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ABSTRACT

SURGICAL MODALITY AND TASK COMPLEXITY: AN
fNIRS BASED INVESTIGATION OF COGNITIVE LOAD IN

MINIMALLY INVASIVE TECHNIQUES

Minimally invasive surgical techniques, such as laparoscopic and robotic surgery,

have advanced practice by improving precision, reducing recovery times, and minimiz-

ing complications. However, these approaches impose di�erent cognitive demands and

require distinct skills. This study uses functional near-infrared spectroscopy (fNIRS) to

assess cognitive workload di�erences across surgical modalities and task complexities. We

examined how surgical modality (laparoscopy vs. robotic surgery) and task complexity

(pick and place vs. knot tying) in�uence cognitive workload, and compared demands

in simulation based and real world environments. Twenty six trainees and specialists

in general and gynecologic surgery participated. They performed standardized laparo-

scopic and robotic tasks of varying complexity while prefrontal cortex activity and task

times were recorded using fNIRS. Both simulation based and real settings were included.

Laparoscopic surgery induced greater prefrontal cortex activation than robotic surgery,

especially during complex tasks like knot tying, indicating higher cognitive workload.

Task complexity was a major factor, with more intricate procedures prompting increased

neural activation. Real surgical environments led to greater cognitive engagement than

simulations. Robotic surgery was linked to lower cognitive load, likely due to ergonomic

and motor control advantages. While simulation based training prepares surgeons, it does

not fully replicate the cognitive demands of real operations. These �ndings underscore

the importance of cognitive workload assessment in surgical education and support inte-

grating neuroimaging tools like fNIRS into training programs to improve skill acquisition

and performance.

Keywords: Laparoscopic Surgery; Robotic Surgery, Cognitive Workload, fNIRS, Surgi-

cal Training, Task Complexity, Minimally Invasive Surgery.
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ÖZET

CERRAH� YÖNTEM VE GÖREV ZORLU�U: M�N�MAL
�NVAZ�V YAKLA�IMLARDA fNIRS TEMELL� B�L��SEL

YÜK ANAL�Z�

Laparoskopik ve robotik cerrahi gibi minimal invaziv teknikler, cerrahi uygula-

malarda hassasiyeti art�rmakta, iyile³me süresini k�saltmakta ve komplikasyonlar� azalt-

maktad�r. Ancak bu yöntemler, farkl� bili³sel yükler olu³turur ve özgün beceriler gerek-

tirir. Bu çal�³mada, fonksiyonel yak�n k�z�lötesi spektroskopi (fNIRS) kullan�larak cer-

rahi modaliteler (laparoskopi vs. robotik cerrahi) ve görev zorlukluklar�n�n (Peg Trans-

feri ve Dü§üm Atma) bili³sel i³ yüküne etkisi ile simülasyon ve gerçek cerrahi ortamlar

kar³�la³t�r�lm�³t�r. Genel ve jinekolojik cerrahi alanlar�nda çal�³an ya da e§itim gören

26 kat�l�mc�, farkl� zorluklardaki laparoskopik ve robotik görevleri yerine getirmi³tir.

Görevler s�ras�nda prefrontal korteks aktiviteleri ve görev süreleri fNIRS ile kaydedilmi³tir.

Hem simülasyon hem de gerçek cerrahi ortamlar de§erlendirmeye al�nm�³t�r. Laparoskopik

cerrahi, özellikle dü§üm atma gibi daha zor görevlerde, robotik cerrahiye k�yasla daha

yüksek prefrontal aktivasyon göstermi³tir; bu da daha fazla bili³sel i³ yüküne i³aret etmek-

tedir. Görev zorlu§u, artan sinirsel aktivasyonla birlikte önemli bir belirleyici olmu³tur.

Gerçek cerrahi ortamda yap�lan uygulamalar, simülasyonlara göre daha yüksek bili³sel

kat�l�m sa§lam�³t�r. Robotik cerrahi ise ergonomik ve motor kontrol avantajlar� sayesinde

daha dü³ük bili³sel yükle ili³kilendirilmi³tir. Simülasyon temelli e§itim faydal� olsa da

gerçek cerrahi ortam�n bili³sel taleplerini tam olarak yans�tmamaktad�r. Bulgular, cer-

rahi e§itimde bili³sel i³ yükü de§erlendirmesinin önemini vurgulamakta ve fNIRS gibi

nörogörüntüleme tekniklerinin e§itim programlar�na entegrasyonunu desteklemektedir.

Anahtar Sözcükler: Laparoskopik Cerrahi, Robotik Cerrahi, Bili³sel �³yükü, fNIRS,

Cerrahi E§itim, Görev Zorlu§u, Minimal �nvaziv Cerrahi.
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1. INTRODUCTION

Minimally invasive surgical techniques such as laparoscopy and robotic surgery

have transformed patient care by o�ering smaller incisions and greater operative pre-

cision. Over the past three decades, laparoscopic surgery has rapidly advanced, with

signi�cant improvements in instrumentation, visualization, and surgical techniques, es-

tablishing it as a standard of care across numerous surgical specialities. Despite its more

recent emergence, robotic surgery has proven equally transformative, revolutionizing the

�eld by providing surgeons with enhanced dexterity, precision, and three dimensional vi-

sualization [1]. While robotic platforms reduce tactile feedback compared to laparoscopy,

they compensate through enhanced 3D visualization and intuitive controls. Studies have

shown that improved depth perception reduces reliance on spatial memory and facilitates

faster decision making, thereby a�ecting cognitive resource allocation [2, 3].

1.1 The Historical Development of Laparoscopic and Robotic

Surgery

Laparoscopic surgery, a minimally invasive surgical technique that involves the

use of small incisions and specialized instruments, has undergone signi�cant advance-

ments since its inception. The pioneering work of Kurt Semm in the 1970s marked a

turning point in the development of laparoscopy, as he conducted the �rst laparoscopic

appendectomy and cholecystectomy [4]. Building upon these early successes, subsequent

decades witnessed rapid progress in instrumentation, visualization techniques, and surgi-

cal procedures, solidifying laparoscopy's position as a standard of care in many surgical

specialities [1].

The evolution of robotic surgery, while more recent, has been equally transfor-

mative. The introduction of the Da Vinci Surgical System in the early 2000s marked a

groundbreaking advancement in surgery, providing enhanced dexterity, improved preci-

sion, and three dimensional visualization for surgeons [5]. Robotic assisted surgery has
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gained widespread adoption in various surgical specialities, particularly urology, gynecol-

ogy, and general surgery [2].

1.2 Advantages of Laparoscopic and Robotic Surgery

Laparoscopic and robotic surgery o�er numerous advantages for both surgeons and

patients. For surgeons, these techniques provide enhanced visualization, improved dex-

terity, and reduced hand tremor, leading to more precise and controlled surgical maneu-

vers [1, 2]. Additionally, laparoscopic and robotic surgery often result in shorter hospital

stays, faster recovery times, and less postoperative pain compared to traditional open

surgery [1, 4].

Previous research using neuroimaging approaches demonstrated that robotic surgery

not only enhances technical performance under time pressure compared to conventional

laparoscopy but also results in greater prefrontal cortex activation, indicative of improved

attentional control and task engagement during demanding conditions [6].

From a patient's perspective, the bene�ts of laparoscopic and robotic surgery are

substantial. Smaller incisions translate to reduced scarring, decreased blood loss, and a

lower risk of complications. These advantages often lead to improved patient outcomes,

enhanced quality of life, and a faster return to normal activities [2, 5, 7].

While both laparoscopic and robotic surgery training are designed to develop min-

imally invasive surgical skills, they di�er markedly in technology, learning curves, and

training methodologies. Laparoscopic training is more widely accessible and typically

serves as the foundational step before progressing to robotic surgery. In contrast, robotic

surgery training emphasizes mastery of advanced instrumentation and console based oper-

ation [1,7�9]. Although both approaches aim to achieve pro�ciency in minimally invasive

techniques, they require distinct skill sets and training strategies, along with dedicated

practice and continuous skill maintenance [2, 5, 7, 10, 11].
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1.3 Educational Impact of Simulation in Laparoscopic and Robotic

Skill Development

Over the last three decades, simulation has become a cornerstone of medical edu-

cation, providing a risk free environment for acquiring technical skills, promoting patient

safety, and mitigating medical errors, thus enhancing physician training and improving

healthcare outcomes [12,13]. Patient safety should be the paramount objective of health-

care. The prevention of medical errors is a critical strategy to achieve this goal. Sim-

ulation based training o�ers a promising educational approach to both promote patient

safety and mitigate the occurrence of medical errors. Widely employed in �elds such as

aviation, military, industry, and medicine, simulation has become an integral component

of medical education. The bene�ts of medical simulation are well established, including

the minimization of ethical concerns, enhancement of the educational experience, cre-

ation of a learner centered and teacher enabled environment, provision of a patient risk

free learning space, facilitation of the acquisition and practice of new techniques, and the

enabling of performance assessment [14�16].

Simulation o�ers a standardized and safe approach to training and assessing sur-

geons. The emergence of laparoscopic techniques has coincided with a signi�cant increase

in the use of simulation for surgical training. Research has consistently demonstrated that

skills acquired through simulation are transferable to real world clinical settings [12]. Al-

though simulation has gained widespread acceptance as an educational training tool,

with ample evidence supporting its use in health education, the e�ectiveness of simu-

lation based assessments in evaluating competence and performance remains a subject

of ongoing debate [14]. Given the heightened cognitive demands imposed by modern

technology, recent research trends underscore the importance of quantitatively assessing

mental workload to enhance performance, productivity, and safety across various working

environments. Physiological indicators of mental workload o�er accurate and practical

indices of an operator's performance [17].

To maintain patient safety during complex laparoscopic and robotic procedures,

surgeons must undergo rigorous training with advanced simulation tools that closely repli-
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cate real world surgical scenarios and challenges. Essential training programs like the

Fundamentals of Laparoscopic Surgery (FLS) and the Fundamentals of Robotic Surgery

(FRS) play a crucial role in equipping surgeons with the skills needed for these advanced

techniques [18,19]. The Fundamentals of Laparoscopic Surgery (FLS) program is a struc-

tured, comprehensive curriculum designed to teach and assess the core skills required for

laparoscopic surgery [6]. It consists of online modules that focus on cognitive knowledge,

hands on skills training using simulators, and a standardized assessment to evaluate

pro�ciency. Widely adopted in surgical training, the FLS program plays a critical role

in preparing surgeons, assessing their competency, and enhancing patient safety by en-

suring they are equipped with the necessary skills to perform laparoscopic procedures

e�ectively [18, 20].

The Fundamentals of Robotic Surgery (FRS) protocol is an emerging standard

designed to train surgeons in robotic assisted procedures. Building on the principles of

the Fundamentals of Laparoscopic Surgery (FLS) program, FRS emphasizes simulation

based training, often utilizing advanced virtual reality platforms to teach essential robotic

skills such as console operation, instrument manipulation, and 3D navigation[5]. This

structured approach ensures that surgeons develop the technical pro�ciency and spatial

awareness required for robotic surgery, while also addressing the unique challenges of

working with wristed instruments and mastering the robotic console [19].

Recent �ndings also suggest that robotic systems can accelerate early skill acqui-

sition. In a controlled simulated study, Leijte et al. (2020) found that novices learning

robotic suturing achieved signi�cantly faster completion times compared to those per-

forming laparoscopic suturing [21]. However, initial suturing quality, measured by knot

integrity, was higher in the laparoscopic group. These results support the premise that

while robotic systems may enhance procedural e�ciency and reduce cognitive burden dur-

ing early learning, laparoscopic training may promote more conservative, quality focused

technique in initial stages [21].
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1.4 Assessing Mental Workload in Complex Tasks: A Multidi-

mensional Perspective

As de�ned in the literature, mental workload is the interplay between the cognitive

demands imposed on operators by their tasks and the e�ort exerted to accomplish these

tasks [22,23]. Consequently, it is essential to evaluate mental workload independently of

performance measures.

Comprehending how the brain allocates mental resources in response to task de-

mands is crucial for complex and high risk operational settings such as aviation, air tra�c

control, and surgery. Excessive mental workload in challenging tasks can lead to perfor-

mance failures with potentially devastating consequences. Assessing mental workload is

complex, as it involves the interplay of environmental demands, individual characteristics,

and task performance. Consequently, solely considering task characteristics is insu�cient

for inferring an individual's level of mental workload [24]. High immersion VR environ-

ments with realistic distractors have been shown to signi�cantly alter cognitive workload,

as evidenced by increased HbO levels in the prefrontal cortex [25]. These �ndings em-

phasize the role of environmental �delity in simulating real life task complexity.

Mental workload, a well established concept rooted in the multiple resources model

of human factors, increases substantially when users must cognitively process large vol-

umes of information within a single modality (spatial or verbal) at the same stage of

cognitive processing. For instance, individuals may struggle to retain two number se-

quences simultaneously but can e�ectively scan text for a speci�c keyword while rehears-

ing a single number sequence or processing spatial information. Mental workload can

be characterized as the relationship between primary task performance and the cogni-

tive resources demanded by the task. If a user's cognitive engagement is insu�cient or

excessive, task performance may decline. Similar concepts are encompassed within the

cognitive load literature, and the terms "mental workload" and "cognitive load" are often

used interchangeably in scholarly publications [26].

It is well established that there are three primary categories of mental workload
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measures: self report measures, physiological (and neurophysiological) measures, and

primary task performance measures. Each class of mental workload measure possesses

distinct advantages and disadvantages [27].

Self report measures, while widely used due to their ease of administration and low

computational cost, are primarily administered post task and lack real time granularity.

Task performance measures, though direct indicators of human performance, o�er limited

diagnostic value when considered in isolation. Physiological measures, though sensitive

and continuous, are often more expensive and require extensive preprocessing, limiting

their real time applicability [27]. However, subjective self report measures often fail to

accurately re�ect dynamic cognitive states during high demand clinical scenarios [28].

Psychophysiological tools like fNIRS o�er real time, objective tracking, especially in eco-

logically valid settings such as simulated surgery or real world driving environments,

where behavioral cues may be insu�cient or misleading.

Several physiological changes have been observed to correlate with mental work-

load, including pupil dilation, skin temperature changes, galvanic skin response, and

�uctuations in cardiac activity. These measures often provide valuable insights into men-

tal workload dynamics. Additionally, direct measurements of brain activity o�er a more

comprehensive approach to estimating mental workload [17,24,26,27].

Recent studies have demonstrated that integrating multiple physiological signals,

such as fNIRS, EEG, and eye tracking data, using multimodal deep learning models, can

enhance the accuracy of cognitive workload detection during surgical tasks [29].

A recent systematic review underscores the need for objective and standardized

approaches to assess CWL, highlighting that subjective methods su�er from granular-

ity limitations and recall bias, especially in dynamic clinical settings [30]. The authors

advocate the integration of physiological and neurophysiological sensors to capture real

time changes in CWL, emphasizing their potential to minimize human error and enhance

patient safety [30].
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Neural and physiological measures present a promising method for assessing mental

workload because of their direct connection to brain function, allowing evaluation before

any decline in performance occurs. These measures can be linked to the mental demands

of a task, o�ering continuous, unobtrusive monitoring of the operator without disrupting

their activities, unlike secondary task performance or subjective workload assessments.

[31�33].

1.5 Neurophysiological Methods for Evaluating Mental Work-

load

While simulation improves technical pro�ciency, it does not fully capture the men-

tal workload experienced during actual procedures. Neuroimaging tools like fNIRS of-

fer an objective, physiological approach to assess this cognitive dimension of surgical

performance. Beyond traditional performance metrics, brain based measures obtained

through functional neuroimaging techniques can provide deeper insights into trainee±

performance [34]. Various neuroimaging techniques have been utilized to investigate the

neural mechanisms underlying cognitive processes. Methods such as functional mag-

netic resonance imaging (fMRI), electroencephalography (EEG), magnetoencephalogra-

phy (MEG), positron emission tomography (PET), and functional near infrared spec-

troscopy (fNIRS) provide alternative approaches for assessing cognitive workload and

performance. Table 1.1 summarizes the key advantages and limitations of these neu-

rocognitive imaging techniques [34].

