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ABSTRACT

Perturbation-Response and Noise Dynamics in Proteins and

Representation Learning for Biomolecular Simulations

Yasemin Bozkurt Varolgüneş

Doctor of Philosophy in Electrical and Electronics Engineering

May 2020

Molecular Dynamics simulations, the standard tool for analyzing biomolecules, pro-

vide detailed and accurate characterizations but at the expense of tremendous com-

putational cost. A variety of more efficient computational methods have been de-

veloped in order to enable the understanding of practical systems of interest. This

thesis contributes to this body of work by adapting and repurposing tools from elec-

trical circuit analysis for analyzing the perturbation-response and noise dynamics of

proteins, and by applying dimensionality reduction techniques from machine learn-

ing for identifying and extracting the essential features of biomolecules from large

amounts of simulation data.

The interactions of proteins with ligands are determined by their dynamic char-

acteristics as opposed to only static, time-invariant processes. Inspired by a fre-

quency domain analysis technique from electronic circuit design, we propose a novel

computational technique that can be used to analyze small scale functional protein

motions as well as interactions with ligands directly in the frequency domain. It

can be considered as a generalization of previously proposed static perturbation-

response methods, where the frequency of the perturbation becomes the key. We

show that the frequency of the perturbation may be an important factor in protein

dynamics. Furthermore, we introduce several novel frequency dependent metrics in

order to characterize response behavior.

Allostery—a phenomenon in which the binding of a ligand induces alterations in

the activity of remote functional sites—can be conceptually viewed as point-to-point

telecommunication in a networked communication medium, where a signal (ligand)

arriving at the input (binding site) propagates through the network (interconnected

and interacting atoms) to reach the output (remote functional site). The reliable
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transmission of the signal to distal points occurs despite all the disturbances (noise)

affecting the protein. Based on this point of view, we propose a computational

frequency-domain framework to characterize the displacements and the fluctuations

in a region within the protein, originating from the ligand excitation at the binding

site and noise, respectively. We characterize the displacements in the presence of

the ligand, and the fluctuations in its absence. In the former case, the effect of the

ligand is modeled as an external dynamic oscillatory force excitation, whereas in

the latter, the sole source of fluctuations is the noise arising from the interactions

with the surrounding medium that is further shaped by the internal protein network

dynamics. We introduce the excitation frequency as a key factor in a Signal-to-Noise

ratio (SNR) based analysis, where SNR is defined as the ratio of the displacements

stemming from only the ligand to the fluctuations due to noise alone. We then

employ an information-theoretic (communication) channel capacity analysis that

extends the SNR based characterization by providing a route for discovering new

allosteric regions.

Extracting insight from the enormous quantity of data generated from molecular

simulations requires the identification of a small number of collective variables whose

corresponding low-dimensional free-energy landscape retains the essential features

of the underlying system. Data-driven techniques provide a systematic route to con-

structing this landscape, without the need for extensive a priori intuition into the

relevant driving forces. In particular, autoencoders are powerful tools for dimension-

ality reduction, as they naturally force an information bottleneck and, thereby, a

low-dimensional embedding of the essential features. While variational autoencoders

ensure continuity of the embedding by assuming a unimodal Gaussian prior, this is

at odds with the multi-basin free-energy landscapes that typically arise from the

identification of meaningful collective variables. In this work, we incorporate this

physical intuition into the prior by employing a Gaussian mixture variational autoen-

coder (GMVAE), which encourages the separation of metastable states within the

embedding. The GMVAE performs dimensionality reduction and clustering within a

single unified framework, and is capable of identifying the inherent dimensionality of

the input data, in terms of the number of Gaussians required to categorize the data.

The resulting embeddings also provide representations for constructing Markov state

models, highlighting the transferability of the dimensionality reduction from static

equilibrium properties to dynamics.



ÖZETÇE

Proteinlerde Pertürbasyon-Tepki ve Gürültü Dinamiği ve

Biyomoleküler Simülasyonlarda Temsili Öğrenme

Yasemin Bozkurt Varolgüneş

Elektrik ve Elektronik Mühendisliği, Doktora

Mayıs 2020

Biyomoleküllerin analizinde standart bir araç olan moleküler dinamik simülasyonları,

ayrıntılı ve doğru karakterizasyonlar sağlamakla birlikte bu simülasyonların hesaplama

maliyeti yüksektir. İlgilenilen sistemleri anlamayı sağlamak için çeşitli daha ver-

imli hesaplama yöntemleri geliştirilmiştir. Bu tez, proteinlerin pertürbasyon-tepki

ve gürültü dinamiklerini analiz etmek için elektrik devresi analizinde kullanılan

araçları adapte ederek ve yeniden kullanarak ve makine öğrenmesinde kullanılan

boyut azaltma teknikleri aracılığı ile yüksek boyuttaki simülasyon verisinin altında

yatan esas nitelikleri çıkartmaya imkan sağlayarak bu alandaki çalışmalara katkı

sağlamaktadır.

Proteinlerin ligandlarla etkileşimleri, sadece statik, zamanla değişmeyen işlemlerin

aksine dinamik özellikleri ile belirlenir. Elektronik devre tasarımında yaygın olarak

kullanılan bir frekans analiz tekniğinden esinlenerek, küçük ölçekli fonksiyonel pro-

tein hareketlerinin yanı sıra proteinlerin ligandlarla doğrudan etkileşimlerinin anal-

izinde kullanılabilecek ProteinAC (PAC) adını verdiğimiz yeni bir frekans etki alanı

hesaplama tekniği öneriyoruz. Bu teknik daha önce önerilen statik pertürbasyon-

tepki yöntemlerinin pertürbasyon frekansının kilit rol oynadığı genelleştirilmesi olarak

kabul edilebilir. Pertürbasyon frekansının protein dinamiklerinde önemli bir faktör

olabileceğini gösteriyoruz. Ayrıca, tepki davranışını karakterize etmek için frekansa

bağlı birkaç yeni metrik sunuyoruz.

Alosteri—ligand bağlanması ile uzak fonksiyonel bölgelerin aktivitesinde

değişiklikler gözlemlendiği fenomen—kavramsal olarak bir girişteki (bağlanma bölgesi)

sinyalin (ligand) yayılarak çıkışa (uzak etkilenen bölge) ulaştığı ağlı bir iletişim or-

tamında noktadan noktaya telekomünikasyon olarak kavramsallaştırılabilir. Sinyalin

uzak bölgelere kadar güvenilir bir şekilde iletimi, proteini etkileyen tüm bozan
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etkenlere (gürültü) rağmen gerçekleşir. Bu bakış açısına dayanarak, proteinin bir

bölgesinde meydana gelen bağlanma bölgesine ligand uyarımına bağlı yer değiştirmeleri

ve gürültüden kaynaklanan dalgalanmaları frekans etki alanında inceleyen hesapla-

malı bir çerçeve öneriyoruz. Ligand varlığındaki yer değiştirmeleri ve yokluğundaki

dalgalanmaları karakterize ediyoruz. İlk durumda, ligandın etkisi harici bir di-

namik salınım kuvveti uyarımı olarak modellenirken, ikincisinde tek dalgalanma

kaynağı, çevre ortamı ile etkileşimlerden kaynaklanan ve dahili protein ağı dinamik-

leri tarafından şekillendirilen gürültüdür. Uyarım frekansını sadece liganddan kay-

naklanan yer değiştirmelerin sadece gürültü nedeniyle oluşana oranı olarak

tanımladığımız Sinyal-Gürültü oranına (SNR) dayalı bir analizde anahtar bir faktör

olarak tanıtıyoruz. Daha sonra yeni allosterik bölgeleri keşfetmek için bir yol sağlayacak

SNR tabanlı karakterizasyonu genişleten bir bilgi teorik (iletişim) kanal kapasite

analizi kullanıyoruz.

Moleküler simülasyonlardan elde edilen muazzam miktarda veriden içgörü elde

etmek, karşılık gelen düşük boyutlu serbest enerji manzaralarında, altta yatan sis-

temin temel özelliklerini koruyan az sayıda kolektif değişkenin tanımlanmasını gerek-

tirir. Veriye dayalı teknikler, ilgili itici kuvvetlere dair kapsamlı sezgiye ihtiyaç

duymadan bu manzarayı oluşturmak için sistematik bir yol sağlar. Özellikle, oto-

kodlayıcılar, doğal olarak bir bilgi darboğazını ve dolayısıyla temel özelliklerin düşük

boyutlu olarak gömülmesini zorladıkları için boyutsallığın azaltılmasında kullanılan

güçlü araçlardır. Varyasyonel oto-kodlayıcılar, öncül olarak tek modlu bir Gauss

varsayarak gömülmenin sürekliliğini sağlarken, bu, tipik olarak anlamlı kolektif

değişkenlerin tanımlanmasından kaynaklanan çok havzalı serbest enerji manzaraları

ile çelişmektedir. Bu çalışmada, gömülme içinde metastabil durumların ayrılmasını

teşvik eden bir Gauss karışımı varyasyonel oto-kodlayıcısı (GMVAE) kullanarak bu

fiziksel sezgiyi öncüle dahil ediyoruz. GMVAE, tek bir birleşik çerçeve içinde boyut-

sallık azaltma ve kümeleme işlemlerini gerçekleştirir ve verileri sınıflandırmak için

gereken Gauss dağılımı sayısı bakımından girdi verilerinin doğal boyutsallığını be-

lirleme yeteneğine sahiptir. Ortaya çıkan gösterimler ayrıca, boyut indirgemesinin

statik denge özelliklerinden dinamiklere aktarılabilirliğini vurgulayarak Markov du-

rum modellerinin oluşturulması için temsiller sağlar.



PUBLICATIONS

Contents of this thesis have previously appeared in the following publications:

1. Varolgunes, Yasemin Bozkurt, and Alper Demir. “ProteinAC: a frequency

domain technique for analyzing protein dynamics.” Physical Biology, 2018.

2. Varolgunes, Yasemin Bozkurt, Joseph F. Rudzinski, and Alper Demir. “Al-

lostery in proteins as point-to-point telecommunication in a network: Fre-

quency decomposed signal-to-noise ratio and channel capacity analysis.”

(Under Review)

3. Varolgunes, Yasemin Bozkurt, Tristan Bereau, and Joseph F. Rudzinski. “In-

terpretable embeddings from molecular simulations using Gaussian mixture

variational autoencoders.” Machine Learning: Science and Technology, 2020.

ix



ACKNOWLEDGMENTS

This PhD thesis is the output of the effort and support of several people to

whom I am extremely grateful. First and foremost, I wish to express my sincere

appreciation to my advisor Prof. Alper Demir for his valuable and constructive

suggestions during the planning and development of this thesis. His work discipline,

useful critiques, and perfectionist attitude provided me with an invaluable skill set

that will benefit me for the rest of my career.

I wish to thank the members of my dissertation committee: Prof. Alper Erdoğan,
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both at the Koç University and at the MPIP, who provided me with a friendly and

x



inspiring environment to work and have fun. I would especially like to thank the

Theory Group members at the MPIP for facilitating my transition to Germany.

Vielen herzlichen dank!

Many thanks to all members of Bozkurt and Varolgüneş families, for always
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of residue 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Relative displacement magnitudes as a function of residue index and

frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Energy analysis of FBP . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Major-axis length |rmajor| of FBP. . . . . . . . . . . . . . . . . . . . . 51

4.8 Angle between the major-axis and force, θmajor, of FBP. Colorbar

labels are to be multiplied with π, and in radians. . . . . . . . . . . . 52

4.9 Isotropicity ξ of FBP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.10 Angle between the plane normal and the force direction, θnormal, of

FBP. Colorbar labels in radians/pi. . . . . . . . . . . . . . . . . . . . 53

5.1 Numerical Solution of Lyapunov equation . . . . . . . . . . . . . . . . 67

xvii



5.2 A simplified pictorial overview of the work flow. The signal permeates

throughout the network from a single entry point, the input, and

converges at the output. Noise enters the network from everywhere

and every noise component has an impact at the output. Although

the noise forces act on every node, only some of them are shown in

the figure to reduce clutter. The network was drawn using the NAPS

web-server provided in [1]. . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Schematic of the work flow. . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Schematic view of the two different techniques used in order to probe

allosteric behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 The aligned structures of the apo and holo forms of the PDZ3 pro-

tein. Wheat (teal) color is for the holo (apo) form. The ligand is

represented in ball-and-stick format. PyMOL was used for the visu-

alization [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 The secondary structure assignments from DSSP (definition of sec-

ondary structure of proteins) [3] of the holo form of the PDZ3 protein

(PDBID: 1be9). Image is from the RCSB PDB (www.rcsb.org) [4]. . 79

5.7 B factor values that are calculated with various methods for the apo

form (PDBID:1bfe). The blue (red) lines show the values calculated

via power spectral density integrations using HMD (HANM). The

orange (green) line is calculated directly from the pseudo-inverse of

HMD (HANM). The black line shows the experimental values. The

values are scaled to correspond to the experimental ones. . . . . . . . 81

5.8 PSD profile of the equilibrium fluctuation with (a)HMD and (b)HANM. 82

5.9 Per residue scan with HMD. (a) Normalized, (b) Distance-weighted

and normalized channel capacity values. . . . . . . . . . . . . . . . . 83

xviii



5.10 BP excitation withHMD (b) Distance-weighted and normalized chan-

nel capacity values. The gray area corresponds to the binding pocket

residues upon which the force is applied. (b) Apo protein structure

(PDBID:1bfe) is colored according to the capacity values (without

distance weighting): red indicates the highest capacities and blue is

for the lowest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Capacity values from BP excitation and the critical residues identified

by various methods. The gray areas indicate the residues on which the

external force is applied in the capacity analysis. CapacityMD refers to

the results obtained withHMD. Abbreviations: prs - perturbation re-

sponse scanning [5], exp - experimental [6], sca-1 - statistical coupling

analysis [7], sca-2 - statistical coupling analysis [8], atd - anisotropic

thermal diffusion [9], spm - structural perturbation method [10], rip

- rotamerically induced perturbation [11], md - molecular dynam-

ics [12], dcs - deep coupling scan [13], tdmc - thermodynamic double

mutant cycle [14], cmca - conservation mutation correlation analy-

sis [15], rrs - rigid-residue scan [16], mcpath - Monte Carlo path [17]. 86

5.12 (a) Signal-to-Noise ratio (SNR) with BP excitation using HMD, (b)

Selected residues with characteristic frequency response. . . . . . . . 87

6.1 Schematic of an autoencoder architecture with mean-squared error

reconstruction loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 (a) The VAE and (b) GMVAE architectures. In the probabilistic

graph representation, circle nodes represent the random variables, and

directed edges represent statistical dependencies between the vari-

ables in the two ends. Dot nodes are used to indicate the parameters

of the model, while some of the nodes are intentionally filled to dif-

ferentiate the observed random variables from the non-observed ones

which are left empty. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xix



6.3 Schematic of the GMVAE workflow. . . . . . . . . . . . . . . . . . . . 98

6.4 (a) 1D 4-well potential with the true labels. (b) Confusion matrix

constructed with the true labels shown in (a) and the predicted labels

obtained via the GMVAE. Population size increases from light to dark

blue. Normalized histograms of the 1D latent variable via the (c)

GMVAE and (d) VAE. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5 Markovianity check of the kinetic model built for 1D 4-well potential

system. The MSM was constructed directly using the cluster labels

obtained from the GMVAE. (a) Implied timescale test. (b) Chapman-

Kolmogorov test (at lag = 200 steps). . . . . . . . . . . . . . . . . . . 105

6.6 2D Müller-Brown potential. (a) Free-energy landscape. (b) Clus-

ters obtained from the GMVAE. (c) Confusion matrix with the true

labels determined with linear dividing surfaces (Figure 8.23(a)) and

predicted labels obtained via the GMVAE. Population size increases

from light to dark blue. Normalized histograms of the 1D latent vari-

able via the (d) GMVAE (e) VAE. . . . . . . . . . . . . . . . . . . . 107

6.7 Markovianity check of the MSM built for 2D Müller-Brown potential

via the GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov

test (at lag=10 steps). . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.8 (a) Free-energy landscape of alanine dipeptide. (b) GMVAE clusters

on the Ramachandran plot. . . . . . . . . . . . . . . . . . . . . . . . 109

6.9 (a) FEL obtained for the alanine dipeptide by the GMVAE. The

GMVAE clusters on the (b) GMVAE landscape. . . . . . . . . . . . . 110

6.10 Markovianity check of the MSM built for alanine dipeptide via the

GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at

lag=20 steps). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.11 Free-energy landscapes of AAQAA3 - I peptide obtained by (a) the

GMVAE, and (b) the VAE. . . . . . . . . . . . . . . . . . . . . . . . 112

xx



6.12 (a) The clusters obtained for the AAQAA3 peptide - I by the GMVAE

after thresholding. (b) The secondary structures closest to the cluster

centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.13 AAQAA3 - I. (a) Average helical fraction, 〈fh〉, analysis. Colors rep-

resents the 〈fh〉 values of the corresponding projected data obtained

from the GMVAE. (b) dRMSDhel analysis. . . . . . . . . . . . . . . . 116

6.14 Analysis of partially-helical conformations for AAQAA3 - I. Projec-

tions are colored according to 〈hN〉 − 〈hC〉 values. . . . . . . . . . . . 117

6.15 The GMVAE results for AAQAA3 peptide - II. (a) Free-energy land-

scape. (b) The clusters obtained after thresholding. (c) The sec-

ondary structures closest to the cluster centers. . . . . . . . . . . . . 119

6.16 Projections for the AAQAA3 peptide - II. (a) 〈fh〉, (b) dRMSDhel. . . 120

6.17 The N- and C-terminus end folding analysis for the AAQAA3 peptide

- II. (Left) The difference in the average values of the two-end foldings,

〈hN〉 − 〈hC〉. (Right) Distribution of the N- (on the left, 〈hN〉 ≥ 0.8)

and C-end (on the right, 〈hN〉 ≤ −0.8.) . . . . . . . . . . . . . . . . . 121

8.1 Alignment of apo and holo forms and binding site of CheY . . . . . . 127

8.2 Displacement magnitudes of CheY residues in Å. Red curve shows ex-
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Chapter 1

INTRODUCTION

Proteins are the most abundant and diverse macromolecules and perform crucial

functions in virtually all biological processes. Structure and dynamics analyses of

proteins are essential to understand how they achieve such diverse tasks. Exper-

imental methods such as X-ray crystallography and Nuclear Magnetic Resonance

(NMR) spectroscopy are mainly utilized for characterizing the three-dimensional

structure of proteins. Even though the use of experimental methods is not limited

to obtaining a static picture, and more advanced techniques such as NMR relaxation

measurements and atomic-force microscopy provide time course of structures, they

are somewhat laborious, not suitable for high throughput analyses, and limited in

terms of time and space resolution. Numerical simulations come into play to fill this

gap, hence they complement and guide the experiments.

Molecular dynamics (MD) simulation is a fundamental tool for understanding a

wide range of biological processes, including ligand binding, conformational change,

and protein folding [18]. It is a physics-based method where the time evolution of

positions and velocities of all atoms is obtained by numerically solving Newton’s

equations of motion iteratively for every time frame in the simulated time interval.

At the end of the simulation what is obtained is a trajectory that describes the

three-dimensional motion of the system of interest. Therefore, MD is also called

as “computational microscope”. Despite being a very useful tool, conventional MD

simulations have certain limitations [19]. To better mimick environment condi-

tions, water molecules are added into the simulation box. With this addition, the

total number of atoms can easily reach to at least tens of thousands. The evalu-

ation of the non-bonded interactions that act between every pair of atoms yields
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high computational cost. The other bottleneck is the limit in the step size used in

the numerical calculations. To be able to capture the highest frequency of atomic

vibrations, the time step should be limited to several femtoseconds, while the rel-

evant timescale to analyze protein motion is at least on the order of nanoseconds.

Thus, millions/trillions of iterations are needed to be performed to simulate such

motions. Even with special-purpose hardware such as Anton [20], simulation tra-

jectories rarely reach the timescales of interest. Considering that the interest is in

statistical characterization, rather than single anectodal observations, the timescale

problem is likely to remain regardless of advances in hardware [21].

MD-related challenges especially become more arduous for instance, if one needs

to investigate how proteins respond to specific perturbations, e.g., variations in pH

and temperature, chemical modifications, site-specific mutations, interactions with

other molecules (e.g., ligand binding) [22]. Unraveling the perturbation-response

characteristics without performing separate high-cost simulations for every single

perturbation under investigation is particularly important for high throughput screen-

ing purposes such drug design applications [23]. Moreover, interpreting simulation

results due to the huge amount of trajectory data generated remains as an addi-

tional challenge. In this thesis, we propose complementary analysis techniques for

the perturbation-response analysis and data representation problems.

In science, it is often encountered that methods or approaches already used in

a field of study are translated well to other domains and open new insights. Some-

times it is even observed that the same problems are known by different names in

distinct research fields and the equivalences are discovered very later. In the first

part of this thesis, we aim to repurpose and adapt well-established techniques from

electrical circuit analysis and telecommunications systems, with the motivation of

developing fresh and efficient methods that can provide new insights towards “engi-

neering biomolecules”. In the second part, we extend the current usage of a machine

learning technique for the dynamic modeling and analysis of proteins so as to al-

low extracting insight from the huge amount of data generated for conformational

ensemble of biomolecules.
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1.1 Perturbation-response analysis via joint synergies from electrical

circuit simulation and telecommunication systems

With some nontrivial modifications, largely due to the protein’s three-dimensional

nature, an electrical/electronic circuit simulator can be adapted to the analysis-

based simulation of proteins. This adaptation is based on the viewpoint of a protein

as a network of atoms in analogy to the network of circuit elements.

Some analogies can be readily observed when the circuit and MD simulations

are considered. For a review of circuit analysis techniques, the reader is referred

to [24], while for the technical details of MD simulations interested reader may refer

to [25]. Synergies between these seemingly-different research fields were originally

conceptualized in draft form in [57], we present it in a fully-fledged form in this

thesis.

• Steady-state analysis:

– DC analysis solves for an operating point under time-invariant voltage/current

excitation by setting the time derivatives of time-dependent components to

zero. Then, node voltages and branch currents at the operating point are

computed. DC analysis is the first step for other types of analyses: serving as

an initial condition for the transient analysis, and as an expansion point for the

linearization of all nonlinear components (e.g., diodes and transistors).

– Similar to the DC analysis of circuits operating under time-invariant excita-

tions, static perturbation methods used in MD, which are based on Linear

Response Theory [26, 22], allow calculating displacements from the equilibrium

configuration in response to constant force excitations.

• Time simulations:

– Transient analysis of circuits computes how the voltages and currents change

over a specified time interval. Prior to transient analysis, the DC operating

point is determined, which is then used as an initial state. Next, the circuit’s
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response is obtained as a function of time by iteratively solving for the next

time points.

– The starting configuration used in MD is generally not in an equilibrium state,

therefore energy minimization and equilibration steps are run before the pro-

duction phase, where the time evolution of particles are monitored.

Sinusoidal steady-state (AC) and noise analyses are among the other frequently-

used analysis types in circuit simulations. To the best of our knowledge, direct

equivalences of these techniques have not been investigated for MD simulations.

Therefore, in the first part of this thesis, we aim to translate these techniques to the

MD field, and propose potential applications.

• Sinusoidal steady-state analysis:

– AC analysis extends the steady-state analysis from constant to time-varying

sources by computing the equilibrium response of the circuit to a small si-

nusoidal excitation, which can be described by its amplitude, frequency, and

phase. Calculating the response to a sinusoidal source is particularly impor-

tant in circuit analysis because of the following: (i) most circuits are driven

by AC, i.e., sinusoidal, sources due to the advantages in generation and trans-

mission of AC excitation over DC, and more importantly (ii) it can be used to

predict the response to non-sinusoidal sources. Due to the small-signal nature

of the excitations, linearization of the nonlinear circuit elements holds around

the operating point. Linear time-invariant (LTI) systems excited at a single

frequency produce a response that also has a single frequency component at

the same frequency, with only a change in amplitude and phase. AC analysis is

directly performed in frequency domain, without a need of solving a differential

equation, hence no iterative process is necessary. This allows easily obtaining

frequency response, i.e., how amplitude and phase change at a particular single

frequency, over a whole range of different frequencies of interest. Frequency

response characterization is an integral part of circuit design, especially indis-

pensable for designing amplifiers and filters, which alter the amplitudes and
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phase characteristics with respect to frequency. Some frequently-used filter

types include low-pass, band-pass, or high-pass filters that allow passing some

frequency intervals while blocking the others, or filters that allow passage of

only certain frequencies.

– We believe that in addition to the static-perturbation analyses, which only

examine constant excitations, characterizing the frequency response behavior

to time-varying perturbations in an efficient and systematic manner can be

advantageous for MD analysis as well. Similar to many benefits it provides in

circuit simulations, we advocate that distinct frequency response profiles might

even be a determining factor for instance in ligand-binding, or other functional

responses of proteins such as allostery.

• Noise analysis:

– Noise analysis is run together with an AC analysis, and calculates the noise

contribution of individual noise-generating element in the circuit to the volt-

age measured at a specified output node. Noise models for each circuit ele-

ment/device include one or more of the following noise effects: thermal noise,

shot noise, flicker (1/f) noise, and burst noise etc. [27].

– Particles suspended in a fluid experience constant random fluctuations [28]. It

may be crucial to quantify and distinguish the displacements resulting from an

external perturbation (such as a ligand) from constant random fluctuations.

Signal-to-Noise ratio (SNR), a frequency-dependent quantity, compares the de-

sired signal power received at the output node to the level of noise power. This

concept also opens a connection to telecommunication systems’ view, which we

briefly review below.

Information Theory, established by the seminal work of Shannon [29], is a scien-

tific field of study that examines the quantification of information in the communi-

cation context. The information content of a message is quantified as the expected

extent of surprise when delivered to a receiver, i.e., expected amount of clarification
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Transmitted signal

Received signal

Figure 1.1: Block diagram describing a communication system

of uncertainty. Although much of the early applications center around the classical

fields of communication engineering such as telephone lines, fiber-optic communi-

cation, radio broadcast, and wireless communication, thanks to Shannon’s general

framework, it did not take long to be realized that the concepts and methods are

also well suited for a broad spectrum of research fields that were not initially thought

to be in the scope. Schneider’s pioneering study led to the idea that information-

theoretical concepts can also be translated to molecular systems—molecular ma-

chines, in his terminology [30, 31]. Figure 1.1 schematically presents the common

components in any type of communication system: a transmitter, a signal, a chan-

nel, and a receiver. The transmitter sends the signal through a medium termed the

channel, to the receiver which collects the signal. In physical systems, operation

of the channel is subject to noise. We put forward that this general scheme sets a

perfect ground for perturbation analysis of biomolecular simulations in the presence

of noise, by viewing the intra-protein signal transduction as a multi-channel commu-

nication system. In this view, any type of perturbations (be it a ligand, mechanical

force, modifications, change in the temperature etc.) is modeled as external force

excitation that serves as a transmitter, while the whole protein acts as the medium

of the communication, i.e., channel, and the region where the response is probed

can be perceived as a receiver. Channel capacity (also known as Shannon limit) is

one of the key notions in Shannon’s formulation and is defined as the upper bound
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for the amount of information the channel can transmit per unit of time, or alter-

natively the maximum of the mutual information between the input and output

of the channel [90]. We propose that the analogy between intra-protein signaling

and telecommunication systems becomes very natural, for instance within the al-

lostery context, hence performing similar analyses for biomolecular simulations can

be fruitful.

1.2 Representation learning

Extracting insight from the enormous quantity of data generated from molecular

simulations requires the identification of a small number of collective variables whose

corresponding low-dimensional free-energy landscape retains the essential features

of the underlying system. The essential degrees of freedom that define the low-

dimensional representation, commonly referred to as collective variables (CVs),

are traditionally identified through expert physical/chemical intuition that is of-

ten rather specific for the particular system or process of interest [32, 33, 34, 35].

Beyond the characterization of the free-energy landscape (FEL), these CVs can

also be used for enhanced sampling [36], or for the construction of low-dimensional

configuration-space discretizations, for instance when building Markov state models

(MSMs) [37]. The strategy to the discrete-time and discrete-state stochastic mod-

els, MSMs, is to utilize multiple shorter trajectories than the timescales of interest.

Once the transition can be described in terms of memoryless jumps between the de-

fined states, it also allows describing long-time statistical dynamics, hence addresses

the timescale problem. Although the manual selection of CVs can be extremely

effective for practitioners with insight into the system, the approach is difficult to

extend systematically and is susceptible to missing unanticipated or subtle features

of the FEL that may nonetheless play an important role in the relevant phenom-

ena. Data-driven techniques provide an alternative route by inferring the important

features directly from the data.

The last couple of years have seen a growing trend towards applying deep neural

networks for the automated discovery of collective variables from molecular simula-
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tion trajectories [38, 39, 40, 41, 42]. Autoencoders are a natural and powerful tool

for dimensionality reduction, as they force an information bottleneck in the latent

space. While previous work has demonstrated the potential of these architectures,

both for characterizing static properties and for treating kinetics (through the in-

corporation of a time lag within the autoencoder framework) [43, 38, 44], there has

been significantly less work to enforce physical constraints in the latent space. Thus,

we propose an architecture that directly incorporates the physical intuition of the

multi-basin structure of an ideal free-energy landscape into the latent space prior,

representing a significant change in perspective.

