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KOZMOLOJIK SABITLI
DONEN SILINDIRIK SIMETRIK ELEKTROVAKUM UZAYLARI

OZET

Bu calismada M.M. Som ve N.O. Santos’un “Cylindrically Symmetric Stationary
Fields in General Relativity (Genel Gorelilikte Duragan Silindirik Simetrik
Alanlar)” baglikli makalesindeki [1] elektromanyetik alana sahip donen silindirik
simetrik denklemlerin ¢6ziimlerinin kozmolojik sabitin varliginda genellestirilmesi
incelenmistir. Bu amacla, oncelikle kozmolojik sabitin olmadigi durumda literatiirde
kullanilan yontemler incelenerek ¢oziimler elde edilmis, ardindan kozmolojik sabit
oldugu durumda metrik ¢éztimleri bulunmustur.

Tezin girig boliimiinde durgun ve donen silindirik simetrik metrikler genel hatlariyla
ele alinmistir. Bunun yam sira, literatiirde daha once elde edilmis olan silindirik
simetrik metrik ¢coziimleri 6zetlenmistir.

Tezin ikinci boliimiinde, [1]’de tanimlanan ve iki farkli ¢oziimii verilen, donen
silindirik simetrik elektro-vakum (fon uzayinda bogluk elektromanyetik alan
denklemlerini saglayan) alani temsil eden

ds®> = f(r)di* — YU (dr? + dZ?) + 2m(r)dodt — 1(r)d¢> 1)

metrigi kozmolojik sabitin olmadigi durumda ele alinmistir. ~ Bu metrige ait
elektro-vakum ¢oziimleri icin [1]’deki ve [2]’deki yontemler ayrintili olarak incelenmis
ve c¢oziimler elde edilmistir. Bu yontemler; T. Lewis’in "Some Special Solutions
of the Equations of Axially Symmetric Gravitational Fields (Eksensel Simetrik
Kiitlecekimsel Alan Denklemlerinin Bazi Ozel Coziimleri)" baslikli makalesinde [4]
(1) metriginin bosluk coziimlerini elde etmekte kullandig1 ve B.K. Datta ve A.K.
Raychaudhuri’nin "Stationary Electromagnetic Fields in General Relativity (Genel
Gorelilikte Duragan Elektromanyetik Alanlar)" baglikli makalesinde [2] , ayn1 metrigin
elektro-vakum ¢oziimlerinin elde edilmesinde kullandigi linearizasyon yontemi ve
f,1,m arasmda fI +m? = r* seklinde bir bagint1 oldugu varsayimudir.

Uciinci  bolimde,  donen  silindirik  simetrik madde igin  kozmolojik
sabitli  elektro-vakum  ¢oziimleri iki  farkli  uzunluk  elemanm: icin
sunulmustur. Oncelikle ikinci boliimde incelenen ve yukarida (1) ile
verilen metrik ele alinarak o©zel bir ¢oziim grubu elde edilmistir. Diger
yandan, alan denklemleri incelendiginde, kozmolojik sabit eklenmesinin
fl + m?> = r* sekindeki Lewis varsaymmii gecersiz kildigi goriilmiistir.  Bu
nedenle, Lewis varsayiminin gecerliliginin kozmolojik sabit varliginda korunup
korunmayacagini incelemek amaciyla silindirik simetrik donen elektro-vakum uzayi
icin asagida verilen daha genel metrik gézoniine alinmig

ds* = f(r)di* — eV (D dr? 1+ dZ?) + 2m(r)dodt — 1(r)d 9> )
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ve alan denklemleri elde edilmistir. Yukarida verilen uzunluk elemani, (1)’de verilen
uzunluk elemaninin dr? bilesenine k() carpaninin eklenerek genellestirilmis halidir.
Bu genellestirmenin sonucunda Lewis varsayiminin kullanilabilecegi gosterilmis ve bu
varsayim kullanilarak 6zel bir ¢6ziim grubu elde edilmistir.

Calismamizdaki hesaplart Mathematica programlama dili ile kontrol ederek kodlari
ekte daha sonra bu konuda calismak isteyenlere yardimci olmasi diisiincesiyle verdik.
Bu calismanin devaminda, elde ettigimiz uzayin egrilik tekilliklerini ve jeodeziklerini
hesaplamay1 amaclamaktayi1z.



ROTATING CYLINDRICALLY SYMMETRIC
ELECTROVACUUM SPACES WITH COSMOLOGICAL CONSTANT

SUMMARY

In the general theory of relativity, solutions of (non)-vacuum Einstein’s equations
possesing certain symmetries have been studied widely during its journey. In the
beginning, static spherical symmetric solutions such as Schwarzschild solution (1916)
and Reissner-Nordstrom (1916-18) black hole solutions were presented and almost 50
years passed to get the rotating black hole solution by R. Kerr (1963). A non-static
(FRWL) solution representing homogeneous and isotropic expanding universe was
presented by Friedmann (1922-24), Lemaitre (1927), Robertson and Walker (1930-35)
which took first attention after Hubbles’s observation about expansion of the universe
in 1920-30. Today FRWL is the best candidate for explaining the universe consistently
with the astrophysical observations.

Regarding observations, homogeneous and isotropic properties of the space direct
us to investigate spherical symmetric solutions of the field equations and therefore,
in literature, spherical symmetric solutions of Einstein’s theory of relativity are
the most studied ones. Spaces with cylindrical symmetry which have translational
symmetry and rotational symmetry about that axis are paid less attention. Cosmic
strings, cylindrical black strings, charged and rotating cosmic string solutions are some
examples of these type of metrics having singularity along the symmetry axis.

In this thesis we study electro-vacuum cylindrically symmetric stationary spaces in
the presence of cosmological constant. In [1] M.M. Som and N.O. Santos studied
electro-vacuum cylindrically symmetric stationary spaces, here we generalize the field
equations to include cosmological constant. Following the method given in Lewis [4],
Raychaudhuri [2] and [1] we linearize metric components and solve the field equations
for electro-vacuum source.

In the first chapter we give definitions of general static and stationary cylindrical
symmetric metrics and give some well known examples having these properties that
is, all metric components are radial functions only.

In chapter 2, by considering rotating cylindrical space for electro-vacuum source,
we give in detail the method used in [1], [4] "Some Special Solutions of the
Equations of Axially Symmetric Gravitational Fields” by T. Lewis and [2] "Stationary
Electromagnetic Fields in General Relativity" by B.K. Datta ve A.K. Raychaudhuri. In
these papers the line element (metric) is given by

ds* = f(r)dt> — YU (dr? +dZ?) +2m(r)dodi — [(r)d > A3)
with the electro-vacuum source

P =B/v=g, F=ajveg
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where A and B are constants. The metric coefficients, solution of field equations, are
found such that satisfying the linearity relation

f=am+bl )]

where a, b are constants and hold the property fI+m? = r>. Then, we examine the
solutions obtained.

Chapter 3 is devoted to find and present new solutions of the field equations considered
in chapter 2 including cosmological constant. Here, we first keep all rules of the [1,2,3]
and try to solve field equations. We show that if we require fI+m?* = r? condition
"no solution exits" consistent with the source considered. If we give up fI+m?* = r?
equality and try to solve field equations we find the relation that f,/ and m satisfy:
fl+m?* = r~* . Then, the line element becomes

3 ca+ AP (acs +3B%r
ds? = <1+ 4+ ghAr{acs ))dﬂ

)

Aar? 4a

A 3B%r
v3 <1+C4+9 ’ <2a63+ )>dtd¢
a

1
+ 2 (04 + §Ar3 (ac3 + 332’,)) do>.

In the second approach, we extend the line element to
ds* = f(r)di* — Y (2 ar? + dZ?) + 2m(r)dodt — 1(r)d > (6)

with an extra function k(r), so that the field equations become compatible and the
system is now solvable. Regarding all other linearity and fI 4 m? = r> conditions we
find a metric solution in the following form

r 2
ds* =— [4+c3— dr? (7)
4a ( cV3AR/2 4+ §ﬁ22>
2
+r 2+C3— dtd¢
(o)
2 2 .2
— mdi" —C rdz
) 2
+ar | c3— do~.
( cV/3ArP/2 4 Sﬁzz)

We see that our new found solutions have singularities on the symmetry axis i.e., at
r = 0, and that the first metric can be written in a conformal factor.

Examining curvature and scalar quantites of new found solutions, and finding their
geodesics will be our new research target. Classifications of the spacetimes with
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respect to their symmetries is a standard problem in general relativity. Therefore, we
hope that we contribute to the literature in this way.

