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FINITE ELEMENT MODEL UPDATING AND DAMAGE
IDENTIFICATION OF REINFORCED CONCRETE FRAMES WITH
DIFFERENT INFILLS AND UNREINFORCED MASONRY WALLS

ABSTRACT

In recent years, finite element model updating (FEMU) methods have become
attractive and popular tools that are used for finite element model verification and
health condition assessment of civil engineering structures. In this thesis, system and
damage identification studies conducted on half-scale, single-bay, single-story three
reinforced concrete frames with different infill conditions are presented. The frames
were tested along their in-plane directions under gradually increasing quasi-static
cyclic loading. At predetermined drift levels (damage states), ambient vibration and
white-noise tests were performed on the frames for the purpose of identifying their
modal parameters by using three different output-only system identification methods.
The modal identification results were correlated with detailed visual damage
inspections made during quasi-static tests and were later used for damage
identification of the frames by sensitivity-based FEMU method. At each progressively
increasing damage state, stiffness reduction factors of the predetermined model
parameters were obtained by minimizing the discrepancies between experimentally
and numerically identified modal parameters. Comparative studies were carried out
for the frames at different damage states in terms of system and damage identification
results. In the final part of the thesis, system identification and model calibration work
of the unreinforced masonry courtyard walls of the historical Isabey Mosque are
presented. Dynamic characteristics of the structure were estimated from two sets of
ambient vibration measurements. In order to obtain a much better correlation with in-
situ tests, the uncertain model parameters of the initial numerical model were updated.

Finally, a damage scenario study was performed on the calibrated numerical model.

Keywords: Reinforced concrete frame, infill wall, masonry structure, quasi-static

cyclic test, system identification, model updating, damage identification



FARKLI DOLGULU BETONARME CERCEVELERIN VE DONATISIZ
YIGMA DUVARLARIN SONLU ELEMANLAR MODELiI GUNCELLEMESI
VE HASAR TANIMLAMASI

0z

Son yillarda, sonlu elemanlar modeli giincelleme yontemleri (FEMU), insaat
miihendisligi yapilarinin sonlu elemanlar modeli dogrulamasi ve saglik durumu
degerlendirmesi i¢in kullanilan ilgi ¢ekici ve popiiler araglar haline gelmistir. Bu tezde,
farkli dolgu kosullarina sahip yarim 6lgekli, tek agiklikli, tek katli {i¢ adet betonarme
cerceve lizerinde yapilan sistem tanimlama ve hasar tespit ¢alismalar1 sunulmustur.
Cerceveler, kademeli olarak artan yari-statik dongiisel yilikleme altinda diizlem igi
dogrultular1 boyunca test edilmistir. Onceden belirlenmis &telenme seviyelerinde
(hasar durumlarinda), ¢ergevelerin {li¢ farkli sadece-gikt1 sistem tanimlama yontemi
kullanilarak modal parametrelerini belirlemek amaciyla ortamsal titresim ve beyaz-
giiriiltii testleri yapilmistir. Modal tanimlama sonuglari, yari-statik testler sirasinda
yapilan detayli gozlemsel hasar incelemeleri ile iliskilendirilmis ve ardindan
cercevelerin duyarlik-tabanli FEMU yontemi ile hasar tespiti i¢in kullanilmistir. Her
bir gittikce artan hasar durumunda, deneysel ve sayisal olarak belirlenen modal
parametreler arasindaki farkliliklar minimize edilerek, dnceden belirlenmis olan model
parametrelerin rijitlik azalma faktorleri elde edilmistir. Farkli hasar durumundaki
cergeveler icin sistem tanimlama ve hasar tespit sonuglar1 agisindan karsilastirmali
calismalar yapilmistir. Tezin son boliimiinde, tarihi Isabey Cami'sinin donatisiz yigma
avlu duvarlarinin sistem tanimlama ve model kalibrasyon calismalar1 sunulmustur.
Yapinin dinamik karakteristigi, iki ortamsal titresim Ol¢iimii setinden tahmin
edilmistir. Yerinde yapilan testlerle ¢cok daha iyi bir korelasyon elde edebilmek {iizere,
ilk sayisal modelin belirsiz model parametreleri giincellenmistir. Son olarak, kalibre

edilmis sayisal model {izerinde hasar senaryosu ¢alismasi yapilmistir.

Anahtar Kkelimeler: Betonarme c¢ergeve, dolgu duvar, yigma yapi, yari-statik

dongiisel test, sistem tanimlama, model giincelleme, hasar tespiti
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CHAPTER ONE
INTRODUCTION

1.1 Introduction

In recent years, structural health monitoring (SHM) has become an attractive and
popular tool for assessing the current states (i.e., health conditions) of civil engineering
structures. After a damaging event like a natural disaster (e.g., earthquake, hurricane,
etc.) or a human-made effect (e.g., explosion, fire, etc.), there exist many structures to
be evaluated for safety purposes and the time is not abundant to give sound decisions
about their states. In addition, rapid and reliable damage identification and

classification are very important also for planning disaster relief operations.

Damage identification methods can be divided into four grades according to their
development levels: (i) Level-I methods: those can detect the existence of damage, (ii)
Level-II methods: those can detect the existence and location of damage, (iii) Level-
IIT methods: those can detect the existence, location, and severity of damage, and (iv)
Level-IV methods: those can detect the existence, location, and severity of damage
together with the remaining life (prognosis) of the structure (Amani et al., 2007; Rytter,
1993; Park, 1997; Park et al., 2006; Stubbs et al., 2000).

There are many methods to determine the current states of the structural systems.
The predominant method is the visual inspection method which is manual and
subjective. However, the visual inspection method is insufficient and misleading as
structural elements are often covered by non-structural elements like facades and
walls. Another common method is the localized experimental method (e.g., acoustic,
magnetic field, ultrasonic, eddy-current, thermal field, and radiograph methods) which
focuses on the detection of localized damage and requires the approximate damage
locations to be known. Recent developments have revealed that tracking changes in
vibration characteristics of structural systems can be used for SHM purposes. These
types of methods, which are more reliable and more objective than former ones, are

known as vibration-based SHM methods.



In general, damage can be defined as the changes that affect the dynamic
characteristics and performances of structural systems. It alters mass, stiffness,
boundary condition, and energy dissipation properties. These effects result in
detectable changes in the vibration characteristics of structural systems. Detecting
these changes underlies the principles of the vibration-based SHM methods (Doebling
et al., 1998; Farrar & Lieven, 2007; Sohn et al., 2003).

Vibration-based SHM is an essential tool that can be employed for performance
assessment of existing structures, damage detection, and evaluation of structures
before and after retrofit. It includes continuous and/or in different time monitoring of
structural systems by using sensors, system identification by collected dynamic data,
and assessing the present states of structures by extracting the damage sensitive

properties from system identification results.

In literature, there exist different vibration-based damage identification methods
based on damage index, Bayesian probabilistic approach, control theory, modal strain
energy, and finite element model updating (Chase et al., 2005; Mottershead & Friswell,
1993; Shi & Law, 1998; Sohn & Law, 1997; Stubbs et al., 1992). In the scope of this
thesis, only the finite element model updating (FEMU) based method is discussed.

FEMU method, which can be classified as a Level-IIl damage identification
method, is basically based on updating numerical models of systems according to their
experimental responses (mostly the system identification results). The method is also
a powerful instrument that can be utilized to verify and/or calibrate the initial finite
element (FE) models of systems developed under various assumptions and

simplifications.

1.2 Literature Review

System identification of different types of engineering structures has been studied

for a long time by many researchers. Some of them are briefly reviewed below.



He et al. (2009) performed dynamic field tests on a long-span suspension bridge,
Alfred Zampa Memorial Bridge, located in San Francisco. This was one of the unique
dynamic identification studies since the dynamic tests were conducted just before the
bridge opening to traffic; so, no previous seismic excitation or traffic loadings were
presented. Accordingly, forced vibration and ambient test data were processed with
three modal identification techniques, namely MNEXT-ERA, SSI, and EFDD. The
forced vibration tests were conducted by the application of vehicle-caused impact
loading and controlled traffic effects. Identified vibration frequencies and mode shapes
were found to be in good agreement for each type of test; however, damping ratios
estimated by the use of forced vibration test data were higher than the ones estimated
by ambient vibration test data. In addition, the estimation uncertainty of the damping
ratios was higher than that of the vibration frequencies. Finally, the identification
results were compared with the analytical results obtained from the 3-D FE model of
the structure. Results were found to be in good agreement for a few contributing modes

to the measured vibration of the bridge.

Magalhaes et al. (2012) performed a comprehensive system identification study on
multi-span cable-stayed bridge Millau Viaduct located in southern France. In the
study, two different dynamic test data were collected, namely ambient vibration and
free vibration conducted by the sudden rupture of mass linking to deck member. In the
study, the focus was to indicate the effectiveness of the ambient vibration testing
performed for the in-service bridge and compare the modal identification results
extracted by different methods and types of data. SSI-COV and p-LSCF
methodologies were used for modal parameter identification. Moreover, the extracted
vibration frequencies and mode shapes were correlated with the estimates of the
developed numerical model. It was reported that ambient vibration testing enabled to
identify more than twenty vibration frequencies and mode shapes. In addition, it
provided damping ratio estimations in good agreement with ones obtained from the
less practical and economical free vibration tests. Eventually, the efficiency of ambient

vibration testing was revealed.



Astroza et al. (2016a) performed a comprehensive modal parameter identification
study on a full-scale, 5-story R/C building which was tested on the NEES-UCSD shake
table. The structure was exposed to a sequence of real earthquake excitations and
between the seismic tests, white-noise dynamic test data were collected. These data
were later used in five different system identification techniques (i.e., two input-output
and three output-only techniques) in order to identify the modal parameters of the
structure. The natural frequencies and mode shapes estimated by different
identification techniques were found to be in good agreement, whereas the damping
ratios exhibit higher variability. Besides, it was reported that the frequency and
damping estimations were amplitude dependent. The global stiffness of the structure
at each incremental damage level was calculated by using the identified natural
frequencies, and the stiffness was found to be consistent with the reduction of the
frequency of the first longitudinal mode. In this study, detailed visual inspection results
of damage between the seismic tests were also reported and correlated with the system
identification results. The identified modal parameters at different damage levels
supplied information for finite element model updating based damage identification

studies.

Finite element model updating and damage identification of different types of
engineering structures have been studied for a long time by many researchers. Some
of them are briefly reviewed below. Note that these studies also include system

identification of the relevant structures.

Teughels & De Roeck (2004) used the FEMU technique for damage identification
study of Z24 bridge located in Switzerland. Their study was based on the minimization
of an objective function created by the discrepancies of the modal parameters obtained
from the numerical model and experiments. Accordingly, damage was reflected by
stiffness reduction factors of the structural members and identified by calibrating the
numerical model. In this study, Gauss-Newton optimization method was used, and it
was made more robust by the implementation of the trust region algorithm. Eighty-
two 3-D elements were used in modeling of the girder, whereas forty-four elements

were used in modeling of the abutments, columns, and piers. Moreover, the influence



of'the soil was also taken into account by spring assignments. The study was performed
in two subsequent steps: (i) Updating the initial numerical model to obtain the
reference model and, (ii) updating the reference model for damage identification. The
stiffness distribution of the bridge was approximated by damage functions which were
useful to reduce the unknown parameters and improve the condition of the problem
definition. Accordingly, the damage identification study was performed by updating
Young’s and shear moduli of the structural elements by using eight damage functions.
As a result, realistic damage patterns were identified and good correspondence with
the results of the direct stiffness calculation method was acquired. For both the
undamaged and damaged bridge cases, the modal characteristics of the updated

numerical model corresponded well with their experimental counterparts.

Bakir et al. (2007) performed sensitivity-based finite element model updating
method using a trust region algorithm on a planar 4-story, 3-bay R/C frame where the
stiffness values of the beam members near column-beam joints were numerically
reduced in a damage scenario. Numerical model of the frame was developed according
to strong column-weak beam approach, and the elements located at the beam ends,
where the plastic hinges are expected to occur, were updated. The study was performed
using eigenfrequency and eigenmode residuals. It was shown that the relative
eigenfrequency differences and the MAC values improved after model updating and
the predefined damages were accurately obtained by the updating algorithm. The
algorithm was also examined in the existence of two noise levels in simulated
measurement data in order to verify the robustness of the damage identification
method. The updating algorithm was found to be promising in the existence of high

noise level since it predicted most of the predefined damages with high accuracy.

Fang et al. (2008) applied the sensitivity-based FEMU method for damage
identification study of an R/C planar frame. The method presented in this study is
based on the minimization of the discrepancies calculated between experimentally
identified and numerically obtained modal parameters. Bi-dimensional damage
functions, which resulted in a significant enhancement of the optimization

performance, were used in the updating process. The study was performed with two



subsequent steps: (i) The reference numerical model of the undamaged structural
system was separated by a few damage functions so as to detect possible damage
locations in a coarse manner and, (ii) the damaged parts were partitioned with finer
damage functions for an accurate damage identification study. Moreover, a static based
R/C damage model was proposed for remnant stiffness estimation of cracked segments
and the results obtained using this method were later compared with the model
updating based results. The bi-dimensional damage functions were found to be
beneficial for a well-conditioned optimization problem. It was stated the updating
method could detect the damage state of the structural system. In addition, the damage
model approach was verified against the updating results and it was found to be

feasible to estimate the remnant bending stiffness of a cracked R/C beam segment.

Weber et al. (2009) offered to apply known regularization techniques to have a
better reliable and accurate model updating algorithm. Accordingly, two known
techniques, truncated singular value decomposition and Tikhonov regularization were
implemented in conjunction with the updating algorithm. It was emphasized that
without using them, measurement errors may result in convergence problems. The
effectiveness of the presented techniques was shown both on the numerical and
experimental nonlinear model updating studies. In the numerical study, it was
indicated that the offered techniques greatly improved the performance of the
algorithm. In the final part of the presented study, damage identification studies of the
laboratory tested 3-D, 2-story, 1-bay R/C structural frame subjected to incremental
earthquake levels were performed using six design variables. Elements located on the
beam-column joints, where the damage is most expectedly to occur, were selected as
updating parameters and damage identification results were presented in terms of
stiffness reductions of them. In this research work, the sensitivity values of the modal
parameters with respect to design variables were also shown. It was demonstrated that
both regularization techniques gave similar results. In addition, the identified stiffness

reduction factors compared well with the damage observations.

Chen et al. (2011) performed analytical and experimental system identification

studies on Guangzhou TV Tower in China. Accordingly, a very complicated system



including over 800 sensors was mounted on the structural system for both in-
construction and in-service real-time monitoring; so, the ambient vibration testing was
realized by long-term continuous monitoring. Modal parameters of the tower were
extracted by SSI and EFDD methods. In this study, the analytical and experimental
system identification works of the structure and the ambient vibration measurements
at various construction stages and under various excitation conditions principally
addressed these four topics: (i) a reduced order FE model for the tower by model
updating, (i1) ambient vibration testing and modal parameter estimation of the tower
under construction and two different environmental excitations such as earthquake and
typhoon, (iii) comparing the findings from various excitation circumstances, and (iv)
correlation study between air temperature and dynamic properties of the tower by the
usage of linear regression analysis. In this study, a better baseline numerical model of
the structural system was obtained for further SHM and damage identification studies.
Besides, a linear relationship was observed between the vibration frequency

estimations and air temperature.

Ji et al. (2011) carried out a set of full-scale tests on a high-rise steel building by
using the E-Defense shake table facility to simulate a realistic damage scenario. The
structure was densely instrumented with acceleration sensors, whereas the local and
global deformations of the structure were also recorded extensively. During the tests,
beam-column joints, non-structural walls, and concrete slabs were damaged. Floor
accelerations were processed with the autoregressive exogenous term and FRF curve
fitting methods to estimate the dynamic characteristics of the building. The application
of three successive excitations to the structure resulted in reductions for natural
frequencies, whereas no remarkable change in mode shapes was observed. Herein,
mode shapes did not alter much since the damage was distributed in the beam ends at
multiple levels over height. Two simplified FE models, the shear spring model and the
fishbone model, were also used to ensure more information about the variances in
dynamic characteristics of the structure. The shear spring model gave natural
frequencies that were different from those obtained from experimental studies due to
the bending effect of the lower steel frame. On the other hand, a reasonable FE model

was obtained by the fishbone model since it was able to simulate both shear and



bending behavior of the structural system. Consequently, the modal analysis of the

fishbone model ensured admissible correspondence with the experimental results.

Moaveni et al. (2013) presented a damage identification study based on finite
element model updating of a 3-story, 2-bay masonry infilled R/C frame. Damage was
progressively given to the structure by the UCSD-NEES shake table using scaled
historical earthquake records of incremental severity. Between different damage states,
low-amplitude white-noise tests were performed on the structure. Modal identification
work was conducted by deterministic SSI technique using input-output data. Damage
identification study was performed using a reduced number of design variables; i.e.,
three columns and the infills in two bays for each story were treated as subgroups in
itself; and the results were obtained by updating the FE model by sensitivity-based
FEMU algorithm and represented in terms of stiffness loss of structural members. Two
vibration frequencies and thirty-two mode shape components were employed in the
updating process. The reliability of the methodology was found to be satisfactory since
the results showed correspondence with the damage observations. However, it was
seen that the level of identified damage did not accurately reflect the loss of structural
strength. In this context, the importance of nonlinear FE model updating to predict
both stiffness and damage degradations was highlighted. It was expressed that the
damage factors (identified damages) were sensitive to the amplitude of the excitation,
whereas their spatial distribution was not sensitive. Finally, it was highlighted that the
damage identification results depend on the accuracy and completeness of the

estimated modal characteristics.

Garcia-Palencia et al. (2015) studied on three-span Powder Mill Bridge with the
aim of obtaining a reference baseline numerical model of the structure. The initial
numerical model was developed by two-node rigid link elements in order to support
the composite concrete deck-steel girders. In experiments, strain gauges,
accelerometers, pressure plates, temperature sensors, and bi-axial tilt-meters were used
for the instrumentation. Frequency response function based model updating technique
was conducted by using the experimentally collected data. A simulation study was

performed and stiffness, mass, damping parameters were obtained using noise



contaminated data. Dynamic characteristics of the bridge extracted by using in-situ
dynamic test data, which were obtained by linear sweep tests, were used for
experimental validation. In this study, the requirement of a numerical model that
reasonably represents the real structural behavior was emphasized for a successful
model updating process. For the presented method, forced-vibration tests on short-

span to medium-span bridges were found to be more appropriate than the ambient tests.

Iban et al. (2015) studied on a lively steel footbridge for FEMU purpose. The initial
FE model was developed in ANSYS environment by using various cross-sections for
steel skeleton and but only one constant thickness element for the deck. Ambient
vibration and static loading tests were conducted on the structure. First, the initial FE
model was calibrated manually to match with the experimentally obtained static
response by adjusting the flexibility of the joints and Young’s modulus of the concrete
deck. After, the manually calibrated FE model was updated in an automatic way by
using FEMtools software. At this stage, mass distribution along the deck was selected
for updating. Consequently, a good match was captured between the experimental and

analytical results.

Masciotta et al. (2016) focused on a damage identification technique based on
second-order spectral characteristics of the nodal responses. The technique was
applied to the well-known case study of Z24 Bridge in Switzerland in order to validate
its reliability. Assessment of the variability of this spectrum-driven technique
according to both the position and type of the excitation source was performed through
numerical simulation studies of the dynamic response of the bridge exposed to various
excitation types. These simulations allowed building the power spectrum matrix from
which the main eigen parameters of the reference and damage scenarios were
identified. Next, through weighing and combining the complex eigenvectors and real-
valued eigenvalues, a damage index, which uses the discrepancies between spectral
modes, was calculated for damage identification purposes. The obtained results
demonstrated good agreement with the numerical model. In addition, the spectrum-
driven method was found to be robust in damage localization. It was stated that the

method was always able to detect the existing damage.



Goksu et al. (2017) conducted forced vibration tests on two full-scale substandard
R/C buildings to identify their dynamic characteristics. For each of them, dynamic test
data were collected before and after the application of quasi-static lateral loading
cycles given in one direction from 2" and 3™ stories. Forced vibration tests were
conducted with eccentric mass shaker using sinusoidal forces. The study primarily
concentrated on the investigation of the rates of alterations in the dynamic properties
of the structural system with the damage. As expected, reduction in vibration
frequencies and increment in damping ratios were observed for the various modes.
Besides, effective slab width and Young’s modulus of concrete were updated to get a
reliable numerical model. Finally, a comparison of the FE modal parameters with the
ones experimentally identified was made and the results were found to be consistent

with the damages observed in the tests.

Nozari et al. (2017) conducted a damage identification research on a ten-storey R/C
building by finite element model updating method using ambient vibration data.
Accordingly, six perimeter infill walls were removed in order to induce structural
damage. Vibration data were recorded both for undamaged and damaged cases; and
the data were later processed for identifying the modal parameters. The initial
numerical model of the building was developed by considering the material tests and
in-situ observations. This model was calibrated later by utilizing the modal
characteristics representing the undamaged case to obtain a reliable reference model
of the building. In this study, it was also aimed to reveal the change in damage
identification results by the variation of modal parameters. Multiple reference models
obtained by using forty sets of modal parameters were used for damage identification
purposes since the structural model parameters were obtained with high level of
variations. Damage identification study was later performed (i) by using the reference
model of which the average modal parameters were used and, (ii) based on the specific
reference models. The position and severity of the structural damage were detected by
calibrating the equivalent stiffness parameters of the twelve wall substructures.
Although the detected damages were in good agreement with the existing damages of
the structure, the results were found to be sensitive to the variation of the estimated

modal properties. In this context, the need to use a probabilistic framework following
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a Bayesian or a frequentist approach, which considers the variability and uncertainty
of the modal properties and determines the uncertainty level in the model updating

results, was emphasized.

Ding et al. (2019) suggested a novel damage detection methodology by utilizing the
C-TSA algorithm, which takes into account both the measurement noise and FE
modeling errors. The methodology was used both on the numerical studies on
benchmark functions (Sphere, Griewank, Ackley, Rastrigin, Rosenbrock, and Schaffer
equations) and experimentally tested 61-bar steel truss type of structure to evaluate the
robustness and accuracy of the technique. The objective function was created based on
natural frequency and modal assurance criterion discrepancies. In the experimental
work, a modal hammer was used to generate the impact excitation for modal
parameters which were required for damage identification. The results were later
compared using several latest revolutionary algorithms and the approach was found to
be promising even when modeling errors and measurement noise exist. In addition, it

was stated that the proposed approach was more robust with faster convergence speed.

Park et al. (2019) introduced a model updating method for damage detection
purposes without the necessity of using system identification techniques for the
extraction of dynamic characteristics. Accordingly, the presented method uses the
modal participation ratios (MPR), which can be determined from dynamic
measurements by sensors, as an indicator of the extent of modal contribution. The
MPR extraction assumes that the structure under investigation is subjected to ambient
vibrations and no other additional loading on the structure is required. In the model
updating phase, the objecting functions established by the differences between MPRs
estimated from a model and extracted from the sensors, are minimized by a multi-
objective optimization technique. The effectiveness of the method was shown by a
simulated shear type structure that has four DOFs; whereas MPRs were obtained using
the structural response of the system subjected to white-noise excitation. Herein,
damage scenario studies were also performed on the updated model (baseline model).

The results indicated that the baseline model was effective in the sense of representing

11



modal properties and predicting the structural response. In addition, the predefined

damages for the damage scenarios were accurately detected by the presented method.

Finite element model updating and damage identification of masonry structures
have been studied for a long time by many researchers. Some of them are briefly
reviewed below. Note that these studies also include system identification of the

relevant structures.

Bayraktar et al. (2010) performed numerical modeling, dynamic testing, and finite
element model updating studies on an Ottoman masonry arch bridge. The initial FE
model of the bridge was established by using three structural elements, namely stone
arches, side walls, and timber blocks. Material properties of these parts were
determined from the literature. All the boundary conditions at the abutments and side
walls were assumed to be fixed for the initial FE model. Ambient vibration tests were
conducted on two setups and the vibration characteristics of the bridge were estimated
from peak picking and SSI methods. The initial FE model was calibrated with the
manual tuning procedure by changing only the boundary conditions at the abutments.
After the model updating process, good agreement was obtained between the

experimental and analytical dynamic properties.

Ramos et al. (2010) studied on structural and modal identification of two historical
monuments, a church and a restored clock tower, with the aim of detecting damage at
an earlier stage. The monuments were monitored with vibration, temperature, and
relative air humidity sensors. For the clock tower, by using the dynamic tests
performed before and after the restoration, the effectiveness of the strengthening work
was revealed. The entire structure was divided into eight parts, and the FE model of
the actual state (after retrofitting) was obtained by updating the Young’s moduli of
these parts. For the church, the boundary conditions and the Young’s modulus values
of the column members and the main nave were selected as updating parameters. In
this study, frequency monitoring was found to be reliable for the damage identification
process. The findings of the research work revealed the non-negligible effect of the

humidity and the well-known effect of the temperature on the dynamic characteristics
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of masonry structures. During the monitoring period, apparently no damage was

detected in both structures.

Bartoli et al. (2013) performed static and dynamic tests on a monumental masonry
tower. Static tests including flat-jack and laboratory tests on cored samples extracted
from the multi-layered masonry walls were employed to determine the material
characteristics of the tower. Dynamic vibration tests were performed under sinusoidal
forces at various frequencies generated by two vibrodynes. The numerical model of
the tower was established in ANSYS analysis software by using the macro modeling
approach. Uncertain parameters such as the Young’s modulus of the infill material
between wall layers and boundary conditions offered by nearby buildings were chosen
as updating parameters and they were iteratively calibrated to reduce the discrepancies
between the experimental and numerical behaviors. The calibrated numerical model
was a good candidate to be employed for further structural analysis to research the

structural behavior of the tower under severe loading conditions.

Costa et al. (2015) worked on two old and one recently constructed stone masonry
arch bridges. Initial FE models of the bridges were constituted by the usage of micro
modeling strategy with solid elements and zero thickness joint elements. Material
characteristics were determined from field and laboratory tests, visual inspection, and
historical research. To identify the vibration characteristics of the bridges, a series of
ambient vibration measurements were performed by using portable tri-axial macro-
seismographs. Model calibration of the initial FE model was performed to capture
better agreement between experimentally and numerically obtained dynamic
characteristics. In this context, engineering judgment and trial-and-error approach
were adopted instead of a sophisticated optimization algorithm. After the model
calibration process, good agreement was acquired between the numerically and

experimentally estimated modal parameters.
Costa et al. (2016) studied on model updating of a stone masonry arch railway

bridge. The initial numerical model was established by using in-situ (e.g., flat-jack,

ménard pressuremeter, and ground penetrating radar) and laboratory tests. Dynamic
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tests were performed in two setups by thirty-two measurement points under ambient
vibration conditions. System identification was done by EFDD method available in
ARTeMIS commercial software. To identify the model parameters that were more
effective on modal responses, sensitivity analyses with three different approaches were
performed. For each approach, different updating parameters were selected. Then, the
updating methodology was conducted by changing the elastic properties of the
materials with a genetic algorithm for a reliable bridge model Comparing with the
initial numerical model, the updated numerical model demonstrated considerable
improvements in modal parameters. The results indicated a trend of reducing the
stiffnesses of structural members of the bridge which was compatible with the visual
observation studies. The updated (reliable) numerical model was planned to be used

for dynamic behavior assessment of the train-tack coupled system.

Cabboi et al. (2017) performed a damage assessment process on a historical
masonry tower. Two series of ambient vibration test data were measured in fifteen
selected locations. System identification was performed by SSI-DATA method
available in ARTeMIS software. In the modeling stage, the tower was separated into
two different partitions with a constant Young’s modulus value for each partition, the
footing was assumed as fixed, and the effect of the nearby church was simulated by
elastic springs. Young’s modulus, shear modulus, and elastic springs were calibrated
for a reliable baseline FE model. By using this baseline model, two damage scenarios
were simulated. In this study, the damage identification analysis was found to be

sensitive enough to detect the damage scenarios.

Compan et al. (2017) worked on the structural safety assessment of a historical
chapel. Dynamic properties of the chapel were extracted from ambient vibration data
collected by eight uni-axial accelerometers. Tests were realized in twenty-five setups
and fifty-one measuring points. For the system identification, EFDD and SSI methods
implemented in ARTeMIS software were used. The initial FE model was developed
by solid elements in ABAQUS software. This model consisted of two main
components, namely the walls and vaults. Material properties were determined from

the literature. Connections between the chapel and nearby building were considered
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by spring elements. Young’s moduli of masonry stone and masonry brick, connections
represented by springs, and the inertial mass of the nearby building were selected as
updating parameters in order to calibrate the initial FE model. Herein, the dynamic
characteristics of the FE model were adjusted to the experimental results. Once the
calibrated model was obtained, it was utilized to perform structural safety analyses and

to estimate the collapse load of the structure.

Conde et al. (2017) worked on masonry arch bridges for model updating purposes.
Laser scanning, ground penetrating radar, and sonic tests were performed to determine
the mechanical characteristics. The macro modeling strategy was adopted by assigning
homogeneous material having equivalent mechanical properties. Thus, the entire FE
model was constituted by five main structural partitions. Boundary conditions were
represented by fixed supports at the base of the bridge, whereas only the movements
in transverse and longitudinal directions were restrained at both sides of the bridge.
Ambient vibration measurements were carried out by three portable tri-axial macro-
seismographs having GPS time synchronization. Tests were performed in twelve
setups because of the limited number of measurement equipments, and each setup was
designed by keeping one of the macro-seismographs as reference (i.e., was kept fixed)
and roving the others. Dynamic data were processed using EFDD method by
ARTeMIS software. Only the Young’s moduli of the prescribed structural partitions
were selected as updating parameters for model updating purposes. After model
updating, satisfactory results were obtained for the frequencies and mode shapes of the
first four modes. The updated FE model of the bridge was used to perform detailed
structural assessment analyses under various conditions. Results exhibited the
remarkable effect of tensile nonlinear properties of masonry and the vital role of the
fill materials on the performance of the structural system. Finally, the importance of
three-dimensional modeling was emphasized since the constituted numerical model

enabled to capture the critical transverse effects in the response of the structure.
Torres et al. (2017) focused on the model updating study for the finite element

model of a masonry cathedral. Ambient vibration tests were realized in twenty-two

setups to cover the entire structure, and two reference measurement devices were used
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in all setups. Modal analysis was performed by EFDD and SSI methods in ARTeMIS
software. Material characteristics of the structure were described as representative
values, neglecting the high variability in different zones. Thus, three main materials
were defined for the entire structure, namely the Young’s moduli of brick masonry,
stone masonry, and reinforced masonry. Besides, boundary conditions, caused by
adjacent structures, were represented by elastic elements. In order to determine the
boundary conditions and initial material features, a preliminary updating procedure
was conducted. Afterwards, the Young’s modulus values for the main materials were
calibrated within physical intervals. The updated finite element model allowed to
conduct structural behavior assessment in the current condition and possible future

research scenarios.

Altunisik et al. (2018) performed FE model updating on a historical masonry
bastion. Ambient vibration measurements were carried out by eight uni-axial
accelerometers. Dynamic characteristics were extracted by EFDD and SSI techniques.
The initial FE model was established with ANSYS software by using four main
components such as steel columns, R/C floors, masonry walls, and masonry arches
and vault. Characteristics of these components were determined from the literature.
Boundary condition at the base was assumed to be fixed and it was excluded from the
updating scheme. Manual (by trial-and-error method) and automated (by an
optimization algorithm embedded in FEMtools software) updating procedures were
used to obtain a calibrated FE model. In this context, material properties such as
Young’s modulus and density were adjusted. The automated model updating
procedure was performed by using local and global parameter approaches. After model
updating, the discrepancies between the numerical and experimental dynamic
properties were considerably reduced, and a calibrated FE model was obtained for

SHM purposes.

Bassoli et al. (2018) studied on a medieval fortress which had suffered severe
damage due to seismic events. Ambient vibration measurements were performed by
ten uni-axial accelerometers to determine the dynamic properties of the damaged

structural system. The FE model was constituted by considering a non-standard mesh
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generation procedure called CLOUD2FEM. In order to take into account the
influences of the damaged parts, different material characteristics were assigned to
them. Model updating analyses were repeated in three stages in order to detect the
damaged parts precisely. At each following stage, updating parameters were defined
in more detail by using the results of the former stage. The updated numerical model
of the structure was able to ensure better accuracy of modal properties and preserved

the physical meaning of the updated parameters.

Ercan (2018) investigated the effects of retrofitting in a historical building
comprising masonry and timber elements. 3-D solid model of the building was
established in ABAQUS environment using the material properties obtained by
ultrasonic pulse velocity, Schmidt Hammer, Archimedes’ density test methods, and
the formulas in the literature. Dynamic properties of the building were determined
from ambient vibration measurements performed for both before and after retrofitting
processes. Outputs of the dynamic tests were used to update the initial FE models (i.e.,
before and after retrofitting conditions). Here, Young’s modulus and boundary
conditions were chosen as updating parameters and assumed to be common for the
entire structure. In addition, the updated FE models for both before and after
retrofitting conditions were used to conduct earthquake performance analyses. The
results demonstrated that the stiffness of the retrofitted structure increased three times
with respect to the initial state. Operational modal analysis was found to be a reliable
method to investigate the effects of retrofitting solutions with respect to earthquake
performance of masonry structures, Besides, it was stated that the method was capable

of damage identification as well as model updating of the historical structures.

1.3 Objectives and Scope

Similar to the studies in the literature, the research work presented in this thesis
focuses on the topics of system identification, finite element model updating, model
calibration, and damage identification studies performed on reinforced concrete (R/C)
and unreinforced historical masonry structures, which represent the significant part of

the building inventory in Turkey. Different from the existing state of the art, for R/C
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structures, the effects of different infill conditions on system and damage identification
results as a function of increasing structural damage are investigated. Herein, a novel
infill wall system made of locked brick units is discussed and its efficiency is revealed
comparatively.

The research work presented in this thesis mainly aims to

= perform system identification studies by different output-only system identification

methods in order to identify dynamic characteristics,

= investigate the performance of different output-only system identification methods

in identifying modal parameters,

= follow the evolution of the estimated modal parameters as a function of increasing

structural damage,

= investigate the system identification results obtained by different excitation types

and levels,

= examine the influences of different infill conditions on induced damages and modal

identification results,

= correlate the modal estimation results with visual damage inspections,

= perform damage identification by using sensitivity-based finite element model

updating method to identify the existence of damage, its location, and extent,

= investigate the effects of different infill conditions on damage identification results,

= perform model calibration in order to obtain numerical models that are more

representative of the actual structural behavior,
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= conduct damage scenario studies and identify the predefined damages.

Based on the objectives stated above, the following research work was performed

in the scope of the presented thesis:

Extensive experimental studies were conducted on half-scale, single-bay, single-
story three R/C frames with different infill conditions, namely bare, locked type
infilled, and standard type infilled. The frames were tested along their in-plane
directions under gradually increasing quasi-static cyclic loading. At predetermined
drift levels (i.e., different damage states), ambient vibration and white-noise (having
different excitation levels) tests were performed on the frames for the purpose of
identifying their modal parameters. White-noise tests were conducted by an electro-
dynamic shaker positioned on top of the frames (i.e., on the slab level). The recorded
dynamic response data at different damage states were processed by using three
different output-only system identification methods. The damages developed were
classified by detailed visual damage inspections made during quasi-static tests, and
their evolutions with respect to increasing damage levels were coupled with the

corresponding modal identification results.

