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ABSTRACT 

 

EARLY YIELD ESTIMATION BY PHOTOSYNTHETIC PIGMENT 

ABUNDANCES USING LANDSAT 8 IMAGE SERIES 

 

 

 

Özcan, Ayşenur 

Doctor of Philosophy, Geodetic and Geographic Information Technologies 

Supervisor : Prof. Dr. Lütfi Süzen 

Co-Supervisor: Assoc. Prof. Dr. Uğur Murat Leloğlu 

 

 

October 2020, 88 pages 

 

 

Timely estimation of crop yields is critical for monitoring global food production 

by international organizations as well as governments, farmers and the private 

sector dealing with storage, import and export of crops and associated products. 

Satellite remote sensing has the capability to provide near real-time information on 

a global scale. Combining satellite data and soft computing techniques to predict 

crop yields is a very effective strategy for continually forecasting crop yields. This 

thesis presents a novel approach for accurate and sustainable estimation of crop 

yields based on estimated abundances of endmembers that may be attributed to 

photosynthetic pigments. Landsat 8 images acquired during the time of the 

phenological cycle when plants have maximum greenness are the inputs to find 

endmembers and abundances within the pure wheat crop pixels using Robust 

Collaborative Nonnegative Matrix Factorization (R-CoNMF) unmixing algorithm. 

The endmembers are optimized to maximize the predictive power of the 

abundances for the yields. Wheat yields were then estimated with the four 

abundances, their relevant interactions, ten important agrometeorological 
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parameters, including parameters proposed in this thesis for the first time, and four 

different vegetation indices using three different machine learning algorithms 

(Generalized Linear Model (GLM), Artificial Neural Network (ANN) and Random 

Forest (RF)). Harvester records from 142 wheat fields distributed in 31 provinces 

of Turkey were used as the ground truth for testing the algorithm. In the literature, 

the coefficient of determination (R
2
) is used as a proxy to show how good the 

relationship is between the estimated and real figures. According to these 

calculations, the yields were estimated with 64% accuracy when only the 

abundances were used in the GLM algorithm, 78% accuracy when ANN was used 

for yield estimation and 82% accuracy was reached when applying RF to all of the 

parameters. The similarity of the endmembers to photosynthetic pigment spectral 

signatures along with their predictive power suggested their relevance to the 

pigments. Although the R-CoNMF algorithm performs a linear unmixing of the 

intimate mixture of the photosynthetic pigments, the interactions of the abundances 

used in the endmember optimization and in classifications partially handle the non-

linearity using the bilinear model. These results can be considered as a great 

success when using multispectral satellite data only and are recognized as a clear 

indication that much better results would be achieved while using images from 

future hyperspectral space missions like HyspIRI. 

 

Keywords: Landsat 8; time series, yield estimation; random forest; artificial neural 

network; Generalized Linear Model; photosynthetic pigments; unmixing; R-

CoNMF; endmember optimization, endmember extraction 
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ÖZ 

 

LANDSAT 8 GÖRÜNTÜ SERİSİ KULLANILARAK FOTOSENTETİK 

PİGMENT BOLLUKLARI İLE ERKEN VERİM TAHMİNİ 

 

 

Özcan, Ayşenur 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Prof. Dr. M. Lütfi Süzen 

Ortak Tez Yöneticisi: Doç. Dr. Uğur Murat Leloğlu 

 

 

Ekim 2020, 88 sayfa 

 

Mahsul verimlerinin zamanında tahmin edilmesi, uluslararası kuruluşların yanı sıra 

hükümetler, çiftçiler ve mahsullerle beraber ilgili ürünlerin depolanması, ithalat ve 

ihracat ile ilgilenen özel sektör tarafından küresel gıda üretiminin izlenmesi için 

kritik öneme sahiptir. Uzaktan algılama, küresel ölçekte gerçek zamana yakın bilgi 

sağlama yeteneğine sahiptir. Mahsul verimlerini tahmin etmek için uydu verilerini 

ve bilgisayar programlarıyla hesaplama tekniklerini birleştirmek, mahsul 

verimlerini sürekli olarak tahmin etmek için oldukça etkili bir stratejidir. Bu tez, 

fotosentetik pigmentlerle ilişkili olabilecek tahmini son üye bolluklarına dayalı 

olarak mahsul verimlerinin doğru ve sürdürülebilir bir şekilde tahmin edilmesi için 

yeni bir yaklaşım sunmaktadır. Fenolojik döngüde bitkilerin maksimum yeşillikte 

oldukları sırasında çekilen Landsat 8 görüntüleri, sağlam işbirlikçi negatif olmayan 

matris çarpanlarına ayırma (R-CoNMF) karıştırma algoritması kullanarak saf 

buğday mahsul pikselleri içindeki son üyeleri ve bollukları bulmak için girdi olarak 

kullanılmışlardır. Son üyeler, verim için bolluğun tahmin gücünü en üst düzeye 

çıkarmak için optimize edilmiştir. Daha sonra buğday verimleri, dört bolluk değeri, 

bunların ilgili etkileşimleri, bu tezde ilk kez önerilen parametreler dahil on önemli 

agrometeorolojik parametre ve üç farklı makine öğrenme algoritması, yani 
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Genelleştirilmiş Doğrusal Model (GLM), Yapay Sinir Ağı (YSA) ve Rastgele 

Ormanlar (RF) kullanılarak tahmin edilmiştir. Türkiye'nin 31 iline dağılmış 142 

buğday tarlasından hasat kayıtları, algoritmanın testinde yer kontrolü olarak 

kullanılmıştır. Literatürde determinasyon katsayısı (R
2
), tahmin edilen ve gerçek 

rakamlar arasındaki ilişkinin ne kadar iyi olduğunu göstermek için bir temsilci 

olarak kullanılmaktadır. Buna göre, GLM algoritmasında sadece bolluklar 

kullanıldığında verimler %64 doğrulukla tahmin edilmiş, YSA ile tahmin 

yapıldığında %78 tahmin oranına ulaşılmış, ve ilgili tüm parametrelere RF 

uygulanırken ise %82 doğruluk seviyesine ulaşılmıştır. Son üyelerin kestirim 

güçleri ile birlikte fotosentetik pigment spektral imzalara benzerliği, pigmentlerle 

ilişkilerini göstermiştir. Her ne kadar R-CoNMF algoritması,  fotosentetik 

pigmentlerin derin karışımının lineer çözülmesini gerçekleştirse de, son üye 

optimizasyonu ve sınıflandırmalarda kullanılan bollukların etkileşimleri bilineer 

model kullanılarak doğrusal olmama durumunu kısmen ele almaktadır. Bu sonuçlar 

sadece çok-bantlı uydu verileri kullanıldığında büyük bir başarı olarak 

değerlendirilebilir ve HyspIRI gibi gelecekteki hiperspektral uzay görevleri 

görüntüleri kullanılırken çok daha iyi sonuçların elde edilebileceğinin bir 

göstergesi olarak kabul edilebilir. 

 

Anahtar Kelimeler: Landsat 8; zaman serileri, verim tahmini; rastgele orman; 

yapay sinir ağı; Genelleştirilmiş Doğrusal Model; fotosentetik pigmentler; 

ayrıştırma; R-CoNMF; son üye optimizasyonu, son üye çıkarma  
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CHAPTER 1  

1 INTRODUCTION  

Yield estimation of crops is one of the most popular subjects in the literature of 

many fields such as remote sensing, agriculture, geographic information systems 

(GIS), economics and maybe many more. Researchers are willing to find accurate 

estimates of crops so that countries can plan ahead their economies by taking into 

account these productions, i.e. the money to be reserved for import of goods that 

cannot be produced within the country or how much they can export products such 

as wheat, rice, tea, sugar, etc. according to the agreements between them and other 

countries, as well as the employment opportunities it provides to the population. 

Especially in developing countries, agriculture is the main source of livelihoods 

and even if there cannot be agricultural work all year, it is a source of income that 

contributes to the economy of the households throughout the whole year, even if 

they only work seasonally.  

Agriculture is vital for the economic and social well-being of countries, regardless 

of their level of development. It is essential to estimate the yield before harvest 

across large areas because governments can implement their agricultural policies 

and plans based on these data. Agriculture also has contributions to the 

transportation sector as the goods are usually transported by road or railways, as 

well as to marketable surplus. A stable agriculture of a nation leads to the stable 

food security. So that malnourishment is prevented and people are healthy. A 

timely yield estimate also helps the private sector to plan for the storage, import 

and export of crops and related goods, international organizations to monitor the 

world's food production and the farmers to plan their next crop and order the 

appropriate seed quantity in advance.  
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Humanitarian response relies heavily on agriculture and its products. Therefore, 

humanitarian organisations invest in GIS and remote sensing in terms of 

technology and human power just to have a close enough idea on the situation of 

crops and production information in order to serve the people in need in a timely 

manner. Time is of the essence in life and in all sectors that have a direct impact on 

human lives.  

Therefore, it is very important to estimate the yield as early as possible to help the 

involved parties take all the measures of precaution and decide on their roadmap 

for the planning of their near future. 

1.1 Description of the problem 

Accurate and timely estimates of yield increase the overall efficiency of the 

agricultural system. Since the satellite images have been put to the use of 

researchers, many researches have been done and many models have been 

presented to predict the crop yields accurately and before the harvest. However, 

there has not been a significant success in this field so far. The main reasons for 

this unfortunate result may be listed as the lack of information from satellite images 

due to the high percentage of cloud cover, the low temporal resolution of most of 

the freely available images and the technologies to be used in these studies not 

having been developed fast enough. These issues reduce the efficacy of the 

established crop yield estimation techniques and make them counterproductive. 

To solve these problems, there have been attempts to use high temporal resolution 

and low spatial resolution images, using agrometeorological parameters along with 

various indices derived from remote sensing instruments, but researchers still could 

not achieve sufficient precision in yield estimates. In parallel, soft computer 

algorithms such as Artificial Neural Networks (ANN), Fuzzy Logic (FL), Genetic 

Algorithm (GA) and Random Forests (RF) have been used to achieve more 

accurate estimation results in order to increase the success of conventional 
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computing techniques. Although these algorithms helped to move a big step 

forward, a new point of view seemed like a necessity to overcome the problem of 

timeliness and accuracy when estimating the yields. 

1.2 The Approach of this thesis 

As a new point of view to seek a solution to the accurate yield estimation problem, 

photosynthetic pigments, namely, chlorophylls, xanthophylls and anthocyanins 

were investigated. This thesis describes an algorithm applied to satellite images to 

extract endmembers that possibly correspond to or at least relate to photosynthetic 

pigments in plants at the maximum NDVI value when the canopy closure of wheat 

crops is assumed to be 100%. The abundances of these endmembers within the 

crops and some indices derived from them were calculated and used as inputs for 

Generalized Linear Model (GLM), ANN and RF to estimate yields at least one 

month before harvest. Agrometeorological parameters, including new parameters 

proposed for the first time in this thesis, and/or vegetation indices (VIs), are also 

used as inputs of GLM, ANN and RF along with the abundances to determine their 

contribution to the yield estimation. The performance of the algorithms is tested 

using ground truth data obtained by harvesters. It is shown that, although the 

mixing of pigments is most presumably non-linear, the abundances of the 

endmembers, which are probably related to photosynthetic pigments, are useful in 

yield estimation. Some interactions of abundances are also proven to be good 

predictors that probably handle the non-linearity inherent in intimate mixtures 

partially. 