1.3 Outline of the thesis

The thesis is composed of two themed parts addressing perturbation-response anal-

ysis and representation learning from simulation data, respectively.

Part I begins with Chapter 2, where we introduce the basic notation and termi-

nology. The governing equations of motion and related concepts are also introduced.

Chapter 3 lays out mass-spring analogy to derive the force-displacement rela-

tionships. We present a generalization for a commonly-utilized scheme, eliminating

the requirement to perform the linearization around the equilibrium points.

In Chapter 4, we propose a novel computational technique, called ProteinAC

(PAC), for analyzing the perturbation-response dynamics of a protein in the fre-

quency domain, which is motivated by alternating current (AC) analysis of electri-

cal networks where the relationship between the magnitude of the voltage/current

at the output node is examined through a frequency sweep of a sinusoidal input

voltage/current. We show that our method generalizes and subsumes previously

proposed static perturbation response methods, by incorporating the frequency of

excitation as a key new parameter for dynamic analysis of proteins.

In Chapter 5, we propose novel computational techniques for deciphering al-

losteric phenomena in proteins, that are based on a unique perspective that views the

long-range interactions between the binding site (input, transmitter) and the func-

tional site (output, receiver) as point-to-point telecommunication in a networked
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communication medium. We propose that, for an allosteric response to occur, the

communication between the binding site and the functional site should be robust and

reliable, despite all the background noise. We make a distinction between the forces

originating from the binding event (external force) and the forces that arise from

thermal fluctuations (noise) due to solvent interactions. While the external force

is directly applied to a local region in the vicinity of the binding pocket, the noise

forces act upon every region of the protein. Then, we introduce the perturbation fre-

quency as a key factor in the Signal-to-Noise ratio (SNR) analysis, where the SNR

is defined as the ratio of displacements stemming from distinct force types. The

information-theoretic channel capacity analysis extends the SNR analysis further

and offers new avenues in discovering potentially allosteric regions.

Part II starts with Chapter 6, which deals with investigating the use of an

extended variational autoencoder framework for dimensionality reduction and clus-

tering of molecular dynamics data. Motivated by the physical intuition that the ideal

low-dimensional free-energy landscape will clearly separate the most slowly intercon-

verting metastable states, we adopt a Gaussian mixture model as the prior distribu-

tion on the latent space, in contrast to the unimodal Gaussian distribution normally

considered. As we demonstrate, this prior counteracts the “anti-clustering” effect

often observed in variational autoencoders, leading to clearly separated metastable

states in the latent space. We show that the Gaussian mixture variational au-

toencoder (GMVAE) has significant potential for use as the backbone in a kinetic

analysis workflow, as it performs dimensionality reduction and clustering within a

single unified framework. Our work validates the methodology on several standard

model systems and also a more complex disordered peptide ensemble, and carefully

characterizes both the static and kinetic features of the resulting low-dimensional

free-energy landscapes.

In Chapter 7, a summary is provided with presenting the future research points.

Chapter 8 presents supporting information for the chapters.
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Part I

Perturbation-Response Analysis

10
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Chapter 2

BACKGROUND

This chapter provides an overview of protein dynamics starting from the most

general form and then narrowing down to a specific linearized state under the

paraboloid potential energy surface assumption around the native state. Then,

we introduce the transfer function, that quantifies the displacements in response to

both external forces and thermal noise, in a frequency decomposed manner. We

also provide a short review of normal mode analysis and its use in determining the

protein motions.

2.1 Protein dynamics

In principle, the dynamics of a molecular system can be solved quantum mechan-

ically using wave functions that describe the atoms of the system. However, with

the large number of atoms in a protein and its surrounding environment, quantum

mechanical calculations become impractical for whole protein dynamics. Therefore,

a classical mechanics approach is generally used where molecular dynamics describes

the time dependent positions and/or velocities of the particles1.

The dynamics of a protein is governed by its potential energy function, U(r),

which results from all of the interactions among the particles of the protein. Potential

energy of the protein is a function of particle positions, r = [rT1 , r
T
2 , . . . , r

T
N ]T ,

which is a vector of size 3N × 1, where ri = [xi, yi, zi]
T is the position of the ith

The content of this chapter has previously appeared in [45].

1Here, particle is used as a generic term, independent of the level of detail and the degree of

coarse-graining in the model. In all-atom simulations, particles correspond to all of the atoms,

whereas in coarse-grained simulations, particles may correspond to a particular set of atoms in the

system.
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particle (i = 1, . . . , N) and N is the number of particles.

Equations of motion for the ith particle can be written according to Newton’s

second law as follows

M(i)
d2

dt2
ri = − ∂

∂ri
U(r) + Fei(t) , (2.1)

where the net force acting upon the particle is composed of an internal force,

fi(t) = − ∂
∂ri
U(r), which is computed as the negative gradient of the potential

energy function, and an external force, Fei(t), exerted upon the ith particle, and

M(i) = diag(mi,mi,mi) is a 3 × 3 diagonal mass matrix with equal diagonal ele-

ments corresponding to the mass, mi, of the ith particle.

When the equations of motions for the particles in a system are combined, the

overall dynamics is governed by the following coupled set of 3N equations

M
d2

dt2
r +

∂

∂r
U(r) = Fe(t) , (2.2)

where M = diag(M(1),M(2), . . . ,M(N)) is a block diagonal2 mass matrix of size 3N

and Fe(t) = [Fe1(t)T , Fe2(t)T , . . . , FeN(t)T ]T is the external force vector of size

3N × 1.

The equation of motion, given in Equation 2.2, does not capture the solvent

effects due to the interactions with the viscous medium in which the protein resides.

In protein modeling, the solvent interactions are either completely ignored (e.g., as in

PRS and LRT), or incorporated into the simulations by introducing a large number

of solvent particles, or by adding a velocity dependent viscous friction term [46] to

the equations of motion approximating the effects of the solvent on the system in a

lumped manner as follows

M
d2

dt2
r +L

d

dt
r +

∂

∂r
U(r) = Fe(t) , (2.3)

where L is a diagonal matrix of size 3N , capturing the effects of the friction or drag

caused by the viscosity of the medium the protein is immersed in. This implicit

2Since each of the diagonal blocks of M , i.e., M(i), is a diagonal matrix corresponding to the

ith particle, overall M is a diagonal matrix.
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solvent model is preferred since explicit modeling of solvent particles in full-atom

MD increases the number of particles in the system significantly. Random effects due

to the solvent and other particles can be easily incorporated as an additive term to

the RHS, by a random forces ξ(t) to the RHS, leading to the Langevin formulation:

M
d2

dt2
r +L

d

dt
r +

∂

∂r
U(r) = ξ(t) + Fe(t) . (2.4)

2.2 Harmonic approximation

In the context of molecular modeling, the force field is comprised of the empirical

energy functions that include all of the interactions and the parameters needed to cal-

culate the potential energy function of the system. The parameters of the force field

are typically determined by fitting to data gathered from experimental studies and

utilizing quantum mechanical models for small parts of the system [47]. Generally,

most classical force fields are expressed as a summation of terms for various types of

interactions within the system such as bond, angle, dihedral, improper terms, and

terms for non-bonded interactions. These interaction terms typically contain highly

nonlinear functions of particle positions. Hence, potential energy function is almost

always non-harmonic. Internal forces, which are the conservative forces imposed by

the force field, are defined as the negative of the gradient of the potential energy func-

tion with respect to the position vector, r. The internal forces computed from the

non-harmonic potential energy function are typically highly nonlinear functions of

particle displacements, so as the equations of motion. In some methods (e.g., elastic

network models (ENMs)), the non-harmonic potential energy function is simplified

to a harmonic potential in order to arrive at linear internal force functions, hence

linear equations of motion. In other methods, linear(ized) equations are used at in-

termediate steps. Linearization of the force-displacement relationships is performed

via a second-order Taylor series expansion of U(r) around any given state, i.e., an

expansion point, r̃, as in the following

U(r) ≈ U(r̃) + (r − r̃)T
∂

∂r
U(r)

∣∣∣
r̃

+
1

2
(r − r̃)T

∂2

∂r2
U(r)

∣∣∣
r̃
(r − r̃) . (2.5)
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Internal forces, f(r), is the negative gradient of the potential energy function U(r),

and the first-order Taylor series expansion of the internal force functions as shown

below corresponds to the second-order expansion above

f(r) = − ∂

∂r
U(r)

≈ − ∂

∂r
U(r)

∣∣∣
r̃
− ∂2

∂r2
U(r)

∣∣∣
r̃
(r − r̃)

= Flin(r)
∣∣∣
r̃
,

(2.6)

where Flin(r) is a linear function of r. The 3N × 3N matrix, ∂2

∂r2
U(r)

∣∣∣
r̃
, is the

Hessian of the potential energy function evaluated at r̃, i.e., the Jacobian of the

internal force function, and it is denoted by H(r̃).

The energy landscape contains many local minima in the conformational space of

the protein. According to the folding funnel hypothesis, the native state (equilibrium

state) of a protein is the conformation at the free-energy minimum [48]. If the

expansion point r̃ is chosen to be the native state of the protein, denoted by r̄,

then the first order derivatives of the potential energy vanish. This means that the

net internal forces acting on the particles of the system at the native state are zero.

In this case, the linearized force equation becomes

Flin(r)
∣∣∣
r̄

= −H(r̄)(r − r̄) . (2.7)

Hence, Equation 2.4 with the linearized potential energy function reads

M
d2

dt2
∆r +L

d

dt
∆r +H(r̄)∆r = ξ(t) + Fe(t) , (2.8)

where ∆r = r − r̄ is the deviation/displacement from the native state vector.

2.3 Transfer function

The input-output characteristics for a linear and time-invariant (LTI) system can

be described through transfer functions. T represents a matrix of transfer functions

from the inputs, the external forces (or the noise) acting on the system represented

by F , to the output, displacement deviations ∆r

∆r(f) = T (f) · F (f) . (2.9)
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where f is the frequency of the input and also the output. LTI systems excited at a

single frequency f produce a response that also has a single frequency component at

the same frequency. Furthermore, LTI systems satisfy the superposition property:

The sum of the responses to two different inputs is equal to the response to the sum

of the inputs. With F set to either the noise input ξ(t) or the force excitation Fe(t),

Equation 2.8 is written in the frequency domain (f) as

(i2πf)2M∆r(f) + i2πfL∆r(f) +H(r̄)∆r(f) = F (f) , (2.10)

where i =
√
−1. Thus, complex-valued transfer function T (f) is defined as

T (f) = K(f)−1 , with

K(f) = −4π2f 2M + i2πfL+H(r̄) .
(2.11)

2.4 Time-invariant steady state

When random noise forces are not taken into account (ξ = 0), time derivatives are

set to zero, and external force is assumed to be time-invariant, Equation 2.8 simplify

to

H(r̄)∆r = Fe . (2.12)

With rearrangements,

∆r = H(r̄)−1Fe , (2.13)

which equals to the relationship derived based on thermodynamical formulations

from the Linear Response Theory (LRT), which is shown in [26].

Hence, this formulation allows applying an external constant force at a given

input particle and calculating the relative displacements of all of the other particles

in the protein. In conjunction with a suitable constant force model that mimicks

the perturbation of interest, the scheme is useful for calculating the displacements of

the perturbed state from the Hessian obtained from the unperturbed state. Within

the context of ligand binding, Ikeguchi et al. [26] and Atilgan et al. [22] investigate

in detail how to systematically choose the application site upon which the external

force acts, as well as the direction and magnitude of the force so as to best mimick
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the ligand binding. The input particles that result in displacements that are most

similar to the experimentally observed ones between two different forms of a protein

(e.g., apo and holo), and the regions with coherent responses within the protein, can

be identified.

2.5 Normal mode analysis (NMA)

NMA is a useful technique in trying to elucidate the intrinsic protein dynamics

around an energy minimum [49]. Ignoring the solvent effects (L = 0) and setting

the right-hand-side (RHS) of Equation 2.8 to zero yields:

M
d2

dt2
∆r = −H(r̄)∆r . (2.14)

The general solution to the equation of motion above can be written as a superpo-

sition of the normal modes as follows

∆r(t) =
3N∑
i=1

Vhi · ηi(t) ,

ηi(t) = Ci · cos(ωit+ δi) .

(2.15)

where ηi captures the collective motion in the ith normal mode direction. Phase

factor, δi, and the magnitude Ci are determined by the initial conditions. ωi is the

square root of the eigenvalue and Vhi is the corresponding eigenvector of the mass-

weighted Hessian, Hm = (M−1H). In NMA, the total protein motion is essentially

decomposed into a set of independent harmonic oscillators vibrating around their

equilibrium state. NMA is based on the eigenvalue decomposition of the Hessian

matrix. Since it is real and symmetric around the native state with linearized forces,

its eigenvalue decomposition results in

Hm = VhΛVh
T , where VhVh

T = I . (2.16)

Λ is a 3N×3N diagonal matrix containing the eigenvalues of the mass-weighted Hes-

sian and the columns of Vh contain the corresponding eigenvectors. In NMA, eigen-

vectors, Vhi, are called the normal mode vectors and the eigenvalues, λi, are equal

to the square of angular normal mode frequencies, ωi, i.e., Λ = diag(ω1
2 . . . ω3N

2).
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There are 3N−6 intrinsic vibrational modes of the system, among the 3N solutions,

3 correspond to translations and 3 to rotations of the system.

Low frequency normal modes describe global motions, whereas high frequency

modes are for localized movements. The harmonicity assumption leads to a lim-

itation that NMA is valid only around the native state. Still, NMA is used in

various applications characterizing the functionally relevant global/local motions,

static/mobile regions, rigid/flexible hinge regions, with good fits to experimental

data [50].
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Chapter 3

APPROXIMATING THE INTERNAL FORCES

In this chapter, we present several techniques that is used in approximating

the internal forces, i.e., the negative gradient of the potential energy function. In

Section 3.1, we propose a general scheme that allows obtaining the linearized the

force-displacement relationships based on mechanical mass-spring analogy around

any linearization point. In Section 3.1.1, we show that the presented formulation

simplifies when the linearization point is chosen as the equilibrium point. Then,

Section 3.2 briefly introduces elastic network models, which represents proteins as

an elastic mass-and-spring network, subject to a harmonic potential. These mod-

els assume that the linearization point is the equilibrium point, hence the com-

monly used techniques used in obtaining the linearized internal forces do not gen-

eralize for the non-equilibrium points. First, we present two equivalent techniques

to achieve linearized forces. Then, we first show that the general scheme we present

in Section 3.1 boils down to a reduced-size representation when the linearization is

performed around equilibrium points. We emphasize that for the other expansion

points, reduced-size models cannot be used, while the technique we present in Sec-

tion 3.1 maintains its validity. Finally, in Section 3.3, we also show how to retrieve

the linearized forces from MD simulations.

3.1 Nodal and node-branch formulations

Force-displacement equations can be written in a systematic manner using a me-

chanical mass-spring system analogy, where the particles (e.g., atoms, residues)

correspond to the joints, i.e., nodes, and the interactions among them are captured

The content of this chapter has previously appeared in [45].
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by the springs. If the interactions in the force field among the particles are limited

to pairwise interactions only, i.e., if triple and quadruple interactions are removed or

expressed in terms of pairwise ones, then any interaction between two particles can

be modeled as a nonlinear spring1. Thus, a protein can be modeled as a network of

connected nonlinear springs. Particles are taken as point masses where the attached

springs intersect.

We next describe formulations for computing the steady-state displacements of

particles that are connected with nonlinear springs, under a time-invariant external

force. Connectivity of the particles and force conservation laws on each particle

together with the linearized force on the nonlinear springs are utilized to construct

the relationship between the external force and the particle displacements.

When the steady-state condition is assumed, i.e., all the time derivatives are set

to zero in Equation 2.2, the forces exerted by the spring on the interacting ath and

bth particles, denoted by ∆fsab
2, depends on the positional distance uab = ra − rb,

and it is given by

∆fsab = gab(u) = − ∂

∂uab
U(r) , (3.1)

where gab(·) determines the force-displacement relationship. At each point mass,

the vectorial sum of the directed forces is set to zero, assuming a static steady-

state condition with a time-invariant force excitation Fe(t) = Fe. These equations,

constituting a force equilibrium condition, can be written as follows

As∆fs = Fe . (3.2)

As is the adjacency matrix (also known as Kirchhoff, connectivity, or incidence

matrix) indicating the pairwise interactions among the particles, with entries equal

to 0, 1 or -1. Masses attached to the opposite ends of a spring experience a force with

1This formulation can be easily extended to the case of triple and quadruple interactions

through the conceptualization of a multi-terminal spring, one that simultaneously acts on more

than two particles.

2ith spring is the spring between particles a and b and the force on this spring is denoted by

∆fsab = ∆fsi. Both notations are used interchangeably.
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the same magnitude but with opposite directions. An arbitrary direction (aligned

with the spring) is assigned for the force exerted by each spring. Then, a force

equilibrium equation is written at each point mass. The force of a spring appears

with opposite signs in the two equations written at each end. The size of As is

3N × 3NI , where NI is the total number of pairwise interactions (springs) in the

system, taking values up to N2 − N if it is a fully connected system. Generally,

the interactions are limited via a cut-off distance rc. No interaction is assumed if

the distance between two particles is larger than rc. The size of the spring force

vector ∆fs is 3NI × 1, and Fe is the external force vector of size 3N × 1, which

represents forces directly applied to the selected particles, e.g., as an excitation or

a perturbation.

Similarly, As
T relates joint positions r to the positional displacements between

the two ends of the springs, denoted by u, of size 3NI × 1

As
Tr = u . (3.3)

Spring forces are determined by the nonlinear functions gab(·). We can simplify the

model by linearizing the spring forces around an expansion point r̃, via α given

below, a 3NI × 3NI Jacobian matrix of the spring forces with respect to u. The

entries of the Jacobian matrix α can be considered as the spring constants of linear

Hookean springs

∆fslin = ∆fs(ũ) +α · (u− ũ) where α =
∂∆fs
∂∆u

∣∣∣∣
ũ

, (3.4)

α(ũ) = diag(α(1),α(2), . . . ,α(NI)) is block diagonal and

α(i) =



∂∆fsi,x
∂∆ui,x

∂∆fsi,x
∂∆ui,y

∂∆fsi,x
∂∆ui,z

∂∆fsi,y
∂∆ui,x

∂∆fsi,y
∂∆ui,y

∂∆fsi,y
∂∆ui,z

∂∆fsi,z
∂∆ui,x

∂∆fsi,z
∂∆ui,y

∂∆fsi,z
∂∆ui,z

 (3.5)

is a 3× 3 matrix that is evaluated at ũ. Thus

∆fslin −α∆u = ∆fs(ũ) . (3.6)
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Equation 3.3 can be expressed in terms of the deviation vectors, ∆r and ∆u, and

can be combined with Equations 3.2 and 3.6 in the form below I −αAT
s

As 0

∆fslin

∆r

 =

∆fs(ũ)

Fe

 . (3.7)

This is the called the node-branch or sparse tableau formulation [51].

3.1.1 Special case: linearization around equilibrium point

As a special case, the linearization around the native state, ũ = ū, with ∆u = u−ū,

where normally all of the springs are at their rest lengths with zero force, results in

∆fslin −α∆u = 0 , (3.8)

yielding  I −αAT
s

As 0

∆fslin

∆r

 =

 0

Fe

 . (3.9)

One can eliminate ∆fslin in the equations above to obtain

(AsαAs
T )∆r = Fe . (3.10)

The above is called the nodal formulation [51]. With this more compact formulation,

one can compute the position deviations under external force excitations without

first explicitly computing the spring forces, simply as follows

∆r =
(
AsαAs

T
)−1

Fe . (3.11)

At time-invariant steady state (equilibrium), the particle positions do not vary with

time. If the term in Equation 2.12 with the time derivative is set to zero, and the

resulting equation is compared to Equation 3.10, it can be deduced that AsαAs
T

is equal to the Hessian, H , of the potential energy function of the system resulting

from the totality of the pairwise interactions. The Hessian H is normally a singular

matrix, with six zero eigenvalues, due to the rotational and translational invariance

of the system. Therefore, one has to either impose constraints that result in a

unique solution, or use an appropriate scheme in solving the nodal equations, e.g.,

the pseudo-inverse of the Hessian.
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3.2 Elastic network models (ENMs)

In ENMs, the protein is represented as a mass-spring network, resulting in a sim-

plified representation of the potential energy function. The nodes of the network,

typically chosen as the Cα atoms of the residues, are interconnected by springs.

The nominal node positions are determined based on a reference structure, which is

usually experimentally determined. The interactions are considered for the residue

pairs within a pre-defined cut-off distance of each other. The reference structure

is assumed to correspond to the global minimum of the potential energy function

by construction, hence no energy minimization is needed. Gaussian Network Mod-

els (GNM) [52] and Anisotropic Network Models (ANM) [53] are two subclasses

of ENMs. GNMs take into account only the magnitude of the fluctuations, while

ANMs capture the directionality as well. ENMs have been successful in predicting

the residue fluctuation profiles of globular proteins [54].

Since the linearization point is chosen as the energy minimum in ANMs, construc-

tion of Hessian suffices to linearize the internal forces. In the following subsections,

two equivalent ways to construct the Hessian are presented: from the second deriva-

tive of harmonic potentials, and from the force balance. The equivalence of these

approaches is shown in [53].

3.2.1 Hessian from the second order derivative of harmonic potentials

The potential energy function for ANMs can be written as

U =
1

2

∑
i<j

γij|∆ri−∆rj|2 , (3.12)

where γij is the spring constant between residues i and j, and | · | denotes the L2

norm (Euclidean length). The Hessian of the potential energy is constructed as

H(ij) = − γij
|∆ri−∆rj |2


rj,x− ri,x
rj,y − ri,y
rj,z − ri,z

[rj,x− ri,x rj,y − ri,y rj,z − ri,z
]

(3.13)
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for i 6= j, where (·)x,y,z denotes the Cartesian coordinates along the corresponding

coordinate axes, and the diagonal block for i = j is set to

H(ii) = −
∑
j;j 6=i

H(ij) . (3.14)

3.2.2 Hessian from force balance

Another commonly-used way of obtaining Hessian in ENMs is based on force-

displacement linearization technique discussed in Section 3.1, though utilized in

a slightly different manner. In the following, we show that the approach is equiva-

lent to the reduced-size formulation derived for the special equilibrium case that is

introduced in Section 3.1.1.

In their reduced-size formulation, instead of examining x, y, z components of

the vectors separately, the authors first examine their magnitude and then decom-

pose into components by using directional cosines [22]. This results in reduced size

matrices and vectors. The size of α, the spring constant matrix, reduces to NI ×NI

from 3NI×3NI , represented by the diagonal α′3. In ENMs, all entries of α′ are usu-

ally set to be identical, but they can actually be computed via the force linearization

procedure discussed in Section 3.1.

The coordinate components of the spring forces can be related to the magnitude

of the spring forces, |∆fs(i)| = ∆f ′si, as follows

∆fsi,x = ∆f ′si · cos θxi . (3.15)

y and z components are similar. Then, in matrix form for all of the interactions,

we obtain the following relationship

∆fs = Cs ·∆f ′s , (3.16)

where Cs = diag(Cs(1),Cs(2), . . . ,Cs(NI)), Cs(i) =
[
cos θxi , cos θyi , cos θzi

]T
, and

θxi , θ
y
i , θ

z
i are the angles between the spring direction vector and the three coor-

dinate axes. ∆f ′s, a vector of size NI , contains the magnitude of the spring forces.

3Prime notation is used for the quantities that are the reduced size equivalents of the formu-

lation described in Section 3.1.
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When particles a and b are assumed to be located at the two ends of the spring i,

and the coordinates of particle a and b are r̄(a) = [x̄a, ȳa, z̄a]
T , r̄(b) = [x̄b, ȳb, z̄b]

T ,

then the angles are calculated as follows

Cs(i) =


cos θxi

cos θyi

cos θzi

 =


x̄a − x̄b
ȳa − ȳb
z̄a − z̄b

 /|r̄a − r̄b| . (3.17)

The reduced size vectors and matrices used by ENMs can be obtained with the

following when the protein is assumed to be in the native state where the net internal

forces acting on the particles are zero. For differently chosen linearization points,

the reduced size formulation in ENMs is not equivalent to the general formulation

described in Section 3.1.

A′s = As ·Cs

∆u = Cs ·∆u′

α = Cs ·α′ ·CT
s

∆fs = Cs ·∆f ′s

∆r = ∆r′

Fe = F ′e .

(3.18)

Here, we will derive the relationship between α and α′, the others are similar. For

spring i, we have the following Jacobian matrix that is obtained with the scheme in

Section 3.1 and α′i is defined as follows

α(i) =
∂∆fs(i)

∂∆u(i)

, α′i =
∂∆f ′si
∂∆u′i

. (3.19)

∆fs for the ith spring in Equation 3.16, is inserted into the α(i) equation above.

α(i) =
∂∆fs(i)

∂∆u(i)

=
∂(Cs(i)∆f

′
si)

∂∆u(i)

. (3.20)

Then, by using the chain rule for differentiation, the following is obtained

α(i) =
∂Cs(i)

∂∆u(i)

∆f ′si +Cs(i)

∂∆f ′si
∂∆u(i)

. (3.21)
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Partial derivative in the second term in the summation above is written as a multi-

plication of partial derivatives by using the chain rule and the following relationship:

Cs(i) =
∆u(i)

∆u′i
∂∆f ′si
∂∆u(i)

=
∂∆f ′si
∂∆u′i

∂∆u′i
∂∆u(i)

= α′iCs
T
(i) . (3.22)

Then, the second part of Equation 3.21 becomes α′iCs(i)Cs
T
(i) and the first part is

zero (∆f ′si = 0) when the native state conditions are assumed. Thus, the following

relationship becomes valid: α(i) = α′iCs(i)Cs
T
(i).

However, at points other than the native state, the derivative in the first part of

Equation 3.21 becomes

∂Cs(i)

∂∆u(i)

=
1

∆u′i
[I3 −Cs(i)Cs

T
(i)] . (3.23)

Then, Equation 3.21 can be written as

α′i =
∆f ′si
∆u′i

[I3 −Cs(i)Cs
T
(i)] +α′iCs(i)Cs

T
(i) . (3.24)

When the above is repeated for all the coordinates and interactions, the general

relationship between α and α′ is formulated as follows

α = K ⊗ I3 −CsKC
T
s +Csα

′Cs
T . (3.25)

Here, ⊗ denotes the Kronecker product operation and

K = diag

(
∆f ′s1

∆u′1
,
∆f ′s2

∆u′2
, . . . ,

∆f ′sNI
∆u′NI

)
.

This shows that the original ENM formulation does not capture the case when

the linearization is performed around a non-equilibrium point in the conformational

space of the protein. However, the scheme that we propose in Section 3.1 is more gen-

eral and maintains its validity even for linearization around non-equilibrium points.

Note that α′ = CT
s αCs satisfies Equation 3.25. Note also that CT

s Cs = I and

CsC
T
s 6= I.

Thus, we obtain the proposed relationship around the native state: α = Csα
′Cs

T .

Then, the reduced node-branch and nodal formulations around the native state can

be expressed respectively as follows I −α′A′Ts
A′s 0

∆f ′s

∆r′

 =

 0

F ′e

 , (3.26)
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(A′sα
′As

′T )∆r′ = F ′e . (3.27)

One may observe that the coefficient matrix (A′sα
′As

′T ) on the LHS of Equa-

tion 3.27 is in fact the Hessian matrix H , and

∆r = H−1Fe . (3.28)

3.3 Hessian from MD

In addition to obtaining force-displacement relationship, here we present how to

get hessian from MD. As the first step, positional fluctuation trajectories around

a reference or equilibrium structure are calculated. Next, the covariance matrix is

formed based on the time averages over the trajectories as

Covij =


〈∆ri,x∆rj,x〉 〈∆ri,x∆rj,y〉 〈∆ri,x∆rj,z〉

〈∆ri,y∆rj,x〉 〈∆ri,y∆rj,y〉 〈∆ri,y∆rj,z〉

〈∆ri,z∆rj,x〉 〈∆ri,z∆rj,y〉 〈∆ri,z∆rj,z〉

 .

Covij above is a 3 × 3 matrix of the covariances between the x, y, z components

of the positional deviation vectors ∆ri and ∆rj for nodes i and j. The overall

covariance matrix Cov is then formed as a block matrix of size 3N × 3N , where the

ijth block is set to Covij . The Hessian matrix is in fact equal to the scaled inverse

of the covariance matrix, HMD = kBT Cov−1 [55], where kB is the Boltzmann’s

constant and T is the absolute temperature.
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Chapter 4

PAC: A FREQUENCY DOMAIN TECHNIQUE FOR

ANALYZING PROTEIN DYNAMICS

4.1 Introduction

In static perturbation studies such as Linear Response Theory (LRT) [26] and and

Perturbation Response Scanning (PRS) [22], the ligand is modeled via a constant

force vector exerted on the binding site residue. As such, the dynamical, time-

varying behavior of vibratory ligand-protein interactions can not be investigated.

Based on thermodynamical arguments, the ligand binding process is characterized as

a dynamic event with associated vibratory and fluctuation-like motions as opposed

to permanent binding [56]. Therefore, in addition to the directionality and the

amplitude, the frequency of the applied force representing a perturbation may be

a determining factor in binding/unbinding, and other functional responses of the

protein such as allostery.

