Perturbation-Response and Noise Dynamics in
Proteins and Representation Learning for

Biomolecular Simulations

Yasemin Bozkurt Varolgiines

A Dissertation Submitted to the
Graduate School of Sciences and Engineering
in Partial Fulfillment of the Requirements for

the Degree of
Doctor of Philosophy
in

Electrical and Electronics Engineering

2

>

KOC
UNIVERSITY

May 2020



Perturbation-Response and Noise Dynamics in Proteins and

Representation Learning for Biomolecular Simulations

Kog University
Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Yasemin Bozkurt Varolgiines

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Prof. Alper Demir (Advisor)

Prof. Alper T. Erdogan

Assoc. Prof. Mehmet Sayar

Prof. Canan Atilgan

Assist. Prof. Tristan Bereau

Date:




This work was supported by the Scientific and Technological Research Council of
Turkey (TUBITAK)-BIDEB under 2211 graduate scholarship and 2214-A inter-

national collaborative research study support programs.

Yasemin Bozkurt Varolgiines: Perturbation-Response and Noise Dynamics in Pro-

teins and Representation Learning for Biomolecular Simulations, © May 2020



Dedicated to Serhat

v



ABSTRACT

Perturbation-Response and Noise Dynamics in Proteins and
Representation Learning for Biomolecular Simulations
Yasemin Bozkurt Varolgiines
Doctor of Philosophy in Electrical and Electronics Engineering
May 2020

Molecular Dynamics simulations, the standard tool for analyzing biomolecules, pro-
vide detailed and accurate characterizations but at the expense of tremendous com-
putational cost. A variety of more efficient computational methods have been de-
veloped in order to enable the understanding of practical systems of interest. This
thesis contributes to this body of work by adapting and repurposing tools from elec-
trical circuit analysis for analyzing the perturbation-response and noise dynamics of
proteins, and by applying dimensionality reduction techniques from machine learn-
ing for identifying and extracting the essential features of biomolecules from large
amounts of simulation data.

The interactions of proteins with ligands are determined by their dynamic char-
acteristics as opposed to only static, time-invariant processes. Inspired by a fre-
quency domain analysis technique from electronic circuit design, we propose a novel
computational technique that can be used to analyze small scale functional protein
motions as well as interactions with ligands directly in the frequency domain. It
can be considered as a generalization of previously proposed static perturbation-
response methods, where the frequency of the perturbation becomes the key. We
show that the frequency of the perturbation may be an important factor in protein
dynamics. Furthermore, we introduce several novel frequency dependent metrics in
order to characterize response behavior.

Allostery—a phenomenon in which the binding of a ligand induces alterations in
the activity of remote functional sites—can be conceptually viewed as point-to-point
telecommunication in a networked communication medium, where a signal (ligand)
arriving at the input (binding site) propagates through the network (interconnected

and interacting atoms) to reach the output (remote functional site). The reliable



transmission of the signal to distal points occurs despite all the disturbances (noise)
affecting the protein. Based on this point of view, we propose a computational
frequency-domain framework to characterize the displacements and the fluctuations
in a region within the protein, originating from the ligand excitation at the binding
site and noise, respectively. We characterize the displacements in the presence of
the ligand, and the fluctuations in its absence. In the former case, the effect of the
ligand is modeled as an external dynamic oscillatory force excitation, whereas in
the latter, the sole source of fluctuations is the noise arising from the interactions
with the surrounding medium that is further shaped by the internal protein network
dynamics. We introduce the excitation frequency as a key factor in a Signal-to-Noise
ratio (SNR) based analysis, where SNR is defined as the ratio of the displacements
stemming from only the ligand to the fluctuations due to noise alone. We then
employ an information-theoretic (communication) channel capacity analysis that
extends the SNR based characterization by providing a route for discovering new
allosteric regions.

Extracting insight from the enormous quantity of data generated from molecular
simulations requires the identification of a small number of collective variables whose
corresponding low-dimensional free-energy landscape retains the essential features
of the underlying system. Data-driven techniques provide a systematic route to con-
structing this landscape, without the need for extensive a priori intuition into the
relevant driving forces. In particular, autoencoders are powerful tools for dimension-
ality reduction, as they naturally force an information bottleneck and, thereby, a
low-dimensional embedding of the essential features. While variational autoencoders
ensure continuity of the embedding by assuming a unimodal Gaussian prior, this is
at odds with the multi-basin free-energy landscapes that typically arise from the
identification of meaningful collective variables. In this work, we incorporate this
physical intuition into the prior by employing a Gaussian mixture variational autoen-
coder (GMVAE), which encourages the separation of metastable states within the
embedding. The GMVAE performs dimensionality reduction and clustering within a
single unified framework, and is capable of identifying the inherent dimensionality of
the input data, in terms of the number of Gaussians required to categorize the data.
The resulting embeddings also provide representations for constructing Markov state
models, highlighting the transferability of the dimensionality reduction from static

equilibrium properties to dynamics.



OZETCE

Proteinlerde Pertiirbasyon-Tepki ve Giiriltii Dinamigi ve
Biyomolekiiler Simiilasyonlarda Temsili Ogrenme
Yasemin Bozkurt Varolgiines
Elektrik ve Elektronik Miihendisligi, Doktora
Mayis 2020

Biyomolekiillerin analizinde standart bir ara¢ olan molekiiler dinamik simiilasyonlari,
ayrintili ve dogru karakterizasyonlar saglamakla birlikte bu simiilasyonlarin hesaplama
maliyeti yiiksektir. Ilgilenilen sistemleri anlamay1 saglamak icin cesitli daha ver-
imli hesaplama yontemleri geligtirilmigtir. Bu tez, proteinlerin pertiirbasyon-tepki
ve giriiltii dinamiklerini analiz etmek icin elektrik devresi analizinde kullanilan
araclar1 adapte ederek ve yeniden kullanarak ve makine 6grenmesinde kullanilan
boyut azaltma teknikleri araciligi ile yiiksek boyuttaki simiilasyon verisinin altinda
yatan esas nitelikleri ¢ikartmaya imkan saglayarak bu alandaki caligmalara katk:
saglamaktadir.

Proteinlerin ligandlarla etkilegimleri, sadece statik, zamanla degismeyen islemlerin
aksine dinamik ozellikleri ile belirlenir. Elektronik devre tasariminda yaygin olarak
kullanilan bir frekans analiz tekniginden esinlenerek, kiiciik olgekli fonksiyonel pro-
tein hareketlerinin yani sira proteinlerin ligandlarla dogrudan etkilesimlerinin anal-
izinde kullanilabilecek ProteinAC (PAC) adini verdigimiz yeni bir frekans etki alan
hesaplama teknigi oneriyoruz. Bu teknik daha once onerilen statik pertiirbasyon-
tepki yontemlerinin pertiirbasyon frekansinin kilit rol oynadigi genellestirilmesi olarak
kabul edilebilir. Pertiirbasyon frekansinin protein dinamiklerinde 6nemli bir faktor
olabilecegini gosteriyoruz. Ayrica, tepki davranisini karakterize etmek icin frekansa
bagh birka¢ yeni metrik sunuyoruz.

Alosteri—ligand baglanmas ile uzak fonksiyonel bolgelerin aktivitesinde
degisiklikler gozlemlendigi fenomen—kavramsal olarak bir girigteki (baglanma bolgesi)
sinyalin (ligand) yayilarak ¢ikisa (uzak etkilenen bolge) ulastigi agh bir iletigim or-
taminda noktadan noktaya telekomiinikasyon olarak kavramsallagtirilabilir. Sinyalin

uzak bolgelere kadar giivenilir bir gekilde iletimi, proteini etkileyen tiim bozan
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etkenlere (giiriiltii) ragmen gergeklegir. Bu bakig acisina dayanarak, proteinin bir
bolgesinde meydana gelen baglanma bolgesine ligand uyarimina baglh yer degistirmeleri
ve glirtiltiiden kaynaklanan dalgalanmalar frekans etki alaninda inceleyen hesapla-
mali bir ¢ergeve oneriyoruz. Ligand varligindaki yer degigtirmeleri ve yoklugundaki
dalgalanmalar karakterize ediyoruz. Ik durumda, ligandin etkisi harici bir di-
namik salimim kuvveti uyarimi olarak modellenirken, ikincisinde tek dalgalanma
kaynagi, ¢evre ortami ile etkilesimlerden kaynaklanan ve dahili protein ag1 dinamik-
leri tarafindan sekillendirilen giirtiltiidiir. Uyarim frekansim sadece liganddan kay-
naklanan yer degistirmelerin sadece giiriiltii nedeniyle olugana orani olarak
tanimladigimiz Sinyal-Giriltii oranma (SNR) dayali bir analizde anahtar bir faktor
olarak tanitiyoruz. Daha sonra yeni allosterik bolgeleri kesfetmek icin bir yol saglayacak
SNR tabanh karakterizasyonu genisleten bir bilgi teorik (iletigim) kanal kapasite
analizi kullaniyoruz.

Molekiiler simiilasyonlardan elde edilen muazzam miktarda veriden i¢gori elde
etmek, karsilik gelen diigiik boyutlu serbest enerji manzaralarinda, altta yatan sis-
temin temel 6zelliklerini koruyan az sayida kolektif degiskenin tanimlanmasini gerek-
tirir.  Veriye dayali teknikler, ilgili itici kuvvetlere dair kapsamli sezgiye ihtiyag
duymadan bu manzaray1 olusturmak igin sistematik bir yol saglar. (")zellikle, oto-
kodlayicilar, dogal olarak bir bilgi darbogazini ve dolayisiyla temel ozelliklerin diigiik
boyutlu olarak gomiilmesini zorladiklar: i¢in boyutsalligin azaltilmasinda kullanilan
gliclii araglardir. Varyasyonel oto-kodlayicilar, onciil olarak tek modlu bir Gauss
varsayarak gomilmenin stirekliligini saglarken, bu, tipik olarak anlamli kolektif
degiskenlerin tanimlanmasindan kaynaklanan ¢ok havzali serbest enerji manzaralari
ile celismektedir. Bu ¢aligmada, gomiilme i¢cinde metastabil durumlarin ayrilmasini
tegvik eden bir Gauss karigimi varyasyonel oto-kodlayicisi (GMVAE) kullanarak bu
fiziksel sezgiyi onciile dahil ediyoruz. GMVAE, tek bir birlesik ¢erceve i¢ginde boyut-
sallik azaltma ve kiimeleme iglemlerini gerceklestirir ve verileri sitmiflandirmak igin
gereken Gauss dagilimi sayist bakimindan girdi verilerinin dogal boyutsalligini be-
lirleme yetenegine sahiptir. Ortaya cikan gosterimler ayrica, boyut indirgemesinin
statik denge oOzelliklerinden dinamiklere aktarilabilirligini vurgulayarak Markov du-

rum modellerinin olugturulmasi i¢in temsiller saglar.



PUBLICATIONS

Contents of this thesis have previously appeared in the following publications:

1. Varolgunes, Yasemin Bozkurt, and Alper Demir. “ProteinAC: a frequency

domain technique for analyzing protein dynamics.” Physical Biology, 2018.

2. Varolgunes, Yasemin Bozkurt, Joseph F. Rudzinski, and Alper Demir. “Al-
lostery in proteins as point-to-point telecommunication in a network: Fre-
quency decomposed signal-to-noise ratio and channel capacity analysis.”

(Under Review)

3. Varolgunes, Yasemin Bozkurt, Tristan Bereau, and Joseph F. Rudzinski. “In-
terpretable embeddings from molecular simulations using Gaussian mixture

variational autoencoders.” Machine Learning: Science and Technology, 2020.

1X



ACKNOWLEDGMENTS

This PhD thesis is the output of the effort and support of several people to
whom I am extremely grateful. First and foremost, I wish to express my sincere
appreciation to my advisor Prof. Alper Demir for his valuable and constructive
suggestions during the planning and development of this thesis. His work discipline,
useful critiques, and perfectionist attitude provided me with an invaluable skill set
that will benefit me for the rest of my career.

I wish to thank the members of my dissertation committee: Prof. Alper Erdogan,
Assoc. Prof. Mehmet Sayar, Prof. Canan Atilgan, and Assist. Prof. Tristan Bereau
for generously offering their time to review this document. I would like to thank to
Prof. Burak Erman for his vision and introducing us the topic. I am fully thankful
to Prof. Kurt Kremer and Assist. Prof. Tristan Bereau, for welcoming me at the
MPIP, and making me feel like a part of the group from the very beginning of my
visit.

I would like to acknowledge financial support from the Scientific and Technolog-
ical Research Council of Turkey (TUBITAK), Kog¢ University, and MPIP.

I am indebted to Dr. Joseph F. Rudzinski who has always been a friend indeed,
standing by me whenever I needed any kind of support. Advice given by him has
been a great help in clarifying my research problems. Thanks for the encouragement
and patience throughout the writing process of this thesis. Also thanks for patiently
answering my questions about the English language. Who could have thought that
our first meeting in Istanbul would evolve like this? I am also excited about our
future work.

My appreciation extends to my former and current officemates and colleagues,

both at the Kog¢ University and at the MPIP, who provided me with a friendly and



inspiring environment to work and have fun. I would especially like to thank the
Theory Group members at the MPIP for facilitating my transition to Germany.
Vielen herzlichen dank!

Many thanks to all members of Bozkurt and Varolgiines families, for always
supporting me, even if they did not fully understand all of my work. If my thesis is
considered as something to be proud of, that does not compare to how proud I am
to be a member of these two wonderful families. I especially thank my mom and
dad for allowing me fully realize my own capabilities.

Luckily, I have the luxury of being surrounded by lovely people who care about
me, both from my hometown Nazilli and from my college METU. Thanks for always
being around when I needed you. I would also like to give a special thanks to Deniz,
with whom I have shared moments of deep anxiety. Only in retrospect do I realize
how relieving our discussions were in maintaining a healthy mental status during
graduate life. Thank you for making life fun as well.

And to my husband Serhat... Thank you so much for playing many different roles
in my life and being so good at all of them. Thanks for keeping my scientific curiosity
alive and supporting me in all my career choices, including the ones that made/will
make us move randomly from one place to another. But most importantly, thanks
for making me a better version of myself every day. Without your support, I would
have stopped these studies a long time ago. I have no doubt that the biggest stroke

of luck in my life is you.



TABLE OF CONTENTS

List of Tables xXvi
List of Figures xvii
Abbreviations XxXVi
Chapter 1: Introduction 1
1.1 Perturbation-response analysis via joint synergies from electrical cir-
cuit simulation and telecommunication systems . . . . .. ... ... 3
1.2 Representation learning . . . . . . .. .. ... Lo 7
1.3 Outline of the thesis . . . . . . ... . ... ... ... ... ..... 8
I Perturbation-Response Analysis 10
Chapter 2: Background 11
2.1 Protein dynamics . . . . . .. ..o 11
2.2 Harmonic approximation . . . . . . . . ... ... L 13
2.3 Transfer function . . . . . . . ... ... L 14
2.4 Time-invariant steady state . . . . .. . .. ... 15
2.5 Normal mode analysis (NMA) . . .. ... ... ... ... ... .. 16
Chapter 3: Approximating the internal forces 18
3.1 Nodal and node-branch formulations . . . ... ... ... .. .... 18
3.1.1 Special case: linearization around equilibrium point . . . . . . 21
3.2 Elastic network models (ENMs) . . . . .. ... ... ... .. .... 22

3.2.1 Hessian from the second order derivative of harmonic potentials 22

x11



3.3

3.2.2 Hessian from force balance . . . . . . . . . . . .. ... .. .. 23

Hessian from MD . . . . . . . . . . ., 26

Chapter 4: PAC: A frequency domain technique for analyzing pro-

tein dynamics 27
4.1 Imtroduction . . . . . . . ... 27
4.2 Theory . . . . .. 29
4.2.1 PAC versus static perturbation methods . . . . . . ... ... 32
4.3 Frequency dependent metrics for proteins . . . . ... ... 34
4.4 PAC analysis of ligand (un)binding . . . . . ... ... .. ... ... 38
4.4.1 Input residue(s) selection . . . . . . .. ... 38
4.4.2 Force magnitude and direction selection . . . . .. ... ... 39
45 Results. . . .. . 42
4.5.1 Setup and preliminaries . . . . . .. .. ... 42
4.5.2 Ferric binding protein (FBP) . . . ... ... ... ... ... 43
Chapter 5: Allostery in proteins as point-to-point telecommunica-
tion in a network: Frequency decomposed signal-to-
noise ratio and channel capacity analysis 54
5.1 Introduction . . . . . . . ... 54
5.2 Theory . . . . . . . 58
5.2.1 Dynamics: Langevin formulation . . . .. ... .. ... ... 59
5.2.2  Constrained transfer function . . . . . .. ... ... .. ... 60
5.2.3 Lyapunov formulation . . . .. ... ... ... ... ..... 62
5.2.4  Power spectral density (PSD) . . . ... ... ... ... ... 68
5.2.5  From excitation PSDs to displacement PSDs . . . . . . . . .. 69
5.2.6  Characterization of equilibrium fluctuations based on the PSDs
of displacements due to noise . . . . ... ... ... ... .. 69
5.2.7 Signal-to-Noise ratio (SNR) and channel capacity . . .. . .. 71
5.3 Methods . . . . . . . 72



5.3.1 Molecular dynamics simulation details . . . . . .. ... ... 75

5.3.2 External force excitations . . . . .. ... ... 76

5.3.3 Parameters . . . .. .. .. Lo 77

54 Results . . . . . .. 78
5.4.1 Without external force: equilibrium fluctuations . . . . . . . . 80

5.4.2 External force excitations . . . . ... ... ... .. 81

II Representation Learning 88

Chapter 6: Interpretable embeddings from molecular simulations

using Gaussian mixture variational autoencoders 89

6.1 Introduction . . . . . . . .. ..o 89

6.2 Theory and methods . . . . . ... .. ... ... .. 92

6.2.1 Autoencoder. . . . .. ... 92

6.2.2 Variational autoencoder (VAE) . . ... ... ... ... ... 92

6.2.3 Gaussian mixture variational autoencoder . . . . . .. .. .. 95

6.2.4 Markov state models . . . . ... 100

6.2.5 Peptide analysis . . . . . . .. ... 102

6.3 Results. . . . . . . 103

6.3.1 One-dimensional 4-well potential . . . . . ... ... ... .. 103

6.3.2 Miller-Brown potential . . . . . . ... ... ... L. 106

6.3.3 Alanine dipeptide . . . . . . . ... Lo 108

6.3.4 AAQAA peptide-1 . . . ... ... 110

6.3.5 AAQAA peptide-II. .. .. . ... ... .. ... 118

Chapter 7: Conclusion 122

Chapter 8: Appendix 126
8.1 Supplementary information for Chapter 4:

PAC: A frequency domain technique for analyzing protein dynamics . 126

X1iv



8.1.1 Chemotaxis signaling protein Y . . . . ... .. ... .. ... 126
8.2 Supplementary Information for Chapter 5:

Allostery in proteins as point-to-point telecommunication in a net-

work: Frequency decomposed signal-to-noise ratio and channel ca-

pacity analysis . . . . . . ..o 138
8.3 Supplementary Information for Chapter 6:

Interpretable embeddings from molecular simulations using Gaussian

mixture variational autoencoders . . . . .. .. ..o 147
8.3.1 One dimensional 4-well potential . . . . ... ... ... ... 147
8.3.2 Miiller-Brown potential . . . . . . . ... .. ... ... ... 148
8.3.3 Alanine dipeptide . . . . . . .. ... oL 150
8.3.4 AAQAAzpeptide-T1 . .. . . ... ... 154
8.3.5 AAQAAszpeptide-1II. . .. ... ... ... ... .. ..... 171
8.3.6  GMVAE landscape and the cluster assignments . . . . .. .. 172
Bibliography 182

XV



5.1

6.1

6.2

8.1

8.2
8.3

LIST OF TABLES

Residue pairs that are located far apart in space, yet have high chan-

nel capacity values that are identified by per residue scan, with HMP. 83

Distributions in the GMVAE model. Left (right) column corresponds
to the distributions in the encoder (decoder) part. . . . . . . ... .. 98

Architecture specification and training hyperparameters . . . . . . . . 100

Force parameters, input residue and correlation value between the

experimental and calculated displacements for selected proteins. . . . 133
Mass and volume values of the amino acids . . . . . . . ... .. ... 138
Critical residues identified by various methods . . . . . . . . . . . .. 146

XVvi



1.1

4.1
4.2

4.3
4.4

4.5

4.6

4.7

4.8

4.9
4.10

5.1

LIST OF FIGURES

Block diagram describing a communication system . . . . . . . . . ..

Visualization of the metrics . . . . . . . .. . .. ... ... .. ...
Force magnitude and direction selection procedure for proteins with
both the ligand-free and the ligand-bound forms, and with only one
form available. . . . . .. ..o
Alignment of apo and holo forms and binding site of FBP . . . . . .
Displacement magnitudes of FBP residues in A. Red curve shows ex-
perimental displacements and blue curve is for the computed displace-
ments at the best force magnitude and direction at zero frequency.
Residues 8, 9, 55, 56, 58, 59, 227, 228, and 229 are within 8 A distance
of residue 57. . . . . ..o
Relative displacement magnitudes as a function of residue index and
frequency . . ..
Energy analysisof FBP . . . . . . .. ... ... oL
Major-axis length [r™@°" | of FBP. . . . . . . . ... .. ... ... ..
Angle between the major-axis and force, §™m%°"  of FBP. Colorbar
labels are to be multiplied with 7, and in radians. . . . . . . . . . ..
Isotropicity Eof FBP. . . . . . . . ...

gnormal

Angle between the plane normal and the force direction, , of

FBP. Colorbar labels in radians/pi. . . . . . .. ... ... ... ...

Numerical Solution of Lyapunov equation. . . . . . .. ... ... ..

xvil

53



5.2

5.3
5.4

5.5

5.6

5.7

5.8
5.9

A simplified pictorial overview of the work flow. The signal permeates
throughout the network from a single entry point, the input, and
converges at the output. Noise enters the network from everywhere
and every noise component has an impact at the output. Although
the noise forces act on every node, only some of them are shown in
the figure to reduce clutter. The network was drawn using the NAPS
web-server provided in [1]. . . . . .. ... 00
Schematic of the work flow. . . . . ... ... ... ... ...
Schematic view of the two different techniques used in order to probe
allosteric behavior. . . . . . .. .. oo oo
The aligned structures of the apo and holo forms of the PDZ3 pro-
tein. Wheat (teal) color is for the holo (apo) form. The ligand is
represented in ball-and-stick format. PyMOL was used for the visu-
alization [2]. . . . . . ..
The secondary structure assignments from DSSP (definition of sec-
ondary structure of proteins) [3] of the holo form of the PDZ3 protein
(PDBID: 1be9). Image is from the RCSB PDB (www.rcsb.org) [4].

B factor values that are calculated with various methods for the apo
form (PDBID:1bfe). The blue (red) lines show the values calculated
via power spectral density integrations using HMP (HANM) The
orange (green) line is calculated directly from the pseudo-inverse of
HMP (HANM)  The black line shows the experimental values. The

values are scaled to correspond to the experimental ones. . . . . . . .

79

81

PSD profile of the equilibrium fluctuation with (a) HMP and (b) HANM. 82

Per residue scan with HMP. (a) Normalized, (b) Distance-weighted

and normalized channel capacity values. . . . . . ... ... ... ..

Xviii



5.10

5.11

5.12

6.1

6.2

BP excitation with HMP (b) Distance-weighted and normalized chan-
nel capacity values. The gray area corresponds to the binding pocket
residues upon which the force is applied. (b) Apo protein structure
(PDBID:1bfe) is colored according to the capacity values (without
distance weighting): red indicates the highest capacities and blue is
for the lowest. . . . . . . . . .
Capacity values from BP excitation and the critical residues identified
by various methods. The gray areas indicate the residues on which the
external force is applied in the capacity analysis. Capacity™® refers to
the results obtained with HMP. Abbreviations: prs - perturbation re-
sponse scanning [5], exp - experimental [6], sca-1 - statistical coupling
analysis [7], sca-2 - statistical coupling analysis [8], atd - anisotropic
thermal diffusion [9], spm - structural perturbation method [10], rip
- rotamerically induced perturbation [11], md - molecular dynam-
ics [12], des - deep coupling scan [13], tdmc - thermodynamic double
mutant cycle [14], cmca - conservation mutation correlation analy-
sis [15], rrs - rigid-residue scan [16], mcpath - Monte Carlo path [17].
(a) Signal-to-Noise ratio (SNR) with BP excitation using HMP | (b)

Selected residues with characteristic frequency response. . . . . . ..

Schematic of an autoencoder architecture with mean-squared error
reconstruction loss. . . . . . ..o Lo
(a) The VAE and (b) GMVAE architectures. In the probabilistic
graph representation, circle nodes represent the random variables, and
directed edges represent statistical dependencies between the vari-
ables in the two ends. Dot nodes are used to indicate the parameters
of the model, while some of the nodes are intentionally filled to dif-
ferentiate the observed random variables from the non-observed ones

which are left empty. . . . . . ..o

XixX

86



6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Schematic of the GMVAE workflow. . . . . . ... .. ... ... ...
(a) 1D 4-well potential with the true labels. (b) Confusion matrix
constructed with the true labels shown in (a) and the predicted labels
obtained via the GMVAE. Population size increases from light to dark
blue. Normalized histograms of the 1D latent variable via the (c)
GMVAE and (d) VAE. . . . oo oo
Markovianity check of the kinetic model built for 1D 4-well potential
system. The MSM was constructed directly using the cluster labels
obtained from the GMVAE. (a) Implied timescale test. (b) Chapman-
Kolmogorov test (at lag = 200 steps). . . . . . . ... ... ... ...
2D Miiller-Brown potential. (a) Free-energy landscape. (b) Clus-
ters obtained from the GMVAE. (¢) Confusion matrix with the true
labels determined with linear dividing surfaces (Figure 8.23(a)) and
predicted labels obtained via the GMVAE. Population size increases
from light to dark blue. Normalized histograms of the 1D latent vari-
able via the (d) GMVAE (e) VAE. . . . .. ... ... ... ... ..
Markovianity check of the MSM built for 2D Miiller-Brown potential
via the GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov
test (at lag=10 steps). . . . . . . . . ...
(a) Free-energy landscape of alanine dipeptide. (b) GMVAE clusters
on the Ramachandran plot. . . . . ... ... ... ... .......
(a) FEL obtained for the alanine dipeptide by the GMVAE. The
GMVAE clusters on the (b) GMVAE landscape. . . . . ... ... ..
Markovianity check of the MSM built for alanine dipeptide via the
GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at
lag=20 steps). . . . . . . ..
Free-energy landscapes of AAQAA, - I peptide obtained by (a) the
GMVAE, and (b) the VAE. . . . ... ... ... ... ... ..

XX



6.12

6.13

6.14

6.15

6.16
6.17

8.1
8.2

8.3

8.4
8.5
8.6

(a) The clusters obtained for the AAQAA; peptide - I by the GMVAE
after thresholding. (b) The secondary structures closest to the cluster
centers. . ... 114
AAQAA, - 1. (a) Average helical fraction, (f;), analysis. Colors rep-
resents the (f,) values of the corresponding projected data obtained
from the GMVAE. (b) dRMSDyq analysis. . . . ... ... ... ... 116
Analysis of partially-helical conformations for AAQAA, - I. Projec-
tions are colored according to (hy) — (h¢) values. . . . . .. ... .. 117
The GMVAE results for AAQAA, peptide - II. (a) Free-energy land-
scape. (b) The clusters obtained after thresholding. (c) The sec-
ondary structures closest to the cluster centers. . . . . . .. ... .. 119
Projections for the AAQAA, peptide - IL. (a) (fz), (b) dRMSDyer. . . 120
The N- and C-terminus end folding analysis for the AAQAA, peptide
- I1. (Left) The difference in the average values of the two-end foldings,
(hy) — (he). (Right) Distribution of the N- (on the left, (hy) > 0.8)
and C-end (on the right, (hy) < —0.8.) . . . ... ... ... 121

Alignment of apo and holo forms and binding site of CheY . . . . . . 127
Displacement magnitudes of CheY residues in A. Red curve shows ex-
perimental displacements and blue curve is calculated displacements
at the best force magnitude and direction at zero frequency. Residues
10, 11, 54, 55, 56, 59, 63, 64, 84, 85, 86 are within 8 A range of residue
DT 128
Relative displacement magnitudes as a function of residue index and
frequency (input residue: 57). . . . . . . ... 129
Energy analysis of CheY (input residue: 57) . . . . . . .. ... ... 130
Major-axis length [r™%°"| of CheY (input residue: 57). . . .. . .. . 130
Angle between the major-axis and force, ™% of CheY. Colorbar

labels are to be multiplied with 7, and in radians (input residue: 57). 131

poel



8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18
8.19

8.20
8.21

8.22

[sotropicity & of CheY. Colorbar labels are to be multiplied with m,
and in radians (input residue: 57). . . . ... ... oL
Angle between the plane normal and force direction, 87" of CheY.
Colorbar labels in radians/pi (input residue: 57). . . . ... ... ..
Displacement magnitudes of CheY residues in A. Red curve shows ex-
perimental displacements and blue curve is calculated displacements
at the best force magnitude and direction at zero frequency. Residues
88, 89, 90, 92, 93, 94 are within 8 A range of residue 91. . . . . . ..
Relative displacement magnitudes as a function of residue index and
frequency (input residue: 91) . . . . . . . ... Lo
Energy analysis of CheY (input residue: 91) . . . . .. ... ... ..
Major-axis length [r™%°"| of CheY (input residue: 91). . . . . . . . .
Angle between the major-axis and force, §#™%°" of CheY. Colorbar
labels are to be multiplied with 7, and in radians (input residue: 91).
Isotropicity & of CheY. Colorbar labels are to be multiplied with m,
and in radians (input residue: 91). . . . .. ... ..o L
Angle between the plane normal and force direction, 87" of CheY.
Colorbar labels in radians/pi (input residue: 91). . . . . ... .. ..
Pairwise distances between the residues . . . . . . . ... ... .. ..
(a) Per residue scan and (b) BP excitation with HANM

PSD profile for the equilibrium fluctuations (a) HMP (b) HANM

Normalized capacity values in BP excitation mode using HMP. The
colorbar shows the minimum distance between a residue and one of
the BP residues. . . . . . . . ...
Binding pocket excitation with (a) HMP (b) HANM . .
Individual frequency response of the residues in BP excitation with
HMD
X vs X’ for one-dimensional 4-well potential. Reconstructions are

obtained via the GMVAE. . . . . . . . . . .. ...

