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DEEP LEARNING FOR BREAST MASS SEGMENTATION: A
REGION-OF-INTEREST FOCUSED APPROACH USING

ETDP-U2-NET
ABSTRACT

Accurate segmentation of breast masses in mammographic images plays a critical role

in early breast cancer detection. In this thesis, we propose a novel deep learning

architecture, ETDP-U2-Net, tailored for mass segmentation using ROI-cropped

grayscale mammograms from the CBIS-DDSM dataset. The model integrates edge

and texture-aware pathways with enhanced skip connections to improve the

delineation of subtle tumor boundaries. Extensive experiments under both

non-augmented and augmented training regimes show that ETDP-U2-Net achieves

competitive Dice and IoU scores while maintaining a lightweight design with only

6.54 million parameters. Notably, unlike many prior studies, this work avoids

test-time augmentation and potential data leakage by applying augmentation solely to

the training set. The results demonstrate that ETDP-U2-Net not only surpasses many

heavier architectures in terms of performance-to-parameter efficiency but also adheres

to rigorous experimental standards. This study contributes a robust and efficient

segmentation approach that holds promise for integration into computer-aided

diagnosis systems in clinical settings.

Keywords: Breast cancer segmentation, ETDP-U2-Net, CBIS-DDSM, ROI-cropped

mammogram, medical image analysis, deep learning.
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ROI-KIRPILMIŞ MAMOGRAMLAR ÜZERİNDE
ETDP-U2-NET TABANLI DERİN ÖĞRENME İLE MEME

KİTLE SEGMENTASYONU
ÖZ

Mamografi görüntülerinde meme kitlesinin doğru şekilde segmentasyonu, erken evre

meme kanseri tespitinde hayati bir rol oynamaktadır. Bu tez çalışmasında,

CBIS-DDSM veri kümesinden alınan gri tonlamalı ROI (Region of Interest) kırpılmış

mamogramlar üzerinde kitle segmentasyonu gerçekleştirmek amacıyla geliştirilen

yeni bir derin öğrenme mimarisi olan ETDP-U2-Net önerilmektedir. Model, kenar ve

dokuya duyarlı yolları geliştirilmiş atlama bağlantılarıyla birleştirerek tümör

sınırlarının daha hassas bir şekilde belirlenmesini sağlar. Hem artırımsız

(non-augmented) hem de artırımlı (augmented) eğitim senaryoları altında yapılan

kapsamlı deneyler, yalnızca 6.54 milyon parametreye sahip hafif tasarıma rağmen

modelin rekabetçi Dice ve IoU skorları elde ettiğini ortaya koymaktadır. Özellikle,

önceki çalışmaların aksine, bu tezde yalnızca eğitim verisine artırma uygulanmış, test

verisine herhangi bir işlem uygulanmayarak olası veri sızıntısı engellenmiştir.

Sonuçlar, ETDP-U2-Net’in parametre-verimlilik açısından birçok daha ağır mimariyi

geride bıraktığını ve aynı zamanda titiz deneysel standartlara bağlı kaldığını

göstermektedir. Bu çalışma, klinik ortamlarda bilgisayar destekli tanı sistemlerine

entegre edilebilecek sağlam ve verimli bir segmentasyon yaklaşımı sunmaktadır.

Anahtar kelimeler: Meme kanseri segmentasyonu, ETDP-U2-Net, CBIS-DDSM, ROI

kırpılmış mamogram, tıbbi görüntü analizi, derin öğrenme.
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CHAPTER 1

INTRODUCTION

Breast cancer stands as one of the most significant global health threats, affecting

millions of women each year and accounting for a substantial share of cancer-related

deaths. According to the World Health Organization, nearly 2.3 million women were

newly diagnosed with breast cancer in 2020, leading to approximately 685,000 deaths

globally [1]. These statistics, supported by the GLOBOCAN 2020 study [2], reflect

the widespread prevalence and mortality associated with this disease. Although early

detection greatly increases the chances of survival, many individuals—especially those

living in low-income regions—are still diagnosed at later stages, largely due to the lack

of accessible and organized screening programs.

Mammography remains a cornerstone in the early detection of breast cancer, offering

a non-invasive and reliable method for identifying tumors before clinical symptoms

emerge [3]. In high-income countries, the inclusion of structured screening programs

within public health systems has contributed to earlier diagnoses and a noticeable

decline in mortality rates [4]. Leading medical organizations—such as the American

College of Obstetricians and Gynecologists and the U.S. Preventive Services Task

Force—recommend initiating routine screenings between the ages of 40 and 50,

depending on individual risk profiles [5, 6]. By contrast, in many lower-income

settings, the lack of accessible screening services often results in late-stage diagnoses,

reducing the likelihood of successful treatment and long-term survival.

Although mammography plays a vital role in detecting breast cancer, interpreting

these images remains a complex task. A major challenge stems from the low contrast

typically found in mammograms, particularly when dense breast tissue makes

abnormalities harder to detect. In addition, many tumors are small and subtle, forcing

radiologists to carefully examine details such as shape, margin, and density—features

that can vary not only between patients but also across different imaging views of the

same case [7]. To help address these difficulties, Computer-Aided Diagnosis (CAD)

systems have been developed. Leveraging deep learning techniques, these tools aim to
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automatically analyze mammograms, thereby improving diagnostic accuracy,

ensuring greater consistency among readers, and easing the clinical workflow [8].

The Curated Breast Imaging Subset of the Digital Database for Screening

Mammography (CBIS-DDSM) is widely recognized as a standard benchmark for

developing and evaluating Computer-Aided Diagnosis (CAD) systems [9]. It provides

grayscale mammograms along with pixel-level Region of Interest (ROI) annotations,

making it especially useful for training and validating segmentation models. However,

working with CBIS-DDSM also presents several challenges. Lesion sizes vary

widely, annotations may lack consistency, and image contrast is often low—all of

which can make it difficult to achieve robust and generalizable model performance.

Breast mass segmentation is a key component in the success of Computer-Aided

Diagnosis (CAD) systems, yet it remains technically demanding. The low contrast

typical of mammographic images, combined with the variability in lesion appearance

from one patient to another, makes precise boundary detection especially challenging.

This difficulty is even more pronounced in the case of small lesions, which, despite

their clinical relevance, are often missed by segmentation models due to their limited

pixel footprint. Although conventional architectures like U-Net [10] have formed the

foundation for many medical segmentation pipelines, their performance can

deteriorate under these complex imaging conditions.

In recent years, researchers have proposed a variety of improvements to address the

shortcomings of traditional segmentation architectures. One notable example is

Attention U-Net, which uses attention gates to help the model concentrate on the most

relevant parts of the image [11]. U-Net++, on the other hand, improves multiscale

learning by introducing nested and densely connected skip pathways [12]. More

recently, hybrid models like HTU-Net [13] and transformer-based approaches such as

MSMV-Swin [14] have been developed to better capture long-range dependencies and

contextual features. Alongside these architectural advances, researchers have also

turned their attention to loss functions. Focal loss [15] addresses the issue of class

imbalance by focusing learning on harder examples, while boundary-aware loss

terms [16] aim to sharpen segmentation near lesion edges. Together, these
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developments have led to more accurate and robust models, particularly in complex

medical imaging scenarios.

In this thesis, I introduce three new deep learning architectures—DPCA-U2-Net,

ETDP-U2-Net, and DPTrans-U2-Net—each developed to address the unique

challenges of segmenting grayscale mammograms. These models were designed to

address the shortcomings of existing methods by combining dual-path encoders,

residual connections, attention mechanisms, and transformer bottlenecks in a unified

framework. To support more accurate and stable training, a tailored loss function is

used—bringing together Dice, Focal, and boundary-aware terms. Equally important,

all data augmentation was performed only after the dataset was split into training and

test sets, in order to avoid data leakage and ensure that the experimental results truly

reflect real-world performance.

The core motivation behind this research lies in developing segmentation models that

are not only accurate but also practical for real-world clinical use. Many existing

studies report impressive results under controlled conditions, yet often fail to account

for everyday limitations such as restricted computational resources and the scarcity of

annotated data. This thesis focuses on pixel-level segmentation without using diagnostic

labels—a deliberate choice to keep the models lightweight, flexible, and better suited

for deployment in real-world clinical settings.
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CHAPTER 2

LITERATURE REVIEW

Accurately detecting breast masses in mammograms plays a vital role in early cancer

diagnosis and better treatment outcomes. As breast cancer continues to impact more

people worldwide, there has been growing interest in computer-aided diagnosis

(CAD) systems—particularly those based on deep learning—that support radiologists

in making more informed decisions. Even so, challenges remain. Low image contrast,

variation between patients, the small size of many lesions, and inconsistent evaluation

practices all continue to hinder model performance. This chapter reviews recent

research in the field, with a focus on dataset usage, architectural developments, and

evaluation strategies. It also outlines where this thesis fits within that landscape and

how it aims to move the field forward.

