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ABSTRACT

A COLLABORATIVE MULTI-ROBOT LOCALIZATION
TECHNIQUE FOR AUTONOMOUS ROBOTS

This work proposes a novel method for collaborative global localization of a team
of soccer playing autonomous robots. It is also applicable to other indoor real-time

robot applications in noisy, unpredictable environments, with insufficient perception.

A novel solution, Reverse Monte Carlo Localization (R-MCL) is designed to solve
single self-localization problem using local perception and action about the surrounding
environment for each robot. R-MCL is a hybrid method based on Markov Localization
(ML) and Monte Carlo Localization (MCL) where the ML based part finds the region
where the robot should be and the MCL based part predicts the geometrical location

with high precision by selecting samples in this region.

In the multi-robot localization problem, robots use their own local position esti-
mations, and the shared information from other team mates, to localize themselves. To
integrate the local information and beliefs optimally, avoid conflicts and support collab-
oration among team members, a novel collaborative multi-robot localization method
called Collaborative Reverse Monte Carlo Localization (CR-MCL), based on R-MCL,
is presented. When robots detect each other, they share the grid cells representing this
observation. The power of the method comes from its hybrid nature. It uses a grid
based approach to handle detections which can not be accurate in real-time applica-
tions, and sample based approach in self-localization to improve its success, although it
uses lower amount of samples compared to similar methods. Both methods are tested
using simulated robots and real robots and results show that they are fast, robust,

accurate and cheap in terms of communication, memory and computational costs.



OZET

OTONOM ROBOTLAR ICIN BIR COKLU ROBOT
KONUSLANDIRMA TEKNIGI

Bu caligma bir otonom robotlar takiminin dayanigmali konuslandirilmasi igin
yeni bir yontem oOnerir. Bu ¢aligma ayni zamanda giiriiltiilii, onceden tahmin edilemez
ve yeterli algilama yapilamayan diger i¢ mekan gergek-zamanlh robot caligmalar: icin

de uygundur.

Tekli kendini konuglandirma sorununu her robot i¢in bulundugu g¢evreye ait yerel
alg1 ve hareket bilgisi kullamlarak ¢ozmek igin Ters Monte Carlo konuglandirmasi(R-~
MCL) isimli yeni bir yontem tasarlanmigtir. R-MCL, Markov konuglandirmasi(ML)
ve Monte Carlo konusglandirmasi(MCL) {izerine kurulan melez bir yéntemdir. Bu
yontemde ML tabanli boliim robotun olmasi gereken bélgeyi bulur ve MCL tabanh

boliim bu bolgeden 6rnekler secerek geometrik konumu yiiksek ¢oziintirliikle bulur.

Coklu robot konuglandirmasi sorununda robotlar kendi yerel tahminlerini ve diger
takim arkadaglarindan gelen paylagilan bilgiyi kullanarak kendilerini konuslandirir.
Yerel bilgi ve inanclari uygun olarak birlestirebilmek, catigmalari onlemek ve takim
elemanlar1 arasinda dayanigmay1 desteklemek icin R-MCL’e dayali yeni bir dayanigmali
¢oklu robot konuglandirma metodu sunulmustur. Robotlar birbirlerini algiladiklarinda
bu gozlemi yansitan 1zgara hiicrelerini paylagirlar. Yontemin gercek giicii melezliginden
gelir. Gergek-zamanh uygulamalarda kesin olarak olgiilemeyecek gozlemleri 1zgara ta-
banl yaklagimla, kendini konuslandirma sorununu ise daha kesin sonug veren ornek ta-
banli yaklagimla, benzer ¢alismalardan daha az ornek kullanarak ¢ozer.Her iki yontem
de benzetim robotlar1 ve gercek robotlar ile denenmig ve sonuclar yontemlerin hizli,

saglam, kesin ve hesap, hafiza ve iletigsim masraflari agisidan ucuz oldugunu gostermistir.
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1. INTRODUCTION

The global localization problem is the estimation of the position of a robot relative
to its environment, using sensor readings and its actions. In a challenging real-time test
bed like robot soccer with four-legged robots, where the sensors and the environment

have uncertainties, localization results are typically erroneous and inaccurate.

In robot soccer, a robot is typically expected to find its own location using dis-
tinguishable artificial landmarks in the field, and then use this information to find the
location of the interesting objects such as the ball and the goals. For such a real-time
application with robots limited by on board computational resources, speedy solutions
with less memory and computational resources are especially demanded. Consequently,

localization is a difficult and vital problem for robot soccer.

Triangulation is the simplest localization method which uses geometry to com-
pute a single point that is as close as possible to the actual location. However, in real
world applications, a robot can never calculate where it is exactly because of the uncer-
tainty in its sensors, and the environment. Consequently, several different approaches
which estimate the position of robot probabilistically were developed to consider this

uncertainty in the solutions.

The Kalman filter (Kalman-Bucy filter) is a well-known approach for this prob-
lem. This filter integrates uncertainty into computations by making the assumption of
Gaussian distributions to represent all probability densities including positions, odo-
metric and other sensory measurements. Since only one pose hypothesis can be rep-
resented, the method is unable to make global localization, and cannot recover from
total localization failures (Stroupe and Balch, 2002, Stroupe et al, 2003, Gutmann
and Fox, 2002).

Many works consider Markov localization (ML) (Burgard et al, 1996, Fox et al,
1999b, Thrun et al, 2005, Gutmann and Fox, 1998) which is similar to the Kalman



filter approach, but it does not make a Gaussian distribution assumption and allows
any kind of distribution to be used. Although this feature makes this approach flexible,

it adds a computational overhead.

The Monte Carlo Localization (MCL) is a version of Markov localization that
relies on sample-based representation and the sampling/importance re-sampling algo-
rithm for belief propagation (Thrun et al, 2001, Schulz and Burgard, 2001). Odometric
and sensory updates are similar to ML. Most of the MCL based works suffer from the
kidnapping problem, since this approach fails when the current estimate does not fit
observations. There are several extensions to MCL that solve this problem by adding
random samples at each iteration. Some of these methods are Sensor Resetting Lo-
calization (SRL) (Lenser and Veloso, 2000), Mixture MCL (Mix-MCL) (Gutmann and
Fox, 2002), Kullback-Leibler Distance (KLD)-Sampling (Fox, 2003) and Adaptive MCL
(A-MCL) (Gutmann and Fox, 2002).

The Markov Localization-Extended Kalman Filter (ML-EKF) method is a hy-
brid method that aims to make use of the advantages of both methods, taking into
consideration the fact that ML is more robust and EKF is more accurate (Gutmann

and Fox, 2002).

The Multi Hypothesis Localization (MHL) method discussed in (Kristensen and
Jensfelt, 2003) aims to avoid problems caused by using a single Gaussian, by consider-
ing a mixture of Gaussians, thus enabling the representation of any given probability

distribution of the robot pose.

Although there have been only a few fuzzy logic based approaches, they appear
to be promising (Buschka et al, 2000, Kése et al, 2003, Kése et al, 2005). In these
approaches, the uncertainty in sensor readings (distance and heading to beacons) is

represented by fuzzy sets.

The Simple Localization (S-LOC) method is a new technique which represents

every perception by a sample. The old position estimation is also represented by a



sample. This sample set together with a history based module, is used to estimate the

current position of the robot (Celik, 2005).

This work is a part of a project which aims to localize legged robots in the
soccer field globally, while solving the above mentioned problems. There are several
limitations and assumptions related to the rules of the Four Legged League of Robocup

that make this localization problem challenging (Robocup, 2005).

The ML and MCL methods are the most widely used global localization methods
in the robotic soccer domain. Both have advantages and disadvantages. In this work
we first introduce Reverse Monte Carlo Localization (R-MCL) (Kése et al, 2004, Kose
and Akin, 2005, Kose et al, 2005, Kose et al, 2006, Kése and Akin, 2007) for single
robot localization which is a hybrid approach that aims to combine ML and MCL
methods, to make use of the advantages of both, and overcome the disadvantages. The
idea behind this algorithm is to converge to a part of the environment by using a coarse
2-D grid based ML algorithm and in this local area, use MCL algorithm to find the
current position estimation of the robot in a fast, robust and accurate manner. This

algorithm is especially successful in the kidnapping problem.

Global collaborative localization of autonomous mobile robots is a highly chal-
lenging task, which is generally more successful than single robot localization, de-
spite its high complexity and associated communication problems. In (Stroupe and
Balch, 2002) Kalman filters are used to integrate the information coming from differ-
ent robots. (Roumeliotis and Bekey, 2000, Roumeliotis and Bekey, 2000, Roumeliotis
and Rekleitis, 2004) divide a central Kalman filter into m Kalman filters, one for each
robot, to localize all the robots in the team. In (Fox et al, 2000), robots share a
density tree based on the samples representing the observation of the detected robot,
and Monte Carlo Localization (MCL) is used to localize the robots. In (Kurazume
and Hirose, 2000), some of the robots stand still to serve as landmarks for others, and
observe the moving ones for localization. Fuzzy membership functions are used to es-
timate the position, and the shared information is integrated by means of coalition in

(Canovas et al, 2004).



In these works it is assumed that the robots can detect and identify each other,
and the observations are either accurate or can be estimated using some known distri-
butions. There are also no false positives. Additionally, there are no conflicts between
the robots that share information. In real robot applications, like robot soccer, how-
ever, most of these assumptions are not valid. All the robots are dynamic, and they
can not detect and observe each other very accurately. In this work for simplicity we
also assume that they can identify each other. Conflicts can arise between robots when
one or more robot fails in sensing, or localizing itself, or is kidnapped. However, col-
laborative localization is expected to be more successful than single robot localization
since it avoids single point failure, and is helpful in case of high noise and sparsity,
where the robots can fine tune their estimations using the shared information from

their team mates.

In this work, we also propose a novel collaborative method that aims to globally
localize a team of robots, based on our single self-localization method R-MCL. When-
ever two or more robots detect each other, they represent these detections in terms of
grid cells, and mutually send them to each other. Production, fusion and integration
of the shared data are performed by Collaborative Reverse Monte Carlo Localization
(CR-MCL) which is a modified version of R-MCL for multi robot localization. The
real power of the method comes from its hybrid nature. It uses a grid based approach
to handle detections which can not be accurate in real time applications, and sample
based approach in self-localization which improves its success, although it uses lower

amount of samples compared to similar sample based methods.

In Chapter 2, the single-robot and multi-robot localization problems are discussed
and some well-known techniques are described briefly. The R-MCL method, which is
the novel solution proposed in this work to the single-robot localization problem, is
explained in Chapter 3, together with the implementation, test environment details,
and the test results in both simulated and real environments. The implementation
details and experimental results of the proposed multi-robot localization algorithm,
CR-MCL, are discussed in Chapter 4. Chapter 5 presents the comparisons, comments,

and discussions on the proposed works. Finally, Chapter 6 presents the conclusion.



2. BACKGROUND

Localization is a challenging field of robotics where many approaches have been
introduced. These approaches are generally based on some well known families of
solutions. A useful taxonomy and brief introduction to some of the most common ones

of these approaches are covered in this chapter.

