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IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

EVALUATION OF ALTERNATIVE MAINTENANCE STRATEGIES ON A

COMPLEX SYSTEM IN THERMAL POWER SYSTEMS

BUSENUR TÜRKALİ
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EVALUATION OF ALTERNATIVE MAINTENANCE

STRATEGIES ON A COMPLEX SYSTEM IN

THERMAL POWER SYSTEMS

Abstract

In recent years, due to the continuous development of the industry and the

rapid increase in the system complexity, maintenance policies have become more

important. Unplanned downtimes due to unexpected failures may lead to huge

problems in almost all industry branch. However, carrying out maintenance

more than the required to prevent unexpected failures increases maintenance cost

significantly. Thus, balancing the number of reactive and proactive maintenance

is very important.

The aim of this thesis is to develop maintenance methods under the reactive,

condition-based and proactive maintenance strategies using dynamic Bayesian

networks (DBNs) in thermal power plants. DBNs which are are probabilistic

graphical models, are selected to model the system because they are very effective

to formulate the stochastic and structural dependencies between the components.

In this study, we evaluate alternative maintenance strategies on a complex system

based on two factors: total number of maintenance and total maintenance cost

in a given planning horizon. The proposed maintenance methods are simulated

on a multi-component thermal power plant system which has a very complex

structure with hidden components among which there are stochastic and structural

dependencies. Scenarios are designed considering the maintenance dependability

of parallel systems during proactive activities and different reactive cost structures.

As a result, performances of all proposed maintenance strategies and methods

are compared and analysed under each scenario and the most promising ones are

highlighted.

Keywords: DBN, reactive maintenance, proactive maintenance, complex

systems
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TERMİK SANTRALLERDE KULLANILAN

KARMAŞIK BİR SİSTEM ÜZERİNDE ALTERNATİF

BAKIM STRATEJİLERİNİN DEĞERLENDİRİLMESİ

Özet

Son yıllarda, endüstrinin sürekli gelişimi ve sistemlerin karmaşıklığının artması

ile bakım politikaları daha önemli hale gelmiştir. Beklenmedik arızalar nedeniyle

ortaya çıkan planlanmayan arıza süreleri, hemen hemen tüm endüstri kollarında

büyük sorunlara yol açabilir. Ancak, beklenmedik arızaları önlemek için gereğinden

fazla bakım yapılması da bakım maliyetlerini önemli ölçüde artırır. Bu nedenle,

reaktif ve proaktif bakım sayısının dengelenmesi çok önemlidir.

Bu tezin amacı, termik santrallerde olasılıklı grafik modeller olan dinamik Bayes

ağlarını (DBN’ler) kullanarak reaktif, koşul bazlı ve proaktif bakım stratejileri

kapsamında bakım yöntemleri geliştirmektir. Sistemi modellemek için bileşenler

arasındaki yapısal ve stokastik bağımlılıkları formüle etmek için çok etkili olan

DBN’ler seçilmiştir. Bu çalışmada, karmaşık bir sistemde alternatif bakım strateji-

leri iki faktöre dayanılarak değerlendirilmiştir: belirli bir planlama ufkunda toplam

bakım sayısı ve toplam bakım maliyeti. Önerilen bakım yöntemleri, aralarında

rassal ve yapısal bağımlılıklar olan gizli bileşenlerin bulunduğu çok karmaşık

yapıya sahip çok bileşenli bir termik santral sisteminde simüle edilmiştir. Paralel

sistemlerin bakım bağımlılıkları ve farklı reaktif bakım maliyetleri dikkate alınarak

senaryolar oluşturulmuştur. Sonuç olarak, önerilen tüm bakım stratejilerinin ve

yöntemlerinin performansları her senaryo altında karşılaştırılmış ve analiz edilmiş,

en iyi bulunan yöntemler açıklanmıştır.

Anahtar kelimeler: Dinamik Bayesçi ağlar, düzeltici bakım, proaktif bakım,

kompleks sistemler
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Chapter 1

Introduction

With the rapidly developing technology in recent years, the structure of the

systems used in the industry has also started to change rapidly. Simple indus-

trial mechanisms, usually consisting of one or a few components, in the past

have been replaced by systems which consist of more components, but are also

more structurally complex. Although these developments benefit companies in

many ways, they also cause difficulties in understanding the system and making

appropriate plans. It is important to figure out the dependencies between the

components, especially in risk, safety and maintenance management where system

reliability should be prioritized. It should be noted that any misunderstanding and

wrong calculation can seriously harm companies, both financially and spiritually.

Moreover, many factories and companies with well technological infrastructure

have been established, and this has led to the escalation of competition. To survive

in this competitive environment, keeping systems available is the most important

point. Otherwise, deliveries to the customer are delayed, which could result in

loss of trust and thereby loss of customer in the long term. In addition to these,

loss costs and, in some cases, penalty costs also cause companies to remain in a

difficult situation.

The most effective way to avoid these situations is to maintain the systems

regularly. In the most common sense, maintenance is the set of tasks performed

to sustain the operation of the established order in a factory [1]. Maintenance
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can be categorized in two main strategies as proactive and reactive [2]. Reactive

maintenance is carried out to correct a malfunction or to remove an emergency

situation whereas proactive maintenance is performed to avoid possible downtimes

before the system stops because of a failure. It is a known fact that proactive

maintenance reduces the unexpected downtime of the system and reduces costs

considerably if it is applied effectively. However, although proactive maintenance

can prevent possible failures in the system substantially, it does not completely

prevent the occurrence of unexpected failures [3]. In such situation, it is necessary

to carry out reactive maintenance immediately to ensure that the fault is remedied

as soon as possible.

Maintenance has always played an important role since the first industrial revolu-

tion when machines came into our lives and mass production began. Initially, a

system or machine malfunction would be noticeable only when it was not working,

and the component that caused the system to fail was determined by observation

and only reactive maintenance was performed on that component. However, with

the escalating complexity of the systems, it has become more complicated to un-

derstand and make maintenance plans by observing which component has broken

the system [4]. Thus, new and smart maintenance methods have begun to emerge.

Especially with industry 4.0, as the state of the system and its components and

the probability of failure can be understood with the help of sensors, proactive

maintenance methods that reduce maintenance costs have become widespread.

1.1 Classification of Maintenance Philosophies

Maintenance is a requirement that has existed since ancient times. From the

routine repairs of the oldest hand tools to the maintenance of modern machines,

maintenance and repair has an important place in our lives. But for hundreds of

years, people thought there was no need for repair unless their tools were damaged.

But this is not a viable approach in today’s facilities, especially when it comes to

industries that have to use multi-component systems and smart factories . At this

2



point, different maintenance strategies have been developed. Kothamasu et al. [5]

classified the maintenance philosophies in his study in which current paradigms

and practices on system health monitoring and prediction are discussed. Inspired

by this study, maintenance philosophies can be classified as in Figure 1.1.

Figure 1.1: Classification of maintenance philosophies.

Maintenance strategies are basically divided into two as reactive and proactive.

Reactive maintenance is applied when the system fails. Conversely, proactive

maintenance is implemented to avoid from the failure or to decrease the deteri-

oration probability of the components [6]. Reactive and proactive maintenance

are also classified within themselves depending on the way they are detected and

applied.

1.1.1 Reactive Maintenance Strategies

Reactive maintenance is categorized as corrective and emergency maintenance.

Corrective Maintenance

Corrective maintenance is the maintenance performed to correct the malfunction

which is detected during an inspection, preventive maintenance or work. The fail-

ures are generally do not threat the health of the system, their quick maintenance

3



will be more beneficial for the continuity of the system. The need for corrective

maintenance in a system cannot be prevented.

Emergency Maintenance

Emergency maintenance is applied when a malfunction occurs that threatens the

health of the system and workers and the continuity of the operation. Unlike

corrective maintenance, the need for emergency maintenance can be greatly

reduced with a regular preventive maintenance program.

1.1.2 Proactive Maintenance Strategies

Proactive maintenance can be grouped under two headings as preventive and

predictive [7]. In the former, the system is maintained at predetermined intervals,

while in the second, a certain criterion which is generally relates to the reliability

of the system must be met to maintain the system.

1.1.2.1 Preventive Maintenance Strategies

Preventive maintenance can be further divided into two as constant interval and

age-based maintenance[8].

Constant Interval Maintenance

In constant interval maintenance, components are replaced or maintained at

predetermined times according to a constant interval, regardless of situation

of them or system. Thus, in this maintenance strategy, components can be

unnecessarily replaced or maintained even if they are not needed, and this can

result in excessive costs [9].

Age-Based Maintenance

Age-based maintenance is done when the component or the system reaches a

certain age, and age of the maintained component is reset when maintenance

is performed [10]. In the previous one, component maintenance is carried out

4



at predetermined time intervals, regardless of the condition of the components.

However, in this strategy the age of the components is considered while taking

maintenance decisions.

1.1.2.2 Predictive Maintenance Strategies

In predictive maintenance, a prerequisite for the condition of the system must be

met to maintain the system. The aim is to keep the system at the highest level

with the least number of maintenance required, thus reducing maintenance costs

[11]. Predictive maintenance can be categorized as reliability centered maintenance

(RCM) and Condition-based maintenance (CBM).

Reliability Centered Maintenance (RCM)

RCM tries to improve the reliability and usability of the most crucial points in

the system and minimize system failures and maintenance costs. The main aim is

to find the optimum point where system reliability and profitability intersect with

the number of maintenance [12].

Condition-Based Maintenance (CBM)

CBM enables the maintenance decision to be performed in regard to the actual

state of the equipment or system. CBM indicates that maintenance should be

carried out when specific indications indicate the possibility of poor performance

or unexpected failure. For a machine, these symptoms are detected by visual

inspection, performance data, vibration data, and analysis of planned test results.

A proper CBM plan reduce maintenance costs considerably as a result of avoiding

unnecessary maintenance [13].

1.2 Dependencies in Multi-Component Systems

To select the best maintenance strategy for multi-component complex systems,

understanding the dynamics of the system is essential and it is only possible
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by defining the dependencies and cause-effect relations among the components

correctly. Complex systems consist of many components which may be interde-

pendent to each other. For maintenance decisions, three types of dependencies

are encountered among the components, i.e., structural, economic and stochastic

[14]. In addition to these three, another type of dependency, resource, has been

recently described by [15].

1.2.1 Structural Dependency

This type of dependency is traditionally explained as two components that are

dependent on each other must be maintained together, they cannot be renewed or

repaired separately. That is, even if only one of the two components fail, the other

must also be disassembled [16]. Keizer et al. [15] divide structural dependency

into two as technical dependence and performance dependence. In the first,

maintenance of a particular component may require or prohibit the maintenance

of other components. In the second, the configurations of the components, i.e.,

parallel systems, series systems, are considered.

1.2.2 Economic Dependency

The economic dependency between the components implies that if a group of

components are maintained collectively, total maintenance cost is either reduced

(positive economic dependence) or increased (negative economic dependence) in

comparison to the total of singular maintenance costs of the respective components

[17, 18]. The best example of economic dependence is group maintenance of

components. In this way, loss of profit can be reduced thanks to reducing downtime

or higher costs may be generated due to unnecessary repair of parts in the group.

Also, there are both positive and negative economic dependencies in k out of n

systems. There is a positive economic dependency in the serial systems where

n=k. In the systems where n>k (redundant systems), while there is a positive
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economic dependency when a component fails, negative economic dependency

occurs as long as the system operates.

1.2.3 Stochastic Dependency

In stochastic dependency, the deterioration of one component affects the other

components. In this type of dependency, when a component fails, the life time

distribution of other components that are dependent to it is also affected by this

deterioration [19]. If this deterioration cause failure of the other components, it

is called Type I failure interaction. On the other hand, if a malfunction of one

component influences the failure rate of the other component dependent to it or

induces shock damage on it, this is called Type II failure interaction [20, 21].

1.2.4 Resource Dependency

This type of dependency exists if limited resources are available for the maintenance

activities. For example, if many components require the same set of spare parts

and this set is limited, there is resource dependency between these components

[15].

1.3 Methods for Modeling the Dependencies

Numerous methods have been used in the literature to identify the dependencies

between the components. The most popular ones are fault tree analysis (FTA)

[22], event tree analysis (ETA) [23], bow-tie analysis [24].

Fault tree analysis aims to reveal combinations of all event chains that can cause it

when an undesirable event occurs [25]. When defining the dependencies between

components, this method tries to find out which component or components can

cause the failure of the main system. In the event tree method, the results of an

event and the probabilities of these results are examined. In these two methods,
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only two-state decision mechanism can be used while defining the dependencies

between events. That is to say, the events are connected to each other by the

”AND-OR” gates.

Bow tie analysis combines event tree and fault tree analysis [26]. When considered

from this point of view, these methods are limited in defining the dependencies

between the variables within the scope of a maintenance problem.

On the other hand, Bayesian networks are another frequently used method to

define dependencies between components. The reason for this is the success of

Bayesian networks in updating the failure probability estimates of the variables

under certain evidence. In addition, Bayesian networks have a wider modeling

capacity than other approaches. Apart from that, techniques such as FTA, ETA

and bow tie analysis are based only on the stationary structure of the components

and the probability update are difficult. Bayesian networks are more successful in

determining dependencies between components [27].

Dynamic Bayesian networks (DBNs) are extended versions of BNs by adding the

time dimension which makes them more successful in dynamically monitoring the

state of the system through the planning horizon under certain evidence.

1.4 Motivation of the Thesis

As a result of a research done on literature, it has been observed that the mainte-

nance problem of complex systems is not studied enough, and component-based

maintenance policies are generally recommended. Therefore, the purpose of this

thesis is to address the maintenance issues of a complex system that we en-

counter in real life as a whole. In such systems, different dependencies may be

occurred between components. So, these dependencies are modeled with DBNs

and maintenance policies under different maintenance strategies are developed.

Özgür-Ünlüakın and Bilgiç [28] proposes four different methods to choose com-

ponent to be replaced under a policy where the reliability of the system is not
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allowed to fall below a threshold reliability level in a system that has no possibility

to take observations. Because of not being able to observe the system, reactive

maintenance is not performed in the system under consideration. The proposed

methods can be used only in the selection of the component to be replaced when

the system falls below the specified threshold.

Karacaörenli [29] uses the methods in [28] on an experimental system which

have four components that have no dependencies between them. However, as

distinct from [28], these methods are handled in a reactive maintenance planning

under partial observations. Also, two more proactive maintenance strategies are

developed with and without opportunistic view. Our study differs from that study

basically by the real-life complex system handled where there are more than four

components and there are dependencies among its components and some of the

components have more than two states.

On the other hand, this study aims to enrich the methods proposed in [28] firstly

where they can be used for also both reactive and proactive maintenance in a

real partially observable system with multi-state components which have complex

dependencies between them. In addition to these methods, four new methods

are proposed that can be used under any type of maintenance strategy. This is

because, unlike the previous study, some of the components in this study have

more than two states, and considering the probability that the component is in

the best state is not the same as considering the probability of being in the worst

state. Thus, evaluating the probabilities of components being in the best state and

being in the worst state generally indicates different actions to be performed at a

maintenace time. Exploiting this fact, one more maintenance rule is developed for

each maintenance method available in the literature.

Also, proactive maintenance strategies introduced in [29] and [28] is enhanced to

be valid in complex multi-state real-life systems. Tabu procedure is proposed in

proactive maintenance strategies in order to select the component to be maintained

more effectively and more accurately. All maintenance strategies are also compared
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on a complex multi-component real system. As the real system, thermal power

plants have been chosen where maintenance is very important and not doing

it correctly can cause both financial losses and environmental damage. The

regenerative air heater (RAH) which provides air heating in air-gas system is

selected to be studied because of its complexity and importance in thermal power

plant systems.

1.5 Organization of the Thesis

This study is structured as follows: Chapter 2 provides a review of the literature.

Evolution of DBNs, their applications in the literature, maintenance problems

addressed in complex systems, and finally maintenance problems in thermal power

plants are presented in Sections 2.1, 2.2, 2.3, 2.4 respectively. The proposed

methodology is detailed in Chapter 3. Section 3.1 gives a brief of probabilistic

graphical models, Bayesian networks and dynamic Bayesian networks. In Sections

3.2 and 5.2, reactive and proactive maintenance methods are explained in details

respectively. Chapter 4 shows the the construction of the DBN model for the

application of the proposed methodology to a regenerative air heater system which

is used in thermal power plants. Computational analysis based on the case study

and its results are presented in Chapter 5. And finally Chapter 6 concludes the

study and directs further study alternatives.
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Chapter 2

Literature Survey

With the rapidly developing technology in recent years, the complexity of systems

and interactive relationships between system components have increased. As a

result, in the case of any malfunction in the system, the number of components

triggered from it, and therefore maintenance and repair costs, also increased

rapidly. Proper and timely maintenance planning is crucial to minimize these

costs, and has been worked frequently in the literature, especially recently.

The most important point of proper maintenance planning is a correct definition

of the relationships between the components in the system. To do this, various

approaches have been proposed and used from past to present. Dynamic Bayesian

Networks are very successful in defining the relationships between variables in

both maintenance and other fields. Thermal power plants are the systems where

maintenance planning is the most critical and a wrong maintenance decision causes

huge environmental and financial losses when it does not made correctly. However,

this issue has not been studied much in the literature since thermal power plants

are complex systems which are difficult to model.

In this chapter, the evaluations of DBNs from past to present, applications of

DBNs on maintenance and related fields, maintenance applications in complex

systems and thermal power plants are provided.
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2.1 Evolution of Dynamic Bayesian Networks

The first thing to be done in the maintenance planning is determining the compo-

nents of the system to be maintained, the fault conditions and the factors that

will reveal these fault conditions. These factors can be caused by the own age

of the components or the effect of the condition of other components on this

component. For this, first of all, the dependencies between the components should

be determined well. The methods frequently used in the literature to identify

the dependencies between components are fault tree analysis (FTA), event tree

analysis and bow-tie analysis.

Fault tree analysis is a top-down deductive failure analysis, where, when an

undesirable situation occurs in a system, the causes of this condition are tried to

be found by combining and analyzing all sub events with using Boolean logic[30].

This analysis method is commonly used in safety and reliability engineering to

guess failure times of a system, to describe the best ways to minimize risk, and to

estimate the probability of a safety accident or a specific functional system failure.

