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DEVELOPING PROCESS MINING ALGORITHMS FOR FINDING 

MEANINGFUL PATTERNS 

ABSTRACT 

Process mining is a technique for extracting knowledge from event logs recorded 

by an information system. In the process discovery phase of process mining, a process 

model is constructed to represent the business processes systematically and to give a 

general opinion about the progressive of processes in the event log. Considering in 

advance the trend and different features of running process is important. Especially, 

time management is crucial in designing and conducting business processes. 

 

Every day information systems collect different kind of process instances of a 

business flow. As time goes on, size of collected data builds up speedily and constitutes 

a huge volume of data. It is a very challenging task to obtain valuable information and 

features of processes from such a large volume of data.  

 

This thesis proposes a novel algorithm, Interactive Process Miner (IPM), to create 

process model based on event logs and, also a new approach that contains three 

different features; including activity deletion, aggregation and addition operations on 

the existing process model. The proposed algorithm, IPM, is enhanced by introducing 

time perspective. Time-oriented IPM algorithm, T-IPM, is capable of predicting the 

remaining and completion time of each process in a flow. 

 

This thesis also includes the development of a new process mining tool, ProLab, in 

order to work on large volume of event logs and to handle the execution records of 

running process instances. Experimental studies demonstrate the capability of IPM and 

T-IPM algorithms and, also ProLab tool on both real-life and experimental datasets, 

including low memory usage, modification opportunity and improvement in 

performance compared to the existing algorithms. 

 

Keywords: Process mining, process model, time prediction, pattern discovery 
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 ANLAMLI ÖRÜNTÜLERİN BULUNMASI İÇİN SÜREÇ MADENCİLİĞİ 

ALGORİTMALARININ GELİŞTİRİLMESİ 

ÖZ 

Süreç madenciliği, bir bilgi sistemi tarafından kaydedilen olay kayıtlarından bilgi 

çıkarmak için kullanılan bir tekniktir. Süreç madenciliğinin süreç keşfi aşamasında, iş 

süreçlerini sistematik olarak temsil etmek ve olay günlüğündeki süreçlerin ilerleyişi 

hakkında genel bir fikir vermek için bir süreç modeli oluşturulur. Devam eden sürecin 

eğilimlerinin ve farklı özelliklerinin önceden bilinmesi önemlidir. Özellikle zaman 

yönetimi, iş süreçlerinin tasarlanmasında ve yürütülmesinde çok önemlidir. 

 

Her gün bilgi sistemleri bir iş akışının farklı süreç örneklerini toplar. Zaman 

geçtikçe, toplanan verilerin boyutu hızla artar ve büyük miktarda veri oluşturur. Bu 

kadar büyük hacimli verilerden, süreçlerin değerli bilgilerini ve özelliklerini elde 

etmek çok zor bir görevdir. 

 

Bu tez, olay günlüklerine dayalı süreç modeli oluşturmak için Etkileşimli Süreç 

Madenciliği (ESM) adında yeni bir algoritma önermektedir ve mevcut süreç 

modelinde aktivite silme, birleştirme ve ekleme işlemlerinden oluşan üç farklı özelliği 

barındıran yeni bir yaklaşım önermektedir. Önerilen algoritma (ESM), zaman 

perspektifi dahil edilerek genişletilmiştir. Zaman odaklı ESM algoritması (Z-ESM), 

bir iş akışındaki her bir sürecin kalan ve tamamlanma zamanını tahmin edebilmektedir 

 

Bu tez aynı zamanda, büyük hacimli olay günlüklerinde çalışmak ve devam eden 

süreç örneklerinin yürütme kayıtlarını işlemek için yeni bir süreç madenciliği aracının 

(ProLab) geliştirilmesini de içermektedir. Deneysel çalışmalar, ESM ve Z-ESM 

algoritmalarının ve ayrıca ProLab aracının hem gerçek yaşam hem de deneysel veri 

setlerinde düşük bellek kullanımı, modifikasyon fırsatı ve mevcut algoritmalara göre 

performansta iyileştirme gibi yeteneklerinin olduğunu göstermektedir. 

 

Anahtar kelimeler: Süreç madenciliği, süreç modeli, zaman tahmini, örüntü keşfi  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General  

 

Process mining is a technical way to acquire information in order to analyze, 

discover, improve and manage the processes from event logs that contain elaborative 

materials about the history of business operations. Process mining provides an 

important opportunity to detect process bottlenecks of a system. It is possible to 

control, manage and fix all issues after detecting the weak points of the system by 

applying process mining techniques. A process model represents the dependencies 

between activities of the process and all the information about them without 

categorizing which ones are important or not. This situation makes the process model 

hard to understand and interpret for people.  

 

As time progresses, event logs grow rapidly and create a large volume of data. This 

large data increase scales up the discovery time and causes performance problems.  In 

general, current process mining techniques analyze on historical data. Incorporation of 

ongoing or newly completed process records has a major importance in terms of 

keeping the process model constantly up-to-date. Updating the process model instantly 

will provide the ability to see the problems in the progressive process records 

immediately.   

 

Event logs contains varied crucial features of the processes such as name, cost, 

resource, location, timestamp etc. Time is one of the most important features of 

processes. Considering with time is vital in understanding, designing/re-designing, 

operating and managing business processes. Time management plays a major role in 

controlling lifecycle of processes. It provides continuous improvement of business 

processes. In order to ensure the improvement of processes, process engineers, 

controllers, quality managers and directors need to know time-related aspects of 

business processes in advance. Time prediction algorithms provides insight about the 
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execution durations of ongoing processes. Also, it helps to detect bottlenecks of 

processes and to take the proper actions about situation.  

 

In this thesis, our goal is to develop a process mining algorithm which is able to 

work on large volume of event logs and incorporate the execution records of ongoing 

processes into discovered process model instantly. The proposed process mining 

algorithm supports different operations such as adding, deleting, and aggregating 

activities on the process model to provide an interactive environment which reveals 

impacts of improvement changes before applying the decisions in real life. One of the 

most important features of the proposed algorithm is that it quickly and instantly adds 

the completion and execution time information of newly completed or ongoing 

processes into the time prediction model. The algorithm calculates the time-related 

aspects of already-executed portion of a process flow and puts the result of calculations 

to analysis data to make new predictions based on it.  

 

1.2 Purpose 

 

The aim of this thesis is to develop a new process mining algorithm that runs on 

large datasets and handles execution records of running instances. The proposed 

algorithm provides an interactive method that allows users to modify the constructed 

model by adding, deleting and aggregating the activities to see the impacts of process 

improvement changes in a simulation environment before applying decisions in real 

life.  

 

Another aim of this thesis is to develop a time prediction algorithm which calculates 

the remaining and completion time of each process in a flow and incorporate the 

execution records of ongoing processes into discovered process model instantly.  

 

There is a need for a software tool in order to run the developed algorithms. This 

thesis proposes a novel software tool to analyze large volume of event logs and to 

handle the execution records of running process instances in a short time with low 
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memory usage, and also support an interactive environment for process mining to give 

deep insights for event logs.  

 

The proposed process mining algorithm in this thesis is named as IPM (Interactive 

Process Miner) and the propose time prediction algorithm which is the enhanced 

version of IPM by introducing time perspective is named as T-IPM (Time-oriented 

Interactive Process Miner) and, the proposed software tool in this thesis is named as 

ProLab (Process Laboratory). These abbreviations will be used through the rest of the 

document to indicate the developed system. 

 

1.3 Novel Contributions of this Thesis 

 

The main contributions of this thesis are on four levels;  

 

First, we developed a novel algorithm, named Interactive Process Miner (IPM), is 

proposed to create process model based on large volume of event logs. It also proposes 

three new features for process mining which are process addition, deletion and 

aggregation.  

 

Second, we enhanced IPM algorithm by introducing time perspective. The time 

prediction algorithm is named Time-oriented Interactive Process Miner (T-IPM). The 

enhanced algorithm, T-IPM, is capable of estimating the completion time of the 

processes that has not started yet and the remaining time of ongoing processes 

instantly. 

 

Third, we developed a process mining tool, ProLab, is capable of working on big 

event logs in a short time with low memory usage. The proposed tool can also handle 

the execution records of ongoing process instances with online approach to make more 

accurate prediction.  

 

As a result, in this thesis, (i) a novel process mining algorithm, IPM, was proposed, 

(ii) IPM algorithm was enhanced by introducing time perspective (T-IPM), (iii) a 

process mining tool, ProLab, was developed. 
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1.4 Organization of the Thesis 

 

This thesis includes seven chapters and the remaining of this thesis is organized as 

follows. 

 

In Chapter 2, general information about related works, literature review and field 

research about process mining are given.   

 

In Chapter 3, background information about process mining; benefits, algorithms, 

categories, and applications.  

 

In Chapter 4, the new process mining algorithm, IPM, and implementation details 

are explained.  

 

In Chapter 5, time prediction algorithm, T-IPM, is described and how to construct 

time prediction model from event logs is explained.  

 

In Chapter 6, the new process mining tool, ProLab, is explained. The tool is tested 

with some case study samples.   

 

In Chapter 7, experiments were performed for the proposed process mining 

algorithm, IPM, and the time prediction algorithm, T-IPM, which is enhanced version 

of IPM algorithm, and also the developed process mining tool, ProLab. 

 

Finally, in Chapter 8, the conclusion remarks and future works are presented. 
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CHAPTER TWO 

RELATED WORK 

 

In this chapter, technical research projects, literature and field reviews are explained 

and research results supporting desired goals are discussed.  

 

2.1 Literature Review 

 

The concept of process mining started to come up at the end of the 90's. Agrawal, 

Gunopulos, & Leymann (1998) proposed a new approach which deals with noise and 

parallel structure to extend the utility of actual workflow systems. Their approach 

allows the user to use existing event logs to model a given business process as a graph. 

After that, Cook & Wolf (1998) described different methods for process discovery and 

to produce formal models based on the actual process executions. 

 

Eder, Panagos, & Rabinovich (1999) emphasizes the importance of time 

management in workflow-based process management systems. They proposed a 

framework to compute deadlines of activities to see that all time constraints are 

satisfied and the end-to-end process deadline is met. They presented ways to check 

satisfiability of time constraints like lower and upper bound between activities at 

process build and process instantiation time. 

