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ÖZET 

Bulut bilişim, insanların bulunduğu yerden uzakta bulunan donanım, işletim sistemi, 

yazılım gibi kaynakları istedikleri zaman internet üzerinden kullanmalalarını 

sağlamaktadır. Bulut bilişimin vazgeçilmez bir parçası olan sanallaştırma teknolojisi 

işlemci, bellek, bant genişliği gibi donanımların birden fazla sanal makine arasında 

paylaştırılarak kullanılmasına imkân sunmaktadır. Sanallaştırma teknolojisi sanal 

makinelerin fiziksel makineler üzerinde eşzamanlı yürütülmesi esasına dayanmaktadır. M 

adet sanal makinenin N, M’den küçük olmak üzere N adet fiziksel makineye belirlenen 

amaca uygun olarak nasıl yerleştirileceği, sanal makinelerin yerleştirilmesinde enerji 

tüketimi, maliyet yönetimi, kaynak paylaşımı gibi bir veya birkaç amaç esas alınarak 

fiziksel makineler üzerindeki yükün dengelenmesi hedeflenmektedir. Bu amaçlardan 

birden fazlasını aynı anda geçekleştirmek için çok amaçlı optimizasyon algoritmaları 

kullanılabilir. Bu tezde literatürde yaygın kullanımı olan çok amaçlı optimizasyon 

algoritmalarının sanal makine yerleştirme problemindeki başarımları ele alınmıştır. 

Hazırlanan benzetim ortamında elde edilen sonuçlar karşılaştırmalı olarak 

değerlendirilmiştir. 
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ABSTRACT 

Cloud computing ensures people to use sources such as hardware, operating system, 

software wherever they want over internet.Virtualization technology which is an 

indispensable part of cloud computing gives opportunity to employ resources such as 

memory, bandwidth, processor among multiple virtual machines. Virtualization technology 

is based on simultaneous execution of virtual machines on physical machines. 

Virtualization technology allows placement of M virtual machines to N physical machines, 

where M>N, by balancing the load on physical machines with respect to one or more goals 

like energy consumption, cost management, or resource sharing. In order to satisfy more 

than one goal simultaneously, multiobjective optimization algorithms are shown to be 

effective solutions in the literature. In this thesis, four well-known multiobjective 

optimization algorithms are realized to solve virtual machine placement problem under 

CPU maximization and energy consumption minimization constraints. Extensive 

simulation results for different performance metrics are comparatively discussed. 
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1. GİRİŞ 

Bulut bilişim ağ, sunucular, depolama, uygulamalar ve hizmetler gibi bilgi işlem 

kaynaklarının ortak havuzuna talep üzerine ağ erişimi sağlayan bir modeldir. Bulut bilişim 

mimari olarak hizmet olarak alt yapı (Infrastructure as a service - IaaS), hizmet olarak 

platform (Platform as a Service - PaaS), hizmet olarak yazılım (Software as a Service - 

SaaS) isimleri altında üç kategoriye ayrılmaktadır. IaaS diğer “as a Service” modellerinin 

üzerine inşa edildiği bulut servislerinin temelidir. Bu özel uygulama müşterilere depolama, 

sunucu, ağ ve işletim sistemleri gibi temel bilgi işlem kaynakları sağlamaktadır. Bu 

uygulamada müşteriler donanım gibi altta yatan alt yapıyı kontrol edemezler fakat işletim 

sistemi, uygulamalar ve belki bazı ağ elemanları üzerinde yönetim hakkına sahiptirler. 

PaaS modeli ise IaaS’nin üzerine kurulum yapılmış halidir. IaaS’de müşteriye tanınan 

esneklikler PaaS’de önemli ölçüde ortadan kalkmaktadır. Örnek olarak Google App 

Engine [1], Microsoft Azure [2] gösterilebilir. SaaS’de ise PaaS’de azalan esneklikler bir 

miktar daha düşmektedir ve müşterilerin yetkileri çok kısıtlı olmaktadır. Örneğin, 

Google’ın elektronik posta hizmeti bir SaaS’dir. Burada müşterilerin sunucunun donanımı, 

işletim sistemi hakkında bir söz hakları veya servisin işlevselliğini genişletme yetenekleri 

bulunmamaktadır [3]. 

Sanallaştırma teknolojisi bulut bilişimin temelini oluşturmaktadır [4]. Genellikle donanım, 

sanal makine (Virtual Machine - VM) ve işletim sisteminden oluşmaktadır. Sanal makine, 

fiziksel kaynaklarla beslenen bilgisayar yazılımıdır. Uygulamalar ve işletim sistemleri tıpkı 

fiziksel bilgisayarlarda (Physical Machine - PM) olduğu gibi sanal makineler üzerine de 

kurulabilmektedir. Kaynak koruması ve verimli donanım kullanımıyla kullanıcıların 

kaynakları daha verimli kullanmalarını sağlamaktadır [5]. İş yükünün bir sunucudan başka 

bir sunucuya aktarılmasına imkân tanımaktadır. Bu imkân fiziksel makinenin kapasitesi 

yetmediğinde veya bir arıza durumunda kullanılabilmektedir. Bu durum sistemlerin 

erişilebilirlik durumunu yükseltmektedir [6].  

Sanallaştırmanın sağladığı esneklik yeni yönetim zorlukları getirmektedir. Sanal makine 

havuzunun öngörülmesi ve yönetilmesi gerekmektedir. Kaynak talebi, maliyet, enerji 

tüketimi gibi amaçları önceliklerine göre değerlendirerek sanal makinelerin nereye 

yerleştirileceği ve kaynakların nasıl atanacağı belirlenerek cevap verilmelidir. Veri 
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merkezinin ölçeği büyüdükçe bu işlemin karmaşıklığı da artış göstermektedir. Bu sebeple 

bilgisayar destekli karar yapılarından yararlanılmaktadır [7]. 

Fiziksel makineler üzerinde bulunan farklı sayılardaki makinelerin değişken olabilen farklı 

miktardaki kaynak gereksinimleri başarımda düşüşe ve hizmet kalitesinde düşüşe neden 

olabilmektedir. Bu sıkıntıların çözümü için yük dengelemenin yapılması gerekmektedir 

[8]. Yük dengeleme Şekil 1.1’de görüldüğü gibi görev planlaması ve sanal makine 

yerleştirmesi (Virtual Machine Placement - VMP) yaklaşımlarıyla yapılabilmektedir. 

Görev planlaması kullanıcılardan gelen uygulama taleplerinin bir amaca yönelik olarak 

ilgili sanal makinelere dağıtımıdır. Sanal makine yerleştirilmesi ise sanal makinelerin yine 

bir amaç dâhilinde fiziksel sunuculara yerleştirilmesidir [9]. Sanal makine yerleştirme 

problemi çeşitli optimizasyon amaçları ve hedef uygulama merkezine ait özel 

gereksinimler doğrultusunda ele alınması zorunlu bir araştırma konusu olmuştur [10]. 

Yük Dengeleme

Görev planlama
Sanal makine 

yerleştirmesi

 

Şekil 1.1. Yük dengeleme çeşitleri 

Literatürde sanal makine yerleştirme problemine yönelik çok amaçlı optimizasyon 

kullanılarak yapılmış çeşitli çalışmalar mevcuttur [11-23]. Bu çalışmalar amaç, kapsam, 

veri merkezinin ölçeği gibi çeşitli noktalarda farklılık göstermektedir. Bu tez çalışmasında 

sanal makine yerleştirme probleminin çözümüne yönelik yaygın kullanılan çok amaçlı 

optimizasyon algoritmalarından Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), 

steady-state MOEA based on the ϵ-dominance concept (ϵ-MOEA), Pareto Archived 

Evolution Strategy (PAES) ve Strength-Pareto Evolutionary Algorithm 2 (SPEA2) 

uygulanarak başarımları kıyaslanmaktadır. Algoritmaların başarımını ölçmek için 

CloudSim benzetim ortamı ve Multiobjective Evalutionary Algorithm Framework (MOEA 

Framework) kütüphanesinden yararlanılmaktadır. Problemin çözümünde kullanılan çok 
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amaçlı optimizasyon algoritmalarında birden fazla amaçta iyileştirme hedeflenmektedir. 

Bu çalışmadaki amaçlar enerji tüketimini en aza indirmek ve fiziksel makine başına düşen 

ortalama işlemci (Central Processing Unit - CPU) kullanım miktarını artırmaktır. Bu tez 

çalışmasının literatüre katkısı bulut ortamında sanal makine optimzasyonunun literatürde 

daha önce kullanılmamış çok amaçlı optimizasyon algoritmalarıyla yapılarak sonuçların 

karşılaştırılmasıdır.  

Bu tezin ilerleyen kısımları şu şekildedir. İkinci bölümde sanal makine yerleştirme 

problemi ve bu probleme getirilen çözümle ilgili literatürdeki çalışmalardan bahsedilmiştir. 

Üçüncü bölümde tez çalışmasında yararlanılan teknolojiler, kavramlar ayrıntılı bir şekilde 

sunulmuştur. Bulut bilişim, sanallaştırma teknolojisinin yanı sıra uygulamada kullanılan 

CloudSim ve MOEA Framework açık kaynak kodlu yazılımlar tanıtılmıştır. Problemin 

çözümü için kullanılan algoritmalar ayrıntılı olarak sunulmuştur. Dördüncü bölümde sanal 

makine yerleştirme problemi hakkında ayrıntılı bilgi verilmiştir. Beşinci bölümde tez 

kapsamında yapılan uygulama çalışması ve altıncı bölümde uygulama sonucunda elde 

edilen sonuçlar paylaşılmış ve değerlendirilmiştir. Yedinci bölümünde ise tez çalışmasının 

değerlendirilmesi ve geleceğe dönük çalışma önerileri yapılmıştır. 
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2. LİTERATÜR TARAMASI 

Bu bölümde sanal makine yerleştirme problemini çok amaçlı optimizasyon ile ele alan 

çalışmalar araştırılmıştır. Bu çalışmalar amaç, kapsam, veri merkezinin ölçeği, 

karşılaştırıldıkları algoritmalar gibi çeşitli noktalarda farklılık göstermektedir. 

[11]’de “A multiobjective ant colony system algorithm (VMPACS)” isimli çok amaçlı 

karınca kolonisi sistem algoritması tasarlanmıştır. Bu algoritmayla toplam kaynak tüketimi 

ve güç tüketimi en aza indirilerek sanal makineleri yerleştirme problemini çözmek 

amaçlanmıştır. Elde edilen sonuçlara göre önerilen VMPACS algoritması, çok amaçlı 

optimizasyon algoritması olan Multiobjective Grouping Genetic Algorithm (MGGA) ve 

tek amaçlı optimization algoritması olan First Fit Decreasing (FFD) ve Slave Ants Based 

Ant Colony Optimization (SACO) ile karşılaştırılmıştır. Sonuçta VMPACS’in MGGA, 

FFD ve SACO’dan daha verimli ve etkili olduğu tespit edilmiştir.  

[12]’de Multiobjective Ant Colony Optimization (MACO) yerleştirme algoritması 

tasarlanmıştır. Bu algoritmayla toplam kaynak tüketimi, güç tüketimi ve ağ elemanları 

arasındaki iletişim masraflarını en aza indirerek sanal makine yerleştirme problemini 

çözmek amaçlanmıştır. MACO algoritması Cloudsim benzetim ortamında Micro Genetic 

Algorithm (MGA), Local Regression (LR), Dynamic Voltage and Frequency Scaling 

(DVFS) ve FFD algoritmalarıyla karşılaştırılmıştır. Sonuçta MACO’nun enerji tüketimi ve 

iletişim enerjisi maliyeti konusunda daha başarılı olduğu görülmüştür. Burada MGA çok 

amaçlı optimizasyon algoritmasıdır ve FFD, DVFS ve LR ise tek amaçlı sanal makine 

yerleştirme algoritmalarıdır. 

[13]’de Cloud Adapted Feedback isimli algoritma sunulmuştur. Bu algoritmayla belirli bir 

işi daha az zaman ve maliyet ile bitirmek amaçlanmıştır. The Objective Case (Optimal 

Algorithm), Hystorical Statistical Algorithm ve Gene Exchange And Mutation Algorithm 

ile karşılaştırma yapılmıştır. Sonuçta sistemdeki ani değişikliklere adapte olmak konusunda 

en başarılı algoritmanın yazarların sunduğu Cloud Adapted Feedback Algoritması olduğu 

görülmüştür. Normal durumlar için de bu geçerlidir. Fakat sistem parametrelerindeki 

keskin değişiklik durumunda sunulan algoritmanın verimli olmadığı görülmüştür. 
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[14]’de iş yükünü sanal makinelere, sanal makineleri de fiziksel makinelere yerleştiren iki 

seviyeli kontrol sistemi önerilmiştir. Fuzzy multiobjective değerlendirme ile güçlendirilmiş 

genetik algoritma (MGGA) sunulmuştur. Kaynak israfını, güç tüketimini ve soğutma 

maliyetini en aza indirmek hedeflenmiştir. Önerilen MGGA algoritması FFD, BFD VE 

SGGA ile karşılaştırılmıştır. Sonuçta MGGA algoritmasının diğerlerine göre çakışan 

parametreler arasındaki dengeyi daha iyi sağladığı görülmüştür. 

[15]’de bulut veri merkezlerinde sanal makineleri fiziksel makinelere yerleştirmeyi 

yöneten TOPSIS (Technique  For Order Preference Similarity To Ideal Solution) tabanlı 

çok amaçlı optimizasyon yaklaşımı sunulmuştur. TOPSIS, farklı amaçlar (objectiveler) 

arasındaki çakışmayı dengelemek için kullanılan, çok kriterli karar verme tekniklerinden 

bir tanesidir. Önerilen çalışmada hangi sanal makinelerin nereye, ne zaman 

yerleştirileceğine karar vermek çözülmek istenen problemdir. Toplam kaynak tüketimini 

ve güç tüketimini azaltmak ve sunulan hizmet kalitesini artırmak hedeflenmiştir. CloudSim 

ortamında yapılan benzetimlerle önerilen Multiobjective Optimization Approach Based on 

TOPSIS (MOA-T), üç adet tek amaçlı optimizasyon - Single Objective Optimization 

Approaches (SOA) ile ve bir adet çok amaçlı optimizasyon algoritmasıyla 

karşılaştırılmıştır. Bahsedilen tek amaçlı optimizasyonlar MOA-T’nin ağırlıkları 

değiştirilerek oluşturulmuştur ve SOA-S, SOA-R, SOA-P isimleri verilmiştir; karşılaştırma 

yapılan çok amaçlı optimizasyon ise Multi-Objective Optimization Approach Based on 

Simple Additive (MOA-S) Algoritmasıdır. Sonuçta hizmet düzeyi anlaşması konusunda 

MOA-T’nin SOA-P ve SOA-R’den daha iyi olduğu, kaynak yükü ve güç tüketimi 

konusunda SOA-S, SOA-P ve MOA-S’den daha iyi olduğu ve makine taşınması 

konusunda diğer hepsinden daha iyi olduğu görülmüştür. 

[16]’da kaynak kullanımı ve makine taşıma zamanları kriterleri göz önüne alınarak makine 

yerleştirmesi problemini çözmeyi amaçlayan Improved Multiobjective Particle Swarm 

Optimization (IMOPSO) algoritması sunulmuştur. İki adet benzetim çalışması yapılmıştır. 

Birinci çalışmada IMOPSO, Quantum Particle Swarm Optimization (QPSO) ve Particle 

Swarm Optimization (PSO) ile ikinci çalışmada ise NSGA-II ile karşılaştırma yapılmıştr. 

Birinci çalışma sonucunda IMPOSO’nun uygulanabilir ve verimli olduğu görülmüştür. 

Diğer karşılaştırmada ise IMOPSO’nun popüslasyon çeşililiğinde daha iyi olduğu ve hızlı 

bir şekilde pareto fronta yakınsadığı görülmüştür. 
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[17]’de “An Improved Evolutionary Multiobjective Optimization Algorithm” (NS-GGA) 

isimli bir algoritma tasarlanmıştır. Bu algoritmada NSGA-II’nin baskılanamayan sıralama 

özelliği ve Grouping Genetik Algoritma’nın (GGA) genetik operatörleri kullanılmıştır. 

Hedeflenen amaçlar aktif fiziksel makine sayısının azaltılması, iletişim trafiğinin 

azaltılması ve çok boyutlu kaynak kullanımının dengelenmesidir. GGA, BA, Cluster and 

Cut ve Greedy yöntemleri ile karşılaştırılmıştır. Sonuçta NS-GGA isimli algoritmanın 

diğer yöntemlerden daha başarılı olduğu görülmüştür. 

[18]’de yeni bir algoritma önerilmemiş, varolan GA, NSGA ve NSGA-II algoritmaları 

karşılaştırılmıştır. Karşılaştırılan algoritmalardaki ortak amaç açık fiziksel makinelerin 

ortalama kaynak tüketimini artırmak ve yük dengelemeyi çoğaltmak, kaynak israfını en aza 

indirgemektir. C++ kütüphanesi olan, genetik algoritma parçalarını içeren GALib 

kütüphanesi kullanmışlardır. Sonuçta NSGA-II’nin diğer iki algoritmadan daha başarılı 

olduğu görülmüştür. 

[19]’da “Multiobjective Biogeography Based Optimization For Virtual Machine 

Placement” (VMPMBBO) isimli bir algoritma önerilmiştir. Güç tüketimi, kaynak israfı, 

sunucu düzensizliği, sanal makineler arası trafik ve sanal makine taşıma zamanını en aza 

indirgemek hedeflenmiştir. VMPMBBO algoritması, MGGA ve VMPASC 

algoritmalarıyla karşılaştırılmıştır. Sonuçta VMPMBBO algoritmasının daha iyi yakınsama 

özelliğinin olduğu, hesaplama olarak daha verimli olduğu ve daha güçlü olduğu 

görülmüştür. 

[20]’de “Multiobjective optimization with stabilization” (MOS) isimli bir algoritma 

önerilmiştir. Sanal makine taşınması, toplam taşınma süresi, toplam güç tüketimi, toplam 

ısıl ihlal süresi, toplam kaynak kullanım ihlal süresini azaltmak hedeflenmiştir. Testler 

yapılırken IBMBladeCenter’dan yararlanılmıştır. Sonuçta gereksiz sanal makine 

taşınmasının %80 oranına kadar azaldığı; dengesiz fiziksel makine seçiminden kaçınıldığı; 

uygulama performansının %30’a kadar yükseldiği ve kaynak kullanım verimliliğinin de 

%20’ye kadar yükseldiği görülmüştür. 

[21] “Bulut Bilişimde Sanal Makine Yerleştirme Projelerine Genel Bakış” isimli, bulut 

bilişim ve veri merkezleri için literatürde sunulan sanal makine yerleştirme projelerinin 

analiz edildiği araştırma makalesidir. Çalışmalar yerleştirme yapılırken kullanılan 
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algoritmaya göre sınıflandırılmıştır. Makalede etkili yerleştirme algoritmalarının gereksiz 

makinelerin kapatılmasını sağlayarak enerji tüketiminin azaltılabileceğinden 

bahsedilmiştir. Literatürde taranan çalışmalarda çoğu projede bulut bilişimde performans 

ve enerjiyle alakalı konularda iyileştirme yapmanın hedeflendiği; güvenlikle ilgili 

konuların ihmal edildiği görülmüştür. Günümüzde “VM Escape Attacks, VM Sprawling 

Attacks, Cloud-Internal Denial Of Service Attacks (CIDos), VM Neighbor Attacks” gibi 

saldırılar sistemi sanal makine göçlerine zorlayarak sisteme yük getirmektedir. Bunun da 

bulut bilişimin gelecekteki bilgi sistemlerinde kritik rol oynamasına engel olabileceği 

belirtilmiştir. 