Damage identification of the frames at gradually increasing damage states was
performed by the sensitivity-based finite element model updating method. The initial
FE models of the frames were developed in MATLAB based FEDEASLab software
by using 3-D Bernoulli-Euler frame elements (Filippou & Constantinides, 2004;
MATLAB, 2017). Support conditions were represented by simple supports at
column(s) bottom ends together with three rotational springs. Structural damages of
the frames were represented by relative stiffness reduction factors. At each
progressively increasing damage state, stiffness reduction factors of the predetermined
model parameters were obtained by minimizing the discrepancies between
experimentally and numerically identified modal parameters. The model updating
process was performed in two steps: (i) first a reliable reference model was obtained
by using the experimentally identified modal parameters at the undamaged state, and

then (ii) the procedure was repeated by updating the reference model at each
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progressively increasing damage state to identify the damage, its location, and extent.
The number of model parameters used for the updating procedure was reduced to
ensure a well-conditioned optimization problem by taking into account symmetry
conditions, detectability indices, and internal moment levels occurred in the frame
elements. The identified damage results were verified using the visual damage
observations made during the quasi-static tests. A comparative study was performed
for the frames at different damage states to reveal the effects of the different infill

conditions.

Modal parameter identification and sensitivity-based finite element model updating
studies were performed on the courtyard walls of the historical Isabey Mosque. Modal
parameters of the walls were estimated from two sets of ambient vibration
measurements using EFDD output-only system identification method. The initial
numerical macro model was developed in ABAQUS (ABAQUS, 2017) by using the
material properties obtained from the flat-jack tests and the relevant literature.
Boundary conditions of the numerical model were defined through four regions by
taking into account their locations. Each region was defined as translational springs in
three directions. Initial stiffnesses of these springs were determined by manual
updating so that a numerical model having modal parameters representative of the
actual courtyard wall system was obtained. Mass density, Young’s modulus, and
boundary conditions (i.e., translational springs) of the initial numerical model were
calibrated using a global parameter updating method. Thus, a reliable FE model that
was more representative than the initial one was obtained to be used in future
numerical assessment studies. Finally, a damage scenario study was performed on the

calibrated numerical model, and the predefined damages were identified.

1.4 Organization of the Thesis

The presented thesis consists of seven chapters and two appendices which are

organized as follows:
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= In Chapter One, introduction to vibration-based structural health monitoring and
literature review of the previous studies are presented. The objectives and scope of

the thesis research are highlighted.

= In Chapter Two, system identification and operational modal analysis are discussed.
Highlights of data acquisition and signal processing are discussed. Theoretical
backgrounds of the commonly used operational modal analysis methods are

presented.

= In Chapter Three, finite element model updating concept, its intended use, and
commonly used methods are discussed. Theoretical background of the sensitivity-
based finite element model updating method is detailed with its components. The
developed model updating code is introduced, and its effectiveness is presented

through numerical simulation studies.

= In Chapter Four, the experimental studies conducted on the half-scale, single-bay,
single-story three R/C frames with different infill conditions are discussed.
Descriptions of the frames, quasi-static test program, and dynamic tests are given.

The static and dynamic test results of the frames are presented comparatively.

= In Chapter Five, damage identification studies of the R/C frames at progressively
increasing damage states performed by sensitivity-based finite element model
updating method are given. The results are correlated with the visual damage
inspections made during quasi-static tests. The effects of different infill conditions

on damage identification results are presented.

= In Chapter Six, experimental work performed on the unreinforced courtyard walls
of the historical Isabey Mosque is discussed. Descriptions of the structure and
dynamic test program are presented. System identification and model calibration
studies conducted are detailed. A damage scenario study performed on the

calibrated model is presented.
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= In Chapter Seven, the overall research work is summarized, the important findings

are highlighted, and some recommendations for future research are provided.

= In Appendix-1, the list of symbols that contains the symbols used throughout the

thesis is presented.

= In Appendix-2, the publications made from the research work of the thesis are

provided.
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CHAPTER TWO
SYSTEM IDENTIFICATION & OPERATIONAL MODAL ANALYSIS

2.1 Introduction

In the most general sense, system identification is the process of constituting a
mathematical model of a physical system to identify its dynamic characteristics (i.e.,
vibration frequencies, damping ratios, and mode shapes, a.k.a. modal parameters),
whose values depend on material, geometry, and boundary properties of the system,
by using experimental measurements. In the last decades, system identification
methods have become attractive and popular tools for vibration-based SHM in order
to assess the current states (i.e., health conditions) of engineering structures. Besides,
they are also powerful instruments that can be used to verify numerical FE models

developed under various assumptions (Rainieri & Fabbrocino, 2014).

System identification methods which are used in vibration-based SHM can be
divided into two groups as input-output and output-only methods (Moaveni, 2007).
Input-output methods, which are also known as experimental modal analysis (EMA)
methods, require measuring both the excitation acting on the system and the reaction
of the system to this excitation (e.g., acceleration, strain, displacement, etc.). They
have been used in several areas, such as industrial machinery, aerospace engineering,
civil engineering, and automotive engineering. Note that the implementation of
measurable and controllable excitation is generally a difficult task that needs heavy
and expensive equipments, especially for large-size systems. Therefore, the EMA
methods are generally used for small and medium-size systems. In contrast, output-
only methods do not require the measurement of the excitation acting on the system.
Because of being large-scale, it cannot be practical and economic to excite the civil
engineering structures with properly measurable excitations. In this situation, using
ambient vibration effects (micro tremor, traffic, wind, etc.), that arise because of the
normal usages of structures, becomes the only way to excitation. That's why using
output-only methods, which are also known as operational modal analysis (OMA)

methods, is more convenient for system identification in civil engineering structures
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(Ozcelik et al., 2013; Rainieri & Fabbrocino, 2014). In the scope of this thesis, OMA
methods are used for system identification purposes. Details are presented in the

following sections.

2.2 Operational Modal Analysis (OMA)

Since the testing techniques are relatively cheap, fast, and do not affect the normal
usage of the structure, OMA is very popular and attractive in civil engineering society.
Moreover, the identified dynamic characteristics represent the actual structural system
behavior under operational conditions (i.e., vibration levels that are not artificially
generated and actually present in the structure). This means, for example, that during
a bridge test, the traffic and normal operation need not be interrupted, and they can
even be used as excitation sources. On the other hand, OMA testing requires low-noise
and sensitive sensors, and high performance equipments due to the low vibration levels
under ambient conditions. While ambient vibration tests are performed under
operational conditions, the collected data are more prone to be polluted by
environmental effects; therefore, longer test durations are necessary for healthy results.
In return, longer data lead to complex and time-consuming analysis tasks, and storage
problems (Rainieri & Fabbrocino, 2014). Since the excitation is unmeasured, it is
possible to confuse its characteristics with the dynamic properties of the test specimen.
Moreover, independent information in the test data is essential in order to excite
vibration modes sufficiently and identify closely-spaced modes. This can be satisfied
by using uncorrelated inputs (i.e., not generated by a dominant excitation source) and
measurement points (i.e., data from multiple sensors measuring different degrees of
freedom). Note that OMA does not provide mass-normalized mode shapes since the
excitation is unmeasured. This situation causes problems for damage identification
methods that require mass-normalized modes, such as flexibility-based methods.
However, this limitation can be overcome by mode shape scaling approaches, such as
mass change method, mass-stiffness change method, and using the FE model mass

matrix (Brincker & Ventura, 2015; Rainieri & Fabbrocino, 2014).
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A fundamental assumption in OMA methods is that the system to be examined is
excited by a random broad-band excitation source (i.e., having white-noise
characteristics), or at least band-limited white-noise (WN) characteristics. This is
necessary so that the excitation does not drive the system at a specific frequency and
enables various structural modes to be excited sufficiently. Accordingly, in operational
cases, no need to measure the input excitation is justified by the assumption that the
excitation does not contain any specific information (Sohn et al., 2003). It is possible
to acquire broad-band excitation from various sources, such as ambient conditions,
shake tables (or shakers), and impact hammers. If shake tables are preferred for this
purpose, the trajectory tracking problem (i.e., the signal reproduction fidelity of the
shake table) is a situation that has to be taken into account. Definition of the problem

and the solving procedure are detailed at the end of this chapter.

Natural Excitation Technique combined with Eigensystem Realization Algorithm
(NExT-ERA), Data-Driven Stochastic Subspace Identification (SSI-DATA), and
Enhanced Frequency Domain Decomposition (EFDD) are the commonly used OMA
methods in structural engineering applications. These methods can be categorized into
two groups based on the domains they operate. From this perspective, NExT-ERA and
SSI-DATA are time domain methods and EFDD is a frequency domain method.
Regardless of how they are classified, these methodologies are based on the
assumptions that the response of the system to a given combination of inputs is equal
to the same combination of the corresponding outputs (a.k.a. linearity, which means
that the system behaves within a linear range), the dynamic characteristics of the
system do not change over time (a.k.a. stationarity or time-invariance, which means
that the response of the system is independent of time), the sensor layout is convenient
to capture the modes of interest (a.k.a. observability), and the excitation source is
uncorrelated with the response of the system, having, for instance, broad-band
characteristics (Brincker et al., 2001b; Brincker & Ventura, 2015; Caicedo et al., 2004;
James III et al., 1993; Juang & Pappa, 1985; Rainieri & Fabbrocino, 2014; Reynders,
2012; Van Overschee & De Moor, 1996). The theoretical backgrounds of these

methods are presented in the following sections.
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Data acquisition and processing are the most significant stages for all experimental
cases. In OMA, these are especially important since the responses are often weak.
Improper decisions may cause challenges and misleading modal identification results;
therefore, these sessions should be planned carefully in advance. In this context, there
exist some highlights that can improve the quality of the measurements and the test
results. Some of them are briefly discussed in the following sections (Brincker &

Ventura, 2015; Rainieri & Fabbrocino, 2014).

2.2.1 Highlights for Data Acquisition

2.2.1.1 The Required Sensor Amount

In OMA tests, decision of the sensor amount is a critical factor. Using more than
enough sensors causes economic issues. Besides, more sensor usage means more
workmanship and time-consuming tasks. On the other hand, using an insufficient
number of sensors may lead to missing some of the vibration modes and/or to
encountering spatial aliasing problems, where the mode shapes appear very similar to
each other and therefore discrimination of the modes becomes difficult (Ewins, 2000).

That’s why the optimum number of sensors should be carefully determined.

The easiest way to determine the required sensor amount is to investigate the rank
of the spectral density (SD) matrix (i.e., the number of independent rows or columns)
estimated from measurements. This process enables to determine the maximum
number of modes that contribute to the response in any frequency band. For example,
if only three closely-spaced modes are available in the considered frequency band,
then the rank is three. If there exist four closely-spaced modes, then the rank is four,
and so forth. In addition, existing noise sources have to be included in the rank
calculation. Such as, if three noise sources are available along with four closely-spaced
modes, then the rank becomes seven. Notice that this rank value is limited by the
number of measurement points (i.e., number of used sensors), and it is required to
select a higher number of measurement points than the problem rank to be able to

capture all the vibration modes in the considered frequency band. Otherwise, the
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closely-spaced modes can be partially hidden (i.e., only one of the modes or their
combinations are revealed). In the case where the measurement points are close to each
other and/or providing almost the same information, only one of the measurement

points affects the rank of the matrix.

As a result, it is essential to use more measurement points (sensors) than the rank
of the problem (sum of the physical modes and noise sources in the considered
frequency band), and these points should be distant enough to obtain different
information. In addition, no sensor should be located at node points of the modes since
these points are motionless and do not include any information. For this purpose,
previously developed finite element models are useful tools. In practice at least five or

six sensors are recommended in OMA testing.

2.2.1.2 The Appropriate Excitation

In general, random excitation in time and space is desired for OMA tests. Let it rain
on the structure, let some dogs chase some cats on it, let somebody walk on it, or let
somebody drive a car on it. All of these are the examples of appropriate random

excitations essential for good testing practices.

In OMA, the number of independent excitations has effects on limiting the rank of
the problem (see Section 2.2.1.1). In the case where there is only one independent
excitation, the rank is one. In other words, if there exists only one excitation source,
then it may not possible to excite vibration modes sufficiently and identify the closely-
spaced modes (i.e., only some of the modes or their combinations may be identified).
Therefore, experiments with single excitation sources, such as shakers and hammers,
are not recommended for OMA. Instead, multiple shakers or hammers can be used at
the same time to overcome this problem. Note that using multiple excitation sources
having different characteristics than broad-band (e.g., different characteristics than
white-noise for shaker tests) might also result in a single excitation case. Moving loads
or environmental loads, such as traffic and wind, are the other excitation options to

obtain rank values larger than one. Note that this statement is valid only when the
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investigated structure is large enough compared to the correlation length of the
excitation, where the excitation source can be assumed to be comprised of several
independent sources (e.g., wind or wave load acting on a structure). However, in the
case of a small-scale structure, where the structure is small compared to the correlation
length of the excitation, the number of independent excitations may be close to one
due to the occurrence of correlated excitations which limits the rank of the problem.
Therefore, it can be said that the larger the better, because the larger the structure, the
more independent excitations occur. For small-scale structures, using a scraping or
brushing equipment, which is moved around randomly and is in contact with the
structure all the time, is the appropriate way for excitation. Another important point is
that the investigated structure should be close enough to the excitation source in order
to excite the structure in many points (e.g., traffic on a road nearby a structure);
otherwise, the structure is excited by a single excitation. It should be stated that
keeping the correlation length of the excitation and/or the distance to the excitation
source the same as for the prototype may lead to a single excitation case for the scaled
models of the structures being tested in laboratory conditions. Therefore, an

adjustment should be performed on the excitation.

If the natural excitation is too small to obtain a signal of admissible magnitude (i.e.,
in the case of low signal-to-noise ratio), the excitation is limited to a single excitation
source, or the experimental studies are conducted in laboratory conditions, a
complementary artificial excitation should be used. Driving a car up and down a
bridge, having people moving around inside the different stories of a building, using
brushing or scraping equipments, and using multiple shakers or hammers are some of
the examples of the artificial excitations. Note that the excitation method should be
selected so as not to alter the dynamic characteristics of the system (e.g., if heavy
traffic is used for exciting a bridge, the dynamic properties may change due to too

much additional mass).
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2.2.1.3 Sensor Placement

In OMA tests, generally, a limited number of sensors are used since the sensors and
cables are expensive. Therefore, finding the optimum sensor placement becomes
substantial in order to extract more information from the collected experimental data.
In literature, there exist many criteria for determining the optimum sensor placement,
such as Fisher information matrix, modal kinetic energy, information entropy, and
effective independence (Guo et al., 2017; Kammer, 1991; Leyder et al., 2018; Meo &
Zumpano, 2005; Papadimitriou et al., 2000; Papadopoulos & Garcia, 1998; Qureshi et
al., 1980; Udwadia, 1994; Yi et al., 2012; Zhang et al., 2017). In addition,
computational algorithms, such as genetic, heuristic, and meta-heuristic algorithms,
have been studied by many researchers in order to enhance the efficiency, especially
in the case where the number of possible sensor locations is large (Abdullah et al.,
2001; Joshi & Boyd, 2009; Papadimitriou, 2004; Yao etal., 1993; Yietal., 2012; Yuen
& Kuok, 2015).

A basic way to determine the approximate optimum sensor placement is shown by

Ibanez et al. (1976). In the method, first, the modal decomposition of the dynamic

response y (t) is considered as given in Equation 2.1.

y(t)=Aq(t) 2.1)

where the matrix A and vector q(t) are the true mode shapes and the true modal

coordinates of the system, respectively. If the estimated modal matrix A is available,

the estimated modal coordinates ('i(t) can be obtained by Equation 2.2.
a(t)=Ay(t) (22)

where A" is the pseudo inverse of A. By combining Equations 2.1 and 2.2, Equation

2.3 is obtained.
d(t)=A"Aq(t) (23)
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The matrix product A*A indicates the closeness between the estimated and true
modal coordinate vectors. The closer the product A*A is to the identity matrix, the

better is the sensor placement. Since det (I) =1, det (A*A) =1 expression can be used

to measure the deviation of A*A from the identity matrix. det(A*A) can be either

smaller or larger than one, therefore a positive measure of the deviation from identity

can be obtained by calculating ‘l - det(AJ'A)‘ . Consequently, the value of the sensor

placement (V) is obtained as follows
Vzl—‘l—det(A*A)‘ (2.4)

where the optimum sensor placement is satisfied when Equation 2.4 is close to one.

A

To determine the A matrix, a noise model is established by considering how

accurately the mode shapes can be estimated (Equation 2.5).
a=a+{X} (2.5)

In Equation 2.5, 4 is the each of the estimated mode shapes in A and {X;} is the

random vector where each of the elements is a stochastic variable with standard

deviation given by Equation 2.6.
c=¢ max(a,) (2.6)

where a, represents the elements of the true mode shape a and ¢ is the relative

uncertainty parameter that describes different accuracies of mode shape estimation.
This simple approach can be used to perform simulations considering different sensor
amounts, sensor locations, and relative uncertainty parameters. By comparing the
outputs of these simulations (i.e., V values of different simulations), it is possible to

determine the optimum sensor amount and sensor placement.
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Another commonly used way to determine the sensor placement is to evaluate the
mode shapes of the developed numerical model of the system. By this way, the sensors

should be placed in order to capture more modes as possible.

Since a limited number of sensors are used in OMA, sometimes it is required to
perform the tests in multiple setups (therefore multiple datasets are obtained) in order
to measure all the desired degrees of freedom (DOFs) of the structure in interest. Since
the mode shapes are unscaled due to the unmeasured excitation and the scaling factor
between the mass-normalized and unscaled mode shapes can vary from setup to setup,
the mode shape estimations extracted from different setups cannot be simply combined
together. In this context, some of the sensors are used as references (i.e., they are kept
in the same place during all setups, reference sensors) in order to be able to assemble
(merge) the mode shapes estimated by different setups, and the remaining sensors are
roved progressively over the structure (i.e., roving sensors). A simple method to merge

the mode shapes from different setups are described below.

Let the test is performed in D setups, and the mode shape estimations extracted

from each dataset can be separated into two groups: N, components represent the
common (overlapping) set of DOFs (i.e., the reference sensors) and N, components
are the remaining (non-overlapping) set of DOFs (i.e., the roving sensors). The N,

components of the mode shapes obtained from first and i setups are related through

a scaling factor.
{q)l:ef,l} = O‘f,i {d)];efz} (2.7)

where {d)fef’l} and {(I)fef,[} indicate the partitions of the £ mode shape identified from

the first and i setup at the N, , reference DOFs, respectively, and oy, is the scaling

factor between these mode shapes. If the number of reference sensors is larger than
one, then the scaling factor can be determined by the least squares solution (Equation

2.8)
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T -1
O“f,i:{((bl:ef,l) (I)];fef,l} d)];ef,i (2.8)

and the total (merged) mode shape {(I)k } is obtained by using these scaling factors as

follows

{9.]

{951
O‘f,z {¢fov,2}
{oh=1 .. (2.9)

k k
a’l,i {(I)rov,i }

k k
0'I,D {(I)rov,D }

The numbers of the reference and roving sensors are determined based on the
desired spatial resolution of the mode shapes to be identified. The selection of the
reference sensors should be performed so that all the modes of interest are clearly
identifiable in all datasets. Sensors close to the nodes of the mode shapes are not
appropriate to be reference sensors since they do not provide any information (i.e.,
roving sensors cannot be adequately scaled with respect to a reference sensor which is
close to a node of a mode). In addition, if the considered mode shape vector has small
components in the reference points, noise can significantly penetrate the scaling factor
value; therefore, it is recommended to use more reference sensors as possible in order
to provide a sufficient number of reasonably large mode shape components for all the
modes. Additional information and methodologies to assemble the mode shape
estimations from several datasets are available in the literature (Dohler et al., 2011a,

2011b; Felber, 1993; Peeters, 2000; Reynders et al., 2009).
2.2.1.4 Sampling Rate

The sampling rate or sampling frequency (i.e., the collected number of samples per

second) of a test is determined based on the maximum valued vibration frequency that
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wanted to be estimated from the collected data. This also states an upper limit for the
frequency band of the data. For instance, if the sampling frequency is selected to be F
Hz, then the collected data are limited up to F/2 Hz and does not involve any
information beyond this limit (a.k.a. Nyquist frequency). Therefore, the sampling
frequency should be chosen at least to be 2 times the maximum valued vibration
frequency. If the sampling frequency is too low (i.e., if the data are sampled too
slowly), higher frequencies than the Nyquist frequency are reflected in the interested
frequency range and induce amplitude and frequency errors in the spectrum of the
signal. This is known as the aliasing effect in signal processing. For example, assume
that a signal involves fc=50 Hz frequency component; when this signal is sampled at
fs=30 Hz, the frequency f. is aliased, and the alias frequency fa occurs as a frequency
component of the signal at the absolute value of the difference between the input
frequency f. and the closest integer multiple of the sampling frequency fs. In the
present case, the alias frequency fa=|50-2*30/=10 Hz. Note that it is difficult to
distinguish the alias frequency from the actual frequency components of the signal.
The only way to prevent the aliasing effect is removing all the frequency components
in the analog signal that are above the Nyquist frequency by an anti-aliasing filter

before the analog-to-digital conversion.

Note that some of the data acquisition systems have anti-aliasing filters that
influence the frequencies in the environs of the Nyquist frequency. That’s why the
recommended sampling frequency should be larger than 2.4 times the higher frequency
of interest. On the other hand, using very large sampling frequencies than the needed
ones may cause memory and storage problems, especially for very long observation

periods.

2.2.1.5 Measurement Duration

Identification problems in OMA mostly occur because of too short test data;
therefore, it is beneficial to keep the test duration as long as possible. However, longer

data require more memory and storage space which mean more cost. Processing this

type of data is another problem due to time-consuming tasks. In this context, an
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optimum measurement duration can be determined to be at least 7'=10/ (& Foin )

where & is the modal damping factor, f

min

is the lowest vibration frequency value in

Hz, and T is the measurement duration in seconds.
2.2.2 Highlights for Signal Processing
2.2.2.1 Inspection of the Data Quality

Inspection of the test data is performed to decide whether the data are appropriate
or not for OMA. Ideally, this check should be done during data collection in order to
interfere and correct unwanted situations. This control stage includes checks for
dropouts (i.e., large deviations towards zero), spikes (i.e., large deviations towards
higher values), and clippings (i.e., signal saturation). Here, visual inspection is the
commonly used method. In addition, by comparing the average and standard deviation
values of the windowed data segments, it is possible to detect whether there exist

undesired situations.
2.2.2.2 Detrending

Detrending is a process that compels a signal to have zero mean by removing its
direct current (DC) offsets. It is significant since the DC component in the signal is not
trustable due to the overabundant noise level in the low frequency region. Detrending
is performed by dividing the signal into overlapping data segments and then removing
the mean value of each segment. Note that each data segment should be tapered by
using a window in order to minimize discontinuities between data segments and to
reduce leakage (a.k.a. spectral leakage), which occurs when the signal is not periodic
in the sample interval. The existence of leakage causes the energy at a certain
frequency to spread to nearby frequencies and due to these additional frequency
components, it becomes difficult to determine the actual frequency components of the

signal in interest.
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2.2.2.3 Filtering

Filtering is the process to eliminate the undesired and/or unnecessary frequency
components of the signal. In general, filters are divided into two groups, such as analog
and digital filters. In OMA, analog filters are only encountered as anti-aliasing filters
that are applied prior to an analog-to-digital converter (i.e., digitalization). After

digitalization, since everything is digital, only digital filters are used.

Digital filters can be grouped into two main types, namely the finite impulse
response (FIR) filters (a.k.a. moving average filters), defined by finite impulse
responses, and the infinite impulse response (IIR) filters (a.k.a. autoregressive filters),
whose impulse responses are available indefinitely. The main difference between FIR
and IIR filters is that the output of an FIR filter is based only on the current and past
inputs, whereas the output of an IIR filter is based also on the past outputs. FIR filters
are always stable (as the FIR name indicates) and have a frequency independent phase
shift but need many coefficients to obtain a sharp filter cut-off. In contrast, IIR filters
require a limited number of coefficients for a sharp filter cut-off (i.e., less
computational demanding), whereas they have a frequency dependent phase shift.

Both filter types ripple close to the cut-off frequency. Mathematical presentations for

FIR and IIR filters are given in Equations 2.10 and 2.11, respectively. Here, y(n) is
the filtered signal, a(k) represents the filter coefficients, na is the number of filter

coefficients, and x (n) represents the input to the filter.
y(n)=>a(k) x(n-k) (2.10)

y(n)z a(k) y(n—k) (2.11)

In general, four filter types are commonly utilized in OMA depending on the

frequency content that is intended to pass:
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e Low-pass filters are defined by a single cut-off frequency and let to pass all

frequency content below this cut-off frequency.

e High-pass filters are defined by a single cut-off frequency and let to pass all

frequency content above this cut-off frequency.

e Band-pass filters are defined by two cut-off frequencies and let to pass all

frequency content inside these cut-off frequencies.

e Band-stop filters are defined by two cut-off frequencies and let to pass all

frequency content outside these cut-off frequencies.

The frequency response functions of these filters are presented in Figure 2.1 with f;
and /> cut-off frequencies. In general, low-pass filters are often utilized to eliminate
high-frequency components (e.g., in the case of decimation process), high-pass filters
are generally preferred to remove the frequency components near DC, and band-pass
filters are often employed to divide a frequency band with many modes into smaller
frequency bands with a smaller number of modes in each band. Note that it is important
to perform the same filtering operation on all measurement channels in the dataset,
otherwise, the modal parameters are affected because of the phase and amplitude errors

caused by filters.
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Figure 2.1 Frequency response functions of (a) low-pass, (b) high-pass, (¢) band-pass, and (d) band-
stop filters
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Figure 2.1 continues

2.2.2.4 Down-Sampling (Decimation) and Up-Sampling (Interpolation)

A vibration test is generally performed by using a higher sampling frequency value
than needed for the analysis. Therefore, resampling is required to obtain more
appropriate sampling frequency which provides a better focus on the frequency
bandwidth of interest. This process is called as down-sampling or decimation. Note
that the energy above the new Nyquist frequency (related to the reduced sampling
frequency) must be removed first by low-pass filtering in order to prevent aliasing
problems. Afterwards, data omitting (e.g., every second data when reducing the
sampling frequency by half, decimation factor is equal to two) can be realized without
any problems. In the case of a higher resolution is desired, it is possible to increase the
sampling frequency by generating new samples between the existing samples (a.k.a.

up-sampling or interpolation) without any problems.

2.2.3 Review of Operational Modal Analysis (OMA) Methods

As stated before, OMA methods can be categorized into two groups based on the
domains they operate (i.e., time domain and frequency domain methods). In time
domain methods (e.g., NExT-ERA and SSI-DATA), analyses are performed using
correlation functions that have the same characteristics with free decays. On the other
hand, in frequency domain methods (e.g., EFDD), modal decomposition is realized by
considering spectral density functions. It should be stated that the time domain

methods are generally better conditioned than frequency domain methods due to the
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influence of the powers of frequencies in frequency domain equations (e.g., spectral
density estimates suffer from bias, whereas the time domain methods depend on the
information that is bias-free or nearly bias-free). In addition, time domain methods
enable to separate physical and noise modes from each other using stabilization
diagrams. The main advantage of the frequency domain methods is considering the
different frequency bands where different modes dominate (i.e., each mode has a small
frequency band where it dominates), whereas the time domain methods deal with free
responses that are present over the full examined time span (i.e., all the existing modes

in the signal are present at any time during the considered free decay).

In the scope of this thesis, NExT-ERA, SSI-DATA, and EFDD methods are
employed for modal parameter estimation. Herein, NExT-ERA and EFDD methods
were programmed in MATLAB environment, and SSI-DATA method was used
through a commercial software (ARTeMIS, 2016; MATLAB, 2017). In the following

sections, the theoretical backgrounds of these methods are presented.

2.2.3.1 Natural Excitation Technique (NExT) Combined with FEigensystem
Realization Algorithm (ERA)

The NExT-ERA modal identification method is a combination of the NExT and the
ERA. NEXT is the stage where the excitation data are processed to obtain a signal with
the same characteristics of a free vibration data, whereas ERA is utilized to develop a
numerical model of the investigated system in steady-state form based on the free
vibration data obtained by the NEXT. In this section, firstly the theoretical background
of the NEXT is presented, and then the ERA is detailed. In this sense, studies performed
by Brincker & Ventura (2015), Caicedo (2011), Caicedo et al. (2004), Chang & Pakzad
(2013), and Juang & Pappa (1985) are taken into account.

Consider the differential equation for a linear time-invariant (LTI) multi-degree-of-

freedom system presented in Equation 2.12.

M k(1) + Cx(t) + K x(t) = £(t) (2.12)
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where M, C, and K are the mass, damping, and stiffness matrices, respectively; x(t),
x(t), and X(t) represent the displacement, velocity, and acceleration vectors,
respectively; and f(t) is the externally applied force vector. If it is assumed that the

responses and the excitation are stationary random processes, Equation 2.13 can be

written.

M X(t) + CX(t) + K X(t) = F(t) (2.13)

where X(t), X(t), and X(t) are the displacement, velocity, and acceleration
stochastic vector processes, respectively; and F(t) represents the stochastic excitation

vector process. Under the assumption that the system parameter matrices are

deterministic, multiplying Equation 2.13 by a reference scalar response process X (s)

and taking the expected value of each side gives Equation 2.14.
M E[X(H)X ()] + C E[X(D)X,(5)]+ K E[X(6)X,(s)] = E[F ()X, (5)] (2.14)

where E[.] represents the expectation operator. Equation 2.14 can be rewritten as

follows

MRy, (ts)+CR, (ts) + KRy (t,5) = Ry (t.s) (2.15)

where R(.) indicates the correlation function vector. It should be stated that Equation

2.16 is satisfied if A(t) and B(t) are stationary processes (Bendat & Piersol, 2000).
R0 =R,5(1) (2.16)

where T=t-—s. Itis possible to extend the relationship in Equation 2.16 as follows
R g (1) = Rﬁi”B’(f) (2.17)

where A™ and Rffg are the m™ derivatives of A(t) and R, (t) with respect to t and

T, respectively. Since the responses are uncorrelated to the disturbance (i.e.,

excitation) for t >0, Equation 2.15 can be rewritten as follows
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MRy, (10)+CRyy () +KRy (1)=0 (2.18)

Equation 2.18 means that the displacement process correlation functions (ﬁxxi (7),

RXXi (v), and Ry, (7)) satisfy the differential equation of motion (i.e., the correlation

functions have the same characteristics as the free vibration data). Based on a similar
approach, it can be said that the acceleration process correlation functions also satisfy
this equation. This result is important and useful for civil engineering society since the

acceleration responses of the structural systems are often measured.

In the application of NEXT, one of the responses (i.e., one of the sensor channels)
is chosen as a reference, and the correlation functions are computed with respect to

this reference channel (i.e., denoted as X (s) in Equation 2.14). Therefore, it is

essential to select a reference channel with a high signal-to-noise ratio (SNR) value
and far from a node of any mode to ensure that all of the modes can be observed in the

data.

In general, the ERA uses the impulse response (or the free vibration data) of a
system without taking in to account the external forces. The discretized state-space

representation for an LTI system is shown in Equation 2.19.

x(k +1) = Ax(k) + Bu(k)
(2.19)
y (k) = Cx(k) + Du(k)

where u(k), x(k), and y (k) represent the vector of system inputs (i.e., forces applied

to the system), the vector of states, and the vector of system outputs (e.g., acceleration
measurements) at the k™ step, respectively. The A, B, C, and D coefficients (a.k.a.
discrete-time state-space matrices) are the state, input, output, and feed-through

matrices of the state-space model.

The ERA is based on the minimum realization principles to constitute a state-space

representation of the system. Here, realization is the estimation process of the system
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matrices (A, B, C, and D) from the response. Note that there exists an infinite number
of system matrices having different dimensions that define the input-output
relationship of the system. However, the case with the smallest number of states is
taken into consideration (i.e., minimum realization). Since the input to the system is
unknown (i.e., generally unmeasured), B and D matrices cannot be determined.
Nevertheless, A and C matrices are used to calculate the modal parameters of the
system. The first step of the ERA is constituting the Hankel matrix as presented in
Equation 2.20.

Y(k+1) Y(k+2) .. Y(k+m)

Y(k+2) Y(k+3)

H (k) = (2.20)

Y (k+s) ... Y(k+m+s)

where Y(k) is the impulse response vector (i.e., the free vibration data) with Nx1
dimensions at the k™ step. Here, N represents the number of sensors. The parameters
s and m are the numbers of rows and columns in the Hankel matrix. For good results,
m should be chosen to be approximately 10 times the number of modes to be identified,
and s should be chosen to be 2-3 times m (Juang & Pappa, 1985). In the second step
of the ERA, the singular value decomposition (SVD) of H(0) is carried out as
presented in Equation 2.21.

H(0)=RXS" (2.21)

where H(0) represents the Hankel matrix at k=0, R and S are the left and right
eigenvectors of H(0), respectively, and X is the diagonal matrix of singular values.

Under ideal conditions, the matrix X is in the form presented in Equation 2.22.

. |Ze 0
*l o o (2.22)

where X is a g by g matrix and g represents the system order (number of poles, or

model order). However, in reality, the X, matrix contains nonzero (or relatively small)
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terms along the diagonal due to the measurement noise and the numerical truncation
process. By eliminating these terms, it is possible to obtain the minimum system order
(i.e., minimum realization). Note that higher model order selection causes fictitious
modes to occur, whereas, in the case of smaller model order, some of the modes might
not be identified. In order to determine the correct system order, stabilization diagrams
are effective tools. These diagrams are plotted by repeated (iterative) identification
processes with different number model orders. Herein, stable (i.e., physical) modes are

constant and identifiable for all or most of the identification runs.

A and C matrices can be determined by Equations 2.23 and 2.24 as follows

A =X R"H()SZ"? (2.23)

C—E'RE”? (2.24)

where the small singular values are excluded from the matrix £ and E =[I 0]. The

eigenvalue decomposition of the matrix A is utilized to determine the poles

(eigenvalues), which is A =diag(A,). Note that these eigenvalues are complex

conjugates where their imaginary parts represent the damped vibration frequencies.

Eventually, the vibration frequencies (®, ) and damping ratios (&, ) of the system are

calculated by the expressions presented in Equation 2.25.

In(A,)

L= — ‘s *:—(,0. i(,O 1_ 2
M'1 At M] Mi 1&1 .] 1 gi
(2.25)
. Real(u.
0; = 4/Hi-H, & :_ﬁ
.

