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ABSTRACT

A SOLUTION METHODOLOGY FOR THE UNIT COMMITMENT
PROBLEM IN TRADITIONAL-AND-WIND INTEGRATED HYBRID
POWER SYSTEMS UNDER SUPPLY/DEMAND UNCERTAINTY AND
EMISSION LIMITATIONS

Karabas, Tolga
Master of Science, Industrial Engineering
Supervisor: Assoc. Prof. Dr. Sedef Meral

September 2020, 248 pages

Unit commitment problem (UCP) is one of the essential problems in operations
planning of power generation systems. The objective is to minimize total operating
cost while meeting the forecasted load requirements and satisfying several
operational and technical constraints. Nevertheless, the UCP is a mixed integer, non-
linear, combinatorial and NP-hard problem, making it difficult to develop any
rigorous optimization method for a real-size system. In this thesis, we address two
variants of the UCP: (1) the deterministic UCP in conventional power systems, (2)
the stochastic UCP in wind integrated hybrid power systems. For the first one, an
effective and efficient Genetic Algorithm-based approach is developed. For the
second one, Mixed-Integer Quadratic Programming-based approaches are
developed. In these approaches for the stochastic UCP, novel expected energy not
served (EENS) approximation methods are proposed to model both load demand
uncertainties and supply uncertainties due to intermittent nature of wind power
generation and outages in conventional generation. Furthermore, the proposed
approaches are extended to consider: (i) the Valve Point Loading Effect in

efficiencies of conventional generating units by proposing efficient multi-area



piecewise linear approximation, (ii) the impacts of Emission Control Technologies
and Emission Trading and Taxing Mechanisms in mitigating greenhouse gas and air
pollutant emissions caused by conventional generating units. According to numerical
experiments and sensitivity analysis results, both Genetic Algorithm-based and
Quadratic Programming-based approaches are proven to be valid and effective, and
they can provide satisfactorily good power generation schedules for large scale

power systems in a reasonable computational time.

Keywords: Unit Commitment Problem, Genetic Algorithm, Supply/Demand

Uncertainty, Quadratic Programming, Emissions Control
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ARZ/TALEP BELIRSIiZLiGi VE EMiSYON SINIRLAMALARI ALTINDA
GELENEKSEL-VE-RUZGAR ENTEGRE HiBRIT ENERJi
SISTEMLERINDE BiRiM YUKLENME PROBLEMI iCiN COZUM
YONTEMLERI

Karabas, Tolga
Yiiksek Lisans, Endiistri Miihendisligi
Tez Yoneticisi: Dog. Dr. Sedef Meral

Eyliil 2020, 248 sayfa

Enerji iiretim sistemlerinin operasyon planlamasindaki en temel problemlerden biri
Birim Yiiklenme Problemidir (UCP). Problemin amaci; tahmini enerji
gereksinimlerini ve gesitli operasyonel ve teknik kisitlar1 saglarken, toplam isletme
maliyetlerini en aza indirmektir. Ancak, UCP karisik tamsayili, dogrusal olmayan,
kombinatoryal ve NP-zor bir problemdir. Bu durum gergek boyutlu bir enerji sistemi
icin biitiinlesik bir optimizasyon yontemi gelistirmeyi zorlastirmaktadir. Bu tezde
UCP'nin iki versiyonu ele alinmistir: (1) konvansiyonel enerji sistemlerindeki
deterministik UCP, (2) riizgar entegre hibrit enerji sistemlerindeki rassal UCP. Ilki
icin etkili ve verimli bir Genetik Algoritma tabanli yaklasim gelistirilmistir. Ikincisi
icin, Karisitk Tamsayili Karesel Programlama tabanli yaklagimlar gelistirilmistir.
Rassal UCP igin bu yaklasimlarda hem enerji talebindeki belirsizliklerden hem de
riizgar enerjisi liretiminin kesintili dogasindan ve konvansiyonel iiretimdeki olasi
kesintilerden kaynaklanan arz belirsizliklerinden dolayi karsilanamayacak enerji
miktarin1 (EENS) hesaplama yontemleri 6nerilmistir. Ayrica, onerilen yaklagimlar
sunlar1 da dikkate alarak genisletilmistir: (i) verimli bir ¢ok-alanli par¢ali dogrusal
yakinlastirma yontemi ile Vana Noktas1 Yiikleme Etkisinin konvansiyonel iiretim

tesislerinin verimliliklerinde yarattig1 dalgalanmalar, (ii) konvansiyonel iiretim
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tesislerinin neden oldugu sera gazi ve hava kirliligine sebep olan gazlarin
emisyonlarinin azaltilmasinda Emisyon Kontrol Teknolojilerinin ve Emisyon
Ticareti ve Vergi Mekanizmalarinin etkileri. Yapmig oldugumuz sayisal deneylerin
ve duyarlilik analizlerinin sonuglarina gére hem Genetik Algoritma tabanli hem de
Karesel Programlama tabanli yaklasimlarin, gegerli ve etkili oldugu kanitlanmis, ve
biiyiik 6lgekli enerji sistemleri i¢in makul bir hesaplama siiresinde tatmin edici

derecede iyi enerji iiretim gizelgeleri saglayabildikleri saptanmistir.

Anahtar Kelimeler: Birim Yiiklenme Problemi, Genetik Algoritma, Arz/Talep

Belirsizligi, Karesel Programlama, Emisyon Kontroli
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CHAPTER 1

INTRODUCTION

Power systems are one of the crucial and fundamental infrastructures in a modern
society. Therefore, it is necessary to maintain a secure, reliable and continuous power
supply (Roque, 2014). For this purpose, one of the most critical problems in modern
power systems is the Unit Commitment Problem (UCP) in which the main objective
is to optimize commitment statuses and productions of generating units in a power
system on an hourly basis to meet forecasted load demand requirements, while
satisfying various operational and technical constraints. However, the problem

environment of the UCP contains several complexities.

First of all, in power systems, hourly load demands have a variable nature during the
day. To illustrate, the load demands during the daytime tend to be extremely higher
than the ones during nights and early mornings (Mallipeddi and Suganthan, 2014).
In traditional power generation, this cyclic nature may cause some of the
conventional generating units working at their minimum power output level during
nights and early mornings. Hence, it is indispensable to efficiently make
commitment decisions of conventional units in a day-ahead power generation

planning.

Secondly, supply and demand uncertainties are inevitable in power generation
systems. Hourly load demands cannot be exactly determined since they are
dependent on the human activities during the day. Thus, they can only be forecasted,
which causes load demand uncertainty. Furthermore, conventional generating units
may cause supply uncertainty as a result of the unexpected unit outages. In addition,
renewable energy sources such as water, wind and sunlight have gained a significant

attention in modern power systems thanks to their zero marginal production costs



and lower maintenance costs when compared to the ones in conventional power
plants due to potential fossil fuel scarcity (Kéberger, 2018). Hence, renewable energy
sources have started to be used synchronously with conventional generating units for
the last two decades. Those systems are known as hybrid power systems.
Nonetheless, in hybrid power systems, the intermittent nature of renewable energy
sources also causes uncertainty in power supply. To deal with those uncertainties, an
easy and straightforward method is to commit more reserve from conventional
generating units to guarantee more reliable power generation. For this purpose,
deterministic reserve policies have been used when renewable energy sources are not
integrated into modern power systems. Nevertheless, those policies are not sufficient
in the evaluation of the system risk levels in wind and solar integrated hybrid power
systems, so stochastic solution approaches are required to overcome this problem
(Linetal., 2014).

Thirdly, in recent years, environmental considerations have become another
important factor when operating modern power generation systems due to increasing
concerns on adverse effects of global warming and air pollution on the environment
and human health. To increase the public awareness and mitigate those emissions,
several environmental agreements such as Kyoto Protocol (1997) and Paris
Agreement (2016) have been introduced and signed by most of the industrial
countries over the world under the leadership of the United Nations Framework
Convention on Climate Change (UNFCCC). Those agreements dictate signing
countries to gradually reduce their Greenhouse Gas (GHG) and air pollutant
emissions by setting horizon-based targets (see Chapter 5). For this purpose,
emission trading mechanisms and emission taxing schemes have been introduced by
those countries to abate and control their emissions. Conventional power plants are
one of the major emission producers. One of the solutions is to modernize fuel-based
conventional power plants by installing emission reduction technologies while
considering possible efficiency reductions (see Chapter 5). Another solution is to
increase the share of renewable energy sources in the overall power generation mix

as much as possible. For this purpose, since 2010, several feasibility studies have



been published to achieve 100% renewable share in world’s power generation mix.
Jacobson and Delucchi (2011) propose that 30% of world’s total energy need can be
met from hydro, wind and solar energy by 2030, and it is also possible that they can
meet the whole energy demand by 2050. According to simulation results of Jacobson
etal. (2018) and Jacobson et al. (2019), they suggest a new roadmap to achieve 100%
transition to hydro, wind and solar energy combined with storage systems by 2050
for 20 regions containing 139 countries. That means effective production and
operations planning in hybrid power systems will remain the main topic in the
modern power industry for at least 30 more years to come. Hence, in order to achieve
ambitious targets for emission abatement, conventional generating units should be
modernized with emission reduction techniques, and their effects on overall
production should be evaluated cautiously under the supervision of strict emission

trading and taxing mechanisms.

Lastly, solving the UCP is computationally intensive because of its nonconvex,
nonlinear, high dimensional and combinatorial nature especially when power
systems consist of too many conventional generating units. The nonconvexity of the
UCP is due to the binary nature of the commitment decisions of generating units,
which is also the reason of its combinatorial nature, whereas the nonlinearities are
caused by nonlinear generation cost curves, and nonlinear GHG and air pollutant
emission curves. In addition, the UCP has various time-dependent constraints such
as minimum uptime/downtime and ramp-up/down constraints. That is, those
constraints affect decisions in a period by linking them to decisions in the previous
period, which complicates the solution even more.

Under that background, the aim of the thesis is to develop efficient and optimal/near-
optimal solution methods that can be implemented to the UCP in large-scale
traditional and wind integrated hybrid power systems. For this reason, we propose a
Genetic Algorithm based approach for the UCP in traditional power systems
ignoring the inherent uncertainties. For the UCP in wind integrated hybrid power
systems, we propose time-decoupled, stochastic and environmental mathematical

models. It is important to note that hydro and solar generating units are excluded



from our scope, so the hybrid power systems examined throughout the study consist
of numerous wind turbines and conventional power plants burning fossil fuels such

as coal, gas and oil.

The rest of the thesis is organized as follows: In Chapter 2, Genetic Algorithm based
approaches for the conventional UCP are reviewed first. Then, current studies on the
UCP under supply and demand uncertainty for wind integrated hybrid power systems
are briefly explained. Lastly, solution approaches for the UCP under emission
considerations in traditional and wind integrated hybrid power systems are
summarized. In Chapter 3, a mathematical formulation for the deterministic UCP in
conventional power systems is presented first. Then, the proposed Mixed Integer
Coded Genetic Algorithm (MICGA) combined with Improved Lambda Iteration
Method (I-LIM) is provided to solve the deterministic UCP with/without ramp-rate
limits in conventional generation. The MICGA is implemented to 10-unit, 20-unit
and 40-unit standard problem instances in the literature after one-factor-at-a-time
(OFAT) experiments are conducted to fine tune the proposed algorithm. Then,
statistical analyses are carried out to test the robustness and precision of the
algorithm. Lastly, the performance of the MICGA is compared with other GA
techniques developed in the last two decades. In Chapter 4, uncertainty models of
load demand, wind power and conventional power generation are presented for wind
integrated hybrid power systems. Then, commonly used reliability indices in the
literature are reviewed in detail. In the second part of the chapter, under
supply/demand uncertainty, time-decoupled and stochastic Mixed Integer Quadratic
Programming (MIQP) models consisting of two different expected energy not served
(EENS) approximations are presented. By using those EENS approximation
methods, other MIQP models that also piecewise linearly approximate the rippling
efficiencies, also known as valve point loading effect (VPLE), of conventional
generating units are proposed in this part. In the last part of the chapter, two EENS
approximation methods are compared by applying the associated MIQP models to
6-unit and 26-unit problem instances while ignoring the VPLE. Then, the proposed
MIQP models with/without the VPLE are applied to 6-unit, 12-unit and 26-unit



standard problem instances. To examine the sensitivity of the MIQP models to
problem parameters, sensitivity analyses are conducted for each model. Then, the
most widely used deterministic policies to cope with uncertainties related to
conventional generation and forecasts of load demand and wind power are briefly
reviewed. Accordingly, the time-decoupled and stochastic MIQP models are
compared with mathematical models involving those deterministic reserve policies.
In Chapter 5, emission considerations are studied and integrated for wind integrated
hybrid power systems. First, current emission reduction agreements and regulations
such as emission trading and taxing mechanisms in European Union, United States,
China and Turkey are reviewed in detail. Then, emission reduction technologies
against GHG and air pollutants, and their impacts on the conventional power plants
are explained in detail. In the third part of the chapter, under supply/demand
uncertainty and emission considerations, a time-decoupled, stochastic and
environmental Mixed Integer Quadratically Constrained Programming (MIQCP)
model, to which clean energy technologies, emission trading and taxing schemes,
and the VPLE are integrated, is presented. Lastly, the proposed MIQCP model is
applied to 6-unit and 12-unit standard problem instances. To examine the sensitivity
of the model to problem parameters, sensitivity analyses are carried out for each
problem instance. Then, the time-decoupled, stochastic and environmental MIQCP
model is compared with the final stochastic model without emission considerations
introduced in Chapter 4, and mathematical models involving deterministic reserve
policies. In Chapter 6, the main achievements of the study and future research

directions are discussed.






CHAPTER 2

LITERATURE REVIEW

The literature on the UCP for traditional and hybrid power systems has been
proliferating especially in the last two decades. Hence, we firstly review Genetic
Algorithm based approaches for the conventional UCP. Then, we briefly explain
studies on the UCP under supply and demand uncertainty for wind integrated hybrid
power systems. Lastly, we summarize solution approaches for the UCP under

emission considerations in traditional and wind integrated hybrid power systems.

2.1  Genetic Algorithm Based Approaches for the Unit Commitment
Problem in Traditional Power Systems

Literature on the UCP for traditional power systems includes several metaheuristic
implementations such as Genetic Algorithm (GA), Ant Colony Optimization (ACO),
Simulated Annealing (SA), Particle Swarm Optimization (PSO), Dynamic
Programming (DP). However, we limit our review to the GA applications only.
Several GAs have been proposed for the UCP thanks to its feature being a powerful
stochastic global search technique, since the search is carried out by randomly
exploiting information from different regions of the solution space. For the
chromosome representation, in most of the GA implementations so far, binary
coding has been used. One of them is proposed by Kazarlis et al. (1996). In their GA,
they use conventional genetic operators and problem specific operators for the
scheduling part of the problem which is assisted by an economic load dispatch
technique for solving the optimal power output of the committed units. For constraint

handling, they use penalty function for the violated constraints. Similar to Kazarlis



et al. (1996), Xing and Wu (2002) and Senjyu et al. (2002) also propose a similar
approach to solve the UCP. They calculate the fitness of each chromosome as the
reciprocal of the sum of both total generation cost and penalty costs. Swarup and
Yamashiro (2003) also use binary representation for the chromosome structure.
Different from Kazarlis et al. (1996), Xing and Wu (2002) and Senjyu et al. (2002);
they do not use a penalty mechanism for constraint violation rather they apply some
problem specific operators to repair and correct the violated schedules. Likewise,
Madraswala and Deshpande (2016) propose a GA application similar to Swarup and
Yamashiro (2003). For the Economic Load Dispatch (ELD) part of the problem, they
use the Lambda Iteration Method (LIM). Mantawy et al. (1997) propose a different
approach for the chromosome representation which is a combination of binary and
decimal numbers to save both memory space and computation time. They convert
the binary chromosomes (NXT matrix) into decimal ones (Nx1 array) before
performing the genetic operations. After genetic operations are applied, they convert
it to its binary equivalent. They also use repair mechanisms with problem specific
operators to handle the constraint violations. Rudolf and Bayrleithner (1999) propose
a special Binary Coded GA (BCGA) where the generating units are scheduled by
automatically satisfying the uptime/downtime constraints. For the ELD part, they
implement a Lagrangian Relaxation approach. Singhal et al. (2014) develop an
enhanced BCGA in which commitment decisions are made by genetic operations
and dispatching decisions by LIM. They also introduce some problem specific
operators to speed up calculations and use repairing mechanisms to avoid infeasible
solutions. Dudek (2013) proposes another BCGA variant in which chromosomes are
designed in a more intelligent way to save memory space. When making ELD
decisions, they also use LIM. For infeasible solutions, they apply penalty measures
in fitness calculations. Sundararajan et al. (2013) use a similar coding scheme to
Dudek (2013). For the constraint violations, they introduce some repairing

procedures. They solve the ELD subproblem via Quadratic Programming.

Different from the studies above, Damousis et al. (2004) propose a completely new

chromosome structure which is integer coded. They divide schedules to the “On/Off”



cycles and represent their chromosomes with the cycle lengths using positive and
negative numbers (+: “On” cycles, -: “Off” cycles). They use different crossover and
mutation techniques such as swapping crossover and Michalewicz’s mutation for
evolution from one generation to the next. They also use some problem specific
operators like unit swapping operator and chromosome length augmentation. For
constraint handling, they apply penalty mechanisms. Similarly, Amjady and Shirzadi
(2008) modify the Integer Coded GA (ICGA) proposed by Damousis et al. (2004)
by using hybrid operators such as swapping and bound operators for the crossover.
They claim that ICGA can perform a more complete search of the solution space;
thus, increasing the possibility of finding the global optimal solution. They use a
combination of uniform and non-uniform mutations so as to improve diversity of the
search in ICGA. To the best of our knowledge, Datta (2013) addresses both
scheduling and load dispatching parts of the UCP by using GA approach for the first
time and proposes a Binary-Real Coded GA (BRCGA) to handle both parts of the
UCP with only genetic operators. The binary part tackles the unit scheduling part
whereas the real part tackles the load dispatch part of the problem. They introduce
new crossover and mutation operators for the real part of the GA and make use of
repairing mechanisms and elite preservation strategies. Farag et al. (2015) propose a
similar BRCGA, but they also integrate k-means clustering before applying genetic
operations. They divide the population into k subpopulations and then apply different
genetic operations to members of each subpopulation to introduce extended

diversity; thus, avoiding BRCGA from being stuck in local optima.

Apart from these pure GA implementations, hybridized versions of GA with other
metaheuristics are also common in literature. Yazdandoost et al. (2018) propose a
modified GA approach based on Multicellular Organisms Mechanisms. Their GA
has two phases as normal and modified; the normal one replicates the meiosis
process on sexual chromosomes while the modified one uses mitosis for asexual
chromosomes. By doing so, the convergence speed of the algorithm is increased.
Salimian and Ameli (2015) hybridize GA and PSO (HGAPSO) to benefit from their

good features such as GA’s rapid convergence rate and PSO’s high solution quality.



All constraints are satisfied while calculating the fitness function without introducing
any penalty mechanism. Similarly, Marrouchi et al. (2018) suggest a hybrid
metaheuristic algorithm combining GA and PSO. In their fitness function, total cost
consists of total energy production cost and a Lagrangian function defined by the set
of equality and inequality constraints. Effatnejad and Rouhi (2015) add Dynamic
Programming (DP) to their HGAPSO so that they can avoid any repetition in
calculations to save computing time. Reddy et al. (2019) propose a novel hybrid
approach consisting of GA and SA. They use GA-SA to cluster the units as Base
load (BL), intermittent load (IL), semi-peak load (SPL) and peak load (PL)
categories according to their fitness values. After clusters are obtained, they also
construct priority lists for the units in each cluster before applying LIM to make ELD
decisions. Tsalavoutis et al. (2019) develop a GA to solve Multi-objective UCP
(MO-UCP) with the objective function consisting of total operating cost and total
emission of air pollutants. They utilize real coding for the chromosome
representation and repairing mechanisms for constraint violations. The commitment
and dispatching decisions are made simultaneously by hybridizing two-step local
search procedures such as Pareto dominance and scalar fitness function. Similarly,
Li et al. (2013) design a memetic evolutionary algorithm combining Non-dominated
Sorting Genetic Algorithm-11 for global exploration and local search procedure for
local exploitation to solve MO-UCP whose ELD subproblem is solved by LIM. Kyu-
Hyung and Mun-Kyeom (2018) propose an Improved GA (IGA) to solve stochastic
UCP. The main difference of IGA from other GAs is that it only searches the feasible
regions owing to its special repairing operators. Saber et al. (2016) develop a hybrid
procedure where the commitment decisions are made by Priority Lists (PL) whereas
ELD decisions are made by Hybrid Modified Genetic-Imperialist Competitive
Algorithm (HGICA). In their approach, they use binary coding in the chromosomes
and a new crossover technique called as “mime crossover” making the offspring
resemble its parents and generation elite with specific ratios. Different from the
conventional GAs, elite preservation is also applied after each genetic operation in

order not to lose any elite solution after crossover and mutation operations. Bukhari
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et al. (2016) also propose a binary coded GA in which they use a special type
crossover called as “ring crossover” and repairing mechanisms for violated
constraints. In their approach, “On/Off” decisions are made by GA and ELD
decisions are made by LIM. Trivedi et. al (2016) suggest using BCGA with
Differential Evolution (DE) since these two can efficiently handle binary variables
(commitment) and continuous variables (dispatching), respectively. In their
procedure, infeasible solutions are not repaired rather they are preserved. Besides,
they also propose a special priority list-based initial population generation method
to enhance performance of the algorithm by integrating domain-specific knowledge.
Roque et al. (2014) introduce a Hybrid Biased Random Key GA (HBRKGA) in
which several local search techniques are also incorporated to concentrate the search
close to good solutions and random keys are used to create bias during both parent
selection and crossover operations, since HBRKGA does not allow searching on

infeasible solutions.

Different from the pure and hybridized versions of the GA approaches so far, we
propose a novel approach based on GA combined with an improved LIM (I-L1M) to
solve the UCP in traditional power systems. Our GA-based approach adopts a mixed
integer coding scheme, uses an intelligent algorithm for the initial population
generation, and contains various problem specific genetic operators to lessen the
computing time. With these features, our approach can be considered one of the most
efficient and effective GAs. The detailed explanation of the proposed GA approach
and its implementation are provided in Chapter 3.

2.2 Solution Approaches for the Unit Commitment Problem in Wind
Integrated Hybrid Power Systems

Literature on the UCP and its subproblem ELD for wind-integrated power systems
involves different solution approaches such as mathematical programming
formulations including stochastic programming, robust optimization and chance

constrained modelling and several metaheuristic implementations as well. The
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reason why we also include solution methods for ELD is that this subproblem can be
considered as the single period UCP. Therefore, we limit our review to the most
recent methods proposed for the UCP and ELD problem in the last decade
particularly.

Hetzer et al. (2008) use a mathematical modelling approach for ELD with wind
farms. Their objective is to minimize expected operating cost comprising of fuel
costs and wind-based costs. Wind-based costs consist of operating cost of wind
farms, the cost of wasted wind power due to underestimation in wind power
generation and the cost of load not served due to overestimation cost in wind power
generation. Wind speeds are assumed to follow Weibull distribution. Wind power is
represented by using a simplified version of Wind Energy Conversion System
(WECS) from wind speeds. Liu (2012) develops a nonlinear mathematical model for
ELD problem in a combined heat and power (CHP) system integrated with wind
power generation. The objective is to minimize heat and power production costs.
The generation level of wind turbines is taken as a random variable. Similar to Hetzer
et al. (2008), they also characterize the wind power by using the simplified version
of WECS. Zhou et al. (2010) develop a stochastic model for Dynamic Economic
Dispatch (DED) problem with large scale wind power penetration. In their model,
generation forced outages, variabilities in load demand forecasts and wind speed
forecasts are taken into account. They use a special type of WECS when converting
wind speed forecasts into wind power forecasts. Since there are numerous causes of
uncertainty, a sufficient reserve should be allocated in order to prevent generation
shortages. For this purpose, they take reserves as decision variables which are used
in chance constraints for satisfying risk thresholds. They solve their DED model by
using Nonlinear Primal-Dual Interior-Point Method. Xia et al. (2012) propose a
stochastic programming model for conventional ELD problem in which the objective
is to minimize total fuel costs with valve point loading effect (VPLE). In this
formulation, they use a joint probability density function for the uncertainty of load
demand and wind power approximated by a simplified WECS. To deal with those

uncertainties, they use chance constraints for two risk levels such as up spinning
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reserve and down spinning reserve, respectively. Reddy et al. (2013) study the effect
of wind integration to thermal power system. The only source of uncertainty is wind
power forecasts following Weibull distribution. They take VPLE in fuel costs and
transmission losses into account in their formulation where the objective is to
minimize total operating cost, reserve allocation costs and underestimation and
overestimation costs of wind power generation. They propose a new algorithm called
as Covariant Matrix Adaptation with Evolution Strategy (CMA-ES) with mean
learning technique (MLT) to solve their ELD formulation. Wang et al. (2017)
propose a chance constrained ELD formulation under wind power uncertainty which
does not necessarily follow Normal distribution. They use Gaussian Mixture Model
(GMM) to represent joint probability distribution of wind power generation in
different wind farms. They consider wind-based costs that consist of operating cost
of wind farms, the cost of wasted wind power due to underestimation of wind power
generation and the cost of load not served due to overestimation of wind power
generation. They formulate power flow limits on a transmission line as chance

constraints converted into deterministic linear constraints.

Ortega-Vazquez and Kirschen (2007) develop a bilevel optimization approach for
the UCP under uncertainty due to the outages in conventional generation. First, they
solve time-decoupled subproblems to determine the optimal spinning reserves for
each period by taking generating unit outages into account. To illustrate, hourly
reserve decisions are made according to the cost/benefit analysis between total
operating costs and socioeconomic cost of expected energy not served (EENS)
subject to some of the UCP constraints. They use three-point grid search technique
to solve these subproblems prior to the exact UCP solution. Then, they solve
traditional UCP with optimal spinning reserves. Later, Ortega-Vazquez and Kirschen
(2009) improve the first level of this bilevel optimization by also incorporating the
uncertainty due to load demand forecasts and wind power forecasts as the net load
demand. For this purpose, they discretize the net load demand and apply their
previous spinning reserve optimization method for each interval to find reserves

corresponding to each interval. By taking the expectation of these reserves over
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possible net load demand intervals, they find optimal spinning reserves. Then, they
solve traditional UCP with optimal spinning reserves. Similar to Ortega-Vazquez
and Kirschen (2009), Wu et al. (2015) develop a spinning reserve optimization
method called as Cost-conditional value at risk (CVaR) model to assess the risk due
to the uncertainties of load and wind power forecasts. In their method, they consider
the loss of load when wind power is overestimated, and the wasted wind power when
it is underestimated. They determine reserves by using CVaR and those reserve
requirements are calculated prior to main UCP formulation. In their formulation,
they also take transmission losses and transmission security verifications into
consideration. Wang et al. (2015) propose a UCP formulation with risk reserve
constraints. They use two types of reserves as correction reserve and emergency
reserve. The former deals with the uncertainty in load demand and wind power
generation while the latter is used for random breakdowns of conventional
generating units. The emergency reserves are determined as the maximum of 10
percent of total generation and the largest capacity of conventional units. After
determining the optimal reserves, they solve traditional UCP. Different from Wang
et al. (2015) and Wu et al. (2015), Chen et al. (2016) incorporate CVVaR method into
mixed integer linear programming (MILP) type UCP formulation to minimize total

generation cost that gives generation and spinning reserve schedules simultaneously.

Ortega-Vazquez et al. (2006) propose a stochastic programming model to schedule
power generation and reserves for a power system under reliability issues in
conventional generation. Instead of using deterministic spinning reserves or risk
thresholds, they account for loss of load due to generation outages and the cost of
providing extra reserve to prevent such losses. They show the nonlinear relationship
between the available installed capacity of conventional generating units and EENS,
which is then linearized in their model. The objective in their UCP formulation is to
minimize the total operating costs, reserve allocation costs and expected cost of lost
energy subject to several operational and technical constraints. Bouffard and Galiana
(2008) develop a two-stage stochastic programming approach for a power system

consisting of hydrothermal units and wind turbines. By ignoring hydrothermal

14



generator contingencies in their model, load demand and wind power forecasts are
considered as the only sources of uncertainty which are integrated as the net load
demand forecasts by considering the wind generation as a negative load demand.
They construct the scenarios by discretizing the net load demand. The objective is to
minimize the expected social cost where the first stage components are reserve costs,
fixed operating costs and start-up costs, and the second stage components are
demand benefits, variable operating costs and the expected cost of load not served.
Pappala et al. (2008) develop a nonlinear mixed integer multistage stochastic model
for the UCP in which the power system has wind farms, pumped storage and thermal
power plants. The objective is to minimize total operating costs of thermal power
plants. Wind forecasts and load demand forecasts are considered as two separate
causes of uncertainty that are integrated to the model as scenario trees. They also
propose a PSO based scenario reduction technique for a huge set of associated
scenarios. Alabedin et al. (2012) propose two special types of stochastic UCP
formulation for microgrids having two operational modes such as grid connected
mode and isolated mode. In the grid connected mode, upstream grid behaves like a
virtual generating unit when there are power generation shortages by conventional
and wind power generation while it behaves like a virtual load demand point when
more power is generated than the actual load demand realization. In this mode, the
total cost consists of operating costs of conventional generating units, costs of
reserve and power imported from the upstream grid. In the isolated mode, there are
only conventional generating units and wind turbines so excess power generation is
lost. Inthis case, total cost consists of operating and expected cost of load not served.
The uncertainties related to load demand and wind power are handled using both
additional reserves and scenarios. Liu and Tomsovic (2012) develop a security
constrained UCP MILP formulation to deal with uncertainties related to
conventional generator outages, wind power generation and load demand. The last
two sources of uncertainty are continuous random variables combined as the net load
whereas conventional generator outages are discrete random variables. When

constructing their scenarios, they use only single order contingency events of
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generator outages to save computation time. To integrate net load demand into
EENS, they discretize the net load demand by using seven-interval approximation.
Then they take the expectation over possible load intervals. The objective is to
minimize total operating costs, reserve allocation costs and the expected cost of lost
load. Moreover, they consider the effect of transmission line capacities as well. Chen
et al. (2013) propose a stochastic multi-objective programming model to investigate
how uncertainties due to conventional generation reliability, load demand and wind
power generation affect the UCP. The objectives are penalty cost of wind curtailment
(overestimation), fuel costs of conventional thermal units and operating risk index
of the system. By using fuzzy optimization method, the multi-objective formulation
is transformed to a single objective model. As a risk index, they use loss of load
expectation (LOLE) which is known as the percentage of time the available capacity
will be lower than the load demand. The constraint set includes LOLE threshold
constraint and transmission capacities. When calculating LOLE, they use three
scenarios which are no generator outage but load demand and wind power
variabilities, single generator outage with load demand and wind power variabilities,
and two generators outage with load demand and wind power variability. They use
PSO to solve this non-linear and non-convex optimization model. Chaiyabut and
Damrongkulkumjorn (2014) develop a nonlinear stochastic UCP formulation with
EENS constraint under load demand and wind power variabilities. The objective is
to minimize total operating costs and the expected cost of lost energy. The load
demand uncertainty is handled by a deterministic spinning reserve whereas wind
power uncertainty is imposed by enforcing a reliability index EENS. This index is
used in both the objective function as the expected cost of lost energy due to wind
power variability, and in the constraint set by defining a maximum threshold for
EENS. Seven-interval approximation method is used for wind power forecasts which
is assumed to follow Normal distribution to calculate the EENS. To reflect the
stochastic nature of load forecasts, wind power forecasts and fault outages in
conventional generation, Cui et al. (2015) devise a stochastic UCP model, in which

the objective is to minimize total operating cost and reserves are the decision
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variables. Since fault outages are discrete random variables, they are approximated
to follow exponential distribution so that they can be combined with load demand
and wind power forecasts following Normal distribution. Khazali and Kalantar
(2015) formulate a two-stage stochastic programming model for the UCP under
variabilities in load demand, wind power generation and unit outage in conventional
generation. They use two kinds of variables for reserves. One of the variables is used
to overcome imbalances between load demand following Normal distribution and
wind power generation following Rayleigh distribution. These reserves are
determined as expected values by using scenarios. The other variable is used to
overcome unit outages and determined by using linearized formulations of reliability
constraints for the EENS for each scenario and total EENS after removing the load-
generation imbalances. Govardhan (2016) formulates the UCP under the variability
in wind power generation as a stochastic nonlinear programming model with the
objective of minimizing total operating costs, reserve allocation costs and wind-
based costs. Wind-based costs consist of operating cost of wind farms, the cost of
wasted wind power due to underestimation in wind generation and the
overestimation cost of wind generation assumed to follow Weibull distribution. She
solves this nonlinear model by using Modified Teaching-Learning Based
Optimization (M-TLBO). Shao et al. (2018) develop a stochastic risk decision-
making model for scheduling a wind integrated power system. The multi-probability
wind scenarios are constructed based on Discrete Time Markov Chains, and they use
a scenario reduction technology to extract representative scenarios. The aim is to
minimize total fuel costs and risk related costs such as expected cost of loss of load
and wind spillage while obtaining optimal generation and reserve schedules.
Hedayati-Mehdiabadi et al. (2018) describe a scenario-based two-stage stochastic
energy and reserve scheduling formulation by considering the uncertainty in the
short-term wind farm generation forecasts. The objective is to minimize the total cost
consisting of the operating costs, reserve allocation costs and the expected risk costs
associated with insufficient reserve allocation. First, they solve this stochastic model

and then they test the robustness of the solution by running a risk analysis model.
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Apart from the aforementioned studies for the UCP under wind power uncertainty,
there are also robust optimization, chance constrained optimization and simulation-
based optimization methods in the literature. Alvarez-Miranda et al. (2015) propose
a two-stage robust UCP formulation to model the uncertainties related to wind
forecasts. They use bootstrap predictive inference approach to make interval-based
wind power scenarios instead of distribution-based scenarios. Commitment
decisions are considered as the first stage variables and dispatching decisions are
taken as the second stage variables. Cobos et al. (2018) also propose two-stage robust
energy and reserve scheduling formulation for the UCP under wind uncertainty.
They also study the effects of slow and fast acting generating units in a power system.
By using chance constraints associated with system security risk levels for EENS
and expected wind spillage (EWS), Qian et al. (2016) integrate the uncertainty in
wind power generation having £ distribution into the UCP formulation for thermal-
gas-wind power system. Penalty costs of EENS and EWS are added to the objective
function by linearizing them to speed up the computation. Ummels et al. (2007)
develop a simulation-based unit commitment and load dispatch optimization
method, also known as the so-called equal marginal cost method, for thermal power
system that mainly consists of CHP under wind power uncertainty. Atmospheric
high-resolution limited area model (HIRLAM) is used to approximate atmosphere
state for 6-hour intervals; accordingly, average wind speeds are forecasted. Then,
wind speed forecasts are postprocessed and wind power forecasts are made by using
the wind power forecasting method Aanbod Voorspeller Duurzame Energie (AVDE)
developed by Energy Research Centre of the Netherlands. The optimization tool uses
three different time buckets such as annual, weekly and hourly. Annual time buckets
are used for maintenance scheduling, weekly time buckets are used for production
cost optimization, and hourly time buckets are used for load dispatching. Lee (2007)
designs an evolutionary iteration particle swarm optimization (EIPSO) algorithm to
solve the nonlinear UCP problem for a wind-thermal power system. The objective
of his formulation is to minimize the total operating costs and the outage costs subject

to the standard operational and technical constraints. Besides, reserves from thermal
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units and wind turbines are considered as decision variables. Wind speed forecasts
and their probabilities (according to Weibull distribution) are generated by using
Hybrid Optimization of Multiple Electric Renewables (HOMER). Accordingly, the
wind power generation is approximated by third order polynomial WECS.

Different from the solution methods summarized above, we propose stochastic time-
decoupled quadratic programming-based approaches to solve the UCP under
supply/demand uncertainty for the hybrid power systems with significant wind
power penetration. In our approach, we consider several causes of uncertainty such
as load and wind power forecast errors and random outages in conventional
generation. We also propose a novel approach to integrate the VPLE causing rippling
effect in the efficiencies of conventional generating units as well. The detailed
explanation of the proposed approach and its implementation is provided in Chapter
4.

