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ABSTRACT 

 

PATH PLANNING FOR A SURGICAL ROBOTIC ARM USING AN 

UPGRADED RRT STAR ALGORITHM 

 

Marie Damien Ndzengue Mebebe 

Master Program in Mechatronics Engineering, Bau-Akinrobotics Artificial 

Intelligence And Robotic Technologies 

Thesis Advisor: Assist. Prof. Beste Bahçeci 

 

May 2025, 34 pages 

 

 

Robot-assisted surgery demands reliable trajectory planning to safely and 

efficiently navigate the complexities of the anatomical environment. Although real-

time adaptive path planning has been extensively explored, offline path planning 

remains indispensable for preoperative procedures, offering robust, well-defined 

trajectories before surgical execution. A broad spectrum of path planning algorithms 

has been developed, each tailored to specific application domains and desired 

outcomes. Among these, Rapidly exploring Random Tree (RRT) and its variants are 

widely utilised in medical robotics. However, they continue to suffer from significant 

limitations, such as extended computation time and the generation of unfeasible or 

non-smooth trajectories. This study introduces an upgraded version of RRT star (U-

RRT*) designed to overcome these shortcomings and improve the overall 

effectiveness of path planning. The proposed approach optimises the sampling strategy 

by directing it towards the goal, thereby reducing computation time. Additionally, it 

integrates a clearance threshold mechanism to ensure safe navigation around 

anatomical obstacles. To further enhance path quality, the method employs B-spline 

interpolation in conjunction with a rotation matrix, resulting in smooth, continuous 

and Jerk-free trajectories. 

 

Key Words: RRT Algorithm, Offline Path Planning, Sampling-based Planning, B-

spline Smoothing. 
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ÖZET 

 

GELİŞTİRİLMİŞ RRT* ALGORİTMASI KULLANILARAK CERRAHI 

ROBOTİK KOL İÇİN YOL PLANLAMASI 

 

Marie Damien Ndzengue Mebebe 

Bau-Akinrobotics Yapay Zeka Ve Robotik Teknolojileri Mekatronik 

Mühendisliği Yüksek Lisans Programı 

Tez Danışmanı: Dr. Öğr. Üyesi Beste Bahçeci 

 

Mayıs 2025, 34 sayfa 

 

 

Robot destekli cerrahi, anatomik yapıların karmaşıklığı içerisinde güvenli ve 

etkili bir şekilde gezinmeyi sağlamak için son derece güvenilir bir yörünge 

planlamasına ihtiyaç duyar. Gerçek zamanlı uyarlamalı yol planlama kapsamlı bir 

şekilde araştırılmış olsa da, cerrahi öncesi süreçlerde sağlam ve iyi tanımlanmış 

yörüngeler sunması açısından çevrimdışı yol planlama hâlâ vazgeçilmezdir. 

Günümüzde, belirli uygulama alanlarına ve hedeflenen sonuçlara göre uyarlanmış çok 

çeşitli yol planlama algoritmaları geliştirilmiştir. Bu algoritmalar arasında, Rapidly-

exploring Random Tree (RRT) ve türevleri, tıbbi robotikte yaygın olarak 

kullanılmaktadır. Ancak bu algoritmalar, uzun hesaplama süreleri ve uygulanabilir 

olmayan ya da düzgün olmayan yollar üretmeleri gibi önemli kısıtlarla karşı karşıyadır. 

Bu çalışma, söz konusu eksiklikleri gidermek ve yörünge planlamasının genel 

etkinliğini artırmak amacıyla geliştirilmiş bir RRT* algoritması önermektedir. 

Önerilen yaklaşım, örnekleme stratejisini hedefe yönlendirerek planlama süresini 

azaltır. Ayrıca, anatomik çevrelerde sıkça karşılaşılan engellerin güvenli bir şekilde 

aşılmasını sağlamak üzere bir açıklık eşik mekanizması entegre edilmiştir. Yörünge 

kalitesini daha da artırmak için yöntem, B-spline enterpolasyonu ile birlikte bir 

dönüşüm matrisi kullanarak düzgün, kesintisiz ve sarsıntısız yollar üretir. 

 

Anahtar Kelimeler: RRT Algorithm, Offline Path Planning, Sampling-based 

Planning, B-spline Smoothing. 
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Chapter 1 

 

Introduction 

 

In this fast-evolving era, the demand for advanced technologies continues to 

grow. These technologies facilitate human life by providing assistance or even 

replacing human effort, regardless of the application field or nature of the task. One 

domain where this technological advancement is particularly evident is medicine, 

which continuously seeks new visions to improve patient consultation, diagnosis, 

therapy, and treatment. The surgical sector, in particular, has experienced significant 

technological evolution, ranging from machines and robots fully operated by humans 

to the development of increasingly autonomous surgical systems. 

Robotic surgery offers several advantages over traditional surgical methods, 

including reduced trauma, faster patient recovery, and enhanced precision and 

efficiency in task execution. As minimally invasive procedures gain wider adoption, 

the importance of meticulous preoperative preparation and offline path planning 

becomes increasingly evident. Rather than solely depending on real-time autonomous 

decision-making, the ability to strategically plan surgical trajectories and actions prior 

to the procedure is critical for ensuring accuracy and safety, especially in complex 

anatomical regions. One of the central challenges in robotic surgery is equipping the 

system with a carefully optimised plan that anticipates possible complications and 

variability. Robust offline planning not only improves surgical precision but also plays 

a role in mitigating risk associated with unexpected Intraoperative events, thereby 

enhancing overall surgical outcomes. 

To address these challenges, ongoing research explores various strategies, 

including strategy optimization, obstacle avoidance, and an advanced control system. 

For example, the study presented by (Cursi & Kormushev, 2021) introduces an offline, 

preoperative system designed to identify the optimal insertion point for surgical tools 

by integrating the remote centre of motion (RCM) constraint. While this approach 

enhances safety and accuracy, it is hindered by computational complexity and 

deployment challenges, primarily due to the iterative optimisation required over a 

discretised search space. Another promising development involves the use of artificial 

intelligence (AI) preoperative planning, particularly Deep Neural Network (DNN) 
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models combined with 3D printing technology to enhance surgical precision and 

efficiency (J. Wang et al., 2024). However, this technique still faces notable 

limitations, such as instability and precision issues with guide frames including screw 

deviation from plan trajectories. Furthermore, the rigidity of the frame may lead to 

systematic errors but affect multiple placements simultaneously. A third noteworthy 

contribution is the final element modelling (FEM)-based framework for optimising 

preoperative planning in thermal ablation of brain tumours, as proposed in (Zhao, 

Jiang, Bales, Wang, & Fischer, 2024). While this approach offers improved planning 

accuracy, it also raises concerns about computation and time constraints due to the 

intensive simulation requirements of FEM based analysis. 