We propose a novel computational technique, namely Protein AC Analysis (PAC),

for analyzing the perturbation-response dynamics of a protein directly in the fre-

quency domain. Motivated by AC analysis of electrical networks, where the circuit

is excited by a sinusoidal input at an input node and the amplitude/phase responses

are monitored at the output node(s) as a function of frequency, our proposed tech-

nique makes it possible to analyze the behavior of a protein under excitations with

varying frequencies, which was not possible with previously proposed methods.

PAC is distinct from, but related to, normal mode analysis (NMA) [58] that also

produces a sort of frequency domain characterization for protein dynamics. NMA is

useful in determining the global and local motions of a protein around an equilibrium

The content of this chapter has previously appeared in [45].
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and it is based on intrinsic, autonomous dynamics. The frequency in PAC is instead

determined by the excitation on the system as an external factor.

There are other approaches to frequency domain analysis of proteins in the lit-

erature. Notably, in [46], the authors describe a frequency decomposed fluctuation

analysis formulation for proteins that is compared with the standard formulation

based on thermodynamics. Their formulation allows one to compute contributions

to the fluctuation dynamics in frequency intervals of interest, which is not possible

with the thermodynamics formulation. PAC is similar in spirit to the work described

in [46] based on a Langevin equation formulation. The technique described in [46]

enables fluctuation analysis in the frequency domain, whereas PAC extends static

perturbation-response analysis in order to characterize the frequency response of

proteins.

PAC is not limited to the residue based coarse grained models, it can in fact be

used in conjunction with all-atom models, possibly following energy minimization in

MD. In order to demonstrate the utility of the proposed method, here we describe

the PAC technique in conjunction with a coarse-grained anisotropic network model

(ANM), a subclass of ENMs, constructed at an energy minimized native state. As we

show, our technique is able to capture the response behavior computed by the static

perturbation methods and can be regarded as a generalization of these techniques

via the introduction of the frequency of the input perturbations that becomes crucial

in studying ligand binding dynamics.

The chapter is organized as follows: In Section 4.2, we introduce the proposed

PAC technique and describe how it can be used to analyze the displacements of

the particles under force excitations with varying frequency and show that PAC

is in fact a generalization of the static perturbation methods, with static methods

obtained from PAC by setting the frequency of excitation to zero. Furthermore, in

Section 4.3, we propose a set of frequency dependent metrics that help elucidate

the complex motions of residues/atoms in a compact and informative manner under

varying frequency force excitations. We describe a protocol for the application of

PAC to the analysis of protein dynamics in Section 4.4. In Section 4.5, we present
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results for the ferric binding protein and bacterial chemotaxis protein by computing

the proposed metrics via PAC.

4.2 Theory

PAC is based on the linearization of the system dynamics around an expansion point

(e.g., an operating point, DC point, conformation, or native state) as in AC analysis

of electrical networks. For PAC, the natural choice for the expansion point is the

native state of the protein, but others are possible. We consider the linearized force

field around the native state (please see Chapter 2 for the details of linearization),

and in terms of the deviation from the native state vector, ∆r = r− r̄ as described

in Equation 2.8 . Here, we do not take into account the random forces. The variables

are as introduced in Chapter 2: M stands for the masses, L: friction, H : linearized

potential energy function, Fe: external forces.

M
d2

dt2
∆r +L

d

dt
∆r +H(r̄)∆r = Fe(t) , (4.1)

Next, we transform Equation 4.1 to state-space form with the state vector v =

[∆rT , ˙∆rT ]T , where ∆̇r =
d

dt
∆r

∆̇r

∆̈r

 =

 0 I

−M−1H −M−1L


︸ ︷︷ ︸

A

∆r

∆̇r

+

 0

M−1


︸ ︷︷ ︸
B

Fe(t)

v̇ = Av +BFe(t) . (4.2)

We introduce the output observable vector y of size 3N × 1, as linear combinations

of the first set of the state variables in v, ∆r. C, a matrix of size 3N × 6N ,

is constructed in such a way so that the last 3N columns are zero, i.e., C =[
C3N×3N

1 03N×3N

]
. In order to probe the displacement of every particle, C1 is

set to the identity matrix of size 3N. However, it is also possible to examine the

collective movements (e.g., whole protein motion, a domain’s motion) with an ap-
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propriately constructed C1.

v̇ = Av +BFe(t)

y = Cv .
(4.3)

Next, we transform the state space formulation in Equation 4.3 to the Laplace, i.e.,

frequency, domain to obtain

sV (s) = AV (s) +BFe(s)

Y (s) = CV (s)
(4.4)

that turns the differential equation into an algebraic one with the frequency of

interest as a parameter. The transfer function (or complex valued gain of the system)

is represented by T as follows

Y (s) = T (s) · Fe(s)

= C[sI −A]−1BFe(s) ,
(4.5)

where s is the complex frequency. In PAC, we evaluate s on the imaginary axis, i.e.,

s = i2πf where i =
√
−1, and f is the frequency of excitation. The complex valued

transfer function, T , takes varying values as a function of frequency, therefore, the

response characteristics depend not only on the magnitudes, directions or points of

application but also the frequency of excitations. T (s), with size 3N × 3N , is the

matrix of complex valued gains along the coordinate axes, consisting of 3× 3 block

matrices and constructed in the following form

T (s) =


T(11)(s) T(12)(s) . . . T(1N)(s)

T(21)(s) T(22)(s) . . . T(2N)(s)
...

...
...

...

T(N1)(s) T(N2)(s) . . . T(NN)(s)

 . (4.6)

Submatrix T(ij)(s)(i, j = 1, . . . , N) of size 3 × 3 contains the transfer functions

between the output i and the external force that is applied on the jth particle.

PAC does not pose any limitation on the form of the excitation force function, Fe,

provided that the Laplace transform exists. In this thesis, however, we consider
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force excitations that are sinusoidal in time. We apply a force excitation to one of

the particles, j, in the form

Fej = [Fjx cos(ωt+ φjx), Fjy cos(ωt+ φjy), Fjz cos(ωt+ φjz)]
T , (4.7)

and set all other entries in Fe(t) to zero. Fjx, Fjy, and Fjz are the amplitudes of the

force applied on the jth particle, and φjx, φjy, and φjz are the phase shifts in the

x, y, z directions, respectively, and ω = 2πf is the angular frequency. Here, we

assume that the amplitudes of the force components are sufficiently small so that

the linearized force field is a good approximation. Due to this small displacement

assumption, at steady-state, the response/output displacements are also sinusoidal

at the same frequency of the force excitation, but with frequency dependent phase

shifts and amplitudes. Steady-state dynamic response of the ith output yss(i)(t), to

the sinusoidal force excitation can be computed using the transfer functions, where

T(ij)(iω) = T(ij)(s)
∣∣∣
s=iω

is of the form

T(ij)(s) =


txx(ij)(s) txy(ij)(s) txz(ij)(s)

tyx(ij)(s) tyy(ij)(s) tyz(ij)(s)

tzx(ij)(s) tzy(ij)(s) tzz(ij)(s)

 , (4.8)

and each complex entry of T(ij) is written in exponential form as follows

txx(ij)(iω) = |txx(ij)(iω)| exp (iθxx(ij)(ω)) , (4.9)

where |txx(ij)| =
√

Im{txx(ij)}2 + Re{txx(ij)}21 and θxx(ij) = tan−1(
Im{txx(ij)}
Re{txx(ij)}

) is the

magnitude and the phase of txx(ij), respectively. Then, the ith steady-state output

1Re and Im is the real and imaginary part of a complex number.
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yss(i)(t) is as follows

yss(i)(t) =
[
yssi,x yssi,y yssi,z

]T

=



|txx(ij)(iω)|Fjx cos(ωt+ φjx + θxx(ij)(ω)) +

|txy(ij)(iω)|Fjy cos(ωt+ φjy + θxy(ij)(ω)) +

|txz(ij)(iω)|Fjz cos(ωt+ φjz + θxz(ij)(ω))

|tyx(ij)(iω)|Fjx cos(ωt+ φjx + θyx(ij)(ω)) +

|tyy(ij)(iω)|Fjy cos(ωt+ φjy + θyy(ij)(ω)) +

|tyz(ij)(iω)|Fjz cos(ωt+ φjz + θyz(ij)(ω))

|tzx(ij)(iω)|Fjx cos(ωt+ φjx + θzx(ij)(ω)) +

|tzy(ij)(iω)|Fjy cos(ωt+ φjy + θzy(ij)(ω)) +

|tzz(ij)(iω)|Fjz cos(ωt+ φjz + θzz(ij)(ω))



.
(4.10)

In fact, yss(i)(t) defines a sinusoidal motion in all coordinate axes with different am-

plitude and phase, but at the same frequency.

4.2.1 PAC versus static perturbation methods

When PAC analysis is run with a static, time-invariant excitation, i.e., one that

is at zero frequency, one can obtain the formulation used in static perturbation

analysis. PAC with zero frequency perturbations is called as PDC, following the

terminology used in electrical circuit simulations (AC/DC). Here, we show that static

perturbation methods are in fact equivalent to PDC. However, for this equivalence

to hold, the following should be noted for the static methods:

• ANM and/or MD based simulations are used to compute and form the Hessian

of the potential energy function, and the N particles usually correspond to the

Cα atoms of the residues.

• The excitation force is not time dependent, it is static Fe(t) = Fe, hence

the perturbation-response analysis is essentially conducted at zero frequency:

s = 0.
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• The masses of the residues are usually assumed to be identical: M = I and a

loss/friction term is not incorporated into the equations: L = 0.

• The displacements of the residues are taken as output observables. For ex-

ample, the displacement of the ith residue can selected by setting C1 = I,

C =
[
I 0

]
and then selecting the corresponding entries in the y vector,

y(i) =
[
y3i−2, y3i−1, y3i

]T
.

In PDC, and hence in static perturbation methods, the frequency of the exci-

tations is simply set to zero. Then, the transfer function T (s) boils down to the

following

T (s = 0) = −CA−1B . (4.11)

With L = 0 and M = I, and

A−1 =

0 −H−1

I 0

 , (4.12)

the transfer function at zero frequency, T (s = 0), becomes

T (s = 0) =
[
C1 0

]H−1

0

 = C1H
−1 . (4.13)

Then, the displacements at zero frequency can be computed by multiplying the

transfer function with the external static force vector

Y (s = 0) = C1H
−1Fe . (4.14)

One can observe any element of the displacement vector, ∆r, by choosing C1 = I.

The entire displacement vector is simply given by

∆r(s = 0) = H−1Fe . (4.15)

We note that ∆r(s = 0) in Equation 4.15 is in fact equal to ∆r in Equation 2.13,

provided that the Hessian matrix, H , is obtained via the same procedure. Hence,

PAC can be considered to be a generalized form of the static perturbation methods,
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extending it to handle dynamic perturbations with nonzero frequency. In addition,

including a viscous friction term represented by L and choosing M according to

the residue masses further improves the modeling and analysis fidelity, as compared

to static methods.

4.3 Frequency dependent metrics for proteins

The standard output of PAC analysis is in the form of complex valued vibration

amplitudes in 3D coordinates for each particle of the system under an input exci-

tation. In their raw forms, the results are difficult to visualize and interpret for a

protein, since the response of each system particle is represented in a six dimen-

sional space, resulting from one complex valued amplitude for every coordinate axis.

The analysis results need to be summarized in such a way so that the sought rela-

tionship between the input and the output becomes apparent. When one tries to

quantify and summarize the response to a perturbation, there is a delicate balance

between reducing complexity and preserving essential information. Protein analysis

and characterization requires useful and concise metrics to be developed that can

quantify local response behavior [59]. Our aim here is to provide scalar valued met-

rics for each of the residues or system particles that can be easily visualized with 2D

plots. We next define several frequency dependent metrics in order to characterize

the response of a particle.

Let ∆r(i)(ω) = [∆xi, ∆yi, ∆zi]
T denote the complex valued displacement vec-

tor for the ith particle, that is computed by PAC.

Displacement magnitude , |∆r(i)(ω)|, is the simplest and most widely used

metric that can be computed with

|∆r(i)|(ω) =

√
∆xi

2 + ∆yi
2 + ∆zi

2 . (4.16)

At zero frequency (PDC), this metric can be used to determine the “most effective”

input excitation direction and in order to compute correlations with experimental

data. Moreover, one can use this metric to analyze how frequency of excitation

affects the vibratory displacement magnitudes of the residues.
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Energy , Ei(ω), given by

Ei =
1

2
mi| ˙∆r(i)|2, where | ˙∆r(i)| = ω|∆r(i)| (4.17)

is the kinetic energy calculated using the velocities of the particles. Since frequency

domain analysis is now possible with PAC and energy is a highly frequency de-

pendent quantity, PAC enables internal energy transfer analysis for a protein. How

energy of each particle changes with the excitation frequency provides insight on the

properties and functions of the particles. Highly energetic particles can be consid-

ered as critical for the protein in ligand binding. Additionally, energy distribution

in a protein under various types of environmental noise and disturbances can be

analyzed.

At steady-state, the displacement vector ∆r(i)(ω) that is obtained using Equa-

tion 4.10, by choosing the output as the displacements of all of the particles, i.e.,

C1 = I, defines a parametric equation for an elliptical trajectory. Generally, the

phase constants of the excitation, φix,y,z, are set to zero for simplicity. In order to

compute the actual absolute coordinates of the particles, the expansion point, i.e.,

the native state coordinates, are added to the deviation values

ri(t) = ∆r(i) + r̄i . (4.18)

Semi-major and semi-minor axes of the elliptical trajectory of the ith particle is

defined by the vectors rmajori(ω) and rminori(ω), respectively. The lengths of the

semi-major and the semi-minor axes are |rmajori(ω)| and |rminori(ω)|, while the unit

directions are r̂majori (ω) and r̂minori (ω). Figure 4.1(a) shows time trajectories for

three virtual particles, where one particle follows a linear trajectory, the other one

follows a circular path, and the last one moves on a typical elliptical trajectory.

The characteristics of a particle’s trajectory varies with the frequency of excitation,

which may help interpret and decipher the dynamics within the protein.

Major-axis length , |rmajori(ω)|, is a measure of how far the particle direction-

ally moves from the native state with the force excitation. This is different from the

displacement magnitude metric, |∆r(i)(ω)|. The maximum distance between two

points of the elliptical trajectory is captured by the major-axis length metric.
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Figure 4.1: Visualization of the metrics

Angle between the major-axis and force , θmajori(ω),

θmajori = cos−1(|r̂majori · F̂e|) (4.19)

is the angle between the applied force direction, F̂e, and the semi-major-axis di-

rection, r̂majori (ω). Among the two semi-major axes directions (r̂majori (ω) and its

opposite −r̂majori (ω)) the one that has a smaller angle with the force is selected,
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i.e., θmajori(ω) takes values between 0 and π/2, where smaller θmajori(ω) values cor-

respond to aligned motion with the force and larger values represent orthogonal

motion. The angle between the major-axis and the excitation force direction may

reveal hinge residues and co-moving groups of residues.

Isotropicity , ξi(ω), defined by

ξi =
|rminori(ω)|
|rmajori(ω)|

(4.20)

is the ratio of the minor-axis and the major-axis lengths. It is used to distinguish the

anisotropic particles that have a dominant direction of oscillation from the isotropic

ones whose oscillatory motions reside in a plane without a significant dominant di-

rection. For a particle with large displacement magnitude and/or energy, isotropicity

may indicate different roles for that particle in the protein. For example, isotropic

particles may serve as hubs to distribute energy to paths with different directions,

whereas anisotropic ones may serve critical roles on a certain path. The major-axis

directions of the isotropic particles are not as informative as the major-axis direc-

tions of the anisotropic ones. As such, co-consideration of isotropicity and the major

axis direction is useful. Isotropicity, ξ, takes values between 0 and 1 for all possible

trajectories: 1 for circular trajectories and 0 for linear ones. The particles with

smaller values are more anisotropic than the others.

Angle between the plane normal and force , θnormali(ω), defined by

θnormali = cos−1(n̂i · F̂e) (4.21)

is the angle between the applied force direction, F̂e, and the normal of the plane

containing the elliptical trajectory, n̂i = r̂majori ×r̂minori . θnormali(ω) is π/2 for the ith

particle when its elliptical trajectory is co-planar with the applied force. As θnormal

deviates from π/2 to 0 or π, the force direction deviates more and more from the

trajectory plane. Please note that the major- and minor-axes directions appear in a

certain order in the definition so that the ambiguity in the normal direction of the

plane is removed.
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4.4 PAC analysis of ligand (un)binding

For the rest of our treatment, we will adopt the Cα based coarse-grained modeling

approach, and hence the system particle corresponds to the Cα atom of each residue.

Although, with PAC, one can compute the displacements and the velocities of all

of the residues under various input excitations with varying directions, magnitudes,

and the frequency of the external force, not all input configurations may have a

correspondence in real protein-ligand interactions. In this section, we review the

implementation details that are mostly followed from [22], regarding the selection of

appropriate input configurations for PAC analysis of ligand binding-unbinding for

proteins.

4.4.1 Input residue(s) selection

An input residue is defined as the residue upon which an external force is applied.

When investigating (un)binding, the input residue candidates are usually the binding

site residues. If the binding site residues are known for a protein, they can be

directly used. Any one (a group or all) of the residues from the binding site can

be selected as the input residue(s). By perturbing all of the residues of the binding

site, specific input residue(s) can be identified as the one(s) that exhibit the most

correlated transient, dynamic behavior with the ligand (un)binding behavior. If

both ligand-free and ligand-bound coordinates are available in the RCSB Protein

Data Bank [60], PDC analysis can be used to determine the most appropriate input

residue. The residues of the binding site are excited individually with a constant

external force with the best direction and magnitude (please see Section 4.4.2). The

one(s) that exhibit the highest correlation between the computed displacements and

the experimental ones (between the ligand-free and ligand-bound forms) can be

selected as the input residue.
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4.4.2 Force magnitude and direction selection

PAC analysis methodology depends on whether or not the protein has both ligand-

free and ligand-bound PDB forms. The procedure for force magnitude and direction

selection is summarized in Figure 4.2.

For the proteins for which both ligand-free and ligand-bound forms are known,

the procedure in Figure 4.2 is used to analyze binding (for unbinding, ligand-free

and ligand-bound forms should be swapped). First, the Hessian is constructed for

the ligand-free form based on ANM for the coarse-grained model, or by Taylor’s

expansion of the force field around the native state. Then, the ligand-bound form

is aligned to the ligand-free form using the superpose function in MATLAB [61].

Other alignment tools can also be employed for this purpose. Any constraint can be

imposed during alignment if there is prior knowledge on the fixed parts of the protein.

Experimental displacements are computed as the difference of the Cα positions of

the ligand-free and the aligned ligand-bound forms. Unit sphere (radius r = 1) is

uniformly sampled in azimuth, φ, and zenith, θ, angles of the spherical coordinate

system. For each of the sampled directions, a constant (time-invariant, at zero

frequency) external force is applied to a selected input residue, and the displacements

computed via PAC are post-processed as follows. Residue displacements are added

to the coordinates of the ligand-free form and a new coordinate file is obtained.

Then, this coordinate file is also aligned to ligand-free form and a computed ligand-

bound form is obtained. By subtracting the Cα coordinates of ligand-free form

and the computed ligand-bound form, computed displacement vector is obtained

for every residue. Then, Pearson correlation coefficient2 between this computed

displacement vector, rc and the experimentally determined one, re, is calculated for

2We would like to note that, throughout the thesis, the correlation coefficient is used in order

to figure out whether there is a causality relationship between two quantities. The correlation is

computed by simply averaging over all of the residues in order to arrive at an overall character-

ization for the protein. It is not an actual statistical correlation computed over an ensemble of

statistical samples.
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Choose the magnitude of the force so that the same displacements are 
obtained with the experimental displacements on the average.

Construct the Hessian for ligand-free 
form under no force excitation.

Align ligand-bound form to ligand-free form.

Obtain the experimental displacements between the
ligand-free and the aligned ligand-bound forms.

Select the input residue
from the binding site.

Apply the unit magnitude force.

Uniformly sample the force directions on a sphere.

For each direction

Add the calculated displacements to the 
ligand-free form and obtain a new pdb.

Align the new pdb to ligand-free form
and obtain the computed ligand-bound form.

Obtain the calculated displacements between the
ligand-free and the computed ligand-bound forms.

Calculate the correlation between the experimental 
displacements and the calculated displacements.

Choose the direction that gives the 
maximum correlation value.

Do both ligand-free and -bound forms exist 
in the database?

YES NO

Select the input residue.

Construct the Hessian under 
no force excitation.

Uniformly sample the force directions on a sphere.

Apply the unit magnitude force.

For each direction

Add the calculated displacements to the 
ligand-free form and obtain a new pdb.

Calculate the sum of magnitudes of the 
residue displacements. 

Choose the direction that gives the 
maximum displacements.

Calculate the residue displacements.

Add the calculated displacements to the 
ligand-free form and obtain a new pdb.

Align the new pdb to ligand-free form
and obtain the computed ligand-bound form.

Obtain the calculated displacements between the
ligand-free and the computed ligand-bound forms.

Calculate the residue displacements. Calculate the residue displacements.

Figure 4.2: Force magnitude and direction selection procedure for proteins with

both the ligand-free and the ligand-bound forms, and with only one form available.
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each perturbed residue i as follows

corri =

N∑
j=1

(rj
e − re)(rjc − rc)√

N∑
j=1

(rje − re)2

√
N∑
j=1

(rjc − rc)2

, (4.22)

where overbar indicates the average over the residues. For each sampled direction,

this procedure is repeated. Then, the direction that gives the highest correlation is

selected as the force direction. Force magnitude is chosen so that the same displace-

ment values are obtained on the average. After determining the force magnitude

and the direction, residue displacements are recomputed with the determined force

parameters. The computed ligand-bound form is finally obtained after an additional

alignment step to the ligand-free form. In frequency sweep analysis via PAC, the

force direction determined as such at zero frequency is kept. The static force mag-

nitude determined at zero frequency is used as the amplitude of the time-varying

force excitations at nonzero frequencies. PAC analysis provides insight into the role

of oscillatory, time-varying excitations in the (un)binding process.

If both apo and holo forms are available, but the binding site is not known,

then one can test all of the residues with a force excitation. For each residue, the

force direction and magnitude can be determined following the protocol described

in Figure 4.2. Force direction search on a spherical grid for each residue will incur

some computational cost. But this will still be fast when compared with time-domain

MD simulations. The major advantage of the proposed PAC formalism stems from

its computational efficiency. Hence, it can be used for high throughput screening

purposes, in cases when the binding residues are not known.

If both PDB forms of the protein are not available, the alignment and magnitude

scaling steps are skipped and the force direction that results in the maximum sum

of magnitudes of the computed residue displacements is determined. This pertur-

bation direction determination procedure can be applied whether the input residue

is already known or is to be determined. If there is no information on the binding

site and/or new possible binding sites are sought, the most effective perturbation

direction is determined as above for all candidate residues. Then, the resulting dis-
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placements with the determined effective perturbation direction for each residue are

examined in order to identify the key residues that may belong to a binding site. In

comparing perturbation directions and input residues, the force magnitude is set to

unity. Since PAC analysis is based on a linearized model, the ratio of the output re-

sponse to the input magnitude is independent of the force magnitude used. Here, we

have outlined a plausible methodology for the determination of effective perturba-

tion directions and/or candidate input residues. This methodology can be improved

and extended. For instance, input perturbations that excite multiple residues si-

multaneously may serve as a better model for ligand binding. The procedure for

proteins with only one form available is also summarized in Figure 4.2.

4.5 Results

4.5.1 Setup and preliminaries

We first provide information on the setup that was used to produce the results that

are reported:

3D coordinates of the proteins are retrieved from the Protein Data Bank [60, 62].

The Hessian is constructed based on an ANM model with a pairwise interaction

cut-off distance value, rc, of 8 Å for the ferric binding protein (FBP), 10 Å for

the bacterial chemotaxis protein (CheY). In determining these values, the cut-off

distance is swept within the 7–15 Å range and the value that produces the best

correspondence between the computed and experimental displacements is chosen [63,

64, 53, 65]. Hookean spring constants are taken to be identical and set to 1 for all of

the interacting residue pairs within the cut-off distance. Masses of the residues are

taken into account throughout the analysis, and the mass matrix, M , is constructed

using the average mass values that are taken from [66]. The loss matrix, L, is set

to a scaled identity matrix L = 0.3I so that the solvent effects are included in the

model. With L chosen as such, the high frequency movements do not completely

vanish, and at low frequencies, they are slightly subdued, when compared to the

experimental zero frequency displacement magnitudes. The frequency range for PAC
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analysis is set as the interval from zero to the half of the maximum normal mode

frequency calculated for each protein. This frequency range is uniformly sampled

at 200 points, where at every point a PAC analysis is run. In addition to these

frequency points, normal mode frequencies are also included in the frequency set.

The transfer function becomes singular at normal mode frequencies if loss/friction

term is set to zero. Therefore, loss terms are always included for running PAC at

the normal mode frequencies.

Two proteins (FBP and CheY) were analyzed with PAC following the protocol

described in Section 4.4. FBP and CheY were chosen because they were considered

in the original works in the PRS method [22]. Furthermore, for FBP, MD studies in

the literature have shown that single-point static force application at a single residue

models the ligand binding event quite well [22]. For both of these proteins, the ligand

molecules (ions) are small. Therefore, a single-point force excitation model suffices

to capture the ligand binding. As PAC extends the conventional static methods into

the frequency domain, by the chosen proteins, we are able to compare the results

obtained by PAC to the ones obtained in the literature with PRS. We show that we

obtain the same results (up to some extent, possibly due to variations in the proto-

cols used) with PDC as in PRS. We further these results that were reported in the

literature by extending them with a dynamic, time-varying, frequency domain anal-

ysis that is enabled by PAC. We compute the frequency dependent metrics described

in Section 4.3 via PAC, providing higher fidelity information on the perturbation

response dynamics. The following section presents the results for the FBP. Please

see Section 8.1.1 for our investigation of CheY protein.

4.5.2 Ferric binding protein (FBP)

FBP is a highly conserved protein in the iron acquisition system of gram-negative

bacteria. It resides in the periplasm and receives the iron obtained from the mam-

malian host and transfers it to the pathogen [67]. Iron is an essential element that is

acquired from the host and utilized in many essential biological processes including

bacterial cell division [68]. Infection initiation requires the growth and colonization
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(a) Apo form (1D9V) and holo form

(1MRP) of FBP are aligned, apo form

is colored with blue and holo form is

colored with orange, both in solid rib-

bon form. Ligand (Fe3+ ion) is shown

as a black circle. The plot was created

with [74].

E57

H9

N193
Y195

Y196
N175

(b) Binding pocket of Fe3+ ion and inter-

acting residues: H9, E57, N175, N193,

Y195, and Y196. Plot was created

with [75, 76].

Figure 4.3: Alignment of apo and holo forms and binding site of FBP

of a pathogen. Thus, FBP is a potential target for broad-spectrum antibacterial

drugs against human pathogens such as Haemophilus influenzae, Neisseria gonor-

rhoeae, and Neisseria meningitidis [69]. Ligand-free (apo form with PDB ID: 1D9V)

and ligand-bound (holo form with PDB ID: 1MRP) structures of FBP are available

with a resolution of 1.75 Å and 1.6 Å respectively, in PDB. The aligned apo and

holo forms are shown in Figure 4.3(a). FBP is a monomeric protein with 309 amino

acids. FBP exhibits a 20◦ closure between two interacting domains about a central

beta-sheet hinge upon binding of a ferric ion [70]. Presence of iron stabilizes the

protein and closes the inter-domain hinge. The closest residues to Fe3+ are H9,

E57, N175, N193, Y195, and Y196 and the ligand binding site can be seen in Fig-

ure 4.3(b). Interested reader may refer to [22], [71], [72], [73] for further information

on the structure and function of FBP, and its iron transport mechanisms.

Displacement magnitudes , |∆r(i)(ω)|, of Cα atoms are calculated after the

alignment of the ligand-bound form to the ligand-free form. Alignment is done by
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using only the fixed domain residues 102-225. RMSD between the two structures is

calculated as 0.302 Å after alignment.

It was shown in [22] that the constant, time-invariant force perturbations upon

only residue 57 (which mimics ion binding) results in highly correlated responses

with MD simulations. Therefore, we have also selected residue 57 (Glu57) as the

input excitation residue for PAC analysis.

First, experimental displacements for all of the residues are calculated simply by

computing the differences of the coordinates for the experimentally determined apo

and holo forms after alignment. Computationally, the holo (apo) form is obtained

from the other one by calculating the displacements resulting from the constant input

force excitation. In this case, one form (apo) is considered to be the initial unper-

turbed state and the other one (holo) results from the force perturbation. Next,

the correlation between the experimental and computed displacements is used as an

indicator of how well the input force exertion on the input residue can capture the

ligand (un)binding event. Pearson correlations are calculated using Equation 4.22.

The correlation coefficient between the experimental displacements and the calcu-

lated ones (after alignment) for FBP is found to be 0.9731. Table 8.1 summarizes

the force excitation related parameters and the correlation values between the ex-

perimental and the computed displacements for FBP as well as CheY.

