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COMPUTATION OF TWO-VARIABLE MIXED ELEMENT NETWORK FUNCTIONS

Abstract

In this dissertation , the algorithm known as “Standard Decomposition Technique (SDT)” is
used together with Belevitch’s canonic representation of scattering polynomial for two-port
networks operate on high frequency, to find the analytical solutions for “Fundamental equation
set (FES)”. This FES is extracted by using Belevitch canonic polynomials “ g(p, 1), h(p, 1)
and f(p,A)” used for the description of mixed lumped and distributed lossless two-port
cascaded networks in two variables of degree five and the obtained solutions are further used
to synthesis the realizable networks. The solution to the problem is also classified into two
cases, first case is discussed for three lumped and two distributed (n, = 3, ny = 2) and the
second is for three distributed and two lumped important (n, = 2, n; = 3 ) the solution for

both these cases are expressed separately with conclusive examples.

Keywords: Standard Decomposition Technique (SDT), Belevitch’s canonic representation,
scattering polynomials, Two-port networks, Fundamental equation set (FES), Mixed lumped
and distributed lossless networks, Cascaded networks in two variables, Networks of degree

five.



IKI DEGISKENLI KARISIK ELEMANLI DEVRE FONKSIYONLARININ HESABI

Ozet

Bu tezde, Standart Ayristirma Teknigi (SDT) olarak bilinen algoritma, yliksek frekansta
calisan iki portlu aglar i¢in Belevitch'in sa¢ilma polinomunun kanonik gosterimi ile birlikte,
Temel Denklem Seti (FES) i¢in analitik ¢6ziimler bulmak amaciyla kullanilmistir. Bu denklem
seti, Belevitch’in iki degiskenli karisik toplu ve dagitilmis kayipsiz iki portlu kaskad aglarin
tanimu1 i¢in kullanilan g (p, 1), h (p, A) ve f (p, A) kanonik polinomlarindan elde edilmis ve elde
edilen sonuglar daha sonra gergeklenebilir devrelerin sentezinde kullanilmigtir. Problem {i¢
toplu ve iki dagitilmis (n, = 3, n; = 2) ile iki toplu ve ti¢ dagitilmis (n, = 2, ny = 3)
eleman olacak sekilde iki ayr1 durum i¢in ele alinmig ve ¢6ziim her bir durum igin ayr1 ayr1

verilmistir.
Anahtar Kelimeler: Standart Ayristirma Teknigi (SDT), Belevitch'in kanonik gdsterimi,

Sagilma polinomlari, Iki portlu aglar, Temel denklem seti (FES), Karisik lumped ve dagitik

kayipsiz aglar, Iki degiskenli basamakl1 aglar, Besinci dereceden aglar.
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1 INTRODUCTION

1.1 Overview

In the field of communication systems design and development, one of the most crucial
problems is to design a coupling circuit model, that work over a broadest attainable frequency
band to achieve optimum performance. A coupling circuit is used to match one device to
another, also known as impedance matching network or equalizer network. Characteristically,
the problem here is to design an impedance matching network, to convert a provided impedance
to a particular one, the phenomenon usually referred to as equalization or impedance matching.
The problem of designing, matching networks was considered seriously in literature for several
decades. The development of millimeter-wave and microwave integrated circuit technology
motivated new ventures in the design and development of wideband communication systems

and also stimulated a renewed interest in broadband matching.

High-frequency telecommunication systems such as satellites, antennas, amplifiers, filter and
high-frequency transistors contain front-end, inter-stage, and back-end blocks and these blocks
can be distinguished and classified by their measured data. For these type of high-frequency
systems, to control the power flow between above-described stages, filters and equalizer
circuits are designed by using recognized analytical and semi-analytical techniques. Modeling
of numerically explained components is mandatory, either by practicable circuit functions or
components. From this discussion, aim is to develop ability to model numerically define device

by mean of lossless components by using recent analytic design methods (SENGUL, 2006).
1.2 Literature Review

It is contemplated that the broadband matching theory is originated after the development of
restricted load impedance gain-bandwidth theory and restricted load impedance is composed
of a parallel combination of a resistor and a capacitor (Bode, 1945). After more developments,
a generalized gain-bandwidth theory is presented for any random load impedance (Fano, 1950)

(Youla, 1964). Circuit modeling is critically important to design broadband matching circuits



(Chen, 1988). The requirement is to develop an optimum lossless two-port matching network
(Carlin & Amstutz, 1981) that is able to transfer maximum power between load and source at
broadest possible frequency band (Aksen, 1994). Here, source and load can be represented by
numerical data and can also be considered as complex one port networks (SENGUL, 2006)
(Yarman, 1982). To implement the Analytical Gain-Band Width Theory (Carlin, 1977)
(Belevitch, 1968) it is necessary to understand basic of complex one port networks. Later on,
to encounter the broadband matching problems many other researchers had published extended
works with better elaboration. While working with complex practical application and designing
complicated matching circuits, the current broadband matching theory faces serious problems.
Therefore, plenty of literature is available that focused on finding more practical ways to design

matching networks.

Precious work is available in the literature about data modeling (Smilen, 1964) (Baum, 1948)
is available but semi-analytic computer-aided and numerical techniques are practiced because
of difficulties and presence of inaccuracy in existing methods of modeling the matching
problems (Kody & Stoer, 1972) (Kotiveeriah, 1972). Carlin (Carlin, 1977) and Yarman (Carlin
& Yarman, 1983) proposed Real Frequency Technique (RFT), further advancements are made
by several researchers to encounter the difficulties of modeling the matching problems. These
latest and efficient and accurate modeling and matching with help of analytic methods are still
unable to answer all fundamental problems for researchers (Yarman, 1982) (Yarman, 1982)
(Beccari, 1984) (Yarman & Aksen, 1992). To full the industrial requirements like microwave
amplifier design problems and equalizer circuit design problems several computer programs
have been developed (Hatley, 1967). Although these circuit design computer programs are very
helpful for several practical problems but still insufficient to encounter all kinds of complicated
design problem, as their working principle is Brute Force method (Yarman & Fettweis, 1990)

(Fettweis & Pandel, 1987) (Yarman, 1985) (Carlin & Civalleri, 1985).

It is a normal practice to define the load is by reflection parameters calculated in the desired
frequency bandwidth or by amplitude and phase or real and imaginary pairs. While modeling
such types of numerical data, the circuit functions realizability conditions and constraints must
be considered. Here, a numerical defined physical device as a lossless two-port network

(Darlington equivalent) (Darlington, 1939).



Lossless
Z.8 . 5 Two-Port R
Network

Figure 1.1 Lossless Two-port Darlington equivalent Network (Darlington, 1939).

In literature, to model, the impedance data two most widely used methods are:
1. Select a network topology and designate the best appropriate values of components.

2. Determination of impedance or reflection function which is suitable for the data and

synthesizes the function to obtain the model.

In the first method, an optimization tool is applied, after choosing the network topology, to
define the suitable values to component. Although this is a very easy and uncomplicated
method, it carries some difficulties: The process of optimization is highly nonlinear with
respect to the values of component, can achieve a local minimum or can diverge from it. The
satisfactory result can be achieved after the optimization process, by a proper and careful choice

of initial values and it is a very hard task to find suitable initial values (Yarman, 1991).

There is an additional obstacle, there is no explicit answer to, what is the suitable network
topology for the provided data? Hence, the modeler will try several network topologies to select

the best suitable or the problem will be unsolved.

Several data modeling methods are proposed to model the provided impedance or reflection
data. In the easiest one, rational functions are used to depict impedance data and by using
interpolation, to estimate the coefficients of the function. A similar rational function Z(p) is

given in 1.1;

Z(p) =20 I ji=01 ..., (n—1) (1.1)



where, complex frequency variable p = 0 + iw and a; and B; are positive real coefficients.
But, positive real function cannot be obtained at the end of this technique. Two other modeling
tools are proposed, and these methods are based on working with scattering parameters or input
impedance of the device. The first method, named as Immittance Approach, impedance or
admittance values are used. Approximation of real part of the input impedance is calculated by
using a minimum reactance function, then minimum reactive data is removed after this Foster
function is used to model the remaining imaginary data. In the second method, reflection
coefficient data is modeled by a bounded function and the method is called Reflection

Parameter Approach.
1.3 Thesis Contribution

In the available literature two port networks of degree five consist of mixed lumped and
distributed elements, the transfer function and canonic representation are not represented on
pure analytical basis. In simple words, there is no analytical solution for LPLU of degree five
exist in literature. So, in this study, the objective is to use a modeling method named “Standard
Decomposition Technique” and focus will be on the network consist of the cascade of mixed

lumped and distributed elements of degree five to find analytical solution to the problem.
1.4 Thesis Outline

Chapter 1 of the thesis is an introductory novel to the topic and its brief overview, it is also

covering the previous research in the related field with the contribution of this dissertation.

Chapter 2 is covering the fundamental concepts of network theory, those are related and helpful
for further study. The chapter contains a brief introduction of lossless two-port networks,
scattering representation, canonic representation of scattering matrix and mixed, lumped and

distributed elements.

In chapter 3 our focus will be on the description of mixed lumped and distributed elements, the
issues involving in the fabrication of two-variable network function are also discussed. A semi-

analytical technique is presented to elaborate two-port cascaded mixed networks.

In chapter 4 the focus is to find the analytical solutions for LPLU of degree five for some real

and realizable values. A two-variable polynomial with degree five is generated LPLU of degree
4



five, first the discussion is made for three lumped and two distributed (n, = 3, n; = 2) and

the second will be with three distributed and two lumped important (n, =3, ny =2).

Chapter 5 is concluding the discussion and developing the remarks, at the end some important

Matlab code are given, used to develop the solutions.



2 FUNDAMENTAL PROPERTIES OF LOSSLESS TWO-PORT
NETWORKS

This chapter is dedicated to investigating and discuss the basic ideas related to network theory.
A review of basic definition and elementary properties regarding the scattering parameters
description of lossless two-port networks has made. Fundamental properties of the network
functions related to lossless two-port lumped and distributed networks are elaborated. A brief

introduction of mixed lumped and distributed elements network is also discussed.
2.1 Port, Two-Port and n-Port Network

In network theory, a pair of terminals joining an electrical network or a circuit to another
external circuit is known as a port and the current entering through one terminal is always equal
to the current leaving through the other terminal of a port. These terminals are also called nodes.
Circuit components like capacitors, resistors, inductors, transistors etc., may have two or more
terminals. The combination of these components in a meaningful manner form networks.
Figure 2.1 is representing a two-port lossless network a kind of quadripole network consist of
two ports or four terminals also representing the values of voltages and current on each
terminal. Generally, mathematical representation obtained from the values of currents and
voltages of external terminals are used to determine the source and load response connected to

the network.

Il L

Vi

Figure 2.1 General two-port network (four-terminal network).



2.2 Scattering Representation of Two-port Networks

It is a fact that impedance, admittance and transmission parameters are widely used to calculate
the terminal response of a two-port lossless network and the also work quite beautifully.
Impedance and admittance parameters are determined with respect to infinite or zero loads at
the ports although they conclude a useful information about two-port networks. There is no
assurance of equally well results for all type two-port networks because of the requirement of
infinite or zero loads at the ports. On contrary, scattering parameters are well defined with
respect to finite loads and also exist for all kinds of networks. It is well established that
scattering parameters are used as a powerful tool to understand the power transfer
characteristics of networks like filter and matching networks especially at microwave

frequencies, under specific terminations.

B-
—_—
L
_4_

Two-Port A
Network Ay R,

N ]

g +“—
B1 otz

Figure 2.2 Doubly terminated two-port network (Medely, 1993)

Figure 2.2 is referring to a two-port network which is ignited at port 1 by a voltage source Ej,
through impedance Rz, and terminated at port 2 by load impedance Rz R: and Rz, can be of
any value because they are just reference impedances, although 5042 is the most commonly

used value. Figure 2.2 is explaining the definitions of current I;, voltage V; and impedance R;

and also, two new parameters «; and f; can also be defined as (Medely, 1993).

o = G R
J (2.1)
2 ||ReR;|

and



(2.2)

by solving 2.1 and 2.2, the results are

V; = (a; + B;)/RelR;] (2.3)

and

[ = (e = B;) (2.4)

7 JRelR)|

here Rj* and Re|R;| is the complex conjugate and real part of reference Impedance R;

respectively. Equations for scattering parameters for two-port in Figure 2.2 can be defined as

(Medely, 1993).

B1 = S1101 + S12a, (2.5)
B2 = Sz104 + Szpa; (2.6)

Expression for scattering parameter in matrix form any n-port network is
B = Sa 2.7

The evaluation of coefficients of 2.5 and 2.6 can be estimated by placing a; = 0 and a, = 0.
Now consider the Figure 2.2, the output voltage is —I; R, and substituting this value in 2.1 the

result is;

_VeRa 4 ViRy _

a, = 2.8
27 2/|ReRy] @8

If any of the ports is not connected to the source and having reference impedance on termination
that specific @; is always zero. Transmission line theory (Medely, 1993) the expression can be

written as,



Vj = vji + Ujr (29)

and,

(2.10)

here the subscripted i and r are representing the incident component and reflected component

of voltage, respectively. Considering R;to be real and substituting in 2.1

Uji — Ujr
(vji + Ujr) + R] —R] ) vji
@ = = (2.11)

2 ||ReR| |ReR;|

and from 2.2,

B = L~ - 2.12)

It can be seen in 2.11 that a; is the function of incident voltage and f; is a function of reflected
voltage by 2.12. It can also be observed that the squares of @; and f; gives us the dimensions
of power. Mathematically;

2
|2 _ |vj1”|

— (2.13)
|ReR;|

and |ﬁj

2
|“j| =

S ) 2 2
So, aj and p; are representing incident and reflected waves respectively, also |aj| and | B j|
are representing incident and reflected powers respectively. From 2.5 and 2.6, it can be
observed that the reflected wave from any port is equal to the submission of modified incident

waves from all the ports, this modification is made by S-parameter matrix.



Mathematically, |aj|2 can be represented by Figure 2.2,

Es — Vl) 2
Rl _ IESI
2./ReR; 4|ReR,|

V1+R1(
|a1|2 =

(2.14)

Form 2.14 it can be observed that |a; |? is total power available from the source, by subtracting
reflected power from total available power, power delivered to the network can be obtained,

that is represented as,

2 2 . g
|aj|” = 8] = aje5” — B @.15)
(AR + R (= Ri)(Vi" —Ry'LY)
- 4|ReR,| 4|ReR,|
2R, (M0 V')
- 4|ReR,|

~ |ReRy|

Re(V11;") (2.16)

. o 2 . 2
If the source is terminating port 1, then |aj| will be zero and | ,Bj| can be expressed as,

2

V., —R,*I
2_2 2| = |ReR,||I,|? (2.17)

Bal? = |
2 2./ReR,

where 2.17 is representing the delivered load power.

Coefficients S,,, of S-parameter matrix are representing the ratios between reflected and

incident waves, is most appropriate depiction of microwave circuits. When a source with

available power |aj |2 is attached to port j, value of a for port j and value of § for all ports can

be calculated.
Atport j, S;; will be,

10



o B _ V=R _ Qunl— Rl Qi — R 2.18)
J] - - - :

in 2.18, Q;, is representing the input impedance of port j. The reflection coefficient of port

j will be p;;,, and is equal to S;;

i j» power loss at port j can be given by,

|S lz _ |,8j|2 _ Reflected power from input port 519
A |aj|2 ~ Availale power at source to port 2.19)
at any other port k and j # k , transducer power gain can be given as,
2 |Bkl? Power delivered to the load
S| =—5 = (2.20)

B | |2 ~ Availale power at source to port

By the law of conservation of energy, the total incident power at all the ports of a passive
network system must be equal to the power dissipated by in the network and power reflected
from the network. The dissipated power by the network can be calculated by subtracting the
reflected power from incident power as |aj|2 - | ﬁj|2. The total dissipated power P, can be

given as the summation of the dissipated powers at every port of the network (Medely, 1993).

Pa=30 (gl = 1B)]°) = Sy ayay” — S0 15" (2.21)
or,

Py=[a"fa = [B"]'B (2.22)

here [a*]* and [B*]* are representing the transpose of complex conjugate of each element of

and 5. By 2.7,

81" = [S*]*[«"] (2.23)
substituting 2.23 in 2.22,
Py = [a*]ta — [S*]*[a*]*Sa (2.24)



after simplifying,
Py = [a*]H{I — [S*]'S}a (2.25)

the term in curly braces of 2.25 determines whether the dissipated power is positive or negative.