[22]’de sanal makine yerleştirme probleminde kullanılan “Grouping Genetic Algorithm”in 

çoğu durumda verimli çalışmadığı belirtilmiştir ve bu algoritmayı iyileştirmek 

amaçlanmıştır. “Vector packing” problemi kullanılarak sanal makine yerleştirme problemi 

modellenmiştir ve kullanılan makine sayısı azaltılarak enerji tüketimi azaltılmak 

istenmiştir. Ayrıca kaynak kullanım verimliliği de artırılmaya çalışılmıştır. Improved 

Grouping Genetic Algorithm (IGGA) kodlama ve çarprazlama metodu sunulmuştur. 

Yapılan testler sonucunda ortalama enerji tüketimi ve kaynak kullanım verimliliği 

konularında IGGA, FFD ve Hybrid Grouping Genetic Algorithm (HGGA)’ya göre daha iyi 

sonuçlar elde edilmiştir. 

[5]’de eş zamanlı olarak enerji kullanımını azaltmak, çok boyutlu kaynak kullanımını 

dengelemek ve veri merkezindeki iletişim trafiğini azaltmayı amaçlayan sanal makine 

yerleştirme modeli sunulmuştur. Problemi çözmek için yerel sezgisel metot ve seçicilik 

(elitism) stratejisi ile iyileştirilmiş genetik algoritma geliştirilmiştir. Benzetim sonuçlarına 

göre sunulan model ve algoritma GREEDY, Genetik Algoritma (Genetic Algorithm - GA), 

Arı Algoritması (Bees Algorithm - BA) ve CLUSTER ile karşılaştırıldığında kaynak 

kullanımının arttığı çok boyutlu kaynak kullanımının dengelendiği ve iletişim trafiğinin 

azaldığı görülmüştür. Yazarlar önerdikleri metodun çözüm hızını artırdığını fakat bunun 

sanal makine üretim aşamasında tüketildiğini belirtmişlerdir ve bu yüzden de ilerde sanal 

makine üretme ve yeniden yapılandırma sistemi tasarlamayı planlamışlardır.  

[23]’de aile geni (family gene) yaklaşımını kullanan sanal makine yerleştirmesi için yeni 

bir teknik sunulmuştur. Sunulan yöntemde genetik algoritmanın erken yakınsama 

(prematüre convergence) ve yüksek işlem zamanı gibi sorunların üstesinden gelmek 
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hedeflenmiştir. Cloudsim’de yapılan benzetim çalışmasında enerji tüketiminin azaldığı 

gözlemlenmiştir. Ayrıca host başına düşen hizmet seviyesi anlaşması ihlali (SLAV) 

zamanı artarken sanal makine göçünün azaldığı görülmüştür. 

Çizelge 2.1. Literatürdeki yöntemlerin karşılaştırmalı özet tablosu 

Makale Yöntem Amaçlar 

[11] VMPACS, MGGA, SACO, FFD 
Toplam kaynak israfını azaltmak, enerji 

tüketimini azaltmak 

[12] MACO, MGA, DVFS, FFD, LR 

Toplam kaynak israfını azaltmak, enerji 

tüketimini azaltmak, ağ elemanları arasındaki 

enerji tüketim maliyeti 

[13] 

Cloud Adopted Feedback Algorithm, 

Optimal Case Algorithm, Historical 

Statistical A., Genetic Algorithm 

İş tamamlama süresini azaltmak, maliyeti 

azaltmak 

[14] MGGA, FFD, BFD, SGGA 
Toplam kaynak israfını azaltmak, enerji 

tüketimini azaltmak ısı kaybını azaltmak 

[15] 
MOA-T, SOA-S, SOA-R, SOA-P, 

MOA-S 

Toplam kaynak gerilimini azaltmak, enerji 

tüketimini azaltmak, hizmet kalitesini artırmak 

[16] IMOPSO, NSGA-II, QPSO, PSO 
Kaynak kullanımını artırmak, Taşınma 

zamanlarını azaltmak 

[17]  NS-GGA, NSGA-II ve GGA 

Aktif PM sayısını azaltmak, iletişim trafiğini 

azaltmak, çok boyutlu kaynak kullanımını 

dengelemek 

[18] GA, NSGA, NSGAII 
Ortalama kaynak kullanımını artırmak, yük 

dengelemeyi artırmak, kaynak israfını azaltmak 

[19] VMPMBBO, VMPACS, MGGA 

Kaynak israfını azaltmak, enerji tüketimini 

azaltmak, sunucular arasındaki yük dengesini 

sağlamak, VM’ler arası ağ trafiğini azaltmak, 

depolama diski  trafiğini azaltmak, VM taşınma 

maliyetini azaltmak 

[20] MOS, MONS, SOC, SOI, SOF 

VM taşınmasını azaltmak, toplam taşınma 

zamanını azaltmak, enerji tüketimini azaltmak, 

toplam ısı ihlal süresini azaltmak, toplam kaynak 

kullanım ihlali süresini azaltmak 

[21] Araştırma Makalesi 
Enerji tüketimini azaltmak, kaynak kullanımı 

verimini artırmak 

[22] IGGA, FFD, HGGA 
Enerji tüketimini azaltmak, kaynak kullanımı 

verim 

[5] Greedy, GA, BA, CLUSTER 
Enerji tüketimini azaltmak, çok boyutlu kaynak 

kullanımı dengelemek 

[23] FGA, THR, LR, LRR, IQR, MAD 
Fiziksel kaynak kullanımını (CPU, RAM, BW) 

artırmak 

[Bu tez 

çalışması] 
NSGA-II, SPEA2, ϵ -MOEA, PAES 

Aktif PM başına düşen ortalama CPU kullanımını 

artırmak, enerji tüketimini azaltmak 
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3. KULLANILAN YÖNTEMLER VE METODOLOJİ 

Bu bölümde tez çalışmasında kullanılan teknolojiler olan bulut bilişim, bulut bilişimin 

vazgeçilmez parçası olan sanallaştırma teknolojisi, sanal makine yerleştirme probleminin 

çözümünde kullanılan çok amaçlı evrimsel optimizasyon algoritmaları (Multiobjective 

Optimization Evaluation Algorithms - MOEA) ve bu algoritmalardan NSGA-II, SPEA2, 

PAES ve ϵ-MOEA açıklanmıştır. Çalışma yapılırken veri merkezinin oluşturulduğu 

benzetim ortamı olan CloudSim yazılımı ve yukarıda bahsedilen algoritmaların 

çalıştırılması için kullanılan MOEA Framework aracı da anlatılmaktadır. 

3.1. Bulut Bilişim 

Bulut bilişim ağ, sunucu, depolama, uygulama ve servis gibi bilişim kaynaklarından oluşan 

bir havuza her zaman, her yerden, talep halinde ağ üzerinden erişim sağlayan bir modeldir 

[52]. Bulut ortamı, veri merkezinin donanımı ve yazılımından oluşmaktadır. Bulut 

ortamları özel ve genel olmak üzere kullanıcılarına göre ikiye ayrılmaktadır. Özel bulut 

ortamı, kurum ve kuruluşların kendilerinin oluşturduğu ve sadece kendi içinde kullandığı 

ortama denilmektedir. Genel bulut ise kaynaklarını herkesin ödediği bedel karşılığında 

kullanabildiği ortamdır [53]. Bulut bilişim dağıtım modellerine göre gruplandığında Şekil 

3.1’de görüldüğü gibi SaaS, PaaS, IaaS olmak üzere üçe ayrılmaktadır[51]. IaaS’de 

bilgisayar donanım alt yapısı kullanıcının hizmetine sunulmaktadır. PaaS’de yazılım 

kullanıcıya lisanslanır ve kullanıcı istediği zaman o yazılımı kullanma hakkına sahip 

olmaktadır. Veri tabanı yönetim yazılımı, uygulama geliştirme ortamı buna bir örnek 

olarak verilebilir. SaaS ise web uygulalarının kişilerin kullanımına sunulmasıdır. Google’ın 

eposta hizmeti buna örnek olarak verilebilir. 
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Şekil 3.1. Bulut bilişimin dağıtım modellerine göre katmanları 

Kuruluşların gün geçtikçe bilişim sistemlerine bağlılığı artmaktadır. Bulut ortamlarının 

kurulumu ve yönetilmesi de insan kaynağı ve yüksek maliyet gerektirmektedir. Bilişim 

hizmetlerinden yararlanmak isteyen kişi veya kuruluşlar bulut bilişimden yararlanarak 

altyapı kurulumu, yeni personel eğitimi ve yazılım lisansı alma gibi yönetimsel ve mali 

zorluklardan kurtulabilmektedirler [55]. Örneğin bulut bilişim sayesinde yenilikçi bir 

internet hizmeti fikri fiziksel kaynak satın alınmadan bulut üzerine kurularak insanların 

kullanımına sunulabilmektedir [54]. Bulut bilişim hızlı, esnek, düşük maliyet gibi 

avantajlar sağlamaktadır fakat güvenilirliği çok yüksek değildir. Birçok kullanıcının 

verilerinin aynı yerde bulunması bir risktir. Bunun dışında kullanıcı verileri bulut bilişim 

sağlayıcılarının denetimine bırakıldığından veriler de risk altında bulunmaktadır. 

3.2. Sanallaştırma 

Geleneksel yöntemlerde uygulamalar fiziksel makineler üzerine kurulmaktadır ve bu da 

enerji israfı, yer israfı, düşük kaynak kullanımı ve önemli yönetim giderleri 

gerektirmektedir. Bunlar da maliyeti artırmaktadır. Günümüzde kullanılan sanallaştırma 

teknolojisi ise daha esnek, güvenli ve isteğe bağlı olarak gerektiğinde tahsis edilerek 

kaynak ayrımında esneklik sağlamaktadır. Sanallaştırma teknolojisinin kullanıldığı bulut 

veri merkezinde hesaplama (sunucular), depolama ve ağ cihazları bulunmaktadır ve bunlar 

ağ üzerinde dağıtık halde bulunabilmektedir. Fiziksel sunucular coğrafi olarak ayrılmış 

olarak yani farklı veri merkezlerinde de tutulabilmektedirler.  Fiziksel sunucu bilgisayar, 

CPU, bellek (Random Access Memory- RAM), depolama gibi elemanlarıyla hesaplama 

yetisine sahiptir [49]. Veri merkezinde bulunan diğer düğümlerin de CPU, bellek ve ağ 
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bant genişliği (Bandwitdh - bw) gibi özellikleri vardır. Veri merkezi bünyesinde 

barındırdığı çok sayıda fiziksel sunucuyu yönetmektedir ve bu fiziksel sunuculara 

yerleştirme politikasına göre bir veya birden fazla sanal makine atanabilmektedir. Bulut 

veri merkezlerinin yönetiminde kaynak planlaması işinin önemli bir rolü bulunmaktadır. 

Bu kaynak planlaması yapılırken amaca göre karar verilmektedir. Örneğin yük dengeleme 

ve enerji tasarrufu farklı yerleştirme politikaları gerektirebilmektedir. Sanal makinelerin 

yerleştirme, taşınma işlemlerine karar vermek zorlayıcı planlama problemlerindendir. 

Sanallaştırma teknolojisinin mimari yapısı Şekil 3.2’de görülmektedir. Sanal makineler, 

üzerinde bulunduğu fiziksel makinenin kaynaklarını kullanmaktadır [26]. En popüler 

sanallaştırma yazılımları VMware [63], Microsoft [64] ve Citrix [65] tarafından üretilen 

yazılımlardır. Sanallaştırma enerji tasarrufu, maliyet azaltma sağlamaktadır. Sanallaştırma 

katmanı hipervisor olarak da bilinmektedir. Sanallaştırma katmanı sanal makinelere 

işlemci, bellek ve ağ bant genişliği sağlamaktadır [26]. 

Sanal Makine

Uygulama

Sanal Makine

Uygulama

Sanal Makine

Uygulama

SANALLAŞTIRMA KATMANI

DONANIM

İŞLEMCİ, BELLEK, BANT GENİŞLİĞİ, 
DEPOLAMA ALANI

 

Şekil 3.2. Sanallaştırma teknolojisinin mimari yapısı [26] 

Sanallaştırma teknolojisinin sağladığı sanal makinelerin dinamik yerleştirilmesi kaynakları 

etkili kullanmayı ve enerji tüketimini azaltmayı sağlamaktadır.  Atıl durumdaki sunucular 
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üzerlerindeki sanal makineler alınarak pasif duruma (düşük enerji modu veya uyku modu)  

geçirilerek enerji tüketimi azaltılabilmektedir. Sanallaştırma teknolojisinin sağladığı bir 

imkân olan canlı taşıma, sanal makinelerin hizmet kesintisi olmadan bir fiziksel sunucudan 

başka bir fiziksel sunucuya taşınmasıdır. Eğer bir uygulamanın kaynak gereksinimleri 

(işlemci, bellek vb.) karşılanamazsa uygulamanın cevap zamanı gecikme hatası veya 

hizmet kesintisi gibi sorunlarla karşılaşılabilmektedir. Bu yüzden bulut sağlayıcılar enerji 

tüketimini azaltırken performansın düşmemesi için performans enerji arasında denge 

kurmalıdırlar [29]. 

 

Şekil 3.3. Sanallaştırma ortamındaki fiziksel ve sanal makineler 

3.3. Çok Amaçlı Optimizasyon 

Optimizasyon, bütün mühendislik alanlarında kaşılaşılan matematiksel problemlere 

getirilen bir çözüm yöntemi olup bir veya birden fazla amacın sınır değerleri arasında 

kalan uygulanabilir çözümleri bulmaktır [34,56]. Birden fazla amaç fonksiyonunu sistemli 

ve eşzamanlı olarak optimize etme işine çok amaçlı optimizasyon veya vektör 

optimizasyonu denilmektedir [57]. Çok amaçlı algoritmalar üç gruba ayrılmaktadır. 

NSGAII [30], SPEA2 [45] pareto tabanlı, IBEA [46], SMS-MOEA [41] gösterge tabanlı 
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ve MOEA/D [42], MOEA/D-IR [43] dekompozisyon tabanlı çok amaçlı optimizasyon 

algoritmalarıdır [44]. Çoğu çok amaçlı optimizasyon algoritması çoğul amaçları tek amaca 

çevirmeye çalışmaktadır. Tek amaçlı ve çoğul amaçlı optimizasyon arasında temel 

farklılıklar bulunmaktadır. Tek amaçlı optimizasyonda bir tek optimum çözüm sunulurken; 

çok amaçlı optimizasyonda birden fazla optimum çözüm sunulmaktadır [50]. Tek amaçlı 

optimizasyonda tek bir kritere odaklanılmaktadır ve diğer kriterlere hiçbir şekilde 

bakılmamaktadır. Örneğin bir alıcı bir ev alırken fiyata göre karar verirse gidip en ucuzunu 

alabilmektedir, bu durumda aldığı ev şehir merkezinden çok uzakta olacaktır. Eğer ev 

seçerken kriterlerine hem şehir merkezine yakınlığı hem de fiyatını katarsa biraz 

maliyetten biraz da şehir merkezine yakınlığından ödün verebilmektedir.  

Çok amaçlı optimizasyonda birden fazla en iyi çözüm olmasının sebebi amaçların 

birbiriyle çakışmasıdır [34]. Çok amaçlı optimizasyonlar çözüm olarak farklı avantaj ve 

dezavantajları olan birden fazla seçenek sunmaktadır. Bu çözüm seçeneklerinden oluşan 

kümeye Pareto Optimal Küme (Pareto Optimal Set - POS) denilmektedir. Bu çözümlerin 

grafik üzerinde birleştirilmesiyle oluşan, Şekil 3.4’de görülen eğriye ise Pareto Optimal 

Front (POF) denilmektedir [30]. 

H
a

ta

Maliyet
Düşük hata yüksek 

maliyet

Yüksek hata düşük 

maliyet

 

Şekil 3.4. Pareto Optimal Front eğrisi [28] 
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Çok amaçlı optimizasyonda amaçlar arasında ödünleşim bulunmaktadır (bknz. Şekil 3.4). 

Çizgili alanda kalan çözümler farazi probleme aday çözümlerdir. Sol üst alan aday 

çözümlerden düşük maliyetli ve yüksek hatalı olanları göstermektedir. Tek bir en iyi 

çözüm olmadığından hedefler arasında değişen miktarda ödünleşim olan çok sayıda 

potansiyel çözüm bulunmaktadır. Karar vericiler bu potansiyel çözüm kümesinden keşif 

yapmak ve uygulanacak olan çözüm veya çözümleri seçmekle sorumludur. Optimizasyon 

araçları bu karar verme sürecinde yardımcı olabilmektedir. Örneğin sonuçları azaltmakta 

fayda sağlayabilmektedir. Maliyet çok yükseldiğinde hatada sıra dışı bir azalma olması 

beklenmektedir. Bu türden bir analiz yapabilmek için soncul optimizasyon olarak bilinen 

numaralandırma ve ödünleşim tahmini yapılmaktadır [28]. 

Çok amaçlı optimizasyon sonucunda sunulan çözümlerden hangisinin seçileceği kişinin 

insiyatifindedir. Örneğin ev örneğinde ortaya çıkan en iyi çözümlerden maliyeti en düşük 

olan ya da şehir merkezine en yakın olan seçilebilmektedir. Bunun dışında her bir kritere 

bir ağırlık değeri verilerek tek amaçlı optimizasyona çevrilebilmektedir.  

Çok amaçlı optimizasyon yönteminde eşzamanlı olarak birden fazla amaç optimize 

edilmeye çalışıldığından ve amaçlar birbiriyle çeliştiğinden problem zorlaşmaktadır. Bu tür 

problemlerin tamamında birden fazla amaç fonksiyonu bulunmaktadır ve bazılarında 

kısıtlar da bulunmaktadır. Şekil 3.5’de görüldüğü gibi birinci adımda çok amaçlı 

optimizasyon problemleri çözümünde elde edilen POS elemanlarından birisi ikinci adımda 

tercih edilmelidir. 
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Şekil 3.5. Çok amaçlı optimizasyon adımları [34] 

3.3.1. Evrimsel çok amaçlı optimizasyon 

Evrimsel çok amaçlı optimizasyon son yıllarda uygulama ve araştırma alanında popüler ve 

kullanışlı olmaktadır. Evrimsel optimizasyon algoritmaları popülasyon tabanlı yaklaşım 

içermektedir. Popülasyon, her bir döngüye katılan birden fazla çözüme denilmektedir. 

Herbir döngüde yeni bir popülasyon oluşturulmaktadır. 

Evrimsel optimizasyon algoritmalarının popüler olma sebepleri çeşitlidir. Birincisi, 

evrimsel algoritmalar türetilmiş işlenmiş bilgiye gereksinim duymamaktadır. İkinci olarak 

evrimsel algoritmaların göreceli olarak uygulanması kolaydır. Üçüncüsü ise evrimsel 

algoritmalar esnektir ve yaygın bir uygulanabilirliğe sahiptir. 