We check all calculations with Mathematica algebraic programme and present related
codes in the appendix. We also hope that it will be helpful for the students and readers
who are interested in relativity.
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1. GIRIS

En genel statik silindirik simetrik bir metrik
ds* = 2®d* — 2Pdr? — 0626290,'(])2 — Va7 (1.1)

seklindedir. Burada o sabit, @ , ® , Q ve ® koordinat "r"nin fonksiyonlaridir. Uzayin
zamansal 6telemenin diginda z-ekseni boyunca 6teleme ve z-ekseni etrafinda donmeye
kars1 gelen ¢ — ¢ + 27 simetrisi bulunmaktadir. Eger t —  + w¢ seklinde doniisiim

yapilirsa
ds® = 2%dr?* + 2" wdpdt — e*0dr? — (a?* — 0?e*®)do? — Vd?? (1.2)

seklinde donen silindirik metrige karst gelen uzunluk elemani elde edilir.

Literatiirde silindirik madde dagilimini kendine kaynak kabul eden ve kaynagin

disindaki ¢6ziim 1917 yilinda Levi-Civita [3] tarafindan asagidaki gibi 6nerilmistir:

ds? = —r*4s2 +r—4a [rSGZ (dr2 —l—dZ2) +b2r2d¢2]. (1.3)

1932’de Lewis [4] donen silindirik simetrik metrik ¢oziimii silindirik maddenin dis1

icin, k, B1, B2, € sabitler ve m sabit acisal hiz olmak iizere,

dS2 =+ K.2(ﬁ12r8 _ w2B22r2—8)dt2

+2k* (B € — BErt) B! By doadt (1.4)
r —£(2-¢)/2

- (—) (dr* +d2°)
o

_ Kz(szrzfe _ a)zﬁgzrg)d(])z
seklinde elde etmistir. k ile @ arasinda
K= (1—w?)"1/? (1.5)

seklinde bir bagint1 vardir.

1937°de van Stockum [5] ayn1 metri8i farkli bir yolla bulmus ve yorumlamaistir.
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Kozmolojik sabit varliginda durgun ya da donen silindire ait metrik Ornekleri
"Griffiths, Santos"un A rotating cylinder in an asymptotically locally anti-de Sitter
background [6] ve N.O. Santos’un Solution of the vacuum Einstein equations with
nonzero cosmological constant for a stationary cylindrically symmetrical spacetime
[7] baslikli makalelerinde verilmistir.  Burada Santos, metrigi Lewis yoOntemi
kullanarak

ds® = fdi* +2kddt — e (dr? +dz%) — 1d¢? (1.6)

fl+ k> = r? sartim saglayacak sekilde elde etmistir; burada f, k, 4 ve [; r ’nin
fonksiyonudur. Bosluk elektromanyetik alan denklemlerinin fI + k*> # r? igin bir

¢6ziimii ise Lemos ve Zanchin [8] tarafindan A, dort potansiyel, (r) fonksiyonu

22
h(r) = — 1.7
(=2, 1.7
ve B(r) fonksiyonu
B =at— 2 < 1.8)
B or  a?r? )
olmak iizere agsagidaki gibi verilmigtir:
d5? = — (PB() — 02— 22 b S dgar
a’r ar
P = @ B())dg? + ——ar + ata? (1.9)
+(r—m(r))¢+mr+arz .
Ay = —yh(r)80+ 2 h(r) 82 1.10
“—_y (l’) 'u'—i_m (l”) /.l,' (. )

Bu calismada N. O. Santos’un [1]’deki elektrovakum ¢oziimiinii kozmolojik sabit

icerecek sekilde incelemeye calisacagiz.



2. A =0 ICIN DONEN SILINDIRIK SIMETRIiK ELEKTROVAKUM
UZAYLARI

2.1 Donen Silindirik Simetrik Uzaylar Icin Einstein Alan Denklemleri

Doénen silindirik simetrik elektrovakum uzaylari i¢cin metrik

ds* = fdi* — ¥ (dr* +dz*) +2mdpdt — 1d¢* (2.1)

n_n

seklinde verilebilir [1]. Burada f,/,m ve y, "r" nin fonksiyonlaridir. Metrigin

kovaryant tensor ifadesi ise

0 e 0 0
8ab = 0 0 _eZV’(”) 0 (2.2)
m(r) 0 0 —1(r)
seklindedir ve determinant1 agagidaki gibidir:
g=—e"(fl+m?). (2.3)

Metrik kullanilarak elde edilebilecek tek bir baglanti (connection) tanimhidir. Bu

baglant1 Christoffel sembolii olarak adlandirilir ve formiilii asagidaki gibidir [9]:

1
be = Egad(abgcd + 0c8bd — 9u8be)- (2.9

Christoffel sembolleri genel koordinat doniisiimleri altinda tensor gibi degismez.

Riemann uzayinda alt iki indise gore simetriktir:

¢ —T9,. (2.5)

(2.1) ile verilen donen silindirik simetrik elektrovakum uzaylarina ait Christoffel

n/on oo

sembolleri, (2.4) kullanilarak ve (2.5) ile verilen simetri 6zelligi yardimiyla, rye



gore tiirevi gostermek iizere asagidaki gibi elde edilir:

. _ SHmm
T2(fl+m?)

; oml—ml
2(f1+m?)

1
I, = Ee_zwf/

F;r = l///
I =—vy (2.6)
1
frPt = Eeizwml
1
bo=—5¢ "1
=v
F(]) B f/m_fm/
T 2(f14-m?)
o fU+mm’

o 2(fl+m?2)
Kismfi tiirevin genellestirmesi olan kovaryant tiirev V, ve bir manifoldun egriliginin
ifadesi olan R“, ;, Riemann (egrilik) tensorii Christoffel sembolleri yardimiyla

tanimlanir.

Bir V? vektor alaninin kovaryant tiirevi

V.V =V, =9,vP + 1%,V @2.7)

a

seklindedir [9]. (k,/) formundaki herhangi bir tensoriin kovaryant tiirevi ise asagidaki
gibi verilir:
. . day.. bid..
VcTalaz ay :acTalaz ay —l—r?éT ap..ay blbz..bl—'_r‘clcziT 1d..a; blbz..bl+" (2.8)

biby..by biby..b;

aiap..ay aiay..ay
_(r‘?blT dbz.‘bl +l—‘?b2T bld“bl + )

Bir manifoldun egriligi, (1,3) formundaki Riemann tensoriiyle verilir. Egrilik tensorii

olarak da adlandirilan Riemann tensorii asagidaki gibi tanimlidir:
R peq = 9l gp — 0al ey + TC gy, — TG LGy 2.9)
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Riemann tensoriiniin daraltilmasiyla R, Ricci tensorii elde edilir:
Ry =R .- (2.10)

Ricci tensorii simetriktir:

Rup = Rpq. (2.11)

Ricci tensoriiniin izi egrilik skaleri olarak da adlandirilan R Ricci skalerini verir:

R=R",=g"Ry. (2.12)
(2.1) ile taniml1 uzayin Ricci tensorleri
R, — e 2V 21 2 o 42 Fm/? 10 1 f] 2 2.13
tt—m[_f —2f mm +2fm-+ ff +f(f+m>] (2.13)
"(fl4m?) 1
Rrr — _u/ K(f 1 2N\/2 2.14
Vit S S  agpi ey (V1) .
=2(fl+m*) (fl+m*) +2(f1+m*)(f'I +m?)] (2.15)
[ +m?)
Ry ) 2.16
Roo = e [—2im* — f'1 + 20U mm + 1% 21" (fl+m?)] (2.17)
20" 4(fl+m2) .
Ro = Rg= 5" I 21 U m — FUm - 2m" (f1+m? 2.18
q)r—z¢—m[—fm+fm—fm+m(f+m)] (2.18)
ve Ricci skaleri
17/ 1] 2”
Re o2V gy SLEM vV IlHm (2.19)

2(f1+m?) " \/fl+m?

yukaridaki gibi elde edilmistir.

Einstein tensorii G,p, uzay-zamanin geometrisinin matematiksel ifadesidir. Ricci

tensorii ve Ricci skaleri yardimiyla sirasiyla (0,2) ve (1, 1) formlarinda

1
Gab = Rab - ERgab (2-20)
1

seklinde tanimlanmastir.