 

Van der Aalst, Weijters, & Maruster (2004) introduced α-algorithm which is able 

to discover a large and relevant class of workflow processes. At first α-algorithm 

analyses the event log, and then constructs various dependency relations between 

tasks.  The aim is to analyze different kinds of workflow logs in the presence of noise 

and without any knowledge of the underlying process. In the same year, Cook, Du, 

Liu, & Wolf (2004) worked on discovering concurrent models of system behavior 

from event traces by using probabilistic techniques. Herbst and Karagiannis (2004) 

dealt with the duplicate tasks and they proposed an algorithm which is based on 

inductive approach in two steps: (i) induction and (ii) Stochastic Task Graph (SAG) 

generation. SAG is then transformed into blocked structured model using a definition 
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language. They developed a tool, called InWoLvE, which takes many parameters, 

however it is necessary to give proper parameters to improve mining efficiency and 

quality. Schimm (2004) proposed an approach to extract accurate model from event 

logs and to deal with hierarchically structured workflow models that include the splits 

and joins. He demonstrated his method by an example and also developed a tool for 

process mining. 

 

Dongen & van der Aalst (2005) defined a standard for storing event log. They 

introduced a data model and an XML format called MXML (Mining eXtensible 

Markup Language). In the same year, Eder & Pichler (2005) worked on the notion of 

probabilistic time management to improve the estimations about remaining duration 

of a workflow. It is stated that in a workflow different routes may be selected so taking 

in consideration the probabilities of each path is important. They introduced the 

probabilistic timed graph which shows the time histograms and branching 

probabilities. 

 

Weijters, van der Aalst, & de Medeiros (2006) proposed the Heuristics Miner 

algorithm that discovers main behavior registered in a noisy event log.  The algorithm 

includes different threshold parameters in order to overcome two problems: noise and 

low frequency behavior. In the same year, Reijers (2006) made a point of challenges 

of case prediction. Reijiers defines the case prediction difficulties as part of Business 

Process Management Systems. This paper minds the forecasting of the remaining time 

to complete a specific case. 

 

Günther & van der Aalst (2007) emphasized existing problems in the traditional 

process mining techniques when the processes are large and less-structured.  To handle 

the problems, they developed a flexible approach based on their previous works 

(Weijters & van der Aalst, 2003): Fuzzy Mining. Their approach adaptively analyzes, 

simplifies and visualizes mined process models based on two metrics: significance and 

correlation of graph elements. De Medeiros, Weijters, & van der Aalst (2007) used 

genetic algorithm to mine process models in ProM (process mining) framework and 

performed experiments on the simulated data. Their results showed that genetic 
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algorithm found all possible business process models that could parse all the traces in 

the event log.  However, time and space complexity is the main disadvantage of genetic 

approach.  For this reason, Bratosin, Sidorova, & van der Aalst (2007) proposed 

distributed genetic approach to overcome high computational problem of genetic 

approach. 

 

Song, Liu, & Liu (2008) used simulated annealing technique in business process 

mining. Song, Gunther, & van der Aalst (2008) have also proposed a novel approach 

"trace clustering", in which the event log is split into homogeneous subsets and for 

each subset a process model is created. Van Dongen, Crooy, & van der Aalst (2008) 

centered on the remaining cycle time. They computed the remaining cycle time by 

using non-parametric regression. This paper stated that non-parametric regression is 

very appropriate when no or very limited precedents are present. By applying this 

method, predicting the cycle times in any uncertain case in a business process is made 

possible. They took into account the duration and occurrence of all activities and 

showed that their approach does better from taking the acreage cycle time minus the 

already spent time with a real-life example. Verwer, Weerdt, & Witteveen (2008) 

defined an algorithm which depends on the state combining method for learning a 

deterministic finite state automation. The algorithm is used for learning a timed model 

from observations. Schonenberg, Weber, van Dongen, & van der Aalst (2008) 

suggested a recommendation service. This service is able to work with flexible Process 

Aware Information Systems (PAIS).  It supports end users while process execution is 

proceeding by giving advices about possible next stages. They created these 

recommendations which were given by the service depending on similar past process 

executions. Also, they considered the specific optimization goals while studying on 

different methods to calculate log-based recommendations. 

 

Leitner et al. (2009) presented an approach to predict Service Level Agreement 

(SLA) violations at runtime. Measured and estimated facts is used as input to create a 

prediction model. In the paper, it is stated that the prediction model is based on 

machine learning regression methods, and trained using historical process instances. 
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The machine learning method which will be applied can be determined by user via 

defining an algorithm and the respective parameterization for it. 

 

Van der Aalst, Pesic, & Song (2010) concentrated on the application of process 

mining to operational decision making. They suggested a framework for time-based 

operational support and defined a set of new approaches for time-based operational 

support and implemented them in ProM tool. This work points out that process mining 

techniques are not only restricted to the past processes but can also be used for the 

present and future processes. It is said that existing process mining algorithms 

considers about the historical information, but in this study van der Aalst et al. 

interested in individual process instances which is still running and incomplete. 

 

Bose, van der Aalst, Žliobaitė, & Pechenizkiy (2011) proposed features and 

statistical techniques to detect changes and to identify changed regions from a control-

flow perspective. Luengo & Sepulveda (2011) extended the work which is used for 

learning a timed model from observations (Verwer et al., 2008) by adding time feature 

and the clusters that formed by sharing both a structural similarity and a temporal 

proximity. Van der Aalst, Schonenberg, & Song (2011) provided a configurable 

approach to predict the completion time of process by constructing a process model 

with time information. In the paper, it is stated that they seriously focus on the 

transition system generation. They used this annotated transition system to predict the 

remaining flow time of all or some of the process instances. It is presented that the 

algorithm they proposed to predict the completion of a case performs better than 

simple heuristics (e.g., always estimating half of the average flow time or the average 

flow time minus the already elapsed time) and also outperforms regressions models in 

terms of efficiency and precision. They also highlighted that their approach can be 

easily extended to predict other features of a case such as the time until a particular 

event or the occurrence of particular event by annotating the transition system with 

related information/additional features. 

 

Van der Aalst (2012) emphasized process mining as one of the hot topics in 

Business Process Management. Three basic types of process mining (discovery, 
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conformance checking, and enhancement) were presented using a small example and 

some larger examples were given to illustrate the applicability in real-life settings. Our 

study described in this thesis focuses on the discovery type of process mining. Van der 

Aalst and his team developed three process mining tools: Little Thumb, EMiT 

(enhanced mining tool) and ProM (process mining). Little Thumb can extract 

workflow nets from noisy and incomplete logs (Weijters & van der Aalst, 2003). EMiT 

can convey workflow models with Petri nets (van Dongen & van der Aalst, 2004). 

ProM is a generic open-source framework for implementing process mining projects 

that includes many packages with many plug-ins (van Dongen, de Medeiros, Verbeek, 

Weijters, & van der Aalst, 2005). 

 

Fahland & van der Aalst (2013) presented a post-processing approach to control the 

balance between overfitting and underfitting by simplifying discovered process 

models. They expressed the discovered process model in Petri net, and their approach 

can be combined with any process discovery method which generates Petri net. In the 

same year, Appice, Pravilovic, & Malerba (2013) worked on a process mining 

approach and used predictive clustering to prepare an execution scenario with a 

prediction model. This model expresses last events of running cases to forecast the 

features of coming events. They used predictive clustering tree (PCT) to predict online 

event elements of any new running case. They implemented their approach in ProM 

framework and explained its verification and effectiveness with several case studies. 

 

Polato, Sperduti, Burattin, & de Leoni (2014) presented a novel method in order to 

enhance the quality of prediction by building a process model that is annotated with 

time and data information to predict the remaining time. In the paper, it is stated that 

calculation of predicting the remaining time is made by combining the likelihood of 

all the following activities, given the data collected so far; and the remaining time 

estimation given by a regression model built upon the data. They considered the data 

attribute’s values to predict the remaining time of a running case. 

 

Aleem, Capretz, & Ahmed (2015) presented the comparison of different process 

mining approaches in detail. The important point of their paper is that it collects and 
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shows all efficient and qualitative results of business process mining for researchers. 

Their article groups the process mining approaches to five sections: deterministic, 

heuristic, inductive, genetic and clustering-based mining approaches. Cheng & Kumar 

(2015) proposed a technique to remove noisy traces from event logs by building a 

classifier and applying classifier rules on event logs. They showed that generated 

mined models from such preprocessed logs are superior on several evaluation metrics. 

Fahland & van der Aalst (2015) investigated the problem of repairing discovered 

process model to align them to reality. They decomposed the event log into several 

sublogs of nonfitting traces to make conformance checking. Rovani, Maggi, de Leoni, 

& van der Aalst (2015) presented a methodology in order to analyze medical treatment 

processes by showing how to apply process mining techniques based on declarative 

models. 

 

De Leoni, van der Aalst, & Dees (2016) proposed a framework to unify a number 

of approaches for correlation analysis. They tried to correlate different process 

characteristics related to different perspective. Mannhardt, de Leoni, Reijers, & van 

der Aalst (2016) proposed a process mining algorithm to check process conformance 

with respect to control flow, data dependencies, resource assignments and time 

constraints. Pika, van der Aalst, Wynn, Fidge, & ter Hofstede (2016) presented an 

approach and a supporting tool to evaluate the overall risk of process and to predict 

process outcomes. The approach is based on the analysis of information about process 

executions recorded in event logs. Tax, Sidorovaa, Haakmab, & van der Aalst (2016) 

suggested an algorithm named local process model to discover frequent behavioral 

patterns in event logs. The algorithm focuses on local structures to enable process 

mining of noisy event logs and extends sequential pattern mining techniques. Bolt, de 

Leoni, & van der Aalst (2016) came up with a framework to make process mining 

repeatable and automated for event logs may need to be decomposed and distributed 

for analysis. They stated the main motivation of their study is the inability to model 

and execute process mining workflows. Their study establishes the basic building 

blocks required for process mining and also describes various analysis scenarios to 

show the feasibility of their approach. Polato, Sperduti, Burattin, & de Leoni (2016) 

offered three new predictions methods to forecast the remaining time of running cases. 
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They took into consideration the additional data presented in the event log besides the 

control flow information. They used machine learning methods so as to build models 

that are capable of dealing with additional information. In the paper, it is explained 

that the proposed approach is able to cope with unexpected behaviors or noisy data by 

checking the closeness between the new trace and the most similar process flows 

already observed. The suggested algorithms were evaluated on real life data and they 

showed the performance of algorithms. 

