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ABSTRACT 

 

A SOLUTION METHODOLOGY FOR THE UNIT COMMITMENT 

PROBLEM IN TRADITIONAL-AND-WIND INTEGRATED HYBRID 

POWER SYSTEMS UNDER SUPPLY/DEMAND UNCERTAINTY AND 

EMISSION LIMITATIONS 

 

 

 

Karabaş, Tolga 

Master of Science, Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Sedef Meral 

 

 

September 2020, 248 pages 

 

Unit commitment problem (UCP) is one of the essential problems in operations 

planning of power generation systems. The objective is to minimize total operating 

cost while meeting the forecasted load requirements and satisfying several 

operational and technical constraints. Nevertheless, the UCP is a mixed integer, non-

linear, combinatorial and NP-hard problem, making it difficult to develop any 

rigorous optimization method for a real-size system. In this thesis, we address two 

variants of the UCP: (1) the deterministic UCP in conventional power systems, (2) 

the stochastic UCP in wind integrated hybrid power systems. For the first one, an 

effective and efficient Genetic Algorithm-based approach is developed. For the 

second one, Mixed-Integer Quadratic Programming-based approaches are 

developed. In these approaches for the stochastic UCP, novel expected energy not 

served (EENS) approximation methods are proposed to model both load demand 

uncertainties and supply uncertainties due to intermittent nature of wind power 

generation and outages in conventional generation. Furthermore, the proposed 

approaches are extended to consider: (i) the Valve Point Loading Effect in 

efficiencies of conventional generating units by proposing efficient multi-area 
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piecewise linear approximation, (ii) the impacts of Emission Control Technologies 

and Emission Trading and Taxing Mechanisms in mitigating greenhouse gas and air 

pollutant emissions caused by conventional generating units. According to numerical 

experiments and sensitivity analysis results, both Genetic Algorithm-based and 

Quadratic Programming-based approaches are proven to be valid and effective, and 

they can provide satisfactorily good power generation schedules for large scale 

power systems in a reasonable computational time.      

 

Keywords: Unit Commitment Problem, Genetic Algorithm, Supply/Demand 

Uncertainty, Quadratic Programming, Emissions Control 
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ÖZ 

 

ARZ/TALEP BELİRSİZLİĞİ VE EMİSYON SINIRLAMALARI ALTINDA 

GELENEKSEL-VE-RÜZGAR ENTEGRE HİBRİT ENERJİ 

SİSTEMLERİNDE BİRİM YÜKLENME PROBLEMİ İÇİN ÇÖZÜM 

YÖNTEMLERİ 

 

 

 

Karabaş, Tolga 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Yöneticisi: Doç. Dr. Sedef Meral 

 

 

Eylül 2020, 248 sayfa 

 

Enerji üretim sistemlerinin operasyon planlamasındaki en temel problemlerden biri 

Birim Yüklenme Problemidir (UCP). Problemin amacı; tahmini enerji 

gereksinimlerini ve çeşitli operasyonel ve teknik kısıtları sağlarken, toplam işletme 

maliyetlerini en aza indirmektir. Ancak, UCP karışık tamsayılı, doğrusal olmayan, 

kombinatoryal ve NP-zor bir problemdir. Bu durum gerçek boyutlu bir enerji sistemi 

için bütünleşik bir optimizasyon yöntemi geliştirmeyi zorlaştırmaktadır. Bu tezde 

UCP'nin iki versiyonu ele alınmıştır: (1) konvansiyonel enerji sistemlerindeki 

deterministik UCP, (2) rüzgar entegre hibrit enerji sistemlerindeki rassal UCP. İlki 

için etkili ve verimli bir Genetik Algoritma tabanlı yaklaşım geliştirilmiştir. İkincisi 

için, Karışık Tamsayılı Karesel Programlama tabanlı yaklaşımlar geliştirilmiştir. 

Rassal UCP için bu yaklaşımlarda hem enerji talebindeki belirsizliklerden hem de 

rüzgar enerjisi üretiminin kesintili doğasından ve konvansiyonel üretimdeki olası 

kesintilerden kaynaklanan arz belirsizliklerinden dolayı karşılanamayacak enerji 

miktarını (EENS) hesaplama yöntemleri önerilmiştir. Ayrıca, önerilen yaklaşımlar 

şunları da dikkate alarak genişletilmiştir: (i) verimli bir çok-alanlı parçalı doğrusal 

yakınlaştırma yöntemi ile Vana Noktası Yükleme Etkisinin konvansiyonel üretim 

tesislerinin verimliliklerinde yarattığı dalgalanmalar, (ii) konvansiyonel üretim 
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tesislerinin neden olduğu sera gazı ve hava kirliliğine sebep olan gazların 

emisyonlarının azaltılmasında Emisyon Kontrol Teknolojilerinin ve Emisyon 

Ticareti ve Vergi Mekanizmalarının etkileri. Yapmış olduğumuz sayısal deneylerin 

ve duyarlılık analizlerinin sonuçlarına göre hem Genetik Algoritma tabanlı hem de 

Karesel Programlama tabanlı yaklaşımların, geçerli ve etkili olduğu kanıtlanmış, ve 

büyük ölçekli enerji sistemleri için makul bir hesaplama süresinde tatmin edici 

derecede iyi enerji üretim çizelgeleri sağlayabildikleri saptanmıştır. 

 

Anahtar Kelimeler: Birim Yüklenme Problemi, Genetik Algoritma, Arz/Talep 

Belirsizliği, Karesel Programlama, Emisyon Kontrolü 
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CHAPTER 1  

1 INTRODUCTION  

Power systems are one of the crucial and fundamental infrastructures in a modern 

society. Therefore, it is necessary to maintain a secure, reliable and continuous power 

supply (Roque, 2014). For this purpose, one of the most critical problems in modern 

power systems is the Unit Commitment Problem (UCP) in which the main objective 

is to optimize commitment statuses and productions of generating units in a power 

system on an hourly basis to meet forecasted load demand requirements, while 

satisfying various operational and technical constraints. However, the problem 

environment of the UCP contains several complexities.   

First of all, in power systems, hourly load demands have a variable nature during the 

day. To illustrate, the load demands during the daytime tend to be extremely higher 

than the ones during nights and early mornings (Mallipeddi and Suganthan, 2014). 

In traditional power generation, this cyclic nature may cause some of the 

conventional generating units working at their minimum power output level during 

nights and early mornings. Hence, it is indispensable to efficiently make 

commitment decisions of conventional units in a day-ahead power generation 

planning.  

Secondly, supply and demand uncertainties are inevitable in power generation 

systems. Hourly load demands cannot be exactly determined since they are 

dependent on the human activities during the day. Thus, they can only be forecasted, 

which causes load demand uncertainty. Furthermore, conventional generating units 

may cause supply uncertainty as a result of the unexpected unit outages. In addition, 

renewable energy sources such as water, wind and sunlight have gained a significant 

attention in modern power systems thanks to their zero marginal production costs 
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and lower maintenance costs when compared to the ones in conventional power 

plants due to potential fossil fuel scarcity (Kåberger, 2018). Hence, renewable energy 

sources have started to be used synchronously with conventional generating units for 

the last two decades. Those systems are known as hybrid power systems. 

Nonetheless, in hybrid power systems, the intermittent nature of renewable energy 

sources also causes uncertainty in power supply. To deal with those uncertainties, an 

easy and straightforward method is to commit more reserve from conventional 

generating units to guarantee more reliable power generation. For this purpose, 

deterministic reserve policies have been used when renewable energy sources are not 

integrated into modern power systems. Nevertheless, those policies are not sufficient 

in the evaluation of the system risk levels in wind and solar integrated hybrid power 

systems, so stochastic solution approaches are required to overcome this problem 

(Lin et al., 2014).                  

Thirdly, in recent years, environmental considerations have become another 

important factor when operating modern power generation systems due to increasing 

concerns on adverse effects of global warming and air pollution on the environment 

and human health. To increase the public awareness and mitigate those emissions, 

several environmental agreements such as Kyoto Protocol (1997) and Paris 

Agreement (2016) have been introduced and signed by most of the industrial 

countries over the world under the leadership of the United Nations Framework 

Convention on Climate Change (UNFCCC). Those agreements dictate signing 

countries to gradually reduce their Greenhouse Gas (GHG) and air pollutant 

emissions by setting horizon-based targets (see Chapter 5). For this purpose, 

emission trading mechanisms and emission taxing schemes have been introduced by 

those countries to abate and control their emissions. Conventional power plants are 

one of the major emission producers. One of the solutions is to modernize fuel-based 

conventional power plants by installing emission reduction technologies while 

considering possible efficiency reductions (see Chapter 5). Another solution is to 

increase the share of renewable energy sources in the overall power generation mix 

as much as possible. For this purpose, since 2010, several feasibility studies have 
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been published to achieve 100% renewable share in world’s power generation mix. 

Jacobson and Delucchi (2011) propose that 30% of world’s total energy need can be 

met from hydro, wind and solar energy by 2030, and it is also possible that they can 

meet the whole energy demand by 2050. According to simulation results of Jacobson 

et al. (2018) and Jacobson et al. (2019), they suggest a new roadmap to achieve 100% 

transition to hydro, wind and solar energy combined with storage systems by 2050 

for 20 regions containing 139 countries. That means effective production and 

operations planning in hybrid power systems will remain the main topic in the 

modern power industry for at least 30 more years to come. Hence, in order to achieve 

ambitious targets for emission abatement, conventional generating units should be 

modernized with emission reduction techniques, and their effects on overall 

production should be evaluated cautiously under the supervision of strict emission 

trading and taxing mechanisms.               

Lastly, solving the UCP is computationally intensive because of its nonconvex, 

nonlinear, high dimensional and combinatorial nature especially when power 

systems consist of too many conventional generating units. The nonconvexity of the 

UCP is due to the binary nature of the commitment decisions of generating units, 

which is also the reason of its combinatorial nature, whereas the nonlinearities are 

caused by nonlinear generation cost curves, and nonlinear GHG and air pollutant 

emission curves. In addition, the UCP has various time-dependent constraints such 

as minimum uptime/downtime and ramp-up/down constraints. That is, those 

constraints affect decisions in a period by linking them to decisions in the previous 

period, which complicates the solution even more. 

Under that background, the aim of the thesis is to develop efficient and optimal/near-

optimal solution methods that can be implemented to the UCP in large-scale 

traditional and wind integrated hybrid power systems. For this reason, we propose a 

Genetic Algorithm based approach for the UCP in traditional power systems 

ignoring the inherent uncertainties. For the UCP in wind integrated hybrid power 

systems, we propose time-decoupled, stochastic and environmental mathematical 

models. It is important to note that hydro and solar generating units are excluded 
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from our scope, so the hybrid power systems examined throughout the study consist 

of numerous wind turbines and conventional power plants burning fossil fuels such 

as coal, gas and oil.    

The rest of the thesis is organized as follows: In Chapter 2, Genetic Algorithm based 

approaches for the conventional UCP are reviewed first. Then, current studies on the 

UCP under supply and demand uncertainty for wind integrated hybrid power systems 

are briefly explained. Lastly, solution approaches for the UCP under emission 

considerations in traditional and wind integrated hybrid power systems are 

summarized. In Chapter 3, a mathematical formulation for the deterministic UCP in 

conventional power systems is presented first. Then, the proposed Mixed Integer 

Coded Genetic Algorithm (MICGA) combined with Improved Lambda Iteration 

Method (I-LIM) is provided to solve the deterministic UCP with/without ramp-rate 

limits in conventional generation. The MICGA is implemented to 10-unit, 20-unit 

and 40-unit standard problem instances in the literature after one-factor-at-a-time 

(OFAT) experiments are conducted to fine tune the proposed algorithm. Then, 

statistical analyses are carried out to test the robustness and precision of the 

algorithm. Lastly, the performance of the MICGA is compared with other GA 

techniques developed in the last two decades. In Chapter 4, uncertainty models of 

load demand, wind power and conventional power generation are presented for wind 

integrated hybrid power systems. Then, commonly used reliability indices in the 

literature are reviewed in detail. In the second part of the chapter, under 

supply/demand uncertainty, time-decoupled and stochastic Mixed Integer Quadratic 

Programming (MIQP) models consisting of two different expected energy not served 

(EENS) approximations are presented. By using those EENS approximation 

methods, other MIQP models that also piecewise linearly approximate the rippling 

efficiencies, also known as valve point loading effect (VPLE), of conventional 

generating units are proposed in this part. In the last part of the chapter, two EENS 

approximation methods are compared by applying the associated MIQP models to 

6-unit and 26-unit problem instances while ignoring the VPLE. Then, the proposed 

MIQP models with/without the VPLE are applied to 6-unit, 12-unit and 26-unit 
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standard problem instances. To examine the sensitivity of the MIQP models to 

problem parameters, sensitivity analyses are conducted for each model. Then, the 

most widely used deterministic policies to cope with uncertainties related to 

conventional generation and forecasts of load demand and wind power are briefly 

reviewed. Accordingly, the time-decoupled and stochastic MIQP models are 

compared with mathematical models involving those deterministic reserve policies. 

In Chapter 5, emission considerations are studied and integrated for wind integrated 

hybrid power systems. First, current emission reduction agreements and regulations 

such as emission trading and taxing mechanisms in European Union, United States, 

China and Turkey are reviewed in detail. Then, emission reduction technologies 

against GHG and air pollutants, and their impacts on the conventional power plants 

are explained in detail. In the third part of the chapter, under supply/demand 

uncertainty and emission considerations, a time-decoupled, stochastic and 

environmental Mixed Integer Quadratically Constrained Programming (MIQCP) 

model, to which clean energy technologies, emission trading and taxing schemes, 

and the VPLE are integrated, is presented. Lastly, the proposed MIQCP model is 

applied to 6-unit and 12-unit standard problem instances. To examine the sensitivity 

of the model to problem parameters, sensitivity analyses are carried out for each 

problem instance. Then, the time-decoupled, stochastic and environmental MIQCP 

model is compared with the final stochastic model without emission considerations 

introduced in Chapter 4, and mathematical models involving deterministic reserve 

policies.  In Chapter 6, the main achievements of the study and future research 

directions are discussed.                 
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CHAPTER 2  

2 LITERATURE REVIEW 

The literature on the UCP for traditional and hybrid power systems has been 

proliferating especially in the last two decades. Hence, we firstly review Genetic 

Algorithm based approaches for the conventional UCP. Then, we briefly explain 

studies on the UCP under supply and demand uncertainty for wind integrated hybrid 

power systems. Lastly, we summarize solution approaches for the UCP under 

emission considerations in traditional and wind integrated hybrid power systems.     

2.1 Genetic Algorithm Based Approaches for the Unit Commitment 

Problem in Traditional Power Systems  

Literature on the UCP for traditional power systems includes several metaheuristic 

implementations such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), 

Simulated Annealing (SA), Particle Swarm Optimization (PSO), Dynamic 

Programming (DP). However, we limit our review to the GA applications only. 

Several GAs have been proposed for the UCP thanks to its feature being a powerful 

stochastic global search technique, since the search is carried out by randomly 

exploiting information from different regions of the solution space. For the 

chromosome representation, in most of the GA implementations so far, binary 

coding has been used. One of them is proposed by Kazarlis et al. (1996). In their GA, 

they use conventional genetic operators and problem specific operators for the 

scheduling part of the problem which is assisted by an economic load dispatch 

technique for solving the optimal power output of the committed units. For constraint 

handling, they use penalty function for the violated constraints. Similar to Kazarlis 



 

 

8 

et al. (1996), Xing and Wu (2002) and Senjyu et al. (2002) also propose a similar 

approach to solve the UCP.  They calculate the fitness of each chromosome as the 

reciprocal of the sum of both total generation cost and penalty costs. Swarup and 

Yamashiro (2003) also use binary representation for the chromosome structure. 

Different from Kazarlis et al. (1996), Xing and Wu (2002) and Senjyu et al. (2002); 

they do not use a penalty mechanism for constraint violation rather they apply some 

problem specific operators to repair and correct the violated schedules. Likewise, 

Madraswala and Deshpande (2016) propose a GA application similar to Swarup and 

Yamashiro (2003). For the Economic Load Dispatch (ELD) part of the problem, they 

use the Lambda Iteration Method (LIM). Mantawy et al. (1997) propose a different 

approach for the chromosome representation which is a combination of binary and 

decimal numbers to save both memory space and computation time. They convert 

the binary chromosomes (NxT matrix) into decimal ones (Nx1 array) before 

performing the genetic operations. After genetic operations are applied, they convert 

it to its binary equivalent. They also use repair mechanisms with problem specific 

operators to handle the constraint violations. Rudolf and Bayrleithner (1999) propose 

a special Binary Coded GA (BCGA) where the generating units are scheduled by 

automatically satisfying the uptime/downtime constraints. For the ELD part, they 

implement a Lagrangian Relaxation approach. Singhal et al. (2014) develop an 

enhanced BCGA in which commitment decisions are made by genetic operations 

and dispatching decisions by LIM. They also introduce some problem specific 

operators to speed up calculations and use repairing mechanisms to avoid infeasible 

solutions. Dudek (2013) proposes another BCGA variant in which chromosomes are 

designed in a more intelligent way to save memory space. When making ELD 

decisions, they also use LIM. For infeasible solutions, they apply penalty measures 

in fitness calculations. Sundararajan et al. (2013) use a similar coding scheme to 

Dudek (2013). For the constraint violations, they introduce some repairing 

procedures. They solve the ELD subproblem via Quadratic Programming.  

Different from the studies above, Damousis et al. (2004) propose a completely new 

chromosome structure which is integer coded. They divide schedules to the “On/Off” 
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cycles and represent their chromosomes with the cycle lengths using positive and 

negative numbers (+: “On” cycles, -: “Off” cycles). They use different crossover and 

mutation techniques such as swapping crossover and Michalewicz’s mutation for 

evolution from one generation to the next. They also use some problem specific 

operators like unit swapping operator and chromosome length augmentation. For 

constraint handling, they apply penalty mechanisms. Similarly, Amjady and Shirzadi 

(2008) modify the Integer Coded GA (ICGA) proposed by Damousis et al. (2004) 

by using hybrid operators such as swapping and bound operators for the crossover. 

They claim that ICGA can perform a more complete search of the solution space; 

thus, increasing the possibility of finding the global optimal solution. They use a 

combination of uniform and non-uniform mutations so as to improve diversity of the 

search in ICGA. To the best of our knowledge, Datta (2013) addresses both 

scheduling and load dispatching parts of the UCP by using GA approach for the first 

time and proposes a Binary-Real Coded GA (BRCGA) to handle both parts of the 

UCP with only genetic operators. The binary part tackles the unit scheduling part 

whereas the real part tackles the load dispatch part of the problem. They introduce 

new crossover and mutation operators for the real part of the GA and make use of 

repairing mechanisms and elite preservation strategies. Farag et al. (2015) propose a 

similar BRCGA, but they also integrate k-means clustering before applying genetic 

operations. They divide the population into k subpopulations and then apply different 

genetic operations to members of each subpopulation to introduce extended 

diversity; thus, avoiding BRCGA from being stuck in local optima.      

Apart from these pure GA implementations, hybridized versions of GA with other 

metaheuristics are also common in literature. Yazdandoost et al. (2018) propose a 

modified GA approach based on Multicellular Organisms Mechanisms. Their GA 

has two phases as normal and modified; the normal one replicates the meiosis 

process on sexual chromosomes while the modified one uses mitosis for asexual 

chromosomes. By doing so, the convergence speed of the algorithm is increased. 

Salimian and Ameli (2015) hybridize GA and PSO (HGAPSO) to benefit from their 

good features such as GA’s rapid convergence rate and PSO’s high solution quality. 
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All constraints are satisfied while calculating the fitness function without introducing 

any penalty mechanism. Similarly, Marrouchi et al. (2018) suggest a hybrid 

metaheuristic algorithm combining GA and PSO. In their fitness function, total cost 

consists of total energy production cost and a Lagrangian function defined by the set 

of equality and inequality constraints. Effatnejad and Rouhi (2015) add Dynamic 

Programming (DP) to their HGAPSO so that they can avoid any repetition in 

calculations to save computing time. Reddy et al. (2019) propose a novel hybrid 

approach consisting of GA and SA. They use GA-SA to cluster the units as Base 

load (BL), intermittent load (IL), semi-peak load (SPL) and peak load (PL) 

categories according to their fitness values. After clusters are obtained, they also 

construct priority lists for the units in each cluster before applying LIM to make ELD 

decisions. Tsalavoutis et al. (2019) develop a GA to solve Multi-objective UCP 

(MO-UCP) with the objective function consisting of total operating cost and total 

emission of air pollutants. They utilize real coding for the chromosome 

representation and repairing mechanisms for constraint violations. The commitment 

and dispatching decisions are made simultaneously by hybridizing two-step local 

search procedures such as Pareto dominance and scalar fitness function. Similarly, 

Li et al. (2013) design a memetic evolutionary algorithm combining Non-dominated 

Sorting Genetic Algorithm-II for global exploration and local search procedure for 

local exploitation to solve MO-UCP whose ELD subproblem is solved by LIM. Kyu-

Hyung and Mun-Kyeom (2018) propose an Improved GA (IGA) to solve stochastic 

UCP. The main difference of IGA from other GAs is that it only searches the feasible 

regions owing to its special repairing operators. Saber et al. (2016) develop a hybrid 

procedure where the commitment decisions are made by Priority Lists (PL) whereas 

ELD decisions are made by Hybrid Modified Genetic-Imperialist Competitive 

Algorithm (HGICA). In their approach, they use binary coding in the chromosomes 

and a new crossover technique called as “mime crossover” making the offspring 

resemble its parents and generation elite with specific ratios. Different from the 

conventional GAs, elite preservation is also applied after each genetic operation in 

order not to lose any elite solution after crossover and mutation operations. Bukhari 
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et al. (2016) also propose a binary coded GA in which they use a special type 

crossover called as “ring crossover” and repairing mechanisms for violated 

constraints. In their approach, “On/Off” decisions are made by GA and ELD 

decisions are made by LIM. Trivedi et. al (2016) suggest using BCGA with 

Differential Evolution (DE) since these two can efficiently handle binary variables 

(commitment) and continuous variables (dispatching), respectively. In their 

procedure, infeasible solutions are not repaired rather they are preserved. Besides, 

they also propose a special priority list-based initial population generation method 

to enhance performance of the algorithm by integrating domain-specific knowledge. 

Roque et al. (2014) introduce a Hybrid Biased Random Key GA (HBRKGA) in 

which several local search techniques are also incorporated to concentrate the search 

close to good solutions and random keys are used to create bias during both parent 

selection and crossover operations, since HBRKGA does not allow searching on 

infeasible solutions. 

Different from the pure and hybridized versions of the GA approaches so far, we 

propose a novel approach based on GA combined with an improved LIM (I-LIM) to 

solve the UCP in traditional power systems. Our GA-based approach adopts a mixed 

integer coding scheme, uses an intelligent algorithm for the initial population 

generation, and contains various problem specific genetic operators to lessen the 

computing time. With these features, our approach can be considered one of the most 

efficient and effective GAs. The detailed explanation of the proposed GA approach 

and its implementation are provided in Chapter 3.  

2.2 Solution Approaches for the Unit Commitment Problem in Wind 

Integrated Hybrid Power Systems  

Literature on the UCP and its subproblem ELD for wind-integrated power systems 

involves different solution approaches such as mathematical programming 

formulations including stochastic programming, robust optimization and chance 

constrained modelling and several metaheuristic implementations as well. The 
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reason why we also include solution methods for ELD is that this subproblem can be 

considered as the single period UCP. Therefore, we limit our review to the most 

recent methods proposed for the UCP and ELD problem in the last decade 

particularly.  

Hetzer et al. (2008) use a mathematical modelling approach for ELD with wind 

farms. Their objective is to minimize expected operating cost comprising of fuel 

costs and wind-based costs. Wind-based costs consist of operating cost of wind 

farms, the cost of wasted wind power due to underestimation in wind power 

generation and the cost of load not served due to overestimation cost in wind power 

generation. Wind speeds are assumed to follow Weibull distribution. Wind power is 

represented by using a simplified version of Wind Energy Conversion System 

(WECS) from wind speeds. Liu (2012) develops a nonlinear mathematical model for 

ELD problem in a combined heat and power (CHP) system integrated with wind 

power generation. The objective is to minimize heat and power production costs.  

The generation level of wind turbines is taken as a random variable. Similar to Hetzer 

et al. (2008), they also characterize the wind power by using the simplified version 

of WECS. Zhou et al. (2010) develop a stochastic model for Dynamic Economic 

Dispatch (DED) problem with large scale wind power penetration. In their model, 

generation forced outages, variabilities in load demand forecasts and wind speed 

forecasts are taken into account. They use a special type of WECS when converting 

wind speed forecasts into wind power forecasts. Since there are numerous causes of 

uncertainty, a sufficient reserve should be allocated in order to prevent generation 

shortages. For this purpose, they take reserves as decision variables which are used 

in chance constraints for satisfying risk thresholds. They solve their DED model by 

using Nonlinear Primal-Dual Interior-Point Method. Xia et al. (2012) propose a 

stochastic programming model for conventional ELD problem in which the objective 

is to minimize total fuel costs with valve point loading effect (VPLE). In this 

formulation, they use a joint probability density function for the uncertainty of load 

demand and wind power approximated by a simplified WECS. To deal with those 

uncertainties, they use chance constraints for two risk levels such as up spinning 
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reserve and down spinning reserve, respectively. Reddy et al. (2013) study the effect 

of wind integration to thermal power system. The only source of uncertainty is wind 

power forecasts following Weibull distribution. They take VPLE in fuel costs and 

transmission losses into account in their formulation where the objective is to 

minimize total operating cost, reserve allocation costs and underestimation and 

overestimation costs of wind power generation. They propose a new algorithm called 

as Covariant Matrix Adaptation with Evolution Strategy (CMA-ES) with mean 

learning technique (MLT) to solve their ELD formulation. Wang et al. (2017) 

propose a chance constrained ELD formulation under wind power uncertainty which 

does not necessarily follow Normal distribution. They use Gaussian Mixture Model 

(GMM) to represent joint probability distribution of wind power generation in 

different wind farms.  They consider wind-based costs that consist of operating cost 

of wind farms, the cost of wasted wind power due to underestimation of wind power 

generation and the cost of load not served due to overestimation of wind power 

generation. They formulate power flow limits on a transmission line as chance 

constraints converted into deterministic linear constraints.   

Ortega-Vazquez and Kirschen (2007) develop a bilevel optimization approach for 

the UCP under uncertainty due to the outages in conventional generation. First, they 

solve time-decoupled subproblems to determine the optimal spinning reserves for 

each period by taking generating unit outages into account. To illustrate, hourly 

reserve decisions are made according to the cost/benefit analysis between total 

operating costs and socioeconomic cost of expected energy not served (EENS) 

subject to some of the UCP constraints. They use three-point grid search technique 

to solve these subproblems prior to the exact UCP solution. Then, they solve 

traditional UCP with optimal spinning reserves. Later, Ortega-Vazquez and Kirschen 

(2009) improve the first level of this bilevel optimization by also incorporating the 

uncertainty due to load demand forecasts and wind power forecasts as the net load 

demand. For this purpose, they discretize the net load demand and apply their 

previous spinning reserve optimization method for each interval to find reserves 

corresponding to each interval. By taking the expectation of these reserves over 
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possible net load demand intervals, they find optimal spinning reserves. Then, they 

solve traditional UCP with optimal spinning reserves. Similar to Ortega-Vazquez 

and Kirschen (2009), Wu et al. (2015) develop a spinning reserve optimization 

method called as Cost-conditional value at risk (CVaR) model to assess the risk due 

to the uncertainties of load and wind power forecasts. In their method, they consider 

the loss of load when wind power is overestimated, and the wasted wind power when 

it is underestimated. They determine reserves by using CVaR and those reserve 

requirements are calculated prior to main UCP formulation. In their formulation, 

they also take transmission losses and transmission security verifications into 

consideration. Wang et al. (2015) propose a UCP formulation with risk reserve 

constraints. They use two types of reserves as correction reserve and emergency 

reserve. The former deals with the uncertainty in load demand and wind power 

generation while the latter is used for random breakdowns of conventional 

generating units. The emergency reserves are determined as the maximum of 10 

percent of total generation and the largest capacity of conventional units. After 

determining the optimal reserves, they solve traditional UCP. Different from Wang 

et al. (2015) and Wu et al. (2015), Chen et al. (2016) incorporate CVaR method into 

mixed integer linear programming (MILP) type UCP formulation to minimize total 

generation cost that gives generation and spinning reserve schedules simultaneously.     

Ortega-Vazquez et al. (2006) propose a stochastic programming model to schedule 

power generation and reserves for a power system under reliability issues in 

conventional generation. Instead of using deterministic spinning reserves or risk 

thresholds, they account for loss of load due to generation outages and the cost of 

providing extra reserve to prevent such losses. They show the nonlinear relationship 

between the available installed capacity of conventional generating units and EENS, 

which is then linearized in their model. The objective in their UCP formulation is to 

minimize the total operating costs, reserve allocation costs and expected cost of lost 

energy subject to several operational and technical constraints. Bouffard and Galiana 

(2008) develop a two-stage stochastic programming approach for a power system 

consisting of hydrothermal units and wind turbines. By ignoring hydrothermal 
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generator contingencies in their model, load demand and wind power forecasts are 

considered as the only sources of uncertainty which are integrated as the net load 

demand forecasts by considering the wind generation as a negative load demand. 

They construct the scenarios by discretizing the net load demand. The objective is to 

minimize the expected social cost where the first stage components are reserve costs, 

fixed operating costs and start-up costs, and the second stage components are 

demand benefits, variable operating costs and the expected cost of load not served. 

Pappala et al. (2008) develop a nonlinear mixed integer multistage stochastic model 

for the UCP in which the power system has wind farms, pumped storage and thermal 

power plants. The objective is to minimize total operating costs of thermal power 

plants. Wind forecasts and load demand forecasts are considered as two separate 

causes of uncertainty that are integrated to the model as scenario trees. They also 

propose a PSO based scenario reduction technique for a huge set of associated 

scenarios.  Alabedin et al. (2012) propose two special types of stochastic UCP 

formulation for microgrids having two operational modes such as grid connected 

mode and isolated mode. In the grid connected mode, upstream grid behaves like a 

virtual generating unit when there are power generation shortages by conventional 

and wind power generation while it behaves like a virtual load demand point when 

more power is generated than the actual load demand realization. In this mode, the 

total cost consists of operating costs of conventional generating units, costs of 

reserve and power imported from the upstream grid.  In the isolated mode, there are 

only conventional generating units and wind turbines so excess power generation is 

lost.  In this case, total cost consists of operating and expected cost of load not served. 

The uncertainties related to load demand and wind power are handled using both 

additional reserves and scenarios. Liu and Tomsovic (2012) develop a security 

constrained UCP MILP formulation to deal with uncertainties related to 

conventional generator outages, wind power generation and load demand. The last 

two sources of uncertainty are continuous random variables combined as the net load 

whereas conventional generator outages are discrete random variables. When 

constructing their scenarios, they use only single order contingency events of 
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generator outages to save computation time. To integrate net load demand into 

EENS, they discretize the net load demand by using seven-interval approximation. 

Then they take the expectation over possible load intervals. The objective is to 

minimize total operating costs, reserve allocation costs and the expected cost of lost 

load. Moreover, they consider the effect of transmission line capacities as well. Chen 

et al. (2013) propose a stochastic multi-objective programming model to investigate 

how uncertainties due to conventional generation reliability, load demand and wind 

power generation affect the UCP. The objectives are penalty cost of wind curtailment 

(overestimation), fuel costs of conventional thermal units and operating risk index 

of the system. By using fuzzy optimization method, the multi-objective formulation 

is transformed to a single objective model. As a risk index, they use loss of load 

expectation (LOLE) which is known as the percentage of time the available capacity 

will be lower than the load demand. The constraint set includes LOLE threshold 

constraint and transmission capacities. When calculating LOLE, they use three 

scenarios which are no generator outage but load demand and wind power 

variabilities, single generator outage with load demand and wind power variabilities, 

and two generators outage with load demand and wind power variability. They use 

PSO to solve this non-linear and non-convex optimization model. Chaiyabut and 

Damrongkulkumjorn (2014) develop a nonlinear stochastic UCP formulation with 

EENS constraint under load demand and wind power variabilities. The objective is 

to minimize total operating costs and the expected cost of lost energy. The load 

demand uncertainty is handled by a deterministic spinning reserve whereas wind 

power uncertainty is imposed by enforcing a reliability index EENS. This index is 

used in both the objective function as the expected cost of lost energy due to wind 

power variability, and in the constraint set by defining a maximum threshold for 

EENS. Seven-interval approximation method is used for wind power forecasts which 

is assumed to follow Normal distribution to calculate the EENS. To reflect the 

stochastic nature of load forecasts, wind power forecasts and fault outages in 

conventional generation, Cui et al. (2015) devise a stochastic UCP model, in which 

the objective is to minimize total operating cost and reserves are the decision 
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variables. Since fault outages are discrete random variables, they are approximated 

to follow exponential distribution so that they can be combined with load demand 

and wind power forecasts following Normal distribution. Khazali and Kalantar 

(2015) formulate a two-stage stochastic programming model for the UCP under 

variabilities in load demand, wind power generation and unit outage in conventional 

generation. They use two kinds of variables for reserves. One of the variables is used 

to overcome imbalances between load demand following Normal distribution and 

wind power generation following Rayleigh distribution. These reserves are 

determined as expected values by using scenarios. The other variable is used to 

overcome unit outages and determined by using linearized formulations of reliability 

constraints for the EENS for each scenario and total EENS after removing the load-

generation imbalances. Govardhan (2016) formulates the UCP under the variability 

in wind power generation as a stochastic nonlinear programming model with the 

objective of minimizing total operating costs, reserve allocation costs and wind-

based costs. Wind-based costs consist of operating cost of wind farms, the cost of 

wasted wind power due to underestimation in wind generation and the 

overestimation cost of wind generation assumed to follow Weibull distribution. She 

solves this nonlinear model by using Modified Teaching-Learning Based 

Optimization (M-TLBO). Shao et al. (2018) develop a stochastic risk decision-

making model for scheduling a wind integrated power system. The multi-probability 

wind scenarios are constructed based on Discrete Time Markov Chains, and they use 

a scenario reduction technology to extract representative scenarios. The aim is to 

minimize total fuel costs and risk related costs such as expected cost of loss of load 

and wind spillage while obtaining optimal generation and reserve schedules. 

Hedayati-Mehdiabadi et al. (2018) describe a scenario-based two-stage stochastic 

energy and reserve scheduling formulation by considering the uncertainty in the 

short-term wind farm generation forecasts. The objective is to minimize the total cost 

consisting of the operating costs, reserve allocation costs and the expected risk costs 

associated with insufficient reserve allocation. First, they solve this stochastic model 

and then they test the robustness of the solution by running a risk analysis model. 



 

 

18 

Apart from the aforementioned studies for the UCP under wind power uncertainty, 

there are also robust optimization, chance constrained optimization and simulation-

based optimization methods in the literature. Alvarez-Miranda et al. (2015) propose 

a two-stage robust UCP formulation to model the uncertainties related to wind 

forecasts. They use bootstrap predictive inference approach to make interval-based 

wind power scenarios instead of distribution-based scenarios. Commitment 

decisions are considered as the first stage variables and dispatching decisions are 

taken as the second stage variables. Cobos et al. (2018) also propose two-stage robust 

energy and reserve scheduling formulation for the UCP under wind uncertainty. 

They also study the effects of slow and fast acting generating units in a power system. 

By using chance constraints associated with system security risk levels for EENS 

and expected wind spillage (EWS), Qian et al. (2016) integrate the uncertainty in 

wind power generation having 𝛽 distribution into the UCP formulation for thermal-

gas-wind power system. Penalty costs of EENS and EWS are added to the objective 

function by linearizing them to speed up the computation. Ummels et al. (2007) 

develop a simulation-based unit commitment and load dispatch optimization 

method, also known as the so-called equal marginal cost method, for thermal power 

system that mainly consists of CHP under wind power uncertainty. Atmospheric 

high-resolution limited area model (HIRLAM) is used to approximate atmosphere 

state for 6-hour intervals; accordingly, average wind speeds are forecasted. Then, 

wind speed forecasts are postprocessed and wind power forecasts are made by using 

the wind power forecasting method Aanbod Voorspeller Duurzame Energie (AVDE) 

developed by Energy Research Centre of the Netherlands. The optimization tool uses 

three different time buckets such as annual, weekly and hourly. Annual time buckets 

are used for maintenance scheduling, weekly time buckets are used for production 

cost optimization, and hourly time buckets are used for load dispatching. Lee (2007) 

designs an evolutionary iteration particle swarm optimization (EIPSO) algorithm to 

solve the nonlinear UCP problem for a wind-thermal power system. The objective 

of his formulation is to minimize the total operating costs and the outage costs subject 

to the standard operational and technical constraints. Besides, reserves from thermal 
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units and wind turbines are considered as decision variables. Wind speed forecasts 

and their probabilities (according to Weibull distribution) are generated by using 

Hybrid Optimization of Multiple Electric Renewables (HOMER). Accordingly, the 

wind power generation is approximated by third order polynomial WECS. 

Different from the solution methods summarized above, we propose stochastic time-

decoupled quadratic programming-based approaches to solve the UCP under 

supply/demand uncertainty for the hybrid power systems with significant wind 

power penetration. In our approach, we consider several causes of uncertainty such 

as load and wind power forecast errors and random outages in conventional 

generation. We also propose a novel approach to integrate the VPLE causing rippling 

effect in the efficiencies of conventional generating units as well. The detailed 

explanation of the proposed approach and its implementation is provided in Chapter 

4.       

2.3 Solution Approaches for the Unit Commitment Problem with Emission 

Considerations in Traditional-and-Wind Integrated Hybrid Power 

Systems 

Since the integration of renewable energy generation and emission models into the 

UCP brings additional difficulties and complexities to the problem scope, efficient 

mathematical models and solution methods such as Lagrangian relaxations or 

metaheuristics are required to solve complex versions of this problem. For the last 

two decades, the UCP with emission considerations has been extensively studied for 

both traditional and hybrid power systems. To make our literature review more 

comprehensible and easier to follow in this section, we classify it into two categories. 

In subsection 2.3.1, mathematical models and solution methods for the UCP and its 

subproblem ELD in traditional power systems are briefly summarized. In subsection 

2.3.2, mathematical formulations and algorithms to solve the UCP and ELD in the 

wind integrated hybrid power systems are concisely explained. 
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2.3.1 Emission Considerations in Traditional Power Systems 

Nanda et al. (1994) utilize a weighted sum approach in their Economic Emission 

Dispatch (EED) formulation in which two conflicting objectives such as total 

operating costs and total emissions of SO2 and NOx are minimized by using a 

compromise factor subject to transmission line flow constraints. Emissions are 

represented by quadratic functions. They develop a new algorithm that use 

coordination equations to handle line flow constraints. Similarly, Ramanathan 

(1994) propose a weighted sum formulation for EED problem where unit-based and 

area-based NOx and SO2 emission limitations are also taken into account. Therefore, 

the problem can be called as Emission Constrained Economic Dispatch (ECED) 

problem. To represent emissions, second order polynomial functions are used. He 

also devises an efficient technique to determine binding constraints in the problem 

by linearizing the emission constraints. The proposed technique rapidly converges 

to the Kuhn-Tucker optimality conditions. Wang et al. (1995) propose a new 

approach based on the augmented Lagrangian relaxation method and the 

decomposition and coordination technique to solve environmentally constrained 

UCP (EC-UCP). The objective is to minimize total fuel costs while satisfying 

system, transmission and emission constraints. Similar to Wang et al. (1995), 

Gjengedal (1995) devise a Lagrangian relaxation-based algorithm to solve EC-UCP. 

CO2 and SO2 emissions are modelled via quadratic functions whereas NOx emissions 

are represented via cubic functions. He also considers start-up and shutdown 

emissions. Start-up emissions are characterized as an exponential function of unit’s 

downtime while shut-down emissions are assumed to be constant. For emission 

constraints, he uses an overall limit on total emissions in the planning horizon. 

Marwali and Shahidehpour (1999) propose an algorithm based on Double Benders 

Decomposition for long-term transmission and generation maintenance scheduling 

problem in which linearly defined NOx and SO2 emissions are not taken as objectives 

to be minimized, rather they are considered as area-based and overall emission limits 

in the problem. Raglend and Padhy (2006) formulate the EC-UCP by using price 
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penalty factor for emissions, which enables them to convert the bi-objective problem 

into single-objective optimization problem with total cost minimization. Emissions 

and fuel costs are characterized as quadratic functions. They also take unit and 

transmission constraints into account. Yamashita et al. (2010) come up with a 

weighted sum formulation for the UCP with CO2 emissions by normalizing total 

operating cost and total CO2 emissions and assigning weight factors for both 

objectives. Emissions are modelled by quadratic functions. They implement 

decommitment procedure to attain Pareto optimal curves for the analysis of trade-

offs between CO2 emissions and total cost. Nazari et al. (2010) propose an EC-UCP 

solution method in which Cap & Trade mechanism is applied for total emissions. 

That is, emission costs are added to total operating cost whenever quadratically 

defined emissions exceed the total cap value. They also study impacts of pumped 

storage units integrated into thermal power systems. Catalão et al. (2010) develops a 

multi-objective optimization method for the Profit-Based UCP (PBCUP) by using 𝜀-

constraint method for one of the objectives such as maximizing total revenue and 

minimizing total emissions. Accordingly, depending on electricity price profiles, 

Pareto optimal trade-off curves are obtained for the compromise between the revenue 

and emissions. For emission modelling, quadratic and exponential functions are 

combined. Anita and Raglend (2013) develop a Shuffled Frog Leaping Algorithm to 

solve EC-UCP in which the objective is to minimize total operating costs and total 

emission costs. NOx and SO2 emissions are modelled via second order polynomial 

functions, and no constraints are imposed on them. Xia et al. (2013) differently 

formulate ECED problem taking intertemporal constraints and transmission losses 

into consideration. The objective is to minimize total operating cost of thermal units 

and pumped-hydro storage units. Emissions are represented by quadratic functions 

and a total emission limit is defined for the entire system. They devise a 

Simultaneous Perturbation Method for Lagrangian relaxation for both standard ED 

constraints and intertemporal constraints to solve this problem. Tang and Che (2013) 

propose a variable splitting-based Lagrangian relaxation algorithm to solve EC-

PBUCP in the deregulated electricity market. The objective is to maximize total 
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profit calculated as the difference between the revenue obtained from electricity sold 

and total cost of operations and CO2 emissions calculated by piecewise linear 

emission penalty factors. Saravanan and Vasudevan (2014) develop an invasive 

weed optimization algorithm to solve EC-UCP with the objective of minimizing the 

weighted sum of total operating cost and total emission levels. Emissions are 

characterized as second order polynomial functions. Ahmadian et al. (2014) suggest 

a multi-objective optimization formulation for the EC-UCP by minimizing the 

weighted sum of total pollutant emission and total operating costs. They devise a 

new Honey Bee Mating Optimization Algorithm to solve this problem in which 

emissions are modelled by quadratic functions. Laia et al. (2014) propose a stochastic 

mixed-integer linear programming formulation to cope with the UCP under emission 

limitations and uncertainty in a deregulated electricity market involving day-ahead 

bidding and bilateral contracts. The uncertainty is caused by variable electricity 

prices and modelled by scenarios. In the PBUCP formulation, the objective is to 

maximize expected profit obtained from sales of electricity subject to the system-

wide emission limitation and standard UCP constraints. Che and Shi (2014) present 

a mixed-integer linear programming (MILP) formulation for the PBUCP with 

nonlinear emissions penalty. To apply MILP, quadratic fuel cost and emission 

functions are piecewise linearly approximated. Haddadian et al. (2015) propose 

MILP formulation for the EC-UCP with the integration of distributed energy storage 

devices. Quadratic CO2 emissions are handled by introducing system-wide emission 

limit instead of incurring emission costs. Similar to Che and Shi (2014), they also 

apply piecewise linear approximation for quadratic functions. To speed-up the 

processing required for large power systems, they use Benders Decompositions and 

Cuts. Geng et al. (2015) suggest a novel mixed-integer nonlinear programming 

(MINLP) type ECED formulation in which clean energy technologies are employed 

for the reduction of NOx, SO2 and PMx emissions. Emissions are modelled with 

quadratic functions in operational mode and with linear functions in start-up mode 

by considering effects of emission reduction devices. The aim is to minimize total 

operating cost and total emission taxes levied. They employ area-based emission 



 

 

23 

limits as constraints and tiered emission taxes. Moreover, Geng et.al. (2017) extend 

their ECED formulation for the EC-UCP and apply it for the Chinese power system. 

Navin and Sharma (2016) develop a Modified Differential Evolution (MODE) 

optimization technique to solve EC-UCP in which emission costs and unit-based 

emission limits are used to cope with emissions characterized by quadratic functions. 

They also incorporate priority lists and a random search algorithm to tackle with 

classical spinning reserve requirements and minimum uptime/downtime constraints, 

respectively. Zhang et al. (2016) formulate EC-UCP for smart grids by applying the 

unit-based carbon emission trading (CET) mechanism for emissions. In their 

formulation, emissions are quadratically characterized and emission costs are 

incurred whenever allowable emission limits of thermal units are exceeded. They 

devise an Improved PSO Algorithm to solve the problem. Liu et al. (2014) present 

both mixed-integer quadratic programming (MIQP) and mixed-integer linear 

programming (MILP) formulation for the PBUCP that aims to maximize profit under 

carbon taxing in a deregulated electricity market. To convert MIQP into MILP, 

quadratic fuel cost and emission functions are piecewise linearly approximated. 

Ghadi et al. (2016) propose a bi-objective nonlinear PBUCP under a deregulated 

environment. The aim is to maximize the profit while minimizing CO2 emission 

levels subject to emission limits defined for each period. Emissions are represented 

by second order polynomial functions They devise an Imperialist Competitive 

algorithm combined with a metaheuristic constraint handling technique to solve their 

bi-objective formulation. Sen and Mathur (2016) propose a metaheuristic algorithm 

using the framework of Ant Colony Optimization-Artificial Bee Colony-Harmonic 

Search (ACO-ABC-HS) algorithm to solve ECED problem. The aim is to minimize 

total fuel cost with valve point loading effect while satisfying emission limits, 

transmission losses and other standard ELD constraints. Quadratic emission models 

are used in their formulation. Sundaram et al. (2017) develop Tabu Search-Enhanced 

ABC algorithm to solve the PBUC in a deregulated electricity market by taking 

emission limitations into consideration. Both fuel costs and emissions are 

represented by quadratic functions. In the proposed algorithm, unit commitment part 
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of the problem is solved by an ABC algorithm and dispatch part of the problem is 

solved by the Lambda Iteration Method (LIM) whereas TS is used to explore and 

exploit the solution space. Geng et al. (2018) propose a two-stage stochastic 

programming formulation for the EC-UCP under variable emission limits depending 

on variable Air Quality Index (AQI). The first stage represents day-ahead UCP and 

the second stage is used to simulate power system operation under scenario-

dependent emission limits for NOx and SO2. Quadratic costs and emissions are 

piecewise linearly approximated, so their formulation is based on MILP in which the 

objective is to minimize total operating cost. Olamaei et al. (2018) develop a 

nonlinear EC-UCP formulation for power systems consisting of CCHP, thermal and 

heat units. The objective is to minimize total cost comprising of fuel costs with valve 

point loading effect and the penalty cost of CO2 emissions defined by second order 

polynomial functions. 

2.3.2 Emission Considerations in Hybrid Power Systems 

Kuo (2009) develops an efficient metaheuristic that combines SA and PSO for the 

bi-objective economic emission dispatch (EED) problem in which wind turbines are 

taken as more flexible units having zero emissions. Objectives are to minimize total 

fuel costs and total emissions. Both terms are represented by quadratic functions; in 

addition, emissions are superimposed by exponential functions. Complex 

operational constraints like prohibited operation zones, ramp-up/ramp-down limits 

and transmission losses are also added in the formulation. Liu and Xu (2010) propose 

a MINLP formulation for EED problem under wind power uncertainty. Different 

from other formulations, the main objective is to minimize environmental impact 

index that is total NOx emissions, so the total cost consisting of fuel costs of thermal 

units and penalty costs for wind curtailment (overestimation) and wind spillage 

(underestimation) is taken as a constraint specifying an upper bound for total cost. 

