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YÜKSEK LİSANS TEZİ
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başarı ile sunmuştur.
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KOZMOLOJİK SABİTLİ
DÖNEN SİLİNDİRİK SİMETRİK ELEKTROVAKUM UZAYLARI

ÖZET

Bu çalışmada M.M. Som ve N.O. Santos’un “Cylindrically Symmetric Stationary
Fields in General Relativity (Genel Görelilikte Durağan Silindirik Simetrik
Alanlar)” başlıklı makalesindeki [1] elektromanyetik alana sahip dönen silindirik
simetrik denklemlerin çözümlerinin kozmolojik sabitin varlığında genelleştirilmesi
incelenmiştir. Bu amaçla, öncelikle kozmolojik sabitin olmadığı durumda literatürde
kullanılan yöntemler incelenerek çözümler elde edilmiş, ardından kozmolojik sabit
olduğu durumda metrik çözümleri bulunmuştur.

Tezin giriş bölümünde durgun ve dönen silindirik simetrik metrikler genel hatlarıyla
ele alınmıştır. Bunun yanı sıra, literatürde daha önce elde edilmiş olan silindirik
simetrik metrik çözümleri özetlenmiştir.

Tezin ikinci bölümünde, [1]’de tanımlanan ve iki farklı çözümü verilen, dönen
silindirik simetrik elektro-vakum (fon uzayında boşluk elektromanyetik alan
denklemlerini sağlayan) alanı temsil eden

ds2 = f (r)dt2− e2ψ(r)(dr2 +dz2)+2m(r)dφdt− l(r)dφ
2 (1)

metriği kozmolojik sabitin olmadığı durumda ele alınmıştır. Bu metriğe ait
elektro-vakum çözümleri için [1]’deki ve [2]’deki yöntemler ayrıntılı olarak incelenmiş
ve çözümler elde edilmiştir. Bu yöntemler; T. Lewis’in "Some Special Solutions
of the Equations of Axially Symmetric Gravitational Fields (Eksensel Simetrik
Kütleçekimsel Alan Denklemlerinin Bazı Özel Çözümleri)" başlıklı makalesinde [4]
(1) metriğinin boşluk çözümlerini elde etmekte kullandığı ve B.K. Datta ve A.K.
Raychaudhuri’nin "Stationary Electromagnetic Fields in General Relativity (Genel
Görelilikte Durağan Elektromanyetik Alanlar)" başlıklı makalesinde [2] , aynı metriğin
elektro-vakum çözümlerinin elde edilmesinde kullandığı linearizasyon yöntemi ve
f , l,m arasında f l +m2 = r2 şeklinde bir bağıntı olduğu varsayımıdır.

Üçüncü bölümde, dönen silindirik simetrik madde için kozmolojik
sabitli elektro-vakum çözümleri iki farklı uzunluk elemanı için
sunulmuştur. Öncelikle ikinci bölümde incelenen ve yukarıda (1) ile
verilen metrik ele alınarak özel bir çözüm grubu elde edilmiştir. Diğer
yandan, alan denklemleri incelendiğinde, kozmolojik sabit eklenmesinin
f l + m2 = r2 şekindeki Lewis varsayımını geçersiz kıldığı görülmüştür. Bu
nedenle, Lewis varsayımının geçerliliğinin kozmolojik sabit varlığında korunup
korunmayacağını incelemek amacıyla silindirik simetrik dönen elektro-vakum uzayı
için aşağıda verilen daha genel metrik gözönüne alınmış

ds2 = f (r)dt2− e2ψ(r)(e2k(r)dr2 +dz2)+2m(r)dφdt− l(r)dφ
2 (2)
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ve alan denklemleri elde edilmiştir. Yukarıda verilen uzunluk elemanı, (1)’de verilen
uzunluk elemanının dr2 bileşenine e2k(r) çarpanının eklenerek genelleştirilmiş halidir.
Bu genelleştirmenin sonucunda Lewis varsayımının kullanılabileceği gösterilmiş ve bu
varsayım kullanılarak özel bir çözüm grubu elde edilmiştir.

Çalışmamızdaki hesapları Mathematica programlama dili ile kontrol ederek kodları
ekte daha sonra bu konuda çalışmak isteyenlere yardımcı olması düşüncesiyle verdik.
Bu çalışmanın devamında, elde ettiğimiz uzayın eğrilik tekilliklerini ve jeodeziklerini
hesaplamayı amaçlamaktayız.
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ROTATING CYLINDRICALLY SYMMETRIC
ELECTROVACUUM SPACES WITH COSMOLOGICAL CONSTANT

SUMMARY

In the general theory of relativity, solutions of (non)-vacuum Einstein’s equations
possesing certain symmetries have been studied widely during its journey. In the
beginning, static spherical symmetric solutions such as Schwarzschild solution (1916)
and Reissner-Nördström (1916-18) black hole solutions were presented and almost 50
years passed to get the rotating black hole solution by R. Kerr (1963). A non-static
(FRWL) solution representing homogeneous and isotropic expanding universe was
presented by Friedmann (1922-24), Lemaitre (1927), Robertson and Walker (1930-35)
which took first attention after Hubbles’s observation about expansion of the universe
in 1920-30. Today FRWL is the best candidate for explaining the universe consistently
with the astrophysical observations.

Regarding observations, homogeneous and isotropic properties of the space direct
us to investigate spherical symmetric solutions of the field equations and therefore,
in literature, spherical symmetric solutions of Einstein’s theory of relativity are
the most studied ones. Spaces with cylindrical symmetry which have translational
symmetry and rotational symmetry about that axis are paid less attention. Cosmic
strings, cylindrical black strings, charged and rotating cosmic string solutions are some
examples of these type of metrics having singularity along the symmetry axis.

In this thesis we study electro-vacuum cylindrically symmetric stationary spaces in
the presence of cosmological constant. In [1] M.M. Som and N.O. Santos studied
electro-vacuum cylindrically symmetric stationary spaces, here we generalize the field
equations to include cosmological constant. Following the method given in Lewis [4],
Raychaudhuri [2] and [1] we linearize metric components and solve the field equations
for electro-vacuum source.

In the first chapter we give definitions of general static and stationary cylindrical
symmetric metrics and give some well known examples having these properties that
is, all metric components are radial functions only.

In chapter 2, by considering rotating cylindrical space for electro-vacuum source,
we give in detail the method used in [1], [4] "Some Special Solutions of the
Equations of Axially Symmetric Gravitational Fields” by T. Lewis and [2] "Stationary
Electromagnetic Fields in General Relativity" by B.K. Datta ve A.K. Raychaudhuri. In
these papers the line element (metric) is given by

ds2 = f (r)dt2− e2ψ(r)(dr2 +dz2)+2m(r)dφdt− l(r)dφ
2 (3)

with the electro-vacuum source

F01 = B/
√
−g , F31 = A/

√
−g
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where A and B are constants. The metric coefficients, solution of field equations, are
found such that satisfying the linearity relation

f = am+bl (4)

where a, b are constants and hold the property f l +m2 = r2. Then, we examine the
solutions obtained.

Chapter 3 is devoted to find and present new solutions of the field equations considered
in chapter 2 including cosmological constant. Here, we first keep all rules of the [1,2,3]
and try to solve field equations. We show that if we require f l +m2 = r2 condition
"no solution exits" consistent with the source considered. If we give up f l +m2 = r2

equality and try to solve field equations we find the relation that f , l and m satisfy:
f l +m2 = r−4 . Then, the line element becomes

ds2 =
3

Λar2

(
1+

c4 +
1
9Λr3(ac3 +3B2r)

4a

)
dt2 (5)

+6

√
3

aΛr2

(
1+

c4 +
1
9Λr3(ac3 +3B2r)

2a

)
dtdφ

− 3
Λr2 dr2− 3

Λr2 dz2

+
3

Λr2

(
c4 +

1
9

Λr3(ac3 +3B2r)
)

dφ
2.

In the second approach, we extend the line element to

ds2 = f (r)dt2− e2ψ(r)(e2k(r)dr2 +dz2)+2m(r)dφdt− l(r)dφ
2 (6)

with an extra function k(r), so that the field equations become compatible and the
system is now solvable. Regarding all other linearity and f l +m2 = r2 conditions we
find a metric solution in the following form

ds2 =
r

4a

(
4+ c3−

c2

c
√

3Λr3/2 + 3B2

c2Λr2

)
dt2 (7)

+ r

(
2+ c3−

c2

c
√

3Λr3/2 + 3B2

c2Λr2

)
dtdφ

− 3
4Λr2 dr2− c2rdz2

+ar

(
c3−

c2

c
√

3Λr3/2 + 3B2

c2Λr2

)
dφ

2.

We see that our new found solutions have singularities on the symmetry axis i.e., at
r = 0, and that the first metric can be written in a conformal factor.