Einstein tensorleri (1, 1) formunda (2.21) kullanilarak asagidaki gibi hesaplanmigtir:

[ "I+ m'? 1 JU+mm’
G=e ¥ |y (2.22)
’ I VA 2\/fl+m2dr VL +m?
B r l+m ) f/l/+m12
¢ = |y Y 2.23
r=¢ "’J 2(fl+m2)  a(fl+m?) 2239
B [ l—|—m2)/ f/l/+m/2 1 d2
G = |y - CA(VFrmR)| (224
<€ ll/2(fl+m2)+4(fl+m2) fH_mZdrz( ! +m> (2.24)
! 7/ /
o _ 2y Sl 1 f'l4+mm
G ,=e -y + — — (2.25)
¢ [ 4 A(fl+m?)  2\/fi+m2dr \ \/fl+m?
2
o _ oy 1 d (m/1)1
G’ =e — (2.26)
’ [2\/fl—|—m2dr (x/fl—kmz
_ 1 (f /m)m
G y=e2V (2.27)
4 [2\/fl+m2dr (x/fH—mz
Enerji-momentum tensérleri, F?? elektromanyetik alan tensérleri cinsinden
T¢ :L[F“kab—l g asyom (2.28)
Y 4

seklinde tanimhidir [10]. (2.28) ifadesinde kullanilan elektromanyetik alan tensorleri

antisimetriktir [11]:

F = b (2:29)
Fap = —Fpa
ve kovaryant tiirevleri
F =V, F*% =0 (2.30)
Flap, =0 (2.31)

ozelliklerine sahiptir.

Elektromanyetik alan tensorlerinin antisimetri 6zelligi ve kovaryant tiirevlerinin (2.31)
ozelligi kullanilarak sifirdan farkli bilesenleri, A ve B herhangi iki fonksiyon olmak

lizere
Fo = _F = (2.32)

F'" =—F"= (2.33)

=3l
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seklinde secilebilir. Elektromanyetik alan tensorlerinin kendi indislerinden herhangi

birine gore kovaryant tiirevi, kovaryant tiirevin (2.8)’deki formiilii kullanilarak

Christoffel sembolleri cinsinden yazilabilir ve (2.30) 6zelliginden dolay1 sifira esittir:

VbFab — Fa;l;7 — 8bF“b+r‘,;dde+F2dF“d —0.

(2.34)

Yukarida elde edilen formiil kullanilarak V,F“ ler hesaplandiginda A ve B’nin r ’ye

gore tiirevlerinin sifir oldugu goriiliir:

Bu nedenle A ve B sabittir.

Enerji momentum tensorleri, (2.28) yardimiyla

e WIAT+ fB?
8 fl+m?

e 2V —IA% +2mAB + fB?

t

T", =
g 87 fl+m?

po ¢ VIA>—2mAB - fB
¢ 8w fl+m?

po V(A1 fB)

¢ " 8m  fltm?

- _ 2¢7%Y —IAB+mB?
¢ 8w fl+m?

_ 2e7*Y'mA%+ fAB
8t fl+m?

7%

seklinde elde edilir. Enerji-momentum tensorleri arasinda

Tt[ — _T¢¢
T, =T,

esitlikleri oldugu goriiliir.

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)
(2.44)

Einstein alan denklemi, enerji-momentuma sahip bir kaynagin uzay-zamanin

geometrisinde olusturdugu degisikligin fiziksel ifadesidir. FEinstein alan denklemi

(1,1) formunda
Gab - K'Tab

7
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seklindedir. Burada k Einstein sabiti olarak adlandirilir. Mutlak degeri || = S”G

olup
isareti Einstein alan denklemleri i¢in belirlenmis isaret kuralina gore belirlenlr (Bkz.
Ek A.1). Rolativistik birimlerle ¢alisildiginda (G =1 ve ¢ = 1) ve K i¢in isaret kurali

uygulandiginda x = +87 elde edilir ve alan denklemleri asagidaki gibi yazilabilir:
G, =8nT",. (2.46)
Alan denklemlerine bakildiginda enerji-momentumla uzay geometrisinin dogru

orantili oldugu goriiliir. Bu nedenle T, ’ler arasindaki (2.43) ve (2.44) denklemlerinde

elde edilen bagintilar G ’ler i¢in de gegerlidir:

G =-G, (2.47)
G ,=-G_. (2.48)
Bagka bir ifadeyle
G +Gy=0 (2.49)
G ,+G.=0 (2.50)
seklinde de yazilabilir.
Alan denklemleri, (2.46) yardimiyla agagidaki gibi elde edilmistir:
Ly fr4m? 1 d [ fl+mm'\ _ fB*+IA? 2.51)
A(fl+m?) 2\ /fi+m2dr \ \/fl+m? fl+m? ‘
! I'+m?  fB*+2mAB—IA?
_W/f+m> fl+m :f +2m. (2.52)
2(fl+m2)  4(fl+m?) fl+m?
,(fl+m )/ f/l/+m/2 1 dZ
+ - VvV fl+ 2.53
Vagism) " a(fiem®)  Jiitm ( fem) (2.53)
fB?+2mAB — IA?
fl+m?
'+ 1 'l ’ B> +1A?
—y'+ / - fltmm\ _f;z (2.54)
(fl+m) \/fH—m2 V fl+m? fl+m
1 d(l=—m\ 2m32 —IAB (2.55)
2/ fl+m2dr \ \/fl+m? fl+m? '
1 d (fm—fm'\ _ 2mA2 + fAB (2.56)
23/ fl+m2dr \ \/fl+m? fl+m? '
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Alan denklemlerinin ¢6ziimiine gecilmeden o©nce, Einstein tensorleri arasindaki
yukarida verilen (2.49) ve (2.50) bagintilarinda, (2.22)-(2.27)’de verilen G“’ler
yerlestirilirse asagidaki diferansiyel denklemler elde edilir:

/71 ” 2
oy S L _d (\/fl+m2> —0 (2.57)

2(fl+m2)  \/fltm2dr

1 d?
e <\/fl+m2> —0. (2.58)

Bu denklemlerden (2.58), (2.57)’de yerlestirildiginde, y” ile f,I,m fonksiyonlari

arasinda asagidaki gibi bir bagint1 oldugu goriiliir:

v f/l/+m/2

= —4(fl ) (2.59)

Diger yandan, (2.58) diferansiyel denklemi c¢oziildiigiinde, c¢; ve ¢, integrasyon

sabitleri olmak iizere asagidaki ¢oziim elde edilir:
fl4+m? = (cir+c)% (2.60)

Bu calismada, Som ve Santos’un makalesinde kullandiklart gibi [1] ¢ =1 ve ¢ =0
almarak

fl+m? =r? (2.61)
kullanilmustir.

Alan denklemlerinde (2.59) ve (2.61)’de elde edilen esitlikler yerlestirildiginde

asagidaki diferansiyel denklem sistemini elde elde ederiz:

1d [fl'+mm’ B? +[A?
r r r
B% +2mAB — [A?
oy = IBE ””r (2.63)
2 2
, , fB*+2mAB —IA
= — 2.64
v +ry’ ; (2.64)
1d [f'll4+mm fB? +1A?
_1a - _ 2.65
2dr { r } r ( )
o / 2
li [ml ml 1 _ 2mB IAB (2.66)
2dr r r
1 "'m— fm' A2 + fAB
1d {f’" f’"} _,mA"+ fAB (2.67)
2dr r r



Yukarida elde edilen alan denklemleri incelendiginde, (2.63) ve (2.64)’tin 6zdes oldugu
goriilir. Bu, (2.47) ve (2.48) ’den elde edilen (2.61) ve (2.59) ifadelerinin alan
denklemlerinde yerlestirilmesi sonucudur. Diger yandan, yine (2.49)’da taraf tarafa
toplanmis olan (2.62) ve (2.65) denklemleri bu kez birbirinden ¢ikartilarak ve (2.61)
ile (2.59) ifadeleri de eklenerek elde edilen asagidaki denklem sistemi (2.62)-(2.67)

denklemlerine esdeger bir lineer bagimsiz diferansiyel denklem sistemidir:

d [f1—fU B2+ 1A?
4 {f / } _ S (2.68)
dr r r
d A2 —2mAB — fB?
91y = f (2.69)
r r
'1-ml'"]  4(mB>—IAB
d [ml ml} _ (m IAB) 2.70)
dr r r
'm—fm']  4(mA%+ fAB
i{f’” f’”}: (mA”+ fAB) @.71)
dr r r
fl+m*=r
y f/l/ +m/2
CA(fl+m2)’
Yukaridaki denklem sisteminin ilk dort denklemi asagidaki gibi toparlanip,
r 112 A2 32
4 U/ } _ AT+ 2.72)
dr| r r
r 172 . 2
d (m/1)'1 } :4( IAB+ mB~) 2.73)
dr| r r
[ 'm? A%+ fAB
dr | r r
d IA? —2mAB — fB?
91y = ( mAB — fB’) 2.75)
r r

bu denklemlerde u = f/I ve v = m/I doniisiimleri uygulandiginda, (2.61)’de verilen

fl+m? = r? esitligi
2
-
u+1? = 7 (2.76)
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seklinde ve (2.72)-(2.75) denklemleri de agagidaki gibi u,v ve r cinsinden yazilabilir:

r / A2 B2
d | ur |_ A +uB) @77
dr {u+v? N
d [ Vr (—AB+vB?)
| =g 2.78
di" _M+V2:| \/u—{—vz ( )

[ "u? A +uAB
d [(v/u)ur :_4(v + uAB) 2.79)
dr| u+»v? V12
d (A? —2vAB — uB?)
SV = — (2.80)

Ayrica, u ve v arasinda
v=au+b (2.81)

seklinde lineer bir baginti oldugu varsayildiginda [2] [1], (2.77)-(2.79) denklem

grubundaki denklemlerin

d [ ur] A% +uB?

d | wr | _ A +ub) (2.82)
dr |u+v?| Vu+12

d [ aur] (—AB+vB?)