  

 

1.1 Statement of the Problem 

 

In surgery, executing precise tasks like incision or suturing with a surgical 

robotic arm necessitates high levels of accuracy, smooth trajectory planning, and 

operational safety to minimise damage to surrounding tissues. The robotic system must 

be capable of following a predefined path while adapting to patient-specific constraints 

such as anatomical geometry, insertion point, and the proximity of critical structures, 

including blood vessels and vital organs. However, conventional path planning 

algorithms, particularly Rapidly exploring Random Trees (RRT) and their variants, 

often produce suboptimal trajectories characterised by limited smoothness and 

inefficient space exploration. This highlights the pressing need for more advanced path 

planning methods that can achieve a balance between trajectory smoothness, obstacle 

avoidance, execution time and computational efficiency in complex surgical scenarios. 

 

 

1.2 Purpose of the Study 

 

This study intends to develop and simulate an upgraded offline RRT* path planning 

algorithm tailored for surgical robotic arms, with the objective of generating precise, 

smooth, and continuous trajectories suitable for surgical interventions while 

effectively navigating around obstacles within the operational workspace. To validate 
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the effectiveness of the proposed algorithm, the following sub-hypothesis are 

formulated: 

H1: Goal-biased sampling will reduce the average time required to find a valid 

path compared to the standard RRT algorithm. 

H2: Implementing a clearance mechanism will maintain a safe distance from 

obstacles, thereby reducing the likelihood of collision and enhancing the 

reliability of the path 

H3: Applying 4th-degree B-spline interpolation with a rotation matrix will 

significantly improve the smoothness of the path without increasing total 

computational time beyond 2 seconds. 

H4: The upgraded algorithm will consistently outperform RRT and RRT 

connect in terms of both efficiency and reliability in a complex, obstacle-rich 

environment. 

The structure of this document is organised as follows: Chapter 2 provides an overview 

of various path planning algorithms, with a focused analysis of RRT, RRT connect, 

RRT star and their associated limitations. Chapter 3 outlines the research methodology 

and details the procedural steps undertaken in the course of this study. Chapter 4 

presents the results obtained, along with relevant evaluations and performance 

assessments. Finally, Chapter 5 discusses the key findings, draws conclusions, and 

proposes potential directions for future work.



 

4 

Chapter 2 

 

 Literature Review  

 

The literature review in this study will explore the state-of-the-art algorithms 

employed in offline path planning techniques for robot-assisted surgery, with a 

particular focus on methods that enable precise, reliable motion planning in complex 

anatomical environments. It will also explore the RRT algorithm and its variants. 

While considerable research has been directed towards real-time adaptive path 

planning, offline strategies remain essential for preoperative planning, offering the 

advantage of generating optimised, well-defined trajectories without the 

computational constraints of intraoperative adjustment. This preoperative approach 

contributes significantly to surgical precision by enabling efficient and constraint-

aware movement planning ahead of execution. 

Several notable studies have advanced this domain. For instance, the work in 

(Tzanetis et al., 2023) leveraged preoperative computed tomography (CT) imaging and 

statistical shape models to develop patient-specific musculoskeletal representations, 

aiding in preoperative trajectory planning. A quadratic optimization function was used 

to minimise deviations in kinematics and ligament strain from the Pre-disease state of 

the knee. Despite its precision, the computational time of approximately 32 hours 

poses limitations for use in time-sensitive clinical settings. Building on this, the study 

in(2019 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), 2019) proposed a hybrid approach combining the Bidirectional Continuous 

Tree Search (BCTS) algorithm with Bayesian optimization (BO) and a Radial Basis 

Function Neural Network (RBFNN) to enhance the smoothness and efficiency of 

offline preoperative path planning. 

 

2.1 Overview of Path-Planning Algorithms 

 

To start, we can consider (Y. Zhang, Ju, Zhang, & Qi, 2022), that makes use of 

the Rapidly Exploring Random Trees star (RRT*) algorithm and incorporates motion 

constraints of flexible needles to ensure smoother and more feasible paths. 

Nonetheless, this study underlines a poor optimisation of the trade-off between 
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accuracy and safety. (Ryan Luna, 2013) introduces a Meta-algorithm that combines 

traditional sampling-based motion planning with post-processing optimisation 

techniques to achieve continuous improvement of the planned trajectory. (H. Zhang, 

Zhu, Shen, & Song, 2023) proposes the method of Implicit Neural Field (INF) to guide 

teleoperated robotic surgery, but has a limited applicability to articulated or steerable 

surgical tools. (Hang Su, Jamal Sheiban, Qi, Salih Ovur, & Alfayad, 2024) employs 

Virtual reality (VR) for a robot-assisted surgical training system for robot-assisted 

minimally invasive surgery (RA-MIS). The system uses wearable sensorised gloves 

and Myo controllers for the manipulation of robotic surgical tools. High dexterity and 

controlled manoeuvrability are possible by utilising the system of concentric tube 

robot (CTR) that uses a fluorescent imaging probe to enhance precision in soft tissue 

imaging, helpful in the motion planning (Thamo et al., 2024). Then comes the 

introduction of an indirect trajectory planning method based on a three-stage 

evolutionary algorithm to optimise motion and planning, an application that ensures 

collision-free motion planning while minimising execution time(Abu-Dakka, Rubio, 

Valero, & Mata, 2013). Still, the cubic splines on which the method relies for trajectory 

generation may not always ensure jerk-minimised smooth motion. (Hao et al., 2022) 

Instead applies an improved Artificial Potential Field (APF)-based path planning 

algorithm that offers safety and accuracy in robot-assisted spine surgery. The dynamic 

gravitational constant and piecewise function are introduced to address common issues 

in traditional APF, such as local minima and target unreachability near obstacles. 

Despite the amazing benefits of this application, the burden of computational cost due 

to the combined APF and PDNN requires continuous real-time computation. Also, 

processing time is considerably increased because of obstacle avoidance constraints 

and the joint limit checks. (Tavares, Martins, & Tsuzuki, 2011) suggest the 

implementation of Simulated annealing (SA) with the adaptive neighbourhood 

approach, which is designed to handle cost functions with nonlinearities, 

discontinuities and stochastic elements, making it suitable for robot path planning. 

