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ABSTRACT 

 

NONLINEAR ANALYSIS OF A LAMINATED GLASS PLATE  
WITH MIXED BOUNDARY CONDITIONS USING  

THE FINITE DIFFERENCE METHOD 
 
 

Elçi, Deniz Can 
Master of Science, Engineering Sciences 
Supervisor: Prof. Dr. Mehmet Zülfü Aşık 

Co-Supervisor: Prof. Dr. Ebru Dural 
 
 

August 2025, 123 pages 

 

The Finite Difference Method (FDM) is widely used to solve partial differential 

equations in various physical problems, including solid mechanics. In the analysis 

of laminated composite structures, FDM enables meshless solutions. Laminated 

glasses can be mathematically modeled as alternating layers of two hard materials 

with soft interlayers. Previous studies have primarily focused on laminated glasses 

with symmetric boundary conditions. In this study, the solution method is extended 

to address unsymmetrical mixed boundary conditions, and the results are validated 

by comparison with finite element method (FEM) simulations. 

 

Keywords: Non-linear Analysis, Solid Mechanics, Laminated Glass Plate, Finite 

Difference Method, Computational Mechanics 
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ÖZ 

 

KARIŞIK SINIR KOŞULLARINA SAHIP 
LAMINE CAM PLAKANIN SONLU FARKLAR YÖNTEMİ İLE 

DOĞRUSAL OLMAYAN ANALİZİ 
 
 

Elçi, Deniz Can 
Yüksek Lisans, Mühendislik Bilimleri 

Tez Yöneticisi: Prof. Dr. Mehmet Zülfü Aşık 
Ortak Tez Yöneticisi:Prof. . Dr. Ebru Dural 

 

 

Ağustos 2025, 123 sayfa 

 

Sonlu Farklar Yöntemi (FDM), kısmi diferansiyel denklemlerin çeşitli fiziksel 

problemlerde çözümünde yaygın olarak kullanılmaktadır; bunlar arasında katı 

mekaniği de yer almaktadır. Lamineli kompozit yapıların analizinde FDM, ağsız 

(meshless) çözümler elde edilmesine olanak sağlar. Lamineli camlar, iki sert 

malzeme ile aradaki yumuşak katmanlar şeklinde matematiksel olarak 

modellenebilir. Önceki çalışmalar, öncelikle simetrik sınır koşullarına sahip 

lamineli camları incelemiştir. Bu çalışmada, çözüm yöntemi, simetrik olmayan 

karışık sınır koşullarını ele alacak şekilde geliştirilmiş ve elde edilen sonuçlar 

Sonlu Elemanlar Yöntemi (FEM) simülasyonlarıyla karşılaştırılarak 

doğrulanmıştır. 

 

Anahtar Kelimeler: Doğrusal Olmayan Analiz, Katı Mekaniği, Lamine Cam Plaka, 

Sonlu Farklar Yöntemi, Hesaplamalı Mekanik 
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CHAPTER 1 

1          INTRODUCTION 

Laminated glass plates are increasingly used in critical applications across 

aerospace, automotive, architecture, and electronics — industries where structural 

integrity under varied boundary conditions is vital. To ensure the proposed model 

is relevant to such diverse applications, this thesis begins by detailing the industrial 

use cases and mechanical motivation. A laminated glass plate typically consists of 

two or more isotropic glass layers bonded with a soft, viscoelastic interlayer such 

as polyvinyl butyral (PVB). This interlayer has significantly lower stiffness than 

the glass layers, resulting in a composite system with mechanical properties that 

differ markedly from homogeneous materials. 

In this study, a robust and efficient finite difference method (FDM) model is 

developed to simplify and generalize laminated glass analysis, incorporating non-

symmetrical boundary conditions and implemented in Python to replace earlier 

Fortran-based codes. Since laminated glass is widely used in applications such as 

structural glazing, aircraft windows, automobile windshields, train windows, and 

electronic displays, a more accessible and versatile analysis approach can 

significantly support the development of these products.  

This composite structure exhibits unique mechanical behavior due to the significant 

stiffness difference between the glass layers (Young's modulus ~68.95 GPa) and 

the much softer PVB interlayer (100-3000 kPa). The interlayer's low shear stiffness 

allows relative sliding between glass layers, introducing geometric nonlinearity that 

becomes particularly significant in slender plate configurations. 

PVB has become the industry standard interlayer material due to its excellent 

optical clarity, strong adhesion properties, and ability to absorb energy during 

impact. In structural modeling, the interlayer's thickness is typically small 
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compared to the plate's in-plane dimensions, and its contribution to strain energy is 

often considered to be dominated by shear deformation while normal strains are 

neglected 

 

 

Figure 1.1 Schematic View of Laminated Glass Plate Components [1] 

 

 

 

Laminated glass plates have higher safety than other glasses on fracture case. The 

interlayer holds the broken pieces of glass together and prevents harm to the 

environment. Due to this property, laminated glass parts are widely used in many 

areas. These areas include, but not limited to, aerospace, civil applications, trains, 

and so on. A two-ply laminated glass configuration is illustrated in Figure 1.1. 

The two glasses can slide over each other due to lower stiffness of the PVB 

interlayer material. This attribute increases the nonlinear behavior along with the 

parts becoming slenderer. A photograph of a laminated glass can be observed in 

Figure 1.2. 
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Figure 1.2 Photograph of a Laminated Glass Plate [2]  

 

Previous research has extensively applied the Finite Difference Method (FDM) to 

analyze laminated glass plates, but these studies have predominantly focused on 

symmetrical boundary conditions such as fully clamped or simply supported edges. 

Real-world applications, however, frequently involve asymmetrical or mixed 

boundary conditions where different edges may have varying support types or 

localized restraints. This thesis addresses this gap in the literature by investigating 

the mechanical response of laminated glass plates subjected to asymmetrical 

boundary conditions using FDM. The findings will contribute to more accurate 

numerical modeling of laminated glass structures in practical engineering scenarios 

where symmetrical boundary conditions cannot be assumed. 
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1.1 The Laminated Glass Part 

The model considered in this study consists of a flat laminated plate composed of 

two glass layers with a soft adhesive interlayer in between. While the model can be 

extended to include additional layers, such configurations are beyond the scope of 

this thesis. The glass layers are made of standard float glass, a brittle material 

commonly used for its optical properties in everyday applications. 

 

 

Figure 1.3 The Comparison of Glass Types.  [3] 

 

Figure 1.3 illustrates three primary types of structural glass with distinct fracture 

characteristics. Annealed glass, the conventional float glass variety, poses 

significant safety concerns as it fractures into large, dangerous shards with sharp 

edges. In contrast, tempered glass undergoes specialized thermal processing that 

causes it to break into small, relatively harmless granular pieces when failed. The 

safest option, laminated glass, incorporates a durable interlayer that maintains glass 
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cohesion even when fractured, preventing dangerous fragmentation while 

preserving structural integrity. 

Figure 1.4 shows a side view of a two-layered laminated glass and the thickness 

symbols used in the analyses. The soft interlayer serves to prevent complete 

shattering in the event of fracture in one of the glass layers. If one layer fails, the 

other remains intact due to the presence of the interlayer. This layer is made of 

polyvinyl butyral (PVB), a material that also offers favorable optical properties, as 

typically required in laminated glass applications. 

 

 

Figure 1.4  Thickness Convention and Material Layers in the Laminated Glass 
Diagram [4]  
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Figure 1.5 Fabrication Process of Laminated Glass Parts [1] 

 

Figure 1.5 illustrates the principal steps involved in the production of two-layer 

laminated glass. The material properties are defined as input parameters within the 

model, allowing for adjustment to represent alternative glass types. By modifying 

these inputs, the model remains flexible and can be applied to a broader range of 

laminated glass configurations with varying material characteristics.  

Given the slenderness of laminated plates and compliance of the interlayer, 

geometric nonlinearity is non-negligible — a fact handled by von Kármán-based 

modeling in this work. 
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1.2 Motivation and Applications 

1.2.1 Aviation Glasses 

Aircraft windshield design involves a range of stringent requirements, as the 

performance and safety of the structure depend heavily on the chosen glass 

material. The type of glass used varies significantly between light aircraft and high-

speed aircraft, reflecting differences in operational conditions and safety standards. 

In particular, wind loads exerted during flight play a crucial role in determining the 

material selection and structural configuration of the windshield system. Figure 1.6, 

shows the cockpit windshield of a civil aircraft, which is constructed as laminated 

glazing. 

 

Figure 1.6 Photograph of Aircraft Glass Window [5] 
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Aircraft cockpit windshields are generally constructed as laminated structures 

consisting of multiple glass plies bonded with polymer interlayers such as 

polyvinyl butyral (PVB) or polyurethane, with typical total thicknesses on the order 

of several millimeters to withstand bird strike and pressurization loads. The choice 

between flat or curved glass helps to reduce mounting strains that could potentially 

cause cracking. Additionally, this design allows for mechanical mounting, often 

featuring extended plastic edges with metal reinforcing strips. These extended 

edges enable screws to be securely fastened to the windshield frame, ensuring a 

positive mounting without inducing strain on the glass. 

The mechanical analysis of the plate provides insight into how the plate deforms 

under varying boundary conditions, while also yielding its stress and strain 

distribution throughout the deformation process. 

Laminated glass structures play a vital role in critical engineering applications 

where structural integrity under extreme conditions is essential. In aerospace, for 

instance, aircraft windshields are subjected to aerodynamic loads and potential 

high-velocity impacts such as bird strikes. The ability to accurately model 

deformation and stress in these components is crucial for ensuring safety and 

durability. Similarly, in defense and security applications, transparent armor 

systems demand advanced modeling of delamination behavior and energy 

absorption in polymer interlayers. The nonlinear numerical framework developed 

in this study addresses these needs by providing a reliable basis for virtual safety 

assessments and optimized laminated glass design, particularly under mixed and 

asymmetric boundary conditions commonly found in real-world scenarios. 
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1.2.2 Automobile and Train Glasses 

 

 

Figure 1.7 Photograph of Rectangular and Curved Train Windows [7] 

 

Laminated glass is widely used in the automotive industry, particularly for 

windshields, due to its superior safety and durability. Composed of two layers of 

glass bonded with a polyvinyl butyral (PVB) interlayer, it prevents the glass from 

shattering into sharp fragments upon impact, significantly reducing the risk of 

injury in accidents. This design is a critical safety feature in vehicles. In addition to 

its impact resistance, laminated glass offers excellent sound insulation, reducing 

road and wind noise for a quieter ride. It also blocks most of harmful UV rays, 

protecting passengers and preventing interior fading. Its strength makes it resilient 

against debris, rocks, and extreme weather, ensuring long-lasting performance and 

safety on the road. An example of a train window is shown in Figure 1.7. 
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1.2.3 LCD Glasses 

 

Figure 1.8 Drawing Showing Laminated Glass Plate Application in LCD [8]. 

 

LCD glass products are widely used in both private homes and offices. Electrically 

operated LCD specialist glass is a laminate that consists of at least two sheets of 

clear glass with an LCD film sandwiched between two or more plastic interlayers. 

This design combines the structural properties of laminated glass with the 

functionality of the LCD film, offering a versatile solution for various applications. 

An example of LCD glass is shown in Figure 1.8. 
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1.2.4 Solar Panel Glasses 

 

Figure 1.9 Solar Panel Glass Structure [9] 

 

Solar panels also feature a layered construction, with two thick outer layers—

typically glass—that are significantly stiffer than the central interlayer, usually 

made of a thin and compliant material like ethylene-vinyl acetate (EVA). Figure 

1.9 illustrates a solar panel glass. Solar panels, also known as photovoltaic (PV) 

panels, consist of multiple layers designed to efficiently convert sunlight into 

electricity. The front layer is made of tempered glass with an anti-reflective coating 

to maximize light absorption while protecting the panel from environmental factors 

like hail, dust, and UV radiation. Through this carefully engineered structure, solar 

panels harness sunlight to produce clean, renewable energy. Given the similarity in 

structure, the modeling approach developed in this study is well-suited for 

analyzing the mechanical behavior of solar panel glass, particularly in thin designs 

where the panel thickness is much smaller than its in-plane dimensions. 
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CHAPTER 2 

2      LITERATURE REVIEW 

2.1 Introduction to Energy Methods 

Energy methods have revolutionized the analysis and design of physical systems by 

leveraging scalar energy quantities—such as potential, kinetic, and strain energy—

to simplify complex problems in mechanics, thermodynamics, and materials 

science. Unlike traditional vector-based approaches, which rely on force and 

moment equilibria, energy methods provide a unified framework to derive 

governing equations, predict system behavior, and optimize performance through 

variational principles. Their inherent ability to bypass intricate force diagrams and 

boundary condition complexities has made them indispensable in modern 

engineering, particularly in fields like structural dynamics, renewable energy 

systems, and multi-physics simulations. 

The theoretical foundations of energy methods trace back to the 18th and 19th 

centuries, with seminal contributions from Lagrange (Lagrangian mechanics), 

Hamilton (Hamilton’s principle), and Rayleigh (Rayleigh’s energy dissipation). 

These principles have since evolved into computational tools such as the finite 

difference method (FDM), finite element method (FEM), and dynamic system 

modeling techniques. However, contemporary challenges—such as modeling 

nonlinear material behavior, integrating dissipative forces into non-conservative 

systems, and optimizing sustainable energy infrastructure—demand extensions to 

classical energy formulations. 
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2.2 Plate Theories 

Plate theory is an essential concept in structural mechanics that describes the 

behavior of thin, flat structural elements subjected to various loads. Plates are 

widely used in engineering applications such as aircraft wings, bridge decks, and 

building floors, where they function as primary load-bearing components. The 

theory provides mathematical models to analyze deformation, stress distribution, 

and structural stability under different boundary conditions and loading scenarios. 

The formulation of plate bending problems originates from elasticity theory and is 

primarily governed by two major approaches: the Kirchhoff-Love theory for thin 

plates and the Mindlin-Reissner theory for moderately thick plates. The Kirchhoff-

Love theory assumes that plane sections remain perpendicular to the mid-surface 

after deformation, making it suitable for thin plates where shear deformation is 

insignificant. On the other hand, the Mindlin-Reissner theory incorporates 

transverse shear effects, offering a more accurate representation for thicker plates. 

