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FINITE ELEMENT MODEL UPDATING AND DAMAGE 

IDENTIFICATION OF REINFORCED CONCRETE FRAMES WITH 

DIFFERENT INFILLS AND UNREINFORCED MASONRY WALLS 

 

ABSTRACT 

 

In recent years, finite element model updating (FEMU) methods have become 

attractive and popular tools that are used for finite element model verification and 

health condition assessment of civil engineering structures. In this thesis, system and 

damage identification studies conducted on half-scale, single-bay, single-story three 

reinforced concrete frames with different infill conditions are presented. The frames 

were tested along their in-plane directions under gradually increasing quasi-static 

cyclic loading. At predetermined drift levels (damage states), ambient vibration and 

white-noise tests were performed on the frames for the purpose of identifying their 

modal parameters by using three different output-only system identification methods. 

The modal identification results were correlated with detailed visual damage 

inspections made during quasi-static tests and were later used for damage 

identification of the frames by sensitivity-based FEMU method. At each progressively 

increasing damage state, stiffness reduction factors of the predetermined model 

parameters were obtained by minimizing the discrepancies between experimentally 

and numerically identified modal parameters. Comparative studies were carried out 

for the frames at different damage states in terms of system and damage identification 

results. In the final part of the thesis, system identification and model calibration work 

of the unreinforced masonry courtyard walls of the historical Isabey Mosque are 

presented. Dynamic characteristics of the structure were estimated from two sets of 

ambient vibration measurements. In order to obtain a much better correlation with in-

situ tests, the uncertain model parameters of the initial numerical model were updated. 

Finally, a damage scenario study was performed on the calibrated numerical model. 

 

Keywords: Reinforced concrete frame, infill wall, masonry structure, quasi-static 

cyclic test, system identification, model updating, damage identification 
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FARKLI DOLGULU BETONARME ÇERÇEVELERİN VE DONATISIZ 

YIĞMA DUVARLARIN SONLU ELEMANLAR MODELİ GÜNCELLEMESİ 

VE HASAR TANIMLAMASI 

 

ÖZ 

 

Son yıllarda, sonlu elemanlar modeli güncelleme yöntemleri (FEMU), inşaat 

mühendisliği yapılarının sonlu elemanlar modeli doğrulaması ve sağlık durumu 

değerlendirmesi için kullanılan ilgi çekici ve popüler araçlar haline gelmiştir. Bu tezde, 

farklı dolgu koşullarına sahip yarım ölçekli, tek açıklıklı, tek katlı üç adet betonarme 

çerçeve üzerinde yapılan sistem tanımlama ve hasar tespit çalışmaları sunulmuştur. 

Çerçeveler, kademeli olarak artan yarı-statik döngüsel yükleme altında düzlem içi 

doğrultuları boyunca test edilmiştir. Önceden belirlenmiş ötelenme seviyelerinde 

(hasar durumlarında), çerçevelerin üç farklı sadece-çıktı sistem tanımlama yöntemi 

kullanılarak modal parametrelerini belirlemek amacıyla ortamsal titreşim ve beyaz-

gürültü testleri yapılmıştır. Modal tanımlama sonuçları, yarı-statik testler sırasında 

yapılan detaylı gözlemsel hasar incelemeleri ile ilişkilendirilmiş ve ardından 

çerçevelerin duyarlık-tabanlı FEMU yöntemi ile hasar tespiti için kullanılmıştır. Her 

bir gittikçe artan hasar durumunda, deneysel ve sayısal olarak belirlenen modal 

parametreler arasındaki farklılıklar minimize edilerek, önceden belirlenmiş olan model 

parametrelerin rijitlik azalma faktörleri elde edilmiştir. Farklı hasar durumundaki 

çerçeveler için sistem tanımlama ve hasar tespit sonuçları açısından karşılaştırmalı 

çalışmalar yapılmıştır. Tezin son bölümünde, tarihi İsabey Cami'sinin donatısız yığma 

avlu duvarlarının sistem tanımlama ve model kalibrasyon çalışmaları sunulmuştur. 

Yapının dinamik karakteristiği, iki ortamsal titreşim ölçümü setinden tahmin 

edilmiştir. Yerinde yapılan testlerle çok daha iyi bir korelasyon elde edebilmek üzere, 

ilk sayısal modelin belirsiz model parametreleri güncellenmiştir. Son olarak, kalibre 

edilmiş sayısal model üzerinde hasar senaryosu çalışması yapılmıştır. 

Anahtar kelimeler: Betonarme çerçeve, dolgu duvar, yığma yapı, yarı-statik 

döngüsel test, sistem tanımlama, model güncelleme, hasar tespiti 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

 

In recent years, structural health monitoring (SHM) has become an attractive and 

popular tool for assessing the current states (i.e., health conditions) of civil engineering 

structures. After a damaging event like a natural disaster (e.g., earthquake, hurricane, 

etc.) or a human-made effect (e.g., explosion, fire, etc.), there exist many structures to 

be evaluated for safety purposes and the time is not abundant to give sound decisions 

about their states. In addition, rapid and reliable damage identification and 

classification are very important also for planning disaster relief operations. 

 

Damage identification methods can be divided into four grades according to their 

development levels: (i) Level-I methods: those can detect the existence of damage, (ii) 

Level-II methods: those can detect the existence and location of damage, (iii) Level-

III methods: those can detect the existence, location, and severity of damage, and (iv) 

Level-IV methods: those can detect the existence, location, and severity of damage 

together with the remaining life (prognosis) of the structure (Amani et al., 2007; Rytter, 

1993; Park, 1997; Park et al., 2006; Stubbs et al., 2000). 

 

There are many methods to determine the current states of the structural systems. 

The predominant method is the visual inspection method which is manual and 

subjective. However, the visual inspection method is insufficient and misleading as 

structural elements are often covered by non-structural elements like facades and 

walls. Another common method is the localized experimental method (e.g., acoustic, 

magnetic field, ultrasonic, eddy-current, thermal field, and radiograph methods) which 

focuses on the detection of localized damage and requires the approximate damage 

locations to be known. Recent developments have revealed that tracking changes in 

vibration characteristics of structural systems can be used for SHM purposes. These 

types of methods, which are more reliable and more objective than former ones, are 

known as vibration-based SHM methods. 
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In general, damage can be defined as the changes that affect the dynamic 

characteristics and performances of structural systems. It alters mass, stiffness, 

boundary condition, and energy dissipation properties. These effects result in 

detectable changes in the vibration characteristics of structural systems. Detecting 

these changes underlies the principles of the vibration-based SHM methods (Doebling 

et al., 1998; Farrar & Lieven, 2007; Sohn et al., 2003). 

 

Vibration-based SHM is an essential tool that can be employed for performance 

assessment of existing structures, damage detection, and evaluation of structures 

before and after retrofit. It includes continuous and/or in different time monitoring of 

structural systems by using sensors, system identification by collected dynamic data, 

and assessing the present states of structures by extracting the damage sensitive 

properties from system identification results. 

 

In literature, there exist different vibration-based damage identification methods 

based on damage index, Bayesian probabilistic approach, control theory, modal strain 

energy, and finite element model updating (Chase et al., 2005; Mottershead & Friswell, 

1993; Shi & Law, 1998; Sohn & Law, 1997; Stubbs et al., 1992). In the scope of this 

thesis, only the finite element model updating (FEMU) based method is discussed. 

 

FEMU method, which can be classified as a Level-III damage identification 

method, is basically based on updating numerical models of systems according to their 

experimental responses (mostly the system identification results). The method is also 

a powerful instrument that can be utilized to verify and/or calibrate the initial finite 

element (FE) models of systems developed under various assumptions and 

simplifications. 

 

1.2 Literature Review 

 

System identification of different types of engineering structures has been studied 

for a long time by many researchers. Some of them are briefly reviewed below. 
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He et al. (2009) performed dynamic field tests on a long-span suspension bridge, 

Alfred Zampa Memorial Bridge, located in San Francisco. This was one of the unique 

dynamic identification studies since the dynamic tests were conducted just before the 

bridge opening to traffic; so, no previous seismic excitation or traffic loadings were 

presented. Accordingly, forced vibration and ambient test data were processed with 

three modal identification techniques, namely MNEXT-ERA, SSI, and EFDD. The 

forced vibration tests were conducted by the application of vehicle-caused impact 

loading and controlled traffic effects. Identified vibration frequencies and mode shapes 

were found to be in good agreement for each type of test; however, damping ratios 

estimated by the use of forced vibration test data were higher than the ones estimated 

by ambient vibration test data. In addition, the estimation uncertainty of the damping 

ratios was higher than that of the vibration frequencies. Finally, the identification 

results were compared with the analytical results obtained from the 3-D FE model of 

the structure. Results were found to be in good agreement for a few contributing modes 

to the measured vibration of the bridge. 

 

Magalhaes et al. (2012) performed a comprehensive system identification study on 

multi-span cable-stayed bridge Millau Viaduct located in southern France. In the 

study, two different dynamic test data were collected, namely ambient vibration and 

free vibration conducted by the sudden rupture of mass linking to deck member. In the 

study, the focus was to indicate the effectiveness of the ambient vibration testing 

performed for the in-service bridge and compare the modal identification results 

extracted by different methods and types of data. SSI-COV and p-LSCF 

methodologies were used for modal parameter identification. Moreover, the extracted 

vibration frequencies and mode shapes were correlated with the estimates of the 

developed numerical model. It was reported that ambient vibration testing enabled to 

identify more than twenty vibration frequencies and mode shapes. In addition, it 

provided damping ratio estimations in good agreement with ones obtained from the 

less practical and economical free vibration tests. Eventually, the efficiency of ambient 

vibration testing was revealed. 
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Astroza et al. (2016a) performed a comprehensive modal parameter identification 

study on a full-scale, 5-story R/C building which was tested on the NEES-UCSD shake 

table. The structure was exposed to a sequence of real earthquake excitations and 

between the seismic tests, white-noise dynamic test data were collected. These data 

were later used in five different system identification techniques (i.e., two input-output 

and three output-only techniques) in order to identify the modal parameters of the 

structure. The natural frequencies and mode shapes estimated by different 

identification techniques were found to be in good agreement, whereas the damping 

ratios exhibit higher variability. Besides, it was reported that the frequency and 

damping estimations were amplitude dependent. The global stiffness of the structure 

at each incremental damage level was calculated by using the identified natural 

frequencies, and the stiffness was found to be consistent with the reduction of the 

frequency of the first longitudinal mode. In this study, detailed visual inspection results 

of damage between the seismic tests were also reported and correlated with the system 

identification results. The identified modal parameters at different damage levels 

supplied information for finite element model updating based damage identification 

studies. 

 

Finite element model updating and damage identification of different types of 

engineering structures have been studied for a long time by many researchers. Some 

of them are briefly reviewed below. Note that these studies also include system 

identification of the relevant structures.  

 

Teughels & De Roeck (2004) used the FEMU technique for damage identification 

study of Z24 bridge located in Switzerland. Their study was based on the minimization 

of an objective function created by the discrepancies of the modal parameters obtained 

from the numerical model and experiments. Accordingly, damage was reflected by 

stiffness reduction factors of the structural members and identified by calibrating the 

numerical model. In this study, Gauss-Newton optimization method was used, and it 

was made more robust by the implementation of the trust region algorithm. Eighty-

two 3-D elements were used in modeling of the girder, whereas forty-four elements 

were used in modeling of the abutments, columns, and piers. Moreover, the influence 
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of the soil was also taken into account by spring assignments. The study was performed 

in two subsequent steps: (i) Updating the initial numerical model to obtain the 

reference model and, (ii) updating the reference model for damage identification. The 

stiffness distribution of the bridge was approximated by damage functions which were 

useful to reduce the unknown parameters and improve the condition of the problem 

definition. Accordingly, the damage identification study was performed by updating 

Young’s and shear moduli of the structural elements by using eight damage functions. 

As a result, realistic damage patterns were identified and good correspondence with 

the results of the direct stiffness calculation method was acquired. For both the 

undamaged and damaged bridge cases, the modal characteristics of the updated 

numerical model corresponded well with their experimental counterparts. 

 

Bakir et al. (2007) performed sensitivity-based finite element model updating 

method using a trust region algorithm on a planar 4-story, 3-bay R/C frame where the 

stiffness values of the beam members near column-beam joints were numerically 

reduced in a damage scenario. Numerical model of the frame was developed according 

to strong column-weak beam approach, and the elements located at the beam ends, 

where the plastic hinges are expected to occur, were updated. The study was performed 

using eigenfrequency and eigenmode residuals. It was shown that the relative 

eigenfrequency differences and the MAC values improved after model updating and 

the predefined damages were accurately obtained by the updating algorithm. The 

algorithm was also examined in the existence of two noise levels in simulated 

measurement data in order to verify the robustness of the damage identification 

method. The updating algorithm was found to be promising in the existence of high 

noise level since it predicted most of the predefined damages with high accuracy. 

 

Fang et al. (2008) applied the sensitivity-based FEMU method for damage 

identification study of an R/C planar frame. The method presented in this study is 

based on the minimization of the discrepancies calculated between experimentally 

identified and numerically obtained modal parameters. Bi-dimensional damage 

functions, which resulted in a significant enhancement of the optimization 

performance, were used in the updating process. The study was performed with two 
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subsequent steps: (i) The reference numerical model of the undamaged structural 

system was separated by a few damage functions so as to detect possible damage 

locations in a coarse manner and, (ii) the damaged parts were partitioned with finer 

damage functions for an accurate damage identification study. Moreover, a static based 

R/C damage model was proposed for remnant stiffness estimation of cracked segments 

and the results obtained using this method were later compared with the model 

updating based results. The bi-dimensional damage functions were found to be 

beneficial for a well-conditioned optimization problem. It was stated the updating 

method could detect the damage state of the structural system. In addition, the damage 

model approach was verified against the updating results and it was found to be 

feasible to estimate the remnant bending stiffness of a cracked R/C beam segment. 

 

Weber et al. (2009) offered to apply known regularization techniques to have a 

better reliable and accurate model updating algorithm. Accordingly, two known 

techniques, truncated singular value decomposition and Tikhonov regularization were 

implemented in conjunction with the updating algorithm. It was emphasized that 

without using them, measurement errors may result in convergence problems. The 

effectiveness of the presented techniques was shown both on the numerical and 

experimental nonlinear model updating studies. In the numerical study, it was 

indicated that the offered techniques greatly improved the performance of the 

algorithm. In the final part of the presented study, damage identification studies of the 

laboratory tested 3-D, 2-story, 1-bay R/C structural frame subjected to incremental 

earthquake levels were performed using six design variables. Elements located on the 

beam-column joints, where the damage is most expectedly to occur, were selected as 

updating parameters and damage identification results were presented in terms of 

stiffness reductions of them. In this research work, the sensitivity values of the modal 

parameters with respect to design variables were also shown. It was demonstrated that 

both regularization techniques gave similar results. In addition, the identified stiffness 

reduction factors compared well with the damage observations. 

 

Chen et al. (2011) performed analytical and experimental system identification 

studies on Guangzhou TV Tower in China. Accordingly, a very complicated system 
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including over 800 sensors was mounted on the structural system for both in-

construction and in-service real-time monitoring; so, the ambient vibration testing was 

realized by long-term continuous monitoring. Modal parameters of the tower were 

extracted by SSI and EFDD methods. In this study, the analytical and experimental 

system identification works of the structure and the ambient vibration measurements 

at various construction stages and under various excitation conditions principally 

addressed these four topics: (i) a reduced order FE model for the tower by model 

updating, (ii) ambient vibration testing and modal parameter estimation of the tower 

under construction and two different environmental excitations such as earthquake and 

typhoon, (iii) comparing the findings from various excitation circumstances, and (iv) 

correlation study between air temperature and dynamic properties of the tower by the 

usage of linear regression analysis. In this study, a better baseline numerical model of 

the structural system was obtained for further SHM and damage identification studies. 

Besides, a linear relationship was observed between the vibration frequency 

estimations and air temperature. 

 

Ji et al. (2011) carried out a set of full-scale tests on a high-rise steel building by 

using the E-Defense shake table facility to simulate a realistic damage scenario. The 

structure was densely instrumented with acceleration sensors, whereas the local and 

global deformations of the structure were also recorded extensively. During the tests, 

beam-column joints, non-structural walls, and concrete slabs were damaged. Floor 

accelerations were processed with the autoregressive exogenous term and FRF curve 

fitting methods to estimate the dynamic characteristics of the building. The application 

of three successive excitations to the structure resulted in reductions for natural 

frequencies, whereas no remarkable change in mode shapes was observed. Herein, 

mode shapes did not alter much since the damage was distributed in the beam ends at 

multiple levels over height. Two simplified FE models, the shear spring model and the 

fishbone model, were also used to ensure more information about the variances in 

dynamic characteristics of the structure. The shear spring model gave natural 

frequencies that were different from those obtained from experimental studies due to 

the bending effect of the lower steel frame. On the other hand, a reasonable FE model 

was obtained by the fishbone model since it was able to simulate both shear and 
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bending behavior of the structural system. Consequently, the modal analysis of the 

fishbone model ensured admissible correspondence with the experimental results. 

 

Moaveni et al. (2013) presented a damage identification study based on finite 

element model updating of a 3-story, 2-bay masonry infilled R/C frame. Damage was 

progressively given to the structure by the UCSD-NEES shake table using scaled 

historical earthquake records of incremental severity. Between different damage states, 

low-amplitude white-noise tests were performed on the structure. Modal identification 

work was conducted by deterministic SSI technique using input-output data. Damage 

identification study was performed using a reduced number of design variables; i.e., 

three columns and the infills in two bays for each story were treated as subgroups in 

itself; and the results were obtained by updating the FE model by sensitivity-based 

FEMU algorithm and represented in terms of stiffness loss of structural members. Two 

vibration frequencies and thirty-two mode shape components were employed in the 

updating process. The reliability of the methodology was found to be satisfactory since 

the results showed correspondence with the damage observations. However, it was 

seen that the level of identified damage did not accurately reflect the loss of structural 

strength. In this context, the importance of nonlinear FE model updating to predict 

both stiffness and damage degradations was highlighted. It was expressed that the 

damage factors (identified damages) were sensitive to the amplitude of the excitation, 

whereas their spatial distribution was not sensitive. Finally, it was highlighted that the 

damage identification results depend on the accuracy and completeness of the 

estimated modal characteristics. 

 

Garcia-Palencia et al. (2015) studied on three-span Powder Mill Bridge with the 

aim of obtaining a reference baseline numerical model of the structure. The initial 

numerical model was developed by two-node rigid link elements in order to support 

the composite concrete deck-steel girders. In experiments, strain gauges, 

accelerometers, pressure plates, temperature sensors, and bi-axial tilt-meters were used 

for the instrumentation. Frequency response function based model updating technique 

was conducted by using the experimentally collected data. A simulation study was 

performed and stiffness, mass, damping parameters were obtained using noise 
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contaminated data. Dynamic characteristics of the bridge extracted by using in-situ 

dynamic test data, which were obtained by linear sweep tests, were used for 

experimental validation. In this study, the requirement of a numerical model that 

reasonably represents the real structural behavior was emphasized for a successful 

model updating process. For the presented method, forced-vibration tests on short-

span to medium-span bridges were found to be more appropriate than the ambient tests. 

 

Iban et al. (2015) studied on a lively steel footbridge for FEMU purpose. The initial 

FE model was developed in ANSYS environment by using various cross-sections for 

steel skeleton and but only one constant thickness element for the deck. Ambient 

vibration and static loading tests were conducted on the structure. First, the initial FE 

model was calibrated manually to match with the experimentally obtained static 

response by adjusting the flexibility of the joints and Young’s modulus of the concrete 

deck. After, the manually calibrated FE model was updated in an automatic way by 

using FEMtools software. At this stage, mass distribution along the deck was selected 

for updating. Consequently, a good match was captured between the experimental and 

analytical results. 

 

Masciotta et al. (2016) focused on a damage identification technique based on 

second-order spectral characteristics of the nodal responses. The technique was 

applied to the well-known case study of Z24 Bridge in Switzerland in order to validate 

its reliability. Assessment of the variability of this spectrum-driven technique 

according to both the position and type of the excitation source was performed through 

numerical simulation studies of the dynamic response of the bridge exposed to various 

excitation types. These simulations allowed building the power spectrum matrix from 

which the main eigen parameters of the reference and damage scenarios were 

identified. Next, through weighing and combining the complex eigenvectors and real-

valued eigenvalues, a damage index, which uses the discrepancies between spectral 

modes, was calculated for damage identification purposes. The obtained results 

demonstrated good agreement with the numerical model. In addition, the spectrum-

driven method was found to be robust in damage localization. It was stated that the 

method was always able to detect the existing damage. 
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Goksu et al. (2017) conducted forced vibration tests on two full-scale substandard 

R/C buildings to identify their dynamic characteristics. For each of them, dynamic test 

data were collected before and after the application of quasi-static lateral loading 

cycles given in one direction from 2nd and 3rd stories. Forced vibration tests were 

conducted with eccentric mass shaker using sinusoidal forces. The study primarily 

concentrated on the investigation of the rates of alterations in the dynamic properties 

of the structural system with the damage. As expected, reduction in vibration 

frequencies and increment in damping ratios were observed for the various modes. 

Besides, effective slab width and Young’s modulus of concrete were updated to get a 

reliable numerical model. Finally, a comparison of the FE modal parameters with the 

ones experimentally identified was made and the results were found to be consistent 

with the damages observed in the tests. 

 

Nozari et al. (2017) conducted a damage identification research on a ten-storey R/C 

building by finite element model updating method using ambient vibration data. 

Accordingly, six perimeter infill walls were removed in order to induce structural 

damage. Vibration data were recorded both for undamaged and damaged cases; and 

the data were later processed for identifying the modal parameters. The initial 

numerical model of the building was developed by considering the material tests and 

in-situ observations. This model was calibrated later by utilizing the modal 

characteristics representing the undamaged case to obtain a reliable reference model 

of the building. In this study, it was also aimed to reveal the change in damage 

identification results by the variation of modal parameters. Multiple reference models 

obtained by using forty sets of modal parameters were used for damage identification 

purposes since the structural model parameters were obtained with high level of 

variations. Damage identification study was later performed (i) by using the reference 

model of which the average modal parameters were used and, (ii) based on the specific 

reference models. The position and severity of the structural damage were detected by 

calibrating the equivalent stiffness parameters of the twelve wall substructures. 

Although the detected damages were in good agreement with the existing damages of 

the structure, the results were found to be sensitive to the variation of the estimated 

modal properties. In this context, the need to use a probabilistic framework following 
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a Bayesian or a frequentist approach, which considers the variability and uncertainty 

of the modal properties and determines the uncertainty level in the model updating 

results, was emphasized. 

 

Ding et al. (2019) suggested a novel damage detection methodology by utilizing the 

C-TSA algorithm, which takes into account both the measurement noise and FE 

modeling errors. The methodology was used both on the numerical studies on 

benchmark functions (Sphere, Griewank, Ackley, Rastrigin, Rosenbrock, and Schaffer 

equations) and experimentally tested 61-bar steel truss type of structure to evaluate the 

robustness and accuracy of the technique. The objective function was created based on 

natural frequency and modal assurance criterion discrepancies. In the experimental 

work, a modal hammer was used to generate the impact excitation for modal 

parameters which were required for damage identification. The results were later 

compared using several latest revolutionary algorithms and the approach was found to 

be promising even when modeling errors and measurement noise exist. In addition, it 

was stated that the proposed approach was more robust with faster convergence speed. 

 

Park et al. (2019) introduced a model updating method for damage detection 

purposes without the necessity of using system identification techniques for the 

extraction of dynamic characteristics. Accordingly, the presented method uses the 

modal participation ratios (MPR), which can be determined from dynamic 

measurements by sensors, as an indicator of the extent of modal contribution. The 

MPR extraction assumes that the structure under investigation is subjected to ambient 

vibrations and no other additional loading on the structure is required. In the model 

updating phase, the objecting functions established by the differences between MPRs 

estimated from a model and extracted from the sensors, are minimized by a multi-

objective optimization technique. The effectiveness of the method was shown by a 

simulated shear type structure that has four DOFs; whereas MPRs were obtained using 

the structural response of the system subjected to white-noise excitation. Herein, 

damage scenario studies were also performed on the updated model (baseline model). 

The results indicated that the baseline model was effective in the sense of representing 
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modal properties and predicting the structural response. In addition, the predefined 

damages for the damage scenarios were accurately detected by the presented method. 

 

Finite element model updating and damage identification of masonry structures 

have been studied for a long time by many researchers. Some of them are briefly 

reviewed below. Note that these studies also include system identification of the 

relevant structures. 

 

Bayraktar et al. (2010) performed numerical modeling, dynamic testing, and finite 

element model updating studies on an Ottoman masonry arch bridge. The initial FE 

model of the bridge was established by using three structural elements, namely stone 

arches, side walls, and timber blocks. Material properties of these parts were 

determined from the literature. All the boundary conditions at the abutments and side 

walls were assumed to be fixed for the initial FE model. Ambient vibration tests were 

conducted on two setups and the vibration characteristics of the bridge were estimated 

from peak picking and SSI methods. The initial FE model was calibrated with the 

manual tuning procedure by changing only the boundary conditions at the abutments. 

After the model updating process, good agreement was obtained between the 

experimental and analytical dynamic properties. 

 

Ramos et al. (2010) studied on structural and modal identification of two historical 

monuments, a church and a restored clock tower, with the aim of detecting damage at 

an earlier stage. The monuments were monitored with vibration, temperature, and 

relative air humidity sensors. For the clock tower, by using the dynamic tests 

performed before and after the restoration, the effectiveness of the strengthening work 

was revealed. The entire structure was divided into eight parts, and the FE model of 

the actual state (after retrofitting) was obtained by updating the Young’s moduli of 

these parts. For the church, the boundary conditions and the Young’s modulus values 

of the column members and the main nave were selected as updating parameters. In 

this study, frequency monitoring was found to be reliable for the damage identification 

process. The findings of the research work revealed the non-negligible effect of the 

humidity and the well-known effect of the temperature on the dynamic characteristics 
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of masonry structures. During the monitoring period, apparently no damage was 

detected in both structures. 

 

Bartoli et al. (2013) performed static and dynamic tests on a monumental masonry 

tower. Static tests including flat-jack and laboratory tests on cored samples extracted 

from the multi-layered masonry walls were employed to determine the material 

characteristics of the tower. Dynamic vibration tests were performed under sinusoidal 

forces at various frequencies generated by two vibrodynes. The numerical model of 

the tower was established in ANSYS analysis software by using the macro modeling 

approach. Uncertain parameters such as the Young’s modulus of the infill material 

between wall layers and boundary conditions offered by nearby buildings were chosen 

as updating parameters and they were iteratively calibrated to reduce the discrepancies 

between the experimental and numerical behaviors. The calibrated numerical model 

was a good candidate to be employed for further structural analysis to research the 

structural behavior of the tower under severe loading conditions. 

 

Costa et al. (2015) worked on two old and one recently constructed stone masonry 

arch bridges. Initial FE models of the bridges were constituted by the usage of micro 

modeling strategy with solid elements and zero thickness joint elements. Material 

characteristics were determined from field and laboratory tests, visual inspection, and 

historical research. To identify the vibration characteristics of the bridges, a series of 

ambient vibration measurements were performed by using portable tri-axial macro-

seismographs. Model calibration of the initial FE model was performed to capture 

better agreement between experimentally and numerically obtained dynamic 

characteristics. In this context, engineering judgment and trial-and-error approach 

were adopted instead of a sophisticated optimization algorithm. After the model 

calibration process, good agreement was acquired between the numerically and 

experimentally estimated modal parameters. 

 

Costa et al. (2016) studied on model updating of a stone masonry arch railway 

bridge. The initial numerical model was established by using in-situ (e.g., flat-jack, 

ménard pressuremeter, and ground penetrating radar) and laboratory tests. Dynamic 
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tests were performed in two setups by thirty-two measurement points under ambient 

vibration conditions. System identification was done by EFDD method available in 

ARTeMIS commercial software. To identify the model parameters that were more 

effective on modal responses, sensitivity analyses with three different approaches were 

performed.  For each approach, different updating parameters were selected. Then, the 

updating methodology was conducted by changing the elastic properties of the 

materials with a genetic algorithm for a reliable bridge model Comparing with the 

initial numerical model, the updated numerical model demonstrated considerable 

improvements in modal parameters. The results indicated a trend of reducing the 

stiffnesses of structural members of the bridge which was compatible with the visual 

observation studies. The updated (reliable) numerical model was planned to be used 

for dynamic behavior assessment of the train-tack coupled system. 

 

Cabboi et al. (2017) performed a damage assessment process on a historical 

masonry tower. Two series of ambient vibration test data were measured in fifteen 

selected locations. System identification was performed by SSI-DATA method 

available in ARTeMIS software. In the modeling stage, the tower was separated into 

two different partitions with a constant Young’s modulus value for each partition, the 

footing was assumed as fixed, and the effect of the nearby church was simulated by 

elastic springs. Young’s modulus, shear modulus, and elastic springs were calibrated 

for a reliable baseline FE model. By using this baseline model, two damage scenarios 

were simulated. In this study, the damage identification analysis was found to be 

sensitive enough to detect the damage scenarios. 

 

Compán et al. (2017) worked on the structural safety assessment of a historical 

chapel. Dynamic properties of the chapel were extracted from ambient vibration data 

collected by eight uni-axial accelerometers. Tests were realized in twenty-five setups 

and fifty-one measuring points. For the system identification, EFDD and SSI methods 

implemented in ARTeMIS software were used. The initial FE model was developed 

by solid elements in ABAQUS software. This model consisted of two main 

components, namely the walls and vaults. Material properties were determined from 

the literature. Connections between the chapel and nearby building were considered 
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by spring elements. Young’s moduli of masonry stone and masonry brick, connections 

represented by springs, and the inertial mass of the nearby building were selected as 

updating parameters in order to calibrate the initial FE model. Herein, the dynamic 

characteristics of the FE model were adjusted to the experimental results. Once the 

calibrated model was obtained, it was utilized to perform structural safety analyses and 

to estimate the collapse load of the structure. 

 

Conde et al. (2017) worked on masonry arch bridges for model updating purposes. 

Laser scanning, ground penetrating radar, and sonic tests were performed to determine 

the mechanical characteristics. The macro modeling strategy was adopted by assigning 

homogeneous material having equivalent mechanical properties. Thus, the entire FE 

model was constituted by five main structural partitions. Boundary conditions were 

represented by fixed supports at the base of the bridge, whereas only the movements 

in transverse and longitudinal directions were restrained at both sides of the bridge. 

Ambient vibration measurements were carried out by three portable tri-axial macro-

seismographs having GPS time synchronization. Tests were performed in twelve 

setups because of the limited number of measurement equipments, and each setup was 

designed by keeping one of the macro-seismographs as reference (i.e., was kept fixed) 

and roving the others. Dynamic data were processed using EFDD method by 

ARTeMIS software. Only the Young’s moduli of the prescribed structural partitions 

were selected as updating parameters for model updating purposes. After model 

updating, satisfactory results were obtained for the frequencies and mode shapes of the 

first four modes. The updated FE model of the bridge was used to perform detailed 

structural assessment analyses under various conditions. Results exhibited the 

remarkable effect of tensile nonlinear properties of masonry and the vital role of the 

fill materials on the performance of the structural system. Finally, the importance of 

three-dimensional modeling was emphasized since the constituted numerical model 

enabled to capture the critical transverse effects in the response of the structure. 

 

Torres et al. (2017) focused on the model updating study for the finite element 

model of a masonry cathedral. Ambient vibration tests were realized in twenty-two 

setups to cover the entire structure, and two reference measurement devices were used 
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in all setups. Modal analysis was performed by EFDD and SSI methods in ARTeMIS 

software. Material characteristics of the structure were described as representative 

values, neglecting the high variability in different zones. Thus, three main materials 

were defined for the entire structure, namely the Young’s moduli of brick masonry, 

stone masonry, and reinforced masonry. Besides, boundary conditions, caused by 

adjacent structures, were represented by elastic elements. In order to determine the 

boundary conditions and initial material features, a preliminary updating procedure 

was conducted. Afterwards, the Young’s modulus values for the main materials were 

calibrated within physical intervals. The updated finite element model allowed to 

conduct structural behavior assessment in the current condition and possible future 

research scenarios. 

 

Altunisik et al. (2018) performed FE model updating on a historical masonry 

bastion. Ambient vibration measurements were carried out by eight uni-axial 

accelerometers. Dynamic characteristics were extracted by EFDD and SSI techniques.  

The initial FE model was established with ANSYS software by using four main 

components such as steel columns, R/C floors, masonry walls, and masonry arches 

and vault. Characteristics of these components were determined from the literature. 

Boundary condition at the base was assumed to be fixed and it was excluded from the 

updating scheme. Manual (by trial-and-error method) and automated (by an 

optimization algorithm embedded in FEMtools software) updating procedures were 

used to obtain a calibrated FE model. In this context, material properties such as 

Young’s modulus and density were adjusted. The automated model updating 

procedure was performed by using local and global parameter approaches. After model 

updating, the discrepancies between the numerical and experimental dynamic 

properties were considerably reduced, and a calibrated FE model was obtained for 

SHM purposes. 

 

Bassoli et al. (2018) studied on a medieval fortress which had suffered severe 

damage due to seismic events. Ambient vibration measurements were performed by 

ten uni-axial accelerometers to determine the dynamic properties of the damaged 

structural system. The FE model was constituted by considering a non-standard mesh 
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generation procedure called CLOUD2FEM. In order to take into account the 

influences of the damaged parts, different material characteristics were assigned to 

them. Model updating analyses were repeated in three stages in order to detect the 

damaged parts precisely. At each following stage, updating parameters were defined 

in more detail by using the results of the former stage. The updated numerical model 

of the structure was able to ensure better accuracy of modal properties and preserved 

the physical meaning of the updated parameters. 

 

Ercan (2018) investigated the effects of retrofitting in a historical building 

comprising masonry and timber elements. 3-D solid model of the building was 

established in ABAQUS environment using the material properties obtained by 

ultrasonic pulse velocity, Schmidt Hammer, Archimedes’ density test methods, and 

the formulas in the literature. Dynamic properties of the building were determined 

from ambient vibration measurements performed for both before and after retrofitting 

processes. Outputs of the dynamic tests were used to update the initial FE models (i.e., 

before and after retrofitting conditions). Here, Young’s modulus and boundary 

conditions were chosen as updating parameters and assumed to be common for the 

entire structure. In addition, the updated FE models for both before and after 

retrofitting conditions were used to conduct earthquake performance analyses. The 

results demonstrated that the stiffness of the retrofitted structure increased three times 

with respect to the initial state. Operational modal analysis was found to be a reliable 

method to investigate the effects of retrofitting solutions with respect to earthquake 

performance of masonry structures, Besides, it was stated that the method was capable 

of damage identification as well as model updating of the historical structures. 

 

1.3 Objectives and Scope 

 

Similar to the studies in the literature, the research work presented in this thesis 

focuses on the topics of system identification, finite element model updating, model 

calibration, and damage identification studies performed on reinforced concrete (R/C) 

and unreinforced historical masonry structures, which represent the significant part of 

the building inventory in Turkey. Different from the existing state of the art, for R/C 
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structures, the effects of different infill conditions on system and damage identification 

results as a function of increasing structural damage are investigated. Herein, a novel 

infill wall system made of locked brick units is discussed and its efficiency is revealed 

comparatively. 

 

The research work presented in this thesis mainly aims to 

 

 perform system identification studies by different output-only system identification 

methods in order to identify dynamic characteristics, 

 

 investigate the performance of different output-only system identification methods 

in identifying modal parameters, 

 

 follow the evolution of the estimated modal parameters as a function of increasing 

structural damage, 

 

 investigate the system identification results obtained by different excitation types 

and levels, 

 

 examine the influences of different infill conditions on induced damages and modal 

identification results, 

 

 correlate the modal estimation results with visual damage inspections, 

 

 perform damage identification by using sensitivity-based finite element model 

updating method to identify the existence of damage, its location, and extent, 

 

 investigate the effects of different infill conditions on damage identification results, 

 

 perform model calibration in order to obtain numerical models that are more 

representative of the actual structural behavior, 

 



19 
 

 conduct damage scenario studies and identify the predefined damages. 

 

Based on the objectives stated above, the following research work was performed 

in the scope of the presented thesis: 

 

Extensive experimental studies were conducted on half-scale, single-bay, single-

story three R/C frames with different infill conditions, namely bare, locked type 

infilled, and standard type infilled. The frames were tested along their in-plane 

directions under gradually increasing quasi-static cyclic loading. At predetermined 

drift levels (i.e., different damage states), ambient vibration and white-noise (having 

different excitation levels) tests were performed on the frames for the purpose of 

identifying their modal parameters. White-noise tests were conducted by an electro-

dynamic shaker positioned on top of the frames (i.e., on the slab level). The recorded 

dynamic response data at different damage states were processed by using three 

different output-only system identification methods. The damages developed were 

classified by detailed visual damage inspections made during quasi-static tests, and 

their evolutions with respect to increasing damage levels were coupled with the 

corresponding modal identification results. 