Table 1.2: Comparison of neuroimaging techniques. fMRI, fNIRS, and PET are

hemodynamic imaging modalities, while EEG relies on electrical activity, and MEG is

based on electromagnetic signals. PET: Positron Emission Tomography; EEG: Electroen-

cephalography; MEG: Magnetoencephalography [34].

As Chakladar and Roy (2024) categorize, physiological measures for cognitive

workload can be divided into brain activity based (e.g., EEG, fNIRS, fMRI) and non

brain activity based (e.g., heart rate, respiration, eye tracking) methods. Each class
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Table 1.1
Comparison of Neuroimaging Techniques. This table summarizes the advantages and disadvantages of

commonly used neuroimaging modalities in cognitive workload studies.

Technique Advantages Disadvantages

fMRI High spatial resolution (millimeter level);

whole brain coverage; provides structural

and functional data; good source local-

ization

Low temporal resolution (seconds); sus-

ceptible to motion artifacts; requires

body immobilization; contraindications

(e.g., pacemakers); high cost; MRI com-

patibility issues

fNIRS High temporal resolution (milliseconds);

allows natural body movement; low sen-

sitivity to motion artifacts; portable and

cost e�ective

Low spatial resolution (centimeters);

limited to cortical activity; susceptible to

extracerebral hemodynamic in�uences;

a�ected by hair and skull properties

PET High spatial resolution (millimeter level);

whole brain coverage; provides metabolic

data

Low temporal resolution (seconds); re-

quires injection of radioactive tracer;

high cost

EEG Very high temporal resolution (millisec-

onds); portable and a�ordable

Low spatial resolution; susceptible to en-

vironmental noise; poor source localiza-

tion; time consuming setup

MEG High temporal and spatial resolution;

good source localization

Sensitive to environmental noise; limited

portability; high cost; contraindications

(e.g., metal implants like dental crowns)

has distinct advantages: brain based tools provide high speci�city and temporal spatial

resolution, while non brain measures o�er low cost, accessible alternatives albeit with

increased susceptibility to noise [35].

Given its noninvasive nature, portability, and suitability for real world applica-

tions, fNIRS is particularly advantageous for measuring prefrontal cortex activity in �eld

settings. As a result, fNIRS has been selected as the primary neuroimaging method for

this study. Numerous studies have successfully integrated fNIRS based brain imaging

with established performance assessment frameworks in simulation based medical train-

ing, demonstrating its e�ectiveness in evaluating cognitive workload [17,22,24,34].



9

Compared to EEG and fMRI, fNIRS o�ers a balance between spatial resolution

and ecological validity, making it well suited for real time, movement allowed settings like

surgical training. Unlike fMRI, which restricts motion and requires high infrastructure,

fNIRS enables bedside or intraoperative use, with su�cient sensitivity to detect workload

changes in the prefrontal cortex [36]. fNIRS has been increasingly used to investigate

cortical dynamics within contextual interference paradigms, o�ering valuable insights into

cognitive load and learning trajectories across blocked and random practice schedules [37].

Recent reviews highlight that fNIRS has transitioned from a developmental stage into a

mature methodology, particularly suited for ecological and applied neuroscience contexts.

Its �exibility in mobile and real world settings opens new avenues for studying cognitive

workload in operational domains like surgery, aviation, and driving [38].

The integration of neural indices alongside behavioral metrics is increasingly rec-

ognized as essential for comprehensive cognitive workload assessment in surgical training.

fNIRS has been shown to capture workload di�erences that are not always re�ected in task

performance metrics alone. Aksoy et al. (2025) demonstrated that even when Robotic

assisted surgery and laparoscopic tasks yield similar skill acquisition rates, signi�cant

di�erences in prefrontal cortex activation are detectable only through neurophysiological

monitoring [39].

Recent studies have further highlighted the advantages of fNIRS over traditional

neuroimaging modalities, especially in applied cognitive workload research. For example,

in a dual task drone piloting study, fNIRS was successfully employed to monitor real time

prefrontal activity under increasing task demands, revealing its robustness and portability

in dynamic task environments [40].

1.6 fNIRS

Over the past decade, functional near-infrared spectroscopy (fNIRS) has emerged

as an innovative neuroimaging technique for conducting functional brain imaging research

[41]. fNIRS is an emerging neuroimaging technology that serves as an alternative to EEG
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and fMRI. With its lightweight design, a�ordability, noninvasive nature, ease of setup,

and resilience to movement artifacts, fNIRS presents a promising approach for brain

imaging studies, particularly in dynamic and real world environments [17,22,33,34,41].

fNIRS is a neuroimaging technique that leverages the optical characteristics of

biological tissues and hemoglobin chromophores to monitor brain activity. Utilizing

wavelengths between 700 and 900 nm, where neural tissues are largely transparent.

fNIRS primarily detects the absorption of light by oxygenated (HbO2) and deoxygenated

hemoglobin (Hb). By applying the modi�ed Beer Lambert Law, fNIRS quanti�es changes

in hemoglobin concentrations within cortical tissue, providing a direct measure of brain

activity based on hemodynamic responses [22,34,42].

1.6.1 fNIRS Working Principles

An optical apparatus typically consists of a light source that emits near infrared

light into biological tissue and a detector that captures the light after its interaction with

the medium. Within the tissue, photons undergo two primary interactions: absorption,

where energy is lost to the medium, and scattering. Most biological tissues exhibit rela-

tive transparency within the near infrared range (700-900 nm), commonly referred to as

the "optical window." This transparency results from the low absorbance of key tissue

constituents, such as water, oxyhemoglobin, and deoxyhemoglobin, allowing deeper light

penetration (Figure 1.1) [43]. Among the primary absorbers, oxy and deoxyhemoglobin

play a crucial role in tissue oxygenation and metabolism. Notably, within the optical

window, their absorption spectra remain su�ciently distinct, enabling spectroscopic dif-

ferentiation using a limited set of speci�c wavelengths [41].



11

Figure 1.1 Absorption spectrum in NIR window [43].

fNIRS technology operates using speci�c wavelengths of light within the optical

window. When introduced into the human head, photons interact with biological tissues

through two primary mechanisms: scattering at extracellular and intracellular boundaries

across various head layers (skin, skull, cerebrospinal �uid, brain, etc.) and absorption

primarily by oxy and deoxyhemoglobin [32, 34, 41]. The Figure 1.2 illustrates the setup

of a functional near-infrared spectroscopy (fNIRS) system on the human scalp, showing

the arrangement of emitters and detectors on a headcap. Light emitted from the sources

penetrates the scalp and skull, following a characteristic �banana-shaped� path through

the cortical tissue before being detected. Two types of channels are shown: a standard

channel (approximately 3 cm) and a short-separation channel (approximately 0.8 cm),

the latter designed to capture super�cial signals for improved signal quality. The layered

anatomy includes the scalp, skull, and brain tissue [6] .
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Figure 1.2 Simpli�ed functional near-infrared spectroscopy (fNIRS) montage [6].

In functional optical brain imaging studies, light attenuation caused by scattering

is typically assumed to remain constant, since the number of scatterers within various

head layers does not vary with cognitive activity. Therefore, any observed changes in

attenuation during cognitive tasks are attributed to variations in absorption, driven by

�uctuations in oxy and deoxyhemoglobin concentrations within brain tissue. As high-

lighted by Pinti et al. (2020), fNIRS enables the monitoring of cortical hemodynamics

by emitting near infrared light into biological tissue and measuring absorption changes

associated with oxygenated and deoxygenated hemoglobin. The detected optical sig-

nal is in�uenced not only by cerebral activity but also by extracerebral hemodynamics

such as scalp blood �ow [38]. Therefore, recent advancements in signal processing, like

short separation channel regression, are crucial for isolating cortical signals from super-

�cial artifacts. These methods enhance the reliability of fNIRS in complex, real world

environments where motion and physiological noise are prevalent. The integration of

such techniques is increasingly recognized as essential in neuroergonomics and cognitive

workload assessment domains, including surgical simulation [38].

The neurovascular coupling mechanism underlying fNIRS is critical for interpreting
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hemodynamic signals as proxies for neuronal activity, especially during complex cognitive

tasks that elicit regional changes in HbO and HbR levels [36]. Increases in local neuronal

activity demand greater oxygen delivery, resulting in an overcompensation of regional

cerebral blood �ow and a detectable rise in HbO and decrease in HbR, which fNIRS

captures through optical density changes. This pattern of increased HbO and decreased

HbR re�ects the underlying neurovascular coupling, whereby regional cerebral blood �ow

increases disproportionately to local oxygen consumption. As a result, HbO serves as a

proxy for task evoked cortical activation, and HbR reductions signal decreased oxygen

extraction at the site [44,45]. This relationship aligns with the principle of neurovascular

coupling, which links cerebral hemodynamic changes to functional brain activity. By

leveraging this physiological mechanism, fNIRS technology enables the measurement of

oxygen related chromophore concentration changes, facilitating functional optical brain

imaging [41,42,46].

In functional near infrared spectroscopy (fNIRS), changes in oxygenated hemoglobin

(HbO) and deoxygenated hemoglobin (HbR) concentrations are widely recognized as in-

direct markers of localized neural activity due to neurovascular coupling. When a speci�c

brain region is activated during a cognitive or motor task, there is an increase in regional

cerebral blood �ow (rCBF) to meet the heightened metabolic demand. This typically re-

sults in an elevation of HbO and a concurrent decrease in HbR, re�ecting an oversupply

of oxygenated blood relative to consumption [38, 47]. An increase in HbO is thus com-

monly interpreted as a sign of cortical activation, while a decrease in HbO may suggest

reduced engagement or task disengagement. Conversely, elevated HbR may indicate a

mismatch between oxygen delivery and demand, potentially signifying cognitive overload

or fatigue, whereas a reduction in HbR is generally associated with e�cient metabolic

response and cognitive e�ciency [45]. These patterns of HbO and HbR dynamics are

critical for interpreting workload, attention, and performance in fNIRS based studies of

cognitive function.

fNIRS systems are categorized into continuous wave, frequency domain, and time

domain modalities. Most cognitive neuroscience studies use continuous wave systems,

which measure relative changes in light intensity. In contrast, frequency domain and time



14

domain systems o�er absolute concentration measurements and deeper spatial sensitivity

but require more complex hardware [44].

According to the modi�ed Beer-Lambert Law, the intensity of light after it has

undergone absorption and scattering by biological tissue is represented as:

I = GI0e
−(αHBCHB+αHBO2

CHBO2
)L (1.1)

where:

� G accounts for the measurement geometry and is assumed to remain constant during

changes in chromophore concentration.

� I0 is the input light intensity.

� αHB and αHBO2 are the molar extinction coe�cients for deoxyhemoglobin and oxy-

hemoglobin respectively.

� CHB and CHBO2 are the concentrations of deoxyhemoglobin and oxyhemoglobin

respectively.

� L is the photon path length which is a function of absorption and scattering coef-

�cients (µa and µs)

By measuring optical density (OD) changes at two wavelengths, the relative change

of oxy and deoxyhemoglobin versus time can be obtained. If the intensity measurement at

the initial time (baseline) is Ib, and at another time is I, the OD change due to variation

in CHB and CHBO2 during that period is:

∆OD = log

(
Ib
I

)
= αHB∆CHB + αHBO2∆CHBO2 (1.2)
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By performing measurements at two di�erent wavelengths, changes in deoxyhe-

moglobin ∆CHB and oxyhemoglobin ∆CHBO2 concentrations can be calculated. From

these values, oxygenation and blood volume can subsequently be determined:

Blood V olume = ∆CHBO2 +∆CHB (1.3)

It is important to note that fNIRS primarily captures signals from super�cial cor-

tical structures due to the limited penetration depth of near infrared light. Therefore,

most studies focus on regions like the prefrontal cortex, while subcortical structures re-

main inaccessible [44]. Using this technique and its associated measures, researchers have

assessed various brain functions, including motor and visual activation, auditory stimula-

tion, and the execution of diverse cognitive tasks. In the studies presented in this article,

we speci�cally utilized oxygenation data to evaluate di�erent cognitive functions [41,42].

1.7 The Signi�cance of Knot Tying and Pick and Place in La-

paroscopic and Robotic Surgery Training

Knot tying and pick and place are fundamental skills in laparoscopic surgery,

providing a solid foundation for more complex procedures [48]. These tasks are crucial for

developing the �ne motor skills, hand eye coordination, and spatial awareness necessary

for successful laparoscopic surgery [49]. Pick and place is another vital skill that helps

trainees develop dexterity and control within the con�ned space of the laparoscopic �eld

[50]. This task involves manipulating objects with forceps or other instruments, requiring

precision and coordination [50].

The pick and place task is widely recognized as a fundamental assessment of �ne

motor skills, spatial awareness, and hand eye coordination in minimally invasive surgical

training. Its structured design enables objective evaluation across both laparoscopic and

robotic platforms, providing a standardized baseline for cognitive and motor performance
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comparisons. Recent evidence supports its utility as a sensitive task for detecting neural

workload di�erences between surgical modalities [39]. Pick and place exercises can im-

prove a surgeon's ability to handle delicate tissues, suture needles, and other instruments

without causing damage.

Both knot tying and pick and place are essential for developing the fundamental

skills required for laparoscopic surgery [51]. They provide a solid foundation for more

advanced procedures and help to reduce the risk of complications. As such, these tasks

are commonly included in laparoscopic surgery training programs [51].

1.8 The Prefrontal Cortex

The prefrontal cortex (PFC), the anterior region of the frontal lobes, plays a crucial

role in a range of higher order cognitive functions, including attentional control, emotional

regulation, complex learning, and social cognition, and is implicated in executive func-

tions, behavioral inhibition, and general intelligence [52�55]. The dorsolateral prefrontal

cortex (DLPFC) is a key component of the prefrontal cortex, which is the brain region

primarily responsible for executive function such as planning, strategy building and ex-

ecutive decisions [56]. The anterior medial prefrontal cortex (AMPFC) is a key region

involved in a wide range of higher order cognitive functions, including task management,

planning, reasoning, attention, multitasking, task set representations, and decision mak-

ing [57,58]. Neuroimaging studies consistently demonstrate that PFC exhibits increased

activity during tasks with high cognitive demands, suggesting its crucial role in executive

functions such as working memory and decision making [17,59,60].

1.9 The Role of fNIRS in Surgical Training and Cognitive Work-

load Assessment

Several studies have demonstrated the e�ectiveness of fNIRS in assessing cogni-

tive workload and skill acquisition in surgical training. For instance, Izzetoglu et al.
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(2021) found that cortical oxygenation levels decreased in robotic surgery trainees dur-

ing repeated sessions, indicating improved e�ciency [61]. Similarly, Aksoy et al. (2023)

showed that experts exhibited lower prefrontal cortex activation compared to novices,

highlighting di�erences in cognitive resource utilization [62]. These �ndings underscore

the potential of neurophysiological biomarkers in evaluating surgical pro�ciency and in-

forming adaptive training protocols.

In addition, Nemani et al. (2018) explored the use of fNIRS to assess bimanual

motor skills in laparoscopic surgery, revealing that experts showed lower prefrontal cortex

activation and higher activation in the primary motor cortex (M1) and supplementary

motor area (SMA) [63]. This suggests that expert surgeons achieve a more e�cient

distribution of neural resources, reinforcing the role of fNIRS in distinguishing skill levels

during surgical training. Furthermore, Fu et al. (2023) investigated neuroimaging changes

during laparoscopic suturing tasks and found a transition in cortical activation patterns

from the prefrontal cortex to sensorimotor areas, indicating progressive skill acquisition

[64].

These �ndings are consistent with the work of Holper et al. (2014), who demon-

strated that fNIRS derived signals from the dorsolateral prefrontal cortex during dynamic

decision making tasks re�ect both subjective valuation and individual risk attitude. Their

results underscore the modality,s sensitivity to cognitive demands and its relevance in ap-

plied high stakes settings such as surgery [65].