Evrimsel optimizasyon başlangıç adımından sonra sonlandırma şartı sağlanıncaya kadar şu 

adımları tekrarlayarak eldeki popülasyonu sürekli güncellemektedir: 

1) Seçme (Selection) 

2) Çarprazlama (Crossover) 

3) Mutasyon (Mutation) 
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4) Seçkinleri Koruma (Elite preservation) 

Başlangıç prosedürü genellikle rastgele çözümler oluşturulmasıyla başlar. Başlangıç 

popülasyonu rasgele çözümler üretilerek oluşturulabilmektedir fakat başlangıç 

popülasyonunda iyi özellikli çözümler olması tavsiye edilir. Bu, sonuca daha hızlı 

ulaşılmasını sağlamaktadır. Popülasyon üyelerinin uygunluk değerleri ölçüldükten sonra 

seçme operatörü vasıtasıyla seçilen bireyler ara eşleme havuzuna atılmaktadır.  

Varyasyon operatörü birden fazla sayıdaki operatörün (örn. Çarprazlama, mutasyon) 

toplamıdır. Bunlar değiştirilmiş popülasyon oluşturmak için kullanılır. Çarprazlama 

operatörünün amacı eşleme ara havuzundan iki veya daha fazla ebeveyn seçmek ve 

ebeveynler arasında bilgi alışverişi yaparak bir veya birden fazla çözüm üretmektir. 

Ebeveyn bireylerin çarprazlamaya ne kadar katılacağını belirlemek için çaprazlama 

olasılığı kullanılmaktadır (𝑃𝑐Є [0,1]). Bireylerin kalan parçası (1-𝑃𝑐) çocuk bireylere 

kopyalanmaktadır. 

Mutasyon operatörü çeşitliliği sağlamak amacıyla bazı çözümleri değiştirmektedir. 

Mustasyon rasgele değişikliklere dayanmaktadır. Mutasyon operatörünün değiştirme 

gücüne mutasyon oranı denilmektedir. Herbir çözümün değiştirilme olasılığı 𝑃𝑚’dir. 𝑛 

değişken sayısı olmak üzere genellikle 𝑃𝑚 =
1

𝑛
 eşitliği ile hesaplanmaktadır. Böylece 

genellikle sadece bir değişken değiştirilmektedir. Bu operatör sayesinde mevcut 

çözümlerden çok uzaklaşılmamakla birlikte birbirinden farklı çözümler üretilmektedir. 

Elitizm operatörü mevcut ve yeni popülasyonlarda bulunan çözümler arasından iyi 

olanların seçilmesini sağlamaktadır. Bu operatör de performansın düşmemesine katkıda 

bulunur. 

Evrimsel optimizasyonu sonlandırmak için sonlandırma kriteri belirlenmelidir. Genellikle 

daha önceden belirlenen sayıda nesil (generation) üretildiğinde ya da belirlenen hedefe 

ulaşıldığında optimizasyon sonlandırılmaktadır. 

Çok amaçlı optimizasyon probleminde en aza indirgenmesi veya en büyük değere 

çıkarılması gereken birden fazla amaç fonksiyonu bulunmaktadır. Çok amaçlı 

optimizasyonun matematiksel eşitliği aşağıdaki gibidir: 
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𝑋 = (𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑛)𝑇                (3.1) 

Eş. 3.1 çözüm vektörünü ifade etmektedir. 

Minimize/maksimize           𝑓𝑚(𝑋)            𝑚 = 1,2,3, … . . 𝑀;           (3.2) 

Kısıtlar 

𝑔𝑗(𝑋) ≥ 0        𝑗 = 1,2,3, … . . 𝐽;                                                           (3.3) 

ℎ𝑘(𝑋) = 0        𝑘 = 1,2,3, … . . 𝐾;                                                    (3.4) 

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

     𝑖 = 1,2,3, … . . 𝑛                                                    (3.5) 

Eş. 3.1’deki 𝑋,  popülasyonda bulunan bir çözümü temsil etmektedir. Her bir çözüm 𝑛 adet 

karar değişkeninin (𝑋𝑛) oluşturduğu bir vektördür. Eş. 3.2 𝑀 adet amaç fonksiyonunu 

ifade etmektedir. Bu fonksiyonlar minimize ya da maksimize edilebilmektedir. Eş. 3.3’deki  

𝑔𝑗(𝑥) ve Eş. 3.4’deki ℎ𝑘(𝑥) kısıt fonksiyonlarıdır. Buna benzer olarak çözümün 

geçerliliğini etkileyen diğer Eş. 3.5’teki değişkenlerin sınırları kısıtları ifade etmektedir. 

Herbir 𝑥, 𝑥𝑖
(𝐿)

 ve 𝑥𝑖
(𝑈)

 arasında olmalıdır [34]. 

3.3.2. Baskılanamayan çözümler (Non-dominated Solutions) 

Çok amaçlı optimizasyonda çözümlerin birbirine baskınlığı söz konusudur. İki çözüm 

arasındaki baskınlık ilişkisi aşağıdaki gibi tanımlanır. 

Eğer şu şartlar sağlanıyorsa  “𝑥1 çözümü 𝑥2 çözümüne baskındır” denir: 

1) 𝑥1 çözümü hiçbir amaç yönünden 𝑥2’den daha kötü değildir. Bu karşılaştırma 

yapılırken amaç fonksiyonunun değerine veya grafikteki yerine bakılır. 

2) 𝑥1 çözümü en az bir amaç bakımından 𝑥2’ye göre daha üstündür. 

Popülasyonda bulunan her bir eleman diğer elemanlarla yukarda anlatıldığı şekilde 

karşılaştırılmaktadır. Herhangi bir 𝑥1 elemanı 𝑥2 elemanını baskılıyorsa, bunun tersi de 

doğrudur yani 𝑥2 elemanı  𝑥1’i baskılayamaz. Herhangi bir 𝑥1 elemanı 𝑥2 elemanını 
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baskılamıyorsa tersi doğru olmayabilir yani bu 𝑥2 elemanının 𝑥1 elemanını baskıladığı 

anlamına gelmez.  

 

Şekil 3.6. Baskılanamayan çözümler kullanılarak çizilen “Non-dominated front” eğrisi [34] 

Çözüm kümesindeki elemanlar grafik alanında nokta ile ifade edilmektedir. Çözüm 

kümesinde bulunan herbir eleman bir diğeriyle tek tek karşılaştırılmaktadır, hangi 

çözümün diğerine baskın olduğu ve hangi çözümlerin birbirini baskılayamadığı 

belirlenmektedir. Daha sonra öyle bir küme oluşturulur ki bu kümedeki elemanların 

hiçbirisi bir diğerini baskılayamamaktadır. Bu kümeye baskılanamayan küme 

denilmektedir. Bu kümede bulunan elemanlar, kümeye ait olmayan elemanları 

baskılamaktadır. Baskılanamayan elemanları grafikte ifade eden noktalar kullanılarak bir 

eğri çizildiğinde bu eğriye Non-Dominated Front veya Pareto Optimal Front 

denilmektedir. Bu eğri Şekil 3.6’da örneklenmektedir. Kullanıcı, çözüm kümesi 

bulunduktan sonra çözümlerden hangisinin seçileceği konusunda bir ikileme düşmektedir 

(bknz. Şekil 3.5). Bu seçimi yapmak gerçekte teknik bilgi değil deneyim gerektiren bir 

durumdur. Çok amaçlı optimizasyonda amaç sayısı çok artırıldığında örneğin 3’ten 10’a 

artırıldığında %10 olan baskılanamayan eleman sayısı %90’a çıkmaktadır [34]. 

3.4. Kullanılan Algoritmalar 

Yapılan çalışmada NSGA-II, ϵ-MOEA, PAES ve SPEA2 algoritmaları ile sanal makine 

yerleştirme benzetimi gerçekleştirilerek elde edilen sonuçlar karşılaştırılmıştır. Bu 

bölümde kullanılan algoritmaların açıklamaları yapılmaktadır. 
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3.4.1. NSGA-II 

Kalyonmoy Deb ve arkadaşları NSGA-II [30] ismini verdikleri algoritmayı 2002 yılında 

geliştirmişlerdir. NSGA-II, NSGA [35]’nın iyileştirilmiş sürümüdür [36].  Evrimsel ve 

arşiv popülasyonu olmak üzere iki adet popülasyon kullanılmaktadır. Evrimsel popülasyon 

𝑃𝑡  ve arşiv popülasyonu ise 𝑄𝑡 ile gösterilmektedir. 

Pt

Qt

F1

F2

F3

RED

RED

Pt+1Rt

 

Şekil 3.7. NSGAII algoritmasının görselleştirilmesi [30] 

Başlangıçta rasgele ebeveyn popülasyonu 𝑃0 oluşturulmaktadır. Daha sonra  𝑃0 

popülasyonu bireylerine İkili turnuva, çarprazlama ve mutasyon operatörleri uygulanarak 

𝑁 boyutundaki 𝑄0 arşiv popülasyonu oluşturulmaktadır. 𝑃0  ve 𝑄0 popülasyonları 

oluşturulduktan sonra 𝑃𝑡 ve 𝑄𝑡 popülasyonları birleştirilerek 2𝑁 boyutundaki 𝑅𝑡 

popülasyonu oluşturulmaktadır.  

R popülasyonundaki bireyler seviye seviye oluşturulan pareto optimal kümelerine 

atanmaktadır. Bu kümelere Şekil 3.4’de görüldüğü gibi 𝐹1, 𝐹2,… 𝐹𝑁 isimleri verilmektedir. 

Elemanların uygunluk değerleri de kaçıncı pareto optimal kümede olduklarına göre 
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belirlenmektedir. Örneğin 𝐹1  pareto optimal kümesinde bulunan elemanların uygunluk 

değerleri 1 olmaktadır. 𝐹1 pareto optimal kümesinde bulunan elemanlar en iyi 

elemanlardır. Bu durumda uygunluk değeri düşük olan elemanların daha iyi olduğu kabul 

edilmektedir. Daha sonra 𝑅𝑡 popülasyonu elemanları uygunluk değerlerine göre 

sıralanmaktadır.  

Şekil 3.7’de görüldüğü üzere eğer 𝐹1’in eleman sayısı ebeveyn popülasyonu boyutu olan 

𝑁’den küçükse 𝐹1’in bütün elemanları yeni popülasyon olan 𝑃𝑡+1’e seçilmektedir. Eğer 

𝑃𝑡+1’de boş kalan yerler varsa seviyelerine göre diğer kümelerin elemanlarıyla 

doldurulmaktadır. Önce 𝐹2 kümesinin elemanları, sonra 𝐹3 kümesinin elemanları 

seçilmektedir ve böyle devam etmektedir. Yerleştirme yapılan son pareto optimal kümesi 

örneğin 𝐹3 olursa 𝐹3’ün elemanları yoğunluk karşılaştırma operatörüyle azalan bir şekilde 

sıralanmaktadır. Bu sıralamadaki en iyi elemanlar kullanılarak yeni popülasyon 𝑃𝑡+1’de 

boş kalan yerler doldurularak yeni popülasyon oluşturma işlemi tamamlanmaktadır. Pareto 

optimal küme elemanları arasında sıralama yapılırken çözümün etrafındaki çözüm 

yoğunluğuna bakılmaktadır, yoğunluğu en az olan eleman seçilmektedir. Çözümlerin 

bulunduğu alanın yoğunluk değeri kalabalığa uzaklık tekniği ile bulunmaktadır. Kalabalığa 

uzaklık, çözümlerin bulunduğu alanın yoğunluk değeridir.  Bu yöntem sayesinde çeşitlilik 

sağlanmaktadır. 

İlk döngüde kullanılan 𝑄0 popülasyonu oluşturulduktan sonra diğer döngülerde kullanılan 

𝑄𝑡+1 popülasyonu oluşturulurken ikili turnuva seçme yönteminin yerini yoğunluk 

karşılaştırmaya dayalı yöntem almaktadır. Bu yöntem sıralama ve kalabalığa uzaklık 

bilgileri kullanmaktadır. Bu bilgiler 𝑃𝑡+1 oluşturulurken zaten hesaplandığı için yeni bir 

hesaplama maliyeti getirmemektedir [30]. 

3.4.2. ϵ-MOEA 

ϵ-baskınlık kavramına [58] ve verimli ebeveyn ve arşiv güncelleme yönemlerine dayalı ϵ-

MOEA [39] isminde bir algoritma Kalyonmoy Deb ve arkadaşları tarafından sunulmuştur. 

Algoritmada iki türde popülasyon bulunmaktadır. Evrimsel popülasyon 𝑃𝑡 ile, arşiv 

popülasyonu ise 𝑄𝑡 ile gösterilmektedir. Burada 𝑡, döngü sayısını ifade etmektedir. 
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Başlangıçta 𝑄0 popülasyonu, 𝑃0’ın ϵ-baskılanamayan çözümleri atanarak 

oluşturulmaktadır. 

𝑃𝑡’den rasgele iki birey seçilerek, bu iki bireyden diğerine baskın olan eleman eşleşme için 

seçilmektedir. Eğer birbirlerine baskın gelemezlerse rasgele birisi seçilmektedir. Seçilen 

elemana 𝑝 denilmektedir. 𝑄𝑡 arşiv popülasyonundan da rasgele bir 𝑒 bireyi seçilmektedir. 

𝑝 ve 𝑒 çarprazlanarak çocuk birey oluşturulmaktadır.  

Yeni oluşturulan çocuk bireyin kabul edilip edilmeyeceğinin belirlenmesi için 𝑄𝑡 ve 𝑃𝑡  

popülasyonundaki bireylerle karşılaştırılmaktadır. Çocuğun arşivdeki herbir elemanla ϵ-

dominantlık karşılaştırması yapılmaktadır. Arşivdeki herbir çözüm 𝐵 dizisiyle ifade 

edilmektedir. 𝑀 amaç sayısı olmak üzere 𝐵 vektörü 𝐵 = (𝐵1, 𝐵2, … . . 𝐵𝑀)𝑇 şeklinde ifade 

edilmektedir. 𝐵 dizisi Eş. 3.6’ya göre hesaplanmaktadır.  

𝐵𝑗(𝑓) = {
⌊𝑓𝑗 − 𝑓𝑗

𝑚𝑖𝑛/∈𝑗⌋, 𝑓𝑗
′𝑦𝑖 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒𝑡𝑚𝑒𝑘 𝑖ç𝑖𝑛

    ⌊𝑓𝑗 − 𝑓𝑗
𝑚𝑖𝑛/∈𝑗⌋, 𝑓𝑗

′𝑦𝑖 𝑚𝑎𝑘𝑠𝑖𝑚𝑖𝑧𝑒 𝑒𝑡𝑚𝑒𝑘 𝑖ç𝑖𝑛 
              (3.6) 

B tanımlama dizisi bütün amaç uzayını kutucuklara bölmektedir. Şekil 3.5’de görüldüğü 

gibi her bir kutucuk amaç numarası 𝑗’ye göre değişen ϵ𝑗 boyutuna sahiptir.   

 

Şekil 3.8. ϵ - dominantlık kavramı [39] 

Arşivdeki herhangi bir eleman 𝛼 ile, çocuk eleman ise 𝑐𝑡 ile ifade edilmektedir. 

1) α elemanı 𝑐𝑡’ye ϵ -baskınsa 𝑐𝑡 elenmektedir. 

2) 𝑐𝑡 herhangi bir 𝛼’ya baskınsa 𝛼 silinip yerine 𝑐𝑡 koyulmaktadır. 
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3)  1. ve 2. şartların herikiside sağlanmıyorsa 𝑐𝑖 arşiv elemanı tarafından ϵ- 

baskılanamayandır denilmektedir. Bu durumda 

a. Aynı kutudalarsa yani aynı B vektörünü paylaşıyorlarsa klasik baskılanmazlık kontrolü 

yapılmaktadır. Eğer 𝑐𝑡, 𝛼’yı baskılarsa veya 𝛼, 𝑐𝑡’yi baskılayamazsa fakat 𝐵’ye 𝛼’dan 

daha yakınsa 𝛼 silinip yerine 𝑐𝑡 kabul edilmektedir. 

b. Aynı kutuda değillerse 𝑐𝑡 kabul edilmektedir. 

Arşivin eleman sayısı sabit değildir. “Herbir kutuda sadece 1 eleman olacaktır” kuralı 

çözümlerin iyi dağıtılması ve final arşiv boyutunun pareto optimal çözümlerin toplam sayı 

boyutuyla sınırlanmasını ve çeşitliliği sağlamaktadır. 

Çocuğun popülasyona kabul edilip edilmeyeceğini belirlemek için çocuk eleman 

popülasyondaki bütün çözümlerle karşılaştırılır. Eğer çocuk popülasyondaki bir elemanı 

baskılıyorsa onun yerine geçer, eğer çocuk birden fazla çözümü baskılıyorsa onlardan 

rasgele bir tanesi seçilerek onun yerine koyulur. Eğer çocuk eleman popülasyondaki 

herhangi bir elemana baskılanıyorsa popülasyona kabul edilmez. Eğer bu iki durum da 

sağlanmıyorsa çocuk eleman popülasyondan rasgele seçilen bir elemanla yer 

değiştirilmektedir. Böylece popülasyonun boyutu sabit kalmış olmaktadır.  

3.4.3. PAES 

Knowles ve Corne 2000 yılında evrimsel strateji kullanan çok amaçlı evrimsel algoritma 

olan PAES algoritmasını geliştirmişlerdir.  PAES‘de İlk önce rasgele çözüm 𝑝0 yeni 

ebeveyni seçilmektedir. Sonra bu çözüm mutasyona uğratılmaktadır. Mutasyona uğramış 

ebeveyne çocuk denilmektedir ve 𝑐𝑡 ile ifade edilmektedir. Başlangıçta yapılan 𝑝𝑡 ve 𝑐𝑡 

karşılaştırması 3 senaryoda gerçekleştirilmektedir. Eğer pt, ct’ye baskınsa çocuk 𝑐𝑡 

elenmektedir ve yeni bir mutasyona uğramış çocuk ilerdeki süreçler için oluşturulmaktadır. 

Eğer ct, pt’ye baskınsa çocuk ebeveynden daha iyidir, bu durumda 𝑐𝑡 bir sonraki nesile 

ebeveyn olarak kabul edilmektedir ve kopyası arşive kaydedilmektedir. Arşiv bu şekilde 

doldurulmaktadır. Arşivin boyutu PAES tarafından sürekli güncellenmektedir. pt ve ct 

birbirine baskın değilse karışıklık ortaya çıkmaktadır. Bu durumda çocuk o andaki arşivle 

karşılaştırılır (arşivde o ana kadar bulunan baskılanamayan çözümleri tutar). Burada 3 

durum mümkündür: 
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1. Arşiv üyesi çocuğa baskındır. Çocuk, arşive alınmaz, ebeveyn 𝑝𝑡 ilerki süreçlerde 

kullanmak için bir çocuk bulmak amacıyla mutasyona uğratılmaktadır. 

2. Çocuk, arşivin bir üyesine baskındır, bu da çocuk, arşivin bazı üyelerinden daha iyi 

demektir. Arşivin baskılanmış üyeleri silinmektedir, onların yerine çocuk kabul 

edilmektedir. Çocuk bir sonraki neslin ebeveyni olmaktadır. 