In Figure 4.4(a), the red curve shows the experimental displacements and the blue

one is for the computed (calculated). The force direction and magnitude were chosen

to produce the best correlation value, as described in Section 4.4.2. Figure 4.4(b)

shows the distances of all of the residues to the input residue, residue 57.

The correlation value for FBP reported above is in fact better than the ones

reported for LRT and PRS [26, 22]. Minor differences in the results may originate

from the alignment tools, the selection of the fixed and moving domain residues for

alignment, as well as the force magnitude and direction selection protocol. All of

the methods, PRS, LRT and our PDC achieve correlation values around 0.95 with

the respective best force parameters.

We now present PAC analysis results for dynamic force excitations, with the
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(a) Experimental and calculated displace-

ments between apo and holo forms of FBP.

Constant force excitation on residue 57 suc-

cessfully predicts ligand binding.
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(b) Residue distances to the input residue

(residue 57)

Figure 4.4: Displacement magnitudes of FBP residues in Å. Red curve shows exper-

imental displacements and blue curve is for the computed displacements at the best

force magnitude and direction at zero frequency. Residues 8, 9, 55, 56, 58, 59, 227,

228, and 229 are within 8 Å distance of residue 57.

input residue, force magnitude and direction set to the same ones used for the static

excitation case described above. Figure 4.5(a) shows the displacement magnitudes

as a function of both the residue index and the frequency of excitation. The same

data (3D plot) is presented in Figures 4.5(b) and (c) from two other view angles.

For better visualization purposes, the displacement values above 1.5 Å for the in-

put residue are clipped. Displacement magnitudes as functions of both the residue

index and frequency reveal complex and rich characteristics. At most of the fre-

quency intervals, almost all of the residues follow a similar trend, but for particular

frequency intervals, some residues behave much differently than the others. The

residues that exhibit larger displacements are 8-10, 55-60, and 226-235. Higher fre-

quency excitations (around frequency values 0.5 - 0.95 THz) result in an increase in

the displacements for these residues. However after some residue-specific frequency

threshold, further increase in the excitation frequency results in smaller magnitude
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movements. The frequency at which each residue exhibits the maximum displace-

ment magnitude is a unique property of that residue. Most of the residues exhibit

their maximum displacements at low frequencies. However, residues 8, 55, 56, 57, 58,

and 227 reach their maximum value in the mid frequency range. These are among

the closest residues to the input residue. However, not all residues that are close to

the input residue display this behavior. Figure 4.5(d) shows the displacements for

a set of selected residues, 8, 9, 44, 48, 56, 58, 193, 196, 230, and 290. Residues with

pronounced bimodal characteristics are 9 and 56. They are relatively closer to the

input residue. However, not all of the residues that are close to the excitation site

display a bimodal characteristics. Bimodal characteristics could be an important

indicator of frequency selectivity and a sort of multi-resonant behavior. The fre-

quencies that correspond to the peak points of the characteristics can be regarded

as the most effective frequencies through which the protein can interact with other

proteins or ligands. One can also surmise that interactions through residues that

exhibit bimodal characteristics have a more complex nature, pointing to a multi-

frequency nature of the interaction. Residue 230 exhibits less displacement than

residue 9 at low frequencies, but in the higher frequency range, the situation is re-

versed. Some of the residues (e.g., 8, 9, 56, 58, 290) show a drastic increase in the

mid-frequency range but others do not (e.g., 193, 196). Figure 4.5(e) shows the

displacements for all of the residues at five selected frequencies in logarithmic scale.

Kinetic energy , Ei(ω), calculated at each frequency, is proportional to the

square of both the magnitudes of frequency-dependent displacements and the fre-

quency, essentially their product. For a given frequency, larger amplitude motions

have higher kinetic energy. For a given displacement amplitude, higher frequency

motions have higher kinetic energy. The excitations at low frequencies result in

relatively larger amplitude fluctuations, due to the low pass nature of the frequency

response of a protein. However, the high value of displacement magnitude is coun-

teracted by the low frequency value in the product. On the other hand, higher

frequency excitations result in lower amplitude motions, counteracting the high fre-
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(a) Residue displacements in 3D view (b) Residue displacements vs residue index

(c) Residue index vs frequency
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quency value in the product. That is, at both low and high frequencies, the kinetic

energy has a relatively small value due to the opposing terms (displacement and

frequency) in the product. As expected, Figure 4.6(a) shows that the residues have

higher kinetic energy for mid-range frequency excitations. It is of course expected

that the input residue has the maximum energy. However, some of the non-input

residues exhibit more energy variation than the others. The residues that show dras-

tic energy variations can be considered as the critical ones for energy transmission

within the protein. It is worth pointing out that the critical residues attain their

maximum energy values at distinct frequencies. Therefore, the frequency of the

force excitation is a determining factor on the energy distribution of the residues.

Figure 4.6(a) shows the logarithmic scale energy plots for these critical residues. A
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Figure 4.6: Energy analysis of FBP

residue is regarded as critical if the maximum energy value of that residue is greater

than or equal to 3% of the maximum energy value that any residue attains over the

whole frequency range in the protein. This is typically the maximum energy of the

input residue, however, there may be cases where a residue other than the input

residue may attain the maximum energy. With this criterion, the critical residues

of FBP are 6, 7, 8, 10, 32, 54, 55, 56, 57, 58, 59 and 228. It is expected that some



Chapter 4: PAC: A frequency domain technique for analyzing protein dynamics 50

of these critical residues are the closest ones to the input residue, since that is the

entry point for energy into system. However, what is worth pointing out is that

some of the residues nearest to the input are not among the critical, and some of the

distant residues are critical instead. The distant critical residues may be involved

in allosteric communication.

Let r(j) denote the coordinates of the jth residue in the initial form, i.e., the holo

form after alignment. Then, with ith residue as the input, the proximity of the other

residues to the input site are calculated as the inverse of the distance between the

ith and the jth residue.

εij =
1

|r(i) − r(j)|
j = 1 . . . N. j 6= i. (4.23)

We can examine how energy relates to how proximate the residue is to the force

application site with a Pearson correlation calculated as follows

corr(ω) =

N∑
j 6=i

(εij − εi)(Ej(ω)− E(ω))√
N∑
j 6=i

(εij − εi)2

√
N∑
j 6=i

(Ej(ω)− E(ω))2

with

εi =
N∑
j 6=i

εij

/
(N − 1) ,

(4.24)

where εi is the average of the proximity and E(ω) is the average energy over the

residues. Figure 4.6(b) shows the correlation between proximity to the input residue

(see Figure 4.4(b)) and energy as a function of the excitation frequency. In certain

frequency intervals (0.15-0.25, 0.3-1, 1.1-1.6 THz), the energy has a higher cor-

relation with proximity, whereas for low and high frequencies they are relatively

uncorrelated. It is also interesting that there exist distinct frequency values where

the correlation exhibits peaks. That is, the correlation of proximity to the input

site and energy distribution does not follow a monotonic trend with frequency. The

uncorrelated frequency intervals can be considered as an indication of allosteric be-

havior. Allosteric behavior may not be a statically determined property of a protein.

Instead, the dynamic, time-varying characteristics of the excitation may play an im-

portant role in allostery.
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Major-axis length , |rmajori(ω)|, reveals the extent of the range of the motion

of the residues, as a function of excitation frequency. In Figure 4.7, the major-

axis length is shown both as a function of residue index and frequency, and by

averaging over frequency. Based on the frequency averaged results, residues 7, 8,

54-59, 228, and 229 move more than the others. Those that exhibit the least amount

of movement are the region between 130-190, and residues 307-308.

(a) |rmajor| (b) Frequency-averaged |rmajor|ave. Values

above 0.35 Å are not shown.

Figure 4.7: Major-axis length |rmajor| of FBP.

Angle between the major-axis and applied force direction , θmajori(ω),

classifies the residues that move together in the same direction with the force, in

the opposite direction, or in an orthogonal manner. θmajori(ω) can help detect the

hinge points in the protein.

Figure 4.8 shows that most of the residues tend to move in an orthogonal manner

to the force for larger frequencies. Frequency averaged θmajor values are shown in

Figure 4.8(b). On average, residues 11, 33, 82, 140, 289, and 293 move orthogonally

to the force. Residues 42, 45, 52, 54, 55, 56, 57, 232, 237, and 303 are aligned with

the excitation force direction.

Isotropicity , ξi(ω). Residues with ξi(ω) values around 0 are anisotropic, whereas

the ones with values near 1 are isotropic. Motion of the anisotropic residues indi-

cates directional selectivity, such as opening/closing. Therefore, the anisotropicity
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Figure 4.8: Angle between the major-axis and force, θmajor, of FBP. Colorbar labels

are to be multiplied with π, and in radians.

metric may be useful in the directional analysis of protein motion. In general, the

isotropicity of a residue varies greatly as a function of frequency, although some of

the residues may exhibit similar trends within all (some) of the frequency range.
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Figure 4.9: Isotropicity ξ of FBP.

Figure 4.9(a) shows isotropicity as a function of frequency. It is highly frequency

dependent for FBP. Over a certain frequency range, most of the residues become

anisotropic. Therefore, we can claim that excitations with higher frequency force the

protein motion to be more directionally selective. Residues 57, 67, 68, 73, 95, 111,
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113, 115, 127, 163, 166, 167, 186, 210, and 302 have isotropicity values less than 0.03,

at a certain frequency, while for residues 21, 23, 98, 124, 172, 179, 200, 202, 218,

219, 245, 254, 263, 281, and 284 it becomes more than 0.8. Figure 4.9(b) shows the

frequency-averaged values of isotropicity and provides an overall impression about

the residue on being (an)isotropic. Residues 40, 55, 57, 212, 272, and 302 are the

most anisotropic ones on the average, and 4, 23, 48, 146, 190, 217, 218, 245, 263,

and 290 are the most isotropic.

Angle between the plane normal and force , θnormal(ω). Figure 4.10 shows

that, as the frequency increases, the plane in which most of the residue trajectories

reside tend to be aligned with the force direction. There are exceptions to this,

some residues move orthogonally to the force. These residues may be involved in

directional motions which are functionally crucial within the protein. Frequency-

averaged θnormal plot in Figure 4.10(b) shows also that most of the residues are

aligned with force, e.g., 5, 17, 18, 20, 57, 62, 83, 89, 207, 303, and 306. However, the

motion of the residues 9, 29, 35, 33, 64, 85, 93, 211, 258, 272, 293, and 297 deviate

from the force direction.
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Figure 4.10: Angle between the plane normal and the force direction, θnormal, of

FBP. Colorbar labels in radians/pi.



Chapter 5: Allostery in proteins as point-to-point telecommunication in a network:
Frequency decomposed signal-to-noise ratio and channel capacity analysis 54

Chapter 5

ALLOSTERY IN PROTEINS AS POINT-TO-POINT

TELECOMMUNICATION IN A NETWORK:

FREQUENCY DECOMPOSED SIGNAL-TO-NOISE

RATIO AND CHANNEL CAPACITY ANALYSIS

5.1 Introduction

The coupled dynamics of biological molecules underlie essential functions in cellular

processes, including protein regulation and cellular signaling. Allostery—the trans-

mission of the effect of ligand binding to another (often) distal site of a protein—

plays an important role in many of these functions and may also be leveraged for

novel drug delivery applications [80, 81]. There has been sustained activity in both

computational and experimental allostery research ever since Monod and Jacob in-

troduced the concept [82]. Nevertheless, a general mechanistic understanding of

allosteric processes still remains elusive [83].

Since its introduction, the definition of allostery has evolved over time. In the

earlier structure-centric models, the ligand induced change in the binding affinity

at a distal site was thought to be accompanied by significant conformational changes.

Two historically dominant models for allosteric mechanisms are the Monod–Wyman–

Changeux (MWC) [84] and the Koshland–Nemethy–Filmer (KNF) models [85].

Both models assume that there is an equilibrium between two pre-existing confor-

mational configurations, corresponding to the active and inactive states, but differ

in the treatment of intermediate states. In the MWC model, all subunits simultane-

ously transition from the inactive to the active configuration upon ligand binding,

The content of this chapter is under revision.
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i.e., they undergo a concerted motion. On the contrary, in the KNF model, the

subunits transition, one at a time, in a sequential manner, resulting in transition

states. Despite their initial success, these structure-based models are now consid-

ered insufficient for explaining the behavior of some allosteric proteins, such as the

PDZ domains. As a result, a variety of extended models have been proposed. For

instance, in the population-shift model, instead of only two states, proteins are as-

sumed to exist in an ensemble of conformations. Subsequent to ligand binding,

the ensemble undergoes a population shift towards a state that is favored by the

ligand [86]. A more recent view called dynamic allostery, that was introduced by

Cooper and Dryden, led to a paradigm shift in the notion of allostery by showing

that, even in the absence of an observable conformational change in the mean struc-

ture, some proteins can exhibit allosteric behavior [87]. This result suggests that all

proteins may be considered as intrinsically allosteric [88]. Cooper and Dryden fur-

ther demonstrated via statistical thermodynamics based analysis that cooperative

interaction free energies could deviate on the order a few kJ/mol upon ligand binding

as a result of the changes in the frequency and amplitude of thermal fluctuations,

with only a subtle change in the mean structure [87]. This result suggests that a

frequency domain analysis of the fluctuations may provide quantitative insight into

the detailed mechanisms of action-at-a-distance phenomena in allostery.

Motivated by the work of Cooper and Dryden, the present study proposes a set of

novel computational methods for investigating allosteric processes by examining the

effect of perturbations, due to both ligand binding and noise, over a range of relevant

frequencies. To facilitate the scanning of perturbation frequencies, we represent the

protein as a mass-spring network, as a graph of nodes connected by edges. The

nodes of the network correspond to the constituting atoms, or coarse-grained beads

(defined as a collection of atoms), and the edges represent the interactions between

them. Noise forces are applied to all nodes, to model the thermal fluctuations

that originate from the protein-solvent interactions. Similarly, the ligand-protein

interaction is represented by external forces, but they only act on the nodes that are

in close contact with the binding site. The response at a (distal) node selected as
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the output is then determined by the noise forces acting on all of the nodes that are

further shaped by the network dynamics, as well as the external forces representing

the ligand. When “signal transmission” from a specific input to multiple output sites

is considered, signal attenuation, and transmission reliability that is also affected by

noise, may vary a great deal over the output sites. Accordingly, the emergence of

allosteric response due to ligand binding may be attributed to the Signal-to-Noise

ratio (SNR) characteristics measured at the output site. We put forward that, in

order for an allosteric response to occur at a certain output site, the associated SNR

value must be relatively high.

Instead of treating ligand binding as a static structural event, we capture the

dynamic nature of the ligand-protein interactions via modeling the external forces

as dynamic oscillatory excitations, as in Chapter 4, and as in related work [89].

While the excitation frequency is swept over a relevant frequency range, the fre-

quency dependence of SNR is fully characterized. Instead of considering only the

low-frequency (global) modes of motion, we argue that a full spectrum analysis is

essential, especially in cases where SNR does not follow a monotonic trend as a func-

tion of frequency. In particular, noticeably higher SNR within a particular frequency

band may be the key in identifying dynamic allosteric response.

Akin to network representation of proteins, frequency decomposed SNR based

analysis further enables the conceptualization of allostery as a point-to-point channel

in a multi-channel, networked, noisy communication medium, pointing to the direct

link between SNR and channel capacity that was established by Shannon. In the

communications and information theory framework, the ligand serves as a trans-

mitter (source of information), while the whole protein acts as the noisy medium of

communication, i.e., the channel, and the region where the response is probed can be

regarded as the receiver (of information). As in all communication systems subject

to noise, there is an upper limit for the error-free (reliable, effective) information

transmission rate from the transmitter to the receiver, defined as the channel ca-

pacity. Based on the Shannon-Hartley theorem, the channel capacity is determined

by the integral of SNR over the relevant frequency band [90]. As an extension to
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frequency decomposed SNR analysis, we propose to utilize channel capacity as an

aggregate (over frequency) and interpretable measure of robustness of the commu-

nication between the ligand binding site and the distal regions of the protein in the

presence of noise.

Previous efforts attempting to decipher allostery have mostly concentrated on the

identification of critical residues, i.e., residues whose activities are most affected by

the binding event. We propose to add another layer to this analysis by anatomizing

each residue’s frequency decomposed SNR profile individually. Furthermore, we

propose two different methods for characterizing the channel capacity, namely, the

per residue scan and the binding pocket excitation schemes. These methods differ in

terms of the number of nodes upon which the external force is applied, as well as

with respect to the excitation characteristics. Each analysis aims to detect distinct

features. In the per residue scan, while the external force is applied to each (input)

node, one at a time, the channel capacity values are calculated at all of the remaining

nodes as candidate outputs. Through this analysis, the input-output residue pairs

that have the potential to exhibit allosteric coupling can be identified without relying

on any prior site-specific binding information. Hence, this analysis can be used to

discover novel targets for ligand binding. In the binding pocket excitation scheme,

the external force is applied specifically to the residues that are known to be located

in the binding pocket of a specific ligand, while the channel capacities for the rest

of the protein residues are calculated. The aim here is to identify the residues that

are most likely to allosterically interact with an already known binding event.

The utility of the proposed methods is presented for a representative single-

domain allosteric protein that is known to display dynamic allostery, namely the

third PDZ domain of the PSD-95 protein. For an overview of previous approaches

applied to PDZ3, the reader is referred to [81]. This study aims to contribute to this

growing area of research through novel frequency-decomposed SNR and channel ca-

pacity based analysis techniques, which provide complementary insight with respect

to previous methods. The proposed techniques have the potential to offer unique

perspectives in probing the responses to external excitations while also taking the
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noise characteristics into account.

The chapter is organized as follows: Section 5.2 describes the theoretical foun-

dations, and Section 5.3 presents the proposed and employed methods. Section 5.4

shows the results for the investigation of allostery in PDZ3. Supplementary material

is provided in Section 8.2.

5.2 Theory

We describe the Signal-to-Noise ratio (SNR) and the channel capacity formulations

in a step-by-step manner in the following subsections. Section 5.2.1 presents the

Langevin formulation for the network dynamics driven by thermal noise and exter-

nal forces. The stochastic properties of the thermal fluctuations are also discussed.

Computing transfer functions at low frequencies involves the inversion of an ill-

conditioned (nearly singular) matrix, arising from the degrees of freedom related

to rigid body rotations and translations. In Section 5.2.2 we address this issue

by reformulating the inversion of a matrix as a constrained least-squares problem

(CLS), where the constraints are obtained from Eckart’s conditions [91, 92]. The

solution of the CLS problem yields the transfer functions needed. Section 5.2.3

shows that mean square fluctuations are independent of the friction coefficients due

to the adapted Langevin formulation. Section 5.2.4 introduces the power spectral

density (PSD) that characterizes both deterministic and stochastic signals in a fre-

quency decomposed manner. Section 5.2.5 presents a general scheme that utilizes

the transfer functions in order to compute the PSDs of the displacements (outputs)

from the PSDs of the applied forces and noise excitations (inputs). We describe

in Section 5.2.6 how the mean square fluctuations of node (atom or coarse-grained

bead) positions can be computed using transfer functions and PSDs when the net-

work is excited only by noise. This is accomplished by simply integrating the PSDs

over all frequencies. We show that the results obtained as such match the ones that

are computed using a well known technique [93] that uses the pseudo-inverse of the

Hessian of the potential energy function. The equivalence of the two techniques not

only validates the constrained transfer function and the PSD approach, but also
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leads to the characterization of the fluctuations in a frequency decomposed manner.

In Section 5.2.7, we define frequency decomposed SNR as the ratio of the displace-

ment PSDs due to the deterministic external forces (modeling ligand binding) to the

ones due to noise alone. Finally, channel capacity is defined and computed based

on frequency decomposed SNRs.

5.2.1 Dynamics: Langevin formulation

Langevin formulation described in Equation 2.8 for the linearized internal forces is

adapted to describe the protein dynamics

M
d2

dt2
∆r +L

d

dt
∆r +H(r̄)∆r = ξ(t) + Fe(t) , (5.1)

where ∆r = r−r̄ is the displacement from the equilibrium position (r̄) andH is the

Hessian. M = diag(M(1),M(2), . . . ,M(N)) is a block diagonal mass matrix. The ef-

fect of frictional forces exerted by the viscous fluid is incorporated into the dynamics

via L, which is taken to be proportional to the velocity of the particles. ξ(t) cap-

tures the background noise forces due to random collisions of the Brownian particles.

Fe = [Fe1(t)
T , Fe2(t)

T , . . . , FeN (t)T ]
T

is the external force vector of size 3N × 1.

Hydrodynamic shielding effects are ignored, and thus L = diag(L(1),L(2), . . . ,L(N))

is a diagonal matrix of the friction coefficients. We consider the special case of

spherical particles, and the frictional force is assumed to act isotropically on the

particles, i.e., L(i) = diag(γi, γi, γi). The friction coefficient γi for particle i with

radius ai is given by Stoke’s law as

γi = 6πηai , (5.2)

where η is the dynamic viscosity, and the hydrodynamic radius is calculated from

the volume of the particle, Vi, as ai = (3Vi
4π

)1/3.

In the Langevin formulation, the noise and the viscous friction terms are linked

to each other via the fluctuation-dissipation theorem [94, 95]. Particle positions

continually fluctuate due to the interplay between the noise and the friction in the

system, even in the absence of external force excitations, i.e., when Fe = 0. ξ(t)
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in the Langevin equation is a wide sense stationary (WSS) stochastic process. The

first and second moments of the noise force exerted on particle i, a component of

ξ(t), is given by [46]

〈ξi(t)〉 = 0 , (5.3a)

Rξ(ij)(τ) = 〈ξi(0), ξj(τ)〉 = 2kBTL(i)δijδ(τ) . (5.3b)

Above, 〈·〉 denotes an average with respect to the distribution of the realizations

of ξ(t). Due to ergodicity, the time and ensemble averages are equal. Rξ(τ) =

E[ξ(0)ξ(τ)T ] is the auto-correlation matrix of the random force ξ(t), of size 3N×3N .

The Dirac delta function δ(τ) indicates that there is no correlation between different

time samples of the random forces. The Kronecker delta function δij indicates that

random forces acting on different particles are uncorrelated. Therefore, Rξ(τ) is a

diagonal matrix. i and j represent particle indices, i, j = 1, 2, . . . , N .

5.2.2 Constrained transfer function

The Hessian H is a singular matrix with a rank deficiency of six, due to the degrees

of freedom arising from rigid-body rotations and translations of the molecule. There-

fore, the transfer function computation introduced in Section 2.3 is ill-conditioned

at low frequencies, and not possible at zero frequency. To eliminate the six degrees

of freedom, the following set of translational and rotational Eckart’s conditions are

introduced [91, 92]

N∑
i=1

mi ∆r = 0 (5.4a)

N∑
i=1

mi (r
0 ×∆r) = 0 , (5.4b)

where × indicates a vector product, r0 = ri − rcom is the displacement from the

center of mass, rcom, and mi is the mass of the ith particle. Equation 5.4 can be

recast in matrix form as follows
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C∆r = 0 ,where

C =

 M(1) M(2) . . . M(N)

m1R(1) m2R(2) . . . mNR(N)

 and R(i) =


0 −r0

i,z r0
i,y

r0
i,z 0 −r0

i,x

−r0
i,y r0

i,x 0

 .

(5.5)

With the incorporation of these constraints, the inversion of a nearly rank-

deficient matrix is replaced with the solution of the following constrained least-

squares problem

minimize
∆r

||K∆r − F ||2

subject to C∆r = 0 .

(5.6)

A Lagrange multiplier-based solution of the above problem can be formulated as

follows [96]. ∆r̂ is a solution. Lagrangian function with Lagrange multipliers λ =

[λ1, λ2, · · · , λ6]T :

L(∆r,λ) = ||K∆r − F ||2 + λ1C
T
1 ∆r + · · ·+ λ6C

T
6 ∆r . (5.7)

Two optimality conditions are:

∂L
∂∆ri

(∆r̂,λ) = 0, i = 1, . . . , 3N ,

∂L
∂λi

(∆r̂,λ) = 0, i = 1, . . . , 6 .

(5.8)

The second optimality condition yields:
∂L
∂λi

(∆r̂,λ) = CT
i ∆r̂ = 0. The first set of

conditions gives:

∂L
∂∆ri

(∆r̂,λ) = 2
3N∑
j=1

(KKT )ij∆r̂(j) − 2(KTF )i +
6∑
j=1

λjCi = 0 . (5.9)

In matrix-vector form 2KTK CT

C 0

∆r̂

λ

 =

2KTF

0

 . (5.10)
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With rearrangements,∆r̂

λ

 =

2KTK CT

C 0

−1

︸ ︷︷ ︸Z ·

· ·



2KTF

0

 . (5.11)

The transfer function matrix incorporating the Eckart constraints, denoted by Tc,

can be readily constructed using the first 3N rows and columns of the matrix that is

obtained as the inverse of an augmented matrix shown in the RHS of Equation 5.11,

denoted by Z. Thus,

Tc(f) = 2 ·Z(f) ·K(f)T

∆r̂(f) = Tc(f) · F (f) .
(5.12)

In the rest of the chapter, whenever appropriate, the singularity or ill-conditioning

problem in matrix inversion is addressed as above.

5.2.3 Lyapunov formulation

This section presents a Lyapunov-equation based approach in order to show that the

mean square fluctuations, i.e., fluctuations under no external force, are independent

of the values of the friction coefficients. The rationale behind this discussion is that

random noise forces and the viscous friction forces have counteracting effects, as

dictated by the Fluctuation-Dissipation theorem [94, 95].

Equation 5.1 can be recast as 6N coupled first order differential equations with

the state space vector v

v(t) =

∆r(t)

∆ṙ(t)

 .

Under no external force, Equation 5.1 can be expressed as an initial value problem,
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with initial conditions v(0), as follows

d

dt
v(t) =

 0 I

−M−1H −M−1L


︸ ︷︷ ︸

A

v(t) +

 0

M−1


︸ ︷︷ ︸

B

ξ(t)

v(0) =

∆r(0)

∆ṙ(0)

 .

(5.13)

Due to the fact that white noise ξ(t) can be expressed as the formal time deriva-

tive of a Wiener Process, W , Equation 5.13 is written in differential form as follows

dv = Av dt+B dW . (5.14)

Noise characteristics are as follows:

E[ξ(t)] = 0 (5.15a)

E[ξ(t) ξT (t+ τ)] = 2 kBTL δ(τ) , (5.15b)

where E[·] denotes the probabilistic expectation operator. Taking the expectation

of both sides of Equation 5.14, and using the property in Equation 5.15a

E[dv] = AE[v] dt . (5.16)

The zero time-lag correlation matrix is defined as

Rvv = E[v vT ] . (5.17)

From Equations 5.14 and 5.17, and using Ito’s product rule [97] (from stochastic

Ito calculus), the following equation is derived

d(E[v vT ]) =E[dv vT ] + E[v dvT ] + E[dv dvT ]

=AE[v vT ]dt+B E[dW vT ] + E[v vT ]AT dt+ E[v dW T ]BT+

E[dv dvT ] .

(5.18)

The second and fourth terms in Equation 5.18 are zero due to the fact that v and

dW are uncorrelated [27], i.e.,

E[v dW T ] = 0

E[dW vT ] = 0 .
(5.19)
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The additional term in the stochastic calculus product rule in Equation 5.18 can be

expanded as

E[dv dvT ] =E[(Avdt+BdW )(vTAT dt+ dW TBT )]

=AE[vvT ]AT dt2 +AE[vdW T ]BT dt+

B E[dWvT ]AT dt+B E[dWdW T ]BT .

(5.20)

The first three terms in Equation 5.20 are set to zero due to the following that follow

from rules of stochastic Ito calculus (The second and third terms vanish, also due

to Equation 5.19.)

dt2 ≈ 0 dW dt ≈ 0 . (5.21)

From the noise properties in Equation 5.15b

E[dWdW T ] = 2kBTL dt . (5.22)

Then, Equation 5.18 becomes

dRvv = ARvvdt+RvvA
T dt+ 2kBTBLBT dt . (5.23)

Zero time-lag covariance matrix Cvv is defined as

Cvv = E[(v − E[v])(v − E[v])T ] = Rvv − E[v]E[vT ] . (5.24)

Differential form of Cvv:

dCvv(t) = dRvv − E[dv] E[vT ]− E[v] E[dvT ]− E[dv]E[dvT ] . (5.25)

Utilizing Equation 5.16 and expanding dRvv according to Equation 5.23 yields

dCvv(t) = ACvvdt+CvvA
T dt+ 2kBTBLBT dt . (5.26)

In the limit as time goes to infinity, v(t) approaches to a (wide-sense) stationary

process where E[v] and Cvv become independent of time and we obtain Equa-

tion 5.27b, a Lyapunov equation [98].

lim
t→∞

E[v] = 0 (5.27a)

lim
t→∞

ACvv +CvvA
T + 2kBTBLBT = 0 . (5.27b)
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We note that, due to Equation 5.27a, Cvv = Rvv, however we stick to the covariance

notation. Using the symmetricity of covariance matrices, Cvv is structured in block

form as

Cvv =

E[∆r∆rT ] E[∆r∆ṙT ]

E[∆ṙ∆rT ] E[∆ṙ∆ṙT ]


Cvv =

 C00 C01

C01
T C11

 .