2.3 Solution Approaches for the Unit Commitment Problem with Emission
Considerations in Traditional-and-Wind Integrated Hybrid Power

Systems

Since the integration of renewable energy generation and emission models into the
UCP brings additional difficulties and complexities to the problem scope, efficient
mathematical models and solution methods such as Lagrangian relaxations or
metaheuristics are required to solve complex versions of this problem. For the last
two decades, the UCP with emission considerations has been extensively studied for
both traditional and hybrid power systems. To make our literature review more
comprehensible and easier to follow in this section, we classify it into two categories.
In subsection 2.3.1, mathematical models and solution methods for the UCP and its
subproblem ELD in traditional power systems are briefly summarized. In subsection
2.3.2, mathematical formulations and algorithms to solve the UCP and ELD in the

wind integrated hybrid power systems are concisely explained.
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2.3.1 Emission Considerations in Traditional Power Systems

Nanda et al. (1994) utilize a weighted sum approach in their Economic Emission
Dispatch (EED) formulation in which two conflicting objectives such as total
operating costs and total emissions of SO, and NOx are minimized by using a
compromise factor subject to transmission line flow constraints. Emissions are
represented by quadratic functions. They develop a new algorithm that use
coordination equations to handle line flow constraints. Similarly, Ramanathan
(1994) propose a weighted sum formulation for EED problem where unit-based and
area-based NOy and SO emission limitations are also taken into account. Therefore,
the problem can be called as Emission Constrained Economic Dispatch (ECED)
problem. To represent emissions, second order polynomial functions are used. He
also devises an efficient technique to determine binding constraints in the problem
by linearizing the emission constraints. The proposed technique rapidly converges
to the Kuhn-Tucker optimality conditions. Wang et al. (1995) propose a new
approach based on the augmented Lagrangian relaxation method and the
decomposition and coordination technique to solve environmentally constrained
UCP (EC-UCP). The objective is to minimize total fuel costs while satisfying
system, transmission and emission constraints. Similar to Wang et al. (1995),
Gjengedal (1995) devise a Lagrangian relaxation-based algorithm to solve EC-UCP.
CO2 and SO, emissions are modelled via quadratic functions whereas NOx emissions
are represented via cubic functions. He also considers start-up and shutdown
emissions. Start-up emissions are characterized as an exponential function of unit’s
downtime while shut-down emissions are assumed to be constant. For emission
constraints, he uses an overall limit on total emissions in the planning horizon.
Marwali and Shahidehpour (1999) propose an algorithm based on Double Benders
Decomposition for long-term transmission and generation maintenance scheduling
problem in which linearly defined NOx and SO emissions are not taken as objectives
to be minimized, rather they are considered as area-based and overall emission limits
in the problem. Raglend and Padhy (2006) formulate the EC-UCP by using price
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penalty factor for emissions, which enables them to convert the bi-objective problem
into single-objective optimization problem with total cost minimization. Emissions
and fuel costs are characterized as quadratic functions. They also take unit and
transmission constraints into account. Yamashita et al. (2010) come up with a
weighted sum formulation for the UCP with CO2 emissions by normalizing total
operating cost and total CO. emissions and assigning weight factors for both
objectives. Emissions are modelled by quadratic functions. They implement
decommitment procedure to attain Pareto optimal curves for the analysis of trade-
offs between CO2 emissions and total cost. Nazari et al. (2010) propose an EC-UCP
solution method in which Cap & Trade mechanism is applied for total emissions.
That is, emission costs are added to total operating cost whenever quadratically
defined emissions exceed the total cap value. They also study impacts of pumped
storage units integrated into thermal power systems. Cataldo et al. (2010) develops a
multi-objective optimization method for the Profit-Based UCP (PBCUP) by using &-
constraint method for one of the objectives such as maximizing total revenue and
minimizing total emissions. Accordingly, depending on electricity price profiles,
Pareto optimal trade-off curves are obtained for the compromise between the revenue
and emissions. For emission modelling, quadratic and exponential functions are
combined. Anita and Raglend (2013) develop a Shuffled Frog Leaping Algorithm to
solve EC-UCP in which the objective is to minimize total operating costs and total
emission costs. NOx and SO emissions are modelled via second order polynomial
functions, and no constraints are imposed on them. Xia et al. (2013) differently
formulate ECED problem taking intertemporal constraints and transmission losses
into consideration. The objective is to minimize total operating cost of thermal units
and pumped-hydro storage units. Emissions are represented by quadratic functions
and a total emission limit is defined for the entire system. They devise a
Simultaneous Perturbation Method for Lagrangian relaxation for both standard ED
constraints and intertemporal constraints to solve this problem. Tang and Che (2013)
propose a variable splitting-based Lagrangian relaxation algorithm to solve EC-
PBUCP in the deregulated electricity market. The objective is to maximize total
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profit calculated as the difference between the revenue obtained from electricity sold
and total cost of operations and CO, emissions calculated by piecewise linear
emission penalty factors. Saravanan and Vasudevan (2014) develop an invasive
weed optimization algorithm to solve EC-UCP with the objective of minimizing the
weighted sum of total operating cost and total emission levels. Emissions are
characterized as second order polynomial functions. Ahmadian et al. (2014) suggest
a multi-objective optimization formulation for the EC-UCP by minimizing the
weighted sum of total pollutant emission and total operating costs. They devise a
new Honey Bee Mating Optimization Algorithm to solve this problem in which
emissions are modelled by quadratic functions. Laia et al. (2014) propose a stochastic
mixed-integer linear programming formulation to cope with the UCP under emission
limitations and uncertainty in a deregulated electricity market involving day-ahead
bidding and bilateral contracts. The uncertainty is caused by variable electricity
prices and modelled by scenarios. In the PBUCP formulation, the objective is to
maximize expected profit obtained from sales of electricity subject to the system-
wide emission limitation and standard UCP constraints. Che and Shi (2014) present
a mixed-integer linear programming (MILP) formulation for the PBUCP with
nonlinear emissions penalty. To apply MILP, quadratic fuel cost and emission
functions are piecewise linearly approximated. Haddadian et al. (2015) propose
MILP formulation for the EC-UCP with the integration of distributed energy storage
devices. Quadratic CO2 emissions are handled by introducing system-wide emission
limit instead of incurring emission costs. Similar to Che and Shi (2014), they also
apply piecewise linear approximation for quadratic functions. To speed-up the
processing required for large power systems, they use Benders Decompositions and
Cuts. Geng et al. (2015) suggest a novel mixed-integer nonlinear programming
(MINLP) type ECED formulation in which clean energy technologies are employed
for the reduction of NOx, SO2 and PMx emissions. Emissions are modelled with
quadratic functions in operational mode and with linear functions in start-up mode
by considering effects of emission reduction devices. The aim is to minimize total

operating cost and total emission taxes levied. They employ area-based emission
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limits as constraints and tiered emission taxes. Moreover, Geng et.al. (2017) extend
their ECED formulation for the EC-UCP and apply it for the Chinese power system.
Navin and Sharma (2016) develop a Modified Differential Evolution (MODE)
optimization technique to solve EC-UCP in which emission costs and unit-based
emission limits are used to cope with emissions characterized by quadratic functions.
They also incorporate priority lists and a random search algorithm to tackle with
classical spinning reserve requirements and minimum uptime/downtime constraints,
respectively. Zhang et al. (2016) formulate EC-UCP for smart grids by applying the
unit-based carbon emission trading (CET) mechanism for emissions. In their
formulation, emissions are quadratically characterized and emission costs are
incurred whenever allowable emission limits of thermal units are exceeded. They
devise an Improved PSO Algorithm to solve the problem. Liu et al. (2014) present
both mixed-integer quadratic programming (MIQP) and mixed-integer linear
programming (MILP) formulation for the PBUCP that aims to maximize profit under
carbon taxing in a deregulated electricity market. To convert MIQP into MILP,
quadratic fuel cost and emission functions are piecewise linearly approximated.
Ghadi et al. (2016) propose a bi-objective nonlinear PBUCP under a deregulated
environment. The aim is to maximize the profit while minimizing CO2 emission
levels subject to emission limits defined for each period. Emissions are represented
by second order polynomial functions They devise an Imperialist Competitive
algorithm combined with a metaheuristic constraint handling technique to solve their
bi-objective formulation. Sen and Mathur (2016) propose a metaheuristic algorithm
using the framework of Ant Colony Optimization-Artificial Bee Colony-Harmonic
Search (ACO-ABC-HS) algorithm to solve ECED problem. The aim is to minimize
total fuel cost with valve point loading effect while satisfying emission limits,
transmission losses and other standard ELD constraints. Quadratic emission models
are used in their formulation. Sundaram et al. (2017) develop Tabu Search-Enhanced
ABC algorithm to solve the PBUC in a deregulated electricity market by taking
emission limitations into consideration. Both fuel costs and emissions are

represented by quadratic functions. In the proposed algorithm, unit commitment part
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of the problem is solved by an ABC algorithm and dispatch part of the problem is
solved by the Lambda Iteration Method (LIM) whereas TS is used to explore and
exploit the solution space. Geng et al. (2018) propose a two-stage stochastic
programming formulation for the EC-UCP under variable emission limits depending
on variable Air Quality Index (AQI). The first stage represents day-ahead UCP and
the second stage is used to simulate power system operation under scenario-
dependent emission limits for NOx and SO». Quadratic costs and emissions are
piecewise linearly approximated, so their formulation is based on MILP in which the
objective is to minimize total operating cost. Olamaei et al. (2018) develop a
nonlinear EC-UCP formulation for power systems consisting of CCHP, thermal and
heat units. The objective is to minimize total cost comprising of fuel costs with valve
point loading effect and the penalty cost of CO> emissions defined by second order

polynomial functions.

2.3.2 Emission Considerations in Hybrid Power Systems

Kuo (2009) develops an efficient metaheuristic that combines SA and PSO for the
bi-objective economic emission dispatch (EED) problem in which wind turbines are
taken as more flexible units having zero emissions. Objectives are to minimize total
fuel costs and total emissions. Both terms are represented by quadratic functions; in
addition, emissions are superimposed by exponential functions. Complex
operational constraints like prohibited operation zones, ramp-up/ramp-down limits
and transmission losses are also added in the formulation. Liu and Xu (2010) propose
a MINLP formulation for EED problem under wind power uncertainty. Different
from other formulations, the main objective is to minimize environmental impact
index that is total NOx emissions, so the total cost consisting of fuel costs of thermal
units and penalty costs for wind curtailment (overestimation) and wind spillage
(underestimation) is taken as a constraint specifying an upper bound for total cost.
They also set a limit for wind power generation. Emissions are modelled via the

combination of quadratic functions and exponential function. Wind power is
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assumed to follow Gamma distribution; accordingly, they derive expressions for
expectations of overestimation and underestimation of wind generation. Piperagkas
et al. (2010) formulate ECED problem for both heat and power generation system
under variabilities in the wind power and emission limitations for NOx, SOz and CO:..
Those emissions are characterized by linear functions for CHP units. For thermal
units, NOx and SO emissions are represented by quadratic functions with an
exponential factor whereas CO> emissions are modelled for CHP units. Instead of
taking emissions into account in the objective, they define maximum emission limits
for each gas. Thence, fuel costs and the expected cost of wind curtailment forms the
objective to be minimized. Furthermore, transmission losses are also formulated
according to Kron’s B-loss function. To solve the ECED problem, they use a PSO-
based optimization technique. Verma and Kumar (2011) formulate the bi-objective
EC-UCP under wind power uncertainty and pumped storage integration. The
variabilities in wind power are described by wind speed scenarios which are
transformed into wind power scenarios by using simplified WECS. They convert bi-
objective formulation into a single objective by defining emission penalty. Hence,
the single objective comprises of total operational costs of thermal and pumped
storage units and emission penalties. They do not use underestimation and
overestimation costs for wind power generation since these situations are
compensated by pumped storage units. Besides, quadratic expressions are used to
model emissions. Liao (2011) devises a Chaotic Quantum GA to solve EED problem
in which both total operating costs, overestimation cost of wind farms, and emission
costs of NOx are minimized. Several technical aspects such as transmission losses,
prohibited operation zones and valve point loading effect are also considered in the
formulation. Wind power generation is calculated from wind speed forecasts by
using simplified WECS. Fuel costs with valve point loading effect are represented
by quadratic functions having absolute sinusoidal rippling whereas quadratic
functions superimposed by exponential functions are used to represent NOx
emissions. Azizipanah-Abarghooee et al. (2011) develop a Modified Teaching-

Learning Algorithm to solve a stochastic multi-objective wind-thermal EED
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problem. The conflicting objectives are to minimize total fuel costs with valve point
loading effect and expected overestimation and underestimation cost of wind power,
and to minimize NOx emissions. Emissions are modelled as the sum of quadratic and
exponential functions. For wind power forecasts of each wind farm, WECS is used.
Van Dinter et al. (2012) propose a MINLP model for the environmental UCP in
which the objective is to minimize the sum of piecewise linearly approximated fuel
costs, shortage costs, and concave NOyx emission costs in wind-thermal-storage
power system. They also introduce several cuts to reinforce their formulation and to
increase the tractability of the problem. Then, they apply Bender’s Decomposition
to solve their MINLP model. Jadhav and Roy (2013) formulate the probabilistic bi-
objective wind-thermal EED problem with the objective of minimizing the sum of
fuel costs with valve point loading effect, expected costs of wind spillage and wind
curtailment. The exact WECS is used to represent wind power from wind speed
following Weibull distribution. Emissions are represented with quadratic functions.
They also consider transmission losses and prohibited operation zones. Gbest Guided
ABC is utilized to optimize the EED problem. Wu et al. (2013) devise a method
based on the framework of multi-objective PSO and Primal-Dual Interior Point
Method to solve EC-UCP. In the problem formulation, the objective is to minimize
total operating costs and total air pollutant emissions. Wind power uncertainty is
characterized by using interval forecasting techniques and assigning an occurrence
probability for each interval. Both emissions and fuel costs are expressed with
quadratic functions. Roy and Hazra (2014) present a Chemical Reaction
Optimization Algorithm (CROA) to solve nonlinear EED problem in wind-fossil
fuel-based power systems. This algorithm is extended by Hazra and Roy (2019) who
also use quasi-opposition based learning with CROA. The aim of the problem is to
minimize fuel costs with valve point loading effect, emission costs and wind related
expected costs as overestimation and underestimation costs. Wind power is
characterized by using Weibull distribution and exact WECS. Emissions are
modelled via combined second order polynomial and exponential functions. They

also take power transmission losses into consideration. Zhang et al. (2014) model the
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EC-UCP for wind-thermal power systems with the objective that minimizes total
operating costs of thermal units, expected underage and overage cost of wind power
and costs of quadratic CO, and NOx emissions. Wind speeds are expressed via
Weibull distribution and WECS is used to convert wind speed into wind power. They
design a hybrid algorithm based on Sequential Quadratic Programming (SQP) and
PSO. Haddi and Bouktir (2015) develop an ABC algorithm to solve EED under wind
power uncertainty. Wind speeds are assumed to follow Gamma distribution, so are
wind powers. The problem is formulated as the weighted sum of total system cost
consisting of fuel costs, wind related expected costs, and total emissions which are
modelled via quadratic functions combined with exponential functions. Trivedi et al.
(2016) propose a multi-objective environmental UCP under significant wind
penetration with objectives that are total operating costs, total emissions and EENS
cost due to load demand and wind power forecasts, and uncertainty based on thermal
unit outages. Apart from considering these costs in the objective, maximum limits
are also defined for each cost, which makes the problem optimized in the constrained
objective space. Emissions are characterized as quadratic functions. Wind power is
represented by using simplified WECS. To solve the problem, they devise a Multi-
Objective Evolutionary Algorithm Based on Decomposition and Differential
Evolution. Alham et al. (2016) formulate EED as a weighted sum of total fuel cost
and total emissions to be minimized. They also integrate time-dependent ramp-rate
limits and transmission losses into their formulation. Both fuel costs and emissions
are taken as second order polynomial functions. Stochastic nature of wind power is
modelled via Weibull distribution and it is represented by taking power balance
constraint as a chance constraint in the formulation. Wang et al. (2016) establish a
VaR-based multi-objective formulation for EC-UCP with wind penetration.
Obijectives are to minimize the sum of total operating costs and emission taxes, and
to minimize generalized fuzzy VaR-based reliability index. For NOx and SO, single
level tax is levied on emission levels whereas carbon emission trading scheme is
applied for CO2 emissions. Uncertainty of wind power is characterized as Weibull

distribution. They use a Fuzzy Simulation-Based Multi-Objective PSO Algorithm to
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solve EC-UCP problem. Qu et.al. (2016) develop a Summation Based Differential
Evolution Algorithm for the solution of bi-objective EED problem in wind-thermal
systems. Total operating cost and total emission levels are tried to be minimized.
Emissions are modelled via quadratic functions combined with exponential
functions. Besides, the stochastic nature of wind power is represented from wind
speed following Weibull distribution by using simplified WECS. Wind power
uncertainties are handled by introducing chance constraints instead of power balance
and spinning reserve constraints. Negi et al. (2016) formulate the environmental
UCP by minimizing total operating costs of thermal units, expected costs of
overestimation and underestimation of wind power and emission taxes for NOy and
COz emissions. Wind power is assumed to follow Weibull distribution as a result of
WECS conversion of wind speeds following Weibull distribution. They take
standard emission constraints and valve point loading effect into account. To solve
the problem, they develop Improved Binary PSO. Qu et al. (2017) propose a different
EED formulation under load and wind power uncertainty, which are incorporated as
spinning reserve constraints modified to integrate variabilities in forecasts of load
demand and wind power. They define two objectives, namely the minimization of
total fuel cost and the minimization of total emission levels. The valve point loading
effect is considered in fuel cost representation as a sinusoidal term. Emissions are
modelled as the sum of quadratic and exponential functions. They solve this
formulation by using Selection Method Based Multi-Objective Differential
Evolution Algorithm. Hu et al. (2017) propose a novel EED model taking economic
and environmental aspects of a wind integrated power system into account. Both fuel
costs and NOx, SOz and CO> emissions are characterized as cubic functions. When
incurring emission costs, NOx and SO, emissions are converted into associated CO»-
equivalents by using conversion factors. Wind speeds are represented with Weibull
distribution and they are transformed into wind power by using simplified WECS.
In their model, both emission costs and fuel costs are minimized by satisfying several
system constraints and allowable emission limits. Hybrid GA-SQP algorithm is

employed to solve the EED problem. Zhang et al. (2017) build a stochastic EC-UCP
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model that simultaneously analyses operational economy, emission, and reliability
of the whole system. Wind power uncertainty is characterized as interval-based
scenarios. Therefore, unit commitment decisions are made in the first stage, whereas
load dispatch decisions, accordingly emission levels are set at the second stage
depending on scenarios. The overall objective is to minimize total operating cost
consisting of quadratic fuel costs and two-step start-up costs and emissions levels
which are expressed with combined usage of quadratic and exponential functions.
Zhang et al. (2017) propose a cost-benefit analysis method to solve environmental
UCP with load and wind power forecast variabilities along with forced outages of
generators. The objective is the joint minimization of carbon trading costs, operating
costs, the expected cost of load shedding, the penalty cost of wind power
curtailments. In order to combine uncertainties of load demand and wind power
forecasts with forced outages, they discretize them. Emissions and costs involve
linear representations. Franz et al. (2018) propose a MILP type formulation for
environmental UCP with pumped storages and renewable energy sources such as
wind and solar. Renewables are integrated to the problem by considering them in
residual demands. Emission costs are added to variable cost of thermal power units,
which have a linear relationship with the cost of production. The aim is to minimize
total generation cost, emission cost and the expected cost of load shedding. They use
time-oriented, unit-oriented, and generic fix-and-optimize procedures as a
decomposition method. Guo et al. (2018) formulate an AQI-driven SCUC
incorporating wind power uncertainties. Different from other formulations, impacts
of thermal units on regional air quality is modelled by using Gaussian puff dispersion
model and pollutant equivalent method. Wind power uncertainty is modelled via
scenarios generated from uncertain wind speed following Weibull distribution. NOx,
SO and PMy emissions are modelled via quadratic expressions. Chinnadurrai and
Victoire (2019) suggest a multi-objective EED formulation that consists of two
levels. In the first level, the bi-objective to be minimized includes total fuel costs
with valve point loading effect and total emissions represented with quadratic

functions superimposed by exponential functions. In the second level, wind
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curtailment as a result of the overestimation of expected wind power is minimized.
To solve the problem, the combined framework of Enhanced Multi-Objective
Crisscross Optimization and Linear Programming is employed. Franz et al. (2020)
build a MILP model for EC-UCP with hydrothermal coordination to minimize total
production and emission costs. They employ Cap & Trade mechanism when
incurring emission costs and using residual demands for renewable generation. Also,
they develop a two-stage heuristic to analyze the trade-off between power generation

and emission costs.

Different from the aforementioned solution methods, we propose a stochastic time-
decoupled quadratic programming-based approach to solve the UCP under both
supply/demand uncertainty due to unexpected outages in conventional generation
and forecast errors of wind power and load demands, and emission limitations for
the wind integrated hybrid power systems. In our approach, we model emissions of
COz, one of the most important Greenhouse Gases (GHGs), and NOy, SO and PMy,
the most dangerous air pollutants by taking the potential implementation of emission
control technologies and strict regulations into account. We extend our approaches
explained in Chapter 4 by integrating emission considerations as well. The detailed
explanation of the proposed approach and its implementation is provided in Chapter
5.
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CHAPTER 3

UNIT COMMITMENT PROBLEM FOR TRADITIONAL POWER SYSTEMS

The unit commitment problem (UCP) in traditional power systems is a mixed
integer, nonlinear, and combinatorial optimization problem. The main objective is to
effectively schedule operations of conventional generating units in a power system
on an hourly basis to meet forecasted load demand requirements, while satisfying
various operational and technical constraints. Moreover, the UCP has a challenging
issue of non-convexity, high dimensionality and combinatorial nature especially
when a power network contains too many conventional generating units, which
makes it difficult to use any rigorous optimization approach to solve the problem for
a real-size power system. In this chapter, we first develop a mathematical model for
the traditional UCP, and then a novel Mixed Integer Coded Genetic Algorithm
(MICGA) is proposed and applied to standard problem instances in the literature to
test the efficiency and effectiveness of the MICGA. Our main motivation for
developing a GA for the UCP is that it employs fundamentals of natural genetics that
are proven very efficient in the search of global optimal solution for complex and

nonlinear problems in a relatively short computing time.

3.1 Problem Formulation

The UCP is a well-known generator scheduling problem basically comprising of two
decisions. The first one is to specify commitment statuses of conventional generating
units for each time period in the planning horizon. After determining the
commitment statuses, the second decision is to determine how much energy should
be produced by each committed unit in each time period. In order to perform these

decisions, the main objective of the problem is to minimize the total operating cost
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consisting of fuel costs and start-up costs over the planning horizon. Besides, it
includes several constraints that can be classified in two main categories such as
load-driven constraints and technological constraints. These constraints are status
restrictions of individual generating units, minimum uptime and minimum downtime
constraints, generation capacity limits, limited ramp rates, and power balance
constraint. There are also several operational uncertainties such as random outages
of conventional generating units that should also be considered when formulating
and solving the UCP. This stochastic nature of traditional power systems is generally
alleviated by pursuing several deterministic reserve policies requiring a spare
capacity generally defined as a certain proportion of the peak load or the largest
capacity of committed units. In this section, we develop a Mixed Integer Nonlinear
Programming (MINLP) model which can even be made simpler and more compact.
In the formulation, ramp-up and ramp-down constraints, which aggravate the

problem’s tractability, are also taken into consideration.
Assumptions

e The electricity market is vertically integrated. Hence, a power generation
company is obliged to meet the load demand of its customers exactly.

e The load demands during the planning horizon are accurately forecasted. No
deviation beyond 10% of the forecasted load is expected.

e The conventional power generation system is reliable enough, so the failure
events (unexpected outages) of conventional units can be neglected.

e The efficiency of a conventional generating unit shows a monotonic increase
as it is more heavily loaded.

e A conventional generating unit can produce power within its available power
generation limits.

e The power produced can be transmitted to the demand points without any
transmission limits.

e Power losses during power transmission are negligible.
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Sets and Indices

N: Set of conventional generating units
i € N: Conventional generating units
T: Set of time periods (hours)

t € T: Time period

Parameters

a;, b;, ¢;: Fuel cost coefficients of unit i ($, /MW, $/MW?, respectively)
SH: Hot startup cost of unit i ($)

SE: Cold startup cost of unit i ($)

T, ;: Startup time threshold of unit i (hours)

Tyy?S . Minimum downtime of unit i once it is shutdown (hours)

Min, ;- Minimum uptime of unit i once it is started up (hours)

PM™: Minimum power output level of unit i (MW)
PMax: Maximum power output level of unit i (MW)
R;"": Ramp-up limit of unit i (MW)

R&w™: Ramp-down limit of unit i (MW)

D;: Load demand in period t (MW)

SRM™: Minimum spinning reserve requirement in period t (MW)

Decision Variables

u;.. Commitment status of unit i in period t:

1if unitiis "On" in period ¢t

0 otherwise

P;;: Amount of electricity produced by unit i in period t
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FC(P;, u;e) : Fuel Cost of unit i in period t generally given by a quadratic cost

function as follows:

FC(Py, wir) = ajuy + bPy + ¢;Py” (3.2)

T%/7: Number of consecutive time periods that unit i remained decommitted up to

period t

T Number of consecutive time periods that unit i remained committed up to period
t

S;;- Start-up cost of unit i in period t generally depends on the number of consecutive
time periods in which the unit is in “Off” status. According to the length of the “Off”

periods, start-up costs are classified as hot start-up or cold start-up costs:

SH if (IR RS W
Sit =
3.3
S0 if T/ > T+ Ty (3:3)
P}™: Minimum power output level of unit i in period t:
Max{PM™, P,y — R®"™} if wyq =uy =1
piitn = , (3.4)
pMn otherwise
P}*: Maximum power output level of unit i in period t:
Min{PM%*, P,y + R/P}  if wypq =up =1
piex = (3.5)
pMax otherwise
Auxiliary Binary Variables for Logical Constraints:
e §;;: Start-up type indicator of unit i in period t:
1 if TI\Z{T{l <1/ < TI\(/;{‘r{l + Te,i
8ie = (3.6)
0 if T > T+ T,
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e aj: Auxiliary variable indicating unit i has been working beyond its

minimum uptime requirement in period t:

1 if T{’tn = T,‘fﬁn’i
ailt = (3.7)
0 otherwise

e aZ: Auxiliary variable indicating unit i has not been working till period t:

1 if T =T
aizt = (3.8)
0 otherwise

e i Auxiliary variable indicating unit i has not been working beyond its

minimum downtime requirement in period t:

N
Bi: = 3.9
0 otherwise

e BZ: Auxiliary variable indicating unit i has been working till period t:

. off _ moff
1 if Tie” =Tying

ﬁizt = (3.10)
0 otherwise

Mathematical Model

IT| |N|
Min Z Z(FC(Pit' Uie) + Sit (1 - ui,t—l) uit) (3.11)
=1i=1
subject to
IN|
ZP“ >D, vt (3.12)
i=1
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vy
Zpi“fax > D, + SRM" vt

i=1
pi" < p, < pMax Vi, vt
tv1 < Myju, ViVt —{T}
TR, =T +1+my(1—uy) ViVt —{T}
T <M,(1—-wy) Vi vt—({T}
T >T ¢ 1+ muuy, Vi, vt —{T}
T > T + T +e+ (ms—e)8; ViVt
Sie = SH8,, +SS(1—6;) Vi, vt
T < Tl + T+ Ms(1—8,) Vi, vt
T =Ty +mi(l—al) ViVt
T < M,(1—al) ViVt
a, +al <1+u; ViVt
T 2 T+ ms(1- L) vivt
T/ <Ms(1-p2) it
BL+BE<1+(1—-wy) ViVt
piax < pMaxy.. Vi, vt
PH™ < Pyq + Rlilp + Mg(2 —ujr—1 —up) ViVt
piin > pMing.. vi,vt
Plivt”n = Pi_1— R(l?own +me(2 —wjp—q — W) ViVt
Py, Sie, TS, Tftff, Pli\/gax’ P%in >0 Vi, Vit

Use, 8it, iy, fy, Bie B € {01} Vi, VE
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Objective Function

The objective is to minimize the sum of fuel costs and start-up costs associated with
uncommitted units. In the mathematical model, the objective function is given by its
closed form representation as in (3.11). Its open form representation is provided

below.

IN|
Min Z(aiuit + biPit + CiPitZ + Sit (1 - ui_t_l) uit) (3 34)

i=1

Constraints

The constraints can be categorized in two main classes such as load demand
constraints (3.12, 3.13) and technological constraints (3.14,..., 3.31). The first set
consists of load requirements and spinning reserve requirements. The second set of
constraints consists of limits on the unit output range, and on the minimum number

of time periods that the unit must be continuously in “On” or “Off” status.

Load Requirement Constraint (3.12): Also known as the power balance constraint

guaranteeing that total power generated by the committed units in period t should be

greater than or equal to the load demand in period t.

Spinning Reserve Constraint (3.13): Total available capacity of the committed units
in period t should be greater than or equal to the sum of the power demand and
minimum spinning reserve requirement in period t. Minimum spinning reserve
requirement is conventionally taken as 10 percent of the load demand in period t.

Unit Output Range Constraints (3.14): Unit i can generate power within its minimum

and maximum generation limits in period t.

Consecutive Number of Committed Periods (3.15, 3.16): Constraints to calculate the

number of consecutive periods that unit i stayed in “On” status up to time period t+1.
If the unit is in “Off” status in period t then, T, should be equal to 0. Otherwise,

calculate T ; by adding one more period to T .

37



In (3.15), M; is a very big number denoting upper bounds for the Consecutive
Number of Committed Periods. In (3.16), m, is a very small number denoting upper

bounds for the Consecutive Number of Committed Periods.

Consecutive Number of Uncommitted Periods (3.17, 3.18): Constraints to calculate

the number of consecutive periods that unit i stayed in “Off” status up to time period

t+1. If the unit is in “On” status in period t, then T°77 should be equal to 0.

it+1
off

Otherwise, calculate T°//, by adding one more period to 79/

In (3.17), M, is a very big number denoting upper bounds for the Consecutive
Number of Uncommitted Periods. In (3.18), m, is a very small number denoting

upper bounds for the Consecutive Number of Uncommitted Periods.

Start-up Cost Constraints (3.19, 3.20, 3.21): If the number of time periods in which

unit i stayed in “Off” status is less than the sum of minimum downtime requirement
and threshold level of unit i, then the start-up cost is equal to hot start-up value.

Otherwise, the start-up cost is equal to cold start-up value.

In (3.19), ms is a very small number denoting upper bounds for Start-up Cost
Constraints. In (3.21), M is a very big number denoting upper bounds for Start-up

Cost Constraints.

Minimum Uptime Constraints (3.22, 3.23, 3.24): A unit cannot be turned off

instantaneously once it is committed. The minimum uptime constraint imposes a
minimum number of working time periods that must elapse before the unit i can be

turned off.

In (3.22), m, is a very small number denoting upper bounds for Minimum Uptime
Constraints. In (3.23), M, is a very big number denoting upper bounds for Minimum

Uptime Constraints.

Minimum Downtime Constraints (3.25, 3.26, 3.27): A unit cannot be turned on

instantaneously once it is decommitted. The minimum downtime constraint imposes
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a minimum number of idle time periods that must elapse before the unit i can be

turned on.

In (3.25), ms is a very small number denoting upper bounds for Minimum Downtime
Constraints. In (3.26), M is a very big number denoting upper bounds for Minimum

Downtime Constraints.

Ramp-up Constraints (3.28, 3.29): Due to the thermal stress limitations and

mechanical characteristics of the generating units, the increase in the power output
level of committed unit i is restricted by its ramp-up rate over consecutive time

periods during which it remains committed.
In (3.29), M, is a very big number denoting upper bounds for Ramp-up Constraints.

Ramp-down Constraints (3.30, 3.31): Due to the thermal stress limitations and

mechanical characteristics of the generating units, the decrease in the power output
level of committed unit i is restricted by its ramp-down rate over consecutive time

periods during which it remains decommitted.

In (3.31), mg is a very small number denoting upper bounds for Ramp-down

Constraints.

(3.32, 3.33): Sign restrictions of decision variables.

3.2  Proposed Genetic Algorithm Based Approach

Since the UCP is shown to be one of the NP-hard problems in the OR literature by
Bendotti et al. (2017), efficient algorithms for the solution of the UCP are required
by system operators in traditional power systems. For this reason, we develop an
effective and efficient evolutionary metaheuristic algorithm, also called as Mixed
Integer Coded Genetic Algorithm, to solve the UCP in negligible computation time
and to obtain high solution quality, since GA-based approaches are proven to be very
efficient in the search of global optimum in large and complex problems like the

UCP in a relatively short computational time. The commitment scheduling part of
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the UCP in which commitment statuses (“On/Off) of units are determined for each
period is dealt with genetic operators. On the other hand, the load dispatching part in
which how much power should be produced by each committed unit is determined
for each period is coped with a modified version of Lambda Iteration Method (I-
LIM).

The main difficulty in developing a GA for the UCP is that it has several constraints
involving both continuous and binary variables. Therefore, a somehow more-
involved algorithm is required in order to tackle with those constraints. For this
purpose, minimum uptime/downtime constraints are handled in the chromosome
representation. In other words, chromosomes attained in the initial population and
during genetic operators always satisfy the minimum uptime/downtime constraints.
Similarly, unit output range constraints and ramp-rate limits are always satisfied as
a result of the rules enforced by the I-LIM. Different from the minimum
uptime/downtime constraints, unit output range and ramp-rate limits; load
requirement constraints and spinning reserve constraints are not guaranteed to be
satisfied during genetic operations. To cope with violations of these two constraints,

penalty mechanisms are adopted.

3.2.1 Improved Lambda Iteration Method to Solve Economic Load

Dispatch Subproblem

In power electronics, the LIM is one of the most practical and useful heuristics to
obtain an optimal or near-optimal solution for the Economic Load Dispatch (ELD)
subproblem of the UCP (Wood, 1996). It is an iterative algorithm which stops
computations when either one of the stopping conditions as the specified tolerance
level for the difference between total load demand and total power generated by the
committed units, and the maximum limit for the number of iterations are satisfied.
The LIM is implemented instead of a commercial optimization solver like CPLEX
for the ELD subproblem because of two reasons. One is its fast convergence to near-

optimal solution for this problem, while the other reason is that the LIM can easily
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be coded in any programming environment. The main logic behind the LIM is that
it defines an initial incremental cost rate A first. Then, it calculates the amount of
power generated by each committed unit by taking the derivative of the convex fuel

cost, and equating it to this incremental cost rate A as it is depicted in (3.35).

dFC(P))

FC(PL) = a; + biPi + Cl'PiZ b dPl

= bi + ZCiPi =1 (3 35)

where a;, b; and c; are positive fuel cost coefficients of generating unit i, P; and
FC(P;) is the power generation level and the fuel cost of generating unit i,
respectively.

According to the difference between total power generated by the committed units
and total load demand, the algorithm incrementally increases or decreases A. By
iteratively repeating this calculation, the LIM finds the load dispatch decisions of
conventional generating units. Nevertheless, the most efficient dispatching decisions
cannot be obtained by applying original LIM iterations. For some instances, it is
observed that a unit, which is more cost-effective in terms of average fuel cost, is
scheduled to produce less power than those with higher average fuel costs. As a
result, dispatching schedules obtained by the original LIM are more expensive in
terms of fuel costs which is the primary contributor to the total operating cost. As it
can be inferred from the second order derivative of the average fuel cost of unit i, it
is a convex function, so it has its minimum value when its first order derivative takes
the value of zero, which is illustrated in (3.36).

d?FC(P) L

- a;
FC(3)=Ff+bi+cipi—> T_Z?M) 5P, >0 (3.36)
i i i

Therefore, we improve the LIM by incorporating Average Fuel Cost Optimization
as well. With this modification the amount of power to be produced by committed

units according to the LIM is adjusted as shown in (3.37, 3.38).

o _ G dFC(R) a;
FC(PL):—+bl+ClPl - = —

—— = =——+¢=0->P" (3.37
P; dP; Pi2+cl A (3.37)

P, = min(PM%*, P;") (3.38)
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In this improved LIM (I-LIM), we perform original LIM iterations to obtain
schedules that are cost-effective by means of Total Fuel Cost Optimization first.
Then, we perform improvement iterations for the committed units to adjust their
power output level in order to minimize Average Fuel Cost. In Figure 3.1,
dispatching decisions of the LIM and I-LIM are illustrated for a 10-Unit system
being subject to different load demands. Total fuel costs of meeting 1500 MW of
load demand for the LIM and I-LIM are calculated as $33,945 and $33,890,
respectively. By applying Average Fuel Cost Optimization iterations, the total fuel
cost is reduced by $55. Similarly, for 1000 MW of load demand, associated fuel costs
are found as $20,758 for the LIM and $20,642 for the I-L1M, which corresponds to

$116 of reduction in total fuel costs.

Load demand=1500 MW Load Demand=1000 MW

[uny
(=)

= N W S 1O 0O
“‘III-

[uny
o

Conventional Generating Units
Conventional Generating Units

R N W S U1 O 0O

o

100 200 300 400 500 0 100 200 300 400 500
Power Generation Level (MW) Power Generation Level (MW)

LIM mI[-LIM LIM ®mI[-LIM

Figure 3.1. Dispatching Decisions of the LIM and I-LIM for a Power System with
10 Conventional Generating Units for Different Load Demands

It is also important to note that we improve the original LIM even more by adding
Step 3.1.2 into the algorithm in order to handle ramp up and ramp down constraints.
For the UCP without ramp rate limits, the I-LIM can be applied by removing Step
3.1.2 from the algorithm. The pseudocode of I-LIM is provided below.
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The pseudocode of the I-LIM:

1. Set iteration limit (Maxlter), tolerance (&) and initial incremental cost rate (1).
2. Set the counter k=0;
3. While (k<Maxlter)
k=k+1
3.1. For each unit i
3.1.1. Calculate power value to be dispatched:

A—b;
Py ==
it ¢

3.1.2. Adjust power output limits by considering ramp-rate limits:
If Uit1 =ui=1
P}m = Max{PM™, P;,_, — Rf*""}
P{** = Min{P}**, P;,_; + R;"}
Else
Piﬂt/lin = PiMin
Piltvlax — PiMax

End if
3.1.3. If Pi<p}f™
Pic= P}{"
Else if Pi;>P}/**
Pit = Pilzlax
End if
End for

3.2. Sum all Pit’s up as total load supply.
3.3. Calculate the difference between the demand and load supply as Ppet.

331 1 P> ;1 =1 2;

Else if Pret< &3 1=A+7;

Else; Break
End if
End while

4. Find FC(P) of each unit i by using P;"".
5. Sort units in ascending order according to FC(P).
6. For each unit i [starting from the beginning of the sorted list].
6.1. If 0 < P, < P}f*
6.1.1. For each unit j [starting from the last of the list &&
ind(j)=ind(i)]
6.1.1.1. If P — PY™ + P, < P/
Pt =Pjt_Pth\:4in+Pit
Pre = Pi™"
Else
Pjt = Pjt - (Pil\t/lax — Py)
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Py = Py *

End if

6.1.1.2. If P,y = P

Break

End if

End for

End if
End for

3.2.2 Mixed Integer Coded Genetic Algorithm to Solve the Unit

Commitment Problem

3.2.2.1  Chromosome Representation

The standard GA approaches for the UCP generally adopt the binary chromosome
representation strategy in which chromosomes are represented by using |N|X|T|
matrix having binary elements of 0 and 1. Different from those GA approaches, we
propose a GA in which a mixed integer chromosome representation strategy is
adopted in order to reduce the excessive memory usage of the pure binary coded
ones, which slows down the computation in return. For this purpose, we aggregate
consecutive time periods in which a unit has the same commitment status by forming
“On/Off” cycles for each unit. As a result of this aggregation, a chromosome is
represented by two subsets:

e InitialStat: It is the red |N|x1 array storing the initial commitment status of each
unit as shown in Figure 3.2. If a unit is committed during the first period; that
is, its commitment status is “On”, then the element in the InitialStat array takes
the value of 1. On the contrary, it takes the value of 0 if its commitment status
is “Off” during the first period.

e Schedule: It is the concatenated matrix whose elements in each row are
associated with the “On/Off” cycles of a unit. Each element in a row takes a
positive integer value representing the ending hour of an “On/Off” cycle for a

unit during the planning horizon as shown in Figure 3.2.
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According to the value in InitialStat subset, the “On” and “Off” cycles are
determined for each unit as shown in Figure 3.2 for a system such that |[N|=7 units
and [T|=24 hours.

Initial Status Set Schedule Set
'
- . | Ending hours of "On/Off" cycles
Initial "On/Off" status of each unit for each unit ]
-

Unit1
Unit 2

Unit 3

Unit 4
Unit 5

Unit 6
Unit7

Figure 3.2. Chromosome Representation for a Power System with 7 Conventional
Generating Units over a 24-h Planning Horizon

3.2.2.2 Initial Population Generation

The minimum uptime/downtime requirements must be met when generating the
initial population, which cannot be satisfied by pure random generation. Thus, we
define an additional set of rules to generate the initial population. The first subset
(InitialStat) of a chromosome is generated by randomly selecting 0 or 1. However,
the generation of the second subset is not as straightforward as the first subset, so the
following algorithm is applied to each unit in a chromosome. The pseudocode of the

initial population generation algorithm is provided below:

1. Determine the number of cycles (c) that the unit will have by randomly selecting
an integer from the set Q.

[ lmax(m’:n o Tl )” 539

c

2. If cis even, define remaining number of “On” & “Off” cycles as coy = copr = S
Otherwise, look at its status in the InitialStat array. If it is “On” (“Off”) during

the first period, then con (orr) = E] , CoFF (ON) = EJ

45



w

Set ending hour of the previous cycle (B) as 1.

Set the last cycle’s ending hour T for each unit.

5. For each cycle except the last one,

5.1. According to its cycle status (“On” or “Off”) (the determination of these
statuses are explained at the end of the previous section), randomly
generate an integer (EndCycle) between [B+ Ty, i T — Copr *
T,\Z{,{l — con * Tt il and coy =coy —1 if it is an ON cycle;

otherwise between [B + T/ . T —copr x T2 . — con * TSR, ;] and

Min, i’ Min, i Min, i

&

Corr = Corr — 1.
5.2. B=B+ EndCycle

3.2.2.3  Penalty Mechanisms

Load requirement constraints and spinning reserve constraints are not guaranteed to
be satisfied during genetic operations. To cope with violations of these two
constraints, penalty mechanisms are adopted in a way that penalties are incurred for
the amount of violations, not for the number of violations. The reason for adopting
such a heavy penalty mechanism is to prevent chromosomes violating all or one of
these two constraints from passing to the next generation and being selected for the
mating pool. The penalty of not meeting load requirements is denoted as PwrP
($MW). Similarly, the penalty for the violation of spinning reserve constraints is
denoted as SRP ($/MW).

3.224 Fitness Function

The fitness function in the MICGA is calculated by taking the reciprocal of the sum
of the total operating cost and total penalty costs for violations of spinning reserve
and load requirement constraints. To preclude premature convergence, the fitness
function is linearly scaled according to the method proposed by Mantawy et al.
(1997) as expressed in (3.40).

fs=af+b (3.40)

46



where f and f; denote the original fitness value and the scaled fitness value; ¢, a and
b is defined as in (3.41, 3.42, 3.43), respectively.

c€[1.22] (3.41)
a= (c—1)ﬁ (3.42)
b=(1-a)x favg (3.43)

wWhere foug, fimax aNd frin are the population average, maximum and minimum of

the original fitness functions.

