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ABSTRACT

NONLINEAR ANALYSIS OF A LAMINATED GLASS PLATE
WITH MIXED BOUNDARY CONDITIONS USING
THE FINITE DIFFERENCE METHOD

Elgi, Deniz Can
Master of Science, Engineering Sciences
Supervisor: Prof. Dr. Mehmet Ziilfii Asik
Co-Supervisor: Prof. Dr. Ebru Dural

August 2025, 123 pages

The Finite Difference Method (FDM) is widely used to solve partial differential
equations in various physical problems, including solid mechanics. In the analysis
of laminated composite structures, FDM enables meshless solutions. Laminated
glasses can be mathematically modeled as alternating layers of two hard materials
with soft interlayers. Previous studies have primarily focused on laminated glasses
with symmetric boundary conditions. In this study, the solution method is extended
to address unsymmetrical mixed boundary conditions, and the results are validated

by comparison with finite element method (FEM) simulations.

Keywords: Non-linear Analysis, Solid Mechanics, Laminated Glass Plate, Finite

Difference Method, Computational Mechanics
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KARISIK SINIR KOSULLARINA SAHIP
LAMINE CAM PLAKANIN SONLU FARKLAR YONTEMI iLE
DOGRUSAL OLMAYAN ANALIZi

El¢i, Deniz Can
Yiiksek Lisans, Miithendislik Bilimleri
Tez Yoneticisi: Prof. Dr. Mehmet Ziilfii Asik
Ortak Tez Yoneticisi:Prof. . Dr. Ebru Dural

Agustos 2025, 123 sayfa

Sonlu Farklar Yontemi (FDM), kismi diferansiyel denklemlerin c¢esitli fiziksel
problemlerde ¢oziimiinde yaygin olarak kullanilmaktadir; bunlar arasinda kati
mekanigi de yer almaktadir. Lamineli kompozit yapilarin analizinde FDM, agsiz
(meshless) coziimler elde edilmesine olanak saglar. Lamineli camlar, iki sert
malzeme 1ile aradaki yumusak katmanlar seklinde matematiksel olarak
modellenebilir. Onceki calismalar, oncelikle simetrik sinir kosullarma sahip
lamineli camlar1 incelemistir. Bu calismada, ¢6ziim yoOntemi, simetrik olmayan
karisik smir kosullarini ele alacak sekilde gelistirilmis ve elde edilen sonuclar
Sonlu  Elemanlar Yontemi (FEM)  simiilasyonlariyla  karsilastirilarak

dogrulanmustir.

Anahtar Kelimeler: Dogrusal Olmayan Analiz, Katt Mekanigi, Lamine Cam Plaka,

Sonlu Farklar Yontemi, Hesaplamali Mekanik
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CHAPTER 1

INTRODUCTION

Laminated glass plates are increasingly used in critical applications across
aerospace, automotive, architecture, and electronics — industries where structural
integrity under varied boundary conditions is vital. To ensure the proposed model
is relevant to such diverse applications, this thesis begins by detailing the industrial
use cases and mechanical motivation. A laminated glass plate typically consists of
two or more isotropic glass layers bonded with a soft, viscoelastic interlayer such
as polyvinyl butyral (PVB). This interlayer has significantly lower stiffness than
the glass layers, resulting in a composite system with mechanical properties that

differ markedly from homogeneous materials.

In this study, a robust and efficient finite difference method (FDM) model is
developed to simplify and generalize laminated glass analysis, incorporating non-
symmetrical boundary conditions and implemented in Python to replace earlier
Fortran-based codes. Since laminated glass is widely used in applications such as
structural glazing, aircraft windows, automobile windshields, train windows, and
electronic displays, a more accessible and versatile analysis approach can

significantly support the development of these products.

This composite structure exhibits unique mechanical behavior due to the significant
stiffness difference between the glass layers (Young's modulus ~68.95 GPa) and
the much softer PVB interlayer (100-3000 kPa). The interlayer's low shear stiffness
allows relative sliding between glass layers, introducing geometric nonlinearity that

becomes particularly significant in slender plate configurations.

PVB has become the industry standard interlayer material due to its excellent
optical clarity, strong adhesion properties, and ability to absorb energy during

impact. In structural modeling, the interlayer's thickness is typically small



compared to the plate's in-plane dimensions, and its contribution to strain energy is
often considered to be dominated by shear deformation while normal strains are

neglected

Laminated Glass Unit

~Lite 1)

Figure 1.1 Schematic View of Laminated Glass Plate Components [1]

Laminated glass plates have higher safety than other glasses on fracture case. The
interlayer holds the broken pieces of glass together and prevents harm to the
environment. Due to this property, laminated glass parts are widely used in many
areas. These areas include, but not limited to, aerospace, civil applications, trains,

and so on. A two-ply laminated glass configuration is illustrated in Figure 1.1.

The two glasses can slide over each other due to lower stiffness of the PVB
interlayer material. This attribute increases the nonlinear behavior along with the
parts becoming slenderer. A photograph of a laminated glass can be observed in

Figure 1.2.



Figure 1.2 Photograph of a Laminated Glass Plate [2]

Previous research has extensively applied the Finite Difference Method (FDM) to
analyze laminated glass plates, but these studies have predominantly focused on
symmetrical boundary conditions such as fully clamped or simply supported edges.
Real-world applications, however, frequently involve asymmetrical or mixed
boundary conditions where different edges may have varying support types or
localized restraints. This thesis addresses this gap in the literature by investigating
the mechanical response of laminated glass plates subjected to asymmetrical
boundary conditions using FDM. The findings will contribute to more accurate
numerical modeling of laminated glass structures in practical engineering scenarios

where symmetrical boundary conditions cannot be assumed.



1.1 The Laminated Glass Part

The model considered in this study consists of a flat laminated plate composed of
two glass layers with a soft adhesive interlayer in between. While the model can be
extended to include additional layers, such configurations are beyond the scope of
this thesis. The glass layers are made of standard float glass, a brittle material

commonly used for its optical properties in everyday applications.

\
Annealed Glass Tempered Glass Laminated Glass
Breaks easily, producing long, sharp Shatters completely under higher levels of May crack under pressure, but tends to
splinters impact energy, and few pieces remain in the remain integral, adhering to the plastic vinyl
frame interlayer

Figure 1.3 The Comparison of Glass Types. [3]

Figure 1.3 illustrates three primary types of structural glass with distinct fracture
characteristics. Annealed glass, the conventional float glass variety, poses
significant safety concerns as it fractures into large, dangerous shards with sharp
edges. In contrast, tempered glass undergoes specialized thermal processing that
causes it to break into small, relatively harmless granular pieces when failed. The

safest option, laminated glass, incorporates a durable interlayer that maintains glass



cohesion even when fractured, preventing dangerous fragmentation while

preserving structural integrity.

Figure 1.4 shows a side view of a two-layered laminated glass and the thickness
symbols used in the analyses. The soft interlayer serves to prevent complete
shattering in the event of fracture in one of the glass layers. If one layer fails, the
other remains intact due to the presence of the interlayer. This layer is made of
polyvinyl butyral (PVB), a material that also offers favorable optical properties, as

typically required in laminated glass applications.

h
l1 w -—___—_--l
h \ _——-—-—'

Glags

PVB

Figure 1.4 Thickness Convention and Material Layers in the Laminated Glass
Diagram [4]



Assembly

Loading Glass | PVB | Glass
Autoclave Unloading De-airing / Edge sealing

Figure 1.5 Fabrication Process of Laminated Glass Parts [1]

Figure 1.5 illustrates the principal steps involved in the production of two-layer
laminated glass. The material properties are defined as input parameters within the
model, allowing for adjustment to represent alternative glass types. By modifying
these inputs, the model remains flexible and can be applied to a broader range of

laminated glass configurations with varying material characteristics.

Given the slenderness of laminated plates and compliance of the interlayer,
geometric nonlinearity is non-negligible — a fact handled by von Karman-based

modeling in this work.



1.2 Motivation and Applications

1.2.1 Aviation Glasses

Aircraft windshield design involves a range of stringent requirements, as the
performance and safety of the structure depend heavily on the chosen glass
material. The type of glass used varies significantly between light aircraft and high-
speed aircraft, reflecting differences in operational conditions and safety standards.
In particular, wind loads exerted during flight play a crucial role in determining the
material selection and structural configuration of the windshield system. Figure 1.6,
shows the cockpit windshield of a civil aircraft, which is constructed as laminated

glazing.

-

Figure 1.6 Photograph of Aircraft Glass Window [5]



Aircraft cockpit windshields are generally constructed as laminated structures
consisting of multiple glass plies bonded with polymer interlayers such as
polyvinyl butyral (PVB) or polyurethane, with typical total thicknesses on the order
of several millimeters to withstand bird strike and pressurization loads. The choice
between flat or curved glass helps to reduce mounting strains that could potentially
cause cracking. Additionally, this design allows for mechanical mounting, often
featuring extended plastic edges with metal reinforcing strips. These extended
edges enable screws to be securely fastened to the windshield frame, ensuring a

positive mounting without inducing strain on the glass.

The mechanical analysis of the plate provides insight into how the plate deforms
under varying boundary conditions, while also yielding its stress and strain

distribution throughout the deformation process.

Laminated glass structures play a vital role in critical engineering applications
where structural integrity under extreme conditions is essential. In aerospace, for
instance, aircraft windshields are subjected to aerodynamic loads and potential
high-velocity impacts such as bird strikes. The ability to accurately model
deformation and stress in these components is crucial for ensuring safety and
durability. Similarly, in defense and security applications, transparent armor
systems demand advanced modeling of delamination behavior and energy
absorption in polymer interlayers. The nonlinear numerical framework developed
in this study addresses these needs by providing a reliable basis for virtual safety
assessments and optimized laminated glass design, particularly under mixed and

asymmetric boundary conditions commonly found in real-world scenarios.



1.2.2 Automobile and Train Glasses

Figure 1.7 Photograph of Rectangular and Curved Train Windows [7]

Laminated glass is widely used in the automotive industry, particularly for
windshields, due to its superior safety and durability. Composed of two layers of
glass bonded with a polyvinyl butyral (PVB) interlayer, it prevents the glass from
shattering into sharp fragments upon impact, significantly reducing the risk of
injury in accidents. This design is a critical safety feature in vehicles. In addition to
its impact resistance, laminated glass offers excellent sound insulation, reducing
road and wind noise for a quieter ride. It also blocks most of harmful UV rays,
protecting passengers and preventing interior fading. Its strength makes it resilient
against debris, rocks, and extreme weather, ensuring long-lasting performance and

safety on the road. An example of a train window is shown in Figure 1.7.



1.2.3 LCD Glasses

Sensing
Lines

Insulating
Material

Driving
m— Protective Litieg

Cover

Glass Substrate with
Driving and Sensing Lines

LCD TFT Display

Figure 1.8 Drawing Showing Laminated Glass Plate Application in LCD [8].

LCD glass products are widely used in both private homes and offices. Electrically
operated LCD specialist glass is a laminate that consists of at least two sheets of
clear glass with an LCD film sandwiched between two or more plastic interlayers.
This design combines the structural properties of laminated glass with the
functionality of the LCD film, offering a versatile solution for various applications.

An example of LCD glass is shown in Figure 1.8.
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1.2.4 Solar Panel Glasses

»  (lass

= Solar Calls

* Back Sheet

Figure 1.9 Solar Panel Glass Structure [9]

Solar panels also feature a layered construction, with two thick outer layers—
typically glass—that are significantly stiffer than the central interlayer, usually
made of a thin and compliant material like ethylene-vinyl acetate (EVA). Figure
1.9 illustrates a solar panel glass. Solar panels, also known as photovoltaic (PV)
panels, consist of multiple layers designed to efficiently convert sunlight into
electricity. The front layer is made of tempered glass with an anti-reflective coating
to maximize light absorption while protecting the panel from environmental factors
like hail, dust, and UV radiation. Through this carefully engineered structure, solar
panels harness sunlight to produce clean, renewable energy. Given the similarity in
structure, the modeling approach developed in this study is well-suited for
analyzing the mechanical behavior of solar panel glass, particularly in thin designs

where the panel thickness is much smaller than its in-plane dimensions.

