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DEEP LEARNING FOR BREAST MASS SEGMENTATION: A
REGION-OF-INTEREST FOCUSED APPROACH USING
ETDP-U2-NET
ABSTRACT

Accurate segmentation of breast masses in mammographic images plays a critical role
in early breast cancer detection. In this thesis, we propose a novel deep learning
architecture, ETDP-U?-Net, tailored for mass segmentation using ROI-cropped
grayscale mammograms from the CBIS-DDSM dataset. The model integrates edge
and texture-aware pathways with enhanced skip connections to improve the
delineation of subtle tumor boundaries. Extensive experiments under both
non-augmented and augmented training regimes show that ETDP-U?-Net achieves
competitive Dice and IoU scores while maintaining a lightweight design with only
6.54 million parameters. Notably, unlike many prior studies, this work avoids
test-time augmentation and potential data leakage by applying augmentation solely to
the training set. The results demonstrate that ETDP-U?-Net not only surpasses many
heavier architectures in terms of performance-to-parameter efficiency but also adheres
to rigorous experimental standards. This study contributes a robust and efficient
segmentation approach that holds promise for integration into computer-aided

diagnosis systems in clinical settings.

Keywords: Breast cancer segmentation, ETDP-U2-Net, CBIS-DDSM, ROI-cropped

mammogram, medical image analysis, deep learning.
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ROI-KIRPILMIS MAMOGRAMLAR UZERINDE
ETDP-U2-NET TABANLI DERIN OGRENME ILE MEME
KIiTLE SEGMENTASYONU
0z

Mamografi goriintiilerinde meme kitlesinin dogru sekilde segmentasyonu, erken evre
meme kanseri tespitinde hayati bir rol oynamaktadir.  Bu tez calismasinda,
CBIS-DDSM veri kiimesinden alinan gri tonlamali ROI (Region of Interest) kirpilmis
mamogramlar iizerinde kitle segmentasyonu gerceklestirmek amaciyla gelistirilen
yeni bir derin 6grenme mimarisi olan ETDP-U?-Net 6nerilmektedir. Model, kenar ve
dokuya duyarli yollar1 gelistirilmis atlama baglantilariyla birlestirerek timor
sinirlarinin - daha hassas bir sekilde belirlenmesini saglar. Hem artirimsiz
(non-augmented) hem de artirnmli (augmented) egitim senaryolar1 altinda yapilan
kapsamli deneyler, yalnizca 6.54 milyon parametreye sahip hafif tasarima ragmen
modelin rekabetci Dice ve IoU skorlar elde ettigini ortaya koymaktadir. Ozellikle,
onceki ¢aligmalarin aksine, bu tezde yalnizca egitim verisine artirma uygulanmuis, test
verisine herhangi bir islem uygulanmayarak olasi veri sizintis1 engellenmistir.
Sonuglar, ETDP-U2-Net’in parametre-verimlilik acisindan birgcok daha agir mimariyi
geride biraktiZin1 ve ayni zamanda titiz deneysel standartlara bagh kaldigim
gostermektedir. Bu calisma, klinik ortamlarda bilgisayar destekli tami sistemlerine

entegre edilebilecek saglam ve verimli bir segmentasyon yaklagimi sunmaktadir.

Anahtar kelimeler: Meme kanseri segmentasyonu, ETDP-U2-Net, CBIS-DDSM, ROI

kirpilmis mamogram, tibbi goriintii analizi, derin 6grenme.
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CHAPTER 1

INTRODUCTION

Breast cancer stands as one of the most significant global health threats, affecting
millions of women each year and accounting for a substantial share of cancer-related
deaths. According to the World Health Organization, nearly 2.3 million women were
newly diagnosed with breast cancer in 2020, leading to approximately 685,000 deaths
globally [1]. These statistics, supported by the GLOBOCAN 2020 study [2], reflect
the widespread prevalence and mortality associated with this disease. Although early
detection greatly increases the chances of survival, many individuals—especially those
living in low-income regions—are still diagnosed at later stages, largely due to the lack

of accessible and organized screening programs.

Mammography remains a cornerstone in the early detection of breast cancer, offering
a non-invasive and reliable method for identifying tumors before clinical symptoms
emerge [3]. In high-income countries, the inclusion of structured screening programs
within public health systems has contributed to earlier diagnoses and a noticeable
decline in mortality rates [4]. Leading medical organizations—such as the American
College of Obstetricians and Gynecologists and the U.S. Preventive Services Task
Force—recommend initiating routine screenings between the ages of 40 and 50,
depending on individual risk profiles [5, 6]. By contrast, in many lower-income
settings, the lack of accessible screening services often results in late-stage diagnoses,

reducing the likelihood of successful treatment and long-term survival.

Although mammography plays a vital role in detecting breast cancer, interpreting
these images remains a complex task. A major challenge stems from the low contrast
typically found in mammograms, particularly when dense breast tissue makes
abnormalities harder to detect. In addition, many tumors are small and subtle, forcing
radiologists to carefully examine details such as shape, margin, and density—features
that can vary not only between patients but also across different imaging views of the
same case [7]. To help address these difficulties, Computer-Aided Diagnosis (CAD)

systems have been developed. Leveraging deep learning techniques, these tools aim to



automatically analyze mammograms, thereby improving diagnostic accuracy,

ensuring greater consistency among readers, and easing the clinical workflow [8].

The Curated Breast Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM) is widely recognized as a standard benchmark for
developing and evaluating Computer-Aided Diagnosis (CAD) systems [9]. It provides
grayscale mammograms along with pixel-level Region of Interest (ROI) annotations,
making it especially useful for training and validating segmentation models. However,
working with CBIS-DDSM also presents several challenges. Lesion sizes vary
widely, annotations may lack consistency, and image contrast is often low—all of

which can make it difficult to achieve robust and generalizable model performance.

Breast mass segmentation is a key component in the success of Computer-Aided
Diagnosis (CAD) systems, yet it remains technically demanding. The low contrast
typical of mammographic images, combined with the variability in lesion appearance
from one patient to another, makes precise boundary detection especially challenging.
This difficulty is even more pronounced in the case of small lesions, which, despite
their clinical relevance, are often missed by segmentation models due to their limited
pixel footprint. Although conventional architectures like U-Net [10] have formed the
foundation for many medical segmentation pipelines, their performance can

deteriorate under these complex imaging conditions.

In recent years, researchers have proposed a variety of improvements to address the
shortcomings of traditional segmentation architectures. One notable example is
Attention U-Net, which uses attention gates to help the model concentrate on the most
relevant parts of the image [11]. U-Net++, on the other hand, improves multiscale
learning by introducing nested and densely connected skip pathways [12]. More
recently, hybrid models like HTU-Net [13] and transformer-based approaches such as
MSMV-Swin [14] have been developed to better capture long-range dependencies and
contextual features. Alongside these architectural advances, researchers have also
turned their attention to loss functions. Focal loss [15] addresses the issue of class
imbalance by focusing learning on harder examples, while boundary-aware loss

terms [16] aim to sharpen segmentation near lesion edges. Together, these



developments have led to more accurate and robust models, particularly in complex

medical imaging scenarios.

In this thesis, I introduce three new deep learning architectures—DPCA-U2-Net,
ETDP-U%-Net, and DPTrans-U?-Net—each developed to address the unique
challenges of segmenting grayscale mammograms. These models were designed to
address the shortcomings of existing methods by combining dual-path encoders,
residual connections, attention mechanisms, and transformer bottlenecks in a unified
framework. To support more accurate and stable training, a tailored loss function is
used—bringing together Dice, Focal, and boundary-aware terms. Equally important,
all data augmentation was performed only after the dataset was split into training and
test sets, in order to avoid data leakage and ensure that the experimental results truly

reflect real-world performance.

The core motivation behind this research lies in developing segmentation models that
are not only accurate but also practical for real-world clinical use. Many existing
studies report impressive results under controlled conditions, yet often fail to account
for everyday limitations such as restricted computational resources and the scarcity of
annotated data. This thesis focuses on pixel-level segmentation without using diagnostic
labels—a deliberate choice to keep the models lightweight, flexible, and better suited

for deployment in real-world clinical settings.



CHAPTER 2

LITERATURE REVIEW

Accurately detecting breast masses in mammograms plays a vital role in early cancer
diagnosis and better treatment outcomes. As breast cancer continues to impact more
people worldwide, there has been growing interest in computer-aided diagnosis
(CAD) systems—particularly those based on deep learning—that support radiologists
in making more informed decisions. Even so, challenges remain. Low image contrast,
variation between patients, the small size of many lesions, and inconsistent evaluation
practices all continue to hinder model performance. This chapter reviews recent
research in the field, with a focus on dataset usage, architectural developments, and
evaluation strategies. It also outlines where this thesis fits within that landscape and

how it aims to move the field forward.