136



8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.31
8.32

True label definitions and X vs X’ for Miiller-Brown potential. Recon-
structions are obtained via the GMVAE. (a) True labels. (b) Recon-
structions in the first dimension. (c¢) Reconstructions in the second
dimension. . . . . ...
Projections via the GMVAE and TICA. The GMVAE learns the non-
linear dividing surface in the low-dimensional space. . . . .. .. ..
Processing of the features: (a) the dihedral angles along the backbone,
and (b) the pairwise distance between heavy atoms. . . ... .. ..
(a) Metastable states from TICA and PCCA™ on the Ramachandran
plot. The histograms for the (b) true metastable states, (¢) GMVAE
clusters. .w b oL L L0 L L 0L
(a) FEL obtained for the alanine dipeptide by the GMVAE in a sep-
arate fully-converged training. The GMVAE clusters on the (b) GM-
VAE landscape, (c¢) Ramachandran plot. (d) Cluster counts. . . . . .
Markovianity check of the MSM built for alanine dipeptide via the
GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at
lag=20 steps). . . . . . . ..
VAE results for alanine dipeptide. (a) The FEL obtained by the VAE,
(b) the true metastable state partitions on this landscape. . . . . . .
The population distribution as a function of probability of belonging
to each of the clusters after the training. None of the data points is
assigned to clusters 7—8 —9. . . . .. ..o
Cluster populations . . . . . . . . . . ... ... ... ... ..
Intra-cluster distributions of average helical fraction, (f5), (AAQAA,
- I). The dashed lines indicate the average values, which are also

written in the text boxes. . . . . . . . . .. ...

xxili



8.33

8.34

8.35

8.36
8.37
8.38
8.39

8.40
8.41
8.42
8.43

8.44
8.45
8.46
8.47

dRMSD analysis. (a) The density histograms of dRMSD values for
helix, hairpin, and coil structures (with the visualized reference struc-
tures). (b) Scatter plot of dRMSDyq vs. dRMSDy, with densities.
(c) Sampled regions of dARMSDy,e vs. dRMSDy,;, in each of the cluster.

The same colormap is used in (b) and (¢). . . . ... ... ... ... 159
Projections colored according to (a) dARMSDye, (b) dRMSDy,p, ()
dRMSDcoi, and (d) Rg - . o o o o oo oo 160

Markovianity check of the MSM built for the AAQAA, peptide - 1
via using the cluster labels from the GMVAE. (a) Implied timescales.

(b) Chapman-Kolmogorov test (at lag=700 steps) . . . . . . .. ... 162
Distributions for (hy) > 0.8 (on the left), (hy) < —0.8 (on the right). 163
Kinetic analysis on the GMVAE landscape for AAQAA,; -1. . .. .. 164
Cluster populations for AAQAA, - T from PCCA* . . . . . ... ... 164

Intra-cluster distributions of average helical fraction, (f5), (AAQAA,
- I) for the clusters obtained with PCCA™). The dashed lines indicate

the average values, which are also written in the text boxes. . . . . . 165
TICA results for AAQAA; -1 . . . . . ..o o o . 166
Kinetic analysis on TICA landscape for AAQAA; -1 . . ... .. .. 167
Cluster populations for AAQAA, - T from TICA + PCCA*. . . . .. 167

Intra-cluster distributions of average helical fraction, (fz), (AAQAA,
- I) for the clusters obtained with PCCA™). The dashed lines indicate

the average values, which are also written in the text boxes. Note that

cluster 3 is an empty cluster. . . . . . . . .. ... ... 168
VAE results for AAQAA;-T . . . . . ... ..o 169
Kinetic analysis on the VAE landscape for AAQAA; -1 . . . .. . .. 170
Cluster populations for AAQAA, - I from VAE + PCCA*T . . . . .. 170

Intra-cluster distributions of average helical fraction, (fz), (AAQAA,
- I) for the clusters obtained with PCCA™). The dashed lines indicate

the average values, which are also written in the text boxes. . . . .. 171

XX1v



8.48
8.49

8.50

8.51
8.52
8.53

8.54
8.55
8.56
8.57

8.58
8.59
8.60
8.61

Cluster populations from the GMVAE. . . . . . ... ... ... ... 172
Intra-cluster distributions of average helical fraction, (f5), (AAQAA,
- II). The dashed lines indicate the average values, which are also
written in the text boxes. . . . . . .. ..o oL 172
Markovianity check of the MSM built for the AAQAA, - II via us-
ing the cluster labels from the GMVAE. (a) Implied timescales. (b)
Chapman-Kolmogorov test (at lag=500 steps) . . . . . ... ... .. 173
Kinetic analysis on the GMVAE landscape for AAQAA, - 1T . . . .. 174
Cluster populations for AAQAA, - IT from PCCA™ . . .. ... ... 174
Intra-cluster distributions of average helical fraction, (f5), (AAQAA,
- II) for the clusters obtained with PCCA™). The dashed lines indicate
the average values, which are also written in the text boxes. . . . .. 175
TICA results for AAQAA;-IT. . . . . ... ... ... ... ... 176
Kinetic analysis on TICA landscape for AAQAA, - 1T . . . . . .. .. 177
Cluster populations for AAQAA, - 1T from TICA + PCCA* . . . .. 177
Intra-cluster distributions of average helical fraction, (f5), (AAQAA,
- IT) for the clusters obtained with PCCA™). The dashed lines indicate
the average values, which are also written in the text boxes. . . . .. 178
VAE results for AAQAA; -IT . . . . . ... ... ... ... ... 179
Kinetic analysis on the VAE landscape for AAQAA, -1 . . . . . .. 180
Cluster populations for AAQAA, - II from VAE + PCCA*T . . . . .. 180
Intra-cluster distributions of average helical fraction, (f5), (AAQAA,

- IT) for the clusters obtained with PCCA™). The dashed lines indicate

the average values, which are also written in the text boxes. . . . .. 181

XXV



AC
ANM
BP
BW
CG
CheY
CK
CLS
CV
DC
dRMSD
ELBO
ENM
FBP
FEL
GNM
GMVAE
KNF
LHS
LRT
LTI
MD
MSF
MSM

ABBREVIATIONS

Alternating current
Anisotropic network model
Binding pocket

Bandwidth

Coarse graining/grained
Chemotaxis signaling protein Y
Chapman-Kolmogorov
Constrained least squares
Collective variable

Direct current

Distance root mean square deviation
Evidence lower bound

Elastic network model
Ferric-binding protein
Free-energy landscape
Gaussian network model
Gaussian mixture variational autoencoder
Koshland-Nemethy-Filmer

Left hand side

Linear response theory

Linear time-invariant

Molecular dynamics

Mean square fluctuations

Markov state model

XXV1



MWC
NMR
NN
PAC
PCA
PCCA
PDC
PDZ3
PRS
RHS
RMSD
SNR
TICA
VAE

Monod-Wyman-Changeux

Nuclear magnetic resonance

Neural network

ProteinAC analysis

Principal component analysis

Perron-cluster cluster analysis

ProteinDC analysis

Postsynaptic density protein-95/discs large/zonula occludens-1
Perturbation response scanning

Right hand side

Root mean square deviation

Signal-to-Noise ratio

Time-lagged independent component analysis

Variational autoencoder

XxXVvii



Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

Proteins are the most abundant and diverse macromolecules and perform crucial
functions in virtually all biological processes. Structure and dynamics analyses of
proteins are essential to understand how they achieve such diverse tasks. Exper-
imental methods such as X-ray crystallography and Nuclear Magnetic Resonance
(NMR) spectroscopy are mainly utilized for characterizing the three-dimensional
structure of proteins. Even though the use of experimental methods is not limited
to obtaining a static picture, and more advanced techniques such as NMR relaxation
measurements and atomic-force microscopy provide time course of structures, they
are somewhat laborious, not suitable for high throughput analyses, and limited in
terms of time and space resolution. Numerical simulations come into play to fill this
gap, hence they complement and guide the experiments.

Molecular dynamics (MD) simulation is a fundamental tool for understanding a
wide range of biological processes, including ligand binding, conformational change,
and protein folding [18]. It is a physics-based method where the time evolution of
positions and velocities of all atoms is obtained by numerically solving Newton’s
equations of motion iteratively for every time frame in the simulated time interval.
At the end of the simulation what is obtained is a trajectory that describes the
three-dimensional motion of the system of interest. Therefore, MD is also called
as “computational microscope”. Despite being a very useful tool, conventional MD
simulations have certain limitations [19]. To better mimick environment condi-
tions, water molecules are added into the simulation box. With this addition, the
total number of atoms can easily reach to at least tens of thousands. The evalu-

ation of the non-bonded interactions that act between every pair of atoms yields
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high computational cost. The other bottleneck is the limit in the step size used in
the numerical calculations. To be able to capture the highest frequency of atomic
vibrations, the time step should be limited to several femtoseconds, while the rel-
evant timescale to analyze protein motion is at least on the order of nanoseconds.
Thus, millions/trillions of iterations are needed to be performed to simulate such
motions. Even with special-purpose hardware such as Anton [20], simulation tra-
jectories rarely reach the timescales of interest. Considering that the interest is in
statistical characterization, rather than single anectodal observations, the timescale
problem is likely to remain regardless of advances in hardware [21].

MD-related challenges especially become more arduous for instance, if one needs
to investigate how proteins respond to specific perturbations, e.g., variations in pH
and temperature, chemical modifications, site-specific mutations, interactions with
other molecules (e.g., ligand binding) [22]. Unraveling the perturbation-response
characteristics without performing separate high-cost simulations for every single
perturbation under investigation is particularly important for high throughput screen-
ing purposes such drug design applications [23]. Moreover, interpreting simulation
results due to the huge amount of trajectory data generated remains as an addi-
tional challenge. In this thesis, we propose complementary analysis techniques for
the perturbation-response analysis and data representation problems.

In science, it is often encountered that methods or approaches already used in
a field of study are translated well to other domains and open new insights. Some-
times it is even observed that the same problems are known by different names in
distinct research fields and the equivalences are discovered very later. In the first
part of this thesis, we aim to repurpose and adapt well-established techniques from
electrical circuit analysis and telecommunications systems, with the motivation of
developing fresh and efficient methods that can provide new insights towards “engi-
neering biomolecules”. In the second part, we extend the current usage of a machine
learning technique for the dynamic modeling and analysis of proteins so as to al-
low extracting insight from the huge amount of data generated for conformational

ensemble of biomolecules.
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1.1 Perturbation-response analysis via joint synergies from electrical

circuit simulation and telecommunication systems

With some nontrivial modifications, largely due to the protein’s three-dimensional
nature, an electrical/electronic circuit simulator can be adapted to the analysis-
based simulation of proteins. This adaptation is based on the viewpoint of a protein
as a network of atoms in analogy to the network of circuit elements.

Some analogies can be readily observed when the circuit and MD simulations
are considered. For a review of circuit analysis techniques, the reader is referred
to [24], while for the technical details of MD simulations interested reader may refer
to [25]. Synergies between these seemingly-different research fields were originally
conceptualized in draft form in [57], we present it in a fully-fledged form in this

thesis.
e Steady-state analysis:

— DC analysis solves for an operating point under time-invariant voltage/current
excitation by setting the time derivatives of time-dependent components to
zero. Then, node voltages and branch currents at the operating point are
computed. DC analysis is the first step for other types of analyses: serving as
an initial condition for the transient analysis, and as an expansion point for the

linearization of all nonlinear components (e.g., diodes and transistors).

— Similar to the DC analysis of circuits operating under time-invariant excita-
tions, static perturbation methods used in MD, which are based on Linear
Response Theory [26, 22], allow calculating displacements from the equilibrium

configuration in response to constant force excitations.

e Time simulations:

— Transient analysis of circuits computes how the voltages and currents change
over a specified time interval. Prior to transient analysis, the DC operating

point is determined, which is then used as an initial state. Next, the circuit’s
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response is obtained as a function of time by iteratively solving for the next

time points.

— The starting configuration used in MD is generally not in an equilibrium state,
therefore energy minimization and equilibration steps are run before the pro-

duction phase, where the time evolution of particles are monitored.

Sinusoidal steady-state (AC) and noise analyses are among the other frequently-
used analysis types in circuit simulations. To the best of our knowledge, direct
equivalences of these techniques have not been investigated for MD simulations.
Therefore, in the first part of this thesis, we aim to translate these techniques to the

MD field, and propose potential applications.

e Sinusoidal steady-state analysis:

— AC analysis extends the steady-state analysis from constant to time-varying
sources by computing the equilibrium response of the circuit to a small si-
nusoidal excitation, which can be described by its amplitude, frequency, and
phase. Calculating the response to a sinusoidal source is particularly impor-
tant in circuit analysis because of the following: (i) most circuits are driven
by AC, i.e., sinusoidal, sources due to the advantages in generation and trans-
mission of AC excitation over DC, and more importantly (ii) it can be used to
predict the response to non-sinusoidal sources. Due to the small-signal nature
of the excitations, linearization of the nonlinear circuit elements holds around
the operating point. Linear time-invariant (LTT) systems excited at a single
frequency produce a response that also has a single frequency component at
the same frequency, with only a change in amplitude and phase. AC analysis is
directly performed in frequency domain, without a need of solving a differential
equation, hence no iterative process is necessary. This allows easily obtaining
frequency response, i.e., how amplitude and phase change at a particular single
frequency, over a whole range of different frequencies of interest. Frequency
response characterization is an integral part of circuit design, especially indis-

pensable for designing amplifiers and filters, which alter the amplitudes and
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phase characteristics with respect to frequency. Some frequently-used filter
types include low-pass, band-pass, or high-pass filters that allow passing some
frequency intervals while blocking the others, or filters that allow passage of

only certain frequencies.

— We believe that in addition to the static-perturbation analyses, which only
examine constant excitations, characterizing the frequency response behavior
to time-varying perturbations in an efficient and systematic manner can be
advantageous for MD analysis as well. Similar to many benefits it provides in
circuit simulations, we advocate that distinct frequency response profiles might
even be a determining factor for instance in ligand-binding, or other functional

responses of proteins such as allostery.

e Noise analysis:

— Noise analysis is run together with an AC analysis, and calculates the noise
contribution of individual noise-generating element in the circuit to the volt-
age measured at a specified output node. Noise models for each circuit ele-
ment/device include one or more of the following noise effects: thermal noise,

shot noise, flicker (1/f) noise, and burst noise etc. [27].

— Particles suspended in a fluid experience constant random fluctuations [28]. It
may be crucial to quantify and distinguish the displacements resulting from an

external perturbation (such as a ligand) from constant random fluctuations.

Signal-to-Noise ratio (SNR), a frequency-dependent quantity, compares the de-
sired signal power received at the output node to the level of noise power. This
concept also opens a connection to telecommunication systems’ view, which we
briefly review below.

Information Theory, established by the seminal work of Shannon [29], is a scien-
tific field of study that examines the quantification of information in the communi-
cation context. The information content of a message is quantified as the expected

extent of surprise when delivered to a receiver, i.e., expected amount of clarification
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Transmitter

J Transmitted signal

***********

Noise —>3 Channel

JReceived signal

Receiver

Figure 1.1: Block diagram describing a communication system

of uncertainty. Although much of the early applications center around the classical
fields of communication engineering such as telephone lines, fiber-optic communi-
cation, radio broadcast, and wireless communication, thanks to Shannon’s general
framework, it did not take long to be realized that the concepts and methods are
also well suited for a broad spectrum of research fields that were not initially thought
to be in the scope. Schneider’s pioneering study led to the idea that information-
theoretical concepts can also be translated to molecular systems—molecular ma-
chines, in his terminology [30, 31]. Figure 1.1 schematically presents the common
components in any type of communication system: a transmitter, a signal, a chan-
nel, and a receiver. The transmitter sends the signal through a medium termed the
channel, to the receiver which collects the signal. In physical systems, operation
of the channel is subject to noise. We put forward that this general scheme sets a
perfect ground for perturbation analysis of biomolecular simulations in the presence
of noise, by viewing the intra-protein signal transduction as a multi-channel commu-
nication system. In this view, any type of perturbations (be it a ligand, mechanical
force, modifications, change in the temperature etc.) is modeled as external force
excitation that serves as a transmitter, while the whole protein acts as the medium
of the communication, i.e., channel, and the region where the response is probed
can be perceived as a receiver. Channel capacity (also known as Shannon limit) is

one of the key notions in Shannon’s formulation and is defined as the upper bound
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for the amount of information the channel can transmit per unit of time, or alter-
natively the maximum of the mutual information between the input and output
of the channel [90]. We propose that the analogy between intra-protein signaling
and telecommunication systems becomes very natural, for instance within the al-
lostery context, hence performing similar analyses for biomolecular simulations can

be fruitful.

1.2 Representation learning

Extracting insight from the enormous quantity of data generated from molecular
simulations requires the identification of a small number of collective variables whose
corresponding low-dimensional free-energy landscape retains the essential features
of the underlying system. The essential degrees of freedom that define the low-
dimensional representation, commonly referred to as collective variables (CVs),
are traditionally identified through expert physical/chemical intuition that is of-
ten rather specific for the particular system or process of interest [32, 33, 34, 35].
Beyond the characterization of the free-energy landscape (FEL), these CVs can
also be used for enhanced sampling [36], or for the construction of low-dimensional
configuration-space discretizations, for instance when building Markov state models
(MSMs) [37]. The strategy to the discrete-time and discrete-state stochastic mod-
els, MSMs, is to utilize multiple shorter trajectories than the timescales of interest.
Once the transition can be described in terms of memoryless jumps between the de-
fined states, it also allows describing long-time statistical dynamics, hence addresses
the timescale problem. Although the manual selection of CVs can be extremely
effective for practitioners with insight into the system, the approach is difficult to
extend systematically and is susceptible to missing unanticipated or subtle features
of the FEL that may nonetheless play an important role in the relevant phenom-
ena. Data-driven techniques provide an alternative route by inferring the important
features directly from the data.

The last couple of years have seen a growing trend towards applying deep neural

networks for the automated discovery of collective variables from molecular simula-
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tion trajectories [38, 39, 40, 41, 42]. Autoencoders are a natural and powerful tool
for dimensionality reduction, as they force an information bottleneck in the latent
space. While previous work has demonstrated the potential of these architectures,
both for characterizing static properties and for treating kinetics (through the in-
corporation of a time lag within the autoencoder framework) [43, 38, 44], there has
been significantly less work to enforce physical constraints in the latent space. Thus,
we propose an architecture that directly incorporates the physical intuition of the
multi-basin structure of an ideal free-energy landscape into the latent space prior,

representing a significant change in perspective.

1.3 Outline of the thesis

The thesis is composed of two themed parts addressing perturbation-response anal-
ysis and representation learning from simulation data, respectively.

Part I begins with Chapter 2, where we introduce the basic notation and termi-
nology. The governing equations of motion and related concepts are also introduced.

Chapter 3 lays out mass-spring analogy to derive the force-displacement rela-
tionships. We present a generalization for a commonly-utilized scheme, eliminating
the requirement to perform the linearization around the equilibrium points.

In Chapter 4, we propose a novel computational technique, called ProteinAC
(PAC), for analyzing the perturbation-response dynamics of a protein in the fre-
quency domain, which is motivated by alternating current (AC) analysis of electri-
cal networks where the relationship between the magnitude of the voltage/current
at the output node is examined through a frequency sweep of a sinusoidal input
voltage/current. We show that our method generalizes and subsumes previously
proposed static perturbation response methods, by incorporating the frequency of
excitation as a key new parameter for dynamic analysis of proteins.

In Chapter 5, we propose novel computational techniques for deciphering al-
losteric phenomena in proteins, that are based on a unique perspective that views the
long-range interactions between the binding site (input, transmitter) and the func-

tional site (output, receiver) as point-to-point telecommunication in a networked
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communication medium. We propose that, for an allosteric response to occur, the
commumnication between the binding site and the functional site should be robust and
reliable, despite all the background noise. We make a distinction between the forces
originating from the binding event (external force) and the forces that arise from
thermal fluctuations (noise) due to solvent interactions. While the external force
is directly applied to a local region in the vicinity of the binding pocket, the noise
forces act upon every region of the protein. Then, we introduce the perturbation fre-
quency as a key factor in the Signal-to-Noise ratio (SNR) analysis, where the SNR
is defined as the ratio of displacements stemming from distinct force types. The
information-theoretic channel capacity analysis extends the SNR analysis further
and offers new avenues in discovering potentially allosteric regions.

Part II starts with Chapter 6, which deals with investigating the use of an
extended variational autoencoder framework for dimensionality reduction and clus-
tering of molecular dynamics data. Motivated by the physical intuition that the ideal
low-dimensional free-energy landscape will clearly separate the most slowly intercon-
verting metastable states, we adopt a Gaussian mixture model as the prior distribu-
tion on the latent space, in contrast to the unimodal Gaussian distribution normally
considered. As we demonstrate, this prior counteracts the “anti-clustering” effect
often observed in variational autoencoders, leading to clearly separated metastable
states in the latent space. We show that the Gaussian mixture variational au-
toencoder (GMVAE) has significant potential for use as the backbone in a kinetic
analysis workflow, as it performs dimensionality reduction and clustering within a
single unified framework. Our work validates the methodology on several standard
model systems and also a more complex disordered peptide ensemble, and carefully
characterizes both the static and kinetic features of the resulting low-dimensional
free-energy landscapes.

In Chapter 7, a summary is provided with presenting the future research points.

Chapter 8 presents supporting information for the chapters.
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Chapter 2

BACKGROUND

This chapter provides an overview of protein dynamics starting from the most
general form and then narrowing down to a specific linearized state under the
paraboloid potential energy surface assumption around the native state. Then,
we introduce the transfer function, that quantifies the displacements in response to
both external forces and thermal noise, in a frequency decomposed manner. We
also provide a short review of normal mode analysis and its use in determining the

protein motions.

2.1 Protein dynamics

In principle, the dynamics of a molecular system can be solved quantum mechan-
ically using wave functions that describe the atoms of the system. However, with
the large number of atoms in a protein and its surrounding environment, quantum
mechanical calculations become impractical for whole protein dynamics. Therefore,
a classical mechanics approach is generally used where molecular dynamics describes

the time dependent positions and/or velocities of the particles!.
The dynamics of a protein is governed by its potential energy function, U(r),
which results from all of the interactions among the particles of the protein. Potential
T T T

energy of the protein is a function of particle positions, r» = [r{, 73, ..., Ty

bl

which is a vector of size 3N x 1, where r; = [z;, v;, 2]’ is the position of the i

The content of this chapter has previously appeared in [45].

'Here, particle is used as a generic term, independent of the level of detail and the degree of
coarse-graining in the model. In all-atom simulations, particles correspond to all of the atoms,
whereas in coarse-grained simulations, particles may correspond to a particular set of atoms in the

system.
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particle (¢ =1, ..., N) and N is the number of particles.
Equations of motion for the " particle can be written according to Newton’s
second law as follows

d? 0

Mi o li T T4
()dtzr 8ri

Ulr)+ F(t) , (2.1)

where the net force acting upon the particle is composed of an internal force,
fit) = —%U (r), which is computed as the negative gradient of the potential
energy function, and an external force, F.;(t), exerted upon the i'* particle, and
My = diag(m;, m;, m;) is a 3 x 3 diagonal mass matrix with equal diagonal ele-
ments corresponding to the mass, m;, of the i*" particle.

When the equations of motions for the particles in a system are combined, the

overall dynamics is governed by the following coupled set of 3N equations

Md—2'r - gU(r) = F.(t) , (2.2)
where M = diag(M1y, M(a), ..., M(y)) is a block diagonal® mass matrix of size 3N
and F.(t) = [F..(t)T, F.o,(t)T, ..., F.nx(t)T]" is the external force vector of size
3N x 1.

The equation of motion, given in Equation 2.2, does not capture the solvent
effects due to the interactions with the viscous medium in which the protein resides.
In protein modeling, the solvent interactions are either completely ignored (e.g., as in
PRS and LRT), or incorporated into the simulations by introducing a large number
of solvent particles, or by adding a velocity dependent viscous friction term [46] to
the equations of motion approximating the effects of the solvent on the system in a

lumped manner as follows

Md—2r+Lifr+3U(r)—F(t) (2.3)
de2 dt  or o '

where L is a diagonal matrix of size 3N, capturing the effects of the friction or drag

caused by the viscosity of the medium the protein is immersed in. This implicit

2Since each of the diagonal blocks of M, i.e., M;), is a diagonal matrix corresponding to the

it" particle, overall M is a diagonal matrix.
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solvent model is preferred since explicit modeling of solvent particles in full-atom
MD increases the number of particles in the system significantly. Random effects due
to the solvent and other particles can be easily incorporated as an additive term to

the RHS, by a random forces £(¢) to the RHS, leading to the Langevin formulation:

d? d 0
M@T—{—L&T-i-EU(T) =&(t)+ Fe(t) . (2.4)

2.2 Harmonic approximation

In the context of molecular modeling, the force field is comprised of the empirical
energy functions that include all of the interactions and the parameters needed to cal-
culate the potential energy function of the system. The parameters of the force field
are typically determined by fitting to data gathered from experimental studies and
utilizing quantum mechanical models for small parts of the system [47]. Generally,
most classical force fields are expressed as a summation of terms for various types of
interactions within the system such as bond, angle, dihedral, improper terms, and
terms for non-bonded interactions. These interaction terms typically contain highly
nonlinear functions of particle positions. Hence, potential energy function is almost
always non-harmonic. Internal forces, which are the conservative forces imposed by
the force field, are defined as the negative of the gradient of the potential energy func-
tion with respect to the position vector, r. The internal forces computed from the
non-harmonic potential energy function are typically highly nonlinear functions of
particle displacements, so as the equations of motion. In some methods (e.g., elastic
network models (ENMs)), the non-harmonic potential energy function is simplified
to a harmonic potential in order to arrive at linear internal force functions, hence
linear equations of motion. In other methods, linear(ized) equations are used at in-
termediate steps. Linearization of the force-displacement relationships is performed
via a second-order Taylor series expansion of U(r) around any given state, i.e., an

expansion point, ¥, as in the following

U(r) % U + (r = 75U+ 3= A2 50| r-7). (29
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Internal forces, f(7), is the negative gradient of the potential energy function U(r),
and the first-order Taylor series expansion of the internal force functions as shown

below corresponds to the second-order expansion above

Fr) =~ U
0 0? -
o= U(r)| =5 5U(r)| (r=7) (2.6)
= Ezn('r‘) - )

where Fy;,(r) is a linear function of . The 3N x 3N matrix, ;—;U(r) , is the
Hessian of the potential energy function evaluated at 7, i.e., the Jacobia:l of the
internal force function, and it is denoted by H (7).

The energy landscape contains many local minima in the conformational space of
the protein. According to the folding funnel hypothesis, the native state (equilibrium
state) of a protein is the conformation at the free-energy minimum [48]. If the
expansion point 7 is chosen to be the native state of the protein, denoted by 7,
then the first order derivatives of the potential energy vanish. This means that the
net internal forces acting on the particles of the system at the native state are zero.

In this case, the linearized force equation becomes

Fi(r)| = —H@)(r - 7). (2.7)

I

Hence, Equation 2.4 with the linearized potential energy function reads

d? d
M@Ar + LEAT + H(7)Ar = &(t) + Fe(t) , (2.8)

where Ar = r — 7 is the deviation/displacement from the native state vector.

2.3 Transfer function

The input-output characteristics for a linear and time-invariant (LTI) system can
be described through transfer functions. T represents a matrix of transfer functions
from the inputs, the external forces (or the noise) acting on the system represented

by F', to the output, displacement deviations Ar

Ar(f) =T(f)-F(f) - (2.9)
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where f is the frequency of the input and also the output. LTT systems excited at a
single frequency f produce a response that also has a single frequency component at
the same frequency. Furthermore, LTI systems satisfy the superposition property:
The sum of the responses to two different inputs is equal to the response to the sum
of the inputs. With F set to either the noise input &(¢) or the force excitation Fe(t),

Equation 2.8 is written in the frequency domain (f) as
(27 f)’M Ar(f) +i2nfLAr(f) + H(F)Ar(f) = F(f) , (2.10)
where i = v/—1. Thus, complex-valued transfer function T'(f) is defined as

T(f)=K(f)™', with
(2.11)
K(f)=—4r*f’M +i2nfL + H(F) .

2.4 Time-invariant steady state

When random noise forces are not taken into account (§ = 0), time derivatives are
set to zero, and external force is assumed to be time-invariant, Equation 2.8 simplify
to

H(#)Ar =F., . (2.12)

With rearrangements,

Ar=H(F)"'F, , (2.13)

which equals to the relationship derived based on thermodynamical formulations
from the Linear Response Theory (LRT), which is shown in [26].

Hence, this formulation allows applying an external constant force at a given
input particle and calculating the relative displacements of all of the other particles
in the protein. In conjunction with a suitable constant force model that mimicks
the perturbation of interest, the scheme is useful for calculating the displacements of
the perturbed state from the Hessian obtained from the unperturbed state. Within
the context of ligand binding, Tkeguchi et al. [26] and Atilgan et al. [22] investigate
in detail how to systematically choose the application site upon which the external

force acts, as well as the direction and magnitude of the force so as to best mimick
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the ligand binding. The input particles that result in displacements that are most
similar to the experimentally observed ones between two different forms of a protein

(e.g., apo and holo), and the regions with coherent responses within the protein, can

be identified.