Mathematically, plate bending is often modeled using the biharmonic equation, a 

fourth-order partial differential equation that links the transverse displacement of 

the plate to external loads and material properties. Due to the complexity of 

obtaining analytical solutions, numerical techniques such as the Finite Difference 

Method (FDM) are frequently employed to approximate solutions for practical 

engineering problems. 

Boundary conditions play a crucial role in plate analysis, as they define how the 

edges of the plate are constrained. Common conditions include clamped, simply 

supported, and mixed boundary condition edges, each imposing different 

restrictions on displacement and rotation. Properly incorporating these constraints 

into numerical models is essential for accurately predicting the structural response 

of plates under real-world conditions. 
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Given the mathematical challenges involved in solving plate bending equations, 

numerical methods like FDM provide an efficient approach to obtaining 

approximate solutions. By discretizing the governing equations and applying 

suitable boundary conditions, FDM enables engineers to analyze plate behavior 

with precision, making it a valuable tool in computational structural mechanics. 

2.2.1 Von Karman Plate Theory 

The analysis of laminated glass plates subjected to various loading conditions often 

requires a theoretical framework that can accurately capture nonlinear effects, 

particularly when dealing with large deflections. One of the most widely used 

models in this regard is the von Kármán plate theory, which extends classical plate 

theory by incorporating geometric nonlinearity. 

Von Kármán’s equations account for the coupling between in-plane and transverse 

displacements, making them particularly suitable for problems where deformations 

are significant but remain within the limits of moderate rotations. Unlike linear 

plate theories, which assume infinitesimal strains and small deflections, von 

Kármán’s formulation considers nonlinear strain-displacement relations while 

maintaining the assumptions of thin plate theory. This makes it applicable to a wide 

range of engineering problems, including laminated glass structures subjected to 

various boundary constraints. 

In the context of the finite difference method (FDM), solving von Kármán’s 

nonlinear equations requires discretization techniques that effectively capture both 

in-plane membrane forces and out-of-plane bending effects. The complexity of 

these equations often necessitates iterative numerical schemes to achieve 

convergence, particularly when handling mixed boundary conditions. By 

employing FDM for this nonlinear analysis, it becomes possible to obtain an 

approximate yet sufficiently accurate representation of the structural response of 

laminated glass plates under complex loading scenarios. 
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This study utilizes von Kármán’s theory to model and analyze the nonlinear 

behavior of laminated glass plates with various boundary conditions. The goal is to 

gain insight into the influence of geometric nonlinearity on stress distributions and 

deformation patterns, contributing valuable knowledge to structural design and 

safety assessments in engineering applications. This is achieved by employing the 

assumptions in Section 3.2.1 and using the Von Karman plate theory strain 

definition in Equation (3.7). 

This study employs von Kármán nonlinear strain theory without invoking the 

classical thin plate assumption. Since interlayer shear strains are explicitly 

accounted for, the assumption that plane sections remain perpendicular to the mid-

surface does not hold. Therefore, the appropriate theoretical framework is more 

accurately described as the Nonlinear Mindlin-Reissner Plate Theory or First-Order 

Shear Deformation Theory (FSDT) with von Kármán-type geometric nonlinearity. 

A detailed discussion of the modeling assumptions and their implications is 

presented in Section 3.2.1 . 
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2.3 Finite Difference Method 

As previously seen in works of Vallabhan and Aşık  [10] [11], FDM has proven 

effective in laminated plate modeling. This section elaborates on the underlying 

formulation before its application to the current problem. 

The Finite Difference Method (FDM) is a numerical approach used to approximate 

solutions to differential equations, making it a valuable tool in structural 

mechanics, fluid dynamics, and heat transfer. It works by discretizing a continuous 

domain into a grid and replacing derivatives with algebraic expressions to 

transform differential equations into solvable linear systems. 

In structural elasticity problems, FDM is applied to equations like the Navier 

equations or the biharmonic equation, which describe the relationship between 

stress and strain in elastic structures. By substituting differential operators with 

finite difference approximations, these equations are converted into a system of 

algebraic equations that can be solved numerically. 

The accuracy of the method depends on the type of finite difference 

approximations used, with common approaches including forward, backward, and 

central differences. Central difference schemes are generally preferred for their 

higher accuracy. Proper treatment of boundary conditions, such as Dirichlet, 

Neumann, or mixed conditions, is crucial in structural problems to ensure solution 

stability and correctness. 

Compared to methods like the Finite Element Method (FEM) or the Finite Volume 

Method (FVM), FDM is easier to implement and computationally efficient on 

structured grids. However, it is less suited for complex geometries and irregular 

domains. Despite this, FDM remains a powerful technique for solving elasticity 

problems, especially when structured grids are applicable. 
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2.4 Previous Studies  

Based on previous research, two categories can be formed regarding the strength 

and behavior of monolithic and laminated glass units: theoretical and experimental 

stress analysis, and failure testing. In 1910, Von Kármán developed the theory of 

nonlinear plate bending, which was further explored by Fung (1965) [12]. The 

nonlinear behavior of plates was examined by researchers such as Szilard (1974) 

[13], Timoshenko and Voinovsky (1965) [14], and others.  

The applicability of von Kármán plate theory for large deformations in thin plates 

was rigorously established through analytical studies by Chia (1980) [15] and 

numerical validations by Reddy (2007) [16]. For laminated glass plates, early 

experimental work by Hooper (1973) [17] on laminated glass beams demonstrated 

the interlayer's shear-dependent coupling behavior, while Vallabhan (1983) [19]  

and Aşık (2003) [20] later developed analytical models capturing these effects. 

Vallabhan and his colleagues (Vallabhan et al., (1993) [10]; Vallabhan and Chou, 

(1986) [18]) developed pioneering analytical and numerical models for laminated 

glass plates subjected to uniform loads, treating the polyvinyl butyral (PVB) 

interlayer as a linear viscoelastic material capable of shear transfer. Their 

governing equations accounted for shear coupling between glass plies, 

demonstrating that the interlayer’s shear modulus significantly reduces plate 

deflection and peak stresses compared to monolithic glass. By solving these 

equations using finite difference methods (FDM) and validating results 

experimentally, they established a framework for optimizing laminated glass 

design under static and dynamic loads. Their work remains influential in standards 

for architectural glazing. 

 

Several researchers have developed analytical models for laminated glass plates, 

treating the PVB interlayer as an elastic core that transfers shear between glass 

layers (Galuppi and Royer-Carfagni, 2012 [21]; Vallabhan, Aşık et al. [10]). Their 
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work derived closed-form solutions for deflection and stress, highlighting the 

interlayer’s role in enhancing stiffness and reducing peak stresses compared to 

monolithic glass. Other studies have investigated temperature and load-rate effects 

on PVB behavior, providing key insights into viscoelastic effects in laminated glass 

(Knight et al., 2024 [22]; Förch, 2020 [23]).  

Aşık ((1993) [10], (1997) [11] and (2005) [24])  developed analytical and finite 

element models for laminated glass plates, focusing on the nonlinear behavior of 

PVB interlayers under large deformations. His work emphasized the hyperelastic 

and viscoelastic properties of interlayers, providing refined stress-strain 

relationships for laminated glass under static and dynamic loads. Aşık also 

proposed simplified design methods for engineers, bridging theoretical models with 

practical applications (Aşık, (2003) [20]). His contributions advanced the 

understanding of energy absorption and failure mechanisms in laminated glass 

structures. 

Dural’s recent research [25] [26], (2022-2023) focuses on the delamination 

behavior and nonlinear response of laminated glass structures, combining advanced 

computational modeling with experimental validation. In those studies [25] [26], 

she developed mathematical models for laminated glass beams and plates with 

initial delamination, incorporating nonlinear field equations and iterative solution 

procedures to analyze the effects of boundary conditions, delamination size, and 

location on structural performance. Her work demonstrated that PVB interlayer 

properties and geometric nonlinearity significantly influence stress distribution and 

deflection patterns for beams and plates, with findings validated through finite 

element analysis (FEA) and laboratory tests. Dural also compared the delamination 

resistance of laminated glass plates with different interlayers (PVB, EVA, and 

SentryGlas Plus), highlighting how interlayer type affects adhesion strength and 

failure thresholds under uniform pressure loads [27] [28]. 
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Her studies further optimized multi-layer laminated glass configurations for blast-

resistant applications, emphasizing the role of interlayer thickness and boundary 

conditions in enhancing safety for aerospace and architectural uses [28] [29] [30] . 

These contributions provide critical insights for designing laminated glass in 

safety-critical environments, bridging gaps between theoretical models and 

practical engineering solutions 

2.5 Scope of This Study 

Previous studies on this subject typically assumed symmetric boundary conditions 

along the plate edges and, consequently, employed symmetric stiffness matrices. 

These assumptions allowed the analysis to be restricted to a single quadrant of the 

plate, thereby reducing computational complexity through symmetry exploitation. 

In contrast, the present study introduces a new solution algorithm that models the 

entire plate domain without relying on symmetry assumptions. This full-domain 

approach enables the investigation of more general and realistic boundary 

conditions, including asymmetric and mixed types, thereby enhancing the 

applicability and robustness of the analysis. 

 

To achieve this, a new model for the unsymmetrical and mixed boundary 

conditions is aimed to be derived, using energy methods and variational techniques. 

After the model equations are obtained, the model is transferred to script codes and 

input /output files are determined. The results from the output of the code have 

been taken and plots are needed to summarize the results.  

Additionally, numerical experiments are conducted to investigate the influence of 

various parameters, including mesh discretization density, incremental load steps, 

and different thickness configurations for both glass and interlayer materials. The 

accuracy and reliability of the developed model will be validated through 

comparison with a Finite Element Model (FEM) implemented in Abaqus software. 
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CHAPTER 3 

3            MODEL 

3.1 Geometric Nonlinearity 

In laminated glass structures, the combined effects of plate geometry and interlayer 

mechanical response introduce significant nonlinearities that must be considered in 

the analysis. To accurately capture these behaviors, the solution formulation 

incorporates geometric nonlinearity by employing nonlinear strain-displacement 

relationships within the energy-based framework of the model. This allows the 

simulation to account for large deformations and the coupling between in-plane and 

transverse responses, which are especially prominent in thin, layered systems under 

substantial loading. 

 

When the plate displacements become comparable to its thickness, the assumption 

of linear midplane strains no longer holds. Instead, nonlinear strain terms emerge, 

resulting in significant coupling between bending and membrane (in-plane) effects. 

This coupling becomes critical in predicting accurate deformation patterns and 

internal stresses, particularly in laminated configurations. Moreover, the choice of 

boundary conditions—whether the plate edges are constrained or allowed to 

undergo in-plane displacements—has a profound influence on both the magnitude 

and distribution of deflections and stresses. 

 

A key consequence of geometric nonlinearity is the emergence of tensile stresses 

along the deformed midplane, which act to counterbalance the applied transverse 

loads. This phenomenon—commonly referred to as membrane action—

supplements the plate’s flexural rigidity and contributes to an overall increase in 

load-carrying capacity. In cases involving very thin plates or large deflections, the 
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structural response may shift predominantly to in-plane stretching, causing the 

plate to behave more like a membrane than a bending-dominated structure. 

 

3.2 Analytical Model 

The finite difference model developed in this study involves five unknown field 

variables. The in-plane displacements are denoted as u1, v1, u2, and v2, where u1 

and v1 correspond to the upper glass layer, and u2 and v2 correspond to the bottom 

glass layer. The symbols for the displacements are given in Table 3.1. The 

transverse (out-of-plane) displacement is represented by w and is assumed to 

remain constant through the plate's thickness.  This assumption is based on the 

neglect of transverse normal stresses and strains, meaning that through-thickness 

compression and tension are considered negligible in the present formulation. A 

schematic of the model is presented in Figure 3.1. 

 

Table 3.1 The symbols for displacements. 

 Layer 1  Layer 2 

Displacement in x-direction  u1  u2 

Displacement in y-direction v1  v2 

Displacement in z-

direction* 

w w 

 

* The assumptions in section 3.2.1, numbers 4 and 5. 
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Figure 3.1 Sketch of Analysis Model 
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3.2.1 Assumptions Used in the Model 

The assumptions underpinning the analytical formulation are outlined 

below: 

1- Linear Elastic Behavior: All materials in the model are assumed to behave 

elastically according to Hooke’s Law: 

 

 

 

2- Material Properties: The glass panels and the interlayer are each considered 

isotropic and homogeneous. 

 

3- Thin Plate Assumption: The structure is modeled as a thin plate since its 

width-to-thickness ratios (a/t and b/t) exceed 10, consistent with criteria 

from Ventsel and Krauthammer (2001) [31]. 

 

4- Neglect of Transverse Normal Stresses and Strains: As is standard for thin 

plates, transverse normal stress and strain are assumed negligible [32]: 

 

 

 

 

 

𝜎 = 𝐸 ∗  𝜀 (3.1) 

𝜎௭ = 𝑒௭ ≈ 0 

 

(3.2) 
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5- No Interfacial Separation: There is no relative displacement between the 

contact surfaces of the glass layers and the interlayer. Hence, vertical 

displacements are continuous across the interface: 

 

 

6- Unified Transverse Displacement: The lateral (z-direction) displacement of 

the upper and lower glass layers is assumed to be the same. This is justified 

by the very small thickness of the interlayer (typically PVB), which 

undergoes negligible compression compared to the deflection of the glass 

layers. 

 

7- Negligible Through-Thickness Normal Strain Energy: Based on 

Assumption 6, the contribution of normal strain energy in the z-direction is 

neglected for both the glass and interlayer components. 

 

8- Kirchhoff Hypothesis (straight normals): The normal lines to the mid-

surface of each glass plate remain straight and perpendicular to the mid-

surface during deformation. 

 

9- Interlayer Carries Only In-Plane Shear: The interlayer is assumed to resist 

only in-plane shear stresses, not normal or bending stresses. 

 

 

 

 

𝑤ଵ =  𝑤ଶ (3.3) 
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3.2.2 Formulation and Derivation of Equations 

The derivation begins by expressing the total potential energy V of the laminated 

plate as the sum of the internal strain energies stored in the glass layers and the 

interlayer, along with the potential energy due to external loads. The expression is 

written as: 

 

Table 3.2 Strain energy terms symbols and potential energy for external work 
symbol 

𝑈ഥ௠
(௜) Membrane strain energy for layer (i);  

i=1,2 for the top and bottom layers 

𝑈ഥ௕
(௜) Bending strain energy for layer (i) 

 

𝑈ഥ௫௭
(ூ)

, 𝑈ഥ௬௭
(ூ) Integrated shear strain energy of the 

interlayer shear strains 𝛾௫௭ 𝑎𝑛𝑑𝑎𝑛𝑑 𝛾௬௭. 