FTA was first discovered at Bell Laboratories in 1962 by H.A Watson to evaluate

the Minuteman I Intercontinental Ballistic Missile Launch Control System under

the US Air Force Ballistic Systems Division contract [31]. Since then, its use has

become increasingly widespread and is generally used by reliability experts as a

failure analysis tool.

On the other hand, event tree analysis is a graphical representation of the logic

model that determines and measures probable outcomes in pursuit of an initiation

event, and ensures an inductive approach for reliability assessment because they

are created using advanced logic [32]. The event tree name first appeared in

the 1970s during the WASH-1400 nuclear power plant security study, when an

alternative method was needed due to the wideness of fault trees [33].

The bow tie method is a risk assessment method that can be used to analyze and

indicate causal relationships in high-risk scenarios. The method takes its name
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from the shape of the diagram that looks like a bow tie. A bow tie diagram does

two things: first of all, a bow tie gives a visual summary of all possible accident

scenarios that may exist around a particular danger; second, by determining

control measures, it shows what a company is doing to control these scenarios.

With these aspects, it can be said that this analysis is a combination of fault

tree and the event tree analysis. The first “real” bow tie diagrams are said to be

seen in the HAZAN (Hazard Analysis) lecture notes given at the University of

Queensland of Australia (1979), but how and when the method was found is not

fully understood [34].

All of these methods are limited in defining dependencies between the variables.

On the other side, Bayesian networks (BNs) are a applicable method to define inter-

component dependency. Bayesian networks were first introduced by Judea Pearl

in 1985. This type of network can be used to represent deep causal information,

and if the links are used not only to store real information but also used to direct

and activate data flow in calculations, it turns into a computing architecture [35].

Dynamic Bayesian Networks (DBN) is an expanded version of BNs by adding the

time horizon. A DBN is a Bayesian network that associates BN variables with

each other in consecutive time frames. This is often called Two-Time BN (2TBN)

because at any point in T, it says that the value of a variable can be calculated

from the internal regressors and the value just before the time (T-1). DBNs were

developed by Paul Dagum in the early 1990s at the Stanford University Medical

Informatics Department [36]. Dagum aimed to create a general probabilistic

representation model to use in nonlinear and time-dependent fields by combining

traditional linear state-space models such as Kalman filters, linear and normal

prediction models such as ARMA, and simple dependency models such as hidden

Markov models [37].

13



2.2 Applications of DBNs in Maintenance and Related Fields

Dynamic Bayesian networks are a common approach in the literature. They are

used mostly in prognosis, fault detection, reliability, risk analysis and safety. Table

2.1 gives a summary of the usage areas of DBNs in the literature.

Muller et al.[38] propose an e-maintenance approach based on probabilistic mod-

eling, which can dynamically monitor systems degradation to adjust the time

of proactive maintenance. While developing this prognosis approach, stochastic

deterioration models based on prior knowledge and expert evaluation, deterioration

indicators based on historical data and causal relationships of the components

in the system based on physical laws are considered and used as a whole. The

methodology is created in five steps: functional modeling, dynamical modeling,

behavioral modeling, event modeling and prognosis modeling of the system. Dy-

namic Bayesian networks are used to integrate the structure of the system, causal

relationships between variables and distortion processes of the components in

the behavioral modeling phase which is a combination of functional modeling

and dynamic modeling processes. This approach is experienced on a metal coils

system.

In [39], a DBN-based prognosis method is proposed with considering the protection

layers and its effects on the system to make the failure prognosis analysis more

accurate. The prognosis method is used to predict system failures. DBN model

of the system consists of the effect of activated barriers which need to activate

automatically or manually before the action and human effect such as inspections,

emergency plans, as protection layers. A flue-gas energy recovery system is given

as a case study.

Hu et al. [40] create an integrated safety prognosis model that includes the DBN

and ant colony algorithm to forecast the reliability, performance and safety of a

complex system to take a precautions for a system failure. This model uses the

DBN and ant colony algorithm together to demonstrate the propagation path of
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failures. The dependencies of the equipments and randomness of the failures are

considered. Gas turbine compressor system, which has a very complex structure,

is chosen as a case study.

In [41], a DBN framework is proposed to determine the current state, to predict

what will be its future status under current evidence, and to choose the best

recovery action for a partially observable, externally exposed system. In the study,

this modeling is explained based on a power supply system of a spacecraft and

different abnormal situations and fault simulation scenarios are taken into account.

Results demonstrate the validity of the proposed model.

Hu et al. [42] introduce a DBN-based approach that can reveal the underlying

causes of failures, especially in complex industrial systems where hazards can arise

in the event of a possible failure. First, a HAZOP analysis is carried out in order

to determine the relationships between the components in the system correctly, to

reveal possible causes of a failure and to identify hazard scenarios properly. Based

on this analysis, the DBN model is created. This DBN model is used to find the

root causes when a potential failure signal is received.

Hu et al. [43] use HAZOP, multi-level flow modeling (MFM) and DBN methods

together for a fault diagnostic model. As a preliminary study for HAZOP, MFM

is developed firstly and then fault propagation path analysis is made. According

to this analysis, different HAZOP scenarios are handled and the DBN model is

created based on HAZOP results. The aim is to detect faults before an accident

occurs in complex systems.

Liu et al. [44] introduce an approach to find common causes of failures using DBNs

in subsea blowout preventer which is a multi-component parallel system. They

consider the common cause failures in which multiple components in a system

fail for the same reason. Also, sensitivity analysis is made based on imperfect

coverage factor, failure and repair rates.
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Salazar et al. [45] offers a model predictive control approach that consider the use

of actuators to maximize control performance of the systems while maintaining

their reliability. In the study, system reliability is handled with a global approach

in which Birnbaum’s measure of importance is used, and the equivalent effects of

individual components on system reliability are handled with a local approach.

DBNs are used to measure reliability.

Z. Li et al. [46] provides a reliability analysis approach for multi-state variables

by using Markov processes and DBN model together. Transition probabilities in

the DBN model are defined pursuant to the information revealed in the Markov

process. Repairable components which can be subjected to perfect or imperfect

repair and non-repairable variables which have to be replaced when they fail

are considered separately. In addition, for observable elements, condition-based

maintenance can be taken into consideration. A control unit is taken as case

study in which conversion of a fault tree model to BN and later to DBN is also

explained.

Chang et al. [47] propose an approach that uses DBN modeling to predict the risk

of fatigue failure in subsea wellhead dynamically. The current risk of failure can

be forecasted using fatigue accumulated in the well. In addition, the probability

of fatigue failure in the wellhead in any future time frame can be estimated based

on DBN model.

In [48], a Bayesian network model approach which is also consider the dynamic

changes of the components so that the risk calculation can be done correctly,

especially in hazardous areas such as the chemical industry. In the study, a

dynamic fault tree analysis is created firstly and then it is shown how this fault

tree can be transformed into a dynamic Bayesian network.

Wu et al. [49] offer an approach to identify conditional probabilities and con-

sequences of dangerous events using DBN and bow tie analysis. The approach

considers both the effect of deterioration and dynamic model parameters. First, a

bow tie model was created, then this model was converted to DBN. DBNs have
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been used to reveal the root causes of risks that occur during the offshore drilling

operation.

In [50], a dynamic Bayesian approach which takes into account also the changes

that occur as construction progresses, for the safety analysis of road damage in

tunnel construction. This approach provides both backward and forward-looking

inferences. A metro tunnel construction in China is used as a case study to prove

the adaptability of approach to a real life project.

Codetta-Raiteri et al. [51] express how DBNs can be applied to model cascading

effects which mean mean that the deterioration of the dependent components

in the system affects each other in interdependent dynamic systems. DBNs are

preferred because they are good at modeling the effects of cascading events. In

the study, a power grid containing multi-state components is considered as case

study. Maintenance action probabilities are also taken considered in addition to

system failure probabilities.

DBNs are frequently used also in maintenance problem. Two different approaches

based on Dynamic bayesian networks for planning inspections and maintenance

are presented in [52]. In one of the approaches observable variables are used, and

in the other simulations based on Bayesian updates are used. They evaluated the

comparisons of these approaches in terms of cost.

Hu et al. [53] use DBNs and HAZOP analysis together to provide an opportunistic

predictive maintenance method for a gas turbine compressor system. To analyze

and learn the system, HAZOP is applied and then a DBN model is created in the

light of this information. This method aims to find optimal maintenance time

to decrease the cost and increase the reliability and safety. Using DBN model,

optimal maintenance time of each component, when the cost of the maintenance

is minimum, can be identified. In addition, if maintenance of a component affects

the working of the dependent components, the components can also be maintained

at the same time. In this way, the cost of stopping (down time cost, set up cost...)

can be reduced.
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In addition to these areas, DBNs are also used in different areas that we frequently

encounter in our daily lives such as health, economy, supply chain problems,

predictions of natural events and use of public transportation services.

Sandri et al. [54] create a DBN model using historical data to predict the order of

organ failure in intensive care units. In the study, a learning algorithm is applied

to create conditional probability tables. The generated DBN model can be used to

predict which organ will fail at the next time based on the failure of an organ at

the moment, as well as the occurrence of multiple organ failures on the same day.

Dabrowski et al. [55], the probability of a future banking crisis is calculated

dynamically by DBN modeling using the Markov probability structure. Three

different DBN models are compared to logit model and signal extraction method

using a data set from various European countries. Despite of difficult of application,

it is propounded that the proposed methods are more effective. Thanks to this

approach, future crises can be estimated more accurately and necessary precautions

can be taken.

Kao et al. [56] recommend using Dynamic Bayesian networks to uncover the

causes and consequences of problems occurring in the supply chain. In the study,

a model previously studied in [57] with cause-effect diagrams is transformed into

a DBN model, which is better at modeling causal relationships in supply chain

problems.

M. Li and Liu [58] provide an approach for predicting the path and intensity of

storms using wavelet analysis and DBNs together. When the data acquired from

the actual data and the results of the DBN model are compared, it is deduced

that the predictive power of the proposed approach is high.

Roos et al. [59] propose a method of using DBNs to estimate short-term passenger

density on the Paris metro line. The model has been provided to work even when

there is missing data by applying structural expectation maximization algorithm.
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Article Application Area Issue
Muller et al. [38] Prognosis Mechanical Systems
Hu et al. [39] Prognosis Energy Systems
Hu et al. [40] Prognosis Gas Turbine
Dabrowski et al. [55] Prognosis Banking crisis
Codetta-Raiteri and Portinale [41] Fault detection Spacecraft
Hu et al.[42] Fault detection Petrochemical Industry
Hu et al. [43] Fault detection Petrochemical plant
Sandri et al. [54] Fault detection Health
Marini et al. [60] Fault detection Health
Liu et al. [44] Reliability Subsea systems
Salazar et al. [45] Reliability Drinking water network
Z. Li et al. [46] Reliability Control Unit
Chang et al. [47] Risk Analysis Subsea Systems
Barua et al. [48] Risk Analysis Level Control
S. Wu et al. [49] Risk Analysis Offshore drilling
X. Wu et al. [50] Safety Tunnel Construction
Codetta-Raiteri et al. [51] Cascading Effects Power grid
Nielsen and Sorensen [52] Risk Based Maintenance Planning Wind turbine
Hu et al. [53] Predictive Maintenance Gas turbine system
Kao et al. [56] Diagnosis Supply chain
M. Li and Liu [58] Forecast Storm
Roos et al. [59] Forecast Railway transportation

Table 2.1: Selected DBN applications.

2.3 Maintenance in Complex Systems

Maintenance has always been a very important element since the early days of

industrial systems. Especially, with considering that the failure of one component

in complex systems can quickly affect other components, proper maintenance

planning is required in such systems. Due to the difficulty of modeling, maintenance

in complex systems is not very often studied, and they are handled in the literature

with different approaches. However, the systems addressed in the studies are

generally two-state systems and are not taken from real life. In addition, one of

the proactive or reactive aspects is considered in the studies. In this study, both

reactive and proactive maintenance using DBNs were studied on a real life system

consisting of multi-state components. Also, the system handled in this study has

two parallel subsystems which increases the complexity of the modeling due to

the increased number of components and at the same time enriches the problem

on hand.
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Özgür-Ünlüakın and Bilgiç [28] introduce a DBN-based replacement approach for

multi-component systems that plans to minimize maintenance cost or number

of maintenance without reducing system reliability below a certain level. The

reliability of the system is estimated using DBNs, based on the interactions

between components. Maintenance time is set as the time before the system

reliability drops below the specified level. When this time has come, to select

component(s) to be maintained, failure effect and replacement effect methods

which consider current or future time posterior probabilities are presented. The

computational analysis of the proposed approach is done on a problem which is

made dynamic in the study from the very popular static auto diagnosis problem

in the literature.

Keizer et al. [61] propose a condition based maintenance methodology for a

complex parallel systems with redundant components based on Markov decision

processes. Redundant component provides load sharing and reduce the failure rate

of each component consequently. However, when one component fails, it increases

the load of other components, so the faulty component must be maintained

immediately. In addition, redundancy provide less maintenance set-up cost if

components are maintained at the same time by group maintenance. So, there are

economic dependence between the components in the system discussed. Numerical

sensitivity analysis demonstrates that as load sharing increases, the average cost

reduces, and maintenance of one faulty component cannot be postponed to wait

failure of the other component. As the number of unnecessary components

increases, cost savings also increase. Also, it can be said that this policy is more

important when set-up costs are higher.

In [62], a maintenance planning methodology which consider maintenance time,

maintenance method and group maintenance at the same time for a complex

system based on Markov Decision Processes. The reason for considering the

maintenance time is that if maintenance is planned too late, it will cause more

costs, or if it is done too early, the components that do not deteriorate will also

be replaced unnecessarily. Firstly, the optimal or near optimal time and type of
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maintenance for each component separately tried to be found. Then, system level

maintenance program is optimized. MDPs have been used to identify economic

and structural dependencies between system components.

Alrabghi and Tiwari [63] presents a new method that can combine all maintenance

strategies (corrective, preventive, opportunistic, condition based) for all compo-

nents in a system to optimize cost function (decrease the cost) with considering

spare parts management and production dynamics. The study consider that com-

ponents in the system may not be identical and each of them may have different

maintenance requirements. Discrete event simulation was used to represent the

maintenance methods used and their effects on components and the system. It

is tried to define finding correct time and correct maintenance policies for each

component with the lowest cost.

Martinod et al. [64] propose a maintenance policy optimization that consist of

both preventive and corrective maintenance for a multi-component system with

dependent components. Stochastic approach under a mathematical framework

is used to find optimal maintenance plan to decrease total maintenance cost. As

preventive maintenance, block-based and age-based maintenance is used. Also,

a clustering method of maintenance actions is proposed. Imperfect maintenance

actions are considered. The method is applied to an urban air ropeway transport

systems as a case study.

In [65], a condition based maintenance policy based on simulated annealing for a

multi-component system which consider the stochastic dependency that means

one component affects the rate of deterioration of other components is presented.

Stochastic dependence between components is modeled by regression method.

The methodology is defined in three stages: first, the degradation model of each

component is independently defined, then the interaction of degredation models on

a system basis are discussed, and finally the CBM optimization model is created.

The numerical experiments are done in an industrial cold box which used in a

petrochemical plant.
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Dao and Zuo [16] provides a maintenance method for a system with multi-state

components that aim to minimize the total maintenance time and cost while

maintaining the reliability of the system. There are structural dependencies

among the components in the system and the method tries to find optimal

maintenance sequence and maintenance actions by considering these dependencies.

A directed graphic is used to model the priority relationships of the components

in the system, and a backward search algorithm is used to determine the order of

maintenance.

2.4 Maintenance in Thermal Power Plants

Thermal power plants are one of the systems where maintenance planning is

critical. This is because, any malfunction in such systems may cause serious costs

and even problems that may harm human and environmental health. However,

due to the complexity of the thermal power plant systems, they have been handled

seldom in the literature. In addition, even if they are used in the literature, these

studies generally suggest a component-based maintenance methods rather than

system-based, components in the systems generally have two states and their

relationship are not complex. Thermal power plant system handled in this thesis

has multi-state components with complex dependencies between them. Moreover,

the system has parallel lines which makes modeling more difficult. To overcome

this difficulty, dynamic Bayesian networks are used which are good at modeling

complex relationships. Also, the maintenance methodology for a thermal power

plant system in this thesis are a system-based maintenance in which situations of

all components in the systems are considered at all time periods.

Melani et al. [66] propose a predictive maintenance planning approach of a flue gas

desulfurization system in a coal-fired power plant. The main aim of the approach

is finding more risky, important component and maintain them firstly and also

minimize the maintenance cost. This method consists of three main steps. Firstly,

functional tree and internal block diagram are used to determine the working

22



structure of the system. Then, a HAZOP study is presented to learn failure modes,

their consequences and maintenance activities in the system. Failure modes is

defined with fault tree analysis. Root causes of failure modes are determined

and their risk priority number is calculated based on severity, occurrence and

detection. Finally, Multi-Criteria Decision is used to decide which component is

more critical.

Carazas and Souza [67] presents an approach that aims to balance the failure

probability in the system and the cost of this failure in the selection of maintenance

policies. In the method, critical elements are determined firstly. Then, maintenance

procedures are recommended that can be applied to these critical elements. The

purpose of the maintenance procedure is to minimize the risk of failure while

not increasing the total maintenance cost. A decision tree is used for this. A

lubricating oil system in gas turbines journal bearings is used to analyze the

method.
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Chapter 3

Methodology and Solution Approach

The purpose of this study is to address the maintenance issues of a multi-component

complex system. DBNs were used to express and model the complex relationships

between components and the wear and aging of components over time. Eight

reactive maintenance methods with two different efficiency measures and three

different proactive maintenance strategies are considered. Four of the reactive

maintenance methods with one efficiency measures (FEM, FEL, REM, REL) are

proposed in [28] initially for an unobservable system. In this study, in addition

to these methods, a different variant of efficiency measure is proposed for each

method and thus, eight methods are considered totally.

