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Summary

This project presents a review of the Higgs mechanism in the SM. It shows theoretical basic Higgs-
releated topics. Research into the Higgs sector has been done recently at the LHC. One of the
dominant processes is gluon-gluon fusion for Higgs production. Moreover Higgs is observed via its
decay into two photons. For this reason, this masters project makes a calculation of the cross-
section of gluon fusion and that of the decay rate of Higgs to diphoton in the SM. The observed
cross-section is larger almost by a factor of two. Thus, it may be a sign of new physics. For this
reason the effects of new physics on gg → γγ have been studied in this project.
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Preface

In my project chapter 1 is revision of the SM. This chapter relies on the work of others provided
by textbooks. Chapter 2 is partially my work. When calculated the SM cross section and decay
rate I took some master integrals from puplished articles and dissertations. Moreover I took some
complex mathematical processes from worked examples on Feynmann loop diagrams. In chapter 3
also contains reviewed works.
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Introduction

Elementary particles and their interactions are described by the best-known theory, the standard

model (SM). The elementary particles are fermions, which are divided into quarks and leptons;

the types of quark are up, down, charm, strange, top and bottom carrying both electrical and

colour charges. Moreover, there are 6 leptons. However, only electrons, muons and taus have

an electrical charge, while electron neutrinos, muon neutrinos and tau neutrinos do not have an

electrical charge. Leptons carry a weak hypercharge interacting with the force carrier of the weak

interaction, the W and Z bosons. Electrons, muons and taus also have an electrical charge so they

have electromagnetic interaction as well. Quarks can make strong and electromagnetic interactions

because they have colour and electrical charge. The SM explains three fundamental interactions:

electromagnetic interaction, weak interaction and strong interaction. Force carrier particles are

gluons and vector bosons such as γ, W± and Z.

Gauge theories are important field theories describing the interaction of fundamental particles.

In this project, gauge theory and the meaning of gauge invariance will be described. Quantum

electrodynamics is an Abelian gauge theory with the symmetry group U(1). The standard model

is also a gauge theory with the symmetry group U(1)× SU(2)× SU(3) because the interaction of

matter fields can be shown by gauge symmetries. We will describe invariance of some Lagrangians

under some symmetry transformation groups.

The standard model depends on the process of spontaneous symmetry breaking to create mass

to the elementary particle. Without it, the elementary particle would not have mass. Spontaneous

symmetry breaking gives rise to the creation of a scalar particle called the Higgs boson [9]. The

Higgs boson is now being found by ATLAS and CMS experiments at the LHC. In a high energy

collider, Higgs is dominantly created by a fusion of two gluons and is seen via its decay into two

photons [10]. The recent CMS announcement of a Higgs-like particle with a mass is 125.3Gev [32]
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and the recent Atlas announcement of this is 126Gev [17]. In addition, a different diphoton rate has

been observed from the standard model prediction in Atlas and CMS experiments. The signal with

two photons in the final state seems to be larger than expected within the standard model almost by

a factor of two CMS announced σ/σSM = 1.6±0.4 [32] and Atlas announced σ/σSM = 1.4±0.3 [17].

To conclude, this CERN result may be a sign of new physics beyond the standard model.

Since the SM cross-section is different from the LHC cross-section, I will recalculate the SM

cross-section for a gluon fusion loop diagram and recalculate the decay rate of Higgs to two photons

by using dimensional regularisation techniques to remove divergence.

This masters project is organised in the following way. In section 2 we will review the Higgs

mechanism in the SM. Then in section 3 we will show a full calculation of the gluon fusion cross-

section in the SM and that of the decay rate of Higgs to two photons in the SM. Lastly, we will

discuss the new physics in gg → H → γγ.
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Chapter 1

Review of Gauge Theory

1.1 Symmetries and Conservation Laws

There are many kinds of invariance principle and associated symmetry transformations that have

a significant impact on physics. They guide the formulation of theories.

If the equations of motion are produced from a variational principle, a general and systematic

procedure becomes ready to construct conservation theorems and constants of the motion as a

result of invariance properties. Hence, conservation laws and section rules found in nature may be

interrupted as Lagrangian symmetries, limiting its form. The general model for this program is

obtained by Noether’s theorem, which makes a connection between conservation law and every con-

tinuous symmetry transformation under invariant Lagrangian form. Two examples of this theorem

are space-time, or geometrical, invariance and other internal symmetry.

First, an example of geometrical transformation of the space-time variables is described, trans-

lations of the form

xµ → x′µ = xµ + aµ (1.1)

Where the infinitesimal displacement aµ does not depend on the coordinate xµ, a Lagrangian,

which is invariant under this kind of transformation, will shift by an amount

δL = L[x′]− L[x] = aµdL/dxµ (1.2)

Using a Lagrangian, which is obviously independent of coordinates, we might calculate equivalently
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the changes as

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ), (1.3)

where

δφ = φ(x′)− φ(x) = aµ∂µφ(x) (1.4)

and

δ(∂µφ) = ∂µφ(x′)− ∂µφ(x) = aν∂ν∂µφ(x). (1.5)

As a result, using Euler-Lagrange equations to remove ∂L/∂φ, we yield

δL =

[
∂ν

∂L
∂(∂νφ)

]
aµ∂µ∂νφ

= ∂ν
∂L

∂(∂νφ)
aµ∂µφ. (1.6)

When two equations are equalised for δ we find

aµ∂ν

[
∂L

∂(∂νφ)
∂µφ− gµνL

]
= 0, (1.7)

which is convenient for arbitrary infinitesimal displacements aµ. Consequently, the stress-energy-

momentum progresses with tensor

Θµν ≡ ∂L
∂(∂νφ)

∂µφ− gµνL (1.8)

is comfortable with the conservation law

∂µΘµν = 0. (1.9)

To get invariant Lagrangian under such a transformation, we need

δL = 0 (1.10)

Specific computation gives

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) +

∂L
∂µψ̄

δ(∂µψ̄)

=

[
∂µ

∂L
∂(∂µψ)

]
i

2
α.τψ +

∂L
∂(∂µψ)

i

2
α.τψ(∂µψ)

= ∂µα.

[
i

2

∂L
∂(∂µψ)

τψ

]
, (1.11)
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where the second line comes after the equations of motion. The term in square brackets may be

interpreted as a conserved current (density),

Jµ =
i

2

∂L
∂(∂µψ)

τψ, (1.12)

which is suitable for the continuity equation

∂µJ
µ = 0. (1.13)

For special reasons related to the free nucleon Lagrangian, the exact form of the conserved current

is

Jµ = ψ̄γµ
τ

2
ψ (1.14)

which is known as the isospin current, in analogy with the familiar electromagnetic current for

Dirac particles [1].

1.2 Gauge Revolution

In 1971 G. ’t Hooft made a breathtaking discovery. ’t Hooft explained that Yang-Mills gauge theory

was renormalisable while its symmetry group was spontaneously broken. Thanks to this significant

breakthrough, it is possible to express renormalisable theories of weak interactions, where W bosons

are symbolised as gauge fields [2].

An earlier theory of Weinberg and Salam about weak interactions is a gauge theory built on the

symmetry group SU(2)×U(1). However, since gauge theories were recognised to be renormalisable,

real numerical predictions could be produced from various gauge theories and then investigated

whether they regenerated with the experimental data or not. If the predictions of the gauge theory

did not reach an agreement with the experimental data, they would have to be cancelled. Gauge

theorists understood that the final judge of any theory depends on the experiment.

Within several years, the agreement between experiment and Weinberg-Salam theory was des-

troyed. The weak interactions vanished when a state of theoretical confusion changed to one of

relative clarity within a brief period of time. Existence of gauge bosons W± and Z was predicted

by Weinberg and Salam in 1983 by experiment. Thus, the experiment vindicated the theory [2].
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The Weinberg-Salam model showed leptons using a simple method. The left-handed leptons

could be based on SU(2) doublets in three separate generations:νe
e

 ;

νµ
µ

 ;

ντ
τ

 (1.15)

The intermediate vector bosons mediated between the interactions of these leptons

vector bosons: W±µ , Zµ

The research into strong interactions also progressed quickly. The gauge revolution constructed

Quantum Chromodynamics (QCD), which is a strong candidate for a theory about strong interac-

tions. By requiring a new colour SU(3) symmetry, the Yang-Mills theory now supplied a glue by

which the quarks could be kept together.

The quarks in QCD are shown by: 

u1 u2 u3

d1 d2 d3

s1 s2 s3

c1 c2 c3

...
...

...


(1.16)

where the 1, 2, 3 index labels the colour symmetry. Experimental absence of quarks was explained

plausibly by QCD. At low energy the effective SU(3) colour coupling constant increased, and thus

restricted the quarks permanently into the known hadrons [2].

At large energies the SU(3) colour coupling constant decreased. This was known as asymptotic

freedom which was found by Gross, Wilczek, Politzer and t’ Hooft. At high energies, it could define

the curious fact that the quarks behaved as if they were explained by a free theory. This occurred

since the effective coupling constant became small in size with rising energy, giving the appearance

of a free theory. As a result, the quark model worked much better than it is assumed to.

Soon, both the electroweak and QCD models were connected together to produce the standard

model based on the gauge group SU(3) × SU(2) × U(1). To have anomalies that threatened

renormalisability, the leptons in the Weinberg-Salam model were described. Fortunately, these

potentially destructive anomalies exactly cancelled against anomalies belonging to quarks. In other

words, the lepton and quark sectors of the standard model compensated for each other’s faults,

which was a pleasurable theoretical success for the standard model. Consequently, because of this
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and other theoretical and experimental successes, the standard model was quickly accepted to be

a first-order approximation to the final theory of particle interactions.

The spectrum of the standard model for the left-handed fermions is schematically shown here;

they have neutrino ν, the electron e and the up and down quarks, which come in three colours

labelled by the index, i. This model was used for the three generations [2]νe
e

ui
di

 ;

νµ
µ

ci
si

 ;

ντ
τ

ti
bi

 (1.17)

In the standard model, the massive vector mesons mediate the forces between leptons and quarks,

and the massless gluons mediate the forces between quarks.

Massive vector mesons: W±, Z

Massless gluons: Aaµ

1.3 Gauge Field Theories

1.3.1 Abelian Gauge Field Theories

Field theories involving massless spin 1 particles have been studied in this section due to the non-

Abelian case (Yang-Mills theories) that renormalisability of the field theory needs a massless vector

field [3].

Massless vector field is explained first by Quantum Electrodynamics (QED). Lagrangian density

is for the interaction of the Dirac field with the electromagnetic field,

L1 = Ψ̄(iγµ∂µ −m)ψ − 1

4
FµνF

µν − qΨ̄γµψAµ (1.18)

If we use the gauge invariance principle we can maintain this form of Lagrangian. Firstly we

examine the Lagrangian for the free Dirac field

L1 = Ψ̄(iγµ∂µ −m)Ψ (1.19)

L1 is invariant under the phase transformation.

