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ÖZET 
 

MODEL TABANLI AKTIRABİLİR İNANÇ 

MODELİNİN ÖRÜNTÜ TANIMA VE 

SINIFLANDIRMA PROBLEMLERİNE 

UYARLANMASI 
 

Bu tezde, Aktarılabilir İnanç Modelinden türetilmiş olan Model Tabanlı Sınıflandırıcı 

gemilerin otomatik olarak sınıflandırılması amacıyla gerçeklenmiştir. Aktarılabilir 

İnanç Modeli, Bayesian Teorisi, Bulanık Küme Teorisi, Genel Olasılık Teorisi gibi 

yöntemlere kıyasla kanıt eksikliğinden doğan belirsizliği daha iyi 

modelleyebilmektedir. Aktarılabilir İnanç Modeli, farklı kaynaklardan elde edilen 

bilgilerin kaynaştırılmasına imkan vermektedir. Ayrıca, kaynaştırılacak bilgiler 

arasında çelişki olup olmadığı Aktarılabilir İnanç Modeli kullanılarak 

belirlenebilmektedir. Farklı bilgi kaynaklarından gelen çelişmeyen bilgiler 

kaynaştırılacak yüksek sınıflandırma doğruluğu elde edilmiştir. Model Tabanlı 

Sınıflandırıcının sınıflandırma doğruluğu oluşturulan yapay veritabanları üzerinde 

gerçeklenen benzetimlerle belirlenmiştir. 

 

Anahtar kelimeler: Örüntü Tanıma, Sınıflandırma, İnanç Fonksiyonu Teorisi, 

Aktarılabilir İnanç Fonksiyonu, Çelişki Tespiti 
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ABSTRACT 
 

IMPLEMENTATION OF MODEL BASED TRANSFERABLE 

BELIEF MODEL FOR PATTERN RECOGNITION AND 

CLASSIFICATION 

 
In this thesis, the Model Based Classifier derived from the Transferable Belief Model 

is implemented for the purpose of automatic ship classification. The Transferable 

Belief Model models uncertainty caused by lack of evidence better compared to other 

approaches such as Bayesian Theory, Fuzzy Set Theory and General Probability 

Theory. The Transferable Belief Model allows one to combine information obtained 

from different sources or not can be determined by using the Transferable Belief 

Model. As a result, non-conflicting information coming from different information 

sources are combined to get high classification accuracy. Artificial learning sets are 

used in the simulations to obtain classification accuracy of the Model Based Classifier. 

 

Key words: Pattern Recognition, Classification, Belief Function Theory, Transferable 

Belief Model, Conflict Detection. 
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1 INTRODUCTION 

 
 Accurate modeling of the uncertainty has always been a problem in pattern recognition 

and classification. Until the last two decades this problem had been tried to be avoided as 

much as possible, since modeling uncertainty is a complex issue. Commonly used 

frameworks such as Bayesian Theory, Probability theory, Fuzz Clustering Theory 

Likelihood Theory, Coarse Set Theory are not able to model uncertainty caused by the 

lack of evidence. In this framework’s uncertainty is modeled as a random variable or 

process [1-3]. Consequently, accurate modeling uncertainty in these frameworks requires 

infinite amount of data from which statistical outcomes are derived. In order to handle 

uncertainty in a more robust manner a different framework is needed. For this purpose, 

Belief Function Theory (BFT) was founded by Arthur P. Dempster. 

 

 The discrete representation and modeling of the uncertainty due to lack of evidence in 

terms of BFT was discussed in detail by Glenn Shafer in his book “A mathematical theory 

of evidence” in 1976 [4]. Due to its heavy computational loads, BFT did not catch the 

attention of researchers until 2000s. As personal computers became more powerful, 

uncertainty modeling via BFT become the most commonly preferred approach. 

 

 In this thesis implementation, a classification algorithm called Model-Based Classifier 

(MBC) is discussed. The MBC is derived from a subjective model referred to a 

Transferable Belief Model (TBM). Even though TBM is using the same probabilistic 

infrastructure as BFT, TBM is not a probabilistic model. It evaluates information provided 

from different sources at credal level then tries to combine them and makes a decision [7] 

 

 The MBC is nothing new and a well-defined classification algorithm. Its details are 

provided in [6]. 

However, to best of our knowledge there isn’t any other implementation of it with the use 

of data fusion. 

 Even though there is another classification algorithm using the same framework that is 

called The Case-Based Classifier. It is not the topic of this thesis. Therefore, this paper 

solely focuses on the implementation and improvement of the MBC. 
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1.1 Contribution 

 

 The main contribution of this thesis is to create a basic belief assignment (BBA) from an 

observation obtained by an information source measuring an attribute of an object such as 

length, weight, shape etc. Also, BBAs formed from different information sources are 

combined via Dempster -Junction Rule defined under the TBM. Finally, the combined 

BBA is converted into a probability mass function by means of pignistic transformation. 

Even though using a single information source for decision making may give satisfactory 

results for various classification problems, using multiple non-conflicting sources enables 

one to assign a degree of trust on information provided by each source with the possibility 

of reducing uncertainty. This issue is discussed in conflict detection and management in 

order to implement a suitable conflict detection algorithm into the MBC. 

 

1.2 Outline of Thesis  
 

 The thesis is divided into of six chapters. In Chapter 2, key concepts of the BFT and 

fundamental operations used in the MBC are reviewed and several numerical examples are 

provided. In Chapter 3, structure of the MBC is discussed and the artificial learning set 

generated for the simulations is explained. In addition, simulation results based on the 

artificial learning set are carried out and statistical performance of the MBC is 

investigated. Conflict detection algorithm used in this thesis is discussed in Chapter 4. 

This chapter also shows how to determine the and provide statistical performance of the 

conflict detection algorithm implemented in the thesis. In Chapter 5, a speed-oriented 

optimization algorithm is given for the Dempster Junction Rule. Finally, conclusions are 

given and possible future research directions are listed in Chapter 6 
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2 FUNDAMENTAL CONCEPTS OF BELIEF FUNCTION 
THEORY 

 

 

 This chapter explains the relevant concepts of Belief Function Theory (BFT) that are 

essential to the Model Based Classifier. 

 

 

2.1 Types of Belief Functions 
 

 BFT is a probability model that allows one to model uncertainty due to lack of evidence. 

Similar to the sample space in probability theory, in BFT frame of discernment denotes all 

possible values of an attribute. Any subset of a frame of discernment is called hypothesis. 

However, differently from the probability theory, Hypothesis in BFT can contain multiple 

elements from subsets of a frame of discernment. If a hypothesis contains a single 

element, it is called singleton. If all hypothesis are singleton, then Belief Function 

becomes Bayesian Belief Function or Bayesian probability 

 There are two major distinctions between BFT and probability theory. First distinction is 

that the additivity of mass assignments is not required. For a frame of discernment denoted 

by Ω and a hypothesis as , a mass assignment given in Equation (2.1) is possible. 

 

where  stands for complement of  

 This distinction allows uncertainty caused lack of evidence to be modelled accurately. 