1

where 1 is varied from 1 to Ns (number of modes), At is the sampling period, and the

symbol “*” represents the conjugate form. To determine the mode shapes (¢,), the

relationship in Equation 2.26 is used.

o, =CT (2.26)
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where I' represents the eigenvectors of the matrix A.
2.2.3.2 Enhanced Frequency Domain Decomposition (EFDD)

The main idea behind the EFDD method is determining the modal parameters of a
system from the singular value decomposition of the spectral density matrix of the
responses which represents auto-spectral density functions of a single-degree-of-
freedom system (SDOF) with the same dynamic characteristics. In other words,
decomposition of the spectral matrix of the responses is used to obtain the physical
information of a system. In this section, firstly the theoretical background of the FDD
method is presented, and then its enhanced version, the EFDD method is discussed. In
this sense, studies performed by Astroza et al. (2016a), Brincker et al. (2001a, 2001b),
Brincker & Ventura (2015), Gentille & Gallino (2008), and Magalhaes et al. (2010)

are taken into account.

Consider the response of a system given in Equation 2.27, y(t) can be written in

terms of the mode shape matrix A (i.e., modal matrix) and modal coordinates q(t).

y(®)=2,q,t)+a,q,t)+..= Aq(t) (2.27)

where A=[a,, a,---] and q" (t) ={q,(t), q,(t)---} . Accordingly, it is also feasible to

state the response of a system in terms of the modal matrix A and the correlation

function matrix of the modal coordinates R (1) as given in Equation 2.28.

R ()=E[y(t) y' (t+1]=AE[q() q' (t+7)] A"=AR, (1) A’ (2.28)

where E[.] represents the expectation operator and R, (7) is the correlation function

matrix of y (t). The corresponding spectral density matrix is later obtained by taking

the Fourier transform of both sides of Equation 2.28, and presented in Equation 2.29.

G,(N=AG, (A’ (2.29)
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where G (f) and G (f) are the spectral density matrices of the response y (t) and
the modal coordinates q(t), respectively. In G (f), the real-valued auto-spectral

densities are formed as diagonal elements, whereas the off-diagonal terms represent
the cross-spectral densities. If the system is excited by a signal with broad-band (e.g.,
white-noise) characteristics, then the spectral matrix can be decomposed as given in

Equation 2.30.

a ! a a o
G, (0)= Z[ LYo | MYe BV, Y, (2.30)

—1o—-A, —1m—kn io—A, 10-A,

where a_, v, ,and A  are the mode shapes, modal participation vectors, and poles,

koo

respectively. The symbol “*” and the superscript “H” represent the conjugate form and
the Hermitian (i.e., complex conjugate transpose), respectively. Since the modal
participation vectors are the weighted forms of the mode shapes (y, =c.a_ where ¢,

is a positive constant) and only the two midterms in Equation 2.30 (i.e., the second and
third terms) are dominant in the case of lightly damped systems, Equation 2.30 can be

arranged more simply as presented in Equation 2.31.

c’a a" c a a a a'
G (1) n n n n n n 2C Re n n 2.31
( )= Z( 10) A, J Z [103 A J ( )

—10— 7»

In FDD, decomposition of the spectral density matrix estimated at each distinct

frequency value is performed through singular value decomposition (SVD) as
presented in Equation 2.32. The diagonal matrix Z holding the singular values z. is

interpreted as auto-spectral densities of the modal coordinates (Equation 2.33),
whereas the mode shape information can be extracted from the matrix U for each
distinct frequency value (Equation 2.34). Note that the SVD allows separation of the
noise modes from the physical ones which helps analysts to understand the structural
related information. The first singular value that becomes flat compared to the modal
response indicates the noise level; thus, lower singular values compared to that one
can be eliminated in the process of modal parameter identification. Analysts can use

this merit in the identification of the closely-spaced modes.
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G,(f)=UZU" =U[z]U" (2.32)

zz 0 .. 0
[Z)] = diag(z? 22,....7%) = 0 S (2.33)
0 z
[U1=[{Ui}{Us}o{U, ] (2.34)

In FDD, since the first singular value at each distinct frequency reflects the strength
of the dominated vibration mode at that frequency, it is suitable to plot a frequency-
singular value curve that can be used as a modal indicator. Accordingly, vibration
frequencies are estimated by selecting the frequency values where the frequency-
singular value curve has peaks. It is possible to estimate the vibration frequencies with
higher accuracy by using the enhanced version of the FDD method (i.e., EFDD
method), in which the singular value information around the considered peak is also
used. Herein, the selection of the singular value segment around the peak is performed
by assessing the similarity between the singular vector estimates related to the peak
and the points around the peak. Modal assurance criterion (MAC) can be utilized to
state the similarity between the singular vectors (Allemang, 2003) (formulation is
presented by Equation 3.3 in Chapter Three). Limits (borders) of the singular value
segment are determined based on the points where the similarity between the singular
vectors falls below a predefined threshold value (i.e., as long as the singular vector
around the peak exhibits high similarity, that singular vector belongs to the same
mode). The piece of the singular values around the peak (i.e., singular value segment
around the peak) is taken back to the time domain by the inverse fast Fourier transform.
By this way, the corresponding auto-correlation function of a SDOF system is
obtained. Accordingly, the frequency and damping estimations can be simply obtained
by performing crossing times (i.e., time intervals between zero crossings) and
logarithmic decrement (i.e., by arranging an exponential decay) on this auto-

correlation function, respectively. In both versions of the methods (i.e., FDD and

EFDD), near a peak corresponding to a mode, the first singular vector {Ul} reflects
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the estimated mode shape. Note that in the case of closely-spaced modes, the first

singular vector will always give the best estimate of the mode shape.

2.2.3.3 Stochastic Subspace Identification (SSI)

In general, the SSI method is based on establishing a linear state-space model of the
system by using the output-only measured vibration responses. There are two main
types of SSI formulations available, namely the data-driven SSI (SSI-DATA) and the
correlation-driven SSI (SSI-COV). The SSI-COV is very similar to the ERA. It uses
the correlations of the time series. Conversely, the SSI-DATA is directly based on the
measured time series, and unlike the two-stage time domain methods, (e.g., NExT-
ERA and SSI-COV) calculation of the covariance matrices is not required. In addition,
SSI-DATA is more robust since it uses least squares, SVD, and QR factorization. In
this section, the theoretical background of the SSI-DATA method is presented. In this
sense, studies performed by Astroza et al. (2016a), Brincker & Andersen (2006),
Brincker & Ventura (2015), Magalhides et al. (2010), Van Overschee & De Moor
(1996), Peeters (2000), and Peeters & De Roeck (2001) are taken into account.

Any free decay y(k) can be expressed by a state-space formulation as shown in

Equation 2.35.
y (k) = PG*y, (2.35)

where P and G are the observation and discrete time system matrices, respectively,

and u, is the state-space initial conditions of the free decay. In the first step of the SSI-
DATA method, the output measurement responses in time domain y (k) are utilized

to construct the block Hankel matrix with 2s number of block rows and np number of
data points (Equation 2.36). The Hankel matrix is later split in the middle into two
block Hankel matrices, namely H, (the upper part) and H, (the lower part) each

having s number of block rows. Here, H, and H, are also known as “the past” and

“the future”, respectively. In the SSI theory, the projection matrix O is defined with

Equation 2.37, and the calculation of its components is presented in Equation 2.38.
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[y () y2) ... y(np—2s+1)]
y(2) y(3) . Y(N—-25+2)
| y®  yG+l) ... y@-s) | [H,
H= y(s+1) y(s+2) ... y(p-s+1) {Hj (2.36)
y(s+2) y(s+3) ... y(np-s+2)
| Y(2s) y(@s+1) ... y (np)
O=FE[H,[H,] (2.37)
T21:H2H1T
O=T, T, H, where (2.38)

T, =H, HlT

In Equation 2.38, T,, and T, represent the block Toeplitz matrices. It should be

stated that the calculation of the block Toeplitz matrices is memory consuming and
requires high computational effort. Therefore, the projection is generally calculated by
the QR decomposition (factorization) of the transposed block Hankel matrix presented
in Equation 2.36. Note that the free decays are established in the calculated projection

matrix which can be expressed as follows
0=IX (2.39)

where I' and X are the observability matrix and the matrix of Kalman states (i.e., the
matrix representing the initial conditions of the free decays in the projection matrix),
respectively. The next step in the identification process is taking the SVD of the

projection matrix as shown in Equation 2.40.
O =RxS’ (2.40)

Based on Equations 2.39 and 2.40, I' and X can be estimated as presented in
Equation 2.41.
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f -R 21/2
n (2.41)
)"( _ 21/2ST

where R, X ,and S are the restricted forms of the SVD matrices corresponding to

the first n singular values (i.e., first n/2 modes). Eventually, the discrete time system
matrix G and the observation matrix P are computed by solving a least squares
problem. The modal parameters (i.e., vibration frequencies, damping ratios, and mode

shapes) can be determined in a similar way as presented in Equations 2.25 and 2.26.

It should be stated that various techniques can be formulated in the SSI by

multiplying real-valued weight matrices W, and W, on each side of the projection

matrix. Thus, a generalized projection matrix is obtained and the SVD is performed on

this resultant matrix (Equation 2.42).
W,0W, =RxS' (2.42)

Different forms of the weight matrices constitute the SSI standard algorithms known
as the unweighted principal component (UPC) algorithm, the principal components

(PC) algorithm, and the canonical variate algorithm (CVA).
2.2.4 Increased Signal Reproduction Fidelity by Offline Tuning Technique (OTT)

As it was stated before, the frequency content of a dynamic excitation should cover
a wide range of frequencies (i.e., having broad-band characteristics) to excite a
system’s modes properly. However, in a shake table test (or shaker test), if a control
algorithm is not used, the total forward transfer function estimation (i.e., estimated
between command and feedback signals) clearly indicates that the command signal
cannot be reproduced properly in terms of target amplitude and frequency content
(Twitchell & Symans, 2003; Yucel, 2014). In other words, a trajectory tracking
problem occurs between the target (command) and achieved (feedback) signals which
means that the shake table cannot track the command signal properly. Complex

internal mechanisms of the shake table and the table-specimen interaction are the main
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reasons for this issue. Since the command signal loses its broad-bandwidth property,
which is intended to be, results of OMA, model updating, and vibration-based SHM
are also affected. In literature, there exist many control methods, such as adaptive
control, PID based displacement control, PID+ feedforward, and offline tuning
methods to solve this problem (Luco et al., 2010; Mota, 2011). In this thesis, offline
tuning technique (OTT), a command shaping control strategy, is used for this purpose

(Ozcelik et al., 2015, 2018; Thoen & Laplace, 2004; Yucel, 2014).

In OTT, firstly the forward transfer function (FTF) of the shake table is
experimentally estimated between the command and the feedback signals. FTF is a
beneficial tool that provides information about the dynamic characteristics of shake
tables and their effects on command signals. Namely, a unit FTF value at a specific
frequency means that there is no effect on the command signal (i.e., there is no tracking
problem), whereas other values are the indicators of the tracking problem. Afterwards,
the command signal is multiplied by the inverse of the FTF in the frequency domain
and then filtered by a high-pass filter to avoid large motions surpassing the shake
table’s operational limits. The modified command signal obtained this way is
transformed back to the time domain by the inverse fast Fourier transform, and is used
as the adjusted command to the shake table. This way the signal reproduction fidelity
is increased and the achieved signal on the shake table would be in nature as the desired

command signal (Ozcelik et al., 2015, 2018; Yucel, 2014).

In Figure 2.2, the trajectory tracking problem observed in a shake table test, where
the command signal has white-noise characteristics, is presented (Ozcelik et al., 2015).
From the FTF estimation (Figure 2.2 (a)), the minimization effect of the shake table
on the command (input) signal is clear (amplitudes less than unit value). On the other
hand, the tracking problem can be verified by comparing the command and feedback
(output) signals in both time and frequency domains (Figure 2.2 (b)). After the
application of OTT, the tracking problem is solved, and the signal reproduction fidelity

is improved both in time and frequency domains (Figure 2.2 (¢)).
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Figure 2.2 (a) Forward transfer function estimation and signal reproduction fidelity (b) before and

(c) after the application of OTT (zoomed) (Ozcelik et al., 2015)

The effects of OTT on the vibration frequency estimation results of a small-scale
aluminum frame type structure are presented in Figure 2.3 (Yucel, 2014). Here, the
values obtained by the impact hammer test can be considered as the exact results. It is
explicit that the application of OTT for white-noise tests has significant effects and
applying OTT, therefore broad-band excitation, is necessary to obtain more realistic

system identification results.
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Excitation 1*Mode | 2™ Mode | 3" Mode

Type [Hz] [Hz| [Hz]
Impact
7.71 26.43 42.76
Hammer
White-noise
11.92 29.98 43.80
without OTT
White-noise
7.19 26.66 42.80
with OTT
(b)

Figure 2.3 (a) Small-scale aluminum frame type structure and (b) its system identification results

under different excitation conditions (Yucel, 2014)
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CHAPTER THREE
FINITE ELEMENT MODEL UPDATING

3.1 Introduction

In recent years, the finite element (FE) method has been commonly preferred by
civil engineering society for structural analyses and designs. Within this scope,
physical properties and behaviors of the structures are modeled by engineering
judgements and insights. However, the constituted numerical models may not be
convenient representatives of the real structural behaviors because of the modeling
simplifications and assumptions made in model parameters such as material properties,
boundary conditions, member connections, and meshing strategies. Therefore, these
numerical models should be verified and corrected if necessary before further usages
and analyses. This can be done by means of a finite element model updating (FEMU)
procedure in which the initial FE model (i.e., numerical model) is calibrated based on
the experimental data (a.k.a. model calibration). In this context, vibration frequencies,
mode shapes, frequency response functions, acceleration time histories, modal strains,
modal curvatures, modal strain energies, and modal flexibilities can be used as
responses; but modal parameters such as vibration frequencies and mode shapes are
the mostly preferred ones. In general, FEMU is the process where the unknown and/or
uncertain properties of a FE model are adjusted such that the numerical results
correspond well with the experimental ones. Note that experimental data is a better
representation of the structural behavior than the FE model although it contains
measurement errors. (Friswell & Mottershead, 1995; Teughels, 2003). Besides, FEMU
methods are commonly used for damage identification purposes by adjusting model
parameters that are related to structural stiffness (e.g., Young’s modulus, shear
modulus, Poisson’s ratio, moment of inertia, etc.) to determine the location and the
extent of the damage. In this context, experimental data before and after a damaging

event are required.

FEMU methods are classified as model-based methods, in which a FE model is

used to predict the observed changes. On the other hand, non-model methods are based
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only on the changes of the measured data, and do not require a numerical model,
therefore, they provide limited and coarse solutions and are not suitable for complex
systems (Carden & Fanning, 2004). In literature, FEMU methods can be categorized
into two main groups, namely direct (matrix) and indirect (iterative) methods. In direct
methods, model updating is performed in a single step with a non-iterative approach.
For this reason, the existence of measurement noise significantly reduces their
efficiency and performance. This type of methods is mainly based on updating mass
and stiffness matrices directly (i.e., without any regard to changes in model
parameters), whereby their updated values deceive structural meanings and cause
physically nonsense results. In addition, model connectivity and positive definiteness
(i.e., a matrix is positive definite if it is symmetric an all its eigenvalues are positive)
may not remain. Error matrix, optimal matrix, matrix-update, and the eigen structure
assignment methods are the some of the direct methods (Alkayem et al., 2018;
Carvalho et al., 2007; Friswell & Mottershead, 1995; Marwala, 2010; Mottershead &
Friswell, 1993; Yang & Chen, 2009). For all these limitations, direct methods are less
preferred, and indirect methods have mainly been used. In indirect methods, physical
parameters (model parameters) of an initial FE model are calibrated (updated) until its
dynamic characteristics (i.e., modal parameters) get sufficiently closer to that of the
real structure. By the reason of the nonlinear relationship between the physical and
modal parameters, the updating process is realized iteratively. Since the model
parameters are updated, the mass and stiffness matrices preserve their physical
meanings, and the model connectivity is ensured. The most commonly used iterative
methods are sensitivity-based, computational intelligence, Bayesian/Monte Carlo, and
response surface methods (Alkayem et al., 2018; Friswell & Mottershead, 1995;
Marwala, 2010).

In linear FEMU methods (i.e., the methods that are discussed so far), always linear
FE models are developed, and the structural damage is generally defined as loss of
effective stiffness (a.k.a. damage indicator) based on linear responses. Therefore, the
updated FE models can only reflect the behaviors of the structures in the linear range.
However, all the real-life structures are inherently nonlinear, especially the damaged

structures caused by strong excitations (e.g., earthquakes). Therefore, additional
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nonlinear damage indicators are required (e.g., loss of ductility capacity, loss of
strength, softening, residual deformations, etc.) for accurate damage identification. In
this context, nonlinear FEMU methods, that are based on the nonlinear responses of
the structural systems, can be used. Since the nonlinear responses include more
information about damage than the linear responses, nonlinear FEMU methods can
provide more accurate damage identification results and can be used for damage
prognosis (i.e., predicting the remaining lives of the structural systems) studies
(Asgarieh et al., 2014; Astroza et al., 2017; Ebrahimian et al., 2017; He et al., 2019).
Note that the topic of nonlinear FEMU is not included within this thesis since it is
aimed to focus on the linear FEMU methods, especially the sensitivity-based ones.
Besides, model updating by linear methods is commonly used by civil engineering
society for damage identification studies of nonlinear systems with reasonable success.
In the following sections of the thesis, the sensitivity-based FEMU method is discussed

in detail and used for model updating and damage identification purposes.

3.2 Sensitivity-Based Finite Element Model Updating Method

Sensitivity-based FEMU, which is in the category of inverse problems, is the most
common method that can be utilized for model updating and damage identification
purposes. In inverse problems, a FE model is constituted in order to represent the
experimental data numerically, then the discrepancies between the experimentally and
numerically identified quantities (i.e., modal parameters such as vibration frequencies
and mode shapes are commonly used for this purpose) are minimized by adjusting
(calibrating, updating) the unknown model parameters (e.g., mass density, Young’s
modulus, shear modulus, spring stiffness, moment of inertia, thickness, boundary
conditions, etc.). In other words, in inverse problems, the output (i.e., modal
parameters) is known, whereas the input (i.e., model parameters) is unknown. On the
other hand, in forward problems, outputs are determined directly from the
mathematical model with known parameters (i.e., model parameters). For example,
damage is modeled numerically and the experimentally identified modal parameters
are compared with the numerically obtained ones to verify the predefined damage.

Note that typical engineering problems are generally in the form of forward problems
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(Boller et al., 2009; Brownjohn, 2007; Carden & Fanning, 2004; Fan & Qiao, 2011;
Marwala, 2010; Sohn et al., 2003; Teughels, 2003).

In general, sensitivity-based FEMU can be considered as an iterative optimization
process at minimizing the discrepancies between the experimentally identified and
numerically obtained (from FE model) quantities (modal parameters), which is defined
by an objective function (a.k.a. cost function), by updating the selected model
parameters of the numerical model (Friswell & Mottershead, 1995; Mottershead et al.,
2011; Teughels, 2003; Teughels & De Roeck, 2004; Teughels et al., 2003). The
iterations are continued until an absolute minimum (a.k.a. global minimum) of the
objective function is acquired. In practice, material characteristics, geometrical
properties, boundary conditions, and member connections are the mostly selected
model parameters for updating purposes (a.k.a. updating parameters, design variables,
or design parameters). The updating procedure can be conducted by a manual or
automated way. Manual updating is a conventional method that depends on the trial-
and-error approach. It has a slow convergence speed (i.e., more time and trials may be
required for ultimate results) and does not guarantee a global minimum; therefore, this
method is non-practical for complex systems. On the other hand, automated updating
is performed by using a computer-aided optimization algorithm. Thus, it has faster
convergence and provides more objective and accurate results. In practice, performing
manual updating prior to an automated one is recommended. By this way, it is possible
to ensure more reasonably accurate numerical models for the automated updating

stage, which in return improves its convergence performance.

The general procedure of the sensitivity-based FEMU method is presented by a
flowchart in Figure 3.1. Steps of the method can be summarized as follows: (i)
Initially, selection of the unknown model parameter set of the investigated system is

realized (p, ). (i1) Appropriate and physically meaningful initial values are assigned to
these model parameters (p, ). (iii) FE analysis is realized to determine the numerical

quantities of the system. (iv) Residual vector (r) is calculated by the discrepancies

between the numerically (z(pk)) and experimentally (Z ) obtained quantities. (v) A

nonlinear least squares problem is defined by an objective function using the residual
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vector. (vi) Sensitivity (Jacobian) matrix (J Pk) is constituted by calculating the

sensitivity of the residual vector with respect to the model parameters. (vii)
Minimization process of the nonlinear least squares problem is performed by an

optimization algorithm, thus updated model parameter values (p,,,) are obtained.
(viil) Steps 1ii to vii are repeated by using the updated model parameter values (p,.,)

until the convergence is satisfied (i.e., discrepancies between the numerical and
experimental quantities are sufficiently minimized). By this way, the initial FE model
is corrected such that it better represents the actual system, and the unknown model

parameters are identified as to be p, ;.

Selection of unknown model parameter set
Py

¥

Assigning initial values to model parameters

k=0; P,

v

FE analysis to identify numerical quantities

z(p.)

.

Experimental quantities

~ >

- \ 4

Residual vector calculation
z ( Py ) —Z

Objective function construction

Swo-2F —
!

Sensitivity (Jacobian) matrix calculation
N

¥

Minimization by an optimization algorithm

Updated model parameter values
Py

v

Convergence?

NO

YES

Identified model parameter values

pk+1

Figure 3.1 Flowchart of the sensitivity-based finite element model updating method
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The theoretical background of the sensitivity-based FEMU method is presented in
the following sections. In this sense, studies performed by Fang et al. (2008), Moaveni
et al. (2013), Teughels (2003), and Teughels & De Roeck (2004) are considered.

3.2.1 Objective Function and Residual Vector

The first step of the sensitivity-based FEMU is to construct an objective function.
The least squares approach is used for this purpose as given in Equation 3.1. Note that
the problem is nonlinear due to the nonlinear relationship between the modal

parameters and design variables p.

f(p)=

Zm:[zj (p)- 3]2 - Zm:[rj (P)]2; I, <p<u, (3.1)

=1 =1

N | —
| —

where p €R" represents the design variables (n is the number of design variables),
z; (p) and Z; are the numerically and experimentally obtained modal quantities,

respectively, j indicates the component number of any variable (e.g., the j component

of Z;), r; presents the residuals, and m is the number of components that are considered

(i.e., number of residuals). 1, and u, € R" are the lower and upper bounds (i.e.,

constraints), respectively, that the design variables have to satisfy during the updating
process. In the case of an unconstrained optimization problem, physically

nonmeaningful results may be obtained for the design variables.

The residual vector r indicates the discrepancies between numerically and
experimentally obtained quantities (e.g., frequency response functions, vibration
frequencies, mode shapes, modal curvatures, modal strains, modal strain energies,
modal flexibilities, etc.). Herein, it should be stated that the modal flexibility residual,
which is basically a combination of vibration frequencies and mode shapes, is more
sensitive to the local changes of the systems (e.g., local damages). This is because the
flexibility matrix (inverse of the stiffness matrix) is dominated by the lowest modes of
the system, which can be easily identified, whereas the stiffness matrix is dominated

by the highest modes, which are difficult, if not impossible to identify (Jaishi & Ren,
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2005, 2006; Reynders & De Roeck, 2010). Since the vibration frequencies and mode
shapes (the commonly used ones in civil engineering) are focused only in this thesis,
equations are given in accordance with these quantities. Thus, the residual vector

containing the frequency residuals r, (p) (a.k.a. eigenfrequency residuals) and mode

shape residuals r, (p) can be defined as Equation 3.2.

1 . 1{r,(p)
mmEHr(p)H :mlnz rj:(p) (3.2)
where |||| denotes the Euclidean norm, r,:R"—R"™ and r:R"—>R™.

Consequently, r: R" — R™ includes m=m, +m_ components. The uniqueness of

A
Equation 3.2 can only be achieved by constituting an overdetermined problem, where
m (number of residuals) is higher than n (number of design variables) (n<m).
Otherwise, there exist infinitely many solutions that make Equation 3.2 minimum
(underdetermined case). In practice, having significantly higher m values (n<<m) is
essential to improve the updating performance. An overdetermined problem can be
ensured by considering more response values than design variables and/or limiting the
number of design variables (i.e., not assigning design variables to each finite element
of the model). One way to do is to group a set of neighboring and/or symmetric finite
elements, that are expected to undergo similar changes during updating, as
substructures, and to assign a single design variable for them. Herein, engineering
judgement is necessary to determine where or/and how to assign design variables.
Another way is to use a parameterization method (e.g., using damage functions), which

is detailed in the following sections of the thesis.

Note that experimentally and numerically obtained modal data must be matched
correctly before the usage of Equation 3.2. For this purpose, the modal assurance
criterion (MAC), which is a useful tool to determine the similarity between differently
obtained modal vectors, can be utilized (Allemang, 2003). Formulation is presented in

Equation 3.3.
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MAC(,,8;) = (cosb)’ = (¢Tf£i) ((226 ) (3:3)

h

where ¢, and $j represent the i™ numerical and j™ experimental modal vectors,

respectively, and 0 is the angle between these modal vectors. MAC value always lies
between 0 and 1, and the closeness of the criterion to unit value, which means that the
angle between the vectors is zero (i.e., overlapping), is the indicator of the higher
similarity (i.e., good correlation) between the vectors, whereas a value close to 0
designates bad correlation. However, in cases with similar modes or many closely-
spaced modes, the MAC concept may result in erroneous mode matching. That’s why

an alternative formulation as given in Equation 3.4 can be used (Simoen et al., 2015).

1L
A

J

1-MAC(9,.6;)+ (34)

where A, and Xj are the numerical and experimental eigenvalues (see Equation 3.5

for the formulation), respectively. Here, a value close to zero indicates a perfect match

between two modes.

It is essential to state that mode matching can cause non-smooth behaviors in the
objective function. For example, with the change of the model parameter values after
each iteration step, the modes might get matched differently (a.k.a. mode-crossing)
due to occurrences of new modes and/or disappearances of existing modes. This
situation leads to sudden jumps in the objective function which may inhibit the
effectiveness of the optimization algorithm dramatically. To overcome this problem,

modes must be matched again at the beginning of each iteration step.
3.2.1.1 Eigenfrequency Residuals

Eigenfrequency residuals include the differences between the numerical and

experimental undamped eigenfrequencies. Formulation is given in Equation 3.5.
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A (p)—A.
(P):% with Kj:(znfj)2 r, iR —>RY (3.5)
J

N—"

where j indicates the mode number, f; is the eigenfrequency, A, (p) and Xj represent
the numerical and corresponding experimental eigenvalues, respectively, and m , is

the number of eigenfrequencies utilized in the updating procedure. Here, relative
differences are calculated to provide a similar weight for each eigenfrequency. The
eigenfrequencies can be accurately identified, are very sensitive with respect to
stiffness properties, and supply global information of the system; therefore, they are
indispensable quantities for the updating process and have beneficial effects on the

convergence performance of the optimization problem.
3.2.1.2 Mode Shape Residuals

Mode shapes contain valuable spatial information about the dynamic characteristic
of a system. That’s why including the mode shape residuals into the residual vector is
beneficial to improve the updating performance. Each mode shape residual is

calculated as

r(p)=—rr5-=t r:R">R™ (3.6)

In Equation 3.6, j indicates the mode number, ¢; and (T)j are the numerical and

ref

corresponding experimental modal vectors, respectively, (1)? and ¢;" represent the 1t

(any arbitrary) and reference component of vector ¢;, and m_ is the number of modal

displacements (components of the mode shape vector) used in the updating process.

For example, if “ndof;” indicates the number of DOFs used for mode ¢; and N

mode

is the number of considered modes, then the mode shape residual vector includes

Nmode

m_ = Z ndof; components. Note that each mode shape component “I” is divided by

s
j=1

a reference component “ref” (generally the maximum component) to enable similar
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weighting since the numerically and experimentally obtained mode shapes can be

scaled in a different way (i.e., normalization).

Note that the mode shape estimations are less sensitive to structural changes (e.g.,
changes because of damage) as compared to vibration frequencies. Besides, they are
more prone to be polluted with noise (i.e., they include higher estimation uncertainty).
However, they should be involved in the updating process owing to their spatial

information.
3.2.1.3 Weighting Factors for Residuals

It is possible to weight the components of the nonlinear least squares problem (i.e.,
frequency and mode shape residuals) given in Equation 3.2 by judging their
confidence, importance, and/or estimation quality. Accordingly, the objective function
can be reformulated to establish a weighted least squares problem as given in Equation

3.7.
min%r(p)T Wr(p)= %HW”2 r(p)”2 (3.7)

Here, W is the weighting matrix. If W is a diagonal matrix, W = diag(...,wf,...) ,

Equation 3.7 can be equivalently written as
| T 2 I 2
EHW r(p)] = mmEZ(WJrj (p)) (3.8)
=1

where w; is the weighting factor of r;. A well-known statistical method to select the

weighting matrix is taking the inverse of the covariance matrix of the experimental
errors, which gives the minimum variance Gauss-Markov estimate (Friswell &
Mottershead, 1995; Simoen et al., 2015; Teughels & De Roeck, 2004). However, this
statistical information is often not available; therefore, in practice, the appropriate
weights are determined by engineering judgement and/or by carrying out some trial

runs. Such as, in the case where eigenfrequencies match well but the mode shapes still
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have discrepancies, it can be concluded that too much weights are assigned to
eigenfrequency residuals; or in the case where the eigenfrequency residuals are not

minimized enough, their weights should be increased.

Another important point is assigning relatively higher weighting factors to reliable
and accurately identified residuals. As it was mentioned before, eigenfrequencies can
be identified more accurately than mode shapes; therefore, it is convenient to use
relatively higher weights for them. In addition, mode shape estimations generally
include higher uncertainty than frequency estimations because of the limited number
of sensors available for testing and measurement noise. That’s why relatively lower
weighting factors should be assigned to the mode shape residuals if they are thought
to be unreliable. Notice that only the relative values of the weighting factors are
significant, not their absolute values. It is possible to obtain different updating results
for different weighting factors; therefore, the ultimate result should be decided based

on engineering judgement and intuition.

3.2.2 Variables of the Updating Method

3.2.2.1 Design Variables

In FEMU, material and geometrical properties of FE models (e.g., mass density,
Young’s modulus, shear modulus, spring stiffness, moment of inertia, thickness,
boundary conditions, etc.) are generally the unknown and uncertain (i.e., erroneous)
physical parameters that are updated to identify their actual values. Typically, the
amount of the potential erroneous parameters is huge for a FE model, especially for
detailed and complex models, which results in the optimization problem to be ill-
conditioned. An ill-conditioned optimization problem increases the computational
expense, has convergence difficulties, and does not guarantee for a solution. In order
to ensure a well-conditioned problem, the number of parameters should be relatively
small and only these parameters, which are actually erroneous, should be updated;
otherwise, physically unrealistic results may be obtained. Engineering insight is

therefore essential to decide which parts of the FE model and which physical
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parameters have to be updated. In literature, there exist regularization and
parameterization (i.e., using damage functions) methods to overcome the ill-
conditioning state of the optimization problem (Fang et al., 2008; Grip et al., 2017; Li
& Law, 2010; Mottershead et al., 2011; Teughels & De Roeck, 2004; Titurus &
Friswell, 2008; Weber et al., 2007). In the scope of this thesis, only the

parameterization method is discussed in the following sections.

Another important point that should be considered is the sensitivities of the
residuals (responses) to the selected model parameters. Since the updating method is
sensitivity-based, the parameters should affect the responses sensitively, otherwise, the
updating results are likely to be erroneous. Note that a response sensitive to a
parameter does not automatically imply that this parameter has to be included in the
updating process. In other words, if the value of a parameter is already adequately

representing the true value, then there is no reason to update it.
3.2.2.2 Correction Factors

Physical parameters (design variables) can have different orders of magnitude;
therefore, it is convenient to use a dimensionless correction factor (i.e., a kind of

normalization process) for each parameter according to a reference value (mostly the
initial value before updating). If X° is the value of a physical parameter X in element

e and X[, is its reference value, the dimensionless correction factor ay can be

formulated as in Equation 3.9.

e Xe _X:cf
ax == (3.9)
ref

In other words, the updated value of the parameter X is determined by Equation 3.10.
X =X:, (1-a%) (3.10)

Note that a correction factor can affect one element or a group of elements

(substructures) having similar values for a considered parameter. In theory, each
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parameter in system matrices is a candidate for updating; however, stiffness properties
are the mostly selected ones in civil engineering applications. Other parameters are
assumed to be known and/or to remain unchanged after a damaging event; thus, they
are excluded from the updating process. But sometimes mass density of the
investigated structure is the unknown and/or it may vary throughout the structure (i.e.,
especially in the case of masonry structures). In such cases, performing model updating
by adjusting mass density is mandatory to determine the mass distribution of the

structure.

If the physical parameter is linearly related to the stiffness matrix of the element

(e.g., Young’s modulus), Equation 3.10 can be reformed as presented in Equation 3.11.
K* =K (1-a°) —oo<a‘<l (3.11)

where K° and K° . represent the updated and reference (initial) element stiffness

matrices, respectively. Here, a negative a® value indicates stiffening, whereas a

positive a® value indicates softening (i.c., stiffness loss) in element e (e.g., a® equals
to 1 in the case of fully damaged element). Eventually, the updated global system
stiffness matrix can be assembled from element stiffness matrices as given in Equation

3.12.

K:K%il@ (1-a°) (3.12)

ref
e=1

in which K represents the global system stiffness matrix, K" is the stiffness matrix
of the non-updated elements (i.e., the elements whose properties remain unchanged

and are excluded from the updating process), and n, is the number of elements (or

group of elements, substructures) wanted to be updated. Note that similar approaches
are valid for the case of the physical parameter is linearly related to the mass matrix of
the element (e.g., mass density). Updating the submatrices using correction factors (as
in Equation 3.12) provides two critical properties for the updating problem: (i)

Connectivity of a FE model is preserved since the element stiffness matrices (i.e.,
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submatrices of the global stiffness matrix) are updated, and (ii) sensitivities with

respect to correction factors are easy to calculate.

3.2.2.3 Damage Functions

In FEMU, if a large number of design variables are selected for updating, then the
optimization problem may become ill-conditioned. An ill-conditioning state increases
the computational expense, has convergence difficulties, and does not guarantee for a
solution. Therefore, it is desired to reduce the number of design variables for a well-
conditioned problem. In this context, an additional parameterization method through

damage functions, which describes a relationship between design variables (p ) and

correction factors (a), can be used. Herein, correction factors are specified with
predefined damage functions instead of independent values for all elements; thus, the
number of design variables is reduced. In addition to this effect, damage functions
ensure to obtain more realistic and physically meaningful correction factor
distributions by preventing neighboring elements to be updated independently from

each other (i.e., presence of damage on an element also affects neighboring elements).