One of the most widely used public datasets for mammographic segmentation is the

Curated Breast Imaging Subset of the Digital Database for Screening Mammography

(CBIS-DDSM). It offers high-resolution grayscale mammograms alongside detailed

Region of Interest (ROI) masks. Developed specifically for research purposes, the

dataset includes pixel-level annotations, making it a strong candidate for training and

evaluating supervised segmentation models. However, despite its popularity, the

dataset is still frequently misused in the literature—particularly through improper data

splitting—which can lead to data leakage and inflated performance metrics. For

example, Shen et al. [45] did not separate the "mass" subset of CC and MLO view

from the "calcification" subset, leading to different distributions in the training and

testing set. Similarly, Li et al. [17] performed data augmentation post-split of the

dataset, bringing in information the training set contained into the test set through the

augmented variations. Such methodological shortcomings call into question the

validity of performance appraisals.

In this Thesis, a stricter approach is followed, where we denoise the CBIS-DDSM

dataset and only keep the ’mass’ subset. In addition, the dataset was stratified before
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any augmentation so that the test set contained no synthetic or augmented versions of

any training images. This detailed care in data splitting criterions prevents one of the

most major issues in previous works and guarantees that segmentation performance

will be unbiased.

Existing works can be divided into two types of segmentation, including the full-image

segmentation and the ROI-based segmentation. The difference between those two

methods is that the former one uses a segmentation model that is first trained on the

whole mammogram, while the latter focuses the task on a cropped area of the lesion.

ROI-based approaches are recently widely used due to their computational effectiveness

and superior localized results. Zhou et al. [18] demonstrated that, by training with ROI

images, the segmentation accuracy was increased by concentrating the model on the

lesion area and reducing background clutter. Similarly, Liu et al. [19] demonstrated

that attending more to local context improves the performance of deep networks in

detecting lesion borders, particularly for small abnormalities.

State-of-the-art methods in the literature for segmentation primarily belong to two types

of methods: full-According to our survey, although the original U-Net architecture [10]

is significantly popular across a great number of segmentation tasks, it does not perform

well over mammograms mainly for grayscale nature of the images, low contrast, and

complex texture of the tissue. Some alternatives have been suggested to circumvent

them. Oktay et al. AttU-Net [20] was developed using attention gates that allow the

model to focus on more important regions. Zhou et al. [12] proposed a U-Net++ with

nested and dense skip connections to enhance feature propagation and the multiscale

representation. These improved on the performances of those models but remained

limited in the ability to segment small or low contrast lesions due to the use of local

receptive fields.

In order to alleviate those limitations, some more modern structures adopt dedicated

modules. Zhang et al. [21] introduced residual U-blocks (RSUs) forplugging

high-resolution features in deep feature extraction. These were the most competent

RSUs in addressing multiscale segmentation problems. Hu et al. [22]proposed

Squeeze-and- Excitation (SE) blocks that learn to recalibrate feature-channel
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responses in a channel-wise manner, leading to better representation capability for

convolutional layers.

Based on these ingredients, this work presents ETDP-U2-Net and DPTrans-U2-Net. The

ETDP-U2-Net proposed dual-path encoders to independently capture edge and texture

features, which then are integrated via the cross-attention mechanisms. Each path leads

to its RSUs and SE blocks, resulting in a strong multi-representation framework dealing

with various lesion morphologies. The network is refined by the DPTrans-U2-Net which

introduces transformer-based modules at the bottleneck to capture global context and

semantic dependencies, which are essential to segmentation of small lesions.

Moreover, a third model, DPCA-U2-Net, was developed to maintain performance

while reducing computational overhead. The proposed model preserves the dual-path

cross-attention structure and continues to employ squeeze-and-excitation (SE) blocks

and deep supervision. What sets this model apart is its streamlined design, which

simplifies the architecture while still delivering strong performance. By striking a

balance between efficiency and accuracy, it manages to achieve results comparable to

more complex alternatives.

In addition to architectural improvements, the design of the loss function plays a key

role in training effective segmentation models. Although binary cross-entropy and

Dice loss remain widely used, they often fall short in the presence of severe class

imbalance—an issue commonly seen in medical imaging. To mitigate this, Lin et

al. [15] proposed Focal Loss, which down-weights easy examples and directs the

model’s attention toward harder cases. Building on this, Hasan et al. [16] introduced a

hybrid loss that integrates Dice, Focal, and boundary-aware terms to improve accuracy

around lesion edges. Inspired by these efforts, this thesis adopts a similar composite

loss strategy to better capture subtle lesion details, particularly in small or low-contrast

regions.

Segmentation models are typically evaluated using metrics like Dice Similarity

Coefficient (DSC) and Intersection over Union (IoU). While these are essential for

quantifying overlap between predicted and ground truth regions, relying on them
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alone can miss other clinically important aspects of model performance. For example,

Gao et al. [23] reported only Dice scores, which offer limited perspective on how well

a model generalizes across diverse patient cases. To provide a more complete

evaluation, this study also considers Precision, Recall, and F2-Score alongside Dice

and IoU. Together, these metrics offer a broader view of both the clinical reliability

and real-world applicability of the proposed models.

Keeping the data clean and the annotations consistent is just as important as having a

good model. If these parts are ignored, the results can be misleading. For example,

Gupta et al. [24] did not separate patients between the training and test sets, which

caused some overlap and may have made their model seem more accurate than it really

was. In another case, Wang et al. [25] found that some masks didn’t line up properly

with the mammogram images, which added noise and made learning harder for the

model. This research ensures that each patient’s data appears only in one subset and

verifies annotation consistency, preserving the integrity of model evaluations.

Hybrid models that combine CNNs with transformers have gained significant

attention in recent works. Mohammadi et al. [13] proposed HTU-Net, where attention

from transformers and convolution from CNN are used together to learn the right set

of context. Chen et al. [14] introduced MSMV-Swin, a model based on the multi-view

Swin Transformer which achieved state-of-the-art results on CBIS-DDSM. However,

these approaches are often high precision, yet associated with a large number of

parameters and high computational cost, making it difficult to apply in real-time

clinical field. The models proposed in this thesis chase the tradeoff between accuracy,

efficiency and ability to deploy.

The role of pathology labels in training is another critical issue to consider. A number of

studies add diagnostic annotations (benign vs. malignant) during the segmentation step,

as auxiliary outputs or multi-task objectives. Zhu et al. [26] however, advised against

such design saying it can make the algorithm less generalizable when no diagnostic

label is given. The models in this work consider only pixel-level, rather than categorical

(pathology label) segmentation. This is done to make the model applicable in practice

since such labels are frequently unavailable.
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In conclusion, recent advances in mammographic breast mass segmentation have

significantly improved model accuracy, yet several challenges remain unresolved.

These include consistent data handling, small lesion detection, robust evaluation

strategies, and model generalizability. The literature indicates that improvements in

architecture, loss function design, and evaluation methodology are all necessary for

clinically viable segmentation tools. The proposed ETDP-U2-Net, DPCA-U2-Net, and

DPTrans-U2-Net models address these gaps comprehensively. By combining

dual-path feature extraction, attention mechanisms, transformer bottlenecks, and

rigorous evaluation protocols, they advance the state of the art in breast mass

segmentation, providing both methodological innovation and practical relevance in

the field of medical image analysis.
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CHAPTER 3

MATERIALS AND METHODS

This chapter presents the datasets, preprocessing steps, and experimental pipeline

followed throughout this thesis. All models in this study were trained and tested using

the publicly available CBIS-DDSM dataset. Throughout the process, special attention

was paid to some of the common problems in medical image segmentation, such as

avoiding data leakage, improving visibility in low-contrast areas, and making sure that

small lesions were properly represented in the data.
3.1 Dataset Description

For evaluation, this study uses the Curated Breast Imaging Subset of the DDSM

(CBIS-DDSM) [27], a well-known public dataset widely used in mammography

research and computer-aided diagnosis (CAD). CBIS-DDSM is a curated version of

the original DDSM dataset and contains high-resolution grayscale mammograms

captured using digital mammography systems. Each patient case includes left and

right breast views, along with pixel-level Region of Interest (ROI) masks that have

been confirmed by pathology and annotated by expert radiologists.