3.2.25  Selection Operation

In the MICGA, roulette wheel selection method is employed to choose chromosomes
from the mating pool. In this selection method, each slot on the wheel represents a
chromosome from the parent generation; the width of each slot represents the relative
scaled fitness of a given chromosome. Chromosomes having larger scaled fitness
values tend to be selected most likely since they are represented with larger slots on

the roulette wheel.

3.2.2.6 Crossover Operation

The MICGA utilizes a horizontal two-point crossover technique. In other words,
generating unit schedules are not taken apart and exchanged, which is the case in the
horizontal crossover, rather whole schedules of the units between two points
determined randomly are exchanged with the corresponding schedules of the other
parent as illustrated in Figure 3.3.
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Unit 1 Unit 1 Unit 1 Unit 1

Unit 2 Unit 2

Unit 3

Unit 2
Unit 3

Unit 2
Unit 3 Unit 3
Unit 4

Unit 5§

Unit 4
Unit §

Unit 4 Unit 4

Unit § Unit §
Unit &
Unit7

Unit§,
Unit 7

Unit &
Unit 7

Unit &
Unit 7

Figure 3.3. The Two-Point Horizontal Crossover Operation for a Power System with
7 Conventional Generating Units over a 24-h Planning Horizon

The pseudocode of the two-point horizontal crossover operation is provided below:

Crossover (Pary; Parii; Ci; Ci): where Par defines parent chromosomes and
C denotes child chromosomes

If rand (0,1) < P;

1. Randomly select two crossover points horizontally, that is, select the
two points between which whole schedules of the units will be
exchanged by the crossover.

2. Apply two-point crossover to both sets (InitialStat and Schedule sets)

Else; set Ci=Par, and Cy;=Par
End if

3.2.2.7 Mutation Operations

In the MICGA, several mutation operators are used to obtain a diversity of
chromosomes and to explore the neighborhood of a child chromosome for a better
solution quality. For this purpose, five mutation operators are used to change
schedules in child chromosomes. Moreover, an additional mutation operator is
introduced to eliminate excessive reserves of power generation schedules since the
ELD subproblem of the UCP is not solved by using genetic operations, rather it is

externally solved by applying the I-LIM.

Mutation 1

In this mutation, two units in a chromosome are randomly selected. For each unit,
one of its cycle lengths is reduced. Similarly, cycles to be curtailed are also randomly

selected. It is important to note that minimum uptime and downtime constraints are
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also taken into consideration while reducing cycle lengths. Operations of Mutation

1 is illustrated in Figure 3.4.

Cycle Type: ON

Cycle Length (C): 21-7=14 hours

Reduction set Q=[0,C-Tup]u{C}={0, ..., 11, 14}
Generate random number in Q: 5 hours
New Cycle End: 21-5=16

Cycle Type: OFF

Cycle Length (C): 19-15= 4 hours

Reduction set Q=[0,C-Tdwn]u{C}={0, ..., 3, 4}
Generate random number in Q: 1 hour
New Cycle End: 19-1=18

Figure 3.4. Mutation 1 for a Power System with 7 Conventional Generating Units
over a 24-h Planning Horizon

The pseudocode of Mutation 1 is provided below.

Mutationl (C): Pm1 is the occurrence probability of Mutation 1 and C denotes
the child chromosome.

If rand (0,1) < Pm1,;
1. Select two units randomly.
For each unit;
If the schedule length>1
1.1. Randomly select a mutation point (one of the cycle ends).
If (the status of unit i during 1st period is “On” && cycle number is
EVEN) || (the status of unit i during 1st period is “Off” && cycle
number is ODD)
1.2. Calculate the cycle length as A.

Ifa>T),
1.2.1. Construct the following reduction set Q = [0, A —
Tyt U {8}
1.2.2. Select a random integer k among Q.
Ifk+ A
1.2.2.1. Reduce the cycle end by k.
Else
1.2.2.2.  Remove the selected cycle end and the previous
cycle end.
End if
End if

Else if (the status of unit i during 1st period is “On” && cycle number
is ODD) || (the status of unit i during 1st period is “Off” && cycle
number is EVEN)
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1.3. Calculate the cycle length as A.
IfA> Ty,
1.3.1. Construct the following reduction set Q = [0, A —
TI(\)/Ir;n,i] U {A}

1.3.2. Select a random integer k among Q.

Ifk=A
1.3.2.1. Reduce the cycle end by k.
Else
1.3.2.2. Remove the selected cycle end and the previous
cycle end.
End if
End if
End if
End if
End for
Else; Return C
End if
Mutation 2

In this mutation, units are clustered according to their minimum uptime and
downtime requirements so that units will have the same minimum uptime and
downtime requirements. Then, one cluster having at least 2 units is randomly chosen.
Accordingly, two units in that cluster are randomly selected. Mutation 2 is used to
exchange a part of their schedules as illustrated in Figure 3.5. This mutation can be

considered as one-point crossover within a chromosome.

Unit 1
Unit 2
Unit 3
Unit4
Unit §
Unit 6
Unit 7

o 7 (@l —) CEREREN )
) n'-_u. n'n‘-'m

Figure 3.5. Mutation 2 for a Power System with 7 Conventional Generating Units
over a 24-h Planning Horizon
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The pseudo code of Mutation 2 is provided below:

Mutation2 (C): Pm2 is the occurrence probability of Mutation 2 and C denotes
the child chromosome

If rand (0,1) < Pm2;
1. Cluster the units having same minimum uptime (T %},) and downtime

(T limits.
2. Select a cluster consisting of more than 1 unit.
3. Select two units randomly which have the schedule length being at least
2, from that cluster.
4. Select a crossover point from the set of [2, Min(schedule length of 1%
and 2" units)-1]
5. Apply one-point crossover to the schedules of these units.
For each unit;
5.1. Calculate cycle length of unit i at the crossover point as A;.
If (the status of unit i during 1st period is “On” && crossover point is
EVEN) || (the status of unit during i 1st period is “Off” && cycle number
is ODD)
5.2. Remove each cycle end just before and just after the crossover
point.
Else if o, < T/,
5.3. Calculate the lengths of the cycles just before and just after the
crossover point as A7 and A5

* off
IfAT +A<TH  + T vin.i

Min,i
5.3.1. Reduce the cycle end just before the crossover point by
T = A
l

Min,i

5.3.2. Break
Else if A5 + A< T + T/

Min,i Min,i
5.3.3. Increase the cycle end at the crossover point by
T = A
l

Min,i
5.3.4. Break
Else if (the status of the unit i during 1st period is “On” && crossover
point is ODD) || (the status of the unit during i 1st period is “Off” &&
cycle number is EVEN)
5.4. Remove both cycle ends just before and just after the crossover
point.
Else if A;< Tt
5.5. Calculate the lengths of the cycles just before and just after the
crossover point as A7 and A3

IfA; + A< TS + T

Min,i Min,i
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5.5.1. Reduce the cycle end just before the crossover point

by T ¥in,i — Di
5.5.2. Break
Else if A3 + A< T, + Tolh
5.5.3. Increase the cycle end at the crossover point by
glrén,i - Ai
5.5.4. Break
End if
End if
End for
Else; Return C
End if
Mutation 3

In this mutation, two units in a chromosome are randomly selected. For each unit,
one of its cycle lengths is increased. Similarly, cycles are also randomly selected. It
is important to note that minimum uptime and downtime constraints are also taken
into consideration while increasing cycle lengths. Operations of Mutation 1 is

illustrated in Figure 3.6.

. Cycle Type: OFF
Unit 1 n n Next Cycle Length (C): 21-9=12 hours
unitz2( s ) [ s ] Increase set Q=[0,C-Tup]u(C)=(0, .., 9, 12}
Generate random number in Q: 3 hours
units[ 3] (3] New Cycle End: 9+3=12
wa[3] [3]
& Cycle Type: ON
Unit 5 u u Next Cycle Length (C): 19-14= 5 hours
Unit6 n n Increase set Q=[0,C-Tdwn]u{C}={0, .., 4,5}
Generate random number in Q: 2 hours
unitr| 1] 1] New Cycle End: 14+2=16

Figure 3.6. Mutation 3 for a Power System with 7 Conventional Generating Units
over a 24-h Planning Horizon

The pseudocode of Mutation 3 is provided below:

Mutation3 (C): Pm3 is the occurrence probability of Mutation 3 and C denotes
the child chromosome

If rand (0,1) < Pm3;
1. Select two units randomly.
For each unit;
If the schedule length > 1
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1.1. Randomly select a mutation point (one of the cycle ends).
If (the status of unit i during 1st period is “On” && cycle number is
EVEN) || (the status of unit i during 1st period is “Off” && cycle
number is ODD)
1.2. Calculate the next cycle’s length as A.
If A= Ty
1.2.1. Construct the following reduction set Q = [0, A —
TI?/IT;n,i] U {A}
1.2.2. Select a random integer k among Q.
Ifk=A
1.2.3. Increase the cycle end by k.
Else
1.2.4. Remove the selected cycle end and the next cycle end.
End if
End if
Else if (the status of unit i during 1st period is “On” && cycle number
is ODD) || (the status of unit i during 1st period is “Off” && cycle
number is EVEN)
1.3. Calculate the next cycle’s length as A.

If A>T/

Min,i
1.3.1. Construct the following reduction set Q = [0, A —
Thiini] U {43
1.3.2. Select a random integer k among Q.
Ifk+A
1.3.3. Increase the cycle end by k.
Else
1.3.4. Remove the selected cycle end and the next cycle end.
End if
End if
End if
End if
End for
Else; Return C
End if
Mutation 4

In this mutation, two units in a chromosome are randomly selected. For each unit, its
first cycle is removed and “On/Off” statuses of the remaining cycles are adjusted as

depicted in Figure 3.7.
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Unit 1
Unit 2
Unit 3
Unit 4

Unit 5
Unit &

sla|mlo|lw]|le|=

Unit 7

Figure 3.7. Mutation 4 for a Power System with 7 Conventional Generating Units
over a 24-h Planning Horizon

The pseudocode of Mutation 4 is provided below:

Mutation4 (C): Pm4 is the occurrence probability of Mutation 4 and C denotes
the child chromosome
If rand (0,1) < Pmé4,
1. Select two units randomly.
For each unit;
If the schedule length > 1
1.1. Remove the first cycle end.
End if
End for
Else; Return C
End if

Excessive Reserve Elimination Operator

After implementing standard genetic operations such as crossover and mutations,
there might be many units operating at their minimum power output limit in several
time periods. It is an indicator that an excessive number of units is committed in
periods involving excessive reserves. The commitment and dispatching decisions
could be improved by considering the option of turning off several units operating at
their minimum output levels. For this purpose, this operator evaluates whether the
new commitment cycles attained by turning off some of those units could satisfy
both time dependent constraints and meet load demand and spinning reserve

requirements in those time periods as well. If one of these constraints is not satisfied,
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then the original chromosome is retained. Otherwise, the new chromosome is

encoded back as a new child solution.

3.2.2.8 Elite Preservation Mechanism

In order not to lose any fittest solution during the genetic operations, parents and
children in the population are sorted according to their fitness values in descending
order. The first PS (initial population size) of chromosomes is preserved for the

reproduction of the further genetic process in the next generations.

3.3 Implementation of the Genetic Algorithm Based Approach

The MICGA combined with the I-LIM is applied to problem instances in the order

specified in the flowchart demonstrated in Figure 3.8.

Selection Mutation 4

Excessive Reserve

Crossover Elimination

Initialize UCP

parameters Elite Preservation

Mutation1 Mechanism

Initialize
MICGA
parameters

Perform ELD with I-
Mutation 3 LIM, Evaluate Print Schedule
fitness

Initial population
generation

Mutation 2

Perform ELD with I-
LIM, Evaluate
fitness

Figure 3.8. Flowchart of the MICGA
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The pseudocode of the MICGA is provided below:

1.

10.

11.
12.

Initialization of the parameters such as PS, P¢, Pml, Pm2, Pm3, Pm4, Pmb, and
maximum number of generations (G) as the termination criterion.

Generate PS many chromosomes in accordance with the rules in Section
3.2.2.2.

Determine the generation mix of the committed units by performing I-LIM
on the generated solutions.

Calculate production cost of each unit for every hour by using the cost
function defined in Section 3.1. Then, sum them up to calculate total
operation cost.

Determine the periods with load requirement and spinning reserve violation.
If there is any, then calculate the amount of violation of each constraint and
multiply them with the corresponding penalty term. Then, sum them up to
find total penalty cost.

Evaluate fitness using equation defined in Section 3.2.2.3.

Use Roulette Wheel Selection technique to select parent chromosomes for
formation of mating pool.

Randomly perform two-point crossover on parents selected to produce new
off-springs.

Perform mutation operations except Excessive Reserve Elimination operator
to diversify the solution space and modify off-springs. If the generation
number is greater than 6, also apply Excessive Reserve Elimination operator.
Perform I-LIM for calculating production cost and penalty cost for the
infeasible solutions. Evaluate the fitness of offspring.

Apply elite preservation mechanism for preserving the best solutions.

If the maximum number of generations (G) is not reached or the population
does not converge, go to 7,

Otherwise, stop and print UC schedule (both schedule and load dispatch mix)
and plot graphs.
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3.4  Computational Study

The MICGA is coded in MATLAB programming language and it is executed in
Windows 10 environment in a Lenovo ultrabook with Intel(R) Core (TM) i7-6500U
2.6 GHz CPU and 8 GB RAM. Numerical experiments on the performance of the
MICGA are conducted by using a set of three problem instances of the Institute of
Electrical and Electronics Engineers (IEEE) (Datta, 2013). Moreover, the robustness
of the proposed approach is validated by applying statistical analysis to solutions
obtained by the proposed approach. Then, we compare the results of the MICGA

with other GA approaches for each problem instance.

34.1 Problem Instances

To conduct numerical experiments, the MICGA is applied to the original and
modified versions of IEEE 39-bus problem instances. The reason of choosing these
problem instances is that they are the most widely studied benchmark instances to
compare the performances of different solution techniques for the UCP in traditional
power systems with/without ramp rate limits. For each problem instance, the
minimum spinning reserve requirement in any time period and the ramp-rate limits
are taken as 10% of the forecasted load demand at that period and 20% of the unit’s

maximum power output limit, respectively.
Problem Instance 1

This problem instance consists of 39-bus with 10 units. The length of the scheduling
horizon is 24 hours. The conventional unit related data for the 10-Unit power system
are provided in Table 3.1. Hourly forecasted load demands of the system over 24

hours are provided in Table 3.2.
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Table 3.1. Conventional Unit Related Data for IEEE 39-bus Problem Instance

Unitl  Unit2  Unit3  Unit4 Unit5 Unit6é Unit7  Unit8  Unit9  Unit10
P (MwW) 455 455 130 130 162 80 85 55 55 55
P (MW) 150 150 20 20 25 20 25 10 10 10
a; ($) 1000 970 700 680 450 370 480 660 665 670
bi($/MW) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 2592 27.27 27.79
c; ($/MW?) 0.00048 000031 000200 000211 000398 000712 000079  0.00413 000222 0.00173
Tifini (h) 8 8 5 5 6 3 3 1 1 1
Tyl (b 8 8 5 5 6 3 3 1 1 1
sH($) 4500 5000 550 560 900 170 260 30 30 30
sE®) 9000 10000 1100 1120 1800 340 520 60 60 60
T.; (h) 5 5 4 4 4 2 2 0 0 0
Initial Status (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1

NOTE: 1. In Initial Status parameters, (+) sign means a unit has been “On” while (-) sign means a unit has been “Off” for the specified hours

Table 3.2. Hourly Load Demand Forecasts for IEEE 39-bus Problem Instance

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Problem Instance 2

This problem instance is obtained by appropriately scaling Problem Instance 1. For
this purpose, generating units in Table 3.1 are replicated two times to form 20-Unit
problem instance. Also, forecasted load demand requirements in Table 3.2 are
doubled.

Problem Instance 3

Similarly, this problem instance is obtained by also appropriately scaling Problem

Instance 1. For this purpose, generating units in Table 3.1 are replicated four times
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to form 40-Unit problem instance. Also, forecasted load demand requirements in

Table 3.2 are quadruplicated.

3.4.2 Fine Tuning and Test Results

Before solving the UCP with/without ramp rate limits by the MICGA, we apply one-
factor-at-a-time (OFAT) experiments, in which only one variable is changed at a
time, for all algorithm parameters such as population size, crossover and mutation
probabilities instead of a factorial design. The main reason of preferring OFAT
experiments is that all parameters are continuous type whose values can be
discretized by at least nine potential levels, which makes at least 531,441 parameter
combinations. Also, we have three problem instances, each consisting of two cases,
namely with/without ramp-rate limits, which makes 6 problem categories. Hence, it
is not plausible to design full factorial experiments with the required combinations.
One way of dealing with such a heavy requirement is to design reduced factorial
experiments such as fractional factorial experiments in which each factor consists of
two levels, or experiments with the representative runs. However, all parameters are
very effective for exploration and exploitation abilities of the MICGA, so reducing
factor levels of some parameters may cause misleading judgements. Thus, we

conduct OFAT experiments in order to test more levels of each parameter.

Since Problem Instances 2 and 3 are obtained by appropriately scaling the original
IEEE-39 bus problem instance, OFAT experiments are made for only the first
instance. For this purpose, the algorithm parameters for Problem Instance 1 are
arbitrarily set as shown in Table 3.3. MICGA is replicated for 10 times with these
settings for the UCP with/without ramp rate constraints. The average operation costs
of schedules obtained by the MICGA are found as $580,878.63 and $568,794.8,

respectively; for cases with and without ramp rate constraints.
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Table 3.3. Parameter Settings before Fine Tuning for IEEE 39-bus Problem Instance

MICGA without Ramp Rate Limits

MICGA with Ramp Rate Limits

Ps
G
Pc
Pm1
Pm2
Pm3

50
250
0.6
0.4
0.1
0.4

Pm4
Pm5
SRP ($)
PwrP ($)

p
c

0.4
0.7
2490
1736
0.5
1.2

Ps
G
Pc
Pm1
Pm2
Pm3

50
250

Pm4 0.4
Pm5 0.7

0.6 SRP($) 2490
03  PwrP($) 1736

0.2
0.3

p 0.5
c 1.2

During the fine-tuning process, same random number generators are used for each

10 replications so that effects of different parameter values on the solution quality

can be fairly compared.

Having fixed other parameter values, the crossover rate (Pc) is changed in each run

starting from 0.9. As shown in Table 3.4., the best level of P¢ is found as 0.6 with

average operation cost of $ 580,878.6 for the case without ramp rate limits whereas

the rate of 0.5 is chosen for the case with ramp rate limits.

Table 3.4. OFAT Results for Crossover Rates for IEEE 39-bus Problem Instance

MICGA without Ramp Rate MICGA with Ramp Rate
Constraints Constraints
Average Average Average Average
Crossover Rate Operation Costs  Computing Times  Operation Costs  Computing Times

(P) (%) (sec) (%) (sec)
0.9 587,067.1 28.8 568,034.0 36,2
0.8 588,996.7 19.2 568,827.8 37,2
0.7 588,155.5 12.9 568,794.8 36,4
0.6 580,878.6 9.8 568,794.8 76,7
0.5 585,071.8 7.8 568,794.8 28,8
0.4 603,587.4 6.2 568,827.8 28,0
0.3 588,864.1 49 568,794.8 22,3
0.2 620,222.6 6.6 569,077.8 26,0
0.1 637,405.0 2.5 568,692.3 13,4
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After setting the best value of P, the rate of Mutation 1 (Pm1) is changed in a similar
manner for every 10 replications. The best level of Pnl is found as 0.3 and 0.1 for
each case respectively. The associated additional reductions in average operation
costs are $2,303.8 and $830.2 as illustrated in Table 3.5.

Table 3.5. OFAT Results for Mutation 1 Rates for IEEE 39-bus Problem Instance

MICGA without Ramp Rate MICGA with Ramp Rate
Constraints Constraints
Average Average Average Average

Mutation 1 Rate  gperation Costs Computing Times  Operation Costs  Computing Times

(Pm1) 6] (sec) %) (sec)
09 611,966.7 9.6 568,794.8 64.1
0.8 615,248.5 9.2 569,378.3 65.1
0.7 584,981.3 9.5 569,755.6 64.7
0.6 607,723.1 9.6 569,077.8 68.4
0.5 612,006.7 9.6 568,794.8 55.4
0.4 580,878.6 9.5 569,077.8 359
0.3 580,453.9 9.7 568,794.8 29.5
0.2 594,345.4 10.3 569,882.2 22.8
0.1 579,978.9 9.1 567,964.6 14.8

Table 3.6. OFAT Results for Mutation 3 Rates for IEEE 39-bus Problem Instance

MICGA without Ramp Rate MICGA with Ramp Rate
Constraints Constraints
Average Average Average Average

Mutation 3 Rate  gperation Costs ~ Computing Times ~ Operation Costs ~ Computing Times

(Pm3) %) (seq) ) (sec)
0.9 620,443.2 9.8 568,794.8 64.1
0.8 599,398.4 9.2 569,378.3 65.1
0.7 594,844.6 15.7 569,755.6 64.7
0.6 582,666.4 9.2 569,077.8 68.4
0.5 581,126.9 9.4 568,794.8 55.4
0.4 580,453.9 9.4 569,077.8 35.9
0.3 578,150.1 9.2 568,794.8 29.5
0.2 581,317.8 9.4 569,882.2 22.8
0.1 580,077.3 10.4 567,964.6 14.8
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After setting the best values of Pc and Pn1, the rate of Mutation 3 (Pm3) is changed
in a similar manner for every 10 replications. For cases without and with ramp rate
limits, the best level of P3 is found as 0.3 with an additional decrease of $1,579.9
in the average operation cost, and 0.1 with no further change, respectively. The

results of the experiments are summarized in Table 3.6.

After setting the best values of Pc, Pml and Pn3, the rate of Mutation 2 (Pm2) is
changed in a similar manner for every 10 runs. For cases without and with ramp rate
limits, the best level of Pm2 is found as 0.2 with an additional decrease of $1,579.9
in the average operation cost, and 0.5 with no further change in the average cost,

respectively. The results of the experiments are reported in Table 3.7.

Table 3.7. OFAT Results for Mutation 2 Rates for IEEE 39-bus Problem Instance

MICGA without Ramp Rate MICGA with Ramp Rate
Constraints Constraints
Average Average Average Average

Mutation 2 Rate  gperation Costs Computing Times  Operation Costs  Computing Times

(Pm2) 6] (sec) %) (sec)
0.9 659,302.5 11.9 568,794.8 21.3
0.8 589,988.9 28.7 569,699.7 36.1
0.7 632,412.4 12.2 568,827.8 30.9
0.6 579,248.1 11.4 571,913.8 35.0
0.5 619,967.3 14.0 567,964.6 10.5
0.4 584,235.5 13.0 569,882.3 16.0
0.3 577,825.2 14.3 568,794.8 36.2
0.2 576,570.2 10.7 567,964.6 14.8
0.1 578,150.1 11.5 572,003.3 34.1

After setting the best values of P¢, Pm1 Pm3 and Pm2, the rate of Mutation 4 (Pm4) is
changed in a similar manner for every 10 runs. For cases without and with ramp rate
limits, the best level of Pn4 is found as 0.4 with an extra reduction of $351.5, and
with no reduction in the average operation cost, respectively. The results of the

experiments are illustrated in Table 3.8.
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Table 3.8. OFAT Results for Mutation 4 Rates for IEEE 39-bus Problem Instance

MICGA without Ramp Rate MICGA with Ramp Rate
Constraints Constraints
Average Average Average Average

Mutation 4 Rate Operation Costs Computing Times  Operation Costs Computing Times

(Pm4) 8] (sec) %) (sec)
0.9 605,461.7 12.2 571,796.3 60.8
0.8 620,505.7 9.4 569,882.3 52.2
0.7 581,179.7 9,0 569,963.1 64.7
0.6 616,425.0 11.1 567,964.6 11.4
0.5 581,987.4 11.3 569,077.8 19.9
0.4 576,218.7 9.2 567,964.6 10.6
03 578,962.3 9.4 567,964.6 7.7
0.2 576,570.2 9.1 572,533.7 26.1
0.1 581,275.9 9.7 568,827.8 16.6

Table 3.9. OFAT Results for Mutation 5 Rates for IEEE 39-bus Problem Instance

MICGA without Ramp Rate MICGA with Ramp Rate
Constraints Constraints
Average Average Average Average

Mutation 5 Rate  gperation Costs ~ Computing Times  Operation Costs ~Computing Times

(Pm5) )] (sec) %) (sec)
0.9 576,382.4 11.7 567,964.6 30.2
0.8 580,067.9 12.1 572,485.3 14.3
0.7 576,218.7 16.0 567,964.6 10.5
0.6 580,998.3 17.3 569,077.8 25.8
0.5 576,560.0 10.1 568,794.8 23.3
0.4 578,804.3 9.1 568,794.8 15.4
0.3 589,182.7 9.0 571,721.0 31.4
0.2 616,216.0 9.0 569,077.8 14.2
0.1 581,474.7 9.1 568,794.8 21.8

After setting the best values of P¢, Pml, Pm3, Pm2 and Pm4, the rate of Mutation 5,
also called as Excessive Reserve Elimination Operator (Pm5) is changed in a similar
manner for every 10 replications. As illustrated in Table 3.9, the best level of Py5 is
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found as 0.7 with no further reduction in the average operation cost for the case
without ramp rate limits whereas 0.9 is chosen for the case with ramp rate limits
although the average operation cost does not change and the average computing time
increases. This operator is used to exploit solutions nearby by trying to eliminate

excessive reserves, so we prefer higher rates for this operation.

Lastly, according to the best values of rates of genetic operators, the population size
(PS) is increased by 10 individuals starting from a population size of 10 for every 10
replications. For the case without ramp-rate limits, the best level of PS is found as
50 with no further decrease in the average operation cost. Moreover, we investigate
the marginal effect of removing and adding an individual for the population sizes
between 40 and 60. At this point, the maximum number of generation (G) is changed
as a function of the population size to see the interaction between PS and G. Similar
adjustments are also made for the case with ramp-rate limits. Accordingly, the best

pairs of PS and G for each case are found as (45, 250) and (40, 200), respectively.

As a result of fine tuning the algorithm parameters, the best parameter settings of the

MICGA for the cases with/without ramp rate limits are listed in Table 3.10.

Table 3.10. The Best Parameter Settings for MICGA after Fine Tuning for IEEE 39-
bus Problem Instance

MICGA without Ramp Rate Limits MICGA with Ramp Rate Limits

PS 45 P4 0.4 PS 40 P4 0.4

G 250 Pm5 0.7 G 200 Pm5 0.9

Pc 0.6 SRP ($) 2490 P 0.5 SRP ($) 2490
Pml 0.3 PwrP ($) 1736 Pml 0.1 PwrP ($) 1736
Pm2 0.2 p 0.5 Pm2 0.5 D 0.5
Pm3 0.3 c 1.2 Pm3 0.1 c 1.2

Without considering the ramp rate constraints, MICGA is implemented to 10-Unit,
20-Unit and 40-Unit problem instances for 30 times with different initial solutions
and predetermined parameter settings. For each instance, the best, average and the

worst solutions in terms of total operating costs are summarized in Table 3.11.
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Likewise, the minimum, average and maximum computing times are provided in
Table 3.12.

Table 3.11. Best, Average and Worst Results of Total Operating Costs for All
Problem Instances without Ramp Rate Constraints

Total Operating Cost ($)
Problem Instance Best Average Worst
1 (10-Unit) ‘ 563,937.7 566,918.1 569,913.2
2 (20-Unit) ‘ 1,124,432.0 1,124,738.5 1,125,285.7
3 (40-Unit) ‘ 2,246,312.5 2,247,320.4 2,248,714.5

Table 3.12. Computing Times for All Problem Instances without Ramp Rate
Constraints

Computing Time (Min)

Problem Instance Minimum  Average Maximum Standard Deviation

1 (10-Unit) ‘ 0.17 0.45 0.71 0.18
2 (20-Unit) 0.17 0.65 1.09 0.30
3 (40-Unit) ‘ 0.17 1.11 1.66 0.47

MICGA is implemented to 10-Unit, 20-Unit and 40-Unit problem instances for 30
times with different initial solutions and predetermined parameter settings by also
considering the ramp rate constraints. For each instance, the best, average and the
worst solutions in terms of total operating costs are summarized in Table 3.13.
Likewise, the minimum, average and maximum computing times are provided in
Table 3.14.

Table 3.13. Best, Average and Worst Results of Total Operating Costs for All
Problem Instances with Ramp Rate Constraints

Total Operating Cost ($)
Problem Instance Best Average Worst
1 (10-Unit) ‘ 565,964.6 568,252.3 571,752.3
2 (20-Unit) ‘ 1,130,388.7 1,134,692.1 1,142,828.1
3 (40-Unit) ‘ 2,259,981.2 2,262,163.2 2,264,752.5
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Table 3.14. Computing Times for All Problem Instances with Ramp Rate Constraints

Computing Time (Min)

Problem Instance Minimum  Average Maximum Standard Deviation

1 (10-Unit) ‘ 0.11 0.45 0.84 0.22

2 (20-Unit) ‘ 0.17 0.49 1.09 0.30

3 (40-Unit) ‘ 0.96 1.60 1.70 0.15
3.4.3 Statistical Analysis on Robustness

Since the GA based approaches have a stochastic nature, it is very important to
validate their robustness in the solution quality. For this purpose, we first conduct
variability analysis for the best solutions with/without ramp rate limits. Secondly, we
make an interval estimation for the average solutions by constructing two-sided

confidence intervals to test the precision of the MICGA.

To analyze the robustness of MICGA, three performance measures are calculated by
using best, average and worst operating costs as listed in Table 3.15. The first one
compares the best and the average solutions for each problem instance and it is
always below 0.55% for all instances. The second one indicates the difference
between the best and worst solutions, which is never larger than 1.1%. Similarly, the
last one is the ratio between the standard deviation of the total operating costs over
30 replications and the best solution which is always smaller than 0.35% for any
problem instance. Those values are even smaller in 20-Unit and 40-Unit problem
instances. That is because the best solution obtained in the 10-Unit problem instance
is appropriately scaled and put as a seed solution in initial populations to reduce the
computing time required for Problem Instances 2 and 3, also to increase solution

quality.
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Table 3.15. Variability Analysis on Total Operating Costs for All Problem Instances
without the Ramp Rate Constraints

Problem Instance Standard
(Average-Best) /Best (Worst-Best) /Best Deviation/Best
1 (10-Unit) ‘ 0.53% 1.06% 0.32%
2 (20-Unit) ‘ 0.03% 0.08% 0.02%
3 (40-Unit) ‘ 0.04% 0.11% 0.03%

Thanks to 30 independent replications, we apply Central Limit Theorem to construct
two-sided confidence intervals for the average total costs of each problem instance
with 5% and 2% significance levels. As it can be inferred from the results reported
in Table 3.16, the confidence intervals are narrow and indicate high precision for the

cases without ramp rate constraints.

Table 3.16. Two-Sided Confidence Intervals on Average Total Costs for All Problem
Instances without Ramp Rate Constraints

95 % Confidence Interval 98 % Confidence Interval

Problem Instance  Lower Bound Upper Bound Lower Bound Upper Bound

1 (10-Unit) ‘ 566,250.8 567,585.2 566,114.8  567,721.2
2 (20-Unit) ‘ 1,124,669.3  1,124,806.7  1,124,655.3  1,124,820.7
3 (40-Unit) ‘ 2,247,0713  2247,568.7  2,247,020.6  2,247,619.4

Similar analyses are also performed for each problem instance considering the ramp-
rate constraints and the results are listed in Table 3.17. For all instances, the
variability between the best and the average solutions is always below 0.4%.
Secondly, the difference between the best and worst solutions is never larger than
1.1%. Lastly, the ratio between the standard deviation of the total operating costs
over 30 replications and the best solution is always smaller than 0.35% for any
problem instance.
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Table 3.17. Variability Analysis on Total Operating Costs for All Problem Instances
with Ramp Rate Constraints

Problem Instance Standard
(Average-Best) /Best (Worst-Best) /Best Deviation/Best
1 (10-Unit) ‘ 0.40% 1.02% 0.29%
2 (20-Unit) ‘ 0.38% 1.10% 0.32%
3 (40-Unit) 0.10% 0.21% 0.08%

In a similar manner, we construct two-sided confidence intervals for the average total
costs of each problem instance with 5 percent and 2 percent significance level. As it
can be inferred from the results reported in Table 3.18, the confidence intervals are
narrow and indicate high precision for the cases with ramp rate constraints as well.
Table 3.18. Two-Sided Confidence Intervals on Average Total Costs for All Problem
Instances with Ramp Rate Constraints

95 % Confidence Interval 98 % Confidence Interval

Problem Instance  Lower Bound Upper Bound Lower Bound Upper Bound

1 (10-Unit) ‘ 567,634.5 568,870.2 567,508.5 568,996.1
2 (20-Unit) ‘ 1,133,352.8  1,136,031.4 1,133,079.7 1,136,304.5
3 (40-Unit) ‘ 2,261,5109  2,262,815.6 2,261,3779  2,262,948.6

As a result of the variability analyses and precision tests, the MICGA is robust in
terms of solution quality for both cases, ie., with and without ramp rate constraints,
which is very important for a conventional power generation system since the
generation companies are reluctant and hesitant to implement solution techniques

with high variability and less precision to avoid schedules with poor solution quality.

3.4.4 Comparison with other Genetic Algorithm Based Approaches

The MICGA is comparable with other techniques in terms of several performance
measures such as the best solution quality and the required computing time. By using
these measures, MICGA is compared with some other GA techniques developed in
the last two decades as reported in Table 3.19. These algorithms are implemented for
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the same problem instances subject to the same set of constraints (but without the
ramp-rate constraints) explained in Section 3.1. The results of these algorithms are
directly taken from the original publications. Hence, comparing the algorithms in
terms of their computation times will not be fair and informative enough since those
algorithms are executed in different programming languages in different
computational environments. For the UCP variant with the ramp-rate constraints,
MICGA could not be compared with those GA techniques since the results of this
variant were not reported in any publication.

Table 3.19. Comparison of the Best Solution Qualities and Average Computing
Times for All Problem Instances without Ramp Rate Constraints

Total Operating Cost ($) Average Computing Time (Min)

Problem Problem Problem Problem Problem Problem

Test Instance 1 Instance 2 Instance 3 Instance1 Instance2 Instance 3

GA Approach Runs (10-Unit) (20-Unit) (40-Unit) (10-Unit) (20-Unit) (40-Unit)
Senjyu (2002) 20 563,977.0 1,125,516.0 2,249,715.0 <1.5 <4 <11
Valenzuela (2002) N/A 578,566.0 1,272,845.2 2,545,690.4 <5 <9 <18
Swarup (2003) N/A 603,423.6 1,327,532.1 2,655,064.2 <15 <4 <8
Damousis (2004) 10 566,404.0 1,127,244.0 2,254,123.0 <0.5 <0.5 <1
Lazo (2011) 20 563,938.0

Datta (2013) 30 563,938.0 1,124,290.0 2,246,165.0 <0.5 <0.5 <0.5
Li (2013) 20 563,938.0

Roque (2014) 20 563,938.0 1,123,955.0 2,244,345.0 <0.5 <0.5 <15
Singhal (2014) 10 563,938.0 - - <05

Farag (2015) 10 564,230.0

Salimian (2015) N/A 563,939.5

Bukhari (2016) 25 563,938.0 1,123,297.0 2,242,887.0

Saber (2016) 32 563,938.0 1,124,565.0 - <0.5 <0.5

Trivedi (2016) 20 563,959.0 1,123,410.0 2,243,971.0 <0.6 <15 <35
Proposed MICGA 30 563,937.7 1,124,432.0 2,246,312.5 <0.55 <0.65 <11

For Problem Instance 1, in terms of the solution quality, the proposed MICGA is
able to obtain the best known solution with the parameter setting found in Section
3.4.2 like Lazo (2011), Datta (2013), Li (2013), Roque (2014), Singhal (2014),
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Bukhari (2016) and Saber (2016), as shown in Table 3.19 where the number of test
runs when obtaining the corresponding results are also reported for each approach.
Besides, it is observed that the average computing time of the MICGA is much
smaller than some of the previous approaches whereas it is closer to ones obtaining
the best solution quality. Similarly, for Problem Instance 2 and 3, it is observed that
the computational time of MICGA is much smaller than those of most of the previous
approaches and comparable with those of Damousis (2002), Datta (2013) and
Singhal (2016). Apart from the average computing times, the proposed MICGA has
also good performance in terms of the solution quality since the total operating cost
of the best schedule attained by the MICGA is at most 0.1% and 0.15% greater than
the best solutions obtained by Roque (2014), Bukhari (2016), Trivedi (2016) and
Datta (2013) for Problem Instances 2 and 3. Furthermore, the MICGA can handle
the ramp rate constraints, which are important for operations planning of

conventional generating units, while others cannot.
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CHAPTER 4

UNIT COMMITMENT PROBLEM FOR WIND INTEGRATED HYBRID POWER
SYSTEMS UNDER SUPPLY/DEMAND UNCERTAINTY

Since there is a global tendency to integrate renewable energy sources in a power
network to mitigate greenhouse gas emissions and to replace traditional generation,
wind power generation has gained significant attention around the world, especially
in European countries, for the last decade. Due to intermittent nature of wind, one of
the most challenging issues that most of the power system operators are facing is
how to manage uncertainty in a power system with significant penetration of wind
power generation. In such an environment, there are three major sources of
uncertainty. The first one arises from the errors in load demand forecasts for a
specific time period. The second one stems from unexpected deviations by wind
based generating units from their forecasted production schedules. The third one is
caused by sudden outages of traditional generating units. Especially, the last two
sources of uncertainty have to be handled very carefully when making unit
commitment and load dispatch decisions for conventional generating units. An easy
and straightforward method to deal with those uncertainties is to commit more
spinning reserve (SR) from the conventional generating units so that they can

guarantee more reliable power generation.

4.1  Uncertainty Modelling of Supply and Demand

In general, uncertainty due to load demand and wind power generation is modelled
via continuous random variables since they cannot be accurately forecasted, and the
errors have a continuous nature. However, outages in conventional generation are

modelled via discrete random variables because of their discrete nature.
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41.1 Forecasts for Load Demand

According to Gross et al. (1987) and Kirschen et al. (2009), load demand forecasts
are modelled as the real load plus a random error term following symmetrical
probability distribution such as Normal distribution having zero mean and positive

variance with the following expression:
Ll = E(LY) = L? + &k (4.1)

where L{, L%, F represent forecasted load, actual load and an error related to load
forecast in period t, respectively. The mean and variance of the error term of the load
forecast in period t are calculated as follows:

E(ef) =E(LY) —E(L) =0 (4.2)

(08)? = E(()?) = (E(eh))” = E(eD)?) = E(ELH — LH?) (4.3)

10000

(07)* = (L)? (4.4)

where o} and k% represent the standard deviation of &£ and the accuracy of the

forecasting method, respectively.

41.2 Forecasts for Wind Power Generation

In power systems, the wind power forecasts are generated from wind speed forecasts.
According to Liu et al. (2012), wind speed forecast can also be modelled as the sum
of expected wind speed and an error term following Normal distribution with mean
zero. Since a wind turbine has a nonlinear relationship while converting wind speed
into wind power, wind power forecast error does not follow a Normal distribution.
Instead, it is observed to follow a g distribution in different studies carried out by
Bofinger et al. (2002) and Fabbri et al. (2005). Although wind power forecast error
follows a £ distribution, since we are considering the integration of a large number

of wind farms located in different regions or areas in a power system, it could be
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approximated as Normal distribution thanks to the central limit theorem. Besides,
such an approximation can be applied to any form of a smooth probability
distribution (Ross, 2007), which is one of the commonly used methods in the
literature. With the assumption that a hybrid power system contains many wind
turbines dispersed in a wide geographical area, the wind power forecasts are also

modelled by the same relation as in load demand forecasts:
WS = EW®) =wge +¢Vf (4.5)

where Wtf , W& and &}" represent forecasted wind power, actual wind power and an
error related to wind power forecast in period t, respectively. The mean of the error

term in period t is calculated as follows:

INF| Tf

E(el) = EWS — EW® = > > (E(Wig) ~EWire)) =0 (4.6)

f=1i=1
where NF, ny and W;¢, denote the set of wind farms in a power system and number

of wind turbines in wind farm f, the random wind power generated by wind turbine

i in wind farm f in period t, respectively.