Mainly, there exist two types of damage functions. In the first type, damage
functions are defined by piecewise functions (can be linear or higher order
polynomials) that are formed by a combination of fixed shape functions (i.e., no shape
parameters are required) which differ from zero only over a limited area of the FE
model and equal to zero elsewhere. In the second type, parameterized shape functions
with characteristic patterns, which are determined in the updating process, are used to
form damage functions (i.e., shape parameters, that determine the center location and
width of the shape function, are required). In the scope of this thesis, only the linear
piecewise formed damage functions (i.e., the first type) are used; therefore, equations

are simplified in accordance with this type.
According to this approach, correction factors are supposed to vary continuously

over a FE model and approximated by a linear combination of damage functions as

given in Equation 3.13.
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a*=> pN(x°) (3.13)

where p. represents the multiplication factors (equals to the design variables p, that

are updated iteratively), N, is the damage function, x° is the geometrical coordinate
of the center of element e, and n represents the number of damage functions.
Consequently, N, (xc) represents the value of the i damage function at point x° of
element e, which also defines a relationship between the correction factor and element.
Remind that n should be much smaller than n_ (the number of elements wanted to be
updated) for a well-conditioned problem. According to Equation 3.13, the continuous
correction factor is discretized for each individual element (i.e., corresponding a
constant value in the center of each element), and once the multiplication factor is
determined, it is possible to calculate the correction factor. Equivalent matrix notation
of Equation 3.13 is given in Equation 3.14.

an x1 = [N]nexn pnxl (314)

€

or the full-length expression is presented in Equation 3.15.

a! N e N (D) P

a’ N,(x*) - N, (x) 2

a’ N,(x") - N (x) P

A 4 4 (3.15)
a N,xhH 0 N (xh P

_ane—neﬂ _Nl(ch) Nn(ch)_nexn —pn—nXI

In the case of independent damage functions for each element (i.e., updating all the

elements separately), N becomes an identity matrix and n equals to n_. Thus,

Equation 3.15 can be reformed as in Equation 3.16. Here, a zero value indicates that
there is no relationship between the relevant element and damage function (i.e., each

element has only its own damage function).
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a 1 0-- 0 )2 a )2
a’ 0 1-- 0 P, a’ P,
a’ 0 0-- 0 )22 IR a’ D
= = 3.16
a4 0 0 * O p4 a4 p4 ( )
_ane Jngx1 —0 0 1— Ne*ng -pn - ngx1 —ane n x1 —pn— ngx1

Sometimes it is desired to assign a single correction factor for a set of elements of
a FE model (e.g., neighboring and/or symmetric elements that are expected to undergo
similar variations during the model updating process, elements that are expected to
have similar damage patterns, etc.). The effects of this case on damage functions can
be easily clarified by an example. Assume a beam member consisting of 4 finite
elements. In the case of updating all the elements independently, N matrix and

corresponding corrections factors can be written as

'] [10 0 0] [n '] [p

2 2

a 0100 |p " .

i = oo =7 (3.17)
a O 0 1 0 p3 a p3

_a4_4><1 00 0 L, |ps » _a4_4><1 Pel.

If it is desired to assign a single correction factor for the 1 and 3™ finite elements
(maybe they are expected to have similar damage patterns), Equation 3.17 becomes as

follows

a 1 00 a P

a’ 010 P a’ D,

2l T oo |2 el T, (3.18)
_a4_m 00 1], P4 3y _34_4x1 Pul

It is clear from Equation 3.18 that the 1% and 3™ finite elements have the same
correction factors (i.e., a' = p, and a’ = p,), and the number of design variables is

reduced to 3 from 4.
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Note that the accuracy of the updating results is based on the coarseness and number
of the damage functions, and a continuous smoother correction factor distribution can
be ensured by using more damage functions. Alternatively, higher order damage
functions having different shapes can also be used for this purpose. Both increase the
number of unknown parameters (design variables) which may lead to computational
expense and ill-conditioned problem; therefore, a balance between the condition of the
optimization problem and the desired accuracy should be maintained. In this context,
model updating can be performed in two steps: (i) First, updating is performed by using
coarse damage functions. (ii) Then, additional updating is conducted, in which only
the elements wanted to be obtained in detail are corrected, by using finer damage

functions.

For example, a set of seven mono-dimensional triangular-like damage functions
(i.e., have one dimension along the FE model) are presented in Figure 3.2. The global
damage function is constituted by combining them in a piecewise linear function. From
this piecewise linear function, the continuous distribution of the correction factors can

be approximated.

Y

Distance along FE model Distance along FE model

(a) (b)
Figure 3.2 (a) Set of seven triangular-like damage functions (dashed line) with continuous piecewise

linear function (solid line) and (b) one isolated damage function (Teughels & De Roeck, 2004)

Note that mono-dimensional damage functions are not convenient for systems with
planar elements (e.g., shell, membrane, etc.). In this context, bi-dimensional damage
functions (e.g., bi-dimensional linear, bi-dimensional step, bi-dimensional-triangular,

etc.) should be used to perform model updating.
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3.2.3 Sensitivity (Jacobian) Matrix

Since the nonlinear least squares problem is solved with an iterative sensitivity-
based optimization approach, the sensitivity matrix (a.k.a. the Jacobian matrix), which
determines the rate of change in residuals with respect to changes in design variables,
needs to be calculated in each iteration (Nocedal & Wright, 1999). In other words,
sensitivities of residuals with respect to design variables should be calculated. The

Jacobian matrix (J,) consists of the first-order derivatives of each residual r; in

residual vector with respect to each design variable p, and calculated as follows

Cdn(p) Sn(p)  dn(p)

op, Sp, dp,

on(p) Sn(p) | 3n(p)
[Je],..=| 8, op, 3p, (3.19)

or, (p) or,(p) o, (p)

op, dp, op,,

. —mxn

where m=m, +m_ (summation of the eigenfrequency and mode shape residual
components), and n is the number of design variables p. Based on the relationship
between a and p presented in Equation 3.14, each component of the sensitivity matrix

is determined by chain rule, and shown in Equation 3.20.

8r(p) <= dr §af e S
L= ! = LN, (x° 3.20
dp, ;“Sae dp; ;“Sae '( ) (3.20)
In the scope of this thesis, since the residual vector is discussed in terms of modal
parameters (i.e., eigenfrequency and mode shape residuals), their sensitivities with
respect to the design variables should be determined. It can be realized by taking
derivatives of Equations 3.5 and 3.6 with respect to the correction factors. The resultant

expressions are given in Equations 3.21 and 3.22 for eigenfrequency and mode shape

residuals, respectively.
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dr, 1 O,
Sa° Xj da’ (3.21)
or, 1800 @b 39 .
e r s.e 2 e .
da° ¢, da (d)j) da
. oA, ; , e
In equations, 8—; and S_i terms are the eigenvalue and mode shape sensitivities,
a a

respectively (a.k.a. modal sensitivities), and can be calculated analytically with the
formulas developed by Fox & Kapoor (1968). Note that the expressions are derived
from an undamped eigenvalue problem under the mass-normalized mode shape

assumption. All the equations are taken from Maia et al. (1997) and Teughels (2003).

Before the sensitivity equations, it is beneficial to recall some of the important
expressions encountered in the dynamics of structures (Chopra, 2012). Let K and M
be the system stiffness and mass matrices, respectively. Due to the orthogonality

conditions of modes, Equation 3.23 can be written.
o K;=0; ¢ M¢;=0 with i ] (3.23)
In the case of mass-normalized mode shapes, Equation 3.24 is satisfied.
o M¢,=1 (3.24)

3.2.3.1 Sensitivity of Eigenvalues

Let ¢; and A;, which are the functions of correction factors, be a solution for the

undamped eigenvalue problem as given in Equation 3.25.
K¢, =% M9, (3.25)

Premultiplying Equation 3.25 by d)JT results in
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o;[K— 4, M]p;=0 (3.26)

Differentiating Equation 3.26 with respect to a°® gives

3¢;  O[K=%,M] .
5a° [K_ij]d)j_'_(I)j —e¢j+¢j[K_7\‘jM]

oa

8,
da’

~0 (3.27)

Since K and M are symmetric matrices, [K—A;M]¢; and d)J.T[K— A;M] terms are

equal to each other. From Equation 3.25, first and third terms of Equation 3.27 are

equal to zero and thus

+ O[K-=A M]
o ———¢.=0 (3.28)
] Sae J
Equation 3.28 can be rewritten as
3K 0L, M
O | ———M-2 ¢;=0 (3.29)

I8 a1 gal
Due to the relationship given in Equation 3.24, Equation 3.29 becomes

TSK
J Sae

TSM
J Sae

8L,
q)j_ _}\‘jd)

o — ;=0 (3.30)

Finally, the sensitivity of eigenvalues is obtained as

S, :¢}{8K_K SM}I)j (3.31)

0a’ oa’ I §ac

3.2.3.2 Sensitivity of Mode Shapes

The mode shape sensitivity can be stated as a linear combination of the mode shape
vectors themselves. The mode shape vectors are linearly independent and therefore

can be used as basis vectors as given in Equation 3.32.
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80 N
o= 2%, (3.32)
a® S

where d indicates the order of the analytical model (i.e., number of modes).

Differentiating Equation 3.25 with respect to correction factor gives

S[K-A;M] o
T¢j+ [K—?»J.M]ésae =0 (3.33)
Substituting Equation 3.32 in Equation 3.33 leads to
S[K-A. M] 4
—— 0 K2, MY i, =0 (3.34)
q=1
Alternatively
& S[K-A,M]
Zajq[K_KjM](l)q 4 Sas J (335)
q=1

Premultiplying Equation 3.35 by ¢! , where s # j, gives Equation 3.36.

S| K-A. M
IRLLSTRUN

d
qzl:ajq(l)s [K_ }\'j M] ¢q = (I)S Sac j (336)

By the relationships given in Equations 3.23, 3.24, and 3.25, the left-hand side of

Equation 3.36 is equal to zero except for s=q.

. S[K-A,M] .
an[kq_xj:I:_d):TeJd)j for q=#j (3.37)

Expanding the right-hand side of Equation 3.37 gives

5M
Lo Ry (3.38)

8}”j T
5a® ¢qM¢j+xj¢q Sac |

a_?q [kq —XJ =0
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As q # ], the second term of Equation 3.38 is zero and so

1 L[6K . oM .
o =-— -\ . for q#
& [xq—xj]d)q{aae J6ae}¢1 17 (3.39)

It can be seen from Equations 3.28 and 3.37 that the coefficient o}, has to be calculated

separately in the case of q = j. Differentiating <|)JT M ¢; =1 with respect to a° leads to

50!
da’

T5M¢ ¢

Mo, +¢ =0 (3.40)

Since M is a symmetric matrix, first and third terms of Equation 3.40 are equal to

each other, thus Equation 3.41 can be obtained.

da’ I §ac

b, (3.41)
Substituting Equation 3.32 in Equation 3.41 gives

20] MZ o0, = ?88“% (3:42)

Alternatively

d
e T T 8M
2> a5, b Mg, =—0;
q=1

ool (3:43)

Using the relationships given in Equations 3.23 and 3.24, Equation 3.44 can be

obtained.

L oM
2" 8¢

(3.44)

By assembling Equations 3.39 and 3.44, and substituting them into Equation 3.32, the

sensitivity of mode shapes is calculated as
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o, b, T{SK SM} o, + M
= —\. =T ‘
da® Z (kJ—Kq &, da® ' 3daf J 2 " 8af o (3.45)

a=1; g#j

3.2.3.3 Sensitivities of Eigenfrequency and Mode Shape Residuals

By using the relationship in Equation 3.11, the following expressions can be written

0K -K* oM -M*
e = _K:Cf = e ; e = _Mfef = e (346)
da (1-a%) da (1-a%)

Combining Equations 3.20, 3.21, 3.31, and 3.46 gives the sensitivity equations of
eigenfrequency residuals (Equations 3.47 and 3.48).

or. e O\,

e=1

oA 4| -K° . -M°
Sae_¢j|:(l_ae) kj(l_ae)}d)j (3.48)

In the case where the mass properties are assumed to be known and to remain

: . oM
unchanged during the updating process, the e term equals to zero. Hereby,
a

Equation 3.48 transforms into Equation 3.49 (i.e., only stiffness parameter updating).

S}Lj 1] -K°
52 =9 |:(1_ae):|¢j (3.49)

Combining Equations 3.20, 3.22, 3.45, and 3.46 gives the sensitivity equations of
mode shape residuals (Equations 3.50 and 3.51).

SI'j(p): i{i&bl _ (I)j S(I);JNi(Xe) (350)

op, S\ 9j 8" (¢)) 8a°
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S(I)J _ d q)q T _Ke ~ —Me _ﬂ ) _Me
oa’ - Z (}\*j_}\*q ¢q |:(1_ae) 7\'j (l_ae):|(|)j] 2 i (l—ae)¢j (351)

q=1; q#j

In the case of only stiffness parameter updating, Equation 3.51 transforms into

Equation 3.52.

5, < IS
Sfai:q_%‘;j(kj o Ll_ae)}%} (3.52)
In sensitivity analyses, order of the analytical model (d), which is independent of
the modes that are used for residuals, should be selected as high as possible (i.e., much
higher than the number of modes that is used for residuals) for a sensitivity matrix
including contributions of more modes (i.e., including more information). By this
way, the obtained sensitivity matrix is more accurate and more representative of the
investigated system, which in return improves the updating performance. On the other
hand, since the contributions of higher modes are low, the provided information
decreases with the increasing mode number. Therefore, a sufficiently accurate but not

inefficiently costly calculation should be performed.

Note that it is not possible to obtain element stiffness matrices K° from all FE

packages; however, nodal forces F; are provided by any FE package. In such cases,
the equations above should be revised by using the F;* =K°® ¢, transformation, which

means substituting K*¢; with F;° in all equations.

If the residual vector is weighted, as presented by Equation 3.7, the sensitivity
matrix should also be weighted in a similar way. The weighted sensitivity matrix is

calculated as in Equation 3.53.
w2, (3.53)

If W is a diagonal matrix, Equation 3.53 can be equivalently written as
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w;(Jp), (3.54)

which means to multiply the j™ row of the sensitivity matrix (related to the j" residual)

by the corresponding weighting factor w;.

It should be stated that an approximate calculation of the components of the
sensitivity matrix can be obtained by the finite difference method. Formulation is

presented in Equation 3.55.

or,(p)_r,(p+Ap)-1(p-Ap)
op; 2Ap

(3.55)

where Ap is the sufficiently small design parameter step. It is clear that the method
requires two additional modal analysis tasks (i.e., one for p+ Ap and one for p—Ap)

for each column of the sensitivity matrix at each iteration. That’s why this method is
computationally expensive, especially for the systems with higher number of design

variables, and commonly avoided in practice.
3.2.3.4 Detectability Index

Once the sensitivity matrix is calculated, it can be used to determine detectability

indices of the design variables as follows (Weber et al., 2007)
D;=[s)| (3.56)

where |||| denotes the Euclidean norm, D; represents the detectability index of the ji
design variable, and S, is the j column vector of the sensitivity matrix (i.e.,

corresponding to the j™ design variable). The detectability index provides information
about the sensitivities of the residuals with respect to the design variables. In other
words, detectable elements are more effective on the residuals (i.e., a unit change in a
detectable element causes more changes in residuals). By the light of the detectability

index, it is possible to get feelings on how responses of a model are influenced by
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changes of model parameters, to decide whether a parameter should be selected for
updating or not, and to determine where or/and how to assign design variables. As
noted earlier, a response sensitive to a parameter (i.e., a detectable parameter) does not
automatically imply that this parameter has to be included in the updating process. In
other words, if the value of a parameter is already adequately representing the true

value, then there is no reason to update it.
3.2.3.5 Condition of the Jacobian Matrix

In FE model updating, condition status of the Jacobian (sensitivity) matrix is an
important issue. It can be quantified by computing the condition number of the
Jacobian matrix (i.e., ratio of the largest and smallest singular values of the matrix),
which measures the sensitivity of the solution to errors (or changes) in the data. A
matrix with a small condition number (close to 1) is said to be well-conditioned and is
far from being singular, whereas a matrix with a large condition number is said to be
ill-conditioned and is nearly singular. In FE model updating, the ill-conditioning state
is undesired since it increases the computational expense, has convergence difficulties,

and does not guarantee for a solution.

An optimization problem has a unique solution if it is overdetermined (i.e., the
number of residuals is higher than the number of design variables (n<m) and the

Jacobian matrix has full-rank (i.e., having linearly independent columns), which

means that the matrix J, W J, is nonsingular or, equivalently det(J P WI P) #0.

If det(J A P) =0 (which corresponds to rank deficiency), the case where some

columns of the Jacobian matrix are linearly dependent, there is no unique solution (i.e.,
several minimum points exist). In the case of some columns are close to being linearly
related, the problem has a unique minimum point, but this point is not very prominent.
Near linear dependency of the columns makes the Jacobian matrix to be ill-
conditioned. Unfortunately, the Jacobian matrix is prone to be ill-conditioned since

changes in neighboring and/or symmetric elements of a FE model may have almost
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same influences on residuals (i.e., having similar detectabilities). This situation causes
linearly dependent columns in the Jacobian matrix. If the discretization becomes finer
(a.k.a. over-parameterization), this effect gets stronger (Beck & Arnold, 1977; Fritzen
et al., 1998). To remedy this problem, grouping elements as substructures is a good
option. In addition, using a higher analytical model order (d) in sensitivity calculations
enables to distinguish the effects of each element in the model, which in return serves

to obtain linear independent columns in the Jacobian matrix.

Insensitive residuals (responses) also lead to an ill-conditioned Jacobian matrix. It
is desired that small variations in design variables cause large changes in residuals
(i.e., highly sensitive residuals with respect to design variables). Otherwise, it may be
impossible to minimize the objective function and unrealistic results may exist. The
problem of insensitive residuals can occur, for example, in the case of a design variable
with too low or too high initial value, such that a small variation of the design variable

does not alter the residuals.

As stated before, mode shapes are less sensitive to the stiffness parameters, are more
difficult to accurately identify from measurements (i.e., they include higher estimation
uncertainty), and are influenced more from noise than eigenfrequencies. All of these
cases may result in an ill-conditioned Jacobian matrix. However, mode shapes are the

indispensable components of the updating process due to their spatial information.

Existence of noise in experimental data can lead to an ill-conditioned problem.
Besides, ill-conditioned problems are extremely sensitive to measurement noise. Even
in the presence of low level of noise, significant changes may occur in the location of
the minimum, which may result to obtain parameter values that are very different from

their exact values. Therefore, the solution becomes inaccurate and said to be unstable.

Describing the non-updated model parameters (i.e., model parameters that are not
aimed to be updated) by constraints (e.g., 0 and 0.00001 values for lower and upper
bounds, respectively) may lead to an ill-conditioned Jacobian matrix. This is because

they are still updated by the algorithm according to their bounds (i.e., in reality, they

78



are not updated because of their constraints) and are taken into account for sensitivity
calculations together with the relevant finite elements. Therefore, only the model
parameters that are really wanted to be updated should be considered, and the others

should be excluded completely from the updating process.

Based on the statements above, the importance and necessity of limiting the number
of design variables are revealed again. By this way, the probability to have linearly
dependent columns and insensitive elements in the Jacobian matrix, which may lead

to an ill-conditioned problem, can also be reduced.

3.2.4 Optimization Process

FEMU is an optimization process where a minimization problem of the objective
function is solved. In this concept, definitions of the global and local minimum points
are essential to interpret and evaluate the results. Namely, a global minimum (i.e.,
absolute minimum) is the point where the objective function has the absolute smallest
value (i.e., there is not a smaller value that the objective function can have), whereas
the local minimum is the point where the objective function has the smallest value in
its neighborhood (i.e., there exist more smaller values that the objective function can
have). In general, outcomes (solutions) of an optimization problem can be in three
different forms based on the problem type (i.e., underdetermined or overdetermined,
ill-conditioned or well-conditioned), which are visualized by Figure 3.3: (i) There
exists one prominent global minimum point with several local minimum points. This
is the case when the problem is overdetermined and well-conditioned (i.e., the desired
case). It is easy to find the global minimum point (Figure 3.3 (a)). (ii) There exists one
global minimum point, which is not prominent, with several local minimum points.
This case may occur when the problem is ill-conditioned. It is difficult to find the
global minimum point (Figure 3.3 (b)). (iii) There exist several global minimum points
(i.e., infinitely many solutions). This is the case when the problem is underdetermined.
It is difficult to determine which one of the global minimum points reflects the actual

solution of the problem (Figure 3.3 (c)).
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Figure 3.3 Outcomes of an optimization problem: (a) one prominent global minimum point with
several local minimum points, (b) one global minimum point, which is not prominent, with several

local minimum points, and (c) several global minimum points

Note that using an efficient and robust (even in the case of an ill-conditioned
problem) optimization method is essential for the accuracy and reliability of the
results. In this context, there exist local, global, and response surface methods in the

area of optimization theory. Brief information for each method is given below.

Local optimization methods begin from a starting point (e.g., initial values of the
design variables) and produce iteratively a sequence of improved estimates until a
solution. They provide fast convergence since they are based on derivatives of the
objective function. The basic local method is the Newton method in which the local
curvature of the objective function is utilized to establish an approximate quadratic
model function. The minimum of this function gives the successive point in the
iterative process. Quasi-Newton, sequential quadratic programming, conjugate
gradient, and augmented Lagrangian methods are the other commonly used local

optimization methods. Line search and trust region strategies (algorithms) can be used
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to improve their convergence (Conn et al., 2000; Nocedal & Wright, 1999). Due to
their effectiveness and fast convergence property, local methods are very popular.
However, they can be trapped in a local minimum and do not guarantee to find the
global (absolute) minimum. Specific algorithms, which are more convenient for least
squares problems, are enhanced from the general methods. They are mainly based on
the fact that the Hessian calculations can be approximated by using only the first-order
derivative information (Moré & Wright, 1993; Nocedal & Wright, 1999). Gauss-
Newton method, which is derived from the Newton method, is known as the basic least
squares method. Another commonly used method is the Levenberg-Marquardt

method.

Global optimization methods are more robust methods that are more likely to find
the global minimum and are less affected by the selection of the starting position (i.e.,
initial point). These methods are based on probabilistic searching without the usage of
any gradient information. Requiring a large number of function evaluations is their
main drawback. Genetic algorithms, simulated annealing, and coupled local
minimizers are the commonly used global methods (Holland, 1975; Kirkpatrick et al.,

1983; Suykens et al., 2001; Suykens & Vandewalle, 2002).

In response surface methods, the optimization algorithm is applied to an
approximate surface of the real objective function instead of applying it directly to the
objective function. The response surface is constituted by combining first- or second-
order polynomials and corresponds with the real objective function in a set of sampling
points. Because of these polynomials, it may be difficult to find the global minimum
of an objective function having many local minimums. This issue can be overcome by
using general response surface methods; however, they are feasible to the problems

having a low number of design variables (Alotto et al., 1997; Pahner, 1998).

In this thesis, the optimization problem is solved iteratively by using Gauss-Newton
method with trust region algorithm (Coleman & Li, 1996). A brief theoretical
background of the method is presented in the following section. Herein, line search

algorithm is also discussed for comparison with the trust region algorithm.
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3.2.4.1 Gauss-Newton Optimization Method with Trust Region Algorithm

In Gauss-Newton method, the function f (pk) to be minimized is approximated by

a quadratic model q, (z) of truncated Taylor series about the current iterate p, .

q (z)=f(pk)+Vf(pk)T z+%zT Vf(p, )z (3.57)

where z indicates the step vector from p,, Vf(p,) and V*f(p,) are the gradient
and the Hessian of the objective function, respectively. When V*f(p, ) is positive

definite, q, (z) has a unique minimizer that can be obtained by solving the Newton

equation presented in Equation 3.58.
sz(pk )ng = —Vf(pk) (3.58)

The next iterate is determined by performing the Newton step presented in Equation

3.59 and this process is repeated until the convergence is satisfied.

P =P 2y (3.59)

Vf(p) and V*f(p) can be stated in terms of the Jacobian matrix and residual vector,

and are presented in Equations 3.60 and 3.61.

VE(p) =Y () V1, (p) =, (p) £ (p) (3.60)

V£ (p)=J, (p) I, (p)+i%(P)V2rj (P)=3:(p) 3¢ (p) (3.61)

In Gauss-Newton method, the starting point (p,) should be selected sufficiently
close to a local solution (p*) where V*f(p*) is positive definite. Otherwise,

convergence difficulties may occur. This kind of challenges can be overcome by the
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implementation of the line search or trust region strategies which improve the

robustness of the optimization method (Conn et al., 2000; Nocedal & Wright, 1999).

Line search methods are based on determining a direction at each iteration and
searching along this direction for a new iterate with a lower function value. The iterates

are generated by Equation 3.62.
P =Pt 04 Zy (3.62)

where z, represents the search direction and o, 1is the step length (i.e., the distance to
move along z, ), which is greater than zero and selected so that f(p,,,)<f(p,). o

can be determined by minimizing the function given in Equation 3.63. Once the new

iterate is obtained (p,,,), the process is repeated by a new search direction and step

length.

min ¢(a)="1(p,+oz,) (3.63)

a>0

In the trust region approach, a model function m, (Equation 3.64), which has
similar behavior to that of the actual objective function f near the current point p, , is
developed by the algorithm. In addition, a region that surrounds p, and where the
model function can be trusted is determined (i.e., trust region). The trust region is a
sphere described by || z || <A, where A>0 is its radius (i.e., z lies inside the trust

region). By minimizing the model function in Equation 3.64, it is possible to compute

a candidate for the new iterate (p,.,).

m, (z) = f(pk ) +Vf (pk )T z+%zT sz(pk)z z lies inside the trust region  (3.64)

If the candidate causes an insufficient decrease in f, which means that the model is
not suitable for f, Equation 3.64 is solved again by using a smaller trust region;
otherwise, the candidate is approved as a new iterate from which the process reiterates.

Herein, the trust region is increased since the model is reliable.
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According to the agreement between the actual and predicted reductions in f as

measured by the ratio presented in Equation 3.65, A, is adjusted at each iteration.

f(p,)-f(p,+2,)
f(p)—my (z)

P = (3.65)

If p, =1 (i.e., indicator of good agreement), then A, is increased. If p, is small or
negative (i.e., indicator of poor agreement), then A, is decreased. Else, A, remains
unchanged. In addition, p, is used for the decision to accept a step z, . Namely, if p,
is greater than a small positive number (e.g., p, >0.00001), then the z, is acceptable.
Otherwise, z, is recomputed with a smaller trust region. Generally, the step direction

changes whenever the size of the trust region is changed. On the other hand, only a

single search direction is used in line search strategy.

The main difference between the line search and trust region approaches is the
selection of the direction and distance of the step to the next iterate. In line search

algorithm, first the direction z, is fixed and then the appropriate distance a, (step

length) is determined. On the other hand, in trust region algorithm, first the maximum

distance (i.e., the trust region radius A, ) is chosen. Afterwards, the best direction and

step are sought according to this distance. In the case of unsatisfactory results, the trust
region radius is reduced and a new candidate is tried out. In general, the trust region
strategy is more robust and exhibits better convergence performance since it prevents

the iterates from taking large steps (even in the case of an ill-conditioned problem).

In the scope of this thesis, Gauss-Newton method with trust region algorithm is
performed by using the fmincon() function in the MATLAB’s optimization toolbox
(MATLAB, 2017). The first- and second-order derivatives of the objective function
(i.e., the gradient and the Hessian, respectively) are calculated and provided to the
fmincon() to improve its convergence performance. In addition, it is possible to define
constraints (i.e., lower and upper bounds that the design variables have to satisfy

during updating process) and initial points p, (i.e., the starting points of the
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optimization algorithm) for the design variables. Note that it is very important to select
suitable constraints and initial points, which are close to the actual parameter values,
to converge to the optimal solution (i.e., global minimum of the objective function).
Otherwise, it is possible to encounter convergence difficulties and/or to be trapped in
a local minimum. In addition, existence of the constraints has a beneficial effect on the

solution process since it reduces the search space of the optimization algorithm.

3.3 Applicability of the Sensitivity-Based FEMU Method to Different Types of

Structural Systems

It is possible to perform the sensitivity-based FEMU method on different types of
structural systems. Application of the method is independent of the structure type (e.g.,
building, bridge, tower, dam, airport, etc.), structure size/scale (e.g., small-scale or
full-scale), material (e.g., reinforced concrete, steel, masonry, etc.), loading conditions
(e.g., self-weight, earthquake, wind, laboratory tested, etc.), and damage mechanisms.
In the literature, there exist numerous examples of the method being applied on
different types of structures, such as reinforced concrete buildings (Behmanesh et al.,
2018; Moaveni et al., 2013; Song et al., 2019), bridges (Garcia-Palencia et al., 2015;
Petersen & Oiseth, 2017; Teughels & De Roeck, 2004), and masonry structures
(Bassoli et al., 2018; Boscato et al., 2015; Compéan et al., 2017; Foti et al., 2012; Torres
et al., 2017).

Although this is the case, applications of the method on real complex structural
systems come with certain challenges. Some of them are summarized here: (i)
Advanced numerical modeling is necessary for representing the real structural
behavior. For instance, appropriate modeling of an infilled frame to take into account
frame-infill interaction is necessary to present the real behavior of the system
accurately. (i) Having a dynamic test grid providing high spatial resolution is often
not possible as the number of existing sensors is usually limited. Therefore, for real-
life structures, a large number of sensors may be necessary for accurate registration of
their dynamic responses. In addition, broad-band excitation of real-life structures due

to their larger sizes is another important issue. Especially for very rigid structures,
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earthquake excitation may be the only option to reveal their dynamic characteristics.
(iii) Damage identification using the FEMU method after a damaging event is not
always possible because the dynamic characteristics of the undamaged state may not
be readily available. Therefore, important structures must be monitored continuously
to capture their undamaged and damaged states. Finally, (iv) numerical models of real
structures usually contain a large number of finite elements, updating all of these
elements in the framework of FEMU may not be feasible. Determination of which
finite element(s) to update is usually not obvious and there are usually many
possibilities to choose from. Different choices may result in different scenarios. Only

one of these scenarios corresponds to the actual state of the system under investigation.

3.4 Developed Code for the Sensitivity-Based FEMU Method

In order to carry out model updating and damage identification studies, the
sensitivity-based FEMU method was programmed in MATLAB environment by
considering the details presented in the previous sections of the thesis. For FE model
analyses and extracting the parameters that are required for model updating (e.g.,
numerical modal parameters, element mass and stiffness matrices, etc.), FEDEASLab
FE software (Flippou & Constantinides, 2004) was utilized. Note that FEDEASLab is
a MATLAB based program that consists of many codes (m-files) serving different
purposes (e.g., m-files for 2-D frame element, 3-D frame element, construction of

stiffness and mass matrices, modal analysis, static analysis, etc.).

In the scope of the research work presented in this thesis, some modifications and
add-ons (e.g., related to the extraction of element stiffness and mass matrices, 3-D
modal analysis, translational and rotational spring definitions, etc.) were performed on
the existing FEDEASLab m-files in order to make them suitable for the updating code.
Consequently, the updating code and FEDEASLab were arranged to work in harmony.
Note that they are nested due to the iterative process of the updating method (i.e., the
outputs of FEDEASLab are the inputs of the updating code, and then, the outputs of
the updating code become the inputs of FEDEASLab, and continues so on).
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3.5 Sensitivity-Based FEMU Studies Performed on Numerical Models

This section of the thesis includes sensitivity-based FEMU studies performed on
numerical models. By this way, the effectiveness and accuracy of the previously
developed code are revealed. Accordingly, a single-bay, single-story, three
dimensional (3-D) structural frame model consists of 10 equal length finite elements
was established in FEDEASLab environment by using 3-D linear elastic Bernoulli-
Euler frame elements, which have 6 DOFs per node (i.e., 3 translational and 3
rotational DOFs) (Figure 3.4). Each finite element of the model has 80x80 cm cross-
sectional dimensions and 100 cm length. Material properties were set to 214 GPa and
8000 kg/m? for Young’s modulus and mass density, respectively (i.e., the frame is
made of steel). Support conditions are fixed and pinned for the left and right columns,
respectively. Note that this model is considered as a reference model that can be used

for further studies.

[ 3

Figure 3.4 Single-bay, single-story, 3-D structural frame model

Model updating studies of this reference model were performed for 4 different
cases: (1) Mass density updating, (i1)) Young’s modulus updating, (iii) Young’s
modulus updating by using less residuals, and (iv) Young’s modulus updating by using

less residuals and design variables. Each case is detailed in the following sections.
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3.5.1 Case-I: Mass Density Updating

In this case, a new FE model was developed by reducing the mass density values of
the beam member (i.e., elements denoted as 7, 8, 9, and 10 in Figure 3.4) of the
reference model by 50%. Then, these changes were tried to be detected by updating
the reference model. Updating was performed by using the frequency and mode shape

estimations of the first 5 modes. Therefore, r, has 1x5=5, r, has (3x9)x5=135 (3 is

the translational DOFs per node, 9 is the number of free nodes in the model), and r
has 5+135=140 components (m=140). All of the finite elements were selected as
design variables, thus n=10. Note that independent damage functions were assigned
for each element (i.e., the finite elements were updated separately). Since n<m, an
overdetermined problem occurs. The dimensions of the Jacobian matrix are 140x10.
Model order (d) was selected as 27 (i.e., corresponding to all the numerical modes).

Only reduction was allowed in design variables by defining constraints (0< p<1).

Weighting factors for all residuals were set to 1 in order to provide same weight. The
optimization problem was solved by Gauss-Newton method with trust region

algorithm. Model updating results are shown in Table 3.1.

Table 3.1 Model updating results for Case-I

Mode# | C*¢T R;fleor;;ce Frea. Diff. 1 vy s c (F‘)::lict::)v: Nu?fber
Freq. [Hz] | Freq. [Hz] %l Value Iterations
15.31 -16 1.000
! 1830 (18.31) 0) (1.000)
44.01 -1 1.
2 53.28 (53.27) (07) (l.ggg)
s Len [ on | n e e
¢ s | s | @ | o)
172. -1 0.922
> 20950 (239.2) (08) (1.300)

In Table 3.1, the values in parentheses represent the ones obtained after model
updating. It can be seen from the table that the optimization process is finished in 5
iterations. After the application of model updating, the objective function is

minimized, frequency differences are zeroized (i.e., almost same frequency values as
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the reference model are obtained), and MAC values (calculated between the reference
model and Case-I) are increased. Percentage changes of the model parameters (design

variables) with respect to their initial values are presented in Figure 3.5.

In the figure, the actual (i.e., 50% mass density reductions for the 7, 8, 9, and 10
numbered elements of the model) and detected (by the updating code) mass density
reductions are given together. It can be concluded that the updating code detected the
changes of the frame accurately in terms of location and severity. All these findings

are the indicators of the success of the code.