However, the study uses three different path representations, but it does not evaluate 

higher-order splines that could produce smoother and more energy-efficient paths. To 

add, (Santos, Rade, & da Fonseca, 2022) put forward an off-line path planning 

approach that combines several optimisation criteria together with machine learning. 

This approach, however, has limited scalability as it considers only a 3-DOF space 
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manipulator. (Bernardes, Adorno, Poignet, & Borges, 2013) introduces an Arc-RRT 

that uses input sampling instead of point sampling, along with explicit geometric 

constraints, that together ensure feasible trajectories and increase efficiency. Dual 

Reward and Policy Offline Inverse Distillation  (DROID), an offline imitation learning 

from heterogeneous demonstrations used by (Jayanthi et al., n.d.) is a method used for 

Mars Rover Path Planning (MPP). A safe and precise glioma resection was performed 

thanks to the implementation of a modified RRT algorithm for a safe and feasible path 

using a cost function (Manrique-Cordoba, Martorell, Romero-Ante, & Sabater-

Navarro, 2024). This application assumes that the preoperative MRI/DWI data remains 

unchanged during surgery, while brain shifts, deformations due to swelling and tissue 

movement may occur intraoperatively. From (Weber, Gambao, & Brunete, 2023) it is 

clear that there are numerous applications for offline path planning, like slicing, 

sectioning or differential geometry-based, which can all be implemented and tested 

using various simulation tools like ROS or RobokDK. The implementation of 

innovative Path Planning for Coreless Filament Winding (CFW) (Hügle, Genc, 

Dittmann, & Middendorf, 2022) presents a parameter-based method that includes the 

analytical Tool Center Point (TCP) trajectory generation, later on validated using 

Finite Element Method (FEM) simulations. Only, there is a shortage of time and 

energy optimization consideration, and it requires manual adjustments for collision 

avoidance. (Sundaram, Budjakoski, Klodmann, & Roa, 2022) suggest a Robot-

Assisted Surgical System Capability Maps (RASSCMAP) for the base pose 

optimisation. Nevertheless, the application does not address much consideration to the 

two-collision avoidance. (Chakraborty et al., 2022) puts light on the varieties of 

algorithms for path planning, depending on the understanding of every algorithm’s 

strengths and weaknesses and the various areas of application of each algorithm. 

Another implementation of AI is the use of novel reinforcement learning-based path 

planning that proposes a heuristically accelerated deep Q-network (HADQN) to 

optimise path planning for steerable needle insertion in neurosurgery. This provides 

great advancements in neurosurgery but still lacks energy and speed optimisation that 

reduces the actuation force of the needle and ensures safety(G. Ji, Gao, Zhang, Cao, & 

Sun, 2023). In the comparative study presented by (Kisinde, Hu, Hesselbacher, & 

Lieberman, 2021), the Mazor X-Align software provides 3D preoperative surgical 

planning. This software automates anatomical segmentation, accounts for a range of 
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motion limitations, and simulates spinal correction modification. (Delaney, 2024) 

drives through the evolution from 2D to advanced 3D software-based planning for 

preoperative planning that guides implant placement. Following is the application of 

Inverse Reinforcement Learning (IRL) for path planning during neurosurgery, and 

later compares this method to other path planning methods. The fact that the IRL 

model learns from a simulated brain environment may bring about overfitting as the 

real case scenarios may differ considerably(Segato et al., 2022). On the other hand, 

(Lin, Xie, Wang, & Wang, 2023) proposes a Deep Reinforcement learning (DRL)-

based approach for preoperative planning of intra-operative ultrasound. It focuses on 

a 4-DOF cardiac ultrasound robot that addresses the challenge of optimal probe 

positioning. The approach leverages a double Deep Q-Network (DQN) for path 

planning but still fails to guarantee effective energy and time optimisation. (Hao Su et 

al., 2022) shows the usefulness and applicability of MRI in path planning during 

surgeries. (Monfaredi et al., 2024) Dives through the different pre-operative path 

planning for minimally invasive surgery based on different parameters like surgical 

tools, type of surgery, and anatomical considerations. A further implementation of path 

planning is in gynaecology for procedures like hysterectomy, myomectomy and 

endometriosis surgery (Alkatout, O’Sullivan, Peters, & Maass, 2024). The method 

uses a modular platform designed to integrate the robotic and laparoscopic techniques. 

In an environment with multiple obstacles, the study (Jiang, Liu, Cui, & Jiang, 2022) 

proposes the combined application of Improved RRT and Artificial Potential Field 

(APF). The RRT algorithm addresses path planning in complex, multi-obstacle 

environments, while APF optimises the path and ensures efficiency and collision 

avoidance. This application, however, is not time-effective. (Zhong, Wang, & Cheng, 

2022) jointly implement Deep Reinforcement Learning (DRL) and Inverse Kinematics 

(IK) by integrating Deep Deterministic Policy Gradient (DDPG) with IK and 

introducing a gain module to balance exploration and exploitation. This ensures 

smooth and collision-free trajectories but does not have energy efficiency 

considerations. For a collision-free path, (Y. H. Yu & Zhang, 2022) developed an 

optimized slice-based Heuristic Fast Marching Tree (SH-FMT) algorithm which 

enables a better node placement and is highly efficient when compared to RRT, RRT* 

and FMT**. However, there is a lack of hardware consideration. As an attempt to 

resolve the issue of slow convergence speed and low search efficiency, (Yi, Yuan, Sun, 
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& Bai, 2022)study employs an improved P_RRT algorithm for path planning that 

involves a dual-expansion strategy for new nodes, a cost function to optimise nearest 

neighbour selection and redundant node deletion for path smoothing. (Pan, Zhang, Xia, 

Xiong, & Shao, 2022), in order to enhance local minima generally present during the 

application of APF for path planning, introduces an improved version of APF (IAPF). 