The mammogram images are stored in LJPEG format, a lossless variant of JPEG that

preserves full image quality. For practical use with deep learning tools and standard

image processing libraries, these images are typically converted to .jpeg format, which

still provides sufficient quality for training models.

This work focuses only on the “mass” subset of CBIS-DDSM, which includes benign

and malignant breast masses, but excludes calcification-type abnormalities. This

decision is based on earlier studies [17, 28] that showed mixing different lesion types

can disrupt training and lead to overly optimistic results. To further simplify the

classification task, all “benign without callback” cases were grouped under the

“benign” label. This step helped maintain consistency across binary class labels and

followed the best practices recommended in recent literature.
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Each mammographic case in the dataset includes two standard imaging

views—craniocaudal (CC) and mediolateral oblique (MLO)—for both the left and

right breasts. In this study, both views were retained to better reflect real-world

clinical scenarios and to increase morphological variability within the dataset. The

mammograms are grayscale images with varying spatial resolutions, while the

corresponding ROI masks are binary matrices in which lesion areas are marked with a

value of 255 and background regions with 0.

To avoid data leakage and support a reliable evaluation of model generalizability, the

dataset was split into training and test sets based on patient-level separation. This

ensures that no images from the same patient appear in both subsets. Importantly, all

data augmentation steps—including flipping, rotation, scaling, and contrast

enhancement—were performed exclusively on the training set after the split. This

approach helps preserve the authenticity of test data and supports fair, unbiased

performance assessment.

Table 3.1 Train set composition by view and diagnosis (CBIS-DDSM mass subset).

View Diagnosis Count

CC Benign 273
CC Malignant 334
MLO Benign 304
MLO Malignant 407

Total 1318

Table 3.2 Test set composition by view and diagnosis (CBIS-DDSM mass subset).

View Diagnosis Count

CC Benign 94
CC Malignant 83
MLO Benign 100
MLO Malignant 101

Total 378

Following a quality control process that excluded corrupted or misaligned samples, the

final dataset consists of 1696 image-mask pairs. Of these, 1318 images were allocated

to the training set and 378 to the test set. Detailed distributions by imaging view (CC vs.
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MLO) and diagnosis (benign vs. malignant) are presented in Table 3.1 and Table 3.2,

respectively. These tables demonstrate a balanced and diverse dataset that supports

robust deep learning model development.

3.1.1 Visual Sample Overview

To provide a clear understanding of the imaging and annotation characteristics in the

CBIS-DDSM mass dataset, Figure 3.1 showcases representative examples from both

the training and test sets. For each case, the original grayscale mammogram is displayed

alongside its corresponding binary ROI mask annotated by expert radiologists.

Images 1 and 3 are taken from the test set, while Images 2 and 4 represent samples

from the training set. The cases illustrate the wide variability in lesion size, shape, and

contrast—factors that necessitate robust preprocessing and generalizable segmentation

architectures. All images have been resized to a uniform resolution of 256×256 pixels

to ensure consistency in visual comparison and model input preparation.

Figure 3.1 Representative samples selected from the CBIS-DDSM mass dataset. A1: Benign case from
the test set with a craniocaudal (CC) view. A2: Corresponding region-of-interest (ROI) mask. B1:
Malignant case from the training set with a CC view. B2: Corresponding ROI mask. C1: Benign case
from the test set with a mediolateral oblique (MLO) view. C2: Corresponding ROI mask. D1: Benign
case from the training set with an MLO view. D2: Corresponding ROI mask. All images were resized
to 256×256 pixels for consistency in visualization.
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3.2 Preprocessing

In medical image analysis, especially in mammography, preprocessing plays a vital

role in enhancing data quality and preparing images for robust segmentation [29]. The

mammograms in this study, originating from the CBIS-DDSM mass subset [27], are

characterized by low global contrast, high anatomical variability, and frequent

presence of irrelevant background structures. A structured preprocessing pipeline is

therefore indispensable to facilitate accurate lesion localization and to improve

network generalization. The preprocessing framework adopted in this thesis

comprises three major components: (1) Contrast enhancement via Contrast Limited

Adaptive Histogram Equalization (CLAHE), (2) Region-of-interest (ROI) cropping

based on the lesion mask, and (3) Image resizing and normalization. Each stage is

mathematically formulated below, and the entire process is summarized in

Algorithm 1.

3.2.1 Contrast Enhancement using CLAHE

Conventional histogram equalization often fails in mammograms due to its global

nature, which may excessively amplify noise in uniform regions [30]. CLAHE

addresses this limitation by enhancing local contrast in small contextual regions (tiles)

while capping the amplification to a specified clip limit. Let I(x,y) denote the

grayscale intensity at pixel (x,y). The CLAHE-enhanced image, ICLAHE(x,y), is

obtained by applying CLAHE with a clip limit of 2.0 and a tile grid size of (8,8):

ICLAHE(x,y)← CLAHE(I(x,y); clipLimit = 2.0, tileGridSize = (8,8)) (3.1)

In this study, the parameters were set to clipLimit = 2.0 and tileGridSize = (8,8),

which were empirically found to provide optimal local contrast enhancement without

introducing noise artifacts. A visual comparison between the original and

CLAHE-enhanced mammogram is presented in Figure 3.2.
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Figure 3.2 Effect of CLAHE on mammogram contrast enhancement. A: Original grayscale mammogram
from a benign case in the training set (CC view). B: The result after applying CLAHE with a clip limit
of 2.0 and a tile grid size of 8×8. CLAHE enhances local contrast while preventing noise amplification
in homogeneous regions.

3.2.2 ROI Cropping with Margin

Lesions are often confined to small areas of the mammogram. To focus learning on

diagnostically relevant regions and reduce the influence of extraneous background,

ROI-based cropping is performed. Given a binary mask M(x,y) ∈ {0,255}, lesion

boundaries are determined by locating non-zero pixels:

x1 =max(0,min(x |M(x,y)= 255)−m), x2 =min(W,max(x |M(x,y)= 255)+m)

(3.2)

y1 =max(0,min(y |M(x,y)= 255)−m), y2 =min(H,max(y |M(x,y)= 255)+m)

(3.3)

Here, W and H are the image width and height, respectively, and m = 50 is the margin

added to retain anatomical context. Figure 3.3 shows the outcome of the ROI cropping
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procedure.

Figure 3.3 ROI-based cropping performed on a sample mammogram. A: Cropped grayscale image
containing the lesion area with a margin of 50 pixels. B: Corresponding region-of-interest (ROI) mask
showing the precise annotated lesion boundary within the cropped region.

3.2.3 Resizing and Normalization

After cropping, the image and the mask are resized to 256×256 to have the same input

size in the dataset. Resize is performed with bilinear interpolation both for images and

nearest- neighbor interpolation for binary masks. The grayscale values in the image

are normalized to [0,1] as follows:

Inorm(x,y) =
I(x,y)
255

(3.4)

Mbin(x,y) =


1, if M(x,y) > 127

0, otherwise
(3.5)

The output of this stage is a float32 normalized image and a binary mask that can be

provided to the segmentation model.
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3.2.4 Preprocessing Algorithm Summary

The entire pipeline is formally described in Algorithm 1, which clearly defines each

step from CLAHE enhancement to binary mask creation. This pseudocode can be

implemented using standard libraries such as OpenCV and NumPy, ensuring

reproducibility.

Algorithm 1 Pseudo-code for Mammogram Image Preprocessing Pipeline
Require: Original grayscale mammogram I, corresponding binary mask M, margin

m, resize size s
Ensure: Preprocessed image Iout and binary mask Mout

1: Step 1: Apply CLAHE for Contrast Enhancement
2: Divide I into non-overlapping tiles of size 8×8
3: Clip histogram with clip limit = 2.0
4: Apply histogram equalization locally

Iclahe← CLAHE(I,clipLimit = 2.0, tileGridSize = 8×8)

5: Step 2: ROI-Based Cropping
6: Extract coordinates of lesion from mask:

Xmin,Xmax←min(x),max(x) | M(x,y) = 255

Ymin,Ymax←min(y),max(y) | M(x,y) = 255

7: Apply margin m and crop both image and mask:

Icrop← Iclahe[Ymin−m : Ymax+m,Xmin−m : Xmax+m]

Mcrop← M[Ymin−m : Ymax+m,Xmin−m : Xmax+m]

8: Step 3: Resize to Fixed Dimensions
9: Resize Icrop and Mcrop to s× s (e.g., 256×256):

Iresized← resize(Icrop, s)

Mresized← resize(Mcrop, s)

10: Step 4: Normalize and Binarize

Iout(x,y)←
Iresized(x,y)

255

Mout(x,y)←

1 if Mresized(x,y) > 127
0 otherwise

11: return Iout,Mout
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This pipeline addresses major challenges in mammographic image preprocessing. Its

modular design allows easy substitution or extension (e.g., gamma correction or log

transform as alternatives to CLAHE), which can be explored in future work for

comparative analysis [31].

