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ABSTRACT

PATH PLANNING FOR A SURGICAL ROBOTIC ARM USING AN
UPGRADED RRT STAR ALGORITHM

Marie Damien Ndzengue Mebebe
Master Program in Mechatronics Engineering, Bau-Akinrobotics Artificial
Intelligence And Robotic Technologies
Thesis Advisor: Assist. Prof. Beste Bahgeci

May 2025, 34 pages

Robot-assisted surgery demands reliable trajectory planning to safely and
efficiently navigate the complexities of the anatomical environment. Although real-
time adaptive path planning has been extensively explored, offline path planning
remains indispensable for preoperative procedures, offering robust, well-defined
trajectories before surgical execution. A broad spectrum of path planning algorithms
has been developed, each tailored to specific application domains and desired
outcomes. Among these, Rapidly exploring Random Tree (RRT) and its variants are
widely utilised in medical robotics. However, they continue to suffer from significant
limitations, such as extended computation time and the generation of unfeasible or
non-smooth trajectories. This study introduces an upgraded version of RRT star (U-
RRT*) designed to overcome these shortcomings and improve the overall
effectiveness of path planning. The proposed approach optimises the sampling strategy
by directing it towards the goal, thereby reducing computation time. Additionally, it
integrates a clearance threshold mechanism to ensure safe navigation around
anatomical obstacles. To further enhance path quality, the method employs B-spline
interpolation in conjunction with a rotation matrix, resulting in smooth, continuous

and Jerk-free trajectories.

Key Words: RRT Algorithm, Offline Path Planning, Sampling-based Planning, B-

spline Smoothing.
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OZET

GELISTIRILMIS RRT* ALGORITMASI KULLANILARAK CERRAHI
ROBOTIK KOL iCIN YOL PLANLAMASI

Marie Damien Ndzengue Mebebe
Bau-Akinrobotics Yapay Zeka Ve Robotik Teknolojileri Mekatronik
Miihendisligi Yiiksek Lisans Programi
Tez Danismani: Dr. Ogr. Uyesi Beste Bahgeci

Mayis 2025, 34 sayfa

Robot destekli cerrahi, anatomik yapilarin karmasiklig: icerisinde giivenli ve
etkili bir sekilde gezinmeyi saglamak ic¢in son derece gilivenilir bir ydriinge
planlamasina ihtiya¢ duyar. Ger¢cek zamanli uyarlamali yol planlama kapsamli bir
sekilde arastirilmig olsa da, cerrahi Oncesi siireclerde saglam ve iyi tanimlanmig
yorlingeler sunmasi acisindan c¢evrimdist yol planlama hald vazgecilmezdir.
Gilinlimiizde, belirli uygulama alanlarina ve hedeflenen sonuglara gére uyarlanmis cok
cesitli yol planlama algoritmalar1 gelistirilmistir. Bu algoritmalar arasinda, Rapidly-
exploring Random Tree (RRT) ve tiirevleri, tibbi robotikte yaygmn olarak
kullanilmaktadir. Ancak bu algoritmalar, uzun hesaplama siireleri ve uygulanabilir
olmayan ya da diizgiin olmayan yollar iiretmeleri gibi nemli kisitlarla kars1 karsiyadir.

Bu calisma, s6z konusu eksiklikleri gidermek ve yoriinge planlamasinin genel
etkinligini artirmak amaciyla gelistirilmis bir RRT* algoritmast Onermektedir.
Onerilen yaklasim, &rnekleme stratejisini hedefe yonlendirerek planlama siiresini
azaltir. Ayrica, anatomik ¢evrelerde sik¢a karsilasilan engellerin giivenli bir sekilde
asilmasini saglamak iizere bir agiklik esik mekanizmasi entegre edilmistir. YOriinge
kalitesini daha da artirmak icin yontem, B-spline enterpolasyonu ile birlikte bir

dontisiim matrisi kullanarak diizgiin, kesintisiz ve sarsintisiz yollar {iretir.

Anahtar Kelimeler: RRT Algorithm, Offline Path Planning, Sampling-based

Planning, B-spline Smoothing.
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Chapter 1

Introduction

In this fast-evolving era, the demand for advanced technologies continues to
grow. These technologies facilitate human life by providing assistance or even
replacing human effort, regardless of the application field or nature of the task. One
domain where this technological advancement is particularly evident is medicine,
which continuously seeks new visions to improve patient consultation, diagnosis,
therapy, and treatment. The surgical sector, in particular, has experienced significant
technological evolution, ranging from machines and robots fully operated by humans
to the development of increasingly autonomous surgical systems.

Robotic surgery offers several advantages over traditional surgical methods,
including reduced trauma, faster patient recovery, and enhanced precision and
efficiency in task execution. As minimally invasive procedures gain wider adoption,
the importance of meticulous preoperative preparation and offline path planning
becomes increasingly evident. Rather than solely depending on real-time autonomous
decision-making, the ability to strategically plan surgical trajectories and actions prior
to the procedure is critical for ensuring accuracy and safety, especially in complex
anatomical regions. One of the central challenges in robotic surgery is equipping the
system with a carefully optimised plan that anticipates possible complications and
variability. Robust offline planning not only improves surgical precision but also plays
a role in mitigating risk associated with unexpected Intraoperative events, thereby
enhancing overall surgical outcomes.

To address these challenges, ongoing research explores various strategies,
including strategy optimization, obstacle avoidance, and an advanced control system.
For example, the study presented by (Cursi & Kormushev, 2021) introduces an offline,
preoperative system designed to identify the optimal insertion point for surgical tools
by integrating the remote centre of motion (RCM) constraint. While this approach
enhances safety and accuracy, it is hindered by computational complexity and
deployment challenges, primarily due to the iterative optimisation required over a
discretised search space. Another promising development involves the use of artificial

intelligence (AI) preoperative planning, particularly Deep Neural Network (DNN)
1



models combined with 3D printing technology to enhance surgical precision and
efficiency (J. Wang et al, 2024). However, this technique still faces notable
limitations, such as instability and precision issues with guide frames including screw
deviation from plan trajectories. Furthermore, the rigidity of the frame may lead to
systematic errors but affect multiple placements simultaneously. A third noteworthy
contribution is the final element modelling (FEM)-based framework for optimising
preoperative planning in thermal ablation of brain tumours, as proposed in (Zhao,
Jiang, Bales, Wang, & Fischer, 2024). While this approach offers improved planning
accuracy, it also raises concerns about computation and time constraints due to the

intensive simulation requirements of FEM based analysis.

