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ABSTRACT

EARLY YIELD ESTIMATION BY PHOTOSYNTHETIC PIGMENT
ABUNDANCES USING LANDSAT 8 IMAGE SERIES

Ozcan, Aysenur
Doctor of Philosophy, Geodetic and Geographic Information Technologies
Supervisor : Prof. Dr. Liitfi Siizen
Co-Supervisor: Assoc. Prof. Dr. Ugur Murat Leloglu

October 2020, 88 pages

Timely estimation of crop yields is critical for monitoring global food production
by international organizations as well as governments, farmers and the private
sector dealing with storage, import and export of crops and associated products.
Satellite remote sensing has the capability to provide near real-time information on
a global scale. Combining satellite data and soft computing techniques to predict
crop yields is a very effective strategy for continually forecasting crop yields. This
thesis presents a novel approach for accurate and sustainable estimation of crop
yields based on estimated abundances of endmembers that may be attributed to
photosynthetic pigments. Landsat 8 images acquired during the time of the
phenological cycle when plants have maximum greenness are the inputs to find
endmembers and abundances within the pure wheat crop pixels using Robust
Collaborative Nonnegative Matrix Factorization (R-CoNMF) unmixing algorithm.
The endmembers are optimized to maximize the predictive power of the
abundances for the yields. Wheat yields were then estimated with the four

abundances, their relevant interactions, ten important agrometeorological



parameters, including parameters proposed in this thesis for the first time, and four
different vegetation indices using three different machine learning algorithms
(Generalized Linear Model (GLM), Artificial Neural Network (ANN) and Random
Forest (RF)). Harvester records from 142 wheat fields distributed in 31 provinces
of Turkey were used as the ground truth for testing the algorithm. In the literature,
the coefficient of determination (R?) is used as a proxy to show how good the
relationship is between the estimated and real figures. According to these
calculations, the vyields were estimated with 64% accuracy when only the
abundances were used in the GLM algorithm, 78% accuracy when ANN was used
for yield estimation and 82% accuracy was reached when applying RF to all of the
parameters. The similarity of the endmembers to photosynthetic pigment spectral
signatures along with their predictive power suggested their relevance to the
pigments. Although the R-CoNMF algorithm performs a linear unmixing of the
intimate mixture of the photosynthetic pigments, the interactions of the abundances
used in the endmember optimization and in classifications partially handle the non-
linearity using the bilinear model. These results can be considered as a great
success when using multispectral satellite data only and are recognized as a clear
indication that much better results would be achieved while using images from

future hyperspectral space missions like HyspIRI.

Keywords: Landsat 8; time series, yield estimation; random forest; artificial neural
network; Generalized Linear Model; photosynthetic pigments; unmixing; R-

CoNMF; endmember optimization, endmember extraction
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LANDSAT 8 GORUNTU SERISI KULLANILARAK FOTOSENTETIK
PIGMENT BOLLUKLARI iLE ERKEN VERIM TAHMINi

Ozcan, Aysenur
Doktora, Jeodezi ve Cografi Bilgi Teknolojileri
Tez Yoneticisi: Prof. Dr. M. Liitfi Siizen
Ortak Tez Yoneticisi: Dog. Dr. Ugur Murat Leloglu

Ekim 2020, 88 sayfa

Mahsul verimlerinin zamaninda tahmin edilmesi, uluslararasi kuruluslarin yani sira
hiikiimetler, ¢iftciler ve mahsullerle beraber ilgili iiriinlerin depolanmasi, ithalat ve
ihracat ile ilgilenen 6zel sektor tarafindan kiiresel gida iiretiminin izlenmesi i¢in
kritik 6neme sahiptir. Uzaktan algilama, kiiresel 6l¢ekte gercek zamana yakin bilgi
saglama yetenegine sahiptir. Mahsul verimlerini tahmin etmek i¢in uydu verilerini
ve bilgisayar programlariyla hesaplama tekniklerini birlestirmek, mahsul
verimlerini stirekli olarak tahmin etmek i¢in oldukga etkili bir stratejidir. Bu tez,
fotosentetik pigmentlerle iligkili olabilecek tahmini son iiye bolluklarina dayali
olarak mahsul verimlerinin dogru ve siirdiiriilebilir bir sekilde tahmin edilmesi i¢in
yeni bir yaklagim sunmaktadir. Fenolojik dongiide bitkilerin maksimum yesillikte
olduklart sirasinda ¢ekilen Landsat 8 goriintiileri, saglam isbirlik¢i negatif olmayan
matris c¢arpanlarina ayirma (R-CoNMF) karistirma algoritmas1 kullanarak saf
bugday mahsul pikselleri i¢indeki son iiyeleri ve bolluklari bulmak i¢in girdi olarak
kullanilmislardir. Son {iiyeler, verim i¢in bollugun tahmin giiciinii en iist diizeye
cikarmak i¢in optimize edilmistir. Daha sonra bugday verimleri, dort bolluk degeri,
bunlarin ilgili etkilesimleri, bu tezde ilk kez onerilen parametreler dahil on 6nemli

agrometeorolojik parametre ve iUi¢ farkli makine Ogrenme algoritmasi, Yyani

vii



Genellestirilmis Dogrusal Model (GLM), Yapay Sinir Ag1 (YSA) ve Rastgele
Ormanlar (RF) kullanilarak tahmin edilmistir. Tiirkiye'nin 31 iline dagilmis 142
bugday tarlasindan hasat kayitlari, algoritmanin testinde yer kontrolii olarak
kullanilmigtir. Literatiirde determinasyon katsayisi (R%), tahmin edilen ve gercek
rakamlar arasindaki iliskinin ne kadar iyi oldugunu gdstermek igin bir temsilci
olarak kullanilmaktadir. Buna goére, GLM algoritmasinda sadece bolluklar
kullanildiginda verimler %64 dogrulukla tahmin edilmis, YSA ile tahmin
yapildiginda %78 tahmin oranina ulasilmig, ve ilgili tiim parametrelere RF
uygulanirken ise %82 dogruluk seviyesine ulasilmistir. Son iiyelerin Kestirim
giicleri ile birlikte fotosentetik pigment spektral imzalara benzerligi, pigmentlerle
iliskilerini gostermistir. Her ne kadar R-CoNMF algoritmasi,  fotosentetik
pigmentlerin derin karisiminin lineer ¢6ziilmesini gergeklestirse de, son {iye
optimizasyonu ve smiflandirmalarda kullanilan bolluklarin etkilesimleri bilineer
model kullanilarak dogrusal olmama durumunu kismen ele almaktadir. Bu sonuglar
sadece c¢ok-bantli uydu verileri kullanildiginda biiylik bir basar1 olarak
degerlendirilebilir ve HyspIRI gibi gelecekteki hiperspektral uzay gorevleri
gortintiileri  kullanilirken ¢ok daha iyi sonuglarin elde edilebileceginin bir

gostergesi olarak kabul edilebilir.

Anahtar Kelimeler: Landsat 8; zaman serileri, verim tahmini; rastgele orman;
yapay sinir agi; Genellestirilmis Dogrusal Model; fotosentetik pigmentler;

ayristirma; R-CoNMF; son iiye optimizasyonu, son iiye ¢ikarma
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CHAPTER 1

INTRODUCTION

Yield estimation of crops is one of the most popular subjects in the literature of
many fields such as remote sensing, agriculture, geographic information systems
(GIS), economics and maybe many more. Researchers are willing to find accurate
estimates of crops so that countries can plan ahead their economies by taking into
account these productions, i.e. the money to be reserved for import of goods that
cannot be produced within the country or how much they can export products such
as wheat, rice, tea, sugar, etc. according to the agreements between them and other
countries, as well as the employment opportunities it provides to the population.
Especially in developing countries, agriculture is the main source of livelihoods
and even if there cannot be agricultural work all year, it is a source of income that
contributes to the economy of the households throughout the whole year, even if

they only work seasonally.

Agriculture is vital for the economic and social well-being of countries, regardless
of their level of development. It is essential to estimate the yield before harvest
across large areas because governments can implement their agricultural policies
and plans based on these data. Agriculture also has contributions to the
transportation sector as the goods are usually transported by road or railways, as
well as to marketable surplus. A stable agriculture of a nation leads to the stable
food security. So that malnourishment is prevented and people are healthy. A
timely yield estimate also helps the private sector to plan for the storage, import
and export of crops and related goods, international organizations to monitor the
world's food production and the farmers to plan their next crop and order the

appropriate seed quantity in advance.



Humanitarian response relies heavily on agriculture and its products. Therefore,
humanitarian organisations invest in GIS and remote sensing in terms of
technology and human power just to have a close enough idea on the situation of
crops and production information in order to serve the people in need in a timely
manner. Time is of the essence in life and in all sectors that have a direct impact on

human lives.

Therefore, it is very important to estimate the yield as early as possible to help the
involved parties take all the measures of precaution and decide on their roadmap

for the planning of their near future.

1.1  Description of the problem

Accurate and timely estimates of yield increase the overall efficiency of the
agricultural system. Since the satellite images have been put to the use of
researchers, many researches have been done and many models have been
presented to predict the crop yields accurately and before the harvest. However,
there has not been a significant success in this field so far. The main reasons for
this unfortunate result may be listed as the lack of information from satellite images
due to the high percentage of cloud cover, the low temporal resolution of most of
the freely available images and the technologies to be used in these studies not
having been developed fast enough. These issues reduce the efficacy of the

established crop yield estimation techniques and make them counterproductive.

To solve these problems, there have been attempts to use high temporal resolution
and low spatial resolution images, using agrometeorological parameters along with
various indices derived from remote sensing instruments, but researchers still could
not achieve sufficient precision in yield estimates. In parallel, soft computer
algorithms such as Artificial Neural Networks (ANN), Fuzzy Logic (FL), Genetic
Algorithm (GA) and Random Forests (RF) have been used to achieve more

accurate estimation results in order to increase the success of conventional



computing techniques. Although these algorithms helped to move a big step
forward, a new point of view seemed like a necessity to overcome the problem of

timeliness and accuracy when estimating the yields.

1.2 The Approach of this thesis

As a new point of view to seek a solution to the accurate yield estimation problem,
photosynthetic pigments, namely, chlorophylls, xanthophylls and anthocyanins
were investigated. This thesis describes an algorithm applied to satellite images to
extract endmembers that possibly correspond to or at least relate to photosynthetic
pigments in plants at the maximum NDVI value when the canopy closure of wheat
crops is assumed to be 100%. The abundances of these endmembers within the
crops and some indices derived from them were calculated and used as inputs for
Generalized Linear Model (GLM), ANN and RF to estimate yields at least one
month before harvest. Agrometeorological parameters, including new parameters
proposed for the first time in this thesis, and/or vegetation indices (VIs), are also
used as inputs of GLM, ANN and RF along with the abundances to determine their
contribution to the yield estimation. The performance of the algorithms is tested
using ground truth data obtained by harvesters. It is shown that, although the
mixing of pigments is most presumably non-linear, the abundances of the
endmembers, which are probably related to photosynthetic pigments, are useful in
yield estimation. Some interactions of abundances are also proven to be good
predictors that probably handle the non-linearity inherent in intimate mixtures

partially.