Ωഥ Potential energy for the external loads. 

 

 

Table 3.2 explains the strain energy terms in Equation (3.4). The geometrical and 

material parameters used in this study are defined as follows:  

The dimensions of the plate are denoted by a and b, representing its lengths in the 

x- and y-directions, respectively. The thickness of each layer “i” is indicated by 

“ℎ௜”. The material properties of the glass are characterized by the elastic modulus E 

and Poisson’s ratio μ. 

 

The bending strain energy formula (Langhaar (1962) [33]) is given as: 

𝑉 =  𝑈ഥ௠
(ଵ)

+ 𝑈ഥ௕
(ଵ)

+ 𝑈ഥ௠
(ଶ)

+ 𝑈ഥ௕
(ଶ)

+ 𝑈ഥ௫௭
(ூ)

+ 𝑈ഥ௬௭
(ூ)

+ Ωഥ 

 

(3.4) 
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𝑈ഥ௕
(௜)

= න න 𝑈௕
(௜)

𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

=   න න  
𝐸 ∗ ℎ௜

ଷ

24(1 − 𝜇ଶ)
൥ቆ

𝜕ଶ𝑤

𝜕𝑥ଶ
ቇ

ଶ

+  ቆ
𝜕ଶ𝑤

𝜕𝑦ଶ
ቇ

ଶ

+ 2𝜇 ቆ
𝜕ଶ𝑤

𝜕𝑥ଶ
ቇ ቆ

𝜕ଶ𝑤

𝜕𝑦ଶ
ቇ

௔

ି௔

௕

ି௕

+ 2(1 − 𝜇) ቆ
𝜕ଶ𝑤

𝜕𝑥𝜕𝑦
ቇ

ଶ

൩ 𝑑𝑥 𝑑𝑦  

(3.5) 

 

The membrane strain energy function, Langhaar (1962) [33], can be expressed as; 

𝑈ഥ௠
(௜)

= න න 𝑈௠
(௜)

𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

=   න න  
𝐸 ∗ ℎ௜

2(1 − 𝜇ଶ)
൤𝑒௜௫

ଶ +  𝑒௜௬
ଶ + 2𝜇𝑒௜௫𝑒௜௬ +

1

2
(1

௔

ି௔

௕

ି௕

− 𝜇)𝑒௜௫௬
ଶ൨ 𝑑𝑥 𝑑𝑦  

(3.6) 

 

Large strains invalidate the commonly used "infinitesimal strain" assumption, 

necessitating the use of Green-Lagrange strains instead. In geometric nonlinear 

problems, where large deformations occur, these strain equations become essential 

for accurately capturing the system’s response. The Green-Lagrange strain 

formulation accounts for significant displacement gradients and rotational effects, 

providing a more accurate representation of material behavior under large strains. 

Below is the general description of Green-Lagrange strains (in Einstein’s notation): 

 

𝐸௜௝ =  
1

2
ቆ

𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
+

𝜕𝑢௞

𝜕𝑥௜

𝜕𝑢௞

𝜕𝑥௜
ቇ 
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The nonlinear strains used in this problem are derived from Green-Lagrange strains 

and given as follows: 

 

 

 

 

 

 

  

(3.7) 

𝑒௜௫ =  
𝜕𝑢௜

𝜕𝑥
+

1

2
൬

𝜕𝑤

𝜕𝑥
൰

ଶ

 

 

 

(3.8) 

𝑒௜௬ =  
𝜕𝑣௜

𝜕𝑦
+

1

2
൬

𝜕𝑤

𝜕𝑦
൰

ଶ

 

 

 

(3.9) 

𝑒௜௫௬ =  
𝜕𝑢௜

𝜕𝑦
+

𝜕𝑣௜

𝜕𝑥
+ ൬

𝜕𝑤

𝜕𝑥
൰ ൬

𝜕𝑤

𝜕𝑦
൰ 

 

 

(3.10) 
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Figure 3.2 Deformation of Laminated Glass in the Thickness Cross Section 

 

In Figure 3.2, 𝜃௫ is the overall slope of the laminate with respect to its centerline, 

such that  

 

 

𝜙௫ is the deformation slope of the interlayer, describing the slope along the x-

direction. 

 

𝜃௫ = −
𝜕𝑤

𝜕𝑥
 

 

 

(3.11) 
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Using those slopes (𝜙௫ , 𝜃௫), the average transverse shear strains, xz and yz., are 

given as below: 

 

𝛾௫௭ =  𝜙௫ + 𝜃௫ = −
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
= −

𝜕𝑤

𝜕𝑥
+

൤𝑢ଵ − 𝑢ଶ −
𝜕𝑤
𝜕𝑥

ቀ
ℎଵ

2
+

ℎଶ

2
ቁ൨

𝑡

=
൤𝑢ଵ − 𝑢ଶ −

𝜕𝑤
𝜕𝑥

ቀ
ℎଵ

2
+

ℎଶ

2
+ 𝑡ቁ൨

𝑡
 

(3.13) 

 

           

𝛾௬௭ =  𝜙௬ + 𝜃௬ = −
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
= −

𝜕𝑤

𝜕𝑦
+

൤𝑣ଵ − 𝑣ଶ −
𝜕𝑤
𝜕𝑦

ቀ
ℎଵ
2

+
ℎଶ
2

ቁ൨

𝑡

=
൤𝑣ଵ − 𝑣ଶ −

𝜕𝑤
𝜕𝑦

ቀ
ℎଵ
2

+
ℎଶ
2

+ 𝑡ቁ൨

𝑡
 

(3.14) 

𝜙௫ =
𝜕𝑢

𝜕𝑧
 

 

 

(3.12) 
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The integrated shear strain energies across the plate are obtained by integrating the 

shear strain energy density over the two dimensions of the plate, as shown below: 

𝑈ഥ௫௭
(ூ)

= න න 𝑈௫௭
(ூ)

𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

= න න න
1

2

௔

ି௔

𝐺ூ 𝛾௫௭ 
ଶ 𝑑𝑉

௕

ି௕

௧

଴

=  න න
𝐺ூ

2𝑡
൤(𝑢ଵ − 𝑢ଶ) −

𝜕𝑤

𝜕𝑥
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰൨

ଶ

𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

  

 

(3.15) 

 

 

 

 

𝑈ഥ௬௭
(ூ)

= න න 𝑈௬௭
(ூ)

𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

= න න න
1

2

௔

ି௔

𝐺ூ 𝛾௬௭ 
ଶ 𝑑𝑉

௕

ି௕

௧

଴

=  න න
𝐺ூ

2𝑡
൤(𝑣ଵ − 𝑣ଶ) −

𝜕𝑤

𝜕𝑦
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰൨

ଶ

𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

  

(3.16) 

  

In Equation (3.17), the force potential (external work) is expressed for the entire 

plate. The loading is a uniformly distributed pressure applied to the top face of the 

laminate. 
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Ωഥ = න න Ω
௔/ଶ

ି௔/ଶ

𝑑𝑥 𝑑𝑦
௕/ଶ

ି௕/ଶ

= න න −qw
௔

ି௔

𝑑𝑥 𝑑𝑦
௕

ି௕

 

(3.17) 

 

 

𝑉 =  න න ቂ𝑈௠
(ଵ)

+ 𝑈௕
(ଵ)

+ 𝑈௠
(ଶ)

+ 𝑈௕
(ଶ)

+ 𝑈ഥ௫௭
(ூ)

+ 𝑈ഥ௬௭
(ூ)

+ Ωቃ𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

=  න න 𝐹 𝑑𝑥 𝑑𝑦
௔

ି௔

௕

ି௕

 

(3.18) 

 

𝐹 =  
𝐸 ℎଵ

2 (1 − 𝜇ଶ)
൤𝑒ଵ௫

ଶ + 𝑒ଵ௬
ଶ + 2𝜇𝑒ଵ௫𝑒ଵ௬ +

1

2
(1 − 𝜇)𝑒ଵ௫௬

ଶ൨

+
𝐸 ℎଶ

2 (1 − 𝜇ଶ)
൤𝑒ଶ௫

ଶ + 𝑒ଶ௬
ଶ + 2𝜇𝑒ଶ௫𝑒ଶ௬ +

1

2
(1 − 𝜇)𝑒ଶ௫௬

ଶ൨

+
𝐸(ℎଵ

ଷ + ℎଶ
ଷ)

24(1 − 𝜇ଶ)
൥ቆ

𝜕ଶ𝑤

𝜕𝑥ଶ
ቇ

ଶ

+ ቆ
𝜕ଶ𝑤

𝜕𝑦ଶ
ቇ

ଶ

+ 2𝜇 ቆ
𝜕ଶ𝑤

𝜕𝑥ଶ
ቇ ቆ

𝜕ଶ𝑤

𝜕𝑦ଶ
ቇ

+ 2(1 − 𝜇) ቆ
𝜕ଶ𝑤

𝜕𝑥𝜕𝑦
ቇ

ଶ

൩ +
𝐺ூ

2𝑡
൤𝑢ଵ − 𝑢ଶ −

𝜕𝑤

𝜕𝑥
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰൨

ଶ

+
𝐺ூ

2𝑡
൤𝑣ଵ − 𝑣ଶ −

𝜕𝑤

𝜕𝑦
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰൨

ଶ

− 𝑞 ∗ 𝑤 

(3.19) 
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By applying a variational approach to the total potential energy, the following 

Euler Equation, Equation (3.20) is derived. The Euler equation for the system is 

presented in Langhaar (1962, p. 96) [33] similarly. 

 

𝜕𝐹

𝜕𝑢௜
−

𝜕

𝜕𝑥
ቆ

𝜕𝐹

𝜕𝑢௜,௫
ቇ −

𝜕

𝜕𝑦
ቆ

𝜕𝐹

𝜕𝑢௜,௬
ቇ +

𝜕ଶ

𝜕𝑥ଶ
ቆ

𝜕𝐹

𝜕𝑢௜,௫௫
ቇ +

𝜕ଶ

𝜕𝑥𝜕𝑦
ቆ

𝜕𝐹

𝜕𝑢௜,௫௬
ቇ +

𝜕ଶ

𝜕𝑦ଶ
ቆ

𝜕𝐹

𝜕𝑢௜,௬௬
ቇ

= 0 

(3.20) 

 

 

The Laplace Operator is given in Equation (3.21). 

 

 

The 4th order gradient operator is given in Equation (3.22 

 

 

 

 

The governing equations of the problem are derived by first substituting the 

expression for “F” from equation (3.19), into equation (3.20). Next, the required 

partial derivatives are taken as in equation (3.20) for each of the five independent 

∇ଶ=
𝜕ଶ

𝜕𝑥ଶ
+

𝜕ଶ

𝜕𝑦ଶ
 

 

(3.21) 

∇ସ=
𝜕ସ

𝜕𝑥ସ
+ 2

𝜕ସ

𝜕𝑥ଶ𝜕𝑦ଶ
+

𝜕ସ

𝜕𝑦ସ
 

 

(3.22) 
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displacement fields (w, u1, v1, u2, v2).  This procedure results in five coupled 

nonlinear equations, which are presented in Equations (3.23) - (3.27). 

 

ቈ(𝐷ଵ + 𝐷ଶ) ∗ ∇ସ −
𝐺ூ

𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

ଶ

∗ ∇ଶ቉ 𝑤

= 𝑞

+
𝐸ℎଵ

1 − 𝜇ଶ
ቈ൫𝑒ଵ௫ + 𝜇𝑒ଵ௬൯

𝜕ଶ𝑤

𝜕𝑥ଶ
+ ൫𝑒ଵ௬ + 𝜇𝑒ଵ௫൯

𝜕ଶ𝑤

𝜕𝑦ଶ
+ (1

− 𝜇)𝑒ଵ௫௬

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦
቉

+
𝐸ℎଶ

1 − 𝜇ଶ
ቈ൫𝑒ଶ௫ + 𝜇𝑒ଶ௬൯

𝜕ଶ𝑤

𝜕𝑥ଶ
+ ൫𝑒ଶ௬ + 𝜇𝑒ଶ௫൯

𝜕ଶ𝑤

𝜕𝑦ଶ
+ (1

− 𝜇)𝑒ଶ௫௬

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦
቉ −

𝐺ூ

𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰ ൬

𝜕𝑢ଵ

𝜕𝑥
−

𝜕𝑢ଶ

𝜕𝑥
+

𝜕𝑣ଵ

𝜕𝑦
−

𝜕𝑣ଶ

𝜕𝑦
൰ 

(3.23) 

 

 

ቈ
𝜕ଶ

𝜕𝑥ଶ
+

(1 − 𝜇)

2

𝜕ଶ

𝜕𝑦ଶ
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ𝑡
቉ 𝑢ଵ

= − ቈ
1 + 𝜇

2

𝜕ଶ

𝜕𝑥𝜕𝑦
቉ 𝑣ଵ − ቈ

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ
቉ 𝑢ଶ −

𝜕𝑤

𝜕𝑥
ቈ
𝜕ଶ𝑤

𝜕𝑥ଶ
+

(1 − 𝜇)

2

𝜕ଶ𝑤

𝜕𝑦ଶ
቉

−
1 + 𝜇

2

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦

𝜕𝑤

𝜕𝑦
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

𝜕𝑤

𝜕𝑥
 

   (3.24)  
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ቈ
𝜕ଶ

𝜕𝑦ଶ
+

(1 − 𝜇)

2

𝜕ଶ

𝜕𝑥ଶ
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ𝑡
቉ 𝑣ଵ

= − ቈ
1 + 𝜇

2

𝜕ଶ

𝜕𝑥𝜕𝑦
቉ 𝑢ଵ − ቈ

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ𝑡
቉ 𝑣ଶ −

𝜕𝑤

𝜕𝑦
ቈ
𝜕ଶ𝑤

𝜕𝑦ଶ
+

(1 − 𝜇)

2

𝜕ଶ𝑤

𝜕𝑥ଶ
቉

−
1 + 𝜇

2

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦

𝜕𝑤

𝜕𝑥
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

𝜕𝑤

𝜕𝑦
 

 

(3.25) 

 

     

ቈ
𝜕ଶ

𝜕𝑥ଶ
+

(1 − 𝜇)

2

𝜕ଶ

𝜕𝑦ଶ
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଶ𝑡
቉ 𝑢ଶ

= − ቈ
1 + 𝜇

2

𝜕ଶ

𝜕𝑥𝜕𝑦
቉ 𝑣ଶ − ቈ

𝐺ூ(1 − 𝜇)

2𝐺ℎଶ𝑡
቉ 𝑢ଵ −

𝜕𝑤

𝜕𝑥
ቈ
𝜕ଶ𝑤

𝜕𝑥ଶ
+

(1 − 𝜇)

2

𝜕ଶ𝑤

𝜕𝑦ଶ
቉

−
1 + 𝜇

2

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦

𝜕𝑤

𝜕𝑦
+

𝐺ூ(1 − 𝜇)

2𝐺ℎଶ𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

𝜕𝑤

𝜕𝑥
 

 

(3.26) 

  

 

ቈ
𝜕ଶ

𝜕𝑦ଶ
+

(1 − 𝜇)

2

𝜕ଶ

𝜕𝑥ଶ
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଶ𝑡
቉ 𝑣ଶ

= − ቈ
1 + 𝜇

2

𝜕ଶ

𝜕𝑥𝜕𝑦
቉ 𝑢ଶ − ቈ

𝐺ூ(1 − 𝜇)

2𝐺ℎଵ𝑡
቉ 𝑣ଵ −

𝜕𝑤

𝜕𝑦
ቈ
𝜕ଶ𝑤

𝜕𝑦ଶ
+

(1 − 𝜇)

2

𝜕ଶ𝑤

𝜕𝑥ଶ
቉

−
1 + 𝜇

2

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦

𝜕𝑤

𝜕𝑥
−

𝐺ூ(1 − 𝜇)

2𝐺ℎଶ𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

𝜕𝑤

𝜕𝑦
 

 

 

(3.27) 
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The flexural rigidity values for the upper and lower layers are given in Equations 

(3.28) and (3.29). 