The definition can be given as (Medely, 1993).

W =1-[S"]tS (2.26)

The expression in 2.26 is showing the dissipation matrix and if W is nonnegative quantity the
behavior of network will be passive means the dissipated power is zero or greater than zero.

For two-port passive networks,

1S1117 + 152117 <1 and  [Sy,|* + S5 < 1 (2.27)
For two-ports lossless networks the power dissipation will be zero and the expression in 2.26

will become,

I1=1[S*]'S (2.28)

or in matrix form,

1 0 Si1 551] S11 512]
= | ox . 2.29
o U=lsh sills s (229)

and the can also be

5;1511 + 551521 = 1 (230)
5;1512 + 551522 = 0 (231)
5;2511 + 552521 = 1 (2.32)
szslz + S;ZSZZ = 0 (233)

by solving 2.30, 2.31, 2.32 and 2.33 the expression will be,
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811811 = 822822 and  S1;515 = 531521 (2.34)

The relations derived earlier are concluding that the magnitudes of reflection coefficients and

transmission coefficients are bounded by unity, i.e. |Sk j| <1lforp =iw.

The discussion earlier can be summarized as following fundamental properties of lossless two-
port networks (SENGUL, 2006) (Aksen, 1994).

1. For real p the elements of matrix S are real and rational.

2. In Re p = 0 the matrix S will be analytic.

3. Matrix S is paraunitary and satisfies [S*]*S for all p.

4. The lossless two port system will be reciprocal if matrix S is symmetric,

1.€. 512 = 521.

The corresponding impedance and admittance matrices can be easily estimated if the scattering
matrix satisfies all the conditions discussed above. The realizability theory based on
Darlington approach, in immittance formalism, can be established and expressed by using the
driving point functions of a two-port network terminated at the output by a resistance. At this
point of discussion, it is relevant to describe the following fundamental properties in
correspondence to the driving point impedance and reflectance functions (SENGUL, 2006)

(Aksen, 1994).
e The function S; (p) will be bounded and real if

1. Forall real p, S; (p) is real.
2. In Re p > 0 the matrix S; (p) is analytic.
3. |S1(iw)] <1,V w.

e The relative input impedance R;(p) of a resistively terminated two-port can be given

as,

1+5:(p)
1-5:(p)

13

Ri(p) = (2.35)



the impedance function 2.35 is positive real function (p.r.f) and satisfying the

following properties as well,

1. Forall real p, R,(p) is real.
2. forRep >0, Re R,(p) > 0.

The conclusion can be made for a resistively terminated two-port network that the realizability
of driving point functions that, "A rational and positive real impedance function (or also be a
bounded real reflection/impedance function) can be achieved as a resistively terminated

lossless two-port”.
2.3 Scattering Transfer Representation of Two-Ports

The more appropriate way of dealing with, cascaded two-port networks, is to use the scattering
transfer matrix instead of the scattering matrix. Consider 2.5 and 2.6 , rearrange the port

variables a; and f;, the rersult can be expressed as

p1=Tia; + T12f5, (2.36)
a, = Trray + T3, (2.37)

and the matrix representation of 2.36 and 2.37 is,
,31] [Tn T12] @z
= 2.38
az T21 Tzz [ﬁz] ( )

The definition of scattering transfer matrix T is explained in 2.38, the members of matrix S are

related to the members of matrix T, as follows,

_dets o Smo. Sy 1 230
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In 2.39 det S is representing the determinant of matrix S, also the elements of scattering transfer
matrix are rational functions, the reciprocity condition for two-port in the case of scattering

transfer matrix is S;, = S,;that gives to detT = 1.
2.4 Canonic Representation of Scattering and Scattering Transfer Matrix

Scattering parameters of a two-port can also be represented in term of compact three canonic
polynomials. The Belevitch canonic representation of scattering matrix and scattering transfer

matrix can be given as (Belevitch, 1968),

and T==|"9" ] (2.40)

[f —ah f[ah g

where f, = f(—p) is paraconjugate of a real function. The properties of canonic polynomial

f,g,and h are given as (Aksen, 1994) (SENGUL, 2006).

e f is monic, i.e. its leading coefficient is equal to unity.
e g is strictly Hurwitz polynomial.
e f=f(p)g=gp)and h = h(p) are real polynomials in complex frequency domain.

e The relation between f, g and h is,
99+ = ff. + hh. (2.41)
e o is constant and its value is £1.

If the two-port network is reciprocal, then the polynomial f will be either even or odd in the

case of even the 0 = +1 and if it is odd then ¢ = —1, so as result,

Q
Il
|5
Il
=+
—_

(2.42)

now the relation expressed in 2.41 can be expressed as
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99. = 0f?*+ hh, (2.43)
as p = iw, and from 2.41,
|hl < lgl and |h| < |f] (2.44)
which in turn imply following degree relations,
degh <degg and degh<degf (2.45)

the notation deg stands for degree of the canonic polynomials, the term degg — degf is
representing the number of transmission zeros at infinity and the information about the degree

of lossless two-port network lies and equal to the degree of polynomial g.

In the canonic representation, there is a possibility of the presence of common factor of g, f and
h at same time. Simply, generally it is not necessary that g is least common divider for
scattering polynomial Sy ;. For example, consider g and f have a common factor, the transfer
factor S,,will be irreducible from f /g, and the same description will old for other terms of S.
As from the mentioned characteristics, g the common divider is strictly Hurwitz polynomial,
so any common factor of the canonic polynomials is also necessarily Hurwitz. Moreover from
2.41, a common factor between any two of three polynomials g, h and f must necessarily

divide the third polynomial or its paraconjugate.

A brief discussion about transmission zeros will be part, in next lines. The transmission zeros
for a two-post lossless network in forward direction are defined by the zeros of S,; (p) and in
revers direction by zeros of S;,(p). Hence, the calculation of total transmission zeros can be

estimated by the product of irreducible forms of f /g and f/g., by using 2.41 result is

ff. _ 99— hh.

2.46
7 7 (2.46)
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Note from 2.46 that the cancelation of possible common factors between f f, and g2 may only
occur at those zeros of g which are zeroes of h or h,. Here ff, is real even polynomial,
therefore its zeros must be located symmetrically with respect to iw-axis, and they are double
on this axis. On the other hand, since g is strictly Hurwitz polynomial, there is no possibility
of the existence of any cancelation of ff, in the close right half plan(RHP), i.e. Rep = 0.
Consequently, the number of finite zeros of transmission in Re p = 0 are equal to the degree
of f. The number of transmission zeros at infinity is then determine by the degree difference
between g and f. Obviously, the total number of transmission zeros in Re p = 0 including

those at infinity is equal to the degree of g.

If the two-port lossless network is reciprocal, then by 2.42 ff, = of?, and therefore each
distinct finite transmission zero occurs with even multiplicity. If, in addition, all the
transmission zeros are located on iw-axis including infinity then because of 2.46 and
Hurwitzness of g, the polynomial f, g and h have no common factor and two-port is all-pass
free.

Now consider the input impedance R{(p) of the lossless two-port network N as shown in
Figure 2.2, and its output is terminated by a resistor. Using the bilinear relation between R,

and S, the input impedance can be given as,

14851 g+h n
f=1=s T g-n~4d
—9o11 g~

(2.47)

here polynomial ratio - isan irreducible form in above expression.

2.5 Distributed Networks with Commensurate lines

While working with microwave frequencies, there are problems related to the realization of the
conventional lumped elements, to resolve these issues the phenomenon of distributed networks
made by transmission lines are appointed. the designing of the distributed circuit by using

transmission lines is a very well discussed topic in the literature.

While synthesizing a distributive network, most of the approaches are based on utilization of a

building block of a unit length of a transmission line and commonly known as the unit element
17



(UE). The original idea by Richard (Richards, 1948) was, in most of the microwave filters and
matching design techniques, homogeneous and finite transmission lines of commensurable
length are used as ideal unit elements. Carefully focus that all the lengths of line elements must
be multiples of UE lengths. By keeping the idea of distributed networks composed of
commensurate lengths of transmission lines transformation in mind one can analyze and

synthesize the networks as lumped element networks.

A = tanhprt (2.48)

where 7 is representing the delay of transmission line and p = ¢ + iw is complex variable for
frequency. Also A = X + i) is known as Richards variable. By using this transformation,
periodic mapping of A-plan onto p-plan is possible. The conclusion is, a distributed network
employed of commensurated transmission lines shows periodic frequency response with

respect to the original real frequency.

The important thing is to take care about while mapping, right half plan (RHP) and left half
plan (LHP) p-plan directly mapped onto the respective right half plan (RHP) and left half plan
(LHP) A-planas {Rep > 0 & Re 1 > 0 }{Re p < 0 & Re A < 0}. As realizability conditions

as based on the criteria of RHP, so RHP criteria must kept same in A-domain.

The transmission lines in A-domain of Richards transformation, can be treated as inductor if
they are short circuited and as of capacitor if they are open circuited, in specific case if the
length of transmission line is shorted then quarter of wavelength, as shown in Figure 2.3. So,
the driving point impedance function of a network composed of open or short-circuited
transmission lines, is real and positive rational function of A. Eventually, synthesis techniques
used for lumped reactance two-port networks can be utilized for the networks built by
commensurated transmission lines, In the case of cascaded connected transmission line, it has
no lumped counterparts so must be dealt separately. This is the reason that the two-port

equivalent network of transmission line in A-domain is taken as a unite element (UE).
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Original frequency Richards domain
domain ( p) (A=tanh pr)
Transmission Line (TL) Unit Element (UE)
o—1  F— P PR
Open ended TL A -Capacitor
|::—%I__o ——C=1/Z¢
—]  }—
/=7ccothpr Z=1/ A C
Short ended TL A -Inductor
|—> -2
/=Zctanh pr =1L

Figure 2.3 Representation of transmission line unit elements and their counterparts in
Richards transformation (SENGUL, 2006).

The networks functions of UEs based networks are clearly are the functions of A. The input
impedance Z(A) of a unit element terminated network with another impedance Z'(1) can be

expressed as,

Z'(A) — 1Z,

W=haw,

(2.49)

here 2.49 shows that if Z'(A) is rational then Z(A) will be rational as well. Conclusion can be
give as (SENGUL, 2006) (Aksen, 1994),
19



e The driving point impedance of a distributed network composed of cascaded

UEs is a positive real rational function of A.

By Richards theorem, UE of characteristic impedance Z, = Z(1) may always be obtained from

the positive real impedance function Z(A) as in 2.49 and the expression became,

Z(A) = AZ(1)

Z(1) — 2Z(2) (2.50)

Z'(A) = Z(1)

Z'(A) is also a positive real function with degree not higher than that of Z(4) in Figure 2.4.
Moreover, for Ev Z(1)|;=1 = 0 in that case the degree of Z' (1) will be one less than Z(4). A
very similar expression of the theorem can also be given for the input reflection function

(Carlin, 1971).

lo, T y—b N
Z(L) Z"(/’l)

Figure 2.4 Application of Richards theorem.

2.6 Network Composed of Mixed Elements (Lumped and Distributed)

Working with waves of micro and millimeter frequency range, for circuit realization the use of
lumped component only, causes serious implementation difficulties, these problems are
physical interconnection of components and parasitic effects. To resolve these problems
distributed structures made up of transmission line are used between the lumped element, these

transmission lines are also helpful for design problems to improve the performance. A very
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useful model can be concluded by the cascaded network of two-port reciprocal networks

connected by mean of equal delayed ideal transmission lines.

In literature, designing of mixed lumped and distributed element was very important and has
grasped attention for long time but still not able to develop and complete design theory for
mixed lumped and distributed elements. Although some concepts of classical network theory
have been used to design some types of mixed element two-port networks but not able to do

approximation and synthesis of all arbitrary mixed element completely.

In the literature, work and devotion can be observed specifically for the mixed elements
networks composed of lumped reactance and uniform ideal transmission lines (lossless and
uniform). The idea is, cascaded lossless lumped two-ports connected with ideal transmission

lines (UEs) (SENGUL, 2006) (Aksen, 1994).

Matching networks and microwave filters are composed of this kind of cascaded structures. It
is so obvious that they have properties of both lumped and distributed networks. These
structures also offer advantages over those networks, designed only by transmission lines or
lumped elements alone, harmonic filtering property is the most important benefit of the mixed
structure. Furthermore, the physical circuit interconnections are made by nonredundant

transmission line elements, help and contribute to the filtering performance of the structure.
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3 A SEMI-ANALYTIC PROCEDURE FOR DESCRIBING LOSSLESS
TWO-PORT MIXED (LUMPED AND DISTRIBUTED ELEMENT)
NETWORKS

This chapter is committed to initiating the fundamental concepts and description of two-
variable cascaded mixed (lumped and distributed elements) networks. Two-variable
characterization of mixed cascades will be encountered and the discussion on the problems
related to the creation of network functions with two variables will be studied, based on

scattering parameters.

3.1 Two Variable Characterization of Cascaded Mixed Elements (Lumped
and Distributed) Two-port Networks

In several engineering problems, complex function with multivariable are commonly used to
describe the response of a system. Design of a micro wave lossless two-port network
constituted mixed lumped-distributed elements can be considered as a best example as
designing of microwave lossless two-ports composed of mixed lumped-distributed elements.
A microwave filter or a matching network may contain equal length transmission lines as well
as lumped elements. To work with these kind of problems, the lumped sections of problems
are expressed in terms of the complex frequency variable p and the distributed section is
described by using Richards variable A = tanh pt. To describe this system mathematically, a
complex two variable function is used. Indeed, both complex variables A and p are
hyperbolically dependent so that makes it a single variable problem. However, if we assume
that both complex variables A and p are independent then it can be solved as two variable
problem (Koga, 1971). KOGA has studied the existence of a relationship between
multivariable and a certain class of single-variable transcendental functions (Koga, 1971). His

work is redesigned for two-variable case is as follows;

e A rational multivariable function S(p, 1) is bounded if and only if the single variable

function S(p,A = tanhp7) is bounded for all 7.

22



Two variable scattering matrix representation of a lossless two-ports composed of mixed
lumped-distributed elements is S(p, 1) and transfer scattering matrix representation is T'(p, 4).
The canonic representation of S(p,A) and T(p, 1), in terms of two-variable polynomials

g, 1), h(p, 1), and f(p,A) is (Fettweis, 1982);

h(p) A) O'f(_p: _A)

SO = oS ) —oh(—p,—2) G-
_ 1 jog(=p,—-2) h®D
T®.D = 705 [ ohm 1) o) (3.2)

The properties of canonic polynomial f,g,and h are given as (Aksen, 1994) (SENGUL,
2006).

e f is monic, i.e. its leading coefficient is equal to unity.
e g is strictly Hurwitz polynomial.
1. g(p,A) # 0forRe{p, A} >0,
2. g(p, ) # 0 is relatively prime with g(—p, —1).
e f=f(pA),g=9g{pA) and h = h(p, 1) are real polynomials in complex frequency
domain.

e The relation between f, g and h is,

e (o is constant with value +1.

e If two-port network includes UEs, then the definition of f will be,

F@.2) = FOF) = FR)F(1—12) 2 (3.4)

where n, is showing the number of unit elements UEs.
In the upcoming sections, the discussion on the cascades of mixed lumped and distributed two-

port lossless networks is entirely based on the canonic representation of scattering matrix.
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3.1.1 Basic Definitions and Properties

In this section, to get understanding and awareness about common terminologies, some
fundamental definitions will be introduced to represent the properties of lossless two-port

networks made up of mixed lumped and distributed elements.

3.1.1.1 Lossless Lumped ladder

Definition 1: A lossless two-port, consists of just a single transmission zero in p domain will

be referred to as simple lumped section (SLS).

The transmission zeros of the SLS on the finite iw-axis are located at p = 0,p = 0 and p =
iw and realization of the concept is shown in Figure 3.1. The point should be noted that the
transmission zeroes of iw-axis must always be present with its complex conjugate as a pair. To

fulfill the practical desires, transmission zeroes at p = 0 and/or p = oo are preferred to be work

with.
Transmission zeros and their corresponding realization in p domain
p=0 p= P = fiwg
- : : -
0 | o 9 =P o l 9 S = 0 0
( L L C %L
-‘_C e
5 i 3 3 g : 0 I 0

Figure 3.1 Simple Lumped Section.