One of the most widely used public datasets for mammographic segmentation is the
Curated Breast Imaging Subset of the Digital Database for Screening Mammography
(CBIS-DDSM). It offers high-resolution grayscale mammograms alongside detailed
Region of Interest (ROI) masks. Developed specifically for research purposes, the
dataset includes pixel-level annotations, making it a strong candidate for training and
evaluating supervised segmentation models. However, despite its popularity, the
dataset is still frequently misused in the literature—particularly through improper data
splitting—which can lead to data leakage and inflated performance metrics. For
example, Shen et al. [45] did not separate the "mass" subset of CC and MLO view
from the "calcification" subset, leading to different distributions in the training and
testing set. Similarly, Li et al. [17] performed data augmentation post-split of the
dataset, bringing in information the training set contained into the test set through the
augmented variations. Such methodological shortcomings call into question the

validity of performance appraisals.

In this Thesis, a stricter approach is followed, where we denoise the CBIS-DDSM

dataset and only keep the mass’ subset. In addition, the dataset was stratified before



any augmentation so that the test set contained no synthetic or augmented versions of
any training images. This detailed care in data splitting criterions prevents one of the
most major issues in previous works and guarantees that segmentation performance

will be unbiased.

Existing works can be divided into two types of segmentation, including the full-image
segmentation and the ROI-based segmentation. The difference between those two
methods is that the former one uses a segmentation model that is first trained on the
whole mammogram, while the latter focuses the task on a cropped area of the lesion.
ROI-based approaches are recently widely used due to their computational effectiveness
and superior localized results. Zhou et al. [18] demonstrated that, by training with ROI
images, the segmentation accuracy was increased by concentrating the model on the
lesion area and reducing background clutter. Similarly, Liu et al. [19] demonstrated
that attending more to local context improves the performance of deep networks in

detecting lesion borders, particularly for small abnormalities.

State-of-the-art methods in the literature for segmentation primarily belong to two types
of methods: full-According to our survey, although the original U-Net architecture [10]
is significantly popular across a great number of segmentation tasks, it does not perform
well over mammograms mainly for grayscale nature of the images, low contrast, and
complex texture of the tissue. Some alternatives have been suggested to circumvent
them. Oktay et al. AttU-Net [20] was developed using attention gates that allow the
model to focus on more important regions. Zhou et al. [12] proposed a U-Net++ with
nested and dense skip connections to enhance feature propagation and the multiscale
representation. These improved on the performances of those models but remained
limited in the ability to segment small or low contrast lesions due to the use of local

receptive fields.

In order to alleviate those limitations, some more modern structures adopt dedicated
modules. Zhang et al. [21] introduced residual U-blocks (RSUs) forplugging
high-resolution features in deep feature extraction. These were the most competent
RSUs in addressing multiscale segmentation problems. Hu et al. [22]proposed

Squeeze-and- Excitation (SE) blocks that learn to recalibrate feature-channel



responses in a channel-wise manner, leading to better representation capability for

convolutional layers.

Based on these ingredients, this work presents ETDP-U2-Net and DPTrans-U?-Net. The
ETDP-U?-Net proposed dual-path encoders to independently capture edge and texture
features, which then are integrated via the cross-attention mechanisms. Each path leads
to its RSUs and SE blocks, resulting in a strong multi-representation framework dealing
with various lesion morphologies. The network is refined by the DPTrans-U?-Net which
introduces transformer-based modules at the bottleneck to capture global context and

semantic dependencies, which are essential to segmentation of small lesions.

Moreover, a third model, DPCA-U%-Net, was developed to maintain performance
while reducing computational overhead. The proposed model preserves the dual-path
cross-attention structure and continues to employ squeeze-and-excitation (SE) blocks
and deep supervision. What sets this model apart is its streamlined design, which
simplifies the architecture while still delivering strong performance. By striking a
balance between efficiency and accuracy, it manages to achieve results comparable to

more complex alternatives.

In addition to architectural improvements, the design of the loss function plays a key
role in training effective segmentation models. Although binary cross-entropy and
Dice loss remain widely used, they often fall short in the presence of severe class
imbalance—an issue commonly seen in medical imaging. To mitigate this, Lin et
al. [15] proposed Focal Loss, which down-weights easy examples and directs the
model’s attention toward harder cases. Building on this, Hasan et al. [16] introduced a
hybrid loss that integrates Dice, Focal, and boundary-aware terms to improve accuracy
around lesion edges. Inspired by these efforts, this thesis adopts a similar composite
loss strategy to better capture subtle lesion details, particularly in small or low-contrast

regions.

Segmentation models are typically evaluated using metrics like Dice Similarity
Coefficient (DSC) and Intersection over Union (IoU). While these are essential for

quantifying overlap between predicted and ground truth regions, relying on them



alone can miss other clinically important aspects of model performance. For example,
Gao et al. [23] reported only Dice scores, which offer limited perspective on how well
a model generalizes across diverse patient cases. To provide a more complete
evaluation, this study also considers Precision, Recall, and F2-Score alongside Dice
and IoU. Together, these metrics offer a broader view of both the clinical reliability

and real-world applicability of the proposed models.

Keeping the data clean and the annotations consistent is just as important as having a
good model. If these parts are ignored, the results can be misleading. For example,
Gupta et al. [24] did not separate patients between the training and test sets, which
caused some overlap and may have made their model seem more accurate than it really
was. In another case, Wang et al. [25] found that some masks didn’t line up properly
with the mammogram images, which added noise and made learning harder for the
model. This research ensures that each patient’s data appears only in one subset and

verifies annotation consistency, preserving the integrity of model evaluations.

Hybrid models that combine CNNs with transformers have gained significant
attention in recent works. Mohammadi et al. [13] proposed HTU-Net, where attention
from transformers and convolution from CNN are used together to learn the right set
of context. Chen et al. [14] introduced MSMV-Swin, a model based on the multi-view
Swin Transformer which achieved state-of-the-art results on CBIS-DDSM. Howeyver,
these approaches are often high precision, yet associated with a large number of
parameters and high computational cost, making it difficult to apply in real-time
clinical field. The models proposed in this thesis chase the tradeoff between accuracy,

efficiency and ability to deploy.

The role of pathology labels in training is another critical issue to consider. A number of
studies add diagnostic annotations (benign vs. malignant) during the segmentation step,
as auxiliary outputs or multi-task objectives. Zhu et al. [26] however, advised against
such design saying it can make the algorithm less generalizable when no diagnostic
label is given. The models in this work consider only pixel-level, rather than categorical
(pathology label) segmentation. This is done to make the model applicable in practice

since such labels are frequently unavailable.



In conclusion, recent advances in mammographic breast mass segmentation have
significantly improved model accuracy, yet several challenges remain unresolved.
These include consistent data handling, small lesion detection, robust evaluation
strategies, and model generalizability. The literature indicates that improvements in
architecture, loss function design, and evaluation methodology are all necessary for
clinically viable segmentation tools. The proposed ETDP-U?-Net, DPCA-U?-Net, and
DPTrans-U2-Net models address these gaps comprehensively. By combining
dual-path feature extraction, attention mechanisms, transformer bottlenecks, and
rigorous evaluation protocols, they advance the state of the art in breast mass
segmentation, providing both methodological innovation and practical relevance in

the field of medical image analysis.



CHAPTER 3

MATERIALS AND METHODS

This chapter presents the datasets, preprocessing steps, and experimental pipeline
followed throughout this thesis. All models in this study were trained and tested using
the publicly available CBIS-DDSM dataset. Throughout the process, special attention
was paid to some of the common problems in medical image segmentation, such as
avoiding data leakage, improving visibility in low-contrast areas, and making sure that

small lesions were properly represented in the data.

3.1 Dataset Description

For evaluation, this study uses the Curated Breast Imaging Subset of the DDSM
(CBIS-DDSM) [27], a well-known public dataset widely used in mammography
research and computer-aided diagnosis (CAD). CBIS-DDSM is a curated version of
the original DDSM dataset and contains high-resolution grayscale mammograms
captured using digital mammography systems. Each patient case includes left and
right breast views, along with pixel-level Region of Interest (ROI) masks that have

been confirmed by pathology and annotated by expert radiologists.

The mammogram images are stored in LJPEG format, a lossless variant of JPEG that
preserves full image quality. For practical use with deep learning tools and standard
image processing libraries, these images are typically converted to . jpeg format, which

still provides sufficient quality for training models.

This work focuses only on the “mass” subset of CBIS-DDSM, which includes benign
and malignant breast masses, but excludes calcification-type abnormalities. This
decision is based on earlier studies [17,28] that showed mixing different lesion types
can disrupt training and lead to overly optimistic results. To further simplify the
classification task, all “benign without callback™ cases were grouped under the
“benign” label. This step helped maintain consistency across binary class labels and

followed the best practices recommended in recent literature.