1.3 Contributions of this thesis 

This thesis contributes to the expansive research literature of yield estimation of 

crops via remote sensing, in a way that  
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 improves the timeline of estimation of the yield, as the yield can be 

estimated at least a month before the harvest;  

 introduces a novel point of view in approaching the yield, i.e. by taking into 

account the three photosynthetic pigments, namely chlorophyll a, 

chlorophyll b and carotenoids all together in the methodology of the 

estimation, and  

 reduces the number of sources and parameters that are used and focuses on 

the ones that are easily accessible or can be calculated with no additional 

cost. For example, Landsat 8 data, which are free of charge, an unmixing 

code and agrometeorological data that are also found free of charge, were 

used to conduct all the study. 

 

1.4 Organization of this thesis 

This thesis is organized as follows: In Chapter 2, a background of all the 

technologies used in this thesis are given. The subjects that are mentioned in that 

chapter are the basic history of satellite remote sensing, the photosynthetic 

pigments that exist in a crop and the brief history of unmixing algorithms. A 

literature review occupies Chapter 3 to create a more detailed point of view on how 

yield estimation has been performed using remote sensing until recently, the part of 

soft computing in these calculations and a brief explanation of the role of 

photosynthetic pigments in yield estimation by referencing the researchers that 

have contributed to the literature regarding these subjects. In Chapter 4, the 

materials and methods are introduced, starting with the data used and the study 

area, followed by the methodologies implemented in the study. Chapter 5 is 

designed to give the results and discuss the outcomes. The thesis is finalized with 

Chapter 6, conclusion and future work suggestions. 
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CHAPTER 2  

2 BACKGROUND AND LITERATURE SURVEY 

Agriculture is the key in the development of human civilization, as farming of 

domesticated species created food surpluses that enabled people to live in cities. 

The history of agriculture began thousands of years ago. Agriculture is still vital in 

the economic and social beings of countries, regardless of their level of 

development. There seems to be no substituent source available for this sector that 

produces raw materials and food that are necessary for human nutrition. Therefore, 

it is normal for the sector to have a big share in the total employment. With the 

rising of the incomes and growth of trade in the world, consumption per capita 

increases. According to these data, agricultural production is expected to be able to 

increase slowly but steadily in the following years.  

It has become very important to make estimations on the growth process of crops 

and therefore the yield before harvest, or at least to be able to make accurate 

predictions of yield at harvest. In order to make these predictions, the area of 

cultivated crop should be monitored. The estimations on crop yields over large 

areas are important as the governments implement their agricultural policies and 

plans according to these data. The timely estimations of yields also help the 

planning of the private sector dealing with storage, import and export of goods, etc. 

The farmers can plan their next cultivation and order the appropriate amount of 

seeds beforehand. If done correctly, it will also be a good input for international 

organizations dealing with monitoring of the world food production, while the 

adjustment of storage, import, export, etc. according to yield increases the total 

efficiency of the system of the companies in agricultural sector. It will undoubtedly 

be beneficial to farmers as they can know their yield, manage their income 
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beforehand. All these facts emphasize the importance of early estimation of yields 

for each and every stakeholder.  

2.1 Use of Remote Sensing in Agricultural Applications 

Satellite monitoring was the starting point of crop monitoring, which started in the 

1970s in developed countries. The United States (US) started monitoring its own 

wheat production, and then extended its studies to monitoring many other countries 

main crop production at the end of 1980s. Following the US, European Union built 

its own prediction and monitoring system at the Joint Research Center (JRC) 

(Monitoring Agricultural ResourceS (MARS) | EU Science Hub) with the name of 

MARS (Monitoring Agriculture with Remote Sensing). Other countries like 

France, Germany, Russia, Canada, Japan, India etc. pursued the US and EU-JRC in 

building their own monitoring and forecasting systems. Usually the 

NOAA/AVHRR and afterwards Landsat satellite systems were used. A substantial 

amount of accurate data collection from the field (ground truth) had to be done due 

to the low ground resolution of these satellites at the times.  

Remote sensing in agriculture has usually been about the plant reflecting the 

radiation coming from the sun, measured by passive sensors. However, there are 

also studies on the transmittance, absorbance or emittance of the plants. Plants 

emitting energy for both photosynthetic function and biochemical constituent is 

known as fluorescence sensing (Apostol et al., 2003). Thermal remote sensing is 

about variations in the evaporation rate based on the response of the temperature of 

the plant to the emission of radiation, which leads to the information on water 

stress (Cohen et al., 2005). Absorption of plants is the opposite of reflection of 

plants and therefore also varies with the incident wavelength. It was found that the 

chlorophyll of plants absorb radiation at 400-700nm of the Electromagnetic 

spectrum (EMS), namely the visible region while reflectance is high in the near 

infrared region (700-1300nm) (Pinter et al., 2003). The sharp contrast between red 

and NIR parts of the spectrum was the motivation for the development of some 
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spectral indices (Mulla, 2013). Simple and complex spectral indices are able to 

detect variations in leaf area index (LAI) and variations in crop status such as 

chlorophyll and nitrogen content (Wang et al., 2014). 

The indices are usually used for the estimation of yields of various crops. Yield 

estimation of crops, especially before harvest, plays an important role in 

agricultural policies and decision making. In the literature, yield estimation is 

usually done by using different models. The first type of these models, the 

Statistical Models are usually used when there is information on large areas and 

they can estimate in wide ranges. Statistical models are not recommended for 

accurate or near-accurate estimations. In crop yield forecasts with statistical 

regression, which is considered a common and easy method (Lobell et al., 2010), 

the basic principal is that a simple matrix is formed with some agrometeorological 

parameters (not too many) and previous yields, then a regression equation is 

derived between yields and the parameters. Usually the regression model is 

selected as multiple linear regression (MLR), however this model gives inaccurate 

and unstable solutions especially when large number of parameters are used and if 

there are correlations between these variables (Lobell et al., 2005). Magney et al. 

(2017) aimed to evaluate the usefulness of RapidEye spectral VIs to predict 

cumulative Nitrogen (N) uptake in wheat and to examine the usefulness of 

remotely sensed N uptake maps for precision agriculture (PA) applications. It was 

concluded that the top performing Vegetation Index (VI) was the Normalized 

Diff erence Red-Edge index (NDRE). They used seventeen commonly used 

spectral VIs to report that VIs from RapidEye imagery can be used for estimating 

wheat N uptake. Polynomial fit showed maximum R
2
 of 0.81. 

The second widely used model is the Mechanistic Model. These models are much 

more detailed than statistical models. They use fundamental mechanisms of soil 

and plant processes (Dourado-Neto et al., 1998). Third model is Functional Model, 

which is a more complex model and it is able to simulate models on data that are 

updated daily. Its functionality comes from simplifying the complex processes. 
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However, if not developed correctly, it may give less accurate results than 

mechanistic models (Watt, 2013). 

In a more general way, models can be classified as deterministic and stochastic. 

Deterministic models make the assumption that all plants and soil are uniform 

throughout the space. Stochastic models have a more realistic approach, knowing 

that the parameters are changeable and the results may also produce some 

uncertainties due to soil properties, weather conditions, biotic and abiotic factors. 

These properties cause the model to be valid in small areas rather than large areas. 

Also the crop growth system is more stochastic than deterministic, because most 

parts of the agro-ecosystem are heterogeneous (Basso et al., 2014).  

Remote sensing is a very efficient way to sample large number of plants at the 

plant scale to examine for example, plant breeding and to identify some specific 

physiological characteristics of varieties (Jones & Vaughan, 2010). It can also be 

noted that studies have been done on remote sensing for precision agriculture to 

analyze variations of parameters within fields (Plant, 2001), however there seem to 

be not many on between-field variations across the landscape. (Lobell et al., 2005) 

have pointed out the three advantages of yield remote sensing over ground based 

approaches as: 

1- The sample sizes can increase once the field measurements of yield 

are bypassed. 

2- Field measurements are collected via sensors and a small number of 

plots within fields which leads to sampling errors of only within-

field variability, while with remote sensing yield estimates of a 

much wider range of spatial scales can be done.  

3- There is a huge archive of remote sensing images which can help 

analysis of past surveys that may not have measured yield.  

When dealing with complex systems, using conventional methods may not be cost-

effective, analytical or provide complete solution. Thankfully, some ‘inexact’ 

methods have been developed to model and analyze the complex problems of these 
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complex systems. These ‘inexact’ computing techniques are referred to as ‘soft 

computing’ (Huang, et al. ,2010).  

In the past years, the agrometeorological parameters along with various indices 

derived from remote sensing instruments have been used as predictors to perform 

yield estimation. As the greenness and soil driven indices could not achieve 

sufficient precision in yield estimates, photosynthetic pigments, chlorophylls, 

xanthophylls and to some extent anthocyanins were investigated. In parallel, soft 

computing algorithms such as Artificial Neural Networks (ANN), Fuzzy Logic 

(FL), Genetic Algorithm (GA) and Random Forests (RF) have been used to achieve 

more accurate estimation results in order to increase the success of conventional 

computing techniques. The developments in these fields so far will be examined in 

detail in the literature survey chapter. 

2.2 The photosynthetic pigments  

Many pigments exist in the structure of vegetation. The main pigments that exist in 

all types of vegetation are chlorophylls, carotenoids and flavonoids (mainly 

anthocyanins) (Lachman et al., 2017; Blackburn, 2006), which are also considered 

as photosynthetic pigments (accessory pigment or antenna pigment).  

Chlorophylls are the most important pigments for the life cycle of all living things 

as they play the most important role in photosynthesis. Chlorophyll concentrations 

are play an active role in primary production of crops due to their control upon the 

solar radiation that the leaves absorb, leading to photosynthetic potential. Besides 

that, chlorophylls assemble a big portion of the leaf nitrogen content which is a 

measure of the plant nutrient status. Chlorophylls are light-dependent pigments and 

their amount decreases in low or no light environments, under stress and during 

senescence.  

Carotenoids are one of the other important pigments that exist in the chloroplast of 

the plants. About 600 different carotenoids that are discriminated as xanthophylls, 
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most important of which is lutein (containing oxygen) and carotenes (containing 

hydrocarbons and no oxygen) exist. The carotenoid content determines the quality 

of the durum wheat, by giving it the yellow colour of the pasta (Lachman et al. 

2017). Carotenoids absorb blue light strongly which leads to the conclusion that 

they have a dual function of absorbing photosynthetic energy (a.k.a. incident 

radiation) and contribute it to help chlorophylls and photo-protection of chlorophyll 

when exposed to excess light (Bartley and Scolnik, 1995). The first function is due 

to carotenoids (just as chlorophyll b is) being an accessory pigment for chlorophyll 

a, which takes energy from the antenna (accessory pigments). if the concentration 

of chlorophyll a is high, it will take more energy from chlorophyll b and 

carotenoids, which will result in higher photosynthetic activity, thus primary 

production (Chappelle et al., 1992). In case of excess radiation, carotenoids 

disperse the energy in xanthophyll cycle, making the xanthophyll pigment directly 

linked to the photosynthetic light use efficiency (LUE).  