(5.28)

Inserting A defined in Equation 5.13 and the block form of Cvv, with H = HT ,

Equation 5.27b expands as 0 I

−M−1H −M−1L

 C00 C01

C01
T C11

+

 C00 C01

C01
T C11

0 −HM−1

I −M−1L

+

2kBT

0 0

0 M−2L

 = 0 ,

(5.29)

which can be further manipulated as C01
T C11

−M−1HC00 −M−1LC01
T −M−1HC01 −M−1LC11

+

C01 −C00HM
−1 −C01M

−1L

C11 −C01
THM−1 −C11M

−1L

+ 2kBT

0 0

0 M−2L

 = 0 .

(5.30)

Equation 5.30 leads to the following set of equations

C01
T +C01 = 0 (5.31a)

C11 −C00HM
−1 −C01M

−1L = 0 (5.31b)

−M−1HC00 −M−1LC01
T +C11 = 0 (5.31c)

−M−1HC01 −M−1LC11 −C01
THM−1 −C11M

−1L+ 2kBTM−2L = 0 .

(5.31d)

Equation 5.31a implies that C01 = −C01
T , i.e., C01 is antisymmetric. Then, the
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above set of equations yield

C11 −C00HM
−1 −C01M

−1L = 0 (5.32a)

−M−1HC00 +M−1LC01 +C11 = 0 (5.32b)

−M−1HC01 −M−1LC11 +C01HM
−1 −C11M

−1L+ 2kBTM−2L = 0 .

(5.32c)

From Equations 5.32a and 5.32b

C11 = C00HM
−1 +C01M

−1L (5.33a)

= M−1HC00 −M−1LC01 . (5.33b)

Noting the symmetricity of covariance matrices: C00 = C00
T and C11 = C11

T .

Then, inserting Equation 5.33 into Equation 5.32c gives

−M−1HC01 +C01HM
−1 −M−1L(C00HM

−1 +C01M
−1L)

− (M−1HC00 −M−1LC01)M−1L+ 2kBTM−2L = 0 .
(5.34)

Multiplying the above by M both from the left and right results in

−HC01M +MC01H −LC00H −HC00L+ 2kBTL = 0 . (5.35)

When C00 = kBTH−1, Equations 5.33a and 5.33b together read

C01M
−1L+M−1LC01 = 0 , (5.36)

implying that C01 = 0. We then observe that C00 = kBTH−1 satisfies Equa-

tion 5.35, based on the fact that the first two terms are equal to zero with this form

of solution for C00, as shown above. We also note that M , M−1, L are all diagonal

matrices with positive-valued entries. This shows that the mean square displace-

ments are independent of the chosen L. We note also that H is singular, thereby

its inverse is calculated either as a pseudo-inverse, or alternatively, by adapting

the constraint-based solution that is introduced in Section 5.2.2. The frequency-

dependent terms are zero in the transfer function (T ) definition at zero frequency

in Equation 2.11, i.e., T (0) = H−1. To address the singularity problem, rotational
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and translational constraints are introduced into the transfer function, leading to

Equation 5.12. Then, the constrained transfer function at zero frequency, Tc(0),

denoted as Hc
−1, can be calculated as

Hc
−1 = Tc(0) = 2 ·Z(0) ·HT with (5.37a)Z(0)3N×3N ·

· ·

 =

2HTH CT

C 0

−1

, (5.37b)

where C corresponds to the constraints matrix, defined in Equation 5.5.

As an alternative approach in order to demonstrate that the mean square dis-

placements are independent of the friction values, Figure 5.1 shows the numerical

solution of Equation 5.27b for C00. Due to the previously mentioned invertibility

issues of H , Lyapunov equation does not have a unique solution with matrix A

arising from a rank-deficient H . In order to overcome this problem in the numerical

solution, Hc is utilized instead. Figure 5.1 is drawn for various L values. The same

figure is obtained in all trials. Therefore, it can be concluded that due to the link

between thermal noise and viscous friction, residue fluctuations are independent of

the friction values.

Figure 5.1: Numerical Solution of Lyapunov equation



Chapter 5: Allostery in proteins as point-to-point telecommunication in a network:
Frequency decomposed signal-to-noise ratio and channel capacity analysis 68

5.2.4 Power spectral density (PSD)

The power spectral density describes the content of a signal in a frequency decom-

posed manner. It can be computed either directly from the squared amplitudes of

the frequency domain representation (for deterministic signals), as in Equation 5.38a

below, or as the Fourier transform of the auto-correlation function (for stochastic

signals), as in Equation 5.38b, due to the Wiener-Khinchin theorem [99]. SX is the

PSD of a signal X

SX(f) = |F [X(t)]|2 (5.38a)

= F [RX(τ)] , (5.38b)

where F denotes the Fourier transform, defined with
∫∞
−∞ dτX(τ) exp (−j2πfτ)

for the signal X. Equation 5.38a is used for external force excitations that are

deterministic, Equation 5.38b is used for noise sources and stochastic fluctuations.

5.2.4.1 PSD of noise sources

The PSD of the noise force acting on the ith particle can be determined by inserting

the autocorrelation Rξ(ij)(τ) defined in Equation 5.3b into Equation 5.38b

Sξ(i) = 2kBTL(i) . (5.39)

The above PSD is constant over the frequency spectrum, corresponding to white

noise.

5.2.4.2 PSD of external force excitations

A deterministic external force that acts on certain nodes mimicks the ligand bind-

ing event. Although the proposed method does not impose any restriction on the

form of the external force Fe, we consider it as a dynamic, sinusoidal perturbation

whose frequency is swept over a certain range, allowing us to quantify the effect of

perturbation frequency. The external force applied to particle j is in the form

Fe(j) = Fj cos(2πfct) ,
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where Fj is a 3× 1 vector that contains the force components along the coordinate

axes applied on the jth particle, and fc is the frequency.

The PSD of this sinusoidal force at the input site is given by

SFe(j)(f) =


Fj

2
x/4 0 0

0 Fj
2
x/4 0

0 0 Fj
2
z/4

 δ(f − fc) . (5.40)

5.2.5 From excitation PSDs to displacement PSDs

For multi-input multi-output LTI systems, the cross spectral density matrix of the

outputs, SY , can be calculated as follows by using the cross spectral density matrix

of the inputs, SX , and the transfer function T (please see [100] for the derivation)

SY (f) = T (f)SX(f)T (f)∗ , (5.41)

where ·∗ denotes complex conjugate. When the input is the force excitation (either

due to noise or external force), and the output is the fluctuations/displacements of

node positions, the above relationship can be written using the constrained transfer

function defined in Equation 5.12 as

SF∆r(f) = Tc(f)SF (f)Tc(f)∗ . (5.42)

We separately compute the PSDs of the output due to noise and deterministic

excitations by first setting F = ξ and then F = Fe. We note that SF∆r is a

full matrix. The diagonal entries represent the spectral densities, whereas the off-

diagonal entries are the cross-spectral densities. We focus on the diagonal entries in

this study. Hence, we introduce the following notation

D(SF∆r) = (D(SF∆r(1)),D(SF∆r(2)), · · · ,D(SF∆r(N)))

for the 3N × 1 vector formed from the diagonal elements of SF∆r.

5.2.6 Characterization of equilibrium fluctuations based on the PSDs of displace-

ments due to noise

The partition function of the system, whose potential energy profile is given in Equa-

tion 2.5, can be calculated over all possible displacements with
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Z =
∫

d∆r exp (−β∆rTH(r̄)∆r), where β = 1/kBT , kB is the Boltzmann’s con-

stant, and T is the absolute temperature. The correlations of the fluctuations be-

tween sites i and j can be obtained from this partition function as [101]

〈∆ri ·∆rj〉 =
1

Z

∫
d∆r(∆ri ·∆rj) exp(−β∆rTH∆r) , (5.43)

which can be simplified to

〈∆ri ·∆rj〉 = tr(H−1
(ij))/β . (5.44)

Thus, mean square fluctuations for particle i is

〈∆ri2〉 = tr(H−1
(ii))/β , (5.45)

where H(ij) corresponds to the 3× 3 submatrix for particles i and j, and tr denotes

the trace. Since the Hessian is singular as discussed before, its pseudo-inverse (H+)

is computed through the use of the non-zero eigenvalues, µk, and the corresponding

eigenvectors, uk, as follows

H+ =
3N−6∑
k=1

1

µk
uku

T
k . (5.46)

The mean square fluctuations computed as such are proportional to the B factors

determined from X-ray crystallography, also known as temperature factors [93],

denoted by B:

B ∝ 〈∆r2〉 . (5.47)

The total power in a WSS stochastic signal X can be expressed in terms of the

variance of the signal, i.e., zero time-lagged auto-correlation, which is also given by

the integral of its PSD over all frequencies, as below

PX = 〈X(t)2〉 = RX(0) =

∫ ∞
−∞

df SX(f) . (5.48)

In the absence of external force excitations, the mean square fluctuation of node i

can be thus computed as the sum of integrals of the displacement PSDs along the

coordinate axes as

〈∆ri2〉 = 2
∑

k=x,y,z

∫ ∞
0

df (S∆r
ξ)i,k(f) , (5.49)
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where the factor 2 is due to the symmetry of the two-sided PSD for negative and pos-

itive frequencies. This PSD-based technique thereby offers a previously overlooked

route to computing mean square fluctuations. Previously published studies mostly

focused on the frequency distribution of the B factors at a set of discrete frequency

points, known as the normal mode frequencies. The PSD-based approach allows the

frequency decomposed analysis of B factors over any continuous frequency range of

interest.

5.2.7 Signal-to-Noise ratio (SNR) and channel capacity

We define SNR as the ratio of the PSD of the displacements measured at the output

due to external force excitations alone and the displacements due to only noise:

SNR(f) =
SFe

∆r(f)

Sξ∆r(f)
. (5.50)

According to the integral-form of the Shannon-Hartley theorem [90], the channel

capacity that can be attained over a noisy communication channel is defined as

C =

∫
BW

df log2 (1 + SNR(f)) , (5.51)

where the integral is computed over a frequency band BW of interest. We choose

[0, ∞) as the frequency interval. Then, the channel capacity between the input

node j and output node i can be calculated as the sum of the channel capacities

along the coordinates axes

Cij =
∑

k=x,y,z

∫ ∞
0

df log2

(
1 +

D(S
Fe(j)

∆r (i),k)

D(Sξ∆r (i),k)

)
, (5.52)

where Fej indicates that the deterministic force excitation is applied to node j only

but results in dynamic displacements at all the others. In computing S
Fe(j)

∆r (i),k, the

strength of the input excitation is kept constant while its frequency is swept. The

strength of the resulting response will vary not only as a function of the output node

but also over the frequency range, as determined by the internal network dynamics.

Thus, while information (signal) transmission between two particular nodes may

be inefficient at a certain frequency, it may be enhanced at another. On the other
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hand, random noise excites all nodes simultaneously, at all frequencies with equal

strength, and it is shaped by the network dynamics resulting in fluctuations at all

nodes with a colored frequency composition as opposed to the white noise excitation.

The extent of fluctuations due to noise is also a function of the output node. We

emphasize here the distinction between signal transmission and noise propagation

through the network. While the signal permeates throughout the network from a

single entry point, noise enters from everywhere. Thus, the frequency decomposed

profiles of node displacements due to either the signal or the noise alone may be

quite different, resulting in a colored frequency composition for SNR with possibly

non-monotonic behavior.

5.3 Methods

Figure 5.2 presents a pictorial overview of the methods described in Section 5.2. The

protein is represented as a network, and the protein-solution interactions are modeled

as random noise forces that act on every node. In contrast, the effect of the ligand

is captured by a deterministic, oscillatory external force, which is applied to a single

node (or simultaneously to a set of nodes), denoted as the input node(s). The goal is

to examine how the effect of the external force excitation is transmitted to the output

node in the presence of all of the noise sources. The random noise is white, i.e., has a

constant PSD over the frequency interval of interest. The magnitude of the external

force is held constant as a function of frequency. The PSDs measured at the output

node are calculated using the input PSDs and the frequency-dependent transfer

functions, quantifying the displacements in response to both deterministic and noise

excitations. We underline that although noise forces are applied to all of the nodes,

noise PSD only for the input node, upon which the external force is applied, is

shown in the pictorial overview for brevity. The methods proposed in this thesis

enable a frequency decomposed analysis, by sweeping the perturbation frequency

in a frequency range of interest. The gray bars in the PSDs represent frequency

sweeping, while the highlighted bars correspond to the perturbation frequency that

is currently under investigation. The PSD plots at the output show the frequency-
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dependent characteristics. SNR is calculated using the output PSDs, by simply

taking the ratio of the PSDs due to deterministic and noise excitations at each

frequency. The channel capacity is computed via an integral of the SNR over a

frequency band. In Figure 5.2, the color green represents noise and red is used for

the external force. Yellow and purple are used to distinguish the input and output

nodes, respectively.

Figure 5.2: A simplified pictorial overview of the work flow. The signal permeates

throughout the network from a single entry point, the input, and converges at the

output. Noise enters the network from everywhere and every noise component has

an impact at the output. Although the noise forces act on every node, only some of

them are shown in the figure to reduce clutter. The network was drawn using the

NAPS web-server provided in [1].
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Figure 5.3: Schematic of the work flow.

An algorithmic summary of the proposed methods is presented in Figure 5.3.

The top flow line schematically shows the steps for obtaining the B factors from

the Hessian. We use two alternate methods for Hessian construction, described in

Sections 3.3 and 3.2.1. One approach relies on molecular dynamics (MD) (HMD)

while the other is based on ENMs (HANM). In Figure 5.3, the two parallel flow

lines below are for the operations involved in obtaining the output displacement

PSDs from the input PSDs, including the computation of the constrained transfer

functions, both for deterministic excitations and noise. As an alternative to direct

inversion of the Hessian, the PSDs of the displacements due to noise not only lead to

the B factors, but also enable the frequency decomposed analysis of the equilibrium

fluctuations. SNRs are computed as the ratio of the displacement PSDs due to

external force excitations and to those due to noise, subsequently integrated to

obtain the channel capacities.
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5.3.1 Molecular dynamics simulation details

We considered two distinct systems for simulations, the PDZ3 domain with

(PDBID:1be9) and without (PDBID:1bfe) the associated ligand. Starting from the

PDB structures, missing atoms were added to the structure using the PyMOL mu-

tagenesis tool [2]. Each structure was then solvated with sufficient number of water

molecules to “fill” a cubic box with sides of length 6.6 nm (8804 and 8845 wa-

ter molecules for the system with and without the ligand, respectively), using the

gmx solvate command in the GROMACS package [102]. Additionally, the minimum

number of ions were added to neutralize the system (2 Na ions for the system with

the ligand and 1 Na ion for the system without the ligand). The Amber99SB-ILDN

force field [103, 104] was used to model the protein interactions, while the TIP3P

model [105] was used to model the water interactions.

All simulations were performed with the Gromacs 5.0.8 simulation suite [102]

with a 2 fs integration time step, while using the LINCS [106] algorithm to rigidly

constrain all bonds that involve H atoms. All simulations employed the Gromacs

leap-frog integrator [107] and periodic boundary conditions [108]. Electrostatic inter-

actions were treated with the particle mesh Ewald method [109], using the default

Gromacs parameters. Short-ranged van der Waals interactions and also the real

space contribution to the electrostatic interactions were truncated at 1.2 nm in all

simulations. After energy minimization, each system was annealed from 0 to 300 K

over a 500 ps time frame, followed by a 5 ns equilibration simulation in the NV T en-

semble using the Berendsen thermostat [110] with a temperature coupling constant

of 0.5. Subsequently, an NPT equilibration was performed using the Berendsen

thermostat and barostat with coupling coefficients of 0.1 for both and a compress-

ibility of 4.5×10−5 bar−1 (corresponding to the compressibility of water at 1 atm

and 300 K). The average volume from this simulation (corresponding to box side

lengths of 6.56797 nm and 6.56372 nm for the systems with and without the ligand,

respectively) was used to select an initial structure for the production simulation.

Production simulations were performed for 100 ns in the NPT ensemble, using the

velocity rescaling thermostat [111] with a temperature coupling coefficient of 0.1 and
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the Parrinello-Rahmen barostat with a pressure coupling coefficient of 2.0. Config-

urations, velocities, and forces were saved every 2 ps for subsequent analysis. We

characterized the local impact of the ligand by calculating the average force that all

atoms of the ligand exert on each of the Cα atoms of the binding pocket residues

(residues [320− 328] and [371− 380]).

5.3.2 External force excitations

Figure 5.4 presents a schematic view of the two different techniques we used in

order to probe allosteric behavior, namely, per residue scan and binding pocket (BP)

excitation. An external force is applied to only one residue in the first case, whereas

multiple residues are perturbed simultaneously in the latter. With per residue scan,

the goal is to identify the residue pairs that are likely to interact allosterically. Each

residue is separately perturbed with a sinusoidal force whose frequency is swept

from 0 to the maximum of the normal mode frequencies. The force in this case has

a unit magnitude but numerous directions are sampled on a spherical grid. The

channel capacities from the input to the rest of the residues are computed for each

force direction, and a distinct direction for every output residue that maximizes its

capacity is identified. BP excitation models ligand binding to the protein in a more

realistic manner by simultaneously exciting multiple residues that are previously

known to be in a certain binding pocket. The responses of all of the remaining

residues are monitored. Instead of sampling the force directions on a grid, the

relative amplitudes and the directions of the external forces that act on the binding

pocket residues are directly obtained from MD simulations as described in detail

in Section 5.3.1, while the sinusoidal form and the frequency range are as in per

residue scan. The channel capacities calculated as such are normalized (in a min-

max sense such that the range of the channel capacity values from the minimum to

the maximum are linearly transformed into the range 0 to 1) in order to attain a

distribution of capacities within a protein. In the normalization process, the values

above a predefined threshold are set to 1, while the remaining values are scaled to

be in the interval [0, 1].
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Figure 5.4: Schematic view of the two different techniques used in order to probe

allosteric behavior.

5.3.3 Parameters

Residues are represented by their Cα atoms. A 200-point Gauss-Legendre quadra-

ture scheme from NumPy package is used to numerically calculate the integrals [112,

113]. η, which is utilized in the friction coefficient calculation in Equation 5.2 and

subsequently in Equation 5.1, is taken as the dynamic viscosity of water at 310

K, that is equal to 6.7807 · 10−4 Pa · s. Masses and volumes of the residues are

retrieved from [114] and [115], respectively, also listed in Table 8.2. However, as

shown in Section 5.2.3, the mean square fluctuations are independent of the friction

coefficient values due to the link between noise PSDs and friction in the formulation

in Equation 5.1. We utilized ANMs with a cut-off distance of 15 Å and the same

spring constant for all interactions. In per residue scan, the force directions are

sampled from a 25 point equally-spaced spherical grid. The values above 90% of the

maximum channel capacity value are normalized to a value of 1. In the BP excita-

tion, the force exerted by the ligand on the binding pocket residues are determined

from MD simulations of the holo form as described in Section 5.3.1. The rotation
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matrix calculated for the superposition of the apo and holo forms is then applied

to this external force vector so that it can be used as a force excitation for the apo

form.

5.4 Results

We demonstrate the utility of the proposed methods on a well-studied PDZ3 protein

(the third PDZ domain of PSD-95) that is known to display dynamic allostery, i.e.,

allostery without major structural changes. PDZ domains are one of the most abun-

dant and evolutionarily conserved protein-protein interaction modules that take part

in numerous cellular and biological functions, including dimerization and recognition

of specific sequences of C terminus tails of other proteins [12]. The conserved struc-

tures in PDZ domains are six beta strands: β1− β6, and two alpha helices: α1 and

α2. Some of the PDZ domain proteins have additional structures, which have been

proposed to affect ligand binding. PDZ3 has α3, β7, and β8 extensions [116]. It was

shown that the removal of the α3 domain results in a 21 times decrease in the bind-

ing affinity of PDZ3 [117], without a significant conformational change. This points

to the allosteric nature of the PDZ3 domains, as well as to the entropic (as opposed

to structural) nature of this allosteric behavior. The aligned structures of the 110-

residue-long apo and holo forms of PDZ3 (PDB ID’s 1bfe and 1be9, respectively)

are shown in Figure 5.5. The ligand, which is represented in ball-and-stick form,

is a 5-residue-long C-terminal segment of the Cysteine-rich PDZ-binding protein

CRIPT. The binding pocket lies between the α2 − β2 regions, and is comprised of

residues [320−328] and [371−380]. Figure 5.6 presents the sequence and secondary

structure assignment information.

First, the analysis techniques proposed in this chapter are validated in Sec-

tion 5.4.1 by examining the displacements due to noise forces alone. This verification

is based on the equivalence of the B factor values obtained via the proposed work

flow and previously available computational techniques. Since the proposed tech-

niques emphasize frequency domain representations, the frequency distribution of

equilibrium fluctuations is obtained as an intermediate step. Then, in Section 5.4.2,
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Figure 5.5: The aligned structures of the apo and holo forms of the PDZ3 protein.

Wheat (teal) color is for the holo (apo) form. The ligand is represented in ball-and-

stick format. PyMOL was used for the visualization [2].

Figure 5.6: The secondary structure assignments from DSSP (definition of secondary

structure of proteins) [3] of the holo form of the PDZ3 protein (PDBID: 1be9). Image

is from the RCSB PDB (www.rcsb.org) [4].
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we present frequency-decomposed SNR and channel capacity based analyses in the

presence of external perturbations using both the per residue scan and BP excitation

scenarios.

5.4.1 Without external force: equilibrium fluctuations

Mean square fluctuations (MSFs), which are proportional to experimentally measur-

able B factors, can be directly calculated from the pseudo-inverse of the Hessian of

the potential energy function (please refer to Equations 5.45 and 5.47). We proposed

an alternative frequency domain method to compute these equilibrium fluctuations

by integrating the power spectral densities over the whole frequency range. The

proposed scheme is based on the (linearized) Langevin formalism (please see Equa-

tion 5.1), which uses H . Hence, the MSFs obtained from the pseudo-inverse of H

and the MSFs from the proposed method should correspond to each other. Here,

we consider H obtained both from MD (HMD) and also from ANM (HANM) (see

Section 3 for details). Figure 5.7 presents the B factors obtained for the apo form

(PDBID:1bfe): from (i) the direct pseudo-inverse approach, (ii) the proposed PSD-

based scheme, and (iii) experimentally measured values. The orange and green lines

present B factors obtained from HMD and HANM, respectively. The blue and red

lines represent B factors calculated from the integral of the PSDs both with HMD

and HANM, respectively (please refer Section 5.2.6 for the details of the method).

The perfect match between the proposed frequency domain scheme and the pseudo-

inverse-H technique confirms the validity of the proposed work flow that utilizes the

transfer functions with constraints introduced to overcome the singularity problem,

and PSD integrations. Moreover, the agreement of the B factors between ANM and

MD (except for the residues [379−381]) based Hessians justifies the use of simplified

models for fluctuation analyses around an equilibrium structure. The black line in

Figure 5.7 corresponds to the experimental B factors, which are reported in the as-

sociated PDB file. The secondary structure information is displayed at the bottom.

The frequency decomposition of the MSFs are shown in Figure 5.8 for HMD and

HANM. (Please see Figure 8.18 for the side views). In both cases, the low frequencies
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Figure 5.7: B factor values that are calculated with various methods for the apo

form (PDBID:1bfe). The blue (red) lines show the values calculated via power

spectral density integrations using HMD (HANM). The orange (green) line is calcu-

lated directly from the pseudo-inverse of HMD (HANM). The black line shows the

experimental values. The values are scaled to correspond to the experimental ones.

contribute significantly more to the total MSFs. Also, there is an apparent trend:

PSDs decrease as frequency increases, yet with varying rates for different residues.

The PSDs obtained from HMD display a more rapid decrease starting from low

frequencies, whereas for HANM, this decrease starts at higher frequency values. Al-

though the difference in total MSFs for the two Hessians is relatively small, as seen

in Figure 5.7, the spectral decompositions exhibit substantial differences. Hence,

the equilibrium analysis suggests that the results from simplified models should be

interpreted with caution.

5.4.2 External force excitations

5.4.2.1 Per residue scan

Figure 5.9 presents the capacity values obtained with per residue scan for HMD.

The normalized channel capacity values presented in panel (a) suggests a coupling

between the first several residues closest to the C terminal and (β7 & β8) domains,

as well as between β1 and β6, β2 and (β3 & β4), β5 and β6, and β7 and β8 domain
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Figure 5.8: PSD profile of the equilibrium fluctuation with (a) HMD and (b) HANM.

pairs. Due to the fact that high channel capacity is expected between residue pairs

that are close to each other in space, the capacity values are distance-weighted to

detect the long-range interactions more clearly, as shown in Figure 5.9(b). The pair-

wise distance values that are used in this weighting procedure are calculated at the

equilibrium point (please see Figure 8.16 for the pairwise distances). Despite being

distant, the residue pairs that are found to be linked are listed in Table 5.1. The

motions of SER 320 - SER 408, SER 409, and ASN 415 appear to be coupled. The

results with HANM for per residue scan (as well as for BP excitation) are presented

in Figure 8.17.

5.4.2.2 Binding pocket (BP) excitation

Figure 5.10 presents the channel capacity values obtained with BP excitation for

HMD. Panel (a) presents the distance-weighted and normalized channel capacity

values, while panel (b) presents a complementary visualization of the 3D protein

structure without applying the weighting (The capacity values utilized in panel (b)

are shown in Figure 8.19 in the same format of panel (a)). Please note that the

residues that are located in the BP, which are represented by gray boxes in the left

panel, are excluded from the normalization procedure since the external forces are
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Input - Output

ASP 306 - SER 320, THR 321

SER 320 - ASP 332, ASN 403, THR 414, ASN 415

ASN 407 - SER 320, THR 321

SER 408 - SER 320, THR 321, ASN 381

SER 409 - SER 320

ASN 415 - SER 320, THR 321

Table 5.1: Residue pairs that are located far apart in space, yet have high channel

capacity values that are identified by per residue scan, with HMD.
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Figure 5.9: Per residue scan with HMD. (a) Normalized, (b) Distance-weighted and

normalized channel capacity values.
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directly applied to them. According to the top panel, ASP 306, HIS 317, ALA 343,

GLY 344, GLY 383, GLN 384, THR 385, ASN 403, ASN 407, SER 408, SER 409,

THR 414, and ASN 415 are identified to have the potential to display the most

significant allosteric response to the ligand-binding event.

Figure 5.11 presents the residues that have been reported as critical using vari-

ous computational and experimental techniques, which are also listed in Table 8.3.

The normalized channel capacity values (without distance-weighting) obtained from

BP excitation are displayed as color coded at the bottom row. As in the previous

studies, the BP residues are excluded from the analysis. As can be seen from the

figure, there is little agreement among the methods that aim to identify the critical

residues involved in the PDZ3 protein. Nonetheless, there are several residues that

most of the methods agree on, such as GLY 329, ILE 338, ILE 341, ALA 347, LEU

353, VAL 362, and VAL 386. These residues (with the exception of LEU 353) do

have a high capacity value based on the results obtained with our channel capacity

analysis method. In addition to those listed here, the rest of the residues that have

high capacity values were also reported to be critical by at least several previous

techniques. Even though these findings point to the success of the proposed method,

it is not possible to assess the degree of accuracy with respect to a golden reference

due to the lack of consistency among previous methods. It is unfortunate that there

is no consensus in the literature on the residues that play a significant role in the

allosteric behavior of this protein. However, reaching a consensus seems to be ex-

ceptionally difficult when the tremendous challenges involved in both experimental

and computational techniques aimed at deciphering allostery are considered. Nev-

ertheless, we believe that the proposed channel capacity technique provides a fresh

approach for deciphering the mechanisms of allostery, and could help detect hidden

allosteric interactions.

