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OZET

MODEL TABANLI AKTIRABILIR INANC
MODELININ ORUNTU TANIMA VE
SINIFLANDIRMA PROBLEMLERINE
UYARLANMASI

Bu tezde, Aktarilabilir Inang Modelinden tiiretilmis olan Model Tabanli Siniflandirici
gemilerin otomatik olarak simiflandirilmasi amaciyla gergeklenmistir. Aktarilabilir
Inang Modeli, Bayesian Teorisi, Bulanik Kiime Teorisi, Genel Olasilik Teorisi gibi
yontemlere  kiyasla  kanmit  eksikliginden dogan  belirsizligi  daha  iyi
modelleyebilmektedir. Aktarilabilir inan¢ Modeli, farkli kaynaklardan elde edilen
bilgilerin kaynastirilmasina imkan vermektedir. Ayrica, kaynastirilacak bilgiler
arasinda  ¢eliski olup olmadigi  Aktarilabilir Inang Modeli  kullanilarak
belirlenebilmektedir. Farkli bilgi kaynaklarindan gelen ¢elismeyen bilgiler
kaynastirilacak yliksek siniflandirma dogrulugu elde edilmistir. Model Tabanh
Smiflandiricinin siniflandirma dogrulugu olusturulan yapay veritabanlar1 lizerinde

gergeklenen benzetimlerle belirlenmistir.

Anahtar kelimeler: Oriinti Tanima, Smiflandirma, Inan¢ Fonksiyonu Teorisi,

Aktarilabilir Inang Fonksiyonu, Celiski Tespiti



ABSTRACT

IMPLEMENTATION OF MODEL BASED TRANSFERABLE
BELIEF MODEL FOR PATTERN RECOGNITION AND
CLASSIFICATION

In this thesis, the Model Based Classifier derived from the Transferable Belief Model
is implemented for the purpose of automatic ship classification. The Transferable
Belief Model models uncertainty caused by lack of evidence better compared to other
approaches such as Bayesian Theory, Fuzzy Set Theory and General Probability
Theory. The Transferable Belief Model allows one to combine information obtained
from different sources or not can be determined by using the Transferable Belief
Model. As a result, non-conflicting information coming from different information
sources are combined to get high classification accuracy. Artificial learning sets are

used in the simulations to obtain classification accuracy of the Model Based Classifier.

Key words: Pattern Recognition, Classification, Belief Function Theory, Transferable
Belief Model, Conflict Detection.
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1 INTRODUCTION

Accurate modeling of the uncertainty has always been a problem in pattern recognition
and classification. Until the last two decades this problem had been tried to be avoided as
much as possible, since modeling uncertainty is a complex issue. Commonly used
frameworks such as Bayesian Theory, Probability theory, Fuzz Clustering Theory
Likelihood Theory, Coarse Set Theory are not able to model uncertainty caused by the
lack of evidence. In this framework’s uncertainty is modeled as a random variable or
process [1-3]. Consequently, accurate modeling uncertainty in these frameworks requires
infinite amount of data from which statistical outcomes are derived. In order to handle
uncertainty in a more robust manner a different framework is needed. For this purpose,

Belief Function Theory (BFT) was founded by Arthur P. Dempster.

The discrete representation and modeling of the uncertainty due to lack of evidence in
terms of BFT was discussed in detail by Glenn Shafer in his book “A mathematical theory
of evidence” in 1976 [4]. Due to its heavy computational loads, BFT did not catch the
attention of researchers until 2000s. As personal computers became more powerful,

uncertainty modeling via BFT become the most commonly preferred approach.

In this thesis implementation, a classification algorithm called Model-Based Classifier

(MBC) is discussed. The MBC is derived from a subjective model referred to a
Transferable Belief Model (TBM). Even though TBM is using the same probabilistic
infrastructure as BFT, TBM is not a probabilistic model. It evaluates information provided

from different sources at credal level then tries to combine them and makes a decision [7]

The MBC is nothing new and a well-defined classification algorithm. Its details are
provided in [6].

However, to best of our knowledge there isn’t any other implementation of it with the use
of data fusion.

Even though there is another classification algorithm using the same framework that is
called The Case-Based Classifier. It is not the topic of this thesis. Therefore, this paper

solely focuses on the implementation and improvement of the MBC.
1



1.1 Contribution

The main contribution of this thesis is to create a basic belief assignment (BBA) from an
observation obtained by an information source measuring an attribute of an object such as
length, weight, shape etc. Also, BBAs formed from different information sources are
combined via Dempster -Junction Rule defined under the TBM. Finally, the combined
BBA is converted into a probability mass function by means of pignistic transformation.
Even though using a single information source for decision making may give satisfactory
results for various classification problems, using multiple non-conflicting sources enables
one to assign a degree of trust on information provided by each source with the possibility
of reducing uncertainty. This issue is discussed in conflict detection and management in

order to implement a suitable conflict detection algorithm into the MBC.

1.2 Outline of Thesis

The thesis is divided into of six chapters. In Chapter 2, key concepts of the BFT and
fundamental operations used in the MBC are reviewed and several numerical examples are
provided. In Chapter 3, structure of the MBC is discussed and the artificial learning set
generated for the simulations is explained. In addition, simulation results based on the
artificial learning set are carried out and statistical performance of the MBC is
investigated. Conflict detection algorithm used in this thesis is discussed in Chapter 4.
This chapter also shows how to determine the and provide statistical performance of the
conflict detection algorithm implemented in the thesis. In Chapter 5, a speed-oriented
optimization algorithm is given for the Dempster Junction Rule. Finally, conclusions are

given and possible future research directions are listed in Chapter 6



2 FUNDAMENTAL CONCEPTS OF BELIEF FUNCTION
THEORY

This chapter explains the relevant concepts of Belief Function Theory (BFT) that are
essential to the Model Based Classifier.

2.1 Types of Belief Functions

BFT is a probability model that allows one to model uncertainty due to lack of evidence.
Similar to the sample space in probability theory, in BFT frame of discernment denotes all
possible values of an attribute. Any subset of a frame of discernment is called hypothesis.
However, differently from the probability theory, Hypothesis in BFT can contain multiple
elements from subsets of a frame of discernment. If a hypothesis contains a single
element, it is called singleton. If all hypothesis are singleton, then Belief Function
becomes Bayesian Belief Function or Bayesian probability
There are two major distinctions between BFT and probability theory. First distinction is
that the additivity of mass assignments is not required. For a frame of discernment denoted
by Q and a hypothesis as 4 £ (1, a mass assignment given in Equation (2.1) is possible.
m(4) +m(4) <1 (2.1)
where 4 stands for complement of 4
This distinction allows uncertainty caused lack of evidence to be modelled accurately.
The second distinction is that making any interpretation about the subset of a hypothesis
without an additional knowledge is not possible. For instance, for a mass function
m({x,v}) = 0.4 one can not to comment on singleton mass function m({x}) and m({y})

without any further evidence.

For the purpose of this thesis, there are three equivalent representations under the BFT
framework. Those are mass function, belief function and plausibility function

Please note that there is an ambiguity between the expression belief function theory and
belief function representation under it. For this reason, belief function will be denoted by

bel to prevent any misrepresentation.



2.1.1 Mass Function

The mass function representation is the most fundamental type of belief representation.
All other representations can be obtained from the mass function representation.
Throughout the thesis mass function and basic belief assignment (bba) are used
interchangeably. They represent the same thing.

Two conditions must be satisfied for a valid mass function. First, mass functions of all
hypothesis under a frame of discernment should take on values between zero and one.
Second, the sum of all mass functions should equal to one. For a frame of discernment Q

and hypothesis 4 € 01, these two conditions are expressed mathematically as:

P(4) = [0,1] (2.2)

Zﬂcnm(ﬁl] =1 (2.3)

There are two types of assumptions for a given mass function. If the true value of the
hypothesis may lie outside the corresponding frame of discernment, then the mass function
of the empty set takes on non-zero value. This case is called open world assumption. In the
open world assumption one might have

m(@) = 0 (2.4)
On the other hand, true values of all hypothesis are inside the frame of discernment then
the so called close world assumption holds. Zero mass is assigned to the empty set under

the closed world assumption

m(@) =0 (2.5)
A mass function defined under the closed world assumption is called a normalized mass
function. Equation (2.6) can be used to transform an unnormalized mass function into a

normalized one.

m(A) =11 — m(@)

0, otherwise

JAFAED (2.6)



2.1.2 Belief Function

For a frame of discernment Q and a hypothesis 4 € 101, belief function representation can

be derived from the mass function by using the following equality

bel(4) = Z m(B) VA S 0,B =0 (2.7)

BCAB=D

The belief function represents the degree of a belief committed to a hypothesis. One

natural interpretation of Equation (2.7) is that all belief functions are normalized.