1.1 Statement of the Problem

In surgery, executing precise tasks like incision or suturing with a surgical
robotic arm necessitates high levels of accuracy, smooth trajectory planning, and
operational safety to minimise damage to surrounding tissues. The robotic system must
be capable of following a predefined path while adapting to patient-specific constraints
such as anatomical geometry, insertion point, and the proximity of critical structures,
including blood vessels and vital organs. However, conventional path planning
algorithms, particularly Rapidly exploring Random Trees (RRT) and their variants,
often produce suboptimal trajectories characterised by limited smoothness and
inefficient space exploration. This highlights the pressing need for more advanced path
planning methods that can achieve a balance between trajectory smoothness, obstacle

avoidance, execution time and computational efficiency in complex surgical scenarios.

1.2 Purpose of the Study

This study intends to develop and simulate an upgraded offline RRT* path planning
algorithm tailored for surgical robotic arms, with the objective of generating precise,
smooth, and continuous trajectories suitable for surgical interventions while

effectively navigating around obstacles within the operational workspace. To validate
2



the effectiveness of the proposed algorithm, the following sub-hypothesis are
formulated:
H1: Goal-biased sampling will reduce the average time required to find a valid
path compared to the standard RRT algorithm.
H2: Implementing a clearance mechanism will maintain a safe distance from
obstacles, thereby reducing the likelihood of collision and enhancing the
reliability of the path
H3: Applying 4th-degree B-spline interpolation with a rotation matrix will
significantly improve the smoothness of the path without increasing total
computational time beyond 2 seconds.
H4: The upgraded algorithm will consistently outperform RRT and RRT
connect in terms of both efficiency and reliability in a complex, obstacle-rich
environment.
The structure of this document is organised as follows: Chapter 2 provides an overview
of various path planning algorithms, with a focused analysis of RRT, RRT connect,
RRT star and their associated limitations. Chapter 3 outlines the research methodology
and details the procedural steps undertaken in the course of this study. Chapter 4
presents the results obtained, along with relevant evaluations and performance
assessments. Finally, Chapter 5 discusses the key findings, draws conclusions, and

proposes potential directions for future work.



Chapter 2

Literature Review

The literature review in this study will explore the state-of-the-art algorithms
employed in offline path planning techniques for robot-assisted surgery, with a
particular focus on methods that enable precise, reliable motion planning in complex
anatomical environments. It will also explore the RRT algorithm and its variants.
While considerable research has been directed towards real-time adaptive path
planning, offline strategies remain essential for preoperative planning, offering the
advantage of generating optimised, well-defined trajectories without the
computational constraints of intraoperative adjustment. This preoperative approach
contributes significantly to surgical precision by enabling efficient and constraint-
aware movement planning ahead of execution.

Several notable studies have advanced this domain. For instance, the work in
(Tzanetis et al., 2023) leveraged preoperative computed tomography (CT) imaging and
statistical shape models to develop patient-specific musculoskeletal representations,
aiding in preoperative trajectory planning. A quadratic optimization function was used
to minimise deviations in kinematics and ligament strain from the Pre-disease state of
the knee. Despite its precision, the computational time of approximately 32 hours
poses limitations for use in time-sensitive clinical settings. Building on this, the study
(2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019) proposed a hybrid approach combining the Bidirectional Continuous
Tree Search (BCTS) algorithm with Bayesian optimization (BO) and a Radial Basis
Function Neural Network (RBFNN) to enhance the smoothness and efficiency of

offline preoperative path planning.

2.1 Overview of Path-Planning Algorithms

To start, we can consider (Y. Zhang, Ju, Zhang, & Qi, 2022), that makes use of
the Rapidly Exploring Random Trees star (RRT*) algorithm and incorporates motion
constraints of flexible needles to ensure smoother and more feasible paths.

Nonetheless, this study underlines a poor optimisation of the trade-off between

4



accuracy and safety. (Ryan Luna, 2013) introduces a Meta-algorithm that combines
traditional sampling-based motion planning with post-processing optimisation
techniques to achieve continuous improvement of the planned trajectory. (H. Zhang,
Zhu, Shen, & Song, 2023) proposes the method of Implicit Neural Field (INF) to guide
teleoperated robotic surgery, but has a limited applicability to articulated or steerable
surgical tools. (Hang Su, Jamal Sheiban, Qi, Salih Ovur, & Alfayad, 2024) employs
Virtual reality (VR) for a robot-assisted surgical training system for robot-assisted
minimally invasive surgery (RA-MIS). The system uses wearable sensorised gloves
and Myo controllers for the manipulation of robotic surgical tools. High dexterity and
controlled manoeuvrability are possible by utilising the system of concentric tube
robot (CTR) that uses a fluorescent imaging probe to enhance precision in soft tissue
imaging, helpful in the motion planning (Thamo et al., 2024). Then comes the
introduction of an indirect trajectory planning method based on a three-stage
evolutionary algorithm to optimise motion and planning, an application that ensures
collision-free motion planning while minimising execution time(Abu-Dakka, Rubio,
Valero, & Mata, 2013). Still, the cubic splines on which the method relies for trajectory
generation may not always ensure jerk-minimised smooth motion. (Hao et al., 2022)
Instead applies an improved Artificial Potential Field (APF)-based path planning
algorithm that offers safety and accuracy in robot-assisted spine surgery. The dynamic
gravitational constant and piecewise function are introduced to address common issues
in traditional APF, such as local minima and target unreachability near obstacles.
Despite the amazing benefits of this application, the burden of computational cost due
to the combined APF and PDNN requires continuous real-time computation. Also,
processing time is considerably increased because of obstacle avoidance constraints
and the joint limit checks. (Tavares, Martins, & Tsuzuki, 2011) suggest the
implementation of Simulated annealing (SA) with the adaptive neighbourhood
approach, which is designed to handle cost functions with nonlinearities,
discontinuities and stochastic elements, making it suitable for robot path planning.
However, the study uses three different path representations, but it does not evaluate
higher-order splines that could produce smoother and more energy-efficient paths. To
add, (Santos, Rade, & da Fonseca, 2022) put forward an off-line path planning
approach that combines several optimisation criteria together with machine learning.

