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ÖZET 

Yüksek Lisans Tezi 

 

KLASİK SONLU FARK YÖNTEMLERİ VE UYGULAMALARI 

 

BERNA BULUT 

İnönü Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

79+vi sayfa 

2007 

 

Tez Danışmanı : Prof. Dr. Selçuk KUTLUAY 

 

 Beş bölümden oluşan bu çalışmanın ilk bölümünde sonraki bölümlerde 

kullanılacak olan temel tanım ve teoremler verilmiştir. 

İkinci bölümde çalışmanın ana konusu olan klasik sonlu fark yöntemlerinden 

açık, kapalı ve Crank-Nicolson sonlu fark yaklaşımları farklı sınır şartları ile verilen ısı 

iletim denklemi için incelenmiştir. 

Üçüncü bölümde farklı sınır şartlarındaki ısı iletim denklemi için açık, kapalı ve 

Crank-Nicolson sonlu fark yaklaşımlarının kararlılık analizleri matris ve von-Neumann 

yöntemleriyle yapılmıştır. 

Dördüncü bölümde ısı iletim probleminin açık, kapalı ve Crank-Nicolson sonlu 

fark yaklaşımlarının lokal kesme hataları incelenmiştir. 

Beşinci bölümde farklı sınır şartlarındaki ısı iletim problemi için model 

problemler ele alınarak bu model problemlerin açık, kapalı ve Crank-Nicolson sonlu 

fark yaklaşımlarının matris ve Von-Neumann yöntemleriyle kararlılık analizleri 

incelenmiş, elde edilen fark yaklaşımlarının nümerik çözümleri ve analitik çözümleri 

karşılaştırmalı olarak tablolar halinde sunulmuştur. 

 

 

ANAHTAR KELİMELER: Açık Yöntem, Kapalı Yöntem, Crank-Nicolson 

Yöntemi, Kararlılık Analizi, Lokal Kesme Hatası. 
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ABSTRACT 

MSc. Thesis 

 

CLASSICAL FINITE DIFFERENCE METHODS AND THEIR APPLICATIONS 

 

BERNA BULUT 

İnönü University  

Graduate School of Natural and Applied Sciences 

Department of Mathematics 

79+vi pages 

2007 

 

Supervisor: Prof. Dr. Selçuk KUTLUAY 

 

 

 This study consists of five chapters. Chapter 1 aims to explain some basic 

concepts and theorems which are used in the latter chapters.  

 The main issue of Chapter 2 includes explicit, implicit and Crank-Nicolson 

methods – which are among classical finite difference methods – have been examined 

for heat conduction equation with different boundary conditions.  

 In Chapter 3, for heat conduction equation with different boundary conditions, 

stability analyses of explicit, implicit and Crank-Nicolson approaches were carried out 

by using Matrix and von-Neumann methods. 

 In Chapter 4, an examination of the local truncation errors of explicit, implicit 

and Crank-Nicolson approaches of heat conduction problem was carried out.  

 In Chapter 5, model problems were discussed for heat conduction problem with 

different boundary conditions. Stability analysis of these approaches were conducted 

with reference to Matrix and Von-Neumann methods and were examined for explicit, 

implicit and Crank-Nicolson finite difference approaches on these model problems.  

Numerical solutions and analytical solutions were presented as tables. 

 

 

KEYWORDS: Explicit Method, Implicit Method, Crank-Nicolson Method, 

Stability Analysis, Local Truncation Error. 
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1. TEMEL TANIM VE TEOREMLER 

 

Bu bölümde daha sonraki bölümlerde kullanılan bazı temel tanım ve teoremler 

verilmiştir.  

 

Tanım 1.1: m  ve n  pozitif tamsayılar ve mi )1(1= , nj )1(1=  olmak üzere ija  

sayılarının oluşturduğu  
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
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3333231
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biçimindeki sayılar tablosuna matris denir. Burada m  sayısına matrisin satır sayısı, n  

sayısına da matrisin sütun (kolon) sayısı denir. m  satırlı ve n  sütunlu matrise nm ×  

boyutlu ya da nm ×  türünden bir matris denir. Matrisler [ ] veya ( )  sembollerinden 

biri ile gösterilir.  

 mi )1(1= , nj )1(1=  olmak üzere nm ×  türünden bir A  matrisi kısaca 

[ ]
nmijaA

×

=  biçiminde gösterilir. Bir matriste .i  satırla .j  sütunun kesiştiği yerdeki ija  

sayısına matrisin ).,( ji  terimi adı verilir. Elemanları reel sayı olan nm ×  boyutundaki 

matrislerin kümesi m

nIR ile, elemanları kompleks sayılar olan matrislerin kümesi ise ¢ m

n
 

ile gösterilir [1]. 

 

Tanım 1.2: Satır ve sütun sayıları aynı )( nm =  olan bir matrise kare matris denir. 

nnaaa ,,, 2211 …  elemanlarına da kare matrisin köşegen elemanları, bu elemanların 

bulunduğu köşegene ise matrisin esas köşegeni (esas diyagonali) veya kısaca köşegeni 

denir [1]. 

 



 2 

Tanım 1.3: Esas köşegen üzerindeki elemanları sıfırdan farklı, diğer bütün elemanları 

sıfır olan bir kare matrise köşegen matris denir [1]. 