1.3 Contributions of this thesis

This thesis contributes to the expansive research literature of yield estimation of

crops via remote sensing, in a way that



e improves the timeline of estimation of the vyield, as the yield can be
estimated at least a month before the harvest;

e introduces a novel point of view in approaching the yield, i.e. by taking into
account the three photosynthetic pigments, namely chlorophyll a,
chlorophyll b and carotenoids all together in the methodology of the
estimation, and

e reduces the number of sources and parameters that are used and focuses on
the ones that are easily accessible or can be calculated with no additional
cost. For example, Landsat 8 data, which are free of charge, an unmixing
code and agrometeorological data that are also found free of charge, were

used to conduct all the study.

1.4 Organization of this thesis

This thesis is organized as follows: In Chapter 2, a background of all the
technologies used in this thesis are given. The subjects that are mentioned in that
chapter are the basic history of satellite remote sensing, the photosynthetic
pigments that exist in a crop and the brief history of unmixing algorithms. A
literature review occupies Chapter 3 to create a more detailed point of view on how
yield estimation has been performed using remote sensing until recently, the part of
soft computing in these calculations and a brief explanation of the role of
photosynthetic pigments in yield estimation by referencing the researchers that
have contributed to the literature regarding these subjects. In Chapter 4, the
materials and methods are introduced, starting with the data used and the study
area, followed by the methodologies implemented in the study. Chapter 5 is
designed to give the results and discuss the outcomes. The thesis is finalized with

Chapter 6, conclusion and future work suggestions.



CHAPTER 2

BACKGROUND AND LITERATURE SURVEY

Agriculture is the key in the development of human civilization, as farming of
domesticated species created food surpluses that enabled people to live in cities.
The history of agriculture began thousands of years ago. Agriculture is still vital in
the economic and social beings of countries, regardless of their level of
development. There seems to be no substituent source available for this sector that
produces raw materials and food that are necessary for human nutrition. Therefore,
it is normal for the sector to have a big share in the total employment. With the
rising of the incomes and growth of trade in the world, consumption per capita
increases. According to these data, agricultural production is expected to be able to
increase slowly but steadily in the following years.

It has become very important to make estimations on the growth process of crops
and therefore the yield before harvest, or at least to be able to make accurate
predictions of yield at harvest. In order to make these predictions, the area of
cultivated crop should be monitored. The estimations on crop yields over large
areas are important as the governments implement their agricultural policies and
plans according to these data. The timely estimations of yields also help the
planning of the private sector dealing with storage, import and export of goods, etc.
The farmers can plan their next cultivation and order the appropriate amount of
seeds beforehand. If done correctly, it will also be a good input for international
organizations dealing with monitoring of the world food production, while the
adjustment of storage, import, export, etc. according to yield increases the total
efficiency of the system of the companies in agricultural sector. It will undoubtedly

be beneficial to farmers as they can know their yield, manage their income



beforehand. All these facts emphasize the importance of early estimation of yields

for each and every stakeholder.

2.1 Use of Remote Sensing in Agricultural Applications

Satellite monitoring was the starting point of crop monitoring, which started in the
1970s in developed countries. The United States (US) started monitoring its own
wheat production, and then extended its studies to monitoring many other countries
main crop production at the end of 1980s. Following the US, European Union built
its own prediction and monitoring system at the Joint Research Center (JRC)
(Monitoring Agricultural ResourceS (MARS) | EU Science Hub) with the name of
MARS (Monitoring Agriculture with Remote Sensing). Other countries like
France, Germany, Russia, Canada, Japan, India etc. pursued the US and EU-JRC in
building their own monitoring and forecasting systems. Usually the
NOAA/AVHRR and afterwards Landsat satellite systems were used. A substantial
amount of accurate data collection from the field (ground truth) had to be done due

to the low ground resolution of these satellites at the times.

Remote sensing in agriculture has usually been about the plant reflecting the
radiation coming from the sun, measured by passive sensors. However, there are
also studies on the transmittance, absorbance or emittance of the plants. Plants
emitting energy for both photosynthetic function and biochemical constituent is
known as fluorescence sensing (Apostol et al., 2003). Thermal remote sensing is
about variations in the evaporation rate based on the response of the temperature of
the plant to the emission of radiation, which leads to the information on water
stress (Cohen et al., 2005). Absorption of plants is the opposite of reflection of
plants and therefore also varies with the incident wavelength. It was found that the
chlorophyll of plants absorb radiation at 400-700nm of the Electromagnetic
spectrum (EMS), namely the visible region while reflectance is high in the near
infrared region (700-1300nm) (Pinter et al., 2003). The sharp contrast between red

and NIR parts of the spectrum was the motivation for the development of some



spectral indices (Mulla, 2013). Simple and complex spectral indices are able to
detect variations in leaf area index (LAI) and variations in crop status such as

chlorophyll and nitrogen content (Wang et al., 2014).

The indices are usually used for the estimation of yields of various crops. Yield
estimation of crops, especially before harvest, plays an important role in
agricultural policies and decision making. In the literature, yield estimation is
usually done by using different models. The first type of these models, the
Statistical Models are usually used when there is information on large areas and
they can estimate in wide ranges. Statistical models are not recommended for
accurate or near-accurate estimations. In crop yield forecasts with statistical
regression, which is considered a common and easy method (Lobell et al., 2010),
the basic principal is that a simple matrix is formed with some agrometeorological
parameters (not too many) and previous yields, then a regression equation is
derived between yields and the parameters. Usually the regression model is
selected as multiple linear regression (MLR), however this model gives inaccurate
and unstable solutions especially when large number of parameters are used and if
there are correlations between these variables (Lobell et al., 2005). Magney et al.
(2017) aimed to evaluate the usefulness of RapidEye spectral VIs to predict
cumulative Nitrogen (N) uptake in wheat and to examine the usefulness of
remotely sensed N uptake maps for precision agriculture (PA) applications. It was
concluded that the top performing Vegetation Index (V1) was the Normalized
Difference Red-Edge index (NDRE). They used seventeen commonly used
spectral Vs to report that VIs from RapidEye imagery can be used for estimating

wheat N uptake. Polynomial fit showed maximum R? of 0.81.

The second widely used model is the Mechanistic Model. These models are much
more detailed than statistical models. They use fundamental mechanisms of soil
and plant processes (Dourado-Neto et al., 1998). Third model is Functional Model,
which is a more complex model and it is able to simulate models on data that are

updated daily. Its functionality comes from simplifying the complex processes.



However, if not developed correctly, it may give less accurate results than
mechanistic models (Watt, 2013).

In a more general way, models can be classified as deterministic and stochastic.
Deterministic models make the assumption that all plants and soil are uniform
throughout the space. Stochastic models have a more realistic approach, knowing
that the parameters are changeable and the results may also produce some
uncertainties due to soil properties, weather conditions, biotic and abiotic factors.
These properties cause the model to be valid in small areas rather than large areas.
Also the crop growth system is more stochastic than deterministic, because most

parts of the agro-ecosystem are heterogeneous (Basso et al., 2014).

Remote sensing is a very efficient way to sample large number of plants at the
plant scale to examine for example, plant breeding and to identify some specific
physiological characteristics of varieties (Jones & Vaughan, 2010). It can also be
noted that studies have been done on remote sensing for precision agriculture to
analyze variations of parameters within fields (Plant, 2001), however there seem to
be not many on between-field variations across the landscape. (Lobell et al., 2005)
have pointed out the three advantages of yield remote sensing over ground based

approaches as:

1- The sample sizes can increase once the field measurements of yield
are bypassed.

2- Field measurements are collected via sensors and a small number of
plots within fields which leads to sampling errors of only within-
field variability, while with remote sensing yield estimates of a
much wider range of spatial scales can be done.

3- There is a huge archive of remote sensing images which can help

analysis of past surveys that may not have measured yield.

When dealing with complex systems, using conventional methods may not be cost-
effective, analytical or provide complete solution. Thankfully, some ‘inexact’

methods have been developed to model and analyze the complex problems of these



complex systems. These ‘inexact’ computing techniques are referred to as ‘soft

computing’ (Huang, et al. ,2010).

In the past years, the agrometeorological parameters along with various indices
derived from remote sensing instruments have been used as predictors to perform
yield estimation. As the greenness and soil driven indices could not achieve
sufficient precision in yield estimates, photosynthetic pigments, chlorophylls,
xanthophylls and to some extent anthocyanins were investigated. In parallel, soft
computing algorithms such as Artificial Neural Networks (ANN), Fuzzy Logic
(FL), Genetic Algorithm (GA) and Random Forests (RF) have been used to achieve
more accurate estimation results in order to increase the success of conventional
computing techniques. The developments in these fields so far will be examined in

detail in the literature survey chapter.

2.2 The photosynthetic pigments

Many pigments exist in the structure of vegetation. The main pigments that exist in
all types of vegetation are chlorophylls, carotenoids and flavonoids (mainly
anthocyanins) (Lachman et al., 2017; Blackburn, 2006), which are also considered

as photosynthetic pigments (accessory pigment or antenna pigment).

Chlorophylls are the most important pigments for the life cycle of all living things
as they play the most important role in photosynthesis. Chlorophyll concentrations
are play an active role in primary production of crops due to their control upon the
solar radiation that the leaves absorb, leading to photosynthetic potential. Besides
that, chlorophylls assemble a big portion of the leaf nitrogen content which is a
measure of the plant nutrient status. Chlorophylls are light-dependent pigments and
their amount decreases in low or no light environments, under stress and during

senescence.

Carotenoids are one of the other important pigments that exist in the chloroplast of

the plants. About 600 different carotenoids that are discriminated as xanthophylls,



most important of which is lutein (containing oxygen) and carotenes (containing
hydrocarbons and no oxygen) exist. The carotenoid content determines the quality
of the durum wheat, by giving it the yellow colour of the pasta (Lachman et al.
2017). Carotenoids absorb blue light strongly which leads to the conclusion that
they have a dual function of absorbing photosynthetic energy (a.k.a. incident
radiation) and contribute it to help chlorophylls and photo-protection of chlorophyll
when exposed to excess light (Bartley and Scolnik, 1995). The first function is due
to carotenoids (just as chlorophyll b is) being an accessory pigment for chlorophyll
a, which takes energy from the antenna (accessory pigments). if the concentration
of chlorophyll a is high, it will take more energy from chlorophyll b and
carotenoids, which will result in higher photosynthetic activity, thus primary
production (Chappelle et al., 1992). In case of excess radiation, carotenoids
disperse the energy in xanthophyll cycle, making the xanthophyll pigment directly
linked to the photosynthetic light use efficiency (LUE).