 The second distinction is that making any interpretation about the subset of a hypothesis 

without an additional knowledge is not possible. For instance, for a mass function 

 one can not to comment on singleton mass function  and  

without any further evidence.  

 

 For the purpose of this thesis, there are three equivalent representations under the BFT 

framework. Those are mass function, belief function and plausibility function  

 Please note that there is an ambiguity between the expression belief function theory and 

belief function representation under it. For this reason, belief function will be denoted by 

bel to prevent any misrepresentation. 
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2.1.1 Mass Function 
 

 The mass function representation is the most fundamental type of belief representation. 

All other representations can be obtained from the mass function representation. 

Throughout the thesis mass function and basic belief assignment (bba) are used 

interchangeably. They represent the same thing. 

 Two conditions must be satisfied for a valid mass function. First, mass functions of all 

hypothesis under a frame of discernment should take on values between zero and one. 

Second, the sum of all mass functions should equal to one. For a frame of discernment Ω 

and hypothesis , these two conditions are expressed mathematically as: 

 

 

 

 

 

 

 There are two types of assumptions for a given mass function. If the true value of the 

hypothesis may lie outside the corresponding frame of discernment, then the mass function 

of the empty set takes on non-zero value. This case is called open world assumption. In the 

open world assumption one might have 

 

 On the other hand, true values of all hypothesis are inside the frame of discernment then 

the so called close world assumption holds. Zero mass is assigned to the empty set under 

the closed world assumption 

 

 

 A mass function defined under the closed world assumption is called a normalized mass 

function. Equation (2.6) can be used to transform an unnormalized mass function into a 

normalized one. 
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2.1.2 Belief Function 
 

 For a frame of discernment Ω and a hypothesis , belief function representation can 

be derived from the mass function by using the following equality 

 

 

 The belief function represents the degree of a belief committed to a hypothesis. One 

natural interpretation of Equation (2.7) is that all belief functions are normalized.  

Example 2.1: 

For a frame of discernment  a bba is given as 

 Determine bel({w3, w2}) 

Solution: 

From Equation (2.7) 

 

 

 

2.1.3 Plausibility Function  

 

 For the same frame of discernment and hypothesis given for a belief function, the 

plausibility function can be considered as the reverse operation of the belief function. 

Belief function represents the degree of belief committed to a hypothesis while plausibility 

function represents the degree of doubt given to the hypothesis. As the two are reverse 

operations of each other, they can be derived from one another by using Equation (2.8) 
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and (2.9). It is worth mentioning that Equation (2.9) is valid only for normalized belief and 

plausibility functions. 

 

 

 In addition, plausibility function can be derived from mass function by means of Equation 

(2.10) 

 

 

Any plausibility function obtained from Equation (2.10) is normalized. 

Example 2.2: 

For the same frame of discernment and bba given in Example 2.1 determine pl({w3,w2}) 

Solution: 

By using equation (2.10): 

 

 

 

2.1.4 Categories of Belief Functions 

 

 If a belief function is normalized with a single focal set it is called categorical belief 

function. For a categorical belief function there exists only one  such that 

 

 

 If a belief function is categorical and its focal set is equal to frame of discernment, it is 

called vacuous belief function. Having a vacuous belief function means that no 
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information is available at all and there exists total ignorance. For a vacuous belief 

function, we have 

 

 A simple belief function assigns non-zero masses to the frame of discernment and one of 

its subsets. That is, for a simple belief function, we have 

 

 

 If frame of discernment is not a focal set the belief function is called dogmatic belief 

function. For a dogmatic belief function, the following condition must be satisfied. 

 

 If a belief function is normalized and all of its focal sets are singletons, it is called 

Bayesian belief function. For Bayesian belief function, Equation (2.16) and Equation 

(2.17) always hold. 

 

 

 

2.2 Combination of Mass Functions 
 

 Combination of mass functions (or equivalently fusion) is one of the key concepts in the 

BFT. The idea behind combining mass functions derived from different information 

sources is that uncertainty may be reduced if decision making is built upon the combined 

mass function. However, one must pay attention to conflict that might arise during mass 

combination. Conflict arises when a pair of focal sets from different mass functions have 

empty sets as their intersection. If conflict is high, the combination may create a 

misleading mass function. 

 To classify the conflict issue further let us investigate a famous example referred to a 

Zadeh problem [13]. For a frame of discernment Ω={w1,w2,w3}, the following Bayesian 

belief functions are defined from it: 
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When these two mass functions are combined, (for the time being, do not bother with the 

combination rule) the mass function will be  even though the belief 

assigned to w1 on each mass function is 0.2 compared to 0.8 assigned to other hypothesis. 

This is because the intersection of w2 and w3 is an empty set. On a closed world 

assumption, the value assigned to the empty set is very useful since it indicates the amount 

of conflict proportionally. 

 For the closed world assumption the Dempster’s Rule is used for combining two or more 

mass functions. Dempster’s Rule is given by 

 

 

 

 Where η is defined as normalization constant. As the name suggests, η makes sure the 

that combined mass function is normalized and thus mass of the empty set is equal to zero. 

In addition, η has one more function in closed world assumption. It is a direct indicator of 

the amount of conflict between two mass functions and as a result the weight of conflict is 

calculated from it. The formula for the weight of conflict is given by: 

 

 When there are multiple mass functions, weight of conflict is determined additively. That 

is: 

 

 Note that Equation (2.20) and (2.21) is more of a general mathematical definition of the 

conflict measure. It is not feasible to use these equations for conflict detection as their 

computational cost is too high. An alternative approach that can be used in practice for 

conflict detection is explained in chapter 4. 

 For the open world assumption, on the other hand, it is better to use Dempster Junction 

Rule for combination. It is defined by 
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Just as in the closed world assumption case, the empty set is also direct indicator of the 

amount of conflict. However, the conflict information is less important compared to the 

closed world assumption since there is a possibility that true answer may be outside the 

frame of discernment, though it is possible to determine it. However, if conflict 

information is not important it is better to normalize the obtained mass function. This is 

particularly valid when the amount of conflict is high and mass functions are combined 

recursively but conflict itself is not important. 

Example 2.3: 

 For a frame of discernment of  two bbas are given as: 

 

  

 

Determine the combined mass function  for all hypothesis in  by using a 

suitable combination rule. 

Solution: 

Since both mass functions are normalized Dempster Junction Rule used for combination. 

From Equation (2.22) mass function is determined as: 
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2.3 Pignistic Transformation 
 

 It was mentioned earlier that TBM frame-work consists of two levels. First level is the 

credal level where types of belief functions are assigned and transformed into each other. 

The purpose of this level is to determine the amount of uncertainty and degree of belief 

given to each hypothesis. For the most part, decision making is not possible at credal level. 

For instance, for a frame of discernment and mass function assignment 

whoseafocalasetsaare 

 it is not 

possible to make accurate decision even though the highest mass is assigned to singleton 

focal set. This is because individual masses of the members of the frame of discernment 

are unknown and the mass of empty set is greater than zero. For these reasons’ decisions 

are made at another level. 