2.5 Normal mode analysis (NMA)

NMA is a useful technique in trying to elucidate the intrinsic protein dynamics
around an energy minimum [49]. Ignoring the solvent effects (L = 0) and setting

the right-hand-side (RHS) of Equation 2.8 to zero yields:

M—Ar =—H(7)Ar . 2.14
Ar = —H(P)Ar (214)

The general solution to the equation of motion above can be written as a superpo-
sition of the normal modes as follows
3N
Ar(t) = Z Vii - mi(t)
i=1 (2.15)
n;(t) = C; - cos(w;t + 6;) .

where m; captures the collective motion in the i*® normal mode direction. Phase
factor, d;, and the magnitude C; are determined by the initial conditions. w; is the
square root of the eigenvalue and V},; is the corresponding eigenvector of the mass-
weighted Hessian, H,, = (M ~'H). In NMA, the total protein motion is essentially
decomposed into a set of independent harmonic oscillators vibrating around their
equilibrium state. NMA is based on the eigenvalue decomposition of the Hessian
matrix. Since it is real and symmetric around the native state with linearized forces,

its eigenvalue decomposition results in
H,, = V,AV," where V,V;,7 =T . (2.16)

A isa 3N x3N diagonal matrix containing the eigenvalues of the mass-weighted Hes-
sian and the columns of V}, contain the corresponding eigenvectors. In NMA, eigen-
vectors, V},;, are called the normal mode vectors and the eigenvalues, \;, are equal

to the square of angular normal mode frequencies, w;, i.e., A = diag(w;? ... wsn?).
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There are 3N — 6 intrinsic vibrational modes of the system, among the 3N solutions,
3 correspond to translations and 3 to rotations of the system.

Low frequency normal modes describe global motions, whereas high frequency
modes are for localized movements. The harmonicity assumption leads to a lim-
itation that NMA is valid only around the native state. Still, NMA is used in
various applications characterizing the functionally relevant global/local motions,
static/mobile regions, rigid/flexible hinge regions, with good fits to experimental

data [50].
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Chapter 3

APPROXIMATING THE INTERNAL FORCES

In this chapter, we present several techniques that is used in approximating
the internal forces, i.e., the negative gradient of the potential energy function. In
Section 3.1, we propose a general scheme that allows obtaining the linearized the
force-displacement relationships based on mechanical mass-spring analogy around
any linearization point. In Section 3.1.1, we show that the presented formulation
simplifies when the linearization point is chosen as the equilibrium point. Then,
Section 3.2 briefly introduces elastic network models, which represents proteins as
an elastic mass-and-spring network, subject to a harmonic potential. These mod-
els assume that the linearization point is the equilibrium point, hence the com-
monly used techniques used in obtaining the linearized internal forces do not gen-
eralize for the non-equilibrium points. First, we present two equivalent techniques
to achieve linearized forces. Then, we first show that the general scheme we present
in Section 3.1 boils down to a reduced-size representation when the linearization is
performed around equilibrium points. We emphasize that for the other expansion
points, reduced-size models cannot be used, while the technique we present in Sec-
tion 3.1 maintains its validity. Finally, in Section 3.3, we also show how to retrieve

the linearized forces from MD simulations.

3.1 Nodal and node-branch formulations

Force-displacement equations can be written in a systematic manner using a me-
chanical mass-spring system analogy, where the particles (e.g., atoms, residues)

correspond to the joints, i.e., nodes, and the interactions among them are captured

The content of this chapter has previously appeared in [45].
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by the springs. If the interactions in the force field among the particles are limited
to pairwise interactions only, i.e., if triple and quadruple interactions are removed or
expressed in terms of pairwise ones, then any interaction between two particles can
be modeled as a nonlinear spring!. Thus, a protein can be modeled as a network of
connected nonlinear springs. Particles are taken as point masses where the attached
springs intersect.

We next describe formulations for computing the steady-state displacements of
particles that are connected with nonlinear springs, under a time-invariant external
force. Connectivity of the particles and force conservation laws on each particle
together with the linearized force on the nonlinear springs are utilized to construct
the relationship between the external force and the particle displacements.

When the steady-state condition is assumed, i.e., all the time derivatives are set
to zero in Equation 2.2, the forces exerted by the spring on the interacting a'* and
bt" particles, denoted by Af,,,2, depends on the positional distance wy, = 74 — 75,

and it is given by
0

8’U,ab

Afsap = gar(u) = U(r), (3.1)

where g,(-) determines the force-displacement relationship. At each point mass,
the vectorial sum of the directed forces is set to zero, assuming a static steady-
state condition with a time-invariant force excitation F,(t) = F.. These equations,

constituting a force equilibrium condition, can be written as follows
AANf,=F, . (3.2)

A, is the adjacency matrix (also known as Kirchhoff, connectivity, or incidence
matrix) indicating the pairwise interactions among the particles, with entries equal

to 0, 1 or -1. Masses attached to the opposite ends of a spring experience a force with

IThis formulation can be easily extended to the case of triple and quadruple interactions
through the conceptualization of a multi-terminal spring, one that simultaneously acts on more
than two particles.

2ith spring is the spring between particles a and b and the force on this spring is denoted by

Afs.p = AFfs;. Both notations are used interchangeably.
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the same magnitude but with opposite directions. An arbitrary direction (aligned
with the spring) is assigned for the force exerted by each spring. Then, a force
equilibrium equation is written at each point mass. The force of a spring appears
with opposite signs in the two equations written at each end. The size of A, is
3N x 3N, where Nj is the total number of pairwise interactions (springs) in the
system, taking values up to N? — N if it is a fully connected system. Generally,
the interactions are limited via a cut-off distance r.. No interaction is assumed if
the distance between two particles is larger than r.. The size of the spring force
vector Af, is 3Ny x 1, and F, is the external force vector of size 3N x 1, which
represents forces directly applied to the selected particles, e.g., as an excitation or
a perturbation.

Similarly, A,” relates joint positions 7 to the positional displacements between

the two ends of the springs, denoted by w, of size 3N; x 1
Alr=u. (3.3)

Spring forces are determined by the nonlinear functions g, (). We can simplify the
model by linearizing the spring forces around an expansion point 7, via a given
below, a 3N; x 3N; Jacobian matrix of the spring forces with respect to w. The
entries of the Jacobian matrix & can be considered as the spring constants of linear

Hookean springs

OAf

Afuin = AFi(@) + - (u—@) where o=t (3:4)
a(u) = diag(a ), o), . .., a(n,)) is block diagonal and
_aAfsi,x aAfSi,x aAfSi,&?_
8Aum 8A’U;i7y aAui,z
aA si aA S3 aA Sq
g = Fsiy Fsiy Fsiy (3.5)

is a 3 x 3 matrix that is evaluated at . Thus

Afsn — aAu = Af (a) . (3.6)
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Equation 3.3 can be expressed in terms of the deviation vectors, Ar and Awu, and

can be combined with Equations 3.2 and 3.6 in the form below

I —aAT A slin A s u
A, 0 Ar F,

This is the called the node-branch or sparse tableau formulation [51].

3.1.1 Special case: linearization around equilibrium point

As a special case, the linearization around the native state, w = @, with Au = u—u,

where normally all of the springs are at their rest lengths with zero force, results in

Afslin —alAu=0 ) (38)
yielding
I —aAT| |Afg. 0
* Fatin| _ . (3.9)
A, 0 Ar y 35

One can eliminate Af;;;,, in the equations above to obtain
(A, A )Ar = F, . (3.10)

The above is called the nodal formulation [51]. With this more compact formulation,
one can compute the position deviations under external force excitations without
first explicitly computing the spring forces, simply as follows

1

Ar = (A,aA")  F. . (3.11)

At time-invariant steady state (equilibrium), the particle positions do not vary with
time. If the term in Equation 2.12 with the time derivative is set to zero, and the
resulting equation is compared to Equation 3.10, it can be deduced that A,aA,”
is equal to the Hessian, H, of the potential energy function of the system resulting
from the totality of the pairwise interactions. The Hessian H is normally a singular
matrix, with six zero eigenvalues, due to the rotational and translational invariance
of the system. Therefore, one has to either impose constraints that result in a
unique solution, or use an appropriate scheme in solving the nodal equations, e.g.,

the pseudo-inverse of the Hessian.
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3.2 Elastic network models (ENMs)

In ENMs, the protein is represented as a mass-spring network, resulting in a sim-
plified representation of the potential energy function. The nodes of the network,
typically chosen as the C\, atoms of the residues, are interconnected by springs.
The nominal node positions are determined based on a reference structure, which is
usually experimentally determined. The interactions are considered for the residue
pairs within a pre-defined cut-off distance of each other. The reference structure
is assumed to correspond to the global minimum of the potential energy function
by construction, hence no energy minimization is needed. Gaussian Network Mod-
els (GNM) [52] and Anisotropic Network Models (ANM) [53] are two subclasses
of ENMs. GNMs take into account only the magnitude of the fluctuations, while
ANMs capture the directionality as well. ENMs have been successful in predicting
the residue fluctuation profiles of globular proteins [54].

Since the linearization point is chosen as the energy minimum in ANMs, construc-
tion of Hessian suffices to linearize the internal forces. In the following subsections,
two equivalent ways to construct the Hessian are presented: from the second deriva-
tive of harmonic potentials, and from the force balance. The equivalence of these

approaches is shown in [53].

3.2.1 Hessian from the second order derivative of harmonic potentials

The potential energy function for ANMs can be written as

1 2
U=32 vlAri— Arl*, (3.12)
1<)
where ~;; is the spring constant between residues ¢ and j, and | - | denotes the Lo

norm (Euclidean length). The Hessian of the potential energy is constructed as

Tia — Tiw
_ Yij
H(zJ) - ’Arz _ A'I"j|2 rj’y - ri,:y rj?“’ - r’l:,:l: rjay - T'i,y rjaz - riaz (313)

Tjz —Tiz
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for i # j, where ()., . denotes the Cartesian coordinates along the corresponding
coordinate axes, and the diagonal block for ¢ = j is set to
Hgy =~ ) Hj) - (3.14)
JigFi

3.2.2  Hessian from force balance

Another commonly-used way of obtaining Hessian in ENMs is based on force-
displacement linearization technique discussed in Section 3.1, though utilized in
a slightly different manner. In the following, we show that the approach is equiva-
lent to the reduced-size formulation derived for the special equilibrium case that is
introduced in Section 3.1.1.

In their reduced-size formulation, instead of examining x, ¥y, z components of
the vectors separately, the authors first examine their magnitude and then decom-
pose into components by using directional cosines [22]. This results in reduced size
matrices and vectors. The size of «, the spring constant matrix, reduces to Ny x Ny
from 3N} x 3N, represented by the diagonal o3, In ENMs, all entries of o’ are usu-
ally set to be identical, but they can actually be computed via the force linearization
procedure discussed in Section 3.1.

The coordinate components of the spring forces can be related to the magnitude

of the spring forces, |Afy;)| = Afy;, as follows
Afsi.=AF - cosby . (3.15)

y and z components are similar. Then, in matrix form for all of the interactions,

we obtain the following relationship

T
where C; = diag(Cs(l),Cs(z),---,Cs(NI)>, Cs(i) = |cos 07, COSQ?, cosb?| , and

0r, 07, 07 are the angles between the spring direction vector and the three coor-

dinate axes. Af!, a vector of size Ny, contains the magnitude of the spring forces.

3Prime notation is used for the quantities that are the reduced size equivalents of the formu-

lation described in Section 3.1.



Chapter 3: Approximating the internal forces 24

When particles a and b are assumed to be located at the two ends of the spring i,
and the coordinates of particle a and b are 7o) = [Za, Ya» Za|”, Ty) = [To, Uy Z0)"

then the angles are calculated as follows

cos 07 Ta — Tp
Coiy = |cost? | = | Yo — B | /ITa— Tl - (3.17)
cos 67 Za — 2

The reduced size vectors and matrices used by ENMs can be obtained with the
following when the protein is assumed to be in the native state where the net internal
forces acting on the particles are zero. For differently chosen linearization points,
the reduced size formulation in ENMs is not equivalent to the general formulation

described in Section 3.1.

A=A, C,
Au=C, - Au
a=C,-o-C!
(3.18)
Afs=Cs- Af;
Ar = Ar'
F.=F .

Here, we will derive the relationship between ¢ and «’, the others are similar. For
spring 7, we have the following Jacobian matrix that is obtained with the scheme in

Section 3.1 and « is defined as follows

OAfy ,  OAF
N — . = 1 . 1
YO DA M 0w, (3.19)

Af, for the i*" spring in Equation 3.16, is inserted into the « ;) equation above.

OAfswy _ ICswASL)

5= — 3.20
Oz( ) aAU(i) 8Au(i) ( )
Then, by using the chain rule for differentiation, the following is obtained
0C,; OAf!.
(i) / Si
o= AF. +Cy, . 3.21
¥ = A T T G0, (3.21)
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Partial derivative in the second term in the summation above is written as a multi-

plication of partial derivatives by using the chain rule and the following relationship:
Cs i) —
O~ Au/

)

OAf,  OAf, OAY;
Then, the second part of Equation 3.21 becomes aéC’s(i)C’sg) and the first part is

— alC]) (3.22)

zero (Af!. = 0) when the native state conditions are assumed. Thus, the following
relationship becomes valid: o) = ang(i)Csﬁ).
However, at points other than the native state, the derivative in the first part of

Equation 3.21 becomes
oC 5(i) 1

= IL-cC,,C.l)] . 2
dAu Aw; 1~ G Coto) (3.23)
Then, Equation 3.21 can be written as
Af

When the above is repeated for all the coordinates and interactions, the general

relationship between a and o' is formulated as follows
a=K®I,- C,KC!+C,aC," . (3.25)

Here, ® denotes the Kronecker product operation and
Afl Af! Af.
K = diag sl fSQ,..., Fom, )
A’U/l A’U/Q A’U,/NI
This shows that the original ENM formulation does not capture the case when

the linearization is performed around a non-equilibrium point in the conformational
space of the protein. However, the scheme that we propose in Section 3.1 is more gen-
eral and maintains its validity even for linearization around non-equilibrium points.
Note that &’ = ClaC; satisfies Equation 3.25. Note also that CI'C; = I and
C,.CT +£1.

Thus, we obtain the proposed relationship around the native state: o = Cya/C,” .
Then, the reduced node-branch and nodal formulations around the native state can

be expressed respectively as follows

I —aAT| |Af 0
= , (3.26)
A0 Ar’ F'

S €
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(Alad’A/T)ArY = F . (3.27)

e

One may observe that the coefficient matrix (A’.a’ A7) on the LHS of Equa-

tion 3.27 is in fact the Hessian matrix H, and

Ar=H'F, . (3.28)

3.3 Hessian from MD

In addition to obtaining force-displacement relationship, here we present how to
get hessian from MD. As the first step, positional fluctuation trajectories around
a reference or equilibrium structure are calculated. Next, the covariance matrix is

formed based on the time averages over the trajectories as

(AriaArje) (AriaAr;y) (ArizAr;.)
Covij = | (AT yATje) (ATiyArsy,) (Ar;y Arj )
<Ari’ZArj7w> <ATi’ZATjay> <Ari,ZA,rj’z>

Cov;; above is a 3 x 3 matrix of the covariances between the z, y, 2 components
of the positional deviation vectors Ar; and Ar; for nodes ¢ and j. The overall
covariance matrix Cov is then formed as a block matrix of size 3N x 3N, where the
i7" block is set to Cov;;. The Hessian matrix is in fact equal to the scaled inverse
of the covariance matrix, HMP = kgT Cov™' [55], where kg is the Boltzmann’s

constant and T is the absolute temperature.
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Chapter 4

PAC: A FREQUENCY DOMAIN TECHNIQUE FOR
ANALYZING PROTEIN DYNAMICS

4.1 Introduction

In static perturbation studies such as Linear Response Theory (LRT) [26] and and
Perturbation Response Scanning (PRS) [22], the ligand is modeled via a constant
force vector exerted on the binding site residue. As such, the dynamical, time-
varying behavior of vibratory ligand-protein interactions can not be investigated.
Based on thermodynamical arguments, the ligand binding process is characterized as
a dynamic event with associated vibratory and fluctuation-like motions as opposed
to permanent binding [56]. Therefore, in addition to the directionality and the
amplitude, the frequency of the applied force representing a perturbation may be
a determining factor in binding/unbinding, and other functional responses of the
protein such as allostery.

We propose a novel computational technique, namely Protein AC Analysis (PAC),
for analyzing the perturbation-response dynamics of a protein directly in the fre-
quency domain. Motivated by AC analysis of electrical networks, where the circuit
is excited by a sinusoidal input at an input node and the amplitude/phase responses
are monitored at the output node(s) as a function of frequency, our proposed tech-
nique makes it possible to analyze the behavior of a protein under excitations with
varying frequencies, which was not possible with previously proposed methods.

PAC is distinct from, but related to, normal mode analysis (NMA) [58] that also
produces a sort of frequency domain characterization for protein dynamics. NMA is

useful in determining the global and local motions of a protein around an equilibrium

The content of this chapter has previously appeared in [45].
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and it is based on intrinsic, autonomous dynamics. The frequency in PAC is instead
determined by the excitation on the system as an external factor.

There are other approaches to frequency domain analysis of proteins in the lit-
erature. Notably, in [46], the authors describe a frequency decomposed fluctuation
analysis formulation for proteins that is compared with the standard formulation
based on thermodynamics. Their formulation allows one to compute contributions
to the fluctuation dynamics in frequency intervals of interest, which is not possible
with the thermodynamics formulation. PAC is similar in spirit to the work described
in [46] based on a Langevin equation formulation. The technique described in [46]
enables fluctuation analysis in the frequency domain, whereas PAC extends static
perturbation-response analysis in order to characterize the frequency response of
proteins.

PAC is not limited to the residue based coarse grained models, it can in fact be
used in conjunction with all-atom models, possibly following energy minimization in
MD. In order to demonstrate the utility of the proposed method, here we describe
the PAC technique in conjunction with a coarse-grained anisotropic network model
(ANM), a subclass of ENMs, constructed at an energy minimized native state. As we
show, our technique is able to capture the response behavior computed by the static
perturbation methods and can be regarded as a generalization of these techniques
via the introduction of the frequency of the input perturbations that becomes crucial
in studying ligand binding dynamics.

The chapter is organized as follows: In Section 4.2, we introduce the proposed
PAC technique and describe how it can be used to analyze the displacements of
the particles under force excitations with varying frequency and show that PAC
is in fact a generalization of the static perturbation methods, with static methods
obtained from PAC by setting the frequency of excitation to zero. Furthermore, in
Section 4.3, we propose a set of frequency dependent metrics that help elucidate
the complex motions of residues/atoms in a compact and informative manner under
varying frequency force excitations. We describe a protocol for the application of

PAC to the analysis of protein dynamics in Section 4.4. In Section 4.5, we present
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results for the ferric binding protein and bacterial chemotaxis protein by computing

the proposed metrics via PAC.

4.2 Theory

PAC is based on the linearization of the system dynamics around an expansion point
(e.g., an operating point, DC point, conformation, or native state) as in AC analysis
of electrical networks. For PAC, the natural choice for the expansion point is the
native state of the protein, but others are possible. We consider the linearized force
field around the native state (please see Chapter 2 for the details of linearization),
and in terms of the deviation from the native state vector, Ar = r — 7 as described
in Equation 2.8 . Here, we do not take into account the random forces. The variables
are as introduced in Chapter 2: M stands for the masses, L: friction, H: linearized

potential energy function, Fg: external forces.

d2 d _
M Ar+ Lo Ar + H(F)Ar = F(1) (4.1)

Next, we transform Equation 4.1 to state-space form with the state vector v =

[ArT, ArT]" where Ar = iAr

dt
Ar 0 I Ar 0
L= T F.(t)
Ar —-M'H —-M-'L| |Ar M1
A B
v=Av+ BF,.(t) . (4.2)

We introduce the output observable vector y of size 3N x 1, as linear combinations
of the first set of the state variables in v, Ar. C, a matrix of size 3N x 6N,
is constructed in such a way so that the last 3N columns are zero, i.e., C =
[CfN X3N g3Nx3N| - In order to probe the displacement of every particle, C; is
set to the identity matrix of size 3N. However, it is also possible to examine the

collective movements (e.g., whole protein motion, a domain’s motion) with an ap-
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propriately constructed C.

(4.3)

Next, we transform the state space formulation in Equation 4.3 to the Laplace, i.e.,
frequency, domain to obtain
sV (s) = AV (s) + BF,(s)
‘ (4.4)
Y(s) =CV(s)
that turns the differential equation into an algebraic one with the frequency of
interest as a parameter. The transfer function (or complex valued gain of the system)

is represented by T as follows

(4.5)
= C[sI — A]"'BF,(s) ,

where s is the complex frequency. In PAC, we evaluate s on the imaginary axis, i.e.,
s =12 f where i = v/—1, and f is the frequency of excitation. The complex valued
transfer function, T, takes varying values as a function of frequency, therefore, the
response characteristics depend not only on the magnitudes, directions or points of
application but also the frequency of excitations. T'(s), with size 3N x 3N, is the
matrix of complex valued gains along the coordinate axes, consisting of 3 x 3 block

matrices and constructed in the following form

Tai(s)  Thz(s) Tan)(s)
T (s) Tao(s T, 5
T(s) = (21)( ) (22:)( ) (2n)( ) (4.6)
| Tivn(s) Tvay(s) - Tiwwy(s) |
Submatrix T;)(s)(i,j = 1,...,N) of size 3 x 3 contains the transfer functions

between the output i and the external force that is applied on the j* particle.
PAC does not pose any limitation on the form of the excitation force function, F,,

provided that the Laplace transform exists. In this thesis, however, we consider
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force excitations that are sinusoidal in time. We apply a force excitation to one of

the particles, j, in the form
F.; = [F}, cos(wt + ¢;,), Fj, cos(wt+¢;,), Fj, cos(wt+ o )", (4.7)

and set all other entries in Fi(t) to zero. Fj_, Fj,, and [} are the amplitudes of the
force applied on the j** particle, and ®js gbjy, and ¢;_ are the phase shifts in the
x, vy, z directions, respectively, and w = 27 f is the angular frequency. Here, we
assume that the amplitudes of the force components are sufficiently small so that
the linearized force field is a good approximation. Due to this small displacement
assumption, at steady-state, the response/output displacements are also sinusoidal
at the same frequency of the force excitation, but with frequency dependent phase
shifts and amplitudes. Steady-state dynamic response of the i* output yi) (t), to
the sinusoidal force excitation can be computed using the transfer functions, where
Tiij)(iw) = Ty (s)| s of the form

S=1w

t:m:(ij) (S) tﬂcy(ij) (S) tm(ij) (S)

T (5) = [ty () tun(s) tyen(s)| (4.8)
tzac(z‘j)(s) tzy(ij)(s) tzz(ij)(‘S)
and each complex entry of T(;; is written in exponential form as follows
taa (i) (1w) = |tra(ij) (10)] €xp (10225 (@) (4.9)

2 1/ Im{tzziin by -
where |t,q(i5)| = \/Im{tm(ij)} + Re{taw(ij}?! and 0,435 = tan I(Wziﬁ}) is the

magnitude and the phase of ,,(;;), respectively. Then, the ith steady-state output

'Re and Im is the real and imaginary part of a complex number.
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Y (t) is as follows
SSs T
TIOR AT
[t ij) (W) Fj, cos(wt + ¢, + Ouaij) (w)) +
[y iy (iw) | Fj, cos(wt + @), + Oay i) (W) +
[yaij) (W) Fj, cos(wt + @, + Oya ;) (w (4.10)

)
‘tyy(ij) (iw)\ij cos(wt + ¢jy + ny(m (w)

|tzac(ij)(iw)|ij cos(wt + ¢jx + Ozx(ij)(w

) +
|tzy(¢j) (iw)\ij cos(wt + ¢jy i ezy(z‘j) (w)) +
I ]tzz(ij)(iw)\sz cos(wt + ¢ + sz(ij)(w))

In fact, y¢;) (t) defines a sinusoidal motion in all coordinate axes with different am-

plitude and phase, but at the same frequency.

4.2.1 PAC versus static perturbation methods

When PAC analysis is run with a static, time-invariant excitation, i.e., one that

is at zero frequency, one can obtain the formulation used in static perturbation

analysis. PAC with zero frequency perturbations is called as PDC, following the

terminology used in electrical circuit simulations (AC/DC). Here, we show that static

perturbation methods are in fact equivalent to PDC. However, for this equivalence

to hold, the following should be noted for the static methods:

e ANM and/or MD based simulations are used to compute and form the Hessian

of the potential energy function, and the N particles usually correspond to the

C\, atoms of the residues.

e The excitation force is not time dependent, it is static F.(t) = F., hence

the perturbation-response analysis is essentially conducted at zero frequency:

s =0.
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e The masses of the residues are usually assumed to be identical: M = I and a

loss/friction term is not incorporated into the equations: L = 0.

e The displacements of the residues are taken as output observables. For ex-
ample, the displacement of the i*" residue can selected by setting C; = I,
C = [ I 0} and then selecting the corresponding entries in the y vector,

T
Ya) = [y:'ne% Y3i-1, Y3i
In PDC, and hence in static perturbation methods, the frequency of the exci-

tations is simply set to zero. Then, the transfer function T'(s) boils down to the

following

T(s=0)=-CA'B. (4.11)
With L =0 and M = I, and

., |0 —H
Al = , (4.12)
I 0

the transfer function at zero frequency, T'(s = 0), becomes

-1

T(s=0) = [Cl 0} —CH. (4.13)

Then, the displacements at zero frequency can be computed by multiplying the
transfer function with the external static force vector

Y(s=0)=C,H'F, . (4.14)

One can observe any element of the displacement vector, Ar, by choosing C; = I.

The entire displacement vector is simply given by
Ar(s=0)=H'F, . (4.15)

We note that Ar(s = 0) in Equation 4.15 is in fact equal to Ar in Equation 2.13,
provided that the Hessian matrix, H, is obtained via the same procedure. Hence,

PAC can be considered to be a generalized form of the static perturbation methods,
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extending it to handle dynamic perturbations with nonzero frequency. In addition,
including a viscous friction term represented by L and choosing M according to
the residue masses further improves the modeling and analysis fidelity, as compared

to static methods.

4.3 Frequency dependent metrics for proteins

The standard output of PAC analysis is in the form of complex valued vibration
amplitudes in 3D coordinates for each particle of the system under an input exci-
tation. In their raw forms, the results are difficult to visualize and interpret for a
protein, since the response of each system particle is represented in a six dimen-
sional space, resulting from one complex valued amplitude for every coordinate axis.
The analysis results need to be summarized in such a way so that the sought rela-
tionship between the input and the output becomes apparent. When one tries to
quantify and summarize the response to a perturbation, there is a delicate balance
between reducing complexity and preserving essential information. Protein analysis
and characterization requires useful and concise metrics to be developed that can
quantify local response behavior [59]. Our aim here is to provide scalar valued met-
rics for each of the residues or system particles that can be easily visualized with 2D
plots. We next define several frequency dependent metrics in order to characterize
the response of a particle.

Let Arg)(w) = [Az;, Ay;, Az]" denote the complex valued displacement vec-
tor for the " particle, that is computed by PAC.

Displacement magnitude, |Ar;(w)l|, is the simplest and most widely used

metric that can be computed with

AT ()| (w) = \/Aﬂ%2 +Ay? + Az (4.16)

At zero frequency (PDC), this metric can be used to determine the “most effective”
input excitation direction and in order to compute correlations with experimental
data. Moreover, one can use this metric to analyze how frequency of excitation

affects the vibratory displacement magnitudes of the residues.
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Energy, F;(w), given by

1. :
E; = Smi| Ar*, where [Arg| = w]Arg)| (4.17)

is the kinetic energy calculated using the velocities of the particles. Since frequency
domain analysis is now possible with PAC and energy is a highly frequency de-
pendent quantity, PAC enables internal energy transfer analysis for a protein. How
energy of each particle changes with the excitation frequency provides insight on the
properties and functions of the particles. Highly energetic particles can be consid-
ered as critical for the protein in ligand binding. Additionally, energy distribution
in a protein under various types of environmental noise and disturbances can be
analyzed.

At steady-state, the displacement vector Ar(;(w) that is obtained using Equa-
tion 4.10, by choosing the output as the displacements of all of the particles, i.e.,
C, = I, defines a parametric equation for an elliptical trajectory. Generally, the
phase constants of the excitation, ¢;, , ., are set to zero for simplicity. In order to
compute the actual absolute coordinates of the particles, the expansion point, i.e.,

the native state coordinates, are added to the deviation values

Semi-major and semi-minor axes of the elliptical trajectory of the *" particle is
defined by the vectors r™%°";(w) and r™"";(w), respectively. The lengths of the
semi-major and the semi-minor axes are [r™%";(w)| and |r™"°";(w)|, while the unit
directions are 7"’ (w) and #™"°"(w). Figure 4.1(a) shows time trajectories for
three virtual particles, where one particle follows a linear trajectory, the other one
follows a circular path, and the last one moves on a typical elliptical trajectory.
The characteristics of a particle’s trajectory varies with the frequency of excitation,
which may help interpret and decipher the dynamics within the protein.
Major-azis length, |r™%° (w)|, is a measure of how far the particle direction-
ally moves from the native state with the force excitation. This is different from the
displacement magnitude metric, |Ar; (w)|. The maximum distance between two

points of the elliptical trajectory is captured by the major-axis length metric.
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Figure 4.1: Visualization of the metrics

Angle between the major-azis and force, 0™ (w),
0", = cosTL(|F7"" - F|) (4.19)

is the angle between the applied force direction, 13’6, and the semi-major-axis di-

rection, 7" (w). Among the two semi-major axes directions (#;"“"(w) and its

. ~major
opposite —r;

7Y (w)) the one that has a smaller angle with the force is selected,
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i.e., 0™ (w) takes values between 0 and 7/2, where smaller §™%°";(w) values cor-
respond to aligned motion with the force and larger values represent orthogonal
motion. The angle between the major-axis and the excitation force direction may
reveal hinge residues and co-moving groups of residues.

