

görselleştirmesini sunmaktadır. İlk görüntü, analiz edilen belirli bir alanı vurgulayan 

orijinal görüntüden kırpılmış ilgi bölgesini vermektedir. İkinci grafik, Canny 

algoritması kullanılarak gerçekleştirilen kenar tespiti sonucunu göstermektedir. 

Algoritma 4: Hough Dönüşümü Algoritması 

Require: image (n × n) ≠ nonempty 

if Filter selection type then 

filteredimage = filter(image) 

end if 

edges← Canny(image, treashold1, treashold2)             ▷ Canny kenar alg. 

lines,holes = HoughLinesP(edges, rho, theta, threshold, minLineLength, 

maxLineGap)                 ▷ Hough dönüşümü 

# Kusurları belirginleştir ve işaretle 

defects = highlight_defects(image, threshold) 

if Energy density is ≥ Threshold Energy then 

Image is defected 

end if 
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Bu görüntüde kenarlar, siyah bir arka plan üzerinde parlak beyaz çizgiler olarak 

vurgulanmış olup, önemli yoğunluk değişikliklerini temsil etmektedir. Bu adım, 

görüntü verilerini sadeleştirerek temel yapısal özellikleri izole etmekte ve Hough 

Dönüşümü için uygun giriş verisini hazırlamaktadır. 

       

       

       

       

Şekil 3.30 : Orijinal görüntü, kenar filtresi uygulanmış görüntü, çıkış görüntüsü. 

Üçüncü görüntü, Hough Dönüşümü ile tanımlanan doğrusal özelliklerin orijinal 

görüntünün üzerine mavi çizgilerle işaretlendiği tespit edilen kusurları göstermektedir.  
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Hough Dönüşümünün uygulanmasının ardından elde edilen karışıklık matrisi Çizelge 

3.5'de sunulmaktadır. Doğruluk oranı %87 olarak elde edilmiştir. 

Çizelge 3.5 : Hough dönüşümü karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
133 

%59 

19 

%8 
152 

Kusurlu 
12 

%5 

62 

%28 
74 

Toplam 145 81 226 
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4.  ÖĞRENME TABANLI HATA TANIMA ALGORİTMALARI 

Evrişimli sinir ağları (ESA), yapay sinir ağlarının özellikle görüntü sınıflandırma ve 

bilgisayarlı görü gibi problemlerde kullanılan özel bir araştırma alanıdır. Bir evrişimli 

Şekil 4.1’de de görüleceği üzere sinir ağı evrişim, ortaklama, tam bağlantı gibi 

katmanlardan oluşmaktadır [58]. 

 

Şekil 4.1 : Basit bir ESA mimarisi. 

4.1 Evrişim Katmanı 

Evrişimli sinir ağlarında bir görüntünün piksel matrisinden çıkarılan özellikler bu 

katmandaki evrişim işlemi sayesinde meydana gelmektedir. Evrişim işleminde filtre 

(kernel) adı verilen 3x3, 5x5 vb. boyutlardaki ağırlık matrisleri görüntü üzerinde 

gezdirilmektedir. Ağın her eğitim turu sonunda bu filtrelerin üzerindeki ağırlık 

değerleri güncellenmekte ve filtrelerde öğrenme işlemi gerçekleşmektedir [59]. 

Filtreleme işlemi bir görüntünün sol üst kısmından başlayarak filtrenin sağa 

kaydırılması sureti ile gerçekleştirilir. Filtre uygulamada ağırlık matrisi ile girdi 

matrisinin filtre ile örtüşen kısmındaki değerler birbirleri ile çarpılmaktadır (Hadamard 

çarpımı). Görüntünün en sağına gelindiğinde ise filtre tekrar görüntünün soluna ancak 

alttaki hücrelerine gelmekte ve sağa kaydırma işlemi devam etmektedir. Kaydırma 
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işlemi (stride) genelde 1 piksel olarak uygulansa da bu değer ESA mimarisi ve girdi 

matrisinin özelliklerine göre model tasarımcısı tarafından değiştirilebilmektedir. 

Bunun yanında bazen görüntü matrisi, filtre boyutu ve kaydırma değerlerindeki 

uyumsuzluklar olabilmektedir. Bu durumda genellikle görüntü matrisinin dış tarafı 

doldurulmaktadır. Padding adı verilen bu işlemde görüntü çevresine yeni piksel 

değerleri eklenir. Örneğin padding değeri p, doldurma işleminin 0 değeri ile olacağı 

düşünülürse, bu çerçevenin p piksel kadar büyütülerek yeni piksellerin 0 ile 

doldurulacağı anlamına gelmektedir. Doldurma işlemi komşu piksellerin klonlanması 

(same-padding) ile de gerçekleştirilebilmektedir [60,61].  

Ağın ilk evrişim katmanlarında kenar, köşe, çizgi gibi basit özellikler öğrenilirken 

daha derin evrişim katmanlarında karmaşık özellikler öğrenilmektedir. Evrişim 

katmanının çıktılarının bulunduğu matris aktivasyon haritası olarak adlandırılır. 

Görüntü boyutu olan bir evrişim işlemi sonrası elde edilen aktivasyon haritasının 

genişliği (Wout), yüksekliği (Hout) ve derinliği ( Dout);  

Wout = (Win − F + 2P)/S + 1 

Hout = (Hin − F + 2P)/S + 1 

Dout = K 

(4.1) 

Formülleri ile hesaplanmaktadır. Burada değeri boyutundaki filtrenin boyut uzunluk 

değerini, P padding (doldurma) değerini, S kaydırma (stride) değerini ve K filtre 

sayısını ifade etmektedir. Şekil 4.2’de evrişim işlemi, filtre ve aktivasyon haritası 

gösterilmektedir [62]. 

 

Şekil 4.2 : Evrişim işlemi, filtre ve aktivasyon haritası. 
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4.2 ReLU Aktivasyon Fonksiyonu 

ReLU (rectified linear unit) aktivasyon fonksiyonu özellikle ESA’larda yaygın olarak 

kullanılmaktadır. Formülü;  

F(z)=max(0,z) (4.2) 

olarak tanımlanmaktadır ve grafiği Şekil 4.3’de gösterilmektedir. 

 

Şekil 4.3 : ReLU fonksiyonu. 

Relu aktivasyon fonksiyonu ile aktivasyon haritasındaki özellikler negatif olmayan 

değerlerden oluşan yeni bir özellik haritasına aktarılmaktadır. Relu aktivaston 

fonksiyonun avantajı kolay türev alınabilir bir fonksiyon olmasından 

kaynaklanmaktadır. 

4.3 Ortaklama Katmanı  

Ortaklama katmanı genellikle aktivasyon fonksiyonu ile sonraki evrişim katmanı 

arasında yer almaktadır. Bu katmanda aktivasyon fonksiyonu ile elde edilen yeni 

özellik haritası daha küçük boyuta indirgenmektedir. Resim 4.4’de 2 x 2 havuz 

büyüklüğü ve 2 kaydırma (stride) değerli maksimum ortaklama ve ortalama ortaklama 

örneği verilmektedir [63]. 
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Şekil 4.4 : Maksimum ortaklama ve ortalama ortaklama örneği. 

4.4 Yığın Normalleştirme 

Yığın normalleştirme (batch normalization) Szegedy ve Ioffe (2015) tarafından 

önerilen ve dahili ortak değişken kaymasını (internal covariate shift) azaltıp derin ağ 

eğitiminin hızlandırılmasını sağlayan bir tekniktir. Genellikle evrişim katmanı ile 

aktivasyon katmanı arasında kullanılmaktadır. Burada çıktılar küçük yığınlar (mini 

batch) halinde normalize edilerek hesaplama maliyeti düşürülmektedir. Böylelikle 

eğitim süresi kısalmaktadır. Ayrıca bu teknikle ağ daha stabil, düzenli ve kararlı hâle 

gelmektedir.  

4.5 Unutma 

Unutma (drop-out) da yığın normalleştirme gibi sinir ağını düzenlileştirme 

(regularization) metotlarından biridir. Unutma işleminde, Şekil 4.5’de görüldüğü 

üzere, her eğitim iterasyonunda katmanlardan belli bir oranda rastgele düğüm 

silinmektedir. Ağın çok büyük ve karmaşık, veri sayısının az olduğu durumlarda 

ezberleme riski ile karşılaşılmaktadır. Unutma tekniği ile ezberleme problemine karşı 

model daha dirençli hâle getirilmektedir [64,65]. 
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Şekil 4.5 : Standard sinir ağı ve unutma işlemi uygulanmış sinir ağı. 

4.6 Düzleştirme Katmanı  

Bir ESA’da evrişim ve ortaklama işlemlerinden sonra elde edilen aktivasyon 

haritalarının tek boyutlu bir vektör hâline dönüştürme işleminin gerçekleştiği katmana 

düzleştirme katmanı adı verilmektedir. Düzleştirme işleminden sonra tek boyutlu hâle 

getirilen veri tam bağlı katmana gönderilir. Şekil 4.6’da düzleştirme yapılan bir matris 

örneği verilmiştir. 