The calculation of the variance of wind power forecast errors are not as
straightforward as in the case of load demand forecast errors since the wind power
generation is dependent on weather conditions of wind farms located in different
regions. Hence, correlations of the wind power generation within a wind farm and
between wind farms must also be taken into account when calculating the overall
variance. The relationship of wind power forecast errors in the same wind farm f
can be approximated by a correlation coefficient p depending on the dispersion of
wind turbines within the wind farm and wind speeds in the region. Similarly, the
relationship of wind power forecast errors between wind farms f and g can be
approximated by a correlation coefficient ps,. When those wind farms are located
in regions that are far away from each other, the dependence between wind farms

significantly decrease, so py, takes very small values, even a value of zero.
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(0/")? = E((e/")*) — E([")* = E((¢[")?) (4.7)

INF| Ty INF| Tf

() = E ZZWW ZZE(Wlft)

f=1i=
INF| Tf

Z D E(WE)

=1i=1
INFI ng=1 ng

+2 Z z Z Prroisedire + E(Wire ) E(W ff))

f=1 i=1 j=i+1
INFI-1 |NF| Tf Tg

+2 z Z zz PraOiseTige + E(WireJE(W gt))

f=1 g=f+1i= 1]
INF| Tf

Z D (4.8)

When identical wind turbines are used in all wind farms, then the variance of wind

power forecast errors is simplified down to the following expression (Soder, 1993):

INF| INF|
(0f)* = Z neE (W) + Z ny(ny — DE(WireWjre)
=1 =1
INF|-1 |NF| INF| 2
+ Z Z ”f”gE(Wlftht) znfE(Wift)
f=1 g=f+1
INF| "
= Z ne(1+ (ny — 1)pys)ofye + (nfE(Wift))
f=
TNFI
+2 Z nemy (pfgaiftajgt + E(Wise)E (ngt))
g=f+1
INF] 2
=1

where g;¢, denotes the standard deviation of wind power generated by wind turbine

i in wind farm f in period t and ¢/¥ represents the standard deviation of £V
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4.1.3 Forecasts for Net Load Demand

Load demand forecasts and wind power generation forecasts are linked with each
other by considering generation of the renewable energy sources as a negative load

under certain assumptions, which are listed below:

e No interdependency between load demand forecasts and wind power

forecasts

e Identically distributed forecast errors (Normal distribution)

By doing so, the net load demand in each period can be represented as the subtraction
of total power generated by the renewable energy resources from system’s total load

demand in each period:
D/ = 1S - w/ =pg +¢P (4.10)

where D& = L — W2 representing the net load demand in period t and e? = &f +

g representing forecast error of the net load demand in period t.

Accordingly, the forecast error of the net load demand in period t follows Normal

distribution with expectation zero and the variance as:

(09)? = (0f)* + (0")? (4.11)
414 Reliability Model for Conventional Generation

A conventional generating unit’s availability in each period can be modeled as a two-
state Discrete Time Markov Process in which states represent whether a generating
unit is available (fully functional) or it is not available (broken down) (Billinton and
Allan, 1996). That is, there are two types of events that can occur at the beginning of
each period, which are failure and repair. The repair and failure durations are
exponentially distributed with rates A; and y;, respectively. A rate diagram for two-

state Discrete Time Markov Process is depicted in Figure 4.1.
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Available Unavailable

Ai

Figure 4.1. Two-State Discrete Time Markov Process Rate Diagram for the
Reliability Model of a Conventional Generating Unit

For a conventional generating unit i, its availability and unavailability status should
be defined as time-dependent. The expressions for unavailability and availability
probabilities are summarized below:

U;(t) = adh (1 — e~ittt); A;() =1-U;() (4.12)
Hi + A

The first term in U;(t) is the probability of “Failure” type of event that occurs first
for unit i, and the second one is the proability of an event occurrence in a time interval
with length of t for unit i. In power systems, U;(t) can also be referred to as Failure

Probability or Outage Replacement Rate of unit i (ORR;).

Since we are solving a day ahead UCP with hourly time periods, we can assume that
a unit cannot be repaired or renewed in such a short time, so the repair rates A; can
be ignored in the reliability model shown in Figure 4.1. With this simplifying
assumption, unavailability and availability probabilities of unit i can be expressed

as:

Ul(t) =1- e_#it; Al(t) =1- Ul(t) (4 13)

4141 Capacity Outage Probability Table

To calculate the expected energy not served (EENS) for a given load level, it is
essential to know the probability of the specific capacity outage or the loss of

generation level. For this purpose, Capacity Outage Probability Table (COPT) is
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constructed for a specific set of conventional generating units. As the name implies,
it is a table that consists of capacity outage levels and the corresponding probabilities.
Those probabilities can easily be calculated by using Binomial distribution if all
generating units were identical; that is, each had the same capacity level and failure
probability. However, in general, it is not the case for a real power generation system.
Hence, it is needed to develop an efficient algorithm to evaluate each combination
having same the capacity outage level in order to find the corresponding outage
probability. The steps of our algorithm is provided below.

1. Evaluate every possible failure combination for a given set of generating
units.

2. For each combination, calculate the capacity outage and the probability of
the associated combination.

3. For each capacity outage, sum the failure probabilities and let it be the

probability of the associated capacity outage.

Consider a system with three generating units, two of which have a 12 MW capacity
while one of which has a 20 MW capacity with a failure probability of 0.02. By using
the abovementioned algorithm, COPT can be easily constructed for this 3-Unit

system and it is shown in Table 4.1.

Table 4.1. Capacity Outage Probability Table for a 3-Unit System

) ) Capacity Outage o
Unit(s) Out of Service Probability
(MW)
None 0 0.941192 = (0.98) (0.98) (0.98)
) ) 0.038416 = (0.02) (0.98) (0.98) +
Unit 1 or Unit 2 12
(0.98) (0.02) (0.98)

Unit 3 20 0.019208 = (0.98) (0.98) (0.02)
Units 1 and 2 24 0.000392 = (0.02) (0.02) (0.98)
Units 1 and 3 or . 0.000784 = (0.02) (0.98) (0.02) +

Units 2 and 3 (0.98) (0.02) (0.02)
Units 1, 2 and 3 44 0.000008 = (0.02) (0.02) (0.02)
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There are also other algorithms to build a capacity outage probability table by
constructing it in a recursive manner, by taking the continuous approximation of
outages or by applying Fourier transform method based on the Gram-Charlier
expansion to the continuous approximation. These are explained in detail by
Billinton and Allan (1996).

4.1.4.2  Reliability Indices for Power Generation

In general, there are deterministic and probabilistic power system reliability
assessment methods to evaluate the adequacy of generation capacity. Deterministic
indices have an important drawback, since they do not take the stochastic nature of
the load demand and conventional generation system into account when assessing
the reliability of the whole system, whereas the probabilistic indices can indicate
more significant insights on the reliability performance of the whole system. The
probabilistic methods can be further divided into two classes, namely, Monte Carlo
simulation and analytical techniques. In Monte Carlo simulation, the reliability
indices are calculated as mean statistics found by actual system simulation. In
analytical techniques, these indices are directly expressed by mathematical and
probabilistic expressions. The most commonly used reliability indices are Loss of
Load Probability (LOLP), Loss of Load Expectation (LOLE), Expected Load Not
Served (ELNS) and Expected Energy Not Served (EENS) which are summarized
below (Billinton and Allan, 1996; Prada, 1999).

Loss of Load Probability

LOLP; is used to evaluate the generation adequacy to meet the load demand in a
conventional generation system in period t. It can also be considered how many times
the available generation capacity is expected to be insufficient to satisfy the load
demand in the long run. Its value is evaluated by the probability of the available
capacity being less than the load demand. It is given by the expression below, where

L is a continuous random variable corresponding to the load demand in period t, C;
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is a discrete random variable corresponding to the available capacity in period t. It is
not possible to explicitly know the distribution of L, — C; since they are different
types of random variables. Thus, by using Bayesian Theorem, this probability
expression can be evaluated by conditioning L, on the possible discrete values of C;

as follows:

LOLP, = P(L; > C,) = Z(P(Lt > C|C,=C)P(C=C)) (4.14)
k

The probability P(C; = C,) can be found from the COPT tables easily. For a
capacity outage amount of 0, C,, is the capacity in use when k™ outage occurs and
it is found by the difference C/ — 0, where C{ is the installed capacity level in period
t. When the load is assumed to be known and constant, L, will be equal to its
expected value L, for period t. In this case, the conditional probability
P(L, > C;|C, = C;) can take two distinct values. It will be 0 if L, < C, and 1 if
L, > C,. For this constant load assumption, LOLP, can be found directly from the
COPT tables. When the load demand is expressed in terms of forecasts with an error
having a known distribution, this conditional probability P(L, > C;|C; = C;) can be
calculated for a given capacity in use C, with the help of its probability density

function of f;(L,) as follows:

P(L; > C|C; = Cy) = f fi (L) dl (4.15)
Ck

Loss of Load Expectation

When the load is expressed in terms of load duration curves, the conditional
probability for LOLP; has a different meaning which is the percentage of time that
the load demand cannot be met by the capacity in use in period t and denoted by Ty.
As a result, the following expression defines the expected loss of load duration or
the expected percentage of time the load demand will be less than or equal to the

capacity in use during period t.
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LOLE, = Z(Tk P(C, = Cp)) (4.16)
k
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Figure 4.2. Representation of a Load Duration Curve

To find Ty, load duration curves are used. In these curves, the load level in a time
period (hour) is estimated by a nonlinear curve between maximum and minimum
expected load levels. In Figure 4.2, the horizontal axis represents the percentage of
time the load demand will exceed the capacity in use, and the vertical axis represents
the system load level and the installed capacity level. T} is found by locating O, on
this curve as shown in Figure 4.2. The value projected on horizontal axis gives T}, as
the percentage of time in which the load demand will be greater than the available

generation capacity when there is a capacity outage level of 0,.
Expected Load Not Served

Since LOLE, just gives an information on the expected duration of the loss of load
during period t, another reliability index is used to estimate the expected amount of
load demand that cannot be served during period t which is denoted by ELNS; as

follows:

ELNS, = Z(E[Lt > C,|C, = C] P(C, = Cy)) (4.17)
k
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where E[L; > C;|C; = Cy] is the expected load demand that cannot be served during
period t, given that the capacity in use in period t is equal to Cj. This conditional
expectation is calculated by a probability density function of f;(L) with the following
integral:

o

ELNSF = E[L; > C,|C, = Ci] = f(L —Cp) fi(L)dl (4.18)

Ck
When the load duration curves are used to evaluate this conditional expectation, it is
simply the difference between the maximum load level of period t and the capacity
in use during this period as shown in Figure 4.3. By multiplying this conditional
expectation with the corresponding probability of the capacity outage, and summing

them up for all possible outages, ELNS; for period t is estimated.

Installed Capacity Level

4

Reserve
Maximum i
Load Level H i

Capacity
ELNSy iOutage (0))

Minimum
Load Level

Load Demand

0% Percentage of Time 100 %

Figure 4.3. Expected Load Not Served for the ki Outage by Using the Load Duration
Curve

Expected Energy Not Served

Another reliability index is defined for estimating the expected amount of energy
that cannot be served during a period. EENS; is one of the most commonly used
indices in power generation scheduling since it represents the expected lost amount
of energy (MWHh) in terms of the consumer’s point of view. It is calculated by the

following expression where h denotes the length of time period t:
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EENS, = Z(h E[L; > C;|C, = C, ] P(C, = Cy)) (4.19)
k

The conditional expectation in this expression is calculated by using the probability
density function of the load demand as explained in ELNS;. It should be noted that

when the length of the time period is 1 hour, then EENS, and ELNS, are equal.
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Figure 4.4. Expected Energy Not Served for the k™ Outage by Using the Load
Duration Curve

When the load duration curves are used to evaluate EENS, of an outage Kk, it is the
area between the load duration curve and the capacity in use when k™ outage occurs
in this period. It is shown by the shaded area in Figure 4.4 and calculated by the
following integral where g;(L) denotes the load duration function in terms of load
and h,.(X) denotes the same function in terms of percentage of time that the load

exceeds the capacity in use, and LY%* is the maximum load level in period t:

Max
Ly Tk

EENS} = f (L —Cy) g, (L)dl = f x h,(X)dx (4.20)
Ck 0

By multiplying the EENSF with the corresponding probability of the capacity
outage, and summing them up for all possible outages, EENS; for period t is

estimated as follows:
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EENS, = z (EENSE P(C. = Cy)) (4.21)
k

4.2  Proposed Time-decoupled Quadratic Programming Based Approach

In the proposed approach, the unit commitment problem with supply/demand
uncertainty is time-decoupled by decomposing the original UCP into T many
subproblems each of which is a single-period UCP defined for each period in the
planning horizon. Accordingly, each subproblem is optimally solved by balancing
the potential benefits to be obtained by reducing EENS;, and potential losses caused
by not committing enough reserve in period t. In time-decoupled subproblems, time
dependent UCP constraints, namely minimum uptime, minimum downtime, ramp-
up and ramp-down constraints, are also taken into account. Although our time-
decoupled method may yield near optimal solutions, it is very difficult to optimize
the UCP under supply/demand uncertainties for the whole planning horizon without
using some kind of risk levels like maximum allowable EENS,, LOLP, or LOLE, for
the periods. However, defining such risk levels results in overlooking the costs due
to variabilities in load demand forecasts, wind power forecasts, and potential
outages. For this reason, unit commitment (UC), economic load dispatch (ELD) and
spinning reserve decisions are individually determined for each period through time-
decoupled cost-benefit optimization rather than multi-period optimization.

4.2.1 Uncertainty Caused by Net Load Demand Forecast Errors

As it is pointed out in Section 4.1 it is not possible to know exact load and power
generation by the renewable energy sources before solving UC and ELD problem.
That is, their values should be estimated by using forecasting tools prior to their

actual realizations so that the day-ahead UC, ELD and SR decisions can be made.

To cope with the forecasting errors of load and wind power generation, the term net

load demand (D{) has been defined in Section 4.1.3. According to this new
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definition, it is shown that the standard deviation of aggregate forecast error (¢?) can
be calculated as the square root of the sum of the variances of corresponding
Normally distributed forecast errors. However, th Is a continuous random variable
as a result of £? whereas the uncertainties related to the reliability of conventional
generating units are discrete random variables; in addition, the Normal distribution
has a complex and nonlinear nature. To tackle with this situation, the probability

distribution of D{ is discretized by using a multi-interval approximation. For this

purpose, the cumulative density function of th is divided into K. odd number of

intervals whose probability values (p;) are represented by the following expression:

= - 4.22
P = Vol -(§-0et) ™ Plol-(-t)et) e
The mid-value of each interval (a;) is considered as the value of the whole interval.
They are represented by the following expression:

K
a, = D] — (7L — 1+ 0.5) ol (4.23)

In our approach, the seven-interval approximation is used for the discretization of

the Normally Distributed th in each period t as shown in Figure 4.5.

A
p=0006  p;=0.061  p;;=0242 pp=0382 p,=0242  py;=0.061 py;=0.006

TN

1IN

__v——‘l/w A 2 L 2 Y 1;\r\v—,

1 1 i

—pf gl ! _pf

ap=D-0¢ +  ap=D;
'

1

: :
a;=Df-342 | a,=D-24? aw=D{+ZaP£ ay=D.+34?)

]

1

I 111 . v

1
L)
L] i
] 1
) I
1 I
v . VI VII !
L) I
L] i
1 I
1 I

Ll B

>

pf-3562  Df-2500 pfa562  plos5e?  Df+050? D150 Di+2562 D350

Figure 4.5. Seven-Interval Approximation for the Normally Distributed Net Load
Demand for Period t
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4.2.2 Reliability Based Uncertainty in Conventional Generation

To compute EENS; in a conventional generation system, there are several factors
such as conventional units operating, their forced outage probabilities, amount of SR
to be committed by “On” units and the load demand. For a given set of units in “On”
status, the COPT could be constructed by using our algorithm explained in Section
4.1.4. Hence, it is essential to make commitment decisions before making COPT
calculations. By using the COPT and the conditional expectation method explained
in Section 4.1.4, EENS, can be computed for a given combination of “On” units, but
EENS calculations for all possible committed capacity levels require a significant
computational burden in a complex power system. The reason is that the number of
outage combinations to be evaluated increases exponentially as the number of “On”

units in the system increases.
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Figure 4.6. Relationship between Expected Energy Not Served and Committed
Capacity, Adapted from Ortega-Vazquez et al. (2006)
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Ortega-Vazquez et al. (2006) shows the nonlinear relationship between EENS; and
Committed Capacity (CC) for IEEE Reliability Test System having 26 units with a
generation capacity of 3105 MW for a constant load demand level of 1690 MW as
demonstrated in Figure 4.6. There is an inverse relationship between EENS; and CC.
Thus, smaller CC indicates that most of the generating units are loaded heavily

whereas higher CC indicates that generation units are loaded partially.

The concept that such a nonlinear relationship can be approximated by its piecewise
linear equivalent is first proposed by Ortega-Vazquez et al. (2006). Starting from
upper left to lower right in Figure 4.6, they show that the first breakpoint represents
CC=Load Level, the second one corresponds to CC=Load Level + Capacity of the
Largest “On’” unit, the third one denotes CC=Load Level + Capacities of the Largest
and the Second Largest “On” units, and so on. The reason of a sudden drop between
adjacent break points is that one more unit should fail simultaneously with the other
ones at that break point. To determine EENS, of any breakpoint, they propose an
auxiliary optimization method instead of full search for the unit combination having
maximum EENS, with CC of a breakpoint since such a search would be very time-
consuming. Thus, they suggest using a weighted sum approach with three main

objectives:

e The committed capacity should be very small
e The number of committed units should be very small

e The unit combination with the most unreliable units should be in operation

However, the combination obtained by the weighted sum approach depends heavily
on the weights given to those objectives. Hence, finding the right set of weights
requires extensive experimentation for each load level in each period, which is a

computationally prohibitive operation for a day ahead UCP.

To overcome this problem, we propose the use of preemptive (lexicographic)
optimization instead of a weighted sum approach to find the right combination owing
to its parameter-free structure. To apply this method, the objectives are sorted from

the most important one to the least important one as follows:
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1. The most important objective: Having the smallest committed capacity is the

top priority objective since CC being closer to the value on the break point

results in a more accurate approximation:
Z1 = Z Ci)/i (4 24‘)
i

where z; is the objective function representing the total committed capacity,
y; and C; are binary variable representing “On (1) / Off (0)” status of unit i
and maximum generation capacity of unit i, respectively.

2. The second important one: Having the smallest number of committed units

for a given CC is the second priority objective since EENS; is maximized

when there is a smaller number of units that yields the same CC value:

v Z v; (4.25)

where z, is the objective function representing the total number of committed
units.

3. The least important one: Having the most unreliable units for a given CC is

the third priority objective since EENS; is maximized with the most

unreliable set of units that yields the same CC value:
Z3 = 1_[((1 — ORR)Y;) (4.26)
i

where z; is the objective function representing the reliability of the units
committed, ORR; is the outage replacement rate of unit i. To handle the

nonlinearity in z5, it can be represented as follows:
23 = Z(ln(l — ORR) 7)) (4.27)
i

Then, the following lexicographic optimization method is applied to each breakpoint
in Figure 4.6. Its pseudocode is provided below where N is the set of units and M is

the CC value on a breakpoint.

87



Step 1: Let k=1 and solve the following linear mathematical model.

Min{ z,}

s.to. zCi}/i > M
i

yi €{0,1} Vi €EN

Let the optimal solution for the 1% objective, z; = d,

Step 2: k=k+1
If k >3; Stop, the resulting y; (s) are the unit combination that will

maximize EENS, on the breakpoint.

Otherwise, solve the following linear mathematical model.

Min{ z; }

s.to. ZCiyi > M
i

zi=d; Vj=1,.. k-1

y; €{0,1} Vi €N

Let the optimal objective value for the k™ objective, z; = d, and

repeat Step 2.

4.2.3 Expected Energy Not Served (EENS) under Supply/Demand

Uncertainty: Piecewise Linear Approximation

When approximating EENS,, we are inspired from the work of Ortega-Vazquez et
al. (2006) in which they model EENS, by assuming that the load demand is
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deterministic and the reliability of conventional generating units is the only source
of uncertainty. Different from their work, we consider uncertainties in the load
demand, wind power generation and the reliability of conventional generating units.
In our approach, we propose two methods for integrating the net load uncertainty
with the reliability model of conventional generation. In Method I, EENS; is
approximated with one piecewise linear model whereas, in Method Il, EENS; is

approximated with seven piecewise linear models corresponding to the intervals in

the seven-interval approximation of th explained in Section 4.2.1.

4.23.1  Approximation Method |

In Figure 4.7, the black lines indicate the nonlinear relationship between EENS, and

CC, and the red lines show its piecewise linear approximation.
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With this method, the CC values at each breakpoint can be modeled as:

e At the first breakpoint: CC=Expected Net Load Level in period t,

e At the second breakpoint: CC=Expected Net Load Level in period t +

Capacity of the Largest conventional generating unit available in period t,

e At the third breakpoint: CC=Expected Net Load Level in period t +

Capacities of the Largest and the Second Largest conventional generating
units available in period t,

e At the last breakpoint: CC=Total installed capacity available in period t

After determining the committed capacities at each breakpoint, the right combination
of units that will maximize the expected energy not served at each breakpoint is
found by using the lexicographic optimization method explained in Section 4.2.2.
According to the combinations of units for each breakpoint b, the corresponding
EENS}, values are calculated by using the seven-interval approximation of th and
the COPT tables. For each mid-value (a;) of the net load demand in the seven-
interval approximation, EENS}, at breakpoint b corresponding to interval | is
calculated by summing the load shedding level with the probabilities of outage k
causing a load shedding over all possible outages. Since the planning horizon (24 h)
in our UCP formulation consists of 1-hour time periods, the EENS}, and ELNS},

will be equal as shown below:

EENS}, = ELNS}, = z(Max(al — C, 0) P(C, = Cp)) (4.28)
k

By taking the expected value of EENS;, over all possible intervals in the seven-

interval approximation, the EENS,,; value of the breakpoint b is calculated:

EENS,, = E [EENS},] = Z(pl EENS},) (4.29)
l

It is important to note that this procedure to find EENS,; estimation must be repeated

for each breakpoint and for each period in the planning horizon prior to
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implementing our approach so that the nonlinear concave relationship between CC

and EENS; can be modelled for each period.

4.2.3.2  Approximation Method 11

In this method, the uncertainty in the net load demand is separately integrated into
the EENS, approximation. Since the uncertainty is discretized by the seven-interval
approximation as discussed in Section 4.1, EENS, can be approximated by separate
piecewise linear models associated with the mid-values of each load demand interval
as shown in Figure 4.8.
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Figure 4.8. Piecewise Linear Approximation of Expected Energy Not Served and
Committed Capacity for Interval | in Seven Interval Approximation

With this method, the mid-value a; is considered as the load demand in each

piecewise linear model of interval | so the CC' values at each breakpoint can be
modeled as:
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e At the first breakpoint: CC'=The mid-value of interval | in period t,

e At the second breakpoint: CC'=The mid-value of interval | in period t +

Capacity of the Largest conventional generating unit available in period t,

e At the third breakpoint: CC'=The mid-value of interval | in period t +

Capacities of the Largest and the Second Largest conventional generating

units available in period t,

At the last breakpoint: CC'=Total installed capacity available in period t

After determining the committed capacities at each breakpoint, the right combination
of units that will maximize the expected energy not served at each breakpoint is
found by using the lexicographic optimization method explained in Section 4.2.2.
According to the combinations of units for each breakpoint b, the corresponding
EENS}, values are calculated by using the seven-interval approximation and the
COPT tables. EENS}, at breakpoint b for interval | is calculated by summing the
load shedding level with the probabilities of outage k causing a load shedding over

all possible outages:

EENS!, = ELNS}, = Z(Max(al — C, 0) P(C, = Cy)) (4.30)
k

Similar to Method I, this procedure must also be repeated for each breakpoint, for
each interval of load demand, and for each period in the planning horizon prior to
implementing our approach so that the nonlinear concave relationship between CC'

and EENS} can be modelled for each load demand interval in each period.

4.2.4 Mixed Integer Quadratic Programming (MIQP) Formulations

The proposed method consists of two MIQP formulations distinguished by the type
of expected energy not served approximation used in each formulation. Those
formulations have been implemented in MATLAB by using CPLEX Optimizer. In

these formulations, standard UCP constraints such as power balance constraints and

92



minimum/maximum generation limits are taken into account. Furthermore, the time-
dependent constraints like the minimum uptime/downtime constraints and the ramp-
up/ramp-down limits are separately included in the mathematical models of each
period since the UCP is solved in a time-decoupled manner. Different from the
standard formulations of the UCP, for each period, the reserves are taken as decision
variables whose values are determined by the trade-off between total operational
costs and the expected cost of load shedding (energy not served) instead of using
standard spinning reserve requirements. For this purpose, EENS; is piecewise
linearly approximated as described in Section 4.2.3, and the value of lost load
(VOLL) is used to calculate the expected cost of lost shedding. VOLL is defined as
the dollar value that users place on the loss for outage of 1 MWh of electricity; that
is, it is the opportunity cost for households and businesses that are deprived of 1
MWh electricity. According to Kariuki et al. (1996), in general, it is estimated by

consumer Surveys.

4.24.1  Time-decoupled MIQP Formulation I

In this formulation, the objective function consists of fuel costs, start-up costs,
reserve allocation costs and expected cost of load shedding. The last two of these
costs have a linear relationship with the corresponding decision variables as reserves
and EENS; modelled by Approximation Method | explained in Section 4.2.3. EENS;
is piecewise linearly approximated with additional auxiliary variables, and

constraints by using A-method (Bradley et al., 1977).

The start-up costs depend on the commitment status in consecutive two time periods
and the number of time periods in which a unit is in “Off” status. According to the
length of the “Off” periods, the start-up costs are modelled by a two-step function
comprising of hot start-up and cold start-up costs. This nonlinear relationship could
be linearized by defining additional auxiliary binary variables and additional logical

constraints. This conversion is not needed in our time-decoupled formulation, so the
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start-up costs are calculated as parameters prior to implementing our formulation for

each time period.

For conventional generating units, by assuming that their efficiencies increase
monotonically with their power generation levels, the fuel costs are represented by a
convex quadratic function which can also be approximated piecewise linearly by
using A-method. However, this approximation is not necessary in our formulation,
because it is a MIQP type model in which the objective function contains both
separable, strictly convex quadratic terms and linear terms; the decision variables
include both binary and continuous ones, and the constraint set is linear.
Furthermore, Quadratic Programming (QP) models have similar optimality
conditions with Linear Programming (LP) models; owing to this property, there are
specialized algorithms like Phase | Simplex to solve QP. The detailed explanation of
the optimality conditions and some algorithms for QP can be found in Bradley et al.
(1977). The mathematical model for Formulation I (MIQP 1), is provided in this
section. For each period in the planning horizon, this model is sequentially solved to

obtain near-optimal schedules for the commitment, generation and reserve.
Assumptions

e The electricity market is vertically integrated, and customers place a high
value on the energy not served. Hence, a power generation company is
obliged to meet the load demand of its customers exactly.

e The load demands during the planning horizon are forecasted, so their actual
realizations might be different.

e Similarly, the wind power generation during the planning horizon is also
forecasted. Thus, the overproduction or underproduction by the wind turbines
are possible.

e The errors in wind power and load demand forecasts are Normally
distributed.

e During the planning horizon, conventional generating units are subject to

unexpected outages which are exponentially distributed.
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e The efficiency of a conventional generating unit shows a monotonic increase
as it is more heavily loaded.

e A conventional generating unit can produce power within its available power
generation limits.

e The power produced can be transmitted to the demand points without any
transmission limits.

e Power losses during power transmission are negligible.
Sets and Indices

N: Set of conventional generating units
i € N: Conventional generating unit i
T: Set of time periods (hours)

t € T: Time period t

NP™ c N: Set of conventional generating units that should remain committed in

period t to satisfy minimum uptime requirement:
NP ={i € N:0 < T3" < Tyin i} (4.31)

Nt"ff c N: Set of conventional generating units that should remain uncommitted in

period t to satisfy minimum downtime requirement:

N =tieno<T <1 3 (4.32)

Min, i

Additional Sets and Indices for EENS, Approximation:

B, Set of breakpoints in the piecewise linear EENS, approximation in period t

b € B,: Breakpoint b for the piecewise linear EENS, approximation in period t

E;: Set of segments in the piecewise linear EENS; approximation in period t 3
|E¢| = |B| — 1

e € E;: Segment e for the piecewise linear EENS; approximation in period t
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Parameters

a;, b;, c;: Fuel cost coefficients of unit i ($, /MW, $/MW?, respectively)
q;: Reserve allocation costs of unit i ($/MW)

VOLL: Value of lost load ($/MWh)

SH: Hot startup cost of unit i ($)

SE: Cold startup cost of unit i ($)

T, ;: Startup time threshold of unit i (hour)

Tyy2T . Minimum downtime of unit i once it is shutdown (hour)

Min, i~ Minimum uptime of unit i once it is started up (hour)
PM™: Minimum power output level of unit i (MW)

pMax: Maximum power output level of unit i (MW)

R;"": Ramp-up limit of unit i (MW)

R&™: Ramp-down limit of unit i (MW)

D{: Net load demand in period t (MW)3

Tftff: Number of periods that unit i remained decommitted up to period t (hour)

T?*: Number of periods that unit i remained committed up to period t (hour)

S;i:- Start-up cost of unit i in period t generally depends on the number of time periods

in which the unit is in “Off” status. According to the length of the “Off” periods,

start-up costs are classified as hot start-up or cold start-up costs ($):

Min,i — Min, i

c . _ of f off
Sie =7 Si if U1 =0 & Ty" >Tyyp ;i + T

0 lf ul't_l = 1

Additional Parameters for EENS, Approximation:

S wuy, =0 & T < T <1 4T,

xpt. CC value on breakpoint b in the piecewise linear EENS; approximation for

period t (MW)

Ypt: EENS; value on breakpoint b in the piecewise linear EENS, approximation for

period t (MWh)
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CVE,: |B;| x |E¢| coverage matrix for adjacent breakpoints on each segment in the

piecewise linear EENS; approximation for period t:

1 if b=eand b =e+ 1inperiodt
t _
CVy, =
0 otherwise

Decision Variables

u;.: Commitment status of unit i in period t:

1 if unitiis committed in period t

0 otherwise

P;;: Amount of electricity generated by unit i in period t
R;;: Reserve allocated by unit i in period t

CC;: Committed capacity in period t

EENS,: Expected energy not served in period t

P}™: Minimum power output level of unit i in period t:

Min down . _ _
MaX{Pl ’Pit—l - Rl } lf uit_l - uit - 1
pMin —
it
pMm otherwise

P}*: Maximum power output level of unit i in period t:

Min{PM%*, P,y + R/P}  if wypq =u =1

Max __
Pit

pMax otherwise
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Additional Variables for EENS, Approximation:

Apt: Weight of breakpoint b on the piecewise linear EENS, approximation for period
t
Ver: Segment e that CC; lies on the piecewise linear EENS, approximation for period
t:

1 if CC;lies on segment e in period t

Ver = (4.38)
0 otherwise
Mathematical Model: MIQP |
[N|
Min Z(aiuit + biPit + Cl'Pl'tz + qiRl't + Situit) + (VOLL)(EENSLL) (4 39)
i=1
subject to
[N
z P, > D} (4.40)
i=1
Pi{™ < P < PR vi (4.41)
PR < PY %y Vi (4.42)
PIinIax S Pit—l + Rlllp + M1(2 - uit—l - ul't) VL (4 43)
P = PYMyy Vi (4.44)
PMn > p.  — R¥Y 4 m (2 — uje_q —uy) Vi (4.45)
Ryt = Min{R"? + Py_y + My(1 — wyp_q), PY*}uy — Py Vi (4.46)
[N
cc, = Z(Pl-t +Ry) (4.47)
i=1
uy =1 Vi€eN" (4.48)
u, =0 vieN'T (4.49)
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[Bel

CC = z Xpe Apt (4.50)
b=1
|Bel
EENS, = Z Ve Ao (4.51)
|Be|
Z Ay =1 (4.52)
b=1
|Et|
Z Ve = 1 (4.53)
< (Vi x| [ ] (4.54)
/1|Bt|t LJA
P, pMax pMin p. >0 Vi (4.55)
Ape =0 Vb (4.56)
CC, EENS, > 0 (4.57)
w; € {0,1} Vi (4.58)
ver €1{0,1} Ve (4.59)

Objective Function (4.39)

The objective is to minimize the sum of the fuel costs and the reserve allocation costs
of committed units, the start-up costs of uncommitted units, and the expected cost of

load shedding due to supply/demand uncertainty.

Constraints

Net Load Requirement Constraint (4.40): Also known as the power balance

constraint which guarantees that total power generated by the committed units in

period t should be greater than or equal to the net load demand in that period.
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Unit Output Range Constraints (4.41): Unit i can generate power within its minimum

and maximum generation limits available for period t.

Maximum Generation Limit Constraints (4.42): The maximum generation limit of

unit i can be at most equal to its maximum generation capacity if it is committed in

period t.

Ramp-up Constraints (4.43): Due to the thermal stress limitations and mechanical

characteristics of the conventional generating units, the increase in the power output
level of a committed unit is restricted by its ramp-up rate over consecutive time

periods during which it remains committed.
In (4.43) M, is a very large number denoting upper bounds for Ramp-up Constraints.

Minimum Generation Limit Constraints (4.44): The minimum generation limit of

unit i should be at least equal to its maximum generation capacity if it is committed

in period t.

Ramp-down Constraints (4.45): Due to the thermal stress limitations and mechanical

characteristics of the conventional generating units, the decrease in the power output
level of a committed unit is restricted by its ramp-down rate over consecutive time

periods during which it remains committed.

In (4.45), m, is a very small number denoting lower bounds for Ramp-down

Constraints

Reserve Constraints (4.46): Reserve allocated by unit i in period t should be equal

to the difference between its maximum generation capacity and generation level in
that period if unit i is not committed in the previous period t-1. Otherwise, it can take
the difference between the minimum of the sum of its ramp-up rate and generation
level in the previous period t-1 and maximum capacity for period t, and its generation

level in that period.

In (4.46), M, is a very large number for Reserve Constraints.
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Committed Capacity Constraint (4.47): Committed capacity in period t is the sum of

power generations and reserves in that period.

Minimum Uptime Constraints (4.48): A unit cannot be turned off instantaneously

once it is committed. The minimum uptime constraint imposes a minimum number

of working time periods that must elapse before unit i can be turned off.

Minimum Downtime Constraints (4.49): A unit cannot be turned on instantaneously

once it is decommitted. The minimum downtime constraint imposes a minimum

number of idle time periods that must elapse before unit i can be turned on.

Piecewise Linear Approximation Constraints for EENS, (4.50,...,4.54): The values

of CC; and EENS, at each breakpoint for period t are determined according to the
rules defined for Approximation Method I in Section 4.2.3. Accordingly, the concave
nonlinear relationship between CC; and EENS, is converted into its piecewise linear

approximation with the following constraints:

e (4.50): The approximation of Committed Capacity in period t.

(4.51): The approximation of Expected Energy Not Served in period t.
(4.52): The weights in the approximation for period t should add up to 1.

(4.53): Committed capacity can lie on one of the segments in the
approximation for period t.

e (4.54): There is a concave relationship between CC, and EENS;. Since we
are trying to minimize the cost of EENS,, we need to define the following set
of constraints to satisfy the adjacency criterion (at most two adjacent weights

can be non-zero) in the piecewise linear approximation for period t.

(4.55,...,4.59): Sign restrictions of decision variables.

4.2.4.2  Time-decoupled MIQP Formulation 11

The only difference of this formulation from the MIQP | is that the approximation

of EENS; which is modelled by using Approximation Method Il explained in Section
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4.2.3. EENS,; of each interval in the seven-interval approximation of the net load
demand is piecewise linearly approximated with additional auxiliary variables, and
constraints by using A-method (Bradley et al., 1977). The associated modifications

for Formulation I (MIQP I1) are provided below.

Sets and Indices

For each interval | in the seven-interval approximation of D/, the following sets are
defined instead of additional sets defined in the MIQP 1.
Additional Sets and Indices for EENS, Approximation:

L: Set of net load demand intervals in the seven-interval approximation of th

l € L: Net load demand interval |

B}: Set of breakpoints in the piecewise linear EENS, approximation of interval | in
period t

b, € B}: Breakpoint b for the piecewise linear EENS, approximation of interval | in
period t

E}: Set of segments in the piecewise linear EENS, approximation of interval | in
period t 3 |Ef| = |Bl| - 1

e; € E}: Segment e, for the piecewise linear EENS, approximation of interval | in
period t

Parameters

For each interval | in the seven-interval approximation of D/, the following
parameters are defined instead of the additional parameters defined in the MIQP 1.

Additional Parameters for EENS, Approximation:

At Net load demand value (mid-value) of interval | in period t (MW)
p;: Probability that load demand takes a value of AL
x},lt: CC value at breakpoint b, in the piecewise linear EENS; approximation for

interval | in period t (MW)
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y},lt: EENS, value on breakpoint b, in the piecewise linear EENS; approximation for
interval | in period t (MWh)

CVbtlel: |B£| x |E}| coverage matrix for adjacent breakpoints on each segment in the
piecewise linear EENS, approximation for interval | and period t:

1 if by =e,and b, = ¢; + 1in period t

CVite, = (4.60)

0 otherwise

Decision Variables

For each interval | in the seven-interval approximation of D/, the following decision
variables are defined instead of the additional variables defined in the MIQP 1.

Additional Variables for EENS, Approximation:

EENS}: Expected energy not served for interval | in period t

/’lﬁ,lt: Weight of breakpoint b; on the piecewise linear EENS, approximation for
interval | in period t

vélt: Segment e; that CC; lies on the piecewise linear EENS; approximation for

interval | in period t:

1 if CC;lies on segment e; in period t

vl = 4.61
et 0 otherwise ( )

Constraints

The constraints other than the piecewise linear approximation constraints for EENS,
remain the same. 1,; and v,; are removed from the sign restriction constraints in
MIQP 1.