Anthocyanins are the third group of important pigments in plants. They belong to 

the group of flavonoids. They are the least examined pigment group in the field of 

remote sensing, therefore there is an uncertainty regarding their functions. Various 

roles of anthocyanins have been reported, such as being an antioxidant (Yamasaki 

et al. 1997), in case of oxidative stress, they reduce the excitation pressure and 

prevent oxidative damage (Field et al., 2001). Besides these, Steyn et al. (2012) 

found the photo-protective light screen potential of anthocyanins. It is seen that 

anthocyanins can alter the light environment within a leaf and adjust 

photosynthesis in a way that they limit photo-inhibition and photo-bleaching 

(Barker et al.,  1997).  

The spectral, spatial and temporal dynamics of these very important pigments in 

vegetation can not only provide scientific knowledge, but also significant help in 

agricultural and/or environmental management. According to the literature 

however, the spectral discrimination of these pigments are possible through 

multiple regression, stepwise regression, nonlinear approaches, PCA or ANN 

approaches and the combination of some of these, but not solely through linear 
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approaches as they have a structure of observably overlapping spectral signatures 

within a plant (Figure 2.1).  

 

Figure 2.1. Absorption spectra of the most important plant pigments (Blackburn, 

2006). 

The most well-known carotenoid index is Photochemical Reflectance Index (PRI) 

(Gamon et al., 1992). It is a narrow-band index which gives the changes in the 

epoxidation of xanthophyll pigments, which can also be expressed as the changes 

in the efficiency of the photosynthetic light reactions (Jones and Vaughan, 2010). 

In other words, it shows the photosynthetic light-use efficiency (LUE) and works 

as an indicator of stress (Gamon J., 2010). PRI is formulated as:  

𝑃𝑅𝐼 = (𝑅531 − 𝑅𝑟𝑒𝑓)/(𝑅531 + 𝑅𝑟𝑒𝑓)                                                                      

(1) 

where R531 and Rref are leaf reflectance values at 531 nm and the reference 

wavelength. The 531 nm, although mostly taken literally in the scientific 

community, there were times when it was taken in the range between 505 nm and 
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535 nm (Bilger et al. 1989), 531 nm and 535 nm (Moraleset al., 1990; Ruban et al., 

1993). The reference reflectance is usually taken as 570 nm, however it can be 550, 

560 nm etc. It was found that the xanthophyll pigments absorb minimum at 531 nm 

and the reference wavelength can be chosen as where they make a peak. The index 

is aimed to minimize the effect of the diurnal sun angle changes (Gamon et al., 

1992), meaning that PRI is more sensitive to environmental changes, parallel to 

xanthophyll epoxidation state and its effects to the crop in the shortest time scale 

than NDVI (Penuelas et al., 1994).  

The estimation of leaf carotenoid content from reflectance was also investigated by 

Lichtenthaler (1987) and Sims and Gamon (2002), which is much more difficult 

than estimation of chlorophyll due to the overlap between the chlorophyll and 

carotenoid absorption peaks (Figure 2.2) and because of the higher concentration of 

chlorophyll than carotenoid in most leaves. 
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Figure 2.2. Absorption spectra of Chlorophyll A, Chlorophyll B and Carotenoids, 

interpolated from data samples from plots published in Lichtenthaler, 1987 

Consequently, reflectance indices have proved more successful for the estimation 

of the ratio of carotenoid to chlorophyll, than in the estimation of the absolute 

carotenoid content (Penuelas et al., 1995; Merzlyak et al., 1999). 

Multiple indices have been developed using band ratios near (not on) the 

absorption peak wavelengths of a certain pigment, usually chlorophyll (Zhang, 

2011). Numerical inversion of leaf-level Radiative Transfer (RT) models, such as 

PROSPECT and LEAFMOD, has demonstrated success for predicting leaf 

chlorophyll content (Jacquemoud and Baret, 1990; Ganapol et al., 1998; Maier et 

al., 1999; Demarez, 1999; Renzullo et al., 2006). Numerical inversion techniques 

offer the potential of a generically superior approach to estimate leaf chlorophyll 

content from hyperspectral data than spectral indices and other approaches that are 

based on empirical calibrations.  

Not much research has been done on separating anthocyanins from the total spectra 

of plant pigments. (Gamon and Surfus, 1999) examined the red region where the 

anthocyanins were absorbing light and created a red/green index. However, the 

tests of this index showed no relationship with anthocyanins. Similar studies to 

Gamon’s, (Neill and Gould, 2000) have pointed out the problem as the existence of 

chlorophyll obscuring with the reflectance spectra discrimination of anthocyanins. 

Gitelson overcame this problem by creating a narrowband index at 550nm and 

700nm (Gitelson et al., 2001). This new index proved to be successful over 

different types of plants. 

2.3 Unmixing of satellite image pixels 

The pixel sizes of multispectral sensors are big enough to contain varying materials 

in them, the extraction of the ratios of desired materials became important for the 

purposes of research. The standard extraction algorithm is called Spectral 
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Unmixing Algorithm (Keshava and Mustard, 2002). In linear spectral unmixing, 

basically the mixed pixel is assumed to be consisting of a set of constituent spectral 

signatures (endmembers) weighted by the subpixel fractional cover (abundances). 

The unmixing algorithms are designed and applied to hyperspectral images in the 

literature, and it should be noted that all the literature of the researchers explained 

below have applied their algorithms to hyperspectral imagery. 

Crop fields ideally consist of only photosynthetic pigments, which are intimately 

mixed within the vegetation. Normally, endmember extraction, when not done at 

large scenes of satellite images, but with intimate mixtures, requires the use of 

complex non-linear techniques. Therefore, extracting endmembers from an 

intimate mixture of photosynthetic pigments requires techniques other than linear 

ones, whereas it should also be easily implemented by users, which may not be the 

case for non-linear techniques. The endmembers are the inputs for the next step of 

the process, generating the abundances, which are the inputs of the method for 

predicting the yield.  

The standard unmixing algorithms in the literature, perform the unmixing in a 

considerably big area of an image. A new approach, which is also linear but 

different than the classical linear unmixing, called PCOMMEND was introduced 

by (Zare et al., 2013). The method was programmed to find multiple sets of 

endmembers which has shown it to be a better representative of hyperspectral 

imagery. Different from the standard models, PCOMMEND has the ability to 

execute iterative fuzzy clustering process while conducting spectral unmixing at 

the same time in order to partition a mixture (pixel) into multiple regions of the 

space defined by the endmembers. In each of these regions, a distinct set of 

endmembers that define a simplex occurs. This makes all the pixels in the image be 

represented by a union of all the simplices. Therefore, it could be possible for the 

pigments to be linearly separated within these small regions. Despite running a 

complex algorithm in the background, PCOMMEND could be conducted very 

easily with satisfying results. The endmember signatures were extracted as two sets 

of three distinct endmembers giving a total of six endmembers. They also showed 
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that the algorithm was proven useful when used on Landsat TM image, having 

limited number of wavebands.  

A robust collaborative nonnegative matrix factorization (R-CoNMF) (Li et al., 

2016) was used as an alternative to the other methods as it had the ability to find 

the actual number of endmembers instead of the user having to guess and then find 

the abundances accordingly.  

In a multivariate system, the first assumption is that the variables are linearly 

related. However, in some situations it could be theoretically possible that a second 

predictor variable Z is itself moderating the influence of a predictor variable X on a 

criterion variable Y. Apart from the linear effects β1 and β2 an interaction effect β3 

becomes a part of the model structure here. To evaluate the interaction effect in 

combination with the linear effects in the regression equation, a new variable must 

be formed, i.e. the product XZ between the predictors X and Z, to be included in 

the multiple regression equation as third term (Dimitruk et al., 2007).  

𝑌 = 𝛽0 + 𝛽1𝑋 +  𝛽2𝑍 +  𝛽3𝑋𝑍 +  𝜀                                                                      (2) 

Here, in Equation 2 that was first presented by Kenny and Judd in 1984 (Kenny 

and Judd, 1984), Y is the criterion variable, X and Z are the predictor variables, XZ 

is the interaction term, β0 is the intercept, β1 and β2 are the linear effect terms, β3 is 

the interaction effect, and ε is the error. 

Interaction terms proved to be very helpful in solving multivariate non-linear 

problems. In the mixing phase nonlinear interactions are rarely controlled by 

material distortions, but rather by the non-linear interactions between them (Klein 

and Moosbrugger, 2000; Suzuki et al., 2009).  

2.4 Yield estimation by remote sensing 

Remote sensing in agriculture has usually been about the plant reflecting the 

radiation coming from the sun, measured by passive sensors. Radar signals also 
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interact with vegetation, but in a rather complicated way, and the signal penetration 

depends on the strength and water content of the vegetation. Return radar signals 

can involve trunks, stems and leaves as well as ground surfaces. Because such kind 

of landscape description details can only be obtained with this sort of instrument, 

SAR data is also used for plant studies. It is well-known that the chlorophyll of 

plants absorb radiation at 400-700nm of the electromagnetic spectrum, namely the 

visible region (Pinter et al., 2003) while reflectance is high in the near infrared 

region (700-1300nm). The development of spectral indices was due to the sharp 

contrast between red and NIR parts of the spectrum (Mulla, 2013). Simple and 

complex spectral indices are able to detect variations in Leaf Area Index (LAI) and 

variations in crop status such as chlorophyll and nitrogen content (Wang et al., 

2014). 

The Normalized Difference Vegetation Index (NDVI) was found useful in 

predicting yield forecasts (Benedetti and Rossini, 1993; Groten, 1993). Although 

NDVI is used very widely in vegetation studies, it has some limitations such as the 

intervention of soil at low crop densities and saturation in mature crops with LAI 

greater than two or three, since the red light absorption peak of the leaves is 

reached at these LAI values (Thenkabail et al., 2000). Some new indices such as 

Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted Vegetation Index 

(MSAVI) and Modified Triangular Vegetation Index (MTVI) have been proposed 

to overcome these problems. However, indices that can be useful with fewer 

constraints are always needed (Mulla, 2013). 

The indices are often used to estimate yields of various crops, which plays an 

important role in agricultural policy and decision-making, especially if they are 

available well before harvesting. In remote sensing, statistical models are 

frequently used to estimate yields when information is available in large areas. 

Statistical crop yield forecast regression, which is considered to be a common and 

easy method (Lobell et al., 2010), the basic principle is that a simple matrix is 

formed with some relevant agrometeorological parameters and previous yields, and 

the relation between yields and parameters is derived from regression. The 
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regression model is usually selected as Multiple Linear Regression (MLR), but this 

model provides inaccurate and unstable solutions, especially when a large number 

of parameters are used and if these variables are correlated (Lobell et al., 2005). 

The effects of correlation and important yield factors in GLM are studied 

extensively (Kravchenko and Bullock, 2000; Park et al., 2005; Gutiérrez et al., 

2008; Huang, et al., 2010). 

Remote sensing is a very efficient way to classify large number of plants at a large 

scale in order to examine plant breeding and to identify certain specific 

physiological characteristics of varieties (Jones and Vaughan, 2010). (Lobell et al., 

2005) have highlighted some advantages of remote sensing yield estimation over 

ground-based approaches and highlighted that there is an extensive archive of 

remote sensing images that can help to analyse past surveys that may not have 

measured yield. 

(Lobell et al., 2003; Jiang, P., Thelen, 2004; Fortin et al., 2010) estimated wheat 

yield by using only Landsat ETM+ images. They integrated their knowledge of 

crop phenology with multi-temporal imagery and used instantaneous estimates of 

canopy light absorption (fraction of Absorbed Photosynthetically Active Radiation 

- fAPAR) from satellite images to adjust a wheat growth model calibrated locally, 

which leads to an estimate of the yield at each pixel.  