This approach, however, has limited scalability as it considers only a 3-DOF space
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manipulator. (Bernardes, Adorno, Poignet, & Borges, 2013) introduces an Arc-RRT
that uses input sampling instead of point sampling, along with explicit geometric
constraints, that together ensure feasible trajectories and increase efficiency. Dual
Reward and Policy Offline Inverse Distillation (DROID), an offline imitation learning
from heterogeneous demonstrations used by (Jayanthi et al., n.d.) is a method used for
Mars Rover Path Planning (MPP). A safe and precise glioma resection was performed
thanks to the implementation of a modified RRT algorithm for a safe and feasible path
using a cost function (Manrique-Cordoba, Martorell, Romero-Ante, & Sabater-
Navarro, 2024). This application assumes that the preoperative MRI/DWI data remains
unchanged during surgery, while brain shifts, deformations due to swelling and tissue
movement may occur intraoperatively. From (Weber, Gambao, & Brunete, 2023) it is
clear that there are numerous applications for offline path planning, like slicing,
sectioning or differential geometry-based, which can all be implemented and tested
using various simulation tools like ROS or RobokDK. The implementation of
innovative Path Planning for Coreless Filament Winding (CFW) (Hiigle, Genc,
Dittmann, & Middendorf, 2022) presents a parameter-based method that includes the
analytical Tool Center Point (TCP) trajectory generation, later on validated using
Finite Element Method (FEM) simulations. Only, there is a shortage of time and
energy optimization consideration, and it requires manual adjustments for collision
avoidance. (Sundaram, Budjakoski, Klodmann, & Roa, 2022) suggest a Robot-
Assisted Surgical System Capability Maps (RASSCMAP) for the base pose
optimisation. Nevertheless, the application does not address much consideration to the
two-collision avoidance. (Chakraborty et al., 2022) puts light on the varieties of
algorithms for path planning, depending on the understanding of every algorithm’s
strengths and weaknesses and the various areas of application of each algorithm.
Another implementation of Al is the use of novel reinforcement learning-based path
planning that proposes a heuristically accelerated deep Q-network (HADQN) to
optimise path planning for steerable needle insertion in neurosurgery. This provides
great advancements in neurosurgery but still lacks energy and speed optimisation that
reduces the actuation force of the needle and ensures safety(G. Ji, Gao, Zhang, Cao, &
Sun, 2023). In the comparative study presented by (Kisinde, Hu, Hesselbacher, &
Lieberman, 2021), the Mazor X-Align software provides 3D preoperative surgical

planning. This software automates anatomical segmentation, accounts for a range of
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motion limitations, and simulates spinal correction modification. (Delaney, 2024)
drives through the evolution from 2D to advanced 3D software-based planning for
preoperative planning that guides implant placement. Following is the application of
Inverse Reinforcement Learning (IRL) for path planning during neurosurgery, and
later compares this method to other path planning methods. The fact that the IRL
model learns from a simulated brain environment may bring about overfitting as the
real case scenarios may differ considerably(Segato et al., 2022). On the other hand,
(Lin, Xie, Wang, & Wang, 2023) proposes a Deep Reinforcement learning (DRL)-
based approach for preoperative planning of intra-operative ultrasound. It focuses on
a 4-DOF cardiac ultrasound robot that addresses the challenge of optimal probe
positioning. The approach leverages a double Deep Q-Network (DQN) for path
planning but still fails to guarantee effective energy and time optimisation. (Hao Su et
al., 2022) shows the usefulness and applicability of MRI in path planning during
surgeries. (Monfaredi et al., 2024) Dives through the different pre-operative path
planning for minimally invasive surgery based on different parameters like surgical
tools, type of surgery, and anatomical considerations. A further implementation of path
planning is in gynaecology for procedures like hysterectomy, myomectomy and
endometriosis surgery (Alkatout, O’Sullivan, Peters, & Maass, 2024). The method
uses a modular platform designed to integrate the robotic and laparoscopic techniques.
In an environment with multiple obstacles, the study (Jiang, Liu, Cui, & Jiang, 2022)
proposes the combined application of Improved RRT and Artificial Potential Field
(APF). The RRT algorithm addresses path planning in complex, multi-obstacle
environments, while APF optimises the path and ensures efficiency and collision
avoidance. This application, however, is not time-effective. (Zhong, Wang, & Cheng,
2022) jointly implement Deep Reinforcement Learning (DRL) and Inverse Kinematics
(IK) by integrating Deep Deterministic Policy Gradient (DDPG) with IK and
introducing a gain module to balance exploration and exploitation. This ensures
smooth and collision-free trajectories but does not have energy efficiency
considerations. For a collision-free path, (Y. H. Yu & Zhang, 2022) developed an
optimized slice-based Heuristic Fast Marching Tree (SH-FMT) algorithm which
enables a better node placement and is highly efficient when compared to RRT, RRT*
and FMT**. However, there is a lack of hardware consideration. As an attempt to

resolve the issue of slow convergence speed and low search efficiency, (Y1, Yuan, Sun,
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& Bai, 2022)study employs an improved P_RRT algorithm for path planning that
involves a dual-expansion strategy for new nodes, a cost function to optimise nearest
neighbour selection and redundant node deletion for path smoothing. (Pan, Zhang, Xia,
Xiong, & Shao, 2022), in order to enhance local minima generally present during the
application of APF for path planning, introduces an improved version of APF (IAPF).
(C. Cheng, Sha, He, & Li, 2021) sweeps through various path planning applications
like A*, genetic algorithm (GA), Particle swarm optimisation (PSO), Ant colony
optimisation (ACO) and differential Evolution (DE) to name just a. They analyse them
under different criteria and compare their results to understand their strengths and
weaknesses. (H. Shen, Xie, Tang, & Zhou, 2023) Proposes a money pool ability-based
optimal rapidly exploring random tree star (RRT*) path planning strategy for industrial
robot manipulators, using path length and manipulability both as constraints and
evaluation metrics. They also implement adaptive step size in RRT to improve search
efficiency. (Yang Wen, Haiying, & Zhisheng, 2021) designed an improved RRT star
(RRT*) that introduces a target probability offset, ensuring faster conversions by
biasing the random sampling towards the goal and also a variable step size control,
which helps in escaping local minima, making the algorithm more efficient. (‘Robot
Arm Path Planning Based on Improved RRT’, n.d.) also present an improved RRT
algorithm for robot arm path planning, focusing on target probability biasing invariable
step size control to ensure frequent sampling towards the goal and prevent the
algorithm from getting trapped in local minima. Another improved RRT star algorithm
for a 6-axis manipulator path planning in an obstacle-field environment is proposed by
(Liu & Cao, 2022) with two key improvements in enhanced path pruning and reduction
of the global sampling space. (Zhuang, Li, & Ding, 2023) present an obstacle
avoidance path planning method that instead implements an artificial potential field
(APF) whose local minimum issue is corrected by improved rapidly exploring random
tree star (RRT*) and A* algorithm. (Dai, Zhang, & Deng, 2024) jointly implement
artificial potential field (APF), goal-biased bi-directional RRT* and direct connection
strategy. (Demir, 2021) combines the application of Genetic Algorithms (GA), Particle
Swarm Optimisation (PSO) and Artificial Potential Field, which are all heuristic
methods. Another advancement of the RRT* algorithm is presented by (H. Ji, Xie,
Wang, & Yang, 2023) that employs an Ellipsoidal-Shape RRT* algorithm with which

