

ii

BULUT BİLİŞİMDE ÇOK AMAÇLI OPTİMİZASYON TABANLI

DİNAMİK YÜK DENGELEME

Serap DÖRTERLER

YÜKSEK LİSANS TEZİ

BİLGİSAYAR MÜHENDİSLİĞİ ANA BİLİM DALI

GAZİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

MAYIS 2018

Serap DÖRTERLER tarafından hazırlanan BULUT BİLİŞİMDE ÇOK AMAÇLI

OPTİMİZASYON TABANLI DİNAMİK YÜK DENGELEME adlı tez çalışması aşağıdaki jüri

tarafından OY BİRLİĞİ ile Gazi Üniversitesi Bilgisayar Mühendisliği Anabilim Dalında YÜKSEK

LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Suat ÖZDEMİR

Bilgisayar Mühendisliği Anabilim Dalı, Gazi Üniversitesi

Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.

 ...………………

Başkan: Prof. Dr. Şeref SAĞIROĞLU

Bilgisayar Mühendisliği Anabilim Dalı, Gazi Üniversitesi

Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum. …………………..

Üye: Dr. Öğr. Üyesi Murat AYDOS

Bilgisayar Mühendisliği Anabilim Dalı, Hacettepe Üniversitesi

Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum. …………………..

Tez Savunma Tarihi: 30/05/2018

Jüri tarafından kabul edilen bu tezin Yüksek Lisans Tezi olması için gerekli şartları yerine

getirdiğini onaylıyorum.

…………………….…….

Prof. Dr. Sena YAŞYERLİ

 Fen Bilimleri Enstitüsü Müdürü

ii

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak

hazırladığım bu tez çalışmasında;

 Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar

çerçevesinde elde ettiğimi,

 Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun

olarak sunduğumu,

 Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak

gösterdiğimi,

 Kullanılan verilerde herhangi bir değişiklik yapmadığımı,

 Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan

ederim.

 Serap DÖRTERLER

30/05/2018

iv

BULUT BİLİŞİMDE ÇOK AMAÇLI OPTİMİZASYON TABANLI DİNAMİK YÜK

DENGELEME

(Yüksek Lisans Tezi)

Serap DÖRTERLER

GAZİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

Mayıs 2018

ÖZET

Bulut bilişim, insanların bulunduğu yerden uzakta bulunan donanım, işletim sistemi,

yazılım gibi kaynakları istedikleri zaman internet üzerinden kullanmalalarını

sağlamaktadır. Bulut bilişimin vazgeçilmez bir parçası olan sanallaştırma teknolojisi

işlemci, bellek, bant genişliği gibi donanımların birden fazla sanal makine arasında

paylaştırılarak kullanılmasına imkân sunmaktadır. Sanallaştırma teknolojisi sanal

makinelerin fiziksel makineler üzerinde eşzamanlı yürütülmesi esasına dayanmaktadır. M

adet sanal makinenin N, M’den küçük olmak üzere N adet fiziksel makineye belirlenen

amaca uygun olarak nasıl yerleştirileceği, sanal makinelerin yerleştirilmesinde enerji

tüketimi, maliyet yönetimi, kaynak paylaşımı gibi bir veya birkaç amaç esas alınarak

fiziksel makineler üzerindeki yükün dengelenmesi hedeflenmektedir. Bu amaçlardan

birden fazlasını aynı anda geçekleştirmek için çok amaçlı optimizasyon algoritmaları

kullanılabilir. Bu tezde literatürde yaygın kullanımı olan çok amaçlı optimizasyon

algoritmalarının sanal makine yerleştirme problemindeki başarımları ele alınmıştır.

Hazırlanan benzetim ortamında elde edilen sonuçlar karşılaştırmalı olarak

değerlendirilmiştir.

Bilim Kodu : 92413

Anahtar Kelimeler : Bulut bilişim, CloudSim, Çok amaçlı evrimsel algoritmalar,

Sanal makine yerleştirme problemi, Yük dengeleme

Sayfa Adedi : 80

Danışman : Prof. Dr. Suat ÖZDEMİR

v

MULTIOBJECTIVE OPTIMIZATION BASED DYNAMIC LOAD BALANCING IN

CLOUD COMPUTING

(M. Sc. Thesis)

Serap DÖRTERLER

GAZI UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

May 2018

ABSTRACT

Cloud computing ensures people to use sources such as hardware, operating system,

software wherever they want over internet.Virtualization technology which is an

indispensable part of cloud computing gives opportunity to employ resources such as

memory, bandwidth, processor among multiple virtual machines. Virtualization technology

is based on simultaneous execution of virtual machines on physical machines.

Virtualization technology allows placement of M virtual machines to N physical machines,

where M>N, by balancing the load on physical machines with respect to one or more goals

like energy consumption, cost management, or resource sharing. In order to satisfy more

than one goal simultaneously, multiobjective optimization algorithms are shown to be

effective solutions in the literature. In this thesis, four well-known multiobjective

optimization algorithms are realized to solve virtual machine placement problem under

CPU maximization and energy consumption minimization constraints. Extensive

simulation results for different performance metrics are comparatively discussed.

Science Code : 92413

Key Words : CloudSim, Cloud computing, Load balancing, Multiobjective

evolutionary algorithm, Virtual machine placement problem

Page Number : 80

Supervisor : Prof. Dr. Suat ÖZDEMİR

vi

TEŞEKKÜR

Çalışmalarım boyunca değerli yardım ve katkılarıyla beni yönlendiren, kıymetli

tecrübelerinden faydalandığım danışmanım Prof. Dr. Suat ÖZDEMİR’e, ayrıca

çalışmalarımda bana yardımcı olan Öğr. Gör. Dr. Murat DÖRTERLER’e teşekkürü bir

borç bilirim.

vii

İÇİNDEKİLER

Sayfa

ÖZET .. iv

ABSTRACT .. v

İÇİNDEKİLER ... vii

ÇİZELGELERİN LİSTESİ ... x

ŞEKİLLERİN LİSTESİ .. xi

1. GİRİŞ .. 1

2. LİTERATÜR TARAMASI .. 5

3. KULLANILAN YÖNTEMLER VE METODOLOJİ 11

3.1. Bulut Bilişim .. 11

3.2. Sanallaştırma .. 12

3.3. Çok Amaçlı Optimizasyon ... 14

3.3.1. Evrimsel çok amaçlı optimizasyon .. 17

3.3.2. Baskılanamayan çözümler (Non-dominated Solutions) 19

3.4. Kullanılan Algoritmalar ... 20

3.4.1. NSGA-II ... 21

3.4.2. ϵ-MOEA ... 22

3.4.3. PAES .. 24

3.4.4. SPEA2 .. 25

3.5. MOEA Framework ... 27

3.6. CloudSim .. 28

3.6.1. CloudSim sistem modelinde enerji tasarrufu duyarlı dinamik sanal

makine yerleştirmesi.. 29

3.6.2. CloudSim yazılımında bulunan bazı sınıflar ... 30

3.7. Kullanılan Veriseti ... 33

4. SANAL MAKİNE YERLEŞTİRME PROBLEMİ 35

viii

Sayfa

4.1. Sanal Makine Yerleştirme Probleminin Kısıtları ... 35

4.2. Sanal Ortamlarda İşlemci Kullanımı .. 36

4.3. Hizmet Seviyesi anlaşması ve Enerji Tüketimi .. 40

4.4. Performans Metrikleri .. 40

4.5. Performans Metriklerinin Hesaplanması .. 42

4.5.1. Hizmet seviyesi anlaşması ihlali .. 42

4.5.2. Sanal makine taşınmasından kaynaklanan performans düşüşü 43

4.5.3. Aktif fiziksel makine başına düşen SLAV zamanı 44

4.5.4. Enerji hesabı .. 44

4.5.5. Aktif fiziksel makine başına düşen ortalama CPU kullanım oranı

hesaplama .. 46

4.5.6. Benzetim Ortamında Maliyet Hesabı .. 47

5. GERÇEKLEŞTİRİLEN ÇALIŞMA ... 53

5.1. Benzetim Ortamında Veri Merkezinin Oluşturulması 53

5.2. Problemin MOEA Problem Yapısına Dönüştürülmesi 54

5.3. Uygunluk Fonksiyonu .. 54

5.3. Sanal Makine Yerleştirme Probleminin Çözülmesi ... 55

5.3.1. Optimizasyon algoritmalarının çalıştırılması ... 57

6. PEFORMANS DEĞERLENDİRMESİ ... 59

6.1. Enerji Tüketimi’ne Göre Başarım Değerlendirmesi .. 60

6.2. Fiziksel Makine başına düşen ortalama CPU kullanım miktarı’na Göre

Başarım Değerlendirmesi .. 61

6.3. Sanal Makine Taşınma Sayısı’na Göre Başarım Değerlendirmesi 62

6.4. Hizmet Seviyesi Anlaşması İhlaline Göre Başarım Değerlendirme 63

6.5. Sanal Makine Göçünden Kaynaklanan Performans Düşüşüne Göre Başarım

Değerlendirmesi ... 63

6.6. Aktif Fiziksel Makine Başına Düşen SLAV Zamanına Göre Performans

Değerlendirmesi ... 64

ix

 Sayfa

7. SONUÇ .. 67

KAYNAKLAR ... 69

EKLER .. 75

EK 1. NSGA-II Algoritması Benzetim Çalışması Sonuçları .. 76

EK 2. ϵ-MOEA Algoritması Benzetim Çalışması Sonuçları .. 77

EK 3. PAES Algoritması Benzetim Çalışması Sonuçları ... 78

EK 4. SPEA2 Algoritması Benzetim Çalışması Sonuçları ... 79

ÖZGEÇMİŞ .. 80

x

ÇİZELGELERİN LİSTESİ

Çizelge Sayfa

Çizelge 2.1. Literatürdeki yöntemlerin karşılaştırmalı özet tablosu 9

Çizelge 4.1. Sunucuların CPU kullanım oranlarına göre Watt cinsinden güç tüketim

miktarları .. 46

Çizelge 6.1. Çalışmada elde edilen sonuçlar .. 59

Çizelge 6.2. Çalışma sonucunda elde edlen en düşük değerler (E.d.d) ve en yüksek

değerler (E.y.d.).. 59

xi

ŞEKİLLERİN LİSTESİ

Şekil Sayfa

Şekil 1.1. Yük dengeleme çeşitleri ... 2

Şekil 3.1. Bulut bilişimin dağıtım modellerine göre katmanları 12

Şekil 3.2. Sanallaştırma teknolojisinin mimari yapısı ... 13

Şekil 3.3. Sanallaştırma ortamındaki fiziksel ve sanal makineler 14

Şekil 3.4. Pareto Optimal Front eğrisi .. 15

Şekil 3.5. Çok amaçlı optimizasyon adımları .. 17

Şekil 3.6. Baskılanamayan çözümler kullanılarak çizilen “Non-dominated front”

eğrisi ... 20

Şekil 3.7. NSGAII algoritmasının görselleştirilmesi ... 21

Şekil 3.8. ϵ - dominantlık kavramı ... 23

Şekil 3.9. Arşivin boyutunu azaltma yöntemi ... 27

Şekil 3.10. PlanetLab’ın sahip olduğu 717 bölgedeki 1353 düğüm 34

Şekil 4.1. VM’ler ve görevler için yer paylaşımlı CPU kullanımı................................. 37

Şekil 4.2. VM’ler için yer ve görevler için zaman paylaşımlı CPU kulanımı 38

Şekil 4.3. VM’ler için zaman paylaşımlı, görevler için yer paylaşımlı CPU kulanımı . 39

Şekil 4.4. VM’ler ve görevler için zaman paylaşımlı CPU kullanımı 39

Şekil 4.5. Bir sunucunun CPU kullanımı ve güç tüketimi arasındaki ilişki 45

Şekil 4.6. Sunucu bileşenleri tarafından tüketilen güç miktarları 46

Şekil 5.1. Tez çalışmasında kullanılan CloudSim ve MOEA Framework ilişkisi 53

Şekil 5.2. Uygunluk fonksiyonu algoritması iş akış şeması .. 55

Şekil 5.3. Sanal makine yerleştirme probleminin çözüm aşaması 56

Şekil 5.4. Sanal makinelerin bulunduğu fiziksel makine bilgisini tutan 𝑑 dizisi 56

Şekil 5.5. Optimizasyon algoritmasının çağrılmasından bir kod kesiti 57

Şekil 6.1. Algoritmaların enerji tüketim değerleri ... 60

Şekil 6.2. Fiziksel makine başına düşen ortalama CPU kullanım oranları 61

xii

Şekil Sayfa

Şekil 6.3. Sanal makine taşınma sayıları .. 62

Şekil 6.4. Hizmet seviyesi anlaşması ihlali (SLAV) .. 63

Şekil 6.5. Sanal makine taşınmasından kaynaklanan performans düşüşü 64

Şekil 6.6. Aktif fiziksel makine sayısı başına düşen ortalama SLAV zamanı

(SLATAH) ... 65

1

1. GİRİŞ

Bulut bilişim ağ, sunucular, depolama, uygulamalar ve hizmetler gibi bilgi işlem

kaynaklarının ortak havuzuna talep üzerine ağ erişimi sağlayan bir modeldir. Bulut bilişim

mimari olarak hizmet olarak alt yapı (Infrastructure as a service - IaaS), hizmet olarak

platform (Platform as a Service - PaaS), hizmet olarak yazılım (Software as a Service -

SaaS) isimleri altında üç kategoriye ayrılmaktadır. IaaS diğer “as a Service” modellerinin

üzerine inşa edildiği bulut servislerinin temelidir. Bu özel uygulama müşterilere depolama,

sunucu, ağ ve işletim sistemleri gibi temel bilgi işlem kaynakları sağlamaktadır. Bu

uygulamada müşteriler donanım gibi altta yatan alt yapıyı kontrol edemezler fakat işletim

sistemi, uygulamalar ve belki bazı ağ elemanları üzerinde yönetim hakkına sahiptirler.

PaaS modeli ise IaaS’nin üzerine kurulum yapılmış halidir. IaaS’de müşteriye tanınan

esneklikler PaaS’de önemli ölçüde ortadan kalkmaktadır. Örnek olarak Google App

Engine [1], Microsoft Azure [2] gösterilebilir. SaaS’de ise PaaS’de azalan esneklikler bir

miktar daha düşmektedir ve müşterilerin yetkileri çok kısıtlı olmaktadır. Örneğin,

Google’ın elektronik posta hizmeti bir SaaS’dir. Burada müşterilerin sunucunun donanımı,

işletim sistemi hakkında bir söz hakları veya servisin işlevselliğini genişletme yetenekleri

bulunmamaktadır [3].

Sanallaştırma teknolojisi bulut bilişimin temelini oluşturmaktadır [4]. Genellikle donanım,

sanal makine (Virtual Machine - VM) ve işletim sisteminden oluşmaktadır. Sanal makine,

fiziksel kaynaklarla beslenen bilgisayar yazılımıdır. Uygulamalar ve işletim sistemleri tıpkı

fiziksel bilgisayarlarda (Physical Machine - PM) olduğu gibi sanal makineler üzerine de

kurulabilmektedir. Kaynak koruması ve verimli donanım kullanımıyla kullanıcıların

kaynakları daha verimli kullanmalarını sağlamaktadır [5]. İş yükünün bir sunucudan başka

bir sunucuya aktarılmasına imkân tanımaktadır. Bu imkân fiziksel makinenin kapasitesi

yetmediğinde veya bir arıza durumunda kullanılabilmektedir. Bu durum sistemlerin

erişilebilirlik durumunu yükseltmektedir [6].

Sanallaştırmanın sağladığı esneklik yeni yönetim zorlukları getirmektedir. Sanal makine

havuzunun öngörülmesi ve yönetilmesi gerekmektedir. Kaynak talebi, maliyet, enerji

tüketimi gibi amaçları önceliklerine göre değerlendirerek sanal makinelerin nereye

yerleştirileceği ve kaynakların nasıl atanacağı belirlenerek cevap verilmelidir. Veri

2

merkezinin ölçeği büyüdükçe bu işlemin karmaşıklığı da artış göstermektedir. Bu sebeple

bilgisayar destekli karar yapılarından yararlanılmaktadır [7].

Fiziksel makineler üzerinde bulunan farklı sayılardaki makinelerin değişken olabilen farklı

miktardaki kaynak gereksinimleri başarımda düşüşe ve hizmet kalitesinde düşüşe neden

olabilmektedir. Bu sıkıntıların çözümü için yük dengelemenin yapılması gerekmektedir

[8]. Yük dengeleme Şekil 1.1’de görüldüğü gibi görev planlaması ve sanal makine

yerleştirmesi (Virtual Machine Placement - VMP) yaklaşımlarıyla yapılabilmektedir.

Görev planlaması kullanıcılardan gelen uygulama taleplerinin bir amaca yönelik olarak

ilgili sanal makinelere dağıtımıdır. Sanal makine yerleştirilmesi ise sanal makinelerin yine

bir amaç dâhilinde fiziksel sunuculara yerleştirilmesidir [9]. Sanal makine yerleştirme

problemi çeşitli optimizasyon amaçları ve hedef uygulama merkezine ait özel

gereksinimler doğrultusunda ele alınması zorunlu bir araştırma konusu olmuştur [10].

Yük Dengeleme

Görev planlama
Sanal makine

yerleştirmesi

Şekil 1.1. Yük dengeleme çeşitleri

Literatürde sanal makine yerleştirme problemine yönelik çok amaçlı optimizasyon

kullanılarak yapılmış çeşitli çalışmalar mevcuttur [11-23]. Bu çalışmalar amaç, kapsam,

veri merkezinin ölçeği gibi çeşitli noktalarda farklılık göstermektedir. Bu tez çalışmasında

sanal makine yerleştirme probleminin çözümüne yönelik yaygın kullanılan çok amaçlı

optimizasyon algoritmalarından Non-Dominated Sorting Genetic Algorithm-II (NSGA-II),

steady-state MOEA based on the ϵ-dominance concept (ϵ-MOEA), Pareto Archived

Evolution Strategy (PAES) ve Strength-Pareto Evolutionary Algorithm 2 (SPEA2)

uygulanarak başarımları kıyaslanmaktadır. Algoritmaların başarımını ölçmek için

CloudSim benzetim ortamı ve Multiobjective Evalutionary Algorithm Framework (MOEA

Framework) kütüphanesinden yararlanılmaktadır. Problemin çözümünde kullanılan çok

3

amaçlı optimizasyon algoritmalarında birden fazla amaçta iyileştirme hedeflenmektedir.

Bu çalışmadaki amaçlar enerji tüketimini en aza indirmek ve fiziksel makine başına düşen

ortalama işlemci (Central Processing Unit - CPU) kullanım miktarını artırmaktır. Bu tez

çalışmasının literatüre katkısı bulut ortamında sanal makine optimzasyonunun literatürde

daha önce kullanılmamış çok amaçlı optimizasyon algoritmalarıyla yapılarak sonuçların

karşılaştırılmasıdır.

Bu tezin ilerleyen kısımları şu şekildedir. İkinci bölümde sanal makine yerleştirme

problemi ve bu probleme getirilen çözümle ilgili literatürdeki çalışmalardan bahsedilmiştir.

Üçüncü bölümde tez çalışmasında yararlanılan teknolojiler, kavramlar ayrıntılı bir şekilde

sunulmuştur. Bulut bilişim, sanallaştırma teknolojisinin yanı sıra uygulamada kullanılan

CloudSim ve MOEA Framework açık kaynak kodlu yazılımlar tanıtılmıştır. Problemin

çözümü için kullanılan algoritmalar ayrıntılı olarak sunulmuştur. Dördüncü bölümde sanal

makine yerleştirme problemi hakkında ayrıntılı bilgi verilmiştir. Beşinci bölümde tez

kapsamında yapılan uygulama çalışması ve altıncı bölümde uygulama sonucunda elde

edilen sonuçlar paylaşılmış ve değerlendirilmiştir. Yedinci bölümünde ise tez çalışmasının

değerlendirilmesi ve geleceğe dönük çalışma önerileri yapılmıştır.

4

5

2. LİTERATÜR TARAMASI

Bu bölümde sanal makine yerleştirme problemini çok amaçlı optimizasyon ile ele alan

çalışmalar araştırılmıştır. Bu çalışmalar amaç, kapsam, veri merkezinin ölçeği,

karşılaştırıldıkları algoritmalar gibi çeşitli noktalarda farklılık göstermektedir.

[11]’de “A multiobjective ant colony system algorithm (VMPACS)” isimli çok amaçlı

karınca kolonisi sistem algoritması tasarlanmıştır. Bu algoritmayla toplam kaynak tüketimi

ve güç tüketimi en aza indirilerek sanal makineleri yerleştirme problemini çözmek

amaçlanmıştır. Elde edilen sonuçlara göre önerilen VMPACS algoritması, çok amaçlı

optimizasyon algoritması olan Multiobjective Grouping Genetic Algorithm (MGGA) ve

tek amaçlı optimization algoritması olan First Fit Decreasing (FFD) ve Slave Ants Based

Ant Colony Optimization (SACO) ile karşılaştırılmıştır. Sonuçta VMPACS’in MGGA,

FFD ve SACO’dan daha verimli ve etkili olduğu tespit edilmiştir.

[12]’de Multiobjective Ant Colony Optimization (MACO) yerleştirme algoritması

tasarlanmıştır. Bu algoritmayla toplam kaynak tüketimi, güç tüketimi ve ağ elemanları

arasındaki iletişim masraflarını en aza indirerek sanal makine yerleştirme problemini

çözmek amaçlanmıştır. MACO algoritması Cloudsim benzetim ortamında Micro Genetic

Algorithm (MGA), Local Regression (LR), Dynamic Voltage and Frequency Scaling

(DVFS) ve FFD algoritmalarıyla karşılaştırılmıştır. Sonuçta MACO’nun enerji tüketimi ve

iletişim enerjisi maliyeti konusunda daha başarılı olduğu görülmüştür. Burada MGA çok

amaçlı optimizasyon algoritmasıdır ve FFD, DVFS ve LR ise tek amaçlı sanal makine

yerleştirme algoritmalarıdır.