3.3 Baseline Architectures

3.3.1 From CNN to U-Net

Deep learning for medical image segmentation is based on the concept of Convolutional

Neural Networks (CNN) that have revolutionized computer vision by their ability for

hierarchical feature learning. The original design of LeNet-5 and subsequent AlexNet

[32] showed that convolutional layers could learn spatial hierarchies of features via

backpropagration. CNNs are a composition of layers, such as convolutional layers,

pooling layers and fully connected layers, that process the raw input image into a

compact and discriminative representation.

In semantic segmentation challenges on medical image data, conventional CNNs are not

well suitable due to the poor spatial resolution caused by multiple poolings. The reason

for the limited receptive field is fully connected layers, and fully convolutional layers

(FCN) [33] are introduced without fully connected layers in order to preserve spatial

information. FCNs used the upsampling layers, such as the transposed convolutions,

to reconstruct the pixels with higher spatial resolution.

Nevertheless, FCNs continued to encounter difficulties in boundary-localization

accuracy for complex biomedical data. This problem resulted in the U-Net

architecture to be proposed by Ronneberger et al. [10], achieved wide recognition in

the biomedical imaging community because of its encoder-decoder design and skip

connections.

3.3.2 Vanilla U-Net

The vanilla U-Net architecture is one of the most commonly used convolutional neural

networks, specially designed for semantic segmentation in medical images [10]. It has
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a symmetric encoder–decoder architecture with skip connections between layers at the

corresponding position along the encoding and decoding paths. These relations allow

the model to sufficiently integrate high-level semantic representations and low-level

spatial details, and are essential for accurate boundary localization for biomedical

images.

The encoder is composed of four downampling blocks. Within each block two

consecutive 3 × 3 kernel convolutional layers are stacked, followed by a ReLU, and a 2

× 2 max pooling with stride 2. The spatial resolution of the input is reduced by half

and the number of feature channels is doubled as the input is transmitted though each

block. This is hierarchical feature extraction that has the effect of abstracting context

from the input image.

At the deepest level, the bottleneck layer consists of two convolutional layers with

1024 filters, both using 3× 3 kernels and ReLU activations. This part of the network

processes highly compressed feature representations and acts as a bridge between the

encoder and decoder.

The decoder mirrors the encoder structure, employing upsampling followed by

convolution. Each decoder block begins with an upsampling operation—implemented

using nearest-neighbor interpolation to double the spatial resolution—followed by the

concatenation of feature maps from the corresponding encoder layer via skip

connections. This is followed by two 3×3 convolutional layers with ReLU activations.

These operations progressively reconstruct the segmentation mask at full resolution.

The output layer consists of a 1×1 convolution with a sigmoid activation to generate a

binary segmentation mask.
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Figure 3.4 Vanilla U-Net architecture used as a baseline in this study. The model accepts a 256×256
grayscale mammogram image as input and outputs a binary ROI mask of the same spatial resolution.

The overall structure of the Vanilla U-Net employed in this research is displayed in

Figure 3.4. The Vanilla U-Net takes as an input of a 256×256 grayscale mammogram

image, and the expected output is a binary region-of-interest (ROI) mask in the same

resolution. During training, the model is trained to predict this binary mask from input

images form input images also, enabling the delineation of suspicious/abnormal tissue

regions in the breast.

Formally the operations in the network can be represented as:

Ei =MaxPool(ReLU(Conv3×3(ReLU(Conv3×3(xi−1)))) (3.6)

D j = ReLU(Conv3×3(ReLU(Conv3×3([Up(D j+1),Ei− j]))) (3.7)
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fout = σ(Conv1×1(D1)) (3.8)

Here xi−1 is the input to next encoder block and Ei denotes encoded feature map, D j

denotes decoded feature map, Up(·) stands for the upsampling and σ is the sigmoid

activation function for binary mask output.

3.3.3 Attention U-Net

The vanilla U-Net architecture [10] plays a pioneering role in the field of modern

biomedical image segmentation, presenting a symmetry encoder-decoder architecture

that can maintain spatial context by the utilization of skip connections. However, the

model globally passes all encoder features to the decoder, including useless background

information. This limitation may introduce inaccuracy in segmentation, in particular

for mammographic images, where lesions are frequently embedded in complicated

anatomical background.

To circumvent this, Oktay et al. proposed the Attention U-Net [11] that adds attention

gates to U-Net framework (AGs). These components serve as active filters for the

skip connections, allowing the model to suppress unimportant regions while enhancing

salient anatomy such as tumour boundaries. In Figure 3.5, all attention gates are used

just before the concatenation process in the decoder to ensures that we use only the

most suitable encoder features for reconstruction.
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Figure 3.5 Attention U-Net architecture. Attention gates (AGs) filter encoder features before being
concatenated with upsampled decoder features, enabling the network to emphasize lesion-relevant
regions.

The encoder path consists of four stages and every stage is composed of two 3× 3

convolutional layers with ReLU activations and then 2×2 max pooling. These stages

gradually decrease the spatial resolution and increase the number of feature channels

of the map to capture the texture information of breast tissue in a hierarchical manner.

At the bottleneck (the bottom most layer of the architecture), there are two 3 × 3

convolution with 1024 filters that capture more abstract features by repeating

convolutions and synthesis global context information from the down sampled input.

The architecture of the decoder is the same as that of the encoder, and uses upsampling

layers to recover the spatial resolution. At every decoder layer, similar attention gate

is applied to the corresponding output of the encoder before they are concatenated.

This gating mechanism uses decoder features g to compute the attention coefficients

α to gate encoder features x as contextual guidance. The mathematically definition of

attention gating is:
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α = σ
(
ψT
(
ReLU(Wxx+Wgg+b)

))
(3.9)

where Wx and Wg are feature projection 1 × 1 convolutions, ψT is another 1 × 1

convolution to the joint feature map, and σis the sigmoid activation.

The resulting attention mapα is applied element-wise to the encoder features, effectively

suppressing background noise and enhancing lesion-related activations. These refined

features are then concatenated with upsampled decoder features and processed through

two additional 3×3 convolutions to generate a context-rich feature representation.

The final prediction is obtained by applying a 1×1 convolution followed by a sigmoid

activation, which produces a binary segmentation map:

Ŷ = σ(Conv1×1(F)) (3.10)

Here, F represents the final decoded feature map, and Ŷ is the resulting binary mask

that indicates the predicted region of interest (ROI).

Overall, the Attention U-Net helps improve segmentation by guiding the model to focus

on the most relevant features during training. This attention mechanism is particularly

useful in mammography, where dense breast tissue and low image contrast often make

lesion detection more difficult. By highlighting important regions, the model becomes

better at identifying small or hard-to-see masses. As shown in the work of Oktay et

al. [11], this approach offers better results than the standard U-Net in many medical

image segmentation tasks, making it a strong choice for clinical use.
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3.3.4 U2-Net Architecture

U2-Net, originally introduced by Qin et al. [34] for salient object detection, has since

demonstrated strong performance in dense prediction tasks such as medical image

segmentation. In this thesis, the architecture is adapted for the segmentation of breast

masses in mammograms using the CBIS-DDSM dataset.

The core building block of U2-Net is the Residual U-block (RSU), which embeds a

classic U-Net structure within a single layered module. This nested design enables

the model to perform multiscale feature extraction while preserving spatial resolution.

RSU blocks combine a U-Net-like encoder-decoder path with residual connections,

allowing each RSU to capture local details through shallow layers and global contextual

information via deeper paths. This approach results in feature representations that are

both detail-sensitive and context-aware.

Structurally, U2-Net adheres to the conventional encoder-decoder architecture, but

both encoder and decoder are entirely constructed using RSU blocks. Each RSU

block processes the input features through a compact U-shaped pathway—comprising

repeated convolution, pooling, and upsampling operations—and then fuses the final

upsampled features with the block’s original input via a residual shortcut. This allows

for rich representational capacity while maintaining efficient gradient propagation

during training.