2.1. Localization Problem

The localization problem is the detection of the position of a robot relative to
its environment, using the information about the environment gathered by the robot
with its sensors (e.g. infrared, camera, etc.). Unfortunately these sensors and the
environment are uncertain (except for specially designed toy problems), so the results
are mainly erroneous and inaccurate. Accordingly, localization still remains a nontrivial
and challenging problem. The localization problem can be divided into three sub-

problems (Thrun et al, 2005) as follows:

e Position (pose) tracking : This requires keeping track of the robots’ position
(z, y coordinates and heading) using odometry, with the assumption that the
initial position of the robot is known (Fox et al, 1999b). Unfortunately as time
passes, dead reckoning errors grow cumulatively, and in real time applications the
initial position can not be known in most cases. It can be also named as local
localization since it is based on local uncertainty.

e Global localization : This problem requires the robot to find its location in the
environment without using a prior: information. This method generally makes
use of the sensors to get information about the environment. Global localiza-
tion based on only sensory information is a hard task due to the uncertainty
associated with the sensors, robot’s motion, and the dynamic nature of the en-
vironment, and has become a challenging problem for researchers. Therefore,
from the simplest geometric calculations which do not consider uncertainty at

all, to statistical solutions which cope with uncertainty by applying sophisticated



models, many solutions have been proposed for this problem. Although some
of these approaches produce remarkable results, due to the nature of the typi-
cal environments they are not satisfactory because fast solutions requiring less
memory and computational resources are demanded. This is especially true for a
real-time application in a dynamical soccer field using robots with onboard com-
putational resources. Generally, solutions producing precise results suffer from
slowness, and high memory usage, whereas a fast solution typically produces only
coarse results. Even when they produce precise local results, some approaches
like Kalman filters fail to find the global position.

e Kidnapping : This is possibly the hardest problem among others. In the kid-
napping problem, the robot is taken from its current location and carried to
another location by teleportation without the information of the robot. So sud-
denly, the whole belief set of the robot becomes invalid. Therefore the robot
should realize this, and initialize its beliefs from scratch, and relocalize itself in
its new position. Since most of the state-of-art localization methods fail in case
of kidnapping problem, it is a good indicator in the evaluation of the localization

algorithms.

The localization problem can also be classified as active and passive localization.
In active localization, the robot actively searches its environment to find landmarks to
localize itself better, and decrease its localization error. So in active localization, the
results are more successful. whereas in passive localization, the robot is busy with its
task, and it runs the localization as a background task, using the observations it gets
during its main task implementation. Notice that, even if the robot gets lost, it would
not seek for landmarks to localize itself, unless it is a part of its current task. So the

error rate is larger in passive localization.

Another dimension in localization problem is involved with the number of robots
taking place in the localization. Only a single robot might localize itself using its actions
and observations, or a team of robots might localize themselves using the intra-team

shared information, besides the single robot facilities.



The Localization problem is also studied in both static and dynamic environ-
ments. In dynamic environments, there might be other moving obstacles, besides the

environment could change, so they are noisier, and harder to cope with.

In this work, the passive global localization and kidnapping problems for dy-
namical environments, which are the hardest tasks among localization problems, are

studied. Solutions are proposed for both single and multi robots.

2.2. Single Robot Localization

In this work, first several well-known single robot localization techniques are
studied; their advantages and disadvantages are analyzed. In the following sub sections
these techniques, which vary from the simplest geometrical approach to hybrid solutions
which try to overcome failures by combining or extending the advantageous parts of

some well-known techniques, are described briefly (Figure 2.1).

SINGLE ROBOT LOCALIZATION
PROBABILISTIC C'ﬂi\
EALMAN MaRKCY MONTE CARLD FUZEY TRIAMGULATION

MHL KF ML-EKF ML R-MCL

SRL A-MCL M-MCL MCL KLD-5 SLOC

Figure 2.1. The classification of single robot localization methods

These approaches estimate the position of the robot using the observations and
odometry. The probability of the robot being in a location [ (p(l)) is estimated using

the following Bayesian update rules:



p(l) = / p(salp(D)dsn (2.1)
p(l) = / p(illa, 1)p()dl (2.2)

where the robot is given sensory inputs s, , and executed action a, and [’ is the
location where the robot is in before the action is executed. Equation 2.1 represent
the (observation update) and Equation 2.2 represents the (odometric update). The
methods differ in representing the probability p(l) and other uncertain features like

sensor or motion model as briefly analyzed in the following subsections.
2.2.1. Triangulation

The triangulation technique is the simplest localization method and it differs
from the other probabilistic methods studied throughout the rest of the chapter since
it disregards uncertainty instead of modeling it. This technique uses the geometric
properties of triangles based on the distances and/or angle measurements between the
robot and the observed landmarks (Betke and Gurvits 1994, Betke and Gurvits 1997,
Hightower, 2001).

In the case where both the distance and angle measurements are used, the po-
sition of the robot is calculated using the measured distance between the robot and
the multiple reference positions. For the position estimation in two dimensions, dis-
tance measurements from three non-collinear points are required (Figure 2.2). The
angle measurements with respect to the reference points are required to calculate the

orientation of the robot.

In the Figure 2.2, and Figure 2.3, d;, ds, and d3 represent the observed distances
between the robot and each observed landmark, which are shown by big filled circles.

In the Figure 2.3, 6; and 6y are the angles between the robot and the landmarks.



Figure 2.2. The triangulation method with three points

Two angle measurements and one distance measurement can also be used for
calculating two dimensional localization by triangulation (Figure 2.3). This case is
similar to the former case, except the fact that instead of distance measurements, angle
measurements are used for calculating the position of the robot. Unfortunately, in case
of noisy data, the error increases drastically. Therefore, whenever more perception
data are available, they should be used to reduce the error. As a result of these cases,
more than one position estimate could be found. In this case, different combination

methods such as averaging can be used to obtain a final position estimate.

In (Betke and Gurvits 1994, Betke and Gurvits 1997), both the cases with perfect

and noisy data are aimed to be solved by extensions to triangulation method.

Figure 2.3. The triangulation method with two angle and one distance information
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2.2.2. Markov Localization Method

Markov localization (ML) is the most general method since it does not make any
distribution assumptions, and allows any kind of distribution to be used. Although
this feature makes it flexible, it adds a computational overhead. There are many
works based on ML (Fox et al, 1999b, Burgard et al, 1996, Fox et al, 1999¢, Thrun
et al, 2001, Schulz and Burgard, 2001) in the literature. In this work we will consider
grid based ML, where the probability of being in a particular grid is represented by a

piecewise linear function.

As stated in (Fox et al, 2000), ML uses odometry measurements a and per-
ceptional measurements o to estimate the current position of the robot. The robot
maintains a belief over its position which is denoted as Bel® (L) at time ¢t. The vari-
able L in this representation is a three-dimensional random variable composed of the
robot’s position and its heading direction. Bel® (L = 1) is the belief representation
showing that the robot is at location [. The initial knowledge of the robot is stated by
Bel (L) which is initialized by a uniform distribution, in case of no initial location
information. Bel(t)(L) shows the posterior belief with respect to all data collected up

to time ¢ as in
Bel(L) = P(LW|dD), (2.3)
where d® denotes the data collected up to time t. For the perception update, the last

item in d® is denotes perception data, o). Using the Markov assumption, Bel® (L = 1)

is calculated for each [ as in Equation 2.4, and it is updated as in Equation 2.5.

BelY(L=1) = P(LY =1dY)
= aP(Y|LY =1) Bel" V(L =1) (2.4)

Bel(l) «— « P(o|l) Bel(l) (2.5)

here « is a normalizer independent from [. Based on the perception model, and per-
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ceived data, P(o)|L® = 1) is the probability of making the perception o) given that
the robot is at [ at the time ¢; and Bel® V(L = ) is the belief that the robot was
at [ at the time ¢ — 1. For the computation of P(o|l), different sensor models (Fox

et al, 1999b) could be used.

For the odometry update, the last item in d® is an odometry datum, a¥). Based
on the motion model, and odometry data, and using the Theorem of Total Probability,
Bel® (L =) is calculated for each [ as in Equation 2.6, and it is updated as in Equation
2.7.

Bel(L=1) = P(LY =1d")
= / P(LY =1]a®, LY =) Bl (L =1)dl'  (2.6)
Bel(l) « > P(la,I') Bel(l') Al (2.7)

for each I’

The ML method uses a histogram filter for posterior belief. If it uses fine grained
grid cells, the algorithm slows down. Otherwise if the grids cells are coarse, this causes
information loss, the filter may not even work properly. The most basic version of
ML uses time-invariant same sized grid cells. Commonly grid cell size is chosen as 15
cm. The environment is assumed to be static in ML which is not realistic in our case.
There are some works that consider this problem (Thrun et al, 2005). There is also a
problem related with the motion model. Using the motion model on the center of the
grid cell yields a poor solution since when the cell size is 15 cm, and odometry update
comes in every second for a robot that moves 1 cm/sec, the robot is still in the same
cell, after moving several steps, so can not perform a state transition. There are several
solutions for this problem. One can modify both the motion-model and measurement
by inflating the amount of noise (Thrun et al, 2005), but this will reduce the amount
of information extracted from the sensors. One can also use the ratio between the
moved distance and cell diameter as the probability of moving to a nearby cell. But
this would make the robot move to the next cell even with a small motion, so the move

is much faster than commanded.
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2.2.3. Monte Carlo Localization

Monte Carlo Localization (MCL) is a version of ML that relies on sample-based
representation and the sampling/importance re-sampling algorithm for belief propa-
gation (Thrun et al, 2001, Schulz and Burgard, 2001). Beliefs are represented by
a set of weighed samples (particles) which are of type ((z, y, 0), w), where w > 0
is a non-negative numerical weighting factor such that the sum of all w is one. The
weighting factors are called importance weights. Odometric and sensory updates are
similar to ML. They are performed within the prediction and correction steps. The
algorithms start with a set of uniform random samples S’. At each perception or ac-
tion, p(1) is calculated according to the following steps (Thrun et al, 2001, Lenser and
Veloso, 2000, Gutmann and Fox, 2002):

procedure MCL(S', a,o0)

1: for i =0ton do
2:  draw by replacement random sample !’ from S’ according to w;..w,
(resampling)
draw sample I’ with p(l|a,l")(sampling)
calculate w'=p(l'|o) (importance sampling)
add (I',w') to S’
end for
normalize the importance factors w’ in S’
return S’

Figure 2.4. The MCL Algorithm

The MCL algorithm in Figure 2.4 takes the sample set S’, observation (sensor
readings) o, and action (movement readings) a as input. Whenever an action is done, a
new sample [’ is drawn according to its probability density p(l|a,!") and replaced with
sample [. The probability density functions of motion and observations depend on the
robots used, and their capabilities. The models of laser range finders or sonar sensors

would be used in perception (Thrun et al, 2001), as well as onboard cameras.

In case of a sensory update, the samples are given weights equal to their proba-
bility given the sensor reading. Using these weights, new unweighted samples are then

drawn from the sample set by replacement. The probability of drawing a sample is
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proportional to the weights. Next, these samples are added to the sample set. There

is no addition of new samples in this step.