the contributions are: incorporating angle constraints, using ellipsoidal connection
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strategy, slow-speed informed sampling and path smoothing using polynomial
interpolation. (R. Wang, Xie, Chen, & Li, 2023) formulates a novel method of third-
order Time-Optimal Time Scaling (TOTS), divided into four stages; the first two
compute the second-order optimal velocity profile while the third and fourth stages
eliminate jerk constraint violation. (Shao et al., 2021; Shi, Wang, Zhao, & Tian, 2022)
integrates a Goal-biased RRT algorithm and bi-directional path smoothing. AN
investigation study conducted by (Duan & Zhang, 2022) aims to evaluate various
polynomial-based trajectory planning methods using the Lagrangian-Euler dynamics
model to calculate energy consumption. (Wei, Zheng, & Gu, 2021) presents a
specialised, rapidly exploring random tree (Sp-RRT) approach for Follow-the-leader
(FTL) motion planning of hyper redundant manipulators in confined environments.
(Yalun Wen & Pagilla, 2023) proposes for path planning implementation, a trajectory
optimisation using the orthogonal collocation method in which states are represented
with Legendre polynomials in Barycentric form, and the problem is converted into a
discrete nonlinear programming (NLP) formulation. And a collision avoidance
method. (Long, Li, Zhou, & Chen, 2023) enhances RRT* with a dynamic A* cost
function sampling method, a path pruning strategy, Dynamic region path repair and
regrowth, and Quintic NURS and Particle Swarm Optimisation (PSO). (Song et al.,
2021) suggest an adaptive robust control method using a Radial Basis Function (RBF)
Neural Network to improve trajectory and Quintic polynomial to smooth the path.
(Massaro, Lovato, Bottin, & Rosati, 2023) introduces a nonlinear optimal control
approach (NLP) that employs a pseudo-spectral collocation method for numerical
solutions and incorporates actuator constraints. Another implementation of RRT is
proposed by (Tian et al., 2021), in which redundant nodes are reduced using Parent
Point Priority Determination (PPD). (Yuan, Yi, Sun, & Bai, 2021) combiene the
strengths of Improved Artificial Potential Field (I-APF), which is heuristic-based and
Improved Rapidly exploring Random Trees (I-RRT) which uses a triangular nearest-
neighbor node selection strategy and adaptive step sizes. The heuristic path planning
method for a tomato-bunch harvesting robot that integrates a 3D-Convolutional Neural
Network (3D-CNN) based position Posture Map (PPM) with rapidly exploring random
tree (RRT) algorithm (Q. Zhang, Liu, & Li, 2023). A simultaneous search for both the
optimal path and the optimal motion time using a cubic uniform B-spline interpolation

and an improved genetic algorithm (X. Yu, Dong, & Yin, 2022). (Gao, Yuan, Sun, &
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Xu, 2023) execute a novel BP-RRT* using a Backpropagation (BP) Neural Network
to enhance RRT* in a 3D environment with dense obstacles. (X. Cheng et al., 2023)
proposed improvements to RRT-Connect with; adaptive step size strategy, Fixed
sampling function instead of random sampling and Four-tree seach method. (Fairchild,
Srivastava, & Tan, 2021) addresses computational challenges associated with
traditional obstacle modelling and proposes an improved geometric approach using
parametric equations instead of point-based representations. (‘Towards Comparison
and Real Time Implementation of Path Planning Methods for 2R Planar Manipulator
with Obstacles Avoidance. ’, n.d.) employs rational Bezier and NURBS algorithms for
path planning to ensure path continuity and smoothness. (Q. Cheng, Zhang, Liu,
Zhang, & Hao, 2021) formulates a hybrid path planning algorithm that employs a
Gaussian Mixture Model (GMM), Gaussian Mixture Regression (GMR) and a
Modified Probabilistic Roadmap (MPRM). (Rajendran, Thakar, Bhatt, Kabir, &
Gupta, 2021) uses a bidirectional tree search. Initially, a previously created tree search
is expanded, then secondly includes novel scheduling logic and tactics that reduce both
the planning time and the failure rate. Lastly, an approach for inter-tree connections
that adjusts to collision data collected over time. (J. Xu & Wang, 2022) presents an
improved motion planning algorithm called SDPS-RRTConnect, which enhances the
standard RRTconnect method by improving it based on a Sparse Dead Point Saved
(SDPS) strategy. (LIU Yaqiu, 2021) Employ an Improved RRT that integrates an
extension-point selection strategy, an adaptive step-size strategy, a local minimum
avoidance mechanism and the Dijkstra algorithm for optimisation of the planned path.
(Y. Wang et al., 2022) improves the RRT algorithm with an intermediate bias point
strategy and path shortening techniques.

2.2 Overview of RRT-Based Algorithms

2.2.1 RRT algorithm. This probabilistic sampling-based approach
incrementally expands a tree structure. By randomly selecting points within the state
space, the algorithm efficiently explores unoccupied regions, guiding the search
towards a feasible path from the initial point to the target destination(Y. Shen, Liu, &
Luo, 2021)
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Input: M, z;,i.% goal
Result: A path I" from z;,;; 10 Z0u
T .init();
fori: =1t ndo
Trand — Sample(M) ;
Tnear — Near(Z,onda, T):;

A + Stec '.('I‘Itlllt" LTnear, Ste l),\'/. ¢ ):

E; «+ Edge(Znew, Tnear):

if CollisionFree(M, E;) then
T .addNode(x ey );
T.addEdge(E;);

£ Zoew = 2o then
Success();

Figure 1. Pseudocode representation of RRT algorithm(Yao, 2024). x denotes various
parameters according to the subscript. M represent the configuration space, T represent
the tree structure, and E is a representation of the edge in the tree. The “.addNode”
and “.addEdge” are functions associated with T.