Definition 2: Cascaded connection of SLS, consists of just iw transmission zeros in p domain

will be referred to as lossless lumped ladder (LLL) or simply ladder network.
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Belevitch’s scattering representation of an LLL network is,

1 1h(p) of(-p)

S = g lf(®) —oh(-p)

(3.5)

The properties of canonic real polynomial f(p), g(p), and h(p) are given as (Aksen, 1994)
(SENGUL, 2006).

e f is monic, i.e. its leading coefficient is equal to unity.
e g is strictly Hurwitz polynomial.
e f=f(p), g=9@p) and h = h(p) are real polynomials in complex frequency

domain.

e The relation between f, g and h is,

9@ g() = h(p)h(=p) + af*(p) (3.6)

e ¢ isconstantand f(o = +1).

Equation 3.6 in turn imply following degree relations,

degh <degg and degh<degf 3.7

The term deg g — deg f is representing the number of transmission zeros at infinity and the
information about the degree of lossless two-port network lies and equal to the degree of

polynomial g.

Consider n,, = deg g and the coefficient form of f(p), g(p), and h(p).
Tlp Tlp np
fo) = kap" , h(®) = Z hep* , g() = Z gip" (3-8)
k=0 k=0 k=0
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In 3.8 all the polynomials are considered as of degree n, for the sake of convenience to

formulate the upcoming equations. From 3.7, the inequality relations of degree of polynomial

that if deg f <n, and deg h <mn, one must set corresponding coefficient of the polynomial h

and f equal to zero. Consider 3.6 which led us to,

F(=p*) = f@f (=p) = ) fur®™
k=0

H(=p?) = h@IR(-p) = ) hyp** (3.9)
k=0

G(—p») =g(P)g(-p) = Z grp**
k=0

The coefficient of Fj, , G, and Hj, can be given as,

2k 2k 2k
Fr = Zﬁka—l' Gy = Z(—l)ZR_lngZk—z, Hy = 2(_1)2k_lhlh2k—l (3.10)
=0 1=0 =0

where set the values of f; = g; = hy = 0 for [ > n,, and by using the relationship in 3.10 the

lossless relation in 3.6 can be given as,

G(—=p*) = H(=p*) + F(-p?) (3.11)

The following set of n, + 1 quadratic equations can be obtained.

g6 =hi + f¢
k1

k-1
g2 + ZZ(—l)k_lgngR_l =hi + fé+ ZZ(—l)k_l(hthk—z + fif2r-1)
1=0 1=0

(3.12)
fork=12,..,n,—-1

I, = M, + fr,
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where set the values of f; = g; = h; = 0 for [ > n,,.

3.1.1.2 Cascaded Distributed Section

Definition 1: A lossless two-port network, consists of just a single transmission line of

characteristic impedance Z, and delay length 7 is called a simple distributed section (SDS).

It is clear now, that SDS may include a unit element or open or short remnant in series or shunt
configuration. Figure 3.2 is a depiction of the Richard’s domain realization and transmission
zeroes associated with simple distributed section and here open stubs are represented by A-

capacitors and short stubs are represented by A-inductors.

Transmission zeros and their corresponding realization in p domain

o~ o

(¥ I Li

I

2

1
I_

Figure 3.2 Simple Distributed Section.

Definition 2: Cascaded connection of equal length SDS, will be referred to as cascaded

distributed section (CDS).

Definition 3: A CDS, that consist of only commensurated UEs, will be called as cascaded UE
section (CUS).

Generally, a normal CDS can be expressed in term of its bounded real scattering parameters by

using Richard’s variable A. In this case, p will be changed into A in 3.5, expression for canonic

polynomial representation and a factor f(1 — /12)1/ 2 will be introduced in polynomial f (1) as

explained in earlier sections.
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fQ) = fo()f(1—212)"2 (3.13)

where f; (1) is real polynomial could be even or odd and n is showing the number of UEs in

cascade.

Like the lumped element case, CDS can also be expressed completely in terms of h(4) if (1)

is preselected. So 3.6 can be written as,

g g(=A) = hDh(=D) + of 2D f (1 = 7)™ (3.14)

where o is constant, as expressed earlier.

Consider all the polynomials g(A1), h(4) and f (1) are of degree n, for the sake of convenience
to formulate the upcoming equations. If h(1) and f (1) are known then the value of g(4) can
be estimated explicitly by factorization of g(1)g(—A) given in 3.14 or by solving set of

quadratic equations, can be derived in similar manner as of lumped case discussed above,

g =+ f3

k-1 k1
g+ ZZ(—l)k‘lglgz,k_l =hi + fZ+ ZZ(_l)k_l(hthR—l + fifar-1)
=0 =0

(3.15)
fork=12,..,n—1

ghy = 1, + 1,

where set the values of f; = g, = h; = 0 for [ > n;. g(A4) is strictly Hurwitz polynomial.

The above discussion can be concluded in following points.

e Any LLL and CDS can completely described in terms of real coefficient of h
polynomial, if f is known in advance. To achieve the desire goal, carry out Hurwitz
factorization to generate g a strictly Hurwitz polynomial.

e There is another alternative method to generate g, a strictly Hurwitz polynomial. In this
method a set of quadratic equation is obtained by solving the losslessness equation 3.6

and 3.14, and solve them to get g.
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e In the above formulations of transfer scattering function, the numerator polynomial
f(A) or f(p) imposes restricted class of topologies such as ladder or cascaded
distributed section. Despite the selective choice of f(4) or f(p), still there is a
possibility of ending up with different circuit configurations with in the past class
topologies.

e While in working with one kind of network elements, either only lumped elements or
only commensurate transmission line and synthesis procedures are well established in
A or p domain. The synthesis can easily be completed by extracting the transmission
zeros, which in turn yields a degree reduction in the driving point function. In this case,
the driving point function may be expressed as a reflection or immittance function, in
Darlington sense. Extraction of simple transmission zeros from a given driving point
function is equivalent to the extraction of a simple selection. In this type of cascade
synthesis procedure, it is not necessary to have the knowledge about how the simple
section are connected to each other. The information about the connection is imbedded

in the synthesis procedure, in the realization of single variable driving point function.
3.1.2 Cascaded Lumped-Distributed Two-Port Networks

Definition 1: A lossless two-port network, that consist of cascade connection of simple lumped
section and commensurated length simple distributed sections, is known as cascaded lumped-

distributed two-port (CLDT).

Definition 2: A special cascaded lumped-distributed two-port, that is formed by employing
commensurate length UEs placed between the elements of an LLL referred to as low-pass
ladder with UEs (LPLU). Here an assumption has been made that the low-pass type LLL

includes the transmission zeros only at co.

A CLDT can be represented by using the two-variable scattering parameters, function of
complex frequency variable A and p. The scattering matrix representation of a CLDT can be
denoted as S = S(p, A1) and for scattering transfer matrix T = T(p, A). The Belevitch’s canonic
representation in terms of two variable polynomial is as f = f(p,1), g = g(p,A) and h =
h(p, A)follows,
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and T._f[”g* ] (3.16)

[f —ah oh, g

where f, = f(—p,—A) is paraconjugate of a real function. The properties of canonic

polynomial f, g, and h are given as (Aksen, 1994) (SENGUL, 2006).

e f ismonic, i.e. its leading coefficient is equal to unity.
e oisconstantand o = +1.
e g is strictly Hurwitz polynomial.
1. glp,A) # 0forRe{p, A} >0,
2. g(p,A) # 0 is relatively prime with g(—p, —1).
e f,g and h are real polynomials with complex variable A and p.

e The relation between f, g and h is,

= ff. + hh, (3.17)

e If two-port network includes UEs, then the definition of f will be,

f=fNf1—212)" (3.18)

where u is showing the number of unit elements UEs.

3.1.2.1 Connectivity Information Cascaded Lumped-Distributed Two-Port Networks

It is proven fact that canonic representation of two-variable network is possible (Fettweis,
1982). As for as the realizability conditions are concerned, it has also been asserted that
scattering matrix satisfying the conditions explained in earlier sections (Aksen, 1994). While
working with the case of cascaded topology, to insure the realizability and practicability as a
cascade network then the scattering matrix and its canonic polynomial with two variables must
satisfy some more conditions. The most intuitive way to apply these extra conditions for
cascaded structures is to study the effect of the topologic constraints and restrictions on the
polynomial form. To achieve our purpose, some properties of the polynomials f,g and h

related to cascaded lumped-distributed two-port are discussed as follows,
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Let’s start with the introductory notations and fundamental definition related to the two-
variable polynomials, will be used in upcoming discussion. A two variable polynomial say,

g = g(p, ), its coefficient form will be,

ny Mp

gp, 1) = Z Z gklpllk (3.19)
k=0 1=0

where n, is a partial degree of g in the variables A and n,, is partial degrees of g in the variables

p. The arrangement shown in 3.19 can also be rearrange and written as,

9B =) G =) gu @I (320)
k=0 k=0

There is another form to represent a two-variable polynomial is,

9(p.2) = p A = ATAgp (¢.21)
where
oo Yor  YGom lr Il) ]l [ /11 ]
9
Ag = o : Iu 1;“ 0 =|p?| am”:VZ‘ (3.22)
gnpO gnpl gnpnl L?an /1”1

Definition 1: The highest power of a variable, with non-zero coefficient is the definition of a

two-variable polynomial g = g(p, 1), i.e. n, = deg, g(p, 1) and ny = deg; g(p, ).
Definition 2: The absolute total degree of a two-variable polynomial g(p,A) with partial

degrees nyand ny, will be equal to the sum of these partial degrees and mathematically can be

expressed as,
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n =maxg,, .tk + [} k=01,..,n,, 1=01,..,m (3.23)

Now from a cascaded topology consider the transmission zeroes. It is critical to select and
appropriate f (p, 1) function for a mixed lumped-distributed two-port, because f (p, 1) includes
transmission zeros, which in turn enforce topological restrictions on the loss two-port

constructed with lumped elements and commensurated distributed elements.

In a mixed element design composed of cascaded connection of n,, lumped and n; distributed

elements. The polynomial f(p,A) can be given as,

fe.0 =] [ A @ (3:24)
k=1

where fi,(p) and fi (1) interpret the transmission zeros of discrete lumped and distributed
subsegments present in the cascade. Generally, the transmission zeros can possess any place in
the p and A plane. From 3.24, an immediate conclusion can be drawn, that in the cascade the
transmission zeros in each subsegment have to appear in multiplication form. In simple words,
the polynomial f(p, 1) of whole mixed element network can be assumed as product separable

form,

f.D=f'®Ff"An (3.25)

f'(p) will be a real even or odd polynomial if the transmission zeroes are considered on the

imaginary axis iw or if), and general expression for f''(A) is,

') = foOf (1 = 22"z (3.26)

where u is indication the number of UEs present in the principal path from input to output of
CLDT. By overlooking the zeros of the finite imaginary axis in f'(4) and f" (1)

(excluding those at dc), a realistic form of f(p, A) can be derived as,

fp, 1) = p1A®f(1 - 22)"2 (3.27)
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here total number of transmission zeros at dc of the lumped and distributed are represented by

q1 and g, respectively. After excluding the transmission zeros at dc, the expression in 3.27 can

be written as,

fp, ) =f(1—22)"

(3.28)

This is the characteristic configuration of f(p,A) of an LPLU design composed of simple

lumped elements and UEs. It is clear in this case that f(p, 1) is only dependent function of A .

Matrix representation of the real coefficients of g(p, 1) and h(p, 1) is,

hoo  ho1
h h
A, = 10 M

!
I

I .
[hn,,o .

)

In,0  YInp1

gOTl)L
gln;l

(3.29)

gnpna

Property 1: The two-variable polynomial g(p,4), h(p,4) and g(p,A) can be expressed in

term of a single variable p by putting A = 0, the lumped lossless two-port in this case can be

completely described by columns of Aj, matrix.

Property 2: The two-variable polynomial g(p,4), h(p,1) and g(p, ) can be expressed in

term of a single variable A by putting p = 0, the lumped lossless two-port in this case can be

completely described by rows of Aj, matrix.

According to the above properties, it can be proved that the coefficient matrices A, and A4 can

entirely be generated by using first column and first row of matrix Aj, if the information about

the cascaded connection is pre-known, while assuming the cascaded connections of lumped

and distributed two-ports structures, in alternating order. This claim can be proved by

considering following assumption,
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a)
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Figure 3.3 a) Cascaded Distributed Design and Lossless Lumped Ladder. b) Cascaded
Decomposition. c)Cascade of Simple Lumped and Distributed Section.

Consider Figure 3.3(a) where L is representing LLL (lossless lumped ladder) and D is denoting
CSD (cascaded distributed section). With the help of algebraic network decomposition
technique (Aksen, 1994) the network present in Figure 3.3 can be decomposed into their L
and Dy subsections as depicted in Figure 3.3(a). Now consider Figure 3.3(c), in which a lossless
two-port network is constructed by using alternating ordered cascade connections of lumped

and distributed subsections.

Assume that S(1) and S(p) are respectively representing the scattering matrix S(p, A)of
cascaded distributed section D and lossless lumped ladder L. In this representation, the
scattering matrix of the developed mixed composition, can be determined in terms of scattering
matrices of subsections S (1) and S (p), determine from S(4) and S(p) respectively. While
working on the decomposition of S(4) and S(p), the number of elements and the corresponding

zeros of transmission are designer’s choice for every subsegment, after these selections with
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no effort scattering parameters for each subsegment can be derived form S(4) and S(p). The
scattering parameters of mixed structure can be calculated effortlessly by cascading these

subsections.

The summary of above explained idea can be stated again, regarding to the scattering
parameters matrix of mixed lumped-distributed networks, the observations are as following,

e Fori=0, S(p,0)=S(p)

e Forp=0, 5(0,10)=S)
From above points, if the number of subsection pre-chosen and the information about the
connections (the order of subsection) is known then from the first row and first column of
matrix Ay, the scattering parameters S(p, A1) can be obtained easily. If A = 0 and f(p) is given,
then by using h(p) polynomial of S(p) the first column of Aj, and A4 can be developed easily.
Similarly, if p = 0 and f(A) is given, then by using h(A) polynomial of S(A) the first row of
Ay and Ay can be obtained readily. Afterwards, by using the connectivity information of
sequential cascades remain elements of the matrices A, and A4 can be generated with the help
of S (1) and S, (p). So, the point can be affirmed that by deleting the first row and first column
of A, and A, the submatrix can be obtained, and these submatrices are related to the

connectivity information of mixed structures.

Let’s separate the first columns Ay, and A, and first rows Ay and A, of matrices Ay, and

A jand the remain matrices can be named as Ay, and A g, respectively and can be given as,

hoo hoo I[ hi1  hiy hing
h h h h h

Ap, =" A =0 An=| T ral(3.30)
hon, h"p [h"pl hnpl hnpmJ
oo Yoo g1 912 9in,
Jo1 J1o0 921 Y22 9on,

Ag, = i |V Ag. = |F  Ap= : - (3.31)
Yon, In, Inp1 Gnp1 YInpn,
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here, [Ap,,Ag ]and [A, , A4 ] are representing the polynomials of h(4) and g(4) distributed
cascaded designs and lumped cascades respectively, as shown Error! Reference source not f
ound. and the information about the connection order of subsection in the cascade is

determining the submatrices [Ay,, Ag, ] of order n, X n;.

3.2 Construction of Two-variable Network for Cascaded Designs

In this specific part, our goal is to develop a real parameter characterize the lossless two-port
networks built with mixed lumped and distributed elements and to achieve our aim simplified
real frequency technique(SRFT) is used (Aksen, 1994). Generally, in SRFT a lossless two-port
network made up of single kind of elements, lumped or distributed can only be express
completely in terms of real polynomial of h and polynomial f is given. In our recent problem
it may be suitable to apply SRFT to extract real coefficient of h(p, A)polynomial of lossless

mixed two-port with lumped and distributed elements.
3.2.1 Factorization of Two-Variable Polynomials

While studying the case of a single polynomial, the factorization of polynomial can be done by
simply finding the roots, and there are well established tools are present to find location of
roots. But, in the case of multivariable polynomial, root finding is not possible by using
conventional tools unless they are separable in each variable (Seaks, 1976) (Bose, 1982). This
is the basic reason that causes the major problem in synthesizing the network functions with

multivariable.