Examining curvature and scalar quantites of new found solutions, and finding their
geodesics will be our new research target. Classifications of the spacetimes with

xii



respect to their symmetries is a standard problem in general relativity. Therefore, we
hope that we contribute to the literature in this way.

We check all calculations with Mathematica algebraic programme and present related
codes in the appendix. We also hope that it will be helpful for the students and readers
who are interested in relativity.
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1. GİRİŞ

En genel statik silindirik simetrik bir metrik

ds2 = e2Φdt2− e2Θdr2−α
2e2Ωdφ

2− e2Ψdz2 (1.1)

şeklindedir. Burada α sabit, Φ , Θ , Ω ve Φ koordinat "r"nin fonksiyonlarıdır. Uzayın

zamansal ötelemenin dışında z-ekseni boyunca öteleme ve z-ekseni etrafında dönmeye

karşı gelen φ → φ +2π simetrisi bulunmaktadır. Eğer t → t +ωφ şeklinde dönüşüm

yapılırsa

ds2 = e2Φdt2 +2e2Φ
ωdφdt− e2Θdr2− (α2e2Ω−ω

2e2Φ)dφ
2− e2Ψdz2 (1.2)

şeklinde dönen silindirik metriğe karşı gelen uzunluk elemanı elde edilir.

Literatürde silindirik madde dağılımını kendine kaynak kabul eden ve kaynağın

dışındaki çözüm 1917 yılında Levi-Civita [3] tarafından aşağıdaki gibi önerilmiştir:

ds2 =−r4σ dt2 + r−4σ [r8σ2
(dr2 +dz2)+b2r2dφ

2]. (1.3)

1932’de Lewis [4] dönen silindirik simetrik metrik çözümü silindirik maddenin dışı

için, κ,β1,β2,ε sabitler ve ω sabit açısal hız olmak üzere,

ds2 =+κ
2(β 2

1 rε −ω
2
β

2
2 r2−ε)dt2

+2κ
2
ω(β 2

2 r2−ε −β
2
1 rε)β−1

1 β
−1
2 dφdt (1.4)

−
(

r
r0

)−ε(2−ε)/2

(dr2 +dz2)

−κ
2(β−2

1 r2−ε −ω
2
β
−2
2 rε)dφ

2

şeklinde elde etmiştir. κ ile ω arasında

κ = (1−ω
2)−1/2 (1.5)

şeklinde bir bağıntı vardır.

1937’de van Stockum [5] aynı metriği farklı bir yolla bulmuş ve yorumlamıştır.

1



Kozmolojik sabit varlığında durgun ya da dönen silindire ait metrik örnekleri

"Griffiths, Santos"un A rotating cylinder in an asymptotically locally anti-de Sitter

background [6] ve N.O. Santos’un Solution of the vacuum Einstein equations with

nonzero cosmological constant for a stationary cylindrically symmetrical spacetime

[7] başlıklı makalelerinde verilmiştir. Burada Santos, metriği Lewis yöntemi

kullanarak

ds2 = f dt2 +2kdφdt− eµ(dr2 +dz2)− ldφ
2 (1.6)

f l + k2 = r2 şartını sağlayacak şekilde elde etmiştir; burada f , k, µ ve l; r ’nin

fonksiyonudur. Boşluk elektromanyetik alan denklemlerinin f l + k2 6= r2 için bir

çözümü ise Lemos ve Zanchin [8] tarafından Aµ dört potansiyel, h(r) fonksiyonu

h(r) =
2λ

αr
, (1.7)

ve B(r) fonksiyonu

B(r) = α
2r2− b

αr
+

c2

α2r2 (1.8)

olmak üzere aşağıdaki gibi verilmiştir:

ds2 =− (γ2B(r)−ω
2r2)dt2− 2γω

α3r
(b− c2

αr
)dφdt

+(γ2r2− ω2

α4 B(r))dφ
2 +

1
B(r)

dr2 +α
2r2dz2 (1.9)

Aµ =−γh(r)δ 0
µ +

ω

α2 h(r)δ 2
µ . (1.10)

Bu çalışmada N. O. Santos’un [1]’deki elektrovakum çözümünü kozmolojik sabit

içerecek şekilde incelemeye çalışacağız.
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2. Λ = 0 İÇİN DÖNEN SİLİNDİRİK SİMETRİK ELEKTROVAKUM
UZAYLARI

2.1 Dönen Silindirik Simetrik Uzaylar İçin Einstein Alan Denklemleri

Dönen silindirik simetrik elektrovakum uzayları için metrik

ds2 = f dt2− e2ψ(dr2 +dz2)+2mdφdt− ldφ
2 (2.1)

şeklinde verilebilir [1]. Burada f , l,m ve ψ , "r" nin fonksiyonlarıdır. Metriğin

kovaryant tensör ifadesi ise

gab =


f (r) 0 0 m(r)
0 −e2ψ(r) 0 0
0 0 −e2ψ(r) 0

m(r) 0 0 −l(r)

 (2.2)

şeklindedir ve determinantı aşağıdaki gibidir:

g =−e4ψ( f l +m2). (2.3)

Metrik kullanılarak elde edilebilecek tek bir bağlantı (connection) tanımlıdır. Bu

bağlantı Christoffel sembolü olarak adlandırılır ve formülü aşağıdaki gibidir [9]:

Γ
a
bc =

1
2

gad(∂bgcd +∂cgbd−∂dgbc). (2.4)

Christoffel sembolleri genel koordinat dönüşümleri altında tensör gibi değişmez.

Riemann uzayında alt iki indise göre simetriktir:

Γ
a
bc = Γ

a
cb. (2.5)

(2.1) ile verilen dönen silindirik simetrik elektrovakum uzaylarına ait Christoffel

sembolleri, (2.4) kullanılarak ve (2.5) ile verilen simetri özelliği yardımıyla, " ′ " r’ye

3



göre türevi göstermek üzere aşağıdaki gibi elde edilir:

Γ
t
rt =

f ′l +mm′

2( f l +m2)

Γ
t
φr =

m′l−ml′

2( f l +m2)

Γ
r
tt =

1
2

e−2ψ f ′

Γ
r
rr = ψ

′

Γ
r
zz =−ψ

′ (2.6)

Γ
r
φ t =

1
2

e−2ψm′

Γ
r
φφ =−1

2
e−2ψ l′

Γ
z
zr = ψ

′

Γ
φ

tr =
f ′m− f m′

2( f l +m2)

Γ
φ

φr =
f l′+mm′

2( f l +m2)
.

Kısmî türevin genelleştirmesi olan kovaryant türev ∇a ve bir manifoldun eğriliğinin

ifadesi olan Ra
bcd Riemann (eğrilik) tensörü Christoffel sembolleri yardımıyla

tanımlanır.

Bir V b vektör alanının kovaryant türevi

∇aV b =V b
;a = ∂aV b +Γ

b
adV d (2.7)

şeklindedir [9]. (k, l) formundaki herhangi bir tensörün kovaryant türevi ise aşağıdaki

gibi verilir:

∇cT a1a2..ak
b1b2..bl

= ∂cT a1a2..ak
b1b2..bl

+Γ
a1
cdT da2..ak

b1b2..bl
+Γ

a2
cdT b1d..ak

b1b2..bl
+ .. (2.8)

−(Γd
cb1

T a1a2..ak
db2..bl

+Γ
d
cb2

T a1a2..ak
b1d..bl

+ ..).

Bir manifoldun eğriliği, (1,3) formundaki Riemann tensörüyle verilir. Eğrilik tensörü

olarak da adlandırılan Riemann tensörü aşağıdaki gibi tanımlıdır:

Ra
bcd = ∂cΓ

a
db−∂dΓ

a
cb +Γ

a
ceΓ

e
db−Γ

a
deΓ

e
cb. (2.9)

4



Riemann tensörünün daraltılmasıyla Rab Ricci tensörü elde edilir:

Rab = Rc
acb. (2.10)

Ricci tensörü simetriktir:

Rab = Rba. (2.11)

Ricci tensörünün izi eğrilik skaleri olarak da adlandırılan R Ricci skalerini verir:

R = Ra
a = gabRab. (2.12)

(2.1) ile tanımlı uzayın Ricci tensörleri

Rtt =
e−2ψ

4( f l +m2)

[
− f ′2l−2 f ′mm′+2 f m′2 + f f ′l′+2 f ′′( f l +m2)

]
(2.13)

Rrr =−ψ
′′+

ψ ′

2
( f l +m2)′

f l +m2 +
1

4( f l +m2)2

[
( f l +m2)′2 (2.14)

−2( f l +m2)( f l +m2)′′+2( f l +m2)( f ′l′+m′2)
]

(2.15)

Rzz =−ψ
′′−ψ

′ ( f l +m2)′

2( f l +m2)
(2.16)

Rφφ =
e−2ψ

4( f l +m2)

[
−2lm′2− f ′ll′+2l′mm′+ f l′2−2l′′( f l +m2)

]
(2.17)

Rφ t = Rtφ =
e−2ψ

4( f l +m2)

[
− f ′lm′+2 f ′l′m− f l′m′+2m′′( f l +m2)

]
(2.18)

ve Ricci skaleri

R = e−2ψ

[
2ψ
′′− f ′l′+m′2

2( f l +m2)
+2

√
f l +m2′′√
f l +m2

]
(2.19)

yukarıdaki gibi elde edilmiştir.