 

𝐷ଵ =
𝐸 ∗ ℎଵ

12 ∗ (1 − 𝜇ଶ)
 

(3.28) 

 

𝐷ଶ =
𝐸 ∗ ℎଶ

12 ∗ (1 − 𝜇ଶ)
 

(3.29) 

 

The shear modulus formula is given in Equation (3.30). 

𝐺 =  
𝐸

2(1 + 𝜇)
 

(3.30) 

 

3.2.2.1 Boundary Conditions 

For the plate; edge boundary conditions can be determined as any combination of 

clamped (fixed) and simply supported (hinged) boundary conditions, symmetrical 

or unsymmetrical. Both clamped and simply supported boundary conditions are 

Dirichlet type boundary conditions. 

For simply supported (hinged) edges, rotation is permitted only about one axis, 

whereas both the transverse displacement and the rotation about the orthogonal axis 
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are constrained. The corresponding boundary condition equations are summarized 

below. 

For simply supported boundary conditions at x=0 or x=a (a: Plate width in x-

direction); 

𝑒ଵ௬+𝜇𝑒ଵ௫ = 0 

(3.31) 

𝑒ଵ௫௬ = 0 

(3.32) 

𝑒ଶ௬+𝜇𝑒ଶ௫ = 0 

(3.33) 

𝑒ଶ௫௬ = 0 

(3.34) 

𝑤 = 0 

(3.35) 

𝜕ଶ𝑤 

𝜕𝑥ଶ
 = 0 

(3.36) 

For simply supported edge boundary conditions at y=0 or y=b (b: Plate width in y-
direction); 

𝑒ଵ௬+𝜇𝑒ଵ௫ = 0 

(3.37) 

𝑒ଵ௫௬ = 0 

(3.38) 



 
 

38 
 

𝑒ଶ௬+𝜇𝑒ଶ௫ = 0 

(3.39) 

𝑒ଶ௫௬ = 0 

(3.40) 

𝑤 = 0 

(3.41) 

𝜕ଶ𝑤 

𝜕𝑦ଶ
 = 0 

(3.42) 

 

 

For clamped (fixed) edges, all rotations and displacements along the edge are fully 

restrained. The associated boundary condition equations are summarized below. 

For clamped edge boundary conditions at x=0 or x=a (a: Plate width in x-

direction); 

 

𝑢 = 𝑣 = 𝑤 = 0 

(3.43) 

𝜕𝑤 

𝜕𝑥
 = 0 

(3.44) 
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For clamped edge boundary conditions at y=0 or y=b (b: Plate width in x-

direction); 

𝑢 = 𝑣 = 𝑤 = 0 

(3.45) 

𝜕𝑤 

𝜕𝑦
 = 0 

(3.46) 

 

 

3.3 Laminated Glass Specifications 

The laminated glass material properties are given in section 1.1 (Also see Appendix 

1). 

A two layered laminated glass plate is taken for the analyses: 

Glass elastic modulus usually changes between 60 - 80 GPa and in the analyses it’s 

taken as 70 GPa. 

The PVB (polyvinyl butyral) interlayer typically exhibits a shear modulus in the 

range of 100 to 3000 kPa; a representative value of 1000 kPa was selected for the 

analyses conducted in this study. 

Interlayer thicknesses are given as 0.76 millimeters for the analyses. 

Glass layers thicknesses are taken as 5 millimeters.  

The square plate has a width of 1 meter, making it 1 m x 1 m in plan view. 
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A uniform pressure load of 0.2 kPa is used in the analyses, except in cases 

where variable pressure loading is specifically considered. 

  

 

 

3.4 Employment of Finite Difference Method 

The Finite Difference Method (FDM), a widely used numerical technique, is 

employed to discretize the governing differential equations into algebraic form and 

to derive matrix representations for both lateral and in-plane displacements. Five 

solution matrices are constructed corresponding to the five displacement fields—w, 

u1, v1, u2, and v2. These matrices are inherently nonlinear and coupled, reflecting 

the effects of large deformations and the interaction between different displacement 

fields across the layered structure. 

 Unlike previous studies, this work models the full plate, allowing all edges to 

represent the actual physical boundary conditions of the problem. The five field 

equations are nonlinear with the function of the lateral displacement, w, even 

though all of the differential operators in u1, v1, u2, and v2 are linear. Nonlinearity 

of the problem necessitates the employment of an iterative numerical technique for 

the solution. 

 

[𝐴]{𝑤} = ൛𝑞 + {𝑓1(𝑤, 𝑢ଵ, 𝑣ଵ, 𝑢ଶ, 𝑣ଶ)}ൟ 

(3.47) 

where q is the lateral loading vector. 
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Equation (3.47) represents the lateral displacement (w) solution matrix system, 

where “f1” includes the nonlinear terms and thus it is grouped to the right-hand 

side.  

 

𝐶𝑤(௜,௝) + 𝐵𝑤(௜ାଵ,௝) + 𝐵𝑤(௜ିଵ,௝) + 𝐻𝑤(௜ାଶ,௝) + 𝐻𝑤(௜ିଶ,௝) + 𝐽𝑤(௜,௝ାଵ) + 𝐽𝑤(௜,௝ିଵ)

+ 𝐺𝑤(௜,௝ାଶ) + 𝐺𝑤(௜,௝ିଶ) + 𝐹𝑤(௜ାଵ,௝ାଵ) + 𝐹𝑤(௜ାଵ,௝ିଵ) + 𝐹𝑤(௜ିଵ,௝ାଵ)

+ 𝐹𝑤(௜ିଵ,௝ିଵ) = {𝑅𝐻𝑆}(௜,௝) 

(3.48) 

 

In Equation (3.48), the discretized general form for the “w” solution is provided. 

The coefficients are labeled as C, B, H, F, J, and G for better readability.  

{𝑅𝐻𝑆}(௜,௝) = ቊ𝑞

+
𝐸ℎଵ

2(1 − 𝜇ଶ)
ቈ൫𝑒ଵ௫ + 𝑒ଵ௬൯

𝜕ଶ𝑤

𝜕𝑥ଶ
+ ൫𝑒ଵ௬ + 𝑒ଵ௫൯

𝜕ଶ𝑤

𝜕𝑦ଶ

+ (1 − 𝜇)𝑒ଵ௫௬

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦
቉

+
𝐸ℎଶ

2(1 − 𝜇ଶ)
ቈ൫𝑒ଶ௫ + 𝑒ଶ௬൯

𝜕ଶ𝑤

𝜕𝑥ଶ
+ ൫𝑒ଶ௬ + 𝑒ଶ௫൯

𝜕ଶ𝑤

𝜕𝑦ଶ

+ (1 − 𝜇)𝑒ଶ௫௬

𝜕ଶ𝑤

𝜕𝑥𝜕𝑦
቉

−
𝐺ூ

𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰ ൬

𝜕𝑢ଵ

𝜕𝑥
−

𝜕𝑢ଶ

𝜕𝑥
+

𝜕𝑣ଵ

𝜕𝑦
−

𝜕𝑣ଶ

𝜕𝑦
൰ቋ

(௜,௝)

  

(3.49) 

The right-hand side in Equation (3.48), is expanded in Equation (3.49) above. The 

nonlinear terms are grouped in this “RHS” term. 
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𝐶 =  (𝐷ଵ + 𝐷ଶ) ቆ
6

ℎ௫
ସ

+
6

ℎ௬
ସ

+
8

ℎ௫
ସ

ቇ +
𝐺ூ

𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

ଶ

ቆ
2

ℎ௫
ଶ

+
2

ℎ௬
ଶ

ቇ 

(3.50) 

𝐵 =  (𝐷ଵ + 𝐷ଶ) ቆ
−4

ℎ௫
ସ

+
−4

ℎ௫
ଶℎ௬

ଶ
ቇ +

𝐺ூ

𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

ଶ

൬
−1

ℎ௫
ଶ

൰ 

(3.51) 

𝐻 =  (𝐷ଵ + 𝐷ଶ) ൬
1

ℎ௫
ସ

൰ 

(3.52) 

𝐹 =  (𝐷ଵ + 𝐷ଶ) ቆ
2

ℎ௫
ଶℎ௬

ଶ
ቇ 

(3.53) 

𝐽 =  (𝐷ଵ + 𝐷ଶ) ቆ
−4

ℎ௬
ସ

+
−4

ℎ௫
ଶℎ௬

ଶ
ቇ +

𝐺ூ

𝑡
൬

ℎଵ

2
+

ℎଶ

2
+ 𝑡൰

ଶ

ቆ
−1

ℎ௬
ଶ

ቇ 

(3.54) 

𝐺 =  (𝐷ଵ + 𝐷ଶ) ቆ
1

ℎ௬
ସ

ቇ 

(3.55) 

 

The coefficients C, B, H, F, J, and G in Equation (3.48) are detailed in Equations 

(3.50)  through (3.55). The Modified Strongly Implicit (MSI) method, originally 

developed by Schneider and Zedan (1981) [34], is employed to solve for the in-

plane displacements u1, v1, u2, and v2. In this approach, only five difference-

equation coefficients are stored, reducing both memory requirements and 

computational cost. These coefficients vary depending on the applied boundary 

conditions. Following a similar strategy to that used in Aşık’s study (1997) [35], 
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the coefficient structure is adopted to facilitate efficient in-plane displacement 

solutions. 

 

𝐴𝑝𝑢(𝑖, 𝑗) ∗ 𝑢ଵ(𝑖, 𝑗) = 𝐴𝑤𝑢(𝑖, 𝑗) ∗ 𝑢ଵ(𝑖 − 1, 𝑗) + 𝐴𝑒𝑢(𝑖, 𝑗) ∗ 𝑢ଵ(𝑖 + 1, 𝑗) + 

𝐴𝑠𝑢(𝑖, 𝑗) ∗ 𝑢ଵ(𝑖, 𝑗 − 1) + 𝐴𝑛𝑢(𝑖, 𝑗) ∗ 𝑢ଵ(𝑖, 𝑗 + 1) − 𝐹𝑢ଵ(𝑖, 𝑗) 

(3.56) 

 

 

𝐴𝑝𝑢(𝑖, 𝑗) ∗ 𝑢ଶ(𝑖, 𝑗)

= 𝐴𝑤𝑢(𝑖, 𝑗) ∗ 𝑢ଶ(𝑖 − 1, 𝑗) + 𝐴𝑒𝑢(𝑖, 𝑗) ∗ 𝑢ଶ(𝑖 + 1, 𝑗) + 𝐴𝑠𝑢(𝑖, 𝑗)

∗ 𝑢ଶ(𝑖, 𝑗 − 1) + 𝐴𝑛𝑢(𝑖, 𝑗) ∗ 𝑢ଶ(𝑖, 𝑗 + 1) − 𝐹𝑢ଶ(𝑖, 𝑗) 

(3.57) 

 

𝐴𝑝𝑣(𝑖, 𝑗) ∗ 𝑣ଵ(𝑖, 𝑗)

= 𝐴𝑤𝑣(𝑖, 𝑗) ∗ 𝑣ଵ(𝑖 − 1, 𝑗) + 𝐴𝑒𝑣(𝑖, 𝑗) ∗ 𝑣ଵ(𝑖 + 1, 𝑗) + 𝐴𝑠𝑣(𝑖, 𝑗)

∗ 𝑣ଵ(𝑖, 𝑗 − 1) + 𝐴𝑛𝑣(𝑖, 𝑗) ∗ 𝑣ଵ(𝑖, 𝑗 + 1) − 𝐹𝑣ଵ(𝑖, 𝑗) 

(3.58) 

 

𝐴𝑝𝑣(𝑖, 𝑗) ∗ 𝑣ଶ(𝑖, 𝑗)

= 𝐴𝑤𝑣(𝑖, 𝑗) ∗ 𝑣ଶ(𝑖 − 1, 𝑗) + 𝐴𝑒𝑣(𝑖, 𝑗) ∗ 𝑣ଶ(𝑖 + 1, 𝑗) + 𝐴𝑠𝑣(𝑖, 𝑗)

∗ 𝑣ଶ(𝑖, 𝑗 − 1) + 𝐴𝑛𝑣(𝑖, 𝑗) ∗ 𝑣ଶ(𝑖, 𝑗 + 1) − 𝐹𝑣ଶ(𝑖, 𝑗) 

(3.59) 
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Equations (3.56) to (3.59) present the governing equations for the displacement 

components u1, v1, u2, and v2, respectively. In each of these equations, the left-

hand side contains the unknown variables to be solved, while the right-hand side 

consists of the corresponding nonlinear terms. For improved clarity and readability, 

the equations are expressed using the derived coefficients Apu, Awu, Asu, Aeu, 

Anu, Apv, Awv, Asv, Aev, and Anv. 