[13]’de Cloud Adapted Feedback isimli algoritma sunulmuştur. Bu algoritmayla belirli bir

işi daha az zaman ve maliyet ile bitirmek amaçlanmıştır. The Objective Case (Optimal

Algorithm), Hystorical Statistical Algorithm ve Gene Exchange And Mutation Algorithm

ile karşılaştırma yapılmıştır. Sonuçta sistemdeki ani değişikliklere adapte olmak konusunda

en başarılı algoritmanın yazarların sunduğu Cloud Adapted Feedback Algoritması olduğu

görülmüştür. Normal durumlar için de bu geçerlidir. Fakat sistem parametrelerindeki

keskin değişiklik durumunda sunulan algoritmanın verimli olmadığı görülmüştür.

6

[14]’de iş yükünü sanal makinelere, sanal makineleri de fiziksel makinelere yerleştiren iki

seviyeli kontrol sistemi önerilmiştir. Fuzzy multiobjective değerlendirme ile güçlendirilmiş

genetik algoritma (MGGA) sunulmuştur. Kaynak israfını, güç tüketimini ve soğutma

maliyetini en aza indirmek hedeflenmiştir. Önerilen MGGA algoritması FFD, BFD VE

SGGA ile karşılaştırılmıştır. Sonuçta MGGA algoritmasının diğerlerine göre çakışan

parametreler arasındaki dengeyi daha iyi sağladığı görülmüştür.

[15]’de bulut veri merkezlerinde sanal makineleri fiziksel makinelere yerleştirmeyi

yöneten TOPSIS (Technique For Order Preference Similarity To Ideal Solution) tabanlı

çok amaçlı optimizasyon yaklaşımı sunulmuştur. TOPSIS, farklı amaçlar (objectiveler)

arasındaki çakışmayı dengelemek için kullanılan, çok kriterli karar verme tekniklerinden

bir tanesidir. Önerilen çalışmada hangi sanal makinelerin nereye, ne zaman

yerleştirileceğine karar vermek çözülmek istenen problemdir. Toplam kaynak tüketimini

ve güç tüketimini azaltmak ve sunulan hizmet kalitesini artırmak hedeflenmiştir. CloudSim

ortamında yapılan benzetimlerle önerilen Multiobjective Optimization Approach Based on

TOPSIS (MOA-T), üç adet tek amaçlı optimizasyon - Single Objective Optimization

Approaches (SOA) ile ve bir adet çok amaçlı optimizasyon algoritmasıyla

karşılaştırılmıştır. Bahsedilen tek amaçlı optimizasyonlar MOA-T’nin ağırlıkları

değiştirilerek oluşturulmuştur ve SOA-S, SOA-R, SOA-P isimleri verilmiştir; karşılaştırma

yapılan çok amaçlı optimizasyon ise Multi-Objective Optimization Approach Based on

Simple Additive (MOA-S) Algoritmasıdır. Sonuçta hizmet düzeyi anlaşması konusunda

MOA-T’nin SOA-P ve SOA-R’den daha iyi olduğu, kaynak yükü ve güç tüketimi

konusunda SOA-S, SOA-P ve MOA-S’den daha iyi olduğu ve makine taşınması

konusunda diğer hepsinden daha iyi olduğu görülmüştür.

[16]’da kaynak kullanımı ve makine taşıma zamanları kriterleri göz önüne alınarak makine

yerleştirmesi problemini çözmeyi amaçlayan Improved Multiobjective Particle Swarm

Optimization (IMOPSO) algoritması sunulmuştur. İki adet benzetim çalışması yapılmıştır.

Birinci çalışmada IMOPSO, Quantum Particle Swarm Optimization (QPSO) ve Particle

Swarm Optimization (PSO) ile ikinci çalışmada ise NSGA-II ile karşılaştırma yapılmıştr.

Birinci çalışma sonucunda IMPOSO’nun uygulanabilir ve verimli olduğu görülmüştür.

Diğer karşılaştırmada ise IMOPSO’nun popüslasyon çeşililiğinde daha iyi olduğu ve hızlı

bir şekilde pareto fronta yakınsadığı görülmüştür.

7

[17]’de “An Improved Evolutionary Multiobjective Optimization Algorithm” (NS-GGA)

isimli bir algoritma tasarlanmıştır. Bu algoritmada NSGA-II’nin baskılanamayan sıralama

özelliği ve Grouping Genetik Algoritma’nın (GGA) genetik operatörleri kullanılmıştır.

Hedeflenen amaçlar aktif fiziksel makine sayısının azaltılması, iletişim trafiğinin

azaltılması ve çok boyutlu kaynak kullanımının dengelenmesidir. GGA, BA, Cluster and

Cut ve Greedy yöntemleri ile karşılaştırılmıştır. Sonuçta NS-GGA isimli algoritmanın

diğer yöntemlerden daha başarılı olduğu görülmüştür.

[18]’de yeni bir algoritma önerilmemiş, varolan GA, NSGA ve NSGA-II algoritmaları

karşılaştırılmıştır. Karşılaştırılan algoritmalardaki ortak amaç açık fiziksel makinelerin

ortalama kaynak tüketimini artırmak ve yük dengelemeyi çoğaltmak, kaynak israfını en aza

indirgemektir. C++ kütüphanesi olan, genetik algoritma parçalarını içeren GALib

kütüphanesi kullanmışlardır. Sonuçta NSGA-II’nin diğer iki algoritmadan daha başarılı

olduğu görülmüştür.

[19]’da “Multiobjective Biogeography Based Optimization For Virtual Machine

Placement” (VMPMBBO) isimli bir algoritma önerilmiştir. Güç tüketimi, kaynak israfı,

sunucu düzensizliği, sanal makineler arası trafik ve sanal makine taşıma zamanını en aza

indirgemek hedeflenmiştir. VMPMBBO algoritması, MGGA ve VMPASC

algoritmalarıyla karşılaştırılmıştır. Sonuçta VMPMBBO algoritmasının daha iyi yakınsama

özelliğinin olduğu, hesaplama olarak daha verimli olduğu ve daha güçlü olduğu

görülmüştür.

[20]’de “Multiobjective optimization with stabilization” (MOS) isimli bir algoritma

önerilmiştir. Sanal makine taşınması, toplam taşınma süresi, toplam güç tüketimi, toplam

ısıl ihlal süresi, toplam kaynak kullanım ihlal süresini azaltmak hedeflenmiştir. Testler

yapılırken IBMBladeCenter’dan yararlanılmıştır. Sonuçta gereksiz sanal makine

taşınmasının %80 oranına kadar azaldığı; dengesiz fiziksel makine seçiminden kaçınıldığı;

uygulama performansının %30’a kadar yükseldiği ve kaynak kullanım verimliliğinin de

%20’ye kadar yükseldiği görülmüştür.

[21] “Bulut Bilişimde Sanal Makine Yerleştirme Projelerine Genel Bakış” isimli, bulut

bilişim ve veri merkezleri için literatürde sunulan sanal makine yerleştirme projelerinin

analiz edildiği araştırma makalesidir. Çalışmalar yerleştirme yapılırken kullanılan

8

algoritmaya göre sınıflandırılmıştır. Makalede etkili yerleştirme algoritmalarının gereksiz

makinelerin kapatılmasını sağlayarak enerji tüketiminin azaltılabileceğinden

bahsedilmiştir. Literatürde taranan çalışmalarda çoğu projede bulut bilişimde performans

ve enerjiyle alakalı konularda iyileştirme yapmanın hedeflendiği; güvenlikle ilgili

konuların ihmal edildiği görülmüştür. Günümüzde “VM Escape Attacks, VM Sprawling

Attacks, Cloud-Internal Denial Of Service Attacks (CIDos), VM Neighbor Attacks” gibi

saldırılar sistemi sanal makine göçlerine zorlayarak sisteme yük getirmektedir. Bunun da

bulut bilişimin gelecekteki bilgi sistemlerinde kritik rol oynamasına engel olabileceği

belirtilmiştir.

[22]’de sanal makine yerleştirme probleminde kullanılan “Grouping Genetic Algorithm”in

çoğu durumda verimli çalışmadığı belirtilmiştir ve bu algoritmayı iyileştirmek

amaçlanmıştır. “Vector packing” problemi kullanılarak sanal makine yerleştirme problemi

modellenmiştir ve kullanılan makine sayısı azaltılarak enerji tüketimi azaltılmak

istenmiştir. Ayrıca kaynak kullanım verimliliği de artırılmaya çalışılmıştır. Improved

Grouping Genetic Algorithm (IGGA) kodlama ve çarprazlama metodu sunulmuştur.

Yapılan testler sonucunda ortalama enerji tüketimi ve kaynak kullanım verimliliği

konularında IGGA, FFD ve Hybrid Grouping Genetic Algorithm (HGGA)’ya göre daha iyi

sonuçlar elde edilmiştir.

[5]’de eş zamanlı olarak enerji kullanımını azaltmak, çok boyutlu kaynak kullanımını

dengelemek ve veri merkezindeki iletişim trafiğini azaltmayı amaçlayan sanal makine

yerleştirme modeli sunulmuştur. Problemi çözmek için yerel sezgisel metot ve seçicilik

(elitism) stratejisi ile iyileştirilmiş genetik algoritma geliştirilmiştir. Benzetim sonuçlarına

göre sunulan model ve algoritma GREEDY, Genetik Algoritma (Genetic Algorithm - GA),

Arı Algoritması (Bees Algorithm - BA) ve CLUSTER ile karşılaştırıldığında kaynak

kullanımının arttığı çok boyutlu kaynak kullanımının dengelendiği ve iletişim trafiğinin

azaldığı görülmüştür. Yazarlar önerdikleri metodun çözüm hızını artırdığını fakat bunun

sanal makine üretim aşamasında tüketildiğini belirtmişlerdir ve bu yüzden de ilerde sanal

makine üretme ve yeniden yapılandırma sistemi tasarlamayı planlamışlardır.

[23]’de aile geni (family gene) yaklaşımını kullanan sanal makine yerleştirmesi için yeni

bir teknik sunulmuştur. Sunulan yöntemde genetik algoritmanın erken yakınsama

(prematüre convergence) ve yüksek işlem zamanı gibi sorunların üstesinden gelmek

9

hedeflenmiştir. Cloudsim’de yapılan benzetim çalışmasında enerji tüketiminin azaldığı

gözlemlenmiştir. Ayrıca host başına düşen hizmet seviyesi anlaşması ihlali (SLAV)

zamanı artarken sanal makine göçünün azaldığı görülmüştür.

Çizelge 2.1. Literatürdeki yöntemlerin karşılaştırmalı özet tablosu

Makale Yöntem Amaçlar

[11] VMPACS, MGGA, SACO, FFD
Toplam kaynak israfını azaltmak, enerji

tüketimini azaltmak

[12] MACO, MGA, DVFS, FFD, LR

Toplam kaynak israfını azaltmak, enerji

tüketimini azaltmak, ağ elemanları arasındaki

enerji tüketim maliyeti

[13]

Cloud Adopted Feedback Algorithm,

Optimal Case Algorithm, Historical

Statistical A., Genetic Algorithm

İş tamamlama süresini azaltmak, maliyeti

azaltmak

[14] MGGA, FFD, BFD, SGGA
Toplam kaynak israfını azaltmak, enerji

tüketimini azaltmak ısı kaybını azaltmak

[15]
MOA-T, SOA-S, SOA-R, SOA-P,

MOA-S

Toplam kaynak gerilimini azaltmak, enerji

tüketimini azaltmak, hizmet kalitesini artırmak

[16] IMOPSO, NSGA-II, QPSO, PSO
Kaynak kullanımını artırmak, Taşınma

zamanlarını azaltmak

[17] NS-GGA, NSGA-II ve GGA

Aktif PM sayısını azaltmak, iletişim trafiğini

azaltmak, çok boyutlu kaynak kullanımını

dengelemek

[18] GA, NSGA, NSGAII
Ortalama kaynak kullanımını artırmak, yük

dengelemeyi artırmak, kaynak israfını azaltmak

[19] VMPMBBO, VMPACS, MGGA

Kaynak israfını azaltmak, enerji tüketimini

azaltmak, sunucular arasındaki yük dengesini

sağlamak, VM’ler arası ağ trafiğini azaltmak,

depolama diski trafiğini azaltmak, VM taşınma

maliyetini azaltmak

[20] MOS, MONS, SOC, SOI, SOF

VM taşınmasını azaltmak, toplam taşınma

zamanını azaltmak, enerji tüketimini azaltmak,

toplam ısı ihlal süresini azaltmak, toplam kaynak

kullanım ihlali süresini azaltmak

[21] Araştırma Makalesi
Enerji tüketimini azaltmak, kaynak kullanımı

verimini artırmak

[22] IGGA, FFD, HGGA
Enerji tüketimini azaltmak, kaynak kullanımı

verim

[5] Greedy, GA, BA, CLUSTER
Enerji tüketimini azaltmak, çok boyutlu kaynak

kullanımı dengelemek

[23] FGA, THR, LR, LRR, IQR, MAD
Fiziksel kaynak kullanımını (CPU, RAM, BW)

artırmak

[Bu tez

çalışması]
NSGA-II, SPEA2, ϵ -MOEA, PAES

Aktif PM başına düşen ortalama CPU kullanımını

artırmak, enerji tüketimini azaltmak

10

11

3. KULLANILAN YÖNTEMLER VE METODOLOJİ

Bu bölümde tez çalışmasında kullanılan teknolojiler olan bulut bilişim, bulut bilişimin

vazgeçilmez parçası olan sanallaştırma teknolojisi, sanal makine yerleştirme probleminin

çözümünde kullanılan çok amaçlı evrimsel optimizasyon algoritmaları (Multiobjective

Optimization Evaluation Algorithms - MOEA) ve bu algoritmalardan NSGA-II, SPEA2,

PAES ve ϵ-MOEA açıklanmıştır. Çalışma yapılırken veri merkezinin oluşturulduğu

benzetim ortamı olan CloudSim yazılımı ve yukarıda bahsedilen algoritmaların

çalıştırılması için kullanılan MOEA Framework aracı da anlatılmaktadır.

3.1. Bulut Bilişim

Bulut bilişim ağ, sunucu, depolama, uygulama ve servis gibi bilişim kaynaklarından oluşan

bir havuza her zaman, her yerden, talep halinde ağ üzerinden erişim sağlayan bir modeldir

[52]. Bulut ortamı, veri merkezinin donanımı ve yazılımından oluşmaktadır. Bulut

ortamları özel ve genel olmak üzere kullanıcılarına göre ikiye ayrılmaktadır. Özel bulut

ortamı, kurum ve kuruluşların kendilerinin oluşturduğu ve sadece kendi içinde kullandığı

ortama denilmektedir. Genel bulut ise kaynaklarını herkesin ödediği bedel karşılığında

kullanabildiği ortamdır [53]. Bulut bilişim dağıtım modellerine göre gruplandığında Şekil

3.1’de görüldüğü gibi SaaS, PaaS, IaaS olmak üzere üçe ayrılmaktadır[51]. IaaS’de

bilgisayar donanım alt yapısı kullanıcının hizmetine sunulmaktadır. PaaS’de yazılım

kullanıcıya lisanslanır ve kullanıcı istediği zaman o yazılımı kullanma hakkına sahip

olmaktadır. Veri tabanı yönetim yazılımı, uygulama geliştirme ortamı buna bir örnek

olarak verilebilir. SaaS ise web uygulalarının kişilerin kullanımına sunulmasıdır. Google’ın

eposta hizmeti buna örnek olarak verilebilir.

12

Şekil 3.1. Bulut bilişimin dağıtım modellerine göre katmanları

Kuruluşların gün geçtikçe bilişim sistemlerine bağlılığı artmaktadır. Bulut ortamlarının

kurulumu ve yönetilmesi de insan kaynağı ve yüksek maliyet gerektirmektedir. Bilişim

hizmetlerinden yararlanmak isteyen kişi veya kuruluşlar bulut bilişimden yararlanarak

altyapı kurulumu, yeni personel eğitimi ve yazılım lisansı alma gibi yönetimsel ve mali

zorluklardan kurtulabilmektedirler [55]. Örneğin bulut bilişim sayesinde yenilikçi bir

internet hizmeti fikri fiziksel kaynak satın alınmadan bulut üzerine kurularak insanların

kullanımına sunulabilmektedir [54]. Bulut bilişim hızlı, esnek, düşük maliyet gibi

avantajlar sağlamaktadır fakat güvenilirliği çok yüksek değildir. Birçok kullanıcının

verilerinin aynı yerde bulunması bir risktir. Bunun dışında kullanıcı verileri bulut bilişim

sağlayıcılarının denetimine bırakıldığından veriler de risk altında bulunmaktadır.

3.2. Sanallaştırma

Geleneksel yöntemlerde uygulamalar fiziksel makineler üzerine kurulmaktadır ve bu da

enerji israfı, yer israfı, düşük kaynak kullanımı ve önemli yönetim giderleri

gerektirmektedir. Bunlar da maliyeti artırmaktadır. Günümüzde kullanılan sanallaştırma

teknolojisi ise daha esnek, güvenli ve isteğe bağlı olarak gerektiğinde tahsis edilerek

kaynak ayrımında esneklik sağlamaktadır. Sanallaştırma teknolojisinin kullanıldığı bulut

veri merkezinde hesaplama (sunucular), depolama ve ağ cihazları bulunmaktadır ve bunlar

ağ üzerinde dağıtık halde bulunabilmektedir. Fiziksel sunucular coğrafi olarak ayrılmış

olarak yani farklı veri merkezlerinde de tutulabilmektedirler. Fiziksel sunucu bilgisayar,

CPU, bellek (Random Access Memory- RAM), depolama gibi elemanlarıyla hesaplama

yetisine sahiptir [49]. Veri merkezinde bulunan diğer düğümlerin de CPU, bellek ve ağ

13

bant genişliği (Bandwitdh - bw) gibi özellikleri vardır. Veri merkezi bünyesinde

barındırdığı çok sayıda fiziksel sunucuyu yönetmektedir ve bu fiziksel sunuculara

yerleştirme politikasına göre bir veya birden fazla sanal makine atanabilmektedir. Bulut

veri merkezlerinin yönetiminde kaynak planlaması işinin önemli bir rolü bulunmaktadır.

Bu kaynak planlaması yapılırken amaca göre karar verilmektedir. Örneğin yük dengeleme

ve enerji tasarrufu farklı yerleştirme politikaları gerektirebilmektedir. Sanal makinelerin

yerleştirme, taşınma işlemlerine karar vermek zorlayıcı planlama problemlerindendir.

Sanallaştırma teknolojisinin mimari yapısı Şekil 3.2’de görülmektedir. Sanal makineler,

üzerinde bulunduğu fiziksel makinenin kaynaklarını kullanmaktadır [26]. En popüler

sanallaştırma yazılımları VMware [63], Microsoft [64] ve Citrix [65] tarafından üretilen

yazılımlardır. Sanallaştırma enerji tasarrufu, maliyet azaltma sağlamaktadır. Sanallaştırma

katmanı hipervisor olarak da bilinmektedir. Sanallaştırma katmanı sanal makinelere

işlemci, bellek ve ağ bant genişliği sağlamaktadır [26].

Sanal Makine

Uygulama

Sanal Makine

Uygulama

Sanal Makine

Uygulama

SANALLAŞTIRMA KATMANI

DONANIM

İŞLEMCİ, BELLEK, BANT GENİŞLİĞİ,
DEPOLAMA ALANI

Şekil 3.2. Sanallaştırma teknolojisinin mimari yapısı [26]

Sanallaştırma teknolojisinin sağladığı sanal makinelerin dinamik yerleştirilmesi kaynakları

etkili kullanmayı ve enerji tüketimini azaltmayı sağlamaktadır. Atıl durumdaki sunucular

14

üzerlerindeki sanal makineler alınarak pasif duruma (düşük enerji modu veya uyku modu)

geçirilerek enerji tüketimi azaltılabilmektedir. Sanallaştırma teknolojisinin sağladığı bir

imkân olan canlı taşıma, sanal makinelerin hizmet kesintisi olmadan bir fiziksel sunucudan

başka bir fiziksel sunucuya taşınmasıdır. Eğer bir uygulamanın kaynak gereksinimleri

(işlemci, bellek vb.) karşılanamazsa uygulamanın cevap zamanı gecikme hatası veya

hizmet kesintisi gibi sorunlarla karşılaşılabilmektedir. Bu yüzden bulut sağlayıcılar enerji

tüketimini azaltırken performansın düşmemesi için performans enerji arasında denge

kurmalıdırlar [29].

Şekil 3.3. Sanallaştırma ortamındaki fiziksel ve sanal makineler

3.3. Çok Amaçlı Optimizasyon

Optimizasyon, bütün mühendislik alanlarında kaşılaşılan matematiksel problemlere

getirilen bir çözüm yöntemi olup bir veya birden fazla amacın sınır değerleri arasında

kalan uygulanabilir çözümleri bulmaktır [34,56]. Birden fazla amaç fonksiyonunu sistemli

ve eşzamanlı olarak optimize etme işine çok amaçlı optimizasyon veya vektör

optimizasyonu denilmektedir [57]. Çok amaçlı algoritmalar üç gruba ayrılmaktadır.