In designing the lossless mixed two-ports (lumped and distributed elements), paraunitary
condition needs to be encounter with, that requires the explicit factorization of a two-variable
polynomial of the form G(p, 1) = g(p, A1) g(—p, —A) if the network is advised in terms of real
coefficients of the h(p, 1) polynomial. Root finding technique to factorize the single variable
polynomial may be considered as an equivalent method to find the solution for a set of quadratic
equations. By using this approach, it may be possible to obtain a generalized factorization
procedure for multivariable polynomials with the restricted condition that g(p, 1) is strictly

Hurwitz polynomial in nature.
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To be more specific, the polynomial f(p, 1), g(p, ) and h(p, A) can be written as,

f@D =) fWp*, 9o =) g@pk,
k=0 k=0 (3.32)

np
and h(p, 1) = Z h ()"
k=0

where the coefficients of polynomials f;, g, and hy, are,

nj ny n;
fi(D) = kale" , gk = Z g, he(D) = Z Ry AK (3.33)
=0 =0 =0

unitary conditions from 3.17, can be given as

G(p, ) =H({, D) +F(p,2) (3.34)
where,
and,

G(p, ) = Go(A) + GL(Dp + G, (Dp? + - + G, (D™ (3.36)

where the coefficient polynomials G (1) are,

k
(D) = Z(—1)k Geei(Dgi(=2), fork = 0to 2n, (3.37)
=0

where g, = 0 forl > 0.
If the expression 3.37 is examined closely, the fact will be revealed that for even values of k,

Gy (A) is even and for odd values of values of k, G, (1) is odd. The whole expression in 3.34
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can be written in the similar generic form used in expression 3.37 and by equating the

coefficients polynomial of same power p, the obtained (2n, + 1), equations can be given as,

k
i —D*gr_ (D g1 (—2) = Z(—l)k[hk—l(l)hz(—l) + fietDfi(=D)]

L (3.38)
=0

fork =0 to 2n,
where g, = h; = fy =0forl >n,.

The equation set in 3.38, have n,, + 1 equation with even polynomials and n,, equation with
odd polynomials. Now, substitution the polynomials f; , g, and h; of 3.33 in 3.38 and by
comparing the coefficients having same power of 1 in each polynomial equation, following set

of nonlinear equation are obtained,

m-—1
gg,m 3 2 Z (_1)m_n90,ngo,2m—n = h(z),m + fOZ,m
n=0
m-—1
_ 3.39
+ 2 Z (_1)m n[ho,nhO,Zm—n + fO,nfO,Zm—n] ( )
n=0
: form =20 to 2n,
k m
-1 k—l-n
( ) gl,ngk—l,Zm—l—n
=0 n=0
k m
- 3.40
= z Z(_l)k tn [hl,nhk—l,Zm—l—n + fl,nfk—l,Zm—l—n] ( )
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k m—1

Z(—l)k_l GimGk-1m t+ 2 Z D" " g1 nGk-1,2m-n)
n=0

=0
k
= Z(—l)k_l (hymhi-1m + fimfie-im
= (3.41)
m-1
+ 2 Z (_1)m—n [hl,nhk—l,Zm—n + fl,nfk—l,Zm—n]
n=0

f_ork =24,,2n,—2 and m=0 to my

m-—1
g%p,m + 2 Z (_1)m_ngnp,ngo,2m—n = h%p,m + fnzp,m
n=0
m-—1
_ 342
+2 (_1)m n[hnp,nhnp,Zm—n + fnp,nfnp,Zm—n] ( )
n=0

form =0 to n,

The set of equations from 3.39 to 3.42 are called as the fundamental equation set (FES) because

the solution of above set of equations for the coefficient of gy; is equivalent to factorization of

G, ) =g, Dg(—p,—1).

Each equation in FES is quadratic and contains g, and g;coefficients. By inspection of each
subset in each subset of FES, total number of equation N, can be calculated and expression can

be given as,

N, =(n, +1)(ny + 1) + nyny (3.43)

Now to estimate the number of unknow is important, for this purpose consider f (p, 4) is known
then total number of unknown coefficients in polynomial h(p, 1) and g(p,4) will be 2(n,, +
1)(n, + 1). If we consider that the first row and first column of matrix Ay consists independent
descriptive parameters of the lossless two-port network or the pre-known, then the remaining
Ay, coefficients, those compose Ap, and all the coefficients of corresponding A4, matrix have
to be computed. So, in this scenario the number of unknowns in FES is greater than that number

of equations hence the solution set of above equation for unknown cannot be determined. On
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the other hand, by using one subset of above system of equation the elements of first row and

first column can be calculated. In fact, a close examination of above FES unveils the following,

e As mn,+ 1 independent equations are expressed in terms of {gko, hko, fko}, (k =
0,1,--+,ny, ). It reflects that fio, hyo are known and the unknows gyocan be calculated

by the help of n,, + 1 independent equations. i.e.,

2 _ 12 2
9o, = hoo + foo

m-1

grzn,o + 2 Z D™ " gn092m-n,0
n=0
m-—1
= hpno + fimo +2 2 (D™ ™ (hpoham-no + fuofzm-no) (3-44)
n=0

fork=12,..,n,—-1

2 = h2 2
gnp,O nyp,0 + fnp,O

one thing must be kept in mind while working with this scenario that the resulting
coefficients gy, are positive and real and satisfying the condition that g(p, A) is strictly

scattering Hurwitz polynomial.

e n;+1 independent equations are expressed in terms of {goi, hoi, for} (k=
0,1,---,mny ). It reflects that f,,;, hy; are known and the unknows gg,can be calculated
by the help of n; + 1 independent equations in such a way that the resulting coefficients
Joi are positive and real and satisfying the condition that g(p, A1) is strictly scattering

Hurwitz polynomial. i.e.,

2 _ 32 2
Yoo = ho,o + fo,o

m-—1

g(z),m + 2 z (_1)k_lgo,ng0,2m—n
n=0

(3.45)

m—1

= h§p + for +2 Z (=™ ™ (honho2m-n t fonfo2m-n)
n=0
fork=12,..,m—1
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2 — L2 2
gO,TlA - h’O,‘l’l)L + f-O,Tl)L

Now the problem is to calculate the remaining coefficients in g(p, 4) and h(p, 1) to satisfy the

FES and these unknowns coefficients are constitutes of matrices Ay, and Ag, of order n,, X ny.

The total number of unknown N,, can be given as,

N, = 2n,ny (3.46)

Subtracting 3.46 from 3.43 the result is,
Ne— Ny =n,+n;+1 (3.47)

from 3.47, it can be concluded that the solution of FES is still overdetermined. The intuitive
approach imposes that for a realistic system the number of equation and number of unknowns
must be same. Therefor to picture a practical system n, + n, + 1 independent conditions are
required. Previously it has been discussed, the coefficients of submatrices A,, and A4, can be

readily related to the connectivity information of cascaded systems as shown in Figure 3.3. In
this case, the information about connectivity must be given or estimated on such lines that the
obtained g(p, A) is scattering Hurwitz polynomial. On the other hand, to define a generalized
explicit solution to obtain g(p, 4) as a strict Hurwitz scattering polynomial is not clear because
FES is nonlinear. Therefore, to realize a practical system, some properties of fundamental
equation set must be explored, and necessary restriction and constraints must be developed.
Unfortunately, there is no general analytical solution has been proposed yet that can give an
acceptable solution. However, for some limited classes of circuit configuration, the solution of
FES is possible up to a certain complexity by using conventional algebraic numerical methods,
provided that a sufficient information about connectivity is given. As an example, the explicit
solution for 5 element ladder structure composed of simple lumped sections connected by mean
UEs can be calculated. For more general cascades, a new approach has been proposed that
based on the algebraic decomposition technique, which results an acceptable solution for FES.
The proposed method is called “Standard Decomposition Technique” (SDT) explain in

upcoming sections.
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3.2.2 Construction of Low-Pass Ladders with Unit Elements(UEs)

As for as the practical implementation is concerned, alternating connections of simple lumped
first order sections with unit elements, is considered as the most practical circuit configuration
as shown in Figure 3.3. This kind of circuits are known as low pass ladders with unit elements
and short form is LPLU or LPLUE. The properties of scattering polynomial describing the

LPLU can be summarized as following,

orien P
1

! T CI Zg 3 T C2

(%7

(-]

Figure 3.4 Low-pass Ladder with Unit Elements.

e LPLU includes first order lumped sections with transmission zero only at oo, and unit
elements with transmission zeros at A = +1. So, the polynomial f(p,A) of the

discussed LPLU can be given as,

fp, ) = F(1 —42) "z (3.48)

where n; is representing the number of UEs used in ladder.

e For the sake of normalized input and output, the coefficients of the constant term of the
polynomial h(p,A) are selected as goo =1 and hyy =0, for a transform free
implementation. A vary simple justification of this choice can be given by the
characteristic of reflection and transmission functions p = A = 0. For a transparent
network, the condition must be S;,(0,0) = 0, hence hyy = 0 and S,;(0,0) =1, so

foo/ 900 = 1 which is leading us to fyo = goo = 1 and can be seen in 3.48.
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e By setting A = 0, will reduce the structure only to the lumped section and the problem
is now reduced to single variable problem. In this case the polynomial will

be, {f(p,0), g(p,0) and h(p, 0)} are totally representing an LLL structure.

e Similarly, by considering p = 0, will reduce the structure only to the cascaded UE
section and the problem now is also converted into single variable problem. In this case
the polynomial will be, {f(0,1), g(0,4) and h(0,1)} are completely description of a
CUS structure.

e The sequential cascaded analysis of general ladder designs leads to the coefficient

matrices Agand Ay in 3.49 are showing the general form associated with LPLU

network.
[0 ho1  ho hOn,l] 1 Gor Yoz Gony ]
| hio hi1 hiy - h1n,1 | [910 911 912 - YGinmy|

Ah=|h20 hpy - 0 |,Ag=|920 921 0 | (3.49)
o 0 o 0] lgmo -0 1 0]

e Properties of matrices Agand Ap:

1. The elements of Az are nonnegative and real numbers.

2. go1 = 901910 — ho1hio,

3. Gmn=hmn=0 form+n>n;+1 and m,n=0,1,---,ny,

4. hpn = pgmn for m+n>ny+1 and m,n=0,1,---,n; where p = +1,
5

. ny=ny+ 1,thenp = hnpo/gnpo = +1.

The existence of these properties is because of the recursive behavior of LPLU structure and

readily proved in literature (Aksen, 1994).

The connectivity matrices Agkand Ay, can easily be extracted form coefficient matrices Agand

A, present in 3.49 and both are upper triangular.
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[ M1 Pz Pas hin, ] [ 11 Gz i3 hin,]

| ha1  haz hys 0 | | 921 922 Y23 0 |
Ap,=| hs1  hzp O 0 I,Agk=| g1 gzz O 0 | (3.50)

l hnyo O 0 .. 0 J | gnyo O 0 ... 0

In this case, it can be notices that number of unknown are reduced because some diagonal terms

of the connectivity matrix Agkare equal in magnitude to the matrix Ay, furthermore, some of

the coefficients are happened to be zero as well.

By using earlier discussed properties and simplified connectivity matrices Ag kand Ay,,, and

FES (fundamental equation set) can be solved and development of explicit solution is possible

that can describe the relation between Agand Ay, up to degree n = n,, + n,. In next section an

improved review for n=5 has been presented.

3.2.2.1 Explicit Solution for Low Order Ladders

In this part of the novel, the explicit formulas are derived for low order and low-pass ladders.
The complexity of the structure is considered up to 5 elements, and a FES is developed and
solved by using the earlier described properties, to determine the explicit magnitude of the

canonic polynomials.
e LPLU of Degree Two:
Consider a two-variable polynomial with degree one in each variable as n, =ny =1

and the polynomial f,g and h can be given by utilizing the previously discussed

details, as

1
f=1-2)2, g=go+9:p, h= hy+hp,

(3.51)
where 9k = ko + g1d, hg = hgo + hpyd, and k=0,1

from 3.38 we can obtain,
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Jox = hOhO* + (1 - /12)
9190+ + 9091+ = hiho. + hohy,
9191« = hqhy,

Now by substituting the values of g, and h; and then comparing the coefficients of

the same power of A, the obtained FES will be,

950 = ho +1
g5 =h§ +1
901910 T Goog11 = ho1ho1 + hoohiy (3.52)
9o = h§o +1
g6 =h§ +1

Here an assumption is made that goo = 1 and hyy = 0 and hy; and h4, is taken as

independent coefficients so, 3.52 is giving

o1 = (h(zn + 1)1/2; 910 = |hyol (3.53)
911 = 901910 — ho1h10, hi1 =ngi1and n = =1 (3.54)

where, g,; > 0, in this specific case, gg; > |ho1].

As the polynomial are satisfying these coefficient relations, so to estimate the
realizations following are to proceed. If the boundary case is considered with A =
0 and p = 0, then it can easily be expressed that they correspond respectively to a
simple lumped element and a UE section. It can also be noticed from 3.53 and 3.54, the
polynomials and coefficient relations specifically in this case are telling clearly that the
values of elements obtained corresponding to respective section is always positive. This

is compulsion is true because g(p, 0) and g(0, A) is Hurwitz polynomial.

Suppose g(p,0) = gp, f(p,0) = fp and h(p, 0) = hp, also g(0,4) = g, f(0,2) =
fi and h(0,1) = h; are notations for the representation of the boundary polynomials

corresponding to the case p = 0 and A = 0. Form 3.66 and 3.67, we obtained following,

45



-]

CaseI (p = 0):

1
fr=Q1 —/12)5» gp =1+ go1d, hp = hpd,

, , (3.55)
where go1=1+h§, Go1 > |hoil

these corelates with a UE of characteristic impedance R = ggq + hyq =

1/(go1 + ho1) > 0.
Case Il (4 = 0):

=1 g.=1+g10, h,= hup,

where  g;0>0, hyo=1m01 and n; ==1 (3.56)

Here, the negative and positive signs are a representation for capacitor and

inductor respectively, but their values are always positive as, L = 2g,, and

C = g1o-

L L

Q

o o © ° © Cad 112
i

1
| o e T

0(]

o
Q

(a) (b)
Figure 3.5 LPLU Section of Degree Two.
Suppose, the distributed section described by 3.55 is denoted by [D] and
lumped section is denoted by [L] and a configuration is in Figure 3.5 . The

polynomial corresponding to these configurations will differ only in g;; and

h,1, and end up expressions are in the following form,

[LI[D]: 911 = 901910 — ho1h10s hi1 = M911
[D][L]: 911 = 901910 — ho1h10 hi1 = —1M1911
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clearly, it can be noticed that these coefficients are similar to the coefficients in
3.54. It can also be seen that each case consists two configurations based on the
sign of n = 1. In above expressions h;; =1ngy1, 1 = £n; = +1 is used as
an additional parameter. For n = +1 sections are represented in Figure 3.5 (a)

and for n = —1 sections are represented in Figure 3.5 (b).
e LPLU of Degree Three:

Now Consider a two-variable polynomial with degree three so n, =2 , ny = 1and

the polynomial f, g and h can be given by utilizing the earlier knowledge, as

1
f=A-2%)2, g=go+gip +9.p*, h= ho+hip+hyp?,

(3.57)
where Ik = ko + gkll ) hk = hkO + hkll 5 and k = 0,1

Here an assumption is made again that goo = 1 and hyy = 0 and hg;, and hy, is taken

as independent coefficients so, 3.52 helps to determine gy, and gy, as

gor = (h3, + 1DV?, o1 > |hol
910 = (h31 + go1)™?, 920 = |haol
911 = 901910 — ho1h10s hi1 =ngi1and n=+1

(3.58)

where, gi; > 0.