— =4 2.83
dr |u+v? Viu+12 (2.83)
d [—bu'r] (vA? + uAB)

— =—4-——- 2.84
di’ _M+V2_ \/u—|—v2 ( )

seklinde birbirlerinin a ve b sabitleriyle orantili katlar1 oldugu ve lineer bagimsiz
denklem sayisinin ikiye diistiigi goriilir. Bunlardan ilki (2.77) olup diger lineer
bagimsiz denklem ise yukaridaki denklem grubunun sag taraflarinin esitlenmesiyle

elde edilen

aA? +AB—bB* =0 (2.85)

kuadratik denklemdir. Ayrica (2.81) yerlestirilerek u + v? ifadesi de u cinsinden

kuadratik sekilde yazilabilir:
u+v: = a*u® + (2ab +1)u+ b>. (2.86)

Yukarida ifade edilen denklemlerden (2.85) A degiskenine gore 2. derece bir denklem
ve (2.86) da u degiskenine gore 2. derece bir denklem olarak ele alinip diskriminantlari
hesaplandiginda aymi diskriminanta sahip olduklar goriiliir. Ortak diskriminantlar1 u?
ile gosterilecek olursa

1 = +v/1+4ab 2.87)
11



ve bu denklemlerin kokleri

Ajp = B( +1)
12= 2alJ

o (u—1)?
= 442
o (a1
2= 442

olarak bulunur.

Reel alanlar icin p? > 0 olmaldir.

2.2 Alan Denklemlerinin Coziimii

(2.88)

(2.89)

(2.90)

Bir onceki boliimde elde edilen lineer bagimsiz denklemler, (2.61) ve (2.59) ile birlikte

asagida tekrar verilen (2.77), (2.80), (2.85)

dr |u+12

Vu+v?

d [ u'r ]: (A2 +uB?)

_ (A>-2vAB—uB?)

d
dr [ry/’] Vu+1?
aA? + AB—bB* =0

fl+m2:r2—>u+v2:;—2

" _ f/l/ +m/2
4(fl1+m?)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

denklemleridir. Denklemlerin ¢oziimleri g = 0 ve u # 0 icin iki farkli sekilde elde

edilebilir.

2.2.1 p =0 Coziimii

Bir onceki boliimde elde edilen p, Ay 5, u;,us ifadeleri g = 0 igin

1
b=——
4a
a8
2a

1

m=u =g

12

(2.96)

(2.97)

(2.98)



olup, alan denklemlerinde yerlestirildiginde (2.91)’in ve (2.92)’nin sag taraflarinin
sadeleserek

I/lll"

(au+ %)2

4B?
= (2.99)
a

=

d
- ry'] =0 (2.100)

seklinde integre edilebilir hale geldigi goriilir. Bu denklemlerden birincisinin ilk

integrasyonu sonucunda, c¢| integrasyon sabiti olmak {izere asagidaki ifade elde edilir:

/ 4B2
=t (2.101)
(au+@) a

Denklem ikinci kez integre edildiginde, ¢, integrasyon sabiti olmak iizere

1

= =—4B’r—cylnr—c; (2.102)
au+ 7.

u’yu r’ye baglayan ifade elde edilir. Bu ifadenin sag tarafi —& olacak sekilde
E =4B*r+cilnr+c; (2.103)

& (r) fonksiyonu tanimlanarak u asagidaki gibi elde edilir:

1 1
v, (2.81) kullanilarak
1 1

seklinde elde edilir. Sirasiyla, (2.76) ve u = f/l , u = m/l doniisiimleri ve (2.80)
kullanilarak, f,l,m fonksiyonlar1, £’ye bagh olarak

E =4B%r+cilnr+co (2.106)

[=—&r (2.107)

== (1 + 5) (2.108)
a da

m=r (1 + 5) (2.109)
2a

seklinde elde edilir. Diger yandan, denklem (2.100) integre edilerek y fonksiyonu, c3
ve ry integrasyon sabitleri olmak iizere asagidaki gibi elde edilmistir:
r
Y =csln (—) : (2.110)
ro
13



Coziimlerin (2.59) esitligini saglamas1 gerektiginden, y ifadesindeki integrasyon

sabitinin ¢3 = —1/4 oldugu bulunur. Sonug olarak, elde edilen ¢6ziim grubu asagidaki
gibidir:
E =4B%r+cilnr+c» (2.111)
|=—&r (2.112)
=" (1 + 5) (2.113)
a 4a
m=r (1 + é) (2.114)
2a
1 r
y=——In (—) . (2.115)
4 )
Bu sonuglar metrikte yerlestirildiginde
r
ds? =1 (4B*r — cyln(r) +4a+cy) dr* (2.116)
4l (4Bzr —ciln(r)+2a+cy) did¢
a

—Hﬁdrz—,/r—odzz
r r

+r (4B2r —cyln(r)+ cz) d¢2

uzunluk eleman1 yukaridaki gibi bulunmmustur.

2.2.2 p # 0 Coziimii

Alan denklemlerinden ilki olan (2.91) denkleminin sag tarafinda A’nin (2.88)’de elde
edilen u cinsinden ifadesi yerlestirilip u + v? ifadesi de (2.89) ve (2.90)’da elde edilen
kokler cinsinden yazildiginda, denklem

d { u'r ]:4(A2+MBZ)

E M+V2 \/1,{—}—\12
4B [u—
S (2.117)
a u—uj

seklinde u’ya bagh sekilde yazilabilir. Bu denklemde,

du du
9:/u+v2 :/az(u—ul)(u—uz) (2.118)

gibi bir 6 doniisiimii uygulanirsa [2] denklemin sol tarafi 6 cinsinden asagidaki gibi

d 4> [u—
Zre] = A2 (2.119)
dr a u—up

14
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Diger yandan (2.118) ifadesi integre edilerek k integrasyon sabiti olmak iizere 6 (u)

elde edilebilir:

1 1 u—u
O(u)=—In{ = . 2.120
=i (=) (2.120)
Yukarida verilen 0 (u) ifadesindeki Z:Z; terimi asagidaki gibi 0 cinsinden
UZH 2,16 (2.121)
u—uy

seklinde yazilip, (2.119)’un sag tarafinda yerlestirilir ve ikinci bir

p =Inr (2.122)
doniisiimii uygulanirsa, denklem (2.117) asagidaki sekli alir:
d’6  4B?
— = ———ePTHO/2, 2.123
dp?  ka ¢ ( )
Bu denklemin ¢6ziimii ¢ ve r( integrasyon sabitleri olmak iizere
16B*u?r? c r
ue __ 4
e = WCOS]@ |:§ln (%):| (2.124)
seklindedir.
o _ &
M’ = o) (2.125)
olacak sekilde bir & fonksiyonu agagidaki gibi tanimlanarak,
4B?
g =2 cosn? lfln (lﬂ (2.126)
ac 2 ro

f,1,m ¢oziimleri & cinsinden

L (148 pr(1-8%) r (1-8

f= 2" z da B dan @ (2.127)
) (2.128)
p o &
2 g2
1 (1+8%) r (-89 (2.129)

seklinde elde edilir.

V ¢oziimil icin, ikinci alan denklemi (2.92)’nin sag tarafina bakildiginda, (2.93) ile
verilen katsayilar denklemi yardimiyla carpanlarina ayrilabildigi goriiliir:

d (A2 —2vAB — uB?)

) ==
(2aA + B) A%+ uB?

B u+1?