 

Tanım 1.4: k bir sabit sayı olmak üzere kaaa nn ==== …2211  olan bir köşegen 

matrise skaler matris denir [1]. 

 

Tanım 1.5: Köşegen üzerindeki elemanları 1 ve köşegen dışındaki elemanları 0  olan 

nn ×  boyutlu bir matrise n  mertebeden birim matris denir ve nI  ile gösterilir [1].  

 

Tanım 1.6: A , nm ×  boyutunda bir matris olmak üzere ),( ij  bileşeni A  matrisinin 

),( ji  bileşeni olan bir mn ×  boyutundaki matrise A matrisinin transpozu denir ve TA  

ile gösterilir. Yani [ ]ijaA =  ise [ ]
ji

T
aA =  dir [1]. 

 

Tanım 1.7: Transpozu kendisine eşit olan bir kare matrise simetrik matris denir. Başka 

bir ifadeyle [ ]ijaA =  olmak üzere AA
T

=  ise A matrisine simetriktir denir [1]. 

 

Tanım 1.8: [ ]ijaA =  olmak üzere AA
T

−=  ise A  matrisine anti-simetrik matris denir 

[1]. 

 

Tanım 1.9: Bir A matrisinin elemanlarından bazıları (veya hepsi) kompleks sayılar ise, 

bu sayıların eşleniklerini yazarak elde edilen matrise A matrisinin eşleniği veya 

konjugesi denir ve A  ile gösterilir [1]. 

 

Tanım 1.10: AA T
=  ise A matrisine Hermitian matris, AA T

−=  ise A matrisine anti 

hermitian matris denir [1]. 

 

Tanım 1.11: A  ve B  matrisleri IAB =  ve IBA =  bağıntılarını sağlayan birer nn ×  

boyutunda matrisler ise B  matrisine A  matrisinin tersi (inversi) denir ve 1−

A  ile 

gösterilir [1] 
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Tanım 1.12: n

nIRA ∈  ve IR∈λ  olmak üzere )det()( IAP λλ −=  olarak tanımlanan P  

polinomuna A  matrisinin karakteristik polinomu denir [2]. 

 

Tanım 1.13: P , n

nIRA∈  matrisin karakteristik polinomu ise P  polinomunun köklerine 

A  matrisinin özdeğerleri veya karakteristik değerleri denir [2]. 

 

Tanım 1.14: Bir n

nIRA ∈  matrisinin özdeğeri λ  olmak üzere sıfırdan farklı n
IRx ∈  

vektörü için 0)( =− xIA nλ  özelliğini sağlayan x  vektörüne A  matrisinin λ  

özdeğerine karşılık gelen özvektörü veya karakteristik vektörü denir [2]. 

 

Tanım 1.15: Bir n

nIRA∈  matrisinin iλ  ))1(1( ni =  özdeğerlerinin en büyüğüne A  

matrisinin spektral yarıçapı denir ve )(Aρ  ile gösterilir. Bu tanıma göre 

||max)( i
i

A λρ =  dir [3]. 

 

Tanım 1.16: n
IRx ∈  olmak üzere  

+

→ IRIR
n:||||  

xxx =→ )(  

olarak tanımlanan dönüşüme nIR  üzerinde bir vektör normu denir. Her n
IRyx ∈,  ve 

IRc ∈  için vektör normu  

i. 0≠x  ise 0|||| >x , 0=x  ise 0|||| =x , 

ii. |||||||||| xccx = , 

iii. |||||||||||| yxyx +≤+  

özelliklerine sahiptir [2]. 

 

Tanım 1.17: n

nIRA∈  olmak üzere  

+

→ IRIR n

n||:||  

           ||||)(|||| AAA =→  

olarak tanımlanan dönüşüme n

nIR  üzerinde bir matris normu denir. Her n

nIRBA ∈,  ve 

IRc ∈  için matris normu 

i. 0≠A  ise 0|||| >A , 0=A  ise =|||| A 0, 
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ii. |||||||||| AccA = , 

iii. |||||||||||| BABA +≤+ , 

iv. |||||||||||| BAAB ≤  

özelliklerine sahiptir [2]. 

Özel olarak 1|||| A , 2|||| A ve 
∞

|||| A  ile gösterilen normlar aşağıdaki gibi 

tanımlanır. 

 

∑
=

≤≤

=

n

i

ij
nj

aA
1

1
1 ||max|||| , 

)(|||| 2 AAA
H

ρ= , 

||max||||
1

1
∑

=

≤≤

∞
=

n

j

ij
ni

aA . 

 

Tanım 1.18: f , bir x  noktasının komşuluğunda tanımlanmış bir fonksiyon olsun.  

x

xfxxf

x ∆

−∆+

→∆

)()(
lim

0
, 

limiti veya xxu ∆+=  almakla elde edilen 

xu

xfuf

xu
−

−

→

)()(
lim  

limiti mevcut ise bu limit değerine f fonksiyonunun x  noktasındaki türevi denir ve 

)(xf ′  veya 
dx

df
 ile gösterilir. 

 

Tanım 1.19: f, ax =  noktasında n-inci mertebeden türevlenebilen bir fonksiyon olsun. 