For proactive maintenance, three different strategies are discussed which are

constant interval proactive maintenance (CIPM), dynamic interval proactive

maintenance (DIPM) and threshold based proactive maintenance (ThPM). CIPM

and DIPM are used under a DBN framework in [29]. ThPM is first proposed in

[28]. In this thesis, these strategies were implemented on a more complex real-life

system which has more components and dependencies among its components. In

proactive maintenance strategies, tabu procedure is proposed to make component

selection more effective.

Reactive maintenance methods are handled in two ways: number-based and cost-

based. In cost-based strategies, a normalization procedure is proposed. DBNs
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have been used to determine which components in the system need maintenance

and to examine the impact of maintenance on the system.

3.1 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are modeling methods that allow to un-

derstand and define common probability distributions in complex structures.

Graphical models provide a modeling of a large number of random variables with

complex relationships and dependencies with each other eloquently by combining

graph theory and probability theory. When using this modeling method, condi-

tional independence between random variables is used. Conditional independence

assumption simplifies the learning of the model and inference calculations. Thus,

it helps to discuss and model the uncertainty and complexity problems that always

pose a problem in the field of engineering. In this study, Dynamic Bayesian

Networks which is one of the most well-known probabilistic graphical model are

used.

3.1.1 Bayesian Networks and Their Usage in Dependent Systems

Bayesian networks (BNs)are one of the most well-known of probabilistic graphical

models. They are the most effective probability networks which are based on the

graph theory that can be used when there is uncertainty in a model.

In Bayesian network models, nodes and arrows are used. In the model, nodes

illustrate random variables, and arrows between the nodes show the conditional

dependencies between those variables. In the structure of BNs, that we will deal

with in this study, nodes are lined from cause to effect. That is, the side at the

end of the arrow shows the affected variable, and the other shows the variable that

affects it. Figure 3.1 shows the Bayesian network structure of a three-component

system.
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Figure 3.1: A BN model example.

In the model given in Figure 3.1, CA, CB and CC represent the components

affecting the operation of the system, PA and PB represent the process nodes

showing the relationship between the components affecting it, while O represents

the observation node that allows the system to be observed from the outside.

As stated in Section 1.2, three types of dependencies are generally handled in

models. As an example of stochastic dependency, in this model, component CB

depends on CA; component CC depends on component CB. For instance, when

CA is work, in “W” state, the working probability of CB is 0.8. However, when

CA fails, the working probability of CB considerably decreases to 0.4. Other

relations can be stated as follows: Process PA is affected by CA and CB; process

PB is dependent on PA and CC, and finally the observation node, O, is directly

dependent on the PB process. In the system, components and processes are hidden.

However, they can be inferred partially from the observation node.

In any Bayesian network model, together with determining the variables and
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which variables are dependent, the parameters of these dependencies should also

be determined. For this, a conditional probability table (CPT) is prepared which

shows the conditional probabilities of each node. As can be seen in Figure 3.1,

these tables list the probabilities of the states of the variables according to the

combinations of the states of their parent nodes. As seen through the columns of

the tables, it should be note that the sum of the probabilities of the states of a

variable according to a combination must be 1.

In models created with Bayesian networks, the joint probabilities of the variables

are calculated according to (3.1). In the formula, N represents the number of

variables in the system, Xi shows the ith variable and Pa(Xi) represents all parents

of variable Xi.

N∏
i=1

P (Xi|Pa(Xi)) (3.1)

3.1.2 Dynamic Bayesian Networks in Dependent Systems

Dynamic Bayesian Networks (DBNs) are constituted by adding time dimension to

BNs for evaluating also the effect of time on the system variables and dependencies.

A DBN consists of several BNs each of which represents a specific time slice of the

DBN. Figure 3.2 shows the conversion of the BN model which is given in Figure

3.1 into a DBN.

In this system, components start at their best states at the beginning of the plan-

ning horizon and deteriorate with constant transition probabilities in time. In the

figure, transition probabilities of component B at t=2 is shown. When component

B is in failure state at t=1, even if component A works at t=2, component B

remains in failure state because no maintenance activities is performed. On the

other hand, if B works at t=1, its states at t=2 depends on the state of A at t=2.

If A fails at t=2, then working probability of B at t=2 decreases.
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Figure 3.2: A representative DBN model.

Figure 3.3: A representative DBN model with action nodes.
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Table 3.1: Transition probabilities of CB2 with action node.

Figure 3.3 demonstrates the DBN model with action nodes added. It is needed

because in DBNs, it is not possible to model maintenance of components directly.

To give the effect of maintenance, an action node is defined for each component.

In this way, after deciding whether or not to maintain a component, the state

of the respective action node is changed according to the maintenance action

decided. The aim of the action nodes is preventing the effect of maintenance or

replacement of components on other components’ past and therefore current states

and failure probabilities. Table 3.1 shows the transition probabilities of component

B at t=2 with the effect of action node. The table indicates that if action node of

CB2, namely AB2, is in ”Maintain” state, the probability of component B’s being

in working state is 1 at t=2 whatever the state of CA2 and CB1 is. Otherwise,

probabilities without action nodes which is given in Figure 3.2 are valid.

The joint probabilities of the variables in a DBN can be calculated as in (3.2).

P (X1:T ) =
T∏
t=1

N∏
i=1

P (X i
t |Pa(X i

t)) (3.2)

where T is the number of time slots, N is the number of random variables in a time

slice, X i
t is the ith node in time-slice t, Pa(X i

t) represents all the parents of X i
t in

the current and also in the previous time slices, Xt represents all variables in time

slice t, and finally X1:T represents all variables in the network, i.e, X1, X2, . . . , XT .
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3.2 Reactive Maintenance Strategy

Eight reactive maintenance methods with two different efficiency measures are

proposed in this study. The first efficiency measure is “fp” which consider the

probability of the components or observation node being at the worst state. The

second measure, “wp”, consider the probability of the components or observation

being at their best state. The reason for using two different measure is that

the variables in the system can have more than two states, and therefore the

consideration of the variable with maximum worst state probability and the

variable with minimum worst state probability does not give the same result.

The following sections provide details of the general flow and recommended

maintenance methods for number-based reactive maintenance.

3.2.1 General Flow of Reactive Maintenance

The general flow chart of the reactive maintenance policy is given in Figure 3.4. At

each time t, under the evidence collected so far, the probabilities of the observation

node is calculated and a sample is taken from state space of the observation node.

If this sample indicates a system failure, reactive maintenance is carried out using

one of the methods (FEMfp, FEMwp, FELfp, FELwp, REMfp, REMwp, RELfp,

RELfp) which will be explained in detail in Sections 3.2.2 - 3.2.5. These methods

are used to decide which component should be maintained. The observation node

is rechecked after the maintenance of the relevant component and, if necessary,

another component is selected from the remaining components according to the

same method for maintenance. The list of evidence is updated as components are

maintained. This process continues until the end of the planning horizon.

The general flow algorithm of the reactive maintenance policy is given in Algorithm

1. Algorithm 2, 3, 4, 5, 6, 8, 7, 9 show the algorithm of FEMfp, FEMwp, FELfp,

FELwp, REMfp, REMwp and RELfp and RELwp methods, respectively. “F” and

“W” specified in algorithms and formulas show the worst and best state of the
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Figure 3.4: General flow of reactive maintenance.

related variable. ACi∗ , ADi∗ , DCi∗ , ψi∗ represent the action cost, action duration,

duration cost and total maintenance cost of node i∗ respectively and TCost

represents the cumulative total cost until time t. Ot shows the state of the

observation node in time t. If number-based reactive maintenance is applied,

cost related parts in formulas and algorithms are not used. Ait = “1” given in

equations and algorithms represents that action node of the component i brings it

to the best state which means it is maintained.

Algorithm 1 Pseudocode of the reactive maintenance policy.

1: Set t=1, TCost=0
2: for t=1:T do
3: Set I

′
= I

4: Sample observation node Ot

5: while Ot = “F” and I
′

is not empty do
6: Select component i∗ for maintenance (using Algorithms 2, 3, 4, 5, 6, 7, 8, 9)
7: Calculate ψi∗ = ACi∗ +ADi∗ ×DCi∗

8: TCost = TCost+ ψi∗
9: Update ε← ε ∪ {Ait = “1”}

10: Sample observation node Ot

11: Update eligible component list I
′ ← I

′ |{i∗}

31



3.2.2 Failure Effect Myopic Methods (FEMfp, FEMwp)

This method takes into account the posterior failure probabilities of the compo-

nents, according to the evidence accumulated so far when the observation node

“F” is observed in a period of time t. To calculate these probabilities, two different

efficiency measure which is given in (3.3) and (3.4) where Cit represents the state

of component i in period t are used. When using the first of these measures, the

worst state probabilities of the components are calculated, and the component

with the highest probability is selected for maintenance if and only if the number

of maintenance is considered. The second measure calculates the probability of

the components being in the best state and selects the component with the lowest

probability. When maintenance costs are considered, the component which have

lowest cost with the highest probability of being in the worst state or with the

lowest probability of being in the best state is selected to be maintained.

ef
FEMfp

it = P (Cit = “F”|ε ∪ {Ot = “F”}) (3.3)

ef
FEMwp

it = P (Cit = “W”|ε ∪ {Ot = “F”}) (3.4)

Pseudo-codes of the methods that consider the maintenance cost are given in

Algorithm 2 and Algorithm 3 respectively. The efficiency measure given in (3.3)

is converted to the cost-effective one by dividing it by the action cost to be

compatible with the argmax operator. On the other hand, the efficiency measure

given in (3.4) is converted to the cost-effective one by multiplying it by the action

cost to be compatible with the argmin operator.

Algorithm 2 Pseudocode of FEMfp

1: Calculate ef
FEMfp

it = P (Cit = “F”|ε ∪ {Ot = “F”}) ∀i ∈ I ′

2: Calculate efit
FEMfp = [ef

FEMfp

it /Ψi] ∀i ∈ I
′

3: Select i∗ = argmax{efitFEMfp}
4: return i∗
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Algorithm 3 Pseudocode of FEMwp

1: Calculate ef
FEMwp

it = P (Cit = “W”|ε ∪ {Ot = “F”}) ∀i ∈ I ′

2: Calculate efit
FEMwp = [ef

FEMwp

it ∗Ψi] ∀i ∈ I
′

3: Select i∗ = argmin{efitFEMwp}
4: return i∗

3.2.3 Failure Effect Look-Ahead Methods (FELfp, FELwp)

These methods also consider the failure effect posterior probabilities of the compo-

nents as in FEM methods. However, in this time, the probability of worst or the

best states of the component in the next period is used, not in the period in which

the observation node is observed as “F”. The efficiency measures which calculate

the probabilities of the components are given in (3.5) and (3.6) while the pseudo

codes of the cost-effective methods are given in Algorithm 4 and Algorithm 5.

ef
FELfp

it = P (Ci,t+1 = “F”|ε ∪ {Ot = “F”}) (3.5)

itFELwp = P (Ci,t+1 = “W”|ε ∪ {Ot = “F”}) (3.6)

Algorithm 4 Pseudocode of FELfp

1: Calculate ef
FELfp

it = P (Ci,t+1 = “F”|ε ∪ {Ot = “F”}) ∀i ∈ I ′

2: Calculate efit
FELfp = [ef

FELfp

it /Ψi] ∀i ∈ I
′

3: Select i∗ = argmax{efitFELfp}
4: return i∗

Algorithm 5 Pseudocode of FELwp

1: Calculate ef
FELwp

it = P (Ci,t+1 = “W”|ε ∪ {Ot = “F”}) ∀i ∈ I ′

2: Calculate efit
FELwp = [ef

FELwp

it ∗Ψi] ∀i ∈ I
′

3: Select i∗ = argmin{efitFELwp}
4: return i∗

3.2.4 Replacement Effect Myopic Methods (REMfp, REMwp)

In this method, when a reactive maintenance is decided, the component which

will improve the condition of the observation node better when it is maintained
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is selected. If only the number of maintenance is considered, efficiency measure

(3.7) and (3.8) select the component that minimizes the probability of seeing the

observation node in the worst state and maximizes the probability of seeing the

observation node in the best state respectively.

ef
REMfp

it = P (Ot = “F”|ε ∪ {Ait = “1”}) (3.7)

ef
REMwp

it = P (Ot = “W”|ε ∪ {Ait = “1”}) (3.8)

If maintenance costs are also taken into account, in addition to these efficiency

measures, it is considered that the selected components have the lowest cost

and the calculations given in Algorithm 6 and Algorithm 7 are used to balance

maintenance costs and efficiency measure. The efficiency measure given in (3.7)

is converted to the cost-effective one by multiplying it by the action cost to be

compatible with the argmin operator.On the other side, the efficiency measure

given in (3.8) is converted to the cost-effective one by dividing it by the action

cost to be compatible with the argmax operator.

Algorithm 6 Pseudocode of REMfp

1: Calculate ef
REMfp

it = P (Ot = “F”|ε ∪ {Ait = “1”}) ∀i ∈ I ′

2: Calculate efit
REMfp = [ef

REMfp

it ∗Ψi] ∀i ∈ I
′

3: Select i∗ = argmin{efitREMfp}
4: return i∗

Algorithm 7 Pseudocode of REMwp

1: Calculate ef
REMwp

it = P (Ot = “W”|ε ∪ {Ait = “1”}) ∀i ∈ I ′

2: Calculate efit
REMwp = [ef

REMwp

it /Ψi] ∀i ∈ I
′

3: Select i∗ = argmax{efitREMwp}
4: return i∗

3.2.5 Replacement Effect Look-Ahead Methods (RELfp, RELwp)

This method is very similar to REM methods, but this time, when a component

is changed in a time period, its effect on the observation node in the next period
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is considered. Efficiency measures of the RELfp and RELwp methods are given in

(3.9) and (3.10) respectively, while the pseudo codes used in cost-effective version

of the methods are given in Algorithm 8 and Algorithm 9 respectivelt.

ef
RELfp

it = P (Ot+1 = “F”|ε ∪ {Ait = “1”}) (3.9)

ef
RELwp

it = P (Ot+1 = “W”|ε ∪ {Ait = “1”}) (3.10)

Algorithm 8 Pseudocode of RELfp

1: Calculate ef
RELfp

it = P (Ot+1 = “F”|ε ∪ {Ait = “1”}) ∀i ∈ I ′

2: Calculate efit
RELfp = [ef

RELfp

it ∗Ψi] ∀i ∈ I
′

3: Select i∗ = argmin{efitRELfp}
4: return i∗

Algorithm 9 Pseudocode of RELwp

1: Calculate ef
RELwp

it = P (Ot+1 = “W”|ε ∪ {Ait = “1”}) ∀i ∈ I ′

2: Calculate efit
RELwp = [ef

RELwp

it /Ψi] ∀i ∈ I
′

3: Select i∗ = argmax{efitRELwp}
4: return i∗

3.2.6 Brief Summary of the Proposed Methods

The criteria evaluated for the calculation and use of the proposed methods are

summarized in Table 3.2.

3.2.7 Normalization Procedure

The main purpose of all cost-effective proposed methods is to achieve a balance

between effects of the cost and probability and to select the most efficient compo-

nent for maintenance. However, the dominance of one measure over the another

creates a problem in calculating a general measure that includes both. This is

usually due to different unit ranges and consequently different max-min ratios. In

this study, the posterior probabilities of the variables and the maintenance costs
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Horizon Method Probability Operator

Fault Effect Approaches

Myopic
FEMfp Worst state argmax

FEMwp Best state argmin

Look-ahead
FELfp Worst state argmax

FELwp Best state argmin

Replacement Effect Approaches

Myopic
REMfp Worst state argmin

REMwp Best state argmax

Look-ahead
RELfp Worst state argmin

RELwp Best state argmax

Table 3.2: Details of the proposed methods.

of the components are taken into account to calculate the efficiency measures of

each cost-effective method. Maintenance costs of the components are predefined

so that the difference between the largest and the smallest cost, and hence the

maximum-minimum ratio, becomes a certain value. On the other hand, posterior

probabilities of variables can vary in each iteration. Therefore, they are unstable

depending on the calculated values and their max-min ratio is at most infinite

and at least 1. If the max-min ratio of the probabilities is not high enough, i.e.

the max-min ratio of the cost values is not lower, the component with the lowest

maintenance costs can be misleadingly selected by maintenance methods as the

most efficient component. When the max-min ratio of the probabilities is high,

the effect of cost is not sufficiently considered.

A normalization procedure is proposed that allows to adjust the cost values and

the posterior probability values to the same range in order to avoid the unfair

dominance of less costly components or dominance of probabilities when cost are

not adequately considered. The calculation used in the normalization procedure
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is given in (3.11).

Ψi 7→
Pmax − Pmin

Ψmax −Ψmin

× (Ψi −Ψmin) + Pmin (3.11)

In this equation, Pmax and Pmin indicate the maximum and minimum values of

the calculated posterior probabilities in efficiency measures, Ψmax and Ψmin are

the maximum and minimum values of the maintenance costs of the components

respectively, and finally Ψi shows the total maintenance cost of component i.

3.3 Proactive Maintenance Strategy

Maintenance is the task performed to bring a system to the desired condition

so that production can continue regularly and be done at maximum capacity.

If maintenance activities are carried out when the system fails, this is called

reactive maintenance. Although reactive maintenance is crucial for the immediate

correction of the system at the moment, proactive maintenance is essential to

keep the system active at all times, prevent unexpected downtime and reduce

costs. Figure 3.5 shows an iterative decision-making flow for a general proactive

maintenance strategy.

The observation node is sampled at each time interval from the first day of the

simulation. When an undesirable situation is observed, which almost indicates

an unexpected failure of the system, maintenance actions should be carried out

under the reactive maintenance philosophy. On the other hand, when one of the

proactive maintenance conditions occurs, maintenance actions must be proactively

implemented. These conditions are:

� Coming of pre-scheduled constant interval maintenance time

� Coming of the time for dynamic interval maintenance which is updated dynam-

ically

� Falling of the system reliability below a specified threshold
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According to the proactive maintenance strategy implemented, only one of these

conditions is considered. When the proactive maintenance time comes, if the

observation node is also undesirable, “F”, reactive maintenance is applied, because

it is assumed that observations in the system are taken in the morning, but

proactive maintenance is planned in the evening so that the production flow is

not affected much. In addition, it is assumed that proactive maintenance can be

performed at most once in each time period due to limited resource allocation.