Einstein tensörü Gab, uzay-zamanın geometrisinin matematiksel ifadesidir. Ricci

tensörü ve Ricci skaleri yardımıyla sırasıyla (0,2) ve (1,1) formlarında

Gab = Rab−
1
2

Rgab (2.20)

Ga
b = Ra

b−
1
2

Rδ
a
b (2.21)

şeklinde tanımlanmıştır.

5



Einstein tensörleri (1,1) formunda (2.21) kullanılarak aşağıdaki gibi hesaplanmıştır:

Gt
t = e−2ψ

[
−ψ

′′+
f ′l′+m′2

4( f l +m2)
− 1

2
√

f l +m2

d
dr

(
f l′+mm′√

f l +m2

)]
(2.22)

Gr
r = e−2ψ

[
−ψ

′ ( f l +m2)′

2( f l +m2)
− f ′l′+m′2

4( f l +m2)

]
(2.23)

Gz
z = e−2ψ

[
ψ
′ ( f l +m2)′

2( f l +m2)
+

f ′l′+m′2

4( f l +m2)
− 1√

f l +m2

d2

dr2

(√
f l +m2

)]
(2.24)

Gφ

φ
= e−2ψ

[
−ψ

′′+
f ′l′+m′2

4( f l +m2)
− 1

2
√

f l +m2

d
dr

(
f ′l +mm′√

f l +m2

)]
(2.25)

Gφ

t = e−2ψ

[
1

2
√

f l +m2

d
dr

(
(m/l)l2√

f l +m2

)]
(2.26)

Gt
φ = e−2ψ

[
1

2
√

f l +m2

d
dr

(
( f/m)m2√

f l +m2

)]
. (2.27)

Enerji-momentum tensörleri, Fab elektromanyetik alan tensörleri cinsinden

T a
b =

1
4π

[FakFkb−
1
4

δ
a
b FklFlk] (2.28)

şeklinde tanımlıdır [10]. (2.28) ifadesinde kullanılan elektromanyetik alan tensörleri

antisimetriktir [11]:

Fab =−Fba (2.29)

Fab =−Fba

ve kovaryant türevleri

Fab
;b = ∇bFab = 0 (2.30)

F[ab;c] ≡ 0 (2.31)

özelliklerine sahiptir.

Elektromanyetik alan tensörlerinin antisimetri özelliği ve kovaryant türevlerinin (2.31)

özelliği kullanılarak sıfırdan farklı bileşenleri, A ve B herhangi iki fonksiyon olmak

üzere

Fφr =−Frφ =
A√
−g

(2.32)

F tr =−Frt =
B√
−g

(2.33)
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şeklinde seçilebilir. Elektromanyetik alan tensörlerinin kendi indislerinden herhangi

birine göre kovaryant türevi, kovaryant türevin (2.8)’deki formülü kullanılarak

Christoffel sembolleri cinsinden yazılabilir ve (2.30) özelliğinden dolayı sıfıra eşittir:

∇bFab = Fab
;b = ∂bFab +Γ

a
bdFdb +Γ

b
bdFad = 0. (2.34)

Yukarıda elde edilen formül kullanılarak ∇bFab ’ler hesaplandığında A ve B’nin r ’ye

göre türevlerinin sıfır olduğu görülür:

∂rA = 0 (2.35)

∂rB = 0. (2.36)

Bu nedenle A ve B sabittir.

Enerji momentum tensörleri, (2.28) yardımıyla

T t
t =

e−2ψ

8π

lA2 + f B2

f l +m2 (2.37)

T r
r =

e−2ψ

8π

−lA2 +2mAB+ f B2

f l +m2 (2.38)

T z
z =

e−2ψ

8π

lA2−2mAB− f B2

f l +m2 (2.39)

T φ

φ
=

e−2ψ

8π

−(lA2 + f B2)

f l +m2 (2.40)

T t
φ

=
2e−2ψ

8π

−lAB+mB2

f l +m2 (2.41)

T φ

t =
2e−2ψ

8π

mA2 + f AB
f l +m2 (2.42)

şeklinde elde edilir. Enerji-momentum tensörleri arasında

T t
t =−T φ

φ
(2.43)

T r
r =−T z

z (2.44)

eşitlikleri olduğu görülür.

Einstein alan denklemi, enerji-momentuma sahip bir kaynağın uzay-zamanın

geometrisinde oluşturduğu değişikliğin fiziksel ifadesidir. Einstein alan denklemi

(1,1) formunda

Ga
b = κT a

b (2.45)
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şeklindedir. Burada κ Einstein sabiti olarak adlandırılır. Mutlak değeri |κ|= 8πG
c4 olup

işareti Einstein alan denklemleri için belirlenmiş işaret kuralına göre belirlenir (Bkz.

Ek A.1). Rölativistik birimlerle çalışıldığında ( G = 1 ve c = 1 ) ve κ için işaret kuralı

uygulandığında κ =+8π elde edilir ve alan denklemleri aşağıdaki gibi yazılabilir:

Ga
b = 8πT a

b. (2.46)

Alan denklemlerine bakıldığında enerji-momentumla uzay geometrisinin doğru

orantılı olduğu görülür. Bu nedenle T a
b’ler arasındaki (2.43) ve (2.44) denklemlerinde

elde edilen bağıntılar Ga
b’ler için de geçerlidir:

Gt
t =−Gφ

φ
(2.47)

Gr
r =−Gz

z. (2.48)

Başka bir ifadeyle

Gt
t +Gφ

φ
= 0 (2.49)

Gr
r +Gz

z = 0 (2.50)

şeklinde de yazılabilir.

Alan denklemleri, (2.46) yardımıyla aşağıdaki gibi elde edilmiştir:

−ψ
′′+

f ′l′+m′2

4( f l +m2)
− 1

2
√

f l +m2

d
dr

(
f l′+mm′√

f l +m2

)
=

f B2 + lA2

f l +m2 (2.51)

−ψ
′ ( f l +m2)′

2( f l +m2)
− f ′l′+m′2

4( f l +m2)
=

f B2 +2mAB− lA2

f l +m2 (2.52)

ψ
′ ( f l +m2)′

2( f l +m2)
+

f ′l′+m′2

4( f l +m2)
− 1√

f l +m2

d2

dr2

(√
f l +m2

)
(2.53)

=− f B2 +2mAB− lA2

f l +m2

−ψ
′′+

f ′l′+m′2

4( f l +m2)
− 1

2
√

f l +m2

d
dr

(
f ′l +mm′√

f l +m2

)
=− f B2 + lA2

f l +m2 (2.54)

1

2
√

f l +m2

d
dr

(
(m′l−ml′√

f l +m2

)
= 2

mB2− lAB
f l +m2 (2.55)

1

2
√

f l +m2

d
dr

(
f ′m− f m′√

f l +m2

)
= 2

mA2 + f AB
f l +m2 . (2.56)
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Alan denklemlerinin çözümüne geçilmeden önce, Einstein tensörleri arasındaki

yukarıda verilen (2.49) ve (2.50) bağıntılarında, (2.22)-(2.27)’de verilen Ga
b’ler

yerleştirilirse aşağıdaki diferansiyel denklemler elde edilir:

−2ψ
′′+

f ′l′+m′2

2( f l +m2)
− 1√

f l +m2

d2

dr2

(√
f l +m2

)
= 0 (2.57)

− 1√
f l +m2

d2

dr2

(√
f l +m2

)
= 0. (2.58)

Bu denklemlerden (2.58), (2.57)’de yerleştirildiğinde, ψ ′′ ile f , l,m fonksiyonları

arasında aşağıdaki gibi bir bağıntı olduğu görülür:

ψ
′′ =

f ′l′+m′2

4( f l +m2)
. (2.59)

Diğer yandan, (2.58) diferansiyel denklemi çözüldüğünde, c1 ve c2 integrasyon

sabitleri olmak üzere aşağıdaki çözüm elde edilir:

f l +m2 = (c1r+ c2)
2. (2.60)

Bu çalışmada, Som ve Santos’un makalesinde kullandıkları gibi [1] c1 = 1 ve c2 = 0

alınarak

f l +m2 = r2 (2.61)

kullanılmıştır.