Piecewise Linear Approximation Constraints for EENS,: The values of CC; and

EENS} at each breakpoint for interval | in period t are determined according to the

rules defined for Approximation Method Il in Section 4.2.3. Accordingly, the
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concave nonlinear relationship between CC, and EENS} is converted into its

piecewise linear approximation for each interval | with the following constraints:

e The approximation of Committed Capacity in period t:

|B¢|
cc, = Z xhe Ay VI (4.62)
b;=1

e The approximation of Expected Energy Not Served for interval | in period t:

|B¢|
EENS! = Z yhedb, vl (4.63)
b;=1
e The weights in the approximation for interval | in period t should add up to
1:

D Ap=1 i (4.64)

e Committed capacity can lie on one of the segments in the approximation for

interval | in period t:

|E{|
Dvhy=1 i (4.65)
e;=1

e Asshown in Section 4.2.3, there is a concave relationship between CC; and
EENS}. Since we are implicitly trying to minimize the cost of EENS}, we
need to define the following set of constraints to satisfy the adjacency
criterion (at most two adjacent weights can be non-zero) in the piecewise

linear approximation for interval | in period t:

Alu Vit

< Cvllt :

2 ’ Bf| x | Ef|
|B|t |E¢|e

vl (4.66)
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e EENS, in period t is found by taking the expected value of EENS} over all

possible net load demand intervals:

IL|
EENS, = z p, EENS} (4.67)
=1

Sign Restrictions of Decision Variables for EENS,:

EENS! >0 VI (4.68)
Ape =0 VbVl (4.69)
vt €{0,1} Ve, Vi (4.70)

Mathematical Model: MIQP 11

IN|
Min Z(aiuit r biPit + CiPitZ + qiRit a7 Situit) + (VOLL)(EENSt)
i=1
subject to
(4.40), ..., (4.49), (4.55), (4.57), (4.58), (4.62), ..., (4.70)

4.2.5 Valve Point Loading Effect (VPLE)

Due to the VPLE, a conventional generating unit has a rippling efficiency curve as
its power generation level increases; that is, the efficiency of a conventional
generating unit does not increase monotonically as it is more heavily loaded in
practice. There are valves that control its fuel consumption rate by using separate
nozzle groups. Each nozzle group achieves its best efficiency when generating at its
maximum power output level which is also known as the valve point. As a result,
when the power generation level is tried to be increased, valves are sequentially
opened to achieve the highest possible efficiency for a given power generation level.
This situation causes a rippling effect on the efficiency of a conventional generating
unit as its fuel consumption rate increases. This rippling effect is demonstrated in

Figure 4.9 for a steam turbine. Decker et al. (1958) show that a turbine loaded at a
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valve point is operating with its maximum efficiency at that loading level before the
next valve opens whereas its efficiency reduces as it is working off a valve point
until its loading level reaches the next valve point. This is a result of a sudden
increase in the incremental heat rate because of a rapid increase in the throttling
losses when an extra valve first opens (Zobaa et al., 2018). Hence, in a complex
power system, most of the conventional generating units should generate power
output at one of their valve points to maximize the power generation efficiency of
the whole system.
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Figure 4.9. Valve Point Loading Effect on Efficiency of a Steam Turbine, Adapted
from Decker et al. (1958)

Mathematical models in Section 4.2.4 somehow ignore this important fact by
assuming that the efficiency of a conventional generating unit increases
monotonically with its power generation level. The UCP with valve point loading
effects brings a change in the fuel cost representation. For this purpose, the convex
quadratic fuel cost function is superimposed with an absolute sine function; that is,
the valve point loading part of the fuel cost, with the following modification where

d; and e; are valve point loading coefficients of unit i:

FC(P,) = a; + b;P; + c; P? + |d; sin(e; (P; — PM™)) | (4.71)
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The absolute sine function models the efficiency reduction beyond the valve points
by increasing the fuel consumption rate, which causes an absolute sinusoidal

fluctuation in the convex quadratic fuel cost as shown in Figure 4.10.

A

Fuel Cost Functionwith
Valve Point Loading

Fuel Cost Functionwithout
Valve Point Loading

Fuel Cost (%)

Valve Point 2

Valve Point 1

Power Output Level of a Generating Unit

™mMw)

Figure 4.10. Fuel Cost Curve with/without Valve Point Loading Effect

Because of the valve point loading cost, the objective function becomes non-convex,
non-smooth and hence hard to solve. To overcome this situation, the absolute sine
function in the modified fuel cost representation is converted into its multi-area
piecewise linear equivalent that consists of absolute sine areas K as shown in
Figure 4.11. The number of areas in the sine approximation for unit i is calculated

with the following expression:

(4.72)

IK?| = , P -
l l T

It is to be noted that the quality of the multi-area piecewise linear approximation can
be improved by increasing the number of breakpoints in a sine area. In Figure 4.11,
the five-point piecewise linear approximation of the valve point loading cost is

demonstrated with red lines.
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Figure 4.11. Five Point Piecewise Linear Approximation of the 1% Sine Area of the
Valve Point Loading Cost

4251  Time-decoupled MIQP Formulations with the VPLE

In our multi-area piecewise linear approximation of the VPLE, we reduce the total
number of decision variables necessary for the approximation. For this purpose, for
each conventional generating unit, we define the weight variables of breakpoints and
binary variables indicating the segments for only the first sine area since there is a
similar relationship between power generation level and valve point loading cost in

each area. In other words, for each generating unit, the same sine area of the VPLE

repeats in every ez power generation level starting from PM™", so the approximation
i

of the first sine area is shifted by eﬁ for the successive sine areas. By reducing the
l

total number of decision variables, the total number of constraints required for the
approximation is also reduced accordingly. As a result, the model size with the VPLE
becomes more manageable for real power systems with many conventional

generating units.

By relaxing the monotonic efficiency increase assumption; accordingly, modifying

the objective function and the constraint set, the multi-area piecewise linear
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approximation of the VPLE can be integrated into each mathematical model
explained in Section 4.2.4. These modifications do not change the model type since
we are adding valve point loading costs as linear terms into the objective function;
similarly, additional constraints defined for the piecewise linear approximation of
the VPLE are also linear. Thus, modified formulations are still MIQP. Different from
MIQP | and MIQP II, for each conventional generating unit, valve point loading
costs are now added to the objective function. The power balance constraints,
minimum/maximum generation limits, the minimum uptime/downtime constraints,
the ramp-up/ramp-down limits, the reserve allocation and committed capacity
constraints are modelled in the same way as in MIQP | and MIQP 1. Besides, EENS,
can be modelled by using both approximation methods described in Sections 4.2.3.
Therefore, only modifications for the VPLE are provided in this section, and the
associated modified models are called as MIQP I-VPLE and MIQP II-VPLE. For
each period in the planning horizon, the modified formulations are sequentially
solved to obtain near-optimal schedules for the commitment, generation and reserve

similarly.
Sets and Indices

For the multi-area piecewise linear approximation of VPLE, the following sets are
defined.
Additional Sets and Indices for VPLE Approximation:

K/?: Set of sine areas in the multi-area VPLE approximation for unit i

k; € K'": Sine area k; in the multi-area VPLE approximation for unit i

G;: Set of breakpoints in a sine area of the multi-area VPLE approximation for unit i
gi € G;: Breakpoint g; in a sine area of the multi-area VPLE approximation for unit
i

H;: Set of segments in a sine area of the multi-area VPLE approximation for unit i
3 [Hi| = 1G;| -1

h; € H;: Segment h; in a sine area of the multi-area VPLE approximation for unit i
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Parameters

For the multi-area piecewise linear approximation of VPLE, the following
parameters are defined.

Additional Parameters for VPLE Approximation:

d;, e;: Valve point loading cost coefficients of unit i ($ and MW, respectively)
ng{: Power generation level of unit i at breakpoint g; in the VPLE approximation
(MW):

T

VP Min
Xgy =P+ (g —1
su =R+ 0 Digpe,

(4.73)

Yg.:: Valve point loading cost of unit i at breakpoint g; in the VPLE approximation
($):
VP _ : VP Min
Vi = |di sin (ei (xgii — P ))l (4.74)

CM;ihi: |G;| x |H;| coverage matrix for adjacent breakpoints on each segment in the

VVPLE approximation for unit i:

i - 1 if g;=h;and g; = h; + 1in period t (4.75)
gihi — ;
0 otherwise

Decision Variables
For the multi-area piecewise linear approximation of VPLE, the following variables

are defined.

Additional Variables for VPLE Approximation:

VP;;: Valve point loading cost of unit i in period t

6,‘3’}}: Sine area k; that P;; lies on the VPLE approximation for unit i in period t:

svr _ 1 if P; lies on sine area k; for unit i in period t (4.76)

0 otherwise

wy.it- Weight of breakpoint g; on the VPLE approximation for unit i in period t

®n,ic: Segment h; that P, lies on the VPLE approximation for unit i in period t:
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~ 1 if P; lies on segment h; for unit i in period ¢t (4.77)
(phiit - :
0 otherwise

Objective Function
By adding valve point loading costs to the objective function defined in MIQP Model
| in Section 4.2.4, the modified objective function becomes:

IN|
Min Z(aiuit + biPit + CiPit2 + VPit + qiRit + Situit) + (VOLL)(EENSt) (4 78)

i=1

Constraints

Sine Area ldentification Constraints: If unit i generates power in period t, then P;;

should lie on sine area k; and produce within the power generation range of that area

in that period:
. T
Py = PM" + (g, — 1) o+ m,(1—6¢F,) Vk;, Vi (4.79)
i

where m,, is a very small number denoting lower bounds for Sine Area Identification

Constraints.
. T
P < PM" + g, ot M3(1—-6¢5) Vk;, Vi (4.80)
i

where Mj; is a very large number denoting upper bounds for Sine Area Identification

Constraints.

Piecewise Linear Approximation Constraints for VPLE: For unit i, the absolute

sinusoidal relationship between P;; and VP, is converted into its multi-area

piecewise linear approximation with the following constraints:

e The approximation of power generation level of unit i in period t:
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|K;] |G
7T .
P, — Z ki = D= 8% = Z X Wy Vi (4.81)
k=1 '

gi=1
The approximation of valve point loading cost of unit i in period t:

|Gyl
VP, = Z VP W Vi (4.82)

gi=1

If unit i is committed in period t, then P;; should lie on one of the sine areas
in that period:

Z Sjyie = Ui Vi (4.83)

If unit i is committed in period t, then P;, should lie on one of the sine areas;
accordingly, the sum of weights should be equal to one in the approximation

for unit i in that period:

[Gil |Ki|

D o= ) 8V vi (4.84)
g9i=1 ki=1

If unit i is committed in period t, then P;; should lie on one of the sine areas;
accordingly, it should lie on one of the segments in the approximation for
unit i in that period:

|Hj Kl
D e = ) 8 i (4.85)
h;=1 ki=1

There is a concave relationship between P;; and VP;;. Since we are trying to
minimize valve point loading cost (V P;;), we need to define the following set
of constraints to satisfy the adjacency criterion (at most two adjacent weights

can be non-zero) in the piecewise linear approximation for unit i in period t:
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Wiit _ P1it
[ s ] < CMigximy | Vi (4.86)
Wig,it PH;it
Sign Restrictions of Decision Variables for VPLE:
VP =0 Vi (4.87)
Wy =0 Vg, Vi (4.88)
®nic € {0,1} Vhy, Vi (4.89)
Spyie € 10,1} Vk;, Vi (4.90)
Mathematical Model: MIQP I-VPLE
IN|
Min Z(aiuit + biPit + CiPitz + VPit + qiRit + Situit) + (VOLL)(EENSt)
i=1
subject to
(4.40), ..., (4.59), (4.79), ..., (4.90)
Mathematical Model: MIQP I1-VPLE
IN|
Min Z(aiuit + biPit + CiPit2 + VPl't + qiRit + Situl’t) + (VOLL)(EENSt)
i=1
subject to

(4.40), ..., (4.49), (4.55), (4.57), (4.58), (4.62), ..., (4.70), (4.79), ..., (4.90)
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4.3  Computational Study

The proposed time-decoupled MIQP formulations are coded in MATLAB
programming language and solved via CPLEX for MATLAB toolbox provided by
IBM ILOG CPLEX Optimizer 12.9.0. The model is executed in Windows 10
environment in a Lenovo ultrabook with Intel(R) Core (TM) i7-6500U 2.6 GHz CPU
and 8 GB RAM. Numerical experiments on the performance of the approaches are
conducted by using a set of three problem instances of IEEE which are explained in
detail in the subsequent sections. First of all, two EENS approximations are
compared for the case without the VPLE. Then, test and sensitivity analysis results
are provided for the cases with/without the VPLE. Lastly, our time-decoupled
stochastic MIQP formulations are compared with the UCP formulations enforcing
traditional deterministic reserve policies for both UCP variants with/without the
VPLE.

43.1 Problem Instances

To conduct numerical experiments, the time-decoupled MIQP models are applied to
IEEE 24-bus, 30-bus problem instances and its duplicated version by considering
significant wind penetration with six wind farms. For each instance, the ramp rate
limits are set to be 20% of the unit’s maximum power output limit. The reliability of
the power system is modelled via ORR of each conventional unit. The load demand
forecast errors are assumed to follow Normal distribution with zero mean and a
variance 0.09% of the expected load demand for each period. Similarly, wind power
forecast errors in each wind farm are also assumed to follow Normal distribution
with zero mean and a variance ranging from 1% and 12.25% of the expected wind
power. To illustrate, the standard deviation factors are set to be 3%, 2.5%, 2%, 1%,
3.5% and 1.5% of the expected wind power in each wind farm, respectively. To
model the dependencies in wind power generation within a wind farm and between

wind farms, the associated correlation coefficients are taken as 0.3 and 0.2,
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respectively. The reserve cost of each conventional unit is assumed to be a function
of the reserve rate which is taken as 10% of its highest marginal fuel cost. To
calculate the cost of EENS,, VOLL is set as 1750 $/MWh for each period.

Problem Instance 1

This problem instance consists of 24-bus with 26 conventional thermal units and 6
wind farms. The hydro generating units in the original configuration are ignored. The
length of the scheduling horizon is 24 hours. In each wind warm, there are 70 wind

turbines, each with a capacity of 1.5 MW.

The conventional unit related data for IEEE 24-bus reliability test system are
provided in Table 4.2. Load demand and wind power forecasts of the system over 24

hours are provided in Table 4.3.

Table 4.2. Conventional Unit Related Data for IEEE 24-bus Problem Instance

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit10

PMex (M) 12 12 12 12 12 20 20 20 20 76
P (MW) 24 24 24 24 24 4 4 4 4 152
a; ($) 243891 24411 246382 247605 248882  117.7551  118.1083 1184576 1188206  81.1364
b;($/MW) 25.5472 25.6753 25.8027 259318 26.0611 37.551 37.6637 37.777 37.8896 13.3272
c; ($/MW?) 0.02533 002649  0.02801  0.02842 0.02855 0.01199 0.01261 0.01359 0.01433 0.00876
d; ($)
e; (MW)
T (B 0 0 0 0 0 0 0 0 0 3
T:,,fifl’i (h) 0 0 0 0 0 0 0 0 0 2
sH($) 0 0 0 0 0 3333562 3333562 3333562  33.33562  76.73219
sE®) 0 0 0 0 0 39.79139  39.79139  39.79139  39.79139  98.33637
T.; (h) 1 1 1 1 1 3 3 3 3 2
Initial Status (h) -1 -1 -1 -1 -1 -1 -1 -1 -1 3
ORR; 0.00034  0.00034  0.00034  0.00034  0.00034 0002222  0.002222  0.002222  0.002222  0.00051

115



6060000

0T

7961988

9L60'859

S6T00°0

T€0SL

Z0T6'TTE

00T

007

9zyun

6060000

0T

7961988

9L60°859

61000

T26¥'L

1200°0T€

00T

00

sgnun

6980000

0T

T9ELYIY

§806'L9€

€ST00°0

919801

SLSO'LLT

ovT

0S€

ynun

2S0T00°0

B-

€981'85€

1¥¥2'2Se

€9200°0

TEeT

9L1°092

56'89

L6T

gqnun

2S0T100°0

-

£981'85¢

¥v2'zse

619'652

56'89

L6l

caun

2S0T100°0

b-

T99S°L9€

¥898'YLT

652000

€T

1ET'65C

56'89

L6l

Taun

T¥0T00°0

6LE6'€8C

98212

L8Y00°0

€8SL°0T

CTLOS'EVT

STYS

SST

ozyun

T¥0100°0

6LE6'E8T

98212

18%00°0

L9ELOT

6LIEEVT

STYS

SST

61UN

T¥0T00°0

6LE6'€8C

98212

€L¥00°0

YSTLOT

88C0°EVT

STYS

SST

813U

T%0T00°0 £€8000°0
§ €
€ €
6LE6'E8T 8STE9ET
98212 80€8Y0T
€ z
S ¥
€9%00°0 865000
76901 78T
8YELTYT CSLL8TT
STYS ST
SST 00T
L1aun qrmun

€€8000°0

8STE9ET

80€8Y0T

219000

81

SEEBIT

ST

00T

STHun

€€8000°0

8STE9ET

80€8V0T

€2900°0

81

2S68°L1T

ST

00T

yraun

150000

LEIEE'B6

61CELIL

2€600°0

ELOV'ET

652918

st

9L

€131

150000 150000
€ €
4 4
LEIEE'B6 LEIEE'B6
6TZELIL 61CELIL
4 2
€ €
16000 $6800°0
S08E'ET 8ESE'ET
Tvo1'18 862'18
(41 ST
9L 9L
N 13U

1

'yyo
() snyeas rentug

@)L

) "L
) "L
(mm) 'a
O
W — .mm/$) "
umm/$)'q
M/$) v

(M) wyyd

(M) xoyd

(penunuod) ' sjeL

116



Table 4.3. Hourly Load
Problem Instance

Demand and Wind Power Forecasts for IEEE 24-bus

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 1950 1980 1940 1950 2000 2100 2250 2680 2790 2850 2920 2840
Wind Power(MW) 454.8 422.2 407.3 403.9 379.4 362.9 377.8 433.7 420.2 369.7 3586 4202

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 2840 2800 2870 2900 2800 2780 2750 2800 2850 2730 2450 2090
Wind Power(MW) 405 428.7 362 237.3 339.7 305.3 289 208.9 225.3 183.6 140.6  165.5

Problem Instance 2

This problem instance consists of 30-bus with 6 conventional thermal units and 6

wind farms. The length of the scheduling horizon is 24 hours. In each wind warm,

there are 15 wind turbines, each with a capacity of 1.5 MW.

The conventional unit related data for IEEE 30-bus test system are provided in Table

4.4. Load demand and wind power forecasts of the system over 24 hours are provided

in Table 4.5.

Table 4.4. Conventional Unit Related Data for IEEE 30-bus Problem Instance

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6
PYax () 120 110 700 500 550 210
PMin (MW) 30 20 130 100 120 45
a; ($) 2200 2400 6500 930.5 900 1302
b;($/MW) 12 15 11 20 15 20,5
c; ($/Mw?) 0.003 0.002 0.0022 0.0032 0.002 0.004125
d; (%) 200 300 400 150 100 80
e; (MW) 0.08 0.04 0.04 0.06 0.08 0.1
Tifini () 5 4 6 4 4 3
T:{i{:,i W) 5 3 4 3 3 4
sH($) 500 360 2250 3600 3300 2230
sE$) 900 780 4800 7000 6600 4200
Te; (h) 1 1 2 3 3 2
Initial Status (h) -5 -6 1 1 -1 -1
ORR; 0.00511 0.00222 000034 0000104  0.000105  0.00433
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Table 4.5. Hourly Load Demand and Wind Power Forecasts for IEEE 30-bus
Problem Instance

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 859 757 683 647 638 667 819 991 1177 1359 1609 1760
Wind Power(MW) 44 73 69 76 91 84 92 86 13 44 65 62,9
Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 1850 1883 1809 1728 1753 1769 1782 1713 1543 1331 1138 962
Wind Power(MW) 59 58 43,2 27 3 6 7 11 7 43 54 61

Problem Instance 3

This problem instance is obtained by appropriately scaling Problem Instance 2. For
this purpose, conventional generating units are replicated two times to form the 12-
Unit problem instance. Also, capacities of wind turbines in each wind farm, load

demand and wind power forecasts are doubled.

4.3.2 Comparison of the Proposed EENS Approximation Methods

In our time-decoupled approach, we propose two approximation methods for EENS;
as explained in Section 4.2.3. The time-decoupled stochastic MIQP models using
these approximations (MIQP | and MIQP 1) are implemented to IEEE 24-bus and
30-bus problem instances without the VPLE. Their performances are compared for
both instances in terms of model sizes such as required variables and constraints,
solution qualities and computing times.

Table 4.6. Overall Performance Comparison of EENS,; Approximation Methods |
and Il for IEEE 24-bus Problem Instance

Approximation I Approximation II
Total Operating Cost ($) ‘ 722,482.5 723,743.2
Total EENS (MWh) 11.24 11.18
Computing Time (min) ‘ 2.5 34.2

As it is shown in Table 4.6, both approximation methods yield similar results for
total EENS and total operating costs for Problem Instance 1 consisting of 26
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conventional units. It is an indication that both methods are comparable in terms of
overall solution qualities. However, approximation Il requires more computing time
than approximation | since EENS; values are calculated for each net load demand
interval, which in return increases the evaluation of unit combinations in the
associated EENS, breakpoints. As a result of separate calculations of EENS; values,
the model size of approximation Il increases with the inclusion of additional
variables and constraints, especially binary variables and equality constraints, which
makes the model more complex and complicated as demonstrated in Table 4.7.
Consequently, approximation Il inherently needs more time for computations.

Table 4.7. Model Sizes with EENS, Approximation Methods | and Il for IEEE 24-
bus Problem Instance over a 24-h Scheduling Horizon

Approximation I Approximation II
Binary Variables ‘ 723 1308
Continuous Variables ‘ 1419 2292
Inequality Constraints ‘ 3915 4644
Equality Constraints ‘ 154 724

3250
3000
2750
2500
2250
2000
1750
1500
1250
1000

750

500

250

MW

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time Periods (hours)

CCI ccll RSV 1 RSV II

Figure 4.12. Comparison of Hourly Committed Capacities and Reserves in IEEE 24-
bus Problem Instance for EENS, Approximation Methods | and 11
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When these approximation methods are examined further, it is observed that models
using approximation | and Il give similar hourly schedules although the first one is
a little bit more conservative than the second one by committing more capacity and
holding additional reserves. This relationship is illustrated in Figure 4.12 where CC
| and CC Il denote hourly committed capacities, and RSV | and RSV Il indicate
hourly reserves for approximation methods I and Il respectively. According to Figure
4.12, for 71% of the time, committed capacities and reserves in approximation | are
greater than or equal to the ones in approximation |1, but they are approximately the

same in general.

Similar analyses are also carried out for IEEE 30-bus problem instance which
contains 6 conventional units. Different from Problem Instance 1, approximation |
yields results with lower total EENS and total operating costs for Problem Instance
2 as it is shown in Table 4.8. The reason is that the model with approximation |
behaves more conservatively for small-sized systems when compared to systems
with moderate and large sizes. Hence, it commits more units for time periods with
higher net load demands. Similar to Problem Instance 1, approximation Il requires
more calculation time than approximation 1. Another reason is that the model size of
approximation Il increases by including additional variables and constraints,
especially binary variables and equality constraints, which complicates the model as
reported in Table 4.9. Since the problem size is relatively small for Problem Instance
2, both methods are implementable in terms of computing times though
approximation I is faster than approximation Il as illustrated in Table 4.8.

Table 4.8. Overall Performance Comparison of EENS, Approximation Methods |
and Il for IEEE 30-bus Problem Instance

Approximation I Approximation II
Total Operating Cost ($) ‘ 707,604.1 751,779.1
Total EENS (MWh) ‘ 13.94 21.18
Computing Time (sec) ‘ 1.9 11.3
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Table 4.9. Model Sizes with EENS, Approximation Methods I and Il for IEEE 30-
bus Problem Instance over a 24-h Scheduling Horizon

Approximation I Approximation II
Binary Variables ‘ 214 635
Continuous Variables ‘ 430 1139
Inequality Constraints ‘ 1006 1571
Equality Constraints ‘ 159 734

When these approximation methods are examined for each time period, it is observed
that models using approximation methods I and Il give more conservative hourly
schedules. As depicted in Figure 4.13, committed capacities and reserves in
approximation | are greater than or equal to the ones in approximation Il for 14 out
of 24 time periods. When compared to schedules for Problem Instance 1, there are
more fluctuations in both committed capacities and reserves for Problem Instance 2.
However, it should be emphasized that both methods give the same schedules for

time periods with larger net load demands.

2500
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1500
1250
1000
750
500
250
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1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time Periods (hours)

MW

CCI CCII RSV 1 RSV II

Figure 4.13. Comparison of Hourly Committed Capacities and Reserves in IEEE 30-
bus Problem Instance for EENS, Approximation Methods I and II
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According to these analyses, models with approximation methods | and Il have
similar performances in terms of solution qualities for real-sized wind integrated
hybrid power systems. For small-sized systems, schedules obtained by these
methods slightly differ for time periods having small net load requirements whereas
they are comparable for heavily loaded periods. The reason of this difference is that
EENS, values are calculated by failure combinations with less units as the problem
size decreases. Nevertheless, it is not the case for the large power systems with
conventional units. Therefore, these approximation methods can be used
interchangeably for large systems in terms of intended solution quality. However,
approximation Il is more computationally intensive due to the associated EENS,
calculations especially for large-scaled problems. Because of these reasons,
approximation | is preferred for the EENS, approximations in our MIQP models with
and without the VPLE. Hence, in the subsequent sections, approximation I is used
for the sensitivity analyses of the proposed time-decoupled approaches (MIQP | and

MIQP I-VPLE) and their comparisons with traditional deterministic reserve policies.

4.3.3 Sensitivity Analysis Results

Sensitivity analysis is a necessary part of the mathematical modelling because of
several reasons. The first one is that model parameters might change through time.
The second one is estimating some of the parameters may be very difficult; as a
result, they are forecasted or estimated with common sense. Hence, it is important to
assess how those changes can affect the solution. This can be done very easily for
LP models by using sensitivity reports obtained by optimization packages like
GAMS or LINDO. However, it is not that straightforward for mixed integer and
nonlinear programming models, so the sensitivity is usually tested by solving them
with different parameter values. For this reason, we examine the sensitivity of the
solutions of time-decoupled models MIQP | and MIQP I-VPLE by changing
parameters one at a time; accordingly, solving them with the updated parameter

value. Those parameters include VOLL, load demand and wind speed forecast errors,

122



reserve costs and failure rates of conventional generating units since these are
introduced to replace traditional deterministic reserve polices for the UCP. Their
effects on the solution are discussed in the following sections. Firstly, the sensitivity
analysis of the model MIQP 1 is carried out for IEEE 24-bus problem instance.
Secondly, similar analysis is made for the model MIQP I-VPLE by implementing it
to IEEE 30-bus problem instance.

4331 Results for the Model MIQP |

The time-decoupled stochastic model MIQP 1 is implemented to IEEE 24-bus
problem instance for different values of an associated parameter. First of all, the
effect of VOLL on spinning reserves (SR;) and EENS, is determined by increasing
VOLL by 750 $/MWh starting from 1750 $/MWHh.

In Table 4.10, the total cost of the system and its breakdown under different VOLL
values are summarized. It is observed that the total operating cost increases as the
VOLL increases.

Table 4.10. Total Operating Cost under Different VOLL Values for IEEE 24-bus
Problem Instance

VOLL ($/MWh) 1750 2500 3250 4000
Expected Cost of EENS ($) ‘ 19,683.5 20,116.4 19,945.6 23,846.7
Generation & Reserve Cost ($) ‘ 702,799.0 710,282.5 714,914.0 715,583.4
Total Operating Cost ($) ‘ 722,482.5 730.398.9 734.859.6 739.430.1

In Figure 4.14, SR, values differ significantly for the smallest and the largest VOLL
values since the trade-off between generating cost, reserve cost and expected cost of
EENS averts from the side of load shedding to the side of additional reserves as
VOLL increases. As a result, SR; level increases. It should also be emphasized that
SR values do not change much for time periods with low net load intensity when
VOLL is 2500 $/MWh, 3250 $/MWh and 4000 $/MWh. As a matter of fact, the
overall reserve schedules are almost the same for VOLL of 3250 $/MWh and 4000
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$/MWh. This is an indicator that the compromise solution is not affected much when
VOLL is greater than 3250 $/MWh. Similar but inverse relationship is valid for
EENS,; under different VOLL values. EENS, values decrease as more reserves are
committed (Figure 4.15).
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Secondly, we examine how changes in wind forecast errors affect the compromise
solution. For this purpose, SR, and EENS, values are plotted in Figures 4.16 and
4.17 for different scaling factors. It is observed that SR, values do not change for
time periods with high net load intensity as wind power forecast errors increase.
Nevertheless, the SR, values slightly change in time periods with low net load
intensity as illustrated in Figure 4.16. That is, the effect of wind speed forecast errors
on the trade-off between generating cost, reserve cost and expected cost of load
shedding is not critical when net load demands are satisfied by using much of the
installed conventional generation capacity.
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Figure 4.16. Relationship between Wind Speed Forecast Errors and SR, for IEEE
24-bus Problem Instance

Even though decisions on SR; do not change significantly with an increase in wind
speed forecast errors, EENS; values increase as shown in Figure 4.17, which is due
to increasing uncertainty of the overall power system with more error-prone wind

power forecasts.
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The total operating cost and its breakdowns under different wind speed errors are
reported in Table 4.11. It is observed that the total operating cost increases as wind
speed errors increase.

Table 4.11. Total Operating Cost under Different Wind Speed Forecast Errors for
IEEE 24-bus Problem Instance

Scale of Wind Speed Error x1 x2 x3 x4
Expected Cost of EENS ($) ‘ 19,683.5 20,979.3 26,947.2 46,599.7
Generation & Reserve Cost ($) ‘ 702,799.0 702,004.3 702,062.8 702,133.4
Total Operating Cost ($) ‘ 722,482.5 722,983.6 729,010.0 748,733.1

Thirdly, we investigate the sensitivity of the solution for different load demand
forecast errors. The results are similar to the ones under different wind speed forecast
errors. SR decisions are not sensitive to changes in load demand forecast errors for
time periods with high net load intensity whereas EENS; values increase with high

load demand forecast errors as shown in Figures 4.18 and 4.19.
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Similarly, total operating cost increases with high load demand forecast errors. Its
breakdown is provided in Table 4.12.
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Table 4.12. Total Operating Cost under Different Load Demand Forecast Errors for
IEEE 24-bus Problem Instance

Load Forecast Errors 1% 3% 5% 7%
Expected Cost of EENS ($) ‘ 16,431.7 19,683.5 24,076.1 29,321.7
Generation & Reserve Cost ($) ‘ 704,377.3 702,799.0 702,004.3 702,062.8
Total Operating Cost ($) ‘ 720,809.0 722,482.5 726,080.4 731,384.5

Another important parameter in our approach is incremental reserve cost of a
conventional generating unit. To see its effects on total cost, SR, and EENS,, reserve
rates are scaled in an increasing order. As the reserve rates increase, the total
operating cost also increases as shown in Table 4.13. That is because charging higher
incremental reserve costs makes SR, more expensive, which in return increases total
EENS since there is an inverse relationship between SR, and EENS;.

Table 4.13. Total Operating Cost under Different Incremental Reserve Rates for
IEEE 24-bus Problem Instance

Scale of Reserve Rates x1 x2 x3
Expected Cost of EENS ($) ‘ 19,683.5 24,148.5 43,110.8
Generation & Reserve Cost ($) ‘ 702,799.0 712,378.7 707,318.3
Total Operating Cost ($) ‘ 722.482.5 736,527.2 750429.1

As demonstrated in Figure 4.20, SR, values are very sensitive to changes in
incremental reserve rates especially in time periods where net load intensity is low.
This is not the case for time periods with high net load intensity when scales of
reserves are between 1 and 2. For such periods, it may be tolerable to increase reserve
rates up to the scale of 2 without changing SR; decisions much. Nevertheless, there
is a similar but inverse relationship for EENS; values under different incremental
reserve rates as shown in Figure 4.21. Since the cost of holding an extra reserve
increases, less reserves are committed; accordingly, EENS; values increase in
general. When the scale factor is hold between 1 and 2, EENS, values do not change
for time periods in which the net load intensity is high. When the scale factor is

greater than 3, the compromise solution definitely changes since trade-off between
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generating cost, reserve cost and expected cost of EENS averts from the side of

additional reserves to the side of load shedding.
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Lastly, we test the sensitivity of the solution by reducing the reliability of the
conventional power generation system. For this purpose, we double and triple failure
rates (ORR); accordingly, we solve the model with new system reliabilities. As
shown in Table 4.14, total operating cost increases as the conventional system
reliability reduces. That is because increasing uncertainty in conventional generation
brings additional burden on the generation and reserve costs and expected cost of
EENS.

Table 4.14. Total Operating Cost under Different Conventional System Reliability
for IEEE 24-bus Problem Instance

Scale of ORR x1 x2 x3
Expected Cost of EENS ($) ‘ 19,683.5 21,557.8 31,489.9
Generation & Reserve Cost ($) ‘ 702,799.0 715,135.2 716,162.6
Total Operating Cost ($) ‘ 722,482.5 736,693.1 747.652.5

As illustrated in Figure 4.22, the proposed model is sensitive to changes in ORR
scales between 1 and 2 since SR, values increase substantially. However, this is not
the case for the changes in ORR scale between 2 and 3, so this change might be
tolerable in terms of SR, decisions although there are slight variations in several time

periods.
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With the reduction in the reliability of the conventional system, EENS; values tend
to increase as demonstrated in Figure 4.23, which is especially the case for time
periods with high net load intensity. The reason is that the model fails to commit
more reserves due to the ramp rate limitations and the available installed capacities

for some periods in general. This results in higher EENS, values.
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Figure 4.23. Relationship between Conventional System Reliability and EENS, for
IEEE 24-bus Problem Instance

In particular, the results of sensitivity analyses verify that VOLL, reserve rates and
conventional generation reliability have important roles in the proposed time-
decoupled stochastic model MIQP | for IEEE 24-bus problem instance. Hence, their
levels significantly affect the compromise solution. Similarly, load demand and wind
speed forecast errors play an important role in periods with low net load intensity,

but they do not change solutions for other periods.

4.3.3.2 Results for the Model MIQP I-VPLE

The time-decoupled stochastic model MIQP I-VPLE, in which rippling power plant

efficiencies are also taken into account by adding the cost of VPLE in the generation
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costs, is implemented to IEEE 30-bus problem instance for different values of the
corresponding parameter. Firstly, the impact of VOLL on SR, and EENS, is analyzed
by increasing VOLL by 750 $/MWh starting from 1750 $/MWh.

In Table 4.15, the total cost of the system and its breakdown under different VOLL
values are reported. It is observed that increasing VOLL directly increases the total
operating cost of the system. Nonetheless, generation and reserve costs are the same
for the first three levels of VOLL since the corresponding commitment decisions do
not change.

Table 4.15. Total Operating Cost under Different VOLL Values for IEEE 30-bus
Problem Instance

VOLL ($/MWh) 1750 2500 3250 4000
Expected Cost of EENS ($) ‘ 24,304.3 34,720.4 45,136.6 49,626.8
Generation & Reserve Cost ($) ‘ 697,383.4 697,383.4 697,383.4 701,694.4
Total Operating Cost ($) ‘ 721,687.7 732,103.8 742,520.0 751,321.1

In Figure 4.24, SR, values differ significantly between the first three levels and the
highest level of VOLL. Another important observation is that SR, values do not
change over the horizon when VOLL is 1750%/MWh, 2500 $/MWh and 3250
$/MWh. At first glance, this relationship may seem as counterintuitive since it is
shown in Section 4.3.3.1 that there is a positive correlation between SR, and VOLL.
However, the main reason behind these results is the dominant effect of the VPLE
on the trade-off between total cost components. For the first three levels of VOLL,
the same committed capacities are maintained due to the VPLE. With 4000 $/MWh
of VOLL, 62.5 percent of the time SR, values are greater than or equal to the ones in
lower VOLL values although this margin is 100 percent in the case without the VPLE.
Thus, we can conclude that the compromise solution is not affected for VOLL
between 1750 $/MWh and 3250 $/MWh. Similar but inverse relationship is valid for
EENS; under different VOLL values (Figure 4.25).
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Secondly, we analyze how changes in wind forecast errors affect the compromise
solution. For this purpose, SR; and EENS, values are plotted in Figures 4.26 and
4.27 for different scaling factors. It is observed that SR, values over the horizon do
not change between the first two and the last two wind speed scales, since the same
commitment decisions are maintained because of the VPLE. That is, for the first two
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and the last two wind speed scales, the cost of the VPLE has a dominant effect on

the equilibrium point in the trade-off between total cost components.
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Different from SR, values, EENS; values slightly increase with an increase in wind
speed forecast errors as shown in Figure 4.27, but the change is not significant for
time periods with high net load intensity. The total operating cost and its breakdown
under different wind speed errors are summarized in Table 4.16. It is observed that
the total operating cost increases as wind speed errors increase. Nevertheless,
generation and reserve costs do not change for the first two and the last two levels of
wind speed scales because of the VPLE.

Table 4.16. Total Operating Cost under Different Wind Speed Forecast Errors for
IEEE 30-bus Problem Instance

Scale of Wind Speed Error x1 x2 x3 x4
Expected Cost of EENS ($) ‘ 24,304.3 25,457.8 24,968.9 32,390.3
Generation & Reserve Cost ($) ‘ 697,383.4 697,383.4 712,876.6 712,876.6
Total Operating Cost ($) ‘ 721.687.7 722,841.2 737.845.5 745.266.9

Thirdly, we examine the sensitivity of the solution for different load demand forecast
errors. The results are different from the ones under different wind speed forecast
errors. SR, decisions are very sensitive to changes in load demand forecast errors for
all time periods as illustrated in Figure 4.28. Likewise, EENS; values increase with

high load demand forecast errors as shown in Figure 4.29.
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However, it should also be noted that both SR, and EENS; values are the same for
time periods with high net load intensity and 5% and 7% load demand forecast errors.
In particular, the cost of expected load shedding overweighs the cost of the VPLE in
the trade-off between total cost components for different load demand forecast
errors. Moreover, total operating cost increases with high load demand forecast
errors. Its breakdown is provided in Table 4.17.

Table 4.17. Total Operating Cost under Different Load Demand Forecast Errors for
IEEE 30-bus Problem Instance

Load Forecast Errors 1% 3% 5% 7%
Expected Cost of EENS ($) ‘ 20,836.6 24,304.3 25,946.2 25,857.0
Generation & Reserve Cost ($) ‘ 698,242.9 697,383.4 702,245.7 712,876.6
Total Operating Cost ($) ‘ 719,079.5 721.687.7 728.191.9 738.733.6

Another parameter is incremental reserve cost of a conventional generating unit. To
see its effects on total cost, SR, and EENS;; reserve rates are scaled in an increasing
order. As demonstrated in Figure 4.30, SR, values are not sensitive to changes in
incremental reserve rates since the equilibrium point in the trade-off between cost

components is not affected by marginal reserve costs. This is a result of the VPLE,
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which is the main determinant on this trade-off. There is a similar relationship for
EENS, values under different incremental reserve rates. Hence, it is tolerable to
increase reserve rates up to the scale of 3 without changing SR, decisions much
(Figure 4.31).

650
600 4
550 \
500 |
450

~ 300
& 250 '
200

150
100

50 , N

0
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time Periods (h)
=@ Reserve Rate=1x =@=Reserve Rate=2x Reserve Rate=3x

Figure 4.30. Relationship between Incremental Reserve Rates and SR, for IEEE 30-
bus Problem Instance
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Figure 4.31. Relationship between Incremental Reserve Rates and EENS; for IEEE
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Although commitment and dispatching decisions are not significantly affected by the
change in the cost of holding an extra reserve, total reserve costs increase with an
increase in incremental reserve rates as show in Table 4.18. That is because charging
higher incremental rates makes the same level of SR, more expensive.

Table 4.18. Total Operating Cost under Different Incremental Reserve Rates for
IEEE 30-bus Problem Instance

Scale of Reserve Rates x1 x2 x3
Expected Cost of EENS ($) ‘ 24,304.3 24,015.6 24,042.3
Generation & Reserve Cost ($) ‘ 697,383.4 705,241.4 712,621.7
Total Operating Cost ($) ‘ 721,687.7 729,256.9 736,664.1

Lastly, we test the sensitivity of the solution by reducing the reliability of the
conventional power generation system. For this purpose, we double and triple failure
rates; accordingly, we solve the model with new system reliability. As shown in
Table 4.19, there is an increase in total operating cost as the conventional system
becomes less reliable. That is because increasing uncertainty in conventional
generation brings additional burden on the expected cost of EENS.

Table 4.19. Total Operating Cost under Different Conventional System Reliability
for IEEE 30-bus Problem Instance

Scale of ORR x1 x2 x3
Expected Cost of EENS ($) ‘ 24,304.3 44,265.9 61,110.5
Generation & Reserve Cost ($) ‘ 697,383.4 697,383.4 690,395.7
Total Operating Cost ($) ‘ 721.687.7 741,649.2 751.506.2

As illustrated in Figure 4.32, the proposed model is not sensitive to changes in ORR
scales between 1 and 2, so this change might be tolerable for SR, decisions.
However, this is not the case for the changes in ORR scales between 2 and 3. The
reason is that more units become committed in time periods with high net load

intensity when failure rates are tripled.
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As demonstrated in Figure 4.33, EENS; values tend to increase with the reduction in
the reliability of the conventional system even if the same committed capacities are

maintained.
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Figure 4.33. Relationship between Incremental Reserve Rates and EENS; for IEEE
30-bus Problem Instance
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In particular, the results of sensitivity analyses verify that VOLL, load demand and
wind speed forecast errors, and conventional generation reliability have important
roles in the proposed time-decoupled stochastic model MIQP I-VPLE for IEEE 30-
bus problem instance. Hence, the compromise solution is significantly affected for
some levels of these parameters. On the other hand, reserve rates have an
insignificant effect on the solution. Moreover, it is also observed that rippling
efficiencies of conventional generating units due to the VPLE substantially change
solution behaviors towards different parameters when compared to the ones without
the VPLE.