The model begins with a single-channel 256 × 256 grayscale input, which passes

through five downsampling stages in the encoder. These stages are implemented with

RSUs using increasing numbers of filters (64, 128, 256, 512), progressively extracting

higher-order features while reducing spatial dimensions. Each RSU’s internal

U-shape facilitates learning features at multiple scales within the same resolution

band.

At the bottleneck, an RSU block with 512 filters captures the most abstract and deeply

contextualized features of the mammogram. From this point, the decoder stages

symmetrically reverse the encoding process through four upsampling steps. In each
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stage, the upsampled features are concatenated with the skip-connected encoder

outputs and passed through another RSU block, using decreasing numbers of filters

(512, 256, 128, 64) to gradually refine the segmentation mask.

Finally, the output is processed through a 1×1 convolution layer with sigmoid activation

to generate a binary segmentation map that highlights the regions of interest (ROIs)

corresponding to potential masses.

A schematic illustration of the complete U2-Net architecture, customized for the task

of breast mass segmentation, is shown in Figure 3.6. Each stage in the figure clearly

demonstrates the cascading RSU blocks and skip connections facilitating deep feature

fusion.
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Figure 3.6 U2-Net model architecture. Each stage is built from Residual U-blocks (RSU), which
incorporate nested encoder-decoder paths for multiscale feature learning.

The nested and residual structure of RSU blocks grants U2-Net its ability to learn

simultaneously from both coarse and fine image representations. This capability is
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particularly advantageous for mammography, where masses may appear with subtle

contrasts and irregular shapes. By capturing contextual and spatial cues at multiple

scales and depths, the model improves its sensitivity to small and complex lesions,

enhancing diagnostic reliability in real-world clinical scenarios.

3.3.5 Attention Cascaded U2-Net Architecture

The Attention Cascaded U2-Net (AU2-Net), proposed by Dhivya et al. [35], is an

enhanced version of the original U2-Net architecture [34], tailored specifically for

complex medical image segmentation tasks such as breast mass detection. While

U2-Net was initially developed for salient object detection, AU2-Net extends its

capabilities through a cascaded attention-driven design. In this thesis, it is adopted as

one of the baseline models for comparative evaluation.

AU2-Net is built upon a two-stage cascaded architecture, where the output of the

first U2-Net subnetwork is passed to a second subnetwork for further refinement.

Both subnetworks follow a typical encoder-bottleneck-decoder layout, but conventional

convolutional blocks are replaced with more advanced modules that improve spatial

attention and multiscale contextual learning.

The architecture integrates three key components:

1. Residual U-blocks (RSUs): Each RSU incorporates a lightweight, nested U-Net

structure within a single block, enabling simultaneous extraction of deep semantic

features and fine-grained local details. Internally, the RSU performs multiple levels

of downsampling and upsampling, concatenates intermediate features, and applies

residual connections to maintain information flow. This design effectively preserves

both edge-level precision and global context, while also promoting gradient stability in

deep networks.

2. Attention Gates: Inspired by attention U-Net [11], spatial attention blocks are

applied to the encoder features before concatenation in the decoder. These gates

help filter out irrelevant activations and allow the model to emphasize tumor-relevant
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structures. The gating mechanism is defined by:

ψ = σ
(
Conv1×1

(
ReLU(θx+ϕg)

))
(3.11)

where θx and ϕg are 1×1 convolutions of encoder and decoder features, respectively.

3. Atrous Spatial Pyramid Pooling (ASPP): ASPP modules, placed at the

bottleneck of both subnetworks, use parallel dilated convolutions with dilation rates

r ∈ {6,12,18}, following the strategy proposed by Chen et al. in the DeepLabv3 model

[36]. This allows the model to incorporate features from multiple receptive fields,

useful in segmenting lesions with varying scale and morphology. The ASPP block is

defined as:

ASPP(x) = Conv1×1
(⊕

r ∈ {6,12,18}Conv(r)
3×3(x)

)
(3.12)

where ⊕ denotes concatenation.

Each decoder stage in both subnetworks performs upsampling followed by RSU blocks

and attention-enhanced skip connections. The final output of the second decoder is

passed through an additional ASPP module and a 1× 1 convolution with sigmoid

activation to produce the binary segmentation mask.
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Figure 3.7 Attention Cascaded U2-Net architecture. The network consists of two serial U2-Net structures
composed of RSU blocks, ASPP modules, and attention gates.

The combined design of AU2-Net enables the model to iteratively refine segmentation

results. While this architecture introduces increased complexity and computational

cost, it is particularly useful in identifying and segmenting small, low-contrast tumors

in mammographic images. Its integration of multiscale, attention-guided, and residual

learning mechanisms provides a strong baseline reference in our experiments.

3.4 Proposed Architectures

3.4.1 ETDP-U2-Net Architecture

The ETDP-U2-Net (Edge-Texture Dual-Path U2-Net) is one of the novel architectures

proposed in this thesis. It extends the foundational U2-Net structure [34] by integrating

edge and texture-specific feature pathways, cross-attention mechanisms, and enhanced

multiscale representations via Squeeze-and-Excitation (SE) modules [37] and deep

supervision.

Motivation and Design Rationale: The key idea of ETDP-U2-Net is to independently

extract edge and texture cues—both critical in segmenting mammographic masses—via

two distinct Residual U-block (RSU) branches. These branches are then fused using
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a cross-attention block that aligns and integrates spatially complementary patterns, as

visualized in Figure 3.8.

Figure 3.8 ETDP-U2-Net architecture. The network includes dual-path RSUs for edge and texture
extraction, SE modules for channel attention, a cross-attention fusion mechanism, and deep supervision
for hierarchical learning.

RSU Modules: RSU blocks form the core computational unit in the architecture. Each

RSU encapsulates an internal encoder-decoder structure with skip connections and

ends in a residual sum to the original projection of the input. Mathematically, this can

be formulated as:

RSUout = F dec(Fenc(X))+X′ (3.13)

where X′ denotes a normalized and projected version of input X. This design supports

both multiscale representation and stable gradient flow.

Squeeze-and-Excitation (SE) Mechanism: To adaptively recalibrate channel-wise

features, SE blocks are placed inside each convolutional unit of the RSUs. Their
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formulation is:

SE(X) = X ·σ(W2δ(W1,GAP(X))) (3.14)

Here, δ and σ represent ReLU and sigmoid activations respectively, and GAP is global

average pooling. This operation emphasizes informative channels and suppresses

irrelevant ones. The SE module is adopted from Hu et al. [37].

Cross-Attention Fusion: Edge- and texture-path RSU outputs are integrated using a

cross-attention block, enhancing complementary information exchange. The attention

map A is computed as:

A = σ(Conv1×1(E(Xedge)⊙T (Xtexture))) (3.15)

where E and T are 1×1 convolutions and ⊙ denotes element-wise multiplication. The

resulting A modulates both edge and texture features before fusion.

Hierarchical Encoder-Decoder with Deep Supervision: The fused tensor is fed into a

standard encoder-decoder framework constructed with RSUs of increasing filter widths.

Decoder stages mirror the encoder via symmetric upsampling and skip connections.

To aid convergence and multi-scale learning, intermediate supervision is applied.

Multi-Stage Supervision: The final prediction Ŷ aggregates three outputs as:

Ŷ = σ
(
Ŷ1+λ2 ·Resize(Ŷ2)+λ3 ·Resize(Ŷ3)

)
(3.16)

where λ2 = 0.5 and λ3 = 0.25 are predefined weights for deep supervision outputs.

Pseudocode for ETDP-U2-Net: The complete inference workflow is summarized in

Algorithm 2.
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Algorithm 2 ETDP-U2-Net Inference Procedure
1: Input image I ∈ R256×256

2: Xedge← RSUedge(I)
3: Xtexture← RSUtexture(I)
4: A← CrossAttention(Xedge,Xtexture)
5: X← Concat(A⊙Xedge,A⊙Xtexture)
6: X← Encoder RSUs(X)
7: Y1,Y2,Y3← Decoder + Deep Supervision
8: return Ŷ = σ(Y1+0.5 ·Resize(Y2)+0.25 ·Resize(Y3))

This model was custom-designed for this thesis to better handle the detection of

subtle, low-contrast lesions that exhibit fuzzy borders, which are commonly seen in

mammography. Comparative results and ablation studies are detailed in the

subsequent Results chapter.

3.4.2 DPTrans-U2-Net Architecture

The DPTrans-U2-Net (Dual-Path Transformer U2-Net) is a transformer-augmented

segmentation model proposed in this study, specifically designed to enhance breast

mass segmentation performance. It extends the structure of the previously introduced

ETDP-U2-Net by incorporating a transformer module at the bottleneck level of the

encoder-decoder hierarchy, thereby enabling improved contextual feature modeling

over long spatial ranges.

