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Abstract

Recently, a number of empirical models have been introduced in the literature for the be-

havior of direct path used in the design of algorithms for RF based indoor geolocation.

Frequent absence of direct path has been a major burden on the performance of these al-

gorithms directing researchers to discover algorithms using multipath diversity. However,

there is no reliable model for the behavior of multipath components pertinent to precise

indoor geolocation.

In this dissertation, we first examine the absence of direct path by statistical analysis

of empirical data. Then we show how the concept of path persistency can be exploited

to obtain accurate ranging using multipath diversity. We analyze the effects of building

architecture on the multipath structure by demonstrating the effects of wall length and

wall density on the path persistency. Finally, we introduce a comprehensive model for the

spatial behavior of multipath components. We use statistical analysis of empirical data

obtained by a measurement calibrated ray-tracing tool to model the time-of-arrival, angle-

of-arrival and path gains. The relationship between the transmitter-receiver separation

and the number of paths are also incorporated in our model. In addition, principles of ray

optics are applied to explain the spatial evolution of path gains, time-of-arrival and angle-

of-arrival of individual multipath components as a mobile terminal moves inside a typical

indoor environment. We also use statistical modeling for the persistency and birth/death

rate of the paths.
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Chapter 1

Introduction

The application of wireless technology in the realm of indoor systems has been one of

the popular concepts due to recent advances in high speed communication networks and

the interoperability and ubiquity of capable wireless terminals. For achieving high speed

communication in indoor areas, higher bandwidth, limited coverage systems have been

proposed as opposed to narrow bandwidth, long range outdoor wireless systems. The

need for communicating and conducting business within confined areas has created a

unique set of challenges for the design and analysis of wireless systems.

Earlier wireless systems aimed at long range communications needed very limited

bandwidth just enough to convey the information for the primary application: voice ser-

vice. Following the advances in digital technology and high speed computers, it has

become a necessity to optimize the wireless systems for higher data rates as well as main-

taining reasonable coverage to end users. Besides voice, data applications have shown a

steep rising trend thanks to faster electronics and smarter hardware design. In order to

achieve these high speeds various challenges need to be addressed, especially for indoor

environment. The behavior of a wireless channel is much more complex and requires rig-

orous treatment to be able to develop systems that can perform satisfactorily in these RF

1



hostile environments. The primary distinction of the indoor environment from outdoor is

the confined space cluttered with various materials that give rise to numerous and closely

spaced MPCs. The presence of these MPCs very close to each other necessitates the use

of much larger bandwidths and advanced equalization techniques in order to minimize

the effect of ISI, which makes communication less reliable.

Indoor wireless channel modeling has thus been the focus of recent studies and paved

the way for advanced high rate wireless systems such as IEEE 802.11 and MIMO. Al-

though communications applications were at the core of research for both outdoor and in-

door systems, the need for locating and tracking assets and people has turned the research

direction towards location based systems and the challenges involved when deploying

these systems in indoor areas.

The following table gives an overview of both outdoor and indoor channel for wireless

communication and localization/positioning applications.

Table 1.1: Overview of indoor and outdoor wireless channel
Outdoor Indoor

Channel - Low number of MPCs - High number of MPCs
- Sparse CIR - Closely spaced CIR
- Distance-power gradient usually ≤ 2 - Distance-power gradient usually > 2
- τRMS high, wc low - τRMS low, wc high

Communications - Low bit rate applications - High bit rate applications
Applications - Wider coverage - Limited coverage

e.g CDMA, GSM WLAN, MIMO
Localization - Low bandwidth required - High bandwidth required
Applications - Low UDP probability - High UDP probability

e.g GPS UWB TOA

In table 1.1, τRMS is the delay spread of the wireless channel and wc is the coher-

ence bandwidth, which are important channel indicators for wireless system design for

both communications and localization applications, and UDP is the undetected direct

path condition which will be introduced in detail in the coming chapters.

Since the study presented in this thesis is related to indoor localization, our focus will
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be on the localization aspects of the indoor wireless channel and we will present channel

modeling challenges in the light of these applications.

1.1 Location Awareness

The question ”where” might seem simple at first but the answer might not. Throughout

the centuries, mankind has always tried to find the right answer to this question in his

quest for exploring new lands and navigating the unknown seas. The first sailors relied

on particular water currents, landmarks and positions of the celestial bodies to navigate

through the waters. With the discovery of compass about 700 years ago, mariners were

able to identify their directions. However, the need to get precise position and navigation,

primarily for military purposes, led the nations and researchers to develop systems closer

to achieving this goal. After the first developments in radio navigation starting in the first

half of the 20th century [1], the first successful implementation of such a system came in

the form of a global positioning system or GPS, developed by the US military.

1.2 GPS and Outdoor Geolocation

In its 40 years of development and maturity, GPS [2] has become a reliable location find-

ing and tracking system for use not only by military but also by the civilian world. Today,

after various advancements in the field such as differential-GPS (DGPS) and Wide Area

Augmentation System (WAAS) typical commercial grade GPS receivers can achieve ac-

curacies of 1-5m with DGPS and 3 meters with WAAS. The study in [3] reports DGPS

accuracies in the centimeter range. Higher end geodetic and surveying GPS units using

carrier phase, dual frequency methods and sophisticated algorithms can achieve centime-

ter and even sub-centimeter accuracy through GPS ambiguity resolution techniques [4,5].
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Following GPS, other countries also started their own satellite positioning projects (EU’s

Galileo and Russia’s GLONASS [6]). Owing to its accurate positioning capability, most

industries rely on GPS and the position information obtained via GPS (such as anchor

node position information) serves as reference for other small scale localization systems.

Although GPS is a proven and reliable technology, it falls short of expectations for

some terrestrial applications where the GPS signals cannot be detected due to obstruc-

tions. Satellite signals are attenuated heavily through the atmosphere and further obstruc-

tion by trees, heavy fog or manmade structures such as building tops prevent this system

to be useful especially for densely populated urban settlements and inside buildings. In

order to overcome this issue, researchers turned their attention to land-based positioning

and tracking systems such as cellular networks for situations that cannot make use of

satellite signals. After the proliferation of cellular based radio communications systems,

the FCC mandated mobile phones be located within a certain accuracy using this technol-

ogy [7]. According to this report, mobile operators should be able to locate phones with

50m accuracy 67% of the time and 150m accuracy 95% of the time for handset based

positioning, and 100m accuracy 67% of the time and 300m 95% of the time for network

based positioning. Appendix C presents a study conducted in suburban and dense urban

areas for the performance analysis of outdoor cellular positioning systems. For the dense

urban area we obtained 70m accuracy at 50th percentile and 240m at 90th percentile.

The fundamentals of locating and tracking RF emitting devices differ greatly from

those of data communications. In communications, information is transferred from one

entity to another and the information carrier might be RF, sound or light. A single link,

as long as it is reliable, will be enough to transfer data between the entities. However,

locating a device whose location is completely unknown requires a completely different

approach than transmitting data.

Localization might be realized in two ways:
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1. Geometric methods (Trilateration, triangulation, hyperbolic methods)

2. Fingerprinting methods (Signal mapping)

Geometric methods include techniques that can locate or track devices based on signal

properties that are estimated. TOA/TDOA, RSS and AOA are examples of geometric

measurement techniques.

Fingerprinting methods require a two-phase approach. In the first phase (also called

the off-line phase), a database is formed based on signal parameters and this database

is utilized in the second phase to estimate the location. Nearest-neighbor mapping and

artificial neural networks are examples of such methods [8]–[11].

The following section focuses on indoor geolocation and presents the challenges en-

gineers face in indoor specific localization systems.

1.3 Indoor Geolocation

In the late 1990s, motivated by a variety of envisioned applications in commercial, pub-

lic safety, and military settings, indoor geolocation began to attract considerable atten-

tion [12, 13]. In commercial applications for residences and nursing homes, there is an

increasing need for indoor geolocation systems to track people with special needs, the

elderly, and children who are away from visual supervision. Other applications include

systems to assist the sight-impaired, to locate instrumentation and other equipment in

hospitals, to locate surgical equipment in an operating room, and to locate specific items

in warehouses. In public safety and military applications, indoor geolocation systems are

needed to track inmates in prisons, and to guide policemen, firefighters, and soldiers in

accomplishing their missions inside buildings. More recently, localization has found ap-

plications in location-based handoffs in wireless networks, location-based ad hoc network

routing, and location-based authentication and security [14]. Given the growing interest
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in sensor networks and radio frequency identification (RFID) technologies, one can also

envision wider-ranging applications such as locating unwanted chemical, biological, or

radioactive material using sensor networks, and tracking specific items such as controlled

pharmaceuticals in their containers using RFID tags. The most popular emerging indoor

location and tracking systems use information about RF signal properties in large indoor

areas. However, location sensing using multiple cameras and ultrasound is also becoming

popular for line-of-sight applications within a room.

To implement low-cost RF localization systems, the target object should be an ex-

isting traceable device that radiates RF signals and is connected in some manner to a

backbone network. There are tens of millions of IEEE 802.11 WLAN network cards, bil-

lions of RFID tags, a growing number of IEEE 802.15 WPANs using Bluetooth, UWB,

and ZigBee technologies, and several billion cellular phones that are connected in vari-

ous ways to the Internet and can be used for RF localization. The bandwidths of these

devices range from close to 100 kHz in traditional RFID tags to several GHz for emerg-

ing UWB devices, providing numerous technical opportunities to implement localization

systems with various degrees of precision. The accuracy required for indoor localization

also depends on the application, and in indoor areas it varies from a few millimeters for

locating surgical equipment in an operating room to as much as a few meters for locating

a person or an item of equipment inside a specific room in a large building. RF localiza-

tion systems locate the target based on the features of the received signal radiated from

the device. There are two popular metrics for this purpose: the RSS, which is easy to

measure but provides less accurate positioning [15], and the TOA of the DP, which can

potentially provide more accurate localization [12, 13, 16, 17].

Currently, robust precise TOA-based localization in multipath-rich indoor areas has

remained a challenge facing the research community. The core of this challenge is to

understand the cause of unexpected large ranging errors in estimating the TOA of the
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DP between the transmitter and the receiver, and finding algorithms that can cope with

these errors. Results of wideband measurement and modeling in a variety of indoor areas

obtained in the past decade have revealed that large ranging errors are caused by severe

multipath conditions and frequent absence of DP in the received signal giving rise to the

UDP condition, which will be introduced in chapter 2 [12, 18].

1.4 Motivation

The study presented throughout this dissertation is related to wireless channel modeling

pertinent to indoor RF geolocation. Particular emphasis is given to the spatial behavior

of the indoor multipath channel when the receiver is in motion with respect to a fixed

transmitter and how multipath diversity can be exploited for precise RF ranging and ge-

olocation, especially in UDP environments.

Accurate modeling of indoor propagation for positioning applications would require

as much information as possible regarding the features of MPCs. Individual TOAs of

MPCs relative to the LOS arrival together with their AOAs, path gains (amplitudes), the

total number of MPCs as a function of transmitter-receiver separation and path persisten-

cies along with path birth/death rate need to be known to employ channel aware precise

positioning systems that can exploit multipath diversity.

1.5 Contributions and Outline

The primary contribution of this thesis is the modeling of spatial behavior of multipath

components for indoor geolocation using multipath diversity. We used the results of dy-

namic UWB measurements and measurement calibrated RT to model dynamic changes

in TOA, AOA and path gain. The existing RF models were primarily designed for com-
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munication applications without specific attention to characteristics of MPCs pertinent to

indoor geolocation applications such as transmitter-receiver distance. In our model we

also include receiver-transmitter distance in the modeling of number of MPCs for a more

accurate channel description.

We introduce the concept of ”path persistency” together with ”path birth” as part of

our complete spatial channel model and as a potential tool to aid in precise ranging under

harsh RF conditions.

Additionally we have studied the effect of different building architectures to show its

effect on path persistency and how system designers can use building specific information

to employ site-aware positioning systems to achieve more accurate results.

In summary the contributions of this thesis are:

• System engineering aspects of a typical positioning system

– Effect of node density on the performance of a typical positioning system

– MSE profiling as a performance metric for the performance of a typical posi-

tioning system

• Channel aspects of a positioning system

– Multipath diversity as a potential tool for precise ranging in UDP conditions

– AOA assisted NLOS error mitigation for TOA based systems

– Complete spatial modeling of MPCs in a typical indoor area (TOA, Path gain,

AOA, Distance dependent number of MPCs, Path persistency and path birth)

– Effect of UDP, system bandwidth and peak detection threshold on number of

MPCs and path persistency using an empirical UWB measurement system

– A new method for UDP identification
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The outline of this thesis is as follows: Chapter 2 gives an overview of system en-

gineering and channel modeling aspects of localization. TOA based ranging and local-

ization is also introduced here as well as the bipolar DDP/UDP channel characteristics.

We also present a study of the system engineering aspects of positioning systems under

UDP conditions and how node density affects TOA estimation and how MSE profiling

can be used to obtain a certain positioning goal. Chapter 3 presents a new method in UDP

identification. Chapter 4 introduces the concept of path persistency and ranging in the

absence of DP. Chapter 5 discusses the effect of building architecture on path persistency.

Chapter 6 introduces a study of sensitivity analysis and modeling of MPC characteristics

using the results of an empirical measurement campaign. Chapter 7 gives the complete

spatial indoor wireless channel model. Finally, chapter 8 concludes the work with some

possible future directions.

Appendix A derives the dependency of path persistency on wall lengths and appendix

B presents a method to generate floorplans using the slicing tree method. They are a part

of chapter 5.

Additionally, appendix C presents the cellular positioning study performed during the

author’s internship at Skyhook Wireless of Boston.

This thesis draws substantially from results presented previously in:

1. F. O. Akgul, M Heidari, N. Alsindi, K. Pahlavan, ”Overview of RF Location Sens-

ing Techniques and Algorithms for WSNs”, in Localization Algorithms and Strate-

gies for Wireless Sensor Networks, G. Mao, B. Fidan Eds. Hershey: IGI Global,

pp.54-95 [19]

2. K. Pahlavan, F. Akgul, M. Heidari, H. Hatami, J. Elwell and R. Tingley, ”Indoor

Geolocation in the Absence of Direct Path”, IEEE Wireless Magazine, Vol. 13,

Issue 6, December 2006 [20]
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3. M. Kanaan, F. O. Akgul, B. Alavi, K. Pahlavan, ”Performance Benchmarking of

TOA-based UWB Indoor Geolocation Systems Using MSE Profiling”, 64th Semi-

annual IEEE Vehicular Technology Conference, IEEEVTC, fall 2006, Montral,

Canada, September 25-28, 2006 [21]

4. M. Kanaan, F. O. Akgul, B. Alavi, K. Pahlavan, ”A Study of the Effects of Refer-

ence Point Density on TOA-Based UWB Indoor Positioning Systems”, 17th Annual

IEEE International Symposium on Personal Indoor and Mobile Radio Communi-

cations (PIMRC06), Helsinki, Finland, 11-14 Sept. 2006 [22]

5. Heidari, M., Akgul, F. O., and Pahlavan, K., ”Identification of the Absence of Direct

Path in ToA-Based Indoor Localization Systems”, International Journal of Wireless

Information Networks, Volume 15, Numbers 3-4, pp. 117-127, December 2008

[23]
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Indoor Positioning Systems”, IEEE MILCOM, Orlando, FL, 29-31 Oct. 2007 [24]
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Chapter 2

Background

In this chapter, we discuss the system engineering and channel aspects of indoor posi-

tioning systems. A brief survey of channel models is also presented. This chapter draws

substantially from results presented previously in: [19]–[22].

2.1 System Engineering Aspects

2.1.1 Overview of a Localization System

A typical localization system consists of mobile terminals that need to be located/tracked,

beacon or anchors serving as RPs, a central processing station that implements the posi-

tioning algorithm and keeps track of all the terminals as well coordinates data communi-

cations and a higher layer system that shows the results of positioning or tracking, such

as an LCD panel. Figure 2.1 shows the components of such a localization system. The

system might use different ranging metrics for obtaining the position information. The

most common of these metrics are RSS, TOA/TDOA and AOA. RSS and TOA might

be considered as ranging metrics since ranging information can be obtained from these

signal parameters. The nodes will need at least three ranging estimates from different an-
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chors to be able to obtain a position fix. In the case of AOA, two different AOA estimates

from two anchors will suffice to obtain a location fix. More details will be given for each

of these techniques in the coming sections.

Figure 2.1: High level architecture of a typical positioning system

2.1.2 Distance and Position Estimation Metrics

As mentioned in the previous section, a localization system needs to obtain range esti-

mates from fixed anchors or reference points in order to estimate the location of a node.

Ranges estimates can be obtained using different metrics. RSS and TOA/TDOA are ex-

amples of such techniques whereas AOA is a position estimation metric.

RSS

As the RF signal is radiated by a transmitter, its energy experiences loss that is propor-

tional to the distance the signal travels. A common model based on single-path radio

propagation is given by

Pr(dB) = Pt(dB)− 10αlog10d (2.1)
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where Pr (dB) and Pt (dB) denote the received and transmitted signal powers in dB. α

is the distance-power gradient (or equivalently path-loss coefficient) and is dependent on

the propagation environment. For free space, α = 2. A wide range of values are possible

for α, i.e. for a brick construction office environment α is reported to be 3.9 or for a

laboratory environment with metal-faced partitioning it is found to be 6.5 [14].

Other empirical models have also been developed based on extensive measurements

in various environments. The author in [34] proposed a path-loss model for multi-floor

buildings. Technical working group of TIA/ANSI JTC recommended an indoor path loss

model [35] for PCS applications. Apart from the indoor model, the same group proposed

micro and macro-cellular models for outdoor applications. Other popular models for

outdoor environments are the models in [36]–[38].

Either by using the simple radio-propagation model or the more complicated empir-

ical models, distance information can be obtained from the received signal power given

the transmitted signal power. Although this method can be easily applied since almost all

RF wireless devices can report received signal strength, its accuracy is not always accept-

able due to the stochastic variation of the channel. The path loss models discussed in this

section are deterministic models that do not consider the fading and shadowing effects.

At any time instant, the signal level experiences slow and fast fading caused by local

scatterers and the movement of the receiver node. Slow fading is also called ”Shadow

fading” and it is generally modeled as a zero-mean normal variable, X(dB), in the loga-

rithmic scale. Hence shadows are log-normally distributed. The pdf for the log-normal

distribution is given as:

f(x) =
1

xσ
√
2π
e−

(ln(x)−µ)2

2σ2 (2.2)

where µ and σ are the mean and standard deviation respectively. Hence the received

power can be given as
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Pr(dB) = Pt(dB)− 10αlog10d+X (2.3)

Due to this fluctuating behavior of received signal power, accurate ranging measure-

ments are not always possible hence leading to lower accuracy position estimation. In

fact, the accuracy of such estimation is lower bounded by its Cramer-Rao lower bound

(CRLB). CRLB basically specifies the lower bound on the variance of estimation. For the

simplistic RSS model this bound has been given by [39] as:

σRSS ≥ ln(10)

10

σsh
α
d (2.4)

Here, σRSS is the standard deviation of RSS estimation, σsh is the variance for shadow

fading, d is the actual distance between the transmitter and the receiver and α is the power-

distance gradient.

AOA

AOA information from two different anchors might be used to determine the position of a

node by using triangulation as shown in figure 2.2. AOA estimation is also referred to as

DOA estimation, direction finding or bearing estimation in many contexts and has been

researched extensively in the literature [40]–[45]. A common method for AOA estimation

is by using special structures called uniform linear arrays (ULA) [46]. The n elements of

an ULA with spacing d can be used to estimate the DOA of an RF signal based on the

following relation:

θ = arcsin(
c∆t

d
) (2.5)

where θ is the angle at which the signal is impinging upon the ULA, c is the speed

of light, ∆t is the time difference between the arrivals of the signal at consecutive array
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elements and d is the spacing between consecutive elements.

Figure 2.2: Triangulation of a node by two anchors

To achieve finer results by using a certain antenna array configuration, one can employ

super-resolution techniques. Although various methods are available in literature, most

common ones are MUSIC [47] and ESPRIT [48] and their variations [49, 50]. Authors

in [51] report angular estimation variance of 1 ◦ with 0dB SNR and down to 0.01 ◦ with

SNRs of about 40 dB.

The performance bounds for AOA estimation can also be studied to derive the CRLB.

The bound for AOA is formulated to be [52]

σAOA =
c
√
2BN0

N∆2πfcsin(θ)AAT

(2.6)

where σAOA is the standard deviation for AOA estimation, c is the speed of light, B is

the bandwidth of the signal, N0 is the noise spectral density, N is the number of elements

of the ULA, ∆ is the spacing between the elements and A is the channel coefficient.

AT and fc are respectively the amplitude and carrier frequency of the source signal x(t)

denoted as

x(t) = AT cos(2πfct) (2.7)

The SNR of the signal can be expressed as
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SNR =
A2A2

T

BN0

(2.8)

so we can rewrite equation (2.6) as

σAOA =
c
√
2

N∆2πfcsin(θ)
√
SNR

(2.9)

From equation (2.9), it can be seen that the CRLB is inversely proportional to the

number of elements N , fc and SNR. Thus having a high SNR and high frequency signal

like an UWB signal as well as a high number of array elements give higher resolution

AOA estimation.

TOA

Another distance estimation method is the TOA method in which the range is estimated

based on the time the signal spends traveling from the transmitter to the receiver. Since

the speed of RF propagation is very well known in both free space and air, it gives a direct

estimation of the distance between the transmitter and the receiver once the travel time is

estimated. When TOA systems are considered, the only important parameter that needs

to be estimated correctly in a multipath propagation environment is the TOA of the LOS

path or the DP. Other multipath components are not important for ranging and localization

purposes except for the cases when the DP is not available. This condition will be inves-

tigated in detail in the section ”channel modeling aspects”. The basic equation needed to

obtain the distance is given as

d = τDP c (2.10)

where d is the distance estimate, τDP is the TOA of the DP and c is the speed of

light. Accurate TOA estimation needs perfect synchronization between the clocks of the
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Figure 2.3: Trilateration of a node by three anchors (RSS and TOA)

transmitter and the receiver. Clock synchronization might be achieved by regular data

exchange between the transmitter and the receiver or an additional anchor for correcting

the clock bias. Although 3 anchors are necessary to obtain position, a 4th anchor will

be needed for time correction. This method is readily applied for the GPS in which a

4th satellite is used to compensate for the receiver clock bias. The TOA location esti-

mation is depicted in figure 2.3 where a perfect synchronization is assumed between the

transmitters and the receiver. Same procedure also applies to the RSS method in which

individual distance estimates are also used for position fixing. The dotted circles denote

the uncertainty in range estimation hence leading to an area for the possible location of

the receiver between the three estimation circles, rather than a single point.

2.1.3 Practical TOA Ranging and Localization

In order to successfully apply TOA methods to practical systems especially for indoor

ranging and positioning we need to use higher bandwidth systems in order to resolve

dense MPCs. One such solution is the use of UWB systems.

Due to recent advances in UWB signaling and hardware and its potential for accurate
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ranging, TOA based ranging systems utilizing UWB signals have gained particular pop-

ularity [17, 53, 54]. On the other hand, the knowledge gained by the implementation and

challenges of the now widely used GPS system has been instrumental in the advancement

of these TOA systems. Hence borrowing the algorithmic developments from GPS and

applying them to indoor environment paved the way for the deployment of UWB systems

for localization applications. Next we will discuss some fundamental aspects of TOA

estimation and ranging.

TOA Estimation Several methods are available to estimate the TOA. The traditional

methods of estimation are the IFT and ML estimations. The latter one is also called the

cross-correlation method.

In the IFT method, observed frequency domain channel response is transformed into

time-domain to obtain the time-response of the channel (figure 2.4). The delay value of

the DP is then used to calculate the distance.

Figure 2.4: IFT operation for obtaining CIR

In the ML method, the following signal model is assumed for the estimation of TOA

[55]

r(t) = s(t− τ) + w(t) (2.11)
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Here r(t) is the received signal, s(t) is the transmitted signal, τ is the delay and w(t)

is noise modeled as AWGN. The signal at the receiver is basically a delayed version of the

signal plus noise. ML dictates that maximum possible cross-correlation of the transmitted

and the received signal occurs at the actual delay of the signal shown as [55, 56]

d

dτ

(∫
T0

r(t)s(t− τ)dt

)
τ=D̂ML

= 0 (2.12)

To obtain the delay estimate, τ is varied over a range of delay values and the value of

τ that gives the maximum of the cross-correlation (or equivalently makes the derivative

of the cross-correlation equal to 0) becomes the distance estimate. A block diagram is

also given in figure 2.5 to show the implementation of this method.

Figure 2.5: ML TOA estimation (reproduced from [55])

In the case of single path TOA estimation as applied to equation (2.11), CRLB is

computed to be

σ2
D̂
≥ 1

8π2 SNR BT0f 2
0 +B2/12

(2.13)

where σ2
D̂

is the variance of TOA estimate, B = f2 − f1, f0 = (f2 + f1)/2, f1

and f2 are the 3dB low and high frequency points and f0 is the center frequency. T0 is

the observation time. From equation (2.13), it is easy to see that the bound is inversely

proportional to the SNR, the signal bandwidth and observation time.
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Similar to the AOA case, super-resolution methods might be used to extract indistin-

guishable peaks from the channel response in time-domain. This method has been shown

to be effective in both wideband and narrow band TOA estimation methods [57,58] mak-

ing these methods superior to traditional ML and cross-correlation methods.

Peak Detection Strategies for TOA based Systems

In this part, we present the two most commonly used methods for obtaining ranging

measurements, which have also been outlined by [59]. In the following, τsel denotes

the estimated TOA.