 

Damage identification of the frames at gradually increasing damage states was 

performed by the sensitivity-based finite element model updating method. The initial 

FE models of the frames were developed in MATLAB based FEDEASLab software 

by using 3-D Bernoulli-Euler frame elements (Filippou & Constantinides, 2004; 

MATLAB, 2017). Support conditions were represented by simple supports at 

column(s) bottom ends together with three rotational springs. Structural damages of 

the frames were represented by relative stiffness reduction factors. At each 

progressively increasing damage state, stiffness reduction factors of the predetermined 

model parameters were obtained by minimizing the discrepancies between 

experimentally and numerically identified modal parameters. The model updating 

process was performed in two steps: (i) first a reliable reference model was obtained 

by using the experimentally identified modal parameters at the undamaged state, and 

then (ii) the procedure was repeated by updating the reference model at each 
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progressively increasing damage state to identify the damage, its location, and extent. 

The number of model parameters used for the updating procedure was reduced to 

ensure a well-conditioned optimization problem by taking into account symmetry 

conditions, detectability indices, and internal moment levels occurred in the frame 

elements. The identified damage results were verified using the visual damage 

observations made during the quasi-static tests. A comparative study was performed 

for the frames at different damage states to reveal the effects of the different infill 

conditions.  

 

Modal parameter identification and sensitivity-based finite element model updating 

studies were performed on the courtyard walls of the historical Isabey Mosque. Modal 

parameters of the walls were estimated from two sets of ambient vibration 

measurements using EFDD output-only system identification method. The initial 

numerical macro model was developed in ABAQUS (ABAQUS, 2017) by using the 

material properties obtained from the flat-jack tests and the relevant literature. 

Boundary conditions of the numerical model were defined through four regions by 

taking into account their locations. Each region was defined as translational springs in 

three directions. Initial stiffnesses of these springs were determined by manual 

updating so that a numerical model having modal parameters representative of the 

actual courtyard wall system was obtained. Mass density, Young’s modulus, and 

boundary conditions (i.e., translational springs) of the initial numerical model were 

calibrated using a global parameter updating method. Thus, a reliable FE model that 

was more representative than the initial one was obtained to be used in future 

numerical assessment studies. Finally, a damage scenario study was performed on the 

calibrated numerical model, and the predefined damages were identified. 

 

1.4 Organization of the Thesis 

 

The presented thesis consists of seven chapters and two appendices which are 

organized as follows: 
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 In Chapter One, introduction to vibration-based structural health monitoring and 

literature review of the previous studies are presented. The objectives and scope of 

the thesis research are highlighted. 

 

 In Chapter Two, system identification and operational modal analysis are discussed. 

Highlights of data acquisition and signal processing are discussed. Theoretical 

backgrounds of the commonly used operational modal analysis methods are 

presented. 

 

 In Chapter Three, finite element model updating concept, its intended use, and 

commonly used methods are discussed. Theoretical background of the sensitivity-

based finite element model updating method is detailed with its components. The 

developed model updating code is introduced, and its effectiveness is presented 

through numerical simulation studies. 

 

 In Chapter Four, the experimental studies conducted on the half-scale, single-bay, 

single-story three R/C frames with different infill conditions are discussed. 

Descriptions of the frames, quasi-static test program, and dynamic tests are given. 

The static and dynamic test results of the frames are presented comparatively. 

 

 In Chapter Five, damage identification studies of the R/C frames at progressively 

increasing damage states performed by sensitivity-based finite element model 

updating method are given. The results are correlated with the visual damage 

inspections made during quasi-static tests. The effects of different infill conditions 

on damage identification results are presented. 

 

 In Chapter Six, experimental work performed on the unreinforced courtyard walls 

of the historical Isabey Mosque is discussed. Descriptions of the structure and 

dynamic test program are presented. System identification and model calibration 

studies conducted are detailed. A damage scenario study performed on the 

calibrated model is presented. 

 



22 
 

 In Chapter Seven, the overall research work is summarized, the important findings 

are highlighted, and some recommendations for future research are provided. 

 

 In Appendix-1, the list of symbols that contains the symbols used throughout the 

thesis is presented. 

 
 In Appendix-2, the publications made from the research work of the thesis are 

provided. 
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CHAPTER TWO 

SYSTEM IDENTIFICATION & OPERATIONAL MODAL ANALYSIS 

 

2.1 Introduction 

 

In the most general sense, system identification is the process of constituting a 

mathematical model of a physical system to identify its dynamic characteristics (i.e., 

vibration frequencies, damping ratios, and mode shapes, a.k.a. modal parameters), 

whose values depend on material, geometry, and boundary properties of the system, 

by using experimental measurements. In the last decades, system identification 

methods have become attractive and popular tools for vibration-based SHM in order 

to assess the current states (i.e., health conditions) of engineering structures. Besides, 

they are also powerful instruments that can be used to verify numerical FE models 

developed under various assumptions (Rainieri & Fabbrocino, 2014). 

 

System identification methods which are used in vibration-based SHM can be 

divided into two groups as input-output and output-only methods (Moaveni, 2007). 

Input-output methods, which are also known as experimental modal analysis (EMA) 

methods, require measuring both the excitation acting on the system and the reaction 

of the system to this excitation (e.g., acceleration, strain, displacement, etc.). They 

have been used in several areas, such as industrial machinery, aerospace engineering, 

civil engineering, and automotive engineering. Note that the implementation of 

measurable and controllable excitation is generally a difficult task that needs heavy 

and expensive equipments, especially for large-size systems. Therefore, the EMA 

methods are generally used for small and medium-size systems. In contrast, output-

only methods do not require the measurement of the excitation acting on the system. 

Because of being large-scale, it cannot be practical and economic to excite the civil 

engineering structures with properly measurable excitations. In this situation, using 

ambient vibration effects (micro tremor, traffic, wind, etc.), that arise because of the 

normal usages of structures, becomes the only way to excitation. That's why using 

output-only methods, which are also known as operational modal analysis (OMA) 

methods, is more convenient for system identification in civil engineering structures 
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(Ozcelik et al., 2013; Rainieri & Fabbrocino, 2014). In the scope of this thesis, OMA 

methods are used for system identification purposes. Details are presented in the 

following sections. 

 

2.2 Operational Modal Analysis (OMA) 

 

Since the testing techniques are relatively cheap, fast, and do not affect the normal 

usage of the structure, OMA is very popular and attractive in civil engineering society. 

Moreover, the identified dynamic characteristics represent the actual structural system 

behavior under operational conditions (i.e., vibration levels that are not artificially 

generated and actually present in the structure). This means, for example, that during 

a bridge test, the traffic and normal operation need not be interrupted, and they can 

even be used as excitation sources. On the other hand, OMA testing requires low-noise 

and sensitive sensors, and high performance equipments due to the low vibration levels 

under ambient conditions. While ambient vibration tests are performed under 

operational conditions, the collected data are more prone to be polluted by 

environmental effects; therefore, longer test durations are necessary for healthy results. 

In return, longer data lead to complex and time-consuming analysis tasks, and storage 

problems (Rainieri & Fabbrocino, 2014). Since the excitation is unmeasured, it is 

possible to confuse its characteristics with the dynamic properties of the test specimen. 

Moreover, independent information in the test data is essential in order to excite 

vibration modes sufficiently and identify closely-spaced modes. This can be satisfied 

by using uncorrelated inputs (i.e., not generated by a dominant excitation source) and 

measurement points (i.e., data from multiple sensors measuring different degrees of 

freedom). Note that OMA does not provide mass-normalized mode shapes since the 

excitation is unmeasured. This situation causes problems for damage identification 

methods that require mass-normalized modes, such as flexibility-based methods. 

However, this limitation can be overcome by mode shape scaling approaches, such as 

mass change method, mass-stiffness change method, and using the FE model mass 

matrix (Brincker & Ventura, 2015; Rainieri & Fabbrocino, 2014). 
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A fundamental assumption in OMA methods is that the system to be examined is 

excited by a random broad-band excitation source (i.e., having white-noise 

characteristics), or at least band-limited white-noise (WN) characteristics. This is 

necessary so that the excitation does not drive the system at a specific frequency and 

enables various structural modes to be excited sufficiently. Accordingly, in operational 

cases, no need to measure the input excitation is justified by the assumption that the 

excitation does not contain any specific information (Sohn et al., 2003). It is possible 

to acquire broad-band excitation from various sources, such as ambient conditions, 

shake tables (or shakers), and impact hammers. If shake tables are preferred for this 

purpose, the trajectory tracking problem (i.e., the signal reproduction fidelity of the 

shake table) is a situation that has to be taken into account. Definition of the problem 

and the solving procedure are detailed at the end of this chapter. 

 

Natural Excitation Technique combined with Eigensystem Realization Algorithm 

(NExT-ERA), Data-Driven Stochastic Subspace Identification (SSI-DATA), and 

Enhanced Frequency Domain Decomposition (EFDD) are the commonly used OMA 

methods in structural engineering applications. These methods can be categorized into 

two groups based on the domains they operate. From this perspective, NExT-ERA and 

SSI-DATA are time domain methods and EFDD is a frequency domain method. 

Regardless of how they are classified, these methodologies are based on the 

assumptions that the response of the system to a given combination of inputs is equal 

to the same combination of the corresponding outputs (a.k.a. linearity, which means 

that the system behaves within a linear range), the dynamic characteristics of the 

system do not change over time (a.k.a. stationarity or time-invariance, which means 

that the response of the system is independent of time), the sensor layout is convenient 

to capture the modes of interest (a.k.a. observability), and the excitation source is 

uncorrelated with the response of the system, having, for instance, broad-band 

characteristics (Brincker et al., 2001b; Brincker & Ventura, 2015; Caicedo et al., 2004; 

James III et al., 1993; Juang & Pappa, 1985; Rainieri & Fabbrocino, 2014; Reynders, 

2012; Van Overschee & De Moor, 1996). The theoretical backgrounds of these 

methods are presented in the following sections. 
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Data acquisition and processing are the most significant stages for all experimental 

cases. In OMA, these are especially important since the responses are often weak. 

Improper decisions may cause challenges and misleading modal identification results; 

therefore, these sessions should be planned carefully in advance. In this context, there 

exist some highlights that can improve the quality of the measurements and the test 

results. Some of them are briefly discussed in the following sections (Brincker & 

Ventura, 2015; Rainieri & Fabbrocino, 2014). 

 

2.2.1 Highlights for Data Acquisition 

 

2.2.1.1 The Required Sensor Amount 

 

In OMA tests, decision of the sensor amount is a critical factor. Using more than 

enough sensors causes economic issues. Besides, more sensor usage means more 

workmanship and time-consuming tasks. On the other hand, using an insufficient 

number of sensors may lead to missing some of the vibration modes and/or to 

encountering spatial aliasing problems, where the mode shapes appear very similar to 

each other and therefore discrimination of the modes becomes difficult (Ewins, 2000). 

That’s why the optimum number of sensors should be carefully determined. 

 

The easiest way to determine the required sensor amount is to investigate the rank 

of the spectral density (SD) matrix (i.e., the number of independent rows or columns) 

estimated from measurements. This process enables to determine the maximum 

number of modes that contribute to the response in any frequency band. For example, 

if only three closely-spaced modes are available in the considered frequency band, 

then the rank is three. If there exist four closely-spaced modes, then the rank is four, 

and so forth. In addition, existing noise sources have to be included in the rank 

calculation. Such as, if three noise sources are available along with four closely-spaced 

modes, then the rank becomes seven. Notice that this rank value is limited by the 

number of measurement points (i.e., number of used sensors), and it is required to 

select a higher number of measurement points than the problem rank to be able to 

capture all the vibration modes in the considered frequency band. Otherwise, the 
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closely-spaced modes can be partially hidden (i.e., only one of the modes or their 

combinations are revealed). In the case where the measurement points are close to each 

other and/or providing almost the same information, only one of the measurement 

points affects the rank of the matrix. 

 

As a result, it is essential to use more measurement points (sensors) than the rank 

of the problem (sum of the physical modes and noise sources in the considered 

frequency band), and these points should be distant enough to obtain different 

information. In addition, no sensor should be located at node points of the modes since 

these points are motionless and do not include any information. For this purpose, 

previously developed finite element models are useful tools. In practice at least five or 

six sensors are recommended in OMA testing. 

 

2.2.1.2 The Appropriate Excitation 

 

In general, random excitation in time and space is desired for OMA tests. Let it rain 

on the structure, let some dogs chase some cats on it, let somebody walk on it, or let 

somebody drive a car on it. All of these are the examples of appropriate random 

excitations essential for good testing practices. 

 

In OMA, the number of independent excitations has effects on limiting the rank of 

the problem (see Section 2.2.1.1). In the case where there is only one independent 

excitation, the rank is one. In other words, if there exists only one excitation source, 

then it may not possible to excite vibration modes sufficiently and identify the closely-

spaced modes (i.e., only some of the modes or their combinations may be identified). 

Therefore, experiments with single excitation sources, such as shakers and hammers, 

are not recommended for OMA. Instead, multiple shakers or hammers can be used at 

the same time to overcome this problem. Note that using multiple excitation sources 

having different characteristics than broad-band (e.g., different characteristics than 

white-noise for shaker tests) might also result in a single excitation case. Moving loads 

or environmental loads, such as traffic and wind, are the other excitation options to 

obtain rank values larger than one. Note that this statement is valid only when the 
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investigated structure is large enough compared to the correlation length of the 

excitation, where the excitation source can be assumed to be comprised of several 

independent sources (e.g., wind or wave load acting on a structure). However, in the 

case of a small-scale structure, where the structure is small compared to the correlation 

length of the excitation, the number of independent excitations may be close to one 

due to the occurrence of correlated excitations which limits the rank of the problem. 

Therefore, it can be said that the larger the better, because the larger the structure, the 

more independent excitations occur. For small-scale structures, using a scraping or 

brushing equipment, which is moved around randomly and is in contact with the 

structure all the time, is the appropriate way for excitation. Another important point is 

that the investigated structure should be close enough to the excitation source in order 

to excite the structure in many points (e.g., traffic on a road nearby a structure); 

otherwise, the structure is excited by a single excitation. It should be stated that 

keeping the correlation length of the excitation and/or the distance to the excitation 

source the same as for the prototype may lead to a single excitation case for the scaled 

models of the structures being tested in laboratory conditions. Therefore, an 

adjustment should be performed on the excitation. 

 

If the natural excitation is too small to obtain a signal of admissible magnitude (i.e., 

in the case of low signal-to-noise ratio), the excitation is limited to a single excitation 

source, or the experimental studies are conducted in laboratory conditions, a 

complementary artificial excitation should be used. Driving a car up and down a 

bridge, having people moving around inside the different stories of a building, using 

brushing or scraping equipments, and using multiple shakers or hammers are some of 

the examples of the artificial excitations. Note that the excitation method should be 

selected so as not to alter the dynamic characteristics of the system (e.g., if heavy 

traffic is used for exciting a bridge, the dynamic properties may change due to too 

much additional mass). 
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2.2.1.3 Sensor Placement 

 

In OMA tests, generally, a limited number of sensors are used since the sensors and 

cables are expensive. Therefore, finding the optimum sensor placement becomes 

substantial in order to extract more information from the collected experimental data. 

In literature, there exist many criteria for determining the optimum sensor placement, 

such as Fisher information matrix, modal kinetic energy, information entropy, and 

effective independence (Guo et al., 2017; Kammer, 1991; Leyder et al., 2018; Meo & 

Zumpano, 2005; Papadimitriou et al., 2000; Papadopoulos & Garcia, 1998; Qureshi et 

al., 1980; Udwadia, 1994; Yi et al., 2012; Zhang et al., 2017). In addition, 

computational algorithms, such as genetic, heuristic, and meta-heuristic algorithms, 

have been studied by many researchers in order to enhance the efficiency, especially 

in the case where the number of possible sensor locations is large (Abdullah et al., 

2001; Joshi & Boyd, 2009; Papadimitriou, 2004; Yao et al., 1993; Yi et al., 2012; Yuen 

& Kuok, 2015). 

 

A basic way to determine the approximate optimum sensor placement is shown by 

Ibanez et al. (1976). In the method, first, the modal decomposition of the dynamic 

response  ty  is considered as given in Equation 2.1. 

 

    t ty Aq  (2.1)

 

where the matrix A  and vector  tq  are the true mode shapes and the true modal 

coordinates of the system, respectively. If the estimated modal matrix Â  is available, 

the estimated modal coordinates  tq̂  can be obtained by Equation 2.2. 

 

    t tˆq̂ A y  (2.2)

 

where Â  is the pseudo inverse of Â . By combining Equations 2.1 and 2.2, Equation 

2.3 is obtained. 

 

    t tˆq̂ A Aq  (2.3)
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The matrix product Â A  indicates the closeness between the estimated and true 

modal coordinate vectors. The closer the product Â A  is to the identity matrix, the 

better is the sensor placement. Since  det 1I  ,  det 1Â A   expression can be used 

to measure the deviation of Â A  from the identity matrix.  det Â A  can be either 

smaller or larger than one, therefore a positive measure of the deviation from identity 

can be obtained by calculating  1 det Â A . Consequently, the value of the sensor 

placement ( V ) is obtained as follows 

 

  V 1 1 det Â A    (2.4)

 

where the optimum sensor placement is satisfied when Equation 2.4 is close to one. 

To determine the Â  matrix, a noise model is established by considering how 

accurately the mode shapes can be estimated (Equation 2.5). 

 

  iXâ a   (2.5)

 

In Equation 2.5, â  is the each of the estimated mode shapes in Â  and  iX  is the 

random vector where each of the elements is a stochastic variable with standard 

deviation given by Equation 2.6. 

 

  i max a=   (2.6)

 

where ia  represents the elements of the true mode shape a  and   is the relative 

uncertainty parameter that describes different accuracies of mode shape estimation. 

This simple approach can be used to perform simulations considering different sensor 

amounts, sensor locations, and relative uncertainty parameters. By comparing the 

outputs of these simulations (i.e., V  values of different simulations), it is possible to 

determine the optimum sensor amount and sensor placement. 
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Another commonly used way to determine the sensor placement is to evaluate the 

mode shapes of the developed numerical model of the system. By this way, the sensors 

should be placed in order to capture more modes as possible. 

 

Since a limited number of sensors are used in OMA, sometimes it is required to 

perform the tests in multiple setups (therefore multiple datasets are obtained) in order 

to measure all the desired degrees of freedom (DOFs) of the structure in interest. Since 

the mode shapes are unscaled due to the unmeasured excitation and the scaling factor 

between the mass-normalized and unscaled mode shapes can vary from setup to setup, 

the mode shape estimations extracted from different setups cannot be simply combined 

together. In this context, some of the sensors are used as references (i.e., they are kept 

in the same place during all setups, reference sensors) in order to be able to assemble 

(merge) the mode shapes estimated by different setups, and the remaining sensors are 

roved progressively over the structure (i.e., roving sensors). A simple method to merge 

the mode shapes from different setups are described below. 

 

Let the test is performed in D  setups, and the mode shape estimations extracted 

from each dataset can be separated into two groups: refN  components represent the 

common (overlapping) set of DOFs (i.e., the reference sensors) and rovN  components 

are the remaining (non-overlapping) set of DOFs (i.e., the roving sensors). The refN  

components of the mode shapes obtained from first and ith setups are related through 

a scaling factor. 

 

    ,1 1, ,
k k k
ref i ref i     (2.7)

 

where  ,1
k
ref  and  ,

k
ref i  indicate the partitions of the kth mode shape identified from 

the first and ith setup at the refN  reference DOFs, respectively, and 1,
k

i  is the scaling 

factor between these mode shapes. If the number of reference sensors is larger than 

one, then the scaling factor can be determined by the least squares solution (Equation 

2.8) 
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    1T

1, ,1 ,1 ,
k k k k

i ref ref ref i



      (2.8)

 

and the total (merged) mode shape  k  is obtained by using these scaling factors as 

follows 
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 (2.9)

 

The numbers of the reference and roving sensors are determined based on the 

desired spatial resolution of the mode shapes to be identified. The selection of the 

reference sensors should be performed so that all the modes of interest are clearly 

identifiable in all datasets. Sensors close to the nodes of the mode shapes are not 

appropriate to be reference sensors since they do not provide any information (i.e., 

roving sensors cannot be adequately scaled with respect to a reference sensor which is 

close to a node of a mode). In addition, if the considered mode shape vector has small 

components in the reference points, noise can significantly penetrate the scaling factor 

value; therefore, it is recommended to use more reference sensors as possible in order 

to provide a sufficient number of reasonably large mode shape components for all the 

modes. Additional information and methodologies to assemble the mode shape 

estimations from several datasets are available in the literature (Döhler et al., 2011a, 

2011b; Felber, 1993; Peeters, 2000; Reynders et al., 2009). 

 

2.2.1.4 Sampling Rate 

 

The sampling rate or sampling frequency (i.e., the collected number of samples per 

second) of a test is determined based on the maximum valued vibration frequency that 
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wanted to be estimated from the collected data. This also states an upper limit for the 

frequency band of the data. For instance, if the sampling frequency is selected to be F 

Hz, then the collected data are limited up to F/2 Hz and does not involve any 

information beyond this limit (a.k.a. Nyquist frequency). Therefore, the sampling 

frequency should be chosen at least to be 2 times the maximum valued vibration 

frequency. If the sampling frequency is too low (i.e., if the data are sampled too 

slowly), higher frequencies than the Nyquist frequency are reflected in the interested 

frequency range and induce amplitude and frequency errors in the spectrum of the 

signal. This is known as the aliasing effect in signal processing. For example, assume 

that a signal involves fc=50 Hz frequency component; when this signal is sampled at 

fs=30 Hz, the frequency fc is aliased, and the alias frequency fa occurs as a frequency 

component of the signal at the absolute value of the difference between the input 

frequency fc and the closest integer multiple of the sampling frequency fs. In the 

present case, the alias frequency fa=|50-2*30|=10 Hz. Note that it is difficult to 

distinguish the alias frequency from the actual frequency components of the signal. 

The only way to prevent the aliasing effect is removing all the frequency components 

in the analog signal that are above the Nyquist frequency by an anti-aliasing filter 

before the analog-to-digital conversion. 

 

Note that some of the data acquisition systems have anti-aliasing filters that 

influence the frequencies in the environs of the Nyquist frequency. That’s why the 

recommended sampling frequency should be larger than 2.4 times the higher frequency 

of interest. On the other hand, using very large sampling frequencies than the needed 

ones may cause memory and storage problems, especially for very long observation 

periods.  

 

2.2.1.5 Measurement Duration 

 

Identification problems in OMA mostly occur because of too short test data; 

therefore, it is beneficial to keep the test duration as long as possible. However, longer 

data require more memory and storage space which mean more cost. Processing this 

type of data is another problem due to time-consuming tasks. In this context, an 
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optimum measurement duration can be determined to be at least  10  ;/ minT f 

where   is the modal damping factor, minf  is the lowest vibration frequency value in 

Hz, and T  is the measurement duration in seconds. 

 

2.2.2 Highlights for Signal Processing 

 

2.2.2.1 Inspection of the Data Quality 

 

Inspection of the test data is performed to decide whether the data are appropriate 

or not for OMA. Ideally, this check should be done during data collection in order to 

interfere and correct unwanted situations. This control stage includes checks for 

dropouts (i.e., large deviations towards zero), spikes (i.e., large deviations towards 

higher values), and clippings (i.e., signal saturation). Here, visual inspection is the 

commonly used method. In addition, by comparing the average and standard deviation 

values of the windowed data segments, it is possible to detect whether there exist 

undesired situations. 

 

2.2.2.2 Detrending 

 

Detrending is a process that compels a signal to have zero mean by removing its 

direct current (DC) offsets. It is significant since the DC component in the signal is not 

trustable due to the overabundant noise level in the low frequency region. Detrending 

is performed by dividing the signal into overlapping data segments and then removing 

the mean value of each segment. Note that each data segment should be tapered by 

using a window in order to minimize discontinuities between data segments and to 

reduce leakage (a.k.a. spectral leakage), which occurs when the signal is not periodic 

in the sample interval. The existence of leakage causes the energy at a certain 

frequency to spread to nearby frequencies and due to these additional frequency 

components, it becomes difficult to determine the actual frequency components of the 

signal in interest. 
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2.2.2.3 Filtering 

 

Filtering is the process to eliminate the undesired and/or unnecessary frequency 

components of the signal. In general, filters are divided into two groups, such as analog 

and digital filters. In OMA, analog filters are only encountered as anti-aliasing filters 

that are applied prior to an analog-to-digital converter (i.e., digitalization). After 

digitalization, since everything is digital, only digital filters are used. 

 

Digital filters can be grouped into two main types, namely the finite impulse 

response (FIR) filters (a.k.a. moving average filters), defined by finite impulse 

responses, and the infinite impulse response (IIR) filters (a.k.a. autoregressive filters), 

whose impulse responses are available indefinitely. The main difference between FIR 

and IIR filters is that the output of an FIR filter is based only on the current and past 

inputs, whereas the output of an IIR filter is based also on the past outputs. FIR filters 

are always stable (as the FIR name indicates) and have a frequency independent phase 

shift but need many coefficients to obtain a sharp filter cut-off. In contrast, IIR filters 

require a limited number of coefficients for a sharp filter cut-off (i.e., less 

computational demanding), whereas they have a frequency dependent phase shift. 

Both filter types ripple close to the cut-off frequency. Mathematical presentations for 

FIR and IIR filters are given in Equations 2.10 and 2.11, respectively. Here,  y n  is 

the filtered signal,  a k  represents the filter coefficients, na is the number of filter 

coefficients, and  x n  represents the input to the filter. 

 

      
na 1

k 0

ky n a k  x n




   (2.10)

 

      
na

k 0

n a k  y n ky


   (2.11)

 

In general, four filter types are commonly utilized in OMA depending on the 

frequency content that is intended to pass: 
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 Low-pass filters are defined by a single cut-off frequency and let to pass all 

frequency content below this cut-off frequency. 

 

 High-pass filters are defined by a single cut-off frequency and let to pass all 

frequency content above this cut-off frequency. 

 

 Band-pass filters are defined by two cut-off frequencies and let to pass all 

frequency content inside these cut-off frequencies. 

 

 Band-stop filters are defined by two cut-off frequencies and let to pass all 

frequency content outside these cut-off frequencies. 

 

The frequency response functions of these filters are presented in Figure 2.1 with f1  

and f2 cut-off frequencies. In general, low-pass filters are often utilized to eliminate 

high-frequency components (e.g., in the case of decimation process), high-pass filters 

are generally preferred to remove the frequency components near DC, and band-pass 

filters are often employed to divide a frequency band with many modes into smaller 

frequency bands with a smaller number of modes in each band. Note that it is important 

to perform the same filtering operation on all measurement channels in the dataset, 

otherwise, the modal parameters are affected because of the phase and amplitude errors 

caused by filters. 

 

  

(a) (b) 

Figure 2.1 Frequency response functions of (a) low-pass, (b) high-pass, (c) band-pass, and (d) band-

stop filters 



37 
 

  

(c) (d) 

Figure 2.1 continues 

 

2.2.2.4 Down-Sampling (Decimation) and Up-Sampling (Interpolation) 

 

A vibration test is generally performed by using a higher sampling frequency value 

than needed for the analysis. Therefore, resampling is required to obtain more 

appropriate sampling frequency which provides a better focus on the frequency 

bandwidth of interest. This process is called as down-sampling or decimation. Note 

that the energy above the new Nyquist frequency (related to the reduced sampling 

frequency) must be removed first by low-pass filtering in order to prevent aliasing 

problems. Afterwards, data omitting (e.g., every second data when reducing the 

sampling frequency by half, decimation factor is equal to two) can be realized without 

any problems. In the case of a higher resolution is desired, it is possible to increase the 

sampling frequency by generating new samples between the existing samples (a.k.a. 

up-sampling or interpolation) without any problems. 

 

2.2.3 Review of Operational Modal Analysis (OMA) Methods 

 

As stated before, OMA methods can be categorized into two groups based on the 

domains they operate (i.e., time domain and frequency domain methods). In time 

domain methods (e.g., NExT-ERA and SSI-DATA), analyses are performed using 

correlation functions that have the same characteristics with free decays. On the other 

hand, in frequency domain methods (e.g., EFDD), modal decomposition is realized by 

considering spectral density functions. It should be stated that the time domain 

methods are generally better conditioned than frequency domain methods due to the 



38 
 

influence of the powers of frequencies in frequency domain equations (e.g., spectral 

density estimates suffer from bias, whereas the time domain methods depend on the 

information that is bias-free or nearly bias-free). In addition, time domain methods 

enable to separate physical and noise modes from each other using stabilization 

diagrams. The main advantage of the frequency domain methods is considering the 

different frequency bands where different modes dominate (i.e., each mode has a small 

frequency band where it dominates), whereas the time domain methods deal with free 

responses that are present over the full examined time span (i.e., all the existing modes 

in the signal are present at any time during the considered free decay). 

 

In the scope of this thesis, NExT-ERA, SSI-DATA, and EFDD methods are 

employed for modal parameter estimation. Herein, NExT-ERA and EFDD methods 

were programmed in MATLAB environment, and SSI-DATA method was used 

through a commercial software (ARTeMIS, 2016; MATLAB, 2017). In the following 

sections, the theoretical backgrounds of these methods are presented. 

 

2.2.3.1 Natural Excitation Technique (NExT) Combined with Eigensystem 

Realization Algorithm (ERA) 

 

The NExT-ERA modal identification method is a combination of the NExT and the 

ERA. NExT is the stage where the excitation data are processed to obtain a signal with 

the same characteristics of a free vibration data, whereas ERA is utilized to develop a 

numerical model of the investigated system in steady-state form based on the free 

vibration data obtained by the NExT. In this section, firstly the theoretical background 

of the NExT is presented, and then the ERA is detailed. In this sense, studies performed 

by Brincker & Ventura (2015), Caicedo (2011), Caicedo et al. (2004), Chang & Pakzad 

(2013), and Juang & Pappa (1985) are taken into account. 

 

Consider the differential equation for a linear time-invariant (LTI) multi-degree-of-

freedom system presented in Equation 2.12. 

 

 (t) (t) (t) (t)M x Cx K x f     (2.12)
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where M, C, and K are the mass, damping, and stiffness matrices, respectively; (t)x , 

(t)x , and (t)x  represent the displacement, velocity, and acceleration vectors, 

respectively; and (t)f  is the externally applied force vector. If it is assumed that the 

responses and the excitation are stationary random processes, Equation 2.13 can be 

written. 

 (t) (t) (t) (t)M X C X K X F     (2.13)
 

where (t)X , (t)X , and (t)X  are the displacement, velocity, and acceleration 

stochastic vector processes, respectively; and (t)F  represents the stochastic excitation 

vector process. Under the assumption that the system parameter matrices are 

deterministic, multiplying Equation 2.13 by a reference scalar response process iX (s)

and taking the expected value of each side gives Equation 2.14. 

 

 i i i i[ (t)X (s)] [ (t)X (s)] [ (t)X (s)] [ (t)X (s)]M X C X K X FE E E E     (2.14)
 

where [.]E  represents the expectation operator. Equation 2.14 can be rewritten as 

follows 

 

 i ii i X XX X(t,s) (t,s) (t,s) (t,s)X FX XM R CR K R R     (2.15)

 

where (.)R  indicates the correlation function vector. It should be stated that Equation 

2.16 is satisfied if A(t)  and B(t)  are stationary processes (Bendat & Piersol, 2000). 

 

 ABAB
R ( ) R ( )  

  (2.16)

 

where  t s   . It is possible to extend the relationship in Equation 2.16 as follows 

 

 (m)
(m)
ABA B

R ( ) R ( )    (2.17)

 

where (m)A  and (m)
ABR  are the mth derivatives of A(t)  and ABR ( )  with respect to t  and 

 , respectively. Since the responses are uncorrelated to the disturbance (i.e., 

excitation) for 0  , Equation 2.15 can be rewritten as follows 
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i i iX X X( ) ( ) ( ) 0X X XM R CR K R        (2.18)

 

Equation 2.18 means that the displacement process correlation functions (
iX ( ),XR   

iX ( )XR  , and 
iX ( )XR  ) satisfy the differential equation of motion (i.e., the correlation 

functions have the same characteristics as the free vibration data). Based on a similar 

approach, it can be said that the acceleration process correlation functions also satisfy 

this equation. This result is important and useful for civil engineering society since the 

acceleration responses of the structural systems are often measured. 

 

In the application of NExT, one of the responses (i.e., one of the sensor channels) 

is chosen as a reference, and the correlation functions are computed with respect to 

this reference channel (i.e., denoted as iX (s)  in Equation 2.14). Therefore, it is 

essential to select a reference channel with a high signal-to-noise ratio (SNR) value 

and far from a node of any mode to ensure that all of the modes can be observed in the 

data. 

 

In general, the ERA uses the impulse response (or the free vibration data) of a 

system without taking in to account the external forces. The discretized state-space 

representation for an LTI system is shown in Equation 2.19. 

 

 
(k 1) (k) (k)

(k) (k) (k)

x A x Bu

y Cx Du

  

 
 (2.19)

 

where (k)u , (k)x , and (k)y  represent the vector of system inputs (i.e., forces applied 

to the system), the vector of states, and the vector of system outputs (e.g., acceleration 

measurements) at the kth step, respectively. The A, B, C, and D coefficients (a.k.a. 

discrete-time state-space matrices) are the state, input, output, and feed-through 

matrices of the state-space model. 

 

The ERA is based on the minimum realization principles to constitute a state-space 

representation of the system. Here, realization is the estimation process of the system 
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matrices (A, B, C, and D) from the response. Note that there exists an infinite number 

of system matrices having different dimensions that define the input-output 

relationship of the system. However, the case with the smallest number of states is 

taken into consideration (i.e., minimum realization). Since the input to the system is 

unknown (i.e., generally unmeasured), B and D matrices cannot be determined. 

Nevertheless, A and C matrices are used to calculate the modal parameters of the 

system. The first step of the ERA is constituting the Hankel matrix as presented in 

Equation 2.20. 

 

 

(k 1) (k 2) ... (k m)

(k 2) (k 3)
(k)

(k s) … … (k m s)

Y Y Y

Y Y
H

Y Y

   
   
 
    


  

 (2.20)

 

where Y(k) is the impulse response vector (i.e., the free vibration data) with Nx1 

dimensions at the kth step. Here, N represents the number of sensors. The parameters 

s and m are the numbers of rows and columns in the Hankel matrix. For good results, 

m should be chosen to be approximately 10 times the number of modes to be identified, 

and s should be chosen to be 2-3 times m (Juang & Pappa, 1985). In the second step 

of the ERA, the singular value decomposition (SVD) of H(0) is carried out as 

presented in Equation 2.21. 

 
 T(0)H R ΣS  (2.21)

 

where H(0) represents the Hankel matrix at k=0, R and S are the left and right 

eigenvectors of H(0), respectively, and Σ  is the diagonal matrix of singular values. 

Under ideal conditions, the matrix Σ  is in the form presented in Equation 2.22. 

 

 
g 0

0 0

Σ
Σ

 
  
 

 (2.22)

 

where gΣ  is a g by g matrix and g represents the system order (number of poles, or 

model order). However, in reality, the gΣ  matrix contains nonzero (or relatively small) 
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terms along the diagonal due to the measurement noise and the numerical truncation 

process. By eliminating these terms, it is possible to obtain the minimum system order 

(i.e., minimum realization). Note that higher model order selection causes fictitious 

modes to occur, whereas, in the case of smaller model order, some of the modes might 

not be identified. In order to determine the correct system order, stabilization diagrams 

are effective tools. These diagrams are plotted by repeated (iterative) identification 

processes with different number model orders. Herein, stable (i.e., physical) modes are 

constant and identifiable for all or most of the identification runs. 

 

A and C matrices can be determined by Equations 2.23 and 2.24 as follows 

 
 -1/2 T -1/2(1)A Σ R H SΣ  (2.23)

 
 T 1/2C E RΣ  (2.24)

 

where the small singular values are excluded from the matrix Σ  and [  0]E I . The 

eigenvalue decomposition of the matrix A is utilized to determine the poles 

(eigenvalues), which is idiag( )  . Note that these eigenvalues are complex 

conjugates where their imaginary parts represent the damped vibration frequencies. 

Eventually, the vibration frequencies ( i ) and damping ratios ( i ) of the system are 

calculated by the expressions presented in Equation 2.25. 

 

 

i i

i

2i
i i i i i

i
i i i

i

ln( )
       , j 1

t

Real( )
      

*

*.


         




      



 (2.25)

 

where i is varied from 1 to Ns (number of modes), t  is the sampling period, and the 

symbol “*” represents the conjugate form. To determine the mode shapes ( i ), the 

relationship in Equation 2.26 is used. 