50% 50% 50% 50%
47% 52% 49% 50%

2%
0%
6

2
0%
0%
5

0%
4

Figure 3.5 Actual (written in red) and detected (written in black) mass density reductions for Case-I

3.5.2 Case-II: Young’s Modulus Updating

In this case, a new FE model was created by reducing the Young’s modulus values
of the reference model by different amounts (i.e., 70% for the elements #1 and #4, 40%
for the elements #3 and #6, and 25% for the element #9). Then, these changes were
tried to be detected by updating the reference model. It should be stated that the
remaining updating conditions (e.g., residuals, design variables, weighting factors,
constraints, etc.) are the same as the ones adopted in Case-I. Model updating results

are shown in Table 3.2.
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Table 3.2 Model updating results for Case-II

Reference Objective Number
-11 . Diff.
Mode # Case Model Fre[(i /]])lff MAC Function of
Freq. [Hz] | Freq. [Hz] 0 Value Iterations
15.31 37 0.989
1 11.19
(11.19) 0) (1.000)
44.01 36 0.998
2 32.37
(32.38) 0) (1.000)
53.56 42 0.984 1.552
. 11
3 37.6 (37.64) 0) (1.000) (7.23E-6)
152.52 22 0.985
4 124.
76 (124.80) 0) (1.000)
172.73 15 0.979
5 149.71
(149.61) 0) (1.000)
Rank: 10 (10) Condition Number: 23.42 (74.42) Determinant: 1.20E-11 (1.10E-9)

In Table 3.2, the values in parentheses represent the ones obtained after model
updating. It can be seen from the table that the optimization process is finished in 11
iterations. After the application of model updating, the objective function is
minimized, frequency differences are zeroized (i.e., almost same frequency values as
the reference model are obtained), and MAC values (calculated between the reference
model and Case-II) are increased. Based on the rank, condition number, and
determinant calculations, the Jacobian matrix is said to be full-rank, well-conditioned,
and non-singular (but nearly to be singular). Percentage changes of the model

parameters (design variables) with respect to their initial values are presented in Figure

3.6.

Figure 3.6 Actual (written in red) and detected (written in black) Young’s modulus reductions for

Case-I1
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70%
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In the figure, the actual (i.e., 70% for the elements #1 and #4, 40% for the elements
#3 and #6, and 25% for the element #9) and detected (by the updating code) Young’s
modulus reductions are given together. It can be concluded that the updating code
detected the changes of the frame accurately in terms of location and severity. All these

findings are the indicators of the success of the code.

3.5.3 Case-III: Young’s Modulus Updating by Using Less Residuals

In this case, the model used in Case-II was handled again. The only difference is
the amount of the residuals; namely, only the frequency estimations of the first 5

modes were used. Therefore, r, has 1x5=5 components. Since there are no mode

shape residuals, r has 5 components too (m=5). All of the finite elements were
selected as design variables, thus n=10. An underdetermined problem occurs since
m<n; therefore, they may exist infinitely many solutions. The dimensions of the
Jacobian matrix are 5x10. Remaining updating conditions are the same as the ones

adopted in Case-II. Model updating results are given in Table 3.3.

Table 3.3 Model updating results for Case-I11

Reference . Objective Number
Mode # Case-IIl Model Freg./I])lff. MAC Function of
Freq. [Hz] | Freq. [Hz] ? Value Iterations
15.31 37 0.989
1 11.1
? (11.19) 0) (1.000)
44.01 36 0.998
2 32.37
(32.37) 0) (0.999)
53.56 42 0.984 1.441
3 37.65 13
(37.65) 0) (1.000) (2.34E-9)
152.52 22 0.985
4 124.
76 (124.76) 0) (0.999)
172.73 15 0.979
149.71
> o7 (149.70) 0) (0.994)
Rank: 5 (5) Condition Number: 15.40 (42.10) Determinant: -1.56E-90 (-2.20E-92)

In Table 3.3, the values in parentheses represent the ones obtained after model
updating. It can be seen from the table that the optimization process is finished in 13
iterations. After the application of model updating, the objective function is

minimized, frequency differences are zeroized (i.e., almost same frequency values as
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the reference model are obtained), and MAC values (calculated between the reference
model and Case-III) are increased. Based on the rank, condition number, and
determinant calculations, the Jacobian matrix is said to be full-rank, well-conditioned,
and singular (i.e., there is no unique solution). Note that the Jacobian matrix is full-
rank although it is singular. This occurs because of the underdetermined nature of the
problem. Percentage changes of the model parameters (design variables) with respect

to their initial values are presented in Figure 3.7.

25%
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40%
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Figure 3.7 Actual (written in red) and detected (written in black) Young’s modulus reductions for

Case-III

In the figure, the actual (i.e., 70% for the elements #1 and #4, 40% for the elements
#3 and #6, and 25% for the element #9) and detected (by the updating code) Young’s
modulus reductions are given together. It can be seen that the updating code couldn’t
detect the changes of the frame accurately despite the minimizations in the objective
function and modal parameter discrepancies. This is an expected result since the
problem is underdetermined. In other words, the optimization algorithm has found one

of the infinite solutions.
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3.5.4 Case-1V: Young’s Modulus Updating by Using Less Residuals and Design

Variables

In this case, the model used in Case-III was handled. The only difference is the
amount of the design variables; namely, common design variables were assigned to
different element groups (i.e., one for the elements #1 and #4, and one for the elements
#3 and #6). Besides, only the elements, in which the predefined changes were made,
were selected as design variables (i.e., the elements #1, #3, #4, #6, and #9).
Consequently, 3 design variables are obtained: one for the elements #1 and #4, one for
the elements #3 and #6, and one for the element #9. Since n<m (n=3, m=5), an
overdetermined problem occurs. The dimensions of the Jacobian matrix are 5x3.
Remaining updating conditions are the same as the ones adopted in Case-III. Model

updating results are given in Table 3.4.

Table 3.4 Model updating results for Case-IV

Reference Objective Number
-1 . Diff.
Mode # Case-1 Model Freﬁ) /l])lff MAC Function of
Freq. [Hz] | Freq. [Hz] F Value Iterations
15.31 37 0.989
1 11.19
(11.19) 0) (1.000)
44.01 36 0.998
2 2.
32.37 (32.37) 0) (1.000)
53.56 42 0.984 1.441
. 12
3 37.65 (37.65) 0) (1.000) (7.16E-9)
152.52 22 0.985
4 124.76
(124.76) 0) (1.000)
172.73 15 0.979
5 149.71
(149.71) 0) (1.000)
Rank: 3 (3) Condition Number: 4.22 (7.09) Determinant: 0.09 (0.45)

In Table 3.4, the values in parentheses represent the ones obtained after model
updating. It can be seen from the table that the optimization process is finished in 12
iterations. After the application of model updating, the objective function is
minimized, frequency differences are zeroized (i.e., almost same frequency values as
the reference model are obtained), and MAC values (calculated between the reference
model and Case-IV) are increased. Based on the rank, condition number, and

determinant calculations, the Jacobian matrix is said to be full-rank, well-conditioned,
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and non-singular. Note that the condition number is reduced significantly as compared
to Case-III. This is because of preventing the linearly dependency of the columns of
the Jacobian matrix by limiting the number of design variables. Percentage changes of
the model parameters (design variables) with respect to their initial values are

presented in Figure 3.8.

In the figure, the actual (i.e., 70% for the elements #1 and #4, 40% for the elements
#3 and #6, and 25% for the element #9) and detected (by the updating code) Young’s
modulus reductions are given together. It can be concluded that the updating code
detected the changes of the frame accurately in terms of location and severity. All these

findings are the indicators of the success of the code.
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Figure 3.8 Actual (written in red) and detected (written in black) Young’s modulus reductions for

Case-1V
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CHAPTER FOUR
STATIC AND DYNAMIC TEST RESULTS OF THE QUASI-STATICALLY
TESTED REINFORCED CONCRETE FRAMES WITH DIFFERENT INFILL
CONDITIONS

4.1 Introduction

In extensive studies conducted in Dokuz Eylul University Structural Mechanics
Laboratory, half-scale, single-bay, single-story eight reinforced concrete (R/C) frames
with different infill conditions, namely bare, locked type infilled, and standard type
infilled, were tested. Studies were realized as part of a project which was supported by
The Scientific and Technological Council of Turkey (TUBITAK) under the Grant
#112M203. This chapter of the thesis aims to present static and dynamic test results of
the frames which were quasi-statically tested under progressively increasing in-plane
drifts, and after dynamically tested at some predetermined drifts. At different drift
levels, therefore at different damage states, ambient vibration and white-noise (having
different excitation amplitudes) tests were performed to estimate the modal parameters
of the frames. An electro-dynamic shaker, positioned on the centerline of the slab for
white-noise tests, was used to impose broad-band excitation. Three different output-
only system identification methods, namely NExT-ERA, SSI-DATA, and EFDD were
used to process the recorded dynamic response data at different damage states (i.e.,
theoretical backgrounds of these methods are presented in Section 2.2.3). A
comparative study was performed for different frames at different damage states.
Detailed visual damage inspections, which were made during quasi-static tests (i.e.,
discrete damage states), and their evolutions with respect to increasing drift ratios were
coupled with the corresponding modal identification results. By this way, correlation
studies could be performed between the identified modal parameters and occurred
damages (with type, location, and extent information). Note that in the scope of this
thesis, only three of the frames are discussed (i.e., one bare and two infilled frames) in

the following sections.
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4.2 Description of the Reinforced Concrete (R/C) Frames

One bare (i.e., no infill) and two infilled half-scale, single-bay, single-story R/C
frames with partial slabs were tested under quasi-static loading conditions along their
in-plane directions. The material tests provided that the concrete compressive strength
is ~38 MPa (i.e., the 28-day average strength of 15x15x15 cm cubic samples) and the
yield strength of the reinforcing bars are ~420 MPa. Both columns and beam members
have cross-sectional dimensions of 15x25 cm, whereas the slab thickness is 6 cm.
Height of the frames is 150 cm from the foundation top to the slab top, and column
center-to-center span length is 225 cm (Figure 4.1 (a)). The reinforcement detailing
was done using capacity design principles (Figure 4.1 (b)). Approximately 10% of the
columns' axial load capacity (~120 kN load) was applied on each column to represent
the upper story weights by using two separate hydraulic pistons. This axial load
resulted in pre-compression effects on the columns instead of a direct increase in the
mass of the frame systems. In addition to this load, 4 concrete pads (each weighing
1.38 kN) and 16 steel plates (each weighing 0.18 kN) were placed on the slab for
representing a portion of the service loads. The tests were performed by applying a
lateral force to the R/C frames with the usage of double-acting displacement-controlled
servo-hydraulic actuator which was attached to the frames at the slab level (Figure 4.1
(c)). General views of the test setup with test equipments for one of the infilled frames

are shown in Figure 4.2. Note that the same setup was used for all tests and frames.
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Figure 4.1 Schematic view of the (a) frame, (b) reinforcing details, and (c) test setup (dimensions are

in cm)
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Figure 4.1 continues

Figure 4.2 General views of the test setup with test equipments (Personal archive, 2016)

Two different types of brick units, namely standard and locked bricks as shown in
Figure 4.3, were used to build the infill walls. The main difference between these
bricks is that the former one uses mortar on the bed and head-joints (standard brick),
and the latter one does not use mortar on any of these joints (locked brick). The locked
bricks lock into each other while enabling sliding motion along their in-plane
directions (along the strong axis of the R/C frames) due to their mortar-less feature.
This novel feature of the brick enables low-to-moderate (mild) level panel action to
develop within frame systems, and therefore has the potential of preventing soft or
weak story mechanism (Misir et al., 2012). The out-of-plane stability (along the weak

axis of the R/C frames) is provided by the brick’s internal locking feature. Mortar was
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used at all brick-to-brick and brick-to-frame interfaces for the infill wall constructed
with standard bricks, whereas for the infill wall with locked bricks, mortar was used
only at the brick-to-foundation interface. At the brick-to-beam interface, a foam-type
material was used as it is the case in real-life applications. General views and interface
details for the infill walls constructed with standard and locked type bricks are
presented in Figure 4.4. In addition, types of infills used inside the frames are

summarized in Table 4.1.

(@) (b)
Figure 4.3 (a) Standard and (b) locked type bricks (Personal archive, 2016)

(b)
Figure 4.4 General views and interface details for the infill walls constructed with (a) standard and

(b) locked type bricks (Personal archive, 2016)
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Table 4.1 Infill conditions of the frames

Frame # Infill Type of Infill
F1 No -
F2 Yes Locked
F3 Yes Standard

4.3 Description of the Quasi-Static Test Program

Quasi-static tests were performed by imposing incrementally increasing story drifts
to the frames (i.e., progressively increasing damage on the members of the frames were
induced). Note that a single-cycle displacement pattern (history), which was
determined in accordance with ACI 374.1.05 (2005), was used for each test and is
shown in Figure 4.5. A total of 13 drift ratios (i.e., damage states) were defined, namely
undamaged state, 0.075%, 0.15%, 0.20%, 0.35%, 0.50%, 0.75%, 1.00%, 1.40%,
1.75%, 2.20%, 2.75%, and 3.50%. The lateral displacements corresponding to these
drift ratios can be calculated by multiplying the drift ratios with the specimen height
defined as the length from the foundation to the actuator level (i.e., ~139 cm).

Accordingly, the frames were subjected to in-plane (i.e., lateral) cyclic displacements

ranging from 1.04 mm (0.075% drift) to 48.65 mm (3.50% drift).
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Figure 4.5 Single-cycle displacement pattern imposed on the frames
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Twelve linear variable displacement transducers (LVDTs) and four string
potentiometers (string pots) were used for static response measurements during quasi-
static tests. The placement of these sensors is shown in Figure 4.6. Here, each LVDT
and string pot is abbreviated as “L” and “S”, respectively. Note that S3 and S4 are
available if there exists an infill wall. S1 measures the top displacement, therefore the
imposed drift ratio on the frames, in order to cross-check the displacement given by
the actuator, whereas S2 is used to track if there exists a movement in the foundation

(i.e., sliding of the frame), which was desired to be avoided by the stoppers (Figure 4.1
(c)).

S1

— ] 5 17—

S3 X < S4

L1 L2
I I y LllI IL12

il s2

Figure 4.6 Placement of the static measurement sensors (L: LVDT, S: String pot)

4.4 Description of the Dynamic Test Program

At the end of each predetermined drift ratio: 0%, 0.20%, 0.50%, 1.00%, 1.40%,
2.20%, and 3.50% (i.e., at gradually increasing damage levels), a series of white-noise
(WN) and ambient vibration (AV) tests were conducted on the frames. These dynamic
test points, which were selected so that significant changes in modal parameters as
damage level increases can be captured, are presented in Figure 4.5 with the circle
symbol. The actuator was detached from the frames before the dynamic tests. This was
done to prevent the restraining effect of the actuator on the frames, which may change
the stiffness characteristics of the frames. It should be stated that once the frames went
into severe nonlinear range, they retained different levels of residual deformations.

When the actuator was detached before the dynamic tests, a certain amount of residual
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deformation remained on the frames. In other words, the dynamics tests were
performed at zero lateral force but not at zero residual displacement. It should be stated
that the axial load applied on each column was also present during the dynamic tests;
however, effects of this axial load (i.e., pre-compression effects on column members)

on system identification results were not investigated within this study.

WN tests were performed by a uni-axial electro-dynamic shaker (with an increased
reaction mass) which was placed on top of the frames (at the mid-line of the slab). The
shaker was configured to move along the in-plane directions (along the x-axis) of the
frames only. By this way, broad-band dynamic excitation was applied on the frames
with an intention to excite their in-plane modes. The input signal to the shaker, the
same one was used for all tests, was designed so that it had a frequency bandwidth of
0.1 — 100 Hz. This bandwidth was deemed sufficiently broad-band to excite the first
few in-plane modes obtained based on preliminary numerical model studies. The
signal amplitude was regulated manually by the gain knob of the signal amplifier unit
but was set to a fixed value once sufficiently high vibration response was observed.
Offline tuning technique (OTT), a command shaping control strategy, was used for
WN tests to improve the signal reproduction fidelity of the shaker. This way the
achieved signal on the shaker platen would be in broad-band nature as the designed
input signal (details of OTT are presented in Section 2.2.4). Note that the

implementation of OTT was necessary since the shaker itself has no built-in controller.

The frames were densely instrumented with 4 tri-axial and 5 uni-axial piezo-electric
type accelerometers (i.e., 17 measurement points for each test). Also, one uni-axial
accelerometer was mounted on the shaker in order to measure the WN excitation level
imposed on the frames. Accelerometers used have £5g amplitude range, frequency
bandwidth of 0.25 Hz to 3000 Hz, sensitivity of 1000 mV/g, and 5e-4 broad-band
resolution. The data acquisition system used is a NI-PXI system consisting of three 18-
bit PXI-4472 A/D cards (each has 8 channels) with simultaneous sampling capability
and anti-aliasing filters. Accelerometer layout (i.e., spatial distribution of the
accelerometers) was determined from modal analysis studies performed on the initial

numerical models of the frames. Since the responses of the frames are dominated
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mainly by the modes in the frequency band of interest, sensor placement was
performed in order to capture as many responses as possible. The accelerometer layout
with positive polarities, the same one was used for all tests and frames, are presented
in Figure 4.7. Note that each accelerometer station is abbreviated as “Sta” in the figure.
As an example, accelerometers of Sta 1 (consists of one tri-axial accelerometer) and
Sta 2 (consists of two uni-axial accelerometers) are shown in Figure 4.8
(accelerometers are marked with yellow circles). Here, it is also possible to see the

static measurement sensors (i.e., LVDT, string pot) in this figure.

Electro-Dynamic Shaker

Figure 4.7 Accelerometer layout with positive directions (dimensions are in cm)

(@)
Figure 4.8 Accelerometers of (a) Sta 1 and (b) Sta 2 (Personal archive, 2016)
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For system identification purpose, 12 minutes long WN and AV response data at
the end of the predetermined drift ratios (i.e., 7 sets for each frame) were recorded at
a rate of 250 Hz. Before the modal analysis work, pre-processing of the recorded data
was performed in MATLAB environment; namely the data were detrended, and then
band-pass filtered between 0.5-100 Hz by using finite impulse response (FIR) filter in
order to enhance the estimation accuracy by focusing on the frequency range of
interest. This bandwidth was decided to be adequate to detect the first few modes of
the frames (based on numerical models) and eliminate the undesired frequency content

in the recorded data (e.g., environmental noise effects that pollute the data).

4.5 Damage Observations and Quasi-Static Test Results

Detailed visual damage inspections were made during the quasi-static tests and the
observations were documented. A summary of these observations at specific drift ratio
intervals is given in Table 4.2 for each frame. In addition, a set of photographs of the
tested frames at 0.20% and 3.50% drift ratios are presented in Figure 4.9 as a
complementary information for Table 4.2. Although detailed damage descriptions at
each drift ratio are given in the table, some important characteristics of damage trends
for the frames are summarized: For the frame with locked infills (F2), stepped and
horizontal cracks were mainly formed at brick-to-brick interfaces over a large portion
of the infill wall (panel) due to the sliding mechanism. Numerous and scattered plaster
cracks (i.e., no concentration of crack patterns) occurred and no significant brick
crushing was observed. On the other hand, for the frame with standard type infills (F3),
cracks were concentrated at corner zones where a bi-axial compression-compression
stress state developed due to lateral in-plane loading which caused brick members to
crush and spall around these zones (i.e., concentration of cracks). Also, it can be said
that the presence of the standard infills caused the number and width of the cracks
induced on the surrounding frame members to increase (e.g., in the case of standard
infilled frame, structural damage was observed throughout the column(s), whereas for
the bare and locked infilled frames, structural damage was mainly concentrated on the
column(s) bottom ends). From this perspective, it can be said that the infilled frames

have different damage patterns.
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Table 4.2 Summary of visual damage inspections for different frames (F: Frame, I: Infill)

Damage Description

F1 (no infill)

F2 (locked infill)

F3 (standard infill)

Minor flexural cracks on the
beam (<0.2 mm). No cracks
on column(s).

Minor cracks on column(s)
ends (<0.2 mm). No cracks on
beam.

Minor flexural cracks on beam -
column(s) joints and column(s)
ends (<0.2 mm).

Separation between infill
panel - frame interfaces
started.

Separation started between infill
panel - frame interfaces.

New beam flexural cracks.
Flexural column(s) cracks.
Minor cracks on the slab and
beam (<0.5 mm).

Flexural cracks on various

parts of column(s), beam

ends, and slab (<0.2 mm).

Cracks were increased in
number.

Shear and flexural cracks arose at
various zones of beam and
column(s) ends.

Minor diagonal cracks at
corner zones. No considerable
visible damage on infill.

Diagonal cracks at corner zones.
Plaster spalled off due to
crushing.

Moderate damage on frame
joints. New minor flexural
cracks on beam (<1 mm).

Flexural cracks on column(s),

beam, and slab were increased

in number (Crack width < 0.5
mm).

New diagonal shear cracks arose
on column(s) ends. Some flexural
cracks on beam and column(s)
ends were propagated.

Frame infill contact interface
started to get lost (separation
> lcm). Minor cracks at
corner. No considerable crack
on infill.

No additional visible cracks. Gap
between frame - infill panel
became more than 10 mm.

Uplift between foundation -

column(s) ends. Moderate

flexural cracks on slab and

beam - column(s) ends (>2
mm).

New slab cracks appeared.

New flexural cracks arose on
beam and column(s) ends. Shear
cracks appeared at bottom parts

of column(s).

Shear cracks arose in both
diagonal directions. 2 cm gap
formed between panel - frame

interface. Plaster swelled.

More than 10 mm gap between
panel - frame interface. Plaster
spalled off due to crushing at
corners.

Uplift between foundation -
column(s) ends increased.
Moderate - severe flexural

cracks on column(s) - beam

interfaces (>3 mm).

Moderate - severe frame
cracks (> 5 mm).

New flexural cracks arose
throughout the beam, on slab and
column(s) bottom ends.

Plaster spalled off at corner
zone. Irregular horizontal
crack formations. In some

parts, gap between two brick
> 10 mm.

Infill was crushed and spalled off
only at corner parts. More than
25 mm gap between panel -
frame interface.

Severe flexural damage on
frame (>5 mm). Spalling and
crushing at base of column(s)

concrete. Buckling of
reinforcing bars at column(s)
bottom ends.

Reinforcing bars became
visible and buckled. Concrete
spalled off at bottom ends of
column(s). New frame cracks
were observed.

Reinforcing bars became visible
and buckled. Cracks were
propagated at column(s) bottom
ends.
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F1
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(@) (b)
Figure 4.9 Damage states of the frames at the end of (a) 0.20% and (b) 3.50% drift ratios, respectively
(Personal archive, 2016)

Hysteretic lateral force-displacement curves of the frames obtained from quasi-
static cyclic tests are shown in Figure 4.10. By combining the peak points of the
hysteretic curves, it is possible to plot the strength envelope curves of the frames which
are presented in Figure 4.11. From the figures, it is clear that there exist strength and
stiffness degradations as the drift ratio (i.e., displacement level) increases. As
expected, the additional lateral resistance imposed on the frames by the standard type
infills (F3) is much higher than the additional resistance by the locked type infills (F2)
(i.e., F3 reaches relatively higher lateral load levels). Moreover, the frame with
standard infills reaches its maximum lateral resistance earlier than other frames. The
frame with locked infills contributes to the lateral resistance about 39% with respect

to the bare frame (F1). For the standard type infills, this contribution is about 113%.
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Figure 4.10 Hysteretic curves for the frames obtained from quasi-static cyclic tests
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The frame with locked infills shows lower strength degradation than that of the frame

with standard infills. Since the contribution of infills to the lateral strength of a frame
structure is not considered in most of the seismic codes, the behavior of the frame with

locked infills seems analogous to the bare frame.
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Stiffness degradation curves of the frames are presented in Figure 4.12 (a). Herein,
the peak-to-peak stiffness approach, which is described as the slope of the line that
connects negative and positive peak points for a cycle of hysteretic curve, is adopted.
In order to track the stiffness degradations clearly, the normalized peak-to-peak
stiffness, which is calculated by dividing each peak-to-peak stiffness value by the one

determined in the first cycle, is also presented in Figure 4.12 (b).
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Figure 4.12 Stiffness degradation curves for the frames in the sense of (a) peak-to-peak stiffness and

(b) normalized peak-to-peak stiffness values

It can be seen from the figures that the bare frame (F1) has the lowest initial stiffness
value. For the bare, locked type infilled (F2), and standard type infilled (F3) frames,
initial stiffness values are obtained as 24.9 kN/mm, 45.4 kN/mm, and 50.2 kN/mm,
respectively. The initial stiffnesses of the locked and standard type infilled frames are
approximately 1.82 and 2.02 times than that of the bare frame, respectively. Notice
that the frame with locked infills has higher stiffness values at early stages but exhibits
significant drops with increasing drift ratios due to overcoming the static friction
threshold of the locked bricks and the shear failure of the mortar. After about 2.20%
drift ratio, all the frames show similar stiffness values. Since the contribution of infills
to the stiffness of a frame structure is not considered in most of the seismic codes, here

again, the behavior of the frame with locked infills seems analogous to the bare frame.
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The cumulative dissipated energy curve, which is described as the summation of
the area enclosed by each hysteretic curve, is given for each frame in Figure 4.13. This
curve is important since it reflects the capacity of a structure to dissipate seismic input
energy (i.e., a higher value represents better energy dissipation performance). By
referring to Figure 4.13, it can be said that the bare frame (F1) has the minimum energy
dissipation capacity, whereas the standard infilled frame (F3) has the highest. At
3.50% drift ratio, the cumulative dissipated energy values of the frames with locked
and standard infills are approximately 1.34 and 1.65 times than that of the bare frame,
respectively. Note that the behavior of the frame with locked infills seems analogous

to the bare frame in the sense of dissipated energy.
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Figure 4.13 Cumulative dissipated energy curves for the frames

Some numerical information about the quasi-static test results that can be extracted

from Figures 4.10 to 4.13 is summarized in Table 4.3.
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Table 4.3 Numerical information about the quasi-static test results

Peak-to-Peak . Cumulative
Strength Stiffness Degradation Energy
Frame [kN] (KN/mm] [%o] Dissipation
[kNm]
Max. I 1 h ff
ax 3.50% nitia 3.50% Strengt Stiffness 3.50%
F1 101
95 25 2 6 92 16
(no infill) @1.75%
F2 140
. 108 46 2 23 96 21
(locked infill) | @1.75%
F3 215
(standard infill) | @0.75% 136 50 3 37 95 26

4.6 Dynamic Test Results

The system identification methods presented in Chapter Two (i.e., NExT-ERA,
EFDD, and SSI-DATA) were used with the response data obtained from WN and AV
excitations. Two different WN excitations, namely with the application of OTT (WN
w/Offline) and without the application of OTT (WN wo/Offline), were used for all
frames at different damage levels. The root mean square (RMS) response amplitudes
of the shaker excitations measured by the accelerometer on the shaker (i.e., Sta 8, x-
direction) were ~0.46 g and ~0.21 g for WN wo/Offline and WN w/Offline cases,
respectively. Notice that the WN wo/Offline case has more than two times the RMS
response amplitude of the WN w/Offline case. This is because of scaling the modified
input signal according to the shaker’s limitations before sending it to the shaker. Three
different tests, namely WN wo/Offline, WN w/Offline, and AV, produced ~0.011 g,
~0.004 g, and ~4.17E-05 g RMS response amplitudes along the in-plane direction
(along x-direction) at Sta 4, respectively. These values were almost the same for all
the frames. Notice that the AV tests lead to very low-level response amplitudes. As a
result, it is possible to designate, relatively, WN wo/Offline data as the “high-level”,
WN w/Offline the “medium-level”, and AV data as the “low-level” response cases.
Dependence of modal parameter identification results on the level of excitation will be

discussed in the following sections.
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The estimated modal parameters belong to the first in-plane (i.e., along x-direction)
modes for different frames at progressively increasing damage levels. Note that the
focus has been given to the first in-plane modes (i.e., fundamental in-plane modes)
since the quasi-static tests were performed in this direction (i.e., first in-plane modes
are the largest contributors to the frames’ dynamic responses along this direction). In
addition, since the shaker’s excitation direction was along the in-plane direction (x-
direction, see Figure 4.7), the recorded structural responses were predominately along
this direction. Therefore, the WN tests were mainly used to track the changes in the
in-plane modes with respect to gradually increasing damage levels. Here, WN
w/Offline tests were preferred because of the broad-band nature of the excitation, as
explained in the previous sections. In the scope of this thesis, unless otherwise stated,
the presented estimation results are from the NExT-ERA method using WN w/Offline
test data.

It must be emphasized that the fundamental in-plane modes at different damage
states presented here are called the “in-plane modes” due their predominant motions
being along the x-(longitudinal) direction; but these modes are not purely in-plane
modes. In different intensities, some identified in-plane modes, at different damage
states, are coupled modes, meaning that they have components also along y-
(transversal) and z-(vertical) directions. Especially for the infilled frames at lower
damage states, the in-plane fundamental modes are not at all purely in-plane modes;
but as the walls progressively go through more damage, the estimated in-plane modes
become more and more in-plane by losing their modal components along y- and z-
directions. In order to facilitate the discussion of the results, the coupled modes with

dominant in-plane components are designated as “in-plane modes”.

System identification results (obtained by NExT-ERA method) for the fundamental
in-plane modes at different damage states using three different excitation types (i.e.,
AV, WN w/Offline, and WN wo/Offline) are given in Tables 4.4 to 4.6. As a summary
and to highlight the results visually, the results are also presented by bar plot format in

Figure 4.14.
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Table 4.4 Modal identification results for F1 (bare frame) under different excitation conditions

Excitati Modal
xcitation oda No 1 020% | 050% | 1.00% | 1.40% | 220% | 3.50%
Type Params | Damage

o [Hz] | 1526 | 1462 | 13.72 | 1204 | 1L15 | 981 | 844
AV £ [%] 0.59 0.59 0.81 0.88 0.98 073 | 151
MAC 1.00 100 | 099 0.98 0.97 097 | 096
o [Hz] | 1511 | 1441 | 1345 | 1144 | 1064 | 944 | 804
WNwol - = o] 2.08 1.03 2.18 1.88 1.96 197 | 186
Ofﬂine (1) . . . . . . .
MAC | 099 0.98 0.98 0.98 0.97 097 | 097
o[Hz] | 1501 | 1449 | 13.56 | 1129 | 1083 | 962 | 823
WNW o 1.65 0.92 1.85 1.66 1.67 1.58 1.65
Offline
MAC 1.00 0.98 0.99 0.98 0.97 097 | 097

Table 4.5 Modal identification results for F2 (locked infill) under different excitation conditions

Excitati Modal
Reltation oda No 0.20% | 0.50% | 1.00% | 1.40% | 2.20% | 3.50%
Type Params | Damage
o [Hz] | 1477 | 1449 | 1419 | 13.15 | 1278 | 12.02 | 938
AV £ [%] 0.89 143 0.78 1.45 1.24 090 | 0.70
MAC 1.00 0.99 0.99 0.95 0.93 090 | 080
o [Hz] | 1431 | 1409 | 13.82 | 1253 | 1235 | 1146 | 844
WNwo/ - o] 1.47 1.07 1.36 171 2.06 202 | 3.73
Ofﬂine (1] S o 3 o o . .
MAC 1.00 0.99 0.98 0.93 0.90 0.87 | 080
o [Hz] | 1443 | 1422 | 1395 | 1285 | 1260 | 11.80 | 8.94
WNW o 1.54 1.09 128 1.51 1.67 157 | 258
Offline
MAC 1.00 0.97 0.98 0.95 0.92 089 | 081

Table 4.6 Modal identification results for F3 (standard infill) under different excitation conditions

Excitati Modal N
xeiation oda ° 0.20% | 0.50% | 1.00% | 1.40% | 2.20% | 3.50%
Type Params | Damage
o[Hz] | 1442 | 1419 | 13.94 | 12.60 | 12.00 | 11.00 -
AV £ [%] 091 0.78 1.46 2.08 1.07 0.81 ;
MAC 0.99 0.99 0.98 0.95 0.93 0.89 ;
o [Hz] | 14.13 | 13.86 | 13.57 | 12.13 | 1149 | 1048 | 9.73
WN wo/
_ & [%] 1.04 138 1.97 2.01 2.05 1.89 1.78
Offline
MAC 1.00 1.00 0.99 0.93 0.91 088 | 085
o [Hz] | 1420 | 13.97 | 13.63 | 1241 | 1173 | 10.84 | 9.94
WNW a0 1.01 1.16 2.18 135 1.52 1.29 1.24
Offline
MAC 1.00 1.00 0.98 0.95 0.92 089 | 0.86
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Figure 4.14 Estimated modal parameters for different frames using different excitation types (NExT-
ERA results)

Note that the selection of the modes was realized by the use of stabilization
diagrams, which are useful tools in determining proper system order and in
distinguishing between stable and unstable modes for parametric system identification
methods (e.g., SSI-DATA and NExT-ERA) (Peeters & De Roeck, 2001; Zhang et al.,
2014). As an illustrative example, a stabilization diagram is shown in Figure 4.15 for
WN w/Offline dataset of the bare frame (F1) at the undamaged state (i.e., 0% drift

ratio). Herein, the stability criteria given in Equation 4.1 were used to plot the diagram.
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where (f;, f.), (&.§,), and (¢,, ¢,) represent the identified frequencies, damping

ratios, and mode shapes, respectively for models of successive orders i and j. MA C¢i’¢j

is the modal assurance criterion calculated between ¢, and ¢ ;. The symbols presented

in the stabilization diagram denote: “©®” a pole with stable frequency, damping, and
mode shape; “.d”: a pole with stable frequency and damping; “.v”’: a pole with stable
frequency and mode shape; and “.f”: a pole with stable frequency only. In the figure,
also smoothened and amplitude scaled power spectral density functions (PSDs), which
were calculated using the response data recorded at “Sta 1” along x-, y-, and z-
directions from a tri-axial accelerometer, are given. Note that the PSDs have different
energy levels; therefore, they were scaled in a different way in order to plot them on
the same figure. From the stabilization diagram, the model order of 14 was chosen for
this particular case. It should be stated that too high model order selection leads to
computational expense and non-physical mode occurrence, whereas in the case of too
low model order, it is possible to miss some of the structural modes. Therefore, a

balance should be maintained for model order selection.
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Figure 4.15 Stabilization diagram of F1 (bare frame) at the undamaged state (NExT-ERA results
with WN w/Offline dataset)
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From the results presented in Tables 4.4 to 4.6 and Figure 4.14, it can be said that
for all frames subjected to different excitation conditions, similar frequency values are
identified for a particular damage level and for that particular frame. In other words,
the excitation level results in minor differences in frequency estimations. As damage
level increases the identified frequency values become smaller. Notice that at the same
damage level (e.g., 2.20%) for a particular frame, the frequency results from the WN
wo/Offline case (relatively a higher level of excitation) are the smallest ones compared
to the relatively lower level excitation cases (e.g., AV and WN w/Offline tests), and
the highest values being the ones from the AV tests (the lowest level of excitation
case). This is due to R/C frames behaving nonlinearly (or quasi-linearly) even at the
level of WN wo/Offline case (refer above for their RMS amplitudes). Higher excitation
levels, which are expected to widen pre-existing and/or newly emerged cracks in the
members, lead to decreased in-plane stiffness which in turn results in smaller
frequency estimations. A similar approach is adopted in the study of Astroza et al.
(2016a). Note that the modal parameters could not be identified using the AV data set
at 3.50% damage state for F3 (as indicated with the symbol “-”). This is due to low
signal-to-noise ratio (SNR) seen in this particular data set; but for all the other frames

and damage levels, no such problem was observed.