 

Suriadi, Andrewsa, ter Hofstedea, & Wynna (2017) described a set of data quality 

issues and presented a patterns-based approach to clean noisy event logs. Mitsyuk, 

Shugurov, Kalenkova, & van der Aalst (2017) suggested a tool to generate event logs 

from Business Process Model and Notation (BPMN) and they implemented script-

based gateways and choice preferences to manage control flow. Bolt, de Leoni, ter 

Hofstedea, & van der Aalst (2017) proposed an approach to address the problem of 

comparing different variants of the same process and to detect differences in behavior 

and business rules. They used transition systems which were annotated with 

measurements to model behavior and to underline differences. 

 

Alizadeh, Lu, Fahland, Zannone, & van der Aalst (2018) recommended an approach 

to enable the identification of deviations by reconciling the data and process 

perspectives. They linked data and control flow for conformance checking. In their 

study it is stated that the proposed approach is capable of identifying deviations in both 

data usage and control flow, while providing the purpose and context of the identified 

deviations. 

 

Differently from the previous studies, this thesis proposes a novel algorithm, IPM, 

to create process model, and also provides three new features (addition, deletion and 

aggregation) to support an interactive environment for process mining (Yürek, Birant, 

& Birant, 2018). This thesis also proposes another novel algorithm, T-IPM, to predict 

the remaining and completion time of processes.  We also developed a process mining 

tool, ProLab, is capable of working on big event logs in a short time with low memory 
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usage (Yürek & Birant, 2018). The proposed tool can handle the execution records of 

ongoing process instances with online approach to make more accurate prediction.  

 

2.2 Field Review 

 

Academic and commercial tools have been developed for process mining 

techniques. While ProM tool is used for academic purposes, Disco and Celonis tools 

are commercial software products developed by different companies. Table 2.1 

presents the comparison of process mining tools. 

 

The proposed tool, ProLab, uses streaming method to read event log files, while 

other tools work by loading the event logs into memory. Their methods lead to the 

problem of memory insufficiency in very large volume of event logs. All the tools 

visualize the representation of generated process model after analyzing the event logs. 

Disco, Celonis and ProLab tools play with the adjustment of visual settings, allowing 

quick access to desired information. All applications, except ProM, support to make 

visual adjustments and give detailed statistics of event logs on a dashboard page by 

using graphics and data tables so that the desired information can be accessed quickly. 

 

Table 2.1 Comparison of process mining tools 

 ProM Disco Celonis ProLab (our tool) 

Streaming event logs No No No Yes 

Model visualization Yes Yes Yes Yes 

Visualization settings No Yes Yes Yes 

Insights No Yes Yes Yes 

Interactive environment No No No Yes 

Offline fashion Yes Yes Yes Yes 

Online fashion No No No Yes 

 

In contrast to other tools, only the proposed tool, ProLab, provides an interactive 

environment for the users. This interactive environment allows the user to merge, 

delete, or add a new activity in the event logs. The user can immediately see the effects 

of this change on the process flows. 
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While offline fashion is a method to analyze the processes by using the historical 

event logs, online fashion is called instantaneous analysis of event records formed by 

ongoing process records. ProLab has the ability to analyze the processes with both 

offline and online fashion. 
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CHAPTER THREE 

BACKGROUND INFORMATION 

 

Business intelligence is a leading way to use the data stored in information systems. 

The aim of business intelligence is to improve decision making processes and to deal 

with challenges such as data explosion and information overflow. Data mining is the 

analysis of data for discovering relationships and patterns. Process mining uses data 

mining methods in the context of business process management and enables the 

application of modern approaches for improving the control of business processes.   

 

3.1 Process Mining 

 

Any enterprise and its decision makers hope to produce more products or provide 

better service in a shorter time, thus the efficiency and quality of the business operation 

is crucial to the survival and development of enterprise. But the new business requires 

enterprises to improve existing business process, therefore data mining and machine 

learning techniques are introduced to workflow field, i.e. process mining. The basic 

idea is to extract enterprise operation process from workflow log, excavate valuable 

objective information, and help to realize business process modeling and recycling, 

greatly enhancing the enterprises competitiveness in the market. 

 

Data mining is the analysis of data for discovering relationships and patterns. The 

abstraction of the analyzed data is called as patterns. Abstraction decreases complexity 

and makes information available for the recipient. However, the extraction of 

information about business processes is the goal of process mining. Process mining 

discovers, monitors and improves real processes by extracting knowledge from event 

logs. 

 

Process mining is also called as workflow mining or process detection, which is an 

analysis method to construct workflow models automatically through analyzing the 

event logs. Process mining begins with executive stage, with collecting the 

performance information as input, generating the workflow model as the output. 
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Process mining can be considered as a branch of data mining, and it has many 

similarities with data mining in principle and methods. But it is different from data 

mining, because the traditional data mining method aims at forecasting system 

behaviors, while the process mining at constructing whole process models. Figure 3.1 

shows the relations between business process management, process mining, and data 

mining. 

 

Process 

 Mining

  Data 

Mining

    Business 

     Process 

Management

 

Figure 3.1 Relations between business process management, process mining and data mining 

 

In information systems, the created data during the execution of business processes 

is used to rebuild process models. These models are beneficial for analyzing and 

optimizing processes. Process mining is a modern approach and sets up a bridge 

between data mining and business process management. 

 

3.2 Benefits 

 

Business process management (BPM) is usually a top-down approach. BPM starts 

by designing a process in a high-level model. It configures a system for managing and 

controlling the process. This system then coordinates work between the employees, 

and other resources in an organization.  

 

However, process mining can analyze the processes in a bottom-up fashion. Process 

mining reduces cost and variation by extracting enterprise operation process from 

workflow log. Process mining techniques ensure the control in processes and know 
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what is going on. It improves the quality by comparing processes beyond Key 

Performance Indicators (KPIs) and makes the processes transparent. 

 

The benefits of process mining can be summarized as follows: 

 

 Find deviations between your plan and reality 

 Find out how your process keeps up in reality 

 Get objective information on whether it is actually followed as prescribed 

 See for the first time how that process is handled in real-life 

 Compare processes 

 

3.3 Three main types of process mining 

 

Process mining contributes detailed insights into the process execution by using 

historical facts recorded by the information system. An overview of process mining is 

shown in Figure 3.2. The goal of process models is to describe the real-life processes. 

These process models are applied to configure the information system. While 

executing the defined process using the information system, historical records of the 

executed process are stored. The main input of process mining analysis is event logs. 

Process mining sets up links between the actual observed process execution and the 

modeled process behavior. 

 

Three major classes of process mining methods can be categorized: (a) the 

discovery of new process models based only on the event log, (b) conformance 

verification of the recorded behavior with a provided process model and (c) extension 

of existing process models using the information from the event log.  

 

Discovery: Traditionally, process mining has been focusing on discovery, i.e., 

deriving information about the original process model, the organizational context, and 

execution properties from enactment logs. An example of a technique addressing the 

control flow perspective is the α-algorithm, which constructs a Petri net model 

describing the behavior observed in the event log. It is important to mention that there 
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is no a-priori model, i.e., based on an event log some model is constructed. However, 

process mining is not limited to process models (i.e., control flow) and recent process 

mining techniques are more focusing on other perspectives, e.g., the organizational 

perspective, performance perspective or the data perspective. 

 

 

Figure 3.2 Overview of process mining (van der Aalst., 2011) 

 

Conformance: There is an a-priori model. This model is used to check if reality 

conforms to the model. For example, there may be a process model indicating that 

purchase orders of more than one million Euro require two checks. Another example 

is the checking of the so-called four-eyes principle. Conformance checking may be 

used to detect deviations, to locate and explain these deviations, and to measure the 

severity of these deviations. 

 

Extension: There is an a-priori model. This model is extended with a new aspect 

or perspective, i.e., the goal is not to check conformance but to enrich the model with 

the data in the event log. An example is the extension of a process model with 
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performance data, i.e., some a-priori process model is used on which bottlenecks are 

projected. 

 

3.4 Algorithms 

 

The mining algorithm which determines how the process models will be created is 

the main component in process mining. A broad variety of mining algorithms exists. 

The following three categories will be discussed in more detail. 

 

 Deterministic mining algorithms 

 Heuristic mining algorithms 

 Genetic mining algorithms 

 

Determinism means that an algorithm only produces defined and reproducible 

results. It always presents the same result for the same input. A representative of this 

category is the α-algorithm (van der Aalst et al., 2004). It was one of the first 

algorithms that are able to deal with concurrency. It gets an event log as input and 

evaluates the ordering relation of the events contained in the log. 

 

Also, heuristic mining applies deterministic algorithms but they include frequencies 

of events and traces for building a process model. A general problem in process mining 

is the fact that real processes are highly complex and their discovery leads to complex 

models. This complexity can be decreased by disregarding infrequent paths in the 

models. HeuristicsMiner algorithm which is proposed to overcome noise and low 

frequency behavior in noisy event log is a member of this category (Weijters et al, 

2006). 

 

Genetic mining algorithms apply an evolutionary method that simulates the process 

of natural evolution. They are not deterministic. Genetic mining algorithms follow four 

steps: initialization, selection, reproduction and termination. The idea behind these 

algorithms is to create a random population of process models and to figure out a 

satisfactory solution. The algorithms selects individuals iteratively and reproduces 
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them by crossover and mutation over different. The first population of process models 

is created randomly and might have little in common with the event log. However due 

to the high number of models in the population, selection and reproduction better 

fitting models are created in each generation. 

 

Various advanced mining algorithms exist that can be applied for several objects. 

Figure 3.3 shows the mined model using the heuristic Fuzzy Miner algorithm (Günther 

& van der Aalst, 2007). The model does not follow the BPMN notation but instead 

uses a dependency graph representation. It does not cover any gateway operators but 

points the dependencies between different activities. The dependency graph depicts 

for example that A was followed three times by B and two times by C. 

 

 

Figure 3.3 Sample process model constructed by using the fuzzy miner (Günther et al, 2007) 

 

3.5 Applications 

 

Process mining can analyze your process in a bottom-up fashion. Figure 3.4 shows 

the steps of process model discovery. You do not need to have a model of your process 

to analyze it. Process mining uses the historical data in your information systems. Your 

information system already records all steps of your process in execution. With process 

mining, you get a process model from these data. This way, your real process, and 

actual business rules, can be discovered automatically. Table 3.1 shows a sample event 

log and Figure 3.5 shows a discovered model which is represented with Petri nets. 
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Figure 3.4 Steps of process model discovery 

 

An event log keeps the execution history of a process. Table 3.1 shows an excerpt 

of a sample dataset used for process mining. The sample log stores some execution 

history of a loan application process. An event log includes data related to a single 

process. Each line in the table shows one event and each column presents an attribute 

of this event. An event is related to a trace, or process instance. The events in Table 

3.1 are already grouped by trace and sorted chronologically. The order of events that 

is recorded for a process instance is called a trace. 