 

 i C Γ   (2.26)
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where Γ  represents the eigenvectors of the matrix A. 

 

2.2.3.2 Enhanced Frequency Domain Decomposition (EFDD) 

 

The main idea behind the EFDD method is determining the modal parameters of a 

system from the singular value decomposition of the spectral density matrix of the 

responses which represents auto-spectral density functions of a single-degree-of-

freedom system (SDOF) with the same dynamic characteristics. In other words, 

decomposition of the spectral matrix of the responses is used to obtain the physical 

information of a system. In this section, firstly the theoretical background of the FDD 

method is presented, and then its enhanced version, the EFDD method is discussed. In 

this sense, studies performed by Astroza et al. (2016a), Brincker et al. (2001a, 2001b), 

Brincker & Ventura (2015), Gentille & Gallino (2008), and Magalhães et al. (2010) 

are taken into account. 

 

Consider the response of a system given in Equation 2.27, (t)y  can be written in 

terms of the mode shape matrix A (i.e., modal matrix) and modal coordinates (t)q . 

 

 1 1 2 2(t) q (t) q (t) ... (t)y a a Aq     (2.27)
 

where 1 2[ , ]A a a   and T
1 2(t) {q (t), q (t) }q   . Accordingly, it is also feasible to 

state the response of a system in terms of the modal matrix A and the correlation 

function matrix of the modal coordinates q (τ)R  as given in Equation 2.28.  

 

 
T T T T

y q(τ) [ (t) (t τ)] [ (t) (t τ)] (τ) R y y A q q A A R AE E      (2.28)

 

where [.]E  represents the expectation operator and y (τ)R  is the correlation function 

matrix of (t)y . The corresponding spectral density matrix is later obtained by taking 

the Fourier transform of both sides of Equation 2.28, and presented in Equation 2.29. 

 

 
T

y q( ) ( )G AG Af f  (2.29)
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where y ( )G f  and q ( )G f  are the spectral density matrices of the response (t)y  and 

the modal coordinates (t)q , respectively. In y ( )G f , the real-valued auto-spectral 

densities are formed as diagonal elements, whereas the off-diagonal terms represent 

the cross-spectral densities. If the system is excited by a signal with broad-band (e.g., 

white-noise) characteristics, then the spectral matrix can be decomposed as given in 

Equation 2.30. 

 

 
N T * H T H

n n n n n n n n
y *

n nn nn=1

( )
i ii i

*

*

a a a a
G

 
          

 γ γ γ γ
 (2.30)

 

where na , nγ , and n  are the mode shapes, modal participation vectors, and poles, 

respectively. The symbol “*” and the superscript “H” represent the conjugate form and 

the Hermitian (i.e., complex conjugate transpose), respectively. Since the modal 

participation vectors are the weighted forms of the mode shapes ( 2
n n nc aγ  where nc  

is a positive constant) and only the two midterms in Equation 2.30 (i.e., the second and 

third terms) are dominant in the case of lightly damped systems, Equation 2.30 can be 

arranged more simply as presented in Equation 2.31.  

 

 
N N2 H 2 T T

2n n n n n n n n
y n

n nnn=1 n=1

c c
( ) 2c Re

i ii

*

*

a a a a a a
G

   
           

   (2.31)

 

In FDD, decomposition of the spectral density matrix estimated at each distinct 

frequency value is performed through singular value decomposition (SVD) as 

presented in Equation 2.32. The diagonal matrix Z holding the singular values 2
nz  is 

interpreted as auto-spectral densities of the modal coordinates (Equation 2.33), 

whereas the mode shape information can be extracted from the matrix U for each 

distinct frequency value (Equation 2.34). Note that the SVD allows separation of the 

noise modes from the physical ones which helps analysts to understand the structural 

related information. The first singular value that becomes flat compared to the modal 

response indicates the noise level; thus, lower singular values compared to that one 

can be eliminated in the process of modal parameter identification. Analysts can use 

this merit in the identification of the closely-spaced modes. 
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 H 2 H
y n( ) [z ]G U Ζ U U Uf    (2.32)

 

 

2
1

2
2 2 2 2
1 2 n

2
n

z 0 ... 0

0 z
[ ] diag(z ,z ,...,z )  

0 … … z

Ζ

 
 
  
 
 
  


  

 (2.33)

 

      1 2 n[ ] [ U , U ,..., U ]U   (2.34)

 

In FDD, since the first singular value at each distinct frequency reflects the strength 

of the dominated vibration mode at that frequency, it is suitable to plot a frequency-

singular value curve that can be used as a modal indicator. Accordingly, vibration 

frequencies are estimated by selecting the frequency values where the frequency-

singular value curve has peaks. It is possible to estimate the vibration frequencies with 

higher accuracy by using the enhanced version of the FDD method (i.e., EFDD 

method), in which the singular value information around the considered peak is also 

used. Herein, the selection of the singular value segment around the peak is performed 

by assessing the similarity between the singular vector estimates related to the peak 

and the points around the peak. Modal assurance criterion (MAC) can be utilized to 

state the similarity between the singular vectors (Allemang, 2003) (formulation is 

presented by Equation 3.3 in Chapter Three). Limits (borders) of the singular value 

segment are determined based on the points where the similarity between the singular 

vectors falls below a predefined threshold value (i.e., as long as the singular vector 

around the peak exhibits high similarity, that singular vector belongs to the same 

mode). The piece of the singular values around the peak (i.e., singular value segment 

around the peak) is taken back to the time domain by the inverse fast Fourier transform. 

By this way, the corresponding auto-correlation function of a SDOF system is 

obtained. Accordingly, the frequency and damping estimations can be simply obtained 

by performing crossing times (i.e., time intervals between zero crossings) and 

logarithmic decrement (i.e., by arranging an exponential decay) on this auto-

correlation function, respectively. In both versions of the methods (i.e., FDD and 

EFDD), near a peak corresponding to a mode, the first singular vector  1U  reflects 
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the estimated mode shape. Note that in the case of closely-spaced modes, the first 

singular vector will always give the best estimate of the mode shape. 

 

     2.2.3.3 Stochastic Subspace Identification (SSI) 

 

In general, the SSI method is based on establishing a linear state-space model of the 

system by using the output-only measured vibration responses. There are two main 

types of SSI formulations available, namely the data-driven SSI (SSI-DATA) and the 

correlation-driven SSI (SSI-COV). The SSI-COV is very similar to the ERA. It uses 

the correlations of the time series. Conversely, the SSI-DATA is directly based on the 

measured time series, and unlike the two-stage time domain methods, (e.g., NExT-

ERA and SSI-COV) calculation of the covariance matrices is not required. In addition, 

SSI-DATA is more robust since it uses least squares, SVD, and QR factorization. In 

this section, the theoretical background of the SSI-DATA method is presented. In this 

sense, studies performed by Astroza et al. (2016a), Brincker & Andersen (2006), 

Brincker & Ventura (2015), Magalhães et al. (2010), Van Overschee & De Moor 

(1996), Peeters (2000), and Peeters & De Roeck (2001) are taken into account. 

 

Any free decay (k)y  can be expressed by a state-space formulation as shown in 

Equation 2.35. 

 
 k

0(k)y PG u  (2.35)
 

where P  and G  are the observation and discrete time system matrices, respectively, 

and u0  is the state-space initial conditions of the free decay. In the first step of the SSI-

DATA method, the output measurement responses in time domain (k)y  are utilized 

to construct the block Hankel matrix with 2s number of block rows and np number of 

data points (Equation 2.36). The Hankel matrix is later split in the middle into two 

block Hankel matrices, namely 1H  (the upper part) and 2H  (the lower part) each 

having s number of block rows. Here, 1H  and 2H  are also known as “the past” and 

“the future”, respectively. In the SSI theory, the projection matrix O  is defined with 

Equation 2.37, and the calculation of its components is presented in Equation 2.38. 
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1
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(1) (2) … (np 2s 1)

(2) (3) … (N 2s 2)

(s) (s 1) … (np s)

(s 1) (s 2) … (np s 1)

(s 2) (s 3) … (np s 2)
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H

Hy y y

y y y

y y y
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   
 
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



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In Equation 2.38, 21T  and 11T  represent the block Toeplitz matrices. It should be 

stated that the calculation of the block Toeplitz matrices is memory consuming and 

requires high computational effort. Therefore, the projection is generally calculated by 

the QR decomposition (factorization) of the transposed block Hankel matrix presented 

in Equation 2.36. Note that the free decays are established in the calculated projection 

matrix which can be expressed as follows 

 
 O ΓX  (2.39)

 

where Γ  and X  are the observability matrix and the matrix of Kalman states (i.e., the 

matrix representing the initial conditions of the free decays in the projection matrix), 

respectively. The next step in the identification process is taking the SVD of the 

projection matrix as shown in Equation 2.40. 

 
 TO RΣS  (2.40)

 

Based on Equations 2.39 and 2.40, Γ  and X  can be estimated as presented in 

Equation 2.41. 
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1/2
n n

1/2 T
n n

Γ̂ R Σ

X̂ Σ S




 (2.41)

 

where nR , nΣ , and nS  are the restricted forms of the SVD matrices corresponding to 

the first n singular values (i.e., first n/2 modes). Eventually, the discrete time system 

matrix G and the observation matrix P are computed by solving a least squares 

problem. The modal parameters (i.e., vibration frequencies, damping ratios, and mode 

shapes) can be determined in a similar way as presented in Equations 2.25 and 2.26. 

 

It should be stated that various techniques can be formulated in the SSI by 

multiplying real-valued weight matrices 1W  and 2W  on each side of the projection 

matrix. Thus, a generalized projection matrix is obtained and the SVD is performed on 

this resultant matrix (Equation 2.42). 

 

 T
1 2W OW RΣS  (2.42)

 

Different forms of the weight matrices constitute the SSI standard algorithms known 

as the unweighted principal component (UPC) algorithm, the principal components 

(PC) algorithm, and the canonical variate algorithm (CVA). 

 

2.2.4 Increased Signal Reproduction Fidelity by Offline Tuning Technique (OTT) 

 

As it was stated before, the frequency content of a dynamic excitation should cover 

a wide range of frequencies (i.e., having broad-band characteristics) to excite a 

system’s modes properly. However, in a shake table test (or shaker test), if a control 

algorithm is not used, the total forward transfer function estimation (i.e., estimated 

between command and feedback signals) clearly indicates that the command signal 

cannot be reproduced properly in terms of target amplitude and frequency content 

(Twitchell & Symans, 2003; Yucel, 2014). In other words, a trajectory tracking 

problem occurs between the target (command) and achieved (feedback) signals which 

means that the shake table cannot track the command signal properly. Complex 

internal mechanisms of the shake table and the table-specimen interaction are the main 
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reasons for this issue. Since the command signal loses its broad-bandwidth property, 

which is intended to be, results of OMA, model updating, and vibration-based SHM 

are also affected. In literature, there exist many control methods, such as adaptive 

control, PID based displacement control, PID+ feedforward, and offline tuning 

methods to solve this problem (Luco et al., 2010; Mota, 2011). In this thesis, offline 

tuning technique (OTT), a command shaping control strategy, is used for this purpose 

(Ozcelik et al., 2015, 2018; Thoen & Laplace, 2004; Yucel, 2014). 

 

In OTT, firstly the forward transfer function (FTF) of the shake table is 

experimentally estimated between the command and the feedback signals. FTF is a 

beneficial tool that provides information about the dynamic characteristics of shake 

tables and their effects on command signals. Namely, a unit FTF value at a specific 

frequency means that there is no effect on the command signal (i.e., there is no tracking 

problem), whereas other values are the indicators of the tracking problem. Afterwards, 

the command signal is multiplied by the inverse of the FTF in the frequency domain 

and then filtered by a high-pass filter to avoid large motions surpassing the shake 

table’s operational limits. The modified command signal obtained this way is 

transformed back to the time domain by the inverse fast Fourier transform, and is used 

as the adjusted command to the shake table. This way the signal reproduction fidelity 

is increased and the achieved signal on the shake table would be in nature as the desired 

command signal (Ozcelik et al., 2015, 2018; Yucel, 2014). 

 

In Figure 2.2, the trajectory tracking problem observed in a shake table test, where 

the command signal has white-noise characteristics, is presented (Ozcelik et al., 2015). 

From the FTF estimation (Figure 2.2 (a)), the minimization effect of the shake table 

on the command (input) signal is clear (amplitudes less than unit value). On the other 

hand, the tracking problem can be verified by comparing the command and feedback 

(output) signals in both time and frequency domains (Figure 2.2 (b)). After the 

application of OTT, the tracking problem is solved, and the signal reproduction fidelity 

is improved both in time and frequency domains (Figure 2.2 (c)). 
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(a) 

 

(b) (c) 

Figure 2.2 (a) Forward transfer function estimation and signal reproduction fidelity (b) before and 

(c) after the application of OTT (zoomed) (Ozcelik et al., 2015) 

 

The effects of OTT on the vibration frequency estimation results of a small-scale 

aluminum frame type structure are presented in Figure 2.3 (Yucel, 2014). Here, the 

values obtained by the impact hammer test can be considered as the exact results. It is 

explicit that the application of OTT for white-noise tests has significant effects and 

applying OTT, therefore broad-band excitation, is necessary to obtain more realistic 

system identification results.  
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Excitation  

Type 

1st Mode 

[Hz] 

2nd Mode  

[Hz] 

3rd Mode  

[Hz] 

Impact  

Hammer 
7.71 26.43 42.76 

White-noise 

without OTT 
11.92 29.98 43.80 

White-noise 

with OTT 
7.19 26.66 42.80 

 

(a) (b) 

Figure 2.3 (a) Small-scale aluminum frame type structure and (b) its system identification results 

under different excitation conditions (Yucel, 2014) 
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CHAPTER THREE 

FINITE ELEMENT MODEL UPDATING 

 

3.1 Introduction 

 

In recent years, the finite element (FE) method has been commonly preferred by 

civil engineering society for structural analyses and designs. Within this scope, 

physical properties and behaviors of the structures are modeled by engineering 

judgements and insights. However, the constituted numerical models may not be 

convenient representatives of the real structural behaviors because of the modeling 

simplifications and assumptions made in model parameters such as material properties, 

boundary conditions, member connections, and meshing strategies. Therefore, these 

numerical models should be verified and corrected if necessary before further usages 

and analyses. This can be done by means of a finite element model updating (FEMU) 

procedure in which the initial FE model (i.e., numerical model) is calibrated based on 

the experimental data (a.k.a. model calibration). In this context, vibration frequencies, 

mode shapes, frequency response functions, acceleration time histories, modal strains, 

modal curvatures, modal strain energies, and modal flexibilities can be used as 

responses; but modal parameters such as vibration frequencies and mode shapes are 

the mostly preferred ones. In general, FEMU is the process where the unknown and/or 

uncertain properties of a FE model are adjusted such that the numerical results 

correspond well with the experimental ones. Note that experimental data is a better 

representation of the structural behavior than the FE model although it contains 

measurement errors. (Friswell & Mottershead, 1995; Teughels, 2003). Besides, FEMU 

methods are commonly used for damage identification purposes by adjusting model 

parameters that are related to structural stiffness (e.g., Young’s modulus, shear 

modulus, Poisson’s ratio, moment of inertia, etc.) to determine the location and the 

extent of the damage. In this context, experimental data before and after a damaging 

event are required. 

 

FEMU methods are classified as model-based methods, in which a FE model is 

used to predict the observed changes. On the other hand, non-model methods are based 



53 
 

only on the changes of the measured data, and do not require a numerical model; 

therefore, they provide limited and coarse solutions and are not suitable for complex 

systems (Carden & Fanning, 2004). In literature, FEMU methods can be categorized 

into two main groups, namely direct (matrix) and indirect (iterative) methods. In direct 

methods, model updating is performed in a single step with a non-iterative approach. 

For this reason, the existence of measurement noise significantly reduces their 

efficiency and performance. This type of methods is mainly based on updating mass 

and stiffness matrices directly (i.e., without any regard to changes in model 

parameters), whereby their updated values deceive structural meanings and cause 

physically nonsense results. In addition, model connectivity and positive definiteness 

(i.e., a matrix is positive definite if it is symmetric an all its eigenvalues are positive) 

may not remain. Error matrix, optimal matrix, matrix-update, and the eigen structure 

assignment methods are the some of the direct methods (Alkayem et al., 2018; 

Carvalho et al., 2007; Friswell & Mottershead, 1995; Marwala, 2010; Mottershead & 

Friswell, 1993; Yang & Chen, 2009). For all these limitations, direct methods are less 

preferred, and indirect methods have mainly been used. In indirect methods, physical 

parameters (model parameters) of an initial FE model are calibrated (updated) until its 

dynamic characteristics (i.e., modal parameters) get sufficiently closer to that of the 

real structure. By the reason of the nonlinear relationship between the physical and 

modal parameters, the updating process is realized iteratively. Since the model 

parameters are updated, the mass and stiffness matrices preserve their physical 

meanings, and the model connectivity is ensured. The most commonly used iterative 

methods are sensitivity-based, computational intelligence, Bayesian/Monte Carlo, and 

response surface methods (Alkayem et al., 2018; Friswell & Mottershead, 1995; 

Marwala, 2010). 

 

In linear FEMU methods (i.e., the methods that are discussed so far), always linear 

FE models are developed, and the structural damage is generally defined as loss of 

effective stiffness (a.k.a. damage indicator) based on linear responses. Therefore, the 

updated FE models can only reflect the behaviors of the structures in the linear range. 

However, all the real-life structures are inherently nonlinear, especially the damaged 

structures caused by strong excitations (e.g., earthquakes). Therefore, additional 
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nonlinear damage indicators are required (e.g., loss of ductility capacity, loss of 

strength, softening, residual deformations, etc.) for accurate damage identification. In 

this context, nonlinear FEMU methods, that are based on the nonlinear responses of 

the structural systems, can be used. Since the nonlinear responses include more 

information about damage than the linear responses, nonlinear FEMU methods can 

provide more accurate damage identification results and can be used for damage 

prognosis (i.e., predicting the remaining lives of the structural systems) studies 

(Asgarieh et al., 2014; Astroza et al., 2017; Ebrahimian et al., 2017; He et al., 2019). 

Note that the topic of nonlinear FEMU is not included within this thesis since it is 

aimed to focus on the linear FEMU methods, especially the sensitivity-based ones. 

Besides, model updating by linear methods is commonly used by civil engineering 

society for damage identification studies of nonlinear systems with reasonable success. 

In the following sections of the thesis, the sensitivity-based FEMU method is discussed 

in detail and used for model updating and damage identification purposes.  

 

3.2 Sensitivity-Based Finite Element Model Updating Method 

 

Sensitivity-based FEMU, which is in the category of inverse problems, is the most 

common method that can be utilized for model updating and damage identification 

purposes. In inverse problems, a FE model is constituted in order to represent the 

experimental data numerically, then the discrepancies between the experimentally and 

numerically identified quantities (i.e., modal parameters such as vibration frequencies 

and mode shapes are commonly used for this purpose) are minimized by adjusting 

(calibrating, updating) the unknown model parameters (e.g., mass density, Young’s 

modulus, shear modulus, spring stiffness, moment of inertia, thickness, boundary 

conditions, etc.). In other words, in inverse problems, the output (i.e., modal 

parameters) is known, whereas the input (i.e., model parameters) is unknown. On the 

other hand, in forward problems, outputs are determined directly from the 

mathematical model with known parameters (i.e., model parameters). For example, 

damage is modeled numerically and the experimentally identified modal parameters 

are compared with the numerically obtained ones to verify the predefined damage. 

Note that typical engineering problems are generally in the form of forward problems 
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(Boller et al., 2009; Brownjohn, 2007; Carden & Fanning, 2004; Fan & Qiao, 2011; 

Marwala, 2010; Sohn et al., 2003; Teughels, 2003).  

 

In general, sensitivity-based FEMU can be considered as an iterative optimization 

process at minimizing the discrepancies between the experimentally identified and 

numerically obtained (from FE model) quantities (modal parameters), which is defined 

by an objective function (a.k.a. cost function), by updating the selected model 

parameters of the numerical model (Friswell & Mottershead, 1995; Mottershead et al., 

2011; Teughels, 2003; Teughels & De Roeck, 2004; Teughels et al., 2003). The 

iterations are continued until an absolute minimum (a.k.a. global minimum) of the 

objective function is acquired. In practice, material characteristics, geometrical 

properties, boundary conditions, and member connections are the mostly selected 

model parameters for updating purposes (a.k.a. updating parameters, design variables, 

or design parameters). The updating procedure can be conducted by a manual or 

automated way. Manual updating is a conventional method that depends on the trial-

and-error approach. It has a slow convergence speed (i.e., more time and trials may be 

required for ultimate results) and does not guarantee a global minimum; therefore, this 

method is non-practical for complex systems. On the other hand, automated updating 

is performed by using a computer-aided optimization algorithm. Thus, it has faster 

convergence and provides more objective and accurate results. In practice, performing 

manual updating prior to an automated one is recommended. By this way, it is possible 

to ensure more reasonably accurate numerical models for the automated updating 

stage, which in return improves its convergence performance. 

 

The general procedure of the sensitivity-based FEMU method is presented by a 

flowchart in Figure 3.1. Steps of the method can be summarized as follows: (i) 

Initially, selection of the unknown model parameter set of the investigated system is 

realized ( kp ). (ii) Appropriate and physically meaningful initial values are assigned to 

these model parameters (p0 ). (iii) FE analysis is realized to determine the numerical 

quantities of the system. (iv) Residual vector (r ) is calculated by the discrepancies 

between the numerically (  kpz ) and experimentally ( z ) obtained quantities. (v) A 

nonlinear least squares problem is defined by an objective function using the residual 
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vector. (vi) Sensitivity (Jacobian) matrix (
kPJ )  is constituted by calculating the 

sensitivity of the residual vector with respect to the model parameters. (vii) 

Minimization process of the nonlinear least squares problem is performed by an 

optimization algorithm, thus updated model parameter values ( k+1p ) are obtained. 

(viii) Steps iii to vii are repeated by using the updated model parameter values ( k+1p ) 

until the convergence is satisfied (i.e., discrepancies between the numerical and 

experimental quantities are sufficiently minimized). By this way, the initial FE model 

is corrected such that it better represents the actual system, and the unknown model 

parameters are identified as to be k+1p . 

 

 
Figure 3.1 Flowchart of the sensitivity-based finite element model updating method 
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The theoretical background of the sensitivity-based FEMU method is presented in 

the following sections. In this sense, studies performed by Fang et al. (2008), Moaveni 

et al. (2013), Teughels (2003), and Teughels & De Roeck (2004) are considered. 

 

3.2.1 Objective Function and Residual Vector 

 

The first step of the sensitivity-based FEMU is to construct an objective function. 

The least squares approach is used for this purpose as given in Equation 3.1. Note that 

the problem is nonlinear due to the nonlinear relationship between the modal 

parameters and design variables .p  

 

      
m m

2 2

j j j
j=1 j=1

1 1
f r ;      < 

2 2 b bp p p l p uz z            (3.1)

 

where p ∈ n  represents the design variables (n is the number of design variables), 

 j pz  and jz  are the numerically and experimentally obtained modal quantities, 

respectively, j indicates the component number of any variable (e.g., the jth component 

of jz ), jr  presents the residuals, and m is the number of components that are considered 

(i.e., number of residuals). bl  and bu ∈ n  are the lower and upper bounds (i.e., 

constraints), respectively, that the design variables have to satisfy during the updating 

process. In the case of an unconstrained optimization problem, physically 

nonmeaningful results may be obtained for the design variables. 

 

The residual vector r  indicates the discrepancies between numerically and 

experimentally obtained quantities (e.g., frequency response functions, vibration 

frequencies, mode shapes, modal curvatures, modal strains, modal strain energies, 

modal flexibilities, etc.). Herein, it should be stated that the modal flexibility residual, 

which is basically a combination of vibration frequencies and mode shapes, is more 

sensitive to the local changes of the systems (e.g., local damages). This is because the 

flexibility matrix (inverse of the stiffness matrix) is dominated by the lowest modes of 

the system, which can be easily identified, whereas the stiffness matrix is dominated 

by the highest modes, which are difficult, if not impossible to identify (Jaishi & Ren, 
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2005, 2006; Reynders & De Roeck, 2010). Since the vibration frequencies and mode 

shapes (the commonly used ones in civil engineering) are focused only in this thesis, 

equations are given in accordance with these quantities. Thus, the residual vector 

containing the frequency residuals  r pf  (a.k.a. eigenfrequency residuals) and mode 

shape residuals  r ps  can be defined as Equation 3.2. 

 

  
 
 

2

21 1
min min

2 2

r p
r p

r p
 f

s

 (3.2)

 

where .  denotes the Euclidean norm, 
mnr : f f  and mnr : s s . 

Consequently, n m r :    includes m = m mf s  components. The uniqueness of 

Equation 3.2 can only be achieved by constituting an overdetermined problem, where 

m (number of residuals) is higher than n (number of design variables) (n<m). 

Otherwise, there exist infinitely many solutions that make Equation 3.2 minimum 

(underdetermined case). In practice, having significantly higher m values (n<<m) is 

essential to improve the updating performance. An overdetermined problem can be 

ensured by considering more response values than design variables and/or limiting the 

number of design variables (i.e., not assigning design variables to each finite element 

of the model). One way to do is to group a set of neighboring and/or symmetric finite 

elements, that are expected to undergo similar changes during updating, as 

substructures, and to assign a single design variable for them. Herein, engineering 

judgement is necessary to determine where or/and how to assign design variables. 

Another way is to use a parameterization method (e.g., using damage functions), which 

is detailed in the following sections of the thesis. 

 

Note that experimentally and numerically obtained modal data must be matched 

correctly before the usage of Equation 3.2. For this purpose, the modal assurance 

criterion (MAC), which is a useful tool to determine the similarity between differently 

obtained modal vectors, can be utilized (Allemang, 2003). Formulation is presented in 

Equation 3.3. 
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      
  

2T
2 i j

i j
T T T
i i j j

MAC , cosθ
 

 
   

   
 (3.3)

 

where i  and j  represent the ith numerical and jth experimental modal vectors, 

respectively, and θ  is the angle between these modal vectors. MAC value always lies 

between 0 and 1, and the closeness of the criterion to unit value, which means that the 

angle between the vectors is zero (i.e., overlapping), is the indicator of the higher 

similarity (i.e., good correlation) between the vectors, whereas a value close to 0 

designates bad correlation. However, in cases with similar modes or many closely-

spaced modes, the MAC concept may result in erroneous mode matching. That’s why 

an alternative formulation as given in Equation 3.4 can be used (Simoen et al., 2015). 

 

   i
i j

j

1 MAC , 1


    


 (3.4)

 

where i  and j  are the numerical and experimental eigenvalues (see Equation 3.5 

for the formulation), respectively. Here, a value close to zero indicates a perfect match 

between two modes. 

 

It is essential to state that mode matching can cause non-smooth behaviors in the 

objective function. For example, with the change of the model parameter values after 

each iteration step, the modes might get matched differently (a.k.a. mode-crossing) 

due to occurrences of new modes and/or disappearances of existing modes. This 

situation leads to sudden jumps in the objective function which may inhibit the 

effectiveness of the optimization algorithm dramatically. To overcome this problem, 

modes must be matched again at the beginning of each iteration step. 

 

3.2.1.1 Eigenfrequency Residuals 

 

Eigenfrequency residuals include the differences between the numerical and 

experimental undamped eigenfrequencies. Formulation is given in Equation 3.5. 
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j j

j

λ λ
   with   2π    

λ

p
r p r : ff


    f f  (3.5)

 

where j indicates the mode number, jf  is the eigenfrequency,  j p  and j  represent 

the numerical and corresponding experimental eigenvalues, respectively, and m f  is 

the number of eigenfrequencies utilized in the updating procedure. Here, relative 

differences are calculated to provide a similar weight for each eigenfrequency. The 

eigenfrequencies can be accurately identified, are very sensitive with respect to 

stiffness properties, and supply global information of the system; therefore, they are 

indispensable quantities for the updating process and have beneficial effects on the 

convergence performance of the optimization problem. 

 

3.2.1.2 Mode Shape Residuals 

 

Mode shapes contain valuable spatial information about the dynamic characteristic 

of a system. That’s why including the mode shape residuals into the residual vector is 

beneficial to improve the updating performance. Each mode shape residual is 

calculated as 

 

    
 

l l
j j mn

ref ref
j j

     
p

r p r :
p

s
 

  
 


 s s  (3.6)

 

In Equation 3.6, j indicates the mode number, j  and j  are the numerical and 

corresponding experimental modal vectors, respectively, l
j  and ref

j  represent the lth 

(any arbitrary) and reference component of vector j , and ms  is the number of modal 

displacements (components of the mode shape vector) used in the updating process. 

For example, if  “ jndof ” indicates the number of DOFs used for mode j  and modeN  

is the number of considered modes, then the mode shape residual vector includes 

modeN

j
j=1

m ndofs    components. Note that each mode shape component “l” is divided by 

a reference component “ref” (generally the maximum component) to enable similar 
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weighting since the numerically and experimentally obtained mode shapes can be 

scaled in a different way (i.e., normalization). 

 

Note that the mode shape estimations are less sensitive to structural changes (e.g., 

changes because of damage) as compared to vibration frequencies. Besides, they are 

more prone to be polluted with noise (i.e., they include higher estimation uncertainty). 

However, they should be involved in the updating process owing to their spatial 

information. 

 

3.2.1.3 Weighting Factors for Residuals 

 

It is possible to weight the components of the nonlinear least squares problem (i.e., 

frequency and mode shape residuals) given in Equation 3.2 by judging their 

confidence, importance, and/or estimation quality. Accordingly, the objective function 

can be reformulated to establish a weighted least squares problem as given in Equation 

3.7. 

 

       2T 1/21 1
min

2 2
r p Wr p W r p  (3.7)

 

Here, W  is the weighting matrix. If W  is a diagonal matrix, 2
jdiag( ,w , )W    , 

Equation 3.7 can be equivalently written as 

 

     
m

2 21/2
j j

j=1

1 1
min w r

2 2
W r p p   (3.8)

 

where jw  is the weighting factor of jr . A well-known statistical method to select the 

weighting matrix is taking the inverse of the covariance matrix of the experimental 

errors, which gives the minimum variance Gauss-Markov estimate (Friswell & 

Mottershead, 1995; Simoen et al., 2015; Teughels & De Roeck, 2004). However, this 

statistical information is often not available; therefore, in practice, the appropriate 

weights are determined by engineering judgement and/or by carrying out some trial 

runs. Such as, in the case where eigenfrequencies match well but the mode shapes still 
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have discrepancies, it can be concluded that too much weights are assigned to 

eigenfrequency residuals; or in the case where the eigenfrequency residuals are not 

minimized enough, their weights should be increased. 

 

Another important point is assigning relatively higher weighting factors to reliable 

and accurately identified residuals. As it was mentioned before, eigenfrequencies can 

be identified more accurately than mode shapes; therefore, it is convenient to use 

relatively higher weights for them. In addition, mode shape estimations generally 

include higher uncertainty than frequency estimations because of the limited number 

of sensors available for testing and measurement noise. That’s why relatively lower 

weighting factors should be assigned to the mode shape residuals if they are thought 

to be unreliable. Notice that only the relative values of the weighting factors are 

significant, not their absolute values. It is possible to obtain different updating results 

for different weighting factors; therefore, the ultimate result should be decided based 

on engineering judgement and intuition. 

 

3.2.2 Variables of the Updating Method 

 

3.2.2.1 Design Variables 

 

In FEMU, material and geometrical properties of FE models (e.g., mass density, 

Young’s modulus, shear modulus, spring stiffness, moment of inertia, thickness, 

boundary conditions, etc.) are generally the unknown and uncertain (i.e., erroneous) 

physical parameters that are updated to identify their actual values. Typically, the 

amount of the potential erroneous parameters is huge for a FE model, especially for 

detailed and complex models, which results in the optimization problem to be ill-

conditioned. An ill-conditioned optimization problem increases the computational 

expense, has convergence difficulties, and does not guarantee for a solution. In order 

to ensure a well-conditioned problem, the number of parameters should be relatively 

small and only these parameters, which are actually erroneous, should be updated; 

otherwise, physically unrealistic results may be obtained. Engineering insight is 

therefore essential to decide which parts of the FE model and which physical 
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parameters have to be updated. In literature, there exist regularization and 

parameterization (i.e., using damage functions) methods to overcome the ill-

conditioning state of the optimization problem (Fang et al., 2008; Grip et al., 2017; Li 

& Law, 2010; Mottershead et al., 2011; Teughels & De Roeck, 2004; Titurus & 

Friswell, 2008; Weber et al., 2007). In the scope of this thesis, only the 

parameterization method is discussed in the following sections. 

 

Another important point that should be considered is the sensitivities of the 

residuals (responses) to the selected model parameters. Since the updating method is 

sensitivity-based, the parameters should affect the responses sensitively, otherwise, the 

updating results are likely to be erroneous. Note that a response sensitive to a 

parameter does not automatically imply that this parameter has to be included in the 

updating process. In other words, if the value of a parameter is already adequately 

representing the true value, then there is no reason to update it. 

 

3.2.2.2 Correction Factors 

 

Physical parameters (design variables) can have different orders of magnitude; 

therefore, it is convenient to use a dimensionless correction factor (i.e., a kind of 

normalization process) for each parameter according to a reference value (mostly the 

initial value before updating). If eX  is the value of a physical parameter X  in element 

e and e
refX  is its reference value, the dimensionless correction factor eaX  can be 

formulated as in Equation 3.9. 

 

 
e e

e ref
e
ref

X X
a

XX


   (3.9)

 

In other words, the updated value of the parameter X  is determined by Equation 3.10. 

 

  e e e
ref XX X 1 a   (3.10)

 

Note that a correction factor can affect one element or a group of elements 

(substructures) having similar values for a considered parameter. In theory, each 
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parameter in system matrices is a candidate for updating; however, stiffness properties 

are the mostly selected ones in civil engineering applications. Other parameters are 

assumed to be known and/or to remain unchanged after a damaging event; thus, they 

are excluded from the updating process. But sometimes mass density of the 

investigated structure is the unknown and/or it may vary throughout the structure (i.e., 

especially in the case of masonry structures). In such cases, performing model updating 

by adjusting mass density is mandatory to determine the mass distribution of the 

structure.  

 

If the physical parameter is linearly related to the stiffness matrix of the element 

(e.g., Young’s modulus), Equation 3.10 can be reformed as presented in Equation 3.11. 

 

  e e e e
ref 1 a       a 1K K      (3.11)

 

where eK  and e
refK  represent the updated and reference (initial) element stiffness 

matrices, respectively. Here, a negative ea  value indicates stiffening, whereas a 

positive ea  value indicates softening (i.e., stiffness loss) in element e (e.g., ea  equals 

to 1 in the case of fully damaged element). Eventually, the updated global system 

stiffness matrix can be assembled from element stiffness matrices as given in Equation 

3.12. 

 

  
en

U e e
ref

e=1

1 aK K K    (3.12)

 

in which K  represents the global system stiffness matrix, UK  is the stiffness matrix 

of the non-updated elements (i.e., the elements whose properties remain unchanged 

and are excluded from the updating process), and en  is the number of elements (or 

group of elements, substructures) wanted to be updated. Note that similar approaches 

are valid for the case of the physical parameter is linearly related to the mass matrix of 

the element (e.g., mass density). Updating the submatrices using correction factors (as 

in Equation 3.12) provides two critical properties for the updating problem: (i) 

Connectivity of a FE model is preserved since the element stiffness matrices (i.e., 
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submatrices of the global stiffness matrix) are updated, and (ii) sensitivities with 

respect to correction factors are easy to calculate. 

 

3.2.2.3 Damage Functions 

 

In FEMU, if a large number of design variables are selected for updating, then the 

optimization problem may become ill-conditioned. An ill-conditioning state increases 

the computational expense, has convergence difficulties, and does not guarantee for a 

solution. Therefore, it is desired to reduce the number of design variables for a well-

conditioned problem. In this context, an additional parameterization method through 

damage functions, which describes a relationship between design variables ( p ) and 

correction factors (a ), can be used. Herein, correction factors are specified with 

predefined damage functions instead of independent values for all elements; thus, the 

number of design variables is reduced. In addition to this effect, damage functions 

ensure to obtain more realistic and physically meaningful correction factor 

distributions by preventing neighboring elements to be updated independently from 

each other (i.e., presence of damage on an element also affects neighboring elements). 

 

Mainly, there exist two types of damage functions. In the first type, damage 

functions are defined by piecewise functions (can be linear or higher order 

polynomials) that are formed by a combination of fixed shape functions (i.e., no shape 

parameters are required) which differ from zero only over a limited area of the FE 

model and equal to zero elsewhere. In the second type, parameterized shape functions 

with characteristic patterns, which are determined in the updating process, are used to 

form damage functions (i.e., shape parameters, that determine the center location and 

width of the shape function, are required). In the scope of this thesis, only the linear 

piecewise formed damage functions (i.e., the first type) are used; therefore, equations 

are simplified in accordance with this type. 