Detection of the First Peak This method relies on the detection of the first available

peak in the CIR. As long as the first path power is above the detection threshold of the sys-

tem, the method gives the best possible results for ranging. However, accurate detection

depends on high SNR which is not always possible. The path decision can be expressed

as

τsel = τi|i = argmin
p

τp (2.14)

where τp is the TOA for the pth path.

Detection of the Strongest Peak In this method, the path with the strongest power is

detected and its TOA is considered as the ranging estimate between the transmitter and

the receiver. Detecting the strongest peak is easily implementable when compared with

the first method; however ranging accuracy is not always acceptable since the strongest

path may not always be the DP. Most practical receivers implementing this method are

S-rake receivers [60]. Path decision in this case is

τsel = τi|i = argmax
p

Pp (2.15)
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where Pp is the power of the pth path.

TDOA

TDOA, also known as hyperbolic positioning, is a method whereby the receiver calcu-

lates the differences in the TOAs from different RPs. By using this method the clock

biases between the transmitters and receivers are automatically removed, since only the

differences between the TOAs from two transmitters are only considered. The estimation

using TDOA is shown in figure 2.6.

Figure 2.6: Hyperbolic positioning of a node by three anchors (TDOA)

RSS, TOA/TDOA and AOA can be regarded as geometric estimation methods for

which we do not have a priori information about environment. Next we discuss the map-

ping techniques with which a certain signal database is produced for position estimation.

Mapping techniques

Mapping or fingerprinting techniques are also widely studied for their robustness in terms

of performance and some advantages in comparison to geometric methods. The finger-

printing methods employ a two-step approach. The first step involves the construction
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of the signal map for a desired environment (also called the offline phase), the second

step is the actual positioning step (online phase). These techniques inherently capture all

environment related propagation effects like multipath, shadowing, scattering etc. and

hence might be used for applications where geometric methods fall short of expectations.

However due to extensive measurement and mapping involved in this approach, it might

not be preferred for large areas where it may not be feasible. Additionally the struc-

tural changes in the environment might necessitate remapping for the affected regions

of the database [10, 15, 61]. The two most commonly used mapping methods are the

RSS mapping and CIR mapping. In RSS mapping, a receiver terminal is taken to almost

every feasible part of an area that is intended to be mapped and signal power from mul-

tiple anchors are recorded into the database. Once mapping is done, actual positioning

is obtained by comparing the RSS in online phase to one of the mapped points. The

algorithms employed for this purpose are mostly k-NN or statistical location estimation

algorithms [8, 62, 63]. Another application is the mapping of CIR for desired locations.

The unique characteristics of the CIR, such as RMS delay spread, average power etc.

might then be used for comparison [10, 11]. The authors in [10] also discusses the use of

neural networks for position estimation.

Table 2.1 gives an overall comparison of different positioning methods and summa-

rizes the advantages and disadvantages of these approaches.

Tracking and Dynamic Monitoring

Most of the time, the nodes to be located are mobile and hence it becomes essential to

determine the location of these mobile nodes periodically. This real-time periodic loca-

tion update is also called ”tracking”. Tracking keeps a history of the location information

and hence is considered as a dynamic methodology for the localization problem. As op-

posed to blind positioning, which is based either on geometric or fingerprinting method
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Table 2.1: Comparison of different positioning methods
Geometric Methods Advantages Disadvantages
RSS - Simple to implement - Not accurate

(most wireless devices report power) - Requires models specific to
- Not sensitive to timing application case and environment
and RF bandwidth

AOA - Only requires 2 anchors - DP blockage and multipath
for localization affects accuracy

- Requires use of antenna
arrays/smart antennas
- Accuracy is dependent
on RF bandwidth

TOA/TDOA - Accurate ranging/localization - Accuracy is dependent
can be obtained on RF bandwidth
- Can be scaled to a - DP blockage might cause
multitude of applications large errors

Mapping Methods - Captures all channel related -Requires extensive database
parameters hence resilient construction/training
to DP blockage

and which basically requires locating the node without any prior position information,

tracking makes use of location history to estimate the future positions. This might be ob-

tained by various methods. The most popular of these approaches is to employ a Kalman

Filter [64], which is a recursive filter that estimates the state of a system in the presence

of noisy measurements. However, for most systems that do not exhibit linear behavior,

Kalman filtering is not an effective solution. For these non-linear systems other types of

filtering such as EKF [65] and UKF [66] are preferred. EKF is particularly useful for

nonlinear but differentiable systems. It is a first order approximation for the nonlinear

filtering problem. UKF, on the other hand is applicable to highly nonlinear systems and

produces more accurate results than EKF. Another advantage of UKF over EKF is that

UKF does not require the computation of Jacobians that are needed for EKF. Hence it is

more practical from an implementation point of view.

Another method is to use dead reckoning [67, 68] which estimates the future position

based on current speed, bearing and elapsed time. Inertial navigation systems are based

on this principle. Even though these systems might obtain estimates for incomplete mea-
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surements, error propagation is a major concern for prolonged duration of information

absence. Hence these tracking methods should be complemented with other true posi-

tioning approaches for a more complete positioning system design.

Since the focus of this thesis is precise positioning in the absence of DP we put more

emphasis on TOA based systems. Next section discusses the challenges involved with

these systems.

2.2 Channel Modeling Aspects

2.2.1 Challenges for the TOA-Based Systems

One major challenge facing the high precision TOA systems is the obstruction of the

DP in the channel profile. Since the DP is the true indicator of the range between the

transmitter and the receiver, its obstruction by various means such as metallic or thick

concrete walls will lead to substantial ranging errors. This particular obstruction of the DP

leads to a specific channel impairment that has been named as the undetected direct path

(UDP) condition [12, 69]. To understand the effects of DP obstruction, it is convenient

to consider the commonly used mathematical expression for channel impulse response at

this point. This model takes into account the MPCs that arrive at the receiver via different

propagation mechanisms such as reflection, transmission or scattering and is given as:

h(t, τ) =
L∑
i=1

βiδ(t− τi)e
jϕi (2.16)

where h denotes the CIR, L is the number of MPCs, βi is the gain(amplitude), τi

is the TOA and ϕi is the phase of the ith arriving path respectively. The DP might be

characterized as the path having gain β1, TOA τ1 and phase ϕ1. In this case the range

between the receiver and the transmitter will be
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d = τ1c (2.17)

However, we should also point out that equation (2.16) is the basic channel model

based on Turin’s model [70]. Later in the thesis, we will expand this model to incorporate

number of paths, as well as AOA and spatial movement of the receiver.

When the DP is blocked or cannot be detected, the indirect paths will be detected giv-

ing rise to substantial ranging errors. Figure 2.7 and figure 2.8 show real world example

channel profiles for both DDP and UDP obtained using a 1GHz bandwidth UWB signal.

In the DDP case there is only 50cm of ranging error that can be attributed to the limited

bandwidth (multipath error) of the signal, whereas the UDP case (by inserting a metallic

shield in between the transmitter and receiver) introduces more than 2m of ranging error

for the same setup.
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Figure 2.7: Sample DDP channel profile
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Figure 2.8: Sample UDP channel profile

2.3 Two sample study: MSE Profiling and Node Density

In order to show the effect of UDP on basic positioning systems we have also carried

out two studies in a typical setup. The first study explores the MSE profiling of wireless

channel and the second study tries to evaluate the effect of RP density on localization

performance in a typical indoor positioning setup (such as a WSN). Both of these studies

have been carried under the effect of UDP channels.

2.3.1 MSE Profiling

Due to the site-specific nature of indoor radio propagation, the very occurrence of UDP

conditions is random and is best described statistically [71]. That being the case, the

accuracy of the location estimate will also need to be characterized in the same manner.

The accuracy of the location estimate can be viewed as a measure of the QoS provided by

the geolocation system. Different location-based applications will have different require-

ments for accuracy. In a military or public-safety application (such as keeping track of the
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locations of fire-fighters or soldiers inside a building), high accuracy is desired. In con-

trast, lower accuracy might be acceptable for a commercial application (such as inventory

control in a warehouse). In such cases, it is essential to be able to answer questions like:

”What is the probability of being able to obtain an MSE of 1 m2 from an algorithm x in

any building configuration?” or ”What algorithm should be used to obtain an MSE of 0.1

cm2 in any building configuration?”. Answers to such questions will heavily influence

the design, operation and performance of indoor geolocation systems. In this study, we

propose the use of the MSE Profile to answer these kinds of questions and illustrate its

use with examples.

Related Work on Performance Metric

Foy [72] used the covariance matrix of the position estimation error as a performance

metric for the evaluation of Taylor-Series algorithm for geolocation. Torrieri [73] for-

mally defined and used the circular error probability (CEP), which is a measure of the

uncertainty in the location estimate x̂, relative to its mean, E{x̂}. The calculation of the

CEP is, in general, quite complicated. This issue can be alleviated by making suitable

approximations. However, from a QoS perspective, the most we can say after calculating

the CEP is that the estimate is likely to be within x̂ + CEP with probability 1/2. The

CEP, therefore, will only be of limited use in answering the types of questions given in

the previous section.

The work of Deng and Fan [74] and others working in the E-911 field bears the closest

resemblance to our work in the sense that it considers the CDF of the MSE in order to

assess the performance of outdoor cellular positioning systems in relation to E-911 re-

quirements outlined by the FCC. However, this cannot be directly applied to our work,

as we specifically consider the effect of varying UDP conditions on UWB indoor geolo-

cation system performance. Therefore, to the best of our knowledge, our approach to
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performance analysis of such systems is unique.

UDP Conditions and MSE Profile

UDP conditions generally occur in cases where there are multiple walls and/or metallic

objects between the transmitter and the receiver. As a result, the DP can experience

severe fading [12, 75]. It has also been observed that UDP conditions tend to occur along

coverage boundaries or areas with coverage deficiencies [76]. As mentioned above, UDP

occurs only on occasion and when it does, it is the dominant source of error for distance

measurements. However, the DDP error is always present.

Based on extensive UWB measurements, a DME model is introduced in [71]. The

model is given by:

d̂i =


di + ξDDP,wlog(1 + di) DDP case

di + ξDDP,wlog(1 + di) + ξUDP,w UDP case

(2.18)

where d̂i is the observed distance measurement from the i-th RP, and ξDDP,w and ξUDP,w

are random variables that characterize the DDP and UDP-based DME respectively. The

distributions of ξDDP,w and ξUDP,w have been observed to be Gaussian and dependent

on bandwidth, i.e, ξDDP,w = N (mDDP,w, σ
2
DDP,w) and ξUDP,w = N (mUDP,w, σ

2
UDP,w)

where the means (denoted by mDDP,w for ξDDP and mUDP,w for ξUDP ) and standard

deviations (denoted by σDDP,w for ξDDP,w and σUDP,w for ξUDP,w) are a function of the

system bandwidth, w, used to make the TOA-based distance measurements (hence the

subscript w). The parameters for the distributions, as a function of the bandwidth w, are

listed in Table 2.2.

Additionally, it has been determined through measurements that the probability of

UDP occurrence PUDP,w increases as the bandwidth is increased [71]. Observations in-
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Table 2.2: Parameters for DDP and UDP-based DME
w(MHz) 500 1000 2000 3000
mDDP,w (m) 0.21 0.09 0.02 0.004
σDDP,w (cm) 26.9 13.6 5.2 4.5
mUDP,w (m) 1.62 0.96 0.76 0.88
σUDP,w (cm) 80.87 60.45 71.53 152.21
PUDP far,w 0.33 0.62 0.74 0.77
PUDP close,w 0.06 0.06 0.07 0.12

dicate that PUDP,w values also depend on the actual distance between the transmitter and

the receiver. Specifically,

PUDP,w =


PUDP close,w d ≤ 10 m

PUDP far,w otherwise

(2.19)

The error modeling introduced here is detailed in [71]. This model can be compared

to [77] and has a fundamentally different approach. In [77], the authors developed the

model based on Ray-Tracing results and categorized the conditions of the channel as

LOS/OLOS, assuming that in the OLOS case, we always have the UDP case. However,

the introduced DME model is based on UWB measurement data and classification of the

channel as DDP and UDP, as this approach reflects the behavior of the indoor channel in

a more realistic manner.

Figure 2.9 shows the general system scenario, where a regular grid arrangement of

RPs are assumed to be available. RPs are radio transceivers whose locations are known

more or less precisely with respect to some global coordinate system and which perform

TOA-based distance measurements to locate a sensor. The use of the regular grid arrange-

ment for the RPs is common in indoor wireless networks, as this approach often provides

adequate coverage [78].

Given the variability of the indoor propagation conditions, it is possible that the dis-
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Figure 2.9: General system scenario

tance measurements performed by some of the RPs will be subject to DDP errors, while

some will be subject to UDP-based errors. The DDP/UDP errors can be observed in vari-

ous combinations. For example, the distance measurements performed by RP-1 in figure

2.9 may be subject to UDP-based DME, while the measurements performed by the other

RPs may be subject to DDP-based DME; we can denote this combination as UDDD.

Other combinations can be considered in a similar manner.

Since the occurrence of UDP conditions is random, the performance metric used for

the location estimate (such as the MSE) will also vary stochastically and depends on the

particular combination observed. For the four-RP case shown in Figure 2.9, it is clear

that we will have the following distinct combinations: UUUU, UUUD, UUDD, UDDD,

and DDDD. Each of these combinations can be used to characterize a different type of

building environment. The occurrence of each of these combinations will give rise to

a certain MSE value in the location estimate. This MSE value will also depend on the

specific algorithm used. There may be more than one way to obtain each DDP/UDP

combination. If UDP conditions occur with probability Pudp, then the overall probability
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of occurrence of the i-th combination, Pi can be generally expressed as:

Pi =

 N

Nudp,i

P
Nudp,i

udp (1− Pudp)
N−Nudp,i (2.20)

where N is the total number of RPs (in this case four), and Nudp,i is the number of RPs

where UDP-based DME is observed. Combining the probabilities, Pi, with the associated

MSE values for each combination we can obtain a discrete CDF of the MSE. We call this

discrete CDF the MSE Profile.

Algorithms

As an illustration of the use of the MSE Profile, we investigate the performance of two

algorithms using simulations: the Closest-Neighbor with TOA Grid (CN-TOAG) [79,80],

and the Davidon LS algorithm [81].

CN-TOAG Algorithm In essence, the CN-TOAG algorithm [79, 80] estimates the lo-

cation of the sensor S, by minimizing the following objective function:

f(x, y) =

√√√√ N∑
k=1

(
dk −

√
(x−Xk)2 + (y − Yk)2

)2

(2.21)

where (Xk, Yk) is the location of the k-th RP, dk is the observed distance measurement

from the k-th RP and (x, y) is the unknown location of the sensor to be estimated. The es-

timated location is the one that minimizes equation (2.21). In order to find the minimum,

one needs to solve the following partial differential equation:

∇f(x, y) = 0 (2.22)

Due to the complexity of f(x, y) in (2.21), it is not feasible to solve (2.22) analytically.
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Therefore, the CN-TOAG algorithm tries to solve it numerically using the concept of a

TOA grid [80]. The size of the grid, as given by the spacing between grid points, h, is

a major determinant of performance for this algorithm. Specifically, values of h below a

certain value can result in better performance than the LS algorithm [79].

Davidon Least-Squares Algorithm The particular instance of the LS algorithm that

has been used for our evaluations is the one by Davidon [81], which attempts to minimize

the objective function:

f(x) = f(x, y)

=
N∑
k=1

(
dk −

√
(x−Xk)2 + (y − Yk)2

)2

(2.23)

in an iterative manner using the following relation:

xk+1 = xk −Hkg(xk) (2.24)

where Hk represents an approximation to the inverse of the Hessian of f(x), G(x), which

is defined as:

G(x) =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

 (2.25)

and g(x) is the gradient of f(x), defined as:

g(x) = ∇f(x) (2.26)

The following relation defines when the computations will be terminated:
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ρk = (g(xk+1))
T Hk (g(xk+1)) (2.27)

so that the iterations will stop when ρk ≤ ϵ, where ϵ is a small tolerance value.

Performance Evaluation & Discussion

Simulation Platform We consider the system scenario in Figure 2.9 with L = 20 m for

each algorithm. A total of 1000 uniformly distributed random sensor locations are sim-

ulated for different bandwidth values. In line with the FCC’s formal definition of UWB

signal bandwidth as being equal to or more than 500 MHz [82], we will present our re-

sults for bandwidths of 500, 1000, 2000, and 3000 MHz. For each bandwidth value we

also simulate different combinations of UDP and DDP-based DMEs for each RP, specif-

ically UUUU, UUUD, UUDD, UDDD, DDDD. Once a sensor is randomly placed in the

simulation area, each RP calculates TOA-based distances to it. The calculated distances

are then corrupted with UDP and DDP-based DMEs in accordance with equation (2.18).

The positioning algorithm is then applied to estimate the sensor location. Based on 1000

random trials, the MSE is calculated for each bandwidth value and the corresponding

combinations of UDP and DDP-based DMEs. The probability of each combination is

also calculated. For example, take the combination UUUU for a bandwidth of 3000

MHz, where two of the RPs are assumed to be far from the sensor, and the other two

are assumed to be close. Using the values for Pudp,close, and Pudp,far, we can obtain the

probability of the combination as 0.0085.

As noted in [80], the performance of the CN-TOAG algorithm is dependent on the

size of the TOA grid, as determined by the the bin size, h, which for the purposes of this

study, was varied between 1.25 m down to 0.3125 m for a total of three different values.
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Results The results are shown in figures 2.10, 2.11, 2.12, and 2.13. Figures 2.10 and

2.11 show the MSE Profiles for the LS and CN-TOAG algorithms respectively. From

these plots, we observe that as the bandwidth increases from 500 MHz to 2000 MHz,

the range of MSE Profile values gets smaller. This correlates with the findings of [76],

where it has been observed that the overall DME goes down over this specific range of

bandwidths. Above 2000 MHz, however, the MSE Profile becomes wider as a result of

increased probability of UDP conditions [76], which increases the overall DME. This, in

turn, translates into an increase in the position estimation error for both algorithms.

Using the MSE Profile, we can gain insight into the MSE behavior of a given algo-

rithm under varying amounts of UDP (i.e. different building configurations) by calculat-

ing the mean and the variance of the MSE for a given bandwidth value. The results of

these calculations are shown as a function of bandwidth in Figures 2.12 and 2.13. These

results clearly indicate that CN-TOAG can outperform LS as long as h ≤ 0.3125 m. In

addition, there appears to be an optimal bandwidth for both algorithms where the average

MSE is minimum. Our results indicate that this bandwidth value is 1000 MHz.
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Figure 2.10: MSE profile for the LS algorithm
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Figure 2.11: MSE profile for the CN-TOAG algorithm
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2.3.2 Node Density

The second study addresses the effect of RP density on a typical positioning system under

the aforementioned impairments of wireless indoor channel.

Apart from the inherent stochastic variations of the channel (which can induce DME),
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the indoor environment itself also does not necessarily stay static. Indoor areas can be

remodeled, made larger, or portions of them can be rebuilt with different building mate-

rials. This will change the RP density and by extension, the estimation accuracy that we

can obtain from the network used for positioning. The RP density, denoted by ρ, can be

viewed as a measure of the number of RPs per unit area, and is defined as

ρ = N/A (2.28)

where N is the number of RPs covering a given indoor area, and A is the size of the area,

generally given in m2.

It has been noted in a prior work [83] that given a fixed number of RPs, the perfor-

mance of certain positioning algorithms tends to degrade as the size of the area to be

covered is increased (i.e the RP density is decreased). This observation makes intuitive

sense since the DP will be attenuated more as the distance between the RP and the sen-

sor is increased. This will give rise to more DME which, in turn, will lead to degraded

location estimation performance.
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Although the effects of RP density on location estimation accuracy has been known,

the exact nature of the functional relationship between these two quantities has not, to

the best of our knowledge, been formulated to date. This raises a valid question: Why

is it important to characterize this relationship? The answer fundamentally lies in the

fact that different indoor positioning applications have different requirements for estima-

tion accuracy. For example, in a commercial application (such as inventory tracking in

a warehouse), low accuracy might be acceptable. However, in a public-safety or mili-

tary application (such as keeping track of the locations of fire-fighters or soldiers within

a building), much higher accuracy would be needed. This implies that the RP densities

required for these two application domains would be different. Knowledge of the func-

tional relationship between RP density and estimation accuracy enables a system designer

to figure out how many RPs are required to meet a given accuracy target, thereby results

in a cost-effective network deployment.

The manner in which RP density affects positioning accuracy depends principally

on two factors: the particular algorithm used for the location estimation, and the DME

model. The basic contribution of this study is to explore these kinds of relationships for

different positioning algorithms, both to get an insight into their performance, and also to

provide a useful tool for designers of indoor positioning networks.

In addition to addressing the above-mentioned issues, this study also extends the study

reported in [83] in two important ways. First, the performance evaluations we undertake

are based on DME models obtained from empirical UWB measurements in a typical

indoor area, rather than models derived from ray-tracing simulations. Second, since the

DME also depends on bandwidth [71], we also explore the impact of bandwidth on the

performance of a given algorithm.
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Related Work

The relationship between RP density and positioning accuracy has been studied, mainly

for ad-hoc sensor networks. Savarese, Rabaey and Beutel have studied positioning in

distributed ad-hoc sensor networks through cooperative ranging [84]. The paper by Chin-

talapudi et al studies the effects of density of RPs on ad-hoc positioning algorithms em-

ploying both distance and bearing measurements [85].

While these works have identified the relationship between positioning accuracy and

RP density, they have not explicitly presented that relationship mathematically. Also,

the DME models used in these studies are generally very simple. In this study, we seek

to explore the functional dependency of the positioning accuracy (as expressed by the

MSE) on RP density in the presence of DME models based on empirical measurements

within actual indoor environments. Similar to first study we also use the DME model as

described in equation (2.18).

Algorithms

We investigate the effects of RP density on the performance of two algorithms as de-

scribed earlier in the previous study. These algorithms are CN-TOAG and Davidon LS

algorithms.

Performance Analysis & Discussion

Simulation Platform We consider the general system scenario given in figure 2.9 where

a regular grid arrangement of RPs is assumed to be available. We also note that this sys-

tem scenario is a fundamental building block for certain indoor ad-hoc sensor networks,

and could be a considered a realistic deployment scenario for such scenarios [86]. The

important parameter that determines performance is not the absolute number of RPs, but

the ratio of the number of RPs to the area, as given by equation (2.28).
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Here, we consider varying sizes of L for each algorithm. By varying the room size

while keeping the number of RPs fixed at each of the four corners, we evaluate the per-

formance of positioning algorithms as a function of RP density in the scenario and also

show the effect of system bandwidth on overall performance. Synchronization mismatch

between the transmitter and receiver is assumed to be small. For each algorithm, a total of

5000 uniformly distributed random sensor locations are simulated for different bandwidth

values and for varying room dimensions. We will present our results for bandwidths of

500, 1000, 2000, and 3000 MHz.

Once a sensor is randomly dropped in the area, the actual distance measurements, di,

from each RP at the corners are individually corrupted with DME, as given in (2.18). The

corrupted distance measurements are then fed into the positioning algorithm to get the

position estimate.

Results The results are shown in figures 2.14, 2.15, and 2.16. From the figures 2.14 and

2.15 we can immediately see that as the node density is increased, the MSE decreases.

This is an expected result, since a finer installation of the RPs will reduce the probability

of the occurrence of UDP conditions and hence will result in better positioning accuracy.

Another important observation is that as the bandwidth of the system is increased, the

estimation accuracy is also increased with the exception of 3 GHz. Increasing the system

bandwidth provides a better time resolution, thereby ensuring accurate estimation of the

TOA of the DP. However, increasing the bandwidth beyond a certain point (2000 MHz

in this case) also gives rise to increased probability of UDP conditions due to the faster

attenuation of higher bandwidth signals.

In Figure 2.16, we compare the performance of LS and CN-TOAG as a function of RP

density using a system bandwidth of 2000 MHz. This bandwidth was arbitrarily selected,

since it appears to be the bandwidth where both algorithms perform best. The results
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clearly indicate that CN-TOAG has better performance, particularly for higher values

of ρ. Since CN-TOAG is based on the concept of a TOA grid [79], increasing ρ (i.e.

decreasing the area) for a fixed bin size h brings the grid points closer together. This, in

turn, places a much tighter bound on the positioning error for CN-TOAG.

By examining the results of the simulation, we can derive a mathematical relation be-

tween RP density and MSE by applying a third order polynomial fit to the results. Our

choice of the third order polynomial was simply influenced by the fact such a fit showed

better agreement with simulation results than, say, a second-order fit. We have chosen to

derive these relations on the basis of Monte-Carlo simulations, rather than analytically,

in order to be able to compare and contrast the performance of the LS and CN-TOAG

algorithms. It is certainly possible to derive these relations analytically for the LS algo-

rithm, but not necessarily for CN-TOAG due to the complexity of the objective function

of equation (2.21). These relations can be a valuable tool in determining the RP density

for a required positioning accuracy. The 3rd order polynomial is given as:

MSE = a3ρ
3 + a2ρ

2 + a1ρ+ a0 (2.29)

where ai (i ∈ {0, 1, 2, 3}) denote the polynomial coefficients. Tables 2.3 and 2.4 show the

coefficient values for the two algorithms. These values are dependent on the DME model

used; however, we note that the DME model parameters are still representative of typical

indoor environments.