 

Şekil 4.6 : Düzleştirme işlemi örneği. 
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4.7 Tam Bağlı Katman  

Düzleştirme işleminden sonra, önceki katmanlardan tek boyutlu bir vektör hâlinde 

gelen bilgi artık sınıflandırma için hazır olmaktadır. Sınıflandırma işleminin 

yapılacağı bu katmana tam bağlı katman adı verilmektedir. Resim 4.7’de tam bağlı 

katman ve ikili sınıflandırma örneği verilmiştir [66]. 

 

Şekil 4.7 : İkili sınıflandırma örneğinde tam bağlı katman (Sreenivas vd. 2020). 

4.8 Transfer Öğrenme 

Transfer öğrenme ya da öğrenme aktarımı, daha önce eğitilmiş bir modelden özellik 

ve ağırlık gibi değerlerin başka bir modele aktarılmasıdır. Bu aktarım imkânı ile 

yüksek başarılı modelleri çok kısa zamanda elde etmek mümkün olmaktadır. Ayrıca 

büyük ölçekli verilerde daha önce eğitilmiş modeller daha sonra farklı veri setlerinde 

eğitildiğinde de yüksek başarı gösterebilmektedir (Rawat ve Wang 2017).  

İnce ayar (fine tuning): Derin transfer öğrenmede ince ayar terimi bir evrişimsel sinir 

ağındaki ağırlıkların yeni bir problemde de güncellenmesine izin verilmesi anlamına 

gelmektedir. Bir başka deyişle ince ayar, daha önce ImageNet (Deng vd. 2009) gibi 

bir veri setinde eğitilmiş evrişimli sinir ağının transfer edilerek parametrelerinin 

yeniden eğitilmesi işlemi olarak belirtilmektedir [67,68]. 

Görüntü sınıflandırma ve nesne tespiti gibi problemlerde 1000 sınıflı ImageNet veri 

setinde eğitilen ESA’lar pratikte sıklıkla kullanılmaktadır. Bu ESA’lar ImageNet’te 
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eğitildikten sonra ağırlıkları daha sonra kullanılmak üzere kaydedilmekte ve 

modellerde tekrar tekrar kullanılmaktadır. Transfer öğrenmede kullanılan modellerin 

eğitimi için farklı ince ayar (fine-tuning) stratejileri bulunmaktadır. Bu stratejiler, 

Şekil 4.8’de de görüleceği üzere evrişim bloklarındaki ağırlıkların sabitlenmesi 

(freezing), evrişim katmanlarından bazılarının sabit bazılarının eğitime açılması ve 

evrişim katmanlarının tümünün eğitilebilir seçilmesinden oluşmaktadır. 

 

Şekil 4.8 : Farklı ince ayar stratejileri. 

Bu tez çalışmasında en son geliştirilmiş ESA mimarilerinden XCeption, InceptionV3, 

ResNet50V2, XCeption ve DenseNet121 incelenmiştir. Zaman ve hesaplama maliyeti 

kısıtlarından dolayı XCeption, InceptionV3 ve ResNet50V2 modelleri ImageNet’te 

eğitilen diğer ESA mimarilerine göre daha uygun boyutlu ve düşük parametre 

sayılarına sahip olmaları nedeniyle seçilmiştir. ResNet50V2 mimarisi ise kumaş 

hatalarının sınıflandırılmasında alınan veriler ile eğitilmesi ile tercih edilmiştir. 

Çizelge 4.1’de incelenen modeller, boyutları ve parametre sayıları sunulmaktadır [69]. 
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Çizelge 4.1 : Kullanılan ESA modelleri, boyutları ve parametre sayıları. 

Model Boyut 

(MB) 

Parametre sayısı 

(milyon) 

Xception  88 22.9 

ResNet50V2 B 98 25,6  

InceptionV3 C 92 23,8  

Vgg19 549 143,7 

DenseNet121 33 8,1 

 

ESA ile eğitilen model üzerine kumaşlar tespit algoritmasından geçirilerek hatalı skoru 

yüksek olan alanlar işaretlenmiş ve skoru bu alan üzerinde işaretlenmiştir. Bu tespiti 

yapılan basit model ve kumaş örnekleri aşağıda gösterilmektedir. Daha sonra model 

Resnet50V2 ile testleri yapılacaktır.  

4.9 Derin Öğrenme Uygulamaları 

4.9.1 Basit ESA model uygulaması  

Bu çalışmada, basit bir derin öğrenme modeli kullanılarak görüntü sınıflandırma 

görevi ele alınacaktır. Bu model, Evrişimli Sinir Ağı (ESA) mimarisine dayalı olup, 

daha karmaşık yapılar yerine daha temel ve geleneksel bir yapı ile eğitilecektir.  

4.9.1.1 Model mimarisi 

Model, daha basit bir ESA yapısı kullanılarak inşa edilmiştir. Modelin katmanları 

aşağıdaki gibi açıklanmaktadır: 

Giriş Katmanı (Input Layer): Modelin ilk katmanı, 32x32x1 boyutlarında gri tonlamalı 

görüntüleri kabul etmektedir. Bu katman, her bir görüntüyü giriş olarak alır ve modelin 

ilk katmanına iletilmesini sağlamaktadır. 

İlk Konvolüsyonel Katman (Conv2D): İlk konvolüsyonel katman, 32x32x32 

boyutlarında çıkışlar üretmektedir. Bu katman, giriş görüntüsüne filtreler (kernels) 

uygulanarak görüntüdeki özellikleri çıkarmaktadır. Burada kullanılan 320 parametre 

filtrelerin sayısını vermektedir. 

İlk Batch Normalization Katmanı (BatchNormalization): Batch normalization, 

modelin eğitim sürecini hızlandırmakta ve daha stabil hale getirmektedir. Bu katman, 

her konvolüsyon katmanının çıkışını normalize ederek, öğrenme hızını arttırmakta ve 
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aşırı öğrenmeyi (overfitting) engellemektedir. Bu katmanda 128 parametre 

bulunmaktadır. 

İkinci Konvolüsyonel Katman (Conv2D_1): İkinci konvolüsyonel katman, yine 

32x32x32 boyutlarında çıkışlar üretmektedir. Bu katman da aynı şekilde giriş 

görüntüsündeki özellikleri çıkarmaya devam etmektedir. Bu katmanda 9,248 

parametre bulunmaktadır. 

İkinci Batch Normalization Katmanı (BatchNormalization_1): İkinci batch 

normalization katmanı da aynı işlevi görerek modelin eğitim sürecini optimize 

etmektedir. Bu katmanda 128 parametre bulunmaktadır. 

Max Pooling Katmanı (MaxPooling2D): Bu katman, görüntüdeki önemli özellikleri 

sıkıştırarak modelin daha hızlı öğrenmesini sağlamaktadır. Max pooling katmanı, 

32x32 boyutundaki görüntüyü 16x16 boyutuna indirgemektedir. Bu katman, 2x2 

pencerelerle en yüksek değerleri seçerek boyut küçültme işlemi yapmaktadır. 

Üçüncü Konvolüsyonel Katman (Conv2D_2): Üçüncü konvolüsyonel katman, daha 

fazla özellik çıkarımı yapmak için 16x16x64 boyutlarında bir çıkış üretmektedir. Bu 

katmanda 18,496 parametre bulunmaktadır. 

Üçüncü Batch Normalization Katmanı (BatchNormalization_2): Üçüncü batch 

normalization katmanı, daha stabil bir eğitim süreci için çıktıyı normalize etmektedir. 

Bu katmanda 256 parametre bulunmaktadır. 

Dördüncü Konvolüsyonel Katman (Conv2D_3): Dördüncü konvolüsyonel katman da 

16x16x64 boyutlarında çıkışlar üretmektedir. Bu katman, görüntüdeki daha derin 

özellikleri çıkartmaktadır. Bu katmanda 36,928 parametre bulunmaktadır. 

Dördüncü Batch Normalization Katmanı (BatchNormalization_3): Bu katman, üçüncü 

batch normalization katmanı gibi eğitim sürecini hızlandırmakta ve daha stabil hale 

getirmektedir. Bu katmanda 256 parametre bulunmaktadır. 

İkinci Max Pooling Katmanı (MaxPooling2D_1): Bu katman, ikinci bir max pooling 

işlemi uygulayarak 16x16 boyutundaki görüntüyü 8x8 boyutuna indirgemektedir. Bu 

işlem, özelliklerin daha kompakt bir hale gelmesini sağlamaktadır. 

Flatten Katmanı (Flatten): Flatten katmanı, 3D boyutlarında olan veriyi tek bir vektöre 

dönüştürmektedir. Bu vektör, 4096 elemandan oluşur ve modelin sonraki katmanlarına 

aktarılmaktadır. 



70 

Dense Katmanı (Dense): Son olarak, modelin çıkış katmanı olan Dense katmanı 

kullanılmaktadır. Bu katman, 2 sınıf (binary classification) için olasılık tahminleri 

üretmektedir. Son katmanda 8,194 parametre bulunmaktadır. Aktivasyon fonksiyonu 

olarak softmax kullanılmakta ve her sınıf için bir olasılık değeri sağlamaktadır [70,71].   

Katmanları açıklanan bu basit model katmanları Şekil 4.9’da verilmiştir. Bu modelin 

toplam parametresi 73.954, eğitilebilir parametresi 73.570 ve eğitilemez parametresi 

384’dir. ESA modeli pseudo kod olarak algoritma 5’de anlatılmıştır. 