Isotropicity, &;(w), defined by

6 _ |,r.minori (CU) |
4 |,r.majori(w)|

(4.20)

is the ratio of the minor-axis and the major-axis lengths. It is used to distinguish the
anisotropic particles that have a dominant direction of oscillation from the isotropic
ones whose oscillatory motions reside in a plane without a significant dominant di-
rection. For a particle with large displacement magnitude and/or energy, isotropicity
may indicate different roles for that particle in the protein. For example, isotropic
particles may serve as hubs to distribute energy to paths with different directions,
whereas anisotropic ones may serve critical roles on a certain path. The major-axis
directions of the isotropic particles are not as informative as the major-axis direc-
tions of the anisotropic ones. As such, co-consideration of isotropicity and the major
axis direction is useful. Isotropicity, &, takes values between 0 and 1 for all possible
trajectories: 1 for circular trajectories and 0 for linear ones. The particles with
smaller values are more anisotropic than the others.

Angle between the plane normal and force, 07" (w), defined by

grormal; — cos™H(n, - FL) (4.21)
is the angle between the applied force direction, 13‘6, and the normal of the plane
containing the elliptical trajectory, 7o; = 7% x pminer - gnormal () is 1 /2 for the it
particle when its elliptical trajectory is co-planar with the applied force. As gmorma
deviates from 7/2 to 0 or 7, the force direction deviates more and more from the
trajectory plane. Please note that the major- and minor-axes directions appear in a

certain order in the definition so that the ambiguity in the normal direction of the

plane is removed.
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4.4 PAC analysis of ligand (un)binding

For the rest of our treatment, we will adopt the C, based coarse-grained modeling
approach, and hence the system particle corresponds to the C,, atom of each residue.
Although, with PAC, one can compute the displacements and the velocities of all
of the residues under various input excitations with varying directions, magnitudes,
and the frequency of the external force, not all input configurations may have a
correspondence in real protein-ligand interactions. In this section, we review the
implementation details that are mostly followed from [22], regarding the selection of
appropriate input configurations for PAC analysis of ligand binding-unbinding for

proteins.

4.4.1  Input residue(s) selection

An input residue is defined as the residue upon which an external force is applied.
When investigating (un)binding, the input residue candidates are usually the binding
site residues. If the binding site residues are known for a protein, they can be
directly used. Any one (a group or all) of the residues from the binding site can
be selected as the input residue(s). By perturbing all of the residues of the binding
site, specific input residue(s) can be identified as the one(s) that exhibit the most
correlated transient, dynamic behavior with the ligand (un)binding behavior. If
both ligand-free and ligand-bound coordinates are available in the RCSB Protein
Data Bank [60], PDC analysis can be used to determine the most appropriate input
residue. The residues of the binding site are excited individually with a constant
external force with the best direction and magnitude (please see Section 4.4.2). The
one(s) that exhibit the highest correlation between the computed displacements and
the experimental ones (between the ligand-free and ligand-bound forms) can be

selected as the input residue.
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4.4.2  Force magnitude and direction selection

PAC analysis methodology depends on whether or not the protein has both ligand-
free and ligand-bound PDB forms. The procedure for force magnitude and direction
selection is summarized in Figure 4.2.

For the proteins for which both ligand-free and ligand-bound forms are known,
the procedure in Figure 4.2 is used to analyze binding (for unbinding, ligand-free
and ligand-bound forms should be swapped). First, the Hessian is constructed for
the ligand-free form based on ANM for the coarse-grained model, or by Taylor’s
expansion of the force field around the native state. Then, the ligand-bound form
is aligned to the ligand-free form using the superpose function in MATLAB [61].
Other alignment tools can also be employed for this purpose. Any constraint can be
imposed during alignment if there is prior knowledge on the fixed parts of the protein.
Experimental displacements are computed as the difference of the C,, positions of
the ligand-free and the aligned ligand-bound forms. Unit sphere (radius r = 1) is
uniformly sampled in azimuth, ¢, and zenith, 6, angles of the spherical coordinate
system. For each of the sampled directions, a constant (time-invariant, at zero
frequency) external force is applied to a selected input residue, and the displacements
computed via PAC are post-processed as follows. Residue displacements are added
to the coordinates of the ligand-free form and a new coordinate file is obtained.
Then, this coordinate file is also aligned to ligand-free form and a computed ligand-
bound form is obtained. By subtracting the C, coordinates of ligand-free form
and the computed ligand-bound form, computed displacement vector is obtained
for every residue. Then, Pearson correlation coefficient? between this computed

displacement vector, ¢ and the experimentally determined one, r¢, is calculated for

2We would like to note that, throughout the thesis, the correlation coefficient is used in order
to figure out whether there is a causality relationship between two quantities. The correlation is
computed by simply averaging over all of the residues in order to arrive at an overall character-
ization for the protein. It is not an actual statistical correlation computed over an ensemble of

statistical samples.
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Figure 4.2: Force magnitude and direction selection procedure for proteins with

both the ligand-free and the ligand-bound forms, and with only one form available.
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each perturbed residue 7 as follows

5 (1 — 7)(ry* —79)
corr; = NJZI ~ ) (4'22)
\/;(T.je _ 7"6)2 ;(T‘]C _ TC)2

where overbar indicates the average over the residues. For each sampled direction,
this procedure is repeated. Then, the direction that gives the highest correlation is
selected as the force direction. Force magnitude is chosen so that the same displace-
ment values are obtained on the average. After determining the force magnitude
and the direction, residue displacements are recomputed with the determined force
parameters. The computed ligand-bound form is finally obtained after an additional
alignment step to the ligand-free form. In frequency sweep analysis via PAC, the
force direction determined as such at zero frequency is kept. The static force mag-
nitude determined at zero frequency is used as the amplitude of the time-varying
force excitations at nonzero frequencies. PAC analysis provides insight into the role
of oscillatory, time-varying excitations in the (un)binding process.

If both apo and holo forms are available, but the binding site is not known,
then one can test all of the residues with a force excitation. For each residue, the
force direction and magnitude can be determined following the protocol described
in Figure 4.2. Force direction search on a spherical grid for each residue will incur
some computational cost. But this will still be fast when compared with time-domain
MD simulations. The major advantage of the proposed PAC formalism stems from
its computational efficiency. Hence, it can be used for high throughput screening
purposes, in cases when the binding residues are not known.

If both PDB forms of the protein are not available, the alignment and magnitude
scaling steps are skipped and the force direction that results in the maximum sum
of magnitudes of the computed residue displacements is determined. This pertur-
bation direction determination procedure can be applied whether the input residue
is already known or is to be determined. If there is no information on the binding
site and/or new possible binding sites are sought, the most effective perturbation

direction is determined as above for all candidate residues. Then, the resulting dis-
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placements with the determined effective perturbation direction for each residue are
examined in order to identify the key residues that may belong to a binding site. In
comparing perturbation directions and input residues, the force magnitude is set to
unity. Since PAC analysis is based on a linearized model, the ratio of the output re-
sponse to the input magnitude is independent of the force magnitude used. Here, we
have outlined a plausible methodology for the determination of effective perturba-
tion directions and/or candidate input residues. This methodology can be improved
and extended. For instance, input perturbations that excite multiple residues si-
multaneously may serve as a better model for ligand binding. The procedure for

proteins with only one form available is also summarized in Figure 4.2.

4.5 Results

4.5.1 Setup and preliminaries

We first provide information on the setup that was used to produce the results that
are reported:

3D coordinates of the proteins are retrieved from the Protein Data Bank [60, 62].
The Hessian is constructed based on an ANM model with a pairwise interaction
cut-off distance value, 7., of 8 A for the ferric binding protein (FBP), 10 A for
the bacterial chemotaxis protein (CheY). In determining these values, the cut-off
distance is swept within the 7-15 A range and the value that produces the best
correspondence between the computed and experimental displacements is chosen [63,
64, 53, 65]. Hookean spring constants are taken to be identical and set to 1 for all of
the interacting residue pairs within the cut-off distance. Masses of the residues are
taken into account throughout the analysis, and the mass matrix, M, is constructed
using the average mass values that are taken from [66]. The loss matrix, L, is set
to a scaled identity matrix L = 0.31 so that the solvent effects are included in the
model. With L chosen as such, the high frequency movements do not completely
vanish, and at low frequencies, they are slightly subdued, when compared to the

experimental zero frequency displacement magnitudes. The frequency range for PAC
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analysis is set as the interval from zero to the half of the maximum normal mode
frequency calculated for each protein. This frequency range is uniformly sampled
at 200 points, where at every point a PAC analysis is run. In addition to these
frequency points, normal mode frequencies are also included in the frequency set.
The transfer function becomes singular at normal mode frequencies if loss/friction
term is set to zero. Therefore, loss terms are always included for running PAC at
the normal mode frequencies.

Two proteins (FBP and CheY) were analyzed with PAC following the protocol
described in Section 4.4. FBP and CheY were chosen because they were considered
in the original works in the PRS method [22]. Furthermore, for FBP, MD studies in
the literature have shown that single-point static force application at a single residue
models the ligand binding event quite well [22]. For both of these proteins, the ligand
molecules (ions) are small. Therefore, a single-point force excitation model suffices
to capture the ligand binding. As PAC extends the conventional static methods into
the frequency domain, by the chosen proteins, we are able to compare the results
obtained by PAC to the ones obtained in the literature with PRS. We show that we
obtain the same results (up to some extent, possibly due to variations in the proto-
cols used) with PDC as in PRS. We further these results that were reported in the
literature by extending them with a dynamic, time-varying, frequency domain anal-
ysis that is enabled by PAC. We compute the frequency dependent metrics described
in Section 4.3 via PAC, providing higher fidelity information on the perturbation
response dynamics. The following section presents the results for the FBP. Please

see Section 8.1.1 for our investigation of CheY protein.

4.5.2  Ferric binding protein (FBP)

FBP is a highly conserved protein in the iron acquisition system of gram-negative
bacteria. It resides in the periplasm and receives the iron obtained from the mam-
malian host and transfers it to the pathogen [67]. Iron is an essential element that is
acquired from the host and utilized in many essential biological processes including

bacterial cell division [68]. Infection initiation requires the growth and colonization
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(a) Apo form (1D9V) and holo form (b) Binding pocket of Fe** ion and inter-
(IMRP) of FBP are aligned, apo form acting residues: H9, E57, N175, N193,
is colored with blue and holo form is Y195, and Y196. Plot was created
colored with orange, both in solid rib- with [75, 76].

bon form. Ligand (Fe*" ion) is shown

as a black circle. The plot was created

with [74].

Figure 4.3: Alignment of apo and holo forms and binding site of FBP

of a pathogen. Thus, FBP is a potential target for broad-spectrum antibacterial
drugs against human pathogens such as Haemophilus influenzae, Neisseria gonor-
rhoeae, and Neisseria meningitidis[69]. Ligand-free (apo form with PDB ID: 1D9V)
and ligand-bound (holo form with PDB ID: IMRP) structures of FBP are available
with a resolution of 1.75 A and 1.6 A respectively, in PDB. The aligned apo and
holo forms are shown in Figure 4.3(a). FBP is a monomeric protein with 309 amino
acids. FBP exhibits a 20° closure between two interacting domains about a central
beta-sheet hinge upon binding of a ferric ion [70]. Presence of iron stabilizes the
protein and closes the inter-domain hinge. The closest residues to Fe*" are HO,
E57, N175, N193, Y195, and Y196 and the ligand binding site can be seen in Fig-
ure 4.3(b). Interested reader may refer to [22], [71], [72], [73] for further information
on the structure and function of FBP, and its iron transport mechanisms.
Displacement magnitudes, |Arg)(w)|, of C, atoms are calculated after the

alignment of the ligand-bound form to the ligand-free form. Alignment is done by
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using only the fixed domain residues 102-225. RMSD between the two structures is
calculated as 0.302 A after alignment.

It was shown in [22] that the constant, time-invariant force perturbations upon
only residue 57 (which mimics ion binding) results in highly correlated responses
with MD simulations. Therefore, we have also selected residue 57 (Glub7) as the
input excitation residue for PAC analysis.

First, experimental displacements for all of the residues are calculated simply by
computing the differences of the coordinates for the experimentally determined apo
and holo forms after alignment. Computationally, the holo (apo) form is obtained
from the other one by calculating the displacements resulting from the constant input
force excitation. In this case, one form (apo) is considered to be the initial unper-
turbed state and the other one (holo) results from the force perturbation. Next,
the correlation between the experimental and computed displacements is used as an
indicator of how well the input force exertion on the input residue can capture the
ligand (un)binding event. Pearson correlations are calculated using Equation 4.22.
The correlation coefficient between the experimental displacements and the calcu-
lated ones (after alignment) for FBP is found to be 0.9731. Table 8.1 summarizes
the force excitation related parameters and the correlation values between the ex-
perimental and the computed displacements for FBP as well as CheY.

In Figure 4.4(a), the red curve shows the experimental displacements and the blue
one is for the computed (calculated). The force direction and magnitude were chosen
to produce the best correlation value, as described in Section 4.4.2. Figure 4.4(b)
shows the distances of all of the residues to the input residue, residue 57.

The correlation value for FBP reported above is in fact better than the ones
reported for LRT and PRS [26, 22]. Minor differences in the results may originate
from the alignment tools, the selection of the fixed and moving domain residues for
alignment, as well as the force magnitude and direction selection protocol. All of
the methods, PRS, LRT and our PDC achieve correlation values around 0.95 with
the respective best force parameters.

We now present PAC analysis results for dynamic force excitations, with the
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(a) Experimental and calculated displace- (b) Residue distances to the input residue
ments between apo and holo forms of FBP. (residue 57)
Constant force excitation on residue 57 suc-

cessfully predicts ligand binding.

Figure 4.4: Displacement magnitudes of FBP residues in A. Red curve shows exper-
imental displacements and blue curve is for the computed displacements at the best
force magnitude and direction at zero frequency. Residues 8, 9, 55, 56, 58, 59, 227,
228, and 229 are within 8 A distance of residue 57.

input residue, force magnitude and direction set to the same ones used for the static
excitation case described above. Figure 4.5(a) shows the displacement magnitudes
as a function of both the residue index and the frequency of excitation. The same
data (3D plot) is presented in Figures 4.5(b) and (c¢) from two other view angles.
For better visualization purposes, the displacement values above 1.5 A for the in-
put residue are clipped. Displacement magnitudes as functions of both the residue
index and frequency reveal complex and rich characteristics. At most of the fre-
quency intervals, almost all of the residues follow a similar trend, but for particular
frequency intervals, some residues behave much differently than the others. The
residues that exhibit larger displacements are 8-10, 55-60, and 226-235. Higher fre-
quency excitations (around frequency values 0.5 - 0.95 THz) result in an increase in
the displacements for these residues. However after some residue-specific frequency

threshold, further increase in the excitation frequency results in smaller magnitude
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movements. The frequency at which each residue exhibits the maximum displace-
ment magnitude is a unique property of that residue. Most of the residues exhibit
their maximum displacements at low frequencies. However, residues 8, 55, 56, 57, 58,
and 227 reach their maximum value in the mid frequency range. These are among
the closest residues to the input residue. However, not all residues that are close to
the input residue display this behavior. Figure 4.5(d) shows the displacements for
a set of selected residues, 8, 9, 44, 48, 56, 58, 193, 196, 230, and 290. Residues with
pronounced bimodal characteristics are 9 and 56. They are relatively closer to the
input residue. However, not all of the residues that are close to the excitation site
display a bimodal characteristics. Bimodal characteristics could be an important
indicator of frequency selectivity and a sort of multi-resonant behavior. The fre-
quencies that correspond to the peak points of the characteristics can be regarded
as the most effective frequencies through which the protein can interact with other
proteins or ligands. One can also surmise that interactions through residues that
exhibit bimodal characteristics have a more complex nature, pointing to a multi-
frequency nature of the interaction. Residue 230 exhibits less displacement than
residue 9 at low frequencies, but in the higher frequency range, the situation is re-
versed. Some of the residues (e.g., 8, 9, 56, 58, 290) show a drastic increase in the
mid-frequency range but others do not (e.g., 193, 196). Figure 4.5(e) shows the

displacements for all of the residues at five selected frequencies in logarithmic scale.

Kinetic energy, F;(w), calculated at each frequency, is proportional to the
square of both the magnitudes of frequency-dependent displacements and the fre-
quency, essentially their product. For a given frequency, larger amplitude motions
have higher kinetic energy. For a given displacement amplitude, higher frequency
motions have higher kinetic energy. The excitations at low frequencies result in
relatively larger amplitude fluctuations, due to the low pass nature of the frequency
response of a protein. However, the high value of displacement magnitude is coun-
teracted by the low frequency value in the product. On the other hand, higher

frequency excitations result in lower amplitude motions, counteracting the high fre-
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quency value in the product. That is, at both low and high frequencies, the kinetic
energy has a relatively small value due to the opposing terms (displacement and
frequency) in the product. As expected, Figure 4.6(a) shows that the residues have
higher kinetic energy for mid-range frequency excitations. It is of course expected
that the input residue has the maximum energy. However, some of the non-input
residues exhibit more energy variation than the others. The residues that show dras-
tic energy variations can be considered as the critical ones for energy transmission
within the protein. It is worth pointing out that the critical residues attain their
maximum energy values at distinct frequencies. Therefore, the frequency of the
force excitation is a determining factor on the energy distribution of the residues.

Figure 4.6(a) shows the logarithmic scale energy plots for these critical residues. A

log (Energy)

Correlation between
energy and proximity
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(a) Energy of critical residues (b) Correlation between energy and prox-
imity to the input residue as a function of

frequency

Figure 4.6: Energy analysis of FBP

residue is regarded as critical if the maximum energy value of that residue is greater
than or equal to 3% of the maximum energy value that any residue attains over the
whole frequency range in the protein. This is typically the maximum energy of the
input residue, however, there may be cases where a residue other than the input
residue may attain the maximum energy. With this criterion, the critical residues

of FBP are 6, 7, 8, 10, 32, 54, 55, 56, 57, 58, 59 and 228. It is expected that some
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of these critical residues are the closest ones to the input residue, since that is the
entry point for energy into system. However, what is worth pointing out is that
some of the residues nearest to the input are not among the critical, and some of the
distant residues are critical instead. The distant critical residues may be involved
in allosteric communication.

Let r(;) denote the coordinates of the 4% residue in the initial form, i.e., the holo
form after alignment. Then, with i*" residue as the input, the proximity of the other
residues to the input site are calculated as the inverse of the distance between the
it" and the j** residue.

1 ; Ll
€j=—""-7=1...N. j#1i. (4.23)
) = 7))
We can examine how energy relates to how proximate the residue is to the force

application site with a Pearson correlation calculated as follows

> (e~ ) (Ey(e) — )
corr(w) = N#Z = with
> (e —€)2y | L (Ej(w) — BW))? (4.24)
J#1 J#i
=Y 6 |/ (N-1),

i
where €; is the average of the proximity and m is the average energy over the
residues. Figure 4.6(b) shows the correlation between proximity to the input residue
(see Figure 4.4(b)) and energy as a function of the excitation frequency. In certain
frequency intervals (0.15-0.25, 0.3-1, 1.1-1.6 THz), the energy has a higher cor-
relation with proximity, whereas for low and high frequencies they are relatively
uncorrelated. It is also interesting that there exist distinct frequency values where
the correlation exhibits peaks. That is, the correlation of proximity to the input
site and energy distribution does not follow a monotonic trend with frequency. The
uncorrelated frequency intervals can be considered as an indication of allosteric be-
havior. Allosteric behavior may not be a statically determined property of a protein.

Instead, the dynamic, time-varying characteristics of the excitation may play an im-

portant role in allostery.
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Major-axis length, |r™%° (w)|, reveals the extent of the range of the motion
of the residues, as a function of excitation frequency. In Figure 4.7, the major-
axis length is shown both as a function of residue index and frequency, and by
averaging over frequency. Based on the frequency averaged results, residues 7, 8,
54-59, 228, and 229 move more than the others. Those that exhibit the least amount

of movement are the region between 130-190, and residues 307-308.

k1] 50 0 1] 150 180 210 140 10 300

Frequency (THz) Residue index
(a) [rmajer (b) Frequency-averaged |r™%°7| .. Values

above 0.35 A are not shown.

Figure 4.7: Major-axis length |r™%°"| of FBP.

Angle between the major-azis and applied force direction, 0% ;(w),
classifies the residues that move together in the same direction with the force, in
the opposite direction, or in an orthogonal manner. #™%°";(w) can help detect the
hinge points in the protein.

Figure 4.8 shows that most of the residues tend to move in an orthogonal manner
to the force for larger frequencies. Frequency averaged 0™%°" values are shown in
Figure 4.8(b). On average, residues 11, 33, 82, 140, 289, and 293 move orthogonally
to the force. Residues 42, 45, 52, 54, 55, 56, 57, 232, 237, and 303 are aligned with
the excitation force direction.

Isotropicity, ;(w). Residues with &;(w) values around 0 are anisotropic, whereas
the ones with values near 1 are isotropic. Motion of the anisotropic residues indi-

cates directional selectivity, such as opening/closing. Therefore, the anisotropicity
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metric may be useful in the directional analysis of protein motion. In general, the
isotropicity of a residue varies greatly as a function of frequency, although some of

the residues may exhibit similar trends within all (some) of the frequency range.
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Figure 4.9: Isotropicity & of FBP.

Figure 4.9(a) shows isotropicity as a function of frequency. It is highly frequency
dependent for FBP. Over a certain frequency range, most of the residues become
anisotropic. Therefore, we can claim that excitations with higher frequency force the

protein motion to be more directionally selective. Residues 57, 67, 68, 73, 95, 111,
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113, 115, 127, 163, 166, 167, 186, 210, and 302 have isotropicity values less than 0.03,
at a certain frequency, while for residues 21, 23, 98, 124, 172, 179, 200, 202, 218,
219, 245, 254, 263, 281, and 284 it becomes more than 0.8. Figure 4.9(b) shows the
frequency-averaged values of isotropicity and provides an overall impression about
the residue on being (an)isotropic. Residues 40, 55, 57, 212, 272, and 302 are the
most anisotropic ones on the average, and 4, 23, 48, 146, 190, 217, 218, 245, 263,
and 290 are the most isotropic.

Angle between the plane normal and force, "™ (w). Figure 4.10 shows
that, as the frequency increases, the plane in which most of the residue trajectories
reside tend to be aligned with the force direction. There are exceptions to this,
some residues move orthogonally to the force. These residues may be involved in
directional motions which are functionally crucial within the protein. Frequency-
averaged 07" plot in Figure 4.10(b) shows also that most of the residues are
aligned with force, e.g., 5, 17, 18, 20, 57, 62, 83, 89, 207, 303, and 306. However, the
motion of the residues 9, 29, 35, 33, 64, 85, 93, 211, 258, 272, 293, and 297 deviate

from the force direction.
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Chapter 5

ALLOSTERY IN PROTEINS AS POINT-TO-POINT
TELECOMMUNICATION IN A NETWORK:
FREQUENCY DECOMPOSED SIGNAL-TO-NOISE
RATIO AND CHANNEL CAPACITY ANALYSIS

5.1 Introduction

The coupled dynamics of biological molecules underlie essential functions in cellular
processes, including protein regulation and cellular signaling. Allostery—the trans-
mission of the effect of ligand binding to another (often) distal site of a protein—
plays an important role in many of these functions and may also be leveraged for
novel drug delivery applications [80, 81]. There has been sustained activity in both
computational and experimental allostery research ever since Monod and Jacob in-
troduced the concept [82]. Nevertheless, a general mechanistic understanding of
allosteric processes still remains elusive [83].

Since its introduction, the definition of allostery has evolved over time. In the
earlier structure-centric models, the ligand induced change in the binding affinity
at a distal site was thought to be accompanied by significant conformational changes.
Two historically dominant models for allosteric mechanisms are the Monod-Wyman—
Changeux (MWC) [84] and the Koshland-Nemethy—Filmer (KNF) models [85].
Both models assume that there is an equilibrium between two pre-existing confor-
mational configurations, corresponding to the active and inactive states, but differ
in the treatment of intermediate states. In the MWC model, all subunits simultane-

ously transition from the inactive to the active configuration upon ligand binding,

The content of this chapter is under revision.
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i.e., they undergo a concerted motion. On the contrary, in the KNF model, the
subunits transition, one at a time, in a sequential manner, resulting in transition
states. Despite their initial success, these structure-based models are now consid-
ered insufficient for explaining the behavior of some allosteric proteins, such as the
PDZ domains. As a result, a variety of extended models have been proposed. For
instance, in the population-shift model, instead of only two states, proteins are as-
sumed to exist in an ensemble of conformations. Subsequent to ligand binding,
the ensemble undergoes a population shift towards a state that is favored by the
ligand [86]. A more recent view called dynamic allostery, that was introduced by
Cooper and Dryden, led to a paradigm shift in the notion of allostery by showing
that, even in the absence of an observable conformational change in the mean struc-
ture, some proteins can exhibit allosteric behavior [87]. This result suggests that all
proteins may be considered as intrinsically allosteric [88]. Cooper and Dryden fur-
ther demonstrated via statistical thermodynamics based analysis that cooperative
interaction free energies could deviate on the order a few kJ/mol upon ligand binding
as a result of the changes in the frequency and amplitude of thermal fluctuations,
with only a subtle change in the mean structure [87]. This result suggests that a
frequency domain analysis of the fluctuations may provide quantitative insight into
the detailed mechanisms of action-at-a-distance phenomena in allostery.

Motivated by the work of Cooper and Dryden, the present study proposes a set of
novel computational methods for investigating allosteric processes by examining the
effect of perturbations, due to both ligand binding and noise, over a range of relevant
frequencies. To facilitate the scanning of perturbation frequencies, we represent the
protein as a mass-spring network, as a graph of nodes connected by edges. The
nodes of the network correspond to the constituting atoms, or coarse-grained beads
(defined as a collection of atoms), and the edges represent the interactions between
them. Noise forces are applied to all nodes, to model the thermal fluctuations
that originate from the protein-solvent interactions. Similarly, the ligand-protein
interaction is represented by external forces, but they only act on the nodes that are

in close contact with the binding site. The response at a (distal) node selected as
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the output is then determined by the noise forces acting on all of the nodes that are
further shaped by the network dynamics, as well as the external forces representing
the ligand. When “signal transmission” from a specific input to multiple output sites
is considered, signal attenuation, and transmission reliability that is also affected by
noise, may vary a great deal over the output sites. Accordingly, the emergence of
allosteric response due to ligand binding may be attributed to the Signal-to-Noise
ratio (SNR) characteristics measured at the output site. We put forward that, in
order for an allosteric response to occur at a certain output site, the associated SNR
value must be relatively high.

Instead of treating ligand binding as a static structural event, we capture the
dynamic nature of the ligand-protein interactions via modeling the external forces
as dynamic oscillatory excitations, as in Chapter 4, and as in related work [89].
While the excitation frequency is swept over a relevant frequency range, the fre-
quency dependence of SNR is fully characterized. Instead of considering only the
low-frequency (global) modes of motion, we argue that a full spectrum analysis is
essential, especially in cases where SNR does not follow a monotonic trend as a func-
tion of frequency. In particular, noticeably higher SNR within a particular frequency
band may be the key in identifying dynamic allosteric response.

Akin to network representation of proteins, frequency decomposed SNR based
analysis further enables the conceptualization of allostery as a point-to-point channel
in a multi-channel, networked, noisy communication medium, pointing to the direct
link between SNR and channel capacity that was established by Shannon. In the
communications and information theory framework, the ligand serves as a trans-
mitter (source of information), while the whole protein acts as the noisy medium of
communication, i.e., the channel, and the region where the response is probed can be
regarded as the receiver (of information). As in all communication systems subject
to noise, there is an upper limit for the error-free (reliable, effective) information
transmission rate from the transmitter to the receiver, defined as the channel ca-
pacity. Based on the Shannon-Hartley theorem, the channel capacity is determined

by the integral of SNR over the relevant frequency band [90]. As an extension to
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frequency decomposed SNR analysis, we propose to utilize channel capacity as an
aggregate (over frequency) and interpretable measure of robustness of the commu-
nication between the ligand binding site and the distal regions of the protein in the
presence of noise.

Previous efforts attempting to decipher allostery have mostly concentrated on the
identification of critical residues, i.e., residues whose activities are most affected by
the binding event. We propose to add another layer to this analysis by anatomizing
each residue’s frequency decomposed SNR profile individually. Furthermore, we
propose two different methods for characterizing the channel capacity, namely, the
per residue scan and the binding pocket excitation schemes. These methods differ in
terms of the number of nodes upon which the external force is applied, as well as
with respect to the excitation characteristics. Each analysis aims to detect distinct
features. In the per residue scan, while the external force is applied to each (input)
node, one at a time, the channel capacity values are calculated at all of the remaining
nodes as candidate outputs. Through this analysis, the input-output residue pairs
that have the potential to exhibit allosteric coupling can be identified without relying
on any prior site-specific binding information. Hence, this analysis can be used to
discover novel targets for ligand binding. In the binding pocket excitation scheme,
the external force is applied specifically to the residues that are known to be located
in the binding pocket of a specific ligand, while the channel capacities for the rest
of the protein residues are calculated. The aim here is to identify the residues that
are most likely to allosterically interact with an already known binding event.

The utility of the proposed methods is presented for a representative single-
domain allosteric protein that is known to display dynamic allostery, namely the
third PDZ domain of the PSD-95 protein. For an overview of previous approaches
applied to PDZ3, the reader is referred to [81]. This study aims to contribute to this
growing area of research through novel frequency-decomposed SNR and channel ca-
pacity based analysis techniques, which provide complementary insight with respect
to previous methods. The proposed techniques have the potential to offer unique

perspectives in probing the responses to external excitations while also taking the
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noise characteristics into account.