(Franch et al., 2019) proposed a new crop yield model based on Differential 

Vegetation Index (DVI). They used Landsat 8 and MODIS time series data to 

perform wheat signal unmixing from the signal of other surfaces. After the analysis 

of the unmixed wheat time-series, regression equations were used as the yield 

estimation models for each administrative unit and they found an R
2
 of 0.86 at the 

national level and 0.70 at the subnational level in the US and Ukraine.  

There are also some studies that enhance and use predefined yield estimation 

models. (Wang Y. et al., 2019) improved CASA NPP estimation model, which was 

based on the absorbed photosynthetically active radiation (APAR) and the light use 
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efficiency (ε) absorbed by vegetation, with HJ-1A/B and MODIS data to find 56% 

accuracy in estimating the yield in selected places of China. 

2.5 Soft computing for yield estimation 

Conventional methods may not be cost-effective, analytical or provide a complete 

solution when dealing with complex systems. Fortunately, some 'inexact' methods 

have been developed to model and analyse these complex problems. These inexact 

computing techniques are called ‘soft computing’ (Huang et al., 2010). 

Fuzzy Logic (FL), Artificial Neural Networks (ANN), Genetic Algorithms (GA), 

Bayesian Inference (BI) and Decision Trees (DT) are some of the most important 

soft computing technologies. The conventional methods of hard computing are 

stochastic and statistical. Soft computing techniques refer to nature and are 

therefore flexible and open to inaccuracy, uncertainty, partial truth and 

approximation. To improve the system and results, these techniques can be used 

separately or can be combined. In addition to these classic methods, Random 

Forests (RF) has gained considerable attention in recent years. 

The soft computing methods used in this study are Random Forests (RF), Neural 

Networks (NN) and Generalized Linear Model (GLM). RF is a supervised learning 

algorithm that uses the ensemble learning approach for classification and 

regression. An ensemble approach combines the estimations from many multiple 

machine learning algorithms to improve the predictions. At training time, the RF, 

being a meta-estimator, builds several decision trees and generates the mean 

prediction (regression) of the individual trees. Individual decision trees tend to 

overfit. However, bagged decision trees combine the results of many decision trees, 

which reduces the effects of overfitting and improves generalization. Therefore, RF 

is prone to overfitting. 
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Neural Network is the most famous type of machine learning algorithms and it 

models itself after the human brain, allowing the computer to learn by 

incorporating new data. 

GLM is a particular class of nonlinear models that describe a relationship between 

a response and predictors that is nonlinear. The model's structural form defines the 

patterns of interactions and associations. The model parameters include 

measurements of association intensity. 

To estimate crop yield from satellite data, linear and non-linear models were 

developed and evaluated by (Sayago and Bocco, 2018). These models were 

proposed and applied using Landsat and SPOT images to obtain soybean and maize 

yield in the central region of Córdoba (Argentina). This study concluded that 

images of Landsat 8 and SPOT 5 can be used effectively to predict the yield of 

maize and soybean early to mid-season crop growth. The pixel size from Landsat 8 

was adjusted to SPOT 5 in order to make Landsat 8 and SPOT 5 spatial resolutions 

comparable (each Landsat 8 pixel was divided into nine parts with the same 

attribute value). They used ANN and MLR methods to determine yields. The MLR 

results were almost as high as the ANN results (Soybean: R
2
NN=0.9 R

2
MLR=0.82, 

Corn: R
2
NN=0.92, R

2
MLR=0.88). 

Integrated yield models combine agricultural meteorological and remote sensing 

data (Basso et al., 2001; Basso et al., 2007; Dorigo et al., 2007). The use of 

Principle Component Analysis (PCA) and Factor Analysis (FA) along with 

multiple regressions is an example of the integrated technique. Using integrated 

models, various soil nutrients were attempted to be predicted.  

A wheat yield prediction model was developed and evaluated by (Pantazi et al., 

2014). Fusion vectors, consisting of the values of eight soil parameters and 

historical yield data from past two years, collected with an online soil sensor and 

NDVI values computed from satellite imagery, were used as input to three ANNs 

for yield prediction. They used Self-Organizing Map Models (SOMs), namely, 

Counter-Propagation Artificial Neural Networks (CPANN), XY-Fused Networks 
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(XY-Fs) and Supervised Kohonen Networks (SKNs), incorporating the factor that 

limit the yield in a multi-layer fusion model in the presented approach. In order to 

estimate the LAI of a temperate meadow steppe in China, Wu, et al., (2015) 

developed two inversion models and compared them using the regression model 

and the Back-Propagation Neural Network (BPNN) model. The comparison results 

showed that the BPNN method (accuracy: 82.2%) outperformed Statistical 

Regression model (accuracy: 78.8%). The development of ANN models was 

described as a factual technique for predicting the yield of maize and soybean in 

nutrient management planning in Maryland by (Kaul et al., 2005). The results 

showed that the prediction of ANN yield was more accurate than the yield model 

based on MLR. The accuracies of ANN-based corn prediction varied between 77% 

and 90% while MLR results only showed 42% accuracy. (Kang and Özdoğan, 

2019) disaggregated one country-level (US) maize yield data into 30m Landsat 

resolution yield map by using Ensemble Kalman Filter using LAI time series data 

estimated from Landsat images, EVI, meteorological and soil texture. They 

compared their results to farmer-reported yield data to find the correlation 

coefficient (R) to be 0.82 as a maximum value. 

Due to its resistance to overfitting problems and the noise in the dataset, RF has 

gained well-deserved attention in recent years. It is almost unaffected by the multi-

collinearity problem because it has the ability to ignore spatial autocorrelation. It 

can also be used to improve the performance of other methods, such as regression 

and kriging. As can be seen from the studies listed below, RFs actually outperform 

ANN in many cases and are not affected by the size of the dataset. 

(Cai et al., 2019) combined climate, satellite (MODIS EVI) and chlorophyll 

fluorescence (SIF from GOME-2 and SCIAMACHY) data to compare LASSO 

regression model, SVM and RF performances. SVM outperformed the others with 

an R
2
 reaching to 0.80. (Leroux et al., 2019) combined MODIS NDVI, MODIS 

LST and SMOS SSM with outputs of SARRA-O crop model to estimate the maize 

yield in their study area. Performances of 10-fold cross-validated GLM and RF 
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were compared to find that RF outperformed GLM and estimated 46% of the 

observed end-of-season yields two months prior to harvest.  

In order to assess the accuracy of winter wheat yield, (Heremans et al., 2015) 

compared two regression tree methods, namely Boosted Regression Trees (BRT) 

and RF, using NDVI obtained from the SPOT-VEGETATION sensor along with 

meteorological variables and fertilization levels. The results showed that for both 

methods’ R
2
 was over 0.80 and that BRT was sensitive to noise, inclined to 

overfitting and considerably slower than bagging. RFs were comparable to 

boosting in terms of accuracy, but did not have the above limitations. It was also 

noted that the computational cost of RF was much lower than boosting. Li et al. 

(2016), produced accurate and timely predictions of grassland LAI, using various 

regression approaches and hybrid geostatistical methods. The results showed that 

the RF model provided the most accurate predictions for regression models such as 

Partial Least Squares Regression (PLSR), ANNs, RFs and Regression Kriging 

(RK). In Li, et al., 2016, all the positive features of RF have been shown. The R
2
 

was calculated for different methods as 0.77 for PLSR, 0.81 for ANN, 0.89 for RF, 

0.92 for RK and 0.91 for RFRK. Guo, et al. 2015 compared two different 

approaches, namely Stepwise Linear Regression (SLR) and Random Forest 

Residual Kriging (RFRK), to predict and map the spatial distribution of soil 

organic matter for the rubber plantation. It was observed that the RFRK model did 

not require any assumptions concerning the correlations between the target and the 

predictor variables. These relationships could be either nonlinear or hierarchical. 

The R
2
s were found to be 0.43 for SLR, 0.65 for RF and 0.86 for RFRK 

respectively. In Yue et al., (2018), Above-Ground Biomass (AGB) is estimated by 

using 54 vegetation indices and eight statistical regression techniques. Their results 

showed that, out of the investigated eight techniques, PLSR and GLM perform the 

best concerning stability and are most suitable when high-accuracy and stable 

estimates are requisite from relatively few samples. Furthermore, RF has been 

shown to be extremely resistant against noise and was ideally suited for dealing 

with repetitive observations involving remote-sensing data. The results showed that 
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GLM performed poorly in the case of multi-collinearity data to estimate AGB. 

ANN, BBRT and RF were the models most unaffected by the problem of multi-

collinearity. Their experimental results showed that PLSR, GLM and RF can be 

appropriate for work requiring high-precision estimation models.  

Hunt et al., (2019) estimated the within-field yield variability with Sentinel-2 and 

environmental data such as meteorological and soil parameters in 39 wheat fields 

in the UK using RF regression. They used harvester yield monitors data as ground 

truth and found out that Sentinel-2 data is capable of estimating within-field yield 

variability; however, combining satellite data with environmental data increased 

the accuracy. They also noted that RF outperforms the VI-based simple linear 

regression. 

Mulla (2013) pointed out several future needs in the field of remote sensing with 

soft and hard computing methods. He indicated that more work is needed on 

chemometric or spectral decomposition/derivative methods of analysis in precision 

agriculture applications, while the development of new sensors is necessary to 

estimate nutrient deficiencies without the use of reference strips directly. He also 

stressed the need to develop more spectral indices to assess multiple crop 

characteristics (e.g. LAI, biomass etc.) and stresses (e.g. water and N; weeds and 

insects etc.). In order to improve decision-making in precision agriculture, 

historical collections of satellite remote sensing data with moderate to high spatial 

resolution and conventional spectral resolution should be combined with high 

spatial and spectral resolution real-time remote sensing data. Studies in the 

literature have also used soft computing to determine yields. In their paper, 

however, Huang et al. 2010 stated that there were no applications for the fusion of 

soft computing and hard computing techniques and that this could be a good 

research problem. The system proposed in the study of Huang et al., (2010) meets 

this need and essentially monitors crop yield throughout the growth process and 

warns the producer or decision-maker before harvesting, so that cautions can be 

taken to improve yield or price adjustment.  



 

 

23 

The study presented in this paper aims to meet the first component of the future 

needs of Mulla (2013) and the usage of soft computing mentioned by Huang et al., 

(2010) for early warnings. 

2.6 Photosynthetic pigments in yield estimation 

All vegetation contains pigments. The main pigments are chlorophylls, carotenoids 

and flavonoids (mainly anthocyanins) (Blackburn, 2006; Lachman et al., 2017). 

Photosynthetic pigments are chlorophylls, carotenoids and partially anthocyanins. 

There have been studies in the literature to estimate the yield by working on the 

structure of the photosynthetic pigments at narrow band scale and taking each 

pigment into account individually. The examples of these studies are presented 

below. 

The most important pigments for the life cycle of all living beings are chlorophylls 

because they play the most important role in photosynthesis. Chlorophyll 

concentrations play an active role in primary crop production due to their control of 

the solar radiation absorbed by the leaves, leading to photosynthetic potential. 

Finally, chlorophylls are light-dependent pigments and decrease their quantity in 

low or no light environments, under stress and during senescence. 