The results suggest that the damping ratio estimations exhibit significant scatter
(variability) among different excitation and frame types. In addition, they do not have
clear trends that can be utilized solely as a damage indicator. It is known that noise
always exists in real-life measurements; therefore, SNR has an important role in
accurate parameter estimation. Especially, damping estimations are very sensitive to
measurement noise, and as the noise level increases, uncertainty in damping
estimations increases as well (Bajric et al., 2014, 2015). Another peculiarity with
damping estimations is the fact that they are amplitude dependent (Astroza et al.,
20164, 2016b). The damping values estimated from the WN data (especially the WN
wo/OTT tests which have the largest RMS amplitudes) are consistently higher than
the ones estimated from the AV data (which have the smallest RMS amplitudes) for

all the frames at all damage states.
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MAC values (shown in Tables 4.4 to 4.6 and Figure 4.14) were calculated between
the mode shapes of the undamaged states (using the WN w/Offline test result as the
reference) of F1, F2, and F3 and different damaged states of the same frame. These
values indicate the changes occurred in mode shapes as damage level increases. MAC
values for all frames consistently decrease as damage level increases, which indicates
that the estimated mode shapes at different damage states differ increasingly more with
respect to the mode shapes of the undamaged cases. Notice that the changes in mode
shapes are more pronounced for the infilled frames (i.e., F2 and F3). This is due to the
infill wall-frame interaction in out-of-plane direction. The reason for this is that the
almost purely in-plane mode remains purely in-plane regardless of damage level for
frame F1 (no infill, therefore no infill-frame interaction). This results in small
variations in MAC estimations. On the other hand, the coupled modes, dominantly
seen in the infilled frames at the undamaged and low-level damaged states, turn into
purely in-plane modes as damage progresses, resulting in significant changes in MAC

values. Details of the mode shapes will be discussed in the coming sections.

Method-to-method variability in estimation results was investigated by processing
the recorded response data at different damage states using three different system
identification methods. The obtained results are shown in Figure 4.16. The MAC
values given in the figure were found between the undamaged mode shapes (using the
WN w/Offline tests and estimated by NExT-ERA method) and the damaged ones
(using the WN w/Offline tests and estimated by SSI-DATA and EFDD methods) for
different frames. It is clear that the frequency estimations and MAC values by different
methods are very similar for each damage state (i.e., negligible differences), therefore
it can be concluded that the estimated values are independent of the method used. As
a general trend for all methods, it can be said that the estimated frequencies and MAC
values decrease as the damage increases. For damping estimations, it can be said that
NExT-ERA and SSI-DATA methods give somewhat similar results; but the overall
match among the methods is not as good as in the case of frequency and mode shape
estimations. The damping results obtained by EFDD method differ considerably from
the results obtained by other two methods. Subjectiveness of the peak-picking and

logarithmic decrement processes can be attributed as the reasons behind this higher
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variability in damping estimations by EFDD method. A clear trend for damping ratio
estimations, as observed for the frequency and mode shape estimations at the level of
excitations considered in this study, cannot be observed as damage increases.
Nevertheless, a slight increasing trend in damping estimations is noticeable as the drift

ratio, therefore the damage level, increases (e.g., F2).
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Figure 4.16 Estimated modal parameters for different frames by different system identification

methods (WN w/Offline dataset)

Modal parameter estimations and evolution of mode shapes for all the frames are

indicated comparatively in Figures 4.17 and 4.18, respectively, as a function of damage
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level. For the undamaged state, the vibration frequencies of the bare (F1), locked
infilled (F2), and standard infilled (F3) frames are identified as 15.11 Hz, 14.43 Hz,
and 14.20 Hz, respectively. It is expected that the existence of infills would have
stiffening effect along the in-plane direction and therefore the frequencies of the in-
plane modes would increase; but it is interesting to note that F1 (the bare frame) has
the highest frequency among the tested frames. This may be considered as a counter-
intuitive result at a first glance; but there exist two main reasons underlying this issue:
(1) It should be emphasized that the in-plane mode shapes of the infilled frames (i.e.,
F2 and F3) are coupled modes (i.e., the modes for these frames are not purely in-plane
but have dominant in-plane components) especially at low damage levels (e.g., at the
ND and 0.20% drifts), whereas F1 has purely in-plane mode shapes for all drift cases
(refer to Figure 4.18). The coupled nature of the in-plane modes for the infilled frames
is due to the frame-infill interaction in out-of-plane direction. Therefore, a direct
comparison of the estimated frequencies for the frames with and without infills may
be misleading. (i1) The infill walls couldn’t be excited properly during the dynamic
tests due to the low excitation levels even at the level of WN wo/Offline case (refer
above for the RMS amplitudes of the excitation levels). Therefore, the identified modal
parameters represent only the characteristics of the surrounding frame structures
without the contributions of the infill walls. It should be stated that if the dynamic tests
were performed under higher excitation conditions (e.g., large-size shake table tests,
snap-back tests, etc.), it would be possible to excite the infilled frames properly; in
return, the infilled frames would exhibit higher vibration frequency values than that of
the bare frame. Note that the latter reason (i.e., item ii) will be discussed in detail in
Section 5.3. At the undamaged state, all the frames with infills have similar frequencies
for the predominantly in-plane modes (with coupled out-of-plane components). As
these frames get damaged, they start to differentiate from each other depending on the
infill condition, this starts at around 0.50% drift. It is clear from Figure 4.17 that a
steady decrease takes place in the frequency estimations for all the frames as damage
increases; but it is obvious that the lateral stiffness of the bare frame (F1) decreases at
a faster rate than the frames with infills. Note that since the infill walls couldn’t be
excited properly at the dynamic excitation levels attained in this study, they cannot be

the contributors to the in-plane stiffnesses of the frames. Therefore, the differences
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observed in the frames’ lateral stiffnesses (i.e., frequency estimations) can be attributed
to the effectiveness of the infill walls on the damage formations and distributions that
occurred at the surrounding frame structures during the quasi-static tests. Also, it is
important to note that the decreasing trend in the frequency estimations for the frame
with locked infills (F2) is slower than the other two. This might possibly be indicating
that the additional damage that might be induced by frame-infill interaction is less
severe for F2 (due to mild panel action) than F3 (the frame with standard infills). At
3.50% drift ratio, the identified frequencies for the frames F1, F2, and F3 are 8.23 Hz,
8.94 Hz, and 9.94 Hz, respectively. The percentage changes in the frequencies with
respect to the undamaged states are calculated as 45% (F1, bare frame), 38% (F2,
frame with locked infills), and 30% (F3, frame with standard infills). These results
show that the frames with the locked type infills (F2) and without infills (F1) are
somewhat similar. The frame with the standard type infills (F3) shows smaller
frequency variations between the undamaged (ND) and the highest damaged (3.50%
drift) states. Moreover, as shown in Figure 4.17, it can be said that at the excitation
level (i.e., WN w/Offline) attained for these tests, the damping ratio estimations show

no clear trend both for damage level and infill condition.

A A
o N

Frequency [Hz]

(o]

[e2]

ND 02% 05% 1.0% 14% 22% 3.5%
Damage Level-Drift Ratio [%]

Damping Ratio [%]

ND 02% 05% 1.0% 1.4% 22% 3.5%
Damage Level-Drift Ratio [%]

Figure 4.17 Modal parameter estimation results for the frames as a function of damage state (NExT-

ERA results with WN w/Offline dataset)
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F1 (no infill) F2 (locked infill)
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0.2% Drift
0.5% Drift
== 1.0% Drift
== 1.4% Drift
2.2% Drrift

== 3.5% Drift

F3 (standard infill)

Figure 4.18 Evolution of the mode shapes as damage level increases

It should be stated that the mode shapes shown in Figure 4.18 are plotted by using
the real parts of the identified complex mode vectors. Note that complex mode shapes
may occur because of many reasons, such as low SNR (i.e., high noise level and/or
low signal level), aerodynamic effects, gyroscopic effects, nonlinearities of the
systems, and non-classical damping mechanisms of the systems (Chopra, 2012; Ewins,
2000). It should be emphasized that the first in-plane mode shape of the bare frame
(F1) is almost perfectly in-plane (i.e., almost no component along the y- and z-
directions). On the other hand, infilled frames have mode shape components also along
y- and z-directions; but as the structural damage level increases y- and z-components

start to disappear. The modes estimated at higher damage levels (approximately 1.00%
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and beyond) become almost perfectly in-plane. This result indicates that the effects of
infills on the mode shape estimations diminish as damage increases. Figure 4.19
demonstrates the polar plot representations of the estimated mode shapes with complex
components. These plots show the level of non-classical damping in the frames. Based
on the results, it can be said that the mode shapes are classically damped (characterized
by negligible complex parts) because the vector components are almost perfectly
collinear and aligned along the real axis. This also serves as a justification in plotting
the estimated mode shapes, which have complex components, using only their real
parts (Figure 4.18). It can also be said that the damage level does not change the

classically damped nature of the modes.

F1

F2

F3

Undamaged 0.5% Drift 1.0% Drift 1.4% Drift 2.2% Drift 3.5% Drift

Figure 4.19 Polar plot representations of the mode shapes

Figure 4.18 shows that as the structural damage increases, the in-plane mode shapes
go through very small changes. This observation can be used to justify that as damage
increases, the effective modal masses corresponding to the fundamental in-plane
modes remain unchanged for different frames (i.e., under the assumption that the mass
properties of the frames remain unchanged during the tests). With this assumption, the
stiffness degradations (SDs) corresponding to the in-plane modes with respect to the

undamaged case can be approximated by Equation 4.2.
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(fip)" = (f3.)
(fip)’

2
SD/ (%) = x100 (4.2)

where £, and f, [{,i are the identified frequencies for a particular frame j (j=F1, F2,

and F3) at the undamaged and various damaged levels i (i=ND, 0.20%, 0.50%, 1.00%,
etc.), respectively. The stiffness degradations calculated using Equation 4.2 at different
drift levels for different frames were matched with the detailed visual damage
inspections (refer to Table 4.2). The results were clustered into three dimensional plots
and are presented in Figures 4.20 to 4.22 for frames F1, F2, and F3 (i.e., frames with
different infill conditions), respectively. In these figures, damage types are categorized
for column (subplot (a)), beam (subplot (b)), and infill (subplot (c)) members in three
distinct groups, and subplot (d) shows the zones where damages are concentrated. The
bars with red colors indicate that a particular damage type (as indicated on the
longitudinal axis) occurred for the first time or that damage type increased significantly
at that particular drift ratio (as indicated on the transversal axis). The bars with yellow
colors indicate that no significant change in the existing damage type occurred, and
the bars with green colors indicate that a particular damage type has not yet occurred
at that drift ratio. The bars with gray colors indicate that the corresponding member
damages do not exist for that frame (e.g., there is no infill wall in F1, therefore Figure
4.20 (c) is all in gray color). These figures are useful in determining what damage type
(also its extent and location) is observed on the frames when stiffness degradation is
seen as a function of increasing structural damage. Note that the stiffness degradation
values are calculated using the frequency estimations obtained from dynamic tests and

represent only the characteristics of the surrounding frames.

For F1 (the bare frame) in Figure 4.20, stiffness degradations are obtained as 8%,
19%, 44%, 49%, 59%, and 70% for 0.20%, 0.50%, 1.00%, 1.40%, 2.20%, and 3.50%
drift ratios, respectively. The damages at beam ends due to the flexural action are
effective until 0.20% drift ratio, and meanwhile ~8% stiffness degradation is observed.
With increasing drift ratio, up to 1.00%, the damages at column(s) ends start to be
more pronounced. The largest change in the stiffness degradation (~25%) is observed

within the 0.50%-1.00% drift ratio interval along with mainly column damages (Figure
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4.20 (a), damage types la, 2a, and 3a). Towards the end of the test, the separation at
the column-foundation interface can be seen as the main damage type of the frame

with ~11% stiffness degradation change.

For F2 (the frame with locked infills) in Figure 4.21, stiffness degradations are
obtained as 3%, 7%, 21%, 24%, 33%, and 62% for 0.20%, 0.50%, 1.00%, 1.40%,
2.20%, and 3.50% drift ratios, respectively. Column and infill damages are effective
until 0.20% drift ratio. The first significant change in the stiffness degradation is seen
between 0.50%-1.00% drift interval where infill (e.g., concentrated cracks at the corner
zones, distributed horizontal cracks) and various column damages occur. The largest
stiffness degradation change (~29%) is observed between 2.20%-3.50% drift ratio
interval. Meanwhile, separation at the frame-infill interface and various column
damages (e.g., extension and deepening of existing cracks, crushing of concrete cover
at columns’ bottom ends, and buckling of reinforcement bars) (Figure 4.21 (¢), damage

types 6-7, Figure 4.21 (a), damage types 11a and 11b, etc.) are developed.

For F3 (the frame with standard infills) in Figure 4.22, stiffness degradations are
obtained as 3%, 8%, 24%, 32%, 42%, and 51% for 0.20%, 0.50%, 1.00%, 1.40%,
2.20%, and 3.50% drift ratios, respectively. Various types of column cracks, frame-
infill separation, and cracks at the corner zones of the infill wall are the main damage
types seen within the 0.50%-1.00% drift ratio interval. The largest change in the
stiffness degradation (~16%) is also observed within this interval. Within the drift
ratios following this range, beam and infill member damages start to substantially
increase without a sudden change in the stiffness degradation (i.e., a smoother, more
gradual change has been observed for F3 also confirmed by the changes in the

frequency estimations).

From the findings above, it can be said that the presence of infills initiated R/C
member damages to occur earlier than the bare frame. The stiffness degradation values
calculated at the ultimate damage state (i.e., 3.50%) are 70%, 62%, and 51% for the
frames F1 (bare frame), F2 (frame with locked infills) and F3 (frame with standard

infills), respectively. Here again, the behavior of the frame with locked infills seems
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analogous to the bare frame in the sense of stiffness degradation values. It should be
noted that the quasi-static tests let to perform detailed damage observations, whereas
the dynamic tests let to calculate stiffness degradations by using the identified modal
parameters. By combining the outputs of these two tests, it is possible to pair different

damage types (from static tests) with stiffness degradation values (from dynamic tests).
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4.6.1 Identification of the Out-of-Plane Modes

As stated before, only the first in-plane modes of the frames are discussed so far. It
should be stated that the higher modes couldn’t be identified clearly from the dynamic
data due to low excitation levels and SNR (i.e., even in the case of WN wo/Offline,
the excitation level is low). In other words, the higher modes of the frames couldn’t be
excited sufficiently. However, the frames are most likely to have structural modes in
their weakest directions (i.e., out-of-plane direction), which means that the frames
have out-of-plane modes in lower frequency values than those of their in-plane modes.
This statement can be supported by investigating the Fourier amplitude spectrum
diagrams of the dynamic response data. As an example, for the bare frame (F1),
Fourier amplitude spectrum of Sta 4 (with x-, y-, and z-components, see Figure 4.7) is

presented in Figure 4.23 (WN w/Offline dataset at 3.50% drift ratio was used).
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Figure 4.23 (a) Fourier amplitude spectrum for Sta 4, (b) zoomed in 3-10 Hz bandwidth (for F1, by
using the WN w/Offline dataset at 3.50% drift ratio)

In the figure, the peak value around 3.60 Hz for the y-component represents the out-
of-plane mode. Note that the out-of-plane mode is not pronounced as much as the in-
plane mode (x-component, around 8.23 Hz) since the excitation to the frames is in in-
plane direction only. Therefore, higher estimation uncertainty is expected in the out-

of-plane mode (i.e., lower SNR value along the non-excited direction).

It should be stated that the out-of-plane modes of the frames couldn’t be identified
by NExT-ERA and SSI methods (i.e., parametric methods). Therefore, identification
was conducted by using EFDD method with a peak-picking process around the

frequency of interest. The modal parameter estimation results of the frames at different
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damage states are given in Table 4.7. Similar to the in-plane modes, the frequency
values show a decreasing trend as structural damage increases, whereas no clear trend
is observed for damping ratios. Herein, at the undamaged state, the bare frame (F1)
has the highest frequency value among the tested frames. This is a reasonable result
since the contribution of the infill wall to the out-of-plane stiffness of the frame system
is relatively low compared to the increase in the mass of the frame system due to the

presence of the infill wall.

Table 4.7 Modal parameters of the out-of-plane modes of the frames (WN w/Offline dataset by EFDD
method)

Modal
Frame # oda No 1 020% | 0.50% | 1.00% | 1.40% | 220% | 3.50%
Params | Damage
F1 o [Hz] 5.58 5.26 5.41 5.11 4.57 3.87 3.63
(noinfill) | ¢ [o) 3.27 1.49 3.14 2.05 2.46 2.50 2.80
F2 o [Hz] 4.57 4.14 4.10 4.08 3.96 3.74 3.63
(locked R
infill) £ [%] 2.09 2.68 2.81 2.09 2.39 1.99 0.41
F3 o [Hz] 4.41 4.15 4.06 3.82 3.77 3.40 3.05
(standard .
infill) & [%] 2.76 3.06 2.96 245 2.97 1.78 2.76

The polar plot representations of the identified out-of-plane mode shapes are given

in Figure 4.24.

F1

F2

F3

Undamaged 0.5% Drift 1.0% Drift 1.4% Drift 2.2% Drift 3.5% Drift

Figure 4.24 Polar plot representations of the out-of-plane mode shapes
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It clear from Figure 4.24 that the modes are classically damped and have larger
complex components due to low SNR values. That’s why the out-of-plane mode
shapes are considered as unreliable estimates and comparing their evolutions with
respect to increasing damage levels may lead to unrealistic results (i.e., the evolution

of the MAC values is not provided in Table 4.7 because of this reason).
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CHAPTER FIVE
DAMAGE IDENTIFICATION OF THE QUASI-STATICALLY TESTED
REINFORCED CONCRETE FRAMES WITH DIFFERENT INFILL
CONDITIONS BY SENSITIVITY-BASED FINITE ELEMENT MODEL
UPDATING METHOD

5.1 Introduction

In this chapter, sensitivity-based FEMU studies performed on the quasi-statically
tested R/C frames with different infill conditions, namely bare, locked infilled, and
standard infilled frames, for damage identification purposes are presented. Structural
damages of the frames were defined by relative stiffness reduction factors (i.e.,
reduction in Young’s modulus and/or spring stiffness values), and each progressively
increasing damage state, the stiffness reduction factors of the predetermined elements
(i.e., design variables) were obtained by minimizing an objective function constructed
as the differences between the modal parameters of the real structure (from OMA
results discussed in Chapter Four) and the numerical model (from FE model). In this
context, modal parameter results of the EFDD method with WN w/Offline dataset
were used. The updating process for each frame was conducted in two steps: (i) By
using the experimentally identified modal parameters corresponding to the undamaged
state, the initial FE model was updated to obtain a reliable reference model. (ii) The
procedure was repeated by updating this reference model at each progressively
increasing damage state (e.g., 0.50%, 1.00%, 1.40%, 2.20%, and 3.50%) to identify
the damage, its location, and extent. The number of design variables used for the
updating procedure was reduced to ensure a well-conditioned optimization problem
by taking into account symmetry conditions, detectability indices, and internal
moment levels occurred in the frame elements. Different from the existing state of the
art, these three aspects were evaluated together to obtain damage identification results
which are more consistent with the damage observations and are more realistic for
increasing damage levels. Finally, the identified damage results were verified using

the visual damage observations made during the quasi-static tests.
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5.2 Damage Identification of the Bare Frame (F1)

This section presents the results of the sensitivity-based FEMU method carried out
on the bare frame (F1) for damage identification purpose. The initial FE model of the
frame was constituted in FEDEASLab environment by using 3-D linear elastic
Bernoulli-Euler frame elements. Physical properties (i.e., model parameters) of the
initial FE model were identified from measured geometric dimensions and material
tests. Accordingly, Young’s modulus and density values for concrete were chosen as
32 GPa and 25 kN/m’, respectively. Note that it is very difficult (almost impossible)
to attain perfect fixity at supports in real-life situations. Therefore, support conditions
of the initial FE model were represented by simple supports at the column(s) bottom
ends together with three rotational springs about x- (in-plane), y- (out-of-plane), and
z- (vertical) axes. Other nodes of the FE model were set to be unconstrained. The initial
spring stiffnesses were determined as 9807 kNm/rad by manual updating procedure
(i.e., trial-and-error method) for the purpose of bringing the numerical modal analysis
results close to the experimentally identified ones; however, the ultimate spring
stiffnesses were determined by automated model updating approach presented in
Section 5.2.1 (i.e., by performing manual updating before, it was aimed to improve the
converge performance of the automated updating). Note that the distributed mass of
the frame was supposed to be lumped at the nodes of the FE model (i.e., lumped mass

assumption was made).

The vibration frequencies and mode shapes of the first two modes (i.e., out-of-plane
and in-plane modes), which were obtained by EFDD method with WN w/Offline
dataset, were selected as the experimental responses to be used in the updating process.
This is because these modes were clearly identifiable from all response data collected

at different damage levels, and therefore were considered as reliable estimations.

The initial FE model was divided into 12 substructures (i.e., 3 and 9 substructures
for rotational springs and 9 frame elements, respectively) by considering the
neighboring and geometrically symmetric finite elements that have similar effects (i.e.,

detectabilities) on modal parameters (e.g., substructure #1 for the bottom, substructure
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#2 for the mid, and substructure #3 for the top elements of the column(s), see Figure
5.1 (b)). Note that independent damage functions were assigned for each substructure
(i.e., the substructures were updated separately). It should be stated that the adopted
substructuring strategy is also convenient for symmetric damage occurrence which is
expected due to the cyclic quasi-static loading case (i.e., symmetric loading). In
addition, the detectability indices of these substructures were calculated for the first

mode only, for the second mode only, and for both modes together (Figure 5.1 (a)).
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Figure 5.1 (a) Detectability indices and (b) detectable elements

It can be concluded from Figure 5.1 that the sensitivity of a mode can change from
one substructure to another (i.e., detectability of a substructure can vary from one mode
to another). Besides, some of the modes are insensitive to variations in some

substructures (i.e., having zero detectability index value). For example, the 2" mode
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(in-plane mode) is sensitive to the rotational springs about y-axis (i.e., substructure
#11, the springs related to the in-plane motion of the frame) but insensitive to the
rotational springs about x-axis (i.e., substructure #10, the springs related to the out-of-
plane motion of the frame). By investigating the detectability indices, the detectable
substructures (i.e., the substructures which the modes are sensitive) along with their
numbers were determined as follows: column(s) bottom ends (#1), column(s) mid-
zones (#2), column(s) top ends (#3), beam ends (#7 and #8), beam mid-zone (#9),
rotational springs about x-axis (#10), and rotational springs about y-axis (#11). Since
the modes are insensitive to the other substructures (i.e., substructures #4, #5, #6, and
#12), these substructures were eliminated. Thus, the number of substructures included

in the updating procedure (i.e., design variables) was reduced from 12 to 8.

For the frame, the bending moment capacity ratio between the beam ends and the
column(s) top ends is approximately 40% (i.e., columns are stronger than the beam in
terms of flexural strength). That’s why, theoretically, the plastic hinges are expected
to first occur at beam ends (i.e., at weaker sections) instead of column(s) top ends. As
a result of the plastic hinge mechanism, the moment transferred from beam ends to
column(s) top ends is limited by the moment capacity of the beam ends. Since this
transferred moment is lower than the moment capacity of the column(s) top ends,
minor structural damage is expected to occur in these regions (confirmed by the
damage observations presented later in this chapter). This is not the case for the
column(s) bottom ends: As the moment due to the in-plane applied load increases, it
must be resisted by the column(s) bottom ends. Therefore, major structural damage in
these regions is expected to occur (also confirmed by the damage observations). The
mid-zones of the beam and column members were not selected as design variables due
to their relatively low internal moment levels (i.e., as stated before, a response sensitive
to a parameter does not automatically imply that this parameter has to be included in
the updating process). In addition, only insignificant damage occurrence was observed
in these regions during visual damage inspections. Consequently, selecting 4 design
variables were decided to be convenient for damage identification, namely column(s)
bottom ends (#1), beam ends (#7-8), rotational springs about x-axis (#10), and

rotational springs about y-axis (#11). Note that a common design variable was defined
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for the adjacent elements for the beam ends at this stage (i.e., only one design variable

instead of two for the elements designated as #7 and #8 in Figure 5.1 (b)).

The structural damages of the frame were defined by relative stiffness reduction
factors (i.e., reduction in Young’s modulus and/or spring stiffness values), and each
progressively increasing damage state, the stiffness reduction factors of design
variables were obtained by minimizing an objective function constructed as the
differences between the modal parameters of the real structure (from OMA results
discussed in Chapter Four) and the numerical model (from FE model). The updating
process was conducted in two steps: (i) By using the experimentally identified modal
parameters corresponding to the undamaged state, the initial FE model was updated to
obtain a reliable reference model. In this step, the design variables were updated until
a good match between numerically and experimentally identified modal parameters
was obtained. (ii) The procedure was repeated by updating this reference model at each
progressively increasing damage state (e.g., 0.50%, 1.00%, 1.40%, 2.20%, and 3.50%)
to identify the damage, its location, and extent. Here, updating was performed always
on the reference model instead of on the updated model of a previous damage state
(e.g., damage results of 2.20% drift ratio were obtained by updating the reference
model). This was done to ensure higher discrepancies for the optimization algorithm
and to prevent probable cumulative errors between successive damage levels. In the
second step, the rotational spring stiffnesses were excluded from the updating process
(i.e., they were not updated and remained at their values that determined in the first
step). Otherwise, they would attract most of the changes (i.e., damage) on themselves
due to their higher detectabilities (see Figure 5.1) and would lead to unrealistic damage
results for other substructures. Note that the constraints for the design variables were
set to be £1.0 (i.e., I = -1.0 and up = +1.0) where (-) values mean stiffening and (+)
values mean softening (or damage). The weighting factors were set to 1.0 for the out-
of-plane and in-plane vibration frequencies, and for the in-plane mode shapes only,
whereas the out-of-plane mode shapes were excluded from the updating process by
setting their weighting factors to 0. This was done due to the high estimation
uncertainty and complexity seen in these modes which might lead to unfavorable

effects on the stability and performance of the optimization problem.
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5.2.1 Updating for the Reference Model (Undamaged State)

The initial FE model was updated to obtain the reference model by using the modal
data of the undamaged state. As stated before, the substructures column(s) bottom ends
(#1), beam ends (#7-8), rotational springs about x-axis (#10), and rotational springs
about y-axis (#11) were selected as design variables, thus n=4. The residual vector r

[36x1] consists of 1x2=2 frequency residuals r, and 17x2=34 mode shape residuals

r, (17 is the number of experimental measurement points, 2 is the number of modes
that were included in the updating process). Note that 17 components of the r,, which

are related to the out-of-plane mode shape, are equal to zero due to their weightings.

The Jacobian matrix J, has dimensions of 36x4, where m=36 and n=4. Since n<m,

an overdetermined problem occurs. Model order (d) was selected as 51 (i.e., all the
numerical modes). The optimization problem was solved by Gauss-Newton method

with trust region algorithm. Results are shown in Table 5.1.

As can be seen in Table 5.1, only the rotational springs were updated by the
algorithm because of their relatively higher detectabilities (i.e., other design variables
were not updated although they were involved in the updating procedure).
Accordingly, the appropriate reference model was obtained when the spring stiffnesses
about x- and y-axes became 5894 kNm/rad and 7444 kNm/rad, respectively. It is clear
from Table 5.1 that the vibration frequencies of the reference FE model (updated
model, 3™ column) and the experimentally identified ones (2™ column) match very
well. Also, the MAC values calculated before (i.e., between the mode shapes of the
initial FE model and the experimentally identified ones, 6™ column) and after (between
the mode shapes of the reference FE model and the experimentally identified ones, 7%
column) updating exhibit very marginal improvements which indicate that the
considered mode shapes have low sensitivities to the selected design variables (i.e.,

almost insensitive).
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Table 5.1 Model updating results of the initial FE model to obtain the reference model using modal data

of the undamaged state (F1 — bare frame)

“4) %)
Freq. Freq. (6) @)
(.1.) @) ) Differences Differences MAC MAC
Initial Undamaged Updated
Before After Before After
FE Model Frame FE Model . . . .
Fre Fre Fre Updating Updating Updating | Updating
4 4 4 (1-2) (3-2) (1-2) (3-2)
[Hz] [Hz] [Hz] [%] [%] [-] [-]
6.16 5.58 5.58 10 0 0.99 0.99
15.70 15.10 14.98 4 1 0.95 0.96

Design Variables

] #1 Column(s) bottom ends

#7-8 Beam ends

#10 Rotational springs about x-axis (RotX)
#11 Rotational springs about y-axis (RotY)

Initial Ref. Model

(Updated)
#10 RotX (kNm/rad): 9807 5894
#11 RotY (kNm/rad): 9807 7444

*Substructures #1 and #7-8 were also
selected as design variables but not updated
by the algorithm.

5.2.2 Damage Identification at Increasing Damage States

Damage identification of the frame at increasing damage states was performed by
updating the reference model, which was obtained in the previous section. At each
damage state, the corresponding experimental modal data were used. Two design
variables were included in the updating process, namely the one at the column(s)
bottom ends and the one at the beam ends (i.e., the substructures #1 and #7-8 in Table
5.1). Notice that the spring stiffnesses were kept fixed and excluded from the updating
process as stated in Section 5.2. Since n=2 (i.e., two design variables), dimensions of
the Jacobian matrix became 36x2 (i.e., n<m, an overdetermined problem occurs). It
should be stated that the conditions not specified here were the same as the ones

adopted in Section 5.2.1. The updating results with the dimensionless stiffness
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reduction factors (in terms of p in percent) at different damage states with respect to

the reference (undamaged) state are presented in Table 5.2.

Table 5.2 Model updating results of the reference model for increasing damage states using the modal

data of the increasing damage states (F1 — bare frame)

“4) (5)
(1) 2) 3) Freq. Freq. ©) (7)
. . MAC MAC
Drifis Reference | Damaged | Updated Diff. Diff. Before After
FE Model Frame FE Model Before After . .
[%] . . Updating | Updating
Freq. Freq. Freq. Updating | Updating (1-2) (3-2)
(1-2) (3-2)
[Hz] [Hz] [Hz] [%] [%o] [-] [-]
0.50 5.58 5.41 5.41 3 0 0.99 0.99
14.98 13.55 13.64 11 1 0.96 0.96
1.00 5.58 5.11 5.10 9 0 0.98 0.98
14.98 11.11 11.22 35 1 0.98 0.98
1.40 5.58 4.57 4.55 22 0 0.98 0.98
14.98 11.05 11.17 36 1 0.98 0.98
290 5.58 3.87 3.85 44 0 0.97 0.97
14.98 9.62 9.73 56 1 0.99 0.98
3.50 5.58 3.64 3.62 54 0 0.99 0.98
14.98 8.25 8.33 82 1 0.99 0.98

Design Variables
#1 Column(s) bottom ends
#7-8 Beam ends

ﬂ_ A ‘ | Stiffness reduction factors
. with respect to the
— L Drifts [%] referencepstate (p%)
#1 #7-8
(10)rorx rax(10) Reference 0 0
0.50 15 49
1.00 35 81
1.40 58 78
2.20 75 85
3.50 79 91

*Rotational spring stiffnesses #10 and #11
were not selected as design variables.

It is clear from Table 5.2 that the experimentally identified vibration frequencies
(2™ column) and the ones of the updated FE model (3™ column) match almost

perfectly. Especially for the 3.50% drift ratio, significant reduction from 82% to 1%
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observed in the frequency differences calculated before and after updating (4™ and 5™
columns) reveals the effectiveness of the method. On the other hand, the MAC values
calculated before and after updating (6™ and 7™ columns) are almost same due to their
low sensitivities to the selected design variables (i.e., almost insensitive). The
dimensionless stiffness reduction factors in Table 5.2 indicate that the severity of the
structural damage increases as increasing drift level. This is because of the

accumulation of damage on beam ends and column(s) bottom ends.

Contour plots of the objective function with respect to the changes in the design
variables are presented in Figure 5.2 to examine the solution space of the optimization
problem for different damage states. Note that these plots can be plotted since only
two design variables were used for the updating. In Figure 5.2, x- and y-axes indicate
the design variables used for beam and column(s) bottom ends (i.e., two design
variables), whereas the z-axis (contours) represents the value of the objective function
for a particular design parameter pair. The areas with darker blue zones indicate the
global minimum (i.e., solution of the optimization problem). It can be said that the
objective function has a flat surface in the vicinity of the solution. In other words, the
global minimum lies within a wide interval (especially at low damage states);
therefore, there exists no prominent solution for the optimization problem (i.e., it is
difficult to find the global minimum point). As the damage level increases, the areas
with darker blue zones shrink (i.e., the region indicating the global minimum narrows
down), indicating that the solution becomes closer to a prominent one. This verifies
that the chosen design parameters are convenient to represent the damage patterns

observed at higher drift ratios.
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Figure 5.2 The contour plots of the objective function for increasing damage states (F1 — bare frame)



The damage identification results presented above were also supported by visual
damage inspections made during quasi-static tests. In Figure 5.3 (a), the damage state
of the frame at 3.50% drift ratio (i.e., the drift ratio where the design variables are more
representative) is shown. Here, extensive and deep cracks were observed on the beam
and the column(s) bottom ends, which are presented in Figures 5.3 (b) and (c),
respectively. At this drift ratio, deep cracks and spalling of concrete were observed on
the column(s) bottom ends, and more than 5 mm crack width was measured on the
beam ends. In this damage level, the vibration frequencies of the frame were reduced
by 35% and 45% for the first and the second modes with respect to the undamaged
state, respectively. The damage observations during the tests are in good agreement
with the damage identification results. Especially, structural damage is mainly
concentrated on the beam ends and on the column(s) bottom ends, whereas there exists
only minor damage on the other parts of the frame (i.e., column(s) top ends, column(s)
mid-zones, and beam mid-zone). Note that the pictures presented in Figures 5.3 (b)

and (c) are chosen to indicate the most damaged sides of the beam and column(s).

Figure 5.3 (a) General view of the frame, observed damages on the (b) beam ends and the (c)

column(s) bottom ends at 3.50% drift ratio (Personal archive, 2016)
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Figure 5.3 continues

5.3 Damage Identification of the Infilled Frames (F2 and F3)

In real-life situations, it is a known fact that the existence of infill walls has
stiffening effects along the in-plane directions of structural systems. This means that
the infilled structures have higher in-plane vibration frequencies than those of their
counterparts without infills. Nevertheless, this is not the case for the tested frames (i.e.,
F1, F2, and F3) within the context of this thesis. By investigating the modal
identification results presented in Section 4.6, it can be seen that the in-plane
frequencies for the frames at undamaged state are very similar (i.e., minor differences
may be due to variabilities in production, workmanship, concrete strength, axial load
level, etc.), which implies that the infills are ineffective. This may be considered as a
counter-intuitive result at a first glance, but it should be emphasized that the infill walls
couldn’t be excited properly during the dynamic tests due to the low excitation levels.