 

Table 3.1 Data fields of an event log 

Trace id Event id Timestamp Activity Resource 

1 

35654423 30-12-2010 11:02 Register application Pete 

35654424 31-12-2010 10:06 Check credit Sue 

35654425 05-01-2011 15:12 Calculate capacity Mike 

35654426 06-01-2011 11:18 Check system Sara 

35654427 07-01-2011 14:24 Reject request Pete 

35654428 08-01-2011 09:03 Send decision e-mail Pete 

2 

35654483 30-12-2010 11:32 Register application Mike 

35654485 30-12-2010 12:12 Calculate capacity Mike 

35654487 30-12-2010 14:16 Check credit Pete 

35654488 05-01-2011 11:22 Accept request Sara 

35654489 08-01-2011 12:05 Send decision e-mail Ellen 

… … … … … 

 

As a process modeling language, Petri nets supports concurrency. Petri nets apply 

a very basic notation of circles representing places and squares representing transitions 

with arrows connecting them in a bipartite manner. Transitions can represent a task 

and when executed they consume one token, demonstrated by black dots, from each 

of their input places and generate a token in each of their output places. In this way, 

tokens are moved between places, and the allocation of tokens over the places points 

Event logs Process Mining
Discovered 

Model
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different states of the process model. This is called as marking. Special markings are 

the initial marking, which points how the process starts, and the final marking which 

points when the Petri net is in a terminate state. 

 

 

Figure 3.5 Petri net representation of a process model (van der Aalst., 2011) 

 

Process discovery is the major focus of studies in process mining. Process discovery 

aims to use only the behavior as recorded in the event logs, building a process model 

describing the underlying behavior. Although this aspect of process mining has 

received a lot of concentration, and quite a few algorithms presently exist to do this. 

But, process discovery still remains as a challenge because of time complexity and the 

cost of computationally expensive algorithms. Therefore, process mining is not 

applied commonly in industry. 
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CHAPTER FOUR 

INTERACTIVE PROCESS MINER ALGORITHM 

 

In this thesis, we propose a new process miner algorithm titled Interactive Process 

Miner (IPM). Process mining is a method to discover information from event logs. In 

process discovery, a process model is constructed to represent the processes based on 

observed events.  

 

4.1 Proposed Algorithm 

 

First of all, we read process records which are stored in XML format in files with 

.XES extensions line-by-line via file streaming method. Then, we keep process records 

a tree-like structure by grouping all the same traces in a path in system memory. By 

using this tree structure, we create process model of event logs. Table 4.1 represents a 

sample event log. 

 

Table 4.1 Sample event log for process mining algorithm 

Trace ID Events 

Trace 1 ABCDEF 

Trace 2 ABCEF 

Trace 3 ACBEF 

Trace 4 ACDF 

Trace 5 ABCDEF 

Trace 6 ABCDEF 

Trace 7 ACBEF 

Trace 8 ABCEF 

Trace 9 ACBEF 

Trace 10 ABCEF 

Trace 11 ABCDEF 

Trace 12 ACDF 

Trace 13 ABCEF 

Trace 14 ABCDEF 

 

We can separate our process mining progress into four sections. The first section is 

“Data Model Creation”, the second section is “Dependency Matrix Creation”, the third 
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one is “Dependency Graph Creation” and the last section is “Eliminating Low 

Frequent Traces”. Let us consider data model creation by examining the event log that 

contains 14 traces listed in Table 4.1 

 

The algorithm creates the data model by reading all the activities in a trace. Read 

1st trace that is “ABCDEF”. The first activity is A, then B, then C and it continues. The 

algorithm increases the count of the edge that represents the relation between two 

activities each time. B comes after activity A, then the count of the edge between A 

and B is increased by 1. And the same logic is followed for the other activities.  

 

Step 1: Read 1st trace and start constructing the data model. 

 

1 1 1 1 1
A B C D E F

 

 

Step 2: Read 2nd trace and update the data model. 

 

2 2 1 1 1

1 1

A B C D E F

E F
 

 

Step 3: Read 3rd trace and update the data model. 

 

2 2 1 1 1

1 1

1

1 1 1

A B C D E F

E F

C B E F
 

 



 

24 

 

Step 3: Read 4th trace and update the data model. 

 

2 2 1 1 1

1 1

2

1 1 1

1 1

A B C D E F

E F

C B E F

D F
 

 

Afterwards, all the traces is read in the event log and after the last trace, the final 

version of data model is constructed. 

 

Last Step: Read 14th trace and update the data model.  

 

9 9 5 5 5

4 4

5

3 3 3

2 2

A B C D E F

E F

C B E F

D F
 

 

Figure 4.1 shows an example data model constructed from the event log that 

contains 14 traces listed in Table 4.1 (the output of the first section, Data Model 

Creation). In our example we have 4 leaf nodes. Let us call them as L0, L1, L2 and 

L3. 
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C B E F

D F
 

Figure 4.1 Data model of all traces in the event log 

 

Next step is the creation of dependency matrix. The matrix elements represent 

activities in a trace. The off-diagonal elements are used to indicate dependencies 

between the activities. We used the output of the first section as input for this second 

section in order to create dependency matrix. We traverse all the data model which is 

a tree-like structure, by using in-order algorithm that is one of the depth-first search 

algorithms. The aim is to reach the leaf node. When we reach to all leaf nodes, tree 

represents the complete event log because it shows all the traces which are visited so 

far.  We start from the root node and continue to traverse the tree. While traversing all 

the activities, dependency matrix is created one by one for each activity. 

 

Step 1: We start from the root activity A, and traverse all the paths to reach the first 

leaf activity. The activities are A  B  C  D  E  F. F is the first leaf L0. Well, 

how we will know how many times this trace exist in the event log? When we find the 

leaf activity, it means this trace exists in the event log for the last edge count. In other 

words, the total number of the trace in the event log is equal to the last edge count of 

the leaf activity. Then, the number of dependencies is written to the related cell of the 

matrix. The count of each relation between activities is written to matrix one by one. 

After first traversal of the path, Table 4.2 represents the created dependency matrix 

after step 1. 
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Table 4.2 Dependency matrix after first step  

 A B C D E F 

A 0 5 0 0 0 0 

B 0 0 5 0 0 0 

C 0 0 0 5 0 0 

D 0 0 0 0 5 0 

E 0 0 0 0 0 5 

F 0 0 0 0 0 0 

 

Step 2: Again, we start from the root activity A, this time we follow a different path 

to reach the second leaf activity. In the example, the second leaf is L1.  We follow the 

activities A  B  C  E  F to reach the L1 leaf. When we find the leaf activity, 

count of the last edge dependency is checked. In this example it is 4, it means trace A 

 B  C  E  F exists 4 times in the event log. While visiting the tree nodes, when 

you encounter the same activity, just increase the dependency count of it, otherwise 

draw a new activity. Table 4.3 represents the created dependency matrix after step 2. 

 

Table 4.3 Dependency matrix after second step 

 A B C D E F 

A 0 5+4 0 0 0 0 

B 0 0 5+4 0 0 0 

C 0 0+3 0 5 0+4 0 

D 0 0 0 0 5 0 

E 0 0 0 0 0 5+4 

F 0 0 0 0 0 0 

 

Step 3: In the same way, we start from the root activity A, and follow a different 

path to reach the third leaf activity. In the example, the third leaf is L2.  We follow the 

activities A  C  B  E  F to reach the L2 leaf. When we find the leaf activity, 

count of the last edge dependency is checked. In this example it is 3, it means 3 times 

trace A  C  B  E  F exists in the event log. While visiting the tree nodes, when 

you encounter the same activity, just increase the dependency count of it, otherwise 

draw a new activity. Table 4.4 represents the created dependency matrix after step 3. 
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Table 4.4 Dependency matrix after third step 

 A B C D E F 

A 0 9 0+3 0 0 0 

B 0 0 9 0 +3 0 

C 0 0+3 0 5 4 0 

D 0 0 0 0 5 0 

E 0 0 0 0 0 9+3 

F 0 0 0 0 0 0 

 

Step 4: The number of dependency matrix created is equal to the number of leaf 

activities. In this example, we have 4 leaf nodes, so we created 4 different dependency 

matrices to generate the final version of it. The final version of dependency matrix 

holds all the relations between all activities in complete event log. Leaf activity L3 is 

the last one. The path of it is A  C  D  F. Again the same logic is followed and 

the final version of the dependency matrix is created. Table 4.5 represents the created 

dependency matrix after step 4. 

 

Table 4.5 Dependency matrix after last step 

 A B C D E F 

A 0 9 3+2 0 0 0 

B 0 0 9 0 3 0 

C 0 3 0 5+2 4 0 

D 0 0 0 0 5 0+2 

E 0 0 0 0 0 12 

F 0 0 0 0 0 0 

 

According to the final version of dependency matrix represented in Table 4.5, each 

dependency between activities is read from left to right. For instance, 1st row and 2nd 

column of the matrix, it stores the count of dependency between A and B such as A  

B = 9. Finally, we can get all the dependency counts from the matrix as follows: A  

B = 9, A  C = 5, B  C = 9, B  E = 3, C  B = 3, C  D = 7, C  E= 4, D  E 

= 5, D  F = 2, E  F = 12. By this way, it is possible to know all the dependencies 

and the count of them between activities.  
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We represent process model with a dependency graph. Dependency graph is a 

directed graph which represents dependencies of activities towards each other. Now, 

we have all the information about the event log to constitute the process model. 

Therefore; the third section is to form the dependency graph. Thus far, we know all 

the dependencies and the count of them between activities. We check the Table 4.5 

and start to construct dependency graph. 

 

Step 1: Add dependency between A and B activities. 

 

9

A

B
 

 

Step 2: Add dependency between A and C activities. 

 

59

A

B C
 

 

Step 3: Add dependency between B and C activities.  
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9

A
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Step 4: Add dependency between B and E activities.  

 

59

9

3

A

B C

E
 

 

Afterwards, all the dependencies between activities is added into dependency graph 

and after the last step, the final version of dependency graph is constructed. Figure 4.2 

shows the final version of dependency graph. 
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Figure 4.2 Dependency graph representation of process model 
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The constructed process model contains all the activities in the event log. Showing 

all the traces and activities of each traces in an event log makes the model complex 

and hard to understand. Also, event log may be incomplete or may contain noise.  