Similarly, Ayaz et al. (2012) validated the use of fNIRS in realistic, ecologically

valid settings such as air tra�c control and UAV piloting. Their results suggest that

fNIRS can distinguish between practice levels and mental workload, making it suitable

for monitoring skill acquisition in surgical training [17].

Izzetoglu et al. (2007) further demonstrated that fNIRS can be used to moni-

tor hemodynamic changes in brain regions linked to executive function, reinforcing its

potential to inform training programs with real time neurofeedback [41].
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Beyond surgery, fNIRS has been widely applied in other high stakes �elds such

as aviation and air tra�c control to assess cognitive workload during complex decision

making tasks. Kawaguchi et al. (2024) examined prefrontal cortex activation in pilots,

demonstrating that experienced aviators exhibited more e�cient neural processing, simi-

lar to expert surgeons [66]. These �ndings suggest that fNIRS derived cognitive workload

measures can provide valuable insights into expertise development across domains.

The integration of fNIRS with surgical simulation training has also gained traction.

Mark et al. (2022) employed neuroadaptive training protocols using fNIRS in �ight

simulators and found that real time workload assessments could enhance skill acquisition

e�ciency [67]. A similar approach could be applied to surgical education, where adaptive

training based on cognitive workload measures might optimize learning outcomes and

reduce skill acquisition time.

The review by Andersen et al. (2024) further supports the use of fNIRS in surgical

training. Among the studies included, fNIRS was the most commonly applied modality

for real time assessment of cognitive workload, especially in minimally invasive surgery

settings [68]. The review also con�rmed that fNIRS can di�erentiate between novice

and expert surgeons, with novices typically exhibiting greater activation in the PFC

during complex tasks. These �ndings validate the role of fNIRS as both a research and

educational tool in simulation based training programs.

Collectively, these studies highlight the potential of fNIRS in objectively measuring

cognitive demands, optimizing surgical training protocols, and bridging the gap between

novice and expert performance. These �ndings provide a foundation for understanding

the neural correlates of task performance and inform the development of adaptive train-

ing systems, which is central to the objectives of this dissertation. Future research should

focus on developing standardized fNIRS based metrics for surgical pro�ciency assessment

and integrating real time cognitive feedback into training modules. Recent studies have

proposed the use of composite neurobehavioral metrics like Relative Neural E�ciency

(RNE) and Relative Neural Involvement (RNI), combining behavioral scores with hemo-

dynamic activity to re�ect both e�ort and motivation during task performance [25].
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1.10 Electrodermal Activity

Electrodermal activity (EDA), a noninvasive and portable measure of skin electri-

cal properties, o�ers a promising avenue for studying autonomic nervous system activity

in ambulatory settings. While its usage in neuroergonomics and mobile brain body re-

search may be less prevalent compared to other biomedical signals, EDA's ability to

track physiological arousal makes it a valuable adjunct tool. As an indicator of sweat

gland activity, EDA, also known as galvanic skin response (GSR), can provide insights

into emotional states, stress levels, and cognitive processes. Incorporating EDA into

neuroergonomics and mobile brain body research can enhance our understanding of hu-

man technology interactions and inform the design of more e�ective and user friendly

systems [69�73]. The characteristic shape of an SCR, with a rapid onset and gradual

recovery, is illustrated in Figure 1.3 the signal waveform of a typical skin conductance re-

sponse (SCR) [74]. The �gure illustrates both tonic (SCL) and phasic (SCR) components

of EDA. Phasic responses (SCRs) are typically elicited within 1-3 seconds of stimulus on-

set and recover within 2-10 seconds. These responses are closely tied to cognitive events

and are a primary marker of transient sympathetic arousal [75].

Figure 1.3 The signal waveform of a typical Skin Conductance Response (SCR), illustrating the tonic
and phasic components of Electrodermal Activity (EDA) [74].
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Electrodermal activity, a well established psychophysiological index, provides valu-

able insights into emotional arousal by measuring changes in skin electrical properties.

The noninvasive application of a low constant voltage allows for the measurement of skin

conductance variations, which are in�uenced by sweat secretion. EDA's ability to assess

peripheral autonomic nervous system activity makes it a valuable tool for understanding

emotional responses and cognitive processes. The time series of skin conductance can be

characterized by both tonic activity (SCL) and phasic activity (SCRs), o�ering a com-

prehensive picture of emotional arousal dynamics. Research has consistently shown that

EDA is more responsive to emotionally salient stimuli, such as pleasant or unpleasant

acoustic stimuli, compared to neutral stimuli [69�72].

EDA comprises two primary components: tonic and phasic [76]. The tonic com-

ponent, often measured as Skin Conductance Level (SCL), re�ects the slower, baseline

changes in skin conductance and is associated with general autonomic arousal [77]. The

phasic component, manifested as Skin Conductance Responses (SCRs), represents rapid

�uctuations in conductance triggered by speci�c stimuli or internal events [78]. While

SCRs have traditionally been the focus of research, recent evidence suggests that both

tonic and phasic components are crucial and may originate from distinct neural mech-

anisms [77]. It's important to recognize that phasic responses constitute only a small

fraction of the overall EDA signal, emphasizing the signi�cance of the tonic component

in understanding the broader spectrum of autonomic nervous system activity. Figure 1.4

provides a visual representation of the relationship between tonic and phasic components

of electrodermal activity in relation to emotional and cognitive states.
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Figure 1.4 Illustrative representation of Electrodermal Activity (EDA) components and their associa-
tion with cognitive and emotional states. Adapted for neuroergonomic applications.

Electrodermal activity has emerged as a valuable tool for understanding the pe-

ripheral physiological underpinnings of emotional states, including fear and disgust. Nu-

merous studies have highlighted di�erences in the sympathetic nervous system activity

associated with these emotions, as re�ected in skin conductance changes. EDA's sensitiv-

ity to sympathetic activity, coupled with its ability to provide insights into central a�ec-

tive processes, makes it a promising biomarker for studying limbic and ventral prefrontal

activations. Previous fNIRS research has demonstrated correlations between prefrontal

cortex activation and sympathetic activity during mental tasks, further supporting the

link between EDA and central nervous system function [69, 79]. The ability of EDA to

di�erentiate between various a�ective processes underscores its importance as a comple-

mentary method for studying both peripheral autonomic activity and central nervous

system activity in parallel [69�73].
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1.10.1 Physiological Principles of EDA

Electrodermal activity measures changes in skin electrical properties, primarily

in�uenced by sweat secretion from eccrine sweat glands. These glands play a vital role

in thermoregulation and are activated by sympathetic activity within the autonomic

nervous system (ANS). The ANS regulates essential bodily functions like temperature,

heart rate, and blood pressure, contributing to homeostasis. The sympathetic branch

of the ANS is responsible for the �ght or �ight response, associated with heightened

arousal and emotional expressions [69�73, 80]. Studies have consistently demonstrated

a strong correlation between bursts of sympathetic ANS activity and EDA signals [80].

This relationship �rmly establishes EDA as a reliable indicator of emotional states and

arousal [80].

In this study, EDA is employed alongside functional near infrared spectroscopy

(fNIRS) to o�er a multimodal understanding of psychophysiological responses during task

performance. While fNIRS captures cortical activity associated with cognitive workload,

EDA provides complementary insight into autonomic arousal, re�ecting the activity of the

sympathetic nervous system. This combined approach allows for a more comprehensive

evaluation of cognitive and emotional demands, particularly within the context of surgical

training, and is well aligned with contemporary neuroergonomic frameworks.

The e�ectiveness of this integrative strategy has been validated by several studies.

For instance, Holper and Murphy (2014) utilized fNIRS and EDA concurrently dur-

ing the Columbia Card Task to investigate hemodynamic and a�ective responses during

risk based decision making. Their results highlighted the di�erential but complemen-

tary roles of fNIRS in capturing prefrontal cognitive activation and EDA in re�ecting

outcome related emotional arousal [81]. Similarly, Watson et al. (2020) examined au-

diovisual messaging using a two dimensional model of emotion and found that fNIRS

and EDA together provided robust indicators of valence and arousal changes induced

by emotionally engaging content. This study further supports the value of combining

central and peripheral physiological markers in assessing a�ective responses under real

time experimental conditions [82].
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Collectively, the literature highlights the complementary strengths of fNIRS and

EDA in capturing the cognitive and emotional components of task engagement. Yet, ex-

isting research rarely applies these tools together in high stakes environments like surgery,

nor does it fully explore how surgical modality, task complexity, and training context in-

�uence cognitive load.

Although fNIRS is increasingly validated in ecological contexts (e.g., classrooms,

driving, and surgery), there remains a lack of standardized protocols for integrating it into

surgical curricula. The need to bridge simulation and real life environments is especially

critical [38]. These gaps motivate the present study.

1.11 Gaps in Existing Research

Despite these advancements, key research gaps remain:

� The comparative cognitive workload associated with laparoscopic versus robotic

surgery is not well understood.

� The impact of task complexity on neural e�ciency requires further investigation.

� The �delity of simulation based training compared to real world surgical environ-

ments needs validation.

1.12 Research Objectives

This study aims to address these gaps by employing fNIRS to:

1. Compare cognitive workload between laparoscopic and robotic modalities.

2. Evaluate the e�ects of task complexity (pick and place vs. knot tying) on prefrontal

cortex activation.
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3. Assess di�erences in cognitive engagement between simulation and real world sur-

gical training.

1.13 Hypotheses

1. Laparoscopic surgery will elicit higher prefrontal cortex activation than robotic

surgery, re�ecting greater cognitive workload.

2. Increased task complexity (knot tying vs. pick and place) will lead to elevated

cognitive demands and prolonged completion times.

3. Simulation based training, while bene�cial, will not fully replicate the cognitive

workload demands of real world surgery.

By integrating neuroimaging with surgical training, this research sought to opti-

mize skill acquisition and enhance patient safety through data driven training improve-

ments.

1.14 Conceptual Model

This study is grounded in a conceptual model that maps out the expected rela-

tionships between the primary study variables. The three independent variables, Surgical

Modality (Laparoscopic vs. Robotic), Task Complexity (pick and place vs. knot tying),

and Training Environment (Simulation vs. Real) are hypothesized to in�uence two de-

pendent outcomes: Cognitive Workload measured by changes in prefrontal HbO/HbR

using fNIRS, and Performance, quanti�ed by task completion time.

Building on this, we propose an E�ciency Index, calculated as the ratio of HbO to

completion time, to serve as a composite measure of mental e�ort per unit of performance.

This metric may o�er valuable insights for optimizing surgical training and understanding
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skill acquisition under varying task demands and modalities. Figure 1.5 illustrates the

conceptual model of the study.

Figure 1.5 Conceptual model of the study. Surgical modality, task complexity, and environment are
expected to in�uence cognitive workload (fNIRS) and performance (completion time), which together
inform an e�ciency index.



26

2. METHODS AND MATERIALS

2.1 Participants

A group of volunteers participated in this study, including 21 resident medical

doctors from the General Surgery Department of Istanbul Haseki Training and Research

Hospital and the Gynecologic Surgery Department of Sancaktepe �ehit Prof. Dr. �lhan

Varank Training and Research Hospital, along with 5 specialists in General Surgery and

Gynecologic Surgery.

Twenty six participants (14 males, 12 females) were included in the study. The

participants had an average age of 30 ± 3 years, with a median age of 29 years (range:

26 to 35 years). All participants were right handed, except for one male who was left

handed. Although all participants were novices in robotic surgery, they had comparable

laparoscopic surgery experience. The details of the participants are provided in Table

2.1. One participant, due to time constraints, was unable to fully participate in the

study and was therefore excluded. Exclusion of this participant did not signi�cantly

a�ect the demographic balance or statistical power of the analysis.

Prior to their involvement in the study, all resident medical specialists from general

surgery and gynecologic surgery provided informed consent, ensuring their voluntary par-

ticipation and comprehension of the research objectives, procedures, and potential risks.

This ethical practice is fundamental in safeguarding the rights and well being of partici-

pants in research studies. This study was approved by the Ethical Committee of Aciba-

dem Mehmet Ali Aydinlar University (Registration number: ATADEK-2023/05/164) and

conducted in accordance with the Declaration of Helsinki, with all participants providing

written informed consent. By obtaining informed consent, researchers establish a trust-

ing relationship with participants and ensure that they are fully aware of the potential

bene�ts and drawbacks of their involvement.
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Table 2.1
Subject demographics.

Subject Age Gender Handedness Specialization Experience Level

Resident (R)

R1 30 Male Right General Surgery 3.5 years

R2 28 Male Right General Surgery 1 year

R3 29 Female Right General Surgery 3 years

R4 28 Female Right General Surgery 2 years

R5 27 Male Right General Surgery 1.5 years

R6 33 Male Right General Surgery 2 years

R7 28 Female Right Gynecology Surgery 0.5 year

R8 28 Female Right Gynecology Surgery 0.5 year

R9 29 Female Right Gynecology Surgery 1 year

R10 26 Female Right Gynecology Surgery 0 year

R11 29 Male Right Gynecology Surgery 0 year

R12 35 Male Right Gynecology Surgery 0 year

R13 28 Female Right Gynecology Surgery 0.5 year

R14 33 Female Right Gynecology Surgery 0 year

R15 28 Female Right Gynecology Surgery 0 year

R16 26 Male Right Gynecology Surgery 0.5 year

R17 26 Male Right Gynecology Surgery 0.5 year

R18 28 Female Right Gynecology Surgery 2 years

R19 34 Male Right Gynecology Surgery 1 year

R20 31 Male Right Gynecology Surgery 2 years

R21 31 Male Right Gynecology Surgery 3 years

Expert (E)

E1 35 Male Left Gynecology Surgery 3.5 years

E2 34 Female Right Gynecology Surgery 3.5 years

E3 34 Female Right Gynecology Surgery 4 years

E4 32 Male Right Gynecology Surgery 4 years

E5 33 Male Right Gynecology Surgery 4 years
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2.2 Experimental Protocol

To objectively quantify participant± cognitive workload in real time during sim-

ulated laparoscopic and robotic surgical procedures, functional near infrared spectroscopy

(fNIRS) sensors were employed. Two standardized surgical tasks were used for this study:

knot tying , a complex task, and pick and place , a simpler dexterity based task. These

task types are referred to as KT and PP in the rest of the manuscript. Laparoscopic and

robotic surgery tasks with di�erent di�culty levels were chosen for simulation sessions.

After a baseline measurement with fNIRS, participants �rst completed a low di�culty

pick and place task for familiarization. Task di�culty was calibrated based on complexity

of motor coordination and time to completion, with knot tying designated as the complex

task. Participants then completed both PP and KT tasks using laparoscopic and robotic

systems. Figure 2.1 shows the experimental sensor con�guration, including the placement

of fNIRS optodes over the participant's forehead targeting the prefrontal cortex (PFC),

and EDA electrodes attached to the medial phalanges of the index and middle �ngers

of the non-dominant hand, used to monitor cognitive workload and physiological arousal

during surgical task performance.

Although EDA electrodes were properly positioned and raw signals were recorded

throughout the experimental sessions, the study protocol did not include conditions nec-

essary to elicit robust sympathetic nervous system activation. Speci�cally, no acute

stressors such as time pressure, negative performance feedback, or social evaluation were

introduced. These types of stimuli are typically required to induce meaningful tonic or

phasic EDA responses. As a result, the recorded EDA signals lacked su�cient physiologi-

cal variation to support reliable interpretation. Therefore, EDA data were excluded from

all signal processing, statistical analysis, and result discussions. This decision was made

to ensure analytical validity and prevent speculative conclusions based on non-responsive

data. Although fNIRS o�ers portability and motion tolerance, its data interpretation

can be a�ected by extracerebral blood �ow, systemic physiological signals, and scalp-

hemodynamic coupling. Advanced signal processing techniques, such as short channel

regression and systemic physiology removal, are increasingly recommended to isolate true

cortical signals [38].
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Figure 2.1 fNIRS and EDA sensor placement on a participant during task performance.

To ensure comprehensive data collection and analysis, all simulated laparoscopic

and robotic surgery tasks were recorded on video and observed by trained medical spe-

cialists. The time taken to complete each task was meticulously recorded, providing

valuable data for analysis. This comprehensive approach enabled a detailed analysis of

performance, task complexity, and the e�ects of cognitive workload on surgical outcomes.