3. Arşivdeki hiçbir eleman çocuğu baskılayamamaktadır ve çocuk da arşivin hiçbir 

elemanını baskılayamamaktadır. Bu durumda çocuk arşiv çözümlerinin ait olduğu 

baskılanamayan cepheye aittir. Bu durumda, eğer boşluk varsa bir sonraki nesilde çocuk 

arşive alınabilmektedir. Çocuğun bir sonraki nesil için ebeveyn olup olamayacağına 

karar vermek için çevredeki çözümlerin yoğunluğuna bakılmaktadır. Çünkü 𝑝𝑡 ve 𝑐𝑡’nin 

her ikisi de arşivin üyesidir. En az kalabalık bölgede bulunan birey ebeveyn olarak 

seçilmektedir. Eğer arşiv tamamen dolu ise ebeveyn veya çocuğun hangisinin arşivde 

kalacağını belirlerken yoğunluk tabanlı karşılaştırma uygulanmaktadır. Eğer çocuk arşiv 

üyeleri amaç uzayındaki en az kalabalık alanda bulunuyorsa ebeveyn olarak kabul 

edilmektedir ve bir kopyası arşive eklenmektedir. Kalabalık, bütün arama uzayı 𝑑𝑛 alt 

alana bölünerek ve alt alanları dinamik olarak güncellenerek düzenlenebilmektedir. 

Burada 𝑑 derinlik parametresi, 𝑛 karar değişkenlerinin sayısıdır. 

Her bir 𝑡 jenerasyonunda (her bir döngüde) 𝑝𝑡 ve 𝑐𝑡’ye ek olarak PAES o ana kadar 

bulunan en iyi çözümlerin tutulduğu arşivi de iyileştirmektedir. Başlangıçta bu arşiv boş 

olmaktadır, nesil ilerledikçe iyi çözümler arşive eklenmektedir ve güncellenmektedir [30]. 

3.4.4. SPEA2 

SPEA2 algoritması Eckart Zitzler ve arkadaşları tarafından 2001 yılında sunulmuştur. 

SPEA2 algoritmasında 𝑁, popülasyondaki birey sayısını; 𝑁̅ arşiv popülasyonundaki birey 

sayısını; 𝑇 döngünün kaç defa tekrarlanacağını ve 𝐴 baskılanamayan kümenin eleman 

sayısını belirtmektedir. 

Evrimsel 𝑃𝑡 ve arşiv popülasyonu 𝑄𝑡 olmak üzere iki adet popülasyonu bulunmaktadır. 

Başlangıçta arşiv popülasyonu boştur. 𝑃𝑡 ve 𝑄𝑡’deki herbir 𝑖 bireyine güç değeri atanır. 

𝑆(𝑖) değeri Eş. 3.7’de olduğu gibi 𝑖 bireyinin baskıladığı çözümlerin sayısını 

göstermektedir. 
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𝑆(𝑖) = |{𝑗 | 𝑗 ∈ 𝑃𝑡 + 𝑄𝑡  ⋀  𝑖 ≻ 𝑗}|               (3.7) 

Eş. 3.7’de |. | simgesi eleman sayısını, + simgesi birleştirmeyi, ≻ simgesi pareto baskınlık 

ilişkisi’ni ifade eder. Hesaplanan güç değeri uygunluk değeri hesaplarında kullanılmak 

üzere ham uygunluk değeri hesaplanırken kullanılmaktadır. 

𝑅(𝑖) = ∑ 𝑆(𝑗)𝑗∈𝑃𝑡+𝑄𝑡 ,𝑗≻𝑖                  (3.8) 

Eş. 3.8’de görülen 𝑅(𝑖) fonksiyonu i bireyinin ham uygunluk değeridir ve 𝑖 bireyini 

baskılayan bireylerin her birinin baskıladığı eleman sayıları toplamı ile hesaplanmaktadır. 

Burada 𝑖’yi baskılayan elemanların ne kadar güçlü olduğu bulunmaya çalışılmaktadır. 

Diğer bir ifadeyle ham uygunluk, arşiv ve popülasyondaki 𝑖 bireyini baskılayan 

elemanların güç değerlerinin toplamıdır. Burada uygunluk değerinin az olması daha 

makbuldür. Örneğin baskılanamayan elemanların ham uygunluk değeri 𝑅(𝑖) = 0'dır. 𝑅(𝑖) 

değerinin yüksek olması 𝑖 bireyinin birçok birey tarafından baskılandığını gösterir. Ham 

uygunluk değeri belirleme işi bireylerin çoğu birbirine baskın değilse başarısız 

olabilmektedir. Bundan dolayı aynı ham uygunluk değerine sahip bireyleri ayırt edebilmek 

için yoğunluk bilgisiyle birleştirilmektedir. SPEA2’de en yakın 𝑘. komşu metodunun 

uyarlaması olan yoğunluk tahmin tekniği kullanılmaktadır, 𝑘. en yakın komşuya olan 

uzaklığın bir fonksiyonu kullanılmaktadır. Yoğunluk tahmini olarak 𝑘. en yakın komşuya 

olan uzaklığın tersi alınmaktadır. Daha açık bir ifadeyle her bir 𝑖 bireyinin arşiv ve 

popülasyondaki her bir 𝑗 bireyine uzaklığı hesaplanıp bir listede tutulmaktadır. Liste artan 

sırada sıralanırsa 𝑘. eleman aranan mesafeyi vermektedir. Bu mesafe değeri 𝜎𝑖
𝑘 ile ifade 

edilmektedir. Ortak bir ayar olarak 𝑘 = √𝑁 + 𝑁̅ eşitliğiyle hesaplanmaktadır. Daha sonra 

𝑖’ye bağlı yoğunluk değeri hesabı Eş. 3.9’da gösterilmektedir. 

𝐷(𝑖) =
1

𝜎𝑖
𝑘+2

                  (3.9) 

Eş. 3.9’da paydada 2 olmasının sebebi paydanın 0’dan büyük olmasını ve 𝐷(𝑖) < 1 

sağlamaktır. En son Eş. 3.10’da 𝐷(𝑖)’ye 𝑅(𝑖) eklenerek uygunluk değeri 𝐹(𝑖) 

hesaplanmaktadır. 

𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖)               (3.10) 
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Uygunluk değerlerine göre yeni arşiv popülasyonu oluşturulur. 𝑃𝑡 ve 𝑄𝑡’deki bütün 

baskılanamayan bireyler 𝑄𝑡+1 arşiv popülasyonuna kopyalanmaktadır. Eğer 𝑄𝑡+1 boyutu 𝑁̅ 

sabit değerini aşıyorsa, arşiv kesme yöntemiyle bazı elemanlar elenmektedir. Arşiv boyutu 

𝑁̅ olana kadar döngü içinde, 𝑘. komuşsuna uzaklığı en düşük olan eleman elenmektedir. 

Eğer 𝑄𝑡+1 boyutu 𝑁̅ sabit değerinden düşük ise bir önceki arşiv ve popülasyondaki 

baskılanan bireylerden en iyilerle doldurulmaktadır. Değerin düşük olması makbul 

olduğundan 𝑃𝑡 ve 𝑄𝑡’nin elemanları uygunluk değerine göre küçükten büyüğe doğru 

sıralanıp 𝐹(𝑖) ≥ 1 olanlardan en üsttekilerle doldurulmaktadır.  

İkili turnuva yöntemi ile seçim yapıldıktan sonra çarprazlama ve mutasyon teknikleri 

kullanılarak yeni bireyler ile yeni popülasyon oluşturulmaktadır [45].  

 

Şekil 3.9. Arşivin boyutunu azaltma yöntemi [45] 

3.5. MOEA Framework 

MOEA Framework [66], çok amaçlı evrimsel algoritmalar ve diğer genel amaçlı 

optimizasyon algoritmalarını geliştirmek ve deneyimlemek için açık kaynak kodlu ve 

ücretsiz Java kütüphanesidir. MOEA Framework 24 adet çok amaçlı optmimizasyon 

algoritmasını desteklemektedir. Örnek olarak NSGA-II, ϵ-MOEA, e-NSGA-II, PAES, 

PESA2, SPEA2, IBEA, SMS-EMOA, GDE3, SMPSO, OMOPSO, SMA-ES ve MOEA/D 

algoritmaları sayılabilir [28]. 

MOEA Framework’de üç adet ana sınıf bulunmaktadır. Bunlar Executer, Instrumenter ve 

Analyzer sınıflarıdır. Executer sınıfı algoritmaları çalıştırırken kullanılır ve üç adet 
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parametre alır. Bu parametrelerden birincisi problem, ikincisi problemi çözmek için 

kullanılan algoritma, üçüncüsü ise iterasyon sayısıdır. Instrumenter, executer ile 

executer’ın verisini toplamak için el ele çalışmaktadır. Executer algortirmayı ayarlamak ve 

çalıştırmaktan sorumludur aynı zamanda algoritma çalışırken instrumenterın gerekli veriyi 

kaydetmesine de izin vermektedir. Executer’ın çalıştırdığı algoritmaların dokümantasyonu 

instrumenter tarafından yapılmaktadır. Analyzer sınıfı ise çalışma bitiminin analizini 

sağlamaktadır. Bu analiz, pareto yaklaşım kümesine odaklanmaktadır ve bilinen bir 

referans kümesi ile karşılaştırmaktadır. Analyzer algoritmaların bulduğu sonuçları veya bir 

algoritmanın farklı parametrelerle bulduğu sonuçları karşılaştırmaktadır [28]. 

MOEA Framework’deki problemler problem ara yüzünü uygulamaktadır. Problem ara 

yüzü problemi özelleştirmek için metotları tanımlamaktadır. Yeni problem oluşturulurken 

Problem sınıfının uygulanması zorunlu değildir, istenirse AbstractProblem sınıfı 

genişletilerek yeni problem sınıfı oluşturulabilmektedir. Problem sınıfı oluşturulurken, 

solution sınıfının da oluşturulması gerekmektedir. Bu sınıfa parametre olarak karar 

değişkenlerinin sayısı ve amaçlar verilmektedir. Bunun dışında sınıfta Evaluate metodu 

vardır ve parametre olarak solution sınıfını almaktadır. Burada karar değişkenleri bir diziye 

atanabilmektedir. Sonra karar değişkeni sayısınca döngü içerisinde fonksiyon sonuçları 

hesaplanmaktadır. Bu değerler de çözüm sınıfına amaç olarak atanmaktadır. Encodingutils 

sınıfı çözüm içinden karar değişkenleri çıkarılırken kullanılmaktadır. Sonra bu karar 

değişkenleri problemi değerlendirmek için kullanılmaktadır.  Bu aşamalardan sonra 

problem tanımlanmış olmaktadır ve MOEA tarafından kullanılabilir hale gelmektedir [28]. 

3.6. CloudSim 

Gerçek ortamda sanal makine yerleştirme problemine çözüm araştırmak oldukça zorlu bir 

süreçtir. Ağ durumlarını tahmin etmek veya kontrol etmek neredeyse imkânsızdır. Ayrıca 

bir veri merkezi kurmak ya da test için kullanmak çok büyük maliyet gerektirmektedir. Bu 

tür araştırmaları yapmak için benzetim ortamınları daha elverişlidir. Benzetim 

uygulamaları; kaynak miktarı, veri merkezi, kullanıcıların sayısı ve kullanıcı bilgilerini de 

içeren iş yükü hakkında bilgi vermektedir. Benzetimler, planlanan çözümlerin gerçek 

sisteme uygulamadan önce test edilmesini sağlamaktadır. Gerçek ortamlara göre çok daha 

hızlıdır. Örneğin gerçek ortamda bir yıl sürecek bir süreci benzetim araçları birkaç 

dakikada tamamlayabilmektedir [27]. 
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Bulut bilişimde kaynak kullanımını iyileştirmek, yük dengelemek, enerji tüketimini 

azaltmak, maliyetleri düşürmek araştırmacıların hedefleri arasındadır. Açık kaynak kodlu 

bulut benzetim ortamlarının kullanımı kodları inceleme, yeni algoritmalar geliştirme ve 

gerektiğinde iyileştirme yapmaya imkân tanımalıdır. Cloudsim, Icancloud, Greencloud, 

Cloudsched bu amaca yönelik geliştirilmiş örnek açık kaynak kodlu benzetim ortamlarıdır. 

Mimari, modelleme elementleri ve benzetim süreci benzetim araçlarının ortak özellikleridir 

[48]. 

Cloudsim yaygın kullanımı olan benzetim araçlarından birisidir, kolaylıkla 

geliştirilebilmektedir. Fakat paralel deneyimler ve sanal makinelerin yaşam döngüsünü 

dikkate almaması zayıf yönünü oluşturmaktadır. Cloudsim dışındaki benzetim araçları 

sonuçları bir ara yüzle göstermektedirler, Cloudsim programının ara yüzü 

bulunmamaktadır. Icancloud paralel deneyimi uygulamaktadır fakat enerji tüketimi ve 

sanal makine taşınmasını dikkate almamaktadır. Greencloud, farklı fiziksel bileşenler için 

enerji tüketimini detaylı bir şekilde modellemektedir. Cloudsched isteklerin yaşam 

döngüsünü modellemektedir ve yük dengeleme, enerji verimliliği ve kullanımı gibi farklı 

metrikler sağlamaktadır. Bahsi geçen açık kaynak kodlu benzetim araçlarının tamamı farklı 

bir katmana odaklanmaktadır, bütün bulut katmanlarını modelleyen bir araç henüz 

üretilmemiştir. Genel olarak benzetim süreci 4 bölüme ayrılabilmektedir [48]: 

 Müşteri taleplerini oluşturmak 

 Veri merkezini oluşturmak  

 Yerleştirme politikasını belirlemek 

 Sonuçları toplamak ve çıktı almak 

Bu çalışmada benzetim ortamı olarak CloudSim aracı kullanılmaktadır. CloudSim Projesi 

bulut bilişim için geliştirilmiş Java tabanlı bir bulut benzetim ortamıdır. Melbourne 

Üniversitesi’nde bulunan CLOUDS Laboratuvarı’nda geliştirilmiştir. Geniş boyutlu veri 

merkezlerini (sunucu bilgisayarlarını, enerji farkında bilişim kaynaklarını) modelleyerek 

benzetimi yapılabilmektedir. Sanal makine yerleştirme probleminde kullanıcı tanımlı 

politikaları desteklemektedir [27]. 

3.6.1.  CloudSim sistem modelinde enerji tasarrufu duyarlı dinamik sanal makine 

yerleştirmesi 

CloudSim sistem modelinde dinamik sanal makine yerleştirmesi 4 parçaya ayrılmıştır: 
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1. Fiziksel makinenin ne zaman aşırı yüklü sayılacağını belirlemek (üzerindeki sanal 

makine yükünü azaltmak amacıyla), 

2. Fiziksel makinenin ne zaman az yüklü sayılacağını belirlemek(uyku moduna geçirilmek 

amacıyla), 

3. Aşırı yüklü fiziksel makine üzerindeki hangi sanal makinelerin taşınacağını belirlemek, 

4. Az yüklü veya aşırı yüklü fiziksel makineler üzerinden seçilen sanal makinelerin yeni 

yerini belirlemektir. 

Dinamik olmayan yük dengelemede sabit eşik değeri kullanılabilir. Sabit eşik dinamik 

ortamlar için iyi değildir. Anton ve arkadaşları [47] eski verileri kullanarak otomatik eşik 

belirleyen bir sistem geliştirmişlerdir. CPU kullanım sapması arttıkça CPU kullanımı 

yüzde yüze yaklaşmaktadır ve hizmet anlaşması ihlaline sebep olmaktadır. Sanal makine 

seçme sürecinde aşırı yüklü fiziksel makine üzerinden bir adet sanal makine seçildikten 

sonra o fiziksel makinenin hala aşırı yüklü olup olmadığına bakılmaktadır, eğer öyleyse 

tekrar bir sanal makine seçilmektedir. Minimum taşıma zaman politikasına göre taşınması 

en kısa süren sanal makine önce taşınmaktadır. Taşıma süresi, taşınacak olan VM’nin 

RAM’i fiziksel makinenin erişebildiği boş ağ bant genişliğine bölünerek tahmin 

edilmektedir. 

Fiziksel makinelerin yük tespiti; 

1. Önce aşırı yüklü hostlar bulunur,  

2. Taşınacak sanal makineler hedef fiziksel makinelere yerleştirilir, 

3. Diğer hostlara göre daha az yükü olan fiziksel makine bulunur ve bu fiziksel makine 

üzerindeki sanal makineler diğer fiziksel makinelere onları aşırı yüklü yapmadan 

taşımayı dener. Duruma göre hostu kapatır veya açık bırakır. 

4. Bu işlem bütün hostlar için onların aşırı yüklü olduğu düşünülmeyene kadar devam 

eder. 

3.6.2. CloudSim yazılımında bulunan bazı sınıflar 

Java diliyle geliştirilmiş olan CloudSim oluşturulurken GridSim’den [40], GridSim [37] 

oluşturulurken de SimJava’dan yararlanılmıştır. CloudSim açık kaynak kodlu benzetim 

aracında “datacenter”, “SANStorage”, “virtualmachine”, “cloudlet”, “cloudcoordinator”, 
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“bwprovisioner”, “memoryprovisioner”, “vmprovisioner”, “VMMAllocation” isimli 

sınıflar bulunmaktadır [24]. 

Datacenter sınıfı 

Bu sınıf içerisinde donanım kaynaklarını barındırmaktadır. Depolama, bellek, işlemci 

kapasitesine göre donanımlar homojen ya da heterojen olabilmektedir [24]. İsim, fiziksel 

makine listesi (hostlist), işlemci gücü (MIPs), işlemci listesi (peList) gibi parametreleri 

almaktadır. 

Datacenterbroker (Cloudbroker) sınıfı 

Bu sınıf, kullanıcıların servis kalitesi (Quality of Service - QoS) gereksinimlerine göre 

kullanıcılar ve servis sağlayıcılar arasında aracılık eden nesnelerden oluşmaktadır [24]. 

DatacenterCharacteristics sınıfı 

Bu sınıf veri merkezinde bulunan kaynakların özelliklerini tutmaktadır. Bunlar işlemci, 

bellek, depolama alanı, sanal makine yerleştirme politikası, bellek atama ve bant genişliği 

atama politikaları gibi özelliklerdir [24]. Kaynakların mimarisi, işletim sistemi, sanal 

makine yönetimi (Virtual machine management - VMM), fiziksel makine listesi, saat 

dilimi aldığı parametrelerden bazılarıdır. 

SANStorage sınıfı 

Veri merkezindeki geniş verilerin tutulduğu depo alan ağını modellemektedir [24]. 

Virtualmachine sınıfı 

Bu sınıf, bir sanal makineyi modellemektedir. Bu sanal makinenin yaşam döngüsü, 

üzerinde bulunduğu fiziksel sunucunun sorumluluğundadır. Bir fiziksel sunucu birden 

fazla sanal makine içerebilmektedir ve işlemci çekirdekleri yer paylaşımlı ve zaman 

paylaşımlı olarak daha önceden belirlenen işlemci paylaşım politikalarına göre 

paylaştırılmaktadır. Her sanal makine kendisi ile ilgili bellek, işlemci ve depolama alanına 
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erişebilmektedir [24]. İşlemci sayısı, işlemci gücü, bellek, depolama alanı, bant genişliği 

vb. parametreleri alır [38]. 