NSGAII [30], SPEA2 [45] pareto tabanlı, IBEA [46], SMS-MOEA [41] gösterge tabanlı

15

ve MOEA/D [42], MOEA/D-IR [43] dekompozisyon tabanlı çok amaçlı optimizasyon

algoritmalarıdır [44]. Çoğu çok amaçlı optimizasyon algoritması çoğul amaçları tek amaca

çevirmeye çalışmaktadır. Tek amaçlı ve çoğul amaçlı optimizasyon arasında temel

farklılıklar bulunmaktadır. Tek amaçlı optimizasyonda bir tek optimum çözüm sunulurken;

çok amaçlı optimizasyonda birden fazla optimum çözüm sunulmaktadır [50]. Tek amaçlı

optimizasyonda tek bir kritere odaklanılmaktadır ve diğer kriterlere hiçbir şekilde

bakılmamaktadır. Örneğin bir alıcı bir ev alırken fiyata göre karar verirse gidip en ucuzunu

alabilmektedir, bu durumda aldığı ev şehir merkezinden çok uzakta olacaktır. Eğer ev

seçerken kriterlerine hem şehir merkezine yakınlığı hem de fiyatını katarsa biraz

maliyetten biraz da şehir merkezine yakınlığından ödün verebilmektedir.

Çok amaçlı optimizasyonda birden fazla en iyi çözüm olmasının sebebi amaçların

birbiriyle çakışmasıdır [34]. Çok amaçlı optimizasyonlar çözüm olarak farklı avantaj ve

dezavantajları olan birden fazla seçenek sunmaktadır. Bu çözüm seçeneklerinden oluşan

kümeye Pareto Optimal Küme (Pareto Optimal Set - POS) denilmektedir. Bu çözümlerin

grafik üzerinde birleştirilmesiyle oluşan, Şekil 3.4’de görülen eğriye ise Pareto Optimal

Front (POF) denilmektedir [30].

H
a

ta

Maliyet
Düşük hata yüksek

maliyet

Yüksek hata düşük

maliyet

Şekil 3.4. Pareto Optimal Front eğrisi [28]

16

Çok amaçlı optimizasyonda amaçlar arasında ödünleşim bulunmaktadır (bknz. Şekil 3.4).

Çizgili alanda kalan çözümler farazi probleme aday çözümlerdir. Sol üst alan aday

çözümlerden düşük maliyetli ve yüksek hatalı olanları göstermektedir. Tek bir en iyi

çözüm olmadığından hedefler arasında değişen miktarda ödünleşim olan çok sayıda

potansiyel çözüm bulunmaktadır. Karar vericiler bu potansiyel çözüm kümesinden keşif

yapmak ve uygulanacak olan çözüm veya çözümleri seçmekle sorumludur. Optimizasyon

araçları bu karar verme sürecinde yardımcı olabilmektedir. Örneğin sonuçları azaltmakta

fayda sağlayabilmektedir. Maliyet çok yükseldiğinde hatada sıra dışı bir azalma olması

beklenmektedir. Bu türden bir analiz yapabilmek için soncul optimizasyon olarak bilinen

numaralandırma ve ödünleşim tahmini yapılmaktadır [28].

Çok amaçlı optimizasyon sonucunda sunulan çözümlerden hangisinin seçileceği kişinin

insiyatifindedir. Örneğin ev örneğinde ortaya çıkan en iyi çözümlerden maliyeti en düşük

olan ya da şehir merkezine en yakın olan seçilebilmektedir. Bunun dışında her bir kritere

bir ağırlık değeri verilerek tek amaçlı optimizasyona çevrilebilmektedir.

Çok amaçlı optimizasyon yönteminde eşzamanlı olarak birden fazla amaç optimize

edilmeye çalışıldığından ve amaçlar birbiriyle çeliştiğinden problem zorlaşmaktadır. Bu tür

problemlerin tamamında birden fazla amaç fonksiyonu bulunmaktadır ve bazılarında

kısıtlar da bulunmaktadır. Şekil 3.5’de görüldüğü gibi birinci adımda çok amaçlı

optimizasyon problemleri çözümünde elde edilen POS elemanlarından birisi ikinci adımda

tercih edilmelidir.

17

İdeal çok amaçlı
iyileştirici(optimizer)

Üst düzey bilgi
Çözümlerden

birisinin
seçilmesi

Çok amaçlı optimizasyon
problemi

F1'i küçült
F2'yi küçült
F3'ü küçült

……..
Fx’i küçült

Kısıtlamalara tabi

Birinci Adım

İkinci Adım

Birinci amaç

İk
in

ci
 a

m
a

ç

Şekil 3.5. Çok amaçlı optimizasyon adımları [34]

3.3.1. Evrimsel çok amaçlı optimizasyon

Evrimsel çok amaçlı optimizasyon son yıllarda uygulama ve araştırma alanında popüler ve

kullanışlı olmaktadır. Evrimsel optimizasyon algoritmaları popülasyon tabanlı yaklaşım

içermektedir. Popülasyon, her bir döngüye katılan birden fazla çözüme denilmektedir.

Herbir döngüde yeni bir popülasyon oluşturulmaktadır.

Evrimsel optimizasyon algoritmalarının popüler olma sebepleri çeşitlidir. Birincisi,

evrimsel algoritmalar türetilmiş işlenmiş bilgiye gereksinim duymamaktadır. İkinci olarak

evrimsel algoritmaların göreceli olarak uygulanması kolaydır. Üçüncüsü ise evrimsel

algoritmalar esnektir ve yaygın bir uygulanabilirliğe sahiptir.

Evrimsel optimizasyon başlangıç adımından sonra sonlandırma şartı sağlanıncaya kadar şu

adımları tekrarlayarak eldeki popülasyonu sürekli güncellemektedir:

1) Seçme (Selection)

2) Çarprazlama (Crossover)

3) Mutasyon (Mutation)

18

4) Seçkinleri Koruma (Elite preservation)

Başlangıç prosedürü genellikle rastgele çözümler oluşturulmasıyla başlar. Başlangıç

popülasyonu rasgele çözümler üretilerek oluşturulabilmektedir fakat başlangıç

popülasyonunda iyi özellikli çözümler olması tavsiye edilir. Bu, sonuca daha hızlı

ulaşılmasını sağlamaktadır. Popülasyon üyelerinin uygunluk değerleri ölçüldükten sonra

seçme operatörü vasıtasıyla seçilen bireyler ara eşleme havuzuna atılmaktadır.

Varyasyon operatörü birden fazla sayıdaki operatörün (örn. Çarprazlama, mutasyon)

toplamıdır. Bunlar değiştirilmiş popülasyon oluşturmak için kullanılır. Çarprazlama

operatörünün amacı eşleme ara havuzundan iki veya daha fazla ebeveyn seçmek ve

ebeveynler arasında bilgi alışverişi yaparak bir veya birden fazla çözüm üretmektir.

Ebeveyn bireylerin çarprazlamaya ne kadar katılacağını belirlemek için çaprazlama

olasılığı kullanılmaktadır (𝑃𝑐Є [0,1]). Bireylerin kalan parçası (1-𝑃𝑐) çocuk bireylere

kopyalanmaktadır.

Mutasyon operatörü çeşitliliği sağlamak amacıyla bazı çözümleri değiştirmektedir.

Mustasyon rasgele değişikliklere dayanmaktadır. Mutasyon operatörünün değiştirme

gücüne mutasyon oranı denilmektedir. Herbir çözümün değiştirilme olasılığı 𝑃𝑚’dir. 𝑛

değişken sayısı olmak üzere genellikle 𝑃𝑚 =
1

𝑛
 eşitliği ile hesaplanmaktadır. Böylece

genellikle sadece bir değişken değiştirilmektedir. Bu operatör sayesinde mevcut

çözümlerden çok uzaklaşılmamakla birlikte birbirinden farklı çözümler üretilmektedir.

Elitizm operatörü mevcut ve yeni popülasyonlarda bulunan çözümler arasından iyi

olanların seçilmesini sağlamaktadır. Bu operatör de performansın düşmemesine katkıda

bulunur.

Evrimsel optimizasyonu sonlandırmak için sonlandırma kriteri belirlenmelidir. Genellikle

daha önceden belirlenen sayıda nesil (generation) üretildiğinde ya da belirlenen hedefe

ulaşıldığında optimizasyon sonlandırılmaktadır.

Çok amaçlı optimizasyon probleminde en aza indirgenmesi veya en büyük değere

çıkarılması gereken birden fazla amaç fonksiyonu bulunmaktadır. Çok amaçlı

optimizasyonun matematiksel eşitliği aşağıdaki gibidir:

19

𝑋 = (𝑥1, 𝑥2, 𝑥3, … . 𝑥𝑛)𝑇 (3.1)

Eş. 3.1 çözüm vektörünü ifade etmektedir.

Minimize/maksimize 𝑓𝑚(𝑋) 𝑚 = 1,2,3, … . . 𝑀; (3.2)

Kısıtlar

𝑔𝑗(𝑋) ≥ 0 𝑗 = 1,2,3, … . . 𝐽; (3.3)

ℎ𝑘(𝑋) = 0 𝑘 = 1,2,3, … . . 𝐾; (3.4)

𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

 𝑖 = 1,2,3, … . . 𝑛 (3.5)

Eş. 3.1’deki 𝑋, popülasyonda bulunan bir çözümü temsil etmektedir. Her bir çözüm 𝑛 adet

karar değişkeninin (𝑋𝑛) oluşturduğu bir vektördür. Eş. 3.2 𝑀 adet amaç fonksiyonunu

ifade etmektedir. Bu fonksiyonlar minimize ya da maksimize edilebilmektedir. Eş. 3.3’deki

𝑔𝑗(𝑥) ve Eş. 3.4’deki ℎ𝑘(𝑥) kısıt fonksiyonlarıdır. Buna benzer olarak çözümün

geçerliliğini etkileyen diğer Eş. 3.5’teki değişkenlerin sınırları kısıtları ifade etmektedir.

Herbir 𝑥, 𝑥𝑖
(𝐿)

 ve 𝑥𝑖
(𝑈)

 arasında olmalıdır [34].

3.3.2. Baskılanamayan çözümler (Non-dominated Solutions)

Çok amaçlı optimizasyonda çözümlerin birbirine baskınlığı söz konusudur. İki çözüm

arasındaki baskınlık ilişkisi aşağıdaki gibi tanımlanır.

Eğer şu şartlar sağlanıyorsa “𝑥1 çözümü 𝑥2 çözümüne baskındır” denir:

1) 𝑥1 çözümü hiçbir amaç yönünden 𝑥2’den daha kötü değildir. Bu karşılaştırma

yapılırken amaç fonksiyonunun değerine veya grafikteki yerine bakılır.

2) 𝑥1 çözümü en az bir amaç bakımından 𝑥2’ye göre daha üstündür.

Popülasyonda bulunan her bir eleman diğer elemanlarla yukarda anlatıldığı şekilde

karşılaştırılmaktadır. Herhangi bir 𝑥1 elemanı 𝑥2 elemanını baskılıyorsa, bunun tersi de

doğrudur yani 𝑥2 elemanı 𝑥1’i baskılayamaz. Herhangi bir 𝑥1 elemanı 𝑥2 elemanını

20

baskılamıyorsa tersi doğru olmayabilir yani bu 𝑥2 elemanının 𝑥1 elemanını baskıladığı

anlamına gelmez.

Şekil 3.6. Baskılanamayan çözümler kullanılarak çizilen “Non-dominated front” eğrisi [34]

Çözüm kümesindeki elemanlar grafik alanında nokta ile ifade edilmektedir. Çözüm

kümesinde bulunan herbir eleman bir diğeriyle tek tek karşılaştırılmaktadır, hangi

çözümün diğerine baskın olduğu ve hangi çözümlerin birbirini baskılayamadığı

belirlenmektedir. Daha sonra öyle bir küme oluşturulur ki bu kümedeki elemanların

hiçbirisi bir diğerini baskılayamamaktadır. Bu kümeye baskılanamayan küme

denilmektedir. Bu kümede bulunan elemanlar, kümeye ait olmayan elemanları

baskılamaktadır. Baskılanamayan elemanları grafikte ifade eden noktalar kullanılarak bir

eğri çizildiğinde bu eğriye Non-Dominated Front veya Pareto Optimal Front

denilmektedir. Bu eğri Şekil 3.6’da örneklenmektedir. Kullanıcı, çözüm kümesi

bulunduktan sonra çözümlerden hangisinin seçileceği konusunda bir ikileme düşmektedir

(bknz. Şekil 3.5). Bu seçimi yapmak gerçekte teknik bilgi değil deneyim gerektiren bir

durumdur. Çok amaçlı optimizasyonda amaç sayısı çok artırıldığında örneğin 3’ten 10’a

artırıldığında %10 olan baskılanamayan eleman sayısı %90’a çıkmaktadır [34].

3.4. Kullanılan Algoritmalar

Yapılan çalışmada NSGA-II, ϵ-MOEA, PAES ve SPEA2 algoritmaları ile sanal makine

yerleştirme benzetimi gerçekleştirilerek elde edilen sonuçlar karşılaştırılmıştır. Bu

bölümde kullanılan algoritmaların açıklamaları yapılmaktadır.

21

3.4.1. NSGA-II

Kalyonmoy Deb ve arkadaşları NSGA-II [30] ismini verdikleri algoritmayı 2002 yılında

geliştirmişlerdir. NSGA-II, NSGA [35]’nın iyileştirilmiş sürümüdür [36]. Evrimsel ve

arşiv popülasyonu olmak üzere iki adet popülasyon kullanılmaktadır. Evrimsel popülasyon

𝑃𝑡 ve arşiv popülasyonu ise 𝑄𝑡 ile gösterilmektedir.

Pt

Qt

F1

F2

F3

RED

RED

Pt+1Rt

Şekil 3.7. NSGAII algoritmasının görselleştirilmesi [30]

Başlangıçta rasgele ebeveyn popülasyonu 𝑃0 oluşturulmaktadır. Daha sonra 𝑃0

popülasyonu bireylerine İkili turnuva, çarprazlama ve mutasyon operatörleri uygulanarak

𝑁 boyutundaki 𝑄0 arşiv popülasyonu oluşturulmaktadır. 𝑃0 ve 𝑄0 popülasyonları

oluşturulduktan sonra 𝑃𝑡 ve 𝑄𝑡 popülasyonları birleştirilerek 2𝑁 boyutundaki 𝑅𝑡

popülasyonu oluşturulmaktadır.

R popülasyonundaki bireyler seviye seviye oluşturulan pareto optimal kümelerine

atanmaktadır. Bu kümelere Şekil 3.4’de görüldüğü gibi 𝐹1, 𝐹2,… 𝐹𝑁 isimleri verilmektedir.

Elemanların uygunluk değerleri de kaçıncı pareto optimal kümede olduklarına göre

22

belirlenmektedir. Örneğin 𝐹1 pareto optimal kümesinde bulunan elemanların uygunluk

değerleri 1 olmaktadır. 𝐹1 pareto optimal kümesinde bulunan elemanlar en iyi

elemanlardır. Bu durumda uygunluk değeri düşük olan elemanların daha iyi olduğu kabul

edilmektedir. Daha sonra 𝑅𝑡 popülasyonu elemanları uygunluk değerlerine göre

sıralanmaktadır.

Şekil 3.7’de görüldüğü üzere eğer 𝐹1’in eleman sayısı ebeveyn popülasyonu boyutu olan

𝑁’den küçükse 𝐹1’in bütün elemanları yeni popülasyon olan 𝑃𝑡+1’e seçilmektedir. Eğer

𝑃𝑡+1’de boş kalan yerler varsa seviyelerine göre diğer kümelerin elemanlarıyla

doldurulmaktadır. Önce 𝐹2 kümesinin elemanları, sonra 𝐹3 kümesinin elemanları

seçilmektedir ve böyle devam etmektedir. Yerleştirme yapılan son pareto optimal kümesi

örneğin 𝐹3 olursa 𝐹3’ün elemanları yoğunluk karşılaştırma operatörüyle azalan bir şekilde

sıralanmaktadır. Bu sıralamadaki en iyi elemanlar kullanılarak yeni popülasyon 𝑃𝑡+1’de

boş kalan yerler doldurularak yeni popülasyon oluşturma işlemi tamamlanmaktadır. Pareto

optimal küme elemanları arasında sıralama yapılırken çözümün etrafındaki çözüm

yoğunluğuna bakılmaktadır, yoğunluğu en az olan eleman seçilmektedir. Çözümlerin

bulunduğu alanın yoğunluk değeri kalabalığa uzaklık tekniği ile bulunmaktadır. Kalabalığa

uzaklık, çözümlerin bulunduğu alanın yoğunluk değeridir. Bu yöntem sayesinde çeşitlilik

sağlanmaktadır.

İlk döngüde kullanılan 𝑄0 popülasyonu oluşturulduktan sonra diğer döngülerde kullanılan

𝑄𝑡+1 popülasyonu oluşturulurken ikili turnuva seçme yönteminin yerini yoğunluk

karşılaştırmaya dayalı yöntem almaktadır. Bu yöntem sıralama ve kalabalığa uzaklık

bilgileri kullanmaktadır. Bu bilgiler 𝑃𝑡+1 oluşturulurken zaten hesaplandığı için yeni bir

hesaplama maliyeti getirmemektedir [30].

3.4.2. ϵ-MOEA

ϵ-baskınlık kavramına [58] ve verimli ebeveyn ve arşiv güncelleme yönemlerine dayalı ϵ-

MOEA [39] isminde bir algoritma Kalyonmoy Deb ve arkadaşları tarafından sunulmuştur.

Algoritmada iki türde popülasyon bulunmaktadır. Evrimsel popülasyon 𝑃𝑡 ile, arşiv

popülasyonu ise 𝑄𝑡 ile gösterilmektedir. Burada 𝑡, döngü sayısını ifade etmektedir.

23

Başlangıçta 𝑄0 popülasyonu, 𝑃0’ın ϵ-baskılanamayan çözümleri atanarak

oluşturulmaktadır.

𝑃𝑡’den rasgele iki birey seçilerek, bu iki bireyden diğerine baskın olan eleman eşleşme için

seçilmektedir. Eğer birbirlerine baskın gelemezlerse rasgele birisi seçilmektedir. Seçilen

elemana 𝑝 denilmektedir. 𝑄𝑡 arşiv popülasyonundan da rasgele bir 𝑒 bireyi seçilmektedir.

𝑝 ve 𝑒 çarprazlanarak çocuk birey oluşturulmaktadır.

Yeni oluşturulan çocuk bireyin kabul edilip edilmeyeceğinin belirlenmesi için 𝑄𝑡 ve 𝑃𝑡

popülasyonundaki bireylerle karşılaştırılmaktadır. Çocuğun arşivdeki herbir elemanla ϵ-

dominantlık karşılaştırması yapılmaktadır. Arşivdeki herbir çözüm 𝐵 dizisiyle ifade

edilmektedir. 𝑀 amaç sayısı olmak üzere 𝐵 vektörü 𝐵 = (𝐵1, 𝐵2, … . . 𝐵𝑀)𝑇 şeklinde ifade

edilmektedir. 𝐵 dizisi Eş. 3.6’ya göre hesaplanmaktadır.

𝐵𝑗(𝑓) = {
⌊𝑓𝑗 − 𝑓𝑗

𝑚𝑖𝑛/∈𝑗⌋, 𝑓𝑗
′𝑦𝑖 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑒𝑡𝑚𝑒𝑘 𝑖ç𝑖𝑛

 ⌊𝑓𝑗 − 𝑓𝑗
𝑚𝑖𝑛/∈𝑗⌋, 𝑓𝑗

′𝑦𝑖 𝑚𝑎𝑘𝑠𝑖𝑚𝑖𝑧𝑒 𝑒𝑡𝑚𝑒𝑘 𝑖ç𝑖𝑛
 (3.6)

B tanımlama dizisi bütün amaç uzayını kutucuklara bölmektedir. Şekil 3.5’de görüldüğü

gibi her bir kutucuk amaç numarası 𝑗’ye göre değişen ϵ𝑗 boyutuna sahiptir.

Şekil 3.8. ϵ - dominantlık kavramı [39]

Arşivdeki herhangi bir eleman 𝛼 ile, çocuk eleman ise 𝑐𝑡 ile ifade edilmektedir.

1) α elemanı 𝑐𝑡’ye ϵ -baskınsa 𝑐𝑡 elenmektedir.

2) 𝑐𝑡 herhangi bir 𝛼’ya baskınsa 𝛼 silinip yerine 𝑐𝑡 koyulmaktadır.

24

3) 1. ve 2. şartların herikiside sağlanmıyorsa 𝑐𝑖 arşiv elemanı tarafından ϵ-

baskılanamayandır denilmektedir. Bu durumda

a. Aynı kutudalarsa yani aynı B vektörünü paylaşıyorlarsa klasik baskılanmazlık kontrolü

yapılmaktadır. Eğer 𝑐𝑡, 𝛼’yı baskılarsa veya 𝛼, 𝑐𝑡’yi baskılayamazsa fakat 𝐵’ye 𝛼’dan

daha yakınsa 𝛼 silinip yerine 𝑐𝑡 kabul edilmektedir.

b. Aynı kutuda değillerse 𝑐𝑡 kabul edilmektedir.

Arşivin eleman sayısı sabit değildir. “Herbir kutuda sadece 1 eleman olacaktır” kuralı

çözümlerin iyi dağıtılması ve final arşiv boyutunun pareto optimal çözümlerin toplam sayı

boyutuyla sınırlanmasını ve çeşitliliği sağlamaktadır.

Çocuğun popülasyona kabul edilip edilmeyeceğini belirlemek için çocuk eleman

popülasyondaki bütün çözümlerle karşılaştırılır. Eğer çocuk popülasyondaki bir elemanı

baskılıyorsa onun yerine geçer, eğer çocuk birden fazla çözümü baskılıyorsa onlardan

rasgele bir tanesi seçilerek onun yerine koyulur. Eğer çocuk eleman popülasyondaki

herhangi bir elemana baskılanıyorsa popülasyona kabul edilmez. Eğer bu iki durum da

sağlanmıyorsa çocuk eleman popülasyondan rasgele seçilen bir elemanla yer

değiştirilmektedir. Böylece popülasyonun boyutu sabit kalmış olmaktadır.