A simple numerical example illustrates how these relations could be used. Suppose

we have a 900 m2 indoor area where we would like to implement a positioning system

using CN-TOAG at a bandwidth of 1 GHz, and we would like the MSE to be no more than

1.5 m2. Referring to Figure 2.15, we see that the corresponding value of ρ should be no

less than 0.004. Using our knowledge of the size of the area, the value of ρ, and equation

(2.28), we see that we need to have a minimum of 4 RPs in order to ensure satisfactory
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performance.
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Figure 2.14: Performance of LS algorithm
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Figure 2.15: Performance of CN-TOAG algorithm
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Figure 2.16: Performance comparison of LS and CN-TOAG for 2000 MHz

Table 2.3: Coefficients of the 3rd degree polynomial fit for LS Algorithm
w (MHz) a3 a2 a1 a0

500 -1.20E+07 2.69E+05 -1.98E+03 7.7776
1000 -4.53E+06 1.00E+05 -749.52 3.2647
2000 -4.36E+06 93645 -662.95 2.4484
3000 -1.72E+07 3.60E+05 -2427.4 7.8446

2.4 Conclusions

In this chapter we gave an overview of both system engineering and channel modeling

aspects of geolocation with a focus on TOA based ranging and localization. We pro-

posed the use of the MSE Profile to gauge the performance of any indoor geolocation

algorithm under a variety of building conditions. We showed that the MSE Profile can

be used for performance benchmarking of different TOA-based indoor geolocation al-

gorithms. For our purposes we used CN-TOAG and LS. We have also investigated the

performance of these indoor positioning algorithms as a function of RP density and sys-

tem bandwidth. We presented mathematical relations between RP density and achievable

MSE and showed how they can be used to ensure the required performance with a given
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Table 2.4: Coefficients of the 3rd degree polynomial fit for CN-TOAG Algorithm
w (MHz) a3 a2 a1 a0

500 -1.15E+07 2.42E+05 -1771 7.0203
1000 -4.61E+06 97736 -725.22 3.1171
2000 -3.51E+06 76142 -557.93 2.2317
3000 -1.04E+07 2.34E+05 -1728.7 6.4152

indoor positioning network scenario.
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Chapter 3

UDP Identification

Since UDP poses an important challenge especially for TOA based positioning systems,

identification of UDP conditions is an important research area. This chapter proposes a

new method for UDP identification and draws substantially from results presented previ-

ously in: [23].

Previous measurements and simulations for identification and modeling of the ranging

error associated with each of these conditions have been carried out in [18, 87]. Here we

propose an identification method of the UDP conditions and furthermore, based on the

statistics of the ranging error associated with each class of receiver location, we mitigate

the ranging problem.

The ideal CIR is usually referred to as the infinite-bandwidth channel profile since

with infinite bandwidth the receiver could theoretically acquire every detectable path. In

practice, however, the channel bandwidth is limited. Filtering the CIR with a limited

bandwidth filter results in paths with pulse shapes. It can be shown that the sufficient

bandwidth for accurate indoor localization based on the TOA metric is around 200 MHz

[20] for the receiver to be able to resolve the multipath and mitigate the ranging error

associated with MPC.
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Applying a peak detection algorithm to the filtered channel results in detecting FDP

and its respective TOA. The TOA of FDP, τFDP , is then used to approximate the distance

of the antenna pair

dFDP = τFDP × c (3.1)

where dFDP is the estimate of the distance of the antenna pair and τFDP represents the

estimate of the τDP . The erroneous detection of the DP component results in ranging

error, ε, which can then be defined as

ε = dFDP − dDP (3.2)

In the absence of multipath and presence of LOS conditions, the estimate of τFDP

is very close to the true value, τDP , therefore, error is insignificant. However, in prac-

tice there are three main sources of ranging errors in indoor localization systems. The

first source of error is multipath error which is the shift of FDP from DP due to a com-

bination of bandwidth limitation and presence of rich multipath in indoor environments.

The ranging error in the presence of multipath is inversely proportional to the order of the

bandwidth of the measurement system. Indeed in the presence of multipath and LOS con-

ditions accurate UWB TOA estimates of the distance are feasible due to their high time-

domain resolution [20] which allows the TOA-based localization systems to efficiently

and properly function under such conditions. However, in the absence of LOS conditions

it is possible for UWB systems to observe large errors depending on the availability of

DP. It is worth mentioning that the absence of LOS condition does not necessarily imply

that ranging error is bound to be large as discussed below.

Previous research classifies the receiver locations of a sample indoor environment

into four main categories of DDP, natural-UDP (NUDP), shadowed-UDP (SUDP) and no
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Figure 3.1: Hierarchical illustration of the channel classification

coverage (NC) [20, 88, 89], which are best described in figure 3.1. In general, DDP and

NUDP classes exhibit small ranging errors which makes their range estimate suitable to be

used for localization purposes. On the other hand, SUDP class exhibits unexpectedly large

ranging error; therefore its respective range estimate, if used for localization purposes,

degrades the performance of the system drastically. Range estimate is assumed to be

unavailable for NC class. Here, we should point out that this classification further breaks

down the UDP condition into two different categories and we still retain bipolar channel

characteristics (DDP/UDP) for positioning applications.

Depending on the availability of DP, we face two hypotheses:


H0 : DDP | dFDP ≈ dDP , ε ≈ 0

H1 : UDP | dFDP ≫ dDP , ε≫ 0

(3.3)

where H0 denotes the DDP hypothesis, which indicates that the channel profile can effec-
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tively be used for localization, and H1 denotes the UDP hypothesis, which indicates that

the channel profile is not appropriate for being used for localization purposes. dDP , dFDP

are the DP and FDP distances and ε is defined in equation (3.2).

Here we propose a methodology to distinguish between the DDP and UDP conditions

by investigating the statistics of the specific metric of the channel profile. For the purpose

of simulation we formed a grid of receiver locations on the third floor of the AK building

at WPI. We, then, generated the respective CIR of each receiver location for different

transmitter locations, for a total of 40000 CIRs. In order to simulate the real-time channel

profile of the CIR, a finite bandwidth raised-cosine filter is used to extract the channel

profile. Post processing peak detection algorithm is used to extract the desired metrics,

range estimate, τFDP , and subsequently we can estimate dDP .

There are two types of metrics being extracted from channel profile which can be

utilized in identification of UDP conditions. The first class of metrics, is the time delay

characteristics of the channel profile, while the second class deals with power character-

istics of the channel profile. We can also utilize a hybrid metric, consisting of time and

power, in order to classify the receiver location.

3.1 Time Metrics

The time characteristics of channel profiles have been used in the literature for a variety of

applications in communication field [90]–[92]. RMS delay spread and mean excess delay

are being used to determine the data-rate of the communication systems in indoor and

outdoor environment. Here, we utilize the time characteristic to identify UDP condition.
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3.1.1 Mean Excess Delay

Delay information encrypted in the channel profile is our first time metric to investigate.

Amongst all of the delay metrics the mean excess delay of the channel profile is the easiest

to find and perhaps the most effective metric, relatively, to efficiently identify the UDP

conditions. Mean excess delay is defined as the

τm =

Ldp∑
i=1

τ̂i|αi|2

Ldp∑
i=1

|αi|2
(3.4)

where τ̂i and αi represent the TOA and complex amplitude of the ith detected path, re-

spectively, and Ldp represents the number of detected peaks.

Conceptually, it can be observed that profiles with higher mean excess delay are more

likely to be UDP conditions as it is illustrated in figure 3.2 in which the τm values are

converted to distances. The probability plots of the distribution of DDP and UDP clearly

indicate that they can be best modeled with normal distribution and their separation indi-

cates that their normal distribution parameters are distinct.

In order to quantitatively determine the goodness-of-fit of the data to the normal dis-

tribution we apply the K-S and χ2 hypothesis tests. The results of the normal distribution

parameters, K-S test and χ2 test are summarized in table 3.1.

Table 3.1: The mean and standard deviation of the normal distribution for the τm
Channel Profile µτ στ K − Sτ χ2

τ

DDP 17.65 7.90 94.02% 55.61%
UDP 28.54 8.95 98.31% 59.72%

It can be observed that normal distribution supports the assumption of normality for

both DDP and UDP classes. It is worth mentioning that the other measures of time delay

characteristics of channel profile are found not to be as effective.
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Figure 3.2: Normality of τm for DDP and UDP profiles

3.2 Power Metrics

The other class of metrics that can be extracted from the channel profile are power char-

acteristics. There is hidden information regarding the DDP/UDP classification in the

respective power characteristics. Amongst the useful power metrics, total power and FDP

power are the most popular ones.

3.2.1 Total Power

RSS is a simple metric that can be measured easily and it is measured and reported by

most wireless devices. For example, the MAC layer of IEEE 802.11 WLAN standard

provides RSS information from all active APs in a quasi-periodic beacon signal that can

be used as a metric for localization [93]

50



10
2

0.0001

0.0005

0.001 

0.005 

0.01  

0.05  

0.1   

0.25  

0.5   

0.75  
0.9   

0.99  
0.999 
0.9999

Power (dB)

P
ro

ba
bi

lit
y

Probability plot of P
tot

 − Weibull Distribution

 

 
DDP power − Experiment
DDP power fit
UDP power − Experiment
UDP power fit

Figure 3.3: Weibull distribution modeling of total power

Ptot = Pr = 10 log10(

Lp∑
i=1

|αi|2) (3.5)

For identification, we used −Ptot which is referred to as power loss. It can be observed

that profiles with higher power loss are more likely to be UDP conditions. This is best

illustrated in figure 3.3 in which their respective probability plots with their Weibull fits

are shown. The separation of the curves illustrates the difference of the Ptot behavior for

different DDP/UDP conditions.

Again, in order to quantitatively determine the goodness-of-fit of the Weibull distri-

bution to the data we apply the K-S and χ2 hypothesis tests. The results of the Weibull

distribution parameters, K-S test and χ2 test are summarized in table 3.2.

It can be observed that Weibull distribution passes the K-S and χ2 hypothesis tests.
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Table 3.2: The a and b parameters of the Weibull distribution for the Ptot

Channel Profile aP bP K − SP χ2
P

DDP 67.38 5.92 95.11% 55.97%
UDP 79.94 7.49 94.78% 46.51%

3.3 Hybrid Time/Power metric

Although, the power metrics can be used individually to identify the class of receiver lo-

cations, one can form a hybrid metric to achieve better results in identification of the UDP

conditions. Here, we propose to use a hybrid metric consisting of TOA of DP component

and its respective power as the metric to identify the UDP conditions. Mathematically we

have

ξhyb = −PFDP × τFDP (3.6)

where ξhyb represents the metric being extracted. It can be shown that the desired metric

can be best modeled with Weibull distribution. Figure 3.4 represents the separation of the

fits and proves that, indeed, the proposed metric can efficiently be used in UDP condition

identification.

The results of K-S and χ2 tests for goodness-of-fit show close agreement for the as-

sumption of the Weibull distribution. The results of the Weibull distribution parameters,

K-S test and χ2 test are summarized in table 3.3.

Table 3.3: The a and b parameters of the Weibull distribution for the ξhyb
Channel Profile am bm K − Sm χ2

m

DDP 1056.89 1.50 94.58% 56.69%
UDP 2236.32 2.08 97.46% 55.19%
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Figure 3.4: Weibull distribution modeling of hybrid metric

3.4 Binary Hypothesis Testing for UDP Identification

Knowledge of the statistics of τm, Ptot, and ξhyb enables us to identify the UDP conditions.

In order to do so binary likelihood ratio tests can be performed to select the most probable

hypothesis. For this purpose, we picked a random profile and extracted its respective

metrics. The likelihood function of observed mean excess delay, τmi
, for DDP condition

can then be described as

L(H0|τmi
) = p(τmi

|H0) = p(τd)|τd=τmi
(3.7)

Similarly, the likelihood function of observed mean excess delay, τmi
, for UDP con-

dition can then be described as

L(H1|τmi
) = p(τmi

|H1) = p(τu)|τu=τmi
(3.8)
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The likelihood ratio function of τm can then be determined as

Λ(τmi
) =

sup{L(H0|τmi
)}

sup{L(H1|τmi
)}

(3.9)

The defined likelihood ratio functions are the simplified Bayesian alternative to the

traditional hypothesis testing. The outcome of the likelihood ratio functions can be com-

pared to a certain threshold, i.e. unity for binary hypothesis testing, to make a decision.

Λ(τmi
)
H0

≷
H1

ηm (3.10)

Similarly, we can define the likelihood functions for Ptot and ξhyb as

Λ(ri) =
sup{L(H0|ri)}
sup{L(H1|ri)}

(3.11)

Λ(ξi) =
sup{L(H0|ξi)}
sup{L(H1|ξi)}

(3.12)

which leads us to the corresponding hypothesis tests as

Λ(ri)
H0

≷
H1

ηr (3.13)

Λ(ξi)
H0

≷
H1

ηξ (3.14)

Each of the above likelihood ratio tests can individually be applied for UDP identi-

fication of an observed channel profile. The outcome of the likelihood ratio test being

greater than unity indicates that the receiver location is more likely to be a DDP condition

and can appropriately be used in localization algorithm while the outcome less than unity

indicates that the profile is, indeed, more likely to belong to the UDP class of receive loca-
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tion; hence, the estimated τFDP has to be mitigated before being used in the localization

algorithm.

For more effectively using the likelihood functions, we can combine the functions

and form a joint likelihood function. Assumption of the independence of the likelihood

functions along with combining them leads to a suboptimal likelihood function defined as

δ(τhyb, Ptot, ξm) = L(H0|τm, Ptot, ξhyb) =

L(H0|τm)× L(H0|Ptot)× L(H0|ξhyb)

(3.15)

which can be compared to a given threshold for decision making, i.e. L(H0|τm, Ptot, ξhyb)
H0

≷
H1

1. The results of the accuracy of the likelihood hypothesis tests, individually and as a joint

distribution, are summarized in table 3.4.

Table 3.4: Accuracy of the likelihood hypothesis test
Likelihood Ratio CorrectDecision

τm 70.85%
Ptot 67.06%
ξhyb 69.73%
δ 89.29%

It can be observed that the accuracy of using individual metrics for identification of

UDP conditions is about 70% while combining the metrics for UDP identification can

achieve 90% of accuracy.

3.5 Conclusions

In this section, we have introduced a methodology to identify the UDP condition. We have

proposed the use of power and time metrics for the received channel profile to obtain

the likelihood functions for binary hypothesis testing. Comparing the outcome of the
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hypothesis tests to a certain threshold determines if a receiver is in DDP or UDP condition.

Once the condition is identified, the ranging error associated with it can be mitigated using

certain methods one of which will be discussed in the next chapter.
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Chapter 4

Precise Ranging and Localization in the

Absence of Direct Path

In this chapter we will introduce precise ranging in the absence of DP using a concept

called path persistency. Path persistency is part of the spatial channel model that will be

introduced in detail in chapter 7.

High precision ranging involves a two-stage approach:

1. UDP identification

2. UDP mitigation

We discussed the UDP identification stage in the previous chapter. The mitigation

stage builds on top of the information gained through UDP identification and tries to get

precise ranging using certain methods.

Error mitigation in NLOS (UDP) conditions has been previously addressed in liter-

ature. Besides identification and modeling efforts, methods have also been proposed to

mitigate the error based on statistical characterization of previously obtained data [69,94].

Here we will present a proof of concept by using a method called temporal TDOA to
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show how a persisting path can be used to obtain precise ranging under UDP conditions.

AOA assistance in mitigating UDP related errors will also be introduced. This chapter

draws substantially from results presented previously in: [24, 25].

The sudden and random occurrence of UDP conditions may resemble sudden hits of

signal fading in radio communications. Therefore, a seemingly reasonable approach to

mitigating the problem is to employ well-known diversity techniques. To improve the

performance of a radio modem in fading we can replicate the signal in multiple frequency

channels to provide frequency diversity, we can apply a variety of coding techniques, or

we can simply repeat the signal multiple times to provide time-diversity, or we can use

multiple antennas to provide space-diversity. Since these techniques have been very effec-

tive, widely utilized, and analytically sophisticated, a rich literature has gradually evolved

around them in the past fifty years. The latest innovative research in this field has evolved

into the introduction of OFDM modulation, MIMO systems, and space-time coding tech-

niques [14]. If we ignore the complexity of the behavior of the indoor radio propagation

and the fact that the models developed for indoor propagation characteristics for telecom-

munication applications are not useful for indoor geolocation, as first described in [12],

using diversity techniques may appear promising. In fact the lack of understanding of the

complexities of indoor radio propagation has been the main source of failure for precise

indoor geolocation projects over the past decade. In principle, when the DP is shadowed,

none of the traditional diversity techniques are effective for precise indoor geolocation.

As an example, consider the traditional frequency diversity technique used in fre-

quency selective multipath fading on indoor radio channels. In telecommunication appli-

cations the basic principle is that rather than transmitting all the information using one

wideband channel, we can send several streams of lower rate data over multiple narrow-

band sub-channels. If one of the sub-channels is hit by frequency selective fading we

can still use other sub-channels to achieve reliable communications. This basic principle
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is very effective in telecommunication applications and it is applied in OFDM, which is

the technology of choice for wideband data communications in WLANs, WPANs, and

WiMAX. If we apply the same basic concept to indoor geolocation in the absence of

DP, rather than using the TOA of FDP from a single wideband channel, we can use the

TOAs of the FDP obtained from multiple sub-channels to reduce the DME. However, in

the absence of DP when the TOA estimate in one channel is not reliable it is also unreli-

able for other sub-channels. Therefore, frequency diversity techniques are not capable of

providing significant improvements to the performance in UDP conditions.

After nearly a decade of research and analysis on the effects of multipath on the ac-

curacy of the indoor localization systems [12], our understanding of this important and

complicated problem today is that the traditional radio communication techniques such

as frequency diversity, time diversity, or space diversity using MIMO techniques are not

effective in mitigating large ranging errors resulting from the absence of the DP. Two

promising approaches to precise indoor localization in the absence of DP are localization

exploiting non-direct paths, and cooperative localization. Although these approaches to

algorithm development are intuitively sound, the degree of their effectiveness and their

implementation details in a realistic indoor environment are subjects for current research.

Next we will focus on ranging and localization using non-direct paths. Cooperative local-

ization is beyond the scope of this thesis and hence will not be discussed.

4.1 Localization Exploiting Non-Direct Paths

Figure 4.1-a illustrates the basic principle underlying the relationship between the TOA

of the DP and a path reflected from a wall, for a simple two path scenario. As the mobile

receiver moves along the x-axis, the change in the distance in that direction is related to

the length of the DP by dxcos(α) = dlDP . As the geometry of the figure 4.1-a shows, for
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the reflected path we also have dxcos(β) = dlPn . Therefore, we can calculate the change

in the length of the direct path from the change in the reflected path, using

dlDP = dlPn

cosα

cosβ
or dTOADP

= dTOAPn

cosα

cosβ
(4.1)

In other words, knowing the angle, β, between the arriving path and direction of

movement and the angle, α, between the direction of movement and the DP, we can

estimate the changes in the TOA of the DP from changes in the TOA of the reflected path.

This basic principle can be extended to paths reflected from many objects and to the three

dimensional case as well. This general treatment is available in [95]–[97].

In indoor geolocation applications, we can think of applying this principle to locating

a mobile in UDP areas in the absence of DP. Knowing the previous location of the trans-

mitter and the direction of movements we can always calculate α even in the absence of

the DP. If we can find a way to measure β, using values of α and β in equation (4.1) we

can track the location as the mobile receiver moves along in a UDP environment.

In order to use a path other than the DP for tracking the location, we should be able to

identify that path among all other paths, and the number of reflections for that path should

remain the same in the region of interest. In the simple two path model shown in figure

4.1-a, the second path consistently reflects from one wall as we move along the region and

hence we can identify that path easily because it is the only path other than the DP. Since

both conditions hold for the second path, the behavior of the TOA of that path, shown

in 4.1-b, is smooth and we can use it for tracing the DP. In realistic indoor scenarios, in

the absence of direct path, we have numerous other paths to use and the simplest paths to

track are the FDP and the SP.

Figure 4.3 shows the behavior of the distances calculated from the TOA of FDP and

the SP for a system with 200MHz bandwidth, and a comparison with the actual distance

between the Tx-1 and the receiver when the receiver moves across the loop in our example
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scenario shown in figure 4.2. Both SP and the FDP have inconsistent behavior in the UDP

region of interest. This inconsistent behavior is caused by changes in the path index of

these paths. In other words, if we associate a path number or index to a path associated

with a specific reflection scenario from given walls, as we move along in a region, the path

index or reflection scenario for the FDP or the SP changes. Each of these changes causes

a jump in the behavior of the TOA of the path, thus impairing the smoothness needed for

our estimation process.

Figure 4.1: (a) Basic two-path reflection environment (b) Relation between the TOA of
paths

With regard to channel behavior, we need to look into the principles underlying this

behavior to learn how to remedy the situation. The basic problem is path-indexing changes,

and the rate of path indexing exchange is a function of number of paths in the impulse

response. The number of paths can be reduced by restricting the AOA of the received sig-

nal using a sectored antenna. Using sectored antennas to restrict the AOA provides two

benefits: (1) it reduces the number of multipath components and hence reduces the path

index crossing rate, facilitating improved tracking of specific paths in the channel profile;
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Figure 4.2: Dynamic scenario on the 3rd floor of AK Laboratory at WPI

Figure 4.3: Behavior of the distances calculated from the FDP and SP vs. actual distance

(2) it allows a means for estimating the angle of the arriving path needed for equation

(4.1). To further clarify the benefits of this technique, we resort again to our loop-route

scenario to explain the behavior of the SP in the channel impulse response in a receiver

using sectored antenna with a variety of aperture angles.

To begin we examine a sample location on the loop-route and we use the RT software

to generate the impulse response of the channel for different aperture angles to observe

how the number of multipath components in a UDP region relates to the aperture angle.
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Consider the location indicated by an arrow in the left side of our loop-route shown in

figure 4.2. The DP between Tx-1 and this location is blocked by the metallic chamber

and the SP is a path arriving after two reflections. The ray tracing generated impulse

response of the channel at this location has 590 arriving paths with no restrictions on

AOA. With a 45-degree aperture, we have 91 paths and with 5 degrees the number of

paths decreases to 12. As the aperture angle becomes narrower, number of paths reduces

significantly allowing a better tracking of a desirable path.

Figure 4.4 shows the ideal behavior of different paths without bandwidth considera-

tions as a receiver moves along the left segment of the rectangular route. The blue line

shows the actual distance and the blue line with star marker shows the behavior of the

FDP, which in this case is also the strongest path. The receiver starts in a DDP condition,

then moves to a UDP region, and then returns to another DDP area. In the DDP regions

the DP, FDP and the SP are the same and the range estimate is accurate and consistent

(steady). In the UDP region, the FDP, which is also the SP, remains steady for short pe-

riods but due to the path index changes of the FDP it can not maintain its steadiness and

it experiences about ten transitions of the path index or reflection scenario for the FDP.

This high rate of transitions is due to the large number of MPCs and we can reduce these

components by using sectored antennas to limit the AOA of the paths.

Figure 4.4 also shows the behavior of the SP in three neighboring 5 degree sectors

along the UDP region of the left side corridor in figure 4.2. These are three of the 72 ideal

5 degree sectors assumed in this example. The SP of the entire profile, shown with two

reflections in figure 4.2, is first in sector 61, and then it moves to sectors 62 and 63. As

the SP moves among these sectors it has a steady behavior with no change in path index,

which we can use for the detection of the TOA of the DP.

The discussion above shows the potential for the implementation of ranging using

non-direct paths with an ideal sectored antenna with 5 degrees aperture angle for each
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Figure 4.4: Effectiveness of AOA in the UDP region

sector and a simple algorithm which traces the strongest path as it moves from one sector

to the next neighboring sector. Development of more practical algorithms to implement

this concept with finite bandwidth and realistic antennas will require significant additional

research.

4.2 Path Persistency

In this section, we will introduce the concept of persistency of a path (or equivalently

lifetime of a path) and how persisting paths can be used in an indoor localization/tracking

system for remedying the UDP condition by employing sectorized/smart antennas [98].

The study will be a continuation of the concept of exploiting non-DP paths introduced in

[20] and outlined above. Another study exploiting multipath has been introduced in [96].

The intuition for using multipath is that even in the absence of DP there will be multipath

components that might show stable and persistent behavior and hence can be related to
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the DP to aid in more precise localization as will be explained in the next section. To the

best of our knowledge, this aspect of indoor localization/tracking has not been studied

before.

Before describing the concept of persistency we will once again give a characteriza-

tion of wireless channel. The characterization of indoor wireless medium can be given by

its channel impulse response (CIR):

h(τ, t) =
L∑
i=1

βiδ(t− τi)e
ϕi (4.2)

where βi and ϕi are the complex magnitude and phase of the path arriving at τi, respec-

tively. The received signal can be represented as:

r(t) =
L∑
i=1

βip(t− τi)e
ϕi (4.3)

where p is the pulse being transmitted by the transmitter. Ideally we assume that p(t) is a

Dirac delta function, δ(t), which has infinite bandwidth, thus we will have r(t) = h(τ, t).

If we consider a bandlimited signal, p(t) will be the sinc function.

As a receiver moves along a certain trace with a steady speed v, the paths will exhibit

variations in their amplitudes, TOAs and AOAs. The rate and amount of these changes

are highly dependent on the reflection/transmission interactions of the paths. These three

entities can be considered as detectable (traceable) features of a path. By detectability or

traceability, we emphasize being able to obtain measurements of these features. Persis-

tency is basically the evolution of a particular path in which its traceable features exhibit

differential changes in accordance with its differential motion. Persistency results from

the fact that a certain path preserves its reflection/transmission pattern. As an example,

a wall running continuously parallel to the motion path of the receiver yields a persistent

path. Figure 4.5 shows the path persistency (equivalently lifetime of a path) conceptually.
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Figure 4.5: Concept of path persistency

The analysis of persistency would provide us with the tools necessary to overcome

the difficulties introduced by the UDP condition. If we can track the paths that exhibit

persistent behavior even when the DP is not present, then we can use this additional

information to properly adjust the ranging measurements for true distance.