B uB>  [u—u

(2.130)

a u—uj

15



(2.130) denkleminin sag tarafinda (2.117) ve (2.88) yerlestirilerek

B? —
L) I . (2.131)
dr a u—u
elde edilen yukaridaki denklemde de (2.121) yerlestirildiginde
d B*u
- (ry'] = — e ue/2 (2.132)

gibi, ¢oziimii (2.124)’te elde edilmis olan e“® cinsinden bir diferansiyel denkleme
doniistiiriilebilir. Bu denklem integre edildiginde y fonksiyonu c¢; ve ¢, integrasyon

sabitleri olmak iizere asagidaki gibidir:

y=In {czrc1 cosh (%ln (%))] . (2.133)

Son olarak, yukanda (2.127), (2.128), (2.129) ve (2.133) ile verilen vy, f,l,m
coziimleri, (2.126) ile birlikte (2.95)’te yerlestirildiginde, ¢;’in asagidaki degeri almasi
gerektigi goriiliir:

1= T (2.134)

Sonug olarak, (2.1) metrigine ait alan denklemlerinin p # 0 ¢6ziim grubu; (2.126) ile
verilen & fonksiyonu cinsinden, (2.127), (2.128), (2.129) denklemlerinde verilen f,1,m

fonksiyonlart ile birlikte asagidaki y fonsiyonudur:

w=1In {czrcz/“cosh <§ln (r—ro> )} . (2.135)

Yukarida verilen ¢oziimlerle birlikte ds” asagidaki gibi elde edilmistir:
BZ 1 2 2 -1 2
ds* = %i’zcosh2 (Eln (L)> — (g1 dr?
a-c 2\ 8B2u?2 <1 + cosh (cln <%))>
2B2(1
+ {—( ;—'u)rz (1 +cosh (cln (L>))
ac ro
ac*(p—1)
+Wsech ( < ))} dtd¢
C% /2 2
— Er 1 +cosh ( cln dr (2.136)
C% /2 r 2
— =7 1 +cosh | cln dz
2 ro
2B ,
—1—[—2 (1+cosh( < ))>
¢ 0
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3. A #0ICIN DONEN SILINDIRIK SIMETRIK ELEKTROVAKUM
UZAYLARI

Bu boliimde, donen silindirik simetrik elektrovakum uzaylarin kozmolojik sabit
varliginda ¢oziimleri incelenecektir. Oncelikle, bir dnceki boliimde kullanilan ve

asagida tekrar verilen (2.1)

ds® = fdr* — e*V (dr* +dz?) + 2mdodt — 1d ¢* (3.1)
metrigi icin ¢oziim aranmis, ardindan, yukaridaki metrigin dr’ bilesenine 2k(r)
carpaninin eklenmesiyle elde edilen asagidaki metrige ait ¢coziimler elde edilmeye

caligilmustir;

Ik metrik, ikinci metrigin k = 0 i¢in 6zel durumudur.

3.1 k=0 Icin Einstein Alan Denklemleri

Kozmolojik sabit varliginda alan denklemleri asagidaki gibidir:

G, +AS, =8nT",. 3.3)
Bu ifadede, (2.43)’te verilen
T, =-T°
T, =T,

esitlikleri yerlestirildiginde, Einstein tensorleri arasinda (2.49) ve (2.50) ’de elde edilen

esitliklerden farkli olarak

G +G’y+2A=0 (3.4)

G, +G ,+2A=0 (3.5)

esitlikleri oldugu goriiliir.

17



Einstein tensorleri arasindaki bu baglantilarda bir 6nceki boliimde elde edilen ve
(2.22)-(2.27) ile verilen G, yerlestirildiginde agsagidaki diferansiyel denklemleri verir:

v f/ll+m/2
A(fl14+m?)

2//
—V\/]% — oAV, 3.7
+m

3.6)

Yukaridaki diferansiyel denklemlerden ikincisine bakildiginda, alan denklemlerinin
fl+m?>=r? (3.8)
esitliini kabul etmedigi goriiliir.

Kozmolojik sabitli alan denklemleri; (2.37)-(2.42) denklemlerinde verilmig 7,
enerji-momentum tensorleri, (2.22)-(2.27) ile verilen G*’ler ile (3.6) ve (3.7)’de elde

edilen esitlikler alan denklemlerinin (3.3)’te verilen ifadesinde yerlestirilerek asagidaki

gibi elde edilmistir:
d [ (fI'+mm' 1A 4 fB>
el (f+—mm) A fl+m2e2"’ — _w (3.9)
dr | 2/ fl+m? fl+m?

r —IA? +2mAB + fB?
4 R BNV AT+ 2mAB+ ] (3.10)

dr Vfl+m?

d, 51 5 2y 1A —2mAB— fB?

= _l//\/fl—l—m] AL+ m2e?Y = N e 3.11)

d [ (f1+mn') 2y _ (1A% +fB?)

el — AV fl+m2e”Y = 3.12

ar | oy reme| VI ot (12
[ ' 2

d | (m'l—ml) :_Z(IAB—mB) (3.13)

dr | 2\/fl+m? Vfl+m?

d [(m'f—mf") (mA? + fAB)

Sl P e 3.14

dr | 2/ fl+m?  fl+m? (19

Bu denklemler, A = 0 durumu icin elde edilen alan denklemleriyle benzerlik
gostermektedir. Bu nedenle ilk boliimde takip edilen adimlar kullamlmis, u = f/I

ve v =m/[ doniistimleri uygulanmisg, u ve v arasinda

v=au-+b 3.15)
18



seklinde bir lineerlik oldugu kabul edilerek

»  fl+m?

u-+t+v 2

(3.16)
olmak iizere denklemler elde edilmistir.

A ve B arasindaki (2.85) bagintist ile, u + v? igin (2.76) bagmtilarinin degismedigi

goriliir:

aA’> +AB—bB* =0 (3.17)

1 =+v1+4ab (3.18)

Ao =2 (u+1) (3.19)

12= 75 u .

au® + (2ab+ 1u+b* (3.20)
—1)2

w = v ) (3.21)
+1)2

r = _<N4a2) . (3.22)

Coziilmesi gereken denklem sistemi u ve 1/ fI + m? cinsinden asagidaki gibidir:

d [ \/fl+m (A% +uB?)
— |2 gy 3.23)
dr| u+1? Viu+12
dr oy (A? —2vAB —uB?)
— l—|—m2}—/\ [ +m2e”V = 3.24
—\WVF f — (3.24)
l 2//
—Vf+m — AV (3.25)
 fl+m?
/7! 2
" ST +m
= 3.26
A(f1+m?2) (3.26)
(3.23)-(3.26) denklemlerinin = 0 ve u # 0 i¢in iki farkli ¢oziimii vardir.
3.1.1 u =0 Coziimii
Daha once elde edilen u, Ay o, uy, up ifadeleri g = 0 igin
1
b=—— 3.27
4a ( )
B
A= —— (3.28)
2a
! 3.29)
uy=u=——= .
! 2 4a?



seklindedir.

(3.23)-(3.26) denklem grubu u = 0 i¢in asagidaki gibi elde edilir:

d |W~\/fl+m?| 4B (3.30)
dr (au + %)2 - a )
d
- [w’\/ 7 mZ} = AVl + m2e?? (3.31)
VIl+m2 =20/ Fl+m2eY (3.32)
/7! n
g fl4+m
= 3.33
4(fl+m?) (3.33)
Yukaridaki denklemlerden (3.32), denklem (3.31)’de yerlestirilerek elde edilen
1 n o d
SV = 2 [l//’\/fl+m2] (3.34)
diferansiyel denklemi integre edildiginde, y icin asagidaki ifade elde edilir:
1 cidr
— sin/firmt [ S e, (3.35)
=2 V fl+m?