4.3.4 Comparison with Deterministic Approaches

The proposed time-decoupled stochastic formulations MIQP | and MIQP 1I-VPLE
are compared with traditional UCP formulations in which deterministic reserve
policies are adopted in order to cope with uncertainties related to conventional
generation and forecasts of load demand and wind power. The most commonly used
deterministic policies are traditional, 3.5¢ or hybrid approaches. They are imposed
with the following constraint where SRM™ denotes the minimum spinning reserve

requirement in period t:

CC, = D! + SRM™ vt (4.91)

In the traditional approach, reserves are determined according to [N|-1 contingency
rules while ignoring variabilities in forecast errors. That is, the amount of reserve in
a period is calculated by considering the failure case of a conventional generating
unit and assuming that synchronized failures of two or more units are less likely to
occur. For this purpose, the minimum reserve in each period is set to be at least the
available capacity of the largest unit that can be committed in period t. However, this
reserve requirement may be too conservative when the conventional system

reliability is high, the forecast errors have smaller standard deviation and
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socioeconomic value that customers put on the lost load is low. SRM™ is expressed

with the following expression:
SRM™ = max{P}**} vt (4.92)

In the 3.5¢ approach, reserves are determined according to the potential imbalances
in net load forecasts while neglecting failure events in conventional generation.
Thus, the minimum reserve in each period is set to be 3.5 times the standard deviation
of net load forecast errors for period t. Nonetheless, this reserve requirement may
not be sufficient when forecast precision is high, but the conventional system
reliability is low and socioeconomic value that customers put on the lost load is high.

SRM™ is expressed with the following expression:

SRM" = 3500 vt (4.93)
In the hybrid approach, traditional and 3.5c approaches are combined as a weighted
sum in order to consider uncertainties in both conventional generation and forecast
errors. In this approach, weights are determined according to the judgment and prior
knowledge of the system operator. In our comparison, we assume that each approach

is equally important, so SRY™ is expressed with the following expression:

SRM™ = [0.5 max{P}**} + 0.5(3.50P)] Vvt (4.94)
Those deterministic approaches are also solved in a time-decoupled manner via
CPLEX for MATLAB toolbox. According to schedules obtained by these
approaches, their SR, and EENS,; values are computed by using EENS;
Approximation I as in our MIQP models. Then, their expected costs of load shedding

and reserve costs are calculated by incurring the same VOLL and reserve rates.

434.1 Results for the Model MIQP |

The time-decoupled stochastic model MIQP | and conventional UCP models with
deterministic reserve criteria are implemented to IEEE 24-bus problem instance. In

Figure 4.34, committed capacities are compared for proposed and deterministic UCP
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approaches. The traditional approach yields schedules with the largest CC, over all
periods whereas the 3.5¢ approach gives schedules with the smallest CC;. This is an
indicator that the former is the most conservative one while the latter is the least
conservative one. The proposed and hybrid approach are comparable in terms of
committed capacities over the 24-h scheduling horizon. CC; levels in the proposed
approach ranges between 1853 MW and 2864 MW whereas they are between 1782
MW and 2905 MW for the hybrid approach. Furthermore, for 66% of the time, the
proposed approach commits more capacity than that of the hybrid approach because

of the real trade-off between generation, reserve and EENS, costs over all periods.
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Figure 4.34. Comparison of Committed Capacities in the Proposed and Deterministic
Approaches for IEEE 24-bus Problem Instance

Besides, both proposed and deterministic approaches are compared with respect to
SR, levels over the 24-h scheduling horizon as demonstrated in Figure 4.35. Similar
to the relationship in CC; levels, the traditional approach provides more SR; than
other approaches because of its conservativeness whereas the 3.56 approach supplies
less SR; than other approaches. When compared to other approaches, the hybrid
approach supplies SR; in a steadier manner, but this stability is not economically

justified. On the contrary, in the proposed approach, there is a significant fluctuation
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in SR; levels over periods, which are always less than the ones in the traditional
approach and sometimes less than both 3.5¢ and hybrid approaches. That is because
the proposed approach tries to economically rationalize the provision of additional

reserves over the abatement in EENS,.
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Figure 4.35. Comparison of Reserves in the Proposed and Deterministic Approaches
for IEEE 24-bus Problem Instance

In addition, both proposed and deterministic approaches are compared in terms of
EENS, levels over the 24-h scheduling horizon as illustrated in Figure 4.36. As
expected, a similar but inverse relationship is valid for EENS, levels. As a result of
the conservative nature of the traditional approach, EENS; levels are usually less
than or equal to the ones in other approaches. It is followed by the proposed, hybrid
and 3.5¢ approaches in increasing order. Nevertheless, for the deterministic policies,
EENS; levels are steadier than those for the proposed approach, which is also the

result of the real trade-off between generation, reserve and EENS; costs.
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Figure 4.36. Comparison of EENS, levels in the Proposed and Deterministic
Approaches for IEEE 24-bus Problem Instance

According to Table 4.20, the proposed approach outperforms deterministic
approaches in terms of total operating costs including socioeconomic value of the
lost load and reserve rates.

Table 4.20. Comparison of Total Operating Costs in the Proposed and Deterministic
Approaches for IEEE 24-bus Problem Instance

Approaches Proposed Traditional 3.5¢0 Hybrid

Total Operating Cost ($) ‘ 722,482.5 726,596.0 730,981.5 727,215.5

When total operating costs are divided into two components, namely the expected
cost of load shedding (EENS), and generation and reserve costs as illustrated in
Figure 4.37, EENS, related cost constitutes the minimal portion of the total operating
cost in the traditional approach since total EENS; over the 24-h scheduling horizon
has the minimum value of 6 MWh due its conservative reserve requirement. When
the 3.56 approach is compared to other approaches, total EENS; has its maximum
value of 21 MWHh. Thus, the cost component associated with load shedding has the
largest portion. Accordingly, the 3.5¢ approach yields the costliest schedule.
Concerning the expected cost of EENS, the proposed and hybrid approaches are
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approximately same. However, the proposed approach has the highest operational
efficiency in terms of generation and reserve costs by explicitly making the
cost/benefit analysis between the socioeconomic value of the lost load and the

provision of extra reserves.
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Figure 4.37. Comparison of Cost Components and Total EENS; in the Proposed and
Deterministic Approaches for IEEE 24-bus Problem Instance

4.3.4.2 Results for the Model MIQP I-VPLE

The time-decoupled stochastic MIQP model and conventional UCP models with
deterministic reserve criteria are applied to IEEE 30-bus problem instance and its
duplicated version. In both problem instances, the VPLE is also taken into
consideration. Thus, we show its impact on the schedules obtained with different
approaches for smaller and medium sized conventional power systems. First, the
results for the former problem instance are provided. In Figure 4.38, committed
capacities are compared for the proposed and deterministic approaches for IEEE 30-
bus problem instance. Schedules obtained by the traditional and hybrid approaches

have the largest CC over most of the periods due to the VPLE, which is an indicator
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that both approaches are too conservative. These schedules are followed by the 3.5¢
approach in terms of CC although it yields similar dispatching decisions for periods
with low net load intensity. That is, the 3.5c approach behaves closer to the proposed
approach when full utilization of available conventional generation capacity is not
required to satisfy the net load demand. As a result of the explicit cost/benefit
analysis between the provision of additional reserves and the reduction in EENS;,
the proposed approach suggests that there is no need for excessive number of
committed units, which is the case in the deterministic policies, to meet the net load
demand in almost all periods. Thus, schedules attained by the proposed approach
usually have the smallest committed capacity ranging from 603 MW to 2174 MW

over the 24-h scheduling horizon.

Proposed Approach Traditional Approach
3.50 Approach Hybrid Approach
2500
2000
s
£ 1500
5
O
1000
500

1 2 3 4 5 6 7 8 91011121314 151617 1819 202122 23 24
Time Periods (h)

Figure 4.38. Comparison of Committed Capacities in the Proposed and Deterministic
Approaches for IEEE 30-bus Problem Instance

Moreover, both proposed and deterministic approaches are compared with respect to
SR; levels over the 24-h scheduling horizon as demonstrated in Figure 4.39. Similar
to the relationship in CC levels, traditional and hybrid approaches provide more SR,
than other approaches because of their conservativeness whereas the proposed

approach supplies less SR; than other approaches in most of the periods. The reason
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is that the proposed approach economically justifies the supply of additional reserves
over the abatement in EENS. For periods with low net load intensity, the 3.5¢
approach gives schedules that are similar to the ones of the proposed approach in the

sense of reserves allocated.
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Figure 4.39. Comparison of Reserves in the Proposed and Deterministic Approaches
for IEEE 30-bus Problem Instance

Both proposed and deterministic approaches are also compared in terms of EENS;
levels over the 24-h scheduling horizon as illustrated in Figure 4.40. As expected, a
similar but inverse relationship is valid for EENS, levels. Due to conservative
natures of traditional and hybrid approaches, EENS; levels are usually less than or
equal to the ones with the other approaches. They are followed by the schedules of
the 3.5c approach and the proposed approach in terms of EENS; levels. Nonetheless,
for all approaches, EENS, levels are steadier for periods with high net load intensity
whereas those levels significantly fluctuate over periods with low load intensity. That
is because the installed conventional generation capacity is not required to be fully
utilized for such periods, so the VPLE component in generation costs is the dominant

factor when deciding on the allocation of SR, and the abatement in EENS,.
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Figure 4.40. Comparison of EENS, levels in the Proposed and Deterministic
Approaches for IEEE 30-bus Problem Instance

As reported in Table 4.21, the proposed approach outperforms deterministic
approaches in terms of total operating costs including socioeconomic value of the
lost load and reserve rates.

Table 4.21. Comparison of Total Operating Costs in the Proposed and Deterministic
Approaches for IEEE 30-bus Problem Instance

Approaches Proposed Traditional 3.50 Hybrid

Total Operating Cost ($) ‘ 721,687.7 809,204.4 755,191.0 789,344.5

When total operating costs are divided into two components, namely the expected
cost of load shedding (EENS), and generation and reserve costs as illustrated in
Figure 4.41, EENS, related cost constitutes the minimal portion of the total operating
cost in the traditional approach since total EENS, over the 24-h scheduling horizon
is 12 MWh due to its conservative reserve requirement. Even if it provides smaller
total EENS;, the schedule obtained by the traditional approach has the highest total
operating cost since more units are committed in general. The same reasoning is also

valid for the hybrid approach which yields a schedule with the smallest total EENS,
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of 11 MWh by committing more units. When the 3.5¢ approach is compared to the
other approaches, total EENS; has its maximum value of 17 MWh. Hence, the load
shedding component has the largest impact on its total operating cost. Although the
total EENS; of the schedule attained by the proposed approach is 14 MWh, which is
the second largest value when compared to the other approaches, it has the minimum
total operating cost. The main reason is that the proposed approach has the highest
operational efficiency in terms of generation and reserve costs by explicitly making
the cost/benefit analysis between the socioeconomic value of the lost load and the
provision of extra reserves. Therefore, it commits a smaller number of conventional
units to satisfy the same net load level with less reserves by providing economic

justification.
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Figure 4.41. Comparison of Cost Components and Total EENS; in the Proposed and
Deterministic Approaches for IEEE 30-bus Problem Instance

Similar comparisons are also made for the duplicated version of IEEE 30-bus
problem instance. As illustrated in Figure 4.42, committed capacities are compared
for the proposed and deterministic approaches. Traditional and hybrid approaches
give the same schedules due to the VPLE even though the minimum reserve
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requirements are different but close to each other. Schedules obtained by both
approaches have the largest CC; over most of the periods, which is an indicator that
they are too conservative. These schedules are followed by the 3.56 approach in
terms of CC,. Thanks to the explicit cost/benefit analysis between the supply of
additional reserves and the mitigation in EENS;, the proposed approach suggests that
there is no need to commit an excessive number of units, which is the case in
deterministic policies, to meet the net load demand in almost all periods. Thus,
schedules attained by the proposed approach usually has the smallest committed
capacity ranging from 1205 MW to 3670 MW over the 24-h scheduling horizon.
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Figure 4.42. Comparison of Committed Capacities in the Proposed and Deterministic
Approaches for Duplicated IEEE 30-bus Problem Instance

Both proposed and deterministic approaches are also compared with respect to SR,
levels over the 24-h scheduling horizon as demonstrated in Figure 4.43. Similar to
the relationship in CC; levels, traditional and hybrid approaches supply more SR,
than the other approaches owing to their conservativeness whereas the proposed
approach provides less SR, than other approaches in most of the periods. That is
because the proposed approach economically justifies the provision of additional

reserves over the reduction in EENS,. It is important to emphasize that the difference

150



between the proposed and deterministic approaches is more significant in duplicated
IEEE 30-bus problem instance than that in the original instance. The reason is that
simultaneous outages are less likely to occur as the size of the conventional power
generation system increases. Hence, with 1750 $/MWh of VOLL, the additional
reduction of EENS, cannot be justified by committing additional units; accordingly,
providing additional reserves. Besides, the 3.5¢ approach gives schedules that are
between the ones of the proposed and other deterministic approaches. Nonetheless,
it provides similar schedules for periods with high net load intensity as in traditional

and hybrid approaches.
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Figure 4.43. Comparison of Reserves in the Proposed and Deterministic Approaches
for Duplicated IEEE 30-bus Problem Instance

In Figure 4.44, the comparison of both proposed and deterministic approaches is
illustrated in terms of EENS, levels over the 24-h scheduling horizon. For EENS,;
levels, a similar but inverse relationship is valid. Owing to conservative natures of
traditional and hybrid approaches, EENS; levels are usually less than or equal to the
ones in other approaches. In general, they are followed by schedules of the 3.5¢

approach and the proposed approach in terms of EENS; levels.
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Figure 4.44. Comparison of EENS; levels in the Proposed and Deterministic
Approaches for Duplicated IEEE 30-bus Problem Instance

As summarized in Table 4.22, the proposed approach outperforms deterministic
approaches in terms of total operating costs including socioeconomic value of the
lost load and reserve rates.

Table 4.22. Comparison of Total Operating Costs in the Proposed and Deterministic
Approaches for Duplicated IEEE 30-bus Problem Instance

Approaches Proposed Traditional 3.5¢0 Hybrid

Total Operating Cost ($) ‘ 1,418,710.3 1,488,444.1 1,467,718.5 1,488,444.1

When total operating costs are divided into two components such as the expected
cost of load shedding (EENS), and generation and reserve costs as depicted in Figure
4.45, EENS, related cost constitutes the minimal portion of the total operating cost
in traditional and hybrid approaches since total EENS; over the 24-h scheduling
horizon is 28 MWh owing to their conservative reserve requirements. Although they
provide lower total EENS;, their schedules have the highest total operating cost since
more units are committed in general. Total EENS, of the schedule obtained by the

3.56 approach is 32 MWh, which is the second largest value when compared to other
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approaches. Even though the total EENS, in the proposed approach is 34 MWh,
which is the largest value when compared to other approaches, it has the minimum
total operating cost. The same reasoning on higher operational efficiency of the
proposed approach in IEEE 30-bus system is also valid for the duplicated system.
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Figure 4.45. Comparison of Cost Components and EENS in Proposed and
Deterministic Approaches for Duplicated IEEE 30-bus Problem Instance
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CHAPTER 5

UNIT COMMITMENT PROBLEM FOR WIND INTEGRATED HYBRID POWER
SYSTEMS UNDER SUPPLY/DEMAND UNCERTAINTY AND EMISSION
LIMITATIONS

Due to increasing concerns on adverse effects of global warming and air pollution, a
great majority of countries have been promoting policies that can mitigate emissions
of greenhouse gases and air pollutants especially for the last decade. For this purpose,
usage of clean energy technologies is encouraged in environmental and industrial
policies, and ambitious targets have been set to increase the contribution of
renewable energy sources in the power generation mix and to reduce levels of
emissions that are detrimental for the environment and human health. To illustrate,
wind, which is one of the promising renewable sources, is widely used for power
generation in most of the countries of North America, Europe and Far East.
Nevertheless, wind power generation has an intermittent nature, which makes
operations in power generation more challenging by bringing additional
uncertainties. As it is stated in Chapter 4, there are three major sources of uncertainty
in wind-integrated hybrid power systems such as unexpected outages of
conventional generating units in a power system, and forecasts of load demand and
wind power generation. Consequently, uncertainties may cause an unexpected
increase in emission levels even though wind generation does not directly emit
greenhouse gases and air pollutants. Thus, in addition to the effect of uncertainties
on conventional generation, the impact of emission control technologies and
regulations must also be considered when making unit commitment and load
dispatch decisions in order to guarantee more environmentally friendly and reliable

power generation.
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5.1  Emission Reduction Agreements and Regulations

In 1997, the Kyoto Protocol, one of the most fundamental regulations against climate
change, was adopted by the United Nations. The main objective was to stabilize the
concentrations of Greenhouse Gases (GHGS) in the atmosphere at a level that would
prevent irrevocable changes in the climate system. The 15 countries, namely
European Union (EU) members in 1997, United States (US), Canada, Hungary,
Japan, Poland, Croatia, New Zealand, Russian Federation, Ukraine, Norway,
Australia and Iceland were participated in this protocol. However, US had declared
its intention not to ratify the protocol in the same year and Canada had withdrawn
from the protocol in 2012 (UNFCCC, n.d.). According to this protocol, the maximum
allowable emission amounts that each country can emit over the first commitment
period (2008-2012) was determined. Since the main polluter countries such as China,
US and India did not ratify this treaty, the average reduction level was targeted as

5% from the 1990 level by the participating countries.

Apart from the Kyoto Protocol, in late 2016, the Paris Agreement has been adopted
by the United Nations at the Paris Climate Conference. This agreement has brought
all nations including China and USA into a common cause to tackle with the global
warming and climate change. According to UNFCCC (2016), the main objective is
to globally respond to the threat of climate change by making commitments of:

e Keeping the increase in global temperature below 2 degrees Celsius during
the 21% century,

e Contributing to the capabilities of countries to overcome the effects of
climate change,

e Reducing global GHG emissions in the second half of the century by
implementing the best available innovative technologies for capture and
storage.

189 out of 197 Parties attending to the convention have ratified the agreement since
2016. These parties have submitted their detailed national climate action plans in
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which they have declared that they are responsible of regularly reporting their

emission targets and levels, countermeasures and efforts.

51.1 Emission Trading Systems against Greenhouse Gas Emissions

Emission Trading Systems (ETS) in different countries or regions are based on the
Cap & Trade mechanism in which a cap, also known as quota, is set on the total
amount of GHGs that can be emitted during a year. Companies can buy additional
emission allowances if they need additional quota or they want to trade with each
other to gain extra revenue. Therefore, this trading mechanism can be considered as
the carbon economy where sellers and buyers of emission allowances can interact
with each other. Since the authorities of ETS set some limits on the total number of
allowances that can be traded, those allowances have a real value in the carbon
economy, which makes them tradable commodities. As a result of the Cap & Trade
mechanism, companies should have enough allowances for their emissions during a
year, otherwise they will need to pay heavy penalties for emissions exceeding their
allowances. When companies decrease their emissions beyond their quotas, they can
transfer excess allowances to compensate for their future needs or they can trade

those allowances in the carbon economy.

In Appendix A, the ETS in EU, US and China are briefly explained since they have
been three major GHG emitter regions and countries for several years. The ETS in
those countries differentiate from each other with respect to the regulated sectors and
different regulatory rules that specify allowable emission limits, allowance
allocation methods, sanctions against the noncompliance on limitations for those
sectors (ICAP, 2020). Also, according to ICAP (2020), in Turkey, an ETS is planned
to be built in near future. Thus, Turkey’s efforts to build an ETS are also explained

in Appendix A.
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5.1.2 Environmental Policies against Air Pollutant Emissions

Air pollution occurs due to excessive releases of dangerous and harmful chemical,
biological and physical agents to the atmosphere, which pose a significant risk on
the human health and the environment. These agents consist of gases, namely
Particulate Matters (PMy), Nitrogen oxides (NOx), Sulphur dioxide (SO2), Carbon
monoxide (CO), Methane (CH4), Ammonia (NHs), Chlorofluorocarbons (CFCs) and
biological molecules. The release of these agents is caused by both human activities
and natural phenomena. The human related sources are power generation plants
burning coal, oil, natural gas or biomass, energy-intensive industrial facilities, motor
vehicles and household combustion devices such as stoves and furnaces burning
carbon intensive fuels. These are the major sources of air pollutant emissions
although they can also occur as a result of natural disasters like forest fires.
According to the World Health Organization (WHO) (2004), the exposure to ambient
air pollution has adverse effects on the cardiovascular and respiratory systems by
triggering stroke, ischemic heart disease, pneumonia, lung cancer, or chronic and
acute respiratory diseases. The potential sources of the most common air pollutants
and their adverse effects on the human health and environment are summarized in
Table 5.1. (WHO, 2004).

In 1987, WHO designed Air Quality Guidelines, which were revised after 10 years,
to mitigate the negative impacts on health and environment. In 2005, the last revision
was made as a result of new scientific researches and advancements since 1997. As
shown in Table 5.2, revisions include new guidelines for atmospheric concentrations
of relatively more important air pollutants such as PMyx, NO2 and SO, which pose

more serious and considerable environmental and health risks (WHO, 2005).
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Table 5.1. Potential Sources and Adverse Effects of Air Pollutants

Air Pollutant Potential Sources Adverse Effects
) . - Reduction in life expectancy
- Combustion engines . .
. - Aggravation of cardiovascular and lung
Motor vehicles .
. . diseases and cancers
PMjy - Solid fuel combustion ] ]
) - Lung inflammatory reactions
Power generation plants ] .
) - Respiratory disorders
Industrial plants . . )
- Chronic obstructive pulmonary disease
- Acidification and eutrophication of waters and
soils
- Fossil fuel combustion - Aggravation of bronchitis and asthma
NOy Power generation plants - Formation of particulate matters
Industrial plants - Respiratory infections
- Lung inflammatory reactions
- Reduced lung function and growth
- Acidification of waters and soils
- Sulphur-containing fossil fuel - Formation of acid rains
combustion - Adverse effects on aquatic ecosystems and
Heat generation plants forests
SO; Power generation plants - Respiratory disorders
Motor vehicles - Lung inflammatory reactions
- Sulphur-containing mineral ore - Aggravation of asthma and chronic bronchitis,
smelting even pneumonia
- Irritation of the eyes
- Fossil fuel combustion . ]
. - Impairment of cardiovascular system
CoO Motor vehicle exhaust

Industrial plants

- CO poisoning

Table 5.2. Revised Guideline Thresholds for Air Pollutants by the WHO (2005)

WHO Guideline Thresholds

Air Pollutant

Short-Term Long-Term
PM, 25 ug/m3 24-h mean 10 pg/m3 annual mean
PMaio 50 pg/m3 24-h mean 20 pg/m3 annual mean
NO, 200 pg/m3 1-h mean 40 pg/m3 annual mean
SO, 500 pg/m3 10-min mean 20 pg/m3 24-h mean
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Besides, the WHO strongly emphasize that achieving guideline thresholds for each
air pollutant would not completely annihilate the possibility of negative effects by
taking ongoing epidemiological researches and findings into consideration, so most
of the countries may adopt concentration levels lower than the thresholds indicated
in the guideline. In addition to guideline values, WHO has also set several interim
targets for short-term and long-term exposures to progressively reduce
concentrations of air pollutants in areas suffering from high air pollution. The
detailed explanation of these interim targets can be found in WHO (2005).

Most of the countries in the world have been using these guidelines in order to
develop their policies against air pollution. Those polices generally include
command and control type regulations although there are several countries which
also implement market-based approaches. Command and control type policies
involve controlling air pollutant emission amounts and setting emission
concentration standards. In the first one, maximum allowable emission amounts are
determined according to the best available techniques (BAT) (Organization for
Economic Co-operation and Development [OECD], 2017). In the BAT concept, the
most effective and sophisticated technologies and their implementation methods,
which are especially practical and suitable in real world applications for different
sectors, are determined. By taking the emission amounts provided by the BAT as a
basis, allowable emission limits for air pollutants are specified to reduce threats on
the human health and environment. Different from allowable limits on emission
amounts, emission concentration standards are defined by practicing guideline
thresholds and interim targets specified by WHO or other air quality index specified
by authorized environmental institutions. In some policies, command and control
regulations are reinforced with a pollution levy. With this reinforcement, the
companies are subject to pay a tax or a set of taxes for their concentrations or
amounts of air pollutant emissions. For this purpose, two or three level taxes have
been imposed by several countries. The first level is the emission tax for each unit
of a pollutant emitted. When the emission amount exceeds the maximum allowable

limit, the penalty of emission amount is added to emission tax. When the emission
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concentration is greater than the emission concentration standard, the penalty of
emission concentration is added to emission tax. If one of these violations exists,
then companies pay the second level tax for each unit of air pollutant emission. If
both violations exist, then the third level tax is imposed for each unit of air pollutant

emission.

In Appendix B, air pollution prevention and reduction policies and practices in EU,
US and China are briefly explained.

5.2 Emission Reduction Technologies for Conventional Power Plants

For the last two decades, climate change and air pollution has received a significant
attention all over the world due to the expected global temperature rise and reduction
in average life expectancy in case effective countermeasures are not taken by the end
of 20" century. Besides, the integration of renewable energy sources such as wind
and solar into a country’s energy generation portfolio will lead to an additional need
to increase the installed capacities of conventional power plants requiring fossil fuel
combustion. The reason is that wind and solar energy have an intermittent nature,
which causes uncertainties in power generation via renewable energy sources, and
uncertainties in stable and adequate energy supply of a country. As a result,
governments in developed and developing countries have been studying and
promoting developments of clean renewable energy sources, and implementations
of innovative emission reduction technologies in conventional power plants using
fossil fuel combustion processes. For those installations, various technologies have
been utilized to mitigate carbon dioxide (CO2) emissions, which is one of the major
GHG emissions causing global warming. Furthermore, there are advanced and
efficient air pollution control technologies available for emissions of sulphur dioxide
(SO2), nitrogen oxides (NOy), and particulate matter (PMx). Implementing those
technologies in conventional power plants has a significant potential in the
abatement of atmospheric air pollutant emissions as the air pollution control limits

set by governments are becoming more stringent. If those power plants burning fossil
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fuels do not benefit from these technologies, they cannot remain operational in near
future with more rigorous worldwide regulations on GHG emissions and air

pollution.

521 Carbon Capture and Storage Systems

Marchetti (1977) proposes the concept of sequestration and storage of CO; to reduce
atmospheric CO2 emissions, which is the origin of Carbon Capture and Storage
(CCS) systems evolved and implemented in the industry nowadays. The main idea
behind CCS systems is to sequestrate CO- before emitted to the atmosphere, and then
transferring captured CO> via pipelines or shipping to geological storage areas or
ocean storage areas. CCS is the most suitable and practical technology to retrofit
fossil fuel burning power plants. By utilizing CCS, CO. emissions of these plants
can be reduced up to 98% in accordance with the capture technology employed

(Huaman and Lourenco, 2015).

Depending on the type of power plants, three technologies are available for CO>
separation and capture. These are pre combustion, oxyfuel combustion and post
combustion as demonstrated in Figure 5.1 (Intergovernmental Panel on Climate
Change [IPCC], 2005).

Post-combustion
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Figure 5.1. Schematic Representation of CO, Capture Systems, Adapted from IPCC
(2005)
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In pre combustion systems, the fuel is combined with steam and air before the
combustion process, which results in synthesis gas comprising mostly of carbon
monoxide (CO) and hydrogen (H2). As a result of the reaction of CO with the steam,
CO: and additional H: is obtained. This mixture is sequestrated into CO> stream and
H> stream. Then, CO. is captured, and the remaining hydrogen is used for the
combustion. Pre combustion systems are preferred in power plants utilizing
integrated gasification combined cycle (IGCC) technology (IPCC, 2005). It is
pointed out that pre combustion capture technology is not suitable for retrofitting
existing power plants. Rather, it can be employed in new power plants. With this
technology, up to 90% of CO> can be captured. However, pre combustion capture
mechanism may cause a decrease of approximately 7.2% in power plant efficiency
(Moazzem et al., 2012).

In oxyfuel combustion systems, the fuel is burned with pure oxygen (O2) rather than
air, so CO> capture takes place during the combustion. After the combustion process,
a flue gas comprising of water vapor and highly concentrated CO> is formed. By
going through a cooling and compressing process, water vapor in the flue gas is
removed, and CO- stream is captured. Oxyfuel combustion systems can be used for
new gas turbine power plants or for retrofitting existing gas turbine power plants
(IPCC, 2005). Nevertheless, the separation of O> from air requires a considerable
amount of energy, which causes an expected efficiency reduction of 23% for new
installations, and 40% for retrofitting existing installations (Moazzem et al., 2012).
In spite of a significant decrease in power plant efficiency, almost 100% of CO> can
be captured with this technology.

In post combustion systems, CO> is captured after the combustion of the fuel with
air by using several amine solvents, membrane devices or mineral carbonation
process on flue gas. This technology is applicable for modern pulverized coal power
plants and combined cycle gas turbine power plants, thanks to its cost-effective
implementation option that requires only a capture equipment to be installed. The
COz capture rate of post combustion technology is between 85% and 95% (IPCC,
2005).
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522 Air Pollution Control Systems

To cope with the most threatening and risky air pollutants such as sulphur dioxide
(SO2), nitrogen oxides (NOx), and particulate matter (PMy), there are miscellaneous
state-of-the-art emission control systems applicable for conventional power plants.
The most commonly used technologies for each pollutant are shown in Table 5.3.

Table 5.3. Widely Used Air Pollution Control Technologies in the Abatement of
PMy, NOx and SO Emissions

Air Pollutant Control Technologies

- Electrostatic Precipitator (ESP)
PMjy - Cyclones

- Fabric Filter (FF)

- Low NOx Burner (LNB)

- Selective Catalytic Reduction (SCR)

NOy . . .

- Selective Noncatalytic Reduction (SCNR)

- Lean Premixed Combustion in Gas Turbines
SO, - Flue Gas Desulfurization (FGD)

NOx control technologies are divided into two categories such as combustion and
post combustion depending on the control technology used. With the combustion
control technologies like Low NOx Burner (LNB) and Lean Premixed Combustion
(LPC) mode of gas turbines, NOx capture and reduced NOx emissions occur during
the combustion of fossil fuels whereas it occurs after combustion with post
combustion technologies such as Selective Catalytic Reduction (SCR) and Selective
Non-catalytic Reduction (SCNR). One of the main causes of NOx emissions from
conventional power plants without any control technology is that the flame
temperature increases when the fuel is burned with an excess air in the burner. LNBs
utilize advanced thermodynamics and fluid mechanics to remove the excess air in
the burner and accordingly to reduce the flame temperature, which leads to less NOx
emissions (Shahzad Baig and Yousaf, 2017). Nevertheless, Denny E. and O’Malley
M. (2006) also note that the plant efficiency may decrease when the flame

temperature is decreased. To implement this technology, LNBs are used instead of
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original burners in conventional power plants. With this technology, the NOx capture
rate is estimated as almost 30% (Zhao et al., 2008). As a result of this poor capture
rate, in most of the power plants, LNBs are also integrated with one of the post
combustion systems to achieve the desired emission reduction level. In post
combustions systems, an equipment is installed in power plants so that emitted NOx
can be separated into nitrogen (N2) and water (H20) with the help of either a chemical
reaction between the flue gas and a reagent like urea ((NH2).CO) or a chemical
reaction between flue gas and ammonia (NHs) in a catalytic chamber. The former
separation technology is used in SNCR systems and has a relatively low NOx capture
rate between 15% and 35%, whereas the latter one is used in SCR systems and it has
relatively high NOx capture rate between 70% and 90% (Moretti and Jones, 2012).
For this reason, LNB and SCR devices are used together in case a high NOx capture
efficiency is required in conventional power plants. Apart from these technologies,
combustion mode switch option is also utilized in gas fired power plants. Two modes
such as diffusion (spray) combustion and lean premixed combustion are available in
gas turbines. When a turbine is started up or generating at lower power output levels,
the diffusion combustion mode is activated. This combustion mode emits more NOx
than lean premixed combustion mode. In gas turbines generating high power output,
NOx emissions can be reduced by switching to lean premixed combustion mode in
which the fuel and air are premixed before combustion, which makes this mode more
environmentally friendly in terms of reduced atmospheric NOy emissions (Denny
and O’Malley, 20006).

PMy control technologies are based on post combustion controls requiring an
installation of PMy collectors such as Electrostatic Precipitator (ESP), Cyclones and
Fabric Filter (FF). Each equipment uses a different technique to capture PMy in the
flue gas stream. To illustrate, FFs consist of finely netted filters by which PMy in the
flue gas is collected. In ESPs, there are several vertically and horizontally aligned
plates. When the flue gas flows through these plates, electromagnetic forces are
applied by the electrodes at the center of an ESP; accordingly, PMy is captured. FFs

and ESPs are very efficient in terms of collection performances, which are estimated
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as 99.9% (Moretti and Jones, 2012). Cyclones apply centrifugal forces to the flue
gas stream to collect PMy. Their capture efficiencies are estimated as 90% for
particulate matters greater than 15 microns, but they are not preferred much since
their capture rates are not sufficient for particulate matters less than 15 microns
(Shahzad Baig and Yousaf, 2017).

Similar to PMy control technologies implemented in power plants, SO, control
technologies are also based on post combustion control systems in which SO is
extracted from the flue gas stream. This process is known as Flue Gas
Desulphurization (FGD) which has two different application technigques such as wet
FGD and dry FGD. Wet FGD systems are based on wet limestone reaction. In this
reaction, SO; in the flue gas is mixed with air, water and reagents like lime (calcium
carbonate (CaCOs3)), magnesium-enriched lime, seawater or soda ash (sodium
carbonate (Na2COs)). As result of a chemical reaction in this mixture, gypsum
(CaSOg4 - 2H20) and carbon monoxide (CO) are formed. By this way, SO is removed
from the flue gas. The capture rate of wet FGD systems is estimated as almost 98%
(Nolan, 2000). In dry FGD systems, semi-dry or dry solid reagent is injected into the
flue gas stream, a chemical reaction occurs during the injection, SOz is captured and
reaction byproducts like dry salts and fly ash are removed by filter units. Spray Dryer
Absorber (SDA) is a SOz control technology based on semi-dry injection method.
Atomized lime slurry is used as a semi-dry reagent which is injected into the hot
exhaust gas. SDA control technology has almost 96% of SO, removal rate (Moretti
and Jones, 2012). Different from SDA, Circulating Dry Scrubber (CDS) system is
based on dry injection method. Fluid bed of hydrated lime is used as a dry reagent
that reacts with the flue gas. The removal rate of wet FGD systems is found to be
almost 98% (Moretti and Jones, 2012).

5.3  Proposed Time-decoupled Quadratic Programming Based Approach

Similar to the approaches proposed in Chapter 4, the UCP under both supply/demand

uncertainty and emission limitations is time-decoupled by decomposing the original
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UCP into T many subproblems each of which is a single-period UCP defined for
each period in the planning horizon. Accordingly, each subproblem is optimally
solved by balancing the potential benefits to be obtained by reducing emissions and
EENS;, and potential losses caused by not committing enough reserve in period t.
For this purpose, unit commitment, economic load dispatch and reserve decisions
are individually determined for each period by the time-decoupled cost-benefit
optimization instead of multi-period optimization. It is important to note that time
dependent UCP constraints are also taken into consideration in our approach.
Nonetheless, near optimal solutions may be obtained owing to time-decoupling, but
the multi-period optimization for the UCP under both supply/demand uncertainty
and emission limitations is not a plausible method for real power systems which

consist of many conventional and renewable generating units.

53.1 Emission Models with Emission Control Technologies

In the proposed approach, CO2, NOyx, SOz and PMy emissions are considered for
coal-fired, gas-fired and oil-fired power plants (generating units). For each period,
emission models depend on the state of the conventional generating unit whether it
has been operational in previous periods or not. To illustrate, when a unit has been
working in previous periods, there are only operational emissions of that unit.
However, if a unit is started up in that period, then start-up emissions are also taken
into account. Besides, the effects of emission reduction and control technologies on
operational emissions are also integrated into emission models as follows:

e CCS systems are used against CO2 emissions.

e LNB, SCR and LPC technologies are used against NOx emissions.

e FGD systems are used against SOz emissions.

e FF systems are used against PMyx emissions.

According to European Commission’s directive on monitoring and reporting
regulation, two different emission estimation methodologies are available. The first

one is measurement-based methodology in which real concentrations of GHGs and
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air pollutants are measured from the flue gas stream via monitoring devices whereas
the second one is based on arithmetic calculations, and it is further divided into two
categories such as mass balance method and standard method (European
Commission, 2012). In the mass balance method, fuel flow rate is calculated by
considering the principle of mass balance in the boiler; accordingly, emissions are
calculated by using the flow rate. The detailed explanation of this method is provided
in Majanne (2014). In the standard method, emissions are estimated by the
relationship between fuel consumption of the conventional power plant and fuel
specific emission factors. For this purpose, fuel consumption function of the power
plant is estimated first. Then, by multiplying the fuel consumption function with fuel
specific emission factors, emission functions of the power plant are estimated for
each GHG and air pollutant. In the proposed approach, fuel consumptions of
conventional power plants are modelled by a quadratic function which is widely used
in practice for power plants burning coal, oil or natural gas. The quadratic fuel
consumption function of unit i with respect to its commitment status u; and power
output level P; is provided by the following expression where «;, B; and y; are fuel

consumption coefficients of unit i:

F; = ayu; + BiP; + viP}? (5.1)

According to the standard method, without any emission control mode or device,
operational emissions of unit i for gas G, Eof, are calculated based on emission

factor for gas G (ef“) as follows:

Eof = ef°F; = ef “(ayu; + BiP; + yiP?) (5.2)

Apart from operational emissions, there are also start-up emissions since emissions
during start-up does not behave as in its operational state and they are considerably
high when starting up. Emissions during start-up for unit i can be modelled based
on how much time it has stayed inactive or nonoperational because emissions are
higher in case of long period of inactivity. For this purpose, start-up emissions can
be determined via an exponential function or a two-step function. In the former, an

exponential increase is expected for emissions during start-ups as the number of

168



inactive periods increases. It is illustrated by the following function where 8} and 67
are start-up fuel consumption rates of unit i during start-up, and Tfff and t; denote

the number of inactive periods and start-up time constant of unit i, respectively:

T?ff
SEf =efé|0} +62(1—e 7 ) (5.3)

In the two-step representation, emissions for gas G during start-up are categorized as

hot start-up emissions (SE;*") and cold start-up emissions (SE{"¢). The two-step

function, where T%/7 _is the minimum downtime requirement for unit i, is illustrated

Min, i
below:
SESH if Ty < T <1l
SES = (5.4)
SESC if T > T+

In our approach, start-up emissions of a conventional generating unit are modelled

via the exponential representation as in (5.3).

Geng et al. (2015) propose an environmental economic dispatch formulation in
which emission reduction and control technologies for NOx, SO and PMyx emissions
are also considered. By using this formulation, Geng et al. (2017) propose an
environmental generation scheduling formulation to be applied in Chinese power
system. We have inspired from these formulations when integrating emission control
technologies into proposed emission models with several modifications which
include the integration of CCS system against CO2 emissions, the usage of FF system
instead of ESP system against PMx emissions and more precise modelling of

combustion mode switch feature against NOx emissions of gas-fired generating units.
CO2 Emissions with Carbon Capture and Storage Systems

To reduce CO2 emissions from a conventional generating unit, one of the most

suitable systems to retrofit existing conventional generating units and to implement
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on new ones is post combustion type CCS systems with chemical absorption.
Operational CO> emissions with CCS systems can be modelled with the following

expression:
Ef% = (1 —nf)Eo[% (5.5)

co,
i

where ¢S is the CO, capture rate or decarbonization efficiency of unit i and Eo

is operational CO2 emission without carbon capture storage systems.