Ψ(x)→ e−iqλΨ(x) (1.20)

where λ is an arbitrary real number. This global symmetry of Lagrangian might be transformed

to a local symmetry, if invariance under the transformation could be arranged [3].

ψ(x)→ e−iqλ(x)Ψ(x) (1.21)
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The Lagrangian of L1 is not invariant under this local symmetry. Its new form under transformation

ψ(x) is

L1 → L1 + qψ̄γµψ∂µλ. (1.22)

If we desire gauge invariance we need extra terms for the Lagrangian. The next step might be

carried out to achieve this. The derivative in L1(1.19) is replaced by a covariant derivative Dµ

defined by

DµΨ = (∂µ + iqAµ)ψ (1.23)

The covariant derivative involves the vector field referred to as the ’gauge field’ Aµ which transforms

as

Aµ → Aµ + ∂µλ (1.24)

under gauge transformation which acts on ψ. Then Dµψ follows the same way as ψ

Dµψ → e−iqλDµψ (1.25)

As a result,the Lagrangian

L2 = ψ̄(iγµDµ −m)ψ (1.26)

is gauge invariant.

We need to add gauge invariant terms for the vector field Aµ in L2. Then field strength tensor

is

Fµν = ∂µAν − ∂νAµ (1.27)

is invariant under the gauge transformation (1.24). Thus, the final gauge invariant Lagrangian may

be written as

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (1.28)

A massless vector field is explained by this Lagrangian density. A mass is not given the vector

field by providing gauge invariance because the mass term AµA
µ is not invariant under the gauge

transformation of (1.24). As a result, a gauge invariant Lagrangian, which is an example of the

interaction of a vector field with a spinor field, is a massless vector field [3].

8



1.3.2 Non-Abelian Gauge Field Theories

A theory about a number of Dirac spinor fields ψi, i = 1, · · · , p interacting with a number of vector

fields Aµa , a = 1, · · · r is constructed. To achieve a gauge invariant theory, we might give each of the

Dirac fields a ’charge’ to couple to each vector field Aµa ; this is then called a theory of r Abelian

gauge fields [4].

It might be wondered whether generalisations of the principle of gauge invariance that disagree

with having r distinct Abelian gauge field theories exist or not. To understand this presumption,

first gauge transformation of (1.20) is generalised to

ψ(x)→ e−igTaλa(x)ψ(x) (1.29)

Where Ta are p matrices which act on column vector ψ(x), and the λa(x) are arbitrary functions

of x, g is going to be a coupling constant. Thus, we write

ψ(x)→ e−igtλ(x)ψ(x) (1.30)

where

T.λ(x) = Taλa(x) (1.31)

By correspondence with (1.23) we write

Dµψ = (∂µ + igT.Aµ)ψ (1.32)

An infinitesimal gauge transformation makes the development easier

ψ(x)→ (I − igT.λ)ψ(x) (1.33)

Under this infinitesimal transformation

∂µψ → (I − igT.λ)∂µψ − ig(T.∂λ)ψ (1.34)

We need to a gauge transformation property for the gauge fields

Aµa → Aµa + ∂µλa + gfabcλbA
µ
c (1.35)

Where fabc are constants. This is similar to (1.24) except for the last term. The last term, (1.34),

has been defined to provide the gauge fields with an opportunity to achieve the role of cancelling
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out the unwanted terms in (1.34). The covariant derivative of ψ should be transformed in the same

way as ψ [4].

Dµψ → (I − igT.λ)Dµψ (1.36)

This will occur provided

[T.λ, T.Aµ] = ifabcTaλbA
µ
c . (1.37)

As a result,

[Ta, Tb] = ifabcTa (1.38)

It is assumed that the coefficients fabc are antisymmetric in all indices, in which case this may be

written as

[Ta, Tb] = ifbcaTa (1.39)

Consequently, the matrix Ta causes a representation of the Lie algebra with structure constants

fabc. If a gauge transformation with constant λa(x) in (1.35) is taken. It is obvious that the gauge

fields transform as the adjoint representation of the Lie group [4].

The finite gauge transformation of (1.30) is an appropriate use.

ψ(x)→ U(x)ψ(x) (1.40)

where

U(x) = e−igT.λ(x) (1.41)

The infinitesimal transformation of (1.35) may cause the identical finite gauge transformation of

the gauge fields. First the p matrix is introduced

Aµ → Aµ + T.∂µλ− ig[T.λ,Aµ] (1.42)

This resembles finite transformation (1.42)

Aµ(x)→ U(x)(Aµ − ig−1∂µ)U−1(x)(1.42)taken to linear order in λa.
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Next a gauge invariant Lagrangian is formulated for the gauge fields themselves. To do this, we

will require an object Fµνa with two Lorentz indices which transforms in a covariant way under the

gauge group. This may be formulated directly from the covariant derivative of (1.32) by introducing

Fµν = Fµνa Ta = −ig−1[Dµ, Dν ] (1.43)

Thus

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] (1.44)

Where we have cancelled a total derivative, or equivalently

Fµνa = ∂µAν − ∂νAµ − gfabcAµbA
ν
c (1.45)

Where we have used (1.38) it is noticed that (1.47) is not dependent on the fermion representation

chosen in (1.42).

We derive the transformation property of Fµν under the gauge group from (1.44).

Fµν(x)→ U(x)Fµν(x)U−1(x) (1.46)

Now a gauge invariant Lagrangian LYM for the gauge (or Yang-Mills) fields may be introduced.

The generator ta is usually used for the significant representation of the gauge group in (1.25).

Then, it is correctly normalised as

LYM = −1

2
Tr(Fµνa F aµν) (1.47)

or equivalently

LYM = −1

4
Fµνa F aµν (1.48)

The equivalence of these two forms comes after the conventional normalisation of generators of the

gauge group, which gives the fundamental representation

Tr(tatb) =
1

2
δab (1.49)

To conclude, we may define gauge invariant Lagrangians, for Dirac spinor fields interacting with

vector fields, of the form

L = ψ̄(iγµDµ −m)ψ − 1

2
Tr(Fµνa F aµν) (1.50)
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or equivalently

L = ψ̄(iγµDµ −m)ψ − 1

4
Fµνa F aµν (1.51)

Here the covariant derivative Dµ comes from (1.32) and covariant curl Fµν (or F aµν) from (1.46)

and (1.42) with Ta replaced by ta, the generator of the fundamental representation (1.45). The

gauge field turns into adjoint representation of the Lie group, and the spinor fields transform as a

representation of the gauge group with the matrix generators Ta [4].

If the gauge group is an uncomplicated Lie group, there is a single gauge coupling constant,

g. However, if the gauge group is a semi-simple one, which can be written as a product of simple

factors (e.g.SU(2)× SU(2)) then it leads to independent gauge coupling constants for the various

simple factors.

1.4 Spontaneous Symmetry Breaking

Gauge invariance is important in weak interactions; for this reason some methods of generating

gauge vector boson masses have to be provided without destroying the renormalisability of gauge

theory. The gauge symmetry is broken by any such mass terms and spontaneous symmetry break-

ing is the only recognised method of carrying out a renormalisable procedure [5]. This is called

spontaneous symmetry breaking, although the symmetry is not broken so much as secret or hidden.

1.4.1 Spontaneous Breaking of a Discrete Symmetry

Lagrangian has to respect the symmetry, but in a vacuum state, Lagrangian is not invariant under

the symmetry transformation. If we had a spinor or vector field, then the vacuum would be

discriminated against by a non-zero angular momentum J(= 1
2 or 1) and the rotational invariance

would be broken. Scalar fields break internal symmetry which we are interested in because scalar

fields have non-zero value in vacuum [6].

This scalar field is called the Higgs field. To break the internal symmetry, its existence is

postulated. Non-zero value in vacuum shows the existence of a non-zero classical field in vacua.

Absence of any source means presence of a scalar field operator ϕ̂(x) having a non-zero expectation

value (VEV).

< 0 |ϕ̂(x)| 0 >= ϕc(x) 6= 0 (1.52)
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Where ϕc(x) is the field measured in the vacuum, we need ϕc(x) to be independent of x:

ϕc(x) = ϕc (1.53)

The VEV of ϕ̂ is zero in every order of perturbation theory, at least in λϕ4 theory considered here;

for this reason, spontaneous symmetry breaking must be a non-perturbative effect. The effective

potential is shown by the potential V (ϕ) by neglecting quantum effects for a while [6]. Lagrangian

density

L =
1

2
(∂µϕ)(∂µϕ)− V (ϕ) (1.54)

with

V (ϕ) =
1

2
µ2ϕ2 +

1

4!
λϕ4 (1.55)

The only symmetry of this simple model is the invariance under the discrete transformation

ϕ(x)→ ϕ′(x) ≡ −ϕ(x) (1.56)

Obviously V will only have an absolute minimum if

λ ≥ 0 (1.57)

and in any case, we need this to be sure of the convergence of the functional integral. When µ2 is

positive and minimum value V is seen only at ϕ = 0 and µ is the mass of the field ϕ. V also has a

minimum non-zero value of ϕ in a condition

µ2 < 0 (1.58)

and then

ϕc = ±(−6
µ2

λ
)
1
2 (1.59)

This does not stabilise the sign of ϕc which is chosen by the system due to its symmetry. However,

if symmetry is broken it does not depend on the sign of ϕc. Now a new field with zero VEV is

introduced [6]

ϕ̃ = ϕ̂− ϕc (1.60)

so that using (1.35, 1.36)

< 0 |ϕ̃| 0 >= 0 (1.61)

13



L includes a function of ϕ̃, but it will not reflect symmetry ϕ̃ → −ϕ̃, since fluctuations about the

asymmetric point ϕ = ϕc are measured by ϕ̃. We maintain

L =
1

2

[
(∂µϕ̃)(∂µϕ̃) + 2µ2ϕ̃2

]
− λ

4!
(ϕ̃4 + 4ϕ̃3ϕc)−

1

4
µ2ϕ̃2

c (1.62)

The cubic term ϕ̃3 is a sign of spontaneous symmetry breaking, although this is the same Lagrangian

as the symmetric (1.37). We can understand why the symmetry is defined as ’secret’ by some. It

is secret because only the special coefficient of the ϕ̃3 term shown in (1.45) can be reconstructed

in a symmetric form [6]. The spontaneous symmetry breaking is indeed non-perturbative because

ϕc is proportional to λ−
1
2 . Moreover, the mass squared of field ϕ̃ is clearly −2µ2

d2V

dϕ2

∣∣
ϕ=ϕc = −2µ2 (1.63)

1.4.2 Spontaneous breaking of a continuous global symmery

In the previous section we studied the real scalar field theory (1.54) which has only discrete sym-

metry (1.56). However, we will now determine a continuous gauge symmetry. The spontaneous

breaking of a continuous symmetry has novel features, which are not seen in discrete cases. For

this reason complex scalar field theory is introduced [7]. The Lagrangian

L = (∂µϕ)(∂µϕ∗)− V (ϕ,ϕ∗) (1.64)

is invariant under a global U(1) gauge transformation

ϕ(x)→ ϕ′(x) ≡ e−iqλϕ(x) (1.65)

ϕ(x)∗ → ϕ′(x)∗ = eiqλϕ(x)∗ (1.66)

with (q, λ real and constant) provided

V (ϕ,ϕ∗) = V (ϕϕ∗) (1.67)

If we focus on only renormalisable theories, then (1.67) implies that V has the form

V (ϕ,ϕ∗) = µ2ϕϕ ∗+
1

4
λ(ϕϕ∗)2 (1.68)

If λ must be positive, µ2 is positive and V takes the absolute minimum at ϕ = 0. If µ2 is negative

V obtains a minimum at a non-zero value ϕc of ϕ which satisfies

(ϕ2
c) = −2

µ2

λ
(1.69)

14



Any particular choice of ϕc breaks the symmetry spontaneously because under a gauge transform-

ation (1.65, 1.66), the ground state |ϕc > is transformed into a different state
∣∣e−iqλϕc > . If a new

field having zero VEV is introduced when we break continuous symmetry. Let the phase of ϕc be

δ, so that

ϕc =
1√
2
υeiδ (1.70)

with

V = +(−4µ2/λ)
1
2 (1.71)

Similarly for ϕ̂.