They also set a limit for wind power generation. Emissions are modelled via the 

combination of quadratic functions and exponential function. Wind power is 
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assumed to follow Gamma distribution; accordingly, they derive expressions for 

expectations of overestimation and underestimation of wind generation. Piperagkas 

et al. (2010) formulate ECED problem for both heat and power generation system 

under variabilities in the wind power and emission limitations for NOx, SO2 and CO2. 

Those emissions are characterized by linear functions for CHP units. For thermal 

units, NOx and SO2 emissions are represented by quadratic functions with an 

exponential factor whereas CO2 emissions are modelled for CHP units. Instead of 

taking emissions into account in the objective, they define maximum emission limits 

for each gas. Thence, fuel costs and the expected cost of wind curtailment forms the 

objective to be minimized. Furthermore, transmission losses are also formulated 

according to Kron’s B-loss function. To solve the ECED problem, they use a PSO-

based optimization technique. Verma and Kumar (2011) formulate the bi-objective 

EC-UCP under wind power uncertainty and pumped storage integration. The 

variabilities in wind power are described by wind speed scenarios which are 

transformed into wind power scenarios by using simplified WECS. They convert bi-

objective formulation into a single objective by defining emission penalty. Hence, 

the single objective comprises of total operational costs of thermal and pumped 

storage units and emission penalties. They do not use underestimation and 

overestimation costs for wind power generation since these situations are 

compensated by pumped storage units. Besides, quadratic expressions are used to 

model emissions. Liao (2011) devises a Chaotic Quantum GA to solve EED problem 

in which both total operating costs, overestimation cost of wind farms, and emission 

costs of NOx are minimized. Several technical aspects such as transmission losses, 

prohibited operation zones and valve point loading effect are also considered in the 

formulation. Wind power generation is calculated from wind speed forecasts by 

using simplified WECS. Fuel costs with valve point loading effect are represented 

by quadratic functions having absolute sinusoidal rippling whereas quadratic 

functions superimposed by exponential functions are used to represent NOx 

emissions. Azizipanah-Abarghooee et al. (2011) develop a Modified Teaching-

Learning Algorithm to solve a stochastic multi-objective wind-thermal EED 
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problem. The conflicting objectives are to minimize total fuel costs with valve point 

loading effect and expected overestimation and underestimation cost of wind power, 

and to minimize NOx emissions. Emissions are modelled as the sum of quadratic and 

exponential functions. For wind power forecasts of each wind farm, WECS is used. 

Van Dinter et al. (2012) propose a MINLP model for the environmental UCP in 

which the objective is to minimize the sum of piecewise linearly approximated fuel 

costs, shortage costs, and concave NOx emission costs in wind-thermal-storage 

power system. They also introduce several cuts to reinforce their formulation and to 

increase the tractability of the problem. Then, they apply Bender’s Decomposition 

to solve their MINLP model. Jadhav and Roy (2013) formulate the probabilistic bi-

objective wind-thermal EED problem with the objective of minimizing the sum of 

fuel costs with valve point loading effect, expected costs of wind spillage and wind 

curtailment. The exact WECS is used to represent wind power from wind speed 

following Weibull distribution. Emissions are represented with quadratic functions. 

They also consider transmission losses and prohibited operation zones. Gbest Guided 

ABC is utilized to optimize the EED problem. Wu et al. (2013) devise a method 

based on the framework of multi-objective PSO and Primal-Dual Interior Point 

Method to solve EC-UCP. In the problem formulation, the objective is to minimize 

total operating costs and total air pollutant emissions. Wind power uncertainty is 

characterized by using interval forecasting techniques and assigning an occurrence 

probability for each interval. Both emissions and fuel costs are expressed with 

quadratic functions. Roy and Hazra (2014) present a Chemical Reaction 

Optimization Algorithm (CROA) to solve nonlinear EED problem in wind-fossil 

fuel-based power systems. This algorithm is extended by Hazra and Roy (2019) who 

also use quasi-opposition based learning with CROA. The aim of the problem is to 

minimize fuel costs with valve point loading effect, emission costs and wind related 

expected costs as overestimation and underestimation costs. Wind power is 

characterized by using Weibull distribution and exact WECS. Emissions are 

modelled via combined second order polynomial and exponential functions. They 

also take power transmission losses into consideration. Zhang et al. (2014) model the 
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EC-UCP for wind-thermal power systems with the objective that minimizes total 

operating costs of thermal units, expected underage and overage cost of wind power 

and costs of quadratic CO2 and NOx emissions. Wind speeds are expressed via 

Weibull distribution and WECS is used to convert wind speed into wind power. They 

design a hybrid algorithm based on Sequential Quadratic Programming (SQP) and 

PSO. Haddi and Bouktir (2015) develop an ABC algorithm to solve EED under wind 

power uncertainty. Wind speeds are assumed to follow Gamma distribution, so are 

wind powers. The problem is formulated as the weighted sum of total system cost 

consisting of fuel costs, wind related expected costs, and total emissions which are 

modelled via quadratic functions combined with exponential functions. Trivedi et al. 

(2016) propose a multi-objective environmental UCP under significant wind 

penetration with objectives that are total operating costs, total emissions and EENS 

cost due to load demand and wind power forecasts, and uncertainty based on thermal 

unit outages. Apart from considering these costs in the objective, maximum limits 

are also defined for each cost, which makes the problem optimized in the constrained 

objective space. Emissions are characterized as quadratic functions. Wind power is 

represented by using simplified WECS. To solve the problem, they devise a Multi-

Objective Evolutionary Algorithm Based on Decomposition and Differential 

Evolution. Alham et al. (2016) formulate EED as a weighted sum of total fuel cost 

and total emissions to be minimized. They also integrate time-dependent ramp-rate 

limits and transmission losses into their formulation. Both fuel costs and emissions 

are taken as second order polynomial functions. Stochastic nature of wind power is 

modelled via Weibull distribution and it is represented by taking power balance 

constraint as a chance constraint in the formulation. Wang et al. (2016) establish a 

VaR-based multi-objective formulation for EC-UCP with wind penetration. 

Objectives are to minimize the sum of total operating costs and emission taxes, and 

to minimize generalized fuzzy VaR-based reliability index. For NOx and SO2, single 

level tax is levied on emission levels whereas carbon emission trading scheme is 

applied for CO2 emissions. Uncertainty of wind power is characterized as Weibull 

distribution. They use a Fuzzy Simulation-Based Multi-Objective PSO Algorithm to 
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solve EC-UCP problem. Qu et.al. (2016) develop a Summation Based Differential 

Evolution Algorithm for the solution of bi-objective EED problem in wind-thermal 

systems. Total operating cost and total emission levels are tried to be minimized. 

Emissions are modelled via quadratic functions combined with exponential 

functions. Besides, the stochastic nature of wind power is represented from wind 

speed following Weibull distribution by using simplified WECS. Wind power 

uncertainties are handled by introducing chance constraints instead of power balance 

and spinning reserve constraints. Negi et al. (2016) formulate the environmental 

UCP by minimizing total operating costs of thermal units, expected costs of 

overestimation and underestimation of wind power and emission taxes for NOx and 

CO2 emissions. Wind power is assumed to follow Weibull distribution as a result of 

WECS conversion of wind speeds following Weibull distribution. They take 

standard emission constraints and valve point loading effect into account. To solve 

the problem, they develop Improved Binary PSO. Qu et al. (2017) propose a different 

EED formulation under load and wind power uncertainty, which are incorporated as 

spinning reserve constraints modified to integrate variabilities in forecasts of load 

demand and wind power. They define two objectives, namely the minimization of 

total fuel cost and the minimization of total emission levels. The valve point loading 

effect is considered in fuel cost representation as a sinusoidal term. Emissions are 

modelled as the sum of quadratic and exponential functions. They solve this 

formulation by using Selection Method Based Multi-Objective Differential 

Evolution Algorithm. Hu et al. (2017) propose a novel EED model taking economic 

and environmental aspects of a wind integrated power system into account. Both fuel 

costs and NOx, SO2 and CO2 emissions are characterized as cubic functions. When 

incurring emission costs, NOx and SO2 emissions are converted into associated CO2-

equivalents by using conversion factors. Wind speeds are represented with Weibull 

distribution and they are transformed into wind power by using simplified WECS. 

In their model, both emission costs and fuel costs are minimized by satisfying several 

system constraints and allowable emission limits. Hybrid GA‐SQP algorithm is 

employed to solve the EED problem. Zhang et al. (2017) build a stochastic EC-UCP 
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model that simultaneously analyses operational economy, emission, and reliability 

of the whole system. Wind power uncertainty is characterized as interval-based 

scenarios. Therefore, unit commitment decisions are made in the first stage, whereas 

load dispatch decisions, accordingly emission levels are set at the second stage 

depending on scenarios. The overall objective is to minimize total operating cost 

consisting of quadratic fuel costs and two-step start-up costs and emissions levels 

which are expressed with combined usage of quadratic and exponential functions. 

Zhang et al. (2017) propose a cost-benefit analysis method to solve environmental 

UCP with load and wind power forecast variabilities along with forced outages of 

generators. The objective is the joint minimization of carbon trading costs, operating 

costs, the expected cost of load shedding, the penalty cost of wind power 

curtailments. In order to combine uncertainties of load demand and wind power 

forecasts with forced outages, they discretize them. Emissions and costs involve 

linear representations. Franz et al. (2018) propose a MILP type formulation for 

environmental UCP with pumped storages and renewable energy sources such as 

wind and solar. Renewables are integrated to the problem by considering them in 

residual demands. Emission costs are added to variable cost of thermal power units, 

which have a linear relationship with the cost of production. The aim is to minimize 

total generation cost, emission cost and the expected cost of load shedding. They use 

time-oriented, unit-oriented, and generic fix-and-optimize procedures as a 

decomposition method. Guo et al. (2018) formulate an AQI-driven SCUC 

incorporating wind power uncertainties. Different from other formulations, impacts 

of thermal units on regional air quality is modelled by using Gaussian puff dispersion 

model and pollutant equivalent method. Wind power uncertainty is modelled via 

scenarios generated from uncertain wind speed following Weibull distribution. NOx, 

SO2 and PMx emissions are modelled via quadratic expressions. Chinnadurrai and 

Victoire (2019) suggest a multi-objective EED formulation that consists of two 

levels. In the first level, the bi-objective to be minimized includes total fuel costs 

with valve point loading effect and total emissions represented with quadratic 

functions superimposed by exponential functions. In the second level, wind 
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curtailment as a result of the overestimation of expected wind power is minimized. 

To solve the problem, the combined framework of Enhanced Multi-Objective 

Crisscross Optimization and Linear Programming is employed. Franz et al. (2020) 

build a MILP model for EC-UCP with hydrothermal coordination to minimize total 

production and emission costs. They employ Cap & Trade mechanism when 

incurring emission costs and using residual demands for renewable generation. Also, 

they develop a two-stage heuristic to analyze the trade-off between power generation 

and emission costs. 

Different from the aforementioned solution methods, we propose a stochastic time-

decoupled quadratic programming-based approach to solve the UCP under both 

supply/demand uncertainty due to unexpected outages in conventional generation 

and forecast errors of wind power and load demands, and emission limitations for 

the wind integrated hybrid power systems. In our approach, we model emissions of 

CO2, one of the most important Greenhouse Gases (GHGs), and NOx, SO2 and PMx, 

the most dangerous air pollutants by taking the potential implementation of emission 

control technologies and strict regulations into account. We extend our approaches 

explained in Chapter 4 by integrating emission considerations as well. The detailed 

explanation of the proposed approach and its implementation is provided in Chapter 

5. 
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CHAPTER 3  

3 UNIT COMMITMENT PROBLEM FOR TRADITIONAL POWER SYSTEMS 

The unit commitment problem (UCP) in traditional power systems is a mixed 

integer, nonlinear, and combinatorial optimization problem. The main objective is to 

effectively schedule operations of conventional generating units in a power system 

on an hourly basis to meet forecasted load demand requirements, while satisfying 

various operational and technical constraints. Moreover, the UCP has a challenging 

issue of non-convexity, high dimensionality and combinatorial nature especially 

when a power network contains too many conventional generating units, which 

makes it difficult to use any rigorous optimization approach to solve the problem for 

a real-size power system. In this chapter, we first develop a mathematical model for 

the traditional UCP, and then a novel Mixed Integer Coded Genetic Algorithm 

(MICGA) is proposed and applied to standard problem instances in the literature to 

test the efficiency and effectiveness of the MICGA. Our main motivation for 

developing a GA for the UCP is that it employs fundamentals of natural genetics that 

are proven very efficient in the search of global optimal solution for complex and 

nonlinear problems in a relatively short computing time.   

3.1 Problem Formulation 

The UCP is a well-known generator scheduling problem basically comprising of two 

decisions. The first one is to specify commitment statuses of conventional generating 

units for each time period in the planning horizon. After determining the 

commitment statuses, the second decision is to determine how much energy should 

be produced by each committed unit in each time period. In order to perform these 

decisions, the main objective of the problem is to minimize the total operating cost 
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consisting of fuel costs and start-up costs over the planning horizon. Besides, it 

includes several constraints that can be classified in two main categories such as 

load-driven constraints and technological constraints. These constraints are status 

restrictions of individual generating units, minimum uptime and minimum downtime 

constraints, generation capacity limits, limited ramp rates, and power balance 

constraint. There are also several operational uncertainties such as random outages 

of conventional generating units that should also be considered when formulating 

and solving the UCP. This stochastic nature of traditional power systems is generally 

alleviated by pursuing several deterministic reserve policies requiring a spare 

capacity generally defined as a certain proportion of the peak load or the largest 

capacity of committed units. In this section, we develop a Mixed Integer Nonlinear 

Programming (MINLP) model which can even be made simpler and more compact. 

In the formulation, ramp-up and ramp-down constraints, which aggravate the 

problem’s tractability, are also taken into consideration. 

Assumptions 

• The electricity market is vertically integrated. Hence, a power generation 

company is obliged to meet the load demand of its customers exactly. 

• The load demands during the planning horizon are accurately forecasted. No 

deviation beyond 10% of the forecasted load is expected. 

• The conventional power generation system is reliable enough, so the failure 

events (unexpected outages) of conventional units can be neglected. 

• The efficiency of a conventional generating unit shows a monotonic increase 

as it is more heavily loaded. 

• A conventional generating unit can produce power within its available power 

generation limits. 

• The power produced can be transmitted to the demand points without any 

transmission limits. 

• Power losses during power transmission are negligible.      
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Sets and Indices 

N: Set of conventional generating units 

i ∈ N: Conventional generating units  

T: Set of time periods (hours) 

t ∈ T: Time period 

Parameters 

𝑎𝑖, 𝑏𝑖, 𝑐𝑖: Fuel cost coefficients of unit i ($, $/MW, $/MW2, respectively) 

𝑆𝑖
𝐻:  Hot startup cost of unit i ($) 

𝑆𝑖
𝐶: Cold startup cost of unit i ($) 

𝑇𝑐,𝑖: Startup time threshold of unit i (hours) 

𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

: Minimum downtime of unit i once it is shutdown (hours) 

𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛 : Minimum uptime of unit i once it is started up (hours) 

𝑃𝑖
𝑀𝑖𝑛: Minimum power output level of unit i (MW) 

𝑃𝑖
𝑀𝑎𝑥: Maximum power output level of unit i (MW) 

𝑅𝑖
𝑢𝑝

: Ramp-up limit of unit i (MW) 

𝑅𝑖
𝑑𝑜𝑤𝑛: Ramp-down limit of unit i (MW) 

𝐷𝑡: Load demand in period t (MW) 

𝑆𝑅𝑡
𝑀𝑖𝑛: Minimum spinning reserve requirement in period t (MW) 

Decision Variables 

𝑢𝑖𝑡: Commitment status of unit i in period t: 
 

 

 

 

        

𝑃𝑖𝑡: Amount of electricity produced by unit i in period t 

𝑢𝑖𝑡 =  
1 if  unit 𝑖 is "On" in period 𝑡 

0 otherwise 
(3. 1) 
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𝐹𝐶(𝑃𝑖𝑡, 𝑢𝑖𝑡) : Fuel Cost of unit i in period t generally given by a quadratic cost 

function as follows: 

                                    𝐹𝐶(𝑃𝑖𝑡, 𝑢𝑖𝑡) = 𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2                                      (3. 2) 

𝑇 𝑖𝑡
𝑜𝑓𝑓

: Number of consecutive time periods that unit i remained decommitted up to 

period t 

𝑇 𝑖𝑡
𝑜𝑛: Number of consecutive time periods that unit i remained committed up to period 

t  

𝑆𝑖𝑡: Start-up cost of unit i in period t generally depends on the number of consecutive 

time periods in which the unit is in “Off” status. According to the length of the “Off” 

periods, start-up costs are classified as hot start-up or cold start-up costs:  

 

 

 

𝑃𝑖𝑡
𝑀𝑖𝑛: Minimum power output level of unit i in period t: 

 

 

 

 

𝑃𝑖𝑡
𝑀𝑎𝑥: Maximum power output level of unit i in period t: 

 

 

 

Auxiliary Binary Variables for Logical Constraints: 

• 𝛿𝑖𝑡: Start-up type indicator of unit i in period t: 

𝑆𝑖
𝐻                if             𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
≤  𝑇 𝑖𝑡

𝑜𝑓𝑓
≤ 𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
+ 𝑇𝑐,𝑖 

 
𝑆𝑖𝑡 =   

  
𝑆𝑖

𝐶                 if             𝑇 𝑖𝑡
𝑜𝑓𝑓

> 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

+ 𝑇𝑐,𝑖 
     (3. 3) 

     Max൛𝑃𝑖
𝑀𝑖𝑛, 𝑃𝑖𝑡−1 − 𝑅𝑖

𝑑𝑜𝑤𝑛ൟ     if    𝑢𝑖𝑡−1 = 𝑢𝑖𝑡 = 1          

 
𝑃𝑖𝑡

𝑀𝑖𝑛 =   

  
                          𝑃𝑖

𝑀𝑖𝑛                                           otherwise 

     (3. 4) 

       Min൛𝑃𝑖
𝑀𝑎𝑥 , 𝑃𝑖𝑡−1 + 𝑅𝑖

𝑢𝑝ൟ        if    𝑢𝑖𝑡−1 = 𝑢𝑖𝑡 = 1  

𝑃𝑖𝑡
𝑀𝑎𝑥 =   

  
              𝑃𝑖

𝑀𝑎𝑥                                          otherwise  

     (3. 5) 

       1       if             𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

≤  𝑇 𝑖𝑡
𝑜𝑓𝑓

≤ 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

+ 𝑇𝑐,𝑖  

𝛿𝑖𝑡 =   

  
              0       if             𝑇 𝑖𝑡

𝑜𝑓𝑓
> 𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
+ 𝑇𝑐,𝑖   

     (3. 6) 
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• 𝛼𝑖𝑡
1 : Auxiliary variable indicating unit i has been working beyond its 

minimum uptime requirement in period t: 

 

  

• 𝛼𝑖𝑡
2 : Auxiliary variable indicating unit i has not been working till period t: 

 

 

• 𝛽𝑖𝑡
1 : Auxiliary variable indicating unit i has not been working beyond its 

minimum downtime requirement in period t:  

 

 

 

• 𝛽𝑖𝑡
2 : Auxiliary variable indicating unit i has been working till period t: 

 

 

 

Mathematical Model 

𝑀𝑖𝑛    ∑ ∑(𝐹𝐶(𝑃𝑖𝑡, 𝑢𝑖𝑡) + 𝑆𝑖𝑡 (1 − 𝑢𝑖,𝑡−1) 𝑢𝑖𝑡)

|𝑁|

𝑖=1

|𝑇|

𝑡=1

                                             (3. 11) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑃𝑖𝑡

|𝑁|

𝑖=1

≥  𝐷𝑡           ∀𝑡                                                                                               (3. 12) 

       1       if             𝑇 𝑖𝑡
𝑜𝑛 ≥ 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛   

𝛼𝑖𝑡
1 =   

  

              0       otherwise   
     (3. 7) 

       1       if             𝑇 𝑖𝑡
𝑜𝑛 = 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛   

𝛼𝑖𝑡
2 =   

  

              0       otherwise   
     (3. 8) 

       1       if             𝑇 𝑖𝑡
𝑜𝑓𝑓

≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

  

𝛽𝑖𝑡
1 =   

  

              0       otherwise   
     (3. 9) 

       1       if             𝑇 𝑖𝑡
𝑜𝑓𝑓

= 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

  

𝛽𝑖𝑡
2 =   

  

              0       otherwise   
     (3. 10) 
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∑ 𝑃𝑖𝑡
𝑀𝑎𝑥

|𝑁|

𝑖=1

≥  𝐷𝑡 +  𝑆𝑅𝑡
𝑀𝑖𝑛         ∀𝑡                                                                            (3. 13) 

 𝑃𝑖𝑡
𝑀𝑖𝑛 ≤ 𝑃𝑖𝑡 ≤ 𝑃𝑖𝑡

𝑀𝑎𝑥           ∀𝑖, ∀𝑡                                                                               (3. 14) 

𝑇 𝑖𝑡+1
𝑜𝑛 ≤ 𝑀1𝑢𝑖𝑡         ∀𝑖, ∀𝑡 − {𝑇}                                                                               (3. 15) 

𝑇 𝑖𝑡+1
𝑜𝑛 ≥ 𝑇 𝑖𝑡

𝑜𝑛 + 1 + 𝑚1(1 − 𝑢𝑖𝑡)        ∀𝑖, ∀𝑡 − {𝑇}                                              (3. 16) 

𝑇 𝑖𝑡+1
𝑜𝑓𝑓

≤ 𝑀2(1 − 𝑢𝑖𝑡)         ∀𝑖, ∀𝑡 − {𝑇}                                                                  (3. 17) 

𝑇 𝑖𝑡+1
𝑜𝑓𝑓

≥ 𝑇 𝑖𝑡
𝑜𝑓𝑓

+ 1 + 𝑚2𝑢𝑖𝑡        ∀𝑖, ∀𝑡 − {𝑇}                                                        (3. 18) 

𝑇 𝑖𝑡
𝑜𝑓𝑓

≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

+ 𝑇𝑐,𝑖 + 𝜀 + (𝑚3 − 𝜀)𝛿𝑖𝑡        ∀𝑖, ∀𝑡                                            (3. 19) 

𝑆𝑖𝑡 = 𝑆 𝑖
𝐻𝛿𝑖𝑡 + 𝑆 𝑖

𝐶(1 − 𝛿𝑖𝑡)         ∀𝑖, ∀𝑡                                                                   (3. 20) 

𝑇 𝑖𝑡
𝑜𝑓𝑓

≤ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

+ 𝑇𝑐,𝑖 + 𝑀3(1 − 𝛿𝑖𝑡)         ∀𝑖, ∀𝑡                                                  (3. 21) 

𝑇 𝑖𝑡
𝑜𝑛 ≥ 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 + 𝑚4(1 − 𝛼𝑖𝑡
1 )         ∀ 𝑖, ∀𝑡                                                              (3. 22) 

𝑇 𝑖𝑡
𝑜𝑛 ≤ 𝑀4(1 − 𝛼𝑖𝑡

2 )        ∀𝑖, ∀𝑡                                                                                (3. 23) 

𝛼𝑖𝑡
1 + 𝛼𝑖𝑡

2 ≤ 1 + 𝑢𝑖𝑡       ∀𝑖, ∀𝑡                                                                                 (3. 24) 

𝑇 𝑖𝑡
𝑜𝑓𝑓

≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

+ 𝑚5(1 − 𝛽𝑖𝑡
1 )       ∀𝑖, ∀𝑡                                                              (3. 25) 

𝑇 𝑖𝑡
𝑜𝑓𝑓

≤ 𝑀5(1 − 𝛽𝑖𝑡
2 )        ∀𝑖, ∀𝑡                                                                             (3. 26) 

𝛽𝑖𝑡
1 + 𝛽𝑖𝑡

2 ≤ 1 + (1 − 𝑢𝑖𝑡)       ∀𝑖, ∀𝑡                                                                     (3. 27)  

𝑃 𝑖𝑡
𝑀𝑎𝑥 ≤ 𝑃 𝑖

𝑀𝑎𝑥𝑢𝑖𝑡        ∀𝑖, ∀𝑡                                                                                    (3. 28) 

𝑃 𝑖𝑡
𝑀𝑎𝑥 ≤ 𝑃𝑖𝑡−1 + 𝑅 𝑖

𝑢𝑝 + 𝑀6(2 − 𝑢𝑖𝑡−1 − 𝑢𝑖𝑡)     ∀𝑖, ∀𝑡                                     (3. 29) 

𝑃 𝑖𝑡
𝑀𝑖𝑛 ≥ 𝑃 𝑖

𝑀𝑖𝑛𝑢𝑖𝑡        ∀𝑖, ∀𝑡                                                                                     (3. 30) 

𝑃 𝑖𝑡
𝑀𝑖𝑛 ≥ 𝑃𝑖𝑡−1 − 𝑅 𝑖

𝑑𝑜𝑤𝑛 + 𝑚6(2 − 𝑢𝑖𝑡−1 − 𝑢𝑖𝑡)     ∀𝑖, ∀𝑡                                 (3. 31) 

𝑃𝑖𝑡, 𝑆𝑖𝑡, 𝑇 𝑖𝑡
𝑜𝑛, 𝑇 𝑖𝑡

𝑜𝑓𝑓
, 𝑃 𝑖𝑡

𝑀𝑎𝑥 , 𝑃 𝑖𝑡
𝑀𝑖𝑛 ≥ 0        ∀𝑖, ∀𝑡                                                     (3. 32) 

𝑢𝑖𝑡, 𝛿𝑖𝑡, 𝛼𝑖𝑡
1 , 𝛼𝑖𝑡

2 , 𝛽𝑖𝑡
1 , 𝛽𝑖𝑡

2   ∈ {0,1}       ∀𝑖, ∀𝑡                                                           (3. 33) 
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Objective Function 

The objective is to minimize the sum of fuel costs and start-up costs associated with 

uncommitted units. In the mathematical model, the objective function is given by its 

closed form representation as in (3.11). Its open form representation is provided 

below. 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑆𝑖𝑡 (1 − 𝑢𝑖,𝑡−1) 𝑢𝑖𝑡)

|𝑁|

𝑖=1

              (3. 34) 

Constraints 

The constraints can be categorized in two main classes such as load demand 

constraints (3.12, 3.13) and technological constraints (3.14,…, 3.31). The first set 

consists of load requirements and spinning reserve requirements. The second set of 

constraints consists of limits on the unit output range, and on the minimum number 

of time periods that the unit must be continuously in “On” or “Off” status. 

Load Requirement Constraint (3.12): Also known as the power balance constraint 

guaranteeing that total power generated by the committed units in period t should be 

greater than or equal to the load demand in period t. 

Spinning Reserve Constraint (3.13): Total available capacity of the committed units 

in period t should be greater than or equal to the sum of the power demand and 

minimum spinning reserve requirement in period t. Minimum spinning reserve 

requirement is conventionally taken as 10 percent of the load demand in period t. 

Unit Output Range Constraints (3.14): Unit i can generate power within its minimum 

and maximum generation limits in period t. 

Consecutive Number of Committed Periods (3.15, 3.16): Constraints to calculate the 

number of consecutive periods that unit i stayed in “On” status up to time period t+1. 

If the unit is in “Off” status in period t then,  𝑇 𝑖𝑡+1
𝑜𝑛  should be equal to 0. Otherwise, 

calculate 𝑇 𝑖𝑡+1
𝑜𝑛  by adding one more period to 𝑇 𝑖𝑡

𝑜𝑛. 
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In (3.15), 𝑀1 is a very big number denoting upper bounds for the Consecutive 

Number of Committed Periods. In (3.16), 𝑚1 is a very small number denoting upper 

bounds for the Consecutive Number of Committed Periods. 

Consecutive Number of Uncommitted Periods (3.17, 3.18): Constraints to calculate 

the number of consecutive periods that unit i stayed in “Off” status up to time period 

t+1. If the unit is in “On” status in period t, then  𝑇 𝑖𝑡+1
𝑜𝑓𝑓

 should be equal to 0. 

Otherwise, calculate 𝑇 𝑖𝑡+1
𝑜𝑓𝑓

 by adding one more period to 𝑇 𝑖𝑡
𝑜𝑓𝑓

. 

In (3.17), 𝑀2 is a very big number denoting upper bounds for the Consecutive 

Number of Uncommitted Periods. In (3.18), 𝑚2 is a very small number denoting 

upper bounds for the Consecutive Number of Uncommitted Periods. 

Start-up Cost Constraints (3.19, 3.20, 3.21): If the number of time periods in which 

unit i stayed in “Off” status is less than the sum of minimum downtime requirement 

and threshold level of unit i, then the start-up cost is equal to hot start-up value. 

Otherwise, the start-up cost is equal to cold start-up value. 

In (3.19), 𝑚3 is a very small number denoting upper bounds for Start-up Cost 

Constraints. In (3.21), 𝑀3 is a very big number denoting upper bounds for Start-up 

Cost Constraints. 

Minimum Uptime Constraints (3.22, 3.23, 3.24): A unit cannot be turned off 

instantaneously once it is committed. The minimum uptime constraint imposes a 

minimum number of working time periods that must elapse before the unit i can be 

turned off. 

In (3.22), 𝑚4 is a very small number denoting upper bounds for Minimum Uptime 

Constraints. In (3.23), 𝑀4 is a very big number denoting upper bounds for Minimum 

Uptime Constraints. 

Minimum Downtime Constraints (3.25, 3.26, 3.27): A unit cannot be turned on 

instantaneously once it is decommitted. The minimum downtime constraint imposes 
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a minimum number of idle time periods that must elapse before the unit i can be 

turned on. 

In (3.25), 𝑚5 is a very small number denoting upper bounds for Minimum Downtime 

Constraints. In (3.26), 𝑀5 is a very big number denoting upper bounds for Minimum 

Downtime Constraints. 

Ramp-up Constraints (3.28, 3.29): Due to the thermal stress limitations and 

mechanical characteristics of the generating units, the increase in the power output 

level of committed unit i is restricted by its ramp-up rate over consecutive time 

periods during which it remains committed. 

In (3.29), 𝑀6 is a very big number denoting upper bounds for Ramp-up Constraints. 

Ramp-down Constraints (3.30, 3.31): Due to the thermal stress limitations and 

mechanical characteristics of the generating units, the decrease in the power output 

level of committed unit i is restricted by its ramp-down rate over consecutive time 

periods during which it remains decommitted. 

In (3.31), 𝑚6 is a very small number denoting upper bounds for Ramp-down 

Constraints. 

(3.32, 3.33): Sign restrictions of decision variables. 

3.2 Proposed Genetic Algorithm Based Approach 

Since the UCP is shown to be one of the NP-hard problems in the OR literature by 

Bendotti et al. (2017), efficient algorithms for the solution of the UCP are required 

by system operators in traditional power systems. For this reason, we develop an 

effective and efficient evolutionary metaheuristic algorithm, also called as Mixed 

Integer Coded Genetic Algorithm, to solve the UCP in negligible computation time 

and to obtain high solution quality, since GA-based approaches are proven to be very 

efficient in the search of global optimum in large and complex problems like the 

UCP in a relatively short computational time. The commitment scheduling part of 
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the UCP in which commitment statuses (“On/Off”) of units are determined for each 

period is dealt with genetic operators. On the other hand, the load dispatching part in 

which how much power should be produced by each committed unit is determined 

for each period is coped with a modified version of Lambda Iteration Method (I-

LIM). 

The main difficulty in developing a GA for the UCP is that it has several constraints 

involving both continuous and binary variables. Therefore, a somehow more-

involved algorithm is required in order to tackle with those constraints. For this 

purpose, minimum uptime/downtime constraints are handled in the chromosome 

representation. In other words, chromosomes attained in the initial population and 

during genetic operators always satisfy the minimum uptime/downtime constraints. 

Similarly, unit output range constraints and ramp-rate limits are always satisfied as 

a result of the rules enforced by the I-LIM. Different from the minimum 

uptime/downtime constraints, unit output range and ramp-rate limits; load 

requirement constraints and spinning reserve constraints are not guaranteed to be 

satisfied during genetic operations. To cope with violations of these two constraints, 

penalty mechanisms are adopted. 

3.2.1 Improved Lambda Iteration Method to Solve Economic Load 

Dispatch Subproblem 

In power electronics, the LIM is one of the most practical and useful heuristics to 

obtain an optimal or near-optimal solution for the Economic Load Dispatch (ELD) 

subproblem of the UCP (Wood, 1996). It is an iterative algorithm which stops 

computations when either one of the stopping conditions as the specified tolerance 

level for the difference between total load demand and total power generated by the 

committed units, and the maximum limit for the number of iterations are satisfied. 

The LIM is implemented instead of a commercial optimization solver like CPLEX 

for the ELD subproblem because of two reasons. One is its fast convergence to near-

optimal solution for this problem, while the other reason is that the LIM can easily 
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be coded in any programming environment. The main logic behind the LIM is that 

it defines an initial incremental cost rate 𝜆 first. Then, it calculates the amount of 

power generated by each committed unit by taking the derivative of the convex fuel 

cost, and equating it to this incremental cost rate 𝜆 as it is depicted in (3.35). 

𝐹𝐶(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2 →    

𝑑𝐹𝐶(𝑃𝑖)

𝑑𝑃𝑖
= 𝑏𝑖 + 2𝑐𝑖𝑃𝑖 = 𝜆          (3. 35) 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are positive fuel cost coefficients of generating unit i, 𝑃𝑖 and 

𝐹𝐶(𝑃𝑖) is the power generation level and the fuel cost of generating unit i, 

respectively.  

According to the difference between total power generated by the committed units 

and total load demand, the algorithm incrementally increases or decreases 𝜆. By 

iteratively repeating this calculation, the LIM finds the load dispatch decisions of 

conventional generating units. Nevertheless, the most efficient dispatching decisions 

cannot be obtained by applying original LIM iterations. For some instances, it is 

observed that a unit, which is more cost-effective in terms of average fuel cost, is 

scheduled to produce less power than those with higher average fuel costs. As a 

result, dispatching schedules obtained by the original LIM are more expensive in 

terms of fuel costs which is the primary contributor to the total operating cost. As it 

can be inferred from the second order derivative of the average fuel cost of unit i, it 

is a convex function, so it has its minimum value when its first order derivative takes 

the value of zero, which is illustrated in (3.36). 

𝐹𝐶(𝑃𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑎𝑖

𝑃𝑖
+ 𝑏𝑖 + 𝑐𝑖𝑃𝑖 →    

𝑑2𝐹𝐶(𝑃𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑃𝑖
2 = 2

𝑎𝑖

𝑃𝑖
3 > 0    ∋ 𝑃𝑖 > 0          (3. 36) 

Therefore, we improve the LIM by incorporating Average Fuel Cost Optimization 

as well. With this modification the amount of power to be produced by committed 

units according to the LIM is adjusted as shown in (3.37, 3.38). 

𝐹𝐶(𝑃𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
𝑎𝑖

𝑃𝑖
+ 𝑏𝑖 + 𝑐𝑖𝑃𝑖  →    

𝑑𝐹𝐶(𝑃𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑃𝑖
= −

𝑎𝑖

𝑃𝑖
2 + 𝑐𝑖 = 0 →  𝑃𝑖

∗         (3. 37) 

𝑃𝑖
∗∗ = min(𝑃𝑖

𝑀𝑎𝑥, 𝑃𝑖
∗)                                           (3. 38) 
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In this improved LIM (I-LIM), we perform original LIM iterations to obtain 

schedules that are cost-effective by means of Total Fuel Cost Optimization first. 

Then, we perform improvement iterations for the committed units to adjust their 

power output level in order to minimize Average Fuel Cost. In Figure 3.1, 

dispatching decisions of the LIM and I-LIM are illustrated for a 10-Unit system 

being subject to different load demands. Total fuel costs of meeting 1500 MW of 

load demand for the LIM and I-LIM are calculated as $33,945 and $33,890, 

respectively. By applying Average Fuel Cost Optimization iterations, the total fuel 

cost is reduced by $55. Similarly, for 1000 MW of load demand, associated fuel costs 

are found as $20,758 for the LIM and $20,642 for the I-LIM, which corresponds to 

$116 of reduction in total fuel costs. 

     

 

Figure 3.1. Dispatching Decisions of the LIM and I-LIM for a Power System with 

10 Conventional Generating Units for Different Load Demands 

 

 

It is also important to note that we improve the original LIM even more by adding 

Step 3.1.2 into the algorithm in order to handle ramp up and ramp down constraints. 

For the UCP without ramp rate limits, the I-LIM can be applied by removing Step 

3.1.2 from the algorithm. The pseudocode of I-LIM is provided below. 
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The pseudocode of the I-LIM: 

1. Set iteration limit (MaxIter), tolerance (𝜀) and initial incremental cost rate (𝜆).  

2. Set the counter k=0; 

3. While (k<MaxIter) 

               k=k+1 

               3.1. For each unit i 

3.1.1. Calculate power value to be dispatched: 

                     𝑃𝑖𝑡 =
𝜆−𝑏𝑖

𝑐𝑖
 

3.1.2. Adjust power output limits by considering ramp-rate limits: 

          If uit-1 =uit=1  

                                           𝑃𝑖𝑡
𝑀𝑖𝑛 = Max൛𝑃𝑖

𝑀𝑖𝑛 , 𝑃𝑖𝑡−1 − 𝑅𝑖
𝑑𝑜𝑤𝑛ൟ 

           𝑃𝑖𝑡
𝑀𝑎𝑥 = Min൛𝑃𝑖

𝑀𝑎𝑥 , 𝑃𝑖𝑡−1 + 𝑅𝑖
𝑢𝑝ൟ       

                                  Else  

                                           𝑃𝑖𝑡
𝑀𝑖𝑛 = 𝑃𝑖

𝑀𝑖𝑛 

       𝑃𝑖𝑡
𝑀𝑎𝑥 = 𝑃𝑖

𝑀𝑎𝑥 

          End if 

                        3.1.3. If Pit <𝑃𝑖𝑡
𝑀𝑖𝑛  

                                           Pit = 𝑃𝑖𝑡
𝑀𝑖𝑛 

                                  Else if Pit >𝑃𝑖𝑡
𝑀𝑎𝑥 

                                           Pit = 𝑃𝑖𝑡
𝑀𝑎𝑥 

                                  End if 

                       End for 

               3.2. Sum all Pit’s up as total load supply.  

               3.3. Calculate the difference between the demand and load supply as Pnet. 

                       3.3.1. If Pnet > 𝜀; 𝜆 = 𝜆 −
𝜆

4
;  

                                 Else if Pnet <  𝜀; 𝜆 = 𝜆 +
𝜆

4
; 

                                 Else; Break 

                                 End if 

    End while  

4. Find 𝐹𝐶(𝑃𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ of each unit i by using 𝑃𝑖
∗∗.  

5. Sort units in ascending order according to 𝐹𝐶(𝑃𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅.  

6. For each unit i [starting from the beginning of the sorted list]. 

                 6.1. If 0 < 𝑃𝑖𝑡 < 𝑃𝑖𝑡
𝑀𝑎𝑥  

6.1.1. For each unit j [starting from the last of the list &&     

ind(j)>ind(i)] 

            6.1.1.1. If  𝑃𝑗𝑡 − 𝑃𝑗𝑡
𝑀𝑖𝑛 + 𝑃𝑖𝑡 ≤ 𝑃𝑖𝑡

𝑀𝑎𝑥 

                                              𝑃𝑖𝑡 = 𝑃𝑗𝑡 − 𝑃𝑗𝑡
𝑀𝑖𝑛 + 𝑃𝑖𝑡 

                                   𝑃𝑗𝑡 = 𝑃𝑗𝑡
𝑀𝑖𝑛 

                          Else 

           𝑃𝑗𝑡 = 𝑃𝑗𝑡 − (𝑃𝑖𝑡
𝑀𝑎𝑥 − 𝑃𝑖𝑡) 
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             𝑃𝑖𝑡 = 𝑃𝑖𝑡
𝑀𝑎𝑥  

                          End if 

              6.1.1.2. If 𝑃𝑖𝑡 = 𝑃𝑖𝑡
𝑀𝑎𝑥  

                    Break 

                           End if 

                                   End for 

                     End if 

         End for 

3.2.2 Mixed Integer Coded Genetic Algorithm to Solve the Unit 

Commitment Problem 

3.2.2.1 Chromosome Representation 

The standard GA approaches for the UCP generally adopt the binary chromosome 

representation strategy in which chromosomes are represented by using |N|x|T| 

matrix having binary elements of 0 and 1. Different from those GA approaches, we 

propose a GA in which a mixed integer chromosome representation strategy is 

adopted in order to reduce the excessive memory usage of the pure binary coded 

ones, which slows down the computation in return. For this purpose, we aggregate 

consecutive time periods in which a unit has the same commitment status by forming 

“On/Off” cycles for each unit. As a result of this aggregation, a chromosome is 

represented by two subsets: 

• InitialStat: It is the red |N|x1 array storing the initial commitment status of each 

unit as shown in Figure 3.2. If a unit is committed during the first period; that 

is, its commitment status is “On”, then the element in the InitialStat array takes 

the value of 1. On the contrary, it takes the value of 0 if its commitment status 

is “Off” during the first period. 

• Schedule: It is the concatenated matrix whose elements in each row are 

associated with the “On/Off” cycles of a unit. Each element in a row takes a 

positive integer value representing the ending hour of an “On/Off” cycle for a 

unit during the planning horizon as shown in Figure 3.2. 
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According to the value in InitialStat subset, the “On” and “Off” cycles are 

determined for each unit as shown in Figure 3.2 for a system such that |N|=7 units 

and |T|=24 hours. 

 

Figure 3.2. Chromosome Representation for a Power System with 7 Conventional 

Generating Units over a 24-h Planning Horizon 

3.2.2.2 Initial Population Generation 

The minimum uptime/downtime requirements must be met when generating the 

initial population, which cannot be satisfied by pure random generation. Thus, we 

define an additional set of rules to generate the initial population. The first subset 

(InitialStat) of a chromosome is generated by randomly selecting 0 or 1. However, 

the generation of the second subset is not as straightforward as the first subset, so the 

following algorithm is applied to each unit in a chromosome. The pseudocode of the 

initial population generation algorithm is provided below: 

 

1. Determine the number of cycles (c) that the unit will have by randomly selecting    

an integer from the set Q. 

𝑄 = [1, ⌊
𝑇

𝑚𝑎𝑥(𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛 , 𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
 )

⌋]                           (3. 39) 

2. If c is even, define remaining number of “On” & “Off” cycles as  𝑐𝑂𝑁 = 𝑐𝑂𝐹𝐹 =
𝑐

2
      

Otherwise, look at its status in the InitialStat array. If it is “On” (“Off”) during 

the first period, then 𝑐𝑂𝑁 (𝑂𝐹𝐹) =  ⌈
𝑐

2
⌉  , 𝑐𝑂𝐹𝐹 (𝑂𝑁) =  ⌊

𝑐

2
⌋      
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3. Set ending hour of the previous cycle (B) as 1. 

4. Set the last cycle’s ending hour T for each unit.   

5. For each cycle except the last one,  

5.1. According to its cycle status (“On” or “Off”) (the determination of    these 

statuses are explained at the end of the previous section), randomly 

generate an integer (EndCycle) between [𝐵 + 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛 , 𝑇 − 𝑐𝑂𝐹𝐹 ∗

𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

− 𝑐𝑂𝑁 ∗ 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛 ]  and 𝑐𝑂𝑁 = 𝑐𝑂𝑁 − 1 if it is an ON cycle; 

otherwise between [𝐵 + 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

, 𝑇 − 𝑐𝑂𝐹𝐹 ∗ 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

 − 𝑐𝑂𝑁 ∗ 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛 ] and 

𝑐𝑂𝐹𝐹 = 𝑐𝑂𝐹𝐹 − 1. 

5.2. B=B+ EndCycle 

3.2.2.3 Penalty Mechanisms 

Load requirement constraints and spinning reserve constraints are not guaranteed to 

be satisfied during genetic operations. To cope with violations of these two 

constraints, penalty mechanisms are adopted in a way that penalties are incurred for 

the amount of violations, not for the number of violations. The reason for adopting 

such a heavy penalty mechanism is to prevent chromosomes violating all or one of 

these two constraints from passing to the next generation and being selected for the 

mating pool. The penalty of not meeting load requirements is denoted as PwrP 

($/MW). Similarly, the penalty for the violation of spinning reserve constraints is 

denoted as SRP ($/MW). 

3.2.2.4 Fitness Function 

The fitness function in the MICGA is calculated by taking the reciprocal of the sum 

of the total operating cost and total penalty costs for violations of spinning reserve 

and load requirement constraints. To preclude premature convergence, the fitness 

function is linearly scaled according to the method proposed by Mantawy et al. 

(1997) as expressed in (3.40).  

𝑓𝑠 = 𝑎 𝑓 + 𝑏                                                         (3. 40) 
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where 𝑓 and 𝑓𝑠 denote the original fitness value and the scaled fitness value; 𝑐, 𝑎 and 

𝑏 is defined as in (3.41, 3.42, 3.43), respectively. 

𝑐 ∈ [1.2, 2]                                                           (3. 41) 

𝑎 = (𝑐 − 1)
𝑓𝑎𝑣𝑔

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
                                           (3. 42) 

𝑏 = (1 − 𝑎) ∗ 𝑓𝑎𝑣𝑔                                                 (3. 43) 

where 𝑓𝑎𝑣𝑔, 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 are the population average, maximum and minimum of 

the original fitness functions.  

3.2.2.5 Selection Operation 

In the MICGA, roulette wheel selection method is employed to choose chromosomes 

from the mating pool. In this selection method, each slot on the wheel represents a 

chromosome from the parent generation; the width of each slot represents the relative 

scaled fitness of a given chromosome. Chromosomes having larger scaled fitness 

values tend to be selected most likely since they are represented with larger slots on 

the roulette wheel.   

3.2.2.6 Crossover Operation 

The MICGA utilizes a horizontal two-point crossover technique. In other words, 

generating unit schedules are not taken apart and exchanged, which is the case in the 

horizontal crossover, rather whole schedules of the units between two points 

determined randomly are exchanged with the corresponding schedules of the other 

parent as illustrated in Figure 3.3. 
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Figure 3.3. The Two-Point Horizontal Crossover Operation for a Power System with 

7 Conventional Generating Units over a 24-h Planning Horizon 

 

 

The pseudocode of the two-point horizontal crossover operation is provided below: 

Crossover (ParI; ParII; CI; CII): where Par defines parent chromosomes and 

C denotes child chromosomes 

If rand (0,1) ≤ Pc; 

1. Randomly select two crossover points horizontally, that is, select the 

two points between which whole schedules of the units will be 

exchanged by the crossover.    

2. Apply two-point crossover to both sets (InitialStat and Schedule sets) 

Else; set CI=ParI and CII=ParII 

End if 

3.2.2.7 Mutation Operations 

In the MICGA, several mutation operators are used to obtain a diversity of 

chromosomes and to explore the neighborhood of a child chromosome for a better 

solution quality. For this purpose, five mutation operators are used to change 

schedules in child chromosomes. Moreover, an additional mutation operator is 

introduced to eliminate excessive reserves of power generation schedules since the 

ELD subproblem of the UCP is not solved by using genetic operations, rather it is 

externally solved by applying the I-LIM.  

Mutation 1 

In this mutation, two units in a chromosome are randomly selected. For each unit, 

one of its cycle lengths is reduced. Similarly, cycles to be curtailed are also randomly 

selected. It is important to note that minimum uptime and downtime constraints are 
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also taken into consideration while reducing cycle lengths. Operations of Mutation 

1 is illustrated in Figure 3.4. 

 

Figure 3.4. Mutation 1 for a Power System with 7 Conventional Generating Units 

over a 24-h Planning Horizon 

 

 

The pseudocode of Mutation 1 is provided below. 