SO2 Emissions with Flue Gas Desulphurization Systems

Similar to CCS systems, operational SO2 emissions with CDS or limestone process

based FGD systems can be modelled as follows:

E’%? = (1 —nfP)Eo; (5.6)

S0,
i

where nf6P

2

is the SO> capture rate or desulphurization efficiency of unitiand Eo

is operational SO, emission without FGD systems.
PMx Emissions with Fabric Filters

Geng et al. (2015) use ESP as an emission control technology and model PMy
emissions of coal-fired power plants with dynamic discounted removal efficiency,
which creates additional nonlinearities and complexities in their emission
formulation. According to Shahzad and Yousaf (2017), FF systems are more
advantageous than ESP systems in the removal of PMy because of several reasons:

e Collection reliabilities and efficiencies of FFs are higher than ESPs,

e FFs resist more to changes in the flue gas flow,
Because of FF’s high resistance to changes in the flow rate of the flue gas, using FFs
instead of ESPs prevents the dynamic reduction in PMy removal efficiency, so FFs
are preferred over ESP in the proposed PMyx emission model. PMy emissions are
modelled only for coal-fired generating units because concentrations of PMxy
emissions from oil-fired and gas-fired generating units are negligible (Di, 2007).
Under these conditions, operational PMy emissions with FF systems can be modelled

as follows:
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EM =1 —nfF)Eo ™ (5.7)

l

where nf is the PMy capture rate or removal efficiency of unit i and Eo;™™ is

operational PMy emission without FF systems.
NOx Emissions with Control Technologies

For coal-fired and oil-fired conventional units, operational NOx emissions without
any emission control mode are modelled via the standard method. Different from
these units, gas-fired generating units have two combustion modes, namely spray
(diffusion) combustion (SC) and lean premixed combustion (LPC) as explained in
Section 5.2.2. Switching from SC mode to LPC mode, NOx emissions can be
significantly reduced according to the experimental studies by Okhubo (2005) who
experiments NOy emissions of these combustion modes by using different fuel gases

in gas turbines and his results are provided in Figure 5.2.
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Figure 5.2. NOx Emissions of Spray Combustion Mode and Lean Premixed
Combustion Mode Using Kerosene and Gas Oil as Fuels, Adapted from Ohkubo
(2005)
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As it can be inferred from Figure 5.2, NOx emissions increase quadratically in SC
mode as in emissions represented by the standard method when the power output
level increases whereas the relationship between NOx emissions and the power
output level is close to linear and even fixed at a lower emission level in LPC mode.
Nonetheless, the LPC mode cannot be used during startup and lower power output
levels due to combustion instabilities, so this mode can be activated when the power
output level of the unit is greater than approximately 70% of its capacity (Denny and
O’Malley, 2006). Geng et al. (2015) formulate NOx emissions by using two linear
functions representing emission levels at two combustion modes but this
simplification is not precise when modelling NOx emissions in SC mode. Thus, we
formulate NOx emissions quadratically in SC mode and linearly in LPC mode as

shown in Figure 5.3.
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Figure 5.3. Operational NOx Emissions of Spray Combustion and Lean Premixed
Combustion in the Proposed Emission Model

For gas-fired generating units, this piecewise relationship in operational NOx

emissions without any control technology is modelled by the following piecewise

function where ef¥%% is NOx emission factor of the fuel gas, a;, B; and y; are fuel
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consumption coefficients of gas-fired unitiin SC mode, p; is the emission coefficient
of gas-fired unit i in LPC mode, and P™* is the power output threshold required for

the combustion mode switch of gas-fired unit i:

efNox (au; + BiPi +viP?) if Py < P (5.8)

NO
Eo, ™" =

piPi if Pi = Pl-CMS

As mentioned in Section 5.2.2, there are also other control technologies against NOx
emissions. One of them is combined usage of LNB technology and a post combustion
type denitration device such as SCR or SCNR since using LNBs without supported
by one of these denitration equipment yields less NOx removal efficiency than
required. Therefore, in the proposed NOx emissions model, it is assumed that LNBs
in conventional generating units can be backed up with SCR devices. In spite of their
high removal rate, those devices can be activated in high temperature (>300 °C) so
they cannot operate when the power generation level of a conventional unit is less
than a threshold level (Geng et al., 2015). As a result of this requirement, operational

NOx emissions with combined usage of LNB technology and SCR equipment can be
modelled by the following piecewise function where EoiNO" is operational NOx
emissions without any emission control technology, PR is the power output
threshold required for the activation of SCR in unit i, and n-V2 and ¥ are the NO

capture rate of LNB technology and NOx removal efficiency of SCR equipment in

unit i, respectively:

(1 — nVB)Eo] %% if P; < PSCR
ENOx — (5.9)
(1 —nfR)(1 — nHB)Eo, %% if P, > PSCR

L
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5.3.2 Emission Control Regulations in Emission Models

Emission Trading System for CO2 Emission Control

Regulations on CO emissions in most of the states and countries have been based
on ETS, which works with the principle of Cap & Trade mechanism. In the proposed
approach, ETS is used to regulate CO2 emissions. For this purpose, it is assumed that
each company is required to have enough allowances for their CO2 emissions
otherwise they are going to pay heavy penalties for emissions exceeding their
allowances. To prevent this situation, they are allowed to purchase additional
emission allowances via the carbon market. When companies decrease their
emissions beyond their quotas, they can transfer excess allowances to compensate
for their future needs or they can trade those allowances to gain extra revenue.

Since we are solving a day ahead UCP, the length of the planning horizon is 24 hours.
In our time-decoupled UCP formulation, we implement Cap & Trade mechanism
according to the assumptions provided below:

e Total monthly or quarterly allowances are disaggregated into daily
allowances according to several disaggregation techniques, which is out of
our scope. Hence, daily allowances are considered as given and
disaggregated into hourly allowances according to expected net load levels
in each hour.

e In the time-decoupled UCP formulation, hourly Cap & Trade Mechanism is
used for total CO2 emissions in each hour. However, company is not allowed
to trade during the 24-h planning horizon so they can trade at the end of the
last hour. For this purpose, the following set of rules are applied.

o If total CO2 emissions during an hour do not exceed its hourly
allowance in the optimal solution of the time-decoupled UCP, excess
allowance is not sold, rather transferred to the total allowances of the

remaining hours.
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o If total CO2 emissions during an hour exceed its hourly allowance in
the optimal solution of the time-decoupled UCP, excess emissions
are subtracted from the total allowances of the remaining hours.

o Then, updated allowances are disaggregated by applying the same
procedure of hourly disaggregation for the remaining hours.

e No carbon tax is imposed for CO2 emissions less than the company’s total

emission allowances.
Three-Level Tax System for Air Pollutant Emission Control

Owing to severe adverse effects of air pollutant emissions on the human health and
environment, command and control type regulations have been adopted by a big
majority of countries instead of Cap & Trade mechanism (OECD, 2017). For
emissions of PMy, NOx and SOy, it is assumed that amounts of air pollutant emissions
are regulated with command and control type policies with three-level tax systems
in the proposed approach. For this reason, each company is required to comply with
tier emission limits for air pollutants while paying a pollution tax on its emission
amounts. For each air pollutant, the first level tax is imposed as an emission tax for
emission amounts less than the first-tier emission limits. When a company emits
more than the first-tier limit but less than the second-tier limit, the second level
penalty is also imposed for emission amounts exceeding the first-tier limit, which
constitutes the second level tax for emissions. If a company emits more than the
second-tier limit, the third level penalty is also imposed for emission amounts
exceeding the second-tier limit, which constitutes the third level tax for emissions.
The three-level tax system for air pollutant G is illustrated in Figure 5.4 where r{,
m$ and m§ is the emission tax, the second level penalty and the third level penalty

respectively.
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Figure 5.4. Three-Level Tax System for Air Pollutants

5.3.3 Time-decoupled Mixed Integer Quadratically Constrained
Programming (MIQCP) Formulation with Quadratic Objective

The proposed method is the extension of the model MIQP I-VPLE proposed in
Chapter 4. Different from these formulations, the proposed formulation with
emissions is based on MIQCP formulation since emissions are represented by
quadratic functions, which make the representation of emission related constraints
quadratic. By taking emissions and emission taxes into consideration, the objective
consists of fuel costs, start-up costs, reserve allocation costs, expected cost of load
shedding, valve-point loading costs and emission taxes in this extension. Excluding
fuel costs, the remaining costs have a linear relationship with corresponding decision
variables such as commitment statuses, reserves, EENS;, and total CO2, NOyx, SO2
and PMy emissions. The fuel costs are represented by convex quadratic functions.
As a result, both the objective function and constraints have quadratic terms in the

extended formulation.
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Standard UCP constraints such as power balance constraints and
minimum/maximum generation limits, and time-dependent constraints like the
minimum uptime/downtime constraints and the ramp-up/ramp-down limits are
modelled similarly as in formulations in Chapter 4. Likewise, reserves are also
considered as decision variables whose values are determined by the trade-off
between total operational costs and the expected cost of load shedding (energy not
served) instead of using standard spinning reserve requirements. For this purpose,
EENS; is piecewise linearly approximated by using the Approximation Method |
explained in Chapter 4. Similarly, the valve point loading effect on conventional
generating units are reckoned with multi-area piecewise linear approximation of
valve point loading costs. Thus, the extended formulation with emissions control is
called as MIQP I-VPLE-EC. Since the model MIQP I-VPLE-EC uses the same
representations for constraints excluding emission related ones, only modifications
for emissions are provided in this section. For each period in the planning horizon,
the extended formulation is sequentially solved to obtain near-optimal schedules for
the commitment, generation and reserve by trading off generation costs, the expected
cost of load shedding and costs of emissions.

Assumptions

Assumptions Defined for Emissions:

e Emissions are regulated via emission trading and taxing mechanisms only.
For GHG and air pollutants, there are no zonal emission limits.

e CO2 emissions are controlled via Cap & Trade mechanism according to
assumptions provided in Section 5.3.2.

e NOy, SOz and PMy emissions are controlled via three-level tax system
provided in Section 5.3.2.

e The capture rates of the emission reduction technologies applied on

conventional generating units remain unchanged during their operations.
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e Emissions during start-ups do not depend on the production level. Rather,
they depend on how much time the units have stayed inactive or

nonoperational.
Sets and Indices

For emissions of CO2, NOx, SO2 and PMy, the following sets are defined.

Additional Sets and Indices for Emissions:

AP: Set of air pollutants:

AP = {NO,,SO,, PM,} (5.10)

ap € AP: air pollutant ap
CT: Set of combustion types:

CT = {coal, 0il, gas} (5.11D)
cm; € CT: Combustion type of unit i
N¢o4 c N: Set of coal-fired conventional units:
N¢° = {i € N: cm; = coal } (5.12)
NO% c N: Set of oil-fired conventional units:
NO% = {i € N: cm; = oil } (5.13)
NG < N: Set of gas-fired conventional units:
N6 ={i € N:cm; = gas } (5.14)
ECT': Set of emission control technologies:
ECT = {LNB,SCR,FGD,FF,CCS} (5.15)
ECT; c ECT: Set of emission control technologies in conventional generating unit i
NS¢R c N: Set of conventional units with a SCR device:
NS¢R = {i € N:{SCR} c ECT;} (5.16)

Q: Set of three-level emission tiers for air pollutants:
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Q = {TE,?, TE;?, TE,?, TE;"} (5.17)
q € Q: Sequential emission tiers for air pollutant emissions
Parameters

For emissions of CO2, NOx, SOz and PMy, the following parameters are defined.

Additional Parameters for Emissions:

a;, B;, vi: Fuel consumption coefficients of unit i € N°% u N and fuel
consumption coefficients in SC mode for i € N9 (tonnes, tonnes/MW,
tonnes/MW?, respectively)

ef . Emission factor of air pollutant ap (tonnes/tonnes)

ef €%2: Emission factor of CO; (tonnes/tonnes)

p;: Emission coefficient in LPC mode for unit i € N9%5 (tonnes/MW)

6}, 67: Start-up fuel consumption rates of unit i during start-up (tonnes)

T; Start-up time constant of unit i (hours)

nFNB: NOx capture rate of LNB technology in unit i

n;“R: NOx removal efficiency of SCR equipment in unit i

nf¢P: SO, capture rate or desulphurization efficiency of unit i

nf¥: PMx capture rate or removal efficiency of unit i

nts: CO, capture rate or decarbonization efficiency of unit i

PCR: Power output threshold required for the activation of SCR in unit i € NSCR
(MW)

PFMS: Power output threshold required for the combustion mode switch of unit i €
NGas (MW)

SEM;;”: Start-up emissions of unit i for air pollutant ap in period t

SEM?: Start-up CO2 emissions of unit i in period t

;¥ : Emission tax for air pollutant ap ($)

w57 Second level penalty for air pollutant ap ($)

w57 Third level penalty for air pollutant ap ($)

TE,": q™-tier maximum emission level for emissions of air pollutant ap (tonnes)
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Tax;”’: g™-tier maximum emission tax for emissions of air pollutant ap ($):

Tax,? = (5.18)
Tax;? = TE;? n}¥ (5.19)
Tax,’ = Tax;* + TE," m," (5.20)
Taxs® = Tax,” + TE;" ma" (5.21)

CAPL®*: CO, cap (amount of allowances) in period t (tonnes)

p©P2: Trading price in the carbon market ($)

Decision Variables

For emissions of CO2, NOx, SOz and PMy, the following variables are defined.

Additional Variables for Emissions:

E?T/Ift'o": NOx emissions of unit i in period t without emission control technology
EMl.At’O": NOy emissions of unit i in period t with emission control technology
TEM/?: Total emissions of air pollutant ap in period t

TEM;°: Total CO, emissions in period t

TEC/?: Cost of total emissions of air pollutant ap in period t

TEC,®: Cost/Revenue of total CO, emissions in period t

w," . Weight of q"-tier maximum emission level for emissions of air pollutant ap

55M5: Combustion mode switch of unit i € N5 in period t (Activation of LPC

mode):

1 if LPC mode of gas fired unit i is activated in period ¢t
l

0 otherwise

5;°R: Activation of SCR device of unit i € NS°R in period t:

180



1 if SCR device of gas fired unit i is activated i in period t

SR = 5.23
i 0 otherwise ( )

Objective Function

Having added the emission taxes of air pollutant emissions and cost/revenue of CO>
emissions, the objective function of the model MIQP I-VPLE is modified as:

IN|

Min Z(aiuit + biPit + CiPitZ + VPit + qiRit + Situit) + (VOLL)(EENSt)
i=1

+TEC)* + TEC;® + TEC!™ + TECS” (5.24)

Constraints for Emissions

Cost or Revenue of CO» Emissions: When total CO2 emissions in period t are less
than the amount of CO. allowances for period t, then remaining allowances of that
period will be considered as if they can be sold with the CO> price in the carbon
market, so the revenue from selling allowances is taken as negative cost. When total
CO;z emissions in period t exceed the amount of CO, allowances for period t, then
the excess emissions in the same period will be considered as if they can be
compensated for by buying additional allowances with the CO> price in the carbon
market, so the cost of buying allowances is taken as positive cost.

Note: Because of no trading assumption during 24-h planning horizon, the trading
will not happen in both cases so that excess allowances in period t can be used to
compensate for future needs in remaining hours, and the excess emissions in period
t will be compensated for by using CO2 allowances of remaining hours. Thus, the
final decision on trading will be made at the end of the last hour in the planning

horizon.

TEC,® = (TEM[®* — CAP??) p©0: (5.25)
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Constraints for Three-level Taxes for Air Pollutant Emissions:

e The constraint for locating the total emission level of air pollutant ap in the

set of emission tiers:

3
TEM/® = Z TE; w,’ Vap (5.26)

q=0

e The constraint for finding the total emission cost of air pollutant ap

depending on its total emission level:

3
TEC™ = Z Tax® we® Vap (5.27)
q=0

e If there are emissions for air pollutant ap, then the total emission level should
lie on one of emission tiers; accordingly, the sum of weights of tiered

maximum emission levels should be 1:
3
z w® =1 vap (5.28)
q=0

Total SO2 Emissions: Total SOz emissions in period t is the sum of total operational

emissions with FGD technology and start-up emissions in that period.

IN|

TEM®? > Z |(1 = 1) (ef O2(asue + BiPie +viPR)) + SEM *uye| (5.29)
i=1

Total PMy Emissions: Total PMy emissions in period t is the sum of total operational

emissions with FF technology and start-up emissions in that period.

Note: Since concentrations of PMy emissions from oil-fired and gas-fired generating

units are negligible, PMy emissions are caused by only coal-fired generating units.

it

TEMfo = z [(1 - UiFF)(efPM"(aiuit + BiPie + YiPizt)) + SEMPquit] (5.30)

ieNnCoal

Total CO, Emissions: Total CO2 emissions in period t is the sum of total operational

emissions with CCS technology and start-up emissions in that period.
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IN|

TEMtCOZ > Z [(1 - T]iCCS) (efCOZ ((liuit + ﬁipit + VLPL%)) + SEMiiOzuit] (5 31)

=1

Constraints for Total NOx Emissions: Since NOyx emissions for coal-fired and oil-

fired generating units are different from ones for oil-fired generating units, and
different emission control technologies are available for conventional units, the

following set of constraints are defined for modelling NOx emissions.

e Operational NOx Emissions without any emission control technologies for
coal-fired or oil-fired generating unit i in period t:

E’?’wiIZOx > efNox(aiuit + ﬁiPit Iy yiPi%) Vi € (NOil U NCoal) (5 32)

e Operational NOx Emissions without any emission control technologies for
gas-fired generating units:

Since there are two combustion modes available for gas-fired units, the

following set of constraints are defined for modelling NOx emissions without

any emission control technologies for gas-fired generating unit i in period t.

o If power output level of gas-fired unit i is greater than or equal to its

power output threshold required for the combustion mode switch,

then the power is generated in LPC mode and emissions are modelled

by LPC mode-emissions in period t:
Py = PF™S +mg(1 — 65M5) vie NG (5.33)

where mg is a very small number denoting lower bounds for power

output levels.
EM]% > p;Py +my(1—65M5) vie NG (5.34)

where m, is a very small number denoting lower bounds for NOx
emission levels.
o If power output level of gas-fired unit i is less than its power output

threshold required for the combustion mode switch, then the power is
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generated in SC mode and emissions are modelled by SC mode-

emissions in period t:
Py < PFMS — e+ (M, + €)65M5 vie N6 (5.35)

where M, is a very large number denoting upper bounds for power

output levels and € = 0.001.
EMY% > efNox (apu;, + BiPy + v:P2) + My 85MS Vi € N©4s(5.36)

where M is a very large number denoting upper bounds for NOx
emission levels.
Combustion mode can be switched if and only if gas-fired unit i is

committed in period t:

SEMS <y, ViEe NGO (5.37)

Operational NOx Emissions with emission control technologies for

conventional generating units:

Since two emission control technologies (LNB and SCR) might be used for

conventional generating units, the following set of constraints are defined for

modelling NOx emissions with emission control technologies for unit i in

period t.

o

If power output level of unit i with a SCR device is greater than or
equal to its power output threshold required for the activation of the
device, then both LNB technology and SCR device are used to reduce

NOx emissions in period t:
Py = PPR + my(1—65°F) vie NSCR (5.38)

where m; is a very small number denoting lower bounds for power

output levels.

EM))% > (1 —nfRY(1 — nIVBYEM,, %% + m, (1 — §5°R) Vi € NSCR(5.39)

where m, is a very small number denoting lower bounds for NOx

emission levels.
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o If power output level of unit i with a SCR device is less than its power
output threshold required for the activation of the device, then only

LNB technology is used to reduce NOx emissions in period t:

Py < PR — e+ (My + )65M° vie NSCR - (5.40)
where M, is a very large number denoting upper bounds for power
output levels and € = 0.001.

EM)% > (1 — nVBYEM)%* + M5 85 vi € N5CR (5.41)

where Mg is a very large number denoting upper bounds for NOx
emission levels.
o SCR device can be activated if and only if unit i is committed in
period t:
55 <wu; Vie NSCR (5.42)

o For unit i without a SCR device, only LNB technology is used to

reduce NOx emissions in period t:
EMY%* > (1 —nVBYEM[® vi ¢ NSCR (5.43)

e Total NOx emissions in period t is the sum of total operational emissions with

emission control technologies and start-up emissions in that period:

|
TEM,%* > Z[EM{ZOX + SEM} %%y (5.44)
i=1

Sign Restrictions of Decision Variables for Emissions:

EMY% EM}%* >0 vi (5.45)
TEC?, TEM®,w;* =0 Vap (5.46)
TEM:* > 0 (5.47)
TECtCO2 urs (5.48)
o55MS € {0,1} Vie NS (5.49)
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5;°R € {0,1} Vi€ N5CR (5.50)

Mathematical Model: MIQP I-VPLE-EC

IN|
Min Z(aiuit + biPit + CiPitz + VPit + qiRit + Situit) + (VOLL)(EENSLL)
i=1
+TEC)* + TEC;? + TEC!™ + TECS”
subject to

(4.40), ..., (4.59), (4.79), ..., (4.90), (5.25), ..., (5.50)

54  Computational Study

The proposed time-decoupled environmental MIQCP formulation (MIQP I-VPLE-
EC) is coded in MATLAB programming language and solved via CPLEX for
MATLAB toolbox provided by IBM ILOG CPLEX Optimizer 12.9.0. The model is
executed in Windows 10 environment in a Lenovo ultrabook with Intel(R) Core
(TM) i7-6500U 2.6 GHz CPU and 8 GB RAM. Numerical experiments on the
performance of the approach is conducted by using modified versions of Problem
Instance 2 described in Section 4.3.1. Those modifications are explained in detail in
the subsequent sections. Then, test and sensitivity analysis results are provided for
the proposed model. Lastly, our time-decoupled environmental formulation MIQP I-
VPLE-EC is compared with the UCP formulations enforcing traditional

deterministic reserve policies.

54.1 Problem Instances

To conduct numerical experiments, the time-decoupled model MIQP I-VPLE-EC is
implemented to modified versions of IEEE 30-bus problem instance by considering
significant wind penetration and emission considerations as well. For wind farms,

conventional generation reliability, load demand and wind power forecast errors,
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ramp rate limits, reserve rates and socioeconomic value that customers put on the
value of the lost load, we use the same settings provided in Section 4.3 in our
stochastic and environmental model MIQP I-VPLE-EC. Hence, only modifications
are provided in the following sections.

Problem Instance 1

This problem instance consists of 30-bus with 6 conventional thermal units and 6
wind farms which have a total installed capacity of 135 MW. The length of the
scheduling horizon is 24 hours. The power output thresholds for SCR activation and
CMS are assumed to be 30% and 70% of the unit’s maximum rated capacity.
Concerning emissions, additional unit related data for modified IEEE 30-bus test
system are provided in Table 5.4.

Table 5.4. Conventional Units’ Emissions Related Data for Modified IEEE 30-bus
Problem Instance

Unit 1 Unit 2 Unit3  Unit4 Unit 5 Unit 6
Fuel Type Coal Coal Coal Gas Gas 0il

a; 45 50 90 2430.5 2000 1.248

Bi 0.3 0.25 0.14 55 0.212 0.334

Yi 0.00005 0.00004 0.00003 0,009 0.007 0.0000342

0! 90 100 180 4861 4000 2.496

0? 90 100 180 4861 4000 2.496

Pi 0.075 0.0625 0.035 13.75 0.053 0.0835

7; () 8 5 6 5 5 6

LNB System Yes Yes Yes Yes Yes Yes
SCR System Yes No Yes No Yes No
FF System No No Yes No No No
FGD System Yes Yes Yes No Yes No
CCS System No No Yes Yes No No

NOTE: 1. The coefficients of «;, B;, Vi, Bl-l, Oiz areint, t/MW, t/MWZ, tand t for
coal & oil type units
2. The coefficients of a;, B;, Vi, pi, 01, 8% are in m3, m3 /MW, m?/MW?,

m3 /MW, m3 and m3 for gas type units
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Table 5.5 shows removal efficiencies of each emission control technology.

Table 5.5. Emission Control Systems’ Removal Efficiencies for Modified IEEE 30-

bus Problem Instance
LNB SCR FF FGD CCS
95% 90% 80%

Removal Efficiencies (n) | 30%  70%

Fuel based emissions factors for CO> and air pollutants are determined according to

Di et al. (2007). These factors are reported in Table 5.6.

Table 5.6. Fuel-based Emission Factors for Modified IEEE 30-bus Problem Instance

Coal 0il Gas
(kg/kg) (kg/kg) (kg/m3)
efco: 3.1604  2.8523 1.84
efN0x 0.0122  0.0172  0.002543
effMx 0.0026
efS0: 0.01701 0.02232  0.00026

Carbon trading price and CO- cap over the scheduling horizon are shown in Table

5.7.
Table 5.7. Carbon Trading Environment for Modified IEEE 30-bus Problem Instance
pco: CAP¢02
8,846.99

Carbon Economy 86.22
NOTE: Carbon price and cap are in $/t and t

The CO2 cap is dynamically disaggregated for individual hours by applying rules
provided in Section 5.3.2. Three-level emission tax systems for each pollutant are

illustrated in Table 5.8.
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Table 5.8. Three-Level Emission Tax Systems of Air Pollutants for Modified IEEE
30-bus Problem Instance

NOx PMx S0z
NO, NO, PPM, PPM, S0 S0
T, TE, T, TE, T, z TE, z
Tier 1 ‘ 13.78 1.07 10.88 0.19 3.21 1.37
Tier 2 ‘ 30.00 3.83 14.50 0.57 5.98 4.63

Tier 3 ‘ 46.25 6.60 18.12 0.94 8.76 7.89

NOTE: The units of emission taxes and emission tiers are in $/kg and t

Problem Instance 2

This problem instance is obtained by appropriately scaling Problem Instance 1. For
this purpose, generating units are replicated two times to form 12-Unit problem
instance. Also, capacities of wind turbines in each wind farm, load demand and wind
power forecasts, CO. cap and emission levels on tiers are doubled. Nevertheless,
removal efficiencies of emission control technologies, fuel-based emission factors,

carbon trading price and emission taxes remain unchanged.

5.4.2 Sensitivity Analysis Results

Similar to sensitivity analyses made in Chapter 4, we test the sensitivity of the
solutions of our time-decoupled model MIQP I-VPLE-EC by changing parameters
one at a time and solving them with the updated parameter value. Those parameters
involve VOLL, carbon trading price, air pollutant emission taxes, load demand and
wind speed forecast errors, failure rates of conventional generating units. The
sensitivity of the model is examined by applying it to the modified IEEE 30-bus

problem instance.

First of all, the impact of VOLL on CC; is determined by increasing VOLL by 750
$/MWh starting from 1750 $/MWh. In Table 5.9, the total operating cost of the
system and its breakdowns under different VOLL values are summarized. Emission
related costs or revenues are not included in total operating costs. It is observed that

the total operating cost increases. For the first two levels, this increase is attributed
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to the increase in the expected cost of load shedding because increasing VOLL has a
minor effect on generation and reserve cost. However, this increase is attributed to
the increase in both cost components. That is, commitment and dispatching decisions
are affected significantly when the VOLL is increased to 3250 $/MWh.

Table 5.9. Total Operating Cost under Different VOLL Values for Modified IEEE
30-bus Problem Instance

VOLL ($/MWh) 1750 2500 3250
Expected Cost of EENS ($) ‘ 31,664.5 45,025.4 57,801.4
Generation & Reserve Cost ($) ‘ 698,277.4 698,287.5 706,449.5
Total Operating Cost ($) ‘ 729,941.9 743,312.9 764,250.9
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Figure 5.5. Relationship between VOLL and CC, for Modified IEEE 30-bus Problem
Instance

This situation is also illustrated in Figure 5.5 which shows the relationship between
VOLL and CC; over the 24-h scheduling horizon. Increasing VOLL does not change
CC; levels except for five periods since emission related costs/revenues remain the

dominant factor in the cost/benefit analysis. By increasing VOLL to 3250 MWh/$,
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CC; levels generally increase in those periods. Also, we examine how total emission
amounts change by increasing VOLL, which is demonstrated in Figure 5.6 where the
primary and secondary vertical axes represent GHG emissions such as CO3, and air

pollutant emissions consisting of NOyx, SO2 and PMy.
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Figure 5.6. Relationship between VOLL and Total Emission Amounts for Modified
IEEE 30-bus Problem Instance

Air pollutant emissions do not change significantly as VOLL increases. NOx
emissions are 24.68, 24.73 and 24.85 tonnes, SO, emissions are 19.95, 19.94 and
19.83 tonnes, and PMyx emissions are 3.86, 3.86 and 3.84 for increasing levels of
VOLL, respectively. Nevertheless, by increasing VOLL from 1750 $/MWh to 2500
$/MWh, CO2 emissions are slightly reduced from the level of 10,331.96 tonnes to
10,326.87 tonnes. However, they increase substantially by reaching to the top level
of 10,402.62 tonnes with a further 750 $MWh increase. The reason is that more
carbon intensive units such as coal-fired and oil-fired units become committed to

decrease EENS; levels.

Secondly, we test the sensitivity of the solution by increasing the system uncertainty.
Since solution behaviors are similar for both increasing forecast errors and
decreasing conventional power generation reliability, we provide the solutions where

the reliability of the conventional generation is reduced. For this purpose, we double
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and triple failure rates (ORR); accordingly, we solve the model with new
conventional system reliability. In Figure 5.7, the relationship between ORR and CC;
over the 24-h scheduling horizon is illustrated. Changing ORR does not affect CC;
levels much except for five periods since emission related costs/revenues dominate
the overall cost/benefit analysis. It is important to note that schedules under doubled
ORR are similar to the ones in original ORR for the first 20 periods, but schedules
under doubled ORR behaves like the ones in tripled ORR due to the VPLE.
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Figure 5.7. Relationship between Conventional System Reliability and CC; for
Modified IEEE 30-bus Problem Instance

Also, we examine how total emission amounts change by decreasing the
conventional system reliability, which is shown in Figure 5.8 where the primary and
secondary vertical axes represent GHG emissions such as CO», and air pollutant

emissions consisting of NOy, SOz and PMx.
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Figure 5.8. Relationship between Conventional System Reliability and Total
Emission Amounts for Modified IEEE 30-bus Problem Instance

There is no significant change in air pollutant emissions by increasing ORR as
depicted in Figure 5.8. NOx emissions are 24.85, 24.62 and 24.79 tonnes, SO
emissions are 19.95, 19.87 and 19.84 tonnes, and PMy emissions are 3.86, 3.84 and
3.84 for increasing levels of ORR, respectively. Nonetheless, CO2 emissions increase
substantially as the conventional system reliability is reduced. The emission levels
start with 10,331.96 tonnes, then they increase by 54.13 tonnes when ORR is
doubled. They further increase by 44.08 tonnes when ORR is tripled. The reason is
that more carbon intensive units such as coal-fired and oil-fired units become
committed to increase CC, levels. Moreover, there is an increase in total operating
cost when the conventional system becomes less reliable as reported in Table 5.10.
That is because both generation and reserve costs and total EENS; increases with the
reduction in the conventional system reliability.

Table 5.10. Total Operating Cost under Different Conventional System Reliability
for Modified IEEE 30-bus Problem Instance

Scale of ORR x1 x2 x3
Expected Cost of EENS ($) ‘ 31,664.5 51,124.8 69,539.9
Generation & Reserve Cost ($) ‘ 698,277.4 703,513.3 707,433.5
Total Operating Cost ($) ‘ 729.941.9 754.638.1 776.973.4
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Another parameter is the trading price in the carbon economy. To see its effects on
total cost, CC; and emissions, the carbon price is scaled in an increasing order. As
shown in Figure 5.9, CC, values are sensitive to changes in the carbon price. In
periods with low net load intensity, there is a downward effect on CC; levels when
the trading price is doubled and tripled. However, this effect is generally reversed
for periods with high net load intensity. That is because more units become
committed for these periods, but they are dispatched more environmentally friendly

to abate GHG and air pollutant emissions.
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Figure 5.9. Relationship between Carbon Trading Price and CC; for Modified IEEE
30-bus Problem Instance

Except for NOx and SO2 emissions, PMx and CO2 emissions reduce as the carbon
price increases. In Figure 5.10, PMyx emissions are 3.86, 3.71 and 2.97, and CO>
emissions are 10,331.96, 10,192.96 and 8,976.43 tonnes for increasing levels of the
trading price, respectively. Nevertheless, NOx emissions slightly increase by 1.75
tonnes and reaches to 26.60 tonnes for doubled trading price. Then, they reduce to
23.58 tonnes for tripled trading price. Similarly, SO2 emissions slightly increases
for doubled carbon price from 19.95 tonnes to 19.98 tonnes. When the carbon price
is tripled, they reduce by 3.53 tonnes.
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Figure 5.10. Relationship between Carbon Trading Price and Total Emission
Amounts for Modified IEEE 30-bus Problem Instance

As reported in Table 5.11, total operating costs increase with an increase in the
carbon price due to the increase in generation and reserve costs. While this cost
component increases, the expected cost of load shedding slightly fluctuates around
the level of $ 31,600.

Table 5.11. Total Operating Cost under Different Carbon Trading Price for Modified
IEEE 30-bus Problem Instance

Scale of Carbon Price x1 x2 x3
Expected Cost of EENS ($) ‘ 31,664.5 32,683.8 31,960.6
Generation & Reserve Cost ($) ‘ 698,277.4 700,994.6 702,400.4
Total Operating Cost ($) ‘ 729.941.9 733.678.5 734.360.9

Like carbon trading price, we also examine how NOx taxes change the commitment
and dispatching decisions. For this purpose, NOx taxes in three levels are doubled
and tripled at the same time. As illustrated in Figure 5.11, CC; values are very
sensitive to changes in NOx taxes. In general, increasing NOx taxes have a downward
effect on CC; levels, but those levels with tripled taxes are greater than or equal to

the ones with lower taxes for periods with high net load intensity.
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Figure 5.11. Relationship between Three-level NOx Taxes and CC, for Modified
IEEE 30-bus Problem Instance

Except for CO2 emissions, NOx, SOz, PMy emissions reduce as NOx taxes increase
as demonstrated in Figure 5.12. NOx emissions are 24.85, 25.44 and 21.37 tonnes,
SO2 emissions are 19.95, 19.76 and 16.30 tonnes, and PMy emissions are 3.86, 3.59
and 2.66 for increasing NOx taxes, respectively. However, CO. emissions
substantially increase by 185.52 tonnes and reaches to 10,517.48 tonnes for doubled
NOy taxes. Then, they significantly abate to 8,978.84 tonnes for tripled NOy taxes.
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Figure 5.12. Relationship between Three-level NOx Taxes and Total Emission
Amounts for Modified IEEE 30-bus Problem Instance
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When the expected costs of EENS are compared for different levels of NOx taxes,
they decrease because of the reduction in total EENS;. In contrast, generation and
reserve costs fluctuates, so the total operating costs. It should be pointed out that both
components are decreased for the initial and tripled NOx taxes (Table 5.12).

Table 5.12. Total Operating Cost under Different Three-level NOx Taxes for
Modified IEEE 30-bus Problem Instance

Scale of NOx Taxes x1 x2 x3
Expected Cost of EENS ($) ‘ 31,664.5 29,873.6 29,713.7
Generation & Reserve Cost ($) ‘ 698,277.4 710,832.6 689,425.8
Total Operating Cost ($) ‘ 729.941.9 740.706.2 719.139.5

Similar analyses are also made for scaled SO> taxes. Different from other parameters,
CC; levels generally increase with higher SO> taxes (Figure 5.13). The reason is that
gas-fired units do not have an FGD technology whereas coal-fired and oil-fired units
have this control technology. However, gas-fired units have more capacity than other
units except 700 MW coal-fired unit. Therefore, more units become committed for
the same net load level as SO, taxes increase, which in return increases CC;. This

effect becomes more significant when SO taxes are tripled.
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Figure 5.13. Relationship between Three-level SO, Taxes and CC; for Modified
IEEE 30-bus Problem Instance
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Excluding CO2 emissions, NOx, SOz, PMy emissions are not affected when SO»
taxes are kept in the original levels and doubled as depicted in Figure 5.14. NOy
emissions are 24.85 and 24.87 tonnes, SOz emissions are 19.95 and 19.76 tonnes,
and PMx emissions are 3.86 and 3.71 for the first two scales, respectively. However,
CO. emissions substantially decrease by 79.61 tonnes and become 10,252.35 tonnes
for doubled SO taxes. Nonetheless, both GHG and air pollutant emissions increase
significantly when compared to the ones in previous scales. To illustrate, NOx, SOz,
PMy and CO- emissions reach their top levels of 31.87, 21.80, 4.48 and 11,708.87
tonnes, respectively. The same reasoning in the increase in CC; levels is also valid
for the increase in emission levels. Although coal-fired and oil-fired units do not
utilize FGD technology, they are more carbon intensive. Hence, emission levels

skyrocket for tripled SO taxes.
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Figure 5.14. Relationship between Three-level SO, Taxes and Total Emission
Amounts for Modified IEEE 30-bus Problem Instance

When total operating costs are compared for different SO» taxes, there is an
increasing trend, which is caused by generation and reserve costs as reported in Table
5.13. Since CC; levels increase, generation and reserve costs also increase whereas

the expected cost of load shedding decreases.
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Table 5.13. Total Operating Cost under Different Three-level SO, Taxes for
Modified IEEE 30-bus Problem Instance

Scale of SOz Taxes x1 x2 x3
Expected Cost of EENS ($) ‘ 31,664.5 31,177.1 29,393.9
Generation & Reserve Cost ($) 698,277.4 703,700.6 730,019.9
Total Operating Cost ($) 729,941.9 734.,877.8 759,413.9

Lastly, we examine the sensitivity of the solution under different PMy taxes. It is
observed that, different PMy tax regimes do not have a significant impact on CC;
levels as demonstrated in Figure 5.15. The reason is that PMx emissions are caused
by only coal-fired units, and only 700 MW coal-fired unit is committed in the
original tax regime since it has the FF technology. Hence, increasing PMy taxes does

not change the commitment and dispatching decisions.
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Figure 5.15. Relationship between Three-level PMy Taxes and CC, for Modified
IEEE 30-bus Problem Instance
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Figure 5.16. Relationship between Three-level PMy Taxes and Total Emission
Amounts for Modified IEEE 30-bus Problem Instance

In Figure 5.16, emission levels under different PMy tax regimes are shown. PMy
emissions are slightly reduced with the increasing PMy tax regime. The emission
levels are 3.86, 3.85 and 3.72 tonnes. Likewise, SO, emissions are also abated by
increasing PMy taxes. The associated emission levels are 19.95, 19.92 and 19.79
tonnes. That is because committed coal fired unit generates less power. Nevertheless,
NOx emissions increase as PMy taxes increase. The corresponding emission levels
are 24.85, 25.20 and 25.66 tonnes. Different from air pollutant emissions, when PMy
taxes are doubled, CO, emissions are increased by 10.16 tonnes first and become
10,342.12 tonnes. Then, they decrease by 113.16 tonnes when taxes are tripled.
When total operating costs are compared for different PMy tax regimes, total
operating cost increases as a result of the increase in generation and reserve costs as
shown in Table 5.14.

Table 5.14. Total Operating Cost under Different Three-level PMy Taxes for
Modified IEEE 30-bus Problem Instance

Scale of PMy Taxes x1 x2 x3
Expected Cost of EENS ($) 31,664.5 31,814.6 31,246.4
Generation & Reserve Cost ($) 698,277.4 699,076.3 701,936.6
Total Operating Cost ($) ‘ 729,941.9 730.890.9 733.182.9
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In particular, the results of sensitivity analyses verify that the carbon trading price,
tax regimes for air pollutant emissions have a substantial impact on both commitment
and dispatching decisions, and GHG and air pollutant emissions in our time-
decoupled, stochastic and environmental model MIQP I-VPLE-EC for modified
IEEE 30-bus problem instance. Different from models introduced in Chapter 4,
VOLL and the system uncertainty due to forecast errors and potential failures in
conventional generation have an insignificant effect on commitment and dispatching
decisions, and air pollutant emissions in the proposed approach. Even so, it should
be emphasized that total CO, emissions are always affected by the changes in almost

all parameters.