 The second level is called pignistic level. In this level, basic belief assignment values are 

transformed into probabilities so that a decision can be made  

 To make the transition from the credal level to the pignistic level, the so called pignistic 

transformation is applied to bbas. For an unnormalized bba, the pignistic transformation is 

defined as  

 

 For a normalized bba  part in Equation (2.23) is omitted. After pignistic 

transformation, probabilities of singletons are obtained. 

 Since the pignistic level itself is a probability model, the expected value can be 

determined from it. In addition, it is also possible to the calculate expected value directly 

from the pignistic transformation using  
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Example 2.4: 

Apply pignistic transformation to the mass function in Example 2.3 to find probabilities of 

the singletons 

Solution: 

The mass function obtained in Example 2.3 is: 

                                                            

 

 

 

 

 

From Equation (2.23), the following results are obtained: 
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2.4 Conditional Belief Functions 
 

 In probability theory, we have conditional probability density functions. Similarly, in BFT 

conditional belief functions exist. For a hypothesis B and a categorical mass function 

 where , conditional belief function is denoted by . This means 

that it is known with absolute certainty that B is true for the given frame of discernment. 

 Since conditioning a mass function can be regarded as combination of two mass functions 

under the same frame of discernment, it can be determined with the Dempster’s Rule or 

Dempster Junction Rule with the following expression (2.25): 

 

 The explicit form of Equation (2.25) is given as: 

 

 The conditional plausibility function is defined as: 

 

 

2.5 Product Space Operations 
 

 When dealing with classification problems under the BFT and TBM frame-works one 

may encounter with mass functions defined on two or more frames of discernments even 

though mass functions are mostly defined on a single discrete frame of discernment. 

Therefore, operations that can extend the single frame of discernments into the joint space 
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or reverse operations that project joint space into one of the frames of discernment would 

be required. In this section, operations needed for implementing the MBC are defined. 

 

 

 

2.5.1 Vacuous Extension and Marginalization 
 

 Vacuous Extensions are required when there exist two mass functions defined on different 

frame of discernments and they need to be processed on the joint frame of discernment. 

For frames of discernments Ω and Θ, notation  means that a hypothesis  is 

extended to joint space . Vacuous Extension formula is given in Equation (2.28). 

 

 The reverse of Vacuous Extension is the marginalization. It is required when a mass 

function defined over a joint space is needed to be projected onto one of the frames of 

discernments it is made up of. The notation is  is used for marginalization for  

and it is determined with Equations (2.29) and (2.30)  

 

 

 

 It should be emphasized that when Vacuous Extension and Marginalization operations are 

performed one after another on a mass function, obtained results are always going to be a 

Vacuous Belief Function 

 

Example 2.5: 

For two discrete frame of discernment defined as ={w1,w2} and ={q1,q2} the mass 

function defined over  is given as: 
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  Determine the mass function defined on  by means of marginalization 

 
 
 
 
 
 

  Solution: 

  The joint frame of discernment is given by: 

   

  By using Equations (2.29) and (2.30) marginalization is determined as: 

   

   

   

 

  Example 2.6: 

  Apply vacuous extension to the obtained mass function in the previous example 

  Solution: 

  By using the Equation (2.28) vacuous extension is determined as the following: 

   

   

   

   

   Please note that compared to the mass function in Example 2.5, some amount of 

information is lost when marginalization and then vacuous extension are applied one after 

another. The reason is that marginalization and vacuous extensions are not one to one 

mapping operations. In addition, if vacuous extension is applied first and marginalization 
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is applied second to any mass function then the obtained results would be a vacuous belief 

function. Therefore, one can conclude that vacuous extension and marginalization are not 

commutative with each other 

 

 

 

 

2.5.2 Conditioning and Ballooning Extension 
 

 In section 2.4 Conditional Belief Function was defined over a single frame of 

discernment. However, there are some cases for which conditioning a mass function on 

frame of discernment other than its original one is required. This is achieved with 

Conditioning operation. 

Assume that there exist two frame of discernments Ω and Θ. Consider two hypotheses 

denoted by and . When conditioning hypothesis A with hypothesis B is 

desired, the first step for achieving this goal is to perform Vacuous Extension operation on 

hypothesis B with frame of discernment Ω and assume that . Then, 

Equation (2.31) is applied to obtain the required conditioning. 

 

 The reverse operation of the conditioning is called Ballooning Extension. It determines 

the least committed bba for the conditioning operation defined by Equation (2.31). It is 

computed from: 

 

 

Example 2.6: 

Apply conditioning operation on the mass function given in Example 2.4 for the condition 

of {q2}: 

Solution: 

This solution is obtained in two stages. 
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First stage conditional belief function operation is performed for the assumption 

. Then, we got: 

   

   

   

   

   

  Second marginalization on  is be applied to the mass function calculated at the first 

stage. The final result is: 

   

   

   

   

   

Example 2.7: 

Apply ballooning extension to the mass function obtained in the previous example. 

Solution: 

From equation (2.32) the following result is obtained: 
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3 MODEL-BASED CLASSIFIER 
 

 

 In this chapter the proposed classifier called model-based classifier (MBC) is developed. 

In Section 3.1 theoretical background of the MBC is explained and its general notation is 

given. In Sections 3.2 and 3.3, the implementation of MBC with single sensor and 

multiple sensors are explained respectively. In Section 3.4, an artificial learning sets are 

generated for the simulations are discussed. In section 3.5, simulation results based on the 

learning set generated in section 3.4 is given. In section 3.6, statistical performance of the 

MBC algorithm is evaluated. 

 

3.1 The MBC and Its General Notations 
 

 The MBC is a non-parametric density estimation-based method that uses conditional and 

prior probabilities to compute posterior probabilities similar to Bayesian Classifiers [8] 

[9].  To achieve this goal, the MBC requires sets of class data produced from same 

attributes of objects such as weights, lengths, color etc. Information sources provide 

attribute data. Please note that the word “agent” and information source are used 

synonymously in this thesis. 

 By using this information as training data or a learning set; a sample region is created to 

assemble conditional bbas for each information sources. 

 The general notation of MBC is defined as follows: 

•  is the finite class set or category. 

•  is the J- dimensional feature vector space. 

• ;  is defined as the set of objects 

•  the feature vector of object   

•  is the class to which object  belongs to  

•  is the current data collection about object  

•  is the learning set 
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 With the help of a learning set MBC is able to find the correct class of an unknown 

object whose feature vector is known. For this purpose, the first step is to create 

agent’s belief with the help of bbas belief. For  let a bba 

 be denoted as  . This notation shows the agent’s belief about 

object o for the hypothesis that “object o belongs to class ” based on the observed 

attribute value 

 Let us assume that there exists a Vacuous Belief Function (VBF) defined on a frame 

of discernment  with feature vector x and prior probability c. The steps for 

implementing MBC defined as follows [10], [11]: 

• The conditional bba  is extended with ballooning extension to determine 

 

• The extended bbas are combined with Dempster Junction Rule: 

  

• The combined bbas are conditioned with the condition of  

 

• Marginalization is applied on  to obtain the final result. 