Alan denklemlerinde (2.59) ve (2.61)’de elde edilen eşitlikler yerleştirildiğinde

aşağıdaki diferansiyel denklem sistemini elde elde ederiz:

− 1
2

d
dr

[
f l′+mm′

r

]
=

f B2 + lA2

r
(2.62)

−ψ
′− rψ

′′ =
f B2 +2mAB− lA2

r
(2.63)

ψ
′+ rψ

′′ =− f B2 +2mAB− lA2

r
(2.64)

− 1
2

d
dr

[
f ′l +mm′

r

]
=− f B2 + lA2

r
(2.65)

1
2

d
dr

[
m′l−ml′

r

]
= 2

mB2− lAB
r

(2.66)

1
2

d
dr

[
f ′m− f m′

r

]
= 2

mA2 + f AB
r

. (2.67)
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Yukarıda elde edilen alan denklemleri incelendiğinde, (2.63) ve (2.64)’ün özdeş olduğu

görülür. Bu, (2.47) ve (2.48) ’den elde edilen (2.61) ve (2.59) ifadelerinin alan

denklemlerinde yerleştirilmesi sonucudur. Diğer yandan, yine (2.49)’da taraf tarafa

toplanmış olan (2.62) ve (2.65) denklemleri bu kez birbirinden çıkartılarak ve (2.61)

ile (2.59) ifadeleri de eklenerek elde edilen aşağıdaki denklem sistemi (2.62)-(2.67)

denklemlerine eşdeğer bir lineer bağımsız diferansiyel denklem sistemidir:

d
dr

[
f ′l− f l′

r

]
= 4

f B2 + lA2

r
(2.68)

d
dr

[
rψ
′]= lA2−2mAB− f B2

r
(2.69)

d
dr

[
m′l−ml′

r

]
=

4(mB2− lAB)
r

(2.70)

d
dr

[
f ′m− f m′

r

]
=

4(mA2 + f AB)
r

(2.71)

f l +m2 = r2

ψ
′′ =

f ′l′+m′2

4( f l +m2)
.

Yukarıdaki denklem sisteminin ilk dört denklemi aşağıdaki gibi toparlanıp,

d
dr

[
( f/l)′l2

r

]
= 4

(lA2 + f B2)

r
(2.72)

d
dr

[
(m/l)′l2

r

]
= 4

(−lAB+mB2)

r
(2.73)

d
dr

[
( f/m)′m2

r

]
= 4

(mA2 + f AB)
r

(2.74)

d
dr

[
rψ
′]= (lA2−2mAB− f B2)

r
(2.75)

bu denklemlerde u = f/l ve v = m/l dönüşümleri uygulandığında, (2.61)’de verilen

f l +m2 = r2 eşitliği

u+ v2 =
r2

l2 (2.76)
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şeklinde ve (2.72)-(2.75) denklemleri de aşağıdaki gibi u,v ve r cinsinden yazılabilir:

d
dr

[
u′r

u+ v2

]
= 4

(A2 +uB2)√
u+ v2

(2.77)

d
dr

[
v′r

u+ v2

]
= 4

(−AB+ vB2)√
u+ v2

(2.78)

d
dr

[
(v/u)′u2r

u+ v2

]
=−4

(vA2 +uAB)√
u+ v2

(2.79)

d
dr

[
rψ
′]= (A2−2vAB−uB2)√

u+ v2
. (2.80)

Ayrıca, u ve v arasında

v = au+b (2.81)

şeklinde lineer bir bağıntı olduğu varsayıldığında [2] [1], (2.77)-(2.79) denklem

grubundaki denklemlerin

d
dr

[
u′r

u+ v2

]
= 4

(A2 +uB2)√
u+ v2

(2.82)

d
dr

[
au′r

u+ v2

]
= 4

(−AB+ vB2)√
u+ v2

(2.83)

d
dr

[
−bu′r
u+ v2

]
=−4

(vA2 +uAB)√
u+ v2

(2.84)

şeklinde birbirlerinin a ve b sabitleriyle orantılı katları olduğu ve lineer bağımsız

denklem sayısının ikiye düştüğü görülür. Bunlardan ilki (2.77) olup diğer lineer

bağımsız denklem ise yukarıdaki denklem grubunun sağ taraflarının eşitlenmesiyle

elde edilen

aA2 +AB−bB2 = 0 (2.85)

kuadratik denklemdir. Ayrıca (2.81) yerleştirilerek u + v2 ifadesi de u cinsinden

kuadratik şekilde yazılabilir:

u+ v2 = a2u2 +(2ab+1)u+b2. (2.86)

Yukarıda ifade edilen denklemlerden (2.85) A değişkenine göre 2. derece bir denklem

ve (2.86) da u değişkenine göre 2. derece bir denklem olarak ele alınıp diskriminantları

hesaplandığında aynı diskriminanta sahip oldukları görülür. Ortak diskriminantları µ2

ile gösterilecek olursa

µ =±
√

1+4ab (2.87)
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ve bu denklemlerin kökleri

A1,2 =−
B
2a

(µ +1) (2.88)

u1 =−
(µ−1)2

4a2 (2.89)

u2 =−
(µ +1)2

4a2 (2.90)

olarak bulunur.

Reel alanlar için µ2 ≥ 0 olmalıdır.

2.2 Alan Denklemlerinin Çözümü

Bir önceki bölümde elde edilen lineer bağımsız denklemler, (2.61) ve (2.59) ile birlikte

aşağıda tekrar verilen (2.77), (2.80), (2.85)

d
dr

[
u′r

u+ v2

]
= 4

(A2 +uB2)√
u+ v2

(2.91)

d
dr

[
rψ
′]= (A2−2vAB−uB2)√

u+ v2
(2.92)

aA2 +AB−bB2 = 0 (2.93)

f l +m2 = r2→ u+ v2 =
r2

l2 (2.94)

ψ
′′ =

f ′l′+m′2

4( f l +m2)
(2.95)

denklemleridir. Denklemlerin çözümleri µ = 0 ve µ 6= 0 için iki farklı şekilde elde

edilebilir.

2.2.1 µ = 0 Çözümü

Bir önceki bölümde elde edilen µ,A1,2,u1,u2 ifadeleri µ = 0 için

b =− 1
4a

(2.96)

A =− B
2a

(2.97)

u1 = u2 =−
1

4a2 (2.98)
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olup, alan denklemlerinde yerleştirildiğinde (2.91)’in ve (2.92)’nin sağ taraflarının

sadeleşerek

d
dr

[
u′r

(au+ 1
4a)

2

]
=

4B2

a
(2.99)

d
dr

[
rψ
′]= 0 (2.100)

şeklinde integre edilebilir hale geldiği görülür. Bu denklemlerden birincisinin ilk

integrasyonu sonucunda, c1 integrasyon sabiti olmak üzere aşağıdaki ifade elde edilir:

u′r
(au+ 1

4a)
2
=

4B2

a
r+ c1. (2.101)

Denklem ikinci kez integre edildiğinde, c2 integrasyon sabiti olmak üzere

1
au+ 1

4a

=−4B2r− c1lnr− c2 (2.102)

u’yu r’ye bağlayan ifade elde edilir. Bu ifadenin sağ tarafı −ξ olacak şekilde

ξ = 4B2r+ c1lnr+ c2 (2.103)

ξ (r) fonksiyonu tanımlanarak u aşağıdaki gibi elde edilir:

u =− 1
ξ a
− 1

4a2 . (2.104)

v, (2.81) kullanılarak

v =− 1
ξ
− 1

2a
(2.105)

şeklinde elde edilir. Sırasıyla, (2.76) ve u = f/l , u = m/l dönüşümleri ve (2.80)

kullanılarak, f , l,m fonksiyonları, ξ ’ye bağlı olarak

ξ = 4B2r+ c1lnr+ c2 (2.106)

l =−ξ r (2.107)

f =
r
a

(
1+

ξ

4a

)
(2.108)

m = r
(

1+
ξ

2a

)
(2.109)

şeklinde elde edilir. Diğer yandan, denklem (2.100) integre edilerek ψ fonksiyonu, c3

ve r0 integrasyon sabitleri olmak üzere aşağıdaki gibi elde edilmiştir:

ψ = c3ln
(

r
r0

)
. (2.110)
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Çözümlerin (2.59) eşitliğini sağlaması gerektiğinden, ψ ifadesindeki integrasyon

sabitinin c3 =−1/4 olduğu bulunur. Sonuç olarak, elde edilen çözüm grubu aşağıdaki

gibidir:

ξ = 4B2r+ c1lnr+ c2 (2.111)

l =−ξ r (2.112)

f =
r
a

(
1+

ξ

4a

)
(2.113)

m = r
(

1+
ξ

2a

)
(2.114)

ψ =−1
4

ln
(

r
r0

)
. (2.115)

Bu sonuçlar metrikte yerleştirildiğinde

ds2 =
r

4a2

(
4B2r− c1ln(r)+4a+ c2

)
dt2 (2.116)

+
r
a

(
4B2r− c1ln(r)+2a+ c2

)
dtdφ

−
√

r0

r
dr2−

√
r0

r
dz2

+ r
(
4B2r− c1ln(r)+ c2

)
dφ

2

uzunluk elemanı yukarıdaki gibi bulunmmuştur.