4.3 Geometric Basis of the Concept

In order to explain how multipath components can be used to aid in the ranging and thus

precise localization in a dynamic scenario, we conceptualize the problem as a simple geo-

metric analysis of arriving paths. We further assume that we only have two arriving paths,

one of which is the direct path between the transmitter and the receiver and the other one

is a path that is reflected from a continuous wall that runs parallel to the direction of the

movement of the receiver. Figure 4.6 shows the configuration of the postulated scenario.

We consider a metallic obstacle at certain coordinates which blocks the direct path for a

portion of the receiver’s motion path. The path that gets reflected from the wall is always
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detected at the receiver. As the receiver moves with a certain velocity in the indicated

direction, these two paths will exhibit differential changes in their amplitudes, TOAs, and

their arrival angles which can be regarded as the traceable features of that path. Assuming

the receiver has an omnidirectional antenna which basically picks the strongest path for

ranging, as soon as the direct path is blocked, it will begin picking up the reflected path

and consequently there will be a major difference in the TOA, amplitude and arrival an-

gle. This, in turn, suggests the reception of a completely different path having a different

reflection/transmission pattern. If we were to gather ranging data based solely on omni-

directional strongest path selection, we would observe a substantial amount of ranging

error as the receiver moves along the shadowed portion of its pathway. However, if we

can detect paths based on their arrival angle (i.e by using sectorized/smart antennas) we

can keep track of these paths separately, and thus once the DP is blocked we will still have

the reflected path. The TOA for this reflected path will be offset by the TOA of the DP

by a certain amount that can in fact be obtained by temporal TDOA between consecutive

receiver locations. Therefore, by acquiring this reflected path and subtracting this offset

from its TOA, we can find the TOA of the DP, which is blocked, with high accuracy.

As long as there is a consistent region along the path of movement (a continuous wall

in our case), this method can be applied to aid in high bandwidth TOA ranging in a dy-

namic scenario where the direct path is non-existent for certain portions of the receiver’s

pathway.

4.4 Temporal TDOA

In this section, we introduce a method which basically employs TDOA in a new context.

As opposed to traditional TDOA from multiple transmitters, we consider TDOA of a

certain path as the receiver moves along its pathway. Here TDOA will represent the
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Figure 4.6: Geometric explanation for path persistency

difference of TOA of a certain path between two adjacent sampling locations separated

by δt or since the receiver is assumed to be moving at constant velocity v, they will be

separated by vδt. Hence we will be using TDOA in a temporal sense.

Assuming we have DP ranging on points uniformly spaced along this pathway, we can

keep track of the difference between the TOAs of this particular path at these predefined

points. In fact, we assume a differential distance between these points so that the change

in the TOA or TDOA also exhibits a differential change as long as the this path persists.

From this point on, we will be using the term TDOA with the meaning just outlined. Once

TDOA is tracked along the receiver’s motion, a sudden positive or negative change would

indicate the fact that another path starts to become detectable. In order for this method to

be useful, it is also important to be able to track paths based on their AOA [99]. In this

sense, we propose a smart antenna based multisector tracking system that can utilize both

AOA and TDOA information to make use of multipath components other than the DP. A

preliminary analysis of this approach has been introduced in [20]. A previous study also

exploited multipath components to obtain accurate results, but the internal geometry of
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the buildings needed to be known or estimated using complex algorithms [96].

Referring to figure 4.6 we can write

d1(t) =
√
x(t)2 + a2

d2(t) =
√
x(t)2 + (2b− a)2

α(t) = arctan( a
x(t)

)

β(t) = arctan(2b−a
x(t)

)

(4.4)

where d1(t), d2(t), α(t),β(t) are the path lengths and arrival angles of the DP and the

reflected path respectively.

In order to relate the changes in path lengths and the arrival angles we will consider

figure 4.7 and show the calculations on DP only. Same calculations will also apply to the

reflected path. In this figure, we assume receiver is at x(t − δt) at time t − δt and its

distance from the transmitter is d(t− δt). It moves a differential distance δx in time δt to

the position x(t). Since we consider a differential movement along the given path we can

assume that previous and current paths are almost parallel. Thus we can write

d(t) = d(t− δt) + δxcos(α(t)) (4.5)

From equation (4.5) we can easily write the temporal TDOA for the two paths as:

d1(t)− d1(t− δt) = δxcos(α(t))

d2(t)− d2(t− δt) = δxcos(β(t))
(4.6)

which is the discrete representation. If divide both sides of 4.6 by δt we obtain the con-

tinuous time equivalent as:
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Figure 4.7: Calculation of TDOA for consecutive locations

d
dt
d1(t) = vcos(α(t))

d
dt
d2(t) = vcos(β(t))

(4.7)

where v is the speed of the receiver. Furthermore from 4.7, the differential change in

the length of DP is related to the differential change in the length of the reflected path as

follows:

d

dt
d1(t) =

d

dt
d2(t)

cos(α(t))

cos(β(t))
(4.8)

In the following section we develop a practical approach to precise ranging using

temporal TDOA and multipath tracking.

4.4.1 Temporal TDOA and AOA for Precise Ranging

Substantial research effort has focused on methods to identify the cases of UDP and mit-

igate the errors occurring in these areas. Although identification of UDP conditions is

the first and an important aspect of error mitigation, methods and algorithms to actually

mitigate the error also play a vital role in the overall performance of the system. In this

part, we focus on the mitigation stage.
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As explained in the previous section, once the DP is lost, it might be possible to

track a persistent secondary path and still obtain precise ranging by using the relations

previously outlined. With the assumption that the tracking for the receiver starts in the

DDP region, the receiver keeps track of the multipath information using its smart/sectored

antenna subsystem, specifically keeping track of traceable path features: TOA and AOA.

The RSS information can be also tracked, however, due to its unreliability caused mainly

by shadow and mutlipath fading for path tracking, it is omitted in our study. The vectors

of TOA and AOA being tracked in each sector can be represented as a pair:

F = (τ i, θi) (4.9)

where F is the multipath information matrix, τ i and θi denote the vectors of TOA and

AOA for each sector i ∈ [1..K] respectively, and τ i = [τi,1, τi,2, ...τi,m], θi = [θi,1, θi,2, ...θi,m]

denote the m paths that can be tracked in each sector separately. The number of these

paths, m, depends on the angular and time resolution (bandwidth) of the system being

utilized. When a certain path being tracked persists its traceable features will exhibit a

differential change, i.e

τi,k+1 − τi,k = δT

θi,k+1 − θi,k = δθ
(4.10)

Here δT is the TDOA expressed as (referring back to figure 4.7)

δd

c
=
δxcos(α(t))

c
(4.11)

where c is the speed of light.

Whenever there is a substantial change in the TDOA between consecutive points,

this will most likely be caused by the detection of a completely different path. When
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this occurs, the system will make use of multipath information that still shows persistent

behavior and the precise ranging will be obtained by compensating TOA of the persistent

multipath by the offset that has been observed and also applying AOA correction as in

equation (4.8).

4.4.2 Proof of Concept via Simulations

In order to show how TDOA and AOA can be used to obtain precise ranging a two-

step simulation platform has been developed. The first part uses a CWINS developed

RT software that generates the CIR of a given floorplan in a building. The data that

is output is the amplitude, TOA, AOA information for each specific path. RT assumes

infinite bandwidth operation, which is practically impossible but sets a baseline for the

performance analysis of indoor positioning methodologies.

Figure 4.8 shows the sample scenario which demonstrates the existence of a UDP

condition but which can be complemented by the presence of persistent multipath com-

ponent. After the RT results are obtained, the outputs have been processed by MATLAB

in the second step to actually implement the multipath tracking using temporal TDOA.

The operation of the algorithm can be summarized as:

1. The receiver keeps track of the DP and secondary path (multipath) information in

the form given in equation (4.9).

2. Whenever the DP signal is lost, estimated TOA information at the kth time step is

updated as:

ˆTOA(k) = TOAmp(k)− δT + AC (4.12)

where

δT = [TOAmp(k)− TOADP (k − 1)] (4.13)
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Figure 4.8: Sample scenario for demonstrating the effectiveness of multipath tracking

and

AC = [TOAmp(k)− TOAmp(k − 1)]
cos(α(t))

cos(β(t))
(4.14)

Here ˆTOA(k) is the estimated TOA, TOAmp(k) is the secondary path TOA at time

step k and TOADP (k − 1) is the DP TOA at time step k − 1 where it was last observed.

AC stands for angular correction and is calculated as in equation (4.14).

To assess the performance of the proposed scheme, we employ the RMSE of the

receiver’s ranging data for both omnidirectional strongest path detection and the proposed

multisector multipath strongest path tracking. The RMSE is defined as:

√√√√ 1

N

N∑
i=1

(R̂−R)2 (4.15)

In figures 4.9 and 4.10 we can see how multipath correction may be used to substan-

tially decrease ranging error together with the temporal TDOA data. Figure 4.11 shows

the tracking of TDOA for each location considered in the simulation. In this figure, the

first positive jump of about 17 m in TDOA denote the location where a switch from DDP

to UDP occurs. At this point the amount of jump will be utilized in offset correction.
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The negative jump in TDOA marks the location where the channel goes back to DDP

condition.

Referring to figure 4.10, using only omni-directional strongest path selection, we ob-

tained an RMSE of 7.3316 m. However when we apply the offset only multisector based

tracking we observe a substantial amount of drop in the RMSE and we obtain 0.6387 m.

Furthermore if we also apply angle correction RMSE drops down to 0.0634 m. The gain

in ranging accuracy (in terms of RMSE) in this particular scenario is about 115.

However the use of this method is dependent on the internal structure of the building

in which the tracking is needed. The number of the walls, wall material, average wall

length as well as the distance of the transmitter to the walls and the receiver all affect the

fact that different multipath components will be available for varying amounts of time.

Since persistency is important, to use the proposed method in the most effective way

possible, statistical characterization of buildings in terms of building parameters (number

of walls, wall lengths, wall material etc.) gain importance. Buildings with simple internal

structures and with less clutter will provide better tracking under UDP conditions, than

buildings with a large number of walls and metallic objects. Effect of building architecture

on path persistency in the next chapter.

4.5 Hybrid TOA/AOA Multipath Tracking for UDP Er-

ror Mitigation

The previous section demonstrated how TOA and AOA information can be used to obtain

precise ranging information for a persistent path. In this section we introduce an actual

path tracking algorithm that tries to counter the effects of UDP by using joint TOA and

AOA information.
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Figure 4.9: Ranging correction with offset compensation only
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Figure 4.10: Ranging correction with combined angle and offset compensation

4.5.1 Algorithm Description

Whenever DP is lost a certain path is selected according to SP or FP rule and the al-

gorithm tries to follow this particular path by selecting the consecutive paths that have

the path metrics (TOA+AOA) closest to the metrics obtained from the previous sampling
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Figure 4.11: Temporal TDOA vs receiver locations

point. Since sudden jumps will be observed when a path switching occurs, the amount

of jump will be compensated by offset correction. The algorithm will also employ AOA

adjustment as presented in equation 4.8. The motivation behind this algorithm is that

when DP is lost, there might be persistent paths whose characteristics do not change

substantially along the UDP region. Since a certain persisting path will preserve its re-

flection/transmission pattern, it will experience only differential amounts of change in

both its TOA and AOA. The path selection at the kth location is a LS solution that can be

expressed as

τsel,k = {τi,k|i = argmin
p

√
M12p,k +M22p,k} (4.16)

where

M1p,k = τp,k − τsel,k−1 (4.17)

M2p,k = θp,k − θsel,k−1 (4.18)
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τsel,k−1 is the TOA, and θsel,k−1 is the AOA of the selected path at the (k − 1)th sampling

location respectively. Here, τp,k denotes the TOA of the pth path at kth sampling instant

and p ∈ [1..L] is the index of the path in the CIR.

4.5.2 Simulation Platform and Results

Simulations have been performed with a RT software package. These simulation results

are then processed by MATLAB to obtain ranging information. Throughout the simula-

tions infinite bandwidth for the pulses has been assumed. The floorplan of the 3rd floor of

the AK Laboratories at WPI and the test route for the receiver are shown in figure 4.12. On

this floorplan there is one anechoic metallic chamber that blocks the DP for a certain part

of the route and hence creates UDP conditions. The transmitter is placed at pixel coordi-

nates (400,170). The receiver start location is taken to be a DDP position which means

the receiver position is known exactly when the simulation starts. Throughout the receiver

route, there are various segments that are DDP and UDP. Our assumption throughout the

simulation is that whenever a DDP condition occurs this information is made available at

the receiver such that FDP is taken into consideration since it provides the most accurate

ranging. We will not be addressing the identification problem of DDP/UDP conditions

(as noted earlier) since we assume this information is readily available. Figure 4.13 gives

the distance estimation for the algorithms considered, namely FDP, SP and our proposed

algorithm. The shaded regions denote the UDP areas. Referring to figure 4.12, there are

2 UDP regions. The last UDP region in figure 4.13 is actually a continuation of the first

region. This figure is referenced to the point at the lower left corner of the receiver loop

which is located at pixel coordinates (149, 87). Receiver start location corresponds to

point 290 which is a DDP point. From this figure, we can easily see that SP gives us a

considerable amount of variation in ranging estimates in the UDP areas, which greatly

increases overall error. FDP gives us better and more stable results, however we can still
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Figure 4.12: Floorplan of AK 3rd floor at WPI and the simulation setup

see variations of the estimates and the offset in the UDP region. Our proposed algorithm,

which takes into account the offset correction and angle adjustment from equation 4.8,

greatly improves the ranging accuracy in the UDP region and hence mitigates the error

with good performance. Figure 4.14 presents the CDF of the errors obtained using each

of the algorithms. From figure 4.14, we can clearly see overall performance achievement

with the proposed algorithm. Almost 90% of the locations have errors less than 1.7 m,

with the overall error not exceeding 3 m.

One important measure for the comparison of how well the ranging/positioning algo-

rithms is the RMSE.

The RMSEs obtained from the SP, FDP and our proposed algorithm in the UDP areas

can be seen in table 4.1.

Table 4.1: RMSE comparison among ranging methods
Algorithms RMSE (m)

SP 11.69
FDP 4.82

Prop. Alg. 1.23
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4.6 Conclusions

In this section, we introduced the concept of path persistency and how it can be used to

obtain precise ranging in the absence of DP. One such method is the temporal TDOA and

multipath tracking based high precision ranging. We have also presented a new method

for TOA-based systems to mitigate the ranging error. The proposed method relies on the

fact that there might be persisting non-direct paths present even in the UDP conditions,

which can be used to aid in precise ranging. The previous AOA and TOA information of

these persisting paths may be utilized in mitigating the large errors associated with UDP

regions. An RMSE of about 1.23 m is achieved with the RT simulation of AK 3rd floor

at WPI, utilizing the proposed method, whereas, the FDP and SP give us RMSEs of 4.82

and 11.69 m respectively.
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Chapter 5

Effects of Building Architecture on

Persistency

This chapter discusses the effect of building architecture on path persistency based on

sample scenarios and it draws partly from results presented previously in: [26].

Path persistency is primarily affected by the architecture of the building. The existence

of long continuous walls such as corridors will certainly help in getting a longer path

persistency if the receiver is following the wall.

In order to relate path persistency to building architecture, we will be showing the

dependency on wall lengths quantitatively.

5.1 Dependence of Path Persistency on Floorplan Com-

plexity

The use of the method mentioned in the previous chapter is dependent on the internal

structure of the building in which tracking is needed. The number of the walls, wall

material, average wall length as well as distance of the transmitter to the walls and the
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receiver all affect the fact that different MPCs will be available for a varying amounts of

time. Since persistency is important to use the proposed method in the most effective way

possible, statistical characterization of buildings in terms of building parameters (number

of walls, wall lengths, wall material etc.) gain importance. Buildings with simple internal

structures and with less clutter will provide better tracking under UDP conditions than

buildings with a large number of walls and metallic objects. Hence the number of persis-

tent regions (NPR) on a receiver’s pathway will be our first metric in the characterization

of buildings. Other two metrics related to persistency are the average segment length (av-

erage path lifetime (APL)) and average path displacement (APD). APL is the mean length

of all different persistent regions on the receiver’s motion path and is an indicator for the

average lifetime of a certain path. It shows for how long a path will be persistent in units

of distance. It can be written as:

APL =

NPR∑
i=1

li

NPR
(5.1)

where li is the lifetime of each persistent path in m. Here we can easily see that low

number of persistency regions indicate higher APL meaning paths are more persistent.

The other metric is the APD that shows how much TOA difference there is between

different persistency regions on the average. It can be represented as:

APD =

NTD∑
k=1

dpi

NTD
(5.2)

where dpi is the amount of displacement in m when a switch occurs from one persistent

path to another and NTD is the number of total displacements.

As a measure of complexity, we consider total number of walls and the mean length

of all the walls for a given floorplan. Complex building architectures will have a large
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number of walls thus creating a dense multipath environment for the RF propagation. If

we assume the floorplan area stays approximately the same, this will result in a shorter

mean wall length. Thus reducing the number of walls will result in higher mean wall

lengths. This identification might be important to assess the performance of a certain

localization system since persistency will directly be related to these parameters. Here

we propose a floorplan complexity function f = f(N,M) as

f(N,M) =
M

N
(5.3)

where N is the number of walls and M is the mean wall length of a certain floorplan. For

the purpose of this study, we consider floorplans with the same total area with different

levels of complexity and N and M will be inversely proportional hence the ratio will

provide us with a single numeric value that is representative of how complex a floorplan

is. The higher this value, the less complex the floorplan is.

Figure 5.1: 3rd floor floorplan of AK Laboratories with varying levels of complexity
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We now present a comparative analysis of persistency for varying levels of floorplan

complexity and how certain building parameters affect persistency. In this simulation, SP

detection has been performed. Three different layouts of AK Laboratories at WPI with

varying levels of complexity have been considered for the simulation. Figure 5.1 shows

these layouts. Here AK Rectangular refers to the layout in which the outer walls of the AK

3rd floor is assumed to form a simple rectangle without any interior walls. AK Simplified

is the layout with the true outline of the exterior walls but still without the interior walls.

AK Full is the full layout of the floor. The closed loop seen in the middle in each of the

floorplans is the test loop for the receiver. The two small boxes represent the metallic

anechoic test chamber and the elevator shaft respectively. They cause UDP condition on

the test loop for certain regions. The asterisk at pixel coordinates (400,170) represents

the transmitter. In these floorplans the scaling is such that every 7 pixels represent 1 m.

On the test loop each sample measurement is taken every pixel corresponding to about 13

cm.

Table 5.1: Persistency analysis of varying levels of floorplan complexity
Building Number of Average Number of Average Path Average f(N,M)

Type Walls Wall Length Persistency Regions Lifetime Path Displacement
(N) (M) (m) (NPR) (APL) (m) (APD) (m)

AK 12 17.31 5 16.37 9.22 1.4425
Rectangular

AK 20 10.37 7 11.65 9.97 0.5185
Simplified

AK 97 5.46 65 1.09 5.32 0.0563
Full

Figure 5.2 shows the ranging estimate from the transmitter for three different versions

of the AK 3rd floor floorplan. The gray rectangular areas represent the UDP regions

as blocked by the metallic chamber. From this figure we can see that AK Rectangular

and AK Simplified, since very similar in complexity, give smooth (persistent) ranging

estimates. When full details are included in the floorplan, ranging estimation becomes

rather random especially in the UDP regions due to presence of many MPCs in a confined

area. Hence, as the receiver moves on the loop, strongest path changes rapidly meaning
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Figure 5.2: Omnidirectional strongest path detection in floorplans with different com-
plexities and related ranging measurements

paths do not persist as much.

For the results of architecture effect on persistency we refer to table 5.1. The table

lists floorplan characteristics and the obtained persistency metrics such as NPR, APL and

APD as a function of f(N,M). Here we can easily observe that the AK Full floorplan

with all the walls, give us 65 different persistency regions, whereas AK simplified gives 7

and AK rectangular 5. As the complexity decreases we get a lower number of persistency

regions and higher APL which basically means we have a higher percentage of exploiting

persistent paths on a given receiver trace. Figure 5.3 presents cumulative distribution of

path lifetimes for the floorplans. This figure is representative of how floorplan complexity

greatly affects the persistency behavior of the paths, i.e average path life time decreases

significantly with increasing floorplan complexity. The relation of f(N,M) to ranging

accuracy can be given as the system’s multisector tracking granularity and its computa-

tional resources. If paths persist for a longer time it will be easier to track this path with

a given angular granularity and with the help of offset/AOA correction precise ranging

will be achieved. If the paths do not persist as much, then the system will not be able to

differentiate those different paths in a given sector and the relation of these paths to DP
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will not be accurately obtained hence leading to inferior ranging estimates.
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Figure 5.3: CDF for path lifetime for different floorplan complexities

5.2 Relation between Path Persistency and Internal Walls

of a Building

In the previous section we showed how the complexity of a floorplan affects path persis-

tency. In this section we will give a geometric explanation for the dependence of path

persistency on the length of internal walls of a floorplan.

We will assume there are two walls, a transmitter and a receiver as shown in figure

A.1. The receiver moves along the indicated path. We further assume the transmitter

location, wall locations and receiver’s motion path are predefined as constants.

Here we will only consider two different reflections, a first order reflection from the

horizontal wall and a 2nd order reflection from the vertical wall. This concept will be

applicable to multiple reflections from multiple walls.

Assuming receiver’s line of motion is adequately long a certain path’s existence due to

a certain wall (corresponding to its persistency) will be directly proportional to the length
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of the corresponding wall. The derivation of this dependency is presented in appendix A.

In order to compare the derivation with simulations we developed a simulation plat-

form which is explained in the next section.

5.2.1 Simulations

We created 5 different sets of 50 random square floorplans. Each set represents a dif-

ferent floorplan area. The first set is 10m by 10m (representing very small residen-

tial/commercial settings), the second set is 20m by 20m (representing small residen-

tial/commerical settings), the third set is 50m by 50m (representing medium residen-

tial/commercial settings), the fourth set is 100m by 100m (representing large residen-

tial/commerical settings) and the fifth set is 200m by 200m (representing very large resi-

dential/commerical settings). The methodology we used in order to create the floorplans

is called the slicing tree floorplan algorithm which is extensively used in VLSI floorplan-

ing [100]–[103] and with applications to architecture and building design [104,105]. This

method ideally matches our purposes since most random floorplans obtained by using this

method will be representative of real world settings with high efficiency as most buildings

are comprised of rectilinear layouts. One such example is given in figure 5.4 as 20m by

20m and 50m by 50m samples. The details of the slicing tree algorithm can be found in

appendix B.

After obtaining 250 different floorplans from the simulation platform we took the his-

togram of all wall lengths and we observed that the distribution can be best represented

by a log-logistic random variable in comparison to Exponential and Weibull distributions

which were candidate distributions for this type of data. Figure 5.5 shows the cumula-

tive hazard function for the chosen distributions and we see that log-logistic has a better

overall fit than the Exponential and Weibull fits. The cumulative hazard function is par-

ticularly useful in survival analysis studies and will be presented in more detail in chapter
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Figure 5.5: Cumulative hazard function for wall length distributions

As we will show in chapter 7, the path persistency is also best modeled using a log-

logistic distribution. The fact that the path persistency and wall lengths follow the same

distribution (up to scale factor that is dependent on the placement of the wall, transmit-

ter and receiver line of motion) is a strong indication of the validity of our approach in

deriving the dependence of path persistency on wall lengths.
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5.3 Conclusions

In this chapter we presented a study that analyzed the effect of building architecture on

path persistency. We observed that as the floorplan (building) gets more complex (having

more walls) the persistency of MPCs drop as expected. Hence accurate indoor ranging

will be more challenging in these structures. We also presented the dependence of path

persistency on the distribution of internal wall lengths of a floorplan and showed that path

persistency follows the same family of distribution as that of wall length.
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Chapter 6

Sensitivity Analysis for Multipath

Diversity

In this chapter, we present the results of empirical measurements for the sensitivity anal-

ysis of MPCs. We practically analyzed the effect of bandwidth, peak detection threshold

and UDP occurrence on the number of MPCs and their persistency in a typical office envi-

ronment using two different measurement scenarios: namely loop and corridor scenarios.

This chapter draws substantially from results presented previously in: [27, 28].

The study in this chapter has also been presented as part of the MS thesis by Mr.

Yunxing Ye with whom I collaborated during my studies on spatial diversity.

Note: In this chapter LOS and DDP are used interchangeably. Similarly NLOS and

OLOS are used interchangeably.

6.1 Spatial Measurements

Some previous measurement campaigns that were carried out in the context of indoor

radio channel modeling [106]–[108] did not consider the spatial behavior of the channel.
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The primary aim of these studies was to statistically characterize the indoor channel and

hence for both practical and coverage reasons measurement points were at least 1 m apart

from each other. For the purpose of our research, we developed a new measurement

system which is suitable for spatial (dynamic) channel measurements. Spatial channel

sounding is much more challenging than traditional static measurements, since it requires

consecutive measurements during the movement of the receiver, and the step size between

two consecutive measurements should be kept the same for all the measurement locations,

which requires accurate control of the receiver’s motion. For this purpose we utilized

a remotely controlled robot that acted as the receiver in motion. Moreover, since the

step size in spatial measurement is much smaller than in static measurements, a manual

spatial measurement campaign can be extremely time consuming and requires a huge

measurement database. For example, our first measurement scenario is the loop around

the CWINS Lab. With the measurement step size of 5cm, we took measurements at 931

different locations to traverse the 46.55 meter distance around the loop.