11






CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Energy Methods

Energy methods have revolutionized the analysis and design of physical systems by
leveraging scalar energy quantities—such as potential, kinetic, and strain energy—
to simplify complex problems in mechanics, thermodynamics, and materials
science. Unlike traditional vector-based approaches, which rely on force and
moment equilibria, energy methods provide a unified framework to derive
governing equations, predict system behavior, and optimize performance through
variational principles. Their inherent ability to bypass intricate force diagrams and
boundary condition complexities has made them indispensable in modern
engineering, particularly in fields like structural dynamics, renewable energy

systems, and multi-physics simulations.

The theoretical foundations of energy methods trace back to the 18th and 19th
centuries, with seminal contributions from Lagrange (Lagrangian mechanics),
Hamilton (Hamilton’s principle), and Rayleigh (Rayleigh’s energy dissipation).
These principles have since evolved into computational tools such as the finite
difference method (FDM), finite element method (FEM), and dynamic system
modeling techniques. However, contemporary challenges—such as modeling
nonlinear material behavior, integrating dissipative forces into non-conservative
systems, and optimizing sustainable energy infrastructure—demand extensions to

classical energy formulations.

13



2.2 Plate Theories

Plate theory is an essential concept in structural mechanics that describes the
behavior of thin, flat structural elements subjected to various loads. Plates are
widely used in engineering applications such as aircraft wings, bridge decks, and
building floors, where they function as primary load-bearing components. The
theory provides mathematical models to analyze deformation, stress distribution,

and structural stability under different boundary conditions and loading scenarios.

The formulation of plate bending problems originates from elasticity theory and is
primarily governed by two major approaches: the Kirchhoff-Love theory for thin
plates and the Mindlin-Reissner theory for moderately thick plates. The Kirchhoft-
Love theory assumes that plane sections remain perpendicular to the mid-surface
after deformation, making it suitable for thin plates where shear deformation is
insignificant. On the other hand, the Mindlin-Reissner theory incorporates

transverse shear effects, offering a more accurate representation for thicker plates.

Mathematically, plate bending is often modeled using the biharmonic equation, a
fourth-order partial differential equation that links the transverse displacement of
the plate to external loads and material properties. Due to the complexity of
obtaining analytical solutions, numerical techniques such as the Finite Difference
Method (FDM) are frequently employed to approximate solutions for practical

engineering problems.

Boundary conditions play a crucial role in plate analysis, as they define how the
edges of the plate are constrained. Common conditions include clamped, simply
supported, and mixed boundary condition edges, each imposing different
restrictions on displacement and rotation. Properly incorporating these constraints
into numerical models is essential for accurately predicting the structural response

of plates under real-world conditions.
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Given the mathematical challenges involved in solving plate bending equations,
numerical methods like FDM provide an efficient approach to obtaining
approximate solutions. By discretizing the governing equations and applying
suitable boundary conditions, FDM enables engineers to analyze plate behavior

with precision, making it a valuable tool in computational structural mechanics.

221 Von Karman Plate Theory

The analysis of laminated glass plates subjected to various loading conditions often
requires a theoretical framework that can accurately capture nonlinear effects,
particularly when dealing with large deflections. One of the most widely used
models in this regard is the von Karman plate theory, which extends classical plate

theory by incorporating geometric nonlinearity.

Von Kérman’s equations account for the coupling between in-plane and transverse
displacements, making them particularly suitable for problems where deformations
are significant but remain within the limits of moderate rotations. Unlike linear
plate theories, which assume infinitesimal strains and small deflections, von
Kérman’s formulation considers nonlinear strain-displacement relations while
maintaining the assumptions of thin plate theory. This makes it applicable to a wide
range of engineering problems, including laminated glass structures subjected to

various boundary constraints.

In the context of the finite difference method (FDM), solving von Kéarman’s
nonlinear equations requires discretization techniques that effectively capture both
in-plane membrane forces and out-of-plane bending effects. The complexity of
these equations often necessitates iterative numerical schemes to achieve
convergence, particularly when handling mixed boundary conditions. By
employing FDM for this nonlinear analysis, it becomes possible to obtain an
approximate yet sufficiently accurate representation of the structural response of

laminated glass plates under complex loading scenarios.
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This study utilizes von Karméan’s theory to model and analyze the nonlinear
behavior of laminated glass plates with various boundary conditions. The goal is to
gain insight into the influence of geometric nonlinearity on stress distributions and
deformation patterns, contributing valuable knowledge to structural design and
safety assessments in engineering applications. This is achieved by employing the
assumptions in Section 3.2.1 and using the Von Karman plate theory strain

definition in Equation (3.7).

This study employs von Kdrman nonlinear strain theory without invoking the
classical thin plate assumption. Since interlayer shear strains are explicitly
accounted for, the assumption that plane sections remain perpendicular to the mid-
surface does not hold. Therefore, the appropriate theoretical framework is more
accurately described as the Nonlinear Mindlin-Reissner Plate Theory or First-Order
Shear Deformation Theory (FSDT) with von Karman-type geometric nonlinearity.
A detailed discussion of the modeling assumptions and their implications is

presented in Section 3.2.1 .
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2.3 Finite Difference Method

As previously seen in works of Vallabhan and Asik [10] [11], FDM has proven
effective in laminated plate modeling. This section elaborates on the underlying

formulation before its application to the current problem.

The Finite Difference Method (FDM) is a numerical approach used to approximate
solutions to differential equations, making it a valuable tool in structural
mechanics, fluid dynamics, and heat transfer. It works by discretizing a continuous
domain into a grid and replacing derivatives with algebraic expressions to

transform differential equations into solvable linear systems.

In structural elasticity problems, FDM is applied to equations like the Navier
equations or the biharmonic equation, which describe the relationship between
stress and strain in elastic structures. By substituting differential operators with
finite difference approximations, these equations are converted into a system of

algebraic equations that can be solved numerically.

The accuracy of the method depends on the type of finite difference
approximations used, with common approaches including forward, backward, and
central differences. Central difference schemes are generally preferred for their
higher accuracy. Proper treatment of boundary conditions, such as Dirichlet,
Neumann, or mixed conditions, is crucial in structural problems to ensure solution

stability and correctness.

Compared to methods like the Finite Element Method (FEM) or the Finite Volume
Method (FVM), FDM is easier to implement and computationally efficient on
structured grids. However, it is less suited for complex geometries and irregular
domains. Despite this, FDM remains a powerful technique for solving elasticity

problems, especially when structured grids are applicable.
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2.4 Previous Studies

Based on previous research, two categories can be formed regarding the strength
and behavior of monolithic and laminated glass units: theoretical and experimental
stress analysis, and failure testing. In 1910, Von Kérman developed the theory of
nonlinear plate bending, which was further explored by Fung (1965) [12]. The
nonlinear behavior of plates was examined by researchers such as Szilard (1974)

[13], Timoshenko and Voinovsky (1965) [14], and others.

The applicability of von Kérman plate theory for large deformations in thin plates
was rigorously established through analytical studies by Chia (1980) [15] and
numerical validations by Reddy (2007) [16]. For laminated glass plates, early
experimental work by Hooper (1973) [17] on laminated glass beams demonstrated
the interlayer's shear-dependent coupling behavior, while Vallabhan (1983) [19]
and Asik (2003) [20] later developed analytical models capturing these effects.
Vallabhan and his colleagues (Vallabhan et al., (1993) [10]; Vallabhan and Chou,
(1986) [18]) developed pioneering analytical and numerical models for laminated
glass plates subjected to uniform loads, treating the polyvinyl butyral (PVB)
interlayer as a linear viscoelastic material capable of shear transfer. Their
governing equations accounted for shear coupling between glass plies,
demonstrating that the interlayer’s shear modulus significantly reduces plate
deflection and peak stresses compared to monolithic glass. By solving these
equations using finite difference methods (FDM) and validating results
experimentally, they established a framework for optimizing laminated glass
design under static and dynamic loads. Their work remains influential in standards

for architectural glazing.
Several researchers have developed analytical models for laminated glass plates,

treating the PVB interlayer as an elastic core that transfers shear between glass

layers (Galuppi and Royer-Carfagni, 2012 [21]; Vallabhan, Asik et al. [10]). Their
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work derived closed-form solutions for deflection and stress, highlighting the
interlayer’s role in enhancing stiffness and reducing peak stresses compared to
monolithic glass. Other studies have investigated temperature and load-rate effects
on PVB behavior, providing key insights into viscoelastic effects in laminated glass

(Knight et al., 2024 [22]; Férch, 2020 [23]).

Asik ((1993) [10], (1997) [11] and (2005) [24]) developed analytical and finite
element models for laminated glass plates, focusing on the nonlinear behavior of
PVB interlayers under large deformations. His work emphasized the hyperelastic
and viscoelastic properties of interlayers, providing refined stress-strain
relationships for laminated glass under static and dynamic loads. Asik also
proposed simplified design methods for engineers, bridging theoretical models with
practical applications (Asik, (2003) [20]). His contributions advanced the
understanding of energy absorption and failure mechanisms in laminated glass

structures.

Dural’s recent research [25] [26], (2022-2023) focuses on the delamination
behavior and nonlinear response of laminated glass structures, combining advanced
computational modeling with experimental validation. In those studies [25] [26],
she developed mathematical models for laminated glass beams and plates with
initial delamination, incorporating nonlinear field equations and iterative solution
procedures to analyze the effects of boundary conditions, delamination size, and
location on structural performance. Her work demonstrated that PVB interlayer
properties and geometric nonlinearity significantly influence stress distribution and
deflection patterns for beams and plates, with findings validated through finite
element analysis (FEA) and laboratory tests. Dural also compared the delamination
resistance of laminated glass plates with different interlayers (PVB, EVA, and
SentryGlas Plus), highlighting how interlayer type affects adhesion strength and

failure thresholds under uniform pressure loads [27] [28].
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Her studies further optimized multi-layer laminated glass configurations for blast-
resistant applications, emphasizing the role of interlayer thickness and boundary
conditions in enhancing safety for aerospace and architectural uses [28] [29] [30] .
These contributions provide critical insights for designing laminated glass in
safety-critical environments, bridging gaps between theoretical models and

practical engineering solutions

2.5 Scope of This Study

Previous studies on this subject typically assumed symmetric boundary conditions
along the plate edges and, consequently, employed symmetric stiffness matrices.
These assumptions allowed the analysis to be restricted to a single quadrant of the
plate, thereby reducing computational complexity through symmetry exploitation.
In contrast, the present study introduces a new solution algorithm that models the
entire plate domain without relying on symmetry assumptions. This full-domain
approach enables the investigation of more general and realistic boundary
conditions, including asymmetric and mixed types, thereby enhancing the

applicability and robustness of the analysis.

To achieve this, a new model for the unsymmetrical and mixed boundary
conditions is aimed to be derived, using energy methods and variational techniques.
After the model equations are obtained, the model is transferred to script codes and
input /output files are determined. The results from the output of the code have
been taken and plots are needed to summarize the results.

Additionally, numerical experiments are conducted to investigate the influence of
various parameters, including mesh discretization density, incremental load steps,
and different thickness configurations for both glass and interlayer materials. The
accuracy and reliability of the developed model will be validated through

comparison with a Finite Element Model (FEM) implemented in Abaqus software.
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CHAPTER 3

MODEL

3.1 Geometric Nonlinearity

In laminated glass structures, the combined effects of plate geometry and interlayer
mechanical response introduce significant nonlinearities that must be considered in
the analysis. To accurately capture these behaviors, the solution formulation
incorporates geometric nonlinearity by employing nonlinear strain-displacement
relationships within the energy-based framework of the model. This allows the
simulation to account for large deformations and the coupling between in-plane and
transverse responses, which are especially prominent in thin, layered systems under

substantial loading.