Remaining FES can be written by using the equation from 3.39 to 3.42 and those are,

901910 — 911 = ho1h1o
931 = h3
910921 — 911920 = h1oh21 — haohiq
2901921 — 9i1 = hortha1 — hiy

(3.59)
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suppose the convention of sign in second equation is taken as g,; = nh,;, and where

n = 1. Last two equations will be as,

1
hyy = +—(920911 — ©921)

hao
920911 0 911
2 =2( +_h2) _ gL 2_h2
921 0 0? 20 ) 921 02 (920 20)
2
where 6 = Jdo1 — nh’Ol and QY =0gio0 — nh’lO’ and the term %

equation is zero so the solutions for h;; and g,; can be obtained are,

921 =0 = hy =—

2 0
921 = 5 (920911 + ah%o) - hyp = h_zogll

(3.60)

(g5, — h3,) in last

(3.61)

From 3.58 and 3.61 it can be noticed that the coefficients of two variable polynomials

g and h are represented as the combinations of independents coefficients

{ho1, h1o, hyo}. Figure 3.6(a) is showing the case of alternating connection of elements

where g,; = 0 and Figure 3.6(b) is showing the case with g,; # 0.

(a) (b)

Figure 3.6 LPLU Section of Degree Three.
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here, the negative and positive signs are a representation for capacitor and inductor

respectively, but their values are always positive can be proved similarly to the previous

section of LPLU of degree two.

Suppose g(p,0) = gp, f(p,0) = fp and h(p,0) = hyp, also g(0,2) = gy,
f(0,1) =f, and h(0,4) = h; are notations for the representation of the
boundary polynomials corresponding to the case p = 0 and A = 0. Form 3.66
and 3.67, we obtained following,

Casel (p = 0):

Since, the value of ny = 1 so the results of fp, hp and hp will be same as shown

by 3.55,

1
fr=@1 —/12)5» gp =1+9gnt, hp= hpd,

: , (3.62)
where go1=14+h§, Go1 > |hoil

these corelates with a UE of characteristic impedance R = ggq + hyq =

1/(go1 + ho1) > 0.

Case Il (A = 0):

fu=1 g, =14 g10p + g20p*>, hy = ho1p + hyop?,

where g19 = (h%y + 2920)"/%, hao =192 and 7y = *1 (3.63)

It is clear from the impression that the structure is a second order lumped
ladder. By applying matrix factorization technique (Aksen, 1994), the
polynomial description of each element present in the ladder can be obtained

easily. To do so, suppose the setting f, = f,, = fi, =1 and bring the

following decompositions of g; and h;.
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fi,=1 g, =1+Gp, h,, = nGp,

920

where G =———
! 910 — N1h1o

(3.64)
sz =1 g,=1+0Gp, hL2 = —n1Gyp,

where G, = g10 — Gy

for n; = 1 the inductor in first section is L = 2G4 and the capacitor in second
section is C = 26, and vice versa for n; = —1, and once again it is clear that

the values of C and L are positive.

If various cascade connections are made by using the sections [Li], [L2] and
[D], the outcoming two-variable polynomials will be same for the case p = 0
and A = 0, provided the occurrence order of [L1] and [L2] in the cascade remain
conserved. The change will only occur for the coefficients g;1, hy; and g1,
h,; and can be checked readily by using 3.62 and 3.64. consider the example

of an alternating connection of the sections like ([L1] [D] [L2]), we get

920

921 =h21 =0, 911 = Go1910 — ho1h10, hiy = h_gll (3.65)
20

These relations are same as the relations in 3.61 and the Figure 3.6(a) is covering
the both case that [Li] is and inductor or a capacitor. The correspondence

between 3.61 and the Figure 3.6(b) can also be done in same fashion.
e LPLU of Degree Four:

Now Consider a two-variable polynomial with degree four so n, = n, = 2 and the

polynomial f, g and h can be given by using similar method that is used earlier, as

f=1-2, g=gotgw +g:p*, h=hothip+hp®,  ;q0
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where Ik = Gko + Grad + G2, hi = hyo + hyg A + hyp A%,

and k=0,1

By solving the relationship explained in 3.44 and 3.45, following expressions for gy
and g, can be obtained Here an assumption is made again that ggo = 1 and hyg = 0

and hg, and hy, is taken as independent coefficients so, 3.52 helps to determine gg;

and gy as
go1 = (2(1 + go2) + h3)*?, Goz = (1 + h3,)Y?
(3.67)
910 = (2902 + h3)Y?, G20 = |haol

and remaining coefficients of polynomial g and h can be produced by using FES those
are produced by 3.39 to 3.42. now consider the coefficients properties associated to
LPLU structure in FES, a simplified set of equation can be written, that enables to find
the unique solution for unknows g;; and ky; and k,[ # 0. In this case the restriction

g22 = hyy = 0, leads us to following,

gi2 = hi
g3 = h3;
912921 = hiz2ha,
901910 — 911 = ho1h1o (3.68)

910912 — 911920 = hiohi2 — hozhyq
2(910912 + 901921 — 920902) — 931 = 2(hiohiz + horhay — hyohgy) — h2;
911920 — 910921 = hi1hao — hiohz

from first four equations the value of g;,, g,; and g, can be obtained and suppose the

convention of sign in second equation is taken as g,; = nh,;, and where n = £1. Last

two equations will be as,
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1
912 = 9 (902911 — h11ho2)

1
g21 = 5 (920911 — h11h2o) (3.69)
@ 6 6° @*
hi =2 (5 hoo + ahzo) hi1 — (? h3, + ﬁhgo + 2hgzhy)

where 8 = go; — nhg, and @ = g,9 — nhyp, and the in last equation is a pure quadratic

equation so a unique solution for h;; can be obtained,

0
h11 = _hoz + ahzo (370)

From 3.67, 3.68 and first four equations of 3.69 and 3.70 that is also obtained from 3.69
is required solution set of our FES and represented as the combinations of independents

coefficients {hgq, hqg, hyo}. Figure 3.7 is showing the LPLU realization of degree four.

o Eu L LN
I, z —T
i ; 1 2
. Ic . 1c
L L
110 1 ]
—LZ Z ZJ_Z

Figure 3.7 LPLU Section of Degree Four.

The above unique solution is satisfying the FES and all the general properties related
to low-pass ladders structures with UEs. Here, the negative and positive signs are a
representation for capacitor and inductor respectively, but their values are always

positive can be proved similarly to the previous section of LPLU of degree two.

 Suppose g(p,0) = gp, f(p,0) = fp and h(p,0) = hp, also g(0,2) =g,
f(0,1) =f, and h(0,4) = h; are notations for the representation of the
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boundary polynomials corresponding to the case p = 0 and 4 = 0. Form 3.66

and 3.67, we obtained following,
e Casel(p=0):
Since, the value of n; = 2 so the results of fp, hp and hp will be as,

fo=1=2%, gp =14 goid+ go2A*, hp = ho1A + hoy A%,

1 3.71)
where go1 = (2(L + go2) + h31)2, goz = (1 + h§)'/?

By following the factorization of transfer matrix method (Aksen, 1994) the

decomposition of the polynomials gives,

fo,=@A=2)V2, gp =1+GjA, hp = HjA,

high h h
where G, = g1o 10 0 G10M20

, T e
2 2(1+ g5) ! 2 201+ g3)

72
p, = (L =2D)Y2, gp, =1+ GyA, hp, = H32, (3.72)
2 gz 2

hioh h h
where Gé:glo 10720 g 10 G10M20

2 2(1+g0) P 2 2(1+gg)

here, the decomposition is applied in such a way that following expression are

satisfied,

GI*=H>+1andG,* = H)* +1

By using these constraints with the polynomial from 3.72, the characteristic

impedance Z; and Z, can be given as,

Z, =G, +H,=1/(G, +H,) >0, k=12 (3.73)
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CaseIl (A = 0):

As the value of n, = 2 so the case is exactly same as discussed in degree three

with A = 0 so,

fi=1 g, =14g10p + g20p*, hy = ho1p + hyop?,

where gio = (hfo +2920)"/%  hao =M1g2 and n; = %1 (3.74)

It is clear from the impression that the structure is a second order lumped
ladder. By applying matrix factorization technique (Aksen, 1994), the
polynomial description of each element present in the ladder can be obtained

easily. To do so, suppose the setting f, = f,, = fi, =1 and bring the

following decompositions of g; and h; .

fi,=1 g, =1+Gp, hy, = nGip,

920

where G =————
! 910 — N1h1o

(3.75)
sz =1 g,,=1+0Gp, hL2 = —mGyp,

where G, = g0 — G

for n; = 1 the inductor in first section is L = 2G; and the capacitor in second
section is C = 2G, and vice versa for n; = —1, and once again it is clear that

the values of C and L are positive.
cascade connections are made by using the sections [Li] [D1] [L2] [D2] and [D1]

[Li] [D2] [L2] are describing the polynomials in 3.68. It is obvious that these to

configurations are depending on the unimodular sign constant 7.
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e LPLU of Degree Five:

Now Consider a two-variable polynomial with degree four so n, = 3, ny = 2 and the

polynomial f, g and h can be given by using similar method that is used earlier, as

f=1=2%49=g0+g1p +920°> + g3p>, h = ho+ hp + hyp* + h3p?,

where 9k = gro + Giad + gral®, R = hio + hiad + hyp 22, (3.76)

and k=012

By solving the relationship explained in 3.44 and 3.45, following expressions for ggq
and g, can be obtained Here an assumption is made again that ggo = 1 and hyg = 0
and hg, and hy, is taken as independent coefficients so, 3.52 helps to determine gg;

and gy as

1 1
go1 = (2(1 + gop) + h%1)5: goz = (1 + h(%z)E

1 1 (3.77)
10 = (2goz + hgz)Z, G20 = (hgz + 2910930 — 2h10h30)2

930 = |h3ol

and remaining coefficients of polynomial g and h can be produced by using FES those
are produced by 3.39 to 3.42. now consider the coefficients properties associated to
LPLU structure in FES, a simplified set of equation can be written, that enables to find
the unique solution for unknows gy; and ky; and k,l # 0. In this case the restriction

goo = h22 =032 = h32 =031 = h31 = O, leads us to fOllOWing,

901910 — 911 = ho1h1o
gtz = hi

912921 = hizha

921930 = ha1h3o

(3.78)
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2921930 + 951 = 2ha1hso + RS,
901912 — 911902 = ho1hiz — hozh1y
911920 — 910921 — Go01930 = h11h20 — hiohz1 — ho1hso
2(910912 + 901921 — G20902) — 911 = 2(haohiz + horhay — haohoy) — hi;

From first four equations the value of g,,, g,1 and g;; can be obtained very simply

1.e. g1 = nhyy, where n = “Z—z = 4+1. From remaining equations and with some

substitution from prior study following can be extracted and given as,

) 0
hi1 = 5h02 + ahzo
1
912 = 9 (902911 — h11ho2) (3.79)

1
921 = 5(920911 — h11h20 — 901930 + ho1h30)

Jzo0 -
h3o

where 8 = gy —nhy; and @ = g;o — nhy, and it can be noticed that n = +
having a unique definition and the values of the polynomials g and h obtained by this
way, both topological characterizations are given in Figure 3.8 and the difference
between these two configurations is the sign of free parameter h;y,. By making
alternating connections of elements, it can be proved easily. These connections are
taken from the lumped and distributed two-port characterized by the polynomial

corresponding to the case p = 0 and 4 = 0.

el 1) J_ 9o :—_I_ 41 _]_:
! TC 2 2

o

Figure 3.8 LPLU Section of Degree Five.
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Suppose g(p,0) = gp, f(p,0) = fp and h(p,0) = hp, also g(0,2) =g, f(0,2) =
fi and h(0,1) = h; are notations for the representation of the boundary polynomials

corresponding to the case p = 0 and A = 0. Form 3.76 and 3.77, we obtained following,
e Casel(p=0):
Since, the value of ny = 2 so the results of fp, hp and hy will be as,

fo=1=2%, gp =1+ go1d + go2A*, hp = ho1A + hoy A%,

1 (3.80)
where go1 = 2(1 + go2) + h31)2, goz = (1 + h3,)V/?

By following the factorization of transfer matrix method (Aksen, 1994) the

decomposition of the polynomials gives,

fo, =@ —=2)Y?, gy, =1+4+GjA, hp, = HiA,

@_l_ hiohzo , =@ J10h20
2 2(1+g) ! 2 2(1+ gy)

fo, =@ —=2ADY?, gp, =14+ GiA, hp, = HjA,

where G =
(3.81)

J1o hiohzo . hio J10h20

h Gy =000 gy = 120
where 2772 T2 490 T 2 201+ g20)

here, the decomposition is applied in such a way that following expression are

satisfied,

Gi>=H;>+1andG,* = Hy” + 1

By using these constraints with the polynomial from 3.72, the characteristic

impedance Z; and Z, can be given as,

Z, =G, +H,=1/(G,+H) >0, k=1, (3.82)
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CaseIl (A = 0):

As the value of n,, = 3 so the case will be with degree three and with A = 0 so,

=1, g1 =14 g1op + 9200 + G300,

h, = ho1p + hzop2 + h30P3 )
where (3.83)
9%0 = h3o + 2920, 950 = h50 + 2910930 — 2910930

and 930 = |hsol

It is clear and readily confirmed from the impression g, is strictly Hurwitz and
contains positive coefficients. By applying matrix factorization technique
(Aksen, 1994), the polynomial description of each element present in the ladder

can be obtained easily. The sign convention between g; and h; can be written

by the expression n = % = +1. To implement this, suppose the setting f; =
30

f1, = f1, = 1 and bring the following decompositions of g, and h;,.

fo,=1 g, =1+Gp, h,, = nGp,

fi,=1 g, =1+Gp, h,= —nGp,

fL3 = 1' ng =1+ G3p' hL3 = nG3p' (384)
g3o0 920 — G1(g10 — h1o)
where G =——— ,G, = ,
Y g0 —1Mha T2 gro — Gy +n(hyp —Gy)
and G3 = g10 — G1 — G

for n = 1 the inductor in first section is L = 2Gj, and the capacitor in second
section is C = 26y, and vice versa for n = —1, and once again it is clear that

the values of C and L are positive.

58



cascade connections are made by using the sections [Li] [D1] [L2] [D2] [Ls3]
and [D1] [L1] [D2] [L2] [D3] are describing the polynomials in 3.68. It is obvious

that these to configurations are depending on the unimodular sign constant 7.

3.2.2.2 Construction of High Order Ladders

In the previous section, fundamental equation set of basic ladder structures up to degree five
are solved to find the explicit results of canonic polynomial directly. With increase in the degree

of the ladder structure the problem complex and solving FES become very difficult.

Now consider the case where n,, + ny = 5, precisely, n, = m + 1, ny = m and with the help
of matrices representation in 3.49 the number of nonzero coefficients in g will be
m(m+1)/2 4+ 2(m + 1) also in h. From previous discussion it can be seen that 2(m + 1)
coefficients in h can be chosen independently, also defines 2(m + 1) coefficients in g
properly. Paraunitary condition will decrease the number of equations to N, = m(m + 1) with
number of unknowns N, = m(m + 1). On the other hand, under consideration ladder with
recursive topology requires m coefficients of h are related to m coefficients g reach with in a
sign change. In this situation the number of unknown will be reduced to N,, = m? and FES will
be overdetermined, and the solution will not be the unique solution for case m > 2. It is obvious
to find unique solution, N, + N, = m additional constraints are required on the coefficients.
There is a possibility to find a numerical solution by using numerical tools, but it will also be
very hard because to guarantee the realizability of obtained network function, it is necessary to
assure the Hurwitzness of g during the entire process of numerical analysis. So, other means

of constructing higher order polynomial must be considered.

A direct approach to construct high degree polynomial can be consider that is to cascade the
elementary LPLU segments, one which are already have explicit representation. Explicit
representation of LPLU up to degree five have been already discussed and in each case two are
more configurations are presented. By using two these low order and cascade them we may
have a higher order LPLU with distinguished realization by this method the degree of freedom

for resulting structure can be enhanced. It seems natural that by using several fundamental
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segments in arbitrary or prescribed pattern to make high order low-pass structures. By this
method the structures shown in Figure 3.9 can be made, where second order configuration of
lumped or distributed segments are cascaded. Uncontrolled or degenerated case is expressed
like a case where two inductors are connected shown in Figure 3.9(c) this would rise the
problem of reduction in degree of the polynomial. This problem can be tackled by using the

controlled cascading of elementary elements.

o Ak
; o
(a) &) +c: Z 23 + c,
P J._ o
) L v ) 4 L
N T W °  ongan J_]er °
; | T a2 2 T | .
o | e W ! .
L, L
o AR5 °
© 7, : g
" : -

Figure 3.9 Higher Order LPLUs as Cascades of Elementary LPLU Section.
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4 PROPOSED APPROACH TO FIND ANALYTICAL SOLUTION
FOR LPLU OF DEGREE FIVE

In this chapter, we will focus to find the analytical solutions for LPLU of degree five some real
and realizable values. We will generate a two-variable polynomial with degree five by using
the steps studied in the previous chapter and furthermore two cases will be discussed further

exist within LPLU of five.
4.1 Problem Statement:

The problem encountered, is how to use the algorithm known as “Standard Decomposition
Technique (SDT)” to find the analytical solutions for “Fundamental equation set (FES)”
obtained by using Belevitch canonic polynomial “ g(p,4), h(p,A) and f(p,A)” for mixed
lumped and distributed lossless two-port cascaded networks in two variables and use the
extracted solutions in synthesis of realizable networks. The problem can also be classified into

two cases, first is with three lumped and two distributed (n, = 3, ny = 2) and the second will

be with three distributed and two lumped important (n, =3, ny =2).