KT and PP are fundamental skills in laparoscopic surgery, providing a solid foun-
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dation for more complex procedures [48]. These tasks are crucial for developing the

�ne motor skills, hand eye coordination, and spatial awareness necessary for successful

laparoscopic surgery [49].

PP is another vital skill that helps trainees develop dexterity and control within

the con�ned space of the laparoscopic �eld [35]. This task involves manipulating ob-

jects with forceps or other instruments, requiring precision and coordination [48,83]. PP

exercises can improve a surgeon's ability to handle delicate tissues, suture needles, and

other instruments without causing damage.

Both KT and PP are essential for developing the fundamental skills required for

laparoscopic surgery [51]. They provide a solid foundation for more advanced procedures

and help to reduce the risk of complications. As such, these tasks are commonly included

in laparoscopic surgery training programs [51]. In this study, the term 'real world' refers

to task performance on physical box trainers or robotic systems in simulated operating

room conditions, rather than live patient surgery.

2.2.1 Laparoscopic Surgery Training Protocol

The study methodology involved a four stage process laparoscopic simulation and

box training with real laparoscopic instrumentation. Initially, participants underwent

familiarization training with both the laparoscopic simulators and box trainer to ensure

familiarization with the equipment. Subsequently, baseline measurements were collected

using fNIRS to establish for physiological responses. Following this, participants engaged

in PP (Figure 2.2) using the laparoscopic simulator (the Xperience Team Trainer (Mimic

Technologies, Seattle, Wash., USA), focusing on mastering the fundamental movements

and techniques required for laparoscopic surgery. Finally, participants transitioned to the

laparoscopic box trainer (Figure 2.3), replicating the PP in a more realistic environment.

This sequential approach allowed for a systematic evaluation of the e�ectiveness of both

simulation and box training in developing laparoscopic skills and understanding the as-

sociated physiological responses. The work�ow of the �rst part of the study is shown in
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Figure 2.4.

Figure 2.2 PP module on the laparoscopic surgery simulator.
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Figure 2.3 PP module on the laparoscopic surgery box trainer.
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Figure 2.4 Work�ow of the of PP and KT using both a laparoscopic surgery simulator and a real life
laparoscopic box trainer.

The second part of the study focused on comparing the e�ectiveness of laparoscopic

surgery simulation and box trainer training in improving KT skills. Participants under-

went baseline measurements using fNIRS to assess their physiological responses during

cognitive load. Subsequently, they received training in KT (Figure 2.5) using both laparo-

scopic surgery simulation (LapVR simulator, CAE Healthcare, Saint-Laurent, Quebec,

Canada) and box trainer platforms. The training sessions were designed to familiarize

participants with the equipment, techniques, and challenges associated with laparoscopic

KT. Following the training, participants performed KT (Figure 2.6) using both platforms,

allowing for a direct comparison of their performance and physiological responses. The

work�ow of the second part of the study is shown in Figure 2.4.
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Figure 2.5 KT module on the laparoscopic surgery simulator.
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Figure 2.6 KT module on the laparoscopic surgery box trainer.

2.2.2 Robotic Surgery Training Protocol

The third phase of the study involved PP using both a robotic simulator and a

real robotic surgery robot. This training aimed to familiarize participants with robotic

surgery's interface and procedures to assess their performance and physiological responses.

Participants were �rst trained on the robotic surgery simulator (Figure 2.7), Mimic® dV-

Trainer (Mimic Technologies, Seattle, Wash., USA) , to develop fundamental skills and

to become accustomed to the robotic interface. Subsequently, they transitioned to the

real robotic surgery robot (Figure 2.8) , da Vinci Surgical System (Intuitive Surgical,
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Sunnyvale, Calif., USA), where they performed the same PP in a simulated surgical

environment. This sequential approach allowed for gradual progression in complexity

and ensured that participants were adequately prepared before engaging in the actual

robotic system. The work�ow of the third part of the study is shown in Figure 2.9.

Figure 2.7 PP module on the robotic surgery simulator.



37

Figure 2.8 PP training module on the robotic surgery platform.

Figure 2.9 The work�ow of the study included PP and KT using both a robotic surgery simulator and
a real life robotic surgery platform.

The fourth phase of the study involved conducting KT training sessions using both
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the robotic simulator (Figure 2.10) and the robotic surgery robot (Figure 2.11). Partic-

ipants were initially trained on the robotic simulator to familiarize themselves with the

system's controls, haptic feedback, and visual interface. Once comfortable with the simu-

lator, they transitioned to the robotic surgery robot for hands on KT practice. Through-

out the training sessions, physiological data, fNIRS, were continuously measured to assess

participants' cognitive load, and brain activation patterns during the task. The work�ow

of the fourth part of the study is shown in Figure 2.9.

Figure 2.10 KT module on the robotic surgery simulator.
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Figure 2.11 KT training module on the robotic surgery platform.

2.3 fNIRS Recording and Preprocessing

To monitor hemodynamic responses in the prefrontal cortex (PFC), participants

were equipped with a continuous wave functional near infrared spectroscopy (fNIRS)

device (fNIRS Devices, LLC, Potomac, MD). This device utilized a 18 channel probe

positioned over the PFC (Figure 2.12 (a)), comprising 4 LED sources emitting light at 730

nm and 850 nm wavelengths and 10 photodetectors as shown in Figure 2.12 (b). To ensure

accurate time synchronization during post processing, the start and end times of each

session and simulation task were marked and time synchronized. This study employed

continuous wave (CW) fNIRS, which estimates relative concentration changes based on

modulated light intensity. Unlike frequency or time domain systems, CW systems cannot

independently resolve absolute concentrations or pathlength but o�er practical bene�ts

in portability and cost.
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Figure 2.12 (a): Corresponding 16 optodes locations over the prefrontal cortex. (b): fNIRS probe with
4 light sources and 10 detectors.

The quality of fNIRS signals can be a�ected by various noise sources, including

instrument-related noise (e.g., light source instability, electronic noise), physiological in-

terference (e.g., respiration, heartbeat), and motion artifacts. Therefore, e�ective noise

removal is a crucial preliminary step in the data processing pipeline [84�86].

MATLAB (MathWorks, R2022b) was used to preprocess the light intensity sig-

nals obtained from fNIRS and to compute changes in oxyhemoglobin (∆HbO) during

the simulation tasks. [87]. Head movements, causing relative shifts between source de-

tector pairs and the scalp, can introduce motion artifacts into fNIRS signals, manifesting

as rapid, large magnitude spikes that signi�cantly exceed tissue related hemodynamic

changes [88,89]. Channel rejection and baseline normalization ensured cleaner signals for

analysis. Physiological signals like heart rate (over 0.5 Hz) and respiration (over 0.2 Hz)

exhibit higher frequency ranges than hemodynamic responses and instrument degradation

induced noise (3-5 Hz) [84,86].

Channels exhibiting saturation (λ850 > 4300) or unusual intensity patterns (λ730 >

λ850) were manually rejected prior to further analysis to ensure data integrity. To reduce
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physiological artifacts such as cardiac, respiratory, and Mayer waves [90], the light in-

tensity signals were low pass �ltered using a 250th order �nite impulse response (FIR)

�lter with a cuto� frequency of 0.09 Hz. Additionally, oscillatory artifacts were identi�ed

using the Multiscale Oscillatory Dynamics Analysis (MODA) toolbox [91], which applies

Morlet wavelet ridge extraction to detect oscillation patterns [92]. Targeted band stop

�ltering was then used to remove the identi�ed oscillations. If no oscillatory artifacts

were present, only the FIR low pass �lter was applied. Following preprocessing, the mod-

i�ed Beer Lambert Law was used to compute the changes in oxyhemoglobin (∆HbO) and

deoxyhemoglobin (∆HbR) concentrations for each channel.

Following artifact removal and channel rejection procedures, for each participant,

changes in oxy-Hb and deoxy-Hb concentrations (µmol L−1) over time were calculated

using the modi�ed Beer Lambert Law [93] based on optical density (OD) changes mea-

sured at 730 nm and 850 nm [84, 85]. This allowed for the quantitative estimation of key

hemodynamic parameters on a channel speci�c basis. These parameters included oxyhe-

moglobin (HbO), deoxyhemoglobin (HbR), relative changes in oxygen availability (HbDi�

or Oxy), and total hemoglobin concentration (HbTotal, approximated as the sum of (HbO

and HbR). A 10 s baseline measurement [17,85] was acquired from each participant after

a 20 s relaxation period, prior to laparoscopic and robotic surgery training. Changes in

HbO2 and HHb concentrations were calculated relative to this baseline throughout the

duration of each task.

An 18 channel fNIRS system, sampling at 10 Hz, was employed, targeting the

prefrontal cortex (PFC) with a sensor con�guration comprising LEDs, detectors, and

short separation channels. This system comprised 16 long separation channels for cortical

activity measurements and 2 short separation channels for assessing super�cial layer

hemodynamics. This study focused on the left and right prefrontal cortex as regions

of interest (ROIs) as well as the identi�cation and speci�cation of a feature of interest of

the fNIRS biomarkers, given their established roles in brain activity during learning and

training [17,25,37,94].

The areas corresponding to the 18 fNIRS channels included the right and left
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superior and inferior frontal cortices. These channels were grouped into four regions

of interest (ROIs), located as follows: the left dorsolateral prefrontal cortex (DLPFC;

optodes 1-4), the left anterior medial prefrontal cortex (aMPFC; optodes 5-8), the right

anterior medial prefrontal cortex (optodes 9-12), and the right dorsolateral prefrontal

cortex (optodes 13-16), as illustrated in Figure 2.13.

Figure 2.13 Placement of fNIRS device and location of 18 channels categorized as four regions of
interest.

2.4 Statistical Analysis

All statistical analyses were performed to evaluate the e�ects of surgical modality

(laparoscopic vs. robotic), task complexity PP vs. KT, training environment (simula-

tion vs. real world), and experience level (resident vs. specialist) on behavioral and

neurophysiological outcomes.

To determine whether the missing data in the dataset occurred at random, Little's

Missing Completely at Random (MCAR) test was performed. This test evaluates the null

hypothesis that the pattern of missingness is completely random and unrelated to any
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observed or unobserved variables. The results of Little's MCAR test were non-signi�cant

(χ2 = 5.163, df = 441, p = 1.000), indicating that the missing data can be considered

MCAR. This outcome implies that the missing values are not systematically related to any

measured variables, thereby justifying the assumption that parameter estimates derived

from subsequent analyses are unlikely to be biased due to missingness.

Given the presence of missing data and the repeated measures structure, a linear

mixed-e�ects regression (LME) approach was employed to analyze the dependent vari-

ables: Completion Time and Mean ∆HbO. Mean ∆HbO represents the average change in

oxygenated hemoglobin from baseline, a validated neurophysiological index of cognitive

e�ort. LME models were used to account for both �xed e�ects (Session, Task Complexity,

Modality, Environment) and random e�ects (individual participants). Each participant

was modeled with a random intercept to control for baseline inter-individual di�erences.

It is an important neurophysiological marker of cerebral oxygenation and neural activa-

tion, particularly in cognitive workload assessment, skill acquisition analysis, and task

e�ciency evaluation.

Since surgery requires high cognitive load, motor coordination, and decision mak-

ing, tracking Mean ∆HbO in di�erent brain regions can help understand how trainees

develop expertise and manage cognitive resources. Before model �tting, missing values

were checked and imputed when necessary, and outliers were removed using the Z-score

method within each session separately to avoid excessive data exclusion. Additionally,

log10 transformation was applied to dependent variables when normality assumptions

were violated.

To account for within-subject dependencies, two linear mixed-e�ects (LME) mod-

els were tested. Each participant was modeled with a random intercept to control for

baseline inter-individual di�erences, and �xed e�ects were included for Session, Modality,

Environment, and Task Complexity. The �rst model included 'Session' as a �xed e�ect,

where Session was a categorical variable representing the combination of task repetitions

and simulation type. The second model treated Modality (Laparoscopic vs. Robotic),

Media (Real vs. Simulation), and Scenario (KT vs. PP) as separate �xed e�ects to as-
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sess their individual contributions. In both models, participants were modeled as random

intercepts to account for inter-individual variability in task performance.

Model selection was carried out using maximum likelihood estimation (ML), which

is suitable for comparing nested models. To evaluate model �t while accounting for

complexity, both the Akaike Information Criterion (AIC) and the Bayesian Information

Criterion (BIC) were used�AIC focuses on balancing model �t and complexity, while

BIC applies a stronger penalty for overly complex models. When some models failed

to converge, the Powell optimization method was used instead, as it performs well in

handling complex, non-linear problems.

To improve the reliability of parameter estimates, robust standard errors were used

in cases where heteroscedasticity (unequal variance across observations) was detected.

The best �tting model was determined by comparing several metrics: AIC, BIC, log-

likelihood, deviance, marginal R2 (explained variance due to �xed e�ects), conditional R2

(explained variance due to both �xed and random e�ects), and the intraclass correlation

coe�cient (ICC), which re�ects how much of the variance can be attributed to di�erences

between participants.

Model assumptions were assessed using the Shapiro�Wilk test for normality, Lev-

ene's test for homogeneity of variances, and visual inspection of residual diagnostic plots.

Multicollinearity between predictors was evaluated using the Variance In�ation Factor

(VIF). Where necessary, robust standard errors were again applied to account for any

violations of the assumption of homoscedasticity.

For variables with signi�cant �xed e�ects, pairwise post hoc comparisons were

performed using estimated marginal means (EMMs), with p-values adjusted via the

Benjamini-Hochberg False Discovery Rate (FDR) method.In addition to the LME-based

analyses, paired t-tests were used where appropriate, or example, when comparing mean

completion times or hemodynamic responses within a single task or modality. For these

analyses, both Bonferroni-corrected and raw p-values were reported to transparently

demonstrate the in�uence of multiple comparison correction on signi�cance. E�ect sizes
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for each contrast were reported using Cohen's d. Although no continuous covariates were

included in the current models, the linear mixed e�ects (LME) framework supports their

inclusion.

To evaluate di�erences in task performance and neurophysiological responses across

conditions, paired-samples t-tests were performed to compare simulation versus real envi-

ronments and peg transfer (PP) versus knot tying (KT) tasks. Additionally, independent-

samples t-tests were conducted to assess di�erences between surgical assistants and expert

surgeons.

To control for multiple comparisons, the Benjamini-Hochberg procedure was ap-

plied to adjust all p-values, thereby reducing the false discovery rate (FDR) while pre-

serving statistical power. Corrected p-values are reported alongside Cohen's d e�ect sizes,

with 0.2, 0.5, and 0.8 interpreted as small, medium, and large e�ects, respectively.

All t-test analyses were conducted using SPSS version 27 (IBM Corp., Armonk,

NY), while the Benjamini Hochberg correction was implemented in Python using the

multipletests function from the statsmodels package. Statistical signi�cance was

determined at α = 0.05. Cohen's d was computed to determine e�ect sizes, where d = 0.2

was considered a small e�ect, d = 0.5 a medium e�ect, and d ≥ 0.8 a large e�ect [95].

All statistical analyses were performed in Python (version 3.13) using the statsmodels

package [96] for mixed e�ects modeling, pingouin for missing data analysis and e�ect

size calculations [97], scipy for statistical testing [98], and matplotlib and seaborn [99]

for visualization and assumption checking.

Boxplots represent the median values of the corresponding measures (e.g., task

completion time, mean HbO/HbR levels). The boxes indicate the interquartile range

(IQR), spanning from the �rst to the third quartile. The whiskers extend to the smallest

and largest data points within 1.5 times the IQR, representing the typical spread of the

data. Data points beyond this range are plotted individually as circles, indicating outliers

and illustrating variability beyond the IQR.
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3. RESULTS

This chapter presents the outcomes of the study, focusing on cognitive workload

and task performance across laparoscopic and robotic surgical modalities. Comparisons

were made between simulation and real surgical environments, as well as between two

task types: pick and place and knot tying . Cognitive workload was assessed using

fNIRS derived data from the prefrontal cortex, and performance was measured by task

completion time. Electrodermal Activity (EDA) data were also collected but are not

included here due to the lack of stress inducing elements in the task design.