When the plate displacements become comparable to its thickness, the assumption
of linear midplane strains no longer holds. Instead, nonlinear strain terms emerge,
resulting in significant coupling between bending and membrane (in-plane) effects.
This coupling becomes critical in predicting accurate deformation patterns and
internal stresses, particularly in laminated configurations. Moreover, the choice of
boundary conditions—whether the plate edges are constrained or allowed to
undergo in-plane displacements—has a profound influence on both the magnitude

and distribution of deflections and stresses.

A key consequence of geometric nonlinearity is the emergence of tensile stresses
along the deformed midplane, which act to counterbalance the applied transverse
loads. This phenomenon—commonly referred to as membrane action—
supplements the plate’s flexural rigidity and contributes to an overall increase in

load-carrying capacity. In cases involving very thin plates or large deflections, the
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structural response may shift predominantly to in-plane stretching, causing the

plate to behave more like a membrane than a bending-dominated structure.

3.2 Analytical Model

The finite difference model developed in this study involves five unknown field
variables. The in-plane displacements are denoted as ul, vl, u2, and v2, where ul
and v1 correspond to the upper glass layer, and u2 and v2 correspond to the bottom
glass layer. The symbols for the displacements are given in Table 3.1. The
transverse (out-of-plane) displacement is represented by w and is assumed to
remain constant through the plate's thickness. This assumption is based on the
neglect of transverse normal stresses and strains, meaning that through-thickness
compression and tension are considered negligible in the present formulation. A

schematic of the model is presented in Figure 3.1.

Table 3.1 The symbols for displacements.

Layer 1 Layer 2
Displacement in x-direction | w u
Displacement in y-direction | v; \)
Displacement in z- w w
direction*

* The assumptions in section 3.2.1, numbers 4 and 5.
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Figure 3.1 Sketch of Analysis Model
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3.2.1

Assumptions Used in the Model

The assumptions underpinning the analytical formulation are outlined

below:

Linear Elastic Behavior: All materials in the model are assumed to behave

elastically according to Hooke’s Law:

oc=E=x¢ 3.D

Material Properties: The glass panels and the interlayer are each considered

isotropic and homogeneous.

Thin Plate Assumption: The structure is modeled as a thin plate since its
width-to-thickness ratios (a/t and b/t) exceed 10, consistent with criteria

from Ventsel and Krauthammer (2001) [31].

Neglect of Transverse Normal Stresses and Strains: As is standard for thin

plates, transverse normal stress and strain are assumed negligible [32]:

o,=e, =0 3.2)
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5-

No Interfacial Separation: There is no relative displacement between the
contact surfaces of the glass layers and the interlayer. Hence, vertical

displacements are continuous across the interface:

Wi = Wy (33)

Unified Transverse Displacement: The lateral (z-direction) displacement of
the upper and lower glass layers is assumed to be the same. This is justified
by the very small thickness of the interlayer (typically PVB), which
undergoes negligible compression compared to the deflection of the glass

layers.

Negligible Through-Thickness Normal Strain Energy: Based on
Assumption 6, the contribution of normal strain energy in the z-direction is

neglected for both the glass and interlayer components.
Kirchhoff Hypothesis (straight normals): The normal lines to the mid-
surface of each glass plate remain straight and perpendicular to the mid-

surface during deformation.

Interlayer Carries Only In-Plane Shear: The interlayer is assumed to resist

only in-plane shear stresses, not normal or bending stresses.
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3.2.2 Formulation and Derivation of Equations

The derivation begins by expressing the total potential energy V of the laminated
plate as the sum of the internal strain energies stored in the glass layers and the
interlayer, along with the potential energy due to external loads. The expression is

written as:

Table 3.2 Strain energy terms symbols and potential energy for external work
symbol

Ur(r? Membrane strain energy for layer (i);

i=1,2 for the top and bottom layers

gw Bending strain energy for layer (i)

U(I)

7D i
w2 Uy Integrated shear strain energy of the

interlayer shear strains y,, andand y,,.

Q Potential energy for the external loads.

Table 3.2 explains the strain energy terms in Equation (3.4). The geometrical and
material parameters used in this study are defined as follows:
The dimensions of the plate are denoted by a and b, representing its lengths in the

[73L1)
1

x- and y-directions, respectively. The thickness of each layer is indicated by

“h;”. The material properties of the glass are characterized by the elastic modulus E

and Poisson’s ratio L.

The bending strain energy formula (Langhaar (1962) [33]) is given as:

26



b ra
g :f f UPdx dy
-bJ-a
[, s |(5) + () +20(52)(5)
_pJog 24(1 — p?) [\ 0x? dy? dx? |\ dy?

2 2
d°w
+2(1—p) <6x6y> ]dx dy

(3.5)

The membrane strain energy function, Langhaar (1962) [33], can be expressed as;

. b ra )
U,(,? = f f U,(,?dx dy
-bJ-a

£ h 2 2 1
.]- ']-—a 2(1 _ elx + €iy + znueixeiy +§(1

F .u)eixyz] dx dy

(3.6)

Large strains invalidate the commonly used "infinitesimal strain" assumption,
necessitating the use of Green-Lagrange strains instead. In geometric nonlinear
problems, where large deformations occur, these strain equations become essential
for accurately capturing the system’s response. The Green-Lagrange strain
formulation accounts for significant displacement gradients and rotational effects,

providing a more accurate representation of material behavior under large strains.

Below is the general description of Green-Lagrange strains (in Einstein’s notation):

1/0u; OJw; Ouy duy
Eij = =\ = - -

2 ax] + axi + axi axi
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(3.7)

The nonlinear strains used in this problem are derived from Green-Lagrange strains

and given as follows:

Oy 1 <6w>
¢x = 5x T2\ ox (3.8)
oy 1 <6w>2
0= 3y T2\ay (3.9)
Ju; N av; 4 (0w> (E)W)
iy = —+—+|—)|=—
xy (')y dx dx (')y (310)
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Figure 3.2 Deformation of Laminated Glass in the Thickness Cross Section

In Figure 3.2, 6, is the overall slope of the laminate with respect to its centerline,

such that

0x (3.11)

¢, 1s the deformation slope of the interlayer, describing the slope along the x-

direction.
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bx

Ju

0z (3.12)

Using those slopes (¢, 8,), the average transverse shear strains, yx, and yy,., are

given as below:

ow (hy  h,
1o = ow Odu  Ow [ul_uz_W(7+7)]
o= Ot b= G Y T T t
ow (h;  h
-GG+ 2+ )]
B t
(3.13)
ow (hy  hy
b oo = 6W+6v_ ow [vl UZ_W(7+7)]
O N P PR t
ow (hy h,
t

(3.14)
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The integrated shear strain energies across the plate are obtained by integrating the

shear strain energy density over the two dimensions of the plate, as shown below:

—Up) ——— >

ow (h1
0x

JUNETEE

aG,[ ow (hy
= —|(w v)——(—+

+—+t)] dx dy

(3.15)

24 t)] dx dy

(3.16)

In Equation (3.17), the force potential (external work) is expressed for the entire

plate. The loading is a uniformly distributed pressure applied to the top face of the

laminate.
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_ b/2 ra/2 b ra
sz f dedyzf f —qwdx dy
-b/2Y—a/2 -bJ—-a
(3.17)
b ra _ _
V= j f (U + U +UP +UP + TS + 05 + Qfax dy
-bY-a
b ra
= f f F dx dy
-bJ-a
(3.18)

Ehy y 4 L 4 ,
m e1x” te1y” + #e1xe1y+§( — Werxy
Eh
b2
2(1—p?
E(hi + h3)
24(1 —p?)

2 2 1 2
e+ €2y + z.uereZy + E (1 - M)Qny
22w\’ N 22w\’ o 02w\ [(9%w
0x? dy? K\ ax2 dy?

SPICRRRY Ccar ) P L LB
# dx0dy 2t Tt ox\2 2

G, ow hy h, 2
+—[U1—U2——y(?+?+t>] —q*xw

2

(3.19)
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By applying a variational approach to the total potential energy, the following
Euler Equation, Equation (3.20) is derived. The Euler equation for the system is

presented in Langhaar (1962, p. 96) [33] similarly.

OF 0 [ OF d ( OF +62 oF N 02 oF +62 oF
ou; 0x \O0u;y dy \Ou,, 0x2 \ OU; 5y 0x0y \ 0U; 4y 0y \0u;y

=0
(3.20)
The Laplace Operator is given in Equation (3.21).
02 02
=t
dx* Oy (3.21)
The 4th order gradient operator is given in Equation (3.22
a* o* a*
4_
V= T aayr T oyt (3.22)

The governing equations of the problem are derived by first substituting the
expression for “F” from equation (3.19), into equation (3.20). Next, the required

partial derivatives are taken as in equation (3.20) for each of the five independent
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displacement fields (w, ul, vl, u2, v2). This procedure results in five coupled

nonlinear equations, which are presented in Equations (3.23) - (3.27).

G, (hy h 2
(D1+Dz)*V4—?(21+72+ ) *Vzlw

=q

Eh, 0w 02w
+ —2 (e1x + pneyy) 3 + (e1y + Heix) 7 +(1

d2%w
— H)euym

Eh, 0w 0w
+ —2 (e2x + peay) r + (egy + pegy) o7 + (1

1*w] G <h1 h, t) <6u1 6u2+6v1 avz)
H)e2xy oxdy| t\2 2 ox dx 0Jy dy

(3.23)

1-wo* GQA-p )

0x2 2  0y?  2Ghyt | *
_ [1+u 0° G,(l—u) aw 62W+(1 w) 0%w
~ 72 axay|™ | 26h, dx? 2 0y?

2 0xdy dy 2Ghyt

2 T2

1+ud*wow  G(1—p) (h1 h, >6W
d0x

(3.24)
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dy?

2 0x?  2Ghyt
14w 0? G,(l—u) ow 62W+(1—y)azw
B 2 0xdy he T 2Ght | 2 ay|oy? 2 0x?

1+ 02w ow G- (hl hy he t) ow
2 0xdy ax 2Ghit \2 dy

2+(1—M) 0 Gz(l—#)l

(3.25)

(1-w d*> GQA-p

0x?

2 9y 2Ghyt |2
_ [1+u 0? G,(l—u) _ow 62W+(1—ﬂ)62

B 2 0xdy v " 2Ghyt 0x? 2 0dy?
1+ o*w ow  G,(1—p) (hl h2+ >6W

2 oxdydy T 26ht \2 T2 7o

(3.26)

dy?

2+(1—M) 0 Gz(l—#)l

2 0x?  2Ghyt
14w 0? G,(l—u) ow 62W+(1—y)azw
B 2 0xdy w2 “2Ght | Y ay|ay? 2 0x?

1+ 02w ow G- (hl hy he t) ow
2 0xdy ax 2Ghyt \2 dy

(3.27)
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The flexural rigidity values for the upper and lower layers are given in Equations

(3.28) and (3.29).

E xhy

D,=————
T2 (1 - p?)

(3.28)

E xh,

Dy=—————
27125 (1 — u?)

(3.29)

The shear modulus formula is given in Equation (3.30).

E

¢ =a+p

(3.30)

3.2.2.1 Boundary Conditions

For the plate; edge boundary conditions can be determined as any combination of
clamped (fixed) and simply supported (hinged) boundary conditions, symmetrical
or unsymmetrical. Both clamped and simply supported boundary conditions are

Dirichlet type boundary conditions.

For simply supported (hinged) edges, rotation is permitted only about one axis,

whereas both the transverse displacement and the rotation about the orthogonal axis
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are constrained. The corresponding boundary condition equations are summarized

below.