(C. Cheng, Sha, He, & Li, 2021) sweeps through various path planning applications 

like A*, genetic algorithm (GA), Particle swarm optimisation (PSO), Ant colony 

optimisation (ACO) and differential Evolution (DE) to name just a. They analyse them 

under different criteria and compare their results to understand their strengths and 

weaknesses. (H. Shen, Xie, Tang, & Zhou, 2023) Proposes a money pool ability-based 

optimal rapidly exploring random tree star (RRT*) path planning strategy for industrial 

robot manipulators, using path length and manipulability both as constraints and 

evaluation metrics. They also implement adaptive step size in RRT to improve search 

efficiency. (Yang Wen, Haiying, & Zhisheng, 2021) designed an improved RRT star 

(RRT*) that introduces a target probability offset, ensuring faster conversions by 

biasing the random sampling towards the goal and also a variable step size control, 

which helps in escaping local minima, making the algorithm more efficient. (‘Robot 

Arm Path Planning Based on Improved RRT’, n.d.) also present an improved RRT 

algorithm for robot arm path planning, focusing on target probability biasing invariable 

step size control to ensure frequent sampling towards the goal and prevent the 

algorithm from getting trapped in local minima. Another improved RRT star algorithm 

for a 6-axis manipulator path planning in an obstacle-field environment is proposed by 

(Liu & Cao, 2022) with two key improvements in enhanced path pruning and reduction 

of the global sampling space. (Zhuang, Li, & Ding, 2023) present an obstacle 

avoidance path planning method that instead implements an artificial potential field 

(APF) whose local minimum issue is corrected by improved rapidly exploring random 

tree star (RRT*) and A* algorithm. (Dai, Zhang, & Deng, 2024) jointly implement 

artificial potential field (APF), goal-biased bi-directional RRT* and direct connection 

strategy. (Demir, 2021) combines the application of Genetic Algorithms (GA), Particle 

Swarm Optimisation (PSO) and Artificial Potential Field, which are all heuristic 

methods. Another advancement of the RRT* algorithm is presented by (H. Ji, Xie, 

Wang, & Yang, 2023) that employs an Ellipsoidal-Shape RRT* algorithm with which 

the contributions are: incorporating angle constraints, using ellipsoidal connection 
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strategy, slow-speed informed sampling and path smoothing using polynomial 

interpolation. (R. Wang, Xie, Chen, & Li, 2023) formulates a novel method of third-

order Time-Optimal Time Scaling (TOTS), divided into four stages; the first two 

compute the second-order optimal velocity profile while the third and fourth stages 

eliminate jerk constraint violation. (Shao et al., 2021; Shi, Wang, Zhao, & Tian, 2022) 

integrates a Goal-biased RRT algorithm and bi-directional path smoothing. AN 

investigation study conducted by (Duan & Zhang, 2022) aims to evaluate various 

polynomial-based trajectory planning methods using the Lagrangian-Euler dynamics 

model to calculate energy consumption. (Wei, Zheng, & Gu, 2021) presents a 

specialised, rapidly exploring random tree (Sp-RRT) approach for Follow-the-leader 

(FTL) motion planning of hyper redundant manipulators in confined environments. 

(Yalun Wen & Pagilla, 2023) proposes for path planning implementation, a trajectory 

optimisation using the orthogonal collocation method in which states are represented 

with Legendre polynomials in Barycentric form, and the problem is converted into a 

discrete nonlinear programming (NLP) formulation. And a collision avoidance 

method. (Long, Li, Zhou, & Chen, 2023) enhances RRT* with a dynamic A* cost 

function sampling method, a path pruning strategy, Dynamic region path repair and 

regrowth, and Quintic NURS and Particle Swarm Optimisation (PSO). (Song et al., 

2021) suggest an adaptive robust control method using a Radial Basis Function (RBF) 

Neural Network to improve trajectory and Quintic polynomial to smooth the path. 

(Massaro, Lovato, Bottin, & Rosati, 2023) introduces a nonlinear optimal control 

approach (NLP) that employs a pseudo-spectral collocation method for numerical 

solutions and incorporates actuator constraints. Another implementation of RRT is 

proposed by (Tian et al., 2021), in which redundant nodes are reduced using Parent 

Point Priority Determination (PPD). (Yuan, Yi, Sun, & Bai, 2021) combiene the 

strengths of Improved Artificial Potential Field (I-APF), which is heuristic-based and 

Improved Rapidly exploring Random Trees (I-RRT) which uses a triangular nearest-

neighbor node selection strategy and adaptive step sizes. The heuristic path planning 

method for a tomato-bunch harvesting robot that integrates a 3D-Convolutional Neural 

Network (3D-CNN) based position Posture Map (PPM) with rapidly exploring random 

tree (RRT) algorithm (Q. Zhang, Liu, & Li, 2023). A simultaneous search for both the 

optimal path and the optimal motion time using a cubic uniform B-spline interpolation 

and an improved genetic algorithm (X. Yu, Dong, & Yin, 2022). (Gao, Yuan, Sun, & 
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Xu, 2023) execute a novel BP-RRT* using a Backpropagation (BP) Neural Network 

to enhance RRT* in a 3D environment with dense obstacles. (X. Cheng et al., 2023) 

proposed improvements to RRT-Connect with; adaptive step size strategy, Fixed 

sampling function instead of random sampling and Four-tree seach method. (Fairchild, 

Srivastava, & Tan, 2021) addresses computational challenges associated with 

traditional obstacle modelling and proposes an improved geometric approach using 

parametric equations instead of point-based representations. (‘Towards Comparison 

and Real Time Implementation of Path Planning Methods for 2R Planar Manipulator 

with Obstacles Avoidance. ’, n.d.) employs rational Bezier and NURBS algorithms for 

path planning to ensure path continuity and smoothness. (Q. Cheng, Zhang, Liu, 

Zhang, & Hao, 2021) formulates a hybrid path planning algorithm that employs a 

Gaussian Mixture Model (GMM), Gaussian Mixture Regression (GMR) and a 

Modified Probabilistic Roadmap (MPRM). (Rajendran, Thakar, Bhatt, Kabir, & 

Gupta, 2021) uses a bidirectional tree search. Initially, a previously created tree search 

is expanded, then secondly includes novel scheduling logic and tactics that reduce both 

the planning time and the failure rate. Lastly, an approach for inter-tree connections 

that adjusts to collision data collected over time. (J. Xu & Wang, 2022) presents an 

improved motion planning algorithm called SDPS-RRTConnect, which enhances the 

standard RRTconnect method by improving it based on a Sparse Dead Point Saved 

(SDPS) strategy. (LIU Yaqiu, 2021) Employ an Improved RRT that integrates an 

extension-point selection strategy, an adaptive step-size strategy, a local minimum 

avoidance mechanism and the Dijkstra algorithm for optimisation of the planned path. 

(Y. Wang et al., 2022) improves the RRT algorithm with an intermediate bias point 

strategy and path shortening techniques. 