The rapidly exploring Random Tree (RRT) algorithm builds a tree through random
sampling within the search space. The tree originates from a defined initial node
denoted Node init and expands iteratively to find the path toward the goal state, goal.
As iteration progresses, a random node (Node rand) is selected from the configuration
space (2D, 3D). If this randomly chosen node lies in a collision-free region, the
algorithm identifies the nearest node, Node nearest, within the tree using a predefined
metric. If the Node rand is reachable from Node nearest within a specified step size,
the tree extends by connecting the two nodes. Otherwise, a new node, Node new, is
generated using a steering function, and the tree is expanded by linking Node new and
Node nearest. A Boolean collision check ensures that the connection between
Node new and Node nearest is free of obstacles. Another Boolean checks if the goal

is reached, and the algorithm stops if that’s the case(Yao, 2024).
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Figure 2. Process of RRT algorithm tree expansion. This illustration shows a typical
step in the RRT algorithm’s tree expansion. The purple point is the random point
generated at the beginning of the loop, and according to which, a nearnode is selected
(in red). According to the step size, a newnode (orange) is added.

2.2.2 RRT connect algorithm. The RRT-Connect uses two randomly growing
trees within the free space. One tree originates from the starting point, Qinit, while the
other begins at the target point, Qgoal. These trees expand bidirectionally, exploring
free space and alternately generating new nodes, denoted Qnew, and a check is
performed to determine if the Euclidean distance between Qnew and the nearest node
in the other tree is less than a predefined step length €. If the distance is within this
threshold and there are no obstacles along the connection, the two nodes are linked,
effectively merging the two trees into a single structure and forming a complete path

from the start to the goal (Yang, Li, Liu, Yu, & Li, 2021).

Begin RRT-Connect Procedure
Ta + Insert Root Node<gs> to Ts
T} < Insert Root Node<ggyy> to Tj,
While 1 <~ nto N do
Generate n-th Random Sample
Grand < Position of n-th Random Sample
If Not Extend(T,, Ty, quewn < Null, .44, A, C) then
If Connect(P pney, < Null Path, Ty, Ty, Guewn, A) then
ypqen < Distance of P,
I dgjiorer = 0 OF dyjiopter > dreach then
10 R <= Preach
11 dshur!er — drmch
12 Swap(T,, Ty)
End RRT-Connect Procedure

GO NI Oy Ul = LW N =

el

Figure 3. Pseudocode for the RRT-Connect algorithm(Kang, Lim, Choi, Jang, & Jung,
2021). Depending on its subscript, p denotes various parameters. A is similar to € and
denotes the stepsize. dreach is the distance associated with Preach (checking parameter
for goal reached), and dshorter tracks the shortest path found.
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Figure 4. RRT-Connect working principle (Chen, Fu, Zhang, Fu, & Shen, 2022). q
refers to different parameters represented by the subscript attached to it. € is the step
size used for tree extension, while the dashed line shows the final connection. T
denotes the tree, which in this case are two (T1 and T2).

2.2.3 RRT star algorithm (RRT*). RRT* takes over the properties of RRT and
works alike but introduces an optimization step that evaluates whether a newly added
node can be reconnected to a different parent node for a lower overall path cost. If a
more efficient parent node is found, the tree is restructured in a process known as
rewiring, which relies on the neighbourhood radius, r. The radius defines a search
region around the new node to find a lower cost parent. The neighbourhood is ideally
set to 2-3 times the step size for effective rewiring(T. Xu, 2024). y is the user-defined

constant, n is the number of nodes, and d represent the dimension of the configuration

- |

n

Starting

Node 5 Neighborhood

Figure 5. RRT* parent cost check and neighbourhood radius representation
(Mohammed, Romdhane, & Jaradat, 2021). This figure illustrates how the RRT*
evaluates parent node costs within a defined neighbourhood. The neighbourhood is the
rewiring search area selected by the user and is larger than the stepsize.
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Figure 6. Representation of RRT* node reconnection to lower cost parent(Mohammed
et al., 2021). After a better parent is found, the link is deleted with the previous one
and created with the new parent.

1 7 « InitializeTree();

2 T «— InsertNode(D, zinir, T);

3 for i=0 to i=N do

4 Zrang «<— Sample(3);

5 Znearest «— Nearest(T, Zrand);

6 (Znew, Unew) < Steer (Znearest, Zrand);
7 if Obstaclefree(zqew) then

8  Znear «+— Near (T, Zuew, |V));

9 Zmin <— Chooseparent (Znear, Znearest, Znew);
10 7 « InsertNode(Zmin, Znew, T);
11 7 «— Rewire (T, Znear, Zmin, Znew);
12 return T

Figure 7. Pseudocode representation of RRT* algorithm(Noreen, Khan, & Habib,
2016). Here, z represents different points and node parameters depending on the
subscript associated with it. |[V| represent the number of nodes in the tree. T is the tree
parameter. Unew is the control input.
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Chapter 3

Methodology

This chapter outlines the methodological framework employed to evaluate and
compare existing path-planning algorithms with the upgraded version of RRT*

proposed by this study in a structured and consistent manner.

3.1 Environment Setup

All three algorithms (RRT, RRT-Connect, Upgraded-RRT) were executed under
the same conditions to ensure fair evaluation. In a main m-file, all the algorithms are
called to run starting from RRT, through RRT connected to the Upgraded RRT star.
For each algorithm, a 3D occupancy grid map was developed, to which obstacles were
added. It served as the simulation environment. The code in the main m-file ran all the
algorithms called for a given number of trials (20 in this study), and for each set of 20
trials, initialized parameters like step size and max number of iterations were kept
constant for effective performance assessment purposes. The parameters were the
same for each algorithm except parameters that are specific to an algorithm like the
binding distance for RRT connect. There were the same predefined start and goal
positions, and the environment was populated with two distinct obstacle densities.

e Low Obstacle Density (Scenl). A scenario with relatively few obstacles. This
represents surgical regions like the skin.

e High Obstacle Density (Scen2). A scenario with numerous obstacles creates a
clustered environment. This may represent a surgical region like in vivo surgery at
the level of the belly or the chest, where organs other than the organ on which
surgery is performed are considered obstacles.