For simply supported boundary conditions at x=0 or x=a (a: Plate width in x-

direction);
erytue =0
(3.31)
e1xy =0
(3.32)
eyytuey =0
(3.33)
€axy = 0
(3.34)
w=0
(3.35)
’w 0
0x?
(3.36)

For simply supported edge boundary conditions at y=0 or y=b (b: Plate width in y-
direction);

e1ytue;x =0

(3.37)

elxy =0

(3.38)
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eyytuey =0

(3.39)
€axy =0

(3.40)

w=0

(3.41)
0w — 0
dy?

(3.42)

For clamped (fixed) edges, all rotations and displacements along the edge are fully

restrained. The associated boundary condition equations are summarized below.

For clamped edge boundary conditions at x=0 or x=a (a: Plate width in x-

direction);

(3.43)

(3.44)
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For clamped edge boundary conditions at y=0 or y=b (b: Plate width in x-

direction);

(3.45)

(3.46)

3.3  Laminated Glass Specifications

The laminated glass material properties are given in section 1.1 (Also see Appendix
1).

A two layered laminated glass plate is taken for the analyses:

Glass elastic modulus usually changes between 60 - 80 GPa and in the analyses it’s

taken as 70 GPa.

The PVB (polyvinyl butyral) interlayer typically exhibits a shear modulus in the
range of 100 to 3000 kPa; a representative value of 1000 kPa was selected for the

analyses conducted in this study.
Interlayer thicknesses are given as 0.76 millimeters for the analyses.
Glass layers thicknesses are taken as 5 millimeters.

The square plate has a width of 1 meter, making it I m x 1 m in plan view.
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A uniform pressure load of 0.2 kPa is used in the analyses, except in cases

where variable pressure loading is specifically considered.

3.4  Employment of Finite Difference Method

The Finite Difference Method (FDM), a widely used numerical technique, is
employed to discretize the governing differential equations into algebraic form and
to derive matrix representations for both lateral and in-plane displacements. Five
solution matrices are constructed corresponding to the five displacement fields—w,
ul, vl, u2, and v2. These matrices are inherently nonlinear and coupled, reflecting
the effects of large deformations and the interaction between different displacement

fields across the layered structure.

Unlike previous studies, this work models the full plate, allowing all edges to
represent the actual physical boundary conditions of the problem. The five field
equations are nonlinear with the function of the lateral displacement, w, even
though all of the differential operators in ul, v1, u2, and v2 are linear. Nonlinearity
of the problem necessitates the employment of an iterative numerical technique for

the solution.

[Alw} = {q + {f1(w, uy, v1,up, v,)}}
(3.47)

where q is the lateral loading vector.
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Equation (3.47) represents the lateral displacement (w) solution matrix system,
where “f1” includes the nonlinear terms and thus it is grouped to the right-hand

side.

CWeijy + BW(isy,jy + BW(iog,jy + HW(isz jy + HWiz jy + JW(i jrr) + Wi j-1)
+ GwW( i) T GW(j_2) + FWitqji) + FWigj—1)  FWioqj41)
+ FW(i—l,j—l) = {RHS}(L])

(3.48)

In Equation (3.48), the discretized general form for the “w” solution is provided.

The coefficients are labeled as C, B, H, F, J, and G for better readability.
{RHS}; ) = {q

Eh, 02w 0w
+ 2(1 - 1) (elx + ely) 9x2 + (ely + elx) 9y?

d2%w
+(1- M)euym

Eh, 0w 0w
+ 2(1— 1) (er + eZy) 9x2 + (eZy + er) 9y?

d2%w
+(1- ,u)erym

Gy(hy h ou; Odu, Jdv; O0v
——I(—1+—2+t)( 1 O OV1 2)}
@)

t\2 2 dx 0x dy 0y

(3.49)

The right-hand side in Equation (3.48), is expanded in Equation (3.49) above. The

nonlinear terms are grouped in this “RHS” term.
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6 6 8\ G /by hy, N\ (2 2
C = (D1+D2) h_fé-l_@-l_h_fg +?<7+7+t> h_,zc+h_32,

(3.50)
—4  —4 G, (hy h Z2 /1
B= (D, +D2)<h_§+h§h§>+TI(7l+7z+t> (h_,%)
(3.51)
1
H= (D; + D,) <F>
(3.52)
2
F = (D; + D,) <W>
xfty
(3.53)
—4 -4 G, thy h Z2/1
J= (D1+D2><h—4+w>+?'(71+72”) (r)
y Xy y
(3.54)
1
G = (D;+D,) E
(3.55)

The coefficients C, B, H, F, J, and G in Equation (3.48) are detailed in Equations
(3.50) through (3.55). The Modified Strongly Implicit (MSI) method, originally
developed by Schneider and Zedan (1981) [34], is employed to solve for the in-
plane displacements ul, vl,u2, and v2. In this approach, only five difference-
equation coefficients are stored, reducing both memory requirements and
computational cost. These coefficients vary depending on the applied boundary

conditions. Following a similar strategy to that used in Asik’s study (1997) [35],
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the coefficient structure is adopted to facilitate efficient in-plane displacement

solutions.

Apu(i,j) *u (i,j) = Awu(i,j) *u (i — 1,j) + Aeu(i,j) *u, (i + 1,j) +

(3.56)

Apu(i, j) * up (i, J)

(3.57)

Apv(i,j) *v,(i,))
= Awv(i,j) *v,(i — 1,j) + Aev(i,j) * v,(i + 1,j) + Asv(i, )
*v(0,j — 1) + Anv(i,j) *v,(i,j + 1) — Fv,(i,))

(3.58)

Apv(i,j) * v,(i,))
= va(lr]) * UZ(': - 11]) + Aev(i,j) * UZ(i + 11]) + Asv(irj)
* U, (I,j — 1) + Anv(i,j) * v,(i,j + 1) — Fv,(i,))

(3.59)
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Equations (3.56) to (3.59) present the governing equations for the displacement
components ul, vl, u2, and v2, respectively. In each of these equations, the left-
hand side contains the unknown variables to be solved, while the right-hand side
consists of the corresponding nonlinear terms. For improved clarity and readability,
the equations are expressed using the derived coefficients Apu, Awu, Asu, Aeu,

Anu, Apv, Awv, Asv, Aev, and Anv.

2 (1-
_2+( M)+GI
hi

Apu(i,j) = ——
h3 (3.60)

1
Awu(i, j) = Aeu(i,j) = —

h2
% (3.61)
1 —
Asu(i,j) = Anu(i,j) = ( thM) (3.62)
2 :
.2 (-
Apv(i ) = =+ M g
pv(i,j) nz + nZ o (3.63)
1 —
Awv(i,j) = Aev(i,j) = ( thﬂ) (3.64)
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1
Asv(i,j) = Anv(i, j) = 7z (3.65)
y .

For Equations (3.60) through (3.65), the coefficient formulas for in-plane solutions

are given which are used in Equations (3.56) to (3.59). The interlayer shear

modulus is denoted by GI, and hx and hy represent the spatial step sizes in the x-

and y-directions, respectively. At each discrete point (i), the right-hand side parts

given in Equations (3.56) to (3.59), are represented as Ful(i,j), Fu2(i,j), Fvl(i,),

and Fv2(i,)).

34.1 Analysis Steps

The analysis steps for the iterative solution method are given below.

1.
2.

The stiffness matrix is obtained.

The right-hand side of the w equation which includes non-linear
terms is calculated. (refer to Equations (3.47) and (3.49))

Solve for the w(i,j) displacement matrix using Equation (3.48). The
solution of w is calculated using LU decomposition of stiffness
matrix. LU decomposition can be seen as a better way to implement
Gauss elimination. This enables us to solve the matrix in a more
advantageous way.

Check convergence: if the relative error is below the defined

tolerance, then exit the inner iteration loop.
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5. The stiffness matrices for the in-plane displacements are obtained. .
The results of w displacement are used for the right-hand side of in-
plane displacements calculation.

6. Compute the right-hand side for ul and calculate ul using Equation
(3.56).

7. Compute the right-hand side for u2 and calculate u2 using Equation
(3.57).

8. Compute the right-hand side for v1 and calculate v1 using Equation
(3.58).

9. Compute the right-hand side for v2 and calculate v2 using Equation
(3.59).

10. Return to Step 2 and repeat the process.

3.4.2 Matrix Solution Methods

For lateral (transverse, out-of-plane) displacements, a direct matrix solution
approach is employed. In this method, the right-hand side vector is multiplied by
the inverse of the matrix corresponding to the transverse displacement system.
Meanwhile, for the in-plane displacements, the Modified Strongly Implicit (MSI)
method is utilized. Originally proposed by Schneider and Zedan (1981) [34], this
method applies an Incomplete LU decomposition (ILU decomposition) as the
matrix solution technique, offering improved efficiency and convergence for large,

sparse systems.
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3.4.3 Relaxation Parameters

To address convergence issues, successive under-relaxation (SUR) parameter,
denoted by alpha (@), is employed for to the transverse variable w. A non-

dimensional maximum displacement parameter, defined as 2*w(1,1)/(h1+h2),
obtained from numerical experiments, is used to adjust the under-relaxation

parameter dynamically. The previous step lateral displacement is denoted by wo(i,

7). Initially the value of & 1is set to 0.5. As the solution progresses and convergence

improves, & is gradually increased up to a maximum of 1, thereby accelerating
convergence in later iterations. The updated displacement w is calculated using a

weighted interpolation as in Equation (3.66).

w(i,j) =axw(,j)+ (1 —a)*wo(i,))
(3.66)

Similarly, for the convergence of in-plane deflection calculation is done using beta
parameter of under-relaxation employing successive over-relaxation (SOR). For the
in-plane displacements, a constant over-relaxation factor of 1.4 was found to be

appropriate after a series of numerical trials.

v(i,j) =B *v(i,j) + (1= B)*vo(i,j) (3.68)
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3.4.4 Stress Calculation

The stress values in the mathematical model (FDM model) are obtained by
combining membrane and bending stresses for each layer, considering their
respective directions (tensile or compressive). Since both glass layers rotate in the
same direction under bending, the combination of membrane and bending stresses
varies depending only on whether the point of interest lies on the upper or lower

surface of a given layer.

Table 3.3 Summation of bending stresses in the corresponding function of the code.

Top Plate Bottom Plate
Tension Side ) ()
Compression Side (-) ()

The membrane stresses and bending stresses are summed with respect to Table 3.3.
The rotations are separate for both layers. Thus, assuming positive bending
moment; top parts of each layer is tensile (positive signed stress) while the bottom

part of each layer is compressive (negative signed stress).

The shear and axial stresses at the top and bottom surfaces of each layer are utilized
to calculate the principal stresses using the Mohr’s Circle method. This results in
the determination of the first principal stress (o1) and the second principal stress
(02). While the first principal stress typically has a larger magnitude, it is important
to note that the second principal stress may prove to be more critical, especially

when considering the potential for compressive failure modes.

Additionally, the interlayer shear deformation mode is considered, leading to the

incorporation of interlayer shear failure mode into the analysis. As a result, the
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relevant stresses are calculated, taking into account the deformation values of the

laminated glass. In total, six stresses are determined;

e First principal stress for the upper layer

e Second principal stress for the upper layer
e First principal stress for the lower layer

e Second principal stress for the lower layer
e Interlayer shear stress in the xz direction

e Interlayer shear stress in the yz direction

The symbols for principal stresses used in the following sections are summarized in

Table 3.4.

Table 3.4 Symbols for Principal Stresses

Principal Stress Symbols
First Principal Stress |
Second Principal Stress 02
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CHAPTER 4

RESULTS

4.1 Model and Solution Implementation

The developed mathematical model is converted into code using the Python

programming language version 3.11.4.

Data inputs are taken for variables below to run the model code.

e Length in x-direction (in meters),

e Length in y-direction (in meters),

e Glass layers thicknesses (in meters),

e Interlayer thickness (in meters),

e Number of divisions in x-direction,

e Number of divisions in y-direction,

e Elastic modulus for glass layer (in kPa),
e Shear modulus for the interlayer (in kPa),
e Poisson’s ratio for glass layers,

e Loading magnitude (in kPa).