 

2.2  Overview of RRT-Based Algorithms 

 

2.2.1 RRT algorithm. This probabilistic sampling-based approach 

incrementally expands a tree structure. By randomly selecting points within the state 

space, the algorithm efficiently explores unoccupied regions, guiding the search 

towards a feasible path from the initial point to the target destination(Y. Shen, Liu, & 

Luo, 2021) 
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Figure 1. Pseudocode representation of RRT algorithm(Yao, 2024). x denotes various 

parameters according to the subscript. M represent the configuration space, T represent 

the tree structure, and E is a representation of the edge in the tree. The  “.addNode” 

and “.addEdge” are functions associated with T. 

 

The rapidly exploring Random Tree  (RRT) algorithm builds a tree through random 

sampling within the search space. The tree originates from a defined initial node 

denoted  Node _init and expands iteratively to find the path toward the goal state, goal. 

As iteration progresses, a random node (Node_rand) is selected from the configuration 

space (2D, 3D). If this randomly chosen node lies in a collision-free region, the 

algorithm identifies the nearest node, Node_nearest, within the tree using a predefined 

metric. If the Node_rand  is reachable from Node_nearest within a specified step size, 

the tree extends by connecting the two nodes. Otherwise, a new node, Node_new, is 

generated using a steering function, and the tree is expanded by linking Node_new and 

Node_nearest. A Boolean collision check ensures that the connection between 

Node_new and Node_nearest is free of obstacles. Another Boolean checks if the goal 

is reached, and the algorithm stops if that’s the case(Yao, 2024).  
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Figure 2. Process of RRT algorithm tree expansion. This illustration shows a typical 

step in the RRT algorithm’s tree expansion. The purple point is the random point 

generated at the beginning of the loop, and according to which, a nearnode is selected 

(in red). According to the step size, a newnode (orange) is added. 

 

2.2.2 RRT connect algorithm.  The RRT-Connect uses two randomly growing 

trees within the free space. One tree originates from the starting point, Qinit, while the 

other begins at the target point, Qgoal. These trees expand bidirectionally, exploring 

free space and alternately generating new nodes, denoted Qnew, and a check is 

performed to determine if the Euclidean distance between Qnew and the nearest node 

in the other tree is less than a predefined step length ε. If the distance is within this 

threshold and there are no obstacles along the connection, the two nodes are linked, 

effectively merging the two trees into a single structure and forming a complete path 

from the start to the goal (Yang, Li, Liu, Yu, & Li, 2021). 

 

 

Figure 3. Pseudocode for the RRT-Connect algorithm(Kang, Lim, Choi, Jang, & Jung, 

2021). Depending on its subscript, p denotes various parameters.  is similar to  and 

denotes the stepsize. dreach is the distance associated with Preach (checking parameter 

for goal reached), and dshorter  tracks the shortest path found. 
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Figure 4. RRT-Connect working principle (Chen, Fu, Zhang, Fu, & Shen, 2022). q 

refers to different parameters represented by the subscript attached to it.  is the step 

size used for tree extension, while the dashed line shows the final connection. T 

denotes the tree, which in this case are two (T1 and T2). 

 

2.2.3 RRT star algorithm (RRT*). RRT* takes over the properties of RRT and 

works alike but introduces an optimization step that evaluates whether a newly added 

node can be reconnected to a different parent node for a lower overall path cost. If a 

more efficient parent node is found, the tree is restructured in a process known as 

rewiring, which relies on the neighbourhood radius, r. The radius defines a search 

region around the new node to find a lower cost parent. The neighbourhood is ideally 

set to 2-3 times the step size for effective rewiring(T. Xu, 2024).  is the user-defined 

constant, n is the number of nodes, and d represent the dimension of the configuration 

 

 𝑟 = 𝛾 (
log(𝑛)

𝑛
)

1

𝑑
  1 

 

 

 

Figure 5. RRT* parent cost check and neighbourhood radius representation 

(Mohammed, Romdhane, & Jaradat, 2021). This figure illustrates how the RRT* 

evaluates parent node costs within a defined neighbourhood. The neighbourhood is the 

rewiring search area selected by the user and is larger than the stepsize. 
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Figure 6.  Representation of RRT* node reconnection to lower cost parent(Mohammed 

et al., 2021). After a better parent is found, the link is deleted with the previous one 

and created with the new parent. 

 

 

Figure 7. Pseudocode representation of RRT* algorithm(Noreen, Khan, & Habib, 

2016).  Here, z represents different points and node parameters depending on the 

subscript associated with it. |V| represent the number of nodes in the tree. T is the tree 

parameter. Unew is the control input. 
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Chapter 3 

 

 Methodology 

 

This chapter outlines the methodological framework employed to evaluate and 

compare existing path-planning algorithms with the upgraded version of RRT* 

proposed by this study in a structured and consistent manner. 

 

3.1 Environment Setup 

 

All three algorithms (RRT, RRT-Connect, Upgraded-RRT) were executed under 

the same conditions to ensure fair evaluation. In a main m-file, all the algorithms are 

called to run starting from RRT, through RRT connected to the Upgraded RRT star. 

For each algorithm, a 3D occupancy grid map was developed, to which obstacles were 

added. It served as the simulation environment. The code in the main m-file ran all the 

algorithms called for a given number of trials (20 in this study), and for each set of 20 

trials, initialized parameters like step size and max number of iterations were kept 

constant for effective performance assessment purposes. The parameters were the 

same for each algorithm except parameters that are specific to an algorithm like the 

binding distance for RRT connect. There were the same predefined start and goal 

positions, and the environment was populated with two distinct obstacle densities. 

• Low Obstacle Density (Scen1). A scenario with relatively few obstacles. This 

represents surgical regions like the skin. 

• High Obstacle Density (Scen2). A scenario with numerous obstacles creates a 

clustered environment. This may represent a surgical region like in vivo surgery at 

the level of the belly or the chest, where organs other than the organ on which 

surgery is performed are considered obstacles. 

For each scenario, a set of 20 trials each was run. This unified approach ensures 

consistent comparisons across methods, isolating the effect of the planning algorithm 

itself. We recorded the outcome of each run for later analysis, focusing on key 

performances described subsequently. 

 

 



 

16 

3.2 Algorithms Implemented 

 

The implementation runs the sampling-based path planning algorithms RRT, 

RRT connected and the upgraded RRT* algorithm proposed by this study in the 

MATLAB platform as shown in Figure 8. Their performance was evaluated based on 

finding path efficiency, path length, computational time and path smoothness. 