Notice that MCL represents the probability distribution of location [ by a sample
set. The samples are located such that, the population size of samples is proportional
to the probability of the robot being in that location and the surroundings. After a
couple of steps, the samples converge to some place in the environment. The position
of the robot is found by taking the average of the positions of the samples, and the
standard deviation gives the uncertainty of the robot. So this fact could also be used
to dynamically change the number of samples. If the robot is totally unaware of its
place, more samples could be used to represent the field. On the other hand, if the
uncertainty is low, then a smaller number of samples is sufficient for finding the robot’s
location. The original MCL algorithm does not work well in case of kidnapping. So
several MCL extensions were proposed to overcome this problem. These extensions add
new samples to the sample set from different parts of the field, and differ in the number
of new samples and when to add these samples. Some of these methods are Sensor
Resetting Localization (SRL), Mixture MCL (Mix-MCL), Adaptive MCL (A-MCL),
and Kullback-Leibler Distance (KLD)-Sampling .

In SRL, when the likelihood of the current observation is below a threshold, a

small fraction of uniformly distributed random samples is added (Lenser and Veloso,

2000).

Mix-MCL additionally weights these samples with current probability density
p(l). This method has been developed for extremely accurate sensor information

(Gutmann and Fox, 2002).

Adaptive MCL only adds samples when the difference between short-term esti-
mate (slow changing noise level in the environment and the sensors) and the long-term
estimate (rapid changes in the likelihood due to a position failure) is above a threshold
(Gutmann and Fox, 2002). This approach was applied to the Robocup domain in 2002
by the University of Washington team (Crisman et al, 2002). The key idea is to use a
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combination of two smoothed estimates (long term and short term) of the observation

likelihoods (Gutmann and Fox, 2002).

In KLD-sampling method, the size of sample sets are time-variant, which increases
the efficiency, especially if the complexity of the beliefs vary drastically over time

(Fox, 2003).

As stated before, when the robot is unaware of its location, it needs more samples
to be located. But as the number of samples increase, the algorithm dramatically slows
down. Besides if not enough landmarks are observed, after some steps, the robot could
converge to some location with a small number of distinct samples, and would not
move to the correct location, after new observations. MCL is capable of handling
only small systematic errors. When errors get bigger the overall localization error
gets cumulatively larger and the algorithm is not capable of overcoming this situation.
The algorithm also can not handle errors due to unexpected movements. The time to
recover from an error is proportional to how big the error is (Lenser and Veloso, 2000).

Even with adaptive sample size not all of the problems can be solved.

2.2.4. Kalman Filter Method

Kalman filter (Kalman, 1960, Maybeck, 1990, Welch and Bishop, 2006) is a well-
known approach for the localization problem. It implements belief computation for
continuous states. It is similar to Markov Localization but it makes a Gaussian distri-
bution assumption. This filter integrates uncertainty into computations by making the
assumption of Gaussian distributions to represent all densities including positions, odo-
metric and sensory measurements. Position estimates are updated by odometry and
sensing alternately using the property that Gaussian distributions can be combined

using multiplication (Stroupe and Balch, 2002, Stroupe et al, 2003).

It is unimodal, it can posses only a single maximum. Therefore only one pose
hypothesis can be represented. So the method is unable to make global localization, and

can not recover from total localization failures (Gutmann and Fox, 2002). Therefore
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usually, this method is used to track the object’s pose locally, together with another
method, which is responsible for global localization making up a hybrid approach. It
is a very efficient algorithm, giving precise results, whereas, additional computation of

coefficient and covariance can increase the computational time undesirably (Stroupe

& 2O

et al, 2003).

Time Update Measurement
(Predict) Update
(Correct)

R 4

Figure 2.5. KF method

procedure TimeUpdate(Initial estimates for ;1 and Py_1)
1: Project the state ahead
Zi‘l; = Ai‘k_l + Buk_l
2: Project the error covariance ahead
P. = AP, AT +Q
3: return z, andpP,

Figure 2.6. The KF Time Update Algorithm

procedure MeasurementUpdate
1: Compute the Kalman gain
Ky=P H'(HP, H" + R)™!
2: Update the estimate with measurement
3: Update the error covariance

P,=(I—K.H)P,

Figure 2.7. The KF Measurement Update Algorithm

Beliefs are represented by multivariate normal distributions and characterized by
first and second moments, namely mean and covariance. Different notations are used
in the literature, in this section the notations in (Leonard, and Durrant-Whyte, 1991)

are used to keep parallel with the figures. We have two basic states in the cycle, Time
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update (predict) and Measurement update(correct) as in Figure 2.5. In the Time update
(Figure 2.6), the current state estimation is predicted, and in the Measurement update
(Figure 2.7), it is corrected using the current measurements. The state transition
function should be linear with Gaussian noise. In the first step, the matrices A and
B satisfies this linearity, and wu; is the control vector at time k. The algorithm takes
mean and covariance at time k — 1, and estimates their values at time k. The predicted
belief is transformed to desired belief in correct state, with the help of Kalman Gain.
Kalman Gain specifies the degree to which actual measurement z; is integrated into
the new estimate. The difference between the actual measurement and the expected
measurement Huxy is the Imnovation. Finally, the new covariance is calculated using

the information gain.

If the system model is non-linear and potentially numerically unstable, Extended
Kalman filter (EKF) is used. Here the linearity assumption in state transitions and
measurements is relaxed and these are governed with non-linear functions as shown in

Figure 2.8 and Figure 2.9.

procedure TimeUpdate(Initial estimates for ;1 and Py_1)
1: Project the state ahead
T, = f(Zk-1,ug-1,0)
2: Project the error covariance ahead
Py = AP AT + WiQra WiE
3: return z, andP;

Figure 2.8. The EKF Time Update Algorithm

procedure M easurementUpdate

1: Compute the Kalman gain
2: Update the estimate with measurement
3: Update the error covariance

P.= (- KyH)P,

Figure 2.9. The EKF Measurement Update Algorithm
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2.2.5. Multi Hypothesis Localization

The Multi Hypothesis Localization (MHL) method discussed in (Kristensen and
Jensfelt, 2003) aims to avoid problems caused by using a single Gaussian, by consider-
ing a mixture of Gaussians, thus enabling the representation of any given probability

distribution of the robot pose.

2.2.6. Markov Localization - Extended Kalman Filter

Markov Localization - Extended Kalman Filter (ML-EKF) method is a hybrid
method aiming to make use of the advantages of both methods, taking into considera-
tion the fact that ML is more robust and EKF is more accurate. So this method finds
the location of the agent coarsely by grid based ML and then inside this area uses EKF

to find a more accurate solution (Gutmann and Fox, 2002, Gutmann, 2002).

2.2.7. Fuzzy-Localization

In (Buschka et al, 2000, Saffiotti, 2000, Saffiotti et al, 2002), a different approach
based on fuzzy logic is introduced and implemented in the Sony legged robot league
(AIBOs). This is a grid-based approach that presents uncertainty in terms of fuzzy
membership functions. The range r and the heading 6 of the robot are represented in
terms of fuzzy sets. The trapezoidal membership functions are useful in representing
the uncertainty in sensor readings, and bias is useful in recovering from kidnapping
problem. All trapezoidal fuzzy sets, are represented with tuple (6, A, «, h, b), where
0 is the center, A is the width of the core, « is the slope, h is the height and b is the
bias, as in Figure 2.10 (Buschka et al, 2000).

Bias is used to integrate the idea that "the solution could be somewhere else”.
The method does not critically rely on the accuracy of these parameters (Buschka et al,
2000). This is a grid-based approach, and the distance from the observed landmark to
every grid is represented by tuples of the form (r, A, «, h). The robot’s position at

time ¢ is represented by a two-dimensional fuzzy grid map Gt, where Gt(z, y) measures
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the degree of possibility. For sensory updates, the possibility distribution St(z,y|r)
measures the probability of the robot being in (z,y) with the information that the

observed landmark is at distance r from the robot.

Figure 2.10. Trapezoidal fuzzy sets

The approach follows a predict-observe-update cycle. In the observe step, the
sensory information (observed range) is converted to possibility distribution of the
grids, as described in the previous paragraphs. The predict cycle was not properly
implemented until 2002. This step makes use of the odometric information to update
the current position. Previously, this step was implemented like blurring from the grid
to all directions by a maximum amount that could be achieved by the robot (Buschka
et al, 2000). After 2002, the locomotion module of the UNSW team was used by TEAM
SWEDEN, so it could be possible to use odometric information (Saffiotti et al, 2002).
Lastly in the update part this information is integrated into the fuzzy grid map, by a
fuzzy intersection operator (Buschka et al, 2000).

2.2.8. Simple Localization

The Simple Localization (S-LOC) method is a technique which represents every
perception by a sample. The old position estimation is also represented by a sample.
This sample set together with a history based module, is used to estimate the current

position of the robot (Celik, 2005, Kose et al, 2006).

In S-LLOC, assuming that the robot has the previous pose position, the orientation
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of the sample pose is calculated so that the perception would be on the correct direction.
The position of the sample pose is then calculated on a line through the old position
and along with the same direction assuming that the perception was exact. These
temporary pose samples are calculated for each perceived landmark. In addition to

them, the previous pose is also used as an additional sample.

For each sample pose, the likelihood is calculated. Assuming that the robot’s
actual pose is the sample pose being processed, the Euclidean difference of the per-
ceived landmarks’ positions and their actual positions is calculated. Together with the
confidence of the perception from which that sample pose is calculated, these differ-
ences are used in the calculation of the likelihood of that sample pose. For the sample
that is copied from the previous pose, instead of the confidence of the perception, the

confidence of the previous pose is used.

The likelihoods of the sample poses are used for calculating their weights, and
a new pose position is calculated as the weighted average of these sample poses’ po-
sitions. This weighted average pose position is then used together with the previous
pose estimate’s position to calculate the current pose estimate’s position. The purpose
of not using the weighted average pose directly is to keep a history in order to prevent
fluctuations of the pose estimate and make it more stable. After the current position
of the agent is estimated, the current orientation of the agent is calculated using the

current position estimation and the perceptions.

In the case of having no perception at a certain time, the current pose estimate

could be obtained by decreasing the confidence of the previous pose estimate.

The odometry update process is as simple as updating the pose estimation with
the odometry data. Since only the pose estimation is used from the previous perception

update, no additional update or calculation is necessary.

In a way, S-Loc is similar to MCL as the sample poses are used in the same

way they are used in MCL. The main difference is the selection of these sample poses.
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In MCL, there is a large number of pose samples, and they are populated according
to their confidences, and randomly mutated for small changes. In S-Loc, new pose
samples are calculated at every estimation, and for each perceived landmark a pose
sample is calculated. This way S-Loc becomes a much lower cost, i.e. much faster,
localization method with an accurate pose estimation capability. The memory used
in S-Loc increases the robustness of the system even further and the big jumps of the

pose estimate are prevented.

2.3. Multi Robot Localization

The use of cooperative robotics is becoming more prominent in many key applica-
tion areas. Multi-robot teams where robots cooperate with each other, and /or with hu-
man beings become popular as their performance are shown to be better, more reliable
and more flexible than single robots, in a variety of tasks (see (Saffiotti, 2002, Ribeiro
and Saffiotti, 2002)) for many papers about cooperative robotics). Unfortunately there
is yet a limited number of applications in this area, and many of these are about toy
problems or limited implementations of applicable problems due to the difficulty of
the problem. Problems in the coordination of the robots, efficient usage of limited
resources and the communication burden discourages researchers to work on real-time
problems with dynamic environments. Robot soccer is such an environment, with its
real-time, complex and dynamic nature, and, implementation of cooperative robotics
to legged robots makes it even more challenging where locomotion (moving the legged

robots) becomes a real bottle-neck.