 

 

 

 

 

 

 

 

𝐴𝑝𝑢(𝑖, 𝑗) =  
2

ℎ௫
ଶ +

(1 − 𝜇)

ℎ௬
ଶ + 𝐺ூ 

 

(3.60) 

𝐴𝑤𝑢(𝑖, 𝑗) = 𝐴𝑒𝑢(𝑖, 𝑗) =  
1

ℎ௫
ଶ 

 

 

(3.61) 

𝐴𝑠𝑢(𝑖, 𝑗) = 𝐴𝑛𝑢(𝑖, 𝑗) =  
(1 − 𝜇)

2ℎ௬
ଶ  

 

 

(3.62) 

𝐴𝑝𝑣(𝑖, 𝑗) =  
2

ℎ௬
ଶ +

(1 − 𝜇)

ℎ௫
ଶ + 𝐺ூ 

 

 

(3.63) 

𝐴𝑤𝑣(𝑖, 𝑗) = 𝐴𝑒𝑣(𝑖, 𝑗) =  
(1 − 𝜇)

2ℎ௫
ଶ  

 

 

(3.64) 
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For Equations (3.60) through (3.65), the coefficient formulas for in-plane solutions 

are given which are used in Equations (3.56) to (3.59). The interlayer shear 

modulus is denoted by GI, and hx and hy represent the spatial step sizes in the x- 

and y-directions, respectively. At each discrete point (i,j), the right-hand side parts 

given in Equations (3.56) to (3.59), are represented as Fu1(i,j), Fu2(i,j), Fv1(i,j), 

and Fv2(i,j). 

 

 

3.4.1 Analysis Steps 

The analysis steps for the iterative solution method are given below. 

1. The stiffness matrix is obtained. 

2. The right-hand side of the w equation which includes non-linear 

terms is calculated. (refer to Equations (3.47) and (3.49)) 

3. Solve for the w(i,j) displacement matrix using Equation (3.48). The 

solution of w is calculated using LU decomposition of stiffness 

matrix. LU decomposition can be seen as a better way to implement 

Gauss elimination. This enables us to solve the matrix in a more 

advantageous way. 

4. Check convergence: if the relative error is below the defined 

tolerance, then exit the inner iteration loop. 

𝐴𝑠𝑣(𝑖, 𝑗) = 𝐴𝑛𝑣(𝑖, 𝑗) =  
1

ℎ௬
ଶ  

 

 

(3.65) 
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5. The stiffness matrices for the in-plane displacements are obtained. . 

The results of w displacement are used for the right-hand side of in-

plane displacements calculation. 

6. Compute the right-hand side for u1 and calculate u1 using Equation 

(3.56). 

7. Compute the right-hand side for u2 and calculate u2 using Equation 

(3.57). 

8. Compute the right-hand side for v1 and calculate v1 using Equation 

(3.58). 

9. Compute the right-hand side for v2 and calculate v2 using Equation 

(3.59). 

10. Return to Step 2 and repeat the process. 

 

 

3.4.2 Matrix Solution Methods 

For lateral (transverse, out-of-plane) displacements, a direct matrix solution 

approach is employed. In this method, the right-hand side vector is multiplied by 

the inverse of the matrix corresponding to the transverse displacement system. 

Meanwhile, for the in-plane displacements, the Modified Strongly Implicit (MSI) 

method is utilized. Originally proposed by Schneider and Zedan (1981) [34], this 

method applies an Incomplete LU decomposition (ILU decomposition) as the 

matrix solution technique, offering improved efficiency and convergence for large, 

sparse systems. 
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3.4.3 Relaxation Parameters 

To address convergence issues, successive under-relaxation (SUR) parameter, 

denoted by alpha (𝛼), is employed for to the transverse variable w. A non-

dimensional maximum displacement parameter, defined as 2*w(1,1)/(h1+h2),   

obtained from numerical experiments, is used to adjust the under-relaxation 

parameter dynamically. The previous step lateral displacement is denoted by wo(i, 

j). Initially the value of 𝛼  is set to 0.5. As the solution progresses and convergence 

improves, 𝛼 is gradually increased up to a maximum of 1, thereby accelerating 

convergence in later iterations. The updated displacement w is calculated using a 

weighted interpolation as in Equation (3.66).  

 

𝑤(𝑖, 𝑗) = 𝛼 ∗ 𝑤(𝑖, 𝑗) + (1 − 𝛼) ∗ 𝑤𝑜(𝑖, 𝑗) 

(3.66) 

Similarly, for the convergence of in-plane deflection calculation is done using beta 

parameter of under-relaxation employing successive over-relaxation (SOR). For the 

in-plane displacements, a constant over-relaxation factor of 1.4 was found to be 

appropriate after a series of numerical trials. 

 

 

 

 

𝑢(𝑖, 𝑗) = 𝛽 ∗ 𝑢(𝑖, 𝑗) + (1 − 𝛽) ∗ 𝑢𝑜(𝑖, 𝑗) 

 

 

(3.67) 

𝑣(𝑖, 𝑗) = 𝛽 ∗ 𝑣(𝑖, 𝑗) + (1 − 𝛽) ∗ 𝑣𝑜(𝑖, 𝑗) 

 

(3.68) 
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3.4.4 Stress Calculation 

The stress values in the mathematical model (FDM model) are obtained by 

combining membrane and bending stresses for each layer, considering their 

respective directions (tensile or compressive). Since both glass layers rotate in the 

same direction under bending, the combination of membrane and bending stresses 

varies depending only on whether the point of interest lies on the upper or lower 

surface of a given layer. 

 

Table 3.3 Summation of bending stresses in the corresponding function of the code. 

 Top Plate Bottom Plate 

Tension Side (+) (+) 

Compression Side (-) (-) 

 

The membrane stresses and bending stresses are summed with respect to Table 3.3. 

The rotations are separate for both layers. Thus, assuming positive bending 

moment; top parts of each layer is tensile (positive signed stress) while the bottom 

part of each layer is compressive (negative signed stress). 

The shear and axial stresses at the top and bottom surfaces of each layer are utilized 

to calculate the principal stresses using the Mohr’s Circle method. This results in 

the determination of the first principal stress (σ1) and the second principal stress 

(σ2). While the first principal stress typically has a larger magnitude, it is important 

to note that the second principal stress may prove to be more critical, especially 

when considering the potential for compressive failure modes. 

Additionally, the interlayer shear deformation mode is considered, leading to the 

incorporation of interlayer shear failure mode into the analysis. As a result, the 
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relevant stresses are calculated, taking into account the deformation values of the 

laminated glass. In total, six stresses are determined; 

 First principal stress for the upper layer 

 Second principal stress for the upper layer 

 First principal stress for the lower layer 

 Second principal stress for the lower layer 

 Interlayer shear stress in the xz direction 

 Interlayer shear stress in the yz direction 

 

The symbols for principal stresses used in the following sections are summarized in 

Table 3.4. 

 

Table 3.4 Symbols for Principal Stresses 

Principal Stress Symbols 

First Principal Stress σ1 

Second Principal Stress σ2 
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CHAPTER 4 

4        RESULTS 

4.1  Model and Solution Implementation 

The developed mathematical model is converted into code using the Python 

programming language version 3.11.4. 

 

Data inputs are taken for variables below to run the model code.  

 Length in x-direction (in meters),  

 Length in y-direction (in meters),  

 Glass layers thicknesses (in meters), 

 Interlayer thickness (in meters), 

 Number of divisions in x-direction,  

 Number of divisions in y-direction,  

 Elastic modulus for glass layer (in kPa),  

 Shear modulus for the interlayer (in kPa),  

 Poisson’s ratio for glass layers, 

 Loading magnitude (in kPa). 

 

In Figure 4.1, a 3D visualization of the laminated glass plate model is presented, 

along with the corresponding orthogonal coordinate system. The z-direction 

represents the transverse direction, while the x and y directions define the in-plane 

directions. 
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Figure 4.1 3D View of the laminated glass plate model and coordinate system 

 

The loading for the plate is uniform pressure applied downwards on top surface (+z 

surface in Figure 4.1).  

To validate and compare the FDM model results, an FEM model for laminated 

glass was developed and evaluated in terms of result accuracy and computational 

performance. Constructing this model required rigorous effort due to the inclusion 

of extremely thin interlayer elements modeled as solids, which were connected to 

the upper and lower glass layers. Given the aspect ratio constraints of solid 

elements, a high mesh density was necessary to ensure accurate results. The finite 

element model is constructed using C3D20 elements within the Abaqus software, 

which are 20-node quadratic brick elements suitable for capturing complex 3D 
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stress states. The applied loading condition—transverse pressure—was kept 

consistent with the FDM model for direct comparison. The loading configuration 

for the FEM analysis is illustrated in Figure 4.2 below. The results are obtained 

from our developed mathematical FDM model unless explicitly stated as FEM 

results. 

 

 

Figure 4.2 Abaqus FEM model under pressure load 

 

4.2 Case 1: Symmetrical S.S.-Clamped- S.S. -Clamped (Benchmark) 

The first case is symmetrical and is calculated as a benchmark for the 

unsymmetrical boundary condition cases. It has already been extensively studied in 

previous work and will therefore not be discussed in detail here. Its primary 

purpose is to serve as a reference for the unsymmetrical cases, which are presented 

in the following sections. 
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In Figure 4.3, the left and right edges are clamped (u,v,w = 0, ∂θ/∂n = 0) while top 

and bottom edges are simply supported edges (∂θ/∂n ≠ 0). 

 

 

Figure 4.3 Case 1 Boundary conditions for the plate  
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Figure 4.4 Transverse displacement of the plate 

 

The displacement contour in the middle is an ellipse rather than circle, which can 

be observed in Figure 4.4. That pattern is expected due to the different boundary 

conditions in x and y directions. The simply supported boundaries are less stiff, and 

the transverse displacement leans toward these edges. 
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Figure 4.5 Axial displacement in x direction of upper plate (u1)

 

Figure 4.6 Axial displacement in x direction of lower plate (u2) 



 
 

57 
 

 

Figure 4.7 Axial displacement in y direction of upper plate (v1) 

 

Figure 4.8 Axial displacement in y direction of lower plate (v2) 
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When analyzing the in-plane x-displacements (u1, u2) and y-displacements (v1, 

v2) , it is apparent that their spatial distributions are oriented orthogonally within 

the plane as in Figure 4.5, Figure 4.6, Figure 4.7 and Figure 4.8. The u-

displacements, representing in-plane motion along the x-axis, show a distribution 

parallel to the x-direction, while the v-displacements, corresponding to in-plane 

motion along the y-axis, are primarily distributed parallel to the y-direction. As 

expected, non-zero negative in-plane displacements are observed along the simply 

supported edges, whereas clamped edges exhibit zero in-plane displacements. 

4.3 Case 2: Unsymmetrical Clamped - Clamped - S.S. - S.S. Edges 

In this case, the rectangular plate is subjected to a specific configuration of 

boundary conditions in which two adjacent edges are assigned simply supported 

(SS) conditions, while the remaining two adjacent edges are constrained with 

clamped boundary conditions. To elaborate further, the simply supported boundary 

conditions—applied to two adjoining edges of the plate—allow all types of 

translation and rotational displacements except transverse displacement normal to 

the plate. Conversely, the clamped boundary conditions imposed on the other two 

adjoining edges enforce a fully fixed support, preventing both translational 

displacements and rotations along the edge, thereby simulating a rigid and 

immovable connection. 

This arrangement of mixed boundary conditions —clamped on the top and left 

edges, and simply supported on the bottom and right edges— is explicitly 

illustrated in Figure 4.9. 
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Figure 4.9 Case 2 Boundary conditions for the plate 

 

Figure 4.10 Transverse displacement of the plate 
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The transverse displacements are the dominant displacements for transverse 

pressure loading. Thus, the emphasis is put on those displacements and compared 

with the equivalent FEM model results. In the FEM model below, the boundary 

conditions and displacement extraction path are specified. Also, the deformation 

shape can be observed. 

Both Case 1 and Case 2 have the same number of clamped and simply supported 

edges. The only difference is that the boundary condition in Case 1 is symmetric, 

while in Case 2 it is not. Case 2 results in a higher maximum displacement 

compared to Case 1, indicating that the asymmetry leads to a less stiff structural 

response. From an engineering perspective, asymmetry typically results in reduced 

stiffness, so this outcome is consistent with expectations. 

 

 

 

Figure 4.11 Transverse displacement results of FEM analysis 
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Figure 4.12 Case-2 Transverse displacements from mathematical model and FEM 
analysis 

 

In Figure 4.12, the FEM displacements are extracted along the diagonal in Figure 

4.11, starting at the clamped-clamped edge (marked with a circle) and ending at the 

S.S.-S.S. edge (marked with a triangle). And the Finite Difference Method (FDM) 

model displacements are extracted along top-left and bottom-right corners of 

Figure 4.10, starting at top-left corner. The circle and triangle symbols in Figure 

4.12 correspond to the same points denoted by these symbols in Figure 4.11. 

The computational results obtained from both the Finite Difference Method (FDM) 

and Finite Element Method (FEM) models demonstrate strong agreement, with 

nearly indistinguishable deformation profiles and closely matching quantitative 

values. Specifically, the spatial distribution of displacements, as well as the 

magnitude of local strain concentrations, exhibit a high degree of correlation 

between the two numerical approaches.  
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A key observation is the systematic shift of the maximum transverse 

displacement’s lowest points toward the S.S.- S.S. edge region compared to the 

symmetrical solution, which has a maximum displacement point in the middle of 

the plate. This trend arises due to the inherent mechanical contrast between 

boundary conditions: simply supported edges, which allow rotational freedom, 

exhibit significantly greater compliance than clamped edges, which fully restrain 

both rotations and translations. Consequently, deformation localizes preferentially 

near the less constrained simply supported edge—a behavior well-documented in 

plate mechanics literature [14]. The consistency between FDM and FEM 

predictions not only reinforces confidence in the FDM implementation but also 

aligns with first-principles expectations for thin-plate deformation under mixed 

boundary conditions. 
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Figure 4.13 Axial displacement in x direction of upper plate (u1)

 

Figure 4.14 Axial displacement in y direction of upper plate (v1) 
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When analyzing the in-plane x-displacements (u1) and y-displacements (v1) for the 

upper glass layer in Figure 4.13 and Figure 4.14, it is apparent that their spatial 

distributions are oriented orthogonally within the plane. The u-displacements, 

representing in-plane motion along the x-axis, show a distribution parallel to the x-

direction, while the v-displacements, corresponding to in-plane motion along the y-

axis, are primarily distributed parallel to the y-direction. As expected, non-zero 

negative in-plane displacements are observed along the simply supported edges, 

whereas clamped edges exhibit zero in-plane displacements. 