3.4.3. PAES

Knowles ve Corne 2000 yılında evrimsel strateji kullanan çok amaçlı evrimsel algoritma

olan PAES algoritmasını geliştirmişlerdir. PAES‘de İlk önce rasgele çözüm 𝑝0 yeni

ebeveyni seçilmektedir. Sonra bu çözüm mutasyona uğratılmaktadır. Mutasyona uğramış

ebeveyne çocuk denilmektedir ve 𝑐𝑡 ile ifade edilmektedir. Başlangıçta yapılan 𝑝𝑡 ve 𝑐𝑡

karşılaştırması 3 senaryoda gerçekleştirilmektedir. Eğer pt, ct’ye baskınsa çocuk 𝑐𝑡

elenmektedir ve yeni bir mutasyona uğramış çocuk ilerdeki süreçler için oluşturulmaktadır.

Eğer ct, pt’ye baskınsa çocuk ebeveynden daha iyidir, bu durumda 𝑐𝑡 bir sonraki nesile

ebeveyn olarak kabul edilmektedir ve kopyası arşive kaydedilmektedir. Arşiv bu şekilde

doldurulmaktadır. Arşivin boyutu PAES tarafından sürekli güncellenmektedir. pt ve ct

birbirine baskın değilse karışıklık ortaya çıkmaktadır. Bu durumda çocuk o andaki arşivle

karşılaştırılır (arşivde o ana kadar bulunan baskılanamayan çözümleri tutar). Burada 3

durum mümkündür:

25

1. Arşiv üyesi çocuğa baskındır. Çocuk, arşive alınmaz, ebeveyn 𝑝𝑡 ilerki süreçlerde

kullanmak için bir çocuk bulmak amacıyla mutasyona uğratılmaktadır.

2. Çocuk, arşivin bir üyesine baskındır, bu da çocuk, arşivin bazı üyelerinden daha iyi

demektir. Arşivin baskılanmış üyeleri silinmektedir, onların yerine çocuk kabul

edilmektedir. Çocuk bir sonraki neslin ebeveyni olmaktadır.

3. Arşivdeki hiçbir eleman çocuğu baskılayamamaktadır ve çocuk da arşivin hiçbir

elemanını baskılayamamaktadır. Bu durumda çocuk arşiv çözümlerinin ait olduğu

baskılanamayan cepheye aittir. Bu durumda, eğer boşluk varsa bir sonraki nesilde çocuk

arşive alınabilmektedir. Çocuğun bir sonraki nesil için ebeveyn olup olamayacağına

karar vermek için çevredeki çözümlerin yoğunluğuna bakılmaktadır. Çünkü 𝑝𝑡 ve 𝑐𝑡’nin

her ikisi de arşivin üyesidir. En az kalabalık bölgede bulunan birey ebeveyn olarak

seçilmektedir. Eğer arşiv tamamen dolu ise ebeveyn veya çocuğun hangisinin arşivde

kalacağını belirlerken yoğunluk tabanlı karşılaştırma uygulanmaktadır. Eğer çocuk arşiv

üyeleri amaç uzayındaki en az kalabalık alanda bulunuyorsa ebeveyn olarak kabul

edilmektedir ve bir kopyası arşive eklenmektedir. Kalabalık, bütün arama uzayı 𝑑𝑛 alt

alana bölünerek ve alt alanları dinamik olarak güncellenerek düzenlenebilmektedir.

Burada 𝑑 derinlik parametresi, 𝑛 karar değişkenlerinin sayısıdır.

Her bir 𝑡 jenerasyonunda (her bir döngüde) 𝑝𝑡 ve 𝑐𝑡’ye ek olarak PAES o ana kadar

bulunan en iyi çözümlerin tutulduğu arşivi de iyileştirmektedir. Başlangıçta bu arşiv boş

olmaktadır, nesil ilerledikçe iyi çözümler arşive eklenmektedir ve güncellenmektedir [30].

3.4.4. SPEA2

SPEA2 algoritması Eckart Zitzler ve arkadaşları tarafından 2001 yılında sunulmuştur.

SPEA2 algoritmasında 𝑁, popülasyondaki birey sayısını; 𝑁̅ arşiv popülasyonundaki birey

sayısını; 𝑇 döngünün kaç defa tekrarlanacağını ve 𝐴 baskılanamayan kümenin eleman

sayısını belirtmektedir.

Evrimsel 𝑃𝑡 ve arşiv popülasyonu 𝑄𝑡 olmak üzere iki adet popülasyonu bulunmaktadır.

Başlangıçta arşiv popülasyonu boştur. 𝑃𝑡 ve 𝑄𝑡’deki herbir 𝑖 bireyine güç değeri atanır.

𝑆(𝑖) değeri Eş. 3.7’de olduğu gibi 𝑖 bireyinin baskıladığı çözümlerin sayısını

göstermektedir.

26

𝑆(𝑖) = |{𝑗 | 𝑗 ∈ 𝑃𝑡 + 𝑄𝑡 ⋀ 𝑖 ≻ 𝑗}| (3.7)

Eş. 3.7’de |. | simgesi eleman sayısını, + simgesi birleştirmeyi, ≻ simgesi pareto baskınlık

ilişkisi’ni ifade eder. Hesaplanan güç değeri uygunluk değeri hesaplarında kullanılmak

üzere ham uygunluk değeri hesaplanırken kullanılmaktadır.

𝑅(𝑖) = ∑ 𝑆(𝑗)𝑗∈𝑃𝑡+𝑄𝑡 ,𝑗≻𝑖 (3.8)

Eş. 3.8’de görülen 𝑅(𝑖) fonksiyonu i bireyinin ham uygunluk değeridir ve 𝑖 bireyini

baskılayan bireylerin her birinin baskıladığı eleman sayıları toplamı ile hesaplanmaktadır.

Burada 𝑖’yi baskılayan elemanların ne kadar güçlü olduğu bulunmaya çalışılmaktadır.

Diğer bir ifadeyle ham uygunluk, arşiv ve popülasyondaki 𝑖 bireyini baskılayan

elemanların güç değerlerinin toplamıdır. Burada uygunluk değerinin az olması daha

makbuldür. Örneğin baskılanamayan elemanların ham uygunluk değeri 𝑅(𝑖) = 0'dır. 𝑅(𝑖)

değerinin yüksek olması 𝑖 bireyinin birçok birey tarafından baskılandığını gösterir. Ham

uygunluk değeri belirleme işi bireylerin çoğu birbirine baskın değilse başarısız

olabilmektedir. Bundan dolayı aynı ham uygunluk değerine sahip bireyleri ayırt edebilmek

için yoğunluk bilgisiyle birleştirilmektedir. SPEA2’de en yakın 𝑘. komşu metodunun

uyarlaması olan yoğunluk tahmin tekniği kullanılmaktadır, 𝑘. en yakın komşuya olan

uzaklığın bir fonksiyonu kullanılmaktadır. Yoğunluk tahmini olarak 𝑘. en yakın komşuya

olan uzaklığın tersi alınmaktadır. Daha açık bir ifadeyle her bir 𝑖 bireyinin arşiv ve

popülasyondaki her bir 𝑗 bireyine uzaklığı hesaplanıp bir listede tutulmaktadır. Liste artan

sırada sıralanırsa 𝑘. eleman aranan mesafeyi vermektedir. Bu mesafe değeri 𝜎𝑖
𝑘 ile ifade

edilmektedir. Ortak bir ayar olarak 𝑘 = √𝑁 + 𝑁̅ eşitliğiyle hesaplanmaktadır. Daha sonra

𝑖’ye bağlı yoğunluk değeri hesabı Eş. 3.9’da gösterilmektedir.

𝐷(𝑖) =
1

𝜎𝑖
𝑘+2

 (3.9)

Eş. 3.9’da paydada 2 olmasının sebebi paydanın 0’dan büyük olmasını ve 𝐷(𝑖) < 1

sağlamaktır. En son Eş. 3.10’da 𝐷(𝑖)’ye 𝑅(𝑖) eklenerek uygunluk değeri 𝐹(𝑖)

hesaplanmaktadır.

𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖) (3.10)

27

Uygunluk değerlerine göre yeni arşiv popülasyonu oluşturulur. 𝑃𝑡 ve 𝑄𝑡’deki bütün

baskılanamayan bireyler 𝑄𝑡+1 arşiv popülasyonuna kopyalanmaktadır. Eğer 𝑄𝑡+1 boyutu 𝑁̅

sabit değerini aşıyorsa, arşiv kesme yöntemiyle bazı elemanlar elenmektedir. Arşiv boyutu

𝑁̅ olana kadar döngü içinde, 𝑘. komuşsuna uzaklığı en düşük olan eleman elenmektedir.

Eğer 𝑄𝑡+1 boyutu 𝑁̅ sabit değerinden düşük ise bir önceki arşiv ve popülasyondaki

baskılanan bireylerden en iyilerle doldurulmaktadır. Değerin düşük olması makbul

olduğundan 𝑃𝑡 ve 𝑄𝑡’nin elemanları uygunluk değerine göre küçükten büyüğe doğru

sıralanıp 𝐹(𝑖) ≥ 1 olanlardan en üsttekilerle doldurulmaktadır.

İkili turnuva yöntemi ile seçim yapıldıktan sonra çarprazlama ve mutasyon teknikleri

kullanılarak yeni bireyler ile yeni popülasyon oluşturulmaktadır [45].

Şekil 3.9. Arşivin boyutunu azaltma yöntemi [45]

3.5. MOEA Framework

MOEA Framework [66], çok amaçlı evrimsel algoritmalar ve diğer genel amaçlı

optimizasyon algoritmalarını geliştirmek ve deneyimlemek için açık kaynak kodlu ve

ücretsiz Java kütüphanesidir. MOEA Framework 24 adet çok amaçlı optmimizasyon

algoritmasını desteklemektedir. Örnek olarak NSGA-II, ϵ-MOEA, e-NSGA-II, PAES,

PESA2, SPEA2, IBEA, SMS-EMOA, GDE3, SMPSO, OMOPSO, SMA-ES ve MOEA/D

algoritmaları sayılabilir [28].

MOEA Framework’de üç adet ana sınıf bulunmaktadır. Bunlar Executer, Instrumenter ve

Analyzer sınıflarıdır. Executer sınıfı algoritmaları çalıştırırken kullanılır ve üç adet

28

parametre alır. Bu parametrelerden birincisi problem, ikincisi problemi çözmek için

kullanılan algoritma, üçüncüsü ise iterasyon sayısıdır. Instrumenter, executer ile

executer’ın verisini toplamak için el ele çalışmaktadır. Executer algortirmayı ayarlamak ve

çalıştırmaktan sorumludur aynı zamanda algoritma çalışırken instrumenterın gerekli veriyi

kaydetmesine de izin vermektedir. Executer’ın çalıştırdığı algoritmaların dokümantasyonu

instrumenter tarafından yapılmaktadır. Analyzer sınıfı ise çalışma bitiminin analizini

sağlamaktadır. Bu analiz, pareto yaklaşım kümesine odaklanmaktadır ve bilinen bir

referans kümesi ile karşılaştırmaktadır. Analyzer algoritmaların bulduğu sonuçları veya bir

algoritmanın farklı parametrelerle bulduğu sonuçları karşılaştırmaktadır [28].

MOEA Framework’deki problemler problem ara yüzünü uygulamaktadır. Problem ara

yüzü problemi özelleştirmek için metotları tanımlamaktadır. Yeni problem oluşturulurken

Problem sınıfının uygulanması zorunlu değildir, istenirse AbstractProblem sınıfı

genişletilerek yeni problem sınıfı oluşturulabilmektedir. Problem sınıfı oluşturulurken,

solution sınıfının da oluşturulması gerekmektedir. Bu sınıfa parametre olarak karar

değişkenlerinin sayısı ve amaçlar verilmektedir. Bunun dışında sınıfta Evaluate metodu

vardır ve parametre olarak solution sınıfını almaktadır. Burada karar değişkenleri bir diziye

atanabilmektedir. Sonra karar değişkeni sayısınca döngü içerisinde fonksiyon sonuçları

hesaplanmaktadır. Bu değerler de çözüm sınıfına amaç olarak atanmaktadır. Encodingutils

sınıfı çözüm içinden karar değişkenleri çıkarılırken kullanılmaktadır. Sonra bu karar

değişkenleri problemi değerlendirmek için kullanılmaktadır. Bu aşamalardan sonra

problem tanımlanmış olmaktadır ve MOEA tarafından kullanılabilir hale gelmektedir [28].

3.6. CloudSim

Gerçek ortamda sanal makine yerleştirme problemine çözüm araştırmak oldukça zorlu bir

süreçtir. Ağ durumlarını tahmin etmek veya kontrol etmek neredeyse imkânsızdır. Ayrıca

bir veri merkezi kurmak ya da test için kullanmak çok büyük maliyet gerektirmektedir. Bu

tür araştırmaları yapmak için benzetim ortamınları daha elverişlidir. Benzetim

uygulamaları; kaynak miktarı, veri merkezi, kullanıcıların sayısı ve kullanıcı bilgilerini de

içeren iş yükü hakkında bilgi vermektedir. Benzetimler, planlanan çözümlerin gerçek

sisteme uygulamadan önce test edilmesini sağlamaktadır. Gerçek ortamlara göre çok daha

hızlıdır. Örneğin gerçek ortamda bir yıl sürecek bir süreci benzetim araçları birkaç

dakikada tamamlayabilmektedir [27].

29

Bulut bilişimde kaynak kullanımını iyileştirmek, yük dengelemek, enerji tüketimini

azaltmak, maliyetleri düşürmek araştırmacıların hedefleri arasındadır. Açık kaynak kodlu

bulut benzetim ortamlarının kullanımı kodları inceleme, yeni algoritmalar geliştirme ve

gerektiğinde iyileştirme yapmaya imkân tanımalıdır. Cloudsim, Icancloud, Greencloud,

Cloudsched bu amaca yönelik geliştirilmiş örnek açık kaynak kodlu benzetim ortamlarıdır.

Mimari, modelleme elementleri ve benzetim süreci benzetim araçlarının ortak özellikleridir

[48].

Cloudsim yaygın kullanımı olan benzetim araçlarından birisidir, kolaylıkla

geliştirilebilmektedir. Fakat paralel deneyimler ve sanal makinelerin yaşam döngüsünü

dikkate almaması zayıf yönünü oluşturmaktadır. Cloudsim dışındaki benzetim araçları

sonuçları bir ara yüzle göstermektedirler, Cloudsim programının ara yüzü

bulunmamaktadır. Icancloud paralel deneyimi uygulamaktadır fakat enerji tüketimi ve

sanal makine taşınmasını dikkate almamaktadır. Greencloud, farklı fiziksel bileşenler için

enerji tüketimini detaylı bir şekilde modellemektedir. Cloudsched isteklerin yaşam

döngüsünü modellemektedir ve yük dengeleme, enerji verimliliği ve kullanımı gibi farklı

metrikler sağlamaktadır. Bahsi geçen açık kaynak kodlu benzetim araçlarının tamamı farklı

bir katmana odaklanmaktadır, bütün bulut katmanlarını modelleyen bir araç henüz

üretilmemiştir. Genel olarak benzetim süreci 4 bölüme ayrılabilmektedir [48]:

 Müşteri taleplerini oluşturmak

 Veri merkezini oluşturmak

 Yerleştirme politikasını belirlemek

 Sonuçları toplamak ve çıktı almak

Bu çalışmada benzetim ortamı olarak CloudSim aracı kullanılmaktadır. CloudSim Projesi

bulut bilişim için geliştirilmiş Java tabanlı bir bulut benzetim ortamıdır. Melbourne

Üniversitesi’nde bulunan CLOUDS Laboratuvarı’nda geliştirilmiştir. Geniş boyutlu veri

merkezlerini (sunucu bilgisayarlarını, enerji farkında bilişim kaynaklarını) modelleyerek

benzetimi yapılabilmektedir. Sanal makine yerleştirme probleminde kullanıcı tanımlı

politikaları desteklemektedir [27].

3.6.1. CloudSim sistem modelinde enerji tasarrufu duyarlı dinamik sanal makine

yerleştirmesi

CloudSim sistem modelinde dinamik sanal makine yerleştirmesi 4 parçaya ayrılmıştır:

30

1. Fiziksel makinenin ne zaman aşırı yüklü sayılacağını belirlemek (üzerindeki sanal

makine yükünü azaltmak amacıyla),

2. Fiziksel makinenin ne zaman az yüklü sayılacağını belirlemek(uyku moduna geçirilmek

amacıyla),

3. Aşırı yüklü fiziksel makine üzerindeki hangi sanal makinelerin taşınacağını belirlemek,

4. Az yüklü veya aşırı yüklü fiziksel makineler üzerinden seçilen sanal makinelerin yeni

yerini belirlemektir.

Dinamik olmayan yük dengelemede sabit eşik değeri kullanılabilir. Sabit eşik dinamik

ortamlar için iyi değildir. Anton ve arkadaşları [47] eski verileri kullanarak otomatik eşik

belirleyen bir sistem geliştirmişlerdir. CPU kullanım sapması arttıkça CPU kullanımı

yüzde yüze yaklaşmaktadır ve hizmet anlaşması ihlaline sebep olmaktadır. Sanal makine

seçme sürecinde aşırı yüklü fiziksel makine üzerinden bir adet sanal makine seçildikten

sonra o fiziksel makinenin hala aşırı yüklü olup olmadığına bakılmaktadır, eğer öyleyse

tekrar bir sanal makine seçilmektedir. Minimum taşıma zaman politikasına göre taşınması

en kısa süren sanal makine önce taşınmaktadır. Taşıma süresi, taşınacak olan VM’nin

RAM’i fiziksel makinenin erişebildiği boş ağ bant genişliğine bölünerek tahmin

edilmektedir.

Fiziksel makinelerin yük tespiti;

1. Önce aşırı yüklü hostlar bulunur,

2. Taşınacak sanal makineler hedef fiziksel makinelere yerleştirilir,

3. Diğer hostlara göre daha az yükü olan fiziksel makine bulunur ve bu fiziksel makine

üzerindeki sanal makineler diğer fiziksel makinelere onları aşırı yüklü yapmadan

taşımayı dener. Duruma göre hostu kapatır veya açık bırakır.

4. Bu işlem bütün hostlar için onların aşırı yüklü olduğu düşünülmeyene kadar devam

eder.

3.6.2. CloudSim yazılımında bulunan bazı sınıflar

Java diliyle geliştirilmiş olan CloudSim oluşturulurken GridSim’den [40], GridSim [37]

oluşturulurken de SimJava’dan yararlanılmıştır. CloudSim açık kaynak kodlu benzetim

aracında “datacenter”, “SANStorage”, “virtualmachine”, “cloudlet”, “cloudcoordinator”,

31

“bwprovisioner”, “memoryprovisioner”, “vmprovisioner”, “VMMAllocation” isimli

sınıflar bulunmaktadır [24].

Datacenter sınıfı

Bu sınıf içerisinde donanım kaynaklarını barındırmaktadır. Depolama, bellek, işlemci

kapasitesine göre donanımlar homojen ya da heterojen olabilmektedir [24]. İsim, fiziksel

makine listesi (hostlist), işlemci gücü (MIPs), işlemci listesi (peList) gibi parametreleri

almaktadır.

Datacenterbroker (Cloudbroker) sınıfı

Bu sınıf, kullanıcıların servis kalitesi (Quality of Service - QoS) gereksinimlerine göre

kullanıcılar ve servis sağlayıcılar arasında aracılık eden nesnelerden oluşmaktadır [24].

DatacenterCharacteristics sınıfı

Bu sınıf veri merkezinde bulunan kaynakların özelliklerini tutmaktadır. Bunlar işlemci,

bellek, depolama alanı, sanal makine yerleştirme politikası, bellek atama ve bant genişliği

atama politikaları gibi özelliklerdir [24]. Kaynakların mimarisi, işletim sistemi, sanal

makine yönetimi (Virtual machine management - VMM), fiziksel makine listesi, saat

dilimi aldığı parametrelerden bazılarıdır.

SANStorage sınıfı

Veri merkezindeki geniş verilerin tutulduğu depo alan ağını modellemektedir [24].

Virtualmachine sınıfı

Bu sınıf, bir sanal makineyi modellemektedir. Bu sanal makinenin yaşam döngüsü,

üzerinde bulunduğu fiziksel sunucunun sorumluluğundadır. Bir fiziksel sunucu birden

fazla sanal makine içerebilmektedir ve işlemci çekirdekleri yer paylaşımlı ve zaman

paylaşımlı olarak daha önceden belirlenen işlemci paylaşım politikalarına göre

paylaştırılmaktadır. Her sanal makine kendisi ile ilgili bellek, işlemci ve depolama alanına

32

erişebilmektedir [24]. İşlemci sayısı, işlemci gücü, bellek, depolama alanı, bant genişliği

vb. parametreleri alır [38].

Cloudlet sınıfı

Bu sınıf, bulut tabanlı uygulama servislerini modellemektedir [24]. Özelleştirilmiş

görevleri ifade etmektedir. Boyut, dosya boyutu ve çıktı boyutu gibi parametrelere sahiptir

[38]. Boyut, MI cinsinden işlemcinin işleyeceği komutun boyutunu ifade etmektedir.

Dosya boyutu işlemciye giren verinin boyutunu, çıktı boyutu da işlemciden çıkan veri

boyutunu göstermektedir. Hesaplama yoğunluklu, web sunucu ve veritabanı tiplerinde

görevler oluşturulabilmektedir [27].

Cloudcoordinator sınıfı

Bu sınıf, veri merkezindeki kaynakların durumunu gözlemlemektedir ve yük azaltma

kararlarını vermektedir [24].

BWProvisioner sınıfı

Bant genişliğini sanal makineler arasında paylaştırmaktadır [24].

MemoryProvisioner sınıfı

Sanal makinelere bellek atamaktadır [24].

VmProvisioner sınıfı

Sanal makineleri hostlara yerleştirmektedir [24].

VMMAllocationPolicy sınıfı

Bu sınıf sanal makineyi işlemci, bellek ve depolama durumuna göre uygun olan fiziksel

sunucuya yerleştirmektedir [24].