One of the fundamental goals of this work is to solve multi-robot localization
in an efficient manner. Global collaborative localization in autonomous mobile robots
is a highly challenging task, which is generally more successful than single robot lo-
calization, despite its high complexity and associated communication problems. It is
a challenging field of robotics where many approaches have been introduced. These
approaches are generally based on some well known families of solutions. This problem
is usually solved by localizing each robot in the domain individually. Some works use

the leap frog method where some robots stand still to serve as landmarks for others,



21

and some works only solve the relative localization problem.A useful taxonomy and
brief introduction to some of the most common ones of these approaches are covered

in this section.

MULTIROBOT LOCALIZATION

~/,/ GLCE AL RELATIVE
KALMAN MCL OTHER, EGOCENTRIC

COLLABORATIVE | COLLABORATIVE — COOPERATIVE FUZZy POMDR
PROE. CBEL ML POSITIOMIMNG BASED
DISTRIEUTED — COLLABORATIVE
MRL MULTIROBOT

ACTIVE

LOCALIZATION

— CR-MCL

Figure 2.11. The classification of multi robot localization methods

2.3.1. Collaborative Probabilistic Constraint-based Landmark Localization

There are several Kalman based approaches in this domain. The work in (Stroupe
and Balch, 2002) uses a Kalman filter based approach to find the global locations of the
robots in the team. In this work, distance and bearing information are used separately,
each in a separate cycle. The observation of the other robot related to the robot itself
is shared and used whenever two robots meet. In the passive localization part, the
robots use each other as landmarks. This work uses action and sensory information as

separate Kalman filters.

2.3.2. Distributed Multi-Robot Localization

In (Roumeliotis and Bekey, 2000, Roumeliotis and Bekey, 2000, Roumeliotis and
Rekleitis, 2004) a Kalman filter based approach is used to combine multi-robot infor-
mation. It is assumed that the robots can detect and identify each other. They have
sensors to detect objects around and their own motion to use in localizing themselves.
The first approach is to use centralized Kalman filter to localize the team. The sec-

ond approach uses M different reduced dimension Kalman filters one for each robot to
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localize the team. Only if the robot detects others it shares information. When two
robots detect each other they share their estimations. In these works it is claimed that
this is the first multi robot localization approach to explicitly address the problem of
sensor data interdependencies that appear when robots exchange information regard-
ing their pose estimates. The cases where when one robot is stationary, when nobody
has absolute position estimate, and when one has absolute position estimate, are tested

with real robots, and the results are compared with the dead-reckoning error.

2.3.3. Cooperative Monte Carlo Localization

In (Fox et al, 2000, Fox et al, 1999a), probabilistic methods are used to syn-
chronize each robot’s belief whenever detection takes place. In this work the following

assumptions are made:

Robots can detect and identify each other

No negative example-robots always can detect each other

The map is known (indoor environment).

Each robot can localize itself with action and sensor information which is available

for it, if it can not detect anybody

The robots can not share information unless a predefined time passes between

two sequential detections.

This work approximates sample sets using piecewise constant density functions
represented by a tree. When a robot detects another, it forms a density tree from
the sample set it produced using the detected data, and then shares this tree with
the detected robot. Each node in the tree is represented with a hyper-rectangular
subspace of the 3-D state space of the robot. Initially all samples are in the root
node. Recursively each node is split until a termination condition is fulfilled. The
more samples exist in a region, the finer-grained the tree representation. After the
tree is grown, the density of each leaf is calculated using the quotient of the sum of
all the weights of all samples in the leaf, divided by the volume of the region covered

by the leaf. This is the maximum likelihood estimation of (piecewise) constant density
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functions (Fox et al, 2000). Then the samples are transformed to a density tree. Then
these density values are multiplied into each individual sample of the detected robot
n. At the end a refined density for robot n is produced. The same can be applied to

robot m.

procedure Multi robot Localization

1: for each location [ do /*initialize the belief*/

Bel, (1) «+ P(LL®) =1)

end for

forever do

if the robot receives new sensory input o, do

for each location [ do /*apply the perception model*/

Bel,(l) < a P(o,|l) Bel,(I)

end for

end if

if the robot receives new odometry reading a,, do

for each location [ do /*apply the motion model*/

Bel,(l) < [ P(l|ay,l") Bel(l") dl'

10: end for

11: end if

12: if the robot is detected by the m-th robot do

13: for each location [ do /*apply the detection model*/
Bel,(l) <« [ P(L, =Ly, =1 ry) Bel, (') dl

14: end for

15: end if

16: end forever

Figure 2.12. Localization algorithm for multiple robots

In Figure 2.12 (Fox et al, 2000), the update rules for action and observation for
multi robots are summarized. There, Bel, () represents the belief of a robot for being
in location I. P(o0,|l) is the perception model such that it gives the probability of
making observation o by robot n, at location . P(l‘|a,,[) is the motion model such
that it gives the probability of reaching to location [ by making action an by robot n,
at from location 1. When a robot m observes another robot n, its own belief about n
and n’s current belief are used to estimate the new belief of n. The algorithm is based
on the assumptions that there are no negative sightings (robots can always see each

other) and robots can detect each other.
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2.3.4. Cooperative Positioning System

In (Kurazume and Hirose, 2000), the authors assumed that there is at least one
stable robot, at a time, which serves as a landmark to the moving robots. This is called
Cooperative Positioning System (CPS). This can be used in outdoor environments, the
map need not be known, and the robots do not need other landmarks. They assume
the robots can detect each other and measure the relative distance between themselves
and the detected robots. The robots are divided into two groups, one of the groups
remains stationary and observes the others, while the others move. Then the stationary
ones share the information related to the move of the other group with them, so that
they can localize themselves. Then the stationary group moves, and the other group
stays stable and serves as landmarks. This continues until the robots reach the target

place.

2.3.5. Robust Multi-robot Object Localization Using Fuzzy Logic

The work in (Canovas et al, 2004) maintains a consensus between robots instead
of trade off provided by taking average. Information is combined by Fuzzy information
fusion. It is claimed that fuzzy fusion is better than similar approaches since it provides
a consensus, not a trade off, and it automatically discounts unreliable information. This
is a grid based approach, and the degree of possibility that object is located at grid x
given the available information coming from the sensors and action information is held.
When needed, the point estimate is found by center of gravity. The robots do not share
point estimates but the whole distribution, when they detect each other. The overload
of transmitting this large amount of information is being compensated by converting
cell values to one byte and treating the grid as gray-scale image, then using run length
encoding. The ball grid is sent only if the information is new or with better quality

than last sent.
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2.3.6. Collaborative Multi-Robot Active Localization

In (Jones and Shel, 2004) "active localization” issue is considered. In collaborative
multi-agent localization, the robots use MCL to localize themselves. When a robot
detects another robot, the detecting robot shares a subset of its sample set with the
detected robot. In case of active localization, when a robot fails to localize itself, it
calls for help. Another robot which localizes itself accurately, comes to help and helps
the failed one to localize itself. If it can not come on time or help, the failed one tries
to localize itself or calls another one to help. They use high level actions e.g. spin

around itself, stop, etc. The following assumptions are made:

Robots can detect and identify each other

No false detection or incorrect identification

Map is known-indoor environment

All robots see another robot to update their believes

The range and bearing are modeled with Gaussian noise

2.3.7. Representing Hierarchical POMDPs as DBNs for Multi-scale Robot

Localization

The Hierarchical partially observable Markov decision processes (H-POMDPs)
are represented as Dynamic Bayesian networks (DBNs) in (Theocharous et al, 2004).
In particular, they focus on the special case of using H-POMDPs to represent multi-
resolution spatial maps for indoor robot navigation. They use basic actions like move

forward, and move backward, and represent pose and heading as nodes.

2.3.8. Ego-Centric Approach

This is a cooperative method for relative localization of mobile robot teams,
where the global positions of the robots are discarded, but every robot in the team
holds separate sample sets for the rest of the team, and estimates the relative positions

of every other robot using a Mixture-MCL based approach (Howard et al, 2003).
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3. PROPOSED METHODS FOR SINGLE ROBOT
LOCALIZATION

In this work, we developed several single robot localization methods. The most
successful one is the R-MCL which is one of the outstanding methods in this domain.
It is a hybrid method based on the ML and MCL methods. In this chapter, a detailed
description and analysis of the methods are presented. The R-MCL method is tested
on both a simulated environment and on real robots, and comparison of results with

the other outstanding methods in the same domain is also given.

3.1. Geometrical Localization

The geometrical localization method assumes the input data is measured exactly
(does not contain noise), and therefore does not need any error modeling. Our previous
algorithm in (Akin et al, 2001) required at least two landmarks to be seen at any time
to calculate the position accurately. Although it worked also for the one landmark case,
it could not give satisfactory results. This new method is designed to work with one
landmark information which is much more realistic within the new field sizes. So even if
the robot sees more than one landmark, they are treated separately and one-landmark
information is used at each step. The ratio of the distance between the predicted
location and the observed location of the landmark is used to predict the new x and
y coordinates of the robot as in Equation 3.1 and Equation 3.2 (Stroupe et al, 2003).
In these equations, ' and 3’ represent the new x and y coordinates, X, and Y7, are
the coordinates of the observed landmark, and Xp and Yy are the coordinates of the
old position of the robot. As shown in the (Figure 3.1), d is the calculated distance
between the landmark and the old position of the robot, and r is the currently observed

distance between the landmark and the robot.

(Xp—2)/r= (X, — Xo)/d (3.1)

(Yo —y)/r=(YL—Yo)/d (3.2)
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The bearing is also found by using the new predicted = and y coordinates. When-
ever new visual data come, the new position is calculated based on the measurement
and the old position. A point between the newly measured position and the old posi-
tion is taken as the new position. This new position is placed between the two positions
proportional to the belief of the robot in them. The assumption here is as follows: The
more you believe in a position the closer you are to that position. This is used to reduce
the effect of inaccurate measurements on the new position. When the odometric data
arrive, the position is blurred among the moved distance and heading. The bearing
is added to the original heading and it is normalized to give the new heading of the
robot. The odometric data consist of the distance moved forward, left and the bearing

of turn. This method assumes that the measurements are exact, or noise is below a

threshold.
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Figure 3.1. Calculation of distance to an observed landmark.

3.2. Reverse Monte Carlo Localization Method

As stated in the previous chapter in detail, both the ML and MCL methods are
well-known methods and they have a wide range of usage. Some of the advantages of

the ML and MCL methods are summarized below:

e they can process raw sensor measurements, there is no need to extract special

features,
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e they are non-parametric, no unimodal distribution like EKF is needed,
e they can solve global localization, and in some instances the kidnapped robot

problem.

ML is a grid based method which allows any distribution to be used to integrate
uncertainty in the measurements. It is flexible, robust and converges fast, but is coarse
and computationally complex. On the other hand, sample based MCL is not as com-
putationally complex as ML, and gives accurate results. It is typically preferred since
its implementation is relatively easy. However, it cannot converge to a position as fast
as ML, especially in the case of an external impact on the position of the robot (such
as kidnapping). In addition, the number of samples to be used is generally kept very
high to cover all the space and converge to the right position. Several extensions have
been made for adaptive sample size usage, but these still do not solve the slow coverage

problem.