 

Figure 4.15 Axial displacement in x direction of lower plate (u2) 



 
 

65 
 

 

Figure 4.16 Axial displacement in y direction of lower plate (v2) 

 

In Figure 4.15 and Figure 4.16, the x-displacements (u2) and y-displacements (v2) 

observed in the lower glass layer exhibit a spatial distribution pattern similar to that 

of the upper glass layer. Specifically, the u2 displacements are predominantly 

aligned along the x-direction, while the v2 displacements are primarily distributed 

along the y-direction. Similar to the results observed in the upper layer, the lower 

layer also exhibits non-zero negative in-plane displacements along the simply 

supported edges. Conversely, the clamped edges maintain zero in-plane 

displacements, consistent with the expected boundary conditions.  

A clear symmetry is observed in the displacement distributions of the upper and 

lower glass layers with respect to the interlayer plane (i.e., the z-plane, whose 

normal corresponds to the transverse direction). At a corresponding point on the 2D 
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plane, the in-plane displacements of the two layers exhibit similar magnitudes but 

opposite directions, indicating mirrored deformation behavior across the laminate. 

For all in-plane displacement components—including u1, v1 (upper layer) and u2, 

v2 (lower layer)—their magnitudes are negligible when compared to the transverse 

(out-of-plane) displacements observed under the same loading conditions. That 

aligns with established findings in prior studies [20], where transverse 

deformations consistently dominate the structural response of similar laminated 

glass systems. The minimal in-plane displacements can be attributed to the high in-

plane stiffness of the glass layers, which restricts deformation along the x- and y-

axes, while the comparatively lower out-of-plane stiffness allows for more 

pronounced deflections in the z-direction. Furthermore, the clamped boundary 

conditions, which typically constrain in-plane motion at the edges, further suppress 

u and v displacements, reinforcing the expected deformation hierarchy where 

transverse displacements govern the overall mechanical behavior. 
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4.3.1 Comparison with Theoretical Limits (Monolithic/Layered) 

 

Figure 4.17 Comparison of transverse displacements along diagonal line with 
theoretical limits 

 

The theoretical limits for laminated glass plate behavior were established in prior 

work by Mohareb [36]. The first limit corresponds to monolithic glass, defined as a 

single-layer glass plate of full thickness without any interlayer adhesive. The 

second limit represents layered glass, which consists of multiple glass layers 

identical to those in laminated glass but with zero shear stiffness in the interlayer. 

In this layered limit, the glass layers are free to slide relative to one another without 

shear resistance. Laminated glass, in theory, exhibits behavior intermediate 

between these two extremes. Its specific response—whether closer to the 

monolithic or layered limit—depends on the shear stiffness of the polymer 

interlayer material.  
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In the present analysis (Figure 4.17), the deformation of laminated glass falls 

between these two theoretical limits. The circle and triangle symbols in Figure 4.17 

correspond to the same points denoted by these symbols in Figure 4.11. While all 

cases (monolithic, layered, and laminated) exhibit qualitatively similar transverse 

displacement shapes, the magnitudes differ significantly due to their distinct 

stiffness characteristics. These results align with theoretical expectations: laminated 

glass, by virtue of its finite interlayer shear stiffness, demonstrates greater rigidity 

than the layered limit but remains less stiff than the monolithic case, as the polymer 

interlayer cannot match the shear stiffness.  

4.3.2 Stress Results 

Principal in-plane stresses for both glass layers and transverse shear stress for 

adhesive interlayer are derived from the displacement results. The naming 

conventions used here correspond to those listed in Table 3.4. 

 

Figure 4.18 First principal stress (σ1) in upper layer 
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Figure 4.19 Second principal stress (σ2) in upper layer 

 

Figure 4.20 First principal stress (σ1 in lower layer 



 
 

70 
 

 

Figure 4.21 Second principal stress (σ2) in lower layer 

 

Figure 4.18, Figure 4.19, Figure 4.20, and Figure 4.21 illustrate the first and second 

principal stresses for Case 2, shown separately for the upper and lower glass layers. 

In both layers, the principal stresses reach their maximum values near the clamped 

edges. This aligns with theoretical expectations, as clamped edges impose stricter 

displacement constraints, leading to higher local stiffness compared to simply 

supported edges. The points of minimum absolute principal stresses typically occur 

slightly inward from the clamped boundaries, in close proximity to the regions of 

maximum absolute stress. For Case 2, the sign of a given principal stress remains 

consistent throughout each individual layer, indicating no sign reversal within the 

layer. 
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The principal stress distributions between the upper and lower layers are not 

perfectly symmetric. This asymmetry arises because the principal stresses are 

influenced by the combined effect of membrane and bending stresses. If bending 

were the sole contributor, the stress distributions would be symmetric with respect 

to the interlayer plane. 

 

Figure 4.22 Distribution of transverse shear stress 𝜏௫௭ in the interlayer 
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Figure 4.23 Distribution of transverse shear stress 𝜏௬௭ in the interlayer 

 

The transverse shear stress distributions within the interlayer are presented in 

Figure 4.22 and Figure 4.23. The shear stress on the xz-plane (𝜏௫௭) primarily varies 

along the x-direction, whereas the shear stress on the yz-plane (𝜏௬௭) exhibits 

stronger variation along the y-direction compared to the x-direction. Unlike the 

principal stresses in the glass layers—which are highest near the clamped edges in 

Case 2—the interlayer shear stresses are more pronounced near the simply 

supported edges. Notably, for both 𝜏௫௭ and 𝜏௬௭ , the shear stress values drop to 

zero at the mid-plane of the interlayer when viewed in the out-of-plane (z) 

direction. 
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4.3.3 Convergence of transverse displacement for interlayer thickness 

 

Figure 4.24 Case-2 interlayer thickness versus maximum transverse displacement 

 

Increasing the glass layer thickness has a direct positive effect on the overall 

stiffness of the laminated plate, which aligns with the physical nature of the 

problem. However, increasing the interlayer adhesive thickness while keeping 

other parameters constant reduces stiffness and increases the transverse 

displacement of the plate. To explore this phenomenon, the interlayer thickness is 

varied over a wide range. The results show that as the interlayer thickness 

increases, the maximum transverse displacement also increases, eventually 

converging after a certain point as shown in Figure 4.24. 
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4.4 Case 3: Unsymmetrical Clamped-Clamped-Clamped-S.S. Edges 

In Case 3, the square plate is constrained with clamped conditions on the top, left, 

and right edges, providing full fixity. Only the bottom edge in Figure 4.25 has a 

simply supported condition, allowing rotation while restricting transverse 

displacement. This setup creates asymmetric stiffness over the plate. The square 

geometry implies equal edge lengths, making corner transitions (where clamped 

edge meets simply supported edge) critical for stress analysis. 

 

 

Figure 4.25 Case 3 Boundary conditions for the plate  
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Figure 4.26 Transverse displacement of the plate 

 

Like in Case 3, the transverse displacements are the dominant displacements for 

transverse pressure loading. Thus again, those displacements are compared with the 

equivalent FEM model results. In the FEM model below, the boundary conditions 

and displacement extraction path are similarly specified. Also, the deformation 

shapes can be observed. 
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Figure 4.27 Transverse displacement results of FEM analysis 

 

 

 

Figure 4.28 Case-3 Transverse displacements from mathematical model and FEM 
analysis 
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In Figure 4.28, the FEM displacements are extracted along the diagonal in Figure 

4.27, starting at the clamped-clamped edge (marked with a circle) and ending at the 

clamped-S.S. edge (marked with a triangle), and the Finite Difference Method 

(FDM) model displacements are extracted along top-left and bottom-right corners 

of Figure 4.26, starting at top-left corner. The circle and triangle symbols in Figure 

4.28 correspond to the same points denoted by these symbols in Figure 4.27. 

The computational results obtained from both the Finite Difference Method (FDM) 

and Finite Element Method (FEM) models again demonstrate strong agreement, 

with nearly indistinguishable deformation profiles and closely matching 

quantitative values. Specifically, the spatial distribution of displacements, as well 

as the magnitude of local strain concentrations, exhibit a high degree of correlation 

between the two numerical approaches.  

A key observation is the systematic shift of the maximum transverse 

displacement’s lowest points toward the simply supported edge region compared to 

the symmetrical solution, which has a maximum displacement point in the middle 

of the plate. This trend arises due to the inherent mechanical contrast between 

boundary conditions: simple supports, which allow rotational freedom, exhibit 

significantly greater compliance than clamped edges, which fully restrain both 

rotations and translations. Consequently, deformation localizes preferentially near 

the less constrained (simply supported) edge—a behavior consistent with Case 3 

and again in agreement with classical plate theory literature [14]. The consistency 

between FDM and FEM predictions not only reinforces confidence in the FDM 

implementation but also aligns with first-principles expectations for thin-plate 

deformation under mixed boundary conditions. 
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Figure 4.29 Axial displacement in x direction of upper plate (u1) 

 

Figure 4.30 Axial displacement in y direction of upper plate (v1) 
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When analyzing the in-plane x-displacements (u1) and y-displacements (v1) for the 

upper glass layer in Figure 4.29 and Figure 4.30, it is apparent that their spatial 

distributions are oriented orthogonally within the plane. The u1 displacements, 

representing in-plane motion along the x-axis, show a dominant variation along the 

x-direction, while the v-displacements, corresponding to in-plane motion along the 

y-axis, are primarily distributed parallel to the y-direction. Additionally, the 

deformation behavior at the edges aligns with theoretical expectations: clamped 

boundary conditions enforce zero in-plane displacements, whereas the simply 

supported edges allow for non-zero in-plane displacements. 

 

Figure 4.31 Axial displacement in x direction of lower plate (u2) 
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Figure 4.32 Axial displacement in y direction of lower plate (v2) 

 

The x-displacements (u2) and y-displacements (v2) observed in the lower glass 

layer exhibit a spatial distribution pattern similar to that of the upper glass layer.  

Specifically, the u2 displacement variations are predominantly aligned along the x-

direction, while the v2 displacements are primarily distributed along the y-

direction.  

Similar to Case 3, the in-plane displacement distributions of the upper and lower 

glass layers exhibit a high degree of symmetry with respect to z axis. At a 

corresponding point on the 2D plane, the in-plane displacements of the two layers 

exhibit similar magnitudes but opposite directions, indicating mirrored deformation 

behavior across the laminate. 
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For all in-plane displacement components—including u1, v1 (upper layer) and u2, 

v2 (lower layer)—their magnitudes are negligible when compared to the transverse 

(out-of-plane) displacements observed under the same loading conditions.  

This aligns with established findings in prior studies [19] [24], where transverse 

deformations consistently dominate the structural response of similar laminated 

glass systems. The minimal in-plane displacements again can be attributed to the 

high in-plane stiffness of the glass layers, which restricts deformation along the x- 

and y-axes, while the comparatively lower out-of-plane stiffness allows for more 

pronounced deflections in the z-direction. Furthermore, the clamped boundary 

conditions, which typically constrain in-plane motion at the edges, further suppress 

the u and v displacements. This reinforces the expected deformation pattern, where 

transverse displacements dominate the overall mechanical response in this case. 

4.4.1 Comparison with Theoretical Limits (Monolithic/Layered) 

 

Figure 4.33 Comparison of transverse displacements along diagonal line with 
theoretical limits 
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The first theoretical limit corresponds to monolithic glass, defined as a single-layer 

glass plate of full thickness without any interlayer adhesive. The second theoretical 

limit represents layered glass, which consists of multiple glass layers identical to 

those in laminated glass but with zero shear stiffness in the interlayer. In this 

layered limit, the glass layers are free to slide relative to one another without shear 

resistance. Laminated glass, in theory, exhibits behavior between these two 

extremes. Its specific response—whether closer to the monolithic or layered 

limit—depends on the shear stiffness of the polymer interlayer material.  

In the present analysis and corresponding Case 3 (Figure 4.33), again the 

deformation of laminated glass falls in between these two theoretical limits. The 

circle and triangle symbols in Figure 4.33 show the same points in Figure 4.27. 

While all cases (monolithic, layered, and laminated) exhibit qualitatively similar 

transverse displacement shapes, the magnitudes differ significantly due to their 

distinct stiffness characteristics. These results align with theoretical expectations: 

laminated glass, by virtue of its finite interlayer shear stiffness, demonstrates 

greater rigidity than the layered limit but remains less stiff than the monolithic 

case, as the polymer interlayer cannot match the shear stiffness. 
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4.4.2 Stress Results 

 

Figure 4.34 First principal stress (σ1) in upper layer 

 

Figure 4.35 Second principal stress (σ2) in upper layer 
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Figure 4.36 First principal stress (σ1) in lower layer 

 

Figure 4.37 Second principal stress (σ2) in lower layer 
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Figure 4.34, Figure 4.35, Figure 4.36 and Figure 4.37 illustrate the first and second 

principal stresses for Case 3, shown separately for the upper and lower glass layers. 

In both layers, the principal stresses reach their maximum values near the clamped 

edges. This aligns with theoretical expectations, as clamped edges impose stricter 

displacement constraints, leading to higher local stiffness compared to simply 

supported edges. The points of minimum absolute principal stresses typically occur 

slightly inward from the clamped boundaries, in close proximity to the regions of 

maximum absolute stress. For Case 3, the sign of a given principal stress remains 

consistent throughout each individual layer, indicating no sign reversal within the 

layer. 