Then new ϕ may be expressed in terms of two real fields ϕ1, ϕ2 by

ϕ ≡ 1√
2

(ϕ1 + iϕ2)eiδ (1.72)

Since

< 0 |ϕ̂i| 0 >= ϕc (1.73)

It follows from (1.70), (1.71) and (1.72) that only has a non-zero VEV:

< 0|ϕ̂i|0 >= υδi1 (i = 1, 2) (1.74)

Thus new fields ϕ̃i having zero VEV are introduced

ϕ̃i ≡ ϕ̂i − υδi1 (i = 1, 2) (1.75)

The quadratic terms of the Lagrangian (1.68) are diagonalised by ϕ1 ϕ2 variables and we get

L = 1
2

[
(∂µϕ̃1)(∂µϕ̃1) + (∂µϕ̃2)(∂µϕ̃2) + 2µ2(ϕ̃1)2

]
(1.76)

− 1
16λ

[
(ϕ̃1)2 + (ϕ̃2)2

]2 − 1
4λυϕ̃1

[
(ϕ̃1)2 + (ϕ̃2)2

]
− 1

4µ
2υ2 (1.77)

Undoubtedly the symmetry is spontaneously broken, as expected, and ϕ̃1 has a positive mass

squared of −2µ2

∂2V

∂ϕ2
1

|(ϕ1,ϕ2)=(υ,0) = −2µ2 (1.78)

The novel feature is that the field ϕ̃2 has not got mass [7].

∂2V

∂ϕ2
2

|(ϕ1,ϕ2)=(υ,0) = 0 (1.79)
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The spontaneous breaking of continuous global symmetry leads to Goldstone bosons. We under-

stand this when we look at non-Abelian gauge symmetry G, defined in (1.30) and some scalar fields

transforming as some representation of G without leaving from generality these may be defined in

terms of n (say) real scalar fields.

ϕ(x) =


ϕ1(x)

ϕ2(x)
...

ϕn(x)

 (1.80)

Under an infinitesimal global gauge transformation

ϕ(x)→ ϕ(x)′ = ϕ(x) + δϕ(x) (1.81)

with

δϕ(x) = −igT aλaϕ(x) (1.82)

Where g, λa are real, and T a = (a = 1, . . . , N) are the n matrices satisfying the Lie algebra (1.38);

since iT a is real and T a is Hermitian, T a must have antisymmetric properties. Since L is invariant

under gauge transformation (1.81), (1.82) leads to conserved Noether current

Jµa = ΠT
µ (x)iT aϕ(x) (a = 1, . . . , N) (1.83)

where

Πµi ≡
∂L

∂(∂µϕi)
(i = 1, . . . , n) (1.84)

The Euler-Lagrange equations give

∂µΠµ =
∂L

∂ϕ
(1.85)

and current conservation then implies that(
∂L

∂ϕ

)T
iT aϕ+ ΠµiT

a∂µϕ = 0 (1.86)

In the field theories with which we are concerned, the Lagrangian has the form

L =
1

2
(∂µ)T (∂µ)− V (ϕ) (1.87)
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so

Πµ = ∂µϕ (1.88)

∂L

∂ϕ
= −∂V

∂ϕ
(1.89)

It follows from (1.88) that the second term of (1.86) vanishes, since T a is antisymmetric and we

presume that V satisfies

∂V T

∂ϕ
T aϕ = 0 (1.90)

for all ϕ as a consequence of the symmetry.

The masses of various modes are determined by the behaviour of V in the region of its minimum.

Since we are considering a spontaneous broken symmetry, V is the minimum at some value of ϕ

which establishes the VEV of the field operators [7]. Thus,

< 0|ϕ̂(x)|0 >= υ (1.91)

where

∂V

∂ϕ
|ϕ=υ = 0 (1.92)

Moreover, the ground state illustrated by V is not in general invariant under a gauge transformation,

which means that

(1− igλaT a)υ 6= υ (1.93)

for all choices of infinitesimals λa. So, for at least one a,

iT aυ 6= 0 (1.94)

We now illustrate fields

ϕ̃ ≡ ϕ̂− υ (1.95)

having zero VEV

< 0|ϕ̃|0 > (1.96)

and express L in terms of ϕ̃. Then using (1.87) and (1.92)

L =
1

2

(
(∂µϕ̃i)(∂

µϕ̃i)− ϕ̃iϕ̃j
∂2V

∂ϕi∂ϕj
|ϕ=υ

)
− V (υ) +O(ϕ̃3). (1.97)

17



Obviously the masses of the fields ϕ̃ are the eigenvalues of mass matrix

(µ2)ij ≡
∂2V

∂ϕi∂ϕj
|ϕ=υ (1.98)

Differentiating (1.90) with respect to ϕ and evaluating at ϕ = υ, we find

(µ2)iT
aυ = 0 (a = 1, . . . , N) (1.99)

using (1.92). It comes after (1.94) that µ2 has at least one eigenvector with zero eigenvalue,

and consequently the linear combination ϕ̃iT aυ is known as a Goldstone boson. Now assume

that the ground state |V > is left invariant under gauge transformations corresponding to some

(maximal) subgroup S and G. Then we may choose generators T a(a = 1, . . . , N) of G such that

T a(a = 1, . . . ,M) accomplish S, since |V > is invariant under the transformation corresponding to

S,

T aυ = 0 (a = 1, . . . ,M) (1.100)

but

T aυ 6= 0 (a = M + 1, . . . , N) (1.101)

The N −M vectors T aυ(a = M + 1, . . . , N) are obviously independent, and it shows the existence

of N −M Goldstone bosons [7].

1.5 The Higgs Mechanism

In this section we have studied how global invariance of a field theory might be broken (or ’hidden’)

by the ground state (vacuum) spontaneously choosing one of the degenerate minima of the potential.

This shows that we examine the implementation of breaking a local gauge invariance spontaneously,

in the hope that the breaking will give rise to boson masses, whereas the renormalisability will be

protected by the (hidden) symmetry [8].

The mechanism now called the Higgs mechanism is interpreted by using it on the locally gauge

invariant version of the model. This model experiences the Lagrangian of ’scalar electrodynamics’,

but when it is spontaneously broken it is called the ’Higgs model’. Thus we begin with

L = (Dµϕ)(Dµϕ∗)− µ2ϕ ∗ ϕ− 1

4
λ(ϕϕ∗)2 − 1

4
FµνF

µν (1.102)
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where

Dµϕ ≡ (∂µ + iqAµ)ϕ (1.103)

Dµϕ
∗ ≡ (∂µ + iqAµ)ϕ∗ (1.104)

are the U(1) gauge covariant derivatives and

Fµν = ∂µAν − ∂νAµ (1.105)

is the gauge invariant field tensor. If µ2 is positive the U(1) invariance is not broken and obviously a

scalar particle of mass µ and charge q interacting with a massless electromagnetic field is illustrated

by (1.102); thus the name scalar electrodynamics [8].

We are interested in the case when µ2 < 0, so the symmetry is broken spontaneously and ϕ̂

obtains a VEV

< 0|ϕ̂(x)|0 >=
1√
2
υeiδ (1.106)

Where υ is shown in (1.71) and δ is arbitrary. As before, variables are changed and the fields,

defined in (1.72) and (1.75) are used, which possess zero VEVs. In terms of these variables the

covariant derivative is written:

Dµϕ̂ =
eiδ√

2
[∂µϕ̃1 + i(∂µϕ̃2 + qυAµ) + iqAµ(ϕ̃1 + iϕ̃2)]. (1.107)

It is interesting that the former Goldstone boson ϕ̃2 is unavoidably connected to the hitherto

massless gauge field Aµ. Indeed, apart from interaction terms, ϕ̃2 and Aµ goes into the Lagrangian

only in the equation

A′µ ≡ Aµ +
1

qυ
∂µϕ̃2 (1.108)

Put differently, due to the spontaneous symmetry breaking, the gauge field is combined with the

Goldstone mode ϕ̃2, which contributes a longitudinal degree of freedom in momentum space. As a

result, this recommends that the field A′µ is created, if Aµ is removed in favour of A′µ in (1.85),

m(A′) = qυ (1.109)

and the mass demands both the spontaneous symmetry breaking (υ 6= 0) and coupling of the gauge

field to the scalar field (q 6= 0). The exact form of L as a function of A′µ, ϕ̃1 and ϕ̃2 shall not

be presented, because ϕ̃2 can be removed from Lagrangian. This can be seen by using the gauge
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invariance of L. When (1.108) is compared with (1.24) it is remarked that A′µ may be acquired by

a particular transformation, namely one with

λ(x) =
1

qυ
ϕ̃2(x) (1.110)

This recommends that the whole of dependence of L upon ϕ̃2 might transform into a (different)

gauge transformation from (1.70) and (1.72) we have that

ϕ =
1√
2

(υ + ϕ̃1 + iϕ̃2)eiδ (1.111)

Under a gauge transformation

ϕ→ ϕ′ = e−iqλϕ (1.112)

≡ 1√
2
(υ + ϕ̃′1 + iϕ̃′2)eiδ (1.113)

So by choosing

qλ = arctan
ϕ̃2

υ + ϕ̃1
(1.114)

we can set up that

ϕ̃2 = 0 (1.115)