 

 The formula for computing the bba  is given by: 

 

 Where   denotes the conjugate of  defined on . The explicit form of Equation (3.1) 

is given as 

 

 

(3.3) 

 If prior bbas assigned based on agent’s belief are different from the empty set the 

respective bbas are combined with one of the Dempster Combination Rules. After the 
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posterior bbas are formed for the MBC the pignistic transformation is applied and the class 

with the highest probability is selected as the correct class. 

3.2 Implementation of Model Based Classifier with a Single Agent 
 

 In this chapter the implementation of the MBC for a single agent is discussed. Please note 

that the word “agent” can refer to various sources. The agent in question could be a single 

person making a decision or it could be a sensor measuring several attributes of an object 

such as weight length shape color etc. … However, it is always assumed that a single 

agent always produces a single feature set or learning set.  

 Assume that there exists a learning set produced from an agent denoted by  for a frame 

of discernment . Further let   give the number of 

elements belonging to class  inside the a region with radius r in the learning set 

,where . With this definition, the conditional bba for class  is calculated by 

 

 In the next step, posterior bbas should be determined from the conditional bbas. Equation 

(3.2) can be used for that purposed. 

 In the following step, prior bba is calculated. Let  denote the number of elements 

that belongs to the class  in  . Then, the prior bba for  is obtained from 

 

 In the final step of the implementation, posterior and prior bbas are required. This is done 

by using Equations combined (3.6) and (3.7) given below: 

 

where 
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 Once the final conditional bba is obtained, the pignistic transformation is applied to make 

decision. 

 

3.3 Implementation of Model Based Classifier with Multiple Agents  
 

 In the previous section the implementation of the MBC with a single agent was discussed. 

Here its implementation with multiple agents is explained. As mentioned previously, each 

agent is assumed to produce its own learning set. Therefore, if there exists  agents then 

there is going to be n amount of learning sets denoted by   

 For a given learning set   and a class  , the conditional bbas 

are calculated with Equation (3.4). Then the posterior bba is calculated from conditional 

bba by using Equation (3.2) similar to what was done for a single agent. Once posterior 

bbas are obtained for each learning set they are fused or combined. This is achieved with 

the Dempster Combination Rule defined in Equation (2.22). 

 In the next step, prior bbas are obtained. Let the notation  give the number of 

elements that belongs to  inside the learning set . Then, the combined prior bba for 

class  is calculated by: 

 

 Once both combined posterior and prior bbas are obtained they are combined by using 

Equation (3.6) and (3.7). Finally pignistic transformation is applied for decision making. 

 

3.4 Artificial Learning Sets Used in Simulations 
 

 Due to the difficulties for obtaining real data for the implementation of the MBC, 

artificially generated learning sets are formed for the simulations. For this purpose, six 

ships were chosen from the book entitled “Modern Deniz Sistemleri” by Sami [12]. The 

selected ship classes and their respected lengths are given in the Table 3.1 
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 When generating learning sets each ship length is assumed to be modeled by a Gaussian 

random variable whose mean value corresponds to its length. Variance value for each ship 

model is inversely proportional to its length meaning that for a long ship variance is 

smaller and for a short ship it is big.  With the help of this idea a two dimensional 

hypothetical space is created where one axis shows ship’s length and other shows how 

much deviation is allowed from the mean value in percentage value. 

 Two learning sets were generated. The number of elements for each class in each learning 

set is random. Also, if any generated value for a given class deviates more than two times 

of the respective variance it is considered as outlier and not included int the learning set. 

The learning set are called and . They are given in Figures 3.1 and 3.2 respectively. 

 

Table 3.1 Ship Classes and their lengths in meters 

Ship Classes Ship Lengths 

 24.5 

 32 

 61.9 

 56.2 

 117.5 

 130 
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Figure 3.1 Length Distribution of Objects in the learning set  
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 The number of elements for each class in each learning set is given at Tables 3.2 and 3.3 

respectively. 

 
Figure 3.2 Length Distribution of Objects in the learning set  

 



24 

 

 

 

 

 Learning set elements are generated in Matlab development environment. Pease note that 

for each learning set a Matlab Array is formed. The number of matrix inside each learning 

set is equal to class sizes and number of elements inside each matrix shows the data 

number that belongs to corresponding class. To increase precision, they are stored in 

“double” format. Figures 3.3 and 3.4 below show a sample Matlab array named as 

database and one of the class matrixes inside the database, respectively. 

 

Table 3.2 Number of Elements in the learning Set  

Learning Set:  

Ship Classes  Number of Elements 

 2209 

 2174 

 1985 

 2174 

 1612 

 1857 

 

 

 

Table 3.3 Number of Elements in the learning Set  

Learning Set:  

Ship Classes  Number of Elements 

 1267 

 1011 

 1855 

 2043 

 2270 

 1090 
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Figure 3.3 Matlab Array called Database 
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3.5 Simulation Results 
 

 First, the MBC is implemented with and learning sets separately. During the 

application process each unknown input is generated with the methodology explained in 

section 3.4. The hypothetical space used during the generation of learning sets are used to 

determine the variance values that are also taken as sampling interval radius.  The results 

shown in Tables 3.4 and 3.5 are obtained after the algorithm explained in Section 3.2 was 

run. 

 
Figure 3.4 One of the Class Inside the Database 
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 Each ship class is shown to be classified correctly according to Table 3.4 and 3.5. 

However, when class attributes are intersecting with each other, the gap between the 

probability for the correct class and the probability for the other classes decline since 

intersection increases uncertainty. Despite this fact, correct class probabilities are separate 

enough from other probabilities to make correct classification.  

 Next both learning sets are evaluated together with the algorithm detailed in Section 3.3. 

The corresponding results are given in Table 3.6 

 

 

Table 3.4    Simulation Results for the Learning Set  

Learning Set:  Class Probabilities after Pignistic Transformation 

        

 

 

Input 

w1 0.5349 0.4637 0.0004 0.0004 0.0004 0.0004 

w2 0.2077 0.7899 0.0006 0.0006 0.0006 0.0006 

w3 0.0004 0.0004 0.5942 0.4041 0.0004 0.0004 

w4 0.007 0.0326 0.2279 0.7373 0.0007 0.0007 

w5 0.0006 0.0006 0.0006 0.0006 0.6274 0.3702 

w6 0.0016 0.0016 0.0016 0.0016 0.0016 0.9921 

 

 

Table 3.5    Simulation Results for the Learning Set  

Learning Set:  Class Probabilities after Pignistic Transformation 

        

 

 

Input 

w1 0.9919 0.0016 0.0016 0.0016 0.0016 0.0016 

w2 0.0014 0.9928 0.0014 0.0014 0.0014 0.0014 

w3 0.0007 0.0007 0.7329 0.2643 0.0007 0.0007 

w4 0.0009 0.0009 0.0009 0.9957 0.0009 0.0009 

w5 0.0008 0.0008 0.0008 0.0008 0.9962 0.0008 

w6 0.0037 0.0037 0.0037 0.0037 0.0778 0.9074 
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 From Table 3.6 it is obvious that observed probabilities for the correct classes increases 

significantly when learning sets are evaluated together. This is even more apparent when 

deciding between two classes that have a large amount of area intersecting with each 

other. One can deduce that using multiple information sources seems to increase the 

pignistic probability for the correct class compared to using only one information source. 