For each scenario, a set of 20 trials each was run. This unified approach ensures
consistent comparisons across methods, isolating the effect of the planning algorithm
itself. We recorded the outcome of each run for later analysis, focusing on key

performances described subsequently.
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3.2 Algorithms Implemented

The implementation runs the sampling-based path planning algorithms RRT,
RRT connected and the upgraded RRT* algorithm proposed by this study in the
MATLAB platform as shown in Figure 8. Their performance was evaluated based on
finding path efficiency, path length, computational time and path smoothness.

The Upgraded RRT* implements a Goal Bias Sampling Strategy with a bias
probability of 0.2 (20%), used to increase the likelihood of sampling towards the goal,
leading to a faster convergence. Given that surgery is carried in sensitive environment,
it is not sufficient not to touch the obstacle (which in anatomical environment are other
organs) but also to stay at a distance from the obstacle to anticipate any abrupt
movement of an obstacle, this upgraded version incorporates a Clearance-based
Collision Avoidance in which a minimum clearance threshold is set to ensure that the
new node does not collide with the obstacle and is at a certain distance from it. For this
implementation, each obstacle is considered a 3D sphere and the node a 3D point. The
code calculates the Euclidean distance (Equation 2) between the new node and the
obstacle and compares the distance to the radius r of the obstacle plus the minimum
clearance C. Also, a smoothing section, which uses a 4th-degree B-spline interpolation
and a rotation matrix (illustrated in Equation 3 - 5), is added in the algorithm to
improve the quality of the path and its feasibility. The Algorithm workflow can be seen

in Figure 9.
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Initialise
parameters

.
start loop

}

run RRT

+
run RRT connect

¥

run U-RRT*
+

end of loop

¥
create and save

resul&s table

end

Figure 8. Workflow of the main Matlab script (m-file). This flowchart outlines the
execution process of the primary Matlab script used to evaluate the performance of
RRT, RRT connect, and U-RRT* algorithms. After initializing parameters, the script
iterates through a specified number of trials (numTrial), running each path-planning
algorithm in sequence. Upon completion of all trials, the script generates and saves a
result table for further analysis.
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Figure 9. U-RRT* algorithm workflow. This diagram illustrates the complete path-

planning process of the proposed U-RRT* method. The algorithm begins with random
point generation influenced by a goal bias, finds the nearest node, performs collision
checks using a clearance mechanism, and adds the new node to the tree. If necessary,
it rewires and checks whether the goal is reached. If the goal is reached, the algorithm
proceeds to backtrack and apply B-spline interpolation and a rotation matrix to
generate a smooth and feasible path. Otherwise, the process repeats until a valid path

is found.

In the following equation, d; is the distance between the newNode and the centre of

the i-th obstacle, p is the 3D coordinate of the newNode, 0, is the 3D coordinate of
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the i-th obstacle centre, 7; is the radius of the i-th obstacle, and C is the minimum

clearance.

distance (d)) = Il — o/l = V(x — %) + (= y0)? + (z = 2)* 2

If ||p — 0,|| <r; + C, then it's too close or in contact with the obstacle and the node is
returned as colliding, thus not added to the tree.

The 4th-degree B-spline interpolation constructs a new set of points using
Equation 3, where c(t) is the interpolation curve, and N;, are the B-spline basis
functions of degree 4, P; are the control points (interpolation points). Each control

point is typically a vector, e. g, P; = x;,¥;, Z;.

C(t) = Z?:l Ni,4- ' Pi 3

After generating the smooth interpolated path, the entire set of interpolated
points is rotated such as to align the path with the desired orientation in the surgical

environment. In Equation 4 below, R,(6) is the rotation matrix.

cos(f) —sin(@) O

R,(0) = [sin(6) cos() O 4
0 0 1
¢'® = R,(8) - c(t) 5

This upgraded RRT* algorithm follows a structural approach to efficiently generate
collision-free and smooth paths in a 3D environment in a remarkable amount of time.
The workflow optimises fast node generation, collision avoidance and path
smoothness while maintaining computational efficiency. Figures 9-14 show examples

of how the different algorithms perform.
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Figure 10. Visualization of RRT algorithm in scenario 1 (scenl). This plot illustrates
the path planning using the RRT algorithm. The blue lines represent the search tree
expansion, the orange spheres indicate obstacles, the green and red markers show the
start and goal positions, respectively, and the bold black segments depict the final path

found.

Trial 1 - RRT Connect Algorithm
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Figure 11. Visualization of RRT connect algorithm in scenario 1 (scenl). This figure
illustrates the path planning process using the RRT-connect algorithm. Two rapidly
growing search trees expand from the start (green) and goal (red) positions. The final
connection path between the trees is indicated by the black line.
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Trial 1 - Upgraded RRT star Algorithm
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Figure 12. Visualization of U-RRT* algorithm in scenario 1 (scenl). The 3D plot
presents the optimized path planning achieved with the proposed U-RRT* algorithm.
The start and the goal positions are illustrated in green and red, respectively. The
orange spheres represent the obstacles. The search tree is shown in blue, with the final
smooth path marked in black. Rewiring steps are highlighted in green, indicating
optimisation phases. The bold Black line indicates the path found.

Trial 1 - RRT Algorithm
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Figure 13. Visualization of RRT algorithm in scenario 2 (scen2). This plot illustrates
the path planning using the RRT algorithm. The blue lines represent the search tree
expansion, the orange spheres indicate obstacles, the green and red markers show the
start and goal positions, respectively, and the bold black segments depict the final path
found.
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Trial 1 - RRT Connect Algorithm
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Figure 14. Visualization of RRT connect algorithm in scenario 2 (scen2). This figure
illustrates the path planning process using the RRT-connect algorithm. Two rapidly-
growing search trees expand from the start (green) and goal (red) positions, shown in
blue and red, respectively. The final connection path between the trees is indicated by

the black line.
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Figure 15. Visualization of upgraded RRT* in scenario 2 (scen2). This figure
illustrates the path planning process using the RRT-connect algorithm. Two rapidly-
growing search trees expand from the start (green) and goal (red) positions, shown in
blue and red, respectively. The final connection path between the trees is indicated by

the black line.
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3.3 Performance Metrics

During each trial, the following performance metrics were recorded for each
algorithm to evaluate and compare their performance:

e Execution Time. The time required for the algorithm to find a path from start to
goal or determine that none is found within the limit of the maximum iteration. A
shorter execution time indicates faster performance. It is measured using
MATLAB’s timing functions for each run and averaged over all trials per condition

to compare efficiency across algorithms.