Algoritma 5: ESA Algoritması 

Require: Her türde ve sınıfla farklı dizine bölünmüş görseller bulunmalıdır. 

names and image (n × n) ≠  nonempty. 

#Verinin Hazırlanması 

val_ds = tf .keras.preprocessing.image_dataset_ f rom_directory(parameters) 

class_names = train_ds.class_names 

#Model Eğitimi 

model = Sequential() 

model.add(Conv2D), model.add(MaxPooling2D) 

model.add(Conv2D), model.add(MaxPooling2D) 

model.add(Conv2D), model.add(MaxPooling2D) 

model.add(Dropout(Parameter)) 

model.add(Flatten()) 

model.add(Dense(512, activation = ’relu’)) 

model.add(Dropout(Parameter)) 

model.add(Dense(5, activation = ’softmax’)) 

model.compile() 

# Model Hata Tanıması 

pred = model.predict(image) 

print(pred) 
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Şekil 4.9 : Model: "model_basic" 
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4.9.1.2 Modelin değerlendirilmesi ve tahmin yapılması 

Model eğitildikten sonra, test verisi üzerinden tahminler yapılmıştır. Bu aşamada, 

belirli bir sınıf (örneğin, KIRIKIGNE) içinden rastgele seçilen bir görüntü modele 

verilmiş ve model bu görüntü için bir tahmin yapmıştır. Modelin tahmin ettiği sınıf, 

en yüksek olasılığa sahip olan sınıf olarak belirlenmiştir. Çizelge 4.2’de karmaşıklık 

matrisi verilmiştir ve doğruluk oranı %93 olarak elde edilmiştir. 

Çizelge 4.2 : ESA karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
145 

%65 

7 

%3 

152 

Kusurlu 
9 

%4 

65 

%28 

74 

Toplam 154 72 226 

 

Tahmin sonuçları, modelin doğruluğunu test etmek için gerçek sınıflar ile 

karşılaştırılmıştır. Ayrıca, eğitim sürecindeki doğruluk ve kayıp grafikleri, modelin 

performansını görselleştirerek hangi epoch’ta daha iyi sonuçlar elde edildiğini 

göstermiştir. Bu model çalışması sonucu hatalı tespit edilmiş bölgeler işaretli resimler 

Şekil 4.10, Şekil 4.11, Şekil 4.12, Şekil 4.13, Şekil 4.14 ve Şekil 4.15’de verilmektedir. 

 

Şekil 4.10 : ESA ile hata tespiti (1). 
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Şekil 4.11 : ESA ile hata tespiti (2). 

 

Şekil 4.12 : ESA ile hata tespiti (3). 
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Şekil 4.13 : ESA ile hata tespiti (4). 

 

Şekil 4.14 : ESA ile hata tespiti (5). 
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Şekil 4.15 : ESA ile hata tespiti (7). 

4.9.2 RestNet50 model uygulaması  

Bu bölümde, görüntü sınıflandırma görevinde kullanılacak olan derin öğrenme 

modelinin mimarisi, veri hazırlık süreci, eğitim aşamaları ve modelin performans 

değerlendirilmesi ayrıntılı olarak ele alınmıştır. Çalışmanın temelinde, ResNet50 

mimarisi kullanılmaktadır. Bu model, transfer öğrenme (transfer learning) tekniği ile 

eğitilmekte, yani ResNet50 modeli, önceden ImageNet veri kümesi üzerinde eğitilmiş 

ve daha sonra belirli bir görev için özelleştirilmiş bir model olarak kullanılmaktadır. 

Modelin eğitim süreci, doğruluk ve kayıp gibi metrikler aracılığıyla 

değerlendirilecektir. Ayrıca, modelin tahmin yetenekleri ve genel başarısı test 

edilecektir [72,73]. 

4.9.2.1 Veri hazırlığı 

Modelin doğru bir şekilde eğitilebilmesi için verilerin uygun şekilde hazırlanması 

gerekmektedir. Bu aşama, veri kümesinin yüklenmesi, görsellerin ön işlenmesi ve 

eğitim ile doğrulama kümesine ayrılması gibi adımları içermektedir. Veri kümesi, her 

biri farklı bir sınıfı temsil eden alt dizinlere ayrılmış olan görüntülerden oluşmaktadır. 

Verilerin uygun şekilde yüklenmesi için TensorFlow ve Keras kütüphanelerinin 

sunduğu image_dataset_from_directory fonksiyonu kullanılmaktadır. Bu fonksiyon, 
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dizindeki her alt klasörü bir sınıf olarak kabul etmekte ve her sınıf için görüntülerin 

bir veri kümesini oluşturmaktadır. 

Eğitim ve doğrulama kümeleri, toplam veri kümesinin %60’ı ve %40’ı oranında 

ayrılmaktadır. Eğitim verisi, modelin öğrenme sürecini gerçekleştirdiği veri kümesi 

iken, doğrulama verisi modelin eğitim süreci sırasında eğitimin ne kadar 

genelleştirilebilir olduğunu kontrol etmek için kullanılmaktadır. 

Veri kümesindeki her görüntü, modelin giriş boyutuna uygun hale gelmesi için 

yeniden boyutlandırılmaktadır. Bu çalışmada, her bir görüntü 180x180 piksel 

boyutlarına getirilmektedir. Görüntülerin boyutları yeniden ayarlandığında, aynı 

zamanda veri kümesinin batch_size parametresi ile mini-batch'ler halinde işlenmesi 

gerekmektedir. Bu, verilerin küçük gruplar halinde modele beslenmesini ve modelin 

parametrelerinin adım adım güncellenmesini sağlamaktadır [74]. 

4.9.2.2 Model mimarisi 

Modelin temeli olarak ResNet50 (Residual Network) kullanılmaktadır. ResNet50, 

derin öğrenme alanında yaygın olarak kullanılan ve 50 katmanlı bir konvolüsyonel 

sinir ağı (CNN) modelidir. Bu model, residual connection adı verilen bir mekanizmayı 

kullanmaktadır. Bu, ağın daha derin katmanlarında meydana gelen kayıpların 

(vanishing gradients) üstesinden gelmeye yardımcı olmaktadır. Yani, katmanlar 

arasında doğrudan bağlantılar (skip connections) kullanılarak modelin daha derin 

katmanlarında öğrenme yapılması sağlamaktadır [75]. 

ResNet50 modelinin, ImageNet gibi büyük veri kümeleri üzerinde önceden eğitilmiş 

ağırlıklarla yüklenmesi, transfer öğrenme (transfer learning) tekniğinin bir örneğidir. 

Bu, modelin genelleme yeteneğini artırır ve eğitim sürecinde büyük bir hız kazancı 

sağlamaktadır. ResNet50 modelinin en üst katmanları (include_top=False) kaldırılarak 

sadece önceden öğrenilmiş özellik çıkarıcı katmanları kullanmaktadır. Böylece, 

modelin daha genel özellikleri öğrenmesi sağlanmakta; kendi sınıflandırma katmanları 

sonradan eklenerek özelleştirilmektedir [76]. RestNet50 katmanları Şekil 4.16’da 

verilmektedir. 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

input_layer (InputLayer)  │ (None, 180, 180, 3)    │              0 

conv1_pad (ZeroPadding2D) │ (None, 186, 186, 3)    │              0 

 

Şekil 4.16: RestNet50 modeli 
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conv1_conv (Conv2D)       │ (None, 90, 90, 64)     │          9,472 

conv1_bn                  │ (None, 90, 90, 64)     │            256 

(BatchNormalization)      │                        │                

conv1_relu (Activation)   │ (None, 90, 90, 64)     │              0 

pool1_pad (ZeroPadding2D) │ (None, 92, 92, 64)     │              0 

pool1_pool (MaxPooling2D) │ (None, 45, 45, 64)     │              0 

conv2_block1_1_conv       │ (None, 45, 45, 64)     │          4,160 

(Conv2D)                  │                        │                

conv2_block1_1_bn         │ (None, 45, 45, 64)     │            256 

(BatchNormalization)      │                        │                

conv2_block1_1_relu       │ (None, 45, 45, 64)     │              0 

(Activation)              │                        │                

conv2_block1_2_conv       │ (None, 45, 45, 64)     │         36,928 

(Conv2D)                  │                        │                

conv2_block1_2_bn         │ (None, 45, 45, 64)     │            256 

(BatchNormalization)      │                        │                

conv2_block1_2_relu       │ (None, 45, 45, 64)     │              0 

(Activation)              │                        │                

conv2_block1_0_conv       │ (None, 45, 45, 256)    │         16,640 

(Conv2D)                  │                        │                

conv2_block1_3_conv       │ (None, 45, 45, 256)    │         16,640 

(Conv2D)                  │                        │                

. 

. 

. 