This is because combining multiple information sources reduce uncertainty. 

 Please note that during section 3.5 only a single classification result for each of the classes 

are given since multiple input data for each class would be redundantly takes space in the 

thesis. Instead in Section 3.6 statistical evaluation the algorithm is discussed in order to 

show each ship classes can correctly be classified using the MBC with multiple input 

values. 

3.6 Statistical Evaluation of the MBC 
 

 In this part, of the thesis simulation results of the MBC is evaluated statistically. For the 

statistical evaluation 50 inputs are generated with the same method explained in Section 

3.4. Precision recall and F-beta score are used as performance measures. Also, confusion 

matrices are formed for all three cases. 

 With accuracy measure calculates the rate of correct classification to total number of 

samples. Precision measure evaluates the rate true positive cases to number of samples 

that classified as positive. Recall measures computes the rate of true positive cases to 

number of samples that should have been classified as positive. Finally, F-beta scores 

 

Table 3.6 Simulation results for the Combined Learning Set 

 

and Learning  

Sets Combined 

Class Probabilities after Pignistic Transformation 

        

 

 

Input 

w1 0.9983 0.0017 0 0 0 0 

w2 0.0003 0.9997 0 0 0 0 

w3 0 0 0.8174 0.1826 0 0 

w4 0 0.0001 0.0003 0.9996 0 0 

w5 0 0 0 0 0.9994 0.0006 

w6 0 0 0 0 0.0001 0.9999 
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which is derived from precision and recall, measures any given system’s statistically 

correct classification performance. 

 Confusion matrices resulting from processing inputs for each class in the learning set 

are given in the table 3.7. Please note that confusion matrixes are in the form of: 

 . 

 

 

 

 

 In order to understand the statistical behavior of the system, precision and recall are 

calculated from the values in Table 3.7. In Table 3.8, measures for each class as well as 

system average are provided. 

 

 

Table 3.7 Confusion Matrices resulting from after processing inputs for each class in 

the learning set  

Confusion Matrixes for the learning set  
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 For the intended classification purpose in this thesis both precision and recall are equally 

important. That is why the parameter  is taken as 0.5. The corresponding F-beta 

measurement scores are given in Table 3.9. 

 

 

 

 

 Table 3.9 shows that while the MBC’s general classification performance is relatively 

high it does not provide enough correct classification for every class. For example, F-beta 

measurements scores for the classes w3 and w4 are quite low compared to those of the 

other classes. The main reason for this situation can easily be recognized by examining 

Figure 3.1 showing the distribution of objects in the learning set learning set . In Figure 

3.1 there exists a wide overlapping area for the classes w3 and w4 that causes uncertainty 

 

Table 3.8 Precision and Recall for each class in the learning set  

Precision and Recall Measurement for Agent  

       average 

Precision 0.75 0.82 0.70 0.62 0.80 0.82 0.752 

Recall 0.84 0.72 0.52 0.78 0.82 0.80 0.746 

 

 

Table 3.9 F-beta Measurement Score for the learning set  (=0.5) 

F-beta Measurement Scores (learning set:  

      average 

0.79 0.77 0.60 0.69 0.81 0.81 0.749 
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for both classes. As a consequence, F-beta measurement scores of them are quite less than 

the system average. 

Next, a similar analysis is performed for the learning set learning set  with the same 

methodology. The respective confusion matrix is given at the Table 3.10 

 Precision and Recall measurement can be calculated from Table 3.10. They are given in 

Table 3.11 

 

 

 

 

 

 

 

 F-beta measurements for the learning set  computed from Table 3.11 are provided in 

Table 3.12 for  = 0.5 

 

 

Table 3.10 Resulting Confusion Matrices after processing inputs for each class in 

the learning set  

Confusion Matrixes for the learning set learning set  

      

      

 

 

Table 3.11 Precision and Recall Measures for the learning set  

Precision and Recall for  

       average 

Precision 1 1 0.98 0.96 1 1 0.990 

Recall 1 1 0.96 0.98 1 1 0.990 
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 The result shown in Table 3.12 indicate classification accuracy is high for all classes. The 

reason behind this outcome is the same with the previously explained one. When the 

learning set  is examined, classes are seem to be well separated as there are few and 

limited overlapping regions between any classes. 

 When the obtained F-beta measure for both S1 and S2 are evaluated together one natural 

question is the following: Is it possible to improve the results obtained from with the 

help of results obtained for ? To answer this question statistical evaluation of the multi 

agent classification of the MBC for the learning sets and  is examined next. 

 First confusion matrixes obtained from combined evaluation of and are formed. 

Table 3.13 shows the resulting confusion matrices. 

 

 

 

Table 3.12 F-beta Measurement Score for the learning set (=0.5) 

F-beta Measurement Scores for  

      average 

1 1 0.97 0.97 1 1 0.990 

 

 

Table 3.13 Acquired Confusion Matrix after processing inputs for each class for the 

learning sets and  

Confusion Matrixes for Combined Evaluation of Agent S1 and S2 
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 Similar to previous cases precision and recall measures are calculated for multi agent 

system. It is given in the Table 3.14 

 

 

 

 

 

 

 

 

 For the last step F-beta measurement score is calculated for the multi-agent system this 

time. Results are given in the Table 3.15. 

 

 

 

 

 

  

 When Table 3.15 is observed and results are compared to Table 3.9 and Table 3.12 it is 

clearly observed that evaluation of multiple learning sets have positive impact on correct 

classification performance. It is more significant for the agent S1 since it has the lower 

classification performance. However, classification performance is also increased for the 

learning set  as well. Based on this observation it can be concluded that when multiple 

learning sets are evaluated together classification performance increases compared to the 

case in which only one learning set is used. For instance, F-beta measurement score for the 

ship class  is 0.6 for the learning set  and 0.97 for the learning set . However, the 

 

Table 3.14 Precision and Recall Measures for the learning sets 

and  

Precision and Recall Measurement for Agent S1 and S2 

       average 

Precision 1 1 1 0.98 1 1 0.996 

Recall 1 1 0.98 1 1 1 0.996 

 

 

Table 3.15 F-beta Measurement Score for the learning sets S1 

and S2 

F-beta Measurement Scores for Agent and  

      average 

1 1 0.99 0.99 1 1 0.996 
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combined F-beta measurement score for the same class is 0.99 which is higher than the 

any of the learning sets F-beta measurement score when they are evaluated separately. 
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4 CONFLICT DETECTION 
  

 Conflict arises during information fusion in the framework of Belief Function Theory. 