 

We consider the frequency of traces in the event log to eliminate the effects of 

incompleteness and noise. Also, we reduce the complexity of the process model to 

make the model easy to understand. We call the eliminating of traces from process 

model as a fourth section.  

 

Traces are eliminated from the process model with a defined threshold. This 

threshold is parametric value and it can take a value between 0 and 1. For instance, if 

threshold value is set to 0.25, it means the frequency of traces which are under % 25 

percentage will be eliminated. In our example, totally we have 14 traces. The trace 

count which ends with L0 leaf is 5, and for L1 is 4, for L2 is 3 and for L3 is 2. The %25 

of total trace count is 3.5. Then, the traces which their total count is under 3.5 is 

eliminated. Eventually, the paths which ends with the leaf nodes L2 and L3 is 

eliminated. After elimination process, the dependency graph that represents the 

process model is recreated. Figure 4.3 shows the filtered process model. 
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Figure 4.3 Filtered dependency graph representation of process model 
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 After completing the four sections, we will explain a new approach that we applied 

to existing process model. The new approach contains deletion, aggregation and 

addition algorithms to modify existing process model. Figure 4.4 shows how IPM 

algorithm works step-by-step.  

 

Step 1:

Stream event log and 

create data model

Step 2:

Calculate stats and filter 

event traces based on 

user-defined variables

Step 3:

Generate dependency 

matrix

Step 4:

Generate process model

Output:

Process model

 Input: 

 Event log

Step 5:

Apply add/delete/

aggregate operations to 

see affects of changes Iteration

 

Figure 4.4 Block diagram of IPM algorithm 

 

4.2 Provided approaches for process model modification 

 

Up to this time, we presented all traces in the event log with a constructed process 

model. With the help of the process model, it is now possible to have a general opinion 

about the progressive of processes in the event log and we have a chance to see the 

differences or outliers between the process model we designed and what actually 

happened in real life. Still, finding answers to some questions is very hard at this stage. 

For example, what happens if activity X is removed from the process model? Or how 

does the process model look if activities X and Y are aggregated under another event? 

Or how process model is affected if a new activity Z is added between the activities X 

and Y? If we know the answers to these questions, we will have an important 

opportunity to see the effects of any changes to a real-life system so as to improve it. 
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Considering this motivation, we provide three new features for process mining which 

are activity addition, deletion and aggregation. 

 

Available researches put different approaches forward to show an activity under 

another superior activity or to aggregate different activities whose frequency value is 

below a certain threshold. However, these operations are done based on some 

statistical values rather than user interactions. The user who is looking for answers to 

the above questions should be able to modify the model interactively. In our study, we 

proposed 3 different approaches including activity deletion, aggregation and addition. 

  

Our aim is to provide an interactive environment for users to apply some changes 

on the process model and see the effects of these changes to process flow before 

making any decision about it. It is critical to see the effects of changes before making 

a decision in real life 

 

4.2.1 Activity Deletion 

 

Picking an activity and removing it from process model is activity deletion 

operation. This section explains our new approach which is applied to the same sample 

event log listed in Table 4.1. 

 

Let us proceed the logic behind the algorithm step by step. For instance, what 

happens, if user wants activity D to be deleted from model? The algorithm starts to 

traverse from the root activity and tries to reach the leaf activities. However, each time 

it checks if the coming activity is D or not. If not, it continues to traverse and adds this 

path to the dependency matrix; otherwise it stops and deletes the tracked path. In other 

words, the algorithm does not add the path, which includes deleted activity, to the data 

model.  

 

Step 1: The algorithm tries to reach L0, but it faces with activity D in the path, stops 

and removes the related path. Figure 4.5 shows the data model after step 1.  
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Figure 4.5 Data model after first step of activity deletion 

 

Step 2: Secondly, it tries to reach the leaf L1 and get there. It means that this path 

will remain in the process model. Whenever the algorithm reaches a leaf activity, it 

adds this path to the dependency matrix. Figure 4.6 shows the data model after step 2. 
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Figure 4.6 Data model after second step of activity deletion 

 

Step 3: It tries to reach L2 and again get there. Therefore, the third path will remain 

in the process model and it should be added to the dependency matrix. Figure 4.7 

shows the data model after step 3. 
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Figure 4.7 Data model after third step of activity deletion 

 

Step 4: Finally, it tries to reach L3 leaf activity, but it encounters activity D in the 

path, stops and removes the related path. At the end of this step, the algorithm traversed 

all the leaf activities and the final version of the data model is created as shown in 

Figure 4.8. 

 

4 4

4 4

3

3 3 3

    L1

    L2

A B C

E F

C B E F
 

Figure 4.8 Data model after last step of activity deletion 

 

Thus, we can create our new dependency graph from final version of data model. 

Table 4.6 represents the final version of dependency matrix after activity deletion.  
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Table 4.6 Dependency matrix after activity deletion 

 A B C D E F 

A 0 4 3 0 0 0 

B 0 0 4 0 3 0 

C 0 3 0 0 4 0 

D 0 0 0 0 0 0 

E 0 0 0 0 0 7 

F 0 0 0 0 0 0 

 

All the cells of the matrix is visited and the final version of the dependency graph 

is constructed. Figure 4.9 shows the final version of dependency graph after activity 

deletion. 
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Figure 4.9 Dependency graph after activity deletion 

 

4.2.2 Activity Aggregation 

 

In this section, we are looking for an answer to the question how does the process 

model look if A1 and A2 activities are aggregated under another event such as A3. At 

least two activities can be combined and represented as another activity. In the same 

example, assume that user picks activities B and D to represent them under another 
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activity named as X. The algorithm starts to traverse from root activity and tries to find 

activities B and D to represent as X until reaching the leaf activity in the followed path. 

  

Step 1: Data model starts to change while the algorithm traversing all the activities. 

Firstly, the algorithm tries to reach L0. Each time, it checks if the coming activity is B 

or D. If the activity is one of them, then it replaces the current activity with X such as 

A  X  C  X  E  F for leaf L0. After finding the first leaf, it is added to the 

dependency matrix. In this example, we try to represent B and D as X, so there is no 

need to add the activities B and D to dependency matrix. Instead of B and D, activity 

X should be added. Figure 4.10 shows the data model after step 1. 
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    L0A X C X E F
 

Figure 4.10 Data model after first step of activity aggregation 

 

Step 2: In the second step, it tries to reach L1. It controls if the coming activity is B 

or D. If the activity is one of them, then it replaces the current activity with X such as 

A  X  C  E  F for leaf L1. Figure 4.11 shows the data model after step 2. 
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Figure 4.11 Data model after second step of activity aggregation 

 

Step 3: While the algorithm tries to reach leaf L2, it checks the activities one by 

one, whether they are B or D. If the answer is true, then it replaces the current activity 

with X such as A  C  X  E  F for leaf L2. Figure 4.12 shows the data model 

after step 3.  
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Figure 4.12 Data model after third step of activity aggregation 

 

Step 4: Lastly, the algorithm tries to reach L3. If it faces with one of the aggregated 

activities, then it replaces the current activity with new one such as A  C  X  F 

for leaf L3. Figure 4.13 shows the data model after step 4. 
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Figure 4.13 Data model after last step of activity aggregation 

 

Now, we can create our new dependency matrix from final version of data model 

which is reconstructed after activity aggregation. Table 4.7 represents the final version 

of dependency matrix after activity aggregation. 

 

From the dependency matrix, it is clearly seen that A is the root activity, because 

all the values of the cells are equal to zero vertically. This means that there is no any 

activity input to A. In addition, it is seen that F is leaf activity, because all the values 

of the cells are equal to zero horizontally. This means that there is no activity that 

outputs from F.  
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Table 4.7 Dependency matrix after activity aggregation 

 A C E F X 

A 0 5 0 0 9 

C 0 0 4 0 10 

E 0 0 0 12 0 

F 0 0 0 0 0 

X 0 9 8 2 0 

 

According to the dependency matrix, dependency graph of new process model can 

be constructed as shown in Figure 4.14. In this graph, activity B and D does not exist, 

because they are aggregated under the new activity X, so they are represented as 

activity X. 
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Figure 4.14 Dependency graph after activity aggregation 

 

4.2.3 Activity Addition 

 

In this section, we are looking for an answer to the question how process model is 

affected if a new activity named as A3 is added between the activities A1 and A2. There 

are many activity addition combinations. User may want to add a new activity for 

specific conditions such as if and only if A comes after D, or if activity D is between 
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E and F. The algorithm is able to handle any of these combinations. In the same 

example, assume that user wants to add a new activity X between the activities C and 

B. At the same time, user wants to add the same new activity X between the activities 

C and E.  

 

The algorithm starts to traverse from root activity and tries to find dependencies of 

C  B and C  E to add new activity X between them.  

 

Step 1: Firstly, the algorithm tries to reach L0. Each time, it checks current and next 

activity. If the current activity is C and the coming activity is B or E, then it inserts the 

activity X between them such as C  X  B or C  X  E.  In the first path, there is 

no sequence that supplies this condition. Therefore, the algorithm does not apply any 

changes to the path of the leaf L0. Figure 4.15 shows the data model after step 1. 

 

5 5 5 5 5

    L0A X C X E F
 

Figure 4.15 Data model after first step of activity addition 

 

Step 2: Secondly, it tries to reach L1. In the second path, there is a sequence that 

supplies the desired condition. So, the path of L1 changes into the following path: A  

B  C  X  E  F.  After finding the second leaf, it is added to the dependency 

matrix. In this case, dependency matrix has a new row and column for activity X. 