Mutation1 (C): Pm1 is the occurrence probability of Mutation 1 and C denotes 

the child chromosome. 

If rand (0,1) ≤ Pm1;   

1. Select two units randomly. 

For each unit; 

If the schedule length>1  

1.1. Randomly select a mutation point (one of the cycle ends). 

If (the status of unit i during 1st period is “On” && cycle number is 

EVEN) || (the status of unit i during 1st period is “Off” && cycle 

number is ODD) 

1.2. Calculate the cycle length as ∆.  

If ∆ ≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

 

1.2.1.  Construct the following reduction set Q = [0, ∆ −

𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

] ∪ {∆} 

1.2.2.  Select a random integer k among Q. 

If k ≠  ∆  

1.2.2.1. Reduce the cycle end by k.  

Else 

1.2.2.2. Remove the selected cycle end and the previous 

cycle end. 

End if 

       End if 

Else if (the status of unit i during 1st period is “On” && cycle number 

is ODD) || (the status of unit i during 1st period is “Off” && cycle 

number is EVEN) 
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1.3. Calculate the cycle length as ∆.  

If ∆ ≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑛   

1.3.1.  Construct the following reduction set Q = [0, ∆ −
𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 ] ∪ {∆} 

1.3.2.  Select a random integer k among Q. 

If k ≠ ∆ 

1.3.2.1. Reduce the cycle end by k.  

Else 

1.3.2.2. Remove the selected cycle end and the previous 

cycle end. 

End if 

       End if 

  End if 

End if 

End for 

Else; Return C 

End if 

Mutation 2 

In this mutation, units are clustered according to their minimum uptime and 

downtime requirements so that units will have the same minimum uptime and 

downtime requirements. Then, one cluster having at least 2 units is randomly chosen. 

Accordingly, two units in that cluster are randomly selected. Mutation 2 is used to 

exchange a part of their schedules as illustrated in Figure 3.5. This mutation can be 

considered as one-point crossover within a chromosome. 

 

Figure 3.5. Mutation 2 for a Power System with 7 Conventional Generating Units 

over a 24-h Planning Horizon 
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The pseudo code of Mutation 2 is provided below: 

Mutation2 (C): Pm2 is the occurrence probability of Mutation 2 and C denotes 

the child chromosome 

If rand (0,1) ≤ Pm2;   

1. Cluster the units having same minimum uptime (𝑇 𝑀𝑖𝑛
𝑜𝑛 ) and downtime 

(𝑇 𝑀𝑖𝑛
𝑜𝑓𝑓

) limits. 

2. Select a cluster consisting of more than 1 unit. 

3. Select two units randomly which have the schedule length being at least 

2, from that cluster. 

4. Select a crossover point from the set of [2, Min(schedule length of 1st 

and 2nd units)-1] 

5. Apply one-point crossover to the schedules of these units. 

For each unit; 

5.1. Calculate cycle length of unit i at the crossover point as ∆𝑖. 

If (the status of unit i during 1st period is “On” && crossover point is 

EVEN) || (the status of unit during i 1st period is “Off” && cycle number 

is ODD) 

 If ∆𝑖= 0 

5.2. Remove each cycle end just before and just after the crossover 

point. 

Else if ∆𝑖 < 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

  

5.3.  Calculate the lengths of the cycles just before and just after the 

crossover point as ∆1
∗  and ∆2

∗  

If ∆1
∗ + ∆𝑖< 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 + 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

 

5.3.1. Reduce the cycle end just before the crossover point by 

𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

− ∆𝑖  

5.3.2. Break 

       Else if ∆2
∗ + ∆𝑖< 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 + 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

 

5.3.3. Increase the cycle end at the crossover point by 

𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

− ∆𝑖 

5.3.4.  Break 

Else if (the status of the unit i during 1st period is “On” && crossover 

point is ODD) || (the status of the unit during i 1st period is “Off” && 

cycle number is EVEN) 

 If ∆𝑖= 0 

5.4. Remove both cycle ends just before and just after the crossover 

point. 

Else if ∆𝑖< 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑛  

5.5.  Calculate the lengths of the cycles just before and just after the 

crossover point as ∆1
∗  and ∆2

∗  

If ∆1
∗ + ∆𝑖< 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 + 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓
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5.5.1.  Reduce the cycle end just before the crossover point 

by 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑛 − ∆𝑖 

5.5.2.  Break 

       Else if ∆2
∗ + ∆𝑖< 𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 + 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

 

5.5.3. Increase the cycle end at the crossover point by 

𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑛 −  ∆𝑖 

5.5.4.  Break 

End if 

End if 

End for 

Else; Return C 

End if 

 

Mutation 3 

In this mutation, two units in a chromosome are randomly selected. For each unit, 

one of its cycle lengths is increased. Similarly, cycles are also randomly selected. It 

is important to note that minimum uptime and downtime constraints are also taken 

into consideration while increasing cycle lengths. Operations of Mutation 1 is 

illustrated in Figure 3.6. 

 

Figure 3.6. Mutation 3 for a Power System with 7 Conventional Generating Units 

over a 24-h Planning Horizon 

 

 

The pseudocode of Mutation 3 is provided below: 

Mutation3 (C): Pm3 is the occurrence probability of Mutation 3 and C denotes 

the child chromosome 

If rand (0,1) ≤ Pm3;   

1. Select two units randomly. 

For each unit; 

If the schedule length > 1  
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1.1. Randomly select a mutation point (one of the cycle ends). 

If (the status of unit i during 1st period is “On” && cycle number is 

EVEN) || (the status of unit i during 1st period is “Off” && cycle 

number is ODD) 

1.2. Calculate the next cycle’s length as ∆.  

If ∆≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑛   

1.2.1.  Construct the following reduction set Q = [0, ∆ −
𝑇 𝑀𝑖𝑛,𝑖

𝑜𝑛 ] ∪ {∆} 

1.2.2.  Select a random integer k among Q. 

If k ≠ ∆ 

1.2.3. Increase the cycle end by k.  

Else 

1.2.4.  Remove the selected cycle end and the next cycle end. 

End if 

       End if 

Else if (the status of unit i during 1st period is “On” && cycle number 

is ODD) || (the status of unit i during 1st period is “Off” && cycle 

number is EVEN) 

1.3. Calculate the next cycle’s length as ∆.  

If ∆ ≥ 𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

 

1.3.1.  Construct the following reduction set Q = [0, ∆ −

𝑇 𝑀𝑖𝑛,𝑖
𝑜𝑓𝑓

] ∪ {∆} 

1.3.2.  Select a random integer k among Q. 

If k ≠ ∆ 

1.3.3. Increase the cycle end by k.  

Else 

1.3.4.  Remove the selected cycle end and the next cycle end. 

End if 

       End if 

  End if 

End if 

End for 

Else; Return C 

End if 

Mutation 4 

In this mutation, two units in a chromosome are randomly selected. For each unit, its 

first cycle is removed and “On/Off” statuses of the remaining cycles are adjusted as 

depicted in Figure 3.7. 



 

 

54 

 

Figure 3.7. Mutation 4 for a Power System with 7 Conventional Generating Units 

over a 24-h Planning Horizon 

 

 

The pseudocode of Mutation 4 is provided below: 

Mutation4 (C): Pm4 is the occurrence probability of Mutation 4 and C denotes 

the child chromosome 

If rand (0,1) ≤ Pm4;   

1. Select two units randomly. 

For each unit; 

If the schedule length > 1  

1.1. Remove the first cycle end. 

End if 

End for 

Else; Return C 

End if 

Excessive Reserve Elimination Operator 

After implementing standard genetic operations such as crossover and mutations, 

there might be many units operating at their minimum power output limit in several 

time periods. It is an indicator that an excessive number of units is committed in 

periods involving excessive reserves. The commitment and dispatching decisions 

could be improved by considering the option of turning off several units operating at 

their minimum output levels. For this purpose, this operator evaluates whether the 

new commitment cycles attained by turning off some of those units could satisfy 

both time dependent constraints and meet load demand and spinning reserve 

requirements in those time periods as well. If one of these constraints is not satisfied, 
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then the original chromosome is retained. Otherwise, the new chromosome is 

encoded back as a new child solution. 

3.2.2.8 Elite Preservation Mechanism 

In order not to lose any fittest solution during the genetic operations, parents and 

children in the population are sorted according to their fitness values in descending 

order. The first PS (initial population size) of chromosomes is preserved for the 

reproduction of the further genetic process in the next generations. 

3.3 Implementation of the Genetic Algorithm Based Approach 

The MICGA combined with the I-LIM is applied to problem instances in the order 

specified in the flowchart demonstrated in Figure 3.8. 

 

Figure 3.8. Flowchart of the MICGA 

 

 

 

 



 

 

56 

The pseudocode of the MICGA is provided below: 

1. Initialization of the parameters such as PS, Pc, Pm1, Pm2, Pm3, Pm4, Pm5, and 

maximum number of generations (G) as the termination criterion.  

2. Generate PS many chromosomes in accordance with the rules in Section 

3.2.2.2. 

3. Determine the generation mix of the committed units by performing I-LIM 

on the generated solutions.  

4. Calculate production cost of each unit for every hour by using the cost 

function defined in Section 3.1. Then, sum them up to calculate total 

operation cost. 

5. Determine the periods with load requirement and spinning reserve violation. 

If there is any, then calculate the amount of violation of each constraint and 

multiply them with the corresponding penalty term. Then, sum them up to 

find total penalty cost. 

6. Evaluate fitness using equation defined in Section 3.2.2.3.  

7. Use Roulette Wheel Selection technique to select parent chromosomes for 

formation of mating pool. 

8. Randomly perform two-point crossover on parents selected to produce new 

off-springs. 

9. Perform mutation operations except Excessive Reserve Elimination operator 

to diversify the solution space and modify off-springs. If the generation 

number is greater than 6, also apply Excessive Reserve Elimination operator. 

10. Perform I-LIM for calculating production cost and penalty cost for the 

infeasible solutions. Evaluate the fitness of offspring. 

11. Apply elite preservation mechanism for preserving the best solutions. 

12. If the maximum number of generations (G) is not reached or the population 

does not converge, go to 7,  

Otherwise, stop and print UC schedule (both schedule and load dispatch mix) 

and plot graphs. 
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3.4 Computational Study 

The MICGA is coded in MATLAB programming language and it is executed in 

Windows 10 environment in a Lenovo ultrabook with Intel(R) Core (TM) i7-6500U 

2.6 GHz CPU and 8 GB RAM. Numerical experiments on the performance of the 

MICGA are conducted by using a set of three problem instances of the Institute of 

Electrical and Electronics Engineers (IEEE) (Datta, 2013). Moreover, the robustness 

of the proposed approach is validated by applying statistical analysis to solutions 

obtained by the proposed approach. Then, we compare the results of the MICGA 

with other GA approaches for each problem instance.  

3.4.1 Problem Instances 

To conduct numerical experiments, the MICGA is applied to the original and 

modified versions of IEEE 39-bus problem instances. The reason of choosing these 

problem instances is that they are the most widely studied benchmark instances to 

compare the performances of different solution techniques for the UCP in traditional 

power systems with/without ramp rate limits. For each problem instance, the 

minimum spinning reserve requirement in any time period and the ramp-rate limits 

are taken as 10% of the forecasted load demand at that period and 20% of the unit’s 

maximum power output limit, respectively. 

Problem Instance 1 

This problem instance consists of 39-bus with 10 units. The length of the scheduling 

horizon is 24 hours. The conventional unit related data for the 10-Unit power system 

are provided in Table 3.1. Hourly forecasted load demands of the system over 24 

hours are provided in Table 3.2. 
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Table 3.1. Conventional Unit Related Data for IEEE 39-bus Problem Instance 

 

Table 3.2. Hourly Load Demand Forecasts for IEEE 39-bus Problem Instance 

 

Problem Instance 2 

This problem instance is obtained by appropriately scaling Problem Instance 1. For 

this purpose, generating units in Table 3.1 are replicated two times to form 20-Unit 

problem instance. Also, forecasted load demand requirements in Table 3.2 are 

doubled.   

Problem Instance 3 

Similarly, this problem instance is obtained by also appropriately scaling Problem 

Instance 1. For this purpose, generating units in Table 3.1 are replicated four times 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit10 

𝑷𝒊
𝑴𝒂𝒙 (𝑴𝑾) 

 

455 455 130 130 162 80 85 55 55 55 

𝑷𝒊
𝑴𝒊𝒏 (𝑴𝑾) 150 150 20 20 25 20 25 10 10 10 

𝒂𝒊 ($) 1000 970 700 680 450 370 480 660 665 670 

𝒃𝒊($/𝑴𝑾) 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79 

𝒄𝒊 ($/𝑴𝑾𝟐) 0.00048 0.00031 0.00200 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173 

𝑻𝑴𝒊𝒏,𝒊
𝒐𝒏  (𝒉) 8 8 5 5 6 3 3 1 1 1 

𝑻𝑴𝒊𝒏,𝒊
𝒐𝒇𝒇

 (𝒉) 8 8 5 5 6 3 3 1 1 1 

𝑺𝒊
𝑯($) 4500 5000 550 560 900 170 260 30 30 30 

𝑺𝒊
𝑪 ($) 9000 10000 1100 1120 1800 340 520 60 60 60 

𝑻𝒄,𝒊 (𝒉) 5 5 4 4 4 2 2 0 0 0 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐒𝐭𝐚𝐭𝐮𝐬 (𝐡) 8 8 -5 -5 -6 -3 -3 -1 -1 -1 

              NOTE:  1. In Initial Status parameters, (+) sign means a unit has been “On” while (-) sign means a unit has been “Off” for the specified hours  

𝐇𝐨𝐮𝐫 1 2 3 4 5 6 7 8 9 10 11 12 

𝐃𝐞𝐦𝐚𝐧𝐝 (𝐌𝐖) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500 

𝐇𝐨𝐮𝐫 13 14 15 16 17 18 19 20 21 22 23 24 

𝐃𝐞𝐦𝐚𝐧𝐝 (𝐌𝐖) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800 
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to form 40-Unit problem instance. Also, forecasted load demand requirements in 

Table 3.2 are quadruplicated.   

3.4.2 Fine Tuning and Test Results 

Before solving the UCP with/without ramp rate limits by the MICGA, we apply one-

factor-at-a-time (OFAT) experiments, in which only one variable is changed at a 

time,  for all algorithm parameters such as population size, crossover and mutation 

probabilities instead of a factorial design. The main reason of preferring OFAT 

experiments is that all parameters are continuous type whose values can be 

discretized by at least nine potential levels, which makes at least 531,441 parameter 

combinations. Also, we have three problem instances, each consisting of two cases, 

namely with/without ramp-rate limits, which makes 6 problem categories. Hence, it 

is not plausible to design full factorial experiments with the required combinations. 

One way of dealing with such a heavy requirement is to design reduced factorial 

experiments such as fractional factorial experiments in which each factor consists of 

two levels, or experiments with the representative runs. However, all parameters are 

very effective for exploration and exploitation abilities of the MICGA, so reducing 

factor levels of some parameters may cause misleading judgements. Thus, we 

conduct OFAT experiments in order to test more levels of each parameter.  

Since Problem Instances 2 and 3 are obtained by appropriately scaling the original 

IEEE-39 bus problem instance, OFAT experiments are made for only the first 

instance. For this purpose, the algorithm parameters for Problem Instance 1 are 

arbitrarily set as shown in Table 3.3. MICGA is replicated for 10 times with these 

settings for the UCP with/without ramp rate constraints. The average operation costs 

of schedules obtained by the MICGA are found as $580,878.63 and $568,794.8, 

respectively; for cases with and without ramp rate constraints. 
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Table 3.3. Parameter Settings before Fine Tuning for IEEE 39-bus Problem Instance 

 

 

During the fine-tuning process, same random number generators are used for each 

10 replications so that effects of different parameter values on the solution quality 

can be fairly compared. 

Having fixed other parameter values, the crossover rate (Pc) is changed in each run 

starting from 0.9. As shown in Table 3.4., the best level of Pc is found as 0.6 with 

average operation cost of $ 580,878.6 for the case without ramp rate limits whereas 

the rate of 0.5 is chosen for the case with ramp rate limits. 

Table 3.4. OFAT Results for Crossover Rates for IEEE 39-bus Problem Instance 

 

Crossover Rate 

(Pc) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

0.9 587,067.1 28.8 568,034.0 36,2 

0.8 588,996.7 19.2 568,827.8 37,2 

0.7 588,155.5 12.9 568,794.8 36,4 

0.6 580,878.6 9.8 568,794.8 76,7 

0.5 585,071.8 7.8 568,794.8 28,8 

0.4 603,587.4 6.2 568,827.8 28,0 

0.3 588,864.1 4.9 568,794.8 22,3 

0.2 620,222.6 6.6 569,077.8 26,0 

0.1 637,405.0 2.5 568,692.3 13,4 

 

 

MICGA without Ramp Rate Limits MICGA with Ramp Rate Limits 

PS 50 Pm4 0.4 PS 50 Pm4 0.4 

G 250 Pm5 0.7 G 250 Pm5 0.7 

Pc 0.6 SRP ($) 2490 Pc 0.6 SRP ($) 2490 

Pm1 0.4 PwrP ($) 1736 Pm1 0.3 PwrP ($) 1736 

Pm2 0.1 p 0.5 Pm2 0.2 p 0.5 

Pm3 0.4 c 1.2 Pm3 0.3 c 1.2 

 MICGA without Ramp Rate 

Constraints 

MICGA with Ramp Rate 

Constraints 



 

 

61 

After setting the best value of Pc, the rate of Mutation 1 (Pm1) is changed in a similar 

manner for every 10 replications. The best level of Pm1 is found as 0.3 and 0.1 for 

each case respectively. The associated additional reductions in average operation 

costs are $2,303.8 and $830.2 as illustrated in Table 3.5. 

Table 3.5. OFAT Results for Mutation 1 Rates for IEEE 39-bus Problem Instance 

 

Mutation 1 Rate 

(Pm1) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

0.9 611,966.7 9.6 568,794.8 64.1 

0.8 615,248.5 9.2 569,378.3 65.1 

0.7 584,981.3 9.5 569,755.6 64.7 

0.6 607,723.1 9.6 569,077.8 68.4 

0.5 612,006.7 9.6 568,794.8 55.4 

0.4 580,878.6 9.5 569,077.8 35.9 

0.3 580,453.9 9.7 568,794.8 29.5 

0.2 594,345.4 10.3 569,882.2 22.8 

0.1 579,978.9 9.1 567,964.6 14.8 

 

Table 3.6. OFAT Results for Mutation 3 Rates for IEEE 39-bus Problem Instance 

 

Mutation 3 Rate 

(Pm3) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

0.9 620,443.2 9.8 568,794.8 64.1 

0.8 599,398.4 9.2 569,378.3 65.1 

0.7 594,844.6 15.7 569,755.6 64.7 

0.6 582,666.4 9.2 569,077.8 68.4 

0.5 581,126.9 9.4 568,794.8 55.4 

0.4 580,453.9 9.4 569,077.8 35.9 

0.3 578,150.1 9.2 568,794.8 29.5 

0.2 581,317.8 9.4 569,882.2 22.8 

0.1 580,077.3 10.4 567,964.6 14.8 

 MICGA without Ramp Rate 

Constraints 

MICGA with Ramp Rate 

Constraints 

 MICGA without Ramp Rate 

Constraints 

MICGA with Ramp Rate 

Constraints 
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After setting the best values of Pc and Pm1, the rate of Mutation 3 (Pm3) is changed 

in a similar manner for every 10 replications. For cases without and with ramp rate 

limits, the best level of Pm3 is found as 0.3 with an additional decrease of $1,579.9 

in the average operation cost, and 0.1 with no further change, respectively. The 

results of the experiments are summarized in Table 3.6. 

After setting the best values of Pc, Pm1 and Pm3, the rate of Mutation 2 (Pm2) is 

changed in a similar manner for every 10 runs. For cases without and with ramp rate 

limits, the best level of Pm2 is found as 0.2 with an additional decrease of $1,579.9 

in the average operation cost, and 0.5 with no further change in the average cost, 

respectively. The results of the experiments are reported in Table 3.7.  

Table 3.7. OFAT Results for Mutation 2 Rates for IEEE 39-bus Problem Instance 

Mutation 2 Rate 

(Pm2) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

0.9 659,302.5 11.9 568,794.8 21.3 

0.8 589,988.9 28.7 569,699.7 36.1 

0.7 632,412.4 12.2 568,827.8 30.9 

0.6 579,248.1 11.4 571,913.8 35.0 

0.5 619,967.3 14.0 567,964.6 10.5 

0.4 584,235.5 13.0 569,882.3 16.0 

0.3 577,825.2 14.3 568,794.8 36.2 

0.2 576,570.2 10.7 567,964.6 14.8 

0.1 578,150.1 11.5 572,003.3 34.1 

 

After setting the best values of Pc, Pm1 Pm3 and Pm2, the rate of Mutation 4 (Pm4) is 

changed in a similar manner for every 10 runs. For cases without and with ramp rate 

limits, the best level of Pm4 is found as 0.4 with an extra reduction of $351.5, and 

with no reduction in the average operation cost, respectively. The results of the 

experiments are illustrated in Table 3.8. 

 MICGA without Ramp Rate 

Constraints 

MICGA with Ramp Rate 

Constraints 
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Table 3.8. OFAT Results for Mutation 4 Rates for IEEE 39-bus Problem Instance 

Mutation 4 Rate 

(Pm4) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

0.9 605,461.7 12.2 571,796.3 60.8 

0.8 620,505.7 9.4 569,882.3 52.2 

0.7 581,179.7 9,0 569,963.1 64.7 

0.6 616,425.0 11.1 567,964.6 11.4 

0.5 581,987.4 11.3 569,077.8 19.9 

0.4 576,218.7 9.2 567,964.6 10.6 

0.3 578,962.3 9.4 567,964.6 7.7 

0.2 576,570.2 9.1 572,533.7 26.1 

0.1 581,275.9 9.7 568,827.8 16.6 

 

Table 3.9. OFAT Results for Mutation 5 Rates for IEEE 39-bus Problem Instance 

Mutation 5 Rate 

(Pm5) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

Average 

Operation Costs 

($) 

Average 

Computing Times 

(sec) 

0.9 576,382.4 11.7 567,964.6 30.2 

0.8 580,067.9 12.1 572,485.3 14.3 

0.7 576,218.7 16.0 567,964.6 10.5 

0.6 580,998.3 17.3 569,077.8 25.8 

0.5 576,560.0 10.1 568,794.8 23.3 

0.4 578,804.3 9.1 568,794.8 15.4 

0.3 589,182.7 9.0 571,721.0 31.4 

0.2 616,216.0 9.0 569,077.8 14.2 

0.1 581,474.7 9.1 568,794.8 21.8 

 

After setting the best values of Pc, Pm1, Pm3, Pm2 and Pm4, the rate of Mutation 5, 

also called as Excessive Reserve Elimination Operator (Pm5) is changed in a similar 

manner for every 10 replications. As illustrated in Table 3.9, the best level of Pm5 is 

 MICGA without Ramp Rate 

Constraints 

MICGA with Ramp Rate 

Constraints 

 MICGA without Ramp Rate 

Constraints 

MICGA with Ramp Rate 

Constraints 
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found as 0.7 with no further reduction in the average operation cost for the case 

without ramp rate limits whereas 0.9 is chosen for the case with ramp rate limits 

although the average operation cost does not change and the average computing time 

increases. This operator is used to exploit solutions nearby by trying to eliminate 

excessive reserves, so we prefer higher rates for this operation.    

Lastly, according to the best values of rates of genetic operators, the population size 

(PS) is increased by 10 individuals starting from a population size of 10 for every 10 

replications. For the case without ramp-rate limits, the best level of PS is found as 

50 with no further decrease in the average operation cost. Moreover, we investigate 

the marginal effect of removing and adding an individual for the population sizes 

between 40 and 60. At this point, the maximum number of generation (G) is changed 

as a function of the population size to see the interaction between PS and G. Similar 

adjustments are also made for the case with ramp-rate limits. Accordingly, the best 

pairs of PS and G for each case are found as (45, 250) and (40, 200), respectively. 

As a result of fine tuning the algorithm parameters, the best parameter settings of the 

MICGA for the cases with/without ramp rate limits are listed in Table 3.10.   

Table 3.10. The Best Parameter Settings for MICGA after Fine Tuning for IEEE 39-

bus Problem Instance 

 

 

Without considering the ramp rate constraints, MICGA is implemented to 10-Unit, 

20-Unit and 40-Unit problem instances for 30 times with different initial solutions 

and predetermined parameter settings. For each instance, the best, average and the 

worst solutions in terms of total operating costs are summarized in Table 3.11. 

MICGA without Ramp Rate Limits MICGA with Ramp Rate Limits 

PS 45 Pm4 0.4 PS 40 Pm4 0.4 

G 250 Pm5 0.7 G 200 Pm5 0.9 

Pc 0.6 SRP ($) 2490 Pc 0.5 SRP ($) 2490 

Pm1 0.3 PwrP ($) 1736 Pm1 0.1 PwrP ($) 1736 

Pm2 0.2 p 0.5 Pm2 0.5 p 0.5 

Pm3 0.3 c 1.2 Pm3 0.1 c 1.2 
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Likewise, the minimum, average and maximum computing times are provided in 

Table 3.12. 

Table 3.11. Best, Average and Worst Results of Total Operating Costs for All 

Problem Instances without Ramp Rate Constraints  

Problem Instance 

Total Operating Cost ($) 

Best                    Average                 Worst 

1 (10-Unit) 563,937.7 566,918.1 569,913.2 

2 (20-Unit) 1,124,432.0 1,124,738.5 1,125,285.7 

3 (40-Unit) 2,246,312.5 2,247,320.4 2,248,714.5 

 

Table 3.12. Computing Times for All Problem Instances without Ramp Rate 

Constraints 

 

MICGA is implemented to 10-Unit, 20-Unit and 40-Unit problem instances for 30 

times with different initial solutions and predetermined parameter settings by also 

considering the ramp rate constraints. For each instance, the best, average and the 

worst solutions in terms of total operating costs are summarized in Table 3.13. 

Likewise, the minimum, average and maximum computing times are provided in 

Table 3.14. 

Table 3.13. Best, Average and Worst Results of Total Operating Costs for All 

Problem Instances with Ramp Rate Constraints 

Problem Instance 

Total Operating Cost ($) 

Best                   Average                Worst 

1 (10-Unit) 565,964.6 568,252.3 571,752.3 

2 (20-Unit) 1,130,388.7 1,134,692.1 1,142,828.1 

3 (40-Unit) 2,259,981.2 2,262,163.2 2,264,752.5 

Problem Instance 

Computing Time (Min) 

    Minimum         Average     Maximum       Standard Deviation                                                             

1 (10-Unit) 0.17 0.45 0.71       0.18 

2 (20-Unit) 0.17 0.65 1.09       0.30 

3 (40-Unit) 0.17 1.11 1.66       0.47 
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Table 3.14. Computing Times for All Problem Instances with Ramp Rate Constraints  

3.4.3 Statistical Analysis on Robustness 

Since the GA based approaches have a stochastic nature, it is very important to 

validate their robustness in the solution quality. For this purpose, we first conduct 

variability analysis for the best solutions with/without ramp rate limits. Secondly, we 

make an interval estimation for the average solutions by constructing two-sided 

confidence intervals to test the precision of the MICGA.   

To analyze the robustness of MICGA, three performance measures are calculated by 

using best, average and worst operating costs as listed in Table 3.15. The first one 

compares the best and the average solutions for each problem instance and it is 

always below 0.55% for all instances. The second one indicates the difference 

between the best and worst solutions, which is never larger than 1.1%. Similarly, the 

last one is the ratio between the standard deviation of the total operating costs over 

30 replications and the best solution which is always smaller than 0.35% for any 

problem instance.  Those values are even smaller in 20-Unit and 40-Unit problem 

instances. That is because the best solution obtained in the 10-Unit problem instance 

is appropriately scaled and put as a seed solution in initial populations to reduce the 

computing time required for Problem Instances 2 and 3, also to increase solution 

quality.  

Problem Instance 

Computing Time (Min) 

    Minimum         Average     Maximum       Standard Deviation                                                             

1 (10-Unit) 0.11 0.45 0.84       0.22 

2 (20-Unit) 0.17 0.49 1.09       0.30 

3 (40-Unit) 0.96 1.60 1.70       0.15 
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Table 3.15. Variability Analysis on Total Operating Costs for All Problem Instances 

without the Ramp Rate Constraints 

Problem Instance 
(Average-Best)/Best  (Worst-Best)/Best  

Standard 
Deviation/Best 

1 (10-Unit) 0.53% 1.06% 0.32% 

2 (20-Unit) 0.03% 0.08% 0.02% 

3 (40-Unit) 0.04% 0.11% 0.03% 

 

Thanks to 30 independent replications, we apply Central Limit Theorem to construct 

two-sided confidence intervals for the average total costs of each problem instance 

with 5% and 2% significance levels. As it can be inferred from the results reported 

in Table 3.16, the confidence intervals are narrow and indicate high precision for the 

cases without ramp rate constraints. 

Table 3.16. Two-Sided Confidence Intervals on Average Total Costs for All Problem 

Instances without Ramp Rate Constraints 

 

Similar analyses are also performed for each problem instance considering the ramp-

rate constraints and the results are listed in Table 3.17. For all instances, the 

variability between the best and the average solutions is always below 0.4%. 

Secondly, the difference between the best and worst solutions is never larger than 

1.1%. Lastly, the ratio between the standard deviation of the total operating costs 

over 30 replications and the best solution is always smaller than 0.35% for any 

problem instance. 

 

Problem Instance 

95 % Confidence Interval 

Lower Bound    Upper Bound 

98 % Confidence Interval 

Lower Bound    Upper Bound 

1 (10-Unit) 566,250.8 567,585.2 566,114.8 567,721.2 

2 (20-Unit) 1,124,669.3 1,124,806.7 1,124,655.3 1,124,820.7 

3 (40-Unit) 2,247,071.3 2,247,568.7 2,247,020.6 2,247,619.4 
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Table 3.17. Variability Analysis on Total Operating Costs for All Problem Instances 

with Ramp Rate Constraints 

Problem Instance 
(Average-Best)/Best (Worst-Best)/Best 

Standard 
Deviation/Best 

1 (10-Unit) 0.40% 1.02% 0.29% 

2 (20-Unit) 0.38% 1.10% 0.32% 

3 (40-Unit) 0.10% 0.21% 0.08% 

 

In a similar manner, we construct two-sided confidence intervals for the average total 

costs of each problem instance with 5 percent and 2 percent significance level. As it 

can be inferred from the results reported in Table 3.18, the confidence intervals are 

narrow and indicate high precision for the cases with ramp rate constraints as well.  

Table 3.18. Two-Sided Confidence Intervals on Average Total Costs for All Problem 

Instances with Ramp Rate Constraints 

 

As a result of the variability analyses and precision tests, the MICGA is robust in 

terms of solution quality for both cases, ie., with and without ramp rate constraints, 

which is very important for a conventional power generation system since the 

generation companies are reluctant and hesitant to implement solution techniques 

with high variability and less precision to avoid schedules with poor solution quality.   

3.4.4 Comparison with other Genetic Algorithm Based Approaches 

The MICGA is comparable with other techniques in terms of several performance 

measures such as the best solution quality and the required computing time. By using 

these measures, MICGA is compared with some other GA techniques developed in 

the last two decades as reported in Table 3.19. These algorithms are implemented for 

Problem Instance 

95 % Confidence Interval 

Lower Bound    Upper Bound 

98 % Confidence Interval 

Lower Bound    Upper Bound 

1 (10-Unit) 567,634.5 568,870.2 567,508.5 568,996.1 

2 (20-Unit) 1,133,352.8 1,136,031.4 1,133,079.7 1,136,304.5 

3 (40-Unit) 2,261,510.9 2,262,815.6 2,261,377.9 2,262,948.6 
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the same problem instances subject to the same set of constraints (but without the 

ramp-rate constraints) explained in Section 3.1. The results of these algorithms are 

directly taken from the original publications. Hence, comparing the algorithms in 

terms of their computation times will not be fair and informative enough since those 

algorithms are executed in different programming languages in different 

computational environments.  For the UCP variant with the ramp-rate constraints, 

MICGA could not be compared with those GA techniques since the results of this 

variant were not reported in any publication. 

Table 3.19. Comparison of the Best Solution Qualities and Average Computing 

Times for All Problem Instances without Ramp Rate Constraints 

              Total Operating Cost ($) Average Computing Time (Min) 

GA Approach 

Test 

Runs 

Problem 

Instance 1 

(10-Unit) 

Problem 

Instance 2 

(20-Unit) 

Problem 

Instance 3 

(40-Unit) 

Problem 

Instance 1 

(10-Unit) 

Problem 

Instance 2 

(20-Unit) 

Problem 

Instance 3 

(40-Unit) 

Senjyu (2002) 20 563,977.0 1,125,516.0 2,249,715.0 <1.5 <4 <11 

Valenzuela (2002) N/A 578,566.0 1,272,845.2 2,545,690.4 <5 <9 <18 

Swarup (2003) N/A 603,423.6 1,327,532.1 2,655,064.2 <1.5 <4 <8 

Damousis (2004) 10 566,404.0 1,127,244.0 2,254,123.0 <0.5 <0.5 <1 

Lazo (2011) 20 563,938.0 - - - - - 

Datta (2013) 30 563,938.0 1,124,290.0 2,246,165.0 <0.5 <0.5 <0.5 

Li (2013) 20 563,938.0 - - - - - 

Roque (2014) 20 563,938.0 1,123,955.0 2,244,345.0 <0.5 <0.5 <1.5 

Singhal (2014) 10 563,938.0 - - <0.5 - - 

Farag (2015) 10 564,230.0 - - - - - 

Salimian (2015) N/A 563,939.5 - - - - - 

Bukhari (2016) 25 563,938.0 1,123,297.0 2,242,887.0 - - - 

Saber (2016) 32 563,938.0 1,124,565.0 - <0.5 <0.5 - 

Trivedi (2016) 20 563,959.0 1,123,410.0 2,243,971.0 <0.6 <1.5 <3.5 

Proposed MICGA 30 563,937.7 1,124,432.0 2,246,312.5 <0.55 <0.65 <1.1 

 

For Problem Instance 1, in terms of the solution quality, the proposed MICGA is 

able to obtain the best known solution with the parameter setting found in Section 

3.4.2 like Lazo (2011), Datta (2013), Li (2013), Roque (2014), Singhal (2014), 
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Bukhari (2016) and Saber (2016), as shown in Table 3.19 where the number of test 

runs when obtaining the corresponding results are also reported for each approach. 

Besides, it is observed that the average computing time of the MICGA is much 

smaller than some of the previous approaches whereas it is closer to ones obtaining 

the best solution quality. Similarly, for Problem Instance 2 and 3, it is observed that 

the computational time of MICGA is much smaller than those of most of the previous 

approaches and comparable with those of Damousis (2002), Datta (2013) and 

Singhal (2016). Apart from the average computing times, the proposed MICGA has 

also good performance in terms of the solution quality since the total operating cost 

of the best schedule attained by the MICGA is at most 0.1% and 0.15% greater than 

the best solutions obtained by Roque (2014), Bukhari (2016), Trivedi (2016) and 

Datta (2013) for Problem Instances 2 and 3. Furthermore, the MICGA can handle 

the ramp rate constraints, which are important for operations planning of 

conventional generating units, while others cannot.  
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CHAPTER 4  

4 UNIT COMMITMENT PROBLEM FOR WIND INTEGRATED HYBRID POWER 

SYSTEMS UNDER SUPPLY/DEMAND UNCERTAINTY 

Since there is a global tendency to integrate renewable energy sources in a power 

network to mitigate greenhouse gas emissions and to replace traditional generation, 

wind power generation has gained significant attention around the world, especially 

in European countries, for the last decade. Due to intermittent nature of wind, one of 

the most challenging issues that most of the power system operators are facing is 

how to manage uncertainty in a power system with significant penetration of wind 

power generation. In such an environment, there are three major sources of 

uncertainty. The first one arises from the errors in load demand forecasts for a 

specific time period. The second one stems from unexpected deviations by wind 

based generating units from their forecasted production schedules. The third one is 

caused by sudden outages of traditional generating units. Especially, the last two 

sources of uncertainty have to be handled very carefully when making unit 

commitment and load dispatch decisions for conventional generating units. An easy 

and straightforward method to deal with those uncertainties is to commit more 

spinning reserve (SR) from the conventional generating units so that they can 

guarantee more reliable power generation. 

4.1 Uncertainty Modelling of Supply and Demand   

In general, uncertainty due to load demand and wind power generation is modelled 

via continuous random variables since they cannot be accurately forecasted, and the 

errors have a continuous nature. However, outages in conventional generation are 

modelled via discrete random variables because of their discrete nature.  
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4.1.1 Forecasts for Load Demand  

According to Gross et al. (1987) and Kirschen et al. (2009), load demand forecasts 

are modelled as the real load plus a random error term following symmetrical 

probability distribution such as Normal distribution having zero mean and positive 

variance with the following expression: 

𝐿𝑡
𝑓

= 𝐸(𝐿𝑡
𝑎) = 𝐿𝑡

𝑎 + 𝜀𝑡
𝐿                                                 (4. 1)  

where 𝐿𝑡
𝑓

, 𝐿𝑡
𝑎 , 𝜀𝑡

𝐿 represent forecasted load, actual load and an error related to load 

forecast in period t, respectively. The mean and variance of the error term of the load 

forecast in period t are calculated as follows: 

𝐸(𝜀𝑡
𝐿) = 𝐸(𝐿𝑡

𝑎) − 𝐸(𝐿𝑡
𝑎) = 0                                      (4. 2) 

(𝜎𝑡
𝐿)2 = 𝐸((𝜀𝑡

𝐿)2) − (𝐸(𝜀𝑡
𝐿))

2
= 𝐸((𝜀𝑡

𝐿)2) = 𝐸((𝐸(𝐿𝑡
𝑎) − 𝐿𝑡

𝑎)2)            (4. 3) 

(𝜎𝑡
𝐿)2 ≈

𝑘𝐿

10000
(𝐿𝑡

𝑎)2                                                  (4. 4) 

where 𝜎𝑡
𝐿 and 𝑘𝐿 represent the standard deviation of 𝜀𝑡

𝐿 and the accuracy of the 

forecasting method, respectively. 

4.1.2 Forecasts for Wind Power Generation  

In power systems, the wind power forecasts are generated from wind speed forecasts. 

According to Liu et al. (2012), wind speed forecast can also be modelled as the sum 

of expected wind speed and an error term following Normal distribution with mean 

zero. Since a wind turbine has a nonlinear relationship while converting wind speed 

into wind power, wind power forecast error does not follow a Normal distribution. 

Instead, it is observed to follow a β distribution in different studies carried out by 

Bofinger et al. (2002) and Fabbri et al. (2005). Although wind power forecast error 

follows a β distribution, since we are considering the integration of a large number 

of wind farms located in different regions or areas in a power system, it could be 
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approximated as Normal distribution thanks to the central limit theorem. Besides, 

such an approximation can be applied to any form of a smooth probability 

distribution (Ross, 2007), which is one of the commonly used methods in the 

literature. With the assumption that a hybrid power system contains many wind 

turbines dispersed in a wide geographical area, the wind power forecasts are also 

modelled by the same relation as in load demand forecasts:  

𝑊𝑡
𝑓

= 𝐸(𝑊𝑡
𝑎) = 𝑊𝑡

𝑎 + 𝜀𝑡
𝑊                                           (4. 5) 

where 𝑊𝑡
𝑓
, 𝑊𝑡

𝑎 and 𝜀𝑡
𝑊 represent forecasted wind power, actual wind power and an 

error related to wind power forecast in period t, respectively. The mean of the error 

term in period t is calculated as follows: 

𝐸(𝜀𝑡
𝑊) = 𝐸(𝑊𝑡

𝑎) − 𝐸(𝑊𝑡
𝑎) = ∑ ∑ (𝐸(𝑊𝑖𝑓𝑡) − 𝐸(𝑊𝑖𝑓𝑡))

𝑛𝑓

𝑖=1

|𝑁𝐹|

𝑓=1

= 0       (4. 6) 

where 𝑁𝐹, 𝑛𝑓 and 𝑊𝑖𝑓𝑡 denote the set of wind farms in a power system and number 

of wind turbines in wind farm f, the random wind power generated by wind turbine 

i in wind farm f in period t, respectively.  

The calculation of the variance of wind power forecast errors are not as 

straightforward as in the case of load demand forecast errors since the wind power 

generation is dependent on weather conditions of wind farms located in different 

regions. Hence, correlations of the wind power generation within a wind farm and 

between wind farms must also be taken into account when calculating the overall 

variance. The relationship of wind power forecast errors in the same wind farm 𝑓 

can be approximated by a correlation coefficient 𝜌𝑓𝑓 depending on the dispersion of 

wind turbines within the wind farm and wind speeds in the region. Similarly, the 

relationship of wind power forecast errors between wind farms 𝑓 and 𝑔 can be 

approximated by a correlation coefficient 𝜌𝑓𝑔. When those wind farms are located 

in regions that are far away from each other, the dependence between wind farms 

significantly decrease, so 𝜌𝑓𝑔 takes very small values, even a value of zero.  
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(𝜎𝑡
𝑊)2 = 𝐸((𝜀𝑡

𝑊)2) − 𝐸(𝜀𝑡
𝑊)2 = 𝐸((𝜀𝑡

𝑊)2)                         (4. 7) 

𝐸((𝜀𝑡
𝑊)2) = 𝐸 [(∑ ∑ 𝑊𝑖𝑓𝑡

𝑛𝑓

𝑖=1

|𝑁𝐹|

𝑓=1

− ∑ ∑ 𝐸(𝑊𝑖𝑓𝑡)

𝑛𝑓

𝑖=1

|𝑁𝐹|

𝑓=1

)

2

]

=  ∑ ∑ 𝐸(𝑊𝑖𝑓𝑡
2 )

𝑛𝑓

𝑖=1

|𝑁𝐹|

𝑓=1

+ 2 ∑ ∑ ∑ (𝜌𝑓𝑓𝜎𝑖𝑓𝑡𝜎𝑗𝑓𝑡 + 𝐸(𝑊𝑖𝑓𝑡)𝐸(𝑊𝑗𝑓𝑡))

𝑛𝑓

𝑗=𝑖+1

𝑛𝑓−1

𝑖=1

|𝑁𝐹|

𝑓=1

+ 2 ∑ ∑ ∑ ∑ (𝜌𝑓𝑔𝜎𝑖𝑓𝑡𝜎𝑗𝑔𝑡 + 𝐸(𝑊𝑖𝑓𝑡)𝐸(𝑊𝑗𝑔𝑡))

𝑛𝑔

𝑗=1

𝑛𝑓

𝑖=1

|𝑁𝐹|

𝑔=𝑓+1

|𝑁𝐹|−1

𝑓=1

− (∑ ∑ 𝐸(𝑊𝑖𝑓𝑡)

𝑛𝑓

𝑖=1

|𝑁𝐹|

𝑓=1

)

2

                                                                   (4. 8) 

When identical wind turbines are used in all wind farms, then the variance of wind 

power forecast errors is simplified down to the following expression (Söder, 1993): 

(𝜎𝑡
𝑊)2 = ∑ 𝑛𝑓𝐸(𝑊𝑖𝑓𝑡

2 )

|𝑁𝐹|

𝑓=1

+ ∑ 𝑛𝑓(𝑛𝑓 − 1)𝐸(𝑊𝑖𝑓𝑡𝑊𝑗𝑓𝑡)

|𝑁𝐹|

𝑓=1

+ ∑ ∑ 𝑛𝑓𝑛𝑔𝐸(𝑊𝑖𝑓𝑡𝑊𝑗𝑔𝑡)

|𝑁𝐹|

𝑔=𝑓+1

|𝑁𝐹|−1

𝑓=1

− (∑ 𝑛𝑓𝐸(𝑊𝑖𝑓𝑡)

|𝑁𝐹|

𝑓=1

)

2

= ∑ [𝑛𝑓(1 + (𝑛𝑓 − 1)𝜌𝑓𝑓)𝜎𝑖𝑓𝑡
2 + (𝑛𝑓𝐸(𝑊𝑖𝑓𝑡))

2
|𝑁𝐹|

𝑓=1

+ 2 ∑ 𝑛𝑓𝑛𝑔 (𝜌𝑓𝑔𝜎𝑖𝑓𝑡𝜎𝑗𝑔𝑡 + 𝐸(𝑊𝑖𝑓𝑡)𝐸(𝑊𝑗𝑔𝑡))

|𝑁𝐹|

𝑔=𝑓+1

]

− (∑ 𝑛𝑓𝐸(𝑊𝑖𝑓𝑡)

|𝑁𝐹|

𝑓=1

)

2

                                                                       (4. 9) 

where 𝜎𝑖𝑓𝑡 denotes the standard deviation of wind power generated by wind turbine 

i in wind farm f in period t and 𝜎𝑡
𝑊 represents the standard deviation of 𝜀𝑡

𝑊. 
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4.1.3 Forecasts for Net Load Demand  

Load demand forecasts and wind power generation forecasts are linked with each 

other by considering generation of the renewable energy sources as a negative load 

under certain assumptions, which are listed below: 

• No interdependency between load demand forecasts and wind power 

forecasts  

• Identically distributed forecast errors (Normal distribution) 

By doing so, the net load demand in each period can be represented as the subtraction 

of total power generated by the renewable energy resources from system’s total load 

demand in each period: 

𝐷𝑡
𝑓

=  𝐿𝑡
𝑓

−  𝑊𝑡
𝑓

= 𝐷𝑡
𝑎 + 𝜀𝑡

𝐷                                       (4. 10) 

where 𝐷𝑡
𝑎 =  𝐿𝑡

𝑎 − 𝑊𝑡
𝑎 representing the net load demand in period t and 𝜀𝑡

𝐷 = 𝜀𝑡
𝐿 +

𝜀𝑡
𝑊 representing forecast error of the net load demand in period t.  

Accordingly, the forecast error of the net load demand in period t follows Normal 

distribution with expectation zero and the variance as: 

(𝜎𝑡
𝐷)2 = (𝜎𝑡

𝐿)2 + (𝜎𝑡
𝑊)2                                            (4. 11) 

4.1.4 Reliability Model for Conventional Generation 

A conventional generating unit’s availability in each period can be modeled as a two-

state Discrete Time Markov Process in which states represent whether a generating 

unit is available (fully functional) or it is not available (broken down) (Billinton and 

Allan, 1996). That is, there are two types of events that can occur at the beginning of 

each period, which are failure and repair. The repair and failure durations are 

exponentially distributed with rates 𝜆𝑖 and 𝜇𝑖, respectively. A rate diagram for two-

state Discrete Time  Markov Process is depicted in Figure 4.1.  
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Figure 4.1. Two-State Discrete Time Markov Process Rate Diagram for the 

Reliability Model of a Conventional Generating Unit 

 

 

For a conventional generating unit i, its availability and unavailability status should 

be defined as time-dependent.  The expressions for unavailability and availability 

probabilities are summarized below:   

𝑈𝑖(𝑡) =  
𝜇𝑖

𝜇𝑖 + 𝜆𝑖
∗ (1 − 𝑒−(𝜇𝑖+𝜆𝑖)𝑡);          𝐴𝑖(𝑡) = 1 − 𝑈𝑖(𝑡)          (4. 12) 

The first term in 𝑈𝑖(𝑡) is the probability of “Failure” type of event that occurs first 

for unit i, and the second one is the proability of an event occurrence in a time interval 

with length of t for unit i. In power systems, 𝑈𝑖(𝑡) can also be referred to as Failure 

Probability or Outage Replacement Rate of unit i (𝑂𝑅𝑅𝑖).     