Each mammographic case in the dataset includes two standard imaging
views—craniocaudal (CC) and mediolateral oblique (MLO)—for both the left and
right breasts. In this study, both views were retained to better reflect real-world
clinical scenarios and to increase morphological variability within the dataset. The
mammograms are grayscale images with varying spatial resolutions, while the
corresponding ROI masks are binary matrices in which lesion areas are marked with a

value of 255 and background regions with 0.

To avoid data leakage and support a reliable evaluation of model generalizability, the
dataset was split into training and test sets based on patient-level separation. This
ensures that no images from the same patient appear in both subsets. Importantly, all
data augmentation steps—including flipping, rotation, scaling, and contrast
enhancement—were performed exclusively on the training set after the split. This
approach helps preserve the authenticity of test data and supports fair, unbiased

performance assessment.

Table 3.1 Train set composition by view and diagnosis (CBIS-DDSM mass subset).

View Diagnosis Count

CC Benign 273
CC Malignant 334
MLO  Benign 304
MLO Malignant 407

Total 1318

Table 3.2 Test set composition by view and diagnosis (CBIS-DDSM mass subset).

View Diagnosis Count

CC Benign 94
CC Malignant 83
MLO  Benign 100
MLO Malignant 101

Total 378

Following a quality control process that excluded corrupted or misaligned samples, the
final dataset consists of 1696 image-mask pairs. Of these, 1318 images were allocated

to the training set and 378 to the test set. Detailed distributions by imaging view (CC vs.
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MLO) and diagnosis (benign vs. malignant) are presented in Table 3.1 and Table 3.2,
respectively. These tables demonstrate a balanced and diverse dataset that supports

robust deep learning model development.

3.1.1 Visual Sample Overview

To provide a clear understanding of the imaging and annotation characteristics in the
CBIS-DDSM mass dataset, Figure 3.1 showcases representative examples from both
the training and test sets. For each case, the original grayscale mammogram is displayed

alongside its corresponding binary ROI mask annotated by expert radiologists.

Images 1 and 3 are taken from the test set, while Images 2 and 4 represent samples
from the training set. The cases illustrate the wide variability in lesion size, shape, and
contrast—factors that necessitate robust preprocessing and generalizable segmentation
architectures. All images have been resized to a uniform resolution of 256 x 256 pixels

to ensure consistency in visual comparison and model input preparation.

C1

A2 B2 C2 D2

Figure 3.1 Representative samples selected from the CBIS-DDSM mass dataset. Al: Benign case from
the test set with a craniocaudal (CC) view. A2: Corresponding region-of-interest (ROI) mask. Bl:
Malignant case from the training set with a CC view. B2: Corresponding ROI mask. C1: Benign case
from the test set with a mediolateral oblique (MLO) view. C2: Corresponding ROI mask. D1: Benign
case from the training set with an MLO view. D2: Corresponding ROI mask. All images were resized
to 256 x 256 pixels for consistency in visualization.
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3.2 Preprocessing

In medical image analysis, especially in mammography, preprocessing plays a vital
role in enhancing data quality and preparing images for robust segmentation [29]. The
mammograms in this study, originating from the CBIS-DDSM mass subset [27], are
characterized by low global contrast, high anatomical variability, and frequent
presence of irrelevant background structures. A structured preprocessing pipeline is
therefore indispensable to facilitate accurate lesion localization and to improve
network generalization.  The preprocessing framework adopted in this thesis
comprises three major components: (1) Contrast enhancement via Contrast Limited
Adaptive Histogram Equalization (CLAHE), (2) Region-of-interest (ROI) cropping
based on the lesion mask, and (3) Image resizing and normalization. Each stage is
mathematically formulated below, and the entire process is summarized in

Algorithm 1.

3.2.1 Contrast Enhancement using CLAHE

Conventional histogram equalization often fails in mammograms due to its global
nature, which may excessively amplify noise in uniform regions [30]. CLAHE
addresses this limitation by enhancing local contrast in small contextual regions (tiles)
while capping the amplification to a specified clip limit. Let I(x,y) denote the
grayscale intensity at pixel (x,y). The CLAHE-enhanced image, Icpagg(X,y), 1S
obtained by applying CLAHE with a clip limit of 2.0 and a tile grid size of (8, 8):

IcLang(x,y) < CLAHE(I(x,y); clipLimit = 2.0, tileGridSize = (8,8)) 3.1)

In this study, the parameters were set to clipLimit = 2.0 and tileGridSize = (8, 8),
which were empirically found to provide optimal local contrast enhancement without
introducing noise artifacts. A visual comparison between the original and

CLAHE-enhanced mammogram is presented in Figure 3.2.
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Figure 3.2 Effect of CLAHE on mammogram contrast enhancement. A: Original grayscale mammogram
from a benign case in the training set (CC view). B: The result after applying CLAHE with a clip limit
of 2.0 and a tile grid size of 8§ X 8. CLAHE enhances local contrast while preventing noise amplification
in homogeneous regions.

3.2.2 ROI Cropping with Margin

Lesions are often confined to small areas of the mammogram. To focus learning on
diagnostically relevant regions and reduce the influence of extraneous background,
ROI-based cropping is performed. Given a binary mask M(x,y) € {0,255}, lesion

boundaries are determined by locating non-zero pixels:

x1 =max (0, min(x | M(x,y) =255)—m), x2=min(W,max(x|M(x,y)=255)+m)

3.2)

y1 =max(0,min(y | M(x,y) =255)—m), y2 =min(H,max(y|M(x,y)=255)+m)

3.3)

Here, W and H are the image width and height, respectively, and m = 50 is the margin

added to retain anatomical context. Figure 3.3 shows the outcome of the ROI cropping
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procedure.

Figure 3.3 ROI-based cropping performed on a sample mammogram. A: Cropped grayscale image
containing the lesion area with a margin of 50 pixels. B: Corresponding region-of-interest (ROI) mask
showing the precise annotated lesion boundary within the cropped region.

3.2.3 Resizing and Normalization

After cropping, the image and the mask are resized to 256 X 256 to have the same input
size in the dataset. Resize is performed with bilinear interpolation both for images and
nearest- neighbor interpolation for binary masks. The grayscale values in the image

are normalized to [0, 1] as follows:

I(x,y)
255

Lnorm(x,y) = (3.4)

1, if M(x,y) > 127
Myin(x,y) = 3.5)

0, otherwise

The output of this stage is a float32 normalized image and a binary mask that can be

provided to the segmentation model.



3.2.4 Preprocessing Algorithm Summary

The entire pipeline is formally described in Algorithm 1, which clearly defines each
step from CLAHE enhancement to binary mask creation. This pseudocode can be
implemented using standard libraries such as OpenCV and NumPy, ensuring

reproducibility.

Algorithm 1 Pseudo-code for Mammogram Image Preprocessing Pipeline

Require: Original grayscale mammogram I, corresponding binary mask M, margin
m, resize size s
Ensure: Preprocessed image /,,; and binary mask M,
1: Step 1: Apply CLAHE for Contrast Enhancement
2: Divide I into non-overlapping tiles of size 8 X 8
3: Clip histogram with clip limit = 2.0
4: Apply histogram equalization locally

Ic1ane < CLAHE(/, clipLimit = 2.0, tileGridSize = 8 X 8)

5: Step 2: ROI-Based Cropping
6: Extract coordinates of lesion from mask:

Xmin, Xmax <= min(x), max(x) | M(x,y) = 255
Yinin, Ymax <= min(y), max(y) | M(x,y) = 255
7: Apply margin m and crop both image and mask:
Icrop — Ietahe[Ymin — M & Ymax + 1, Xmin —m : Xmax +m]

Mcrop — M[Ymin —m : Ymax +m, Xmin —m : Xmax +m]
8: Step 3: Resize to Fixed Dimensions
9: Resize Icrop and Mcrop to s X s (€.8., 256 X 256):

Lresized < I'eSize(Icrop, )

Mesized < I‘eSize(]\/Icrop, s)
10: Step 4: Normalize and Binarize

Lresized(x,y)

Lou(%.y) = =5

1 if Miesized(x,y) > 127

M(x,y) «
our(.) {O otherwise

11: return I,,;, M,




This pipeline addresses major challenges in mammographic image preprocessing. Its
modular design allows easy substitution or extension (e.g., gamma correction or log
transform as alternatives to CLAHE), which can be explored in future work for

comparative analysis [31].