To evaluate the e�ects of surgical modality, task complexity, and training envi-

ronment, two main outcome measures were analysed: task completion time and mean

change in oxygenated hemoglobin concentration (∆HbO). These were examined using

linear mixed e�ects models that accounted for repeated measurements within partici-

pants. Where appropriate, post hoc comparisons were made, and the false discovery rate

was controlled using the Benjamini-Hochberg procedure. The results are presented in the

sections that follow.

To analyze the e�ects of di�erent surgical conditions on participants' performance,

we used the log-transformed task completion time as the dependent variable. This trans-

formation was applied to better meet the assumptions of normality and homoscedasticity

required for linear mixed e�ects modeling.

Two distinct model structures were tested to evaluate how best to explain variance

in completion time. The �rst model, referred to as the Session model, treated each unique

combination of Surgical Modality (Laparoscopic vs. Robotic), Task Environment (Simu-

lation vs. Real), and Task Type (knot tying vs. pick and place ) as a single categorical

variable labeled �Session.� This approach allowed for the evaluation of performance di�er-

ences across speci�c task conditions as discrete units, without assuming any interaction

structure among the factors.
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The second model, termed the Full Factorial model, included Modality, Environ-

ment, and Task Type as separate �xed e�ects. It was structured to account for both main

e�ects and possible interaction e�ects among these variables, thereby assuming additive

and interactive contributions to task performance.

Model �t comparisons were conducted using the Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC), and a likelihood ratio test. The Session

model demonstrated superior �t, with a lower AIC (279.589) and BIC (312.216) compared

to the Full Factorial model (AIC = 307.826; BIC = 327.402). Additionally, the likelihood

ratio test indicated that the Session model signi�cantly outperformed the Full Factorial

model (χ2 = 36.232, p < 0.001). These results suggest that modeling the condition as a

single categorical factor (Session) more e�ectively captured the nuances of task perfor-

mance across di�erent surgical contexts. A detailed comparison of model performance

metrics is provided in Table 3.1.

Finally, the Intraclass Correlation Coe�cient (ICC) for the model was calculated

at 0.120. This value indicates that approximately 12% of the total variance in log-

transformed completion time was attributable to individual di�erences between partic-

ipants, with the remaining 88% attributed to within participant variance due to task

condition e�ects.

Table 3.1
Model performance comparisons between the Session-based model and the Full Factorial model.

Metric Completion Time Completion Time Mean ∆HbO Mean ∆HbO

(Session) (Full Factorial) (Session) (Full Factorial)

AIC 279.589 307.826 842.519 882.962

BIC 312.216 327.402 875.093 902.507

Log Likelihood 129.794 -147.913 -411.259 -435.481

Deviance 259.589 295.826 822.519 870.962

R2
Conditional 0.305 0.094 0.491 0.351

R2
Marginal 1.000 1.000 0.564 0.416

ICC 0.120 0.074 0.144 0.099
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Post hoc analyses were conducted to further explore the signi�cant e�ects iden-

ti�ed in the primary comparisons. These analyses revealed pairwise di�erences in task

completion time (log-transformed) and mean changes in oxygenated hemoglobin (∆HbO)

across surgical modalities, task complexities, and environments. The results, presented

in Table 3.2, highlight statistically signi�cant contrasts (p < 0.05) alongside large e�ect

sizes (Cohen's d ≥ 0.8), particularly between robotic and laparoscopic modalities during

complex tasks. These �ndings provide a more granular understanding of how cognitive

workload and performance e�ciency vary across experimental conditions. Abbreviated

labels are used in the table for clarity and brevity. Log10 indicates the mean di�erence in

log-transformed completion time, while Sec refers to the mean di�erence in raw seconds.

Adj. p* denotes the adjusted p-value, and d represents Cohen's d e�ect size. The label

Di�. Adj. p* d is a compact format combining the mean di�erence, adjusted p-value,

and Cohen's d.
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Table 3.2
Post hoc comparisons for completion time (log10 transformed) and mean ∆HbO.

Contrast Completion Time Mean ∆HbO

Log10 Sec Adj. p* d Di�. Adj. p* d

Lap_Real_KT Lap_Real_PP 0.299 1.99 0.417 -0.436 -1.808 0.077 0.791

Lap_Real_KT Lap_Sim_KT -0.318 0.48 0.322 0.558 -1.248 0.468 0.523

Lap_Real_KT Rob_Real_KT -0.219 0.60 0.795 0.374 -5.520 <0.001 2.235

Lap_Real_KT Rob_Real_PP 0.074 1.19 1.000 -0.107 -3.607 <0.001 1.791

Lap_Real_KT Rob_Sim_KT 0.378 2.39 0.142 -0.680 -6.100 <0.001 2.269

Lap_Real_PP Lap_Sim_KT -0.617 0.24 0.001 1.238 0.560 0.985 -0.256

Lap_Real_PP Lap_Sim_PP -0.249 0.56 0.654 0.456 -2.134 0.017 1.195

Lap_Real_PP Rob_Real_PP -0.225 0.6 0.749 0.359 -1.799 0.075 1.011

Lap_Real_PP Rob_Sim_PP -0.333 0.46 0.278 0.680 -2.467 0.003 1.277

Lap_Sim_KT Lap_Sim_PP 0.368 2.33 0.157 -0.942 -2.695 0.001 1.413

Lap_Sim_KT Rob_Sim_KT 0.696 4.97 <0.001 -2.342 -4.852 <0.001 1.862

Lap_Sim_PP Rob_Real_PP 0.024 1.06 1.000 -0.043 0.336 0.999 -0.237

Lap_Sim_PP Rob_Sim_KT 0.328 2.13 0.295 -0.885 -2.157 0.015 0.948

Lap_Sim_PP Rob_Sim_PP -0.084 0.82 0.999 0.221 -0.333 1.000 0.207

Rob_Real_KT Rob_Real_PP 0.292 1.96 0.448 -0.567 1.913 0.049 -0.952

Rob_Real_KT Rob_Sim_KT 0.597 3.95 0.001 -1.844 -0.580 0.984 0.216

Rob_Real_KT Rob_Sim_PP 0.185 1.53 0.903 -0.555 1.244 0.514 -0.580

Rob_Real_PP Rob_Sim_KT 0.304 2.01 0.379 -0.630 -2.493 0.002 1.097

Rob_Real_PP Rob_Sim_PP -0.108 0.78 0.995 0.219 -0.669 0.962 0.418

Rob_Sim_KT Rob_Sim_PP -0.412 0.39 0.079 1.465 1.824 0.079 -0.762

Independent samples t-tests were conducted to compare task performance and pre-



50

frontal hemodynamic responses (HbO and HbR) across di�erent experimental conditions,

including simulation versus real environments, laparoscopic versus robotic modalities, and

PP versus KT tasks. For each comparison, the results include the t-value, uncorrected

p-value, FDR-adjusted p-value (p∗), and Cohen's d e�ect size. A signi�cance threshold

of 0.05 was applied, with p-values corrected for multiple comparisons using the False

Discovery Rate (FDR) method.

Tables 3.3 to 3.14 summarize the outcomes of these t-tests, presenting comparisons

of task completion times and hemodynamic responses across the various groups. Statis-

tically signi�cant di�erences (p < 0.05, FDR-corrected) were found in several conditions,

particularly in oxygenated hemoglobin (HbO) responses and task durations.

Table 3.3
Laparoscopic Surgery PP Task: Comparison of task completion time and prefrontal hemodynamic

responses (HbO/HbR) between simulation and real environments.

Simulation Real t p p* E�ect size

Mean±SD Mean±SD

Completion time
84.01±52.16

62.76 (32.82�251.81)

124.01±108.92

82.59 (25.59�492.3)
-1.513 0.143 0.165 -0.303

Mean Left HbO
0.19±2.15

-0.15 (-2.94�6.28)

2.48±2.42

2.38 (-0.45�6.93)
-5.103 <0.001 0.001 -1.021

Mean Left HbR
0.07±1.79

0.49 (-6.52�2.25)

0.29±1.94

0.35 (-5.67�2.53)
-0.817 0.422 0.452 -0.163

Mean Right HbO
1.04±2.00

0.88 (-2.34�5.97)

2.82±3.09

3.07 (-2.82�10.27)
-3.126 0.005 0.015 -0.625

Mean Right HbR
-0.76±2.23

-1.39 (-5.73�4.4)

1.05±3.53

0.04 (-4.63�13.25)
-2.964 0.007 0.017 -0.593

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.
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Table 3.4
Laparoscopic Surgery KT Task: Comparison of task completion time and prefrontal hemodynamic

responses (HbO/HbR) between simulation and real environments.

Simulation Real t p p* E�ect size

Mean±SD Mean±SD

Completion time
50.5±16.68

46.83 (24.39�88.83)

99.31±95.19

65.61 (17.19�414.68)
-2.667 0.014 0.030 -0.533

Mean Left HbO
2.8±2.57

2.69 (-1.22�8.23)

4.12±3.31

4.16 (-1.44�10.86)
-3.476 0.002 0.010 -0.695

Mean Left HbR
0.45±1.94

1.06 (-4.73�4.53)

0.23±2.04

0.8 (-4.04�3.41)
1.240 0.227 0.378 0.248

Mean Right HbO
3.7±3.06

3.42 (-1.54�12.97)

4.98±2.73

5.1 (-0.82�11.93)
-3.558 0.002 0.010 -0.712

Mean Right HbR
0.69±3.37

0.22 (-4.46�13.12)

0.55±3.32

0.22 (-4.09�12.92)
0.484 0.633 0.678 0.097

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.

Table 3.5
Laparoscopic Surgery Simulation Environment: Comparison of task completion time and prefrontal

hemodynamic responses (HbO/HbR) between PP and KT tasks.

PP Task KT Task t p p* E�ect size

Mean±SD Mean±SD

Completion time
84.01±52.16

62.76 (32.82�251.81)

50.5±16.68

46.83 (24.39�88.83)
3.434 0.002 0.004 0.687

Mean Left HbO
0.19±2.15

-0.15 (-2.94�6.28)

2.8±2.57

2.69 (-1.22�8.23)
-5.420 <0.001 <0.001 -1.084

Mean Left HbR
0.07±1.79

0.49 (-6.52�2.25)

0.45±1.94

1.06 (-4.73�4.53)
-1.257 0.221 0.237 -0.251

Mean Right HbO
1.04±2.00

0.88 (-2.34�5.97)

3.7±3.06

3.42 (-1.54�12.97)
-4.481 <0.001 <0.001 -0.896

Mean Right HbR
-0.76±2.23

-1.39 (-5.73�4.4)

0.69±3.37

0.22 (-4.46�13.12)
-2.663 0.014 0.023 -0.533

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.
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Table 3.6
Laparoscopic Surgery Real Environment: Comparison of task completion time and prefrontal

hemodynamic responses (HbO/HbR) between PP and KT tasks.

PP Task KT Task t p p* E�ect size

Mean±SD Mean±SD

Completion time
124.01±108.92

82.59 (25.59�492.3)

99.31±95.19

65.61 (17.19�414.68)
0.981 0.336 0.458 0.196

Mean Left HbO
2.48±2.42

2.38 (-0.45�6.93)

4.12±3.31

4.16 (-1.44�10.86)
-3.876 0.001 0.003 -0.775

Mean Left HbR
0.29±1.94

0.35 (-5.67�2.53)

0.23±2.04

0.8 (-4.04�3.41)
0.196 0.846 0.906 0.039

Mean Right HbO
2.82±3.09

3.07 (-2.82�10.27)

4.98±2.73

5.1 (-0.82�11.93)
-4.546 <0.001 0.001 -0.909

Mean Right HbR
1.05±3.53

0.04 (-4.63�13.25)

0.55±3.32

0.22 (-4.09�12.92)
1.887 0.071 0.122 0.377

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.

Table 3.7
Robotic Surgery PP Task: Comparison of task completion time and prefrontal hemodynamic responses

(HbO/HbR) between simulation and real environments.

Simulation Real t p p* E�ect size

Mean±SD Mean±SD

Completion time
69.5±23.74

68.79 (37.23�144.6)

85.74±56.34

79.41 (23.58�249.2)
-1.314 0.201 0.302 -0.263

Mean Left HbO
-0.55±3.29

-0.32 (-9.51�4.88)

0.36±3.02

0.01 (-6.74�5.85)
-1.756 0.092 0.291 -0.358

Mean Left HbR
0.67±2.72

0.47 (-5.39�9.53)

0.51±2.4

0.25 (-4.36�7.07)
0.805 0.429 0.515 0.164

Mean Right HbO
0.47±2.61

0.23 (-7�4.12)

1.47±2.36

1.71 (-3.33�5.04)
-1.912 0.068 0.291 -0.382

Mean Right HbR
0.68±4.49

-0.02 (-2.73�20.32)

-0.34±3.1

-0.73 (-6.78�7.31)
0.879 0.388 0.515 0.176

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.
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Table 3.8
Robotic Surgery KT Task: Comparison of task completion time and prefrontal hemodynamic responses

(HbO/HbR) between simulation and real environments.

Simulation Real t p p* E�ect size

Mean±SD Mean±SD

Completion time
46.96±16.57

41.88 (26.41�92.17)

70.72±49.95

53.17 (17.7�214.86)
-2.264 0.032 0.064 -0.462

Mean Left HbO
1.6±2.8

1.74 (-5.13�6.9)

2.32±2.88

2.57 (-3.61�9.47)
-1.179 0.246 0.295 -0.241

Mean Left HbR
0.31±2.44

0.47 (-4.25�8.82)

0.38±2.57

0.61 (-4.48�6.26)
-0.086 0.932 0.932 -0.017

Mean Right HbO
1.62±3.13

1.57 (-6.16�7.39)

2.77±2.3

2.67 (-1.05�7.25)
-2.261 0.032 0.064 -0.461

Mean Right HbR
-0.13±3.05

-0.35 (-5.62�6.53)

-0.15±2.49

-0.5 (-5.47�5.28)
0.066 0.948 0.948 0.013

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.

Table 3.9
Robotic Surgery Simulation Environment: Comparison of task completion time and prefrontal

hemodynamic responses (HbO/HbR) between PP and KT tasks.

PP Task KT Task t p p* E�ect size

Mean±SD Mean±SD

Completion time
69.5±23.74

68.79 (37.23�144.6)

46.96±16.57

41.88 (26.41�92.17)
3.051 0.004 0.007 0.611

Mean Left HbO
-0.55±3.29

-0.32 (-9.51�4.88)

1.6±2.8

1.74 (-5.13�6.9)
-3.426 0.001 0.003 -0.686

Mean Left HbR
0.67±2.72

0.47 (-5.39�9.53)

0.31±2.44

0.47 (-4.25�8.82)
0.824 0.414 0.414 0.165

Mean Right HbO
0.47±2.61

0.23 (-7�4.12)

1.62±3.13

1.57 (-6.16�7.39)
-2.108 0.043 0.064 -0.423

Mean Right HbR
0.68±4.49

-0.02 (-2.73�20.32)

-0.13±3.05

-0.35 (-5.62�6.53)
1.462 0.152 0.228 0.293

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.
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Table 3.10
Robotic Surgery Real Environment: Comparison of task completion time and prefrontal hemodynamic

responses (HbO/HbR) between PP and KT tasks.

PP Task KT Task t p p* E�ect size

Mean±SD Mean±SD

Completion time
85.74±56.34

79.41 (23.58�249.2)

61.93±37.63

51.63 (23.66�215.99)
1.858 0.075 0.187 0.372

Mean Left HbO
0.36±3.02

0.01 (-6.74�5.85)

-0.86±3.61

-0.49 (-7.4�7.58)
1.876 0.073 0.187 0.383

Mean Left HbR
0.51±2.4

0.25 (-4.36�7.07)

-1.02±5.95

-0.28 (-20.81�9.11)
0.820 0.421 0.590 0.167

Mean Right HbO
1.47±2.36

1.71 (-3.33�5.04)

-1.08±3.71

0.16 (-11.48�4.38)
3.304 0.003 0.023 0.674

Mean Right HbR
-0.34±3.1

-0.73 (-6.78�7.31)

-0.75±4.96

-0.51 (-18.98�10.42)
0.538 0.596 0.745 0.110

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.