Since we are solving a day ahead UCP with hourly time periods, we can assume that 

a unit cannot be repaired or renewed in such a short time, so the repair rates 𝜆𝑖 can 

be ignored in the reliability model shown in Figure 4.1. With this simplifying 

assumption, unavailability and availability probabilities of unit i can be expressed 

as: 

𝑈𝑖(𝑡) =  1 − 𝑒−𝜇𝑖𝑡;           𝐴𝑖(𝑡) = 1 − 𝑈𝑖(𝑡)                      (4. 13) 

4.1.4.1 Capacity Outage Probability Table 

To calculate the expected energy not served (EENS) for a given load level, it is 

essential to know the probability of the specific capacity outage or the loss of 

generation level. For this purpose, Capacity Outage Probability Table (COPT) is 



 

 

77 

constructed for a specific set of conventional generating units. As the name implies, 

it is a table that consists of capacity outage levels and the corresponding probabilities. 

Those probabilities can easily be calculated by using Binomial distribution if all 

generating units were identical; that is, each had the same capacity level and failure 

probability. However, in general, it is not the case for a real power generation system. 

Hence, it is needed to develop an efficient algorithm to evaluate each combination 

having same the capacity outage level in order to find the corresponding outage 

probability. The steps of our algorithm is provided below. 

1. Evaluate every possible failure combination for a given set of generating 

units.  

2. For each combination, calculate the capacity outage and the probability of 

the associated combination. 

3. For each capacity outage, sum the failure probabilities and let it be the 

probability of the associated capacity outage.    

Consider a system with three generating units, two of which have a 12 MW capacity 

while one of which has a 20 MW capacity with a failure probability of 0.02. By using 

the abovementioned algorithm, COPT can be easily constructed for this 3-Unit 

system and it is shown in Table 4.1.     

Table 4.1. Capacity Outage Probability Table for a 3-Unit System 

Unit(s) Out of Service 
Capacity Outage 

(MW) 
Probability 

None 0 0.941192 = (0.98) (0.98) (0.98)  

Unit 1 or Unit 2 12 
0.038416 = (0.02) (0.98) (0.98) + 

(0.98) (0.02) (0.98)  

Unit 3 20 0.019208 = (0.98) (0.98) (0.02) 

Units 1 and 2 24 0.000392 = (0.02) (0.02) (0.98) 

Units 1 and 3 or  

Units 2 and 3 
32 

0.000784 = (0.02) (0.98) (0.02) + 

(0.98) (0.02) (0.02) 

Units 1, 2 and 3 44 0.000008 = (0.02) (0.02) (0.02) 
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There are also other algorithms to build a capacity outage probability table by 

constructing it in a recursive manner, by taking the continuous approximation of 

outages or by applying Fourier transform method based on the Gram-Charlier 

expansion to the continuous approximation. These are explained in detail by 

Billinton and Allan (1996).     

4.1.4.2 Reliability Indices for Power Generation 

In general, there are deterministic and probabilistic power system reliability 

assessment methods to evaluate the adequacy of generation capacity. Deterministic 

indices have an important drawback, since they do not take the stochastic nature of 

the load demand and conventional generation system into account when assessing 

the reliability of the whole system, whereas the probabilistic indices can indicate 

more significant insights on the reliability performance of the whole system. The 

probabilistic methods can be further divided into two classes, namely, Monte Carlo 

simulation and analytical techniques. In Monte Carlo simulation, the reliability 

indices are calculated as mean statistics found by actual system simulation. In 

analytical techniques, these indices are directly expressed by mathematical and 

probabilistic expressions. The most commonly used reliability indices are Loss of 

Load Probability (LOLP), Loss of Load Expectation (LOLE), Expected Load Not 

Served (ELNS) and Expected Energy Not Served (EENS) which are summarized 

below (Billinton and Allan, 1996; Prada, 1999). 

Loss of Load Probability 

𝐿𝑂𝐿𝑃𝑡 is used to evaluate the generation adequacy to meet the load demand in a 

conventional generation system in period t. It can also be considered how many times 

the available generation capacity is expected to be insufficient to satisfy the load 

demand in the long run. Its value is evaluated by the probability of the available 

capacity being less than the load demand. It is given by the expression below, where 

𝐿𝑡 is a continuous random variable corresponding to the load demand in period t, 𝐶𝑡 
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is a discrete random variable corresponding to the available capacity in period t. It is 

not possible to explicitly know the distribution of 𝐿𝑡 − 𝐶𝑡 since they are different 

types of random variables. Thus, by using Bayesian Theorem, this probability 

expression can be evaluated by conditioning 𝐿𝑡 on the possible discrete values of 𝐶𝑡 

as follows:      

𝐿𝑂𝐿𝑃𝑡 = 𝑃(𝐿𝑡 > 𝐶𝑡) = ∑(𝑃(𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘) 𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

      (4. 14) 

The probability 𝑃(𝐶𝑡 = 𝐶𝑘) can be found from the COPT tables easily. For a 

capacity outage amount of 𝑂𝑘, 𝐶𝑘 is the capacity in use when kth outage occurs and  

it is found by the difference 𝐶𝑡
𝐼 − 𝑂𝑘 where 𝐶𝑡

𝐼 is the installed capacity level in period 

t. When the load is assumed to be known and constant,  𝐿𝑡 will be equal to its 

expected value 𝐿𝑡̅ for period t. In this case, the conditional probability 

𝑃(𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘) can take two distinct values. It will be 0 if 𝐿𝑡̅ ≤ 𝐶𝑡  and 1 if 

𝐿𝑡̅ > 𝐶𝑡. For this constant load assumption, 𝐿𝑂𝐿𝑃𝑡 can be found directly from the 

COPT tables. When the load demand is expressed in terms of forecasts with an error 

having a known distribution, this conditional probability 𝑃(𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘) can be 

calculated for a given capacity in use 𝐶𝑘 with the help of its probability density 

function of 𝑓𝑙(𝐿𝑡) as follows: 

𝑃(𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘) = ∫ 𝑓𝑙(𝐿) 𝑑𝑙

∞

𝐶𝑘

                            (4. 15) 

Loss of Load Expectation 

When the load is expressed in terms of load duration curves, the conditional 

probability for 𝐿𝑂𝐿𝑃𝑡 has a different meaning which is the percentage of time that 

the load demand cannot be met by the capacity in use in period t and denoted by 𝑇𝑘. 

As a result, the following expression defines the expected loss of load duration or 

the expected percentage of time the load demand will be less than or equal to the 

capacity in use during period t. 
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𝐿𝑂𝐿𝐸𝑡 = ∑(𝑇𝑘 𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

                                (4. 16) 

 

Figure 4.2. Representation of a Load Duration Curve 

 

 

To find 𝑇𝑘, load duration curves are used. In these curves, the load level in a time 

period (hour) is estimated by a nonlinear curve between maximum and minimum 

expected load levels. In Figure 4.2, the horizontal axis represents the percentage of 

time the load demand will exceed the capacity in use, and the vertical axis represents 

the system load level and the installed capacity level. 𝑇𝑘 is found by locating 𝑂𝑘 on 

this curve as shown in Figure 4.2. The value projected on horizontal axis gives 𝑇𝑘 as 

the percentage of time in which the load demand will be greater than the available 

generation capacity when there is a capacity outage level of 𝑂𝑘. 

Expected Load Not Served 

Since 𝐿𝑂𝐿𝐸𝑡 just gives an information on the expected duration of the loss of load 

during period t, another reliability index is used to estimate the expected amount of 

load demand that cannot be served during period t which is denoted by 𝐸𝐿𝑁𝑆𝑡 as 

follows:  

𝐸𝐿𝑁𝑆𝑡 = ∑(𝐸[𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘] 𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

                  (4. 17) 
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where 𝐸[𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘] is the expected load demand that cannot be served during 

period t, given that the capacity in use in period t is equal to 𝐶𝑘. This conditional 

expectation is calculated by a probability density function of 𝑓𝑙(𝐿) with the following 

integral: 

𝐸𝐿𝑁𝑆𝑡
𝑘 = 𝐸[𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘] = ∫ (𝐿 − 𝐶𝑘) 𝑓𝑙(𝐿)𝑑𝑙

∞

𝐶𝑘

             (4. 18) 

When the load duration curves are used to evaluate this conditional expectation, it is 

simply the difference between the maximum load level of period t and the capacity 

in use during this period as shown in Figure 4.3. By multiplying this conditional 

expectation with the corresponding probability of the capacity outage, and summing 

them up for all possible outages, 𝐸𝐿𝑁𝑆𝑡 for period t is estimated. 

 

Figure 4.3. Expected Load Not Served for the kth Outage by Using the Load Duration 

Curve 

 

 

Expected Energy Not Served 

Another reliability index is defined for estimating the expected amount of energy 

that cannot be served during a period. 𝐸𝐸𝑁𝑆𝑡 is one of the most commonly used 

indices in power generation scheduling since it represents the expected lost amount 

of energy (MWh) in terms of the consumer’s point of view. It is calculated by the 

following expression where ℎ denotes the length of time period t:      
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𝐸𝐸𝑁𝑆𝑡 = ∑(ℎ 𝐸[𝐿𝑡 > 𝐶𝑡|𝐶𝑡 = 𝐶𝑘] 𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

                     (4. 19) 

The conditional expectation in this expression is calculated by using the probability 

density function of the load demand as explained in 𝐸𝐿𝑁𝑆𝑡. It should be noted that 

when the length of the time period is 1 hour, then 𝐸𝐸𝑁𝑆𝑡 and 𝐸𝐿𝑁𝑆𝑡 are equal.  

 

Figure 4.4. Expected Energy Not Served for the kth Outage by Using the Load 

Duration Curve 

 

 

When the load duration curves are used to evaluate 𝐸𝐸𝑁𝑆𝑡 of an outage k, it is the 

area between the load duration curve and the capacity in use when kth outage occurs 

in this period. It is shown by the shaded area in Figure 4.4 and calculated by the 

following integral where 𝑔𝑙(𝐿) denotes the load duration function in terms of load 

and ℎ𝑥(𝑋) denotes the same function in terms of percentage of time that the load 

exceeds the capacity in use, and 𝐿𝑡
𝑀𝑎𝑥 is the maximum load level in period t:   

𝐸𝐸𝑁𝑆𝑡
𝑘 = ∫ (𝐿 − 𝐶𝑘) 𝑔𝑙(𝐿)𝑑𝑙

𝐿𝑡
𝑀𝑎𝑥

𝐶𝑘

= ∫ 𝑥 ℎ𝑥(𝑋)𝑑𝑥

𝑇𝑘

0

                    (4. 20) 

By multiplying the 𝐸𝐸𝑁𝑆𝑡
𝑘 with the corresponding probability of the capacity 

outage, and summing them up for all possible outages, 𝐸𝐸𝑁𝑆𝑡 for period t is 

estimated as follows: 



 

 

83 

𝐸𝐸𝑁𝑆𝑡 = ∑ (𝐸𝐸𝑁𝑆𝑡
𝑘  𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

                                 (4. 21) 

4.2 Proposed Time-decoupled Quadratic Programming Based Approach  

In the proposed approach, the unit commitment problem with supply/demand 

uncertainty is time-decoupled by decomposing the original UCP into T many 

subproblems each of which is a single-period UCP defined for each period in the 

planning horizon. Accordingly, each subproblem is optimally solved by balancing 

the potential benefits to be obtained by reducing 𝐸𝐸𝑁𝑆𝑡, and potential losses caused 

by not committing enough reserve in period t.  In time-decoupled subproblems, time 

dependent UCP constraints, namely minimum uptime, minimum downtime, ramp-

up and ramp-down constraints, are also taken into account. Although our time-

decoupled method may yield near optimal solutions, it is very difficult to optimize 

the UCP under supply/demand uncertainties for the whole planning horizon without 

using some kind of risk levels like maximum allowable 𝐸𝐸𝑁𝑆𝑡, 𝐿𝑂𝐿𝑃𝑡 or 𝐿𝑂𝐿𝐸𝑡 for 

the periods. However, defining such risk levels results in overlooking the costs due 

to variabilities in load demand forecasts, wind power forecasts, and potential 

outages. For this reason, unit commitment (UC), economic load dispatch (ELD) and 

spinning reserve decisions are individually determined for each period through time-

decoupled cost-benefit optimization rather than multi-period optimization.  

4.2.1 Uncertainty Caused by Net Load Demand Forecast Errors 

As it is pointed out in Section 4.1 it is not possible to know exact load and power 

generation by the renewable energy sources before solving UC and ELD problem. 

That is, their values should be estimated by using forecasting tools prior to their 

actual realizations so that the day-ahead UC, ELD and SR decisions can be made.  

To cope with the forecasting errors of load and wind power generation, the term net 

load demand (𝐷𝑡
𝑓
) has been defined in Section 4.1.3. According to this new 
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definition, it is shown that the standard deviation of aggregate forecast error (𝜀𝑡
𝐷) can 

be calculated as the square root of the sum of the variances of corresponding 

Normally distributed forecast errors. However, 𝐷𝑡
𝑓
 is a continuous random variable 

as a result of 𝜀𝑡
𝐷 whereas the uncertainties related to the reliability of conventional 

generating units are discrete random variables; in addition, the Normal distribution 

has a complex and nonlinear nature. To tackle with this situation, the probability 

distribution of 𝐷𝑡
𝑓
 is discretized by using a multi-interval approximation. For this 

purpose, the cumulative density function of 𝐷𝑡
𝑓
 is divided into KL odd number of 

intervals whose probability values (𝑝𝑙) are represented by the following expression:  

𝑝𝑙 = 𝜙
(𝐷𝑡

𝑓
−(

𝐾𝐿
2

−𝑙)𝜎𝑡
𝐷)

− 𝜙
(𝐷𝑡

𝑓
−(

𝐾𝐿
2

−𝑙+1)𝜎𝑡
𝐷)

                    (4. 22) 

The mid-value of each interval (𝑎𝑙) is considered as the value of the whole interval. 

They are represented by the following expression: 

𝑎𝑙 = 𝐷𝑡
𝑓

− (
𝐾𝐿

2
− 𝑙 + 0.5) 𝜎𝑡

𝐷                                   (4. 23) 

In our approach, the seven-interval approximation is used for the discretization of 

the Normally Distributed 𝐷𝑡
𝑓
 in each period t as shown in Figure 4.5.   

 

Figure 4.5. Seven-Interval Approximation for the Normally Distributed Net Load 

Demand for Period t 
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4.2.2 Reliability Based Uncertainty in Conventional Generation  

To compute 𝐸𝐸𝑁𝑆𝑡 in a conventional generation system, there are several factors 

such as conventional units operating, their forced outage probabilities, amount of SR 

to be committed by “On” units and the load demand. For a given set of units in “On” 

status, the COPT could be constructed by using our algorithm explained in Section 

4.1.4. Hence, it is essential to make commitment decisions before making COPT 

calculations. By using the COPT and the conditional expectation method explained 

in Section 4.1.4, 𝐸𝐸𝑁𝑆𝑡 can be computed for a given combination of “On” units, but 

EENS calculations for all possible committed capacity levels require a significant 

computational burden in a complex power system. The reason is that the number of 

outage combinations to be evaluated increases exponentially as the number of “On” 

units in the system increases.  

 

Figure 4.6. Relationship between Expected Energy Not Served and Committed 

Capacity, Adapted from Ortega-Vazquez et al. (2006)   
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Ortega-Vazquez et al. (2006) shows the nonlinear relationship between 𝐸𝐸𝑁𝑆𝑡 and 

Committed Capacity (CC) for IEEE Reliability Test System having 26 units with a 

generation capacity of 3105 MW for a constant load demand level of 1690 MW as 

demonstrated in Figure 4.6. There is an inverse relationship between 𝐸𝐸𝑁𝑆𝑡 and CC. 

Thus, smaller CC indicates that most of the generating units are loaded heavily 

whereas higher CC indicates that generation units are loaded partially.  

The concept that such a nonlinear relationship can be approximated by its piecewise 

linear equivalent is first proposed by Ortega-Vazquez et al. (2006). Starting from 

upper left to lower right in Figure 4.6, they show that the first breakpoint represents 

CC=Load Level, the second one corresponds to CC=Load Level + Capacity of the 

Largest “On” unit, the third one denotes CC=Load Level + Capacities of the Largest 

and the Second Largest “On” units, and so on. The reason of a sudden drop between 

adjacent break points is that one more unit should fail simultaneously with the other 

ones at that break point. To determine 𝐸𝐸𝑁𝑆𝑡 of any breakpoint, they propose an 

auxiliary optimization method instead of full search for the unit combination having 

maximum 𝐸𝐸𝑁𝑆𝑡 with CC of a breakpoint since such a search would be very time-

consuming. Thus, they suggest using a weighted sum approach with three main 

objectives: 

• The committed capacity should be very small 

• The number of committed units should be very small 

• The unit combination with the most unreliable units should be in operation 

However, the combination obtained by the weighted sum approach depends heavily 

on the weights given to those objectives. Hence, finding the right set of weights 

requires extensive experimentation for each load level in each period, which is a 

computationally prohibitive operation for a day ahead UCP.  

To overcome this problem, we propose the use of preemptive (lexicographic) 

optimization instead of a weighted sum approach to find the right combination owing 

to its parameter-free structure. To apply this method, the objectives are sorted from 

the most important one to the least important one as follows:  
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1. The most important objective: Having the smallest committed capacity is the 

top priority objective since CC being closer to the value on the break point 

results in a more accurate approximation: 

𝑧1 = ∑ 𝐶𝑖𝛾𝑖

𝑖

                                          (4. 24) 

where 𝑧1 is the objective function representing the total committed capacity, 

𝛾𝑖 and 𝐶𝑖 are binary variable representing “On (1) / Off (0)” status of unit i 

and maximum generation capacity of unit i, respectively. 

2. The second important one:  Having the smallest number of committed units 

for a given CC is the second priority objective since 𝐸𝐸𝑁𝑆𝑡 is maximized 

when there is a smaller number of units that yields the same CC value:   

𝑧2 = ∑ 𝛾𝑖

𝑖

                                             (4. 25) 

where 𝑧2 is the objective function representing the total number of committed 

units.  

3. The least important one: Having the most unreliable units for a given CC is 

the third priority objective since 𝐸𝐸𝑁𝑆𝑡 is maximized with  the most 

unreliable set of units that yields the same CC value: 

𝑧3 = ∏((1 − 𝑂𝑅𝑅𝑖)𝛾𝑖)

𝑖

                                 (4. 26) 

where 𝑧3 is the objective function representing the reliability of the units 

committed, 𝑂𝑅𝑅𝑖 is the outage replacement rate of unit i. To handle the 

nonlinearity in 𝑧3, it can be represented as follows:  

𝑧3 = ∑(ln(1 − 𝑂𝑅𝑅𝑖) 𝛾𝑖)

𝑖

                            (4. 27) 

Then, the following lexicographic optimization method is applied to each breakpoint 

in Figure 4.6. Its pseudocode is provided below where N is the set of units and M is 

the CC value on a breakpoint.  
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Step 1: Let k=1 and solve the following linear mathematical model. 

 

Let the optimal solution for the 1st objective,  𝑧1
∗  = 𝑑1 

Step 2: k=k+1 

If k >3; Stop, the resulting 𝛾𝑖 (s) are the unit combination that will 

maximize 𝐸𝐸𝑁𝑆𝑡 on the breakpoint.  

Otherwise, solve the following linear mathematical model. 

 

Let the optimal objective value for the kth objective,  𝑧𝑘
∗  = 𝑑𝑘 and 

repeat Step 2. 

4.2.3 Expected Energy Not Served (EENS) under Supply/Demand 

Uncertainty: Piecewise Linear Approximation 

When approximating 𝐸𝐸𝑁𝑆𝑡, we are inspired from the work of Ortega-Vazquez et 

al. (2006) in which they model 𝐸𝐸𝑁𝑆𝑡 by assuming that the load demand is 

𝑀𝑖𝑛{ 𝑧1}       

𝑠. 𝑡𝑜.            ∑ 𝐶𝑖𝛾𝑖

𝑖

≥ 𝑀 

        𝛾𝑖  ∈ {0,1}       ∀ 𝑖 ∈ 𝑁 

 

𝑀𝑖𝑛{ 𝑧𝑘}       

𝑠. 𝑡𝑜.            ∑ 𝐶𝑖𝛾𝑖

𝑖

≥ 𝑀   

        𝑧𝑗 = 𝑑𝑗        ∀ 𝑗 = 1, … , 𝑘 − 1  

        𝑧𝑗 ≥ 0        ∀ 𝑗 = 1, … , 𝑘 − 1   

          𝛾𝑖  ∈ {0,1}      ∀ 𝑖 ∈ 𝑁 
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deterministic and the reliability of conventional generating units is the only source 

of uncertainty. Different from their work, we consider uncertainties in the load 

demand, wind power generation and the reliability of conventional generating units. 

In our approach, we propose two methods for integrating the net load uncertainty 

with the reliability model of conventional generation. In Method I, 𝐸𝐸𝑁𝑆𝑡 is 

approximated with one piecewise linear model whereas, in Method II, 𝐸𝐸𝑁𝑆𝑡 is 

approximated with seven piecewise linear models corresponding to the intervals in 

the seven-interval approximation of 𝐷𝑡
𝑓
 explained in Section 4.2.1. 

4.2.3.1 Approximation Method I 

In Figure 4.7, the black lines indicate the nonlinear relationship between 𝐸𝐸𝑁𝑆𝑡 and 

CC, and the red lines show its piecewise linear approximation.  

 

Figure 4.7. Piecewise Linear Approximation of Expected Energy Not Served and 

Committed Capacity 
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With this method, the CC values at each breakpoint can be modeled as: 

• At the first breakpoint: CC=Expected Net Load Level in period t,  

• At the second breakpoint: CC=Expected Net Load Level in period t + 

Capacity of the Largest conventional generating unit available in period t,  

• At the third breakpoint: CC=Expected Net Load Level in period t + 

Capacities of the Largest and the Second Largest conventional generating 

units available in period t, 

⋮ 

• At the last breakpoint: CC=Total installed capacity available in period t 

After determining the committed capacities at each breakpoint, the right combination 

of units that will maximize the expected energy not served at each breakpoint is 

found by using the lexicographic optimization method explained in Section 4.2.2. 

According to the combinations of units for each breakpoint b, the corresponding 

𝐸𝐸𝑁𝑆𝑏𝑡
𝑙  values are calculated by using the seven-interval approximation of 𝐷𝑡

𝑓
 and 

the COPT tables. For each mid-value (𝑎𝑙) of the net load demand in the seven-

interval approximation, 𝐸𝐸𝑁𝑆𝑏𝑡
𝑙  at breakpoint b corresponding to interval l is 

calculated by summing the load shedding level with the probabilities of outage k 

causing a load shedding over all possible outages. Since the planning horizon (24 h) 

in our UCP formulation consists of 1-hour time periods, the 𝐸𝐸𝑁𝑆𝑏𝑡
𝑙  and 𝐸𝐿𝑁𝑆𝑏𝑡

𝑙  

will be equal as shown below: 

𝐸𝐸𝑁𝑆𝑏𝑡
𝑙 = 𝐸𝐿𝑁𝑆𝑏𝑡

𝑙 = ∑(Max(𝑎𝑙 − 𝐶𝑡, 0) 𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

           (4. 28) 

By taking the expected value of 𝐸𝐸𝑁𝑆𝑏𝑡
𝑙  over all possible intervals in the seven-

interval approximation, the 𝐸𝐸𝑁𝑆𝑏𝑡 value of the breakpoint b is calculated: 

𝐸𝐸𝑁𝑆𝑏𝑡 = 𝐸 [𝐸𝐸𝑁𝑆𝑏𝑡
𝑙 ] = ∑(𝑝𝑙 𝐸𝐸𝑁𝑆𝑏𝑡

𝑙 )

𝑙

                        (4. 29) 

It is important to note that this procedure to find 𝐸𝐸𝑁𝑆𝑏𝑡 estimation must be repeated 

for each breakpoint and for each period in the planning horizon prior to 



 

 

91 

implementing our approach so that the nonlinear concave relationship between CC 

and 𝐸𝐸𝑁𝑆𝑡 can be modelled for each period.  

4.2.3.2 Approximation Method II 

In this method, the uncertainty in the net load demand is separately integrated into 

the 𝐸𝐸𝑁𝑆𝑡 approximation. Since the uncertainty is discretized by the seven-interval 

approximation as discussed in Section 4.1, 𝐸𝐸𝑁𝑆𝑡 can be approximated by separate 

piecewise linear models associated with the mid-values of each load demand interval 

as shown in Figure 4.8.  

 

Figure 4.8. Piecewise Linear Approximation of Expected Energy Not Served and 

Committed Capacity for Interval l in Seven Interval Approximation  

 

 

With this method, the mid-value 𝑎𝑙 is considered as the load demand in each 

piecewise linear model of interval l so the CCl values at each breakpoint can be 

modeled as: 
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• At the first breakpoint: CCl=The mid-value of interval l in period t,  

• At the second breakpoint: CCl=The mid-value of interval l in period t + 

Capacity of the Largest conventional generating unit available in period t,  

• At the third breakpoint: CCl=The mid-value of interval l in period t + 

Capacities of the Largest and the Second Largest conventional generating 

units available in period t, 

⋮ 

• At the last breakpoint: CCl=Total installed capacity available in period t 

After determining the committed capacities at each breakpoint, the right combination 

of units that will maximize the expected energy not served at each breakpoint is 

found by using the lexicographic optimization method explained in Section 4.2.2. 

According to the combinations of units for each breakpoint b, the corresponding 

𝐸𝐸𝑁𝑆𝑏𝑡
𝑙  values are calculated by using the seven-interval approximation and the 

COPT tables. 𝐸𝐸𝑁𝑆𝑏𝑡
𝑙  at breakpoint b for interval l is calculated by summing the 

load shedding level with the probabilities of outage k causing a load shedding over 

all possible outages:  

𝐸𝐸𝑁𝑆𝑏𝑡
𝑙 = 𝐸𝐿𝑁𝑆𝑏𝑡

𝑙 = ∑(Max(𝑎𝑙 − 𝐶𝑡, 0) 𝑃(𝐶𝑡 = 𝐶𝑘))

𝑘

         (4. 30) 

Similar to Method I, this procedure must also be repeated for each breakpoint, for 

each interval of load demand, and for each period in the planning horizon prior to 

implementing our approach so that the nonlinear concave relationship between CCl 

and 𝐸𝐸𝑁𝑆𝑡
𝑙 can be modelled for each load demand interval in each period.  

4.2.4 Mixed Integer Quadratic Programming (MIQP) Formulations 

The proposed method consists of two MIQP formulations distinguished by the type 

of expected energy not served approximation used in each formulation. Those 

formulations have been implemented in MATLAB by using CPLEX Optimizer. In 

these formulations, standard UCP constraints such as power balance constraints and 
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minimum/maximum generation limits are taken into account. Furthermore, the time-

dependent constraints like the minimum uptime/downtime constraints and the ramp-

up/ramp-down limits are separately included in the mathematical models of each 

period since the UCP is solved in a time-decoupled manner. Different from the 

standard formulations of the UCP, for each period, the reserves are taken as decision 

variables whose values are determined by the trade-off between total operational 

costs and the expected cost of load shedding (energy not served) instead of using 

standard spinning reserve requirements. For this purpose, 𝐸𝐸𝑁𝑆𝑡 is piecewise 

linearly approximated as described in Section 4.2.3, and the value of lost load 

(𝑉𝑂𝐿𝐿) is used to calculate the expected cost of lost shedding. 𝑉𝑂𝐿𝐿 is defined as 

the dollar value that users place on the loss for outage of 1 MWh of electricity; that 

is, it is the opportunity cost for households and businesses that are deprived of 1 

MWh electricity. According to Kariuki et al. (1996), in general, it is estimated by 

consumer surveys.         

4.2.4.1 Time-decoupled MIQP Formulation I 

In this formulation, the objective function consists of fuel costs, start-up costs, 

reserve allocation costs and expected cost of load shedding. The last two of these 

costs have a linear relationship with the corresponding decision variables as reserves 

and 𝐸𝐸𝑁𝑆𝑡 modelled by Approximation Method I explained in Section 4.2.3. 𝐸𝐸𝑁𝑆𝑡 

is piecewise linearly approximated with additional auxiliary variables, and 

constraints by using 𝜆-method (Bradley et al., 1977).  

The start-up costs depend on the commitment status in consecutive two time periods 

and the number of time periods in which a unit is in “Off” status. According to the 

length of the “Off” periods, the start-up costs are modelled by a two-step function 

comprising of hot start-up and cold start-up costs. This nonlinear relationship could 

be linearized by defining additional auxiliary binary variables and additional logical 

constraints. This conversion is not needed in our time-decoupled formulation, so the 



 

 

94 

start-up costs are calculated as parameters prior to implementing our formulation for 

each time period.  

For conventional generating units, by assuming that their efficiencies increase 

monotonically with their power generation levels, the fuel costs are represented by a 

convex quadratic function which can also be approximated piecewise linearly by 

using 𝜆-method. However, this approximation is not necessary in our formulation, 

because it is a MIQP type model in which the objective function contains both 

separable, strictly convex quadratic terms and linear terms; the decision variables 

include both binary and continuous ones, and the constraint set is linear. 

Furthermore, Quadratic Programming (QP) models have similar optimality 

conditions with Linear Programming (LP) models; owing to this property, there are 

specialized algorithms like Phase I Simplex to solve QP. The detailed explanation of 

the optimality conditions and some algorithms for QP can be found in Bradley et al. 

(1977). The mathematical model for Formulation I (MIQP I), is provided in this 

section. For each period in the planning horizon, this model is sequentially solved to 

obtain near-optimal schedules for the commitment, generation and reserve. 

Assumptions 

• The electricity market is vertically integrated, and customers place a high 

value on the energy not served. Hence, a power generation company is 

obliged to meet the load demand of its customers exactly.  

• The load demands during the planning horizon are forecasted, so their actual 

realizations might be different. 

• Similarly, the wind power generation during the planning horizon is also 

forecasted. Thus, the overproduction or underproduction by the wind turbines 

are possible. 

• The errors in wind power and load demand forecasts are Normally 

distributed.       

• During the planning horizon, conventional generating units are subject to 

unexpected outages which are exponentially distributed. 
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• The efficiency of a conventional generating unit shows a monotonic increase 

as it is more heavily loaded. 

• A conventional generating unit can produce power within its available power 

generation limits. 

• The power produced can be transmitted to the demand points without any 

transmission limits. 

• Power losses during power transmission are negligible.     

Sets and Indices 

𝑁: Set of conventional generating units 

𝑖 ∈ 𝑁: Conventional generating unit i  

𝑇: Set of time periods (hours) 

𝑡 ∈ 𝑇: Time period t 

𝑁𝑡
𝑜𝑛 ⊂  𝑁: Set of conventional generating units that should remain committed in 

period t to satisfy minimum uptime requirement: 

𝑁𝑡
𝑜𝑛 = {𝑖 ∈ 𝑁: 0 < 𝑇𝑖𝑡

𝑜𝑛 < 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛  }                                   (4. 31) 

𝑁𝑡
𝑜𝑓𝑓

⊂  𝑁: Set of conventional generating units that should remain uncommitted in 

period t to satisfy minimum downtime requirement:  

𝑁𝑡
𝑜𝑓𝑓

= {𝑖 ∈ 𝑁: 0 < 𝑇𝑖𝑡
𝑜𝑓𝑓

< 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

 }                              (4. 32) 

 

Additional Sets and Indices for 𝐸𝐸𝑁𝑆𝑡 Approximation: 

𝐵𝑡: Set of breakpoints in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation in period t 

𝑏 ∈ 𝐵𝑡: Breakpoint b for the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation in period t 

𝐸𝑡: Set of segments in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation in period t ∋

|𝐸𝑡| = |𝐵𝑡| − 1 

𝑒 ∈ 𝐸𝑡: Segment e for the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation in period t 
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Parameters 

𝑎𝑖, 𝑏𝑖, 𝑐𝑖: Fuel cost coefficients of unit i ($, $/MW, $/MW2, respectively)  

𝑞𝑖: Reserve allocation costs of unit i ($/MW) 

𝑉𝑂𝐿𝐿: Value of lost load ($/MWh) 

𝑆𝑖
𝐻: Hot startup cost of unit i ($) 

𝑆𝑖
𝐶: Cold startup cost of unit i ($) 

𝑇𝑐,𝑖: Startup time threshold of unit i (hour) 

𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

: Minimum downtime of unit i once it is shutdown (hour) 

𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑛 : Minimum uptime of unit i once it is started up (hour) 

𝑃𝑖
𝑀𝑖𝑛: Minimum power output level of unit i (MW) 

𝑃𝑖
𝑀𝑎𝑥: Maximum power output level of unit i (MW) 

𝑅𝑖
𝑢𝑝

: Ramp-up limit of unit i (MW) 

𝑅𝑖
𝑑𝑜𝑤𝑛: Ramp-down limit of unit i (MW) 

𝐷𝑡
𝑓
: Net load demand in period t (MW)3 

𝑇 𝑖𝑡
𝑜𝑓𝑓

: Number of periods that unit i remained decommitted up to period t (hour) 

𝑇 𝑖𝑡
𝑜𝑛: Number of periods that unit i remained committed up to period t (hour) 

𝑆𝑖𝑡: Start-up cost of unit i in period t generally depends on the number of time periods 

in which the unit is in “Off” status. According to the length of the “Off” periods, 

start-up costs are classified as hot start-up or cold start-up costs ($): 

 

Additional Parameters for 𝐸𝐸𝑁𝑆𝑡 Approximation: 

𝑥𝑏𝑡: CC value on breakpoint b in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for 

period t (MW) 

𝑦𝑏𝑡: 𝐸𝐸𝑁𝑆𝑡 value on breakpoint b in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for 

period t (MWh) 

𝑆𝑖
𝐶            if           𝑢𝑖𝑡−1 = 0    &    𝑇 𝑖𝑡

𝑜𝑓𝑓
> 𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
+ 𝑇𝑐,𝑖 

𝑆𝑖
𝐻          if           𝑢𝑖𝑡−1 = 0    &    𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
≤  𝑇 𝑖𝑡

𝑜𝑓𝑓
≤ 𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
+ 𝑇𝑐,𝑖 

 𝑆𝑖𝑡 =   

0             if           𝑢𝑖𝑡−1 = 1     

     (4. 33) 
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𝐶𝑉𝑏𝑒
𝑡 : |𝐵𝑡| 𝑥 |𝐸𝑡| coverage matrix for adjacent breakpoints on each segment in the 

piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for period t: 

 

 

Decision Variables 

𝑢𝑖𝑡: Commitment status of unit i in period t: 

 

 

 

        

𝑃𝑖𝑡: Amount of electricity generated by unit i in period t 

𝑅𝑖𝑡: Reserve allocated by unit i in period t  

𝐶𝐶𝑡: Committed capacity in period t 

𝐸𝐸𝑁𝑆𝑡: Expected energy not served in period t  

𝑃𝑖𝑡
𝑀𝑖𝑛: Minimum power output level of unit i in period t:  

 

 

𝑃𝑖𝑡
𝑀𝑎𝑥: Maximum power output level of unit i in period t: 

 

 

 

 

     Max൛𝑃𝑖
𝑀𝑖𝑛, 𝑃𝑖𝑡−1 − 𝑅𝑖

𝑑𝑜𝑤𝑛ൟ     if    𝑢𝑖𝑡−1 = 𝑢𝑖𝑡 = 1          

 
𝑃𝑖𝑡

𝑀𝑖𝑛 =   

  
                          𝑃𝑖

𝑀𝑖𝑛                                           otherwise 

     (4. 36) 

       Min൛𝑃𝑖
𝑀𝑎𝑥 , 𝑃𝑖𝑡−1 + 𝑅𝑖

𝑢𝑝ൟ        if    𝑢𝑖𝑡−1 = 𝑢𝑖𝑡 = 1  

𝑃𝑖𝑡
𝑀𝑎𝑥 =   

  
              𝑃𝑖

𝑀𝑎𝑥                                          otherwise  
     (4. 37) 

𝐶𝑉𝑏𝑒
𝑡 =  

1   if   𝑏 = 𝑒 𝑎𝑛𝑑 𝑏 = 𝑒 + 1 in period 𝑡 

0  otherwise 
     (4. 34) 

𝑢𝑖𝑡 =  
1 if  unit 𝑖 is committed in period 𝑡 

0 otherwise 

     (4. 35) 
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Additional Variables for 𝐸𝐸𝑁𝑆𝑡 Approximation: 

𝜆𝑏𝑡: Weight of breakpoint b on the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for period 

t 

𝑣𝑒𝑡: Segment e that 𝐶𝐶𝑡 lies on the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for period 

t: 

  

 

 

Mathematical Model: MIQP I   

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+ (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡)          (4. 39) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ 𝑃𝑖𝑡

|𝑁|

𝑖=1

≥  𝐷𝑡
𝑓

                                                                                                               (4. 40) 

 𝑃𝑖𝑡
𝑀𝑖𝑛 ≤ 𝑃𝑖𝑡 ≤ 𝑃𝑖𝑡

𝑀𝑎𝑥           ∀𝑖                                                                                     (4. 41) 

𝑃 𝑖𝑡
𝑀𝑎𝑥 ≤ 𝑃 𝑖

𝑀𝑎𝑥𝑢𝑖𝑡         ∀𝑖                                                                                            (4. 42) 

𝑃 𝑖𝑡
𝑀𝑎𝑥 ≤ 𝑃𝑖𝑡−1 + 𝑅 𝑖

𝑢𝑝 + 𝑀1(2 − 𝑢𝑖𝑡−1 − 𝑢𝑖𝑡)    ∀𝑖                                              (4. 43) 

𝑃 𝑖𝑡
𝑀𝑖𝑛 ≥ 𝑃 𝑖

𝑀𝑖𝑛𝑢𝑖𝑡         ∀𝑖                                                                                             (4. 44) 

𝑃 𝑖𝑡
𝑀𝑖𝑛 ≥ 𝑃𝑖𝑡−1 − 𝑅 𝑖

𝑑𝑜𝑤𝑛 + 𝑚1(2 − 𝑢𝑖𝑡−1 − 𝑢𝑖𝑡)    ∀𝑖                                          (4. 45) 

𝑅𝑖𝑡 = Min൛𝑅 𝑖
𝑢𝑝 + 𝑃𝑖𝑡−1 + 𝑀2(1 − 𝑢𝑖𝑡−1), 𝑃 𝑖

𝑀𝑎𝑥ൟ 𝑢𝑖𝑡 − 𝑃𝑖𝑡     ∀𝑖                     (4. 46) 

𝐶𝐶𝑡 = ∑(𝑃𝑖𝑡 + 𝑅𝑖𝑡)

|𝑁|

𝑖=1

                                                                                                 (4. 47) 

𝑢𝑖𝑡 = 1    ∀𝑖 ∈ 𝑁𝑡
𝑜𝑛                                                                                                    (4. 48) 

𝑢𝑖𝑡 = 0    ∀𝑖 ∈ 𝑁𝑡
𝑜𝑓𝑓

                                                                                                  (4. 49) 

𝑣𝑒𝑡 =  
1   if   𝐶𝐶𝑡 lies on segment 𝑒 in period 𝑡 

0  otherwise 
     (4. 38) 
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𝐶𝐶𝑡 = ∑ 𝑥𝑏𝑡 𝜆𝑏𝑡

|𝐵𝑡|

𝑏=1

                                                                                                      (4. 50) 

𝐸𝐸𝑁𝑆𝑡 = ∑ 𝑦𝑏𝑡 𝜆𝑏𝑡

|𝐵𝑡|

𝑏=1

                                                                                                (4. 51) 

∑ 𝜆𝑏𝑡

|𝐵𝑡|

𝑏=1

= 1                                                                                                                  (4. 52) 

∑ 𝑣𝑒𝑡

|𝐸𝑡|

𝑒=1

= 1                                                                                                                  (4. 53) 

[

𝜆1𝑡

⋮
𝜆|𝐵𝑡|𝑡

] ≤ 𝐶𝑉|𝐵𝑡| 𝑥 |𝐸𝑡|
𝑡  [

𝑣1𝑡

⋮
𝑣|𝐸𝑡|𝑡

]                                                                                  (4. 54) 

𝑃𝑖𝑡 , 𝑃 𝑖𝑡
𝑀𝑎𝑥 , 𝑃 𝑖𝑡

𝑀𝑖𝑛 , 𝑅𝑖𝑡 ≥ 0    ∀𝑖                                                                                   (4. 55) 

𝜆𝑏𝑡 ≥ 0    ∀𝑏                                                                                                               (4. 56) 

𝐶𝐶𝑡, 𝐸𝐸𝑁𝑆𝑡 ≥ 0                                                                                                         (4. 57) 

𝑢𝑖𝑡 ∈ {0,1}    ∀𝑖                                                                                                          (4. 58) 

𝑣𝑒𝑡   ∈ {0,1}    ∀𝑒                                                                                                       (4. 59) 

 

Objective Function (4.39) 

The objective is to minimize the sum of the fuel costs and the reserve allocation costs 

of committed units, the start-up costs of uncommitted units, and the expected cost of 

load shedding due to supply/demand uncertainty. 

Constraints 

Net Load Requirement Constraint (4.40): Also known as the power balance 

constraint which guarantees that total power generated by the committed units in 

period t should be greater than or equal to the net load demand in that period. 
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Unit Output Range Constraints (4.41): Unit i can generate power within its minimum 

and maximum generation limits available for period t. 

Maximum Generation Limit Constraints (4.42): The maximum generation limit of 

unit i can be at most equal to its maximum generation capacity if it is committed in 

period t. 

Ramp-up Constraints (4.43): Due to the thermal stress limitations and mechanical 

characteristics of the conventional generating units, the increase in the power output 

level of a committed unit is restricted by its ramp-up rate over consecutive time 

periods during which it remains committed. 

In (4.43) 𝑀1 is a very large number denoting upper bounds for Ramp-up Constraints. 

Minimum Generation Limit Constraints (4.44): The minimum generation limit of 

unit i should be at least equal to its maximum generation capacity if it is committed 

in period t. 

Ramp-down Constraints (4.45): Due to the thermal stress limitations and mechanical 

characteristics of the conventional generating units, the decrease in the power output 

level of a committed unit is restricted by its ramp-down rate over consecutive time 

periods during which it remains committed. 

In (4.45), 𝑚1 is a very small number denoting lower bounds for Ramp-down 

Constraints 

Reserve Constraints (4.46): Reserve allocated by unit i in period t should be equal 

to the difference between its maximum generation capacity and generation level in 

that period if unit i is not committed in the previous period t-1. Otherwise, it can take 

the difference between the minimum of the sum of its ramp-up rate and generation 

level in the previous period t-1 and maximum capacity for period t, and its generation 

level in that period.     

In (4.46), 𝑀2 is a very large number for Reserve Constraints. 
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Committed Capacity Constraint (4.47): Committed capacity in period t is the sum of 

power generations and reserves in that period.   

Minimum Uptime Constraints (4.48): A unit cannot be turned off instantaneously 

once it is committed. The minimum uptime constraint imposes a minimum number 

of working time periods that must elapse before unit i can be turned off. 

Minimum Downtime Constraints (4.49): A unit cannot be turned on instantaneously 

once it is decommitted. The minimum downtime constraint imposes a minimum 

number of idle time periods that must elapse before unit i can be turned on. 

Piecewise Linear Approximation Constraints for 𝐸𝐸𝑁𝑆𝑡 (4.50,…,4.54): The values 

of 𝐶𝐶𝑡 and 𝐸𝐸𝑁𝑆𝑡 at each breakpoint for period t are determined according to the 

rules defined for Approximation Method I in Section 4.2.3. Accordingly, the concave 

nonlinear relationship between 𝐶𝐶𝑡 and 𝐸𝐸𝑁𝑆𝑡 is converted into its piecewise linear 

approximation with the following constraints:  

• (4.50): The approximation of Committed Capacity in period t. 

• (4.51): The approximation of Expected Energy Not Served in period t. 

• (4.52): The weights in the approximation for period t should add up to 1.  

• (4.53): Committed capacity can lie on one of the segments in the 

approximation for period t. 

• (4.54): There is a concave relationship between 𝐶𝐶𝑡 and 𝐸𝐸𝑁𝑆𝑡. Since we 

are trying to minimize the cost of 𝐸𝐸𝑁𝑆𝑡, we need to define the following set 

of constraints to satisfy the adjacency criterion (at most two adjacent weights 

can be non-zero) in the piecewise linear approximation for period t. 

(4.55,…,4.59): Sign restrictions of decision variables. 

4.2.4.2 Time-decoupled MIQP Formulation II 

The only difference of this formulation from the MIQP I is that the approximation 

of 𝐸𝐸𝑁𝑆𝑡 which is modelled by using Approximation Method II explained in Section 
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4.2.3. 𝐸𝐸𝑁𝑆𝑡 of each interval in the seven-interval approximation of the net load 

demand is piecewise linearly approximated with additional auxiliary variables, and 

constraints by using 𝜆-method (Bradley et al., 1977). The associated modifications 

for Formulation II (MIQP II) are provided below. 

Sets and Indices 

For each interval l in the seven-interval approximation of 𝐷𝑡
𝑓
, the following sets are 

defined instead of additional sets defined in the MIQP I.  

Additional Sets and Indices for 𝐸𝐸𝑁𝑆𝑡 Approximation: 

𝐿: Set of net load demand intervals in the seven-interval approximation of 𝐷𝑡
𝑓
 

𝑙 ∈ 𝐿: Net load demand interval l  

𝐵𝑡
𝑙: Set of breakpoints in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation of interval l in 

period t 

𝑏𝑙 ∈ 𝐵𝑡
𝑙: Breakpoint 𝑏𝑙 for the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation of interval l in 

period t 

𝐸𝑡
𝑙: Set of segments in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation of interval l in 

period t ∋ |𝐸𝑡
𝑙| = |𝐵𝑡

𝑙| − 1 

𝑒𝑙 ∈ 𝐸𝑡
𝑙: Segment 𝑒𝑙 for the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation of interval l in 

period t 

Parameters 

For each interval l in the seven-interval approximation of 𝐷𝑡
𝑓
, the following 

parameters are defined instead of the additional parameters defined in the MIQP I. 

Additional Parameters for 𝐸𝐸𝑁𝑆𝑡 Approximation: 

𝐴𝑡
𝑙 : Net load demand value (mid-value) of interval l in period t (MW) 

𝑝𝑙: Probability that load demand takes a value of 𝐴𝑡
𝑙  

𝑥𝑏𝑙𝑡
𝑙 : CC value at breakpoint 𝑏𝑙 in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for 

interval l in period t (MW) 
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𝑦𝑏𝑙𝑡
𝑙 : 𝐸𝐸𝑁𝑆𝑡 value on breakpoint 𝑏𝑙 in the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for 

interval l in period t (MWh) 

𝐶𝑉𝑏𝑙𝑒𝑙

𝑡 : |𝐵𝑡
𝑙| 𝑥 |𝐸𝑡

𝑙| coverage matrix for adjacent breakpoints on each segment in the 

piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for interval l and period t: 

 

 

Decision Variables 

For each interval l in the seven-interval approximation of 𝐷𝑡
𝑓
, the following decision 

variables are defined instead of the additional variables defined in the MIQP I. 

Additional Variables for 𝐸𝐸𝑁𝑆𝑡 Approximation: 

𝐸𝐸𝑁𝑆𝑡
𝑙: Expected energy not served for interval l in period t  

𝜆𝑏𝑙𝑡
𝑙 : Weight of breakpoint 𝑏𝑙 on the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for 

interval l in period t 

𝑣𝑒𝑙𝑡
𝑙 : Segment 𝑒𝑙 that 𝐶𝐶𝑡 lies on the piecewise linear 𝐸𝐸𝑁𝑆𝑡 approximation for 

interval l in period t: 

 

 

Constraints 

The constraints other than the piecewise linear approximation constraints for 𝐸𝐸𝑁𝑆𝑡 

remain the same. 𝜆𝑏𝑡 and 𝑣𝑒𝑡 are removed from the sign restriction constraints in 

MIQP I. 