3.3 Baseline Architectures

3.3.1 From CNN to U-Net

Deep learning for medical image segmentation is based on the concept of Convolutional
Neural Networks (CNN) that have revolutionized computer vision by their ability for
hierarchical feature learning. The original design of LeNet-5 and subsequent AlexNet
[32] showed that convolutional layers could learn spatial hierarchies of features via
backpropagration. CNNs are a composition of layers, such as convolutional layers,
pooling layers and fully connected layers, that process the raw input image into a

compact and discriminative representation.

In semantic segmentation challenges on medical image data, conventional CNNss are not
well suitable due to the poor spatial resolution caused by multiple poolings. The reason
for the limited receptive field is fully connected layers, and fully convolutional layers
(FCN) [33] are introduced without fully connected layers in order to preserve spatial
information. FCNs used the upsampling layers, such as the transposed convolutions,

to reconstruct the pixels with higher spatial resolution.

Nevertheless, FCNs continued to encounter difficulties in boundary-localization
accuracy for complex biomedical data. This problem resulted in the U-Net
architecture to be proposed by Ronneberger et al. [10], achieved wide recognition in
the biomedical imaging community because of its encoder-decoder design and skip

connections.

3.3.2 Vanilla U-Net

The vanilla U-Net architecture is one of the most commonly used convolutional neural

networks, specially designed for semantic segmentation in medical images [10]. It has
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a symmetric encoder—decoder architecture with skip connections between layers at the
corresponding position along the encoding and decoding paths. These relations allow
the model to sufficiently integrate high-level semantic representations and low-level
spatial details, and are essential for accurate boundary localization for biomedical

images.

The encoder is composed of four downampling blocks. Within each block two
consecutive 3 x 3 kernel convolutional layers are stacked, followed by a ReL.U, and a 2
x 2 max pooling with stride 2. The spatial resolution of the input is reduced by half
and the number of feature channels is doubled as the input is transmitted though each
block. This is hierarchical feature extraction that has the effect of abstracting context

from the input image.

At the deepest level, the bottleneck layer consists of two convolutional layers with
1024 filters, both using 3 X 3 kernels and ReLLU activations. This part of the network
processes highly compressed feature representations and acts as a bridge between the

encoder and decoder.

The decoder mirrors the encoder structure, employing upsampling followed by
convolution. Each decoder block begins with an upsampling operation—implemented
using nearest-neighbor interpolation to double the spatial resolution—followed by the
concatenation of feature maps from the corresponding encoder layer via skip
connections. This is followed by two 3 X 3 convolutional layers with ReL.U activations.

These operations progressively reconstruct the segmentation mask at full resolution.

The output layer consists of a 1 X 1 convolution with a sigmoid activation to generate a

binary segmentation mask.



18

UpSample

RelU RelU

ReLlU RelU GConc Conc —

|

Concat

MaxPool

Figure 3.4 Vanilla U-Net architecture used as a baseline in this study. The model accepts a 256 X256
grayscale mammogram image as input and outputs a binary ROI mask of the same spatial resolution.

The overall structure of the Vanilla U-Net employed in this research is displayed in
Figure 3.4. The Vanilla U-Net takes as an input of a 256 X 256 grayscale mammogram
image, and the expected output is a binary region-of-interest (ROI) mask in the same
resolution. During training, the model is trained to predict this binary mask from input
images form input images also, enabling the delineation of suspicious/abnormal tissue

regions in the breast.

Formally the operations in the network can be represented as:

E; = MaxPool(ReLU(Convsx3(ReLU(Conv3x3(xi-1)))) (3.6)

D = ReLU(Conv3x3(ReLU(Conv3,3([Up(Dj+ 1), Ei- j1))) 3.7)



Jour = 0(Convix1(Dy)) (3.8

Here x;_ is the input to next encoder block and E; denotes encoded feature map, D;
denotes decoded feature map, Up(-) stands for the upsampling and o is the sigmoid

activation function for binary mask output.

3.3.3 Attention U-Net

The vanilla U-Net architecture [10] plays a pioneering role in the field of modern
biomedical image segmentation, presenting a symmetry encoder-decoder architecture
that can maintain spatial context by the utilization of skip connections. However, the
model globally passes all encoder features to the decoder, including useless background
information. This limitation may introduce inaccuracy in segmentation, in particular
for mammographic images, where lesions are frequently embedded in complicated

anatomical background.

To circumvent this, Oktay et al. proposed the Attention U-Net [11] that adds attention
gates to U-Net framework (AGs). These components serve as active filters for the
skip connections, allowing the model to suppress unimportant regions while enhancing
salient anatomy such as tumour boundaries. In Figure 3.5, all attention gates are used
just before the concatenation process in the decoder to ensures that we use only the

most suitable encoder features for reconstruction.
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Figure 3.5 Attention U-Net architecture. Attention gates (AGs) filter encoder features before being
concatenated with upsampled decoder features, enabling the network to emphasize lesion-relevant
regions.

The encoder path consists of four stages and every stage is composed of two 3 X 3
convolutional layers with ReLU activations and then 2 X 2 max pooling. These stages
gradually decrease the spatial resolution and increase the number of feature channels

of the map to capture the texture information of breast tissue in a hierarchical manner.

At the bottleneck (the bottom most layer of the architecture), there are two 3 x 3
convolution with 1024 filters that capture more abstract features by repeating

convolutions and synthesis global context information from the down sampled input.

The architecture of the decoder is the same as that of the encoder, and uses upsampling
layers to recover the spatial resolution. At every decoder layer, similar attention gate
is applied to the corresponding output of the encoder before they are concatenated.
This gating mechanism uses decoder features g to compute the attention coeflicients
a to gate encoder features x as contextual guidance. The mathematically definition of

attention gating is:
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=0 (y" (ReLUW,x+ Weg+D))) (3.9)

where W, and W, are feature projection 1x 1 convolutions, YT is another 1 x 1

convolution to the joint feature map, and o-is the sigmoid activation.

The resulting attention map « is applied element-wise to the encoder features, effectively
suppressing background noise and enhancing lesion-related activations. These refined
features are then concatenated with upsampled decoder features and processed through

two additional 3 X 3 convolutions to generate a context-rich feature representation.

The final prediction is obtained by applying a 1 X 1 convolution followed by a sigmoid

activation, which produces a binary segmentation map:

¥ = o-(Convix (F)) (3.10)

Here, F represents the final decoded feature map, and ¥ is the resulting binary mask

that indicates the predicted region of interest (ROI).

Overall, the Attention U-Net helps improve segmentation by guiding the model to focus
on the most relevant features during training. This attention mechanism is particularly
useful in mammography, where dense breast tissue and low image contrast often make
lesion detection more difficult. By highlighting important regions, the model becomes
better at identifying small or hard-to-see masses. As shown in the work of Oktay et
al. [11], this approach offers better results than the standard U-Net in many medical

image segmentation tasks, making it a strong choice for clinical use.
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3.3.4 U2-Net Architecture

U2-Net, originally introduced by Qin et al. [34] for salient object detection, has since
demonstrated strong performance in dense prediction tasks such as medical image
segmentation. In this thesis, the architecture is adapted for the segmentation of breast

masses in mammograms using the CBIS-DDSM dataset.

The core building block of U2-Net is the Residual U-block (RSU), which embeds a
classic U-Net structure within a single layered module. This nested design enables
the model to perform multiscale feature extraction while preserving spatial resolution.
RSU blocks combine a U-Net-like encoder-decoder path with residual connections,
allowing each RSU to capture local details through shallow layers and global contextual
information via deeper paths. This approach results in feature representations that are

both detail-sensitive and context-aware.

Structurally, U2-Net adheres to the conventional encoder-decoder architecture, but
both encoder and decoder are entirely constructed using RSU blocks. Each RSU
block processes the input features through a compact U-shaped pathway—comprising
repeated convolution, pooling, and upsampling operations—and then fuses the final
upsampled features with the block’s original input via a residual shortcut. This allows
for rich representational capacity while maintaining efficient gradient propagation

during training.

The model begins with a single-channel 256 X 256 grayscale input, which passes
through five downsampling stages in the encoder. These stages are implemented with
RSUs using increasing numbers of filters (64, 128, 256, 512), progressively extracting
higher-order features while reducing spatial dimensions. Each RSU’s internal
U-shape facilitates learning features at multiple scales within the same resolution

band.

At the bottleneck, an RSU block with 512 filters captures the most abstract and deeply
contextualized features of the mammogram. From this point, the decoder stages

symmetrically reverse the encoding process through four upsampling steps. In each
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stage, the upsampled features are concatenated with the skip-connected encoder
outputs and passed through another RSU block, using decreasing numbers of filters

(512, 256, 128, 64) to gradually refine the segmentation mask.

Finally, the output is processed through a 1 X 1 convolution layer with sigmoid activation
to generate a binary segmentation map that highlights the regions of interest (ROIs)

corresponding to potential masses.