CloudletSchedulerPolicy sınıfı

33

Sanal makinenin sahip olduğu işlemci gücünü üzerinde bulunan cloudletler arasında

paylaştırır. Zaman paylaşımlı ve yer paylaşımlı olmak üzere iki türü bulunmaktadır [24].

VmSchedulerPolicy sınıfı

Hostlar tarafından uygulanır. Zaman paylaşımlı ve yer paylaşımlı gibi türleri

bulunmaktadır. İşlemci gücünü sanal makineler arasında paylaştırır [24].

Host sınıfı

Fiziksel makineyi ifade etmektedir. Fiziksel makine numarası, işlemci çekirdeği sayısı,

işlemci gücü, bellek, depolama alanı, bant genişliği, işlemci paylaşım stratejisi

parametrelerini almaktadır [38].

3.7. Kullanılan Veriseti

Bu çalışmada gerçek dünya verisi olan PlanetLab [67] veriseti kullanılmıştır. PlanetLab,

yeni ağ servislerinin geliştirilmesini sağlayan araştırma ağıdır. 2003’ün başından beri

1000’den fazla araştırmacı ve labaratuvar araştırma kuruluşu dağıtık depolama, ağ

haritalama, uçtan uca sistemler, sorgu işleme vb. ile ilgili yeni teknolojiler geliştirmek için

PlanetLab kullanmaktadır [47]. İsteyen araştırmacılar Şekil 3.10’da görüldüğü gibi

dünyanın heryerinden PlanetLab uygulamasına kayıt olup bir veya birden fazla fiziksel

makineye sahip olabilmektedir. Hizmet sağlayıcı kullanıcıların uygulamalarıyla ilgili

bilgiye sahip değildir, iş yükleri heterojendir. Verimerkezinde iki tür fiziksel makine

bulunmaktadır. Bunların yarısı 2 çekirdekli 1860 MHz intel Xeon 3040 işlemciye sahip HP

Proliant G4 sunucudur ve diğer yarısı 2 çekirdekli 2660 MHz Intel Xeon 3075 işlemciye

sahip HP Proliant ML 11065 sunucudur. G4 tipindeki sunucu 1860 MIPS değerinde, G5

tipindeki sunucu 2660 MIPS değerinde işlemciye sahiptir. Verisetinde bulunan VM’lerin

toplam CPU miktarı verisetinde bulunan PM’lerin toplam CPU miktarının %12,31’dir

[47]. Verisetindeki kayıtlar sunucuların 5 dakika aralıklarla CPU kullanım miktarlarınının

kaydını içermektedir. Bu kayıtlar CoMon projesi aracılığıyla elde edilmektedir. CoMon

PlanetLab veri merkezinde bulunan sunucuların sağlıklı olup olmadığını; CPU, RAM, bw

gibi kaynak tüketimini ve sunucuların zamana göre davranışlarını takip eden yazılımdır.

34

PlanetLab ortamında bir hesabın sahip olduğu sunucuların bulunduğu alana slice denir. Bu

alan içinde bir veya birden fazla fiziksel sunucu bulunabilmektedir. Fiziksel sunucuların

barındırdığı sanal makinelere ise sliver denir. Eğer bir sanal sunucu %0.1 oranında CPU

kullanımına sahipse buna canlı sliver denir. Bir slice en az bir canlı sliver içeriyorsa canlı

slice denir. CoMon’a cevap veren fiziksel makinelere ise canlı düğüm denir.

Planetlab veriseti CloudSim projesinde kullanılmaktadır. PlanetLab veriseti 1052 adet

sanal makine ve 800 adet fiziksel makineden oluşmaktadır.

Şekil 3.10. PlanetLab’ın sahip olduğu 717 bölgedeki 1353 düğüm [47]

35

4. SANAL MAKİNE YERLEŞTİRME PROBLEMİ

Bulut bilişim, depolama, hesaplama, ağ gibi bilişim kaynaklarına her an her yerden ağ

üzerinden erişim sağlayan bir modeldir. Günümüzde yaygın olarak kullanılan bulut

bilişimin temelinde sanallaştırma teknolojisi yatmaktadır. Sanallaştırma teknolojisi ile bir

fiziksel makine üzerinde birden fazla sanal makine yürütülerek kaynakların ortak kullanımı

sağlanmaktadır. Kaynakların kullanıma sunumunda kaynakların aşırı kullanımı

engellenirken, diğer taraftan verimli kullanımı sağlanmalıdır. Kaynakların aşırı kullanımı

hizmet kesintisi, performans kaybı gibi sorunlara sebep olmaktadır. Kaynakların verimsiz

kullanımı ise maliyetlerin artmasına yol açmaktadır. Sistemdeki toplam yüke bağlı olarak

kaynak tahsisinde bu iki unsur arasındaki dengenin sürekli olarak gözetilmesi

gerekmektedir. Bulut bilişim kapsamındaki veri merkezlerinde yük dengesini sağlamak

üzere sanal makineler fiziksel makineler üzerinde dinamik olarak taşınmaktadır. Hangi

sanal makinenin hangi fiziksel makine üzerinde çalışacağı sorusu sanal makine yerleştirme

problemi olarak tanımlanmaktadır. Bu kapsamda, problemin çok amaçlı optimizasyon

yöntemleriyle çözümleri araştırılmıştır.

4.1. Sanal Makine Yerleştirme Probleminin Kısıtları

Yönetim, kaynak ve performans gibi unsurlara bağlı kısıtlar dikkate alınarak sanal

makinelerin fiziksel makineler üzerine yerleştirilmesi karmaşık bir problemdir [59].

Yönetime bağlı kısıtlar bir sanal sunucunun belirli bir fiziksel makinede tutulması

gerekliliği veya belirli iki sanal sunucunun farklı fiziksel makinelerde bulunması

gerekliliği olabilmektedir.

Kaynağa bağlı kısıtlar sanal makinelerin ihtiyaç duyduğu disk, RAM, CPU ve ağ bant

genişliği gereksinimlerinin karşılanmasıdır. Bir fiziksel makinenin kaynak kapasitesinin,

üzerinde bulunan sanal makinelerin toplam kapasitesini geçmemesi gerekmektedir. Burada

kaynak türlerinden birisinin yetersiz kalması diğer kaynak türlerinin atıl kalmasına sebep

olabilmektedir. Örneğin eğer bir fiziksel makine üzerinde bulunan 10 adet sanal makinenin

RAM kapasitesini ancak karşılayabiliyorsa üzerinde boş CPU miktarı bulunsa bile bu CPU

kullanılamamaktadır. Fiziksel makinelerin üzerinde bulunan sanal makinelerin kaynak

ihtiyacını karşılaması gerekliliğinin yanında yük dengelemenin de sağlanması

gerekmektedir. Eğer sanal makine yükleri belirli makinelere toplanır ve bazı makineler az

36

yükle kalırsa aşırı yük altında ezilen fiziksel makineler beklenen performansı

sağlayamayabilirler hatta hizmet kesintisi durumu yaşanabilmektedir. Bunu çözmek için

sanal makinelerin fiziksel makineler arasında dengeli dağıtılmalarını sağlamak

gerekmektedir.

Enerji tasarrufu sanal makine yerleştirme probleminde dikkat edilmesi gereken etkenlerden

birisidir. Sanal makineler performansı korumak kaydıyla bazı fiziksel makineler üzerine

toplanıp, bazı fiziksel makineler boşaltılabimektedir ve boş kalan bu makineler kapatılarak

enerji tasarrufu sağlanabilmektedir. Bütün bunların yanında makinelerin kullanım

durumlarının dinamik olması sanal makine yerleştirme problemini zorlaştırmaktadır.

4.2. Sanal Ortamlarda İşlemci Kullanımı

Bir sanal makinenin işlemci gücü görevler arasında paylaştırılmaktadır. İşlemci gücü

paylaşımında kullanılan iki tür politika vardır. Bunlar yer paylaşımlı ve zaman paylaşımlı

politikalar olarak adlandırılmaktadır. Bir sanal makinenin çalıştırması gereken görev varsa

bunları sırayla çalıştırırsa buna yer paylaşımlı komut programlama denir. Eğer bu komutlar

eşzamanlı olarak iki işlemci üzerinde dönüşümlü olarak çalıştırılırsa buna zaman

paylaşımlı komut programlama denilmektedir. Birinci kaynak sağlama politikası olan yer

paylaşımlı yöntemde sadece bir sanal makine belirlenen çekirdeği, başlanan görev bitene

kadar kullanabilmektedir. Örneğin bir fiziksel makine üzerinde bir çekirdek varsa ve iki

sanal makine varsa bu sanal makinelerden biri çekirdeği kullandıktan sonra diğeri

kullanmaktadır. Yani sırayla birer birer kullanılmaktadır. Aynı senaryoda zaman

paylaşımlı programda ise belirlenen zaman diliminde çekirdeği bir süre bir sanal makine,

bir süre diğer sanal makine kullanmaktadır. Bir görev işlemciyi kullanmaya başladıktan

sonra belirli bir süre kullanabilmektedir, belirlenen süre sonunda görev tamamlanmamış

olsa bile işlemci diğer görevin kullanımı için bırakılmaktadır. Yani sanal makineler

arasında işlemci çekirdeği dönüşümlü olarak kullanılmaktadır [40].

Bir fiziksel makine üzerindeki sanal makinelere ulaştırılan kaynak miktarı fiziksel

makinenin toplam işlemci gücüyle sınırlıdır. Bu kritik etken, yerleştirme sürecinde göz

önüne alınmalıdır. Fiziksel makine seviyesinde, her bir fiziksel makinedeki her bir

çekirdeğin işlemci gücünün ne kadarının her bir sanal makineye nasıl atanacağı

belirlenmelidir. Sanal makine seviyesinde ise sanal makinenin elinde bulunan işlemci

37

gücünün kendi görevlerine nasıl atanacağı belirlenmelidir. Sanallaştırma ortamlarının

kullandığı yer paylaşımlı ve zaman paylaşımlı politikalar arasındaki farkı ve uygulama

performansı üzerindeki etkilerini görselleştirmek için Şekil 4.1, 4.2, 4.3, 4.4 incelenebilir.

Bu şekillerde iki adet CPU’su bulunan bir fiziksel makine üzerinde iki adet sanal makine

çalışması betimlenmektedir. Bu sanal makineler VM1 ve VM2 ile ifade edilmektedir. Bu

sanal makinelerin her biri iki çekirdeğe ihtiyaç duymaktadır ve VM1’in t1, t2, t3, t4

görevlerini; VM2’nin ise t5, t6, t7, t8 görevlerini çalıştırması gerekmektedir.

Şekil 4.1’de hem sanal makine hem de görevler için yer paylaşımlı provisyon politikası

kullanılmaktadır. Her bir sanal makine iki çekirdeğe ihtiyaç duyduğu için bir zaman

diliminde sadece bir sanal makine çalışabilmektedir. Bu sebepten VM2, VM1 görevlerini

bitirdikten sonra çalışabilmektedir. Aynı durum sanal makineler üzerinde bulunan görevler

için de geçerlidir. Her bir görev sadece bir çekirdeğe ihtiyaç duyduğundan iki görev

eşzamanlı olarak çalışabilmektedir. İki görev (t1, t2) çalıştırıldıktan sonra diğer iki görev

(t3, t4) çalıştırılmaktadır.

Şekil 4.1. VM’ler ve görevler için yer paylaşımlı CPU kullanımı [40]

Şekil 4.2’de sanal makineleri yerleştirmek için yer paylaşımlı politika, sanal makine

üzerindeki görevleri yerleştirmek için zaman paylaşımlı politika kullanılmaktadır. Bir

38

çekirdek belirli zamanda belirli sanal makine tarafından kullanılmaktadır. Sanal makinenin

sahip olduğu çekirdek ise aynı anda birden fazla görev için kullanılmaktadır.

Şekil 4.2. VM’ler için yer ve görevler için zaman paylaşımlı CPU kulanımı [40]

Şekil 4.3’de sanal makineleri yerleştirmek için zaman paylaşımlı politika, sanal makine

üzerindeki görevleri yerleştirmek için yer paylaşımlı politika kullanılmaktadır. Her bir

sanal makine belirli zaman diliminde çekirdeği kullanmaktadır. Çekirdek aynı anda diğer

sanal makine tarafından da kullanıldığından daha önce belirtilen senaryolarda kullanılan

çekirdek gücüne göre birim zamanda kullanılan çekirdek gücü daha azdır. Görev atamaları

yer paylaşımlı olduğundan bir sanal makine her bir çekirdeğe sadece bir görev

atayabilmektedir, diğer görevler daha sonra yapılmak üzere sıraya sokulur.

39

Şekil 4.3. VM’ler için zaman paylaşımlı, görevler için yer paylaşımlı CPU kulanımı [40]

Şekil 4.4’de, bir çekirdek aynı anda iki sanal makine tarafından kullanıldığından zaman

paylaşımlı provizyon yöntemi kullanılmaktadır. Bir sanal makine kendisine atanmış olan

çekirdeği bir zaman diliminde birden fazla göreve kullandığından zaman paylaşımlı

provizyon yöntemini kullanılmıştır [24].

Şekil 4.4. VM’ler ve görevler için zaman paylaşımlı CPU kullanımı [40]

40

4.3. Hizmet Seviyesi anlaşması ve Enerji Tüketimi

Tüketiciler geleneksel yöntemler yerine bulut bilişimi kullanmaya başladıkça tüketiciler ve

sağlayıcılar arasındaki anlaşmalar, yani hizmet seviyesi anlaşmasının - Service Level

Agreements (SLA) önemi artmaya başlamıştır. Servis sağlayıcı ve müşteriler arasında

varılan anlaşmalarda servis kalitesinin sağlanması zorunludur. QoS, cevap zamanı ve çıktı

(throughput) gibi özelliklere sahiptir. Çıktı berli zaman aralığında iletilen verinin

miktarıdır [60]. Bu gereksinimleri sağlamadığı zaman hizmet sağlayıcı müşterisine ceza

ödemek zorunda kalabilmektedir. Uygulamanın kaynak gereksinimleri karşılanmazsa

uygulama cevap zamanı gecikmesi, hizmet kesintisi gibi sorunlarla kaşılaşılabilmektedir.

Servis sağlayıcı hizmet anlaşması gereksinimlerini karşılarken enerji tüketimini da gözardı

etmemelidir. Enerji tüketimi işlemci, disk, güç kaynağı, soğutma sistemlerinin harcadığı

enerjiyle alakalıdır.

4.4. Performans Metrikleri

Bulut ortamları için geliştirilen benzetim yazılımları test edilen algoritmaların

performansını değerlendirmek için kullanılan ölçütlere performans metrikleri

denilmektedir. Bu bölümde bazı performans metriklerinin kısa açıklamaları yapılmaktadır.

Yük değişimi ve kullanımının standart sapması

Bu iki metriğin her ikisi de kaynakların ortalama kullanımından sapmayı gösterir.

Değerlendirmesi kolay olduğu için yaygın bir şekilde kullanılmaktadır [38]. Fakat kaynak

kullanımından çok zaman kısıtına odaklanan algoritmalar için uygun değildir.

Tamamlanma süresi

Tamamlanma süresi, bir işin başlangıcından bitirilişine kadar geçen süredir. Yük dengesi

sağlandığı zaman tamamlanma süresi de düşer ve daha düşük tamamlanma süresi bir

planlama algoritmasının birincil amacıdır. Bu metrik zaman kısıtının önemsendiği

algoritmalarda önemlidir.

41

Aşırı yüklü fiziksel sunucu sayısı

Bulutta ne kadar aşırı yüklü fiziksel sunucu olduğunu ölçmektedir ve sistem durumu

hakkında genel bilgi edinmeyi sağlamaktadır. Yük dengeleme algoritmaları aşırı yüklü

fiziksel sunucuları azaltmayı amaçlamaktadır. Bu metrik yük dengelemeyle ilgili net bir

görüş sağlamaktadır. Fakat bu metrik yükün dağıtımıyla ilgili çok ayrıntılı bilgi

vermemektedir.

Çıktı

Dengesiz dağılmış yük, sistemin performansını düşürebileceğinden bu metrik fiziksel

sunucuların istekleri ne kadar hızlı işleyeceğini değerlendirmektedir. Bu yüzden yüksek

değerdeki çıktı, yükü daha iyi dengelenmiş sistem demektir. Cevaplama zamanının

önemsendiği durumlar için kullanımı tavsiye edilebilmektedir. Bu metrik genelde taşıma

sayısı gibi metriklerle birlikte değerlendirilmektedir.

Bağlantıların standart sapması

Bu metrik network hassasiyeti olan algoritmalarda kullanılabilmektedir. Bağlantıların

dengeli olup olmadığını denetlemektedir.

Ortalama dengesizlik seviyesi

Popüler bir metrik olan kaynak kullanımının standart sapması sadece bir kaynağın

kullanımını hesaplarken; bu metrik CPU, RAM, bant genişliği gibi birden fazla çeşitte

kaynağı bir arada göz önüne almaktadır.

Sanal makine taşıma sayısı

Yardımcı metrik olan taşıma sayısı, yük dengelemeyi değerlendirmek için tek başına

kullanılabilecek bir metrik değildir. Çünkü taşıma sayısı artırılarak yük dengesi daha iyi

sağlanabilmektedir. Fakat sanal makinelerin taşınması sisteme ilave yük getirmekte, bu da

performansı düşürmektedir. Performans ve yük dengesi arasında bir ödünleşim

bulunmaktadır.

42

Hizmet seviyesi anlaşması İhlali

Yardımcı metrik olan Hizmet seviyesi anlaşması ihlali tek başına kullanılabilecek bir

metrik değildir. Hizmet seviyesi anlaşması ihlali sanal makinenin yeterli kaynağı alamamış

olmasıdır. Bu metriğin değerinin fazla olması fiziksel sunucuların iyi dengelenmemiş

olduğunu gösterir; düşük olması iyidir. Diğer metriklerle bir arada değerlendirilmelidir

[38].

4.5. Performans Metriklerinin Hesaplanması

Bu tez çalışmasında kullanılan benzetim yazılımı olan CloudSim perforformans

metriklerinden bazılarının matematiksel hesapları ayrıntılı olarak anlatılmaktadır. Bu

metrikler [47]’de yapılan çalışmadan yararlanılarak detaylı olarak açıklanmıştır.

4.5.1. Hizmet seviyesi anlaşması ihlali

SLAV hesabının belirlenmesinde etkili olan iki değer vardır. Bunlar aktif fiziksel makine

başına düşen ortalama SLAV zamanı (SLAV Time per Active Host - SLATAH) ve

Taşımadan kaynaklanan performans düşüşü (Performance Degreetion per Migration -

PDM) değerleridir. Diğer bir metrik ise sanal makine yerleştirme adaptasyonu süresince

yapılan VM taşınma sayısıdır. Hizmet seviyesi anlaşması ihlali olan SLAV değeri

SLATAH (%) ve PDM (%) değerlerinin çarpılmasıyla elde edilmektedir. SLATAH, aktif

PM başına düşen SLAV değerini; PDM ise VM taşınmasından kaynaklanan performans

düşüşünü ifade etmektedir. Bulut bilişim ortamaları için QoS gereksinimlerini karşılamak

çok önemlidir. QoS gereksinimleri SLA formunda formülleştirilmektedir. Minimum çıktı

ve maksimum cevap zamanı gibi açılardan belirlenebilmektedir. Bu özellikler

uygulamadan uygulamaya değiştiğinden hizmet kalitesini değerlendirirken

kullanılmamaktadır. İş yükünden bağımsız bir metriği, IaaS’deki herhangi bir sanal

makineye dağıtılan SLAV’ı değerlendirmek için tanımlamak gerekmektedir [47].

PDM ve SLATAH’ın her ikisi de aynı öneme sahip olduğundan yazarlar SLAV isimli bir

metrik sunmuşlardır. Bu metrik hem fiziksel makinenin aşırı yüklenmenin sebep olduğu

performans düşüşünü hem de sanal makine taşımasının sebep olduğu performans düşüşünü

43

göstermektedir. SLAV, SLATAH ve PDM’nin birleşimini ifade etmektedir ve aralarındaki

ilişki Eş. 4.1’de görülmektedir.

𝑆𝐿𝐴𝑉 = 𝑆𝐿𝐴𝑇𝐴𝐻. 𝑃𝐷𝑀 (4.1)

4.5.2. Sanal makine taşınmasından kaynaklanan performans düşüşü

Anton B.’nin modellediği çok çekirlekli CPU mimarisine göre 𝑛 çekirdek varsa, her bir

çekirdek 𝑚 MIPS içermektedir, yani çekirdek 1 saniyede 𝑚 milyon komut

işleyebilmektedir. Bir tek CPU’nun toplam kapasitesi 𝑛 × 𝑚 MIPS’dir. Canlı taşıma

durdurmasız ve çok kısa bir kesinti ile yapılabilmektedir. Fakat yine de taşıma sırasında

uygulama performansına olumsuz etki yapmaktadır. Bir VM’in taşınma uzunluğu o VM’in

kullandığı RAM ve erişilebilir ağ bant genişliğine bağlıdır. Canlı taşımayı sağlamak için

ayarlamalar ona göre yapılmaktadır. VM’in imajı ve verisi ağ erişimli depolama biriminde

tutulmaktadır, böylece sanal makinenin depolama birimlerini kopyalamak ve taşımak

gerekmemektedir. Yazarların deneyimlerine göre bir j sanal makinesinin taşıma zamanı Eş.

4.2 ve performans azalması Eş. 4.3’de tanımlanmaktadır.