In other words, the infill walls are too rigid to be excited by the excitation conditions
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at hand. Namely, the excitation capacity of the shaker is limited due to its size and the
ambient excitation is not sufficient and proper since the tests were conducted under
closed (i.e., isolated) laboratory conditions without environmental effects (i.e., absence
of usual ambient effects such as traffic, wind, etc.). Therefore, the recorded vibration
data represent the dynamic characteristics of only the frame structure without the
contributions of the infills. Note that although the infills are ineffective during the
dynamic tests, they have a decisive role in the behaviors and damage formations of the
frames during the quasi-static tests, which is revealed by damage observations

presented in Chapter Four.

Since the dynamic characteristics of the infilled frames are very similar to the bare
frame, therefore very similar to the FE model of the bare frame, considering the infill
members in the modeling stage would lead to obtaining FE models which diverge from
the experimental results. It is therefore impossible to develop realistic FE models,

which are the representatives of the actual frame systems, for the infilled frames.

Based on the statements above, the initial FE model of the bare frame (refer to
Section 5.2) was used for damage identification purposes of the infilled frames. Since
it was not possible to perform damage identification of the infill walls (i.e., due to lack
of the FE model with infills), effects of different types of infills on the frame structures’
damage mechanisms were aimed to be investigated. In this context, the procedure
applied on the bare frame (refer Section 5.2 for details) was adopted with some minor
differences. Details and the obtained damage identification results are presented in the

following sections.

5.3.1 Damage Identification of the Frame with Locked Infills (F2)

In this section, damage identification of the frame with locked infills (F2) is
discussed. Due to the low-to-moderate (mild) level panel action, which occurs because
of the sliding mechanism of the locked bricks over each other, the infill wall cannot
resist the motion of the frame structure (i.e., the infill wall moves together with the

surrounding frame during the cyclic tests). Therefore, minor damage is expected on
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the frame structure caused by the infill wall. In addition, the locked infilled frame
behaved almost similar to the bare frame during the quasi-static tests. Based on these
findings, the design variables used for the bare frame were found to be appropriate
also for this case. Consequently, column(s) bottom ends (#1), beam ends (#7-8),
rotational springs about x-axis (#10), and rotational springs about y-axis (#11) were

selected as design variables.

The initial spring stiffnesses were determined as 3236 kNm/rad (RotX) and 7355
kNm/rad (RotY) by manual updating procedure (i.e., trial-and-error method) for the
purpose of bringing the numerical modal analysis results close to the experimentally
identified ones; however, the ultimate spring stiffnesses were determined by
automated model updating approach in Section 5.3.1.1 (i.e., by performing manual
updating before, it was aimed to improve the converge performance of the automated
updating). Different from the bare frame, the weighting factors for the in-plane mode
shapes at 0.00% (i.e., undamaged state), 0.50%, 1.00%, 1.40%, 2.20%, and 3.50% drift
ratios were set to 0.3, 0.3, 0.5, 0.7, 0.7, and 1.0, respectively. This was done due to the
out-of-plane components of the experimentally identified mode shapes which have no
counterparts in the initial FE model (i.e., the initial FE model has pure in-plane mode
shapes, whereas the experimental in-plane mode shapes have out-of-plane
components, which result in minimization difficulties in mode shape residuals).
Weighting factors for the other responses (i.e., in-plane and out-of-plane vibration
frequencies, and out-of-plane mode shapes) were selected the same as the ones adopted

for the bare frame.

5.3.1.1 Updating for the Reference Model (Undamaged State)

The initial FE model was updated to obtain the reference model by using the modal
data of the undamaged state. As stated before, the substructures column(s) bottom ends
(#1), beam ends (#7-8), rotational springs about x-axis (#10), and rotational springs
about y-axis (#11) were selected as design variables, thus n=4. Note that the model

updating work was performed under the same conditions that were detailed for the
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bare frame in Section 5.2.1 (e.g., constraints, model order, dimensions of residual

vector and Jacobian matrix, etc.). Results are presented in Table 5.3.

Table 5.3 Model updating results of the initial FE model to obtain the reference model using modal data

of the undamaged state (F2 — frame with locked infills)

“4) (5
Freq. Freq. (6) @)
(.1 ) ) (3) Differences Differences MAC MAC
Initial Undamaged Updated
Before After Before After
FE Model Frame FE Model . . . .
Fre Fre Fre Updating Updating Updating | Updating
4 % % (1-2) (3-2) (1-2) (3-2)
[Hz] [Hz] [Hz] [%] [%] [-] [-]
4.77 4.57 4.57 4 0 0.96 0.96
14.95 14.50 14.46 3 0 0.78 0.78

Design Variables

] #1 Column(s) bottom ends

#7-8 Beam ends

#10 Rotational springs about x-axis (RotX)
#11 Rotational springs about y-axis (RotY)

7 8 8 7

Initial Ref. Model

(Updated)
#10 RotX (kNm/rad): 3236 2824
#11 RotY (kNm/rad): 7355 6052

*Substructures #1 and #7-8 were also
selected as design variables but not updated
by the algorithm.

As can be seen, only the rotational springs were updated by the algorithm because
of their relatively higher detectabilities (i.e., other design variables were not updated
although they were involved in the updating procedure). Accordingly, the appropriate
reference model was obtained when the spring stiffnesses about x- and y-axes became
2824 kNm/rad and 6052 kNm/rad, respectively (i.e., softer than those of the bare
frame). It is clear from Table 5.3 that the vibration frequencies of the reference FE
model (updated model, 3™ column) and the experimentally identified ones (2™
column) match very well. In addition, the MAC values calculated before (i.e., between
the mode shapes of the initial FE model and the experimentally identified ones, 6

column) and after (between the mode shapes of the reference FE model and the
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experimentally identified ones, 7" column) are almost same. This is mainly due to their
relatively lower weighting factors, which drives the updating algorithm to emphasize
more on matching the frequency responses, and/or their low sensitivities to the selected

design variables (i.e., almost insensitive).

5.3.1.2 Damage Identification at Increasing Damage States

Damage identification of the frame at increasing damage states was performed by
updating the reference model obtained in the previous section. Two design variables
were included in the updating process, namely the one at the beam ends and the one at
the column(s) bottom ends (i.e., the substructures #1 and #7-8 in Table 5.3), thus n=2
(1.e., here again, the spring stiffnesses were excluded from the updating process due to
the same reason discussed before). Note that the model updating work was performed
under the same conditions that were detailed for the bare frame in Section 5.2.2 (e.g.,
constraints, model order, dimensions of residual vector and Jacobian matrix, etc.). The
updating results with the dimensionless stiffness reduction factors (in terms of p in
percent) at different damage states with respect to the reference (undamaged) state are

given in Table 5.4.

It is clear from Table 5.4 that the experimentally identified vibration frequencies
(2" column) and the ones of the updated FE model (3 column) match almost
perfectly. Especially for the 3.50% drift ratio, significant reduction from 62% to 1%
observed in the frequency differences calculated before and after updating (4" and 5%
columns) reveals the effectiveness of the method. On the other hand, the MAC values
calculated before and after updating (6 and 7 columns) are almost same due to their
weightings and/or low sensitivities to the selected design variables (i.e., almost
insensitive). The dimensionless stiffness reduction factors in Table 5.4 indicate that
the severity of the structural damage increases as increasing drift level. This is because

of the accumulation of damage on beam and column(s) bottom ends.
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Table 5.4 Model updating results of the reference model for increasing damage states using the modal

data of the increasing damage states (F2 — frame with locked infills)

“ )
€)) 2) 3) Freq. Freq. ©) (7)
. . MAC MAC
Drifts Reference | Damaged | Updated Diff. Diff. Before After
FE Model Frame FE Model Before After . .
[%0] . : Updating | Updating
Freq. Freq. Freq. Updating | Updating (1-2) 3-2)
a-2 3-2)
[Hz] [Hz] [Hz] [o] [“%o] [-] [-]
0.50 4.57 4.10 4.10 12 0 0.97 0.96
14.46 13.88 13.91 4 0 0.81 0.81
1.00 4.57 4.08 4.08 12 0 0.97 0.97
14.46 12.83 12.88 13 0 0.91 0.91
1,40 4.57 3.96 3.96 15 0 0.97 0.97
14.46 12.45 12.50 16 0 0.93 0.92
220 4.57 3.74 3.74 22 0 0.98 0.98
14.46 11.74 11.79 23 0 0.94 0.94
3.50 4.57 3.63 3.62 26 0 0.93 0.92
14.46 8.91 8.97 62 1 0.98 0.97

Design Variables
#1 Column(s) bottom ends
S I #7-8 Beam ends

W U © v U jj Stiffness reduction factors

. with respect to the

—_— - Drifts [%] reference state (p%)
#1 #7-8

A0)Rorx rorx(10) Reference 0 0

a/ Ry M@\a 0.30 5 3
g ———————— _ 1.00 52 49
140 53 55

2.20 67 65

3.50 71 89

*Rotational spring stiffnesses #10 and #11
were not selected as design variables.

Contour plots of the objective function with respect to the changes in the design
variables are presented in Figure 5.4 to examine the solution space of the optimization
problem for different damage states (i.e., similarly to Figure 5.2). Here again, the
global minimum lies within a wide interval (especially at low damage states);
therefore, there exists no prominent solution for the optimization problem (i.e., it is

difficult to find the global minimum point). As the damage level increases, the solution
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becomes closer to a prominent one. This verifies that the chosen design parameters are

convenient to represent the damage patterns observed at higher drift ratios.
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Figure 5.4 The contour plots of the objective function for increasing damage states (F2 — frame with
locked infills)
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Figure 5.4 continues

The damage identification results presented above were also supported by visual
damage inspections made during quasi-static tests. In Figure 5.5 (a), the damage state
of the frame at 3.50% drift ratio (i.e., the drift ratio where the design variables are more
representative) is shown. Here, extensive and deep cracks were observed on the beam
and the column(s) bottom ends, which are presented in Figures 5.5 (b) and (c),
respectively. At this drift ratio, deep cracks and spalling of concrete were observed on
the column(s) bottom ends, and more than 4 mm crack width was measured on the
beam ends. In this damage level, the vibration frequencies of the frame were reduced
by 21% and 38% for the first and the second modes with respect to the undamaged
state, respectively. The damage observations during the tests are in good agreement
with the damage identification results. Especially, structural damage is mainly
concentrated on the beam ends and on the column(s) bottom ends, whereas there exists
only minor damage on the other parts of the frame (i.e., column(s) top ends, column(s)
mid-zones, and beam mid-zone). It should be emphasized that the frame seems
analogous to the bare frame in the sense of occurred damages. Note that the pictures
presented in Figures 5.5 (b) and (c) are chosen to indicate the most damaged sides of

the beam and column(s).
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(b)

Figure 5.5 (a) General view of the frame, observed damages on the (b) beam ends (the picture on the

left indicates the backside of the frame) and the (¢) column(s) bottom ends at 3.50% drift ratio
(Personal archive, 2016)
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5.3.2 Damage Identification of the Frame with Standard Infills (F3)

This section presents the damage identification work of the frame with standard
infills (F3). In this case, the infill wall acts like a rigid panel (i.e., high-level panel
action due to using mortar on the bed and head-joints) and resists the motion of the
surrounding frame system during the cyclic tests. Therefore, damage is likely to occur
also on the column(s) mid-zones and top ends that are exposed to the resistance force
of the infill wall. This approach can also be verified by the equivalent truss mechanism
for a typical infilled frame where the infill wall is represented by a compressive
diagonal strut element (Figure 5.6 (a)). Due to this mechanism, shear and compressive
stresses occur on the loading corner along the contact length of the surrounding frame

and the diagonal strut, as demonstrated in Figure 5.6 (b).

<

1l

A@L-@QT

I
(a) (b)

Figure 5.6 (a) Equivalent truss mechanism for a typical infilled frame, and (b) the occurred

compressive and shear stresses on the loading corner (Crisafulli, 1997)

By also considering the equivalent truss mechanism, the internal force diagrams
(i.e., bending moment, shear force, and axial force) for the members of a typical
infilled frame exposed to lateral loading along the beam are obtained as in Figure 5.7.
It should be stated that the bending moments in the surrounding frame members are
significantly smaller than they are in the bare frame for the same load level. This is
due to the lateral force is mainly transmitted to the foundation by the truss mechanism.
For example, the maximum bending moment at the bottom end of the right column in
Figure 5.7 (a) is approximately six times smaller than that of the bare frame (Crisafulli,

1997).
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Figure 5.7 (a) Bending moment, (b) shear force, and (c) axial force diagrams for a typical infilled

frame exposed to lateral loading along the beam (Crisafulli, 1997)

Based on the statements above and the approach that was used for the other frames
(i.e., symmetry conditions, detectability indices, and internal moment levels occurred
in the frame elements), column(s) bottom ends (#1), column(s) mid-zones (#2),
column(s) top ends (#3), beam ends (#7-8), rotational springs about x-axis (#10), and
rotational springs about y-axis (#11) were selected as design variables (i.e., 6 design

variables were used, refer to Figure 5.1 (b)).

The initial spring stiffnesses were determined as 2824 kNm/rad (RotX) and 6052
kNm/rad (RotY) by manual updating procedure (i.e., trial-and-error method) for the
purpose of bringing the numerical modal analysis results close to the experimentally
identified ones; however, the ultimate spring stiffnesses were determined by
automated model updating approach in Section 5.3.2.1. The weighting factors for the
in-plane mode shapes at 0.00% (i.e., undamaged state), 0.50%, 1.00%, 1.40%, 2.20%,
and 3.50% drift ratios were set to 0.2, 0.2, 0.5, 0.7, 1.0, and 1.0, respectively. This was

done due to the same reason discussed in Section 5.3.1. Weighting factors for the other
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responses (i.e., in-plane and out-of-plane vibration frequencies, and out-of-plane mode

shapes) were selected the same as the ones used for the other frames.

5.3.2.1 Updating for the Reference Model (Undamaged State)

The initial FE model was updated to obtain the reference model by using the modal
data of the undamaged state. As stated before, the substructures column(s) bottom ends
(#1), column(s) mid-zones (#2), column(s) top ends (#3), beam ends (#7-8), rotational
springs about x-axis (#10), and rotational springs about y-axis (#11) were selected as
design variables, thus n=6. Note that the model updating work was performed under
the same conditions that were detailed for the other frames. The only difference is the
number of design variables (n=6), and therefore the dimensions of the Jacobian matrix

(36x6). Since n<m, an overdetermined problem occurs. Results are given in Table 5.5.

As can be seen, only the rotational springs were updated by the algorithm because
of their relatively higher detectabilities (i.e., other design variables were not updated
although they were involved in the updating procedure). Accordingly, the appropriate
reference model was obtained when the spring stiffnesses about x- and y-axes became
2528 kNm/rad and 5366 kNm/rad, respectively (i.e., softer than those of the other
frames). It is clear from Table 5.5 that the vibration frequencies of the reference FE
model (updated model, 3™ column) and the experimentally identified ones (2"
column) match very well. In addition, the MAC values calculated before (i.e., between
the mode shapes of the initial FE model and the experimentally identified ones, 6
column) and after (between the mode shapes of the reference FE model and the
experimentally identified ones, 7 column) are almost same. This is mainly due to their
relatively lower weighting factors, which drives the updating algorithm to emphasize
more on matching the frequency responses, and/or their low sensitivities to the selected

design variables (i.e., almost insensitive).
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Table 5.5 Model updating results of the initial FE model to obtain the reference model using modal data

of the undamaged state (F3 — frame with standard infills)

4) (5)
Freq. Freq. (6) @)
(.1.) 2) 3) Differences Differences MAC MAC
Initial Undamaged Updated
Before After Before After
FE Model Frame FE Model . . . .
Fre Fre Fre Updating Updating Updating | Updating
4 4 4 (1-2) (3-2) (1-2) (3-2)
[Hz] [Hz] [Hz] [%] [%] [-] [-]
4.57 4.41 4.41 4 0 0.97 0.97
14.46 14.22 14.18 2 0 0.77 0.77

Design Variables

#1  Column(s) bottom ends

#2  Column(s) mid zones

#3 Column(s) top ends

#7-8 Beam ends

#10 Rotational springs about x-axis (RotX)
#11 Rotational springs about y-axis (RotY)

Initial Ref. Model

(Updated)
#10 RotX (kNm/rad): 2824 2528
#11 RotY (kNm/rad): 6052 5366

*Substructures #1, #2, #3, and #7-8 were
also selected as design variables but not
updated by the algorithm.

5.3.2.2 Damage Identification at Increasing Damage States

Damage identification of the frame at increasing damage states was performed by
updating the reference model obtained in the previous section. Four design variables
were included in the updating process, namely the one at the column(s) bottom ends,
the one at the column(s) mid-zones, the one at the column(s) top end, and the one at
the beam ends (i.e., the substructures #1, #2, #3, and #7-8 in Figure 5.1 (b)), thus n=4
(i.e., here again, the spring stiffnesses were excluded from the updating process due to
the same reason discussed before). Note that the model updating work was performed
under the same conditions that were detailed for the other frames. The only difference
is the number of design variables (n=4), and therefore the dimensions of the Jacobian

matrix (36x4). Since n<m, an overdetermined problem occurs. The updating results
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with the dimensionless stiffness reduction factors (in terms of p in percent) at different

damage states with respect to the reference (undamaged) state are given in Table 5.6.

Table 5.6 Model updating results of the reference model for increasing damage states using the modal

data of the increasing damage states (F3 — frame with standard infills)

“) ®)

1) 2) 3) Freq. Freq. (©) (7)
. . MAC MAC
Drifis Reference | Damaged | Updated Diff. Diff. Before After
FE Model Frame FE Model Before After . .

(%] . . Updating | Updating
Freq. Freq. Freq. Updating | Updating (1-2) (3-2)
(1-2) (3-2)

[Hz] [Hz] [Hz] [%o] [“%] [-] [-]

0.50 4.41 4.06 4.06 9 0 0.97 0.97
14.18 13.74 13.69 3 0 0.80 0.80

1.00 441 3.82 3.83 16 0 0.98 0.98
14.18 12.45 12.45 14 0 0.90 0.90

1.40 4.41 3.77 3.77 17 0 0.99 0.98
14.18 11.69 11.74 21 0 0.94 0.93

590 441 3.40 341 30 0 0.98 0.98
14.18 10.86 10.83 31 0 0.95 0.95

3.50 441 3.05 3.06 45 0 0.99 0.98
14.18 9.93 9.90 43 0 0.97 0.97

#1

Design Variables
Column(s) bottom ends
#2  Column(s) mid zones
#3  Column(s) top ends
#7-8 Beam ends

Stiffness reduction factors
. with respect to the
Drifts [%] referencepstate (p%)
#1 #2 #3 | #7-8
Reference 0 0 0
0.50 44 3 5 8
1.00 57 20 25 35
1.40 59 23 40 45
2.20 73 30 54 50
3.50 82 35 62 60

*Rotational spring stiffnesses #10 and #11
were not selected as design variables.

It is clear from Table 5.6 that the experimentally identified vibration frequencies

(2™ column) and the ones of the updated FE model (3 column) match almost
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perfectly. Especially for the 3.50% drift ratio, significant reduction from 45% to 0%
observed in the frequency differences calculated before and after updating (4™ and 5™
columns) reveals the effectiveness of the method. On the other hand, the MAC values
calculated before and after updating (6™ and 7™ columns) are almost same due to their
weightings and/or low sensitivities to the selected design variables (i.e., almost
insensitive). The dimensionless stiffness reduction factors in Table 5.6 indicate that
the severity of the structural damage increases as increasing drift level. This is because
of the accumulation of damage on structural elements. Since four design variables
were used for the frame updating, the solution space of the optimization problem for
different damage states cannot be visualized by contour plots as in the case of other

frames (see Figures 5.2 and 5.4).

The damage identification results presented above were also supported by visual
damage inspections made during the quasi-static tests. In Figure 5.8 (a), the damage
state of the frame at 3.50% drift ratio is shown. Here, extensive and deep cracks were
observed on the beam ends (Figure 5.8 (b)) and the column(s) bottom ends (Figure 5.8
(c)). At this drift ratio, deep cracks and spalling of concrete were observed on the
column(s) bottom ends, and more than 5 mm crack width was measured on the beam
ends. In addition, several cracks occurred on the column(s) top ends and mid-zones
(Figures 5.8 (a) and (b)) because of the panel action of the infill wall. In this damage
level, the vibration frequencies of the frame were reduced by 31% and 30% for the
first and the second modes with respect to the undamaged state, respectively. The
damage observations during the tests are in good agreement with the damage
identification results. Especially for this frame, structural damage is concentrated on
the column(s) bottom ends, mid-zones, top ends (i.e., throughout the column
members), and beam ends (i.e., the damage formation is significantly different from
the other frames). Note that the pictures presented in Figures 5.8 (b) and (¢) are chosen

to indicate the most damaged sides of the structural elements.
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(©

Figure 5.8 (a) General view of the frame, observed damages on the (b) column(s) top ends and beam

ends, and the (c) column(s) bottom ends at 3.50% drift ratio (Personal archive, 2016)
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CHAPTER SIX

MODEL CALIBRATION WORK PERFORMED ON THE UNREINFORCED
MASONRY COURTYARD WALLS OF THE HISTORICAL ISABEY
MOSQUE

6.1 Introduction

Historical masonry structures such as bridges, arches, buildings, towers (e.g.,
minarets), monuments (e.g., mosques, churches, basilicas) are shown as the symbols
of cultural heritage and have great cultural and spiritual values for societies. They also
significantly contribute to the economic development of countries by being tourist
attractions. Therefore, it is important to ensure the structural safety of these unique

cultural heritage pieces and hand them down to future generations.

Natural disasters (e.g., earthquakes, hurricanes, etc.), degeneration of materials in
time, and dilapidation are the main reasons that threaten the safety of historical
structures. Therefore, safety assessment and retrofitting/restoration are required to
preserve them. Nowadays, especially for developed countries, interest in preservation
and restoration of historical masonry structures, which requires also rigorous structural
assessments, has increased. As the need for structural assessment increases,
understanding the structural behavior of these structures has become an important field
in engineering applications. One needs to obtain sufficiently accurate knowledge of
the current state of the structural system to avoid erroneous interventions, and therefore
confine the interventions within a minimal state in order to preserve the structure’s
historical value. The structural condition can be assessed by investigating structural

integrity, geometry, boundary conditions, and material properties.

Finite element (FE) analysis is a popular tool for numerically modeling historical
masonry structures, however, developing a reliable FE model is a difficult task.
Challenges arise due to non-homogeneity of the masonry material, complicated cross-
sectional properties (e.g., multi-leaf walls), uncertainty in boundaries, and
mechanical/chemical characteristics of mortar layers. It is possible for an analyst to

make some assumptions and simplifications in modeling and/or material
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characteristics to overcome these aforementioned complexities. Generally, this
modeling approach leads to erroneous FE models which do not accurately represent
the real system. In this context, model calibration (a.k.a. model updating) has become
a popular tool to correct these errors and to obtain a more reliable FE model which is
more representative of the real structure (Friswell & Mottershead, 1995). Here, the
calibration term refers to tuning the uncertain parameters of the numerical model such
as Young’s modulus, mass density, and boundary conditions by taking into account

the in-situ measurements.

This chapter of the thesis presents the operational modal analysis (OMA) results
and the sensitivity-based finite element model updating (FEMU) work performed on
the unreinforced masonry courtyard walls of the historical Isabey Mosque. Two sets
of ambient vibration tests were conducted using 12 uni-axial accelerometers which
were deployed to register responses along the out-of-plane directions of the two
perpendicularly positioned courtyard walls. The measured dynamic response data
were then processed using a well-known output-only method called Enhanced
Frequency Domain Decomposition (EFDD) embedded in ARTeMIS software
(ARTeMIS, 2016). The initial numerical macro model of the system was developed in
ABAQUS (ABAQUS, 2017) FE modeling environment by using the material
properties obtained from the in-situ flat-jack tests and the relevant literature. Boundary
conditions were defined by using individual translational springs in three directions.
The initial stiffnesses of these springs were determined by performing manual
updating work on the model so that the modal parameters of the initial numerical
model capture the identified experimental results. In order to obtain a more reliable FE
model which is more representative of the modal parameters estimated by the in-situ
test, the initial FE model (i.e., initial numerical model) was updated using the
sensitivity-based FEMU method in FEMtools software (FEMtools, 2017a). In this
context, the model parameters, namely mass density, Young’s modulus, and boundary
conditions (i.e., translational springs) of the initial numerical model were calibrated in

the sense of global parameter updating.
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6.2 Description of the Historical Isabey Mosque

The historical Isabey Mosque was constructed by Aydinoglu Isa Bey as the work
of architect Saml1 Ali in 1375 in Selcuk, Izmir. It is evaluated as one of the oldest and
most magnificent masterpieces of the Anatolian Principalities period. During its
construction, stone and column members from the ruins of the nearby older
civilizations (e.g., Ephesus and the Temple of Artemis) were also used. The mosque
structure is composed of 4 walls forming the main building and 3 walls surrounding
the courtyard (Figures 6.1 (a) and (b)). The courtyard walls have 1.80 m average
thickness and 11.6 m free height. There is a ~3 m height difference between the ground
levels of the interior and the exterior sides (i.e., the interior side is at a higher level).
The courtyard walls are unreinforced. Herein, the upper half portion is made in three-
layer stone masonry style where the middle layer is composed of rubble stones to fill
the cavity between the outer layers, whereas the lower half portion is made in two-
layer stone masonry style. The structural behaviors and damage types observed after
past earthquakes revealed that the damage mechanism of historical masonry
structures is predominantly along their out-of-plane directions (Augenti & Parisi,
2010; Dizhur et al., 2011; Dizhur & Ingham, 2015; Ismail et al., 2011). That’s why
the main motivation of this study is to research the out-of-plane behaviors of the
West and North courtyard walls which are perpendicular to each other (Figures 6.1 (c)
and (d)). These walls are particularly vulnerable to out-of-plane seismic loads due to

lack of a slab forming a diaphragm to enable the walls to resist these loads altogether.

Figure 6.1 (a) A general view of the historical Isabey Mosque, (b) main structure, (¢c) West, and (d)

North courtyard walls (Personal archive, 2017)
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Figure 6.1 continues

6.3 Field Measurements and Operational Modal Analysis Results

Dynamic characteristics of the courtyard walls were estimated by using ambient
vibration (AV) response data. These tests were conducted in-situ using 16-channel
Digitex portable data acquisition system with 16-bit sensitivity and 12 force-balanced
uni-axial accelerometers with £3g full range, noise floor bandwidth of 0.05-1500 Hz,
and dynamic range greater than 110 dB. The AV tests were performed in two different
sensor setups (i.e., Set-1 and Set-2) in order to measure the dynamic behavior of the
wall system with a higher spatial resolution (i.e., response data acquired from more
location). In Set-1, all of the accelerometers were placed on to the inner surface (facing
courtyard) of the West wall along the out-of-plane direction (Figure 6.2 (a)). In Set-2,
six of the accelerometers were kept as reference (R) sensors and the remaining six
were relocated to the inner surface of the North wall in order to capture the out-of-
plane responses of both walls simultaneously (Figures 6.2 (a) and (b)). Positions of the
accelerometers, the number of accelerometers used in the test setups, and the selection
of the reference accelerometers were determined by investigating the mode shapes of
a preliminary numerical model (i.e., a coarse model having fixed support conditions
and approximate material characteristics) in order to capture a sufficient number of
out-of-plane modes of the wall system. For both of the test setups, approximately 14
minutes long AV response data were collected with a sampling rate of 250 Hz. The
data acquisition system and one of the accelerometers deployed on the walls are

presented in Figure 6.3.
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Figure 6.2 Accelerometer layouts of the inner surfaces (facing courtyard) of (a) West and (b) North

courtyard walls (dimensions are in cm)

(b)

Figure 6.3 (a) The data acquisition system and (b) one of the accelerometers deployed on the walls

(Personal archive, 2017)

Pre-processing of the dynamic response data was performed in MATLAB.

Operational modal analysis (OMA) was conducted in ARTeMIS software using the
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EFDD method. The results are shown in Figure 6.4. It should be stated that only three
out-of-plane modes were clearly identified from the collected experimental data. The
vibration frequencies of these modes (i.e., 1*, 2" and 3" experimentally identified

out-of-plane modes) are estimated as 3.906 Hz, 8.960 Hz, and 21.265 Hz, respectively.

f,=8.960 Hz

(a) (b)

f,=21.265 Hz

Figure 6.4 (a) 1%, (b) 2", and (c) 3™ experimentally identified out-of-plane modes of the courtyard
wall system (W: West, N: North)

6.4 Initial FE Model of the Courtyard Walls

Mechanical characteristics of masonry structures may differ in different loading
directions due to the variations in material properties and/or construction detailing.
Therefore, making realistic assumptions in numerical modeling is essential to capture
the actual structural system behavior. Mainly, three approaches are used in modeling
masonry structures, namely micro modeling, simplified micro (meso) modeling, and
macro modeling (Lourengo, 1996). Micro modeling is the detailed one in which
masonry units and mortars (both bed and head-joints) are modeled separately (Figure

6.5 (a)). In meso modeling, masonry units are modeled together with their interface
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relations and therefore there is no need to define mortars (Figure 6.5 (b)). In macro
modeling, which is the coarsest and simplest one, a composite structural finite element
(i.e., macro element) consisting of both the masonry unit and mortar layers is used

(Figure 6.5 (c)).

Masonry Unit Mortar Masonry Unit Interface Composite
7" I M I lé I
L I || |
.-
L L | ——
‘ LT 7 1T T T T [
L | | Il |

(a) (b) (c)
Figure 6.5 (a) Micro, (b) meso, and (c¢) macro modeling approaches for masonry structures

(Lourenco, 1996)

In this research work, the macro modeling approach was used with a homogeneous
material having equivalent mechanical properties representing both the masonry unit
and the mortar to model the courtyard walls. This may seem to be too simplistic, but
it is known that selecting a simple numerical model that represents the salient dynamic
characteristics of the structure is very effective in dealing with convergence problems

in model updating studies (Teughels, 2003; Teughels & De Roeck, 2004).

Due to the absence of shell and solid elements in FEDEASLab environment, the
initial FE model (i.e., an extensive and realistic model than the preliminary model) of
the West and North courtyard walls was developed in ABAQUS using 3-dimensional,
10-node quadratic tetrahedron (C3D10) continuous solid elements. Determining the
optimum mesh size of a FE model is an important issue. Large meshes may lead to
inaccurate and non-representative models, whereas small meshes may lead to
unnecessarily complex and computationally expensive models. The optimum mesh
size (therefore the optimum FE number) of the initial FE model was determined from
convergence analysis which includes repeated frequency analyses for different mesh
sizes. Note that the convergence analysis using the preliminary numerical model was
performed before the field measurements discussed in Section 6.3. The relationship

between the FE number and the 1% mode frequency is given in Figure 6.6 by a
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convergence plot. Here, the optimum FE number is determined as 9405 from the first
point where the frequency value remains almost constant. As a result, the initial FE

model (i.e., initial numerical model) was created by 16356 nodes and 9405 elements.
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Figure 6.6 Convergence plot of the 1 mode of the preliminary numerical model

Mechanical characteristics of the wall system were determined by flat-jack tests
(Figure 6.7) in accordance with ASTM C1197-04 (2004) and RILEM MDT.D.4
(2004), literature (Ceravolo et al., 2016; Mouyiannou et al., 2014; Ramos et al., 2005),
and the findings of the similar structures that were previously investigated by the
Turkish Republic Directorate General of Foundations. Based on these evaluations;
mass density (p), Young's modulus (E), and Poisson's ratio (v) of each macro element

of the initial FE model were set to be 2400 kg/m?, 4535 MPa, and 0.25, respectively.

(b)
Figure 6.7 Flat-jack tests from (a) West and (b) North courtyard walls (Personal archive, 2018)
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Boundary conditions (support conditions) were modeled by using translational
springs in global X, Y, and Z directions with corresponding spring stiffnesses Kx, Ky,
and Kz, respectively. The number of spring elements is 2649 in total (i.e., 883 spring
elements for each X, Y, and Z direction). Note that the springs were divided into four
distinct groups (regions) by their locations and designated as spring groups SGs. This
way their different characteristics based on their locations could be considered in
model updating (Figure 6.8). SG-1 was used for the zone where the North wall is
interrupted by a doorway (Figure 6.8 (a), the doorway is not shown in the figure). SG-
2 was used for the triangular interface between the North wall and the exterior stairs
(Figure 6.8 (b)). SG-3 was used for the bases of both walls (soil-wall interface, Figure
6.8 (¢)). Finally, SG-4 was used for the interface between the West wall and the
minaret (Figure 6.8 (d)). No rotational springs were used in the modeling due to the
definition of the solid elements (i.e., no rotational degree of freedom is available for
solid elements due to their higher torsional and bending rigidities). In real-life cases,
determining the actual stiffnesses of the springs representing the boundary conditions
is practically impossible. Therefore, making educated guesses for assigning initial
stiffness values for these springs under some assumptions is inevitable. Note that the
final stiffness values will be obtained by updating these initial values. In this context,
the initial spring stiffnesses were determined by a trial-and-error method (manual
updating method without any optimization algorithm) so as to obtain an initial model
with dynamic characteristics that are closely approximating the modal parameters
obtained experimentally. Because of being the most uncertain model parameters (i.e.,
no prior knowledge exists), at this initial stage, only the spring values were manually
updated, and the other parameters were set to be constant. This preliminary manual
updating is very effective in overcoming potential convergence problems that may
occur in the next stage of the model updating process using an optimization-based

procedure.

Since the out-of-plane behavior of the wall system is the main motivation of this
study, only the out-of-plane modes of the initial FE model were considered. No
changes were observed in the modal properties when Ky spring stiffnesses of SG-1,
SG-2, and SG-3 were updated, which shows that the considered modes are insensitive

to the aforementioned spring stiffnesses. Therefore, these springs were removed from
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the model to increase the convergence performance of the updating problem. Also,
note that only the out-of-plane modes (i.e., the modes that are the main motivation of
the study) were extracted from the experimental data. Therefore, the model was set to
be vertically fixed by assigning high values for Ky spring stiffnesses of SG-4. This
was done to prevent vertical modes to occur (not captured experimentally) and to
reduce difficulties in pairing between the experimental and the numerical modes.
Eventually, Kx and Kz spring stiffnesses were manually calibrated to 18000 kN/m and
9000 kN/m for SG-1, 18000 kN/m and 9000 kN/m for SG-2, 18000 kN/m and 18000
kN/m for SG-3, 18000 kN/m and 18000 kN/m for SG-4, respectively.
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Figure 6.8 Spring groups (SGs) used for the numerical model: (a) SG-1, (b) SG-2, (¢) SG-3, and (d)
SG-4

Modal analysis of the initial FE model was conducted by ABAQUS standard
module and the results are shown in Figure 6.9. Here, only the modes that correspond
to the experimentally identified ones (see Figure 6.4) are presented (i.e., 1%, 5", and
14™ modes of the initial FE model). Vibration frequencies of these modes are obtained
as 3.765 Hz, 9.208 Hz, and 19.848 Hz, respectively. Note that all of these modes are
mainly the out-of-plane modes of the West wing of the courtyard wall system. It should

be stated that almost all the modes between the 1% and 14™ modes exhibit the out-of-
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the experimental data due to the spatial resolution of the present accelerometer layout.

plane behavior of the wall system; however, these modes couldn’t be extracted from
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Figure 6.9 (a) 1%, (b) 5, and (c) 14" modes of the initial numerical model

Modal analysis results identified using the initial numerical model (by the
ABAQUS model) and the experimentally obtained counterparts (by the ARTeMIS
model) are presented in Table 6.1 for comparison purpose. In the table, also the MAC
values calculated between the experimental and numerical modes are given. Remind
that a MAC value being close to unity denotes spatial similarity between the compared
mode shapes (Allemang, 2003). It can be said that the numerically and experimentally
obtained mode shapes are spatially similar to each other due to the fact that the smallest
MAC value is at 78%. Nevertheless, large differences are seen for the frequency

estimations (e.g., ~7% difference is calculated for the 3™ mode). Therefore, it can be
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said that the initial numerical model needs updating to better represent the real
structural system in terms of the estimated modal parameters. The updating will be
done by calibrating some uncertain model parameters to match the numerical modal

parameters with the experimental ones.