A schematic illustration of the complete UZ2-Net architecture, customized for the task
of breast mass segmentation, is shown in Figure 3.6. Each stage in the figure clearly
demonstrates the cascading RSU blocks and skip connections facilitating deep feature

fusion.
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RSU-256
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Figure 3.6 U”-Net model architecture. Each stage is built from Residual U-blocks (RSU), which
incorporate nested encoder-decoder paths for multiscale feature learning.

The nested and residual structure of RSU blocks grants U2-Net its ability to learn

simultaneously from both coarse and fine image representations. This capability is
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particularly advantageous for mammography, where masses may appear with subtle
contrasts and irregular shapes. By capturing contextual and spatial cues at multiple
scales and depths, the model improves its sensitivity to small and complex lesions,

enhancing diagnostic reliability in real-world clinical scenarios.

3.3.5 Attention Cascaded U?-Net Architecture

The Attention Cascaded U?-Net (AU?-Net), proposed by Dhivya et al. [35], is an
enhanced version of the original U?-Net architecture [34], tailored specifically for
complex medical image segmentation tasks such as breast mass detection. While
U2-Net was initially developed for salient object detection, AU%-Net extends its
capabilities through a cascaded attention-driven design. In this thesis, it is adopted as

one of the baseline models for comparative evaluation.

AU?-Net is built upon a two-stage cascaded architecture, where the output of the
first U2-Net subnetwork is passed to a second subnetwork for further refinement.
Both subnetworks follow a typical encoder-bottleneck-decoder layout, but conventional
convolutional blocks are replaced with more advanced modules that improve spatial

attention and multiscale contextual learning.
The architecture integrates three key components:

1. Residual U-blocks (RSUs): Each RSU incorporates a lightweight, nested U-Net
structure within a single block, enabling simultaneous extraction of deep semantic
features and fine-grained local details. Internally, the RSU performs multiple levels
of downsampling and upsampling, concatenates intermediate features, and applies
residual connections to maintain information flow. This design effectively preserves
both edge-level precision and global context, while also promoting gradient stability in

deep networks.

2. Attention Gates: Inspired by attention U-Net [11], spatial attention blocks are
applied to the encoder features before concatenation in the decoder. These gates

help filter out irrelevant activations and allow the model to emphasize tumor-relevant
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structures. The gating mechanism is defined by:
Y = o (Convix (ReLU(Bx +6y))) (3.11)

where 6, and ¢, are 1 X 1 convolutions of encoder and decoder features, respectively.

3. Atrous Spatial Pyramid Pooling (ASPP): ASPP modules, placed at the
bottleneck of both subnetworks, use parallel dilated convolutions with dilation rates
r € {6,12, 18}, following the strategy proposed by Chen et al. in the DeepLabv3 model
[36]. This allows the model to incorporate features from multiple receptive fields,

useful in segmenting lesions with varying scale and morphology. The ASPP block is

defined as:
ASPP(x) = Convl x 1 () r € {6, 12, 18)Conv}),(x)) (3.12)

where @ denotes concatenation.

Each decoder stage in both subnetworks performs upsampling followed by RSU blocks
and attention-enhanced skip connections. The final output of the second decoder is
passed through an additional ASPP module and a 1Xx 1 convolution with sigmoid

activation to produce the binary segmentation mask.
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Figure 3.7 Attention Cascaded U2-Net architecture. The network consists of two serial U2-Net structures
composed of RSU blocks, ASPP modules, and attention gates.

The combined design of AU?-Net enables the model to iteratively refine segmentation
results. While this architecture introduces increased complexity and computational
cost, it is particularly useful in identifying and segmenting small, low-contrast tumors
in mammographic images. Its integration of multiscale, attention-guided, and residual

learning mechanisms provides a strong baseline reference in our experiments.

3.4 Proposed Architectures

3.4.1 ETDP-U2-Net Architecture

The ETDP-U2-Net (Edge-Texture Dual-Path U2-Net) is one of the novel architectures
proposed in this thesis. It extends the foundational U2-Net structure [34] by integrating
edge and texture-specific feature pathways, cross-attention mechanisms, and enhanced
multiscale representations via Squeeze-and-Excitation (SE) modules [37] and deep

supervision.

Motivation and Design Rationale: The key idea of ETDP-U?-Net is to independently
extract edge and texture cues—both critical in segmenting mammographic masses—via

two distinct Residual U-block (RSU) branches. These branches are then fused using
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a cross-attention block that aligns and integrates spatially complementary patterns, as

visualized in Figure 3.8.

Edge Edge-
RSU Attention

Edge-Texture
Fusion

T.-x}{D1]

Figure 3.8 ETDP-U?-Net architecture. The network includes dual-path RSUs for edge and texture
extraction, SE modules for channel attention, a cross-attention fusion mechanism, and deep supervision
for hierarchical learning.

RSU Modules: RSU blocks form the core computational unit in the architecture. Each
RSU encapsulates an internal encoder-decoder structure with skip connections and
ends in a residual sum to the original projection of the input. Mathematically, this can

be formulated as:

RSUout = Fdec(Fenc (X)) + X’ (3.13)

where X’ denotes a normalized and projected version of input X. This design supports

both multiscale representation and stable gradient flow.

Squeeze-and-Excitation (SE) Mechanism: To adaptively recalibrate channel-wise

features, SE blocks are placed inside each convolutional unit of the RSUs. Their
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formulation is:
SE(X) = X - o(W26(W;,GAP(X))) (3.14)

Here, 6 and o represent ReLLU and sigmoid activations respectively, and GAP is global
average pooling. This operation emphasizes informative channels and suppresses

irrelevant ones. The SE module is adopted from Hu et al. [37].

Cross-Attention Fusion: Edge- and texture-path RSU outputs are integrated using a
cross-attention block, enhancing complementary information exchange. The attention

map A is computed as:
A =0(Convl x 1(E(Xedge) © T (Xiexture))) 3.15)

where & and 7 are 1 X 1 convolutions and © denotes element-wise multiplication. The

resulting A modulates both edge and texture features before fusion.

Hierarchical Encoder-Decoder with Deep Supervision: The fused tensor is fed into a
standard encoder-decoder framework constructed with RSUs of increasing filter widths.
Decoder stages mirror the encoder via symmetric upsampling and skip connections.

To aid convergence and multi-scale learning, intermediate supervision is applied.

Multi-Stage Supervision: The final prediction ¥ aggregates three outputs as:

A

¥ = a(f/] + A -Resize(¥2) + A3 - Resize(ffg)) (3.16)

where Ay = 0.5 and A3 = 0.25 are predefined weights for deep supervision outputs.

Pseudocode for ETDP-U2-Net: The complete inference workflow is summarized in

Algorithm 2.
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Algorithm 2 ETDP-U?-Net Inference Procedure

Input image I € R26x256

Xedge < RSUedge(1)

Xtexture < RSUtexture(/)

A « CrossAttention(Xedge, Xiexture)

X « Concat(A GXedge’A O Xtexture)

X « Encoder RSUs(X)

Y1,Y>,Y3 « Decoder + Deep Supervision

return ¥ = o-(Y; +0.5 - Resize(Y») + 0.25 - Resize(¥3))

AR AN I e

This model was custom-designed for this thesis to better handle the detection of
subtle, low-contrast lesions that exhibit fuzzy borders, which are commonly seen in
mammography.  Comparative results and ablation studies are detailed in the

subsequent Results chapter.

3.4.2 DPTrans-U2-Net Architecture

The DPTrans-U2-Net (Dual-Path Transformer U2-Net) is a transformer-augmented
segmentation model proposed in this study, specifically designed to enhance breast
mass segmentation performance. It extends the structure of the previously introduced
ETDP-U?-Net by incorporating a transformer module at the bottleneck level of the
encoder-decoder hierarchy, thereby enabling improved contextual feature modeling

over long spatial ranges.

Architecture Overview: The model begins by extracting edge and texture
representations independently through two distinct Residual U-blocks (RSUs). These
two feature maps are then fused using a cross-attention mechanism that dynamically
emphasizes mutually salient regions. The fused features are passed through a
downsampling encoder path consisting of additional RSU stages. A transformer block
is placed at the deepest layer of the network, introducing self-attention over flattened
spatial dimensions and allowing the model to capture global dependencies across the

entire image.

Transformer Bottleneck: The transformer module applies multi-head self-attention

(MHSA) followed by a feedforward network (FFN) to enrich the feature representation.
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Formally, the transformation applied to the encoded features X can be expressed as:

Transformer(X) = Reshape_1 (Feen (Fmasa (LayerNorm(Reshape(X)))) + X)

(3.17)

Here, FMusa and Frpny denote the multi-head self-attention and feedforward layers,
respectively. This bottleneck mitigates the local receptive field limitation inherent in

conventional convolutions.