After proactive maintenance is performed, if any other undesired observation is

taken in the same time period, reactive maintenance conditions are applied. A

tabu procedure which is explained in detail in 3.3.1 to prevent selecting of the

same component frequently in proactive maintenance times.

Proactive maintenance strategies are divided into two as preventive and predictive.

While preventive maintenance is performed at regular intervals to prevent unex-

pected downtimes, a predetermined condition must be established for predictive

maintenance. In the literature, preventive maintenance is also divided into sub-

classes: age-based [68] and block-based [69]. In age-based maintenance, preventive

maintenance is carried out when the component reaches a predetermined age and

the age of the component is set to zero. Also if reactive maintenance is required

due to a malfunction or necessity before the preventive maintenance time, the age

of the component which is maintained is reset to zero. In the second, preventive

maintenance is applied at fixed time intervals and unlike the first one, this interval

does not change even if reactive maintenance is needed between two consecutive

preventive maintenance. In [29], two preventive maintenance policies are proposed

initially, inspired by block-based and age-based strategies for a basic emprical

model.In this study, these policies are adapted to a more complex multi-component

dependent system. These are constant interval proactive maintenance (CIPM)

and dynamic interval proactive maintenance (DIPM) strategies.

Preventive strategies plan proactive maintenance at specific time points using a

fixed or dynamic time interval, regardless of the situation of the system. On the

other hand, in predictive maintenance, a certain criterion must be met to apply a
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proactive maintenance, and in general, this criterion relates to the reliability of

the system. For this reason, a threshold-based proactive strategy is also used for

determining maintenance times adaptively.

3.3.1 Tabu Procedure

If proactive maintenance is done frequently, it is possible to face the case of

selecting the same component consecutively. Because in such cases, since all

components have a low failure probability and these probabilities are almost not

very different from each other, cost values come into prominence in determining the

component to be maintained. To prevent this situation, a tabu list is kept inspired

by the tabu search algorithm which is a well-known algorithm in meta-heuristic

area [70]. Once a component is maintained, it is added to this list and cannot be

proactively maintained until the tabu period expires. While the tabu list is only

considered at the time points when proactive maintenance is initiated, being at

a reactive maintenance time is an aspiration criterion that allows the selection

of the components in the tabu list. If more maintenance is needed because an

undesirable observation is taken at a proactive maintenance time, component to

be maintained is selected among the non-tabu components. In both proactive and

reactive maintenance times, components are selected according to the efficiency

measure and added to the tabu list.

3.3.2 Constant Interval Proactive Maintenance (CIPM)

The purpose of this strategy is to plan proactive maintenance with constant time

intervals, similar to block-based maintenance, throughout the planning horizon.

If any malfunction occurs before the system reaches the specified constant time,

it is urgently subjected to a reactive maintenance without waiting for proactive

maintenance time. In this case, the predetermined maintenance schedule is

not updated according to the reactive maintenance time. Unlike block-based

maintenance, where the entire system is maintained when preventive maintenance
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is due, this strategy maintains only one component selected by efficiency measure.

Algorithm 10 shows the implementation of the CIPM strategy in a general proactive

maintenance framework.

3.3.3 Dynamic Interval Proactive Maintenance (DIPM)

In this strategy, as in the CIPM strategy, preventive maintenance is planned at

certain time intervals, but if an emergency-based reactive maintenance is per-

formed between these intervals, the next preventive maintenance time is updated

according to the reactive maintenance time, as in age-based maintenance. Thus,

preventive maintenance times are dynamically determined according to the reactive

maintenance performed between them. In this strategy, preventive maintenance

is performed on only one component whereas the entire system is repaired in

age-based maintenance. The purpose of developing such strategy with dynamic

interval is to reduce unnecessary preventive maintenance that can be programmed

shortly after reactive maintenance when the intervals are not updated dynamically,

thereby reducing maintenance costs. How to implement the DIPM strategy within

a general proactive maintenance framework is shown in Algorithm 10.

3.3.4 Threshold Based Proactive Maintenance (ThPM)

Both CIPM and DIPM are preventive maintenance strategies and plan proactive

maintenance at specific time points using a constant or dynamic interval, regardless

of the system’s condition. In order to determine proactive maintenance times

adaptively, a predictive maintenance strategy has been developed that consider

the estimation of system reliability.

In the example of the DBN model given in Figure 3.3, PB shows the main process

node and is the node where the reliability of the system is considered. The

reliability of the system is always estimated at the beginning of a time period,

t, and if it is below the predetermined threshold, a proactive maintenance is

41



planned at the end of that period. Unlike DIPM and CIPM, this strategy aims to

reduce unnecessary proactive maintenance by considering the system condition.

Application of ThPM within the general proactive maintenance framework is given

in Algorithm 10.

3.3.5 Generic Algorithm of the Proactive Maintenance Strategies

The pseudo code of the generic proactive maintenance strategy is shown in the

Algorithm 10, where the strategy and parameters of the applied strategy are given

as input. This general pseudo code differs in initiating and updating parameters,

depending on the strategy used. In the algorithm, the line 15 identifies the

maintenance time. If the observation node results in “F”, it always indicates a

reactive maintenance. Alternatively, if it is “W”, a proactive maintenance can be

decided depending on the values of the three boolean operators of the proactive

maintenance strategies.

If CIPM is used, constant proactive maintenance times are kept in the CIMT list

which is defined previously according to proactive constant interval (pci). When

this time comes and proactive maintenance is performed, the first item of the list

is deleted. For example, if proactive maintenance is planned at constant intervals

of 15 days (pci=15) in a 300-days planning horizon, the CIMT list is created as

[15 30 45 .... 300]. After the first proactive maintenance is carried out on the 15th

day, ”15” is deleted from the list and the new list becomes [30 45 ... 300].

If DIPM is used, the dynamic proactive maintenance interval (pdi) is given as

input to the algorithm. Proactive maintenance time is updated by adding this

interval to the current period if a maintenance is performed. By this way, proac-

tive maintenance times are determined dynamically depending on the previous

maintenance performed, and hence they are different from the predetermined

static proactive maintenance periods in CIMT strategy.

42



When ThPM is applied, a threshold level (thr) is determined as the input parameter.

The threshold level is updated to zero after a proactive maintenance is decided.

This is because, after performing a proactive maintenance, the reliability of the

system may still be below the threshold and in this situation, another proactive

maintenance is needed to increase reliability. However, it is assumed that proactive

maintenance can be performed at most once in each time period. By setting

the threshold level to zero, the boolean operator comparing the reliability of the

system with the threshold level never returns a true value. So, multiple proactive

maintenance cannot be performed at a period where a proactive maintenance has

already been performed.

After sampling from the observation node, if reactive maintenance is required, the

set of eligible replaceable components, I ′ contains all components. Otherwise, I

consists of components that are not on the tabu list. If observation node is in “F”

state, although proactive maintenance conditions are met, (which are that the

first element of the CIMT list is equal to time t), dynamic proactive maintenance

time has come or system reliability is below the threshold, reactive maintenance

is applied. If it is proactive maintenance time and the observation node is in

“W”, one of the proactive maintenance strategies is applied. In both cases, the

component to be maintained is selected according to the eight methods presented

in Section 3.2 and this component is added to the tabu list.

Proactive and reactive maintenance costs differ due to action duration (ADi) and

downtime cost (DCi) values of components. Iteration cost (ψi) is calculated by

using reactive maintenance cost values if the observation is in “F” state, and

otherwise by using proactive maintenance cost values. Total cost is updated by

adding iteration cost. After each maintenance, the component that is maintained

is removed from the eligible component list, so if a maintenance is required again

on that period, another component is selected from the updated eligible component

list.
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When a component is maintained, it is added to TabuList in order to pre-

vent selecting the same component in a subsequent proactive maintenance time.

TabuDurList keeps tabu duration of all components which are in TabuList. After

each time period, tabu duration of the components are updated. For example, if

the tabu duration is selected as 5 days, when a component first enters the tabu

list, its value in the TabuDurList becomes 5 and the next time period, it drops to

4. When the tabu duration value of the component decreases to 0, the component

is removed from the TabuList.

Algorithm 10 Proactive Maintenance Algorithm

1: Input Strategy, pci, pdi, Threshold, TabuDur
2: if Strategy = “CIPM” then
3: Input CIMT = [pci ∗ 1, pci ∗ 2, ..., pci ∗ bT/pcic]
4: if Strategy = “DIPM” then
5: Set pmt = pdi

6: Set t = 1
7: while t ≤ T do
8: if Strategy=“ThPM” then
9: Set thr = Threshold

10: Sample Ot

11: if Ot 6= “F” then
12: I ′ ← I|TabuList
13: else
14: I ′ ← I
15: while

(
(Ot = “F”) or (t = CIMT (1)) or (t = pmt) or (P (St = “W”|ε) < thr)

)
and (I ′

is not empty) do
16: if (Strategy = “CIPM”) and (CIMT (1) = t) then
17: Update CIMT (1) = [ ]
18: else if Strategy = “DIPM” then
19: Update pmt = t+ pdi
20: else if Strategy = “ThPM” then
21: Update thr = 0

22: Select component i∗ for maintenance (using Algorithms 2, 3, 4, 5, 6, 7, 8, 9)
23: TabuDurList(i∗) = TabuDur
24: Update ε← ε ∪ {Ai∗t ← 1}
25: if Ot is “F” then
26: Calculate ψi∗ = ACi∗ +ADi∗ ∗DCi∗ (in reactive conditions)
27: else
28: Calculate ψi∗ = ACi∗ +ADi∗ ∗DCi∗ (in proactive conditions)

29: Calculate TCost = TCost+ ψi∗

30: Update I ′ ← I ′|{i∗} ,
31: Sample Ot

32: t← t+ 1
33: Update TabuDurList
34: TabuList← {j : TabuDurList(j) > 0}
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Chapter 4

A Case Study: The Regenerative Air Heater System in

Thermal Power Plants

Thermal power plants, especially coal fired ones, which meet 38% of world elec-

tricity production [71], are typical examples of complex systems with several

interacting components. Maintenance optimization is very critical for these sys-

tems as an unexpected failure in these systems can cause serious costs and even

harm human and environmental health. However, there are only a few number of

studies on the maintenance of thermal power plants. These studies mainly apply

integer programming and heuristic methods [72, 73] to small sized problems, thus

they do not bring to successful conclusions for complex systems. Therefore, in this

study, the results of the reactive and proactive maintenance strategies explained in

the previous sections are compared on a multi-component system used in thermal

power plants.

4.1 A Thermal Power Plant

The operation of a typical coal-fired thermal power plant is illustrated in Figure

4.1. In thermal power plants, chemical energy in solid, liquid and gas fuels is

converted into heat and mechanical energy by the boiler and turbine, and then

into electrical energy with the help of a generator. Lignite coal is used as fuel in

the power plant discussed in this study. The power plant consists of eight main
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systems. These systems and their general characteristics are given in Figure 4.2.

This study focused on the air-gas system which is one of the most important

systems in thermal power plants.

Figure 4.1: General flow of operations in a typical power plant.

Figure 4.2: Systems of a thermal power plant.
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4.2 Air-Gas System in a Thermal Power Plant

The air-gas system is the system that provides the required air for combustion and

warms this air in two stages in order to send it to the boiler and the pulverizer

and throws out the gas resulting from combustion. Sub-systems in the air-gas

system were determined together with the thermal power plant employees. Here,

the task descriptions of the sub-systems and their internal integrity are considered.

Sub-systems of the air-gas system are fresh air fan, steam preheater, regenerative

air heater, induced draft fan and chimney. The scheme of the operation of the air

gas system is given in Figure 4.3 where green lines and black lines illustrates the

movement of fresh air and flue gas respectively.

Figure 4.3: Operation flow of air-gas system.

The following events occur in the air-gas system, respectively:

� Fresh air fans let the air needed for drying coal and to carry out the combustion

in from outside.

47



� The air taken with the fresh air fan moves through the steam air heaters and

their temperature is raised in the regenerative air heaters.

� The air that comes to the regenerative air heaters with 30-40 ◦C comes out of

them at two different temperatures as 400 ◦C and 200 ◦C. Air, which is 400◦C,

is sent to the pulverizer for drying the, whereas air with 200 ◦C is sent to the

combustion chamber as combustion air.

� The gas resulting from the combustion in the boiler is drawn from the boiler with

forced draft fans and sent to the regenerative air heater to heat the regenerative

air heater inlet air.

� The gas, which loses heat in the regenerative air heater, is sent to electrofilters

to remove ash.

� The cleaned gas is sent to the flue gas purifier system through the forced draft

fans and released into the atmosphere.

The air gas system consists of two parallel lines. When any subsystem in these

lines fails, the system can continue to operate as a single line, but the capacity is

reduced to fifty percent. Subsystems of the air gas system were discussed one by

one with the power plant employees. While determining the sub-systems, their

tasks and their own internal integrity are considered. Among these, the steam

preheater is used only if it is necessary, generally when the air is cold. Among other

remaining systems, the regenerative air heater subsystem has been determined to

work in this study in terms of its criticality for the thermal power plant’s operation

(since it provides air to the boiler and pulverizer at two different temperatures),

the number of components it covers, and the complexity (random and structural

dependencies) between the components.

4.3 The Regenerative Air Heater System

The Regenerative Air Heater (RAH) which is also called a rotary air heater, is

used to heat the air. The RAH system which is shown schematically in Figure 4.4

consists of two parallel motor groups (ball bearing, winding-insulation, rotor-shaft),
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two regenerative air heater, honeycombs and RAH insulation. In the figure, the

blue arrow indicates clean air, and the red arrow represents the rotten steam from

the boiler. In the RAH system, which moves on a rotating assembly, the air and

gas passing through the honeycombs, which is made of hair plates, exchange heat.

While the gas losing its heat goes to the electrofilter, the warmed air is sent to

the pulverizer and the combustion chamber of the boiler to get the moisture of

the coal.

Figure 4.4: 3-D view of the RAH [74].

4.4 DBN Modeling of the RAH System

When creating the DBN model of a system, every information about the system

needs to be known exactly. For this, detailed meetings were held with the thermal

power plant employees, and a method similar to the Hazard and Operability

(HAZOP) analysis which is generally used in the chemical industry was followed

during these meetings. The information obtained in these meetings includes all

the components in the RAH system, the details of the dependencies between

the components, how a component’s deterioration affects other components that
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depend on it, the repair and replacement costs of each component, repair frequency

of the components, the cost of downtime due to the failure of the thermal power

plant during these repairs, and the mean time to failures of the components. In the

light of this information, the model was coded using Matlab - BNT toolbox [75],

and the accuracy of coding was checked with the Genie Modeler program [76].

4.4.1 Variables and Their States

While determining the components in the DBN model, the fundamental equipments

forming the system and their operations are taken as a basis [77]. The RAH

system comprises of ten components: two parallel engine groups (which include

ball bearing, rotor-shaft, winding-insulation, hub reduction gear), RAH insulation

and honeycombs. Closed and open forms of the DBN model of the RAH system

are given in Figures 4.5 and 4.6, respectively. Open form of the DBN model show

two consecutive time slices of the RAH system.

There are five types of nodes in the model: dynamic nodes which are shown by

orange color, process nodes which are represented by blue color, action nodes

which are indicated by purple color, exogeneous nodes which are shown by pink

color and an observation node which is indicated by green color in the figures.

Dynamic nodes represent changing of the components dynamically as a result of

aging. Process nodes show the interaction between components and their parents

in a time period. Exogenous nodes represent external factors that cannot be

controlled by power plant employees. Finally, the observation node is the node

which indicates the state of the system. Table 4.1 depicts the details of the

variables.

The arrows indicated by red dashed lines on dynamic nodes in the closed form

and between dynamic nodes in the open form represent the wear and aging of

those components over time. The arrows indicated by dark blue dotted lines

between the dynamic nodes represent the temporal relationships between those
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Figure 4.5: Closed form of the RAH DBN model.

components. Other arrows, represented by black straight lines, represent causal

relationships between the nodes.

There is no regular inspection at the thermal power plant under consideration.

Although power plant employees can control some components manually or by

listening during field visits, these are non-systematic inspections and their reliability

depends on the experience of the controller. Only the exit temperature of the RAH

system can be observed and measured by sensors partly. For this reason, only

the “RAH Measured Temperature” is considered in the model as an observation

node. As with all sensors, it should not be ignored that this sensor has a margin
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Figure 4.6: Open form of the RAH DBN model.

Symbol Variables Quantity Type State Space
BB Ball Bearing 2 Dynamic “Normal, Loose, Locked”
RS Rotor-Shaft 2 Dynamic “Normal, Unaligned”
WI Winding-Insulation 2 Dynamic “Original, Burned”
HRG Hub Reduction Gear 2 Dynamic “Normal, Broken”
RI RAH Insulation 1 Dynamic “Full Integrity, Medium Integrity, Low Integrity”
Hc Honeycomb 1 Dynamic “New, Cleaned, Dirty”
R.R. Rotor Rotation 2 Process “Rotate, Not Rotate”
HRG R. HRG Rotation 2 Process “Rotate, Not Rotate”
RAH R. RAH Rotation 1 Process “Rotate, Not Rotate”
RAH E.T. RAH Exit Temperature 1 Process “Normal, Low, Super Low”
BB M. Ball Bearing Maintenance 2 Action “Replace, Do Nothing”
RS M. Rotor-Shaft Maintenance 2 Action “Grind, Do Nothing”
WI M. Winding-Insulation Maintenance 2 Action “Replace, Do Nothing”
HRG M. Hub Reduction Gear Maintenance 2 Action “Replace, Do Nothing”
RI M. RAH Insulation Maintenance 1 Action “Replace, Do Nothing”
Hc M. Honeycomb Maintenance 1 Action “Clean, Do Nothing”
C.R. Coal Rank 1 Exogenous “Good, Bad”
Sg Slagging 1 Exogenous “Yes, No”
RAH M.T. RAH Measured Temperature 1 Observation “Normal, Low, Super Low”

Table 4.1: Details of the DBN variables.

of error. Therefore, the RAH measured temperature measured and the RAH exit

temperature are represented by different nodes.