2.2.2 µ 6= 0 Çözümü

Alan denklemlerinden ilki olan (2.91) denkleminin sağ tarafında A’nın (2.88)’de elde

edilen µ cinsinden ifadesi yerleştirilip u+ v2 ifadesi de (2.89) ve (2.90)’da elde edilen

kökler cinsinden yazıldığında, denklem

d
dr

[
u′r

u+ v2

]
= 4

(A2 +uB2)√
u+ v2

=
4B2

a

√
u−u2

u−u1
(2.117)

şeklinde u’ya bağlı şekilde yazılabilir. Bu denklemde,

θ =
∫ du

u+ v2 =
∫ du

a2(u−u1)(u−u2)
(2.118)

gibi bir θ dönüşümü uygulanırsa [2] denklemin sol tarafı θ cinsinden aşağıdaki gibi

yazılabilir:
d
dr

[
rθ
′]= 4B2

a

√
u−u2

u−u1
. (2.119)
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Diğer yandan (2.118) ifadesi integre edilerek k integrasyon sabiti olmak üzere θ(u)

elde edilebilir:

θ(u) =
1
µ

ln
(

1
k2

u−u1

u−u2

)
. (2.120)

Yukarıda verilen θ(u) ifadesindeki u−u1
u−u2

terimi aşağıdaki gibi θ cinsinden

u−u1

u−u2
= k2eµθ . (2.121)

şeklinde yazılıp, (2.119)’un sağ tarafında yerleştirilir ve ikinci bir

ρ = lnr (2.122)

dönüşümü uygulanırsa, denklem (2.117) aşağıdaki şekli alır:

d2θ

dρ2 =
4B2

ka
eρ−µθ/2. (2.123)

Bu denklemin çözümü c ve r0 integrasyon sabitleri olmak üzere

eµθ =
16B4µ2r2

a2k2c4 cosh4
[

c
2

ln
(

r
r0

)]
(2.124)

şeklindedir.

eµθ =
ξ 2

k2 (2.125)

olacak şekilde bir ξ fonksiyonu aşağıdaki gibi tanımlanarak,

ξ =
4B2µr

ac2 cosh2
[

c
2

ln
(

r
r0

)]
(2.126)

f , l,m çözümleri ξ cinsinden

f =
1

2a
r
(1+ξ 2)

ξ
− µr

4a
(1−ξ 2)

ξ
− r

4aµ

(1−ξ 2)

ξ
(2.127)

l =
ar
µ

(1−ξ 2)

ξ
(2.128)

m =
1
2

r
(1+ξ 2)

ξ
− r

2µ

(1−ξ 2)

ξ
(2.129)

şeklinde elde edilir.

ψ çözümü için, ikinci alan denklemi (2.92)’nin sağ tarafına bakıldığında, (2.93) ile

verilen katsayılar denklemi yardımıyla çarpanlarına ayrılabildiği görülür:

d
dr

[
rψ
′]= (A2−2vAB−uB2)√

u+ v2

=−(2aA+B)
B

.
A2 +uB2
√

u+ v2

=
µB2

a
.

√
u−u2

u−u1
. (2.130)
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(2.130) denkleminin sağ tarafında (2.117) ve (2.88) yerleştirilerek

d
dr

[
rψ
′]= B2µ

a
.

√
u−u2

u−u1
(2.131)

elde edilen yukarıdaki denklemde de (2.121) yerleştirildiğinde

d
dr

[
rψ
′]= B2µ

ak
e−µθ/2 (2.132)

gibi, çözümü (2.124)’te elde edilmiş olan eµθ cinsinden bir diferansiyel denkleme

dönüştürülebilir. Bu denklem integre edildiğinde ψ fonksiyonu c1 ve c2 integrasyon

sabitleri olmak üzere aşağıdaki gibidir:

ψ = ln
[

c2rc1cosh
(

c
2

ln
(

r
r0

))]
. (2.133)

Son olarak, yukarıda (2.127), (2.128), (2.129) ve (2.133) ile verilen ψ, f , l,m

çözümleri, (2.126) ile birlikte (2.95)’te yerleştirildiğinde, c1’in aşağıdaki değeri alması

gerektiği görülür:

c1 =
c2

4
. (2.134)

Sonuç olarak, (2.1) metriğine ait alan denklemlerinin µ 6= 0 çözüm grubu; (2.126) ile

verilen ξ fonksiyonu cinsinden, (2.127), (2.128), (2.129) denklemlerinde verilen f , l,m

fonksiyonları ile birlikte aşağıdaki ψ fonsiyonudur:

ψ = ln
[

c2rc2/4cosh
(

c
2

ln
(

r
r0

))]
. (2.135)

Yukarıda verilen çözümlerle birlikte ds2 aşağıdaki gibi elde edilmiştir:

ds2 =

B2(1+µ)2

a2c2 r2cosh2
(

c
2

ln
(

r
r0

))
− c2(µ−1)2

8B2µ2
(

1+ cosh
(

cln
(

r
r0

)))
dt2

+

[
2B2(1+µ)

ac2 r2
(

1+ cosh
(

cln
(

r
r0

)))

+
ac2(µ−1)

4B2µ2 sech2
(

c
2

ln
(

r
r0

))]
dtdφ

−
c2

2
2

rc2/2
(

1+ cosh
(

cln
(

r
r0

)))
dr2 (2.136)

−
c2

2
2

rc2/2
(

1+ cosh
(

cln
(

r
r0

)))
dz2

+

[
2B2

c2 r2
(

1+ cosh
(

cln
(

r
r0

)))
− a2c2

4B2µ2 sech2
(

c
2

ln
(

r
r0

))]
dφ

2.
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3. Λ 6= 0 İÇİN DÖNEN SİLİNDİRİK SİMETRİK ELEKTROVAKUM
UZAYLARI

Bu bölümde, dönen silindirik simetrik elektrovakum uzayların kozmolojik sabit

varlığında çözümleri incelenecektir. Öncelikle, bir önceki bölümde kullanılan ve

aşağıda tekrar verilen (2.1)

ds2 = f dt2− e2ψ(dr2 +dz2)+2mdφdt− ldφ
2 (3.1)

metriği için çözüm aranmış, ardından, yukarıdaki metriğin dr2 bileşenine e2k(r)

çarpanının eklenmesiyle elde edilen aşağıdaki metriğe ait çözümler elde edilmeye

çalışılmıştır;

ds2 = f dt2− e2ψ(e2kdr2 +dz2)+2mdφdt− ldφ
2. (3.2)

İlk metrik, ikinci metriğin k = 0 için özel durumudur.

3.1 k = 0 İçin Einstein Alan Denklemleri

Kozmolojik sabit varlığında alan denklemleri aşağıdaki gibidir:

Ga
b +Λδ

a
b = 8πT a

b. (3.3)

Bu ifadede, (2.43)’te verilen

T t
t =−T φ

φ

T r
r =−T z

z

eşitlikleri yerleştirildiğinde, Einstein tensörleri arasında (2.49) ve (2.50) ’de elde edilen

eşitliklerden farklı olarak

Gt
t +Gφ

φ
+2Λ = 0 (3.4)

Gr
r +Gz

z +2Λ = 0 (3.5)

eşitlikleri olduğu görülür.
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Einstein tensörleri arasındaki bu bağlantılarda bir önceki bölümde elde edilen ve

(2.22)-(2.27) ile verilen Ga
b yerleştirildiğinde aşağıdaki diferansiyel denklemleri verir:

ψ
′′ =

f ′l′+m′2

4( f l +m2)
(3.6)

√
f l +m2′′√
f l +m2

= 2Λe2ψ . (3.7)

.

Yukarıdaki diferansiyel denklemlerden ikincisine bakıldığında, alan denklemlerinin

f l +m2 = r2 (3.8)

eşitliğini kabul etmediği görülür.

Kozmolojik sabitli alan denklemleri; (2.37)-(2.42) denklemlerinde verilmiş T a
b

enerji-momentum tensörleri, (2.22)-(2.27) ile verilen Ga
b’ler ile (3.6) ve (3.7)’de elde

edilen eşitlikler alan denklemlerinin (3.3)’te verilen ifadesinde yerleştirilerek aşağıdaki

gibi elde edilmiştir:

d
dr

[
( f l′+mm′)

2
√

f l +m2

]
−Λ

√
f l +m2e2ψ =−(lA2 + f B2)√

f l +m2
(3.9)

− d
dr

[
ψ
′
√

f l +m2
]
+Λ

√
f l +m2e2ψ =

−lA2 +2mAB+ f B2√
f l +m2

(3.10)

d
dr

[
ψ
′
√

f l +m2
]
−Λ

√
f l +m2e2ψ =

lA2−2mAB− f B2√
f l +m2

(3.11)

d
dr

[
( f ′l +mm′)

2
√

f l +m2

]
−Λ

√
f l +m2e2ψ =

(lA2 + f B2)√
f l +m2

(3.12)

d
dr

[
(m′l−ml′)

2
√

f l +m2

]
=−2

(lAB−mB2)√
f l +m2

(3.13)

d
dr

[
(m′ f −m f ′)

2
√

f l +m2

]
=−2

(mA2 + f AB)√
f l +m2

. (3.14)

Bu denklemler, Λ = 0 durumu için elde edilen alan denklemleriyle benzerlik

göstermektedir. Bu nedenle ilk bölümde takip edilen adımlar kullanılmış, u = f/l

ve v = m/l dönüşümleri uygulanmış, u ve v arasında

v = au+b (3.15)
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şeklinde bir lineerlik olduğu kabul edilerek

u+ v2 =
f l +m2

l2 (3.16)

olmak üzere denklemler elde edilmiştir.