Anthocyanins are the third group of important pigments in plants. They belong to
the group of flavonoids. They are the least examined pigment group in the field of
remote sensing, therefore there is an uncertainty regarding their functions. Various
roles of anthocyanins have been reported, such as being an antioxidant (Yamasaki
et al. 1997), in case of oxidative stress, they reduce the excitation pressure and
prevent oxidative damage (Field et al., 2001). Besides these, Steyn et al. (2012)
found the photo-protective light screen potential of anthocyanins. It is seen that
anthocyanins can alter the light environment within a leaf and adjust
photosynthesis in a way that they limit photo-inhibition and photo-bleaching
(Barker et al., 1997).

The spectral, spatial and temporal dynamics of these very important pigments in
vegetation can not only provide scientific knowledge, but also significant help in
agricultural and/or environmental management. According to the literature
however, the spectral discrimination of these pigments are possible through
multiple regression, stepwise regression, nonlinear approaches, PCA or ANN
approaches and the combination of some of these, but not solely through linear
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approaches as they have a structure of observably overlapping spectral signatures

within a plant (Figure 2.1).
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Figure 2.1. Absorption spectra of the most important plant pigments (Blackburn,
2006).

The most well-known carotenoid index is Photochemical Reflectance Index (PRI)
(Gamon et al., 1992). It is a narrow-band index which gives the changes in the
epoxidation of xanthophyll pigments, which can also be expressed as the changes
in the efficiency of the photosynthetic light reactions (Jones and Vaughan, 2010).
In other words, it shows the photosynthetic light-use efficiency (LUE) and works
as an indicator of stress (Gamon J., 2010). PRI is formulated as:

PRI = (Rs31 — Rref)/(R531 + Rref)
(1)
where Rs3; and Rys are leaf reflectance values at 531 nm and the reference

wavelength. The 531 nm, although mostly taken literally in the scientific

community, there were times when it was taken in the range between 505 nm and
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535 nm (Bilger et al. 1989), 531 nm and 535 nm (Moraleset al., 1990; Ruban et al.,
1993). The reference reflectance is usually taken as 570 nm, however it can be 550,
560 nm etc. It was found that the xanthophyll pigments absorb minimum at 531 nm
and the reference wavelength can be chosen as where they make a peak. The index
is aimed to minimize the effect of the diurnal sun angle changes (Gamon et al.,
1992), meaning that PRI is more sensitive to environmental changes, parallel to
xanthophyll epoxidation state and its effects to the crop in the shortest time scale
than NDVI (Penuelas et al., 1994).

The estimation of leaf carotenoid content from reflectance was also investigated by
Lichtenthaler (1987) and Sims and Gamon (2002), which is much more difficult
than estimation of chlorophyll due to the overlap between the chlorophyll and
carotenoid absorption peaks (Figure 2.2) and because of the higher concentration of

chlorophyll than carotenoid in most leaves.
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Figure 2.2. Absorption spectra of Chlorophyll A, Chlorophyll B and Carotenoids,

interpolated from data samples from plots published in Lichtenthaler, 1987

Consequently, reflectance indices have proved more successful for the estimation
of the ratio of carotenoid to chlorophyll, than in the estimation of the absolute
carotenoid content (Penuelas et al., 1995; Merzlyak et al., 1999).

Multiple indices have been developed using band ratios near (not on) the
absorption peak wavelengths of a certain pigment, usually chlorophyll (Zhang,
2011). Numerical inversion of leaf-level Radiative Transfer (RT) models, such as
PROSPECT and LEAFMOD, has demonstrated success for predicting leaf
chlorophyll content (Jacquemoud and Baret, 1990; Ganapol et al., 1998; Maier et
al., 1999; Demarez, 1999; Renzullo et al., 2006). Numerical inversion techniques
offer the potential of a generically superior approach to estimate leaf chlorophyll
content from hyperspectral data than spectral indices and other approaches that are

based on empirical calibrations.

Not much research has been done on separating anthocyanins from the total spectra
of plant pigments. (Gamon and Surfus, 1999) examined the red region where the
anthocyanins were absorbing light and created a red/green index. However, the
tests of this index showed no relationship with anthocyanins. Similar studies to
Gamon’s, (Neill and Gould, 2000) have pointed out the problem as the existence of
chlorophyll obscuring with the reflectance spectra discrimination of anthocyanins.
Gitelson overcame this problem by creating a narrowband index at 550nm and
700nm (Gitelson et al., 2001). This new index proved to be successful over

different types of plants.

2.3 Unmixing of satellite image pixels

The pixel sizes of multispectral sensors are big enough to contain varying materials
in them, the extraction of the ratios of desired materials became important for the

purposes of research. The standard extraction algorithm is called Spectral
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Unmixing Algorithm (Keshava and Mustard, 2002). In linear spectral unmixing,
basically the mixed pixel is assumed to be consisting of a set of constituent spectral
signatures (endmembers) weighted by the subpixel fractional cover (abundances).
The unmixing algorithms are designed and applied to hyperspectral images in the
literature, and it should be noted that all the literature of the researchers explained

below have applied their algorithms to hyperspectral imagery.

Crop fields ideally consist of only photosynthetic pigments, which are intimately
mixed within the vegetation. Normally, endmember extraction, when not done at
large scenes of satellite images, but with intimate mixtures, requires the use of
complex non-linear techniques. Therefore, extracting endmembers from an
intimate mixture of photosynthetic pigments requires techniques other than linear
ones, whereas it should also be easily implemented by users, which may not be the
case for non-linear techniques. The endmembers are the inputs for the next step of
the process, generating the abundances, which are the inputs of the method for
predicting the yield.

The standard unmixing algorithms in the literature, perform the unmixing in a
considerably big area of an image. A new approach, which is also linear but
different than the classical linear unmixing, called PCOMMEND was introduced
by (Zare et al., 2013). The method was programmed to find multiple sets of
endmembers which has shown it to be a better representative of hyperspectral
imagery. Different from the standard models, PCOMMEND has the ability to
execute iterative fuzzy clustering process while conducting spectral unmixing at
the same time in order to partition a mixture (pixel) into multiple regions of the
space defined by the endmembers. In each of these regions, a distinct set of
endmembers that define a simplex occurs. This makes all the pixels in the image be
represented by a union of all the simplices. Therefore, it could be possible for the
pigments to be linearly separated within these small regions. Despite running a
complex algorithm in the background, PCOMMEND could be conducted very
easily with satisfying results. The endmember signatures were extracted as two sets

of three distinct endmembers giving a total of six endmembers. They also showed
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that the algorithm was proven useful when used on Landsat TM image, having

limited number of wavebands.

A robust collaborative nonnegative matrix factorization (R-CoNMF) (Li et al.,
2016) was used as an alternative to the other methods as it had the ability to find
the actual number of endmembers instead of the user having to guess and then find
the abundances accordingly.

In a multivariate system, the first assumption is that the variables are linearly
related. However, in some situations it could be theoretically possible that a second
predictor variable Z is itself moderating the influence of a predictor variable X on a
criterion variable Y. Apart from the linear effects B; and B, an interaction effect 3
becomes a part of the model structure here. To evaluate the interaction effect in
combination with the linear effects in the regression equation, a new variable must
be formed, i.e. the product XZ between the predictors X and Z, to be included in

the multiple regression equation as third term (Dimitruk et al., 2007).
Y:ﬁo‘l‘ 31X+ ﬁzZ‘l‘ ﬁ3XZ+€ (2)

Here, in Equation 2 that was first presented by Kenny and Judd in 1984 (Kenny
and Judd, 1984), Y is the criterion variable, X and Z are the predictor variables, XZ
is the interaction term, By is the intercept, B, and B, are the linear effect terms, B3 is

the interaction effect, and ¢ is the error.

Interaction terms proved to be very helpful in solving multivariate non-linear
problems. In the mixing phase nonlinear interactions are rarely controlled by
material distortions, but rather by the non-linear interactions between them (Klein
and Moosbrugger, 2000; Suzuki et al., 2009).

2.4 Yield estimation by remote sensing

Remote sensing in agriculture has usually been about the plant reflecting the

radiation coming from the sun, measured by passive sensors. Radar signals also
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interact with vegetation, but in a rather complicated way, and the signal penetration
depends on the strength and water content of the vegetation. Return radar signals
can involve trunks, stems and leaves as well as ground surfaces. Because such kind
of landscape description details can only be obtained with this sort of instrument,
SAR data is also used for plant studies. It is well-known that the chlorophyll of
plants absorb radiation at 400-700nm of the electromagnetic spectrum, namely the
visible region (Pinter et al., 2003) while reflectance is high in the near infrared
region (700-1300nm). The development of spectral indices was due to the sharp
contrast between red and NIR parts of the spectrum (Mulla, 2013). Simple and
complex spectral indices are able to detect variations in Leaf Area Index (LAI) and
variations in crop status such as chlorophyll and nitrogen content (Wang et al.,
2014).

The Normalized Difference Vegetation Index (NDVI) was found useful in
predicting yield forecasts (Benedetti and Rossini, 1993; Groten, 1993). Although
NDVI is used very widely in vegetation studies, it has some limitations such as the
intervention of soil at low crop densities and saturation in mature crops with LAI
greater than two or three, since the red light absorption peak of the leaves is
reached at these LAI values (Thenkabail et al., 2000). Some new indices such as
Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index
(MSAVI) and Modified Triangular Vegetation Index (MTVI) have been proposed
to overcome these problems. However, indices that can be useful with fewer

constraints are always needed (Mulla, 2013).

The indices are often used to estimate yields of various crops, which plays an
important role in agricultural policy and decision-making, especially if they are
available well before harvesting. In remote sensing, statistical models are
frequently used to estimate yields when information is available in large areas.
Statistical crop yield forecast regression, which is considered to be a common and
easy method (Lobell et al., 2010), the basic principle is that a simple matrix is
formed with some relevant agrometeorological parameters and previous yields, and

the relation between yields and parameters is derived from regression. The
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regression model is usually selected as Multiple Linear Regression (MLR), but this
model provides inaccurate and unstable solutions, especially when a large number
of parameters are used and if these variables are correlated (Lobell et al., 2005).
The effects of correlation and important yield factors in GLM are studied
extensively (Kravchenko and Bullock, 2000; Park et al., 2005; Gutiérrez et al.,
2008; Huang, et al., 2010).

Remote sensing is a very efficient way to classify large number of plants at a large
scale in order to examine plant breeding and to identify certain specific
physiological characteristics of varieties (Jones and Vaughan, 2010). (Lobell et al.,
2005) have highlighted some advantages of remote sensing yield estimation over
ground-based approaches and highlighted that there is an extensive archive of
remote sensing images that can help to analyse past surveys that may not have

measured yield.