The measurement scenarios which we will discuss in detail in this chapter are an effort

to study the spatial behavior of the multipath channel and the influence of bandwidth,

threshold for path detection and UDP occurrence on multipath parameters pertinent to

indoor geolocation. The measurement campaign is composed of two experimental steps:

Step 1 is designed to study the effect of bandwidth, threshold for path detection, and UDP

occurrence on multipath parameters. The transmitter location was fixed and the receiver

was moved around a loop which contains different propagation conditions. Step 2 is to

study the distance effect on multipath parameters and compare the influence of micro-

metal and macro-metal obstructions on multipath parameters.
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6.2 Measurement Scenarios

The campaign of measurements was conducted on the third floor of AK Laboratories at

WPI. The AK building was built in 1906 and underwent two major remodelings and ad-

ditions in 1934 and 1981. Therefore, in some areas within the building, there is more

than one exterior-type wall. The exterior walls of this building are heavy brick, the inte-

rior walls are made of aluminum studs and sheet rock, the floors are made with metallic

beams, the doors and windows are metallic, and many other metallic objects are spread

over various laboratory areas. The excessive number of metallic objects and heavy and

multiple external walls makes this building a very harsh environment for radio propaga-

tion. As a result, this environment is suitable for the indoor geolocation experiment since

the DP will be attenuated seriously in most locations.

6.2.1 Loop Measurement Scenario

The main purpose of the first set of measurements is to study the effect of bandwidth,

path detection threshold and UDP occurrence on multipath parameters. We used the loop

around AK 320 (CWINS lab) as the measurement site. Our loop scenario contained mixed

conditions including DDP, SUDP and NUDP.

Figure 6.1 shows the measurement site plan and the measured points. The transmitter

antenna was fixed at a position inside the CWINS laboratory as shown in figure 6.1, close

to a metallic beam on the upper side. The receiver antenna was secured on a bar carried

by the robot. This loop was designed to include different receiver location classes. We

controlled the robot to move 5 cm at a time, each time stopping to take two measurements

(snapshots). The total distance of the loop was 46.55 m which corresponds to 931 differ-

ent receiver locations and 931× 2 = 1862 bandwidth swept measurements by the VNA.

The solid green line in the loop denotes the DDP conditions in which there is no blockage
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between the transmitter and the receiver or only one wall with window between them. The

dashed line denotes the SUDP conditions in which the DP between the transmitter and

receiver is undetectable due to metallic obstruction. The blue line denotes the NUDP con-

ditions in which several walls along with long distance between transmitter and receiver

cause the DP to drop below the path detection threshold, making it undetectable.

In other words, prior to conducting the measurement, it was desirable to see what

happens to the multipath parameters as the receiver moves between DDP, SUDP and

NUDP conditions. In radio propagation, it is well known that metallic objects reflect

most of the propagating wave and weaken the transmitted signal. Hence, it would be

interesting to see whether or not the metallic chamber, metallic beam, and metallic objects

would produce UDP conditions or not.
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Figure 6.1: Loop scenario on 3rd floor of AK laboratory
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6.2.2 Corridor Measurement Scenario

The main purpose of the second set of measurements is to relate the effect of distance

on multipath parameters and provide comparison for the later scenarios with similar re-

ceiver route but different transmitter locations producing different propagation conditions

between the receiver and the transmitter. We used the corridor on the third floor of AK

laboratory as the route of the receiver. The transmitter was fixed on a point in the corridor,

and the receiver moved smoothly away from the transmitter with a measurement step size

0.1 m as shown in figure 6.2.

As part of the second set of measurements we defined 3 different subscenarios each

corresponding to DDP, OLOS and UDP cases to study the effect of UDP as well as the

receiver-transmitter separation.

DDP Scenario

We started taking our measurements starting at 1 m up to an experimentally found dis-

tance of 30 m. This high range can be explained by the DDP case (no blockage between

the transmitter and receiver), as well as a possible waveguiding effect introduced by the

corridor.

OLOS Scenario

The purpose of the these measurements is to study the effect of micro-metal objects block-

age on multipath parameters and compare this result with that of the LOS (DDP) measure-

ments. We should note here that OLOS scenario is actually a combination of DDP/UDP

conditions when the attenuation of the DP is usually more. It can also be regarded as a

transitional case between DDP and UDP. We used the same receiver route but moved the

transmitter inside the CWINS lab to a location that is the mirror image of the transmitter

location used for the DDP scenario behind the wall. The distance range of this scenario
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Figure 6.2: Corridor scenario 1 - DDP

has been found to be 16 m, corresponding to 161 different measurement locations. Be-

cause of the attenuation caused by micro-metal objects and wall, the UWB signal lost its

coverage beyond a distance of 16 m.

UDP Scenario

The purpose of the measurements in this scenario is to analyze the effect on macro-metal

object blockage (here referring to the anechoic chamber) on multipath parameters and

compare this result with the results of the LOS (DDP) and OLOS measurements. Since

we intended to have the anechoic chamber blockage all the time for this scenario, the

route of the receiver is slightly different from the LOS and the OLOS scenario. However,

we again moved the receiver from the proximity of the transmitter to locations further

apart from the transmitter. The signal coverage in UDP condition has been found to be
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Figure 6.3: Corridor scenario 2 - OLOS

only around 8 m.

6.3 Measurement Setup and Post Processing Technology

With frequency domain sounders, the RF signal is generated and received using a VNA,

which makes the measurement setup quite simple. The sounding signal is a set of narrow-

band sinusoids that are swept across the band of interest. The maximum sweep time is

limited by the channel coherence time. If the sweep time is longer than than the channel

coherence time, the channel may change during the sweep. Therefore, in order to pre-

vent the channel from fast variation, we conducted measurements when there were fewer

people or other scatterers in the area.

The performance of the frequency domain sounding is also limited by the maximum
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Figure 6.4: Corridor scenario 3 - UDP

channel delay. The upper bound for the detectable delay τmax can be defined by the

number of frequency points used per sweep and the bandwidth B (frequency span to be

swept), as given by:

τmax = (Nsmp − 1)/B (6.1)

where Nsmp is the number of sampled frequency points. The main component of

our measurement system is a 40GHz HP-8363B network analyzer. Figure 6.5shows the

measurement system and its components.

The measurement system is composed of the network analyzer, two UWB disc-cone

antennas with a bandwidth spanning from 3-8 GHz, a power amplifier at the transmitter

end, an LNA at the receiver end, and the ”ER1” robot system (6.6). The network an-

alyzer is controlled by a laptop computer running MATLAB through wireless network,
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Figure 6.5: Frequency domain spatial measurement system

and Agilent Intuilink connectivity software is used to select the desired parameters of the

measurement scenario. The laptop initializes the network analyzer preceding each mea-

surement, where start and stop sweeping frequencies are selected along with the number

of desired samples and the data is collected at the completion of each measurement. The

transmitted signal passes through a 30dB amplifier before going to the transmitter. The

receiver attenuates and pre-amplifies the incoming signal with an LNA before passing

it to the network analyzer. For the analysis, The VNA was used to sweep the frequency

spectrum of 3-8GHz with 1.5625MHz sampling interval, yielding 3200 frequency domain

measurement samples at each location. The UWB antennas were connected to the VNA

by low-loss, high quality doubly shielded cables.

Both the transmitter and receiver are fixed at a height of 1.3m during the measure-

ments. The overall measurement system has a noise level of -90dB. A power amplifier at

the transmitter side and an LNA at the receiver side are used to supply the experimental
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system with enough power to get a range of about 30 m in the DDP scenario.

(a) Architecture of ER1 robot system (b) User interface

Figure 6.6: ER1 robot system

Before taking the measurements, we calibrated our system by what is called a S21

through response calibration which involves connecting the transmitter and receiver ca-

bles back-to-back without the antennas. This removes the delay and attenuation of the

cables as well as the amplifiers. The second step of system calibration is connecting the

antennas and performing a 1-meter LOS free space calibration. This removes the delay

and gain caused by the antennas. As a result, the CIR after calibration would be a single

path occurring at 0ns.

The spatial measurements were conducted by commanding the ”ER1” robot system

to carry our receiver antenna during the measurement campaign [109]. We used software

to control the robot moving with a step size of 5 cm (for the loop scenario), 10 cm (for the

corridor scenarios), then stopped it to take two measurements. The ”ER1” robot system

has three wheels, two of which were connected to the stepper motors for precise robot

positioning and one dummy wheel used for rotation. There is also a camera on top of the
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robot system, hence we made sure that the robot was moving along a straight path during

the measurements. The speed and step size of movement can also be precisely controlled

from the user end.

The measured frequency response data was windowed with a Hanning window [110]

in order to reduce the noise sidelobes. Although some other window functions such as

Kaiser window provides higher dynamic range, the Hanning window is selected for its

much faster decaying sidelobes which significantly reduces the interfering effect of strong

MPCs in peak detection. For the analysis we have chosen to parse 5GHz down to 50MHz

bandwidth chunks out of the measured frequency domain data with a center frequency of

5.5 GHz. After obtaining frequency domain measurements, we used an inverse chirp Z

transform to obtain CIR [107]. Specifically, 50MHz of bandwidth provides time-domain

resolution in the order of △t50MHz = 20ns =⇒ 6m(accuracy), while 5GHz provides

△t5GHz = 0.2ns =⇒ 0.06m(accuracy). The desired parameters such as amplitudes

and delay of each path are detected from the time-domain channel profile using a peak

detection algorithm.

Figure 6.7 shows a sample frequency domain measurement and its corresponding

time-domain profile. Here we note the frequency selective fading in the frequency do-

main and the time-domain profile illustrating MPCs arriving at different delays.

6.4 Preliminary Results

In this section, we present some measurement results in order to illustrate the different

channel behavior in different scenarios.

Figure 6.8 shows spatial MPC TOA behavior as the receiver moves on the loop. Here

we observe that there are more MPCs at UDP locations than the number of MPCs at DDP

locations for the loop scenario. One explanation would be that the power of the strongest
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Figure 6.7: Sample frequency domain and time domain channel profile

Figure 6.8: TOA of different paths for the loop scenario

path in UDP conditions is weaker compared to that in DDP conditions, bringing more

MPCs above the path detection threshold.

Figure 6.9 shows spatial MPC TOA behavior for the corridor DDP scenario. This
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Figure 6.9: TOA of different paths for the DDP scenario

figure shows that for the LOS condition, the TOA of the strongest LOS component in-

creases as the robot moves away from the transmitter. Also observable in the graph are

the higher order reflections. These reflections are caused by the back and forth reflections

at the two ends of the corridor, which can be shown by comparing their path TOAs to

the actual geometric reflected path length. The TOA-distance profile shown in figure 6.9

further substantiate the following observations:

1. When the transmitter is close to the receiver, the number of MPCs is small due

to the strong LOS component and the path detection threshold (which means we

only consider those paths within α dB of the strongest paths as eligible paths).

Most MPCs are below the threshold at the beginning. As the receiver moves away

from the transmitter, more paths will be resolved due to the reduction of the gain

of the strongest path. After a certain break point, the number of MPCs will start

to decrease since as distance increases more and more paths will be buried below

noise floor.
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2. For the OLOS condition, due to at least one wall separation, even when the trans-

mitter and receiver are at the closest distance, the strongest path between them is

much weaker compared to that in LOS condition. Hence, all the resolvable paths

above the noise floor will be counted as eligible paths. The cutoff effect of path de-

tection threshold is weaker. As the receiver moves away, the number of MPCs will

keep decreasing due to more paths becoming weaker and falling below the noise

floor. In the end, resolvable paths disappear when the receiver moves beyond the

coverage range of the transmitter. In our case, this limitation for OLOS is around

16 m.

3. When there is the metallic chamber between the transmitter and the receiver, the

coverage of the UWB signal is further reduced to around 8 m, which is expected

because of the very short wavelength and low transmission power of the UWB

signal.
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Figure 6.10: TOA of different paths for the OLOS scenario

Figures 6.10 and 6.11 show the spatial MPC TOA behavior for the corridor OLOS
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Figure 6.11: TOA of different paths for the UDP scenario

and UDP scenarios. One immediate conclusion we can get from these figures is that

the number of MPCs is greatly reduced due to UDP conditions. Also we note in figure

6.11 that there is a significant discrepancy between the actual distance and the distance

obtained from the FP.

Thus we can once again iterate that UDP occurrence has a strong effect on multipath

parameters and ranging performance.

6.5 Sensitivity Analysis for Multipath Diversity

For the sensitivity analysis of multipath parameters pertinent to indirect path based rang-

ing technique, we will first look into the number of MPCs. Empirical models will be built

for different scenarios to reveal the effect of distance, bandwidth, and dynamic range

threshold on number of MPCs. After this, we will analyze the sensitivity of two pa-

rameters named average path lifetime (APL) and average path displacement (APD) as

discussed in the previous chapter. The effect of bandwidth, path detection threshold and
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UDP occurrence on path persistency is studied in this section.

Because we want to use other MPCs to mitigate the distance measurement error in

UDP conditions, we are interested in the number of available MPCs. The number of

resolvable MPCs is important for evaluating the performance of various types of diversity,

modulation and equalization techniques (e.g., RAKE receiver) [111]. An MPC measured

in a particular profile is defined to arrive at the receiver at a particular excess delay bin

τk if the integrated power within a discrete excess delay interval β2
k is greater than the

minimum detectable signal threshold of the receiver. No MPC exists if β2
k does not exceed

the minimum detectable signal threshold at the excess delay bin τk.

Several researchers have analyzed the number of available multipath components in

the sense of static channel modeling [111,112]. They looked into the behavior of the num-

ber of MPCs at certain locations with different transmitter receiver distances. Then they

studied the distribution of the number of MPCs for telecommunication applications. How-

ever, due to measurement system limitation and target difference, they have not looked

at the the spatial behavior of number of MPCs and the effect of bandwidth, path detec-

tion threshold, and UDP occurrence on the number of MPCs, which is also important for

indoor geolocation. The analysis of the dynamic behavior of the number of MPCs in dif-

ferent multipath conditions would provide an insight into the resources that can be used

to aid the localization in harsh environments.

The comprehensive measurement database introduced earlier is used for spatial mul-

tipath analysis. The main focus here is the dependency between the distance-related num-

ber of MPCs and the effect of bandwidth, path detection threshold, and UDP occurrence

on the number of MPCs and path persistency.
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6.6 Behavior of the Number of MPCs

The number of MPCs has been studied in [112, 113] for telecommunication applications.

The authors mainly looked into the distribution of the number of MPCs at some selected

locations. However, more research is needed for modeling the effect of distance, band-

width and OLOS UDP occurrence on the number of MPCs for indoor geolocation ap-

plications. Since the number of MPCs is sensitive to the threshold value used in post-

processing, we also specify the threshold used for picking MPCs.

6.6.1 Distance Dependency of Number of Paths

As mentioned earlier, we have the following observations for the three different cases:

1. When the transmitter is close to the receiver, the number of MPCs is small due to

the strong LOS component and the path detection threshold (which means we only

consider those paths within α dB of the strongest paths as eligible paths). Most

MPCs are below the threshold at the beginning. As the receiver moves away from

the transmitter, more paths will be resolved due to the reduction of the strength of

the strongest path. After a certain break point, the number or MPCs will start to

decrease due to distance reducing the strengths of more paths and bringing them

below the noise floor threshold. Our inference is validated by the measurement

result which is shown in figure 6.12.

2. However, for OLOS condition (figure 6.13), due to at least one wall of separation,

even when the transmitter and receiver are at the closest distance, the strongest path

between them is much weaker compared to the one in the LOS condition. Hence,

all the resolvable paths above the noise floor will be counted as eligible paths. The

cutoff effect of path detection threshold is weaker. As the receiver moves away, the

number of MPCs will keep decreasing due to more paths becoming weaker than the
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noise floor. In the end, resolvable paths disappear when the receiver moves beyond

the coverage of the transmitter. In our case, this limitation for OLOS is around 16

m.

3. For UDP condition depicted in figure 6.14, the number of MPCs decreases with

distance between the transmitter and receiver similarly as the behavior in the OLOS

scenario. However, since the anechoic chamber made of metallic material always

exists between the transmitter and receiver, the The power of all the MPCs is further

reduced compared with that in OLOS condition. Therefore, for the same distance

between the transmitter and receiver, there are fewer MPCs above the noise floor.

Meanwhile, the coverage of resolvable paths in UDP condition is only around 8 m.
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Figure 6.12: DDP scenario number of paths spatial behavior
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Figure 6.13: OLOS scenario number of paths spatial behavior
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Figure 6.14: UDP scenario number of paths spatial behavior
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6.6.2 Modeling Number of Paths based on Bandwidth and Distance

DDP (LOS) Scenario

By analyzing measurement data from the LOS scenario, we observed a Rayleigh-like

dependency between the number of MPCs and distance. Hence, we first try to model the

relationship between number of MPCs and distance as a Rayleigh-like function as :

N = A
de(

−d2

2σ2 )

σ2
+ χLOS, (6.2)

where d is the distance between the transmitter and receiver in m. and A, σ and

χLOS are the parameters that need to be estimated. χLOS is a random variable that can

be conveniently modeled with a normal distribution χLOS ∼ N(0, σχLOS
). Naturally, one

expects an increase in the number of MPCs with an increase in bandwidth, an increase

in path detection threshold, and a decrease in noise floor. For our specific environment

and measurement system, we fixed the path detection threshold at 30dB and noise floor

at -90dB. However, the results showed that the Rayleigh-like function is not a very good

fit to the measured data when the distance between the transmitter and receiver is larger

than 20 m, as in figure 6.15.

Hence, we propose to model the dependence of number of MPCs and distance in LOS

condition as a two-piece exponential function. A distance break point exists and for our

LOS scenario, the break point is around 6.5 m. The model based on non-linear least

square regression is as:


N = (2− e0.1032(d−dbp)) ·NmaxLOS

+ χLOS, d≤ dbp

N = e−0.0956(d−dbp) ·NmaxLOS
+ χLOS, d > dbp

(6.3)

where NmaxLOS
is the number of MPCs at the break point distance, which is related
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Figure 6.15: Rayleigh model

to the bandwidth (in MHz) f as: NmaxLOS
= f 0.547, χ is a random variable with normal

distribution χLOS ∼ N(0, σχLOS
), and σχLOS

is related to bandwidth f as: σχLOS
=

f 0.212. Figures 6.18 and 6.19 show the relation between NmaxLOS
and bandwidth and the

CDF of measured and simulated number of MPCs using our two-piece model for LOS

scenario respectively. Figure 6.20 compares the performance of each model in RMSE

value at different bandwidth, which demonstrates the superiority of the two-piece model

over Rayleigh-like function model at higher bandwidth.

NLOS(OLOS) Scenario

For the NLOS (OLOS) scenario, the relationship between the number of MPCs, distance

and bandwidth can be modeled as

N = e−0.1309d ·NmaxNLOS
+ χNLOS, (6.4)

where NmaxNLOS
is the number of MPCs when the receiver is at the closest distance

to the transmitter, which is related to the bandwidth f as NmaxNLOS
= f0.5273, and χNLOS
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Figure 6.16: Two piece model
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Figure 6.17: Two piece model performance for different bandwidths without χ variable

is a random variable with normal distribution χNLOS ∼ N(0, σχNLOS
), where σχNLOS

is related to the bandwidth f as: σχNLOS
= f 0.2645. Figure 6.22 and 6.23 show the

relationship between NmaxNLOS
and bandwidth, and the CDF of measured and simulated

number of MPCs using our model for NLOS scenario. Comparing figures 6.19 and 6.23,
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Figure 6.18: Nmax versus bandwidth for DDP scenario
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Figure 6.19: CDF of measured and simulated number of MPCs in LOS scenario

our model fits the number of MPCs for LOS conditions slightly better than that for NLOS

condition. This is reasonable because NLOS condition is much more complex than LOS

condition caused by the blockage of walls and micro-metalic objects.
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Figure 6.20: RMSE of calculated number of paths using two models at different band-
widths
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Figure 6.21: Exponential function model for number of paths for OLOS condition

UDP Scenario

For the UDP scenario the relationship between the number of MPCs, distance and band-

width can be modeled as
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Figure 6.22: Nmax versus bandwidth for OLOS environment
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Figure 6.23: CDF of measured and simulated number of MPCs in OLOS scenarios

N = e−0.4714d ·NmaxUDP
+ χUDP , (6.5)

where NmaxUDP
is still a parameter related to the bandwidth f , which can be modeled

as NmaxUDP
= f0.5844, and χUDP is a random variable with normal distribution χUDP ∼
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N(0, σχUDP
),where σχUDP is related to the bandwidth f as:σχUDP

= f 0.1835. Figures 6.25

and 6.26and 6.27 show the relationship between NmaxUDP
and bandwidth, the results of

model fitting for different bandwidth, and the CDF of measured and simulated number of

MPCs using our model for the UDP scenario. The CDF results show our model for the

number of MPCs matches well with the measured data in UDP scenario.
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Figure 6.24: Exponential function model for number of paths for UDP condition

6.7 Behavior of Path Persistency

The concept of path lifetime or path persistency has been proposed in [24, 113] and has

been explained in the previous chapters. It denotes the lifetime of a particular path in

which its traceable features exhibit differential changes in accordance with the receiver’s

differential motion. Due to the limitation of our measurement system, we only look into

the TOA of persistent paths.

To illustrate how we defined path persistency in terms of TOA, it is necessary to

introduce two different resolution terms used in time domain:
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Figure 6.25: Nmax versus bandwidth for UDP environment
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Figure 6.26: Exponential model performance for different bandwidths without χ variable
in UDP scenario

• The response resolution

• The range resolution
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Figure 6.27: CDF of measured and simulated number of MPCs for UDP condition

Response resolution Response resolution is defined as the ability to resolve two closely-

spaced responses, or a measure of how close two responses can be to each other and still

be distinguished from each other. It is inversely proportional to the measurement fre-

quency span, and is also affected by the window function used in the transform.

Figure 6.28: Response resolution

For example, using a normal window in the bandpass mode, we can calculate the

response resolution for responses of equal amplitude as: Response resolution= 50% im-

pulse width×speed of light as indicated in figure 6.28.
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Range resolution Range resolution is defined as the ability to locate a single response

in time. If only one response is present, range resolution is a measure of how closely

we can pinpoint the peak of that response. The range resolution is equal to the digital

resolution of the display, which is the time domain span divided by the number of points

on the display. Range Resolution=Tspan/(Points-1)
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Figure 6.29: TOA of the earliest 10 paths during the measurement loop

Figure 6.29 shows the TOA of the earliest 10 paths during the movement of the re-

ceiver around the loop environment. We get the intuition that the paths’ TOA exhibit

differential changes in accordance with the motion of the receiver in the DDP conditions,

which occur at the beginning and ending parts of the route. The solid line is the actual dis-

tance and the dotted lines are the earliest 10 paths’ lengths calculated by TOA multiplied

by the speed of light.

Our measurement step size is 0.1m, which means a maximum difference in TOA of

δτ = 0.1/C = 0.33ns, (C = 3 × 108m/s) for a persistent path from one measurement

location to the next. If the TOA difference of a particular path between several consecutive

measurement points is within δτ , then the distance range of these measurement points is
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defined as the path lifetime of this path. Here we should point out that δτ refers to spatial

resolution. It does not refer to the response resolution, which is determined by signal

bandwidth.

In this section, we investigated the effect of bandwidth, path detection threshold

(α)and NLOS, UDP occurrence on path persistency of the SP and FDP, which are im-

portant for geolocation application based on measurement results. The parameters we

focused on are the APL, and APD.

6.7.1 Parameters Affecting Path Persistency

For the loop scenario, which contains mixed channel profiles (DDP, OLOS and UDP), the

path persistency results are summarized in Table 6.1 and figure 6.30.

Table 6.1: APL(m) and APD(m) for FDP and SP for different bandwidths and
α=10,20,30dB for the Loop scenario

Bandwidth
128MHz 320MHz 800MHz 2GHz 5GHz

FDP

α APL APD APL APD APL APD APL APD APL APD
10dB 0.02 1.74 0.07 0.72 0.15 0.36 0.15 0.53 0.20 0.33
20dB 0.02 1.45 0.09 0.47 0.24 0.16 0.52 0.09 1.28 0.03
30dB 0.02 1.50 0.09 0.46 0.27 0.14 1.61 0.02 7.71 0.003

SP 10∼30dB 0.08 8.09 0.14 7.54 0.18 6.41 0.31 2.70 0.38 2.70

Based on the obtained results, we have the following observations:

1. For the same α, the APL of both FDP and SP increases with bandwidth. The

relationship between the mean APL of FDP and bandwidth when α = 20dB can

be modeled as:

APL = 0.0218BW + 0.0256 (6.6)

where BW is the bandwidth in units of 100MHz. The RMSE for this model is

0.046 m. Choosing 20dB has been found to be suitable for detecting paths, while
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Figure 6.30: APL and APD versus bandwidth and the linear fit (α = 20dB)

the relationship between the mean APL of SP and bandwidth can be modeled as :

APL = 0.0041BW + 0.0264 (6.7)

The RMSE for this model is 0.028 m.

2. The APL of FDP is always larger than that of the SP since the power of paths suffers

easily in UDP conditions causing the SP to switch to another path more often.

3. The APL and APD of the strongest path are not sensitive to α since no matter which

α we choose, the power of SP is always within the α dB range of itself.

4. The APD of both the FDP and SP decreases as the bandwidth increases, but the

APD of FDP and SP stays at around 1.8m for FDP and 3.5 m for SP for bandwidth

greater than 0.5GHz for FDP and 1.5GHz for SP respectively.