This work uses 2-D Grid based Markov Localization. From now on 2-D Grid
based ML is intended when we use the term ML. We do not prefer 3-D Grid based ML
since the state space grows dramatically, and slows down the method. So we exclude
the orientation information in ML. As the grid cell sizes get smaller, the resultant
position becomes more accurate. But since every sensory and action update is applied
to each grid cell, this brings a computational overhead to the robot. Besides since it is
2-D, the orientation information which could be vital in case of inadequate observation
during a real-time application like soccer game, can not be used at all. In addition,
action information can not be used in case of large sized cells, where the actions are very
small compared to the cell size, so it really does not make a significant difference when
applied as action update. This algorithm enables us to make use of the robustness, and
fast coverage from kidnapping facts of ML. Besides by using MCL, we aim to refine
the resultant location, and making use of orientation information, and action readings

as well.

We propose the Reverse Monte Carlo Localization(R-MCL) algorithm to benefit

from the advantages of these two methods while avoiding their disadvantages. The
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algorithm is called Reverse since in the normal MCL methods, first the samples are
thrown, then they converge to a place in the field, then the position is estimated. In
R-MCL, first the place where the samples should converge is found, then the samples
are thrown to find the final position, so the routine is reversed. The average of the
thrown samples gives the final position estimate and the standard deviation gives the
uncertainty of the final position as in the MCL based methods. In the original MCL, the
number of samples is increased to decrease the bias in the result. In R-MCL since we
converge by selecting the cells with maximum probability, the bias is already relatively
low. (Kése et al, 2004, Kése and Akin, 2005, Kose et al, 2005, Kose et al, 2006, Kose
and Akin, 2007).

procedure R — MC L(max_grid_array, bool _M L)

1: if bool_ML==TRUEFE then
2:  ML_update

3: if ML number_of_grid_cells_in-mazx_grid_array < Thy;;, then
4: MC L_init(M L_samples)
5: bool ML=FALSE
6: end if
7. else
8  MCL_update
9:  MCL_init(M L_samples)
10: if MCL lost()==TRUE then
11: ML _reset()
12: bool_ M L=TRUFE
13:  end if
14: end if

Figure 3.4. The R-MCL Algorithm

The R-MCL algorithm is given in Figure 3.4. Here, bool_M L is a boolean variable
indicating whether or not to call ML. If it is TRU E, ML, otherwise the MCL module
is active. The M L_reset() function initializes all grid cells with equal probability that
adds up to 1 for all cells. M L_update works like the normal ML sensory and action
update as stated in the previous chapter. After each step the cells with non-zero
probability are put into a data structure called max_grid_array. If the number of
cells in this structure is smaller than a threshold called th,,r,, this means the cells have
converged to a coarse location in the field. The M C'L_init() function is then called with

samples generated by ML as input. Instead of generating random samples, we produce
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smaller-sized grid cells from the chosen non-zero weighted grid cells.! The weights for
each sub cell which is a member of the sample set of MCL now, are calculated next,
using the sensory and action readings, and normal MCL updates are done as stated
in the previous chapter in detail. Since bool_M L becomes FFALSE, ML is not called
anymore, and MC L_update function is used. If the uncertainty in MCL is below a
threshold T'hyscy, this means either the cumulative error increased so much that the
robot feels totally lost, or it is kidnapped. The MC'L_lost() function then returns the
value TRUE, so the M L_reset() function which initializes variables of ML module,
such as grid cell weights and max_grid_array is called. In addition, bool_M L becomes

TRUFE, so in the next step the ML module would be active.

At each iteration the odometric data (Az, Ay, Af) are used to update the pose
which represents the current position of the robot, and the weights of the grid cells as

given in Figure 3.5.

procedure ML — Motion(Pose, G, a)

1: update Pose using motion parameters

Pose, = Pose, + Az x sin(Posey) + Ay x cos(Posey)
Pose, = Pose, + Ay x sin(Poseg) — Az x cos(Posey)
Poseg = Posey + AI

update w; where Pose is in G;

return Pose, G

Figure 3.5. The ML Motion Update Algorithm

procedure ML — Vision(Pose, G, 0,m)
1: G'=0

2: for i =1ton do

3 w; = vision_update_model(G;, 0,m)
4:  if w; > Threshold
5. G =G+ (G, w)
6: end for
7: normalize w
8: return G’

Figure 3.6. The ML Vision Update Algorithm

The grid cells with weights w; > Threshold are stored in maz_grid_array (G')
and returned from ML-VisionUpdate algorithm given in Figure 3.6. The total number

IThe size of those sub cells can be made adaptive to be used as adaptive sample set size.
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of cells is n. The algorithm takes grid array GG, map m, observations o, and old pose
Pose. If the number of grid cells in G’ > M Ly, as mentioned in the R-MCL algorithm
in Figure 3.4, then the MCL Vision Update algorithm is used to update the sample
weights as in the MCL algorithm given in Figure 2.4. The grid cells in G’ are divided
into smaller cells and the cell centers of these sub cells are added to the sample set
as new samples. Currently the number of samples are fixed, but adaptive number of
samples could also be used to decrease the computational complexity, and memory
requirements, and make the algorithm faster. These samples are then sent to the MCL
module, and until the robot is kidnapped and gets lost, the MCL module works with

this sample set.

In the implementation of R-MCL in this work many wision update models based
on the sensor model are used. In Figure 3.7 a simple model used in the tests is pre-
sented. In this figure, d; is the absolute difference between the calculated and the
observed distance between the robot’s last calculated position and the observed land-
mark. In the MCL method, not only the distance, but also observed and calculated
angle measurements are used to calculate the probability. Different models were anal-
ysed and lastly, a similar but more complicated model based on a sigmoid function
instead of simple rectangular model (Figure 3.7) is used in the implementation, since

it provides higher accuracy in MCL.

Cell Siza

rone

Figure 3.7. The ML vision update model
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The MCL method differs from the ML module by the motion model it uses. In
Equations (3.3), (3.4) and (3.5) the new (updated) coordinates and orientation of the

pose estimate is calculated.

PE? = PE, + Ax x sin(PEy) + Ay X cos(PEjy) (3.3)
PE, = PE, + Ay x sin(PEy) — Az x cos(PEj) (3.4)
PE; = PEy + A0 (3.5)

where PE;, PE; and PEj are the updated x-coordinate, y-coordinate and orienta-
tion of the pose estimate; PE,, PE, and PEj, are the x-coordinate, y-coordinate and
orientation of the pose estimate before the odometry update; Ax, Ay and A# are the

odometry data giving the change in the x-coordinate, y-coordinate and orientation.

Notice that, in ML module, 2-D grids are used, so that the orientation information
is not taken into consideration, whereas the samples used in the MCL module, also have
orientation, so that this valuable information coming from the observation of beacons
could be used in position estimation. Especially in cases, where there is high sparsity
and noise, orientation measurement which is more reliable than distance measurement

plays an important role in position estimation.

This algorithm enables us to make use of the robustness, and fast coverage from
kidnapping facts of ML. Besides by using MCL, we aim to refine the resultant location,

and making use of orientation information, and action readings as well.

3.3. Fuzzy R-MCL

In this method, the uncertainty model p; which is used in both ML and R-MCL
is replaced by the model s based on a fuzzy membership function in Figure 3.8. The
old model was simple and fast but it was not flexible enough to improve success in high
sparsity and noise. Especially if the cell size is kept high as in (Kose et al, 2004, Kose
and Akin, 2005) -30 cm- relative to the works in (Gutmann and Fox, 1998) -5 cm-
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a more flexible model is needed to weight the probability of being in that cell. It is
not preferable to give same weight to every point in the cells of big sizes, and to the
samples inside these cells. Besides fuzzy membership functions also allow us to adapt
parameters due to noise and sparsity level, and add bias, when necessary to cope with

kidnapping problem.
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Figure 3.8. The fuzzy membership functions
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Figure 3.9. The trapezoidal membership function

In both models, d; represents the difference between the observed relative distance
from robot to the currently observed landmark, and the calculated distance from the
current cell center to the currently observed landmark. This enables us to weight the
samples according to their fitness to the observation and odometry. Several membership
functions (e.g. trapezoidal) and different sizes (e.g. twice the cell size) were tested.
The triangular model pus is presented in Figure 3.8b. Detailed information about Fuzzy

R-MCL with triangular model is found in (Kése et al, 2005).

In Figure 3.9, the trapezoidal model is presented. The absolute value of the
distance d; is taken. The threshold th represents the limit value where the cell will

get weight 1. The d; values between th and cell size get values calculated from the
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trapezoidal model, and the rest of the cells get 0. There is no bias in this model. The

results of this model are presented in the Tests and Results section.

3.4. Tests and Results for Single Robot Localization

In this study, we first compared R-MCL with several methods which are developed
to be used in robot soccer, by using a well-known data set in an offline manner. Then
we tested the R-MCL method and other methods developed for our soccer team on
the real robot, based on a challenging scenario, with varying light conditions. These
real-time tests were implemented using current field conditions to test the success
and robustness of the method in the real environment, since simulation results may

underestimate the problems and bugs related to real life conditions.

3.4.1. The Testing Environment

This work is a part of the Cerberus Team Robot soccer project, and aims to
localize the legged robots in the soccer field globally within the rules of Sony Legged
Robot League. The Sony Legged Robot League is an international robot competition
that has been launched within the RoboCup initiative (Robocup Organization, 2005,
Sony Four-Legged Robot League, 2005). In robot soccer, teams of robots, that are
capable of seeing and moving, play matches against each other for fixed time periods,
and the team with the highest goal score win the match like in real soccer. In order to
do this, the player robots must detect their location, the goals, the ball, the members
of their team and the opponent team members (optional for high level planning), and
place the ball in the opponent team’s goal to score. A robot is typically expected to
find its own location using the artificial landmarks called beacons in the field, and then
use this information to find the location of the ball and goal. So localization is a vital

problem for robot soccer.

There are several limitations and assumptions related to the rules of the Robocup
(Robocup Organization, 2005). The locations of the beacons are given as prior infor-

mation to the robots. The robots can identify the beacons and estimate their relative
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distance to these beacons using their cameras with some noise due to the imperfect
vision system and dynamic nature of the world around. With a well developed loco-
motion module, also odometric data are available to the robot. Consequently, a robot
can calculate to which direction relative to its current heading, and how much it has
moved during a specific time interval. When this information is not available, a motion

model may be used for estimating this, or it may be totally discarded.

The testing environment is the soccer field which has standards specified by the
Robocup legged robot league technical committee. The data used in the tests were
collected using the field specifications of 2001 (Figure 3.10). The background is green
with white strips showing the half line and penalty line, and covering walls are white.
There are six artificial landmarks called beacons which are uniquely colored and have
predefined position, size and colors to aid the robot to localize itself. There are two

goal areas which are blue, and yellow. Recently, the size of the field was enlarged,

Figure 3.10. The old soccer field

which allows working with larger number of robots, but adds more uncertainty to the
observations since now the landmarks are further away from the robots and it is harder
to observe the distance to them accurately as the distance increases. In addition, two
of the beacons, and the side walls are removed, to make the field look more like the

real soccer fields (Figure 3.11). These changes make the problem more challenging.
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Figure 3.11. The new soccer field

3.4.2. Sony AIBO Robots

The single robot localization algorithms are tested on the ERS 210 type robot
dog AIBO as seen in Figure 3.12 that is a commercial product of SONY (AIBO, 2005).
These are quadruped legged robots which have an onboard CMOS camera with an angle
of view 57.6 degrees in horizontal, and 47.8 degrees in vertical axis. The resolution of
the camera is 176 x 144 pixels. The robot also has an IR sensor which work in the
range 10-90 cm, and wireless LAN card that allows wireless communication between the
robots. The robots used in the competition are dark gray with blue and red uniforms,
which allow the other robots to detect them and decide whether they are opponents
or teammates. Unfortunately identification of individual robots is not trivial, and

therefore could not be implemented and is not currently used in localization.