Example 2.1:

For a frame of discernment 0= {wl w2,w3} a bba is given as

m® ({w1,w2}) = 0.2, m™({w2}) = 0.25, m"({w3,w2}) =02, m"({w3}) =
0.25, m®(¢$) = 0.1
Determine bel({w3, w2})

Solution:

From Equation (2.7)

bel({fw3, w2)) = Z m(B)

BCiw3.w2lL.B=D

m({w3,w2}) + m({w3}) + m({w2}) = 0.2 + 0.25 + 0.25

2.1.3 Plausibility Function

For the same frame of discernment and hypothesis given for a belief function, the
plausibility function can be considered as the reverse operation of the belief function.
Belief function represents the degree of belief committed to a hypothesis while plausibility
function represents the degree of doubt given to the hypothesis. As the two are reverse
operations of each other, they can be derived from one another by using Equation (2.8)



and (2.9). It is worth mentioning that Equation (2.9) is valid only for normalized belief and

plausibility functions.
pl(4) = bel(Q1) — bel(A) (2.8)
pl(4) = 1 — bel(4) (2.9)

In addition, plausibility function can be derived from mass function by means of Equation
(2.10)

pl(4) = Z m(B),VA C 0 (2.10)
BC NEBRAZD

Any plausibility function obtained from Equation (2.10) is normalized.

Example 2.2:

For the same frame of discernment and bba given in Example 2.1 determine pl({w3,w2})
Solution:

By using equation (2.10):

Pl ws)) = ) m(8)
BECiw, wow, LBnfw, wow t=0

m({wy, w;}) + m({wy, wy}) + m({w,}) + m({w;}) = 0.9

2.1.4 Categories of Belief Functions

If a belief function is normalized with a single focal set it is called categorical belief

function. For a categorical belief function there exists only one 4 € 01 such that

m(4)=1,ACn (2.11)

If a belief function is categorical and its focal set is equal to frame of discernment, it is

called vacuous belief function. Having a vacuous belief function means that no



information is available at all and there exists total ignorance. For a vacuous belief

function, we have
m(Q) =1 (2.12)

A simple belief function assigns non-zero masses to the frame of discernment and one of

its subsets. That is, for a simple belief function, we have
m(A)=x, ASQand0<x<1 (2.13)
m()=1—x (2.14)

If frame of discernment is not a focal set the belief function is called dogmatic belief

function. For a dogmatic belief function, the following condition must be satisfied.
m(Q)=0 (2.15)

If a belief function is normalized and all of its focal sets are singletons, it is called
Bayesian belief function. For Bayesian belief function, Equation (2.16) and Equation
(2.17) always hold.

P(A) = bel(A) = pl(4),vA €S0 (2.16)

P(a) = m(a),Va S 0 (2.17)

2.2 Combination of Mass Functions

Combination of mass functions (or equivalently fusion) is one of the key concepts in the
BFT. The idea behind combining mass functions derived from different information
sources is that uncertainty may be reduced if decision making is built upon the combined
mass function. However, one must pay attention to conflict that might arise during mass
combination. Conflict arises when a pair of focal sets from different mass functions have
empty sets as their intersection. If conflict is high, the combination may create a

misleading mass function.

To classify the conflict issue further let us investigate a famous example referred to a
Zadeh problem [13]. For a frame of discernment Q={w1,w2,w3}, the following Bayesian

belief functions are defined from it:

m,(w,) =02 ,m,(w,) = 0.8



m,(w;1) = 0.2 m,(w;) = 0.8

When these two mass functions are combined, (for the time being, do not bother with the
combination rule) the mass function will be m;g,(w1) =1 even though the belief
assigned to wl on each mass function is 0.2 compared to 0.8 assigned to other hypothesis.
This is because the intersection of w2 and w3 is an empty set. On a closed world
assumption, the value assigned to the empty set is very useful since it indicates the amount
of conflict proportionally.

For the closed world assumption the Dempster’s Rule is used for combining two or more

mass functions. Dempster’s Rule is given by

Mg (A4) = nz m,(B)m,(C),VAS 0,A+0 (2.18)
Rnm=4

nt=1-— ZEN:Drnl(B]m:(C] (2.19)

Where n is defined as normalization constant. As the name suggests, n makes sure the
that combined mass function is normalized and thus mass of the empty set is equal to zero.
In addition, n has one more function in closed world assumption. It is a direct indicator of
the amount of conflict between two mass functions and as a result the weight of conflict is

calculated from it. The formula for the weight of conflict is given by:
Con(ml,m2) = —log(n™1) (2.20)
When there are multiple mass functions, weight of conflict is determined additively. That
IS:
Con(my,....,m,4,) = Con(my,..,m,) + Con(m,® .. Em, m,,,) (2.21)

Note that Equation (2.20) and (2.21) is more of a general mathematical definition of the
conflict measure. It is not feasible to use these equations for conflict detection as their
computational cost is too high. An alternative approach that can be used in practice for

conflict detection is explained in chapter 4.

For the open world assumption, on the other hand, it is better to use Dempster Junction
Rule for combination. It is defined by



My, (4) = Z m, (B)m,(C),VAES 0 (2.22)

Just as in the closed world assumption case, the empty set is also direct indicator of the
amount of conflict. However, the conflict information is less important compared to the
closed world assumption since there is a possibility that true answer may be outside the
frame of discernment, though it is possible to determine it. However, if conflict
information is not important it is better to normalize the obtained mass function. This is
particularly valid when the amount of conflict is high and mass functions are combined

recursively but conflict itself is not important.

Example 2.3:

For a frame of discernment of @ = {w1, w2, w3} two bbas are given as:
m{({wl,w3}) = 0.6 m{(02) = 0.3 m{(¢) = 0.1

mE ({w1,w2}) = 0.2 m&({w2}) = 0.25 mJ ({w2,w3}) = 0.2 mS ({w3}) = 0.25
mf (b) = 0.1

Determine the combined mass function m, .,(A) for all hypothesis in @ by using a

suitable combination rule.
Solution:

Since both mass functions are normalized Dempster Junction Rule used for combination.

From Equation (2.22) mass function is determined as:
m, .({wl}) = 0.12

m, ,(w3) = 0.12 4 0.15 + 0.075 = 0.345

m, . ({w2}) = 0.075

My, ({wl,w2}) = 0.06

my . ({wl,w2}) = 0.06

my, (0) = 0.34



2.3 Pignistic Transformation

It was mentioned earlier that TBM frame-work consists of two levels. First level is the
credal level where types of belief functions are assigned and transformed into each other.
The purpose of this level is to determine the amount of uncertainty and degree of belief
given to each hypothesis. For the most part, decision making is not possible at credal level.
For instance, for a frame of discernment 2 = {w,,w,,w;} and mass function assignment
whose focal sets are
m({w,, w,}) = 0.15, m({wy, w;}) = 0.15,m({w;}) = 0.6 ,m({6}) =01 it is not
possible to make accurate decision even though the highest mass is assigned to singleton
focal set. This is because individual masses of the members of the frame of discernment
are unknown and the mass of empty set is greater than zero. For these reasons’ decisions

are made at another level.

The second level is called pignistic level. In this level, basic belief assignment values are

transformed into probabilities so that a decision can be made
To make the transition from the credal level to the pignistic level, the so called pignistic
transformation is applied to bbas. For an unnormalized bba, the pignistic transformation is

defined as

B m(A4)
BetP(w) = LA - m@)) VAED (2.23)

For a normalized bba 1 —m(@ ) part in Equation (2.23) is omitted. After pignistic

transformation, probabilities of singletons are obtained.