As for carotenoid-based indices, xanthophylls are carotenoids which are the 

accessory pigments of the chlorophyll a, that capture the energy that chlorophyll 

misses and also turns this energy into chlorophyll to make photosynthesis occur, 

increasing the efficiency. Therefore, xanthophyll plays a major role in the 

chlorophyll content of the crop (Patel et al., 2013). Chlorophyll absorbs the blue 

and the red light during photosynthesis and reflects the green light. The energy 

from the absorption of blue and red light enables photosynthesis. 

The most well-known carotenoid index is Photochemical Reflectance Index (PRI) 

(Gamon et al., 1992). It is a commonly used index correlating with the xanthophyll 

process pigment’s epoxidation state. The Carotenoid Index (CARI), which is 
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proposed as the basis for non-destructive estimation of the leaf carotenoid content 

with remote sensing techniques (Huang et al. 2018). Recently a Carotenoid / 

Chlorophyll (car/chl) Ratio Index (CCRI) was proposed in the form of CARI / Red-

Edge Chlorophyll Index (CIred-edge). Calibration and validation results on winter 

wheat leaf level data showed that CCRI estimated car/chl content with 54% 

accuracy (Zhou X. et al., 2019).  

There are about 600 different carotenoids discriminated as xanthophylls (with 

oxygen and most importantly lutein in wheat) and carotenes (with hydrocarbons 

and no oxygen). If the chlorophyll concentration is high, more energy from 

chlorophyll b and carotenoids will be needed, resulting in higher photosynthetic 

activity, thus primary production (Chappelle et al., 1992). 

Anthocyanins are in the flavonoid group. Various roles of anthocyanins have been 

reported, such as being an antioxidant (Yamasaki et al., 1997) and in case of 

oxidative stress, they reduce the excitation pressure and prevent oxidative damage 

(Field et al., 2001). In addition, Steyn et al., (2002) found the photo-protective light 

screen potential of anthocyanins.  

The spectral, spatial and temporal dynamics of these very important vegetation 

pigments can not only provide scientific knowledge, but also contribute 

significantly to the management of agriculture or the environment. However, the 

spectral discrimination of these pigments is not possible with simple linear 

unmixing, since they have a structure of observably non-linear, overlapping 

spectral signatures in a plant (Blackburn, 2006). 

When examined at canopy level, the reflectance spectrum of plants is affected by 

leaf layers (LAI), percentage of the plant covering the ground, areas under shadow 

etc. Various researchers have studied the discrimination of pigments using remote 

sensing techniques. Using hyperspectral data, single pigments have been attempted 

to decompose at certain wavelengths in which clear spectral separation can be 

achieved. One of the most popular studies was the practice of the reflectance 

spectra of several narrow bands and the creation of indices mainly for the 
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identification of chlorophyll by dividing the values in usually two narrow bands. 

Testing three bands to develop indices have been mostly used at leaf scale 

(Gitelson et al., 2003; le Maire et al., 2004; Dash & Curran, 2004; Gitelson et al., 

2005). Even four band indices have been developed (Thenkabail et al., 2002). 

Thenkabail et al., (2002), concluded that broadband data is not sufficient for 

obtaining indices, while narrowband data has a lot of autocorrelation causing 

redundancy. 

The researchers, who had originally found the role of xanthophylls in the 

photosynthetic activity of plants, actually examined the role of chlorophyll a, 

chlorophyll b and carotenoids using their absorption spectra (Gamon et al., 1992; 

Penuelas, J. et al., 1994). Sims & Gamon, 2002 investigated how they could extract 

the chlorophyll content at the existence of all the other pigments in a leaf. 

Chlorophylls were observed as a whole, indicating that the total chlorophyll 

content overlaps the absorbance of the carotenoids and could therefore not be used 

to estimate the chlorophyll content. 

Sims and Gamon, (2002) also investigated the estimation of the content of leaf 

carotenoids from reflectance, which is considerably difficult to calculate than the 

estimation of chlorophyll due to overlapping peaks of chlorophyll with carotenoid 

absorption, and due to the high concentration of chlorophyll in most leaves than 

carotenoid (Blackburn, 2006). Reflectance indices have therefore been more 

successful in estimating the ratio of carotenoid to chlorophyll than in estimating the 

absolute content of carotenoid (Penuelas et al., 1995; Merzlyak et al., 1999). 

The importance of new methods to identify overlapping pigment absorptions was 

emphasized by (Ustin, et al., 2009), suggesting that it would lead to significant 

advances in the understanding of plant functions and other plant properties. They 

underlined that new methods developed to evaluate pigment content and 

composition from remote sensing data would provide an understanding of 

photosynthetic processes in a more advanced manner. 
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On the separation of anthocyanins from the total spectrum of plant pigments, little 

research has been done. (Gamon and Surfus, 1999) looked at the red area where the 

anthocyanins absorbed light and created a red / green index. However, the index 

tests showed no relation to anthocyanins. As a similar study to that of (Gamon and 

Surfus, 1999), (Neill and Gould, 2000) have highlighted the problem as the 

existence of chlorophyll obscuring the discrimination of anthocyanins in the 

reflectance spectrum. (Gitelson et al., 2001) overcame this problem by creating a 

narrowband index at 550 nm and 700 nm. This new index has been proven to be 

successful in different plant types. 

These studies indicate that, although spectral discrimination of single pigments is 

possible at some level, the immediate separation of all pigments at the canopy level 

from satellite data is still a problem without the use of complex non-linear models. 

In this thesis, we propose a method for the linear unmixing of the observed 

spectrum into endmembers, which presumably correspond to the pigments and can 

even be used directly instead of indices 
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CHAPTER 3  

3 MATERIALS AND METHODS 

 In this section, the data and the study area will be introduced, to be followed by the 

step-by-step methodology of the study explained in this thesis.  

3.1 The data and the study area 

Within the scope of a “Smart Agriculture” project implemented by the Turkish 

Ministry of Agriculture and Forestry, the yield maps of the combine harvesters 

with yield mapping technology and barley and wheat products were produced 

(Sönmez et al., 2015). These maps were transferred to GIS and prepared for use 

with electro-optic and SAR satellite images. Instant georeferenced yield values 

were obtained with the combine harvesters equipped with accurate scaling, 

recording and measuring devices. The combine harvester storage capacity was 

around 6 tons and its width was 5 m. As the combine harvester moved at a speed of 

about 7 km/h, it actually displaced 2 m/s and thus yield points in 2x5 meter grids. 

Coordinated yield distribution maps were prepared in the yield software using the 

raw data of the harvested result. The efficiency system in the combine harvester 

was integrated with a DGPS receiver via a display. During the operation, the data 

were recorded at 1 second intervals with location information.  

3.1.1 Yield data 

A harvester system was used as part of a project covering fields from various 

regions of Turkey, for the year 2015. The GPS-equipped harvester is integrated 
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with high-tech sensors that automatically weighs the crop. These records were 

disseminated by the Ministry of Agriculture and Forestry, enabling researchers to 

reach the exact locations and yields of the fields in which the harvester operated. 

142 wheat fields were selected in 31 cities in six regions of Turkey, as study areas. 

These fıelds were all rain-fed fields in different regions of Turkey having distinct 

climatic conditions. 

A snapshot of the image of a harvested field within the Harvester Project can be 

seen in Figure 3.1, the stripes seen in the figure shows the harvesting direction of 

the field. The speed of the harvester during the process was also displayed in the 

popup.  

  

Figure 3.1. GPS data of the harvester forming yield grids overlaid on Google earth 

base image. The image on the right is the enlarged image of the left one to visualize 

the speed information of the harvester. 

In order to link the fields in the satellite images to harvester yield records, the exact 

boundaries and coordinates of the agricultural field polygon was extracted from 

Google Maps.Figure 3.2 shows the locations of 142 selected agricultural fields in 

31 Turkish provinces and the station locations that JRC gathered the 

agrometeorological data from.  
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Figure 3.2. Locations of the 142 fields spread around 31 provinces of Turkey. The blue circles represent the meteorology stations and the 

red circles stand for the fields. 
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3.1.2 Meteorological data 

In most cases, the estimation of yield requires agrometeorological data, which are 

meteorological data or data that are derived from meteorological data and used in 

agricultural studies in order to obtain qualitative and quantitative improvement in 

agricultural production (WMO, 2010). If the area of interest, i.e. the crop field, is in 

the vicinity of a meteorological station, the data collected from that station can be 

used directly. However, if the Area of Interest (AOI) happens to be in between 

several meteorological stations, it is ideal to interpolate the agrometeorological 

data. The objective of this study is to serve a general approach in the estimation of 

yield so that people involved in this type of work can find somewhat more general 

solutions. Therefore, the JRC data (Toreti, 2014) has been used instead of the 

meteorological station data as in the studies of (Fernandes et al., 2011) and 

(Salvador et al., 2020).  

The JRC collects air temperature, precipitation, radiation, air humidity, and wind 

speed data from 117 weather stations in Turkey. The data are checked for 

inconsistencies, errors and duplications and only after these evaluations; the values 

are converted into daily values that fit into a uniform weather database for the 

station. The measured data are derived from some variables such as solar radiation 

or evapotranspiration are also added to the database. These data are, however, 

obtained from stations that are at point locations and thus have an irregular 

distribution and density. A conversion is required to disseminate these data to 

locations between stations. JRC uses interpolation, aggregation and analysis and 

controls the regularity by using side by side grids of size 25 km by 25 km, which 

covers the entire area of interest (Weather Monitoring - Agri4castWiki).  

The total number of agrometeorological parameters both obtained from JRC and 

the calculated ones, vegetation indices used in the literature (MSAVI, MTVI, etc.) 

and the abundances together with their interactions is 24. Using all the parameters 

can be unnecessary, because they can be irrelevant or highly correlated to others.  
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3.1.3 Satellite data 

Due to their global coverage and temporal resolution, Landsat 8 satellite images 

were used in this study. Landsat 8 satellite has a 16-day temporal resolution and 

contains 11 bands, however only the first five bands were used in this study. The 

properties of these bands can be found in Table 3.1. The Landsat 8 images of the 

selected areas from April to June 2015 were downloaded from 

https://earthexplorer.usgs.gov/ website and processed. At least two different images 

were found for each field at 0% cloud coverage prerequisite. The image having the 

highest NDVI value for each field was selected as the input image to be used in the 

forthcoming processes. At this time of the crop development, it is assumed that the 

vegetation cover is virtually 100% and there is negligible soil contribution to the 

spectrum.  
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Table 3.1 Landsat 8 satellite bands used in this study and their properties 

Bands 
Wavelength 

(micrometers) 
Spatial Resolution 

(meters) 

Band 1 - Coastal aerosol 0.43-0.45 30 

Band 2 - Blue 0.45-0.51 30 

Band 3 - Green 0.53-0.59 30 

Band 4 - Red 0.64-0.67 30 

Band 5 - Near Infrared (NIR) 0.85-0.88 30 

 

3.2 Methodology 

The first step is the preparation of the satellite images and extraction of the selected 

fields from the relevant satellite images. Then, the endmembers are determined and 

analysed at the time of maximum NDVI before finding their abundance in the 

fields. The abundances, NDVI and selected agrometeorological parameters are 

trained in GLM and RF algorithms to predict the yields. The details are presented 

in the sub-sub-sections below. A flowchart of the algorithm is given in Figure 3.3.  
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Figure 3.3 The flowchart of the proposed algorithm. 
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3.2.1 Preparation of the data 

All the Landsat 8 images of the area of interests were corrected for radiometric and 

atmospheric effects using FLAASH in ENVI 5.3. 141 fields extracted from Landsat 

8 images after they were geometrically and radiometrically corrected. The image 

with the highest average NDVI value was selected for each field and used as the 

dataset for the extraction of the endmembers and the abundance calculation.  