4.2 Explicit Solution for LPLU of Degree Five:
4.2.1 Case-I (Three Lumped and Two Distributed (1, = 3, n; = 2))

Now consider a two-variable polynomial with degree five so n, =3, ny = 2and the

polynomial f, g and h can be given, by using earlier discussion as

flp,A)=1—-22,
9®,A) = goo + G011 + Go2A* + g10P + 9110 + g12A*p +
g20P% + ga1p*A + g30p®

4.1)
h(p,A) = hgo + ho1A + hopA% + higp + hy1Ap + hiA%p +

hoop® + hpap®A + hgep®

it is also known that,
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assume gogo = 1 and hyy = 0 and then by making substitution of 4.1 in 4.2 and comparing the
coefficients the required fundamental equation set (FES) can be obtained cans in this case it

will be,

h?, — g%, =0 (4.3)
96, —h,—1=0 (4.4)
2hy5hy1 — 2912921 =0 (4.5)
2hg1hiy — 2hgohyq + 2902911 — 2901912 = 0 (4.6)
gt1 — hi1 — 2901921 + 2902920 — 2910912 + 2horhoy —
2hghy0 + 2hy5h0 = 0 (4.7)
—961 + h§1 + 290, +2=0 (4.8)
2h30hy1 — 2930921 = 0 (4.9)
2911920 — 2910921 — 2930901 + 2h39hoq + 2highyy — 2hi1hy9 =0 (4.10)
2911 — 2910901 + 2hioho1 =0 (4.11)
h3y — g%, =0 (4.12)
970 — h30 — 2930910 + 2h30hio = 0 (4.13)
—g% + h¥ + 292 =0 (4.14)

by solving expression 4.4 and expression 4.9, we can obtain the values of gy, and g, as given

1 1
go1 = (L + go2) + h§)2Z,  gop = (1 + h§y)2 (4.15)

Similarly, by solving expression 4.14 and 4.13 we can obtain the values of g, and g, as

given

1 1
910 = (2goz + hgz)z' G20 = (htz)z + 2910930 — 2h10h30)2 (4.16)

by solving expression 4.12 gives,
930 = |hsol (4.17)
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by solving expression 4.11 can give,

911 = 910901 — h1ohos (4.18)

and remaining coefficients of polynomial g and h can be produced by using remaining
expression from 4.3 to 4.7 presented as of FES with the restriction g,, = hyy = gz, = hz, =
931 = hz1 = 0, the value of g4,, g21,h12, hy1 and hy; can be obtained in a very simple way
by choosing the expressions from FES wisely. From remaining equations and with some

substitution from prior study following can be extracted and given as,

Q@ 0
hi1 = 5h02 + ahzo
1
912 = 9 (902911 — h11ho2)

1 (4.19)
921 = 5(920911 — h11h20 — 901930 + ho1h30)

hy1 = 1921
hi2 = 912921/h21

where 6 = goq; —nhy; and ¢ = g4 — nhyo, and it can be noticed that n = +1 is having a
unique definition and the values of the polynomials g and h obtained by this method.

Now by placing the values of independent variables {hy; = 1.7310, hy, = —1.6281, hy, =
0.1042, hyg = 0.1827, hy3 = —0.9960} the coefficient matrices Agand Ay, can be obtained

easily and the results are given as follows. Matlab code is used to implement these steps to find

the solution and this code is presented at the end of the novel.

1 2.96950 1.91070

A = |2.03960 5.87620 2.27010
& 12.07460 3.53170 0 ’

L0.99600 0 0

0 1.7310 —-1.6281

0.1042 —-0.3420 -2.2701
0.1827 —3.5317 0

L—0.9960 0 0

(4.20)
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The coefficient matrices Agand Ay, are representing an explicit solution for case-I with three
lumped and two distributed (n, = 3, n; = 2). The physical realization corresponding to

the obtained solution in expression 4.20 can also be interpreted and given in Figure 4.1

(SENGUL, JANUARY 2008) (AYDOGAR, n.d.).

Figure 4.1 Physical Realization of LPLU Section of Degree Five (n, = 3, n; = 2).

4.2.2 Case-II (Three Distributed and Two Lumped (ny =3, n, = 2))

Now Consider a two-variable polynomial with degree five in such a way that the values of
n, = 3, np = 2 and the polynomial f, g and h can be given similarly as above,
flp, ) = (1 -2%)%2,
9@, ) = goo + go1d + go2A° + gozA® + giop + g11Ap + g12%p +
9134°D + g200® + g21P?l + g22p®A + go3p®A®

(4.21)
h(p,A) = hgy + hoi A + hgpA? + ho3A3 + hygp + hy1Ap + hiA%p +
913%D + hyop? + hpyp?l + hyop?A + hyzp?A3
it is also known that,
g, Vg(—p,—1) = f(p, Df(—p,—A) + h(p, HYh(—p,—2) (4.22)
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assume goo = 1 and hgo = 0 and then by making substitution of 4.21 in 4.22 and by
comparing the coefficients of resultant after the substitution, the required fundamental equation

set (FES) can be obtained and in this case it will be shown in

h3s — 933 =0 (4.23)
913 — his — 29go3g2s — 2hozhas = 0 (4.24)
953 +his+1=0 (4.25)
2913922 — 2912923 + 2h13hp3 — 2hy3hy; = 0 (4.26)
2913902 — 2912903 + 2h13ho3 + 2hy3ho; = 0 (4.27)
932 — h32 — 2921923 + 2hp1hy3 = 0 (4.28)
h%, = 932 — 2901923 + 2902922 — 2903921 + 2911913 +
2hg1hy3 — 2hozhp; + 2ho3hy1 — 204103 = 0 (4.29)
962 — b2 — 29gosgor + 2hozhgr =3 =0 (4.30)
2911922 — 2910923 — 2912921 + 2920913 + 2hyohaz —
2hy1hy5 + 2hy3h51 — 2hyohy3 = 0 (4.31)
2913 — 2901912 + 2902911 — 2903910 + 2ho1hyz +
2hgzhy1 — 2hg3hi =0 (4.32)
— 951 + h31 + 2920922 — 2hyohy, = 0 (4.33)
hf1 — gt + 2922 — 2901921 — 2902920 + 2910912 +
2hg1ha1 — 2hgzha0 + 2hyohy, = 0 (4.34)
—g3, + R +2go, +3=0 (4.35)
2911920 — 2910921 + 2h1oha1 — 2hy1hy =0 (4.36)
2911 — 2g10901 + 2h1oho1 = 0 (4.37)
930 —h3 =0 (4.38)
—gio + hip + 2920 =0 (4.39)

by solving expression 4.25 gives g3,

goz = |(1 + h03)1/2| (4.40)

solution of the expression 4.38 for g, is,

920 = |hyol (4.41)
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solution of the expression 4.39 for g4 is,

J1i0 = |(h%o + Zgzo)l/zl (4.42)

by solving expression 4.30 and 4.35 of FES. we can obtain the values of gy, and g, as given
1 1
go1 = (A1 + 2902 +3)2|, 9oz = |(h§2 + 2903901 — 2ho3hos +3)2 (4.43)

Clearly, it can be noticed that expression 4.43 consists of two unknowns with two equation and
with simple algebra or any symbolic solver of any suitable computer program can solve it to
obtain the desired result, we have used Matlab built in function solve() to find the solutions of

our problems analytically.

Now by solving expression 4.37 gives g4,

911 = 1910901 — h1ohosl (4.44)

until now,6 unknowns have successfully obtained and remain part is tricky, so some equations
are simplified and substituted in others to make ease to achieve the desired results. Now
substitute the obtained values in equation 4.24 and 4.28 the result will be two very simple

equations as follow,

913 = |hyzl, and g,; = |hy,| (4.45)

Now remaining unknowns are g2, g21, R11, Ri2, hi3, hy;1 and h,, and can be obtained by
simplifying and reducing FES to workable set of equation for this purpose, substitute the values
of 4.40 to 4.45 expression number 4.27, 4.29, 4.31, 4.32, 4.33, 4.34, 4.36 and restriction

J32 = h3; = 0, we will get following,
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Ahy3 —Bgip + Chy; =0
hi, — gf2 + 1922 — Dgp1 + Ehyz + Fhyy + Ghyy — 2Ry hy3 =0
Hhyz + Thy; — 2912921 — 2hy1hpp + 2hy3h5, = 0

]hll - Kng + MhlZ + Nh13 + constant = 0 (446)
—g31+h3 +Hhy =0
_h%1 - 0912 - Png + 2h12 + Qh21 + thz + constant = 0
Hh{1/2 — Rg,;1 + 2h,4 + constant = 0

In 4.46 the coefficients A to R and constant are used to keep the expressions in simple and
understandable and the values of the coefficients and constants are strictly depending upon the
obtained numerical values of unknowns from 4.40 to 4.45. It can be seen clearly that we have
seven unknowns and seven number of equation so the explicit solution of these expression in
4.46 is readily possible. Still it requires a huge algebraic manipulation to reach the final results,
to avoid all that process of calculation MATLAB’s analytical solver by the name of solve() can
be used to get the required results. A successful detailed Matlab code is provided to solve this

problem at the end of the dissertation.

Results can be checked by placing the real values of independent variables {hy; = 5.5416
B h02 = _16667, h03 = 02917, th = _20000, hzo = 225} and more than one eXpliCit
solution are obtained for the coefficient matrices Agand Ay, and the results are fully satisfying

the FES are given as follows. Number of solution are varying for every new input values.
In this case we have obtained four number of solutions and given as follows,

e Solution-I:

1 6.4583 4.0000 1.0417 |
Ag =17.0000 56.2911 109.8036 15.2310
[22.5000 225.7115 33.9288 0

0 55416 —1.6667 0.2917]
Ap =[-2.0000 —-33.9535 96.2321 15.2310
122.5000 225.7115 33.9288 0

-

(4.20)
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e Solution-II:

1 6.4583 4.0000 1.0417
Ag =17.0000 56.2911 39.6664 7.8751 |,
122.5000 0 127.4971 0 21)
0 55416 —-1.6667 0.2917
Ay =1-2.0000 56.2911 -—-11.3333 7.8751
[22.5000 0 127.4971 0
e Solution-III:
1 6.4583 4.0000 1.0417
Ag =1]7.0000 56.2911 107.6663 37.0887]|,
[22.5000 235.4613 462.8180 0 (4.22)
[ 0 5.5416 —1.6667 0.2917 '
Ay =1-2.0000 —-27.4012 87.8142 —37.0887
[22.5000 117.4240 —462.818 0
e Solution-IV:
1 6.4583 4.0000 1.0417
Ag =|7.0000 56.2911 158.9884 54.6088]|,
[22.5000 100.0465 44.1968 0 (4.23)
0 55416 —1.6667 0.2917 '
Ap =|-2.0000 18.2621 130.6256 —54.6088
[22.5000 77.6633 —44.1968 0

The coefficient matrices Agand Ay, are representing explicit solution for case-II with two

lumped and three distributed (n, = 2, n; = 3 ). The physical realization corresponding to

the obtained solution in expression 4.20 can also be interpreted and given in Figure 4.2

(SENGUL, JANUARY 2008) (AYDOGAR, n.d.).

68



o

" Teo

Figure 4.2 Example N0.1 Physical Realization of LPLU Section of Degree Five

(n,=2,n;=3).

Another example can confirm the results, now consider these input values {hy; = 7.4166

) h02 = _08333, h03 == 119792, h10 = 10000, hzo — _75} and more than one eXpliCit

solution are obtained this time as well for the coefficient matrices Agand Ay, and the results are

fully satisfying the FES are given as follows. Confirming that the number of solution are

varying for every new input values.

In this case we have obtained six number of solutions and given as follows,

e Solution-I:

1 8.2338 48949 12.0209
Ag= 4.0000 25.5186 94,1598 3.1768 |,
7. 44, .362
_7 5000 5908 5.3628 0 (4.24)
0 74166 —0.8333 11.9792
A, =1 1.0000 —-7.4367 929682 3.1768
| —7.5000 42.7488 5.3628 0
e Solution-II:
1 8.2338 4.8949 12.0209
Ag= 4.0000 25.5186 81.1862 10.9962],
|7.5000 69.7702 55.2233 0
(4.25)
0 74166 —0.8333 11.9792
A, =1 1.0000 41365 76.2105 10.9962
| —7.5000 56.6673 55.2233 0
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e Solution-III:

1 8.2338 4.8949 12.0209
Ay =14.0000 25.5186 16.2462 36.1043|,

[7.5000 0 30.4615 0

(4.26)
0 7.4166 —0.8333 11.9792
A, =1 10000 —25.5186 —11.3333 —36.1043
| —7.5000 0 —30.4615 0
e Solution-IV:
1 8.2338 4.8949 12.0209
Ag =[4.0000 25.5186 102.5075 4.0572{,
[7.5000 59.1909 2.5476 0 (4.27)
0 7.4166 —0.8333 11.9792
Ay =1 1.0000 —-1.8423 101.4884 —4.0572
| —7.5000 59.1909 —2.5476 0
e Solution-V:
1 8.2338 4.8949 12.0209
Ag= 4.0000 25.5186 16.6642 37.6843],
|7.5000 4.9032 30.9140 0 (4.28)
[ 0 7.4166 —0.8333 11.9792
A, =| 1.0000 —22.2498 3.9452 —37.6843
|—7.5000 —4.9032 —30.9140 0
e Solution-VI:
1 8.2338 4.8949 12.0209
Ag =14.0000 25.5186 16.2463 36.1042{,
:7.5000 0 30.4619 0 (4.29)
0 7.4166 —0.8333 11.9792
A, =1 1.0000 —25.5186 4.0617 —-36.1042
| —7.5000 0 —30.4619 0
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The coefficient matrices Agand Ay, are representing explicit solutions for case-IT with two
lumped and three distributed (n, = 2, n; = 3). The physical realization corresponding to

the obtained solution in expression 4.24 can also be interpreted and given in Figure 4.3

(SENGUL, JANUARY 2008) (AYDOGAR, n.d.).

Figure 4.3 Example No.2 Physical Realization of LPLU Section of Degree Five
(n, =2, n;=3).

71



5 CONCLUSION AND REMARKS

In this chapter the previous discussion about the construction of mixed lumped and distributed
elements will be discussed and conclusive summery will be given about the “Standard
Decomposition Technique (SDT)” use to solve fundamental equation set for general cascaded
structures of two-port networks. An algorithm based on SDT to designed mixed lossless two-

port cascaded network is given and the chapter is ending with remarks section.

5.1 Standard Decomposition Technique to Solve Fundamental Equation
Set Representing a General Lossless Mixed Two-port Network

Cascade

It is clear from the earlier discussions, to construct a mixed lumped and distributed two-port
cascaded structure, it is critical to estimate two-variable polynomial those are satisfying the
“Fundamental Equation Set” representation of the cascade. It is also fact that the solutions to
the FES are not unique, so the problem is to determine the solutions those able to develop
realizable structures. To encounter this problem in better way, a method named “Standard
Decomposition Technique (SDT)” is proposed to solve the FES. Before moving towards the
proposed algorithm following are some important point from previous study,
e  There are n, + 1 independent equations having n, + 1 coefficients of Ag and Ay
matrices each. To describe a lossless mixed two-port network n,, + 1 coefficients of
the matrix Ay, are chosen as independent variables. The coefficient of polynomial f
are also know and fixed by the designer, because of the selection of transmission
zeros, in both domains p and A. Hence, the choice of entire f(p,4) is made in
advance as f(p,4) = f1(p)f2(1). So, by using n,, + 1 equations from FES can be
used to obtain go (k = 0 to n,) coefficients by converting n,, + 1 equations into

an even polynomial identity in p domain, given as follows,
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G(—p*) = g(p,0)g(—p,0) = h(p,0)h(—p,0) + fi(P) fi(—p) (5.1)

where g(p, 0) polynomial is strictly Hurwitz and can easily be produced by doing
explicit factorization of the even polynomial given in 5.1 and g(p, 0) is formed by
using left half plane roots of G(—p?).

e  Similarly, n; + 1 independent equations having ny + 1 coefficients of Ag and Ay
matrices each, can be used to extract gor (kK = 0 to n,) coefficients from FES by
converting n; + 1 equations into an even polynomial identity in complex variable A,

given as follows,

in this expression g(0,4) is strictly Hurwitz, gox (k = 0 to n,) are determined

directly by hg and f,(4).