)()( afap = , )()( afap ′=′ , … , )()( afap
nn

=  şartını gerçekleyen ve derecesi n den 

büyük olmayan bir tek p polinomu vardır. k
n

k

k
axafxp ))(()(

0

−=∑
=

 formülü ile verilen 

bu p polinomuna f fonksiyonu tarafından ax =  noktasında üretilen n-inci dereceden 

Taylor polinomu denir [4]. 
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Tanım 1.20: f fonksiyonu a noktasını içeren bir açık aralıkta her mertebeden 

türevlenebilir olsun. k

k

k

ax
k

af
)(

!

)(

0

)(

−∑
∞

=

serisine a noktasında f fonksiyonu tarafından 

üretilen Taylor Serisi denir [4]. 

 

Teorem 1.1 (Birinci Gerschgorin Teoremi): Bir n

nIRA∈  matrisin özdeğerlerinin 

modülünün en büyüğü matrisin herhangi bir satırı veya herhangi bir kolonu üzerinde 

bulunan elemanlarının modülünün en büyüğünü geçemez. Başka bir ifadeyle 

1||||)( AA ≤ρ  veya 
∞

≤ ||||)( AAρ  dir [3]. 

 

İspat: iλ , [ ]
nnijaA

×

=  matrisinin özdeğeri ve ),...,,( 21 ni vvvx =  de iλ  özdeğerine 

karşılık gelen özvektör olsun. Özdeğer ve özvektör tanımından iii xAx λ=  ( 0≠ix ) 

eşitliği açık olarak  

 

11212111 ... vvavava inn λ=+++  

22222121 ... vvavava inn λ=+++  

�            �   �  �  

sinsnss vvavava λ=+++ ...2211  

�  �   �  �  

ninnnnn vvavava λ=+++ ...2211  

 

şeklinde yazılabilir.  

sv , ix  özvektörünün mutlak değerce en büyük bileşeni olsun. Yukarıdaki 

sistemin s-inci denkleminden 
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olarak yazılabilir. Buradan 
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s

n

sn

s

s

s

s
v

v
a

v

v
a

v

v
a +++≤ ...2

2
1

1  

 

bulunur. i
i

s vv max=  olarak seçildiğinden 1≤si vv  ))1(1( ni =  olup yukarıdaki 

eşitsizlik 

 

snssi aaa +++≤ ...21λ , ni )1(1=   

 

olur. Bu eşitsizlik her 
iλ  için sağlandığından özellikle ||max|| si λλ =  için de sağlanır. 

Böylece 
∞

≤ ||||)( AAρ  elde edilir. 

Bir A matrisinin özdeğerleri ile transpozunun özdeğerleri aynı olduğundan, 

yukarıdaki ispata benzer şekilde 1||||)( AA ≤ρ  olduğu kolayca gösterilebilir. 

 

Teorem 1.2 (Gerschgorin Çember Teoremi veya Brauer Teoremi): [ ]
nnijaA

×

=  

matrisinin ssa  köşegen elemanı hariç s-inci sıra üzerinde bulunan elemanlarının 

modülleri toplamı 
sP  olsun. Bu takdirde A matrisinin her bir özdeğeri 

sss Pa ≤− || λ  

çemberinin en az birinin içinde veya sınırı üzerinde bulunur [3]. 

 

İspat: [ ]
nnijaA

×

=  matrisinin özdeğeri iλ , ve bu özdeğere karşılık gelen özvektör 

),...,,( 21 ni vvvx = olsun. sv  de ix  özvektörünün mutlak değerce en büyük bileşeni 

olsun. Teorem 1.1’den 
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olduğu bilinmektedir. Buradan 
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a

v

v
aa ...0...2

2
1

1λ   

olduğu görülür. Bu eşitlik mutlak değer tanımı ve 1≤si vv  ( )ni )1(1=  özelliği 

kullanılırsa 
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s

n

sn

s

s

s

sssi
v

v
a

v

v
a

v

v
aa +++++≤− ...0...2

2
1

1λ   

 

olarak yazılabilir. ||...||||...|||| 1121 snsssssss aaaaaP +++++=
+−

 olduğundan, 

sssi Pa ≤− || λ  olduğu açık olarak görülür ve böylece ispat tamamlanmış olur. 

 

Teorem 1.3: IRcba ∈,,  ve 0>bc  olmak üzere  

 





























=

ac

bac

bac

bac

ba

A

...

...  

 

olarak verilen N

NIRA∈  matrisinin sλ  özdeğerleri  

 

1
cos2

+

+=

N

s
bcas

π

λ , Ns )1(1=   

dir [3]. 

 

İspat: λ , A  matrisinin özdeğeri ve ),...,,( 21 Nvvvx =  de λ  özdeğerine karşılık gelen 

özvektör olsun. 0≠x olmak üzere özdeğer ve özvektör tanımından xAx λ=  dir. Bu 

sistem açık olarak  

 

0)( 21 =+− bvva λ  

0)( 321 =+−+ bvvacv λ  

�  

0)( 11 =+−+
+− jjj bvvacv λ  

0)(1 =−+
− NN vacv λ   

 



 8 

biçiminde yazılabilir. Eğer 010 ==
+Nvv  olarak tanımlanırsa yukarıdaki N  tane 

denklem 

 

0)( 11 =+−+
+− jjj bvvacv λ , Nj )1(1=  (1.1) 

 

denklemiyle temsil edilebilir. Bu denklem bir fark denklemi olup karakteristik denklemi  