54.3 Comparison of Results

For modified IEEE 30-bus problem instance and its duplicated version, the proposed
time-decoupled, stochastic and environmental formulation MIQP I-VPLE-EC is
compared with traditional UCP formulations with deterministic reserve policies and
the time-decoupled model MIQP I-VPLE proposed in Chapter 4. According to
schedules obtained by these approaches, their SR, and EENS, values are computed
by using EENS, Approximation I. Similarly, their GHG and air pollutant emissions

are calculated via emission models explained in Section 5.3.

54.3.1  Comparison with Deterministic Approaches

For both problem instance, the proposed approach and deterministic approaches are
compared in terms of total emissions and total operating costs that consist of
generation costs, reserve rates and socioeconomic value of the lost load. First, the
results for Problem Instance 1 are provided. In Table 5.15, total operating costs of
each approach and their components are reported for modified IEEE 30-bus problem
instance. Total operating cost of the proposed approach is lower than the

deterministic approaches thanks to the complete trade-off between generation and

201



reserve costs, the expected cost of load shedding and emission related
costs/revenues. Nonetheless, the proposed approach yields schedules with larger
total EENS;, so its expected cost of lost load is greater than other deterministic
approaches.

Table 5.15. Comparison of Total Operating Costs in the Proposed and Deterministic
Approaches for Modified IEEE 30-bus Problem Instance

Approaches Proposed Traditional 3.50¢ Hybrid
Expected Cost of EENS ($) ‘ 31,664.5 20,904.3 29,673.3 20,061.2
Generation & Reserve Cost ($) ‘ 698,277.4 788,300.1 725,517.7 769,283.4
Total Operating Cost ($) ‘ 729,941.9 809,204.4 755,191.0 789,344.5

As shown in Figure 5.17, total NOx and PMy emissions are significantly reduced by
the proposed approach. For NOx emissions, the overall reduction ranges between
39% and 45%. This range is between 46% and 60% for PMy emissions. In terms of
SO, emissions, the proposed approach gives schedules with lower emissions when
compared to the ones in the 3.5¢ and hybrid approaches. The corresponding
reduction amounts are 8% and 15%, respectively. However, schedules obtained by
the proposed and traditional approaches emit the same amount of SO, which is
approximately 20 tonnes. Furthermore, by using the proposed approach, CO>

emissions are also cut by 30% to 42% as illustrated in Figure 5.18.
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Figure 5.17. Comparison of Air Pollutant Emissions in the Proposed and
Deterministic Approaches for Modified IEEE 30-bus Problem Instance
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Figure 5.18. Comparison of CO2 Emissions in the Proposed and Deterministic
Approaches for Modified IEEE 30-bus Problem Instance

Similar comparisons are also made for the duplicated version of modified IEEE 30-
bus problem instance. Considering total operating costs, the proposed approach
outperforms the deterministic approaches since it explicitly makes the trade-off
between generation and reserve costs, the expected cost of EENS and emission
related costs/revenues (Table 5.16). Nevertheless, the proposed approach yields

schedules with larger total EENS,, as in modified IEEE 30-bus problem instance.

Table 5.16. Comparison of Total Operating Costs in the Proposed and Deterministic
Approaches for Modified and Duplicated IEEE 30-bus Problem Instance

Approaches Proposed Traditional 3.5¢ Hybrid
Expected Cost of EENS ($) 74,845.9 34,162.7 56,140.9 34,162.7
Generation & Reserve Cost ($) 1,355,239.6 1,454,281.4 1,411,577.6 1,454,281.4
Total Operating Cost ($) 1,430,085.4 1,488.444.1 1,467,718.5 1.488.444.1

Different from modified IEEE 30-bus problem instance, all air pollutant emissions
are substantially reduced by the proposed approach as depicted in Figure 5.19. For
NOx emissions, the total abatement is 43% when compared to the 3.5¢ approach
whereas it is 50% when compared to the traditional and hybrid approaches. For PMx
emissions, these are 56% and 67%, respectively. For SO, emissions, the

corresponding reduction amounts are 20% and 26%, respectively. Likewise, by using
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the proposed approach, CO, emissions are also cut by 30 percent to 41 percent as
shown in Figure 5.20.
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Figure 5.19. Comparison of Air Pollutant Emissions in the Proposed and
Deterministic Approaches for Modified and Duplicated IEEE 30-bus Problem
Instance
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Figure 5.20. Comparison of CO2 Emissions in the Proposed and Deterministic
Approaches for Modified and Duplicated IEEE 30-bus Problem Instance

5.4.3.2  Comparison with the Pure Stochastic Approach

For both problem instance, the proposed formulation MIQP I-VPLE-EC and the
formulation MIQP I-VPLE are compared in terms of committed capacities, reserves,

total EENS;, total emissions, total operating costs that consist of generation costs,
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reserve rates and socioeconomic value of the lost load. For the sake of clarity, in this
section, the proposed model MIQP I-VPLE-EC is called as the environmental
stochastic approach while the model MIQP I-VPLE is called as the pure stochastic
approach. First, the results for Problem Instance 1 are provided.

In Figure 5.21, CC, levels are compared for the environmental stochastic and pure
stochastic approaches for modified IEEE 30-bus problem instance. In 10 out of 24
periods, the environmental stochastic approach yields schedules having CC; greater
than or equal to that in the pure stochastic approach. Hence, the former behaves less
conservative when emission limitations are considered. To illustrate, total EENS;
over the 24-h scheduling horizon is 18 MWh in the environmental stochastic whereas
it is 14 MWh in the pure stochastic approach. Nevertheless, commitment decisions

are approximately the same for both approaches when periods are net load intensive.
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Figure 5.21. Comparison of Committed Capacities in the Environmental Stochastic
and Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance

Also, we compare how the overall power generation mix changes when emission
limitations are also considered. As shown in Figure 5.22, the power generation is
coal intensive with 55% share in the pure stochastic approach, whereas it is gas
intensive with 61% share in the environmental stochastic approach. That is because

coal-fired units are cheaper in the sense of power generation. When emission
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limitations are considered, it is more plausible to generate more power from gas-
fired units because these units are more environmentally friendly. In any case, the

share of oil-fired units in the power generation mix remains unchanged.

Environmental Stochastic Pure Stochastic
= Gas-Fired Units = Coal-Fired Units Oil-Fired Units = Gas-Fired Units = Coal-Fired Units Oil-Fired Units
2% 2%

@ ¢

Figure 5.22. Comparison of Power Generation Mixes in the Environmental
Stochastic and Pure Stochastic Approaches for Modified IEEE 30-bus Problem

Instance

It is important to note that the shift in overall power generation mix is due to the
change in unit-based hourly loading profiles as shown in Figures 5.23 and 5.24 where
combustion types of units are specified in parenthesis. The share of gas-fired
generation increases in every period when the environmental stochastic approach is

used. This increase is more prevalent in periods with low and medium load intensity.
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Figure 5.23. Hourly Loading Profiles of Conventional Units in the Environmental
Stochastic Approach for Modified IEEE 30-bus Problem Instance
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Figure 5.24. Hourly Loading Profiles of Conventional Units in the Pure Stochastic
Approach for Modified IEEE 30-bus Problem Instance

As illustrated in Figure 5.25, the reductions in total NOyx and PMy emissions are
significant in the environmental stochastic approach. Both emissions are cut by 19%.
However, total SO2 emissions is approximately the same for both approaches, which
is around 20 tonnes. Besides, in terms of GHG emissions, by using the environmental

stochastic approach, CO2 emissions are reduced by 8% as depicted in Figure 5.25.
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Figure 5.25. Comparison of Air Pollutant Emissions in the Environmental Stochastic
and Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance
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Figure 5.26. Comparison of CO. Emissions in the Environmental Stochastic and
Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance

When both approaches are compared in terms of total operating costs, the
environmental approach yields a generation schedule that is more expensive than
that in the pure stochastic approach, which is mainly due to the difference between
total EENS,; in each approach as shown in Table 5.17. In the environmental
stochastic approach, 18 MWh of energy is expected to be not served whereas it is 14
MWh in the pure stochastic approach. The reason is that the former provides less
reserves in order to reduce GHG and air pollutant emissions.

Table 5.17. Comparison of Total Operating Costs in the Environmental Stochastic
and Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance

Approaches Environmental Stochastic Pure Stochastic
Expected Cost of EENS ($) 31,664.5 24,304.3
Generation & Reserve Cost ($) 698,277.4 697,383.4
Total Operating Cost ($) 729,941.9 721,687.7

Similar comparisons are also made for the duplicated version of modified IEEE 30-
bus problem instance. In Figure 5.27, for Problem Instance 2, CC, levels are
provided for the environmental stochastic and pure stochastic approaches. In 15 out

of 24 periods, CC; in the environmental stochastic approach is greater than or equal
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to the ones in the pure stochastic approach. Thence, the former behaves more
conservative in those periods, but it gives a schedule with larger total EENS; over
the 24-h scheduling horizon. To illustrate, total EENS; is 43 MWh in the
environmental stochastic approach, whereas it is 35 MWh in the pure stochastic
approach. This is an indicator that the latter preserves its conservativeness as in
Problem Instance 1. Nonetheless, commitment decisions in periods with high net

load intensity are similar for both approaches.
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Figure 5.27. Comparison of Committed Capacities in the Environmental Stochastic
and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem
Instance

Secondly, the change in the overall power generation mix is compared for both
environmental stochastic and pure stochastic approaches. As shown in Figure 5.28,
the power generation is coal intensive with 52% share in the pure stochastic approach
while it is gas intensive with 64% share in the environmental stochastic approach.
The same reasoning in the first problem instance is also valid in its duplicated
version. Different from Problem Instance 1, the share of oil-fired units in the power

generation mix is also decreased by 4% in this case.
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Figure 5.28. Comparison of Power Generation Mixes in the Environmental

Stochastic and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-
bus Problem Instance

The shift in overall power generation mix is due to the change in unit-based hourly
loading profiles as shown in Figures 5.29 and 5.30. When environmental stochastic
approach is implemented, it is observed that the share of gas fired generation
increases significantly in every period. In fact, only gas-fired units become

committed or most of the load demand is met by those units after the 4™ period.
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Figure 5.29. Hourly Loading Profiles of Conventional Units in the Environmental
Stochastic Approach for Modified and Duplicated IEEE 30-bus Problem Instance

210



4000

3500 I
%]
S 3000 I I
o
STLLTTE
o 2000 i
=) -
5 1500 W .I -ill
g 1000 R III II III
3 5 |

500 | II

0 ndl ‘S EEEEEEN

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time Periods (h)

BUnit1[C] MUnit2[C] =Unit3[C] ®WUnit4[G] WUnit5[G] ®Unit6[O]
®Unit7[C] ®MUnit8[C] = Unit9[C] ™ Unit10 [G] ™ Unit11 [G] ® Unit 12 [O]

Figure 5.30. Hourly Loading Profiles of Conventional Units in Pure Stochastic
Approach for Modified and Duplicated IEEE 30-bus Problem Instance

Unlike Problem Instance 1, all air pollutant emissions are significantly reduced by
the environmental stochastic approach as illustrated in Figure 5.31. The associated
reductions in total NOx, SO2 and PMyx emissions are 42%, 26% and 51%,
respectively. Moreover, in terms of GHG emissions, by using the proposed approach,

CO- emissions are cut by 29% as shown in Figure 5.32.
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Figure 5.31. Comparison of Air Pollutant Emissions in the Environmental Stochastic
and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem
Instance
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Figure 5.32. Comparison of CO. Emissions in the Environmental Stochastic and
Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem
Instance

As in Problem Instance 1, the environmental stochastic approach yields a generation
schedule that is more expensive than that in the pure stochastic approach in terms of
total operating costs. Even if generation and reserve costs are reduced by $ 1,693.2
in environmental stochastic approach, its expected cost of load shedding is larger
than that of the pure stochastic approach as shown in Table 5.18. The reason is that
43 MWh of energy is expected to be not served in the former which keeps less
reserve to mitigate emissions, whereas it is 35 MWh in the latter.

Table 5.18. Comparison of Total Operating Costs in the Environmental Stochastic

and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem
Instance

Approaches Environmental Stochastic Pure Stochastic
Expected Cost of EENS ($) 74,845.9 61,777.4
Generation & Reserve Cost ($) 1,355,239.6 1,356,932.8
Total Operating Cost ($) 1,430,085.4 1,418,710.3
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

This thesis addresses solution approaches for unit commitment problems in
traditional and wind integrated hybrid power systems. These problems have a critical
role in effective planning and efficient operation of modern power systems. For this
purpose, operating cost reduction has been a top priority objective for power
generation companies in the vertically integrated electricity markets. Nevertheless,
with the increasing concerns on global warming and air pollution, a great majority
of countries have been promoting policies to abate GHG and air pollutant emissions.
Hence, power generation companies are forced to also consider the minimization of

atmospheric emissions in their operations planning.

At the first stage of this study, we propose a Mixed Integer Coded Genetic Algorithm
(MICGA) combined with Improved Lambda Iteration Method (I-LIM) to solve the
UCP in traditional power systems where the sole priority is to minimize total
operating costs of conventional power plants ignoring the inherent uncertainties. In
the proposed algorithm, commitment decisions are given according to genetic
operations while load dispatching decisions are made with the combined usage of
the I-LIM and genetic operators. The MICGA incorporates a special chromosome
representation strategy and initial population algorithm, problem specific genetic
operators, penalty mechanisms and a modified version of the LIM. Those features
assure the convergence of the algorithm, the feasibility and optimality of the
solutions. The algorithm is applied to a set of widely used benchmark problem
instances. According to statistical analyses conducted, the algorithm yields robust
and precise solutions, which is very important in operations planning of power

systems. Also, the solutions are compared with other GA-based approaches in terms
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of both solution qualities and computing times. The results indicate that the MICGA

can determine satisfactorily good unit schedules and power generation mix in a

reasonable computation time. The main contributions of the proposed approach are

listed as follows:

Different from most of the genetic algorithm-based approaches reviewed in
Chapter 2, mixed integer coding scheme is first utilized when representing
commitment schedules as chromosomes. By doing so, the required memory
usage is reduced, and the computation is expedited significantly.

For initial population generation, an intelligent algorithm is first devised to
ensure that chromosomes in the initial population always satisfy the
minimum uptime/downtime constraints. Similarly, various problem specific
mutation operators are developed to enhance the solution quality and the
convergence rate of the MICGA. With the special initial population
algorithm and smart mutation operators, minimum uptime/downtime
constraints are always met during the evolution.

Different from the original L1M, the proposed I-LIM can also use the notion
of Average Fuel Cost Optimization in addition to its main logic of the Total
Fuel Cost Optimization. Accordingly, the I-LIM yields dispatching schedules
with less total fuel costs. Moreover, the original LIM cannot cope with the
ramp rate limits of conventional generating units. To overcome this problem,
the I-LIM is also strengthened with a set of rules that can guarantee the non-
violation of the ramp rate limits. As a result, both generation limits and ramp-

rate limits are satisfied with this improved version.

For the first stage of this study (Chapter 3), there are several future research

directions, including, but not limited to, the following ideas:

The proposed MICGA can be improved by integrating other local search
techniques so that the regions around the local optimum can be explored

even further.
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e Making use of some diversity measures that will enable the algorithm to
adjust its genetic operation probabilities on its own during the evolution
may improve the exploitation capability of the MICGA.

e Inthe proposed MICGA, dispatching subproblem is solved via an improved
version of the LIM (I-LIM). Without requiring such an exogenous
algorithm, the solution of this subproblem can also be integrated to the GA
itself. By doing so, the convergence rate of the MICGA can be improved.

e Inreal power systems, conventional power plant efficiencies oscillate when
their power output levels increase gradually. This is called as valve point
loading effect (VPLE) which results in nonconvex operating cost functions.
To integrate this phenomenon into the MICGA, a new set of rules can be
defined to reinforce the I-LIM, or the MICGA can be combined with
another heuristic.

At the second stage of this study, we propose different time-decoupled and stochastic
Mixed Integer Quadratic Programming (MIQP) models to solve the UCP in wind
integrated hybrid power systems, where the main objective is to minimize the sum
of total power generation costs of conventional power plants and the socioeconomic
value of the expected energy not served (EENS) due to wind and load demand
forecast errors, and unexpected unit outages in conventional generation. In those
models, load demand forecasts and wind power generation forecasts are linked with
each other by considering wind power supply as a negative load under certain
assumptions, while the unexpected outages of conventional generating units are
modeled as a two-state Discrete Time Markov Process. To integrate EENS due to
forecast errors and sudden outages in conventional generation, two modelling
techniques are developed. In these techniques, EENS is piecewise linearly
approximated by using additional auxiliary variables and linear constraints. It is
shown that one of these estimation techniques has a superior performance in terms
of model complexity and required computing time. Then, that model is extended to
also take into account the VPLE in conventional generation. In this extension, the

absolute sinusoidal oscillation in conventional power plant efficiencies is piecewise
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linearly approximated by introducing additional auxiliary variables and linear

constraints. The proposed models are implemented on a set of widely used

benchmark problem instances. To examine the effects of changes in problem

parameters on the solutions, sensitivity analyses are carried out for critical problem

parameters. Then, the proposed time-decoupled and stochastic approaches are

compared with the standard UCP models enforcing deterministic reserve criteria.

The results indicate that the MIQP stochastic models outperform the standard UCP

formulations in terms of total operating costs. The main contributions of the

proposed MIQP approaches are listed as follows:

An efficient algorithm is devised to construct the Capacity Outage
Probability Table (COPT) for medium and large scale wind integrated hybrid
power systems.

Some novel EENS estimation techniques, which make use of the concept of
piecewise linear approximation, are developed and integrated to the MIQP
models. By this way, the proposed models accurately calculate EENS
approximations without requiring any deterministic reserve criteria or risk
targets. Accordingly, total power generation cost and the expected cost of
EENS are explicitly traded off when making commitment and dispatching
decisions.

An efficient piecewise linear approximation method is developed for the
VPLE in conventional power plant efficiencies. This approximation includes
fewer auxiliary variables and constraints than that of its current counterparts.
As a result, the proposed MIQP model, which is reinforced with the VPLE
approximation, remains computationally tractable. Accordingly, the required
memory usage is reduced, and the computation is expedited significantly.
As a result of the above techniques, a practical and yet effective
methodology, which combines both supply and demand uncertainties in wind
integrated hybrid power systems, has been developed. This methodology is

implemented in a single mathematical model (MIQP I-VPLE).
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At the last stage of this study, the model MIQP I-VPLE is further extended to also
consider the effects of emission limitations and emission reduction technologies on
the conventional generation in wind integrated hybrid power systems. Owing to
nonlinear representations of GHG and air pollutant emissions, the extended version
of the model MIQP I-VPLE now becomes a time-decoupled, stochastic and
environmental Mixed Integer Quadratically Constrained Programming
(MIQCP=MIQP I-VPLE-EC) model. In this extension, the main objective is to
minimize the sum of total power generation costs of conventional generating units,
the socioeconomic value of the expected energy not served as well as the cost of
emissions. The proposed MIQCP model is applied to a set of widely used benchmark
problem instances. To examine the effects of changes in problem parameters on the
solutions, sensitivity analyses are conducted for several problem parameters. Then,
the proposed time-decoupled, stochastic and environmental approach (MIQCP
model) is compared with the standard UCP models enforcing deterministic reserve
criteria and the model MIQP I-VPLE. The results indicate that the MIQCP model
outperforms others in terms of both operating costs and emission amounts. The main
contributions of the proposed MIQCP approach are listed as follows:

e To the best of our knowledge, the proposed methodology is the first that
considers both supply/demand uncertainty, the VPLE, emission limitations
and clean energy technologies in wind integrated hybrid power systems. By
this way, total power generation costs, the expected cost of EENS and
emission costs/revenues are explicitly traded off when making commitment
and dispatching decisions.

e As far as we know, the proposed methodology is the only study that deals
with CO2, NOx, SO2 and PMy emissions at the same time by taking emission
trading and taxing mechanisms into consideration.

e Inthe UCP in wind integrated hybrid power systems, the proposed MIQCP
approach provides effective and integrated modelling of Carbon Capture
Storage Systems against CO, emissions; Low NOx Burner and Selective

Catalytic Reduction Technologies against NOx emissions; Fabric Filters
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against PMy emissions; and Flue Gas Desulfurization Technique against SO>

emissions. Likewise, the Combustion Mode Switch Feature against NOy

emissions of gas-fired generating units is modelled more precisely than that

of its current applications. Hence, the proposed MIQCP formulation is the

first environmentally friendly model that integrates those emission control

technologies in a single mathematical model (MIQP I-VPLE-EC).

For the last two stages of this study (Chapters 4 and 5), we can point out several

future research directions, including, but not limited to, the following ideas:

In the proposed models, it is assumed that there are no constraints on the
transmission of the produced power to the demand points. In reality, each
transmission line has a power transmission limit. Also, some portion of
the produced power might be lost during transmission especially over
long distances. Hence, the impacts of transmission infrastructure on the
UCP should also be taken into account. Thanks to time-decoupled
features of the proposed models, power transmission limits and
transmission losses can also be integrated without losing the tractability
of the models.

Due to the thermal stress limitations and mechanical characteristics of the
conventional generating units, they might not be able to produce power
output in several operating zones. These zones are called as prohibited
operating zones, which results in discontinuities on their fuel cost curves.
In the proposed models, this requirement is relaxed by assuming that
conventional power generating units can produce within their power
output and ramp-rate limits. Nevertheless, by defining additional
auxiliary variables and constraints to the proposed models, these
discontinuities can also be handled.

In addition to wind turbines, solar panels have also grabbed a significant
attention in several countries. Nonetheless, solar power generation has an
intermittent nature like wind power generation. Thus, the variation in

solar power forecasts is another source of uncertainty in wind and solar
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integrated hybrid power systems. However, modelling solar uncertainty
is not as straightforward as in wind power and load demand forecasts.
The reason is that solar power forecast errors follow a bimodal
distribution. On the contrary, wind power and load demand forecast
errors follow a unimodal distribution. Hence, integrating solar power
generation to the proposed models is a challenging but a promising
research area.

To reduce electricity prices by increasing the competition and the service
quality among power generation companies; electricity markets have
started to be deregulated in several developed countries. In the
deregulated electricity market, power generation companies have a
freedom in such a way that they are not required to satisfy the whole
energy demand of their customers. That is, they can meet some portion
of the demand which maximizes their profit. This relaxation introduces a
new problem called as Profit Based UCP (PBUCP) in which the objective
changes from cost minimization to profit maximization. The PBUC will
bring another source of uncertainty arising from the variabilities in
forecasted energy price (spot price) profiles. Our approach can be
extended to solve this new variant of the UCP by relaxing load demand
constraints and developing effective spot price forecasting methods or
employing stochastic programming techniques for different energy price
scenarios.

The proposed EENS approximations can be improved even further by
representing the relationship between EENS and the committed capacity
as a combination of a negative definite quadratic equation and an absolute
sine function, or stepwise functions ignoring the curvatures in the original
relationship by introducing breaks to the approximations. These will
require an additional set of experiments. By doing so, the quality of the
approximations will increase but the models will become more complex

to solve since these modifications will cause nonconvex feasible regions.
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In some countries, emissions are also controlled via zonal emission limits in
addition to emission trading and taxing mechanisms. In the proposed
approach in Chapter 5, only the latter is modelled. Those zonal emission
limits can easily be added to the proposed approach as additional constraints
limiting total emissions of conventional generating units in those specific

Z0nes

In real life, the proposed approaches can be used for the following purposes:

Power generation companies can obtain efficient commitment and
dispatching schedules, and adjust them in a rolling horizon basis in case of
unexpected deviations from the schedules that are originally set.

Power generation companies can also make effective What-if analyses for
the parameters that are critical to their operations planning.

Policymakers can develop effective policies to reduce both greenhouse gas
and air pollutant emissions of conventional power plants.

Both policymakers and power generation companies can quantify
supply/demand uncertainty in wind integrated hybrid power systems,
socioeconomic value of EENS, rippling effects in conventional power plant
efficiencies, importance of Emission Control Technologies and impacts of
Emission Trading and Taxing Mechanisms.
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APPENDICES

A. Emission Trading Systems in EU, US, China and Turkey

European Union

For the first commitment period of the Kyoto Protocol, EU set a more ambitious
target of 8% reduction from its 1990 level. To achieve this target, in 2005, European
Commission set up EU Emission Trading System (EU ETS), which is the world's
first international emissions trading system (European Commission, n.d.), to mitigate
GHG emissions caused by different industrial sectors in EU. The EU ETS is based

on the Cap & Trade mechanism.

The first ETS period was set for three years between 2005 and 2007. According to
EC, in this period, only CO emissions were monitored for power plants and energy-
intensive industries. By considering EC guidelines, emission trading authorities in
each EU country were responsible of setting the quotas for their country and issuing
the emission allowances to power plants and energy-intensive industries. Since the
first period was a trial phase and there was no reliable emission data related to those
industries, total emission allowances were estimated and provided for free. Hence,
the total amount of allowances issued was greater than the emission realizations at
the end of 2007. In 2008, Iceland, Liechtenstein and Norway were joined to the initial
15 countries. The second ETS period was stricter in terms of emission reduction
targets when compared to the ones in the previous period because it would cover the
first commitment period of the Kyoto Protocol (2008-2012). First of all, EC reduced
the caps by 6.5% from the ones in 2005 with respect to the emission data collected
during the first ETS period. Most of the allocations of emission allowances to
companies in the carbon market remained free in the second phase although the
proportion of the free allocations was decreased by 10%. Furthermore, the fines
imposed for non-compliance to total allowances were increased by €60 per tonnes

of emission and became €100 per tonnes being subject to an increase in accordance
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with the EU consumer price index (CPI). Due to the economic crisis in 2008, most
of the energy-intensive plants were not fully used during that year, which leads to
more excessive reduction in GHG emissions than anticipated and a large allowance
surplus in the carbon economy. With the help of the economic downturn in 2008 and
more binding rules on the EU ETS, EU achieved 11.7% of GHG emissions reduction
at the end of the second ETS period. Besides, in 2014, EC implemented a back-
loading system by making a new legislation on the surplus of allowances in the
carbon market caused by 2008 economic downturn resulting in decrease in the
carbon price (European Commission, 2014). As a result of lower carbon prices, the
effectiveness of the EU ETS would have been weakened. To prevent this situation,
according to this legislation, auctions of the significant amount of the allowance
surplus had been postponed until 2019-2020, which was considered to be a short-
term solution to prevent lower carbon prices in the third period. As a long-term
solution, EC has also established a new mechanism called as Market Stability
Reserve (MSR) in 2019. With this mechanism, the surplus of allowances will be
transferred to the reserve operated by pre-defined rules. According to the allowances

in circulation published by EC, this reserve will be used in the carbon economy.

In 2013, Croatia joined to the EU ETS. In the third period of ETS (2013-2020), EC
has made more stringent modifications on monitoring and reporting of GHG
emissions. To illustrate, EC has brought in Accreditation and Verification
Regulation and Monitoring and Reporting Regulation in late 2012. These regulations
specify requirements for risk and uncertainty assessment and expected data quality
in continuous CO2 monitoring system (European Commission, 2012). Moreover, EC
has decided to centrally set EU-wide quota on emissions instead of quotas set by
emission trading authorities of each member country. For the third ETS period, EC
has also determined an annual linear reduction factor of 1.74% for the emission quota
by considering EU-wide climate action targets for 2020, which are summarized
below.
e 20% reduction in greenhouse gas emissions from the 1990 level

e 20% renewables integration to the EU’s energy supply
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e 20% improvement in energy efficiency

In addition to those regulations and modifications, auctioning has started to be the
default allowance allocation method for the companies, especially in power
generation sector since 2013, though some allowances have been freely provided for
some member countries that joined in EU in 2004 so that they could deploy
renewable energy technologies and emission reduction technologies like carbon
capture and storage systems (CCSS) to modernize their power systems (European
Commission, n.d.). With the auctioning method, the companies must buy their
emission allowances at auctions, which have been held on a daily basis since 2012,
where allowances other than freely allocated ones are auctioned. Besides, in late
2012, EC has declared that the ownership of allowances will be kept and monitored
by the union registry. For this reason, the emission registries of each country were
centralized into the union registry to ensure that all allowances issued under the EU
ETS can be accounted accurately.

To comply with the national climate action plan under the Paris Agreement, EC has
revised 2030 climate and energy framework consisting of EU-wide objectives and
policies for the fourth ETS period (2021-2030). The key objectives are listed below.

e 40% reduction in greenhouse gas emissions from the 1990 level

e 32% renewables integration to the EU’s energy supply

e 32.5% improvement in energy efficiency
To achieve those targets, EC is going to increase annual linear reduction factor of
emission caps to 2.2%, which is going to be effective starting from 2021. EC will
also provide several incentives to encourage the implementation of low-carbon
technologies especially in power plants and energy-intensive industries. For this
purpose, Modernization Fund will be provided to support modernization investments
in power sectors of member countries in addition to the option of free allocation of
allowances. Innovation Fund will be provided to support the use of innovative
technologies in power plants and energy-intensive industries to lower GHG

emissions.
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United States

In the United States (US), GHG emissions have not been regulated on the federal
level due to the legal oppositions against the GHG emission regulation plans of
United States Environmental Protection Agency. Hence, State-Based Emissions

Trading Programs have been undertaken by individual states and a group of states.

In 2009, the Regional Greenhouse Gas Initiative (RGGI), the first legally binding
Cap & Trade mechanism in US, was adopted by the states of Connecticut, Delaware,
Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island and
Vermont to reduce GHG emissions in power sector by encouraging power plants in
the participating states to make investments on the development and the
implementation of clean and renewable energy technologies (Regional Greenhouse
Gas Initiative [RGGI], 2009). In 2020, New Jersey has also joined in RGGI.

The RGGI is based on the Cap & Trade mechanism. In 2009, RGGI has determined
a region-wide cap for total CO. emissions for power plants in the participating states
by taking regulations in the RGGI Model Rule into account. Each state has individual
trading program that limits CO, emissions to comply with the region-wide cap.
Electricity generating plants with the capacity of 25 MW and above must possess
CO: allowances enough to cover their CO2 emissions during each control period of
RGGI. Those plants can sell their excess allowances or buy additional allowances
through quarterly RGGI auctions. They can also trade allowances in the secondary
CO2 market during times between RGGI auctions so that they can protect themselves
against the potential price volatility in the next auction. Similar to EU ETS, RGGI
has revised its program by setting an annual linear reduction factor of 2.5% for
emission caps, which will be effective between 2015 and 2020. According to 2019
RGGI Annual Report, RGGI is going to implement Emissions Containment Reserve
(ECR) intending to decrease the surplus of allowances in the carbon economy in case
of unexpected reductions in emission costs by enabling the participating states to
withhold their allowances. The maximum amount of allowances to be withheld has

been determined as 10% of the state’s allowances in circulation. The ECR
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mechanism resembles to MSR in the EU ETS. RGGI established CO2> Allowance
Tracking System (COATS) to monitor the ownerships of allowances, and to ensure
that all allowances issued under the RGGI can accurately be accounted. As a result
of the Cap & Trade system, at the end of 2020, RGGI expects to reduce CO:
emissions of power plants in the region by 45% from the corresponding emission
levels in 2005.

In 2013, the state of California has established its own GHG ETS which is the world's
second largest international emissions trading system after the EU ETS
(International Carbon Action Partnership [ICAP], 2020). The main objective is to
combat with climate change by returning the level of GHG emissions to the 1990
level. Different from the RGGI, both power plants and industrial facilities, which
account for 80% of GHG emissions in California, have to comply with the California
Cap & Trade rules relying on the Mandatory Reporting of Greenhouse Gas
Emissions Regulation (MRR). These rules are also valid for GHG emissions other

than CO, emissions.

Emission allowances are allocated by means of free allocations and auctions. The
former has been applied to electricity and natural gas utilities while the latter has
been applied to large industrial facilities. The firms can also sell their excess
allowances or buy additional allowances through auctions as in the RGGI and the EU
ETS. Besides, California Air Resources Board (ARB) has also introduced another
method for facilities to cover their emissions, which is known as ARB offset credit.
An ARB offset credit is accounted for investments in GHG emission reduction
techniques in order to support the developments and implementations of clean
energy technologies. However, it can be used to satisfy up to 8% of a facility’s
compliance obligation (California ARB, 2012). At the end of each compliance period,
those firms have to hand over their allowances and offset credits sufficient to cover their
GHG emissions during the compliance period. Facilities that do not comply with the
requirements of the California Cap & Trade Program will be subject to stringent
penalties. All trades are monitored and controlled by ARB centralized allowance

tracking system.
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By the end of 2020, California ARB has set a target of 15% reduction in GHG
emissions from the level of the business-as-usual scenario. For this purpose, from
2015 to 2020, California ARB has determined an annual linear reduction factor of
3% for emission caps. For 2030, California ARB has set a more ambitious target of
40% reduction in GHG emissions from the 1990 level, which was legislated in 2016
by the California Legislature (California ARB, 2016).

China

Since mid-2013, China has initiated its operations to launch a national emission
trading system by launching pilot ETSs in 8 regions. In 2013, Shenzhen pilot ETS,
Shanghai pilot ETS, Beijing pilot ETS, Guangdong pilot ETS and Tianjin pilot ETS
have started their operations. In 2014, two new pilot ETSs in Hubei and Chongging
have been launched. In 2016, Fujian pilot ETS has launched by the National
Development and Reform Commission (NDRC). These pilots are differentiated by
various aspects such as GHG emission coverage, sectors obliged to comply with ETS

regulations, allowance allocation methods and penalties for the noncompliance.

Except Chongging pilot ETS, only CO. emissions have been regulated by 7 ETS
pilots. Chongging pilot ETS has covered other GHGs as well. According to ICAP
(2020), the sectors that comply with ETS regulations and their overall shares in GHG
emissions are provided in Table A.1.

Table A.1. Sectors Regulated by China ETS Pilots

Sector Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongging Fujian
Power X X X X X X X X
Heat X X X X
Water X X X
Gas X X
Industry X X X X X X X X
Aviation X X X X
Transportation X X
Total Share 40% 57% 40% 60% 55% 45% 50% 60%
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The allowance allocation methods and their sector-by-sector implementations are
varying in the ETS pilots as shown in Table A.2. In general, both free allocations

and auctioning have been applied for allocating allowances to sectors.

Table A.2. Means of Allowance Allocations in China ETS Pilots

Method Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongging Fujian
Free Allocation ‘ X X X X X X X X
Auctioning ‘ X X X X X X X

Moreover, as in California Cap & Trade Program, project-based carbon offset credits
have also been used in the ETS pilots to account for investments in GHG emission
reduction techniques in order to support the developments and implementations of
clean energy technologies. Those credits are subject to maximum allowable limits
on annual compliance obligation, which are demonstrated in Table A.3 (ICAP,
2020).

Table A.3. Maximum Allowable Limits on Annual Compliance Obligation in China
ETS Pilots

Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chonggqing Fujian

Quantitative
Limit 10% 1% 5% - 10% 10% 8% 5-10%
imi

Furthermore, companies that do not comply with the annual requirements of the ETS
pilots will be subject to financial and nonfinancial sanctions. In several pilot ETSs of
China, financial penalties have been implemented for not complying with the regulations
or not having enough allowances to cover their emissions during a year. The
nonfinancial sanctions include investigation on the credit records, disqualification from
special energy and emission related funds, bank loans and subsidy programs for several
years, a reduction in the emission allowances for next years and publication on the

internet. Sanction types used in the ETS pilots of China is demonstrated in Table A.4.
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Table A.4. Types of Sanctions for the Noncompliance in China ETS Pilots

Type Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongging Fujian
Financial ‘ X X X X X X

Nonfinancial ‘ X X X X X X X X

By 2020, the China National ETS is expected to be partially operational for power
sector and it will be regulated by Ministry for Ecology and Environment. In the short
run, the existing pilot ETSs are going to work with the national ETS by being
responsible of non-power sectors. In the long run, these pilots are going to be
integrated into the national ETS. According to ICAP (2020), the environmental
targets of the national ETS is listed below.

e 45% reduction in carbon intensity from the 2005 level by 2020

e 65% reduction in CO> emissions per unit of gross domestic product from the

2005 level by 2030

Turkey

Currently, Turkey does not have an emission trading system, but it is under
consideration because of the environmental obligations of the Paris Agreement and
the EU accession according to ICAP (2020). In 2012, Ministry of Environment and
Urbanization has initiated a new regulatory framework to design a comprehensive
and legally binding Monitoring, Reporting and Verification system for GHG
emissions. For this reason, the ministry has been collaborating with the Partnership
of Market Readiness (PMR) to improve the regulation on GHG emissions by making
pilot studies in different sectors. In 2018, Turkish government has delivered its
detailed national climate action plan to the Climate Change and Air Management
Coordination Board under the Paris Agreement. According to this action plan,
Turkey has set a target of 21% reduction in GHG emissions from the level of the
business-as-usual scenario by the end of 2030. With additional financial support
provided by the PMR in 2018, Ministry of Environment and Urbanization has also
drafted legislation and developed its technical and institutional groundwork for a
suitable pilot carbon economy (ICAP, 2020). The sectors that are considered for the
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pilot consist of power plants with the capacity of 20 MW and above and several
industrial facilities, which accounts for 69% of total GHG emissions of Turkey as
shown in Figure A.1.

= Energy

® Transportation
Industry

m Agriculture

m Waste

Figure A.1. Overall Share of Greenhouse Gas Emissions by Sectors in Turkey
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B. Air Pollution Reduction Policies in EU, US and China

Air pollution prevention and reduction policies and practices in US, EU and China
are summarized in Table B.1 (OECD, 2017). The summary consists of regulation
enaction year, regulation type, types of emission standards and air pollutants, and
sectors covered.

Table B.1. Legislations and Regulations against Air Pollution in United States,
European Union and China

Country Legislation and Regulation Scope

- Regulation type: Command and Control
- Sectors covered: Energy (power plants),
energy-intensive industries, mineral and
chemical industry, manufacturing, agriculture
and livestock industry
- National ambient air quality standards
(NAAQS)

Air pollutants: PMx, NOx, SOz, CO, Oz and

heavy metals

Clean Air Act (CAA)
- Federal law enacted in 1963
United States | - Major amendments in 1970, 1977

and 1990 .
Sector and zone specific

For new sources: based on
Best Available Control Technology
Lowest Achievable Emission Rate

For existing sources: based on
Reasonably available control technology

Periodically reviewed in every 5 years

- Regulation type: Command and Control
- Sectors covered: Energy (power plants),
energy-intensive industries, mineral and
Industrial Emissions Directive chemical industry, manufacturing, agriculture
European (IED) and livestock industry
. - Revision of legislation on - Emission controls: based on
Union industrial emissions Environmental Quality Standards
- Enacted in 2011 Best Available Technology
Energy efficiency
Total rated thermal input, capacity and zone

specific
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Table B.1 (continued)

Eco-Management and Audit
Scheme (EMAS) Regulation
- Revision of previous EMAS
regulations

- Enacted in 2010

The Medium Combustion Plant
(MCP) Directive
- Enacted in 2015

- Regulation type: Voluntary
Evaluation of environmental performance of
an organization
- Sectors covered: Energy (power plants),
energy-intensive industries, mineral and
chemical industry, manufacturing, agriculture
and livestock industry
- Air pollutants: GHGs, PMx, NOx, SO2, CO,
O3 and heavy metals
- Based on Best Environmental Management
Practice
- Regulation type: Command and Control
- Sector covered: Energy (heat and power
plants), energy-intensive industries (industrial
plants)
- Emission controls:
Air pollutants: PMx, NOx, SOz and CO
Total rated thermal input and zone specific
Based on Best Available and Emerging

Technology

China

Atmospheric Pollution
Prevention and Control Law
- Law enacted in 2000

- Revised in 2015
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- Regulation type: Command and Control
- Sectors covered: Energy (power plants),
energy-intensive industries, mineral and
chemical industry, manufacturing, agriculture,
livestock industry and motor vehicles
- Air pollutants: GHGs, PMx, NOx, SOz, CO,
O3, heavy metals and PAHs
- Emission controls: Environmental quality
standards and emission standards

Based on air quality standards, economic

and technological status.
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