Thus, the polynomial sets {g(p, 0), h(p,0) and f;(p)} and {g(0, 1), h(0,A) and f, (1)} form
two independent lumped and distributed network prototypes respectively. These prototypes can
be broken into subsections and these subsections can be connected to each other to form a
desired cascade with lumped and distributed elements. As a result of above cascading

procedure, connectivity matrices Agk and Ay, are formed. Consequently, the obtained solution

to FES is based on SDT and the complete algorithm is discussed in next section.

5.2 Standard Decomposition Algorithm to Build a General Lossless Mixed

Two-port Network Cascade

A complete “Scattering Matrix” S(p, A) representing mixed lumped and distributed lossless
two-port cascade is generated by the algorithm by using first row and first column of matrix
A;,. Therefor the algorithm is initialized by providing the values of hg, and h;, as input and
f(p, 1) is also stated by the designer in such a fashion f(0,0) # 0. Furthermore, the complexity
of the network designed topology is also preselected by the designer, it means the total number
of lumped n,, and distributed n; elements are chosen in advance. Following are the steps to

implement the algorithm.
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Inputs:

n,; = Number of all distributed elements used in design.
n, = Number of all lumped elements used in design.
hor = First row of A}, matrix where k = 0 to n;.

hyo = First column of Ay, matrix where [ = 1 to n,,.
fox = Coefficients of f; (p).

fro = Coefficients of f,(A4).

Step-I:

Produce the equation G(—p?) = h(p,0)h(—p,0) + f;(p)f1(—p) as a polynomial
in —p? where f,(p) = f(p, 0).

Step-11:

Find the roots of G(—p?) polynomial generated in step I and choose the “left half
plan (LHP)” zeros to develop the canonical polynomial g(p, 1) as a strict Hurwitz.
Step-111:

Generate a polynomial g(0,4)g(0,—21) = h(0,A)h(0,—21) + f,(A)f,(—4)
f2(A) = (0, ).

Step-1V:

Now find the roots of g(0,4)g(0,—1) obtained in previous step. Develop the
canonic form of polynomial g(0, 1) by using the roots of g(0,1)g(0,—A) lies in
LHP.

Step-V:

Choose the degrees of the lumped Ny, and distributed N, subsections and select
fi(p) and f;, (1) for the “Algebraic Decomposition”.

Step-VI:

To obtain the scattering parameters of lumped sub-segments use the algebraic
decomposition algorithm to breakdown the lumped master structures, built with the
scattering parameters on the canonic polynomials {g(p,0), h(p,0) and f;(p)}.
Important thing to understand here is canonic polynomials f; (p) , g (p) and hy (p)

are obtained as the result of the decomposition algorithm.
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o Step-VII:
Repeat the step VI for predefined fi(1) and N, to calculate the scattering
parameters of distributed sub-segments formed on canonic polynomial {g(0, 1),
h(0,2) and f,(1)}.

. Step-VIII:
For each subsection develop “Transfer Scattering Parameters” Ty (p) and Ty ()
and multiply them in a sequential pattern to obtain “Transfer Scattering Matrix” for
the composite structure. By doing this, get the canonic forms of polynomials

g, 1), h(p,A) and f(p, A), which results the connectivity matrices Ag, and Ap,.

From above discussion it is clear that in STD algorithm root finding algorithm is used twice
and then followed by solution finding of several linear equations in a well sequential pattern as
of described in “Algebraic Decomposition Algorithm” (Aksen, 1994) with a proper choice of

decomposition is made by the designer. In the algorithm, the connectivity matrices Aq k and

Ay, are obtained by the multiplication of each single transfer matrices developed by the

algebraic decomposition matrix in one variable and the representation used for single transfer
matrix in one variable for k’th lumped and distributed element is Ty, (p) and Tp,(4)

respectively and the entire overall transfer matrix can be given as,

T(p, )\.) = TLl TDlTLZ TDZ ......... (53)

The general members of the connectivity matrices Ag K and Ay, of composite design, can be

given by using following sequential formulas,

l

-1 — — -1
B = ) B gy + YO DE g (54)
n=0
l
-1 — — -1
Gt = Zg,(ﬁff Yk, + ¥ (=1 PR, (5.5)
n=0
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where k = 1,2,... ,n,and [l = 1,2, ... ,m; and the subscription (m — 1) is showing previous
stage subscription m are last cascaded section. m is total number of sections in cascade and

y = +1.

5.3 Remarks

e  While using standard decomposition technique, when algebraic decomposition
algorithm is used to find distributed and lumped subsections the transmission zeroes
of f(p, A) should be distributed in proper way. If LPLU is under construction, then
distribution of zeroes of f(p,A) is simple and straight forward. For LPLU
consideration, each for SLS, f,(p) is set to 1 and for each unit element section
i@ =1 =22,

e Theabove STDis only f(p,A) = f1(p)fa (1) # 0 for p = 0 and A = 0 case, that is
expressing a low pass type structure i.e. £(0,0) # 0.

e It should also be noted that the all realizable solutions developed by using the
algorithm, after solving FES are not unique, mean for same inputs that is first row
and first columns of matrix Ay, various solution can be obtained dependent on
connectivity information.

e In order to develop a general solution, there is a need to define the realizability
condition as a set of additional constraints to “Fundamental Equation Set”. 1f it is
possible to generate strict scattering Hurwitz polynomial g(p, 1) and is also a

denominator term, then the connectivity information is implanted completely in Ag K

and Ap, matrices that is why known as connectivity matrices, by this way there is

no need to develop synthesis procedure to obtain the final realization. However,
synthesis of general designs up to limited complexity can be attempted by using

trial and error method.
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6 MATLAB CODE

In this section Matlab code for above solutions is given.

6.1 Case-I (Three Lumped and Two Distributed (n, = 3, n; = 2))

clear all

close all

clc

input=[];

output=[1];

for 1=1:1000

syms g0l g02 gl0 gll gl2 g20 g21 g30
syms h0l h02 hl0 hll hl2 h20 h21 h30
syms 1 p

syms A B C D E

g = symfun(l + g01*1 + g02%1°2 + gl0*p + gll*l*p + gl2*172*p + g20*p"2 +
g2l*p”2*1 +g30*p"3, [p,1]1); % g00 is selected as 1
G = symfun(g(p,1) * g(-p,-1), [p,11);

h = symfun(0 + h01*1 + h02*1"2 + hlO0*p + hll*1l*p + hl2*1"2*p + h20*p"2 +
h21*p”2*1 +h30*p"3, [p,1]);

$h = symfun (0 + A*1 + B*172 + C*p + hll*1l*p + hl2*1"2*p + D*p”"2 + h21*p"2*1
+E*p”*3, [p,1]1); % h00 is O

H = symfun(h(p,1) * h(-p,-1), [p,1]1);

n = 2; % The number of dist. elements

f = symfun((1-1"2)"(n/2),1);

F = symfun(£(1l) * £(-1), 1);

sag = (eval (H)+eval (F));
sol (eval (G)) ;

[cLP a] = coeffs(sol-sag, [1,p]);

equ=cLP.';

hval=randn (1, 5);

input=[input;hval];
h0l =hval(1l,1);

h02 =hval(1,2);
h10 =hval (1, 3);
h20 =hval (1,4);
h30 =hval(1,5);
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[GO1, GO02] = solve([eval (equ(
% gO0lt=eval (unique (GO1 (G01>0)
% g02t=eval (unique (G02 (G02>0)
GO0l=double (G0O1) ;

G02=double (G02) ;
g0lt=unique (G01 (G01>0)) ;
g02t=unique (G02 (G02>0)) ;

)

2
)
))

’
’

%Value of g30 from equa(ll)
G30=solve (eval (equ(11)),g30);
G30=double (G30)
g30t=unique (G30
g30=g30t;

(G30>0)) ;

o\°

gllt=eval (unique (G11(G11>0)));
gll=gllt;

% pause

%Value of gl0 and g20 from equa(l2,13)
[G10, G20]
Gl0=double (G10) ;
G20=double (G20) ;
glOt=unique (G10 (
g20t=unique (G20 (

o\°

G10>0)) ;
G20>0)) ;

)),eval (equ(7))], [g01,

solve ([eval (equ(l2)),eval (equ(l3))], [gl0,

g02]);

by useing first wvalue of g30

g20]);

hl2t=[];gl2t=[];h21t=[];g21t=[]1;h11t=[];gllt=[];sol set=[];

for i=1l:size(g01lt,1)
for j=1l:size(gl0t,1)
g0l=g01lt(i,1);
gl0=gl0t(j,1);
Gll=solve(eval (equ(10)),gll);
gllt=[gllt;G1l1l];
end
end
gllt=double(gllt);
gllt=unique (gllt (gllt>0));

% Calculation of hl2,gl12,h21,g21,h11,gll
g00=1;g22=0;931=0,;932=0;
h00=0;h22=0;h31=0;h32=0;
for i=l:size(g01t,1)
for j=l:size(g02t,1)
for k=1l:size(g30t,1)
for 1=1:size(gl0t,1)
for m=1l:size(g20t,1)
for n=1:size(gllt,1)
g0l=g01lt 1);
g02=g02t
g30=g30t
gl0=gl0t
g20=g20t ;
gll=gllt(n,1);
[H12,G12,H21,G21,H11
solve ([eval (equ(l)),eval (equ(3)),eval (equ(4)
l(equ(8)),eval(equ(9))],[hl2,g12,h21,g21,hll
%pause

1);
1);
1);
1)

’

(i,
(3,
(k,
(1

(m,
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Hl12=double (H12) ;
$hl2t=[hl2t;H12];
Gl2=double (G12) ;
$gl2t=[gl2t;G1l2];
H21=double (H21) ;
$h21t=[h21t;H21];
G21l=double (G21) ;
$g21lt=[g21t;G21];
Hll=double (H11) ;
$hllt=[hl1t;H11];
$Gll=eval (G11);
$gllt=[gllt;G1l1];

sol set=[sol set;g00,901,902,910,911,G12(1),920,G21(1),g22,g930,931,932,h00,
h01,h02,h10,H11(1),H12(1),h20,H21(1),h22,h30,h31,h32;

g00,g01,902,910,911,G12(2),920,G21(2),922,930,931,932,h00,h01,h02,h10,H11 (2
),H12(2),h20,H21(2),h22,h30,h31,h32];

%sol set=[sol set;g01,902,930,910,920,g11,G12(1),G21(1),H12(1), ...

°

H11(1),H21(1);901,902,930,910,920,gl11,G1l2(2),G21(2),H12(2), ...
$ H11(2),H21(2)];
end

end
end
end
end

end
sol set=real (sol_ set)
sol set=unique (sol set, 'rows');
sol set ini=sol_ set

remove=][];
for i=l:size(sol _set, 1)
for j=1:12
if sol set (i, ])<0
remove=[remove 1i];
end
end
end
sol set (remove, :)=[];

for i=l:size(sol_set,1)
for j=l:size(sol set',1)/2
sol set g(i,j)=sol set(i,]);
sol set h(i,j)=sol set(i,j+12);
end
end

for i=l:size(sol_set, 1)
Ag{i}=[sol set g(i,1),sol set g(i,2),sol set g(i,3);sol set g(i,4),sol set
g(i,5),so0l set g(i,6);...

sol set g(i,7),so0l set g(i,8),s0l set g(i,9);sol set g(i,10),so0l set g(i, 11
) ,sol set g(i,12)];
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Ah{i}=[sol set h(i,1l),sol set h(i,2),sol set h(i,3);sol set h(i,4),sol set
h(i,5),so0l set h(i,6);...

sol set h(i,7),sol set h(i,8),s0l set h(i,9);so0l set h(i,10),sol set h(i, 11
,s0l set h(i,12)1];
fprintf ('Solution NO.%d for "g" matrix is\n',1i)
display(Ag{i});
fprintf ('Solution NO.%d for "h" matrix is\n',1i)
(
(

o o° oo ~—

o

display (Ah{i});
'and\n\n\n")

o\°

fprintf
end

check=[1;

for i=l:size(sol_set,1)

g00=sol set(i,1);g0l=s0l set(i,2);g02=so0l set(i,3);gl0=sol set(i,4);gll=sol
_set (i,5);
gl2=so0l set (i, 6);g920=s0l set(i,7);g2l=sol set(i,8);g22=so0l set(i,9);

g30=sol set (i, 10);g31l=so0l set(i,11l);g32=s0l set(i,12);h00=s0l set(i,13);

h0l=sol set (i, 14);h02=so0l set(i,15);hl0=s0l set(i,16);hll=sol set(i,17);hl2
=sol set(i,18);

h20=s0l set (i, 19);h21l=so0l set(i,20);h22=s0l set(i,21);h30=s0l set(i,22);h31
=sol set(i,23);h32=s0l set (i, 24);

result=eval (equ) ;

result=round (result,5) ;

if sum(result)==
j=1;
Matrix g{j}=[g00,901,g02;g910,g911,912;920,921,922;930,931,932];
Matrix h{j}=[h00,h01,h02;h10,h11,h12;h20,h21,h22;h30,h31,h32];

alloutval=[g00,901,902,910,91l1,912,920,921,922,930,931,932,h00,h01,h02,h10,
h1l,h12,h20,h21,h22,h30,h31,h32];
fprintf ('Solution NO.%d for "g" matrix is\n',7J)
display (Matrix g{j});
fprintf ('Solution NO.%d for "h" matrix is\n',7j)
display (Matrix h{j});
end

check=[check result];
end
output=[output;alloutval];
end
newoutput=[output (:,2) output(:,3) output(:,4) output(:,5) output(:,6) .
output(:,7) output(:,8) output(:,10) output(:,17) output(:,18)
output (:,20)];
filename = 'testdata.xlsx';
xlswrite (filename, input, 1) ;
xlswrite (filename, newoutput, 2) ;
filename = 'datafile.xlsx';

xlswrite (filename, ssset, 1) ;
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6.2 Case-I (Three Lumped and Two Distributed (n, = 2, n; = 3))

clear all

close all

clc

%% intial part to find the equation set%%

syms g0l g02 g03 gl0 gll gl2 gl3 g20 g21 g22 g23
syms h01 h02 h03 hl0 hll hl12 h13 h20 h21 h22 h23
syms 1 p

%syms A B C D E

g = symfun(l + g01*1 + g02*1%2 + g03*173+ glO*p + gll*l*p + gl2*1"2*p +
gl3*17"3*p + g20*p"2 + g2l*p"2*1 + g22*p"2*1"2 + g23*p"2*1"3,I[p,11); % g00
is selected as 1

G = symfun(g(p,1) * g(-p,-1), [p,11);

h = symfun(0 + h01*1 + h02*172 + hO03*173+ hl0*p + hll*1l*p + hl2*1"2*p +
h13*173*p + h20*p"2 + h21*p"2*1 + h22*p"2*172 + h23*p"2*1"3, [p,1]);

h = symfun(0 + A*1 + B*172 + C*p + hll*l*p + hl2*1"2*p + D*p”"2 + h2l*p”"2*1
+E*p*3, [p,1]); % h00 is O

H = symfun(h(p,1) * h(-p,-1), [p,1]);

n = 3; % The number of dist. elements
f = symfun((1-1"2)"(n/2),1);
F = symfun(£f(1) * £(-1), 1);

RHS = (eval (H) +teval (F)) ;
LHS (eval (G));

[cLP a] = coeffs (LHS-RHS, [1,p]);

equ=cLP.';
%% assigning the values to the known variables

% h0l =7.4166;
% h02 =-0.8333;
% hl0 =1;