For the corridor DDP scenario, the path persistency results are summarized in Table

6.2 and figure 6.31.

For the DDP condition we have observed that:

1. Most of the time, the APL of both FDP and SP increases with bandwidth. For

the same bandwidth, the mean APL of FDP increases as the threshold value α
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Table 6.2: APL(m) and APD(m) for FDP and SP for different bandwidths and
α=10,20,30dB for the DDP scenario

Bandwidth
100MHz 500MHz 1GHz 2GHz 5GHz

FDP

α APL APD APL APD APL APD APL APD APL APD
10dB 0.22 1.56 0.74 1.14 1.61 1.15 2.39 1.25 13.90 1.25
20dB 0.22 1.49 0.73 0.79 1.87 0.80 3.00 0.78 9.23 0.79
30dB 0.23 1.48 0.70 0.75 1.86 0.76 3.00 0.75 1.65 0.74

SP 10∼30dB 0.26 2.89 0.58 3.89 1.15 4.20 1.37 4.11 1.15 4.17
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Figure 6.31: APL and APD versus bandwidth and the linear fit (α = 20dB) for DDP
scenario

decreases. The relationship between the mean APL of FDP and bandwidth when

α = 20dB can be modeled as:

APL = 0.182BW − 0.01 (6.8)

whereBW is the bandwidth in units of 100MHz. The RMSE for this model is 0.972

m. Choosing 20dB is reasonable since a 10dB path detection threshold would elim-

inate most of the multipath components, making the number of available MPCs in-

significant, while if a 30dB threshold is used, the first path would be non-persistent,

which is not the fact for the LOS scenario. The relationship between the mean APL
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of SP and bandwidth can be modeled as

APL = 0.0194BW + 0.6141 (6.9)

The RMSE for this model is 0.274 m.

2. The APL of FDP is always larger than that of the SP which is in accordance with

the results for the loop scenario.

3. The APL and APD of the strongest path are not sensitive to the threshold α for

picking paths .

4. The APD of FDP in the LOS scenario decreases as the bandwidth increases. How-

ever, the APD for SP increases with bandwidth. The APD of FDP and SP stay at

about 0.75 m and 4 m for the bandwidth greater than 1GHz.

For corridor NLOS (OLOS) scenario, the path persistency results are summarized in

table 6.3 and figure 6.32.

Table 6.3: APL(m) and APD(m) for FDP and SP for different bandwidths and
α=10,20,30dB for the NLOS scenario

Bandwidth
100MHz 500MHz 1GHz 2GHz 5GHz

FDP

α APL APD APL APD APL APD APL APD APL APD
10dB 0.11 3.01 0.25 1.65 0.37 1.62 0.48 1.63 0.69 1.83
20dB 0.11 3.06 0.25 1.69 0.40 1.68 0.57 1.73 0.69 1.90
30dB 0.11 3.07 0.25 1.69 0.40 1.68 0.57 1.73 0.69 1.90

SP 10∼30dB 0.12 11.35 0.20 7.58 0.25 8.32 0.47 8.02 0.55 7.93

For the OLOS scenario we have the following observations:

1. the APL of both FDP and SP increases with bandwidth. However, comparing with

the results for the LOS scenario, the APL of FDP decreases due to walls and metal-

lic objects blockage between the transmitter and receiver. For the same bandwidth,
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Figure 6.32: APL and APD versus bandwidth and the linear fit (α = 20dB) for NLOS
scenario

the mean APL of the FDP is not very sensitive to the threshold α. The relationship

between the mean APL of FDP and bandwidth when α = 20dB can be modeled as

APL = 0.012BW − 0.215 (6.10)

where BW is the bandwidth in units of 100MHz. The RMSE for this model is

0.0851 m. The relationship between the mean APL of SP and bandwidth can be

modeled as :

APL = 0.009BW + 0.169 (6.11)

The RMSE for this model is 0.057 m.

2. The APL of the FDP is always larger than that of the SP, which is in accordance

with the results for Loop and LOS scenario.

3. The APL and APD of the strongest path are not sensitive to the threshold α for

picking paths.

4. The APD of both FDP and SP decreases as the bandwidth increases. The APD of

FDP and SP stay at about 2m and 8m after the bandwidth reaches 1GHz.

For the corridor UDP scenario, the path persistency results are summarized in Table

123



6.4 and figure 6.33.

Table 6.4: APL(m) and APD(m) for FDP and SP for different bandwidths and
α=10,20,30dB for the UDP scenario

Bandwidth
100MHz 500MHz 1GHz 2GHz 5GHz

FDP

α APL APD APL APD APL APD APL APD APL APD
10dB 0.12 3.10 0.14 1.57 0.32 1.76 0.21 1.52 0.27 1.56
20dB 0.12 2.97 0.16 1.59 0.12 1.25 0.19 0.93 0.31 0.89
30dB 0.12 3.12 0.20 1.65 0.15 1.38 0.18 1.07 0.33 1.02

SP 10∼30dB 0.10 5.29 0.16 5.27 0.18 6.00 0.15 4.73 0.20 4.73
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Figure 6.33: APL and APD versus bandwidth and the linear fit (α = 20dB) for UDP
scenario

For the UDP condition, we have observed that:

1. the APL of both FDP and SP increases with bandwidth. However, in contrast with

the results for of LOS and OLOS scenario, the APL of the FDP decreased sig-

nificantly due to the wall and micro-metal blockage between the transmitter and

receiver, causing the FDP to jump among several different MPCs. For the same

bandwidth, the mean APL of FDP is not very sensitive to the threshold value α.

The relationship between the mean APL of FDP and bandwidth when α = 20dB

can be modeled as

APL = 0.005BW + 0.126 (6.12)
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where BW is the bandwidth in units of 100MHz. The RMSE for this model is

0.057 m. The relationship between the mean APL of SP and bandwidth can be

modeled as :

APL = 0.001BW + 0.128 (6.13)

The RMSE for this model is 0.019 m.

2. The APL of FDP is always larger than that of the SP but the difference between

them is not as significant as that for LOS and NLOS scenarios.

3. The APL and APD of the strongest path is not sensitive to the threshold α for

picking paths .

4. The APD of both FDP and SP decreases as the bandwidth increases. The APD of

FDP and SP stay at about 1 m and 4 m for the bandwidth above 1GHz.

6.8 Conclusions

In this chapter we presented the results of an empirical UWB measurement campaign.

Particularly we investigated the effect of system bandwidth, path detection threshold,

propagation conditions and transmitter-receiver distance on MPC features such as persis-

tency and the number of MPCs.
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Chapter 7

Statistical Spatial Model for Multipath

Components

In chapter 4 we introduced the concept of path persistency and how additional MPC in-

formation can be utilized to get accurate ranging information. In chapter 6 we presented

the results of measurements to gain an insight to various MPC properties such as num-

ber of MPCs and persistency. In this chapter we will present our comprehensive spatial

MPC model based on data we have obtained through RT simulations. This chapter draws

substantially from results presented previously in: [29]–[32].

When we employ TOA based systems for precise indoor ranging and localization

there are some serious challenges that we need to take into consideration. These might be

listed as:

• Blockage of DP

• Limited system bandwidth

• Lack of MPC behavior study for indoor geolocation

In order to address this problem in general we have the following methods:
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• Modeling the behavior of DP to be used for algorithms exploiting DP

– This is primarily used in GPS, cooperative localization and various other al-

gorithms. Modeling for these algorithms is provided in [23, 114]–[116].

• Modeling the behavior of multipath components to be used by algorithms exploiting

multipath diversity (using indirect paths)

– This method is used in rake receivers for communications applications

– Channel modeling for performance evaluation of these algorithms is presented

in this chapter.

7.1 Overview of Wireless Channel Models

Earlier works in indoor channel modeling focused on communication systems. Some

of them used geometric models [117]–[119], and some followed statistical modeling ap-

proach based on comprehensive empirical results with emphasis on static channel where

transmitter and receiver are kept fixed with respect to each other [112, 120]–[129], while

some newer studies also considered the spatial channel behavior [113, 130, 131]. Con-

sequently, a substantial amount of work has been devoted to this field and researchers

obtained statistical and empirical models for the indoor environment. Although a ma-

jority of these studies focused on high data rate, short range communication applica-

tions [132, 133], studies do exist that place more importance on indoor geolocation spe-

cific features [18, 20, 59].

We can thus make a classification of wireless channel models as shown in figure 7.1.

Here we should note that there has not been an extensive research on the spatial wire-

less channel modeling towards geolocation applications. Hence characterization of the
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Figure 7.1: Classification of wireless channel models

spatial wireless channel keeping in mind the importance of geolocation applications is

the focus of this dissertation.

Spatial channel adds an additional dimension to Turin’s well known tapped-delay line

model. The static dimensions can be listed as TOA, AOA, path gain as well as phase and

number of MPCs. The modeling approach we will present in this chapter will address the

evolution of these features over time or equivalently distance the receiver moves. Figure

7.2 shows the static and spatial channel modeling schemes.

We mentioned earlier that the existence of UDP conditions greatly hinder the perfor-

mance of ranging and hence positioning systems. Under UDP conditions, spatial behav-

ior of the MPCs caused by the dynamic movement of the receiver gains importance since

they can be utilized for multipath diversity [20, 96]. When performance evaluation of al-

gorithms using multipath diversity is needed, a modeling approach that takes geolocation

related aspects into account is needed.

Hence for accurate modeling of indoor propagation for positioning applications, we

would need to have as much information as possible regarding the features of MPCs.

Individual TOAs of MPCs relative to the LOS arrival together with their AOAs, path
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Figure 7.2: Static (I) vs Spatial Channels (II)

gains (amplitudes) and the total number of MPCs need to be known to employ channel

aware precise positioning systems that can exploit multipath diversity.

Besides these channel parameters, accurate spatial MPC behavior needs to be consid-

ered for the cases of moving transmitter and/or receiver. The studies given in [113, 130,

131] do not present an elaborate solution to MPC behavior in the sense that they do not

put emphasis on transmitter-receiver distance and do not consider modeling of number of

paths. In this context, we propose a spatial indoor channel model based on ray optics and

hence give an accurate characterization for MPCs.

Spatial behavior of the channel encompasses two important metrics. The first and

most important of these metrics is the spatial path persistency, which is the lifetime of a

path as the receiver is moving at a given velocity. The second is the birth rate which dic-

tates the mechanism paths appear during the motion of the mobile. Path death is dictated

by the path lifetime. The available path lifetime models in the literature are [113, 131]

which were developed for communication applications. In [131] path birth/death is mod-

eled by a marked Poisson process and hence path lifetime is exponentially distributed.

The study reported in [113] follows a different approach and use multi-state Markov
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model to describe path birth/death and exponential distribution for path lifetime.

In this chapter, based on an extensive database of measurement calibrated RT results

in a typical office building, AK at WPI, we first propose ray optics based statistical models

for the features of the MPCs taking into account geolocation aspects like the transmitter-

receiver distance by extending the study in [29]. Later we derive the spatial behavior of

MPCs based on ray optics and present a modified statistical path persistency and birth

model which was first developed in [32] to obtain the full spatial channel model.

7.2 Extended Channel Modeling for Indoor Geolocation

Indoor multipath propagation is dictated by various interactions of the MPCs by the var-

ious types of objects such as furniture, walls, doors and windows which have varying

degrees of effect on signal propagation. The two main interactions are namely the re-

flection and transmission. Diffraction and diffuse scattering can be ignored for indoor

environments [134]. Based on the material properties, these objects will have different

reflection and transmission coefficients. Metal and steel surfaces, for instance, can be

considered as specular reflectors but no or very little transmission will take place. On

the other hand, materials such as wood or brick, will both reflect and transmit the incom-

ing ray after a certain loss. Each reflection and transmission has a corresponding loss

coefficient and will decrease the path power accordingly.

Exact modeling of indoor channel requires tedious solution of Maxwell’s wave equa-

tions for complex structures. Even though computational electrodynamics methods such

as finite-difference time-domain (FDTD) are available, they are not time-efficient and

require high utilization of computational resources. As an alternative there exist RT so-

lutions, which are based on ray shooting principles. In terms of speed and conformance

to real-world measurement data, RT techniques are preferred for most indoor propagation
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prediction studies [135]–[137]. Given a transmitter location, rays are shot in every pos-

sible direction (with a certain discretization) and they interact with the objects through

either reflection and transmission on which we will elaborate below. The rays, that can

reach the receiver through geometric propagation, are considered to be the components

of the CIR if they are within the detection threshold.

In RT techniques, each ray is considered to be an infinite bandwidth optical ray. This

representation of MPCs is also in line with the channel model that was first proposed by

Turin [70] and is well suited to describe RF propagation in multipath-rich indoor environ-

ments. We will be considering the spatial case for the receiver and hence spatial multipath

channel dependent on the distance variable x can be given as

h(x; τ, θ) =

Lp(x)∑
i=1

βi(x, τ)e
jϕi(x,τ)δ(t− τi(x))δ(Θ− θi(x)) (7.1)

whereLp(x) is the number of MPCs, and βi, τi, θi and ϕi represent the path gain, TOA,

AOA and phase, given by ϕi = −2πτi/λ, of the ith path, respectively. Based on equation

(7.1), we can easily see that the unique features of a single MPC can be characterized by

its TOA, AOA, and path gain. Number of MPCs is also an important feature and can be

an indicator of how densely cluttered a certain environment is. In the following section

we will outline the details of our model and related parameters for each of these features

as obtained from the RT simulations performed in AK Labs at WPI. Details of the RT

simulation platform will be presented in section 7.5.

7.3 A New Statistical Ray Optical Model

This section presents the overall indoor channel modeling scheme. We first present the

statistical models for the TOAs and AOAs of the MPCs. Then, based on the TOA, we

obtain the path gain subject to a certain number of reflections and transmissions which
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we obtain through the statistics of object interactions. Later, we obtain the number of

MPCs based on a distance dependent model derived from our observations.

This statistical characterization of the channel enables us to generate an accurate in-

door channel model. The spatial behavior of MPCs can be combined with this model for

a complete characterization of indoor wireless channel pertinent to indoor geolocation.

Various channel models are present in the literature that either use geometrically based

statistical channel models (GBSCMs) [119] or use statistical fitting methods based on em-

pirical or simulation data [122,124] as mentioned before. GBSCMs present an optimistic

approach which is usually not encountered in real-life scenarios, such as single bounce

or a circular/elliptic scatterer region assumption. On the other hand, statistical fitting

methods may not be applicable to some environments, since data from measurements or

simulations would be limited. However, since real propagation environments are consid-

ered, these models might represent the actual indoor RF channel better.

Here, our aim is to present a channel model that takes into account the geolocation

aspects. One such aspect is the separation distance between the transmitter and receiver.

Many channel models presented in the literature do not differentiate the proximity of the

receiver to the transmitter, which is in fact an important factor in determining channel

parameters.

The parameters for these models have been obtained through statistical best fit ap-

proaches that best represent the RT simulation results. We will give an outline for the

model in this section and numerical analysis and related parameter values will be given

later in the chapter along with their discussions.

7.3.1 Model for the TOA - τi

Based on our extensive RT simulations we propose the use of lognormal model for the

distribution of relative TOAs (τ ) as
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fτ (τ) =
1

τσ
√
2π
e−

(ln(τ)−µ)2

2σ2 (7.2)

where µ and σ are the mean and standard deviation of ln(τ).

We should note that this model is actually the distribution of MPC TOAs relative to the

LOS distance, hence this way we are also incorporating the effect of transmitter-receiver

separation distance into our model. A similar approach has been followed by [126] as they

modified the model in [122] by incorporating the LOS distance. Another TOA modeling

approach is the modeling of path inter-arrivals as presented in [124], however this model

does not take into account the transmitter-receiver separation.

Thus the absolute TOAs can be given as:

τabs(r) = r/c+ τ (7.3)

where r is the LOS distance and c is the speed of light.

The use of lognormal modeling for the TOA has also been proposed by [138] and our

findings also confirm the suitability of this model for TOAs of MPCs. Other well known

distributions such as Beta and Weibull have also been considered, however, conformance

in the maximum-likelihood-estimation (MLE) sense is found to be best for lognormal

distribution.

7.3.2 Model for the AOA - θi

AOA modeling for indoor channel can be considered as a relatively recent area compared

to TOA, since earlier systems were mainly omnidirectional and hence did not exploit the

direction of MPC arrival. With advances in antenna technology and signal processing

techniques, AOA has gained importance for MIMO systems employing spatial diversity

and beam-steering techniques.
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Some previous works in AOA modeling include the Geometrically Based Statisti-

cal Channel Models (GBSCMs) [119] and measurement fitted statistical models [126].

However, most of these studies are aimed at telecommunications applications. Spencer’s

Laplacian model [126] is particularly useful for MIMO telecommunications applications

in which data rate and coverage are important factors hence relative positions of the trans-

mitter and receiver is not of primary concern. When indoor geolocation applications are

considered, AOA information can be used to increase ranging and hence positioning ac-

curacy coupled with additional information such as TOA [24]. AOA information becomes

particularly useful in tracking certain indirect MPCs when these MPCs can be used to aid

in precise TOA ranging when the LOS path gets blocked due to obstructions [20,96]. For

these applications, relative positions of transmitter and receiver gain importance, since

path arrivals will be affected accordingly.

Proposed AOA Model

Based on the collected database of CIRs, we observed strong dependence of the MPC

AOAs on the interconnection line between the transmitter and the receiver. In other

words, the MPCs tend to arrive close to LOS path. We should point out that actual LOS

path might not be available due to obstructions, however the arrival of MPCs were still

observed to be in the vicinity of transmitter-receiver interconnection line. In order to

describe this behavior, we define the MPC AOA relative to the AOA of the LOS path

which is a deterministic value given the locations of the transmitter and the receiver. This

is depicted in figure 7.3. Expression of MPC AOAs relative to the LOS path takes into

account the receiver and transmitter locations with respect to each other and hence allows

for a more descriptive model. As a matter of fact, the placement of transmitter and re-

ceivers are generally done according to the building layout and the uniform assumption

of transmitter and/or receiver locations inside a building may not be always be a realistic
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assumption. Hence dependence of the AOA on transmitter/receiver placement should not

be included in the modeling approach; nonetheless, its effect should be explicitly given

as a separate variable.

Figure 7.3: Illustration of MPC Arrivals

MPC AOAs can be uniquely identified in the range [-π, π] with respect to the LOS

path which is assumed to be the reference axis for all MPC arrivals. Our observations

indicated strong angle components at -π, 0, and π finally leading to a distribution model

that is in the form of a classic ”bathtub” model similar to Doppler power spectral density.

We have found this model to show an accurate representation of AOA distribution around

the LOS component.

The model for the relative AOA can thus be given as

fθ(θ) =



1

π2

√
1−( θ+π/2

π/2 )
2

−π < θ < 0

1

π2

√
1−( θ−π/2

π/2 )
2

0 ≤ θ < π

0 otherwise

(7.4)

With the piecewise integration of equation (7.4) we get the CDF as
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Fθ(θ) =



1
2π
sin−1( 2

π
θ + 1) + 1/4 −π < θ < 0

1
2π
sin−1( 2

π
θ − 1) + 3/4 0 ≤ θ < π

0 otherwise

(7.5)

The distribution presented in equation (7.5) is the relative AOA. The absolute AOA of

a certain path with respect to a certain universal reference is thus given by

θabs(θLOS) = θLOS + θ (7.6)

In equation (7.6), θLOS is computed as

θLOS = atan2 (TXy −RXy, TXx −RXx) (7.7)

with respect to a certain universal reference. In equation (7.2), atan2 is the 4-quadrant

inverse tangent and TXx, TXy, RXx, RXy denote the x,y coordinates of the transmitter

and receiver respectively. 4-quadrant inverse tangent takes on values from [−π, π] and is

particularly useful for identifying angles with respect to a certain reference axis such as

X-axis. Its formal definition is given by

atan2(y, x) =



tan−1(y/x) x > 0

tan−1(y/x) + π x < 0, y ≥ 0

tan−1(y/x)− π x < 0, y < 0

π/2 x = 0, y > 0

−π/2 x = 0, y < 0

undefined x = 0, y = 0

(7.8)
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7.3.3 Model for the Path Gain - βi

Modeling of the path gains and total RSS have been an area of extensive research for the

design and performance of wireless systems, since accurate modeling of RSS is impor-

tant both for communication and geolocation systems alike. Primary focus has been on

the outdoor environment for relatively narrow band systems, since earlier systems were

developed for long range low rate communications. Due to the nature of narrowband sig-

nals, path gains were conveniently modeled as Rayleigh distribution which is attributed to

the multipath fading. Signal components are vectorially added according to their phases

and the resulting vector could exhibit drastic changes even for short periods of time. The

total power for these signals can be given as

Pr = P0

∣∣∣∣∣
Lp∑
i=1

ai
di
ejϕi

∣∣∣∣∣
2

(7.9)

where P0 is the power of the signal at 1m, Lp is the number of MPCs, ϕi and ai are the

phase and overall reflection/transmission factor for ith path after j interactions expressed

as

ai =
∏
j

αij (7.10)

with αij being either the reflection or the transmission coefficient for the jth interaction

(αij = R for a reflection, and αij = T for a transmission), and di(= cτabs) is the total

distance the MPC has traveled.

However, for wideband systems, since individual paths can be isolated to a certain

degree, their phases do not contribute to amplitude characteristics of the channel. In this

case, total power is found by squaring the path gain of each arriving path and summing

them over all the arrivals. This can be expressed mathematically as
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Pr = P0

Lp∑
i=1

∣∣∣∣aidi
∣∣∣∣2 = Lp∑

i=1

|βi|2 (7.11)

Most studies model Pr distribution based on statistical methods similar to τ and θ.

Here we are going to follow the work by [127] to obtain path gains by statistical interac-

tions of each path with the walls either by transmission or reflection. The path gain, after

a total of m+n interactions (a total of m reflections and n transmissions) can be given as

βi =
A

cτi,abs

∏
j

αij (7.12)

where A is the signal amplitude at 1m given by A =
√
GtGr

c
4πf

=
√
P0, τi,abs is the

absolute TOA of the ith path. Here Gt, Gr, c and f are the transmit and receive antenna

gains, speed of light in m/s and center frequency of the signal respectively. For isotropic

antennas, Gt = Gr = 1 and for our modeling approach we have chosen f = 1GHz.

For the distribution of object interactions we have observed a very good conformance

to Poisson distribution which has also been observed by [127]. Furthermore, both reflec-

tions and transmissions can be modeled separately as independent Poisson distributions.

We will model the distributions of number of reflections, m, and number of transmission,

n, as follows

P (M = m) =
λmr
m!

e−λr (7.13a)

P (N = n) =
λnt
n!
e−λt (7.13b)

where λr and λt are the average number of reflections and transmissions respectively.

Although number of reflections and transmissions are dependent on the distance an

MPC travels, this method provides a simpler and straightforward modeling. For a more
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detailed analysis of path gain modeling one can refer to [127].

Hence, given the transmitter-receiver distance τabs as obtained from the TOA model,

m and n as obtained from equations (7.13a) and (7.13b), we can use equation (7.12) to

estimate path gains.

7.3.4 Model for the Number of MPCs - Lp

Number of MPCs is also an important parameter in estimating the characteristics of the

indoor channel. It is related to the degree of the clutter around the transmitter and/or

the receiver. Unlike the outdoor propagation medium, a large number of MPCs will be

present in the indoor environment due to numerous interactions with walls and objects.

There are two important quantities related to the detection of MPCs at the receiver. The

first one is the sensitivity (ψ) of the receiver which determines the ability of the receiver to

detect signals above noise threshold. Signals below the sensitivity of the receiver will not

be detected. The second one is the dynamic range (ρ) of the receiver which determines

the ability of the receiver to detect weak signals in the presence of stronger signals [12].

Hence the number of MPCs will be effected by the dynamic range of the receiver and the

sensitivity. An MPC can hence be detected if the following hold

|βSP |2

|βi|2
≤ ρ (7.14)

|βi|2 > ψ

where βSP is the path gain for the strongest path.

Dynamic range or ρ can also be thought as the threshold for picking paths in the CIR

relative to the strongest path. Here we should note that we used α in the previous chapter

as the path detection threshold which is identical to the dynamic range.
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For small values of transmitter receiver separation we would expect the presence of

strong MPCs hence the number of MPCs will be limited by the dynamic range. As the

distance increases MPC powers will drop and consequently receiver sensitivity will be

the limiting factor. At a certain distance, DT and beyond, we would not expect to see any

more paths since the receiver will be beyond signal detection point. We also expect that

the number of MPCs will show a random behavior since at two different locations which

have the same distance between the receiver and transmitter, it is possible to observe

different number of MPCs due to the existence of clutter.

Based on the results of our simulations we propose the negative binomial model for the

number of MPCs. The use of negative binomial distribution is well suited as compared to

the widely used Poisson distribution due to overdispersion of data [139]. The probability

mass function of this model for dref,ρ < d < DT can be given as

p(Lp = k; rd,ρ, pd,ρ) =
Γ(rd,ρ + k)

k!Γ(rd,ρ)
p
rd,ρ
d,ρ (1− pd,ρ)

k (7.15)

where rd,ρ and pd,ρ are the distance and threshold dependent parameters of the distribution.

The special case of d ≤ dref,ρ and d ≥ DT will be discussed shortly.

The distance dependence of these parameters can be attributed to the distance depen-

dent mean value of this distribution which is given by

µd,ρ = rd,ρ
1− pd,ρ
pd,ρ

(7.16)

The distance dependency of the mean can be best given by

µd,ρ = f1(d)f2(d) (7.17)

where f1(d) is the function governing the variation of MPCs due to dynamic range and

f2(d) is the function governing variation of MPCs due to receiver sensitivity.
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Hence, based on the results of our simulations, we propose the following model for

µd,ρ.