Table 6.1 Comparison of the modal parameters obtained using the initial numerical model and their

experimental counterparts

Mode # Init. Num. Model | Experimental | Freq. Diff. MAC
[Num. vs. Exp.] Freq. [Hz] Freq. [Hz] [9%] [9%]

1-1 3.765 3.906 -3.61 95.20

5-2 9.208 8.960 2.77 82.60

14-3 19.848 21.265 -6.66 78.30

6.5 Model Updating Work for the Initial FE Model

Model updating studies for the initial FE model of the courtyard walls were
performed by FEMtools software using sensitivity-based finite element model
updating method with Bayesian technique (FEMtools, 2017a). Here, the MATLAB
based code (discussed in Chapters Four and Five) couldn’t be used since the initial FE
model was created in ABAQUS environment. A brief theoretical background of the
updating method that is used in FEMtools is described below (FEMtools, 2017b).

The functional relationship between the responses and the model parameters can be

written as follows
(R p={R}+[S]({P.J-{P,}) or {AR}=[S]{aP} (6.1)

where {R,} is the response vector obtained from the experimental data, {R,} is the
response vector of the numerical model for a given state {PO} of the model parameter
values, {Pu} is the vector of the updated model parameter values, [S ] is the sensitivity
matrix, {AR} is the difference vector calculated between {Re} and {Ra} response

vectors, and {AP} is the parameter variation wanted to be identified. Note that the

experimental and numerical responses must be accurately paired. Equation 6.1 can be
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solved by least squares, weighted least squares, or Bayesian techniques, depending on
the application of weighting factors used to weight the parameters and responses with

respect to their importance, reliability (confidence), and amount of noise.

If the number of responses equals the number of updating parameters (i.e., in the

case where [S ] 1S a square matrix), {AP} can be directly found by simple inversion

of the sensitivity matrix as follows
{AP}=[S]" {AR) (6.2)

Otherwise, the pseudo-inverse calculation is required where [S ]+ is the pseudo-inverse

of the sensitivity matrix (Equation 6.3).

(AP} =[] {ary = ([sT'[s]) [T {ar} 63)

The least squares solution calculated from Equations 6.2 or 6.3 minimizes an

objective function which can be written as follows

{Obj. Func.} = [S]{AP} —{AR} (6.4)

For Bayesian techniques, the discrepancy between the experimental and numerical

responses is defined by a weighted error as defined in Equation 6.5, where [C R] and
[C P] are the diagonal weighting matrices representing the confidence in responses and

model parameters, respectively. Note that if [C P] =0, (i.e., no error estimates on the

model parameters are available, therefore there is no confidence in model parameters)

the weighted least squares problem occurs, whereas if [CR] =0, (i.e., there is no

confidence in the experimental data), then the model parameters are not updated since

the experimental data are not used. In addition, if [C P] =0 and [C R] =1 (i.e., the

responses are weighted similarly), a least squares problem occurs.
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E={AR}' [C,J{AR} +{AP} [C, ]{AP} (6:5)

Error given in Equation 6.5 can be minimized as follows

{P,}={P,} +[G]{-AR} (6.6)

where [G] is the gain matrix. In the case where there are more responses than

parameters, [G] is computed as Equation 6.7; otherwise, which is generally the case,

Equation 6.8 is used.

[6]=([c, ]+ [T [e.]Is]) [sT'[c:] (67)

1

[61=((¢,)) [T (1] +[s1le] [T 68)

As stated in Chapter Three, the weighting matrices, which depend on the structural
characteristics, testing methods, and modeling strategies, can be determined based on
a statistical approach like Gauss-Markov estimate. However, in practice, this statistical
information is often not available, such that the appropriate weights are determined
based on engineering judgements. Note that the absolute values of the elements within
the weighting matrices are not meaningful alone, only their relative values with respect
to each other are important. Sometimes, it is more useful to define statistical scatter

values (Equation 6.9) instead of these matrices.

Scatter =/ p (6.9)

where ¢ and p are the standard deviation and the mean of the considered model
parameter or response, respectively. Note that low scatter results in low variance, high

confidence, and high [C,] and [C, ], whereas high scatter results in high variance,

low confidence, and low [C,] and [C,]. Model parameters with low scatters do not

change too much during updating (i.e., parameters only change if the great majority of

the responses indicate that these parameters should change), whereas the parameters
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with high scatters are free to change (i.e., large parameter changes occur). Responses
with low scatters lead to model parameter changes during updating (i.e., result in large
parameter changes), whereas responses with high scatters only have effects if they all
change the model parameters in the same way (i.e., result in small parameter changes).
Since the mode shape estimations contain higher estimation uncertainty than
frequency estimations due to having a limited number of sensors and estimation
sensitivity to measurement noise, the strategy of assigning relatively higher scatter

values to mode shape responses is suggested if they are thought to be unreliable.

Vibration frequencies and MAC values for the 1%, 5, and 14" modes of the
ABAQUS model and the 1%, 2™, and 3™ experimental modes from ARTeMIS were
selected as responses to be used for updating. Scatter values for the frequencies and
MAC:s were selected as 1% and 30%, respectively. Note that relatively a higher scatter
value was assigned to the MAC responses due to their higher estimation uncertainty.
Mass density, Young’s modulus, and boundary conditions (defined by translational
springs) were selected as model parameters to be updated (i.e., parameters that are
considered uncertain therefore require updating). The scatter values of 10%, 10%, and
25% were assigned to mass density, Young’s modulus, and springs stiffnesses,
respectively. Note that relatively a higher scatter value was assigned to the spring
stiffnesses due to their higher uncertainty. Initial values used for these parameters are
given in the previous sections. In order to obtain physically meaningful/feasible model
parameter values after updating, bounds (i.e., change intervals during updating) were
selected as + 10%, + 20%, and + 60% for mass density, Young's modulus, and spring
stiffnesses, respectively. Note that relatively a wider bound was used for spring

stiffnesses due to their higher uncertainty.

Effects of mass density, Young’s modulus, and spring stiffnesses on the vibration
frequencies were investigated by a sensitivity analysis prior to updating the initial FE
model. Based on the results of the sensitivity analysis, it is possible to investigate
whether the model parameters should be updated individually for each finite element
(local updating) or together for all finite elements with similar effects on modal
parameters (global updating). Sensitivity plots of the vibration frequencies of the

numerical model (i.e., 1%, 5™ and 14" modes) with respect to the mass density,
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Young’s modulus, and spring stiffnesses (i.e., Kx, Ky, and Kz) are shown in Figures
6.10 to 6.14, respectively. Note that the normalized sensitivities, independent on the
units of the model parameters and responses, and thus can be compared for different
model parameter types, are presented in the figures. From these results, it can be said
that all finite elements of the model have similar effects (i.e., detectabilities), especially
the Young’s modulus, on the vibration frequencies (i.e., predominantly single color,
red for mass density and blue for Young’s modulus). There are patches of zones with
different colors (i.e., sensitivities) but in order to have a well-conditioned
overdetermined problem, it was decided to ignore them and perform global updating.
(i.e., assigning a common model parameter for finite elements having similar

detectabilities).

Similar results were observed for each SG (SG-1, SG-2, SG-3, and SG-4). Note that
the insensitiveness of the modal parameters with respect to Ky stiffnesses are also
verified by the sensitivity analyses. Therefore, also for the spring stiffnesses, in order
to obtain a well-conditioned optimization problem, global parameter updating was
found to be appropriate. Consequently, model updating was performed by using 10
model parameters; namely one for mass density and Young’s modulus of the entire
model, and four for Kx and Kz each having four separate spring groups (i.e., SG-1,

SG-2, SG-3, and SG-4).

TAYAVAY VAVAY
v “ VVNAVVAV'A’\LV
uvm" vﬂb

avmm»
‘tﬂ« ” ‘
L

OASNN AV
VAVAVAVAVANG
«:vﬁfv’t K
VAN

N
Ry

SRk

10 3

(a) (b)
Figure 6.10 Sensitivity plots of the (a) 1%, (b) 5%, and (c) 14" modes of the numerical model with

respect to mass density
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Figure 6.11 Sensitivity plots of the (a) 1%, (b) 5%, and (c) 14" modes of the numerical model with
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Figure 6.12 Sensitivity plots of the (a) 1%, (b) 5™, and (c) 14" modes of the numerical model with

respect to Kx
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Figure 6.13 Sensitivity plots of the (a) 1%, (b) 5™, and (c) 14" modes of the numerical model with

respect to Ky

174



()
Figure 6.14 Sensitivity plots of the (a) 1%, (b) 5™, and (c) 14" modes of the numerical model with

respect to Kz

Modal parameters from the initial numerical model, experimental results, and the

updated numerical model (the values in parentheses) are shown in Table 6.2.

Table 6.2 Modal parameters from the numerical models and experimental results

ical
Mode # Nl;;:)e(:fa Experimental | Freq. Diff. MAC
. vs. Exp. 9 9
[Num. vs. Exp.] Freq. [Hz] Freq. [Hz] %l %
1-1 3.77 (3.93) 3.906 -3.61 (0.71) |95.20 (94.90)
5-2 9.21 (9.01) 8.960 2.77(0.53) |82.60 (76.30)
14-3 19.85 (21.01) 21.265 -6.66 (-1.19) | 78.30 (77.80)

From Table 6.2, it can be seen that significant improvements have been achieved
between the frequencies computed before and after updating. On the other hand, the
MAC values are not improved (i.e., are not increased in value) but rather slightly
decreased. This is mainly because relatively higher scatter values were assigned to
them which drives the updating algorithm to emphasize more on matching the

frequency responses. Based on the updating results, the numerical model is calibrated
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so that now it is more representative of the experimentally obtained modal parameters
than the initial one. Consequently, the updated model can be used in the future for

more in-depth analysis and assessment work.

Percentage changes of the model parameters with respect to their initially assigned
values are shown in Figure 6.15 as contour plots. Besides, the model parameter values

of the initial and updated numerical models are numerically presented in Table 6.3.
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Figure 6.15 Percentage changes of (a) Kx, (b) Kz, (¢) Young’s modulus, and (d) mass density with

respect to their initially assigned values

By investigating the figure and the table together, it can be seen that all of the
parameters are updated according to their updating strategy (i.e., global parameter
updating), bounds, and scatter values. Another important issue is that the model
parameters are updated well within the specified bounds, which means that the bounds
are properly selected for the problem. Note that the updating results are heavily
dependent on the updating strategy, initial parameters, parameter bounds, and scatters
of model parameters and responses. Successive updating studies under different

conditions may lead to different solutions, some of them even being unrealistic. That’s
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why all findings and results should be carefully evaluated by engineering judgement

and insight, and then used if they are considered to be appropriate.

Table 6.3 Model parameters for the initial and updated numerical models

Model Parameter | Initial Value Updated Value |Difference [%]
SG-1 Kx 18000 18313 1.74
[KN/m] Kz 9000 3951 -56.10
SG-2 Kx 18000 19487 8.26
[KN/m] Kz 9000 4418 -50.91
SG-3 Kx 18000 17222 -4.32
[KN/m] Kz 18000 23366 29.81
SG-4 Kx 18000 13129 -27.06
[KN/m] Kz 18000 23028 27.94
E [MPa] 4535 5177 14.15
p [kg/m?] 2400 2507 4.44

6.6 Damage Scenario Study on the Courtyard Walls

It should be stated that damage scenario studies are beneficial tools that can be
utilized for structural condition assessment of engineering structures. Namely, if the
critical damage states for a structural system are known or foreseen (with extent and
location information of the damages), they can be represented by using the reliable
reference model of the system. Afterwards, it is possible to identify the modal
parameters corresponding to each damage state, and by comparing these modal
parameters to the ones that are extracted from the real-time monitoring data, it can be

checked whether an undesired situation has occurred or not.

In the scope of this thesis, a damage scenario study was performed on the
unreinforced masonry courtyard walls of the historical Isabey Mosque by using the
updated/calibrated numerical model (i.e., reference model) obtained in the previous
section. Here, the damaged case of the structural system was simulated numerically
due to the impossibility to give controlled damage to the actual structure. But it must
be stated that since the reference model was obtained by using the experimental data

of the actual structure (i.e., the reference model is a representative of the actual
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structural system), it can be employed to reflect any damage state of the actual structure

as well.

The damaged case of the courtyard wall system was obtained by reducing the
Young's modulus values of a specific region of the reference model by 70% (the blue
colored zone denoted in Figure 6.16). This damaged region, which consists of 244
finite elements, was determined based on the first mode shape of the reference model
which is presented in Figure 6.17. It should be stated that the constituted damaged
model can be considered as representing an in-situ test of the courtyard wall system
conducted after a damaging event. Since it reflects the dynamic characteristics of the
damaged case, it is possible to carry out a damage identification study by using the

outputs of the reference and damaged models.
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Figure 6.16 Damage scenario for the reference model of the courtyard walls
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Figure 6.17 First mode shape of the reference model of the courtyard walls
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The damaged zone of the wall system (see Figure 6.16) was tried to be detected by
updating the reference model of the courtyard walls. In this context, the vibration
frequencies and MAC values for the first 10 modes of both the models (i.e., the
reference and damaged models) were selected as responses with scatter values of 1%
and 10%, respectively. Only the Young’s modulus values were selected as model
parameters to be updated with a scatter value of 25%. Herein, local parameter updating
strategy was adopted (i.e., model parameters were updated individually for each finite
element, thus 9405 finite elements were updated). Bounds were selected as to be in 0-
100% interval (i.e., only softening was allowed). Modal parameters from the reference,
damaged, and updated models (i.e., values in parentheses are from the updated model)

are given in Table 6.4.

Table 6.4 Modal parameters from the reference, damaged, and updated models

Reference Damaged
Mode # Freq. Diff. MAC
Model Model
[Ref. vs. Dam.] [%o] [Yo]
Freq. [Hz] Freq. [Hz]
I-1 3.93 (3.84) 3.85 2.32 (-0.03) 99.80 (100)
2-2 4.77 (4.74) 4.75 0.49 (-0.04) 99.70 (100)
3-3 7.24 (6.90) 6.90 4.90 (-0.02) 98.90 (100)
4-4 8.41 (8.39) 8.39 0.26 (-0.02) 99.96 (100)
5-5 9.01 (8.91) 8.91 1.09 (-0.01) 98.70 (100)
6-6 10.28 (10.17) 10.17 1.13 (-0.03) 98.80 (100)
7-7 13.02 (12.46) 12.46 4.56 (-0.02) 20.40 (100)
8-8 13.03 (12.79) 12.79 1.91 (-0.01) 21.90 (100)
9-9 13.76 (13.73) 13.74 0.16 (-0.03) 99.00 (100)
10-10 16.07 (15.58) 15.59 3.12 (-0.01) 96.40 (100)

From Table 6.4, it can be seen that significant improvements have been achieved
between the frequencies and MAC values computed before and after updating (i.e., an
almost perfect match is obtained). Based on the updating results, the reference model
is updated so that now it is more representative of the damaged state (i.e., damaged

model). Percentage changes of the model parameters (i.e., Young’s modulus values of
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each finite element) with respect to their initial values are presented in Figure 6.18 as
a contour plot. Actually, Figure 6.18 indicates the detected damages of the courtyard
wall system. By investigating the figure, it can be concluded that the predefined
damages are reasonably detected in terms of location and extent. Note that expecting
a better result (i.e., the exact damage state shown in Figure 6.16) is nonsense since
there exist many model parameters (i.e., 9405 model parameters) to be updated and
the number of responses (i.e., first 10 modes) is limited. However, it is possible to
enhance the results by limiting the number of model parameters by, for instance,

updating only the vicinity of the damaged zone.
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Figure 6.18 Detected damages of the courtyard walls
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CHAPTER SEVEN
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The research work presented in this thesis mainly concerned with three subjects: (i)
System identification of half-scale, single-bay, single-story three R/C frames having
different infill conditions at progressively increasing damage levels, (i1) damage
identification of the frames by sensitivity-based finite element model updating method
using the experimentally identified modal parameters, and (iii) system identification,
model calibration, and damage scenario studies of the unreinforced masonry courtyard

walls of the historical Isabey Mosque. Each of these subjects is summarized below.

In extensive experimental studies, half-scale, single-bay, single-story three R/C
frames with different infill conditions, namely bare, locked type infilled, and standard
type infilled, were quasi-statically tested under progressively increasing in-plane
drifts, and after dynamically tested at some predetermined drifts. At different drift
levels (i.e., at different damage states) AV and WN (having different excitation
amplitudes) tests were conducted to estimate the modal parameters of the frames. WN
tests were conducted by an electro-dynamic shaker positioned on top of the frames
(i.e., on the slab level). The recorded dynamic response data at different damage states
were processed by using three different output-only system identification methods,
namely NExT-ERA, SSI-DATA, and EFDD. During the quasi-static tests, detailed
visual damage inspections were conducted in order to classify the occurred damages,
and their evolutions with respect to increasing damage levels were coupled with the
corresponding modal identification results. A comparative study was performed for
the frames at different damage states to reveal the effects of the different infill
conditions. The main contributions and major findings of this research work are

summarized as follows:

= For the frame with locked infills, stepped and horizontal cracks are mainly formed

at brick-to-brick interfaces over a large portion of the infill wall due to the sliding

181



mechanism. Numerous and scattered plaster cracks (i.e., no concentration of crack

patterns) occur and no significant brick crushing is observed.

For the frame with standard infills, cracks are concentrated at corner zones where a
bi-axial compression-compression stress state develops. This situation causes brick

members to crush and spall around these zones (i.e., concentration of cracks).

The additional lateral resistance imposed on the frames by the standard type infills
is much higher than the additional resistance by the locked type infills. The frame
with locked infills shows lower strength degradation than that of the frame with
standard infills. Since the contribution of infills to the stiffness and lateral strength
of a frame structure is not considered in most of the seismic codes, the behavior of

the frame with locked infills seems analogous to the bare frame.

The bare frame has the lowest initial stiffness value, whereas the standard infilled
frame has the highest. The frame with locked infills has higher stiffness values at
early stages but exhibits significant drops with increasing drift ratios due to
overcoming the static friction threshold of the locked bricks and the shear failure of
the mortar. The behavior of the frame with locked infills seems analogous to the

bare frame in terms of stiffness degradation.

The bare frame has the lowest energy dissipation capacity, whereas the standard
infilled frame has the highest. The behavior of the frame with locked infills seems

analogous to the bare frame in the sense of dissipated energy.

The identified vibration frequencies are affected by the excitation levels considered
in this research. Accordingly, AV test results exhibit the highest and WN
wo/Offline test results exhibit the lowest frequency estimates. This shows that even
for small RMS amplitude change in excitation level, modal parameter estimations

are affected by the nonlinear behavior of R/C frames.
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= Damping ratio estimations, which are the most uncertain estimations, are amplitude
dependent and sensitive to SNR. Nevertheless, it can be said that AV tests result in

lower and WN wo/Offline tests result in higher damping estimations.

= NExT-ERA, SSI-DATA, and EFDD methods give very close results for vibration

frequency and mode shape estimations.

= NExT-ERA and SSI-DATA methods result in somewhat similar damping
estimations; but the overall match among these methods is not as good as in the
case of frequency and mode shape estimations. The damping estimations obtained
by EFDD method differ considerably from the ones obtained by other two methods.
Subjectiveness of the peak-picking and logarithmic decrement processes can be

attributed as the reasons behind this higher variability in damping estimations.

= Very clear decreasing trends with increasing damage levels are observed in
vibration frequency and MAC estimations for all excitation types and system
identification methods. The identified damping ratios exhibit large variability and
do not follow a clear trend that can be associated with increasing structural damage.
Nevertheless, a slight increasing trend in damping estimations is noticeable as the

structural damage increases (especially for the frame with locked infills).

= The decreasing trend in the frequency estimations with respect to increasing
structural damage for the frame with locked bricks is slower than the other two.
This may possibly be indicating that the extra damage that may be induced by
frame-infill interaction is less severe for the frame with locked infills, due to low-

to-moderate (mild) panel action, than for the frame with standard infills.

= The changes in MAC values as the structural damage increases are more
pronounced for the infilled frames. This can be attributed to the infill wall-frame
interaction in out-of-plane direction. The effect of infills on the mode shapes
diminish as infill damage increases. The damage level does not change the

classically damped nature of the mode shapes.
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Existence of infills adds out-of-plane components to the mode shapes. The out-of-
plane components disappear as the infill damage increases, turning into almost

perfectly in-plane mode shapes at higher damage levels.

The dynamic excitation levels attained in this research work are not sufficient to
excite the infill walls. Therefore, the modal identification results represent the
dynamic characteristics of only the surrounding frame structure without the
contributions of the infills. Although the infills are ineffective during the dynamic
tests, they have a decisive role in the behaviors and damage formations of the

frames during the quasi-static tests, which is revealed by damage observations.

Closed (i.e., isolated) laboratory conditions that lack the usual ambient effects may
lead to difficulties in the excitation of vibration modes for the test specimens.
Especially in the case of rigid specimens, the present excitation conditions may not

be sufficient to excite the specimens properly.

The stiffness degradation values calculated using the estimated in-plane vibration
frequencies indicate that the bare frame loses its lateral stiffness at a faster rate,
whereas the frame with standard infills loses at a lower rate. Here again, the frame

with locked infills seems analogous to the bare frame.

Presence of infills initiates R/C member damages to occur earlier than the bare
frame. In addition, it influences cracks on the R/C members and causes their

numbers and widths to increase compared to the bare frame.

Higher vibration modes cannot be identified clearly from the dynamic data due to

low excitation levels and SNR.
The identified out-of-plane modes are classically damped and have larger complex

components due to low SNR values. That’s why they are considered as unreliable

estimates.
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Damage identification work of the frames having different infill conditions at
gradually increasing damage states was performed by the sensitivity-based finite
element model updating method. The initial FE models of the frames were developed
in MATLAB based FEDEASLab software by using 3-D Bernoulli-Euler frame
elements. Support conditions were represented by simple supports at column(s) bottom
ends together with three rotational springs. Structural damages of the frames were
defined by relative stiffness reduction factors. At each progressively increasing
damage state, stiffness reduction factors of the predetermined design variables were
obtained by minimizing an objective function constructed as the differences between
the experimentally identified and the FE predicted modal parameters. In this context,
modal parameter results of the EFDD method with WN w/Offline dataset were used.
The model updating process was conducted in two steps: (i) First, a reliable reference
model was obtained by using the experimentally identified modal parameters at the
undamaged state, and then (ii) the procedure was repeated by updating this reference
model at each progressively increasing damage state to identify the damage, its
location, and extent. The number of design variables used for the updating procedure
was reduced to ensure a well-conditioned optimization problem by taking into account
symmetry conditions, detectability indices, and internal moment levels occurred in the
frame elements. Finally, the identified damage results were verified using the visual
damage observations made during the quasi-static tests. The main contributions and

major findings of this research work are summarized as follows:

= Since it is very difficult to attain perfect fixity at supports in real-life situations,

support conditions of numerical models should be represented by spring elements.

= Sensitivity of a mode can change from one element to another. In other words,

detectability of an element can change from one mode to another.

= Detectable elements are the ones affected the most by the updating algorithm, this
itself alone does not automatically imply that these elements have to be included in
the updating process. In other words, if these elements are already adequately

representing the actual values, then there is no reason to update them. Moreover,
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excluding them from the updating process is beneficial in order to acquire well-
conditioned optimization problems which in return lead to more accurate updating

results.

For the bare and locked infilled frames (i.e., frames with two design variables), the
global minimum of the objective function lies within a wide interval at low damage
states which indicates that the selected design variables do not provide a prominent

solution; but provides a prominent one as damage level increases.

It is clearly seen that the structural damage severity of all frames consistently

increases as the frames are subjected to higher drift ratios.

For the bare and locked infilled frames, structural damage is mainly concentrated
on the beam ends and the column(s) bottom ends, whereas there exists only minor
damage on the other parts of the frames. These damage observations are in good
agreement with the damage identification results. Here again, the frame with locked

infills seems analogous to the bare frame.

For the frame with standard infills, structural damage is mainly concentrated on the
column(s) bottom ends, mid-zones, top ends (i.e., throughout the column members),
and beam ends. These damage observations are in good agreement with the damage
identification results. It is clear that the presence of standard infills has significant

effects on the damage formations of the frames.

Modal parameter identification and sensitivity-based finite element model updating

studies were performed on the unreinforced masonry courtyard walls of the historical

Isabey Mosque. Modal parameters of the walls were estimated from two sets of AV

measurements using EFDD method embedded in ARTeMIS software. The initial

numerical macro model of the courtyard walls was created in ABAQUS environment

by using the material properties obtained from the flat-jack tests conducted on the

walls as well as the values provided in the literature. Boundary conditions of the

numerical model were divided into four substructures by taking into account their
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locations on the walls. Translational springs were assigned to each substructure. Initial
stiffnesses of the springs were determined by manual updating so that a numerical
model having modal parameters representative of the actual courtyard wall system was
obtained. Mass density, Young’s modulus, and boundary conditions (i.e., translational
springs) of the initial numerical model were calibrated using a global parameter
updating method available in FEMtools software. Thus, a reliable FE model that is
more representative than the initial one was obtained to be used in future numerical
assessment studies. Finally, a damage scenario study was performed on the calibrated
numerical model and the predefined damages were identified. The main contributions

and major findings of this research work are summarized as follows:

= Boundary conditions are often the most uncertain parts of a structure, so they should
be included in the updating process with relatively wider bound ranges and
relatively higher scatter values to determine their actual states. Otherwise,
unrealistic updating results may be obtained for the other updated model parameters

due to the overcompensation problem.

= Existence of insensitive responses and/or linearly dependent model parameters may
lead to having ill-conditioned problems with convergence difficulties. For a well-
conditioned optimization problem with a unique solution, the number of model
parameters to be updated must be limited in global parameter updating type

approaches.

= Performing manual calibration prior to performing an optimization-based model
updating proves itself to be beneficial in order to overcome potential convergence

problems.
= Sensitivity analysis is always useful to find out whether a model parameter should

be included in the updating process or not and also to decide a suitable updating

strategy (i.e., local or global parameter updating) for a model.
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Mode shape estimations usually contain higher estimation uncertainty than
frequency estimations due to having a limited number of sensors to estimate them
and also due to measurement noise. Therefore, assigning relatively higher scatter

values to mode shapes is suggested if they are thought to be unreliable.

Model updating results are heavily dependent on the updating strategy, initial
parameter values, parameter bounds, and scatters of model parameters and
responses. Performing several updating works under different conditions may lead
to different solutions, sometimes unrealistic ones. Therefore, all results should be
carefully evaluated through engineering judgement, and used if they are decided to

be appropriate.

7.2 Recommendations for Future Research

Based on the research work presented in this thesis, the following recommendations

are made for future work:

Effects of higher dynamic excitation levels than the ones achieved in this research

work on system and damage identification results can be investigated.

Frequency response functions, acceleration time histories, modal strains, modal
curvatures, modal strain energies, and modal flexibilities can be considered as
residuals in model updating method. Especially, using the modal flexibilities can

be beneficial to identify local changes of the systems.

The developed MATLAB based codes as part of the presented research work can
further be extended in order to be capable of performing model updating studies on
more complex structural systems (e.g., structural systems having planar elements,

solid elements, etc.).

Regularization methods can be studied to treat the ill-conditioning states of the

optimization problems.
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= Instead of engineering judgement and/or trial runs, statistical approaches can be
used to determine the components of the weighting matrices. Thus, more objective

results can be obtained.

= ]t is a known fact that the system identification results include uncertainty due to
measurement errors (e.g., measurement noise, spatial density of the sensors,
measurement length, excitation type and level, etc.). In addition, FEMU results
include uncertainty because of the modeling errors, assumptions, and
simplifications made during the development of numerical models, and the method
itself (i.e., selection of design variables, residuals, weighting factors, and bounds
may lead to uncertainty). Therefore, uncertainty quantification can be studied to
determine the reliability of system identification and model updating results. In this
context, non-probabilistic interval-based or Bayesian FEMU methods can be

studied.

= Since all the real-life structures are inherently nonlinear, especially the damaged
structures caused by strong excitations, nonlinear FEMU methods, that are based
on the nonlinear responses of the structures, can be used. Since the nonlinear
responses include more information about damage than linear ones, nonlinear

FEMU methods provide more accurate damage identification results.
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APPENDICES

APPENDIX-1: List of Symbols

Chapter Two
y(t) Dynamic response, Response of a system
A True mode shapes matrix, State matrix of the state-space model,
Mode shape matrix (modal matrix)
q(t) True modal coordinates vector, Modal coordinates
A Estimated modal matrix
q (t) Estimated modal coordinates
A Pseudo inverse of A
I Identity matrix
\Y% Value of the sensor placement
a True mode shape
a Each of the estimated mode shapes in A
{X;} Random vector
c Standard deviation
a, Elements of the true mode shape a
€ Relative uncertainty parameter
D Number of test setups
N, Common (overlapping) set of DOFs (reference sensors)
N, Remaining (non-overlapping) set of DOFs (roving sensors)
{¢’;ef,l.} Partitions of the £” mode shape estimated from the i setup at N,
Otfi Scaling factor

209



Ji.f2

x(t)
X(t)
K(t)
f(t)

X(t)
X(t)
X(t)
F(t)

X, (s)

R()

Total (merged) mode shape

Modal damping factor

Lowest vibration frequency value in Hz
Measurement duration in seconds
Filtered signal

Filter coefficients

Number of filter coefficients

Input to the filter

Filter cut-off frequencies

Mass matrix

Damping matrix

Stiffness matrix

Displacement vector

Velocity vector

Acceleration vector

Externally applied force vector
Displacement stochastic vector process
Velocity stochastic vector process
Acceleration stochastic vector process
Stochastic excitation vector process
Reference scalar response process
Expectation operator

Correlation function vector
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u(k)
x(k)

y (k)

H (k)

Y(k)

Ns

At

¢,

R, (0

Vector of system inputs

Vector of states

Vector of system outputs, Output measurement responses in time

domain, Free decay

Input matrix of the state-space model

Output matrix of the state-space model
Feed-through matrix of the state-space model
Hankel matrix

Impulse response vector

Number of sensors

Number of rows in the Hankel matrix
Number of columns in the Hankel matrix
Left eigenvectors of H(0)

Right eigenvectors of H(0)

Diagonal matrix of singular values

System order

Eigenvalues of the matrix A

Vibration frequencies

Damping ratios

Number of modes

Sampling period

Mode shapes

Eigenvectors of the matrix A, Observability matrix

Correlation function matrix of the modal coordinates
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R, (1) Correlation function matrix of y (t)

G, (f) Spectral density matrix of y (t)

G, () Spectral density matrix of q (t)

a, Mode shapes

Y. Modal participation vectors

A, Poles

C, A positive constant

Z Diagonal matrix holding the singular values z. (auto-spectral

densities of the modal coordinates)

U Singular vector
P Observation matrix
G Discrete time system matrix
u, State-space initial conditions of the free decay
np Number of data points
H, Upper part of the Hankel matrix (the past)
H, Lower part of the Hankel matrix (the future)
0] Projection matrix
T,. T, Block Toeplitz matrices
X Matrix of Kalman states
W, W, Real-valued weight matrices
Chapter Three
P Unknown model parameter set
P, Initial values of the model parameter set
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ES

Residual vector

Numerically obtained quantities
Experimentally obtained quantities

Sensitivity (Jacobian) matrix

Updated model parameter values

Design variables

Number of design variables, Number of damage functions

Numerically obtained modal quantities
Experimentally obtained modal quantities

Residuals
Number of residuals

Lower bounds (constraints)

Upper bounds (constraints)
Frequency (eigenfrequency) residuals
Mode shape residuals

Euclidean norm

Number of eigenfrequencies

Number of modal displacements

Numerical modal vectors

Experimental modal vectors
Angle between modal vectors

Numerical eigenvalues
Experimental eigenvalues
Eigenfrequency
Numerical modal vector

Experimental modal vector
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XC
X:ef

€ €
ay,a’, a

Ke
K:ef

KU

Pi> P

Vf(py)

I (any arbitrary) component of vector ¢ i

Reference component of vector ¢,

Number of DOFs used for mode ¢,

Number of considered modes

Weighting matrix

Weighting factor of r;

Value of a physical parameter X in element e
Reference value of X°

Dimensionless correction factor

Updated element stiffness matrix

Reference element stiffness matrix

Global system stiffness matrix

Stiffness matrix of the non-updated elements

Number of elements wanted to be updated
Multiplication factors

Damage function

Geometrical coordinate of the center of element e
System mass matrix

Order of the analytical model

Nodal forces

Sufficiently small design parameter step
Detectability index

j column vector of the sensitivity matrix
Function to be minimized (objective function)
Quadratic model of truncated Taylor series

Step vector from p,

Gradient of the objective function
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Chapter Four

S
E.’i’aj
¢i= q)j

MAC 4ixd);

2]
d

<

"

SD/

1

Sin» S,

Chapter Five

Ip, up

Hessian of the objective function

Local solution

Search direction

Step length (distance to move along z, )

Model function

Radius of the trust region

Identified frequencies for models of successive orders i and j
Damping ratios for models of successive orders i and j
Mode shapes for models of successive orders i and j

Modal assurance criteria calculated between ¢, and ¢,

A pole with stable frequency, damping, and mode shape
A pole with stable frequency and damping

A pole with stable frequency and mode shape

A pole with stable frequency only

Vibration frequency

Damping ratio

Stiffness degradation

Identified frequencies for a particular frame ;j at the undamaged and

various damaged levels i, respectively

Constraints for the design variables

Residual vector

Frequency residuals
Mode shape residuals

Jacobian matrix
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Chapter Six

Mass density
Young's modulus
Poisson's ratio

Translational springs in global X, Y, and Z directions, respectively
Response vector obtained from the experimental data

Response vector of the numerical model for a given state {Po} of the
model parameter values

Vector of the updated model parameter values

Sensitivity matrix

Difference vector calculated between {R e} and {Ra} response
vectors

Parameter variation

Pseudo-inverse of the sensitivity matrix

Diagonal weighting matrices representing the confidence in

responses and model parameters, respectively
Gain matrix

Standard deviation of the considered model parameter or response

Mean of the considered model parameter or response
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APPENDIX-2: Publications
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