In Figure 4.1, a 3D visualization of the laminated glass plate model is presented,
along with the corresponding orthogonal coordinate system. The z-direction
represents the transverse direction, while the x and y directions define the in-plane

directions.
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Figure 4.1 3D View of the laminated glass plate model and coordinate system

The loading for the plate is uniform pressure applied downwards on top surface (+z

surface in Figure 4.1).

To validate and compare the FDM model results, an FEM model for laminated
glass was developed and evaluated in terms of result accuracy and computational
performance. Constructing this model required rigorous effort due to the inclusion
of extremely thin interlayer elements modeled as solids, which were connected to
the upper and lower glass layers. Given the aspect ratio constraints of solid
elements, a high mesh density was necessary to ensure accurate results. The finite
element model is constructed using C3D20 elements within the Abaqus software,

which are 20-node quadratic brick elements suitable for capturing complex 3D
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stress states. The applied loading condition—transverse pressure—was kept
consistent with the FDM model for direct comparison. The loading configuration
for the FEM analysis is illustrated in Figure 4.2 below. The results are obtained
from our developed mathematical FDM model unless explicitly stated as FEM

results.

Figure 4.2 Abaqus FEM model under pressure load

4.2 Case 1: Symmetrical S.S.-Clamped- S.S. -Clamped (Benchmark)

The first case is symmetrical and is calculated as a benchmark for the
unsymmetrical boundary condition cases. It has already been extensively studied in
previous work and will therefore not be discussed in detail here. Its primary
purpose is to serve as a reference for the unsymmetrical cases, which are presented

in the following sections.
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In Figure 4.3, the left and right edges are clamped (u,v,w = 0, 08/0n = 0) while top
and bottom edges are simply supported edges (06/0n # 0).

Clamped

o

SS SS

L. A
Clamped
X

Figure 4.3 Case 1 Boundary conditions for the plate
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Figure 4.4 Transverse displacement of the plate

The displacement contour in the middle is an ellipse rather than circle, which can
be observed in Figure 4.4. That pattern is expected due to the different boundary
conditions in x and y directions. The simply supported boundaries are less stiff, and

the transverse displacement leans toward these edges.
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Figure 4.5 Axial displacement in x direction of upper plate (ul)
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Figure 4.6 Axial displacement in x direction of lower plate (u2)
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Figure 4.7 Axial displacement in y direction of upper plate (v1)
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Figure 4.8 Axial displacement in y direction of lower plate (v2)
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When analyzing the in-plane x-displacements (ul, u2) and y-displacements (v1,
v2) , it is apparent that their spatial distributions are oriented orthogonally within
the plane as in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8. The u-
displacements, representing in-plane motion along the x-axis, show a distribution
parallel to the x-direction, while the v-displacements, corresponding to in-plane
motion along the y-axis, are primarily distributed parallel to the y-direction. As
expected, non-zero negative in-plane displacements are observed along the simply

supported edges, whereas clamped edges exhibit zero in-plane displacements.

4.3 Case 2: Unsymmetrical Clamped - Clamped - S.S. - S.S. Edges

In this case, the rectangular plate is subjected to a specific configuration of
boundary conditions in which two adjacent edges are assigned simply supported
(SS) conditions, while the remaining two adjacent edges are constrained with
clamped boundary conditions. To elaborate further, the simply supported boundary
conditions—applied to two adjoining edges of the plate—allow all types of
translation and rotational displacements except transverse displacement normal to
the plate. Conversely, the clamped boundary conditions imposed on the other two
adjoining edges enforce a fully fixed support, preventing both translational
displacements and rotations along the edge, thereby simulating a rigid and

immovable connection.

This arrangement of mixed boundary conditions —clamped on the top and left
edges, and simply supported on the bottom and right edges— is explicitly
illustrated in Figure 4.9.
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Figure 4.9 Case 2 Boundary conditions for the plate
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Figure 4.10 Transverse displacement of the plate
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The transverse displacements are the dominant displacements for transverse
pressure loading. Thus, the emphasis is put on those displacements and compared
with the equivalent FEM model results. In the FEM model below, the boundary
conditions and displacement extraction path are specified. Also, the deformation

shape can be observed.

Both Case 1 and Case 2 have the same number of clamped and simply supported
edges. The only difference is that the boundary condition in Case 1 is symmetric,
while in Case 2 it is not. Case 2 results in a higher maximum displacement
compared to Case 1, indicating that the asymmetry leads to a less stiff structural
response. From an engineering perspective, asymmetry typically results in reduced

stiffness, so this outcome is consistent with expectations.

U, Uz
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-1.412e-05
-2.8248-05
-4.2368-05
-5.648e-05
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-1.553e-04
-1.6942-04

X 4—1

Figure 4.11 Transverse displacement results of FEM analysis
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Figure 4.12 Case-2 Transverse displacements from mathematical model and FEM
analysis

In Figure 4.12, the FEM displacements are extracted along the diagonal in Figure
4.11, starting at the clamped-clamped edge (marked with a circle) and ending at the
S.S.-S.S. edge (marked with a triangle). And the Finite Difference Method (FDM)
model displacements are extracted along top-left and bottom-right corners of
Figure 4.10, starting at top-left corner. The circle and triangle symbols in Figure

4.12 correspond to the same points denoted by these symbols in Figure 4.11.

The computational results obtained from both the Finite Difference Method (FDM)
and Finite Element Method (FEM) models demonstrate strong agreement, with
nearly indistinguishable deformation profiles and closely matching quantitative
values. Specifically, the spatial distribution of displacements, as well as the
magnitude of local strain concentrations, exhibit a high degree of correlation

between the two numerical approaches.
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A key observation is the systematic shift of the maximum transverse
displacement’s lowest points toward the S.S.- S.S. edge region compared to the
symmetrical solution, which has a maximum displacement point in the middle of
the plate. This trend arises due to the inherent mechanical contrast between
boundary conditions: simply supported edges, which allow rotational freedom,
exhibit significantly greater compliance than clamped edges, which fully restrain
both rotations and translations. Consequently, deformation localizes preferentially
near the less constrained simply supported edge—a behavior well-documented in
plate mechanics literature [14]. The consistency between FDM and FEM
predictions not only reinforces confidence in the FDM implementation but also
aligns with first-principles expectations for thin-plate deformation under mixed

boundary conditions.
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Figure 4.13 Axial displacement in x direction of upper plate (ul)
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Figure 4.14 Axial displacement in y direction of upper plate (v1)
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When analyzing the in-plane x-displacements (ul) and y-displacements (v1) for the
upper glass layer in Figure 4.13 and Figure 4.14, it is apparent that their spatial
distributions are oriented orthogonally within the plane. The u-displacements,
representing in-plane motion along the x-axis, show a distribution parallel to the x-
direction, while the v-displacements, corresponding to in-plane motion along the y-
axis, are primarily distributed parallel to the y-direction. As expected, non-zero
negative in-plane displacements are observed along the simply supported edges,

whereas clamped edges exhibit zero in-plane displacements.
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Figure 4.15 Axial displacement in x direction of lower plate (u2)
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Figure 4.16 Axial displacement in y direction of lower plate (v2)

In Figure 4.15 and Figure 4.16, the x-displacements (u2) and y-displacements (v2)
observed in the lower glass layer exhibit a spatial distribution pattern similar to that
of the upper glass layer. Specifically, the u2 displacements are predominantly
aligned along the x-direction, while the v2 displacements are primarily distributed
along the y-direction. Similar to the results observed in the upper layer, the lower
layer also exhibits non-zero negative in-plane displacements along the simply
supported edges. Conversely, the clamped edges maintain zero in-plane

displacements, consistent with the expected boundary conditions.

A clear symmetry is observed in the displacement distributions of the upper and
lower glass layers with respect to the interlayer plane (i.e., the z-plane, whose

normal corresponds to the transverse direction). At a corresponding point on the 2D
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plane, the in-plane displacements of the two layers exhibit similar magnitudes but

opposite directions, indicating mirrored deformation behavior across the laminate.

For all in-plane displacement components—including ul, vl (upper layer) and u2,
v2 (lower layer)—their magnitudes are negligible when compared to the transverse
(out-of-plane) displacements observed under the same loading conditions. That
aligns with established findings in prior studies [20], where transverse
deformations consistently dominate the structural response of similar laminated
glass systems. The minimal in-plane displacements can be attributed to the high in-
plane stiffness of the glass layers, which restricts deformation along the x- and y-
axes, while the comparatively lower out-of-plane stiffness allows for more
pronounced deflections in the z-direction. Furthermore, the clamped boundary
conditions, which typically constrain in-plane motion at the edges, further suppress
u and v displacements, reinforcing the expected deformation hierarchy where

transverse displacements govern the overall mechanical behavior.
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4.3.1 Comparison with Theoretical Limits (Monolithic/Layered)
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Figure 4.17 Comparison of transverse displacements along diagonal line with
theoretical limits

The theoretical limits for laminated glass plate behavior were established in prior
work by Mohareb [36]. The first limit corresponds to monolithic glass, defined as a
single-layer glass plate of full thickness without any interlayer adhesive. The
second limit represents layered glass, which consists of multiple glass layers
identical to those in laminated glass but with zero shear stiffness in the interlayer.
In this layered limit, the glass layers are free to slide relative to one another without
shear resistance. Laminated glass, in theory, exhibits behavior intermediate
between these two extremes. Its specific response—whether closer to the
monolithic or layered limit—depends on the shear stiffness of the polymer

interlayer material.
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In the present analysis (Figure 4.17), the deformation of laminated glass falls
between these two theoretical limits. The circle and triangle symbols in Figure 4.17
correspond to the same points denoted by these symbols in Figure 4.11. While all
cases (monolithic, layered, and laminated) exhibit qualitatively similar transverse
displacement shapes, the magnitudes differ significantly due to their distinct
stiffness characteristics. These results align with theoretical expectations: laminated
glass, by virtue of its finite interlayer shear stiffness, demonstrates greater rigidity
than the layered limit but remains less stiff than the monolithic case, as the polymer

interlayer cannot match the shear stiffness.

4.3.2 Stress Results

Principal in-plane stresses for both glass layers and transverse shear stress for
adhesive interlayer are derived from the displacement results. The naming

conventions used here correspond to those listed in Table 3.4.
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Figure 4.18 First principal stress (c1) in upper layer
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Figure 4.19 Second principal stress (62) in upper layer
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Figure 4.21 Second principal stress (62) in lower layer

Figure 4.18, Figure 4.19, Figure 4.20, and Figure 4.21 illustrate the first and second
principal stresses for Case 2, shown separately for the upper and lower glass layers.
In both layers, the principal stresses reach their maximum values near the clamped
edges. This aligns with theoretical expectations, as clamped edges impose stricter
displacement constraints, leading to higher local stiffness compared to simply
supported edges. The points of minimum absolute principal stresses typically occur
slightly inward from the clamped boundaries, in close proximity to the regions of
maximum absolute stress. For Case 2, the sign of a given principal stress remains
consistent throughout each individual layer, indicating no sign reversal within the

layer.
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The principal stress distributions between the upper and lower layers are not
perfectly symmetric. This asymmetry arises because the principal stresses are
influenced by the combined effect of membrane and bending stresses. If bending
were the sole contributor, the stress distributions would be symmetric with respect

to the interlayer plane.
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Figure 4.22 Distribution of transverse shear stress T, in the interlayer
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Figure 4.23 Distribution of transverse shear stress T,,, in the interlayer

The transverse shear stress distributions within the interlayer are presented in
Figure 4.22 and Figure 4.23. The shear stress on the xz-plane (T,,) primarily varies
along the x-direction, whereas the shear stress on the yz-plane (7,,) exhibits

stronger variation along the y-direction compared to the x-direction. Unlike the
principal stresses in the glass layers—which are highest near the clamped edges in

Case 2—the interlayer shear stresses are more pronounced near the simply
supported edges. Notably, for both T,, and Ty, , the shear stress values drop to

zero at the mid-plane of the interlayer when viewed in the out-of-plane (z)

direction.
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4.3.3 Convergence of transverse displacement for interlayer thickness
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Figure 4.24 Case-2 interlayer thickness versus maximum transverse displacement

Increasing the glass layer thickness has a direct positive effect on the overall
stiffness of the laminated plate, which aligns with the physical nature of the
problem. However, increasing the interlayer adhesive thickness while keeping
other parameters constant reduces stiffness and increases the transverse
displacement of the plate. To explore this phenomenon, the interlayer thickness is
varied over a wide range. The results show that as the interlayer thickness
increases, the maximum transverse displacement also increases, eventually

converging after a certain point as shown in Figure 4.24.
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4.4 Case 3: Unsymmetrical Clamped-Clamped-Clamped-S.S. Edges

In Case 3, the square plate is constrained with clamped conditions on the top, left,
and right edges, providing full fixity. Only the bottom edge in Figure 4.25 has a
simply supported condition, allowing rotation while restricting transverse
displacement. This setup creates asymmetric stiffness over the plate. The square
geometry implies equal edge lengths, making corner transitions (where clamped

edge meets simply supported edge) critical for stress analysis.