(Lobell et al., 2003; Jiang, P., Thelen, 2004; Fortin et al., 2010) estimated wheat
yield by using only Landsat ETM+ images. They integrated their knowledge of
crop phenology with multi-temporal imagery and used instantaneous estimates of
canopy light absorption (fraction of Absorbed Photosynthetically Active Radiation
- fAPAR) from satellite images to adjust a wheat growth model calibrated locally,

which leads to an estimate of the yield at each pixel.

(Franch et al., 2019) proposed a new crop yield model based on Differential
Vegetation Index (DVI). They used Landsat 8 and MODIS time series data to
perform wheat signal unmixing from the signal of other surfaces. After the analysis
of the unmixed wheat time-series, regression equations were used as the yield
estimation models for each administrative unit and they found an R? of 0.86 at the

national level and 0.70 at the subnational level in the US and Ukraine.

There are also some studies that enhance and use predefined yield estimation
models. (Wang Y. et al., 2019) improved CASA NPP estimation model, which was
based on the absorbed photosynthetically active radiation (APAR) and the light use
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efficiency (¢) absorbed by vegetation, with HJ-1A/B and MODIS data to find 56%

accuracy in estimating the yield in selected places of China.

2.5  Soft computing for yield estimation

Conventional methods may not be cost-effective, analytical or provide a complete
solution when dealing with complex systems. Fortunately, some ‘inexact’ methods
have been developed to model and analyse these complex problems. These inexact

computing techniques are called ‘soft computing’ (Huang et al., 2010).

Fuzzy Logic (FL), Artificial Neural Networks (ANN), Genetic Algorithms (GA),
Bayesian Inference (Bl) and Decision Trees (DT) are some of the most important
soft computing technologies. The conventional methods of hard computing are
stochastic and statistical. Soft computing techniques refer to nature and are
therefore flexible and open to inaccuracy, uncertainty, partial truth and
approximation. To improve the system and results, these techniques can be used
separately or can be combined. In addition to these classic methods, Random
Forests (RF) has gained considerable attention in recent years.

The soft computing methods used in this study are Random Forests (RF), Neural
Networks (NN) and Generalized Linear Model (GLM). RF is a supervised learning
algorithm that uses the ensemble learning approach for classification and
regression. An ensemble approach combines the estimations from many multiple
machine learning algorithms to improve the predictions. At training time, the RF,
being a meta-estimator, builds several decision trees and generates the mean
prediction (regression) of the individual trees. Individual decision trees tend to
overfit. However, bagged decision trees combine the results of many decision trees,
which reduces the effects of overfitting and improves generalization. Therefore, RF

is prone to overfitting.

18



Neural Network is the most famous type of machine learning algorithms and it
models itself after the human brain, allowing the computer to learn by

incorporating new data.

GLM is a particular class of nonlinear models that describe a relationship between
a response and predictors that is nonlinear. The model's structural form defines the
patterns of interactions and associations. The model parameters include

measurements of association intensity.

To estimate crop yield from satellite data, linear and non-linear models were
developed and evaluated by (Sayago and Bocco, 2018). These models were
proposed and applied using Landsat and SPOT images to obtain soybean and maize
yield in the central region of Cordoba (Argentina). This study concluded that
images of Landsat 8 and SPOT 5 can be used effectively to predict the yield of
maize and soybean early to mid-season crop growth. The pixel size from Landsat 8
was adjusted to SPOT 5 in order to make Landsat 8 and SPOT 5 spatial resolutions
comparable (each Landsat 8 pixel was divided into nine parts with the same
attribute value). They used ANN and MLR methods to determine yields. The MLR
results were almost as high as the ANN results (Soybean: R*NN=0.9 R*MLR=0.82,
Corn: R:NN=0.92, R°MLR=0.88).

Integrated yield models combine agricultural meteorological and remote sensing
data (Basso et al., 2001; Basso et al., 2007; Dorigo et al., 2007). The use of
Principle Component Analysis (PCA) and Factor Analysis (FA) along with
multiple regressions is an example of the integrated technique. Using integrated

models, various soil nutrients were attempted to be predicted.

A wheat yield prediction model was developed and evaluated by (Pantazi et al.,
2014). Fusion vectors, consisting of the values of eight soil parameters and
historical yield data from past two years, collected with an online soil sensor and
NDVI values computed from satellite imagery, were used as input to three ANNs
for yield prediction. They used Self-Organizing Map Models (SOMs), namely,
Counter-Propagation Artificial Neural Networks (CPANN), XY-Fused Networks
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(XY-Fs) and Supervised Kohonen Networks (SKNs), incorporating the factor that
limit the yield in a multi-layer fusion model in the presented approach. In order to
estimate the LAI of a temperate meadow steppe in China, Wu, et al., (2015)
developed two inversion models and compared them using the regression model
and the Back-Propagation Neural Network (BPNN) model. The comparison results
showed that the BPNN method (accuracy: 82.2%) outperformed Statistical
Regression model (accuracy: 78.8%). The development of ANN models was
described as a factual technique for predicting the yield of maize and soybean in
nutrient management planning in Maryland by (Kaul et al., 2005). The results
showed that the prediction of ANN yield was more accurate than the yield model
based on MLR. The accuracies of ANN-based corn prediction varied between 77%
and 90% while MLR results only showed 42% accuracy. (Kang and Ozdogan,
2019) disaggregated one country-level (US) maize yield data into 30m Landsat
resolution yield map by using Ensemble Kalman Filter using LAI time series data
estimated from Landsat images, EVI, meteorological and soil texture. They
compared their results to farmer-reported yield data to find the correlation

coefficient (R) to be 0.82 as a maximum value.

Due to its resistance to overfitting problems and the noise in the dataset, RF has
gained well-deserved attention in recent years. It is almost unaffected by the multi-
collinearity problem because it has the ability to ignore spatial autocorrelation. It
can also be used to improve the performance of other methods, such as regression
and kriging. As can be seen from the studies listed below, RFs actually outperform
ANN in many cases and are not affected by the size of the dataset.

(Cai et al., 2019) combined climate, satellite (MODIS EVI) and chlorophyll
fluorescence (SIF from GOME-2 and SCIAMACHY) data to compare LASSO
regression model, SVM and RF performances. SVM outperformed the others with
an R? reaching to 0.80. (Leroux et al., 2019) combined MODIS NDVI, MODIS
LST and SMOS SSM with outputs of SARRA-O crop model to estimate the maize
yield in their study area. Performances of 10-fold cross-validated GLM and RF
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were compared to find that RF outperformed GLM and estimated 46% of the

observed end-of-season yields two months prior to harvest.

In order to assess the accuracy of winter wheat yield, (Heremans et al., 2015)
compared two regression tree methods, namely Boosted Regression Trees (BRT)
and RF, using NDVI obtained from the SPOT-VEGETATION sensor along with
meteorological variables and fertilization levels. The results showed that for both
methods’ R? was over 0.80 and that BRT was sensitive to noise, inclined to
overfitting and considerably slower than bagging. RFs were comparable to
boosting in terms of accuracy, but did not have the above limitations. It was also
noted that the computational cost of RF was much lower than boosting. Li et al.
(2016), produced accurate and timely predictions of grassland LAI, using various
regression approaches and hybrid geostatistical methods. The results showed that
the RF model provided the most accurate predictions for regression models such as
Partial Least Squares Regression (PLSR), ANNs, RFs and Regression Kriging
(RK). In Li, et al., 2016, all the positive features of RF have been shown. The R?
was calculated for different methods as 0.77 for PLSR, 0.81 for ANN, 0.89 for RF,
0.92 for RK and 0.91 for RFRK. Guo, et al. 2015 compared two different
approaches, namely Stepwise Linear Regression (SLR) and Random Forest
Residual Kriging (RFRK), to predict and map the spatial distribution of soil
organic matter for the rubber plantation. It was observed that the RFRK model did
not require any assumptions concerning the correlations between the target and the
predictor variables. These relationships could be either nonlinear or hierarchical.
The R% were found to be 0.43 for SLR, 0.65 for RF and 0.86 for RFRK
respectively. In Yue et al., (2018), Above-Ground Biomass (AGB) is estimated by
using 54 vegetation indices and eight statistical regression techniques. Their results
showed that, out of the investigated eight techniques, PLSR and GLM perform the
best concerning stability and are most suitable when high-accuracy and stable
estimates are requisite from relatively few samples. Furthermore, RF has been
shown to be extremely resistant against noise and was ideally suited for dealing

with repetitive observations involving remote-sensing data. The results showed that
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GLM performed poorly in the case of multi-collinearity data to estimate AGB.
ANN, BBRT and RF were the models most unaffected by the problem of multi-
collinearity. Their experimental results showed that PLSR, GLM and RF can be

appropriate for work requiring high-precision estimation models.

Hunt et al., (2019) estimated the within-field yield variability with Sentinel-2 and
environmental data such as meteorological and soil parameters in 39 wheat fields
in the UK using RF regression. They used harvester yield monitors data as ground
truth and found out that Sentinel-2 data is capable of estimating within-field yield
variability; however, combining satellite data with environmental data increased
the accuracy. They also noted that RF outperforms the VI-based simple linear

regression.

Mulla (2013) pointed out several future needs in the field of remote sensing with
soft and hard computing methods. He indicated that more work is needed on
chemometric or spectral decomposition/derivative methods of analysis in precision
agriculture applications, while the development of new sensors is necessary to
estimate nutrient deficiencies without the use of reference strips directly. He also
stressed the need to develop more spectral indices to assess multiple crop
characteristics (e.g. LAI, biomass etc.) and stresses (e.g. water and N; weeds and
insects etc.). In order to improve decision-making in precision agriculture,
historical collections of satellite remote sensing data with moderate to high spatial
resolution and conventional spectral resolution should be combined with high
spatial and spectral resolution real-time remote sensing data. Studies in the
literature have also used soft computing to determine yields. In their paper,
however, Huang et al. 2010 stated that there were no applications for the fusion of
soft computing and hard computing techniques and that this could be a good
research problem. The system proposed in the study of Huang et al., (2010) meets
this need and essentially monitors crop yield throughout the growth process and
warns the producer or decision-maker before harvesting, so that cautions can be

taken to improve yield or price adjustment.
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The study presented in this paper aims to meet the first component of the future
needs of Mulla (2013) and the usage of soft computing mentioned by Huang et al.,

(2010) for early warnings.

2.6 Photosynthetic pigments in yield estimation

All vegetation contains pigments. The main pigments are chlorophylls, carotenoids
and flavonoids (mainly anthocyanins) (Blackburn, 2006; Lachman et al., 2017).
Photosynthetic pigments are chlorophylls, carotenoids and partially anthocyanins.
There have been studies in the literature to estimate the yield by working on the
structure of the photosynthetic pigments at narrow band scale and taking each
pigment into account individually. The examples of these studies are presented

below.