Cloudlet sınıfı 

Bu sınıf, bulut tabanlı uygulama servislerini modellemektedir [24]. Özelleştirilmiş 

görevleri ifade etmektedir. Boyut, dosya boyutu ve çıktı boyutu gibi parametrelere sahiptir 

[38]. Boyut, MI cinsinden işlemcinin işleyeceği komutun boyutunu ifade etmektedir. 

Dosya boyutu işlemciye giren verinin boyutunu, çıktı boyutu da işlemciden çıkan veri 

boyutunu göstermektedir. Hesaplama yoğunluklu, web sunucu ve veritabanı tiplerinde 

görevler oluşturulabilmektedir [27]. 

Cloudcoordinator sınıfı 

Bu sınıf, veri merkezindeki kaynakların durumunu gözlemlemektedir ve yük azaltma 

kararlarını vermektedir [24]. 

BWProvisioner sınıfı 

Bant genişliğini sanal makineler arasında paylaştırmaktadır [24]. 

MemoryProvisioner sınıfı 

Sanal makinelere bellek atamaktadır [24]. 

VmProvisioner sınıfı 

Sanal makineleri hostlara yerleştirmektedir [24]. 

VMMAllocationPolicy sınıfı 

Bu sınıf sanal makineyi işlemci, bellek ve depolama durumuna göre uygun olan fiziksel 

sunucuya yerleştirmektedir [24]. 

CloudletSchedulerPolicy sınıfı 
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Sanal makinenin sahip olduğu işlemci gücünü üzerinde bulunan cloudletler arasında 

paylaştırır. Zaman paylaşımlı ve yer paylaşımlı olmak üzere iki türü bulunmaktadır [24]. 

VmSchedulerPolicy sınıfı 

Hostlar tarafından uygulanır. Zaman paylaşımlı ve yer paylaşımlı gibi türleri 

bulunmaktadır. İşlemci gücünü sanal makineler arasında paylaştırır [24]. 

Host sınıfı 

Fiziksel makineyi ifade etmektedir. Fiziksel makine numarası, işlemci çekirdeği sayısı, 

işlemci gücü, bellek, depolama alanı, bant genişliği, işlemci paylaşım stratejisi 

parametrelerini almaktadır [38]. 

3.7. Kullanılan Veriseti 

Bu çalışmada gerçek dünya verisi olan PlanetLab [67] veriseti kullanılmıştır. PlanetLab, 

yeni ağ servislerinin geliştirilmesini sağlayan araştırma ağıdır. 2003’ün başından beri 

1000’den fazla araştırmacı ve labaratuvar araştırma kuruluşu dağıtık depolama, ağ 

haritalama, uçtan uca sistemler, sorgu işleme vb. ile ilgili yeni teknolojiler geliştirmek için 

PlanetLab kullanmaktadır [47]. İsteyen araştırmacılar Şekil 3.10’da görüldüğü gibi 

dünyanın heryerinden PlanetLab uygulamasına kayıt olup bir veya birden fazla fiziksel 

makineye sahip olabilmektedir. Hizmet sağlayıcı kullanıcıların uygulamalarıyla ilgili 

bilgiye sahip değildir, iş yükleri heterojendir. Verimerkezinde iki tür fiziksel makine 

bulunmaktadır. Bunların yarısı 2 çekirdekli 1860 MHz intel Xeon 3040 işlemciye sahip HP 

Proliant G4 sunucudur ve diğer yarısı 2 çekirdekli 2660 MHz Intel Xeon 3075 işlemciye 

sahip HP Proliant  ML 11065 sunucudur. G4 tipindeki sunucu 1860 MIPS değerinde, G5 

tipindeki sunucu 2660 MIPS değerinde işlemciye sahiptir. Verisetinde bulunan VM’lerin 

toplam CPU miktarı verisetinde bulunan PM’lerin toplam CPU miktarının %12,31’dir 

[47]. Verisetindeki kayıtlar sunucuların 5 dakika aralıklarla CPU kullanım miktarlarınının 

kaydını içermektedir. Bu kayıtlar CoMon projesi aracılığıyla elde edilmektedir. CoMon 

PlanetLab veri merkezinde bulunan sunucuların sağlıklı olup olmadığını; CPU, RAM, bw 

gibi kaynak tüketimini ve sunucuların zamana göre davranışlarını takip eden yazılımdır.  
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PlanetLab ortamında bir hesabın sahip olduğu sunucuların bulunduğu alana slice denir. Bu 

alan içinde bir veya birden fazla fiziksel sunucu bulunabilmektedir. Fiziksel sunucuların 

barındırdığı sanal makinelere ise sliver denir. Eğer bir sanal sunucu %0.1 oranında CPU 

kullanımına sahipse buna canlı sliver denir. Bir slice en az bir canlı sliver içeriyorsa canlı 

slice denir. CoMon’a cevap veren fiziksel makinelere ise canlı düğüm denir.  

Planetlab veriseti CloudSim projesinde kullanılmaktadır. PlanetLab veriseti 1052 adet 

sanal makine ve 800 adet fiziksel makineden oluşmaktadır.  

 

Şekil 3.10. PlanetLab’ın sahip olduğu 717 bölgedeki 1353 düğüm [47] 
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4. SANAL MAKİNE YERLEŞTİRME PROBLEMİ 

Bulut bilişim, depolama, hesaplama, ağ gibi bilişim kaynaklarına her an her yerden ağ 

üzerinden erişim sağlayan bir modeldir. Günümüzde yaygın olarak kullanılan bulut 

bilişimin temelinde sanallaştırma teknolojisi yatmaktadır. Sanallaştırma teknolojisi ile bir 

fiziksel makine üzerinde birden fazla sanal makine yürütülerek kaynakların ortak kullanımı 

sağlanmaktadır. Kaynakların kullanıma sunumunda kaynakların aşırı kullanımı 

engellenirken, diğer taraftan verimli kullanımı sağlanmalıdır.  Kaynakların aşırı kullanımı 

hizmet kesintisi, performans kaybı gibi sorunlara sebep olmaktadır. Kaynakların verimsiz 

kullanımı ise maliyetlerin artmasına yol açmaktadır.  Sistemdeki toplam yüke bağlı olarak 

kaynak tahsisinde bu iki unsur arasındaki dengenin sürekli olarak gözetilmesi 

gerekmektedir. Bulut bilişim kapsamındaki veri merkezlerinde yük dengesini sağlamak 

üzere sanal makineler fiziksel makineler üzerinde dinamik olarak taşınmaktadır. Hangi 

sanal makinenin hangi fiziksel makine üzerinde çalışacağı sorusu sanal makine yerleştirme 

problemi olarak tanımlanmaktadır. Bu kapsamda, problemin çok amaçlı optimizasyon 

yöntemleriyle çözümleri araştırılmıştır. 

4.1. Sanal Makine Yerleştirme Probleminin Kısıtları 

Yönetim, kaynak ve performans gibi unsurlara bağlı kısıtlar dikkate alınarak sanal 

makinelerin fiziksel makineler üzerine yerleştirilmesi karmaşık bir problemdir [59]. 

Yönetime bağlı kısıtlar bir sanal sunucunun belirli bir fiziksel makinede tutulması 

gerekliliği veya belirli iki sanal sunucunun farklı fiziksel makinelerde bulunması 

gerekliliği olabilmektedir.  

Kaynağa bağlı kısıtlar sanal makinelerin ihtiyaç duyduğu disk, RAM, CPU ve ağ bant 

genişliği gereksinimlerinin karşılanmasıdır. Bir fiziksel makinenin kaynak kapasitesinin, 

üzerinde bulunan sanal makinelerin toplam kapasitesini geçmemesi gerekmektedir. Burada 

kaynak türlerinden birisinin yetersiz kalması diğer kaynak türlerinin atıl kalmasına sebep 

olabilmektedir. Örneğin eğer bir fiziksel makine üzerinde bulunan 10 adet sanal makinenin 

RAM kapasitesini ancak karşılayabiliyorsa üzerinde boş CPU miktarı bulunsa bile bu CPU 

kullanılamamaktadır. Fiziksel makinelerin üzerinde bulunan sanal makinelerin kaynak 

ihtiyacını karşılaması gerekliliğinin yanında yük dengelemenin de sağlanması 

gerekmektedir. Eğer sanal makine yükleri belirli makinelere toplanır ve bazı makineler az 
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yükle kalırsa aşırı yük altında ezilen fiziksel makineler beklenen performansı 

sağlayamayabilirler hatta hizmet kesintisi durumu yaşanabilmektedir. Bunu çözmek için 

sanal makinelerin fiziksel makineler arasında dengeli dağıtılmalarını sağlamak 

gerekmektedir.  

Enerji tasarrufu sanal makine yerleştirme probleminde dikkat edilmesi gereken etkenlerden 

birisidir. Sanal makineler performansı korumak kaydıyla bazı fiziksel makineler üzerine 

toplanıp, bazı fiziksel makineler boşaltılabimektedir ve boş kalan bu makineler kapatılarak 

enerji tasarrufu sağlanabilmektedir. Bütün bunların yanında makinelerin kullanım 

durumlarının dinamik olması sanal makine yerleştirme problemini zorlaştırmaktadır. 

4.2. Sanal Ortamlarda İşlemci Kullanımı 

Bir sanal makinenin işlemci gücü görevler arasında paylaştırılmaktadır. İşlemci gücü 

paylaşımında kullanılan iki tür politika vardır. Bunlar yer paylaşımlı ve zaman paylaşımlı 

politikalar olarak adlandırılmaktadır. Bir sanal makinenin çalıştırması gereken görev varsa 

bunları sırayla çalıştırırsa buna yer paylaşımlı komut programlama denir. Eğer bu komutlar 

eşzamanlı olarak iki işlemci üzerinde dönüşümlü olarak çalıştırılırsa buna zaman 

paylaşımlı komut programlama denilmektedir.  Birinci kaynak sağlama politikası olan yer 

paylaşımlı yöntemde sadece bir sanal makine belirlenen çekirdeği, başlanan görev bitene 

kadar kullanabilmektedir. Örneğin bir fiziksel makine üzerinde bir çekirdek varsa ve iki 

sanal makine varsa bu sanal makinelerden biri çekirdeği kullandıktan sonra diğeri 

kullanmaktadır. Yani sırayla birer birer kullanılmaktadır. Aynı senaryoda zaman 

paylaşımlı programda ise belirlenen zaman diliminde çekirdeği bir süre bir sanal makine, 

bir süre diğer sanal makine kullanmaktadır. Bir görev işlemciyi kullanmaya başladıktan 

sonra belirli bir süre kullanabilmektedir, belirlenen süre sonunda görev tamamlanmamış 

olsa bile işlemci diğer görevin kullanımı için bırakılmaktadır. Yani sanal makineler 

arasında işlemci çekirdeği dönüşümlü olarak kullanılmaktadır [40]. 

Bir fiziksel makine üzerindeki sanal makinelere ulaştırılan kaynak miktarı fiziksel 

makinenin toplam işlemci gücüyle sınırlıdır. Bu kritik etken, yerleştirme sürecinde göz 

önüne alınmalıdır. Fiziksel makine seviyesinde, her bir fiziksel makinedeki her bir 

çekirdeğin işlemci gücünün ne kadarının her bir sanal makineye nasıl atanacağı 

belirlenmelidir. Sanal makine seviyesinde ise sanal makinenin elinde bulunan işlemci 
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gücünün kendi görevlerine nasıl atanacağı belirlenmelidir.  Sanallaştırma ortamlarının 

kullandığı yer paylaşımlı ve zaman paylaşımlı politikalar arasındaki farkı ve uygulama 

performansı üzerindeki etkilerini görselleştirmek için Şekil 4.1, 4.2, 4.3, 4.4 incelenebilir. 

Bu şekillerde iki adet CPU’su bulunan bir fiziksel makine üzerinde iki adet sanal makine 

çalışması betimlenmektedir. Bu sanal makineler VM1 ve VM2 ile ifade edilmektedir. Bu 

sanal makinelerin her biri iki çekirdeğe ihtiyaç duymaktadır ve VM1’in t1, t2, t3, t4 

görevlerini; VM2’nin ise t5, t6, t7, t8 görevlerini çalıştırması gerekmektedir. 

Şekil 4.1’de hem sanal makine hem de görevler için yer paylaşımlı provisyon politikası 

kullanılmaktadır. Her bir sanal makine iki çekirdeğe ihtiyaç duyduğu için bir zaman 

diliminde sadece bir sanal makine çalışabilmektedir. Bu sebepten VM2, VM1 görevlerini 

bitirdikten sonra çalışabilmektedir. Aynı durum sanal makineler üzerinde bulunan görevler 

için de geçerlidir. Her bir görev sadece bir çekirdeğe ihtiyaç duyduğundan iki görev 

eşzamanlı olarak çalışabilmektedir. İki görev (t1, t2) çalıştırıldıktan sonra diğer iki görev 

(t3, t4) çalıştırılmaktadır. 

 

Şekil 4.1. VM’ler ve görevler için yer paylaşımlı CPU kullanımı [40] 

Şekil 4.2’de sanal makineleri yerleştirmek için yer paylaşımlı politika, sanal makine 

üzerindeki görevleri yerleştirmek için zaman paylaşımlı politika kullanılmaktadır. Bir 
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çekirdek belirli zamanda belirli sanal makine tarafından kullanılmaktadır. Sanal makinenin 

sahip olduğu çekirdek ise aynı anda birden fazla görev için kullanılmaktadır. 

 

Şekil 4.2. VM’ler için yer ve görevler için zaman paylaşımlı CPU kulanımı [40] 

Şekil 4.3’de sanal makineleri yerleştirmek için zaman paylaşımlı politika, sanal makine 

üzerindeki görevleri yerleştirmek için yer paylaşımlı politika kullanılmaktadır. Her bir 

sanal makine belirli zaman diliminde çekirdeği kullanmaktadır. Çekirdek aynı anda diğer 

sanal makine tarafından da kullanıldığından daha önce belirtilen senaryolarda kullanılan 

çekirdek gücüne göre birim zamanda kullanılan çekirdek gücü daha azdır. Görev atamaları 

yer paylaşımlı olduğundan bir sanal makine her bir çekirdeğe sadece bir görev 

atayabilmektedir, diğer görevler daha sonra yapılmak üzere sıraya sokulur. 
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Şekil 4.3. VM’ler için zaman paylaşımlı, görevler için yer paylaşımlı CPU kulanımı [40] 

Şekil 4.4’de, bir çekirdek aynı anda iki sanal makine tarafından kullanıldığından zaman 

paylaşımlı provizyon yöntemi kullanılmaktadır. Bir sanal makine kendisine atanmış olan 

çekirdeği bir zaman diliminde birden fazla göreve kullandığından zaman paylaşımlı 

provizyon yöntemini kullanılmıştır [24]. 

 

Şekil 4.4. VM’ler ve görevler için zaman paylaşımlı CPU kullanımı [40] 
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4.3. Hizmet Seviyesi anlaşması ve Enerji Tüketimi 

Tüketiciler geleneksel yöntemler yerine bulut bilişimi kullanmaya başladıkça tüketiciler ve 

sağlayıcılar arasındaki anlaşmalar, yani hizmet seviyesi anlaşmasının - Service Level 

Agreements (SLA) önemi artmaya başlamıştır. Servis sağlayıcı ve müşteriler arasında 

varılan anlaşmalarda servis kalitesinin sağlanması zorunludur. QoS, cevap zamanı ve çıktı 

(throughput) gibi özelliklere sahiptir. Çıktı berli zaman aralığında iletilen verinin 

miktarıdır [60]. Bu gereksinimleri sağlamadığı zaman hizmet sağlayıcı müşterisine ceza 

ödemek zorunda kalabilmektedir. Uygulamanın kaynak gereksinimleri karşılanmazsa 

uygulama cevap zamanı gecikmesi, hizmet kesintisi gibi sorunlarla kaşılaşılabilmektedir. 

Servis sağlayıcı hizmet anlaşması gereksinimlerini karşılarken enerji tüketimini da gözardı 

etmemelidir. Enerji tüketimi işlemci, disk, güç kaynağı, soğutma sistemlerinin harcadığı 

enerjiyle alakalıdır. 

4.4. Performans Metrikleri 

Bulut ortamları için geliştirilen benzetim yazılımları test edilen algoritmaların 

performansını değerlendirmek için kullanılan ölçütlere performans metrikleri 

denilmektedir. Bu bölümde bazı performans metriklerinin kısa açıklamaları yapılmaktadır. 

Yük değişimi ve kullanımının standart sapması 

Bu iki metriğin her ikisi de kaynakların ortalama kullanımından sapmayı gösterir. 

Değerlendirmesi kolay olduğu için yaygın bir şekilde kullanılmaktadır [38]. Fakat kaynak 

kullanımından çok zaman kısıtına odaklanan algoritmalar için uygun değildir. 

Tamamlanma süresi 

Tamamlanma süresi, bir işin başlangıcından bitirilişine kadar geçen süredir. Yük dengesi 

sağlandığı zaman tamamlanma süresi de düşer ve daha düşük tamamlanma süresi bir 

planlama algoritmasının birincil amacıdır. Bu metrik zaman kısıtının önemsendiği 

algoritmalarda önemlidir. 
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Aşırı yüklü fiziksel sunucu sayısı 

Bulutta ne kadar aşırı yüklü fiziksel sunucu olduğunu ölçmektedir ve sistem durumu 

hakkında genel bilgi edinmeyi sağlamaktadır. Yük dengeleme algoritmaları aşırı yüklü 

fiziksel sunucuları azaltmayı amaçlamaktadır. Bu metrik yük dengelemeyle ilgili net bir 

görüş sağlamaktadır. Fakat bu metrik yükün dağıtımıyla ilgili çok ayrıntılı bilgi 

vermemektedir. 

Çıktı 

Dengesiz dağılmış yük, sistemin performansını düşürebileceğinden bu metrik fiziksel 

sunucuların istekleri ne kadar hızlı işleyeceğini değerlendirmektedir. Bu yüzden yüksek 

değerdeki çıktı, yükü daha iyi dengelenmiş sistem demektir. Cevaplama zamanının 

önemsendiği durumlar için kullanımı tavsiye edilebilmektedir. Bu metrik genelde taşıma 

sayısı gibi metriklerle birlikte değerlendirilmektedir. 

Bağlantıların standart sapması 

Bu metrik network hassasiyeti olan algoritmalarda kullanılabilmektedir. Bağlantıların 

dengeli olup olmadığını denetlemektedir. 

Ortalama dengesizlik seviyesi 

Popüler bir metrik olan kaynak kullanımının standart sapması sadece bir kaynağın 

kullanımını hesaplarken; bu metrik CPU, RAM, bant genişliği gibi birden fazla çeşitte 

kaynağı bir arada göz önüne almaktadır. 