Architecture Overview: The model begins by extracting edge and texture

representations independently through two distinct Residual U-blocks (RSUs). These

two feature maps are then fused using a cross-attention mechanism that dynamically

emphasizes mutually salient regions. The fused features are passed through a

downsampling encoder path consisting of additional RSU stages. A transformer block

is placed at the deepest layer of the network, introducing self-attention over flattened

spatial dimensions and allowing the model to capture global dependencies across the

entire image.

Transformer Bottleneck: The transformer module applies multi-head self-attention

(MHSA) followed by a feedforward network (FFN) to enrich the feature representation.
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Formally, the transformation applied to the encoded features X can be expressed as:

Transformer(X) = Reshape−1 (FFFN
(
FMHSA(LayerNorm(Reshape(X)))

)
+X
)

(3.17)

Here, FMHSA and FFFN denote the multi-head self-attention and feedforward layers,

respectively. This bottleneck mitigates the local receptive field limitation inherent in

conventional convolutions.

Decoder and Supervision: After the transformer block, the decoder reconstructs the

segmentation mask via upsampling and skip connections, using corresponding RSU

blocks at each level. Deep supervision is applied by generating auxiliary outputs

at multiple decoder stages, which are later aggregated to produce the final output

prediction:

Ŷ = σ (Y1+0.5 ·Resize(Y2)+0.25 ·Resize(Y3)) (3.18)

A detailed architectural overview of the DPTrans-U2-Net, including the transformer

bottleneck and dual-path RSU stages, is illustrated in Figure 3.9.
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Figure 3.9 The architecture of DPTrans-U2-Net, which integrates a transformer bottleneck module
within a dual-path RSU framework for enhanced and enriched feature interaction dynamics.

Inference Flow: The inference procedure for DPTrans-U2-Net is summarized in

Algorithm 3, highlighting its sequential processing stages.

Algorithm 3 DPTrans-U2-Net Inference Procedure
1: Input: Image I ∈ R256×256

2: Xedge← RSUedge(I)
3: Xtexture← RSUtexture(I)
4: A← CrossAttention(Xedge,Xtexture)
5: X← Concat(A⊙Xedge,A⊙Xtexture)
6: X← Downsample + RSUs(X)
7: X← TransformerBottleneck(X)
8: Y1,Y2,Y3← Decoder + Deep Supervision
9: Return: Ŷ = σ(Y1+0.5 ·Resize(Y2)+0.25 ·Resize(Y3))

This architecture enhances both the propagation of global contextual features and

the precision of fine-grained segmentation boundaries. Its contribution to overall

performance is examined in detail in the comparative evaluation section of this thesis.
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3.4.3 DPCA-U2-Net Architecture

DPCA-U2-Net: A Dual-Path Cross-Attention Framework

DPCA-U2-Net (Dual-Path Cross-Attention U2-Net) is a deep segmentation model

introduced in this thesis to address the specific challenges of detecting breast masses

in mammograms. It builds on the structure of U2-Net [34] but introduces targeted

improvements to better capture two key visual cues in medical images: texture and

edge boundaries. These enhancements are particularly important in mammography,

where lesions often appear subtle and poorly defined.

3.4.3.0.1 Model Motivation and Novelty. In real clinical settings, radiologists

often note that breast tumors can have fuzzy edges or irregular textures, which makes

their detection more difficult. While conventional segmentation models can pick up

general patterns, they often struggle to differentiate fine details. DPCA-U2-Net

addresses this by processing edge and texture information separately. It uses two

distinct encoder paths—each made of Residual U-blocks (RSUs)—so the network can

learn to handle these features independently. This design helps the model produce

clearer, more meaningful predictions by preventing the blending of visual signals that

are fundamentally different.

3.4.3.0.2 Dual RSU-Based Feature Extraction. Given an input image X, the model

sends it through two parallel branches:

Xedge = RSUedge(X) (3.19)

Xtexture = RSUtexture(X) (3.20)

Each RSU block follows an encoder-decoder layout with skip connections, just like in

U2-Net, allowing the model to extract information at multiple scales while

maintaining the flow of gradients. By using this dual-path structure, DPCA-U2-Net is

better equipped to highlight both sharp edges and soft tissue textures, which are
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critical for segmenting breast lesions accurately.

Xedge = RSUedge(X), Xtexture = RSUtexture(X) (3.21)

Cross-Attention Fusion: The two streams are fused through a soft cross-attention

mechanism that dynamically weighs the interaction between edge and texture

activations. This is mathematically defined as:

E = Conv1×1(Xedge), T = Conv1×1(Xtexture) (3.22)

A = σ(E⊙T ) (3.23)

Ffused = Conv3×3
(
Concat(A⊙Xedge,A⊙Xtexture)

)
(3.24)

where ⊙ denotes element-wise multiplication and σ is the sigmoid function. This

fusion technique is adapted from dual-attention mechanisms previously explored in

semantic segmentation [38], but tailored here to specifically merge edge and texture

channels.

Hierarchical Encoder-Decoder Architecture: After cross-attention fusion, the

combined features are downsampled through deeper RSU blocks with increasing filter

widths (128, 256, 512). These layers enable learning from coarse contextual cues.

The decoder mirrors the encoder path and includes skip connections at each resolution

level to preserve spatial detail. The final prediction is generated via a

sigmoid-activated 1×1 convolution layer.
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Figure 3.10 DPCA-U2-Net architecture. Edge and texture-specific RSU streams are fused with
cross-attention. Encoder-decoder hierarchy reconstructs the lesion mask.

Pseudocode for DPCA-U2-Net:

Algorithm 4 DPCA-U2-Net Inference Procedure
1: Input: Image I ∈ R256×256

2: Xedge← RSUedge(I)
3: Xtexture← RSUtexture(I)
4: A← σ(Conv1×1(Xedge)⊙Conv1×1(Xtexture))
5: Ffused← Conv3×3(Concat(A⊙Xedge,A⊙Xtexture))
6: F← Encoder RSU stages(Ffused)
7: Y ← Decoder RSU stages + Skip Connections(F)
8: return Ŷ = Sigmoid(Conv1×1(Y))
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Unlike existing architectures, DPCA-U2-Net does not rely on transformer-based

components. Its strength lies in its architectural simplicity and domain-specific

design, making it computationally efficient while retaining strong segmentation

performance. To the best of our knowledge, no prior work has combined U2-Net-style

RSU blocks with explicit dual-path cross-attention tailored for edge-texture

interaction, making this model an original contribution within this thesis.

3.5 Data Augmentation Strategy

To mitigate overfitting and improve model generalizability, we employed a 16-fold data

augmentation strategy, inspired by the augmentation protocol proposed in [35]. This

approach is particularly beneficial in mammographic image segmentation tasks, where

lesion instances are limited and class imbalance is prominent.

Motivation: As noted by Dhivya et al. [35], conventional deep networks are prone to

overfitting on small medical image datasets. Instead of relying on random

augmentations, their study proposed a carefully curated set of geometric

transformations shown to improve lesion localization and boundary preservation in

breast tumor segmentation. Based on their evaluation, we adopted this deterministic

16x augmentation set in our preprocessing pipeline.

Augmentation Set: Let X denote an original grayscale mammogram image of size

256× 256, and Y its corresponding binary ROI mask. The augmented image-mask

pairs are denoted as:

{(Xk,Yk)}16
k=1 = Tk(X,Y) (3.25)

where Tk is the k-th transformation from the list below:

• Identity: T1(X) = X

• Rotation: Trot(X, θ) = RθX, with θ ∈ {45◦,90◦,270◦}

• Flipping: Horizontal (x,y) 7→ (w− x,y), vertical (x,y) 7→ (x,h− y)
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• Scaling: Tscale(X, s) = S sX, where s ∈ {0.9,1.1,1.2}

• Translation: Ttrans(X,∆x,∆y) = X(x−∆x,y−∆y)

• Compositions: Mixed augmentations such as Trot(R90 ◦flipH(X))

Output: The resulting dataset is expanded by a factor of 16:

(X,Y) 7→ {(Xk,Yk)}16
k=1 (3.26)

All augmented images and masks are saved with consistent naming conventions for

reproducibility and are used only within the training set to avoid information leakage.
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This controlled augmentation approach provides a rich set of spatial variations without

introducing semantic distortions, and has empirically led to improved segmentation

performance across all architectures tested in this thesis.