Most of the time sources from which data are obtained are imperfect. Even though the 

cause of imperfections can be in many forms, it can be divided into two major categories 

[14]. First cause is the lack of trust to data provided by sources. Second cause is that one 

obtains conflicting data from the same information source under the same conditions. For 

the latter cause of imperfection, it is not possible to apply any sort of conflict management 

for the purpose of information. However, for the former cause, conflict detection and 

management are entirely possible with degree of uncertainty. In the scope of this thesis, 

conflicts resulted from the former category are going to be evaluated. 

 Under perfect conditions there would not be need for either information fusion nor 

conflict detection since data would be perfectly gathered and classification could be 

achieved without errors. Under real conditions, however, this is not the case. There are 

many forms of imperfection that make the data obtained from an information source 

questionable. For instance, the gathered data could be incomplete, measurement could 

have been taken with an inadequate measurement tool or there could be background 

affecting the information source’s reliability. All of these and even more factors are the 

cause of uncertainty for the given information source [15].   

 As a consequence, one must determine the degree of uncertainty of data provided by a 

source in order to achieve satisfactory classification results. Unfortunately, making a 

correct judgement about uncertainty is not possible by using the single source on its own. 

However, uncertainty can be determined with the use of multiple imperfect information 

sources and the degree of uncertainty among different sources can be obtained. 

Determining uncertainty requires data fusion algorithm such as Dempster Rule or 

Dempster Junction rule explained in the Section 2.2. 

 The idea behind conflict detection and management is that if data obtained from several 

information sources are consistent with each other, correct classification is still possible. 

That is why devising an algorithm checking the consistency of information sources 

relative to each other is essential. This is called conflict detection. With a conflict 
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detection algorithm, checking if data coming from discrete various information sources are 

conflicting with each other or not can be achieved. Conflict detection results can be used 

to determine the degree of trust that can be put in to the end result computed from a data 

fusion algorithm. 

 In BFT conflict detection and management is still an open-ended discussion and many 

conflict detection algorithms exist. To the best of our knowledge, a general conflict 

detection solution does not exist. Moreover, there is not a well-defined solution to fuse 

highly conflicting masses [16]. For this reason, several conflict detection algorithms were 

examined in order to find a suitable conflict detection algorithm for the proposed classifier 

[14], [15], [16], [17].   

 Three measures were taken into account to assess conflict detection algorithms. The 

measures are accuracy, convergence for thresholding, and speed. 

 Main objective of a conflict detection algorithm is to find out whether information 

obtained from different sources are consistent with each other or not. If an algorithm could 

not detect the conflict accurately enough for the MBC algorithm; then it would not be 

possible to designate the degree of certainty to the obtained results and identify the 

conflict threshold correctly. For this reason, the first measure is the accuracy. It is the most 

important evaluation criteria for the selection of an algorithm. 

 In the TBM framework a conflict between any two mass functions is a number between 1 

and 0 where 1 means that mass functions are completely inconsistent with each other 

(degree of conflict is maximum) and 0 means that conflict does not exist. Since MBC 

algorithm is concerned with thousands of mass functions, detecting conflict requires 

assigning a threshold. Threshold assignment would be easier if the conflict detection 

results converged to two different discreet points that are well separated from each other. 

Hence the second measure is convergence for thresholding is important for determining a 

conflict threshold easily. 

 Speed is the last measure.  Since MBC algorithm itself has a high computational 

complexity growing exponentially as the class size increases; it should be using a conflict 

detection algorithm with  as much low computational load as possible that will not impose 

additional burden on the classification algorithm. 
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 Based on these three measures the conflict detection algorithm described for the MBC is 

in the study entitled “About conflict in the theory of belief functions” by Arnaud Martin 

[14] was chosen.  In this thesis this algorithm is going to be called Arnaud Martin’s 

Conflict Detection Algorithm AMCA. 

 This chapter is made up of five sections. In the Sections 4.1 and 4.2, two essential parts of 

the AMCA algorithm – Jousselme Distance and Degree of Inclusion- are defined. In 

Section 4.3, the AMCA algorithm itself is going to be explained. How conflict thresholds 

are determined discussed in section 4.4 Statistical performance of the algorithm is given at 

Section 4.5. 

4.1 Jousselme Distance 
 

 Jousselme Distance is thoroughly explained and detailed in the article entitled “A new 

distance between two bodies of evidence” [17].  The aim of Jousselme Distance is to 

determine how “far” the implied solution between two different bba is to each other.  

 For a frame of discernment  whose elements are  where  is 

integer; values of a mass function  can be modeled as a discreet random 

variable with fixed values. With this definition vector space generated by focal elements 

of the mass function is denoted by  where  represents all of the subsets of . 

The formal definition of  is given as 

 

 where  and  is one of symbols in the focal sets of the mass function 

In the vector space defined in Equation (4.1) a distance calculation function within metric 

space is needed to measure how far two mass function values are from each other. Assume 

that there exist and the notation  stands for the distance 

between . Such function should be defined on  and must have the 

following properties: 

 

• (Nonnegativity)                                                                           (4.2) 

•  then (Nondegeneracy)                                            (4.3) 

•  (Symmetry)                                                                  (4.4) 

•     aaaaaaaaaaaaaaaa (4.5) 
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 With the conditions defined from Equation (4.2) to (4.5) that if function d is in metric 

space, so is . Therefore, the Jousselme distance formula is proposed as: 

 

 Where D mentioned is a  matrix defined in metric space as well. In addition, D 

should also be sensitive to similarities and differences between two given bbas. That is 

why Jaccard Distance Matrix most commonly used in the area of Computer Vision is 

chosen for D. In computer vision, the main purpose of Jaccard Distance Matrix is to find 

similarities and difference between given images. Consequently, Jaccard Distance Matrix 

is perfectly suitable for comparison of two bbas. The mathematical definition of Jaccard 

Distance Matrix is given by: 

 

where and  shows cardinality of the given set operations 

 When Equation (4.7) is substituted in Equation (4.6), Jousselme Distance formula for two 

different mass functions of and  defined on the same frame of discernment  is 

becomes. 

 

 The number resulting from Equation (4.8) is called the total conflict measurement. 

Measuring the total conflict through a distance-based conflict algorithm such as Jousselme 

Distance is quite useful. However, it does not always give the outcome of 0 for the value 

of  and any m value. This represents the state of total ignorance.  

 That is why an additional definition of conflict measure is needed that can check the 

inclusiveness of one mass function on another[14].   

4.2 Degree of Inclusion 
 

 In the previous section, Jousselme Distance – a distance-based conflict algorithm- was 

explained. While Jousselme Distance is an excellent algorithm for measuring conflict 

between two mass functions, it is not effective for measuring conflict on empty sets and at 

the state of total ignorance. 
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 Consider two mass functions denoted by  and .  is said to be included in  if all 

focal elements of  are included in . This inclusion is denoted as . The 

notation for conflict derived from this definition is  and it should have the 

following properties: 

• (Non-negativity)                                                                (4.9) 

• (Identity)                                                                           (4.10) 

• (Symmetry)                                                 (4.11) 

• (Normalization)                                                         (4.12) 

•  (Inclusion)                        (4.13) 

Please note that compared the properties of Jousselme Distance, Inclusivity is less 

restrictive here since Jousselme Distance only allows nondegeneracy or identity 

(  and not inclusivity. In addition, Pisagor Inequality is not needed. Hence 

conflict between two masses can be reduced through an intermediate mass. 