tic;

run
algorithm

|

time = toc;

Figure 16. Workflow for recording execution time metric. The process begins by
calling “tic” to start the timer, followed by the execution of the algorithm. Once the
algorithm completes, “toc” is used to capture the elapsed time, which is stored for
performance evaluation.

e Path smoothness. A quantitative measure of the quality of the path produced. In
the context of this study, the smoothness of a path is assessed by considering the
turning angles calculated at waypoints and the variance of the angles to classify
the paths as either smooth, moderately smooth or stiff. The smooth path is
indicated by low angles and low variance.

e Path Length. Which informs on the possibility of a smooth path and also reflects
the feasibility of the path. It is measured by computing the Euclidean distance of
the differential of the path.
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e Search Success Rate. The percentage of trials in which the algorithm successfully
finds a collision-free path to the goal. This metric captures the reliability of the
planner under different circumstances. A 100% success rate indicates that the

planner found a path in every trial, whereas lower rates mean occasional failure.
Together, these three metrics provide a comprehensive insight into performance:

execution time reflects speed, path smoothness reflects path quality, and success rates

reflect the effectiveness/robustness of the planning method.
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Chapter 4

Findings

After running several sets of trials for code adjustments and adequate
performance, two sets of trials were performed for two case scenarios: the few
obstacles scenario (scenl) and the dense obstacle scenario (scen2). After each set was
run, verifications were performed to ensure the metrics were appropriately recorded
and the classification was well done. This section showcases all the results recorded

and their analyses.

4.1 Test Scenarios and Results

The first scenario (scenl) reflects a low-density environment, while the second
scenario (scen2) is about a high-density environment. In scenl, two obstacles are
placed between the start and the goal points such that the algorithm is required to avoid
these obstacles and still find a path to the goal. In scen2, four additional obstacles are
placed at the four sides of the already present obstacles between the start and goal
points. This increases the complexity of the search and the obstacle avoidance.

For the execution time metric and the path length, their means were calculated
(Table 1) for every algorithm and then plotted (Figures 17-18). Later, an additional
analysis was made using the one-way ANOVA statistical analysis method to
effectively compare the RRT and RRT connect algorithms' results to those of U-RRT*
separately. For the remaining parameters, Success rate, Path smoothness and Obstacle
avoidance, percentages were calculated and reported in tables and then plotted using

pie charts.
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Table 1

Mean Values of Execution Time and Path Length for the Different Algorithms

Execution Time/seconds Path Length/centimetres
Scenario  RRT RRT Upgraded RRT RRT Upgraded
connect RRT* connect RRT*
1 59.04 87.44 1.78 0.89 0.91 0.69
2 116.25 165.43 1.79 0.82 0.95 0.69
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Figure 17. Execution time comparison for scenario 1 (scenl). This bar chart represents
the execution time analysis of three path planning algorithms- RRT, RRT connect and
U-RRT*- under the same environment (scenl). The vertical axis represents the
execution time, with the statistical significance indicated by asterisks (p < 0.05 =*, p

<0.01 =**p<0.001 =*** p<0.0001 = ****)_ Variability across trials is represented
by error bars.
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Figure 18. Execution time comparison for scenario 2 (scen2). This bar chart represents
the execution time analysis of three path planning algorithms- RRT, RRT connect and
U-RRT*- under the same environment (scen2). The vertical axis represents the
execution time, with the statistical significance indicated by asterisks (p < 0.05 =*, p
<0.01 =** p<0.001 =*** p<0.0001 = ****) The error bars represent variability
across trials.

The p-value differs according to the compared algorithms. In scenl, for the
comparison between RRT and U-RRT*, the p-value is 0.0011 and for the comparison
between RRT connect and U-RRT*, the p-value is 0.0001. Now, for the path length,
the p-value related to the comparison between RRT and U-RRT* is 0.0779 and for the
RRT connect and U-RRT* comparison, it is 0.0001. In scen2, for the execution time,
the p-value is 0.0001 for both comparisons. Looking at the path length, the p-value is
0.0397 for the comparison between RRT and U-RRT*, while for the RRT connect and
U-RRT* comparison, it is 0.0001.
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Figure 19. Path length comparison for scenario 1 (scenl). This bar chart shows the
average path length generated by the RRT, RRT-connect and U-RRT* algorithms. The
y-axis represents the length, and error bars represent standard deviation across trials.
The statistical significance indicated by asterisks (p < 0.05 = *, p < 0.01 = ** p <

0.001 =*** p<0.0001 = ****) and ns (no significance) is returned where there is no
significant difference.
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Figure 20. Path length comparison for scenario 2 (scen2). This bar chart shows the
average path length generated by the RRT, RRT-connect and U-RRT* algorithms. The
y-axis represents the length, and error bars represent the standard deviation across
trials. The statistical significance indicated by asterisks (p < 0.05 =*,p <0.01 = ** p

<0.001 = *** p <0.0001 = ****) and ns (no significance) is returned where there is
no significant difference.
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Table 2

Percentage Representation of the Success Rate of a Found Path

Scenario 1 Scenario 2
Classification RRT RRT U-RRT* RRT RRT U-RRT*
connect connect
0 90 35 0 80 50 0
1 10 65 100 20 50 100

\

o

RRT w0 u1 RRT_connect Upgraded_RRT _star "o w1

Figure 21. Success rate assessment for scenario 1 (scenl). This set of pie charts
visually represents the success rate of path finding of RRT, RRT-connect and U-RRT*
algorithms in scenl. The orange portion indicates successful trials (classification = 1),
while the blue portion denotes failures (classification = 0).

O O o

RRT_connect Upgraded_RRT_star .4

Figure 22. Success rate analysis for scenario 2 (scen2). This set of pie charts visually
represents the success rate of path finding of RRT, RRT-connect and U-RRT*
algorithms in scenl. The orange portion indicates successful trials (classification = 1),
while the blue portion denotes failures (classification = 0).

29



Table 3

Percentage Representation of the Smoothness Metric

Scenario 1 Scenario 2
Classification RRT RRT U-RRT* RRT RRT U-RRT*
connect connect
0 50 84.61 0 0 60 0
0.5 50 15.39 10 10 30 0
1 0 0 90 10 10 100

The percentage of the smoothness metric reflects the smoothness of the found
paths only and does not consider cases where no path is found. 1 indicates a smooth

path, 0.5 a moderately smooth and 0 indicates a stiff path.