3.6 Evaluation Metrics and Loss Functions

To evaluate segmentation quality, we employed six standard metrics commonly used

in medical image analysis: Accuracy, Dice Similarity Coefficient (DSC), Intersection

over Union (IoU), Precision, Recall, and the F2-Score. These metrics provide

complementary perspectives on pixel-level correctness, overlap, and clinical

relevance. In the context of mammographic segmentation, where lesion boundaries

are subtle and lesions vary significantly in size and contrast, each metric contributes

uniquely to assessing model performance.

3.6.1 Dice Similarity Coefficient (DSC)

The Dice coefficient quantifies the spatial overlap between predicted (P) and

ground-truth (G) segmentation masks:

DSC(P,G) =
2|P∩G|+ ϵ
|P|+ |G|+ ϵ

(3.27)

where ϵ is a smoothing term (set to 1) to prevent division by zero. First introduced as

a differentiable loss in medical imaging by Milletari et al. [39], DSC is robust to class

imbalance and is particularly useful for assessing small tumors. In mammography, it

effectively captures overlap between segmented lesions and ground truth, making it a

critical metric when tumor regions are small or irregular.

3.6.2 Intersection over Union (IoU)

IoU, or the Jaccard Index, is defined as:

IoU(P,G) =
|P∩G|+ ϵ
|P∪G|+ ϵ

(3.28)
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It penalizes false positives more heavily and is widely adopted in medical image

segmentation benchmarks [33, 40]. In mammographic analysis, IoU is crucial for

evaluating precise delineation of tumor boundaries, especially in complex backgrounds.

3.6.3 Accuracy

Accuracy is the ratio of correctly classified pixels (true positives and true negatives) to

the total number of pixels:

Accuracy =
T P+T N

T P+T N +FP+FN
(3.29)

Though simple, accuracy may be misleading in highly imbalanced datasets such as

mammograms where background pixels vastly outnumber foreground tumor pixels.

Nevertheless, it provides a coarse measure of overall classification correctness.

3.6.4 Precision and Recall

Precision and recall are defined as:

Precision =
T P

T P+FP+ ϵ
(3.30)

Recall =
T P

T P+FN + ϵ
(3.31)

Precision measures the correctness of positive predictions, while recall emphasizes

completeness. In clinical scenarios, recall is especially significant because missing

tumor pixels (false negatives) could lead to missed diagnoses. Both metrics are widely

used in medical AI evaluations [41].

3.6.5 F2-Score

The F2-Score is a weighted harmonic mean that favors recall more than precision:

F_2 =
5 ·Precision ·Recall

4 ·Precision+Recall+ ϵ
(3.32)
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This metric is appropriate in mammography where detecting every possible tumor pixel

is critical, even at the expense of increased false positives [41].

3.6.6 Loss Functions

To overcome challenges like tumor heterogeneity in size and contrast, we tested multiple

loss functions:

Binary Cross Entropy (BCE) BCE loss is defined as:

LBCE = −
1
N

∑
i = 1Nyi log(ŷi)+ (1− yi) log(1− ŷi) (3.33)

It is a pixel-wise classification loss that encourages accurate individual predictions.

While BCE provides stable gradients and sharp boundaries, it struggles with extreme

class imbalance which is common in medical datasets [42].

Dice Loss Defined as LDice = 1−DSC, this loss was proposed by Milletari et al. [39].

It improves overlap-based optimization and mitigates class imbalance but may result in

unstable convergence for large lesions.

Focal Loss Introduced by Lin et al. [43], Focal Loss includes a modulating term (1− pt)γ

to focus on hard-to-classify pixels. It enhanced detection of small, low-contrast tumors,

though it underperformed for large masses.

Tversky Loss Proposed by Salehi et al. [44], this loss controls trade-off between false

positives and false negatives:

T (P,G) =
|P∩G|

|P∩G|+α|P \G|+β|G \P|
(3.34)

We found it useful for improving recall in small tumors but it was overly conservative

for larger tumors.

Boundary Loss Suggested by Kervadec et al. [45], this loss uses a signed distance

map to emphasize alignment along edges. While beneficial for sharp borders in small

lesions, it struggled with low-contrast masses.
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3.6.7 Combined Dice + Binary Cross Entropy Loss

Combined Dice + BCE Loss The best performing objective was a combined loss:

LCombo =LDice+LBCE (3.35)

Recommended by MONAI [46], this hybrid balances pixel-wise BCE with region-based

Dice optimization. It offered robust convergence and generalization across lesion sizes

and contrasts, making it the most suitable choice for mammographic segmentation in

our study.

3.7 Experimental Setup

All models were trained on the CBIS-DDSM dataset using a training-validation-test

split, where the test set remained entirely unseen during both training and

hyperparameter tuning phases. To ensure a fair and unbiased evaluation, the test set

was strictly separated and excluded from any data augmentation or preprocessing

procedures. Augmentation was applied only to the training set to avoid data leakage, a

known issue that can artificially inflate performance metrics if test data characteristics

are indirectly learned by the model [47].

Training was conducted for up to 100 epochs using the Adam optimizer and a

mini-batch size of 8. However, to prevent overfitting and unnecessary computation,

we incorporated two training control mechanisms: Early Stopping and

ReduceLROnPlateau. Early Stopping [48] monitors the validation loss and halts

training if no improvement is observed for 15 consecutive epochs. This allowed most

models to converge between epochs 35 to 42, well before reaching the upper bound.

Meanwhile, the ReduceLROnPlateau callback [49] dynamically reduces the learning

rate by a factor of 0.5 when the validation loss plateaus, thus encouraging better

fine-tuning of parameters in later training stages.

The evaluation of model performance relied on multiple complementary metrics, such

as Accuracy, Dice Score, Intersection over Union (IoU), Precision, Recall, and F2-Score.
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To ensure fair comparison, the version of each model that achieved the best Dice score

on the validation set was selected and later used for final testing.
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CHAPTER 4

RESULT AND DISCUSSION

This section presents a detailed evaluation of both the proposed models and the

baseline architectures on the CBIS-DDSM dataset. To capture different aspects of

segmentation performance, we report results using multiple quantitative metrics, such

as Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Precision,

Recall, and F2-Score. Alongside these metrics, visual examples are provided to

illustrate how accurately each model delineates lesion boundaries. The evaluation

setup was designed to test robustness under varying lesion types, sizes, and contrast

levels—factors that often complicate real-world diagnosis. To better situate our

findings, we also compare results with those reported by recent state-of-the-art

approaches. Particular attention is paid to data augmentation strategies and their

impact on performance, ensuring that evaluations are conducted in a leakage-free

setting.

4.1 Experimental Setup Recap

Training, validation, and testing were conducted on the CBIS-DDSM dataset. The

test set remained strictly isolated throughout both preprocessing and training phases to

avoid data leakage. Augmentation techniques (rotation, flipping, scaling) were applied

solely to the training data.

Each model was trained for up to 100 epochs with Adam optimizer (batch size: 8),

though early stopping (patience: 15 epochs) typically halted training between epochs

35–42. ReduceLROnPlateau dynamically adjusted the learning rate, aiding

convergence after plateaus.
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4.2 Quantitative Results

The use of cropped images is one of the main factors that optimises the segmentation

performance of all the models in this study. Using only the region containing the

tumour instead of full mammograms allows the model to focus directly on the structure

of interest. This reduces the learning complexity that may be caused by irrelevant

background tissue, dense black areas, or pectoral muscle. This strategy is especially

effective in improving field-based metrics such as Dice and IoU, which are sensitive

to both false positive and false negative predictions in addition to true positives. Since

the negative space is significantly limited in cropped images, the region in which the

model can misclassify is also reduced, leading to generally higher and more stable

metric values.

In addition, since cropped images are typically resized to a standard resolution, the

models benefit from consistent input dimensions, which enhances training stability and

convergence. This standardisation helps reduce the performance gap between baseline

and advanced architectures. For example, the differences in performance between a

basic U-Net and more complex models tend to be more pronounced when trained

on full mammograms, whereas this difference often diminishes to within 1–2% on

cropped images. These factors explain the high and closely grouped performance

values in Table 4.1, which summarises the results of six models trained without any

data augmentation.