Two agrometeorological parameters were used as indices in this study, to observe 

if they have any effect on the estimation of the wheat yields, namely 

NoPRECIPITATIONdays and Cons_noPrec. NoPRECIPITATIONdays is the total 

number of days there was no rain at the area of the field starting from the sowing 

time until the day of harvest, and Cons_noPrec is the consecutive number of days 

when there was no precipitation from sowing time until the harvest day and helps 

to estimate the accurate yield in case there is drought. It is also a very useful 

indicator to find the time when there are many consecutive days of no precipitation 

and if and/or how it affects the yield at that certain time period. 

3.2.2 Spectral Unmixing 

Since the pixel sizes of multispectral sensors are large to contain various 

components, the extraction of desired components has become important for 

research purposes. Spectral unmixing is applied (Keshava & Mustard, 2002; 

Somers et al., 2011) in linear spectral unmixing, or Linear Mixing Model (LMM), 

in which it is assumed that a mixed pixel consists of a set of constituent spectral 

signatures (endmembers) weighted by a fractional subpixel cover (abundance) as 

shown in Eq. 3. 

𝒀 = 𝑬 𝑨 +  𝜺                                                                                                         (3) 

where Yd,n is composed of observed n pixels with d bands, Ed,m is the matrix where 

each column is an endmember, Am,n is the abundance matrix where each column 
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represents the fractional cover occupied by the endmembers for the corresponding 

pixel and  is the error, the portion of the spectrum that cannot be modelled using 

the endmembers (including sensor noise, endmember variability and other model 

inadequacies).  

Normally, the LMM can actually have two constraints: 

(1) Non-negativity constraint: All abundances have to be non-negative. A ≥ 0 

and 

(2) Full-additivity constraint:𝟏𝒎
𝑻 𝑨 = 𝟏𝒏

𝑻. 

Crops consist ideally only of photosynthetic pigments that are intimately mixed in 

the vegetation. The endmember extraction of these intimate mixtures requires the 

use of complex non-linear techniques rather than linear ones. The endmembers are 

the inputs for the next processing step, which generates the abundances that are the 

inputs of the yield prediction method.  

Spectral unmixing is very important and it has recently gained attention in the 

hyperspectral studies. However, the unmixing algorithms have limited usage in the 

multispectral studies so far and the researchers usually perform the unmixing in a 

significantly large image area where a large variety of land cover types exist. 

However, if the scene is a crop field consisting of full coverage leaves, only plant 

pigments are expected to be the endmembers. Given that these pigments form 

intimate mixtures, the standard LMM performance would therefore be limited. As a 

first approximation of the endmembers, a linear method, Robust Collaborative 

Nonnegative Matrix Factorization (R-CoNMF) is used (Li et al., 2016). R-CoNMF 

computes the abundances from the endmembers, which are then used in estimating 

the yields. When finding the endmembers, R-CoNMF actually performs linear 

unmixing to the pure crop pixel that presumably consists of intimately mixed 

photosynthetic pigments. One very important property of R-CoNMF that we took 

advantage of in this study is that the endmembers do not necessarily correspond to 

pure pixels, because there are not pixels composed of pure photosynthetic 
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pigments. Although the initial endmembers are determined by a pure pixel 

algorithm, they are iteratively updated so that the final endmembers do not 

necessarily appear as pure pixels in the image. 

Still, the endmembers determined by the R-CoNMF algorithm are not optimal. For 

that purpose, we propose an optimization scheme that increases the predictive 

power of the endmembers. The optimized endmembers are defined as follows: 

𝐸𝑜𝑝𝑡 = argmin𝐸(Rsquared_𝑔𝑙𝑚(𝑆𝑈𝑛𝑆𝐴𝐿(𝑬, 𝒀), 𝑦))                                            

(4) 

where E represents the endmembers, Y, the field average pixels as earlier, while 

SUnSAL, an abundance estimation method proposed in (Li et al., 2016), returns the 

abundance matrix A (both constraints are used). y are yields in our study and 

Rsquared_glm is the coefficient of determination given by MATLAB™ function 

‘fitglm’ with interactions so that non-linearity is partially modelled. The function is 

minimized using unconstrained multivariable minimization as implemented in 

‘fminsearch’ function of MATLAB™ and the endmembers found by R-CoNMF 

are used as the initial values. The solution of R-CoNMF is used as the initial value 

of the optimization algorithm. That is, the endmembers are modified so as to 

maximize the R
2
 value between the yields and the abundances.  

3.2.3 Linear and non-linear regression 

The abundances were used as regression algorithm inputs to achieve the ultimate 

intention to find early yield estimates. The selected methods for achieving the final 

goal were GLM, ANN and RF. All GLM, ANN and RF algorithms were executed 

in MATLAB™.  

It is important to decide which parameters are really useful in estimating yields. 

Depending on the parameter set, the importance of selected parameters also 

changes. In this study, three approaches were used to select parameters and 

estimate yield using different datasets such as; 
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• Only the abundances, 

• Abundances with their interactions with each other (to partially address 

the non-linear mixing), 

• Only the agrometeorological parameters, 

• The agrometeorological parameters with NDVI and 

• The abundances together with all the other parameters. 

The selection and use of appropriate parameters is of vital importance in all 

approaches in order to achieve the desired results. The parameter importance 

values that were estimated by using out of bag samples by the random forest 

algorithm were used. RF, ANN and GLM were used to estimate yield after 

selecting the appropriate parameters in each approach.
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CHAPTER 4  

4 RESULTS AND DISCUSSION 

The endmembers and the abundances found by following the steps of the 

methodology are given in this section. The outcomes of the machine learning 

algorithms by making use of all available data as well as a selected portion of all 

the data, that are considered to be the most important, are compared in the 

discussion section.  

4.1 The endmembers 

The endmembers can be considered as the spectral signatures of the dominantly 

existing textures in the field of interest. In our case, since we are looking at wheat 

fields that are almost totally covered and green (full closure, maximum NDVI), one 

would expect to find the plant pigments as endmembers.  The endmembers were 

calculated using R-CoNMF (Li et al., 2016) in MATLAB™ for the 142 fields in 31 

cities where Landsat 8 images existed just before the harvesters recorded yield 

data. The first four multispectral bands of Landsat 8 images, where the 

photosynthetic pigments were mostly absorbent, were used to obtain four 

endmembers. The parameters used for the implementation of R-CoNMF can be 

seen in Table 4.1. Figure 4.1 shows the automatically calculated mean square error, 

projection error and noise power used for the implementation of R-CoNMF as a 

function of number of endmembers when the R-CoNMF code is run. 
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Table 4.1 Parameters and their values used to perform R-CoNMF 

Parameter Value Explanation 

Positivity yes Enforces the positivity constraints 

Alpha 0.1*(1e-8)*sqrt(nd) Regularization parameter, nd is the 

number of pixels of all the fields, which 

id equal to 7576 in this study 

Beta 50*10^(-3)*(nd*m_em) Minimum volume regularization 

parameter, n_em is the number of 

endmembers which is equal to 4 in this 

study 

Addone yes Enforces the positivity constraints 

AO_Iters 100 Number of iterations 

Delta 1e-4 (STOP) relative reconstruction error 

Csunsal_Iters 100 SUnSAL number of iterations 

Mu_A 0.1e-4*(nd*n_em) Proximity weight for A, optimization 

variables linked with the mixing matrix 

Mu_X 1e-2 Proximity weight for Y, optimization 

variables linked with the abundance 

matrix 

Spherize M {'no','cov', 'M'}, M is the estimated 

mixing matrix containing the 4 

endmembers 

Min_Volume center {'boundary', 'center', 'totalVar'} 
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Figure 4.1 Mean square error, projection error and noise power used for the 

implementation of R-CoNMF as a function of number of endmembers (k) 
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Figure 4.2 Projection of the spectral vectors on the endmembers shown on the first 

two principal components. Projection of the spectral vectors yi, for i = 1, . . . ,n 

(blue), (wherey is the sample mean vector); of the endmember signatures mi, for i 

= 1, . . . ,p (magenta); and of the columns of A, which are not endmembers (green). 

The spectral mean value is shown in black. 

Figure 4.2 shows a vector scatter plotyi, for i = 1,. .n, projected onto the affine set 

identified by the M, which is a so-called mixing matrix containing p endmembers 

columns centered aty, which are plotted in black. It also shows the projection of 

matrix A, where M’ contains 5 spectral vectors on the facets of the simplex defined 

by M. The M and M’ projections are in red and green, respectively. The black dots 

ending at the magenta endmembers represent the solution found by R-CoNMF with 

β from Inf to 0. If β is set well, the final endmembers will be close to the real ones. 

The mean reflectance spectra of the photosynthetic pigments (Figure 5.3(a)) are 

obtained from the absorbance values in Lichtenthaler (1987) by using the 

conversion factors in Gitelson and Solovchenko (2018).  
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Lichtenthaler (1987) provides the absorption spectra of the photosynthetic 

pigments, among others. However, this study and probably some other remote 

sensing studies require the reflectance spectra of the pigments to analyse the 

spectra pigments and other materials in satellite images. Still, the transformation of 

absorbance to reflectance is not a very straight-forward process. Although there are 

complicated mathematical models to estimate the reflectance from absorbance 

(Dawson et al. 1998; Jacquemoud and Baret, 1990), we prefer to use empirical data 

in this study. So the absorbance and reflectance values of Virginia creeper leaf 

reported in Gitelson and Solovchenko (2018) were used.  

The values were used in a MATLAB™ function which basically uses these values 

at each wavelength where the photosynthetic pigments are effective (400 – 700 

nm) in the transformation formula: 

𝑅𝑝𝑖𝑔𝑚𝑒𝑛𝑡
−1 (𝜆) =

𝑅𝑙𝑒𝑎𝑓
−1 (𝜆)

𝑐 𝐴𝑙𝑒𝑎𝑓(𝜆)
𝐴𝑝𝑖𝑔𝑚𝑒𝑛𝑡(𝜆)                                                                       

(5) 

where λ is the wavelength, 𝑅𝑝𝑖𝑔𝑚𝑒𝑛𝑡 is the reflectance of the pigment, 𝐴𝑝𝑖𝑔𝑚𝑒𝑛𝑡 is 

the absorbance of the pigment, , 𝑅𝑙𝑒𝑎𝑓 is the reflectance of the leaf, 𝐴𝑙𝑒𝑎𝑓 is the 

absorbance of the leaf at λ (Table 4.2), and c is a constant that brings the range of 

the two absorbance values in the same range because the absorbance units are 

different in the two sources.  
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Figure 4.3 The transformation of the absorbance spectra of photosynthetic 

pigments to reflectance spectra.  

 

The newly found reflectance spectra of each pigment was then processed with the 

bandwidths of the first four bands of Landsat 8 satellite. The transmissivity of each 

band is assumed to be unity in the passbands and the reflectance spectra is simply 

summed in each band to obtain the reflectance values as seen by Landsat 8. The 

flowchart of this process can be seen in Figure 4.3. 