 

According to this approach, correction factors are supposed to vary continuously 

over a FE model and approximated by a linear combination of damage functions as 

given in Equation 3.13. 
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  
n

e e
i i

i=1

a N xp  (3.13)

 

where ip  represents the multiplication factors (equals to the design variables ip  that 

are updated iteratively), iN  is the damage function, ex  is the geometrical coordinate 

of the center of element e, and n represents the number of damage functions. 

Consequently,  e
iN x  represents the value of the ith damage function at point ex  of 

element e, which also defines a relationship between the correction factor and element. 

Remind that n should be much smaller than en  (the number of elements wanted to be 

updated) for a well-conditioned problem. According to Equation 3.13, the continuous 

correction factor is discretized for each individual element (i.e., corresponding a 

constant value in the center of each element), and once the multiplication factor is 

determined, it is possible to calculate the correction factor. Equivalent matrix notation 

of Equation 3.13 is given in Equation 3.14. 

 

  
e e

n 1 n 1n n
a N 

 p  (3.14)

 

or the full-length expression is presented in Equation 3.15. 
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 (3.15)

 

In the case of independent damage functions for each element (i.e., updating all the 

elements separately), N  becomes an identity matrix and n equals to en . Thus, 

Equation 3.15 can be reformed as in Equation 3.16. Here, a zero value indicates that 

there is no relationship between the relevant element and damage function (i.e., each 

element has only its own damage function). 
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 (3.16)

 

Sometimes it is desired to assign a single correction factor for a set of elements of 

a FE model (e.g., neighboring and/or symmetric elements that are expected to undergo 

similar variations during the model updating process, elements that are expected to 

have similar damage patterns, etc.). The effects of this case on damage functions can 

be easily clarified by an example. Assume a beam member consisting of 4 finite 

elements. In the case of updating all the elements independently, N  matrix and 

corresponding corrections factors can be written as 
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 (3.17)

 

If it is desired to assign a single correction factor for the 1st and 3rd finite elements 

(maybe they are expected to have similar damage patterns), Equation 3.17 becomes as 

follows 
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 (3.18)

 

It is clear from Equation 3.18 that the 1st and 3rd finite elements have the same 

correction factors (i.e., 1
1a p  and 3

1a p ), and the number of design variables is 

reduced to 3 from 4. 
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Note that the accuracy of the updating results is based on the coarseness and number 

of the damage functions, and a continuous smoother correction factor distribution can 

be ensured by using more damage functions. Alternatively, higher order damage 

functions having different shapes can also be used for this purpose. Both increase the 

number of unknown parameters (design variables) which may lead to computational 

expense and ill-conditioned problem; therefore, a balance between the condition of the 

optimization problem and the desired accuracy should be maintained. In this context, 

model updating can be performed in two steps: (i) First, updating is performed by using 

coarse damage functions. (ii) Then, additional updating is conducted, in which only 

the elements wanted to be obtained in detail are corrected, by using finer damage 

functions. 

 

For example, a set of seven mono-dimensional triangular-like damage functions 

(i.e., have one dimension along the FE model) are presented in Figure 3.2. The global 

damage function is constituted by combining them in a piecewise linear function. From 

this piecewise linear function, the continuous distribution of the correction factors can 

be approximated. 

 

(a) (b) 

Figure 3.2 (a) Set of seven triangular-like damage functions (dashed line) with continuous piecewise 

linear function (solid line) and (b) one isolated damage function (Teughels & De Roeck, 2004) 

 

Note that mono-dimensional damage functions are not convenient for systems with 

planar elements (e.g., shell, membrane, etc.). In this context, bi-dimensional damage 

functions (e.g., bi-dimensional linear, bi-dimensional step, bi-dimensional-triangular, 

etc.) should be used to perform model updating. 
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3.2.3 Sensitivity (Jacobian) Matrix 

 

Since the nonlinear least squares problem is solved with an iterative sensitivity-

based optimization approach, the sensitivity matrix (a.k.a. the Jacobian matrix), which 

determines the rate of change in residuals with respect to changes in design variables, 

needs to be calculated in each iteration (Nocedal & Wright, 1999). In other words, 

sensitivities of residuals with respect to design variables should be calculated. The 

Jacobian matrix ( PJ )  consists of the first-order derivatives of each residual jr  in 

residual vector with respect to each design variable ip  and calculated as follows 
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where m m mf s   (summation of the eigenfrequency and mode shape residual 

components), and n is the number of design variables p . Based on the relationship 

between a  and p  presented in Equation 3.14, each component of the sensitivity matrix 

is determined by chain rule, and shown in Equation 3.20. 

 

 
   

e en ne
j j j e

ie e
i ie=1 e=1

δr δr δrδa
  N x

δp δpδa δa

p
    (3.20)

 

In the scope of this thesis, since the residual vector is discussed in terms of modal 

parameters (i.e., eigenfrequency and mode shape residuals), their sensitivities with 

respect to the design variables should be determined. It can be realized by taking 

derivatives of Equations 3.5 and 3.6 with respect to the correction factors. The resultant 

expressions are given in Equations 3.21 and 3.22 for eigenfrequency and mode shape 

residuals, respectively. 
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In equations, j

e

δ

δa


 and j

e

δ

δa


 terms are the eigenvalue and mode shape sensitivities, 

respectively (a.k.a. modal sensitivities), and can be calculated analytically with the 

formulas developed by Fox & Kapoor (1968). Note that the expressions are derived 

from an undamped eigenvalue problem under the mass-normalized mode shape 

assumption. All the equations are taken from Maia et al. (1997) and Teughels (2003). 

 

Before the sensitivity equations, it is beneficial to recall some of the important 

expressions encountered in the dynamics of structures (Chopra, 2012). Let K  and M  

be the system stiffness and mass matrices, respectively. Due to the orthogonality 

conditions of modes, Equation 3.23 can be written. 

 

 
T T
i j i j= 0;     = 0   with   i jK M      (3.23)

 

In the case of mass-normalized mode shapes, Equation 3.24 is satisfied. 

 
 T

i i = 1M   (3.24)
 

3.2.3.1 Sensitivity of Eigenvalues 

 

Let j  and j , which are the functions of correction factors, be a solution for the 

undamped eigenvalue problem as given in Equation 3.25. 

 

 j j jK M     (3.25)
 

Premultiplying Equation 3.25 by T
j  results in 
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 T
j j j[  λ ] = 0K M    (3.26)

 

Differentiating Equation 3.26 with respect to ea  gives 
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Since K  and M  are symmetric matrices, j j[ ]K M   and T
j j[ ]K M   terms are 

equal to each other. From Equation 3.25, first and third terms of Equation 3.27 are 

equal to zero and thus 
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Equation 3.28 can be rewritten as 
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Due to the relationship given in Equation 3.24, Equation 3.29 becomes 

 

 jT T
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δa δa δa
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Finally, the sensitivity of eigenvalues is obtained as 
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3.2.3.2 Sensitivity of Mode Shapes 

 

The mode shape sensitivity can be stated as a linear combination of the mode shape 

vectors themselves. The mode shape vectors are linearly independent and therefore 

can be used as basis vectors as given in Equation 3.32. 
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where d indicates the order of the analytical model (i.e., number of modes). 

Differentiating Equation 3.25 with respect to correction factor gives 
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Substituting Equation 3.32 in Equation 3.33 leads to 
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Alternatively 
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Premultiplying Equation 3.35 by T
s , where s j , gives Equation 3.36. 
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By the relationships given in Equations 3.23, 3.24, and 3.25, the left-hand side of 

Equation 3.36 is equal to zero except for s q . 
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Expanding the right-hand side of Equation 3.37 gives 
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As q j , the second term of Equation 3.38 is zero and so 
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It can be seen from Equations 3.28 and 3.37 that the coefficient e
jqα  has to be calculated 

separately in the case of q j . Differentiating T
j j 1M    with respect to ea  leads to 
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Since M  is a symmetric matrix, first and third terms of Equation 3.40 are equal to 

each other, thus Equation 3.41 can be obtained. 
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Substituting Equation 3.32 in Equation 3.41 gives 
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Alternatively 
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Using the relationships given in Equations 3.23 and 3.24, Equation 3.44 can be 

obtained. 
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By assembling Equations 3.39 and 3.44, and substituting them into Equation 3.32, the 

sensitivity of mode shapes is calculated as 
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3.2.3.3 Sensitivities of Eigenfrequency and Mode Shape Residuals 

 

By using the relationship in Equation 3.11, the following expressions can be written 
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Combining Equations 3.20, 3.21, 3.31, and 3.46 gives the sensitivity equations of 

eigenfrequency residuals (Equations 3.47 and 3.48). 
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In the case where the mass properties are assumed to be known and to remain 

unchanged during the updating process, the 
e

δ

δa

M
 term equals to zero. Hereby, 

Equation 3.48 transforms into Equation 3.49 (i.e., only stiffness parameter updating). 
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Combining Equations 3.20, 3.22, 3.45, and 3.46 gives the sensitivity equations of 

mode shape residuals (Equations 3.50 and 3.51). 
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In the case of only stiffness parameter updating, Equation 3.51 transforms into 

Equation 3.52. 
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j q T
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j qq=1; q j

δ

δa (1 a )

K



    
         
  (3.52)

 

In sensitivity analyses, order of the analytical model (d), which is independent of 

the modes that are used for residuals, should be selected as high as possible (i.e., much 

higher than the number of modes that is used for residuals) for a sensitivity matrix 

including contributions of  more modes (i.e., including more information). By this 

way, the obtained sensitivity matrix is more accurate and more representative of the 

investigated system, which in return improves the updating performance. On the other 

hand, since the contributions of higher modes are low, the provided information 

decreases with the increasing mode number. Therefore, a sufficiently accurate but not 

inefficiently costly calculation should be performed. 

 

Note that it is not possible to obtain element stiffness matrices eK  from all FE 

packages; however, nodal forces e
jF  are provided by any FE package. In such cases, 

the equations above should be revised by using the e e
j jF K   transformation, which 

means substituting e
jK   with e

jF  in all equations. 

 

If the residual vector is weighted, as presented by Equation 3.7, the sensitivity 

matrix should also be weighted in a similar way. The weighted sensitivity matrix is 

calculated as in Equation 3.53. 

 
 1/2

PW J  (3.53)
 

If  W  is a diagonal matrix, Equation 3.53 can be equivalently written as 
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  j j
w PJ  (3.54)

 

which means to multiply the jth row of the sensitivity matrix (related to the jth residual) 

by the corresponding weighting factor jw . 

 

It should be stated that an approximate calculation of the components of the 

sensitivity matrix can be obtained by the finite difference method. Formulation is 

presented in Equation 3.55. 

 

 
     j j j

i

δr r r

δp 2

p p p p p

p

   



 (3.55)

 

where p  is the sufficiently small design parameter step. It is clear that the method 

requires two additional modal analysis tasks (i.e., one for p p   and one for p p ) 

for each column of the sensitivity matrix at each iteration. That’s why this method is 

computationally expensive, especially for the systems with higher number of design 

variables, and commonly avoided in practice. 

 

3.2.3.4 Detectability Index 

 

Once the sensitivity matrix is calculated, it can be used to determine detectability 

indices of the design variables as follows (Weber et al., 2007) 

 

 j jD = S  (3.56)

 

where .  denotes the Euclidean norm, jD  represents the detectability index of the jth 

design variable, and jS  is the jth column vector of the sensitivity matrix (i.e., 

corresponding to the jth design variable). The detectability index provides information 

about the sensitivities of the residuals with respect to the design variables. In other 

words, detectable elements are more effective on the residuals (i.e., a unit change in a 

detectable element causes more changes in residuals). By the light of the detectability 

index, it is possible to get feelings on how responses of a model are influenced by 



77 
 

changes of model parameters, to decide whether a parameter should be selected for 

updating or not, and to determine where or/and how to assign design variables. As 

noted earlier, a response sensitive to a parameter (i.e., a detectable parameter) does not 

automatically imply that this parameter has to be included in the updating process. In 

other words, if the value of a parameter is already adequately representing the true 

value, then there is no reason to update it. 

 

3.2.3.5 Condition of the Jacobian Matrix 

 

In FE model updating, condition status of the Jacobian (sensitivity) matrix is an 

important issue. It can be quantified by computing the condition number of the 

Jacobian matrix (i.e., ratio of the largest and smallest singular values of the matrix), 

which measures the sensitivity of the solution to errors (or changes) in the data. A 

matrix with a small condition number (close to 1) is said to be well-conditioned and is 

far from being singular, whereas a matrix with a large condition number is said to be 

ill-conditioned and is nearly singular. In FE model updating, the ill-conditioning state 

is undesired since it increases the computational expense, has convergence difficulties, 

and does not guarantee for a solution. 

 

An optimization problem has a unique solution if it is overdetermined (i.e., the 

number of residuals is higher than the number of design variables (n<m) and the 

Jacobian matrix has full-rank (i.e., having linearly independent columns), which 

means that the matrix T
P PJ W J  is nonsingular or, equivalently  Tdet 0P PJ W J  . 

 

If  Tdet 0P PJ W J   (which corresponds to rank deficiency), the case where some 

columns of the Jacobian matrix are linearly dependent, there is no unique solution (i.e., 

several minimum points exist). In the case of some columns are close to being linearly 

related, the problem has a unique minimum point, but this point is not very prominent. 

Near linear dependency of the columns makes the Jacobian matrix to be ill-

conditioned. Unfortunately, the Jacobian matrix is prone to be ill-conditioned since 

changes in neighboring and/or symmetric elements of a FE model may have almost 
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same influences on residuals (i.e., having similar detectabilities). This situation causes 

linearly dependent columns in the Jacobian matrix. If the discretization becomes finer 

(a.k.a. over-parameterization), this effect gets stronger (Beck & Arnold, 1977; Fritzen 

et al., 1998). To remedy this problem, grouping elements as substructures is a good 

option. In addition, using a higher analytical model order (d) in sensitivity calculations 

enables to distinguish the effects of each element in the model, which in return serves 

to obtain linear independent columns in the Jacobian matrix. 

 

Insensitive residuals (responses) also lead to an ill-conditioned Jacobian matrix. It 

is desired that small variations in design variables cause large changes in residuals 

(i.e., highly sensitive residuals with respect to design variables). Otherwise, it may be 

impossible to minimize the objective function and unrealistic results may exist. The 

problem of insensitive residuals can occur, for example, in the case of a design variable 

with too low or too high initial value, such that a small variation of the design variable 

does not alter the residuals. 

 

As stated before, mode shapes are less sensitive to the stiffness parameters, are more 

difficult to accurately identify from measurements (i.e., they include higher estimation 

uncertainty), and are influenced more from noise than eigenfrequencies. All of these 

cases may result in an ill-conditioned Jacobian matrix. However, mode shapes are the 

indispensable components of the updating process due to their spatial information. 

 

Existence of noise in experimental data can lead to an ill-conditioned problem. 

Besides, ill-conditioned problems are extremely sensitive to measurement noise. Even 

in the presence of low level of noise, significant changes may occur in the location of 

the minimum, which may result to obtain parameter values that are very different from 

their exact values. Therefore, the solution becomes inaccurate and said to be unstable. 

 

Describing the non-updated model parameters (i.e., model parameters that are not 

aimed to be updated) by constraints (e.g., 0 and 0.00001 values for lower and upper 

bounds, respectively) may lead to an ill-conditioned Jacobian matrix. This is because 

they are still updated by the algorithm according to their bounds (i.e., in reality, they 
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are not updated because of their constraints) and are taken into account for sensitivity 

calculations together with the relevant finite elements. Therefore, only the model 

parameters that are really wanted to be updated should be considered, and the others 

should be excluded completely from the updating process. 

 

Based on the statements above, the importance and necessity of limiting the number 

of design variables are revealed again. By this way, the probability to have linearly 

dependent columns and insensitive elements in the Jacobian matrix, which may lead 

to an ill-conditioned problem, can also be reduced.  

 

3.2.4 Optimization Process 

 

FEMU is an optimization process where a minimization problem of the objective 

function is solved. In this concept, definitions of the global and local minimum points 

are essential to interpret and evaluate the results. Namely, a global minimum (i.e., 

absolute minimum) is the point where the objective function has the absolute smallest 

value (i.e., there is not a smaller value that the objective function can have), whereas 

the local minimum is the point where the objective function has the smallest value in 

its neighborhood (i.e., there exist more smaller values that the objective function can 

have). In general, outcomes (solutions) of an optimization problem can be in three 

different forms based on the problem type (i.e., underdetermined or overdetermined, 

ill-conditioned or well-conditioned), which are visualized by Figure 3.3: (i) There 

exists one prominent global minimum point with several local minimum points. This 

is the case when the problem is overdetermined and well-conditioned (i.e., the desired 

case). It is easy to find the global minimum point (Figure 3.3 (a)). (ii) There exists one 

global minimum point, which is not prominent, with several local minimum points. 

This case may occur when the problem is ill-conditioned. It is difficult to find the 

global minimum point (Figure 3.3 (b)). (iii) There exist several global minimum points 

(i.e., infinitely many solutions). This is the case when the problem is underdetermined. 

It is difficult to determine which one of the global minimum points reflects the actual 

solution of the problem (Figure 3.3 (c)). 
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(a) (b) 

 
(c) 

Figure 3.3 Outcomes of an optimization problem: (a) one prominent global minimum point with 

several local minimum points, (b) one global minimum point, which is not prominent, with several 

local minimum points, and (c) several global minimum points 

 

Note that using an efficient and robust (even in the case of an ill-conditioned 

problem) optimization method is essential for the accuracy and reliability of the 

results. In this context, there exist local, global, and response surface methods in the 

area of optimization theory. Brief information for each method is given below. 

 

Local optimization methods begin from a starting point (e.g., initial values of the 

design variables) and produce iteratively a sequence of improved estimates until a 

solution. They provide fast convergence since they are based on derivatives of the 

objective function. The basic local method is the Newton method in which the local 

curvature of the objective function is utilized to establish an approximate quadratic 

model function. The minimum of this function gives the successive point in the 

iterative process. Quasi-Newton, sequential quadratic programming, conjugate 

gradient, and augmented Lagrangian methods are the other commonly used local 

optimization methods. Line search and trust region strategies (algorithms) can be used 
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minimum
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minimum
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to improve their convergence (Conn et al., 2000; Nocedal & Wright, 1999). Due to 

their effectiveness and fast convergence property, local methods are very popular. 

However, they can be trapped in a local minimum and do not guarantee to find the 

global (absolute) minimum. Specific algorithms, which are more convenient for least 

squares problems, are enhanced from the general methods. They are mainly based on 

the fact that the Hessian calculations can be approximated by using only the first-order 

derivative information (Moré & Wright, 1993; Nocedal & Wright, 1999). Gauss-

Newton method, which is derived from the Newton method, is known as the basic least 

squares method. Another commonly used method is the Levenberg-Marquardt 

method. 

 

Global optimization methods are more robust methods that are more likely to find 

the global minimum and are less affected by the selection of the starting position (i.e., 

initial point). These methods are based on probabilistic searching without the usage of 

any gradient information. Requiring a large number of function evaluations is their 

main drawback. Genetic algorithms, simulated annealing, and coupled local 

minimizers are the commonly used global methods (Holland, 1975; Kirkpatrick et al., 

1983; Suykens et al., 2001; Suykens & Vandewalle, 2002). 

 

In response surface methods, the optimization algorithm is applied to an 

approximate surface of the real objective function instead of applying it directly to the 

objective function. The response surface is constituted by combining first- or second-

order polynomials and corresponds with the real objective function in a set of sampling 

points. Because of these polynomials, it may be difficult to find the global minimum 

of an objective function having many local minimums. This issue can be overcome by 

using general response surface methods; however, they are feasible to the problems 

having a low number of design variables (Alotto et al., 1997; Pahner, 1998). 

 

In this thesis, the optimization problem is solved iteratively by using Gauss-Newton 

method with trust region algorithm (Coleman & Li, 1996). A brief theoretical 

background of the method is presented in the following section. Herein, line search 

algorithm is also discussed for comparison with the trust region algorithm. 
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3.2.4.1 Gauss-Newton Optimization Method with Trust Region Algorithm 

 

In Gauss-Newton method, the function  kf p  to be minimized is approximated by 

a quadratic model  kq z  of truncated Taylor series about the current iterate kp . 

 

        T T 2
k k k k

1
q f f f

2
z p p z z p z     (3.57)

 

where z  indicates the step vector from kp ,  kf p  and  2
kf p  are the gradient 

and the Hessian of the objective function, respectively. When  2
kf p  is positive 

definite,  kq z  has a unique minimizer that can be obtained by solving the Newton 

equation presented in Equation 3.58. 

 

    2 GN
k k kf fp z p    (3.58)

 

The next iterate is determined by performing the Newton step presented in Equation 

3.59 and this process is repeated until the convergence is satisfied. 

 

 GN
k+1 k kp p z   (3.59)

 

 f p  and  2f p  can be stated in terms of the Jacobian matrix and residual vector, 

and are presented in Equations 3.60 and 3.61. 

 

          
m

T

j j
j=1

f r r Pp p p J p r p     (3.60)

 

              
m

T T2
j j

j=1

f r rP P P Pp J p J p p p J p J p    2  (3.61)

 

In Gauss-Newton method, the starting point (p0 ) should be selected sufficiently 

close to a local solution (p* ) where  2f p*  is positive definite. Otherwise, 

convergence difficulties may occur. This kind of challenges can be overcome by the 
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implementation of the line search or trust region strategies which improve the 

robustness of the optimization method (Conn et al., 2000; Nocedal & Wright, 1999).  

 

Line search methods are based on determining a direction at each iteration and 

searching along this direction for a new iterate with a lower function value. The iterates 

are generated by Equation 3.62. 

 
 k+1 k k kαp p z   (3.62)

 

where kz  represents the search direction and kα  is the step length (i.e., the distance to 

move along kz ), which is greater than zero and selected so that    k+1 kf fp p . kα  

can be determined by minimizing the function given in Equation 3.63. Once the new 

iterate is obtained ( k+1p ), the process is repeated by a new search direction and step 

length. 

 

    k kα
min  α f αp z


  
0

 (3.63)

 

In the trust region approach, a model function km  (Equation 3.64), which has 

similar behavior to that of the actual objective function f  near the current point kp , is 

developed by the algorithm. In addition, a region that surrounds kp  and where the 

model function can be trusted is determined (i.e., trust region). The trust region is a 

sphere described by  z   , where 0   is its radius (i.e., z  lies inside the trust 

region). By minimizing the model function in Equation 3.64, it is possible to compute 

a candidate for the new iterate ( k+1p ). 

 

        T T 2
k k k k  lies inside the trust region

1
m f f f    

2
z p p z z p z z     (3.64)

 

If the candidate causes an insufficient decrease in f , which means that the model is 

not suitable for f , Equation 3.64 is solved again by using a smaller trust region; 

otherwise, the candidate is approved as a new iterate from which the process reiterates. 

Herein, the trust region is increased since the model is reliable. 
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According to the agreement between the actual and predicted reductions in f  as 

measured by the ratio presented in Equation 3.65, k  is adjusted at each iteration. 

 

 
   
   

k k k
k

k k k

f f

f m  

p p z

p z

 
 


 (3.65)

 

If  k 1   (i.e., indicator of good agreement), then k  is increased. If k  is small or 

negative (i.e., indicator of poor agreement), then k  is decreased. Else, k  remains 

unchanged. In addition, k  is used for the decision to accept a step kz . Namely, if k  

is greater than a small positive number (e.g., k 0.00001  ), then the kz  is acceptable. 

Otherwise, kz  is recomputed with a smaller trust region. Generally, the step direction 

changes whenever the size of the trust region is changed. On the other hand, only a 

single search direction is used in line search strategy. 

 

The main difference between the line search and trust region approaches is the 

selection of the direction and distance of the step to the next iterate. In line search 

algorithm, first the direction kz  is fixed and then the appropriate distance kα  (step 

length) is determined. On the other hand, in trust region algorithm, first the maximum 

distance (i.e., the trust region radius k ) is chosen. Afterwards, the best direction and 

step are sought according to this distance. In the case of unsatisfactory results, the trust 

region radius is reduced and a new candidate is tried out. In general, the trust region 

strategy is more robust and exhibits better convergence performance since it prevents 

the iterates from taking large steps (even in the case of an ill-conditioned problem). 

 

In the scope of this thesis, Gauss-Newton method with trust region algorithm is 

performed by using the fmincon() function in the MATLAB’s optimization toolbox 

(MATLAB, 2017). The first- and second-order derivatives of the objective function 

(i.e., the gradient and the Hessian, respectively) are calculated and provided to the 

fmincon() to improve its convergence performance. In addition, it is possible to define 

constraints (i.e., lower and upper bounds that the design variables have to satisfy 

during updating process) and initial points p0  (i.e., the starting points of the 



85 
 

optimization algorithm) for the design variables. Note that it is very important to select 

suitable constraints and initial points, which are close to the actual parameter values, 

to converge to the optimal solution (i.e., global minimum of the objective function). 

Otherwise, it is possible to encounter convergence difficulties and/or to be trapped in 

a local minimum. In addition, existence of the constraints has a beneficial effect on the 

solution process since it reduces the search space of the optimization algorithm. 

 

3.3 Applicability of the Sensitivity-Based FEMU Method to Different Types of 

Structural Systems 

 

It is possible to perform the sensitivity-based FEMU method on different types of 

structural systems. Application of the method is independent of the structure type (e.g., 

building, bridge, tower, dam, airport, etc.), structure size/scale (e.g., small-scale or 

full-scale), material (e.g., reinforced concrete, steel, masonry, etc.), loading conditions 

(e.g., self-weight, earthquake, wind, laboratory tested, etc.), and damage mechanisms. 

In the literature, there exist numerous examples of the method being applied on 

different types of structures, such as reinforced concrete buildings (Behmanesh et al., 

2018; Moaveni et al., 2013; Song et al., 2019), bridges (Garcia-Palencia et al., 2015; 

Petersen & Oiseth, 2017; Teughels & De Roeck, 2004), and masonry structures 

(Bassoli et al., 2018; Boscato et al., 2015; Compán et al., 2017; Foti et al., 2012; Torres 

et al., 2017). 

 

Although this is the case, applications of the method on real complex structural 

systems come with certain challenges. Some of them are summarized here: (i) 

Advanced numerical modeling is necessary for representing the real structural 

behavior. For instance, appropriate modeling of an infilled frame to take into account 

frame-infill interaction is necessary to present the real behavior of the system 

accurately. (ii) Having a dynamic test grid providing high spatial resolution is often 

not possible as the number of existing sensors is usually limited. Therefore, for real-

life structures, a large number of sensors may be necessary for accurate registration of 

their dynamic responses. In addition, broad-band excitation of real-life structures due 

to their larger sizes is another important issue. Especially for very rigid structures, 
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earthquake excitation may be the only option to reveal their dynamic characteristics. 

(iii) Damage identification using the FEMU method after a damaging event is not 

always possible because the dynamic characteristics of the undamaged state may not 

be readily available. Therefore, important structures must be monitored continuously 

to capture their undamaged and damaged states. Finally, (iv) numerical models of real 

structures usually contain a large number of finite elements, updating all of these 

elements in the framework of FEMU may not be feasible. Determination of which 

finite element(s) to update is usually not obvious and there are usually many 

possibilities to choose from. Different choices may result in different scenarios. Only 

one of these scenarios corresponds to the actual state of the system under investigation. 

 

3.4 Developed Code for the Sensitivity-Based FEMU Method 

 

In order to carry out model updating and damage identification studies, the 

sensitivity-based FEMU method was programmed in MATLAB environment by 

considering the details presented in the previous sections of the thesis. For FE model 

analyses and extracting the parameters that are required for model updating (e.g., 

numerical modal parameters, element mass and stiffness matrices, etc.), FEDEASLab 

FE software (Flippou & Constantinides, 2004) was utilized. Note that FEDEASLab is 

a MATLAB based program that consists of many codes (m-files) serving different 

purposes (e.g., m-files for 2-D frame element, 3-D frame element, construction of 

stiffness and mass matrices, modal analysis, static analysis, etc.). 

 

In the scope of the research work presented in this thesis, some modifications and 

add-ons (e.g., related to the extraction of element stiffness and mass matrices, 3-D 

modal analysis, translational and rotational spring definitions, etc.) were performed on 

the existing FEDEASLab m-files in order to make them suitable for the updating code. 

Consequently, the updating code and FEDEASLab were arranged to work in harmony. 

Note that they are nested due to the iterative process of the updating method (i.e., the 

outputs of FEDEASLab are the inputs of the updating code, and then, the outputs of 

the updating code become the inputs of FEDEASLab, and continues so on). 
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3.5 Sensitivity-Based FEMU Studies Performed on Numerical Models 

 

This section of the thesis includes sensitivity-based FEMU studies performed on 

numerical models. By this way, the effectiveness and accuracy of the previously 

developed code are revealed. Accordingly, a single-bay, single-story, three 

dimensional (3-D) structural frame model consists of 10 equal length finite elements 

was established in FEDEASLab environment by using 3-D linear elastic Bernoulli-

Euler frame elements, which have 6 DOFs per node (i.e., 3 translational and 3 

rotational DOFs) (Figure 3.4). Each finite element of the model has 80x80 cm cross-

sectional dimensions and 100 cm length. Material properties were set to 214 GPa and 

8000 kg/m3 for Young’s modulus and mass density, respectively (i.e., the frame is 

made of steel). Support conditions are fixed and pinned for the left and right columns, 

respectively. Note that this model is considered as a reference model that can be used 

for further studies. 

 

 

Figure 3.4 Single-bay, single-story, 3-D structural frame model 

 

Model updating studies of this reference model were performed for 4 different 

cases: (i) Mass density updating, (ii) Young’s modulus updating, (iii) Young’s 

modulus updating by using less residuals, and (iv) Young’s modulus updating by using 

less residuals and design variables. Each case is detailed in the following sections. 
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3.5.1 Case-I: Mass Density Updating 

 

In this case, a new FE model was developed by reducing the mass density values of 

the beam member (i.e., elements denoted as 7, 8, 9, and 10 in Figure 3.4) of the 

reference model by 50%. Then, these changes were tried to be detected by updating 

the reference model. Updating was performed by using the frequency and mode shape 

estimations of the first 5 modes. Therefore, rf  has 1x5=5, rs  has (3x9)x5=135 (3 is 

the translational DOFs per node, 9 is the number of free nodes in the model), and r  

has 5+135=140 components (m=140). All of the finite elements were selected as 

design variables, thus n=10. Note that independent damage functions were assigned 

for each element (i.e., the finite elements were updated separately). Since n<m, an 

overdetermined problem occurs. The dimensions of the Jacobian matrix are 140x10. 

Model order (d) was selected as 27 (i.e., corresponding to all the numerical modes). 

Only reduction was allowed in design variables by defining constraints ( < 0 p 1 ). 

Weighting factors for all residuals were set to 1 in order to provide same weight. The 

optimization problem was solved by Gauss-Newton method with trust region 

algorithm. Model updating results are shown in Table 3.1. 

 

Table 3.1 Model updating results for Case-I 

Mode # 
Case-I 

Reference 
Model 

Freq. Diff. 
[%] 

MAC 
Objective 
Function 

Value 

Number  
of  

Iterations Freq. [Hz] Freq. [Hz] 

1 18.30 
15.31  

(18.31) 
-16 
 (0) 

1.000 
(1.000) 

0.460 
(8.64E-6) 

5 

2 53.28 
44.01  

(53.27) 
-17 
 (0) 

1.000 
(1.000) 

3  62.79 
53.56  

(62.76) 
-15 
 (0) 

0.987 
(1.000) 

4 200.18 
152.52 

(200.25) 
-24 
 (0) 

0.980 
(1.000) 

5 209.50 
172.73  

(209.61) 
-18 
 (0) 

0.922 
(1.000) 

 

In Table 3.1, the values in parentheses represent the ones obtained after model 

updating. It can be seen from the table that the optimization process is finished in 5 

iterations. After the application of model updating, the objective function is 

minimized, frequency differences are zeroized (i.e., almost same frequency values as 
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the reference model are obtained), and MAC values (calculated between the reference 

model and Case-I) are increased. Percentage changes of the model parameters (design 

variables) with respect to their initial values are presented in Figure 3.5. 

 

In the figure, the actual (i.e., 50% mass density reductions for the 7, 8, 9, and 10 

numbered elements of the model) and detected (by the updating code) mass density 

reductions are given together. It can be concluded that the updating code detected the 

changes of the frame accurately in terms of location and severity. All these findings 

are the indicators of the success of the code. 

 

 

Figure 3.5 Actual (written in red) and detected (written in black) mass density reductions for Case-I 

 

3.5.2 Case-II: Young’s Modulus Updating 

 

In this case, a new FE model was created by reducing the Young’s modulus values 

of the reference model by different amounts (i.e., 70% for the elements #1 and #4, 40% 

for the elements #3 and #6, and 25% for the element #9). Then, these changes were 

tried to be detected by updating the reference model. It should be stated that the 

remaining updating conditions (e.g., residuals, design variables, weighting factors, 

constraints, etc.) are the same as the ones adopted in Case-I. Model updating results 

are shown in Table 3.2. 
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Table 3.2 Model updating results for Case-II 

Mode # 
Case-II 

Reference 
Model 

Freq. Diff. 
[%] 

MAC 
Objective 
Function 

Value 

Number  
of  

Iterations Freq. [Hz] Freq. [Hz] 

1 11.19 
15.31 

(11.19) 
37 
(0) 

0.989 
(1.000) 

1.552 
(7.23E-6) 

11 

2 32.37 
44.01 

(32.38) 
36 
(0) 

0.998 
(1.000) 

3  37.65 
53.56 

(37.64) 
42 
(0) 

0.984 
(1.000) 

4 124.76 
152.52 

(124.80) 
22 
(0) 

0.985 
(1.000) 

5 149.71 
172.73 

(149.61) 
15 
(0) 

0.979 
(1.000) 

Rank: 10 (10)     Condition Number: 23.42 (74.42)     Determinant: 1.20E-11 (1.10E-9) 

 
In Table 3.2, the values in parentheses represent the ones obtained after model 

updating. It can be seen from the table that the optimization process is finished in 11 

iterations. After the application of model updating, the objective function is 

minimized, frequency differences are zeroized (i.e., almost same frequency values as 

the reference model are obtained), and MAC values (calculated between the reference 

model and Case-II) are increased. Based on the rank, condition number, and 

determinant calculations, the Jacobian matrix is said to be full-rank, well-conditioned, 

and non-singular (but nearly to be singular). Percentage changes of the model 

parameters (design variables) with respect to their initial values are presented in Figure 

3.6. 

 

Figure 3.6 Actual (written in red) and detected (written in black) Young’s modulus reductions for 

Case-II 
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In the figure, the actual (i.e., 70% for the elements #1 and #4, 40% for the elements 

#3 and #6, and 25% for the element #9) and detected (by the updating code) Young’s 

modulus reductions are given together. It can be concluded that the updating code 

detected the changes of the frame accurately in terms of location and severity. All these 

findings are the indicators of the success of the code. 

 

3.5.3 Case-III: Young’s Modulus Updating by Using Less Residuals 

 

In this case, the model used in Case-II was handled again. The only difference is 

the amount of the residuals; namely, only the frequency estimations of the first 5 

modes were used. Therefore, rf  has 1x5=5 components. Since there are no mode 

shape residuals, r   has 5 components too (m=5). All of the finite elements were 

selected as design variables, thus n=10. An underdetermined problem occurs since 

m<n; therefore, they may exist infinitely many solutions. The dimensions of the 

Jacobian matrix are 5x10. Remaining updating conditions are the same as the ones 

adopted in Case-II. Model updating results are given in Table 3.3. 

 

Table 3.3 Model updating results for Case-III 

Mode # 
Case-III 

Reference 
Model 

Freq. Diff. 
[%] 

MAC 
Objective 
Function 

Value 

Number  
of  

Iterations Freq. [Hz] Freq. [Hz] 

1 11.19 
15.31 

(11.19) 
37 
(0) 

0.989 
(1.000) 

1.441 
(2.34E-9) 

13 

2 32.37 
44.01 

(32.37) 
36 
(0) 

0.998 
(0.999) 

3  37.65 
53.56 

(37.65) 
42 
(0) 

0.984 
(1.000) 

4 124.76 
152.52 

(124.76) 
22 
(0) 

0.985 
(0.999) 

5 149.71 
172.73 

(149.70) 
15 
(0) 

0.979 
(0.994) 

Rank: 5 (5)     Condition Number: 15.40 (42.10)     Determinant: -1.56E-90 (-2.20E-92) 

 

In Table 3.3, the values in parentheses represent the ones obtained after model 

updating. It can be seen from the table that the optimization process is finished in 13 

iterations. After the application of model updating, the objective function is 

minimized, frequency differences are zeroized (i.e., almost same frequency values as 
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the reference model are obtained), and MAC values (calculated between the reference 

model and Case-III) are increased. Based on the rank, condition number, and 

determinant calculations, the Jacobian matrix is said to be full-rank, well-conditioned, 

and singular (i.e., there is no unique solution). Note that the Jacobian matrix is full-

rank although it is singular. This occurs because of the underdetermined nature of the 

problem. Percentage changes of the model parameters (design variables) with respect 

to their initial values are presented in Figure 3.7. 