In order to investigate role of frequency in determining the allosteric responses,

we present the frequency dependent SNR profiles in Figure 5.12(a). The side views

of the figure are in Figure 8.20(a). The frequency dependence of the SNRs for the

individual residues are also shown in Figure 8.21. Although the majority of the
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Figure 5.10: BP excitation with HMD (b) Distance-weighted and normalized chan-

nel capacity values. The gray area corresponds to the binding pocket residues upon

which the force is applied. (b) Apo protein structure (PDBID:1bfe) is colored ac-

cording to the capacity values (without distance weighting): red indicates the highest

capacities and blue is for the lowest.
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Figure 5.11: Capacity values from BP excitation and the critical residues identified

by various methods. The gray areas indicate the residues on which the external force

is applied in the capacity analysis. CapacityMD refers to the results obtained with

HMD. Abbreviations: prs - perturbation response scanning [5], exp - experimen-

tal [6], sca-1 - statistical coupling analysis [7], sca-2 - statistical coupling analysis [8],

atd - anisotropic thermal diffusion [9], spm - structural perturbation method [10],

rip - rotamerically induced perturbation [11], md - molecular dynamics [12], dcs -

deep coupling scan [13], tdmc - thermodynamic double mutant cycle [14], cmca -

conservation mutation correlation analysis [15], rrs - rigid-residue scan [16], mcpath

- Monte Carlo path [17].
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residues display monotonic decrease in SNR with increasing frequency, it is worth

noting that some of the residues exhibit a peak, a sort of resonance, around a certain

frequency value, that is specific to the residue. The residues with distinct frequency

response are presented in Figure 5.12(b). The responses of the residues differ in

terms of the magnitude of SNR, the slope of the decay with frequency, and the

existence and frequency location of a resonance at higher frequencies. For instance,

GLY 329, which is one of the few consistently identified critical allosteric residues

in Figure 5.11 has a relatively high response until the high end of the spectra. The

resonance around 2 THz is also worth noting for GLY 329. The resonance at about

the same frequency is significantly more pronounced for GLN 384. The other listed

residues display resonances with smaller magnitudes at high frequencies. With these

results, we underline that the frequency decomposed SNR analysis provides a more

detailed picture of allostery, paving the way for gaining a better understanding of

allosteric mechanisms.
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Figure 5.12: (a) Signal-to-Noise ratio (SNR) with BP excitation using HMD, (b)

Selected residues with characteristic frequency response.
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Chapter 6

INTERPRETABLE EMBEDDINGS FROM MOLECULAR

SIMULATIONS USING GAUSSIAN MIXTURE

VARIATIONAL AUTOENCODERS

6.1 Introduction

Particle-based computer simulations can provide unprecedented mechanistic insight

into the driving forces of complex molecular systems, in contexts ranging from bio-

chemistry to materials science [119, 18, 120]. These simulations rely on numerical

integration of the relevant equations of motion as a means to navigate the sys-

tem’s conformational space. Due to the high dimensionality of this space, which

prevents the exhaustive enumeration of all microstates, exploration is typically

achieved through importance sampling [108]. Conformational sampling leads to

an estimate of the potential energy landscape (PEL), which follows a Boltzmann

distribution at equilibrium. Unfortunately, characterization of the PEL suffers from

the so-called curse of dimensionality [121]—organization of the data in the high-

dimensional space is challenging due to low population density. This problem is

often remedied by projecting the PEL onto a lower-dimensional manifold, i.e., by

performing a dimensionality reduction. By averaging over presumably unimportant

degrees of freedom, the resulting low-dimensional surface represents a free-energy

landscape (FEL). The ideal FEL distinguishes between microstates that are sepa-

rated by large barriers on the PEL, yielding a partitioning of configuration space

into collections of microstates, i.e., metastable basins. If all the largest barriers are

accounted for, intra-basin diffusion will occur much faster than inter-barrier cross-

ing events, allowing an accurate, albeit coarse-grained, description of both the static

The content of this chapter has previously appeared in [118].
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and dynamical properties of the system. There is a long history of methods for find-

ing an optimal low-dimensional representation from a given set of data, employing

both linear (e.g., principal component analysis [122], time-lagged independent com-

ponent analysis [123]) and nonlinear (e.g., Isomap [124], diffusion map [125], and

Sketchmap [126]) transformations.

In the last couple of years, there has been a growing interest in applying (deep)

neural networks to automate the discovery of CVs [38, 39, 40, 41, 42]. One ar-

chitecture that stands out as conceptually appealing is the autoencoder [127]. An

autoencoder is a bow-tie-shaped network that forces an information compression in

the bottleneck region. While the first half of the network (the encoder) reduces the

input to a predefined lower dimension, the second half (the decoder) aims at trans-

forming from the low-dimensional to the original representation. The weights of the

neural network are tuned to minimize an objective or loss function, which typically

penalizes deviations between input and output data. As such, the autoencoder aims

at discovering a latent space (embedding) that faithfully describes the essential fea-

tures of the high-dimensional input data. This makes autoencoders well suited for

constructing low-dimensional FELs from molecular simulation data [43, 38, 44].

Traditional autoencoders lack continuity in the latent space, preventing inter-

polation between training points and, thus, its generative ability. Variational au-

toencoders (VAEs) remedy this limitation by modeling the input probability distri-

bution using Bayesian inference [128]. VAEs enable sampling new data from the

learned distribution (i.e., VAEs are generative models), and are also well suited to

provide interpretable and disentangled data representations in the low-dimensional

space [129]. Within the VAE framework, the latent distribution is forced to resemble

a predefined probability distribution, called the prior. Although the VAE framework

does not impose any particular prior distribution, it is often chosen as a normal dis-

tribution for computational convenience. This prior induces an “anti-clustering”

effect in the latent space, which can prohibit the identification of meaningful clus-

ters and impede the construction of optimal FELs from molecular simulations. The

autoencoder-based approaches were recently extended to explicitly incorporate the
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temporal nature of the data via a time lag in the network architecture [130, 131].

These time-lagged autoencoders aim to retain information about the slowest dynam-

ical modes sampled in the underlying simulation trajectory and, as a consequence,

may encourage metastable clustering in the latent space. However, they are also

limited in terms of characterizing the hierarchy of long timescale processes [132],

and only indirectly address the anti-clustering issue.

In this work, we propose to directly acknowledge the multi-basin structure of an

ideal FEL by employing a Gaussian mixture model [133] as the prior distribution

for the VAE latent space. The resulting Gaussian mixture variational autoencoder

(GMVAE) retains the computational ease and reconstruction fidelity of traditional

VAEs, while enforcing a more faithful description of the underlying physics: the

resulting FEL clearly distinguishes between metastable basins separated by large

free-energy barriers. We demonstrate the benefits of the GMVAE approach through

explicit comparisons with the traditional VAE for two widely-studied toy models and

for the standard benchmark system for conformational dynamics, alanine dipeptide,

as well as a more challenging disordered peptide ensemble. To ensure the presence of

distinct distributions in the latent space, the GMVAE introduces a categorical vari-

able that (probabilistically) assigns each input configuration to the set of clusters.

Thus, the GMVAE simultaneously performs dimensionality reduction and unsuper-

vised clustering. Remarkably, the GMVAE clustering is capable of identifying the

inherent dimensionality of the input data, in terms of the number of Gaussians

required to categorize the data. In the case of hierarchical input data (i.e., data

with distinct dimensionality depending on the level of resolution), we show that the

GMVAE makes a reasonable prediction for the number of clusters, independent of

the given hyperparameter, based on the dimensionality of the latent space and char-

acteristics of the data. Beyond the representation of static equilibrium properties,

by constructing MSMs from the GMVAE embedding, we show that our approach

is also a promising avenue for accurately describing the long timescale dynamical

properties of the data. In contrast to recent deep neural network approaches that

aim to directly model the propagator of the system’s dynamics [134, 135], the con-
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struction of MSMs from the learned FEL offers a different strategy: explicitly testing

to what extent a representation appropriate for the statics is directly amenable for

the dynamics.

6.2 Theory and methods

6.2.1 Autoencoder

Autoencoders are special types of neural networks that are used for the task of repre-

sentation learning in an unsupervised manner. They are composed of two connected

parts: the encoder compresses the input signal to a low-dimensional representation,

whereas, the decoder aims to reconstruct the input at full dimensionality from the

reduced-space representation. The reconstruction loss, usually defined as either the

mean-squared error or cross-entropy between the input, x, and the output, x′, is

minimized via backpropagation. Since the bottleneck dimension is typically much

less than the original dimension, autoencoders learn the most compact represen-

tation of the input. Furthermore, because neural networks are universal function

approximators, the learned data projections can generally preserve much more of

the relevant information than with PCA or other basic linear projection techniques.

Figure 6.1 shows the schematic structure of an autoencoder with mean-squared er-

ror loss. There are different types of autoencoders which are tailored for special

tasks. For instance, sparse autoencoders impose sparsity constraints during opti-

mization, whereas convolutional autoencoders utilize convolutional layers instead of

fully-connected layers, in which case they learn the optimal filters. Variational au-

toencoders, which model the latent space probabilistically, are used for generative

purposes, i.e., they can create new samples that look like the ones in the training

dataset without simple data replication.

6.2.2 Variational autoencoder (VAE)

Variational autoencoders were introduced in [128]. In general, the theory of VAEs

is approached from two different perspectives: variational inference and neural net-
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Figure 6.1: Schematic of an autoencoder architecture with mean-squared error re-

construction loss.

works. This section starts with the former interpretation and then illustrates the

connection between them. We mostly follow the notation and reasoning used in [136].

The input data and the latent variable are denoted by x and z, respectively.

The objective of the VAE is to find the posterior distribution P (z|x), which

can be written in terms of the likelihood P (x|z), the prior P (z), and the marginal

probability density of x, P (x), using Bayes law as

P (z|x) =
P (x|z)P (z)

P (x)
. (6.1)

The denominator P (x) is called the evidence and it could, in principle, be calculated

using

P (x) =

∫
dz P (x|z)P (z) , (6.2)

once the prior is selected. However, the calculation is typically intractable, as it

needs to be evaluated over all configurations of the latent variable z. Therefore,

the posterior is approximated using variational inference with a chosen easy-to-

evaluate family of distributions Qφ(z|x), e.g., Gaussian functions, where φ is the

variational parameter of the distribution. In particular, P (z|x) is inferred using

Qφ(z|x) by reformulating the problem within an optimization framework, such that

the Kullback-Leibler divergence between Qφ(z|x) and P (z|x) is minimized. The KL
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divergence between Q and P is defined as

DKL[Qφ(z|x)||P (z|x)] =
∑
z

Qφ(z|x) log
Qφ(z|x)

P (z|x)

= E
[
log

Qφ(z|x)

P (z|x)

]
= E[logQφ(z|x)− logP (z|x)] .

(6.3)

Equation 6.1 is then inserted into the posterior definition

DKL[Qφ(z|x)||P (z|x)] = E
[
logQφ(z|x)− log

P (x|z)P (z)

P (x)

]
= E[logQφ(z|x)− logP (x|z)− logP (z) + logP (x)] .

(6.4)

Since the expectation is taken over z, P (x) can be moved out of the expectation

DKL[Qφ(z|x)||P (z|x)]− logP (x) = −E[logP (x, z)− logQφ(z|x)]︸ ︷︷ ︸
ELBO(φ)

. (6.5)

The initial objective of minimizing the KL divergence between the exact and the ap-

proximate posterior is equivalent to maximizing the ELBO (Evidence Lower BOund),

defined in Equation 6.5.

Equation 6.5 can also be rewritten in terms of a different KL divergence:

DKL[Qφ(z|x)||P (z|x)]− logP (x) = DKL[Qφ(z|x)||P (z)]− E[logP (x|z)] . (6.6)

Here the neural network perspective comes into play, as depicted schematically in

Figure 6.2(a). Qφ(z|x) acts like an encoder (inference), and transforms the data into

the latent variable z. On the other hand, P (z|x) (which can also be parametrized

with the network parameter θ as Pθ(z|x)1) generates the data from the latent rep-

resentation, analogous to a decoder (generator). The parameters correspond to the

weights and biases of the neural networks. Note that the initial aim is to minimize

DKL[Qφ(z|x)||P (z|x)], which is equivalent to minimizing the RHS of Equation 6.6.

The first term enforces the encoder to be similar to the chosen prior P (z), which

acts as a regularization, whereas the second term on the RHS deals with how well

the reconstructions match the original input.

1Both of the notations are used interchangeably.
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6.2.2.1 Standard selections for the family of inference distributions and for the

prior distribution

In order to use Equation 6.6 in an optimization procedure, both the family of dis-

tributions for inference, Qφ(z|x), as well as the prior distribution, P (z), must be

specified. The most common assumption is that Qφ(z|x) (P (z)) is a unimodal

Gaussian distribution with mean µ(x) (0) and diagonal covariance Σ(x) (1). Then,

DKL[Qφ(z|x)||P (z)] has a closed form solution:

DKL[Qφ(z|x)||P (z)] = DKL[N (µ(x),Σ(x))||N (0,1)]

=
1

2

(
tr(Σ(x)) + µ(x)Tµ(x)− d− log det(Σ(x))

)
,

(6.7)

where d is the dimension of the Gaussian and tr denotes the trace. Although the

unimodal Gaussian assumption simplifies the calculations, it also restricts the possi-

ble latent space representations, and may hinder the performance of the variational

autoencoder by pushing the latent space to be described by highly-overlapping clus-

ters.

6.2.3 Gaussian mixture variational autoencoder

This section is largely distilled from the discussion and insights presented in [137].

The term Gaussian mixture variational autoencoder is open to misinterpretations.

There exist several distinct architectures given this name, with variations in the

choice of generative or inference models [133, 138, 139, 140]. In the present work,

we take both the approximate posterior, (i.e., the family of distribution functions

for inference), Qφ(y, z|x), and the latent space distribution (i.e., the prior), P (z),

to be Gaussian mixtures. Note that we have introduced a categorical variable, y,

which identifies which Gaussian each particular data point belongs to. The inference

model can be written as

Qφ(y, z|x) = Qφ(y|x)Qφ(z|x, y) . (6.8)

The latent space is composed of k distinct Gaussians, i.e., Qφ(z|x, yi) is assumed to

be Gaussian, where i ∈ 0, 1, . . . , k − 1. Thus, the approximate posterior becomes a

Gaussian mixture.
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(b) Schematic of a Gaussian mixture variational autoencoder.

Figure 6.2: (a) The VAE and (b) GMVAE architectures. In the probabilistic graph

representation, circle nodes represent the random variables, and directed edges rep-

resent statistical dependencies between the variables in the two ends. Dot nodes are

used to indicate the parameters of the model, while some of the nodes are inten-

tionally filled to differentiate the observed random variables from the non-observed

ones which are left empty.
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Similar to Equation 6.5, the ELBO can be written as

ELBOm = EQφ(y,z|x)[logPθ(x, y, z)− logQφ(y, z|x)] , (6.9)

where the number of Gaussians, k, is a hyperparameter, and the subscript m is

used to distinguish ELBOm from the VAE ELBO. Pθ(x, y, z) can be written as

Pθ(x, y, z) = Pθ(x|y, z)Pθ(z|y)P (y) using conditioning without any assumptions.

Then, by assuming that x is conditionally independent of y, i.e., Pθ(x|y, z) = Pθ(x|z)

(see the graph representation in Figure 6.2(b)), the joint probability can be expressed

as

Pθ(x, y, z) = Pθ(x|z)Pθ(z|y)P (y) . (6.10)

By inserting Equations 6.8 and 6.10 into Equation 6.9, ELBOm becomes

ELBOm = EQ(y,z|x)[logP (y)Pθ(z|y)Pθ(x|z)− logQφ(y|x)Qφ(z|x, y)]

= EQ(y,z|x)

[
logP (y)− logQφ(y|x) + log

Pθ(z|y)

Qφ(z|x, y)
+ logPθ(x|z)

]
.

(6.11)

Similar to the VAE, the third and fourth terms represent regularization and recon-

struction contributions to the loss, respectively. The initial prior on y is selected as

a uniform multinomial distribution, while EQ(y,z|x)[logQφ(y|x)] can be interpreted

as a conditional entropy, reflecting how informative x is on y. To directly control

the impact of the clustering relative to the other loss terms during training, we

introduced a weighting factor, α, on the mutual information between x and y:

ELBOm = EQ(y,z|x)

[
logP (y)− α logQφ(y|x) + log

Pθ(z|y)

Qφ(z|x, y)
+ logPθ(x|z)

]
.

(6.12)

Figure 6.3 presents a more detailed schematic of the GMVAE architecture, while

Table 6.1 presents a summary of the probability distributions utilized in the model.

First, data points are probabilistically assigned to k clusters (NN(Qy)). Q(y|x)

represents these cluster assignment probabilities, and has a multinomial distribution.

Since each cluster is assumed to have Gaussian distribution in the latent space,



Chapter 6: Interpretable embeddings from molecular simulations using Gaussian mixture
variational autoencoders 98

the mean and variance of each of these Gaussians (Q(z|x, y)) are learned via the

encoder part of the neural network (NN(Qz)). The low-dimensional representation,

z, is then obtained by first sampling and then taking the expected value of these

samples, i.e., z =
∑k−1

i=0 p(yi|x)zi. As the first step in decoding, the moments of

the corresponding low-dimensional representation z is learned by NN(Pz) from each

Gaussian-distributed individual cluster yi, which is then followed by a sampling

operation. P (y) in the decoder is assumed to be uniformly distributed among the

k clusters. Next, using the encodings, zi’s, the associated x reconstructions are

obtained again by sampling from the x′ by the NN(Px). Similar to the encoder, the

decoder obtains a fixed reconstruction by taking the expected value of x′i’s.

Q(z|x, y) = N (µz(x, y), σ2
z(x, y)) P (y) = Uniform(1

k)

Q(y|x) = Multinomial(f(x)) P (z|y) = N (µz(y), σ2
z(y))

P (x|z) = N (µx(z), σ2
x(z))

Table 6.1: Distributions in the GMVAE model. Left (right) column corresponds to

the distributions in the encoder (decoder) part.
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Figure 6.3: Schematic of the GMVAE workflow.
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6.2.3.1 Determination of cluster labels and thresholding scheme

The clustering within the GMVAE is probabilistic, i.e., each data point is assigned

membership probabilities (between 0 and 1) to each of the clusters. Since most

configurations are assigned predominantly to a single cluster, we perform a hard

cluster assignment by assigning each data point to the cluster with highest member-

ship probability. However, in cases where a configuration has similar membership

probabilities for multiple clusters, this simple assignment may introduce errors when

determining properties (e.g., transition probabilities) of the clusters. Thus, we also

considered a different approach by enforcing a thresholding value for cluster assign-

ment. More specifically, each configuration is only assigned to a cluster if the largest

membership probability is above a chosen cut-off value. A naive coring scheme fol-

lowed the thresholding operation such that the points that had been identified as

noise were assigned back to their previous cluster index for all other dynamical

analyses.

6.2.3.2 GMVAE architecture and training hyperparameters

The GMVAE algorithm was implemented in Tensorflow [141]. Training was per-

formed in all cases with fully-connected layers, using the Adam optimization al-

gorithm [142]. The Softmax activation function was used for probabilistic cluster

assignments, while ReLu activation functions were employed in all hidden layers.

The means were obtained without any activation, whereas Softplus activation was

employed to obtain the variances. Table 6.2 shows the values of the hyperparameters

for each example system. Default values were employed wherever the parameters are

not specified. The NN(·)’s correspond to the neural networks labeled in Figure 6.3.

NN(Qy) performs probabilistic cluster assignments, NN(Qz) is for learning the mo-

ments of each Gaussian distribution in the encoding, whereas NN(Pz) and NN(Px)

are for the decoding of the z and x, respectively. The lengths of the “Number of

nodes” entries correspond to the number of hidden layers. Hyperparameter opti-

mization was carried out as follows. The number of nodes was initialized as [16, 16].

The number of nodes in the decoder (NN(Px)) was then increased whenever a large
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and non-decreasing reconstruction loss was observed. Our overall observation for the

considered examples is that the learning rate and batch size should be kept relatively

low to promote the formation of distinct clusters. The VAE results (with unimodal

Gaussian prior) that are provided as comparison are obtained using k = 1, while

keeping the remaining parameters equal to the values in the corresponding GMVAE

model.

1D 4-well Müller-Brown Dipeptide AAQAA3 - I AAQAA3 - II

# of clusters (k) 4 5 8 10 6

Input dimension (n) 1 2 25 60 126

Latent dimension (d) 1 1 2 2 2

# of nodes (NN(Qy)) [16, 16] [32] [32] [16, 16] [128]

# of nodes (NN(Qz)) [16, 16] [16] [16] [16, 16] [16]

# of nodes (NN(Pz)) [16, 16] [16] [16] [16, 16] [16]

# of nodes (NN(Px)) [16, 16] [128] [128] [16, 16] [256]

α 0.5 0.05 0.05 0.3 0.95

Batch size 32000 5000 5000 10000 3000

Learning rate 0.00005 0.0001 0.00015 0.001 0.00005

# of epochs 50 400 100 300 2000

Probability cut-off None None None 0.95 0.98

Table 6.2: Architecture specification and training hyperparameters

6.2.4 Markov state models

Markov state models (MSMs) represent the dynamics generated by a molecular

simulation trajectory as a series of memoryless jumps between a discrete set of

states [143]. Given a configuration-space discretization, a transition probability

matrix, P(τ), is obtained by counting the transitions between pairs of states within

a given lag time, τ , and then performing a maximum likelihood optimization [144].

The eigenvalues of P(τ), {λi(τ)}, are related to characteristic timescales of the
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system’s dynamics:

ti(τ) = − τ

ln |λi(τ)|
, (6.13)

where ti(τ) is the timescale corresponding to the ith eigenvalue, λi(τ). The time

lag parameter τ is typically chosen by performing the “implied timescale test”,

which assesses the Markovianity of P(τ) through the convergence of its timescales

with increasing τ . In other words, {ti(τ)} is plotted as a function of τ , and τ is then

chosen as small as possible such that the largest timescales are sufficiently converged.

Once τ is chosen, the accuracy of P(τ) is determined via the Chapman-Kolmogorov

(CK) test, which compares the estimated and predicted probability decay out of a

given state. The predicted values are obtained using the CK equation, i.e., using

the Markovian property of the model:

pij(mτ) = pmij (τ) , (6.14)

where pij(τ) is the probability of transitioning from state i to state j within time τ ,

and m is a positive integer. The CK test is often performed on metastables states

of the system—collections of quickly interconverting microstates.

Within the standard Markov state modeling workflow, microstates are typically

defined on low-dimensional projections of the full-dimensional configuration space.

Therefore, obtaining a relevant transformation of the molecular simulation data is

the key. To this end, time-lagged independent component analysis (TICA) [123, 145]

is one of the most commonly used dimensionality reduction methods, as its objec-

tive is to maximize the autocorrelation of the data at the given lag time, making it

especially well suited for kinetic modeling purposes. Metastable states are typically

obtained via a dynamical coarse-graining procedure, e.g., PCCA+ [146] whose objec-

tive is to retain an accurate description of the dominant eigenvectors of the transition

probability matrix. The resulting metastable states are then used as representative

collections of microstates for performing the CK test. In many cases, a coarse-

grained MSM at the resolution of the metastable states is constructed, providing an

easily interpretable, albeit often qualitative, picture of the long timescale processes.
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In this study, the GMVAE performs the dimensionality reduction and clustering

simultaneously, yielding a coarse-grained description of configuration space directly,

without the need for further dynamical clustering. The (coarse-grained) MSMs

are constructed from the discretized trajectories obtained using the simple cluster

assignment based on the GMVAE membership probabilities as described in Sec-

tion 6.2.3.1. MSM construction and analysis was performed using the PyEMMA

package [147].

6.2.5 Peptide analysis

The helical propensity of the peptide was determined using the Lifson-Roig per-

spective, which assigns each residue to either a helical (h) or coil (c) state, ac-

cording to the dihedral angles along the peptide backbone (i.e., the Ramachandran

plot) [148, 149]. Therefore, the number of different conformations of the peptide

is limited to 2N , where N is the number of residues; N = 15 for AAQAA3. The

propensity of residue i to be part of a “helical segment”, 〈hi〉, is then defined as

the probability that residue i as well as its two neighboring residues are simulta-

neously found in a helical state. The average fraction of helical segments, 〈fh〉, is

obtained by averaging 〈hi〉 over all residue positions:
∑N−1

i=0
1
N
〈hi〉. To distinguish

between partial helical structures occuring at the N- and C-terminus ends of the

peptide backbone, we define 〈hN〉 =
∑6

i=1
1
6
〈hi〉 and 〈hC〉 =

∑13
i=8

1
6
〈hi〉. Note that

the terminus residue from each end is not taken into consideration.

The dRMSD measures the average deviation of internal distances from the cor-

responding distances in a reference structure, and is calculated as

dRMSD(X(t),Xr) =

√∑
i 6=j

(||Xi(t)−Xj(t)|| − ||Xr
i −Xr

j ||)2 , (6.15)

where X(t) represents the conformation at time t, Xr is the conformation for the

reference structure, and || · || denotes the Euclidean norm. Note that, unlike other

RMSD metrics, no pre-alignment of structures is required. In this study, due to the

large fluctuations of the end residues, two residues from each end of the peptide were

excluded in the dRMSD calculations. dRMSD was calculated using the positions of
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the Cα atoms only. Helix, hairpin-like, and extended (coil) structures were separately

considered as reference structures as illustrated in Figure 8.33.

6.3 Results

Variational autoencoders (VAEs) have been previously applied for dimensionality

reduction of molecular simulation data [131, 39, 150]. VAEs typically employ a nor-

mal distribution to represent both the prior distribution in the latent space and the

family of distributions for variational inference. In this work, we extend traditional

VAEs by representing these distributions with Gaussian mixture models. The result-

ing Gaussian mixture VAE (GMVAE) adopts the physics-based viewpoint that an

optimal embedding of the simulation data should give rise to a free-energy landscape

(FEL) with well-separated clusters of configurations, which correspond to metastable

states that are separated by large barriers along the high-dimensional potential en-

ergy landscape. The GMVAE introduces a categorical variable, y, which represents

the various underlying Gaussian distributions to which each configuration will be

(probabilistically) assigned. As a consequence, the approach simultaneously per-

forms a dimensionality reduction and clustering, while enabling direct control over

the organization of configurations in the latent space. We demonstrate the proper-

ties of this architecture by considering two model systems and molecular simulations

of alanine dipeptide as well as a more challenging disordered peptide ensemble. In

the following, X ∈ Rn represents the n dimensional input. The latent variable in

the bottleneck is represented by z ∈ Rd, d ≤ n.

6.3.1 One-dimensional 4-well potential

We first consider a single particle in one-dimension interacting with a 4-well external

potential, which has been previously employed for testing methods associated with

constructing MSMs [151, 132]. Figure 6.4(a) presents the potential, whose functional

form and simulation details are given in Section 8.3.1. We employ a GMVAE with

a latent space dimension of 1, which assesses the clustering performance of the

architecture in the absence of any dimensionality reduction. The GMVAE was
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trained with k = 4 according to the parameters in Table 6.2. Figure 6.4(b) presents

the confusion matrix of the resulting model, which quantifies the probability that

the model assigns a predicted label (x-axis) given the true label (y-axis). The

true labels were determined using a coarse-grained representation of the system,

where four metastable states are defined based on simple dividing surfaces, chosen

as the maxima of the barriers between each potential well (dashed vertical lines in

Figure 6.4(a)). The GMVAE assigns the state labels with 97% overall accuracy.
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Figure 6.4: (a) 1D 4-well potential with the true labels. (b) Confusion matrix

constructed with the true labels shown in (a) and the predicted labels obtained

via the GMVAE. Population size increases from light to dark blue. Normalized

histograms of the 1D latent variable via the (c) GMVAE and (d) VAE.

Figure 6.4(c) shows a normalized histogram of z values. Without dimensionality

reduction, the GMVAE largely retains the description of the input space within
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the latent dimension. As a consequence, the decoder is able to quite accurately

reconstruct the input from the latent variable (See Figure 8.22). This behavior is

in stark contrast to traditional VAEs, which employ a Gaussian prior to represent

the latent space distribution. As a result, anti-clustering effects can arise, leading to

highly overlapping clusters of data in the reduced space. To demonstrate this effect,

we constructed a traditional VAE for the present example. Figure 6.4(d) presents

the corresponding normalized histogram of z values. In this case, even without a

reduction in dimension, significant information is lost due to the constraint of the

assumed prior distribution.

(a) Implied timescales (b) Chapman-Kolmogorov test

Figure 6.5: Markovianity check of the kinetic model built for 1D 4-well potential

system. The MSM was constructed directly using the cluster labels obtained from

the GMVAE. (a) Implied timescale test. (b) Chapman-Kolmogorov test (at lag =

200 steps).

To further characterize the quality of the GMVAE clustering, we constructed an

MSM from the trajectories of the predicted cluster IDs. Figure 6.5(a) presents the

standard implied timescale test, which assesses the convergence of the character-

istic timescales with increasing lag time parameter τ . Convergence indicates that

the simulation dynamics, within the discrete-state representation, can be described

within a Markovian approximation. The gray area indicates timescales that cannot

be resolved by the model, since they are faster than the chosen lag time. From
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the test, the MSM with τ = 200 was chosen for further analysis. The accuracy of

this model was assessed with the Chapman-Kolmogorov test, which compares the

simulated and predicted decay of probability from a chosen set of metastable states.

Figure 6.5(b) demonstrates that the predicted “cluster dynamics” accurately repre-

sent the long timescale kinetic properties of the underlying simulation trajectory.

6.3.2 Müller-Brown potential

To assess both the dimensionality reduction and clustering performance of the GM-

VAE approach, we next consider a single Brownian particle in two dimensions inter-

acting with an external Müller-Brown potential. The trajectory data was generated

as the procedure suggested in [131] with the standard parameters [152] (see Sec-

tion 8.3.2 for more details). As depicted in Figure 6.6(a), the resulting FEL contains

two deep minima along with a less stable intermediate state. We employ a GMVAE

that is trained with a latent space dimension of 1 and with k = 5, according to the

parameters in Table 6.2.

Despite employing k = 5, the resulting GMVAE model identified only 3 states

with non-zero membership probabilities. Thus, somewhat remarkably, the GMVAE

architecture was able to identify the inherent organization of the input data in

the high-dimensional space, independent of the hyperparameter k. Figure 6.6(b)

shows the identified clusters. We define the true cluster labels in this case using

linear dividing surfaces, as shown in Figure 8.23(a). Figure 6.6(c) presents the

confusion matrix from the GMVAE model with respect to these defined labels.