In this gauge ϕ̃1 is indicated by H, so that

ϕ(x)→ ϕ′(x) =
1√
2

[υ +H(x)] (1.116)

and using (1.107) this gives

Dµϕ→ (Dµ)′ϕ =
eiδ√

2
(∂µ)H + iqυA′µ + iqA′µH (1.117)

where now A′µ is the field Aµ gauge transformed using (1.114). If Lagrangian is gauge invariant it

may be assessed in any gauge; in this gauge we acquire from (1.102), ((1.103), (1.104) and (1.105)

by using (1.116) and (1.117)

L =
1

2
(∂µH)(∂µH) +

1

2
q2A′µA

′µ(υ +H)2 (1.118)

−1

2
µ2(υ +H)2 − λ

16
λ(υ +H)4 − 1

4
F ′µνF

′µν (1.119)

where

F ′µν = ∂µA
′
ν − ∂νA′µ (1.120)
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(118) and (119) may be made easy with the fact, shown by (1.71), that υ√
2

minimises the potential,

and lastly we get

L =
1

2
[∂µH)(∂µH) + 2µ2H2] (1.121)

−1

4
µ2υ2 − λ

16
(H4 + 4υH3) (1.122)

−1

4
F ′µνF

′µν +
1

2
q2A′µA

′µ(υ2 + 2υH +H2). (1.123)

The gauge-transformed boson A′µ having mass qυ has completely eaten the Goldstone mode. We

have one real scalar field which is the Higgs field, H. Its mass is (−2µ2)
1
2 . As a consequence,

the total number (four) of degrees of freedom is unchanged. We have (transverse) modes, plus a

complex field ϕ component of two real fields rather than a massless gauge boson. Now we possess a

massive vector field A′µ with three modes (two transverse and one longitudinal), and with one real

scalar field, H. Undoubtedly, the gauge invariance is entirely broken, because A′µ is massive and it

is real. However, it is not clear whether the renormalisability of the theory has been protected [8].

To prove renormalisability, a different gauge from that specified in (1.114) is considered. The

gauge shown in (1.114) is named ’unitary’ gauge, since it explains that the Goldstone boson may

be removed, (1.115) whereas the surviving fields H, A′µ are remarkably normal fields possessing

the normal propagators to massive scalar and vector particles. In other words, the only poles

appearing in Green functions and Feynman diagrams are those obtaining from real particles. In

all other gauges, in particular in the Rξ gauges which shall be shortly determined, spurious vector

and scalar poles which must cancel from S-matrix elements exist since they are not seen in the

unitary gauge. In other words, the Rξ gauges are not clearly unitary, but they are not obviously

renormalisable; the ultraviolet divergences met are no worse than those appearing in QED. If a

condition in the gauge field is imposed, the Rξ gauge is specified. The addition of a gauge-fixing

term to the Lagrangian

LGF = − 1

2ξ
(∂µA

µ)2 (1.124)

makes sure that the gauge field Aµ may be made for satisfaction of the Lorentz condition

∂µA
µ = 0 (1.125)

In the present context it is useful to use a different gauge-fixing Lagrangian, first suggested by ’t

Hooft:

LGF = − 1

2ξ
(∂µA

µ − υϕ̃2)2. (1.126)
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This makes sure that Aµ can be selected so that

∂µA
µ = ξqυϕ̃2 (1.127)

supplied qυ is non-zero; this decreases to (1.115) in the limit ξ → ∞. Consequently, it shall be

anticipated that the unitary gauge becomes a limiting case of the Rξ gauge. The bilinear mixing

of Aµ and ϕ2 is eliminated thanks to the t’ Hooft gauge fixing. It is remembered that this derives

from the DµD
µϕ∗ term of L and from (1.107). It is seen that this holds a quadratic term

1

2
[(∂µϕ̃2)(∂µϕ̃2) + 2qυAµ(∂µϕ̃2) + (qυ)2AµA

µ] (1.128)

1

2
[(∂µϕ̃2)(∂µϕ̃2)− 2qυAµ(∂µϕ̃2) + (qυ)2AµA

µ] + qυ∂µ(Aµϕ̃2). (1.129)

Since the total divergence does not affect the action, it may be dropped, and the cross-term now

cancels this in (1.126) exactly. The full Lagrangian of the Higgs model in the Rξ gauge is therefore

L+ LGF which defines

LHiggs =
1

2
[(∂µϕ̃1)(∂µϕ̃1) + 2µ2ϕ̃2

1]− 1

4
µ2υ2

+
1

2
[(∂µϕ̃2)(∂µϕ̃2)− ξm2

Aϕ̃
2
2]

+
1

2
[(1− ξ−1)(∂µAµ)2 − (∂µAυ)(∂µAυ) +m2

AAµA
µ]

− λ

16
[4υϕ̃1(ϕ̃2

1 + ϕ̃2
2) + (ϕ̃2

1 + ϕ̃2
2)2]

+qAµϕ̃1

↔
∂µ ϕ̃2 +

1

2
q2AµA

µϕ̃2
1 + q2

µA
µϕ̃1 (1.130)

where

mA = qυ. (1.131)

Consequently, the ϕ̃1 field defines its mass squared as a µ2+3λυ2 = −2µ2 and the former Goldstone

boson mode ϕ̃2 now defines its mass squared as a ξm2
A. The propagator of the vector field may be

written

i∆̃Fρσ(p) = −i
gρσ + (ξ − 1)pρpσ(p2 − ξm2

A)−1

p2 −m2
A + iε

(1.132)

This gives rise to the ordinary propagator of a massive vector boson in unitary limit ξ → ∞

and is connected with ultraviolet behaviour. However for all finite values of ξ the manner of the

(Euclidean) momentum p̄→∞ is

∆̃Fρσ(p) ≈ |p̄|−2 (1.133)

For this reason the Rξ gauge is ’manifestly renormalisable’. The theory is actually logical. S-matrix

elements are cancelled by the poles at p2 = ξm2
A. This was done by ’t Hooft [8].
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Chapter 2

Production of the Higgs boson at the

LHC

There are several ways to observe Higgs boson at the Large Hadron Collider (LHC). In the 2

photons, 2 b quarks, 2 vector bosons(WW ∗/ZZ∗) and 2 tau leptons decay channels can search a

light Higgs (mass) < 150Gev/c2) [9]. A fusion of 2 gluons dominantly produces Higgs and Higgs

is seen via its decays into 2 photons [10]. In this project gg → H Feynman diagram cross-section

will be calculated and H → γγ Feynman diagram decay rate will be calculated.

2.1 Gluon fusion cross Section

One of the significant ways to produce Higgs at the LHC is gluon fusion. To make the Higgs

particle, two smashing protons radiate from two gluons. (gg → H) Gluons and Higgs particles do

not interact directly with each other. Thus, gluons and Higgs particles interact strongly with top

quarks and anti-quarks [11]. The top quark dominates totally in the loop because of the strong

Higgs coupling to the heavy top quarks.
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Figure 2.1: Gluon Fusion

In this masters project, we are going to study leading order (LO) gluon fusion. A Feynman

diagram cross-section for the gluon to Higgs (gg → H) is going to be calculated.

2.1.1 Feynman rules

There are two Feynman diagrams with a quark-loop and the same diagram with the incoming

gluons crossed. These diagrams have the same contribution. We need to use Feynman rules to

write down the matrix element of the two Feynman diagrams. To construct the matrix element

without polarisation, we require the vertices of the top-quark with the gluon and the top-quark

with the Higgs particle which are given in the standard model and the propagator of the top quark.

Mαβ
1 =

∫ ∞
∞

ddk

(2π)d

(−i√
2
ytδ

lj
)

(
(6 p1+ 6 k +mt)

(p1 + k)2 −m2
t

)(−igsγαT aji). (2.1)( i(6 k +mt)

k2 −m2
t

)
(−igsγβT bil)

( i( 6 k− 6 p2 +mt)

(k − p2)2 −m2
t

)
, (2.2)

Where d is the number of dimensions. The trace is taken over closed fermion lines [12]

(ytg2
s√
2

)
T ajiT

b
ilδ

lj Tr[(6 p1+ 6 k +mt)γ
α( 6 k +mt)γ

β( 6 k− 6 p2 +mt)]

[(p1 + k)2 −m2
t ][k

2 −m2
t ][(k − p2)2 −m2

t ]
(2.3)

Now for the generators of SU(3), the identity Tr[T aT b] = 1
2δ
ab is used. The matrix element

takes then the form

Mαβ
1 =

(ytg2
s

2
√

2

)
δab
∫ ∞
∞

ddk

(2π)d
mtTr[. . .]

[(p1 + k)2 −m2
t ][k

2 −m2
t ][(k − p2)2 −m2

t ]
(2.4)

Expanding the trace and keeping in mind that odd products of γ matrices vanish, we only maintain
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odd powers of mt inside the trace and can remove a factor mt

Tr[. . .] = Tr[6 p1γ
α 6 kγβ+ 6 p1γ

αγβ 6 k︸ ︷︷ ︸
6p1γαγβ ,k

]− Tr[ 6 p1γ
αγβ 6 p2] + (2.5)

+Tr[6 kγα 6 kγβ + γα 6 kγβ 6 k]︸ ︷︷ ︸
Tr[2 6kγα 6kγβ ]

+Tr[ 6 kγαγβ 6 k]−

− Tr[6 kγαγβ 6 p2 + γα 6 kγβ 6 p2] +m2
tTr[γ

αγβ]

Now we use the following properties for γ matrices:

•
{
γα, γβ

}
=2gαβ

• Tr[γµγν ] =4gµν

• Tr[γµγνγργσ] =4(gµνgρσ + gµσgνρ − gµρgνσ)

The final result for the trace is

Tr[. . .] = 4[2pα1k
β − 2kαpβ2 + gαβ(−p1p2 − k2 +m2

t )− pα1 p
β
2 + p1βp2α+ 4kαkβ] (2.6)

When we look at figure (2), only incoming gluons are exchanged, the following exchanges have to

be in the matrix element [12].