The states of the all variables in the model were determined together with the
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power plant employees. These states of all variables are given in Table 4.1. As an

example for the RAH measured temperature, which is the observation node, if

the RAH exit temperature is lower than 200◦C, it indicates as “Super Low’; if it

is between 200◦C and 400◦C, it indicates a measure of “Low” and finally if it is

higher than 400◦Ci, it is accepted as “Normal”.

The model has a total of 10 action nodes. It is presumed that the changes of

the rotor-shaft and honeycombs are made in revisions that occur once a year, if

needed. So replacement of them are not defined within the state spaces. The

action of “Do Nothing”, given in the state spaces of action nodes, allows that

component to be left in its own state, without any changes. “Replace” action

represents replacement of the component with a new one. “Grind” action in the

rotor-shaft maintenance represents the grinding of the rotor-shaft in the case of

axial dislocation. Finally, “Clean” action in the honeycomb maintenance represents

cleaning of the honeycombs using special chemicals.

4.4.2 System Relationships

The relationships between the variables considered when creating the DBN model

of the RAH system are as follows.

� The RAH system comprises two parallel engine groups. When one of these two

groups fails, the RAH continues to work with one engine group. Only when

the boiler is started initially, both engine groups must operate. In this study, it

was assumed that such a situation does not occur. If both engine groups fail,

the RAH becomes unable.

� The ball bearing affects the winding and rotor-shaft alignment. Ball bearing

interlocks can cause overcurrent, and consequently heating up motor winding,

and short circuit.

� In the event of ball bearing interlock and loss of insulation, the motor winding

can burn by heating more than the nominal conditions.
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� The integrated rotor-shaft are components that provide rotation. When the

ball bearing is locked or misaligned, the rotor-shaft may lose their ability to

rotate or may be axially misaligned.

� The hub reduction gear is the power train which is used to achieve rotational

motion at different speeds. Therefore, the rotation of the hub reduction gear is

directly dependent on the rotation of the rotor and the state of the mechanical

structure of the hub reduction gear. For rotation of the RAH, at least one of

the two hub reduction gear must rotate.

� RAH honeycombs provide heating of the air by rotating. They can be worn

away by being affected by the slag formed if the quality of the coal is low. This

causes the Luvo outlet temperature to drop, meaning loss of performance.

� RAH insulation is on honeycombs. In the event of leakage in the RAH insulation,

the RAH temperature does not reach a adequate level and its performance

declines. If the amount of leakage is critical, this may trigger major problems

in terms of RAH performance.

Stochastic and structural dependencies are seen among the components in the

RAH system. There is a stochastic dependency between the ball bearing and

the winding-isolation since interlocking of the ball bearing causes burning of the

motor winding. In addition, since loosing of the ball bearing causes the axial

dislocation in rotor-shaft and decreasing of rotation ability of the rotor-shaft,

the ball bearing and the rotor-shaft have also stochastic dependency. There

is structural dependency between the RAH insulation and honeycombs. This

is because the RAH insulation needs to be replaced when the honeycombs are

cleaned. Thus, when these dependencies and the total number of components

in the RAH system are considered, it can be said that the RAH has a complex

multi-component structure.
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4.4.3 Probability Structure

While determining the causal and transitional probabilities depending on the aging

of the components and their relations with each other in the DBN model, historical

data (failure data, revision reports and maintenance orders) and the information

taken from the thermal power plant employees were used. The probability of the

components remaining in the best state is calculated according to the average

passing time from the best state to the another state and given in Table 4.2.

Transition probabilities for other states are estimated by proportioning according

to the information received from the plant employees. The thermal power plant

undergoes a major revision that lasts 2 months at the end of each year, and during

this revision, all components are renewed or repaired for returning to their best

condition. When it is considered that a year is a short period for such a major

maintenance, it makes sense to use a constant transition rate in calculations.

Component
Residence time

in the best state (day)
Residence time

in the best state (year)
The probability of

staying in the best state
Ball Bearing 1200 4 0.99916
Winding-Insulation 1500 5 0.99933
Rotor-Shaft 4500 15 0.99978
Hub Reduction Gear 900 3 0.99889
Honeycomb 3000 10 0.99967
RAH Insulation 900 3 0.99889

Table 4.2: The probabilities of staying in the best state of the RAH system
components.

In compliance with average transition rates and expert opinions, the conditional

probabilities of all components based on time are determined. It is assumed

that all components are in the best state initially since the period after the

annual revisions are taken as a basis. In later periods, if the action node is in

the “Replace” state, the component is brought to the best state again. Table 4.3

shows the conditional probabilities of the RAH insulation which is a dynamic

node, as an example. The probability of transition from “Full Integrity” to “Full

Integrity ” is calculated based on the average number of days spent until the exit

of RAH insulation from the “Full Integrity ” state, which is found as 0.99889,

that corresponds to about 900 days. The transition probabilities from “Full
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Integrity” to “Medium Integrity” and “Full Integrity” to “Low Integrity” are

obtained by sharing the remaining probabilities based on expert opinions and

transition rates, and calculated as 0.00078 and 0.00033 respectively. Likewise,

the transition probability from “Medium Integrity” to “Low Integrity” state is

calculated according to the elapsed time (500 days) from the intermediate state

to the worst state and is found to be 0.002.

RI M. Replace
Hc M. Clean
Self (t-1) Full Integrity Medium Integrity Low Integrity
Full Integrity 1 1 1
Medium Integrity 0 0 0
Low Integrity 0 0 0
RI M. Replace
Hc M. Do Nothing
Self (t-1) Full Integrity Medium Integrity Low Integrity
Full Integrity 1 1 1
Medium Integrity 0 0 0
Low Integrity 0 0 0

RI M. Do Nothing
Hc M. Clean
Self(t-1) Full Integrity Medium Integrity Low Integrity
Full Integrity 1 1 1
Medium Integrity 0 0 0
Low Integrity 0 0 0
RI M. Do Nothing
Hc M. Do Nothing
Self (t-1) Full Integrity Medium Integrity Low Integrity
Full Integrity 0.99889 0 0
Medium Integrity 0.00078 0.998 0
Low Integrity 0.00033 0.002 1

Table 4.3: Conditional probabilities of the RAH Insulation.

4.4.4 Cost Structure

Total maintenance cost is calculated using Equation (4.1). It consists of action

cost and downtime cost. Action cost includes just maintenance-related costs.

Action duration covers the duration from the start of the maintenance until the
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time it ends. During the reactive maintenance of components, production is not

possible. Because of this, until maintenance is completed and the plant restarts

production, a downtime cost incurs. However, since the RAH system comprises of

two parallel motor groups, the system is not required to stop for the proactive

maintenance of a component in these motor groups, then no downtime cost incurs

for the components other than the honeycomb and the RAH insulation.

ψi = ACi + ADi ∗DCi (4.1)

Proactive and reactive maintenance costs are determined according to the infor-

mation given by the thermal power plant considered. 181 kw of electricity is

generated per hour in the plant. 35% of the production is supplied to the domestic

market where electricity prices and demands are determined on a daily basis

whereas 65% is supplied to firms on bilateral contracts where electricity price is

determined by agreements. While calculating the downtime cost per each hour of

the proactive maintenance, the overhead expenses of the power plant and the lost

income based on the current price for the domestic market and the contract price

for bilateral agreements are considered.

If a reactive maintenance is required, the power plant is stopped unexpectedly,

and the domestic market and the firms agreed before are stuck in a difficult

situation. Because of this, if the committed electricity cannot be supplied to the

customer (domestic market or the firms), a penalty payment must be made based

on the current electricity price. Then, this penalty cost is added to the proactive

downtime cost. When the current electricity prices is taken as 0.40 TL/kw and

the price agreed with the firm is taken as 0.30 TL/kw, the downtime costs for

proactive maintenance and reactive maintenance are calculated approximately

40,000 TL/hour and 50,000 TL/hour respectively. It is important to note that

these costs are incurred because the plant does not produce electricity when the

air-gas line does not work depending on a fail or a maintenance task in the RAH

system. However, since the thermal power plant has two parallel air-gas lines,
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when a line fails, the parallel one continues to work with 50% capacity. So, the

unit downtime costs are taken as 20,000 TL/hr and 25,000 TL/hr.

On the other hand, proactive action cost and action duration are taken half of

those in reactive maintenance. The reason for this is that due to the lack of

sufficient employees when reactive maintenance is needed, the maintenance takes

longer. In addition, the prices of spare parts are high due to being purchased at

the last time. The reactive and proactive maintenance costs of all components are

shown in Table 4.4.

Component
Reactive Maintenance Proactive Maintenance

ACi(TL) ADi(hr) DCi(TL/hr) ACi(TL) ADi(hr) DCi(TL/hr)
BB 2,000 1 25,000 1,000 0.5 0
WI 15,000 4 25,000 7,500 2 0
RS 1,500 4 25,000 750 2 0
HRG 2,000 2 25,000 1,000 1 0
Hc 1,600 6 25,000 800 3 20,000
RI 100 2 25,000 50 1 20,000

Table 4.4: Maintenance costs and durations.
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Chapter 5

Computational Results and Evaluations

All the methods presented in Chapter 3 are used under both reactive and proactive

maintenance strategy and are simulated on the RAH system. In addition, the

Random Maintenance Method (RND), which does not consider any efficiency

measures and selects the components to be maintained randomly, was used to

compare with the proposed methods. Each method was run and analyzed using the

BNT toolbox in Matlab environment, according to the total number of maintenance

and total maintenance costs in a specific planning horizon. The planning horizon

has been determined as 300 days by subtracting the revision times that are done

annually and lasting 2 months.

In this chapter, ANOVA model is used to compare the performance of the strategies.

Model adequacy is checked and all models are found to meet the assumption

of normality. However, some ANOVA models violate the constant variance

assumption. In these cases, Games-Howell (GH) was used. Otherwise, the Tukey

(Tk) test was used for pairwise comparisons.

5.1 Results of Reactive Maintenance Modeling

All the methods proposed under the reactive maintenance strategy are simulated

on the RAH system based on both the maintenance number and maintenance

costs. The reason for considering both maintenance number and maintenance cost
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separately is that both have great importance in maintenance planning, and to

show that the high number of maintenance does not mean high maintenance costs.

ANOVA and post-ANOVA tests were used for comparisons with a 95% confidence

interval.

All computational tests were executed on an Intel(R) Xeon processor PC with

2.40 GHz and 12 GB RAM and its equivalent. The average simulation time for

a planning horizon of 300 days is approximately 20 minutes for the fault effect

methods (FEMfp, FEMwp, FELfp and FELwp) and 1.5 hours for the replacement

effect methods (REMfp, REMwp, RELfp and RELwp). The reason for the difference

is that when fault effect methods is applied, only one inference calculation is

made in each maintenance period. However, when one of the replacement effect

methods is used, separate inference calculations are made for each component at

each maintenance time. In the RND method, since no extra extractions are made

because the components to be maintained are randomly selected, the simulation

of this method takes approximately 10 minutes. These durations are acceptable

for a 300-day time horizon, when it is considered that observation sampling is

taken in each time frame and inference calculations made for selecting components

when a reactive maintenance decision is taken.

5.1.1 Replication Results Regarding to Total Maintenance Number

The eight methods explained in Section 3.2 were run on the RAH DBN model for

50 replications on a 300-day planning horizon. The model adequacy of ANOVA’s

normality and constant variance assumptions has been checked and no violation

has been encountered. The residual plots that proves this are given in Figure 5.1.

5.1.1.1 Comparison Results of the Proposed Methods

One-factor ANOVA analysis was performed on the proposed number-based meth-

ods and it gives 0.000 p-value. This indicates that the performance of at least
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Figure 5.1: Residual plots for number-based maintenance methods.

one of the methods is statistically different from the others. In order to find

out which method(s) are different, post-ANOVA analyzes were performed. The

results obtained using the Tukey pairwise comparison test at 0.05 significance level

are depicted in Table 5.1 and Figure 5.2. In Table 5.1, SD represents standard

deviation and Tk represents Tukey test results.

Method Avg. M. Number SD 95% CI Tk

RND 19.14 3.12 (18.25; 20.02) A
FELfp 17.68 2.85 (16.87; 18.49) A,B
FEMfp 17.44 3.07 (16.57; 18.31) B
RELwp 15.48 2.58 (14.75; 16.21) C
REMwp 15.32 2.40 (14.64; 16.00) C
REMfp 15.18 2.54 (14.46; 15.90) C
RELfp 15.14 2.66 (14.39; 15.90) C
FEMwp 15.00 2.06 (14.41; 15.59) C
FELwp 14.78 2.04 (14.20; 15.36) C

Table 5.1: Results of methods according to the maintenance number under reactive
maintenance strategy.

In Table 5.1, the methods that share the same letter in the Tukey test result are not

statistically different from each other. ANOVA results show that the worst method

is the Random Method (RND) as expected. Performance of all methods, except

FELfp, is statistically better than RND. Since the pairwise confidence intervals

of FELfp and RND contain zero, it cannot be said that these two methods differ

from each other statistically. However, it is obvious that if replication number is
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Figure 5.2: Confidence intervals for the average differences of methods for mainte-
nance number.

increased from 50, it is expected that the two methods will be able to differentiate

and that FELfp will also be superior than the RND method since the standard

error of the test will decrease. Statistical analysis demonstrates that the methods

that give the best results are FEMwp and FELwp, which are fault effective methods

that consider the best state probability of the components. On the other hand,

the worst methods after RND is FELfp and FEMfp, which consider the worst

state probability of the components. Thus, it can be said that different posterior

probability efficiency measures give different results for fault effect methods.

In replacement effect methods, different subsequent probability criteria give sta-

tistically similar results. This is because the probability that the observation

node is in an intermediate state (”Very Low”) is very low, so the ”wp” criterion

that consider the intermediate state in maintenance decision cannot differ from

the ”fp” criterion that does not consider it. However, because replacement effect

methods take into consideration the improvement of the state of the observation

node and reactive maintenance is applied when the observation node implies a
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malfunction, applying of REMfp or RELfp is more logical if the REM method is

to be implemented. Consequently, FEMwp and FELwp methods can be expressed

as best methods, with regard to the total number of maintenance and also shorter

simulation time in the planning horizon.

5.1.1.2 Maintenance Supply Planning of Components

When the observation node implies a malfunction, maintenance should be carried

out as immediate as possible. To be able to perform such an urgent reactive

maintenance, some resources (spare parts, personnel, test equipment, etc.) must

be promptly provided. Therefore, the supply planning of spare parts has a great

significance. Therefore, according to simulation results, the average number of

annual supply requirements for each component was extracted. The results are

given in Table 5.2. Also, the distribution of the components according to the

methods are shown in Figure 5.3 in which the requirements of the same components

in the two engine groups are summed up.

Methods BB1 WI1 RS1 HRG1 BB2 WI2 RS2 HRG2 Hc RI
Average M.
Number

RND 1.76 2.12 2.18 1.86 2.16 1.76 1.96 2.00 1.74 1.60 19.14
FEMfp 0.00 3.78 2.74 1.78 0.00 3.70 2.34 1.82 0.00 1.28 17.44
FELfp 0.00 3.90 3.00 1.86 0.00 3.64 2.26 1.74 0.00 1.28 17.68
REMfp 0.14 1.98 1.58 3.00 0.04 1.90 1.46 2.90 2.18 0.00 15.18
RELfp 0.14 2.18 0.46 3.28 0.26 2.34 0.58 3.40 2.50 0.00 15.14
FEMwp 1.54 2.40 0.80 1.88 1.58 2.36 0.90 1.92 0.00 1.62 15.00
FELwp 1.42 2.38 0.88 1.82 1.46 2.42 0.86 1.82 0.00 1.72 14.78
REMwp 0.02 1.60 1.02 2.60 0.08 1.82 1.30 2.50 4.38 0.00 15.32
RELwp 0.10 1.96 0.26 2.94 0.14 2.14 0.28 2.88 4.78 0.00 15.48

Table 5.2: Maintenance requirements of the components.

According to the results, when the RND method was used, the requirements were

homogeneously distributed as expected, since the components were randomly

selected during a reactive maintenance time. In fault effect methods, FEM and

FEL, “fp” and “wp” measures have different component distributions. While

in FEMfp and FELfp methods, ball bearing is almost never maintained, this

component is maintained in FEMwp and FELwp methods. This result confirms

the suggestion of the two different efficiency measures. The ball bearing has 3
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Figure 5.3: Distribution of maintenance requirements of components under reactive
maintenance strategy.

states as “Normal, Loose, Locked” and in fact, it does not work effectively in the

“Loose” state. The use of the “fp” measure in the fault effect methods overlooks the

“Loose” state of the ball bearing when calculating probabilities, and as a result,

ball bearing maintenance is not recognized while selecting components. However,

in “wp” efficiency measure, calculations are made according to the posterior best

working state probability of the components and the ”Loose’ state of the ball

bearing is also taken into consideration. Also, in the FEM and FEL methods,

honeycombs have never been maintained throughout the planning horizon. The

reason for this is the regular use of a soot blowing system in the thermal power plant

to keep the honeycombs clean, as a result of which the aging of the honeycombs

slows down and the probability of their deterioration decreases.

On the other hand, it is seen that the honeycombs are maintained in replacement

effect methods, where the components are selected according to their improvement

effects on the state of the observation node. It should also be noted that these

methods has never considered to replace RAH insulation. Although this is thought

to be due to the fact that observation node, RAH measured temperature, is very

little effected by the RAH insulation, it is actually a result of the structural depen-

dence between the RAH insulation and honeycombs, which is clearly considered

in the replacement effect methods. Since the RAH insulation needs to be replaced
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during honeycomb cleaning, it does not need to be changed separately. Another

result to be taken into consideration is that the ball bearing is not maintained at

all or maintained too little in replacement effect methods. Since these methods

evaluate the effect of the components on the observation node and there are many

other components between the ball bearing and the RAH measured temperature

in the DBN model, the effect of the ball bearing maintenance is smaller compared

to other components.

5.1.2 Replication Results Regarding to Total Maintenance Cost

In this section, the methods compared with respect to the maintenance number in

Section 5.1.1 are simulated and compared with regard to the total maintenance cost

incurred in a 300-day planning horizon. The reason for comparing maintenance

methods in terms of cost also is to show that the results based on maintenance

number and maintenance cost will not be the same.