Clamped

Clamped Clamped

SS

Figure 4.25 Case 3 Boundary conditions for the plate
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Figure 4.26 Transverse displacement of the plate

Like in Case 3, the transverse displacements are the dominant displacements for
transverse pressure loading. Thus again, those displacements are compared with the
equivalent FEM model results. In the FEM model below, the boundary conditions
and displacement extraction path are similarly specified. Also, the deformation

shapes can be observed.

75



U, u2
+4.777e-10
-1.127e-05
-2.253e-05
-3.380e-05
-4.506e-05
-5.633e-05
-6.760e-05
-7.886e-05
-9.013e-05
-1.014e-04
-1.127e-04
-1.23%e-04
-1.352e-04

clampe

Z

X

£ 55

Figure 4.27 Transverse displacement results of FEM analysis
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Figure 4.28 Case-3 Transverse displacements from mathematical model and FEM
analysis
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In Figure 4.28, the FEM displacements are extracted along the diagonal in Figure
4.27, starting at the clamped-clamped edge (marked with a circle) and ending at the
clamped-S.S. edge (marked with a triangle), and the Finite Difference Method
(FDM) model displacements are extracted along top-left and bottom-right corners
of Figure 4.26, starting at top-left corner. The circle and triangle symbols in Figure

4.28 correspond to the same points denoted by these symbols in Figure 4.27.

The computational results obtained from both the Finite Difference Method (FDM)
and Finite Element Method (FEM) models again demonstrate strong agreement,
with nearly indistinguishable deformation profiles and closely matching
quantitative values. Specifically, the spatial distribution of displacements, as well
as the magnitude of local strain concentrations, exhibit a high degree of correlation

between the two numerical approaches.

A key observation is the systematic shift of the maximum transverse
displacement’s lowest points toward the simply supported edge region compared to
the symmetrical solution, which has a maximum displacement point in the middle
of the plate. This trend arises due to the inherent mechanical contrast between
boundary conditions: simple supports, which allow rotational freedom, exhibit
significantly greater compliance than clamped edges, which fully restrain both
rotations and translations. Consequently, deformation localizes preferentially near
the less constrained (simply supported) edge—a behavior consistent with Case 3
and again in agreement with classical plate theory literature [14]. The consistency
between FDM and FEM predictions not only reinforces confidence in the FDM
implementation but also aligns with first-principles expectations for thin-plate

deformation under mixed boundary conditions.
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Figure 4.30 Axial displacement in y direction of upper plate (v1)

78



When analyzing the in-plane x-displacements (ul) and y-displacements (v1) for the
upper glass layer in Figure 4.29 and Figure 4.30, it is apparent that their spatial
distributions are oriented orthogonally within the plane. The ul displacements,
representing in-plane motion along the x-axis, show a dominant variation along the
x-direction, while the v-displacements, corresponding to in-plane motion along the
y-axis, are primarily distributed parallel to the y-direction. Additionally, the
deformation behavior at the edges aligns with theoretical expectations: clamped
boundary conditions enforce zero in-plane displacements, whereas the simply

supported edges allow for non-zero in-plane displacements.
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Figure 4.31 Axial displacement in x direction of lower plate (u2)
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Figure 4.32 Axial displacement in y direction of lower plate (v2)

The x-displacements (u2) and y-displacements (v2) observed in the lower glass
layer exhibit a spatial distribution pattern similar to that of the upper glass layer.
Specifically, the u2 displacement variations are predominantly aligned along the x-
direction, while the v2 displacements are primarily distributed along the y-
direction.

Similar to Case 3, the in-plane displacement distributions of the upper and lower
glass layers exhibit a high degree of symmetry with respect to z axis. At a
corresponding point on the 2D plane, the in-plane displacements of the two layers
exhibit similar magnitudes but opposite directions, indicating mirrored deformation

behavior across the laminate.
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For all in-plane displacement components—including ul, vl (upper layer) and u2,
v2 (lower layer)—their magnitudes are negligible when compared to the transverse

(out-of-plane) displacements observed under the same loading conditions.

This aligns with established findings in prior studies [19] [24], where transverse
deformations consistently dominate the structural response of similar laminated
glass systems. The minimal in-plane displacements again can be attributed to the
high in-plane stiffness of the glass layers, which restricts deformation along the x-
and y-axes, while the comparatively lower out-of-plane stiffness allows for more
pronounced deflections in the z-direction. Furthermore, the clamped boundary
conditions, which typically constrain in-plane motion at the edges, further suppress
the u and v displacements. This reinforces the expected deformation pattern, where

transverse displacements dominate the overall mechanical response in this case.

4.4.1 Comparison with Theoretical Limits (Monolithic/Layered)
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Figure 4.33 Comparison of transverse displacements along diagonal line with
theoretical limits
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The first theoretical limit corresponds to monolithic glass, defined as a single-layer
glass plate of full thickness without any interlayer adhesive. The second theoretical
limit represents layered glass, which consists of multiple glass layers identical to
those in laminated glass but with zero shear stiffness in the interlayer. In this
layered limit, the glass layers are free to slide relative to one another without shear
resistance. Laminated glass, in theory, exhibits behavior between these two
extremes. Its specific response—whether closer to the monolithic or layered

limit—depends on the shear stiffness of the polymer interlayer material.

In the present analysis and corresponding Case 3 (Figure 4.33), again the
deformation of laminated glass falls in between these two theoretical limits. The
circle and triangle symbols in Figure 4.33 show the same points in Figure 4.27.
While all cases (monolithic, layered, and laminated) exhibit qualitatively similar
transverse displacement shapes, the magnitudes differ significantly due to their
distinct stiffness characteristics. These results align with theoretical expectations:
laminated glass, by virtue of its finite interlayer shear stiffness, demonstrates
greater rigidity than the layered limit but remains less stiff than the monolithic

case, as the polymer interlayer cannot match the shear stiffness.
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4.4.2 Stress Results
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Figure 4.34 First principal stress (c1) in upper layer
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Figure 4.35 Second principal stress (62) in upper layer
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Figure 4.36 First principal stress (c1) in lower layer
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Figure 4.37 Second principal stress (62) in lower layer
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Figure 4.34, Figure 4.35, Figure 4.36 and Figure 4.37 illustrate the first and second
principal stresses for Case 3, shown separately for the upper and lower glass layers.
In both layers, the principal stresses reach their maximum values near the clamped
edges. This aligns with theoretical expectations, as clamped edges impose stricter
displacement constraints, leading to higher local stiffness compared to simply
supported edges. The points of minimum absolute principal stresses typically occur
slightly inward from the clamped boundaries, in close proximity to the regions of
maximum absolute stress. For Case 3, the sign of a given principal stress remains
consistent throughout each individual layer, indicating no sign reversal within the

layer.

The principal stress distributions between the upper and lower layers are not
perfectly symmetric. This asymmetry arises because the principal stresses are
influenced by the combined effect of membrane and bending stresses. If bending
were the sole contributor, the stress distributions would be symmetric with respect

to the interlayer plane. These results show similarities with Case 2.
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The transverse shear stress distributions within the interlayer are presented in

Figure 4.38 and Figure 4.39. Similar to Case 2, the shear stress on the xz-plane
(Tx,) primarily varies along the x-direction, whereas the shear stress on the yz-
plane (Ty, ) exhibits stronger variation along the y-direction compared to the x-

direction. Unlike the principal stresses in the glass layers—which are highest near

the clamped edges in Case 3—the interlayer shear stresses are more pronounced
near the simply supported edges. Notably, for both T, and T,,,, the shear stress

values drop to zero at the mid-plane of the interlayer when viewed in the out-of-

plane (z) direction.

4.4.3 Convergence of transverse displacement for interlayer thickness
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Figure 4.40 Case-3 interlayer thickness versus maximum transverse displacement

In Figure 4.40, increasing the glass layer thickness has a direct positive effect on

the overall stiffness of the laminated plate, which aligns with the physical nature of
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the problem. However, increasing the interlayer adhesive thickness while keeping
other parameters constant reduces stiffness and increases the transverse
displacement of the plate. To explore this phenomenon, the interlayer thickness is
varied over a wide range. Similar to Case 2, the results show that as the interlayer
thickness increases, the maximum transverse displacement also increases,
eventually converging after a certain point. The converged “maximum transverse

displacement” value (around 0.175 mm) is lower for Case 3, compared to Case 2.

4.5 Case 4: Unsymmetrical Clamped - S.S. - S.S. - S.S. Edges

In this configuration, the square plate is constrained by a combination of boundary
conditions where three edges are simply supported while the remaining upper edge
is clamped. To elaborate further, in Figure 4.41, simply supported boundary
conditions—applied to the bottom, left and right edges— only restrict transverse
displacement. In contrast, the top edge of the plate is assigned clamped boundary

conditions, which enforce complete fixity along this boundary.

Clamped

SS SS

SS

Figure 4.41 Case 4 boundary conditions for the plate
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Figure 4.42 Transverse displacement of the plate

Like in Case 1 and Case 2, the transverse displacements are the dominant
displacements for transverse pressure loading. Thus again, those displacements are
compared with the equivalent FEM model results. In the FEM model below, the
boundary conditions and displacement extraction path are similarly specified. Also,

the deformation shapes can be observed.
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Figure 4.43 Transverse displacement results of FEM analysis
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Figure 4.44 Case-4 Transverse displacements from mathematical model and FEM
analysis

90



In Figure 4.44, the FEM displacements are extracted along the diagonal in Figure
4.43, starting at the clamped- S.S. edge (marked with a circle) and ending at the
S.S.- S.S. edge (marked with a triangle). And the Finite Difference Method (FDM)
model displacements are extracted along top-left and bottom-right corners of
Figure 4.42, starting at top-left corner. The circle and triangle symbols show the

same points in Figure 4.43.

Similar to the previous cases, the computational results obtained from both the
Finite Difference Method (FDM) and Finite Element Method (FEM) models again
demonstrate strong agreement, with nearly indistinguishable deformation profiles
and closely matching quantitative values. Specifically, the spatial distribution of
displacements, as well as the magnitude of local strain concentrations, exhibit a

high degree of correlation between the two numerical approaches.