Since the pignistic level itself is a probability model, the expected value can be
determined from it. In addition, it is also possible to the calculate expected value directly

from the pignistic transformation using

E(X) = Z X(w)BetP(w) (2.24)

wrE fL

10



Example 2.4:

Apply pignistic transformation to the mass function in Example 2.3 to find probabilities of

the singletons

Solution:

The mass function obtained in Example 2.3 is:

my , ({wl}) = 0.12

m, ,(w3) = 0.12 + 0.15 + 0.075 = 0.345

m, ., ({w2}) = 0.075

m, - ({wl,w2}) = 0.06

m, - ({wl,w2}) = 0.06

my, (0) = 0.34

From Equation (2.23), the following results are obtained:
m({wi1}) | m({wlwz})

Betp(wl) = Fa—rT + mtez 0.227

. _ mifwz}h) mi{{wlw2l)  mifwdwzl)
Betp(w2) = (1-mid)sl  (1-midk2  (1-m(d)sz 0.205
BE‘I’?J{:MG} _ mifw3l) mi{w3w2l) — 0.568

(1-mid)sl  (1-mldls2

11



2.4 Conditional Belief Functions

In probability theory, we have conditional probability density functions. Similarly, in BFT
conditional belief functions exist. For a hypothesis B and a categorical mass function
mg(B) =1 where B c 11, conditional belief function is denoted by m[B]. This means

that it is known with absolute certainty that B is true for the given frame of discernment.

Since conditioning a mass function can be regarded as combination of two mass functions
under the same frame of discernment, it can be determined with the Dempster’s Rule or

Dempster Junction Rule with the following expression (2.25):
m[B] = m @ my (2.25)

The explicit form of Equation (2.25) is given as:

p!(Bj_lzm(CUA) VACB, A#0

m[B](4) = = (2.26)
0, otherwise
The conditional plausibility function is defined as:
pl(B N A)
I[B](A) =————,vAE N 2.27
pllBI(A) == (227)

2.5 Product Space Operations

When dealing with classification problems under the BFT and TBM frame-works one
may encounter with mass functions defined on two or more frames of discernments even
though mass functions are mostly defined on a single discrete frame of discernment.

Therefore, operations that can extend the single frame of discernments into the joint space

12



or reverse operations that project joint space into one of the frames of discernment would

be required. In this section, operations needed for implementing the MBC are defined.

2.5.1 Vacuous Extension and Marginalization

Vacuous Extensions are required when there exist two mass functions defined on different
frame of discernments and they need to be processed on the joint frame of discernment.
For frames of discernments Q and ®, notation @ T 02 x @ means that a hypothesis 4 € 01 is
extended to joint space 2 x @. Vacuous Extension formula is given in Equation (2.28).

m®(4), ifAES D

m?T2x® (4x@) = { .
0, otherwise

(2.28)

The reverse of Vacuous Extension is the marginalization. It is required when a mass
function defined over a joint space is needed to be projected onto one of the frames of
discernments it is made up of. The notation is 11 x @ L  is used for marginalization for 0
and it is determined with Equations (2.29) and (2.30)

IHQIGLQ (‘q) — Z rnnxa(ﬂ') (2.29)

{BCD x B Proj (BELD J=4A)
Proj(Bl0)={wen38 €06, (wb)EB} (2.30)

It should be emphasized that when Vacuous Extension and Marginalization operations are
performed one after another on a mass function, obtained results are always going to be a

Vacuous Belief Function

Example 2.5:
For two discrete frame of discernment defined as Q={w1,w2} and ®={q1,q2} the mass

function defined over {1 x @ is given as:

m™® = ({w1,q1},{w2,q2}) = 0.2, m™® = ({wl,q1},{w1,q2}) = 0.3

13



m™® = (fw1,q2},{w2,q1},{w2,q2}) = 04, m™® = ({w2,q1}) = 0.1

Determine the mass function defined on €t by means of marginalization

Solution:

The joint frame of discernment is given by:

(%0 = ({wl,q1},{wl, q2},{w2,ql},{w2,q2})

By using Equations (2.29) and (2.30) marginalization is determined as:
m™P 2 (w1}) =03

mP (w2} = 0.1

m>®(0) =02+ 04 =06

Example 2.6:

Apply vacuous extension to the obtained mass function in the previous example
Solution:

By using the Equation (2.28) vacuous extension is determined as the following:
m EOUITD (1,9 291 {wl,q1)) = 0.3

m BRUITRD (1,5 291 (w2, q1)) = 0.1

1 (RO L T (@) = 0.6

Please note that compared to the mass function in Example 2.5, some amount of
information is lost when marginalization and then vacuous extension are applied one after
another. The reason is that marginalization and vacuous extensions are not one to one

mapping operations. In addition, if vacuous extension is applied first and marginalization
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is applied second to any mass function then the obtained results would be a vacuous belief
function. Therefore, one can conclude that vacuous extension and marginalization are not

commutative with each other

2.5.2 Conditioning and Ballooning Extension

In section 2.4 Conditional Belief Function was defined over a single frame of
discernment. However, there are some cases for which conditioning a mass function on
frame of discernment other than its original one is required. This is achieved with

Conditioning operation.

Assume that there exist two frame of discernments Q and ®. Consider two hypotheses
denoted by A € ftand B € @. When conditioning hypothesis A with hypothesis B is
desired, the first step for achieving this goal is to perform Vacuous Extension operation on
hypothesis B with frame of discernment Q and assume that m%*®(QxB) = 1. Then,

Equation (2.31) is applied to obtain the required conditioning.
m?[B](4) = (m3*°(4x0) nm2* °(xB))*" (2.31)

The reverse operation of the conditioning is called Ballooning Extension. It determines
the least committed bba for the conditioning operation defined by Equation (2.31). It is

computed from:

P [B]7%5 (C) — [mﬂ[B]{A]. ifC=(AxBlul2x(@\B))forACS N and CS0x O

: (2.32)
a, otherwise

Example 2.6:

Apply conditioning operation on the mass function given in Example 2.4 for the condition
of {g2}:

Solution:

This solution is obtained in two stages.
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First stage conditional belief function operation is performed for the assumption

m3* % (0xq2) = 1. Then, we got:

mt*% N m?,x'? —

m" *¢[q2]({w2,q2}) = 0.2
m"*¢[q2]({w1,q2}) = 0.3
m®*¢[q2]({w2,q2},{w1,q2}) = 0.4
m?*¢[q2](0) = 0.1

Second marginalization on @ is be applied to the mass function calculated at the first

stage. The final result is:
m®[q2]({w1}) = 0.3
m"[g2]({w2}) = 0.2
m*[g2](2) = 0.4

m®[q2](0) = 0.1

Example 2.7:

Apply ballooning extension to the mass function obtained in the previous example.
Solution:

From equation (2.32) the following result is obtained:

m® [q2]""%° (fw1,q2}, {w2,q1},{w1,q1}) = 0.3

m® [q2]"7%° ({w2,92}, {w2,q1},{w1,q1}) = 0.2

m® [g2]™*°(nx @) =04

m? [q2]™*¢ ({w2,q1}, {wl,g1}) = 0.1
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3 MODEL-BASED CLASSIFIER

In this chapter the proposed classifier called model-based classifier (MBC) is developed.
In Section 3.1 theoretical background of the MBC is explained and its general notation is
given. In Sections 3.2 and 3.3, the implementation of MBC with single sensor and
multiple sensors are explained respectively. In Section 3.4, an artificial learning sets are
generated for the simulations are discussed. In section 3.5, simulation results based on the
learning set generated in section 3.4 is given. In section 3.6, statistical performance of the

MBC algorithm is evaluated.

3.1 The MBC and Its General Notations

The MBC is a non-parametric density estimation-based method that uses conditional and
prior probabilities to compute posterior probabilities similar to Bayesian Classifiers [8]
[9]. To achieve this goal, the MBC requires sets of class data produced from same
attributes of objects such as weights, lengths, color etc. Information sources provide
attribute data. Please note that the word “agent” and information source are used

synonymously in this thesis.