Sanal makine taşıma sayısı 

Yardımcı metrik olan taşıma sayısı, yük dengelemeyi değerlendirmek için tek başına 

kullanılabilecek bir metrik değildir. Çünkü taşıma sayısı artırılarak yük dengesi daha iyi 

sağlanabilmektedir. Fakat sanal makinelerin taşınması sisteme ilave yük getirmekte, bu da 

performansı düşürmektedir. Performans ve yük dengesi arasında bir ödünleşim 

bulunmaktadır. 
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Hizmet seviyesi anlaşması İhlali 

Yardımcı metrik olan Hizmet seviyesi anlaşması ihlali tek başına kullanılabilecek bir 

metrik değildir. Hizmet seviyesi anlaşması ihlali sanal makinenin yeterli kaynağı alamamış 

olmasıdır. Bu metriğin değerinin fazla olması fiziksel sunucuların iyi dengelenmemiş 

olduğunu gösterir; düşük olması iyidir. Diğer metriklerle bir arada değerlendirilmelidir 

[38]. 

4.5. Performans Metriklerinin Hesaplanması 

Bu tez çalışmasında kullanılan benzetim yazılımı olan CloudSim perforformans 

metriklerinden bazılarının matematiksel hesapları ayrıntılı olarak anlatılmaktadır. Bu 

metrikler [47]’de yapılan çalışmadan yararlanılarak detaylı olarak açıklanmıştır.  

4.5.1. Hizmet seviyesi anlaşması ihlali 

SLAV hesabının belirlenmesinde etkili olan iki değer vardır. Bunlar aktif fiziksel makine 

başına düşen ortalama SLAV zamanı (SLAV Time per Active Host - SLATAH) ve 

Taşımadan kaynaklanan performans düşüşü (Performance Degreetion per Migration - 

PDM) değerleridir. Diğer bir metrik ise sanal makine yerleştirme adaptasyonu süresince 

yapılan VM taşınma sayısıdır. Hizmet seviyesi anlaşması ihlali olan SLAV değeri 

SLATAH (%) ve PDM (%) değerlerinin çarpılmasıyla elde edilmektedir. SLATAH, aktif 

PM başına düşen SLAV değerini; PDM ise VM taşınmasından kaynaklanan performans 

düşüşünü ifade etmektedir. Bulut bilişim ortamaları için QoS gereksinimlerini karşılamak 

çok önemlidir. QoS gereksinimleri SLA formunda formülleştirilmektedir. Minimum çıktı 

ve maksimum cevap zamanı gibi açılardan belirlenebilmektedir. Bu özellikler 

uygulamadan uygulamaya değiştiğinden hizmet kalitesini değerlendirirken 

kullanılmamaktadır. İş yükünden bağımsız bir metriği, IaaS’deki herhangi bir sanal 

makineye dağıtılan SLAV’ı değerlendirmek için tanımlamak gerekmektedir [47].  

PDM ve SLATAH’ın her ikisi de aynı öneme sahip olduğundan yazarlar SLAV isimli bir 

metrik sunmuşlardır. Bu metrik hem fiziksel makinenin aşırı yüklenmenin sebep olduğu 

performans düşüşünü hem de sanal makine taşımasının sebep olduğu performans düşüşünü 
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göstermektedir. SLAV, SLATAH ve PDM’nin birleşimini ifade etmektedir ve aralarındaki 

ilişki Eş. 4.1’de görülmektedir. 

𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻. 𝑃𝐷𝑀                            (4.1) 

4.5.2. Sanal makine taşınmasından kaynaklanan performans düşüşü 

Anton B.’nin modellediği çok çekirlekli CPU mimarisine göre 𝑛 çekirdek varsa, her bir 

çekirdek 𝑚 MIPS içermektedir, yani çekirdek 1 saniyede 𝑚 milyon komut 

işleyebilmektedir. Bir tek CPU’nun toplam kapasitesi 𝑛 × 𝑚 MIPS’dir. Canlı taşıma 

durdurmasız ve çok kısa bir kesinti ile yapılabilmektedir. Fakat yine de taşıma sırasında 

uygulama performansına olumsuz etki yapmaktadır. Bir VM’in taşınma uzunluğu o VM’in 

kullandığı RAM ve erişilebilir ağ bant genişliğine bağlıdır. Canlı taşımayı sağlamak için 

ayarlamalar ona göre yapılmaktadır. VM’in imajı ve verisi ağ erişimli depolama biriminde 

tutulmaktadır, böylece sanal makinenin depolama birimlerini kopyalamak ve taşımak 

gerekmemektedir. Yazarların deneyimlerine göre bir j sanal makinesinin taşıma zamanı Eş. 

4.2 ve performans azalması Eş. 4.3’de tanımlanmaktadır. 

𝑇𝑚𝑗
=

𝑀𝑗(𝑣𝑚 𝑗′𝑛𝑖𝑛 𝑘𝑢𝑙𝑙𝑎𝑛𝑑𝚤ğ𝚤 𝑟𝑎𝑚)

𝐵𝑗(𝑢𝑙𝑎ş𝚤𝑙𝑎𝑏𝑖𝑙𝑖𝑟 𝑎ğ 𝑏𝑎𝑛𝑡 𝑔𝑒𝑛𝑖ş𝑙𝑖ğ𝑖)
               (4.2) 

𝑈𝑑𝑗
= 0.1. ∫ 𝑈𝑗(𝑡)𝑑𝑡

𝑡0+𝑇𝑚𝑗

𝑡0
                (4.3) 

𝑈𝑑𝑗
, sanal makine j’nin sebep olduğu toplam performans düşüşünü, 𝑇𝑚𝑗

, taşımanın ne 

kadar sürdüğünü, 𝑈𝑗(𝑡), CPU kullanımını, 𝑡0, taşıma başlangıç zamanını ifade etmektedir 

[47]. 

PDM, Sanal makine taşımasının sebep olduğu performans düşüşüdür. Eşitliği 4.4’de 

gösterilmektedir. 

𝑃𝐷𝑀 =
1

𝑀
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

𝑀
𝑗=1                  (4.4)
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𝐶𝑑𝑗,göç kaynaklı performans düşüşünü,  𝐶𝑟𝑗 sanal makinenin talep ettiği CPU kapasitesini 

ifade etmektedir [47].  

4.5.3. Aktif fiziksel makine başına düşen SLAV zamanı 

Aktif fiziksel makine başına düşen SLAV zamanı kısaca SLATAH olarak ifade 

edilmektedir. Aktif fiziksel makinelerin ne kadar süre boyunca CPU kullanımlarının %100 

olduğunun ortalması alınarak hesaplanır.  Bir uygulamanın bulunduğu fiziksel makinenin 

CPU kullanımı %100 ise o uygulamanın perofmansı o fiziksel makinenin kapasitesiyle 

sınırlı olduğundan gerekli performans seviyesi sağlanamamaktadır. 

Yazarların önerdiği metriklerden SLATAH (SLAV Time per Active Host) Hangi aktif 

fiziksel makinenin CPU kullanımının %100 olduğunun ne kadar sürdüğünün yüzdesi 

bulunarak hesaplanmaktadır. SLATAH mantığı şudur ki bir uygulamanın bulunduğu 

fiziksel makinenin CPU kullanımı %100 ise o ugulamanın performansı o fiziksel 

makinenin kapasitesiyle sınırlıdır ve gerekli performans seviyesi sağlanamamaktadır. 

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝑁
∑

𝑇𝑠𝑖

𝑇𝑎𝑖

𝑁
𝑖=1                             (4.5) 

𝑇𝑠𝑖, 𝑖 fiziksel makinesinin CPU’sunun %100 kullanıldığı zaman; 𝑇𝑎𝑖 𝑖 fiziksel makinesinin 

aktif olarak çalıştığı süreyi ifade etmek üzere eşitliği 4.5’de gösterildiği şekildedir [47]. 

4.5.4. Enerji hesabı 

Veri merkezleri çok büyük miktarda enerji tüketmektedir. Örneğin Google Veri Merkezi, 

nüfusu 2010 yılında 805,193 olan San Fransisco şehrinde tüketilen enerji kadar enerji 

tüketmektedir [24, 62]. Bu yüzden veri merkezlerindeki enerji israfını önlemek çok 

önemlidir. Veri merkezlerinde fiziksel makineler belirli sıcaklık aralığında çalıştığından 

enerji sadece fiziksel makinelerin çalışmasında değil aynı zamanda bu makinelerin 

oluşturduğu sıcak ortamı soğutmak için de kulanılmaktadır. Ne kadar az fiziksel makine 

çalışırsa o kadar az soğutma masrafı ortaya çıkacaktır. Güç ve enerji birbiriyle ilişkili 

kavramlardır. Gücün eşitliği Eş. 4.6’da verildiği gibidir. Enerji ise Eş. 4.7’de görüldüğü 

gibi güç değeri kullanılarak hesaplanmaktadır.  
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𝑃 = 𝑊/𝑇                                  (4.6) 

𝐸 = 𝑃. 𝑇                                    (4.7) 

Eş. 4.6 ve Eş. 4.7’de görülen 𝑃, güç; 𝑇, zaman periyodunu; 𝐸 enerjiyi ifade etmektedir. 

Güç ve enerji faklı şeylerdir. Güç tüketimini azaltmak her zaman enerji tüketimini 

azaltmamaktadır. Güç tüketimi CPU performansı azaltılarak azaltılabilir, örneğin frekansı 

düşürülebilir fakat programın çalışma süresi uzayacağından iş bitiminde harcanan enerji 

miktarı aynıdır. 

Bir sunucunun harcadığı enerji miktarı kullanılan CPU miktarıyla yakından ilişkilidir [61]. 

Fiziksel makine üzerinde hiç iş yükü olmadığında kullanılan güç 𝑃𝑖𝑑𝑙𝑒 ile, makine CPU’su 

%100 kullanıldığı durumda güç tüketimi 𝑃𝑏𝑢𝑠𝑦 ile ifade edilmektedir. Bir sunucunun 

kullandığı güç miktarı Eş. 4.8’de hesaplanmaktadır. 𝑢, kullanılan CPU oranını ifade 

etmektedir. Şekil 4.5’de gerçekte tüketilen güç ile hesaplanan tahmini güç tüketiminin 

değerleri görülmektedir.  

𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑏𝑢𝑠𝑦 − 𝑃𝑖𝑑𝑙𝑒) ∗ 𝑢                            (4.8) 

 

Şekil 4.5. Bir sunucunun CPU kullanımı ve güç tüketimi arasındaki ilişki [47] 

Şekil 4.6’da görüldüğü üzere sistemde bulunan diğer bileşenler (örn. I/O, bellek) de güç 

tüketmektedir fakat bu bileşenlerin güç tüketimi de CPU kullanımıyla orantılıdır. 
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Şekil 4.6. Sunucu bileşenleri tarafından tüketilen güç miktarları [47] 

PlanetLab verisetinde bulunan sunucuların CPU kullanım oranlarına göre Watt cinsinden 

güç tüketimleri SPECpower benchmark’dan alınan değerler Çizelge 4.1’de görülmektedir 

[47]. 

Çizelge 4.1.  Sunucuların CPU kullanım oranlarına göre Watt cinsinden güç tüketim 

miktarları [47] 

Sunucu - CPU 

Kullanım oranı 
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HP-ProLiant-G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP-ProLiant-G5 93.7 97 101 105 110 116 121 125 129 133 135 

 

4.5.5. Aktif fiziksel makine başına düşen ortalama CPU kullanım oranı hesaplama 

Bir fiziksel makinenin kaynak kapasitesi üzerinde barındırdığı sanal makinelere 

dağıtılmaktadır. Fiziksel makine üzerindeki kaynağın kullanılmayan kısmı atıl duran 

kaynaktır. Bir kaynak ne kadar yüksek oranda kullanılırsa o kadar verimli kullanılıyordur. 

Diğer taraftan bir fiziksel makine üzerinde taşıdığı sanal makinelerin bütün kaynak 

ihtiyaçlarını karşılıyor olması gerekmektedir. Örneğin bir fiziksel makinede sanal 

makineye yetecek miktarda RAM bulunmazsa bu makine üzerinde CPU miktarı çok fazla 

olsa bile sanal makinenin başka bir makineye taşınması gerekmektedir. Kaynak 

kullanımında performansı ve enerji tüketimini etkileyen en önemli kaynak olan CPU’nun 

kullanım miktarları ölçülmüştür. Aktif fiziksel makine başına düşen CPU kullanım oranı 
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hesaplanırken, aktif olan fiziksel makinelerin CPU kullanım oranlarının ortalaması 

alınmaktadır. 

4.5.6. Benzetim Ortamında Maliyet Hesabı 

Bulut ortamlarında harcanan enerjiyi minimuma indirmek doğanın korunması açısından ve 

bulut sağlayıcının maliyetini azaltmak açısından çok önemlidir. Bu bölümde bulut bilişim 

benzetim araçlarından birisi olan CloudSim temel alınarak maliyet hesabı anlatılmaktadır.  

Tekli sanal makine taşıma probleminde maliyet hesabı 

Bir fiziksel makine ve birden fazla sanal makinenin olduğu bir sistemde maliyet hesabı 

probleminde zaman 𝑁 parçaya ayrılmaktadır. Her bir zaman diliminin 1 saniye olduğu 

kabul edilmektedir. Kaynak sağlayıcı kuruluş, fiziksel makinenin harcadığı enerji 

maliyetini karşılamaktadır. 

𝐶𝑇 = 𝐶𝑝. 𝑡𝑝                               (4.9) 

Burada 𝑡𝑝,  zaman periyodu ve 𝐶𝑝, 1 dilimlik zamanda harcanan enerji olmak üzere toplam 

maliyet Eş. 4.9’da hesaplanmaktadır.  

Kaynak kullanımı CPU performansı ile ifade edilmektedir. Talep edilen CPU miktarı 

erişilebilir kapasiteyi aşarsa SLAV oluşmaktadır. Bu durumda müşteriye kaynak sağlayıcı 

tarafından ödeme yapılmaktadır. Bunun maliyeti ise 𝐶𝑣𝑡𝑣 eşitliği ile hesaplanmaktadır. 

Burada 𝐶𝑣 birim zamana düşen SLAV maliyeti ve 𝑡𝑣 SLAV’nın sürdüğü zaman miktarıdır. 

Anton B. ve arkadaşları bu birimleri Eş. 4.10’de görüldüğü şekilde tanımlamışlardır. 

𝐶𝑝 = 1,   𝐶𝑣 = 𝑠     veya  𝐶𝑝 =
1

𝑠
,   𝐶𝑣 = 1                                                (4.10) 

𝑟 = 𝑛 − 𝑣                                                  (4.11) 

Eş. 4.11’de 𝑛, SLAV’nın bitme anı; 𝑣, SLAV’nın başlama anı, 𝑟 SLAV devam etme 

süresi, 𝑚 sanal makinenin başka bir fiziksel makineye taşınmaya başladığı andır. Sanal 

makine taşınması 𝑇 kadar sürmektedir. Bir sanal makineyi başka bir fiziksel makineye 
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taşımak için bir fiziksel makineye daha ihtiyaç bulunduğundan taşıma sırasında harcanan 

enerji 2𝐶𝑝𝑇’dir. Sanal makinenin ne zaman taşınması gerektiği 𝑚 zamanını belirlerken 

şunlar göz önünde bulundurulmaktadır: 

1. Harcanan toplam enerji maliyetini azaltmak 

2. SLAV nın sebep olduğu maliyeti azaltmak 

Maliyet Fonksiyonu 

Maliyet problemini analiz etmek için 4.12 numaralı maliyet fonksiyonu tanımlanmıştır. 

Toplam maliyet, SLAV’ın sebep olduğu maliyeti ve fazladan enerji tüketim maliyetini de 

içermektedir. Maliyet fonksiyonunda SLAV başlayana kadar harcanan enerjinin maliyeti 

hesaplanmaz çünkü algoritmalar bu andan sonra devreye girer ve algoritmalar arasında 

karşılaştırma yapmak için bu enerjiye ihtiyaç duyulmamaktadır. Enerji tüketimi sanal 

makinenin bulunduğu ve taşınacağı fiziksel makinenin tükettiği enerji ve SLAV 

başladıktan sonraki ilk bulunduğu fiziksel makinenin harcadığı enerji Eş. 4.12’de 𝐶(𝑣, 𝑚) 

ile hesaplanmaktadır. Maliyet fonksiyonu hesaplarında 𝑚 taşıma başlama anını; 𝑇 taşıma 

süresini simgelemektedir. 

 𝐶(𝑣, 𝑚):                            (4.12) 

= (𝑣 − 𝑚)𝐶𝑝                                                  eğer  𝑚 < 𝑣 𝑣𝑒 𝑣 − 𝑚 ≥ 𝑇      𝐶1 

= (𝑣 − 𝑚)𝐶𝑝 + 2(𝑚 − 𝑣 + 𝑇)𝐶𝑝 + (𝑚 − 𝑣 + 𝑇). 𝐶𝑣     eğer  𝑚 ≤ 𝑣, 𝑣 − 𝑚 < 𝑇           𝐶2 

= 𝑟𝐶𝑝 + (𝑟 − 𝑚 + 𝑣)𝐶𝑝 + 𝑟𝐶𝑉                                        eğer  𝑚 > 𝑣                              𝐶3 

Eş. 4.12, şartlara göre üç bölüme ayrılmaktadır. Birinci bölüm 𝐶1, ikinci bölüm 𝐶2 ve 

üçüncü bölüm 𝐶3 ile ifade edilmektedir. 

Birinci durum (𝐶1) 

Taşıma, SLAV başlamadan başlamaktadır ve SLAV başlamadan ya da başlayacağı anda 

bitmiş ise maliyet 𝐶1 fonksiyonu ile hesaplanmaktadır. Burada SLAV başlamadan yapılan 
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sanal makine taşıma maliyeti hesaplanmaktadır. SLAV maliyeti yoktur. (𝑣 − 𝑚) taşıma 

süresini ifade etmektedir. 

İkinci durum (𝐶2) 

Taşıma, SLAV başladığı anda ya da başlamadan önce başlamıştır fakat taşıma bitmeden 

önce SLAV başladığından bir miktar SLAV maliyeti bulunmaktadır. Ana fiziksel 

makinenin 𝑣 anına kadar harcadığı enerji maliyeti, SLAV süresince 2 fiziksel makinenin 

harcadığı enerji maliyeti ve SLAV ceza maliyeti toplamı ile hesaplanmaktadır. 

Üçüncü Durum (𝐶3) 

Sanal makine taşınması SLAV başladıktan sonra başlamıştır. Ana fiziksel makinenin 

harcadığı enerji maliyeti, ikinci fiziksel makinenin 𝑇 süresince harcadığı enerji ve ödenen 

SLAV cezası toplanarak hesaplanmaktadır [47]. 

Optimal çevrimdışı algoritma maliyet hesabı 

Algoritmanın kalitesi 𝑚 ve 𝑣 zamanları arasındaki ilişkiye bağlıdır. Yani taşıma ve SLAV 

başlaması arasında ne kadar az süre geçtiyse algoritma o kadar kalitelidir. Eğer SLAV 

başlamadan taşıma başlarsa bu en iyi durumdur. Eş. 4.12’deki değerler Eş. 4.13’deki 

değerlerle değiştirilmesi durumu aşağıda incelenmektedir. 

𝑣 − 𝑚 = 𝑎𝑇, 𝑚 = 𝑣 − 𝑎𝑇, 𝑎 = (𝑣 − 𝑚)/𝑇                                (4.13) 

Maliyet fonksiyonunda Eş. 4.12’de tanımlanan 3 durum aşağıda açıklanmaktadır. 