𝑇𝑚𝑗
=

𝑀𝑗(𝑣𝑚 𝑗′𝑛𝑖𝑛 𝑘𝑢𝑙𝑙𝑎𝑛𝑑𝚤ğ𝚤 𝑟𝑎𝑚)

𝐵𝑗(𝑢𝑙𝑎ş𝚤𝑙𝑎𝑏𝑖𝑙𝑖𝑟 𝑎ğ 𝑏𝑎𝑛𝑡 𝑔𝑒𝑛𝑖ş𝑙𝑖ğ𝑖)
 (4.2)

𝑈𝑑𝑗
= 0.1. ∫ 𝑈𝑗(𝑡)𝑑𝑡

𝑡0+𝑇𝑚𝑗

𝑡0
 (4.3)

𝑈𝑑𝑗
, sanal makine j’nin sebep olduğu toplam performans düşüşünü, 𝑇𝑚𝑗

, taşımanın ne

kadar sürdüğünü, 𝑈𝑗(𝑡), CPU kullanımını, 𝑡0, taşıma başlangıç zamanını ifade etmektedir

[47].

PDM, Sanal makine taşımasının sebep olduğu performans düşüşüdür. Eşitliği 4.4’de

gösterilmektedir.

𝑃𝐷𝑀 =
1

𝑀
∑

𝐶𝑑𝑗

𝐶𝑟𝑗

𝑀
𝑗=1 (4.4)

44

𝐶𝑑𝑗,göç kaynaklı performans düşüşünü, 𝐶𝑟𝑗 sanal makinenin talep ettiği CPU kapasitesini

ifade etmektedir [47].

4.5.3. Aktif fiziksel makine başına düşen SLAV zamanı

Aktif fiziksel makine başına düşen SLAV zamanı kısaca SLATAH olarak ifade

edilmektedir. Aktif fiziksel makinelerin ne kadar süre boyunca CPU kullanımlarının %100

olduğunun ortalması alınarak hesaplanır. Bir uygulamanın bulunduğu fiziksel makinenin

CPU kullanımı %100 ise o uygulamanın perofmansı o fiziksel makinenin kapasitesiyle

sınırlı olduğundan gerekli performans seviyesi sağlanamamaktadır.

Yazarların önerdiği metriklerden SLATAH (SLAV Time per Active Host) Hangi aktif

fiziksel makinenin CPU kullanımının %100 olduğunun ne kadar sürdüğünün yüzdesi

bulunarak hesaplanmaktadır. SLATAH mantığı şudur ki bir uygulamanın bulunduğu

fiziksel makinenin CPU kullanımı %100 ise o ugulamanın performansı o fiziksel

makinenin kapasitesiyle sınırlıdır ve gerekli performans seviyesi sağlanamamaktadır.

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝑁
∑

𝑇𝑠𝑖

𝑇𝑎𝑖

𝑁
𝑖=1 (4.5)

𝑇𝑠𝑖, 𝑖 fiziksel makinesinin CPU’sunun %100 kullanıldığı zaman; 𝑇𝑎𝑖 𝑖 fiziksel makinesinin

aktif olarak çalıştığı süreyi ifade etmek üzere eşitliği 4.5’de gösterildiği şekildedir [47].

4.5.4. Enerji hesabı

Veri merkezleri çok büyük miktarda enerji tüketmektedir. Örneğin Google Veri Merkezi,

nüfusu 2010 yılında 805,193 olan San Fransisco şehrinde tüketilen enerji kadar enerji

tüketmektedir [24, 62]. Bu yüzden veri merkezlerindeki enerji israfını önlemek çok

önemlidir. Veri merkezlerinde fiziksel makineler belirli sıcaklık aralığında çalıştığından

enerji sadece fiziksel makinelerin çalışmasında değil aynı zamanda bu makinelerin

oluşturduğu sıcak ortamı soğutmak için de kulanılmaktadır. Ne kadar az fiziksel makine

çalışırsa o kadar az soğutma masrafı ortaya çıkacaktır. Güç ve enerji birbiriyle ilişkili

kavramlardır. Gücün eşitliği Eş. 4.6’da verildiği gibidir. Enerji ise Eş. 4.7’de görüldüğü

gibi güç değeri kullanılarak hesaplanmaktadır.

45

𝑃 = 𝑊/𝑇 (4.6)

𝐸 = 𝑃. 𝑇 (4.7)

Eş. 4.6 ve Eş. 4.7’de görülen 𝑃, güç; 𝑇, zaman periyodunu; 𝐸 enerjiyi ifade etmektedir.

Güç ve enerji faklı şeylerdir. Güç tüketimini azaltmak her zaman enerji tüketimini

azaltmamaktadır. Güç tüketimi CPU performansı azaltılarak azaltılabilir, örneğin frekansı

düşürülebilir fakat programın çalışma süresi uzayacağından iş bitiminde harcanan enerji

miktarı aynıdır.

Bir sunucunun harcadığı enerji miktarı kullanılan CPU miktarıyla yakından ilişkilidir [61].

Fiziksel makine üzerinde hiç iş yükü olmadığında kullanılan güç 𝑃𝑖𝑑𝑙𝑒 ile, makine CPU’su

%100 kullanıldığı durumda güç tüketimi 𝑃𝑏𝑢𝑠𝑦 ile ifade edilmektedir. Bir sunucunun

kullandığı güç miktarı Eş. 4.8’de hesaplanmaktadır. 𝑢, kullanılan CPU oranını ifade

etmektedir. Şekil 4.5’de gerçekte tüketilen güç ile hesaplanan tahmini güç tüketiminin

değerleri görülmektedir.

𝑃(𝑢) = 𝑃𝑖𝑑𝑙𝑒 + (𝑃𝑏𝑢𝑠𝑦 − 𝑃𝑖𝑑𝑙𝑒) ∗ 𝑢 (4.8)

Şekil 4.5. Bir sunucunun CPU kullanımı ve güç tüketimi arasındaki ilişki [47]

Şekil 4.6’da görüldüğü üzere sistemde bulunan diğer bileşenler (örn. I/O, bellek) de güç

tüketmektedir fakat bu bileşenlerin güç tüketimi de CPU kullanımıyla orantılıdır.

46

Şekil 4.6. Sunucu bileşenleri tarafından tüketilen güç miktarları [47]

PlanetLab verisetinde bulunan sunucuların CPU kullanım oranlarına göre Watt cinsinden

güç tüketimleri SPECpower benchmark’dan alınan değerler Çizelge 4.1’de görülmektedir

[47].

Çizelge 4.1. Sunucuların CPU kullanım oranlarına göre Watt cinsinden güç tüketim

miktarları [47]

Sunucu - CPU

Kullanım oranı
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP-ProLiant-G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

HP-ProLiant-G5 93.7 97 101 105 110 116 121 125 129 133 135

4.5.5. Aktif fiziksel makine başına düşen ortalama CPU kullanım oranı hesaplama

Bir fiziksel makinenin kaynak kapasitesi üzerinde barındırdığı sanal makinelere

dağıtılmaktadır. Fiziksel makine üzerindeki kaynağın kullanılmayan kısmı atıl duran

kaynaktır. Bir kaynak ne kadar yüksek oranda kullanılırsa o kadar verimli kullanılıyordur.

Diğer taraftan bir fiziksel makine üzerinde taşıdığı sanal makinelerin bütün kaynak

ihtiyaçlarını karşılıyor olması gerekmektedir. Örneğin bir fiziksel makinede sanal

makineye yetecek miktarda RAM bulunmazsa bu makine üzerinde CPU miktarı çok fazla

olsa bile sanal makinenin başka bir makineye taşınması gerekmektedir. Kaynak

kullanımında performansı ve enerji tüketimini etkileyen en önemli kaynak olan CPU’nun

kullanım miktarları ölçülmüştür. Aktif fiziksel makine başına düşen CPU kullanım oranı

47

hesaplanırken, aktif olan fiziksel makinelerin CPU kullanım oranlarının ortalaması

alınmaktadır.

4.5.6. Benzetim Ortamında Maliyet Hesabı

Bulut ortamlarında harcanan enerjiyi minimuma indirmek doğanın korunması açısından ve

bulut sağlayıcının maliyetini azaltmak açısından çok önemlidir. Bu bölümde bulut bilişim

benzetim araçlarından birisi olan CloudSim temel alınarak maliyet hesabı anlatılmaktadır.

Tekli sanal makine taşıma probleminde maliyet hesabı

Bir fiziksel makine ve birden fazla sanal makinenin olduğu bir sistemde maliyet hesabı

probleminde zaman 𝑁 parçaya ayrılmaktadır. Her bir zaman diliminin 1 saniye olduğu

kabul edilmektedir. Kaynak sağlayıcı kuruluş, fiziksel makinenin harcadığı enerji

maliyetini karşılamaktadır.

𝐶𝑇 = 𝐶𝑝. 𝑡𝑝 (4.9)

Burada 𝑡𝑝, zaman periyodu ve 𝐶𝑝, 1 dilimlik zamanda harcanan enerji olmak üzere toplam

maliyet Eş. 4.9’da hesaplanmaktadır.

Kaynak kullanımı CPU performansı ile ifade edilmektedir. Talep edilen CPU miktarı

erişilebilir kapasiteyi aşarsa SLAV oluşmaktadır. Bu durumda müşteriye kaynak sağlayıcı

tarafından ödeme yapılmaktadır. Bunun maliyeti ise 𝐶𝑣𝑡𝑣 eşitliği ile hesaplanmaktadır.

Burada 𝐶𝑣 birim zamana düşen SLAV maliyeti ve 𝑡𝑣 SLAV’nın sürdüğü zaman miktarıdır.

Anton B. ve arkadaşları bu birimleri Eş. 4.10’de görüldüğü şekilde tanımlamışlardır.

𝐶𝑝 = 1, 𝐶𝑣 = 𝑠 veya 𝐶𝑝 =
1

𝑠
, 𝐶𝑣 = 1 (4.10)

𝑟 = 𝑛 − 𝑣 (4.11)

Eş. 4.11’de 𝑛, SLAV’nın bitme anı; 𝑣, SLAV’nın başlama anı, 𝑟 SLAV devam etme

süresi, 𝑚 sanal makinenin başka bir fiziksel makineye taşınmaya başladığı andır. Sanal

makine taşınması 𝑇 kadar sürmektedir. Bir sanal makineyi başka bir fiziksel makineye

48

taşımak için bir fiziksel makineye daha ihtiyaç bulunduğundan taşıma sırasında harcanan

enerji 2𝐶𝑝𝑇’dir. Sanal makinenin ne zaman taşınması gerektiği 𝑚 zamanını belirlerken

şunlar göz önünde bulundurulmaktadır:

1. Harcanan toplam enerji maliyetini azaltmak

2. SLAV nın sebep olduğu maliyeti azaltmak

Maliyet Fonksiyonu

Maliyet problemini analiz etmek için 4.12 numaralı maliyet fonksiyonu tanımlanmıştır.

Toplam maliyet, SLAV’ın sebep olduğu maliyeti ve fazladan enerji tüketim maliyetini de

içermektedir. Maliyet fonksiyonunda SLAV başlayana kadar harcanan enerjinin maliyeti

hesaplanmaz çünkü algoritmalar bu andan sonra devreye girer ve algoritmalar arasında

karşılaştırma yapmak için bu enerjiye ihtiyaç duyulmamaktadır. Enerji tüketimi sanal

makinenin bulunduğu ve taşınacağı fiziksel makinenin tükettiği enerji ve SLAV

başladıktan sonraki ilk bulunduğu fiziksel makinenin harcadığı enerji Eş. 4.12’de 𝐶(𝑣, 𝑚)

ile hesaplanmaktadır. Maliyet fonksiyonu hesaplarında 𝑚 taşıma başlama anını; 𝑇 taşıma

süresini simgelemektedir.

 𝐶(𝑣, 𝑚): (4.12)

= (𝑣 − 𝑚)𝐶𝑝 eğer 𝑚 < 𝑣 𝑣𝑒 𝑣 − 𝑚 ≥ 𝑇 𝐶1

= (𝑣 − 𝑚)𝐶𝑝 + 2(𝑚 − 𝑣 + 𝑇)𝐶𝑝 + (𝑚 − 𝑣 + 𝑇). 𝐶𝑣 eğer 𝑚 ≤ 𝑣, 𝑣 − 𝑚 < 𝑇 𝐶2

= 𝑟𝐶𝑝 + (𝑟 − 𝑚 + 𝑣)𝐶𝑝 + 𝑟𝐶𝑉 eğer 𝑚 > 𝑣 𝐶3

Eş. 4.12, şartlara göre üç bölüme ayrılmaktadır. Birinci bölüm 𝐶1, ikinci bölüm 𝐶2 ve

üçüncü bölüm 𝐶3 ile ifade edilmektedir.

Birinci durum (𝐶1)

Taşıma, SLAV başlamadan başlamaktadır ve SLAV başlamadan ya da başlayacağı anda

bitmiş ise maliyet 𝐶1 fonksiyonu ile hesaplanmaktadır. Burada SLAV başlamadan yapılan

49

sanal makine taşıma maliyeti hesaplanmaktadır. SLAV maliyeti yoktur. (𝑣 − 𝑚) taşıma

süresini ifade etmektedir.

İkinci durum (𝐶2)

Taşıma, SLAV başladığı anda ya da başlamadan önce başlamıştır fakat taşıma bitmeden

önce SLAV başladığından bir miktar SLAV maliyeti bulunmaktadır. Ana fiziksel

makinenin 𝑣 anına kadar harcadığı enerji maliyeti, SLAV süresince 2 fiziksel makinenin

harcadığı enerji maliyeti ve SLAV ceza maliyeti toplamı ile hesaplanmaktadır.

Üçüncü Durum (𝐶3)

Sanal makine taşınması SLAV başladıktan sonra başlamıştır. Ana fiziksel makinenin

harcadığı enerji maliyeti, ikinci fiziksel makinenin 𝑇 süresince harcadığı enerji ve ödenen

SLAV cezası toplanarak hesaplanmaktadır [47].

Optimal çevrimdışı algoritma maliyet hesabı

Algoritmanın kalitesi 𝑚 ve 𝑣 zamanları arasındaki ilişkiye bağlıdır. Yani taşıma ve SLAV

başlaması arasında ne kadar az süre geçtiyse algoritma o kadar kalitelidir. Eğer SLAV

başlamadan taşıma başlarsa bu en iyi durumdur. Eş. 4.12’deki değerler Eş. 4.13’deki

değerlerle değiştirilmesi durumu aşağıda incelenmektedir.

𝑣 − 𝑚 = 𝑎𝑇, 𝑚 = 𝑣 − 𝑎𝑇, 𝑎 = (𝑣 − 𝑚)/𝑇 (4.13)

Maliyet fonksiyonunda Eş. 4.12’de tanımlanan 3 durum aşağıda açıklanmaktadır.

Birinci Durum

𝑚 < 𝑣, 𝑣 − 𝑚 ≥ 𝑇 , 𝑎𝑇 ≥ 𝑇’dir ve 𝑎 ≥ 1 ‘dir. Tekli sanal makine taşıma probleminde

Eş. 4.12’de bulunan 𝐶1 fonksiyonunda (𝑣 − 𝑚)𝐶𝑝’de 𝑚’nin yerine 𝑣 − 𝑎𝑇 yazıldığında

𝐶1=(𝑣 − 𝑣 + 𝑎𝑇)𝐶𝑝 = 𝑎𝑇𝐶𝑃 bulunmaktadır.

50

İkinci Durum

𝑚 ≤ 𝑣, 𝑣 − 𝑚 < 𝑇, 𝑎 ≥ 0 ve 𝑎𝑇 < 𝑇 yani 0 ≤ 𝑎 < 1’dir. Yine tekli sanal makine taşıma

problemindeki Eş. 4.12’de 𝐶2 = (𝑣 − 𝑚)𝐶𝑝 + 2(𝑚 − 𝑣 + 𝑇)𝐶𝑝 + (𝑚 − 𝑣 + 𝑇)𝐶𝑣 𝑚’nin

yerine 𝑣 − 𝑎𝑇 yazıldığında 𝐶2 = 𝑎𝑇𝐶𝑝 + 2𝑇(1 − 𝑎)𝐶𝑝 + 𝑇(1 − 𝑎)𝐶𝑣 bulunur.

Üçüncü Durum

𝑚 > 𝑣 bundan dolayı 𝑎 < 0, 𝑎 =
𝑣−𝑚

𝑇
, 𝑚 = 𝑣 − 𝑎𝑇 yine tekli sanal makine taşıma

probleminde Eş. 4.12’de 𝐶3 = 𝑟𝐶𝑝 + (𝑟 − 𝑚 + 𝑣)𝐶𝑝 + 𝑟𝐶𝑣 = 𝐶𝑝(2𝑟 − 𝑚 + 𝑣) + 𝑟𝐶𝑣

fonksiyonunda 𝑟 = 𝑚 − 𝑣 + 𝑇 olduğundan 𝑚’nin yerine 𝑣 − 𝑎𝑇 ve 𝑟’nin yerine de

−𝑎𝑇 + 𝑇 yazılırsa 𝐶3 = 𝐶𝑝(2𝑇 − 2𝑎𝑇 − 𝑣 + 𝑎𝑇 + 𝑣) + 𝑇𝐶𝑣 − 𝑎𝑇𝐶𝑣 bulunmaktadır.

Sadeleştirildiği zaman 𝐶3 = 𝑇(2 − 𝑎)𝐶𝑝 + 𝑇(1 − 𝑎)𝐶𝑣 bulunur, bu da 𝐶2(𝑣, 𝑎)′ya eşittir

𝐶2(𝑣, 𝑎), 𝐶3(𝑣, 𝑎)’ya eşit olduğu için eşitlik sadeleştirilerek Eş. 4.14 elde edilmektedir.

𝐶(𝑎) = (4.14)

𝑇(2 − 𝑎)𝐶𝑝 + 𝑇(1 − 𝑎)𝐶𝑣 eğer 𝑎 < 1 ise

𝑎𝑇𝐶𝑝 eğer 𝑎 ≥ 1 ise

Problem tanımında 𝐶𝑝 = 1/𝑠 ve 𝐶𝑣 = 1 olarak tanımlanmıştı, yukardaki 𝐶(𝑎)

denkleminde yerine koyulduğunda Eş. 4.15 elde edilmektedir

𝐶(𝑎) = (4.15)

𝑇(2 − 𝑎)/𝑠 + 𝑇(1 − 𝑎) eğer 𝑎 < 1 ise

𝑎𝑇/𝑠 eğer 𝑎 ≥ 1 ise

𝑎 = 1 olduğunda maliyet minimum değerindedir. Yani (𝑣 − 𝑚)/𝑇 = 1 olduğunda, bu da

taşımanın SLAV başlamadan başlaması demektir. SLAV başlamadan tahmin edebilen

algoritma en iyidir [47].

51

CloudSim’de optimal çevrimiçi deterministik algoritma maliyet hesabı

Eğer bir problemin girdisi çevrimiçi ise ve çıktısı da çevrimiçi olarak oluşturuluyor ise bu

problem çevrimiçi problemdir. Çevrimiçi problemler için kullanılan algoritmalara

çevrimiçi algoritma denilmektedir. Çevrimiçi algoritmaların performans ve verimliliğini

karşılaştırmanın yollarından birisi de rekabet analizi uygulamaktır. Rekabet analizi

yapısında çevrimiçi algoritmaların değerleri gelecek bilgisi olan (gelecek işyükünü verisini

bilerek yoğunluk yaşanmadan önlem alan), en iyi performansı sergileyecek muhtemel

algoritmalar ile karşılaştırılmaktadır. Gelecek bilgisi olan algoritmalar SLAV başlamadan

önlem alarak en az maliyetle işlemleri gerçekleştirmektedir. 𝐴𝐿𝐺(𝐼) ≤ 𝑐. 𝑂𝑃𝑇(𝐼) + 𝑎

eşitliğinde 𝐴𝐿𝐺(𝐼), 𝐼 girişi için algoritmanın harcadığı maliyettir. 𝑐, sabit faktördür.

𝑂𝑃𝑇(𝐼), Optimal online algoritmasının 𝐼 girişi için maliyetidir ve 𝑎 da sabit değerdir. 𝑐

program fonksiyonlarındaki parametrelere bağlı olabilmektedir fakat 𝐼’dan bağımsız bir

değer olmalıdır [47].

CloudSim’de dinamik sanal makine yerleştirme probleminde maliyet hesabı

Dinamik sanal makine yerleştirme probleminde, toplam maliyeti azaltmak için ne zaman

hangi sanal makinenin hangi fiziksel makineye taşınacağını belirlenmektedir. Eşitliği

hazırlanırken şu semboller kullanılmaktadır. 𝐴ℎ, herbir fiziksel makinenin CPU

kapasitesini ifade etmektedir. 𝐴𝑣, bir sanal makineye atanabilecek en yüksek CPU

kapasitesini ifade etmektedir. 𝑚 =
𝐴ℎ

𝐴𝑣
 ile bir fiziksel makineye atanabilecek en yüksek

sanal makine sayısı bulunmaktadır. 𝑛𝑚 ile toplam VM sayısı hesaplanmaktadır. 𝑡𝑚, taşıma

süresini ifade etmektedir. 𝐶𝑝 = 1 enerji tüketim maliyetini ifade etmektedir. 𝐶𝑣 = 𝑠, SLAV

maliyetini ifade etmektedir. Bu değerler 𝐶𝑝 =
1

𝑠
, 𝐶𝑣 = 1 olarak da ifade edilebilmektedir.

𝐶 = ∑ (𝐶𝑝 ∑ 𝑎𝑡𝑖

𝑛
𝑖=0 + 𝐶𝑣 ∑ 𝑣𝑡𝑗

𝑛
𝑗=0)𝑇

𝑡=𝑡0
 (4.16)

Eş. 4.16’da 𝑡0 başlangıç zamanını , 𝑇 toplam zamanı ifade etmektedir. 𝑎𝑡𝑖
Є{0,1}, 𝑃𝑀 𝑡

anında fiziksel makinenin aktif mi pasif mi olduğunu göstermektedir, 𝑎𝑡𝑖
 değeri 1 veya 0

değerlerini alabilmektedir. 𝑣𝑡𝑗
Є{0,1}, 𝑡 anında sanal makinenin SLAV yaşayıp

yaşanmadığını göstermektedir, 𝑣𝑡𝑗
 değeri 0 veya 1 değerlerini alabilmektedir.