Decoder and Supervision: After the transformer block, the decoder reconstructs the
segmentation mask via upsampling and skip connections, using corresponding RSU
blocks at each level. Deep supervision is applied by generating auxiliary outputs
at multiple decoder stages, which are later aggregated to produce the final output

prediction:

¥ = o (Y] +0.5-Resize(Y>) + 0.25 - Resize(Y3)) (3.18)

A detailed architectural overview of the DPTrans-U?-Net, including the transformer

bottleneck and dual-path RSU stages, is illustrated in Figure 3.9.
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Figure 3.9 The architecture of DPTrans-U%-Net, which integrates a transformer bottleneck module
within a dual-path RSU framework for enhanced and enriched feature interaction dynamics.

Inference Flow: The inference procedure for DPTrans-U?-Net is summarized in

Algorithm 3, highlighting its sequential processing stages.

Algorithm 3 DPTrans-U?-Net Inference Procedure
R256X256

Input: Image / €
Xedge < RSUedge(I)

Xiexture <= RSUtexture (1)

A « CrossAttention(Xedge, Xtexture)

X « Concat(A © Xedge, A © Xeexture)

X < Downsample + RSUs(X)

X « TransformerBottleneck(X)

Y1,Y2,Y3 « Decoder + Deep Supervision

Return: ¥ = o/(Y; +0.5 - Resize(Y2) + 0.25 - Resize(Y3))

R e A Ul > e

This architecture enhances both the propagation of global contextual features and
the precision of fine-grained segmentation boundaries. Its contribution to overall

performance is examined in detail in the comparative evaluation section of this thesis.
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3.4.3 DPCA-U2-Net Architecture
DPCA-U2-Net: A Dual-Path Cross-Attention Framework

DPCA-U?-Net (Dual-Path Cross-Attention U?-Net) is a deep segmentation model
introduced in this thesis to address the specific challenges of detecting breast masses
in mammograms. It builds on the structure of U2-Net [34] but introduces targeted
improvements to better capture two key visual cues in medical images: texture and
edge boundaries. These enhancements are particularly important in mammography,

where lesions often appear subtle and poorly defined.

3.4.3.0.1 Model Motivation and Novelty. In real clinical settings, radiologists
often note that breast tumors can have fuzzy edges or irregular textures, which makes
their detection more difficult. While conventional segmentation models can pick up
general patterns, they often struggle to differentiate fine details. DPCA-U2-Net
addresses this by processing edge and texture information separately. It uses two
distinct encoder paths—each made of Residual U-blocks (RSUs)—so the network can
learn to handle these features independently. This design helps the model produce
clearer, more meaningful predictions by preventing the blending of visual signals that

are fundamentally different.

3.4.3.0.2 Dual RSU-Based Feature Extraction. Given an input image X, the model

sends it through two parallel branches:

Xedge = RSUedge(X) (3.19)

Xiexture = RSUtexture (X) (3.20)

Each RSU block follows an encoder-decoder layout with skip connections, just like in
U%-Net, allowing the model to extract information at multiple scales while
maintaining the flow of gradients. By using this dual-path structure, DPCA-U?-Net is

better equipped to highlight both sharp edges and soft tissue textures, which are
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critical for segmenting breast lesions accurately.

Xedge = RSUedge(X)a Xtexture = RSUexture (X) (3.21)

Cross-Attention Fusion: The two streams are fused through a soft cross-attention
mechanism that dynamically weighs the interaction between edge and texture

activations. This is mathematically defined as:

E= Conlel(xedge), T = Convx1(Xtexture) (3.22)
A=0c(EQT) (3.23)
Fiused = Convixs (Concat(A O Xedge, A QXtexture)) (3.24)

where © denotes element-wise multiplication and o is the sigmoid function. This
fusion technique is adapted from dual-attention mechanisms previously explored in
semantic segmentation [38], but tailored here to specifically merge edge and texture

channels.

Hierarchical Encoder-Decoder Architecture: After cross-attention fusion, the
combined features are downsampled through deeper RSU blocks with increasing filter
widths (128, 256, 512). These layers enable learning from coarse contextual cues.
The decoder mirrors the encoder path and includes skip connections at each resolution
level to preserve spatial detail. The final prediction is generated via a

sigmoid-activated 1 X 1 convolution layer.
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Figure 3.10 DPCA-U?-Net architecture. Edge and texture-specific RSU streams are fused with
cross-attention. Encoder-decoder hierarchy reconstructs the lesion mask.

Pseudocode for DPCA-U2-Net:

Algorithm 4 DPCA-U?-Net Inference Procedure
R256X256

Input: Image / €
Xedge A RSUedge(l )

Xtexture <~ RSUjexture (1)

A O-(COHVIXI(Xedge) © Convix (Xeexture))

Ftused < Convizxs(Concat(A ®Xedge’A O Xtexture))
F < Encoder RSU stages(Ffyseq)

Y « Decoder RSU stages + Skip Connections(F’)
return ¥ = Sigmoid(Convix(Y))

PR e
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Unlike existing architectures, DPCA-U?-Net does not rely on transformer-based
components. Its strength lies in its architectural simplicity and domain-specific
design, making it computationally efficient while retaining strong segmentation
performance. To the best of our knowledge, no prior work has combined U?-Net-style
RSU blocks with explicit dual-path cross-attention tailored for edge-texture

interaction, making this model an original contribution within this thesis.

3.5 Data Augmentation Strategy

To mitigate overfitting and improve model generalizability, we employed a 16-fold data
augmentation strategy, inspired by the augmentation protocol proposed in [35]. This
approach is particularly beneficial in mammographic image segmentation tasks, where

lesion instances are limited and class imbalance is prominent.

Motivation: As noted by Dhivya et al. [35], conventional deep networks are prone to
overfitting on small medical image datasets. Instead of relying on random
augmentations, their study proposed a carefully curated set of geometric
transformations shown to improve lesion localization and boundary preservation in
breast tumor segmentation. Based on their evaluation, we adopted this deterministic

16x augmentation set in our preprocessing pipeline.

Augmentation Set: Let X denote an original grayscale mammogram image of size
256 x 256, and Y its corresponding binary ROI mask. The augmented image-mask

pairs are denoted as:
(X, Yol = Tu(X,Y) (3.25)
where 77, is the k-th transformation from the list below:
e Identity: 71(X) =X

* Rotation: 7,(X,0) = RyX, with 6 € {45°,90°,270°}

* Flipping: Horizontal (x,y) — (w—x,y), vertical (x,y) — (x,h—y)
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* Scaling: Tqe(X,s) =S X, where s €{0.9,1.1,1.2}
e Translation: 7ns(X, Ax,Ay) = X(x—Ax,y—Ay)

* Compositions: Mixed augmentations such as 7o(Rop o flipg(X))

Output: The resulting dataset is expanded by a factor of 16:
X Y) = Xk YOS, (3.26)

All augmented images and masks are saved with consistent naming conventions for

reproducibility and are used only within the training set to avoid information leakage.
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This controlled augmentation approach provides a rich set of spatial variations without
introducing semantic distortions, and has empirically led to improved segmentation

performance across all architectures tested in this thesis.

3.6 Evaluation Metrics and Loss Functions

To evaluate segmentation quality, we employed six standard metrics commonly used
in medical image analysis: Accuracy, Dice Similarity Coefficient (DSC), Intersection
over Union (IoU), Precision, Recall, and the F,-Score. These metrics provide
complementary perspectives on pixel-level correctness, overlap, and clinical
relevance. In the context of mammographic segmentation, where lesion boundaries
are subtle and lesions vary significantly in size and contrast, each metric contributes

uniquely to assessing model performance.

3.6.1 Dice Similarity Coefficient (DSC)

The Dice coefficient quantifies the spatial overlap between predicted (P) and

ground-truth (G) segmentation masks:

2IPNG|+e
DSC(P = 3.27
(P.G) |P|+ |G|+ € ( )

where € is a smoothing term (set to 1) to prevent division by zero. First introduced as
a differentiable loss in medical imaging by Milletari et al. [39], DSC is robust to class
imbalance and is particularly useful for assessing small tumors. In mammography, it
effectively captures overlap between segmented lesions and ground truth, making it a

critical metric when tumor regions are small or irregular.

3.6.2 Intersection over Union (IoU)

IoU, or the Jaccard Index, is defined as:

IPNG|+e€
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It penalizes false positives more heavily and is widely adopted in medical image
segmentation benchmarks [33,40]. In mammographic analysis, IoU is crucial for

evaluating precise delineation of tumor boundaries, especially in complex backgrounds.