A key observation is the systematic shift of the maximum transverse
displacement’s lowest points away from the clamped edge region compared to the
symmetrical solution, which has a maximum displacement point in the middle of
the plate. Similar with previous cases, this trend arises due to the inherent
mechanical contrast between boundary conditions: simply supported supports,
which allow rotational freedom, exhibit significantly greater deformation than
clamped edges, which fully restrain both rotations and translations. Consequently,
deformation localizes preferentially near the less constrained simply supported
edges similar with Case 2 and Case 3 —again as in plate mechanics literature [14].
Again, the consistency between FDM and FEM predictions not only reinforces
confidence in the FDM implementation but also aligns with first-principles

expectations for thin-plate deformation under mixed boundary conditions.
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Figure 4.45 Axial displacement in x direction of upper plate (ul)
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Figure 4.46 Axial displacement in x direction of upper plate (v1)
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Similar to Case 2 and Case 3; when analyzing the in-plane x-displacements (ul)

and y-displacements (v1) for the upper glass layer in

Figure 4.45 and Figure 4.46, it is apparent that their spatial distributions are
oriented orthogonally within the plane. The u-displacements, representing in-plane
motion along the x-axis, show a dominant variation parallel to the x-direction,
while the v-displacements, corresponding to in-plane motion along the y-axis, are
primarily distributed parallel along the y-direction. Additionally, the deformation
behavior at the edges aligns with theoretical expectations: clamped boundary
conditions enforce zero in-plane displacements, whereas the simply supported

edges allow for non-zero in-plane displacements.
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Figure 4.47 Axial displacement in x direction of lower plate (u2)
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Figure 4.48 Axial displacement in y direction of upper plate (u2)

Similar to Case 2 and Case 3, the x-displacements (u2) and y-displacements (v2)
observed in the lower glass layer exhibit a spatial distribution pattern similar to that
of the upper glass layer. Specifically, the u2 displacements are predominantly
varying along the x-direction, while the v2 displacements are primarily distributed

along the y-direction.

The in-plane displacement distributions of the upper and lower glass layers exhibit
a high degree of symmetry with respect to z axis (interlayer plane). At a
corresponding point on the 2D plane, the in-plane displacements of the two layers
exhibit similar magnitudes but opposite directions, indicating mirrored deformation

behavior across the laminate.
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Similar to Case 2 and Case 3, for all in-plane displacement components—including
ul, vl (upper layer) and u2, v2 (lower layer)—their magnitudes are negligible
when compared to the transverse (out-of-plane) displacements observed under the
same loading conditions. This aligns with established findings in prior studies [20],
where transverse deformations consistently dominate the structural response of
similar laminated glass systems. The minimal in-plane displacements can be
attributed to the high in-plane stiffness of the glass layers, which restricts
deformation along the x- and y-axes, while the comparatively lower out-of-plane
stiffness allows for more pronounced deflections in the z-direction. Furthermore,
the boundary conditions, which typically constrain in-plane motion at the edges,
further suppress u and v displacements, reinforcing the expected deformation

hierarchy where transverse displacements govern the overall mechanical behavior.

4.5.1 Comparison with Theoretical Limits (Monolithic/Layered)
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Figure 4.49 Comparison of transverse displacements along diagonal line with
theoretical limits
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Similar to Case 2 and Case 3, the first theoretical limit corresponds to monolithic
glass, the second theoretical limit represents layered glass. In this layered limit, the
glass layers are free to slide relative to one another without shear resistance.
Laminated glass, in theory, exhibits behavior intermediate between these two
extremes. Its specific response—whether closer to the monolithic or layered

limit—depends on the shear stiffness of the polymer interlayer material.

In the present analysis and corresponding Case 4 (Figure 4.49), again the
deformation of laminated glass falls between these two theoretical limits. The
circle and triangle symbols in Figure 4.49 show the same points in Figure 4.43.
While all cases (monolithic, layered, and laminated) exhibit qualitatively similar
transverse displacement shapes, the magnitudes differ significantly due to their
distinct stiffness characteristics. Similar to Case 2 and Case 3, these results align
with theoretical expectations: laminated glass, by virtue of its finite interlayer shear
stiffness, demonstrates greater rigidity than the layered limit but remains less stiff

than the monolithic case, as the polymer interlayer cannot match the shear stiffness.
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4.5.2 Stress Results
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Figure 4.50 First principal stress (c1) in upper layer
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Figure 4.51 Second principal stress (62) in upper layer
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Figure 4.53 Second principal stress (62) in lower layer
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Figure 4.50, Figure 4.51, Figure 4.52, and Figure 4.53 illustrate the first and second
principal stresses for Case 4, shown separately for the upper and lower glass layers.
In both layers, the principal stresses reach their maximum values near the clamped
edges. This aligns with theoretical expectations, as clamped edges impose stricter
displacement constraints, leading to higher local stiffness compared to simply
supported edges. The points of minimum absolute principal stresses typically occur
slightly inward from the clamped boundaries, in close proximity to the regions of
maximum absolute stress. For Case 4, the sign of the given principal stress remains
consistent throughout each individual layer, indicating no sign reversal within the

layer.

The principal stress distributions between the upper and lower layers are not
perfectly symmetric. This asymmetry arises because the principal stresses are
influenced by the combined effect of membrane and bending stresses. If bending
were the sole contributor, the stress distributions would be symmetric with respect

to the interlayer plane. Those results show similarities with Case 2 and Case 3.
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Figure 4.54 Distribution of transverse shear stress T,., in the interlayer
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Figure 4.55 Distribution of transverse shear stress T,,, in the interlayer

The transverse shear stress distributions within the interlayer are presented in

Figure 4.54 and Figure 4.55. Similar to Case 2, the shear stress on the xz-plane
(Txz) primarily varies along the x-direction, whereas the shear stress on the yz-
plane (T,,,) exhibits stronger variation along the y-direction. Unlike the principal

stresses in the glass layers—which are highest near the clamped edges in Case 4—

the interlayer shear stresses are more pronounced near the simply supported edges
again. Notably, for both Ty, and T,,, , the shear stress values drop to zero at the

mid-plane of the interlayer when viewed in the out-of-plane (z) direction.

100



4.5.3 Convergence of transverse displacement for interlayer thickness
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Figure 4.56 Case-4 interlayer thickness versus maximum transverse displacement

Again in Figure 4.56, increasing the glass layer thickness has a direct positive
effect on the overall stiffness of the laminated plate, which aligns with the physical
nature of the problem. However, increasing the interlayer adhesive thickness while
keeping other parameters constant reduces stiffness and increases the transverse
displacement of the plate. To explore this phenomenon, the interlayer thickness is
varied over a wide range. Similar to Case 1 and Case 2, the results show that as the
interlayer thickness increases, the maximum transverse displacement also
increases, eventually converging after a certain point. The converged “maximum
transverse displacement” value (around 0.28 mm) is higher for Case 4, compared to

Case 2 and Case 3.
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4.6  Transverse Displacements Comparison

In this section, the transverse displacement distributions of all six cases along the
diagonal are compared by plotting them on the same graph (Figure 4.57). A
uniform pressure load of 0.2 kPa is applied for all the solutions presented here. The
circle and triangle symbols correspond to the same reference points as in the
previous cases. For fully clamped or fully simply supported (SS) boundary

conditions, however, the choice of these points is not significant.
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Figure 4.57 Six cases transverse displacement comparison along diagonals

Figure 4.57 shows that the maximum transverse displacement occurs in Case 4
(Three edges simply supported, one edge clamped). Moreover, the fully simply
supported (SS) case exhibits the lowest transverse displacement at the mid-span,

while the fully clamped case shows the lowest displacement near the edges.
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4.7 Critical Stresses

Table 4.1 presents the most critical principal stress values observed for each

loading case, highlighting the stress severity across different boundary conditions.

Table 4.1 Maximum and minimum principal stresses for each case

Cases Maximum first principal Minimum second principal
stress stress

Case 1 1888 kPa -1877 kPa

Case 2 957 kPa -945 kPa

Case 3 869 kPa -861 kPa

Case 4 1115 kPa -1095 kPa

Fully clamped 888 kPa -887 kPa

Fully S.S. 865 kPa -848 kPa

Among all cases, Case 1 produces the largest absolute values of both maximum
and minimum principal stresses. For the main cases of interest in this study (the
unsymmetrical cases: 2, 3, and 4), Case 4 exhibits the most critical stress state, with
both principal stresses reaching their peak magnitudes. This is expected, as the
single clamped edge in Case 4 must compensate for the flexibility introduced by
the three simply supported edges, resulting in pronounced stress concentrations
near the clamped boundary. In contrast, Case 3 shows the lowest stress levels, as
three clamped edges effectively restrain the displacements associated with the

single simply supported edge.

For the benchmark cases Case 1, fully clamped and fully S.S., Case 1 gives the
highest absolute principal stresses, which are also the highest stresses among all six
cases. Case 1 was for symmetrical mixed boundary conditions (clamped-S.S.-

clamped-S.S. in order).
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Table 4.2 summarizes the absolute maximum values of the transverse shear
stresses, Ty, and Ty, across all loading cases. The absolute values are reported

because the sign indicates only the direction of the shear stress, not its magnitude

or criticality.

Table 4.2 Absolute maximum transverse shear stress values for each case

Cases T, absolute maximum Ty absolute maximum
value value
Case 1 22.9 kPa 19.8 kPa
Case 2 6.76 kPa 6.76 kPa
Case 3 4.37 kPa 5.48 kPa
Case 4 7.39 kPa 8.04 kPa
Fully clamped 2.45 kPa 2.45 kPa
Fully S.S. 6.94 kPa 6.94 kPa

In Table 4.2, among the unsymmetrical cases, the maximum absolute interlayer
shear stresses are again the highest for Case 4 and the lowest for Case 3. This trend
is similar to that of the extreme principal stress values, which is expected: in Case
4, the single clamped edge restricts displacements, while the other three edges are
simply supported. As a result, most of the reaction load is concentrated along the

clamped edge.

Similarly, for the benchmark cases (Case 1, fully clamped, and fully simply
supported), Case 1 produces the highest absolute shear stresses, which are also the
largest shear stresses among all six cases. Case 1 corresponds to symmetrical

mixed boundary conditions (clamped—S.S.—clamped-S.S. in order).
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4.8 Computational Performance

A local personal computer (PC) is used to perform both FEM and FDM analysis

runs. The specifications of the computer are provided on Table 4.3.

Table 4.3 Computational environment specifications

OS Name Microsoft Windows 11 Pro

Processor 12th Gen Intel(R) Core (TM) i5-12450H,
2000 Mhz, 8 Core(s), 12 Logical
Processor(s)

System Type x64-based PC

Installed Physical Memory (RAM) 16.0 GB

Available Virtual Memory 27.8 GB

Table 4.4 Run-time comparison of the developed FDM model and FEM analysis

Cases Model run time (seconds) FEM run time (seconds)
Case 2 24.7 2821.4
Case 3 9.5 2487.3
Case 4 10.2 3741.0

The primary advantage of the model lies in its computational efficiency. As shown
in Table 4.4, the FDM model is over 100 times faster than the FEM model,
completing the analysis in only about 1% of the time required. In addition, the
setup process is greatly simplified, as the FDM model requires only parameter
inputs without further preprocessing; all configurations are automatically handled

within the code.

105



Table 4.5 Memory requirements for the developed model and FEM model

Required memory Required memory in FEM
model
Similar values for all cases | 141 MB 2.17 GB (Minimum)

15.9 GB (increased up to

analysis estimates locally)

The memory efficiency improvements of the FDM approach are equally
noteworthy. Beyond computational speed advantages, the model demonstrates
superior performance in terms of RAM requirements. For a representative case in
Table 4.5 —Case 3, which involves three edges clamped and single simply

supported edge—the memory savings are particularly significant.

The comparative analysis reveals striking differences in resource allocation: while
the conventional FEM implementation demands 2.17 GB of working memory, our
FDM-based solution accomplishes the same simulation task using only 141 MB of
RAM allocation. This translates to the FDM model requiring just 6.5% of the
memory resources needed by the FEM approach, representing nearly a 94%

reduction in memory footprint.
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4.9 Nonlinear Effect in the Solution

Given the incorporation of nonlinear strain formulations in the model, the system's
response is expected to exhibit progressively non-linear behavior with increasing
load magnitude. This characteristic nonlinearity manifests most clearly in the
relationship between applied pressure and maximum displacement. To
systematically demonstrate this effect, a series of numerical solutions were
computed and analyzed for Case 3 (as defined in Section 4.2), spanning a range of

pressure loads from 0.2 kPa to 8 kPa.