µd,ρ = a1,ρde
−d/a2,ρ = rd,ρ

1− pd,ρ
pd,ρ

(7.18)

Here f1(d) = a1,ρd, a linear function accounting for the effects of dynamic range, and

f2(d) = e−d/a2,ρ , an exponential function accounting for the effects of receiver sensitivity.

In order to get the parameters of the negative binomial distribution, namely rd,ρ and

pd,ρ, we also need to model one of the parameters. We have chosen to model pd,ρ and by

using (7.16) we can obtain rd,ρ as

rd,ρ =
µd,ρpd,ρ
1− pd,ρ

(7.19)

After a careful investigation of the data we propose to use the following model for pd,ρ

for d ∈ (dref,ρ, DT )

pd,ρ = b1,ρe
−log10(d)/b2,ρ + b3,ρe

−log10(dref,ρ−DT )/b4,ρ (7.20)

where dref,ρ is the ρ dependent reference distance until which the number of MPCs is

assumed to be 1. For the special case of d ≤ dref,ρ we assume that there is only one path

(the DP). In other words at such small distances the presence of the strong direct path

shadows all other paths. Thus we have p(Lp = 1|d ≤ dref,ρ) = 1. For d ≥ DT we have

p(Lp = 0|d ≥ DT ) = 1.

We should also note here that since RT simulations are based on infinite bandwidth

assumption, it gives us all possible rays reaching the receiver. When bandwidth restric-

tions are imposed, paths that are closer to each other than the MPC resolution interval will

be detected as one path. Hence we expect a decrease in the number of paths as we start

to decrease signal bandwidth. The effect of bandwidth on MPC count has been studied in
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the previous chapter based on empirical measurements and the modeling approach differs

from RT. In the previous chapter number of paths have been modeled differently under

different propagation conditions.

7.4 Spatial Multipath Model Based on Geometrical In-

terpretation

Method of Transmitter Images (MOTI)

Indoor propagation environment can be modeled by vertical and horizontal dielectric

structures (walls, furniture, windows etc.) with certain reflection and transmission co-

efficients. Conducting surfaces such as metallic doors or steel beams can be modeled by

a reflection coefficient of 1 and a transmission coefficient of 0. The propagation path of

the rays emanating from the transmitter can be expressed as a direct path between the re-

ceiver and the image of the transmitter corresponding to the last reflecting surface. Thus

for each reflecting wall we will have a virtual transmitter obtained through the principles

of transmitter images. Hence, the complete multipath propagation can be expressed as the

combination of direct paths between all possible transmitter images and the receiver. The

idea of source (transmitter) images has also been used by other researchers [140, 141].

This is depicted in a very basic 4 wall scenario given in figure 7.4. Here we have a trans-

mitter (TX) and a receiver (RX) at the indicated positions, and we assume a rectilinear

motion for the receiver composed of horizonal and/or vertical motion paths. For con-

venience, we choose the lower left corner of this room as the universal origin (0,0) and

distances are with respect to this point. For this special scenario considering TX is located

at coordinates (TXx, TXy) and RX is at (RXx, RXy) and wall distances from origin are

given by dH and dV for the top horizontal and right vertical walls respectively, we have
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xm = 2jdV ± TXx, j ∈ (−∞,∞) (7.21)

ym = 2kdH ± TXy, k ∈ (−∞,∞)

Figure 7.4: Method of transmitter images

h =


|ym − dRX | horizontal

|xm − dRX | vertical
(7.22)

where h denotes the distance of transmitter image location to the receiver’s path of

motion for horizontal or vertical motion of the receiver and dRX is the vertical or horizon-

tal distance of the receiver’s path of motion respectively. Theoretically speaking, infinite

images will be created however, in practice, transmitter images created after a certain or-

der of reflections can be ignored since signal will diminish after back and forth reflections

and transmissions.

As we include more details in the floorplan, reflection structure will become more

complicated since number of first order reflections will increase exponentially with linear
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increase in the number of walls and when we consider higher number of reflections, the

determination of image locations will demand high computation power and resources.

MOTI can be considered as a framework for explaining spatial MPC behavior by

treating each path as coming from a virtual source which is created by the reflecting and

transmission mechanisms inside the building. We will introduce the spatial MPC behavior

in the following subsections. Section 7.4.1 will present the path birth for appearance of

paths, section 7.4.2 will introduce and present the persistency or equivalently the lifetime

of the paths and section 7.4.3 will give the spatial path behavior during path persistency.

7.4.1 Path Birth Rate

During the course of the receiver movement, many paths will appear and disappear. Path

appearance is the formation of a new reflection mechanism so that an MPC can reach

the receiver by this propagation scenario. Path disappearance, on the other hand, is the

loss of a reflection mechanism since an MPC cannot reach the receiver via the same

propagation scenario anymore. The disappearance or ”death” of paths will be governed by

the path persistency since a path will be assumed dead at the end of its persistency which

will be discussed next. However, we need to have a certain model for the generation or

”birth” of new paths. The mechanism by which these paths are born has been studied

through various models in the literature [113, 131] as mentioned before. Based on our

observations, we propose a Poisson birth model for the number of paths that are born.

One previous study [123] proposed a Poisson model for the arrival of paths in the static

case. In that study, experiments and simulations were performed at predefined transmitter

or receiver locations and a number of CIRs were collected. Hence these models are

actually valid for the τ axis. Our model is defined in the spatial dimension, x, describing

the spatial evolution of paths as the receiver moves. Figure 7.5 gives an overall structure

for the spatial model and shows various parameters used in the model.
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Figure 7.5: Path birth and persistency

The model can be briefly given as

p(N(∆X) = nb) =
(µB,ρ∆X)nb

nb!
e−µB,ρ∆X (7.23)

where µB,ρ is the threshold dependent birth rate, nb is the number of births in a given

spatial interval, ∆X . We have observed that the path detection threshold (ρ) has an ef-

fect on the Poisson parameter, µB, since the probability of having higher path birth rate

increases with increasing threshold and more paths being included in the CIR.

The Poisson modeling approach that we have adopted is actually based on a Bernoulli

trial in which we assume either a ”zero” or a ”single” birth in an interval small enough to

make our assumption valid. In this small interval, ∆x, we assign a probability of p0 for a

no-birth case and a p1 for a single birth. Our choice of the Poisson model stems from the

fact that this simple yet powerful model can describe multiple stochastic occurrences of

certain events in a given time. Hence the probability of occurrence of n paths in a given

interval ∆X = m∆x can be computed as

pn =

(
m

n

)
p1

np0
m−n (7.24)

When m tends to a large number and p1 to a small number, the overall probability can

be approximated by the Poisson random variable with the parameter µB = mp1.
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7.4.2 Path Persistency

As the receiver is moving steadily on a given route its TOA and AOA will exhibit differen-

tial changes as long as there is no major change in the propagation scenario. Propagation

scenario is tightly related to the internal structure of the indoor environment, and is pri-

marily dependent on the reflection mechanism. Referring to figure 7.6, we can express

the reflection mechanism as a vector whose elements are an ordered set of surface/wall

indices. For instance, a path that goes through 2 reflections at walls w1 and w2 respec-

tively would have a reflection mechanism [w1w2]. Changing the order of reflections would

create a different reflection mechanism hence a different propagation scenario. We will

use the notation Pi,x = [w1w2...wn] to denote the propagation scenario of the ith MPC at

position x after getting reflected at the walls w1, w2...wn.

Figure 7.6: A sample persisting path in interval δx

Persistency of a certain MPC is the time interval expressed in number of discrete time

steps (or equivalently the distance that the receiver moves given its speed) in which the

propagation scenario stays intact. In other words, having Pi,x = [w1w2...wn] at position

x and Pi,x+δx = [w1w2...wn] at position x+ δx would indicate a persistency of δx for the

ith path.

The persistency of MPCs has not been studied extensively in the literature. The studies

in [131] and in [113] are some previous and early works that model the duration for
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which MPCs stay active. Authors in [131] propose a Poisson birth/death process for

multipath duration, hence the lifetime is modeled as an exponential random variable. The

study in [113] similarly propose an exponential path lifespan based on experimental data

obtained with a system bandwidth of 120 MHz. The exponential model with parameter λ

is given as

fxP
(x) = λe−λx (7.25)

Although an exponential form is also a valid approach for modeling persistency, it is

not adequate [142,143]. Hence other modeling schemes need to be considered. One such

method is the Weibull modeling approach written as

fxP
(x) = (b/a)(x/a)(b−1)e−(x/a)b (7.26)

where a, b are the scale and shape parameters respectively. However, based on our

observations from the RT simulations, Weibull scheme would still not be able to provide

an accurate representation of lifetime data. Hence, we are proposing log-logistic distri-

bution for the persistency of a MPC. The use of log-logistic has been considered in other

disciplines [144] as a statistical lifetime model. The log-logistic model is written as

fxP
(x) =

e
ln(x)−µ

σ

σx[1 + e
ln(x)−µ

σ ]2
(7.27)

where µ, σ are the scale and shape parameters, respectively, and x is the distance

receiver moves. Equivalently path persistency can be interpreted as the time duration, tP ;

it persists through the relation tP = xP/v.

Among the three modeling schemes, namely exponential, Weibull and log-logistic,

our observations indicate a better conformance to the log-logistic method. Since path

persistency is directly related to the propagation scenario, the distribution of the interior
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wall lengths of the building has a direct impact on the distribution of path persistency.

The log-logistic model can describe longer path persistencies that are produced by longer

walls such as corridors better. The Exponential and Weibull models decay too quickly to

describe this behavior.

Thus the complete spatial path behavior is modeled by the combination of the log-

logistic path persistency and the Poisson birth model. Results in terms of cumulative

hazard function and a two-sample K-S test will be presented in section 7.5 for a quantita-

tive comparison of the aforementioned models and the suitability of our proposed model.

7.4.3 Spatial Path Behavior During Path Persistency

Now that we have discussed how paths appear/disappear and how their persistencies can

be modeled, we will now focus on how MPC parameters change during its persistency.

The derivations will follow the ray-optical geometric approach.

Since each path can be represented as a direct line between the transmitter image and

the receiver, differential changes on any path can be expressed in terms of geometric re-

lations. Each parameter of the MPC exhibits a differential change throughout its lifetime.

Before introducing the discrete and continuous models for path behavior, we will at

this point define the angle notations. In our modeling approach there are 3 different angles

that we consider. These are θLOS , the absolute LOS angle, θ, the relative angle wrt to the

LOS and w, the acute angle that is between the direction of receiver motion and the MPC.

The spatial equations will be based on w, however it will be straightforward to obtain θabs

using basic trigonometric relations as given in figure 7.7.

In order to present the derivation of the model we will focus on the 4th quadrant of

figure 7.7 wrt to virtual TX axes as shown in figure 7.8. For the spatial model we will use

the notation τ corresponding to the absolute TOA, τabs, as mentioned earlier in the TOA

model.
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Figure 7.7: Relation between w and θabs

Figure 7.8: Geometry for differential feature update

Employing the cosine rule for the triangle indicated, we can write the discrete time

difference equations for τi,k, ωi,k, βi,k as:
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τi,k =

√
(cτi,k−1)2 + (∆x)2 + Y

c
(7.28)

ωi,k = cos−1

(
(cτi,k)

2 − (cτi,k−1)
2 + (∆x)2

Z

)
(7.29)

βi,k =
A

cτi,k

∏
j

αij (7.30)

where ∆x is the differential distance that the receiver moves in time ∆t which is also

the interval between consecutive time steps, and A =
√
GtGr(c/4πf)2. When the re-

ceiver is moving away from transmitter Y = −2cτi,k−1∆xcos(ωi,k−1), Z = 2∆xcτi,k re-

spectively and when the receiver is moving towards the virtual transmitter Y = 2cτi,k−1∆xcos(ωi,k−1),

Z = −2∆xcτi,k respectively.

Although we assume ∆x is relatively very small when compared to actual path dis-

tances, it may be of importance to present these results in their most general continuous

differential form. Again referring to figure 7.8 we can represent the path length hence the

τ in terms of the distance receiver moves (x) and the vertical distance (h) of the transmitter

image to the path of motion through a basic relation

cτ =
√
x2 + h2 (7.31)

The differential change in τ with respect to x is thus

dτ/dx =
x

c
√
x2 + h2

(7.32)

For the w we observe the relation

w = tan−1(h/x) (7.33)
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Hence the differential change in w with respect to x is

dw/dx =
1√

1 + h2/x2
(7.34)

For the differential change in amplitude we refer to the path gain expression given as:

βi =
A

cτi

∏
j

αij (7.35)

As we will discuss later the path loss associated with multiple reflection and transmis-

sions given by
∏

j αij is also distance hence τ dependent. We will represent the loss with

a τ dependent function, fL(τ) and the differential change in β with respect to τ is thus

given by

dβ/dx =
dβ

dτ

dτ

dx
=

(
A

cτ

dfL(τ)

dτ
− fL(τ)

τ 2

)(
x

c
√
x2 + h2

)
(7.36)

The spatial changes in the TOA and AOA of the paths have been previously discussed

in [113] but the variations during a path lifespan have been modeled using a basic best

line fit approach which does not accurately capture the changes in path features.

Through these simple geometric relations we can mathematically define the exact mo-

tion of a certain ray. Here we see the dependance of differential TOA and AOA change on

both the distance traveled by the receiver and the perpendicular distance of the transmitter

image to the receiver motion direction.

Since a path is considered to belong to a certain propagation scenario during its per-

sistency, we do not expect abrupt changes in the TOA and AOA. The existence of abrupt

changes beyond a certain threshold indicate reception of a new path arising from a differ-

ent propagation scenario.
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7.5 RT Simulation Platform and Results

For the simulations, we utilized a calibrated RT tool [145], and developed realistic indoor

floorplans of the AK Labs at WPI. Ray tracing methods have proven to be efficient for

most studies [131, 135, 146]. For the purposes of this study we have developed two sim-

ulation scenarios in order to derive and verify the proposed models. In the first scenario,

we have produced an extensive database of CIRs for 3 different transmitter locations (de-

noted as TX-n, n=1,2,3) and about 13500 receiver locations for each transmitter location

for a total of more than 40000 CIRs. Each CIR is composed of all relevant path param-

eters such as TOA, AOA, and path gain. Floorplan consists of the rectilinear layout of

the 3rd floor of AK with metallic doors and dielectric walls. Elevator shaft and the ane-

choic RF chamber in room 320 have been modeled like metallic doors as almost perfect

conductors, and hence giving us a more realistic propagation environment. The floorplan

with the transmitter and receiver locations is depicted in figure 7.9. We have used this

scenario to obtain the statistical model parameters for our proposed model.

Figure 7.9: Map of AK 3rd floor showing transmitter/receiver locations and floorplan
features

Figures 7.10 and 7.11 show the CDF and histogram of the TOAs relative to the first
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arriving path. We can see a close match with the RT data. Beta and Weibull distribu-

tions can also describe relative TOA to a certain degree accuracy, however lognormal

distribution has been found to be the best performing model.
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Figure 7.10: Cumulative distribution for the relative TOA, τ
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Figure 7.11: Histogram for the relative TOA, τ

Since in one of the scenarios, transmitter (TX-3) is located at one end of a 50 m long

corridor on the 3rd floor of AK, results also show the presence of higher order reflections

occurring at the ends of the corridor. This can be seen in the histogram of the relative

TOAs in figure 7.11.

Figures 7.12 and 7.13 show the CDF and PDF of the AOAs relative to LOS compo-

nent. Here, we can see the strong dependence of the multipath arrivals on the LOS path

since most paths tend to arrive around −π, 0, and π radians around the LOS.

Figure 7.14 shows the CDF of path gain, β, obtained using the proposed model vs

the path gain from RT data. We see a very close match between the model and the ob-

served data. The threshold for path power has been fixed at -56 dB for the RT. The small

fraction of paths that are below -56 dB can be attributed to the design of the RT soft-

ware which checks for threshold at each object interaction rather than a continuous check

during propagation. Hence a path might have incurred additional path loss since the last

object interaction at which point it might have had higher power than the threshold.

Figure 7.15 shows the CDFs for the number of reflections and transmissions for the

proposed Poisson models vs the RT data. From this figure we see the suitability of the
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Figure 7.13: Probability density for the relative AOA, θ

Poisson Model for the number of object interactions. For the coefficients of reflection and

transmission we have used an average reflection coefficient ofR = 0.7 and a transmission

coefficient of T = 0.5. These values have been taken from [127].

Figure 7.16 shows the dependence of number of paths, Lp, to distance. From this

figure, we can see the distance dependence of Lp for varying thresholds. For smaller

values of transmitter-receiver distances, we can see the dominance of dynamic range in
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Figure 7.14: CDF for path gains using the proposed model vs RT Data
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Figure 7.15: CDFs for the number of reflections/transmissions for Poisson model vs RT
data

MPC count and for higher distances receiver sensitivity becomes dominant hence leading

to less paths. This is an expected result since more and more paths will be below the

detection threshold with increasing distance.

The existence of high order reflections for the corridor points leads to almost fixed

number of MPCs starting at a distance of around 25m and going up to about 50m which
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Figure 7.16: Number of paths (Lp) vs distance

can also be seen in figure 7.16. The waveguiding effect of the corridor actually needs a

separate modeling approach, however it has been included in our simulations to empha-

size the variety of possible scenarios in a typical indoor environment.

Figures 7.17 and 7.18 show the mean value and p for the negative binomial model for

varying distance and ρ values. DT as mentioned in the model has been found to be 56 m

specific to our case.
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Figure 7.17: Distance and ρ dependent µ
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Figure 7.18: Distance and ρ dependent p

The second scenario has been used to obtain the spatial path characteristics of the in-

door channel. The setup for the this scenario is shown in figure 7.19. The choice of the

receiver loop chosen also presents a diversified RF environment with mixed DDP/UDP

conditions due to both macro and micro metallic obstructions including the anechoic RF

chamber and the metallic vertical beam. Receiver motion is simulated by obtaining con-

secutive CIR responses at locations 5 cm apart from each other on the loop on the 3rd

floor of AK. Hence the CIR results have been obtained with a spatial resolution of 5 cm

corresponding to the floorplan scale of 20 pixels/m. This spacing also corresponds to the

∆X as described in the path birth model.

For the modeling of path birth, we have two free variables p1 and m. By assigning a

small probability value to p1 we can obtain all the other related parameters. Specific to

our case we have chosen p1 = 0.01. Based on the RT simulation results and fixing ρ at

30dB, µB is calculated as 2 and thus m = 200. Hence ∆x = ∆X/m = 0.025cm. Figure

7.20 shows the CDF for net path birth/death using the combined Poisson path birth and

log-logistic path persistency model. Different values of m and ∆x can be calculated from

µB,ρ for varying ρ values as will be given in table 7.2.
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Figure 7.20: CDF for net path birth/death

A two sample K-S test is used to test the suitability of the selected model. The D

statistic, given as:

D = sup
x

|F (x)− S(x)| (7.37)

where F(x) denotes the fitted distribution with estimated parameters and S(x) denotes

the experimental data, can be interpreted as the greatest vertical distance between these

two distributions and is a measure of how closely the proposed model describes empirical
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results. A smaller D indicates a better overall fit. Comparison of this value against a

tabulated critical value determines if the proposed (hypothesized) model can be accepted

at 5% significance level, which is a common value used in statistical tests. Based on this

test and at 5% significance, our proposed Poisson birth model is acceptable.

In order to obtain the persistency of a single path, a path tracking algorithm is em-

ployed. A version of this algorithm is discussed in [24]. For the comparison of persis-

tency results, we have chosen the cumulative hazard function which is a common method

used in survival analysis [143]. The cumulative hazard function can be written as:

H(x) = −logS(x) (7.38)

where S(x) is the survivor function expressed as:

S(x) = Pr(xP ≥ x) (7.39)

which gives the probability that path persistency, xP , is greater than x. As we can see

from figure 7.21, log-logistic modeling for path persistency is a more accurate approach

following the cumulative hazard of the empirical results more closely. In this graph, x

axis is the lifetime in meters and y axis is the H(x). The KS results for the models (for

a representative ρ value of 30 dB) based on D statistic are also given in table 7.1 for a

quantitative comparison.

Table 7.1: K-S comparison for different persistency models
Persistency Models (ρ=30dB) D Model Parameters

Exponential 0.1497 λ = 1.247
Weibull 0.1427 a = 0.722, b = 0.855

Log-logistic 0.0767 µ = -0.934, σ = 0.606

The KS test yields the minimum D value for the log-logistic model when compared

to Weibull and exponential for path persistency indicating a better overall conformance
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Figure 7.21: Cumulative hazard comparison for path persistency

to this model. The results of the calibrated RT tool show a good agreement with the

proposed log-logistic path persistency model coupled with Poisson path birth model. For

different values of ρ log-logistic still exhibits the best performance, however due to space

limitations parameters for ρ = 30dB have been presented only.

Figure 7.22 shows sample spatial path behavior for the first segment of the test loop

(top part of the rectangular loop) processed at ρ = 30 dB. As we can clearly note in the

graph, the TOA of each detectable path exhibits a smooth geometric behavior throughout

its persistency. We can also observe the persistent higher order paths in the UDP region

which we can use for accurate ranging.

Figure 7.23 shows the complete loop spatial behavior of τ and θ given for ρ=10,20,30,40dB.

z-axis is the path gain, β, in dB and x-axis is the spatial distance (time) in terms of pixels.

7.6 Conclusions

In this chapter we have introduced a spatial model for the behavior of MPCs that rely

on geometric optics and presented statistical characterization of key MPC components,

namely TOA, AOA, path gain and number of MPCs. Based on an extensive set of em-
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Figure 7.22: Sample spatial path behavior for the first segment of the test loop

pirical measurements we proposed a log-normal model for relative TOA, bathtub density

for relative AOA, negative binomial model for the number of MPCs, log-logistic model

for path persistency and poisson model for path birth. Table 7.2 summarizes the models

chosen for the characterization of MPC behavior along with their parameters obtained

through our simulations.
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Table 7.2: Overall model summary
MPC feature Proposed Model Model Parameters

TOA τabs = r/c+ τ µ = −16.02 and σ = 1.06

fτ (τ) =
1

τσ
√
2π

e−
(ln(τ)−µ)2

2σ2

AOA θabs(θLOS) = θLOS + θ θLOS = atan2 (TXy −RXy, TXx −RXx)

fθ(θ) =


1

π2

√
1−( θ+π/2

π/2 )
2 −π < θ < 0

1

π2

√
1−( θ−π/2

π/2 )
2 0 ≤ θ < π

0 otherwise

atan2(y, x) =



tan−1(y/x) x > 0

tan−1(y/x) + π x < 0, y ≥ 0

tan−1(y/x)− π x < 0, y < 0

π/2 x = 0, y > 0

−π/2 x = 0, y < 0

undefined x = 0, y = 0

Path gain βi =
A

cτabs

∏
j αij A =

√
GtGr

c
4πf

P (M = m) =
λm
r

m! e
−λr αij =

{
R = 0.7 if reflection
T = 0.5 if transmission

P (N = n) =
λn
t

n! e
−λt λr = 5.94

λt = 3.21

Number of paths p(Lp = k; rd,ρ, pd,ρ) =
Γ(rd,ρ+k)
k!Γ(rd,ρ)

p
rd,ρ
d,ρ (1− pd,ρ)

k

ρ(dB) a1 a2 b1 b2 b3 b4 dref,ρ(m)
5 0.40 28.66 1.23 1.69 172.7 0.09 2.23

10 0.75 34.64 0.98 1.05 107.4 0.11 0.94
20 3.33 26.13 0.59 0.56 92.8 0.12 0.50
30 11.47 17.20 0.28 0.51 1208.7 0.08 0.22
40 28.50 12.04 0.17 0.47 2733.9 0.07 0.14

µd,ρ = a1,ρde
−d/a2,ρ = rd,ρ

1−pd,ρ

pd,ρ

pd,ρ = b1,ρe
−log10(d)/b2,ρ + b3,ρe

−log10(dref,ρ−DT )/b4,ρ DT = 56m

Path persistency fxP
(x) = e

ln(x)−µ
σ

σx[1+e
ln(x)−µ

σ ]2
µ = -0.934, σ = 0.606 (ρ = 30dB)

Path birth pn =
(
m
n

)
p1

np0
m−n

ρ(dB) µB,ρ KS Statistic D
5 0.06 0.0065

10 0.1 0.0142
20 0.5 0.0475
30 2 0.0405
40 7 0.0243

∆X = m∆x, µB = mp1 p1 = 0.01,m = 200
∆X = 5cm, ∆x = 0.025cm (ρ = 30dB)
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(a)

(b)

Figure 7.23: (a) TOA vs spatial distance (b) AOA (wrt LOS) vs spatial distance for
ρ=10,20,30,40dB
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Chapter 8

Conclusion and Future Directions

8.1 Conclusion

This chapter provides an overall conclusion and discussion of some possible directions

for the research that has been the focus of this dissertation.

Indoor wireless channel presents unique challenges for system researchers and system

developers, especially those working on indoor geolocation systems. The existence of

a cluttered environment is the main reason for a CIR that is composed of many closely

arriving paths. Additionally, since there is a high chance of frequent obstructions between

the transmitter and receiver, the amplitude of the DP will most of the time be diminished

to a level not detectable by the receiver. This results in the so called UDP condition

and causes large ranging errors. A combination of multiple UDP measurements will

eventually lead to an erroneous position estimation for indoor geolocation, which will be

unacceptable for most applications.

The work presented in this dissertation has addressed the indoor geolocation problem

from a channel modeling point of view given the existence of harsh UDP conditions.