Piecewise Linear Approximation Constraints for 𝐸𝐸𝑁𝑆𝑡: The values of 𝐶𝐶𝑡 and 

𝐸𝐸𝑁𝑆𝑡
𝑙  at each breakpoint for interval l in period t are determined according to the 

rules defined for Approximation Method II in Section 4.2.3. Accordingly, the 

𝐶𝑉𝑏𝑙𝑒𝑙

𝑙𝑡 =  
1   if   𝑏𝑙 = 𝑒𝑙 𝑎𝑛𝑑 𝑏𝑙 = 𝑒𝑙 + 1 in period 𝑡 

0  otherwise 
(4. 60) 

𝑣𝑒𝑙𝑡
𝑙 =  

1   if   𝐶𝐶𝑡 lies on segment 𝑒𝑙 in period 𝑡 

0  otherwise 
(4. 61) 
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concave nonlinear relationship between 𝐶𝐶𝑡 and 𝐸𝐸𝑁𝑆𝑡
𝑙  is converted into its 

piecewise linear approximation for each interval l with the following constraints:  

• The approximation of Committed Capacity in period t: 

𝐶𝐶𝑡 = ∑ 𝑥𝑏𝑙𝑡
𝑙  𝜆𝑏𝑙𝑡

𝑙

|𝐵𝑡
𝑙|

𝑏𝑙=1

    ∀𝑙                                          (4. 62) 

• The approximation of Expected Energy Not Served for interval l in period t: 

𝐸𝐸𝑁𝑆𝑡
𝑙 = ∑ 𝑦𝑏𝑙𝑡

𝑙  𝜆𝑏𝑙𝑡
𝑙

|𝐵𝑡
𝑙|

𝑏𝑙=1

    ∀𝑙                                   (4. 63) 

• The weights in the approximation for interval l in period t should add up to 

1:  

∑ 𝜆𝑏𝑙𝑡
𝑙

|𝐵𝑡
𝑙|

𝑏𝑙=1

= 1    ∀𝑙                                                      (4. 64) 

• Committed capacity can lie on one of the segments in the approximation for 

interval l in period t: 

∑ 𝑣𝑒𝑙𝑡
𝑙

|𝐸𝑡
𝑙|

𝑒𝑙=1

= 1    ∀𝑙                                                        (4. 65) 

• As shown in Section 4.2.3, there is a concave relationship between 𝐶𝐶𝑡 and 

𝐸𝐸𝑁𝑆𝑡
𝑙 . Since we are implicitly trying to minimize the cost of 𝐸𝐸𝑁𝑆𝑡

𝑙, we 

need to define the following set of constraints to satisfy the adjacency 

criterion (at most two adjacent weights can be non-zero) in the piecewise 

linear approximation for interval l in period t: 

[

𝜆1𝑡
𝑙

⋮
𝜆

|𝐵𝑡
𝑙|𝑡

𝑙
] ≤ 𝐶𝑉

|𝐵𝑡
𝑙| 𝑥 |𝐸𝑡

𝑙|
𝑙𝑡  [

𝑣1𝑡
𝑙

⋮
𝑣

|𝐸𝑡
𝑙|𝑡

𝑙
]    ∀𝑙                         (4. 66) 
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• 𝐸𝐸𝑁𝑆𝑡 in period t is found by taking the expected value of 𝐸𝐸𝑁𝑆𝑡
𝑙  over all 

possible net load demand intervals:  

𝐸𝐸𝑁𝑆𝑡 = ∑ 𝑝𝑙

|𝐿|

𝑙=1

𝐸𝐸𝑁𝑆𝑡
𝑙                                             (4. 67) 

 Sign Restrictions of Decision Variables for 𝐸𝐸𝑁𝑆𝑡:  

𝐸𝐸𝑁𝑆𝑡
𝑙 ≥ 0    ∀𝑙                                                         (4. 68) 

𝜆𝑏𝑙𝑡
𝑙 ≥ 0    ∀𝑏𝑙, ∀𝑙                                                       (4. 69) 

𝑣𝑒𝑙𝑡
𝑙 ∈ {0,1}    ∀𝑒𝑙, ∀𝑙                                                 (4. 70) 

Mathematical Model: MIQP II 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+ (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

(4.40), … , (4.49), (4.55), (4.57), (4.58), (4.62), … , (4.70)                                           

4.2.5 Valve Point Loading Effect (VPLE) 

Due to the VPLE, a conventional generating unit has a rippling efficiency curve as 

its power generation level increases; that is, the efficiency of a conventional 

generating unit does not increase monotonically as it is more heavily loaded in 

practice. There are valves that control its fuel consumption rate by using separate 

nozzle groups. Each nozzle group achieves its best efficiency when generating at its 

maximum power output level which is also known as the valve point. As a result, 

when the power generation level is tried to be increased, valves are sequentially 

opened to achieve the highest possible efficiency for a given power generation level. 

This situation causes a rippling effect on the efficiency of a conventional generating 

unit as its fuel consumption rate increases. This rippling effect is demonstrated in 

Figure 4.9 for a steam turbine. Decker et al. (1958) show that a turbine loaded at a 
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valve point is operating with its maximum efficiency at that loading level before the 

next valve opens whereas its efficiency reduces as it is working off a valve point 

until its loading level reaches the next valve point. This is a result of a sudden 

increase in the incremental heat rate because of a rapid increase in the throttling 

losses when an extra valve first opens (Zobaa et al., 2018).  Hence, in a complex 

power system, most of the conventional generating units should generate power 

output at one of their valve points to maximize the power generation efficiency of 

the whole system.  

 

Figure 4.9. Valve Point Loading Effect on Efficiency of a Steam Turbine, Adapted 

from Decker et al. (1958) 

 

 

Mathematical models in Section 4.2.4 somehow ignore this important fact by 

assuming that the efficiency of a conventional generating unit increases 

monotonically with its power generation level. The UCP with valve point loading 

effects brings a change in the fuel cost representation. For this purpose, the convex 

quadratic fuel cost function is superimposed with an absolute sine function; that is, 

the valve point loading part of the fuel cost, with the following modification where 

𝑑𝑖 and 𝑒𝑖 are valve point loading coefficients of unit i:  

𝐹𝐶(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖 𝑃𝑖
2 + |𝑑𝑖 sin(𝑒𝑖 (𝑃𝑖 − 𝑃𝑖

𝑀𝑖𝑛)) |                (4. 71) 
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The absolute sine function models the efficiency reduction beyond the valve points 

by increasing the fuel consumption rate, which causes an absolute sinusoidal 

fluctuation in the convex quadratic fuel cost as shown in Figure 4.10.  

 

Figure 4.10. Fuel Cost Curve with/without Valve Point Loading Effect 

 

 

Because of the valve point loading cost, the objective function becomes non-convex, 

non-smooth and hence hard to solve. To overcome this situation, the absolute sine 

function in the modified fuel cost representation is converted into its multi-area 

piecewise linear equivalent that consists of absolute sine areas 𝐾𝑖
𝑉𝑃 as shown in 

Figure 4.11. The number of areas in the sine approximation for unit i is calculated 

with the following expression:     

|𝐾𝑖
𝑉𝑃| = ⌈𝑒𝑖  

𝑃𝑖
𝑀𝑎𝑥 − 𝑃𝑖

𝑀𝑖𝑛

𝜋
⌉                                           (4. 72) 

It is to be noted that the quality of the multi-area piecewise linear approximation can 

be improved by increasing the number of breakpoints in a sine area. In Figure 4.11, 

the five-point piecewise linear approximation of the valve point loading cost is 

demonstrated with red lines.  
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Figure 4.11. Five Point Piecewise Linear Approximation of the 1st Sine Area of the 

Valve Point Loading Cost 

 

4.2.5.1 Time-decoupled MIQP Formulations with the VPLE 

In our multi-area piecewise linear approximation of the VPLE, we reduce the total 

number of decision variables necessary for the approximation. For this purpose, for 

each conventional generating unit, we define the weight variables of breakpoints and 

binary variables indicating the segments for only the first sine area since there is a 

similar relationship between power generation level and valve point loading cost in 

each area. In other words, for each generating unit, the same sine area of the VPLE 

repeats in every  
𝜋

𝑒𝑖
   power generation level starting from 𝑃𝑖

𝑀𝑖𝑛, so the approximation 

of the first sine area is shifted by 
𝜋

𝑒𝑖
 for the successive sine areas. By reducing the 

total number of decision variables, the total number of constraints required for the 

approximation is also reduced accordingly. As a result, the model size with the VPLE 

becomes more manageable for real power systems with many conventional 

generating units. 

By relaxing the monotonic efficiency increase assumption; accordingly, modifying 

the objective function and the constraint set, the multi-area piecewise linear 
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approximation of the VPLE can be integrated into each mathematical model 

explained in Section 4.2.4. These modifications do not change the model type since 

we are adding valve point loading costs as linear terms into the objective function; 

similarly, additional constraints defined for the piecewise linear approximation of 

the VPLE are also linear. Thus, modified formulations are still MIQP. Different from 

MIQP I and MIQP II, for each conventional generating unit, valve point loading 

costs are now added to the objective function. The power balance constraints, 

minimum/maximum generation limits, the minimum uptime/downtime constraints, 

the ramp-up/ramp-down limits, the reserve allocation and committed capacity 

constraints are modelled in the same way as in MIQP I and MIQP II. Besides, 𝐸𝐸𝑁𝑆𝑡 

can be modelled by using both approximation methods described in Sections 4.2.3. 

Therefore, only modifications for the VPLE are provided in this section, and the 

associated modified models are called as MIQP I-VPLE and MIQP II-VPLE. For 

each period in the planning horizon, the modified formulations are sequentially 

solved to obtain near-optimal schedules for the commitment, generation and reserve 

similarly. 

Sets and Indices 

For the multi-area piecewise linear approximation of VPLE, the following sets are 

defined. 

Additional Sets and Indices for VPLE Approximation: 

𝐾𝑖
𝑉𝑃: Set of sine areas in the multi-area VPLE approximation for unit i 

𝑘𝑖 ∈ 𝐾𝑖
𝑉𝑃: Sine area 𝑘𝑖 in the multi-area VPLE approximation for unit i 

𝐺𝑖: Set of breakpoints in a sine area of the multi-area VPLE approximation for unit i 

𝑔𝑖 ∈ 𝐺𝑖: Breakpoint 𝑔𝑖 in a sine area of the multi-area VPLE approximation for unit 

i 

𝐻𝑖: Set of segments in a sine area of the multi-area VPLE approximation for unit i 

∋ |𝐻𝑖| = |𝐺𝑖| − 1 

ℎ𝑖 ∈ 𝐻𝑖: Segment ℎ𝑖 in a sine area of the multi-area VPLE approximation for unit i 
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Parameters 

For the multi-area piecewise linear approximation of VPLE, the following 

parameters are defined. 

Additional Parameters for VPLE Approximation: 

𝑑𝑖, 𝑒𝑖: Valve point loading cost coefficients of unit i ($ and MW, respectively) 

𝑥𝑔𝑖𝑖
𝑉𝑃: Power generation level of unit i at breakpoint 𝑔𝑖 in the VPLE approximation 

(MW): 

𝑥𝑔𝑖𝑖
𝑉𝑃 = 𝑃𝑖

𝑀𝑖𝑛 + (𝑔𝑖 − 1)
𝜋

|𝐺𝑖|𝑒𝑖
                                          (4. 73) 

𝑦𝑔𝑖𝑖
𝑉𝑃: Valve point loading cost of unit i at breakpoint 𝑔𝑖 in the VPLE approximation 

($): 

𝑦𝑔𝑖𝑖
𝑉𝑃 = |𝑑𝑖 sin (𝑒𝑖 (𝑥𝑔𝑖𝑖

𝑉𝑃 − 𝑃𝑖
𝑀𝑖𝑛))|                                  (4. 74) 

𝐶𝑀𝑔𝑖ℎ𝑖

𝑖 : |𝐺𝑖| 𝑥 |𝐻𝑖| coverage matrix for adjacent breakpoints on each segment in the 

VPLE approximation for unit i: 

 

 

Decision Variables 

For the multi-area piecewise linear approximation of VPLE, the following variables 

are defined. 

Additional Variables for VPLE Approximation: 

𝑉𝑃𝑖𝑡: Valve point loading cost of unit i in period t  

𝛿𝑘𝑖𝑖𝑡
𝑉𝑃 : Sine area 𝑘𝑖 that 𝑃𝑖𝑡 lies on the VPLE approximation for unit i in period t:  

 

 

 

𝑤𝑔𝑖𝑖𝑡: Weight of breakpoint 𝑔𝑖 on the VPLE approximation for unit i in period t 

𝜑ℎ𝑖𝑖𝑡: Segment ℎ𝑖 that 𝑃𝑖𝑡 lies on the VPLE approximation for unit i in period t: 

 

𝐶𝑀𝑔𝑖ℎ𝑖

𝑖 =  
1   if   𝑔𝑖 = ℎ𝑖  𝑎𝑛𝑑 𝑔𝑖 = ℎ𝑖 + 1 in period 𝑡 

0   otherwise 

(4.75) 

𝛿𝑘𝑖𝑖𝑡
𝑉𝑃 =  

1  if   𝑃𝑖𝑡 lies on sine area 𝑘𝑖 for unit 𝑖 in period 𝑡  

0  otherwise 

(4.76) 
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Objective Function 

By adding valve point loading costs to the objective function defined in MIQP Model 

I in Section 4.2.4, the modified objective function becomes: 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑉𝑃𝑖𝑡 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+ (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡)   (4. 78) 

Constraints 

Sine Area Identification Constraints: If unit i generates power in period t, then 𝑃𝑖𝑡 

should lie on sine area 𝑘𝑖 and produce within the power generation range of that area 

in that period: 

𝑃𝑖𝑡 ≥ 𝑃𝑖
𝑀𝑖𝑛 + (𝑔𝑖 − 1)

𝜋

𝑒𝑖
+ 𝑚2(1 − 𝛿𝑘𝑖𝑖𝑡

𝑉𝑃 )    ∀𝑘𝑖, ∀𝑖                   (4. 79) 

where 𝑚2 is a very small number denoting lower bounds for Sine Area Identification 

Constraints. 

𝑃𝑖𝑡 ≤ 𝑃𝑖
𝑀𝑖𝑛 + 𝑔𝑖

𝜋

𝑒𝑖
+ 𝑀3(1 − 𝛿𝑘𝑖𝑖𝑡

𝑉𝑃 )    ∀𝑘𝑖, ∀𝑖                              (4. 80) 

where 𝑀3 is a very large number denoting upper bounds for Sine Area Identification 

Constraints. 

Piecewise Linear Approximation Constraints for VPLE: For unit i, the absolute 

sinusoidal relationship between 𝑃𝑖𝑡 and 𝑉𝑃𝑖𝑡 is converted into its multi-area 

piecewise linear approximation with the following constraints:  

• The approximation of power generation level of unit i in period t: 

𝜑ℎ𝑖𝑖𝑡 =  
1  if   𝑃𝑖𝑡 lies on segment ℎ𝑖 for unit 𝑖 in period 𝑡  

0  otherwise 

(4.77) 
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𝑃𝑖𝑡 − ∑ (𝑘𝑖 − 1)
𝜋

𝑒𝑖
𝛿𝑘𝑖𝑖𝑡

𝑉𝑃

|𝐾𝑖|

𝑘𝑖=1

= ∑ 𝑥𝑔𝑖𝑖
𝑉𝑃  𝑤𝑔𝑖𝑖𝑡

|𝐺𝑖|

𝑔𝑖=1

    ∀𝑖                (4. 81) 

• The approximation of valve point loading cost of unit i in period t: 

𝑉𝑃𝑖𝑡 = ∑ 𝑦𝑔𝑖𝑖
𝑉𝑃 𝑤𝑔𝑖𝑖𝑡

|𝐺𝑖|

𝑔𝑖=1

    ∀𝑖                                     (4. 82) 

• If unit i is committed in period t, then 𝑃𝑖𝑡 should lie on one of the sine areas 

in that period:  

∑ 𝛿𝑘𝑖𝑖𝑡
𝑉𝑃

|𝐾𝑖|

𝑘𝑖=1

= 𝑢𝑖𝑡     ∀𝑖                                                  (4. 83) 

• If unit i is committed in period t, then 𝑃𝑖𝑡 should lie on one of the sine areas; 

accordingly, the sum of weights should be equal to one in the approximation 

for unit i in that period: 

∑ 𝑤𝑔𝑖𝑖𝑡

|𝐺𝑖|

𝑔𝑖=1

= ∑ 𝛿𝑘𝑖𝑖𝑡
𝑉𝑃

|𝐾𝑖|

𝑘𝑖=1

    ∀𝑖                                     (4. 84) 

• If unit i is committed in period t, then 𝑃𝑖𝑡 should lie on one of the sine areas; 

accordingly, it should lie on one of the segments in the approximation for 

unit i in that period: 

∑ 𝜑ℎ𝑖𝑖𝑡

|𝐻𝑖|

ℎ𝑖=1

= ∑ 𝛿𝑘𝑖𝑖𝑡
𝑉𝑃

|𝐾𝑖|

𝑘𝑖=1

    ∀𝑖                                    (4. 85) 

• There is a concave relationship between 𝑃𝑖𝑡 and 𝑉𝑃𝑖𝑡. Since we are trying to 

minimize valve point loading cost (𝑉𝑃𝑖𝑡), we need to define the following set 

of constraints to satisfy the adjacency criterion (at most two adjacent weights 

can be non-zero) in the piecewise linear approximation for unit i in period t: 
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[

𝑤1𝑖𝑡

⋮
𝑤|𝐺𝑖|𝑖𝑡

] ≤ 𝐶𝑀|𝐺𝑖| 𝑥 |𝐻𝑖|
𝑖  [

𝜑1𝑖𝑡

⋮
𝜑|𝐻𝑖|𝑖𝑡

]    ∀𝑖                 (4. 86) 

 

Sign Restrictions of Decision Variables for 𝑉𝑃𝐿𝐸:  

𝑉𝑃𝑖𝑡 ≥ 0    ∀𝑖                                                           (4. 87) 

𝑤𝑔𝑖𝑖𝑡 ≥ 0    ∀𝑔𝑖, ∀𝑖                                                  (4. 88) 

𝜑ℎ𝑖𝑖𝑡 ∈ {0,1}    ∀ℎ𝑖 , ∀𝑖                                           (4. 89) 

𝛿𝑘𝑖𝑖𝑡
𝑉𝑃 ∈ {0,1}    ∀𝑘𝑖, ∀𝑖                                           (4. 90) 

 

Mathematical Model: MIQP I-VPLE 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑉𝑃𝑖𝑡 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+ (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

(4.40), … , (4.59), (4.79), … , (4.90)                                                                                    

 

Mathematical Model: MIQP II-VPLE 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑉𝑃𝑖𝑡 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+ (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

(4.40), … , (4.49), (4.55), (4.57), (4.58), (4.62), … , (4.70), (4.79), … , (4.90)         
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4.3 Computational Study 

The proposed time-decoupled MIQP formulations are coded in MATLAB 

programming language and solved via CPLEX for MATLAB toolbox provided by 

IBM ILOG CPLEX Optimizer 12.9.0. The model is executed in Windows 10 

environment in a Lenovo ultrabook with Intel(R) Core (TM) i7-6500U 2.6 GHz CPU 

and 8 GB RAM. Numerical experiments on the performance of the approaches are 

conducted by using a set of three problem instances of IEEE which are explained in 

detail in the subsequent sections. First of all, two EENS approximations are 

compared for the case without the VPLE. Then, test and sensitivity analysis results 

are provided for the cases with/without the VPLE. Lastly, our time-decoupled 

stochastic MIQP formulations are compared with the UCP formulations enforcing 

traditional deterministic reserve policies for both UCP variants with/without the 

VPLE.   

4.3.1 Problem Instances 

To conduct numerical experiments, the time-decoupled MIQP models are applied to 

IEEE 24-bus, 30-bus problem instances and its duplicated version by considering 

significant wind penetration with six wind farms. For each instance, the ramp rate 

limits are set to be 20% of the unit’s maximum power output limit. The reliability of 

the power system is modelled via ORR of each conventional unit. The load demand 

forecast errors are assumed to follow Normal distribution with zero mean and a 

variance 0.09% of the expected load demand for each period. Similarly, wind power 

forecast errors in each wind farm are also assumed to follow Normal distribution 

with zero mean and a variance ranging from 1% and 12.25% of the expected wind 

power. To illustrate, the standard deviation factors are set to be 3%, 2.5%, 2%, 1%, 

3.5% and 1.5% of the expected wind power in each wind farm, respectively. To 

model the dependencies in wind power generation within a wind farm and between 

wind farms, the associated correlation coefficients are taken as 0.3 and 0.2, 
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respectively. The reserve cost of each conventional unit is assumed to be a function 

of the reserve rate which is taken as 10% of its highest marginal fuel cost. To 

calculate the cost of 𝐸𝐸𝑁𝑆𝑡, VOLL is set as 1750 $/MWh for each period.  

Problem Instance 1 

This problem instance consists of 24-bus with 26 conventional thermal units and 6 

wind farms. The hydro generating units in the original configuration are ignored. The 

length of the scheduling horizon is 24 hours. In each wind warm, there are 70 wind 

turbines, each with a capacity of 1.5 MW.    

The conventional unit related data for IEEE 24-bus reliability test system are 

provided in Table 4.2. Load demand and wind power forecasts of the system over 24 

hours are provided in Table 4.3. 

Table 4.2. Conventional Unit Related Data for IEEE 24-bus Problem Instance 

 

 

 

 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit10 

𝑷𝒊
𝑴𝒂𝒙 (𝑴𝑾) 

 

12 12 12 12 12 20 20 20 20 76 

𝑷𝒊
𝑴𝒊𝒏 (𝑴𝑾) 2.4 2.4 2.4 2.4 2.4 4 4 4 4 15.2 

𝒂𝒊 ($) 24.3891 24.411 24.6382 24.7605 24.8882 117.7551 118.1083 118.4576 118.8206 81.1364 

𝒃𝒊($/𝑴𝑾) 25.5472 25.6753 25.8027 25.9318 26.0611 37.551 37.6637 37.777 37.8896 13.3272 

𝒄𝒊 ($/𝑴𝑾𝟐) 0.02533 0.02649 0.02801 0.02842 0.02855 0.01199 0.01261 0.01359 0.01433 0.00876 

𝒅𝒊 ($) - - - - - - - - - - 

𝒆𝒊 (𝑴𝑾) - - - - - - - - - - 

𝑻𝑴𝒊𝒏,𝒊
𝒐𝒏  (𝒉) 0 0 0 0 0 0 0 0 0 3 

𝑻𝑴𝒊𝒏,𝒊
𝒐𝒇𝒇

 (𝒉) 0 0 0 0 0 0 0 0 0 2 

𝑺𝒊
𝑯($) 0 0 0 0 0 33.33562 33.33562 33.33562 33.33562 76.73219 

𝑺𝒊
𝑪 ($) 0 0 0 0 0 39.79139 39.79139 39.79139 39.79139 98.33637 

𝑻𝒄,𝒊 (𝒉) 1 1 1 1 1 3 3 3 3 2 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐒𝐭𝐚𝐭𝐮𝐬 (𝐡) -1 -1 -1 -1 -1 -1 -1 -1 -1 3 

𝑶𝑹𝑹𝒊 0.00034 0.00034 0.00034 0.00034 0.00034 0.002222 0.002222 0.002222 0.002222 0.00051 
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Table 4.3. Hourly Load Demand and Wind Power Forecasts for IEEE 24-bus 

Problem Instance 

 

Problem Instance 2 

This problem instance consists of 30-bus with 6 conventional thermal units and 6 

wind farms. The length of the scheduling horizon is 24 hours. In each wind warm, 

there are 15 wind turbines, each with a capacity of 1.5 MW.    

The conventional unit related data for IEEE 30-bus test system are provided in Table 

4.4. Load demand and wind power forecasts of the system over 24 hours are provided 

in Table 4.5. 

Table 4.4. Conventional Unit Related Data for IEEE 30-bus Problem Instance 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

𝑷𝒊
𝑴𝒂𝒙 (𝑴𝑾) 

 

120 110 700 500 550 210 

𝑷𝒊
𝑴𝒊𝒏 (𝑴𝑾) 30 20 130 100 120 45 

𝒂𝒊 ($) 2200 2400 6500 930.5 900 130.2 

𝒃𝒊($/𝑴𝑾) 12 15 11 20 15 20,5 

𝒄𝒊 ($/𝑴𝑾𝟐) 0.003 0.002 0.0022 0.0032 0.002 0.004125 

𝒅𝒊 ($) 200 300 400 150 100 80 

𝒆𝒊 (𝑴𝑾) 0.08 0.04 0.04 0.06 0.08 0.1 

𝑻𝑴𝒊𝒏,𝒊
𝒐𝒏  (𝒉) 5 4 6 4 4 3 

𝑻𝑴𝒊𝒏,𝒊
𝒐𝒇𝒇

 (𝒉) 5 3 4 3 3 4 

𝑺𝒊
𝑯($) 500 360 2250 3600 3300 2230 

𝑺𝒊
𝑪 ($) 900 780 4800 7000 6600 4200 

𝑻𝒄,𝒊 (𝒉) 1 1 2 3 3 2 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐒𝐭𝐚𝐭𝐮𝐬 (𝐡) -5 -6 1 1 -1 -1 

𝑶𝑹𝑹𝒊 0.00511 0.00222 0.00034 0.000104 0.000105 0.00433 

𝐇𝐨𝐮𝐫 1 2 3 4 5 6 7 8 9 10 11 12 

𝐃𝐞𝐦𝐚𝐧𝐝 (𝐌𝐖) 1950 1980 1940 1950 2000 2100 2250 2680 2790 2850 2920 2840 

𝐖𝐢𝐧𝐝 𝐏𝐨𝐰𝐞𝐫(𝐌𝐖) 454.8 422.2 407.3 403.9 379.4 362.9 377.8 433.7 420.2 369.7 358.6 420.2 

𝐇𝐨𝐮𝐫 13 14 15 16 17 18 19 20 21 22 23 24 

𝐃𝐞𝐦𝐚𝐧𝐝 (𝐌𝐖) 2840 2800 2870 2900 2800 2780 2750 2800 2850 2730 2450 2090 

𝐖𝐢𝐧𝐝 𝐏𝐨𝐰𝐞𝐫(𝐌𝐖) 405 428.7 362 237.3 339.7 305.3 289 208.9 225.3 183.6 140.6 165.5 
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Table 4.5. Hourly Load Demand and Wind Power Forecasts for IEEE 30-bus 

Problem Instance 

 

Problem Instance 3 

This problem instance is obtained by appropriately scaling Problem Instance 2. For 

this purpose, conventional generating units are replicated two times to form the 12-

Unit problem instance. Also, capacities of wind turbines in each wind farm, load 

demand and wind power forecasts are doubled. 

4.3.2 Comparison of the Proposed EENS Approximation Methods 

In our time-decoupled approach, we propose two approximation methods for 𝐸𝐸𝑁𝑆𝑡 

as explained in Section 4.2.3. The time-decoupled stochastic MIQP models using 

these approximations (MIQP I and MIQP II) are implemented to IEEE 24-bus and 

30-bus problem instances without the VPLE. Their performances are compared for 

both instances in terms of model sizes such as required variables and constraints, 

solution qualities and computing times. 

Table 4.6. Overall Performance Comparison of 𝐸𝐸𝑁𝑆𝑡 Approximation Methods I 

and II for IEEE 24-bus Problem Instance 

 
Approximation I Approximation II 

Total Operating Cost ($) 722,482.5 723,743.2 

Total EENS (MWh) 11.24 11.18 

Computing Time (min) 2.5 34.2 

 

As it is shown in Table 4.6, both approximation methods yield similar results for 

total EENS and total operating costs for Problem Instance 1 consisting of 26 

𝐇𝐨𝐮𝐫 1 2 3 4 5 6 7 8 9 10 11 12 

𝐃𝐞𝐦𝐚𝐧𝐝 (𝐌𝐖) 859 757 683 647 638 667 819 991 1177 1359 1609 1760 

𝐖𝐢𝐧𝐝 𝐏𝐨𝐰𝐞𝐫(𝐌𝐖) 44 73 69 76 91 84 92 86 13 44 65 62,9 

𝐇𝐨𝐮𝐫 13 14 15 16 17 18 19 20 21 22 23 24 

𝐃𝐞𝐦𝐚𝐧𝐝 (𝐌𝐖) 1850 1883 1809 1728 1753 1769 1782 1713 1543 1331 1138 962 

𝐖𝐢𝐧𝐝 𝐏𝐨𝐰𝐞𝐫(𝐌𝐖) 59 58 43,2 27 3 6 7 11 7 43 54 61 
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conventional units. It is an indication that both methods are comparable in terms of 

overall solution qualities. However, approximation II requires more computing time 

than approximation I since 𝐸𝐸𝑁𝑆𝑡 values are calculated for each net load demand 

interval, which in return increases the evaluation of unit combinations in the 

associated 𝐸𝐸𝑁𝑆𝑡 breakpoints. As a result of separate calculations of 𝐸𝐸𝑁𝑆𝑡 values, 

the model size of approximation II increases with the inclusion of additional 

variables and constraints, especially binary variables and equality constraints, which 

makes the model more complex and complicated as demonstrated in Table 4.7. 

Consequently, approximation II inherently needs more time for computations. 

Table 4.7. Model Sizes with 𝐸𝐸𝑁𝑆𝑡 Approximation Methods I and II for IEEE 24-

bus Problem Instance over a 24-h Scheduling Horizon 

 
Approximation I Approximation II 

Binary Variables 723 1308 

Continuous Variables 1419 2292 

Inequality Constraints 3915 4644 

Equality Constraints 154 724 

 

 

Figure 4.12. Comparison of Hourly Committed Capacities and Reserves in IEEE 24-

bus Problem Instance for 𝐸𝐸𝑁𝑆𝑡 Approximation Methods I and II 
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When these approximation methods are examined further, it is observed that models 

using approximation I and II give similar hourly schedules although the first one is 

a little bit more conservative than the second one by committing more capacity and 

holding additional reserves. This relationship is illustrated in Figure 4.12 where CC 

I and CC II denote hourly committed capacities, and RSV I and RSV II indicate 

hourly reserves for approximation methods I and II respectively. According to Figure 

4.12, for 71% of the time, committed capacities and reserves in approximation I are 

greater than or equal to the ones in approximation II, but they are approximately the 

same in general. 

Similar analyses are also carried out for IEEE 30-bus problem instance which 

contains 6 conventional units. Different from Problem Instance 1, approximation I 

yields results with lower total EENS and total operating costs for Problem Instance 

2 as it is shown in Table 4.8. The reason is that the model with approximation I 

behaves more conservatively for small-sized systems when compared to systems 

with moderate and large sizes. Hence, it commits more units for time periods with 

higher net load demands. Similar to Problem Instance 1, approximation II requires 

more calculation time than approximation I. Another reason is that the model size of 

approximation II increases by including additional variables and constraints, 

especially binary variables and equality constraints, which complicates the model as 

reported in Table 4.9. Since the problem size is relatively small for Problem Instance 

2, both methods are implementable in terms of computing times though 

approximation I is faster than approximation II as illustrated in Table 4.8. 

Table 4.8. Overall Performance Comparison of 𝐸𝐸𝑁𝑆𝑡 Approximation Methods I 

and II for IEEE 30-bus Problem Instance 

 
Approximation I Approximation II 

Total Operating Cost ($) 707,604.1 751,779.1 

Total EENS (MWh) 13.94 21.18 

Computing Time (sec) 1.9 11.3 
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Table 4.9. Model Sizes with 𝐸𝐸𝑁𝑆𝑡 Approximation Methods I and II for IEEE 30-

bus Problem Instance over a 24-h Scheduling Horizon 

 
Approximation I Approximation II 

Binary Variables 214 635 

Continuous Variables 430 1139 

Inequality Constraints 1006 1571 

Equality Constraints 159 734 

 

When these approximation methods are examined for each time period, it is observed 

that models using approximation methods I and II give more conservative hourly 

schedules. As depicted in Figure 4.13, committed capacities and reserves in 

approximation I are greater than or equal to the ones in approximation II for 14 out 

of 24 time periods. When compared to schedules for Problem Instance 1, there are 

more fluctuations in both committed capacities and reserves for Problem Instance 2. 

However, it should be emphasized that both methods give the same schedules for 

time periods with larger net load demands. 

 

Figure 4.13. Comparison of Hourly Committed Capacities and Reserves in IEEE 30-

bus Problem Instance for 𝐸𝐸𝑁𝑆𝑡 Approximation Methods I and II 

 

 

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M
W

Time Periods (hours)

CC I CC II RSV I RSV II



 

 

122 

According to these analyses, models with approximation methods I and II have 

similar performances in terms of solution qualities for real-sized wind integrated 

hybrid power systems. For small-sized systems, schedules obtained by these 

methods slightly differ for time periods having small net load requirements whereas 

they are comparable for heavily loaded periods. The reason of this difference is that 

𝐸𝐸𝑁𝑆𝑡 values are calculated by failure combinations with less units as the problem 

size decreases. Nevertheless, it is not the case for the large power systems with 

conventional units. Therefore, these approximation methods can be used 

interchangeably for large systems in terms of intended solution quality. However, 

approximation II is more computationally intensive due to the associated 𝐸𝐸𝑁𝑆𝑡 

calculations especially for large-scaled problems. Because of these reasons, 

approximation I is preferred for the 𝐸𝐸𝑁𝑆𝑡 approximations in our MIQP models with 

and without the VPLE. Hence, in the subsequent sections, approximation I is used 

for the sensitivity analyses of the proposed time-decoupled approaches (MIQP I and 

MIQP I-VPLE) and their comparisons with traditional deterministic reserve policies. 

4.3.3 Sensitivity Analysis Results 

Sensitivity analysis is a necessary part of the mathematical modelling because of 

several reasons. The first one is that model parameters might change through time. 

The second one is estimating some of the parameters may be very difficult; as a 

result, they are forecasted or estimated with common sense. Hence, it is important to 

assess how those changes can affect the solution. This can be done very easily for 

LP models by using sensitivity reports obtained by optimization packages like 

GAMS or LINDO. However, it is not that straightforward for mixed integer and 

nonlinear programming models, so the sensitivity is usually tested by solving them 

with different parameter values. For this reason, we examine the sensitivity of the 

solutions of time-decoupled models MIQP I and MIQP I-VPLE by changing 

parameters one at a time; accordingly, solving them with the updated parameter 

value. Those parameters include 𝑉𝑂𝐿𝐿, load demand and wind speed forecast errors, 



 

 

123 

reserve costs and failure rates of conventional generating units since these are 

introduced to replace traditional deterministic reserve polices for the UCP. Their 

effects on the solution are discussed in the following sections. Firstly, the sensitivity 

analysis of the model MIQP I is carried out for IEEE 24-bus problem instance. 

Secondly, similar analysis is made for the model MIQP I-VPLE by implementing it 

to IEEE 30-bus problem instance.     

4.3.3.1 Results for the Model MIQP I 

The time-decoupled stochastic model MIQP I is implemented to IEEE 24-bus 

problem instance for different values of an associated parameter. First of all, the 

effect of 𝑉𝑂𝐿𝐿 on spinning reserves (𝑆𝑅𝑡) and 𝐸𝐸𝑁𝑆𝑡 is determined by increasing 

𝑉𝑂𝐿𝐿 by 750 $/MWh starting from 1750 $/MWh.  

In Table 4.10, the total cost of the system and its breakdown under different 𝑉𝑂𝐿𝐿 

values are summarized. It is observed that the total operating cost increases as the 

𝑉𝑂𝐿𝐿 increases. 

Table 4.10. Total Operating Cost under Different 𝑉𝑂𝐿𝐿 Values for IEEE 24-bus 

Problem Instance 

VOLL ($/MWh) 1750 2500 3250 4000 

Expected Cost of EENS ($) 19,683.5 20,116.4 19,945.6 23,846.7 

Generation & Reserve Cost ($) 702,799.0 710,282.5 714,914.0 715,583.4 

Total Operating Cost ($) 722,482.5 730,398.9 734,859.6 739,430.1 

 

In Figure 4.14, 𝑆𝑅𝑡 values differ significantly for the smallest and the largest 𝑉𝑂𝐿𝐿 

values since the trade-off between generating cost, reserve cost and expected cost of 

EENS averts from the side of load shedding to the side of additional reserves as 

𝑉𝑂𝐿𝐿 increases. As a result, 𝑆𝑅𝑡 level increases. It should also be emphasized that 

SR values do not change much for time periods with low net load intensity when 

𝑉𝑂𝐿𝐿 is 2500 $/MWh, 3250 $/MWh and 4000 $/MWh. As a matter of fact, the 

overall reserve schedules are almost the same for 𝑉𝑂𝐿𝐿 of 3250 $/MWh and 4000 
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$/MWh. This is an indicator that the compromise solution is not affected much when 

𝑉𝑂𝐿𝐿 is greater than 3250 $/MWh. Similar but inverse relationship is valid for 

𝐸𝐸𝑁𝑆𝑡 under different 𝑉𝑂𝐿𝐿 values. 𝐸𝐸𝑁𝑆𝑡 values decrease as more reserves are 

committed (Figure 4.15). 

 

Figure 4.14. Relationship between 𝑉𝑂𝐿𝐿 and 𝑆𝑅𝑡 for IEEE 24-bus Problem Instance 

 

 

Figure 4.15. Relationship between 𝑉𝑂𝐿𝐿 and 𝐸𝐸𝑁𝑆𝑡 for IEEE 24-bus Problem 

Instance 
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Secondly, we examine how changes in wind forecast errors affect the compromise 

solution. For this purpose, 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡 values are plotted in Figures 4.16 and 

4.17 for different scaling factors. It is observed that 𝑆𝑅𝑡 values do not change for 

time periods with high net load intensity as wind power forecast errors increase. 

Nevertheless, the 𝑆𝑅𝑡 values slightly change in time periods with low net load 

intensity as illustrated in Figure 4.16. That is, the effect of wind speed forecast errors 

on the trade-off between generating cost, reserve cost and expected cost of load 

shedding is not critical when net load demands are satisfied by using much of the 

installed conventional generation capacity. 

 

Figure 4.16. Relationship between Wind Speed Forecast Errors and 𝑆𝑅𝑡 for IEEE 

24-bus Problem Instance 

 

 

Even though decisions on 𝑆𝑅𝑡 do not change significantly with an increase in wind 

speed forecast errors, 𝐸𝐸𝑁𝑆𝑡 values increase as shown in Figure 4.17, which is due 

to increasing uncertainty of the overall power system with more error-prone wind 

power forecasts. 
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Figure 4.17. Relationship between Wind Speed Forecast Errors and 𝐸𝐸𝑁𝑆𝑡 for IEEE 

24-bus Problem Instance 

 

 

The total operating cost and its breakdowns under different wind speed errors are 

reported in Table 4.11. It is observed that the total operating cost increases as wind 

speed errors increase. 

Table 4.11. Total Operating Cost under Different Wind Speed Forecast Errors for 

IEEE 24-bus Problem Instance 

Scale of Wind Speed Error  x1 x2 x3 x4 

Expected Cost of EENS ($) 19,683.5 20,979.3 26,947.2 46,599.7 

Generation & Reserve Cost ($) 702,799.0 702,004.3 702,062.8 702,133.4 

Total Operating Cost ($) 722,482.5 722,983.6 729,010.0 748,733.1 

 

Thirdly, we investigate the sensitivity of the solution for different load demand 

forecast errors. The results are similar to the ones under different wind speed forecast 

errors. SR decisions are not sensitive to changes in load demand forecast errors for 

time periods with high net load intensity whereas 𝐸𝐸𝑁𝑆𝑡 values increase with high 

load demand forecast errors as shown in Figures 4.18 and 4.19. 
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Figure 4.18. Relationship between Load Demand Forecast Errors and 𝑆𝑅𝑡 for IEEE 

24-bus Problem Instance 

 

Figure 4.19. Relationship between Load Demand Forecast Errors and 𝐸𝐸𝑁𝑆𝑡 for 

IEEE 24-bus Problem Instance 

 

 

Similarly, total operating cost increases with high load demand forecast errors. Its 

breakdown is provided in Table 4.12. 
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Table 4.12. Total Operating Cost under Different Load Demand Forecast Errors for 

IEEE 24-bus Problem Instance 

Load Forecast Errors  1% 3% 5% 7% 

Expected Cost of EENS ($) 16,431.7 19,683.5 24,076.1 29,321.7 

Generation & Reserve Cost ($) 704,377.3 702,799.0 702,004.3 702,062.8 

Total Operating Cost ($) 720,809.0 722,482.5 726,080.4 731,384.5 

  

Another important parameter in our approach is incremental reserve cost of a 

conventional generating unit. To see its effects on total cost, 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡, reserve 

rates are scaled in an increasing order. As the reserve rates increase, the total 

operating cost also increases as shown in Table 4.13. That is because charging higher 

incremental reserve costs makes 𝑆𝑅𝑡 more expensive, which in return increases total 

EENS since there is an inverse relationship between 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡.   

Table 4.13. Total Operating Cost under Different Incremental Reserve Rates for 

IEEE 24-bus Problem Instance 

Scale of Reserve Rates  x1 x2 x3 

Expected Cost of EENS ($) 19,683.5 24,148.5 43,110.8 

Generation & Reserve Cost ($) 702,799.0 712,378.7 707,318.3 

Total Operating Cost ($) 722,482.5 736,527.2 750,429.1 

 

As demonstrated in Figure 4.20, 𝑆𝑅𝑡 values are very sensitive to changes in 

incremental reserve rates especially in time periods where net load intensity is low. 

This is not the case for time periods with high net load intensity when scales of 

reserves are between 1 and 2. For such periods, it may be tolerable to increase reserve 

rates up to the scale of 2 without changing 𝑆𝑅𝑡 decisions much. Nevertheless, there 

is a similar but inverse relationship for 𝐸𝐸𝑁𝑆𝑡 values under different incremental 

reserve rates as shown in Figure 4.21. Since the cost of holding an extra reserve 

increases, less reserves are committed; accordingly, 𝐸𝐸𝑁𝑆𝑡 values increase in 

general. When the scale factor is hold between 1 and 2, 𝐸𝐸𝑁𝑆𝑡 values do not change 

for time periods in which the net load intensity is high. When the scale factor is 

greater than 3, the compromise solution definitely changes since trade-off between 
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generating cost, reserve cost and expected cost of EENS averts from the side of 

additional reserves to the side of load shedding. 

 

Figure 4.20. Relationship between Incremental Reserve Rates and 𝑆𝑅𝑡 for IEEE 24-

bus Problem Instance 

 

 

 

Figure 4.21. Relationship between Incremental Reserve Rates and 𝐸𝐸𝑁𝑆𝑡 for IEEE 

24-bus Problem Instance 
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Lastly, we test the sensitivity of the solution by reducing the reliability of the 

conventional power generation system. For this purpose, we double and triple failure 

rates (𝑂𝑅𝑅); accordingly, we solve the model with new system reliabilities. As 

shown in Table 4.14, total operating cost increases as the conventional system 

reliability reduces. That is because increasing uncertainty in conventional generation 

brings additional burden on the generation and reserve costs and expected cost of 

EENS.    

Table 4.14. Total Operating Cost under Different Conventional System Reliability 

for IEEE 24-bus Problem Instance 

Scale of ORR  x1 x2 x3 

Expected Cost of EENS ($) 19,683.5 21,557.8 31,489.9 

Generation & Reserve Cost ($) 702,799.0 715,135.2 716,162.6 

Total Operating Cost ($) 722,482.5 736,693.1 747,652.5 

 

As illustrated in Figure 4.22, the proposed model is sensitive to changes in 𝑂𝑅𝑅 

scales between 1 and 2 since 𝑆𝑅𝑡 values increase substantially. However, this is not 

the case for the changes in 𝑂𝑅𝑅 scale between 2 and 3, so this change might be 

tolerable in terms of 𝑆𝑅𝑡 decisions although there are slight variations in several time 

periods.  

 

Figure 4.22. Relationship between Conventional System Reliability and 𝑆𝑅𝑡 for 

IEEE 24-bus Problem Instance 
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With the reduction in the reliability of the conventional system, 𝐸𝐸𝑁𝑆𝑡 values tend 

to increase as demonstrated in Figure 4.23, which is especially the case for time 

periods with high net load intensity. The reason is that the model fails to commit 

more reserves due to the ramp rate limitations and the available installed capacities 

for some periods in general. This results in higher 𝐸𝐸𝑁𝑆𝑡 values. 

 

Figure 4.23. Relationship between Conventional System Reliability and 𝐸𝐸𝑁𝑆𝑡 for 

IEEE 24-bus Problem Instance 
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speed forecast errors play an important role in periods with low net load intensity, 

but they do not change solutions for other periods.   
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costs, is implemented to IEEE 30-bus problem instance for different values of the 

corresponding parameter. Firstly, the impact of 𝑉𝑂𝐿𝐿 on 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡 is analyzed 

by increasing 𝑉𝑂𝐿𝐿 by 750 $/MWh starting from 1750 $/MWh. 

In Table 4.15, the total cost of the system and its breakdown under different 𝑉𝑂𝐿𝐿 

values are reported. It is observed that increasing 𝑉𝑂𝐿𝐿 directly increases the total 

operating cost of the system. Nonetheless, generation and reserve costs are the same 

for the first three levels of 𝑉𝑂𝐿𝐿 since the corresponding commitment decisions do 

not change. 

Table 4.15. Total Operating Cost under Different 𝑉𝑂𝐿𝐿 Values for IEEE 30-bus 

Problem Instance 

VOLL ($/MWh) 1750 2500 3250 4000 

Expected Cost of EENS ($) 24,304.3 34,720.4 45,136.6 49,626.8 

Generation & Reserve Cost ($) 697,383.4 697,383.4 697,383.4 701,694.4 

Total Operating Cost ($) 721,687.7 732,103.8 742,520.0 751,321.1 

 

In Figure 4.24, 𝑆𝑅𝑡 values differ significantly between the first three levels and the 

highest level of 𝑉𝑂𝐿𝐿. Another important observation is that 𝑆𝑅𝑡 values do not 

change over the horizon when 𝑉𝑂𝐿𝐿 is 1750$/MWh, 2500 $/MWh and 3250 

$/MWh. At first glance, this relationship may seem as counterintuitive since it is 

shown in Section 4.3.3.1 that there is a positive correlation between 𝑆𝑅𝑡 and 𝑉𝑂𝐿𝐿. 

However, the main reason behind these results is the dominant effect of the VPLE 

on the trade-off between total cost components. For the first three levels of 𝑉𝑂𝐿𝐿, 

the same committed capacities are maintained due to the VPLE. With 4000 $/MWh 

of 𝑉𝑂𝐿𝐿, 62.5 percent of the time 𝑆𝑅𝑡 values are greater than or equal to the ones in 

lower 𝑉𝑂𝐿𝐿 values although this margin is 100 percent in the case without the VPLE. 

Thus, we can conclude that the compromise solution is not affected for 𝑉𝑂𝐿𝐿 

between 1750 $/MWh and 3250 $/MWh. Similar but inverse relationship is valid for 

𝐸𝐸𝑁𝑆𝑡 under different 𝑉𝑂𝐿𝐿 values (Figure 4.25). 
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Figure 4.24. Relationship between 𝑉𝑂𝐿𝐿 and 𝑆𝑅𝑡 for IEEE 30-bus Problem Instance 

 

 

Figure 4.25. Relationship between 𝑉𝑂𝐿𝐿 and 𝐸𝐸𝑁𝑆𝑡 Reserve for IEEE 30-bus 

Problem Instance 
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4.27 for different scaling factors. It is observed that 𝑆𝑅𝑡 values over the horizon do 
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and the last two wind speed scales, the cost of the VPLE has a dominant effect on 

the equilibrium point in the trade-off between total cost components.  

 

Figure 4.26. Relationship between Wind Speed Forecast Errors and 𝑆𝑅𝑡 for IEEE 

30-bus Problem Instance 

 

 

 

Figure 4.27. Relationship between Wind Speed Forecast Errors and 𝐸𝐸𝑁𝑆𝑡 for IEEE 

30-bus Problem Instance 
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Different from 𝑆𝑅𝑡 values, 𝐸𝐸𝑁𝑆𝑡 values slightly increase with an increase in wind 

speed forecast errors as shown in Figure 4.27, but the change is not significant for 

time periods with high net load intensity. The total operating cost and its breakdown 

under different wind speed errors are summarized in Table 4.16. It is observed that 

the total operating cost increases as wind speed errors increase. Nevertheless, 

generation and reserve costs do not change for the first two and the last two levels of 

wind speed scales because of the VPLE.   