Figure 4.16 shows the data model after step 2.  
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Figure 4.16 Data model after second step of activity addition 

 

Step 3: Thirdly, the algorithm tries to reach L2. It looks for the condition in the 

tracked path. In the third path, there is a sequence that supplies the desired condition 
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(C  B). So, the path of L2 changes into the following path: A  C  X  B  E  

F. After finding the third leaf, it is also added to the dependency matrix. Figure 4.17 

shows the data model after step 3. 
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Figure 4.17 Data model after third step of activity addition 

 

Step 4: Lastly, it tries to reach L3. In the last path, there is no sequence that supplies 

the desired condition. Therefore, the algorithm does not apply any changes to the path 

of the leaf L3. The final version of data model is shown in Figure 4.18. 
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Figure 4.18 Data model after last step of activity addition 

 

Thus, we can create our new dependency matrix from final version of data model 

which is reconstructed after activity addition. Table 4.8 represents the final version of 

dependency matrix after activity addition.  
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Table 4.8 Dependency matrix after activity addition 

 A B C D E F X 

A 0 9 5 0 0 0 0 

B 0 0 9 0 3 0 0 

C 0 0 0 7 0 0 7 

D 0 0 0 0 5 2 0 

E 0 0 0 0 0 12 0 

F 0 0 0 0 0 0 0 

X 0 3 0 0 4 0 0 

 

According to the dependency matrix, dependency graph of new process model can 

be constructed as shown in Figure 4.19. 
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Figure 4.19 Dependency graph after activity addition 

 

4.3 Process Model Modification 

 

In the repair dataset (Bose & van der Aalst, 2010), different activities can be seen 

such as "Register" (accepting the faulty telephone), "Analyze Defect" (analyzing the 

telephone fault), "Repair (Simple)” (simple repair for fault of telephone), "Repair 

(Complex)” (complex repair for fault of telephone), "Test Repair" (testing the 
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telephone after repairing), "Restart Repair" (starting repairing again if the test fails), 

"Inform User" (informing the user after repair), and "Archive Repair" (archiving and 

closing fault record). The repair dataset consists of synthetically created event logs for 

the telephone repair process. It consists of 1,104 trace and 11,855 events. After 

performing analysis on the event log of telephone repair process, the created process 

model can be viewed in Figure 4.20-a. 
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Figure 4.20 Process model modifications 

 

When we look at the process model, it is observed that there is a lot of transitions 

between events, and as a result of this situation, a complicated process flow is formed. 

Some improvement changes should be done to reduce this complexity and make the 

execution of process leaner. We want to make some changes in process flow to achieve 

this goal. Firstly, “Test (Simple)” and “Test (Complex)” events are added after each 

repair events to separate test operations. In this case, existing “Test Repair” event is 

removed from the process flow. Finally, “Inform User” and “Restart Test” events are 
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aggregated under “Inform User & Restart Repair” event. After applying these changes, 

the process model is formed as shown in Figure 4.20-b. As stated, we can perform 

different experiments in a simulation environment to improve the execution of 

processes. Once the most appropriate model has been identified, the improvement 

changes start to be implemented in real life. Thanks to the provided IPM algorithm, 

process improvements can be achieved quickly and truthfully. 
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CHAPTER FIVE 

TIME PREDICTION ALGORITHM 

 

Another aim of this thesis is to develop a time prediction algorithm which calculates 

the remaining and completion time of each process in a flow and incorporate the 

execution records of ongoing processes into discovered process model instantly.  

 

We enhanced IPM algorithm by introducing time perspective. The enhanced 

algorithm is capable of estimating the completion time of the processes that has not 

started yet and the remaining time of ongoing processes instantly. The time prediction 

algorithm is named as Time-oriented Interactive Process Miner, T-IPM. 

 

In this section, we will explain how to construct time prediction model from event 

logs. The purposed algorithm, T-IPM, is able to make analyses on both offline and 

online execution records. Incorporation of ongoing or newly completed process 

records which are called as online data has a major importance in terms of keeping the 

process model constantly up-to-date. Updating the process model instantly will 

provide the ability to see the last status of process flows. 

 

5.1 Concept of Time Prediction  

 

Event logs contain different features of executed process instances. A sample event 

log is listed in Table 5.1. The event log contains there traces that have activity, 

timestamp and life cycle information. Activity, time stamp and life cycle information 

is important for the proposed time prediction algorithm. 

 

The first step is to create a tree-like data model that includes summarized statistical 

information about all cases in the event logs. This tree-like data model makes it 

possible to use large volume of event logs in time prediction algorithm with a low 

memory usage. Figure 5.1 shows the tree-like data model that is constructed from 

sample event log. 
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Table 5.1 Sample event log for time prediction 

Trace Id Activity Timestamp Lifecycle 

1 A 2018-01-01T12:00 Start 

1 A 2018-01-01T18:00 Complete 

1 B 2018-01-01T20:00 Start 

1 B 2018-01-02T11:00 Complete 

1 C 2018-01-02T12:30 Complete 

1 D 2018-01-02T14:00 Start 

1 D 2018-01-02T15:30 Complete 

1 F 2018-01-02T16:00 Complete 

2 A 2018-01-03T09:00 Complete 

2 B 2018-01-03T11:00 Start 

2 B 2018-01-03T15:30 Complete 

2 D 2018-01-03T16:00 Start 

2 D 2018-01-03T17:00 Complete 

2 F 2018-01-03T18:30 Complete 

3 A 2018-01-04T11:00 Start 

3 A 2018-01-04T11:30 Complete 

3 C 2018-01-04T14:00 Complete 

3 D 2018-01-04T15:00 Start 

3 D 2018-01-04T15:30 Complete 

3 F 2018-01-04T15:51 Complete 

 

The proposed algorithm calculates the execution and completion time of the process 

instances. Execution time refers to the time elapsed between the start time and the end 

time of an activity. If the start or end time information does not exist in the event logs, 

then we assume that the value of execution time is zero. Completion time refers to the 

time elapsed between the end time of the previous activity and the end time of the next 

activity. 
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Figure 5.1 Time prediction data model of event log 
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Figure 5.2 shows the difference between the execution and the completion time of 

an activity. If the completion time value is greater than the execution time value, this 

means there is an idle time between two activities. If the completion time value is 

smaller than the execution time value, this means these two activities progresses in 

parallel. Figure 5.2 shows a sample process flow that continues like A  B  C. The 

activity A starts at time t2 and ends at time t4. The activity B starts at time t3 and ends 

at time t6. The activities A and B continues parallel for a certain period of time. The 

activity C starts at time t7 and ends at time t8. After the activity B is completed, there 

is an idle time which start at t6 and ends at t7. After the idle time finishes, the activity 

C starts to proceeding. 

 

 

Figure 5.2 The timeline of execution and completion times 

 

5.2 Methodology of Time Prediction  

 

To explain the time calculation from event logs, we need the following notations. 

Z is a set of activities such as Z = {A, B, C, D, E}.   Z* is a trace of process flow 

such as 1 = ABC, 2 = ABCD. W  Z* is an event log, i.e., a multiset (bag) of event 

traces such as W= [ABC, ABCD, ABDE]. 

 

Let a, b  Z; 𝑇𝑠𝑡𝑎𝑟𝑡(𝑎) is the start time of activity a. 𝑇𝑒𝑛𝑑(𝑎) is the end time of 

activity a.  𝑇𝑒𝑡(𝑎) is the execution time of activity a and 𝑇𝑐𝑡(𝑎) is the completion time 
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of activity a. If there is a trace  = e1 e2 e3... en and i  {1,2,3,...n} such that ei = a, 

  W; 

 

𝑇𝑒𝑡(𝑎) =  𝑇𝑒𝑛𝑑(𝑎) − 𝑇𝑠𝑡𝑎𝑟𝑡(𝑎)                                      (4.1) 

 

𝑇𝑐𝑡(𝑎) = {
    𝑇𝑒𝑛𝑑(𝑎) − 𝑇𝑒𝑛𝑑(𝑒𝑖−1), 𝑖 > 1

𝑇𝑒𝑡(𝑎), 𝑖 = 1
                            (4.2) 

 

So far we explained how the execution and completion times of activities are 

calculated in a process flow. Equation 4.1 is used to calculate execution time value and 

equation 4.2 is used to calculate completion time value of an event. We will see how 

the average values are calculated in the next step. Let’s assume that |𝑎 
𝑖𝑛
→  𝑏| is count 

of incoming edges from activity a to activity b and |𝑎
𝑖𝑛
→ | is count of all incoming edges 

into activity a. We can define avarage time values as follows; 

 

𝐴𝑉𝐺𝑒𝑡(𝑎, 𝑏) =

{
 
 

 
    

∑ 𝑇𝑒𝑡(𝑏)
|𝑎 
𝑖𝑛
→  𝑏| 

𝑖=1

|𝑎 
𝑖𝑛
→  𝑏|

, |𝑎 
𝑖𝑛
→  𝑏| > 0

∑ 𝑇𝑒𝑡(𝑏)
 |𝑏
𝑖𝑛
→ |

𝑖=1

|𝑏
𝑖𝑛
→ |

, |𝑎 
𝑖𝑛
→  𝑏| = 0

                            (4.3) 

 

𝐴𝑉𝐺𝑐𝑡(𝑎, 𝑏) =

{
 
 

 
    

∑ 𝑇𝑐𝑡(𝑏)
|𝑎 
𝑖𝑛
→  𝑏|

𝑖=1

|𝑎 
𝑖𝑛
→  𝑏|

, |𝑎 
𝑖𝑛
→  𝑏| > 0

       
∑ 𝑇𝑐𝑡(𝑏)
|𝑏
𝑖𝑛
→ |

𝑖=1

|𝑏
𝑖𝑛
→ |

, |𝑎 
𝑖𝑛
→  𝑏| = 0

                            (4.4) 

 

Equation 4.3 shows how to calculate the average execution time of A  B transition 

and equation 4.4 shows how to calculate the average completion time of A  B 

transition.  Now, let’s define time prediction functions. 

 

𝑃𝑒𝑡() = 𝐴𝑉𝐺𝑒𝑡(, 𝑒0) +∑ 𝐴𝑉𝐺𝑒𝑡(𝑒𝑖, 𝑒𝑖+1)
𝑛

𝑖=1
                        (4.5) 
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𝑃𝑐𝑡() = 𝐴𝑉𝐺𝑐𝑡(, 𝑒0) +∑ 𝐴𝑉𝐺𝑐𝑡(𝑒𝑖, 𝑒𝑖+1)
𝑛

𝑖=1
                        (4.6) 

 

The data model is used as input to create time table. To form time table, the 

algorithm starts from the root activity and continues traversing the tree. While 

traversing tree, the goal is to reach the leaf activity. When all leaf activities are reached, 

it means that the constructed tree represents the complete event log. Because, it shows 

all the traces which are visited so far. While traversing all the activities, time table is 

created for each activity and 2-length activities. Table 5.2 gives time values of 2-length 

activities and Table 5.3 gives time values of each activity. 