Since 2004, the new product ERS 7 which has higher computational and physical
power, is used by most of the soccer teams (Figure 3.13). The experiments on our

multi robot algorithms were done on ERS 7 robots (Section 4.2).



3.4.3. Offline Tests

The experimental data for offline testing is provided from (Gutmann and Fox,

Figure 3.12. SONY AIBO ERS 210

Figure 3.13. SONY AIBO ERS 7
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2002), where it it used for comparison of several well-known localization methods in

literature. This now de facto standard set of test data is based on the records of the

test runs of Sony’s ERS 210 quadruped robot (AIBO) on the Robocup soccer field.

The raw data are produced by running the manually manipulated robot on the field

that is shown in Figure 3.14 (Gutmann and Fox, 2002) on a figure of eight like path

for almost an hour, stopping the robot on several predefined points called markers,

recording the perceptions of the landmarks and odometry readings during this run.

The tests aim to analyze accuracy and robustness in case of noisy and sparse data, the

time to recover from the kidnapping problem, and speed of the algorithms by measuring

the time required for processing the frames.
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In this work, the R-MCL algorithm is tested against the other outstanding
methods whose details could be found in (Gutmann and Fox, 2002, Kristensen and
Jensfelt, 2003). The results of the methods in (Gutmann and Fox, 2002) were pro-
vided by Gutmann. The algorithm is also tested against the S-Loc, and SRL* (Kaplan
et al, 2006) algorithms which were implemented to be used in the same project in our
laboratory. SRL* is shown with an asterisk to distinguish from the SRL implementa-
tion in (Gutmann and Fox, 2002), which had minor differences, and therefore different

results in the tests.

Although the algorithms can make use of the goals and field lines to localize,
the test data do not include this information. Additionally, although more than one
beacon could be seen in one perception in the test data, since this is a very rare case
in real games, it is not considered in the R-MCL tests. R-MCL is not specially trained
and optimized for the test data, whereas the ones in (Gutmann and Fox, 2002) are, so

this also affects the final success rates.

Figure 3.14. The soccer field of the test environment

3.4.3.1. Offfine Testing Tool. For the offline experimental study, the offline testing

tool developed in our laboratory is used. The user can choose one of the four tests
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described in the next section, the data set, and one of the available methods which
should be previously embedded to Cerberus Station code, which covers the offline codes
of Cerberus Team. The user can also run the algorithm several times, and for different

time durations in batch mode. The visual interface is shown in Figure 3.15.
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Figure 3.15. The offline testing tool

There are several display windows at the bottom of the visual interface, for dis-
playing the distance error, certainty and the estimated positions of the robot at each
predefined marker. The perceptions and estimated positions are also displayed visu-
ally. Besides there are several special purpose windows for special methods, like the

grid window for RMCL, and the ME window for SLOC.

3.4.3.2. Noisy Data Test. In the noisy data tests, the percentage of noise level on

the raw data is increased from 0 percent to 80 percent by 10 percent increments in
every data set. The number of noisy samples is increased to assess the robustness and

accuracy of observed methods in case of high noise levels.

In Figure 3.16, the error rates of the R-MCL, S-Loc, and SRL* are presented in
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case of noisy data. The results of the previous versions of R-MCL can be found in
(Kése et al, 2004, Kése and Akin, 2005, Kose et al, 2005). The comparison of R-MCL
with other outstanding methods in the domain are presented in Figure 3.18. The error
rates of the tests are calculated from the distance between the expected location of
robot when it reaches a marker, and its exact location (the location of the marker).
Note that, there are also unavoidable errors in the manual measurement of the exact
locations of robot, for the evaluation of the test cases, due to experimental problems

reported by the data providers.
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Figure 3.16. Results of the noisy data tests-1

In Figure 3.17 the error rates of the R-MCL, Geometric Localization (GEO), and
Fuzzy R-MCL (FUZZY) are presented. R-MCL and Fuzzy R-MCL show almost similar
behaviors, and outbeat the GEO method which is simple, fast but not robust to high

noise, since it assumes perfect data.
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Figure 3.17. Results of the noisy data tests-2

The R-MCL algorithm shows a good overall performance. At the very high noise
levels which are not realistic, its performance decreases, due to the ML module which
is robust but coarse. As mentioned previously, the R-MCL algorithm is grid based. In
the referenced works typically the cell size is chosen as 5 cm. However, in this work,
it is taken as 25 cm for the R-MCL, to increase the speed. The triangulation method
which is considered in case of observing two or more landmarks is also not used in
the implementations. Using a smaller cell size and triangulation would decrease the
error rate considerably, but the current case is more realistic. The bigger cell size is
advantageous in fast recovery from kidnapping, and makes the algorithm quite fast by
decreasing the number of cells drastically, but using the odometric data for big cells is
useless. The odometric data are in terms of millimeters in every frame, and it is applied
to cell centers, so unfortunately it is impossible to update the cell confidence correctly,
or detect if the robot passes from one cell to the other by odometry. So odometric data
are useful mostly in the MCL part of R-MCL. Unfortunately odometry is really vital

especially in the sparse data case where the data are very rare.

In the way noisy data sets are prepared for the experimental study, only the
false perception of the beacons is modeled, which constitutes only a small part of the

noise problem and occurs infrequently (Gutmann and Fox, 2002). The main problem



43

1400 o Markov
= EKF1
1200 EKF2

= 1000 MLEKF {
g x SRL1 i E ;
5 800 ;sRri2 ] I
5 600  +MixMCL ¥ T %
0]
3 A AMCL 7 - ¥
g 400 4 RrmCL 3 : 1 % £
A g '

2 = E £

200 : i & = £

0
0 2 4 6 8 10

x10 Percent Noise

Figure 3.18. Results of the noisy data tests-3

with the perception observed in soccer games was actually the noise in the distance

estimation, which can be better tested in real time tests discussed in Subsection 3.4.4.

Different parameter sets for R-MCL were also tested to find the optimum choice.
First of all, different th,;; values were compared. The results of the noise tests for
different thy;; values such as 10, 15 and 20 are compared. The value of 15 gives the

best result as seen in Figure 3.19.

In these implementations, static samples are used to cover the field better with
smaller number of samples. In Figure 3.20, random and static samples are compared in
terms of noise. Random samples are also drawn from the selected cells. Static samples

give slightly better results.

3.4.3.3. Sparse Data Test. In sparse data tests, samples are deleted from the original

raw data, in a predefined sequence, (beyond the robot’s awareness). The sparsity
increases from 1/1 to 1/256, by 2™ of sparsity increases in every data set. As the

frequency increases, the behavior of the selected methods is observed.
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Figure 3.19. Results of the noise tests for different thy,,

The error rates of R-MCL, S-Loc, and SRL* are presented in case of sparse data
(Figure 3.21) It should also be noted that S-Loc is using the ME output instead of
using the perception data directly, which is an important advantage especially against
sparsity. Also note that, R-MCL showed better performance than SRL* although it
uses fewer samples than SRL* even in the worst case. The comparison of R-MCL with
other outstanding methods in the domain are presented in Figure 3.22. It performs
well up to an acceptable sparsity level. In the very high levels of sparsity which can
not be normally encountered in real games and experiments, its performance is not as
good as others. This is because it is not using a memory and uses small amount of

samples.

In Figure 3.23 the error rates of the R-MCL, Geometric Localization, and Fuzzy
R-MCL are presented. R-MCL outperforms others. GEO shows a satisfactory behavior
although it does not use any uncertainty model, or samples. Fuzzy R-MCL is beaten

by the others.

In Figure 3.24, the results of sparsity tests for different th,,; values such as 10,
15 and 20 are compared. The value of 15 gives the best result, as it does in the noise

tests.
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Figure 3.20. Results of the noise tests for comparing the static vs. random samples

In Figure 3.25, random and static samples are compared in terms of sparsity tests.
Random samples are also drawn from the selected cells. Static samples give slightly

better results, as observed in the noise tests.

Adaptive thresholds, adaptive number of samples and grid sizes, for different
levels of noise and sparsity could be used to increase success. Notice that the algorithm
has an error rate which is not greater than the outstanding methods in the domain up
to a high error and sparsity level, which are too high to be realistic, indeed. So the

error rate of the method is acceptable for real life applications.

3.4.3.4. Recovery from Kidnapping Test. In the third experiment, the ability of the

methods to solve the kidnapped robot problem is investigated. In this problem, the
robot is displaced without being aware. Since, its beliefs are wrong, it should reset
and localize itself from scratch. In this experiment, the average time the methods need
for re-localizing the robot after it has been kidnapped is computed over 22 kidnapping
tests. The results are shown in Figure 3.26 where the values are in seconds. According
to the experimental results, R-MCL recovers from kidnapping faster with the help of
its ML part.
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Figure 3.21. Results of the sparsity tests-1

In Figure 3.27 the kidnapping test results of the R-MCL, Geometric Localization,
and Fuzzy R-MCL are presented. R-MCL and Fuzzy R-MCL show similar behaviors

and a very high success rate. GEO has a high error rate and, is beaten by the others.

3.4.3.5. Speed Test. In this experiment, which is carried on an ERS 210 robot, the

average processing time of the methods are tested. In order to have a fair comparison,
the only active process in the memory is the localization process. The average pro-
cessing times and the number of processed frames per second are calculated for each
method over the complete raw data set that contains 51523 frames ten times. For SRL
and R-MCL, the processing time interval is the average of each frame’s time intervals
for the motion and vision updates for localization module; whereas for S-Loc, the time
intervals include motion and vision updates for the ME module as well. As shown in
Table 3.1, where results are in microseconds, the total processing time for S-Loc and
ME is much less than both SRL and R-MCL whereas R-MCL is more than twice faster
than SRL. R-MCL uses big grid sizes and picks up samples only when the number of
good grids is below a threshold, so the total number of processed grids and samples
are less than that of SRL even in the worst case. This increases the computation speed

and decreases the memory needed to hold the samples, but accuracy is also lower.
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Figure 3.22. Results of the sparsity tests-3

Table 3.1. Results of the speed test on real robot (usec.)

S-Loc | SRL* | R-MCL

Processing Time | 858 10484 4942

The experiment is also tested on ERS 7 robots. These robots have higher com-
putational power than ERS 210 robots, as stated before. The results are presented in
Table 3.2, where results are in microseconds, again the total processing time for S-Loc
and ME is much less than both SRL and R-MCL where as R-MCL is more than twice
faster than SRL.

Table 3.2. Results of the speed test on real robot (usec.)