52

Optimal çevrimiçi (online) deterministik algoritmasında rekabet oranı hesaplama

SLAV bir fiziksel makinede en az 𝑚 + 1 adet sanal makine varsa oluşmaktadır ve bu sanal

makinelerin kullanabilecekleri en yüksek CPU miktarı 𝐴𝑣’dir. Eş. 4.17’de sanal

makinelerin üzerinde bulunduğu fiziksel makineyle CPU kapasitesi ilişkisinin hesabı

anlatılmaktadır.

𝑚𝐴𝑣 = 𝐴ℎ, 𝑘 > 𝑚, 𝑘𝐴𝑣 > 𝐴ℎ (4.17)

Eşzamanlı olarak SLAV çeken fiziksel makine sayısı 𝑛𝑣 ile ifade edilmektedir. 𝑛𝑣 =
𝑛𝑚

𝑚+1

‘dir. SLAV yaşamayan fiziksel makine sayısı ise 𝑛𝑟 ile ifade edilmektedir. 𝑛𝑟 = 𝑛 −

𝑛𝑣’dir. Herbir zaman periyodu ikiye bölünerek bir zaman peryondu 2𝑡𝑚 ile ifade

edilmektedir. 𝑡𝑚, taşıma zamanını ifade etmektedir. Bütün fiziksel makineler aktifse ve

SLAV yoksa birinci 𝑡𝑚’de maliyet 𝑡𝑚𝑛𝐶𝑝 eşitliği ile hesaplanmaktadır. Bütün fiziksel

makineler aktifse, 𝑛𝑣 tane fiziksel makine SLAV çekerse ve bazı sanal makineler 𝑛𝑟

fiziksel makineye taşınırsa ikinci 𝑡𝑚’de harcanan toplam maliyet 𝑡𝑚(𝑛𝐶𝑝 + 𝑛𝑣𝑐𝑣) eşitliği

ile hesaplanmaktadır. Bir zaman periyodu yani 2𝑡𝑚 boyunca harcanan toplam maliyet

𝐶 = 2𝑡𝑚𝑛𝐶𝑝 + 𝑡𝑚𝑛𝑣𝑐𝑣 eşitliği ile hesaplanmaktadır. ALG çevrimiçi algoritmasının sebep

olduğu toplam maliyet 𝐴𝐿𝐺(𝐼) = 𝜏𝑡𝑚(2𝑛𝐶𝑝 + 𝑛𝑣𝐶𝑣) eşitliği ile hsaplanmaktadır. 𝑂𝑃𝑇

çevrimdışı algoritmasının sebep olduğu toplam maliyet 𝑂𝑃𝑇(𝐼) = 2𝜏𝑡𝑚𝑛𝐶𝑝 eşitliği ile

hesaplanmaktadır. Bu iki algoritmanın rekabet oranı
𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
=1+

𝑛𝑣𝐶𝑣

2𝑛𝐶𝑝
 bulunmaktadır. 𝐶𝑝’nin

yerine 1/𝑠, 𝐶𝑣’nin yerine 1 yazıldığında
𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
=1+

𝑛𝑣𝑠

2𝑛
 bulunur. 𝑚𝑜𝑑

𝑛𝑚

𝑚+1
= 0 olduğunda,

𝑛𝑣 =
𝑛𝑚

𝑚+1
 rekabet oranında yerine koyulursa

𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
=1 +

𝑚𝑠

2(𝑚+1)
 bulunmaktadır. Eğer

𝑛𝑚

𝑚+1
≠ 0 ise

𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
<

𝑚𝑠

2(𝑚+1)
’dir. Bu iki durum birleştirilirse

𝐴𝐿𝐺(𝐼)

𝑂𝑃𝑇(𝐼)
≤1 +

𝑚𝑠

2(𝑚+1)

bulunmaktadır.

53

5. GERÇEKLEŞTİRİLEN ÇALIŞMA

Bu çalışmada, sanallaştırma teknolojisinde karşılaşılan sanal makine yerleştirme

probleminin çözümü çok amaçlı optimizasyon algoritmalarıyla ele alınmıştır. Literatürde

yaygın kullanımı olan çok amaçlı optimizasyon yöntemleri probleme uygulanmış,

başarımları farklı metrikler doğrultusunda değerlendirilmiş ve kıyaslanmıştır.

5.1. Benzetim Ortamında Veri Merkezinin Oluşturulması

Çalışmanın alt yapısında bulut bilişim ortamının benzetimi CloudSim ile

gerçekleştirilmiştir. Problemi tanımlamak ve algoritmaları yürütmek için MOEA

Framework kütüphanesi Cloudsim ile bütünleştirilmiş ve gerekli uyarlamalar yapılmıştır.

Şekil 5.1’de görüldüğü üzere CloudSim’den alınan sanal makine listesi ve fiziksel makine

listesi MOEA Framework’e gönderilmekte, MOEA Framework’de elde edilen çözüm

tekrar CloudSim’e gönderilmektedir. Elde edilen optimum çözüme göre CloudSim, sanal

makine yerleştirme işlemini gerçekleştirmektedir.

Şekil 5.1. Tez çalışmasında kullanılan CloudSim ve MOEA Framework ilişkisi

Çalışmanın yürütülebilmesi için bir veri merkezine ihtiyaç bulunmaktadır. Problemin

yapısına uygun olarak belli sayıda fiziksel makine ve sanal makinenin tanımlı olması ve

belirli bir senaryo dâhilinde işlemesi gerekmektedir. Bu gereklilik veri merkezi PlanetLab

verisetinin benzetim ortamında kullanılmasıyla karşılanmıştır.

54

5.2. Problemin MOEA Problem Yapısına Dönüştürülmesi

MOEA Framework’ün kullanılabilmesi için öncelikle kullanıcının problemini tanımlaması

gerekmektedir. Problemin tanımlanması amacıyla org.cloudbus.cloudsim.power.moea

isimli pakete MOEAProblem.java sınıfı eklenmiştir. Oluşturulan MOEAProblem

org.moeaframework.core paketindeki Problem sınıfı uygulanarak oluşturulmuştur.

MOEAProblem sınıfı parametre olarak taşınacak sanal makine listesini ifade eden

vmstomigrate ve aktif fiziksel makine listesini ifade eden availablehosts listesini alarak

override yöntemiyle evaluate isminde uygunluk fonksiyonu oluşturulmuştur. Uygunluk

fonksiyonunun ayrıntıları bölüm 5.3’de anlatılmaktadır.

5.3. Uygunluk Fonksiyonu

Uygunluk fonksiyonu çözümlerin geçerliliğini kontrol etmektedir ve çözümleri

derecelendirmektedir. Bu fonksiyon oluşturulurken Şekil 5.2’de görülen algoritma

kullanılmıştır. Bu fonksiyonda 𝑑 integer dizisinde çözüm, 𝑓 double dizisinde amaçlar, g

double dizisinde kısıtlar tutulmaktadır. Bunun dışında map cinsinden oluşturulan dizi isimli

dizide fiziksel makinelerin CPU kullanım oranları tutulmaktadır. Double cinsinden fark

değişkeninde sanal makine fiziksel makineye atandıktan sonra oluşacak olan güç tüketim

farkı tutulmaktadır. Boolean cinsinden 𝑐ℎ𝑒𝑐𝑘 değişkeni çözüm geçerliyse true olarak

atanmaktadır. For döngüsü içinde herbir çözümün herbir parçasının gerçekleştirilebilir olup

olmadığı kontrol edilmektedir. RAM, CPU durumundan uygun olup olmadığı ve çözümün

gerçeklenmesi sonucu harcanan enerji miktarındaki fark hesaplanmaktadır. Çözümlerin

tamamı gerçekleştirilebilir ise check değeri true olarak kalmaktadır ve çözümün amaç ve

kısıt değerleri atanmaktadır. Eğer çözüm geçersiz ise kısıt değeri 1 atanmaktadır, amaç

değerine ise elenmeleri için en yüksek değer atanmaktadır.

55

Başlangıç

Enerji Tüketimi 0

YerleştirmeListesi ÇözümüBul(Algoritmaismi, PMlistesi, Vmlistesi)

UygunlukDeğeri[1]  CPUaritmetikOrtalama(CPUkullanımListesi)

UygunlukDeğeri[0] güçTüketimi

İ = i+1

CPUkullanımListesi.ekle(pm.id, tahminiCPUkullanınımıHesapla(host))

güçTüketimi  güçTüketimi+tahminiGüç(host,vm);

vm  Vmlistesi[i]

pm  Pmlistesi[yerleştirmelistesi[i]]

İ = 0

İ < boyut

EVET

HAYIR

Bitiş

Şekil 5.2. Uygunluk fonksiyonu algoritması iş akış şeması

5.3. Sanal Makine Yerleştirme Probleminin Çözülmesi

800 adet fiziksel makineye 1052 adet sanal makineyi kaynak kullanım amacına ulaşmak

için CloudSim açık kaynak kodlu simülasyon yazılımı kullanılmıştır. Burada bulunan sanal

makine yerleştirmesi yapan org.cloudbus.cloudsim.power paketindeki

PowerVmAllocationPolicyMigrationAbstract.java sınıfı üzerindeki kodlar tezin amacı

doğrultusunda yeniden yazılmıştır. Bu sınıfta bulunan getNewVmPlacement ve

getNewVmPlacementFromUnderutilizedHost fonksiyonlarında değişiklik yapılarak

yeniden yazılmıştır. Yeni yazılan sınıflara getNewPlacementMy ve

getNewVmPlacementFromunderUtilizedHostMy isimleri verilmiştir.

56

Şekil 5.3. Sanal makine yerleştirme probleminin çözüm aşaması

Şekil 5.3’de görüldüğü gibi getNewPlacementMy sınıfı taşınacak sanal makinelerin listesi

ve aktif fiziksel makinelerin listesini parametre olarak almaktadır, çıkışta ise hangi sanal

makinenin hangi fiziksel makineye yerleştirileceği bilgisini içeren bir liste

döndürülmektedir. Metodun birinci aşamasında fiziksel sunucu listesindeki aktif fiziksel

sunucular tespit edilir. İkinci aşamada problem sınıfı olan MOEAproblem.java taşınacak

sanal makine listesi ve aktif fiziksel makineler parametre olarak kullanılarak optimizasyon

çalıştırılmaktadır. Bu aşamada karşılaştırma yapmak amacıyla 4 farklı optimizasyon

algoritması (NSGA-II, SPEA2, PAES, ϵ-MOEA) çalıştırılmıştır. Sonuçta pareto eğrisi

üzerinde bulunan 𝑛 adet çözüm dönmektedir. Üçüncü aşamada, bir önceki aşamada

bulunan 𝑛 adet çözümden en düşük enerji tüketeni seçilmektedir. Dördüncü aşamada

seçilen çözüm değeri integer cinsinden oluşturulan 𝑑 dizisine atılmaktadır. 𝑑 dizisi Eş.

3.1’de gösterilen yapıya göre oluşturulmuştur. Çözümü ifade eden 𝑑 dizisi örneği Şekil

5.4’de gösterilmiştir.

Şekil 5.4. Sanal makinelerin bulunduğu fiziksel makine bilgisini tutan 𝑑 dizisi

57

Şekil 5.4’deki gibi ifade edilen çözüm 𝑑 dizisine atılmaktadır. Bu ifadenin CloudSim

yazılımına uyumlu hale getirilmesi gerekmektedir. String ve object sınıflarını içeren map

sınıfından nesne oluşturulur. Bunun dışında migrationmap isminde map cinsinden

oluşturulan bağlı listenin oluşturulması gerekmektedir. Daha önce bulunan çözümlerin

bulunduğu 𝑑 dizisinin değerlerinden 𝑖, sanal makinenin numarası ve 𝑑[𝑖] ise fiziksel

makinenin numarası ile map sınıfından migrate nesnesi oluşturulmaktadır. Oluşturulan

migrate nesnesi migrationmap listesine atılmaktadır. Böylece dördüncü adımdaki işlemler

ile MOEA Framework’ten elde edilen çözüm CloudSim yapısına uygun hale getirilmiş

olmaktadır. Belirli bir eşik altındaki yoğunlukta çalışan fiziksel makine üzerindeki sanal

makineleri diğer fiziksel sunuculara taşınması için

getnewvmplacementfromunderutilizedhostMy metodu yazılmıştır. Bu metodda öncelikle

aktif fiziksel sunucular tespit edilmektedir. Daha sonra optimizasyon algoritmasına

taşınması gereken sanal makineler parametre olarak verilerek çözümler hesaplanmaktadır.

Bulunan 𝑛 adet çözümden en az enerji harcayan çözüm seçilerek 𝑑 dizisine

aktarılmaktadır. Bulunan çözüm CloudSim yazılımının yapısına uyumlu hale getirmek

amacıyla listeye aktarılmaktadır.

5.3.1. Optimizasyon algoritmalarının çalıştırılması

Optimizasyon Algoritmaları Şekil 5.5’de görüldüğü gibi çağırılmıştır. MOEA

Framework’te bulunan Executer fonksiyonu ile optimizasyon algoritması çağrılmaktadır.

Parametre olarak oluşturulan problem sınıfı, taşınması gerekli olan sanal makineler ve aktif

olarak çalışan fiziksel makineler girilmektedir. Ardından problemin hangi optimizasyon ile

çözüleceği bilgisi parametre olarak verilir. Popülasyon sayısı ve döngü sayısı da

verildikten sonra parametreler tamamlanmış olur. Bütün algoritmalarda nesil sayısı 500 ve

popülasyon sayısı 100 olarak belirlenmiştir.

Şekil 5.5. Optimizasyon algoritmasının çağrılmasından bir kod kesiti

58

59

6. PEFORMANS DEĞERLENDİRMESİ

CloudSim ortamında oluşturulan veri merkezinin sanal makine yerleştirme problemini

çözmek amacıyla NSGAII, SPEA2, ϵ-MOEA, PAES algoritmaları çalıştırılmıştır ve elde

edilen sonuçlara göre performans değerlendirmesi yapılmıştır. Çok amaçlı optimizasyon

algoritmalarında ortalama CPU kullanımını artırmak ve toplam enerji tüketimini azaltmak

hedeflendiğinden bu metrikler incelenmiştir. CPU kullanımında yük dengeleme sunucunun

performansı açısından çok önemlidir. Enerji tasarrufu açısından CPU kullanımı

artırıldığında sunucuda hizmet kalitesinin düşme ihtimali artmaktadır. Algoritmanın

sağladığı çözümün hizmet kalitesini tespit etmek için bununla ilgili olan VM taşıma sayısı,

SLAPDM, SLATAH ve SLAV metrikleri de incelenmiştir. Simülasyon sonuçlarında elde

edilen enerji tüketimi, VM taşıma sayısı, SLAPDM, SLATAH, SLAV ve ortalama CPU

kullanımı verileri Çizelge 6.1’de ve EK-1 - EK-4’de görülmektedir.

Çizelge 6.1. Çalışmada elde edilen sonuçlar

Algoritma

Enerji

Tüket.

kWh

VM Taş.

Say.

SLAPDM

%

SLATAH

%

SLAV

%

Ortalama

CPU Kull.

NSGAII 249,83 49995 0,28 9,52 0,02688 0,15267

SPEA2 251,32 50136 0,29 9,67 0,02798 0,15551

ϵ-MOEA 267,64 54461 0,35 9,92 0,03504 0,15585

PAES 268,60 55880 0,34 9,99 0,03364 0,16808

Çizelge 6.2’de en düşük ve en yüksek değeri veren algoritmalar görülmektedir. NSGAII

algoritması enerji tüketimi, VM taşıma sayısı, SLAPDM, SLATAH ve SLAV değerleri en

düşük olan yani avantajlı olan algoritmadır. Aktif fiziksel makine başına düşen ortalama

CPU kullanımında en yüksek değeri verdiği için en başarılı algoritma PAES’dir.

60

Çizelge 6.2. Çalışma sonucunda elde edlen en düşük değerler (E.d.d) ve en yüksek

değerler (E.y.d.)

Metrik Algoritma E.d.d. Algoritma E.y.d

Enerji tüketimi SPEA2 251,32 PAES 268,60

VM taşınma sayısı NSGAII 49995 PAES 55880

SLAPDM NSGAII 0,28% ϵ-MOEA 0,35%

SLATAH NSGAII 9,52% PAES 9,99%

SLAV NSGAII 0,02688% ϵ-MOEA 0,03504%

Ortalama CPU Kull. NSGAII 0,15267 PAES 0,16808

6.1. Enerji Tüketimi’ne Göre Başarım Değerlendirmesi

Optimizasyondaki iki amaçtan birisi olan enerji metriği benzetim ortamında oluşturulan

veri merkezindeki sunucuların harcadığı enerjiyi ifade etmektedir. Bölüm 4.5.5’de

tüketilen enerjinin nasıl hesaplandığı anlatılmaktadır.

Şekil 6.1. Algoritmaların enerji tüketim değerleri

Çizelge 6.1 ve Şekil 6.1’de görüldüğü üzere enerji tüketimi en az olandan en çok olana

göre sıralama yapıldığında NSGAII, SPEA2, ϵ-MOEA, PAES şeklinde sıralanır. Enerji

konusunda en avantajlı algoritma Çizelge 6.2’de görüldüğü gibi NSGAII algoritması

olmuştur. NSGAII, SPEA2 değerleri sırasıyla 249kwh ve 251 kwh olarak bulunmuştur.

61

Enerji tüketimi en yüksek olan algoritmalar ise PAES algoritmasıdır, değerleri sırasıyla

268 kwh’dır.

En az enerji kullanan algoritmalar değerleri birbirine çok yakın olan SPEA2 ve NSGAII

algoritmalarıdır. Enerji kullanımında en iyi olan SPEA2 ve NSGAII algoritmları CPU

kullanımı konusunda yine birbirlerine yakın değerlere sahiplerdir ve ortalama bir başarıya

sahip olmuşlardır.

6.2. Fiziksel Makine başına düşen ortalama CPU kullanım miktarı’na Göre Başarım

Değerlendirmesi

Bu metrik açık olan fiziksel makinelerin ortalama CPU kullanımını hesaplamaktadır. Bu

metriğin değerinin yüksek olması kaynak israfının daha az olduğunu ifade etmektedir.

Ayrıntılı bilgi Bölüm 4.5.6’da bulunmaktadır.

Şekil 6.2. Fiziksel makine başına düşen ortalama CPU kullanım oranları

Çizelge 6.1’de ve Şekil 6.2’de görüldüğü üzere aktif hostlar arasındaki CPU kullanım

ortalaması en az olandan en çok olana göre sıralama NSGAII, SPEA2, ϵ-MOEA, PAES

şeklinde gerçekleşmiştir. En avantajlı algoritma %16,808 değeri ile PAES’dir. PAES’in

CPU kullanımında en avantajlı olup enerji tüketiminde en dezavantajlı algoritmalardan

birisi olması başarı konusunda tutarsız olduğunu göstermektedir. NSGAII, ϵ-MOEA ve

SPEA2 algoritmalarının ortalama CPU kullanım değerleri birbirlerine çok yakındır;

sırasıyla %15,267, %15,585, %15,551’dir. [18]’de açık fiziksel makinelerin kaynak

62

kullanım miktarları da tek amaçlı optimizasyon algoritması olan Genetik Algoritma, çok

amaçlı optimizasyon algoritmaları olan NSGA ve NSGAII arasında karşılaştırılmıştır,

sonuçta NSGAII algoritması en avantajlı algoritma olmuştur.

6.3. Sanal Makine Taşınma Sayısı’na Göre Başarım Değerlendirmesi

Yoğun olan sanal makineleri rahatlatmak için daha az yoğun olan makinelere sanal makine

taşınması yapılır. Bazen de az yoğun makineler üzerindeki sanal makineler başka

makineler üzerine taşınarak boşaltılan fiziksel makineler kapatılır. Yapılan bu taşıma

işlemi fazladan kaynak ve enerji tüketimine neden olmaktadır. Bu da performansı olumsuz

yönde etkilemektedir. Sanallaştırma sistemlerinde sanal makine taşınması olsa da mümkün

olduğunca az gerçekleşmesi beklenmektedir.

Şekil 6.3. Sanal makine taşınma sayıları

Çizelge 6.1’de ve Şekil 6.3’de görüldüğü üzere VM taşınma sayısı en az olandan en çok

olana doğru NSGAII, SPEA2, ϵ-MOEA, PAES şeklinde sıralanmaktadır. VM taşıma

işlemi performans düşürücü bir iş olduğundan en avantajlı algoritma Çizelge 6.2’de

görüldüğü gibi 49995 değeri ile NSGAII algoritmasıdır. En çok taşıma yapan algoritma ise

55880 değeri ile PAES algoritmasıdır.

63

6.4. Hizmet Seviyesi Anlaşması İhlaline Göre Başarım Değerlendirme

SLAV, fiziksel makinenin CPU kapasitesinin üzerindeki sanal makinelere yetmediği

durumlarda ortaya çıkmaktadır. SLAV ile ilgili ayrıntılı bilgi Bölüm 4.5.1’de

bulunmaktadır.

Şekil 6.4. Hizmet seviyesi anlaşması ihlali (SLAV)

Çizelge 6.1 de ve Şekil 6.4’de görüldüğü üzere SLAV değeri en az olandan en çok olana

göre NSGAII, SPEA2, PAES, ϵ-MOEA şeklinde sıralanmaktadır. NSGAII ve SPEA2

algoritmalarının değerleri %0,02688 ve %0,02798 olarak birbirine çok yakın değerlere

sahiptir. ϵ-MOEA ve PAES algoritmalarının değerleri de %0,03504, %0,03364 olmak

üzere birbirlerine yakındır.

6.5. Sanal Makine Göçünden Kaynaklanan Performans Düşüşüne Göre Başarım

Değerlendirmesi

SLAPDM, sanal makine taşımasından kaynaklanan performans düşüşünü ifade etmektedir.

Bu metrikle ilgili ayrıntılı bilgi Bölüm 4.5.2’de verilmiştir.