—— nonlinear solution

opo74 — linear solution

0.006

0.005 4

0.004 -

0.003 4

0.002

Transverse displacement (m)

0.001 A

0.000 A

T T T T T T T
0 1 2 3 4 5 6 7 B
Transverse pressure load (kPa)

Figure 4.58 Maximum transverse displacements: Nonlinear model solution and
linear solution

For comparative purposes, a linear solution is calculated by removing all the
nonlinear terms in the transverse and in-plane displacement equations, specifically

from the right-hand side parts of Equations (3.23), (3.24), (3.25), (3.26) and (3.27).
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The linearized model establishes a reference baseline to systemically evaluate the

nonlinear effects inherent in the full FDM model.

The results, presented in Figure 4.58, reveal several important observations:

1. The divergence between linear and nonlinear solutions becomes
increasingly pronounced at higher loading levels.

2. The maximum discrepancy reaches approximately 30% at the upper limit of
the loading range (8 kPa).

3. The deviation follows a characteristic pattern where nonlinear effects

accumulate progressively rather than appearing abruptly.

This 30% difference at operational-scale loading conditions demonstrates the
critical importance of incorporating nonlinear strain formulations when modeling
such systems. The conventional linear approach would significantly underpredict
displacements by neglecting these cumulative nonlinear effects, potentially leading
to unconservative designs in engineering applications. The results quantitatively
validate that our nonlinear FDM implementation successfully captures these

essential mechanical behaviors that linearized models cannot represent.
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4.10 Optimum number of divisions and mesh convergence
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Figure 4.59 Convergence of the solution with varying edge divisions (numx and
numy)

As it is seen in Figure 4.59, the number of divisions (mesh density) are denoted as
“numx” for the number of divisions in x-direction and “numy” for the number of

divisions in y-direction.

Those number of divisions was evaluated over a range of 15 to 40 intervals. In the
figure above, the convergence of the number of mesh divisions along both x and y
can be seen. X and Y mesh divisions (numx and numy) are taken as a single
parameter, and solutions are taken for each value. Maximum transverse
displacement values for those numbers of divisions are plotted to see if the solution
has converged. As it is increased above 30 divisions, the solution seems to
converge and not change by much. Similar convergence behaviors are obtained for
other cases as well. That is why the optimal number of divisions for our model is

taken as “30” in both x and y directions.

For even better accuracy, a mesh density of 40 can be used. This does not make

analysis much slower; the runs will still be much faster compared to FEM analysis,
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but the error compared to FEM will get much smaller. The error values change for
each boundary condition so users can try to increase the grid points if they are not

satisfied with the results. Nevertheless, it is not expected to increase the grid points
above 40.
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CHAPTER 5

CONCLUSION

5.1 Conclusive Remarks

This thesis presents a nonlinear numerical model for analyzing laminated glass
plates under complex boundary conditions using the Finite Difference Method
(FDM). The model incorporates geometric nonlinearity, multilayer behavior, and
mixed support conditions, enabling accurate predictions of displacements and
stress distributions. A significant aspect of this study is its capability to simulate
realistic engineering conditions without relying on symmetry assumptions, which

are commonly used to simplify the analysis domain in previous works.

The formulation of the model draws upon a combination of energy and variational
methods, following the foundational work of Asik et al. [10] [11] [20] [24] [35].
The primary technical contributions include the incorporation of mixed boundary
conditions and the extension of the solution framework to handle unsymmetrical
edge configurations, thereby offering a more generalized solution compared to
previous studies. The model was tested on three representative boundary condition
scenarios:

» Case 2: Two adjacent edges are clamped, and the remaining two are simply
supported.

* Case 3: Three edges are clamped, and one edge is simply supported.
* Case 4: Three edges are simply supported, and one edge is clamped.
These cases represent practical configurations found in real structures and allow for
the evaluation of the model under a wide range of stiffness variations along the

plate boundaries.

While earlier models by Vallabhan, Asik, and Dural mainly addressed symmetric

boundary conditions, the present work extends the formulation to accommodate
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realistic engineering applications where support conditions vary significantly
across the structure. This enables the full-plate domain to be modeled, allowing for

more comprehensive investigation of edge effects and stress localizations.

The proposed model has been successfully verified against finite element
simulations performed in Abaqus. The comparison demonstrates strong agreement
between FDM and FEM in terms of both transverse displacements and in-plane
stress distributions. Moreover, the FDM implementation shows advantages in terms
of memory usage and computational efficiency, especially in structured geometries.
These outcomes not only validate the mathematical formulation but also emphasize
the practicality of the model in structural design, optimization, and safety

assessment of laminated glass systems.

- Unlike the Fortran-based implementations commonly found in previous
literature [36] [37], the proposed model is developed using the Python
programming language. This transition is expected to enhance the model’s
accessibility and usability in future engineering applications, given Python's
wider adoption and greater ease of use compared to Fortran.

- The model is observed to be sensitive to mesh density, which is expected
given the inherent characteristics of the Finite Difference Method.
Converged results are obtained using a 30%30 mesh for a 1m %X Im
laminated glass plate, as described in Section 3.3. For rectangular plates
with unequal edge lengths, the optimal number of mesh divisions may vary
along each axis. Therefore, separate mesh sensitivity studies are
recommended for each distinct geometry to ensure accuracy.

- For all three cases, the results show good agreement with those obtained
from the Finite Element Method (FEM) model. The comparison reveals a
strong correlation, showing discrepancies of less than 6% in transverse
displacement values and highly similar displacement shapes. These findings

support the validity of the proposed model for future applications.
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In all three cases, the boundary conditions consisted of mixed clamped and
simply supported edges, result in unsymmetrical configurations. As
intuitively expected, the points of maximum displacement consistently shift
toward the simply supported edges in each case.

The effect of nonlinearity is clearly observed, with differences in maximum
displacements reaching up to 30% as the applied load was progressively
increased (see Section 4.9). This result highlights the significant influence
of nonlinear behavior on the structural response under increasing load
levels.

The principal stresses of both glass layers and the transverse shear stresses
within the interlayer are calculated. Among the three boundary condition
cases, Case 4 consistently exhibits the most critical stress levels. It showed
the highest first principal stresses in the glass layers, the greatest transverse
shear stresses in the interlayer, and the lowest (most critical in compression)
second principal stress values. This outcome is logical, as in Case 4, the
flexibility allowed by three simply supported edges is constrained by a
single clamped edge, leading to significant stress concentrations.

Numerical experiments are conducted to investigate the effect of interlayer
adhesive thickness. As the interlayer thickness increases, the maximum
transverse displacement also increases up to a certain point, beyond which
the maximum transverse displacement results converge (see Section 4.3.3).
Compared to the equivalent FEM model developed in this study, the FDM
model significantly reduces computing time.

Additionally, this model demonstrates a significant reduction in memory
usage compared to the benchmark FEM model (Section 4.8).

The results from all three cases remain within the established theoretical
bounds for both monolithic and layered glass (Figure 4.17, Figure 4.33 and
Figure 4.49).
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In conclusion, this study introduces a novel finite difference-based model for
analyzing laminated glass plates, incorporating nonlinear formulations to address
mixed and unsymmetrical boundary conditions. The proposed approach
demonstrates substantial advantages over conventional FEM methods, including

faster computation, streamlined setup, and reduced memory demands.

These characteristics make the model especially valuable for engineers who need
efficient and accurate analysis of laminated glass structures under real-world
constraints. It eliminates the computational overhead of full 3D solid models while
preserving fidelity near clamped or mixed supports — a critical requirement in

aerospace glazing, building glass structures, and layered photovoltaic panels.

5.2 Potential Applications

The model developed in this thesis has a wide range of potential applications,
including laminated architectural glass, automobile glass, train windows, aircraft
canopies, solar panel covers, LCD displays, and many others. The primary
requirement for applicability is the presence of two stiff layers bonded by a
significantly more compliant adhesive layer. Notably, the model's assumptions are

not restricted to any specific material type.

This model extends previous work on laminated glass plates [10] [11] [20] [24]
[35] , by generalizing the formulation to accommodate a broad range of boundary
condition configurations, including unsymmetrical and mixed boundary conditions

along the plate edges.

Due to its significantly reduced computational time and low memory requirements,
the model presents considerable advantages for implementation in embedded
systems used in aircraft, UAVs, automobiles, trains, and similar platforms. These

features make it particularly suitable for real-time structural health monitoring and
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for supporting critical operational decisions, enabling faster response times while

operating on cost-effective and less complex hardware.

5.3  Possible Improvements

In this study, static analysis is performed to determine the displacement, strain, and
stress distributions of laterally loaded laminated glass plates. However, the current
model can be extended to include time-dependent behavior, enabling dynamic and
modal analyses of such structures. These extensions could be validated through

vibrational testing or finite element method (FEM) simulations.

Furthermore, a shell formulation can be derived based on the present plate model.
Such a shell model would expand the applicability of the method to curved
geometries, making it particularly suitable for analyzing laminated aircraft
canopies, curved train windows, and similar components. Previous work by Dural
[37] has investigated laminated glass shells, providing a foundation for further

exploration in this direction.

Additionally, extending the model to cover various geometries, such as laminated
glass beams, and adapting the formulation accordingly would enable the analysis
and validation of beam-type laminated glass components. In such studies, a
transition from plate-like to beam-like behavior is expected as the slenderness ratio

exceeds a certain threshold.

While FEM-based validation is carried out in this thesis for specific configurations,
further experimental investigations could provide additional verification for a
broader range of applications and enhance the model’s credibility in practical

engineering scenarios.

Using the proposed FDM-based model, delamination analysis of laminated glass

plates can be performed under any combination of mixed boundary conditions—
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whether symmetrical or unsymmetrical—similar to the approach taken by Dural
[26] [27]. This capability allows the model to account for potential manufacturing
defects, such as interlayer separation, which are critical in evaluating the structural

integrity and durability of laminated glass components.

In addition, future developments may include incorporating temperature-dependent
viscoelastic properties, multi-layered systems, or coupling with optimization

algorithms for structural health monitoring and design refinement.

These findings not only validate the model’s robustness but also position it as a
promising tool for future research in optimization, delamination detection, and

advanced material integration in structural glass systems.
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APPENDICES

A. Sample Glass Material Properties

Table 5.1 Material properties of float glass [1]

Property Minimum Value (S.I.) | Maximum Value (S.I.) | Units (S.I.)
Atomic Volume | 0.009 0.0095 m3/kmol
(average)

Density 1.9 3.99 Mg/m3
Energy Content 20 25 MJ/kg
Bulk Modulus 26.1 51.5 GPa
Compressive Strength | 212 387 MPa
Ductility 0.00042 0.00048

Elastic Limit 21.2 38.7 MPa
Endurance Limit 20 36.7 MPa
Fracture Toughness 0.54 0.71 MPa.m1.2
Hardness 700 5000 MPa
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Loss Coefficient 1.00E-05 0.0001

Modulus of Rupture 27.5 50 MPa
Poisson's Ratio 0.18 0.25

Shear Modulus 19.6 34.2 GPa
Tensile Strength 21.2 38.7 MPa
Young's Modulus 47.7 83.6 GPa
Glass Temperature 653 947 K
Maximum Service | 474 727 K
Temperature

Minimum Service | 0 0 K
Temperature

Specific Heat 700 910 J/kg.K
Thermal Conductivity 0.75 1.45 W/m.K
Thermal Expansion 1 12 10-6/K
Breakdown Potential 12 14 MV/m
Dielectric Constant 4 15
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Resistivity

1.00E+21

1.00E+25

10-s ohm.m
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