 

 

 



 

 

45 

Table 4.2 Estimated absorbance and reflectance values of Virginia creeper leaf 

reported as graphs in Gitelson and Solovchenko 2018 

Wavelength 

(nm) 

Absorbance values      

Aleaf (λ) 
Reflectance values      

Rleaf (λ) 

400 2.25 11.5 

425 2.1 12 

450 1.9 12.5 

500 1.5 13 

550 0.8 6 

600 1 9 

650 1.3 14 

680 1.75 15.5 

700 0.8 6 

750 0.35 2 

 

Figure 4.4 shows the final reflectance spectra of the pigments obtained using the 

methodology described above. Figure 4.5(a) shows how the spectra of the pigments 

would look if observed directly from the first four bands of Landsat 8, for 

comparison to the endmembers. The endmembers obtained from the R-CoNMF 

and optimization are shown in Figure 5.4(b).  
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Figure 4.4  The reflection spectra of the major pigments obtained from the 

absorption spectra in Figure 2.2.  

 

The absorbance and reflectance spectra of photosynthetic pigments are mostly 

drawn in laboratory conditions with spectrometers in a narrow-band format. The 

bands where these pigments are most active is between 400nm to 700nm. As 

Landsat 8 has only four bands in that range, we can only observe a very 

generalized view of the actual signatures. 
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Figure 4.5 (a)  The calculated pigment reflectance of the first four bands of Landsat 

8; (b) The endmembers found from R-CoNMF algorithm and optimization. 

(a) 

(b) 
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R-CoNMF is used in this study as it successfully gives endmembers similar to 

spectral signatures of the photosynthetic pigments (compare Figure 4.5(b) to Figure 

4.5(a)). The optimization, helped the endmembers to become even more similar to 

the real pigment endmembers shown in Figure 4.5(a). Therefore, the endmembers 

in Figure 4.5(b) can be interpreted as follows: Endmember 1 is related to 

chlorophyll b, Endmember 2 is related to chlorophyll a, Endmember 3 is related to 

carotenoids. The fourth endmember shows any non-modelled elements and 

presents its existence as a results of the non-linearities that are inevitably present 

within the structure of a plant. 

4.2 The abundances 

The four abundances that were also calculated using R-CoNMF are plotted against 

the known yields of the fields. The relationships of each abundance with the yields 

can be seen in Figure 4.6. 
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Figure 4.6 Real yields vs. abundances with R
2
s. Each dot represents one agricultural field. 

Chlorophyll b 
Chlorophyll a 

Carotenoids 
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The abundances of the endmembers related to chlorophyll b and carotenoids 

(Abundance 1 and Abundance 3, respectively) have strong correlation with the 

yield, whereas the abundance of the endmember related to chlorophyll b 

(Abundance 1) has negative correlation. The fourth abundance carries the 

information coming from the fourth endmember which represents all the other non-

modelled elements. It is shown that chlorophylls and carotenoids are positively 

correlated with dry mass in wheat (Sabo et al. 2002), however chlorophyll b has the 

least correlation. Since an increase in one of the quantities will result in a decrease 

in others, chlorophyll b can have negative correlation with the yield due to the sum-

to-one constraint. 

4.3 Parameter selection and interactions 

The list of all the parameters, namely the abundances, agrometeorological 

parameters and the vegetation indices that have been either collected or calculated 

from our dataset can all be found in Table 4.3. All possible interactions of the 

abundances are also included in the table. The importance of the parameters in 

Table 4.3 are examined by using the predictor importance property of random 

forest. 

In order to investigate the effect of the soil of the fields, we obtained a categorical 

soil map of Turkey and added the categorical parameters as binary into the dataset. 

Their contributions individually and the contribution of their interactions with all 

the other parameters were investigated. The contribution of any of these parameters 

were very insignificant, therefore all soil parameters were removed from the 

dataset. 
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Table 4.3 Names and abbreviations of all the parameters and interactions 

Abbreviation Name of the parameter 

A1 Abundance 1 

A2 Abundance 2 

A3 Abundance 3 

A4 Abundance 4 

A1A2 Interaction of Abundances 1 and 2 

A1A3 Interaction of Abundances 1 and 3 

A1A4 Interaction of Abundances 1 and 4 

A2A3 Interaction of Abundances 2 and 3 

A2A4 Interaction of Abundances 2 and 4 

A3A4 Interaction of Abundances 3 and 4 

T_MAX Maximum temperature (
o
C) 

T_MIN Minimum temperature (
o
C) 

VPD Average vapour pressure deficit (hPa) 

E0 Potential evapotranspiration of open water (mm/day) 

SOILFREEZE Total number of days the soil temperature was below or 

equal to 0
o
C (day) 

NoPRECIPITATIONdays Number of days there was no precipitation until harvest 

(day) 

RADIATION Average radiation (KJ/m
2
/day) 

WINDSPEED Average speed of the wind at 10m (m/s) 

Cons_noPrec Consecutive no precipitation days until harvest 

Elevation  Average elevation from sea level (m) 

PTU Photo Thermal Unit 

NDVI Normalized Difference Vegetation Index 

MTVI Modified Triangular Vegetation Index 

MSAVI Modified Soil-Adjusted Vegetation Index 

EVI Enhanced Vegetation Index 
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The relative importance of all the 25 parameters used in estimating the wheat yields 

were calculated using “Out of Bag Predictor Importance Estimates” of the RF 

algorithm of MATLAB™, as can be seen in Figure 4.7. When combined all 

together, the most important parameters were calculated to be the VPD, T_MIN, 

T_MAX, RADIATION and A2A4. The predictor association test showed the high 

correlation between VPD and Elevation, therefore, given the high importance of 

VPD compared to all the other parameters, Elevation was removed from the 

predictor list. EVI and MTVI were also highly correlated and MTVI was removed 

due to EVI being more significant. PTU and A1A4, A2A4, A3A4, NDVI and MSAVI 

showed low influence in the prediction of yield, thus were removed from the list. 

Windspeed, compared to all parameters, showed insignificant importance, which 

led to its removal from the parameter list. All abundances and their most of their 

interactions seemed to show significant contribution to the yield, according to the 

“Predictor Importance Estimates” algorithm, thus they remained with the most 

important agrometeorological parameters and EVI, which proved to be more 

important than NDVI in this study. The insignificancy of the NDVI can be 

explained with the fact that the study area is very diverse, with different climate 

and soil conditions. However, since this study aims to find the yield across the 

country, the parameters for this wider area is used in this thesis. Still, NDVI plays a 

very important role here, as the selection of the satellite data that the abundances 

are found from, is selected by the assumption of the fields having the highest NDVI 

value at the full closure of the green wheat field. 
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Figure 4.7 Out-of-bag importance of all parameters. 

 

The comparison of predictor importance estimates by permuting out-of-bag 

observations and those estimates obtained by summing gains in the mean squared 

error due to splits on each predictor can be seen in Figure 4.8.  
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Figure 4.8 Predictor importance estimation comparison. 

 

The predictor association measures estimated by surrogate splits were also 

observed (Figure 4.9). Predictor association is a 24x24 matrix of predictor 

association measures of all the parameters that can be potentially used to estimate 

wheat yields. The strength of the relationship between pairs of predictors can be 

inferred using the elements of the predictor association. Larger values indicate 

more highly correlated pairs of predictors. The largest association in our dataset 

was between MTVI and EVI with 78.2% relationship, however this value was not 

high enough to indicate a strong relationship between the two predictors, that one 

of them should be removed from the dataset.
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Figure 4.9 Predictor association estimates of all parameters. 
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After examining the results of the important parameter selection algorithms, the 

remaining abundances and the agrometeorological parameters under a certain 

threshold, that made the highest contribution to the estimation of yields were 

selected. The final parameter list can be seen in Table 4.4. 

 

Table 4.4 Names and abbreviations of all the selected parameters and interactions 

Abbreviation Name of the parameter 

A1 Abundance 1 

A2 Abundance 2 

A3 Abundance 3 

A4 Abundance 4 

A1A3 Interaction of Abundances 1 and 3 

A2A3 Interaction of Abundances 2 and 3 

A2A4 Interaction of Abundances 2 and 4 

T_MAX Maximum temperature (
o
C) 

T_MIN Minimum temperature (
o
C) 

VPD Average vapour pressure deficit (hPa) 

E0 Potential evapotranspiration of open water (mm/day) 

SOILFREEZE Total number of days the soil temperature was below or 

equal to 0
o
C (day) 

NoPRECIPITATIONdays Number of days there was no precipitation until harvest 

(day) 

RADIATION Average radiation (KJ/m
2
/day) 

Cons_noPrec Consecutive no precipitation days until harvest 

EVI Enhanced Vegetation Index 

  

In order to justify the selected parameters, the same Unbiased and Out-of-bag 

parameter selection algorithms together with predictor association algorithm were 

applied to the selected parameters and the importance of the selected parameters 

can be found in Figure 4.10. 
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Figure 4.10 Out-of-bag importance of selected parameters. 

 

The comparison of predictor importance estimates by permuting out-of-bag 

observations and those estimates obtained by summing gains in the mean squared 

error due to splits on each of the selected predictors can be seen in Figure 4.11.  
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Figure 4.11 Predictor importance estimation comparison. 

 

The predictor association measures estimated by surrogate splits were also 

observed for the selected parameters (Figure 4.12). Predictor association is now a 

16x16 matrix of selected predictor association measures of all the parameters that 

can be used to estimate wheat yields. The largest association in the selected 

parameters dataset was between T_MAX and T_MIN with 53.4% relationship, 

which indicated that all of the parameters were independently contributing to the 

estimation of the wheat yields.
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Figure4.12 Predictor association estimates of all parameters.
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4.4 Yield estimation using three different machine learning approaches 

This study was done with Landsat 8 – a medium-resolution satellite data – using 

the procedures that give best results when used with hyperspectral imagery. 

However, the goal of this research is to obtain the best possible outcomes with free 

and accessible data for repeatable research. Three different machine learning 

approaches were applied to the dataset to compare their performance with each 

other. These methods are namely Generalized Linear Model, Artificial Neural 

Network and Random Forests all ran in MATLAB™. Due to the limited number of 

data that could be used in this study, the validation procedure was conducted by 

using cross-validation techniques. 10-fold-cross-validation is often used in the 

literature and therefore was also used in all our models (GLM, ANN and RF) to 

establish a certain consistency.  

4.4.1 The Generalized Linear Model (GLM) approach 

Linear regression models describe the linear relationship between the response and 

the predictive parameters. There may, however, be a nonlinear relationship 

between the parameters most of the times. Nonlinear regression describes these 

general non-linear models. The GLM is a special class of nonlinear models that use 

linear methods (Generalized Linear Models 2019) for regression fitting.  

The GLM model is selected as linear and the distribution as ‘Poisson’. The result of 

the GLM gives a coefficient of determination (R
2
) of the real yield and the 

estimated yield of 0.64 and an RMSE of 31.53 when only the abundances and their 

selected interactions are used as input parameters. When the selected 

agrometeorological parameters and NDVI are used as the input set for the model, 

the R
2
 is 0.60 and RMSE is 33.53. The R

2
 reached its highest value of 0.67 with an 

RMSE of 31.98 when all the selected parameters in Table 4.4 were used in the 

GLM. Accuracies of all relevant correlations can be found in Table 4.5.  
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Figure 4.13 Relationship between real and predicted yields found by using all the 

parameters of Table 5.3 in GLM algorithm (R
2
 = 0.67). 