In the cost-based efficiency measure of the reactive maintenance methods given in

Section 3.2, it is necessary to balance the posterior probabilities and costs of the

components very well in order not to select a component to be maintained in a

reactive maintenance time. For this purpose, a normalization procedure has been

used. The effects of this normalization procedure on the reactive maintenance

methods are described in detail in Section 5.1.2.1.

5.1.2.1 Justification of the Normalization Procedure

In Section 3.2.7, a normalization procedure is proposed, which allows adjusting cost

values and posterior probability values to the same range, to avoid unfair control

of less costly components or posterior probabilities when cost is not considered

sufficiently. To demonstrate the details and the effect of the component selection

method with the normalization procedure, a snapshot of the system was taken at

the first time when the observation node is seen as “SL” (a reactive maintenance
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is required) after a sufficiently long time, i.e, t = 125. In Table 5.3, efficiency

measure calculation for each component of the RAH system using the FELfp and

FELwp method are shown where Pi, ψi, ψ
N
i denote the posterior probability, the

maintenance cost and the normalized maintenance cost of component i respectively

at time t = 137 where the system is first stopped for reactive maintenance after a

specified time period, t = 125. In the table, both efU
it and efit which represent

unnormalized efficiency measure and normalized efficiency measure respectively

are evaluated according to Table 3.2. However, in efU
it , the unnormalized (the

original) maintenance cost is used whereas in efit the normalized cost calculated

as in Equation (3.11) is applied.

BB1 WI1 RS1 HRG1 BB2 WI2 RS2 HRG2 Hc RI Max Min
FELwp

Pit 0.7990 0.4863 0.7148 0.9046 0.8245 0.5527 0.7490 0.7790 0.9457 0.6413 0.9457 0.4863
ψi 27,000 115,000 101,500 52,000 27,000 115,000 101,500 52,000 151,600 50,100 151,600 27,000
ψN
it 0.4863 0.8108 0.7610 0.5785 0.4863 0.8108 0.7610 0.5785 0.9457 0.5715 0.9457 0.4863
efU

it 21,573 55,925 72,552 47,039 22,262 63,561 76,024 40,508 143,368 32,129 143,368 21,573
efit 0.3886 0.3943 0.5439 0.5233 0.4009 0.4481 0.5700 0.4506 0.8944 0.3665 0.8944 0.3665

FELfp

Pit 0.0848 0.5137 0.2852 0.0954 0.0739 0.4473 0.251 0.221 0.0543 0.2922 0.5137 0.0543
ψi 27,000 115,000 101,500 52,000 27,000 115,000 101,500 52,000 151,600 50,100 151,600 27,000
ψN
it 0.0543 0.3788 0.3290 0.1465 0.0543 0.3788 0.3290 0.1465 0.5137 0.1395 0.5137 0.0543
efU

it (x10−6) 3.141 4.470 2.810 1.830 2.740 3.890 2.470 4.250 0.3582 5.832 5.832 0.3582
efit 1.5634 1.3563 0.8671 0.6513 1.362 1.1811 0.763 1.5089 0.1056 2.0952 2.0952 0.1056

Table 5.3: Details of the efficiency measure calculations.

In FELwp, WI1 has the worst posterior best working state probability. If cost was

not important and hence not considered in determining the maintenance activities,

one would select WI1 to maintain at t = 137. BB1 is the fourth best among

the ten components according to the posterior best-working state probabilities.

Nevertheless, since its cost is the minimum, efU
it of BB1 is dominated by this cost

value resulting in the minimum efficiency value probably unduly. On the other

hand, efit enable to evaluate also the components other than the one with the

minimum cost due to using the normalized maintenance costs which are scaled in

the domain of the posterior probabilities. As a result of this, RI, which is the third

worst among the ten components according to the posterior best working state

probabilities, is proposed to be maintained with the minimum efficiency value.
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In FELfp, WI1 has the maximum posterior worst state probability and BBs have

the minimum maintenance cost. Though, both efficiency measures propose RI to

be maintained. It is important to note that the efficiency measure of FELfp is more

affected by the posterior worst state probabilities than the costs of the components

when compared to FELwp measure. This is because of the fact that the worst state

probabilities are mainly smaller than the best working state probabilities. Hence,

they differ proportionally more compared to the cost values and are more dominant

in the calculations of the efficiency measure without normalization. To avoid this,

the effect of probabilities and costs are balanced with the help of normalization.

Although both efficiency measures propose the same component, when subsequent

components in the respective ranks are examined, it is observed that probabilities

are more effective in the efficiency measure without normalization whereas this

unfair effect reduces while the cost effect increases in the normalized efficiency

measure.

To emphasize the importance of the normalization procedure, all proposed cost-

effective methods were run with 30 replications for a 300-day planning horizon

without normalization procedure firstly . The random selection method (RND),

where the component to be maintained is randomly selected when a reactive

maintenance is required, was also used to analyze the performance of the proposed

methods. The results are given in Table 5.4, where the average total maintenance

number of each component, the average total number of maintenance and the

average total maintenance cost are reported.

Method BB1 WI1 RS1 HRG1 BB2 WI2 RS2 HRG2 Hc RI
Total

Number
Total
Cost

RND 1.67 2.40 1.97 1.93 2.27 1.60 1.83 2.03 1.77 1.80 19.27 1.467.477
FEMfp 1.80 1.10 0.50 2.80 1.70 1.00 0.50 2.70 0.00 2.10 14.20 828,710
FELfp 1.80 1.00 0.60 2.90 1.80 1.10 0.40 2.70 0.00 2.30 14.60 846,630
REMfp 22.00 0.00 0.00 0.60 21.50 0.00 0.00 0.70 0.00 0.20 45.00 1,252,120
RELfp 21.80 0.00 0.00 0.60 21.20 0.00 0.00 0.40 0.00 0.10 44.10 1,218,010
FEMwp 20.50 0.00 0.00 0.60 21.40 0.00 0.00 0.90 0.00 0.10 43.50 1,214,310
FELwp 20.70 0.00 0.00 0.80 20.40 0.00 0.00 0.70 0.00 0.20 42.80 1,197,720
REMwp 21.80 0.00 0.00 0.60 19.70 0.00 0.00 0.30 0.00 1.00 43.40 1,217,400
RELwp 20.80 0.00 0.00 0.30 19.80 0.00 0.00 0.30 0.00 1.00 42.20 1,177,500

Table 5.4: Average replication results of the proposed methods.
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Replication results show that in all methods except FEMfp and FELfp, the ball

bearing is selected at almost every reactive maintenance time. This is because

the cost of the ball bearing is less than the other components. Although selecting

the component with the lowest maintenance cost is seen as an advantage for

the specific time interval in which maintenance is performed, it will cause more

financial losses in the long run, especially when the interested component does not

contribute to the reliability of the entire system. Therefore, cost and probability

effects need to be balanced when making maintenance decisions.

In FEMfp and FELfp, the efficiency measure is largely affected by the posterior

worst state probabilities, but less affected than the cost values. Therefore, these

methods do not tend to choose the ball bearing at each reactive maintenance

time, although it costs the least. In contrast, the efficiency measures of FEMwp

and FELwp are not affected by the aforementioned posterior probabilities. So, the

cost is dominant in these selection methods and causes the ball bearing to be

considered in almost all maintenance times.

In replacement effect methods, all efficiency measures are based on the posterior

probability of the observation node when it is assumed that each component is

maintained in a given time period. Therefore, the posterior probabilities of the

observation node are not very different from each other and have a small max-min

ratio compared to the max-min ratio of the maintenance costs of the components.

After all, these methods are greatly influenced by the cost factor and lead to select

ball bearings for almost all maintenance times. These results justify the necessity

of the normalization procedure.

5.1.2.2 Replication Results with Normalization Procedure

Before the normalization procedure, the probability factor is more effective than

the cost factor in the FEMfp and FELfp methods while in other methods, the

opposite is true. The normalization procedure brings the effect of the posterior

probabilities and the effect of the cost of the components to the same significance
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level in all methods. Each normalized method were run 50 replications over

the 300-day planning horizon, and the results are given in Table 5.5. After

this procedure, it is seen that the distribution is more stable when selecting the

components during the reactive maintenance times and the methods also select

components apart from ball bearing for maintenance. According to the results, it

is clear that the normalization procedure helps to improve all methods when the

total maintenance cost is considered.

Method BB1 WI1 RS1 HRG1 BB2 WI2 RS2 HRG2 Hc RI
Total

Number
Total
Cost

RND 1.76 2.12 2.18 1.86 2.16 1.76 1.96 2.00 1.74 1.60 19.14 1,516,914
FEMfp 5.78 0.72 0.28 2.82 5.08 0.48 0.10 2.42 0.00 1.62 19.30 823,432
FELfp 5.76 0.62 0.06 2.68 5.32 0.54 0.16 2.66 0.00 1.58 19.38 811,728
REMfp 0.18 1.56 0.90 3.72 0.20 1.40 0.88 3.66 0.00 2.88 15.38 1,059,378
RELfp 0.44 1.56 0.40 3.70 0.42 1.64 0.38 3.78 0.00 2.84 15.16 1,001,634
FEMwp 2.52 1.06 0.64 2.32 2.48 1.06 0.64 2.32 0.00 1.98 15.02 849,198
FELwp 2.56 1.00 0.60 2.10 2.62 1.22 0.72 2.36 0.00 1.92 15.10 857,252
REMwp 0.32 1.26 0.90 3.38 0.16 1.26 0.70 3.12 0.00 5.48 16.58 1,077,708
RELwp 0.44 1.28 0.32 3.24 0.36 1.26 0.30 3.12 0.00 5.22 15.54 968,872

Table 5.5: Average replication results of the proposed methods after normalization
procedure.

The box plot showing the total maintenance costs of all methods according to

the replication results is given in Figure 5.4. The figure clearly indicates that

the RND method is the most costly method. ANOVA analysis is applied on the

proposed methods and gives a p-value of zero which demonstrate that at least

one of the proposed methods is statistically different from the others. Before post-

ANOVA analysis, residuals were checked for model adequacy and it is understood

that although the residuals are almost normally distributed, they can violate the

constant variance assumption. Residual plots are given in Figure 5.5. Thereupon,

Bartlett’s test was applied to determine whether the residuals of the methods

were evenly distributed and the p-value was found to be 0.003. This value shows

that the constant variance assumption required for ANOVA test does not occur

at the significance level of 0.05. Therefore, the analyzes are continued with the

Welch test and Games-Howell tests, which can be used when the sample does not

have constant variances. Table 5.6 and Figure 5.6 present the Games-Howell test

results.
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Figure 5.4: Comparative box plots of the methods.

Figure 5.5: Residual plots for model adequacy for proposed methods.

According to the results, all failure effect methods are the best ones and they are

not significantly different from each other. Among the replacement effect methods,

REMwp gives significantly higher cost value than RELwp. However, Figure 5.6

shows that pairwise confidence interval of these methods does not include zero

barely at α = 0.05 significance, so it can be said that this significance may not be

valid if replication number is increased. In addition to the conclusion that FEM

and FEL methods give the least average maintenance cost, these methods are also

superior to REM and REL methods in terms of simulation time perspective.
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Method Avg. M. Cost SD 95% CI GH

REMwp 1,077,708 185,427 (1,025,010; 1,130,406) A
REMfp 1,059,378 179,497 (1,008,365; 1,110,391) A,B
RELfp 1,001,634 139,627 (961,952; 1,041,316) A,B
RELwp 968,872 152,335 (925,579; 1,012,165) B
FELwp 857,252 120,054 (823,133; 891,371) C
FEMwp 849,198 125,957 (813,402; 884,994) C
FEMfp 823,432 113,416 (791,200; 855,664) C
FELfp 811,728 132,478 (774,078; 849,378) C

Table 5.6: Post-hoc test results of the normalized methods when Downtime
Cost=25,000 TL.

Figure 5.6: Confidence intervals for the average differences of the proposed methods
for maintenance cost.

5.1.2.3 Sensitivity Analysis of the Proposed Methods according to

Hourly Downtime Cost

Total downtime cost is part of the total maintenance cost and is obtained by

multiplying the action duration of a component by the hourly downtime cost.

Hourly downtime cost is based on the hourly profit loss of the thermal power plant

due to a malfunction in one of the air gas lines, and this loss may vary depending
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on some factors that cannot be controlled internally, such as coal expense and

electricity price. Four different hourly downtime costs are considered for the RAH

system: 12,500, 25,000, 37,500 and 50,000 TL/hour. The current estimated hourly

downtime cost is 25,000 TL while the others are used for sensitivity analysis. It

should not be forgotten that the air gas system consists of two parallel lines and

if one of them fails, the thermal power plant can continue to operate with 50%

performance. So, the above-mentioned downtime costs are half of the downtime

cost when thermal power plant stops completely. 50 replications were run for

each downtime cost to measure the sensitivity of them in each proposed methods.

Games-Howell test results showing whether the classification of the methods are

different under each downtime cost are given in Table 5.7.

Cost=12,500 TL Cost=25,000 TL
Method Mean SD 95% CI Group Method Mean SD 95% CI Group
REMfp 561,100 91,601 (535,067; 587,133) A REMwp 1,077,708 185,427 (1,025,010;1,130,406) A
REMwp 534,008 71,812 (513,599; 554,417) A REMfp 1,059,378 179,497 (1,008,365;1,110,391) A,B
RELwp 523,396 74,157 (502,321; 544,471) A RELfp 1,001,634 139,627 ( 961,952; 1,041,316) A,B
RELfp 517,928 79,355 (495,376; 540,480) A RELwp 968,872 152,335 ( 925,579; 1,012,165) B
FEMwp 453,092 55,758 (437,246; 468,938) B FELwp 857,252 120,054 ( 823,133; 891,371) C
FELfp 446,376 66,599 (427,449; 465,303) B FEMwp 849,198 125,957 ( 813,402; 884,994) C
FELwp 443,902 54,721 (428,351; 459,453) B FEMfp 823,432 113,416 ( 791,200; 855,664) C
FEMfp 431,974 57,309 (415,687; 448,261) B FELfp 811,728 132,478 ( 774,078; 849,378) C

Cost=37,500 TL Cost=50,000 TL
Method Mean SD 95% CI Group Method Mean SD 95% CI Group
REMwp 1,566,308 279,473 (1,486,883; 1,645,733) A REMwp 2,033,002 303,499 (236,959; 414,964) A
REMfp 1,516,380 318,330 (1,425,912; 1,606,848) A REMfp 2,015,694 344,428 (268,915; 470,926) A
RELwp 1,512,410 263,491 (1,437,527; 1,587,293) A RELwp 1,985,284 295,771 (230,926; 404,399) A
RELfp 1,449,248 223,847 (1,385,631; 1,512,865) A RELfp 1,931,700 342,080 (267,082; 467,716) A
FEMwp 1,288,022 193,420 (1,233,053; 1,342,991) B FELwp 1,713,494 216,545 (169,069; 296,075) B
FELwp 1,262,766 158,064 (1,217,845; 1,307,687) B FEMwp 1,637,058 262,559 (204,995; 358,989) B,C
FEMfp 1,190,410 170,166 (1,142,049; 1,238,771) B FEMfp 1,547,436 209,411 (163,499; 286,321) C
FELfp 1,184,158 167,223 (1,136,634; 1,231,682) B FELfp 1,543,092 181,540 (141,739; 248,214) C

Table 5.7: Sensitivity results of the normalized methods at different downtime
costs.

According to the Games-Howell test results, using different downtime costs change

the order of the methods. However, it is seen that the grouping does not change

significantly in the smallest three downtime costs (12,500, 25,000, 37,500) and

all failure effect methods give the minimum total maintenance cost. When the

downtime cost is 37,500 TL, there is a considerable difference between the costs of

the FELfp and FEMwp methods, although the failure effect methods do not differ

significantly among themselves. When the cost of downtime is 50.000 TL, it is

seen that FEMfp and FELfp are dissociated from the others as the best methods
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with the minimum total maintenance cost. Accordingly, it can be said that these

two methods will continue their superiority in terms of total maintenance costs

under higher downtime costs.

5.1.2.4 Trade-off Analysis: Maintenance Cost vs Maintenance Num-

ber

Minimizing the total maintenance activities in a planning horizon is easier because

it does not require consideration of maintenance costs. It can be fully concentrated

to increase system availability. However, this will most likely result in high

costs. On the contrary, while considering the minimization of the total cost in

maintenance planning, the number of maintenance cannot be ignored. The reason

is that the total maintenance cost that occurs in a planning horizon is directly

related to the number of total maintenance activities performed. Therefore, since

it is important to find a balance between the effects of cost and number in making

maintenance decisions, the normalization procedure has been proposed to balance

the effects of maintenance costs and posterior probabilities of the components in

efficiency measures. After applying this procedure, it is observed that all methods

consider all components, as opposed to non-normalized methods.

However, it may be interesting to analyze the total number of maintenance, as

well as the total maintenance cost incurred in the planning horizon for normalized

methods. Table 5.5 shows the maintenance distribution and total maintenance

cost of the components for each method when the hourly downtime cost is 25.000

TL. According to the results, the FELfp method, which has the lowest maintenance

cost, has the highest number of maintenance. When single factor ANOVA analysis

is applied with considering the maintenance number, p-value is found as 0.00,

which means that at least one of the methods has a statistically different number of

maintenance than the others. Since the normal distribution and constant variance

assumptions in the ANOVA model are provided, Tukey test was applied to find

out which methods are different and the results are given in Table 5.8.
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Method Avg. M. Number SD 95% CI GH

FELfp 19.38 3.602 (18.356, 20.404) A
FEMfp 19.30 2.936 (18.465, 20.135) A
REMwp 16.58 2.548 (15.856, 17.304) B
RELwp 15.54 2.305 (14.885, 16.195) B,C
REMfp 15.38 2.440 (14.686, 16.074) B,C
RELfp 15.16 2.074 (14.571, 15.749) B,C
FELwp 15.10 1.992 (14.534, 15.666) C
FEMwp 15.02 2.199 (14.395, 15.645) C

Table 5.8: Statistical analysis results based on maintenance number.

Fault effect methods which use the posterior worst state probability of components,

FEMfp and FELfp, give the highest total maintenance number and they are

statistically different from other methods. However, these two methods are the

best in terms of total maintenance cost. This result shows that in order to reduce

the total maintenance cost in a planning horizon, it is needed to accept a reasonable

increase in the total number of maintenance.