The principal stress distributions between the upper and lower layers are not 

perfectly symmetric. This asymmetry arises because the principal stresses are 

influenced by the combined effect of membrane and bending stresses. If bending 

were the sole contributor, the stress distributions would be symmetric with respect 

to the interlayer plane. These results show similarities with Case 2. 
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Figure 4.38 Distribution of transverse shear stress 𝜏௫௭  in the interlayer 

 

 

Figure 4.39 Distribution of transverse shear stress 𝜏௬௭ in the interlayer 
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The transverse shear stress distributions within the interlayer are presented in 

Figure 4.38 and Figure 4.39. Similar to Case 2, the shear stress on the xz-plane 

(𝜏௫௭) primarily varies along the x-direction, whereas the shear stress on the yz-

plane (𝜏௬௭ ) exhibits stronger variation along the y-direction compared to the x-

direction. Unlike the principal stresses in the glass layers—which are highest near 

the clamped edges in Case 3—the interlayer shear stresses are more pronounced 

near the simply supported edges. Notably, for both 𝜏௫௭ and 𝜏௬௭, the shear stress 

values drop to zero at the mid-plane of the interlayer when viewed in the out-of-

plane (z) direction. 

 

4.4.3 Convergence of transverse displacement for interlayer thickness 

 

Figure 4.40 Case-3 interlayer thickness versus maximum transverse displacement 

In Figure 4.40, increasing the glass layer thickness has a direct positive effect on 

the overall stiffness of the laminated plate, which aligns with the physical nature of 
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the problem. However, increasing the interlayer adhesive thickness while keeping 

other parameters constant reduces stiffness and increases the transverse 

displacement of the plate. To explore this phenomenon, the interlayer thickness is 

varied over a wide range. Similar to Case 2, the results show that as the interlayer 

thickness increases, the maximum transverse displacement also increases, 

eventually converging after a certain point. The converged “maximum transverse 

displacement” value (around 0.175 mm) is lower for Case 3, compared to Case 2. 

4.5 Case 4: Unsymmetrical Clamped - S.S. - S.S. - S.S. Edges 

In this configuration, the square plate is constrained by a combination of boundary 

conditions where three edges are simply supported while the remaining upper edge 

is clamped. To elaborate further, in Figure 4.41, simply supported boundary 

conditions—applied to the bottom, left and right edges— only restrict transverse 

displacement. In contrast, the top edge of the plate is assigned clamped boundary 

conditions, which enforce complete fixity along this boundary. 

 

Figure 4.41 Case 4 boundary conditions for the plate  
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Figure 4.42 Transverse displacement of the plate 

Like in Case 1 and Case 2, the transverse displacements are the dominant 

displacements for transverse pressure loading. Thus again, those displacements are 

compared with the equivalent FEM model results. In the FEM model below, the 

boundary conditions and displacement extraction path are similarly specified. Also, 

the deformation shapes can be observed. 
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Figure 4.43 Transverse displacement results of FEM analysis 

 

 

Figure 4.44 Case-4 Transverse displacements from mathematical model and FEM 
analysis 
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In Figure 4.44, the FEM displacements are extracted along the diagonal in Figure 

4.43, starting at the clamped- S.S. edge (marked with a circle) and ending at the 

S.S.- S.S. edge (marked with a triangle). And the Finite Difference Method (FDM) 

model displacements are extracted along top-left and bottom-right corners of 

Figure 4.42, starting at top-left corner. The circle and triangle symbols show the 

same points in Figure 4.43. 

Similar to the previous cases, the computational results obtained from both the 

Finite Difference Method (FDM) and Finite Element Method (FEM) models again 

demonstrate strong agreement, with nearly indistinguishable deformation profiles 

and closely matching quantitative values. Specifically, the spatial distribution of 

displacements, as well as the magnitude of local strain concentrations, exhibit a 

high degree of correlation between the two numerical approaches. 

A key observation is the systematic shift of the maximum transverse 

displacement’s lowest points away from the clamped edge region compared to the 

symmetrical solution, which has a maximum displacement point in the middle of 

the plate. Similar with previous cases, this trend arises due to the inherent 

mechanical contrast between boundary conditions: simply supported supports, 

which allow rotational freedom, exhibit significantly greater deformation than 

clamped edges, which fully restrain both rotations and translations. Consequently, 

deformation localizes preferentially near the less constrained simply supported 

edges similar with Case 2 and Case 3 —again as in plate mechanics literature [14]. 

Again, the consistency between FDM and FEM predictions not only reinforces 

confidence in the FDM implementation but also aligns with first-principles 

expectations for thin-plate deformation under mixed boundary conditions. 
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Figure 4.45 Axial displacement in x direction of upper plate (u1) 

 

Figure 4.46 Axial displacement in x direction of upper plate (v1) 



 
 

93 
 

 

Similar to Case 2 and Case 3; when analyzing the in-plane x-displacements (u1) 

and y-displacements (v1) for the upper glass layer in  

Figure 4.45 and Figure 4.46, it is apparent that their spatial distributions are 

oriented orthogonally within the plane. The u-displacements, representing in-plane 

motion along the x-axis, show a dominant variation parallel to the x-direction, 

while the v-displacements, corresponding to in-plane motion along the y-axis, are 

primarily distributed parallel along the y-direction. Additionally, the deformation 

behavior at the edges aligns with theoretical expectations: clamped boundary 

conditions enforce zero in-plane displacements, whereas the simply supported 

edges allow for non-zero in-plane displacements. 

 

Figure 4.47 Axial displacement in x direction of lower plate (u2) 
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Figure 4.48 Axial displacement in y direction of upper plate (u2) 

 

Similar to Case 2 and Case 3, the x-displacements (u2) and y-displacements (v2) 

observed in the lower glass layer exhibit a spatial distribution pattern similar to that 

of the upper glass layer. Specifically, the u2 displacements are predominantly 

varying along the x-direction, while the v2 displacements are primarily distributed 

along the y-direction. 

The in-plane displacement distributions of the upper and lower glass layers exhibit 

a high degree of symmetry with respect to z axis (interlayer plane). At a 

corresponding point on the 2D plane, the in-plane displacements of the two layers 

exhibit similar magnitudes but opposite directions, indicating mirrored deformation 

behavior across the laminate. 
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Similar to Case 2 and Case 3, for all in-plane displacement components—including 

u1, v1 (upper layer) and u2, v2 (lower layer)—their magnitudes are negligible 

when compared to the transverse (out-of-plane) displacements observed under the 

same loading conditions. This aligns with established findings in prior studies [20], 

where transverse deformations consistently dominate the structural response of 

similar laminated glass systems. The minimal in-plane displacements can be 

attributed to the high in-plane stiffness of the glass layers, which restricts 

deformation along the x- and y-axes, while the comparatively lower out-of-plane 

stiffness allows for more pronounced deflections in the z-direction. Furthermore, 

the boundary conditions, which typically constrain in-plane motion at the edges, 

further suppress u and v displacements, reinforcing the expected deformation 

hierarchy where transverse displacements govern the overall mechanical behavior. 

 

4.5.1 Comparison with Theoretical Limits (Monolithic/Layered) 

 

Figure 4.49 Comparison of transverse displacements along diagonal line with 
theoretical limits 



 
 

96 
 

 

Similar to Case 2 and Case 3, the first theoretical limit corresponds to monolithic 

glass, the second theoretical limit represents layered glass. In this layered limit, the 

glass layers are free to slide relative to one another without shear resistance. 

Laminated glass, in theory, exhibits behavior intermediate between these two 

extremes. Its specific response—whether closer to the monolithic or layered 

limit—depends on the shear stiffness of the polymer interlayer material.  

In the present analysis and corresponding Case 4 (Figure 4.49), again the 

deformation of laminated glass falls between these two theoretical limits. The 

circle and triangle symbols in Figure 4.49 show the same points in Figure 4.43. 

While all cases (monolithic, layered, and laminated) exhibit qualitatively similar 

transverse displacement shapes, the magnitudes differ significantly due to their 

distinct stiffness characteristics. Similar to Case 2 and Case 3, these results align 

with theoretical expectations: laminated glass, by virtue of its finite interlayer shear 

stiffness, demonstrates greater rigidity than the layered limit but remains less stiff 

than the monolithic case, as the polymer interlayer cannot match the shear stiffness. 
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4.5.2 Stress Results 

 

Figure 4.50 First principal stress (σ1) in upper layer 

 

Figure 4.51 Second principal stress (σ2) in upper layer 
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Figure 4.52 First principal stress (σ1) in lower layer 

 

Figure 4.53 Second principal stress (σ2) in lower layer 
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Figure 4.50, Figure 4.51, Figure 4.52, and Figure 4.53 illustrate the first and second 

principal stresses for Case 4, shown separately for the upper and lower glass layers. 

In both layers, the principal stresses reach their maximum values near the clamped 

edges. This aligns with theoretical expectations, as clamped edges impose stricter 

displacement constraints, leading to higher local stiffness compared to simply 

supported edges. The points of minimum absolute principal stresses typically occur 

slightly inward from the clamped boundaries, in close proximity to the regions of 

maximum absolute stress. For Case 4, the sign of the given principal stress remains 

consistent throughout each individual layer, indicating no sign reversal within the 

layer. 

The principal stress distributions between the upper and lower layers are not 

perfectly symmetric. This asymmetry arises because the principal stresses are 

influenced by the combined effect of membrane and bending stresses. If bending 

were the sole contributor, the stress distributions would be symmetric with respect 

to the interlayer plane. Those results show similarities with Case 2 and Case 3. 

 

Figure 4.54 Distribution of transverse shear stress 𝜏௫௭ in the interlayer 
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Figure 4.55 Distribution of transverse shear stress 𝜏௬௭ in the interlayer 

 

The transverse shear stress distributions within the interlayer are presented in 

Figure 4.54 and Figure 4.55. Similar to Case 2, the shear stress on the xz-plane 

(𝜏௫௭) primarily varies along the x-direction, whereas the shear stress on the yz-

plane (𝜏௬௭) exhibits stronger variation along the y-direction. Unlike the principal 

stresses in the glass layers—which are highest near the clamped edges in Case 4—

the interlayer shear stresses are more pronounced near the simply supported edges 

again. Notably, for both 𝜏௫௭  and 𝜏௬௭ , the shear stress values drop to zero at the 

mid-plane of the interlayer when viewed in the out-of-plane (z) direction. 
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4.5.3 Convergence of transverse displacement for interlayer thickness 

 

Figure 4.56 Case-4 interlayer thickness versus maximum transverse displacement 

 

Again in Figure 4.56, increasing the glass layer thickness has a direct positive 

effect on the overall stiffness of the laminated plate, which aligns with the physical 

nature of the problem. However, increasing the interlayer adhesive thickness while 

keeping other parameters constant reduces stiffness and increases the transverse 

displacement of the plate. To explore this phenomenon, the interlayer thickness is 

varied over a wide range. Similar to Case 1 and Case 2, the results show that as the 

interlayer thickness increases, the maximum transverse displacement also 

increases, eventually converging after a certain point. The converged “maximum 

transverse displacement” value (around 0.28 mm) is higher for Case 4, compared to 

Case 2 and Case 3. 
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4.6 Transverse Displacements Comparison 

In this section, the transverse displacement distributions of all six cases along the 

diagonal are compared by plotting them on the same graph (Figure 4.57). A 

uniform pressure load of 0.2 kPa is applied for all the solutions presented here. The 

circle and triangle symbols correspond to the same reference points as in the 

previous cases. For fully clamped or fully simply supported (SS) boundary 

conditions, however, the choice of these points is not significant. 

 

 

Figure 4.57 Six cases transverse displacement comparison along diagonals 

 

Figure 4.57 shows that the maximum transverse displacement occurs in Case 4 

(Three edges simply supported, one edge clamped). Moreover, the fully simply 

supported (SS) case exhibits the lowest transverse displacement at the mid-span, 

while the fully clamped case shows the lowest displacement near the edges. 
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4.7 Critical Stresses 

Table 4.1 presents the most critical principal stress values observed for each 

loading case, highlighting the stress severity across different boundary conditions. 

Table 4.1 Maximum and minimum principal stresses for each case 

Cases Maximum first principal 

stress 

Minimum second principal 

stress 

Case 1 1888 kPa -1877 kPa 

Case 2 957 kPa -945 kPa 

Case 3 869 kPa -861 kPa 

Case 4  1115 kPa -1095 kPa 

Fully clamped 888 kPa -887 kPa 

Fully S.S. 865 kPa -848 kPa 

 

Among all cases, Case 1 produces the largest absolute values of both maximum 

and minimum principal stresses. For the main cases of interest in this study (the 

unsymmetrical cases: 2, 3, and 4), Case 4 exhibits the most critical stress state, with 

both principal stresses reaching their peak magnitudes. This is expected, as the 

single clamped edge in Case 4 must compensate for the flexibility introduced by 

the three simply supported edges, resulting in pronounced stress concentrations 

near the clamped boundary. In contrast, Case 3 shows the lowest stress levels, as 

three clamped edges effectively restrain the displacements associated with the 

single simply supported edge.  

For the benchmark cases Case 1, fully clamped and fully S.S., Case 1 gives the 

highest absolute principal stresses, which are also the highest stresses among all six 

cases. Case 1 was for symmetrical mixed boundary conditions (clamped-S.S.-

clamped-S.S. in order). 
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Table 4.2 summarizes the absolute maximum values of the transverse shear 

stresses, 𝜏௫௭ and 𝜏௬௭, across all loading cases. The absolute values are reported 

because the sign indicates only the direction of the shear stress, not its magnitude 

or criticality. 

 

Table 4.2 Absolute maximum transverse shear stress values for each case 

Cases 𝜏௫௭ absolute maximum 

value 

𝜏௬௭ absolute maximum 

value 

Case 1 22.9 kPa 19.8 kPa 

Case 2 6.76 kPa 6.76 kPa 

Case 3 4.37 kPa 5.48 kPa 

Case 4 7.39 kPa 8.04 kPa 

Fully clamped 2.45 kPa 2.45 kPa 

Fully S.S. 6.94 kPa 6.94 kPa 

 

In Table 4.2, among the unsymmetrical cases, the maximum absolute interlayer 

shear stresses are again the highest for Case 4 and the lowest for Case 3. This trend 

is similar to that of the extreme principal stress values, which is expected: in Case 

4, the single clamped edge restricts displacements, while the other three edges are 

simply supported. As a result, most of the reaction load is concentrated along the 

clamped edge. 

Similarly, for the benchmark cases (Case 1, fully clamped, and fully simply 

supported), Case 1 produces the highest absolute shear stresses, which are also the 

largest shear stresses among all six cases. Case 1 corresponds to symmetrical 

mixed boundary conditions (clamped–S.S.–clamped–S.S. in order). 
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4.8 Computational Performance  

A local personal computer (PC) is used to perform both FEM and FDM analysis 

runs. The specifications of the computer are provided on Table 4.3. 