• α↔ β

• p1 ↔ p2

• a↔ b

The matrix element for the Feynman diagram (figure 2) with a quark-loop and incoming gluons

crossed is then

Mαβ
2 ≈

∫ ∞
∞

ddk

(2π)d
4(2pβ2k

α − 2kβpα1 + gαβ(−p1p2 − k2 +m2
t )− p

β
2p

α
1 + p2αp

β
1 + 4kβkα)

[(p1 + k)2 −m2
t ][k

2 −m2
t ][(k − p2)2 −m2

t ]
(2.7)
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Figure 2.2: Second diagram for gluon fusion

This integral is the same as the integral for the first diagram. If we substitute k → −k, the

volume element d4k does not change and we get exactly the same contribution as for the first

diagram. For the whole matrix element we therefore have to take a factor of 2. The matrix

element, introduced without polarisation, reads [12]

Mαβ = Mαβ
1 +Mαβ

2 =
(

4mt
ytg

2
s√
2

)
δab
∫ ∞
∞

ddk

(2π)d
fαβ(k), (2.8)

where

fαβ(k) =
2pα1k

β − 2kαpβ2g
αβ(−p1p2 − k2 +m2

t )− pα1 p
β
2 + pβ1p

α
2 + 4kαkβ

[(p1 + k)2 −m2
t ][k

2 −m2
t ][(k − p2)2 −m2

t ]
(2.9)

2.1.2 Tensor reduction

We study the numerator of fαβ(k) and we want to get rid of the Dirac indices in k. We will use

tensor reduction; as a result we narrow the terms in the numerator that depend on k, i.e. [12]

2pα1k
β − 2kαpβ2 + 4kαkβ (2.10)

If we make a general prediction for a numerator without Dirac indices in k it is [12]

A(k)gαβ +B(k)pα1 p
β
1 + C(k)pα2 p

β
2 +D(k)pα2 p

β
1 + E(k)pα2 p

β
2 , (2.11)

where A(k), B(k), C(k), D(k), E(k) are unknown functions of k. To solve these, five different tensors

are contracted to get five equations. Remember that p1 and p2 are the momenta of the gluons and

because they are massless they fulfil p2
i = m2 = 0.

• Contracting with gαβ gives

2(p1k)− 2(p2k) + 4k2 = A(k).d+ C(k)(p1.P2) +D(k)(P1p2)

• Contracting with pα1 p
β
1 gives

−2(p1p2)(kp1) + 4(kp1)2 = E(k)(p1p2)2
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• Contracting with pα1 p
β
1 gives,

4(k.p1)(kp2) = A(k)(p1.p2) +D(k)(p1p2)2

• Contracting with pα2 p
β
1 gives

2(p1p2)(kp1)− 2(p1p2)(kp2) + 4(kp1)(kp2) = A(k)(p1p2) + C(k)(p1p2)2

• Contracting with pα2 p
β
2 gives

2(p1p2)(kp2) + 4(kp2)2 = B(k)(p1p2)2

Solving this system of equations we obtain the five unknown parameters and the numerator of

fαβ(k) can then be explained without Dirac indices in k

gαβ
[ 4

d− 2

(
k2 − 2(kp1)(kp2)

(p1p2)

)
+ (m2

t − k2 − (p1p2))
]

+ pα1 p
β
1

[4(kp2)2

(p1p2)2
+

2(kp2)

(p1p2)

]
+ pα1 p

β
2

[ 1

d− 2

(
4d

(k.p1)(kp2)

(p1p2)2
+

2k(p1 − p2 − 2k)

(p1p2)

)
− 1
]

+ pα2 p
β
1

[ 4

d− 2

(kp1)(kp2

(p1p2)2
− k2

p1p2

)
+ 1
]

+ pα2 p
β
2

[4(kp1)2

(p1p2)2
− 2(kp1)

(p1p2)

]
.

(2.12)

2.1.3 Ward identity

At some point we need the polarisation vectors to contract our matrix element [12].

ε1,αε2,βM
αβ. (2.13)

According to Ward identity, the amplitude M vanishes when the polarisation vector εµ is replaced

by the momentum kµ.

εµM
µ(k) = kµM

µ(k) = 0 (2.14)

Since we have two longitudinally polarised massless gluons, the Ward identity offers us the condition

[12]

p1,αp2,β

(
A(k)gαβ +B(k)pα1 p

β
1 + C(k)pα2 p

β
2 +D(k)pα2 p

β
1 + E(k)pα2 p

β
2

)
= 0 (2.15)
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Note that terms like ε1,αp
α
1 = (ε1.p1) vanish. We get

p1,αp2,β

(
A(k)gαβ +D(k)pα2 p

β
1

)
= 0 ⇒ A(k) = −D(k)(p1p2). (2.16)

We can put together the above eq.(2.12) and get

Mαβ =
(

4mt
ytg

2
s√
2
δab
)
A(mt)

(
gαβ − pα2 p

β
1

(p1.p2)
, (2.17)

where

A(mt) ≡
∫ ∞
∞

ddk

(2π)d
A(k)

[(p1 + k)2 −m2
t ][k

2 −m2
t ][(k − p2)2 −m2

t ]
. (2.18)

Solving the integral in A(mt) is quite an over-long and technical calculation. It can be found in

appendix A. The result we are going to obtain from further calculation is

A(mt) =
i

(4π)2
(1 + (1− τ)f(τ)], (2.19)

where

f(τ) =

 arcsin2 1√
τ
, τ ≥ 1,

−1
4

(
log[1+

√
1−τ

1−
√

1−τ ]− iπ
)2
, τ > 1,

(2.20)

τ = 4

(
mt

mh

)2

(2.21)

2.1.4 Average Over Polarizations

We have to express eq.(2.17) again with the polarisation vectors of the gluons and sum of all

polarisations. We have to divide eq.(2.17) by the number of polarisations Np and Ng

|M |2 =
∑
pol

∣∣∣∣ε∗1,α(λ1, p1)ε∗2,β(λ2, p2)Mαβ 1

NpNg

∣∣∣∣2 (2.22)

where
∑

pol is λ1 = 1, 2 and λ2 = 1, 2. This is quite a long calculation. However the result is [12]

∑
pol

∣∣∣ε∗1,α(λ1, p1)ε2,β(λ2, p2)Mαβ
∣∣∣2 = (d− 2)

(
4mt.

ytg
2
s√
2
δab
)2

|A(mt)|2 . (2.23)

The amplitude is

|M |2 =
δaa(d− 2)

(NpNg)2

(
.
4ytg

2
smt√
2

)2

A(mt).A
∗(mt) (2.24)
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where yt = mt
ν is the Yukawa coupling, with ν = 174Gev. The constants are d = 4, Ng = 8, Np = 2

and we plug in g2
s = 4παs(µ). In addition δaa = Tr(I8×8) = 8 due to the existence of 8 different

gluons. We get [12]

|M |2 =
1

2

m4
t

ν2
(4π)2α2

s(µ)A(mt).A
∗(mt) (2.25)

We maintain a final result by using eq.(2.19)

|M |2 =
1

2

(
1

4π

)2 m4
t

ν2
α2
s(µ) |1 + (1− τ)f(τ)|2 (2.26)

2.1.5 Cross Section

The cross-section will be defined for incoming and outgoing particles. We have two incoming

particles with mass and momentum m1, p1 and m2, p2 and one outgoing particle with mass and

momentum mh,q by using the matrix element [34]

dσgg→h =
1

4
√

(p1.p2)2 −m2
1m

2
2

(2π)4δ4(p1 + p2 − q) |M |2
d3q

(2π)3

1

2q0
(2.27)

After the above equation is integrated, the gluon gluon to Higgs cross-section is maintained

σgg→h =

∫
dσgg→h =

π

m2
h

|M |2 δ(2p1.p2 −m2
h). (2.28)

This LO gluon fusion result is standart textbook result which can be available in [33].
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Figure 2.3: Higgs decay to photon pairs via fermion loop

2.2 Higgs Decay to photons via fermion loop

In this section we will calculate the decay with two photons. We have fermion-loop diagrams (figure

2.3). Photons do not couple directly to the Higgs field because they are massless. As a result, we

have two Feynman diagrams with a fermion loop and the same diagram with the outgoing photons

crossed. The matrix element for the fermion-loop diagram yields:

Mabλλ′ = −i
mf

υ
(−1)Nc(f)Q2

f

∫
d4l

2π4 tr

[
i( 6 l− 6 k +mf )

(l − k)2 −m2
f + iε

(ieγν)

×
i(6 l +mf )

l2 −m2
f + iε

(ieγµ)
i( 6 l+ 6 p+mf )

(l + p)2 −m2
f + iε

tr[tatb]ε∗λ
′

ν (k)ε∗λ
′

µ (p)

(2.29)

To write down the matrix element we need to propagator of fermion, vertices of fermion with

the photons, vertices of fermion with the Higgs particle and external photons. The sign in front of

integral is related to the fermion loop and traces are taken of all Dirac and colour matrices. The

definition of υ in M is υ = e
sin θwmw

. It is obvious that this diagram is potentially divergent because

of the loop. The denominator is written again by using Feynman parametrisation: [14]

1

((l − k)2 −m2
f + iε)((l2 −m2

f + iε)((l + p)2 −m2
f + iε)

=∫
dxdydz

2δ(x+ y + z − 1)

(l2 − 2l.(xk − zp) + xk2 + zp2 −m2
f + iε)3

=∫ 1

0
dx

∫ 1−x

0
dz

2

(l2 − 2l.(xk − zp)−m2
f + iε)3

=∫ 1

0
dx

∫ 1−x

0
dz

2

(l′2 −∆)3
(2.30)

In the above equation Qf is charge of fermion and Nc is colour factor.

In the last line the square was completed using this calculation:

l2 − 2l.(xk − zp) = (l − (xk − zp))2 − (xk − zp)2

= l′2 − (x2k2 + z2p2 − 2xzk.p)

= l′2 + 2xzk.p = l′2 + xzm2
h (2.31)
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and the definitions:

l′ = l − (xk − zp) (2.32)

∆ = m2
f − xzm2

f − iε (2.33)

We use trace techniques and the anticommutator identity {γµ, γν} = 2gµν for the numerator:

tr[. . .] = [(6 l− 6 k) +mf )γν( 6 l +mf )γµ(6 l+ 6 p+mf )]

= tr[(6 l− 6 k)γν lγµmf + ( 6 l− 6 k)γνγµmf ( 6 l+ 6 p)

+mfγ
ν 6 lγµ( 6 l+ 6 p) +mfγ

νγµmf ]

= mf tr[6 lγν {6 l, γµ}− 6 kγν {6 l, γµ}− 6 p 6 kγνγµ + γν 6 lγµ 6 l + {6 l, γν} γµ 6 p] + 4m3
fg
µν

= mf (2lµtr[lγν ]− 2lµtr[kγν ]− 4pαkβ(gαβgνµ− gανgβµ + gαµgνβ)

+ 4lαlβ(gναgµβ − (gνµgαβ + (gνβgαµ)2lνtr[γµp] + 4m2
fg
µν)

= 4mf (2lν lµ − 2lνkν − p.kgνµ − pµkν + kµpν + 2lµlν − gνµl2 + 2lνpµ +m2
fg
νµ)

= 4mf ((4lµlν − l2gνµ) + (mf
2 − p.k)gνµ − (pµkν − kµpν) + 2(pµlν − lµkν)) (2.34)

All factors proportional to pµ and kν vanish because of identity pµεµ(p) = 0 (Ward identity). The

factors proportional to gνµ and kµpν have to be kept.