The Upgraded RRT* implements a Goal Bias Sampling Strategy with a bias 

probability of 0.2 (20%), used to increase the likelihood of sampling towards the goal, 

leading to a faster convergence. Given that surgery is carried in sensitive environment, 

it is not sufficient not to touch the obstacle (which in anatomical environment are other 

organs) but also to stay at a distance from the obstacle to anticipate any abrupt 

movement of an obstacle, this upgraded version incorporates a Clearance-based 

Collision Avoidance in which a minimum clearance threshold is set to ensure that the 

new node does not collide with the obstacle and is at a certain distance from it. For this 

implementation, each obstacle is considered a 3D sphere and the node a 3D point. The 

code calculates the Euclidean distance (Equation 2) between the new node and the 

obstacle and compares the distance to the radius r of the obstacle plus the minimum 

clearance C. Also, a smoothing section, which uses a 4th-degree B-spline interpolation 

and a rotation matrix (illustrated in Equation 3 - 5), is added in the algorithm to 

improve the quality of the path and its feasibility. The Algorithm workflow can be seen 

in Figure 9. 
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Figure 8. Workflow of the main Matlab script (m-file). This flowchart outlines the 

execution process of the primary Matlab script used to evaluate the performance of 

RRT, RRT connect, and U-RRT* algorithms. After initializing parameters, the script 

iterates through a specified number of trials (numTrial), running each path-planning 

algorithm in sequence. Upon completion of all trials, the script generates and saves a 

result table for further analysis. 
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Figure 9. U-RRT* algorithm workflow. This diagram illustrates the complete path-

planning process of the proposed U-RRT* method. The algorithm begins with random 

point generation influenced by a goal bias, finds the nearest node, performs collision 

checks using a clearance mechanism, and adds the new node to the tree. If necessary, 

it rewires and checks whether the goal is reached. If the goal is reached, the algorithm 

proceeds to backtrack and apply B-spline interpolation and a rotation matrix to 

generate a smooth and feasible path. Otherwise, the process repeats until a valid path 

is found.  

 

In the following equation, 𝑑𝑖 is the distance between the newNode and the centre of 

the i-th obstacle, 𝑝⃗  is the 3D coordinate of the newNode, 𝑜𝑖⃗⃗⃗ ⃗ is the 3D coordinate of 
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the i-th obstacle centre, 𝑟𝑖 is the radius of the i-th obstacle, and C is the minimum 

clearance. 

 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑𝑖) =  ‖𝑝⃗ −  𝑜𝑖⃗⃗⃗ ⃗‖ =  √(𝑥 −  𝑥0)2 + (𝑦 −  𝑦0)2 + (𝑧 −  𝑧0)2 2 

 

If ‖𝑝⃗ −  𝑜𝑖⃗⃗⃗ ⃗‖ < 𝑟𝑖 + C, then it's too close or in contact with the obstacle and the node is 

returned as colliding, thus not added to the tree. 

The 4th-degree B-spline interpolation constructs a new set of points using 

Equation 3, where c(t) is the interpolation curve, and 𝑁𝑖,4 are the B-spline basis 

functions of degree 4, 𝑃𝑖 are the control points (interpolation points). Each control 

point is typically a vector, 𝑒. 𝑔, 𝑃𝑖 =  𝑥𝑖, 𝑦𝑖, 𝑧𝑖. 

 

 𝑐(𝑡) =  ∑ 𝑁𝑖,4
𝑛
𝑖=1 ∙ 𝑃𝑖 3 

 

After generating the smooth interpolated path, the entire set of interpolated 

points is rotated such as to align the path with the desired orientation in the surgical 

environment. In Equation 4 below, 𝑅𝑧(𝜃) is the rotation matrix. 

 

 𝑅𝑧(𝜃) =  [
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

] 4 

 

 𝑐′(𝑡) =  𝑅𝑧(𝜃) ∙ 𝑐(𝑡) 5 

 

This upgraded RRT* algorithm follows a structural approach to efficiently generate 

collision-free and smooth paths in a 3D environment in a remarkable amount of time. 

The workflow optimises fast node generation, collision avoidance and path 

smoothness while maintaining computational efficiency. Figures 9-14 show examples 

of how the different algorithms perform. 
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Figure 10. Visualization of RRT algorithm in scenario 1 (scen1). This plot illustrates 

the path planning using the RRT algorithm. The blue lines represent the search tree 

expansion, the orange spheres indicate obstacles, the green and red markers show the 

start and goal positions, respectively, and the bold black segments depict the final path 

found. 

 

Figure 11. Visualization of RRT connect algorithm in scenario 1 (scen1). This figure 

illustrates the path planning process using the RRT-connect algorithm. Two rapidly 

growing search trees expand from the start (green) and goal (red) positions. The final 

connection path between the trees is indicated by the black line. 



 

21 

 

Figure 12. Visualization of U-RRT* algorithm in scenario 1 (scen1). The 3D plot 

presents the optimized path planning achieved with the proposed U-RRT* algorithm. 

The start and the goal positions are illustrated in green and red, respectively. The 

orange spheres represent the obstacles. The search tree is shown in blue, with the final 

smooth path marked in black. Rewiring steps are highlighted in green, indicating 

optimisation phases. The bold Black line indicates the path found. 

 

 

Figure 13. Visualization of RRT algorithm in scenario 2 (scen2). This plot illustrates 

the path planning using the RRT algorithm. The blue lines represent the search tree 

expansion, the orange spheres indicate obstacles, the green and red markers show the 

start and goal positions, respectively, and the bold black segments depict the final path 

found. 
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Figure 14. Visualization of RRT connect algorithm in scenario 2 (scen2). This figure 

illustrates the path planning process using the RRT-connect algorithm. Two rapidly-

growing search trees expand from the start (green) and goal (red) positions, shown in 

blue and red, respectively. The final connection path between the trees is indicated by 

the black line. 

 

 

Figure 15. Visualization of upgraded RRT* in scenario 2 (scen2). This figure 

illustrates the path planning process using the RRT-connect algorithm. Two rapidly-

growing search trees expand from the start (green) and goal (red) positions, shown in 

blue and red, respectively. The final connection path between the trees is indicated by 

the black line. 
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3.3 Performance Metrics 

 

During each trial, the following performance metrics were recorded for each 

algorithm to evaluate and compare their performance: 

• Execution Time. The time required for the algorithm to find a path from start to 

goal or determine that none is found within the limit of the maximum iteration. A 

shorter execution time indicates faster performance. It is measured using 

MATLAB’s timing functions for each run and averaged over all trials per condition 

to compare efficiency across algorithms. 