By using this information as training data or a learning set; a sample region is created to

assemble conditional bbas for each information sources.
The general notation of MBC is defined as follows:

o 01 = {w, }r_, isthe finite class set or category.

X is the J- dimensional feature vector space.

{0.}1-,; o, is defined as the set of objects

x; € X the feature vector of object o,

c; € 11s the class to which object o, belongs to

e; = (x;,c;) € 11 is the current data collection about object o,

L

L = {e.}i, is the learning set
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With the help of a learning set MBC is able to find the correct class of an unknown
object whose feature vector is known. For this purpose, the first step is to create
agent’s belief with the help of bbas belief. For k=1,2,..,K let a bba
m* {x}[c = w,] be denoted as m™ [w,]. This notation shows the agent’s belief about
object o for the hypothesis that “object 0 belongs to class w,” based on the observed
attribute value

Let us assume that there exists a Vacuous Belief Function (VBF) defined on a frame
of discernment 2 with feature vector x and prior probability c. The steps for
implementing MBC defined as follows [10], [11]:

e The conditional bba m* [w,] is extended with ballooning extension to determine

]‘?‘?,x [mk]TﬂxJ{'
e The extended bbas are combined with Dempster Junction Rule:

NwX _ n ' I‘[{dk]TﬂxI

K
m =1 T

e The combined bbas are conditioned with the condition of 02 x {x}

e Marginalization is applied on 1 to obtain the final result.

The formula for computing the bba m® [x] is given by:

K X )
]‘?‘lﬂ [I:l — ﬂ EPL [Ln.l;(]'-\.t':I (3-1)

=1
Where w,, denotes the conjugate of w, defined on £1. The explicit form of Equation (3.1)
IS given as

m @ = | | pFlede | | (1-pFlodm) (32)
wyEA Lu;(EA-
pPIx1(4) = 1 — T, ea (PF 0] () (3.3)

If prior bbas assigned based on agent’s belief are different from the empty set the

respective bbas are combined with one of the Dempster Combination Rules. After the
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posterior bbas are formed for the MBC the pignistic transformation is applied and the class

with the highest probability is selected as the correct class.

3.2 Implementation of Model Based Classifier with a Single Agent

In this chapter the implementation of the MBC for a single agent is discussed. Please note
that the word “agent” can refer to various sources. The agent in question could be a single
person making a decision or it could be a sensor measuring several attributes of an object
such as weight length shape color etc. ... However, it is always assumed that a single

agent always produces a single feature set or learning set.

Assume that there exists a learning set produced from an agent denoted by L for a frame
of discernment 2 = {w1,w2,w3,..,wv}. Further let N(k) = a, give the number of
elements belonging to class w, inside the a region with radius r in the learning set

L_where 1 < k < v. With this definition, the conditional bba for class w,, is calculated by

pllwk](x) = o (3.4)

-
p=1%

In the next step, posterior bbas should be determined from the conditional bbas. Equation

(3.2) can be used for that purposed.

In the following step, prior bba is calculated. Let ¥ (w, ) denote the number of elements

that belongs to the class win L_ . Then, the prior bba for w,, is obtained from

¥(wy,

mi;,,z-m.{'f}({wk D= m

(3.5)

In the final step of the implementation, posterior and prior bbas are required. This is done

by using Equations combined (3.6) and (3.7) given below:
m [x] () = m e (S} Dx( ) £(6,) (3:6)
n=1
where

f(EJ ) — {Inpasra:"ior combined [I] (E”j;wk € Bu
n

3.7
0, otherwise (3.7)
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Once the final conditional bba is obtained, the pignistic transformation is applied to make

decision.

3.3 Implementation of Model Based Classifier with Multiple Agents

In the previous section the implementation of the MBC with a single agent was discussed.
Here its implementation with multiple agents is explained. As mentioned previously, each
agent is assumed to produce its own learning set. Therefore, if there exists n agents then

there is going to be n amount of learning sets denoted by LS,,LS,, LS;,....LS

n

For a given learning set LS,, 1 < m < n and a class w,, 1 < k < v, the conditional bbas
are calculated with Equation (3.4). Then the posterior bba is calculated from conditional
bba by using Equation (3.2) similar to what was done for a single agent. Once posterior
bbas are obtained for each learning set they are fused or combined. This is achieved with

the Dempster Combination Rule defined in Equation (2.22).

In the next step, prior bbas are obtained. Let the notation ¥, (w) give the number of
elements that belongs to wr, inside the learning set L5,,,. Then, the combined prior bba for

class w,, is calculated by:

1= Yo (wy)
11=1 11 k
In{fﬂ-mbi:zsd p:'io:'{c}({“’ k}] = n

M ey Zoasy Yo (Wyg) (3.8)

Once both combined posterior and prior bbas are obtained they are combined by using

Equation (3.6) and (3.7). Finally pignistic transformation is applied for decision making.

3.4 Artificial Learning Sets Used in Simulations

Due to the difficulties for obtaining real data for the implementation of the MBC,
artificially generated learning sets are formed for the simulations. For this purpose, six
ships were chosen from the book entitled “Modern Deniz Sistemleri” by Sami [12]. The

selected ship classes and their respected lengths are given in the Table 3.1
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Table 3.1  Ship Classes and their lengths in meters

Ship Classes | Ship Lengths
wy 24.5
W, 32
Wy 61.9
W, 56.2
Wy 1175
W 130

When generating learning sets each ship length is assumed to be modeled by a Gaussian
random variable whose mean value corresponds to its length. Variance value for each ship
model is inversely proportional to its length meaning that for a long ship variance is
smaller and for a short ship it is big. With the help of this idea a two dimensional
hypothetical space is created where one axis shows ship’s length and other shows how

much deviation is allowed from the mean value in percentage value.

Two learning sets were generated. The number of elements for each class in each learning
set is random. Also, if any generated value for a given class deviates more than two times
of the respective variance it is considered as outlier and not included int the learning set.

The learning set are called 5,ands,. They are given in Figures 3.1 and 3.2 respectively.
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The number of elements for each class in each learning set is given at Tables 3.2 and 3.3
respectively.
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Table 3.2 Number of Elements in the learning Set 5,

Learning Set: 5,
Ship Classes | Number of Elements
Wy 2209
w, 2174
Wy 1985
W, 2174
W 1612
W 1857

Table 3.3 Number of Elements in the learning Set 5,

Learning Set: S,
Ship Classes | Number of Elements
Wy 1267
W, 1011
Wy 1855
Wy 2043
Wy 2270
W 1090

Learning set elements are generated in Matlab development environment. Pease note that
for each learning set a Matlab Array is formed. The number of matrix inside each learning
set is equal to class sizes and number of elements inside each matrix shows the data
number that belongs to corresponding class. To increase precision, they are stored in
“double” format. Figures 3.3 and 3.4 below show a sample Matlab array named as

database and one of the class matrixes inside the database, respectively.
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Figure 3.3 Matlab Array called Database
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Figure 3.4 One of the Class Inside the Database

3.5 Simulation Results

First, the MBC is implemented with 5,and 5,learning sets separately. During the
application process each unknown input is generated with the methodology explained in
section 3.4. The hypothetical space used during the generation of learning sets are used to
determine the variance values that are also taken as sampling interval radius. The results
shown in Tables 3.4 and 3.5 are obtained after the algorithm explained in Section 3.2 was

run.
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Table 3.4 Simulation Results for the Learning Set 5,

Learning Set: 5,

Class Probabilities after Pignistic Transformation

wy W, wy W, wg W
wl | 0.5349 | 0.4637 | 0.0004 | 0.0004 | 0.0004 | 0.0004
w2 | 0.2077 | 0.7899 | 0.0006 | 0.0006 | 0.0006 | 0.0006
Input w3 | 0.0004 | 0.0004 | 0.5942 | 0.4041 | 0.0004 | 0.0004
w4 | 0.007 | 0.0326 | 0.2279 | 0.7373 | 0.0007 | 0.0007
wS | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.6274 | 0.3702
w6 | 0.0016 | 0.0016 | 0.0016 | 0.0016 | 0.0016 | 0.9921

Table 3.5 Simulation Results for the Learning Set 5,

Learning Set: 5,

Class Probabilities after Pignistic Transformation

wy W, W W, Wg We

wl | 0.9919 | 0.0016 | 0.0016 | 0.0016 | 0.0016 | 0.0016

w2 | 0.0014 | 0.9928 | 0.0014 | 0.0014 | 0.0014 | 0.0014

Input | w3 | 0.0007 | 0.0007 | 0.7329 | 0.2643 | 0.0007 | 0.0007
w4 | 0.0009 | 0.0009 | 0.0009 | 0.9957 | 0.0009 | 0.0009

w5 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.9962 | 0.0008

w6 | 0.0037 | 0.0037 | 0.0037 | 0.0037 | 0.0778 | 0.9074

Each ship class is shown to be classified correctly according to Table 3.4 and 3.5.
However, when class attributes are intersecting with each other, the gap between the
probability for the correct class and the probability for the other classes decline since
intersection increases uncertainty. Despite this fact, correct class probabilities are separate

enough from other probabilities to make correct classification.