 

0)( 2
=+−+ bmmac λ  (1.2) 

 

dir. Daha sonra görüleceği üzere bu denklemin farklı iki kökü vardır. Bu durum göz 

önüne alınırsa (1.1) fark denkleminin çözümü, B ve C keyfi sabitler olmak üzere, 

 

jj

j CmBmv 21 +=   

 

şeklindedir. Bu çözümde 010 ==
+Nvv  şartları kullanılırsa  

 

0=+ CB  

ve 

01
2

1
1 =+

++ NN
CmBm  

 

bulunur. Buradan  

 

πsi

N

e
m

m 2

1

2

1 1 ==







+

, Ns )1(1= , 1−=i  

veya 

)1/(2

2

1 +

=
Nsi

e
m

m
π  (1.3) 

 

elde edilir. (1.2) denkleminin köklerinin çarpımı 

 

b

c
mm =21  (1.4) 
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dir. (1.3) ve (1.4) denklemlerinden 1m  ve 2m  sırasıyla 

 

)1/(
2

1

1
+









=

Nis
e

b

c
m

π  

)1/(
2

1

2
+−









=

Nis
e

b

c
m

π  

 

olarak bulunur. (1.2) denkleminin köklerinin toplamı  

 

bamm /)(21 −=+ λ  

 

olup buradan λ  özdeğeri 

 

)( 21 mmba ++=λ  

veya 

( )
)1/()1/( +−+

++=
NisNis

ee
b

c
ba

ππ

λ  

 

olarak elde edilir. O halde A  matrisinin N  tane özdeğeri  

 

1
cos2

+

+=

N

s
bcas

π

λ , Ns )1(1=   

 

şeklindedir.  

 Kolayca gösterilebilir ki (1.2) denkleminin kökleri eşit olamaz. Eğer (1.2) 

denkleminin kökleri eşit olsaydı (1.1) denkleminin çözümü  

j

j mCjBv 1)( +=  

 

olurdu. 010 ==
+Nvv  olduğundan 0== CB  ve dolayısıyla 0=v  olurdu. Bu ise 

özdeğer ve özvektör tanımına aykırıdır. 
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2. KLASİK SONLU FARK YÖNTEMLERİ  
 

Sonlu fark yöntemleri, lineer ve lineer olmayan birçok kısmi diferansiyel 

denklemin çözümünde yaygın olarak kullanılmaktadır. Bir kısmi diferansiyel denklemin 

sonlu fark yaklaşımı bulunurken öncelikle problemin çözüm bölgesi Şekil 2.1’de 

gösterildiği gibi genellikle dikdörtgensel şekiller içeren kafeslere bölünür ve problemin 

yaklaşık çözümü her bir kafesin düğüm (mesh veya grid) noktaları üzerinde hesaplanır. 

Daha sonra diferansiyel denklemdeki türevler ve sınır şartları yerine Taylor serisi 

yardımıyla elde edilen uygun sonlu fark yaklaşımları yazılır. Böylece diferansiyel 

denklemin çözümü problemi, fark denklemlerinden oluşan lineer veya non-lineer bir 

cebirsel denklem sisteminin çözümü problemine indirgenir. Elde edilen cebirsel 

denklem sistemi direkt veya iteratif yöntemlerden biri yardımıyla kolayca çözülür [5]. 

 

 

 

 Şekil 2.1. Düğüm Noktalarının Gösterimi. 

 

U , x  ve t  değişkenlerine bağlı bir fonksiyon olsun. x∆ )( h≡ , x yönünde 

konum adım uzunluğu, t∆ )( k≡ , t yönünde zaman adım uzunluğu olmak üzere, konum 

ve zaman koordinatları x ve t sırasıyla 

m,n+1 

m+1,n m-1,  n m, n 

m, n-1 

k  

nk  

h  mh  x 

t 

P(mh,nk) 
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mhxmxx m =∆== , Mm )1(0= , Mhl =  

nktntt n =∆== , Nn )1(0=  

 

olarak gösterilir.  

Temsili bir ),( nkmhP  düğüm noktası üzerinde U  fonksiyonunun noktasal 

değeri, n

mp UtnxmUtxUU =∆∆== ),(),(  ile gösterilir. U  fonksiyonunun birinci ve 

ikinci mertebeden türevlerine sonlu fark yaklaşımları, Taylor serisi yardımıyla  

 

)(1 hO
h

UU

x

U
n

m

n

m
+

−

=

∂

∂
+  (2.1) 

)(1 hO
h

UU

x

U
n

m

n

m
+

−

=

∂

∂
−  (2.2) 

)(
2

211 hO
h

UU

x

U
n

m

n

m
+

−

=

∂

∂
−+  (2.3) 

)(
1

kO
k

UU

t

U
n

m

n

m
+

−

=

∂

∂
+

 (2.4) 

)(
1

kO
k

UU

t

U
n

m

n

m
+

−

=

∂

∂
−

 (2.5) 

)(
2

2

21

2

2

hO
h

UUU

x

U
n

m

n

m

n

m
+

+−

=

∂

∂
++  (2.6) 

)(
2

2

12

2

2

hO
h

UUU

x

U
n

m

n

m

n

m
+

+−

=

∂

∂
−−  (2.7) 