 

Table 5.2 Time information of 2-length activities 

Transition # 

Total 

Execution 

Time 

Average 

Execution 

Time 

Total 

Completion 

Time 

Average 

Completion 

Time 

  A 3 390 130 390 130 

A  B 2 1170 585 1410 705 

A  C 1 0 0 150 150 

B  C 1 0 0 90 90 

B  D 1 60 60 90 90 

C  D 2 120 60 270 135 

D  F 3 0 0 141 47 

  

Table 5.3 Time information of activities 

Activity # Total 

Execution 

Time 

Average 

Execution 

Time 

Total 

Completion 

Time 

Average 

Completion 

Time 

A 3 390 130 390 130 

B 2 1170 585 1410 705 

C 2 0 0 240 120 

D 3 180 60 360 120 

F 3 0 0 141 47 

 

Let us explain the time estimation algorithm with a sample flow. Assume that a 

flow of 1 = ACBDF will take place. This flow is transformed into binary transitions 

in order to estimate the time. At the end of this operation, binary transitions are 

obtained in the form   A, A  C, C  B, B  D and D  F. It is necessary to 
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find the average times for each binary transitions to calculate the completion time 

value with equation 4.6. Table 5.4 shows the calculated average time values. If there 

is a transition in the event log in the form of a  b, the calculated average value for 

this pair is obtained from Table 5.2. If there is no such transition, the overall calculated 

average value for activity b is obtained from Table 5.3. 

 

The average completion time values for each transition pair in the example flow are 

shown in Table 5.4. These values are summed to estimate the completion time value 

for the corresponding flow. Equation 4.6 is calculated as 1122 for 1. 

 

Table 5.4 Average completion time of transitions 

Transition |𝒂 
𝒊𝒏
→  𝒃| |𝒂

𝒊𝒏
→ | 𝑨𝑽𝑮𝒄𝒕(𝒂, 𝒃) 

  A 130 130 130 

A  C 150 120 150 

C  B - 705 705 

B  D 90 120 90 

D  F 47 47 47 

 

Equation 4.5 is used to calculate the execution time value. The average execution 

time values for each binary transitions in the sample flow are shown in Table 5.5. The 

estimated value for 1 is calculated as 645 by taking into account the average time 

values. 

 

Table 5.5 Average execution time of transitions 

Transition |𝒂 
𝒊𝒏
→  𝒃| |𝒂

𝒊𝒏
→ | 𝑨𝑽𝑮𝒆𝒕(𝒂, 𝒃) 

  A 0 0 0 

A  C 0 0 0 

C  B - 585 585 

B  D 60 60 60 

D  F 0 0 0 
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CHAPTER SIX 

A NEW PROCESS MINING TOOL: ProLab 

 

There is a need for a software tool in order to analyze the process records and to 

extract the statistical information from event logs. This process mining tool should be 

able to work with low resource consumption on the large amount of event logs. An 

XML-based file called Mining eXtensible Markup Language (MXML) has been 

standardized to store event logs which is used in process mining. Thus, a general input 

format is provided for different process mining techniques and tools. In this thesis, we 

developed a new process mining tool, ProLab, which is able to work with low resource 

consumption on huge amount of event logs and to provide an interactive environment 

for users.  

 

6.1 Block Diagram of Process Mining Tool 

 

The block diagram of the process mining tool we developed is shown in Figure 6.1. 

Event logs in MXML format are read using the file streaming method, so it is possible 

to read the event logs without loading the whole file into memory. The statistical 

information obtained from event logs during streaming is stored in a data structure. 

This data structure describes the summary information that will be used in process 

mining. 

 

The process mining algorithm is executed on the data structure that holds the 

statistical information and a process model is created that represents the process flows. 

The generated process model is a summary information of the event logs. By 

visualizing the generated process model, this summary information is displayed to the 

user with a graphical interface. With the help of settings, users can filter both the event 

logs and change the visual appearance of the process model. These features allow users 

to perform a detailed analysis on the event logs.  
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In addition to visualization of the process model, statistical information about the 

event logs is presented to the user through a dashboard page with graphics and tables. 

With this dashboard page, users can get deep insights about the process flows. 

 

Step 1:

Stream event log and 

create data structure

Step 2:

Run process mining 

algorithm

Step 3:

Generate process 

model

Step 4:

Visualize process 

model

Output:

Statistics of event log

 Input: 

 Event log

Step 5:

Edit settings to filter 

event log

Iteration

 

Figure 6.1 Block diagram of process mining tool 

 

6.2 Case Study of Process Mining Tool 

 

Table 6.1 shows an example event logs. Each row in the table represents a 

completed process flow. A, B, C, D, E, F in the process flow are the names of the 

activities that can take place in the process execution. 

 

The proposed tool, ProLab, has the option of advanced settings to perform detailed 

analysis from different point of views. Case Frequency and Activity Frequency options 

are available for filtering event logs. 

 

The process instance, ABCDF, in the example event log repeated 5 times and the 

frequency is 35.71%. The second process instance, ACDEF, repeated 4 times and the 
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frequency is %28.57. The third process instance, ACBDF, repeated 3 times and the 

frequency is %21.42. The last process instance, ABEF, repeated 2 times and the 

frequency is %14.28. When Case Frequency value is set to 15%, the process instance, 

ABEF, will be ignored in analysis. Activity Frequency filter allows filtering of 

activities A, B, C, D, E and F according to the ratio of the total number of activities in 

the event log. 

 

Table 6.1 Sample event log for process mining tool 

Case ID Events 

Case 1 ABCDF 

Case 2 ACDEF 

Case 3 ACBDF 

Case 4 ABEF 

Case 5 ABCDF 

Case 6 ABCDF 

Case 7 ACBDF 

Case 8 ACDEF 

Case 9 ACBDF 

Case 10 ACDEF 

Case 11 ABCDF 

Case 12 ABEF 

Case 13 ACDEF 

Case 14 ABCDF 

 

The resulting process model that is created based on analysis can be drawn to show 

the frequency or time information. When it is desired to draw according to frequency 

value, there are two options. One of these options is Absolute Frequency that expresses 

total activity count and the other one is Case Frequency that expresses the activity 

count per case. 

 

There are 4 different options when it is desired to draw the generated process model 

according to time value: (i) total duration refers to total time, (ii) mean duration refers 

to average time, (iii) min duration refers to minimum time and (iv) max duration refers 

to maximum duration in event logs. During visualization, different colors are used, 
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which are divided into 5 categories for shapes. Thanks to this method, both the colored 

shapes and the numbers make the process model more understandable.  

 

Figure 6.2 denotes the analysis that is performed on repair data set. The Case 

Frequency value for the analysis is defined as 10%, and the Activity Frequency value 

is defined as 20%. An analysis is performed for the frequency values of the activities 

and the Absolute Frequency option is marked. Frequency values are shown on the 

activities and on the edges that link the activities. The colors of the activities and edges 

vary depending on the value of frequency. Moreover, the edge thicknesses also vary 

depending on the value of dependency size of the activities 

 

 

Figure 6.2 Process model visualization in ProLab 
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CHAPTER SEVEN  

EXPERIMENTAL STUDY 

 

The experiments were performed by using 2.4 GHz quad core processor, 16GB 

RAM. The code was implemented in Java platform. In this thesis, we proposed a 

process mining algorithm, IPM, and a time prediction algorithm, T-IPM, which is 

enhanced version of IPM algorithm, and also developed a process mining tool, ProLab. 

We performed different experimental studies for each one. 

 

7.1 Dataset Description 

 

Datasets of traffic (de Leoni & Mannhardt, 2015), hospital (van Dongen, 2011), 

billing (Mannhardt, 2017) and repair (Bose & van der Aalst, 2010) event logs are used 

for experimental study. Table 7.1 shows detailed information about the datasets. The 

hospital dataset includes real-life event logs of the clinical treatment process of an 

academic hospital in the Netherlands. It consists of 1,143 traces and 150,291 events. 

Hospital dataset is composed of long and complex event logs, which are defined as 

Spaghetti. Traffic dataset includes event logs generated by an information system that 

performs road traffic control. It consists of 150,370 traces and 561,470 events. Billing 

dataset includes event logs generated by the financial modules of the ERP system of a 

regional hospital in Netherlands. It consists of 100,000 traces and 451,359 events. The 

repair dataset consists of synthetically created event logs for the telephone repair 

process. It consists of 1,104 trace and 11,855 events. 

 

Table 7.1 Characteristics of datasets 

Dataset Traces Events Activities 

Min 

Events per 

Trace 

Max 

Events per 

Trace 

Repair Dataset 1,104 11,855 12 4 24 

Hospital Dataset 1,143 150,291 624 1 1,814 

Billing Dataset 100,000 451,359 18 1 217 

Traffic Dataset 150,370 561,470 11 2 20 
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7.2 Experimental Results of Process Mining Algorithm 

 

To evaluate process mining algorithm, IPM, the experiments were performed on 

ProM platform (van Dongen et al., 2005). The first experiment was executed on 

hospital and traffic datasets to compare the running time and memory usage of four 

algorithms: Alpha Miner (van der Aalst et al., 2004), Heuristics Miner (Weijters et al., 

2006), Fuzzy Miner (Günther & van der Aalst, 2007), and Interactive Process Miner 

(IPM - our algorithm). The results of this experiment given in Table 7.2 show the 

running time and memory usage of IPM algorithm is better than others. IPM created 

the process model in 2.38 seconds by using 463 MB RAM on hospital dataset and 0.67 

seconds by using 36 MB RAM on traffic dataset. When we checked the running times 

and memory usage of the algorithms, we observed that IPM is the fastest algorithm 

and has lowest memory consumption comparing to others. 

 

Table 7.2 Experimental results for performance evaluation 

 

Hospital Dataset Traffic Dataset 

Running 

Time(sec) 

Memory 

Usage (MB) 

Running 

Time(sec) 

Memory 

Usage (MB) 

Alpha Miner >120.00 1,503 1.87 675 

Fuzzy Miner 39.11 1,806 7.52 789 

Heuristics Miner 19.90 1,087 3.62 825 

IPM (our algorithm) 2.38 463 0.67 36 

 

The second experiment was executed on repair dataset. Multi-Perspective Process 

Explore plug-in was used to evaluate the quality of created process model (Mannhardt, 

de Leoni, & Reijers, 2015). This plug-in requires two input files. One of them is the 

XES file that contains the event log. The other one is the Petri net representation of the 

process model. This plug-in does not support the conversion of created model to Petri 

net representation for Alpha Miner and Fuzzy Miner algorithms. For this reason, we 

only used Heuristic Miner algorithm to compare the results of the second experiment. 