 Let  and  be focal elements for the mass functions  and , respectively. To 

begin with an inclusion index is defined given as Equation (4.14): 

 

 

 

 Then a degree of inclusion  in  can be defined as  

 

 

 

 Where  and  shows the number of focal sets in mass functions  and  

respectively. 

 From Equation (4.15), a degree of inclusion of  and  is given by 

 

 

 

 Equation (4.16) is inversely proportional to the conflict measure. For example, if 

 then . That’s why true notation of degree of inclusion is 

defined as 
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4.3 Arnaud Martin’s Conflict Detection Algorithm (AMCA) 
 

 AMCA is derived from the Jousselme Distance and the Degree of Inclusion. Its 

mathematical definition is given as by 

 

The first term on the right hand side of the Equation (4.18) was defined in Equation (4.17) 

and the second term was explained in Equation (4.8). Please note that since both terms are 

normalized, the Equation (4.18) itself is also normalized. 

 Example 4.1 illustrates how the conflict between two mass functions is determined using 

AMCA 

Example 4.1: 

 Consider the following mass functions and  defined over a frame of discernment 

 given as: 

      

   

Determine the conflict between the mass functions by using AMCA 

Solution: 

From Equation (4.7), Jaccard Distance is computed as: 
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Matrix form of  is  

Similarly matrix form of  is  

Hence  

From Equation (4.8) Jousselme Distance is determined as  

From Equation (4.15),  and  are found as: 

  

 

Consequently, From equation 4.18 conflict is calculated as: 

 

 

 

4.4 Determination of Conflict Threshold 
 

 In previous sections, the idea behind the conflict detection algorithm used in this thesis 

was explained thoroughly. If the result of AMCA is zero, there is no conflict between any 

given two mass functions. If the result is ,1 then the given mass functions are in total 

conflict. However, most of the time conflict result obtained from any conflict detection 

algorithm including AMCA is a value between 0 and 1. Based on a conflict value that is 

between 0 and 1, how can one tell if the given mass functions are conflicting with each 

other? A threshold value is needed to answer this question. For a given threshold, conflict 

exists between the two mass functions if AMCA produces a number greater than the 

threshold. Otherwise conflict does not exist 
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 Before explaining the method used to determine the conflict threshold an auxiliary 

definition that called “conflict identity” is needed. The definition of conflict identity is as 

follows: 

 

Definition: 

 For any given mass functions pairs, conflict identity is the information of whether conflict 

exists between them. If an observer knows the conflict identity of a mass function pair 

then it knows whether mass functions are in conflict.  

 Determining the optimum conflict threshold is not a trivial task since there is no well-

defined rule. In addition, the conflict threshold could potentially vary greatly from one 

problem to another even for the same conflict detection algorithm. The best method for 

determining the threshold is trial and error. For a given conflict detection algorithm, one 

can determine the threshold by looking at the frequencies of the conflict values for the 

mass functions that are known to conflict with each. Similarly, conflict values for the mass 

functions that are known not to conflict with one another can be examined. This can be 

done by assuming that conflict identity of mass function pairs can be modeled as a 

probability density functions (PDF). The aim of this modeling is to create a histogram of 

PDF. Then, a suitable value that can be used for making decision about conflict identity of 

the mass function pair can be selected from the histogram. 

 To form the corresponding histograms, two sets of data were taken from the artificial 

learning set explained in Section 3.4. Each data set contains 5000 points pairs One pair 

comes from the learning set and the other is from the learning set . Mass function’s 

conflict identity are formed by using these point pairs. 

 To form mass function pairs that do not conflict with each other, one of the six classes 

from  to  is randomly selected. Then, the first data point of the pair is chosen from 

the randomly selected class in the learning set . Then we make sure that the second data 

point of the pair is chosen from the same class in the learning set . In the final step, two 

mass functions are formed by using the pairs based on the algorithm explained in Section 

3.2 and 3.3 and the respective conflict value is determined via AMCA. This selection 

algorithm mimics the scenario for which both information sources are indicating the same 

outcome maximizing the likelihood of correct classification. Therefore, the degree of 

conflict is minimal. 

 In order to create two mass functions that are highly conflicting with each other; one the 
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six classes from  to  is again randomly selected and the first data point of the pair is 

taken as before. Then we make sure that the other data point of the pair is selected from a 

class different from the randomly selected class in . Then, two mass function pairs are 

created the previously explained manner and their conflict is calculated through AMCA. 

Unlike the previous method, this selection approach ensures that correct classification 

cannot be achieved since the underlined mass functions are in conflict with each other. 

 Histograms corresponding to the conflict values obtained from the non-conflicting and 

conflicting mass functions are illustrated in Figures 4.1 and 4.2 respectively. 

 

  

 
Figure 4.1 Histogram of  the conflict values obtained from the Non-Conflicting Mass 

Function Pairs 
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 Conflict thresholds are determined in the following way from the histograms. For each 

histogram for a given threshold more than 98 percent correct conflict identity 

classification should be achieved while overall correct classification should be more than 

98 percent as well. Two requirements could not be satisfied when one threshold is used. 

For that reason, two conflict thresholds were used. 

 The conflict threshold determined from Figure 4.1 is found to be 0.35. In a similar manner 

the conflict threshold from Figure 4.2 is found to be 0.5. For a given mass function pairs if 

a calculated conflict value is lower than 0.35 conflict does not exist, if conflict value is 

higher than 0.5 conflict exists. Otherwise we cannot make a decision. 

 In the next section statistical performance of AMCA algorithm based on the conflict 

threshold values is evaluated.  

 

 
Figure 4.2 Histogram of the conflict values obtained from the Conflicting Mass 

Functions 
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4.5 Statistical Evaluation of AMCA 
 

 Statistical evaluation is going to be performed similar to what is done in Section 3.6. First 

statistical hypotheses have to be defined. This is required since there are values that are 

inconclusive between two conflict thresholds. Thus, the corresponding confusion table is 

different from the one in Section 3.6. After confusion table is created, precision recall and 

accuracy are calculated based on these values. In the final step, f-beta measurement will be 

given. 

 The statistical hypothesis that are used in this section are defined as follows: 

• True Positive: Conflict exists between mass functions and the algorithm detects it 

successfully. 

• True Negative: There is no conflict between mass functions and the algorithm 

decides that there is no conflict. 

• False Positive: There is no conflict between mass functions. However, the 

algorithm decides that there is conflict. 

• False Negative: There is conflict between mass functions. However, algorithm 

decides that there is no conflict: 

• Undecided: Conflict for the given mass functions exists between two threshold 

values. The algorithm cannot decide whether conflict exists or not. 