RRT_connect Upgraded_RRT_star

o960

=0 =05 =1 =0 ®05 m1 =0 =05 m1

Figure 23. Path smoothness comparison for scenario 1 (scenl). This figure represents
the smoothness classification results for the paths generated by RRT, RRT-connect
and U-RRT* algorithms. The pie charts categorize smoothness into three levels: 0 =
not smooth (in blue), 0.5 = moderately smooth (in orange) and 1 = smooth (in green).

RRT =0 =05 =1 v

RRT_connect =0 =05 =1 Upgraded_RRT_star

Figure 24. Path smoothness comparison for scenario 2 (scen 2). This figure represents
the smoothness classification results for the paths generated by RRT, RRT-connect
and U-RRT* algorithms. The pie charts categorise smoothness into three levels: 0 =
not smooth (in blue), 0.5 = moderately smooth (in orange) and 1 = smooth (in green).
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Table 4

Percentage Representation of Obstacle Avoidance

Scenario 1 Scenario 2
Classification RRT RRT U-RRT* RRT RRT U-RRT*
connect connect
0 50 55.56 0 50 60 0
1 50 44.44 100 50 40 100

For the obstacle avoidance metric, the percentage reflects the effective obstacle
avoidance of only planned paths, where 0 reflects failed avoidance and 1 reflects

successful avoidance.

RRT RRT_connect Upgraded_RRT_star

=) =] a0 = =0 =l

Figure 25. Obstacle avoidance assessment for scenario 1 (scenl). The orange section
represents the successful avoidance (classification = 1), and the blue section represents
the failed obstacle avoidance (classification = 0).

RRT_connect Upgraded RRT star

Db o ©

Figure 26. Obstacle avoidance analysis for scenario 2 (scen2). The orange section
represents the successful avoidance (classification = 1), and the blue section represents
the failed obstacle avoidance (classification = 0).

4.2 Results Analysis and Comparison
After pertinent analysis, it is observed that the U-RRT* outperforms in all the
metrics compared to the other algorithms. First, in the execution time metric, it is

observed that there is a significant difference between the RRT algorithm and U-RRT*
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with a significance of two stars (**) in scenl (Figure 18) and three stars (***) (Figure
19) in scen 2. While a significance of four stars (****) in scenl and scen 2 (Figurel8
and 19, respectively) between RRT connect and U-RRT* was noted. This
demonstrates that U-RRT* performs faster than RRT and even faster than RRT
connect both in dense and non-dense environments, which is not the case for the other
algorithms whose execution time increased as the obstacles increased. Also, for the
path length algorithm that introduces an idea of how feasible a path is, RRT connect
was found to generate the less feasible path, unlike U-RRT* that generated the shortest
paths. The significance between these two was thus high both in scenl and scen2 (****
in both) (figures 8-9). There was no significant difference between the RRT algorithm
and U-RRT* algorithm in scenl and only a one-star (*) significant difference in scen2
for path length.

For scenl and scen2 of the success rate metric, only U-RRT* always found a
path. It is observed that RRT has difficulties finding a path both in dense and non-
dense environments (scen2, scenl respectively) with a success rate of 10% in non-
dense and 20% in dense environments. The RRT connect algorithm was good enough
in scenl with a 65% success rate but less competent in scen2 with a drop to a 50%
success rate. The U-RRT* maintained high performance in both scenarios with a
100% success rate. For each algorithm and in each trial and scenario, when a path is
found, its smoothness was assessed to emphasize the evaluation of the feasibility of
the path, as a jerk-free environment is crucial for implementations related to surgery.
For that reason, the smoothness metric reflects smoothness results for trials in which a
path was found. In scenl, RRT produced either smooth or partially smooth paths in
equal percentage (50%), while in scen2, it generated either moderately smooth or stiff
paths still in an equal percentage (50%). RRT connect, on the other hand, in scenl
15% off the paths found were moderately smooth and 85% were stiff paths. In scen2,
10% of the paths found are smooth, 30% are moderately smooth, and 60% are stiff,
thus, RRT connect performed better in scen2. In scenl, 10% of paths found by U-
RRT* were moderately smooth, and 90% were smooth. In scen2, all the paths found
were smooth. The last metric parameter evaluated if the path found correctly avoided
obstacles. RRT had an equal percentage for both scenarios (50%). In scenl, only 44%
of the paths found by RRT connect avoided the obstacles correctly. In scen2, 40%
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avoided the obstacles correctly, which is even lower compared to scenl. The U-RRT*

algorithm always avoided the obstacles correctly.
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Chapter 5

Discussions and Conclusions

In summary, the performance of each algorithm varied depending on the specific
conditions under which it was applied. The standard RRT algorithm demonstrated
significant limitations, particularly in low density environments, with success rates as
low as 10% and average obstacle avoidance of only 50%. Its tendency towards
excessive exploration resulted in longer computation times and frequent failure to find
viable paths. While RRT connect showed improved performance over standard RRT,
with a success rate of 65% in sparse environment, it still produced suboptimal results
in dense environments, where its success rate dropped to 50%, and only 40-44% of
paths successfully avoided obstacles. Moreover, a large proportion of its paths were
stiff (85% in scenl), highlighting poor smoothness performance. In contrast, the
upgraded RRT* significantly outperformed both baseline methods across all
evaluation metrics. Upgraded RRT star was significantly faster, with improvements
marked by statistical significance (p < 0.01 to p < 0.0001) across scenarios. It also
generated paths that were up to 20-30% shorter than those generated by RRT connect,
with high statistical significance (****). Furthermore, it achieved a consistent 100%
success rate in both sparse and dense environments, compared to 10-65% for the other
methods. Additionally, it produced 90-100% smooth paths, while RRT and RRT
connect generated 50-85% stiff or moderately smooth paths. Lastly, it correctly
avoided obstacles in 100% of paths, outperforming RRT (50%) and RRT connect (40-
44%). These results demonstrate that U-RRT offers a 50-90% relative improvement in
success rate, smoothness and obstacle avoidance over the existing algorithms. Overall,
this study presents a reliable, efficient, and clinically relevant path-planning solution
for robotically assisted surgery. The proposed algorithm enhances both safety and
efficiency, potentially reducing preoperative planning time and improving the
operational reliability of robotic arms in an anatomically complex environment.

Looking ahead, future research could explore the integration of reinforcement
learning techniques into the planning framework, to enhance the algorithm's
adaptability and efficiency, enabling it to generate more context-specific and
optimised paths in less computational time.
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