5.1.2.5 Analysis of Number - Based and Cost - Based Methods at

Component Level

In order to evaluate the impact of cost-based approaches under the reactive

maintenance strategy, the results were compared with the results of the number-

based methods where costs were not considered in efficiency measures. Figure 5.7

shows the cost-based (orange bin) and number-based (blue bin) distribution of

components for the 50 replication averages of each method.

In FEMfp and FELfp methods, it is seen that there are significant differences in

the total number of maintenance of some components when number-based and

cost-based approaches are applied. When cost is not considered, ball bearing

maintenance is not preferred at all, while it is the most preferred component due

to the lowest cost when cost is considered. On the other hand, the maintenance

numbers of WI and RS have decreased significantly in cost-based approaches. In

REMfp and RELfp methods, there are important differences between cost-effective
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Figure 5.7: Distribution of the components in cost based and number based
methods.
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and number-effective approaches only for Hc and RI. In number-based approaches,

while Hc is maintained, RI is never maintained due to the structural dependence

between the two components. However, while RI is maintained in the cost-based

approach, Hc is never maintained because it is a more expensive component.

In addition, comparing the methods according to “fp” and “wp” efficiency measures

also gives interesting results. When FEMfp and FEMwp methods are compared, it

is observed that in fault effect methods “fp” tends to consider the cost more than

probability, whereas the probability effect is more dominant in “wp” measure.

This inference is the result of that when cost is considered in FEMfp, the total

maintenance number of high cost components such as WI and RS reduces while

low cost components such as BB are maintained more. On the other hand, in

FEMwp, there is no significant difference in the maintenance number of components

between number-based and cost-based approaches. In replacement effect methods,

the “fp” and “wp” measures behave more similar in terms of the distribution of

the components.

Figure 5.8 and Figure 5.9 show the total maintenance cost and total maintenance

number respectively in the planning horizon for all methods, under cost-based

and number-based approaches. According to these figures, the largest difference

between the total maintenance cost and the total amount of maintenance activities

in the number-based and cost-based scenarios belongs to FEMfp and FELfp

methods. In these methods, when cost is considered in the efficiency measure, the

total maintenance cost decreases, while the total number of maintenance increases.

This also proves that FEMfp and FELfp are the methods which focus cost impact

mostly. On the other hand, in Figure 5.8, the minimum total maintenance cost

difference belongs to the FEMwp and FELwp methods, and similarly, according

to Figure 5.9, there is no significant difference between the two approaches for

these methods depending on the total number of maintenance. Also, when cost

is considered in Figure 5.8, REMwp and RELwp improve more than REMfp and

RELfp compared to the number-based approach.
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Figure 5.8: Total maintenance cost. Figure 5.9: Total maintenance amount.

5.2 Results of Proactive Maintenance Modeling

Two main scenarios and three sub-scenarios based on the cost and duration of

reactive maintenance are considered for the analysis of proactive maintenance

results. Since the RAH system has two parallel engine groups, the system does

not need to be stopped if a component in these engine groups is maintained in a

proactive maintenance time and the RAH can continue to operate with a single

engine group. Based on this, the two main scenarios are designed according to the

need to stop the system during proactive maintenance. In each scenario, different

levels of parameters (pci, pdi, thr) used for proactive strategies (CIPM, DIPM,

ThPM) are evaluated. Increasing pci and pdi values or decreasing thr value brings

the results of proactive maintenance strategies closer to the reactive maintenance

results. Therefore, the upper limit for the pci and pdi parameters and the lower

limit for the thr parameter are defined as the points where the respective proactive

strategy reaches the reactive maintenance cost of the scenario under investigation.

On the other hand, since very low pci and pdi values and very high thr values cause

unnecessary proactive maintenance, they result in a higher total maintenance cost

than the cost incurred with using the closest parameter value of the respective

strategy. According to these parameter values, lower limit for the pci and pdi

parameters and upper limit for the thr parameter are determined.

A tabu procedure detailed in Section 3.3 is applied to prevent to select same

component consecutively in cases where proactive maintenance is frequent. When
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determining the tabu duration, it should be taken into consideration that tabu

duration is not too large (then it becomes too restrictive) or too small (then it

may become meaningless). Therefore, after some experimental trials, the tabu

time is taken as 5 days in all analyzes.

In each maintenance strategy, FELfp is used to select the component to be

maintained both at reactive and proactive maintenance times. 30 replications

were run in MATLAB environment using the BNT-toolbox on a 300-day planning

horizon for each proposed strategy, scenario, and parameter. The performance of

the strategies are evaluated according to the average total cost of maintenance in

the planning horizon.

ANOVA model is used to compare the performance of the strategies. Model

adequacy is checked and all models are found to meet the assumption of normality.

However, some ANOVA models violate the constant variance assumption. In these

cases, Games-Howell (GH) was used. Otherwise, the Tukey (Tk) test was used.

5.2.1 Scenarios Based on Independent Parallel Engine Groups

This scenario represents the real situation where there are two parallel engine

lines, and the system does not need to stop for proactive maintenance of a

component selected from these engine groups, thereby a downtime cost does not

occur. However, since reactive maintenance is required only when both engine

groups stop, the advantage of parallel lines is not valid in this case. Under this

main scenario, three sub-scenarios are created based on different unit reactive

downtime costs, keeping the proactive maintenance cost constant.

5.2.1.1 Scenario DCR25

This scenario is the basic scenario where the reactive and proactive maintenance

costs of all components are taken as in Table 4.4. Since the ANOVA model violates

the constant variance assumption, the Games-Howell post-hoc test is applied to
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compare the parameters of each maintenance strategy. Results for the average

total maintenance cost in a planning horizon for 30 replications are provided in the

“Mean” column of Table 5.9. In the table, “GH” represents Games-Howell groups,

“Mean” denotes the average total maintenace cost and and “RM” represents the

reactive maintenance results. The factor levels are tabulated in decreasing values

of the average total cost.

CIPM DIPM ThPM
Factor Mean SD GH Factor Mean SD GH Factor Mean SD GH
RM 812,990 113,176 A RM 812,990 113,176 A RM 812,990 113,176 A
pci=90 729,100 84,829 B pdi=90 800,813 107,055 A thr=0.85 794,085 136,550 A
pci=60 658,547 116,149 B,C pdi=60 783,510 108,792 A thr=0.90 604,953 182,613 B
pci=30 571,187 107,290 C,D pdi=30 714,440 138,026 A thr=0.99 463,040 28,197 C
pci=2 569,843 49,779 D pdi=2 560,233 53,831 B thr=0.95 343,057 101,168 D
pci=15 396,257 98,882 E pdi=15 509,553 128,893 B thr=0.97 303,420 58,434 D
pci=5 339,410 56,662 E pdi=5 339,828 75,966 C

Table 5.9: Post-Hoc test results of scenario DCR25.

The results show that there is at least one parameter that provides significantly

lower cost than the reactive maintenance for all proactive maintenance strategies.

For constant and dynamic interval proactive maintenance strategies 5 days, and for

threshold based strategy 0.97 thresholds are the best parameters. This indicates

that frequent proactive maintenance is needed for this scenario, but unnecessary

maintenance should also be avoided.

Figure 5.10: Results of the maintenance strategies for Scenario DCR25.

Figure 5.10 plots the average total maintenance cost against increasing values of

the experimented parameters for each strategy and compares them with the cost

of reactive maintenance. While CIPM and DIPM behave similarly as parameter

values increase, the ThPM strategy is like the mirror image of the two because

of the reverse effect of their parameter: Inreasing (decreasing) the thr (pci or

pdi) parameter enables proactive maintenance activities more and hence first
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reduces total horizon cost, but then increases the cost due to the unnecessary

proactive maintenance. DIPM and CIPM give almost the same cost values in

narrow proactive maintenance intervals, i.e., 2 and 5 days but as the range expands,

the DIPM cost approaches the reactive maintenance cost faster. This is due to

the fact that when using a dynamic interval strategy, proactive maintenance times

are shifted whenever a reactive maintenance is needed between the planned two

preventive maintenance times which results in less (higher) number of proactive

(reactive) maintenance compared to the CIPM. So, the total maintenance cost

increases due to the increasing reactive maintenance number.

5.2.1.2 Scenario DCR50

In the second scenario, a pessimistic approach in which the domestic market prices

suddenly rise to a very high value of 0,65 TL/kw although the thermal power

plant has already made an agreement with companies for a low electricity price

(0.20 TL/kw). In this case, proactive and reactive downtime costs were calculated

as approximately 20,000 TL/hour and 50,000 TL/hour, respectively. The results

are shown in Table 5.10 and Figure 5.11.

CIPM DIPM ThPM
Factor Mean SD GH Factor Mean SD GH Factor Mean SD GH
RM 1,508,150 181,300 A pdi=90 1,568,133 205,506 A thr=0.85 1,514,588 215,080 A
pci=90 1,383,025 162,591 A,B pdi=60 1,553,275 266,095 A RM 1,508,150 181,300 A
pci=60 1,247,132 213,617 B RM 1,508,150 181,300 A,B thr=0.90 1,093,598 286,436 B
pci=30 1,002,885 202,155 C pdi=30 1,335,845 259,728 B thr=0.995 767,653 82,401 C
pci=15 772,232 214,363 D pdi=15 899,697 245,286 C thr=0.95 585,782 201,297 D
pci=2 639,673 110,493 D pdi=2 637,687 85,915 D thr=0.99 520,915 67,143 D
pci=5 490,910 117,018 E pdi=5 487,282 126,608 E thr=0.97 447,710 167,359 D

Table 5.10: Post-Hoc test results of scenario DCR50.

Figure 5.11: Results of the maintenance strategies for Scenario DCR50.
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According to the results, the parameter value that gives the best results for both

CIPM and DIPM is 5 days. In ThPM, 0.97 gives the minimum cost but threshold

reliabilities of 0.99 and 0.95 are found not to be significant than 0.97 in terms of

average total cost. On the other hand, in the previous scenario, when the reactive

downtime cost is 25,000 TL, the thr values of 0.97 and 0.95 are the best and they

are not statistically different from each other, but the thr value of 0.99 gives worse

results than them. From this situation, it can be concluded that implementing

more proactive maintenance becomes more advantageous as the unit downtime

cost of the reactive maintenance increases and thus provides a lower total cost.

5.2.1.3 Scenario DCR50 - 2*AD

Thirdly, a more pessimistic scenario is handled where unplanned reactive main-

tenance cannot be achieved quickly as a result of an economic crisis and layoffs.

Accordingly, the durations of reactive maintenance actions is doubled. This causes

an increase in the maintenance cost of each action. In addition to the doubled

reactive maintenance durations, the reactive downtime cost was also taken as

50.000 TL/hour due to the reasons explained in the previous scenario. Table 5.11

shows the comparison results of replications and Figure 5.12 shows graphically

the average total maintenance cost for each strategy.

CIPM DIPM ThPM
Factor Mean SD GH Factor Mean SD GH Factor Mean SD GH
RM 3,072,683 475,618 A RM 3,072,683 475,618 A RM 3,072,683 475,618 A
pci=90 2,549,158 468,636 B pdi=60 3,023,847 488,502 A thr=0.85 3,028,380 561,275 A
pci=60 2,468,732 360,075 B pdi=90 3,021,160 500,477 A thr=0.90 2,473,207 648,184 B
pci=30 2,049,825 411,459 C pdi=30 2,643,295 660,310 A thr=0.999 1,539,012 129,953 C
pci=1 1,671,372 161,985 D pdi=15 2,011,895 582,416 B thr=0.95 1,214,898 518,435 D
pci=15 1,324,710 348,467 E pdi=1 1,633,573 104,908 C thr=0.97 833,015 264,002 E
pci=5 877,810 202,740 F pdi=5 934,773 255,623 D thr=0.995 812,990 118,105 E
pci=2 755,177 193,740 F pdi=2 774,073 169,836 D thr=0.99 651,698 196,147 E

Table 5.11: Post-Hoc test results of scenario DCR50-2*AD.

According to the results, a proactive maintenance interval of 2 days is the best

parameter for CIPM and DIPM, but this is not signicantly different from the

5 days parameter within the respective strategy. In ThPM, the threshold level
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Figure 5.12: Results of the maintenance strategies for Scenario DCR50-AD*2.

of 0.95 gives the lowest maintenance cost, but this is not significantly different

from the cost values of thr=0.995 and thr=0.97. These results show that in

such a pessimistic scenario where reactive maintenance result in a huge cost,

more frequent proactive maintenance is needed to prevent reactive maintenance.

However, using a reliability threshold more than 0.99 or taking pci and pdi as

1 day increases the total maintenance cost as a result of unnecessary proactive

maintenance. It should also be noted that the ThPM strategy is more successful

at achieving a lower minimum total cost than CIPM and DIPM. Comparisons

with the best performing parameters among the strategies will be discussed in

Section 5.2.3.

In all the scenarios discussed, DIPM and CIPM strategies behave similarly, but

as proactive maintenance intervals expand, DIPM approaches the RM strategy

faster. This is due to the need for more reactive maintenance as the time between

proactive maintenance increases. Because of the dynamic interval used in DIPM,

proactive maintenance times are postponed and need for reactive maintenance

increases which results in an increase in total maintenance cost.

5.2.2 Scenarios Based on Dependent Parallel Engine Groups

In the scenarios handled in Section 5.2.1, it is necessary to stop the system to

perform reactive maintenance, but not for proactive maintenance. In this case,

proactive maintenance provides a great advantage in terms of reducing the total

maintenance cost. To see if proactive maintenance will take advantage even in

a dependent system, another scenario where the system must be stopped while

performing proactive maintenance also has been designed. In this case, where the
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system cannot continue generating electricity during both proactive and reactive

maintenance, all maintenance actions in both cases cause downtime costs. This

scenario ran 30 replications for all sub-scenarios mentioned in Section 5.2.1 and

for the three proposed proactive maintenance strategies.

5.2.2.1 Scenario depDCR25

In this scenario, hourly proactive and reactive downtime costs of all components

are taken as 20,000 TL and 25,000 TL, respectively. These downtimes are the

same as those given in Table 4.4. Replication results for each strategy are shown

in Table 5.12 and in Figure 5.13 where Tk represents Tukey test results.

CIPM DIPM ThPM
Factor Mean SD Tk Factor Mean SD Tk Factor Mean SD Tk
pci=5 1,371,632 84,708 A pdi=5 1,314,080 71,977 A thr=0.99 1,820,468 70,485 A
pci=15 896,750 118,529 B pdi=15 860,923 128,510 B thr=0.97 968,652 69,521 B
pci=90 861,858 133,908 B,C pdi=45 835,497 144,658 B thr=0.95 872,307 96,427 C
pci=30 853,227 123,612 B,C pdi=60 833,427 114,897 B thr=0.85 822,928 139,546 C
RM 812,990 113,176 B,C pdi=30 817,995 107,112 B RM 812,990 113,176 C
pci=60 781,005 126,373 C RM 812,990 113,176 B thr=0.75 806,593 104,865 C
pci=45 776,202 133,158 C pdi=90 782,293 94,332 B thr=0.90 800,207 123,541 C

Table 5.12: Post-Hoc test results of scenario depDCR25.

Figure 5.13: Results of the maintenance strategies for Scenario depDCR25.

The results indicate that in all strategies there are no parameters that give a

significantly lower cost than the cost of RM. On the contrary, some parameters of

the strategies cause higher maintenance costs. In CIPM and DIPM, 5 days interval

gives the worst result and it is seen that while the interval between proactive

maintenance increases, the total cost decreases. The parameter pci=5, which

gives the worst cost in CIPM, is significantly different from other parameters

and reactive maintenance. In ThPM, parameters which result in more proactive
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maintenance, thr=0.97 and thr=0.99, are significantly different from RM and

other threshold levels, as well as significantly different from each other and give

the highest cost results. Other threshold parameters give almost the same cost

with RM. Results show that using a proactive maintenance strategy does not

provide any advantage under the cost structure given in this scenario.

5.2.2.2 Scenario depDCR50

In this scenario, all components need to be stopped for both reactive and proactive

maintenance, and the cost of reactive downtime was taken as 50,000 TL because of

the reasons described earlier. The results are given in Table 5.13 and Figure 5.14.

CIPM DIPM ThPM
Factor Mean SD Tk Factor Mean SD Tk Factor Mean SD Tk
pci=2 3,234,358 181,300 A pdi=2 3,263,513 98,797 A thr=0.99 1,912,942 149,836 A
pci=5 1,610,330 217,801 B,C pdi=30 1,607,462 241,444 B thr=0.85 1,606,567 229,963 B
pci=90 1,608,683 229,191 B,C pdi=60 1,595,673 233,141 B RM 1,508,150 181,300 B,C
pci=60 1,559,500 207,912 B,C pdi=90 1,574,220 249,517 B,C thr=0.90 1,397,760 244,947 C,D
pci=45 1,555,900 175,201 B,C pdi=5 1,560,697 168,177 B,C thr=0.95 1,260,420 220,126 D,E
RM 1,508,150 181,300 B,C pdi=45 1,525,210 269,834 B,C thr=0.97 1,228,858 217,561 E
pci=30 1,447,768 221,860 B,C RM 1,508,150 181,300 B,C
pci=15 1,400,557 186,110 C pdi=15 1,395,637 236,102 C

Table 5.13: Post-Hoc test results of scenario depDCR50.

Figure 5.14: Results of the maintenance strategies for Scenario depDCR50.

For CIPM and DIPM strategies, there is no parameter resulting in significantly

less cost than the reactive maintenance. However, the thresholds of 0.97 and 0.95

in ThPM are the best and give a significantly lower cost than RM. As threshold

level increases, the maintenance cost decreases until thr=0.97. When the threshold

level rises to 0.99, the cost increases greatly as a result of unnecessary proactive

maintenance. It can be concluded that ThPM is the best strategy in this scenario

84



since the threshold based proactive strategy achieves to give significantly lower

cost than that of the RM.

5.2.2.3 Scenario depDCR50-2*AD

In this scenario, in addition to the previous scenario, the reactive maintenance

times of the components are also doubled due to the previously described arguments

in Section 5.2.1.3. Replication results are shown in Table 5.14 and Figure 5.15.