Diger yandan,(3.30) denklemi iki kez integre edildiginde ve boliim 2.2.1°de oldugu
gibi sag yam —& ’ye esit olacak sekilde bir &

4B%r
ﬁza[/—( a +c3)dr+C4

fonksiyonu tanimlandiginda, integral sonucunda

1 4B—2r+c

au+ﬁ

(3.36)

=& (3.37)

elde edilir. Yine bir 6nceki boliimde oldugu gibi, yukaridaki ifade yardimiyla u, v, f, [

ve m, & fonksiyonu cinsinden asagidaki gibi yazilabilir:

11
11

= E 3 (3.39)

I (3.40)

f= 2 <1+%) (3.41)

m=r <1 +§—a) . (3.42)



Diger yandan, y"in (3.33) ifadesinde f, [ ve m yerine (3.38) ile verilen f(¢), [(£) ve

m(¢€) yerlestirildiginde ve yazim kolaylig1 ag¢isindan

h(r) = \/fl+m2 (3.43)

seklinde bir /4 fonksiyonu tanimlanarak asagidaki ifade elde edilir:

17/ 72 2

. fUm? ok
_ o 3.44
VS i) T (344)

y’nin (3.35) ifadesinde ¢; = 0 alinarak iki kez tiirevi alindiginda ise agsagidaki gibi bir

denklem elde edilir:
Wh— h/2
r_
v = 2n2

y""in yukarida elde edilen iki ifadesi birbirine esitlenerek i fonksiyonu igin asagidaki

(3.45)

diferansiyel denklem elde edilir:

W'h = %h’z. (3.46)

Bu diferansiyel denklemin ¢oziimii asagidaki gibidir:

2
h:\/fl+m2:( ! ) (3.47)

C5 — Cgr

Bulunan £ ifadesi ve & fonksiyonunun denklem (3.36)’da verilen ifadesi yardimiyla &,

asagidaki gibi elde edilir:
1
& = cy+ (6B>c2 +acyc?)r — (8B*csce + aczesce )’ + (§GC3C% +3B%c2)r.  (3.48)

& ifadesi alan denklemlerinde yerlestirildiginde katsayilar ¢s = 0 ve ¢s # 0 i¢in iki

farkli ¢oziim grubu oldugu goriiliir.

3.1.1.1 ¢5 =0 ¢oziimii

Denklem (3.48) ile verilen & ve denklem (3.47) ile verilen i fonksiyonlar1 (3.30),
(3.31), (3.32) ve (3.33) alan denklemlerinde yerlestirilerek, ve c5 = 0 icin cg = —\/§

bulunur. Alan denklemlerinin ¢6ziimleri asagidaki gibidir:

9

2 32

(3.49)
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1
E=cy+ §Ar3 (acz+ 3Bzr) (3.50)

u= —é - é (3.51)
b _g _ i (3.52)
= ¢ % (3.53)
f= ﬁ (1+f—a> (3.54)

_ % (1 N 2%) (3.55)
=1y (3.56)

oziimler metrikte yerlestirildiginde ds* asagidaki gibi elde edilir:
yerles g sag g

3 + §Ar (acs + 3B
<1+C4 o AT (ac3 r)>dt2

ds*> =
s Aar? 4a

3.57)

1 3 2
V3 <1+C4—|—§Ar (2a63+3B r)) drdo
a

3 1
+ 2 (C4 + §Ar3 (acsz + 3Bzr)) do>.

3.1.1.2 c¢5 # 0 ¢oziimii

Alan denklemlerinde, c¢s # 0 i¢in elde edilen ¢oziimler yerlestirildiginde ise
denklemlerin ancak B = 0 icin saglandig1 goriilmiistiir. Bu calismada kullanilan
elektromanyetik alan tensorii F%*’lerin tiim bilesenleri A ve B’ye baghdir ve f, I,
m arasinda lineerlik oldugu varsayiminin sonucu olarak A ve B fonksiyonlar1 da bir

onceki boliimde denklem (2.88)’de de verildigi gibi

B
Ala=——(u+1
12 2a(H+ )

seklinde birbirleriyle orantilidir. Dolayisiyla, B = 0 olmas1 A = 0 olmas1 sonucunu

dogurur. Bunun sonucu olarak 7, ’nin tiim bilesenleri sifirdir. Ozetlemek gerekirse,
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elde edilen c¢5 # 0 ¢oziimil bir elektro-vakum ¢dztiimii olmayip, vakum ¢oziimudiir:

& = cy+acscir — acsescer® + %a@ cer’ (3.58)
‘= _% _ % (3.59)
V= _g - % (3.60)
l=-¢ /% (3.61)
f= p /3}’2 (1 + f—a) (3.62)
m= % (l—l—f—a) 3.63)

3 Ce
Vi=y /= . 3.64
¢ A c5—cgr ( )

Coziimler metrikte yerlestirildiginde, asagidaki gibi tanimlanan bir U (r) fonksiyonu

yardimiyla
1 2
U(r) = c4 + acsckr — aczescer® + §6r3 (3.65)

ds* asagidaki gibi elde edilmistir:

12a+3U(r) ,, 6a+3U(r)
ds* = dt"+ ——m8M8M8
g 12a%(c5 — cgr)? * 3a(cs — cer)?

dtd¢ (3.66)

3.2 k # 0 Icin Einstein Alan Denklemleri

Bu boliimde, bir onceki boliimde incelenen metrigin dr? bilesenine ¢2(") carpam
eklenerek elde edilen
ds? = fdi* — e*Y (e*dr* +dz?) + 2md ¢dt — 1d > (3.67)

2

metrigi incelenerek fI 4+ m? = r* seklindeki Lewis yontemine uygun ¢oziimler elde

edilmeye calisilmistir. Metrigin determinanti

g = —eMVTH(fl4m?) (3.68)
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sekklinde olup, Christoffel sembolleri, (2.4) kullanilarak

oo f'l+mm’
" 2(f1+m?)
- m'l —ml’
o = 3 (fl )
1
F;[ = Ee_(k_‘_zW)f/
kl
F:r = W/ + 5
r —k
I, =—e v
1 k+2
r, = 5¢ (k+2y)
1
__ * —(k+2y)
l"fw = 2e /
Fér = II//
o _ fim— fm
" T2
0 fU' +mm’

or T 2(fl+m?)

(3.69)

yukaridaki gibi elde edilmistir. Christoffel sembolleri kullanilarak ve bir Onceki

boliimdeki adimlar takip edilerek Ricci skaleri R

17/ 2 2y/ / 2"

2(fi4nd) " flem Vl+m?

ve (1,1) formunda Einstein tensorleri agagidaki gibi elde edilir:

f/l/+m/2 k/(fl/+mm/)
A(fl4m?) — 2(fl+m?)

G = 872(k+y/) {_Wﬂ‘*‘k,llfq‘

1 JU+mm"
A Vi

G = o2k+V) '_ (fl4m?) 1 +m?
' 20fl+m?)  A(fl+m?)

G e | wJ L) ! +m?)  fUm? Vi+m?
) 2(fl+m?)  4A(fl+m?) /Fl+m2
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(3.70)

3.71)

3.72)

3.73)



0 2kt s, fTEm? K ('l mm)
G¥y=e 2V " 1Ky + i)t 2 m) (3.74)
1 d [ fl+mm
2/ fl+m2dr \ \/fl+m2
[tk | _pleml) (m/1)1?
Gy=e K 2(f1+m?) 2,/ﬂ+m2dr Vfl+m2 (3.75)
o oty | gl f=mf) 1 d [ (m/f)f
Gz e k 2(fl+m2) QWdr \/m (3.76)

Elektromanyetik alan tensorleri, bir onceki boliimde incelenen (2.1) metrigine ait,

(2.32)’de verilen F% bilesenleriyle ayn1 bilesenlere sahiptir:
FOr = _F" = (3.77)

Flr — _F}‘T —

=3l

Enerji momentum tensorlerinin metrige eklenen ¢’ faktoriinden etkilenmedigi,
(2.38)-(2.42) ile ayn1 oldugu goriiliir:
e 2V A + fB?

T, T (3.78)

, eV —IA% +2mAB + fB?

T T (3.79)
e 2V IA? —2mAB — fB?

I =% fl+m? (3.30)
—2W _ (742 2

o _ ¢ (IA*+ fB”)

o =357 fl+m? (3.81)
2¢ %Y —IAB+mB?

t _

o =%z fl+m? (3.82)
—2V mA? + fAB

i) _26 m. ‘I'f

e =% fl+m? (3.83)

Bu nedenle (2.43)’te verilen

Tt[ — _T¢¢
T, =T,

esitlikleri bu metrik i¢in de gecgerlidir. Kozmolojik sabit varliginda alan denklemleri

icin (3.3)’te verilen ifade kullanilarak, Einstein tensorleri arasinda (2.49) ve (2.50) ’de
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elde edilen esitliklerden farkli olarak

G +G’y+2A=0 (3.84)

G, +G _+2A=0 (3.85)

esitlikleri oldugu goriiliir.