We must write again the factors containing loop momenta l in terms of l′ which is a new

momentum one integrates over. Terms proportional to l′ will be taken out since they vanish after

integration:

4lµlν − l2gνµ+ 2(pµlν − lµkν)

= 4(l′ + (xk − zp))µ + (l′ + (xk − zp))ν − (l′ + (xk − zp))2gνµ

+2(pµ(l′ + (xk − zp))ν − (l′ + (xk − zp))µkν)

= 4l′µl′ν + 4z2pµpν + 4xz(pµkν + kµpν)− (l′2 − 2xzk.p)gνµ

+2xpµkν − 2zpµkν − 2xkµkν + 2zpµkν

= 4l′µ − l′2gνµ + (4z2 − 2z)pµpν + (4x2 − 2x)kµkν − 4xzkµpν

+(2x+ 2z − 4xz)pµkν + xzm2
hg
νµ

Putting this together with all constant terms in equation (2.34) and changing the dimension from

d = 4 to d = 4− 2ε the numerator yields:

tr[. . .] = 4mf

(
(
4

d
− 1)

)
l′2gµν +

(
xzm2

h +m2
f −

m2
h

2

)
gµν

+(4z2 − 2z)pµpν + (4x2 − 2x)kµkν + (1− 4xz)kµpν + (2x+ 2z − 1− 4xz)pµkν (2.35)
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Now we come across two different terms: terms proportional to l′2 are potentially divergent;

all others are convergent. By using master formula of dimensional regularisation, the first term is

integrated to obtain:∫
ddl′

(2π)d

(
4

d
− 1

)
l′

2

(l′2 −∆)3
=

(−1)2i

(4π)
d

2

d

2

(
4

d
− 1

)
2Γ(3− d

2 − 1

Γ(3)

(
1

∆
)(3− d

2
− 1)

i

(4π)2
εΓ(ε)

(
(4π)

∆

)ε
=

i

(4π)2
ε

(
1

ε
− γ +O(ε)

)
(1 +O(ε))

=
i

(4π)2
(1 +O(ε))

ε→0→ i

(4π)2
= − i

16π2

xzm2
h −m2

f

∆
(2.36)

This is convergent because the term d
2

(
4
d − 1

)
is proportional to ε. This removes the divergence

of Γ(x) at x = 0. The other integral of the constant factor provides:∫
d4l′

(2π)4

2

(l′2 −∆)3
=

(−1)3i

(4π)2

Γ(3− 2)

Γ(3)

2

∆
= − i

16π2

1

∆
(2.37)

Taking all factors proportional to gµν , kµpν and neglecting other tensorial structures which vanish

on multiplying with the polarisation vectors reads:

∫
d4l′

(2π)4

2tr[. . .]

(l′2 −∆)3
= −

4mf i

16π2

(xzm2
h −m2

f )gµν + (xzm2
h +m2

f −
m2
h

2 )gνµ + (1− 4xz)kµpν

∆

=
mf

(4π)2

1

∆

((
m2
h

2
− 2xzm2

h

)
gµν − (1− 4xz)kµpν

)
=
mf i

4π2

(
m2
h

2
gνµ − kµpν

)
1− 4xz

∆

=
i

4mfπ2

(
m2
h

2
gνµ − kµpν

)
1− 4xz

1− xzm
2
h

m2
f

An integral over the remaining Feynman parameter x and z will be solved in appendix B.

I

(
m2
h

m2
f

)
=

∫ 1

0
dx

∫ 1−x

0
dz

1− 4xz

1− xzm
2
h

m2
f

(2.38)

After we multiply with polarisation vectors the expression for the numerator is invariant under

(p, µ, λ) ↔ (k, ν, λ′). As a result, we get total amplitude when we multiply our amplitude by a

factor 2 since contribution of both Feynman diagrams is the same.

2Mabλλ′ = (−1)2i6Nc(f)Q2
fe

2mf

υ
tr[tatb]

i

4mfπ2

(
m2
h

2
gµν − kµpν

)
I

(
m2
h

m2
f

)
ε∗λ
′

ν (k)ε∗λ
′

µ (p)

= −
iNc(f)Q2

fe
2

2π2υ
tr[tatb]I

(
m2
h

m2
f

)(
m2
h

2
gµν − kµpν

)
ε∗λ
′

ν (k)ε∗λ
′

µ (p)

= −
iNc(f)Q2

fe
3

4π2 sin θwmw

1

2
δabI

(
m2
h

m2
f

)
ε∗λ
′

ν (k)ε∗λ
′

µ (p) (2.39)
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If we first calculate the squared expression of the tensorial structures with the polarisation vectors,

we can maintain easily the squared result [15]:

∑
λ,λ′

|(A.gµν +B.kµpν)ε∗λ
′

ν (p)ε∗λ
′

µ (k)|2

= (A2.gµ1ν1gµ2ν2 +B2.kµ1pν1kµ2pν2 +AB.gµ1ν1gµ2ν2 +BA.kµ1pν1gµ2ν2)

×

(∑
λ

ε∗λ
′

µ1 (p)ελ
′
µ2(p)

)(∑
λ′

ε∗λ
′

ν1(k)ε
λ′
ν2(k)

)
= 4A2 +B32(k2p2) + 2AB(k.p) = 4A2 + 2AB(k.p) (2.40)

The squared amplitude summed over all polarisation states and photon states lastly yields:

|M |2 =
∑
λ,λ′

∑
a,b

∣∣∣∣∣∣
∑
f

2Ma,b,λ,λ′
q

∣∣∣∣∣∣
2

=

e6Q4
fN

2
c (f)

16π4m2
w sin2 θw

∣∣∣∑
f

I
m2
h

m2
f

∣∣∣2 1

4

∑
a,b

|δab|2
∑
λ,λ′

∣∣∣∣(m2
h

2
gµνkµpν

)
ελ∗µ(p)ε

∗λ′
ν(k)

=
e6Q4

fN
2
c (f)

64π4m2
w sin2 θw

∣∣∣∣∣∣
∑
f

I
m2
h

m2
f

∣∣∣∣∣∣
2

.8.

(
4
m4
h

4
− 2

m2
h

2

m2
h

2

)

=
e6Q4

fN
2
c (f)

16π4m2
w sin2 θw

∣∣∣∣∣∣
∑
f

I
m2
h

m2
f

∣∣∣∣∣∣
2

(2.41)

Therefore decay rate is

Γ =
1

2mh

e6Q4
fN

2
c (f)m4

h

16π4m2
w sin2 θw

∣∣∣∣∣∣
∑
f

I
m2
h

m2
f

∣∣∣∣∣∣
2

1

8π
(2.42)
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Chapter 3

New Physics in gg → H → γγ

The effects of the recent discovery of 125 Gev Higgs SM-like particle at the
√
s = 7 and 8 Tev

LHC and Tevatron will be studied. The signal with two photons in the final state may be larger

than expected within the SM almost by a factor of two. The announced cross-section of ATLAS

and CMS is σ/σSM = 1.4 ± 0.3 and σ/σSM = 1.6 ± 0.4 respectively [17, 32]. A larger branching

ratio for Higgs to two photons is found by Tevatron, Atlas and CMS.

Investigation into the existence of new physics (NP) has been continued at the Tev scale.

Acording to a hierarchy problem, Higgs must couple to these new states. Such coupling can impact

on both its production and decay properties [16]. New physics can affect the properties of Higgs

boson and contribute to extensions of the SM. For instance, it can be a signal of such light exotics

at the LHC. This possibility is amazing in light of the recent results from LHC Higgs search.

3.1 Higgs Portal to Exotic Scalars

Interactions between the Higgs and new exotic particles S impact on modifications of loop-level

Higgs production and decay process like gg → h and h → γγ. Moreover a new process h → SS

can be opened in the case of a comparatively heavy Higgs. Thus, the specific quantum numbers of

the new exotic states lead to many forms of interaction between the Higgs and exotics. A class of

interactions, which are generic enough and universal form, are so-called Higgs portal interaction.

The combining H+H can be organised with an operator ONP , which is a gauge and Lorentz

invariant operator built out of exotic new fields. The Higgs portal interactions are parametrised
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by operators [16].

L ⊃ λH+HONP (3.1)

Additionally, H+H has two dimensions, so the Higgs portal interaction is typically of a low dimen-

sion and may be renormalisable if new exotic scalar exists. The operators hGaµνG
µν
a and hFµνF

µν

are produced. If we integrate new exotic states charged under colour or electromagnetism. The

Higgs portal also couples to additional scalars S of the term

L > −λ(H+H)(S+S) (3.2)

and based on a set of possible SU(3)C × SU(2)L × U(1)Y representations of S. Fermions F and

vector bosons V coupling via the Higgs portal may affect the phenomenology of the Higgs boson. For

fermions and vector bosons the most generic Higgs portal couplings (H+H)(F̄F ) and H+HV µνVµν

are not renormalised [19]. Thus, a minimal operator with scalar in eq.(3.7) should be maintained

to get sizeable coupling and restrict new exotic scalars S [16].

To conclude, if deviations from an SM-like Higgs are maintained, encouraging and experiment-

ally testable results will be produced by new light exotic matter coupling via Higgs portal, as such

states can be seen precisely in the future at the LHC [16].

3.2 Doubly Charged Scalars Enhance Ratio Of H → γγ In The

Higgs Triplet Model

The Higgs triplet model (HTM) is a model of neutrino mass generation which suggests the existence

of a doubly charged Higgs boson (H±±) and singly charged Higgs boson (H±). Such a particle

could increase the branching ratio of a neutral Higgs boson decaying to two photons.

The lightest CP-even scalar (H1) maintains the same couplings to the fermions and vector

bosons as the Higgs boson of the SM [20]. As a result, the running searches for the SM Higgs

boson also use H1 of the HTM with little change. The loop-induced decay H1 → γγ, which gets

contribution from virtual H±± and H±, is not often seen. Its branching ratio can be very different

to that of the SM Higgs boson. As studied in [21], the running limits on BR(H1 → γγ) have a

negative impact on the parameter space of [mH±± , λ1] where λ1 represents a quartic coupling in

the scalar potential. The case λ1 < 0 can enhance the branching ratio of H1 → γγ [22].
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3.2.1 Higgs Triplet Model

If HTM [23], a Y = 2 complex SU(2)L isospin triplet of scalar fields T = (T1, T2, T3) is available in

the SM Lagrangian. The gauge invariant Yukawa interaction is

L = h``′L
T
` CiT2∆L`′ + h.c (3.3)

h``′(`, `
′ = e, µ, τ) is a complex and symmetric coupling, C represents the Dirac charge conjugation

operator, Ti(i = 1− 3) are the Paulimatrices, L` = (υ`L, `L)T left-handed lepton doublet, and ∆ is

2× 2 representation of the Y = 2 complex triplet fields:

∆ = T.τ = T1τ1 + T2τ2 + T3τ3 =

∆+/
√

2 ∆++

∆◦ −∆+/
√

2

 (3.4)

where T1 = (∆++ + ∆◦)/2, T2 = i(∆++−∆◦)/2 and T3 = ∆+/
√

2. A non-zero triplet vev < ∆◦ >

leads to the mass matrix for neutrinos:

m``′ = 2h``′ < ∆◦ >=
√

2h``′υ∆ (3.5)

Invariant Higgs potential [24, 25] which is shown (with H = (Φ+,Φ◦)T ):

V (H,∆) = −m2
hH

+H +
λ

4
(H+H)2 +M2

∆Tr∆
+∆ + (µHT iτ2∆+H + h.c.)