 

 

Figure 3.7 Actual (written in red) and detected (written in black) Young’s modulus reductions for 

Case-III 

 

In the figure, the actual (i.e., 70% for the elements #1 and #4, 40% for the elements 

#3 and #6, and 25% for the element #9) and detected (by the updating code) Young’s 

modulus reductions are given together. It can be seen that the updating code couldn’t 

detect the changes of the frame accurately despite the minimizations in the objective 

function and modal parameter discrepancies. This is an expected result since the 

problem is underdetermined. In other words, the optimization algorithm has found one 

of the infinite solutions. 
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3.5.4 Case-IV: Young’s Modulus Updating by Using Less Residuals and Design 

Variables  

 

In this case, the model used in Case-III was handled. The only difference is the 

amount of the design variables; namely, common design variables were assigned to 

different element groups (i.e., one for the elements #1 and #4, and one for the elements 

#3 and #6). Besides, only the elements, in which the predefined changes were made, 

were selected as design variables (i.e., the elements #1, #3, #4, #6, and #9). 

Consequently, 3 design variables are obtained: one for the elements #1 and #4, one for 

the elements #3 and #6, and one for the element #9. Since n<m (n=3, m=5), an 

overdetermined problem occurs. The dimensions of the Jacobian matrix are 5x3. 

Remaining updating conditions are the same as the ones adopted in Case-III. Model 

updating results are given in Table 3.4. 

 

Table 3.4 Model updating results for Case-IV  

Mode # 
Case-IV 

Reference 
Model 

Freq. Diff. 
[%] 

MAC 
Objective 
Function 

Value 

Number  
of  

Iterations Freq. [Hz] Freq. [Hz] 

1 11.19 
15.31 

(11.19) 
37 
(0) 

0.989 
(1.000) 

1.441 
(7.16E-9) 

12 

2 32.37 
44.01 

(32.37) 
36 
(0) 

0.998 
(1.000) 

3  37.65 
53.56 

(37.65) 
42 
(0) 

0.984 
(1.000) 

4 124.76 
152.52 

(124.76) 
22 
(0) 

0.985 
(1.000) 

5 149.71 
172.73 

(149.71) 
15 
(0) 

0.979 
(1.000) 

Rank: 3 (3)     Condition Number: 4.22 (7.09)     Determinant: 0.09 (0.45) 

 

In Table 3.4, the values in parentheses represent the ones obtained after model 

updating. It can be seen from the table that the optimization process is finished in 12 

iterations. After the application of model updating, the objective function is 

minimized, frequency differences are zeroized (i.e., almost same frequency values as 

the reference model are obtained), and MAC values (calculated between the reference 

model and Case-IV) are increased. Based on the rank, condition number, and 

determinant calculations, the Jacobian matrix is said to be full-rank, well-conditioned, 
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and non-singular. Note that the condition number is reduced significantly as compared 

to Case-III. This is because of preventing the linearly dependency of the columns of 

the Jacobian matrix by limiting the number of design variables. Percentage changes of 

the model parameters (design variables) with respect to their initial values are 

presented in Figure 3.8. 

 

In the figure, the actual (i.e., 70% for the elements #1 and #4, 40% for the elements 

#3 and #6, and 25% for the element #9) and detected (by the updating code) Young’s 

modulus reductions are given together. It can be concluded that the updating code 

detected the changes of the frame accurately in terms of location and severity. All these 

findings are the indicators of the success of the code. 

 

 

Figure 3.8 Actual (written in red) and detected (written in black) Young’s modulus reductions for 

Case-IV 
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CHAPTER FOUR 

STATIC AND DYNAMIC TEST RESULTS OF THE QUASI-STATICALLY 

TESTED REINFORCED CONCRETE FRAMES WITH DIFFERENT INFILL 

CONDITIONS 

 

4.1 Introduction 

 

In extensive studies conducted in Dokuz Eylul University Structural Mechanics 

Laboratory, half-scale, single-bay, single-story eight reinforced concrete (R/C) frames 

with different infill conditions, namely bare, locked type infilled, and standard type 

infilled, were tested. Studies were realized as part of a project which was supported by 

The Scientific and Technological Council of Turkey (TUBITAK) under the Grant 

#112M203. This chapter of the thesis aims to present static and dynamic test results of 

the frames which were quasi-statically tested under progressively increasing in-plane 

drifts, and after dynamically tested at some predetermined drifts. At different drift 

levels, therefore at different damage states, ambient vibration and white-noise (having 

different excitation amplitudes) tests were performed to estimate the modal parameters 

of the frames. An electro-dynamic shaker, positioned on the centerline of the slab for 

white-noise tests, was used to impose broad-band excitation. Three different output-

only system identification methods, namely NExT-ERA, SSI-DATA, and EFDD were 

used to process the recorded dynamic response data at different damage states (i.e., 

theoretical backgrounds of these methods are presented in Section 2.2.3). A 

comparative study was performed for different frames at different damage states. 

Detailed visual damage inspections, which were made during quasi-static tests (i.e., 

discrete damage states), and their evolutions with respect to increasing drift ratios were 

coupled with the corresponding modal identification results. By this way, correlation 

studies could be performed between the identified modal parameters and occurred 

damages (with type, location, and extent information). Note that in the scope of this 

thesis, only three of the frames are discussed (i.e., one bare and two infilled frames) in 

the following sections. 
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4.2 Description of the Reinforced Concrete (R/C) Frames  

 

One bare (i.e., no infill) and two infilled half-scale, single-bay, single-story R/C 

frames with partial slabs were tested under quasi-static loading conditions along their 

in-plane directions. The material tests provided that the concrete compressive strength 

is ~38 MPa (i.e., the 28-day average strength of 15x15x15 cm cubic samples) and the 

yield strength of the reinforcing bars are ~420 MPa. Both columns and beam members 

have cross-sectional dimensions of 15x25 cm, whereas the slab thickness is 6 cm. 

Height of the frames is 150 cm from the foundation top to the slab top, and column 

center-to-center span length is 225 cm (Figure 4.1 (a)). The reinforcement detailing 

was done using capacity design principles (Figure 4.1 (b)). Approximately 10% of the 

columns' axial load capacity (~120 kN load) was applied on each column to represent 

the upper story weights by using two separate hydraulic pistons. This axial load 

resulted in pre-compression effects on the columns instead of a direct increase in the 

mass of the frame systems. In addition to this load, 4 concrete pads (each weighing 

1.38 kN) and 16 steel plates (each weighing 0.18 kN) were placed on the slab for 

representing a portion of the service loads. The tests were performed by applying a 

lateral force to the R/C frames with the usage of double-acting displacement-controlled 

servo-hydraulic actuator which was attached to the frames at the slab level (Figure 4.1 

(c)). General views of the test setup with test equipments for one of the infilled frames 

are shown in Figure 4.2. Note that the same setup was used for all tests and frames. 

 

(a) (b) 

Figure 4.1 Schematic view of the (a) frame, (b) reinforcing details, and (c) test setup (dimensions are 

in cm) 
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(c) 

Figure 4.1 continues 

 

Figure 4.2 General views of the test setup with test equipments (Personal archive, 2016) 

 

Two different types of brick units, namely standard and locked bricks as shown in 

Figure 4.3, were used to build the infill walls. The main difference between these 

bricks is that the former one uses mortar on the bed and head-joints (standard brick), 

and the latter one does not use mortar on any of these joints (locked brick). The locked 

bricks lock into each other while enabling sliding motion along their in-plane 

directions (along the strong axis of the R/C frames) due to their mortar-less feature. 

This novel feature of the brick enables low-to-moderate (mild) level panel action to 

develop within frame systems, and therefore has the potential of preventing soft or 

weak story mechanism (Misir et al., 2012). The out-of-plane stability (along the weak 

axis of the R/C frames) is provided by the brick’s internal locking feature. Mortar was 

spring system

axial load bar
actuator

controllable constant axial compressive force

vertical beam loads
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used at all brick-to-brick and brick-to-frame interfaces for the infill wall constructed 

with standard bricks, whereas for the infill wall with locked bricks, mortar was used 

only at the brick-to-foundation interface. At the brick-to-beam interface, a foam-type 

material was used as it is the case in real-life applications. General views and interface 

details for the infill walls constructed with standard and locked type bricks are 

presented in Figure 4.4. In addition, types of infills used inside the frames are 

summarized in Table 4.1. 

 

  

(a) (b) 

Figure 4.3 (a) Standard and (b) locked type bricks (Personal archive, 2016) 

 

  
(a) 

  
(b) 

Figure 4.4 General views and interface details for the infill walls constructed with (a) standard and 

(b) locked type bricks (Personal archive, 2016) 
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Table 4.1 Infill conditions of the frames 

Frame # Infill Type of Infill 

F1 No - 

F2 Yes Locked 

F3 Yes Standard 

 

4.3 Description of the Quasi-Static Test Program 

 

Quasi-static tests were performed by imposing incrementally increasing story drifts 

to the frames (i.e., progressively increasing damage on the members of the frames were 

induced). Note that a single-cycle displacement pattern (history), which was 

determined in accordance with ACI 374.1.05 (2005), was used for each test and is 

shown in Figure 4.5. A total of 13 drift ratios (i.e., damage states) were defined, namely 

undamaged state, 0.075%, 0.15%, 0.20%, 0.35%, 0.50%, 0.75%, 1.00%, 1.40%, 

1.75%, 2.20%, 2.75%, and 3.50%. The lateral displacements corresponding to these 

drift ratios can be calculated by multiplying the drift ratios with the specimen height 

defined as the length from the foundation to the actuator level (i.e., ~139 cm). 

Accordingly, the frames were subjected to in-plane (i.e., lateral) cyclic displacements 

ranging from 1.04 mm (0.075% drift) to 48.65 mm (3.50% drift). 

 

 

Figure 4.5 Single-cycle displacement pattern imposed on the frames 
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Twelve linear variable displacement transducers (LVDTs) and four string 

potentiometers (string pots) were used for static response measurements during quasi-

static tests. The placement of these sensors is shown in Figure 4.6. Here, each LVDT 

and string pot is abbreviated as “L” and “S”, respectively. Note that S3 and S4 are 

available if there exists an infill wall. S1 measures the top displacement, therefore the 

imposed drift ratio on the frames, in order to cross-check the displacement given by 

the actuator, whereas S2 is used to track if there exists a movement in the foundation 

(i.e., sliding of the frame), which was desired to be avoided by the stoppers (Figure 4.1 

(c)). 

 

 
Figure 4.6 Placement of the static measurement sensors (L: LVDT, S: String pot) 

 

4.4 Description of the Dynamic Test Program 

 

At the end of each predetermined drift ratio: 0%, 0.20%, 0.50%, 1.00%, 1.40%, 

2.20%, and 3.50% (i.e., at gradually increasing damage levels), a series of white-noise 

(WN) and ambient vibration (AV) tests were conducted on the frames. These dynamic 

test points, which were selected so that significant changes in modal parameters as 

damage level increases can be captured, are presented in Figure 4.5 with the circle 

symbol. The actuator was detached from the frames before the dynamic tests. This was 

done to prevent the restraining effect of the actuator on the frames, which may change 

the stiffness characteristics of the frames. It should be stated that once the frames went 

into severe nonlinear range, they retained different levels of residual deformations. 

When the actuator was detached before the dynamic tests, a certain amount of residual 
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deformation remained on the frames. In other words, the dynamics tests were 

performed at zero lateral force but not at zero residual displacement. It should be stated 

that the axial load applied on each column was also present during the dynamic tests; 

however, effects of this axial load (i.e., pre-compression effects on column members) 

on system identification results were not investigated within this study.  

 

WN tests were performed by a uni-axial electro-dynamic shaker (with an increased 

reaction mass) which was placed on top of the frames (at the mid-line of the slab). The 

shaker was configured to move along the in-plane directions (along the x-axis) of the 

frames only. By this way, broad-band dynamic excitation was applied on the frames 

with an intention to excite their in-plane modes. The input signal to the shaker, the 

same one was used for all tests, was designed so that it had a frequency bandwidth of 

0.1 – 100 Hz. This bandwidth was deemed sufficiently broad-band to excite the first 

few in-plane modes obtained based on preliminary numerical model studies. The 

signal amplitude was regulated manually by the gain knob of the signal amplifier unit 

but was set to a fixed value once sufficiently high vibration response was observed. 

Offline tuning technique (OTT), a command shaping control strategy, was used for 

WN tests to improve the signal reproduction fidelity of the shaker. This way the 

achieved signal on the shaker platen would be in broad-band nature as the designed 

input signal (details of OTT are presented in Section 2.2.4). Note that the 

implementation of OTT was necessary since the shaker itself has no built-in controller.  

 

The frames were densely instrumented with 4 tri-axial and 5 uni-axial piezo-electric 

type accelerometers (i.e., 17 measurement points for each test). Also, one uni-axial 

accelerometer was mounted on the shaker in order to measure the WN excitation level 

imposed on the frames. Accelerometers used have ±5g amplitude range, frequency 

bandwidth of 0.25 Hz to 3000 Hz, sensitivity of 1000 mV/g, and 5e-4 broad-band 

resolution. The data acquisition system used is a NI‐PXI system consisting of three 18-

bit PXI‐4472 A/D cards (each has 8 channels) with simultaneous sampling capability 

and anti-aliasing filters. Accelerometer layout (i.e., spatial distribution of the 

accelerometers) was determined from modal analysis studies performed on the initial 

numerical models of the frames. Since the responses of the frames are dominated 
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mainly by the modes in the frequency band of interest, sensor placement was 

performed in order to capture as many responses as possible. The accelerometer layout 

with positive polarities, the same one was used for all tests and frames, are presented 

in Figure 4.7. Note that each accelerometer station is abbreviated as “Sta” in the figure. 

As an example, accelerometers of Sta 1 (consists of one tri-axial accelerometer) and 

Sta 2 (consists of two uni-axial accelerometers) are shown in Figure 4.8 

(accelerometers are marked with yellow circles). Here, it is also possible to see the 

static measurement sensors (i.e., LVDT, string pot) in this figure. 

 

 

Figure 4.7 Accelerometer layout with positive directions (dimensions are in cm) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 4.8 Accelerometers of (a) Sta 1 and (b) Sta 2 (Personal archive, 2016) 
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For system identification purpose, 12 minutes long WN and AV response data at 

the end of the predetermined drift ratios (i.e., 7 sets for each frame) were recorded at 

a rate of 250 Hz. Before the modal analysis work, pre-processing of the recorded data 

was performed in MATLAB environment; namely the data were detrended, and then 

band-pass filtered between 0.5-100 Hz by using finite impulse response (FIR) filter in 

order to enhance the estimation accuracy by focusing on the frequency range of 

interest. This bandwidth was decided to be adequate to detect the first few modes of 

the frames (based on numerical models) and eliminate the undesired frequency content 

in the recorded data (e.g., environmental noise effects that pollute the data). 

 

4.5 Damage Observations and Quasi-Static Test Results 

 

Detailed visual damage inspections were made during the quasi-static tests and the 

observations were documented. A summary of these observations at specific drift ratio 

intervals is given in Table 4.2 for each frame. In addition, a set of photographs of the 

tested frames at 0.20% and 3.50% drift ratios are presented in Figure 4.9 as a 

complementary information for Table 4.2. Although detailed damage descriptions at 

each drift ratio are given in the table, some important characteristics of damage trends 

for the frames are summarized: For the frame with locked infills (F2), stepped and 

horizontal cracks were mainly formed at brick-to-brick interfaces over a large portion 

of the infill wall (panel) due to the sliding mechanism. Numerous and scattered plaster 

cracks (i.e., no concentration of crack patterns) occurred and no significant brick 

crushing was observed. On the other hand, for the frame with standard type infills (F3), 

cracks were concentrated at corner zones where a bi-axial compression-compression 

stress state developed due to lateral in-plane loading which caused brick members to 

crush and spall around these zones (i.e., concentration of cracks). Also, it can be said 

that the presence of the standard infills caused the number and width of the cracks 

induced on the surrounding frame members to increase (e.g., in the case of standard 

infilled frame, structural damage was observed throughout the column(s), whereas for 

the bare and locked infilled frames, structural damage was mainly concentrated on the 

column(s) bottom ends). From this perspective, it can be said that the infilled frames 

have different damage patterns. 
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Table 4.2 Summary of visual damage inspections for different frames (F: Frame, I: Infill) 

Drifts 
Damage Description 

(%) 
F1 (no infill) F2 (locked infill) F3 (standard infill) 

0.
07

5-
0.

20
 

F 
Minor flexural cracks on the 
beam (<0.2 mm). No cracks 

on column(s). 

Minor cracks on column(s) 
ends (<0.2 mm). No cracks on 

beam. 

Minor flexural cracks on beam - 
column(s) joints and column(s) 

ends (<0.2 mm). 

I  
Separation between infill 
panel - frame interfaces 

started. 

Separation started between infill 
panel - frame interfaces. 

0.
25

-0
.5

0 F 

New beam flexural cracks. 
Flexural column(s) cracks. 

Minor cracks on the slab and 
beam (<0.5 mm). 

Flexural cracks on various 
parts of column(s), beam 
ends, and slab (<0.2 mm). 
Cracks were increased in 

number. 

Shear and flexural cracks arose at 
various zones of beam and 

column(s) ends. 

I  
Minor diagonal cracks at 

corner zones. No considerable 
visible damage on infill. 

Diagonal cracks at corner zones. 
Plaster spalled off due to 

crushing. 

0.
75

-1
.0

0 

F 
Moderate damage on frame 
joints. New minor flexural 
cracks on beam (<1 mm). 

Flexural cracks on column(s), 
beam, and slab were increased 
in number (Crack width < 0.5 

mm). 

New diagonal shear cracks arose 
on column(s) ends. Some flexural 

cracks on beam and column(s) 
ends were propagated. 

I  

Frame infill contact interface 
started to get lost (separation 

> 1cm). Minor cracks at 
corner. No considerable crack 

on infill. 

No additional visible cracks. Gap 
between frame - infill panel 
became more than 10 mm. 

1.
40

 

F 

Uplift between foundation - 
column(s) ends. Moderate 
flexural cracks on slab and 
beam - column(s) ends (>2 

mm). 

New slab cracks appeared. 

New flexural cracks arose on 
beam and column(s) ends. Shear 
cracks appeared at bottom parts 

of column(s). 

I  

Shear cracks arose in both 
diagonal directions. 2 cm gap 
formed between panel - frame 

interface. Plaster swelled. 

More than 10 mm gap between 
panel - frame interface. Plaster 
spalled off due to crushing at 

corners. 

1.
75

-2
.2

0 

F 

Uplift between foundation - 
column(s) ends increased. 
Moderate - severe flexural 

cracks on column(s) - beam 
interfaces (>3 mm). 

Moderate - severe frame 
cracks (> 5 mm). 

New flexural cracks arose 
throughout the beam, on slab and 

column(s) bottom ends. 

I  

Plaster spalled off at corner 
zone. Irregular horizontal 
crack formations. In some 

parts, gap between two brick 
> 10 mm. 

Infill was crushed and spalled off 
only at corner parts. More than 

25 mm gap between panel - 
frame interface. 

2.
75

-3
.5

0 F 

Severe flexural damage on 
frame (>5 mm). Spalling and 
crushing at base of column(s) 

concrete. Buckling of 
reinforcing bars at column(s) 

bottom ends. 

Reinforcing bars became 
visible and buckled. Concrete 
spalled off at bottom ends of 
column(s). New frame cracks 

were observed. 

Reinforcing bars became visible 
and buckled. Cracks were 

propagated at column(s) bottom 
ends. 

I  
Plaster spalled off throughout 

the wall. 

More than 35 mm gap between 
panel - frame interface. No 

additional infill wall damage. 
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F1 

  

F2 

  

F3 

  

 (a) (b) 

Figure 4.9 Damage states of the frames at the end of (a) 0.20% and (b) 3.50% drift ratios, respectively 

(Personal archive, 2016) 

 

Hysteretic lateral force-displacement curves of the frames obtained from quasi-

static cyclic tests are shown in Figure 4.10. By combining the peak points of the 

hysteretic curves, it is possible to plot the strength envelope curves of the frames which 

are presented in Figure 4.11. From the figures, it is clear that there exist strength and 

stiffness degradations as the drift ratio (i.e., displacement level) increases. As 

expected, the additional lateral resistance imposed on the frames by the standard type 

infills (F3) is much higher than the additional resistance by the locked type infills (F2) 

(i.e., F3 reaches relatively higher lateral load levels). Moreover, the frame with 

standard infills reaches its maximum lateral resistance earlier than other frames. The 

frame with locked infills contributes to the lateral resistance about 39% with respect 

to the bare frame (F1). For the standard type infills, this contribution is about 113%. 



106 
 

The frame with locked infills shows lower strength degradation than that of the frame 

with standard infills. Since the contribution of infills to the lateral strength of a frame 

structure is not considered in most of the seismic codes, the behavior of the frame with 

locked infills seems analogous to the bare frame. 

 

  

F1 (no infill) F2 (locked infill) 

 

F3 (standard infill) 

Figure 4.10 Hysteretic curves for the frames obtained from quasi-static cyclic tests 

 

 
Figure 4.11 Strength envelope curves for the frames 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-200

-150

-100

-50

0

50

100

150

200

250

Top Displacement [mm]

B
as

e 
S

h
ea

r 
[k

N
]

MAX. Strength=101 kN
Reached @ 1.75%

-50 -40 -30 -20 -10 0 10 20 30 40 50
-200

-150

-100

-50

0

50

100

150

200

250

Top Displacement [mm]

B
as

e 
S

he
ar

 [k
N

]

MAX. Strength=140 kN
Reached @ 1.75%

-50 -40 -30 -20 -10 0 10 20 30 40 50
-200

-150

-100

-50

0

50

100

150

200

250

Top Displacement [mm]

B
as

e 
S

he
ar

 [k
N

]

MAX. Strength=215 kN
Reached @ 0.75%

-50 -40 -30 -20 -10 0 10 20 30 40 50
-250

-200

-150

-100

-50

0

50

100

150

200

250

Top Displacement [mm]

B
a

se
 S

h
e

a
r 

[k
N

]

 

 
F1
F2
F3



107 
 

Stiffness degradation curves of the frames are presented in Figure 4.12 (a). Herein, 

the peak-to-peak stiffness approach, which is described as the slope of the line that 

connects negative and positive peak points for a cycle of hysteretic curve, is adopted. 

In order to track the stiffness degradations clearly, the normalized peak-to-peak 

stiffness, which is calculated by dividing each peak-to-peak stiffness value by the one 

determined in the first cycle, is also presented in Figure 4.12 (b). 

 

   

(a) (b) 

Figure 4.12 Stiffness degradation curves for the frames in the sense of (a) peak-to-peak stiffness and 

(b) normalized peak-to-peak stiffness values  

 

It can be seen from the figures that the bare frame (F1) has the lowest initial stiffness 

value. For the bare, locked type infilled (F2), and standard type infilled (F3) frames, 

initial stiffness values are obtained as 24.9 kN/mm, 45.4 kN/mm, and 50.2 kN/mm, 

respectively. The initial stiffnesses of the locked and standard type infilled frames are 

approximately 1.82 and 2.02 times than that of the bare frame, respectively. Notice 

that the frame with locked infills has higher stiffness values at early stages but exhibits 

significant drops with increasing drift ratios due to overcoming the static friction 

threshold of the locked bricks and the shear failure of the mortar. After about 2.20% 

drift ratio, all the frames show similar stiffness values. Since the contribution of infills 

to the stiffness of a frame structure is not considered in most of the seismic codes, here 

again, the behavior of the frame with locked infills seems analogous to the bare frame. 
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The cumulative dissipated energy curve, which is described as the summation of 

the area enclosed by each hysteretic curve, is given for each frame in Figure 4.13. This 

curve is important since it reflects the capacity of a structure to dissipate seismic input 

energy (i.e., a higher value represents better energy dissipation performance). By 

referring to Figure 4.13, it can be said that the bare frame (F1) has the minimum energy 

dissipation capacity, whereas the standard infilled frame (F3) has the highest. At 

3.50% drift ratio, the cumulative dissipated energy values of the frames with locked 

and standard infills are approximately 1.34 and 1.65 times than that of the bare frame, 

respectively. Note that the behavior of the frame with locked infills seems analogous 

to the bare frame in the sense of dissipated energy. 

 

 
Figure 4.13 Cumulative dissipated energy curves for the frames 

 

Some numerical information about the quasi-static test results that can be extracted 

from Figures 4.10 to 4.13 is summarized in Table 4.3. 
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Table 4.3 Numerical information about the quasi-static test results 

Frame 
 

Strength 
[kN] 

Peak-to-Peak  
Stiffness 
[kN/mm] 

Degradation  
[%] 

Cumulative 
Energy 

Dissipation 
[kNm] 

Max. 
@ 

3.50% 
Initial 

@ 
3.50% 

Strength Stiffness 
@ 

3.50% 

F1  
(no infill) 

101 
@1.75% 

95 25 2 6 92 16 

F2 
(locked infill) 

140 
@1.75% 

108 46 2 23 96 21 

F3 
(standard infill) 

215 
@0.75% 

136 50 3 37 95 26 

 

4.6 Dynamic Test Results 

 

The system identification methods presented in Chapter Two (i.e., NExT-ERA, 

EFDD, and SSI-DATA) were used with the response data obtained from WN and AV 

excitations. Two different WN excitations, namely with the application of OTT (WN 

w/Offline) and without the application of OTT (WN wo/Offline), were used for all 

frames at different damage levels. The root mean square (RMS) response amplitudes 

of the shaker excitations measured by the accelerometer on the shaker (i.e., Sta 8, x-

direction) were ~0.46 g and ~0.21 g for WN wo/Offline and WN w/Offline cases, 

respectively. Notice that the WN wo/Offline case has more than two times the RMS 

response amplitude of the WN w/Offline case. This is because of scaling the modified 

input signal according to the shaker’s limitations before sending it to the shaker. Three 

different tests, namely WN wo/Offline, WN w/Offline, and AV, produced ~0.011 g, 

~0.004 g, and ~4.17E-05 g RMS response amplitudes along the in-plane direction 

(along x-direction) at Sta 4, respectively. These values were almost the same for all 

the frames. Notice that the AV tests lead to very low-level response amplitudes. As a 

result, it is possible to designate, relatively, WN wo/Offline data as the “high-level”, 

WN w/Offline the “medium-level”, and AV data as the “low-level” response cases. 

Dependence of modal parameter identification results on the level of excitation will be 

discussed in the following sections. 
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The estimated modal parameters belong to the first in-plane (i.e., along x-direction) 

modes for different frames at progressively increasing damage levels. Note that the 

focus has been given to the first in-plane modes (i.e., fundamental in-plane modes) 

since the quasi-static tests were performed in this direction (i.e., first in-plane modes 

are the largest contributors to the frames’ dynamic responses along this direction). In 

addition, since the shaker’s excitation direction was along the in-plane direction (x-

direction, see Figure 4.7), the recorded structural responses were predominately along 

this direction. Therefore, the WN tests were mainly used to track the changes in the 

in-plane modes with respect to gradually increasing damage levels. Here, WN 

w/Offline tests were preferred because of the broad-band nature of the excitation, as 

explained in the previous sections. In the scope of this thesis, unless otherwise stated, 

the presented estimation results are from the NExT-ERA method using WN w/Offline 

test data.  

 

It must be emphasized that the fundamental in-plane modes at different damage 

states presented here are called the “in-plane modes” due their predominant motions 

being along the x-(longitudinal) direction; but these modes are not purely in-plane 

modes. In different intensities, some identified in-plane modes, at different damage 

states, are coupled modes, meaning that they have components also along y-

(transversal) and z-(vertical) directions. Especially for the infilled frames at lower 

damage states, the in-plane fundamental modes are not at all purely in-plane modes; 

but as the walls progressively go through more damage, the estimated in-plane modes 

become more and more in-plane by losing their modal components along y- and z-

directions. In order to facilitate the discussion of the results, the coupled modes with 

dominant in-plane components are designated as “in-plane modes”. 

 

System identification results (obtained by NExT-ERA method) for the fundamental 

in-plane modes at different damage states using three different excitation types (i.e., 

AV, WN w/Offline, and WN wo/Offline) are given in Tables 4.4 to 4.6. As a summary 

and to highlight the results visually, the results are also presented by bar plot format in 

Figure 4.14.  
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Table 4.4 Modal identification results for F1 (bare frame) under different excitation conditions 

Excitation 
Type 

Modal 
Params 

No 
Damage 

0.20% 0.50% 1.00% 1.40% 2.20% 3.50% 

AV 
ω [Hz] 15.26 14.62 13.72 12.04 11.15 9.81 8.44 
ξ [%] 0.59 0.59 0.81 0.88 0.98 0.73 1.51 
MAC 1.00 1.00 0.99 0.98 0.97 0.97 0.96 

WN wo/ 
Offline 

ω [Hz] 15.11 14.41 13.45 11.44 10.64 9.44 8.04 
ξ [%] 2.08 1.03 2.18 1.88 1.96 1.97 1.86 
MAC 0.99 0.98 0.98 0.98 0.97 0.97 0.97 

WN w/ 
Offline 

ω [Hz] 15.11 14.49 13.56 11.29 10.83 9.62 8.23 
ξ [%] 1.65 0.92 1.85 1.66 1.67 1.58 1.65 

MAC 1.00 0.98 0.99 0.98 0.97 0.97 0.97 

 

Table 4.5 Modal identification results for F2 (locked infill) under different excitation conditions 

Excitation 
Type 

Modal 
Params 

No 
Damage 

0.20% 0.50% 1.00% 1.40% 2.20% 3.50% 

AV 
ω [Hz] 14.77 14.49 14.19 13.15 12.78 12.02 9.38 
ξ [%] 0.89 1.43 0.78 1.45 1.24 0.90 0.70 
MAC 1.00 0.99 0.99 0.95 0.93 0.90 0.80 

WN wo/ 
Offline 

ω [Hz] 14.31 14.09 13.82 12.53 12.35 11.46 8.44 
ξ [%] 1.47 1.07 1.36 1.71 2.06 2.02 3.73 
MAC 1.00 0.99 0.98 0.93 0.90 0.87 0.80 

WN w/ 
Offline 

ω [Hz] 14.43 14.22 13.95 12.85 12.60 11.80 8.94 
ξ [%] 1.54 1.09 1.28 1.51 1.67 1.57 2.58 

MAC 1.00 0.97 0.98 0.95 0.92 0.89 0.81 

 

Table 4.6 Modal identification results for F3 (standard infill) under different excitation conditions 

Excitation 
Type 

Modal 
Params 

No 
Damage 

0.20% 0.50% 1.00% 1.40% 2.20% 3.50% 

AV 
ω [Hz] 14.42 14.19 13.94 12.60 12.00 11.00 - 
ξ [%] 0.91 0.78 1.46 2.08 1.07 0.81 - 
MAC 0.99 0.99 0.98 0.95 0.93 0.89 - 

WN wo/ 
Offline 

ω [Hz] 14.13 13.86 13.57 12.13 11.49 10.48 9.73 
ξ [%] 1.04 1.38 1.97 2.01 2.05 1.89 1.78 
MAC 1.00 1.00 0.99 0.93 0.91 0.88 0.85 

WN w/ 
Offline 

ω [Hz] 14.20 13.97 13.63 12.41 11.73 10.84 9.94 
ξ [%] 1.01 1.16 2.18 1.35 1.52 1.29 1.24 

MAC 1.00 1.00 0.98 0.95 0.92 0.89 0.86 
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F1 (no infill) F2 (locked infill) 

 

F3 (standard infill) 

Figure 4.14 Estimated modal parameters for different frames using different excitation types (NExT-

ERA results) 

 
Note that the selection of the modes was realized by the use of stabilization 

diagrams, which are useful tools in determining proper system order and in 

distinguishing between stable and unstable modes for parametric system identification 

methods (e.g., SSI-DATA and NExT-ERA) (Peeters & De Roeck, 2001; Zhang et al., 

2014). As an illustrative example, a stabilization diagram is shown in Figure 4.15 for 

WN w/Offline dataset of the bare frame (F1) at the undamaged state (i.e., 0% drift 

ratio). Herein, the stability criteria given in Equation 4.1 were used to plot the diagram. 
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 ,1% ;        5% ;        1 1%/ /
i ji j j i j jf f f MAC           (4.1)

 

where ( if , jf ), ( i , j ), and ( i , j ) represent the identified frequencies, damping 

ratios, and mode shapes, respectively for models of successive orders i and j. ,i j
MAC   

is the modal assurance criterion calculated between i  and j . The symbols presented 

in the stabilization diagram denote: “ ” a pole with stable frequency, damping, and 

mode shape; “.d”: a pole with stable frequency and damping; “.v”: a pole with stable 

frequency and mode shape; and “.f”: a pole with stable frequency only. In the figure, 

also smoothened and amplitude scaled power spectral density functions (PSDs), which 

were calculated using the response data recorded at “Sta 1” along x-, y-, and z-

directions from a tri-axial accelerometer, are given. Note that the PSDs have different 

energy levels; therefore, they were scaled in a different way in order to plot them on 

the same figure. From the stabilization diagram, the model order of 14 was chosen for 

this particular case. It should be stated that too high model order selection leads to 

computational expense and non-physical mode occurrence, whereas in the case of too 

low model order, it is possible to miss some of the structural modes. Therefore, a 

balance should be maintained for model order selection. 

 

 

Figure 4.15 Stabilization diagram of F1 (bare frame) at the undamaged state (NExT-ERA results 

with WN w/Offline dataset) 
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From the results presented in Tables 4.4 to 4.6 and Figure 4.14, it can be said that 

for all frames subjected to different excitation conditions, similar frequency values are 

identified for a particular damage level and for that particular frame. In other words, 

the excitation level results in minor differences in frequency estimations. As damage 

level increases the identified frequency values become smaller. Notice that at the same 

damage level (e.g., 2.20%) for a particular frame, the frequency results from the WN 

wo/Offline case (relatively a higher level of excitation) are the smallest ones compared 

to the relatively lower level excitation cases (e.g., AV and WN w/Offline tests), and 

the highest values being the ones from the AV tests (the lowest level of excitation 

case). This is due to R/C frames behaving nonlinearly (or quasi-linearly) even at the 

level of WN wo/Offline case (refer above for their RMS amplitudes). Higher excitation 

levels, which are expected to widen pre-existing and/or newly emerged cracks in the 

members, lead to decreased in-plane stiffness which in turn results in smaller 

frequency estimations. A similar approach is adopted in the study of Astroza et al. 

(2016a). Note that the modal parameters could not be identified using the AV data set 

at 3.50% damage state for F3 (as indicated with the symbol “-”). This is due to low 

signal-to-noise ratio (SNR) seen in this particular data set; but for all the other frames 

and damage levels, no such problem was observed. 

 

The results suggest that the damping ratio estimations exhibit significant scatter 

(variability) among different excitation and frame types. In addition, they do not have 

clear trends that can be utilized solely as a damage indicator. It is known that noise 

always exists in real-life measurements; therefore, SNR has an important role in 

accurate parameter estimation. Especially, damping estimations are very sensitive to 

measurement noise, and as the noise level increases, uncertainty in damping 

estimations increases as well (Bajric et al., 2014, 2015). Another peculiarity with 

damping estimations is the fact that they are amplitude dependent (Astroza et al., 

2016a, 2016b). The damping values estimated from the WN data (especially the WN 

wo/OTT tests which have the largest RMS amplitudes) are consistently higher than 

the ones estimated from the AV data (which have the smallest RMS amplitudes) for 

all the frames at all damage states. 
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MAC values (shown in Tables 4.4 to 4.6 and Figure 4.14) were calculated between 

the mode shapes of the undamaged states (using the WN w/Offline test result as the 

reference) of F1, F2, and F3 and different damaged states of the same frame. These 

values indicate the changes occurred in mode shapes as damage level increases. MAC 

values for all frames consistently decrease as damage level increases, which indicates 

that the estimated mode shapes at different damage states differ increasingly more with 

respect to the mode shapes of the undamaged cases. Notice that the changes in mode 

shapes are more pronounced for the infilled frames (i.e., F2 and F3). This is due to the 

infill wall-frame interaction in out-of-plane direction. The reason for this is that the 

almost purely in-plane mode remains purely in-plane regardless of damage level for 

frame F1 (no infill, therefore no infill-frame interaction). This results in small 

variations in MAC estimations. On the other hand, the coupled modes, dominantly 

seen in the infilled frames at the undamaged and low-level damaged states, turn into 

purely in-plane modes as damage progresses, resulting in significant changes in MAC 

values. Details of the mode shapes will be discussed in the coming sections. 