The chapter is organized as follows: Section 5.2 describes the theoretical foun-
dations, and Section 5.3 presents the proposed and employed methods. Section 5.4
shows the results for the investigation of allostery in PDZ3. Supplementary material

is provided in Section 8.2.

5.2 Theory

We describe the Signal-to-Noise ratio (SNR) and the channel capacity formulations
in a step-by-step manner in the following subsections. Section 5.2.1 presents the
Langevin formulation for the network dynamics driven by thermal noise and exter-
nal forces. The stochastic properties of the thermal fluctuations are also discussed.
Computing transfer functions at low frequencies involves the inversion of an ill-
conditioned (nearly singular) matrix, arising from the degrees of freedom related
to rigid body rotations and translations. In Section 5.2.2 we address this issue
by reformulating the inversion of a matrix as a constrained least-squares problem
(CLS), where the constraints are obtained from Eckart’s conditions [91, 92]. The
solution of the CLS problem yields the transfer functions needed. Section 5.2.3
shows that mean square fluctuations are independent of the friction coefficients due
to the adapted Langevin formulation. Section 5.2.4 introduces the power spectral
density (PSD) that characterizes both deterministic and stochastic signals in a fre-
quency decomposed manner. Section 5.2.5 presents a general scheme that utilizes
the transfer functions in order to compute the PSDs of the displacements (outputs)
from the PSDs of the applied forces and noise excitations (inputs). We describe
in Section 5.2.6 how the mean square fluctuations of node (atom or coarse-grained
bead) positions can be computed using transfer functions and PSDs when the net-
work is excited only by noise. This is accomplished by simply integrating the PSDs
over all frequencies. We show that the results obtained as such match the ones that
are computed using a well known technique [93] that uses the pseudo-inverse of the
Hessian of the potential energy function. The equivalence of the two techniques not

only validates the constrained transfer function and the PSD approach, but also
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leads to the characterization of the fluctuations in a frequency decomposed manner.
In Section 5.2.7, we define frequency decomposed SNR as the ratio of the displace-
ment PSDs due to the deterministic external forces (modeling ligand binding) to the
ones due to noise alone. Finally, channel capacity is defined and computed based

on frequency decomposed SNRs.

5.2.1 Dynamics: Langevin formulation

Langevin formulation described in Equation 2.8 for the linearized internal forces is
adapted to describe the protein dynamics
2

d d
M@AT—FL&AT—FH(’F)AT =&(t)+ F.(t) (5.1)

where Ar = r—7 is the displacement from the equilibrium position (7) and H is the
Hessian. M = diag(M), M(3), ..., M(y)) is a block diagonal mass matrix. The ef-
fect of frictional forces exerted by the viscous fluid is incorporated into the dynamics
via L, which is taken to be proportional to the velocity of the particles. &€(t) cap-
tures the background noise forces due to random collisions of the Brownian particles.
F.=[F.,(t)",F.,t)",...,F., (t)T]T is the external force vector of size 3N x 1.
Hydrodynamic shielding effects are ignored, and thus L = diag(Ly, L(2),- . ., L))
is a diagonal matrix of the friction coefficients. We consider the special case of
spherical particles, and the frictional force is assumed to act isotropically on the
particles, i.e., Ly = diag(s,7s,7:). The friction coefficient v; for particle i with

radius a; is given by Stoke’s law as
Vi = 6mna; (5.2)

where 7 is the dynamic viscosity, and the hydrodynamic radius is calculated from
the volume of the particle, V;, as a; = (32)1/3,

In the Langevin formulation, the noise and the viscous friction terms are linked
to each other via the fluctuation-dissipation theorem [94, 95]. Particle positions
continually fluctuate due to the interplay between the noise and the friction in the

system, even in the absence of external force excitations, i.e., when F, = 0. £(t)
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in the Langevin equation is a wide sense stationary (WSS) stochastic process. The
first and second moments of the noise force exerted on particle 7, a component of

&(t), is given by [46]

(&(t) =0, (5.3a)
Ry ;5)(7) = (£i(0),&;(7)) = 2k TL;)6;50(7) - (5.3b)

Above, (-) denotes an average with respect to the distribution of the realizations
of £(t). Due to ergodicity, the time and ensemble averages are equal. Rg(7) =
E[£(0)&(7)T] is the auto-correlation matrix of the random force &(t), of size 3N x 3N.
The Dirac delta function 6(7) indicates that there is no correlation between different
time samples of the random forces. The Kronecker delta function d;; indicates that
random forces acting on different particles are uncorrelated. Therefore, Re(7) is a

diagonal matrix. ¢ and j represent particle indices, 7,7 =1,2,..., N.

5.2.2  Constrained transfer function

The Hessian H is a singular matrix with a rank deficiency of six, due to the degrees
of freedom arising from rigid-body rotations and translations of the molecule. There-
fore, the transfer function computation introduced in Section 2.3 is ill-conditioned
at low frequencies, and not possible at zero frequency. To eliminate the six degrees
of freedom, the following set of translational and rotational Eckart’s conditions are

introduced [91, 92

N
Z m; Ar =0 (5.4a)
=1
N
> mi(r®x Ar) =0, (5.4b)
=1

where x indicates a vector product, 7 = r; — Teom is the displacement from the
center of mMass, Teom, and m, is the mass of the i*" particle. Equation 5.4 can be

recast in matrix form as follows
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CAr =0 ,where

0 _r?z r?y
M M e M ’ ’
c- | Mo (2) N | ad Ry = | 0. 0 g0
mlR(l) ng(z) e mNR(N) ’O o ’
Tiy Tia 0

With the incorporation of these constraints, the inversion of a nearly rank-
deficient matrix is replaced with the solution of the following constrained least-

squares problem
minimize |KAr — F|?
Ar (5.6)
subject to CAr=0.

A Lagrange multiplier-based solution of the above problem can be formulated as

follows [96]. A7 is a solution. Lagrangian function with Lagrange multipliers A =

[)\17 )\27 r° 7)\6]T:
LIAT ) =||[KAr — F|? + \\CTAr + - 4+ X\C@ AT . (5.7)

Two optimality conditions are:

oL
(A, X)) =0,i=1,...,3N,
8Ari
or (5.8)
a—AZ(A’f',A) :0722 1,...,6 .
L L L .. T A
The second optimality condition yields: Y (A7, A) = C; A7 = 0. The first set of
conditions gives:
ar 3N 6
A (AT X) =2 Y (KKT)AbGy —2(KTF); + Y XCi=0. (5.9)
v j=1 j=1
In matrix-vector form
2KTK CT| |Af 2KTF

- . (5.10)
C 0 A 0
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With rearrangements,

-1

AP 2KTK CT 2KTF
= . (5.11)
A C 0 0
Z

The transfer function matrix incorporating the Eckart constraints, denoted by T,
can be readily constructed using the first 3N rows and columns of the matrix that is
obtained as the inverse of an augmented matrix shown in the RHS of Equation 5.11,

denoted by Z. Thus,

(5.12)

In the rest of the chapter, whenever appropriate, the singularity or ill-conditioning

problem in matrix inversion is addressed as above.

5.2.3  Lyapunov formulation

This section presents a Lyapunov-equation based approach in order to show that the
mean square fluctuations, i.e., fluctuations under no external force, are independent
of the values of the friction coefficients. The rationale behind this discussion is that
random noise forces and the viscous friction forces have counteracting effects, as
dictated by the Fluctuation-Dissipation theorem [94, 95].

Equation 5.1 can be recast as 6N coupled first order differential equations with

the state space vector v
Ar(t)
A7 (1)

v(t) =

Under no external force, Equation 5.1 can be expressed as an initial value problem,
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with initial conditions v(0), as follows

d 0 I 0
V()= B @+ €
_—M H —-M—L M
h s ’ ¥ (5.13)
v(0) = qu(())
_Afr(O)

Due to the fact that white noise £(¢) can be expressed as the formal time deriva-

tive of a Wiener Process, W, Equation 5.13 is written in differential form as follows
dv = Avdt + BdW . (5.14)

Noise characteristics are as follows:
E[&(t)] =0 (5.15a)
E[£(t) €7 (t +7)] =2k T L(7) , (5.15D)

where E[-] denotes the probabilistic expectation operator. Taking the expectation

of both sides of Equation 5.14, and using the property in Equation 5.15a
Eldv] = AE[v]dt . (5.16)
The zero time-lag correlation matrix is defined as
R,, = Evv’]. (5.17)

From Equations 5.14 and 5.17, and using Ito’s product rule [97] (from stochastic
Ito calculus), the following equation is derived
d(E[vvT]) =E[dv v"T] + E[v dv"] + E[dv dv™]
=AE[vvT)dt + BE[dW vT]| 4+ E[vvT|ATdt + E[v dWT]| BT+ (5.18)
E[dv dv™] .
The second and fourth terms in Equation 5.18 are zero due to the fact that v and

dW are uncorrelated [27], i.e.,

EvdWT] =0
(5.19)
E[dW vT] =0 .
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The additional term in the stochastic calculus product rule in Equation 5.18 can be

expanded as
E[dv dvT] =E[(Avdt + BdW)(vT ATdt + dWT BT)]
=AE[vvT|ATdt* + AR[vdW7T| BT dt+ (5.20)
BE[dWvT|ATdt + BE[dWdWT]|BT .
The first three terms in Equation 5.20 are set to zero due to the following that follow
from rules of stochastic Ito calculus (The second and third terms vanish, also due

to Equation 5.19.)
dt* ~0 dWdt=~0. (5.21)

From the noise properties in Equation 5.15b
E[dWdWT] = 2kgTL dt . (5.22)
Then, Equation 5.18 becomes
dRy, = AR,dt + Ry, ATdt + 2kgTBLB” dt . (5.23)
Zero time-lag covariance matrix Cl,, is defined as
Cyo = E[(v — E[v])(v — E[v])’] = Ry, — E[v] E[vT] . (5.24)
Differential form of C,,:
dCyy(t) = dRy, — E[dv] E[v”] — E[v] E[dvT] — E[dv]E[dvT] . (5.25)
Utilizing Equation 5.16 and expanding dR,,, according to Equation 5.23 yields
dCyy(t) = AC,ydt + Cypy AT dt + 2kg TBLB™ dt . (5.26)

In the limit as time goes to infinity, v(t) approaches to a (wide-sense) stationary
process where E[v] and C,, become independent of time and we obtain Equa-

tion 5.27b, a Lyapunov equation [98].

lim E[v] =0 (5.27a)
t—o00
lim ACy, + Cp AT + 2kgTBLBT =0 . (5.27b)

t—o00
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We note that, due to Equation 5.27a, C,,,, = R, however we stick to the covariance

notation. Using the symmetricity of covariance matrices, C',, is structured in block

form as
c E[ArArT] E[ArArT]
" |E[AFART] E[AFAFT]
- (5.28)
C. — Coo Co1
_Co1T Cu

Inserting A defined in Equation 5.13 and the block form of C,,,, with H = HT,
Equation 5.27b expands as

0 I COO COl . C()o C()l 0 —HM_l n
~-M™*H -M™'L| |Cn,™ Cu Coum Cu| |[I -M™'L
(5.29)
0 0
2kgT =0,
0 M—2L
which can be further manipulated as
COlT Cll +
~M™*HCyp — M~ *LCy,™ -M*HCy, — M~*LCy; (5.30)
- 5.30
C ~CooHM = - Cyy M~1L 0 0
01 00 01 L okyT _ 0.
Ci1 —C()lTHM_l — CllM_lL 0 M™2L
Equation 5.30 leads to the following set of equations
Cor" +Co1 =0 (5.31a)
Cll - COOHM_l - C()lM_lL = O (531]3)
—~ M 'HCyp - M 'LC\," +C1; =0 (5.31c)

—~ M 'HCyy — M 'LCy; —CoyTHM ' —C;yM 'L + 2k TM 2L =0
(5.31d)

Equation 5.31a implies that Co; = —Co17, i.e., Coy is antisymmetric. Then, the
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above set of equations yield

Cll — CO()HM_l — COlM_lL =0 (532&)
- M_IHCOO -+ M_lLC()l —|— Cll = 0 (532b)

—M'HCy; — M 'LCy1 +CotHM ™' —C;1ML + 2kgTM 2L =0 .

(5.32¢)

From Equations 5.32a and 5.32b
Cll = C()()HM_l + COlM_lL (533&)
= M *HCyp - M 'LCy . (5.33b)

Noting the symmetricity of covariance matrices: Cyo = Cool and Cy; = C117T.

Then, inserting Equation 5.33 into Equation 5.32c gives

~M™'HCy + CotHM ™ — M 'L(CooHM ™ + Coyy M~ 'L)

— (M~"HCoo — M~ LCo)M 'L + 2k TM L =0 . .
Multiplying the above by M both from the left and right results in
—HCy M + MCy H — LCyooH — HCyoL + 2kgTL =0 . (5.35)
When Cyo = kT H~1, Equations 5.33a and 5.33b together read
CooM'L+M'LCy =0, (5.36)

implying that Co; = 0. We then observe that Coo = kgTH ~! satisfies Equa-
tion 5.35, based on the fact that the first two terms are equal to zero with this form
of solution for Cyg, as shown above. We also note that M, M !, L are all diagonal
matrices with positive-valued entries. This shows that the mean square displace-
ments are independent of the chosen L. We note also that H is singular, thereby
its inverse is calculated either as a pseudo-inverse, or alternatively, by adapting
the constraint-based solution that is introduced in Section 5.2.2. The frequency-
dependent terms are zero in the transfer function (7") definition at zero frequency

in Equation 2.11, i.e., T'(0) = H~'. To address the singularity problem, rotational
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and translational constraints are introduced into the transfer function, leading to
Equation 5.12. Then, the constrained transfer function at zero frequency, T.(0),

denoted as H.™', can be calculated as

H.'=T.(0)=2-Z(0)- HT with (5.37a)
-1
Z(0)3N><3N A QHTH CT
= : (5.37b)
C 0

where C' corresponds to the constraints matrix, defined in Equation 5.5.

As an alternative approach in order to demonstrate that the mean square dis-
placements are independent of the friction values, Figure 5.1 shows the numerical
solution of Equation 5.27b for Cgyg. Due to the previously mentioned invertibility
issues of H, Lyapunov equation does not have a unique solution with matrix A
arising from a rank-deficient H. In order to overcome this problem in the numerical
solution, H. is utilized instead. Figure 5.1 is drawn for various L values. The same
figure is obtained in all trials. Therefore, it can be concluded that due to the link
between thermal noise and viscous friction, residue fluctuations are independent of

the friction values.

200 T T

== = Lyapunov

= = ANM I
150 i
) I
= | I
£ 100 hoT
i e
A n ’ Iy |,*
A h I FRURY]
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Figure 5.1: Numerical Solution of Lyapunov equation
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5.2.4  Power spectral density (PSD)

The power spectral density describes the content of a signal in a frequency decom-
posed manner. It can be computed either directly from the squared amplitudes of
the frequency domain representation (for deterministic signals), as in Equation 5.38a
below, or as the Fourier transform of the auto-correlation function (for stochastic
signals), as in Equation 5.38b, due to the Wiener-Khinchin theorem [99]. Sx is the
PSD of a signal X

Sx(f) = [FIX®)I" (5.38a)
= F[Rx(7)], (5.38b)
where F denotes the Fourier transform, defined with [ d7X(7)exp (—j2n fT)

for the signal X. Equation 5.38a is used for external force excitations that are

deterministic, Equation 5.38b is used for noise sources and stochastic fluctuations.

5.2.4.1 PSD of noise sources

The PSD of the noise force acting on the i'* particle can be determined by inserting

the autocorrelation Ré(ij)(T) defined in Equation 5.3b into Equation 5.38b

Sé(i) = 2kgTL) . (5.39)
The above PSD is constant over the frequency spectrum, corresponding to white
noise.

5.2.4.2 PSD of external force excitations

A deterministic external force that acts on certain nodes mimicks the ligand bind-
ing event. Although the proposed method does not impose any restriction on the
form of the external force F,, we consider it as a dynamic, sinusoidal perturbation
whose frequency is swept over a certain range, allowing us to quantify the effect of

perturbation frequency. The external force applied to particle j is in the form

F,y = Fjcos(2rf.t) ,
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where Fj is a 3 x 1 vector that contains the force components along the coordinate
axes applied on the j** particle, and f, is the frequency.

The PSD of this sinusoidal force at the input site is given by

F2/4 0 0
Sry(H)=1| 0 FE2/4 0 |o(f—f). (5.40)
0 0 F;j2/4

5.2.5  From excitation PSDs to displacement PSDs

For multi-input multi-output LTI systems, the cross spectral density matrix of the
outputs, Sy, can be calculated as follows by using the cross spectral density matrix

of the inputs, Sx, and the transfer function T' (please see [100] for the derivation)

Sy (f) =T(f) Sx(/)T(f)" (5.41)

where -* denotes complex conjugate. When the input is the force excitation (either
due to noise or external force), and the output is the fluctuations/displacements of
node positions, the above relationship can be written using the constrained transfer

function defined in Equation 5.12 as

Sar(f) = Te(f) Sr(f) Te(f)" . (5.42)

We separately compute the PSDs of the output due to noise and deterministic
excitations by first setting F = € and then F = F,. We note that Sk, is a
full matrix. The diagonal entries represent the spectral densities, whereas the off-
diagonal entries are the cross-spectral densities. We focus on the diagonal entries in

this study. Hence, we introduce the following notation
D(Sgr) = (D(Sg'r(l))v D(Sgr(Q))a e 7D(S£'r(N)))
for the 3N x 1 vector formed from the diagonal elements of SZ%,..
5.2.6 Characterization of equilibrium fluctuations based on the PSDs of displace-
ments due to noise

The partition function of the system, whose potential energy profile is given in Equa-

tion 2.5, can be calculated over all possible displacements with
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Z = [dArexp (—SArTH(7)Ar), where § = 1/kgT, kg is the Boltzmann’s con-
stant, and T is the absolute temperature. The correlations of the fluctuations be-

tween sites ¢ and j can be obtained from this partition function as [101]
1
(Ar; - Arj) = 7 /dAr(A'ri - Ar;)exp(—BATT HAT) | (5.43)
which can be simplified to
(Ar; - Arg) = tr(H ) /8 . (5.44)
Thus, mean square fluctuations for particle 7 is
(Ari2) = tr(H;3)/8 | (5.45)

where H;;) corresponds to the 3 x 3 submatrix for particles ¢ and j, and tr denotes
the trace. Since the Hessian is singular as discussed before, its pseudo-inverse (H )
is computed through the use of the non-zero eigenvalues, u;, and the corresponding

eigenvectors, uy, as follows
BN-6 4
HT = Z —ugpup . (5.46)
iy Mk
The mean square fluctuations computed as such are proportional to the B factors
determined from X-ray crystallography, also known as temperature factors [93],

denoted by B:
B o (Ar?) . (5.47)

The total power in a WSS stochastic signal X can be expressed in terms of the
variance of the signal, i.e., zero time-lagged auto-correlation, which is also given by

the integral of its PSD over all frequencies, as below

Px = (X(tf) = Rx(0) = [ a7 Sx(f) (5.49)
In the absence of external force excitations, the mean square fluctuation of node i
can be thus computed as the sum of integrals of the displacement PSDs along the
coordinate axes as

INSEED N IR TICN TR (5.49)

k=x,y,z
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where the factor 2 is due to the symmetry of the two-sided PSD for negative and pos-
itive frequencies. This PSD-based technique thereby offers a previously overlooked
route to computing mean square fluctuations. Previously published studies mostly
focused on the frequency distribution of the B factors at a set of discrete frequency
points, known as the normal mode frequencies. The PSD-based approach allows the
frequency decomposed analysis of B factors over any continuous frequency range of

interest.

5.2.7 Signal-to-Noise ratio (SNR) and channel capacity

We define SNR as the ratio of the PSD of the displacements measured at the output

due to external force excitations alone and the displacements due to only noise:

Sai(f)
Sir(f)

According to the integral-form of the Shannon-Hartley theorem [90], the channel

SNR(f) =

(5.50)

capacity that can be attained over a noisy communication channel is defined as

C :/ dflog, (1 + SNR(f)) , (5.51)
BW

where the integral is computed over a frequency band BW of interest. We choose
[0, o) as the frequency interval. Then, the channel capacity between the input
node j and output node ¢ can be calculated as the sum of the channel capacities

along the coordinates axes

D(SAeTSJ(z) k)
-y / df log, 1+D 5 ). (5.52)

k=2,y,2 ( Ar (i), k)
where F,; indicates that the deterministic force excitation is applied to node j only
but results in dynamic displacements at all the others. In computing S AET(’()Z) x> the
strength of the input excitation is kept constant while its frequency is swept. The
strength of the resulting response will vary not only as a function of the output node
but also over the frequency range, as determined by the internal network dynamics.

Thus, while information (signal) transmission between two particular nodes may

be inefficient at a certain frequency, it may be enhanced at another. On the other
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hand, random noise excites all nodes simultaneously, at all frequencies with equal
strength, and it is shaped by the network dynamics resulting in fluctuations at all
nodes with a colored frequency composition as opposed to the white noise excitation.
The extent of fluctuations due to noise is also a function of the output node. We
emphasize here the distinction between signal transmission and noise propagation
through the network. While the signal permeates throughout the network from a
single entry point, noise enters from everywhere. Thus, the frequency decomposed
profiles of node displacements due to either the signal or the noise alone may be
quite different, resulting in a colored frequency composition for SNR with possibly

non-monotonic behavior.

5.3 Methods

Figure 5.2 presents a pictorial overview of the methods described in Section 5.2. The
protein is represented as a network, and the protein-solution interactions are modeled
as random noise forces that act on every node. In contrast, the effect of the ligand
is captured by a deterministic, oscillatory external force, which is applied to a single
node (or simultaneously to a set of nodes), denoted as the input node(s). The goal is
to examine how the effect of the external force excitation is transmitted to the output
node in the presence of all of the noise sources. The random noise is white, i.e., has a
constant PSD over the frequency interval of interest. The magnitude of the external
force is held constant as a function of frequency. The PSDs measured at the output
node are calculated using the input PSDs and the frequency-dependent transfer
functions, quantifying the displacements in response to both deterministic and noise
excitations. We underline that although noise forces are applied to all of the nodes,
noise PSD only for the input node, upon which the external force is applied, is
shown in the pictorial overview for brevity. The methods proposed in this thesis
enable a frequency decomposed analysis, by sweeping the perturbation frequency
in a frequency range of interest. The gray bars in the PSDs represent frequency
sweeping, while the highlighted bars correspond to the perturbation frequency that
is currently under investigation. The PSD plots at the output show the frequency-
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dependent characteristics. SNR is calculated using the output PSDs, by simply
taking the ratio of the PSDs due to deterministic and noise excitations at each
frequency. The channel capacity is computed via an integral of the SNR over a
frequency band. In Figure 5.2, the color green represents noise and red is used for
the external force. Yellow and purple are used to distinguish the input and output

nodes, respectively.

PSD of noise

SNR

frequency

PSD of ext. force  PSD of noise

PSD of ext. force

frequency frequency

Figure 5.2: A simplified pictorial overview of the work flow. The signal permeates
throughout the network from a single entry point, the input, and converges at the
output. Noise enters the network from everywhere and every noise component has
an impact at the output. Although the noise forces act on every node, only some of
them are shown in the figure to reduce clutter. The network was drawn using the

NAPS web-server provided in [1].
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Figure 5.3: Schematic of the work flow.

An algorithmic summary of the proposed methods is presented in Figure 5.3.
The top flow line schematically shows the steps for obtaining the B factors from
the Hessian. We use two alternate methods for Hessian construction, described in
Sections 3.3 and 3.2.1. One approach relies on molecular dynamics (MD) (HMP)
while the other is based on ENMs (HA). In Figure 5.3, the two parallel flow
lines below are for the operations involved in obtaining the output displacement
PSDs from the input PSDs, including the computation of the constrained transfer
functions, both for deterministic excitations and noise. As an alternative to direct
inversion of the Hessian, the PSDs of the displacements due to noise not only lead to
the B factors, but also enable the frequency decomposed analysis of the equilibrium
fluctuations. SNRs are computed as the ratio of the displacement PSDs due to
external force excitations and to those due to noise, subsequently integrated to

obtain the channel capacities.
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5.3.1 Molecular dynamics simulation details

We considered two distinct systems for simulations, the PDZ3 domain with
(PDBID:1be9) and without (PDBID:1bfe) the associated ligand. Starting from the
PDB structures, missing atoms were added to the structure using the PyMOL mu-
tagenesis tool [2]. Each structure was then solvated with sufficient number of water
molecules to “fill” a cubic box with sides of length 6.6 nm (8804 and 8845 wa-
ter molecules for the system with and without the ligand, respectively), using the
gmz solvate command in the GROMACS package [102]. Additionally, the minimum
number of ions were added to neutralize the system (2 Na ions for the system with
the ligand and 1 Na ion for the system without the ligand). The Amber99SB-ILDN
force field [103, 104] was used to model the protein interactions, while the TIP3P
model [105] was used to model the water interactions.

All simulations were performed with the Gromacs 5.0.8 simulation suite [102]
with a 2 fs integration time step, while using the LINCS [106] algorithm to rigidly
constrain all bonds that involve H atoms. All simulations employed the Gromacs
leap-frog integrator [107] and periodic boundary conditions [108]. Electrostatic inter-
actions were treated with the particle mesh Ewald method [109], using the default
Gromacs parameters. Short-ranged van der Waals interactions and also the real
space contribution to the electrostatic interactions were truncated at 1.2 nm in all
simulations. After energy minimization, each system was annealed from 0 to 300 K
over a 500 ps time frame, followed by a 5 ns equilibration simulation in the NV'T en-
semble using the Berendsen thermostat [110] with a temperature coupling constant
of 0.5. Subsequently, an NPT equilibration was performed using the Berendsen
thermostat and barostat with coupling coefficients of 0.1 for both and a compress-
ibility of 4.5x107® bar~! (corresponding to the compressibility of water at 1 atm
and 300 K). The average volume from this simulation (corresponding to box side
lengths of 6.56797 nm and 6.56372 nm for the systems with and without the ligand,
respectively) was used to select an initial structure for the production simulation.
Production simulations were performed for 100 ns in the NPT ensemble, using the

velocity rescaling thermostat [111] with a temperature coupling coefficient of 0.1 and
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the Parrinello-Rahmen barostat with a pressure coupling coefficient of 2.0. Config-
urations, velocities, and forces were saved every 2 ps for subsequent analysis. We
characterized the local impact of the ligand by calculating the average force that all
atoms of the ligand exert on each of the C, atoms of the binding pocket residues

(residues [320 — 328] and [371 — 380]).

5.3.2  External force excitations

Figure 5.4 presents a schematic view of the two different techniques we used in
order to probe allosteric behavior, namely, per residue scan and binding pocket (BP)
excitation. An external force is applied to only one residue in the first case, whereas
multiple residues are perturbed simultaneously in the latter. With per residue scan,
the goal is to identify the residue pairs that are likely to interact allosterically. Each
residue is separately perturbed with a sinusoidal force whose frequency is swept
from 0 to the maximum of the normal mode frequencies. The force in this case has
a unit magnitude but numerous directions are sampled on a spherical grid. The
channel capacities from the input to the rest of the residues are computed for each
force direction, and a distinct direction for every output residue that maximizes its
capacity is identified. BP excitation models ligand binding to the protein in a more
realistic manner by simultaneously exciting multiple residues that are previously
known to be in a certain binding pocket. The responses of all of the remaining
residues are monitored. Instead of sampling the force directions on a grid, the
relative amplitudes and the directions of the external forces that act on the binding
pocket residues are directly obtained from MD simulations as described in detail
in Section 5.3.1, while the sinusoidal form and the frequency range are as in per
residue scan. The channel capacities calculated as such are normalized (in a min-
max sense such that the range of the channel capacity values from the minimum to
the maximum are linearly transformed into the range 0 to 1) in order to attain a
distribution of capacities within a protein. In the normalization process, the values
above a predefined threshold are set to 1, while the remaining values are scaled to

be in the interval [0, 1].
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per residue scan BP excitation

B

Figure 5.4: Schematic view of the two different techniques used in order to probe

allosteric behavior.

5.5.3 Parameters

Residues are represented by their C, atoms. A 200-point Gauss-Legendre quadra-
ture scheme from NumPy package is used to numerically calculate the integrals [112,
113]. n, which is utilized in the friction coefficient calculation in Equation 5.2 and
subsequently in Equation 5.1, is taken as the dynamic viscosity of water at 310
K, that is equal to 6.7807 - 10™% Pa - s. Masses and volumes of the residues are
retrieved from [114] and [115], respectively, also listed in Table 8.2. However, as
shown in Section 5.2.3, the mean square fluctuations are independent of the friction
coefficient values due to the link between noise PSDs and friction in the formulation
in Equation 5.1. We utilized ANMs with a cut-off distance of 15 A and the same
spring constant for all interactions. In per residue scan, the force directions are
sampled from a 25 point equally-spaced spherical grid. The values above 90% of the
maximum channel capacity value are normalized to a value of 1. In the BP excita-
tion, the force exerted by the ligand on the binding pocket residues are determined

from MD simulations of the holo form as described in Section 5.3.1. The rotation
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matrix calculated for the superposition of the apo and holo forms is then applied
to this external force vector so that it can be used as a force excitation for the apo

form.