3.6.3 Accuracy

Accuracy is the ratio of correctly classified pixels (true positives and true negatives) to

the total number of pixels:

TP+TN
A _ 3.29
Y = TP TN+ FP+ FN (3-29)

Though simple, accuracy may be misleading in highly imbalanced datasets such as
mammograms where background pixels vastly outnumber foreground tumor pixels.

Nevertheless, it provides a coarse measure of overall classification correctness.

3.6.4 Precision and Recall

Precision and recall are defined as:

TP
Precision = ———— (3.30)
TP+FP+e
TP
Recall = —— (3.31)
TP+FN+e

Precision measures the correctness of positive predictions, while recall emphasizes
completeness. In clinical scenarios, recall is especially significant because missing
tumor pixels (false negatives) could lead to missed diagnoses. Both metrics are widely

used in medical Al evaluations [41].

3.6.5 F»-Score

The F,-Score is a weighted harmonic mean that favors recall more than precision:

5 - Precision - Recall

F 2= —
4 - Precision + Recall + €

(3.32)
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This metric is appropriate in mammography where detecting every possible tumor pixel

is critical, even at the expense of increased false positives [41].

3.6.6 Loss Functions

To overcome challenges like tumor heterogeneity in size and contrast, we tested multiple

loss functions:

Binary Cross Entropy (BCE) BCE loss is defined as:
1 . N .
LBCE =~ > i =1"yilog(9) +(1 ~yp)log(1-)) (3.33)

It is a pixel-wise classification loss that encourages accurate individual predictions.
While BCE provides stable gradients and sharp boundaries, it struggles with extreme

class imbalance which is common in medical datasets [42].

Dice Loss Defined as Lpjce = 1 — DSC, this loss was proposed by Milletari et al. [39].
It improves overlap-based optimization and mitigates class imbalance but may result in

unstable convergence for large lesions.

Focal Loss Introduced by Lin et al. [43], Focal Loss includes a modulating term (1 — p;)”
to focus on hard-to-classify pixels. It enhanced detection of small, low-contrast tumors,

though it underperformed for large masses.

Tversky Loss Proposed by Salehi et al. [44], this loss controls trade-off between false

positives and false negatives:

~ IPNG|
T(hG)= IPNG|+a|P\G|+8|G \ P| (3.34)

We found it useful for improving recall in small tumors but it was overly conservative

for larger tumors.

Boundary Loss Suggested by Kervadec et al. [45], this loss uses a signed distance
map to emphasize alignment along edges. While beneficial for sharp borders in small

lesions, it struggled with low-contrast masses.



42

3.6.7 Combined Dice + Binary Cross Entropy Loss

Combined Dice + BCE Loss The best performing objective was a combined loss:

LCombo = LDice + .Lcg 3.35)

Recommended by MONAI [46], this hybrid balances pixel-wise BCE with region-based
Dice optimization. It offered robust convergence and generalization across lesion sizes
and contrasts, making it the most suitable choice for mammographic segmentation in

our study.

3.7 Experimental Setup

All models were trained on the CBIS-DDSM dataset using a training-validation-test
split, where the test set remained entirely unseen during both training and
hyperparameter tuning phases. To ensure a fair and unbiased evaluation, the test set
was strictly separated and excluded from any data augmentation or preprocessing
procedures. Augmentation was applied only to the training set to avoid data leakage, a
known issue that can artificially inflate performance metrics if test data characteristics

are indirectly learned by the model [47].

Training was conducted for up to 100 epochs using the Adam optimizer and a
mini-batch size of 8. However, to prevent overfitting and unnecessary computation,
we incorporated two training control mechanisms: Early Stopping and
ReduceLLROnPlateau. Early Stopping [48] monitors the validation loss and halts
training if no improvement is observed for 15 consecutive epochs. This allowed most
models to converge between epochs 35 to 42, well before reaching the upper bound.
Meanwhile, the ReduceLROnPlateau callback [49] dynamically reduces the learning
rate by a factor of 0.5 when the validation loss plateaus, thus encouraging better

fine-tuning of parameters in later training stages.

The evaluation of model performance relied on multiple complementary metrics, such

as Accuracy, Dice Score, Intersection over Union (IoU), Precision, Recall, and F»-Score.
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To ensure fair comparison, the version of each model that achieved the best Dice score

on the validation set was selected and later used for final testing.
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CHAPTER 4

RESULT AND DISCUSSION

This section presents a detailed evaluation of both the proposed models and the
baseline architectures on the CBIS-DDSM dataset. To capture different aspects of
segmentation performance, we report results using multiple quantitative metrics, such
as Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Precision,
Recall, and F,-Score. Alongside these metrics, visual examples are provided to
illustrate how accurately each model delineates lesion boundaries. The evaluation
setup was designed to test robustness under varying lesion types, sizes, and contrast
levels—factors that often complicate real-world diagnosis. To better situate our
findings, we also compare results with those reported by recent state-of-the-art
approaches. Particular attention is paid to data augmentation strategies and their
impact on performance, ensuring that evaluations are conducted in a leakage-free

setting.

4.1 Experimental Setup Recap

Training, validation, and testing were conducted on the CBIS-DDSM dataset. The
test set remained strictly isolated throughout both preprocessing and training phases to
avoid data leakage. Augmentation techniques (rotation, flipping, scaling) were applied

solely to the training data.

Each model was trained for up to 100 epochs with Adam optimizer (batch size: 8),
though early stopping (patience: 15 epochs) typically halted training between epochs
35-42. ReduceLROnPlateau dynamically adjusted the learning rate, aiding

convergence after plateaus.
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4.2 Quantitative Results

The use of cropped images is one of the main factors that optimises the segmentation
performance of all the models in this study. Using only the region containing the
tumour instead of full mammograms allows the model to focus directly on the structure
of interest. This reduces the learning complexity that may be caused by irrelevant
background tissue, dense black areas, or pectoral muscle. This strategy is especially
effective in improving field-based metrics such as Dice and IoU, which are sensitive
to both false positive and false negative predictions in addition to true positives. Since
the negative space is significantly limited in cropped images, the region in which the
model can misclassify is also reduced, leading to generally higher and more stable

metric values.

In addition, since cropped images are typically resized to a standard resolution, the
models benefit from consistent input dimensions, which enhances training stability and
convergence. This standardisation helps reduce the performance gap between baseline
and advanced architectures. For example, the differences in performance between a
basic U-Net and more complex models tend to be more pronounced when trained
on full mammograms, whereas this difference often diminishes to within 1-2% on
cropped images. These factors explain the high and closely grouped performance
values in Table 4.1, which summarises the results of six models trained without any

data augmentation.

Table 4.1 Performance comparison on the original CBIS-DDSM Mass test set without augmentation
techniques

Model Params | Dice IoU | Precision | Recall F,

U-Net [10] 31.38M | 0.8955 | 0.8144 | 0.8852 | 0.9155 | 0.9061
Attention U-Net [11] | 32.43M | 0.8976 | 0.8178 | 0.8887 | 0.9164 | 0.9075
DPCA-U2-Net (ours) | 6.98M | 0.8984 | 0.8193 | 0.9023 | 0.9061 | 0.9015
U2-Net [34] 14.79M | 0.9004 | 0.8225 | 0.8808 | 0.9315 | 0.9173
AU?-Net [35] 18.21M | 0.9020 | 0.8253 | 0.8975 | 0.9165 | 0.9094
ETDP-U2-Net (ours) | 6.54M | 0.9048 | 0.8295 | 0.9045 | 0.9143 | 0.9093

Figure 4.1 and Figure 4.2 present qualitative segmentation results of the six models

trained without data augmentation, evaluated on representative cases from the CC and



MLO views respectively. These visualisations highlight the consistency and differences
between models in capturing the lesion boundaries and localising the target regions.
Overlay masks are colour-coded as follows: green represents intersection areas (true
positives), yellow denotes false positives, and red marks false negatives. This visual

scheme facilitates clear interpretation of each model’s strengths and weaknesses.

Method Cropped Image Ground Truth Predicted Mask Overlay

Vanilla U-Net

*

Dice: 0.9354 loU: 0.8786

&

Attention U-Net

Dice: 0.9230 loU: 0.8570

Uz-Net

Dice: 0.9332 loU: 0.8748

AU?-Net

Dice: 0.9366 loU: 0.8807

DPCA-U?-Net

Dice: 0.9326 loU: 0.8738

ETDP-U2-Net

Dice: 0.9479 loU: 0.9010

Figure 4.1 Qualitative segmentation results of six models trained without augmentation on a
representative CC-view test image. Overlay colors: green (true positive), yellow (false positive), red
(false negative).
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Method Cropped Image Ground Truth Predicted Mask Overlay

Vanilla U-Net

&
&

Dice: 0.9341 loU: 0.8764

Attention U-Net

&
&

Dice: 0.9293 loU: 0.8679

U2-Net

&
&

Dice: 0.9396 loU: 0.8860

AU*-Net

&
&

Dice: 0.9348 loU: 0.8775

DPCA-U?-Net

Dice: 0.9425 loU: 0.8913

.
h.
.
.