Yukarida elde edilen esitliklerde, (3.71)-(3.76)’daki Einstein tensorleri yerlestir-

ildiginde
1y + m/2
"y = f 3.86
VI kY = ) (380
ve 5 o
/ /
o~ 2ery) (KUTEm) lam” |, (3.87)

2(fl+m?)  \/fl+m?

diferansiyel denklemleri elde edilir. Bu denklemlerden ikincisi, asagidaki sekilde de

yazilabilir:

[e V1 m2 ) = 20N/ fl+ 22 (3:88)

Kozmolojik sabitli alan deklemleri, alan denklemlerinin (3.3) formiiliinde,
(3.71)-(3.76)’da verilen G“, tensorleri, (3.78)-(3.83)’te verilen T, tensorleri

kullanilarak ve (3.86) ve (3.87)’de elde edilen esitliklerin de yardimiyla, asagidaki

gibi elde edilmistir:
[ —k( eyt ' A2 1 B2
AN ST Emm) | S ey -k UATESE) (3.89)
dr| 2y/fl+m? V fl+m?
dr —IA% +2mAB + fB?
= (W |+ AT Y = o +2mAB+ f (3.90)
drl VIl+m?
r A? —2mAB — fB?
4 Ve ky/ fz+m2} —A fl+mzek+2”’:ekl " f (3.91)
dr L V fl+m?
[ —k( g / k(1A2 & FB2
i e (f [+mm ) —A /fl +m26k+2W — M (3.92)
dr 2 fl+m? \/ fl+m?
[~k 1 ! k AB — BZ
d | e (m'l—ml) _ ¢ (1 mB*) (3.93)
dr | 2y/fl+m?  fl+m?
d [~k 1 . / k AZ 'AB
dr | 2y/fl+m?  fl+m?

Yukaridaki denklemlerden denklem (3.90) ve (3.91)’in aym1 oldugu goriiliir.
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Daha 6nce, G' |, + G’ o T2A=0ve G" .+ G* ,+2A = O esitliklerinden elde edilen elde
edilen (3.87) diferansiyel denklemi, bir 6nceki boliimde fI+ m? = r> bagintisinin elde
edildigi (2.58) diferansiyel denklemine esdegerdir. Ancak, (2.1) metrigine eklenen
¢%* carpanimin ve kozmolojik sabit A’nimn, fI+m? = r? kosulunu genislettigi goriiliir.
fl+m? igin r’ye bagh genel bir ifade elde edilememekle birlikte, (3.87) esitligi
yardimiyla, fI 4+ m? = r? 6zel durumunu saglayan k ve W fonksiyonlari elde edilerek
alan denklemleri ¢oziilecektir. Buna karsin, farkli f1+m?’ler icin farkli ¢6ziim gruplari

da elde edilebilir.

Asagida,
fl+m?=r? (3.95)

yerlestirilerek elde edilen alan denklemleri verilmistir:

C ok fpt ! k(1A% + fB?
d [e XU +mm)] iy _ AT+ B (3.96)
dr | 2r r
d 1 _k ooy € (IA* —2mAB— fB?)
e wr] — Are Y = (3.97)
dr L r

-k ’ / k A2 B2
d [ (flrmm)] oy _ €A%+ [BY) (3.98)
dr | 2r r

Ce k(1 — ml’ k(IAB— mB?
d M} _ _,¢(AB—mB") (3.99)
dr | 2r r
d r —k £ / k A2 AB
d e ' f—mf)] _ ,e(mA”+fAB) (3.100)
dr | 2r r

(3.96) - (3.100) denklemlerine bakildiginda £k = 0 durumu icin ¢oziimleri elde edilen
alan denklemleriyle benzerlik gosterdikleri goriiliir. Bu nedenle boliim 2.2.1°de takip

edilen adimlar kullanilarak

r—k 172 2 2
i e "(f/1)1 } :4(lA + fB?) (3.101)
dr | r r

r_—k 172 2
d [e"(m/l)1 ] :4(—ZAB+mB ) (3.102)
dr | r r

r_—k ! £2 2
dr | r r
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k(1AZ —2mAB — fB?
< ey Ay € (A" —2mAB — JB) (3.104)
dr r
/7! /2
k= L (3.105)
472

d
- [e*"] — 2ArkTY (3.106)

r

coziilecek olan denklemler yukaridaki denklem grubudur. Ilk iic denklem k = 0
denklemleriyle benzerlik gosterdiginden yine bir 6nceki bolimde uygulanan u = f/I

ve v = m/l doniigiimleri uygulandiginda ve u ve v arasinda
v=au+>b (3.107)

seklinde bir lineerlik oldugu kabul edildiginde,

1
u+v- = 7 (3.108)
olmak iizere (3.101)-(3.106) denklemlerine benzer islemler uygulandi§inda A ve B

arasindaki (2.85) bagintisi ile, u 4 v? igin (2.76) bagmtisinin degismedigi de g6z 6niine

alinarak

aA’? +AB—bB% =0 (3.109)

u==+v1+4ab (3.110)

A ——B( +1) (3.111)

]72 - 2a ILL .

au’® 4 (2ab + 1)u + b* (3.112)
(u—1)>2

uy = —T (3.113)
(u+1)2

Uy = —T (3.114)

denklem sistemi u ve r cinsinden asagidaki gibidir.

d r / kAZ B2
Lk M| g e ) (A" +ub’) (3.115)
dr| u+v Vi+12
dr k(A2 —2vAB — uB?
ar y'e kr] Aref T2V — e V+ > ub’) (3.116)
L Vu 1%
di ] = 2nrt 42 (3.117)
rL
/l/ 2
v Ky = L (3.118)
452
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(3.115)-(3.118) denklemlerinin pt = 0 ve p # 0 i¢in iki farkli ¢oztimii vardir.

3.2.1 p =0 Coziimii

Bir 6nceki boliimde elde edilen pt,Aq »,uy, uy ifadeleri y = 0 igin

=—— 11
b 1 3.119)
A= —E (3.120)
2a
=uy=— ! 3.121)
Ml - I/t2 - 4a2 .

olup, alan denklemlerinde yerlestirildiginde (3.115)-(3.118) denklem grubu pt = 0 icin
asagidaki gibi elde edilir:

d [ et 4B
e (3.122)
dr _(azH—@) a
dr ., k+2
e r} — Ardkt2V (3.123)
rL
di ] = 2r 42 (3.124)
rL
/71 ”2
WKy =L (3.125)

452

Yukaridaki denklemlere bakildiginda denklem (3.123) ve denklem (3.124)’iin sag

taraflarinin birbirleriyle orantili oldugu goriiliir. Bu orant1 kullanilarak elde edilen

d d

25 [yekr| = 2 e 3.126

dr Ve dr ¢ ( )

diferansiyel denklemi ¢oziildiigiinde y’' ve e arasinda, ¢ integrasyon sabiti olmak

tizere

1 cek

= —+ — 3.127

v 2r + 2r ( )

seklinde bir bagint1 bulunur. (3.127) ifadesinde ¢ = 0 alindiginda v’
v =— (3.128)
seklinde indirgenir ve integre edildiginde ¢ integrasyon sabiti olmak iizere ¢¥ bulunur.
eV =cir'/? (3.129)
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Elde edilen e¥ ifadesi denklem (3.124)’te yerlestirilip elde edilen denklem integre

edildiginde c¢;’ler integrasyon sabitleri olmak iizere e ¥ ¢oziimii bulunur:

[4c2A
ok = CTlﬂ . (3.130)

(3.129) ve (3.130) fonksiyonlar1 denklem (3.122)’de yerlestirildiginde u ve r’ye bagh
diferansiyel denklem integre edildiginde ¢oziim kompleks bir fonksiyon olmaktadir.
Ancak alan denklemlerinin ¢oziimlerinin gercel fonksiyonlar olmasi gerektiginden

¢ *min (3.130) ¢oziimiinde ¢, = 0 alinarak (3.122)’de yerlestirildiginde integrasyon

sonucu bulunan u fonksiyonu reeldir.

1 3B2 /3
— = ——za r2 —C4I”_3/2 —C5 (3.131)
u-+ 12 AC] A
Bu nedenle X fonksiyonu
1 3
A 3.132
e 2C1 AI" ( )

seklindedir. Diger yandan, (3.131)’in sag yanina

332(1 ) a 73/2
_ 2] 3.133
g C%A r o+ /—SA 1 r +c3 ( )

olacak sekilde —¢& denilirse denklem & cinsinden yazilarak

1
= —& 3.134)
u-+ 42
coziimler sirasiyla
1 1
=———— 1
u E T ag 3.135)
a 1
=—0 - — 1
v £ 2a (3.136)
l=—Er 3.137)
== (1 + 5) (3.138)
a 4a
m=r (1 + i) 3.139)
2a
1 3
k_ L [2 32
e 2 N (3.140)
eV =ci\/r (3.141)



seklinde & cinsinden yazilabilir. Coziimler metrikte yerlestirildiginde metrik asagidaki

gibi elde edilir:

2 _ I _ €2 2
ds ~1a (44—03 NN B )dt 3.142)

c2Ar?