. 

conv5_block3_add (Add)    │ (None, 6, 6, 2048)     │              0  

                          │                        │                 

conv5_block3_out          │ (None, 6, 6, 2048)     │              0  

(Activation)              │                        │                 

avg_pool                  │ (None, 2048)           │              0  

(GlobalAveragePooling2D)  │                        │                 

dense (Dense)             │ (None, 512)            │      1,049,088  

dense_1 (Dense)           │ (None, 5)              │          2,565                                                                   

================================================================= 

Total params: 24,639,365 (93.99 MB) 

Trainable params: 1,051,653 (4.01 MB) 

Non-trainable params: 23,587,712 (89.98 MB) 

_____________________________ 

Şekil 4.16 : RestNet50 modeli. (devamı) 

Modelin son katmanlarında, ResNet50'nin çıkış katmanına bir Dense katmanı 

eklenmektedir. Bu katman, 512 nöronla donatılır ve ReLU aktivasyon fonksiyonu ile 

aktivasyon yapılmaktadır. Bu, modelin daha karmaşık özellikler öğrenmesini 

sağlamaktadır. Çıkış katmanında ise, modelin tahmin yapabilmesi için sınıflandırma 

yapılacak sınıfların sayısına bağlı olarak 5 sınıf için softmax aktivasyon fonksiyonu 

kullanılmaktadır. Softmax, çok sınıflı sınıflandırma problemlerinde yaygın olarak 

kullanılan bir aktivasyon fonksiyonudur ve her sınıf için bir olasılık değeri 

üretmektedir [77]. 

Ayrıca, ResNet50’nin önceden eğitilmiş ağırlıklarını kullanarak modelin transfer 

öğrenme aşamasında, bu ağırlıkların dondurulması sağlanabilmektedir. Yani, bu 

katmanların ağırlıkları eğitim sırasında güncellenmemektedir. Bu, modelin daha hızlı 
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öğrenmesini ve daha az veriye ihtiyaç duymasını sağlamaktadır. RestNet50 mimarisi 

Şekil 4.17’da verilmektedir. 

 

Şekil 4.17 : RestNet50 mimarisi. 

4.9.2.3 Modelin eğitimi 

Modelin eğitim sürecinde, Adam optimizer kullanılmaktadır. Adam, öğrenme oranını 

her parametre için otomatik olarak ayarlayan bir optimizasyon algoritmasıdır ve 

genellikle derin öğrenme problemlerinde yaygın olarak tercih edilmektedir. Kayıp 

fonksiyonu olarak ise sparse categorical crossentropy kullanılmaktadır. Bu kayıp 

fonksiyonu, çok sınıflı sınıflandırma problemleri için uygun bir tercihtir, çünkü 

modelin tahmin ettiği sınıfın doğru sınıfla ne kadar örtüştüğünü ölçmektedir [78,79]. 

 

Şekil 4.18 : ResNet50 model kayıp grafiği. 
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Şekil 4.19 : RestNet50 model doğruluğu. 

Modelin eğitimi 20 epoch boyunca yapılmaktadır. Bu süreçte, eğitim verileri modelin 

ağırlıklarını optimize ederken, doğrulama verileri modelin performansını 

değerlendirmek amacıyla kullanılmaktadır. Eğitim sırasında, modelin doğruluk 

(accuracy) ve kayıp (loss) metrikleri izlenmektedir. Bu metrikler, modelin eğitim 

sürecindeki başarısını görselleştirmekte ve modelin hangi epoch’ta daha iyi 

performans gösterdiğini anlamaya yardımcı olmaktadır. Eğitim sırasında, modelin 

doğruluk (accuracy) ve kayıp (loss) metrikleri değişimi Şekil 4.18 ve Şekil 4.19’de 

verilmektedir [79]. 

4.9.2.4 Modelin değerlendirilmesi ve tahmin yapılması 

Modelin eğitilme süreci tamamlandıktan sonra, test verileri üzerinde tahminler 

gerçekleştirilmektedir. Bu aşamada, belirli bir kusur sınıfına (örneğin, KIRIKİĞNE) 

ait rastgele seçilen bir görüntü modelin girişine verilerek tahmin süreci 

başlatılmaktadır. Model, bu görüntüye yönelik bir sınıflandırma işlemi 

gerçekleştirmekte ve en yüksek olasılığa sahip sınıfı tahmin olarak belirlemektedir. 

Tahmin süreci, ResNet-50 modelinin son çıkış katmanında yer alan softmax 

aktivasyon fonksiyonu aracılığıyla her bir sınıf için olasılık değerlerinin 

hesaplanmasıyla gerçekleştirilmektedir. Model, en yüksek olasılık değerine sahip 
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sınıfı tahmin olarak döndürerek giriş görüntüsünün ilgili kategoriye ait olduğunu 

belirlemektedir. 

Modelin tahmin doğruluğu, gerçek etiketler ile karşılaştırılarak değerlendirilmektedir. 

Modelin sınıflandırma performansı, sınıflandırma doğruluğu, hata oranları ve diğer 

değerlendirme metrikleri kullanılarak ayrıntılı bir şekilde analiz edilmektedir [80]. 

4.9.2.5 Sonuç ve ileri adımlar 

Bu bölümde, görüntü sınıflandırma görevinde kullanılan bir derin öğrenme modelinin 

geliştirilmesi ve eğitilmesi süreci ayrıntılı olarak anlatılmıştır. ResNet50 modeli, 

transfer öğrenme yaklaşımı ile eğitilmiş ve modelin başarı oranı değerlendirilmiştir. 

Eğitim ve doğrulama süreçlerinde elde edilen doğruluk ve kayıp grafiklerinin 

görselleştirilmesi, modelin performansını değerlendirmemize olanak sağlamaktadır. 

Hatasız sınıflandırılmış bir görüntünün testi ve sonucu Şekil 4.20’da verilmektedir. 

 

Şekil 4.20 : RestNet50 ile hata sınıflandırma. 

KIRIKIGNE sınıflandırılmış bir görüntünün testi ve sonucu Şekil 4.21’de 

verilmektedir. 

 

Şekil 4.21 : RestNet50 ile hata sınıflandırma. 

DELIK sınıflandırılmış bir görüntünün testi ve sonucu Şekil 4.22’de verilmektedir. 
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Şekil 4.22 : RestNet50 ile hata sınıflandırma. 

Gelecek çalışmalarda, modelin doğruluğunu daha da artırmak için veri artırma (data 

augmentation) yöntemleri uygulaması düşünülmektedir. Bu, modelin daha fazla 

çeşitlilikle eğitilmesini sağlayarak, aşırı öğrenme (overfitting) riskini azaltacaktır. 

Ayrıca, modelin ince ayar (fine-tuning) yapılması, yani ResNet50'nin daha fazla 

katmanının eğitim sürecine dahil edilmesi, modelin daha iyi genelleme yapabilmesi 

için etkili bir yöntemdir. Bu tür iyileştirmeler, modelin daha karmaşık ve çeşitli veri 

kümeleri üzerinde başarılı performans göstermesini sağlayacaktır [81]. Çizelge 4.3’de 

karmaşıklık matrisi verilmiştir ve doğruluk oranı %96 hesaplanmıştır. 

Çizelge 4.3 : Restnet50 karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
148 

%65 

4 

%2 

152 

Kusurlu 
3 

%2 

71 

%31 

74 

Toplam 151 75 226 

4.9.3 YoloV5 uygulaması  

(You Only Look Once) algoritması, nesne tespiti için kullanılan, regresyon tabanlı bir 

algoritmadır. Algoritma, görüntünün bir bölümünü seçmek yerine, tüm görüntü 

üzerinde tek bir çalıştırmada sınıf ve sınırlayıcı kutu tahmini yapmaktadır. Bu yönüyle, 

R-CNN gibi bölge bazlı algoritmalardan ayrılmaktadır. R-CNN algoritmaları, önce 

nesnelerin bulunabileceği bölgeleri belirlemekte, ardından bu bölgelerde ayrı ayrı 

Evrişimsel Sinir Ağları (CNN) kullanarak sınıflandırma işlemi gerçekleştirmektedir. 

Ancak, bu yöntem resmin iki ayrı işlemden geçmesine neden olmakta ve düşük FPS 

(Frame Per Second) oranlarıyla sonuçlanarak gerçek zamanlı uygulamalar için yetersiz 

kalmaktadır [82]. 
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4.9.3.1 Veri setini hazırlama 

YOLOv5 ile model eğitimi için veri seti oluşturmak kritik bir adımdır. Bu süreçte 

kullanılacak görüntüler üzerinde hataların işaretlenmesi gerekmektedir. Bunun için 

LabelImg veya Makesense.ai gibi araçlar kullanılarak, görüntü üzerindeki hatalı 

bölgeler seçilmekte ve hata tiplerine göre etiketlenmektedir. Bu işlem sayesinde iğne 

kırığı, delik, likra kaçağı, may izi ve yağ izi gibi farklı hata türleri 

tanımlanabilmektedir. Örnek bir hata etiketleme işlemi Şekil 4.23’de gösterilmiştir 

[83]. 

 

Şekil 4.23 : YOLOv5 ile hata etiketleme. 

Etiketleme tamamlandıktan sonra veri seti, eğitim (%70) ve test (%30) olarak iki gruba 

ayrılmaktadır. Her grup için ayrı klasörler oluşturulmakta ve bu klasörler içinde de 

images (görüntüler) ve labels (etiketler) adında alt klasörler eklenmektedir. Görüntüler 

images klasörüne, etiket dosyaları ise labels klasörüne kaydedilmektedir. 