)(
2 2

2

11

2

2

hO
h

UUU

x

U
n

m

n

m

n

m
+

+−

=

∂

∂
+−  (2.8) 

 

olarak bulunur. Burada “ O ”; sonsuz terimli bir eşitliğin sonlu bir terimde kesildiğini, 

O(h) terimi hatanın 0→h  iken h ile orantılı olduğunu gösterir ve O(h) terimine kesme 

hatası denir. O(k) ise hatanın k mertebesinde olduğunu ve böylece k ile orantılı olarak 

azalacağını göstermektedir (2.1), (2.2) ve (2.3) ile verilen, x  değişkenine göre birinci 

mertebeden türev yaklaşımlarına sırasıyla iki nokta ileri, geri ve üç nokta merkezi fark 

formülleri denir. Benzer şekilde (2.4) ve (2.5) ile verilen, t  değişkenine göre birinci 

mertebeden türev yaklaşımlarına sırasıyla ileri ve geri fark formülleri denir. (2.6), (2.7) 
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ve (2.8) ile verilen, x  değişkenine göre ikinci mertebeden türev yaklaşımlarına ise 

sırasıyla üç nokta ileri, geri ve merkezi fark formülleri denir [3]. 

 Verilen bir diferansiyel denklemi sonlu fark formunda ifade etmek için en çok 

kullanılan yöntemler şunlardır: 

 

• Açık (Explicit) Sonlu Fark Yöntemi 

• Kapalı (Implicit) Sonlu Fark Yöntemi 

• Crank-Nicolson Sonlu Fark Yöntemi 

 

Bu yöntemler klasik sonlu fark yöntemleri olarak bilinir.  

 Bu çalışmada  

 

2

2

x

U

t

U

∂

∂

=

∂

∂

α , lx ≤≤0 , 0>t  (2.9) 

 

ısı iletim denklemi  

 





=

=

)(),(

)(),0(

2

1

tftlU

tftU
 (Dirichlet sınır şartları) (2.10) 

 










=

∂

∂

=

∂

∂

−

)(),(

)(),0(

21

11

tgtl
x

U
k

tgt
x

U
k

 (Neumann sınır şartları) (2.11) 

 










=+

∂

∂

=+

∂

∂

−

)(),(),(

)(),0(),0(

222

111

thtlUmtl
x

U
k

thtUmt
x

U
k

 (Robbin sınır şartları) (2.12) 

 

olarak verilen üç tip sınır şartı ve  

 

)()0,( xfxU =  lx ≤≤0  (2.13) 
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başlangıç şartı için göz önüne alınacaktır. Burada 1f , 2f , 1g , 2g , 1h , 2h  fonksiyonları 

t  nin bilinen fonksiyonları olup 1k , 2k , 1m , 2m  ve α  sabit sayılardır.  

Bundan sonra (2.9), (2.10) ve (2.13) denklemleriyle verilen probleme Dirichlet 

sınır şartlı, (2.9), (2.11) ve (2.13) denklemleriyle verilen probleme Neumann sınır şartlı 

ve (2.9), (2.12) ve (2.13) denklemleriyle verilen probleme de Robbin sınır şartlı ısı 

iletim problemi denilecektir.  

 

 

2.1. Açık Sonlu Fark Yöntemi 

 

(2.9) denklemindeki tU ∂∂ /  ve 22 / xU ∂∂  türevleri yerine (2.5) ve (2.6) 

denklemleriyle verilen sonlu fark yaklaşımları hatalar ihmal edilerek yazılırsa ısı iletim 

denkleminin açık sonlu fark yaklaşımı 

 

2

11
1 2

h

UUU

k

UU
n

m

n

m

n

m

n

m

n

m +−

+

+−

=

−

α  (2.14) 

veya  

n

m

n

m

n

m

n

m rUUrrUU 11
1 )21(

+−

+

+−+= , Mm )1(0= , Nn )1(0=  (2.15) 

 

olur. Burada 2/ hkr α=  olup hatanın mertebesinin )()( 2
hOkO +  olduğu açıkça 

görülür. Eğer mt  zaman adımında n

mU  değerleri verilirse 1+mt  zaman adımında 1+n

mU  

değerleri (2.15) denkleminden kolayca bulunur [3].  

 

 

• Dirichlet Sınır Şartlı Isı İletim Problemi 

 

(2.9) denkleminin sınır şartlarının (2.10) ile verilen Dirichlet sınır şartları olması 

durumunda, 2/ hkr α=  olmak üzere, ısı iletim probleminin açık sonlu fark yaklaşımı  

 

n

m

n

m

n

m

n

m rUUrrUU 11
1 )21(

+−

+

+−+=  ; 1)1(1 −= Mm , Nn )1(0=  (2.16) 
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dir. mt  zaman adımında n

mU  değerleri verilirse 1+mt  zaman adımında 1+n

mU  değerleri 

(2.16) denkleminden kolayca bulunur. 