A ve B arasındaki (2.85) bağıntısı ile, u + v2 için (2.76) bağıntılarının değişmediği

görülür:

aA2 +AB−bB2 = 0 (3.17)

µ =±
√

1+4ab (3.18)

A1,2 =−
B
2a

(µ +1) (3.19)

au2 +(2ab+1)u+b2 (3.20)

u1 =−
(µ−1)2

4a2 (3.21)

u2 =−
(µ +1)2

4a2 . (3.22)

Çözülmesi gereken denklem sistemi u ve
√

f l +m2 cinsinden aşağıdaki gibidir:

d
dr

[
u′
√

f l +m2

u+ v2

]
= 4

(A2 +uB2)√
u+ v2

(3.23)

d
dr

[
ψ
′
√

f l +m2
]
−Λ

√
f l +m2e2ψ =

(A2−2vAB−uB2)√
u+ v2

(3.24)

√
f l +m2′′√
f l +m2

= 2Λe2ψ (3.25)

ψ
′′ =

f ′l′+m′2

4( f l +m2)
. (3.26)

(3.23)-(3.26) denklemlerinin µ = 0 ve µ 6= 0 için iki farklı çözümü vardır.

3.1.1 µ = 0 Çözümü

Daha önce elde edilen µ , A1,2, u1, u2 ifadeleri µ = 0 için

b =− 1
4a

(3.27)

A =− B
2a

(3.28)

u1 = u2 =−
1

4a2 (3.29)
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şeklindedir.

(3.23)-(3.26) denklem grubu µ = 0 için aşağıdaki gibi elde edilir:

d
dr

[
u′
√

f l +m2

(au+ 1
4a)

2

]
=

4B2

a
(3.30)

d
dr

[
ψ
′
√

f l +m2
]
= Λ

√
f l +m2e2ψ (3.31)√

f l +m2′′ = 2Λ

√
f l +m2e2ψ (3.32)

ψ
′′ =

f ′l′+m′2

4( f l +m2)
. (3.33)

Yukarıdaki denklemlerden (3.32), denklem (3.31)’de yerleştirilerek elde edilen

1
2

√
f l +m2′′ =

d
dr

[
ψ
′
√

f l +m2
]

(3.34)

diferansiyel denklemi integre edildiğinde, ψ için aşağıdaki ifade elde edilir:

ψ =
1
2

ln
√

f l +m2 +
∫ c1dr√

f l +m2
+ c2. (3.35)

Diğer yandan,(3.30) denklemi iki kez integre edildiğinde ve bölüm 2.2.1’de olduğu

gibi sağ yanı −ξ ’ye eşit olacak şekilde bir ξ

ξ = a

[∫
(4B2r

a + c3)√
f l +m2

dr+ c4

]
(3.36)

fonksiyonu tanımlandığında, integral sonucunda

1
au+ 1

4a

=−a

[∫
(4B2r

a + c3)√
f l +m2

dr+ c4

]
=−ξ (3.37)

elde edilir. Yine bir önceki bölümde olduğu gibi, yukarıdaki ifade yardımıyla u, v, f , l

ve m, ξ fonksiyonu cinsinden aşağıdaki gibi yazılabilir:

u =− 1
ξ a
− 1

4a2 (3.38)

v =− 1
ξ
− 1

2a
(3.39)

l =−ξ r (3.40)

f =
r
a

(
1+

ξ

4a

)
(3.41)

m = r
(

1+
ξ

2a

)
. (3.42)
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Diğer yandan, ψ ′′’in (3.33) ifadesinde f , l ve m yerine (3.38) ile verilen f (ξ), l(ξ) ve

m(ξ) yerleştirildiğinde ve yazım kolaylığı açısından

h(r) =
√

f l +m2 (3.43)

şeklinde bir h fonksiyonu tanımlanarak aşağıdaki ifade elde edilir:

ψ
′′ =

f ′l′+m′2

4( f l +m2)
=

h′2

h2 . (3.44)

ψ’nin (3.35) ifadesinde c1 = 0 alınarak iki kez türevi alındığında ise aşağıdaki gibi bir

denklem elde edilir:

ψ
′′ =

h′′h−h′2

2h2 . (3.45)

ψ ′′’in yukarıda elde edilen iki ifadesi birbirine eşitlenerek h fonksiyonu için aşağıdaki

diferansiyel denklem elde edilir:

h′′h =
3
2

h′2. (3.46)

Bu diferansiyel denklemin çözümü aşağıdaki gibidir:

h =
√

f l +m2 =

(
1

c5− c6r

)2

. (3.47)

Bulunan h ifadesi ve ξ fonksiyonunun denklem (3.36)’da verilen ifadesi yardımıyla ξ ,

aşağıdaki gibi elde edilir:

ξ = c4 +(6B2c2
5 +ac3c2

5)r− (8B2c5c6 +ac3c5c6)r2 +(
1
3

ac3c2
6 +3B2c2

6)r
3. (3.48)

ξ ifadesi alan denklemlerinde yerleştirildiğinde katsayılar c5 = 0 ve c5 6= 0 için iki

farklı çözüm grubu olduğu görülür.

3.1.1.1 c5 = 0 çözümü

Denklem (3.48) ile verilen ξ ve denklem (3.47) ile verilen h fonksiyonları (3.30),

(3.31), (3.32) ve (3.33) alan denklemlerinde yerleştirilerek, ve c5 = 0 için c6 =−
√

Λ

3

bulunur. Alan denklemlerinin çözümleri aşağıdaki gibidir:

f l +m2 = h2 =
9

Λ2r4 (3.49)
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ξ = c4 +
1
9

Λr3(ac3 +3B2r) (3.50)

u =− 1
ξ
− 1

4a2 (3.51)

v =− a
ξ
− 1

2a
(3.52)

l =−ξ
3

Λr2 (3.53)

f =
3

aΛr2

(
1+

ξ

4a

)
(3.54)

m =
3

Λr2

(
1+

ξ

2a

)
(3.55)

eψ =

√
3

Λr2 . (3.56)

Çözümler metrikte yerleştirildiğinde ds2 aşağıdaki gibi elde edilir:

ds2 =
3

Λar2

(
1+

c4 +
1
9Λr3(ac3 +3B2r)

4a

)
dt2 (3.57)

+6

√
3

aΛr2

(
1+

c4 +
1
9Λr3(ac3 +3B2r)

2a

)
dtdφ

− 3
Λr2 dr2

− 3
Λr2 dz2

+
3

Λr2

(
c4 +

1
9

Λr3(ac3 +3B2r)
)

dφ
2.

3.1.1.2 c5 6= 0 çözümü

Alan denklemlerinde, c5 6= 0 için elde edilen çözümler yerleştirildiğinde ise

denklemlerin ancak B = 0 için sağlandığı görülmüştür. Bu çalışmada kullanılan

elektromanyetik alan tensörü Fab’lerin tüm bileşenleri A ve B’ye bağlıdır ve f , l,

m arasında lineerlik olduğu varsayımının sonucu olarak A ve B fonksiyonları da bir

önceki bölümde denklem (2.88)’de de verildiği gibi

A1,2 =−
B
2a

(µ +1)

şeklinde birbirleriyle orantılıdır. Dolayısıyla, B = 0 olması A = 0 olması sonucunu

doğurur. Bunun sonucu olarak T b
a’nin tüm bileşenleri sıfırdır. Özetlemek gerekirse,
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elde edilen c5 6= 0 çözümü bir elektro-vakum çözümü olmayıp, vakum çözümüdür:

ξ = c4 +ac3c2
5r−ac3c5c6r2 +

1
3

ac3c2
6r3 (3.58)

u =− 1
ξ
− 1

4a2 (3.59)

v =− a
ξ
− 1

2a
(3.60)

l =−ξ
3

Λr2 (3.61)

f =
3

aΛr2

(
1+

ξ

4a

)
(3.62)

m =
3

Λr2

(
1+

ξ

2a

)
(3.63)

eψ =

√
3
Λ

c6

c5− c6r
. (3.64)

Çözümler metrikte yerleştirildiğinde, aşağıdaki gibi tanımlanan bir U(r) fonksiyonu

yardımıyla

U(r) = c4 +ac3c2
5r−ac3c5c6r2 +

1
3

2

6
r3 (3.65)

ds2 aşağıdaki gibi elde edilmiştir:

ds2 =
12a+3U(r)

12a2(c5− c6r)2 dt2 +
6a+3U(r)

3a(c5− c6r)2 dtdφ (3.66)

− 3
Λ

c6

c5− c6r
dr2− 3

Λ

c6

c5− c6r
dz2

+
U(r)

(c5− c6r)2 dφ
2.