Table 4.1 Performance comparison on the original CBIS-DDSM Mass test set without augmentation
techniques

Model Params Dice IoU Precision Recall F2
U-Net [10] 31.38M 0.8955 0.8144 0.8852 0.9155 0.9061
Attention U-Net [11] 32.43M 0.8976 0.8178 0.8887 0.9164 0.9075
DPCA-U2-Net (ours) 6.98M 0.8984 0.8193 0.9023 0.9061 0.9015
U2-Net [34] 14.79M 0.9004 0.8225 0.8808 0.9315 0.9173
AU2-Net [35] 18.21M 0.9020 0.8253 0.8975 0.9165 0.9094
ETDP-U2-Net (ours) 6.54M 0.9048 0.8295 0.9045 0.9143 0.9093

Figure 4.1 and Figure 4.2 present qualitative segmentation results of the six models

trained without data augmentation, evaluated on representative cases from the CC and
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MLO views respectively. These visualisations highlight the consistency and differences

between models in capturing the lesion boundaries and localising the target regions.

Overlay masks are colour-coded as follows: green represents intersection areas (true

positives), yellow denotes false positives, and red marks false negatives. This visual

scheme facilitates clear interpretation of each model’s strengths and weaknesses.

Figure 4.1 Qualitative segmentation results of six models trained without augmentation on a
representative CC-view test image. Overlay colors: green (true positive), yellow (false positive), red
(false negative).
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Figure 4.2 Qualitative segmentation results of six models trained without augmentation on a
representative MLO-view test image. Overlay colors: green (true positive), yellow (false positive),
red (false negative).

To further improve generalisation and model robustness, we additionally explored the

impact of data augmentation. Table 4.2 presents the results of three

models—ETDP-U2-Net, DPTrans-U2-Net, and AU2-Net—trained on the augmented

dataset. As observed, the segmentation metrics increased across all models, but the

performance gaps also became more distinct. This indicates that augmentation

introduces greater variability into the data, allowing model-specific advantages to

manifest more clearly.
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Table 4.2 Performance comparison on the augmented CBIS-DDSM Mass test set with advanced data
diversity strategies applied

Model Params Dice IoU Precision Recall F2
ETDP-U2-Net (ours) 6.54M 0.9162 0.8485 0.9100 0.9295 0.9232
DPTrans-U2-Net (ours) 4.24M 0.9149 0.8463 0.9008 0.9369 0.9270
AU2-Net [35] 18.21M 0.9091 0.8369 0.9036 0.9233 0.9164

Figure 4.3 and Figure 4.4 show segmentation results of the three models trained with

augmented data, evaluated on different test examples from both CC and MLO views.

The improvements are visually more apparent here: segmentation boundaries are

more refined, small lesions are better captured, and overall coverage improves. These

qualitative results confirm the quantitative advantage of data augmentation in facilitating

stronger generalisation, particularly across the diverse characteristics of mammographic

views.

Figure 4.3 Qualitative segmentation results of three models trained with augmentation on a representative
CC-view test image. Overlay colors: green (true positive), yellow (false positive), red (false negative).
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Figure 4.4 Qualitative segmentation results of three models trained with augmentation on a representative
MLO-view test image. Overlay colors: green (true positive), yellow (false positive), red (false negative).

In conclusion, while cropped images significantly enhance base-level segmentation

quality, the introduction of data augmentation enables models to better generalise

to complex tissue variations and mass characteristics. Moreover, it provides a more

revealing test bed to compare architectural innovations, making performance differences

more interpretable and impactful.

4.3 Discussion: Comparative Analysis with ROI-Cropped Studies

In this section, we critically compare the proposed ETDP-U2-Net with recent

segmentation models that also adopted ROI-cropped CBIS-DDSM images for training

and evaluation. The goal is to contextualize the performance of our model in terms of

segmentation accuracy, parameter efficiency, and experimental integrity.

Table 4.3 Comparison of ROI-Cropped segmentation models on CBIS-DDSM

Model Params Dice IoU Remarks
Connected-SegNets [50] 22M 0.9286 0.8734 highest dice/IoU but heavy model
Connected-UNets [51] 22.4M ∼0.92 ∼0.87 High complexity, ROI cropped
AUNet [52] 11M 0.8903 0.8265 Light-good trade-off
ETDP-U2-Net (ours) 6.54M 0.9048 0.8295 Best performance/params tradeoff

As shown in Table 4.3, Connected-SegNets [50] stands out with the highest Dice
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(0.9286) and IoU (0.8734) scores. However, it comes with a significantly higher

parameter count (22M), which increases memory and computational requirements.

Similarly, Connected-UNets [51] achieves competitive performance with 22.4M

parameters, remaining substantially heavier than our ETDP-U2-Net.

Compared to AUNet [52], which uses 11M parameters to reach a Dice of 0.8903 and

IoU of 0.8265, our model is approximately 40% smaller in size while outperforming it in

both Dice and IoU. These findings underscore the parameter efficiency and performance

trade-off of our approach.

Moreover, while the above studies may report high scores, many do not clearly separate

their training and test augmentations, increasing the risk of data leakage. In contrast,

our methodology strictly separates test images and performs augmentation only on the

training set. This enhances the reliability and generalizability of our reported metrics.

Another distinction is the exclusive use of cropped ROI images containing only the

mass region, a setup that simplifies the segmentation task but demands precision from

the model. Despite this, ETDP-U2-Net maintains high recall and F2 scores, indicating

strong lesion localization, particularly important in early-stage cancer detection.

In conclusion, ETDP-U2-Net offers a promising solution for segmenting

mammographic masses using ROI-based inputs. By maintaining a careful balance

between model complexity and accuracy, and by following clearly defined

experimental standards, it stands out as a practical option for real-world medical

applications.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Breast cancer remains a major global health concern, highlighting the need for early

and accurate detection to improve patient outcomes. In recent years, deep learning has

become an increasingly important tool in computer-aided diagnosis (CAD),

particularly for analyzing mammographic images. Despite this progress, many

existing segmentation models still struggle with challenges such as computational

overhead, limited generalizability, and inconsistent evaluation practices. To help

overcome these obstacles, this thesis proposes ETDP-U2-Net—an attention-guided,

dual-path segmentation model specifically designed for ROI-cropped mammographic

mass segmentation.

The model introduces three key design choices that enhance its segmentation

capability: (i) a dual-path structure that separately captures edge and texture

information through distinct RSU branches, (ii) a cross-attention module that brings

these complementary features together in a meaningful way, and (iii) a streamlined

decoder with deep supervision to improve learning at multiple levels of detail.All

experiments were conducted using a reproducible and rigorously defined protocol: the

CBIS-DDSM dataset was used exclusively with ROI-cropped images, and the test set

was fully isolated from any form of augmentation to ensure a fair assessment.

Quantitative evaluations demonstrated the strength of the proposed method.

ETDP-U2-Net achieved a Dice coefficient of 0.9162 and an IoU of 0.8485,

outperforming multiple ROI-based state-of-the-art models while maintaining a

compact size of just 6.54 million parameters. These results highlight the model’s

robustness in segmenting small or low-contrast lesions, as well as its suitability for

real-time or resource-constrained deployment scenarios.

Although this study focused on single-view, ROI-cropped mammograms, future work

could benefit from combining both craniocaudal (CC) and mediolateral oblique
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(MLO) views. This type of multi-view fusion could help the model better understand

the broader anatomical context. Another promising direction would be to explore

transformer-based components in the architecture—either in the skip connections or

the bottleneck layers—to improve how the model captures long-range dependencies.

Building on this, the segmentation pipeline could also be extended with a

classification module that predicts malignancy based on either radiomic features or

learned embeddings. Lastly, applying explainable AI tools such as saliency maps or

attention heatmaps may improve transparency and make the model’s decisions easier

to interpret for clinicians.

One of the key strengths of ETDP-U2-Net lies in its lightweight architecture, which

makes it particularly suitable for deployment on resource-constrained devices such as

mobile phones or embedded systems. With further optimization techniques like

quantization or pruning, the model can run efficiently without sacrificing much

accuracy. This efficiency also opens the door for integration into Picture Archiving

and Communication Systems (PACS), where it could assist radiologists with real-time

support during routine screenings. Looking ahead, it will be important to validate the

model’s performance on more complex imaging modalities like digital breast

tomosynthesis (DBT) or MRI. Clinical trials could offer additional insight into how

well the model performs in real-world settings. Finally, releasing the model’s weights

and code to the public would help ensure transparency, reproducibility, and broader

adoption within the research community.

In summary, this thesis presents ETDP-U2-Net as a reliable, interpretable, and

lightweight architecture for breast mass segmentation. By combining thoughtful

architectural design with a rigorously structured experimental setup, the proposed

approach contributes meaningfully to the ongoing advancement of deep learning in

medical imaging. The model’s strong performance, alongside its practical efficiency,

positions it as a promising candidate for future computer-aided diagnosis (CAD)

systems and real-world integration into radiological workflows.
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