The most important pigments for the life cycle of all living beings are chlorophylls
because they play the most important role in photosynthesis. Chlorophyll
concentrations play an active role in primary crop production due to their control of
the solar radiation absorbed by the leaves, leading to photosynthetic potential.
Finally, chlorophylls are light-dependent pigments and decrease their quantity in

low or no light environments, under stress and during senescence.

As for carotenoid-based indices, xanthophylls are carotenoids which are the
accessory pigments of the chlorophyll a, that capture the energy that chlorophyll
misses and also turns this energy into chlorophyll to make photosynthesis occur,
increasing the efficiency. Therefore, xanthophyll plays a major role in the
chlorophyll content of the crop (Patel et al., 2013). Chlorophyll absorbs the blue
and the red light during photosynthesis and reflects the green light. The energy

from the absorption of blue and red light enables photosynthesis.

The most well-known carotenoid index is Photochemical Reflectance Index (PRI)
(Gamon et al., 1992). It is a commonly used index correlating with the xanthophyll

process pigment’s epoxidation state. The Carotenoid Index (CARI), which is
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proposed as the basis for non-destructive estimation of the leaf carotenoid content
with remote sensing techniques (Huang et al. 2018). Recently a Carotenoid /
Chlorophyll (car/chl) Ratio Index (CCRI) was proposed in the form of CARI / Red-
Edge Chlorophyll Index (Clregedge). Calibration and validation results on winter
wheat leaf level data showed that CCRI estimated car/chl content with 54%
accuracy (Zhou X. et al., 2019).

There are about 600 different carotenoids discriminated as xanthophylls (with
oxygen and most importantly lutein in wheat) and carotenes (with hydrocarbons
and no oxygen). If the chlorophyll concentration is high, more energy from
chlorophyll b and carotenoids will be needed, resulting in higher photosynthetic
activity, thus primary production (Chappelle et al., 1992).

Anthocyanins are in the flavonoid group. Various roles of anthocyanins have been
reported, such as being an antioxidant (Yamasaki et al., 1997) and in case of
oxidative stress, they reduce the excitation pressure and prevent oxidative damage
(Field et al., 2001). In addition, Steyn et al., (2002) found the photo-protective light

screen potential of anthocyanins.

The spectral, spatial and temporal dynamics of these very important vegetation
pigments can not only provide scientific knowledge, but also contribute
significantly to the management of agriculture or the environment. However, the
spectral discrimination of these pigments is not possible with simple linear
unmixing, since they have a structure of observably non-linear, overlapping

spectral signatures in a plant (Blackburn, 2006).

When examined at canopy level, the reflectance spectrum of plants is affected by
leaf layers (LAI), percentage of the plant covering the ground, areas under shadow
etc. Various researchers have studied the discrimination of pigments using remote
sensing techniques. Using hyperspectral data, single pigments have been attempted
to decompose at certain wavelengths in which clear spectral separation can be
achieved. One of the most popular studies was the practice of the reflectance

spectra of several narrow bands and the creation of indices mainly for the
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identification of chlorophyll by dividing the values in usually two narrow bands.
Testing three bands to develop indices have been mostly used at leaf scale
(Gitelson et al., 2003; le Maire et al., 2004; Dash & Curran, 2004; Gitelson et al.,
2005). Even four band indices have been developed (Thenkabail et al., 2002).
Thenkabail et al., (2002), concluded that broadband data is not sufficient for
obtaining indices, while narrowband data has a lot of autocorrelation causing

redundancy.

The researchers, who had originally found the role of xanthophylls in the
photosynthetic activity of plants, actually examined the role of chlorophyll a,
chlorophyll b and carotenoids using their absorption spectra (Gamon et al., 1992;
Penuelas, J. et al., 1994). Sims & Gamon, 2002 investigated how they could extract
the chlorophyll content at the existence of all the other pigments in a leaf.
Chlorophylls were observed as a whole, indicating that the total chlorophyll
content overlaps the absorbance of the carotenoids and could therefore not be used
to estimate the chlorophyll content.

Sims and Gamon, (2002) also investigated the estimation of the content of leaf
carotenoids from reflectance, which is considerably difficult to calculate than the
estimation of chlorophyll due to overlapping peaks of chlorophyll with carotenoid
absorption, and due to the high concentration of chlorophyll in most leaves than
carotenoid (Blackburn, 2006). Reflectance indices have therefore been more
successful in estimating the ratio of carotenoid to chlorophyll than in estimating the
absolute content of carotenoid (Penuelas et al., 1995; Merzlyak et al., 1999).

The importance of new methods to identify overlapping pigment absorptions was
emphasized by (Ustin, et al., 2009), suggesting that it would lead to significant
advances in the understanding of plant functions and other plant properties. They
underlined that new methods developed to evaluate pigment content and
composition from remote sensing data would provide an understanding of

photosynthetic processes in a more advanced manner.
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On the separation of anthocyanins from the total spectrum of plant pigments, little
research has been done. (Gamon and Surfus, 1999) looked at the red area where the
anthocyanins absorbed light and created a red / green index. However, the index
tests showed no relation to anthocyanins. As a similar study to that of (Gamon and
Surfus, 1999), (Neill and Gould, 2000) have highlighted the problem as the
existence of chlorophyll obscuring the discrimination of anthocyanins in the
reflectance spectrum. (Gitelson et al., 2001) overcame this problem by creating a
narrowband index at 550 nm and 700 nm. This new index has been proven to be

successful in different plant types.

These studies indicate that, although spectral discrimination of single pigments is
possible at some level, the immediate separation of all pigments at the canopy level

from satellite data is still a problem without the use of complex non-linear models.

In this thesis, we propose a method for the linear unmixing of the observed
spectrum into endmembers, which presumably correspond to the pigments and can

even be used directly instead of indices
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CHAPTER 3

MATERIALS AND METHODS

In this section, the data and the study area will be introduced, to be followed by the

step-by-step methodology of the study explained in this thesis.

3.1  The data and the study area

Within the scope of a “Smart Agriculture” project implemented by the Turkish
Ministry of Agriculture and Forestry, the yield maps of the combine harvesters
with yield mapping technology and barley and wheat products were produced
(Sonmez et al., 2015). These maps were transferred to GIS and prepared for use
with electro-optic and SAR satellite images. Instant georeferenced yield values
were obtained with the combine harvesters equipped with accurate scaling,
recording and measuring devices. The combine harvester storage capacity was
around 6 tons and its width was 5 m. As the combine harvester moved at a speed of
about 7 km/h, it actually displaced 2 m/s and thus yield points in 2x5 meter grids.
Coordinated yield distribution maps were prepared in the yield software using the
raw data of the harvested result. The efficiency system in the combine harvester
was integrated with a DGPS receiver via a display. During the operation, the data

were recorded at 1 second intervals with location information.

3.11 Yield data

A harvester system was used as part of a project covering fields from various

regions of Turkey, for the year 2015. The GPS-equipped harvester is integrated
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with high-tech sensors that automatically weighs the crop. These records were
disseminated by the Ministry of Agriculture and Forestry, enabling researchers to
reach the exact locations and yields of the fields in which the harvester operated.
142 wheat fields were selected in 31 cities in six regions of Turkey, as study areas.
These fields were all rain-fed fields in different regions of Turkey having distinct

climatic conditions.

A snapshot of the image of a harvested field within the Harvester Project can be

seen in Figure 3.1, the stripes seen in the figure shows the harvesting direction of

the field. The speed of the harvester during the process was also displayed in the

popup.

Figure 3.1. GPS data of the harvester forming yield grids overlaid on Google earth
base image. The image on the right is the enlarged image of the left one to visualize
the speed information of the harvester.

In order to link the fields in the satellite images to harvester yield records, the exact
boundaries and coordinates of the agricultural field polygon was extracted from
Google Maps.Figure 3.2 shows the locations of 142 selected agricultural fields in
31 Turkish provinces and the station locations that JRC gathered the

agrometeorological data from.
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Figure 3.2. Locations of the 142 fields spread around 31 provinces of Turkey. The blue circles represent the meteorology stations and the

red circles stand for the fields.



3.1.2 Meteorological data

In most cases, the estimation of yield requires agrometeorological data, which are
meteorological data or data that are derived from meteorological data and used in
agricultural studies in order to obtain qualitative and quantitative improvement in
agricultural production (WMO, 2010). If the area of interest, i.e. the crop field, is in
the vicinity of a meteorological station, the data collected from that station can be
used directly. However, if the Area of Interest (AOI) happens to be in between
several meteorological stations, it is ideal to interpolate the agrometeorological
data. The objective of this study is to serve a general approach in the estimation of
yield so that people involved in this type of work can find somewhat more general
solutions. Therefore, the JRC data (Toreti, 2014) has been used instead of the
meteorological station data as in the studies of (Fernandes et al., 2011) and
(Salvador et al., 2020).

The JRC collects air temperature, precipitation, radiation, air humidity, and wind
speed data from 117 weather stations in Turkey. The data are checked for
inconsistencies, errors and duplications and only after these evaluations; the values
are converted into daily values that fit into a uniform weather database for the
station. The measured data are derived from some variables such as solar radiation
or evapotranspiration are also added to the database. These data are, however,
obtained from stations that are at point locations and thus have an irregular
distribution and density. A conversion is required to disseminate these data to
locations between stations. JRC uses interpolation, aggregation and analysis and
controls the regularity by using side by side grids of size 25 km by 25 km, which

covers the entire area of interest (Weather Monitoring - Agri4castWiki).

The total number of agrometeorological parameters both obtained from JRC and
the calculated ones, vegetation indices used in the literature (MSAVI, MTVI, etc.)
and the abundances together with their interactions is 24. Using all the parameters

can be unnecessary, because they can be irrelevant or highly correlated to others.
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3.1.3 Satellite data

Due to their global coverage and temporal resolution, Landsat 8 satellite images
were used in this study. Landsat 8 satellite has a 16-day temporal resolution and
contains 11 bands, however only the first five bands were used in this study. The
properties of these bands can be found in Table 3.1. The Landsat 8 images of the
selected areas from April to June 2015 were downloaded from
https://earthexplorer.usgs.gov/ website and processed. At least two different images
were found for each field at 0% cloud coverage prerequisite. The image having the
highest NDV1 value for each field was selected as the input image to be used in the
forthcoming processes. At this time of the crop development, it is assumed that the
vegetation cover is virtually 100% and there is negligible soil contribution to the

spectrum.