 

Method-to-method variability in estimation results was investigated by processing 

the recorded response data at different damage states using three different system 

identification methods. The obtained results are shown in Figure 4.16. The MAC 

values given in the figure were found between the undamaged mode shapes (using the 

WN w/Offline tests and estimated by NExT-ERA method) and the damaged ones 

(using the WN w/Offline tests and estimated by SSI-DATA and EFDD methods) for 

different frames. It is clear that the frequency estimations and MAC values by different 

methods are very similar for each damage state (i.e., negligible differences), therefore 

it can be concluded that the estimated values are independent of the method used. As 

a general trend for all methods, it can be said that the estimated frequencies and MAC 

values decrease as the damage increases. For damping estimations, it can be said that 

NExT-ERA and SSI-DATA methods give somewhat similar results; but the overall 

match among the methods is not as good as in the case of frequency and mode shape 

estimations. The damping results obtained by EFDD method differ considerably from 

the results obtained by other two methods. Subjectiveness of the peak-picking and 

logarithmic decrement processes can be attributed as the reasons behind this higher 
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variability in damping estimations by EFDD method. A clear trend for damping ratio 

estimations, as observed for the frequency and mode shape estimations at the level of 

excitations considered in this study, cannot be observed as damage increases. 

Nevertheless, a slight increasing trend in damping estimations is noticeable as the drift 

ratio, therefore the damage level, increases (e.g., F2). 

 

F1 (no infill) F2 (locked infill) 

 

F3 (standard infill) 

Figure 4.16 Estimated modal parameters for different frames by different system identification 

methods (WN w/Offline dataset) 

 

Modal parameter estimations and evolution of mode shapes for all the frames are 

indicated comparatively in Figures 4.17 and 4.18, respectively, as a function of damage 
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level. For the undamaged state, the vibration frequencies of the bare (F1), locked 

infilled (F2), and standard infilled (F3) frames are identified as 15.11 Hz, 14.43 Hz, 

and 14.20 Hz, respectively. It is expected that the existence of infills would have 

stiffening effect along the in-plane direction and therefore the frequencies of the in-

plane modes would increase; but it is interesting to note that F1 (the bare frame) has 

the highest frequency among the tested frames. This may be considered as a counter-

intuitive result at a first glance; but there exist two main reasons underlying this issue: 

(i) It should be emphasized that the in-plane mode shapes of the infilled frames (i.e., 

F2 and F3) are coupled modes (i.e., the modes for these frames are not purely in-plane 

but have dominant in-plane components) especially at low damage levels (e.g., at the 

ND and 0.20% drifts), whereas F1 has purely in-plane mode shapes for all drift cases 

(refer to Figure 4.18). The coupled nature of the in-plane modes for the infilled frames 

is due to the frame-infill interaction in out-of-plane direction. Therefore, a direct 

comparison of the estimated frequencies for the frames with and without infills may 

be misleading. (ii) The infill walls couldn’t be excited properly during the dynamic 

tests due to the low excitation levels even at the level of WN wo/Offline case (refer 

above for the RMS amplitudes of the excitation levels). Therefore, the identified modal 

parameters represent only the characteristics of the surrounding frame structures 

without the contributions of the infill walls. It should be stated that if the dynamic tests 

were performed under higher excitation conditions (e.g., large-size shake table tests, 

snap-back tests, etc.), it would be possible to excite the infilled frames properly; in 

return, the infilled frames would exhibit higher vibration frequency values than that of 

the bare frame. Note that the latter reason (i.e., item ii) will be discussed in detail in 

Section 5.3. At the undamaged state, all the frames with infills have similar frequencies 

for the predominantly in-plane modes (with coupled out-of-plane components). As 

these frames get damaged, they start to differentiate from each other depending on the 

infill condition, this starts at around 0.50% drift. It is clear from Figure 4.17 that a 

steady decrease takes place in the frequency estimations for all the frames as damage 

increases; but it is obvious that the lateral stiffness of the bare frame (F1) decreases at 

a faster rate than the frames with infills. Note that since the infill walls couldn’t be 

excited properly at the dynamic excitation levels attained in this study, they cannot be 

the contributors to the in-plane stiffnesses of the frames. Therefore, the differences 
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observed in the frames’ lateral stiffnesses (i.e., frequency estimations) can be attributed 

to the effectiveness of the infill walls on the damage formations and distributions that 

occurred at the surrounding frame structures during the quasi-static tests. Also, it is 

important to note that the decreasing trend in the frequency estimations for the frame 

with locked infills (F2) is slower than the other two. This might possibly be indicating 

that the additional damage that might be induced by frame-infill interaction is less 

severe for F2 (due to mild panel action) than F3 (the frame with standard infills). At 

3.50% drift ratio, the identified frequencies for the frames F1, F2, and F3 are 8.23 Hz, 

8.94 Hz, and 9.94 Hz, respectively. The percentage changes in the frequencies with 

respect to the undamaged states are calculated as 45% (F1, bare frame), 38% (F2, 

frame with locked infills), and 30% (F3, frame with standard infills). These results 

show that the frames with the locked type infills (F2) and without infills (F1) are 

somewhat similar. The frame with the standard type infills (F3) shows smaller 

frequency variations between the undamaged (ND) and the highest damaged (3.50% 

drift) states. Moreover, as shown in Figure 4.17, it can be said that at the excitation 

level (i.e., WN w/Offline) attained for these tests, the damping ratio estimations show 

no clear trend both for damage level and infill condition. 

 

 

 

Figure 4.17 Modal parameter estimation results for the frames as a function of damage state (NExT-

ERA results with WN w/Offline dataset) 
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F1 (no infill) F2 (locked infill) 

 

 

 

 

F3 (standard infill) 

Figure 4.18 Evolution of the mode shapes as damage level increases 

 

It should be stated that the mode shapes shown in Figure 4.18 are plotted by using 

the real parts of the identified complex mode vectors. Note that complex mode shapes 

may occur because of many reasons, such as low SNR (i.e., high noise level and/or 

low signal level), aerodynamic effects, gyroscopic effects, nonlinearities of the 

systems, and non-classical damping mechanisms of the systems (Chopra, 2012; Ewins, 

2000). It should be emphasized that the first in-plane mode shape of the bare frame 

(F1) is almost perfectly in-plane (i.e., almost no component along the y- and z-

directions). On the other hand, infilled frames have mode shape components also along 

y- and z-directions; but as the structural damage level increases y- and z-components 
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and beyond) become almost perfectly in-plane. This result indicates that the effects of 

infills on the mode shape estimations diminish as damage increases. Figure 4.19 

demonstrates the polar plot representations of the estimated mode shapes with complex 

components. These plots show the level of non-classical damping in the frames. Based 

on the results, it can be said that the mode shapes are classically damped (characterized 

by negligible complex parts) because the vector components are almost perfectly 

collinear and aligned along the real axis. This also serves as a justification in plotting 

the estimated mode shapes, which have complex components, using only their real 

parts (Figure 4.18). It can also be said that the damage level does not change the 

classically damped nature of the modes. 

 

F1 

  

F2 

  

F3 

  

 Undamaged 0.5% Drift     1.0% Drift 1.4% Drift      2.2% Drift     3.5% Drift     

Figure 4.19 Polar plot representations of the mode shapes 

 

Figure 4.18 shows that as the structural damage increases, the in-plane mode shapes 

go through very small changes. This observation can be used to justify that as damage 

increases, the effective modal masses corresponding to the fundamental in-plane 

modes remain unchanged for different frames (i.e., under the assumption that the mass 

properties of the frames remain unchanged during the tests). With this assumption, the 

stiffness degradations (SDs) corresponding to the in-plane modes with respect to the 

undamaged case can be approximated by Equation 4.2. 
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where j
NDf  and ,

j
D if  are the identified frequencies for a particular frame j (j=F1, F2, 

and F3) at the undamaged and various damaged levels i (i=ND, 0.20%, 0.50%, 1.00%, 

etc.), respectively. The stiffness degradations calculated using Equation 4.2 at different 

drift levels for different frames were matched with the detailed visual damage 

inspections (refer to Table 4.2). The results were clustered into three dimensional plots 

and are presented in Figures 4.20 to 4.22 for frames F1, F2, and F3 (i.e., frames with 

different infill conditions), respectively. In these figures, damage types are categorized 

for column (subplot (a)), beam (subplot (b)), and infill (subplot (c)) members in three 

distinct groups, and subplot (d) shows the zones where damages are concentrated. The 

bars with red colors indicate that a particular damage type (as indicated on the 

longitudinal axis) occurred for the first time or that damage type increased significantly 

at that particular drift ratio (as indicated on the transversal axis). The bars with yellow 

colors indicate that no significant change in the existing damage type occurred, and 

the bars with green colors indicate that a particular damage type has not yet occurred 

at that drift ratio. The bars with gray colors indicate that the corresponding member 

damages do not exist for that frame (e.g., there is no infill wall in F1, therefore Figure 

4.20 (c) is all in gray color). These figures are useful in determining what damage type 

(also its extent and location) is observed on the frames when stiffness degradation is 

seen as a function of increasing structural damage. Note that the stiffness degradation 

values are calculated using the frequency estimations obtained from dynamic tests and 

represent only the characteristics of the surrounding frames. 

 

For F1 (the bare frame) in Figure 4.20, stiffness degradations are obtained as 8%, 

19%, 44%, 49%, 59%, and 70% for 0.20%, 0.50%, 1.00%, 1.40%, 2.20%, and 3.50% 

drift ratios, respectively. The damages at beam ends due to the flexural action are 

effective until 0.20% drift ratio, and meanwhile ~8% stiffness degradation is observed. 

With increasing drift ratio, up to 1.00%, the damages at column(s) ends start to be 

more pronounced. The largest change in the stiffness degradation (~25%) is observed 

within the 0.50%-1.00% drift ratio interval along with mainly column damages (Figure 
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4.20 (a), damage types 1a, 2a, and 3a). Towards the end of the test, the separation at 

the column-foundation interface can be seen as the main damage type of the frame 

with ~11% stiffness degradation change. 

 

For F2 (the frame with locked infills) in Figure 4.21, stiffness degradations are 

obtained as 3%, 7%, 21%, 24%, 33%, and 62% for 0.20%, 0.50%, 1.00%, 1.40%, 

2.20%, and 3.50% drift ratios, respectively. Column and infill damages are effective 

until 0.20% drift ratio. The first significant change in the stiffness degradation is seen 

between 0.50%-1.00% drift interval where infill (e.g., concentrated cracks at the corner 

zones, distributed horizontal cracks) and various column damages occur. The largest 

stiffness degradation change (~29%) is observed between 2.20%-3.50% drift ratio 

interval. Meanwhile, separation at the frame-infill interface and various column 

damages (e.g., extension and deepening of existing cracks, crushing of concrete cover 

at columns’ bottom ends, and buckling of reinforcement bars) (Figure 4.21 (c), damage 

types 6-7, Figure 4.21 (a), damage types 11a and 11b, etc.) are developed. 

 

For F3 (the frame with standard infills) in Figure 4.22, stiffness degradations are 

obtained as 3%, 8%, 24%, 32%, 42%, and 51% for 0.20%, 0.50%, 1.00%, 1.40%, 

2.20%, and 3.50% drift ratios, respectively. Various types of column cracks, frame-

infill separation, and cracks at the corner zones of the infill wall are the main damage 

types seen within the 0.50%-1.00% drift ratio interval. The largest change in the 

stiffness degradation (~16%) is also observed within this interval. Within the drift 

ratios following this range, beam and infill member damages start to substantially 

increase without a sudden change in the stiffness degradation (i.e., a smoother, more 

gradual change has been observed for F3 also confirmed by the changes in the 

frequency estimations). 

 

From the findings above, it can be said that the presence of infills initiated R/C 

member damages to occur earlier than the bare frame. The stiffness degradation values 

calculated at the ultimate damage state (i.e., 3.50%) are 70%, 62%, and 51% for the 

frames F1 (bare frame), F2 (frame with locked infills) and F3 (frame with standard 

infills), respectively. Here again, the behavior of the frame with locked infills seems 
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analogous to the bare frame in the sense of stiffness degradation values. It should be 

noted that the quasi-static tests let to perform detailed damage observations, whereas 

the dynamic tests let to calculate stiffness degradations by using the identified modal 

parameters. By combining the outputs of these two tests, it is possible to pair different 

damage types (from static tests) with stiffness degradation values (from dynamic tests). 
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4.6.1 Identification of the Out-of-Plane Modes 

 

As stated before, only the first in-plane modes of the frames are discussed so far. It 

should be stated that the higher modes couldn’t be identified clearly from the dynamic 

data due to low excitation levels and SNR (i.e., even in the case of WN wo/Offline, 

the excitation level is low). In other words, the higher modes of the frames couldn’t be 

excited sufficiently. However, the frames are most likely to have structural modes in 

their weakest directions (i.e., out-of-plane direction), which means that the frames 

have out-of-plane modes in lower frequency values than those of their in-plane modes. 

This statement can be supported by investigating the Fourier amplitude spectrum 

diagrams of the dynamic response data. As an example, for the bare frame (F1), 

Fourier amplitude spectrum of Sta 4 (with x-, y-, and z-components, see Figure 4.7) is 

presented in Figure 4.23 (WN w/Offline dataset at 3.50% drift ratio was used). 

 

  

(a) (b) 

Figure 4.23 (a) Fourier amplitude spectrum for Sta 4, (b) zoomed in 3-10 Hz bandwidth (for F1, by 

using the WN w/Offline dataset at 3.50% drift ratio) 

 

In the figure, the peak value around 3.60 Hz for the y-component represents the out-

of-plane mode. Note that the out-of-plane mode is not pronounced as much as the in-

plane mode (x-component, around 8.23 Hz) since the excitation to the frames is in in-

plane direction only. Therefore, higher estimation uncertainty is expected in the out-

of-plane mode (i.e., lower SNR value along the non-excited direction). 

 

It should be stated that the out-of-plane modes of the frames couldn’t be identified 

by NExT-ERA and SSI methods (i.e., parametric methods). Therefore, identification 

was conducted by using EFDD method with a peak-picking process around the 

frequency of interest. The modal parameter estimation results of the frames at different 
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damage states are given in Table 4.7. Similar to the in-plane modes, the frequency 

values show a decreasing trend as structural damage increases, whereas no clear trend 

is observed for damping ratios. Herein, at the undamaged state, the bare frame (F1) 

has the highest frequency value among the tested frames. This is a reasonable result 

since the contribution of the infill wall to the out-of-plane stiffness of the frame system 

is relatively low compared to the increase in the mass of the frame system due to the 

presence of the infill wall.  

 

Table 4.7 Modal parameters of the out-of-plane modes of the frames (WN w/Offline dataset by EFDD 

method) 

Frame # 
Modal 
Params 

No 
Damage 

0.20% 0.50% 1.00% 1.40% 2.20% 3.50% 

F1  
(no infill) 

ω [Hz] 5.58 5.26 5.41 5.11 4.57 3.87 3.63 

ξ [%] 3.27 1.49 3.14 2.05 2.46 2.50 2.80 

F2  
(locked 
infill) 

ω [Hz] 4.57 4.14 4.10 4.08 3.96 3.74 3.63 

ξ [%] 2.09 2.68 2.81 2.09 2.39 1.99 0.41 

F3 
(standard 

infill) 

ω [Hz] 4.41 4.15 4.06 3.82 3.77 3.40 3.05 

ξ [%] 2.76 3.06 2.96 2.45 2.97 1.78 2.76 

 

The polar plot representations of the identified out-of-plane mode shapes are given 

in Figure 4.24.  

 

F1 

  

F2 

  

F3 

  

 Undamaged 0.5% Drift     1.0% Drift 1.4% Drift      2.2% Drift     3.5% Drift     

Figure 4.24 Polar plot representations of the out-of-plane mode shapes 
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It clear from Figure 4.24 that the modes are classically damped and have larger 

complex components due to low SNR values. That’s why the out-of-plane mode 

shapes are considered as unreliable estimates and comparing their evolutions with 

respect to increasing damage levels may lead to unrealistic results (i.e., the evolution 

of the MAC values is not provided in Table 4.7 because of this reason). 
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CHAPTER FIVE 

DAMAGE IDENTIFICATION OF THE QUASI-STATICALLY TESTED 

REINFORCED CONCRETE FRAMES WITH DIFFERENT INFILL 

CONDITIONS BY SENSITIVITY-BASED FINITE ELEMENT MODEL 

UPDATING METHOD 

 

5.1 Introduction  

 

In this chapter, sensitivity-based FEMU studies performed on the quasi-statically 

tested R/C frames with different infill conditions, namely bare, locked infilled, and 

standard infilled frames, for damage identification purposes are presented. Structural 

damages of the frames were defined by relative stiffness reduction factors (i.e., 

reduction in Young’s modulus and/or spring stiffness values), and each progressively 

increasing damage state, the stiffness reduction factors of the predetermined elements 

(i.e., design variables) were obtained by minimizing an objective function constructed 

as the differences between the modal parameters of the real structure (from OMA 

results discussed in Chapter Four) and the numerical model (from FE model). In this 

context, modal parameter results of the EFDD method with WN w/Offline dataset 

were used. The updating process for each frame was conducted in two steps: (i) By 

using the experimentally identified modal parameters corresponding to the undamaged 

state, the initial FE model was updated to obtain a reliable reference model. (ii) The 

procedure was repeated by updating this reference model at each progressively 

increasing damage state (e.g., 0.50%, 1.00%, 1.40%, 2.20%, and 3.50%) to identify 

the damage, its location, and extent. The number of design variables used for the 

updating procedure was reduced to ensure a well-conditioned optimization problem 

by taking into account symmetry conditions, detectability indices, and internal 

moment levels occurred in the frame elements. Different from the existing state of the 

art, these three aspects were evaluated together to obtain damage identification results 

which are more consistent with the damage observations and are more realistic for 

increasing damage levels. Finally, the identified damage results were verified using 

the visual damage observations made during the quasi-static tests. 
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5.2 Damage Identification of the Bare Frame (F1) 

 

This section presents the results of the sensitivity-based FEMU method carried out 

on the bare frame (F1) for damage identification purpose. The initial FE model of the 

frame was constituted in FEDEASLab environment by using 3-D linear elastic 

Bernoulli-Euler frame elements. Physical properties (i.e., model parameters) of the 

initial FE model were identified from measured geometric dimensions and material 

tests. Accordingly, Young’s modulus and density values for concrete were chosen as 

32 GPa and 25 kN/m3, respectively. Note that it is very difficult (almost impossible) 

to attain perfect fixity at supports in real-life situations. Therefore, support conditions 

of the initial FE model were represented by simple supports at the column(s) bottom 

ends together with three rotational springs about x- (in-plane), y- (out-of-plane), and 

z- (vertical) axes. Other nodes of the FE model were set to be unconstrained. The initial 

spring stiffnesses were determined as 9807 kNm/rad by manual updating procedure 

(i.e., trial-and-error method) for the purpose of bringing the numerical modal analysis 

results close to the experimentally identified ones; however, the ultimate spring 

stiffnesses were determined by automated model updating approach presented in 

Section 5.2.1 (i.e., by performing manual updating before, it was aimed to improve the 

converge performance of the automated updating). Note that the distributed mass of 

the frame was supposed to be lumped at the nodes of the FE model (i.e., lumped mass 

assumption was made). 

 

The vibration frequencies and mode shapes of the first two modes (i.e., out-of-plane 

and in-plane modes), which were obtained by EFDD method with WN w/Offline 

dataset, were selected as the experimental responses to be used in the updating process. 

This is because these modes were clearly identifiable from all response data collected 

at different damage levels, and therefore were considered as reliable estimations. 

 

The initial FE model was divided into 12 substructures (i.e., 3 and 9 substructures 

for rotational springs and 9 frame elements, respectively) by considering the 

neighboring and geometrically symmetric finite elements that have similar effects (i.e., 

detectabilities) on modal parameters (e.g., substructure #1 for the bottom, substructure 
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#2 for the mid, and substructure #3 for the top elements of the column(s), see Figure 

5.1 (b)). Note that independent damage functions were assigned for each substructure 

(i.e., the substructures were updated separately). It should be stated that the adopted 

substructuring strategy is also convenient for symmetric damage occurrence which is 

expected due to the cyclic quasi-static loading case (i.e., symmetric loading). In 

addition, the detectability indices of these substructures were calculated for the first 

mode only, for the second mode only, and for both modes together (Figure 5.1 (a)).  

 

   

1st mode (out-of-plane) 2nd mode (in-plane) 1st and 2nd modes together 

(a) 

 

 

 

Detectable Elements 

#1    Column(s) bottom ends 

#2    Column(s) mid-zones 

#3    Column(s) top ends 

#7-8 Beam ends 

#9    Beam mid-zone 

#10  Rotational springs about x-axis (RotX) 

#11  Rotational springs about y-axis (RotY) 

(b) 

Figure 5.1 (a) Detectability indices and (b) detectable elements 

 

It can be concluded from Figure 5.1 that the sensitivity of a mode can change from 

one substructure to another (i.e., detectability of a substructure can vary from one mode 

to another). Besides, some of the modes are insensitive to variations in some 

substructures (i.e., having zero detectability index value). For example, the 2nd mode 
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(in-plane mode) is sensitive to the rotational springs about y-axis (i.e., substructure 

#11, the springs related to the in-plane motion of the frame) but insensitive to the 

rotational springs about x-axis (i.e., substructure #10, the springs related to the out-of-

plane motion of the frame). By investigating the detectability indices, the detectable 

substructures (i.e., the substructures which the modes are sensitive) along with their 

numbers were determined as follows: column(s) bottom ends (#1), column(s) mid-

zones (#2), column(s) top ends (#3), beam ends (#7 and #8), beam mid-zone (#9), 

rotational springs about x-axis (#10), and rotational springs about y-axis (#11). Since 

the modes are insensitive to the other substructures (i.e., substructures #4, #5, #6, and 

#12), these substructures were eliminated. Thus, the number of substructures included 

in the updating procedure (i.e., design variables) was reduced from 12 to 8. 

 

For the frame, the bending moment capacity ratio between the beam ends and the 

column(s) top ends is approximately 40% (i.e., columns are stronger than the beam in 

terms of flexural strength). That’s why, theoretically, the plastic hinges are expected 

to first occur at beam ends (i.e., at weaker sections) instead of column(s) top ends. As 

a result of the plastic hinge mechanism, the moment transferred from beam ends to 

column(s) top ends is limited by the moment capacity of the beam ends. Since this 

transferred moment is lower than the moment capacity of the column(s) top ends, 

minor structural damage is expected to occur in these regions (confirmed by the 

damage observations presented later in this chapter). This is not the case for the 

column(s) bottom ends: As the moment due to the in-plane applied load increases, it 

must be resisted by the column(s) bottom ends. Therefore, major structural damage in 

these regions is expected to occur (also confirmed by the damage observations). The 

mid-zones of the beam and column members were not selected as design variables due 

to their relatively low internal moment levels (i.e., as stated before, a response sensitive 

to a parameter does not automatically imply that this parameter has to be included in 

the updating process). In addition, only insignificant damage occurrence was observed 

in these regions during visual damage inspections. Consequently, selecting 4 design 

variables were decided to be convenient for damage identification, namely column(s) 

bottom ends (#1), beam ends (#7-8), rotational springs about x-axis (#10), and 

rotational springs about y-axis (#11). Note that a common design variable was defined 
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for the adjacent elements for the beam ends at this stage (i.e., only one design variable 

instead of two for the elements designated as #7 and #8 in Figure 5.1 (b)). 

 

The structural damages of the frame were defined by relative stiffness reduction 

factors (i.e., reduction in Young’s modulus and/or spring stiffness values), and each 

progressively increasing damage state, the stiffness reduction factors of design 

variables were obtained by minimizing an objective function constructed as the 

differences between the modal parameters of the real structure (from OMA results 

discussed in Chapter Four) and the numerical model (from FE model). The updating 

process was conducted in two steps: (i) By using the experimentally identified modal 

parameters corresponding to the undamaged state, the initial FE model was updated to 

obtain a reliable reference model. In this step, the design variables were updated until 

a good match between numerically and experimentally identified modal parameters 

was obtained. (ii) The procedure was repeated by updating this reference model at each 

progressively increasing damage state (e.g., 0.50%, 1.00%, 1.40%, 2.20%, and 3.50%) 

to identify the damage, its location, and extent. Here, updating was performed always 

on the reference model instead of on the updated model of a previous damage state 

(e.g., damage results of 2.20% drift ratio were obtained by updating the reference 

model). This was done to ensure higher discrepancies for the optimization algorithm 

and to prevent probable cumulative errors between successive damage levels. In the 

second step, the rotational spring stiffnesses were excluded from the updating process 

(i.e., they were not updated and remained at their values that determined in the first 

step). Otherwise, they would attract most of the changes (i.e., damage) on themselves 

due to their higher detectabilities (see Figure 5.1) and would lead to unrealistic damage 

results for other substructures. Note that the constraints for the design variables were 

set to be ±1.0 (i.e., lb = -1.0 and ub = +1.0) where (-) values mean stiffening and (+) 

values mean softening (or damage). The weighting factors were set to 1.0 for the out-

of-plane and in-plane vibration frequencies, and for the in-plane mode shapes only, 

whereas the out-of-plane mode shapes were excluded from the updating process by 

setting their weighting factors to 0. This was done due to the high estimation 

uncertainty and complexity seen in these modes which might lead to unfavorable 

effects on the stability and performance of the optimization problem. 
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5.2.1 Updating for the Reference Model (Undamaged State) 

 

The initial FE model was updated to obtain the reference model by using the modal 

data of the undamaged state. As stated before, the substructures column(s) bottom ends 

(#1), beam ends (#7-8), rotational springs about x-axis (#10), and rotational springs 

about y-axis (#11) were selected as design variables, thus n=4. The residual vector r  

[36x1] consists of 1x2=2 frequency residuals rf  and 17x2=34 mode shape residuals 

rs  (17 is the number of experimental measurement points, 2 is the number of modes 

that were included in the updating process). Note that 17 components of the rs , which 

are related to the out-of-plane mode shape, are equal to zero due to their weightings. 

The Jacobian matrix PJ  has dimensions of 36x4, where m=36 and n=4. Since n<m, 

an overdetermined problem occurs. Model order (d) was selected as 51 (i.e., all the 

numerical modes). The optimization problem was solved by Gauss-Newton method 

with trust region algorithm. Results are shown in Table 5.1. 

 

As can be seen in Table 5.1, only the rotational springs were updated by the 

algorithm because of their relatively higher detectabilities (i.e., other design variables 

were not updated although they were involved in the updating procedure). 

Accordingly, the appropriate reference model was obtained when the spring stiffnesses 

about x- and y-axes became 5894 kNm/rad and 7444 kNm/rad, respectively. It is clear 

from Table 5.1 that the vibration frequencies of the reference FE model (updated 

model, 3rd column) and the experimentally identified ones (2nd column) match very 

well. Also, the MAC values calculated before (i.e., between the mode shapes of the 

initial FE model and the experimentally identified ones, 6th column) and after (between 

the mode shapes of the reference FE model and the experimentally identified ones, 7th 

column) updating exhibit very marginal improvements which indicate that the 

considered mode shapes have low sensitivities to the selected design variables (i.e., 

almost insensitive). 
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Table 5.1 Model updating results of the initial FE model to obtain the reference model using modal data 

of the undamaged state (F1 – bare frame) 

(1) 
Initial 

FE Model 
Freq. 

(2) 
Undamaged 

Frame 
Freq. 

(3) 
Updated 

FE Model 
Freq. 

(4) 
Freq. 

Differences 
Before 

Updating 
(1 - 2) 

 

(5) 
Freq. 

Differences 
After 

Updating 
(3 - 2) 

 

(6) 
MAC 
Before 

Updating 
(1 - 2) 

(7) 
MAC 
After 

Updating 
(3 - 2) 

[Hz] [Hz] [Hz] [%] [%] [-] [-] 
6.16 5.58 5.58 10 0 0.99 0.99 

15.70 15.10 14.98 4 1 0.95 0.96 

 

 
Design Variables 
#1    Column(s) bottom ends 
#7-8 Beam ends 
#10  Rotational springs about x-axis (RotX) 
#11  Rotational springs about y-axis (RotY) 
 
                                      
                                     Initial     Ref. Model 
                                                    (Updated) 
#10  RotX (kNm/rad):  9807          5894 
#11  RotY (kNm/rad):  9807          7444 
 
*Substructures #1 and #7-8 were also 
selected as design variables but not updated 
by the algorithm. 

 

5.2.2 Damage Identification at Increasing Damage States 

 

Damage identification of the frame at increasing damage states was performed by 

updating the reference model, which was obtained in the previous section. At each 

damage state, the corresponding experimental modal data were used. Two design 

variables were included in the updating process, namely the one at the column(s) 

bottom ends and the one at the beam ends (i.e., the substructures #1 and #7-8 in Table 

5.1). Notice that the spring stiffnesses were kept fixed and excluded from the updating 

process as stated in Section 5.2. Since n=2 (i.e., two design variables), dimensions of 

the Jacobian matrix became 36x2 (i.e., n<m, an overdetermined problem occurs). It 

should be stated that the conditions not specified here were the same as the ones 

adopted in Section 5.2.1. The updating results with the dimensionless stiffness 
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reduction factors (in terms of p in percent) at different damage states with respect to 

the reference (undamaged) state are presented in Table 5.2. 

 

Table 5.2 Model updating results of the reference model for increasing damage states using the modal 

data of the increasing damage states (F1 – bare frame) 

Drifts 
[%] 

(1) 
Reference  
FE Model 

Freq. 

(2) 
Damaged 

Frame 
Freq. 

(3) 
Updated 

FE Model 
Freq. 

(4) 
Freq. 
Diff. 

Before 
Updating 

(1 - 2) 

(5) 
Freq. 
Diff. 
After 

Updating 
(3 - 2) 

(6) 
MAC 
Before 

Updating 
(1 - 2) 

(7) 
MAC 
After 

Updating 
(3 - 2) 

[Hz] [Hz] [Hz] [%] [%] [-] [-] 

0.50 
5.58 5.41 5.41 3 0 0.99 0.99 
14.98 13.55 13.64 11 1 0.96 0.96 

1.00 
5.58 5.11 5.10 9 0 0.98 0.98 
14.98 11.11 11.22 35 1 0.98 0.98 

1.40 
5.58 4.57 4.55 22 0 0.98 0.98 
14.98 11.05 11.17 36 1 0.98 0.98 

2.20 
5.58 3.87 3.85 44 0 0.97 0.97 
14.98 9.62 9.73 56 1 0.99 0.98 

3.50 
5.58 3.64 3.62 54 0 0.99 0.98 
14.98 8.25 8.33 82 1 0.99 0.98 

 

Design Variables 
#1    Column(s) bottom ends 
#7-8 Beam ends 

Drifts [%] 

Stiffness reduction factors 
with respect to the 

reference state (p%)   
#1 #7-8 

Reference 0 0 
0.50 15 49 
1.00 35 81 
1.40 58 78 
2.20 75 85 
3.50 79 91 

 
*Rotational spring stiffnesses #10 and #11 
were not selected as design variables. 

 

It is clear from Table 5.2 that the experimentally identified vibration frequencies 

(2nd column) and the ones of the updated FE model (3rd column) match almost 

perfectly. Especially for the 3.50% drift ratio, significant reduction from 82% to 1% 
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observed in the frequency differences calculated before and after updating (4th and 5th 

columns) reveals the effectiveness of the method. On the other hand, the MAC values 

calculated before and after updating (6th and 7th columns) are almost same due to their 

low sensitivities to the selected design variables (i.e., almost insensitive). The 

dimensionless stiffness reduction factors in Table 5.2 indicate that the severity of the 

structural damage increases as increasing drift level. This is because of the 

accumulation of damage on beam ends and column(s) bottom ends. 

 

Contour plots of the objective function with respect to the changes in the design 

variables are presented in Figure 5.2 to examine the solution space of the optimization 

problem for different damage states. Note that these plots can be plotted since only 

two design variables were used for the updating. In Figure 5.2, x- and y-axes indicate 

the design variables used for beam and column(s) bottom ends (i.e., two design 

variables), whereas the z-axis (contours) represents the value of the objective function 

for a particular design parameter pair. The areas with darker blue zones indicate the 

global minimum (i.e., solution of the optimization problem). It can be said that the 

objective function has a flat surface in the vicinity of the solution. In other words, the 

global minimum lies within a wide interval (especially at low damage states); 

therefore, there exists no prominent solution for the optimization problem (i.e., it is 

difficult to find the global minimum point). As the damage level increases, the areas 

with darker blue zones shrink (i.e., the region indicating the global minimum narrows 

down), indicating that the solution becomes closer to a prominent one. This verifies 

that the chosen design parameters are convenient to represent the damage patterns 

observed at higher drift ratios. 
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0.50% drift ratio 1.00% drift ratio 

  

1.40% drift ratio 2.20% drift ratio 

 

3.50% drift ratio 

Figure 5.2 The contour plots of the objective function for increasing damage states (F1 – bare frame) 
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The damage identification results presented above were also supported by visual 

damage inspections made during quasi-static tests. In Figure 5.3 (a), the damage state 

of the frame at 3.50% drift ratio (i.e., the drift ratio where the design variables are more 

representative) is shown. Here, extensive and deep cracks were observed on the beam 

and the column(s) bottom ends, which are presented in Figures 5.3 (b) and (c), 

respectively. At this drift ratio, deep cracks and spalling of concrete were observed on 

the column(s) bottom ends, and more than 5 mm crack width was measured on the 

beam ends. In this damage level, the vibration frequencies of the frame were reduced 

by 35% and 45% for the first and the second modes with respect to the undamaged 

state, respectively. The damage observations during the tests are in good agreement 

with the damage identification results. Especially, structural damage is mainly 

concentrated on the beam ends and on the column(s) bottom ends, whereas there exists 

only minor damage on the other parts of the frame (i.e., column(s) top ends, column(s) 

mid-zones, and beam mid-zone). Note that the pictures presented in Figures 5.3 (b) 

and (c) are chosen to indicate the most damaged sides of the beam and column(s). 

 

 

(a) 

Figure 5.3 (a) General view of the frame, observed damages on the (b) beam ends and the (c) 

column(s) bottom ends at 3.50% drift ratio (Personal archive, 2016) 
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(b) 

(c) 

Figure 5.3 continues 

 

5.3 Damage Identification of the Infilled Frames (F2 and F3) 

 

In real-life situations, it is a known fact that the existence of infill walls has 

stiffening effects along the in-plane directions of structural systems. This means that 

the infilled structures have higher in-plane vibration frequencies than those of their 

counterparts without infills. Nevertheless, this is not the case for the tested frames (i.e., 

F1, F2, and F3) within the context of this thesis. By investigating the modal 

identification results presented in Section 4.6, it can be seen that the in-plane 

frequencies for the frames at undamaged state are very similar (i.e., minor differences 

may be due to variabilities in production, workmanship, concrete strength, axial load 

level, etc.), which implies that the infills are ineffective. This may be considered as a 

counter-intuitive result at a first glance, but it should be emphasized that the infill walls 

couldn’t be excited properly during the dynamic tests due to the low excitation levels. 

In other words, the infill walls are too rigid to be excited by the excitation conditions 
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at hand. Namely, the excitation capacity of the shaker is limited due to its size and the 

ambient excitation is not sufficient and proper since the tests were conducted under 

closed (i.e., isolated) laboratory conditions without environmental effects (i.e., absence 

of usual ambient effects such as traffic, wind, etc.). Therefore, the recorded vibration 

data represent the dynamic characteristics of only the frame structure without the 

contributions of the infills. Note that although the infills are ineffective during the 

dynamic tests, they have a decisive role in the behaviors and damage formations of the 

frames during the quasi-static tests, which is revealed by damage observations 

presented in Chapter Four. 

 

Since the dynamic characteristics of the infilled frames are very similar to the bare 

frame, therefore very similar to the FE model of the bare frame, considering the infill 

members in the modeling stage would lead to obtaining FE models which diverge from 

the experimental results. It is therefore impossible to develop realistic FE models, 

which are the representatives of the actual frame systems, for the infilled frames.  

 

Based on the statements above, the initial FE model of the bare frame (refer to 

Section 5.2) was used for damage identification purposes of the infilled frames. Since 

it was not possible to perform damage identification of the infill walls (i.e., due to lack 

of the FE model with infills), effects of different types of infills on the frame structures’ 

damage mechanisms were aimed to be investigated. In this context, the procedure 

applied on the bare frame (refer Section 5.2 for details) was adopted with some minor 

differences. Details and the obtained damage identification results are presented in the 

following sections. 