5.4 Results

We demonstrate the utility of the proposed methods on a well-studied PDZ3 protein
(the third PDZ domain of PSD-95) that is known to display dynamic allostery, i.e.,
allostery without major structural changes. PDZ domains are one of the most abun-
dant and evolutionarily conserved protein-protein interaction modules that take part
in numerous cellular and biological functions, including dimerization and recognition
of specific sequences of C terminus tails of other proteins [12]. The conserved struc-
tures in PDZ domains are six beta strands: $1 — 86, and two alpha helices: al and
2. Some of the PDZ domain proteins have additional structures, which have been
proposed to affect ligand binding. PDZ3 has a3, 87, and 8 extensions [116]. It was
shown that the removal of the a3 domain results in a 21 times decrease in the bind-
ing affinity of PDZ3 [117], without a significant conformational change. This points
to the allosteric nature of the PDZ3 domains, as well as to the entropic (as opposed
to structural) nature of this allosteric behavior. The aligned structures of the 110-
residue-long apo and holo forms of PDZ3 (PDB ID’s 1bfe and 1be9, respectively)
are shown in Figure 5.5. The ligand, which is represented in ball-and-stick form,
is a b-residue-long C-terminal segment of the Cysteine-rich PDZ-binding protein
CRIPT. The binding pocket lies between the a2 — 52 regions, and is comprised of
residues [320 —328] and [371 — 380]. Figure 5.6 presents the sequence and secondary
structure assignment information.

First, the analysis techniques proposed in this chapter are validated in Sec-
tion 5.4.1 by examining the displacements due to noise forces alone. This verification
is based on the equivalence of the B factor values obtained via the proposed work
flow and previously available computational techniques. Since the proposed tech-
niques emphasize frequency domain representations, the frequency distribution of

equilibrium fluctuations is obtained as an intermediate step. Then, in Section 5.4.2,
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Figure 5.5: The aligned structures of the apo and holo forms of the PDZ3 protein.
Wheat (teal) color is for the holo (apo) form. The ligand is represented in ball-and-
stick format. PyMOL was used for the visualization [2].
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Figure 5.6: The secondary structure assignments from DSSP (definition of secondary
structure of proteins) [3] of the holo form of the PDZ3 protein (PDBID: 1be9). Image
is from the RCSB PDB (www.rcsb.org) [4].
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we present frequency-decomposed SNR and channel capacity based analyses in the
presence of external perturbations using both the per residue scan and BP excitation

scenarios.

5.4.1  Without external force: equilibrium fluctuations

Mean square fluctuations (MSFs), which are proportional to experimentally measur-
able B factors, can be directly calculated from the pseudo-inverse of the Hessian of
the potential energy function (please refer to Equations 5.45 and 5.47). We proposed
an alternative frequency domain method to compute these equilibrium fluctuations
by integrating the power spectral densities over the whole frequency range. The
proposed scheme is based on the (linearized) Langevin formalism (please see Equa-
tion 5.1), which uses H. Hence, the MSFs obtained from the pseudo-inverse of H
and the MSFs from the proposed method should correspond to each other. Here,
we consider H obtained both from MD (HMP) and also from ANM (HAN) (see
Section 3 for details). Figure 5.7 presents the B factors obtained for the apo form
(PDBID:1bfe): from (i) the direct pseudo-inverse approach, (ii) the proposed PSD-
based scheme, and (iii) experimentally measured values. The orange and green lines

present B factors obtained from HMP and HANM

, respectively. The blue and red
lines represent B factors calculated from the integral of the PSDs both with H™MP
and HAYM | respectively (please refer Section 5.2.6 for the details of the method).
The perfect match between the proposed frequency domain scheme and the pseudo-
inverse- H technique confirms the validity of the proposed work flow that utilizes the
transfer functions with constraints introduced to overcome the singularity problem,
and PSD integrations. Moreover, the agreement of the B factors between ANM and
MD (except for the residues [379—381]) based Hessians justifies the use of simplified
models for fluctuation analyses around an equilibrium structure. The black line in
Figure 5.7 corresponds to the experimental B factors, which are reported in the as-
sociated PDB file. The secondary structure information is displayed at the bottom.

The frequency decomposition of the MSFs are shown in Figure 5.8 for HMP and

HAY (Please see Figure 8.18 for the side views). In both cases, the low frequencies
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Figure 5.7: B factor values that are calculated with various methods for the apo
form (PDBID:1bfe). The blue (red) lines show the values calculated via power
spectral density integrations using HMP (HANM). The orange (green) line is calcu-
lated directly from the pseudo-inverse of HMP (HANM). The black line shows the

experimental values. The values are scaled to correspond to the experimental ones.

contribute significantly more to the total MSFs. Also, there is an apparent trend:
PSDs decrease as frequency increases, yet with varying rates for different residues.
The PSDs obtained from HMP display a more rapid decrease starting from low
frequencies, whereas for HA*"M  this decrease starts at higher frequency values. Al-
though the difference in total MSFs for the two Hessians is relatively small, as seen
in Figure 5.7, the spectral decompositions exhibit substantial differences. Hence,
the equilibrium analysis suggests that the results from simplified models should be

interpreted with caution.

5.4.2 External force excitations
5.4.2.1 Per residue scan

Figure 5.9 presents the capacity values obtained with per residue scan for HMP.
The normalized channel capacity values presented in panel (a) suggests a coupling
between the first several residues closest to the C terminal and (5; & fs) domains,

as well as between (3 and S, 2 and (05 & f4), f5 and fs, and 87 and s domain
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Figure 5.8: PSD profile of the equilibrium fluctuation with (a) HMP and (b) HANM,

pairs. Due to the fact that high channel capacity is expected between residue pairs
that are close to each other in space, the capacity values are distance-weighted to
detect the long-range interactions more clearly, as shown in Figure 5.9(b). The pair-
wise distance values that are used in this weighting procedure are calculated at the
equilibrium point (please see Figure 8.16 for the pairwise distances). Despite being
distant, the residue pairs that are found to be linked are listed in Table 5.1. The
motions of SER 320 - SER 408, SER 409, and ASN 415 appear to be coupled. The
results with HANM for per residue scan (as well as for BP excitation) are presented

in Figure 8.17.

5.4.2.2  Binding pocket (BP) excitation

Figure 5.10 presents the channel capacity values obtained with BP ezcitation for
HMP . Panel (a) presents the distance-weighted and normalized channel capacity
values, while panel (b) presents a complementary visualization of the 3D protein
structure without applying the weighting (The capacity values utilized in panel (b)
are shown in Figure 8.19 in the same format of panel (a)). Please note that the
residues that are located in the BP, which are represented by gray boxes in the left

panel, are excluded from the normalization procedure since the external forces are
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Input - Output

ASP 306 - SER 320, THR 321

SER 320 - ASP 332, ASN 403, THR 414, ASN 415
ASN 407 - SER 320, THR 321

SER 408 - SER 320, THR 321, ASN 381

SER 409 - SER 320

ASN 415 - SER 320, THR 321

Table 5.1: Residue pairs that are located far apart in space, yet have high channel

capacity values that are identified by per residue scan, with HMP.

Output residue index

Input residue index
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Figure 5.9: Per residue scan with HMP. (a) Normalized, (b) Distance-weighted and

normalized channel capacity values.
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directly applied to them. According to the top panel, ASP 306, HIS 317, ALA 343,
GLY 344, GLY 383, GLN 384, THR 385, ASN 403, ASN 407, SER 408, SER 409,
THR 414, and ASN 415 are identified to have the potential to display the most
significant allosteric response to the ligand-binding event.

Figure 5.11 presents the residues that have been reported as critical using vari-
ous computational and experimental techniques, which are also listed in Table 8.3.
The normalized channel capacity values (without distance-weighting) obtained from
BP ezxcitation are displayed as color coded at the bottom row. As in the previous
studies, the BP residues are excluded from the analysis. As can be seen from the
figure, there is little agreement among the methods that aim to identify the critical
residues involved in the PDZ3 protein. Nonetheless, there are several residues that
most of the methods agree on, such as GLY 329, ILE 338, ILE 341, ALA 347, LEU
353, VAL 362, and VAL 386. These residues (with the exception of LEU 353) do
have a high capacity value based on the results obtained with our channel capacity
analysis method. In addition to those listed here, the rest of the residues that have
high capacity values were also reported to be critical by at least several previous
techniques. Even though these findings point to the success of the proposed method,
it is not possible to assess the degree of accuracy with respect to a golden reference
due to the lack of consistency among previous methods. It is unfortunate that there
is no consensus in the literature on the residues that play a significant role in the
allosteric behavior of this protein. However, reaching a consensus seems to be ex-
ceptionally difficult when the tremendous challenges involved in both experimental
and computational techniques aimed at deciphering allostery are considered. Nev-
ertheless, we believe that the proposed channel capacity technique provides a fresh
approach for deciphering the mechanisms of allostery, and could help detect hidden
allosteric interactions.

In order to investigate role of frequency in determining the allosteric responses,
we present the frequency dependent SNR profiles in Figure 5.12(a). The side views
of the figure are in Figure 8.20(a). The frequency dependence of the SNRs for the

individual residues are also shown in Figure 8.21. Although the majority of the
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Figure 5.10: BP excitation with HMP (b) Distance-weighted and normalized chan-

nel capacity values. The gray area corresponds to the binding pocket residues upon

which the force is applied. (b) Apo protein structure (PDBID:1bfe) is colored ac-

cording to the capacity values (without distance weighting): red indicates the highest

capacities and blue is for the lowest.
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Figure 5.11: Capacity values from BP excitation and the critical residues identified
by various methods. The gray areas indicate the residues on which the external force
is applied in the capacity analysis. Capacity™P refers to the results obtained with
HMP_ Abbreviations: prs - perturbation response scanning [5], exp - experimen-
tal [6], sca-1 - statistical coupling analysis [7], sca-2 - statistical coupling analysis [8],
atd - anisotropic thermal diffusion [9], spm - structural perturbation method [10],
rip - rotamerically induced perturbation [11], md - molecular dynamics [12], dcs -
deep coupling scan [13], tdmc - thermodynamic double mutant cycle [14], cmca -
conservation mutation correlation analysis [15], rrs - rigid-residue scan [16], mcpath

- Monte Carlo path [17].
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residues display monotonic decrease in SNR with increasing frequency, it is worth
noting that some of the residues exhibit a peak, a sort of resonance, around a certain
frequency value, that is specific to the residue. The residues with distinct frequency
response are presented in Figure 5.12(b). The responses of the residues differ in
terms of the magnitude of SNR, the slope of the decay with frequency, and the
existence and frequency location of a resonance at higher frequencies. For instance,
GLY 329, which is one of the few consistently identified critical allosteric residues
in Figure 5.11 has a relatively high response until the high end of the spectra. The
resonance around 2 THz is also worth noting for GLY 329. The resonance at about
the same frequency is significantly more pronounced for GLN 384. The other listed
residues display resonances with smaller magnitudes at high frequencies. With these
results, we underline that the frequency decomposed SNR analysis provides a more
detailed picture of allostery, paving the way for gaining a better understanding of

allosteric mechanisms.

(a) (b)
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Figure 5.12: (a) Signal-to-Noise ratio (SNR) with BP excitation using HMP | (b)

Selected residues with characteristic frequency response.
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Chapter 6

INTERPRETABLE EMBEDDINGS FROM MOLECULAR
SIMULATIONS USING GAUSSIAN MIXTURE
VARIATIONAL AUTOENCODERS

6.1 Introduction

Particle-based computer simulations can provide unprecedented mechanistic insight
into the driving forces of complex molecular systems, in contexts ranging from bio-
chemistry to materials science [119, 18, 120]. These simulations rely on numerical
integration of the relevant equations of motion as a means to navigate the sys-
tem’s conformational space. Due to the high dimensionality of this space, which
prevents the exhaustive enumeration of all microstates, exploration is typically
achieved through importance sampling [108]. Conformational sampling leads to
an estimate of the potential energy landscape (PEL), which follows a Boltzmann
distribution at equilibrium. Unfortunately, characterization of the PEL suffers from
the so-called curse of dimensionality [121]—organization of the data in the high-
dimensional space is challenging due to low population density. This problem is
often remedied by projecting the PEL onto a lower-dimensional manifold, i.e., by
performing a dimensionality reduction. By averaging over presumably unimportant
degrees of freedom, the resulting low-dimensional surface represents a free-energy
landscape (FEL). The ideal FEL distinguishes between microstates that are sepa-
rated by large barriers on the PEL, yielding a partitioning of configuration space
into collections of microstates, i.e., metastable basins. If all the largest barriers are
accounted for, intra-basin diffusion will occur much faster than inter-barrier cross-

ing events, allowing an accurate, albeit coarse-grained, description of both the static

The content of this chapter has previously appeared in [118].
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and dynamical properties of the system. There is a long history of methods for find-
ing an optimal low-dimensional representation from a given set of data, employing
both linear (e.g., principal component analysis [122], time-lagged independent com-
ponent analysis [123]) and nonlinear (e.g., Isomap [124], diffusion map [125], and
Sketchmap [126]) transformations.

In the last couple of years, there has been a growing interest in applying (deep)
neural networks to automate the discovery of CVs [38, 39, 40, 41, 42]. One ar-
chitecture that stands out as conceptually appealing is the autoencoder [127]. An
autoencoder is a bow-tie-shaped network that forces an information compression in
the bottleneck region. While the first half of the network (the encoder) reduces the
input to a predefined lower dimension, the second half (the decoder) aims at trans-
forming from the low-dimensional to the original representation. The weights of the
neural network are tuned to minimize an objective or loss function, which typically
penalizes deviations between input and output data. As such, the autoencoder aims
at discovering a latent space (embedding) that faithfully describes the essential fea-
tures of the high-dimensional input data. This makes autoencoders well suited for
constructing low-dimensional FELs from molecular simulation data [43, 38, 44].

Traditional autoencoders lack continuity in the latent space, preventing inter-
polation between training points and, thus, its generative ability. Variational au-
toencoders (VAEs) remedy this limitation by modeling the input probability distri-
bution using Bayesian inference [128]. VAEs enable sampling new data from the
learned distribution (i.e., VAEs are generative models), and are also well suited to
provide interpretable and disentangled data representations in the low-dimensional
space [129]. Within the VAE framework, the latent distribution is forced to resemble
a predefined probability distribution, called the prior. Although the VAE framework
does not impose any particular prior distribution, it is often chosen as a normal dis-
tribution for computational convenience. This prior induces an “anti-clustering”
effect in the latent space, which can prohibit the identification of meaningful clus-
ters and impede the construction of optimal FELs from molecular simulations. The

autoencoder-based approaches were recently extended to explicitly incorporate the
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temporal nature of the data via a time lag in the network architecture [130, 131].
These time-lagged autoencoders aim to retain information about the slowest dynam-
ical modes sampled in the underlying simulation trajectory and, as a consequence,
may encourage metastable clustering in the latent space. However, they are also
limited in terms of characterizing the hierarchy of long timescale processes [132],
and only indirectly address the anti-clustering issue.

In this work, we propose to directly acknowledge the multi-basin structure of an
ideal FEL by employing a Gaussian mixture model [133] as the prior distribution
for the VAE latent space. The resulting Gaussian mixture variational autoencoder
(GMVAE) retains the computational ease and reconstruction fidelity of traditional
VAEs, while enforcing a more faithful description of the underlying physics: the
resulting FEL clearly distinguishes between metastable basins separated by large
free-energy barriers. We demonstrate the benefits of the GMVAE approach through
explicit comparisons with the traditional VAE for two widely-studied toy models and
for the standard benchmark system for conformational dynamics, alanine dipeptide,
as well as a more challenging disordered peptide ensemble. To ensure the presence of
distinct distributions in the latent space, the GMVAE introduces a categorical vari-
able that (probabilistically) assigns each input configuration to the set of clusters.
Thus, the GMVAE simultaneously performs dimensionality reduction and unsuper-
vised clustering. Remarkably, the GMVAE clustering is capable of identifying the
inherent dimensionality of the input data, in terms of the number of Gaussians
required to categorize the data. In the case of hierarchical input data (i.e., data
with distinct dimensionality depending on the level of resolution), we show that the
GMVAE makes a reasonable prediction for the number of clusters, independent of
the given hyperparameter, based on the dimensionality of the latent space and char-
acteristics of the data. Beyond the representation of static equilibrium properties,
by constructing MSMs from the GMVAE embedding, we show that our approach
is also a promising avenue for accurately describing the long timescale dynamical
properties of the data. In contrast to recent deep neural network approaches that

aim to directly model the propagator of the system’s dynamics [134, 135], the con-
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struction of MSMs from the learned FEL offers a different strategy: explicitly testing
to what extent a representation appropriate for the statics is directly amenable for

the dynamics.

6.2 Theory and methods

6.2.1 Autoencoder

Autoencoders are special types of neural networks that are used for the task of repre-
sentation learning in an unsupervised manner. They are composed of two connected
parts: the encoder compresses the input signal to a low-dimensional representation,
whereas, the decoder aims to reconstruct the input at full dimensionality from the
reduced-space representation. The reconstruction loss, usually defined as either the
mean-squared error or cross-entropy between the input, z, and the output, 2/, is
minimized via backpropagation. Since the bottleneck dimension is typically much
less than the original dimension, autoencoders learn the most compact represen-
tation of the input. Furthermore, because neural networks are universal function
approximators, the learned data projections can generally preserve much more of
the relevant information than with PCA or other basic linear projection techniques.
Figure 6.1 shows the schematic structure of an autoencoder with mean-squared er-
ror loss. There are different types of autoencoders which are tailored for special
tasks. For instance, sparse autoencoders impose sparsity constraints during opti-
mization, whereas convolutional autoencoders utilize convolutional layers instead of
fully-connected layers, in which case they learn the optimal filters. Variational au-
toencoders, which model the latent space probabilistically, are used for generative
purposes, i.e., they can create new samples that look like the ones in the training

dataset without simple data replication.

6.2.2 Variational autoencoder (VAE)

Variational autoencoders were introduced in [128]. In general, the theory of VAEs

is approached from two different perspectives: variational inference and neural net-



Chapter 6: Interpretable embeddings from molecular simulations using Gaussian mizture
variational autoencoders 93

Input Reconstruction

Low-dimensional
representation

Decoder ,
x

Py
L6, i x) = E [(x _p, (Q(p(x)»z]

x'

Figure 6.1: Schematic of an autoencoder architecture with mean-squared error re-

construction loss.

works. This section starts with the former interpretation and then illustrates the
connection between them. We mostly follow the notation and reasoning used in [136].
The input data and the latent variable are denoted by x and z, respectively.

The objective of the VAE is to find the posterior distribution P(z|z), which
can be written in terms of the likelihood P(z|z), the prior P(z), and the marginal
probability density of x, P(z), using Bayes law as

P(z|2)P(z)

P(z|z) = Pa)

(6.1)

The denominator P(x) is called the evidence and it could, in principle, be calculated
using

P(z) = /dz P(z|z)P(z) , (6.2)

once the prior is selected. However, the calculation is typically intractable, as it
needs to be evaluated over all configurations of the latent variable z. Therefore,
the posterior is approximated using wvariational inference with a chosen easy-to-
evaluate family of distributions Q4 (z|z), e.g., Gaussian functions, where ¢ is the
variational parameter of the distribution. In particular, P(z|z) is inferred using
Q4(z|z) by reformulating the problem within an optimization framework, such that

the Kullback-Leibler divergence between QQy(z|z) and P(z|z) is minimized. The KL
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divergence between ) and P is defined as

D [Qs(2]2)||P(2]2)] = > Qo(2]z) log %((Zzlg)

e

= Ellog Qy(z|z) — log P(z|x)] .

Equation 6.1 is then inserted into the posterior definition

P(Z‘\Z)P(Z)]
P(z)

= E[log Q4 (z|z) — log P(z|z) — log P(z) + log P(x)] .

Dy [Qy(2|2)||P(2]z)] = E [log Qo(2]w) — log (6.4)

Since the expectation is taken over z, P(x) can be moved out of the expectation

Dx1[Qo(2]2)||P(2|x)] —log P(x) = — E[log P(x, 2) — log Q4(z|x)] . (6.5)

J

BLBO(4)
The initial objective of minimizing the KL divergence between the exact and the ap-
proximate posterior is equivalent to maximizing the ELBO (Evidence Lower BOund),
defined in Equation 6.5.

Equation 6.5 can also be rewritten in terms of a different KL divergence:
Dxr|Qqs(2|2)||P(2|2)] —log P(x) = Dxv[Qq(z]2)|[P(2)] — Ellog P(x|2)] . (6.6)

Here the neural network perspective comes into play, as depicted schematically in
Figure 6.2(a). Q4(z|x) acts like an encoder (inference), and transforms the data into
the latent variable z. On the other hand, P(z|z) (which can also be parametrized
with the network parameter 6 as Py(z|z)') generates the data from the latent rep-
resentation, analogous to a decoder (generator). The parameters correspond to the
weights and biases of the neural networks. Note that the initial aim is to minimize
Dx1[Qy(2|2)||P(2|x)], which is equivalent to minimizing the RHS of Equation 6.6.
The first term enforces the encoder to be similar to the chosen prior P(z), which
acts as a regularization, whereas the second term on the RHS deals with how well

the reconstructions match the original input.

'Both of the notations are used interchangeably.
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6.2.2.1 Standard selections for the family of inference distributions and for the

prior distribution

In order to use Equation 6.6 in an optimization procedure, both the family of dis-
tributions for inference, Q,(2|z), as well as the prior distribution, P(z), must be
specified. The most common assumption is that Q(z|z) (P(z)) is a unimodal
Gaussian distribution with mean p(x) (0) and diagonal covariance ¥(z) (1). Then,

Dx1[Qy(2|2)||P(2)] has a closed form solution:
Dx[Qo(z]2)|[P(2)] = Dxu[N (u(x), E(2)) [N (0, 1)]

— % (tr(S(x)) + p(z) w(z) — d —log det(X(x))) ,

where d is the dimension of the Gaussian and tr denotes the trace. Although the

(6.7)

unimodal Gaussian assumption simplifies the calculations, it also restricts the possi-
ble latent space representations, and may hinder the performance of the variational
autoencoder by pushing the latent space to be described by highly-overlapping clus-

ters.

6.2.3 Gaussian mixture variational autoencoder

This section is largely distilled from the discussion and insights presented in [137].
The term Gaussian mixture variational autoencoder is open to misinterpretations.
There exist several distinct architectures given this name, with variations in the
choice of generative or inference models [133, 138, 139, 140]. In the present work,
we take both the approximate posterior, (i.e., the family of distribution functions
for inference), Qy(y, z|x), and the latent space distribution (i.e., the prior), P(z),
to be Gaussian mixtures. Note that we have introduced a categorical variable, y,
which identifies which Gaussian each particular data point belongs to. The inference

model can be written as

Qs(y, z[7) = Qu(y|2)Qu(2]7,y) - (6.8)
The latent space is composed of k distinct Gaussians, i.e., Qy(2|z,y;) is assumed to

be Gaussian, where ¢ € 0,1,...,k — 1. Thus, the approximate posterior becomes a

Gaussian mixture.
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(b) Schematic of a Gaussian mixture variational autoencoder.

Figure 6.2: (a) The VAE and (b) GMVAE architectures. In the probabilistic graph
representation, circle nodes represent the random variables, and directed edges rep-
resent statistical dependencies between the variables in the two ends. Dot nodes are
used to indicate the parameters of the model, while some of the nodes are inten-
tionally filled to differentiate the observed random variables from the non-observed

ones which are left empty.
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Similar to Equation 6.5, the ELBO can be written as

ELBO,, = EQd)(y,z\x) [log P@(Z‘, Y, Z) - log Q¢(y7 Z’I)] ) (69)

where the number of Gaussians, k, is a hyperparameter, and the subscript m is
used to distinguish ELBO,, from the VAE ELBO. Py(z,y,z) can be written as
Py(x,y,z) = Pyp(x|y, 2)Ps(z|y)P(y) using conditioning without any assumptions.
Then, by assuming that z is conditionally independent of y, i.e., Py(z|y, z) = Py(x|2)
(see the graph representation in Figure 6.2(b)), the joint probability can be expressed

as

Py(a,y,2) = Pa(2]2) Po(zly) P(y) (6.10)
By inserting Equations 6.8 and 6.10 into Equation 6.9, ELBO,,, becomes

ELBOw = Eq(y,-(z) [log P(y) Po(2|y) Po(|2) — log Qy(y|2)Qy (2|7, )]
Py(zly)

—Q¢(z|x, " + log Py(z]2)| .

= EqQy,2a) | log P(y) — log Qg (y|z) + log
(6.11)

Similar to the VAE, the third and fourth terms represent regularization and recon-
struction contributions to the loss, respectively. The initial prior on y is selected as
a uniform multinomial distribution, while Eqy .j¢)[log Q4 (y|2)] can be interpreted
as a conditional entropy, reflecting how informative x is on y. To directly control
the impact of the clustering relative to the other loss terms during training, we

introduced a weighting factor, «;, on the mutual information between x and y:

Py(z]y)

—Q¢(Z|I, m +log Py(x|2)| .

ELBOw = Egy,+x) [log P(y) — alog Qs (y|x) + log
(6.12)

Figure 6.3 presents a more detailed schematic of the GMVAE architecture, while
Table 6.1 presents a summary of the probability distributions utilized in the model.
First, data points are probabilistically assigned to k clusters (NN(Q,)). Q(y|z)
represents these cluster assignment probabilities, and has a multinomial distribution.

Since each cluster is assumed to have Gaussian distribution in the latent space,
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the mean and variance of each of these Gaussians (Q(z|x,y)) are learned via the
encoder part of the neural network (NN(Q,)). The low-dimensional representation,
z, is then obtained by first sampling and then taking the expected value of these
samples, i.e., z = Zf;ol p(yi|z)z;. As the first step in decoding, the moments of
the corresponding low-dimensional representation z is learned by NN(P,) from each
Gaussian-distributed individual cluster y;, which is then followed by a sampling
operation. P(y) in the decoder is assumed to be uniformly distributed among the
k clusters. Next, using the encodings, z;’s, the associated z reconstructions are
obtained again by sampling from the z’ by the NN(P,). Similar to the encoder, the

decoder obtains a fixed reconstruction by taking the expected value of x!’s.

Q(zlz,y) =N(p(z,y),0%(z,y)) |P(y) = Uniform(})
Q(ylz) = Multinomial(f(z)) P(zly) = N(u=(y),0%(y))
P(z|z) =N (u(z),02(2))

Table 6.1: Distributions in the GMVAE model. Left (right) column corresponds to

the distributions in the encoder (decoder) part.
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Figure 6.3: Schematic of the GMVAE workflow.
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6.2.3.1 Determination of cluster labels and thresholding scheme

The clustering within the GMVAE is probabilistic, i.e., each data point is assigned
membership probabilities (between 0 and 1) to each of the clusters. Since most
configurations are assigned predominantly to a single cluster, we perform a hard
cluster assignment by assigning each data point to the cluster with highest member-
ship probability. However, in cases where a configuration has similar membership
probabilities for multiple clusters, this simple assignment may introduce errors when
determining properties (e.g., transition probabilities) of the clusters. Thus, we also
considered a different approach by enforcing a thresholding value for cluster assign-
ment. More specifically, each configuration is only assigned to a cluster if the largest
membership probability is above a chosen cut-off value. A naive coring scheme fol-
lowed the thresholding operation such that the points that had been identified as
noise were assigned back to their previous cluster index for all other dynamical

analyses.

6.2.3.2 GMVAE architecture and training hyperparameters

The GMVAE algorithm was implemented in Tensorflow [141]. Training was per-
formed in all cases with fully-connected layers, using the Adam optimization al-
gorithm [142]. The Softmax activation function was used for probabilistic cluster
assignments, while ReLiu activation functions were employed in all hidden layers.
The means were obtained without any activation, whereas Softplus activation was
employed to obtain the variances. Table 6.2 shows the values of the hyperparameters
for each example system. Default values were employed wherever the parameters are
not specified. The NN(-)’s correspond to the neural networks labeled in Figure 6.3.
NN(Q,) performs probabilistic cluster assignments, NN(Q,) is for learning the mo-
ments of each Gaussian distribution in the encoding, whereas NN(P,) and NN(P,,)
are for the decoding of the z and z, respectively. The lengths of the “Number of
nodes” entries correspond to the number of hidden layers. Hyperparameter opti-
mization was carried out as follows. The number of nodes was initialized as [16, 16].

The number of nodes in the decoder (NN(P,)) was then increased whenever a large
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and non-decreasing reconstruction loss was observed. Our overall observation for the
considered examples is that the learning rate and batch size should be kept relatively
low to promote the formation of distinct clusters. The VAE results (with unimodal
Gaussian prior) that are provided as comparison are obtained using k& = 1, while
keeping the remaining parameters equal to the values in the corresponding GMVAE

model.

1D 4-well | Miiller-Brown | Dipeptide | AAQAA; -1 | AAQAA; - 11
# of clusters (k) 4 5 8 10 6
Input dimension (n) 1 2 25 60 126
Latent dimension (d) | 1 1 2 2 2
# of nodes (NN(Q,)) | [16, 16] [32] [32] [16, 16] [128]
# of nodes (NN(Q.)) | [16, 16] [16] [16] [16, 16] [16]
# of nodes (NN(P,)) | [16, 16] [16] [16] [16, 16] [16]
# of nodes (NN(P,)) | [16, 16] | [128] [128] (16, 16] [256]
e 0.5 0.05 0.05 0.3 0.95
Batch size 32000 5000 5000 10000 3000
Learning rate 0.00005 0.0001 0.00015 0.001 0.00005
# of epochs 50 400 100 300 2000
Probability cut-off None None None 0.95 0.98

Table 6.2: Architecture specification and training hyperparameters

6.2.4 Markov state models

Markov state models (MSMs) represent the dynamics generated by a molecular
simulation trajectory as a series of memoryless jumps between a discrete set of
states [143]. Given a configuration-space discretization, a transition probability
matrix, P(7), is obtained by counting the transitions between pairs of states within

a given lag time, 7, and then performing a maximum likelihood optimization [144].