4.9.3.2 Ortam kurulumu 

Modelin eğitileceği ortam, ihtiyaca göre bir bilgisayar, bulut sunucusu veya geliştirme 

kartları üzerinde hazırlanabilmektedir. Ortamın kolay yönetimi ve taşınabilirliği için 

Docker imajları kullanılabilmektedir. YOLOv5'in eğitim ve test aşamalarında GPU 

kullanımını etkinleştirmek için PyTorch ve OpenCV kütüphanelerinin GPU sürümleri 

kurularak test edilmektedir. Eğitim sırasında sınıf türleri, data.yaml dosyasında 

belirtilmektedir. Bu sınıflar, etiketleme sırasında kullanılan sırayla tanımlanmaktadır. 
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4.9.3.3 Modelin eğitimi 

Görüntü işleme modelini eğitmek için hazırlanan eğitim verisi kullanılmaktadır. 

Görüntülerin boyutları, renk kanalları ve formatı uygun şekilde ayarlanması 

gerekmektedir. Ayrıca görüntülerdeki nesnelerin konum ve tür bilgilerini içeren 

etiketleme işlemi doğru bir şekilde hazırlanmalıdır. 

Model eğitimi için temel parametrelerin (örneğin, görüntü boyutu, batch size, epoch 

sayısı, kullanılan modelin önceden eğitilmiş ağırlık dosyası yolu gibi) ayarlanması 

gerekmektedir. Parametrelerin tanımlanmasının ardından eğitim işlemi 

başlatılmaktadır. Bu süreçte model, eğitim verisini kullanarak kendini optimize 

etmektedir. Modelin performansı doğruluk oranı (accuracy), IoU (Intersection over 

Union) gibi metriklerle değerlendirilmektedir. Eğitim tamamlandığında, model 

dosyası gerçek zamanlı ya da offline işlemlerde kullanılabilir hale gelmektedir [84]. 

4.9.3.4 Eğitilmiş model ile kusur tanıma 

Kumaş hatalarını tespit etmek için YOLOv5 ile birlikte gelen detect.py dosyası 

güncellenerek kullanılabilmektedir. Bu dosya, gerçek zamanlı kamera görüntüleri, 

videolar, resimler, online video bağlantıları ve farklı akış protokolleri gibi çeşitli giriş 

türlerini desteklemektedir. Çizelge 4.4’de karmaşıklık matrisi verilmiştir ve doğruluk 

oranı %95 hesaplanmıştır. 

Çizelge 4.4 : YOLOv5 karmaşıklık matrisi. 

  Tahmin 

G
er

çe
k

  
  
  
  
  
  Kusursuz Kusurlu  Toplam 

Kusursuz 
146 

%65 

6 

%3 
152 

Kusurlu 
5 

%2 

69 

%30 
74 

Toplam 151 75 226 

 

GPU kullanılarak yapılan tespit işlemi, donanım özelliklerine bağlı olarak yüksek 

performanslı ve gerçek zamanlı sonuçlar sunmaktadır. Örneğin, tespit edilen hataların 

konumu, türü ve zamanı gibi bilgiler anlık olarak ekranda gösterilmekte ve bir veri 

tabanına kaydedilmektedir. Şekil 4.24, bu işlemin bir örneğini göstermektedir. Şekil 

4.25’de veri tabanındaki kayıtlar kullanılarak geçmişteki hataların raporlanması ve 
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analizi yapılmaktadır. Bu analizler, kumaş üretim süreçlerinde kalite kontrolü artırmak 

için kullanılmaktadır. 

 

Şekil 4.24 : YOLOv5 ile hata tespiti. 

 

Şekil 4.25 : YOLOv5 ile hata sonuçları ve geçmiş hata raporu. 

4.9.4 Otoenkoder anomali tespiti uygulaması  

Anomali tespiti, son yıllarda derin öğrenme alanında yoğun olarak araştırılan konular 

arasında yer almaktadır. Görüntülerdeki anomalilerin tespiti amacıyla Autoencoder 

(Otoenkoder) tabanlı bir model ele alınmıştır. Anomali tespiti, belirli bir veri 

kümesindeki normal örneklerden farklı olan örneklerin belirlenmesi işlemidir. Bu 

model, her bir görüntüyü normal veya anormal olarak sınıflandırmak için yeniden 

yapılandırma hatası ve çekirdek yoğunluk tahmini (Kernel Density Estimation - KDE) 

yöntemlerini kullanmaktadır. Anomali tespiti eğitimi, hazırlanan veri seti üzerinde 
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gerçekleştirilmekte olup, kullanılan yöntem farklı görüntü kümelerine de 

uygulanabilmektedir [85]. 

4.9.4.1 Veri kümesi ve eğitim 

Modelin eğitimi için test sisteminden elde edilen veri seti kullanılmıştır ve bu veri seti, 

her bir görselin ya normal (hatasız) ya da anormal (parazitli) olduğunu belirten 

etiketleri bulunmaktadır. Veri kümesi, üç ana alt gruba ayrılmaktadır: 

• Eğitim veri kümesi (train_HATASIZ), 

• Test veri kümesi (test_HATASIZ), 

• Anomali (hatalı) veri kümesi (DELIK,KIRIKIGNE). 

Veri setinden elde edilen görseller, modelin eğitim sürecinde kullanılacak şekilde 

64x64 piksel boyutunda yeniden boyutlandırılmıştır. ImageDataGenerator sınıfı, 

verilerin ölçeklendirilmesi ve düzgün bir şekilde beslenmesi için kullanılmıştır [86]. 

4.9.4.2 Modelin yapılandırılması 

Model, Autoencoder mimarisi ile tasarlanmıştır. Autoencoder, bir görüntüyü 

sıkıştırarak (encode) daha küçük bir boyuta indirgemeyi ve ardından bu sıkıştırılmış 

veriyi kullanarak (decode) orijinal görüntüyü yeniden oluşturmayı amaçlamaktadır. 

Bu modelin başarısı, özellikle bottleneck (şişe boynu) katmanındaki sıkıştırılmış 

özelliklerin doğru şekilde çıkarılmasıyla ölçülmektedir [87]. 

Modelin temel katmanları şu şekilde yapılandırılmıştır: 

• Encoder: Konvolüsyonel katmanlar, her seferinde özelliklerin sayısını 

azaltarak daha küçük boyutlarda sıkıştırılmış bir temsil (latent space) 

oluşturmaktadır. Her konvolüsyonel katmandan sonra MaxPooling2D 

katmanları ile boyut küçültme işlemi yapılmaktadır. 

• Decoder: Encoder'dan alınan sıkıştırılmış veriler, tersine dönüştürülerek 

orijinal görüntünün yeniden oluşturulmasını sağlamaktadır. Burada 

UpSampling2D katmanları kullanılarak görüntü boyutları büyütülmektedir. 

Katmanları açıklanan bu sequential model Şekil 4.26’de verilmektedir. Bu modelin 

toplam parametresi 52.067(203.39 KB), eğitilebilir parametresi 52.067(203.39 KB) ve 

eğitilemez parametresi 0’dır. 
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Şekil 4.26 : Anomali tanıma modeli. 
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Model, Adam optimizasyon algoritması ve mean squared error (MSE) kayıp 

fonksiyonu ile eğitilmiştir. Eğitim sırasında, modelin doğruluğu ve kaybı izlenmiş ve 

öğrenme süreci Şekil 4.27’da görselleştirilmektedir. 

 

Şekil 4.27 : Eğitim model doğruluğu ve kaybı. 

4.9.4.3 Anomali tespiti için latent alanın kullanımı 

Modelin en kritik bileşeni, encoder katmanının çıktısı olan latent space (gizli uzay)’dir. 

Bu latent alan, her görüntü için yüksek boyutlu bir vektör olarak temsil edilmekte olup, 

anomali tespiti sürecinde temel bir rol oynamaktadır. Anomali tespiti için, bu 

vektörlerin yoğunluk dağılımı incelenmektedir. Normal ve anormal görüntülere ait 

vektörlerin yoğunlukları arasında belirgin bir fark gözlemlenmekte olup, bu fark 

anomali tespiti için ayırt edici bir özellik olarak kullanılabilmektedir [88].  

Çekirdek yoğunluk tahmini (KDE) 

Kernel Density Estimation (KDE), bir veri kümesindeki her bir örneğin yoğunluğunu 

modellemek amacıyla kullanılan istatistiksel bir tekniktir. Bu çalışmada, scikit-learn 

kütüphanesinde yer alan KernelDensity sınıfı kullanılarak latent alan vektörlerinin 

yoğunluğu tahmin edilmektedir. Eğitim verisi üzerinde KDE modeli eğitildikten sonra, 
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test verisine ait her bir görüntünün karşılık gelen yoğunluğu hesaplanmaktadır. 

Anomali tespiti sürecinde, normal görüntüler genellikle daha yüksek yoğunluk 

değerlerine sahipken, anormal görüntüler düşük yoğunluk değerleriyle 

tanımlanmaktadır [88]. 

Yeniden yapılandırma hatası 

Bir diğer önemli metrik yeniden yapılandırma hatasıdır. Bu hata, model tarafından 

yeniden oluşturulan görüntü ile orijinal görüntü arasındaki farkı ifade etmektedir. 