Table 3.11
Real PP Task: Comparison of task completion time and prefrontal hemodynamic responses

(HbO/HbR) between laparoscopic and robotic surgery.

Laparoscopy Robotic t p p* E�ect size

Mean±SD Mean±SD

Completion time
124.01±108.92

82.59 (25.59�492.3)

85.74±56.34

79.41 (23.58�249.2)
1.553 0.133 0.222 0.311

Mean Left HbO
2.48±2.42

2.38 (-0.45�6.93)

0.36±3.02

0.01 (-6.74�5.85)
2.290 0.032 0.192 0.467

Mean Left HbR
0.29±1.94

0.35 (-5.67�2.53)

0.51±2.4

0.25 (-4.36�7.07)
-0.363 0.720 0.720 -0.074

Mean Right HbO
2.82±3.09

3.07 (-2.82�10.27)

1.47±2.36

1.71 (-3.33�5.04)
1.634 0.115 0.216 0.327

Mean Right HbR
1.05±3.53

0.04 (-4.63�13.25)

-0.34±3.1

-0.73 (-6.78�7.31)
1.170 0.254 0.381 0.234

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.
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Table 3.12
PP Task in Simulation: Comparison of task completion time and prefrontal hemodynamic responses

(HbO/HbR) between laparoscopic and robotic surgery.

Laparoscopy Robotic t p p* E�ect size

Mean±SD Mean±SD

Completion time
84.01±52.16

62.76 (32.82�251.81)

69.5±23.74

68.79 (37.23�144.6)
1.268 0.217 0.670 0.254

Mean Left HbO
0.19±2.15

-0.15 (-2.94�6.28)

-0.55±3.29

-0.32 (-9.51�4.88)
0.940 0.357 0.670 0.188

Mean Left HbR
0.07±1.79

0.49 (-6.52�2.25)

0.67±2.72

0.47 (-5.39�9.53)
-0.928 0.363 0.670 -0.186

Mean Right HbO
1.04±2.00

0.88 (-2.34�5.97)

0.47±2.61

0.23 (-7�4.12)
0.768 0.450 0.675 0.154

Mean Right HbR
-0.76±2.23

-1.39 (-5.73�4.4)

0.68±4.49

-0.02 (-2.73�20.32)
-1.552 0.134 0.670 -0.310

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.

Table 3.13
Real KT Task: Comparison of task completion time and prefrontal hemodynamic responses

(HbO/HbR) between laparoscopic and robotic surgery.

Laparoscopy Robotic t p p* E�ect size

Mean±SD Mean±SD

Completion time
99.31±95.19

65.61 (17.19�414.68)

61.93±37.63

51.63 (23.66�215.99)
1.915 0.067 0.101 0.383

Mean Left HbO
4.12±3.31

4.16 (-1.44�10.86)

-0.86±3.61

-0.49 (-7.4�7.58)
5.056 <0.001 0.003 1.011

Mean Left HbR
0.23±2.04

0.8 (-4.04�3.41)

-1.02±5.95

-0.28 (-20.81�9.11)
0.994 0.330 0.381 0.199

Mean Right HbO
4.98±2.73

5.1 (-0.82�11.93)

-1.08±3.71

0.16 (-11.48�4.38)
6.194 <0.001 0.003 1.264

Mean Right HbR
0.55±3.32

0.22 (-4.09�12.92)

-0.75±4.96

-0.51 (-18.98�10.42)
1.001 0.327 0.381 0.204

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.
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Table 3.14
Simulation KT Task: Comparison of task completion time and prefrontal hemodynamic responses

(HbO/HbR) between laparoscopic and robotic surgery.

Laparoscopy Robotic t p p* E�ect size

Mean±SD Mean±SD

Completion time
50.5±16.68

46.83 (24.39�88.83)

104.13±34.66

96.33 (57.66�208.01)
-6.861 <0.001 0.003 -1.372

Mean Left HbO
2.8±2.57

2.69 (-1.22�8.23)

-1.6±3.73

-2.16 (-11.67�7.38)
4.960 <0.001 0.003 0.992

Mean Left HbR
0.45±1.94

1.06 (-4.73�4.53)

-0.26±4.56

-0.36 (-13.66�7.75)
0.713 0.483 0.603 0.143

Mean Right HbO
3.7±3.06

2.62 (-1.54�12.97)

-1.25±4.56

-0.67 (-12.7�6.05)
4.612 <0.001 0.003 0.941

Mean Right HbR
0.69±3.37

-0.22 (-4.46�13.12)

-2.14±3.97

-1.38 (-17.71�2.37)
2.494 0.020 0.030 0.509

*Reported p-values are corrected using the Benjamini�Hochberg False Discovery Rate (FDR) method.

3.1 Completion Time Analysis

Completion times varied across surgical modalities, task complexity, and train-

ing environments. Performance di�erences were evident when comparing simulated and

real environments across both laparoscopic and robotic modalities. As illustrated in

Figure 3.1, For the laparoscopy PP task, the median completion time increased substan-

tially from 93.3 seconds [85.0 - 102.6] in simulation to 125.2 seconds [113.4 - 143.7] in

the real environment. Similarly, for the laparoscopy KT task, the median time rose from

49.0 seconds [45.2 - 70.6] in simulation to 99.2 seconds [89.4 - 115.0] in the real setting,

highlighting the increased task complexity and cognitive burden experienced in authentic

surgical conditions. In the robotic PP task, the median time increased from 71.3 seconds

[61.2 - 83.6] in simulation to 90.8 seconds [84.2 - 104.8] in real operations, indicating that

even for simpler tasks, real world settings pose additional demands. Interestingly, a con-

trasting trend was observed in the robotic KT task, where the median completion time

dropped from 101.9 seconds [90.6 - 126.4] in simulation to 66.3 seconds [60.3 - 74.1] in

the real setting. This decrease may be attributed to improved performance facilitated by

the ergonomic and visual advantages of the robotic platform, and potentially the e�ects
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of task familiarity developed during simulation.

These �ndings are further supported by the linear mixed e�ects model results,

which demonstrated that session based grouping better explained completion time vari-

ations than the independent e�ects of modality, environment, and task complexity. No-

tably, the reduction in task duration for robotic real KT tasks suggests a positive transfer

of skills from simulated practice to real world application, underlining the e�cacy of struc-

tured simulation protocols. However, the general trend of longer completion times in real

laparoscopic tasks implies that simulation alone may not su�ciently replicate the mental

and physical demands of actual surgical environments. This performance gap reinforces

the need for enhanced simulation �delity and supplemental real environment exposure

to fully prepare surgical trainees. Overall, these observations emphasize the combined

in�uence of surgical modality, task complexity, and training context on operative e�-

ciency, further validating the inclusion of neuroergonomic insights in curriculum design

(Figure 3.1).

Figure 3.1 supports these �ndings, with wider interquartile ranges and more out-

liers in real conditions, particularly for laparoscopic tasks, indicating greater variability

and cognitive demand. In contrast, robotic tasks demonstrated tighter distributions and

lower mean durations, emphasizing their e�ciency and consistency, especially under com-

plex conditions.
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Figure 3.1 Median completion times with min-max ranges for laparoscopic and robotic tasks in simu-
lation and real environments.
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Figure 3.2 Violin plot showing completion time distributions across Task Modality combinations (Lap-
PP, Lap-KT, Robot-PP, Robot-KT), grouped by Environment (Simulation vs. Real). Quartile lines
indicate median and interquartile range. The violin shape reveals underlying distribution spread for
each group.

To further explore the variability and distributional characteristics of completion

times across di�erent task modality combinations and environments, a violin plot was

created (Figure 3.2). Unlike boxplots, violin plots illustrate the full probability density

of the data, o�ering insights into the spread and symmetry of performance times. Each

violin represents a unique task modality pairing (e.g., Lap-PP, Lap-KT), with distribu-

tions split by environment (Simulation vs. Real). This visualization revealed that real

laparoscopic tasks (both PP and KT) exhibited broader and more skewed distributions,

indicating high variability among participants. In contrast, robotic tasks,especially those

performed in simulation,displayed more compact and symmetric distributions, re�ecting

more consistent performance.
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3.2 Modality E�ects

Performance and cognitive workload varied substantially between laparoscopic and

robotic surgical modalities across both simulated and real environments. These di�er-

ences are visualized in below �gures, which compare completion time and fNIRS derived

prefrontal cortex activation metrics across task types and environments.

In the real world setting, robotic surgery demonstrated superior performance e�-

ciency compared to laparoscopy across both task types. According to Figure 3.1, median

completion times for laparoscopic tasks were consistently longer than those for robotic

procedures. For the pick and place task, the median time increased from 93.3 seconds

[85.0-102.6] in simulation to 125.2 seconds [113.4-143.7] in the real environment, whereas

robotic PP tasks saw a smaller increase, rising from 71.3 [61.2-83.6] to 90.8 seconds [84.2-

104.8]. The knot tying task presented a more striking contrast: laparoscopic KT times

escalated from 49.0 seconds to 99.2 seconds [89.4-115.0], while robotic KT completion

time decreased signi�cantly from 101.9 [90.6-126.4] to 66.3 seconds [60.3-74.1]. This re-

versal in performance likely re�ects a transfer of learning from simulation to real settings,

particularly for robotic KT, supported by post hoc results in Table 3.2 showing a signif-

icant time reduction (∆ = −3.95 s, p = 0.001, d = 1.844). These �ndings underscore

the e�ciency and ergonomic advantage of the robotic platform under realistic surgical

demands. Figure 3.3 presents the mean completion times for all tasks performed in the

real environment, highlighting consistent advantages for the robotic modality.



61

Figure 3.3 Completion Time in Real Environment.

A similar trend was observed in the simulation environment, with a slightly lower

magnitude compared to the real setting. In the pick and place task, laparoscopic surgery

required a median completion time of 93.3 seconds [85.0-102.6], whereas robotic surgery

was completed faster at 71.3 seconds [61.2-83.6]. In the knot tying task, laparoscopic

surgery was completed in a median of 49.0 seconds [45.2-70.6], while robotic KT required

a longer median time of 101.9 seconds [90.6-126.4].
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Figure 3.4 Completion Time in Simulation Environment.

In the simulation knot tying phase, there is a signi�cant di�erence in mean left

HbO levels between laparoscopy (4.12 ± 3.31) and robotic (-0.86 ± 3.61), with a t-value

of 5.056 and a p-value < 0.001 (Bonferroni corrected p* = 0.003). The e�ect size is 1.011,

indicating a large e�ect. This suggests that laparoscopy signi�cantly increased oxygena-

tion levels in the left hemisphere during simulation based knot tying tasks compared to

the robotic platform. This might imply better cortical activation or reduced cognitive

load during Laparoscopy, potentially linked to familiarity or procedural e�ciency.

A signi�cant di�erence is also observed during the real KT phase, with laparoscopy

(2.8 ± 2.57) showing higher oxygenation compared to Robotic (-1.6 ± 3.73), with a t-

value of 4.960 and p < 0.001 (Bonferroni corrected p* = 0.003). The e�ect size is 0.992,

re�ecting a large impact. This indicates that the laparoscopy modality enhances left
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hemisphere oxygenation during real knot tying, suggesting improved cognitive processing

or motor control under this modality.

There is also a statistically signi�cant di�erence during the real pick and place

task, with Laparoscopy (2.48 ± 2.42) showing higher oxygenation compared to robotic

(0.36 ± 3.02), with a t-value of 2.290 and p = 0.032 (Bonferroni corrected p* = 0.192, not

signi�cant after correction). The e�ect size is 0.467, suggesting a medium e�ect, although

the signi�cance is not preserved after correction. This indicates a trend toward higher

activation in the left hemisphere during real PP under laparoscopy, but the corrected

p-value suggests caution in interpretation.

These �ndings are illustrated in Figure 3.5, which shows the comparison of mean

left HbO between laparoscopy and robotic modalities during simulation and real tasks

for both knot tying and pick and place.

Figure 3.5 Comparison of Mean Left HbO between Laparoscopy and Robotic modalities during Sim-
ulation and Real tasks for both knot tying and pick and place.
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There is also a signi�cant di�erence for mean right HbO during simulation knot

tying , with Laparoscopy (4.98 ± 2.73) showing much higher oxygenation levels compared

to robotic (-1.08 ± 3.71), with a t-value of 6.194, p < 0.001 (Bonferroni corrected p*

= 0.003), and an e�ect size of 1.264. This is a very strong e�ect, indicating higher

activation in the right prefrontal cortex during laparoscopy, possibly re�ecting greater

spatial awareness or motor control when compared to the robotic platform.

Similarly, mean right HbO showed signi�cant di�erences in the Real KT phase:

Laparoscopy (3.7 ± 3.06) versus Robotic (-1.25 ± 4.56), with a t-value of 4.612, p <

0.001 (Bonferroni corrected p* = 0.003), and an e�ect size of 0.941. This reinforces

that laparoscopy signi�cantly improves right hemisphere oxygenation during real tasks

compared to the robotic method, potentially due to more intuitive hand eye coordination

and direct manipulation.

These �ndings are illustrated in Figure 3.6, which shows the comparison of mean

right HbO between laparoscopy and robotic modalities during simulation and real tasks

for both knot tying and pick and place.
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Figure 3.6 Comparison of Mean Right HbO between Laparoscopy and Robotic modalities during
Simulation and Real tasks for both knot tying and pick and place.

Mean right HbR showed a signi�cant di�erence: Laparoscopy (0.69 ± 3.37) versus

Robotic (-2.14 ± 3.97), with a t-value of 2.494, p = 0.020 (Bonferroni corrected p*

= 0.030), and an e�ect size of 0.509. The negative shift in HbR during the robotic

procedure suggests a relative reduction in deoxygenated hemoglobin, indicating decreased

right hemisphere activation or altered neurovascular coupling in robotic manipulation.

This may imply cognitive strain or di�erent neural engagement when using robotic tools

compared to the manual approach. There were no signi�cant di�erences observed in

mean left HbR between the modalities.

These results are summarized in Figure 3.7, which shows the comparison of Mean

Right HbR between laparoscopy and robotic modalities during simulation and real tasks

for both knot tying and pick and place.
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Figure 3.7 Comparison of Mean Right HbR between Laparoscopy and Robotic modalities during
Simulation and Real tasks for both knot tying and pick and place.

These �ndings indicate that during simulation, laparoscopic surgery, particularly

knot tying, imposed signi�cantly higher cognitive demands and was performed more

e�ciently in terms of time compared to robotic surgery.

3.3 Task Complexity

To evaluate the impact of task complexity on surgical performance and cognitive

workload, we compared the pick and place task, representing a lower complexity pro-

cedure with the knot tying task, which is cognitively and technically more demanding.

Analyses were conducted across both laparoscopic and robotic modalities in both simula-

tion based and real life environments. Completion time was used to assess performance,

while cognitive workload was evaluated via hemodynamic responses (HbO and HbR) in
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the left and right prefrontal cortices as measured by fNIRS.

3.3.1 Completion Time

Figure 3.8 Completion Time by Task Complexity and Modality.

Analysis of completion times revealed distinct patterns associated with task com-

plexity across surgical modalities and environments.

In laparoscopic simulations, paradoxically, the more complex KT task was com-

pleted faster than the PP task, with median times of 49.0 seconds [45.2-70.6] for KT

and 93.3 seconds [85.0-102.6] for PP. However, in the real laparoscopic environment, this

pattern shifted: KT took longer than in simulation (99.2 seconds [89.4-115.0]), and PP

completion time also increased substantially (125.2 seconds [113.4-143.7]). Despite these

increases, no statistically signi�cant di�erence between KT and PP times was observed

in real laparoscopy .

For robotic surgery, a more intuitive trend emerged. In robotic simulations, KT

required longer times than PP (101.9 seconds [90.6-126.4] vs. 71.3 seconds [61.2-83.6],

respectively), consistent with the expected increase in duration for more complex tasks.