64

Şekil 6.5. Sanal makine taşınmasından kaynaklanan performans düşüşü

Çizelge 6.1 de ve Şekil 6.5’de görüldüğü üzere SLAPDM değeri en az olandan en çok

olana göre NSGAII, SPEA2, PAES, ϵ-MOEA şekinde sıralanmaktadır. En düşük değerleri

veren NSGAII ve SPEA2 algoritmalarının SLAPDM değerleri sırasıyla %0,28 ve %0,29

olmak üzere birbirlerine çok yakınlardır. PAES, ϵ-MOEA sonuç değerleri ise sırasıyla

%0,34, %0,35 olmak üzere yakın değerlere sahiptir. SLAV metriğine göre yapılan sıralama

ile SLAPDM metriğine göre yapılan sıralama aynıdır. Bu da SLAPDM değerinin SLAV

değerini etkilediğini göstermektedir.

6.6. Aktif Fiziksel Makine Başına Düşen SLAV Zamanına Göre Performans

Değerlendirmesi

SLATAH, aktif fiziksel makine başına düşen ortalama SLAV yaşanma zamanını ifade

etmektedir. Ayrıntılı bilgi Bölüm 4.5.4’de bulunmaktadır.

65

Şekil 6.6. Aktif fiziksel makine sayısı başına düşen ortalama SLAV zamanı (SLATAH)

Çizelge 6.1’de ve Şekil 6.6’da görüldüğü üzere SLATAH değeri en az olandan en çok

olana göre NSGAII, SPEA2, ϵ-MOEA, PAES şeklinde sıralama yapılmaktadır ve değerleri

de sırasıyla %9,52, %9,67, %9,92, %9,99’dur. Burada diğer performans metriklerinden

farklı olarak SLATAH değerleri birbirlerine çok yakın değerlerdir. Eş. 4.1’e göre

değerlendirildiğinde, SLATAH değerleri neredeyse eşit olduğundan SLAV sıralamasındaki

en büyük etken PDM’dir. PDM’nin sıralamasıyla SLAV sıralamaları aynı ve değerler de

birbirleriyle orantılı olması da beklenen durumdur.

66

67

7. SONUÇ

Bu tezin konusu bulut bilişimde çok amaçlı optimizasyon algoritmaları ile dinamik yük

dengelemedir. Bu kapsamda sanal makine yerleştirme problemi ele alınmıştır. Sanal

makinelerin barındığı fiziksel makineler üzerindeki yük dengelenirken açık olan

makinelerin ortalama CPU kullanımı ve toplam harcanan enerjinin azaltılması

amaçlanmıştır. Çok amaçlı optimizasyon algoritmaları olan PAES, NSGAII, SPEA2, ϵ-

MOEA algoritmaları problemin çözümünde kullanılmıştır. Sonuçta ortalama CPU

kullanımı konusunda en avantajlı algoritmanın PAES olduğu tespit edilmiştir. En düşük

enerji tüketimini sağlayan algoritmalar ise NSGAII ve SPEA2 olmuştur. SLAV metriği

açısından NSGAII ve SPEA2 en avantajlı değerleri vermiştir. Yapılan çalışmalar, genel

olarak NSGAII ve SPEA2’nin daha üstün olduğunu göstermiştir. Bu tez çalışması, veri

merkezlerinin harcadığı enerjinin azaltılmasıyla doğanın korunması; kaynak israfının

azaltılmasıyla maliyetin azaltılması konusunda yararlı bir çalışma olmuştur. Gelecekte

farklı veri setleri ve farklı algoritmalar ile tez çalışmasının geliştirilmesi planlanmaktadır.

68

69

KAYNAKLAR

1. Sanderson, D. (2009). Programming google app engine: build and run scalable web

apps on google's infrastructure. United States: O'Reilly Media, 1-13

2. Chappell, D. (2008). Introducing the Azure services platform. White paper, 1364(11).

3. Samani, R., Reavis, J. and Honan, B. (2014). CSA guide to cloud computing:

Implementing cloud privacy and security. United States: Syngress, 2-8.

4. Zhang, Y. (2018). Virtualization and Cloud Computing, in Network Function

Virtualization: Concepts and Applicability in 5G Networks. New Jersey: Wiley, 192.

5. Wang, S., Gu, H., and Wu, G. (2013). A new approach to multi-objective virtual

machine placement in virtualized data center. Networking, Architecture and Storage

(NAS), 2013 IEEE Eighth International Conference, Xi'an.

6. Salapura, V. (2012, September). Cloud computing: Virtualization and resiliency for

data center computing. In Computer Design (ICCD), 2012 IEEE 30th International

Conference on, New Jersey.

7. Xu, J. and Fortes, J.A. (2010, December). Multi-objective virtual machine placement

in virtualized data center environments. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int'l Conference on and Int'l Conference on Cyber,

Physical and Social Computing (CPSCom), New Jersey.

8. Xu, M., Tian, W. and Buyya, R. (2017). A survey on load balancing algorithms for

virtual machines placement in cloud computing. Concurrency and Computation:

Practice and Experience, 29(12).

9. Fang, Y., Wang, F. and Ge, J. (2010, October). A task scheduling algorithm based on

load balancing in cloud computing. In International Conference on Web Information

Systems and Mining, Heidelberg.

10. Ortigoza, J., López-Pires, F. and Barán, B. (2016). Workload generation for VMP in

cloud computing environments. 2016 XLII Latin American Computing Conference,

Valparaíso.

11. Gao, Y., Guan, H., Qi, Z., Hou, Y. and Liu, L. (2013). A multi-objective ant colony

system algorithm for virtual machine placement in cloud computing. Journal of

Computer and System Sciences, 79(8), 1230-1242.

12. Malekloo, M. and Kara, N. (2014, December). Multi-objective ACO virtual machine

placement in cloud computing environments. In Globecom Workshops (GC Wkshps),

New Jersey.

13. Kjamilji, A. (2014, May). Multi-objective optimizations during parallel processing in

a dynamic heterogeneous cloud environment. In Computational Intelligence,

Communication Systems and Networks (CICSyN), 2014 Sixth International

Conference on, New Jersey.

70

14. Xu, J. and Fortes, J. A. (2010, December). Multi-objective virtual machine placement

in virtualized data center environments. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int'l Conference on and Int'l Conference on Cyber,

Physical and Social Computing, New Jersey.

15. Ma, F. and Zhang, L. (2015, September). Multi-objective optimization for dynamic

virtual machine management in cloud data center. In Software Engineering and

Service Science (ICSESS), 2015 6th IEEE International Conference on, New Jersey.

16. Xu, B., Peng, Z., Xiao, F., Gates, A.M. and Yu, J.P. (2015). Dynamic deployment of

virtual machines in cloud computing using multi-objective optimization. Soft

computing, 19(8), 2265-2273.

17. Liu, C., Shen, C., Li, S. and Wang, S. (2014, June). A new evolutionary multi-objective

algorithm to virtual machine placement in virtualized data center. In Software

Engineering and Service Science (ICSESS), 2014 5th IEEE International Conference

on, New Jersey.

18. Adamuthe, A.C., Pandharpatte, R.M. and Thampi, G.T. (2013, November).

Multiobjective virtual machine placement in cloud environment. In Cloud and

Ubiquitous Computing and Emerging Technologies (CUBE), 2013 International

Conference on, New Jersey.

19. Zheng, Q., Li, R., Li, X. and Wu, J. (2015, May). A multi-objective biogeography-

based optimization for virtual machine placement. In Cluster, Cloud and Grid

Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on, New

Jersey.

20. Xu, J. and Fortes, J. (2011, June). A multi-objective approach to virtual machine

management in datacenters. In Proceedings of the 8th ACM international conference

on Autonomic computing, New Jersey.

21. Masdari, M., Nabavi, S.S. and Ahmadi, V. (2016). An overview of virtual machine

placement schemes in cloud computing. Journal of Network and Computer

Applications, 66, 106-127.

22. Jamali, S. and Malektaji, S. (2014, October). Improving grouping genetic algorithm

for virtual machine placement in cloud data centers. In Computer and Knowledge

Engineering (ICCKE), 2014 4th International eConference on, New Jersey.

23. Joseph, C.T., Chandrasekaran, K. and Cyriac, R. (2015). A novel family genetic

approach for virtual machine allocation. Procedia Computer Science, 46, 558-565.

24. Buyya, R., Ranjan, R. and Calheiros, R.N. (2009, June). Modeling and simulation of

scalable Cloud computing environments and the CloudSim toolkit: Challenges and

opportunities. In High Performance Computing and Simulation, International

Conference on, New Jersey.

25. Al Nuaimi, K., Mohamed, N., Al Nuaimi, M. and Al-Jaroodi, J. (2012, December). A

survey of load balancing in cloud computing: Challenges and algorithms. In Network

Cloud Computing and Applications (NCCA), 2012 Second Symposium on, New

Jersey.

71

26. Alla, Y.H. (2015). Time dependent virtual machine consolidation with SLA (Service

Level Agreement) consideration. Master's thesis, Department of Informatics,

University of Oslo, Oslo, 9-22.

27. Taddei, P.A. (2015). Design and Development of a CloudSim Module to Model and

Evaluate Multi-resource Dependencies. Bachelor Thesis, Communication Systems

Group (CSG), Department of Informatics (IFI), University of Zurich, Zurich, 1-18.

28. Hadka, D. (2016). Beginner's guide to the MOEA framework. Pennsylvania:

CreateSpace Independent Publishing Platform, 1-46.

29. Beloglazov, A. (2013). Energy-efficient management of virtual machines in data

centers for cloud computing. Doctoral dissertation, Department of Computing and

Information Systems, The University of Melbourne, Melbourne, 1-203.

30. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary

computation, 6(2), 182-197.

31. Xu, J. and Fortes, J. A. (2010, December). Multi-objective virtual machine placement

in virtualized data center environments. 2010 IEEE/ACM Int'l Conference on and Int'l

Conference on Cyber, Physical and Social Computing, New Jersey.

32. Shabani, I., Kovaçi, A. and Dika, A. (2014, May). Possibilities offered by Google App

Engine for developing distributed applications using datastore. In Computational

Intelligence, Communication Systems and Networks (CICSyN), 2014 Sixth

International Conference on, New Jersey.

33. Rostami, S. (2014). Preference focussed many-objective evolutionary computation

Doctoral dissertation, Manchester Metropolitan University, Faculty of Science and

Engineering, Manchester, 28-60.

34. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. United

States: John Wiley and Sons, 1-272.

35. Srinivas, N. and Deb, K. (1994). Muiltiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary computation, 2(3), 221-248.

36. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary

computation, 6(2), 182-197.

37. Kreutzer, W., Hopkins, J. and Van Mierlo, M. (1997, December). SimJAVA—a

framework for modeling queueing networks in Java. In Proceedings of the 29th

conference on Winter simulation IEEE Computer Society, 483-488.

38. Xu, M., Tian, W. and Buyya, R. (2017). A survey on load balancing algorithms for

virtual machines placement in cloud computing. Concurrency and Computation:

Practice and Experience, 29(12).

72

39. Deb, K., Mohan, M. and Mishra, S. (2003). A fast multi-objective evolutionary

algorithm for finding well-spread pareto-optimal solutions. KanGAL report, 2003002,

1-18.

40. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and Buyya, R. (2011).

CloudSim: a toolkit for modeling and simulation of cloud computing environments

and evaluation of resource provisioning algorithms. Software: Practice and

experience, 41(1), 23-50.

41. Beume, N., Naujoks, B. and Emmerich, M. (2007). SMS-EMOA: Multiobjective

selection based on dominated hypervolume. European Journal of Operational

Research, 181(3), 1653-1669.

42. Zhang, Q. and Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm

based on decomposition. IEEE Transactions on evolutionary computation, 11(6), 712-

731.

43. Li, K., Kwong, S., Zhang, Q. and Deb, K. (2015). Interrelationship-based selection for

decomposition multiobjective optimization. IEEE Transactions on Cybernetics,

45(10), 2076-2088.

44. Zhu, Q., Lin, Q., Chen, W., Wong, K. C., Coello, C. A. C., Li, J. and Zhang, J. (2017).

An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.

IEEE transactions on cybernetics, 47(9), 2794-2808.

45. Zitzler, E., Laumanns, M. and Thiele, L. (2001). SPEA2: Improving the strength

Pareto evolutionary algorithm. TIK-report, 103.

46. Zitzler, E., and Künzli, S. (2004, September). Indicator-based selection in

multiobjective search. International Conference on Parallel Problem Solving from

Nature, Berlin, Heidelberg.

47. Beloglazov, A. and Buyya, R. (2012). Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consolidation of

virtual machines in Cloud datacenters. Concurrency and Computation: Practice and

Experience, 24(13), 1397-1420.

48. Tian, W., Xu, M., Chen, A., Li, G., Wang, X. and Chen, Y. (2015). Open-source

simulators for cloud computing: Comparative study and challenging issues. Simulation

Modelling Practice and Theory, 58, 239-254.

49. Jain, N. and Choudhary, S. (2016, March). Overview of virtualization in cloud

computing. In Colossal Data Analysis and Networking (CDAN) Symposium on, New

Jersey.

50. Deb, K. (2001). Optimization for engineering design: algorithms and examples. (2).

New Delhi: Twelfth Printing, 85-142.

51. Dökeroğlu, T. (2014). Multiobjective relational data warehouse design for the cloud.

Doktora Tezi, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 1-15.

73

52. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A. and

Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4),

50-58.

53. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J. and Ghalsasi, A. (2011). Cloud

computing—The business perspective. Decision support systems, 51(1), 176-189.

54. Subashini, S. and Kavitha, V. (2011). A survey on security issues in service delivery

models of cloud computing. Journal of network and computer applications, 34(1), 1-

11.

55. Binitha, S. and Sathya, S. S. (2012). A survey of bio inspired optimization algorithms.

International Journal of Soft Computing and Engineering, 2(2), 137-151.

56. Marler, R.T. and Arora, J.S. (2004). Survey of multi-objective optimization methods

for engineering. Structural and multidisciplinary optimization, 26(6), 369-395.

57. Laumanns, M., Thiele, L., Deb, K. and Zitzler, E. (2002). Combining convergence and

diversity in evolutionary multiobjective optimization. Evolutionary computation,

10(3), 263-282.

58. Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E.K., Moatti, Y. and Lorenz, D.H.

(2011, June). Guaranteeing high availability goals for virtual machine placement. In

Distributed Computing Systems (ICDCS), 2011 31st International Conference on,

New Jersey.

59. Patel, P., Ranabahu, A.H. and Sheth, A.P. (2009, January). Service level agreement in

cloud computing. The Ohio Center of Excellence in Knowledge–Enablede Computing

(Kno.e.sis), 1(78).

60. İnternet: University, Princeton. TITLE. PlanetLab.

URL:http://www.webcitation.org/query?url=https%3A%2F%2Fwww.planet-

lab.org%2F&date=2018-01-09, Son Erişim Tarihi: 09.01.2018.

61. Fan, X., Weber, W.D. and Barroso, L.A. (2007, June). Power provisioning for a

warehouse-sized computer. In ACM SIGARCH Computer Architecture News, 35(2),

13-23.

62. İnternet: Population of San Francisco. URL:

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.census.gov%2Fquickf

acts%2Ffact%2Ftable%2Fsanfranciscocitycalifornia%2CCA%2FPST040216%23view

top&date=2018-03-23, Son Erişim Tarihi: 23.03.2018

63. Rosenblum, M. (1999, October). Vmwares virtual platform. In Proceedings of hot

chips 1999(11), 185-196.

64. Velte, A. and Velte, T. (2009). Microsoft virtualization with Hyper-V. New York:

McGraw-Hill.

65. Xu, Z., Yang, L. and Lei, J. (2015). Conception and design of desktop virtualization

cloud platform for primary education: Based on the citrix technology, 2015

74

International Conference of Educational Innovation through Technology (EITT),

Wuhan.

66. İnternet: Hadka, D. MOEA Framework. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fmoeaframework.org%2F&d

ate=2018-03-29, Son Erişim Tarihi: 29.03.2018.

67. İnternet: PlanetLab Datasets. The Trustees of Princeton University. URL:

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.planet-

lab.org%2Fdatasets&date=2018-03-29, Son Erişim Tarihi: 29.03.2018.

http://www.webcitation.org/query?url=http%3A%2F%2Fmoeaframework.org%2F&date=2018-03-29
http://www.webcitation.org/query?url=http%3A%2F%2Fmoeaframework.org%2F&date=2018-03-29

75

EKLER

76

EK 1. NSGA-II Algoritması Benzetim Çalışması Sonuçları

Number of hosts 800

Number of VMs 1052

Total simulation time 86400,00 sec

Energy consumption 249,83 kWh

Number of VM migrations 49995

SLA 0,03%

SLA perf degradation due to migration 0,28%

SLA time per active host 9,52%

Overall SLA violation 2,26%

Average SLA violation 13,21%

Number of host shutdowns 12805

Mean time before a host shutdown 680,90 sec

StDev time before a host shutdown 1383,32 sec

Mean time before a VM migration 19,47 sec

StDev time before a VM migration 8,11 sec

Mean time before a VM migration 0,02525 sec

StDev time before a VM migration 0,01269 sec

Execution time - VM selection mean 0,00967 sec

Execution time - VM selection stDev 0,00729 sec

Execution time - host selection mean 0,05833 sec

Execution time - host selection stDev 0,02020 sec

Execution time - total mean 0,44622 sec

Execution time - total stDev 0,25038 sec

CPU Utilization mean 0,15267

BUILD SUCCESSFUL (total time: 29 minutes 46 seconds)

77

EK 2. ϵ-MOEA Algoritması Benzetim Çalışması Sonuçları

Number of hosts 800

Number of VMs 1052

Total simulation time 86400,00 sec

Energy consumption 267,64 kWh

Number of VM migrations 54461

SLA 0,04%

SLA perf degradation due to migration 0,35%

SLA time per active host 9,92%

Overall SLA violation 3,62%

Average SLA violation 15,96%

Number of host shutdowns 14747

Mean time before a host shutdown 639,92 sec

StDev time before a host shutdown 1216,84 sec

Mean time before a VM migration 19,36 sec

StDev time before a VM migration 8,09 sec

Mean time before a VM migration 0,03450 sec

StDev time before a VM migration 0,02919 sec

Execution time - VM selection mean 0,01161 sec

Execution time - VM selection stDev 0,00695 sec

Execution time - host selection mean 0,09392 sec

Execution time - host selection stDev 0,04817 sec

Execution time - total mean 0,63371 sec

Execution time - total stDev 0,41667 sec

CPU Utilization mean 0,15585

BUILD SUCCESSFUL (total time: 42 minutes 22 seconds)

78

EK 3. PAES Algoritması Benzetim Çalışması Sonuçları

Number of hosts 800

Number of VMs 1052

Total simulation time 86400,00 sec

Energy consumption 268,60 kWh

Number of VM migrations 55880

SLA 0,03%

SLA perf degradation due to migration 0,34%

SLA time per active host 9,99%

Overall SLA violation 3,30%

Average SLA violation 14,98%

Number of host shutdowns 14938

Mean time before a host shutdown 639,24 sec

StDev time before a host shutdown 1146,82 sec

Mean time before a VM migration 19,39 sec

StDev time before a VM migration 8,10 sec

Mean time before a VM migration 0,03876 sec

StDev time before a VM migration 0,02182 sec

Execution time - VM selection mean 0,01257 sec

Execution time - VM selection stDev 0,00567 sec

Execution time - host selection mean 0,09013 sec

Execution time - host selection stDev 0,04294 sec

Execution time - total mean 0,69351 sec

Execution time - total stDev 0,58376 sec

CPU Utilization mean 0,16808

BUILD SUCCESSFUL (total time: 53 minutes 54 seconds)

79

EK 4. SPEA2 Algoritması Benzetim Çalışması Sonuçları

Number of hosts 800

Number of VMs 1052

Total simulation time 86400,00 sec

Energy consumption 251,32 kWh

Number of VM migrations 50136

SLA 0,03%

SLA perf degradation due to migration 0,29%

SLA time per active host 9,67%

Overall SLA violation 2,39%

Average SLA violation 13,43%

Number of host shutdowns 13089

Mean time before a host shutdown 670,76 sec

StDev time before a host shutdown 1338,18 sec

Mean time before a VM migration 19,52 sec

StDev time before a VM migration 8,09 sec

Mean time before a VM migration 0,03230 sec

StDev time before a VM migration 0,01698 sec

Execution time - VM selection mean 0,01111 sec

Execution time - VM selection stDev 0,00561 sec

Execution time - host selection mean 0,12607 sec

Execution time - host selection stDev 0,05237 sec

Execution time - total mean 1,38601 sec

Execution time - total stDev 0,67321 sec

CPU Utilization mean 0,15551

BUILD SUCCESSFUL (total time: 44 minutes 10 seconds)

80

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı : DÖRTERLER, Serap

Uyruğu : T.C.

Doğum tarihi ve yeri : 05.01.1989, Kayseri

Medeni hali : Bekar

Telefon : 03124103130

e-mail : sdorterler@gmail.com

Eğitim

Yer Yıl

Yüksek lisans Gazi Üniversitesi / Bilgisayar Mühendisliği

Devam ediyor

Lisans Gazi Üniversitesi / Bilgisayar Mühendisliği 2011

Lise Ankara Atatürk Anadolu Lisesi 2006

İş Deneyimi

Yıl Yer Görev

2013-Halen Devlet Malzeme Ofisi Genel Müdürlüğü Sistem Yöneticisi

2012-2013 Gazi Üniversitesi Sistem Yöneticisi

Yabancı Dil

İngilizce

Yayınlar

Dörterler, S. , Dörterler, M. and Ozdemir, S. (2017). Multi-objective virtual machine

placement optimization for cloud computing, 2017 International Symposium on

Networks, Computers and Communications (ISNCC), Marrakech, 1-6.

Hobiler

Yürüyüş yapmak, kitap okumak, tiyatro ve sinema izleme.

GAZİ GELECEKTİR...