Chapter 2 presented background information on RF geolocation techniques from the
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system engineering and channel modeling points of view. Special attention has been

given to TOA based systems since the major challenge involved in high precision ranging

and positioning systems is the frequent absence of the DP, causing the UDP condition.

Two studies have also been presented in this chapter demonstrating the effect of UDP

conditions on typical geolocation systems.

In Chapter 3 we introduced a study on UDP identification since identification is the

first step and plays an important role in obtaining precise ranging measurements.

In Chapter 4 we introduced the path persistency and demonstrated how we can utilize

this information to get precise ranging in the absence of DP. UDP error mitigation is the

second step in obtaining precise ranging and consequently localization.

In Chapter 5 we presented a study that shows the effect of building architecture on

path persistency and we introduced a concept called floorplan complexity, which was

used as a measure of the complexity of the propagation environment.

In Chapter 6 we presented the results of an empirical measurement campaign to

analyze the effect of bandwidth, peak detection threshold and propagation condition

(DDP/UDP) on some key MPC parameters such as path persistency and the number of

MPCs. The effect of transmitter and receiver distance has also been studied through these

measurements.

In Chapter 7 we presented our comprehensive spatial multipath model based on ray

optics and a statistical modeling approach. We created an extensive RT database and

based on our observations we proposed a wireless channel model keeping in mind the in-

door geolocation applications. We proposed statistical models for TOA, AOA, amplitude

of the MPCs. A distance dependent model is also introduced for the number of MPCs.

The appearance and disappearance of the MPCs have been modeled through path persis-

tency (equivalently path lifetime) and path birth. The spatial behavior of MPCs has been

investigated using the ray optics model.
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Development of such a model is particularly important for indoor geolocation appli-

cations utilizing multipath diversity in the absence of DP. Therefore accurate characteri-

zation of multipath behavior is essential for indoor areas.

8.2 Future Directions

This study can be extended in several possible directions. One possible direction is the

investigation of the actual indoor geolocation performance of the proposed model by com-

bining the ranging information from multiple transmitters as obtained by using this model.

Another direction would be the development of a 3D propagation model. Thus a more re-

alistic assessment of positioning algorithms can be made especially for multi-story build-

ings. A third extension to this study could be the integration and comparison of path

number modeling approach based on measurements and RT. Yet another direction would

be the quantitative modeling of the dependence of path persistency on building specific

parameters such as mean wall length, number of walls, mean wall reflection/transmission

coefficients, etc.
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Appendix A

Geometric Derivation for Path

Persistency-Wall Length Dependency

In this appendix we will show geometrically the dependence of path persistency on the

length of the walls. For this purpose we consider 2 walls, 1 horizontal (w1) and 1 vertical

(w2) wall as shown in figure A.1. Transmitter (TX) is at (0,0). Receiver (RX) moves in

the indicated direction at the y coordinate Sy. The entities of interest and their coordinates

are given in table A.1.

Table A.1: Entities of interest
Entities Coordinates (x,y)

Wall 1 (w1) (w1,x1, w1,y)− (w1,x2, w1,y)
Wall 2 (w2) (w2,x, w2,y1)− (w2,x, w2,y2)

Transmitter (TX) (0,0)
Virtual TX1 (V TX1) (0,2w1,y)
Virtual TX2 (V TX2) (2w2,x,2w1,y)

Table A.2 shows the geometries of interest. Here our aim is to find the line segments

c11 − c12 and c21 − c22 which represent the persistency of the corresponding reflected

paths. We assume that walls allow transmission of the paths.

For the horizontal wall w1:
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Figure A.1: Sample scenario for showing path persistency dependence on wall lengths

Table A.2: Geometries of interest
w1-V TX1 intersection line 1 (L11)
w1-V TX1 intersection line 2 (L12)
w2-V TX2 intersection line 1 (L21)
w2-V TX2 intersection line 2 (L22)

L11 and RX motion path intersection point (c11)
L12 and RX motion path intersection point (c12)
L21 and RX motion path intersection point (c21)
L22 and RX motion path intersection point (c22)

The equation for L11 is given as

y − 2w1,y

w1,y − 2w1,y

=
x− 0

w1,x1 − 0
(A.1)

The equation for L12 is given as

y − 2w1,y

w1,y − 2w1,y

=
x− 0

w1,x2 − 0
(A.2)

We obtain the x-coordinate of c11 by substituting Sy in L11 equation:
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c11x =
−w1,x1

w1,y

(Sy − 2w1,y) (A.3)

and likewise we obtain the the x-coordinate of c12 by substituting Sy in L12 equation:

c12x =
−w1,x2

w1,y

(Sy − 2w1,y) (A.4)

For the vertical wall w2:

The equation for L21 is given as

y − 2w1,y

w2,y1 − 2w1,y

=
x− 2w2,x

w2,x − 2w2,x

(A.5)

The equation for L22 is given as

y − 2w1,y

w2,y2 − 2w1,y

=
x− 2w2,x

w2,x − 2w2,x

(A.6)

We obtain the x-coordinate of c21 by substituting Sy in L21 equation:

c21x =
Sy − 2w1,y

w2,y1 − 2w1,y

(−w2,x) + 2w2,x (A.7)

and likewise we obtain the the x-coordinate of c22 by substituting Sy in L22 equation:

c22x =
Sy − 2w1,y

w2,y2 − 2w1,y

(−w2,x) + 2w2,x (A.8)

Now we can write the segment lengths (or equivalently path persistencies) xp1 =

|c11 − c12| and xp2 = |c21 − c22| as
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xp1 = |c11x − c12x| =
Sy − 2w1,y

w1,y

|w1,x1 − w1,x2|

= K1|w1,x1 − w1,x2| (A.9)

xp2 = |c21x − c22x| = − Sy − 2w1,y

w2,y1 − 2w1,y

w2,x

w2,y2 − 2w1,y

|(w2,y1 − 2w1,y)− (w2,y2 − 2w1,y)|

= K2|w2,y2 − w2,y1| (A.10)

Here we can easily see that since wall coordinates and virtual TX locations are known

(constant), the path persistencies represented by the segment lengths are only dependent

on the wall lengths.

Assuming wall lengths are represented by a random variable, we expect that the path

persistencies will follow the same family of distribution as the wall lengths up to a certain

constant. Considering wall lengths are denoted by the random variable L then the CDF

for L is FL(l) = Pr{L < l}. Since the path persistency (Xp) for a particular path can be

shown as Xp = KL the CDF for the random variable Xp will be FXp(xp) = Pr{Xp <

xp} = Pr{KL < xp} = Pr{L < xp/K} = FL(xp/K).
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Appendix B

Slicing Tree Floorplaning

In this appendix we will present the slicing tree algorithm to create a slicing floorplan. The

starting point is a rectangular layout. This layout is recursively sliced by either horizontal

or vertical slices into rectangular blocks which denote the rooms on the floorplan. A

pseudocode for this algorithm is given below:

Algorithm 1 Slicing Floorplan
for i = 1 to MAXDEPTH do

for k = 1 to 2i step 2 do
if Min room dimension < THR then

continue for
else

Slice vertically or horizontally (with probability p = 0.5)
end if

end for
end for

In our algorithm we applied a threshold (THR) in order to have rooms with reason-

able sizes. For our purpose, we chose 3 m as the minimum room dimension (vertical

or horizontal). The probability of either vertical or horizontal slice has been chosen as

p = 0.5 as to eliminate bias towards one kind of slicing. MAXDEPTH specifies the

maximum depth of the slicing tree.
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Figure B.1 shows a sample 20m by 20m floorplan with its corresponding slicing tree.

H denotes a horizontal slice and V denotes a vertical slice. In this exampleMAXDEPTH =

4.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

X (m)

Y
 (

m
)

1

2

3

4

331

8

7

6

5

(a) (b)

Figure B.1: (a) Sample 20m by 20m floorplan with numbered rooms (children) (b) Cor-
responding slicing tree
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Appendix C

Cellular Positioning

In this appendix we present a study on outdoor cellular based positioning and it is pre-

sented based on the following published paper: [33]. Some parts of this appendix have

been presented earlier in the thesis, but they are left intact for the completeness of this

study.

C.1 Introduction

The world is fast moving towards an era of seamless networking as mobile devices are

becoming smaller, smarter and more affordable. Ubiquity of such devices is also the key

enabler for location based services. The first serious attempt for localization came in

the form of a US military initiated project, the GPS. In its 40 years of development and

maturity, GPS has become a reliable location finding and tracking system for use not only

by military but also by civilians in numerous applications.

Although GPS is a proven and reliable technology, it falls short of expectations for

some terrestrial applications where the GPS signals cannot be detected due to obstruc-

tions. Satellite signals are attenuated heavily through the atmosphere and further obstruc-
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tion by trees, heavy fog or manmade structures such as building tops prevent this system

to be useful especially for densely populated urban settlements and inside buildings. In

order to overcome this issue, researchers turned their attention to land-based position-

ing and tracking systems for situations that cannot make use of satellite signals. The two

widely available technologies suitable for this purpose are the Wi-Fi (WLAN) and cellular

networks.

The proliferation of cellular based radio communications systems made them also

potential candidates for ground-based positioning applications. Following the availability

and the wide footprint of these systems, FCC mandated mobile phones be located within

a certain accuracy in the US [7]. Accordingly mobile operators should be able to locate

phones with 50m accuracy 67% of the time and 150m accuracy 95% of the time for

handset based positioning, and 100m accuracy 67% of the time and 300m 95% of the

time for network based positioning. Thus, positioning using cellular networks became

feasible and provided operators with quick deployment opportunities for location based

services (LBS).

On the other hand, rapid adoption of WLAN technology throughout the world es-

pecially in densely populated areas made it another compelling choice for localization.

Figure C.1 summarizes the capabilities and operational coverage of these different tech-

nologies in terms of localization performance. As we can see, a hybrid solution combing

all these technologies is clearly needed for the most effective coverage and localization

performance.

In this part, we will focus on the use of cellular localization for typical positioning

applications and evaluate its effectiveness using a real life test bed. In section C.2 we will

give a brief overview of location metrics that can be used to obtain position information,

and in section C.3 we will introduce basic concepts for cellular positioning. Section C.3

will also present the testbed that we have used to obtain our results. Results and perfor-

175



Figure C.1: Different localization technologies

mance evaluation will be given in section C.4. Finally, we will conclude this appendix in

section C.5. We shall point out that the words localization, positioning and geolocation

are used interchangeably throughout this paper.

C.2 Overview of a Localization System

A typical localization system consists of mobile terminals that need to be located/tracked,

beacon or anchors serving as reference points, a central processing station that imple-

ments the positioning algorithm and keeps track of all the terminals as well coordinates

data communications and a higher layer system that shows the results of positioning or

tracking like an LCD panel. Figure C.2 shows the components of such a localization

system. The system might use different ranging metrics for obtaining the position in-

formation. The most common of these metrics are received signal strength (RSS) and

time-of-arrival (TOA). RSS and TOA might be considered as ranging metrics since rang-

ing information can be obtained from these signal parameters. The nodes will need at

least three ranging estimates from different anchors to be able to obtain a position fix.

In the following section, we will briefly introduce the distance or equivalently ranging

estimation metrics and present some theoretical performance bounds.
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Figure C.2: High level architecture of a typical positioning system

Distance Estimation Metrics

RSS: After the RF signal is transmitted by a transmitter, its energy experiences loss that is

proportional to the distance signal travels. A common model based on single-path radio

propagation is given by

Pr(dB) = Pt(dB)− 10αlog10(d) (C.1)

where Pr (dB) and Pt (dB) denote the received and transmitted signal powers in dB. α is

the distance-power gradient and is dependent on the propagation environment. For free

space, α is considered to be equal to 2. A wide range of values are possible for α, i.e.

for a brick construction office environment α is reported to be 3.9 or for a laboratory

environment with metal-faced partitioning it is found to be 6.5 [14].

Other empirical models have also been developed based on extensive measurements

in various environments. The author in [34] proposed a path-loss model for multi-floor

buildings. Technical working group of TIA/ANSI JTC recommended an indoor path loss

model [147] for PCS applications. Apart from the indoor model, the same group proposed

micro and macro-cellular models for outdoor applications. Other popular models for

outdoor environments are the Okumura [36], Hata [37] and COST231 [38] models.

Either by using the simple radio-propagation or the more complicated empirical mod-
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els, distance information can be obtained from the received signal power given the trans-

mitted signal power. This method can be easily applied since almost all RF wireless

devices can report received signal strength however its accuracy may not always be ac-

ceptable due to the stochastic variation of the channel.

The path loss models discussed above are deterministic models that do not consider

the fading and shadowing effects. At any time instant, the signal level experiences slow

and fast fading caused by local scatterers and the movement of the receiver node. Due

to this fluctuating behavior of received signal power, accurate ranging measurements are

not always possible hence leading to lower accuracy position estimation. In fact, the

accuracy of such estimation is lower bounded by its Cramer-Rao lower bound (CRLB).

CRLB basically specifies the lower bound on the variance of estimation. For the simplistic

RSS model this bound has been given in [39] as:

σ2
dRSS

≥ (ln10σshd/(10α))
2 (C.2)

Here, σ2
dRSS

is the variance of estimation, σ2
sh is the variance for shadow fading, d is

the actual distance between the transmitter and the receiver and α is the power-distance

gradient.

TOA: Another distance estimation method is the TOA method in which the range

is estimated based on the time the signal spends traveling from the transmitter to the

receiver. Since the speed of RF propagation is very well known in both free space and

air, it gives a direct estimation of the distance between the transmitter and the receiver

once the travel time is estimated. When TOA systems are considered, the only important

parameter that needs to be estimated correctly in a multipath propagation environment is

the TOA of the LOS path or the DP. Other multipath components are not important for

ranging and localization purposes except for the cases when the DP is not available. The

basic equation needed to obtain the distance is given as
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d = τDP c (C.3)

where d is the distance estimate, τDP is the TOA of the DP and c is the speed of

light. Accurate TOA estimation needs perfect synchronization between the clocks of the

transmitter and the receiver. Clock synchronization might be achieved by regular data

exchange between the transmitter and the receiver or an additional anchor for correcting

the clock bias. Although 3 anchors are necessary to obtain position, a 4th anchor will

be needed for time correction. This method is readily applied for the GPS in which a

4th satellite is used to compensate for the receiver clock bias. The TOA location esti-

mation is depicted in figure C.3 where a perfect synchronization is assumed between the

transmitters and the receiver. Same procedure also applies to the RSS method in which

individual distance estimates are also used for position fixing. The dotted circles denote

the uncertainty in range estimation hence leading to an area for the possible location of

the receiver between the three estimation circles, rather than a single point.

Figure C.3: Trilateration of a node by three anchors (RSS and TOA)

In the case of single path TOA estimation, CRLB is computed to be [55]

σ2
dTOA

=
1

8π2(SNR)(BT0)(f 2
0 +B2/12)

(C.4)

where σ2
d is the variance of TOA estimate, B = f2− f1, f0 = (f2+ f1)/2 and T0 is
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the observation time. From C.4, it is easy to see that the bound is inversely proportional

to the SNR, the signal bandwidth and observation time.

Besides perfectly synchronized RPs, TOA positioning requires advanced signal pro-

cessing techniques to achieve highly accurate position estimates and it suffers greatly

from blockage of direct path [75]. Hence other methods might be considered for ease and

practicality at the cost of inferior position estimate.

In the next sections we will focus on RSS based positioning and present empirical

results obtained by using a commercial cellular network in both urban and suburban areas

in MA, USA.

C.3 Cellular positioning

Cellular positioning can be considered as a complementary approach to both GPS and

WiFi based solutions. Worldwide availability of cellular systems make them an ideal

platform for deploying location based services and hence they have also been studied by

other researchers for LBS [148], [149]. Even though the accuracy of these systems can

be considered inferior to that of GPS, the penetration of cellular signals is much better

since they are land based systems. This provides better indoor availability for location

based services. GPS on the other hand falls short of expectations in dense urban areas

and inside buildings. Some services available through cellular positioning are zone-based

billing, location aware social networking, tracking, personnel, asset or fleet management

and location specific traffic, news, and advertisement.

C.3.1 Cellular positioning methods

There are a number of methods available for deploying a cellular based positioning sys-

tem. These methods can be briefly given as:
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1. CID

2. Geometric Methods such as TOA, TDOA and AOA

3. Fingerprinting

CID: CID method is the simplest method that can be used to determine location. It is

based on the cell tower location the mobile handset is connected to. For this method to

be applicable, a database consisting of ground truth coordinates of cell tower is needed.

This database can either be obtained from the operator for which this application is to

be deployed, or extensive scanning can be done to estimate cell tower locations based on

maximum signal strength.

Each GSM cell tower usually carries three 120 degree sectors usually pointing in

northeast, south and northwest directions respectively. Each sector has a unique CID and

the sectors on the same tower are numbered sequentially based on their operating band.

Geometric Methods: Geometric methods rely on the availability of metrics (TOA,

RSS) from multiple BSs. If TOA information is available from 3 BSs, it becomes possible

to trilaterate handset position. This method is also used for GPS. The specific parameter

available in GSM for timing is called the timing advance (TA). It takes on values in the

range [0, 63] with each step representing one symbol advance, which is 3.69 us. Hence

each change in this value approximately corresponds to a round trip distance of 1100m or

one way distance of 550m. Although this is much worse compared to GPS standards, it

can be combined with other methods such as RSS and CID to obtain better accuracy.

TDOA is an alternative to TOA and it does not need perfect synchronization between

the MS and the BS. Time difference of the signal is calculated between the MS and 2 BSs.

The time difference is constant on a hyperbola. Hence two hyperbolas are obtained and

the intersection of these two hyperbolas gives the position fix.
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RSS is another option to get distance estimate. As previously mentioned, there are

numerous path loss models available in the literature obtained through various real-world

measurements in urban/suburban areas. These models relate the path loss to distance,

hence once a signal measurement is made, we can obtain the corresponding distance.

However, since these models are considered to be deterministic models, they are not flex-

ible to cover a wide range of signal variations due to obstructions hence might easily give

erroneous results. When multiple erroneous distance readings are used for position es-

timation (i.e via least-squares or a similar algorithm), resulting position error might be

unacceptable for most cases.

Specific to GSM, RSS is reported in a RxLev format taking values in the range [0,

63] [150]. These values can be mapped directly to dBm values as follows:

P (dBm) = RxLev − 110 (C.5)

Hence the maximum and minimum values that can be reported areMax = 63−110 =

−47 dBm and Min = 0− 110 = −110 dBm.

AOA can also be used for position determination and only two readings (from two

distinct BSs) would theoretically be enough to obtain a position fix. However, for this

method to be useful, MS should be able to detect the angle the signal is received at. This

brings additional cost to handsets. Also, LOS signals are needed to avoid angle confusion.

Fingerprinting: Also known as database correlation or nearest-neighbor (NN), this is

a method of scanning the landscape for all relevant signal information coupled with GPS

data representing the coordinates of the parameters obtained at that location. This method

requires intensive scanning in a given area but captures all channel related information.

Hence, once a reading is taken, it is compared to all the possible entries in the database in

the least squares sense and the GPS coordinates of the entry whose signal parameters are

the closest is returned as the location estimate. This method requires periodic scanning
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for keeping an up-to-date database. Mathematical details on this method will be presented

later in this part.

C.3.2 Practical RSS positioning - A Real life testbed

RSS is fast becoming the choice for many positioning applications due to its ease of

implementation and reasonable accuracy especially in fingerprinting methods.

For the purposes of this study, we have collected cellular information from AT&T’s

GSM network. To analyze the effectiveness of this method we have constructed an exten-

sive RSS database in two different cities in MA, USA. Details on these areas will follow

after a brief introduction to the scanning platform.

C.3.3 Scanning Platform

For the evaluation of the GSM positioning system, a platform developed by Skyhook

Wireless has been used. The platform consists of 1 GSM/GPRS modem from Multitech

(MTCBA-G-U-F4), 1 Globalsat USB GPS Unit (BU-353) with SiRF Star III and 1 ASUS

EEE PC as the controller. Figure C.4 shows the setup for mobile data collection.

Figure C.4: Car setup for scanning

The scanning software written for this purpose runs on Linux on the ASUS PC and

queries the GPS unit and the GSM modem at 1sec intervals. It then saves the data in two
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(a) (b)

Figure C.5: (a) Shrewsbury, MA scan area - (b) Signal intensity map

separate log files time-stamped by PCs CPU time. The data is later analyzed for evaluation

of different algorithms, which is explained in the performance evaluation section.

C.3.4 Scanned Areas

For the purpose of determining GSM positioning accuracy, we have chosen two different

areas representing sparse suburban and densely populated urban test areas in MA, USA.

Suburban area is chosen in Shrewsbury, MA and the urban area has been chosen to be in

Boston (Backbay), MA.

The scanned area in Shrewsbury is given in figure C.5(a). The outer blue line repre-

sents the border of the scanned area and the straight green line represents the test route.

This area can be considered as suburban since residences are usually spread out, and BSs

are usually located at the top of cellular masts (marked with red pins in figure C.5(a)).

This way, a large area can be serviced and the number of BSs is relatively low. The total

scan area is approximately 26 km2 and is serviced by about 8 cell towers corresponding

to 24 CIDs. Figure C.5(b) shows the signal intensity map for the serving sector. It can

also be interpreted as the coverage map for this area.

The scanned area in Boston (Backbay) is given in figure C.6(a). Similar to Shresbury
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(a) (b)

Figure C.6: (a) Boston (Backbay), MA scan area - (b) Signal intensity map

case, the outer blue line represents the border of the scanned area and the straight green

line represents the test route. This area can be considered as dense urban with high rise

buildings, shopping malls and stores concentrated in a relatively small area. BSs are

usually located at the top of buildings or at the exterior walls to service street canyons

(marked with red pins in figure C.6(a)). The total scan area is approximately 2.6 km2

and is serviced by about 14 cell towers corresponding to 42 CIDs. Similar to Shrewsbury

signal map, figure C.6(b) gives the signal intensity map for this area.

C.4 Performance Evaluation and Results

After obtaining synchronized GPS/GSM data for the aforementioned areas, we have in-

vestigated the performance of two cellular positioning algorithms. Namely, these algo-

rithms are centroid and NN.

Centroid: Centroid is the simplest positioning algorithm and easiest to employ. When

a mobile phone detects a certain number of sectors, its position is estimated as the geo-

metric center of all the detected (L of them) and known tower locations. Mathematically

this can be expressed as:
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Pest =
1

L

L∑
i=1

Pi (C.6)

where Pest is the estimated mobile location and Pi = [LonLat] is the GPS coordinates

of the ith sector. The only information needed for this type of estimation is the CID

readings from the mobile phone. If neighbor CIDs are not available, the coordinates of

the serving sector is returned as the position estimate. This method can also be considered

an improvement over the CID only method since averaging is done over multiple available

cell towers.

Nearest Neighbor(NN): Also called as closest neighbor (CN), NN is an extensive

database solution where we compare the signal print of the mobile terminal against a

prerecorded database of signal prints. Each print has specific GPS coordinates and as-

sociated CIDs together with received signal powers associated with each of these CIDs.

After a full scan is performed in an area of interest, related parameters are stored in the

database. Whenever a fix is requested, CIDs and corresponding signal powers are sent

from the mobile station to the database server and server returns the coordinates of the

print which is closest to the submitted parameters. This is essentially the fingerprinting

method as mentioned earlier and can be expressed as:

Pest =

[
Ps|s = argmin

n

∑
i=1

(fi − gi(n))
2

]
(C.7)

Here fi is the RSS for the ith CID and gi(n) is the RSS of the ith CID for nth reference

fingerprint. Ps is the GPS coordinate for the fingerprint s with the lowest argument.

A version of nearest neighbor is theK-NN in which we selectK reference prints with

minimum argument and take the average of their database coordinates as the estimate

instead of just choosing the minimum. For Shrewsbury we have chosen K = 50 and

K = 30 for Boston for minimum mean error. K values need to be adjusted for different
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(a) (b)

Figure C.7: Shrewsbury, MA (a) Centroid Estimation - (b) Nearest-Neighbor Estimation,
K = 50

areas and for different requirements.

Figure C.7(a) and figure C.7(b) show the comparative centroid and K-NN estimation

results for Shrewsbury. Likewise C.8(a) and figure C.8(b) show the centroid and K-NN

estimation results for Boston.

Figure C.9(a), and C.9(b) show the comparative CDF for centroid and NN for Shrews-

bury and Boston respectively. We can see from the figures that K-NN is an effective

solution for both urban and suburban areas compared to centroid, although its suburban

performance might not be acceptable for some applications. In the suburban Shrewsbury

we observe about 316m of error for the NN and about 1km for the centroid for 50 per-

centile. When we consider the dense urban area of Backbay in Boston we see about 70m

error at the 50 percentile using NN whereas it is about 296m for centroid for the same per-

centile. Urban results are much better since the deployment of cellular towers are denser

and hence allows for a more refined signal map. This might particularly be useful for

situations for which GPS fails to work like in urban canyons or indoors.
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(a) (b)

Figure C.8: Boston (Backbay), MA (a) Centroid Estimation - (b) Nearest-Neighbor Esti-
mation, K = 30
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Figure C.9: (a) CDF for Shrewsbury NN and Centroid Estimation - (b) CDF for Boston
NN and Centroid Estimation
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C.5 Conclusions

In this appendix we have studied the effectiveness of cellular positioning by investigating

two common positioning methods namely centroid and nearest neighbor. Our findings

show that, in dense urban environments cellular positioning can be quite accurate and

hence can be a good enough complement to GPS. Hence LBS using everyday mobile

phones can easily be realized using the commercial cellular networks.
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