Next both learning sets are evaluated together with the algorithm detailed in Section 3.3.

The corresponding results are given in Table 3.6
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Table 3.6 Simulation results for the Combined Learning Set

S,and S;Learning| Class Probabilities after Pignistic Transformation
Sets Combined

wy W, Wy W, wy W,
wl | 0.9983 | 0.0017 0 0 0 0
w2 | 0.0003 | 0.9997 0 0 0 0
Input w3 0 0 0.8174 | 0.1826 0 0
w4 0 0.0001 | 0.0003 | 0.9996 0 0

wh 0 0 0 0 0.9994 | 0.0006

w6 0 0 0 0 0.0001 | 0.9999

From Table 3.6 it is obvious that observed probabilities for the correct classes increases
significantly when learning sets are evaluated together. This is even more apparent when
deciding between two classes that have a large amount of area intersecting with each
other. One can deduce that using multiple information sources seems to increase the
pignistic probability for the correct class compared to using only one information source.

This is because combining multiple information sources reduce uncertainty.

Please note that during section 3.5 only a single classification result for each of the classes
are given since multiple input data for each class would be redundantly takes space in the
thesis. Instead in Section 3.6 statistical evaluation the algorithm is discussed in order to
show each ship classes can correctly be classified using the MBC with multiple input

values.

3.6 Statistical Evaluation of the MBC

In this part, of the thesis simulation results of the MBC is evaluated statistically. For the
statistical evaluation 50 inputs are generated with the same method explained in Section
3.4. Precision recall and F-beta score are used as performance measures. Also, confusion

matrices are formed for all three cases.

With accuracy measure calculates the rate of correct classification to total number of
samples. Precision measure evaluates the rate true positive cases to number of samples
that classified as positive. Recall measures computes the rate of true positive cases to
number of samples that should have been classified as positive. Finally, F-beta scores
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which is derived from precision and recall, measures any given System’s statistically

correct classification performance.

Confusion matrices resulting from processing inputs for each class in the learning set

5,are given in the table 3.7. Please note that confusion matrixes are in the form of:

True Positive

False Negative

False Positive
True Negative

].

Table 3.7  Confusion Matrices resulting from after processing inputs for each class in
the learning set 5,
Confusion Matrixes for the learning set 5,
'I.-‘I.Fl 'I-‘I.F: WE! 'I.-‘I.F4 WE- 'I.-‘I.FE_
[42 14] [35 8 ] [25 ll] [39 24] [41 lﬂ] [4{] 9 ]
8 182 14 188 24 198 11 185 9 183 10 184

In order to understand the statistical behavior of the system, precision and recall are
calculated from the values in Table 3.7. In Table 3.8, measures for each class as well as

system average are provided.
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Table 3.8 Precision and Recall for each class in the learning set 5,

Precision and Recall Measurement for Agent S,

wy |w, |wy |wy |wg |w, |average

Precision | 0.75 | 0.82 | 0.70 | 0.62 | 0.80 | 0.82 | 0.752

Recall 0.84 | 0.72 |1 052 | 0.78 | 0.82 | 0.80 | 0.746

For the intended classification purpose in this thesis both precision and recall are equally
important. That is why the parameter  is taken as 0.5. The corresponding F-beta

measurement scores are given in Table 3.9.

Table 3.9  F-beta Measurement Score for the learning set 5, ($=0.5)

F-beta Measurement Scores (learning set: 5, )

wy, | w, |wy |w, |wg |w, |average

0.79 1 0.77 | 0.60 | 0.69 | 0.81 | 0.81 | 0.749

Table 3.9 shows that while the MBC’s general classification performance is relatively
high it does not provide enough correct classification for every class. For example, F-beta
measurements scores for the classes w3 and w4 are quite low compared to those of the
other classes. The main reason for this situation can easily be recognized by examining
Figure 3.1 showing the distribution of objects in the learning set learning set 5,. In Figure

3.1 there exists a wide overlapping area for the classes w3 and w4 that causes uncertainty
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for both classes. As a consequence, F-beta measurement scores of them are quite less than

Table 3.10  Resulting Confusion Matrices after processing inputs for each class in
the learning set 5,
Confusion Matrixes for the learning set learning set 5,
wy W, Wy Wy we Wy
[5{] 0 ] [5{] a ] [48 1 ] [49 2 ] [5{] 0 ] [5{] a ]
0 247 0 247 2 249 1 248 0 247 0 247

the system average.

Next, a similar analysis is performed for the learning set learning set 5, with the same

methodology. The respective confusion matrix is given at the Table 3.10

Precision and Recall measurement can be calculated from Table 3.10. They are given in
Table 3.11

Table 3.11  Precision and Recall Measures for the learning set 5,
Precision and Recall for 5,
Wy | Wy | Wy wy | wg | wg | average
Precision [1 |1 098|096 |1 |1 |0.990
Recall 1 |1 (09 (098 |1 |1 |0.99

F-beta measurements for the learning set 5, computed from Table 3.11 are provided in
Table 3.12 for 3 = 0.5
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The result shown in Table 3.12 indicate classification accuracy is high for all classes. The
reason behind this outcome is the same with the previously explained one. When the
learning set 5, is examined, classes are seem to be well separated as there are few and

limited overlapping regions between any classes.

Table 3.12  F-beta Measurement Score for the learning set 5, (($=0.5)

F-beta Measurement Scores for 5,

wo | Wy | Wy | wg | wg | average

1 |1 (097|097 |1 |1 |0.990

When the obtained F-beta measure for both S1 and S2 are evaluated together one natural
question is the following: Is it possible to improve the results obtained from 5, with the
help of results obtained for 5,? To answer this question statistical evaluation of the multi

agent classification of the MBC for the learning sets 5,and 5, is examined next.

First confusion matrixes obtained from combined evaluation of 5,and S,are formed.

Table 3.13 shows the resulting confusion matrices.

Table 3.13  Acquired Confusion Matrix after processing inputs for each class for the

learning sets 5,and S,

Confusion Matrixes for Combined Evaluation of Agent S1 and S2

w, W, Wi W, wsg Wg
% 200 [ [0 200) | [T 280)| [0 220 | Lo 220l |[o 28]
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Similar to previous cases precision and recall measures are calculated for multi agent

system. It is given in the Table 3.14

Table 3.14  Precision and Recall Measures for the learning sets
5,and s,

Precision and Recall Measurement for Agent S1 and S2

wy | W, | Wy | wy | wg | wg | average

Precision | 1 1 1 0981 1 0.996

Recall 1 |1 (0981 1 |1 |0.99%

For the last step F-beta measurement score is calculated for the multi-agent system this
time. Results are given in the Table 3.15.