Anormal bir görüntü, modelin orijinal halini daha düşük doğrulukla yeniden 

oluşturmasına neden olmakta ve bu durum yüksek yeniden yapılandırma hatası ile 

sonuçlanmaktadır [89,90].  

Anomali tespiti 

Görüntülerin anomali olup olmadığını belirlemek için hem yeniden yapılandırma 

hatası hem de yoğunluk bilgileri birlikte kullanılmaktadır. Belirli bir eşik değeri 

(threshold) ile bu iki metrik karşılaştırılmaktadır. Eğer bir görüntü, her iki metrik 

açısından da belirli eşiklerin dışındaysa, bu görüntü anormal olarak 

sınıflandırılmaktadır. Şekil 4.28’de delik tipi hatalı bir görüntü anomali tespiti 

yapılmış ve anomali olarak tespit edilmiştir. 

 

Şekil 4.28 : Anomali hata tespiti. 
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Şekil 4.29’de hatasız bir görüntü anomali tespiti yapılmış ve anomali değil olarak 

tespit edilmiştir. 

 

Şekil 4.29 : Anomali olmayan hata tespiti. 

Modelin başarısını değerlendirmek için hem normal veri kümesi hem de anomali veri 

kümesi üzerindeki yeniden yapılandırma hatası hesaplanmaktadır. Sonuçlar, modelin 

normal görüntüleri ne kadar doğru bir şekilde yeniden yapılandırdığını ve anormal 

görüntüleri doğru bir şekilde tespit edip etmediğini göstermektedir. 

Aşağıdaki adımlar uygulanarak modelin doğruluğu değerlendirilmiştir: 

Eğitim ve doğrulama kaybı: Eğitim sırasında modelin kaybı izlenmiş ve eğitim 

sürecinde hangi epoch'ta modelin daha iyi sonuçlar verdiği görselleştirilmiştir. 

Anomali ve normal görüntülerin doğruluğu: Modelin doğruluğu, rastgele seçilen 

anormal ve normal görüntüler üzerinde test edilmiştir. Bu görüntüler, model tarafından 

anomali veya normal olarak doğru bir şekilde sınıflandırılmıştır [91]. 

Modelin tahmin ettiği ve gerçek sınıfları karşılaştırarak sonuçlar elde edilmiştir. 

Anomali görüntüler için model, yüksek bir yeniden yapılandırma hatası ve düşük bir 

yoğunluk skoru üretmiştir. Normal görüntüler ise düşük bir yeniden yapılandırma 
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hatası ve yüksek bir yoğunluk skoru ile tanımlanmıştır. Modelin doğruluğu, eşik 

değerlerine göre değişkenlik göstermektedir ve bu eşikler deneysel olarak 

ayarlanabilmektedir [92]. 

Bu çalışmada kullanılan Autoencoder tabanlı model, farklı uygulamalarda da 

kullanılan bir yöntemdir. Gelecekte, modelin daha geniş veri kümeleri üzerinde test 

edilmesi ve daha fazla parametre ile optimize edilmesi ile daha başarılı sonuçlar 

alınması hedeflenmektedir. 
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5.  DENEYSEL DÜZENEK  

Sistemin en iyi şekilde çalışması için önerilen yöntemler performans, işleme zamanı, 

hedeflenen başarı oranına göre optimum çalışacak bir model oluşturulması 

hedeflenmektedir. Gerçek zamanlı çalışacak bu sistem ön işleme adımı ile hatalı olan 

bölgeleri tespit ederek eleme yapacak, hata skorları yüksek bölgeler bu yöntemler ile 

işlenerek sınıflandırma yapılmaktadır. 

Hata tespiti sürecinde ön işleme (preprocessing) adımı, veri setinin kalitesini artırmak 

ve hata tespit algoritmalarının daha etkili çalışmasını sağlamak için kritik bir öneme 

sahiptir. Ön işleme, veri setindeki gürültüyü azaltma, özellik çıkarma, normalizasyon 

gibi işlemleri içermektedir. Preproses işlemleri, hata tespit sistemlerinin güvenilirliğini 

ve performansını artırarak endüstriyel uygulamalarda daha etkili ve kesin sonuçlar 

elde edilmesine olanak tanımaktadır. Raspberry Pi 4, Camera Serial Interface (CSI) 

protokolü aracılığıyla kamera modülü üzerinden görüntü elde ederek, bu verileri 

Ethernet üzerinden Jetson Nano'ya aktarmaktadır. Jetson Nano üzerinde, CUDA 

destekli sinir ağı modelleri kullanılarak elde edilen görüntüler işlenmekte ve hata 

tespiti ile sınıflandırma işlemleri gerçekleştirilmektedir. CPU tabanlı çalışma sırasında 

1 frame işleme süresi 1800ms zaman alırken CUDA desteği ile beraber işlemesi 

140ms’ye kadar düşürülmüştür. Sonraki aşamada Jetson Nano ile görüntüler 

haberleşme ile alınarak bu işlemler çalışılmıştır.  

Saha denemeleri kapsamında, öğrenme tabanlı hata tespit algoritması farklı kumaş 

tipleri üzerinde test edilerek, çeşitli kumaş yapıları ve hata türlerine adaptasyon 

kapasitesi değerlendirilmiştir. Bu denemeler, algoritmaların kumaş türlerine göre 

optimizasyonunu ve çeşitli hata türlerini (Delik, İğne Kırığı, Likra Kaçığı, May 

Çizgisi, Yağ Lekesi) yüksek oranda başarıyla tespit edebilmeyi sağlamıştır. 

Algoritmaların saha denemeleri sırasında toplanan veriler, gerçek çalışma koşulları 

altında algoritma performansının değerlendirilmesine ve gerekli tuning işlemlerinin 

yapılmasına olanak tanımıştır. Bu süreç, algoritma parametrelerinin gerçek zamanlı 

çalışma koşullarına en uygun şekilde ayarlanarak, sistem performansının maksimize 

edilmesini sağlamıştır. Sistem saha testleri sonucunda: 0.2 mm/piksel çözünürlüğünde 
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saniyede 8-9 frame işleyebilir hale gelmiştir. Bu sonuçlar 30 rpm ile dönen ve 3 m/dk 

ile akan kumaş üzerinde çalışabilme imkânı sağlamıştır. Bu sistem modeli genel 

görünümü Şekil 5.1’de verilmektedir. 

 

Şekil 5.1 : Sistem modeli. 

Algoritmaların saha denemeleri sırasında toplanan veriler, gerçek çalışma koşulları 

altında algoritma performansının değerlendirilmesine ve gerekli tuning işlemlerinin 

yapılmasına olanak tanımıştır. Bu süreç, algoritma parametrelerinin gerçek zamanlı 

çalışma koşullarına en uygun şekilde ayarlanarak, sistem performansının maksimize 

edilmesini sağlanmıştır. 

Şekil 5.2, bir görüntü algılama ve işleme sisteminin işleyişini iki temel bileşen 

üzerinden açıklamaktadır: görüntü algılama cihazı ve görüntü işleme cihazı. Görüntü 

algılama cihazı, Raspberry Pi 4 kullanılarak çalışmakta olup, makinenin hız bilgisine 

dayalı olarak görüntü yakalama işlemini gerçekleştirmektedir. Bu bileşen, makinenin 

hızına bağlı olarak görüntü yakalama frekansını (FPS) hesaplamakta ve belirlenen 

zaman aralıklarında görüntü kaydetmektedir. Görüntü algılama süreci, yakalama 

işlemi başlamadan önce aydınlatma sisteminin aktif hale getirilmesi ile başlamakta, 

görüntü kaydı tamamlandıktan sonra ise sistem kapatılmaktadır. Algılanan görüntüler, 

daha ileri düzeyde işlenmek üzere Görüntü İşleme Cihazına iletilmektedir. 



93 

Görüntü İşleme Cihazı, Jetson Nano donanımı kullanılarak iletilen görüntülerin 

analizinden sorumludur. Bu süreçte, sistem öncelikle yeni bir görüntünün alınıp 

alınmadığını kontrol etmektedir. Yeni bir görüntü algılandığında, ön işleme aşaması 

uygulanmaktadır. Ön işleme, görüntüdeki gürültüyü azaltmayı ve analize uygun hale 

getirmeyi amaçlamaktadır. Ön işleme aşamasının ardından, işlenen görüntü üzerinde 

anomali tespiti gerçekleştirilmekte ve bu anomaliler arasından gerçek hatalar 

belirlenmektedir. Hata tespit sürecini takiben, bir karar algoritması devreye girerek 

uygun aksiyonların alınmasını sağlamaktadır. Son aşamada, kullanıcıya gerekli 

uyarılar iletilmekte ve durumun gerektirdiği şekilde makinenin durdurulması veya 

düzeltici işlemlerin başlatılması gibi müdahaleler gerçekleştirilmektedir. 