C2
+r|{24c3— dtd
( ’ cV3AP/2 4 3B ) ¢

c2Ar?
2 2 2
_4Ar2dr —c“rdz
C2 2
+ar|c3— 5 >d¢ .
( cV3APR/2 + —Cg’ﬁrz
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EK A.1
Einstein Alan Denklemleri Icin Isaret Kural

Literatiirde, Einstein alan denklemlerinin isaretlerinin farklilik gosterdigi goriiliir.
Bu farkliligin sebebi denklemlerin tiiretilmesinde kullanilan metrik gy, Riemann

tensorii R apy V€ Ricci tensorii Ry, ifadelerinin isaretlerinin, yazardan yazara

farklilik gostermesidir [12]. Literatiirdeki g“v,R“ (xﬁ'y’RﬂV’GliV tanimlarinin

isaretlerinin tiim farkli kombinasyonlar1 incelenerek (S7,S,,S3) isaretleri cinsinden
siniflandirilabilecegi ve asagida verilen kurala uyduklar: goriilmustiir [13, p. 193].

guv = [Si]diag(—1,+1,+1,+1) (A1)
O A (4.2)
Guv = [S3].82r—4GTW (A3)
Ruy = [S2][S3]R 1 (A.4)

Yukaridaki denklemlere bakildiginda, 7}, niin isaretinin + alindig1 goriiliir. Bunun
sebebi tiim yazarlarin 7}, isareti igin

Too >0 (A.5)

olacak sekilde hemfikir olmalaridir [12].
Bu ¢alismada (—, 4, +) kullanilmugtir.
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EK A.2

Alan Denklemlerinin Elde Edilmesinde Kullanilan Mathematica Kodu

Clear[coord, n, £, r, =, ¢, g, 99, &, gocontrevariant, gc, C5, RT, RRT, RS,
GM, T, TM, F, FC]

n=4;
coord = {t, ¥, 2, &};

&; 4 :=IdentityMatrix[n][[i, 7]1];
g:={{f[r], O, 0, m[x]}, {0, -2" (2¢([r] + 2EK[E]), O, O}, {0, O, -e” (2¥[r]), O},

{m[r], 0, O, -p[r]}};
gocontrevariant := Inverse[g]

g,.'.r_,v t=g[u, ¥]]:

gc, . i= goontrevariant [[«, ¥]]

gg := Simplify [Det [g]]

o

1
C8[i , i, k] t= Simplify [ZE g¢:,. (Bcoord[[41] Tk,s * Ocaora[[k]] Fi,a = Ocooral [=]] Q;‘.xj]

E=1

RRT[i , 1 , k , 1] t=
Simplif]r[

ﬂ|'_'|:|vun:|.'n:|.[[h:]]{:S‘[iur 3. 1] - ﬂ|'_'|r.|vun:|.'n\:|.[[J.]]{:S‘[-iur 1. K]+

2, (Cc8[4, s, k] C8[s, 7, 1] -€8[s, 3, k] C8[4, 5, 11) |]

E=l

RT, . 1= sim;plif;[iﬂﬂ'l:[s, i, s, 1]
E=1

Do[RM[i, ] = Simplify [Sum[RT; . ge, ;, {k, 1, n}]], {4, 1, n}, {1, 1, n}];
Do[If[RM[4i, j] === O, ,
Print [StringForm["mM[" ", ~]-> R. = ~~ “, 4, i, i, i, R[4, 71]]].
{i, 1, n}, {3, 1, n}]

RS = Simplify [anzn:gc,.p ETn,p] i

B=1l o=1
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GM[u , v ] 1= Simplify [RM[u, v]1 - (1/2) RS+ 6, . ]

FF := {{u, a/ﬁ, o, u}, {-n/ﬁ, o, 0, -n/’-\l’-_gg}, {0, 0, 0, 0},
fo. 3/ N33 0. ]}

(% F*" %)

FC,.'..'_,V 1=FF[[u, ¥]11;:

(% Fo, *)

F, ,~ i=FullSimplify [iiﬁ‘ﬂl,g L EITR g,,r,,]

A=l o=l
TM[u_, v_] t= Fullﬂ.‘mplify[:—x Z {chr,*l?,r,,] -ZZ I[l{lf-i]l *&Hr,,*FC,rb*Fbr,] ]
a=1 b=1la=1
eqfu_, v.] i= Simplify [GM [u, v] + B« TM[u, ¥]]

eqgh g, v ] := Bimplify [&q[,.c.:, ¥] = hw &J._rr,,]

Do[ge; ; = ge; 5, {1, 1, m}, {i, 1, n}]

Do[CS[i, i, k] =C8[4i, i, k], {i, 1, n}, {i, 1, n}, {k, 1, n}]

Do[RRT[i, i, k, 1] = RRT[4, i, k, 1], {i, 1, n}, {i, 1, n}, {k, 1, n}, {1, 1, n}]
Do[RT;,; = RT; 5, {i, 1, n}, {i, 1, n}]

RS;

Do[GM[i, j] =@M[4i, 11, {i, 1, m}, {J, 1, n}]

Do[Fi,; =Fyi,5, {i, 1, n}, {i, 1, n}]

Do[TM[i, j] = TM[4, 11, {i, 1, m}, {], 1, n}]

Do[If[TM[i, j] === 0O, ,
Print[StringForm["TM["","*]-> T-i=""", 4,1, i, i, ™[4, 11]]].
{1, 1, n}, {i, 1, n}]

Do[1f[GM[i, §] === 0, ,
Print [StringForm["GM[ ", "]-> G..=""", i, 1, i, 4, aM[4i, i1]]].
{i, 1, n}, {i, 1, n}]

Do[1f[TM[i, j] === O&&GM[i, i] === 0, ,
Print [StringForm["eq[ ", ~]-> denk.. : ~~ = ~*", 4, i, i, i, GM[4, i1,
8x+m[i, 11]]]. (i, 1, n}, {1, 1, n}]

Do[1f[TM[i, §] === O&&GM[i, §] === 0, ,

Print [StringForm["eq[~ ", ~]-> denk.. : ~~ = ~"", 4, i, ], i,
GM[i, ] -ax8y,;, BwTM[i, i1]]], {1, 1, n}, {1, 1, n}]

TimeUsed [ ]
9.8009
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EKAJ3

Kovaryant Tiirev Icin Kullanilan Mathematica Kodu

Clear[coord, n, £, ¥, 2, ¢, g, g9, &, gocontrevariant, go, CS, RT, RRT,
RS, GM, A]

n=4;
coord = {t, r, T, ¢};

g; 4 = IdentityMatrix[n][[i, 7]];
g:={{f[r], 0, 0, m[r]}, {0, -e” (2¥[r]), O, O}, {0, O, -&” (2¢¥[r]), O},

{m[r], 0, 0, -p[r]}}:
goontrevariant := Inverse[g]

Tu_,v t=g[[u, ¥]]:

gc, ., i=gcontrevariant[[uz, ¥]] ;

gg := Simplify [Det [g]]

FF := {{0, B[r] /4 -5, 0, 0}, {-B[r] /+f-gg , 0, 0, -A[r] / 4/ -a5 },
{0, 0, 0, 0}, {u, n[r]/ﬂ.ﬁl-gg , 0, u}};

(* CE[1,9,k]= T ™l
Ccsfdi_, J_, k_] ==

-1
Bimplify [Z E 9C;i .= {ﬂnunrd[[j]] Qk,s *+ Iﬂ|:|:|l|:nr-:|.[[.!|:]] 94,8 = Iﬂ|:|:|lnnr-:|.[[n]] g_]'.k}l]

s=1
Do[cs[i, I, k]; If[eS[4, i, k] === O, ,

Print[stringi'nrm["cs[“,“;“]—:- Tevew = =~ ", 4,9, k, 9, k, 4,
cs[i, i, k1]]]. {4, 1, n}, {3, 1, mn}, {k, 1, i}]
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(v*covariant derivative w,Fll )

covariantderivativeF([7_] =
FullSimplify [

> |Bcoorarpa) FFLLL, 111+ D CS[4, 4, s] #FF[[s, 1] +

i=l E=1

ics[j, i, 8] +FF[[4, 8]] ]

s=1

Do [m#nrinntdﬁri#nth’u? [4]1:
If[m?nrinntderi?ati?ur' [1] === O, ,
Print [Et:j.nanm[" covariantderivativeF[ ~]-> (wF'' ) = -~ *
i+ i, covariantderivativer[i]]]], {i, 1, n}]

, B [r]
covariantderivativeF[1]-= ([V;F-1) = -

A/ ¥ (m[r]? + £[r] p[r]

A'[r]

covariantderivativeF[4]-= I,“F,-_Fi":l = =

| e*¥I=1 (m[r]? + £[r] p[r])
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