31



Table 3.1 Landsat 8 satellite bands used in this study and their properties

Wavelength | Spatial Resolution
Bands .
(micrometers) (meters)
Band 1 - Coastal aerosol 0.43-0.45 30
Band 2 - Blue 0.45-0.51 30
Band 3 - Green 0.53-0.59 30
Band 4 - Red 0.64-0.67 30
Band 5 - Near Infrared (NIR) 0.85-0.88 30

3.2 Methodology

The first step is the preparation of the satellite images and extraction of the selected
fields from the relevant satellite images. Then, the endmembers are determined and
analysed at the time of maximum NDVI before finding their abundance in the
fields. The abundances, NDVI and selected agrometeorological parameters are
trained in GLM and RF algorithms to predict the yields. The details are presented

in the sub-sub-sections below. A flowchart of the algorithm is given in Figure 3.3.
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Figure 3.3 The flowchart of the proposed algorithm.
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3.2.1 Preparation of the data

All the Landsat 8 images of the area of interests were corrected for radiometric and
atmospheric effects using FLAASH in ENVI 5.3. 141 fields extracted from Landsat
8 images after they were geometrically and radiometrically corrected. The image
with the highest average NDVI value was selected for each field and used as the

dataset for the extraction of the endmembers and the abundance calculation.

Two agrometeorological parameters were used as indices in this study, to observe
if they have any effect on the estimation of the wheat vyields, namely
NoPRECIPITATIONdays and Cons_noPrec. NOPRECIPITATIONdays is the total
number of days there was no rain at the area of the field starting from the sowing
time until the day of harvest, and Cons_noPrec is the consecutive number of days
when there was no precipitation from sowing time until the harvest day and helps
to estimate the accurate yield in case there is drought. It is also a very useful
indicator to find the time when there are many consecutive days of no precipitation
and if and/or how it affects the yield at that certain time period.

3.2.2 Spectral Unmixing

Since the pixel sizes of multispectral sensors are large to contain various
components, the extraction of desired components has become important for
research purposes. Spectral unmixing is applied (Keshava & Mustard, 2002;
Somers et al., 2011) in linear spectral unmixing, or Linear Mixing Model (LMM),
in which it is assumed that a mixed pixel consists of a set of constituent spectral
signatures (endmembers) weighted by a fractional subpixel cover (abundance) as
shown in Eq. 3.

Y=EA+ ¢ (3)

where Y, is composed of observed n pixels with d bands, Eq, is the matrix where

each column is an endmember, Ay is the abundance matrix where each column
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represents the fractional cover occupied by the endmembers for the corresponding
pixel and ¢ is the error, the portion of the spectrum that cannot be modelled using
the endmembers (including sensor noise, endmember variability and other model

inadequacies).
Normally, the LMM can actually have two constraints:

(1) Non-negativity constraint: All abundances have to be non-negative. A >0
and

(2) Full-additivity constraint:17. 4 = 17,

Crops consist ideally only of photosynthetic pigments that are intimately mixed in
the vegetation. The endmember extraction of these intimate mixtures requires the
use of complex non-linear techniques rather than linear ones. The endmembers are
the inputs for the next processing step, which generates the abundances that are the

inputs of the yield prediction method.

Spectral unmixing is very important and it has recently gained attention in the
hyperspectral studies. However, the unmixing algorithms have limited usage in the
multispectral studies so far and the researchers usually perform the unmixing in a
significantly large image area where a large variety of land cover types exist.
However, if the scene is a crop field consisting of full coverage leaves, only plant
pigments are expected to be the endmembers. Given that these pigments form
intimate mixtures, the standard LMM performance would therefore be limited. As a
first approximation of the endmembers, a linear method, Robust Collaborative
Nonnegative Matrix Factorization (R-CoNMF) is used (Li et al., 2016). R-CoNMF
computes the abundances from the endmembers, which are then used in estimating
the yields. When finding the endmembers, R-CoNMF actually performs linear
unmixing to the pure crop pixel that presumably consists of intimately mixed
photosynthetic pigments. One very important property of R-CoNMF that we took
advantage of in this study is that the endmembers do not necessarily correspond to

pure pixels, because there are not pixels composed of pure photosynthetic
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pigments. Although the initial endmembers are determined by a pure pixel
algorithm, they are iteratively updated so that the final endmembers do not

necessarily appear as pure pixels in the image.

Still, the endmembers determined by the R-CoNMF algorithm are not optimal. For
that purpose, we propose an optimization scheme that increases the predictive
power of the endmembers. The optimized endmembers are defined as follows:

E,p¢ = argming(Rsquared_glm(SUnSAL(E,Y),y))
(4)

where E represents the endmembers, Y, the field average pixels as earlier, while
SUNnSAL, an abundance estimation method proposed in (Li et al., 2016), returns the
abundance matrix A (both constraints are used). y are yields in our study and
Rsquared_glm is the coefficient of determination given by MATLAB™ function
‘fitglm” with interactions so that non-linearity is partially modelled. The function is
minimized using unconstrained multivariable minimization as implemented in
‘fminsearch’ function of MATLAB™ and the endmembers found by R-CoNMF
are used as the initial values. The solution of R-CoNMF is used as the initial value
of the optimization algorithm. That is, the endmembers are modified so as to
maximize the R? value between the yields and the abundances.

3.2.3 Linear and non-linear regression

The abundances were used as regression algorithm inputs to achieve the ultimate
intention to find early yield estimates. The selected methods for achieving the final
goal were GLM, ANN and RF. All GLM, ANN and RF algorithms were executed
in MATLAB™,

It is important to decide which parameters are really useful in estimating yields.
Depending on the parameter set, the importance of selected parameters also
changes. In this study, three approaches were used to select parameters and

estimate yield using different datasets such as;
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. Only the abundances,
. Abundances with their interactions with each other (to partially address

the non-linear mixing),

. Only the agrometeorological parameters,
. The agrometeorological parameters with NDVI and
. The abundances together with all the other parameters.

The selection and use of appropriate parameters is of vital importance in all
approaches in order to achieve the desired results. The parameter importance
values that were estimated by using out of bag samples by the random forest
algorithm were used. RF, ANN and GLM were used to estimate yield after

selecting the appropriate parameters in each approach.
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CHAPTER 4

RESULTS AND DISCUSSION

The endmembers and the abundances found by following the steps of the
methodology are given in this section. The outcomes of the machine learning
algorithms by making use of all available data as well as a selected portion of all
the data, that are considered to be the most important, are compared in the

discussion section.

4.1 The endmembers

The endmembers can be considered as the spectral signatures of the dominantly
existing textures in the field of interest. In our case, since we are looking at wheat
fields that are almost totally covered and green (full closure, maximum NDVI), one
would expect to find the plant pigments as endmembers. The endmembers were
calculated using R-CoNMF (Li et al., 2016) in MATLAB™ for the 142 fields in 31
cities where Landsat 8 images existed just before the harvesters recorded vyield
data. The first four multispectral bands of Landsat 8 images, where the
photosynthetic pigments were mostly absorbent, were used to obtain four
endmembers. The parameters used for the implementation of R-CoNMF can be
seen in Table 4.1. Figure 4.1 shows the automatically calculated mean square error,
projection error and noise power used for the implementation of R-CoNMF as a
function of number of endmembers when the R-CoNMF code is run.
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Table 4.1 Parameters and their values used to perform R-CoNMF

Parameter
Positivity
Alpha

Beta

Addone
AOQO_lIters
Delta
Csunsal_lIters
Mu_A

Mu_X

Spherize

Min_Volume

Value
yes
0.1*(1e-8)*sqrt(nd)

50*107(-3)*(nd*m_em)

yes
100
le-4
100
0.1e-4*(nd*n_em)

le-2

center

40

Explanation
Enforces the positivity constraints

Regularization parameter, nd is the
number of pixels of all the fields, which
id equal to 7576 in this study

Minimum volume regularization
parameter, n_em is the number of
endmembers which is equal to 4 in this
study

Enforces the positivity constraints

Number of iterations
(STOP) relative reconstruction error
SUNSAL number of iterations

Proximity weight for A, optimization
variables linked with the mixing matrix
Proximity weight for Y, optimization
variables linked with the abundance
matrix

{'no'cov’, 'M}, M
mixing matrix  containing
endmembers

{'boundary', ‘center’, 'totalVVar}

is the estimated
the 4
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Figure 4.1 Mean square error, projection error and noise power used for the
implementation of R-CoNMF as a function of number of endmembers (k)
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Figure 4.2 Projection of the spectral vectors on the endmembers shown on the first
two principal components. Projection of the spectral vectors y;, fori=1,...,n
(blue), (where vy is the sample mean vector); of the endmember signatures m;, for i
=1,...,p (magenta); and of the columns of A, which are not endmembers (green).
The spectral mean value is shown in black.

Figure 4.2 shows a vector scatter plot v;, for i = 1,. .n, projected onto the affine set
identified by the M, which is a so-called mixing matrix containing p endmembers
columns centered at y, which are plotted in black. It also shows the projection of
matrix A, where M’ contains 5 spectral vectors on the facets of the simplex defined
by M. The M and M’ projections are in red and green, respectively. The black dots
ending at the magenta endmembers represent the solution found by R-CoNMF with

B from Infto 0. If B is set well, the final endmembers will be close to the real ones.

The mean reflectance spectra of the photosynthetic pigments (Figure 5.3(a)) are
obtained from the absorbance values in Lichtenthaler (1987) by using the

conversion factors in Gitelson and Solovchenko (2018).
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Lichtenthaler (1987) provides the absorption spectra of the photosynthetic
pigments, among others. However, this study and probably some other remote
sensing studies require the reflectance spectra of the pigments to analyse the
spectra pigments and other materials in satellite images. Still, the transformation of
absorbance to reflectance is not a very straight-forward process. Although there are
complicated mathematical models to estimate the reflectance from absorbance
(Dawson et al. 1998; Jacquemoud and Baret, 1990), we prefer to use empirical data
in this study. So the absorbance and reflectance values of Virginia creeper leaf

reported in Gitelson and Solovchenko (2018) were used.

The values were used in a MATLAB™ function which basically uses these values
at each wavelength where the photosynthetic pigments are effective (400 — 700
nm) in the transformation formula:

Riar@A)

-1 -
Rpigment (/1) - m

(5)

Apigment (/1)

where A is the wavelength, Ry;gmene IS the reflectance of the pigment, A,;gmene IS
the absorbance of the pigment, , R, is the reflectance of the leaf, Aj,f is the

absorbance of the leaf at 4 (Table 4.2), and c is a constant that brings the range of
the two absorbance values in the same range because the absorbance units are
different in the two sources.
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Figure 4.3 The transformation of the absorbance spectra of photosynthetic

\
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Y
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the first four
bands
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Pigments spectra
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pigments to reflectance spectra.