 

 

 

Şekil 5.2 : Sistem Çalışma Diyagramı. 
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6.  SONUÇLAR VE GELECEK ÇALIŞMALAR 

Gerçekleştirilen çalışmalar sonucunda, kullanılan yöntemlerin performansı, 

hassasiyeti ve uygulanabilirliği kapsamlı bir şekilde değerlendirilmiş, bu doğrultuda 

belirli koşullar altında hangi yöntemin daha etkili olduğu analiz edilmiştir. Aşağıda, 

hata matrisi temel alınarak hesaplanan performans skorları ve işleme süreleri 

sunulmaktadır. Kusurlu kumaşların görüntüleri, gelişmiş kamera-optik sistemleri 

aracılığıyla elde edilmiş, tanımlama algoritmaları ise çeşitli yaklaşımlar kullanılarak 

geliştirilmiş ve test edilmiştir. Deneysel veriler doğrultusunda farklı yöntemlerin 

performansları karşılaştırmalı olarak incelenmiştir. 

Örme fabrikalarından toplanan kusurlu kumaşlar, iş yeri test düzeneğine entegre 

edilerek üretim sistemleri ile benzer bir çalışma ortamı oluşturulmuştur. Yakalanan 

görüntülerde iğne kırığı, kelebek ve yağ lekesi gibi çeşitli fiziksel kusurlar tespit 

edilmiştir. Her hata türüne ilişkin sonuçlar, tüm modeller için Çizelge 6.1’de 

sunulmakta olup, elde edilen bulgular doğrultusunda belirli hata türlerinin hangi model 

ile daha etkin bir şekilde tespit edilebileceği ortaya konulmaktadır. 

Çizelge 6.1 : Hata tiplerinde başarı oranı. (Eğrilik Algoritması, Modifiye Eğrilik 

Algoritması, Gabor Dönüşümü, Curvelet Dönüşümü, Hough Dönüşümü, Evrişimli Sinir 

Ağı, RestNet50, YoloV5). 

Yöntem Delik İğne Kırığı May İzi Likra K. Yağ İzi 

EA 0,32 0,39 0,56 0,49 0,29 

MDEA 0,78 0,82 0,74 0,81 0,60 

GD 0,81 0,99 0,99 0,85 0,78 

CD 0,85 0,78 0,75 0,70 0,84 

HD 0,92 0,78 0,71 0,85 0,78 

ESA (CNN) 0,91 0,90 0,88 0,82 0,92 

RestNet50 0,96 0,95 0,92 0,87 0,95 

YoloV5 0,94 0,95 0,92 0,86 0,94 

Son olarak, farklı yaklaşımlar için karışıklık matrisi ve skorlar elde edilmiştir. 

Deneysel test sonuçları, doğruluk ve hassasiyet değerlerini karşılaştırmak amacıyla 

Çizelge 6.2’de sunulan hata başarı oranı verileri, farklı yöntemlerin hata tespiti 

performanslarını karşılaştırmalı olarak göstermektedir. Sonuçlara göre, geleneksel 

yöntemler arasında en yüksek doğruluk oranı (%91) ve en iyi F1 skoru (%94) Gabor 
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Dönüşümü (GD) yöntemiyle elde edilmiştir. Ancak, işlem süresi açısından 

değerlendirildiğinde GD yalnızca 110 ms ile oldukça hızlı bir performans 

sergilemektedir. Derin öğrenme tabanlı yöntemler arasında ise en yüksek başarı oranı 

RestNet50 (%96 doğruluk, %95 F1 skoru) ile elde edilirken, işlem süresi 1340 ms ile 

diğer yöntemlere kıyasla daha uzun sürmektedir. YoloV5 yöntemi, %95 doğruluk ve 

%93 F1 skoru ile yüksek performans sunarken, 127 ms işlem süresi ile hızlı bir 

alternatif oluşturmaktadır. Geleneksel yöntemler arasında Hough Dönüşümü (HD), 

%87 doğruluk ve 38 ms işlem süresi ile düşük işlem maliyeti avantajına sahiptir. Genel 

olarak, derin öğrenme tabanlı yöntemler daha yüksek doğruluk oranları sağlarken, 

işlem süresi açısından bazı geleneksel yöntemlere kıyasla daha fazla hesaplama 

maliyeti gerektirdiği görülmektedir. 

Çizelge 6.2 : Hata başarı oranı. (Eğrilik Algoritması, Modifiye Eğrilik Algoritması, 

Gabor Dönüşümü, Curvelet Dönüşümü, Hough Dönüşümü, Evrişimli Sinir Ağı, 

RestNet50, YoloV5). 

Yöntem Acc F1 Precision Recall Process Time 

EA 0,32 0,39 0,56 0,29 203ms 

MDEA 0,78 0,82 0,74 0,92 295ms 

GD 0,91 0,94 0,89 0,99 110ms 

CD 0,80 0,65 0,81 0,72 1150ms 

HD 0,87 0,77 0,85 0,84 38ms 

ESA (CNN) 0,93 0,89 0,91 0,89 1080ms 

RestNet50 0,96 0,95 0,95 0,95 1340ms 

YoloV5 0,95 0,93 0,92 0,93 127ms 

Makinenin tespit edebileceği hataların en az 1 mm boyutunda olması durumunda, 

doğru bir algılama gerçekleştirebilmek için en az 4 piksel çözünürlüğünde görüntü 

alınması gerekmektedir. Bu gereksinim, makinenin günlük kapasitesi ile birlikte 

değerlendirildiğinde, günlük olarak yaklaşık 50-60 GB veri işlenmesi ve depolanması 

gerekliliğini ortaya koymaktadır. Gerçek zamanlı çalışma hedefi göz önünde 

bulundurulduğunda, önerilen kesik eğrilik algoritmasının, işlenen ve saklanan veri 

miktarı açısından öğrenme tabanlı algoritmalara kıyasla daha avantajlı olduğu 

sonucuna varılmıştır. 

Hatalı görüntüler üzerinde gerçekleştirilen test sonuçları incelendiğinde, 96×200 

piksel boyutundaki bir görüntünün 57.600 bayt veri içerdiği, buna karşın 638 noktada 

çıkarılan özelliklerin yalnızca 5.100 bayt veri gerektirdiği belirlenmiştir. Bu durum, 

veri sıkıştırma oranını iyileştirerek sistemin gerçek zamanlı çalışma yeteneğini 

artırmaktadır. 
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Hatalı kumaş tespiti için önerilen eğrilik algoritması, bu sorun için özel olarak yapılan 

geliştirmelerle birlikte hatalı kumaş görüntüsü üzerinde uygulanmış ve elde edilen 

sonuçlar sunulmuştur. Her nokta için eğim alınarak, konveks veya konkav olup 

olmadığı kontrol edilmiştir ve akıllı seçim algoritması ile güncellenerek bir eğrilik 

fonksiyonu elde edilmiştir. Elde edilen dış yarıçap ve açı değerleri ile hata tespiti için 

orta seviye doğrulukla kullanılabileceği gösterilmiştir.  

Gabor dönüşümü, hata türüne özgü parametre ayarları ile dikey ve yatay hataların 

tespitinde yüksek başarı oranlarına ulaşabilmektedir. Bununla birlikte, dikey ve yatay 

hatalardaki bu başarılı sonuçlara rağmen, çapraz ve diğer türdeki hataların tespitinde 

beklenen performansı sergileyememektedir. Farklı kumaş türleri için benzer başarı 

düzeyine ulaşabilmek amacıyla, parametrelerin güncellenmesi ve optimizasyonu 

gerekmektedir. 

Curvelet Dönüşümü, yağ lekesi kusurlarının tespitinde güçlü bir performans 

sergilemiş ve %84 doğruluk oranına ulaşarak delik tespiti için gösterdiği başarıya 

yakın bir sonuç elde etmiştir. Bu durum, Curvelet Dönüşümünün özellikle ince 

dokuların ve desenlerin kritik olduğu kusur türlerinde etkili bir yöntem olduğunu 

göstermektedir. Bununla birlikte, yöntemin görüntüye dönüşüm uygulayıp ardından 

yeniden oluşturması nedeniyle yüksek doğruluk oranı sağlasa da gerçek zamanlı 

uygulamalar için yeterli hızda çalışmasının zor olduğu değerlendirilmektedir. 

Bununla birlikte, Hough Dönüşümü, delik tespitinde en yüksek doğruluk oranını elde 

ederek en iyi performansı göstermiş, ancak diğer kusur türlerinde orta seviyede 

doğruluk sağlamıştır. Çoğu kusur türünde öğrenme tabanlı modeller diğer yöntemleri 

geride bıraksa da Curvelet Dönüşümü yağ kusurlarının tespitinde öne çıkmaktadır. Bu 

durum, belirli kusur analizlerinin gerekli olduğu uygulamalarda Curvelet 

Dönüşümünün avantaj sağladığını göstermektedir. Bu yöntemlerin bir araya 

getirilmesiyle daha güçlü bir hata tespit mekanizması oluşturulabilir. Curvelet 

Dönüşümü, görüntüyü ön işleyerek kenarları ve eğrileri belirginleştirirken, Hough 

Dönüşümü şekil tespiti aşamasında daha yüksek doğruluk sağlayabilmektedir. 