Birinci Durum 

𝑚 < 𝑣, 𝑣 − 𝑚 ≥ 𝑇 ,  𝑎𝑇 ≥ 𝑇’dir ve  𝑎 ≥ 1 ‘dir.   Tekli sanal makine taşıma probleminde 

Eş. 4.12’de bulunan 𝐶1 fonksiyonunda (𝑣 − 𝑚)𝐶𝑝’de 𝑚’nin yerine 𝑣 − 𝑎𝑇 yazıldığında 

𝐶1=(𝑣 − 𝑣 + 𝑎𝑇)𝐶𝑝 = 𝑎𝑇𝐶𝑃 bulunmaktadır. 
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İkinci Durum 

𝑚 ≤ 𝑣, 𝑣 − 𝑚 < 𝑇, 𝑎 ≥ 0 ve 𝑎𝑇 < 𝑇 yani 0 ≤ 𝑎 < 1’dir. Yine tekli sanal makine taşıma 

problemindeki Eş. 4.12’de 𝐶2 = (𝑣 − 𝑚)𝐶𝑝 + 2(𝑚 − 𝑣 + 𝑇)𝐶𝑝 + (𝑚 − 𝑣 + 𝑇)𝐶𝑣 𝑚’nin 

yerine 𝑣 − 𝑎𝑇 yazıldığında  𝐶2 = 𝑎𝑇𝐶𝑝 + 2𝑇(1 − 𝑎)𝐶𝑝 + 𝑇(1 − 𝑎)𝐶𝑣 bulunur. 

Üçüncü Durum 

𝑚 > 𝑣 bundan dolayı 𝑎 < 0, 𝑎 =
𝑣−𝑚

𝑇
, 𝑚 = 𝑣 − 𝑎𝑇 yine tekli sanal makine taşıma 

probleminde Eş. 4.12’de 𝐶3 = 𝑟𝐶𝑝 + (𝑟 − 𝑚 + 𝑣)𝐶𝑝 + 𝑟𝐶𝑣 = 𝐶𝑝(2𝑟 − 𝑚 + 𝑣) + 𝑟𝐶𝑣 

fonksiyonunda 𝑟 = 𝑚 − 𝑣 + 𝑇 olduğundan 𝑚’nin yerine 𝑣 − 𝑎𝑇 ve 𝑟’nin yerine de 

−𝑎𝑇 + 𝑇 yazılırsa 𝐶3 = 𝐶𝑝(2𝑇 − 2𝑎𝑇 − 𝑣 + 𝑎𝑇 + 𝑣) + 𝑇𝐶𝑣 − 𝑎𝑇𝐶𝑣 bulunmaktadır. 

Sadeleştirildiği zaman 𝐶3 = 𝑇(2 − 𝑎)𝐶𝑝 + 𝑇(1 − 𝑎)𝐶𝑣 bulunur, bu da 𝐶2(𝑣, 𝑎)′ya eşittir 

𝐶2(𝑣, 𝑎), 𝐶3(𝑣, 𝑎)’ya eşit olduğu için eşitlik sadeleştirilerek Eş. 4.14 elde edilmektedir. 

𝐶(𝑎) =                            (4.14) 

𝑇(2 − 𝑎)𝐶𝑝 + 𝑇(1 − 𝑎)𝐶𝑣                             eğer  𝑎 < 1 ise 

𝑎𝑇𝐶𝑝                                                              eğer  𝑎 ≥ 1 ise  

Problem tanımında 𝐶𝑝 = 1/𝑠 ve 𝐶𝑣 = 1 olarak tanımlanmıştı, yukardaki 𝐶(𝑎) 

denkleminde yerine koyulduğunda Eş. 4.15 elde edilmektedir 

𝐶(𝑎) =                            (4.15) 

𝑇(2 − 𝑎)/𝑠 + 𝑇(1 − 𝑎)                                 eğer               𝑎 < 1 ise 

𝑎𝑇/𝑠                                                              eğer                𝑎 ≥ 1 ise  

𝑎 = 1 olduğunda maliyet minimum değerindedir. Yani (𝑣 − 𝑚)/𝑇 = 1 olduğunda, bu da 

taşımanın SLAV başlamadan başlaması demektir. SLAV başlamadan tahmin edebilen 

algoritma en iyidir [47]. 
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CloudSim’de optimal çevrimiçi deterministik algoritma maliyet hesabı 

Eğer bir problemin girdisi çevrimiçi ise ve çıktısı da çevrimiçi olarak oluşturuluyor ise bu 

problem çevrimiçi problemdir. Çevrimiçi problemler için kullanılan algoritmalara 

çevrimiçi algoritma denilmektedir. Çevrimiçi algoritmaların performans ve verimliliğini 

karşılaştırmanın yollarından birisi de rekabet analizi uygulamaktır. Rekabet analizi 

yapısında çevrimiçi algoritmaların değerleri gelecek bilgisi olan (gelecek işyükünü verisini 

bilerek yoğunluk yaşanmadan önlem alan), en iyi performansı sergileyecek muhtemel 

algoritmalar ile karşılaştırılmaktadır. Gelecek bilgisi olan algoritmalar SLAV başlamadan 

önlem alarak en az maliyetle işlemleri gerçekleştirmektedir. 𝐴𝐿𝐺(𝐼) ≤ 𝑐. 𝑂𝑃𝑇(𝐼) + 𝑎 

eşitliğinde  𝐴𝐿𝐺(𝐼), 𝐼 girişi için algoritmanın harcadığı maliyettir. 𝑐, sabit faktördür. 

𝑂𝑃𝑇(𝐼), Optimal online algoritmasının 𝐼 girişi için maliyetidir ve 𝑎 da sabit değerdir. 𝑐 

program fonksiyonlarındaki parametrelere bağlı olabilmektedir fakat 𝐼’dan bağımsız bir 

değer olmalıdır [47]. 

CloudSim’de dinamik sanal makine yerleştirme probleminde maliyet hesabı 

Dinamik sanal makine yerleştirme probleminde, toplam maliyeti azaltmak için ne zaman 

hangi sanal makinenin hangi fiziksel makineye taşınacağını belirlenmektedir. Eşitliği 

hazırlanırken şu semboller kullanılmaktadır. 𝐴ℎ, herbir fiziksel makinenin CPU 

kapasitesini ifade etmektedir.  𝐴𝑣, bir sanal makineye atanabilecek en yüksek CPU 

kapasitesini ifade etmektedir. 𝑚 =
𝐴ℎ

𝐴𝑣
 ile bir fiziksel makineye atanabilecek en yüksek 

sanal makine sayısı bulunmaktadır. 𝑛𝑚 ile toplam VM sayısı hesaplanmaktadır. 𝑡𝑚, taşıma 

süresini ifade etmektedir. 𝐶𝑝 = 1 enerji tüketim maliyetini ifade etmektedir. 𝐶𝑣 = 𝑠, SLAV 

maliyetini ifade etmektedir. Bu değerler 𝐶𝑝 =
1

𝑠
, 𝐶𝑣 = 1 olarak da ifade edilebilmektedir. 

𝐶 = ∑ (𝐶𝑝 ∑ 𝑎𝑡𝑖

𝑛
𝑖=0 + 𝐶𝑣 ∑ 𝑣𝑡𝑗

𝑛
𝑗=0 )𝑇

𝑡=𝑡0
                                 (4.16)   

Eş. 4.16’da 𝑡0 başlangıç zamanını , 𝑇 toplam zamanı ifade etmektedir. 𝑎𝑡𝑖
Є{0,1}, 𝑃𝑀  𝑡 

anında fiziksel makinenin aktif mi pasif mi olduğunu göstermektedir, 𝑎𝑡𝑖
 değeri 1 veya 0 

değerlerini alabilmektedir. 𝑣𝑡𝑗
Є{0,1},  𝑡 anında sanal makinenin SLAV yaşayıp 

yaşanmadığını göstermektedir, 𝑣𝑡𝑗
 değeri 0 veya 1 değerlerini alabilmektedir. 
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Optimal çevrimiçi (online) deterministik algoritmasında rekabet oranı hesaplama 

SLAV bir fiziksel makinede en az 𝑚 + 1 adet sanal makine varsa oluşmaktadır ve bu sanal 

makinelerin kullanabilecekleri en yüksek CPU miktarı 𝐴𝑣’dir. Eş. 4.17’de sanal 

makinelerin üzerinde bulunduğu fiziksel makineyle CPU kapasitesi ilişkisinin hesabı 

anlatılmaktadır.  

𝑚𝐴𝑣 = 𝐴ℎ,   𝑘 > 𝑚,   𝑘𝐴𝑣 > 𝐴ℎ                                     (4.17) 

Eşzamanlı olarak SLAV çeken fiziksel makine sayısı 𝑛𝑣 ile ifade edilmektedir. 𝑛𝑣 =
𝑛𝑚

𝑚+1
 

‘dir. SLAV yaşamayan fiziksel makine sayısı ise 𝑛𝑟 ile ifade edilmektedir. 𝑛𝑟 = 𝑛 −

𝑛𝑣’dir. Herbir zaman periyodu ikiye bölünerek bir zaman peryondu 2𝑡𝑚 ile ifade 

edilmektedir. 𝑡𝑚, taşıma zamanını ifade etmektedir. Bütün fiziksel makineler aktifse ve 

SLAV yoksa birinci 𝑡𝑚’de maliyet 𝑡𝑚𝑛𝐶𝑝 eşitliği ile hesaplanmaktadır. Bütün fiziksel 

makineler aktifse, 𝑛𝑣 tane fiziksel makine SLAV çekerse ve bazı sanal makineler 𝑛𝑟 

fiziksel makineye taşınırsa ikinci 𝑡𝑚’de harcanan toplam maliyet 𝑡𝑚(𝑛𝐶𝑝 + 𝑛𝑣𝑐𝑣) eşitliği 

ile hesaplanmaktadır. Bir zaman periyodu yani 2𝑡𝑚 boyunca harcanan toplam maliyet 

𝐶 = 2𝑡𝑚𝑛𝐶𝑝 + 𝑡𝑚𝑛𝑣𝑐𝑣 eşitliği ile hesaplanmaktadır. ALG çevrimiçi algoritmasının sebep 

olduğu toplam maliyet 𝐴𝐿𝐺(𝐼) = 𝜏𝑡𝑚(2𝑛𝐶𝑝 + 𝑛𝑣𝐶𝑣) eşitliği ile hsaplanmaktadır. 𝑂𝑃𝑇 

çevrimdışı algoritmasının sebep olduğu toplam maliyet 𝑂𝑃𝑇(𝐼) = 2𝜏𝑡𝑚𝑛𝐶𝑝  eşitliği ile 

hesaplanmaktadır. Bu iki algoritmanın rekabet oranı 
𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
=1+

𝑛𝑣𝐶𝑣

2𝑛𝐶𝑝
 bulunmaktadır. 𝐶𝑝’nin 

yerine 1/𝑠, 𝐶𝑣’nin yerine 1 yazıldığında 
𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
=1+

𝑛𝑣𝑠

2𝑛
 bulunur. 𝑚𝑜𝑑

𝑛𝑚

𝑚+1
= 0 olduğunda, 

𝑛𝑣 =
𝑛𝑚

𝑚+1
 rekabet oranında yerine koyulursa 

𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
=1 +

𝑚𝑠

2(𝑚+1)
 bulunmaktadır. Eğer 

𝑛𝑚

𝑚+1
≠ 0 ise 

𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
<

𝑚𝑠

2(𝑚+1)
’dir. Bu iki durum birleştirilirse 

𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
≤1 +

𝑚𝑠

2(𝑚+1)
  

bulunmaktadır. 
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5. GERÇEKLEŞTİRİLEN ÇALIŞMA 

Bu çalışmada, sanallaştırma teknolojisinde karşılaşılan sanal makine yerleştirme 

probleminin çözümü çok amaçlı optimizasyon algoritmalarıyla ele alınmıştır. Literatürde 

yaygın kullanımı olan çok amaçlı optimizasyon yöntemleri probleme uygulanmış, 

başarımları farklı metrikler doğrultusunda değerlendirilmiş ve kıyaslanmıştır. 

5.1. Benzetim Ortamında Veri Merkezinin Oluşturulması 

Çalışmanın alt yapısında bulut bilişim ortamının benzetimi CloudSim ile 

gerçekleştirilmiştir. Problemi tanımlamak ve algoritmaları yürütmek için MOEA 

Framework kütüphanesi Cloudsim ile bütünleştirilmiş ve gerekli uyarlamalar yapılmıştır. 

Şekil 5.1’de görüldüğü üzere CloudSim’den alınan sanal makine listesi ve fiziksel makine 

listesi MOEA Framework’e gönderilmekte, MOEA Framework’de elde edilen çözüm 

tekrar CloudSim’e gönderilmektedir. Elde edilen optimum çözüme göre CloudSim, sanal 

makine yerleştirme işlemini gerçekleştirmektedir. 

 

Şekil 5.1. Tez çalışmasında kullanılan CloudSim ve MOEA Framework ilişkisi 

Çalışmanın yürütülebilmesi için bir veri merkezine ihtiyaç bulunmaktadır. Problemin 

yapısına uygun olarak belli sayıda fiziksel makine ve sanal makinenin tanımlı olması ve 

belirli bir senaryo dâhilinde işlemesi gerekmektedir. Bu gereklilik veri merkezi PlanetLab 

verisetinin benzetim ortamında kullanılmasıyla karşılanmıştır.  
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5.2. Problemin MOEA Problem Yapısına Dönüştürülmesi 

MOEA Framework’ün kullanılabilmesi için öncelikle kullanıcının problemini tanımlaması 

gerekmektedir. Problemin tanımlanması amacıyla org.cloudbus.cloudsim.power.moea 

isimli pakete MOEAProblem.java sınıfı eklenmiştir. Oluşturulan MOEAProblem 

org.moeaframework.core paketindeki Problem sınıfı uygulanarak oluşturulmuştur. 

MOEAProblem sınıfı parametre olarak taşınacak sanal makine listesini ifade eden 

vmstomigrate ve aktif fiziksel makine listesini ifade eden availablehosts listesini alarak 

override yöntemiyle evaluate isminde uygunluk fonksiyonu oluşturulmuştur. Uygunluk 

fonksiyonunun ayrıntıları bölüm 5.3’de anlatılmaktadır. 

5.3. Uygunluk Fonksiyonu 

Uygunluk fonksiyonu çözümlerin geçerliliğini kontrol etmektedir ve çözümleri 

derecelendirmektedir. Bu fonksiyon oluşturulurken Şekil 5.2’de görülen algoritma 

kullanılmıştır. Bu fonksiyonda 𝑑 integer dizisinde çözüm, 𝑓 double dizisinde amaçlar, g 

double dizisinde kısıtlar tutulmaktadır. Bunun dışında map cinsinden oluşturulan dizi isimli 

dizide fiziksel makinelerin CPU kullanım oranları tutulmaktadır. Double cinsinden fark 

değişkeninde sanal makine fiziksel makineye atandıktan sonra oluşacak olan güç tüketim 

farkı tutulmaktadır. Boolean cinsinden 𝑐ℎ𝑒𝑐𝑘 değişkeni çözüm geçerliyse true olarak 

atanmaktadır. For döngüsü içinde herbir çözümün herbir parçasının gerçekleştirilebilir olup 

olmadığı kontrol edilmektedir. RAM, CPU durumundan uygun olup olmadığı ve çözümün 

gerçeklenmesi sonucu harcanan enerji miktarındaki fark hesaplanmaktadır. Çözümlerin 

tamamı gerçekleştirilebilir ise check değeri true olarak kalmaktadır ve çözümün amaç ve 

kısıt değerleri atanmaktadır. Eğer çözüm geçersiz ise kısıt değeri 1 atanmaktadır, amaç 

değerine ise elenmeleri için en yüksek değer atanmaktadır. 
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Başlangıç

Enerji Tüketimi 0

YerleştirmeListesi ÇözümüBul(Algoritmaismi, PMlistesi, Vmlistesi)

UygunlukDeğeri[1]  CPUaritmetikOrtalama(CPUkullanımListesi)

UygunlukDeğeri[0] güçTüketimi

İ = i+1

CPUkullanımListesi.ekle(pm.id, tahminiCPUkullanınımıHesapla(host))

güçTüketimi  güçTüketimi+tahminiGüç(host,vm);

vm  Vmlistesi[i]

pm  Pmlistesi[yerleştirmelistesi[i]]

İ = 0

İ < boyut

EVET

HAYIR

Bitiş

 

Şekil 5.2. Uygunluk fonksiyonu algoritması iş akış şeması 

5.3. Sanal Makine Yerleştirme Probleminin Çözülmesi 

800 adet fiziksel makineye 1052 adet sanal makineyi kaynak kullanım amacına ulaşmak 

için CloudSim açık kaynak kodlu simülasyon yazılımı kullanılmıştır. Burada bulunan sanal 

makine yerleştirmesi yapan org.cloudbus.cloudsim.power paketindeki 

PowerVmAllocationPolicyMigrationAbstract.java sınıfı üzerindeki kodlar tezin amacı 

doğrultusunda  yeniden yazılmıştır. Bu sınıfta bulunan getNewVmPlacement ve 

getNewVmPlacementFromUnderutilizedHost fonksiyonlarında değişiklik yapılarak 

yeniden yazılmıştır. Yeni yazılan sınıflara getNewPlacementMy ve 

getNewVmPlacementFromunderUtilizedHostMy isimleri verilmiştir.   
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Şekil 5.3. Sanal makine yerleştirme probleminin çözüm aşaması 

Şekil 5.3’de görüldüğü gibi getNewPlacementMy sınıfı taşınacak sanal makinelerin listesi 

ve aktif fiziksel makinelerin listesini parametre olarak almaktadır, çıkışta ise hangi sanal 

makinenin hangi fiziksel makineye yerleştirileceği bilgisini içeren bir liste 

döndürülmektedir. Metodun birinci aşamasında fiziksel sunucu listesindeki aktif fiziksel 

sunucular tespit edilir. İkinci aşamada problem sınıfı olan MOEAproblem.java taşınacak 

sanal makine listesi ve aktif fiziksel makineler parametre olarak kullanılarak optimizasyon 

çalıştırılmaktadır. Bu aşamada karşılaştırma yapmak amacıyla 4 farklı optimizasyon 

algoritması (NSGA-II, SPEA2, PAES, ϵ-MOEA) çalıştırılmıştır. Sonuçta pareto eğrisi 

üzerinde bulunan 𝑛 adet çözüm dönmektedir. Üçüncü aşamada, bir önceki aşamada 

bulunan 𝑛 adet çözümden en düşük enerji tüketeni seçilmektedir. Dördüncü aşamada 

seçilen çözüm değeri integer cinsinden oluşturulan 𝑑 dizisine atılmaktadır. 𝑑 dizisi Eş. 

3.1’de gösterilen yapıya göre oluşturulmuştur. Çözümü ifade eden 𝑑 dizisi örneği Şekil 

5.4’de gösterilmiştir. 