4.4.2 The neural network approach 

The matrix of all abundances and their interactions are selected as the input set of 

the Levenberg-Marquardt backpropagation algorithm, which is the ANN algorithm 

used in this study. The target is the yield matrix, while the hidden layer size 

changes between 5 to 16 depending on the number of parameters according to the 

2/3 rule of thumb. 

The R
2
 is 0.63 when the abundances and their interactions are used as the input set. 

The hidden layer size is five and the RMSE was calculated as 31.86. When the 

input set of the selected agrometeorological parameters and NDVI are used as the 

input set, the R
2
 is found as 0.75 with an RMSE of 26.52. When all the selected 

parameters of Table 4.4 are used, making the hidden layer size 11, the R
2
 reaches 
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its top value of 0.78 with an RMSE of 25.00. The relationship of the real and 

predicted yields of the neural networks approach can be seen in Figure 4.13.  

 

Figure 4.14 Relationship between real and predicted yields found by using all the 

parameters of Table 4.5 in ANN algorithm (R
2
 = 0.78). 

4.4.3 The random forests approach 

The selected parameters are used in the Treebagger Algorithm, growing 500 trees 

in the forest. The R
2
 is found to be 0.63 with an RMSE of 32.45 when the 

abundances and their selected interactions are used as the input set of six 

parameters. The R
2
 improves significantly when agrometeorological parameters 

and NDVI are used, to 0.78 with RMSE equal to 24.72 and running the selected 

parameters of Table 4.4 increases the R
2
 to 0.82 (RMSE=22.51) reaching the best 

value of all the tests. The relations between real and predicted yields when all 
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parameters of Table 4.4 were used in GLM (a), ANN (b) and RF (c) can be found 

in Figure 4.14.  

(Heremans et al., 2015) used 262 input variables consisting of overall fertilizer use, 

27 meteorological parameters and 234 cumulative NDVI values for 12 years. Their 

results showed over 0.80 R
2
 values for the RF. The dataset used in this study was 

relatively small compared to their set and it can be seen that the RF showed similar 

results when only agrometeorological parameters and NDVI were used as inputs 

(R
2
 = 0.77). 

 

Figure 4.15 The relations between real and predicted yields using abundances and 

their interactions and selected agrometeorological parameters in RF (R
2
=0.82). 

 

The correlations of real and predicted yields when different machine learning 

algorithms are applied to all possible combination of parameters of Table 4.4, 

namely all parameters used in this study, can be found in Table 4.5.  
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Table 4.5 The real vs. predicted yield accuracies and RMSE, of the applied 

methods: GLM, ANN and RF according to different parameter combinations for 

the training sets. 

Parameters 

GLM ANN RF 

R
2
 RMSE 

Hidden 

layer size 
R

2
 RMSE R

2
 RMSE 

Four abundances 0.59 33.71 3 0.73 27.73 0.84 22.32 

Four abundances 

and their selected 

interactions 

0.68 29.85 5 0.73 27.4 0.84 22.1 

Agrometeorological 

parameters 
0.68 29.73 5 0.83 22.05 0.89 18.11 

Agrometeorological 

parameters and 

NDVI 

0.68 29.61 6 0.88 18.64 0.89 17.78 

All selected 

parameters 
0.82 22.09 11 0.85 20.58 0.93 15.21 

All parameters 0.83 21.40 16 0.78 24.65 0.93 15.11 

 

Table 4.6 The real vs. predicted yield accuracies and RMSE, of the applied 

methods: GLM, ANN and RF according to different parameter combinations for 

the test sets. 

Parameters 

GLM ANN RF 

R
2
 RMSE 

Hidden 

layer size 
R

2
 RMSE R

2
 RMSE 

Four abundances 0.56 34.89 3 0.62 32.55 0.62 32.45 

Four abundances 

and their selected 

interactions 

0.64 31.53 5 0.63 31.86 0.63 32.32 

Agrometeorological 

parameters 
0.63 32.05 5 0.76 25.92 0.78 24.96 

Agrometeorological 

parameters and 

NDVI 

0.6 33.53 6 0.75 26.52 0.78 24.72 

All selected 

parameters 
0.67 31.98 11 0.78 25 0.82 23.51 

All parameters 0.61 36.21 16 0.61 55.59 0.80 24.15 
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Table 4.5 shows the results of the machine learning algorithms applied to different 

datasets consisting of different parameter combinations by using only the training 

sets. Table 4.6 shows the results of the same procedures applied to test sets, which 

were obtained by using 10-fold cross validation technique. The training set results 

showed that RF was highly capable of estimating the yields even when only the 

abundances were used (R
2
=0.84) and when all the selected parameters were used, 

the R
2
 reached 0.93. Results of the three different estimation methods using the test 

sets can be compared by examining Table 4.6. The best outcomes are obtained 

when all the parameters of Table 4.4 are used, which are selected from Table 4.3 

and they are the parameters that make the greatest contribution to the artificial 

intelligence models when predicting the yields. RF can predict 82% of the yields 

when all parameters are used. And the importance of selecting the most important 

parameters is openly demonstrated in the results too. The accuracies increased for 

all estimation methods quite significantly when the selected parameters were used, 

with the smallest increase observed in RF as it is resistant to overfitting by nature. 

This result also showed that the parameters selected by using an RF algorithm also 

serves the other methods, even more than it serves RF itself.  

ANN and GLM normally need more predictors for better accuracy, whereas RF 

improves model accuracy by randomly changing the predictors and training data 

for each decision tree. RF is resistant to noise within the data and also to over-

fitting problem. Despite these facts, NDVI seemed to have no major contribution to 

the accuracy when used with the agrometeorological parameters to find the yields. 

Agrometeorological parameters are highly capable of estimating the yield on their 

own with RF (78% accuracy). ANN can also predict with good enough accuracy, 

over 76% but GLM cannot predict the yield with agrometeorological parameters as 

good as the other models (63%).  

RMSE is better for RF in most of the cases, although RF and ANN performed close 

enough except when the set of selected parameters is used to predict the yields. 

RMSE is calculated as low as 22.5 when only selected parameters are used. These 
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results show that when using all the important parameters and their interactions, RF 

is the best method for estimating wheat yield.  

This research proves the importance and power of extraction of intimately mixed 

endmembers, presumably the photosynthetic pigments in yield estimation. This is 

succeeded despite the fact that the intimate mixture of photosynthetic pigments in 

the wheat crop is treated linearly when unmixing with R-CoNMF. In addition to 

finding the endmembers with R-CoNMF, the yield estimation performance 

increases significantly after the optimization of the endmembers with the GLM 

algorithm. Before the optimization was included in the calculation steps, the R
2
 of 

the abundances and their interactions could only go as high as 0.55 and RMSE 

35.10 with the RF model, whereas after the optimization it reached 0.63 with an 

RMSE of 32.32.  

The endmembers are related to the pigments as they are similar to the spectral 

signatures of the pigments when reflected from Landsat 8 bands. When the 

interactions are also included, it can be said that a bilinear method for a non-linear 

mixture is used (Heylen et al., 2014) and the predictions get better. Interactions 

may make a greater contribution to increasing R
2
 than some of the abundances 

themselves (Figure 4.7, Figure 4.10). These abundances and their interaction can 

estimate almost 65% of the yield all by themselves in the test set created by using 

10-fold cross-validation when using medium resolution Landsat 8 data, and over 

82% when all the important parameters are used. When a fine decomposition 

algorithm of the inner structure of the crops with the evolving technology is 

available, the yield estimate is bound to be better.  

Heremans et al., (2015) had used 262 input variables consisting of overall fertilizer 

use, 27 meteorological parameters and 234 cumulative NDVI values for 12 years. 

Their results showed over 0.80 R
2
 values for RF. The dataset used in this study is 

relatively quite small compared to their set, yet still, RF shows similar results when 

only agrometeorological parameters and NDVI were used as inputs (R
2
 = 0.77). 

Our study is done with agrometeorological parameters and endmembers calculated 
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with the data of only one year (2015) using only 17 selected parameters which 

proves its efficiency and easy data collection process and calculations when 

compared to not only Heremans et al., (2015) study but many other studies that 

were conducted using agrometeorological parameters and NDVI.  

The most important thing to note is that the results of this study, especially the 

importance of the abundances in yield estimation, would probably have increased 

rapidly if hyperspectral satellite data were to be used. This is mainly because there 

would be more bands to use and secondly, the used algorithms are actually 

developed for hyperspectral data. 
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CHAPTER 5  

5 CONCLUSION 

This thesis demonstrates a field-level wheat yield estimation method using the first 

four bands of pure Landsat 8 pixels of wheat crop whose performance is tested on 

data from 142 fields in 31 provinces, belonging to different regions with distinct 

climatic conditions. Harvester data obtained from the Ministry of Agriculture is 

used as ground truth of these fields. With the linear unmixing algorithm called R-

CoNMF that do not need a pure pixel for the unmixing process, we are able to 

unmix intimately mixed pure wheat crop pixel containing almost only 

photosynthetic pigments to find the endmembers representing these pigments. The 

endmembers are further optimized for predicting the yields more accurately by 

them and their interactions. The endmembers calculated by the algorithm show a 

similar pattern to the spectral signatures of chlorophylls and carotenoids, whose 

spectral signatures are processed with Landsat 8 bands to obtain a view of how 

they would look from a medium resolution satellite point of view. Abundances 

found from the endmembers by using the same algorithm acts as new indices and 

the nonlinearity was handled by including the interactions of the abundances in the 

parameter list of the three machine learning algorithms (GLM, ANN and RF) that 

are used to predict the yields.  

GLM predicts over 64% of the yields by only using the abundances and the most 

important interactions. Adding the agrometeorological parameters and the VIs in 

the picture helps RF to attain an R
2
 of 0.82, which can be considered a big success 

considering a multispectral satellite is used in the process. 

This thesis contributed to the literature by  

 demonstrating a novel point of view in estimating the yields, by using soft 

computing methods for unmixing the pigments within a crop,  
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 introducing a novel point of view in unmixing intimate mixtures, without 

using non-linear methods,  

 improving the timeline of estimation of the yield, as with the method given 

in this study, the yield can be estimated at least a month before the harvest 

and  

 reducing the number of sources and parameters that need to be used for 

yield estimation. By doing this, the focus could be directed on the 

parameters that are easily accessible or can be calculated with no additional 

cost. 

For future studies Sentinel-2 data can be used, as it is available freely just like 

Landsat 8, it has more bands and a 5-day temporal resolution, which is also better 

than that of Landsat 8, which is 16 days. It would be better to use hyperspectral 

satellite data obtained from future hyperspectral space missions like HyspIRI to 

perform the analysis and find the yields, as every increase in the number of bands 

would make a finer endmember calculation, resulting in finding more accurate 

yields. 

The most important future work would be to carry out measurements of ground 

truth with spectroradiometers and laboratory work to determine to what extend the 

endmembers actually represent the photosynthetic pigments within the crops. It 

would also be a good future work to take the absorption and reflection 

measurements of the wheat leaves in the field, in order to calculate the actual 

values for the transformation from the absorbance spectra of the pigments to 

reflectance spectra for wheat. Implementation of the process for crops other than 

wheat would also be a fruitful study. The most useful future study; however, would 

be to embed the process in Google Earth Engine and record the yield estimation of 

the wheat fields on a weekly basis, if Sentinel-2 data is to be used. This can be 

especially easier to do and very useful if the endmember signatures are proven not 

to change throughout the years. However, the algorithm needs to be integrated with 

agricultural parcel segmentation and crop type detection algorithms to have an 

operational service. 
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