 

Figure 16. Workflow for recording execution time metric. The process begins by 

calling “tic” to start the timer, followed by the execution of the algorithm. Once the 

algorithm completes, “toc” is used to capture the elapsed time, which is stored for 

performance evaluation. 

 

• Path smoothness. A quantitative measure of the quality of the path produced. In 

the context of this study, the smoothness of a path is assessed by considering the 

turning angles calculated at waypoints and the variance of the angles to classify 

the paths as either smooth, moderately smooth or stiff. The smooth path is 

indicated by low angles and low variance. 

• Path Length. Which informs on the possibility of a smooth path and also reflects 

the feasibility of the path. It is measured by computing the Euclidean distance of 

the differential of the path. 
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• Search Success Rate. The percentage of trials in which the algorithm successfully 

finds a collision-free path to the goal. This metric captures the reliability of the 

planner under different circumstances. A 100% success rate indicates that the 

planner found a path in every trial, whereas lower rates mean occasional failure. 

 

Together, these three metrics provide a comprehensive insight into performance: 

execution time reflects speed, path smoothness reflects path quality, and success rates 

reflect the effectiveness/robustness of the planning method. 
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Chapter 4 

 

 Findings 

 

After running several sets of trials for code adjustments and adequate 

performance, two sets of trials were performed for two case scenarios: the few 

obstacles scenario (scen1) and the dense obstacle scenario (scen2). After each set was 

run, verifications were performed to ensure the metrics were appropriately recorded 

and the classification was well done. This section showcases all the results recorded 

and their analyses. 

 

4.1 Test Scenarios and Results 

 

The first scenario (scen1) reflects a low-density environment, while the second 

scenario (scen2) is about a high-density environment. In scen1, two obstacles are 

placed between the start and the goal points such that the algorithm is required to avoid 

these obstacles and still find a path to the goal. In scen2, four additional obstacles are 

placed at the four sides of the already present obstacles between the start and goal 

points. This increases the complexity of the search and the obstacle avoidance. 

For the execution time metric and the path length, their means were calculated 

(Table 1)  for every algorithm and then plotted (Figures 17-18). Later, an additional 

analysis was made using the one-way ANOVA statistical analysis method to 

effectively compare the RRT and RRT connect algorithms' results to those of U-RRT* 

separately. For the remaining parameters, Success rate,   Path smoothness and Obstacle 

avoidance, percentages were calculated and reported in tables and then plotted using 

pie charts.  
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Table 1  

Mean Values of Execution Time and Path Length for the Different Algorithms 

 Execution Time/seconds Path Length/centimetres 

Scenario RRT RRT 

connect 

Upgraded 

RRT* 

RRT RRT 

connect 

Upgraded 

RRT* 

1 59.04 87.44 1.78 0.89 0.91 0.69 

2 116.25 165.43 1.79 0.82 0.95 0.69 

  

 

Figure 17. Execution time comparison for scenario 1 (scen1). This bar chart represents 

the execution time analysis of three path planning algorithms- RRT, RRT connect and 

U-RRT*- under the same environment (scen1). The vertical axis represents the 

execution time, with the statistical significance indicated by asterisks (p < 0.05 = *, p 

< 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****). Variability across trials is represented 

by error bars. 
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Figure 18. Execution time comparison for scenario 2 (scen2). This bar chart represents 

the execution time analysis of three path planning algorithms- RRT, RRT connect and 

U-RRT*- under the same environment (scen2). The vertical axis represents the 

execution time, with the statistical significance indicated by asterisks (p < 0.05 = *, p 

< 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****). The error bars represent variability 

across trials. 

 

The p-value differs according to the compared algorithms. In scen1, for the 

comparison between RRT and U-RRT*, the p-value is 0.0011 and for the comparison 

between RRT connect and U-RRT*, the p-value is 0.0001. Now, for the path length, 

the p-value related to the comparison between RRT and U-RRT* is 0.0779 and for the 

RRT connect and U-RRT* comparison, it is 0.0001. In scen2, for the execution time, 

the p-value is 0.0001 for both comparisons. Looking at the path length, the p-value is 

0.0397 for the comparison between RRT and U-RRT*, while for the RRT connect and 

U-RRT* comparison, it is 0.0001. 
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Figure 19. Path length comparison for scenario 1 (scen1). This bar chart shows the 

average path length generated by the RRT, RRT-connect and U-RRT* algorithms. The 

y-axis represents the length, and error bars represent standard deviation across trials. 

The statistical significance indicated by asterisks (p < 0.05 = *, p < 0.01 = **, p < 

0.001 = ***, p < 0.0001 = ****) and ns (no significance) is returned where there is no 

significant difference. 

 

Figure 20. Path length comparison for scenario 2 (scen2). This bar chart shows the 

average path length generated by the RRT, RRT-connect and U-RRT* algorithms. The 

y-axis represents the length, and error bars represent the standard deviation across 

trials. The statistical significance indicated by asterisks (p < 0.05 = *, p < 0.01 = **, p 

< 0.001 = ***, p < 0.0001 = ****) and ns (no significance) is returned where there is 

no significant difference. 
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Table 2   

Percentage Representation of the Success Rate of a Found Path 

 Scenario 1 Scenario 2 

Classification RRT  RRT 

connect 

U-RRT* RRT RRT 

connect 

U-RRT* 

0 90 35 0 80 50 0 

1 10  65  100 20  50  100 

 

 

Figure 21. Success rate assessment for scenario 1 (scen1). This set of pie charts 

visually represents the success rate of path finding of RRT, RRT-connect and U-RRT* 

algorithms in scen1. The orange portion indicates successful trials (classification = 1), 

while the blue portion denotes failures (classification = 0). 

 

 

Figure 22. Success rate analysis for scenario 2 (scen2). This set of pie charts visually 

represents the success rate of path finding of RRT, RRT-connect and U-RRT* 

algorithms in scen1. The orange portion indicates successful trials (classification = 1), 

while the blue portion denotes failures (classification = 0). 
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Table 3  

Percentage Representation of the Smoothness Metric 

 Scenario 1 Scenario 2 

Classification RRT RRT 

connect 

U-RRT* RRT RRT 

connect 

U-RRT* 

0 50 84.61 0 0 60 0 

0.5 50 15.39 10 10 30 0 

1 0 0 90 10 10 100 

 

The percentage of the smoothness metric reflects the smoothness of the found 

paths only and does not consider cases where no path is found. 1 indicates a smooth 

path, 0.5 a moderately smooth and 0 indicates a stiff path. 