Interestingly, in the real robotic environment, the KT task completion time decreased

signi�cantly compared to simulation, dropping to 66.3 seconds [60.3-74.1], while PP in-
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creased slightly to 90.8 seconds [84.2-104.8]. This reversal in KT performance suggests

a transfer of learning and highlights the ergonomic and visual advantages o�ered by the

robotic platform under real surgical demands .

Overall, these results underscore that task complexity in�uenced completion time

di�erently depending on the surgical modality and environment. Robotic systems, par-

ticularly for complex tasks like KT, demonstrated a signi�cant e�ciency advantage in

real settings compared to simulation, whereas laparoscopic performance showed a gen-

eral trend of prolonged task times under real world conditions.

3.3.2 fNIRS Based Cognitive Workload

To assess the e�ect of task complexity pick and place vs. knot tying on cognitive

workload, changes in oxygenated hemoglobin (∆HbO) measured by fNIRS were compared

within each modality and environment condition.
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Figure 3.9 Comparison of mean left HbO between knot tying and pick and place tasks during simulation
and real settings in both laparoscopy and robotic modalities.

In the simulation setting, mean left HbO was signi�cantly higher in KT (2.8±2.57)

compared to PP (0.19 ± 2.15) with a t-value of −5.420, p < 0.001, and a corrected

p∗ < 0.001. The e�ect size of −1.084 indicates a large e�ect.

This �nding suggests that laparoscopy based KT tasks evoke greater left hemi-

sphere oxygenation, re�ecting heightened cortical activity and cognitive load associated

with knot tying under manual control (see Figure 3.9).

In real surgical settings, mean left HbO was signi�cantly higher during KT (4.12±

3.31) compared to PP (2.48 ± 2.42) with a t-value of −3.876, p = 0.001, and corrected

p∗ = 0.003. The e�ect size of −0.775 represents a strong e�ect.

This indicates that real laparoscopic KT tasks demand more prefrontal activa-
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tion, potentially due to the �ne motor control and spatial awareness required in real

environments (see Figure 3.9).

Figure 3.10 Comparison of mean right HbO between knot tying and pick and place tasks during
simulation and real settings in both laparoscopy and robotic modalities.

Similarly, mean right HbO was signi�cantly higher during KT (3.7 ± 3.06) com-

pared to PP (1.04± 2.00) in the simulation setting, with a t-value of −4.481, p < 0.001,

and a corrected p∗ < 0.001. The e�ect size of −0.896 indicates a substantial impact.

This demonstrates that the right prefrontal cortex is more active during KT, likely

due to its role in visuospatial processing and motor control in laparoscopic procedures

(see Figure 3.10).

A signi�cant di�erence was also observed in mean right HbO during real settings,

where KT (4.98 ± 2.73) showed higher activation compared to PP (2.82 ± 3.09) with a

t-value of −4.546, p < 0.001, and corrected p∗ = 0.001. The e�ect size of −0.909 suggests
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a strong neural activation.

This may imply that KT under real laparoscopic conditions requires substantial

visuospatial processing and motor coordination, activating the right prefrontal cortex

more intensively (see Figure 3.10).

In the robotic modality, a signi�cant di�erence in mean right HbO was found

between PP (1.47± 2.36) and KT (−1.08± 3.71), with a t-value of 3.304, p = 0.003, and

a corrected p∗ = 0.023. The e�ect size of 0.674 indicates a moderate to strong e�ect.

This result suggests that KT tasks under robotic assistance reduce right hemi-

sphere oxygenation compared to PP, possibly due to the assistance provided by the robotic

interface, reducing the need for intense right hemisphere activation (see Figure 3.11).

Figure 3.11 Comparison of mean right HbR between knot tying and pick and place tasks during
simulation and real settings in both laparoscopy and robotic modalities.
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A signi�cant di�erence was observed in mean right HbR between PP (−0.76±2.23)

and KT (0.69± 3.37) in the simulation setting, with a t-value of −2.663, p = 0.014, and

a corrected p∗ = 0.023. The e�ect size of −0.533 suggests a moderate e�ect.

The higher HbR levels in KT suggest a greater demand for oxygenated blood,

re�ecting more intensive neural engagement during knot tying (see Figure 3.11).

A signi�cant di�erence was also noted for Mean Right HbR in the real setting,

where PP (0.68 ± 4.49) was higher than KT (−2.14 ± 3.97), with a t-value of 2.223,

p = 0.036, and a corrected p∗ = 0.135 (not signi�cant after correction). The e�ect size of

0.454 indicates a moderate e�ect.

Although not signi�cant after Bonferroni correction, the trend indicates that KT

under robotic assistance may reduce deoxygenated hemoglobin, suggesting that di�erent

cognitive or motor strategies are employed during robotic knot tying (see Figure 3.11).

3.4 Environment (Simulation vs Real)

The e�ects of training environment on surgical performance and cognitive work-

load. By comparing simulation based tasks with their real world counterparts, we aimed

to determine whether simulated training environments elicit comparable behavioral and

neurophysiological responses. Both completion time and fNIRS derived measures of pre-

frontal cortex activity were analyzed to evaluate di�erences in cognitive demand between

simulation and real settings.

3.4.1 Completion Time

The training environment had a signi�cant e�ect on surgical performance as mea-

sured by completion time.
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For laparoscopic surgery, completion times increased when transitioning from

simulation to the real environment. In the PP task, the median time rose from 93.3

seconds [85.0�102.6] in simulation to 125.2 seconds [113.4�143.7] in real settings. Simi-

larly, for the KT task, completion times increased from 49.0 seconds [45.2�70.6] to 99.2

seconds [89.4�115.0]. The linear mixed e�ects model indicated a signi�cant main e�ect of

environment, particularly for the KT task, suggesting that the real environment imposes

greater cognitive and motor demands.

In robotic surgery, the trends di�ered. For the PP task, completion times

increased slightly from 71.3 seconds [61.2�83.6] in simulation to 90.8 seconds [84.2�104.8]

in real operations, although this di�erence was not statistically signi�cant. In contrast,

for the KT task, a decrease in completion time was observed, from 101.9 seconds [90.6�

126.4] in simulation to 66.3 seconds [60.3�74.1] in the real environment. The LME model

identi�ed a signi�cant interaction between environment and task type, indicating that

robotic systems may better facilitate complex procedural performance in real settings

compared to simulations. Consistent with previous �ndings, simulation based robotic

training environments have been associated with lower cognitive workload and greater

neural e�ciency compared to laparoscopic simulations. In a cohort of surgical residents

with no prior robotic experience, robotic simulators elicited lower Mean ∆HbO levels

and shorter task completion times, underscoring the cognitive advantages conferred by

the ergonomic and visual enhancements of robotic platforms even in purely simulated

settings [39].

Overall, these �ndings suggest that while the real environment generally increases

task di�culty for laparoscopic surgery, robotic surgery may mitigate or even reverse this

e�ect, particularly for more complex tasks such as knot tying. These results are visualized

in Figure 3.12.
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Figure 3.12 Completion Time by environment (Simulation vs. Real).

3.4.2 fNIRS based Cognitive Workload

When comparing simulation based and real world environments, signi�cant di�er-

ences in cognitive workload measured via functional near infrared spectroscopy (fNIRS)

were evident predominantly within laparoscopic surgery tasks. A direct comparison of

simulation and real world environments for each surgical modality and task revealed

notable di�erences in prefrontal activation, as measured by Mean ∆HbO values.
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Figure 3.13 Comparison of mean left HbO between simulation and real settings during pick and place
tasks in the laparoscopy and robotic modalities.

There was a signi�cant increase in mean left HbO from simulation (0.19±2.15) to

Real (2.48 ± 2.42) in the pick and place (PP) task, with a t-value of −5.103, p < 0.001,

and a corrected p∗ = 0.001. The e�ect size of −1.021 suggests a large e�ect.

This result indicates a substantial increase in oxygenated hemoglobin in the left

prefrontal cortex during real PP in laparoscopy, re�ecting greater cortical engagement

likely due to the higher cognitive and motor demands of real world manipulation (see

Figure 3.13).

Similarly, there was a signi�cant increase in mean left HbO from simulation (2.8±

2.57) to Real (4.12±3.31) in the knot tying (KT) task, with a t-value of −3.476, p = 0.002,

and a corrected p∗ = 0.010. The e�ect size of −0.695 indicates a moderate-to-large e�ect.

This result suggests heightened activation in the left prefrontal cortex during real
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KT tasks, re�ecting the complex hand eye coordination and decision making required in

live scenarios (see Figure 3.13).

Figure 3.14 Comparison of mean right HbO between simulation and real settings during pick and place
tasks in the laparoscopy and robotic modalities.

A signi�cant increase was also observed in mean right HbO from simulation (1.04±

2.00) to Real (2.82± 3.09) in the pick and place (PP) task, yielding a t-value of −3.126,

p = 0.005, and a corrected p∗ = 0.015. The e�ect size of −0.625 suggests a moderate to

large e�ect.

This indicates that real PP tasks activate the right hemisphere signi�cantly more

than in simulations, possibly due to enhanced visuospatial and motor processing (see

Figure 3.14).

A similar pattern was observed for mean right HbO in the knot tying task, with

simulation (3.7 ± 3.06) compared to real (4.98 ± 2.73), producing a t-value of −3.558,
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p = 0.002, and a corrected p∗ = 0.010. The e�ect size of −0.712 indicates a moderate to

large impact.

This suggests that right hemisphere activation is notably elevated during real KT,

re�ecting enhanced spatial awareness and precision required in real settings compared to

simulation (see Figure 3.14).

Figure 3.15 Comparison of mean right HbR between simulation and real settings during pick and place
tasks in the laparoscopy and robotic modalities.

Mean Right HbR levels increased signi�cantly from simulation (−0.76 ± 2.23) to

Real (1.05 ± 3.53) in the pick and place (PP) task, with a t-value of −2.964, p = 0.007,

and a corrected p∗ = 0.017. The e�ect size of −0.593 indicates a moderate e�ect.

The increase in HbR suggests higher neuronal activity demands in the right hemi-

sphere during real PP in laparoscopy, re�ecting more intensive cognitive and motor re-

source allocation (see Figure 3.15).
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A signi�cant di�erence was observed for Mean Right HbR in the knot tying (KT)

task, with levels changing from Simulation (−2.14±3.97) to Real (−0.75±4.96), yielding

a t-value of −2.429, p = 0.023, and a corrected p∗ = 0.160 (not signi�cant after correc-

tion). The e�ect size of −0.496 points to a moderate e�ect that did not reach statistical

signi�cance.

Although not signi�cant after correction, this suggests that real world robotic knot

tying slightly reduces deoxygenated hemoglobin in the right hemisphere, potentially indi-

cating a di�erence in cognitive or motor processing during real KT tasks (see Figure 3.15).

There were no signi�cant di�erences observed in mean Left HbR between simula-

tion and real settings across both PP and KT tasks.
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4. DISCUSSION

This study investigated how minimally invasive surgical modality (laparoscopic vs.

robotic surgery) and task complexity (pick and place vs. Knot Tying ) in�uence cognitive

workload using functional near infrared spectroscopy. The data revealed clear di�erences

in prefrontal cortex activation and task completion times across surgical modalities, task

types, and settings (simulation vs. real). These �ndings o�er signi�cant insights into

cognitive demands during surgical training and provide implications for designing targeted

training interventions.

4.1 Modality Dependent Cognitive Load

One of the most consistent �ndings was that laparoscopic surgery elicited sig-

ni�cantly higher prefrontal cortical activation (particularly in HbO levels) than robotic

surgery, especially during knot tying tasks. This was re�ected in both increased oxy-

genated hemoglobin (HbO) levels in the PFC and shorter task completion times in robotic

procedures [61]. These results align with prior research suggesting that robotic platforms,

with their ergonomic design, wristed instrumentation, and enhanced 3D visualization, re-

duce the physical and mental demands on the surgeon [2,3,53]. The elevated neural acti-

vation observed in laparoscopic tasks likely stems from the more challenging psychomotor

coordination required when operating with limited degrees of freedom, 2D imaging, and

indirect camera control [18,20]. This activation was particularly pronounced in the right

hemisphere of the prefrontal cortex, where signi�cantly higher HbO levels were observed

during laparoscopic knot tying in real settings, suggesting heightened spatial and atten-

tional demands. Laparoscopy exhibited higher cortical activation (HbO levels) in multiple

brain regions, including the left and right prefrontal cortex, suggesting increased cogni-

tive and attentional demands. Moreover, laparoscopic tasks generally required longer

completion times, particularly under real world conditions. The higher HbR levels in

laparoscopy further indicate greater oxygen consumption and task related neuronal ac-

tivity. These �ndings suggest that laparoscopy requires greater cognitive engagement and

task related brain activity, whereas robotic procedures, while taking longer to complete,
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may demand less cognitive e�ort. This was especially evident in complex tasks such as

knot tying, where left and right PFC HbO levels were signi�cantly higher in laparoscopic

procedures compared to robotic ones.

Post hoc pairwise comparisons showed large e�ect sizes (Cohen's d ≥ 0.8) in cog-

nitive workload di�erences between laparoscopic and robotic modalities during complex

tasks, reinforcing the ergonomic and technological advantages associated with robotic

platforms Interestingly, while robotic surgery showed lower cognitive workload overall,

the longer completion times observed in robotic KT tasks suggest that e�ciency and

comfort may not always translate into faster performance, particularly for novice users

still acclimating to the robotic interface [61]. This dissociation between neural e�ort and

performance time suggests that cognitive ease in robotic environments might initially

support comfort but not necessarily speed. While HbO di�erences were statistically

signi�cant, some HbR values did not remain signi�cant after multiple comparison cor-

rections, suggesting variability in deoxygenation responses across tasks. These �ndings

underscore the importance of considering both cognitive and behavioral performance in-

dicators when evaluating surgical modality e�ectiveness. Robotic platforms appear to

ease cognitive load through ergonomic design and simpli�ed control interfaces.

Our results revealed that laparoscopic surgery induced signi�cantly higher activa-

tion in the prefrontal cortex compared to robotic surgery, suggesting a higher cognitive

workload associated with the laparoscopic modality. These �ndings are consistent with

previous research, where robotic surgical simulation tasks were associated with reduced

prefrontal cortex activation compared to laparoscopic tasks, indicating a lower cognitive

workload [39]. This alignment with the existing literature reinforces the hypothesis that

robotic surgical systems, due to their ergonomic advantages and improved control, may

ease the cognitive burden on surgeons during complex minimally invasive tasks.

Moreover, completion time distributions for robotic modalities appeared less vari-

able than their laparoscopic counterparts (Figure 3.2), reinforcing the idea that robotic

systems may reduce performance inconsistency and support more stable task execution

under both simulation and real conditions.
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These �ndings are consistent with broader neuroimaging research summarized by

Andersen et al. (2024), who reported that Robotic assisted surgery is often associated

with reduced PFC activation compared to laparoscopy [68]. This pattern is attributed

to enhanced ergonomics and motor control in robotic systems, reducing the cognitive

demands placed on the surgeon, especially during complex procedures like knot tying.

The observed lower cognitive workload during robotic procedures in our study

aligns with literature suggesting a more intuitive learning curve. Leijte et al. (2020)

demonstrated that participants using robotic systems required fewer repetitions to achieve

stable instrument control and e�cient visualization, which likely contributed to reduced

cognitive demands [21]. These ergonomic and design related advantages support the use

of robotic systems for novice surgeons, not only in reducing workload, but also in helping

them achieve procedural milestones more e�ciently, particularly during complex tasks in

real settings, despite initial compromises in knot quality.