 

Table 4.3 Computational environment specifications 

OS Name Microsoft Windows 11 Pro 

Processor 12th Gen Intel(R) Core (TM) i5-12450H, 

2000 Mhz, 8 Core(s), 12 Logical 

Processor(s) 

System Type  x64-based PC 

Installed Physical Memory (RAM)  16.0 GB 

Available Virtual Memory  27.8 GB 

 

 

Table 4.4 Run-time comparison of the developed FDM model and FEM analysis 

Cases Model run time (seconds) FEM run time (seconds) 

Case 2 24.7 2821.4 

Case 3 9.5 2487.3 

Case 4 10.2 3741.0 

 

The primary advantage of the model lies in its computational efficiency. As shown 

in Table 4.4, the FDM model is over 100 times faster than the FEM model, 

completing the analysis in only about 1% of the time required. In addition, the 

setup process is greatly simplified, as the FDM model requires only parameter 

inputs without further preprocessing; all configurations are automatically handled 

within the code. 
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Table 4.5 Memory requirements for the developed model and FEM model 

 Required memory Required memory in FEM 

model 

Similar values for all cases 141 MB 2.17 GB (Minimum) 

15.9 GB (increased up to 

analysis estimates locally) 

 

The memory efficiency improvements of the FDM approach are equally 

noteworthy. Beyond computational speed advantages, the model demonstrates 

superior performance in terms of RAM requirements. For a representative case in 

Table 4.5  —Case 3, which involves three edges clamped and single simply 

supported edge—the memory savings are particularly significant. 

The comparative analysis reveals striking differences in resource allocation: while 

the conventional FEM implementation demands 2.17 GB of working memory, our 

FDM-based solution accomplishes the same simulation task using only 141 MB of 

RAM allocation. This translates to the FDM model requiring just 6.5% of the 

memory resources needed by the FEM approach, representing nearly a 94% 

reduction in memory footprint. 
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4.9 Nonlinear Effect in the Solution 

Given the incorporation of nonlinear strain formulations in the model, the system's 

response is expected to exhibit progressively non-linear behavior with increasing 

load magnitude. This characteristic nonlinearity manifests most clearly in the 

relationship between applied pressure and maximum displacement. To 

systematically demonstrate this effect, a series of numerical solutions were 

computed and analyzed for Case 3 (as defined in Section 4.2), spanning a range of 

pressure loads from 0.2 kPa to 8 kPa. 

 

Figure 4.58 Maximum transverse displacements: Nonlinear model solution and 
linear solution 

 

For comparative purposes, a linear solution is calculated by removing all the 

nonlinear terms in the transverse and in-plane displacement equations, specifically 

from the right-hand side parts of Equations (3.23), (3.24), (3.25), (3.26) and (3.27).  
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The linearized model establishes a reference baseline to systemically evaluate the 

nonlinear effects inherent in the full FDM model. 

 

The results, presented in Figure 4.58, reveal several important observations: 

1. The divergence between linear and nonlinear solutions becomes 

increasingly pronounced at higher loading levels. 

2. The maximum discrepancy reaches approximately 30% at the upper limit of 

the loading range (8 kPa). 

3. The deviation follows a characteristic pattern where nonlinear effects 

accumulate progressively rather than appearing abruptly. 

This 30% difference at operational-scale loading conditions demonstrates the 

critical importance of incorporating nonlinear strain formulations when modeling 

such systems. The conventional linear approach would significantly underpredict 

displacements by neglecting these cumulative nonlinear effects, potentially leading 

to unconservative designs in engineering applications. The results quantitatively 

validate that our nonlinear FDM implementation successfully captures these 

essential mechanical behaviors that linearized models cannot represent. 
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4.10 Optimum number of divisions and mesh convergence 

 

Figure 4.59 Convergence of the solution with varying edge divisions (numx and 
numy) 

As it is seen in Figure 4.59, the number of divisions (mesh density) are denoted as 

“numx” for the number of divisions in x-direction and “numy” for the number of 

divisions in y-direction. 

Those number of divisions was evaluated over a range of 15 to 40 intervals. In the 

figure above, the convergence of the number of mesh divisions along both x and y 

can be seen. X and Y mesh divisions (numx and numy) are taken as a single 

parameter, and solutions are taken for each value. Maximum transverse 

displacement values for those numbers of divisions are plotted to see if the solution 

has converged. As it is increased above 30 divisions, the solution seems to 

converge and not change by much. Similar convergence behaviors are obtained for 

other cases as well. That is why the optimal number of divisions for our model is 

taken as “30” in both x and y directions.  

For even better accuracy, a mesh density of 40 can be used. This does not make 

analysis much slower; the runs will still be much faster compared to FEM analysis, 
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but the error compared to FEM will get much smaller. The error values change for 

each boundary condition so users can try to increase the grid points if they are not 

satisfied with the results. Nevertheless, it is not expected to increase the grid points 

above 40. 
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CHAPTER 5 

5          CONCLUSION 

5.1 Conclusive Remarks 

This thesis presents a nonlinear numerical model for analyzing laminated glass 

plates under complex boundary conditions using the Finite Difference Method 

(FDM). The model incorporates geometric nonlinearity, multilayer behavior, and 

mixed support conditions, enabling accurate predictions of displacements and 

stress distributions. A significant aspect of this study is its capability to simulate 

realistic engineering conditions without relying on symmetry assumptions, which 

are commonly used to simplify the analysis domain in previous works. 

The formulation of the model draws upon a combination of energy and variational 

methods, following the foundational work of Aşık et al. [10] [11] [20] [24] [35]. 

The primary technical contributions include the incorporation of mixed boundary 

conditions and the extension of the solution framework to handle unsymmetrical 

edge configurations, thereby offering a more generalized solution compared to 

previous studies. The model was tested on three representative boundary condition 

scenarios: 

• Case 2: Two adjacent edges are clamped, and the remaining two are simply 

supported. 

• Case 3: Three edges are clamped, and one edge is simply supported. 

• Case 4: Three edges are simply supported, and one edge is clamped. 

These cases represent practical configurations found in real structures and allow for 

the evaluation of the model under a wide range of stiffness variations along the 

plate boundaries. 

While earlier models by Vallabhan, Aşık, and Dural mainly addressed symmetric 

boundary conditions, the present work extends the formulation to accommodate 
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realistic engineering applications where support conditions vary significantly 

across the structure. This enables the full-plate domain to be modeled, allowing for 

more comprehensive investigation of edge effects and stress localizations. 

The proposed model has been successfully verified against finite element 

simulations performed in Abaqus. The comparison demonstrates strong agreement 

between FDM and FEM in terms of both transverse displacements and in-plane 

stress distributions. Moreover, the FDM implementation shows advantages in terms 

of memory usage and computational efficiency, especially in structured geometries. 

These outcomes not only validate the mathematical formulation but also emphasize 

the practicality of the model in structural design, optimization, and safety 

assessment of laminated glass systems. 

- Unlike the Fortran-based implementations commonly found in previous 

literature [36] [37], the proposed model is developed using the Python 

programming language. This transition is expected to enhance the model’s 

accessibility and usability in future engineering applications, given Python's 

wider adoption and greater ease of use compared to Fortran. 

- The model is observed to be sensitive to mesh density, which is expected 

given the inherent characteristics of the Finite Difference Method. 

Converged results are obtained using a 30×30 mesh for a 1 m × 1 m 

laminated glass plate, as described in Section 3.3. For rectangular plates 

with unequal edge lengths, the optimal number of mesh divisions may vary 

along each axis. Therefore, separate mesh sensitivity studies are 

recommended for each distinct geometry to ensure accuracy. 

- For all three cases, the results show good agreement with those obtained 

from the Finite Element Method (FEM) model. The comparison reveals a 

strong correlation, showing discrepancies of less than 6% in transverse 

displacement values and highly similar displacement shapes. These findings 

support the validity of the proposed model for future applications. 
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- In all three cases, the boundary conditions consisted of mixed clamped and 

simply supported edges, result in unsymmetrical configurations. As 

intuitively expected, the points of maximum displacement consistently shift 

toward the simply supported edges in each case. 

- The effect of nonlinearity is clearly observed, with differences in maximum 

displacements reaching up to 30% as the applied load was progressively 

increased (see Section 4.9). This result highlights the significant influence 

of nonlinear behavior on the structural response under increasing load 

levels. 

- The principal stresses of both glass layers and the transverse shear stresses 

within the interlayer are calculated. Among the three boundary condition 

cases, Case 4 consistently exhibits the most critical stress levels. It showed 

the highest first principal stresses in the glass layers, the greatest transverse 

shear stresses in the interlayer, and the lowest (most critical in compression) 

second principal stress values. This outcome is logical, as in Case 4, the 

flexibility allowed by three simply supported edges is constrained by a 

single clamped edge, leading to significant stress concentrations. 

- Numerical experiments are conducted to investigate the effect of interlayer 

adhesive thickness. As the interlayer thickness increases, the maximum 

transverse displacement also increases up to a certain point, beyond which 

the maximum transverse displacement results converge (see Section 4.3.3). 

- Compared to the equivalent FEM model developed in this study, the FDM 

model significantly reduces computing time. 

- Additionally, this model demonstrates a significant reduction in memory 

usage compared to the benchmark FEM model (Section 4.8). 

- The results from all three cases remain within the established theoretical 

bounds for both monolithic and layered glass (Figure 4.17, Figure 4.33 and 

Figure 4.49). 
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In conclusion, this study introduces a novel finite difference-based model for 

analyzing laminated glass plates, incorporating nonlinear formulations to address 

mixed and unsymmetrical boundary conditions. The proposed approach 

demonstrates substantial advantages over conventional FEM methods, including 

faster computation, streamlined setup, and reduced memory demands. 

These characteristics make the model especially valuable for engineers who need 

efficient and accurate analysis of laminated glass structures under real-world 

constraints. It eliminates the computational overhead of full 3D solid models while 

preserving fidelity near clamped or mixed supports — a critical requirement in 

aerospace glazing, building glass structures, and layered photovoltaic panels. 

 

5.2 Potential Applications 

The model developed in this thesis has a wide range of potential applications, 

including laminated architectural glass, automobile glass, train windows, aircraft 

canopies, solar panel covers, LCD displays, and many others. The primary 

requirement for applicability is the presence of two stiff layers bonded by a 

significantly more compliant adhesive layer. Notably, the model's assumptions are 

not restricted to any specific material type. 

This model extends previous work on laminated glass plates [10] [11] [20] [24] 

[35] , by generalizing the formulation to accommodate a broad range of boundary 

condition configurations, including unsymmetrical and mixed boundary conditions 

along the plate edges. 

Due to its significantly reduced computational time and low memory requirements, 

the model presents considerable advantages for implementation in embedded 

systems used in aircraft, UAVs, automobiles, trains, and similar platforms. These 

features make it particularly suitable for real-time structural health monitoring and 
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for supporting critical operational decisions, enabling faster response times while 

operating on cost-effective and less complex hardware. 

 

5.3 Possible Improvements 

In this study, static analysis is performed to determine the displacement, strain, and 

stress distributions of laterally loaded laminated glass plates. However, the current 

model can be extended to include time-dependent behavior, enabling dynamic and 

modal analyses of such structures. These extensions could be validated through 

vibrational testing or finite element method (FEM) simulations. 

Furthermore, a shell formulation can be derived based on the present plate model. 

Such a shell model would expand the applicability of the method to curved 

geometries, making it particularly suitable for analyzing laminated aircraft 

canopies, curved train windows, and similar components. Previous work by Dural 

[37]  has investigated laminated glass shells, providing a foundation for further 

exploration in this direction. 

Additionally, extending the model to cover various geometries, such as laminated 

glass beams, and adapting the formulation accordingly would enable the analysis 

and validation of beam-type laminated glass components. In such studies, a 

transition from plate-like to beam-like behavior is expected as the slenderness ratio 

exceeds a certain threshold. 

While FEM-based validation is carried out in this thesis for specific configurations, 

further experimental investigations could provide additional verification for a 

broader range of applications and enhance the model’s credibility in practical 

engineering scenarios. 

Using the proposed FDM-based model, delamination analysis of laminated glass 

plates can be performed under any combination of mixed boundary conditions—
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whether symmetrical or unsymmetrical—similar to the approach taken by Dural 

[26] [27]. This capability allows the model to account for potential manufacturing 

defects, such as interlayer separation, which are critical in evaluating the structural 

integrity and durability of laminated glass components. 

In addition, future developments may include incorporating temperature-dependent 

viscoelastic properties, multi-layered systems, or coupling with optimization 

algorithms for structural health monitoring and design refinement. 

These findings not only validate the model’s robustness but also position it as a 

promising tool for future research in optimization, delamination detection, and 

advanced material integration in structural glass systems. 
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APPENDICES 

A. Sample Glass Material Properties 

Table 5.1 Material properties of float glass [1] 

Property Minimum Value (S.I.) Maximum Value (S.I.) Units (S.I.) 

Atomic Volume 

(average) 

0.009 0.0095 m3/kmol 

Density 1.9 3.99 Mg/m3 

Energy Content 20 25 MJ/kg 

Bulk Modulus 26.1 51.5 GPa 

Compressive Strength 212 387 MPa 

Ductility 0.00042 0.00048   

Elastic Limit 21.2 38.7 MPa 

Endurance Limit 20 36.7 MPa 

Fracture Toughness 0.54 0.71 MPa.m1/2 

Hardness 700 5000 MPa 
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Loss Coefficient 1.00E-05 0.0001   

Modulus of Rupture 27.5 50 MPa 

Poisson's Ratio 0.18 0.25   

Shear Modulus 19.6 34.2 GPa 

Tensile Strength 21.2 38.7 MPa 

Young's Modulus 47.7 83.6 GPa 

Glass Temperature 653 947 K 

Maximum Service 

Temperature 

474 727 K 

Minimum Service 

Temperature 

0 0 K 

Specific Heat 700 910 J/kg.K 

Thermal Conductivity 0.75 1.45 W/m.K 

Thermal Expansion 1 12 10-6/K 

Breakdown Potential 12 14 MV/m 

Dielectric Constant 4 15   
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Resistivity 1.00E+21 1.00E+25 10-8 ohm.m 

 

 

 

 

 

 