 

5.3.1 Damage Identification of the Frame with Locked Infills (F2) 

 

In this section, damage identification of the frame with locked infills (F2) is 

discussed. Due to the low-to-moderate (mild) level panel action, which occurs because 

of the sliding mechanism of the locked bricks over each other, the infill wall cannot 

resist the motion of the frame structure (i.e., the infill wall moves together with the 

surrounding frame during the cyclic tests). Therefore, minor damage is expected on 
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the frame structure caused by the infill wall. In addition, the locked infilled frame 

behaved almost similar to the bare frame during the quasi-static tests. Based on these 

findings, the design variables used for the bare frame were found to be appropriate 

also for this case. Consequently, column(s) bottom ends (#1), beam ends (#7-8), 

rotational springs about x-axis (#10), and rotational springs about y-axis (#11) were 

selected as design variables. 

 

The initial spring stiffnesses were determined as 3236 kNm/rad (RotX) and 7355 

kNm/rad (RotY) by manual updating procedure (i.e., trial-and-error method) for the 

purpose of bringing the numerical modal analysis results close to the experimentally 

identified ones; however, the ultimate spring stiffnesses were determined by 

automated model updating approach in Section 5.3.1.1 (i.e., by performing manual 

updating before, it was aimed to improve the converge performance of the automated 

updating). Different from the bare frame, the weighting factors for the in-plane mode 

shapes at 0.00% (i.e., undamaged state), 0.50%, 1.00%, 1.40%, 2.20%, and 3.50% drift 

ratios were set to 0.3, 0.3, 0.5, 0.7, 0.7, and 1.0, respectively. This was done due to the 

out-of-plane components of the experimentally identified mode shapes which have no 

counterparts in the initial FE model (i.e., the initial FE model has pure in-plane mode 

shapes, whereas the experimental in-plane mode shapes have out-of-plane 

components, which result in minimization difficulties in mode shape residuals). 

Weighting factors for the other responses (i.e., in-plane and out-of-plane vibration 

frequencies, and out-of-plane mode shapes) were selected the same as the ones adopted 

for the bare frame. 

 

5.3.1.1 Updating for the Reference Model (Undamaged State) 

 

The initial FE model was updated to obtain the reference model by using the modal 

data of the undamaged state. As stated before, the substructures column(s) bottom ends 

(#1), beam ends (#7-8), rotational springs about x-axis (#10), and rotational springs 

about y-axis (#11) were selected as design variables, thus n=4. Note that the model 

updating work was performed under the same conditions that were detailed for the 
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bare frame in Section 5.2.1 (e.g., constraints, model order, dimensions of residual 

vector and Jacobian matrix, etc.). Results are presented in Table 5.3. 

 

Table 5.3 Model updating results of the initial FE model to obtain the reference model using modal data 

of the undamaged state (F2 – frame with locked infills) 

(1) 
Initial 

FE Model 
Freq. 

(2) 
Undamaged 

Frame 
Freq. 

(3) 
Updated 

FE Model 
Freq. 

(4) 
Freq. 

Differences 
Before 

Updating 
(1 - 2) 

 

(5) 
Freq. 

Differences 
After 

Updating 
(3 - 2) 

 

(6) 
MAC 
Before 

Updating 
(1 - 2) 

(7) 
MAC 
After 

Updating 
(3 - 2) 

[Hz] [Hz] [Hz] [%] [%] [-] [-] 
4.77 4.57 4.57 4 0 0.96 0.96 

14.95 14.50 14.46 3 0 0.78 0.78 

 

 
Design Variables 
#1    Column(s) bottom ends 
#7-8 Beam ends 
#10  Rotational springs about x-axis (RotX) 
#11  Rotational springs about y-axis (RotY) 
 
                                    
                                     Initial     Ref. Model 
                                                    (Updated) 
#10  RotX (kNm/rad):  3236          2824 
#11  RotY (kNm/rad):  7355          6052 
 
*Substructures #1 and #7-8 were also 
selected as design variables but not updated 
by the algorithm. 

 

As can be seen, only the rotational springs were updated by the algorithm because 

of their relatively higher detectabilities (i.e., other design variables were not updated 

although they were involved in the updating procedure). Accordingly, the appropriate 

reference model was obtained when the spring stiffnesses about x- and y-axes became 

2824 kNm/rad and 6052 kNm/rad, respectively (i.e., softer than those of the bare 

frame). It is clear from Table 5.3 that the vibration frequencies of the reference FE 

model (updated model, 3rd column) and the experimentally identified ones (2nd 

column) match very well. In addition, the MAC values calculated before (i.e., between 

the mode shapes of the initial FE model and the experimentally identified ones, 6th 

column) and after (between the mode shapes of the reference FE model and the 
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experimentally identified ones, 7th column) are almost same. This is mainly due to their 

relatively lower weighting factors, which drives the updating algorithm to emphasize 

more on matching the frequency responses, and/or their low sensitivities to the selected 

design variables (i.e., almost insensitive). 

 

5.3.1.2 Damage Identification at Increasing Damage States 

 

Damage identification of the frame at increasing damage states was performed by 

updating the reference model obtained in the previous section. Two design variables 

were included in the updating process, namely the one at the beam ends and the one at 

the column(s) bottom ends (i.e., the substructures #1 and #7-8 in Table 5.3), thus n=2 

(i.e., here again, the spring stiffnesses were excluded from the updating process due to 

the same reason discussed before). Note that the model updating work was performed 

under the same conditions that were detailed for the bare frame in Section 5.2.2 (e.g., 

constraints, model order, dimensions of residual vector and Jacobian matrix, etc.). The 

updating results with the dimensionless stiffness reduction factors (in terms of p in 

percent) at different damage states with respect to the reference (undamaged) state are 

given in Table 5.4. 

 

It is clear from Table 5.4 that the experimentally identified vibration frequencies 

(2nd column) and the ones of the updated FE model (3rd column) match almost 

perfectly. Especially for the 3.50% drift ratio, significant reduction from 62% to 1% 

observed in the frequency differences calculated before and after updating (4th and 5th 

columns) reveals the effectiveness of the method. On the other hand, the MAC values 

calculated before and after updating (6th and 7th columns) are almost same due to their 

weightings and/or low sensitivities to the selected design variables (i.e., almost 

insensitive). The dimensionless stiffness reduction factors in Table 5.4 indicate that 

the severity of the structural damage increases as increasing drift level. This is because 

of the accumulation of damage on beam and column(s) bottom ends. 
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Table 5.4 Model updating results of the reference model for increasing damage states using the modal 

data of the increasing damage states (F2 – frame with locked infills) 

Drifts 
[%] 

(1) 
Reference  
FE Model 

Freq. 

(2) 
Damaged 

Frame 
Freq. 

(3) 
Updated 

FE Model 
Freq. 

(4) 
Freq. 
Diff. 

Before 
Updating 

(1 - 2) 

(5) 
Freq. 
Diff. 
After 

Updating 
(3 - 2) 

(6) 
MAC 
Before 

Updating 
(1 - 2) 

(7) 
MAC 
After 

Updating 
(3 - 2) 

[Hz] [Hz] [Hz] [%] [%] [-] [-] 

0.50 
4.57 4.10 4.10 12 0 0.97 0.96 
14.46 13.88 13.91 4 0 0.81 0.81 

1.00 
4.57 4.08 4.08 12 0 0.97 0.97 
14.46 12.83 12.88 13 0 0.91 0.91 

1.40 
4.57 3.96 3.96 15 0 0.97 0.97 
14.46 12.45 12.50 16 0 0.93 0.92 

2.20 
4.57 3.74 3.74 22 0 0.98 0.98 
14.46 11.74 11.79 23 0 0.94 0.94 

3.50 
4.57 3.63 3.62 26 0 0.93 0.92 
14.46 8.91 8.97 62 1 0.98 0.97 

 

Design Variables 
#1    Column(s) bottom ends 
#7-8 Beam ends 

Drifts [%] 

Stiffness reduction factors 
with respect to the 

reference state (p%)   
#1 #7-8 

Reference 0 0 
0.50 50 13 
1.00 52 49 
1.40 58 55 
2.20 67 65 
3.50 71 89 

 
*Rotational spring stiffnesses #10 and #11 
were not selected as design variables. 

 

Contour plots of the objective function with respect to the changes in the design 

variables are presented in Figure 5.4 to examine the solution space of the optimization 

problem for different damage states (i.e., similarly to Figure 5.2). Here again, the 

global minimum lies within a wide interval (especially at low damage states); 

therefore, there exists no prominent solution for the optimization problem (i.e., it is 

difficult to find the global minimum point). As the damage level increases, the solution 
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becomes closer to a prominent one. This verifies that the chosen design parameters are 

convenient to represent the damage patterns observed at higher drift ratios. 

 

  

0.50% drift ratio 1.00% drift ratio 

  

1.40% drift ratio 2.20% drift ratio 

Figure 5.4 The contour plots of the objective function for increasing damage states (F2 – frame with 

locked infills) 
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3.50% drift ratio 

Figure 5.4 continues 

 

The damage identification results presented above were also supported by visual 

damage inspections made during quasi-static tests. In Figure 5.5 (a), the damage state 

of the frame at 3.50% drift ratio (i.e., the drift ratio where the design variables are more 

representative) is shown. Here, extensive and deep cracks were observed on the beam 

and the column(s) bottom ends, which are presented in Figures 5.5 (b) and (c), 

respectively. At this drift ratio, deep cracks and spalling of concrete were observed on 

the column(s) bottom ends, and more than 4 mm crack width was measured on the 

beam ends. In this damage level, the vibration frequencies of the frame were reduced 

by 21% and 38% for the first and the second modes with respect to the undamaged 

state, respectively. The damage observations during the tests are in good agreement 

with the damage identification results. Especially, structural damage is mainly 

concentrated on the beam ends and on the column(s) bottom ends, whereas there exists 

only minor damage on the other parts of the frame (i.e., column(s) top ends, column(s) 

mid-zones, and beam mid-zone). It should be emphasized that the frame seems 

analogous to the bare frame in the sense of occurred damages. Note that the pictures 

presented in Figures 5.5 (b) and (c) are chosen to indicate the most damaged sides of 

the beam and column(s). 
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(a) 

(b) 

(c) 

Figure 5.5 (a) General view of the frame, observed damages on the (b) beam ends (the picture on the 

left indicates the backside of the frame) and the (c) column(s) bottom ends at 3.50% drift ratio 

(Personal archive, 2016) 
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5.3.2 Damage Identification of the Frame with Standard Infills (F3) 

 

This section presents the damage identification work of the frame with standard 

infills (F3). In this case, the infill wall acts like a rigid panel (i.e., high-level panel 

action due to using mortar on the bed and head-joints) and resists the motion of the 

surrounding frame system during the cyclic tests. Therefore, damage is likely to occur 

also on the column(s) mid-zones and top ends that are exposed to the resistance force 

of the infill wall. This approach can also be verified by the equivalent truss mechanism 

for a typical infilled frame where the infill wall is represented by a compressive 

diagonal strut element (Figure 5.6 (a)). Due to this mechanism, shear and compressive 

stresses occur on the loading corner along the contact length of the surrounding frame 

and the diagonal strut, as demonstrated in Figure 5.6 (b). 

 

  

(a) (b) 

Figure 5.6 (a) Equivalent truss mechanism for a typical infilled frame, and (b) the occurred 

compressive and shear stresses on the loading corner (Crisafulli, 1997) 

 

By also considering the equivalent truss mechanism, the internal force diagrams 

(i.e., bending moment, shear force, and axial force) for the members of a typical 

infilled frame exposed to lateral loading along the beam are obtained as in Figure 5.7. 

It should be stated that the bending moments in the surrounding frame members are 

significantly smaller than they are in the bare frame for the same load level. This is 

due to the lateral force is mainly transmitted to the foundation by the truss mechanism. 

For example, the maximum bending moment at the bottom end of the right column in 

Figure 5.7 (a) is approximately six times smaller than that of the bare frame (Crisafulli, 

1997). 
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(a) (b) 

 

(c) 

Figure 5.7 (a) Bending moment, (b) shear force, and (c) axial force diagrams for a typical infilled 

frame exposed to lateral loading along the beam (Crisafulli, 1997) 

 

Based on the statements above and the approach that was used for the other frames 

(i.e., symmetry conditions, detectability indices, and internal moment levels occurred 

in the frame elements), column(s) bottom ends (#1), column(s) mid-zones (#2), 

column(s) top ends (#3), beam ends (#7-8), rotational springs about x-axis (#10), and 

rotational springs about y-axis (#11) were selected as design variables (i.e., 6 design 

variables were used, refer to Figure 5.1 (b)). 

 

The initial spring stiffnesses were determined as 2824 kNm/rad (RotX) and 6052 

kNm/rad (RotY) by manual updating procedure (i.e., trial-and-error method) for the 

purpose of bringing the numerical modal analysis results close to the experimentally 

identified ones; however, the ultimate spring stiffnesses were determined by 

automated model updating approach in Section 5.3.2.1. The weighting factors for the 

in-plane mode shapes at 0.00% (i.e., undamaged state), 0.50%, 1.00%, 1.40%, 2.20%, 

and 3.50% drift ratios were set to 0.2, 0.2, 0.5, 0.7, 1.0, and 1.0, respectively. This was 

done due to the same reason discussed in Section 5.3.1. Weighting factors for the other 
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responses (i.e., in-plane and out-of-plane vibration frequencies, and out-of-plane mode 

shapes) were selected the same as the ones used for the other frames. 

 

5.3.2.1 Updating for the Reference Model (Undamaged State) 

 

The initial FE model was updated to obtain the reference model by using the modal 

data of the undamaged state. As stated before, the substructures column(s) bottom ends 

(#1), column(s) mid-zones (#2), column(s) top ends (#3), beam ends (#7-8), rotational 

springs about x-axis (#10), and rotational springs about y-axis (#11) were selected as 

design variables, thus n=6. Note that the model updating work was performed under 

the same conditions that were detailed for the other frames. The only difference is the 

number of design variables (n=6), and therefore the dimensions of the Jacobian matrix 

(36x6). Since n<m, an overdetermined problem occurs. Results are given in Table 5.5. 

 

As can be seen, only the rotational springs were updated by the algorithm because 

of their relatively higher detectabilities (i.e., other design variables were not updated 

although they were involved in the updating procedure). Accordingly, the appropriate 

reference model was obtained when the spring stiffnesses about x- and y-axes became 

2528 kNm/rad and 5366 kNm/rad, respectively (i.e., softer than those of the other 

frames). It is clear from Table 5.5 that the vibration frequencies of the reference FE 

model (updated model, 3rd column) and the experimentally identified ones (2nd 

column) match very well. In addition, the MAC values calculated before (i.e., between 

the mode shapes of the initial FE model and the experimentally identified ones, 6th 

column) and after (between the mode shapes of the reference FE model and the 

experimentally identified ones, 7th column) are almost same. This is mainly due to their 

relatively lower weighting factors, which drives the updating algorithm to emphasize 

more on matching the frequency responses, and/or their low sensitivities to the selected 

design variables (i.e., almost insensitive). 
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Table 5.5 Model updating results of the initial FE model to obtain the reference model using modal data 

of the undamaged state (F3 – frame with standard infills) 

(1) 
Initial 

FE Model 
Freq. 

(2) 
Undamaged 

Frame 
Freq. 

(3) 
Updated 

FE Model 
Freq. 

(4) 
Freq. 

Differences 
Before 

Updating 
(1 - 2) 

 

(5) 
Freq. 

Differences 
After 

Updating 
(3 - 2) 

 

(6) 
MAC 
Before 

Updating 
(1 - 2) 

(7) 
MAC 
After 

Updating 
(3 - 2) 

[Hz] [Hz] [Hz] [%] [%] [-] [-] 
4.57 4.41 4.41 4 0 0.97 0.97 

14.46 14.22 14.18 2 0 0.77 0.77 

 

 
Design Variables 
#1    Column(s) bottom ends 
#2    Column(s) mid zones 
#3    Column(s) top ends 
#7-8 Beam ends 
#10  Rotational springs about x-axis (RotX) 
#11  Rotational springs about y-axis (RotY) 
 
                                     
                                     Initial    Ref. Model 
                                                   (Updated) 
#10  RotX (kNm/rad):  2824          2528 
#11  RotY (kNm/rad):  6052          5366 
 
*Substructures #1, #2, #3, and #7-8 were 
also selected as design variables but not 
updated by the algorithm. 

 

5.3.2.2 Damage Identification at Increasing Damage States 

 

Damage identification of the frame at increasing damage states was performed by 

updating the reference model obtained in the previous section. Four design variables 

were included in the updating process, namely the one at the column(s) bottom ends, 

the one at the column(s) mid-zones, the one at the column(s) top end, and the one at 

the beam ends (i.e., the substructures #1, #2, #3, and #7-8 in Figure 5.1 (b)), thus n=4 

(i.e., here again, the spring stiffnesses were excluded from the updating process due to 

the same reason discussed before). Note that the model updating work was performed 

under the same conditions that were detailed for the other frames. The only difference 

is the number of design variables (n=4), and therefore the dimensions of the Jacobian 

matrix (36x4). Since n<m, an overdetermined problem occurs. The updating results 
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with the dimensionless stiffness reduction factors (in terms of p in percent) at different 

damage states with respect to the reference (undamaged) state are given in Table 5.6. 

 

Table 5.6 Model updating results of the reference model for increasing damage states using the modal 

data of the increasing damage states (F3 – frame with standard infills) 

Drifts 
[%] 

(1) 
Reference  
FE Model 

Freq. 

(2) 
Damaged 

Frame 
Freq. 

(3) 
Updated 

FE Model 
Freq. 

(4) 
Freq. 
Diff. 

Before 
Updating 

(1 - 2) 

(5) 
Freq. 
Diff. 
After 

Updating 
(3 - 2) 

(6) 
MAC 
Before 

Updating 
(1 - 2) 

(7) 
MAC 
After 

Updating 
(3 - 2) 

[Hz] [Hz] [Hz] [%] [%] [-] [-] 

0.50 
4.41 4.06 4.06 9 0 0.97 0.97 
14.18 13.74 13.69 3 0 0.80 0.80 

1.00 
4.41 3.82 3.83 16 0 0.98 0.98 
14.18 12.45 12.45 14 0 0.90 0.90 

1.40 
4.41 3.77 3.77 17 0 0.99 0.98 
14.18 11.69 11.74 21 0 0.94 0.93 

2.20 
4.41 3.40 3.41 30 0 0.98 0.98 
14.18 10.86 10.83 31 0 0.95 0.95 

3.50 
4.41 3.05 3.06 45 0 0.99 0.98 
14.18 9.93 9.90 43 0 0.97 0.97 

 

 
Design Variables 
#1    Column(s) bottom ends 
#2    Column(s) mid zones 
#3    Column(s) top ends 
#7-8 Beam ends 
 

Drifts [%] 

Stiffness reduction factors 
with respect to the 

reference state (p%)   
#1 #2 #3 #7-8 

Reference 0 0 0 0 
0.50 44 3 5 8 
1.00 57 20 25 35 
1.40 59 23 40 45 
2.20 73 30 54 50 
3.50 82 35 62 60 

 
*Rotational spring stiffnesses #10 and #11 
were not selected as design variables. 

 

It is clear from Table 5.6 that the experimentally identified vibration frequencies 

(2nd column) and the ones of the updated FE model (3rd column) match almost 
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perfectly. Especially for the 3.50% drift ratio, significant reduction from 45% to 0% 

observed in the frequency differences calculated before and after updating (4th and 5th 

columns) reveals the effectiveness of the method. On the other hand, the MAC values 

calculated before and after updating (6th and 7th columns) are almost same due to their 

weightings and/or low sensitivities to the selected design variables (i.e., almost 

insensitive). The dimensionless stiffness reduction factors in Table 5.6 indicate that 

the severity of the structural damage increases as increasing drift level. This is because 

of the accumulation of damage on structural elements. Since four design variables 

were used for the frame updating, the solution space of the optimization problem for 

different damage states cannot be visualized by contour plots as in the case of other 

frames (see Figures 5.2 and 5.4). 

 

The damage identification results presented above were also supported by visual 

damage inspections made during the quasi-static tests. In Figure 5.8 (a), the damage 

state of the frame at 3.50% drift ratio is shown. Here, extensive and deep cracks were 

observed on the beam ends (Figure 5.8 (b)) and the column(s) bottom ends (Figure 5.8 

(c)). At this drift ratio, deep cracks and spalling of concrete were observed on the 

column(s) bottom ends, and more than 5 mm crack width was measured on the beam 

ends. In addition, several cracks occurred on the column(s) top ends and mid-zones 

(Figures 5.8 (a) and (b)) because of the panel action of the infill wall. In this damage 

level, the vibration frequencies of the frame were reduced by 31% and 30% for the 

first and the second modes with respect to the undamaged state, respectively. The 

damage observations during the tests are in good agreement with the damage 

identification results. Especially for this frame, structural damage is concentrated on 

the column(s) bottom ends, mid-zones, top ends (i.e., throughout the column 

members), and beam ends (i.e., the damage formation is significantly different from 

the other frames).  Note that the pictures presented in Figures 5.8 (b) and (c) are chosen 

to indicate the most damaged sides of the structural elements. 
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(a) 

(b) 

 

(c) 

Figure 5.8 (a) General view of the frame, observed damages on the (b) column(s) top ends and beam 

ends, and the (c) column(s) bottom ends at 3.50% drift ratio (Personal archive, 2016) 
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CHAPTER SIX 

MODEL CALIBRATION WORK PERFORMED ON THE UNREINFORCED 
MASONRY COURTYARD WALLS OF THE HISTORICAL ISABEY 

MOSQUE 
 

6.1 Introduction 
 

Historical masonry structures such as bridges, arches, buildings, towers (e.g., 

minarets), monuments (e.g., mosques, churches, basilicas) are shown as the symbols 

of cultural heritage and have great cultural and spiritual values for societies. They also 

significantly contribute to the economic development of countries by being tourist 

attractions. Therefore, it is important to ensure the structural safety of these unique 

cultural heritage pieces and hand them down to future generations. 

 

Natural disasters (e.g., earthquakes, hurricanes, etc.), degeneration of materials in 

time, and dilapidation are the main reasons that threaten the safety of historical 

structures. Therefore, safety assessment and retrofitting/restoration are required to 

preserve them. Nowadays, especially for developed countries, interest in preservation 

and restoration of historical masonry structures, which requires also rigorous structural 

assessments, has increased. As the need for structural assessment increases, 

understanding the structural behavior of these structures has become an important field 

in engineering applications. One needs to obtain sufficiently accurate knowledge of 

the current state of the structural system to avoid erroneous interventions, and therefore 

confine the interventions within a minimal state in order to preserve the structure’s 

historical value. The structural condition can be assessed by investigating structural 

integrity, geometry, boundary conditions, and material properties. 

 

Finite element (FE) analysis is a popular tool for numerically modeling historical 

masonry structures, however, developing a reliable FE model is a difficult task. 

Challenges arise due to non-homogeneity of the masonry material, complicated cross-

sectional properties (e.g., multi-leaf walls), uncertainty in boundaries, and 

mechanical/chemical characteristics of mortar layers. It is possible for an analyst to 

make some assumptions and simplifications in modeling and/or material 
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characteristics to overcome these aforementioned complexities. Generally, this 

modeling approach leads to erroneous FE models which do not accurately represent 

the real system. In this context, model calibration (a.k.a. model updating) has become 

a popular tool to correct these errors and to obtain a more reliable FE model which is 

more representative of the real structure (Friswell & Mottershead, 1995). Here, the 

calibration term refers to tuning the uncertain parameters of the numerical model such 

as Young’s modulus, mass density, and boundary conditions by taking into account 

the in-situ measurements. 

 

This chapter of the thesis presents the operational modal analysis (OMA) results 

and the sensitivity-based finite element model updating (FEMU) work performed on 

the unreinforced masonry courtyard walls of the historical Isabey Mosque. Two sets 

of ambient vibration tests were conducted using 12 uni-axial accelerometers which 

were deployed to register responses along the out-of-plane directions of the two 

perpendicularly positioned courtyard walls. The measured dynamic response data 

were then processed using a well-known output-only method called Enhanced 

Frequency Domain Decomposition (EFDD) embedded in ARTeMIS software 

(ARTeMIS, 2016). The initial numerical macro model of the system was developed in 

ABAQUS (ABAQUS, 2017) FE modeling environment by using the material 

properties obtained from the in-situ flat-jack tests and the relevant literature. Boundary 

conditions were defined by using individual translational springs in three directions. 

The initial stiffnesses of these springs were determined by performing manual 

updating work on the model so that the modal parameters of the initial numerical 

model capture the identified experimental results. In order to obtain a more reliable FE 

model which is more representative of the modal parameters estimated by the in-situ 

test, the initial FE model (i.e., initial numerical model) was updated using the 

sensitivity-based FEMU method in FEMtools software (FEMtools, 2017a). In this 

context, the model parameters, namely mass density, Young’s modulus, and boundary 

conditions (i.e., translational springs) of the initial numerical model were calibrated in 

the sense of global parameter updating. 
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6.2 Description of the Historical Isabey Mosque 
 

The historical Isabey Mosque was constructed by Aydinoglu Isa Bey as the work 

of architect Samlı Ali in 1375 in Selcuk, Izmir. It is evaluated as one of the oldest and 

most magnificent masterpieces of the Anatolian Principalities period. During its 

construction, stone and column members from the ruins of the nearby older 

civilizations (e.g., Ephesus and the Temple of Artemis) were also used. The mosque 

structure is composed of 4 walls forming the main building and 3 walls surrounding 

the courtyard (Figures 6.1 (a) and (b)). The courtyard walls have 1.80 m average 

thickness and 11.6 m free height. There is a ~3 m height difference between the ground 

levels of the interior and the exterior sides (i.e., the interior side is at a higher level). 

The courtyard walls are unreinforced. Herein, the upper half portion is made in three-

layer stone masonry style where the middle layer is composed of rubble stones to fill 

the cavity between the outer layers, whereas the lower half portion is made in two-

layer stone masonry style. The structural behaviors and damage types observed after 

past earthquakes revealed that the damage mechanism of historical masonry 

structures is predominantly along their out-of-plane directions (Augenti & Parisi, 

2010; Dizhur et al., 2011; Dizhur & Ingham, 2015; Ismail et al., 2011). That’s why 

the main motivation of this study is to research the out-of-plane behaviors of the 

West and North courtyard walls which are perpendicular to each other (Figures 6.1 (c) 

and (d)). These walls are particularly vulnerable to out-of-plane seismic loads due to 

lack of a slab forming a diaphragm to enable the walls to resist these loads altogether. 

 

 

(a) (b) 

Figure 6.1 (a) A general view of the historical Isabey Mosque, (b) main structure, (c) West, and (d) 

North courtyard walls (Personal archive, 2017) 
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(c) (d) 

Figure 6.1 continues 

 
6.3 Field Measurements and Operational Modal Analysis Results 
 

Dynamic characteristics of the courtyard walls were estimated by using ambient 

vibration (AV) response data. These tests were conducted in-situ using 16-channel 

Digitex portable data acquisition system with 16-bit sensitivity and 12 force-balanced 

uni-axial accelerometers with ±3g full range, noise floor bandwidth of 0.05-1500 Hz, 

and dynamic range greater than 110 dB. The AV tests were performed in two different 

sensor setups (i.e., Set-1 and Set-2) in order to measure the dynamic behavior of the 

wall system with a higher spatial resolution (i.e., response data acquired from more 

location). In Set-1, all of the accelerometers were placed on to the inner surface (facing 

courtyard) of the West wall along the out-of-plane direction (Figure 6.2 (a)). In Set-2, 

six of the accelerometers were kept as reference (R) sensors and the remaining six 

were relocated to the inner surface of the North wall in order to capture the out-of-

plane responses of both walls simultaneously (Figures 6.2 (a) and (b)). Positions of the 

accelerometers, the number of accelerometers used in the test setups, and the selection 

of the reference accelerometers were determined by investigating the mode shapes of 

a preliminary numerical model (i.e., a coarse model having fixed support conditions 

and approximate material characteristics) in order to capture a sufficient number of 

out-of-plane modes of the wall system. For both of the test setups, approximately 14 

minutes long AV response data were collected with a sampling rate of 250 Hz. The 

data acquisition system and one of the accelerometers deployed on the walls are 

presented in Figure 6.3. 
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(a) 

 

(b) 

Figure 6.2 Accelerometer layouts of the inner surfaces (facing courtyard) of (a) West and (b) North 

courtyard walls (dimensions are in cm) 

 

  

(a) (b) 

Figure 6.3 (a) The data acquisition system and (b) one of the accelerometers deployed on the walls 

(Personal archive, 2017) 

 

Pre-processing of the dynamic response data was performed in MATLAB. 

Operational modal analysis (OMA) was conducted in ARTeMIS software using the 
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EFDD method. The results are shown in Figure 6.4. It should be stated that only three 

out-of-plane modes were clearly identified from the collected experimental data. The 

vibration frequencies of these modes (i.e., 1st, 2nd, and 3rd experimentally identified 

out-of-plane modes) are estimated as 3.906 Hz, 8.960 Hz, and 21.265 Hz, respectively. 

 

  

(a) (b) 

 

(c) 

Figure 6.4 (a) 1st, (b) 2nd, and (c) 3rd experimentally identified out-of-plane modes of the courtyard 

wall system (W: West, N: North) 

 
6.4 Initial FE Model of the Courtyard Walls 
 

Mechanical characteristics of masonry structures may differ in different loading 

directions due to the variations in material properties and/or construction detailing. 

Therefore, making realistic assumptions in numerical modeling is essential to capture 

the actual structural system behavior. Mainly, three approaches are used in modeling 

masonry structures, namely micro modeling, simplified micro (meso) modeling, and 

macro modeling (Lourenço, 1996). Micro modeling is the detailed one in which 

masonry units and mortars (both bed and head-joints) are modeled separately (Figure 

6.5 (a)). In meso modeling, masonry units are modeled together with their interface 
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relations and therefore there is no need to define mortars (Figure 6.5 (b)). In macro 

modeling, which is the coarsest and simplest one, a composite structural finite element 

(i.e., macro element) consisting of both the masonry unit and mortar layers is used 

(Figure 6.5 (c)). 

 

   

(a) (b) (c) 

Figure 6.5 (a) Micro, (b) meso, and (c) macro modeling approaches for masonry structures 

(Lourenço, 1996) 

 

In this research work, the macro modeling approach was used with a homogeneous 

material having equivalent mechanical properties representing both the masonry unit 

and the mortar to model the courtyard walls. This may seem to be too simplistic, but 

it is known that selecting a simple numerical model that represents the salient dynamic 

characteristics of the structure is very effective in dealing with convergence problems 

in model updating studies (Teughels, 2003; Teughels & De Roeck, 2004).  

 

Due to the absence of shell and solid elements in FEDEASLab environment, the 

initial FE model (i.e., an extensive and realistic model than the preliminary model) of 

the West and North courtyard walls was developed in ABAQUS using 3-dimensional, 

10-node quadratic tetrahedron (C3D10) continuous solid elements. Determining the 

optimum mesh size of a FE model is an important issue. Large meshes may lead to 

inaccurate and non-representative models, whereas small meshes may lead to 

unnecessarily complex and computationally expensive models. The optimum mesh 

size (therefore the optimum FE number) of the initial FE model was determined from 

convergence analysis which includes repeated frequency analyses for different mesh 

sizes. Note that the convergence analysis using the preliminary numerical model was 

performed before the field measurements discussed in Section 6.3. The relationship 

between the FE number and the 1st mode frequency is given in Figure 6.6 by a 
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convergence plot. Here, the optimum FE number is determined as 9405 from the first 

point where the frequency value remains almost constant. As a result, the initial FE 

model (i.e., initial numerical model) was created by 16356 nodes and 9405 elements. 

 

 

Figure 6.6 Convergence plot of the 1st mode of the preliminary numerical model 

 

Mechanical characteristics of the wall system were determined by flat-jack tests 

(Figure 6.7) in accordance with ASTM C1197-04 (2004) and RILEM MDT.D.4 

(2004), literature (Ceravolo et al., 2016; Mouyiannou et al., 2014; Ramos et al., 2005), 

and the findings of the similar structures that were previously investigated by the 

Turkish Republic Directorate General of Foundations. Based on these evaluations; 

mass density (ρ), Young's modulus (E), and Poisson's ratio (υ) of each macro element 

of the initial FE model were set to be 2400 kg/m3, 4535 MPa, and 0.25, respectively. 

 

 

  

 

 (a) (b)  

Figure 6.7 Flat-jack tests from (a) West and (b) North courtyard walls (Personal archive, 2018) 
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Boundary conditions (support conditions) were modeled by using translational 

springs in global X, Y, and Z directions with corresponding spring stiffnesses KX, KY, 

and KZ, respectively. The number of spring elements is 2649 in total (i.e., 883 spring 

elements for each X, Y, and Z direction). Note that the springs were divided into four 

distinct groups (regions) by their locations and designated as spring groups SGs. This 

way their different characteristics based on their locations could be considered in 

model updating (Figure 6.8). SG-1 was used for the zone where the North wall is 

interrupted by a doorway (Figure 6.8 (a), the doorway is not shown in the figure). SG-

2 was used for the triangular interface between the North wall and the exterior stairs 

(Figure 6.8 (b)). SG-3 was used for the bases of both walls (soil-wall interface, Figure 

6.8 (c)). Finally, SG-4 was used for the interface between the West wall and the 

minaret (Figure 6.8 (d)). No rotational springs were used in the modeling due to the 

definition of the solid elements (i.e., no rotational degree of freedom is available for 

solid elements due to their higher torsional and bending rigidities). In real-life cases, 

determining the actual stiffnesses of the springs representing the boundary conditions 

is practically impossible. Therefore, making educated guesses for assigning initial 

stiffness values for these springs under some assumptions is inevitable. Note that the 

final stiffness values will be obtained by updating these initial values. In this context, 

the initial spring stiffnesses were determined by a trial-and-error method (manual 

updating method without any optimization algorithm) so as to obtain an initial model 

with dynamic characteristics that are closely approximating the modal parameters 

obtained experimentally. Because of being the most uncertain model parameters (i.e., 

no prior knowledge exists), at this initial stage, only the spring values were manually 

updated, and the other parameters were set to be constant. This preliminary manual 

updating is very effective in overcoming potential convergence problems that may 

occur in the next stage of the model updating process using an optimization-based 

procedure. 

 
Since the out-of-plane behavior of the wall system is the main motivation of this 

study, only the out-of-plane modes of the initial FE model were considered. No 

changes were observed in the modal properties when KY spring stiffnesses of SG-1, 

SG-2, and SG-3 were updated, which shows that the considered modes are insensitive 

to the aforementioned spring stiffnesses. Therefore, these springs were removed from 
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the model to increase the convergence performance of the updating problem. Also, 

note that only the out-of-plane modes (i.e., the modes that are the main motivation of 

the study) were extracted from the experimental data. Therefore, the model was set to 

be vertically fixed by assigning high values for KY spring stiffnesses of SG-4. This 

was done to prevent vertical modes to occur (not captured experimentally) and to 

reduce difficulties in pairing between the experimental and the numerical modes. 

Eventually, KX and KZ spring stiffnesses were manually calibrated to 18000 kN/m and 

9000 kN/m for SG-1, 18000 kN/m and 9000 kN/m for SG-2, 18000 kN/m and 18000 

kN/m for SG-3, 18000 kN/m and 18000 kN/m for SG-4, respectively. 

 

 

(a) (b) 

  

(c) (d) 

Figure 6.8 Spring groups (SGs) used for the numerical model: (a) SG-1, (b) SG-2, (c) SG-3, and (d) 

SG-4 

 

Modal analysis of the initial FE model was conducted by ABAQUS standard 

module and the results are shown in Figure 6.9. Here, only the modes that correspond 

to the experimentally identified ones (see Figure 6.4) are presented (i.e., 1st, 5th, and 

14th modes of the initial FE model). Vibration frequencies of these modes are obtained 

as 3.765 Hz, 9.208 Hz, and 19.848 Hz, respectively. Note that all of these modes are 

mainly the out-of-plane modes of the West wing of the courtyard wall system. It should 

be stated that almost all the modes between the 1st and 14th modes exhibit the out-of-
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plane behavior of the wall system; however, these modes couldn’t be extracted from 

the experimental data due to the spatial resolution of the present accelerometer layout. 

 

(a) (b) 

  

(c) 

Figure 6.9 (a) 1st, (b) 5th, and (c) 14th modes of the initial numerical model 

 

Modal analysis results identified using the initial numerical model (by the 

ABAQUS model) and the experimentally obtained counterparts (by the ARTeMIS 

model) are presented in Table 6.1 for comparison purpose. In the table, also the MAC 

values calculated between the experimental and numerical modes are given. Remind 

that a MAC value being close to unity denotes spatial similarity between the compared 

mode shapes (Allemang, 2003). It can be said that the numerically and experimentally 

obtained mode shapes are spatially similar to each other due to the fact that the smallest 

MAC value is at 78%. Nevertheless, large differences are seen for the frequency 

estimations (e.g., ~7% difference is calculated for the 3rd mode). Therefore, it can be 
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said that the initial numerical model needs updating to better represent the real 

structural system in terms of the estimated modal parameters. The updating will be 

done by calibrating some uncertain model parameters to match the numerical modal 

parameters with the experimental ones. 