CIPM DIPM ThPM
Factor Mean SD GH Factor Mean SD GH Factor Mean SD GH
pci=2 3,411,912 271,384 A,B pdi=2 3,459,180 261,008 A RM 3,072,683 475,618 A
RM 3,072,683 475,618 B RM 3,072,683 475,618 B thr=0.85 2,991,852 546,488 A
pci=90 3,062,532 390,982 B pdi=90 3,046,507 459,494 B thr=0.90 2,675,882 620,795 A
pci=60 2,914,787 390,891 B,C pdi=60 2,972,570 407,950 B thr=0.99 2,089,465 268,921 B
pci=30 2,896,617 457,727 B,C pdi=30 2,877,380 523,580 B,C thr=0.95 1,833,235 497,400 B,C
pci=15 2,554,793 514,663 C pdi=15 2,550,208 456,090 C thr=0.97 1,777,223 415,788 C
pci=5 1,867,830 411,877 D pdi=5 1,900,833 328,620 D

Table 5.14: Post-Hoc test results of scenario depDCR50-2*AD.

Figure 5.15: Results of the maintenance strategies for Scenario depDCR50-2*AD.

According to the results, there is at least one parameter for each strategy that is

significantly better than RM. The 5 days interval gives the lowest cost in CIPM

and DIPM. Moreover, there is also another parameter value (pci=15 and pdi=15)

that is significantly better than RM but significantly worse than pci=5 and pdi=5

in CIPM and DIPM respectively. Among the experimented values, the 2 days

interval gives the highest cost in these strategies due to unnecessary proactive

maintenance. ThPM gives the lowest cost at the threshold level of 0.97, and this

threshold is statistically different from RM and other parameter values other than

thr=0.95. Moreover, all parameter values give lower cost than RM in ThPM. These

results show that even if the operation of parallel lines in the system is dependent,
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if the cost of reactive maintenance is sufficiently high, proactive maintenance

provides an advantage in keeping the system sustainable while reducing the total

maintenance cost.

5.2.3 Comparison of the Strategies using the Best Parameters

To understand which maintenance strategy is better, the best performing parame-

ters of each strategy, which yield significantly lower costs than RM under the given

scenarios, are compared to each other using ANOVA. The depDMR25 scenario,

where none of the strategies give significantly lower cost than RM, and depDMR50

scenarios, where only some ThPM parameters give significantly lower cost than

RM, are not considered in the comparisons. Table 5.15 shows the comparison

results by both total maintenance cost and total maintenance number.

Scenario Parameter Avg. Cost SD Tk Parameter Avg. Number SD GH

DCR25
pdi=5 339,410 56,662 A pci=5 65.00 1.702 A
pci=5 339,828 75,966 A pdi=5 62.20 1.243 B
thr=0.97 303,420 58,434 A thr=0.97 51.30 4.348 C

DCR50
pci=5 490,910 117,018 A pci=5 65.57 1.716 A
pdi=5 487,282 126,608 A pdi=5 62.77 1.524 B
thr=0.97 447,710 167,359 A thr=0.97 49.20 3.624 C

DCR50-2*AD
pdi=2 774,073 169,836 A pci=2 150.67 1.155 A
pci=2 755,177 193,740 A,B pdi=2 150.27 0.785 A
thr=0.99 651,698 196,147 B thr=0.99 100.50 3.481 B

depDCR50-2*AD
pdi=5 1,900,833 328,620 A pci=5 63.00 2.197 A
pci=5 1,867,830 411,877 A pdi=5 61.40 1.276 B
thr=0.97 1,777,223 415,788 A thr=0.97 40.93 2.116 C

Table 5.15: Comparison of the best parameters of strategies for different scenarios.

The results show that although threshold-based maintenance gives the lowest cost,

there is no significant difference between the strategies based on maintenance cost.

On the other hand, when strategies are compared based on the total number of

maintenance, ThPM is the best. Since threshold-based maintenance is a predictive

strategy that considers the actual state of the system when making maintenance

decisions, proactive maintenance is only performed when it is necessary. Thus, it

reduces both the maintenance number and the maintenance cost. These results

show that the threshold-based maintenance strategy is the best under these

scenarios.
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5.2.4 Justification of Using Tabu Procedure

In order to confirm the usage of tabu procedure within the maintenance decision

making process, we also replicate the ThPM strategy without using the tabu

procedure for 30 replications. The total maintenance cost for the parameters of the

ThPM strategy in the scenario DCc25 is shown in Figure 5.16 for the two related

situations. In addition, the reactive maintenance cost is also plotted in the figure.

According to the cost value, the biggest difference between the two cases belongs

to thr=0.97, which gives the lowest cost with the tabu procedure. At all parameter

levels, after confirming the normality of the model, t-test was used to statistically

compare with (w/) and without (w/o) tabu procedure. In the t-test, zero p-value

is obtained for the threshold levels of 0.97 and 0.99, while the other values are not

significantly different from each other. When it is considered that as the reliability

threshold value decreases, the frequency of proactive maintenance reduces and

this results in an empty tabu list during almost all proactive maintenance times,

the results can be said to make sense. On the other side, although the p-value

is zero when thr=0.99, the cost difference is smaller compared to the previous

threshold value because due to too much proactive maintenance, 5-days tabu

duration causes a long tabu list and it makes the tabu very restrictive.

Figure 5.16: Comparison of with and without tabu procedure at thr=0.97.

We also analyze the distribution of the components that undergo maintenance
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within the planning horizon for the thr=0.97 case with and without tabu pro-

cedures. Results of both proactive and reactive maintenance within the ThPM

strategy are given in Table 5.16. The results are really remarkable since a huge

number of proactive maintenance is applied to RS in w/o tabu case. At thr=0.97,

proactive maintenance is frequently performed, so the reliability levels of the

components often remain high. This makes cost values more effective during

proactive maintenance periods. Since the component with the lowest proactive

maintenance cost is the RS, this component is repeatedly selected during such

times which causes the solution procedure to be stuck at proactive maintenance

times. When w/ tabu results are analyzed, the distribution is more balanced

because prohibitions (henceforth the term tabu) are introduced to discourage the

maintenance activity search from repeating the recently selected components.

Components
BB1 WI1 RS1 HRG1 BB2 WI2 RS2 HRG2 Hc RI Total SD

w/o Tabu
PM 0.00 3.23 50.47 6.23 0.00 2.97 48.87 6.60 0.00 1.13

127.17 24.83
RM 2.90 0.00 0.00 0.30 2.53 0.00 0.00 0.10 0.00 1.83

w/ Tabu
PM 1.73 4.37 8.77 6.77 1.77 4.03 9.43 7.03 0.00 3.27

51.30 4.35
RM 1.47 0.03 0.00 0.13 1.40 0.00 0.00 0.37 0.00 0.73

Table 5.16: Distribution of the components with and without tabu procedure at
thr=0.97.

5.2.5 Number and Cost Distribution of the Components

Figure 5.17 and 5.18 show the number and cost distribution of the RAH components

under ThPM (with thr=0.97) and reactive maintenance strategies in the scenario

DCc25. In the figures, the blue and light orange bins represent the proactive

maintenance and reactive maintenance within the ThPM proactive maintenance

strategy while orange bins show the maintenance under the reactive maintenance

strategy.

Figure 5.17 shows that when reactive maintenance is applied in both ThPM and

reactive strategy, WI and RS are selected very seldomly for maintenance. Instead,

BB stands out for maintenance as it has the lowest action duration and therefore

the lowest maintenance cost. The most frequent proactive maintenance in ThPM
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Figure 5.17: Number distribution of the components based on DCR25.

Figure 5.18: Cost distribution of the components based on DCR25.

belongs to RS and HRG due to action costs and posterior probabilities. This

is because in proactive maintenance, the cost of downtime does not occur, as

the system does not need to stop during maintenance of components in parallel

engine groups. Figure 5.18, which shows that these components provide the

lowest proactive maintenance cost even though they have the highest maintenance

number, also confirms this result. Although WI is also a component of the engine

group, it is not preferred as much as RS and HRG in proactive maintenance times

in ThPM strategy. However, since WI has the highest action cost, it has a higher

share in cost distribution compared to RS and Hc.
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Chapter 6

Conclusion

This study proposes a maintenance methodology for complex systems with multi-

state hidden and dependent components. Due to their effectiveness in expressing

structural and stochastic dependencies between components DBNs are selected

to model the system. The methodology includes both reactive and proactive

maintenance methods. Eight different maintenance methods with two different

efficiency measures are proposed within the scope of corrective maintenance.

These methods are considered in two ways: decreasing of maintenance number

and decreasing of maintenance cost. When maintenance cost is considered, a

normalization procedure is applied to the cost of maintenance activities with

respect to the probability measures in order to balance the effect of the two. In

proactive maintenance framework, two preventive, CIPM and DIPM, and one

predictive, ThPM, maintenance strategies from a cost perspective are introduced

using the tabu procedure. The purpose of these policies is to reduce maintenance

cost and to increase the system reliability so as to avoid unexpected downtimes at

the same time.

All the proposed methods are simulated in regenerative air heater system which is

one of the critical subsystems of thermal power plants. The reason to select the

RAH is that it is a complex multi-component system and the dependencies between

its components are in accordance with the purpose of the study. In addition,

maintenance optimization in power plants is critical due to the high losses incurred
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during downtime and maintenance interventions. Another important contribution

of the thesis is that the system interaction and deterioration of the components of

the RAH system are modeled with DBNs after a HAZOP analysis.

Reactive maintenance methods are evaluated considering both maintenance num-

ber and maintenance cost. Replication results of reactive maintenance based on

number-based methods show that FEMwp and FELwp methods which consider

posterior best working state probabilities of the components in fault effect meth-

ods give less maintenance number compared to other methods. On the other

hand, when cost-based reactive maintenance methods are used, FEMfp and FELfp

methods which consider posterior worst state probability are superior than the

other methods. Also, a sensitivity analysis of the methods with respect to the unit

downtime cost is done and it shows that distinction of FEMfp and FELfp gets more

significant as downtime cost increases. According to these results, it can be said

that fault effect methods are better for both number-based and cost-based reactive

maintenance approach. These methods are also superior than the replacement

effect methods in terms of simulation time because less inference calculations are

required for component selection at each maintenance time in fault effect methods.

In addition, the performance of the methods under two scenarios which are

number-based and cost based are evaluated. Annual reactive maintenance cost is

considered in both scenarios. It can be concluded that considerable gains on the

annual cost can be achieved by the proposed approach in the cost-based scenario

compared to the number-based scenario in all maintenance methods.

To evaluate the performances of the proactive policies, they are compared to

each other and also to the reactive maintenance strategy under six different

scenarios using different policy parameters. These scenarios are designed based

on the dependability of parallel motor lines during proactive maintenance and

different reactive cost structures. Although all proposed proactive strategies

provide satisfactory results, as threshold based maintenance is a predictive policy

which decides the maintenance time by considering the system reliability, it gives
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the minimum cost for almost all scenarios. Moreover, the threshold based strategy

gives significantly less number of maintenance than the other two in all scenarios

where the three proposed proactive strategies yield significantly lower cost than

the reactive strategy. Thus, all proposed proactive strategies are effective in

reducing maintenance cost. However, the threshold based policy is also successful

in decreasing maintenance number in addition to the cost which may position it

as a more preferable policy in industries where the production should continue

with minimum downtime.

Although the proposed reactive and proactive maintenance strategies and methods

based on DBNs are simulated on the regenerative air heater system available in

thermal power plants, the whole methodology can be applied in the maintenance

problem of all partially observable systems which have dependable components.

As a future study, presented methods can be used under the opportunistic mainte-

nance in a complex real-life system. In addition, imperfect maintenance methods,

which can bring the repaired components to an intermediate state, to not the best

state can be applied. Apart from these, different methods can be tried to make

the normalization procedure used in cost efficiency measures to be more effective.
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Appendix A

Initial probabilities of the RAH DBN model

BB M. Replace Do Nothing
Normal 1 1
Loose 0 0
Locked 0 0

Table A.1: Initial probabilities of Ball Bearing.

WI M. Replace Do Nothing
Original 1 1
Burned 0 0

Table A.2: Initial probabilities of Winding-Insulation.

RS M. Grind Do Nothing
Normal 1 1
Unaligned 0 0

Table A.3: Initial probabilities of Rotor-Shaft.

HRG M. Replace Do Nothing
Normal 1 1
Broken 0 0

Table A.4: Initial probabilities of Hub Reduction Gear.
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RAH I. M Replace Do Nothing
Hc. M Clean Do Nothing Clean Do Nothing
Full I. 1 1 1 1
Medium I. 0 0 0 0
Low I 0 0 0 0

Table A.5: Initial probabilities of RAH Insulation.

Hc M. Clean Do Nothing
New 1 1
Cleaned 0 0
Dirty 0 0

Table A.6: Initial probabilities of Honeycomb.

Good 0.5
Bad 0.5

Table A.7: Initial probabilities of Coal Rank.

Coal Rank Good Bad
No 0.95 0.6
Yes 0.05 0.4

Table A.8: Initial probabilities of Slagging.
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Appendix B

Transition probabilities of the RAH DBN model

BB M. Replace Do Nothing
(Self) [t-1] Normal Loose Locked Normal Loose Locked
Normal 1 1 1 0.99916 0 0
Loose 0 0 0 0.0005 1 0
Locked 0 0 0 0.00034 0 1

Table B.1: Transition probabilities of Ball Bearing.

WI M. Replace
BB [t-1] Normal Loose Locked
(Self) [t-1] Original Burned Original Burned Original Burned
Original 1 1 1 1 1 1
Burned 0 0 0 0 0 0
WI M. Do Nothing
BB [t-1] Normal Loose Locked
(Self) [t-1] Original Burned Original Burned Original Burned
Original 0.99933 0 0.993 0 0.2 0
Burned 0.00067 1 0.007 1 0.8 1

Table B.2: Transition Probabilities of Winding - Insulation.
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RS M. Grind
BB [t-1] Normal Loose Locked
(Self) [t-1] Normal Unaligned Normal Unaligned Normal Unaligned
Normal 1 1 1 1 1 1
Unaligned 0 0 0 0 0 0
RS M. Do Nothing
BB [t-1] Normal Loose Locked
(Self) [t-1] Normal Unaligned Normal Unaligned Normal Unaligned
Normal 0.99978 0 0.02 0 1 0
Unaligned 0.00022 1 0.98 1 0 1

Table B.3: Transition Probabilities of Rotor - Shaft.

HRG M. Replace Do Nothing
(Self) [t-1] Normal Broken Normal Broken
Normal 1 1 0.99888 0
Broken 0 0 0.00112 1

Table B.4: Transition Probabilities of Hub Reduction Gear.

RI M. Replace
Hc M. Clean Do Nothing
(Self) [t-1] F. Integrity M. Integrity L. Integrity F. Integrity M. Integrity L. Integrity
F. Integrity 1 1 1 1 1 1
M. Integrity 0 0 0 0 0 0
L. Integrity 0 0 0 0 0 0
RI M. Do Nothing
Hc M. Clean Do Nothing
(Self) [t-1] F. Integrity M. Integrity L. Integrity F. Integrity M. Integrity L. Integrity
F. Integrity 1 1 1 0.99889 0 0
M. Integrity 0 0 0 0.00078 0.998 0
L. Integrity 0 0 0 0.00033 0.002 1

Table B.5: Transition Probabilities of RAH Insulation.

Hc M. Clean
(Self) [t-1] New Cleaned Dirty
Slagging [t-1] No Yes No Yes No Yes
New 0 0 0 0 0 0
Cleaned 1 1 1 1 1 1
Dirty 0 0 0 0 0 0
Hc M. Do Nothing
(Self) [t-1] New Cleaned Dirty
Slagging [t-1] No Yes No Yes No Yes
New 0.99967 0.99933 0 0 0 0
Cleaned 0 0 0.99944 0.99833 0 0
Dirty 0.00033 0.00067 0.00056 0.00167 1 1

Table B.6: Transition Probabilities of Honeycomb.

97



Appendix C

Conditional probabilities of the RAH DBN model

RS Normal
WI Original Burned
BB Normal Loose Locked Normal Loose Locked
Rotate 1 0.5 0 0 0 0
Not Rotate 0 0.5 1 1 1 1
RS Unaligned
WI Original Burned
BB Normal Loose Locked Normal Loose Locked
Rotate 0.3 0.1 0 0 0 0
Not Rotate 0.7 0.9 1 1 1 1

Table C.1: Conditional Probabilities of Rotor Rotation.

HRG Normal Broken
Rotor Rotation Rotate Not Rotate Rotate Not Rotate
Rotate 1 0 0 0
Not Rotate 0 1 1 1

Table C.2: Conditional Probabilities of Hub Reduction Gear Rotation.

HRG Rotation 2 Rotate Not Rotate
HRG Rotation 1 Rotate Not Rotate Rotate Not Rotate
Rotate 1 1 1 0
Not Rotate 0 0 0 1

Table C.3: Conditional Probabilities of RAH Rotation.
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RI F. Integrity
Hc New Cleaned Dirty
RAH Rotation Rotate Not Rotate Rotate Not Rotate Rotate Not Rotate
Normal 1 0 1 0 0.99877 0
Low 0 0 0 0 0.00067 0
Super Low 0 1 0 1 0.00056 1
RAH Insulation M. Integrity
Honeycomb New Cleaned Dirty
RAH Rotation Rotate Not Rotate Rotate Not Rotate Rotate Not Rotate
Normal 0.9996 0 0.9992 0 0.96 0
Low 0.00032 0 0.00035 0 0.025 0
Super Low 0.00008 1 0.00045 1 0.015 1
RAH Insulation L. Integrity
Honeycomb New Cleaned Dirty
RAH Rotation Rotate Not Rotate Rotate Not Rotate Rotate Not Rotate
Normal 0.0002 0 0.00019 0 0.0014 0
Low 0.66 0 0.68 0 0.69 0
Super Low 0.3398 1 0.31981 1 0.3086 1

Table C.4: Conditional Probabilities of RAH Exit Temperature.

RAH Exit Temperature Normal Low Super Low
Normal 0.99989 0.00015 0.00005
Low 0.0001 0.99 0.0099
Super Low 0.00001 0.00985 0.99005

Table C.5: Conditional Probabilities of RAH Measured Temperature.
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