Table 4.16. Total Operating Cost under Different Wind Speed Forecast Errors for 

IEEE 30-bus Problem Instance 

Scale of Wind Speed Error  x1 x2 x3 x4 

Expected Cost of EENS ($) 24,304.3 25,457.8 24,968.9 32,390.3 

Generation & Reserve Cost ($) 697,383.4 697,383.4 712,876.6 712,876.6 

Total Operating Cost ($) 721,687.7 722,841.2 737,845.5 745,266.9 

 

Thirdly, we examine the sensitivity of the solution for different load demand forecast 

errors. The results are different from the ones under different wind speed forecast 

errors. 𝑆𝑅𝑡 decisions are very sensitive to changes in load demand forecast errors for 

all time periods as illustrated in Figure 4.28. Likewise, 𝐸𝐸𝑁𝑆𝑡 values increase with 

high load demand forecast errors as shown in Figure 4.29.  

 

Figure 4.28. Relationship between Load Demand Forecast Errors and 𝑆𝑅𝑡 for IEEE 

30-bus Problem Instance 
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Figure 4.29. Relationship between Load Demand Forecast Errors and 𝐸𝐸𝑁𝑆𝑡 for 

IEEE 30-bus Problem Instance 

 

 

However, it should also be noted that both 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡 values are the same for 

time periods with high net load intensity and 5% and 7% load demand forecast errors. 

In particular, the cost of expected load shedding overweighs the cost of the VPLE in 

the trade-off between total cost components for different load demand forecast 

errors.  Moreover, total operating cost increases with high load demand forecast 

errors. Its breakdown is provided in Table 4.17. 

Table 4.17. Total Operating Cost under Different Load Demand Forecast Errors for 

IEEE 30-bus Problem Instance 

Load Forecast Errors  1% 3% 5% 7% 

Expected Cost of EENS ($) 20,836.6 24,304.3 25,946.2 25,857.0 

Generation & Reserve Cost ($) 698,242.9 697,383.4 702,245.7 712,876.6 

Total Operating Cost ($) 719,079.5 721,687.7 728,191.9 738,733.6 

 

Another parameter is incremental reserve cost of a conventional generating unit. To 

see its effects on total cost, 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡; reserve rates are scaled in an increasing 

order. As demonstrated in Figure 4.30, 𝑆𝑅𝑡 values are not sensitive to changes in 

incremental reserve rates since the equilibrium point in the trade-off between cost 

components is not affected by marginal reserve costs. This is a result of the VPLE, 
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which is the main determinant on this trade-off. There is a similar relationship for 

𝐸𝐸𝑁𝑆𝑡 values under different incremental reserve rates. Hence, it is tolerable to 

increase reserve rates up to the scale of 3 without changing 𝑆𝑅𝑡 decisions much 

(Figure 4.31). 

 

Figure 4.30. Relationship between Incremental Reserve Rates and 𝑆𝑅𝑡 for IEEE 30-

bus Problem Instance 

 

 

Figure 4.31. Relationship between Incremental Reserve Rates and 𝐸𝐸𝑁𝑆𝑡 for IEEE 

30-bus Problem Instance 
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Although commitment and dispatching decisions are not significantly affected by the 

change in the cost of holding an extra reserve, total reserve costs increase with an 

increase in incremental reserve rates as show in Table 4.18. That is because charging 

higher incremental rates makes the same level of 𝑆𝑅𝑡 more expensive. 

Table 4.18. Total Operating Cost under Different Incremental Reserve Rates for 

IEEE 30-bus Problem Instance 

Scale of Reserve Rates  x1 x2 x3 

Expected Cost of EENS ($) 24,304.3 24,015.6 24,042.3 

Generation & Reserve Cost ($) 697,383.4 705,241.4 712,621.7 

Total Operating Cost ($) 721,687.7 729,256.9 736,664.1 

 

Lastly, we test the sensitivity of the solution by reducing the reliability of the 

conventional power generation system. For this purpose, we double and triple failure 

rates; accordingly, we solve the model with new system reliability. As shown in 

Table 4.19, there is an increase in total operating cost as the conventional system 

becomes less reliable. That is because increasing uncertainty in conventional 

generation brings additional burden on the expected cost of EENS.    

Table 4.19. Total Operating Cost under Different Conventional System Reliability 

for IEEE 30-bus Problem Instance 

Scale of ORR  x1 x2 x3 

Expected Cost of EENS ($) 24,304.3 44,265.9 61,110.5 

Generation & Reserve Cost ($) 697,383.4 697,383.4 690,395.7 

Total Operating Cost ($) 721,687.7 741,649.2 751,506.2 

 

As illustrated in Figure 4.32, the proposed model is not sensitive to changes in ORR 

scales between 1 and 2, so this change might be tolerable for 𝑆𝑅𝑡 decisions. 

However, this is not the case for the changes in ORR scales between 2 and 3. The 

reason is that more units become committed in time periods with high net load 

intensity when failure rates are tripled. 
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Figure 4.32. Relationship between Conventional System Reliability and 𝑆𝑅𝑡 for 

IEEE 30-bus Problem Instance 

 

 

As demonstrated in Figure 4.33, 𝐸𝐸𝑁𝑆𝑡 values tend to increase with the reduction in 

the reliability of the conventional system even if the same committed capacities are 

maintained.  

 

Figure 4.33. Relationship between Incremental Reserve Rates and 𝐸𝐸𝑁𝑆𝑡 for IEEE 

30-bus Problem Instance 
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In particular, the results of sensitivity analyses verify that 𝑉𝑂𝐿𝐿, load demand and 

wind speed forecast errors, and conventional generation reliability have important 

roles in the proposed time-decoupled stochastic model MIQP I-VPLE for IEEE 30-

bus problem instance. Hence, the compromise solution is significantly affected for 

some levels of these parameters. On the other hand, reserve rates have an 

insignificant effect on the solution. Moreover, it is also observed that rippling 

efficiencies of conventional generating units due to the VPLE substantially change 

solution behaviors towards different parameters when compared to the ones without 

the VPLE. 

4.3.4 Comparison with Deterministic Approaches 

The proposed time-decoupled stochastic formulations MIQP I and MIQP I-VPLE 

are compared with traditional UCP formulations in which deterministic reserve 

policies are adopted in order to cope with uncertainties related to conventional 

generation and forecasts of load demand and wind power. The most commonly used 

deterministic policies are traditional, 3.5σ or hybrid approaches. They are imposed 

with the following constraint where 𝑆𝑅𝑡
𝑀𝑖𝑛 denotes the minimum spinning reserve 

requirement in period t: 

𝐶𝐶𝑡 ≥ 𝐷𝑡
𝑓

+ 𝑆𝑅𝑡
𝑀𝑖𝑛    ∀𝑡                                                  (4. 91) 

In the traditional approach, reserves are determined according to |N|-1 contingency 

rules while ignoring variabilities in forecast errors. That is, the amount of reserve in 

a period is calculated by considering the failure case of a conventional generating 

unit and assuming that synchronized failures of two or more units are less likely to 

occur. For this purpose, the minimum reserve in each period is set to be at least the 

available capacity of the largest unit that can be committed in period t. However, this 

reserve requirement may be too conservative when the conventional system 

reliability is high, the forecast errors have smaller standard deviation and 
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socioeconomic value that customers put on the lost load is low. 𝑆𝑅𝑡
𝑀𝑖𝑛 is expressed 

with the following expression: 

𝑆𝑅𝑡
𝑀𝑖𝑛 = max{𝑃𝑖𝑡

𝑀𝑎𝑥}    ∀𝑡                                    (4. 92) 

In the 3.5σ approach, reserves are determined according to the potential imbalances 

in net load forecasts while neglecting failure events in conventional generation. 

Thus, the minimum reserve in each period is set to be 3.5 times the standard deviation 

of net load forecast errors for period t. Nonetheless, this reserve requirement may 

not be sufficient when forecast precision is high, but the conventional system 

reliability is low and socioeconomic value that customers put on the lost load is high. 

𝑆𝑅𝑡
𝑀𝑖𝑛 is expressed with the following expression:  

𝑆𝑅𝑡
𝑀𝑖𝑛 = 3.5𝜎𝑡

𝐷     ∀𝑡                                             (4. 93) 

In the hybrid approach, traditional and 3.5σ approaches are combined as a weighted 

sum in order to consider uncertainties in both conventional generation and forecast 

errors. In this approach, weights are determined according to the judgment and prior 

knowledge of the system operator. In our comparison, we assume that each approach 

is equally important, so 𝑆𝑅𝑡
𝑀𝑖𝑛 is expressed with the following expression: 

𝑆𝑅𝑡
𝑀𝑖𝑛 = [0.5 max{𝑃𝑖𝑡

𝑀𝑎𝑥} + 0.5(3.5𝜎𝑡
𝐷)]    ∀𝑡               (4. 94) 

Those deterministic approaches are also solved in a time-decoupled manner via 

CPLEX for MATLAB toolbox. According to schedules obtained by these 

approaches, their 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡 values are computed by using 𝐸𝐸𝑁𝑆𝑡 

Approximation I as in our MIQP models. Then, their expected costs of load shedding 

and reserve costs are calculated by incurring the same 𝑉𝑂𝐿𝐿 and reserve rates.      

4.3.4.1 Results for the Model MIQP I 

The time-decoupled stochastic model MIQP I and conventional UCP models with 

deterministic reserve criteria are implemented to IEEE 24-bus problem instance. In 

Figure 4.34, committed capacities are compared for proposed and deterministic UCP 
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approaches. The traditional approach yields schedules with the largest 𝐶𝐶𝑡 over all 

periods whereas the 3.5σ approach gives schedules with the smallest 𝐶𝐶𝑡. This is an 

indicator that the former is the most conservative one while the latter is the least 

conservative one. The proposed and hybrid approach are comparable in terms of 

committed capacities over the 24-h scheduling horizon. 𝐶𝐶𝑡 levels in the proposed 

approach ranges between 1853 MW and 2864 MW whereas they are between 1782 

MW and 2905 MW for the hybrid approach. Furthermore, for 66% of the time, the 

proposed approach commits more capacity than that of the hybrid approach because 

of the real trade-off between generation, reserve and 𝐸𝐸𝑁𝑆𝑡 costs over all periods. 

 

Figure 4.34. Comparison of Committed Capacities in the Proposed and Deterministic 

Approaches for IEEE 24-bus Problem Instance 
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to the relationship in 𝐶𝐶𝑡 levels, the traditional approach provides more 𝑆𝑅𝑡 than 

other approaches because of its conservativeness whereas the 3.5σ approach supplies 

less 𝑆𝑅𝑡 than other approaches. When compared to other approaches, the hybrid 

approach supplies 𝑆𝑅𝑡 in a steadier manner, but this stability is not economically 

justified. On the contrary, in the proposed approach, there is a significant fluctuation 
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in 𝑆𝑅𝑡 levels over periods, which are always less than the ones in the traditional 

approach and sometimes less than both 3.5σ and hybrid approaches. That is because 

the proposed approach tries to economically rationalize the provision of additional 

reserves over the abatement in 𝐸𝐸𝑁𝑆𝑡. 

 

Figure 4.35. Comparison of Reserves in the Proposed and Deterministic Approaches 

for IEEE 24-bus Problem Instance 

 

 

In addition, both proposed and deterministic approaches are compared in terms of 

𝐸𝐸𝑁𝑆𝑡 levels over the 24-h scheduling horizon as illustrated in Figure 4.36. As 

expected, a similar but inverse relationship is valid for 𝐸𝐸𝑁𝑆𝑡 levels. As a result of 

the conservative nature of the traditional approach, 𝐸𝐸𝑁𝑆𝑡 levels are usually less 

than or equal to the ones in other approaches. It is followed by the proposed, hybrid 

and 3.5σ approaches in increasing order. Nevertheless, for the deterministic policies, 

𝐸𝐸𝑁𝑆𝑡 levels are steadier than those for the proposed approach, which is also the 

result of the real trade-off between generation, reserve and 𝐸𝐸𝑁𝑆𝑡 costs. 

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

SR
t
(M

W
)

Time Periods (h)

Proposed Approach Traditional Approach

3.5σ Approach Hybrid Approach



 

 

144 

 

Figure 4.36. Comparison of 𝐸𝐸𝑁𝑆𝑡 levels in the Proposed and Deterministic 

Approaches for IEEE 24-bus Problem Instance 

 

 

According to Table 4.20, the proposed approach outperforms deterministic 

approaches in terms of total operating costs including socioeconomic value of the 

lost load and reserve rates.  

Table 4.20. Comparison of Total Operating Costs in the Proposed and Deterministic 

Approaches for IEEE 24-bus Problem Instance 

Approaches Proposed Traditional 3.5σ Hybrid 

Total Operating Cost ($) 722,482.5 726,596.0 730,981.5 727,215.5 

 

When total operating costs are divided into two components, namely the expected 

cost of load shedding (EENS), and generation and reserve costs as illustrated in 
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cost in the traditional approach since total 𝐸𝐸𝑁𝑆𝑡 over the 24-h scheduling horizon 
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approximately same. However, the proposed approach has the highest operational 

efficiency in terms of generation and reserve costs by explicitly making the 

cost/benefit analysis between the socioeconomic value of the lost load and the 

provision of extra reserves.         

 

Figure 4.37. Comparison of Cost Components and Total 𝐸𝐸𝑁𝑆𝑡 in the Proposed and 

Deterministic Approaches for IEEE 24-bus Problem Instance 
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that both approaches are too conservative. These schedules are followed by the 3.5σ 

approach in terms of CC although it yields similar dispatching decisions for periods 

with low net load intensity. That is, the 3.5σ approach behaves closer to the proposed 

approach when full utilization of available conventional generation capacity is not 

required to satisfy the net load demand. As a result of the explicit cost/benefit 

analysis between the provision of additional reserves and the reduction in 𝐸𝐸𝑁𝑆𝑡, 

the proposed approach suggests that there is no need for excessive number of 

committed units, which is the case in the deterministic policies, to meet the net load 

demand in almost all periods. Thus, schedules attained by the proposed approach 

usually have the smallest committed capacity ranging from 603 MW to 2174 MW 

over the 24-h scheduling horizon.     

 

Figure 4.38. Comparison of Committed Capacities in the Proposed and Deterministic 

Approaches for IEEE 30-bus Problem Instance 
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is that the proposed approach economically justifies the supply of additional reserves 

over the abatement in EENS. For periods with low net load intensity, the 3.5σ 

approach gives schedules that are similar to the ones of the proposed approach in the 

sense of reserves allocated.    

 

Figure 4.39. Comparison of Reserves in the Proposed and Deterministic Approaches 

for IEEE 30-bus Problem Instance 
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whereas those levels significantly fluctuate over periods with low load intensity. That 
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Figure 4.40. Comparison of 𝐸𝐸𝑁𝑆𝑡 levels in the Proposed and Deterministic 

Approaches for IEEE 30-bus Problem Instance 

 

 

As reported in Table 4.21, the proposed approach outperforms deterministic 
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Table 4.21. Comparison of Total Operating Costs in the Proposed and Deterministic 

Approaches for IEEE 30-bus Problem Instance 
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of 11 MWh by committing more units. When the 3.5σ approach is compared to the 

other approaches, total 𝐸𝐸𝑁𝑆𝑡 has its maximum value of 17 MWh. Hence, the load 

shedding component has the largest impact on its total operating cost. Although the 

total 𝐸𝐸𝑁𝑆𝑡 of the schedule attained by the proposed approach is 14 MWh, which is 

the second largest value when compared to the other approaches, it has the minimum 

total operating cost. The main reason is that the proposed approach has the highest 

operational efficiency in terms of generation and reserve costs by explicitly making 

the cost/benefit analysis between the socioeconomic value of the lost load and the 

provision of extra reserves. Therefore, it commits a smaller number of conventional 

units to satisfy the same net load level with less reserves by providing economic 

justification.          

 

Figure 4.41. Comparison of Cost Components and Total 𝐸𝐸𝑁𝑆𝑡 in the Proposed and 

Deterministic Approaches for IEEE 30-bus Problem Instance 
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requirements are different but close to each other. Schedules obtained by both 

approaches have the largest 𝐶𝐶𝑡 over most of the periods, which is an indicator that 

they are too conservative. These schedules are followed by the 3.5σ approach in 

terms of 𝐶𝐶𝑡. Thanks to the explicit cost/benefit analysis between the supply of 

additional reserves and the mitigation in 𝐸𝐸𝑁𝑆𝑡, the proposed approach suggests that 

there is no need to commit an excessive number of units, which is the case in 

deterministic policies, to meet the net load demand in almost all periods. Thus, 

schedules attained by the proposed approach usually has the smallest committed 

capacity ranging from 1205 MW to 3670 MW over the 24-h scheduling horizon.     

 

Figure 4.42. Comparison of Committed Capacities in the Proposed and Deterministic 

Approaches for Duplicated IEEE 30-bus Problem Instance 

 

 

Both proposed and deterministic approaches are also compared with respect to 𝑆𝑅𝑡 

levels over the 24-h scheduling horizon as demonstrated in Figure 4.43. Similar to 

the relationship in 𝐶𝐶𝑡 levels, traditional and hybrid approaches supply more 𝑆𝑅𝑡 
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between the proposed and deterministic approaches is more significant in duplicated 

IEEE 30-bus problem instance than that in the original instance. The reason is that 

simultaneous outages are less likely to occur as the size of the conventional power 

generation system increases. Hence, with 1750 $/MWh of 𝑉𝑂𝐿𝐿, the additional 

reduction of 𝐸𝐸𝑁𝑆𝑡 cannot be justified by committing additional units; accordingly, 

providing additional reserves. Besides, the 3.5σ approach gives schedules that are 

between the ones of the proposed and other deterministic approaches. Nonetheless, 

it provides similar schedules for periods with high net load intensity as in traditional 

and hybrid approaches.      

 

Figure 4.43. Comparison of Reserves in the Proposed and Deterministic Approaches 

for Duplicated IEEE 30-bus Problem Instance 

 

 

In Figure 4.44, the comparison of both proposed and deterministic approaches is 

illustrated in terms of 𝐸𝐸𝑁𝑆𝑡 levels over the 24-h scheduling horizon. For 𝐸𝐸𝑁𝑆𝑡 

levels, a similar but inverse relationship is valid. Owing to conservative natures of 

traditional and hybrid approaches, 𝐸𝐸𝑁𝑆𝑡 levels are usually less than or equal to the 

ones in other approaches. In general, they are followed by schedules of the 3.5σ 

approach and the proposed approach in terms of 𝐸𝐸𝑁𝑆𝑡 levels.   
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Figure 4.44. Comparison of 𝐸𝐸𝑁𝑆𝑡 levels in the Proposed and Deterministic 

Approaches for Duplicated IEEE 30-bus Problem Instance 
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approaches. Even though the total 𝐸𝐸𝑁𝑆𝑡 in the proposed approach is 34 MWh, 

which is the largest value when compared to other approaches, it has the minimum 

total operating cost. The same reasoning on higher operational efficiency of the 

proposed approach in IEEE 30-bus system is also valid for the duplicated system. 

 

Figure 4.45. Comparison of Cost Components and EENS in Proposed and 

Deterministic Approaches for Duplicated IEEE 30-bus Problem Instance 
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CHAPTER 5  

5 UNIT COMMITMENT PROBLEM FOR WIND INTEGRATED HYBRID POWER 

SYSTEMS UNDER SUPPLY/DEMAND UNCERTAINTY AND EMISSION 

LIMITATIONS 

Due to increasing concerns on adverse effects of global warming and air pollution, a 

great majority of countries have been promoting policies that can mitigate emissions 

of greenhouse gases and air pollutants especially for the last decade. For this purpose, 

usage of clean energy technologies is encouraged in environmental and industrial 

policies, and ambitious targets have been set to increase the contribution of 

renewable energy sources in the power generation mix and to reduce levels of 

emissions that are detrimental for the environment and human health. To illustrate, 

wind, which is one of the promising renewable sources, is widely used for power 

generation in most of the countries of North America, Europe and Far East. 

Nevertheless, wind power generation has an intermittent nature, which makes 

operations in power generation more challenging by bringing additional 

uncertainties. As it is stated in Chapter 4, there are three major sources of uncertainty 

in wind-integrated hybrid power systems such as unexpected outages of 

conventional generating units in a power system, and forecasts of load demand and 

wind power generation. Consequently, uncertainties may cause an unexpected 

increase in emission levels even though wind generation does not directly emit 

greenhouse gases and air pollutants. Thus, in addition to the effect of uncertainties 

on conventional generation, the impact of emission control technologies and 

regulations must also be considered when making unit commitment and load 

dispatch decisions in order to guarantee more environmentally friendly and reliable 

power generation.  
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5.1 Emission Reduction Agreements and Regulations  

In 1997, the Kyoto Protocol, one of the most fundamental regulations against climate 

change, was adopted by the United Nations. The main objective was to stabilize the 

concentrations of Greenhouse Gases (GHGs) in the atmosphere at a level that would 

prevent irrevocable changes in the climate system. The 15 countries, namely 

European Union (EU) members in 1997, United States (US), Canada, Hungary, 

Japan, Poland, Croatia, New Zealand, Russian Federation, Ukraine, Norway, 

Australia and Iceland were participated in this protocol. However, US had declared 

its intention not to ratify the protocol in the same year and Canada had withdrawn 

from the protocol in 2012 (UNFCCC, n.d.). According to this protocol, the maximum 

allowable emission amounts that each country can emit over the first commitment 

period (2008-2012) was determined. Since the main polluter countries such as China, 

US and India did not ratify this treaty, the average reduction level was targeted as 

5% from the 1990 level by the participating countries. 

Apart from the Kyoto Protocol, in late 2016, the Paris Agreement has been adopted 

by the United Nations at the Paris Climate Conference.  This agreement has brought 

all nations including China and USA into a common cause to tackle with the global 

warming and climate change. According to UNFCCC (2016), the main objective is 

to globally respond to the threat of climate change by making commitments of:  

• Keeping the increase in global temperature below 2 degrees Celsius during 

the 21st century, 

• Contributing to the capabilities of countries to overcome the effects of 

climate change,  

• Reducing global GHG emissions in the second half of the century by 

implementing the best available innovative technologies for capture and 

storage. 

189 out of 197 Parties attending to the convention have ratified the agreement since 

2016. These parties have submitted their detailed national climate action plans in 
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which they have declared that they are responsible of regularly reporting their 

emission targets and levels, countermeasures and efforts. 

5.1.1 Emission Trading Systems against Greenhouse Gas Emissions 

Emission Trading Systems (ETS) in different countries or regions are based on the 

Cap & Trade mechanism in which a cap, also known as quota, is set on the total 

amount of GHGs that can be emitted during a year. Companies can buy additional 

emission allowances if they need additional quota or they want to trade with each 

other to gain extra revenue. Therefore, this trading mechanism can be considered as 

the carbon economy where sellers and buyers of emission allowances can interact 

with each other. Since the authorities of ETS set some limits on the total number of 

allowances that can be traded, those allowances have a real value in the carbon 

economy, which makes them tradable commodities. As a result of the Cap & Trade 

mechanism, companies should have enough allowances for their emissions during a 

year, otherwise they will need to pay heavy penalties for emissions exceeding their 

allowances. When companies decrease their emissions beyond their quotas, they can 

transfer excess allowances to compensate for their future needs or they can trade 

those allowances in the carbon economy.  

In Appendix A, the ETS in EU, US and China are briefly explained since they have 

been three major GHG emitter regions and countries for several years. The ETS in 

those countries differentiate from each other with respect to the regulated sectors and 

different regulatory rules that specify allowable emission limits, allowance 

allocation methods, sanctions against the noncompliance on limitations for those 

sectors (ICAP, 2020). Also, according to ICAP (2020), in Turkey, an ETS is planned 

to be built in near future. Thus, Turkey’s efforts to build an ETS are also explained 

in Appendix A.    
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5.1.2 Environmental Policies against Air Pollutant Emissions 

Air pollution occurs due to excessive releases of dangerous and harmful chemical, 

biological and physical agents to the atmosphere, which pose a significant risk on 

the human health and the environment. These agents consist of gases, namely 

Particulate Matters (PMx), Nitrogen oxides (NOx), Sulphur dioxide (SO2), Carbon 

monoxide (CO), Methane (CH4), Ammonia (NH3), Chlorofluorocarbons (CFCs) and 

biological molecules. The release of these agents is caused by both human activities 

and natural phenomena. The human related sources are power generation plants 

burning coal, oil, natural gas or biomass, energy-intensive industrial facilities, motor 

vehicles and household combustion devices such as stoves and furnaces burning 

carbon intensive fuels. These are the major sources of air pollutant emissions 

although they can also occur as a result of natural disasters like forest fires. 

According to the World Health Organization (WHO) (2004), the exposure to ambient 

air pollution has adverse effects on the cardiovascular and respiratory systems by 

triggering stroke, ischemic heart disease, pneumonia, lung cancer, or chronic and 

acute respiratory diseases. The potential sources of the most common air pollutants 

and their adverse effects on the human health and environment are summarized in 

Table 5.1. (WHO, 2004). 

In 1987, WHO designed Air Quality Guidelines, which were revised after 10 years, 

to mitigate the negative impacts on health and environment. In 2005, the last revision 

was made as a result of new scientific researches and advancements since 1997. As 

shown in Table 5.2, revisions include new guidelines for atmospheric concentrations 

of relatively more important air pollutants such as PMx, NO2 and SO2, which pose 

more serious and considerable environmental and health risks (WHO, 2005).  
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Table 5.1. Potential Sources and Adverse Effects of Air Pollutants 

Air Pollutant Potential Sources Adverse Effects 

PMx 

- Combustion engines 

     Motor vehicles  

- Solid fuel combustion 

     Power generation plants 

     Industrial plants 

- Reduction in life expectancy 

- Aggravation of cardiovascular and lung 

diseases and cancers 

- Lung inflammatory reactions 

- Respiratory disorders 

- Chronic obstructive pulmonary disease 

NOx 

- Fossil fuel combustion 

     Power generation plants 

     Industrial plants  

- Acidification and eutrophication of waters and 

soils 

- Aggravation of bronchitis and asthma 

- Formation of particulate matters 

- Respiratory infections 

- Lung inflammatory reactions 

- Reduced lung function and growth 

SO2 

- Sulphur-containing fossil fuel 

combustion 

     Heat generation plants 

     Power generation plants 

     Motor vehicles 

- Sulphur-containing mineral ore 

smelting 

- Acidification of waters and soils 

- Formation of acid rains 

- Adverse effects on aquatic ecosystems and 

forests 

- Respiratory disorders 

- Lung inflammatory reactions 

- Aggravation of asthma and chronic bronchitis, 

even pneumonia 

- Irritation of the eyes 

CO 

- Fossil fuel combustion 

     Motor vehicle exhaust 

     Industrial plants 

- Impairment of cardiovascular system 

- CO poisoning 

 

Table 5.2. Revised Guideline Thresholds for Air Pollutants by the WHO (2005) 

Air Pollutant 
WHO Guideline Thresholds 

Short-Term                               Long-Term 

PM2 25 μg/m3 24-h mean 10 μg/m3 annual mean 

PM10 50 μg/m3 24-h mean 20 μg/m3 annual mean 

NO2 200 μg/m3 1-h mean 40 μg/m3 annual mean 

SO2 500 μg/m3 10-min mean 20 μg/m3 24-h mean 

 



 

 

160 

Besides, the WHO strongly emphasize that achieving guideline thresholds for each 

air pollutant would not completely annihilate the possibility of negative effects by 

taking ongoing epidemiological researches and findings into consideration, so most 

of the countries may adopt concentration levels lower than the thresholds indicated 

in the guideline. In addition to guideline values, WHO has also set several interim 

targets for short-term and long-term exposures to progressively reduce 

concentrations of air pollutants in areas suffering from high air pollution. The 

detailed explanation of these interim targets can be found in WHO (2005).  

Most of the countries in the world have been using these guidelines in order to 

develop their policies against air pollution. Those polices generally include 

command and control type regulations although there are several countries which 

also implement market-based approaches. Command and control type policies 

involve controlling air pollutant emission amounts and setting emission 

concentration standards. In the first one, maximum allowable emission amounts are 

determined according to the best available techniques (BAT) (Organization for 

Economic Co-operation and Development [OECD], 2017). In the BAT concept, the 

most effective and sophisticated technologies and their implementation methods, 

which are especially practical and suitable in real world applications for different 

sectors, are determined. By taking the emission amounts provided by the BAT as a 

basis, allowable emission limits for air pollutants are specified to reduce threats on 

the human health and environment. Different from allowable limits on emission 

amounts, emission concentration standards are defined by practicing guideline 

thresholds and interim targets specified by WHO or other air quality index specified 

by authorized environmental institutions. In some policies, command and control 

regulations are reinforced with a pollution levy. With this reinforcement, the 

companies are subject to pay a tax or a set of taxes for their concentrations or 

amounts of air pollutant emissions. For this purpose, two or three level taxes have 

been imposed by several countries. The first level is the emission tax for each unit 

of a pollutant emitted. When the emission amount exceeds the maximum allowable 

limit, the penalty of emission amount is added to emission tax. When the emission 
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concentration is greater than the emission concentration standard, the penalty of 

emission concentration is added to emission tax. If one of these violations exists, 

then companies pay the second level tax for each unit of air pollutant emission. If 

both violations exist, then the third level tax is imposed for each unit of air pollutant 

emission. 

In Appendix B, air pollution prevention and reduction policies and practices in EU, 

US and China are briefly explained.  

5.2 Emission Reduction Technologies for Conventional Power Plants 

For the last two decades, climate change and air pollution has received a significant 

attention all over the world due to the expected global temperature rise and reduction 

in average life expectancy in case effective countermeasures are not taken by the end 

of 20th century. Besides, the integration of renewable energy sources such as wind 

and solar into a country’s energy generation portfolio will lead to an additional need 

to increase the installed capacities of conventional power plants requiring fossil fuel 

combustion. The reason is that wind and solar energy have an intermittent nature, 

which causes uncertainties in power generation via renewable energy sources, and 

uncertainties in stable and adequate energy supply of a country. As a result, 

governments in developed and developing countries have been studying and 

promoting developments of clean renewable energy sources, and implementations 

of innovative emission reduction technologies in conventional power plants using 

fossil fuel combustion processes. For those installations, various technologies have 

been utilized to mitigate carbon dioxide (CO2) emissions, which is one of the major 

GHG emissions causing global warming. Furthermore, there are advanced and 

efficient air pollution control technologies available for emissions of sulphur dioxide 

(SO2), nitrogen oxides (NOx), and particulate matter (PMx). Implementing those 

technologies in conventional power plants has a significant potential in the 

abatement of atmospheric air pollutant emissions as the air pollution control limits 

set by governments are becoming more stringent. If those power plants burning fossil 
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fuels do not benefit from these technologies, they cannot remain operational in near 

future with more rigorous worldwide regulations on GHG emissions and air 

pollution.     

5.2.1 Carbon Capture and Storage Systems 

Marchetti (1977) proposes the concept of sequestration and storage of CO2 to reduce 

atmospheric CO2 emissions, which is the origin of Carbon Capture and Storage 

(CCS) systems evolved and implemented in the industry nowadays. The main idea 

behind CCS systems is to sequestrate CO2 before emitted to the atmosphere, and then 

transferring captured CO2 via pipelines or shipping to geological storage areas or 

ocean storage areas. CCS is the most suitable and practical technology to retrofit 

fossil fuel burning power plants. By utilizing CCS, CO2 emissions of these plants 

can be reduced up to 98% in accordance with the capture technology employed 

(Huaman and Lourenco, 2015).  

Depending on the type of power plants, three technologies are available for CO2 

separation and capture. These are pre combustion, oxyfuel combustion and post 

combustion as demonstrated in Figure 5.1 (Intergovernmental Panel on Climate 

Change [IPCC], 2005).  

 

Figure 5.1. Schematic Representation of CO2 Capture Systems, Adapted from IPCC 

(2005)   
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In pre combustion systems, the fuel is combined with steam and air before the 

combustion process, which results in synthesis gas comprising mostly of carbon 

monoxide (CO) and hydrogen (H2). As a result of the reaction of CO with the steam, 

CO2 and additional H2 is obtained. This mixture is sequestrated into CO2 stream and 

H2 stream. Then, CO2 is captured, and the remaining hydrogen is used for the 

combustion. Pre combustion systems are preferred in power plants utilizing 

integrated gasification combined cycle (IGCC) technology (IPCC, 2005). It is 

pointed out that pre combustion capture technology is not suitable for retrofitting 

existing power plants. Rather, it can be employed in new power plants. With this 

technology, up to 90% of CO2 can be captured. However, pre combustion capture 

mechanism may cause a decrease of approximately 7.2% in power plant efficiency 

(Moazzem et al., 2012). 

In oxyfuel combustion systems, the fuel is burned with pure oxygen (O2) rather than 

air, so CO2 capture takes place during the combustion. After the combustion process, 

a flue gas comprising of water vapor and highly concentrated CO2 is formed. By 

going through a cooling and compressing process, water vapor in the flue gas is 

removed, and CO2 stream is captured. Oxyfuel combustion systems can be used for 

new gas turbine power plants or for retrofitting existing gas turbine power plants 

(IPCC, 2005). Nevertheless, the separation of O2 from air requires a considerable 

amount of energy, which causes an expected efficiency reduction of 23% for new 

installations, and 40% for retrofitting existing installations (Moazzem et al., 2012). 

In spite of a significant decrease in power plant efficiency, almost 100% of CO2 can 

be captured with this technology. 

In post combustion systems, CO2 is captured after the combustion of the fuel with 

air by using several amine solvents, membrane devices or mineral carbonation 

process on flue gas. This technology is applicable for modern pulverized coal power 

plants and combined cycle gas turbine power plants, thanks to its cost-effective 

implementation option that requires only a capture equipment to be installed. The 

CO2 capture rate of post combustion technology is between 85% and 95% (IPCC, 

2005).    
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5.2.2 Air Pollution Control Systems 

To cope with the most threatening and risky air pollutants such as sulphur dioxide 

(SO2), nitrogen oxides (NOx), and particulate matter (PMx), there are miscellaneous 

state-of-the-art emission control systems applicable for conventional power plants. 

The most commonly used technologies for each pollutant are shown in Table 5.3. 

Table 5.3. Widely Used Air Pollution Control Technologies in the Abatement of 

PMx, NOx and SO2 Emissions 

Air Pollutant Control Technologies 

PMx 

- Electrostatic Precipitator (ESP) 

- Cyclones 

- Fabric Filter (FF) 

NOx 

- Low NOx Burner (LNB) 

- Selective Catalytic Reduction (SCR) 

- Selective Noncatalytic Reduction (SCNR) 

- Lean Premixed Combustion in Gas Turbines 

SO2 - Flue Gas Desulfurization (FGD) 

 

NOx control technologies are divided into two categories such as combustion and 

post combustion depending on the control technology used. With the combustion 

control technologies like Low NOx Burner (LNB) and Lean Premixed Combustion 

(LPC) mode of gas turbines, NOx capture and reduced NOx emissions occur during 

the combustion of fossil fuels whereas it occurs after combustion with post 

combustion technologies such as Selective Catalytic Reduction (SCR) and Selective 

Non-catalytic Reduction (SCNR). One of the main causes of NOx emissions from 

conventional power plants without any control technology is that the flame 

temperature increases when the fuel is burned with an excess air in the burner. LNBs 

utilize advanced thermodynamics and fluid mechanics to remove the excess air in 

the burner and accordingly to reduce the flame temperature, which leads to less NOx 

emissions (Shahzad Baig and Yousaf, 2017). Nevertheless, Denny E. and O’Malley 

M. (2006) also note that the plant efficiency may decrease when the flame 

temperature is decreased. To implement this technology, LNBs are used instead of 
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original burners in conventional power plants. With this technology, the NOx capture 

rate is estimated as almost 30% (Zhao et al., 2008). As a result of this poor capture 

rate, in most of the power plants, LNBs are also integrated with one of the post 

combustion systems to achieve the desired emission reduction level. In post 

combustions systems, an equipment is installed in power plants so that emitted NOx 

can be separated into nitrogen (N2) and water (H2O) with the help of either a chemical 

reaction between the flue gas and a reagent like urea ((NH2)2CO) or a chemical 

reaction between flue gas and ammonia (NH3) in a catalytic chamber. The former 

separation technology is used in SNCR systems and has a relatively low NOx capture 

rate between 15% and 35%, whereas the latter one is used in SCR systems and it has 

relatively high NOx capture rate between 70% and 90% (Moretti and Jones, 2012). 

For this reason, LNB and SCR devices are used together in case a high NOx capture 

efficiency is required in conventional power plants. Apart from these technologies, 

combustion mode switch option is also utilized in gas fired power plants. Two modes 

such as diffusion (spray) combustion and lean premixed combustion are available in 

gas turbines. When a turbine is started up or generating at lower power output levels, 

the diffusion combustion mode is activated. This combustion mode emits more NOx 

than lean premixed combustion mode.  In gas turbines generating high power output, 

NOx emissions can be reduced by switching to lean premixed combustion mode in 

which the fuel and air are premixed before combustion, which makes this mode more 

environmentally friendly in terms of reduced atmospheric NOx emissions (Denny 

and O’Malley, 2006).  

PMx control technologies are based on post combustion controls requiring an 

installation of PMx collectors such as Electrostatic Precipitator (ESP), Cyclones and 

Fabric Filter (FF). Each equipment uses a different technique to capture PMx in the 

flue gas stream. To illustrate, FFs consist of finely netted filters by which PMx in the 

flue gas is collected. In ESPs, there are several vertically and horizontally aligned 

plates. When the flue gas flows through these plates, electromagnetic forces are 

applied by the electrodes at the center of an ESP; accordingly, PMx is captured. FFs 

and ESPs are very efficient in terms of collection performances, which are estimated 
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as 99.9% (Moretti and Jones, 2012). Cyclones apply centrifugal forces to the flue 

gas stream to collect PMx. Their capture efficiencies are estimated as 90% for 

particulate matters greater than 15 microns, but they are not preferred much since 

their capture rates are not sufficient for particulate matters less than 15 microns 

(Shahzad Baig and Yousaf, 2017). 

Similar to PMx control technologies implemented in power plants, SO2 control 

technologies are also based on post combustion control systems in which SO2 is 

extracted from the flue gas stream. This process is known as Flue Gas 

Desulphurization (FGD) which has two different application techniques such as wet 

FGD and dry FGD. Wet FGD systems are based on wet limestone reaction. In this 

reaction, SO2 in the flue gas is mixed with air, water and reagents like lime (calcium 

carbonate (CaCO3)), magnesium-enriched lime, seawater or soda ash (sodium 

carbonate (Na2CO3)). As result of a chemical reaction in this mixture, gypsum 

(CaSO4 · 2H2O) and carbon monoxide (CO) are formed. By this way, SO2 is removed 

from the flue gas. The capture rate of wet FGD systems is estimated as almost 98% 

(Nolan, 2000). In dry FGD systems, semi-dry or dry solid reagent is injected into the 

flue gas stream, a chemical reaction occurs during the injection, SO2 is captured and 

reaction byproducts like dry salts and fly ash are removed by filter units. Spray Dryer 

Absorber (SDA) is a SO2 control technology based on semi-dry injection method. 

Atomized lime slurry is used as a semi-dry reagent which is injected into the hot 

exhaust gas. SDA control technology has almost 96% of SO2 removal rate (Moretti 

and Jones, 2012). Different from SDA, Circulating Dry Scrubber (CDS) system is 

based on dry injection method. Fluid bed of hydrated lime is used as a dry reagent 

that reacts with the flue gas. The removal rate of wet FGD systems is found to be 

almost 98% (Moretti and Jones, 2012). 

5.3 Proposed Time-decoupled Quadratic Programming Based Approach 

Similar to the approaches proposed in Chapter 4, the UCP under both supply/demand 

uncertainty and emission limitations is time-decoupled by decomposing the original 
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UCP into T many subproblems each of which is a single-period UCP defined for 

each period in the planning horizon. Accordingly, each subproblem is optimally 

solved by balancing the potential benefits to be obtained by reducing emissions and 

𝐸𝐸𝑁𝑆𝑡, and potential losses caused by not committing enough reserve in period t. 

For this purpose, unit commitment, economic load dispatch and reserve decisions 

are individually determined for each period by the time-decoupled cost-benefit 

optimization instead of multi-period optimization. It is important to note that time 

dependent UCP constraints are also taken into consideration in our approach. 

Nonetheless, near optimal solutions may be obtained owing to time-decoupling, but 

the multi-period optimization for the UCP under both supply/demand uncertainty 

and emission limitations is not a plausible method for real power systems which 

consist of many conventional and renewable generating units. 

5.3.1 Emission Models with Emission Control Technologies 

In the proposed approach, CO2, NOx, SO2 and PMx emissions are considered for 

coal-fired, gas-fired and oil-fired power plants (generating units). For each period, 

emission models depend on the state of the conventional generating unit whether it 

has been operational in previous periods or not. To illustrate, when a unit has been 

working in previous periods, there are only operational emissions of that unit. 

However, if a unit is started up in that period, then start-up emissions are also taken 

into account. Besides, the effects of emission reduction and control technologies on 

operational emissions are also integrated into emission models as follows:  

• CCS systems are used against CO2 emissions.  

• LNB, SCR and LPC technologies are used against NOx emissions. 

• FGD systems are used against SO2 emissions. 

• FF systems are used against PMx emissions.   

According to European Commission’s directive on monitoring and reporting 

regulation, two different emission estimation methodologies are available. The first 

one is measurement-based methodology in which real concentrations of GHGs and 
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air pollutants are measured from the flue gas stream via monitoring devices whereas 

the second one is based on arithmetic calculations, and it is further divided into two 

categories such as mass balance method and standard method (European 

Commission, 2012). In the mass balance method, fuel flow rate is calculated by 

considering the principle of mass balance in the boiler; accordingly, emissions are 

calculated by using the flow rate. The detailed explanation of this method is provided 

in Majanne (2014). In the standard method, emissions are estimated by the 

relationship between fuel consumption of the conventional power plant and fuel 

specific emission factors. For this purpose, fuel consumption function of the power 

plant is estimated first. Then, by multiplying the fuel consumption function with fuel 

specific emission factors, emission functions of the power plant are estimated for 

each GHG and air pollutant. In the proposed approach, fuel consumptions of 

conventional power plants are modelled by a quadratic function which is widely used 

in practice for power plants burning coal, oil or natural gas. The quadratic fuel 

consumption function of unit i with respect to its commitment status 𝑢𝑖 and power 

output level  𝑃𝑖 is provided by the following expression where 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are fuel 

consumption coefficients of unit i: 

𝐹𝑖 = 𝛼𝑖𝑢𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖
2                                            (5. 1) 

According to the standard method, without any emission control mode or device, 

operational emissions of unit i for gas G, 𝐸𝑜𝑖
𝐺 , are calculated based on emission 

factor for gas G (𝑒𝑓𝐺) as follows: 

𝐸𝑜𝑖
𝐺 = 𝑒𝑓𝐺𝐹𝑖 = 𝑒𝑓𝐺(𝛼𝑖𝑢𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖

2)                     (5. 2) 

Apart from operational emissions, there are also start-up emissions since emissions 

during start-up does not behave as in its operational state and they are considerably 

high when starting up.  Emissions during start-up for unit i can be modelled based 

on how much time it has stayed inactive or nonoperational because emissions are 

higher in case of long period of inactivity. For this purpose, start-up emissions can 

be determined via an exponential function or a two-step function. In the former, an 

exponential increase is expected for emissions during start-ups as the number of 
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inactive periods increases. It is illustrated by the following function where 𝜃𝑖
1 and 𝜃𝑖

2 

are start-up fuel consumption rates of unit i during start-up, and 𝑇 𝑖
𝑜𝑓𝑓

 and 𝜏𝑖 denote 

the number of inactive periods and start-up time constant of unit i, respectively:   

𝑆𝐸𝑖
𝐺 = 𝑒𝑓𝐺 [𝜃𝑖

1 + 𝜃𝑖
2(1 − 𝑒

−
𝑇 𝑖

𝑜𝑓𝑓

𝜏𝑖 )]                                 (5. 3) 

In the two-step representation, emissions for gas G during start-up are categorized as 

hot start-up emissions (𝑆𝐸𝑖
𝐺,𝐻

) and cold start-up emissions (𝑆𝐸𝑖
𝐺,𝐶

). The two-step 

function, where 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

 is the minimum downtime requirement for unit i, is illustrated 

below:  

 

 

In our approach, start-up emissions of a conventional generating unit are modelled 

via the exponential representation as in (5.3).  

Geng et al. (2015) propose an environmental economic dispatch formulation in 

which emission reduction and control technologies for NOx, SO2 and PMx emissions 

are also considered. By using this formulation, Geng et al. (2017) propose an 

environmental generation scheduling formulation to be applied in Chinese power 

system. We have inspired from these formulations when integrating emission control 

technologies into proposed emission models with several modifications which 

include the integration of CCS system against CO2 emissions, the usage of FF system 

instead of ESP system against PMx emissions and more precise modelling of 

combustion mode switch feature against NOx emissions of gas-fired generating units.  

CO2 Emissions with Carbon Capture and Storage Systems 

To reduce CO2 emissions from a conventional generating unit, one of the most 

suitable systems to retrofit existing conventional generating units and to implement 

𝑆𝐸𝑖
𝐺,𝐻                if               𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
≤  𝑇 𝑖

𝑜𝑓𝑓
≤ 𝑇𝑀𝑖𝑛, 𝑖

𝑜𝑓𝑓
+ 𝜏𝑖 

 
𝑆𝐸𝑖

𝐺 =   
𝑆𝐸𝑖

𝐺,𝐶                  if               𝑇 𝑖
𝑜𝑓𝑓

> 𝑇𝑀𝑖𝑛, 𝑖
𝑜𝑓𝑓

+ 𝜏𝑖 

     (5. 4) 
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on new ones is post combustion type CCS systems with chemical absorption. 

Operational CO2 emissions with CCS systems can be modelled with the following 

expression: 

𝐸𝑖
𝐶𝑂2 = (1 − 𝜂𝑖

𝐶𝐶𝑆)𝐸𝑜𝑖
𝐶𝑂2                                           (5. 5) 

where 𝜂𝑖
𝐶𝐶𝑆 is the CO2 capture rate or decarbonization efficiency of unit i and 𝐸𝑜𝑖

𝐶𝑂2 

is operational CO2 emission without carbon capture storage systems. 

SO2 Emissions with Flue Gas Desulphurization Systems 

Similar to CCS systems, operational SO2 emissions with CDS or limestone process 

based FGD systems can be modelled as follows: 

𝐸𝑖
𝑆𝑂2 = (1 − 𝜂𝑖

𝐹𝐺𝐷)𝐸𝑜𝑖
𝑆𝑂2                                         (5. 6) 

where 𝜂𝑖
𝐹𝐺𝐷 is the SO2 capture rate or desulphurization efficiency of unit i and 𝐸𝑜𝑖

𝑆𝑂2 

is operational SO2 emission without FGD systems. 

 PMx Emissions with Fabric Filters  

Geng et al. (2015) use ESP as an emission control technology and model PMx 

emissions of coal-fired power plants with dynamic discounted removal efficiency, 

which creates additional nonlinearities and complexities in their emission 

formulation. According to Shahzad and Yousaf (2017), FF systems are more 

advantageous than ESP systems in the removal of PMx because of several reasons: 

• Collection reliabilities and efficiencies of FFs are higher than ESPs, 

• FFs resist more to changes in the flue gas flow, 

Because of FF’s high resistance to changes in the flow rate of the flue gas, using FFs 

instead of ESPs prevents the dynamic reduction in PMx removal efficiency, so FFs 

are preferred over ESP in the proposed PMx emission model. PMx emissions are 

modelled only for coal-fired generating units because concentrations of PMx 

emissions from oil-fired and gas-fired generating units are negligible (Di, 2007). 

Under these conditions, operational PMx emissions with FF systems can be modelled 

as follows: 



 

 

171 

𝐸𝑖
𝑃𝑀𝑥 = (1 − 𝜂𝑖

𝐹𝐹)𝐸𝑜𝑖
𝑃𝑀𝑥                                         (5. 7) 

where 𝜂𝑖
𝐹𝐹  is the PMx capture rate or removal efficiency of unit i and 𝐸𝑜𝑖

𝑃𝑀𝑥 is 

operational PMx emission without FF systems. 