S-Loc | SRL* | R-MCL

Processing Time | 155 1839 923

In Table 3.3 the results on PC for R-MCL, Geometric Localization, and Fuzzy R-
MCL are presented. Fuzzy R-MCL shows better performance than R-MCL, and both
have a good success rate. GEO has a very good timing, since it uses a very simple

working schema, and do not use any samples or grid cells at all.
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3.4.4. Real Time Tests

In order to observe the performance of the methods in the real environment
several real-time tests were conducted. The field used in these tests is the new field
which has four beacons, and is enlarged by almost 1.5 times the old field used in the
offline tests. The white walls around the field were also removed, so that the robot
could detect any object in the lab around the field and might be confused. Besides
the color table of the robot is an older one which was trained under different lighting
conditions, and the lighting conditions of the test field varied due to variations in day
light which could not be avoided. The scenario of the tests was taken from a localization
challenge of Robocup games. There are six markers on the field, four of them placed
nearby the beacons and two on the mid-field line, and the robot should visit all of these
markers in a predefined sequence. In Figure 3.28, the markers are represented by light
colored rectangles on the field (Although they are only points in the field their sizes
are exaggerated to be seen clearly in the picture). Each time the robot is started from
the center of the field. Whenever its distance to the current marker in the visiting
list is below a threshold (10 cm in the current tests), and it is confident enough, the
robot stops and wags its tail. During the tests, while the robot is following its path,

it becomes kidnapped many times when it goes out of the field and is placed on the
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Figure 3.26. Results of the kidnapping tests-1

nearest position in the field. It was also kidnapped and placed on the opposite side of
the field many times on purpose to measure its robustness against kidnapping. These
facts besides problems due to the manual measurement and data collection increased

the overall error unavoidably.

Each test is performed ten times and the average and standard deviation of the
error in distance is calculated. Since the robot stops for every marker and is started
manually again, it was not suitable to measure the time. So only the error in distance

is measured in these tests.

We ran the four algorithms S-Loc, SRL* and two versions of R-MCL, according
to this scenario. All of the parameters of R-MCL1 and R-MCL2 are the same with the
offline tests, except thy;;, which is 15 cm in the offline tests and R-MCL1, but 30 in
R-MCL2. Since the field is larger, the field is represented with more cells now, so it
is logical to increase the thy;, to improve the success. This also increases the number
of samples used in the MCL part, but it is still in the acceptable range. In the tests,
SRL* could not converge to the points in the limited time duration so its results are
not taken into consideration. In these tests, R-MCL outperforms S-Loc and another

version of itself, as seen in Figure 3.29.
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4. COLLABORATIVE REVERSE MONTE CARLO
LOCALIZATION

Multi-robot localization is a newly developing area in the robotics domain. In
multi-robot localization, the aim is to decrease the localization error by using the shared
perception and estimations between the team members. In this work a novel multi-
robot localization method is proposed. Collaborative Reverse Monte Carlo Localization
(CR-MCL) is a collaborative method based on R-MCL method. This method is tested
both in the simulated environment and on real robots, and the results are presented in

this chapter.

4.1. Collaborative Reverse Monte Carlo Localization Method

The proposed collaborative method is based on the R-MCL self-localization method
described in Section 3.2. Each robot in the team is assumed to be capable of self-
localization using R-MCL by means of its sensors and actuators. But the accuracy and
speed of this self pose estimation may vary due to the environmental and intra-robot
conditions. In R-MCL, each robot has its local grid cells to estimate its own position.
When the certainty of the robot about its location increases, it uses a sample set based
on this grid set, initially. Since it is based on R-MCL, also in CR-MCL, when two or
more robots encounter each other, they represent the position of the robots they de-
tected in terms of grid cells, too. Each robot m that detects another robot n, updates
its local grid cells using the relative distance and orientation it observes between itself
and n, to produce the new shared grid cells estimating the position of n. For every
possible location [ (in our work grid cell centers),Bel,,, (L = [), the belief of robot m
in robot n’s being in location [ is calculated (Equation 4.1). The calculation uses the

following

e the probability of m observing n in the location [, while itself being in the possible

locations I, and
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e the detection information r,,, which presents the relative information between m

and n observed by n, and sent to n

n then integrates these new grid cell beliefs coming from all m into its own grid set
as given in Equation 4.2 based on (Fox et al, 2000). Here the prior probabilities are
calculated with similar models that are used in ML method of the R-MCL (Section
3.2).

Belym(L=1) « Y P(Ly=1Ly ="1,ry) Beln(L =1 (4.1)
for each I’
Bel,(L=1) « Bel,(L=1) Y  Bely,(L=1) (4.2)

for eachm

To describe the algorithm better, we present a two robot scenario on the test field.
In Figures 4.1 and 4.2 the robot observes two beacons simultaneously, and the grid cell
probabilities due to these observations are presented. In the figures light colored cells
are the ones with the highest probability. The rest of the cells have negligible small
probabilities and are represented with dark colors. In Figure 4.3 the resultant grid
cells to be used by the robot to localize itself, are presented. These are formed by the
integration of the first two sets based on the observations. Here the robot uses R-MCL

to self-localize itself.

In the two robot version of this scenario, in Figure 4.1, robot, sees one beacon.
In Figure 4.4 robot, also sees one beacon. Both robots form local grid sets representing
their position estimations using these observations. Then robots sees robot,. Using its
local grid set, and the relative distance and orientation it observed between itself and
roboty, roboty produces a new shared grid set representing its estimation on robot;’s
position (Figure 4.5). It sends these cells to robot,. In Figure 4.6 robot; integrates

these to its local grid set, to localize itself as if it sees two beacons as in Figure 4.3.

The CR-MCL algorithm is presented in Figure 4.7. This is a modified version of

the R-MCL algorithm. Whenever a robot observes another robot it produces a shared
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Figure 4.1. robot, sees one beacon

Figure 4.2. robot; sees a second beacon
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Figure 4.3. robot; localizes itself with using two beacons

Figure 4.4. robot, sees one beacon



57

Figure 4.5. roboty estimates robot,’s location

Figure 4.6. robot, localizes itself integrating the shared and the observed information
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grid set. Observations are represented by grid cells instead of samples since observations
are not very accurate. This approach is more robust, and has less computational and
communication cost, since the same information is represented by fewer points. If the
robot is very accurate about its place and using samples to localize itself, it uses the
most recently updated grid set it used to produce its shared grid set. If the observed
robot is very accurate about its location (it is in MCL mode) it does not use the shared

information since it is not as accurate as its current estimations.

procedure CR — MC L(local_max_grid_array, shared_grid_-array, bool _M L)
1: if bool_ M L==TRUFE then
2: M L_update
3:  integrate(local_maz_grid_array, shared_grid_array)
4:  if M L number_of_grid_cells_in_-mazx_grid_array < Thy; then
5: MCL_init(M L_samples)
6: bool ML=FALSE
7. end if
8: else
9:  MCL_update
10:  MCL_init(M L_samples)
11:  if MCL_lost()==TRUE then
12: ML reset()
13: bool_ M L=TRUFE
14:  end if
15: end if
16: update(shared_grid_array)
17: send(shared_grid_array)

Figure 4.7. The CR-MCL Algorithm

Using the shared information, we aim to increase the accuracy of pose estimations
of the whole team. Unlike other works in the same domain, if the uncertainty of
observation or the uncertainty of the detector robot about its own location is too high,
then this observation is not used by the detected robot, to filter out useless shared
data which will increase its error and uncertainty. By sharing only information with
relatively high certainty, we expect to improve success, decrease computational and
communication cost, and increase the benefit taken from the collaboration. If the
detected robot is too confident about its location, it does not accept shared data, since

shared information is not very accurate, and communication is costly. In addition,
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not the whole grid set, but only the chosen grid cells with the highest certainties are
transferred as shared grids. This is also expected to decrease transfer and calculation
costs. e.g. if the whole test field is represented by 100 grid cells, and if a robot
with considerable certainty uses only 20 of them with the highest certainties, then the
number of new shared grid cells will be at most 20 whose calculation and transfer will

be considerably lower than 100 cells.

4.2. Tests and Results for Multi-Robot Localization

To verify the predictions, the method was tested on several AIBO ERS 7 robots
both using a simulator, and in the real field, which is the official field of Sony 4-
legged League (Sony Four-Legged Robot League, 2005). The field is the new field
which is larger and has only four beacons and no white walls which makes it more
challenging. Detailed information about the simulator, field, and robots is given in
Section 3.4.3. Some of the selected tests which cover the problem best are presented
here. The input data used for localization is the same as the single robot case, such
as the relative distance and orientation of robots to the beacons, observed using their
onboard cameras. In the tests, the observed robot is movable and additionally uses

odometry for localization. The observer robots are kept stationary, for simplicity.

In the simulator tests, there is no additional noise in the input data, but the
robots suffer from lack of adequate information for localization. The observed robot
moves 20 steps in the half field. Two stationary observers can observe the beacons and
the observed robot at each step, localize themselves and send the estimated position of
the moving robot. It uses shared data and its own observations to localize itself. The
robots can observe at most two beacons, as stated in Table 4.1. The test results in
Figure 4.8 show that the best results are obtained when the moving robot can observe
two beacons. The tests where it can use shared data containing two beacons show
similar success. In the tests where data from one beacon is observed or shared, the
success rate is almost as half as the two beacon case. In the worst case the robot is blind
(can not see or share anything) and can only use dead reckoning from its odometric

data.
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Table 4.1. Test descriptions

Distance Error (mm)

Test 1D Test Description
Detected Robot Observer(s)
T1 Robot can see 1 beacon 1 observer can see 1 beacon
T2 Robot can not see 2 observers, each can see 1 beacon
T3 Robot can not see 1 observer, can see 1 beacon
T4 Robot can not see 1 observer, can see 2 beacons
TS Robot can not see no observers
T6 Robot can see 1 beacon no observers
T7 Robot can see 2 beacons no observers
900
566 KKK KKK H—H—H—H—HK—K—H—HK—H—K - $—T1
700 —a—T2
600 13
o o
300 —x—T5
200 ——T6
100 ——T7
0
0 5 10 15 20 25

# of steps

Figure 4.8. Test results in the simulator
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In the real field tests, four stationary observer robots are placed equidistant to
each other, and one meter away from the upper half of the field, dividing the whole field
evenly. The observed dog is placed on four points on a path equidistant to observers
and the beacons, as in the simulator tests (Represented by '+’ on the field in Figure
4.11). Unlike them, the observed robot is always blind. There is high vision error due
to imperfect lighting, and other irrelevant objects in the field and its surroundings,
e.g. posters on the walls, besides the actual positions of the robots on the field are
measured manually, which inevitably increases localization error. As seen in Figure
4.9, the first four results are the estimated positions of the observed robot calculated
by robot R0, R1, R2, and R3, without collaboration. The last one is the result of the
collaborative R-MCL. It is significantly better than the rest, including the best (R3),

and average of the non-collaborative estimations.

In the second set of tests, the observers are placed 1.5 meters away from the
upper part of the field. The location of the observed robot is the same with the first
set of tests. In this part of the field the lighting conditions were better, and the robots
can observe the beacons better so the results were better then the first set of tests.
However, as expected the relative ratio between the results were almost same with
the first set of tests, and CR-MCL has the best result again (Fig. 4.10). These tests
prove that regardless of the distance between the observers, and the observed robot,

CR-MCL method works successfully, and outperforms non-collaborating agents.