 For a total of 10000 data pairs, the confusion table created based on the determined 

threshold values is given in Table 4.1 

 

Table 4.1 The Confusion table of AMCA based on the determined threshold values  

True Positive 4798 

True Negative 5000 

False Positive 0 

False Negative 89 

Undecided 113 
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 Precision, recall and accuracy are determined from Table 4.1. They are specified in Table 

4.2 

 Using values in the Table 4.2 F-measurement is calculated to be 0.990. This shows that 

both precision and recall values as well as F-measurement is very close to 1. 

 Using precision, recall and F-measurement we can conclude that AMCA algorithm works 

as intended with the determined threshold values it is able to detect conflict between 

any given mass function pair for our problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2 Precision Recall and Accuracy values of AMCA 

Precision 1 

Recall 0.981 

Accuracy 0.979 
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5 SPEED-ORİENTED OPTİMİZATİON OF MBC 
 

 During the implementation of MBC it was observed that MBC algorithm’s computational 

speed reduce drastically as class size increases. Furthermore, majority of the slowdown 

results from the computation of Dempster Junction Rule. This is somewhat expected due 

to two main reasons. First Dempster Junction Rule requires subsets of a frame of 

discernment. The Dempster Junction Rule formula that was given in Section 2.2 in 

Equation 2.22. From which it can be clearly observed that for each increment in class size 

increases the computational complexity exponentially. Second, computation step requires 

set operations. Set operations with symbolic values are known to be computed slowly in 

most high-level programming languages. 

 When these two issues combined it causes a serious computational bottleneck for MBC. 

The objective of this chapter is to come up with solutions in order to speed up the 

computation and reduce the waiting time for Dempster Junction Rule operation to be 

complete. 

 The number of set operations was minimized by computing Dempster Junction Rule in a 

different way. After some research it is discovered that would be mitigated some of the 

computational performance loss due to increased class size by using what is called 

commonality function. Commonality function is one of the key concepts in the Belief 

Function theory. This function finds committed total mass to one subset and all of its 

supersets. For a frame of discernment  and two subsets  notation  

expresses amount of total mass in   committed to  and all of the subsets in the superset 

. The mathematical definition of commonality function is given as Equation (5.1) 

 

 

 From a given commonality function the corresponding mass function is calculated from 

Equation (5.2) 
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 Dempster Junction Rule Computation becomes quite trivial if it is computed through 

commonality function. The computation rule in terms of commonality function is given as 

Equation (5.3): 

 

 

 

 As it is evident from Equation (5.3) that commonality function reduces Dempster 

Junction Rule to a simple product operation at a slight cost of conversion to and from mass 

function to commonality function.  

Example 5.1: 

Calculate Dempster Junction Rule through commonality function and convert the joint 

commonality back to mass function 

 For a frame of discernment  and the following two mass functions: 

 

 

Solution: 

First mass functions are converted commonality functions as via Equation (5.1) 

 

 

 

 

=0.3 

=0.1 

=0.1 
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=0.3 

 

 

 

=0.3 

 

 From equation 5.3 Dempster Junction Rule is computed as: 

 

 

 

 

 

 

 

 From equation 5.2 commonality functions can be converted back to mass functions: 
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 The second solution is to represent elements of the mass functions in a way such that set 

operations can be computed faster in a high-level programming language. To achieve this 

goal symbolic elements of a mass functions are represented as vectors. For instance, for a 

mass function such as  in a frame of discernment of  symbolic 

part   can be represented as a vector  . which means that if an element of 

frame of discernment existing in the mass function represented as a 1 and otherwise as a 0. 

Length of the vector is equal to the number of elements in the frame of discernment. This 

representation will be called vector representation. 

 Even though vector representation makes an algorithm sensitive to input order, it 

increases computational performance drastically when combined with commonality 

functions especially in high level programming environment like MATLAB. 

 Please see Table 5.1 to asses contribution of these two solutions for Dempster Junction 

Rule computation. The table show the number for the proposed solution and classical way 

in MATLAB and computational times are in seconds for various class sizes 

 

 Table 5.1 shows that except for the class size of 2 the proposed solution always has a 

performance advantage increasing as size increases. For instance, when the class size is 10 

it took more than 3 days to complete the calculation with the without proposed solution 

 

Table 5.1 Computational time in seconds of Dempster Junction Rule for different 

solutions 

Class Size Computational time without 

proposed solutions 

Computational time with 

proposed solutions 

2 1.023 2.909 

3 3.515 2.468 

4 14.466 2.918 

5 64.534 3.938 

6 297.073 6.041 

7 1492.073 10.357 

8 8248.474 19.597 

9 48600.850 39.225 

10 315876.275 87.768 
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while it took less than ninety seconds to complete same calculation with the proposed 

solution. Similar observations can be made for the other class sizes. 
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6 CONCLUSION AND FUTURE IMPROVEMENTS 
 
 In this thesis Model-Based Classification (MBC) algorithm was implemented to solve 

automatic ship classification problem. Basic concepts of Belief Function Theory and 

necessary operations required for the implementation of MBC was given in Chapter 2. In 

chapter 3 the algorithm and theory behind the MBC is explained and statistical 

performance of the algorithms was given in order to validate the obtained results show 

that algorithm is working as intended. In addition, generation of artificial learning set is 

explained. In chapter 4 a conflict detection algorithm is explained, conflict threshold is 

determined using histograms and its statistical performance was given. In chapter 5 a 

speed-oriented optimization method is explained to reduce the computational load of the 

MBC. This study can be extended in several ways. First extension might be to add time 

scalability. By indexing the learning set with respect to time when feature vectors are 

obtained, more accurate classifications can be achieved for limited time frames. For 

example, assume that there exists an observation post with the intention of making an 

accurate cloud density and pattern prediction for a location that has wet season and arid 

seasons. Since cloud density from season to season considering a whole year’s data might 

affect classification-accuracy negatively. However, if measurements are indexed based on 

the time they are obtained, a suitable portion of learning set can be used so that a better 

prediction about weather results in.  

 Second extension might be is to convert the MBC structure into a deep learning algorithm 

structure. The advantage of such a conversion is that the MBC becomes a self-updating, 

self-learning framework making a reliable decisions on the fly without needing any 

supervision after a certain amount of data is used for training the neural network. Third 

extension might be to use a different conjunction rule other than the Dempster-Junction 

Rule, so that combining mass functions whose degree of conflict is high could be 

achieved. 

 Finally, a new conjunction calculation method whose computation complexity increases 

linearly with respect to class size instead of exponentially could be envisioned. That would 

be a breakthrough achievement for since one of the major disadvantages of the MBC is its 

high computational cost when the class sizes are too big. 
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ÖZGEÇMİŞ 

 Gürcan Durukan 2015 yılında Bilkent Elektrik Elektronik Bölümünden mezun oldu. Şu 

anda Marmara Üniversitesinde Elektrik Elektronik Mühendisliği dalında yüksek lisans 

yapmaktadır. Ana ilgi alanları örüntü tanıma sınıflandırma ve makine öğrenme olmakla 

beraber sayısal görüntü işleme ve video işleme alanıyla da ilgilenmektedir.
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