NOx Emissions with Control Technologies 

For coal-fired and oil-fired conventional units, operational NOx emissions without 

any emission control mode are modelled via the standard method. Different from 

these units, gas-fired generating units have two combustion modes, namely spray 

(diffusion) combustion (SC) and lean premixed combustion (LPC) as explained in 

Section 5.2.2. Switching from SC mode to LPC mode, NOx emissions can be 

significantly reduced according to the experimental studies by Okhubo (2005) who 

experiments NOx emissions of these combustion modes by using different fuel gases 

in gas turbines and his results are provided in Figure 5.2. 

 

Figure 5.2. NOx Emissions of Spray Combustion Mode and Lean Premixed 

Combustion Mode Using Kerosene and Gas Oil as Fuels, Adapted from Ohkubo 

(2005)   
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As it can be inferred from Figure 5.2, NOx emissions increase quadratically in SC 

mode as in emissions represented by the standard method when the power output 

level increases whereas the relationship between NOx emissions and the power 

output level is close to linear and even fixed at a lower emission level in LPC mode. 

Nonetheless, the LPC mode cannot be used during startup and lower power output 

levels due to combustion instabilities, so this mode can be activated when the power 

output level of the unit is greater than approximately 70% of its capacity (Denny and 

O’Malley, 2006). Geng et al. (2015) formulate NOx emissions by using two linear 

functions representing emission levels at two combustion modes but this 

simplification is not precise when modelling NOx emissions in SC mode. Thus, we 

formulate NOx emissions quadratically in SC mode and linearly in LPC mode as 

shown in Figure 5.3.       

 

Figure 5.3. Operational NOx Emissions of Spray Combustion and Lean Premixed 

Combustion in the Proposed Emission Model 

 

 

For gas-fired generating units, this piecewise relationship in operational NOx 

emissions without any control technology is modelled by the following piecewise 

function where 𝑒𝑓𝑁𝑂𝑥 is NOx emission factor of the fuel gas, 𝛼𝑖, 𝛽𝑖 and 𝛾𝑖 are fuel 
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consumption coefficients of gas-fired unit i in SC mode, 𝜌𝑖 is the emission coefficient 

of gas-fired unit i in LPC mode, and 𝑃𝑖
𝐶𝑀𝑆 is the power output threshold required for 

the combustion mode switch of gas-fired unit i: 

 

 

As mentioned in Section 5.2.2, there are also other control technologies against NOx 

emissions. One of them is combined usage of LNB technology and a post combustion 

type denitration device such as SCR or SCNR since using LNBs without supported 

by one of these denitration equipment yields less NOx removal efficiency than 

required. Therefore, in the proposed NOx emissions model, it is assumed that LNBs 

in conventional generating units can be backed up with SCR devices. In spite of their 

high removal rate, those devices can be activated in high temperature (>300 oC) so 

they cannot operate when the power generation level of a conventional unit is less 

than a threshold level (Geng et al., 2015). As a result of this requirement, operational 

NOx emissions with combined usage of LNB technology and SCR equipment can be 

modelled by the following piecewise function where 𝐸𝑜𝑖
𝑁𝑂𝑥 is operational NOx 

emissions without any emission control technology, 𝑃𝑖
𝑆𝐶𝑅 is the power output 

threshold required for the activation of SCR in unit i, and 𝜂𝑖
𝐿𝑁𝐵 and 𝜂𝑖

𝑆𝐶𝑅  are the NOx 

capture rate of LNB technology and NOx removal efficiency of SCR equipment in 

unit i, respectively: 

 

 

(1 − 𝜂𝑖
𝐿𝑁𝐵)𝐸𝑜𝑖

𝑁𝑂𝑥                                      if               𝑃𝑖 < 𝑃𝑖
𝑆𝐶𝑅 

  
𝐸𝑖

𝑁𝑂𝑥 =   

(1 − 𝜂𝑖
𝑆𝐶𝑅)(1 − 𝜂𝑖

𝐿𝑁𝐵)𝐸𝑜𝑖
𝑁𝑂𝑥                 if               𝑃𝑖 ≥ 𝑃𝑖

𝑆𝐶𝑅 

     (5. 9) 

𝑒𝑓𝑁𝑂𝑥(𝛼𝑖𝑢𝑖 + 𝛽𝑖𝑃𝑖 + 𝛾𝑖𝑃𝑖
2)                if               𝑃𝑖 < 𝑃𝑖

𝐶𝑀𝑆 

  
𝐸𝑜𝑖

𝑁𝑂𝑥 =   
𝜌𝑖𝑃𝑖                                 if               𝑃𝑖 ≥ 𝑃𝑖

𝐶𝑀𝑆 

     (5. 8) 
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5.3.2 Emission Control Regulations in Emission Models 

Emission Trading System for CO2 Emission Control  

Regulations on CO2 emissions in most of the states and countries have been based 

on ETS, which works with the principle of Cap & Trade mechanism. In the proposed 

approach, ETS is used to regulate CO2 emissions. For this purpose, it is assumed that 

each company is required to have enough allowances for their CO2 emissions 

otherwise they are going to pay heavy penalties for emissions exceeding their 

allowances. To prevent this situation, they are allowed to purchase additional 

emission allowances via the carbon market. When companies decrease their 

emissions beyond their quotas, they can transfer excess allowances to compensate 

for their future needs or they can trade those allowances to gain extra revenue. 

Since we are solving a day ahead UCP, the length of the planning horizon is 24 hours. 

In our time-decoupled UCP formulation, we implement Cap & Trade mechanism 

according to the assumptions provided below: 

• Total monthly or quarterly allowances are disaggregated into daily 

allowances according to several disaggregation techniques, which is out of 

our scope. Hence, daily allowances are considered as given and 

disaggregated into hourly allowances according to expected net load levels 

in each hour. 

• In the time-decoupled UCP formulation, hourly Cap & Trade Mechanism is 

used for total CO2 emissions in each hour. However, company is not allowed 

to trade during the 24-h planning horizon so they can trade at the end of the 

last hour. For this purpose, the following set of rules are applied. 

o If total CO2 emissions during an hour do not exceed its hourly 

allowance in the optimal solution of the time-decoupled UCP, excess 

allowance is not sold, rather transferred to the total allowances of the 

remaining hours.  
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o If total CO2 emissions during an hour exceed its hourly allowance in 

the optimal solution of the time-decoupled UCP, excess emissions 

are subtracted from the total allowances of the remaining hours.  

o Then, updated allowances are disaggregated by applying the same 

procedure of hourly disaggregation for the remaining hours. 

• No carbon tax is imposed for CO2 emissions less than the company’s total 

emission allowances.  

Three-Level Tax System for Air Pollutant Emission Control 

Owing to severe adverse effects of air pollutant emissions on the human health and 

environment, command and control type regulations have been adopted by a big 

majority of countries instead of Cap & Trade mechanism (OECD, 2017). For 

emissions of PMx, NOx and SO2, it is assumed that amounts of air pollutant emissions 

are regulated with command and control type policies with three-level tax systems 

in the proposed approach. For this reason, each company is required to comply with 

tier emission limits for air pollutants while paying a pollution tax on its emission 

amounts. For each air pollutant, the first level tax is imposed as an emission tax for 

emission amounts less than the first-tier emission limits. When a company emits 

more than the first-tier limit but less than the second-tier limit, the second level 

penalty is also imposed for emission amounts exceeding the first-tier limit, which 

constitutes the second level tax for emissions. If a company emits more than the 

second-tier limit, the third level penalty is also imposed for emission amounts 

exceeding the second-tier limit, which constitutes the third level tax for emissions. 

The three-level tax system for air pollutant G is illustrated in Figure 5.4 where 𝜋1
𝐺 , 

𝜋2
𝐺  and 𝜋3

𝐺  is the emission tax, the second level penalty and the third level penalty 

respectively. 
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Figure 5.4. Three-Level Tax System for Air Pollutants 

 

5.3.3 Time-decoupled Mixed Integer Quadratically Constrained 

Programming (MIQCP) Formulation with Quadratic Objective  

The proposed method is the extension of the model MIQP I-VPLE proposed in 

Chapter 4. Different from these formulations, the proposed formulation with 

emissions is based on MIQCP formulation since emissions are represented by 

quadratic functions, which make the representation of emission related constraints 

quadratic. By taking emissions and emission taxes into consideration, the objective 

consists of fuel costs, start-up costs, reserve allocation costs, expected cost of load 

shedding, valve-point loading costs and emission taxes in this extension. Excluding 

fuel costs, the remaining costs have a linear relationship with corresponding decision 

variables such as commitment statuses, reserves, 𝐸𝐸𝑁𝑆𝑡, and total CO2, NOx, SO2 

and PMx emissions. The fuel costs are represented by convex quadratic functions. 

As a result, both the objective function and constraints have quadratic terms in the 

extended formulation.  
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Standard UCP constraints such as power balance constraints and 

minimum/maximum generation limits, and time-dependent constraints like the 

minimum uptime/downtime constraints and the ramp-up/ramp-down limits are 

modelled similarly as in formulations in Chapter 4. Likewise, reserves are also 

considered as decision variables whose values are determined by the trade-off 

between total operational costs and the expected cost of load shedding (energy not 

served) instead of using standard spinning reserve requirements. For this purpose, 

𝐸𝐸𝑁𝑆𝑡 is piecewise linearly approximated by using the Approximation Method I 

explained in Chapter 4. Similarly, the valve point loading effect on conventional 

generating units are reckoned with multi-area piecewise linear approximation of 

valve point loading costs. Thus, the extended formulation with emissions control is 

called as MIQP I-VPLE-EC. Since the model MIQP I-VPLE-EC uses the same 

representations for constraints excluding emission related ones, only modifications 

for emissions are provided in this section. For each period in the planning horizon, 

the extended formulation is sequentially solved to obtain near-optimal schedules for 

the commitment, generation and reserve by trading off generation costs, the expected 

cost of load shedding and costs of emissions. 

Assumptions 

Assumptions Defined for Emissions: 

• Emissions are regulated via emission trading and taxing mechanisms only. 

For GHG and air pollutants, there are no zonal emission limits. 

• CO2 emissions are controlled via Cap & Trade mechanism according to 

assumptions provided in Section 5.3.2. 

• NOx, SO2 and PMx emissions are controlled via three-level tax system 

provided in Section 5.3.2. 

• The capture rates of the emission reduction technologies applied on 

conventional generating units remain unchanged during their operations. 
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• Emissions during start-ups do not depend on the production level. Rather, 

they depend on how much time the units have stayed inactive or 

nonoperational.      

Sets and Indices 

For emissions of CO2, NOx, SO2 and PMx, the following sets are defined. 

Additional Sets and Indices for Emissions: 

𝐴𝑃: Set of air pollutants: 

𝐴𝑃 = {NO𝑥, SO2, PM𝑥}                                                  (5. 10) 

𝑎𝑝 ∈ 𝐴𝑃: air pollutant ap 

𝐶𝑇: Set of combustion types: 

𝐶𝑇 = {𝑐𝑜𝑎𝑙, 𝑜𝑖𝑙, 𝑔𝑎𝑠}                                                    (5. 11) 

𝑐𝑚𝑖 ∈ 𝐶𝑇: Combustion type of unit i  

𝑁𝐶𝑜𝑎𝑙 ⊂  𝑁: Set of coal-fired conventional units: 

𝑁𝐶𝑜𝑎𝑙 = {𝑖 ∈ 𝑁: 𝑐𝑚𝑖 = 𝑐𝑜𝑎𝑙 }                                   (5. 12) 

𝑁𝑂𝑖𝑙 ⊂  𝑁: Set of oil-fired conventional units: 

𝑁𝑂𝑖𝑙 = {𝑖 ∈ 𝑁: 𝑐𝑚𝑖 = 𝑜𝑖𝑙 }                                        (5. 13) 

𝑁𝐺𝑎𝑠 ⊂  𝑁: Set of gas-fired conventional units: 

𝑁𝐺𝑎𝑠 = {𝑖 ∈ 𝑁: 𝑐𝑚𝑖 = 𝑔𝑎𝑠 }                                    (5. 14) 

𝐸𝐶𝑇: Set of emission control technologies: 

𝐸𝐶𝑇 = {𝐿𝑁𝐵, 𝑆𝐶𝑅, 𝐹𝐺𝐷, 𝐹𝐹, 𝐶𝐶𝑆}                        (5. 15) 

𝐸𝐶𝑇𝑖 ⊂ 𝐸𝐶𝑇: Set of emission control technologies in conventional generating unit i  

𝑁𝑆𝐶𝑅 ⊂  𝑁: Set of conventional units with a SCR device: 

𝑁𝑆𝐶𝑅 = {𝑖 ∈ 𝑁: {𝑆𝐶𝑅} ⊂ 𝐸𝐶𝑇𝑖}                             (5. 16) 

𝑄: Set of three-level emission tiers for air pollutants: 
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𝑄 = ൛𝑇𝐸0
𝑎𝑝, 𝑇𝐸1

𝑎𝑝, 𝑇𝐸2
𝑎𝑝, 𝑇𝐸3

𝑎𝑝ൟ                             (5. 17) 

𝑞 ∈ 𝑄: Sequential emission tiers for air pollutant emissions 

Parameters 

For emissions of CO2, NOx, SO2 and PMx, the following parameters are defined. 

Additional Parameters for Emissions: 

𝛼𝑖, 𝛽𝑖, 𝛾𝑖: Fuel consumption coefficients of unit i ∈ 𝑁𝐶𝑜𝑎𝑙 ∪ 𝑁𝐺𝑎𝑠, and fuel 

consumption coefficients in SC mode for i ∈ 𝑁𝐺𝑎𝑠 (tonnes, tonnes/MW, 

tonnes/MW2, respectively) 

𝑒𝑓𝑎𝑝: Emission factor of air pollutant ap (tonnes/tonnes) 

𝑒𝑓𝐶𝑂2: Emission factor of CO2 (tonnes/tonnes) 

𝜌𝑖: Emission coefficient in LPC mode for unit i ∈ 𝑁𝐺𝑎𝑠 (tonnes/MW) 

𝜃𝑖
1, 𝜃𝑖

2: Start-up fuel consumption rates of unit i during start-up (tonnes) 

𝜏𝑖 Start-up time constant of unit i (hours) 

𝜂𝑖
𝐿𝑁𝐵: NOx capture rate of LNB technology in unit i 

𝜂𝑖
𝑆𝐶𝑅: NOx removal efficiency of SCR equipment in unit i 

𝜂𝑖
𝐹𝐺𝐷: SO2 capture rate or desulphurization efficiency of unit i 

𝜂𝑖
𝐹𝐹: PMx capture rate or removal efficiency of unit i 

𝜂𝑖
𝐶𝐶𝑆: CO2 capture rate or decarbonization efficiency of unit i 

𝑃𝑖
𝑆𝐶𝑅: Power output threshold required for the activation of SCR in unit i ∈ 𝑁𝑆𝐶𝑅 

(MW) 

𝑃𝑖
𝐶𝑀𝑆: Power output threshold required for the combustion mode switch of unit i ∈

𝑁𝐺𝑎𝑠 (MW) 

𝑆𝐸𝑀𝑖𝑡
𝑎𝑝

: Start-up emissions of unit i for air pollutant ap in period t 

𝑆𝐸𝑀𝑖𝑡
𝐶𝑂2: Start-up CO2 emissions of unit i in period t 

𝜋1
𝑎𝑝

: Emission tax for air pollutant ap ($) 

𝜋2
𝑎𝑝

: Second level penalty for air pollutant ap ($) 

𝜋2
𝑎𝑝

: Third level penalty for air pollutant ap ($) 

𝑇𝐸𝑞
𝑎𝑝

: qth-tier maximum emission level for emissions of air pollutant ap (tonnes) 
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𝑇𝑎𝑥𝑞
𝑎𝑝

: qth-tier maximum emission tax for emissions of air pollutant ap ($): 

 

𝑇𝑎𝑥0
𝑎𝑝 = 0                                                                   (5. 18) 

𝑇𝑎𝑥1
𝑎𝑝 = 𝑇𝐸1

𝑎𝑝 𝜋1
𝑎𝑝                                                   (5. 19) 

𝑇𝑎𝑥2
𝑎𝑝 = 𝑇𝑎𝑥1

𝑎𝑝 + 𝑇𝐸2
𝑎𝑝 𝜋2

𝑎𝑝                                 (5. 20) 

𝑇𝑎𝑥3
𝑎𝑝 = 𝑇𝑎𝑥2

𝑎𝑝 + 𝑇𝐸3
𝑎𝑝 𝜋3

𝑎𝑝                                 (5. 21) 

𝐶𝐴𝑃𝑡
𝐶𝑂2: CO2 cap (amount of allowances) in period t (tonnes) 

𝑝𝐶𝑂2: Trading price in the carbon market ($) 

Decision Variables 

For emissions of CO2, NOx, SO2 and PMx, the following variables are defined. 

Additional Variables for Emissions: 

𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥: NOx emissions of unit i in period t without emission control technology 

𝐸𝑀𝑖𝑡
𝑁𝑂𝑥: NOx emissions of unit i in period t with emission control technology 

𝑇𝐸𝑀𝑡
𝑎𝑝

: Total emissions of air pollutant ap in period t 

𝑇𝐸𝑀𝑡
𝐶𝑂2: Total CO2 emissions in period t 

𝑇𝐸𝐶𝑡
𝑎𝑝

: Cost of total emissions of air pollutant ap in period t 

𝑇𝐸𝐶𝑡
𝐶𝑂2: Cost/Revenue of total CO2 emissions in period t 

𝑤𝑞
𝑎𝑝

: Weight of qth-tier maximum emission level for emissions of air pollutant ap  

𝛿𝑖𝑡
𝐶𝑀𝑆: Combustion mode switch of unit i ∈ 𝑁𝐺𝑎𝑠 in period t (Activation of LPC 

mode):  

 

 

 

 

𝛿𝑖𝑡
𝑆𝐶𝑅: Activation of SCR device of unit i ∈ 𝑁𝑆𝐶𝑅 in period t:   

𝛿𝑖𝑡
𝐶𝑀𝑆 =  

1  if  LPC mode of gas fired unit 𝑖 is activated in period 𝑡  

0  otherwise 

(5. 22) 
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Objective Function 

Having added the emission taxes of air pollutant emissions and cost/revenue of CO2 

emissions, the objective function of the model MIQP I-VPLE is modified as: 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑉𝑃𝑖𝑡 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+  (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡)

+ 𝑇𝐸𝐶𝑡
𝑁𝑂𝑥 + 𝑇𝐸𝐶𝑡

𝑆𝑂2 + 𝑇𝐸𝐶𝑡
𝑃𝑀𝑥 + 𝑇𝐸𝐶𝑡

𝐶𝑂2                                (5. 24) 

Constraints for Emissions 

Cost or Revenue of CO2 Emissions: When total CO2 emissions in period t are less 

than the amount of CO2 allowances for period t, then remaining allowances of that 

period will be considered as if they can be sold with the CO2 price in the carbon 

market, so the revenue from selling allowances is taken as negative cost. When total 

CO2 emissions in period t exceed the amount of CO2 allowances for period t, then 

the excess emissions in the same period will be considered as if they can be 

compensated for by buying additional allowances with the CO2 price in the carbon 

market, so the cost of buying allowances is taken as positive cost.  

Note: Because of no trading assumption during 24-h planning horizon, the trading 

will not happen in both cases so that excess allowances in period t can be used to 

compensate for future needs in remaining hours, and the excess emissions in period 

t will be compensated for by using CO2 allowances of remaining hours. Thus, the 

final decision on trading will be made at the end of the last hour in the planning 

horizon.  

𝑇𝐸𝐶𝑡
𝐶𝑂2 = (𝑇𝐸𝑀𝑡

𝐶𝑂2 − 𝐶𝐴𝑃𝑡
𝐶𝑂2) 𝑝𝐶𝑂2                         (5. 25) 

 

𝛿𝑖𝑡
𝑆𝐶𝑅 =  

1  if   SCR device of gas fired unit 𝑖 is activated 𝑖 in period 𝑡  

0  otherwise 
(5. 23) 
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Constraints for Three-level Taxes for Air Pollutant Emissions: 

• The constraint for locating the total emission level of air pollutant ap in the 

set of emission tiers: 

𝑇𝐸𝑀𝑡
𝑎𝑝 = ∑ 𝑇𝐸𝑞

𝑎𝑝 𝑤𝑞
𝑎𝑝

3

𝑞=0

    ∀𝑎𝑝                                  (5. 26) 

• The constraint for finding the total emission cost of air pollutant ap 

depending on its total emission level: 

𝑇𝐸𝐶𝑡
𝑎𝑝 = ∑ 𝑇𝑎𝑥𝑞

𝑎𝑝 𝑤𝑞
𝑎𝑝

3

𝑞=0

    ∀𝑎𝑝                                (5. 27) 

• If there are emissions for air pollutant ap, then the total emission level should 

lie on one of emission tiers; accordingly, the sum of weights of tiered 

maximum emission levels should be 1: 

∑ 𝑤𝑞
𝑎𝑝

3

𝑞=0

= 1    ∀𝑎𝑝                                                      (5. 28) 

Total SO2 Emissions: Total SO2 emissions in period t is the sum of total operational 

emissions with FGD technology and start-up emissions in that period.   

𝑇𝐸𝑀𝑡
𝑆𝑂2 ≥ ∑ [(1 − 𝜂𝑖

𝐹𝐺𝐷) (𝑒𝑓𝑆𝑂2(𝛼𝑖𝑢𝑖𝑡 + 𝛽𝑖𝑃𝑖𝑡 + 𝛾𝑖𝑃𝑖𝑡
2)) + 𝑆𝐸𝑀𝑖𝑡

𝑆𝑂2𝑢𝑖𝑡]

|𝑁|

𝑖=1

 (5. 29) 

Total PMx Emissions: Total PMx emissions in period t is the sum of total operational 

emissions with FF technology and start-up emissions in that period. 

Note: Since concentrations of PMx emissions from oil-fired and gas-fired generating 

units are negligible, PMx emissions are caused by only coal-fired generating units.   

𝑇𝐸𝑀𝑡
𝑃𝑀𝑥 ≥ ∑ [(1 − 𝜂𝑖

𝐹𝐹)(𝑒𝑓𝑃𝑀𝑥(𝛼𝑖𝑢𝑖𝑡 + 𝛽𝑖𝑃𝑖𝑡 + 𝛾𝑖𝑃𝑖𝑡
2)) + 𝑆𝐸𝑀𝑖𝑡

𝑃𝑀𝑥𝑢𝑖𝑡]

𝑖∈𝑁𝐶𝑜𝑎𝑙 

    (5. 30) 

Total CO2 Emissions: Total CO2 emissions in period t is the sum of total operational 

emissions with CCS technology and start-up emissions in that period.   
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𝑇𝐸𝑀𝑡
𝐶𝑂2 ≥ ∑ [(1 − 𝜂𝑖

𝐶𝐶𝑆) (𝑒𝑓𝐶𝑂2(𝛼𝑖𝑢𝑖𝑡 + 𝛽𝑖𝑃𝑖𝑡 + 𝛾𝑖𝑃𝑖𝑡
2)) + 𝑆𝐸𝑀𝑖𝑡

𝐶𝑂2𝑢𝑖𝑡]

|𝑁|

𝑖=1

  (5. 31) 

Constraints for Total NOx Emissions: Since NOx emissions for coal-fired and oil-

fired generating units are different from ones for oil-fired generating units, and 

different emission control technologies are available for conventional units, the 

following set of constraints are defined for modelling NOx emissions. 

• Operational NOx Emissions without any emission control technologies for 

coal-fired or oil-fired generating unit i in period t: 

𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥 ≥ 𝑒𝑓𝑁𝑂𝑥(𝛼𝑖𝑢𝑖𝑡 + 𝛽𝑖𝑃𝑖𝑡 + 𝛾𝑖𝑃𝑖𝑡

2)    ∀𝑖 ∈ (𝑁𝑂𝑖𝑙 ∪ 𝑁𝐶𝑜𝑎𝑙) (5. 32) 

• Operational NOx Emissions without any emission control technologies for 

gas-fired generating units:  

Since there are two combustion modes available for gas-fired units, the 

following set of constraints are defined for modelling NOx emissions without 

any emission control technologies for gas-fired generating unit i in period t. 

o If power output level of gas-fired unit i is greater than or equal to its 

power output threshold required for the combustion mode switch, 

then the power is generated in LPC mode and emissions are modelled 

by LPC mode-emissions in period t: 

𝑃𝑖𝑡 ≥ 𝑃𝑖
𝐶𝑀𝑆 + 𝑚3(1 − 𝛿𝑖𝑡

𝐶𝑀𝑆)    ∀𝑖 ∈ 𝑁𝐺𝑎𝑠                    (5. 33) 

where 𝑚3 is a very small number denoting lower bounds for power 

output levels. 

𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥 ≥ 𝜌𝑖𝑃𝑖𝑡 + 𝑚4(1 − 𝛿𝑖𝑡

𝐶𝑀𝑆)    ∀𝑖 ∈ 𝑁𝐺𝑎𝑠          (5. 34) 

where 𝑚4 is a very small number denoting lower bounds for NOx 

emission levels.  

o If power output level of gas-fired unit i is less than its power output 

threshold required for the combustion mode switch, then the power is 
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generated in SC mode and emissions are modelled by SC mode-

emissions in period t: 

𝑃𝑖𝑡 ≤ 𝑃𝑖
𝐶𝑀𝑆 − 𝜀 + (𝑀4 + 𝜀)𝛿𝑖𝑡

𝐶𝑀𝑆    ∀𝑖 ∈ 𝑁𝐺𝑎𝑠        (5. 35) 

where 𝑀4 is a very large number denoting upper bounds for power 

output levels and 𝜀 = 0.001. 

𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥 ≥ 𝑒𝑓𝑁𝑂𝑥(𝛼𝑖𝑢𝑖𝑡 + 𝛽𝑖𝑃𝑖𝑡 + 𝛾𝑖𝑃𝑖𝑡

2) + 𝑀5 𝛿𝑖𝑡
𝐶𝑀𝑆 ∀𝑖 ∈ 𝑁𝐺𝑎𝑠(5. 36) 

where 𝑀5 is a very large number denoting upper bounds for NOx 

emission levels. 

o Combustion mode can be switched if and only if gas-fired unit i is 

committed in period t: 

𝛿𝑖𝑡
𝐶𝑀𝑆 ≤ 𝑢𝑖𝑡    ∀𝑖 ∈ 𝑁𝐺𝑎𝑠                                    (5. 37) 

• Operational NOx Emissions with emission control technologies for 

conventional generating units:  

Since two emission control technologies (LNB and SCR) might be used for 

conventional generating units, the following set of constraints are defined for 

modelling NOx emissions with emission control technologies for unit i in 

period t. 

o If power output level of unit i with a SCR device is greater than or 

equal to its power output threshold required for the activation of the 

device, then both LNB technology and SCR device are used to reduce 

NOx emissions in period t:  

𝑃𝑖𝑡 ≥ 𝑃𝑖
𝑆𝐶𝑅 + 𝑚3(1 − 𝛿𝑖𝑡

𝑆𝐶𝑅)    ∀𝑖 ∈ 𝑁𝑆𝐶𝑅          (5. 38) 

where 𝑚3 is a very small number denoting lower bounds for power 

output levels. 

𝐸𝑀𝑖𝑡
𝑁𝑂𝑥 ≥ (1 − 𝜂𝑖

𝑆𝐶𝑅)(1 − 𝜂𝑖
𝐿𝑁𝐵)𝐸𝑀̃𝑖𝑡

𝑁𝑂𝑥 + 𝑚4(1 − 𝛿𝑖𝑡
𝑆𝐶𝑅) ∀𝑖 ∈ 𝑁𝑆𝐶𝑅(5. 39) 

where 𝑚4 is a very small number denoting lower bounds for NOx 

emission levels.  
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o If power output level of unit i with a SCR device is less than its power 

output threshold required for the activation of the device, then only 

LNB technology is used to reduce NOx emissions in period t: 

𝑃𝑖𝑡 ≤ 𝑃𝑖
𝑆𝐶𝑅 − 𝜀 + (𝑀4 + 𝜀)𝛿𝑖𝑡

𝐶𝑀𝑆    ∀𝑖 ∈ 𝑁𝑆𝐶𝑅      (5. 40) 

where 𝑀4 is a very large number denoting upper bounds for power 

output levels and 𝜀 = 0.001. 

𝐸𝑀𝑖𝑡
𝑁𝑂𝑥 ≥ (1 − 𝜂𝑖

𝐿𝑁𝐵)𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥 + 𝑀5 𝛿𝑖𝑡

𝑆𝐶𝑅    ∀𝑖 ∈ 𝑁𝑆𝐶𝑅  (5. 41) 

where 𝑀5 is a very large number denoting upper bounds for NOx 

emission levels. 

o SCR device can be activated if and only if unit i is committed in 

period t: 

𝛿𝑖𝑡
𝑆𝐶𝑅 ≤ 𝑢𝑖𝑡    ∀𝑖 ∈ 𝑁𝑆𝐶𝑅                                      (5. 42) 

o For unit i without a SCR device, only LNB technology is used to 

reduce NOx emissions in period t:  

𝐸𝑀𝑖𝑡
𝑁𝑂𝑥 ≥ (1 − 𝜂𝑖

𝐿𝑁𝐵)𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥     ∀𝑖 ∉ 𝑁𝑆𝐶𝑅    (5. 43) 

• Total NOx emissions in period t is the sum of total operational emissions with 

emission control technologies and start-up emissions in that period: 

𝑇𝐸𝑀𝑡
𝑁𝑂𝑥 ≥ ∑[𝐸𝑀𝑖𝑡

𝑁𝑂𝑥 + 𝑆𝐸𝑀𝑖𝑡
𝑁𝑂𝑥𝑢𝑖𝑡]

|𝑁|

𝑖=1

              (5. 44) 

Sign Restrictions of Decision Variables for Emissions:  

𝐸𝑀̃𝑖𝑡
𝑁𝑂𝑥 , 𝐸𝑀𝑖𝑡

𝑁𝑂𝑥 ≥ 0    ∀𝑖                                        (5. 45) 

𝑇𝐸𝐶𝑡
𝑎𝑝, 𝑇𝐸𝑀𝑡

𝑎𝑝 , 𝑤𝑞
𝑎𝑝 ≥ 0    ∀𝑎𝑝                           (5. 46) 

𝑇𝐸𝑀𝑡
𝐶𝑂2 ≥ 0                                                             (5. 47) 

𝑇𝐸𝐶𝑡
𝐶𝑂2   𝑢𝑟𝑠                                                            (5. 48) 

𝛿𝑖𝑡
𝐶𝑀𝑆 ∈ {0,1}    ∀𝑖 ∈ 𝑁𝐺𝑎𝑠                                      (5. 49) 
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𝛿𝑖𝑡
𝑆𝐶𝑅 ∈ {0,1}    ∀𝑖 ∈ 𝑁𝑆𝐶𝑅                                      (5. 50) 

Mathematical Model: MIQP I-VPLE-EC 

𝑀𝑖𝑛   ∑(𝑎𝑖𝑢𝑖𝑡 + 𝑏𝑖𝑃𝑖𝑡 + 𝑐𝑖𝑃𝑖𝑡
2 + 𝑉𝑃𝑖𝑡 + 𝑞𝑖𝑅𝑖𝑡 + 𝑆𝑖𝑡𝑢𝑖𝑡)

|𝑁|

𝑖=1

+  (𝑉𝑂𝐿𝐿)(𝐸𝐸𝑁𝑆𝑡)

+ 𝑇𝐸𝐶𝑡
𝑁𝑂𝑥 + 𝑇𝐸𝐶𝑡

𝑆𝑂2 + 𝑇𝐸𝐶𝑡
𝑃𝑀𝑥 + 𝑇𝐸𝐶𝑡

𝐶𝑂2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

(4.40), … , (4.59), (4.79), … , (4.90), (5.25), … , (5.50)                                                 

5.4 Computational Study 

The proposed time-decoupled environmental MIQCP formulation (MIQP I-VPLE-

EC) is coded in MATLAB programming language and solved via CPLEX for 

MATLAB toolbox provided by IBM ILOG CPLEX Optimizer 12.9.0. The model is 

executed in Windows 10 environment in a Lenovo ultrabook with Intel(R) Core 

(TM) i7-6500U 2.6 GHz CPU and 8 GB RAM. Numerical experiments on the 

performance of the approach is conducted by using modified versions of Problem 

Instance 2 described in Section 4.3.1. Those modifications are explained in detail in 

the subsequent sections. Then, test and sensitivity analysis results are provided for 

the proposed model. Lastly, our time-decoupled environmental formulation MIQP I-

VPLE-EC is compared with the UCP formulations enforcing traditional 

deterministic reserve policies.   

5.4.1 Problem Instances 

To conduct numerical experiments, the time-decoupled model MIQP I-VPLE-EC is 

implemented to modified versions of IEEE 30-bus problem instance by considering 

significant wind penetration and emission considerations as well. For wind farms, 

conventional generation reliability, load demand and wind power forecast errors, 
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ramp rate limits, reserve rates and socioeconomic value that customers put on the 

value of the lost load, we use the same settings provided in Section 4.3 in our 

stochastic and environmental model MIQP I-VPLE-EC. Hence, only modifications 

are provided in the following sections.    

Problem Instance 1 

This problem instance consists of 30-bus with 6 conventional thermal units and 6 

wind farms which have a total installed capacity of 135 MW. The length of the 

scheduling horizon is 24 hours. The power output thresholds for SCR activation and 

CMS are assumed to be 30% and 70% of the unit’s maximum rated capacity. 

Concerning emissions, additional unit related data for modified IEEE 30-bus test 

system are provided in Table 5.4. 

Table 5.4. Conventional Units’ Emissions Related Data for Modified IEEE 30-bus 

Problem Instance 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

𝐅𝐮𝐞𝐥 𝐓𝐲𝐩𝐞 
 

Coal Coal Coal Gas Gas Oil 

𝜶𝒊 45 50 90 2430.5 2000 1.248 

𝜷𝒊 0.3 0.25 0.14 55 0.212 0.334 

𝜸𝒊 0.00005 0.00004 0.00003 0,009 0.007 0.0000342 

𝜽𝒊
𝟏  90 100 180 4861 4000 2.496 

𝜽𝒊
𝟐 90 100 180 4861 4000 2.496 

𝝆𝒊 0.075 0.0625 0.035 13.75 0.053 0.0835 

𝝉𝒊 (𝒉) 8 5 6 5 5 6 

LNB System Yes Yes Yes Yes Yes Yes 

SCR System Yes No Yes No Yes No 

FF System No No Yes No No No 

FGD System Yes Yes Yes No Yes No 

CCS System No No Yes Yes No No 

       NOTE:  1. The coefficients of  𝜶𝒊, 𝜷𝒊, 𝜸𝒊, 𝜽𝒊
𝟏, 𝜽𝒊

𝟐 are in 𝐭, 𝐭/𝐌𝐖, 𝐭/𝐌𝐖𝟐, 𝐭 and 𝐭 for 

coal & oil type units 

                      2. The coefficients of  𝜶𝒊, 𝜷𝒊, 𝜸𝒊, 𝝆𝒊, 𝜽𝒊
𝟏, 𝜽𝒊

𝟐 are in 𝐦𝟑, 𝐦𝟑/𝐌𝐖, 𝐦𝟑/𝐌𝐖𝟐,  

𝐦𝟑/𝐌𝐖, 𝐦𝟑 and 𝐦𝟑 for gas type units 
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Table 5.5 shows removal efficiencies of each emission control technology. 

Table 5.5. Emission Control Systems’ Removal Efficiencies for Modified IEEE 30-

bus Problem Instance 

 LNB SCR FF FGD CCS 

𝐑𝐞𝐦𝐨𝐯𝐚𝐥 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐢𝐞𝐬 (𝜼) 
 

30% 70% 95% 90% 80% 

 

Fuel based emissions factors for CO2 and air pollutants are determined according to 

Di et al. (2007). These factors are reported in Table 5.6. 

Table 5.6. Fuel-based Emission Factors for Modified IEEE 30-bus Problem Instance 

 
Coal 

(kg/kg) 

Oil 

(kg/kg) 

Gas 

(kg/m3) 

𝒆𝒇𝑪𝑶𝟐 3.1604 2.8523 1.84 

𝒆𝒇𝑵𝑶𝒙  0.0122 0.0172 0.002543 

𝒆𝒇𝑷𝑴𝒙  0.0026 - - 

𝒆𝒇𝑺𝑶𝟐 0.01701 0.02232 0.00026 

 

Carbon trading price and CO2 cap over the scheduling horizon are shown in Table 

5.7. 

Table 5.7. Carbon Trading Environment for Modified IEEE 30-bus Problem Instance 

 𝒑𝑪𝑶𝟐 𝑪𝑨𝑷𝑪𝑶𝟐 

𝐂𝐚𝐫𝐛𝐨𝐧 𝐄𝐜𝐨𝐧𝐨𝐦𝐲 86.22 8,846.99 

           NOTE: Carbon price and cap are in $/𝐭 and 𝐭  

 

The CO2 cap is dynamically disaggregated for individual hours by applying rules 

provided in Section 5.3.2. Three-level emission tax systems for each pollutant are 

illustrated in Table 5.8. 
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Table 5.8. Three-Level Emission Tax Systems of Air Pollutants for Modified IEEE 

30-bus Problem Instance 
 NOx PMx SO2 

 

 𝝅𝒒
𝑵𝑶𝒙  𝑻𝑬𝒒

𝑵𝑶𝒙 𝝅𝒒
𝑷𝑷𝑴𝒙  𝑻𝑬𝒒

𝑷𝑷𝑴𝒙  𝝅𝒒
𝑺𝑶𝟐 𝑻𝑬𝒒

𝑺𝑶𝟐 

𝐓𝐢𝐞𝐫 𝟏 13.78 1.07 10.88 0.19 3.21 1.37 

𝐓𝐢𝐞𝐫 𝟐 30.00 3.83 14.50 0.57 5.98 4.63 

𝐓𝐢𝐞𝐫 𝟑 46.25 6.60 18.12 0.94 8.76 7.89 

                  NOTE:  The units of emission taxes and emission tiers are in $/𝐤𝐠 and 𝐭  

 

Problem Instance 2 

This problem instance is obtained by appropriately scaling Problem Instance 1. For 

this purpose, generating units are replicated two times to form 12-Unit problem 

instance. Also, capacities of wind turbines in each wind farm, load demand and wind 

power forecasts, CO2 cap and emission levels on tiers are doubled. Nevertheless, 

removal efficiencies of emission control technologies, fuel-based emission factors, 

carbon trading price and emission taxes remain unchanged.  

5.4.2 Sensitivity Analysis Results 

Similar to sensitivity analyses made in Chapter 4, we test the sensitivity of the 

solutions of our time-decoupled model MIQP I-VPLE-EC by changing parameters 

one at a time and solving them with the updated parameter value. Those parameters 

involve 𝑉𝑂𝐿𝐿, carbon trading price, air pollutant emission taxes, load demand and 

wind speed forecast errors, failure rates of conventional generating units. The 

sensitivity of the model is examined by applying it to the modified IEEE 30-bus 

problem instance. 

First of all, the impact of 𝑉𝑂𝐿𝐿 on 𝐶𝐶𝑡 is determined by increasing VOLL by 750 

$/MWh starting from 1750 $/MWh. In Table 5.9, the total operating cost of the 

system and its breakdowns under different 𝑉𝑂𝐿𝐿 values are summarized. Emission 

related costs or revenues are not included in total operating costs. It is observed that 

the total operating cost increases. For the first two levels, this increase is attributed 
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to the increase in the expected cost of load shedding because increasing 𝑉𝑂𝐿𝐿 has a 

minor effect on generation and reserve cost. However, this increase is attributed to 

the increase in both cost components. That is, commitment and dispatching decisions 

are affected significantly when the 𝑉𝑂𝐿𝐿 is increased to 3250 $/MWh.  

Table 5.9. Total Operating Cost under Different 𝑉𝑂𝐿𝐿 Values for Modified IEEE 

30-bus Problem Instance 

VOLL ($/MWh) 1750 2500 3250 

Expected Cost of EENS ($) 31,664.5 45,025.4 57,801.4 

Generation & Reserve Cost ($) 698,277.4 698,287.5 706,449.5 

Total Operating Cost ($) 729,941.9 743,312.9 764,250.9 

 

 

Figure 5.5. Relationship between 𝑉𝑂𝐿𝐿 and 𝐶𝐶𝑡 for Modified IEEE 30-bus Problem 

Instance 

 

 

This situation is also illustrated in Figure 5.5 which shows the relationship between 

𝑉𝑂𝐿𝐿 and 𝐶𝐶𝑡 over the 24-h scheduling horizon. Increasing 𝑉𝑂𝐿𝐿 does not change 

𝐶𝐶𝑡 levels except for five periods since emission related costs/revenues remain the 

dominant factor in the cost/benefit analysis. By increasing 𝑉𝑂𝐿𝐿 to 3250 MWh/$, 
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𝐶𝐶𝑡 levels generally increase in those periods. Also, we examine how total emission 

amounts change by increasing 𝑉𝑂𝐿𝐿, which is demonstrated in Figure 5.6 where the 

primary and secondary vertical axes represent GHG emissions such as CO2, and air 

pollutant emissions consisting of NOx, SO2 and PMx. 

 

Figure 5.6. Relationship between 𝑉𝑂𝐿𝐿 and Total Emission Amounts for Modified 

IEEE 30-bus Problem Instance 

 

 

Air pollutant emissions do not change significantly as 𝑉𝑂𝐿𝐿 increases. NOx 

emissions are 24.68, 24.73 and 24.85 tonnes, SO2 emissions are 19.95, 19.94 and 

19.83 tonnes, and PMx emissions are 3.86, 3.86 and 3.84 for increasing levels of 

𝑉𝑂𝐿𝐿, respectively. Nevertheless, by increasing 𝑉𝑂𝐿𝐿 from 1750 $/MWh to 2500 

$/MWh, CO2 emissions are slightly reduced from the level of 10,331.96 tonnes to 

10,326.87 tonnes. However, they increase substantially by reaching to the top level 

of 10,402.62 tonnes with a further 750 $/MWh increase. The reason is that more 

carbon intensive units such as coal-fired and oil-fired units become committed to 

decrease 𝐸𝐸𝑁𝑆𝑡 levels.   

Secondly, we test the sensitivity of the solution by increasing the system uncertainty. 

Since solution behaviors are similar for both increasing forecast errors and 

decreasing conventional power generation reliability, we provide the solutions where 

the reliability of the conventional generation is reduced. For this purpose, we double 
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and triple failure rates (𝑂𝑅𝑅); accordingly, we solve the model with new 

conventional system reliability. In Figure 5.7, the relationship between 𝑂𝑅𝑅 and 𝐶𝐶𝑡 

over the 24-h scheduling horizon is illustrated. Changing 𝑂𝑅𝑅 does not affect 𝐶𝐶𝑡 

levels much except for five periods since emission related costs/revenues dominate 

the overall cost/benefit analysis. It is important to note that schedules under doubled 

𝑂𝑅𝑅 are similar to the ones in original 𝑂𝑅𝑅 for the first 20 periods, but schedules 

under doubled ORR behaves like the ones in tripled 𝑂𝑅𝑅 due to the VPLE.  

 

Figure 5.7. Relationship between Conventional System Reliability and 𝐶𝐶𝑡 for 

Modified IEEE 30-bus Problem Instance 

 

 

Also, we examine how total emission amounts change by decreasing the 

conventional system reliability, which is shown in Figure 5.8 where the primary and 

secondary vertical axes represent GHG emissions such as CO2, and air pollutant 

emissions consisting of NOx, SO2 and PMx. 
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Figure 5.8. Relationship between Conventional System Reliability and Total 

Emission Amounts for Modified IEEE 30-bus Problem Instance 

 

 

There is no significant change in air pollutant emissions by increasing 𝑂𝑅𝑅 as 

depicted in Figure 5.8. NOx emissions are 24.85, 24.62 and 24.79 tonnes, SO2 

emissions are 19.95, 19.87 and 19.84 tonnes, and PMx emissions are 3.86, 3.84 and 

3.84 for increasing levels of 𝑂𝑅𝑅, respectively. Nonetheless, CO2 emissions increase 

substantially as the conventional system reliability is reduced. The emission levels 

start with 10,331.96 tonnes, then they increase by 54.13 tonnes when 𝑂𝑅𝑅 is 

doubled. They further increase by 44.08 tonnes when 𝑂𝑅𝑅 is tripled. The reason is 

that more carbon intensive units such as coal-fired and oil-fired units become 

committed to increase 𝐶𝐶𝑡 levels. Moreover, there is an increase in total operating 

cost when the conventional system becomes less reliable as reported in Table 5.10. 

That is because both generation and reserve costs and total 𝐸𝐸𝑁𝑆𝑡 increases with the 

reduction in the conventional system reliability. 

Table 5.10. Total Operating Cost under Different Conventional System Reliability 

for Modified IEEE 30-bus Problem Instance 

Scale of ORR  x1 x2 x3 

Expected Cost of EENS ($) 31,664.5 51,124.8 69,539.9 

Generation & Reserve Cost ($) 698,277.4 703,513.3 707,433.5 

Total Operating Cost ($) 729,941.9 754,638.1 776,973.4 
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Another parameter is the trading price in the carbon economy. To see its effects on 

total cost, 𝐶𝐶𝑡 and emissions, the carbon price is scaled in an increasing order. As 

shown in Figure 5.9, 𝐶𝐶𝑡 values are sensitive to changes in the carbon price. In 

periods with low net load intensity, there is a downward effect on 𝐶𝐶𝑡 levels when 

the trading price is doubled and tripled. However, this effect is generally reversed 

for periods with high net load intensity. That is because more units become 

committed for these periods, but they are dispatched more environmentally friendly 

to abate GHG and air pollutant emissions. 

 

Figure 5.9. Relationship between Carbon Trading Price and 𝐶𝐶𝑡 for Modified IEEE 

30-bus Problem Instance 

 

 

Except for NOx and SO2 emissions, PMx and CO2 emissions reduce as the carbon 

price increases. In Figure 5.10, PMx emissions are 3.86, 3.71 and 2.97, and CO2 

emissions are 10,331.96, 10,192.96 and 8,976.43 tonnes for increasing levels of the 

trading price, respectively. Nevertheless, NOx emissions slightly increase by 1.75 

tonnes and reaches to 26.60 tonnes for doubled trading price. Then, they reduce to 

23.58 tonnes for tripled trading price.  Similarly, SO2 emissions slightly increases 

for doubled carbon price from 19.95 tonnes to 19.98 tonnes. When the carbon price 

is tripled, they reduce by 3.53 tonnes.  
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Figure 5.10. Relationship between Carbon Trading Price and Total Emission 

Amounts for Modified IEEE 30-bus Problem Instance 

 

 

As reported in Table 5.11, total operating costs increase with an increase in the 

carbon price due to the increase in generation and reserve costs. While this cost 

component increases, the expected cost of load shedding slightly fluctuates around 

the level of $ 31,600. 

Table 5.11. Total Operating Cost under Different Carbon Trading Price for Modified 

IEEE 30-bus Problem Instance 

Scale of Carbon Price  x1 x2 x3 

Expected Cost of EENS ($) 31,664.5 32,683.8 31,960.6 

Generation & Reserve Cost ($) 698,277.4 700,994.6 702,400.4 

Total Operating Cost ($) 729,941.9 733,678.5 734,360.9 

 

Like carbon trading price, we also examine how NOx taxes change the commitment 

and dispatching decisions. For this purpose, NOx taxes in three levels are doubled 

and tripled at the same time. As illustrated in Figure 5.11, 𝐶𝐶𝑡 values are very 

sensitive to changes in NOx taxes. In general, increasing NOx taxes have a downward 

effect on 𝐶𝐶𝑡 levels, but those levels with tripled taxes are greater than or equal to 

the ones with lower taxes for periods with high net load intensity.  
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Figure 5.11. Relationship between Three-level NOx Taxes and 𝐶𝐶𝑡 for Modified 

IEEE 30-bus Problem Instance 

 

 

Except for CO2 emissions, NOx, SO2, PMx emissions reduce as NOx taxes increase 

as demonstrated in Figure 5.12. NOx emissions are 24.85, 25.44 and 21.37 tonnes, 

SO2 emissions are 19.95, 19.76 and 16.30 tonnes, and PMx emissions are 3.86, 3.59 

and 2.66 for increasing NOx taxes, respectively. However, CO2 emissions 

substantially increase by 185.52 tonnes and reaches to 10,517.48 tonnes for doubled 

NOx taxes. Then, they significantly abate to 8,978.84 tonnes for tripled NOx taxes. 