Table 3.15 F-beta Measurement Score for the learning sets S1
and S2

F-beta Measurement Scores for Agent 5,and 55

wy | W, | Wy | wy | wp | wg | average

1 {1 (09909 |1 |1 |[0.9%

When Table 3.15 is observed and results are compared to Table 3.9 and Table 3.12 it is
clearly observed that evaluation of multiple learning sets have positive impact on correct
classification performance. It is more significant for the agent S1 since it has the lower
classification performance. However, classification performance is also increased for the
learning set 5, as well. Based on this observation it can be concluded that when multiple
learning sets are evaluated together classification performance increases compared to the
case in which only one learning set is used. For instance, F-beta measurement score for the

ship class wy is 0.6 for the learning set 5, and 0.97 for the learning set 5,. However, the
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combined F-beta measurement score for the same class is 0.99 which is higher than the

any of the learning sets F-beta measurement score when they are evaluated separately.
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4 CONFLICT DETECTION

Conflict arises during information fusion in the framework of Belief Function Theory.
Most of the time sources from which data are obtained are imperfect. Even though the
cause of imperfections can be in many forms, it can be divided into two major categories
[14]. First cause is the lack of trust to data provided by sources. Second cause is that one
obtains conflicting data from the same information source under the same conditions. For
the latter cause of imperfection, it is not possible to apply any sort of conflict management
for the purpose of information. However, for the former cause, conflict detection and
management are entirely possible with degree of uncertainty. In the scope of this thesis,

conflicts resulted from the former category are going to be evaluated.

Under perfect conditions there would not be need for either information fusion nor
conflict detection since data would be perfectly gathered and classification could be
achieved without errors. Under real conditions, however, this is not the case. There are
many forms of imperfection that make the data obtained from an information source
questionable. For instance, the gathered data could be incomplete, measurement could
have been taken with an inadequate measurement tool or there could be background
affecting the information source’s reliability. All of these and even more factors are the

cause of uncertainty for the given information source [15].

As a consequence, one must determine the degree of uncertainty of data provided by a
source in order to achieve satisfactory classification results. Unfortunately, making a
correct judgement about uncertainty is not possible by using the single source on its own.
However, uncertainty can be determined with the use of multiple imperfect information
sources and the degree of uncertainty among different sources can be obtained.
Determining uncertainty requires data fusion algorithm such as Dempster Rule or

Dempster Junction rule explained in the Section 2.2.

The idea behind conflict detection and management is that if data obtained from several
information sources are consistent with each other, correct classification is still possible.
That is why devising an algorithm checking the consistency of information sources

relative to each other is essential. This is called conflict detection. With a conflict
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detection algorithm, checking if data coming from discrete various information sources are
conflicting with each other or not can be achieved. Conflict detection results can be used
to determine the degree of trust that can be put in to the end result computed from a data
fusion algorithm.

In BFT conflict detection and management is still an open-ended discussion and many
conflict detection algorithms exist. To the best of our knowledge, a general conflict
detection solution does not exist. Moreover, there is not a well-defined solution to fuse
highly conflicting masses [16]. For this reason, several conflict detection algorithms were
examined in order to find a suitable conflict detection algorithm for the proposed classifier
[14], [15], [16], [17].

Three measures were taken into account to assess conflict detection algorithms. The

measures are accuracy, convergence for thresholding, and speed.

Main objective of a conflict detection algorithm is to find out whether information
obtained from different sources are consistent with each other or not. If an algorithm could
not detect the conflict accurately enough for the MBC algorithm; then it would not be
possible to designate the degree of certainty to the obtained results and identify the
conflict threshold correctly. For this reason, the first measure is the accuracy. It is the most

important evaluation criteria for the selection of an algorithm.

In the TBM framework a conflict between any two mass functions is a number between 1
and 0 where 1 means that mass functions are completely inconsistent with each other
(degree of conflict is maximum) and 0 means that conflict does not exist. Since MBC
algorithm is concerned with thousands of mass functions, detecting conflict requires
assigning a threshold. Threshold assignment would be easier if the conflict detection
results converged to two different discreet points that are well separated from each other.
Hence the second measure is convergence for thresholding is important for determining a

conflict threshold easily.

Speed is the last measure. Since MBC algorithm itself has a high computational
complexity growing exponentially as the class size increases; it should be using a conflict
detection algorithm with as much low computational load as possible that will not impose

additional burden on the classification algorithm.
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Based on these three measures the conflict detection algorithm described for the MBC is
in the study entitled “About conflict in the theory of belief functions” by Arnaud Martin
[14] was chosen. In this thesis this algorithm is going to be called Arnaud Martin’s
Conflict Detection Algorithm AMCA.

This chapter is made up of five sections. In the Sections 4.1 and 4.2, two essential parts of
the AMCA algorithm — Jousselme Distance and Degree of Inclusion- are defined. In
Section 4.3, the AMCA algorithm itself is going to be explained. How conflict thresholds
are determined discussed in section 4.4 Statistical performance of the algorithm is given at
Section 4.5.

4.1 Jousselme Distance

Jousselme Distance is thoroughly explained and detailed in the article entitled “A new
distance between two bodies of evidence” [17]. The aim of Jousselme Distance is to
determine how “far” the implied solution between two different bba is to each other.

For a frame of discernment {1 whose elements are w, ,w,, wg, .....,w, Where k = 0 is
integer; values of a mass function m(w,),! < k can be modeled as a discreet random
variable with fixed values. With this definition vector space generated by focal elements
of the mass function is denoted by =4, Where P((1) represents all of the subsets of 0.

The formal definition of &5, is given as

k

Epioy = Z a;f3; (4.1)

=1
where &; € Q1 and S, is one of symbols in the focal sets of the mass function

In the vector space defined in Equation (4.1) a distance calculation function within metric
space is needed to measure how far two mass function values are from each other. Assume
that there exist : 4, and A, € P({)and the notation d(4, ,4,) stands for the distance
between A, and A,. Such function should be defined on =x e and must have the

following properties:

e d(A,.4,) = 0 (Nonnegativity) 4.2)
o ifA =4, thend(4,.4,) = 0(Nondegeneracy) (4.3)
o d(A,.4,)=d(A,,4,) (Symmetry) (4.4)
o d(A,.A4,)=d(4,.4;)+d(4,.4;) where A; € P(0) (4.5)
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With the conditions defined from Equation (4.2) to (4.5) that if function d is in metric

space, S0 is £5,4;. Therefore, the Jousselme distance formula is proposed as:

d(m,,m,) = (m, — m. )T D(m, — m.) (4.6)

Where D mentioned is a 2¥x2* matrix defined in metric space as well. In addition, D
should also be sensitive to similarities and differences between two given bbas. That is
why Jaccard Distance Matrix most commonly used in the area of Computer Vision is
chosen for D. In computer vision, the main purpose of Jaccard Distance Matrix is to find
similarities and difference between given images. Consequently, Jaccard Distance Matrix
is perfectly suitable for comparison of two bbas. The mathematical definition of Jaccard

Distance Matrix is given by:

4, nA,l

D(4,,4,) = 12, U Al
2 1

(4.7)

where |4, n 4,land [4, U A4, | shows cardinality of the given set operations

When Equation (4.7) is substituted in Equation (4.6), Jousselme Distance formula for two
different mass functions of m and m, defined on the same frame of discernment € is

becomes.

dy(my.m,) = /0.5 * (m, — m, )TD(m, — m,) (4.8)

The number resulting from Equation (4.8) is called the total conflict measurement.
Measuring the total conflict through a distance-based conflict algorithm such as Jousselme
Distance is quite useful. However, it does not always give the outcome of 0 for the value

of m(01) = 1 and any m value. This represents the state of total ignorance.

That is why an additional definition of conflict measure is needed that can check the

inclusiveness of one mass function on another[14].

4.2 Degree of Inclusion

In the previous section, Jousselme Distance — a distance-based conflict algorithm- was
explained. While Jousselme Distance is an excellent algorithm for measuring conflict
between two mass functions, it is not effective for measuring conflict on empty sets and at

the state of total ignorance.
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Consider two mass functions denoted by m, and m,. m, is said to be included in m, if all
focal elements of m, are included in m,. This inclusion is denoted as m, < m,. The
notation for conflict derived from this definition is Conf(m,,m,) and it should have the

following properties:

e Conf(m;,m,) = 0(Non-negativity) (4.9)
e Conf(m,;,m,) = 0 (Identity) (4.10)
e Conf(m,,m,) = Conf(m,,m,)(Symmetry) (4.11)
e 0 < Conf(m,,m,) < 1(Normalization) (4.12)
e Conf(m,,m,) =0 m, € m,orm, & m, (Inclusion) (4.13)

Please note that compared the properties of Jousselme Distance, Inclusivity is less
restrictive here since Jousselme Distance only allows nondegeneracy or identity
(d(m,, m,) = 0) and not inclusivity. In addition, Pisagor Inequality is not needed. Hence
conflict between two masses can be reduced through an intermediate mass.