In second experiment, we focused on fitness and precision metrics to evaluate the 

success of process model created by the algorithm (Mannhardt et al., 2015). Fitness 

shows how much of the observed traces in the log are described by the process model 
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(equation (6.1)). Precision is the ratio between the amount of traces observed in the 

event log and the amount of traces described by the model (equation (6.2)).  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐿, 𝑁) =
1

2
(1 −

∑ 𝐿(𝜎)× 𝑚𝑁,𝜎𝜎∈𝐿

∑ 𝐿(𝜎)× 𝑐𝑁,𝜎𝜎∈𝐿
) +                                (6.1) 

                                                     
1

2
(1 −

∑ 𝐿(𝜎)× 𝑟𝑁,𝜎𝜎∈𝐿

∑ 𝐿(𝜎)× 𝑝𝑁,𝜎𝜎∈𝐿
)                                                                     

 

where L is event log, N is process model, ϭ is trace, L(ϭ) is the frequency of trace ϭ, p 

is produced tokens, c is consumed tokens, m is missing tokens, and r is remaining 

tokens. 

 

                 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃, 𝜀) =
∑ |𝑜𝑏𝑠𝑝(𝑒)|𝑒∈𝜀

∑ |𝑝𝑜𝑠𝑝(𝑒)|𝑒∈𝜀
                                  (6.2) 

 

where P is process model, Ɛ is event log, e is event, obsp(e) is the observed behavior 

as seen in the event log, posp(e) is the possible behavior when event e occurs as 

allowed by a model.  

 

The framework calculated the fitness 84.8% and the precision 73.9% for created 

model by IPM as given in Table 7.3. Although fitness values are very close to each 

other (IPM: 84.8%, Heuristic Miner: 88.7%), there is a significant difference between 

the precision values of two algorithms (IPM: 73.9%, Heuristic Miner: 57.5%). It is 

necessary to evaluate these two metrics together. When we look at fitness value, the 

process model created by IPM contains 84.8% of the event log. On the other side, the 

process model created by Heuristic Miner contains 88.7% of the event log. When we 

look at the precision value, 73.9% of the execution variants that we can build by 

looking at the process model created by IPM are observed in the event log. Conversely, 

only 57.5% of the execution variants that we can build by looking at the process model 

created by Heuristic Miner are observed in the event log. Clearly, Heuristic Miner has 

created a very general process model to conform it to the event log and a big part of 

execution variants that expressed by process model cannot be observed in the event 

log. From this point of view, we can say that the model created by IPM is closer to 

reality and more successful than Heuristic Miner. 
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In summary, the proposed process mining algorithm, IPM, that runs on large 

datasets and handles execution records of running instances in a short time with low 

memory usage. The algorithm provides an interactive method that allows users to 

modify the constructed model by adding, deleting and aggregating the activities to see 

the impacts of process improvement changes in a simulation environment before 

applying decisions in real life. 

 

Table 7.3 Experimental results to evaluate the success of process model  

Algorithms Precision (%) Fitness (%) 

Heuristics Miner 57.50 88.70 

IPM (our algorithm) 73.90 84.80 

 

7.3 Experimental Results of Time Prediction Algorithm 

 

To evaluate time prediction algorithm, T-IPM, the experiments were performed on 

the developed process mining tool, ProLab. The first experiment was executed on 

billing, traffic and repair datasets to compare the running time and memory usage. The 

results of the experiment given in Table 7.4 show the running time and memory usage 

of the proposed algorithm for each datasets.  

 

Table 7.4 Experimental results of performance evaluation for time prediction algorithm 

Dataset Log Size (MB) Running Time (sec) Memory Usage (MB) 

Repair Dataset 3.31 1 321 

Billing Dataset 166 14 735 

Traffic Dataset 176 17 826 

 

The proposed algorithm, T-IPM, created the process model in 1 second by using 

321 MB RAM on repair dataset and 14 seconds by using 735 MB RAM on billing 

dataset and 17 seconds by using 826 MB RAM on traffic dataset. When we checked 

the running times and memory usage, we observed that the size of event logs increased 

the running time. The factor that affects the amount of memory usage is the complexity 

of the event logs and the length of each process instance. These two cases are the two 

most important factors affecting the size of the data structure in which summary 

information obtained from event logs. The results of the experiments point that it is 
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possible to perform process analysis on a large volume of data by using limited 

resources with the proposed time prediction algorithm. 

 

The second experiment was executed on billing, traffic and repair datasets to 

evaluate the success of time prediction algorithm. The results of the experiment given 

in Table 7.5 show Mean Absolute Error (MEA), Root Mean Squared Error (RMSE), 

and Mean Absolute Percentage Error (MAPE) of the proposed algorithm for each 

datasets. 

 

Table 7.5 Experimental results of validation for time prediction algorithm 

Dataset MAE RMSE MAPE 

Repair Dataset 0.1774 0.2370 16.44 % 

Hospital Dataset 391.6208  544.8783  12.80 % 

Traffic Dataset 1620.5391  1966.9926  19.38 % 

 

Without considering the direction of values, the average magnitude of the errors in 

a set of predictions is measured by MAE. MAE is the average of the absolute 

differences between actual observation and prediction when all individual differences 

have equal weight. 

 

𝑀𝐴𝐸 =
1

𝑛
 ∑ | 𝑥𝑖 − 𝑥̂𝑖  |
𝑛
𝑖=1                                         (6.3) 

 

RMSE is the square root of the average of squared differences between actual 

observation and prediction. It is a quadratic scoring rule. RMSE measures the average 

magnitude of error. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ ( 𝑥𝑖 − 𝑥̂𝑖 )2
𝑛
𝑖=1                                       (6.4) 

 

MAPE calculate the average of the percentage error. The size of error is measured 

in percentage terms. 

 

𝑀𝐴𝑃𝐸 = (
1

𝑛
 ∑

| 𝑥𝑖−𝑥̂𝑖 |

𝑥𝑖

𝑛
𝑖=𝑛 ) ∗ 100                                    (6.5) 
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The mean completion times are 1.08 hours, 3056.68 hours, and 8200.29 hours for 

repair, billing and traffic datasets, respectively. While calculating MAE, RMSE and 

MAPE values, the unit of time is selected as hour. MAE and RMSE shows the average 

value of prediction error. It is possible to compare these values by the mean completion 

times of datasets. MAPE shows the percentage error of prediction. We can say that the 

accuracy values of prediction are 83.56%, 87.20% and 80.62% for repair, hospital and 

traffic datasets, respectively. When we analyze these values, it is seen that the proposed 

algorithm is very successful in time estimation. 

 

7.4 Experimental Results of Process Mining Tool  

 

To evaluate process mining tool, ProLab, the experiment was executed on hospital, 

traffic and repair datasets to compare the running time and memory usage. The results 

of the experiment given in Table 7.6 show the running time and memory usage of the 

developed tool for each datasets.  

 

Table 7.6 Experimental results of performance evaluation for process mining tool  

Dataset Log Size (MB) Running Time (sec) Memory Usage (MB) 

Repair 3.31 1 321 

Hospital 81.40 5 745 

Traffic 176.00 17 826 

 

The tool created the process model in 1 second by using 321 MB RAM on repair 

dataset and 5 seconds by using 745 MB RAM on hospital dataset and 17 seconds by 

using 826 MB RAM on traffic dataset. When we checked the running times and 

memory usage, we observed that the size of event logs increased the running time. The 

factor that affects the amount of memory usage is the complexity of the event logs and 

the length of each process instance. These two cases are the two most important factors 

affecting the size of the data structure in which summary information obtained from 

event logs. The results of the experiments point that it is possible to perform process 

analysis on a large volume of data by using limited resources with the developed 

process mining tool. 
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CHAPTER EIGHT 

CONCLUSION AND FUTURE WORK 

 

8.1 Conclusion 

 

This thesis proposes a new process mining algorithm, Interactive Process Miner 

(IPM), to create process model based on event logs and predict the remaining and 

completion time of each process in a flow and, also a new approach that contains three 

different features; including activity deletion, aggregation and addition operations on 

the existing process model.  

 

We also enhanced IPM algorithm by introducing time perspective. The enhanced 

algorithm, Time-oriented Interactive Process Miner (T-IPM), is capable of estimating 

the completion time of the processes that has not started yet and the remaining time of 

ongoing processes instantly. 

 

In this thesis, we also developed a new process mining tool, ProLab, which has the 

capabilities of working on a large volume of event logs and handling the execution 

records of running process instances to create process model in a short time and also 

supports an interactive environment for process mining to give deep insights for event 

logs. 

 

The contribution of this thesis can be summarized as the following: 

 

 The proposed algorithms, IPM and T-IPM, are able to analyze historical event 

logs as well as to incorporate the execution records of ongoing processes into 

the process model instantly. IPM and T-IPM algorithms support both online 

and offline process mining fashions.  

 IPM and T-IPM enable for modification on the discovered process model. Thus, 

algorithms provide to observe the effects of possible decisions to be taken in a 

simulation environment. It has an important feature in order to make the right 

decision and to observe possible problems in advance 
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 Experimental studies have proved that IPM and T-IPM algorithms are the 

fastest algorithm that consumes the least amount of memory and, also has high 

prediction accuracy. 

 Experimental studies have proved that the proposed tool, ProLab, is able to 

analyze a large volume of event logs.  

  

As a result, in this thesis, (i) a novel process mining algorithm, IPM, was proposed, 

(ii) IPM algorithm was enhanced by introducing time perspective and was named as 

T-IPM, (iii) a process mining tool, ProLab, was developed. 

 

8.2 Future Work 

 

In the future, it is possible to enhance IPM implementation by introducing new 

process mining perspectives such as organizational and resource in user interactive 

environment. 

   

In addition, a new file format that takes less space for event logs can be created for 

ProLab tool. Thus, low-cost storage spaces for event logs will suffice. Different 

visualization techniques such as fish eye and zooming can be supported in ProLab tool 

to analyze the process model and the statistics of event log in a various perspectives. 

 

Parallel processing can be supported to achieve faster results on large volume of 

event logs. Event logs can be stored in distributed data processing systems to develop 

a parallel and scalable process mining system. 

 

Furthermore, in order to make the process flow more understandable, a simulation 

framework can be developed which the event logs can be played as an animation 

within a predetermined time period. 
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APPENDICES 

 

APPENDIX: LIST OF ACRONYMS 
 

Acronym Definition 

IPM Interactive Process Miner 

ProLab Process Laboratory 

XML eXtensible Markup Language 

MXML Mining eXtensible Markup Language 

ProM Process Miner 

PAIS Process Aware Information System 

SLA Service Level Agreement 

EMiT Enhanced Mining Tool 

PCT Predictive Clustering Tree 

BPMN Business Process Model and Notation 

BPM Business Process Management 

ERP Enterprise Resource Planning 

XES eXtensible Event Stream 

MEA Mean Absolute Error 

RMSE Root Mean Squared Error 

MAPE Mean Absolute Percentage Error 

KPI Key Performance Indicator 

 