4.2 E�ects of Task Complexity

Task complexity had a robust and statistically signi�cant e�ect on cognitive work-

load, consistent across both modalities and environments. The linear mixed e�ects model

indicated that knot tying tasks imposed higher cognitive demands than pick and place

tasks, as evidenced by increased mean ∆HbO levels in the prefrontal cortex. KT tasks,

which require advanced bimanual coordination, force manipulation, spatial planning, and

decision making, resulted in greater activation in both hemispheres of the PFC compared

to PP tasks, particularly in real laparoscopic settings, where both left and right HbO lev-

els were signi�cantly elevated. These �ndings con�rm the hypothesis that more complex

motor cognitive integrations demand heightened executive function, particularly in the

dorsolateral and anterior medial regions of the PFC, which are associated with planning,

attention, and strategy development [53�55]. The higher cognitive demand observed in

laparoscopic real PP tasks posits the necessity for enhanced training protocols tailored

to task complexity. Task complexity signi�cantly in�uenced performance, as observed in

the di�erences between knot tying and pick and place tasks.
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In robotic procedures, while right PFC activation was lower overall, the contrast

between KT and PP tasks remained consistent, suggesting that task complexity indepen-

dently elevates cognitive load regardless of modality.

Completion time analysis similarly showed that participants required signi�cantly

longer durations to complete KT tasks compared to PP tasks, consistent with the hypoth-

esis that more complex psychomotor activities demand greater cognitive and temporal

resources.

Post hoc comparisons con�rmed that both completion time and cognitive workload

were signi�cantly elevated during knot tying tasks across modalities and environments,

with moderate to large e�ect sizes (Cohen's d ranging from 0.5 to 0.8), especially during

real laparoscopic KT tasks where the highest ∆HbO values and prolonged completion

times were observed. These �ndings align with previous research highlighting the pro-

cedural and attentional challenges inherent to intracorporeal suturing compared to basic

object transfer tasks [100�102].

Our results demonstrated that task complexity signi�cantly in�uenced cognitive

workload, with the knot tying task eliciting greater prefrontal activation compared to

the simpler pick and place task. This �nding is consistent with previous brain in the

loop studies using functional near infrared spectroscopy (fNIRS), which revealed that

more complex simulated surgical tasks, such as cholecystectomy procedures, induced

higher cognitive demands and lower relative neural e�ciency than simpler coordination

tasks during virtual reality based surgical training [103]. These parallels suggest that

task complexity not only increases behavioral demands but also imposes measurable

neurophysiological burden on trainees, emphasizing the need to tailor surgical training

programs according to task di�culty.

This result reinforces the value of including hierarchical task di�culty in surgical

training programs. By identifying which tasks provoke higher cognitive loads, educators

can tailor curricula to progressively challenge cognitive resources, monitor overload, and

enhance learning retention.
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4.3 E�ects of Training Environments

The training environment (simulation versus real world surgical settings) signif-

icantly a�ected both cognitive workload and task performance. Participants exhibited

higher prefrontal activation (∆HbO), particularly in the right hemisphere, and longer

completion times in the real world environment compared to simulation, suggesting in-

creased visuospatial and attentional demands during actual surgical procedures. This

e�ect was most pronounced during real laparoscopic knot tying, where both left and

right PFC HbO levels increased signi�cantly compared to simulation, re�ecting the com-

pounded demands of task complexity and real world stressors.

The linear mixed e�ects analysis demonstrated that the environment factor con-

tributed substantially to the variance in both cognitive workload and performance out-

comes. Post hoc tests revealed statistically signi�cant di�erences (adjusted p < 0.05)

between simulation and real world conditions across both surgical modalities, with mod-

erate to large e�ect sizes observed for cognitive workload measures (Cohen's d between

0.6 and 0.9).

This suggests that the cognitive demands of real world surgical settings, driven by

physical constraints, unfamiliar ergonomics, and heightened cognitive stress, are not fully

replicated in simulation, particularly in laparoscopic procedures. These results suggest

that for a basic motor task like pick and place, modality may not strongly impact cognitive

engagement in robotic surgery training. These �ndings are in line with existing literature

indicating that while simulators are invaluable tools for skill acquisition, they lack certain

�delity aspects that are critical for evaluating true performance readiness [17, 18]. real

world robotic surgery conditions facilitated improved e�ciency, as seen in reduced com-

pletion times and lower Mean ∆HbO levels. This suggests that while simulation based

training is essential for initial skill acquisition, real world exposure is crucial for re�ning

sensorimotor skills and reducing cognitive load. The di�culty in transferring these skills

to real world applications underscores the need for enhanced training strategies.

Beyond mean di�erences, the distribution of completion times provides critical
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insight into performance variability across training environments. As illustrated in the

violin plots (Figure 3.2), tasks performed in real settings, particularly laparoscopic PP

and KT showed broad, asymmetric distributions with long upper tails. This pattern sug-

gests that while some participants adapted well, others struggled signi�cantly under real

conditions, likely due to increased cognitive load, unfamiliar ergonomics, or higher stress.

In contrast, robotic tasks, especially those performed in simulation, displayed narrower,

more symmetric distributions, indicating more uniform performance. These �ndings sug-

gest that robotic platforms may o�er a more forgiving learning environment, while real

laparoscopic procedures amplify individual di�erences in skill and cognitive adaptabil-

ity. Such distributional insights underscore the importance of using comprehensive visual

analytics in cognitive workload research.

The simulation environment, despite its controlled conditions, may not fully repli-

cate the multifactorial demands of real clinical settings. This aligns with �ndings from

the Virtual on Call (iVOC) case study, which emphasized that even high �delity simula-

tions struggle to elicit the full spectrum of non-technical cognitive stressors seen in real

on-call shifts [104].

The gap between simulated and real world cognitive workload observed in this

study highlights the importance of incorporating higher �delity simulation designs and

cognitive stressors into training curricula to better prepare surgical trainees for clinical

practice.

Interestingly, real robotic knot tying showed a decrease in completion time com-

pared to simulation, with lower or unchanged HbO values. This suggests that real world

performance may improve under robotic conditions, possibly due to ergonomic familiarity

developed in simulation and reduced reliance on reactive visuomotor strategies.

Thus, while simulators should continue to be integrated into surgical education,

this study supports the inclusion of real world or high �delity environments for perfor-

mance assessment and �nal stage training. Moreover, it highlights the utility of fNIRS as

an objective adjunct to conventional assessment tools, capable of capturing subtle mental
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state di�erences beyond task time or accuracy.

4.4 Limitations of the Study

While the present study provides valuable insights into the cognitive demands

associated with laparoscopic and robotic surgical modalities using functional near infrared

spectroscopy (fNIRS), several limitations must be acknowledged.

Firstly, the sample size (n = 26) was relatively small and predominantly comprised

novice users of robotic systems. Although participants had comparable experience in

laparoscopic surgery, their limited exposure to robotic platforms may have in�uenced

the cognitive workload patterns observed. Future studies should consider recruiting a

more diverse participant pool, including experienced robotic surgeons, to enhance the

generalizability of the �ndings.

Secondly, the experimental design did not include live patient procedures. Instead,

task performance was assessed in simulated environments and on physical box trainers

designed to emulate real world surgical scenarios. While these settings provide a high level

of realism, they do not fully replicate the pressures, unpredictability, and environmental

factors inherent in actual operating rooms. As such, the conclusions drawn regarding

"real world" cognitive workload should be interpreted within the bounds of simulation

based training.

Thirdly, the task selection was limited to two standardized procedures: pick and

place and knot tying . Although these tasks are widely recognized and represent vary-

ing levels of complexity in surgical training, they may not capture the full spectrum of

cognitive challenges encountered during complex or unexpected intraoperative situations.

Future research should consider including a broader array of surgical tasks, including those

that require intraoperative decision making and multitasking under time constraints.

Additionally, the absence of subjective workload measures such as the NASA-TLX



86

or SURG-TLX limits the study's ability to provide a multidimensional understanding

of cognitive load. While fNIRS o�ers valuable objective insights into neural activity,

combining it with subjective assessments and behavioral performance metrics would yield

a more comprehensive evaluation of trainee mental workload.

Finally, the use of a single neuroimaging modality presents another limitation.

Although fNIRS is well-suited for real time, noninvasive monitoring of cortical activity,

incorporating additional physiological measures,such as electrodermal activity (EDA),

heart rate variability (HRV), and pupilometry, could enrich the dataset and improve the

interpretation of cognitive states. These multimodal approaches may provide more robust

and reliable assessments of mental workload in complex surgical environments.

Addressing these limitations in future research will enhance the ecological validity,

clinical applicability, and overall impact of cognitive workload assessments in minimally

invasive surgical training.
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5. CONCLUSION

This thesis systematically investigated the in�uence of minimally invasive surgical

modalities, laparoscopic and robotic, on cognitive workload in relation to task complexity

and training environments, employing functional near infrared spectroscopy (fNIRS) to

assess prefrontal cortex activation. By adopting linear mixed e�ects modeling with log-

transformed task completion times and applying robust statistical procedures, this study

provides empirically grounded insights into the cognitive demands of surgical training.

The results compellingly demonstrate that robotic surgery imposes consistently

lower cognitive demands than laparoscopic surgery, particularly during complex tasks

such as knot tying. This was especially evident in real world conditions, where both left

and right PFC HbO levels were signi�cantly elevated in laparoscopic knot tying compared

to robotic procedures, indicating modality and hemisphere speci�c workload di�erences.

This �nding is supported by signi�cant contrasts with large e�ect sizes, underscoring the

ergonomic and technological advantages inherent in robotic platforms. Task complexity

emerged as a robust determinant of cognitive burden, with knot tying tasks eliciting higher

activation across dorsolateral and anterior medial prefrontal regions compared to simpler

pick and place tasks. This aligns with Holper et al. [79], who demonstrated that task

complexity is positively associated with increased cortical oxygenation, particularly in

motor and prefrontal areas, as measured by fNIRS. These results support the premise that

the mental demands of surgical tasks scale with procedural complexity, and that fNIRS

based neuroimaging can sensitively detect these di�erences. Additionally, real world

surgical environments were associated with elevated cognitive workload and prolonged

task completion times relative to simulation based environments, emphasizing the need

for more ecologically valid simulation protocols.

The observed di�erences, quanti�ed through post hoc comparisons with large Co-

hen's d values, reinforce the need for di�erentiated training pathways that account for

both modality speci�c and task speci�c cognitive demands. Moreover, the successful ap-

plication of fNIRS in this study highlights its potential as a practical and sensitive tool
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for real time cognitive workload assessment in surgical trainees.

Moreover, this study reveals a substantial disparity between simulated and real

world training environments. Real surgical settings elicited higher prefrontal hemody-

namic responses and longer task completion times, indicating elevated cognitive engage-

ment and executive functioning demands. Although simulation based training remains

indispensable for foundational skill acquisition, it fails to fully replicate the cognitive con-

ditions encountered in live procedural environments. This underscores a pressing need for

the re�nement of simulation protocols and the integration of advanced neuroergonomic

assessment tools into surgical training curricula.

In summary, the con�uence of �ndings presented in this work a�rms that modal-

ity, task complexity, and environment independently and interactively shape cognitive

workload during minimally invasive surgery. fNIRS proves to be a viable, �eld deploy-

able technique for objectively assessing mental workload and o�ers a promising direction

for enhancing surgical education, skill assessment, and patient safety. Its portability,

motion tolerance, and real world applicability have been well documented in clinical neu-

roscience literature, such as the work by Irani et al. [105], which underscores its utility in

applied and ecologically valid environments. By incorporating cognitive workload moni-

toring into training frameworks, educators and institutions can tailor instruction to the

learner's cognitive state, thereby fostering more e�cient learning trajectories and better

operative outcomes.

5.1 Clinical Implications and Future Applications

The results of this study hold important implications for both surgical training

and clinical practice. First, the observed reduction in cognitive workload during robotic

surgery, particularly during complex tasks, reinforces the ergonomic and cognitive ad-

vantages of robotic platforms. These �ndings support broader adoption and integration

of robotic systems, especially in high stakes or cognitively demanding procedures, to

enhance surgical performance and potentially reduce error rates.
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Second, the demonstrated sensitivity of fNIRS in detecting task related cognitive

workload highlights its value as a neuroergonomic assessment tool. The integration of

fNIRS into surgical education could enable real time monitoring of cognitive load, o�er-

ing educators a novel metric to tailor feedback, optimize learning curves, and identify

cognitive overload before it manifests as performance degradation. As proposed in neu-

roergonomics literature [106], incorporating real time cognitive monitoring via fNIRS

into surgical training may support adaptive feedback systems that respond to individual

trainee workload, improving learning e�ciency and reducing risk.

Figure 5.1 Cognitive performance quadrant model for surgical trainees, based on fNIRS-derived pre-
frontal cortex activation and task completion time.

An important clinical implication of this study is the potential use of neurophysio-

logical data to assess surgical cognitive e�ciency. Figure 5.1 presents a cognitive e�ciency

framework that maps individual performance against prefrontal cortex (PFC) oxygen con-

sumption, as measured by fNIRS. This two dimensional model enables identi�cation of

four distinct cognitive states:
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� Expert Zone: High performance with low cognitive workload, indicating e�cient,

automated skill execution.

� High-Performing but Strained: High performance with high workload, suggest-

ing potential cognitive overload or stress.

� Overwhelmed Novice: Low performance with high workload, typical of early-

stage learners.

� Disengaged or Underchallenged: Low performance with low workload, often

due to task simplicity or lack of engagement.

This model supports the development of adaptive training systems and real time

feedback loops. By combining fNIRS based neural metrics with behavioral performance,

surgical educators can personalize learning experiences, identify trainees in need of in-

tervention, and eventually improve patient safety by reducing cognitive overload in the

operating room.

As highlighted by Andersen et al. (2024), neuroimaging holds promise not only

for evaluating individual skill acquisition but also for tracking longitudinal progress and

tailoring instruction to a learner's cognitive pro�le [68]. These tools may complement

traditional assessments by o�ering objective, biologically grounded metrics of mental

e�ort and skill pro�ciency. The future of surgical education may bene�t from adaptive

training systems that use real time neurophysiological data to guide feedback and optimize

learning.

Furthermore, the signi�cant discrepancy in workload between simulated and real

world environments underscores the need for more ecologically valid training models.

Prior research by Aksoy et al. [60] demonstrated how robotic surgery simulators, assessed

with fNIRS, can provide meaningful insights into workload and training e�ectiveness,

highlighting the value of integrating neuroergonomic evaluation tools into simulation

curricula. Future simulation systems should strive to better mimic real operative con-

ditions, not only in terms of technical �delity, but also in cognitive demands, to ensure

smoother skill transfer and better preparedness for clinical practice.
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Looking ahead, fNIRS based cognitive pro�ling may be extended beyond training

to intraoperative monitoring in the operating room, opening pathways for personalized

workload management, adaptive assistance systems, and safety driven interventions. As

neuroimaging technologies become more accessible, their adoption into clinical work�ows

may ultimately improve both surgeon well being and patient outcomes.

5.2 Summary of Key Findings

This thesis explored how di�erent minimally invasive surgical modalities "laparo-

scopic and robotic" interact with task complexity and environment to in�uence cognitive

workload during skill acquisition and task performance. Using functional near infrared

spectroscopy (fNIRS) to monitor prefrontal cortex (PFC) activation, the study yielded

several key insights:

� Surgical Modality: Robotic surgery was consistently associated with lower cog-

nitive workload compared to laparoscopic surgery. This e�ect was especially pro-

nounced during complex tasks, highlighting the ergonomic and technological ad-

vantages of robotic systems.

� Task Complexity: Knot tying tasks imposed signi�cantly greater cognitive de-

mands than simpler pick and place tasks. This was re�ected in increased activation

in multiple regions of the PFC, particularly in dorsolateral and anterior medial

subregions.

� Training Environment: Tasks performed in real world surgical environments led

to higher cognitive engagement and longer completion times compared to their sim-

ulation based counterparts. These �ndings underscore the limitations of simulation

alone in replicating true operative conditions.

� Neuroergonomic Assessment: fNIRS proved to be a sensitive, practical, and

�eld deployable neuroimaging tool for quantifying mental workload in surgical

trainees. Its use enables deeper understanding of the cognitive demands imposed

by di�erent training con�gurations.
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Collectively, these �ndings validate the multidimensional nature of surgical cog-

nitive workload and o�er empirical support for incorporating cognitive assessments into

surgical education. They also highlight the need to re�ne simulation curricula and con-

sider personalized, modality speci�c training pathways to optimize surgeon performance

and patient safety.
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