Let 4, and A, be focal elements for the mass functions m, and m,, respectively. To

begin with an inclusion index is defined given as Equation (4.14):

1,4, €A,
Inc(A,A,) =1 " ""1 7% 4.14
ne(dy, 4;) {D,atherwise ( )
Then a degree of inclusion m, in m, can be defined as
1
Aine (MymMy) = = Z Z Inc(4,,4,) (4.15)
B |CJ_| |C:| -
A, ef, d.eC,

Where |C;| and |C,| shows the number of focal sets in mass functions m,; and m,
respectively.

From Equation (4.15), a degree of inclusion of m, and m, is given by
8 ine (My,m,) = max(d,,, (my,m,), d;,.(my,m,)) (4.16)

Equation (4.16) is inversely proportional to the conflict measure. For example, if
m, S m, then &, _(m,,m,)=1. That’s why true notation of degree of inclusion is

defined as
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1- 5&:::(1?11’1“2) [41?]

4.3 Arnaud Martin’s Conflict Detection Algorithm (AMCA)

AMCA is derived from the Jousselme Distance and the Degree of Inclusion. Its

mathematical definition is given as by
Conf(my,m,) = (1 — 8,,.(my,m,)) * d(my, m,) (4.18)

The first term on the right hand side of the Equation (4.18) was defined in Equation (4.17)
and the second term was explained in Equation (4.8). Please note that since both terms are

normalized, the Equation (4.18) itself is also normalized.

Example 4.1 illustrates how the conflict between two mass functions is determined using
AMCA

Example 4.1:

Consider the following mass functions m,and m, defined over a frame of discernment

0 = {w,, w,}given as:

my(w,) =05 my(w,) =02 m,(02) =03

m,(w,) = 0.3 m,(01) = 0.7

Determine the conflict between the mass functions by using AMCA
Solution:

From Equation (4.7), Jaccard Distance is computed as:

1 0 05 0
D= 0 1 05 0
05 05 1 0
0 0 1
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0.5

Matrix form of m, is M, = g'é
0
0
L . - 0.3
Similarly matrix form of m, is M, = 0.7
0
0.5
—0.1
Hence M, — M, =
R |04
0

From Equation (4.8) Jousselme Distance is determined as d, (m;,m,) = 0.361

From Equation (4.15), d,,,.(m,,m,) and d,,,.(m,, m, ) are found as:

dipe(my,m;) =2(1+0+1+1+1+0) =067
1
dipg(mym ) =2(040+140+1+1) =05

Consequently, From equation 4.18 conflict is calculated as:
8:pemy,m,) = 0.67

Conf(m,,m,) =(1—0.67)*0.361 =0.119

4.4 Determination of Conflict Threshold

In previous sections, the idea behind the conflict detection algorithm used in this thesis

was explained thoroughly. If the result of AMCA is zero, there is no conflict between any

given two mass functions. If the result is ,1 then the given mass functions are in total

conflict. However, most of the time conflict result obtained from any conflict detection

algorithm including AMCA is a value between 0 and 1. Based on a conflict value that is

between 0 and 1, how can one tell if the given mass functions are conflicting with each

other? A threshold value is needed to answer this question. For a given threshold, conflict

exists between the two mass functions if AMCA produces a number greater than the

threshold. Otherwise conflict does not exist
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Before explaining the method used to determine the conflict threshold an auxiliary
definition that called “conflict identity” is needed. The definition of conflict identity is as

follows:

Definition:

For any given mass functions pairs, conflict identity is the information of whether conflict
exists between them. If an observer knows the conflict identity of a mass function pair
then it knows whether mass functions are in conflict.

Determining the optimum conflict threshold is not a trivial task since there is no well-
defined rule. In addition, the conflict threshold could potentially vary greatly from one
problem to another even for the same conflict detection algorithm. The best method for
determining the threshold is trial and error. For a given conflict detection algorithm, one
can determine the threshold by looking at the frequencies of the conflict values for the
mass functions that are known to conflict with each. Similarly, conflict values for the mass
functions that are known not to conflict with one another can be examined. This can be
done by assuming that conflict identity of mass function pairs can be modeled as a
probability density functions (PDF). The aim of this modeling is to create a histogram of
PDF. Then, a suitable value that can be used for making decision about conflict identity of
the mass function pair can be selected from the histogram.

To form the corresponding histograms, two sets of data were taken from the artificial
learning set explained in Section 3.4. Each data set contains 5000 points pairs One pair
comes from the learning set 5,and the other is from the learning set 5,. Mass function’s
conflict identity are formed by using these point pairs.

To form mass function pairs that do not conflict with each other, one of the six classes
from w, to w, is randomly selected. Then, the first data point of the pair is chosen from
the randomly selected class in the learning set 5,. Then we make sure that the second data
point of the pair is chosen from the same class in the learning set S,. In the final step, two
mass functions are formed by using the pairs based on the algorithm explained in Section
3.2 and 3.3 and the respective conflict value is determined via AMCA. This selection
algorithm mimics the scenario for which both information sources are indicating the same
outcome maximizing the likelihood of correct classification. Therefore, the degree of
conflict is minimal.

In order to create two mass functions that are highly conflicting with each other; one the
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six classes from w, to wy is again randomly selected and the first data point of the pair is
taken as before. Then we make sure that the other data point of the pair is selected from a
class different from the randomly selected class in S,. Then, two mass function pairs are
created the previously explained manner and their conflict is calculated through AMCA.
Unlike the previous method, this selection approach ensures that correct classification
cannot be achieved since the underlined mass functions are in conflict with each other.

Histograms corresponding to the conflict values obtained from the non-conflicting and

conflicting mass functions are illustrated in Figures 4.1 and 4.2 respectively.

Histogram of the conflict values for Non-Conflicting Mass Functions
T T T T T T

2
8

Frequency of Occurance
& 2

0 005 01 015 02 025 03 035

Conflict Values

Figure 4.1 Histogram of the conflict values obtained from the Non-Conflicting Mass
Function Pairs
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Histogram of the conflict values for Conflicting Mass Functions
T T T T

Frequency of Occurance

Conflict Values

Figure 4.2 Histogram of the conflict values obtained from the Conflicting Mass
Functions

Conflict thresholds are determined in the following way from the histograms. For each
histogram for a given threshold more than 98 percent correct conflict identity
classification should be achieved while overall correct classification should be more than
98 percent as well. Two requirements could not be satisfied when one threshold is used.

For that reason, two conflict thresholds were used.

The conflict threshold determined from Figure 4.1 is found to be 0.35. In a similar manner
the conflict threshold from Figure 4.2 is found to be 0.5. For a given mass function pairs if
a calculated conflict value is lower than 0.35 conflict does not exist, if conflict value is

higher than 0.5 conflict exists. Otherwise we cannot make a decision.

In the next section statistical performance of AMCA algorithm based on the conflict

threshold values is evaluated.
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4.5 Statistical Evaluation of AMCA

Statistical evaluation is going to be performed similar to what is done in Section 3.6. First
statistical hypotheses have to be defined. This is required since there are values that are
inconclusive between two conflict thresholds. Thus, the corresponding confusion table is
different from the one in Section 3.6. After confusion table is created, precision recall and
accuracy are calculated based on these values. In the final step, f-beta measurement will be

given.
The statistical hypothesis that are used in this section are defined as follows:

e True Positive: Conflict exists between mass functions and the algorithm detects it
successfully.

e True Negative: There is no conflict between mass functions and the algorithm
decides that there is no conflict.

e False Positive: There is no conflict between mass functions. However, the
algorithm decides that there is conflict.

e False Negative: There is conflict between mass functions. However, algorithm
decides that there is no conflict:

e Undecided: Conflict for the given mass functions exists between two threshold

Table 4.1 The Confusion table of AMCA based on the determined threshold values

True Positive 4798
True Negative 5000
False Positive 0
False Negative 89
Undecided 113

values. The algorithm cannot decide whether conflict exists or not.
For a total of 10000 data pairs, the confusion table created based on the determined

threshold values is given in Table 4.1
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Table 4.2 Precision Recall and Accuracy values of AMCA

Precision 1
Recall 0.981
Accuracy 0.979

Precision, recall and accuracy are determined from Table 4.1. They are specified in Table

4.2

Using values in the Table 4.2 F-measurement is calculated to be 0.990. This shows that

both precision and recall values as well as F-measurement is very close to 1.