3.2 k 6= 0 İçin Einstein Alan Denklemleri

Bu bölümde, bir önceki bölümde incelenen metriğin dr2 bileşenine e2k(r) çarpanı

eklenerek elde edilen

ds2 = f dt2− e2ψ(e2kdr2 +dz2)+2mdφdt− ldφ
2 (3.67)

metriği incelenerek f l +m2 = r2 şeklindeki Lewis yöntemine uygun çözümler elde

edilmeye çalışılmıştır. Metriğin determinantı

g =−e4ψ+2k( f l +m2) (3.68)
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şekklinde olup, Christoffel sembolleri, (2.4) kullanılarak

Γt
rt =

f ′l +mm′

2( f l +m2)

Γt
φr =

m′l−ml′

2( f l +m2)

Γr
tt =

1
2

e−(k+2ψ) f ′

Γr
rr = ψ

′+
k′

2

Γr
zz =−e−k

ψ
′ (3.69)

Γr
φ t =

1
2

e−(k+2ψ)m′

Γr
φφ

=−1
2

e−(k+2ψ)l′

Γz
zr = ψ

′

Γ
φ

tr =
f ′m− f m′

2( f l +m2)

Γ
φ

φr =
f l′+mm′

2( f l +m2)

yukarıdaki gibi elde edilmiştir. Christoffel sembolleri kullanılarak ve bir önceki

bölümdeki adımlar takip edilerek Ricci skaleri R

R = e−2(ψ+k)

[
2ψ
′′−2ψ

′k′− f ′l′+m′2

2( f l +m2)
− k′

( f l +m2)′

f l +m2 +2

√
f l +m2′′√
f l +m2

]
(3.70)

ve (1,1) formunda Einstein tensörleri aşağıdaki gibi elde edilir:

Gt
t = e−2(k+ψ)

[
−ψ

′′+ k′ψ ′+
f ′l′+m′2

4( f l +m2)
+

k′( f l′+mm′)
2( f l +m2)

(3.71)

− 1

2
√

f l +m2

d
dr

(
f l′+mm′√

f l +m2

)]

Gr
r = e−2(k+ψ)

[
−ψ

′ ( f l +m2)′

2( f l +m2)
− f ′l′+m′2

4( f l +m2)

]
(3.72)

Gz
z = e−2(k+ψ)

[
(ψ ′+ k′)

( f l +m2)′

2( f l +m2)
+

f ′l′+m′2

4( f l +m2)
−
√

f l +m2′′√
f l +m2

]
(3.73)
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Gφ

φ
= e−2(k+ψ)

[
−ψ

′′+ k′ψ ′+
f ′l′+m′2

4( f l +m2)
+

k′( f ′l +mm′)
2( f l +m2)

(3.74)

− 1

2
√

f l +m2

d
dr

(
f ′l +mm′√

f l +m2

)]

Gt
φ = e−2(k+ψ)

[
−k′

(m′l−ml′)
2( f l +m2)

+
1

2
√

f l +m2

d
dr

(
(m/l)l2√

f l +m2

)]
(3.75)

Gφ

t = e−2(k+ψ)

[
k′
(m′ f −m f ′)
2( f l +m2)

− 1

2
√

f l +m2

d
dr

(
(m/ f ) f 2√

f l +m2

)]
. (3.76)

Elektromanyetik alan tensörleri, bir önceki bölümde incelenen (2.1) metriğine ait,

(2.32)’de verilen Fab bileşenleriyle aynı bileşenlere sahiptir:

Fφr =−Frφ =
A√
−g

(3.77)

F tr =−Frt =
B√
−g

Enerji momentum tensörlerinin metriğe eklenen e2k faktöründen etkilenmediği,

(2.38)-(2.42) ile aynı olduğu görülür:

T t
t =

e−2ψ

8π

lA2 + f B2

f l +m2 (3.78)

T r
r =

e−2ψ

8π

−lA2 +2mAB+ f B2

f l +m2 (3.79)

T z
z =

e−2ψ

8π

lA2−2mAB− f B2

f l +m2 (3.80)

T φ

φ
=

e−2ψ

8π

−(lA2 + f B2)

f l +m2 (3.81)

T t
φ

=
2e−2ψ

8π

−lAB+mB2

f l +m2 (3.82)

T φ

t =
2e−2ψ

8π

mA2 + f AB
f l +m2 . (3.83)

Bu nedenle (2.43)’te verilen

T t
t =−T φ

φ

T r
r =−T z

z

eşitlikleri bu metrik için de geçerlidir. Kozmolojik sabit varlığında alan denklemleri

için (3.3)’te verilen ifade kullanılarak, Einstein tensörleri arasında (2.49) ve (2.50) ’de
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elde edilen eşitliklerden farklı olarak

Gt
t +Gφ

φ
+2Λ = 0 (3.84)

Gr
r +Gz

z +2Λ = 0 (3.85)

eşitlikleri olduğu görülür.

Yukarıda elde edilen eşitliklerde, (3.71)-(3.76)’daki Einstein tensörleri yerleştir-

ildiğinde

ψ
′′− k′ψ ′ =

f ′l′+m′2

4( f l +m2)
(3.86)

ve

e−2(k+ψ)

[
k′( f l +m2)′

2( f l +m2)
−
√

f l +m2′′√
f l +m2

]
=−2Λ (3.87)

diferansiyel denklemleri elde edilir. Bu denklemlerden ikincisi, aşağıdaki şekilde de

yazılabilir:

[e−k
√

f l +m2 ′]′ = 2Λ

√
f l +m2ek+2ψ . (3.88)

Kozmolojik sabitli alan deklemleri, alan denklemlerinin (3.3) formülünde,

(3.71)-(3.76)’da verilen Ga
b tensörleri, (3.78)-(3.83)’te verilen T a

b tensörleri

kullanılarak ve (3.86) ve (3.87)’de elde edilen eşitliklerin de yardımıyla, aşağıdaki

gibi elde edilmiştir:

d
dr

[
e−k( f l′+mm′)

2
√

f l +m2

]
−Λ

√
f l +m2ek+2ψ =−ek (lA

2 + f B2)√
f l +m2

(3.89)

− d
dr

[
ψ
′e−k

√
f l +m2

]
+Λ

√
f l +m2ek+2ψ = ek−lA2 +2mAB+ f B2√

f l +m2
(3.90)

d
dr

[
ψ
′e−k

√
f l +m2

]
−Λ

√
f l +m2ek+2ψ = ek lA2−2mAB− f B2√

f l +m2
(3.91)

d
dr

[
e−k( f ′l +mm′)

2
√

f l +m2

]
−Λ

√
f l +m2ek+2ψ =

ek(lA2 + f B2)√
f l +m2

(3.92)

d
dr

[
e−k(m′l−ml′)

2
√

f l +m2

]
=−2

ek(lAB−mB2)√
f l +m2

(3.93)

d
dr

[
e−k(m′ f −m f ′)

2
√

f l +m2

]
=−2

ek(mA2 + f AB)√
f l +m2

. (3.94)

Yukarıdaki denklemlerden denklem (3.90) ve (3.91)’in aynı olduğu görülür.
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Daha önce, Gt
t +Gφ

φ
+2Λ= 0 ve Gr

r+Gz
z+2Λ= 0 eşitliklerinden elde edilen elde

edilen (3.87) diferansiyel denklemi, bir önceki bölümde f l+m2 = r2 bağıntısının elde

edildiği (2.58) diferansiyel denklemine eşdeğerdir. Ancak, (2.1) metriğine eklenen

e2k çarpanının ve kozmolojik sabit Λ’nın, f l +m2 = r2 koşulunu genişlettiği görülür.

f l + m2 için r’ye bağlı genel bir ifade elde edilememekle birlikte, (3.87) eşitliği

yardımıyla, f l +m2 = r2 özel durumunu sağlayan k ve ψ fonksiyonları elde edilerek

alan denklemleri çözülecektir. Buna karşın, farklı f l+m2’ler için farklı çözüm grupları

da elde edilebilir.