Although it appears that there are errors in assigning state 1, this error is sensitively

dependent on the precise definition of the true label dividing surfaces. Moreover,

the overall classification accuracy is actually 99%, since state 1 corresponds to a

very rarely sampled intermediate state. The model also demonstrates relatively

high reconstruction accuracy (See Figures 8.23(b) and 8.23(c)). Figures 6.6(d)

and 6.6(e) present normalized histograms of z values obtained from the GMVAE

model and a traditional VAE model trained on the same data, respectively. The

low-dimensional representations obtained from the GMVAE clearly demonstrate a
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better separation of metastable states. Additionally, the ability of the GMVAE to

learn a nonlinear manifold is demonstrated in Figure 8.24, with respect to the linear

embedding obtained using time-lagged independent component analysis (TICA).

(a) Free-energy landscape (b) GMVAE clusters (c) Confusion matrix
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Figure 6.6: 2D Müller-Brown potential. (a) Free-energy landscape. (b) Clusters

obtained from the GMVAE. (c) Confusion matrix with the true labels determined

with linear dividing surfaces (Figure 8.23(a)) and predicted labels obtained via the

GMVAE. Population size increases from light to dark blue. Normalized histograms

of the 1D latent variable via the (d) GMVAE (e) VAE.

To further characterize the quality of the GMVAE clustering, we again con-

structed an MSM from the trajectories of the predicted cluster IDs. The implied

timescale test (Figure 6.7(a)) shows two dominant processes. The MSM with τ = 10

was chosen for further analysis. Figure 6.7(b) presents the Chapman-Kolmogorov

test, which further verifies the accuracy of the GMVAE embedding.
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(a) Implied timescales (b) Chapman-Kolmogorov test

Figure 6.7: Markovianity check of the MSM built for 2D Müller-Brown potential

via the GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at lag=10

steps).

6.3.3 Alanine dipeptide

Alanine dipeptide is a representative model system for the characterization of con-

formational dynamics. Previous work [153, 134, 154, 130, 155] has shown that the

(φ, ψ) backbone dihedral angles act as ideal collective variables for describing the

metastable configurational basins and associated transition kinetics, making it an

excellent system for testing the GMVAE framework within a more realistic molecu-

lar simulation context. Since in general the optimal set of input features is unknown

a priori, we use this example to test the ability of the GMVAE to identify the

proper collective variables from a larger set of input features. More specifically, we

consider as input features both the normalized pairwise distances between heavy

atoms as well as the (φ, ψ) dihedral angles (obtained from [156]). The pairwise

distances were pre-processed using a kurtosis filter (with the threshold value of 0.03,

see Figure 8.25 for more detail), to reduce the input dimension by removing the

low-variance features. The dihedral angles were pre-processed by applying sin and

cos transformations in order to account for periodicity [157]. Figure 6.8(a) shows

the FEL in the backbone dihedral angle space, with four labeled metastable basins

corresponding to αR, αL, β, PII, and γ conformations [158]. The gray lines are drawn
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for reference and do not represent any sort of optimal dividing surface.

(a) Free-energy landscape along the (φ, ψ) angles (b) GMVAE clusters

Figure 6.8: (a) Free-energy landscape of alanine dipeptide. (b) GMVAE clusters on

the Ramachandran plot.

Figure 6.9(a) presents the two-dimensional embedding found using the GMVAE,

and Figure 6.9(b) shows the simultaneously-obtained 6 clusters (indexed from 0 to 5)

as a part of the GMVAE algorithm. The GMVAE again obtains a FEL that better

separates clusters of conformations, relative to a standard VAE (Figure 8.29). The

distribution of these clusters on the Ramachandran plot (Figure 6.8(b)) already

strongly indicates their suitability for a kinetic analysis. The GMVAE clustering

distinguishes all 5 of the metastable states, as well as a transition region between

the αR and β states (cluster 4). An MSM was again constructed from the coarse

GMVAE cluster assignments. The implied timescale and Chapman-Kolmogorov

tests are presented in Figure 6.10, demonstrating the accuracy of this kinetic model.
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(a) FEL via the GMVAE (b) Clusters

Figure 6.9: (a) FEL obtained for the alanine dipeptide by the GMVAE. The GMVAE

clusters on the (b) GMVAE landscape.

We found in this example that, unlike the toy systems, the clustering obtained

using the GMVAE did not appear to be completely robust. In particular, the precise

clustering probabilities depend on the random effects of the training procedure (e.g.,

random weight initialization and the random shuffling of the input data). This issue

was most pronounced for the lowest populated state, whose probability differs from

the other states by two orders of magnitude (Figure 8.26(b)). As a consequence,

the γ state was not always sufficiently separated from the αL state, resulting in a

loss of one of the resolved kinetic processes (although the accuracy of the MSM

remained intact, see Figure 8.28). Despite this issue, the obtained FEL appeared

rather robust with respect to changes in the random factors during training. We

observed a much more robust clustering for all other applications considered.

6.3.4 AAQAA3 peptide - I

As a more challenging test, we consider simulation trajectories of the capped he-

lix forming peptide AC-(AAQAA)3-NH2, which is a representative system for in-

vestigating helix-coil transitions. We employ a coarse-grained model [159], which

describes the dominant attractive interactions, e.g., hydrogen bonding and effec-

tive hydrophobic interactions between side chains, with simple potentials between
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(a) Implied timescales (b) Chapman-Kolmogorov test

Figure 6.10: Markovianity check of the MSM built for alanine dipeptide via the

GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at lag=20 steps).

the Cα and Cβ atoms. These interactions are the minimum required to sample the

proper range of structures, (i.e., helix, coil, and hairpin-like). This model also rep-

resents excluded volume effects in near-atomic detail, which was demonstrated to

be important for accurately characterizing the helix-coil kinetics. Here we employ

a parametrization of the model that most accurately reproduces the experimen-

tal cooperativity of the helix-coil transition for AAQAA3. As a result, hairpin-like

structures appear to have relatively low metastability (similar to the intermediate

state in the Müller-Brown example, and the γ state in alanine dipeptide), as we

discuss further below. The model and simulation protocol are discussed further in

the Section 8.3, and also in [159, 160]. The considered simulation trajectories corre-

spond to a disordered ensemble of peptide configurations, representing a stringent

test for dimensionality and clustering methods [161].

Similar to alanine dipeptide, the set of sin and cos augmented (φ, ψ) dihedral

angles along the peptide backbone were used as conformational descriptors. Thus,

the input dimension is 60 for the 15-residue AAQAA3 peptide. We chose to consider

only a latent space dimension of 2, given that the ultimate goal of dimensionality

reduction is often to reduce the high-dimensional description to something that is

easily visualizable. Unlike the simple model systems above, the number of clusters,
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k, is completely unclear a priori. In fact, we expect that this ensemble to have

a hierarchical structure, such that differing number of clusters may be appropri-

ate depending on the chosen level of resolution. While we initially considered the

GMVAE with varying number of clusters, we found that the number of “non-zero

clusters” (i.e., clusters with a significant probability of configuration assignment)

was extremely insensitive to this choice, as discussed below. The GMVAE was

trained according to the parameters in Table 6.2. Also in contrast to the previous

examples, there is no definitive reference kinetic model with corresponding known

metastable states. Instead, the analysis below assesses the GMVAE embedding and

clustering (in terms of both statics and kinetics) with respect to the landscapes

obtained using a standard VAE and also following the standard MSM workflow

(i.e., TICA [123, 145], see Section 6.2.4 for more details). Panels (a) and (b) of

(a) FEL via the GMVAE (b) FEL via the VAE

Figure 6.11: Free-energy landscapes of AAQAA3 - I peptide obtained by (a) the

GMVAE, and (b) the VAE.

Figure 6.11 show the FELs obtained using the GMVAE and the traditional VAE,

respectively. As in the model systems, the GMVAE method results in a latent space

description with highly separated clusters, while the traditional VAE yields more

overlapping states. The two-dimensional TICA landscape (Figure 8.40) also sep-

arates a number of clearly distinct states, although there are large diffuse regions

with relatively low free-energy values. The clusters obtained via the GMVAE are
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shown in Figure 6.12(a). Despite employing k = 10 and obtaining a landscape that

appears to have approximately 10 distinct basins, only 7 states (labeled 0, 1, . . . 6)

were assigned non-zero membership probabilities (see Figure 8.30). Since standard

metrics for analyzing peptide configurations do not yield a clear organization of the

ensemble into a small number of metastable states, the distribution of these quan-

tities are expected to be highly overlapping, even for a good clustering of the input

data. Thus, to more easily visualize the characteristics of the GMVAE clusters, we

applied a thresholding scheme, which removes configurations without a membership

probability greater than 0.95 (see Section 6.2.3.1 for details and Figure 8.31 for

cluster populations). Figure 6.12(b) shows 5 representative structures closest to the

cluster centers. We stress that these images are intended to give the reader a rough

idea of the types of structures contained in each cluster, but do not characterize the

variance of structures within the clusters. This is a disordered ensemble and each

cluster necessarily contains a diversity of structures. Nevertheless, Figure 6.12(b)

indicates that the GMVAE successfully distinguishes between distinct secondary

structures within the simulation data.
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Figure 6.12: (a) The clusters obtained for the AAQAA3 peptide - I by the GMVAE

after thresholding. (b) The secondary structures closest to the cluster centers.

To characterize the structural properties of the clusters quantitatively, we calcu-

lated the distribution of the average fraction of helical segments, 〈fh〉. Figure 6.13(a)

presents a heat map of 〈fh〉 in the latent space. High 〈fh〉 values (represented by

blue) indicate the presence of helix and helix-like structures, whereas the lower val-

ues point to either hairpin- or coil-like secondary structures. There is an apparent
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trend of decreasing average helical content from the lower-right to upper-left re-

gions of the latent space (i.e., from cluster 0 to 6). The VAE and TICA landscapes

demonstrate similar trends (Figures 8.44(b) and 8.40(b), respectively), although

the VAE does not characterize partially-helical structures as clearly as the GMVAE.

Figure 8.32 presents the intra-cluster distributions of 〈fh〉, which can be used to

assess the quality of the clustering (relative to an alternative clustering). We ex-

pect that an optimal clustering will result in tight, unimodal 〈fh〉 distributions. The

GMVAE clustering yields seemingly good distributions for the most and least helical

clusters, while the partially-helical clusters appear broader and somewhat bimodal.

For comparison, we consider three alternative clusterings obtained by performing a

k-means clustering on a given landscape followed by the PCCA+ dynamical coarse-

graining method [146] to define a set of metastable states (see Section 6.2.4 for more

details): (i) an alternative clustering of the GMVAE landscape (Figure 8.37), (ii) a

clustering on the VAE landscape (Figure 8.45), and (iii) a clustering on the TICA

landscape (Figure 8.41). The alternative clustering scheme on the GMVAE land-

scape, (i), does not improve the intra-cluster distributions of 〈fh〉, demonstrating

that the GMVAE clustering is reasonable, given the GMVAE embedding. Similar

results were obtained from the VAE clustering, with slightly broader distributions

for the most and least helical states. The TICA clustering resulted in somewhat im-

proved distributions, in the sense that they appear to be mostly unimodal, although

some of the distributions appear to be slightly broader.

Figure 6.13(b) shows the dRMSDhel values of the projections, where the helicity

increases as the dRMSDhel values decrease. These results are in agreement with the

〈fh〉 analysis: as the cluster index increases from 0 to 6, the conformations tend to be

more extended. The Supporting information in Section 8.3 (Figures 8.33 and 8.34)

contains additional characterization of the static properties of the clusters, which

further validate the GMVAE embedding and clustering as a reasonable partitioning

of the conformational landscape.

We also characterized the average fraction of helical segments on the N- and

C-terminus sides of the peptide: 〈hN〉 and 〈hC〉, respectively (see Section 6.2.5
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(a) 〈fh〉 (b) dRMSDhel

Figure 6.13: AAQAA3 - I. (a) Average helical fraction, 〈fh〉, analysis. Colors repre-

sents the 〈fh〉 values of the corresponding projected data obtained from the GMVAE.

(b) dRMSDhel analysis.

for more details). Figure 6.14 presents the difference of these quantities, 〈hN〉 −

〈hC〉, plotted along the GMVAE embedding. Positive values (represented by blue)

indicate conformations that contain helical structure on the N-terminus side of the

peptide without helical structure on the C-terminus side. Conversely, negative values

(represented by red) indicate conformations that contain helical structure on the C-

terminus side of the peptide without helical structure on the N-terminus side. Values

close to zero correspond to either fully helical or non-helical structures. Although

the GMVAE embedding and clustering separate the most distinct structures in the

ensemble (coils and full-helicies), some of the clusters (0, 1, 2) encompass partially-

helical conformations on both sides of the peptide (see also Figure 8.36). This is

not ideal since kinetic barriers within a cluster will negatively impact the accuracy

of a kinetic characterization at the cluster level. However, it appears that this issue

may have more to do with the clustering than the embedding itself, since blue- and

red-labeled structures appear to be reasonably separated on the landscape.

Similar to the other examples above, we also constructed an MSM directly from

the discretized trajectories of GMVAE cluster indices. Although thresholding was

applied in the results presented here (practically similar to coring methods for con-

structing kinetic models [162]), we found that this procedure had negligible effect
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Figure 6.14: Analysis of partially-helical conformations for AAQAA3 - I. Projections

are colored according to 〈hN〉 − 〈hC〉 values.

on the accuracy of the resulting MSM. As shown in Figure 8.35, the MSM con-

structed from the GMVAE clustering displayed significant errors in describing, e.g.,

the decay of probability out of the helix state. Perhaps this is not so surprising,

since coarse-grained MSMs are often only used as a qualitative analysis tool, while

higher-resolution kinetic models that characterize configuration space with many

microstates are used for quantitative reproduction of simulation kinetics. Thus, to

more carefully assess the GMVAE embedding and to more easily compare to the

VAE and TICA results, we constructed a higher-resolution MSM by performing

k-means to define microstates on the landscape (Figure 8.37). Although the result-

ing model demonstrates improved accuracy according to the Chapman-Kolmogorov

test, the probability decay out of the metastable states occurs on a fast timescale

relative to the chosen lag time. This may be indicative of poorly defined divid-

ing surfaces between metastable states. The kinetic models constructed from the

VAE and TICA landscapes (Figures 8.45 and 8.41, respectively) demonstrate simi-

lar quickly decaying probabilities. Although coring procedures could be applied to

attempt to fix this problem, it indicates that there are fundamental limitations of all

of these landscapes in terms of characterizing the long timescale simulation kinetics.

There are several possible reasons for these difficulties, including (i) the limitation
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of our embeddings to two dimensions, (ii) the limitation of the chosen input features

in characterizing kinetically-distinct structures, (iii) the presence of many low-lying

barriers along the potential energy landscape of this disordered ensemble, and (iv)

the poor sampling of relatively rare transitions to the full helix conformation. We

partially address items (ii) and (iv) in the next section; however, a detailed investi-

gation of these issues is beyond the scope of this initial study of the performance of

the GMVAE, and is left for future work.

6.3.5 AAQAA3 peptide - II

To investigate the impact of the low sampling of helical structures on the GMVAE

embedding, as in the AAQAA3 - I simulations presented above, we also considered

a second set of simulations which primarily samples helical- and hairpin-like struc-

tures, while only rarely sampling fully-coil structures. (Please see the Supporting

Information (Section 8.3) for more details about the differences between the two sets

of simulations). In addition to the dihedral angles, normalized pairwise distances

between residues that are more than 3 residues apart were included as input features.

Figure 6.15 presents the obtained GMVAE FEL (panel (a)), the corresponding clus-

tering of 6 metastable states (panel (b)), and overlays of five structures that are

closest to the cluster centers (panel (c)). The GMVAE embedding demonstrates

significant separation of metastable states, relative to the landscape obtained with

a standard VAE (Figure 8.58(a)). Similar to the previous ensemble (AAQAA3 - I),

Figure 6.16 shows the separation of structures according to 〈fh〉 (panel (a)), and

dRMSDhel (panel (b)). The VAE and TICA landscapes demonstrate similar trends

(Figures 8.58 and 8.54, respectively). The intra-cluster 〈fh〉 distributions are shown

in Figure 8.49. The majority of the fully-helical structures are in cluster 3 and 5,

while clusters 0, 1, 2 and 4 contain hairpin-like structures as well as partial heli-

cies. The coil structures are gathered in the bottom-most part of the landscape

(in cluster 4), though not separated as a distinct cluster by the GMVAE. The dis-

tributions are broader and less unimodal than those determined from the previous

set of simulations, although these can be somewhat improved with the alternative
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(a) FEL via the GMVAE (b) Clusters

(c) Secondary structures

 

Figure 6.15: The GMVAE results for AAQAA3 peptide - II. (a) Free-energy land-

scape. (b) The clusters obtained after thresholding. (c) The secondary structures

closest to the cluster centers.
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clustering scheme on the GMVAE landscape (Figure 8.53). Similar results are also

obtained from the VAE and TICA landscapes (Figures 8.61 and 8.57, respectively).

Figure 6.17 presents the characterization of the N- and C-terminus, partially-helical

(a) 〈fh〉 (b) dRMSDhel

Figure 6.16: Projections for the AAQAA3 peptide - II. (a) 〈fh〉, (b) dRMSDhel.

conformations. In contrast to the AAQAA3 - I embedding, the GMVAE embed-

ding and clustering for AAQAA3 - II more clearly separates the distinct types of

structures. It appears that this difference may be due to the increased sampling of

helical structures in AAQAA3 - II, although the inclusion of pairwise distances as

additional input features may also have played a role. N- and C-terminus partially-

helical structures are mostly located in clusters 4 and 2, respectively, while both

types of structures can be found to a lesser extent in cluster 5. Although the VAE

and TICA landscapes also appear to largely distinguish between distinct partially-

helical structures (Figures 8.58 and 8.54, respectively), the GMVAE landscape pro-

vides a significantly better clustering of these two distinct sets of conformations.

Despite the improved description of partially-helical structures, the MSM con-

structed directly from the GMVAE clustering for AAQAA3 - II displayed similar

discrepancies to the model built for AAQAA3 - I (Figure 8.50). Moreover, the

high-resolution MSMs constructed from the GMVAE, VAE, and TICA landscapes

(Figures 8.51, 8.59, and 8.55, respectively) displayed very fast decay of probability

out of the identified metastable states, as in the AAQAA3 - I example.
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Figure 6.17: The N- and C-terminus end folding analysis for the AAQAA3 peptide -

II. (Left) The difference in the average values of the two-end foldings, 〈hN〉 − 〈hC〉.

(Right) Distribution of the N- (on the left, 〈hN〉 ≥ 0.8) and C-end (on the right,

〈hN〉 ≤ −0.8.)
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Chapter 7

CONCLUSION

Chapter 2 gives an overview of the governing equation of motion for the protein

dynamics.

Chapter 3 contains a short review of the methods used in approximating neg-

ative gradient of the potential energy function via linearization. We presented the

nodal and node-branch formulations and showed that these formulations in fact

constitutes a more general scheme, allowing the linearizations around not only equi-

librium but also non-equilibrium points. We also showed that a reduced-size formu-

lation can be derived only for the expansions around equilibrium points, which we

also presented its equivalence to a commonly-used approach.

In Chapter 4, we presented PAC, a frequency domain technique for analyzing

protein and ligand interaction dynamics that was inspired by an electronic circuit

analysis scheme. We compared PAC with previously proposed techniques on several

example proteins with ligand binding structures. PAC generalizes and subsumes the

previous methods by incorporating the frequency of excitation as a key new param-

eter for dynamic analysis of proteins. We have proposed several new frequency

dependent metrics for the characterization of the 3D complex response of system

response that help interpret and extract useful information about the protein struc-

ture and dynamics. Finally, we should note that the PAC formalism is based on

a dynamical model that is obtained by linearizing the nonlinear force field of the

protein around a reference configuration, e.g., its native state. This enables the

solution of the equations of motion directly in the frequency domain as captured

by the PAC formalism, in an efficient manner, producing dynamic characterizations

that would be very expensive to generate with time stepping based MD simulations.

Thus, PAC enables high-throughput scanning studies.
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In Chapter 5, we have investigated the phenomenon of allostery using well es-

tablished tools of telecommunication systems, namely frequency decomposed SNR

and channel capacity based analyses. To that end, we analyzed the displacements

due to both noise forces and external excitations—capturing the effect of the ligand—

separately. We proposed two related analysis schemes, termed as per residue scan

and binding pocket excitation, in order to identify the residue pairs that are likely

to interact allosterically, and the residues that are affected in a significant manner

by a particular ligand-binding event, respectively. The frequency domain represen-

tations employed by the proposed methods lead to an alternate view into allostery,

by emphasizing the effect of perturbation frequency in the SNR response. We have

shown that the response of some of the residues exhibit a resonance at specific,

characteristic frequencies. Thus, a full spectral analysis of the responses to pertur-

bations leads to the speculative but potentially significant conclusion that the key

mechanism underlying allostery is robust signal transmission despite noise at spe-

cific frequencies. The frequency-decomposed approach further allows the analysis of

equilibrium fluctuations in the absence of the ligand. We proposed an alternative

technique to compute mean square fluctuations in a frequency-decomposed manner.

In Chapter 6, we propose a Gaussian mixture model as the prior distribution

in the latent space of a variational autoencoder, to explicitly enforce multi-basin

structure of an ideal free-energy landscape that characterizes basins that are well-

separated by the largest barriers along the higher-dimensional potential energy land-

scape. The performance of the Gaussian mixture variational autoencoder (GMVAE)

was illustrated on two standard toy-model systems and on the standard benchmark

alanine dipeptide, as well as on a challenging 15-residue-long disordered peptide.

For each example, the GMVAE circumvents the aggregation of points in the latent

space characteristic of traditional variational autoencoders. Instead, samples that

are structurally distinct are clearly separated, leading to a latent space that displays

apparent metastable basins and barriers. The GMVAE introduces a categorical vari-

able that probabilistically assigns samples to a set of underlying clusters, each of

which is Gaussian distributed. Thus, the approach combines the commonly distinct
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tasks of dimensionality reduction and clustering into a unified framework. In the

context of static equilibrium properties, the incorporation of the Gaussian mixture

model as a prior distribution on the latent space closely links our physical intuition

about ideal free-energy landscapes, resulting in an inherently more interpretable la-

tent space. Our results show encouraging performance when constructing kinetic

models from the learned representations, serving as an independent validation of

the procedure.

Chapter 8 presents additional results to the chapters and provides further de-

tails.

The findings of this study point to a number of important improvements for

future studies. A single-point force application may not always be able to ade-

quately model ligand binding. In such cases, applying forces simultaneously to all

of the residues that interact with the ligand may serve as a better model for the

ligand binding event. However, this would require a more complicated force con-

figuration determination procedure in cases where no MD simulation is possible.

Furthermore, for proteins with homogeneous structure and smaller-scale functional

motions, ligand binding may be better modeled as a dynamic event with a time-

varying, multi-frequency force perturbation. We are working on the development

of a scheme for determining the parameters of multi-point, dynamic (time-varying)

force perturbations that could serve as a better model for ligand binding. In our

future work, we plan to extend PAC so that one can perform frequency domain

analyses of protein and ligand binding dynamics with multi-frequency excitations.

Additionally, the full potential of the proposed SNR and channel capacity based

analysis methods has not been fully explored yet. More detailed analyses are re-

quired to determine the full benefits and limitations. Regarding the representation

learning, we argue that incorporating physical constraints into the architecture helps

to construct an interpretable model for the kinetics, even when kinetic information

is not used for learning the representation. Although higher-resolution MSMs con-

structed directly from the GMVAE landscape demonstrated an improved description

of the simulation kinetics, the resulting model for the disordered ensemble was un-
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able to resolve all but the longest timescale processes. An MSM constructed from

the TICA landscape demonstrated a slight improvement over this model, with re-

spect to the CK test, but also exhibited a very fast decay of probabilities out of the

identified metastable states, indicating a significant limitation in the time resolution

of the model. These issues highlight the difficulty of characterizing such disordered

ensembles, and motivate further investigation into the various possible causes. For

example, comparisons of two distinct peptide ensembles clarified the role that sam-

pling can play in distinguishing distinct partially-helical structures on the GMVAE

landscape. It remains unclear to what extent the restriction of our embeddings to

two dimensions or the choice of input features prevented the GMVAE (as well as

the more standard methods considered) from better describing the simulation kinet-

ics. Moreover, the presence of many low-lying barriers along the potential energy

landscape of this disordered ensemble may cause fundamental challenges in obtain-

ing a clear few-metastable-state characterization of the conformational landscape.

Thus, we propose that, in conjunction with simpler test systems that clearly assess

a method’s performance, such examples are important for significant advancements

in data-driven characterizations of molecular simulation trajectories. While we de-

fer a more detailed investigation of these issues for future work, we highlight the

promising performance of the GMVAE demonstrated through our results.
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Chapter 8

APPENDIX

This chapter provides supplementary information for the previous chapters.

8.1 Supplementary information for Chapter 4:

PAC: A frequency domain technique for analyzing protein dynam-

ics

8.1.1 Chemotaxis signaling protein Y

CheY is a bacterial chemotaxis protein with 128 residues. Binding of Mg2+ cation

to the active site results in a significant conformational change in the structure

of the protein. Several residues are displaced at around 10 Å as a result of this

conformational change [77]. The holo form of the protein is with PDB ID:1CHN (at a

resolution of 1.76 Å), and the apo form is with PDB ID:3CHY (at a resolution of 1.66

Å). The residues are numbered from 2 to 129, and in the holo form ALA2 and ALA3

coordinates are missing. For our analysis, we include them using Modeller [78],

however, for most of the calculations, we omit the first 2 residues. The ligand is

in close interaction with residues ASP57, ASP13, and ASN59. Molecular dynamics

simulations suggest that the β4−α4 loop (residues 86-92) in CheY acts allosterically

as a gating element [22, 79]. We perform PAC analysis on CheY by applying single-

point force excitations separately to two residues, one of the binding site residues,

residue 57, and one of the residues of the β4 − α4 loop, residue 91.

Displacement magnitudes , |∆r(i)(ω)|, of Cα atoms are computed after the

alignment of the ligand-bound form to the ligand-free form. After alignment, RMSD

between the two structures is calculated as 1.6930 Å. The correlation coefficient be-

tween the experimental displacements and the computed ones (after alignment, with
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(a) Apo form (3CHY) and holo form

(1CHN) of CheY are aligned, apo form is

colored with blue and holo form is colored

with orange, both in solid ribbon form. Lig-

and (Mg2+ ion) is shown as a black circle.

Plots were created with [74].

N59
D13

D12
F14

D57

M60

(b) Binding pocket of Mg2+ ion and inter-

acting residues: D12, D13, F14, D57, N59,

and M60. Plot was created using [75, 76].

Figure 8.1: Alignment of apo and holo forms and binding site of CheY

zero frequency excitation) is found to be 0.3496 if the force is applied to a binding

pocket residue, residue 57, and 0.6942 if the force is applied to residue 91. The

input residues are again selected from the PRS paper [22]. In Figure 8.2(a), and

Figure 8.9(a), the red curves show the experimental displacements and the blue ones

are for the calculated when the input residue is 57 and 91, respectively. Residue

distances to these input residues are shown in Figure 8.2(b) and Figure 8.9(b). Fig-

ure 8.3(a) shows the 3D displacements and Figures 8.3(b) and (c) are for side views.

Displacement values above 10 Å is not shown in the figures. Force frequency def-

initely affects the displacements in a residue-specific manner. Figure 8.3(d) shows

the displacements for a set of selected residues 4, 14, 41, 56, 76, 93, 111. Displace-

ment of residue 14 tends to decrease with frequency but at 0.1-0.25 THz, there is

an increase. Residue 56 shows two different peaks at higher frequency values. Fig-

ure 8.3(e) shows the displacements for all of the residues at five selected frequencies

in logarithmic scale.



Chapter 8: Appendix 128

10 20 30 40 50 60 70 80 90 100 110 120

Residue index

0

1

2

3

4

5

6

7

8

R
el

at
iv

e 
di

sp
la

ce
m

en
ts

 (
Å

) Experimental
Calculated

(a) Experimental and calculated displace-

ments between apo and holo forms of CheY.

Force excitation on residue 57.
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(b) Residue distances to the input residue

(57).

Figure 8.2: Displacement magnitudes of CheY residues in Å. Red curve shows exper-

imental displacements and blue curve is calculated displacements at the best force

magnitude and direction at zero frequency. Residues 10, 11, 54, 55, 56, 59, 63, 64,

84, 85, 86 are within 8 Å range of residue 57.

Kinetic energy , Ei(ω). In accordance with the same critical residue selection

criteria that was defined in Section 4.5, the critical residues for CheY are 11, 12,

17, 56, 57, 66, 68 when input residue is 57, and residues 87-97, 110 when input

residue is 91 as shown in Figures 8.4(a) and 8.11(a). At low frequencies, energy is

highly correlated with the inverse of the inter-residue distances (i.e., proximity) when

force is applied to residue 91, however for excitations applied on residue 57, energy

becomes correlated with the proximity at high frequencies. The force application

site not only determines how much ligand binding is mimicked but also the frequency

dependent internal energy distribution within the protein.