The newly found reflectance spectra of each pigment was then processed with the
bandwidths of the first four bands of Landsat 8 satellite. The transmissivity of each
band is assumed to be unity in the passbands and the reflectance spectra is simply

summed in each band to obtain the reflectance values as seen by Landsat 8. The

flowchart of this process can be seen in Figure 4.3.
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Table 4.2 Estimated absorbance and reflectance values of Virginia creeper leaf

reported as graphs in Gitelson and Solovchenko 2018

Wavelength Absorbance values Reflectance values

(nm) Aleat (1) Rieat (L)
400 2.25 11.5
425 2.1 12
450 1.9 12.5
500 15 13
550 0.8 6
600 1 9
650 1.3 14
680 1.75 15.5
700 0.8 6
750 0.35 2

Figure 4.4 shows the final reflectance spectra of the pigments obtained using the
methodology described above. Figure 4.5(a) shows how the spectra of the pigments
would look if observed directly from the first four bands of Landsat 8, for
comparison to the endmembers. The endmembers obtained from the R-CoNMF

and optimization are shown in Figure 5.4(b).
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Figure 4.4 The reflection spectra of the major pigments obtained from the
absorption spectra in Figure 2.2.

The absorbance and reflectance spectra of photosynthetic pigments are mostly
drawn in laboratory conditions with spectrometers in a narrow-band format. The
bands where these pigments are most active is between 400nm to 700nm. As
Landsat 8 has only four bands in that range, we can only observe a very
generalized view of the actual signatures.
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Figure 4.5 (a) The calculated pigment reflectance of the first four bands of Landsat
8; (b) The endmembers found from R-CoNMF algorithm and optimization.
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R-CoNMF is used in this study as it successfully gives endmembers similar to
spectral signatures of the photosynthetic pigments (compare Figure 4.5(b) to Figure
4.5(a)). The optimization, helped the endmembers to become even more similar to
the real pigment endmembers shown in Figure 4.5(a). Therefore, the endmembers
in Figure 4.5(b) can be interpreted as follows: Endmember 1 is related to
chlorophyll b, Endmember 2 is related to chlorophyll a, Endmember 3 is related to
carotenoids. The fourth endmember shows any non-modelled elements and
presents its existence as a results of the non-linearities that are inevitably present

within the structure of a plant.

4.2 The abundances

The four abundances that were also calculated using R-CoNMF are plotted against
the known yields of the fields. The relationships of each abundance with the yields

can be seen in Figure 4.6.
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The abundances of the endmembers related to chlorophyll b and carotenoids
(Abundance 1 and Abundance 3, respectively) have strong correlation with the
yield, whereas the abundance of the endmember related to chlorophyll b
(Abundance 1) has negative correlation. The fourth abundance carries the
information coming from the fourth endmember which represents all the other non-
modelled elements. It is shown that chlorophylls and carotenoids are positively
correlated with dry mass in wheat (Sabo et al. 2002), however chlorophyll b has the
least correlation. Since an increase in one of the quantities will result in a decrease
in others, chlorophyll b can have negative correlation with the yield due to the sum-

to-one constraint.

4.3 Parameter selection and interactions

The list of all the parameters, namely the abundances, agrometeorological
parameters and the vegetation indices that have been either collected or calculated
from our dataset can all be found in Table 4.3. All possible interactions of the
abundances are also included in the table. The importance of the parameters in
Table 4.3 are examined by using the predictor importance property of random

forest.

In order to investigate the effect of the soil of the fields, we obtained a categorical
soil map of Turkey and added the categorical parameters as binary into the dataset.
Their contributions individually and the contribution of their interactions with all
the other parameters were investigated. The contribution of any of these parameters
were very insignificant, therefore all soil parameters were removed from the

dataset.
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Table 4.3 Names and abbreviations of all the parameters and interactions

Abbreviation

Name of the parameter

Al Abundance 1

A2 Abundance 2

A3 Abundance 3

Ad Abundance 4

AlA2 Interaction of Abundances 1 and 2

AlA3 Interaction of Abundances 1 and 3

AlA4 Interaction of Abundances 1 and 4

A2A3 Interaction of Abundances 2 and 3

A2A4 Interaction of Abundances 2 and 4

A3A4 Interaction of Abundances 3 and 4

T MAX Maximum temperature (°C)

T_MIN Minimum temperature (°C)

VPD Average vapour pressure deficit (hPa)

EO Potential evapotranspiration of open water (mm/day)
SOILFREEZE Total number of days the soil temperature was below or

equal to 0°C (day)

NoPRECIPITATIONdays

Number of days there was no precipitation until harvest
(day)

RADIATION Average radiation (KJ/m*/day)

WINDSPEED Average speed of the wind at 10m (m/s)
Cons_noPrec Consecutive no precipitation days until harvest
Elevation Average elevation from sea level (m)

PTU Photo Thermal Unit

NDVI Normalized Difference Vegetation Index
MTVI Modified Triangular Vegetation Index

MSAVI Modified Soil-Adjusted Vegetation Index

EVI Enhanced Vegetation Index
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The relative importance of all the 25 parameters used in estimating the wheat yields
were calculated using “Out of Bag Predictor Importance Estimates” of the RF
algorithm of MATLAB™, as can be seen in Figure 4.7. When combined all
together, the most important parameters were calculated to be the VPD, T_MIN,
T_MAX, RADIATION and A2A4. The predictor association test showed the high
correlation between VPD and Elevation, therefore, given the high importance of
VPD compared to all the other parameters, Elevation was removed from the
predictor list. EVI and MTVI were also highly correlated and MTVI was removed
due to EVI being more significant. PTU and A1A4, A2A4, A3A4, NDVI and MSAVI
showed low influence in the prediction of yield, thus were removed from the list.
Windspeed, compared to all parameters, showed insignificant importance, which
led to its removal from the parameter list. All abundances and their most of their
interactions seemed to show significant contribution to the yield, according to the
“Predictor Importance Estimates” algorithm, thus they remained with the most
important agrometeorological parameters and EVI, which proved to be more
important than NDVI in this study. The insignificancy of the NDVI can be
explained with the fact that the study area is very diverse, with different climate
and soil conditions. However, since this study aims to find the yield across the
country, the parameters for this wider area is used in this thesis. Still, NDVI plays a
very important role here, as the selection of the satellite data that the abundances
are found from, is selected by the assumption of the fields having the highest NDVI

value at the full closure of the green wheat field.

52



Out-of-Bag Permuted Predictor Importance Estimates
T T T T T T T T 1 T T T

Estimates

Predictors

Figure 4.7 Out-of-bag importance of all parameters.

The comparison of predictor importance estimates by permuting out-of-bag
observations and those estimates obtained by summing gains in the mean squared

error due to splits on each predictor can be seen in Figure 4.8.
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The predictor association measures estimated by surrogate splits were also

observed (Figure 4.9). Predictor association is a 24x24 matrix of predictor

association measures of all the parameters that can be potentially used to estimate

wheat yields. The strength of the relationship between pairs of predictors can be

inferred using the elements of the predictor association. Larger values indicate

more highly correlated pairs of predictors. The largest association in our dataset

was between MTVI and EVI with 78.2% relationship, however this value was not

high enough to indicate a strong relationship between the two predictors, that one

of them

should

be

removed
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After examining the results of the important parameter selection algorithms, the

remaining abundances and the agrometeorological parameters under a certain

threshold, that made the highest contribution to the estimation of yields were

selected. The final parameter list can be seen in Table 4.4.

Table 4.4 Names and abbreviations of all the selected parameters and interactions

Abbreviation Name of the parameter

Al Abundance 1

A2 Abundance 2

A3 Abundance 3

Ad Abundance 4

AlA3 Interaction of Abundances 1 and 3

A2A3 Interaction of Abundances 2 and 3

A2A4 Interaction of Abundances 2 and 4

T _MAX Maximum temperature (°C)

T_MIN Minimum temperature (°C)

VPD Average vapour pressure deficit (hPa)

EO Potential evapotranspiration of open water (mm/day)

SOILFREEZE Total number of days the soil temperature was below or
equal to 0°C (day)

NoPRECIPITATIONdays | Number of days there was no precipitation until harvest
(day)

RADIATION Average radiation (KJ/m“/day)

Cons_noPrec Consecutive no precipitation days until harvest

EVI Enhanced Vegetation Index

In order to justify the selected parameters, the same Unbiased and Out-of-bag

parameter selection algorithms together with predictor association algorithm were

applied to the selected parameters and the importance of the selected parameters

can be found in Figure 4.10.
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Figure 4.10 Out-of-bag importance of selected parameters.

The comparison of predictor importance estimates by permuting out-of-bag
observations and those estimates obtained by summing gains in the mean squared

error due to splits on each of the selected predictors can be seen in Figure 4.11.
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Figure 4.11 Predictor importance estimation comparison.

The predictor association measures estimated by surrogate splits were also
observed for the selected parameters (Figure 4.12). Predictor association is now a
16x16 matrix of selected predictor association measures of all the parameters that
can be used to estimate wheat yields. The largest association in the selected
parameters dataset was between T_MAX and T_MIN with 53.4% relationship,
which indicated that all of the parameters were independently contributing to the

estimation of the wheat yields.
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4.4  Yield estimation using three different machine learning approaches

This study was done with Landsat 8 — a medium-resolution satellite data — using
the procedures that give best results when used with hyperspectral imagery.
However, the goal of this research is to obtain the best possible outcomes with free
and accessible data for repeatable research. Three different machine learning
approaches were applied to the dataset to compare their performance with each
other. These methods are namely Generalized Linear Model, Artificial Neural
Network and Random Forests all ran in MATLAB™. Due to the limited number of
data that could be used in this study, the validation procedure was conducted by
using cross-validation techniques. 10-fold-cross-validation is often used in the
literature and therefore was also used in all our models (GLM, ANN and RF) to

establish a certain consistency.

44.1 The Generalized Linear Model (GLM) approach

Linear regression models describe the linear relationship between the response and
the predictive parameters. There may, however, be a nonlinear relationship
between the parameters most of the times. Nonlinear regression describes these
general non-linear models. The GLM is a special class of nonlinear models that use

linear methods (Generalized Linear Models 2019) for regression fitting.

The GLM model is selected as linear and the distribution as ‘Poisson’. The result of
the GLM gives a coefficient of determination (R?) of the real yield and the
estimated yield of 0.64 and an RMSE of 31.53 when only the abundances and their
selected interactions are used as input parameters. When the selected
agrometeorological parameters and NDVI are used as the input set for the model,
the R? is 0.60 and RMSE is 33.53. The R reached its highest value of 0.67 with an
RMSE of 31.98 when all the selected parameters in Table 4.4 were used in the

GLM. Accuracies of all relevant correlations can be found in Table 4.5.
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Figure 4.13 Relationship between real and predicted yields found by using all the
parameters of Table 5.3 in GLM algorithm (R? = 0.67).