The eigenvalues of P(7), {\;(7)}, are related to characteristic timescales of the
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system’s dynamics:

T

e MY WeSTI

(6.13)

where t;(7) is the timescale corresponding to the " eigenvalue, A\;(7). The time
lag parameter 7 is typically chosen by performing the “implied timescale test”,
which assesses the Markovianity of P(7) through the convergence of its timescales
with increasing 7. In other words, {t;(7)} is plotted as a function of 7, and 7 is then
chosen as small as possible such that the largest timescales are sufficiently converged.
Once 7 is chosen, the accuracy of P(7) is determined via the Chapman-Kolmogorov
(CK) test, which compares the estimated and predicted probability decay out of a
given state. The predicted values are obtained using the CK equation, i.e., using

the Markovian property of the model:

pij(m7) = pii (1) , (6.14)

where p;;(7) is the probability of transitioning from state ¢ to state j within time 7,
and m is a positive integer. The CK test is often performed on metastables states
of the system—collections of quickly interconverting microstates.

Within the standard Markov state modeling workflow, microstates are typically
defined on low-dimensional projections of the full-dimensional configuration space.
Therefore, obtaining a relevant transformation of the molecular simulation data is
the key. To this end, time-lagged independent component analysis (TICA) [123, 145]
is one of the most commonly used dimensionality reduction methods, as its objec-
tive is to maximize the autocorrelation of the data at the given lag time, making it
especially well suited for kinetic modeling purposes. Metastable states are typically
obtained via a dynamical coarse-graining procedure, e.g., PCCA™ [146] whose objec-
tive is to retain an accurate description of the dominant eigenvectors of the transition
probability matrix. The resulting metastable states are then used as representative
collections of microstates for performing the CK test. In many cases, a coarse-
grained MSM at the resolution of the metastable states is constructed, providing an

easily interpretable, albeit often qualitative, picture of the long timescale processes.
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In this study, the GMVAE performs the dimensionality reduction and clustering
simultaneously, yielding a coarse-grained description of configuration space directly,
without the need for further dynamical clustering. The (coarse-grained) MSMs
are constructed from the discretized trajectories obtained using the simple cluster
assignment based on the GMVAE membership probabilities as described in Sec-
tion 6.2.3.1. MSM construction and analysis was performed using the PyEMMA
package [147].

6.2.5 Peptide analysis

The helical propensity of the peptide was determined using the Lifson-Roig per-
spective, which assigns each residue to either a helical (h) or coil (c) state, ac-
cording to the dihedral angles along the peptide backbone (i.e., the Ramachandran
plot) [148, 149]. Therefore, the number of different conformations of the peptide
is limited to 2, where N is the number of residues; N = 15 for AAQAA;. The
propensity of residue i to be part of a “helical segment”, (h;), is then defined as
the probability that residue ¢ as well as its two neighboring residues are simulta-
neously found in a helical state. The average fraction of helical segments, (f), is
obtained by averaging (h;) over all residue positions: Zij\;l %(hJ To distinguish
between partial helical structures occuring at the N- and C-terminus ends of the
peptide backbone, we define (hy) = 370, §(hi) and (hc) = S &(h;). Note that
the terminus residue from each end is not taken into consideration.

The dRMSD measures the average deviation of internal distances from the cor-

responding distances in a reference structure, and is calculated as

dRMSD(X (1), X") = > ([[Xi(t) = X, (1) = |IX} = X][)? (6.15)

i#]
where X(t) represents the conformation at time t, X" is the conformation for the
reference structure, and || - || denotes the Euclidean norm. Note that, unlike other
RMSD metrics, no pre-alignment of structures is required. In this study, due to the
large fluctuations of the end residues, two residues from each end of the peptide were

excluded in the dRMSD calculations. dRMSD was calculated using the positions of
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the C, atoms only. Helix, hairpin-like, and extended (coil) structures were separately

considered as reference structures as illustrated in Figure 8.33.

6.3 Results

Variational autoencoders (VAEs) have been previously applied for dimensionality
reduction of molecular simulation data [131, 39, 150]. VAEs typically employ a nor-
mal distribution to represent both the prior distribution in the latent space and the
family of distributions for variational inference. In this work, we extend traditional
VAEs by representing these distributions with Gaussian mixture models. The result-
ing Gaussian mixture VAE (GMVAE) adopts the physics-based viewpoint that an
optimal embedding of the simulation data should give rise to a free-energy landscape
(FEL) with well-separated clusters of configurations, which correspond to metastable
states that are separated by large barriers along the high-dimensional potential en-
ergy landscape. The GMVAE introduces a categorical variable, y, which represents
the various underlying Gaussian distributions to which each configuration will be
(probabilistically) assigned. As a consequence, the approach simultaneously per-
forms a dimensionality reduction and clustering, while enabling direct control over
the organization of configurations in the latent space. We demonstrate the proper-
ties of this architecture by considering two model systems and molecular simulations
of alanine dipeptide as well as a more challenging disordered peptide ensemble. In
the following, X € R"™ represents the n dimensional input. The latent variable in

the bottleneck is represented by z € R%, d < n.

6.3.1 One-dimensional 4-well potential

We first consider a single particle in one-dimension interacting with a 4-well external
potential, which has been previously employed for testing methods associated with
constructing MSMs [151, 132]. Figure 6.4(a) presents the potential, whose functional
form and simulation details are given in Section 8.3.1. We employ a GMVAE with
a latent space dimension of 1, which assesses the clustering performance of the

architecture in the absence of any dimensionality reduction. The GMVAE was
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trained with k& = 4 according to the parameters in Table 6.2. Figure 6.4(b) presents
the confusion matrix of the resulting model, which quantifies the probability that
the model assigns a predicted label (x-axis) given the true label (y-axis). The
true labels were determined using a coarse-grained representation of the system,
where four metastable states are defined based on simple dividing surfaces, chosen
as the maxima of the barriers between each potential well (dashed vertical lines in

Figure 6.4(a)). The GMVAE assigns the state labels with 97% overall accuracy.
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Figure 6.4: (a) 1D 4-well potential with the true labels. (b) Confusion matrix
constructed with the true labels shown in (a) and the predicted labels obtained
via the GMVAE. Population size increases from light to dark blue. Normalized
histograms of the 1D latent variable via the (¢c) GMVAE and (d) VAE.

Figure 6.4(c) shows a normalized histogram of z values. Without dimensionality

reduction, the GMVAE largely retains the description of the input space within
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the latent dimension. As a consequence, the decoder is able to quite accurately
reconstruct the input from the latent variable (See Figure 8.22). This behavior is
in stark contrast to traditional VAEs, which employ a Gaussian prior to represent
the latent space distribution. As a result, anti-clustering effects can arise, leading to
highly overlapping clusters of data in the reduced space. To demonstrate this effect,
we constructed a traditional VAE for the present example. Figure 6.4(d) presents
the corresponding normalized histogram of z values. In this case, even without a
reduction in dimension, significant information is lost due to the constraint of the

assumed prior distribution.
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Figure 6.5: Markovianity check of the kinetic model built for 1D 4-well potential
system. The MSM was constructed directly using the cluster labels obtained from
the GMVAE. (a) Implied timescale test. (b) Chapman-Kolmogorov test (at lag =
200 steps).

To further characterize the quality of the GMVAE clustering, we constructed an
MSM from the trajectories of the predicted cluster IDs. Figure 6.5(a) presents the
standard implied timescale test, which assesses the convergence of the character-
istic timescales with increasing lag time parameter 7. Convergence indicates that
the simulation dynamics, within the discrete-state representation, can be described
within a Markovian approximation. The gray area indicates timescales that cannot

be resolved by the model, since they are faster than the chosen lag time. From
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the test, the MSM with 7 = 200 was chosen for further analysis. The accuracy of
this model was assessed with the Chapman-Kolmogorov test, which compares the
simulated and predicted decay of probability from a chosen set of metastable states.
Figure 6.5(b) demonstrates that the predicted “cluster dynamics” accurately repre-

sent the long timescale kinetic properties of the underlying simulation trajectory.

6.3.2 Muller-Brown potential

To assess both the dimensionality reduction and clustering performance of the GM-
VAE approach, we next consider a single Brownian particle in two dimensions inter-
acting with an external Miiller-Brown potential. The trajectory data was generated
as the procedure suggested in [131] with the standard parameters [152] (see Sec-
tion 8.3.2 for more details). As depicted in Figure 6.6(a), the resulting FEL contains
two deep minima along with a less stable intermediate state. We employ a GMVAE
that is trained with a latent space dimension of 1 and with & = 5, according to the
parameters in Table 6.2.

Despite employing k = 5, the resulting GMVAE model identified only 3 states
with non-zero membership probabilities. Thus, somewhat remarkably, the GMVAE
architecture was able to identify the inherent organization of the input data in
the high-dimensional space, independent of the hyperparameter k. Figure 6.6(b)
shows the identified clusters. We define the true cluster labels in this case using
linear dividing surfaces, as shown in Figure 8.23(a). Figure 6.6(c) presents the
confusion matrix from the GMVAE model with respect to these defined labels.
Although it appears that there are errors in assigning state 1, this error is sensitively
dependent on the precise definition of the true label dividing surfaces. Moreover,
the overall classification accuracy is actually 99%, since state 1 corresponds to a
very rarely sampled intermediate state. The model also demonstrates relatively
high reconstruction accuracy (See Figures 8.23(b) and 8.23(c)). Figures 6.6(d)
and 6.6(e) present normalized histograms of z values obtained from the GMVAE
model and a traditional VAE model trained on the same data, respectively. The

low-dimensional representations obtained from the GMVAE clearly demonstrate a
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better separation of metastable states. Additionally, the ability of the GMVAE to
learn a nonlinear manifold is demonstrated in Figure 8.24, with respect to the linear

embedding obtained using time-lagged independent component analysis (TICA).
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Figure 6.6: 2D Miiller-Brown potential. (a) Free-energy landscape. (b) Clusters
obtained from the GMVAE. (c) Confusion matrix with the true labels determined
with linear dividing surfaces (Figure 8.23(a)) and predicted labels obtained via the
GMVAE. Population size increases from light to dark blue. Normalized histograms

of the 1D latent variable via the (d) GMVAE (e) VAE.

To further characterize the quality of the GMVAE clustering, we again con-
structed an MSM from the trajectories of the predicted cluster IDs. The implied
timescale test (Figure 6.7(a)) shows two dominant processes. The MSM with 7 = 10
was chosen for further analysis. Figure 6.7(b) presents the Chapman-Kolmogorov

test, which further verifies the accuracy of the GMVAE embedding.
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Figure 6.7: Markovianity check of the MSM built for 2D Miiller-Brown potential
via the GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at lag=10
steps).

6.3.3 Alanine dipeptide

Alanine dipeptide is a representative model system for the characterization of con-
formational dynamics. Previous work [153, 134, 154, 130, 155] has shown that the
(¢, ¥) backbone dihedral angles act as ideal collective variables for describing the
metastable configurational basins and associated transition kinetics, making it an
excellent system for testing the GMVAE framework within a more realistic molecu-
lar simulation context. Since in general the optimal set of input features is unknown
a priori, we use this example to test the ability of the GMVAE to identify the
proper collective variables from a larger set of input features. More specifically, we
consider as input features both the normalized pairwise distances between heavy
atoms as well as the (¢, ¢) dihedral angles (obtained from [156]). The pairwise
distances were pre-processed using a kurtosis filter (with the threshold value of 0.03,
see Figure 8.25 for more detail), to reduce the input dimension by removing the
low-variance features. The dihedral angles were pre-processed by applying sin and
cos transformations in order to account for periodicity [157]. Figure 6.8(a) shows
the FEL in the backbone dihedral angle space, with four labeled metastable basins

corresponding to ag, ar, 3, Py, and 7 conformations [158]. The gray lines are drawn
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for reference and do not represent any sort of optimal dividing surface.
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Figure 6.8: (a) Free-energy landscape of alanine dipeptide. (b) GMVAE clusters on
the Ramachandran plot.

Figure 6.9(a) presents the two-dimensional embedding found using the GMVAE,
and Figure 6.9(b) shows the simultaneously-obtained 6 clusters (indexed from 0 to 5)
as a part of the GMVAE algorithm. The GMVAE again obtains a FEL that better
separates clusters of conformations, relative to a standard VAE (Figure 8.29). The
distribution of these clusters on the Ramachandran plot (Figure 6.8(b)) already
strongly indicates their suitability for a kinetic analysis. The GMVAE clustering
distinguishes all 5 of the metastable states, as well as a transition region between
the ag and [ states (cluster 4). An MSM was again constructed from the coarse
GMVAE cluster assignments. The implied timescale and Chapman-Kolmogorov

tests are presented in Figure 6.10, demonstrating the accuracy of this kinetic model.
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(a) FEL via the GMVAE (b) Clusters
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Figure 6.9: (a) FEL obtained for the alanine dipeptide by the GMVAE. The GMVAE
clusters on the (b) GMVAE landscape.

We found in this example that, unlike the toy systems, the clustering obtained
using the GMVAE did not appear to be completely robust. In particular, the precise
clustering probabilities depend on the random effects of the training procedure (e.g.,
random weight initialization and the random shuffling of the input data). This issue
was most pronounced for the lowest populated state, whose probability differs from
the other states by two orders of magnitude (Figure 8.26(b)). As a consequence,
the v state was not always sufficiently separated from the aj, state, resulting in a
loss of one of the resolved kinetic processes (although the accuracy of the MSM
remained intact, see Figure 8.28). Despite this issue, the obtained FEL appeared
rather robust with respect to changes in the random factors during training. We

observed a much more robust clustering for all other applications considered.

6.3.4 AAQAA; peptide - 1

As a more challenging test, we consider simulation trajectories of the capped he-
lix forming peptide AC-(AAQAA);-NH2, which is a representative system for in-
vestigating helix-coil transitions. We employ a coarse-grained model [159], which
describes the dominant attractive interactions, e.g., hydrogen bonding and effec-

tive hydrophobic interactions between side chains, with simple potentials between
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Figure 6.10: Markovianity check of the MSM built for alanine dipeptide via the
GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at lag=20 steps).

the C, and Cp atoms. These interactions are the minimum required to sample the
proper range of structures, (i.e., helix, coil, and hairpin-like). This model also rep-
resents excluded volume effects in near-atomic detail, which was demonstrated to
be important for accurately characterizing the helix-coil kinetics. Here we employ
a parametrization of the model that most accurately reproduces the experimen-
tal cooperativity of the helix-coil transition for AAQAA,. As a result, hairpin-like
structures appear to have relatively low metastability (similar to the intermediate
state in the Miiller-Brown example, and the v state in alanine dipeptide), as we
discuss further below. The model and simulation protocol are discussed further in
the Section 8.3, and also in [159, 160]. The considered simulation trajectories corre-
spond to a disordered ensemble of peptide configurations, representing a stringent
test for dimensionality and clustering methods [161].

Similar to alanine dipeptide, the set of sin and cos augmented (¢,1) dihedral
angles along the peptide backbone were used as conformational descriptors. Thus,
the input dimension is 60 for the 15-residue AAQAA, peptide. We chose to consider
only a latent space dimension of 2, given that the ultimate goal of dimensionality
reduction is often to reduce the high-dimensional description to something that is

easily visualizable. Unlike the simple model systems above, the number of clusters,
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k, is completely unclear a priori. In fact, we expect that this ensemble to have
a hierarchical structure, such that differing number of clusters may be appropri-
ate depending on the chosen level of resolution. While we initially considered the
GMVAE with varying number of clusters, we found that the number of “non-zero
clusters” (i.e., clusters with a significant probability of configuration assignment)
was extremely insensitive to this choice, as discussed below. The GMVAE was
trained according to the parameters in Table 6.2. Also in contrast to the previous
examples, there is no definitive reference kinetic model with corresponding known
metastable states. Instead, the analysis below assesses the GMVAE embedding and
clustering (in terms of both statics and kinetics) with respect to the landscapes
obtained using a standard VAE and also following the standard MSM workflow
(i.e., TICA [123, 145], see Section 6.2.4 for more details). Panels (a) and (b) of
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Figure 6.11: Free-energy landscapes of AAQAA, - I peptide obtained by (a) the
GMVAE, and (b) the VAE.

Figure 6.11 show the FELs obtained using the GMVAE and the traditional VAE,
respectively. As in the model systems, the GMVAE method results in a latent space
description with highly separated clusters, while the traditional VAE yields more
overlapping states. The two-dimensional TICA landscape (Figure 8.40) also sep-
arates a number of clearly distinct states, although there are large diffuse regions

with relatively low free-energy values. The clusters obtained via the GMVAE are

Free Energy [ keT
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shown in Figure 6.12(a). Despite employing k& = 10 and obtaining a landscape that
appears to have approximately 10 distinct basins, only 7 states (labeled 0,1,...6)
were assigned non-zero membership probabilities (see Figure 8.30). Since standard
metrics for analyzing peptide configurations do not yield a clear organization of the
ensemble into a small number of metastable states, the distribution of these quan-
tities are expected to be highly overlapping, even for a good clustering of the input
data. Thus, to more easily visualize the characteristics of the GMVAE clusters, we
applied a thresholding scheme, which removes configurations without a membership
probability greater than 0.95 (see Section 6.2.3.1 for details and Figure 8.31 for
cluster populations). Figure 6.12(b) shows 5 representative structures closest to the
cluster centers. We stress that these images are intended to give the reader a rough
idea of the types of structures contained in each cluster, but do not characterize the
variance of structures within the clusters. This is a disordered ensemble and each
cluster necessarily contains a diversity of structures. Nevertheless, Figure 6.12(b)
indicates that the GMVAE successfully distinguishes between distinct secondary

structures within the simulation data.



Chapter 6: Interpretable embeddings from molecular simulations using Gaussian mizture
variational autoencoders 114

(a) Clusters

-15.0 -125 -10.0 -75 =50 =25 0.0 &3 5.0
2o
(b) Secondary structures

S

Figure 6.12: (a) The clusters obtained for the AAQAA; peptide - I by the GMVAE

after thresholding. (b) The secondary structures closest to the cluster centers.

To characterize the structural properties of the clusters quantitatively, we calcu-
lated the distribution of the average fraction of helical segments, (f;). Figure 6.13(a)
presents a heat map of (fy,) in the latent space. High (f;,) values (represented by
blue) indicate the presence of helix and helix-like structures, whereas the lower val-

ues point to either hairpin- or coil-like secondary structures. There is an apparent
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trend of decreasing average helical content from the lower-right to upper-left re-
gions of the latent space (i.e., from cluster 0 to 6). The VAE and TICA landscapes
demonstrate similar trends (Figures 8.44(b) and 8.40(b), respectively), although
the VAE does not characterize partially-helical structures as clearly as the GMVAE.
Figure 8.32 presents the intra-cluster distributions of (f;), which can be used to
assess the quality of the clustering (relative to an alternative clustering). We ex-
pect that an optimal clustering will result in tight, unimodal ( f;) distributions. The
GMVAE clustering yields seemingly good distributions for the most and least helical
clusters, while the partially-helical clusters appear broader and somewhat bimodal.
For comparison, we consider three alternative clusterings obtained by performing a
k-means clustering on a given landscape followed by the PCCA™ dynamical coarse-
graining method [146] to define a set of metastable states (see Section 6.2.4 for more
details): (i) an alternative clustering of the GMVAE landscape (Figure 8.37), (ii) a
clustering on the VAE landscape (Figure 8.45), and (iii) a clustering on the TICA
landscape (Figure 8.41). The alternative clustering scheme on the GMVAE land-
scape, (i), does not improve the intra-cluster distributions of (f,), demonstrating
that the GMVAE clustering is reasonable, given the GMVAE embedding. Similar
results were obtained from the VAE clustering, with slightly broader distributions
for the most and least helical states. The TICA clustering resulted in somewhat im-
proved distributions, in the sense that they appear to be mostly unimodal, although
some of the distributions appear to be slightly broader.

Figure 6.13(b) shows the dRMSDy, values of the projections, where the helicity
increases as the dRMSDy, values decrease. These results are in agreement with the
(fn) analysis: as the cluster index increases from 0 to 6, the conformations tend to be
more extended. The Supporting information in Section 8.3 (Figures 8.33 and 8.34)
contains additional characterization of the static properties of the clusters, which
further validate the GMVAE embedding and clustering as a reasonable partitioning
of the conformational landscape.

We also characterized the average fraction of helical segments on the N- and

C-terminus sides of the peptide: (hy) and (hc), respectively (see Section 6.2.5
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Figure 6.13: AAQAA, - I. (a) Average helical fraction, (f;,), analysis. Colors repre-
sents the ( f;) values of the corresponding projected data obtained from the GMVAE.
(b) dRMSDy, analysis.

for more details). Figure 6.14 presents the difference of these quantities, (hy) —
(hc), plotted along the GMVAE embedding. Positive values (represented by blue)
indicate conformations that contain helical structure on the N-terminus side of the
peptide without helical structure on the C-terminus side. Conversely, negative values
(represented by red) indicate conformations that contain helical structure on the C-
terminus side of the peptide without helical structure on the N-terminus side. Values
close to zero correspond to either fully helical or non-helical structures. Although
the GMVAE embedding and clustering separate the most distinct structures in the
ensemble (coils and full-helicies), some of the clusters (0, 1, 2) encompass partially-
helical conformations on both sides of the peptide (see also Figure 8.36). This is
not ideal since kinetic barriers within a cluster will negatively impact the accuracy
of a kinetic characterization at the cluster level. However, it appears that this issue
may have more to do with the clustering than the embedding itself, since blue- and
red-labeled structures appear to be reasonably separated on the landscape.

Similar to the other examples above, we also constructed an MSM directly from
the discretized trajectories of GMVAE cluster indices. Although thresholding was
applied in the results presented here (practically similar to coring methods for con-

structing kinetic models [162]), we found that this procedure had negligible effect
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Figure 6.14: Analysis of partially-helical conformations for AAQAA, - I. Projections

are colored according to (hy) — (h¢) values.

on the accuracy of the resulting MSM. As shown in Figure 8.35, the MSM con-
structed from the GMVAE clustering displayed significant errors in describing, e.g.,
the decay of probability out of the helix state. Perhaps this is not so surprising,
since coarse-grained MSMs are often only used as a qualitative analysis tool, while
higher-resolution kinetic models that characterize configuration space with many
microstates are used for quantitative reproduction of simulation kinetics. Thus, to
more carefully assess the GMVAE embedding and to more easily compare to the
VAE and TICA results, we constructed a higher-resolution MSM by performing
k-means to define microstates on the landscape (Figure 8.37). Although the result-
ing model demonstrates improved accuracy according to the Chapman-Kolmogorov
test, the probability decay out of the metastable states occurs on a fast timescale
relative to the chosen lag time. This may be indicative of poorly defined divid-
ing surfaces between metastable states. The kinetic models constructed from the
VAE and TICA landscapes (Figures 8.45 and 8.41, respectively) demonstrate simi-
lar quickly decaying probabilities. Although coring procedures could be applied to
attempt to fix this problem, it indicates that there are fundamental limitations of all
of these landscapes in terms of characterizing the long timescale simulation kinetics.

There are several possible reasons for these difficulties, including (i) the limitation
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of our embeddings to two dimensions, (ii) the limitation of the chosen input features
in characterizing kinetically-distinct structures, (iii) the presence of many low-lying
barriers along the potential energy landscape of this disordered ensemble, and (iv)
the poor sampling of relatively rare transitions to the full helix conformation. We
partially address items (ii) and (iv) in the next section; however, a detailed investi-
gation of these issues is beyond the scope of this initial study of the performance of

the GMVAE, and is left for future work.

6.3.5 AAQAA, peptide - 11

To investigate the impact of the low sampling of helical structures on the GMVAE
embedding, as in the AAQAA, - I simulations presented above, we also considered
a second set of simulations which primarily samples helical- and hairpin-like struc-
tures, while only rarely sampling fully-coil structures. (Please see the Supporting
Information (Section 8.3) for more details about the differences between the two sets
of simulations). In addition to the dihedral angles, normalized pairwise distances
between residues that are more than 3 residues apart were included as input features.
Figure 6.15 presents the obtained GMVAE FEL (panel (a)), the corresponding clus-
tering of 6 metastable states (panel (b)), and overlays of five structures that are
closest to the cluster centers (panel (c)). The GMVAE embedding demonstrates
significant separation of metastable states, relative to the landscape obtained with
a standard VAE (Figure 8.58(a)). Similar to the previous ensemble (AAQAA; - I),
Figure 6.16 shows the separation of structures according to (fy,) (panel (a)), and
dRMSDy, (panel (b)). The VAE and TICA landscapes demonstrate similar trends
(Figures 8.58 and 8.54, respectively). The intra-cluster (f;,) distributions are shown
in Figure 8.49. The majority of the fully-helical structures are in cluster 3 and 5,
while clusters 0, 1, 2 and 4 contain hairpin-like structures as well as partial heli-
cies. The coil structures are gathered in the bottom-most part of the landscape
(in cluster 4), though not separated as a distinct cluster by the GMVAE. The dis-
tributions are broader and less unimodal than those determined from the previous

set of simulations, although these can be somewhat improved with the alternative
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(a) FEL via the GMVAE (b) Clusters
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Figure 6.15: The GMVAE results for AAQAA; peptide - II. (a) Free-energy land-
scape. (b) The clusters obtained after thresholding. (c¢) The secondary structures

closest to the cluster centers.
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clustering scheme on the GMVAE landscape (Figure 8.53). Similar results are also
obtained from the VAE and TICA landscapes (Figures 8.61 and 8.57, respectively).

Figure 6.17 presents the characterization of the N- and C-terminus, partially-helical

(@) {(fn) (b) dRMSDre

1.0

ol (1]

(fin)
Z

dRMSDhe

Figure 6.16: Projections for the AAQAA; peptide - II. (a) (fs), (b) ARMSDyq.

conformations. In contrast to the AAQAA; - I embedding, the GMVAE embed-
ding and clustering for AAQAA, - II more clearly separates the distinct types of
structures. It appears that this difference may be due to the increased sampling of
helical structures in AAQAA; - II, although the inclusion of pairwise distances as
additional input features may also have played a role. N- and C-terminus partially-
helical structures are mostly located in clusters 4 and 2, respectively, while both
types of structures can be found to a lesser extent in cluster 5. Although the VAE
and TICA landscapes also appear to largely distinguish between distinct partially-
helical structures (Figures 8.58 and 8.54, respectively), the GMVAE landscape pro-

vides a significantly better clustering of these two distinct sets of conformations.

Despite the improved description of partially-helical structures, the MSM con-
structed directly from the GMVAE clustering for AAQAA, - II displayed similar
discrepancies to the model built for AAQAA; - I (Figure 8.50). Moreover, the
high-resolution MSMs constructed from the GMVAE, VAE, and TICA landscapes
(Figures 8.51, 8.59, and 8.55, respectively) displayed very fast decay of probability
out of the identified metastable states, as in the AAQAA, - I example.
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Figure 6.17: The N- and C-terminus end folding analysis for the AAQAA; peptide -
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Chapter 7

CONCLUSION

Chapter 2 gives an overview of the governing equation of motion for the protein
dynamics.

Chapter 3 contains a short review of the methods used in approximating neg-
ative gradient of the potential energy function via linearization. We presented the
nodal and node-branch formulations and showed that these formulations in fact
constitutes a more general scheme, allowing the linearizations around not only equi-
librium but also non-equilibrium points. We also showed that a reduced-size formu-
lation can be derived only for the expansions around equilibrium points, which we
also presented its equivalence to a commonly-used approach.

In Chapter 4, we presented PAC, a frequency domain technique for analyzing
protein and ligand interaction dynamics that was inspired by an electronic circuit
analysis scheme. We compared PAC with previously proposed techniques on several
example proteins with ligand binding structures. PAC generalizes and subsumes the
previous methods by incorporating the frequency of excitation as a key new param-
eter for dynamic analysis of proteins. We have proposed several new frequency
dependent metrics for the characterization of the 3D complex response of system
response that help interpret and extract useful information about the protein struc-
ture and dynamics. Finally, we should note that the PAC formalism is based on
a dynamical model that is obtained by linearizing the nonlinear force field of the
protein around a reference configuration, e.g., its native state. This enables the
solution of the equations of motion directly in the frequency domain as captured
by the PAC formalism, in an efficient manner, producing dynamic characterizations
that would be very expensive to generate with time stepping based MD simulations.

Thus, PAC enables high-throughput scanning studies.
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In Chapter 5, we have investigated the phenomenon of allostery using well es-
tablished tools of telecommunication systems, namely frequency decomposed SNR
and channel capacity based analyses. To that end, we analyzed the displacements
due to both noise forces and external excitations—capturing the effect of the ligand—
separately. We proposed two related analysis schemes, termed as per residue scan
and binding pocket excitation, in order to identify the residue pairs that are likely
to interact allosterically, and the residues that are affected in a significant manner
by a particular ligand-binding event, respectively. The frequency domain represen-
tations employed by the proposed methods lead to an alternate view into allostery,
by emphasizing the effect of perturbation frequency in the SNR response. We have
shown that the response of some of the residues exhibit a resonance at specific,
characteristic frequencies. Thus, a full spectral analysis of the responses to pertur-
bations leads to the speculative but potentially significant conclusion that the key
mechanism underlying allostery is robust signal transmission despite noise at spe-
cific frequencies. The frequency-decomposed approach further allows the analysis of
equilibrium fluctuations in the absence of the ligand. We proposed an alternative
technique to compute mean square fluctuations in a frequency-decomposed manner.

In Chapter 6, we propose a Gaussian mixture model as the prior distribution
in the latent space of a variational autoencoder, to explicitly enforce multi-basin
structure of an ideal free-energy landscape that characterizes basins that are well-
separated by the largest barriers along the higher-dimensional potential energy land-
scape. The performance of the Gaussian mixture variational autoencoder (GMVAE)
was illustrated on two standard toy-model systems and on the standard benchmark
alanine dipeptide, as well as on a challenging 15-residue-long disordered peptide.
For each example, the GMVAE circumvents the aggregation of points in the latent
space characteristic of traditional variational autoencoders. Instead, samples that
are structurally distinct are clearly separated, leading to a latent space that displays
apparent metastable basins and barriers. The GMVAE introduces a categorical vari-
able that probabilistically assigns samples to a set of underlying clusters, each of

which is Gaussian distributed. Thus, the approach combines the commonly distinct
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tasks of dimensionality reduction and clustering into a unified framework. In the
context of static equilibrium properties, the incorporation of the Gaussian mixture
model as a prior distribution on the latent space closely links our physical intuition
about ideal free-energy landscapes, resulting in an inherently more interpretable la-
tent space. Our results show encouraging performance when constructing kinetic
models from the learned representations, serving as an independent validation of
the procedure.