ETDP-U2-Net

Dice: 0.9470 loU: 0.8994

Figure 4.2 Qualitative segmentation results of six models trained without augmentation on a
representative MLO-view test image. Overlay colors: green (true positive), yellow (false positive),
red (false negative).

To further improve generalisation and model robustness, we additionally explored the
impact of data augmentation. Table 4.2 presents the results of three
models—ETDP-U2-Net, DPTrans-U?-Net, and AU?-Net—trained on the augmented
dataset. As observed, the segmentation metrics increased across all models, but the
performance gaps also became more distinct. This indicates that augmentation
introduces greater variability into the data, allowing model-specific advantages to

manifest more clearly.
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Table 4.2 Performance comparison on the augmented CBIS-DDSM Mass test set with advanced data

diversity strategies applied

Model Params | Dice IoU | Precision | Recall F,

ETDP-U2-Net (ours) 6.54M | 0.9162 | 0.8485 | 0.9100 | 0.9295 | 0.9232
DPTrans-U?-Net (ours) | 4.24M | 0.9149 | 0.8463 | 0.9008 | 0.9369 | 0.9270
AU2-Net [35] 18.21M | 0.9091 | 0.8369 | 0.9036 | 0.9233 | 0.9164

Figure 4.3 and Figure 4.4 show segmentation results of the three models trained with

augmented data, evaluated on different test examples from both CC and MLO views.

The improvements are visually more apparent here:

segmentation boundaries are

more refined, small lesions are better captured, and overall coverage improves. These

qualitative results confirm the quantitative advantage of data augmentation in facilitating

stronger generalisation, particularly across the diverse characteristics of mammographic

views.

Method

ETDP-U*-Net

DPTrans-U?-Net

AUZ-Net

Cropped Image

Ground Truth

Predicted Mask

Dice: 0.9583

Dice: 0.9468

®

Dice: 0.9510

Overlay

loU: 0.9199

loU: 0.8989

»

loU: 0.9065

Figure 4.3 Qualitative segmentation results of three models trained with augmentation on a representative
CC-view test image. Overlay colors: green (true positive), yellow (false positive), red (false negative).




Method

ETDP-U?-Net

Cropped Image

Ground Truth

Predicted Mask

*

Overlay

*

Dice: 0.9508 loU: 0.9062

DPTrans-U?-Net

Dice: 0.9479 loU: 0.9009

AUZ-Net

ojoj e

Dice: 0.9245 loU: 0.8596

Figure 4.4 Qualitative segmentation results of three models trained with augmentation on a representative
MLO-view test image. Overlay colors: green (true positive), yellow (false positive), red (false negative).

In conclusion, while cropped images significantly enhance base-level segmentation
quality, the introduction of data augmentation enables models to better generalise
to complex tissue variations and mass characteristics. Moreover, it provides a more
revealing test bed to compare architectural innovations, making performance differences

more interpretable and impactful.

4.3 Discussion: Comparative Analysis with ROI-Cropped Studies

In this section, we critically compare the proposed ETDP-U2-Net with recent
segmentation models that also adopted ROI-cropped CBIS-DDSM images for training
and evaluation. The goal is to contextualize the performance of our model in terms of

segmentation accuracy, parameter efficiency, and experimental integrity.

Table 4.3 Comparison of ROI-Cropped segmentation models on CBIS-DDSM

Model Params | Dice IoU | Remarks

Connected-SegNets [50] 22M | 0.9286 | 0.8734 | highest dice/loU but heavy model
Connected-UNets [51] 22.4M | ~0.92 | ~0.87 | High complexity, ROI cropped
AUNet [52] 11M | 0.8903 | 0.8265 | Light-good trade-off
ETDP-U2-Net (ours) 6.54M | 0.9048 | 0.8295 | Best performance/params tradeoft

As shown in Table 4.3, Connected-SegNets [50] stands out with the highest Dice
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(0.9286) and IoU (0.8734) scores. However, it comes with a significantly higher
parameter count (22M), which increases memory and computational requirements.
Similarly, Connected-UNets [51] achieves competitive performance with 22.4M

parameters, remaining substantially heavier than our ETDP-U?-Net.

Compared to AUNet [52], which uses 11M parameters to reach a Dice of 0.8903 and
IoU of 0.8265, our model is approximately 40% smaller in size while outperforming it in
both Dice and IoU. These findings underscore the parameter efficiency and performance

trade-off of our approach.

Moreover, while the above studies may report high scores, many do not clearly separate
their training and test augmentations, increasing the risk of data leakage. In contrast,
our methodology strictly separates test images and performs augmentation only on the

training set. This enhances the reliability and generalizability of our reported metrics.

Another distinction is the exclusive use of cropped ROI images containing only the
mass region, a setup that simplifies the segmentation task but demands precision from
the model. Despite this, ETDP-U2-Net maintains high recall and F, scores, indicating

strong lesion localization, particularly important in early-stage cancer detection.

In conclusion, ETDP-U?-Net offers a promising solution for segmenting
mammographic masses using ROI-based inputs. By maintaining a careful balance
between model complexity and accuracy, and by following clearly defined
experimental standards, it stands out as a practical option for real-world medical

applications.



CHAPTER 5

CONCLUSION AND FUTURE WORK

Breast cancer remains a major global health concern, highlighting the need for early
and accurate detection to improve patient outcomes. In recent years, deep learning has
become an increasingly important tool in computer-aided diagnosis (CAD),
particularly for analyzing mammographic images. Despite this progress, many
existing segmentation models still struggle with challenges such as computational
overhead, limited generalizability, and inconsistent evaluation practices. To help
overcome these obstacles, this thesis proposes ETDP-U?-Net—an attention-guided,
dual-path segmentation model specifically designed for ROI-cropped mammographic

mass segmentation.

The model introduces three key design choices that enhance its segmentation
capability: (i) a dual-path structure that separately captures edge and texture
information through distinct RSU branches, (ii) a cross-attention module that brings
these complementary features together in a meaningful way, and (iii) a streamlined
decoder with deep supervision to improve learning at multiple levels of detail. All
experiments were conducted using a reproducible and rigorously defined protocol: the
CBIS-DDSM dataset was used exclusively with ROI-cropped images, and the test set

was fully isolated from any form of augmentation to ensure a fair assessment.

Quantitative evaluations demonstrated the strength of the proposed method.
ETDP-U2-Net achieved a Dice coefficient of 0.9162 and an IoU of 0.8485,
outperforming multiple ROI-based state-of-the-art models while maintaining a
compact size of just 6.54 million parameters. These results highlight the model’s
robustness in segmenting small or low-contrast lesions, as well as its suitability for

real-time or resource-constrained deployment scenarios.

Although this study focused on single-view, ROI-cropped mammograms, future work

could benefit from combining both craniocaudal (CC) and mediolateral oblique
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(MLO) views. This type of multi-view fusion could help the model better understand
the broader anatomical context. Another promising direction would be to explore
transformer-based components in the architecture—either in the skip connections or
the bottleneck layers—to improve how the model captures long-range dependencies.
Building on this, the segmentation pipeline could also be extended with a
classification module that predicts malignancy based on either radiomic features or
learned embeddings. Lastly, applying explainable Al tools such as saliency maps or
attention heatmaps may improve transparency and make the model’s decisions easier

to interpret for clinicians.

One of the key strengths of ETDP-U2-Net lies in its lightweight architecture, which
makes it particularly suitable for deployment on resource-constrained devices such as
mobile phones or embedded systems. With further optimization techniques like
quantization or pruning, the model can run efficiently without sacrificing much
accuracy. This efficiency also opens the door for integration into Picture Archiving
and Communication Systems (PACS), where it could assist radiologists with real-time
support during routine screenings. Looking ahead, it will be important to validate the
model’s performance on more complex imaging modalities like digital breast
tomosynthesis (DBT) or MRI. Clinical trials could offer additional insight into how
well the model performs in real-world settings. Finally, releasing the model’s weights
and code to the public would help ensure transparency, reproducibility, and broader

adoption within the research community.

In summary, this thesis presents ETDP-U2-Net as a reliable, interpretable, and
lightweight architecture for breast mass segmentation. By combining thoughtful
architectural design with a rigorously structured experimental setup, the proposed
approach contributes meaningfully to the ongoing advancement of deep learning in
medical imaging. The model’s strong performance, alongside its practical efficiency,
positions it as a promising candidate for future computer-aided diagnosis (CAD)

systems and real-world integration into radiological workflows.
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