4.4.2 The neural network approach

The matrix of all abundances and their interactions are selected as the input set of
the Levenberg-Marquardt backpropagation algorithm, which is the ANN algorithm
used in this study. The target is the yield matrix, while the hidden layer size
changes between 5 to 16 depending on the number of parameters according to the
2/3 rule of thumb.

The R? is 0.63 when the abundances and their interactions are used as the input set.
The hidden layer size is five and the RMSE was calculated as 31.86. When the
input set of the selected agrometeorological parameters and NDVI are used as the
input set, the R? is found as 0.75 with an RMSE of 26.52. When all the selected

parameters of Table 4.4 are used, making the hidden layer size 11, the R? reaches
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its top value of 0.78 with an RMSE of 25.00. The relationship of the real and

predicted yields of the neural networks approach can be seen in Figure 4.13.
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Figure 4.14 Relationship between real and predicted yields found by using all the
parameters of Table 4.5 in ANN algorithm (R* = 0.78).

443 The random forests approach

The selected parameters are used in the Treebagger Algorithm, growing 500 trees
in the forest. The R® is found to be 0.63 with an RMSE of 32.45 when the
abundances and their selected interactions are used as the input set of six
parameters. The R? improves significantly when agrometeorological parameters
and NDVI are used, to 0.78 with RMSE equal to 24.72 and running the selected
parameters of Table 4.4 increases the R? to 0.82 (RMSE=22.51) reaching the best

value of all the tests. The relations between real and predicted yields when all
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parameters of Table 4.4 were used in GLM (a), ANN (b) and RF (c) can be found
in Figure 4.14.

(Heremans et al., 2015) used 262 input variables consisting of overall fertilizer use,
27 meteorological parameters and 234 cumulative NDVI values for 12 years. Their
results showed over 0.80 R? values for the RF. The dataset used in this study was
relatively small compared to their set and it can be seen that the RF showed similar

results when only agrometeorological parameters and NDVI were used as inputs
(R*>=0.77).
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Figure 4.15 The relations between real and predicted yields using abundances and
their interactions and selected agrometeorological parameters in RF (R?*=0.82).

The correlations of real and predicted yields when different machine learning
algorithms are applied to all possible combination of parameters of Table 4.4,

namely all parameters used in this study, can be found in Table 4.5.
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Table 4.5 The real vs. predicted yield accuracies and RMSE, of the applied
methods: GLM, ANN and RF according to different parameter combinations for
the training sets.

GLM ANN RF
Parameters i
R  RMSE IH'dde.” RZ RMSE R? RMSE
ayer size
Four abundances 059 33.71 3 073 27.73 084 22.32
Four abundances
and their selected 0.68 29.85 5 0.73 27.4 0.84 22.1
interactions
Agrometeorological —  gg 9g 73 5 083 2205 089 1811
parameters
Agrometeorological
parameters and 0.68 29.61 6 0.88 1864 0.89 17.78
NDVI
All selected 082 22.09 11 085 2058 093 1521
parameters
All parameters 0.83 21.40 16 0.78 2465 093 1511

Table 4.6 The real vs. predicted yield accuracies and RMSE, of the applied
methods: GLM, ANN and RF according to different parameter combinations for
the test sets.

GLM ANN RF
Parameters i
R2  RMSE IH'dde.” R2 RMSE R? RMSE
ayer size
Four abundances 0.56 34.89 3 0.62 3255 0.62 32.45
Four abundances
and their selected 0.64 31.53 5 0.63 31.86 0.63 32.32
interactions
Agrometeorological 5 55 35 o5 5 076 2592 078 24.96
parameters
Agrometeorological
parameters and 0.6 33.53 6 0.75 2652 0.78 24.72
NDVI
All selected 067 3198 11 078 25 082 2351
parameters
All parameters 0.61 36.21 16 0.61 5559 0.80 24.15
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Table 4.5 shows the results of the machine learning algorithms applied to different
datasets consisting of different parameter combinations by using only the training
sets. Table 4.6 shows the results of the same procedures applied to test sets, which
were obtained by using 10-fold cross validation technique. The training set results
showed that RF was highly capable of estimating the yields even when only the
abundances were used (R*=0.84) and when all the selected parameters were used,
the R? reached 0.93. Results of the three different estimation methods using the test
sets can be compared by examining Table 4.6. The best outcomes are obtained
when all the parameters of Table 4.4 are used, which are selected from Table 4.3
and they are the parameters that make the greatest contribution to the artificial
intelligence models when predicting the yields. RF can predict 82% of the yields
when all parameters are used. And the importance of selecting the most important
parameters is openly demonstrated in the results too. The accuracies increased for
all estimation methods quite significantly when the selected parameters were used,
with the smallest increase observed in RF as it is resistant to overfitting by nature.
This result also showed that the parameters selected by using an RF algorithm also

serves the other methods, even more than it serves RF itself.

ANN and GLM normally need more predictors for better accuracy, whereas RF
improves model accuracy by randomly changing the predictors and training data
for each decision tree. RF is resistant to noise within the data and also to over-
fitting problem. Despite these facts, NDVI seemed to have no major contribution to
the accuracy when used with the agrometeorological parameters to find the yields.
Agrometeorological parameters are highly capable of estimating the yield on their
own with RF (78% accuracy). ANN can also predict with good enough accuracy,
over 76% but GLM cannot predict the yield with agrometeorological parameters as
good as the other models (63%).

RMSE is better for RF in most of the cases, although RF and ANN performed close
enough except when the set of selected parameters is used to predict the yields.

RMSE is calculated as low as 22.5 when only selected parameters are used. These

65



results show that when using all the important parameters and their interactions, RF

is the best method for estimating wheat yield.

This research proves the importance and power of extraction of intimately mixed
endmembers, presumably the photosynthetic pigments in yield estimation. This is
succeeded despite the fact that the intimate mixture of photosynthetic pigments in
the wheat crop is treated linearly when unmixing with R-CoNMF. In addition to
finding the endmembers with R-CoNMF, the yield estimation performance
increases significantly after the optimization of the endmembers with the GLM
algorithm. Before the optimization was included in the calculation steps, the R? of
the abundances and their interactions could only go as high as 0.55 and RMSE
35.10 with the RF model, whereas after the optimization it reached 0.63 with an
RMSE of 32.32.

The endmembers are related to the pigments as they are similar to the spectral
signatures of the pigments when reflected from Landsat 8 bands. When the
interactions are also included, it can be said that a bilinear method for a non-linear
mixture is used (Heylen et al., 2014) and the predictions get better. Interactions
may make a greater contribution to increasing R? than some of the abundances
themselves (Figure 4.7, Figure 4.10). These abundances and their interaction can
estimate almost 65% of the yield all by themselves in the test set created by using
10-fold cross-validation when using medium resolution Landsat 8 data, and over
82% when all the important parameters are used. When a fine decomposition
algorithm of the inner structure of the crops with the evolving technology is

available, the yield estimate is bound to be better.

Heremans et al., (2015) had used 262 input variables consisting of overall fertilizer
use, 27 meteorological parameters and 234 cumulative NDVI values for 12 years.
Their results showed over 0.80 R? values for RF. The dataset used in this study is
relatively quite small compared to their set, yet still, RF shows similar results when
only agrometeorological parameters and NDVI were used as inputs (R* = 0.77).

Our study is done with agrometeorological parameters and endmembers calculated
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with the data of only one year (2015) using only 17 selected parameters which
proves its efficiency and easy data collection process and calculations when
compared to not only Heremans et al., (2015) study but many other studies that
were conducted using agrometeorological parameters and NDVI.

The most important thing to note is that the results of this study, especially the
importance of the abundances in yield estimation, would probably have increased
rapidly if hyperspectral satellite data were to be used. This is mainly because there
would be more bands to use and secondly, the used algorithms are actually

developed for hyperspectral data.
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CHAPTER 5

CONCLUSION

This thesis demonstrates a field-level wheat yield estimation method using the first
four bands of pure Landsat 8 pixels of wheat crop whose performance is tested on
data from 142 fields in 31 provinces, belonging to different regions with distinct
climatic conditions. Harvester data obtained from the Ministry of Agriculture is
used as ground truth of these fields. With the linear unmixing algorithm called R-
CoNMF that do not need a pure pixel for the unmixing process, we are able to
unmix intimately mixed pure wheat crop pixel containing almost only
photosynthetic pigments to find the endmembers representing these pigments. The
endmembers are further optimized for predicting the yields more accurately by
them and their interactions. The endmembers calculated by the algorithm show a
similar pattern to the spectral signatures of chlorophylls and carotenoids, whose
spectral signatures are processed with Landsat 8 bands to obtain a view of how
they would look from a medium resolution satellite point of view. Abundances
found from the endmembers by using the same algorithm acts as new indices and
the nonlinearity was handled by including the interactions of the abundances in the
parameter list of the three machine learning algorithms (GLM, ANN and RF) that

are used to predict the yields.

GLM predicts over 64% of the yields by only using the abundances and the most
important interactions. Adding the agrometeorological parameters and the VIs in
the picture helps RF to attain an R? of 0.82, which can be considered a big success

considering a multispectral satellite is used in the process.

This thesis contributed to the literature by

e demonstrating a novel point of view in estimating the yields, by using soft

computing methods for unmixing the pigments within a crop,
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e introducing a novel point of view in unmixing intimate mixtures, without
using non-linear methods,

e improving the timeline of estimation of the yield, as with the method given
in this study, the yield can be estimated at least a month before the harvest
and

e reducing the number of sources and parameters that need to be used for
yield estimation. By doing this, the focus could be directed on the
parameters that are easily accessible or can be calculated with no additional
cost.

For future studies Sentinel-2 data can be used, as it is available freely just like
Landsat 8, it has more bands and a 5-day temporal resolution, which is also better
than that of Landsat 8, which is 16 days. It would be better to use hyperspectral
satellite data obtained from future hyperspectral space missions like HyspIRI to
perform the analysis and find the yields, as every increase in the number of bands
would make a finer endmember calculation, resulting in finding more accurate

yields.

The most important future work would be to carry out measurements of ground
truth with spectroradiometers and laboratory work to determine to what extend the
endmembers actually represent the photosynthetic pigments within the crops. It
would also be a good future work to take the absorption and reflection
measurements of the wheat leaves in the field, in order to calculate the actual
values for the transformation from the absorbance spectra of the pigments to
reflectance spectra for wheat. Implementation of the process for crops other than
wheat would also be a fruitful study. The most useful future study; however, would
be to embed the process in Google Earth Engine and record the yield estimation of
the wheat fields on a weekly basis, if Sentinel-2 data is to be used. This can be
especially easier to do and very useful if the endmember signatures are proven not
to change throughout the years. However, the algorithm needs to be integrated with
agricultural parcel segmentation and crop type detection algorithms to have an

operational service.
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