Major-axis length , |rmajori(ω)|. Figures 8.5 and 8.12 show the major-axis

length both as a function of residue index and frequency, and with averaging over

frequency with input residue 57 and 91, respectively. Based on the frequency aver-

aged results, residues 12-18, 56, 66, 68 (87-94, 96, 109) move more than the others

and those that exhibit the least amount of movement are the region between 2-5,
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(a) Residue displacements in 3D view (b) Residue displacements vs residue index
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(c) Residue index vs frequency
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(d) Relative displacements of selected

residues

10 20 30 40 50 60 70 80 90 100 110 120

Residue index

-8

-6

-4

-2

0

2

4

lo
g 

(R
el

at
iv

e 
d

is
p

la
ce

m
en

t)
 (

Å
)

0.15
0.54
0.94
1.43
1.93

(e) Relative displacements of all residues for

selected frequencies

Figure 8.3: Relative displacement magnitudes as a function of residue index and

frequency (input residue: 57)
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(b) Correlation between the energy and the

proximity to the input residue as a function

of frequency

Figure 8.4: Energy analysis of CheY (input residue: 57)

30, 49, 50, 121, 124, 129 (2, 3, 6, 43, 44, 46, 47, 51, 52, 53) when input residue is 57

(91).
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(a) |rmajor| (b) Frequency-averaged |rmajor|ave. Values

above 1.5 Å are not shown.

Figure 8.5: Major-axis length |rmajor| of CheY (input residue: 57).

Angle between the major-axis and applied force direction , θmajori(ω).

Figure 8.6 shows that most of the residues tend to be orthogonal to the force for

larger frequencies. Frequency averaged θmajor values are shown in Figure 8.6(b) and
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8.13(b). On average, residues 22, 23, 33, 44, 45, 51, 88, 108, 115, 129 (3, 29, 32,

106, 112, 114, 115, 119, 122, 127) and move orthogonally to the force and residues

14, 16, 17, 57, 70, 99, 100, 103, 104, 128 (4, 10, 17, 18, 41, 82, 88, 89, 91, 109) are

aligned with the excitation force direction when input residue is 57 (91).
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Figure 8.6: Angle between the major-axis and force, θmajor, of CheY. Colorbar labels

are to be multiplied with π, and in radians (input residue: 57).

Isotropicity , ξi(ω). Figures 8.7(a) and 8.14(a) show isotropicity as a function of

frequency. Over a certain frequency range, most of the residues become anisotropic

except residues 115-120 for input residue 57. Figure 4.9(b) shows the frequency-

averaged values of isotropicity. Residues 34, 45, 67, 70, 84, 93, 111, 123, 125, 127

(62, 71, 90, 91, 100, 104, 110, 111, 124, 128) are the most anisotropic ones on the

average, and 3, 20, 23, 37, 99, 100, 116, 117, 119, 120 (9, 20, 24, 27, 34, 78, 79, 81,

103, 118) are the most isotropic when the force is applied to residue 57 (91).

Angle between the plane normal and force , θnormal(ω). Figures 8.8(a)

and 8.15(a) show the effect of frequency on the coplanarity with two different force

excitation sites. When the frequencies are averaged, 19, 26, 29, 44 - 46, 51, 71, 75,

89, 120 (11, 17, 37, 55, 62, 76, 86, 106, 111, 115, 126, 127) are relatively non-coplanar

with the force when the input residue is 57 (91).

According to Table 8.1, the single point, static force application seems to model

ligand binding better for FBP in comparison to CheY.
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Figure 8.7: Isotropicity ξ of CheY. Colorbar labels are to be multiplied with π, and

in radians (input residue: 57).
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show the orthogonal motions.

Figure 8.8: Angle between the plane normal and force direction, θnormal, of CheY.

Colorbar labels in radians/pi (input residue: 57).
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Protein Unit Force Direction Force Magnitude Input Residue Correlation

FBP [0.9040 0.3834 0.1894] 4.1859 57 0.9731

CheY [-0.4060 0.6761 0.6148] 36.8113 57 0.3496

CheY [0.6485 -0.4982 -0.5705] 11.4416 91 0.6942

Table 8.1: Force parameters, input residue and correlation value between the exper-

imental and calculated displacements for selected proteins.
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Figure 8.9: Displacement magnitudes of CheY residues in Å. Red curve shows exper-

imental displacements and blue curve is calculated displacements at the best force

magnitude and direction at zero frequency. Residues 88, 89, 90, 92, 93, 94 are within

8 Å range of residue 91.
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(a) Residue displacements in 3D view
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Figure 8.10: Relative displacement magnitudes as a function of residue index and

frequency (input residue: 91)
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Figure 8.11: Energy analysis of CheY (input residue: 91)
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Figure 8.12: Major-axis length |rmajor| of CheY (input residue: 91).



Chapter 8: Appendix 136

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Frequency (THz)

10

20

30

40

50

60

70

80

90

100

110

120

R
e
s
id

u
e
 i

n
d

e
x

0

0.1

0.2

0.3

0.4

0.5

(a) θmajor
av

e
m

aj
or

10 20 30 40 50 60 70 80 90 100 110 120 130
Residue index

0.15

0.2

0.25

0.3

0.35

0.4

K91

A88
E89

R18F14
D41

M17 K109P82V10

G29 N32 Y106 K119K122
L127

T115T112A114
D3

θ
m

aj
or

av
e

(b) Frequency-averaged θmajorave

Figure 8.13: Angle between the major-axis and force, θmajor, of CheY. Colorbar

labels are to be multiplied with π, and in radians (input residue: 91).
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Figure 8.14: Isotropicity ξ of CheY. Colorbar labels are to be multiplied with π, and

in radians (input residue: 91).
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Figure 8.15: Angle between the plane normal and force direction, θnormal, of CheY.

Colorbar labels in radians/pi (input residue: 91).
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8.2 Supplementary Information for Chapter 5:

Allostery in proteins as point-to-point telecommunication in a net-

work: Frequency decomposed signal-to-noise ratio and channel ca-

pacity analysis

Amino acid type Mass(amu) Volume (× 10−3 nm3)

ALA 71 87.2

ARG 156 181.3

ASN 114 117.4

ASP 115 114.6

CYS 103 106.7

GLU 129 141.4

GLN 128 142.4

GLY 57 60.6

HIS 137 152.4

ILE 113 168.9

LEU 113 168.9

LYS 128 174.3

MET 131 163.1

PHE 147 187.9

PRO 97 122.4

SER 87 91.0

THR 101 117.4

TRP 186 228.5

TYR 163 192.1

VAL 99 141.4

Table 8.2: Mass and volume values of the amino acids

Table 8.3 summarizes the critical residues identified in previous work using a wide

range of computational methods as well as experimental techniques for the PDZ3
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Figure 8.16: Pairwise distances between the residues

domain protein PSD-95. The summaries provided in [116] and [5] were utilized in

the preparation of the table.
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Figure 8.17: (a) Per residue scan and (b) BP excitation with HANM
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(a)
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(b)

Figure 8.18: PSD profile for the equilibrium fluctuations (a) HMD (b) HANM

305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415

Residue index

0.0

0.2

0.4

0.6

0.8

1.0

Ca
pa

cit
y

1 2 3 1 4 5 2 6 3 7 8

0 5 10 15 20
Distance (Å)

Figure 8.19: Normalized capacity values in BP excitation mode using HMD. The

colorbar shows the minimum distance between a residue and one of the BP residues.
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(a)
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(b)

Figure 8.20: Binding pocket excitation with (a) HMD (b) HANM.
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HMD.
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Method Critical residues

Perturbation response scanning [5] 314, 316, 326, 327, 328, 329, 330, 335, 336, 337, 338,

339, 340, 341, 345, 346, 347, 353, 354, 355, 356, 358,

359, 361, 362, 367, 370, 372, 375, 379, 386, 387, 388,

389, 390

Experimental [6] 325, 328, 329, 340, 341, 362, 372, 376, 380, 386, 390

Statistical coupling analysis. 1 [7] 322, 325, 329, 340, 341, 362, 372, 376, 380, 386

Statistical coupling analysis. 2 [8] 323, 324, 325, 327, 328, 329, 330, 336, 338, 341, 347,

353, 359, 362, 367, 372, 375, 376, 379, 388

Anistotropic thermal diffusion [9] 325, 327, 341, 347, 353, 372

Structural perturbation method [10] 310, 318, 319, 320, 323, 327, 329, 331, 332, 333, 334,

372, 376, 380, 384, 400

Rotamerically induced perturbation [11] 316, 318, 323, 325, 336, 346, 347, 349, 353, 357, 359,

362, 367, 375, 378, 379, 386, 390

MD [12] 309, 318, 322, 323, 324, 326, 327, 328, 330, 331, 332,

334, 337, 348, 352, 354, 355, 357, 373, 380, 391, 395,

399

Deep coupling scan [13] 372, 375, 376, 379

Thermodynamic double mutant cycle [14] 314, 316, 323, 325, 327, 328, 331, 340, 341, 347, 353,

362, 372, 375, 376, 377, 378, 380, 382, 386

Conservation mutation correlation analysis [15] 311, 316, 326, 327, 330, 336, 337, 338, 339, 341, 342,

343, 344, 347, 348, 351, 356, 359, 360, 362, 364, 366,

369, 376, 378, 381, 386

Rigid-residue scan [16] 338, 343, 347, 397

Monte Carlo path [17] 325, 327, 338, 353, 372

Table 8.3: Critical residues identified by various methods
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8.3 Supplementary Information for Chapter 6:

Interpretable embeddings from molecular simulations using Gaus-

sian mixture variational autoencoders

X′ ∈ Rn denotes the reconstructions. The sampling operation in the reconstructions

(shown in the decoding part of Figure 6.3), corresponds to taking the means of the

Gaussians for simplicity.

8.3.1 One dimensional 4-well potential

The trajectory data is obtained as suggested in [155], and using the code provided

in [163]. 100 × 100 transition probability matrix is obtained among the equally-

spaced 100 bins in the interval [-1, 1] as follows

Pij =

Ci exp (−(Vi − Vj)), if |i− j| ≤ 1

0, otherwise ,

(8.1)

where Vi and Vj are the potential energies at the centers of bins i and j, which

are defined according to the potential of the form: V (X) = 2(X8 + 0.8e−80X2
+

0.2e−80(X−0.5)2 + 0.5e−40(X+0.5)2), and Ci is the normalization factor. The system is

initialized randomly, and propagated according to Pij 5× 106 steps in time.

Figure 8.22 shows the reconstructions in a scatter plot. The X = X ′ line shows

the lossless reconstructions.
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Figure 8.22: X vs X′ for one-dimensional 4-well potential. Reconstructions are

obtained via the GMVAE.

8.3.2 Müller-Brown potential

The trajectory data is obtained as suggested in [131], and using the code provided

in [164]. Two dimensional potential energy is defined as:

V (X0, X1) =
3∑
j=0

Aj exp[aj(X0 − x0,j)
2 + bj(X0 − x0,j)(X1 − x1,j) + cj(X1 − x1,j)

2] ,

(8.2)

where x = (X0, X1) is the two-dimensional coordinate, and A, a, b, c, x0 and y0

are the standard parameters [152] such that A = (−200,−100,−170, 15), a =

(−1,−1, 6.5, 0.7), b = (0, 0, 11, 0.6), c = (−10,−10,−6, 5,−0.7), x0 = (1, 0,−0.5,−1),

x1 = (0, 0.5, 1.5, 1). The trajectory data is generated using 30 trajectories of 10000

steps simulated with Brownian dynamics:

dx

dt
= −∆V (x)

kT
+
√

2DR(t) , (8.3)

where kT = 1.5× 104 joules, and D = 10−2 meters-squared per second, and R(t) is

a delta-correlated Gaussian process with zero mean.

The true labels are defined as shown in Figure 8.23(a). Figures 8.23(b) and

8.23(c) show the reconstructions.
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(a) True labels

(b) X0 vs X0′ (c) X1 vs X1′

Figure 8.23: True label definitions and X vs X′ for Müller-Brown potential. Recon-

structions are obtained via the GMVAE. (a) True labels. (b) Reconstructions in the

first dimension. (c) Reconstructions in the second dimension.

Figure 8.24 further demonstrates the ability of the GMVAE to learn a nonlin-

ear manifold that separates the three distinct free-energy basins, compared with

time-lagged independent component analysis (TICA), which can only find a lin-

ear separatrix for the basins. Figure 8.24, showing the projections obtained with

the GMVAE and TICA, was constructed following [131], with the colors indicating

values of the latent variable while the gray dots correspond to trajectory data.
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Figure 8.24: Projections via the GMVAE and TICA. The GMVAE learns the non-

linear dividing surface in the low-dimensional space.

8.3.3 Alanine dipeptide

As the input features, dihedral angles and pairwise distances for heavy atoms that

are provided in [156] for three simulations of length 250 ns each are used. Dihedral

angles are transformed to their sin / cos representaions, and the pairwise distances

whose variance are low are removed from the feature set (using kurtosis function

from scipy.stats library [165], with threshold value of 0.03, as shown in Figure 8.25).
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(a) Dihedral angles

(b) Pairwise distances

Figure 8.25: Processing of the features: (a) the dihedral angles along the backbone,

and (b) the pairwise distance between heavy atoms.

We applied TICA to the set of pairwise distances only, followed by a kinetic
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coarse-graining with the PCCA+ method into 4 metastable states. Figure 8.26(a)

presents the resulting clusters plotted on the Ramachandran plot. Figures 8.26(b)

and 8.26(c) show the histograms of these metastable states, and the GMVAE clus-

ters, respectively.

(a) Metastable states

(b) The true metastable states (c) The GMVAE clusters

Figure 8.26: (a) Metastable states from TICA and PCCA+ on the Ramachandran

plot. The histograms for the (b) true metastable states, (c) GMVAE clusters.
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(a) FEL via the GMVAE (b) Clusters

(c) Clusters on the Ramachandran plot (d) Cluster counts

Figure 8.27: (a) FEL obtained for the alanine dipeptide by the GMVAE in a separate

fully-converged training. The GMVAE clusters on the (b) GMVAE landscape, (c)

Ramachandran plot. (d) Cluster counts.
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(a) Implied timescales (b) Chapman-Kolmogorov test

Figure 8.28: Markovianity check of the MSM built for alanine dipeptide via the

GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov test (at lag=20 steps).

(a) FEL via the VAE (b) The true metastable state partitions

Figure 8.29: VAE results for alanine dipeptide. (a) The FEL obtained by the VAE,

(b) the true metastable state partitions on this landscape.

8.3.4 AAQAA3 peptide - I

8.3.4.1 Coarse-grained peptide model

We employ a simple physics-based peptide model that was previously used to in-

vestigate structural-kinetic relationships in helix-coil transitions [159, 166]. The

model employs three attractive interactions, following standard Gō-type models [167,
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168, 169, 170]: (i) a native contact (nc) attraction, Unc, employed between pairs of

Cαatoms which lie within a certain distance in the native structure, i.e., the α-helix,

of the peptide, (ii) a desolvation barrier (db) interaction, Udb, also employed between

native contacts, and (iii) a hydrophobic (hp) attraction, Uhp, employed between all

pairs of Cβ atoms of the amino acid side chains. We employed the same functional

forms as in many previous studies [170], with a tunable prefactor, εi, for each of

the interactions. The model considered here employed the prefactors εnc = 12.5,

εdb = 0.4εnc, and εhp = 0.2εnc, while performing simulations at a temperature of

280 K. In addition to these simple coarse-grained interactions, a standard AA force

field, AMBER99sb [103], is also partially incorporated to model both the steric in-

teractions between all non-hydrogen atoms and also the specific local conformational

preferences along the chain.

Molecular dynamics simulations of AAQAA3 were performed with the Gromacs

4.5.3 simulation suite [102] in the constant NVT ensemble, while employing the

stochastic dynamics algorithm with a friction coefficient γ = (2.0 T S)−1 and a time

step of 1 × 10−3 T S. For each model, 100 independent simulations were performed

with starting conformations varying from full helix to full coil. Each simulation

was performed for 100, 000 T S, recording the system every 0.5 T S. The CG unit

of time, T S, can be determined from the fundamental units of length, mass, and

energy of the simulation model, but does not provide any meaningful description of

the dynamical processes generated by the model. In this case, T S = 1 ps.

8.3.4.2 GMVAE landscape and the cluster assignments

Since the GMVAE method is a probabilistic clustering method, each data point has

a probability of assignment to each of the k clusters. For a data point di, the proba-

bility of assignment to each of the clusters has probability values pdi,0, pdi,1, . . . pdi,k−1

for k number of clusters. In the ideal case, all of the probability values except the

true cluster is equal to 0, and the true cluster has a value of 1. Figure 8.30 sepa-

rately shows the histogram of probability distributions of all of the data points for

a cluster. For instance, for cluster 0, the probability distributions are accumulated
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at probability values 0 and 1. In other words, with high certainty, cluster 0 is differ-

entiated from the others. None of the data points is assigned to clusters 7− 8− 9.

Note that although the network is initially trained for 10 clusters, it is not possible

to separate more than 7 clusters under the specified loss function. This suggests a

way to find the inherent number of clusters, i.e., metastable states, provided that k

is chosen larger than that true value.

Figure 8.30: The population distribution as a function of probability of belonging

to each of the clusters after the training. None of the data points is assigned to

clusters 7− 8− 9.

Cluster ID’s are obtained after a thresholding step as explained in Section 6.2.3.1.

Figure 8.31 shows the cluster populations. Cluster -1 indicates the datapoints that

are not assigned to any of the clusters.
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Figure 8.31: Cluster populations

Figure 8.32 shows the inter-cluster 〈fh〉 distributions.

Figure 8.32: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- I). The dashed lines indicate the average values, which are also written in the text

boxes.

To further characterize the clustering of secondary structures, we separately cal-

culated dRMSDs with respect to three reference structures: helix (hel), hairpin-like

(hp), and extended (coil). Figure 8.33(a) presents both the reference structures

(right) and corresponding dRMSD distributions (left). The first and the second

small peaks in the dRMSDhel distribution represent helical conformations, while the
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peak corresponding to dRMSDhel values between 2−3.5 hints at the presence of the

hairpin-like structures. Note that there is an offset in dRMSDhp values due to (i) the

scarcity of the well-defined hairpins in the trajectory data, and (ii) the subjectiv-

ity involved in choosing the reference structures. By plotting the two-dimensional

free-energy surface along dRMSDhel and dRMSDhp, shown in Figure 8.33(b), the

distinct secondary structures can be separated. The conformations with dRMSDhel

values below 1.8 are helical, whereas the minimum in the upper right with dRMSDhel

greater than 4 is comprised of extended structures. The energy minimum in the mid-

dle (enclosed in the region with dRMSDhel values between 1.8 and 3, and dRMSDhp

values between 0 and 3) contains hairpin-like structures. Figure 8.33(c) presents

inter-cluster free-energy surfaces along dRMSDhel and dRMSDhp, generated by con-

sidering only conformations within a single cluster.
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(a) Histogram plots of dRMSD values

hel

hp

coil

(b) Scatter plot of dRMSDhel vs. dRMSDhp

(c) Sampled regions of dRMSDhel vs. dRMSDhp for each cluster

Figure 8.33: dRMSD analysis. (a) The density histograms of dRMSD values for

helix, hairpin, and coil structures (with the visualized reference structures). (b)

Scatter plot of dRMSDhel vs. dRMSDhp with densities. (c) Sampled regions of

dRMSDhel vs. dRMSDhp in each of the cluster. The same colormap is used in (b)

and (c).
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(a) dRMSDhp
(b) dRMSDcoil

(c) Rg

Figure 8.34: Projections colored according to (a) dRMSDhel, (b) dRMSDhp, (c)

dRMSDcoil, and (d) Rg

In addition to 〈fh〉 and dRMSDhel, the radius of gyration Rg distribution is also

analyzed. Rg measures the mass-weighted deviations from center of mass, and gives

an idea on the overall spread and compactness of the molecule, and is calculated as

Rg =

√∑
imi||ri − rc||2∑

imi

, (8.4)

where mi is the mass of atom i, ri the coordinates of atom i, and rc is the coordinates

of the center of mass. Figures 6.13(b), 8.34(a), 8.34(b), and 8.34(c) show the heat

map of dRMSDhel, dRMSDhp, dRMSDcoil, and Rg on the FEL obtained via the

GMVAE, respectively.

As a final characterization of the clustering, we constructed an MSM directly

from the discretized trajectories of GMVAE cluster indices. Although threshold-
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ing was applied in the results presented here (practically similar to coring methods

for constructing kinetic models [162]), we found that this procedure had negligi-

ble effect on the accuracy of the resulting MSM. Figure 8.35(a) presents implied

timescale test. The kinetic model can resolve two of longest characteristic processes

and demonstrates reasonable convergence, although there is a small increase in the

longest timescale with increasing lag time. This subtle discrepancy already indicates

that there may be some issues with the accuracy of the kinetic model. An MSM is

constructed at lag time 700 to balance between the convergence of the timescales and

the resolution of shorter timescale processes. Figure 8.35(b) presents the CK test

from this model. There are significant errors in the description of probability decay

from each of the metastable states (i.e., clusters), especially states 0 and 1. First, we

note that coarse-grained MSMs (i.e., MSMs built on a small number of metastable

states) are often not expected to be quantitatively accurate due to difficulties in ac-

curately defining the dividing surfaces between states [143]. However, we anticipate

that it should be possible to make a more accurate coarse-grained MSM for this

particular simulation trajectory. The discrepancies in the model can then originate

from two coupled problems: (i) the GMVAE latent space definition places structures

close together that are kinetically distinct (i.e., there are hidden barriers) or (ii) the

GMVAE clustering fails to identify/separate distinct metastable states. The FEL

within the latent space (Figure 6.11(a)) contains clearly separated basins that are

not identified as unique clusters by the GMVAE. In particular, within clusters 0

and 1, there seems to be 2 and 3 separate states, respectively. Figure 8.32 shows

that cluster 0 (1) contains structures with a range of helicities ranging from 0.46-1.0

(0.15-0.69). According to the conventional picture of the helix-coil transition, the

overarching kinetics can be described by two timescales: (i) the rate at which a single

helical segment is formed and (ii) the elongation rate of helical segments along the

chain. By grouping together conformations with a single helical segment and sev-

eral helical segments, the GMVAE has convoluted these two timescales, resulting in

non-Markovianity in the kinetics described on these clusters. To further clarify the

source of these errors, we constructed an MSM in the conventional way, directly from
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the latent space distribution. More specifically, we applied k-means algorithm with

1000 cluster centers, and then applied PCCA+ [146]. In order to enable comparison,

we continued with the previous number of metastable states (7). The CK test for

the resulting model with lag time τ = 700 (obtained from the implied timescale test,

Figure 8.37(b)) is presented in Figure 8.37(c), and demonstrates slightly improved

accuracy.

(a) Implied timescales (b) Chapman-Kolmogorov Test

Figure 8.35: Markovianity check of the MSM built for the AAQAA3 peptide - I via

using the cluster labels from the GMVAE. (a) Implied timescales. (b) Chapman-

Kolmogorov test (at lag=700 steps)
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Figure 8.36: Distributions for 〈hN〉 ≥ 0.8 (on the left), 〈hN〉 ≤ −0.8 (on the right).
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8.3.4.3 GMVAE landscape only (without using the cluster assignments)

(a) Cluster centers (b) Implied timescales

(c) Chapman-Kolmogorov test (d) Clusters

Figure 8.37: Kinetic analysis on the GMVAE landscape for AAQAA3 - I

Figure 8.38: Cluster populations for AAQAA3 - I from PCCA+
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Figure 8.39: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- I) for the clusters obtained with PCCA+). The dashed lines indicate the average

values, which are also written in the text boxes.

8.3.4.4 TICA results

2D TICA projections are obtained at lag time τ = 20 steps.
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(a) FEL (b) 〈fh〉

(c) 〈hN 〉 − 〈hC〉

Figure 8.40: TICA results for AAQAA3 - I
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(a) Cluster centers (b) Implied timescales

(c) Chapman-Kolmogorov test (d) Clusters

Figure 8.41: Kinetic analysis on TICA landscape for AAQAA3 - I

Figure 8.42: Cluster populations for AAQAA3 - I from TICA + PCCA+
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Figure 8.43: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- I) for the clusters obtained with PCCA+). The dashed lines indicate the average

values, which are also written in the text boxes. Note that cluster 3 is an empty

cluster.
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8.3.4.5 VAE results

(a) FEL (b) 〈fh〉

(c) 〈hN 〉 − 〈hC〉

Figure 8.44: VAE results for AAQAA3 - I
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(a) Cluster centers (b) Implied timescales

(c) Chapman-Kolmogorov test (d) Clusters

Figure 8.45: Kinetic analysis on the VAE landscape for AAQAA3 - I

Figure 8.46: Cluster populations for AAQAA3 - I from VAE + PCCA+
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Figure 8.47: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- I) for the clusters obtained with PCCA+). The dashed lines indicate the average

values, which are also written in the text boxes.

8.3.5 AAQAA3 peptide - II

We also considered an alternative coarse-grained model, with energetic prefactors

εnc = 10.92, εdb = 0.2εnc, and εhp = 0.5εnc, while performing simulations at a

temperature of 300 K.
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8.3.6 GMVAE landscape and the cluster assignments

Figure 8.48: Cluster populations from the GMVAE.

Figure 8.49: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3 -

II). The dashed lines indicate the average values, which are also written in the text

boxes.
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(a) Implied timescales (b) Chapman-Kolmogorov Test

Figure 8.50: Markovianity check of the MSM built for the AAQAA3 - II via using the

cluster labels from the GMVAE. (a) Implied timescales. (b) Chapman-Kolmogorov

test (at lag=500 steps)
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8.3.6.1 GMVAE landscape only (without using the cluster assignments)

(a) Cluster centers (b) Implied timescales

(c) Chapman-Kolmogorov test (d) Clusters

Figure 8.51: Kinetic analysis on the GMVAE landscape for AAQAA3 - II

Figure 8.52: Cluster populations for AAQAA3 - II from PCCA+
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Figure 8.53: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- II) for the clusters obtained with PCCA+). The dashed lines indicate the average

values, which are also written in the text boxes.

8.3.6.2 TICA results

2D TICA projections are obtained at lag time τ = 20 steps.
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(a) FEL (b) 〈fh〉

(c) 〈hN 〉 − 〈hC〉

Figure 8.54: TICA results for AAQAA3 - II
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(a) Cluster centers (b) Implied timescales

(c) Chapman-Kolmogorov test (d) Clusters

Figure 8.55: Kinetic analysis on TICA landscape for AAQAA3 - II

Figure 8.56: Cluster populations for AAQAA3 - II from TICA + PCCA+
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Figure 8.57: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- II) for the clusters obtained with PCCA+). The dashed lines indicate the average

values, which are also written in the text boxes.
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8.3.6.3 VAE results

(a) FEL (b) 〈fh〉

(c) 〈hN 〉 − 〈hC〉

Figure 8.58: VAE results for AAQAA3 - II
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(a) Cluster centers (b) Implied timescales

(c) Chapman-Kolmogorov test (d) Clusters

Figure 8.59: Kinetic analysis on the VAE landscape for AAQAA3 - II

Figure 8.60: Cluster populations for AAQAA3 - II from VAE + PCCA+
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Figure 8.61: Intra-cluster distributions of average helical fraction, 〈fh〉, (AAQAA3

- II) for the clusters obtained with PCCA+). The dashed lines indicate the average

values, which are also written in the text boxes.
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Bacterial iron homeostasis. FEMS microbiology reviews, 27(2-3):215–237,

2003.

[73] Hakim Boukhalfa, Damon S Anderson, Timothy A Mietzner, and Alvin L

Crumbliss. Kinetics and mechanism of iron release from the bacterial ferric

binding protein nfbp: exogenous anion influence and comparison with mam-

malian transferrin. JBIC Journal of Biological Inorganic Chemistry, 8(8):881–

892, 2003.

[74] Discovery Studio. version 4.1. Dassault Systemes Biovia Corp. San Diego,

CA, USA, 2014.

[75] Alexander S Rose, Anthony R Bradley, Yana Valasatava, Jose M Duarte,
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of molecular kinetics: Generation and validation. The Journal of chemical

physics, 134(17):174105, 2011.
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[146] Susanna Röblitz and Marcus Weber. Fuzzy spectral clustering by pcca+:

Application to markov state models and data classification. Advances in Data

Analysis and Classification, 7(2):147–179, 2013.

[147] Martin K Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo

Perez-Hernandez, Moritz Hoffmann, Nuria Plattner, Christoph Wehmeyer,

Jan-Hendrik Prinz, and Frank Noe. Pyemma 2: A software package for esti-

mation, validation, and analysis of markov models. Journal of chemical theory

and computation, 11(11):5525–5542, 2015.

[148] Shneior Lifson and A Roig. On the theory of helix coil transition in polypep-

tides. The Journal of Chemical Physics, 34(6):1963–1974, 1961.



Bibliography 199

[149] Andrew James Doig. The a-helix as the simplest protein model: Helix-coil

theory, stability, and design. Protein Folding, Misfolding and Aggregation,

page 1, 2008.

[150] Debsindhu Bhowmik, Shang Gao, Michael T Young, and Arvind Ra-

manathan. Deep clustering of protein folding simulations. BMC bioinfor-

matics, 19(18):484, 2018.

[151] Christian R Schwantes and Vijay S Pande. Modeling molecular kinetics

with tica and the kernel trick. Journal of chemical theory and computation,

11(2):600–608, 2015.

[152] Klaus Müller and Leo D Brown. Location of saddle points and minimum

energy paths by a constrained simplex optimization procedure. Theoretica

chimica acta, 53(1):75–93, 1979.

[153] Feliks Nüske, Hao Wu, Jan-Hendrik Prinz, Christoph Wehmeyer, Cecilia
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