 

 

• Neumann Sınır Şartlı Isı İletim Problemi 

 

Şimdi de (2.9) ısı iletim denklemi (2.11) Neumann sınır şartlarına bağlı olarak 

göz önüne alınacaktır. (2.15) fark denklemi, 0=m ( 0=x ) ve Mm =  ( lx = ) için 

problemin çözüm bölgesi içine düşmeyen ( )n,1−  ve ( )nM ,1+  düğüm noktalarında n
U 1−

 

ve n

MU 1+
 değerlerini içermektedir. ( )n,1−  ve ( )nM ,1+  düğüm noktalarına hayali 

noktalar, n
U 1−

 ve n

MU 1+
 değerlerine de hayali değerler adı verilir. Bu hayali değerler 

(2.11) sınır şartlarındaki xU  türevi yerine (2.3) ile verilen merkezi fark yaklaşımının 

kullanılmasıyla yok edilebilir. Böylece  

 

)(
2

)21(2 1

1

01
1

0 tg
k

rh
UrrUU

nnn
+−+=

+  

ve 

)(
2

)21(2 2

1

1
1

tg
k

rh
UrrUU

n

M

n

M

n

M +−+=
−

+  

 

eşitlikleri bulunur. O halde Neumann sınır şartlı ısı iletim probleminin açık sonlu fark 

yaklaşımı 

 

)(
2

)21(2 1

1

1
1

tg
k

rh
UrrUU

n

m

n

m

n

m +−+=
+

+ , 0=m  (2.17) 

n

m

n

m

n

m

n

m rUUrrUU 11
1 )21(

+−

+

+−+= , 1)1(1 −= Mm  (2.18) 

)(
2

)21(2 2

1

1
1

tg
k

rh
UrrUU

n

m

n

m

n

m +−+=
−

+ , Mm =  (2.19) 

 

olarak elde edilir. 
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• Robbin Sınır Şartlı Isı İletim Problemi 

 

Burada (2.9) ısı iletim denklemi (2.12) ile verilen Robbin sınır şartlarına bağlı 

olarak göz önüne alındı. (2.15) fark denkleminde 0=m ( 0=x ) ve Mm = ( lx = ) için 

ortaya çıkan n
U 1−

 ve n

MU 1+
 hayali değerleri (2.12) sınır şartlarındaki xU  türevi yerine 

(2.3) ile verilen merkezi fark yaklaşımının kullanılmasıyla sırasıyla 

 

( )
nnn

Umth
k

h
UU 011

1

11 )(
2

−+=
−

 (2.20) 

( )
n

M

n

M

n

M Umth
k

h
UU 22

2

11 )(
2

−+=
−+

 (2.21) 

 

olarak elde edilir. Bu eşitlikler  0=m  ve Mm =  için (2.15) fark denkleminde 

kullanılarak n
U 1−

 ve n

MU 1+
 hayali değerleri yok edilebilir. Böylece Robbin sınır şartları 

ile verilen ısı iletim probleminin sonlu fark yaklaşımı herhangi bir n-inci zaman 

adımında 

 

)(
2

2)21( 1

1

11
1

th
k

rh
rUUrU

n

m

n

m

n

m ++−=
+

+

β , 0=m  (2.22) 

n

m

n

m

n

m

n

m rUUrrUU 11
1 )21(

+−

+

+−+= , 1)1(1 −= Mm  (2.23) 

)(
2

)21(2 2

2

21
1

th
k

rh
UrrUU

n

m

n

m

n

m +−+=
−

+

β , Mm =  (2.24) 

 

olarak bulunur. Burada 111 1 khm+=β  ve 222 1 khm+=β  dir [6]. 

 

 

2.2. Kapalı Sonlu Fark Yöntemi 

 

Bu yöntemde (2.9) ısı iletim denklemindeki 22
xU ∂∂  yerine 1+n -inci zaman 

adımındaki )(
2 2

2

1
1

11
1

2

2

hO
h

UUU

x

U
n

m

n

m

n

m
+

+−

=

∂

∂
+

+

++

−  merkezi fark formülü ve tU ∂∂  türevi 

yerine (2.4) ile verilen ileri fark formülü hatalar ihmal edilerek yazılırsa ısı iletim 

denkleminin kapalı sonlu fark yaklaşımı 
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2

1
1

11
1

1 2

h

UUU

k

UU
n

m

n

m

n

m

n

m

n

m

+

+

++

−

+

+−

=

−

α  (2.25) 

veya  

n

m

n

m

n

m

n

m UrUUrrU =−++−
+

+

++

−

1
1

11
1 )21( , Mm )1(0= , Nn )1(0=  (2.26) 

 

dir. Burada 2/ hkr α=  olup hatanın mertebesinin )()( 2
hOkO +  olduğu açıkça görülür 

[3]. 

 

 

• Dirichlet Sınır Şartlı Isı İletim Problemi 

 

Bu problem için herhangi bir n -inci zaman adımındaki 1
0

+n
U  ve 1+n

MU  değerleri 

(2.10) sınır şartlarından bilinen değerler olduğundan (2.9) ısı iletim denkleminin kapalı 

sonlu fark yaklaşımı, 2/ hkr α=  olmak üzere, 

 

n

m

n

m

n

m

n

m UrUUrrU =−++−
+

+

++

−

1
1

11
1 )21( , 1)1(1 −= Mm , Nn )1(0=   (2.27) 

 

dir.  