% h20 =-7.5;

o\°

h03 =11.9792;

h01 =5.5416;

h02 =-1.6667;

h10 =-2;

h20 =22.5;

h03 =0.2917;

%% solving equ(3) for g03
G03=solve (eval (equ(3)),g03);
G03=double (GO3) ;
g03t=unique (G03 (G03>0)) ;
g03=g03t;

%% solving equ(l6) for g20
G20=solve (eval (equ(l6)),g20);
G20=double (G20) ;
g20t=unique (G20 (G20>0)) ;
g20=g20t;

%% solving equ(l7) for glO
Gl0=solve (eval (equ(l7)),gl0);
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Gl0=double (G10) ;
glOt=unique (G10 (G10>0)) ;

gl0=gl0t;
%% solving equ(8) and equ(l3) for g0l and g02
[GO1, GO02] = solve([eval(equ(8)),eval(equ(13))1,[g01, g02]);

GOl=round (double (G01),5);
G02=round (double (G02),5);
g0lt=unique (GO1 (G01>0)) ;
g02t=unique (G02 (G02>0)) ;
g02=g02t;

$% solving equ(l5) for gll
gllt=I[1;
for i=1l:size(g01t,1)
g0l=g01lt (1) ;
Gll=solve(eval (equ(l5)),qgll);
Gll=double (G1l1) ;
glltt=unique (G11 (G11>0));
gllt=[gllt;glltt];
end
g01=g01t(2) ;gll=gllt(2);g02=g02t; g23=0;h23=0;
[G13, G22] = solve([eval(equ(2)),eval(equ(6))],[gl3, g22]);
sset=[1]1;
for i=l:size(G13,1)
gl3=G1l3(1i); g22=G22(1i);
[Gl2,G21,H11,H12,H13,H21,H22] = solve([eval (equ(5)),...
eval (equ(7)),eval (equ(9)),eval (equ(l0)),

eval (equ(ll)),eval (equ(l2)),eval (equ(l4))],[gl2,g21,h11,h12,h13,h21,h22]);
if i==
Gt13=H13; Gt22=H22;
elseif i==
Gt13=-H13; Gt22=H22;
elseif i==3
Gt13=H13; Gt22=-H22;
else i==
Gt13=-H13; Gt22=-H22;
end
a=[Gl2,Gt13,G21,Gt22,H11,H12,H13,H21,H22];
sset=[sset;al;
end
ssset=double (sset) ;
remove=[];
for i=1:size(ssset,1)
for j=1:4
if real(ssset(i,]j))<0
remove=[remove 1i];
end
end
end
remove=unique (remove, 'stable');
ssset (remove, :)=[1];

remove=[];
for i=l:size(ssset, 1)
for j=1:9
if imag(ssset (i, j))>0
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remove=|[remove 1];
end
end
end
remove=unique (remove, 'stable');
ssset (remove, :)=[1];

remove=[];
for i=l:size(ssset, 1)
for j=1:9
if imag(ssset (i, J))<0
remove=[remove 1i];
end
end
end
remove=unique (remove, 'stable');
ssset (remove, :)=[];

gtO00=ones (size(ssset,1l),1);
gtOl=ones (size(ssset,1l),1l)*g01lt(2);
gt02=ones (size(ssset,1),1) *g02;
gt03=ones (size(ssset,1),1) *g03;
gtlO=ones (size(ssset,1),1) *gl0;
gtll=ones (size(ssset,1l),1)*gllt(2);
gt20=ones (size(ssset,1l),1)*g20;
gt23=zeros (size(ssset,1),1);
ht00=zeros (size(ssset,1),1);
htOl=ones (size(ssset,1),1)*h01l;
ht02=ones (size(ssset,1),1)*h02;
ht03=ones (size (ssset,1),1)*h03;
htl0=ones (size(ssset,1),1)*hl0;
ht20=ones (size (ssset,1),1)*h20;
ht23=zeros (size(ssset,1),1);

setl=[gt00 gt0l gt02 gt03 gtl0 gtll ssset(:,1) ssset(:,2) gt20 ssset(:,3)
ssset(:,4) gt23
ht00 ht0l ht02 ht03 htl0 ssset(:,5) ssset(:,6) ssset(:,7) ht20
ssset (:,8) ssset(:,9) ht23];
g01=g01t(1);gll=gllt(1l);g02=g02t; g23=0;h23=0;
% [G13, G22] = solve(leval(equ(2)),eval(equ(6))],[gl3, g22]1);
sset=[];
ssset=[];
for i=l:size(G13,1)
gl3=G1l3(i); g22=G22(1i);
[G12,G21,H11,H12,H13,H21,H22] = solve([eval(equ(5)),...
eval (equ(7)),eval (equ(9)),eval (equ(l0)), ...

eval (equ(11)),eval (equ(12)),eval (equ(14))1, [gl2,g21,h11,h12,h13,h21,h22]);

if i==

Gt1l3=H13; Gt22=H22;
elseif i==

Gt1l3=-H13; Gt22=H22;
elseif i==

Gt13=H13; Gt22=-H22;
else i==

Gt1l3=-H13; Gt22=-H22;
end

a=[Gl2,Gtl13,G21,Gt22,H11,H12,H13,H21,H22];
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sset=[sset;al;
end
ssset=double (sset);
remove=|[];
for i=l:size(ssset, 1)
for j=1:4
if real(ssset(i,]j))<0
remove=[remove 1i];

end
end
end
remove=unique (remove, 'stable');
ssset (remove, :)=[];

remove=|[];
for i=l:size(ssset,1)
for 3=1:9
if imag(ssset (i, j))>0
remove=|[remove 1];

end
end
end
remove=unique (remove, 'stable');
ssset (remove, :)=[1];
remove=[];
for i=l:size(ssset, 1)
for 3=1:9
if imag(ssset (i, j))<0
remove=[remove 1];
end
end
end
remove=unique (remove, 'stable');
ssset (remove, :)=[1];
gt00=ones (size(ssset,1l),1);
gtOl=ones (size(ssset,1),1)*g0lt(1);
gt02=ones (size(ssset,1),1) *g02;
gt03=ones (size(ssset,1),1) *g03;
gtlO=ones (size(ssset,1l),1)*gl0;
gtll=ones (size(ssset,1l),1)*gllt(1l);
gt20=ones (size(ssset,1l),1)*g20;
gt23=zeros (size(ssset,1),1);
ht00=zeros (size(ssset,1),1);
htOl=ones (size(ssset,1),1)*h01;
ht02=ones(size (ssset,1),1)*h02;
ht03=ones (size(ssset,1),1)*h03;
htl0=ones (size(ssset,1),1)*hl0;
ht20=ones (size(ssset,1),1)*h20;
ht23=zeros (size(ssset,1),1);

set2=[gt00 gt0l gt02 gt03 gtl0 gtll ssset(:,

ssset(:,4) gt23
ht00 ht0l ht02 ht03 htl0 ssset(:,5)
ssset (:,8) ssset(:,9) ht23];

set=[setl;set2];
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sol set=unique (set, 'rows', 'stable');
3=0;

resultl=[];result2=[];all results=[];
check=[];output=[1];

for i=l:size(sol_set,1)

g00=so0l set(i,1);g01l=s0ol set(i,2);g02=so0l set(i,3);g03=sol set(i,4);gll0=sol
_set(i,5);gll=sol set(i,6);

gl2=sol set (i, 7);gl3=sol set(i,8);g20=so0l set(i,9);g2l=sol set(i,10);g22=so0
1 set(i,11);g923=s0l set(i,12);

h00=so0l set (i, 13);h01l=sol set(i,14);h02=s0l set(i,15);h03=s0l set(i,16);hl0
=sol set(i,17);hll=sol set(i,18);

hl2=so0l set(i,19);hl3=so0l set(i,20);h20=s0l set(i,21);h2l=so0l set(i,22);h22
=sol set(i,23);h23=s0l set (i, 24);
result=eval (equ); % equation eveluation
resultl=[resultl, result];%store of evaluated result
result=round (result, 3) ; $rounded result

result2=[result2, result];%store of evaluated and rounded result

result3=[g00,901,902,903,910,911,912,913,920,921,922,923,h00,h01,h02,h03,hl
0,h11,h12,h13,h20,h21,h22,h23];%founded values of variables
all results=[all results;result3];% store of all founded values of
variables
if sum(result)==
J=3+1;
Matrix g{3j}=[900,901,902,903;910,911,912,913;920,921,922,923];
Matrix h{j}=[h00,h01,h02,h03;h10,h11,h12,h13;h20,h21,h22,h23];

outputt=[g00,g901,902,903,910,911,912,913,920,921,g922,923,h00,h01,h02,h03,hl
0,h11,h12,h13,h20,h21,h22,h23];
fprintf ('Solution NO.%d for "g" matrix is\n',7J)
display (Matrix g{j});
fprintf ('Solution NO.%d for "h" matrix is\n',j)
display (Matrix h{j});
output=[output;outputt];%varifed and satisfying equations
end
end

—_ o~~~

85



References

Aksen, A., 1994. Design of Lossless Two-ports with Mixed Lumped and Distributed. Ph.D.
Thesis, Ruhr University.

AYDOGAR, Z., n.d. SCATTERING TRANSFER MATRIX FACTORIZATION BASED
SYNTHESIS OF RESISTIVELY TERMINATED LC LADDER NETWORKS. In: Master's
Thesis. s.1.:s.n.

Balabanian, N. & Bickart, T. A., 1969. T. A., Electrical Network Theory. s.l.:John Wiley&Sons
Inc..

Baum, R. F., 1948. A Contribution to the Approximation Problem. Proc IRE, Volume 36(7),
pp. 863-869.

Beccari, C., 1984. Broadband Matching Using the Real Frequency Technique. [EEE
Transection on Crcuit and Systems, Volume CAS 37, pp. 212-222.

Belevitch, V., 1968. Classical Network Theory. s.1.:Holden Day, San Francisco, CA..

Bode, H., 1945. Network Analysis and Feedback Amplifier Design. Van Nostrand, NY.

Bose, N. K., 1982. Applied Multi Dimensional System Teory. Van Nostrand Reinhold.
Carlin, H. & Amstutz, P., 1981. On optimum broad-band matching. /IEEE Transactions on
Circuits and Systems, 28(5), pp. 401 - 405.

Carlin, H. J., 1971. Distributed Circuit Design with Transmission Line Elements. /EEE
Proceedings, Issue 3, pp. 1059-1081.

Carlin, H. J., 1977. A New Approach to Gain-Bandwidth Problems. /EEE Transaction on
Circuit and System, CAS-24(4), pp. 170-175.

Carlin, H. J. & Civalleri, P., 1985. On Flat Gain with Frequency-Dependent Terminations.
IEEE Transactions on Circuits and Systems, Volume CAS 32, pp. 827-839.

Carlin, H. J. & Yarman, B. S., 1983. The Double Matching Problem: Analytic and Real
Frequency Solutions. /IEEE Transactions on Circuits and Systems, CAS-30(1), pp. 15-28.
Chen, W.-K., 1988. Broadband Matching: Theory and Implementations. World Scientific,
Volume 1.

Darlington, S., 1939. Synthesis of Reactance 4 Poles. MIT J. Mathematics and Physics,
Volume 18, pp. 257-353 .

86



Fano, R. M., 1950. Theoretical limitations on the broadband matching of arbitrary impedances.
Journal of the Franklin Institute, 249(1), pp. 57-83.

Fettweis, A., 1982. On the Scattering Matrix and the Scattering Transfer Matrix of
Multidimensional Lossless Two-Ports. Archiv Elektr. Ubertrangung, Volume 36, pp. 374-381.
Fettweis, A. & Pandel, J., 1987. Numerical Solution to Broadband Matching Based on
Parametric Representation. Arch. Elektr. Ubertrangung, Volume 41, pp. 202-209.

Hatley, W. T., 1967. Computer Analysis of Wideband Impedance Matching. Stanford
University, Stanford Electronics Laboratories, CA, Volume Tech. Report No:6657-2.

Kody & Stoer, 1972. Rational Chebyshev Approximation Using Interpolation. Springer
Verlag, , Volume Numerische Mat.Bd.9.

Koga, T., 1971. Synthesis of a Resistively Terminated Cascade of Uniform Lossless
Transmission Lines and Lumped Passive Lossless Two-Ports. IEEE transaction on Circuit
Theory, Volume 18, pp. 444-455.

Koga, T., 1971. Synthesis of a Resistively Terminated Cascade of Uniform Lossless
Transmission Lines and Lumped Passive Tow-Ports. IEEE Transactions on Circuit Theory,
Volume 18, pp. 444-455.

Kotiveeriah, P., 1972. Rational Approximation of Frequency Data by Physically Realizable
Network Functions. Ph.D. Thesis, Cornell University,.

Medely, M. W., 1993. Microwave and RF Circuits: Analysis, Synthesis and Design. s.1.: Artech
House Inc..

Richards, P. 1., 1948. Resistor-Transmission-Line Circuits. Proceedings of the IRE, Volume
36, pp. 217-220.

Seaks, R., 1976. The Factorization Problem a Survay. Proceedings of the IEEE, April, Volume
64, pp. 90-95.

SENGUL, M., 2006. Circuit Models with Mixed Lumped and Distributed Elements for Passive
One-Port Devices. Ph.D. Thesis, ISIK UNIVERSITY.

SENGUL, M., JANUARY 2008. Synthesis of Cascaded Lossless Commensurate Lines. /[EEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, 55(1).

Smilen, L. 1., 1964. Interpolation on Real Frequency Axis. Microwave Research Inst.,
Polytechnic Institute of Brooklyn, Volume Report No: PIBMRI 121164.

Yarman, B. S., 1982. A Simplified Real Frequency Technique for Broadband Matching a
Complex Generator to a Complex Load. RCA Review, Volume 43, pp. 529-541.

87



Yarman, B. S., 1982. Broadband Matching a Complex Generator to a Complex. Ph.D. Thesis,
Cornell University.

Yarman, B. S., 1982. Real Frequency Broadband Matching Using Linear Programming. RCA
Review, Volume 43, pp. 626-654.

Yarman, B. S., 1985. Modern Approaches to Broadband Matching Problems. Proc. IEE,
Volume 132, pp. 87-92.

Yarman, B. S., 1991. Novell Circuit Configurations to Design Loss Balanced 00-3600 Digital
Phase Shifters. Archiv Fiir Elektronik und Ubertragungstechnik, Volume 45(2).

Yarman, B. S. & Aksen, A., 1992. An Integrated Design Tool to Construct Lossless Matching
Networks with Mixed Lumped and Distributed Elements. /EEE Transactions on Circuits and
Systems, Volume CAS 39(9), pp. 713-723.

Yarman, B. S. & Fettweis, A., 1990. Computer Aided Double Matching via Parametric
Representation of Brune Functions. /EEE Transactions on Circuits and Systems, Volume CAS
37, pp. 212-222.

Youla, D., 1964. A New Theory of Broad-band Matching. IEEE Transactions on Circuit
Theory, 11(1), pp. 30 - 50.

Youla, D. C. & Saito, M., 1966. Interpolation with Positive Real Functions. Microwave
Research Inst., Polytechnic Institute of Brooklyn, Volume Report No: PIBMRI-1353-66.
Youla, D. C., Yarman, B. S. & Carlin, H. J., 1984. Double Broadband Matching and Problem
of Reciprocal Reactance 2n-port Cascade Decomposition. Int. J. Circuit Theory and App.,
Volume 12, pp. 269-281.

88



CURRICULUM VITAE

NAUMAN TABASSUM

naumantabassum@ymail.com

Nauman Tabassum, born in Rawalpindi Pakistan Graduated in the field of Electronics from
Quaid-i-Azam University, Islamabad, Pakistan and completed Master’s degree with thesis in
the field of electronics engineering, from Kadir Has University Istanbul, Turkey.

Qualifications:

Masters Kadir Has University, Istanbul Turkey,
(Thesis) Department: Electronics Engineering

Bechlors Quaid-i-Azam University Islamabad.
Department: Electronics

HSSC Army Public College(QAAB) Damhail Camp Rawalpindi.
Affiliated with FBISE Islamabad.
SSC F.G Boys High School, R.A Bazar Rawalpindi.

Publications:

e Working on three publications hopeful to be published in this year.

&9