+λ1(H+H)Tr∆+∆ + λ2(Tr∆T∆)2 + λ3Tr(∆
+∆)2 + λ4H

+∆∆+H. (3.6)

Here m2 < 0 to make sure non-zero < Φ◦ >= υ/
√

2 which spontaneously breaks SU(2)L ⊗ U(1)Y

to U(1)Q while M2
∆.

In the HTM the scalar eigenstates are

1. the charged scalars H±± and H±

2. the CP-even neutral scalars H1 and H2

3. a CP-odd neutral scalar A◦

H±, H2, A
◦ are a mixture of the triplet field, H1 is a mixture of the doublet field.

The squared masses of H1 and H2 are:

m2
H1

=
λ

2
υ2 (3.7)

m2
H2

= M2
∆ + (

λ1

2
+
λ4

2
)υ2 + 3(λ2 + λ3)υ2

∆ (3.8)
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The squared mass of the CP-odd A◦ is [22]

m2
A◦ = M2

∆ + (
λ1

2
+
λ4

2
)υ2 + (λ2 + λ3)υ2

∆ (3.9)

The squared mass of the H± is [22]

m2
H± = M2

∆ + (
λ1

2
+
λ4

2
)υ2 + (λ2 +

√
2λ3)υ2

∆ (3.10)

The squared mass of the doubly-charged scalar is (H±∓ = δ±±) is [22]

m2
H±± = M2

∆ +
λ1

2
υ2 + λ2υ

2
∆ (3.11)

3.3 The Fourth Generation of Standard Model impacts on Higgs

Searches

The amazing possibility of a four-generation Standard Model(SM4) has been investigated [26]. The

search for production of fourth generation quarks and leptons at colliders impacts on the electroweak

parameters [27, 28] and on the Higgs boson production and decay partial widths [29, 30]. In brief,

a fourth generation alters the Higgs branching fractions. Particularly, the coupling to gluons and

photons is influenced at the loop level. Moreover they have a positive impact on the presence of

heavy new particles. Existence of a fourth generation can be restrained by the precise measurements

of the Higgs production rate and branching ratios [31].

There are three components to make an such exclusion possible. First, the gluon fusion produc-

tion rate of a light Higgs boson by a factor of O(10) would be increased by the fourth generation

top and bottom quarks. Second, the partial decay width to diphotons can be prevented by as much

as a factor of O(100). Last, partial decay widths to final states which are controlled by tree-level

amplitudes, such as bb̄ and ZZ∗, get smaller corrections to the standard model prediction. As a

result, substantial increase is seen in gluon fusion produced channels, but the diphoton channel

shows an important decrease [31].

In the SM, the top induced one-loop contribution controls the gluon fusion. The SM4 presents

two new heavy quarks into the loop, for which the leading-order (LO) contribution is nearly in-

dependent of the real masses. Therefore, the gluon fusion rate is enlarged by a factor of 9 at

LO [31].
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The fourth generation top and bottom changes the LO contributions to the Higgs, partial widths

to diphotons and digluons as well. The h → gg is enhanced by a factor of 9. However, h → γγ,

which is controlled by W-boson loop, is prevented since the extra fermions destructivly interrupt

the W-boson contribution. At LO this shows that the diphoton width is decreasing by a factor of

nearly 5 than the SM. In addition it does not depend on fermion masses. Finally, the other leading

partial widths at tree-level stay without changing at LO [31].

The gluon fusion production and diphoton decay rate are especially sensitive to the existence of

extra sequantial quarks and leptons. Thus an excellent opportunity is supplied by measurements

of these rates to remind about the limits of the SM4. The discovered excess shows a cross-section

that is quite a lot larger than the SM prediction. It cannot be interpreted as a clue for new physics,

whereas it can be interpreted to put strong constraints on SM4 [31].
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Conclusion

To understand Higgs mechanism we have studied Abelian and non-Abelian gauge field theories.

Thanks to this theory we have discussed gauge invariant Lagrangian and spontaneous symmetry

breaking which gives rise to Goldstone bosons. The Higgs mechanism has been defined to generate

massive vector bosons in a gauge invariant theory. We defined the new form of Lagrangian (1.102) by

using covariant derivatives instead of normal derivatives and adding free gauge fields Aµ. Moreover,

we have seen how this Lagrangian gives mass to vector boson field A and scalar fields.

As we know the SM-like Higgs boson is now being discovered at the LHC. Higgs boson is

observed by fusion of two gluons which is one of the dominant channels, but Higgs decays to

photons easily. Thus, I have studied the SM cross-section of gluon fusion Higgs production loop

diagram. All steps of the calculation have been done in detail. I have also calculated the decay of

Higgs to diphoton loop diagram in the SM by using dimension regularisation.

Finally we have discussed the implications of the discovery at LHC of the observation of a

Higgs-like particle with a mass nearly 125Gev in terms of new physics beyond the standard model.

We have considered the effects of new exotic matter interacting through Higgs portal on SM Higgs

boson searches. We have realised Higgs portal couplings could modify the Higgs production and

decay patterns. Another effect of new physics has been studied in the Higgs triplet models. Doubly

charged scalars H±± and singly charged scalars H± have been seen in HTM. H±± charged scalar

can alter the branching ratio of H1 → γγ. In addition we have studied the implications of a fourth

generation of standard model on Higgs searches. A fourth generation would impact powerfully on

the Higgs couplings to gluons and photons.

To conclude, the particle discovered at CERN could be Higgs boson or not. If the Higgs diphoton

rate continues to be increased above the SM prediction in 2012 it means we could be close to new

physics.
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Appendix A

Calculation for the gluon fusion

In this section the integral A(mt) from equation (2.18) is going to be computed.

A.0.1 Master Integrals

First integrals are defined with master integrals. All Dirac indices of k have been eliminated; now
we require to make the numerators of A(mt) independent of k. There are 6 different types of
numerator: k2, k.p1, k.p2, (k.p1)(k.p2), (k.p1)2 and (k.p2)2. For each of these we have to develop a
different method [12].

• k2

k2 +m2
t −m2

t

[(2k.p1) + k2 −m2
t ][k

2 +m2
t ][k

2 − 2(k.p2)−m2
t ]

=
m2
t

(2k.p1) + k2 −m2
t ][k

2 −m2
t ][k

2 − 2(k.p2)−m2
t ]

+

+
1

(2k.p1) + k2 −m2
t ][k

2 − 2(k.p2)−m2
t ]

(A.1)

• k.p1

k.p1 + 1
2(k2 − k2 +m2

t −m2
t )

[(2p1.k) + k2 −m2
t ][k

2 −m2
t ][k

2 − 2(k.p2)−m2
t ]

=
1
2

[k2 −m2
t ][k

2 − 2(k.p2)−m2
t ]
−

−
1
2

[(2k.p1) + k2 −m2
t ][k

2 − 2(k.p2)−m2
t ][k

2 − 2(k.p2)−m2
t ]

(A.2)
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• k.p2

k.p2 + 1
2(k2 − k2 +m2

t −m2
t )

[(2p1.k) + k2 −m2
t ][k

2 −m2
t ][k

2 − 2(k.p2)−m2
t ]

−1
2

[k2 − 2(k.p1)−m2
t ][k

2 −m2
t ]

+

+
1
2

[(2k.p1) + k2 −m2
t ][k

2 − 2(k.p2)−m2
t ][k

2 − 2(k.p2)−m2
t ]

(A.3)

• (k.p1)(k.p2) Here we use the results of the k.p1 case.

1

2

∫ ∞
∞

ddk
p2.k

[k2 −m2
t ][(k − p2)2 −m2

t ]︸ ︷︷ ︸
≡I1

+

1

2

∫ ∞
∞

ddk
−p2.k

[(k + p1
2 )2 −m2

t ][(k − p2)2 −m2
t ]︸ ︷︷ ︸

≡I2

=
1

2
(I1 + I2)

(A.4)

forI1 substitute k → k + p2
2

I1 =

∫ ∞
∞

ddk
p2.k

[(k + p2
2 )2 −m2

t ][(k −
p2
2 )2 −m2

t ]︸ ︷︷ ︸
≡0

+ p2
2︸︷︷︸

0

(. . .) = 0

(A.5)
The first term in the sum is an odd function because it vanishes. For I2 we substitute k → k− p1

2 + p2
2

I2 =

∫ ∞
∞

ddk
−p2.k

[(k + p1
2 + p2

2 )2 −m2
t ][(k −

p1
2 −

p2
2 )2 −m2

t ]︸ ︷︷ ︸
≡0

+

1
2

∫∞
∞ ddk p1.p2

[(k+
p1
2

+
p2
2

)2−m2
t ][(k−

p1
2
− p2

2
)2−m2

t ]
(A.6)

⇒ 1
2(I1 + I2) = 1

4

∫∞
∞ ddk p1.p2

[(k+
p1
2

+
p2
2

)2−m2
t ][(k−

p1
2
− p2

2
)2−m2

t ]
(A.7)

• (k.p1)2

1

4

∫ ∞
∞

ddk
p1.p2

[(k + p1
2 )2 −m2

t ][(k −
p2
2 )2 −m2

t ]
−

−1

4

∫ ∞
∞

ddk
p1.p2

[(k + p1
2 + p2

2 )2 −m2
t ][(k −

p1
2 −

p2
2 )2 −m2

t ]
.

(A.8)

• (k.p2)2 This case is analogous to before and we obtain precisely the same result as for
(k.p1)2 [12].

We can now bring to all integrals two basic forms, which we call the master integrals for LO gluon
fusion

J(a, b) ≡
∫

ddk

(2π)d
1

[k2 −m2
t ][(k + a)2 −m2

t ]
(A.9)
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and

I(a, b) ≡
∫

ddk

(2π)d
1

[k2 −m2
t ][(k + a)2 −m2

t ][(k + b)2 −m2
t ]
, a, b ∈ < (A.10)

A(mt) can now be defined with these integrals [12]

A(mt) = I(p1,−p2)
( 4

d− 2
m2
t − p1.p2

)
︸ ︷︷ ︸

≡AI

+ J(p1 + p2)
4− d
d− 2︸ ︷︷ ︸

≡Aj

(A.11)

A.0.2 Feynman parameters and dimensional regularization

Feynman-parameters are required to solve the two master integrals J(a)and I(a, b). We can find
these integrals in [13] page 190.