Chapter 8 presents additional results to the chapters and provides further de-
tails.

The findings of this study point to a number of important improvements for
future studies. A single-point force application may not always be able to ade-
quately model ligand binding. In such cases, applying forces simultaneously to all
of the residues that interact with the ligand may serve as a better model for the
ligand binding event. However, this would require a more complicated force con-
figuration determination procedure in cases where no MD simulation is possible.
Furthermore, for proteins with homogeneous structure and smaller-scale functional
motions, ligand binding may be better modeled as a dynamic event with a time-
varying, multi-frequency force perturbation. We are working on the development
of a scheme for determining the parameters of multi-point, dynamic (time-varying)
force perturbations that could serve as a better model for ligand binding. In our
future work, we plan to extend PAC so that one can perform frequency domain
analyses of protein and ligand binding dynamics with multi-frequency excitations.
Additionally, the full potential of the proposed SNR and channel capacity based
analysis methods has not been fully explored yet. More detailed analyses are re-
quired to determine the full benefits and limitations. Regarding the representation
learning, we argue that incorporating physical constraints into the architecture helps
to construct an interpretable model for the kinetics, even when kinetic information
is not used for learning the representation. Although higher-resolution MSMs con-
structed directly from the GMVAE landscape demonstrated an improved description

of the simulation kinetics, the resulting model for the disordered ensemble was un-
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able to resolve all but the longest timescale processes. An MSM constructed from
the TICA landscape demonstrated a slight improvement over this model, with re-
spect to the CK test, but also exhibited a very fast decay of probabilities out of the
identified metastable states, indicating a significant limitation in the time resolution
of the model. These issues highlight the difficulty of characterizing such disordered
ensembles, and motivate further investigation into the various possible causes. For
example, comparisons of two distinct peptide ensembles clarified the role that sam-
pling can play in distinguishing distinct partially-helical structures on the GMVAE
landscape. It remains unclear to what extent the restriction of our embeddings to
two dimensions or the choice of input features prevented the GMVAE (as well as
the more standard methods considered) from better describing the simulation kinet-
ics. Moreover, the presence of many low-lying barriers along the potential energy
landscape of this disordered ensemble may cause fundamental challenges in obtain-
ing a clear few-metastable-state characterization of the conformational landscape.
Thus, we propose that, in conjunction with simpler test systems that clearly assess
a method’s performance, such examples are important for significant advancements
in data-driven characterizations of molecular simulation trajectories. While we de-
fer a more detailed investigation of these issues for future work, we highlight the

promising performance of the GMVAE demonstrated through our results.
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Chapter 8

APPENDIX

This chapter provides supplementary information for the previous chapters.

8.1 Supplementary information for Chapter 4:
PAC: A frequency domain technique for analyzing protein dynam-

ics
8.1.1 Chemotazis signaling protein Y

CheY is a bacterial chemotaxis protein with 128 residues. Binding of Mg*" cation
to the active site results in a significant conformational change in the structure
of the protein. Several residues are displaced at around 10 A as a result of this
conformational change [77]. The holo form of the protein is with PDB ID:1CHN (at a
resolution of 1.76 A), and the apo form is with PDB ID:3CHY (at a resolution of 1.66
A). The residues are numbered from 2 to 129, and in the holo form ALA2 and ALA3
coordinates are missing. For our analysis, we include them using Modeller [78],
however, for most of the calculations, we omit the first 2 residues. The ligand is
in close interaction with residues ASP57, ASP13, and ASN59. Molecular dynamics
simulations suggest that the 54— ay loop (residues 86-92) in CheY acts allosterically
as a gating element [22, 79]. We perform PAC analysis on CheY by applying single-
point force excitations separately to two residues, one of the binding site residues,
residue 57, and one of the residues of the 5, — ay loop, residue 91.

Displacement magnitudes, |Ar;(w)|, of C, atoms are computed after the
alignment of the ligand-bound form to the ligand-free form. After alignment, RMSD
between the two structures is calculated as 1.6930 A. The correlation coefficient be-

tween the experimental displacements and the computed ones (after alignment, with
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(a) Apo form (3CHY) and holo form (b) Binding pocket of Mg®* ion and inter-
(LCHN) of CheY are aligned, apo form is acting residues: D12, D13, F14, D57, N59,
colored with blue and holo form is colored and M60. Plot was created using [75, 76].
with orange, both in solid ribbon form. Lig-

and (Mg?* ion) is shown as a black circle.

Plots were created with [74].

Figure 8.1: Alignment of apo and holo forms and binding site of CheY

zero frequency excitation) is found to be 0.3496 if the force is applied to a binding
pocket residue, residue 57, and 0.6942 if the force is applied to residue 91. The
input residues are again selected from the PRS paper [22]. In Figure 8.2(a), and
Figure 8.9(a), the red curves show the experimental displacements and the blue ones
are for the calculated when the input residue is 57 and 91, respectively. Residue
distances to these input residues are shown in Figure 8.2(b) and Figure 8.9(b). Fig-
ure 8.3(a) shows the 3D displacements and Figures 8.3(b) and (c) are for side views.
Displacement values above 10 A is not shown in the figures. Force frequency def-
initely affects the displacements in a residue-specific manner. Figure 8.3(d) shows
the displacements for a set of selected residues 4, 14, 41, 56, 76, 93, 111. Displace-
ment of residue 14 tends to decrease with frequency but at 0.1-0.25 THz, there is
an increase. Residue 56 shows two different peaks at higher frequency values. Fig-
ure 8.3(e) shows the displacements for all of the residues at five selected frequencies

in logarithmic scale.
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(a) Experimental and calculated displace- (b) Residue distances to the input residue
ments between apo and holo forms of CheY. (57).

Force excitation on residue 57.

Figure 8.2: Displacement magnitudes of CheY residues in A. Red curve shows exper-
imental displacements and blue curve is calculated displacements at the best force

magnitude and direction at zero frequency. Residues 10, 11, 54, 55, 56, 59, 63, 64,
84, 85, 86 are within 8 A range of residue 57.

Kinetic energy, E;(w). In accordance with the same critical residue selection
criteria that was defined in Section 4.5, the critical residues for CheY are 11, 12,
17, 56, 57, 66, 68 when input residue is 57, and residues 87-97, 110 when input
residue is 91 as shown in Figures 8.4(a) and 8.11(a). At low frequencies, energy is
highly correlated with the inverse of the inter-residue distances (i.e., proximity) when
force is applied to residue 91, however for excitations applied on residue 57, energy
becomes correlated with the proximity at high frequencies. The force application
site not only determines how much ligand binding is mimicked but also the frequency
dependent internal energy distribution within the protein.

Magjor-azxis length, |r™*°",(w)|. Figures 8.5 and 8.12 show the major-axis
length both as a function of residue index and frequency, and with averaging over
frequency with input residue 57 and 91, respectively. Based on the frequency aver-
aged results, residues 12-18, 56, 66, 68 (87-94, 96, 109) move more than the others

and those that exhibit the least amount of movement are the region between 2-5,
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Figure 8.3: Relative displacement magnitudes as a function of residue index and

frequency (input residue: 57)
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Figure 8.4: Energy analysis of CheY (input residue: 57)

30, 49, 50, 121, 124, 129 (2, 3, 6, 43, 44, 46, 47, 51, 52, 53) when input residue is 57
(91).

Residue inde

0 0.25 0.5 0.75 1 - ‘ ‘ :
5 70 80 90 100 110 120

Frequency (THz) Residue index
(a) |pmaier| (b) Frequency-averaged |r™%°7|,,.. Values

above 1.5 A are not shown.

Figure 8.5: Major-axis length |r™%°"| of CheY (input residue: 57).

Angle between the major-aris and applied force direction, 0™ (w).
Figure 8.6 shows that most of the residues tend to be orthogonal to the force for

larger frequencies. Frequency averaged §™%°" values are shown in Figure 8.6(b) and



Chapter 8: Appendiz 131

8.13(b). On average, residues 22, 23, 33, 44, 45, 51, 88, 108, 115, 129 (3, 29, 32,
106, 112, 114, 115, 119, 122, 127) and move orthogonally to the force and residues
14, 16, 17, 57, 70, 99, 100, 103, 104, 128 (4, 10, 17, 18, 41, 82, 88, 89, 91, 109) are

aligned with the excitation force direction when input residue is 57 (91).
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Figure 8.6: Angle between the major-axis and force, ™%°" of CheY. Colorbar labels

are to be multiplied with 7, and in radians (input residue: 57).

Isotropicity, &;(w). Figures 8.7(a) and 8.14(a) show isotropicity as a function of
frequency. Over a certain frequency range, most of the residues become anisotropic
except residues 115-120 for input residue 57. Figure 4.9(b) shows the frequency-
averaged values of isotropicity. Residues 34, 45, 67, 70, 84, 93, 111, 123, 125, 127
(62, 71, 90, 91, 100, 104, 110, 111, 124, 128) are the most anisotropic ones on the
average, and 3, 20, 23, 37, 99, 100, 116, 117, 119, 120 (9, 20, 24, 27, 34, 78, 79, 81,
103, 118) are the most isotropic when the force is applied to residue 57 (91).

Angle between the plane normal and force, 0" (w). Figures 8.8(a)
and 8.15(a) show the effect of frequency on the coplanarity with two different force
excitation sites. When the frequencies are averaged, 19, 26, 29, 44 - 46, 51, 71, 75,
89, 120 (11, 17, 37, 55, 62, 76, 86, 106, 111, 115, 126, 127) are relatively non-coplanar
with the force when the input residue is 57 (91).

According to Table 8.1, the single point, static force application seems to model

ligand binding better for FBP in comparison to CheY.
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Protein ~ Unit Force Direction = Force Magnitude Input Residue Correlation

FBP [0.9040 0.3834 0.1894] 4.1859 57 0.9731
CheY  [-0.4060 0.6761 0.6148] 36.8113 57 0.3496
CheY  [0.6485 -0.4982 -0.5705] 11.4416 91 0.6942

Table 8.1: Force parameters, input residue and correlation value between the exper-

imental and calculated displacements for selected proteins.
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8.2 Supplementary Information for Chapter 5:

Allostery in proteins as point-to-point telecommunication in a net-

work: Frequency decomposed signal-to-noise ratio and channel ca-

pacity analysis

Amino acid type | Mass(amu) | Volume (x 1072 nm?)
ALA 71 87.2
ARG 156 181.3
ASN 114 117.4
ASP 115 114.6
CYS 103 106.7
GLU 129 141.4
GLN 128 142.4
GLY 57 60.6
HIS 137 152.4
ILE 113 168.9
LEU 113 168.9
LYS 128 174.3
MET 131 163.1
PHE 147 187.9
PRO 97 122.4
SER 87 91.0
THR 101 117.4
TRP 186 228.5
TYR 163 192.1
VAL 99 141.4

Table 8.2: Mass and volume values of the amino acids

Table 8.3 summarizes the critical residues identified in previous work using a wide

range of computational methods as well as experimental techniques for the PDZ3
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the preparation of the table.
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Method Critical residues

Perturbation response scanning [5] 314, 316, 326, 327, 328, 329, 330, 335, 336, 337, 338,
339, 340, 341, 345, 346, 347, 353, 354, 355, 356, 358,
359, 361, 362, 367, 370, 372, 375, 379, 386, 387, 388,

389, 390

Experimental [6] 325, 328, 329, 340, 341, 362, 372, 376, 380, 386, 390

Statistical coupling analysis. 1 [7] 322, 325, 329, 340, 341, 362, 372, 376, 380, 386

Statistical coupling analysis. 2 [8] 323, 324, 325, 327, 328, 329, 330, 336, 338, 341, 347,
353, 359, 362, 367, 372, 375, 376, 379, 388

Anistotropic thermal diffusion [9] 325, 327, 341, 347, 353, 372

Structural perturbation method [10] 310, 318, 319, 320, 323, 327, 329, 331, 332, 333, 334,
372, 376, 380, 384, 400

Rotamerically induced perturbation [11] 316, 318, 323, 325, 336, 346, 347, 349, 353, 357, 359,
362, 367, 375, 378, 379, 386, 390

MD [12] 309, 318, 322, 323, 324, 326, 327, 328, 330, 331, 332,
334, 337, 348, 352, 354, 355, 357, 373, 380, 391, 395,
399

Deep coupling scan [13] 372, 375, 376, 379

Thermodynamic double mutant cycle [14] 314, 316, 323, 325, 327, 328, 331, 340, 341, 347, 353,

362, 372, 375, 376, 377, 378, 380, 382, 386

Conservation mutation correlation analysis [15] | 311, 316, 326, 327, 330, 336, 337, 338, 339, 341, 342,
343, 344, 347, 348, 351, 356, 359, 360, 362, 364, 366,
369, 376, 378, 381, 386

Rigid-residue scan [16] 338, 343, 347, 397

Monte Carlo path [17] 325, 327, 338, 353, 372

Table 8.3: Critical residues identified by various methods
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8.3 Supplementary Information for Chapter 6:
Interpretable embeddings from molecular simulations using Gaus-

sian mixture variational autoencoders

X" € R™ denotes the reconstructions. The sampling operation in the reconstructions
(shown in the decoding part of Figure 6.3), corresponds to taking the means of the

Gaussians for simplicity.

8.8.1 One dimensional 4-well potential

The trajectory data is obtained as suggested in [155], and using the code provided
in [163]. 100 x 100 transition probability matrix is obtained among the equally-
spaced 100 bins in the interval |-1, 1] as follows

Ciexp(—(V; = V), ifli—j| <1
V. (Vi=1), ifli= .

0, otherwise ,
where V; and V; are the potential energies at the centers of bins i and j, which
are defined according to the potential of the form: V/(X) = 2(X® 4 0.8e780%" +
0.2e 80X -05)* 4 () 5—40(X+05)) "and C is the normalization factor. The system is
initialized randomly, and propagated according to P;; 5 x 10° steps in time.
Figure 8.22 shows the reconstructions in a scatter plot. The X = X’ line shows

the lossless reconstructions.
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Figure 8.22: X vs X’ for one-dimensional 4-well potential. Reconstructions are

obtained via the GMVAE.

8.8.2  Muiller-Brown potential

The trajectory data is obtained as suggested in [131], and using the code provided

in [164]. Two dimensional potential energy is defined as:

3
V(Xo, X1) = Y Ajexpla;(Xo — 20,)* + bj(Xo — 20;) (X1 — 215) + (X1 — 1)),
" (82)
where z = (X, X;) is the two-dimensional coordinate, and A, a,b,c,xg and yo
are the standard parameters [152] such that A = (—200,—-100,—-170,15), a =
(—1,-1,6.5,0.7), b = (0,0,11,0.6), c = (—10, —10, —6,5, —0.7), o = (1,0, —0.5, —1),
x1 = (0,0.5,1.5,1). The trajectory data is generated using 30 trajectories of 10000

steps simulated with Brownian dynamics:

dv  AV(x)
=gt V2DR(t) (8.3)

where kT = 1.5 x 10* joules, and D = 1072 meters-squared per second, and R(t) is
a delta-correlated Gaussian process with zero mean.

The true labels are defined as shown in Figure 8.23(a). Figures 8.23(b) and

8.23(c) show the reconstructions.
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Figure 8.23: True label definitions and X vs X’ for Miiller-Brown potential. Recon-
structions are obtained via the GMVAE. (a) True labels. (b) Reconstructions in the

first dimension. (c) Reconstructions in the second dimension.

Figure 8.24 further demonstrates the ability of the GMVAE to learn a nonlin-
ear manifold that separates the three distinct free-energy basins, compared with
time-lagged independent component analysis (TICA), which can only find a lin-
ear separatrix for the basins. Figure 8.24, showing the projections obtained with
the GMVAE and TICA, was constructed following [131], with the colors indicating

values of the latent variable while the gray dots correspond to trajectory data.
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Figure 8.24: Projections via the GMVAE and TICA. The GMVAE learns the non-

linear dividing surface in the low-dimensional space.

8.8.8 Alanine dipeptide

As the input features, dihedral angles and pairwise distances for heavy atoms that
are provided in [156] for three simulations of length 250 ns each are used. Dihedral
angles are transformed to their sin / cos representaions, and the pairwise distances
whose variance are low are removed from the feature set (using kurtosis function

from scipy.stats library [165], with threshold value of 0.03, as shown in Figure 8.25).



Chapter 8: Appendiz

151

WONONLWN O

Dihedral angles

(a) Dihedral angles

sinfcos-augmented dihedrals

cosd 1

sind 1

=2 0

Feature values

(b) Pairwise distances

Pairwise (pw) distances

cosW 1

siny

=1.

Normalized pw distances

0 0.0 0.5 1.0

A

—-0.5

Feature values

Filtered normalized pw distances

Yy

LRGN AEWNEO

-

il's

=

il

-

0.

[N }P}

0.4 056
Feature values

-5.0 -25 5.0

0.0
Feature values

2.5

4
5
6
7
8

i

-5.0 -2.5 0.0 2.5
Feature values

Figure 8.25: Processing of the features: (a) the dihedral angles along the backbone,

and (b) the pairwise distance between heavy atoms.

We applied TICA to the set of pairwise distances only, followed by a kinetic
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coarse-graining with the PCCA™ method into 4 metastable states. Figure 8.26(a)
presents the resulting clusters plotted on the Ramachandran plot. Figures 8.26(b)
and 8.26(c) show the histograms of these metastable states, and the GMVAE clus-

ters, respectively.

(a) Metastable states

Metastable state index

-120
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[

(b) The true metastable states (c) The GMVAE clusters
10°
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0 1 2 3 o 1 2 3 4 5
Metastable state index Cluster index

Figure 8.26: (a) Metastable states from TICA and PCCA™ on the Ramachandran
plot. The histograms for the (b) true metastable states, (c) GMVAE clusters.
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Figure 8.27: (a) FEL obtained for the alanine dipeptide by the GMVAE in a separate
fully-converged training. The GMVAE clusters on the (b) GMVAE landscape, (c)

Ramachandran plot. (d) Cluster counts.



Chapter 8: Appendiz 154
(a) Implied timescales (b) Chapman-Kolmogorov test
103 i 1.0
1 0-0 1-1 252
g : 05
% 102 i E“
o T o oo :
% /——_-_ : E 1.0
@ o) [ ——]
v 1pl ! o 33 4=4
E | a
= 05
|
100 T : 0.0

10 20 30 40 50

Time (steps)

) B 180

Time (steps)

Figure 8.28: Markovianity check of the MSM built for alanine dipeptide via the

GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at lag=20 steps).
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(a) The FEL obtained by the VAE,

(b) the true metastable state partitions on this landscape.

8.8.4 AAQAA; peptide - 1

8.5.4.1

Coarse-grained peptide model

We employ a simple physics-based peptide model that was previously used to in-

vestigate structural-kinetic relationships in helix-coil transitions [159, 166]. The

model employs three attractive interactions, following standard Go-type models [167,
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168, 169, 170]: (i) a native contact (nc) attraction, Uy, employed between pairs of
C,atoms which lie within a certain distance in the native structure, i.e., the a-helix,
of the peptide, (ii) a desolvation barrier (db) interaction, Uy, also employed between
native contacts, and (%ii) a hydrophobic (hp) attraction, Uy, employed between all
pairs of Cg atoms of the amino acid side chains. We employed the same functional
forms as in many previous studies [170], with a tunable prefactor, ¢;, for each of
the interactions. The model considered here employed the prefactors e, = 12.5,
€ = 0.4€yc, and ey, = 0.2€,., while performing simulations at a temperature of
280 K. In addition to these simple coarse-grained interactions, a standard AA force
field, AMBER99sb [103], is also partially incorporated to model both the steric in-
teractions between all non-hydrogen atoms and also the specific local conformational
preferences along the chain.

Molecular dynamics simulations of AAQAA, were performed with the Gromacs
4.5.3 simulation suite [102] in the constant NVT ensemble, while employing the
stochastic dynamics algorithm with a friction coefficient v = (2.0 75)~! and a time
step of 1 x 107 75, For each model, 100 independent simulations were performed
with starting conformations varying from full helix to full coil. Each simulation
was performed for 100,000 75, recording the system every 0.5 7°. The CG unit
of time, 75, can be determined from the fundamental units of length, mass, and
energy of the simulation model, but does not provide any meaningful description of

the dynamical processes generated by the model. In this case, 75 =1 ps.

8.8.4.2 GMVAFE landscape and the cluster assignments

Since the GMVAE method is a probabilistic clustering method, each data point has
a probability of assignment to each of the k£ clusters. For a data point d;, the proba-
bility of assignment to each of the clusters has probability values pg, 0, Pa, 1, - - - Pd; k-1
for £ number of clusters. In the ideal case, all of the probability values except the
true cluster is equal to 0, and the true cluster has a value of 1. Figure 8.30 sepa-
rately shows the histogram of probability distributions of all of the data points for

a cluster. For instance, for cluster 0, the probability distributions are accumulated
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at probability values 0 and 1. In other words, with high certainty, cluster 0 is differ-
entiated from the others. None of the data points is assigned to clusters 7 — 8 — 9.
Note that although the network is initially trained for 10 clusters, it is not possible
to separate more than 7 clusters under the specified loss function. This suggests a
way to find the inherent number of clusters, i.e., metastable states, provided that k

is chosen larger than that true value.

108 I 0 I 1091 l 1 -
102 1024
106 I 2 . 109+ l 3 -
102 102
106 I 4 I 106’ l 5 .
102 102
106 l 6 . 1064 l 7
102 10°- ‘ ‘ ‘
10° 8 109 l 0
2 : . . 2] . .
10 10 0 . .

0 02 04 06 08 1.0

Counts

Probability

Figure 8.30: The population distribution as a function of probability of belonging
to each of the clusters after the training. None of the data points is assigned to

clusters 7 — 8 — 9.

Cluster ID’s are obtained after a thresholding step as explained in Section 6.2.3.1.
Figure 8.31 shows the cluster populations. Cluster -1 indicates the datapoints that

are not assigned to any of the clusters.
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Figure 8.31: Cluster populations

Figure 8.32 shows the inter-cluster (f;,) distributions.
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Figure 8.32: Intra-cluster distributions of average helical fraction, (fi,), (AAQAA,
- I). The dashed lines indicate the average values, which are also written in the text

boxes.

To further characterize the clustering of secondary structures, we separately cal-
culated dRMSDs with respect to three reference structures: helix (hel), hairpin-like
(hp), and extended (coil). Figure 8.33(a) presents both the reference structures
(right) and corresponding dRMSD distributions (left). The first and the second

small peaks in the dRMSDy, distribution represent helical conformations, while the
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peak corresponding to dRMSDy,q values between 2 — 3.5 hints at the presence of the
hairpin-like structures. Note that there is an offset in dRMSDy,, values due to (i) the
scarcity of the well-defined hairpins in the trajectory data, and (ii) the subjectiv-
ity involved in choosing the reference structures. By plotting the two-dimensional
free-energy surface along dRMSDy,e and dRMSDy,;,, shown in Figure 8.33(b), the
distinct secondary structures can be separated. The conformations with dRMSDy,¢
values below 1.8 are helical, whereas the minimum in the upper right with dARMSDy,
greater than 4 is comprised of extended structures. The energy minimum in the mid-
dle (enclosed in the region with dRMSDy values between 1.8 and 3, and dRMSDy,,
values between 0 and 3) contains hairpin-like structures. Figure 8.33(c) presents
inter-cluster free-energy surfaces along dARMSDye and dRMSDy,;,, generated by con-

sidering only conformations within a single cluster.
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(a) Histogram plots of dRMSD values

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Density

0.0~

0 1

dRMSD values

% 3 4 B

armsp,s | hel . S
ARMSDHp NV
GRMSD ot N

hp .~

& L —

coil

A ' f\L
6 7

(b) Scatter plot of dARMSDpe vs. dRMSDy,,
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Figure 8.33: dRMSD analysis. (a) The density histograms of dRMSD values for

helix, hairpin, and coil structures (with the visualized reference structures). (b)

Scatter plot of dRMSDye vs. dRMSDy,,, with densities.

(c) Sampled regions of

dRMSDy,e vs. dRMSDy, in each of the cluster. The same colormap is used in (b)

and (c).
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Figure 8.34: Projections colored according to (a) dRMSDye, (b) dRMSDy,, (c)
dRMSD, i1, and (d) Ry

In addition to (f,) and dRMSDy, the radius of gyration R, distribution is also
analyzed. R, measures the mass-weighted deviations from center of mass, and gives
an idea on the overall spread and compactness of the molecule, and is calculated as

> e — r[]?
Rg = \/ Zm ) (84)

where m; is the mass of atom ¢, r; the coordinates of atom ¢, and r, is the coordinates
of the center of mass. Figures 6.13(b), 8.34(a), 8.34(b), and 8.34(c) show the heat
map of dRMSDy,, dRMSDy,,, dRMSDei1, and R, on the FEL obtained via the
GMVAE, respectively.

As a final characterization of the clustering, we constructed an MSM directly

from the discretized trajectories of GMVAE cluster indices. Although threshold-
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ing was applied in the results presented here (practically similar to coring methods
for constructing kinetic models [162]), we found that this procedure had negligi-
ble effect on the accuracy of the resulting MSM. Figure 8.35(a) presents implied
timescale test. The kinetic model can resolve two of longest characteristic processes
and demonstrates reasonable convergence, although there is a small increase in the
longest timescale with increasing lag time. This subtle discrepancy already indicates
that there may be some issues with the accuracy of the kinetic model. An MSM is
constructed at lag time 700 to balance between the convergence of the timescales and
the resolution of shorter timescale processes. Figure 8.35(b) presents the CK test
from this model. There are significant errors in the description of probability decay
from each of the metastable states (i.e., clusters), especially states 0 and 1. First, we
note that coarse-grained MSMs (i.e., MSMs built on a small number of metastable
states) are often not expected to be quantitatively accurate due to difficulties in ac-
curately defining the dividing surfaces between states [143]. However, we anticipate
that it should be possible to make a more accurate coarse-grained MSM for this
particular simulation trajectory. The discrepancies in the model can then originate
from two coupled problems: (i) the GMVAE latent space definition places structures
close together that are kinetically distinct (i.e., there are hidden barriers) or (ii) the
GMVAE clustering fails to identify/separate distinct metastable states. The FEL
within the latent space (Figure 6.11(a)) contains clearly separated basins that are
not identified as unique clusters by the GMVAE. In particular, within clusters 0
and 1, there seems to be 2 and 3 separate states, respectively. Figure 8.32 shows
that cluster 0 (1) contains structures with a range of helicities ranging from 0.46-1.0
(0.15-0.69). According to the conventional picture of the helix-coil transition, the
overarching kinetics can be described by two timescales: (i) the rate at which a single
helical segment is formed and (ii) the elongation rate of helical segments along the
chain. By grouping together conformations with a single helical segment and sev-
eral helical segments, the GMVAE has convoluted these two timescales, resulting in
non-Markovianity in the kinetics described on these clusters. To further clarify the

source of these errors, we constructed an MSM in the conventional way, directly from
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the latent space distribution. More specifically, we applied k-means algorithm with
1000 cluster centers, and then applied PCCA™ [146]. In order to enable comparison,
we continued with the previous number of metastable states (7). The CK test for
the resulting model with lag time 7 = 700 (obtained from the implied timescale test,

Figure 8.37(b)) is presented in Figure 8.37(c), and demonstrates slightly improved

accuracy.
(a) Implied timescales (b) Chapman-Kolmogorov Test
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Figure 8.35: Markovianity check of the MSM built for the AAQAA, peptide - I via
using the cluster labels from the GMVAE. (a) Implied timescales. (b) Chapman-
Kolmogorov test (at lag=700 steps)
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Figure 8.36: Distributions for (hy) > 0.8 (on the left), (hy) < —0.8 (on the right).
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8.3.4.8 GMVAE landscape only (without using the cluster assignments)
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Figure 8.38: Cluster populations for AAQAA; - T from PCCA*
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Figure 8.39: Intra-cluster distributions of average helical fraction, (f), (AAQAA,
- I) for the clusters obtained with PCCA™). The dashed lines indicate the average

values, which are also written in the text boxes.

8.3.4.4 TICA results

2D TICA projections are obtained at lag time 7 = 20 steps.
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Figure 8.41: Kinetic analysis on TICA landscape for AAQAA, - 1
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Figure 8.42: Cluster populations for AAQAA, - I from TICA + PCCA™
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Figure 8.43: Intra-cluster distributions of average helical fraction, (f), (AAQAA,

- I) for the clusters obtained with PCCA™). The dashed lines indicate the average

values, which are also written in the text boxes. Note that cluster 3 is an empty

cluster.
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8.8.4.5 VAFE results
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Figure 8.45: Kinetic analysis on the VAE landscape for AAQAA, - 1
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Figure 8.46: Cluster populations for AAQAA, - I from VAE + PCCA™
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Figure 8.47: Intra-cluster distributions of average helical fraction, (f), (AAQAA,
- I) for the clusters obtained with PCCA™). The dashed lines indicate the average

values, which are also written in the text boxes.

8.8.5 AAQAA;s peptide - 11

We also considered an alternative coarse-grained model, with energetic prefactors
ene = 10.92, eqp = 0.2€5, and e, = 0.5€,, while performing simulations at a

temperature of 300 K.
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8.83.6 GMVAEFE landscape and the cluster assignments
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Figure 8.49: Intra-cluster distributions of average helical fraction, (f,), (AAQAA; -
IT). The dashed lines indicate the average values, which are also written in the text

boxes.
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test (at lag=500 steps)
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- IT) for the clusters obtained with PCCA™). The dashed lines indicate the average

values, which are also written in the text boxes.

8.3.6.2 TICA results

2D TICA projections are obtained at lag time 7 = 20 steps.
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8.3.6.3 VAFE results
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