Curvelet Dönüşümü ve Hough Dönüşümü, görüntü işleme alanında iki farklı ancak 

güçlü paradigmayı temsil etmektedir. Curvelet Dönüşümü, eğri özelliklerin çok ölçekli 

ve yönlü analizine olanak tanırken, Hough Dönüşümü parametrik şekillerin tespitinde 

üstün performans göstermektedir. Bu iki yöntemin birleştirilmesi, özellikle kusur 
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tespiti gerektiren endüstriyel uygulamalarda hata analizinin doğruluğunu 

arttırılabilmektedir. 

Öğrenme tabanlı kumaş kusur tespit yöntemleri, diğer geleneksel yaklaşımlara kıyasla 

yüksek doğruluk oranları sağlamakla birlikte, büyük miktarda eğitim verisi ve yüksek 

işlem gücü gerektirmektedir. Yeterli miktarda eğitim verisinin bulunmadığı 

durumlarda, en yüksek başarı oranları genellikle ResNet-50 gibi önceden eğitilmiş 

derin öğrenme modelleri kullanılarak elde edilmiştir. Yerel hata tespiti için yüksek 

performanslı donanımın kullanılması gerekmektedir. Bu donanım gereksinimleri 

sağlandığında, yüksek doğruluk oranı sunan öğrenme tabanlı yaklaşımlar etkin bir 

şekilde uygulanabilecektir. Gerçekleştirilen tüm hesaplama ve testler, gerçek zamanlı 

hata tespiti için donanım seçiminin kritik bir öneme sahip olduğunu ortaya 

koymaktadır. Çizelge 6.2'de sunulan işlem süresi sonuçları, Raspberry Pi gibi standart 

bir geliştirme kartı ve Google Colab ortamında hesaplanmıştır. Ardından, tüm testler 

GPU destekli bir gömülü sistem üzerinde gerçekleştirilmiş ve bu sistemin performansı 

diğer donanımlarla karşılaştırılmıştır. Yapılan testler sonucunda, gömülü sistemin 

daha yüksek performans sunduğu ve gerçek zamanlı işleme kriterlerine daha yakın 

sonuçlar sağladığı belirlenmiştir. GPU üzerinde çalışan öğrenme tabanlı hata tespit 

yöntemi, tek bir görüntü için yaklaşık 110-130 ms sürede işlem yapmaktadır. Elde 

edilen bu sonuçlar, neredeyse gerçek zamanlı bir gömülü sistem uygulaması 

geliştirmek için yeterli işlem hızına ulaşıldığını göstermektedir. 

Farklı tekniklerin birleştirilmesiyle, geniş bir kusur yelpazesine uyum sağlayabilen, 

yüksek doğruluk ve performans sunan entegre bir sistem geliştirilmiştir. İlk aşamada, 

görüntülerin ön işlenmesi sırasında detayların belirginleştirilmesi sağlanmış, 

sonrasında şekil ve kusur tespiti için hassas analizler gerçekleştirilmiştir. Bunun 

üzerine, ileri düzey algoritmaların kullanımıyla, farklı kusur türlerinde etkili bir 

şekilde çalışan ve yüksek doğruluk sağlayan bir yapı oluşturulmuştur. Donanım 

üzerinde yapılan testler, sistemin gerçek zamanlı çalışmaya uygun olduğunu ve yüksek 

başarı kriterlerini karşıladığını göstermiştir. Bu yaklaşımlar bir araya getirilerek, kusur 

tespiti ve sınıflandırması için etkin ve uygulanabilir bir ürün ortaya konmuştur. 

Geliştirilen sistemin başarısı, yalnızca kullanılan algoritmaların doğruluğuna değil, 

aynı zamanda maliyet ve performans dengesine de dayanmaktadır. Sistem, yüksek 

performanslı donanım gereksinimini azaltmak için ön işleme aşamasında detayları 

optimize eden tekniklerden faydalanmaktadır. Bu, görüntülerin doğru bir şekilde 
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analiz edilmesini sağlarken işlem yükünü düşürür ve ağ maliyetini azaltmaktadır. 

Özellikle öğrenme tabanlı yöntemler, eğitim için büyük veri setleri ve yüksek işlem 

gücü gerektirdiğinden, ön işleme yöntemleri hem verimliliği artırabilir hem de daha 

düşük maliyetle uygulanabilirlik sağlayabilmektedir. Ayrıca, ağ yapısının karmaşıklığı 

ve büyüklüğü, sistemin maliyetini ve gerçek zamanlı performansını doğrudan 

etkilemektedir. Bu nedenle, doğru ön işleme tekniklerinin seçimi, donanım ve ağ 

maliyeti üzerindeki yükü azaltırken, yüksek doğruluk ve hızlı sonuçlar elde edilmesini 

mümkün kılmaktadır. Bu yaklaşım, maliyet, performans ve esneklik açısından 

sistemin endüstriyel uygulanabilirliğini artırmaktadır. 

6.1 Gelecek Uygulama Alanı 

Kumaş hata tespitinde yapay zeka ve makine öğrenimi teknolojilerinin daha yaygın ve 

etkin bir şekilde kullanılması beklenmektedir. Bu bağlamda, yerli ve uluslararası 

birçok girişim, gelişmiş görüntü işleme ve analiz teknikleri ile hataları daha hızlı ve 

doğru bir şekilde tespit etmeye odaklanmaktadır. Türkiye'deki ve dünya genelindeki 

yenilikçi şirketler, tekstil fabrikalarına entegre edilebilen akıllı kamera sistemleri 

geliştirerek üretim hatlarında gerçek zamanlı hata tespiti gerçekleştirebilmektedir. Bu 

sistemler, üretim süreçlerinde verimliliği artırırken aynı zamanda maliyetleri 

düşürmekte ve insan hatasını minimize ederek kalite kontrol süreçlerini optimize 

etmektedir. Bu tür teknolojiler, kumaş kalitesinde standartları yükselterek müşteri 

memnuniyetini artırmakta ve tekstil endüstrisinin dijital dönüşümünü 

hızlandırmaktadır. 

Bu teknolojik ilerlemeler, aynı zamanda uluslararası rekabet ortamında önemli bir 

avantaj sağlamaktadır. Özellikle, hata tespit sistemlerinin makine öğrenimi 

algoritmalarıyla desteklenmesi, karmaşık hataların bile yüksek doğrulukla tespit 

edilmesini mümkün kılmaktadır. Bunun yanı sıra, sistemlerin sürekli olarak öğrenme 

ve gelişme kapasitesi sayesinde, tekstil endüstrisinde kalite kontrol süreçleri daha 

esnek ve dinamik bir yapıya kavuşacaktır. Bu tür yenilikçi çözümler, yalnızca 

verimliliği artırmakla kalmayıp, sürdürülebilir üretim hedeflerine ulaşılmasına da 

katkı sağlamaktadır. Sonuç olarak, kumaş hata tespitinde yapay zekâ ve makine 

öğrenimi tabanlı çözümler, tekstil endüstrisinin geleceğini şekillendirerek, sektörde 

küresel standartların belirlenmesinde öncü bir rol oynayacaktır. 
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Gelecekte, kumaş hata tespitinde generative AI ve büyük dil modelleri (LLM'ler) 

önemli bir rol alacağı beklenmektedir. Generative AI, doğal dil işleme ve öğrenme 

yetenekleriyle, hata tespit sistemlerine daha akıllı analiz ve raporlama yetenekleri 

kazandırabilir. Özellikle, kumaş üzerinde tespit edilen kusurların sınıflandırılması, bu 

kusurların oluşma nedenlerinin analiz edilmesi ve çözüm önerilerinin sunulması gibi 

işlemler, generative AI'nin sağladığı gelişmiş bağlam anlama ve veri üretme 

yetenekleri sayesinde daha hızlı ve etkili hale gelebilir. Gerçek zamanlı veri 

analitiğiyle, generative AI, üretim süreçlerinden gelen büyük miktarda veriyi 

işleyebilir, hata türleri hakkında detaylı raporlar oluşturabilir ve bu bilgileri 

operatörlere açıklayıcı bir şekilde sunabilir. Böylece, hata tespit ve müdahale süreçleri 

daha bilinçli ve proaktif bir şekilde yürütülebilir. 

Ayrıca, generative AI, kumaş üretiminde sürdürülebilirlik ve verimliliği artırma 

potansiyeline sahiptir. Üretim hattında biriken geçmiş verileri analiz ederek kusur 

oluşumunun nedenlerini önceden tahmin edebilir ve iyileştirme önerileri sunabilir. 

Bunun yanında, üretim sürecinde oluşan hataların detaylı sınıflandırması, kusurlu 

kumaşların geri dönüşüm veya yeniden işleme süreçlerine yönlendirilmesini 

sağlayabilir. Generative AI, dijital ikiz teknolojileri ve artırılmış gerçeklik (AR) ile 

entegre edildiğinde, operatörlere hataların görselleştirilmesi ve çözüm önerilerinin 

interaktif bir şekilde sunulması gibi yenilikçi yöntemler sunabilir. Bu gelişmeler, 

tekstil endüstrisinde kaliteyi artırırken, atık oranlarını azaltarak çevresel etkilerin de 

minimuma indirilmesine katkı sağlayacaktır. 
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EK A: Saha Test Görüntüleri 
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Şekil A.1 : Saha Test Görüntüleri: (a)Tek Plaka. (b)Çift Plaka. (c)Üstten Bağlantı (d) 

tek plaka 
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