The Integral J(a): The following Feynman parameter is used because we have two factors in
the denominator.

1

P.Q
=

∫ 1

0
dxdy

δ(x+ y − 1)

(xP + yQ)2
=

∫ 1

0
dx

1

(xP + (1− x)Q)2
(A.12)

In the last step we have assessed the δ − function. Applied to J(a) this is

J(a) =

∫
ddk

(2π)d

∫ 1

0
dx

1

[(1− x)(k2 −m2
t ) + x((k + a)2 −m2

t )]
2

(A.13)

If we make the substitution k − ax, we get

J(a) =

∫ 1

0
dx

∫
ddk

(2π)d
1

[k2 + a2x(1− x)−m2
t ]

2
(A.14)

Now we can fix the following formula found in [13] page 250∫
ddk

(2π)d
1

(k2 −4)n
=

(−1)niΓ(n− d
2)

(4π)
d
2 Γ(n)

( 1

4

)n− d
2

(A.15)

where Γ is the Gamma-function, defined by
∫∞

0 xy−1e−xdx, especially Γ(n + 1) = n! for n ∈ N0.
This gives us

J(a) =

∫ 1

0
dx

iΓ(2− d
2

(4π)
d
2 Γ(2)︸︷︷︸

=1

(
−xa2 +m2 + a2x2

) d
2
−n

(A.16)

The following step is to use dimensional regularisation, i.e. we substitute d = 4− 2ε, where ε > 0

J(a) =

∫ 1

0
dx

iΓ(ε)

(4π)2−ε (m
2 + a2x2 − xa2)−ε (A.17)

In the end we can use approximation Γ(ε) = 1
ε − γ +O(ε), where γ 0.5772 is the Euler-Mascheroni

constant. Using
x−ε

ε
=
e−ε lnx

ε
≈ 1− ε lnx

ε
=

1

ε
− lnx (A.18)
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We maintain the final result, expanded in powers of ε

J(a) =
1

ε

i

(4π)2
− iγ

(4π)2
−
∫ 1

0
dx

iγ

(4π)2
ln [m2 + a2x2 − xa2]. (A.19)

We now insert J(a) into eq.A.11. Looking at the second term in the sum, Aj with d = 4− 2ε, we
get

AJ = J(p1 + p2)
4− d
d− 2

≈ i

(4π)2

[
1− ε

(
1 +

∫ 1

0
dx ln [m2

t + x(p1 + p2)2(x− 2)]

)]
≈ i

(4π)2
+O(ε)

(A.20)

We understand that it is definitely essential to keep the number of dimensions open. At the end
we can take the limit ε→ 0 and thus understand that the contribution from AJ implies 1.

The integral I(a, b): Here there are three factors in the denominator, so we use the Feynman
parameter

1

P.Q.R
=

∫ 1

0
dxdydz

2δ(x+ y + z − 1)

(Px+Qy +Rz)3
=

=

∫ 1

0
dxdy

2

(Px+Qy +R(1− x− y))3
,

(A.21)

to get

I(a, b) = 2

∫ 1

0
dxdy

∫
ddk

(2π)d
1

[x((k + a)2 −m2
t ) + y((k + b)2 −m2

t ) + (1− x− y)(k2 −m2
t )]

3

(A.22)
As before we want to carry the denominator of the integrand to the form (k2−4)n. We substitute
k → k − ax− by and get

I(a, b) = 2

∫ 1

0
dxdy

∫
ddk

(2π)d
1

[a2x(x− 1) + b2y(y − 1) + 2abxy +m2
t ]

3
(A.23)

As before we apply (A.15) with d = 4, which gives us

2

∫ 1

0
dxdy

−i
=1︷︸︸︷
τ(1)

(4π)
d
2 τ(3)︸︷︷︸

=2

1

a2x(x− 1) + b2y(y − 1) + 2abxy +m2
t

(A.24)

A.0.3 Expressing AJ with dilogarithms

We introduce our result for I(a, b) into Eq(A.11) and look at the first term in the sum, AI

AI = (2m2
t − p1.p2)I(p1,−p2)

=
−i

(4π)2

∫ 1

0
dxdy

2m2
t − p1.p2

p2
1︸︷︷︸

=0

x(x− 1) + p2
2︸︷︷︸

=0

y(y − 1)− 2(p1p2)xy +m2
t

(A.25)
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In the denominator of the integrand a small imaginary part is added

AI =
i

(4π)2

2m2
t − p1.p2

(2p1p2)

∫ 1

0
dy

∫ 1−y

0
dx

 1

xy − m2
t

2(p1p2) + iε


︸ ︷︷ ︸

≡Int

(A.26)

For on-shell Higgs Boson we have that q2 = m2
h and we can see in the Feynman graph (figure1)q =

p1 + p2. Therefore 2(p1p2)2 = m2
h. We substitute R ≡ (mtmh

)2. Eq.A.11 now yields

A(mt) =
i

(4π)2

[(
2R− 1

2

)
Int+ 1

]
(A.27)

Polylogarithms: So for our related quantity A, the only thing that is left to calculate is Int.
First we want to define this in terms of dilogarithms. The polylogarithm is a function Lis(z), for
all complex numbers s and |z| < 1, defined by [12]

Lis(z) =

∞∑
k=1

zk

ks
(A.28)

We can understand directly that the polylogarithm for s = 1 is Lis(z) = − log(1 − z). Another
way is to express the polylogarithms recursively

Lis+1(z) =

∫ z

0
dt
Lis(t)

t
(A.29)

The dilogarithm is the polylogarithm for s = 2. Using the above we can understand quite easily
that the dilogarithm can be defined as

Li2(z) =

∫ z

0
dt
− log(1− t)

t
(A.30)

With this information we can go on [12]

Int =

∫ 1

0

dy

y

∫ 1−y

0

1

x− R
y + iε

dx =

∫ 1

0

dy

y
log

(
1

R
(y2 +−y +R+ iε)

)
. (A.31)

We factorise

(y2 − y +R+ iε) =

y − 1

2
−
√

1

4
−R︸ ︷︷ ︸

≡λ1

+iε


y − 1

2
−
√

1

4
−R︸ ︷︷ ︸

≡λ2

−iε

 (A.32)

Now a case study is required.

Case a) For R > 1
4 ⇒

√
1
4 −R is imaginary. So we don’t want to iε. Now we can use

log(ab) = + if sgn(ςa) = −sgn(ςb).

Int =

∫ 1

0

dy

y

[
log

(
1√
R

(y − λ1)

)
+ log

(
1√
R

(y − λ2)

])
=

∫ 1

0

dy

y

[
log(

λ1√
R

) + log(
λ2√
R

)︸ ︷︷ ︸
=0

+ log(
y

λ1
− 1) + log(

y

λ2
− 1)

]
.

(A.33)
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Using the dilogarithms above, this can be written as [12]

Int = −Li2
(
λ2

R

)
− Li2

(
λ1

R

)
, (A.34)

where we have used 1
λ1

= λ2
R and 1

λ2
= λ1

R .

Case b). For R < 1
4 ⇒

√
1
4 −R is real. We want to keep the iε. So we have

Int =
∫ 1

0
dy
y log

(
1
R(y − λ1 + iε)(y − λ2 − iε)

)
(A.35)

= −
{
Li2

(
λ1
R + iε

)
+ Li2

(
λ2
R − iε

)}
. (A.36)

Claim: a)

f(τ) = arcsin2

(
1√
τ

)
=

1

2

{
Li2

(
λ1

R

)
Li2

(
λ2

R

)}
, τ ≥ 1, (A.37)

where τ ≡ 4R

Proof: a). The next formulas are useful:

1. arcsinx = −i log
(
ix+

√
1− x2

)
2. −1

2 log2(x) = Li2(1− x) + Li2
(
1− 1

x

)
3. Li2(x) = −

∫ 1
0
dy
y log(1− x.y)

With these the proof is above board [12].

2f(τ) = 2 arcsin2
(

1√
τ

)
(A.38)

= −1
2 log2

[(
i√
τ

+
√

1− 1
τ

)2
]

(A.39)

= Li2

[
2
(

1−i
√
τ−1
τ

)2
]

+ Li2

[
1−

( √
τ

i+
√
τ−1

)2
]

(A.40)

= Li2

[
2
(

1−i
√
τ−1
τ

)]
+ Li− 2

[
2
(

1+i
√
τ−1
τ

)2
]

(A.41)

= 1
2

{
Li2

[
1
R

(
−1
2 −

√
1
4

)]
+ Li2

[
1
R

(
−1
2 +

√
1
4

)]}
(A.42)

Claim: b)

1

2

{
Li2

(
λ1

R
+ iε

)
+ Li2

(
λ2

R
− iε

)}
= −1

4

(
log

[
1 +
√

1− τ
1−
√

1− τ

]
− iπ

)2

(A.43)

Proof: b) Using ’proof: a) item 2’ with

x =
τ − 2− 2

√
1− τ

τ
− iε, (A.44)
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We get {
Li2

(
λ1

R
+ iε

)
+ Li2

(
λ2

R
− iε

)}
= −1

2

(
log

[
τ − 2− 2

√
1− τ

τ
− iε

])2

= −1

2

(
log |τ − 2− 2

√
1− τ

τ
| − iπ

)2

= −1

2

(
log

[
1 +
√

1− τ
1−
√

1− τ

]
− iπ

)2

(A.45)

Bringing everything together the final result is [12]

A =
1

(4π)4
|1 + (1− τ)f(τ)|, (A.46)

f(τ) =

 arcsin2 1√
τ
, τ ≥ 1,

−1
4

(
log
[

1+
√

1−τ
1−
√

1−τ

]
− iπ

)2
, τ < 1,

(A.47)

τ = 4

(
mt

mh

)2

(A.48)
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Appendix B

Integration Of Form Factors

In this section we calculate form factor I

(
m2
h

m2
f

)
in detail for Higgs decay to photons [15].

I

(
m2
h

m2
f

)
=

∫ 1

0
dx

∫ 1−x

0
dz

1− 4xz

1− xzm
2
h

m2
f

=

∫ 1

0
dx

 1

−xm
2
h

m2
f

ln(1− xz
m2
h

m2
f

)− 4x

 z

−xm
2
h

m2
f

− 1

(−xm
2
h

m2
f
)2

ln(1− xz
m2
h

m2
f

)



z=1−x

z=0

=

∫ 1

0
dx

[
−
m2
f

xm2
h

ln(1− x(1− x)
m2
h

m2
f

) +
4x(1− x)m2

f

xm2
h

+
4xm4

f

x2m4
h

ln(1− x(1− x)
m2
h

m2
f

)

]

=

∫ 1

0
dx


(

4m4
f

m4
h

−
m2
f

m2
h

) ln

(
1− x(1− x)

m2
h

m2
f

)
x

+
4(1− x)m2

f

m2
h


=

[
4(x− x2

2 )m2
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