The real world tests are also repeated in the simulator under the same conditions
but without additional noise. So the perception and action information coming to the
robots are perfect. In Figure 4.12, the observed robot is placed 50 cm away from the
top of the field and the observers are placed 100 cm away from the top of the field. In
this test, as in the real field tests, CR-MCL performs better than both the best and

average values.
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Figure 4.10. Second set of test results in the real field
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Figure 4.11. The real test field

RO R1 R2 R3 Average C-RMCL

Figure 4.12. The test results in the simulated field-1
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5. DISCUSSION

In this work we studied the global localization without a prior position informa-
tion problem. This is known to be a very hard task for autonomous mobile robots.
We have chosen Robot Soccer as a test bed for our proposed solutions. This is a chal-
lenging test bed for the applications designed and optimized for autonomous mobile
robots and requires fast, and accurate methods. Here, the perceived sensor data are
often inadequate, imprecise and even distorted as a consequence of low computational

complexity and memory requirements.

In this work, we studied several well known methods in this domain, their bene-
fits, and failures. The simplest localization method depending on the range and bearing
data is triangulation, which uses geometry to compute a single point that is closest to
the current location. But in real world applications a robot can never know where it is
exactly because of the uncertainty in its sensors, and the environment. Consequently,
several different approaches which estimate the position of robot probabilistically were
introduced to integrate this uncertainty into the solutions. Built on top of ML and
MCL, the R-MCL algorithm is proposed as a fast, reliable, computationally inexpen-
sive and resource efficient solution to the global localization problem, in environments
such as the Robocup Games and the Technical Challenges which require very high
accuracy and speed, robustness against noise, and insufficient data, and fast recovery

from kidnapping.

In Table 5.1, the well-known single localization methods analyzed in this work
are categorized according to several useful criteria. Comparisons of several methods
including Kalman Filter (KF), Markov Localization (ML), Monte Carlo Localization
(MCL), Sensor Resetting Localization (SRL), Adaptive MCL (A-MCL), Mixed-MCL
(M-MCL), and Markov Localization-Extended Kalman Filter (ML-EKF) are based on
the work in (Gutmann and Fox, 2002). The rest of the methods that are analysed in
this table are Multiple Hypothesis Localization (MHL) (Kristensen and Jensfelt, 2003),
Kullback-Leibler Distance-Sampling (KLD-S) (Fox, 2003), Simple Localization (SLOC)



Table 5.1. Comparison of Single Localization Methods
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Method | Capability | Accuracy | Speed | Memory | Robustness Fast
of usage to noise recovery
global from
localization kidnapping

KF no H H L L L
ML yes L** M H** H H
MCL yes M** M H** M M
SRL1*** yes M** M M** M L
SRL2*** yes M** M M** L H
A-MCL yes M** M M** XH H
M-MCL yes M** M M** H H
ML-EKF yes M** M H** H H
MHL yes M** M H** H H
KLD-S yes MH* M H** H H
SLOC yes M** M H** L M
Fuzzy* yes L** M H** H H
GEO yes H** H L L L
R-MCL yes M*F* H H** H H

*Fuzzy method is the method implemented in (Kose et al, 2003).

** These are grid based and sample based methods. So accuracy and memory usage

changes with the cell size, and the number of samples used. But they still remain in

acceptable ranges.

***SRL1 and SRL2 differ in their wish to accept additional samples on each noisy

observation. This leads fast recovery from kidnapping but increase noise and decrease

accuracy.
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(Celik, 2005), Fuzzy Localization (Fuzzy), Geometrical Localization (GEO), and R~
MCL. Detailed information about these methods could be found in Section 2.2. The
comparisons have relative values as H for high, M for Medium and L for Low. First
comparison item is the capability of global localization. Among these methods only
KF can not localize globally. Accuracy is the accuracy of the resultant position. If
the method is a grid based method, the accuracy is evaluated as Low and if it is
a sample based approach, its accuracy is evaluated as High, since higher accuracy
could be gained using samples rather than large sized grids. Unfortunately using large
number of grids and samples increases memory usage. These also affect speed, since
as the number of samples or grids which should be integrated in the computations
increase, also computational time increase. So KF which do not use any samples
or grid cells have high speed and low memory usage, and is very accurate in local
localization. Unfortunately it fails in global localization, and kidnapping, as stated
before. Generally, sample and grid based methods are robust to noise, when they use
enough number of samples or grid cells. Adaptive methods could have lower costs, and
high accuracy as their sample sizes differ in different cases. But the parameter sets
should be carefully chosen to obtain the best results. According to the criteria in Table
5.1, R-MCL is one of the best methods in the literature. Its success could be increased

by using adaptive number of samples and grid cells.

In Table 5.2, the multi-robot localization methods which are studied in this
work are compared according to several criteria. These methods are Collaborative
Probabilistic Constraint-based Landmark Localization (CPCBL) (Stroupe and Balch,
2002), Representing Hierarchical POMDPs as DBNs for Multi-scale Robot Localization
(POMDP) (Theocharous et al, 2004), Robust Multi-robot Object Localization Using
Fuzzy Logic (Fuzzy) (Canovas et al, 2004), Cooperative MCL (CMCL) (Fox et al, 2000,
Fox et al, 1999a), Distributed Multi-Robot Localization (DMRL) (Roumeliotis and
Bekey, 2000, Roumeliotis and Bekey, 2000, Roumeliotis and Rekleitis, 2004), Collabo-
rative Multi-Robot Active Localization (CMRAL) (Jones and Shel, 2004), Cooperative
Positioning System (CP) (Kurazume and Hirose, 2000), Ego-Centric Approach (EGO)
(Howard et al, 2003), and CR-MCL, which are described in detail in Section 2.3. The

comparisons have relative values as H for high, M for Medium and L for Low. e.g. if the
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Table 5.2. Comparison of Multi Robot Localization Methods

Method | Capability | Accuracy | Speed | Memory | Robustness | Comm.
of usage to noise cost
global
localization

CMCL yes H M M M M
POMDP yes L M H L L
Fuzzy yes L M H M H
CPCBL yes H M L L L
DMRL yes H H L L L
CMRAL yes H M M M H
Cp yes L L M M L
EGO no H L H H H
CR-MCL yes H H M H L

algorithm uses samples its memory usage is rated as high, if it uses KF and does not
transfer samples, its communication cost is low. In these comparisons, using samples is
assumed to increase the accuracy, but also increase the cost, and memory usage. Using
grid cells is also costly but not as much as using samples, provided that the number
of grid cells is smaller than the number of samples. Hence this approach is also faster
than sample based algorithms. Additionally, grid based methods have less accuracy
than sample based algorithms. Notice that, these assumptions, and evaluations are
based on the general parameter sets studied in this work. A sample based algorithm
like SLOC which uses very small number of samples (one sample for each observation)
would be very fast, and less costly in terms of computational, and memory usage when

compared to a grid based algorithm.

In Table 5.2, the first item is the capability of global localization. Among these
methods only the Egocentric approach is designed only for relative positioning. The
rest of the methods are capable of global localization with different accuracies. The

accuracy of the grid based methods is evaluated as Low, and the accuracy of the
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sample based methods as High. Speed is related to the number of grids and samples
used which bring a high burden in terms of the computational cost. So the speed of the
methods using high number of samples like Egocentric method are rated as Low. The
CP method which requires the action of some team members while others are standing
still as observers, is also rated as a slow method. The cost of memory usage is directly
proportional to the number of samples and grids that are used by the methods. Some
methods like POMDP, which do not use any samples or grids are also known to have
High memory usage. The Kalman Filter based methods generally have low robustness
to noise. The Ego-Centric method which uses a very large number of samples and
CR-MCL which is tested under high noise levels are evaluated with High robustness
to noise. The rest of the methods are evaluated as Medium. Most of the methods use
large number of grid cells and samples to represent the shared information, and some
of the methods even transfer these via communication which increase communication
cost. CR-MCL seems to have better values in all of the criteria, and is a good choice
for especially real time applications, as it is fast, cheap in communication, memory
and computational cost, and accurate and robust, as well. CR-MCL is also scalable,
whereas most of these methods are not, so it can be used in real-time applications,
which brings a good contribution to the domain. The multi-robot localization methods
studied in this work are not compared with each other in the referenced works. They
are just tested against odometry. Furthermore to the best of our knowledge, there is
no well-known data set as in the single-robot case, to compare the methods. Therefore,
unlike the other relevant works, CR-MCL is not tested against results based on only
odometry, but the non-collaborative version of itself, which is a much more challenging

opponent. This kind of testing is a better indicator of performance.

The are several drawbacks in the proposed algorithms, beside their advantages.
These are the usage of fixed number of cells in ML, and relying on a fixed threshold
for the switch between ML and MCL. As a future work, adaptive number of cells could
be used. The switch between ML and MCL could also be based on multiple criteria,
even a fuzzy inference system could be used for this purpose. This work is also flexible

enough to be extended to solve the multi robot object tracking problem.
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6. CONCLUSIONS

In this work, the R-MCL algorithm is proposed as a fast, reliable, computation-
ally inexpensive and resource efficient solution to the global localization problem, in
environments like the Robocup Games and the Technical Challenges which require very
high accuracy and speed, robustness against noise and insufficient data, and fast recov-
ery from kidnapping. R-MCL is a hybrid approach which aims to combine the ML and
MCL methods, to make use of the advantages of both, and overcome the disadvantages.
The idea behind this algorithm is to converge to a part of the environment by using
a coarse 2-D grid based ML and in this local area, call the MCL to find the current
position estimation of the robot in a fast, robust and accurate manner. Starting with
no prior information about its position, the robot uses ML until the possibilities for
its current location are below a threshold. Then samples are thrown in these locations
and MCL is called to run with this sample set. MCL is active as long as the confidence
of the robot about its location is above a threshold. Then the ML module becomes

active again until the robot is confident enough to call MCL again.

The method has been shown to be very robust and fast and requiring less compu-
tational power and memory compared to similar approaches and is accurate enough for
high level decision making which is vital for robot soccer. Besides it is flexible, simple
to implement and can cover the environment with less amount of samples then similar
works. It is especially designed for working with imprecise and inadequate sensor data.
It outperforms many of the other methods especially in case of recovery from kidnap-
ping problem. It performs well in both offline tests and tests on the robot, outperforms
the methods implemented in our project and keeps in a satisfactory range when com-
pared with the results of other methods in (Gutmann and Fox, 1998, Kristensen and
Jensfelt, 2003). It has been outperformed by A-MCL, which is an adaptive method, in
the high levels of noise and sparsity. Notice that all of the thresholds of R-MCL are
fixed in these tests, although the noise and sparsity levels vary on purpose or depending
on the lighting and other environmental conditions. Therefore using adaptive thresh-

olds based on the confidence level of the robot and the current measurements might
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improve the success in case of high noise and sparsity or varying lighting conditions.

After solving the single self-localization problem, we have developed a novel col-
laborative localization method, Collaborative Reverse Monte Carlo Localization (CR-
MCL) for a team of robots, where the shared data are represented as grid cells, fused
and integrated into local belief sets by our hybrid self-localization method, R-MCL. It
is tested on both a simulator and on real robots and shown to be fast, robust and ac-
curate, and avoids single point failure, and suitable to real-time robotic activities since
it is robust under high noise and sparsity. The real power of the method comes from
its hybrid nature. It uses a grid based approach to handle detections which can not
be accurate in real-time applications, and sample based approach in self-localization
which improves its success, although it uses lower amount of samples compared to
similar sample based methods. It could be extended to be used in holding relative
position information of the team members, and the track of the mission related objects

like ball, as well.

There is an ongoing project to improve and use this method in the real-time robot

soccer games.
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