 

Şekil 5.4. Sanal makinelerin bulunduğu fiziksel makine bilgisini tutan 𝑑 dizisi 
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Şekil 5.4’deki gibi ifade edilen çözüm 𝑑 dizisine atılmaktadır. Bu ifadenin CloudSim 

yazılımına uyumlu hale getirilmesi gerekmektedir. String ve object sınıflarını içeren map 

sınıfından nesne oluşturulur. Bunun dışında migrationmap isminde map cinsinden 

oluşturulan bağlı listenin oluşturulması gerekmektedir. Daha önce bulunan çözümlerin 

bulunduğu 𝑑 dizisinin değerlerinden 𝑖, sanal makinenin numarası ve 𝑑[𝑖] ise fiziksel 

makinenin numarası ile map sınıfından migrate nesnesi oluşturulmaktadır. Oluşturulan 

migrate nesnesi migrationmap listesine atılmaktadır. Böylece dördüncü adımdaki işlemler 

ile MOEA Framework’ten elde edilen çözüm CloudSim yapısına uygun hale getirilmiş 

olmaktadır. Belirli bir eşik altındaki yoğunlukta çalışan fiziksel makine üzerindeki sanal 

makineleri diğer fiziksel sunuculara taşınması için 

getnewvmplacementfromunderutilizedhostMy metodu yazılmıştır. Bu metodda öncelikle 

aktif fiziksel sunucular tespit edilmektedir. Daha sonra optimizasyon algoritmasına 

taşınması gereken sanal makineler parametre olarak verilerek çözümler hesaplanmaktadır. 

Bulunan 𝑛 adet çözümden en az enerji harcayan çözüm seçilerek 𝑑 dizisine 

aktarılmaktadır. Bulunan çözüm CloudSim yazılımının yapısına uyumlu hale getirmek 

amacıyla listeye aktarılmaktadır. 

5.3.1. Optimizasyon algoritmalarının çalıştırılması 

Optimizasyon Algoritmaları Şekil 5.5’de görüldüğü gibi çağırılmıştır. MOEA 

Framework’te bulunan Executer fonksiyonu ile optimizasyon algoritması çağrılmaktadır. 

Parametre olarak oluşturulan problem sınıfı, taşınması gerekli olan sanal makineler ve aktif 

olarak çalışan fiziksel makineler girilmektedir. Ardından problemin hangi optimizasyon ile 

çözüleceği bilgisi parametre olarak verilir. Popülasyon sayısı ve döngü sayısı da 

verildikten sonra parametreler tamamlanmış olur. Bütün algoritmalarda nesil sayısı 500 ve 

popülasyon sayısı 100 olarak belirlenmiştir. 

 

Şekil 5.5. Optimizasyon algoritmasının çağrılmasından bir kod kesiti  
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6. PEFORMANS DEĞERLENDİRMESİ 

CloudSim ortamında oluşturulan veri merkezinin sanal makine yerleştirme problemini 

çözmek amacıyla NSGAII, SPEA2, ϵ-MOEA, PAES algoritmaları çalıştırılmıştır ve elde 

edilen sonuçlara göre performans değerlendirmesi yapılmıştır. Çok amaçlı optimizasyon 

algoritmalarında ortalama CPU kullanımını artırmak ve toplam enerji tüketimini azaltmak 

hedeflendiğinden bu metrikler incelenmiştir. CPU kullanımında yük dengeleme sunucunun 

performansı açısından çok önemlidir. Enerji tasarrufu açısından CPU kullanımı 

artırıldığında sunucuda hizmet kalitesinin düşme ihtimali artmaktadır. Algoritmanın 

sağladığı çözümün hizmet kalitesini tespit etmek için bununla ilgili olan VM taşıma sayısı, 

SLAPDM, SLATAH ve SLAV metrikleri de incelenmiştir. Simülasyon sonuçlarında elde 

edilen enerji tüketimi, VM taşıma sayısı, SLAPDM, SLATAH, SLAV ve ortalama CPU 

kullanımı verileri Çizelge 6.1’de ve EK-1 - EK-4’de görülmektedir. 

Çizelge 6.1. Çalışmada elde edilen sonuçlar  

Algoritma 

Enerji 

Tüket. 

kWh 

VM Taş. 

Say. 

SLAPDM 

% 

SLATAH 

% 

SLAV 

% 

Ortalama 

CPU Kull. 

NSGAII 249,83 49995 0,28 9,52 0,02688 0,15267 

SPEA2 251,32 50136 0,29 9,67 0,02798 0,15551 

ϵ-MOEA 267,64 54461 0,35 9,92 0,03504 0,15585 

PAES 268,60 55880 0,34 9,99 0,03364 0,16808 

Çizelge 6.2’de en düşük ve en yüksek değeri veren algoritmalar görülmektedir. NSGAII 

algoritması enerji tüketimi, VM taşıma sayısı, SLAPDM, SLATAH ve SLAV değerleri en 

düşük olan yani avantajlı olan algoritmadır. Aktif fiziksel makine başına düşen ortalama 

CPU kullanımında en yüksek değeri verdiği için en başarılı algoritma PAES’dir. 
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Çizelge 6.2.  Çalışma sonucunda elde edlen en düşük değerler (E.d.d) ve en yüksek 

değerler (E.y.d.) 

Metrik Algoritma E.d.d. Algoritma E.y.d 

Enerji tüketimi SPEA2 251,32 PAES 268,60 

VM taşınma sayısı NSGAII 49995 PAES 55880 

SLAPDM NSGAII 0,28% ϵ-MOEA 0,35% 

SLATAH NSGAII 9,52% PAES 9,99% 

SLAV NSGAII 0,02688% ϵ-MOEA 0,03504% 

Ortalama CPU Kull. NSGAII 0,15267 PAES 0,16808 

6.1. Enerji Tüketimi’ne Göre Başarım Değerlendirmesi 

Optimizasyondaki iki amaçtan birisi olan enerji metriği benzetim ortamında oluşturulan 

veri merkezindeki sunucuların harcadığı enerjiyi ifade etmektedir.  Bölüm 4.5.5’de 

tüketilen enerjinin nasıl hesaplandığı anlatılmaktadır. 

 

Şekil 6.1. Algoritmaların enerji tüketim değerleri 

Çizelge 6.1 ve Şekil 6.1’de görüldüğü üzere enerji tüketimi en az olandan en çok olana 

göre sıralama yapıldığında NSGAII, SPEA2, ϵ-MOEA, PAES şeklinde sıralanır. Enerji 

konusunda en avantajlı algoritma Çizelge 6.2’de görüldüğü gibi NSGAII algoritması 

olmuştur. NSGAII, SPEA2 değerleri sırasıyla 249kwh ve 251 kwh olarak bulunmuştur. 
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Enerji tüketimi en yüksek olan algoritmalar ise PAES algoritmasıdır, değerleri sırasıyla 

268 kwh’dır. 

En az enerji kullanan algoritmalar değerleri birbirine çok yakın olan SPEA2 ve NSGAII 

algoritmalarıdır. Enerji kullanımında en iyi olan SPEA2 ve NSGAII algoritmları CPU 

kullanımı konusunda yine birbirlerine yakın değerlere sahiplerdir ve ortalama bir başarıya 

sahip olmuşlardır. 

6.2. Fiziksel Makine başına düşen ortalama CPU kullanım miktarı’na Göre Başarım 

Değerlendirmesi 

Bu metrik açık olan fiziksel makinelerin ortalama CPU kullanımını hesaplamaktadır. Bu 

metriğin değerinin yüksek olması kaynak israfının daha az olduğunu ifade etmektedir. 

Ayrıntılı bilgi Bölüm 4.5.6’da bulunmaktadır. 

 

Şekil 6.2. Fiziksel makine başına düşen ortalama CPU kullanım oranları 

Çizelge 6.1’de ve Şekil 6.2’de görüldüğü üzere aktif hostlar arasındaki CPU kullanım 

ortalaması en az olandan en çok olana göre sıralama NSGAII, SPEA2, ϵ-MOEA, PAES 

şeklinde gerçekleşmiştir. En avantajlı algoritma %16,808 değeri ile PAES’dir. PAES’in 

CPU kullanımında en avantajlı olup enerji tüketiminde en dezavantajlı algoritmalardan 

birisi olması başarı konusunda tutarsız olduğunu göstermektedir. NSGAII, ϵ-MOEA ve 

SPEA2 algoritmalarının ortalama CPU kullanım değerleri birbirlerine çok yakındır; 

sırasıyla %15,267, %15,585, %15,551’dir. [18]’de açık fiziksel makinelerin kaynak 



62 

 

 

kullanım miktarları da tek amaçlı optimizasyon algoritması olan Genetik Algoritma, çok 

amaçlı optimizasyon algoritmaları olan NSGA ve NSGAII arasında karşılaştırılmıştır, 

sonuçta NSGAII algoritması en avantajlı algoritma olmuştur.  

6.3. Sanal Makine Taşınma Sayısı’na Göre Başarım Değerlendirmesi 

Yoğun olan sanal makineleri rahatlatmak için daha az yoğun olan makinelere sanal makine 

taşınması yapılır. Bazen de az yoğun makineler üzerindeki sanal makineler başka 

makineler üzerine taşınarak boşaltılan fiziksel makineler kapatılır. Yapılan bu taşıma 

işlemi fazladan kaynak ve enerji tüketimine neden olmaktadır. Bu da performansı olumsuz 

yönde etkilemektedir. Sanallaştırma sistemlerinde sanal makine taşınması olsa da mümkün 

olduğunca az gerçekleşmesi beklenmektedir. 

 

Şekil 6.3. Sanal makine taşınma sayıları 

Çizelge 6.1’de ve Şekil 6.3’de görüldüğü üzere VM taşınma sayısı en az olandan en çok 

olana doğru NSGAII, SPEA2, ϵ-MOEA, PAES şeklinde sıralanmaktadır. VM taşıma 

işlemi performans düşürücü bir iş olduğundan en avantajlı algoritma Çizelge 6.2’de 

görüldüğü gibi 49995 değeri ile NSGAII algoritmasıdır. En çok taşıma yapan algoritma ise 

55880 değeri ile PAES algoritmasıdır. 
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6.4. Hizmet Seviyesi Anlaşması İhlaline Göre Başarım Değerlendirme  

SLAV, fiziksel makinenin CPU kapasitesinin üzerindeki sanal makinelere yetmediği 

durumlarda ortaya çıkmaktadır. SLAV ile ilgili ayrıntılı bilgi Bölüm 4.5.1’de 

bulunmaktadır. 

 

Şekil 6.4. Hizmet seviyesi anlaşması ihlali (SLAV) 

Çizelge 6.1 de ve Şekil 6.4’de görüldüğü üzere SLAV değeri en az olandan en çok olana 

göre NSGAII, SPEA2, PAES, ϵ-MOEA şeklinde sıralanmaktadır. NSGAII ve SPEA2 

algoritmalarının değerleri %0,02688 ve %0,02798 olarak birbirine çok yakın değerlere 

sahiptir. ϵ-MOEA ve PAES algoritmalarının değerleri de %0,03504, %0,03364 olmak 

üzere birbirlerine yakındır. 

6.5.  Sanal Makine Göçünden Kaynaklanan Performans Düşüşüne Göre Başarım 

Değerlendirmesi 

SLAPDM, sanal makine taşımasından kaynaklanan performans düşüşünü ifade etmektedir. 

Bu metrikle ilgili ayrıntılı bilgi Bölüm 4.5.2’de verilmiştir. 
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Şekil 6.5. Sanal makine taşınmasından kaynaklanan performans düşüşü 

Çizelge 6.1 de ve Şekil 6.5’de görüldüğü üzere SLAPDM değeri en az olandan en çok 

olana göre NSGAII, SPEA2, PAES, ϵ-MOEA şekinde sıralanmaktadır. En düşük değerleri 

veren NSGAII ve SPEA2 algoritmalarının SLAPDM değerleri sırasıyla %0,28 ve %0,29 

olmak üzere birbirlerine çok yakınlardır. PAES, ϵ-MOEA sonuç değerleri ise sırasıyla 

%0,34, %0,35 olmak üzere yakın değerlere sahiptir. SLAV metriğine göre yapılan sıralama 

ile SLAPDM metriğine göre yapılan sıralama aynıdır. Bu da SLAPDM değerinin SLAV 

değerini etkilediğini göstermektedir. 

6.6. Aktif Fiziksel Makine Başına Düşen SLAV Zamanına Göre Performans 

Değerlendirmesi 

SLATAH, aktif fiziksel makine başına düşen ortalama SLAV yaşanma zamanını ifade 

etmektedir. Ayrıntılı bilgi Bölüm 4.5.4’de bulunmaktadır. 
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Şekil 6.6. Aktif fiziksel makine sayısı başına düşen ortalama SLAV zamanı (SLATAH) 

Çizelge 6.1’de ve Şekil 6.6’da görüldüğü üzere SLATAH değeri en az olandan en çok 

olana göre NSGAII, SPEA2, ϵ-MOEA, PAES şeklinde sıralama yapılmaktadır ve değerleri 

de sırasıyla %9,52, %9,67, %9,92, %9,99’dur. Burada diğer performans metriklerinden 

farklı olarak SLATAH değerleri birbirlerine çok yakın değerlerdir. Eş. 4.1’e göre 

değerlendirildiğinde, SLATAH değerleri neredeyse eşit olduğundan SLAV sıralamasındaki 

en büyük etken PDM’dir. PDM’nin sıralamasıyla SLAV sıralamaları aynı ve değerler de 

birbirleriyle orantılı olması da beklenen durumdur.  
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7. SONUÇ 

Bu tezin konusu bulut bilişimde çok amaçlı optimizasyon algoritmaları ile dinamik yük 

dengelemedir. Bu kapsamda sanal makine yerleştirme problemi ele alınmıştır. Sanal 

makinelerin barındığı fiziksel makineler üzerindeki yük dengelenirken açık olan 

makinelerin ortalama CPU kullanımı ve toplam harcanan enerjinin azaltılması 

amaçlanmıştır. Çok amaçlı optimizasyon algoritmaları olan PAES, NSGAII, SPEA2, ϵ-

MOEA algoritmaları problemin çözümünde kullanılmıştır. Sonuçta ortalama CPU 

kullanımı konusunda en avantajlı algoritmanın PAES olduğu tespit edilmiştir. En düşük 

enerji tüketimini sağlayan algoritmalar ise NSGAII ve SPEA2 olmuştur. SLAV metriği 

açısından NSGAII ve SPEA2 en avantajlı değerleri vermiştir. Yapılan çalışmalar, genel 

olarak NSGAII ve SPEA2’nin daha üstün olduğunu göstermiştir. Bu tez çalışması, veri 

merkezlerinin harcadığı enerjinin azaltılmasıyla doğanın korunması; kaynak israfının 

azaltılmasıyla maliyetin azaltılması konusunda yararlı bir çalışma olmuştur. Gelecekte 

farklı veri setleri ve farklı algoritmalar ile tez çalışmasının geliştirilmesi planlanmaktadır.  
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EK 1. NSGA-II Algoritması Benzetim Çalışması Sonuçları 

Number of hosts 800 

Number of VMs 1052 

Total simulation time  86400,00 sec 

Energy consumption  249,83 kWh 

Number of VM migrations 49995 

SLA 0,03% 

SLA perf degradation due to migration 0,28% 

SLA time per active host 9,52% 

Overall SLA violation 2,26% 

Average SLA violation 13,21% 

Number of host shutdowns 12805 

Mean time before a host shutdown  680,90 sec 

StDev time before a host shutdown  1383,32 sec 

Mean time before a VM migration  19,47 sec 

StDev time before a VM migration  8,11 sec 

Mean time before a VM migration  0,02525 sec 

StDev time before a VM migration  0,01269 sec 

Execution time - VM selection mean  0,00967 sec 

Execution time - VM selection stDev  0,00729 sec 

Execution time - host selection mean  0,05833 sec 

Execution time - host selection stDev  0,02020 sec 

Execution time - total mean  0,44622 sec 

Execution time - total stDev  0,25038 sec 

CPU Utilization mean 0,15267 

BUILD SUCCESSFUL (total time: 29 minutes 46 seconds) 
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EK 2. ϵ-MOEA Algoritması Benzetim Çalışması Sonuçları 

Number of hosts 800 

Number of VMs 1052 

Total simulation time  86400,00 sec 

Energy consumption  267,64 kWh 

Number of VM migrations 54461 

SLA 0,04% 

SLA perf degradation due to migration 0,35% 

SLA time per active host 9,92% 

Overall SLA violation 3,62% 

Average SLA violation 15,96% 

Number of host shutdowns 14747 

Mean time before a host shutdown  639,92 sec 

StDev time before a host shutdown  1216,84 sec 

Mean time before a VM migration  19,36 sec 

StDev time before a VM migration  8,09 sec 

Mean time before a VM migration  0,03450 sec 

StDev time before a VM migration  0,02919 sec 

Execution time - VM selection mean  0,01161 sec 

Execution time - VM selection stDev  0,00695 sec 

Execution time - host selection mean  0,09392 sec 

Execution time - host selection stDev  0,04817 sec 

Execution time - total mean  0,63371 sec 

Execution time - total stDev  0,41667 sec 

CPU Utilization mean 0,15585 

BUILD SUCCESSFUL (total time: 42 minutes 22 seconds) 
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EK 3. PAES Algoritması Benzetim Çalışması Sonuçları 

Number of hosts 800 

Number of VMs 1052 

Total simulation time  86400,00 sec 

Energy consumption  268,60 kWh 

Number of VM migrations 55880 

SLA 0,03% 

SLA perf degradation due to migration 0,34% 

SLA time per active host 9,99% 

Overall SLA violation 3,30% 

Average SLA violation 14,98% 

Number of host shutdowns 14938 

Mean time before a host shutdown  639,24 sec 

StDev time before a host shutdown  1146,82 sec 

Mean time before a VM migration  19,39 sec 

StDev time before a VM migration  8,10 sec 

Mean time before a VM migration  0,03876 sec 

StDev time before a VM migration  0,02182 sec 

Execution time - VM selection mean  0,01257 sec 

Execution time - VM selection stDev  0,00567 sec 

Execution time - host selection mean  0,09013 sec 

Execution time - host selection stDev  0,04294 sec 

Execution time - total mean  0,69351 sec 

Execution time - total stDev  0,58376 sec 

CPU Utilization mean 0,16808 

BUILD SUCCESSFUL (total time: 53 minutes 54 seconds) 
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EK 4. SPEA2 Algoritması Benzetim Çalışması Sonuçları 

Number of hosts 800 

Number of VMs 1052 

Total simulation time  86400,00 sec 

Energy consumption  251,32 kWh 

Number of VM migrations 50136 

SLA 0,03% 

SLA perf degradation due to migration 0,29% 

SLA time per active host 9,67% 

Overall SLA violation 2,39% 

Average SLA violation 13,43% 

Number of host shutdowns 13089 

Mean time before a host shutdown  670,76 sec 

StDev time before a host shutdown  1338,18 sec 

Mean time before a VM migration  19,52 sec 

StDev time before a VM migration  8,09 sec 

Mean time before a VM migration  0,03230 sec 

StDev time before a VM migration  0,01698 sec 

Execution time - VM selection mean  0,01111 sec 

Execution time - VM selection stDev  0,00561 sec 

Execution time - host selection mean  0,12607 sec 

Execution time - host selection stDev  0,05237 sec 

Execution time - total mean  1,38601 sec 

Execution time - total stDev  0,67321 sec 

CPU Utilization mean 0,15551 

BUILD SUCCESSFUL (total time: 44 minutes 10 seconds) 
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