 

Figure 5.12. Relationship between Three-level NOx Taxes and Total Emission 

Amounts for Modified IEEE 30-bus Problem Instance 
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When the expected costs of EENS are compared for different levels of NOx taxes, 

they decrease because of the reduction in total 𝐸𝐸𝑁𝑆𝑡. In contrast, generation and 

reserve costs fluctuates, so the total operating costs. It should be pointed out that both 

components are decreased for the initial and tripled NOx taxes (Table 5.12).  

Table 5.12. Total Operating Cost under Different Three-level NOx Taxes for 

Modified IEEE 30-bus Problem Instance 

Scale of NOx Taxes x1 x2 x3 

Expected Cost of EENS ($) 31,664.5 29,873.6 29,713.7 

Generation & Reserve Cost ($) 698,277.4 710,832.6 689,425.8 

Total Operating Cost ($) 729,941.9 740,706.2 719,139.5 

 

Similar analyses are also made for scaled SO2 taxes. Different from other parameters, 

𝐶𝐶𝑡 levels generally increase with higher SO2 taxes (Figure 5.13). The reason is that 

gas-fired units do not have an FGD technology whereas coal-fired and oil-fired units 

have this control technology. However, gas-fired units have more capacity than other 

units except 700 MW coal-fired unit. Therefore, more units become committed for 

the same net load level as SO2 taxes increase, which in return increases 𝐶𝐶𝑡. This 

effect becomes more significant when SO2 taxes are tripled. 

 

Figure 5.13. Relationship between Three-level SO2 Taxes and 𝐶𝐶𝑡 for Modified 

IEEE 30-bus Problem Instance 
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Excluding CO2 emissions, NOx, SO2, PMx emissions are not affected when SO2 

taxes are kept in the original levels and doubled as depicted in Figure 5.14. NOx 

emissions are 24.85 and 24.87 tonnes, SO2 emissions are 19.95 and 19.76 tonnes, 

and PMx emissions are 3.86 and 3.71 for the first two scales, respectively. However, 

CO2 emissions substantially decrease by 79.61 tonnes and become 10,252.35 tonnes 

for doubled SO2 taxes. Nonetheless, both GHG and air pollutant emissions increase 

significantly when compared to the ones in previous scales. To illustrate, NOx, SO2, 

PMx and CO2 emissions reach their top levels of 31.87, 21.80, 4.48 and 11,708.87 

tonnes, respectively. The same reasoning in the increase in 𝐶𝐶𝑡 levels is also valid 

for the increase in emission levels. Although coal-fired and oil-fired units do not 

utilize FGD technology, they are more carbon intensive. Hence, emission levels 

skyrocket for tripled SO2 taxes. 

 

Figure 5.14. Relationship between Three-level SO2 Taxes and Total Emission 

Amounts for Modified IEEE 30-bus Problem Instance 

 

 

When total operating costs are compared for different SO2 taxes, there is an 

increasing trend, which is caused by generation and reserve costs as reported in Table 

5.13. Since 𝐶𝐶𝑡 levels increase, generation and reserve costs also increase whereas 

the expected cost of load shedding decreases.  
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Table 5.13. Total Operating Cost under Different Three-level SO2 Taxes for 

Modified IEEE 30-bus Problem Instance 

Scale of SO2 Taxes x1 x2 x3 

Expected Cost of EENS ($) 31,664.5 31,177.1 29,393.9 

Generation & Reserve Cost ($) 698,277.4 703,700.6 730,019.9 

Total Operating Cost ($) 729,941.9 734,877.8 759,413.9 

 

Lastly, we examine the sensitivity of the solution under different PMx taxes. It is 

observed that, different PMx tax regimes do not have a significant impact on 𝐶𝐶𝑡 

levels as demonstrated in Figure 5.15. The reason is that PMx emissions are caused 

by only coal-fired units, and only 700 MW coal-fired unit is committed in the 

original tax regime since it has the FF technology. Hence, increasing PMx taxes does 

not change the commitment and dispatching decisions.       

 

Figure 5.15. Relationship between Three-level PMx Taxes and 𝐶𝐶𝑡 for Modified 

IEEE 30-bus Problem Instance 
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Figure 5.16. Relationship between Three-level PMx Taxes and Total Emission 

Amounts for Modified IEEE 30-bus Problem Instance 

 

 

In Figure 5.16, emission levels under different PMx tax regimes are shown. PMx 

emissions are slightly reduced with the increasing PMx tax regime. The emission 

levels are 3.86, 3.85 and 3.72 tonnes. Likewise, SO2 emissions are also abated by 

increasing PMx taxes. The associated emission levels are 19.95, 19.92 and 19.79 

tonnes. That is because committed coal fired unit generates less power. Nevertheless, 

NOx emissions increase as PMx taxes increase. The corresponding emission levels 

are 24.85, 25.20 and 25.66 tonnes. Different from air pollutant emissions, when PMx 

taxes are doubled, CO2 emissions are increased by 10.16 tonnes first and become 

10,342.12 tonnes. Then, they decrease by 113.16 tonnes when taxes are tripled. 

When total operating costs are compared for different PMx tax regimes, total 

operating cost increases as a result of the increase in generation and reserve costs as 

shown in Table 5.14.  

Table 5.14. Total Operating Cost under Different Three-level PMx Taxes for 

Modified IEEE 30-bus Problem Instance 

Scale of PMx Taxes x1 x2 x3 

Expected Cost of EENS ($) 31,664.5 31,814.6 31,246.4 

Generation & Reserve Cost ($) 698,277.4 699,076.3 701,936.6 

Total Operating Cost ($) 729,941.9 730,890.9 733,182.9 
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In particular, the results of sensitivity analyses verify that the carbon trading price, 

tax regimes for air pollutant emissions have a substantial impact on both commitment 

and dispatching decisions, and GHG and air pollutant emissions in our time-

decoupled, stochastic and environmental model MIQP I-VPLE-EC for modified 

IEEE 30-bus problem instance. Different from models introduced in Chapter 4, 

𝑉𝑂𝐿𝐿 and the system uncertainty due to forecast errors and potential failures in 

conventional generation have an insignificant effect on commitment and dispatching 

decisions, and air pollutant emissions in the proposed approach.  Even so, it should 

be emphasized that total CO2 emissions are always affected by the changes in almost 

all parameters. 

5.4.3 Comparison of Results 

For modified IEEE 30-bus problem instance and its duplicated version, the proposed 

time-decoupled, stochastic and environmental formulation MIQP I-VPLE-EC is 

compared with traditional UCP formulations with deterministic reserve policies and 

the time-decoupled model MIQP I-VPLE proposed in Chapter 4.  According to 

schedules obtained by these approaches, their 𝑆𝑅𝑡 and 𝐸𝐸𝑁𝑆𝑡 values are computed 

by using 𝐸𝐸𝑁𝑆𝑡 Approximation I. Similarly, their GHG and air pollutant emissions 

are calculated via emission models explained in Section 5.3.                                                             

5.4.3.1 Comparison with Deterministic Approaches 

For both problem instance, the proposed approach and deterministic approaches are 

compared in terms of total emissions and total operating costs that consist of 

generation costs, reserve rates and socioeconomic value of the lost load. First, the 

results for Problem Instance 1 are provided. In Table 5.15, total operating costs of 

each approach and their components are reported for modified IEEE 30-bus problem 

instance. Total operating cost of the proposed approach is lower than the 

deterministic approaches thanks to the complete trade-off between generation and 
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reserve costs, the expected cost of load shedding and emission related 

costs/revenues. Nonetheless, the proposed approach yields schedules with larger 

total 𝐸𝐸𝑁𝑆𝑡, so its expected cost of lost load is greater than other deterministic 

approaches. 

Table 5.15. Comparison of Total Operating Costs in the Proposed and Deterministic 

Approaches for Modified IEEE 30-bus Problem Instance 

Approaches Proposed Traditional 3.5σ Hybrid 

Expected Cost of EENS ($) 31,664.5 20,904.3 29,673.3 20,061.2 

Generation & Reserve Cost ($) 698,277.4 788,300.1 725,517.7 769,283.4 

Total Operating Cost ($) 729,941.9 809,204.4 755,191.0 789,344.5 

 

As shown in Figure 5.17, total NOx and PMx emissions are significantly reduced by 

the proposed approach. For NOx emissions, the overall reduction ranges between 

39% and 45%. This range is between 46% and 60% for PMx emissions. In terms of 

SO2 emissions, the proposed approach gives schedules with lower emissions when 

compared to the ones in the 3.5σ and hybrid approaches. The corresponding 

reduction amounts are 8% and 15%, respectively. However, schedules obtained by 

the proposed and traditional approaches emit the same amount of SO2 which is 

approximately 20 tonnes. Furthermore, by using the proposed approach, CO2 

emissions are also cut by 30% to 42% as illustrated in Figure 5.18.   

 

Figure 5.17. Comparison of Air Pollutant Emissions in the Proposed and 

Deterministic Approaches for Modified IEEE 30-bus Problem Instance 
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Figure 5.18. Comparison of CO2 Emissions in the Proposed and Deterministic 

Approaches for Modified IEEE 30-bus Problem Instance 

 

 

Similar comparisons are also made for the duplicated version of modified IEEE 30-

bus problem instance. Considering total operating costs, the proposed approach 

outperforms the deterministic approaches since it explicitly makes the trade-off 

between generation and reserve costs, the expected cost of EENS and emission 

related costs/revenues (Table 5.16). Nevertheless, the proposed approach yields 

schedules with larger total 𝐸𝐸𝑁𝑆𝑦 as in modified IEEE 30-bus problem instance. 

Table 5.16. Comparison of Total Operating Costs in the Proposed and Deterministic 

Approaches for Modified and Duplicated IEEE 30-bus Problem Instance 

Approaches Proposed Traditional 3.5σ Hybrid 

Expected Cost of EENS ($) 74,845.9 34,162.7 56,140.9 34,162.7 

Generation & Reserve Cost ($) 1,355,239.6 1,454,281.4 1,411,577.6 1,454,281.4 

Total Operating Cost ($) 1,430,085.4 1,488,444.1 1,467,718.5 1,488,444.1 
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NOx emissions, the total abatement is 43% when compared to the 3.5σ approach 
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emissions, these are 56% and 67%, respectively. For SO2 emissions, the 

corresponding reduction amounts are 20% and 26%, respectively. Likewise, by using 
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the proposed approach, CO2 emissions are also cut by 30 percent to 41 percent as 

shown in Figure 5.20. 

 

Figure 5.19. Comparison of Air Pollutant Emissions in the Proposed and 

Deterministic Approaches for Modified and Duplicated IEEE 30-bus Problem 

Instance 

 

 

Figure 5.20. Comparison of CO2 Emissions in the Proposed and Deterministic 

Approaches for Modified and Duplicated IEEE 30-bus Problem Instance 
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reserve rates and socioeconomic value of the lost load. For the sake of clarity, in this 

section, the proposed model MIQP I-VPLE-EC is called as the environmental 

stochastic approach while the model MIQP I-VPLE is called as the pure stochastic 

approach. First, the results for Problem Instance 1 are provided.  

In Figure 5.21, 𝐶𝐶𝑡 levels are compared for the environmental stochastic and pure 

stochastic approaches for modified IEEE 30-bus problem instance. In 10 out of 24 

periods, the environmental stochastic approach yields schedules having 𝐶𝐶𝑡 greater 

than or equal to that in the pure stochastic approach. Hence, the former behaves less 

conservative when emission limitations are considered. To illustrate, total 𝐸𝐸𝑁𝑆𝑡 

over the 24-h scheduling horizon is 18 MWh in the environmental stochastic whereas 

it is 14 MWh in the pure stochastic approach. Nevertheless, commitment decisions 

are approximately the same for both approaches when periods are net load intensive.  

 

Figure 5.21. Comparison of Committed Capacities in the Environmental Stochastic 

and Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance 
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limitations are considered, it is more plausible to generate more power from gas-

fired units because these units are more environmentally friendly. In any case, the 

share of oil-fired units in the power generation mix remains unchanged. 

 

Figure 5.22. Comparison of Power Generation Mixes in the Environmental 

Stochastic and Pure Stochastic Approaches for Modified IEEE 30-bus Problem 

Instance 

 

 

It is important to note that the shift in overall power generation mix is due to the 

change in unit-based hourly loading profiles as shown in Figures 5.23 and 5.24 where 

combustion types of units are specified in parenthesis. The share of gas-fired 

generation increases in every period when the environmental stochastic approach is 

used. This increase is more prevalent in periods with low and medium load intensity.       

 

Figure 5.23. Hourly Loading Profiles of Conventional Units in the Environmental 

Stochastic Approach for Modified IEEE 30-bus Problem Instance  
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Figure 5.24. Hourly Loading Profiles of Conventional Units in the Pure Stochastic 

Approach for Modified IEEE 30-bus Problem Instance 

 

 

As illustrated in Figure 5.25, the reductions in total NOx and PMx emissions are 

significant in the environmental stochastic approach. Both emissions are cut by 19%. 

However, total SO2 emissions is approximately the same for both approaches, which 

is around 20 tonnes. Besides, in terms of GHG emissions, by using the environmental 

stochastic approach, CO2 emissions are reduced by 8% as depicted in Figure 5.25. 

 

Figure 5.25. Comparison of Air Pollutant Emissions in the Environmental Stochastic 

and Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance 
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Figure 5.26. Comparison of CO2 Emissions in the Environmental Stochastic and 

Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance 

 

 

When both approaches are compared in terms of total operating costs, the 

environmental approach yields a generation schedule that is more expensive than 

that in the pure stochastic approach, which is mainly due to the difference between 

total 𝐸𝐸𝑁𝑆𝑡 in each approach as shown in Table 5.17. In the environmental 

stochastic approach, 18 MWh of energy is expected to be not served whereas it is 14 

MWh in the pure stochastic approach. The reason is that the former provides less 

reserves in order to reduce GHG and air pollutant emissions.  

Table 5.17. Comparison of Total Operating Costs in the Environmental Stochastic 

and Pure Stochastic Approaches for Modified IEEE 30-bus Problem Instance 

Approaches Environmental Stochastic Pure Stochastic 

Expected Cost of EENS ($) 31,664.5 24,304.3 

Generation & Reserve Cost ($) 698,277.4 697,383.4 

Total Operating Cost ($) 729,941.9 721,687.7 

 

Similar comparisons are also made for the duplicated version of modified IEEE 30-

bus problem instance.  In Figure 5.27, for Problem Instance 2, 𝐶𝐶𝑡 levels are 

provided for the environmental stochastic and pure stochastic approaches. In 15 out 

of 24 periods, 𝐶𝐶𝑡 in the environmental stochastic approach is greater than or equal 
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to the ones in the pure stochastic approach. Thence, the former behaves more 

conservative in those periods, but it gives a schedule with larger total 𝐸𝐸𝑁𝑆𝑡 over 

the 24-h scheduling horizon. To illustrate, total 𝐸𝐸𝑁𝑆𝑡 is 43 MWh in the 

environmental stochastic approach, whereas it is 35 MWh in the pure stochastic 

approach. This is an indicator that the latter preserves its conservativeness as in 

Problem Instance 1. Nonetheless, commitment decisions in periods with high net 

load intensity are similar for both approaches.  

 

Figure 5.27. Comparison of Committed Capacities in the Environmental Stochastic 

and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem 

Instance 

 

 

Secondly, the change in the overall power generation mix is compared for both 

environmental stochastic and pure stochastic approaches. As shown in Figure 5.28, 

the power generation is coal intensive with 52% share in the pure stochastic approach 

while it is gas intensive with 64% share in the environmental stochastic approach. 

The same reasoning in the first problem instance is also valid in its duplicated 

version. Different from Problem Instance 1, the share of oil-fired units in the power 

generation mix is also decreased by 4% in this case. 
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Figure 5.28. Comparison of Power Generation Mixes in the Environmental 

Stochastic and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-

bus Problem Instance 

 

 

The shift in overall power generation mix is due to the change in unit-based hourly 

loading profiles as shown in Figures 5.29 and 5.30. When environmental stochastic 

approach is implemented, it is observed that the share of gas fired generation 

increases significantly in every period. In fact, only gas-fired units become 

committed or most of the load demand is met by those units after the 4th period.       

 

Figure 5.29. Hourly Loading Profiles of Conventional Units in the Environmental 

Stochastic Approach for Modified and Duplicated IEEE 30-bus Problem Instance  
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Figure 5.30. Hourly Loading Profiles of Conventional Units in Pure Stochastic 

Approach for Modified and Duplicated IEEE 30-bus Problem Instance 

 

 

Unlike Problem Instance 1, all air pollutant emissions are significantly reduced by 

the environmental stochastic approach as illustrated in Figure 5.31. The associated 

reductions in total NOx, SO2 and PMx emissions are 42%, 26% and 51%, 

respectively. Moreover, in terms of GHG emissions, by using the proposed approach, 

CO2 emissions are cut by 29% as shown in Figure 5.32. 

 

Figure 5.31. Comparison of Air Pollutant Emissions in the Environmental Stochastic 

and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem 

Instance 
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Figure 5.32. Comparison of CO2 Emissions in the Environmental Stochastic and 

Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem 

Instance 

 

 

As in Problem Instance 1, the environmental stochastic approach yields a generation 

schedule that is more expensive than that in the pure stochastic approach in terms of 

total operating costs. Even if generation and reserve costs are reduced by $ 1,693.2 

in environmental stochastic approach, its expected cost of load shedding is larger 

than that of the pure stochastic approach as shown in Table 5.18. The reason is that 

43 MWh of energy is expected to be not served in the former which keeps less 

reserve to mitigate emissions, whereas it is 35 MWh in the latter. 

Table 5.18. Comparison of Total Operating Costs in the Environmental Stochastic 

and Pure Stochastic Approaches for Modified and Duplicated IEEE 30-bus Problem 

Instance 

Approaches Environmental Stochastic Pure Stochastic 

Expected Cost of EENS ($) 74,845.9 61,777.4 

Generation & Reserve Cost ($) 1,355,239.6 1,356,932.8 

Total Operating Cost ($) 1,430,085.4 1,418,710.3 
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CHAPTER 6  

6 CONCLUSION AND FUTURE RESEARCH  

This thesis addresses solution approaches for unit commitment problems in 

traditional and wind integrated hybrid power systems. These problems have a critical 

role in effective planning and efficient operation of modern power systems. For this 

purpose, operating cost reduction has been a top priority objective for power 

generation companies in the vertically integrated electricity markets. Nevertheless, 

with the increasing concerns on global warming and air pollution, a great majority 

of countries have been promoting policies to abate GHG and air pollutant emissions. 

Hence, power generation companies are forced to also consider the minimization of 

atmospheric emissions in their operations planning. 

At the first stage of this study, we propose a Mixed Integer Coded Genetic Algorithm 

(MICGA) combined with Improved Lambda Iteration Method (I-LIM) to solve the 

UCP in traditional power systems where the sole priority is to minimize total 

operating costs of conventional power plants ignoring the inherent uncertainties. In 

the proposed algorithm, commitment decisions are given according to genetic 

operations while load dispatching decisions are made with the combined usage of 

the I-LIM and genetic operators. The MICGA incorporates a special chromosome 

representation strategy and initial population algorithm, problem specific genetic 

operators, penalty mechanisms and a modified version of the LIM. Those features 

assure the convergence of the algorithm, the feasibility and optimality of the 

solutions. The algorithm is applied to a set of widely used benchmark problem 

instances. According to statistical analyses conducted, the algorithm yields robust 

and precise solutions, which is very important in operations planning of power 

systems. Also, the solutions are compared with other GA-based approaches in terms 
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of both solution qualities and computing times. The results indicate that the MICGA 

can determine satisfactorily good unit schedules and power generation mix in a 

reasonable computation time. The main contributions of the proposed approach are 

listed as follows: 

• Different from most of the genetic algorithm-based approaches reviewed in 

Chapter 2, mixed integer coding scheme is first utilized when representing 

commitment schedules as chromosomes. By doing so, the required memory 

usage is reduced, and the computation is expedited significantly.  

• For initial population generation, an intelligent algorithm is first devised to 

ensure that chromosomes in the initial population always satisfy the 

minimum uptime/downtime constraints. Similarly, various problem specific 

mutation operators are developed to enhance the solution quality and the 

convergence rate of the MICGA. With the special initial population 

algorithm and smart mutation operators, minimum uptime/downtime 

constraints are always met during the evolution.   

• Different from the original LIM, the proposed I-LIM can also use the notion 

of Average Fuel Cost Optimization in addition to its main logic of the Total 

Fuel Cost Optimization. Accordingly, the I-LIM yields dispatching schedules 

with less total fuel costs. Moreover, the original LIM cannot cope with the 

ramp rate limits of conventional generating units. To overcome this problem, 

the I-LIM is also strengthened with a set of rules that can guarantee the non-

violation of the ramp rate limits. As a result, both generation limits and ramp-

rate limits are satisfied with this improved version. 

For the first stage of this study (Chapter 3), there are several future research 

directions, including, but not limited to, the following ideas: 

• The proposed MICGA can be improved by integrating other local search 

techniques so that the regions around the local optimum can be explored 

even further. 
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• Making use of some diversity measures that will enable the algorithm to 

adjust its genetic operation probabilities on its own during the evolution 

may improve the exploitation capability of the MICGA. 

• In the proposed MICGA, dispatching subproblem is solved via an improved 

version of the LIM (I-LIM). Without requiring such an exogenous 

algorithm, the solution of this subproblem can also be integrated to the GA 

itself. By doing so, the convergence rate of the MICGA can be improved. 

• In real power systems, conventional power plant efficiencies oscillate when 

their power output levels increase gradually. This is called as valve point 

loading effect (VPLE) which results in nonconvex operating cost functions. 

To integrate this phenomenon into the MICGA, a new set of rules can be 

defined to reinforce the I-LIM, or the MICGA can be combined with 

another heuristic.        

At the second stage of this study, we propose different time-decoupled and stochastic 

Mixed Integer Quadratic Programming (MIQP) models to solve the UCP in wind 

integrated hybrid power systems, where the main objective is to minimize the sum 

of total power generation costs of conventional power plants and the socioeconomic 

value of the expected energy not served (EENS) due to wind and load demand 

forecast errors, and unexpected unit outages in conventional generation. In those 

models, load demand forecasts and wind power generation forecasts are linked with 

each other by considering wind power supply as a negative load under certain 

assumptions, while the unexpected outages of conventional generating units are 

modeled as a two-state Discrete Time Markov Process. To integrate EENS due to 

forecast errors and sudden outages in conventional generation, two modelling 

techniques are developed. In these techniques, EENS is piecewise linearly 

approximated by using additional auxiliary variables and linear constraints. It is 

shown that one of these estimation techniques has a superior performance in terms 

of model complexity and required computing time. Then, that model is extended to 

also take into account the VPLE in conventional generation. In this extension, the 

absolute sinusoidal oscillation in conventional power plant efficiencies is piecewise 
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linearly approximated by introducing additional auxiliary variables and linear 

constraints. The proposed models are implemented on a set of widely used 

benchmark problem instances. To examine the effects of changes in problem 

parameters on the solutions, sensitivity analyses are carried out for critical problem 

parameters. Then, the proposed time-decoupled and stochastic approaches are 

compared with the standard UCP models enforcing deterministic reserve criteria. 

The results indicate that the MIQP stochastic models outperform the standard UCP 

formulations in terms of total operating costs. The main contributions of the 

proposed MIQP approaches are listed as follows: 

• An efficient algorithm is devised to construct the Capacity Outage 

Probability Table (COPT) for medium and large scale wind integrated hybrid 

power systems.  

• Some novel EENS estimation techniques, which make use of the concept of 

piecewise linear approximation, are developed and integrated to the MIQP 

models. By this way, the proposed models accurately calculate EENS 

approximations without requiring any deterministic reserve criteria or risk 

targets. Accordingly, total power generation cost and the expected cost of 

EENS are explicitly traded off when making commitment and dispatching 

decisions. 

• An efficient piecewise linear approximation method is developed for the 

VPLE in conventional power plant efficiencies. This approximation includes 

fewer auxiliary variables and constraints than that of its current counterparts. 

As a result, the proposed MIQP model, which is reinforced with the VPLE 

approximation, remains computationally tractable. Accordingly, the required 

memory usage is reduced, and the computation is expedited significantly. 

• As a result of the above techniques, a practical and yet effective 

methodology, which combines both supply and demand uncertainties in wind 

integrated hybrid power systems, has been developed. This methodology is 

implemented in a single mathematical model (MIQP I-VPLE).       
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At the last stage of this study, the model MIQP I-VPLE is further extended to also 

consider the effects of emission limitations and emission reduction technologies on 

the conventional generation in wind integrated hybrid power systems. Owing to 

nonlinear representations of GHG and air pollutant emissions, the extended version 

of the model MIQP I-VPLE now becomes a time-decoupled, stochastic and 

environmental Mixed Integer Quadratically Constrained Programming 

(MIQCP≡MIQP I-VPLE-EC) model. In this extension, the main objective is to 

minimize the sum of total power generation costs of conventional generating units, 

the socioeconomic value of the expected energy not served as well as the cost of 

emissions. The proposed MIQCP model is applied to a set of widely used benchmark 

problem instances. To examine the effects of changes in problem parameters on the 

solutions, sensitivity analyses are conducted for several problem parameters. Then, 

the proposed time-decoupled, stochastic and environmental approach (MIQCP 

model) is compared with the standard UCP models enforcing deterministic reserve 

criteria and the model MIQP I-VPLE. The results indicate that the MIQCP model 

outperforms others in terms of both operating costs and emission amounts. The main 

contributions of the proposed MIQCP approach are listed as follows: 

• To the best of our knowledge, the proposed methodology is the first that 

considers both supply/demand uncertainty, the VPLE, emission limitations 

and clean energy technologies in wind integrated hybrid power systems. By 

this way, total power generation costs, the expected cost of EENS and 

emission costs/revenues are explicitly traded off when making commitment 

and dispatching decisions. 

• As far as we know, the proposed methodology is the only study that deals 

with CO2, NOx, SO2 and PMx emissions at the same time by taking emission 

trading and taxing mechanisms into consideration.  

• In the UCP in wind integrated hybrid power systems, the proposed MIQCP 

approach provides effective and integrated modelling of Carbon Capture 

Storage Systems against CO2 emissions; Low NOx Burner and Selective 

Catalytic Reduction Technologies against NOx emissions; Fabric Filters 
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against PMx emissions; and Flue Gas Desulfurization Technique against SO2 

emissions. Likewise, the Combustion Mode Switch Feature against NOx 

emissions of gas-fired generating units is modelled more precisely than that 

of its current applications. Hence, the proposed MIQCP formulation is the 

first environmentally friendly model that integrates those emission control 

technologies in a single mathematical model (MIQP I-VPLE-EC). 

For the last two stages of this study (Chapters 4 and 5), we can point out several 

future research directions, including, but not limited to, the following ideas: 

• In the proposed models, it is assumed that there are no constraints on the 

transmission of the produced power to the demand points. In reality, each 

transmission line has a power transmission limit. Also, some portion of 

the produced power might be lost during transmission especially over 

long distances. Hence, the impacts of transmission infrastructure on the 

UCP should also be taken into account. Thanks to time-decoupled 

features of the proposed models, power transmission limits and 

transmission losses can also be integrated without losing the tractability 

of the models.    

• Due to the thermal stress limitations and mechanical characteristics of the 

conventional generating units, they might not be able to produce power 

output in several operating zones. These zones are called as prohibited 

operating zones, which results in discontinuities on their fuel cost curves. 

In the proposed models, this requirement is relaxed by assuming that 

conventional power generating units can produce within their power 

output and ramp-rate limits. Nevertheless, by defining additional 

auxiliary variables and constraints to the proposed models, these 

discontinuities can also be handled.      

• In addition to wind turbines, solar panels have also grabbed a significant 

attention in several countries. Nonetheless, solar power generation has an 

intermittent nature like wind power generation. Thus, the variation in 

solar power forecasts is another source of uncertainty in wind and solar 
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integrated hybrid power systems. However, modelling solar uncertainty 

is not as straightforward as in wind power and load demand forecasts. 

The reason is that solar power forecast errors follow a bimodal 

distribution. On the contrary, wind power and load demand forecast 

errors follow a unimodal distribution. Hence, integrating solar power 

generation to the proposed models is a challenging but a promising 

research area.  

• To reduce electricity prices by increasing the competition and the service 

quality among power generation companies; electricity markets have 

started to be deregulated in several developed countries. In the 

deregulated electricity market, power generation companies have a 

freedom in such a way that they are not required to satisfy the whole 

energy demand of their customers. That is, they can meet some portion 

of the demand which maximizes their profit. This relaxation introduces a 

new problem called as Profit Based UCP (PBUCP) in which the objective 

changes from cost minimization to profit maximization. The PBUC will 

bring another source of uncertainty arising from the variabilities in 

forecasted energy price (spot price) profiles. Our approach can be 

extended to solve this new variant of the UCP by relaxing load demand 

constraints and developing effective spot price forecasting methods or 

employing stochastic programming techniques for different energy price 

scenarios. 

• The proposed EENS approximations can be improved even further by 

representing the relationship between EENS and the committed capacity 

as a combination of a negative definite quadratic equation and an absolute 

sine function, or stepwise functions ignoring the curvatures in the original 

relationship by introducing breaks to the approximations. These will 

require an additional set of experiments. By doing so, the quality of the 

approximations will increase but the models will become more complex 

to solve since these modifications will cause nonconvex feasible regions. 
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• In some countries, emissions are also controlled via zonal emission limits in 

addition to emission trading and taxing mechanisms. In the proposed 

approach in Chapter 5, only the latter is modelled. Those zonal emission 

limits can easily be added to the proposed approach as additional constraints 

limiting total emissions of conventional generating units in those specific 

zones 

In real life, the proposed approaches can be used for the following purposes: 

• Power generation companies can obtain efficient commitment and 

dispatching schedules, and adjust them in a rolling horizon basis in case of 

unexpected deviations from the schedules that are originally set. 

• Power generation companies can also make effective What-if analyses for 

the parameters that are critical to their operations planning. 

• Policymakers can develop effective policies to reduce both greenhouse gas 

and air pollutant emissions of conventional power plants. 

• Both policymakers and power generation companies can quantify 

supply/demand uncertainty in wind integrated hybrid power systems, 

socioeconomic value of EENS, rippling effects in conventional power plant 

efficiencies, importance of Emission Control Technologies and impacts of 

Emission Trading and Taxing Mechanisms.   
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APPENDICES 

A. Emission Trading Systems in EU, US, China and Turkey 

European Union 

For the first commitment period of the Kyoto Protocol, EU set a more ambitious 

target of 8% reduction from its 1990 level.  To achieve this target, in 2005, European 

Commission set up EU Emission Trading System (EU ETS), which is the world's 

first international emissions trading system (European Commission, n.d.), to mitigate 

GHG emissions caused by different industrial sectors in EU. The EU ETS is based 

on the Cap & Trade mechanism.     

The first ETS period was set for three years between 2005 and 2007. According to 

EC, in this period, only CO2 emissions were monitored for power plants and energy-

intensive industries. By considering EC guidelines, emission trading authorities in 

each EU country were responsible of setting the quotas for their country and issuing 

the emission allowances to power plants and energy-intensive industries. Since the 

first period was a trial phase and there was no reliable emission data related to those 

industries, total emission allowances were estimated and provided for free. Hence, 

the total amount of allowances issued was greater than the emission realizations at 

the end of 2007. In 2008, Iceland, Liechtenstein and Norway were joined to the initial 

15 countries. The second ETS period was stricter in terms of emission reduction 

targets when compared to the ones in the previous period because it would cover the 

first commitment period of the Kyoto Protocol (2008-2012). First of all, EC reduced 

the caps by 6.5% from the ones in 2005 with respect to the emission data collected 

during the first ETS period. Most of the allocations of emission allowances to 

companies in the carbon market remained free in the second phase although the 

proportion of the free allocations was decreased by 10%. Furthermore, the fines 

imposed for non-compliance to total allowances were increased by €60 per tonnes 

of emission and became €100 per tonnes being subject to an increase in accordance 
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with the EU consumer price index (CPI). Due to the economic crisis in 2008, most 

of the energy-intensive plants were not fully used during that year, which leads to 

more excessive reduction in GHG emissions than anticipated and a large allowance 

surplus in the carbon economy. With the help of the economic downturn in 2008 and 

more binding rules on the EU ETS, EU achieved 11.7% of GHG emissions reduction 

at the end of the second ETS period. Besides, in 2014, EC implemented a back-

loading system by making a new legislation on the surplus of allowances in the 

carbon market caused by 2008 economic downturn resulting in decrease in the 

carbon price (European Commission, 2014). As a result of lower carbon prices, the 

effectiveness of the EU ETS would have been weakened. To prevent this situation, 

according to this legislation, auctions of the significant amount of the allowance 

surplus had been postponed until 2019-2020, which was considered to be a short-

term solution to prevent lower carbon prices in the third period. As a long-term 

solution, EC has also established a new mechanism called as Market Stability 

Reserve (MSR) in 2019. With this mechanism, the surplus of allowances will be 

transferred to the reserve operated by pre-defined rules. According to the allowances 

in circulation published by EC, this reserve will be used in the carbon economy. 

In 2013, Croatia joined to the EU ETS. In the third period of ETS (2013-2020), EC 

has made more stringent modifications on monitoring and reporting of GHG 

emissions. To illustrate, EC has brought in Accreditation and Verification 

Regulation and Monitoring and Reporting Regulation in late 2012. These regulations 

specify requirements for risk and uncertainty assessment and expected data quality 

in continuous CO2 monitoring system (European Commission, 2012). Moreover, EC 

has decided to centrally set EU-wide quota on emissions instead of quotas set by 

emission trading authorities of each member country. For the third ETS period, EC 

has also determined an annual linear reduction factor of 1.74% for the emission quota 

by considering EU-wide climate action targets for 2020, which are summarized 

below. 

• 20% reduction in greenhouse gas emissions from the 1990 level 

• 20% renewables integration to the EU’s energy supply 
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• 20% improvement in energy efficiency 

In addition to those regulations and modifications, auctioning has started to be the 

default allowance allocation method for the companies, especially in power 

generation sector since 2013, though some allowances have been freely provided for 

some member countries that joined in EU in 2004 so that they could deploy 

renewable energy technologies and emission reduction technologies like carbon 

capture and storage systems (CCSS) to modernize their power systems (European 

Commission, n.d.). With the auctioning method, the companies must buy their 

emission allowances at auctions, which have been held on a daily basis since 2012, 

where allowances other than freely allocated ones are auctioned. Besides, in late 

2012, EC has declared that the ownership of allowances will be kept and monitored 

by the union registry. For this reason, the emission registries of each country were 

centralized into the union registry to ensure that all allowances issued under the EU 

ETS can be accounted accurately. 

To comply with the national climate action plan under the Paris Agreement, EC has 

revised 2030 climate and energy framework consisting of EU-wide objectives and 

policies for the fourth ETS period (2021-2030). The key objectives are listed below. 

• 40% reduction in greenhouse gas emissions from the 1990 level 

• 32% renewables integration to the EU’s energy supply 

• 32.5% improvement in energy efficiency 

To achieve those targets, EC is going to increase annual linear reduction factor of 

emission caps to 2.2%, which is going to be effective starting from 2021. EC will 

also provide several incentives to encourage the implementation of low-carbon 

technologies especially in power plants and energy-intensive industries. For this 

purpose, Modernization Fund will be provided to support modernization investments 

in power sectors of member countries in addition to the option of free allocation of 

allowances. Innovation Fund will be provided to support the use of innovative 

technologies in power plants and energy-intensive industries to lower GHG 

emissions. 
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United States 

In the United States (US), GHG emissions have not been regulated on the federal 

level due to the legal oppositions against the GHG emission regulation plans of 

United States Environmental Protection Agency. Hence, State-Based Emissions 

Trading Programs have been undertaken by individual states and a group of states. 

In 2009, the Regional Greenhouse Gas Initiative (RGGI), the first legally binding 

Cap & Trade mechanism in US, was adopted by the states of Connecticut, Delaware, 

Maine, Maryland, Massachusetts, New Hampshire, New York, Rhode Island and 

Vermont to reduce GHG emissions in power sector by encouraging power plants in 

the participating states to make investments on the development and the 

implementation of clean and renewable energy technologies (Regional Greenhouse 

Gas Initiative [RGGI], 2009). In 2020, New Jersey has also joined in RGGI.   

The RGGI is based on the Cap & Trade mechanism. In 2009, RGGI has determined 

a region-wide cap for total CO2 emissions for power plants in the participating states 

by taking regulations in the RGGI Model Rule into account. Each state has individual 

trading program that limits CO2 emissions to comply with the region-wide cap. 

Electricity generating plants with the capacity of 25 MW and above must possess 

CO2 allowances enough to cover their CO2 emissions during each control period of 

RGGI. Those plants can sell their excess allowances or buy additional allowances 

through quarterly RGGI auctions. They can also trade allowances in the secondary 

CO2 market during times between RGGI auctions so that they can protect themselves 

against the potential price volatility in the next auction. Similar to EU ETS, RGGI 

has revised its program by setting an annual linear reduction factor of 2.5% for 

emission caps, which will be effective between 2015 and 2020. According to 2019 

RGGI Annual Report, RGGI is going to implement Emissions Containment Reserve 

(ECR) intending to decrease the surplus of allowances in the carbon economy in case 

of unexpected reductions in emission costs by enabling the participating states to 

withhold their allowances. The maximum amount of allowances to be withheld has 

been determined as 10% of the state’s allowances in circulation. The ECR 
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mechanism resembles to MSR in the EU ETS. RGGI established CO2 Allowance 

Tracking System (COATS) to monitor the ownerships of allowances, and to ensure 

that all allowances issued under the RGGI can accurately be accounted. As a result 

of the Cap & Trade system, at the end of 2020, RGGI expects to reduce CO2 

emissions of power plants in the region by 45% from the corresponding emission 

levels in 2005.  

In 2013, the state of California has established its own GHG ETS which is the world's 

second largest international emissions trading system after the EU ETS 

(International Carbon Action Partnership [ICAP], 2020). The main objective is to 

combat with climate change by returning the level of GHG emissions to the 1990 

level. Different from the RGGI, both power plants and industrial facilities, which 

account for 80% of GHG emissions in California, have to comply with the California 

Cap & Trade rules relying on the Mandatory Reporting of Greenhouse Gas 

Emissions Regulation (MRR). These rules are also valid for GHG emissions other 

than CO2 emissions. 

Emission allowances are allocated by means of free allocations and auctions. The 

former has been applied to electricity and natural gas utilities while the latter has 

been applied to large industrial facilities. The firms can also sell their excess 

allowances or buy additional allowances through auctions as in the RGGI and the EU 

ETS. Besides, California Air Resources Board (ARB) has also introduced another 

method for facilities to cover their emissions, which is known as ARB offset credit. 

An ARB offset credit is accounted for investments in GHG emission reduction 

techniques in order to support the developments and implementations of clean 

energy technologies. However, it can be used to satisfy up to 8% of a facility’s 

compliance obligation (California ARB, 2012). At the end of each compliance period, 

those firms have to hand over their allowances and offset credits sufficient to cover their 

GHG emissions during the compliance period. Facilities that do not comply with the 

requirements of the California Cap & Trade Program will be subject to stringent 

penalties. All trades are monitored and controlled by ARB centralized allowance 

tracking system.  
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By the end of 2020, California ARB has set a target of 15% reduction in GHG 

emissions from the level of the business-as-usual scenario. For this purpose, from 

2015 to 2020, California ARB has determined an annual linear reduction factor of 

3% for emission caps. For 2030, California ARB has set a more ambitious target of 

40% reduction in GHG emissions from the 1990 level, which was legislated in 2016 

by the California Legislature (California ARB, 2016).     

China 

Since mid-2013, China has initiated its operations to launch a national emission 

trading system by launching pilot ETSs in 8 regions. In 2013, Shenzhen pilot ETS, 

Shanghai pilot ETS, Beijing pilot ETS, Guangdong pilot ETS and Tianjin pilot ETS 

have started their operations. In 2014, two new pilot ETSs in Hubei and Chongqing 

have been launched. In 2016, Fujian pilot ETS has launched by the National 

Development and Reform Commission (NDRC). These pilots are differentiated by 

various aspects such as GHG emission coverage, sectors obliged to comply with ETS 

regulations, allowance allocation methods and penalties for the noncompliance.  

Except Chongqing pilot ETS, only CO2 emissions have been regulated by 7 ETS 

pilots. Chongqing pilot ETS has covered other GHGs as well. According to ICAP 

(2020), the sectors that comply with ETS regulations and their overall shares in GHG 

emissions are provided in Table A.1.    

Table A.1. Sectors Regulated by China ETS Pilots 

Sector Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongqing Fujian 

Power x x x x x x x x 

Heat  x x  x x   

Water x x    x   

Gas x    x    

Industry x x x x x x x x 

Aviation  x  x x   x 

Transportation x  x      

Total Share 40% 57% 40% 60% 55% 45% 50% 60% 
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The allowance allocation methods and their sector-by-sector implementations are 

varying in the ETS pilots as shown in Table A.2. In general, both free allocations 

and auctioning have been applied for allocating allowances to sectors. 

Table A.2. Means of Allowance Allocations in China ETS Pilots  

Method Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongqing Fujian 

Free Allocation x x x x x x x x 

Auctioning  x x x x x x x 

 

Moreover, as in California Cap & Trade Program, project-based carbon offset credits 

have also been used in the ETS pilots to account for investments in GHG emission 

reduction techniques in order to support the developments and implementations of 

clean energy technologies. Those credits are subject to maximum allowable limits 

on annual compliance obligation, which are demonstrated in Table A.3 (ICAP, 

2020).   

Table A.3. Maximum Allowable Limits on Annual Compliance Obligation in China 

ETS Pilots 

 Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongqing Fujian 

Quantitative 

Limit 
10% 1% 5% - 10% 10% 8% 5-10% 

 

Furthermore, companies that do not comply with the annual requirements of the ETS 

pilots will be subject to financial and nonfinancial sanctions. In several pilot ETSs of 

China, financial penalties have been implemented for not complying with the regulations 

or not having enough allowances to cover their emissions during a year. The 

nonfinancial sanctions include investigation on the credit records, disqualification from 

special energy and emission related funds, bank loans and subsidy programs for several 

years, a reduction in the emission allowances for next years and publication on the 

internet. Sanction types used in the ETS pilots of China is demonstrated in Table A.4. 
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Table A.4. Types of Sanctions for the Noncompliance in China ETS Pilots 

Type Shenzhen Shanghai Beijing Guangdong Tianjin Hubei Chongqing Fujian 

Financial x x x x  x  x 

Nonfinancial x x x x x x x x 

 

By 2020, the China National ETS is expected to be partially operational for power 

sector and it will be regulated by Ministry for Ecology and Environment. In the short 

run, the existing pilot ETSs are going to work with the national ETS by being 

responsible of non-power sectors. In the long run, these pilots are going to be 

integrated into the national ETS. According to ICAP (2020), the environmental 

targets of the national ETS is listed below. 

• 45% reduction in carbon intensity from the 2005 level by 2020 

• 65% reduction in CO2 emissions per unit of gross domestic product from the 

2005 level by 2030 

Turkey 

Currently, Turkey does not have an emission trading system, but it is under 

consideration because of the environmental obligations of the Paris Agreement and 

the EU accession according to ICAP (2020). In 2012, Ministry of Environment and 

Urbanization has initiated a new regulatory framework to design a comprehensive 

and legally binding Monitoring, Reporting and Verification system for GHG 

emissions. For this reason, the ministry has been collaborating with the Partnership 

of Market Readiness (PMR) to improve the regulation on GHG emissions by making 

pilot studies in different sectors. In 2018, Turkish government has delivered its 

detailed national climate action plan to the Climate Change and Air Management 

Coordination Board under the Paris Agreement. According to this action plan, 

Turkey has set a target of 21% reduction in GHG emissions from the level of the 

business-as-usual scenario by the end of 2030. With additional financial support 

provided by the PMR in 2018, Ministry of Environment and Urbanization has also 

drafted legislation and developed its technical and institutional groundwork for a 

suitable pilot carbon economy (ICAP, 2020). The sectors that are considered for the 
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pilot consist of power plants with the capacity of 20 MW and above and several 

industrial facilities, which accounts for 69% of total GHG emissions of Turkey as 

shown in Figure A.1. 

 

Figure A.1. Overall Share of Greenhouse Gas Emissions by Sectors in Turkey 
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B. Air Pollution Reduction Policies in EU, US and China 

Air pollution prevention and reduction policies and practices in US, EU and China 

are summarized in Table B.1 (OECD, 2017). The summary consists of regulation 

enaction year, regulation type, types of emission standards and air pollutants, and 

sectors covered. 

Table B.1. Legislations and Regulations against Air Pollution in United States, 

European Union and China 

Country Legislation and Regulation Scope 

United States 

Clean Air Act (CAA) 

- Federal law enacted in 1963 

- Major amendments in 1970, 1977 

and 1990 

 

- Regulation type: Command and Control 

- Sectors covered: Energy (power plants), 

energy-intensive industries, mineral and 

chemical industry, manufacturing, agriculture 

and livestock industry 

- National ambient air quality standards 

(NAAQS)  

     Air pollutants: PMx, NOx, SO2, CO, O3 and 

heavy metals 

     Sector and zone specific 

     For new sources: based on  

          Best Available Control Technology  

          Lowest Achievable Emission Rate  

     For existing sources: based on 

          Reasonably available control technology      

     Periodically reviewed in every 5 years 

European 

Union 

Industrial Emissions Directive 

(IED) 

- Revision of legislation on 

industrial emissions  

- Enacted in 2011 

- Regulation type: Command and Control 

- Sectors covered: Energy (power plants), 

energy-intensive industries, mineral and 

chemical industry, manufacturing, agriculture 

and livestock industry 

- Emission controls: based on  

     Environmental Quality Standards 

     Best Available Technology 

     Energy efficiency 

     Total rated thermal input, capacity and zone 

specific  
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Eco-Management and Audit 

Scheme (EMAS) Regulation 

- Revision of previous EMAS 

regulations  

- Enacted in 2010 

- Regulation type: Voluntary  

     Evaluation of environmental performance of 

an organization 

- Sectors covered: Energy (power plants), 

energy-intensive industries, mineral and 

chemical industry, manufacturing, agriculture 

and livestock industry 

- Air pollutants: GHGs, PMx, NOx, SO2, CO, 

O3 and heavy metals 

- Based on Best Environmental Management 

Practice 

The Medium Combustion Plant 

(MCP) Directive 

- Enacted in 2015 

- Regulation type: Command and Control 

- Sector covered: Energy (heat and power 

plants), energy-intensive industries (industrial 

plants) 

- Emission controls:  

     Air pollutants: PMx, NOx, SO2 and CO 

     Total rated thermal input and zone specific 

     Based on Best Available and Emerging 

Technology 

China 

Atmospheric Pollution 

Prevention and Control Law 

- Law enacted in 2000 

- Revised in 2015 

- Regulation type: Command and Control 

- Sectors covered: Energy (power plants), 

energy-intensive industries, mineral and 

chemical industry, manufacturing, agriculture, 

livestock industry and motor vehicles 

- Air pollutants: GHGs, PMx, NOx, SO2, CO, 

O3, heavy metals and PAHs 

- Emission controls: Environmental quality 

standards and emission standards 

     Based on air quality standards, economic 

and technological status. 

 

Table B.1 (continued) 
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