 

 

• Neumann Sınır Şartlı Isı İletim Problemi 

 

(2.11) ile verilen Neumann sınır şartlarında xU ∂∂  türevi yerine 1+n -inci 

zaman adımındaki  

 

h

UU

x

U
n

m

n

m

2

1
1

1
1

+

−

+

+
−

=

∂

∂

 (2.28)  

 

merkezi fark formülü yazılırsa sırasıyla 

 

)(
2

1

1
1

1
1

1 tg
h

UU
k

nn

=

−

−

+

−

+
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)(
2

2

1
1

1
1

1 tg
h

UU
k

n

M

n

M
=

−
+

−

+

+  

 

elde edilir. Bu eşitlikler sırasıyla 

 

1

11
1

1
1

)(2

k

thg
UU

nn
+=

++

−
  

ve  

1

21
1

1
1

)(2

k

thg
UU

n

M

n

M +=
+

−

+

+
  

 

olarak yazılabilirler. Görüldüğü gibi bu son eşitliklerde problemin çözüm bölgesi içine 

düşmeyen 1
1
+

−

n
U  ve 1

1
+

+

n

MU  hayali değerleri bulunmaktadır. Bu hayali değerler 0=m  ve 

Mm =  için (2.26) fark yaklaşımının kullanılmasıyla yok edilebilir. Böylece Neumann 

sınır şartlı ısı iletim probleminin kapalı sonlu fark yaklaşımı, 

 

n

m

n

m

n

m Utg
k

rh
rUUr =−−+

+

+

+ )(
2

2)21( 1

1

1
1

1 , 0=m  (2.29) 

n

m

n

m

n

m

n

m UrUUrrU =−++−
+

+

++

−

1
1

11
1 )21( , 1)1(1 −= Mm  (2.30) 

n

m

n

m

n

m Utg
k

rh
UrrU =−++−

++

−
)(

2
)21(2 2

1

11
1 , Mm =  (2.31) 

 

olarak bulunur. 

 

 

• Robbin Sınır Şartlı Isı İletim Problemi 

 

(2.12) ile verilen Robbin sınır şartlarında xU ∂∂  türevi yerine (2.28) ile verilen 

merkezi fark yaklaşımı yazılırsa, sol sınır üzerinde 0=m ( 0=x ) ve sağ sınır üzerinde 

Mm = ( lx = ) olacağından sırasıyla 

 

)(
2

1
1

01

1
1

1
1

1 thUm
h

UU
k

n

nn

=+

−

−
+

+

−

+

 (2.32) 
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)(
2

2
1

2

1
1

1
1

2 thUm
h

UU
k

n

M

n

M

n

M
=+

−
+

+

−

+

+  (2.33) 

 

veya 

 

( )
1

011

1

1
1

1
1 )(2 +++

−
−+=

nnn
Umth

k

h
UU  (2.34) 

( )
1

22

2

1
1

1
1 )(2 ++

−

+

+
−+=

n

M

n

M

n

M Umth
k

h
UU  (2.35) 

 

hayali değerleri elde edilir. Bu değerler 0=m  ve Mm =  için (2.26) fark yaklaşımının 

kullanılmasıyla yok edilebilir. Böylece Robbin sınır şartlı ısı iletim probleminin kapalı 

sonlu fark yaklaşımı herhangi bir n -inci zaman adımı için  
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olarak yazılabilir.  

 

 

2.3. Crank-Nicolson Sonlu Fark Yöntemi 

 

Bu yöntem John Crank ve Phyllis Nicolson tarafından önerilen modifiye edilmiş 

bir kapalı yöntemdir [3]. Bu yöntem sırasıyla (2.15) ve (2.26) denklemleriyle verilen 

açık ve kapalı sonlu fark yaklaşımlarının sağ taraflarının averajlarının alınmasıyla elde 

edilmiştir.  

(2.9) ısı iletim denkleminin Crank- Nicolson sonlu fark yaklaşımı  
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dir. Bu denklem Mm )1(0=  ve Nn )1(0= için 

 

n

m

n

m

n

m

n

m

n

m

n

m rUUrrUrUUrrU 11
1
1

11
1 )22()22(

+−

+

+

++

−
+−+=−++−  (2.40) 

 

olarak yazılabilir [7]. 

 

 

• Dirichlet Sınır Şartlı Isı İletim Problemi 

 

Bu ısı iletim problemi için herhangi bir n -inci ve 1+n -inci zaman 

adımlarındaki n
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MU  değerleri sırasıyla (2.10) sınır şartlarından 

bilinen değerler olduğundan (2.9) ısı iletim denkleminin Crank-Nicolson sonlu fark 
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şeklindedir.  

 

 

• Neumann Sınır Şartlı Isı İletim Problemi 

 

(2.11) ile verilen Neumann sınır şartlarında xU ∂∂  türevi yerine n -inci zaman 

adımındaki (2.3) ve 1+n -inci zaman adımındaki (2.28) merkezi fark formülleri 

yazılırsa sırasıyla 
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elde edilir. Görüldüğü gibi bu son eşitliklerde problemin çözüm bölgesi içine düşmeyen 

n
U 1−

, 1
1
+

−

n
U  , n

MU 1+
 ve 1

1
+

+

n

MU  hayali değerleri bulunmaktadır. Bu hayali değerler 0=m  ve 

Mm =  için (2.40) fark denklemi ve (2.42), (2.43), (2.44) ve (2.45) denklemleri 

kullanılarak yok edilebilir. Böylece Neumann şartlı ısı iletim probleminin Crank-

Nicolson sonlu fark yaklaşımı 
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olarak elde edilir.  