Aşağıda,

f l +m2 = r2 (3.95)

yerleştirilerek elde edilen alan denklemleri verilmiştir:

d
dr

[
e−k( f l′+mm′)

2r

]
−Λrek+2ψ =−ek(lA2 + f B2)

r
(3.96)

d
dr

[
e−k

ψ
′r
]
−Λrek+2ψ =

ek(lA2−2mAB− f B2)

r
(3.97)

d
dr

[
e−k( f ′l +mm′)

2r

]
−Λrek+2ψ =

ek(lA2 + f B2)

r
(3.98)

d
dr

[
e−k(m′l−ml′)

2r

]
=−2

ek(lAB−mB2)

r
(3.99)

d
dr

[
e−k(m′ f −m f ′)

2r

]
=−2

ek(mA2 + f AB)
r

. (3.100)

(3.96) - (3.100) denklemlerine bakıldığında k = 0 durumu için çözümleri elde edilen

alan denklemleriyle benzerlik gösterdikleri görülür. Bu nedenle bölüm 2.2.1’de takip

edilen adımlar kullanılarak

d
dr

[
e−k( f/l)′l2

r

]
= 4

(lA2 + f B2)

r
(3.101)

d
dr

[
e−k(m/l)′l2

r

]
= 4

(−lAB+mB2)

r
(3.102)

d
dr

[
e−k(m/ f )′ f 2

r

]
=−4

(mA2 + f AB)
r

(3.103)
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d
dr

[
e−k

ψ
′r
]
−Λrek+2ψ =

ek(lA2−2mAB− f B2)

r
(3.104)

ψ
′′− k′ψ ′ =

f ′l′+m′2

4r2 (3.105)

d
dr

[
e−k
]
= 2Λrek+2ψ (3.106)

çözülecek olan denklemler yukarıdaki denklem grubudur. İlk üç denklem k = 0

denklemleriyle benzerlik gösterdiğinden yine bir önceki bölümde uygulanan u = f/l

ve v = m/l dönüşümleri uygulandığında ve u ve v arasında

v = au+b (3.107)

şeklinde bir lineerlik olduğu kabul edildiğinde,

u+ v2 =
r2

l2 (3.108)

olmak üzere (3.101)-(3.106) denklemlerine benzer işlemler uygulandığında A ve B

arasındaki (2.85) bağıntısı ile, u+v2 için (2.76) bağıntısının değişmediği de göz önüne

alınarak

aA2 +AB−bB2 = 0 (3.109)

µ =±
√

1+4ab (3.110)

A1,2 =−
B
2a

(µ +1) (3.111)

au2 +(2ab+1)u+b2 (3.112)

u1 =−
(µ−1)2

4a2 (3.113)

u2 =−
(µ +1)2

4a2 (3.114)

denklem sistemi u ve r cinsinden aşağıdaki gibidir.

d
dr

[
e−k u′r

u+ v2

]
= 4

ek(A2 +uB2)√
u+ v2

(3.115)

d
dr

[
ψ
′e−kr

]
−Λrek+2ψ =

ek(A2−2vAB−uB2)√
u+ v2

(3.116)

d
dr

[
e−k
]
= 2Λrek+2ψ (3.117)

ψ
′′− k′ψ ′ =

f ′l′+m′2

4r2 (3.118)
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(3.115)-(3.118) denklemlerinin µ = 0 ve µ 6= 0 için iki farklı çözümü vardır.

3.2.1 µ = 0 Çözümü

Bir önceki bölümde elde edilen µ,A1,2,u1,u2 ifadeleri µ = 0 için

b =− 1
4a

(3.119)

A =− B
2a

(3.120)

u1 = u2 =−
1

4a2 (3.121)

olup, alan denklemlerinde yerleştirildiğinde (3.115)-(3.118) denklem grubu µ = 0 için

aşağıdaki gibi elde edilir:

d
dr

[
e−ku′r

(au+ 1
4a)

2

]
=

4B2

a
ek (3.122)

d
dr

[
ψ
′e−kr

]
= Λrek+2ψ (3.123)

d
dr

[
e−k
]
= 2Λrek+2ψ (3.124)

ψ
′′− k′ψ ′ =

f ′l′+m′2

4r2 . (3.125)

Yukarıdaki denklemlere bakıldığında denklem (3.123) ve denklem (3.124)’ün sağ

taraflarının birbirleriyle orantılı olduğu görülür. Bu orantı kullanılarak elde edilen

2
d
dr

[
ψ
′e−kr

]
=

d
dr

[
e−k
]

(3.126)

diferansiyel denklemi çözüldüğünde ψ ′ ve ek arasında, c integrasyon sabiti olmak

üzere

ψ
′ =

1
2r

+
cek

2r
(3.127)

şeklinde bir bağıntı bulunur. (3.127) ifadesinde c = 0 alındığında ψ ′

ψ
′ =

1
2r

(3.128)

şeklinde indirgenir ve integre edildiğinde c1 integrasyon sabiti olmak üzere eψ bulunur.

eψ = c1r1/2 (3.129)
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Elde edilen eψ ifadesi denklem (3.124)’te yerleştirilip elde edilen denklem integre

edildiğinde ci’ler integrasyon sabitleri olmak üzere e−k çözümü bulunur:

e−k =

√
4c2

1Λ

3
r3 + c2. (3.130)

(3.129) ve (3.130) fonksiyonları denklem (3.122)’de yerleştirildiğinde u ve r’ye bağlı

diferansiyel denklem integre edildiğinde çözüm kompleks bir fonksiyon olmaktadır.

Ancak alan denklemlerinin çözümlerinin gerçel fonksiyonlar olması gerektiğinden

ek ’nın (3.130) çözümünde c2 = 0 alınarak (3.122)’de yerleştirildiğinde integrasyon

sonucu bulunan u fonksiyonu reeldir.

1
u+ 1

4a2

=−3B2a
Λc2

1
r−2−

√
3
Λ

c4r−3/2− c5 (3.131)

Bu nedenle ek fonksiyonu

ek =
1

2c1

√
3
Λ

r−3/2 (3.132)

şeklindedir. Diğer yandan, (3.131)’in sağ yanına

ξ =
3B2a
c2

1Λ
r−2 +

a√
3Λ

c2

c1
r−3/2 + c3 (3.133)

olacak şekilde −ξ denilirse denklem ξ cinsinden yazılarak

1
u+ 1

4a2

=−ξ (3.134)

çözümler sırasıyla

u =− 1
ξ
− 1

4a2 (3.135)

v =− a
ξ
− 1

2a
(3.136)

l =−ξ r (3.137)

f =
r
a

(
1+

ξ

4a

)
(3.138)

m = r
(

1+
ξ

2a

)
(3.139)

ek =
1

2c1

√
3
Λ

r−3/2 (3.140)

eψ = c1
√

r (3.141)
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şeklinde ξ cinsinden yazılabilir. Çözümler metrikte yerleştirildiğinde metrik aşağıdaki

gibi elde edilir:

ds2 =
r

4a

(
4+ c3−

c2

c
√

3Λr3/2 + 3B2

c2Λr2

)
dt2 (3.142)

+ r

(
2+ c3−

c2

c
√

3Λr3/2 + 3B2

c2Λr2

)
dtdφ

− 3
4Λr2 dr2− c2rdz2

+ar

(
c3−

c2

c
√

3Λr3/2 + 3B2

c2Λr2

)
dφ

2.
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EK A.2 : Alan Denklemlerinin Elde Edilmesinde Kullanılan Mathematica Kodu
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EK A.1

Einstein Alan Denklemleri İçin İşaret Kuralı

Literatürde, Einstein alan denklemlerinin işaretlerinin farklılık gösterdiği görülür.
Bu farklılığın sebebi denklemlerin türetilmesinde kullanılan metrik gµν , Riemann
tensörü Rµ

αβγ
ve Ricci tensörü Rµν ifadelerinin işaretlerinin, yazardan yazara

farklılık göstermesidir [12]. Literatürdeki gµν ,R
µ

αβγ
,Rµν ,Gµν tanımlarının

işaretlerinin tüm farklı kombinasyonları incelenerek (S1,S2,S3) işaretleri cinsinden
sınıflandırılabileceği ve aşağıda verilen kurala uydukları görülmüştür [13, p. 193].

gµν = [S1]diag(−1,+1,+1,+1) (A.1)

Rµ

αβγ
= [S2]

(
Γ

µ

αγ,β −Γ
µ

αβ ,γ +Γ
µ

αβ
Γ

σ
γα −Γ

µ

σγΓ
σ

βα

)
(A.2)

Gµν = [S3].
8πG
c4 Tµν (A.3)

Rµν = [S2][S3]Rα
µαν (A.4)

Yukarıdaki denklemlere bakıldığında, Tµν ’nün işaretinin + alındığı görülür. Bunun
sebebi tüm yazarların Tµν işareti için

T00 > 0 (A.5)

olacak şekilde hemfikir olmalarıdır [12].

Bu çalışmada (−,+,+) kullanılmıştır.
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EK A.2

Alan Denklemlerinin Elde Edilmesinde Kullanılan Mathematica Kodu
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EK A.3

Kovaryant Türev İçin Kullanılan Mathematica Kodu
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43