 

 

Figure 23. Path smoothness comparison for scenario 1 (scen1). This figure represents 

the smoothness classification results for the paths generated by RRT, RRT-connect 

and U-RRT* algorithms. The pie charts categorize smoothness into three levels: 0 = 

not smooth (in blue), 0.5 = moderately smooth (in orange) and 1 = smooth (in green). 

 

 

Figure 24. Path smoothness comparison for scenario 2 (scen 2). This figure represents 

the smoothness classification results for the paths generated by RRT, RRT-connect 

and U-RRT* algorithms. The pie charts categorise smoothness into three levels: 0 = 

not smooth (in blue), 0.5 = moderately smooth (in orange) and 1 = smooth (in green). 
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Table 4  

Percentage Representation of Obstacle Avoidance 

 Scenario 1 Scenario 2 

Classification RRT RRT 

connect 

U-RRT* RRT RRT 

connect 

U-RRT* 

0 50 55.56 0 50 60 0 

1 50 44.44 100 50 40 100 

 

For the obstacle avoidance metric, the percentage reflects the effective obstacle 

avoidance of only planned paths, where 0 reflects failed avoidance and 1 reflects 

successful avoidance. 

 

 

Figure 25. Obstacle avoidance assessment for scenario 1 (scen1). The orange section 

represents the successful avoidance (classification = 1), and the blue section represents 

the failed obstacle avoidance (classification = 0). 

 

 

Figure 26. Obstacle avoidance analysis for scenario 2 (scen2). The orange section 

represents the successful avoidance (classification = 1), and the blue section represents 

the failed obstacle avoidance (classification = 0). 

 

4.2 Results Analysis and Comparison 

After pertinent analysis, it is observed that the U-RRT* outperforms in all the 

metrics compared to the other algorithms. First, in the execution time metric, it is 

observed that there is a significant difference between the RRT algorithm and U-RRT* 
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with a significance of two stars (**) in scen1 (Figure 18) and three stars (***) (Figure 

19) in scen 2. While a significance of four stars (****) in scen1 and scen 2 (Figure18 

and 19, respectively) between RRT connect and U-RRT* was noted. This 

demonstrates that U-RRT* performs faster than RRT and even faster than RRT 

connect both in dense and non-dense environments, which is not the case for the other 

algorithms whose execution time increased as the obstacles increased. Also, for the 

path length algorithm that introduces an idea of how feasible a path is, RRT connect 

was found to generate the less feasible path, unlike U-RRT* that generated the shortest 

paths. The significance between these two was thus high both in scen1 and scen2 (**** 

in both) (figures 8-9). There was no significant difference between the RRT algorithm 

and U-RRT* algorithm in scen1 and only a one-star (*) significant difference in scen2 

for path length. 

For scen1 and scen2 of the success rate metric, only U-RRT* always found a 

path.  It is observed that RRT has difficulties finding a path both in dense and non-

dense environments (scen2, scen1 respectively) with a success rate of  10% in non-

dense and 20% in dense environments. The RRT connect algorithm was good enough 

in scen1 with a 65% success rate but less competent in scen2 with a drop to a 50% 

success rate.  The U-RRT*  maintained high performance in both scenarios with a 

100% success rate.  For each algorithm and in each trial and scenario, when a path is 

found, its smoothness was assessed to emphasize the evaluation of the feasibility of 

the path, as a jerk-free environment is crucial for implementations related to surgery.  

For that reason, the smoothness metric reflects smoothness results for trials in which a 

path was found. In scen1, RRT produced either smooth or partially smooth paths in 

equal percentage (50%), while in scen2, it generated either moderately smooth or stiff 

paths still in an equal percentage (50%). RRT connect, on the other hand, in scen1 

15% off the paths found were moderately smooth and 85% were stiff paths. In scen2,  

10% of the paths found are smooth, 30% are moderately smooth, and 60% are stiff, 

thus, RRT connect performed better in scen2.  In scen1, 10% of paths found by U-

RRT* were moderately smooth, and 90% were smooth. İn scen2, all the paths found 

were smooth. The last metric parameter evaluated if the path found correctly avoided 

obstacles.  RRT had an equal percentage for both scenarios (50%). In scen1, only 44% 

of the paths found by RRT connect avoided the obstacles correctly. In scen2,  40% 
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avoided the obstacles correctly, which is even lower compared to scen1. The  U-RRT* 

algorithm always avoided the obstacles correctly.
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Chapter 5  

 

Discussions and Conclusions 

 

In summary, the performance of each algorithm varied depending on the specific 

conditions under which it was applied. The standard RRT algorithm demonstrated 

significant limitations, particularly in low density environments, with success rates as 

low as 10% and average obstacle avoidance of only 50%. Its tendency towards 

excessive exploration resulted in longer computation times and frequent failure to find 

viable paths. While RRT connect showed improved performance over standard RRT, 

with a success rate of 65% in sparse environment, it still produced suboptimal results 

in dense environments, where its success rate dropped to 50%, and only 40-44% of 

paths successfully avoided obstacles. Moreover, a large proportion of its paths were 

stiff (85% in scen1), highlighting poor smoothness performance. In contrast, the 

upgraded RRT* significantly outperformed both baseline methods across all 

evaluation metrics. Upgraded RRT star was significantly faster, with improvements 

marked by statistical significance (p < 0.01 to p < 0.0001) across scenarios. It also 

generated paths that were up to 20-30% shorter than those generated by RRT connect, 

with high statistical significance (****). Furthermore, it achieved a consistent 100% 

success rate in both sparse and dense environments, compared to 10-65% for the other 

methods. Additionally, it produced 90-100% smooth paths, while RRT and RRT 

connect generated 50-85% stiff or moderately smooth paths. Lastly, it correctly 

avoided obstacles in 100% of paths, outperforming RRT (50%) and RRT connect (40-

44%). These results demonstrate that U-RRT offers a 50-90% relative improvement in 

success rate, smoothness and obstacle avoidance over the existing algorithms. Overall, 

this study presents a reliable, efficient, and clinically relevant path-planning solution 

for robotically assisted surgery. The proposed algorithm enhances both safety and 

efficiency, potentially reducing preoperative planning time and improving the 

operational reliability of robotic arms in an anatomically complex environment. 

Looking ahead, future research could explore the integration of reinforcement 

learning techniques into the planning framework, to enhance the algorithm's 

adaptability and efficiency, enabling it to generate more context-specific and 

optimised paths in less computational time. 
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