 

Table 6.1 Comparison of the modal parameters obtained using the initial numerical model and their 

experimental counterparts 

Mode # 
[Num. vs. Exp.] 

Init. Num. Model Experimental Freq. Diff. 
[%] 

MAC 
[%] Freq. [Hz] Freq. [Hz] 

1 - 1 3.765 3.906 -3.61 95.20 
5 - 2 9.208 8.960 2.77 82.60 
14 - 3 19.848 21.265 -6.66 78.30 

 

6.5 Model Updating Work for the Initial FE Model 
 

Model updating studies for the initial FE model of the courtyard walls were 

performed by FEMtools software using sensitivity-based finite element model 

updating method with Bayesian technique (FEMtools, 2017a). Here, the MATLAB 

based code (discussed in Chapters Four and Five) couldn’t be used since the initial FE 

model was created in ABAQUS environment. A brief theoretical background of the 

updating method that is used in FEMtools is described below (FEMtools, 2017b). 

 

The functional relationship between the responses and the model parameters can be 

written as follows 

 

                         or     e a u oR R S P P R S P       (6.1)

 

where   eR  is the response vector obtained from the experimental data,    aR  is the 

response vector of the numerical model for a given state   oP  of the model parameter 

values,   uP  is the vector of the updated model parameter values,  S  is the sensitivity 

matrix,  R  is the difference vector calculated between   eR  and   aR  response 

vectors, and  P  is the parameter variation wanted to be identified. Note that the 

experimental and numerical responses must be accurately paired. Equation 6.1 can be 
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solved by least squares, weighted least squares, or Bayesian techniques, depending on 

the application of weighting factors used to weight the parameters and responses with 

respect to their importance, reliability (confidence), and amount of noise. 

 

If the number of responses equals the number of updating parameters (i.e., in the 

case where  S  is a square matrix),  P  can be directly found by simple inversion 

of the sensitivity matrix as follows 

 

      1
P S R


    (6.2)

 

Otherwise, the pseudo-inverse calculation is required where  S

 is the pseudo-inverse 

of the sensitivity matrix (Equation 6.3). 

 

               
1T T

P S R S S S R


      (6.3)

 

The least squares solution calculated from Equations 6.2 or 6.3 minimizes an 

objective function which can be written as follows 

 

       . .Obj Func S P R     (6.4)

 

For Bayesian techniques, the discrepancy between the experimental and numerical 

responses is defined by a weighted error as defined in Equation 6.5, where  RC  and 

 PC  are the diagonal weighting matrices representing the confidence in responses and 

model parameters, respectively. Note that if   0PC  , (i.e., no error estimates on the 

model parameters are available, therefore there is no confidence in model parameters) 

the weighted least squares problem occurs, whereas if   0RC  , (i.e., there is no 

confidence in the experimental data), then the model parameters are not updated since 

the experimental data are not used. In addition, if   0PC   and   IRC   (i.e., the 

responses are weighted similarly), a least squares problem occurs. 
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          T T

R PE R C R P C P       (6.5)

 

Error given in Equation 6.5 can be minimized as follows 

 

         u oP P G R    (6.6)

 

where  G  is the gain matrix. In the case where there are more responses than 

parameters,  G  is computed as Equation 6.7; otherwise, which is generally the case, 

Equation 6.8 is used. 

 

              
1T T

P R RG C S C S S C


   (6.7)

 

                11 T 1 1 T

P R PG C S C S C S
  

   (6.8)

 
As stated in Chapter Three, the weighting matrices, which depend on the structural 

characteristics, testing methods, and modeling strategies, can be determined based on 

a statistical approach like Gauss-Markov estimate. However, in practice, this statistical 

information is often not available, such that the appropriate weights are determined 

based on engineering judgements. Note that the absolute values of the elements within 

the weighting matrices are not meaningful alone, only their relative values with respect 

to each other are important. Sometimes, it is more useful to define statistical scatter 

values (Equation 6.9) instead of these matrices. 

 

 /Scatter     (6.9)
 
where   and   are the standard deviation and the mean of the considered model 

parameter or response, respectively. Note that low scatter results in low variance, high 

confidence, and high  RC  and  PC , whereas high scatter results in high variance, 

low confidence, and low  RC  and  PC . Model parameters with low scatters do not 

change too much during updating (i.e., parameters only change if the great majority of 

the responses indicate that these parameters should change), whereas the parameters 
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with high scatters are free to change (i.e., large parameter changes occur). Responses 

with low scatters lead to model parameter changes during updating (i.e., result in large 

parameter changes), whereas responses with high scatters only have effects if they all 

change the model parameters in the same way (i.e., result in small parameter changes). 

Since the mode shape estimations contain higher estimation uncertainty than 

frequency estimations due to having a limited number of sensors and estimation 

sensitivity to measurement noise, the strategy of assigning relatively higher scatter 

values to mode shape responses is suggested if they are thought to be unreliable. 

 
Vibration frequencies and MAC values for the 1st, 5th, and 14th modes of the 

ABAQUS model and the 1st, 2nd, and 3rd experimental modes from ARTeMIS were 

selected as responses to be used for updating. Scatter values for the frequencies and 

MACs were selected as 1% and 30%, respectively. Note that relatively a higher scatter 

value was assigned to the MAC responses due to their higher estimation uncertainty. 

Mass density, Young’s modulus, and boundary conditions (defined by translational 

springs) were selected as model parameters to be updated (i.e., parameters that are 

considered uncertain therefore require updating). The scatter values of 10%, 10%, and 

25% were assigned to mass density, Young’s modulus, and springs stiffnesses, 

respectively. Note that relatively a higher scatter value was assigned to the spring 

stiffnesses due to their higher uncertainty. Initial values used for these parameters are 

given in the previous sections. In order to obtain physically meaningful/feasible model 

parameter values after updating, bounds (i.e., change intervals during updating) were 

selected as ± 10%, ± 20%, and ± 60% for mass density, Young's modulus, and spring 

stiffnesses, respectively. Note that relatively a wider bound was used for spring 

stiffnesses due to their higher uncertainty. 

 

Effects of mass density, Young’s modulus, and spring stiffnesses on the vibration 

frequencies were investigated by a sensitivity analysis prior to updating the initial FE 

model. Based on the results of the sensitivity analysis, it is possible to investigate 

whether the model parameters should be updated individually for each finite element 

(local updating) or together for all finite elements with similar effects on modal 

parameters (global updating). Sensitivity plots of the vibration frequencies of the 

numerical model (i.e., 1st, 5th, and 14th modes) with respect to the mass density, 
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Young’s modulus, and spring stiffnesses (i.e., KX, KY, and KZ) are shown in Figures 

6.10 to 6.14, respectively. Note that the normalized sensitivities, independent on the 

units of the model parameters and responses, and thus can be compared for different 

model parameter types, are presented in the figures. From these results, it can be said 

that all finite elements of the model have similar effects (i.e., detectabilities), especially 

the Young’s modulus, on the vibration frequencies (i.e., predominantly single color, 

red for mass density and blue for Young’s modulus). There are patches of zones with 

different colors (i.e., sensitivities) but in order to have a well-conditioned 

overdetermined problem, it was decided to ignore them and perform global updating. 

(i.e., assigning a common model parameter for finite elements having similar 

detectabilities). 

 

Similar results were observed for each SG (SG-1, SG-2, SG-3, and SG-4). Note that 

the insensitiveness of the modal parameters with respect to KY stiffnesses are also 

verified by the sensitivity analyses. Therefore, also for the spring stiffnesses, in order 

to obtain a well-conditioned optimization problem, global parameter updating was 

found to be appropriate. Consequently, model updating was performed by using 10 

model parameters; namely one for mass density and Young’s modulus of the entire 

model, and four for KX and KZ each having four separate spring groups (i.e., SG-1, 

SG-2, SG-3, and SG-4). 

 

  

(a) (b) 

Figure 6.10 Sensitivity plots of the (a) 1st, (b) 5th, and (c) 14th modes of the numerical model with 

respect to mass density 
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(c) 

Figure 6.10 continues 

 

  

(a) (b) 

 

(c) 

Figure 6.11 Sensitivity plots of the (a) 1st, (b) 5th, and (c) 14th modes of the numerical model with 

respect to Young’s modulus 
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(a) (b) 

 

(c) 

Figure 6.12 Sensitivity plots of the (a) 1st, (b) 5th, and (c) 14th modes of the numerical model with 

respect to KX 

 

  

(a) (b) 

 

(c) 

Figure 6.13 Sensitivity plots of the (a) 1st, (b) 5th, and (c) 14th modes of the numerical model with 

respect to KY 
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(a) (b) 

 

(c) 

Figure 6.14 Sensitivity plots of the (a) 1st, (b) 5th, and (c) 14th modes of the numerical model with 

respect to KZ 

 

Modal parameters from the initial numerical model, experimental results, and the 

updated numerical model (the values in parentheses) are shown in Table 6.2. 

 

Table 6.2 Modal parameters from the numerical models and experimental results 

Mode # 
[Num. vs. Exp.] 

Numerical 
Model 

Experimental Freq. Diff. 
[%] 

MAC 
[%] 

Freq. [Hz] Freq. [Hz] 
1 - 1 3.77 (3.93) 3.906 -3.61 (0.71) 95.20 (94.90) 
5 - 2 9.21 (9.01) 8.960 2.77 (0.53) 82.60 (76.30) 
14 - 3 19.85 (21.01) 21.265 -6.66 (-1.19) 78.30 (77.80) 

 

From Table 6.2, it can be seen that significant improvements have been achieved 

between the frequencies computed before and after updating. On the other hand, the 

MAC values are not improved (i.e., are not increased in value) but rather slightly 

decreased. This is mainly because relatively higher scatter values were assigned to 

them which drives the updating algorithm to emphasize more on matching the 

frequency responses. Based on the updating results, the numerical model is calibrated 
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so that now it is more representative of the experimentally obtained modal parameters 

than the initial one. Consequently, the updated model can be used in the future for 

more in-depth analysis and assessment work. 

 

Percentage changes of the model parameters with respect to their initially assigned 

values are shown in Figure 6.15 as contour plots. Besides, the model parameter values 

of the initial and updated numerical models are numerically presented in Table 6.3.  

 

 

(a) (b) 

 
 

(c) (d) 

Figure 6.15 Percentage changes of (a) KX, (b) KZ, (c) Young’s modulus, and (d) mass density with 

respect to their initially assigned values 

 

By investigating the figure and the table together, it can be seen that all of the 

parameters are updated according to their updating strategy (i.e., global parameter 

updating), bounds, and scatter values. Another important issue is that the model 

parameters are updated well within the specified bounds, which means that the bounds 

are properly selected for the problem. Note that the updating results are heavily 

dependent on the updating strategy, initial parameters, parameter bounds, and scatters 

of model parameters and responses. Successive updating studies under different 

conditions may lead to different solutions, some of them even being unrealistic. That’s 
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why all findings and results should be carefully evaluated by engineering judgement 

and insight, and then used if they are considered to be appropriate. 

 

Table 6.3 Model parameters for the initial and updated numerical models 

Model Parameter Initial Value Updated Value Difference [%] 

SG-1 
[kN/m] 

KX 18000 18313 1.74 

KZ 9000 3951 -56.10 

SG-2 
[kN/m] 

KX 18000 19487 8.26 

KZ 9000 4418 -50.91 

SG-3 
[kN/m] 

KX 18000 17222 -4.32 

KZ 18000 23366 29.81 

SG-4 
[kN/m] 

KX 18000 13129 -27.06 

KZ 18000 23028 27.94 

E [MPa] 4535 5177 14.15 

ρ [kg/m3] 2400 2507 4.44 
 

6.6 Damage Scenario Study on the Courtyard Walls 

 

It should be stated that damage scenario studies are beneficial tools that can be 

utilized for structural condition assessment of engineering structures. Namely, if the 

critical damage states for a structural system are known or foreseen (with extent and 

location information of the damages), they can be represented by using the reliable 

reference model of the system. Afterwards, it is possible to identify the modal 

parameters corresponding to each damage state, and by comparing these modal 

parameters to the ones that are extracted from the real-time monitoring data, it can be 

checked whether an undesired situation has occurred or not. 

 

In the scope of this thesis, a damage scenario study was performed on the 

unreinforced masonry courtyard walls of the historical Isabey Mosque by using the 

updated/calibrated numerical model (i.e., reference model) obtained in the previous 

section. Here, the damaged case of the structural system was simulated numerically 

due to the impossibility to give controlled damage to the actual structure. But it must 

be stated that since the reference model was obtained by using the experimental data 

of the actual structure (i.e., the reference model is a representative of the actual 
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structural system), it can be employed to reflect any damage state of the actual structure 

as well. 

 

The damaged case of the courtyard wall system was obtained by reducing the 

Young's modulus values of a specific region of the reference model by 70% (the blue 

colored zone denoted in Figure 6.16). This damaged region, which consists of 244 

finite elements, was determined based on the first mode shape of the reference model 

which is presented in Figure 6.17. It should be stated that the constituted damaged 

model can be considered as representing an in-situ test of the courtyard wall system 

conducted after a damaging event. Since it reflects the dynamic characteristics of the 

damaged case, it is possible to carry out a damage identification study by using the 

outputs of the reference and damaged models. 

 

 
Figure 6.16 Damage scenario for the reference model of the courtyard walls 

 

 
Figure 6.17 First mode shape of the reference model of the courtyard walls 
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The damaged zone of the wall system (see Figure 6.16) was tried to be detected by 

updating the reference model of the courtyard walls. In this context, the vibration 

frequencies and MAC values for the first 10 modes of both the models (i.e., the 

reference and damaged models) were selected as responses with scatter values of 1% 

and 10%, respectively. Only the Young’s modulus values were selected as model 

parameters to be updated with a scatter value of 25%. Herein, local parameter updating 

strategy was adopted (i.e., model parameters were updated individually for each finite 

element, thus 9405 finite elements were updated). Bounds were selected as to be in 0-

100% interval (i.e., only softening was allowed). Modal parameters from the reference, 

damaged, and updated models (i.e., values in parentheses are from the updated model) 

are given in Table 6.4. 

 

Table 6.4 Modal parameters from the reference, damaged, and updated models 

Mode # 

[Ref. vs. Dam.] 

Reference 

Model 

Damaged 

Model 
Freq. Diff. 

[%] 

MAC 

[%] 
Freq. [Hz] Freq. [Hz] 

1 - 1 3.93 (3.84) 3.85 2.32 (-0.03) 99.80 (100) 

2 - 2 4.77 (4.74) 4.75 0.49 (-0.04) 99.70 (100) 

3 - 3 7.24 (6.90) 6.90 4.90 (-0.02) 98.90 (100) 

4 - 4 8.41 (8.39) 8.39 0.26 (-0.02) 99.96 (100) 

5 - 5 9.01 (8.91) 8.91 1.09 (-0.01) 98.70 (100) 

6 - 6 10.28 (10.17) 10.17 1.13 (-0.03) 98.80 (100) 

7 - 7 13.02 (12.46) 12.46 4.56 (-0.02) 20.40 (100) 

8 - 8 13.03 (12.79) 12.79 1.91 (-0.01) 21.90 (100) 

9 - 9 13.76 (13.73) 13.74 0.16 (-0.03) 99.00 (100) 

10 - 10 16.07 (15.58) 15.59 3.12 (-0.01) 96.40 (100) 

 

From Table 6.4, it can be seen that significant improvements have been achieved 

between the frequencies and MAC values computed before and after updating (i.e., an 

almost perfect match is obtained). Based on the updating results, the reference model 

is updated so that now it is more representative of the damaged state (i.e., damaged 

model). Percentage changes of the model parameters (i.e., Young’s modulus values of 
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each finite element) with respect to their initial values are presented in Figure 6.18 as 

a contour plot. Actually, Figure 6.18 indicates the detected damages of the courtyard 

wall system. By investigating the figure, it can be concluded that the predefined 

damages are reasonably detected in terms of location and extent. Note that expecting 

a better result (i.e., the exact damage state shown in Figure 6.16) is nonsense since 

there exist many model parameters (i.e., 9405 model parameters) to be updated and 

the number of responses (i.e., first 10 modes) is limited. However, it is possible to 

enhance the results by limiting the number of model parameters by, for instance, 

updating only the vicinity of the damaged zone. 

 
Figure 6.18 Detected damages of the courtyard walls 
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CHAPTER SEVEN 

CONCLUSIONS AND FUTURE WORK 
 

7.1 Conclusions 

 

The research work presented in this thesis mainly concerned with three subjects: (i) 

System identification of half-scale, single-bay, single-story three R/C frames having 

different infill conditions at progressively increasing damage levels, (ii) damage 

identification of the frames by sensitivity-based finite element model updating method 

using the experimentally identified modal parameters, and (iii) system identification, 

model calibration, and damage scenario studies of the unreinforced masonry courtyard 

walls of the historical Isabey Mosque. Each of these subjects is summarized below.  

 

In extensive experimental studies, half-scale, single-bay, single-story three R/C 

frames with different infill conditions, namely bare, locked type infilled, and standard 

type infilled, were quasi-statically tested under progressively increasing in-plane 

drifts, and after dynamically tested at some predetermined drifts. At different drift 

levels (i.e., at different damage states) AV and WN (having different excitation 

amplitudes) tests were conducted to estimate the modal parameters of the frames. WN 

tests were conducted by an electro-dynamic shaker positioned on top of the frames 

(i.e., on the slab level). The recorded dynamic response data at different damage states 

were processed by using three different output-only system identification methods, 

namely NExT-ERA, SSI-DATA, and EFDD. During the quasi-static tests, detailed 

visual damage inspections were conducted in order to classify the occurred damages, 

and their evolutions with respect to increasing damage levels were coupled with the 

corresponding modal identification results. A comparative study was performed for 

the frames at different damage states to reveal the effects of the different infill 

conditions. The main contributions and major findings of this research work are 

summarized as follows: 

 

 For the frame with locked infills, stepped and horizontal cracks are mainly formed 

at brick-to-brick interfaces over a large portion of the infill wall due to the sliding 
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mechanism. Numerous and scattered plaster cracks (i.e., no concentration of crack 

patterns) occur and no significant brick crushing is observed. 

 

 For the frame with standard infills, cracks are concentrated at corner zones where a 

bi-axial compression-compression stress state develops. This situation causes brick 

members to crush and spall around these zones (i.e., concentration of cracks). 

 

 The additional lateral resistance imposed on the frames by the standard type infills 

is much higher than the additional resistance by the locked type infills. The frame 

with locked infills shows lower strength degradation than that of the frame with 

standard infills. Since the contribution of infills to the stiffness and lateral strength 

of a frame structure is not considered in most of the seismic codes, the behavior of 

the frame with locked infills seems analogous to the bare frame. 

 

 The bare frame has the lowest initial stiffness value, whereas the standard infilled 

frame has the highest. The frame with locked infills has higher stiffness values at 

early stages but exhibits significant drops with increasing drift ratios due to 

overcoming the static friction threshold of the locked bricks and the shear failure of 

the mortar. The behavior of the frame with locked infills seems analogous to the 

bare frame in terms of stiffness degradation. 

 

 The bare frame has the lowest energy dissipation capacity, whereas the standard 

infilled frame has the highest. The behavior of the frame with locked infills seems 

analogous to the bare frame in the sense of dissipated energy. 

 

 The identified vibration frequencies are affected by the excitation levels considered 

in this research. Accordingly, AV test results exhibit the highest and WN 

wo/Offline test results exhibit the lowest frequency estimates. This shows that even 

for small RMS amplitude change in excitation level, modal parameter estimations 

are affected by the nonlinear behavior of R/C frames. 
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 Damping ratio estimations, which are the most uncertain estimations, are amplitude 

dependent and sensitive to SNR. Nevertheless, it can be said that AV tests result in 

lower and WN wo/Offline tests result in higher damping estimations.  

 

 NExT-ERA, SSI-DATA, and EFDD methods give very close results for vibration 

frequency and mode shape estimations. 

 

 NExT-ERA and SSI-DATA methods result in somewhat similar damping 

estimations; but the overall match among these methods is not as good as in the 

case of frequency and mode shape estimations. The damping estimations obtained 

by EFDD method differ considerably from the ones obtained by other two methods. 

Subjectiveness of the peak-picking and logarithmic decrement processes can be 

attributed as the reasons behind this higher variability in damping estimations. 

 

 Very clear decreasing trends with increasing damage levels are observed in 

vibration frequency and MAC estimations for all excitation types and system 

identification methods. The identified damping ratios exhibit large variability and 

do not follow a clear trend that can be associated with increasing structural damage. 

Nevertheless, a slight increasing trend in damping estimations is noticeable as the 

structural damage increases (especially for the frame with locked infills). 

 

 The decreasing trend in the frequency estimations with respect to increasing 

structural damage for the frame with locked bricks is slower than the other two. 

This may possibly be indicating that the extra damage that may be induced by 

frame-infill interaction is less severe for the frame with locked infills, due to low-

to-moderate (mild) panel action, than for the frame with standard infills. 

 

 The changes in MAC values as the structural damage increases are more 

pronounced for the infilled frames. This can be attributed to the infill wall-frame 

interaction in out-of-plane direction. The effect of infills on the mode shapes 

diminish as infill damage increases. The damage level does not change the 

classically damped nature of the mode shapes. 
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 Existence of infills adds out-of-plane components to the mode shapes. The out-of-

plane components disappear as the infill damage increases, turning into almost 

perfectly in-plane mode shapes at higher damage levels. 

 

 The dynamic excitation levels attained in this research work are not sufficient to 

excite the infill walls. Therefore, the modal identification results represent the 

dynamic characteristics of only the surrounding frame structure without the 

contributions of the infills. Although the infills are ineffective during the dynamic 

tests, they have a decisive role in the behaviors and damage formations of the 

frames during the quasi-static tests, which is revealed by damage observations. 

 

 Closed (i.e., isolated) laboratory conditions that lack the usual ambient effects may 

lead to difficulties in the excitation of vibration modes for the test specimens. 

Especially in the case of rigid specimens, the present excitation conditions may not 

be sufficient to excite the specimens properly. 

 

 The stiffness degradation values calculated using the estimated in-plane vibration 

frequencies indicate that the bare frame loses its lateral stiffness at a faster rate, 

whereas the frame with standard infills loses at a lower rate. Here again, the frame 

with locked infills seems analogous to the bare frame. 

 

 Presence of infills initiates R/C member damages to occur earlier than the bare 

frame. In addition, it influences cracks on the R/C members and causes their 

numbers and widths to increase compared to the bare frame. 

 

 Higher vibration modes cannot be identified clearly from the dynamic data due to 

low excitation levels and SNR. 

 

 The identified out-of-plane modes are classically damped and have larger complex 

components due to low SNR values. That’s why they are considered as unreliable 

estimates. 
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Damage identification work of the frames having different infill conditions at 

gradually increasing damage states was performed by the sensitivity-based finite 

element model updating method. The initial FE models of the frames were developed 

in MATLAB based FEDEASLab software by using 3-D Bernoulli-Euler frame 

elements. Support conditions were represented by simple supports at column(s) bottom 

ends together with three rotational springs. Structural damages of the frames were 

defined by relative stiffness reduction factors. At each progressively increasing 

damage state, stiffness reduction factors of the predetermined design variables were 

obtained by minimizing an objective function constructed as the differences between 

the experimentally identified and the FE predicted modal parameters. In this context, 

modal parameter results of the EFDD method with WN w/Offline dataset were used. 

The model updating process was conducted in two steps: (i) First, a reliable reference 

model was obtained by using the experimentally identified modal parameters at the 

undamaged state, and then (ii) the procedure was repeated by updating this reference 

model at each progressively increasing damage state to identify the damage, its 

location, and extent. The number of design variables used for the updating procedure 

was reduced to ensure a well-conditioned optimization problem by taking into account 

symmetry conditions, detectability indices, and internal moment levels occurred in the 

frame elements. Finally, the identified damage results were verified using the visual 

damage observations made during the quasi-static tests. The main contributions and 

major findings of this research work are summarized as follows: 

 

 Since it is very difficult to attain perfect fixity at supports in real-life situations, 

support conditions of numerical models should be represented by spring elements. 

 

 Sensitivity of a mode can change from one element to another. In other words, 

detectability of an element can change from one mode to another. 

 

 Detectable elements are the ones affected the most by the updating algorithm, this 

itself alone does not automatically imply that these elements have to be included in 

the updating process. In other words, if these elements are already adequately 

representing the actual values, then there is no reason to update them. Moreover, 
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excluding them from the updating process is beneficial in order to acquire well-

conditioned optimization problems which in return lead to more accurate updating 

results. 

 

 For the bare and locked infilled frames (i.e., frames with two design variables), the 

global minimum of the objective function lies within a wide interval at low damage 

states which indicates that the selected design variables do not provide a prominent 

solution; but provides a prominent one as damage level increases. 

 

 It is clearly seen that the structural damage severity of all frames consistently 

increases as the frames are subjected to higher drift ratios. 

 

 For the bare and locked infilled frames, structural damage is mainly concentrated 

on the beam ends and the column(s) bottom ends, whereas there exists only minor 

damage on the other parts of the frames. These damage observations are in good 

agreement with the damage identification results. Here again, the frame with locked 

infills seems analogous to the bare frame. 

 

 For the frame with standard infills, structural damage is mainly concentrated on the 

column(s) bottom ends, mid-zones, top ends (i.e., throughout the column members), 

and beam ends. These damage observations are in good agreement with the damage 

identification results. It is clear that the presence of standard infills has significant 

effects on the damage formations of the frames. 

 

Modal parameter identification and sensitivity-based finite element model updating 

studies were performed on the unreinforced masonry courtyard walls of the historical 

Isabey Mosque. Modal parameters of the walls were estimated from two sets of AV 

measurements using EFDD method embedded in ARTeMIS software. The initial 

numerical macro model of the courtyard walls was created in ABAQUS environment 

by using the material properties obtained from the flat-jack tests conducted on the 

walls as well as the values provided in the literature. Boundary conditions of the 

numerical model were divided into four substructures by taking into account their 
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locations on the walls. Translational springs were assigned to each substructure. Initial 

stiffnesses of the springs were determined by manual updating so that a numerical 

model having modal parameters representative of the actual courtyard wall system was 

obtained. Mass density, Young’s modulus, and boundary conditions (i.e., translational 

springs) of the initial numerical model were calibrated using a global parameter 

updating method available in FEMtools software. Thus, a reliable FE model that is 

more representative than the initial one was obtained to be used in future numerical 

assessment studies. Finally, a damage scenario study was performed on the calibrated 

numerical model and the predefined damages were identified. The main contributions 

and major findings of this research work are summarized as follows: 

 

 Boundary conditions are often the most uncertain parts of a structure, so they should 

be included in the updating process with relatively wider bound ranges and 

relatively higher scatter values to determine their actual states. Otherwise, 

unrealistic updating results may be obtained for the other updated model parameters 

due to the overcompensation problem. 

 

 Existence of insensitive responses and/or linearly dependent model parameters may 

lead to having ill-conditioned problems with convergence difficulties. For a well-

conditioned optimization problem with a unique solution, the number of model 

parameters to be updated must be limited in global parameter updating type 

approaches. 

 

 Performing manual calibration prior to performing an optimization-based model 

updating proves itself to be beneficial in order to overcome potential convergence 

problems. 

 

 Sensitivity analysis is always useful to find out whether a model parameter should 

be included in the updating process or not and also to decide a suitable updating 

strategy (i.e., local or global parameter updating) for a model. 
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 Mode shape estimations usually contain higher estimation uncertainty than 

frequency estimations due to having a limited number of sensors to estimate them 

and also due to measurement noise. Therefore, assigning relatively higher scatter 

values to mode shapes is suggested if they are thought to be unreliable. 

 

 Model updating results are heavily dependent on the updating strategy, initial 

parameter values, parameter bounds, and scatters of model parameters and 

responses. Performing several updating works under different conditions may lead 

to different solutions, sometimes unrealistic ones. Therefore, all results should be 

carefully evaluated through engineering judgement, and used if they are decided to 

be appropriate. 

 

7.2 Recommendations for Future Research 

 

Based on the research work presented in this thesis, the following recommendations 

are made for future work: 

 

 Effects of higher dynamic excitation levels than the ones achieved in this research 

work on system and damage identification results can be investigated.  

 

 Frequency response functions, acceleration time histories, modal strains, modal 

curvatures, modal strain energies, and modal flexibilities can be considered as 

residuals in model updating method. Especially, using the modal flexibilities can 

be beneficial to identify local changes of the systems. 

 

 The developed MATLAB based codes as part of the presented research work can 

further be extended in order to be capable of performing model updating studies on 

more complex structural systems (e.g., structural systems having planar elements, 

solid elements, etc.). 

 

 Regularization methods can be studied to treat the ill-conditioning states of the 

optimization problems. 



189 
 

 Instead of engineering judgement and/or trial runs, statistical approaches can be 

used to determine the components of the weighting matrices. Thus, more objective 

results can be obtained. 

 

 It is a known fact that the system identification results include uncertainty due to 

measurement errors (e.g., measurement noise, spatial density of the sensors, 

measurement length, excitation type and level, etc.). In addition, FEMU results 

include uncertainty because of the modeling errors, assumptions, and 

simplifications made during the development of numerical models, and the method 

itself (i.e., selection of design variables, residuals, weighting factors, and bounds 

may lead to uncertainty). Therefore, uncertainty quantification can be studied to 

determine the reliability of system identification and model updating results. In this 

context, non-probabilistic interval-based or Bayesian FEMU methods can be 

studied. 

 

 Since all the real-life structures are inherently nonlinear, especially the damaged 

structures caused by strong excitations, nonlinear FEMU methods, that are based 

on the nonlinear responses of the structures, can be used. Since the nonlinear 

responses include more information about damage than linear ones, nonlinear 

FEMU methods provide more accurate damage identification results. 
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APPENDICES 

 

APPENDIX-1: List of Symbols 

 

Chapter Two 

 ty  Dynamic response, Response of a system 

A  True mode shapes matrix, State matrix of the state-space model, 

Mode shape matrix (modal matrix) 

 tq  True modal coordinates vector, Modal coordinates 

Â  Estimated modal matrix 

 tq̂  Estimated modal coordinates 

Â  Pseudo inverse of Â  

I  Identity matrix 

V  Value of the sensor placement 

a  True mode shape 

â  Each of the estimated mode shapes in Â  

 iX  Random vector 

  Standard deviation 

ia  Elements of the true mode shape a  

  Relative uncertainty parameter 

D  Number of test setups 

refN  Common (overlapping) set of DOFs (reference sensors) 

rovN  Remaining (non-overlapping) set of DOFs (roving sensors) 

 ,
k
ref i  Partitions of the kth mode shape estimated from the ith setup at refN  

1,
k

i  Scaling factor 
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 k  Total (merged) mode shape 

  Modal damping factor 

minf  Lowest vibration frequency value in Hz 

T  Measurement duration in seconds 

 y n  Filtered signal 

 a k  Filter coefficients 

na Number of filter coefficients 

 x n  Input to the filter 

f1, f2 Filter cut-off frequencies 

M Mass matrix 

C Damping matrix 

K Stiffness matrix 

(t)x  Displacement vector 

(t)x  Velocity vector 

(t)x  Acceleration vector 

(t)f  Externally applied force vector 

(t)X  Displacement stochastic vector process 

(t)X  Velocity stochastic vector process 

(t)X  Acceleration stochastic vector process 

(t)F  Stochastic excitation vector process 

iX (s)  Reference scalar response process 

[.]E  Expectation operator 

(.)R  Correlation function vector 
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(k)u  Vector of system inputs 

(k)x  Vector of states 

(k)y  Vector of system outputs, Output measurement responses in time 

domain, Free decay 

B Input matrix of the state-space model 

C Output matrix of the state-space model 

D Feed-through matrix of the state-space model 

(k)H  Hankel matrix 

Y(k)  Impulse response vector 

N Number of sensors 

s Number of rows in the Hankel matrix 

m Number of columns in the Hankel matrix 

R Left eigenvectors of H(0) 

S Right eigenvectors of H(0) 

Σ  Diagonal matrix of singular values 

g System order 

  Eigenvalues of the matrix A 

i  Vibration frequencies 

i  Damping ratios 

Ns Number of modes 

t  Sampling period 

i  Mode shapes 

Γ  Eigenvectors of the matrix A, Observability matrix 

q (τ)R  Correlation function matrix of the modal coordinates 
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y (τ)R  Correlation function matrix of (t)y  

y ( )G f  Spectral density matrix of (t)y  

q ( )G f  Spectral density matrix of (t)q  

na  Mode shapes 

nγ  Modal participation vectors 

n  Poles 

nc  A positive constant 

Ζ  Diagonal matrix holding the singular values 2
nz   (auto-spectral 

densities of the modal coordinates) 

U Singular vector 

P  Observation matrix 

G  Discrete time system matrix 

u0  State-space initial conditions of the free decay 

np Number of data points 

1H  Upper part of the Hankel matrix (the past) 

2H  Lower part of the Hankel matrix (the future) 

O  Projection matrix 

21T , 11T  Block Toeplitz matrices 

X  Matrix of Kalman states 

1W , 2W  Real-valued weight matrices 

 

Chapter Three 

kp  Unknown model parameter set 

p0  Initial values of the model parameter set 
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r ,  r p  Residual vector 

 kpz  Numerically obtained quantities 

z  Experimentally obtained quantities 

kPJ , PJ  Sensitivity (Jacobian) matrix 

k+1p  Updated model parameter values 

p  Design variables 

n Number of design variables, Number of damage functions 

 j pz  Numerically obtained modal quantities 

jz  Experimentally obtained modal quantities 

jr  Residuals 

m Number of residuals 

bl  Lower bounds (constraints) 

bu  Upper bounds (constraints) 

 r pf  Frequency (eigenfrequency) residuals 

 r ps  Mode shape residuals 

.  Euclidean norm 

m f  Number of eigenfrequencies 

ms  Number of modal displacements 

i  Numerical modal vectors 

j  Experimental modal vectors 

θ  Angle between modal vectors 

i ,  j p  Numerical eigenvalues 

j  Experimental eigenvalues 

jf  Eigenfrequency 

j  Numerical modal vector 

j  Experimental modal vector 
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l
j  lth (any arbitrary) component of vector j  

ref
j  Reference component of vector j  

jndof  Number of DOFs used for mode j  

modeN  Number of considered modes 

W  Weighting matrix 

jw  Weighting factor of jr  

eX  Value of a physical parameter X  in element e 

e
refX  Reference value of eX  

eaX , ea , a  Dimensionless correction factor 

eK  Updated element stiffness matrix 

e
refK  Reference element stiffness matrix 

K  Global system stiffness matrix 

UK  Stiffness matrix of the non-updated elements 

en  Number of elements wanted to be updated 

ip , p  Multiplication factors 

iN , N  Damage function 

ex  Geometrical coordinate of the center of element e 

M  System mass matrix 

d Order of the analytical model 

e
jF  Nodal forces 

p  Sufficiently small design parameter step 

jD  Detectability index 

jS  jth column vector of the sensitivity matrix 

 kf p  Function to be minimized (objective function) 

 kq z  Quadratic model of truncated Taylor series 

z  Step vector from kp  

 kf p  Gradient of the objective function 
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 2
kf p  Hessian of the objective function 

p*  Local solution 

kz  Search direction 

kα  Step length (distance to move along kz ) 

km  Model function 

  Radius of the trust region 

 

Chapter Four 

if , jf  Identified frequencies for models of successive orders i and j 

i , j  Damping ratios for models of successive orders i and j 

i , j  Mode shapes for models of successive orders i and j 

,i j
MAC   Modal assurance criteria calculated between i  and j  

 A pole with stable frequency, damping, and mode shape 

.d A pole with stable frequency and damping 

.v A pole with stable frequency and mode shape 

.f A pole with stable frequency only 

ω Vibration frequency 

ξ Damping ratio 

j
iSD  Stiffness degradation 

j
NDf , ,

j
D if  Identified frequencies for a particular frame j at the undamaged and 

various damaged levels i, respectively 

 

Chapter Five 

lb, ub Constraints for the design variables 

r  Residual vector 

r f  Frequency residuals 

rs  Mode shape residuals 

PJ  Jacobian matrix 
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Chapter Six 

ρ Mass density 

E Young's modulus 

υ Poisson's ratio 

KX, KY, KZ Translational springs in global X, Y, and Z directions, respectively 

  eR  Response vector obtained from the experimental data 

  aR  Response vector of the numerical model for a given state   oP  of the 

model parameter values 

  uP  Vector of the updated model parameter values 

 S  Sensitivity matrix 

 R  Difference vector calculated between   eR  and   aR  response 

vectors 

 P  Parameter variation 

 S

 Pseudo-inverse of the sensitivity matrix 

 RC ,  PC  Diagonal weighting matrices representing the confidence in 

responses and model parameters, respectively 

 G  Gain matrix 

  Standard deviation of the considered model parameter or response 

  Mean of the considered model parameter or response 
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