Using precision, recall and F-measurement we can conclude that AMCA algorithm works
as intended with the determined threshold values it is able to detect conflict between

any given mass function pair for our problem.
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5 SPEED-ORIENTED OPTIMIZATiON OF MBC

During the implementation of MBC it was observed that MBC algorithm’s computational
speed reduce drastically as class size increases. Furthermore, majority of the slowdown
results from the computation of Dempster Junction Rule. This is somewhat expected due
to two main reasons. First Dempster Junction Rule requires subsets of a frame of
discernment. The Dempster Junction Rule formula that was given in Section 2.2 in
Equation 2.22. From which it can be clearly observed that for each increment in class size
increases the computational complexity exponentially. Second, computation step requires
set operations. Set operations with symbolic values are known to be computed slowly in
most high-level programming languages.

When these two issues combined it causes a serious computational bottleneck for MBC.
The objective of this chapter is to come up with solutions in order to speed up the
computation and reduce the waiting time for Dempster Junction Rule operation to be
complete.

The number of set operations was minimized by computing Dempster Junction Rule in a
different way. After some research it is discovered that would be mitigated some of the
computational performance loss due to increased class size by using what is called
commonality function. Commonality function is one of the key concepts in the Belief
Function theory. This function finds committed total mass to one subset and all of its
supersets. For a frame of discernment 0@ and two subsets €, & €, € 1 notation g(C,)
expresses amount of total mass in €; committed to €, and all of the subsets in the superset

C,. The mathematical definition of commonality function is given as Equation (5.1)

q(c) = Z m(C,),¥ C, € 0 (5.1)

c,EnC EC,
From a given commonality function the corresponding mass function is calculated from
Equation (5.2)

mc)= ) (~DDGlge)ve 0 (52)
C,CNC CE
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Dempster Junction Rule Computation becomes quite trivial if it is computed through
commonality function. The computation rule in terms of commonality function is given as
Equation (5.3):

0102(C) = q,(C) x q,(C),V C €0 (5.3)

As it is evident from Equation (5.3) that commonality function reduces Dempster
Junction Rule to a simple product operation at a slight cost of conversion to and from mass

function to commonality function.

Example 5.1:
Calculate Dempster Junction Rule through commonality function and convert the joint

commonality back to mass function

For a frame of discernment @ = {w,, w,,w;} and the following two mass functions:
m, (w,,w,) = 0.5,m,(w,) = 0.2,m,(w,,wy) = 0.2,m, (w,,w,,wy;) = 0.1
m,(wy) = 0.7, m,(w,, wy) = 0.3

Solution:

First mass functions are converted commonality functions as via Equation (5.1)
g, (wy) =m(w,w,) +m,(w,) +m,(w,w,, wy;) =038

q,(wy) = my(w,) + m (w,w,) +m,(w,w,,wy) = 0.8

q,(wy) = m,(w,) + m,(w,w,,w;) =03

g,(ww,) =m,(w,w,) =054+ my(w;,w,,wy) = 0.6

g, (wy,wy) =m,(w,) + my(w, w,,wy;)=0.3

qy(wy,wy) = my(wy,wy,wy)=0.1

b, (Wir“":: Wy )= mi(""ir Ws, Wy )=0.1
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g, (w,) = m,(w,, w;)=0.3

qz(w;) = my(wg) + my(wy,wy) =1
q,(wy,w,) =0

qz(wy,wy) =0

g, (wy, wy) = m,(w,,w3)=0.3

qz(wy,wy, wy) =0

From equation 5.3 Dempster Junction Rule is computed as:
q1na(wWy) = qz(wy) =0

q3(wy) = q,(w,) x g;(w,) = 0.24

g3(wy) = q,(wy) x g,(w;) =0.3

qz(wy,w,) =0

qz(wy,wy) =0

qa(wa,wy) = qq(Wa, wy) x go(wa,wy) = 0.03
qa(wy,wy,wy) =0

From equation 5.2 commonality functions can be converted back to mass functions:
my(w;) =0

mg(w,) = g5(w,) + (—1)'qz(w,,wy) =0.21
mg(wy) = g3(wy) + (—1)'qz(w,,wy) = 0.27
mq(wy,w,) =0

mq(wy,wy) =0

my(wy, ws) = q3(w,,w;) = 0.03
ma(wy,wy,wy) =0

my(¢) = 0.49
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The second solution is to represent elements of the mass functions in a way such that set
operations can be computed faster in a high-level programming language. To achieve this
goal symbolic elements of a mass functions are represented as vectors. For instance, for a
mass function such as m(w;, w3 ) in a frame of discernment of @ = {w, w,, w3} symbolic
part w,,w, can be represented as a vector [1 0 1]. which means that if an element of
frame of discernment existing in the mass function represented as a 1 and otherwise as a 0.
Length of the vector is equal to the number of elements in the frame of discernment. This

representation will be called vector representation.

Even though vector representation makes an algorithm sensitive to input order, it
increases computational performance drastically when combined with commonality

functions especially in high level programming environment like MATLAB.

Please see Table 5.1 to asses contribution of these two solutions for Dempster Junction
Rule computation. The table show the number for the proposed solution and classical way
in MATLAB and computational times are in seconds for various class sizes

Table 5.1 Computational time in seconds of Dempster Junction Rule for different
solutions
Class Size | Computational time without Computational time with
proposed solutions proposed solutions
2 1.023 2.909
3 3.515 2.468
4 14.466 2.918
5 64.534 3.938
6 297.073 6.041
7 1492.073 10.357
8 8248.474 19.597
9 48600.850 39.225
10 315876.275 87.768

Table 5.1 shows that except for the class size of 2 the proposed solution always has a
performance advantage increasing as size increases. For instance, when the class size is 10

it took more than 3 days to complete the calculation with the without proposed solution
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while it took less than ninety seconds to complete same calculation with the proposed

solution. Similar observations can be made for the other class sizes.
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6 CONCLUSION AND FUTURE IMPROVEMENTS

In this thesis Model-Based Classification (MBC) algorithm was implemented to solve
automatic ship classification problem. Basic concepts of Belief Function Theory and
necessary operations required for the implementation of MBC was given in Chapter 2. In
chapter 3 the algorithm and theory behind the MBC is explained and statistical
performance of the algorithms was given in order to validate the obtained results show
that algorithm is working as intended. In addition, generation of artificial learning set is
explained. In chapter 4 a conflict detection algorithm is explained, conflict threshold is
determined using histograms and its statistical performance was given. In chapter 5 a
speed-oriented optimization method is explained to reduce the computational load of the
MBC. This study can be extended in several ways. First extension might be to add time
scalability. By indexing the learning set with respect to time when feature vectors are
obtained, more accurate classifications can be achieved for limited time frames. For
example, assume that there exists an observation post with the intention of making an
accurate cloud density and pattern prediction for a location that has wet season and arid
seasons. Since cloud density from season to season considering a whole year’s data might
affect classification-accuracy negatively. However, if measurements are indexed based on
the time they are obtained, a suitable portion of learning set can be used so that a better
prediction about weather results in.

Second extension might be is to convert the MBC structure into a deep learning algorithm
structure. The advantage of such a conversion is that the MBC becomes a self-updating,
self-learning framework making a reliable decisions on the fly without needing any
supervision after a certain amount of data is used for training the neural network. Third
extension might be to use a different conjunction rule other than the Dempster-Junction
Rule, so that combining mass functions whose degree of conflict is high could be
achieved.

Finally, a new conjunction calculation method whose computation complexity increases
linearly with respect to class size instead of exponentially could be envisioned. That would
be a breakthrough achievement for since one of the major disadvantages of the MBC is its

high computational cost when the class sizes are too big.
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