 

 

• Robbin Sınır Şartlı Isı İletim Problemi 

 

(2.12) ile verilen Robbin sınır şartlarında xU ∂∂  türevi yerine n -inci zaman 

adımındaki (2.3) ve 1+n -inci zaman adımındaki (2.28) merkezi fark formülleri, sol 

sınır üzerinde 0=m ( 0=x ) ve sağ sınır üzerinde Mm = ( lx = ) olacağından sırasıyla 
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elde edilir. Bu yaklaşımlar problemin çözüm bölgesi içine düşmeyen n
U 1−

, 1
1
+

−

n
U , 

n

MU 1+
ve 1

1
+

+

n

MU  hayali değerlerini içermektedir. Bu hayali değerler 0=m  ve Mm =  için 

(2.40) fark denklemi ve (2.49), (2.50), (2.51) ve (2.52) denklemleri kullanılarak yok 
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edilebilir. Böylece Robbin sınır şartlı ısı iletim probleminin Crank-Nicolson sonlu fark 

yaklaşımı  
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olarak bulunur [6]. 

 

 

2.4. Ağırlıklı Averaj Yaklaşımı 

 

(2.9) ile verilen ısı iletim denkleminin ağırlıklı averaj yaklaşımı, 10 ≤≤ θ  olmak 
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şeklindedir. Burada (2.57) denklemi 0=θ  için (2.9) ısı denkleminin açık sonlu fark 

yaklaşımını, 1=θ  için tamamen kapalı sonlu fark yaklaşımını, 2/1=θ  için Crank-

Nicolson sonlu fark yaklaşımını verir [3]. 
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3. KLASİK SONLU FARK YÖNTEMLERİ 

İÇİN KARARLILIK ANALİZLERİ 

 

 Bu bölümde lineer denklemler için kullanılan kararlılık analizlerinden, Matris ve 

von Neumann (Fourier Seri) yöntemleri verilecektir. Bu yöntemlerden önce lokal kesme 

hatası, tutarlılık, kararlılık ve yakınsaklık tanımları ile birlikte Lax’ın denklik teoremi 

ispatsız olarak verilecektir.  

 

Tanım 3.1. (Lokal Kesme Hatası): ),( nm -inci düğüm noktasında bir kısmi 

diferansiyel denkleme yaklaşan fark denklemi, u  fark denkleminin tam çözümü olmak 

üzere, 0)(, =uF nm  olarak gösterilsin. ),( nm -inci düğüm noktasında sonlu fark 

yaklaşımının lokal kesme hatası, U kısmi diferansiyel denkleminin tam çözümü olmak 

üzere, )(,, UFT nmnm =  olarak tanımlanır. 

 Lokal kesme hatası, sonlu fark yaklaşımının kısmi diferansiyel denkleme ne 

derece iyi yaklaştığını veren bir ölçüdür. Taylor seri açılımının kullanılmasıyla lokal 

kesme hatası, h ve k değerlerinin kuvvetleri ve (mh, nk) noktasında kısmi diferansiyel 

denkleminin tam çözümünün (U ) kısmi türevleri cinsinden kolayca açıklanabilir [3]. 

 

Tanım 3.2. (Tutarlılık): 0, →kh  olduğunda lokal kesme hatasının limit değeri sıfıra 

yaklaşıyorsa fark denklemi tutarlıdır. Yani 0lim ,
0,

=

→

nm
kh

T  ise fark denklemi tutarlıdır 

denir [3]. 

 

Tanım 3.3. (Kararlılık): Kısmi diferansiyel denkleme karşılık gelen sonlu fark 

denkleminin çözümünün kısmi diferansiyel denkleminin çözümüne yakın kaldığı 

durumlarda yöntem kararlıdır denir [3]. 

 

Tanım 3.4. (Yakınsaklık): u, fark denkleminin ve U ise kısmi diferansiyel denklemin 

tam çözümleri olmak üzere n

m

n

m
kh

Uu =

→0,
lim  ise sonlu fark denkleminin çözümü kısmi 

diferansiyel denklemin çözümüne yakınsar denir [3]. 
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Teorem 3.1. (Lax’ın Denklik Teoremi): Sonlu fark yönteminin yakınsak olması için 

gerek ve yeter şart yöntemin tutarlı ve kararlı olmasıdır [3]. 

 

 

3.1. Matris Yöntemi 

 

Bu yöntem diferansiyel denklemi ve sınır şartlarını içeren problemin sonlu fark 

gösterimine karşılık gelen matrisin özdeğerlerindeki hata dağılımını inceler.  

 Peş peşe gelen n  ve )1( +n -inci zaman adımlarında bir sonlu fark denklemi, 

katsayıları sabitler olmak üzere,  
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şeklinde olsun. Bu yaklaşım 0=m  ve Mm =  sınır değerleri biliniyorsa, 1)1(1 −= Mm  

için açık biçimde  
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olarak veya kapalı biçimde n

nn
dUCUB +=

+ )()1(
 olarak yazılabilir. Burada B ve C 

)1( −M  mertebeden matrisler, 
)1( +n

U  elemanları 1
1

1
2

1
1 ,,, +

−

++ n

M

nn
UUU …  olan kolon 

vektörü ve 
nd  bilinen sınır değerlerinden ve sıfırlardan oluşan kolon vektörüdür. Bu 

son eşitlik B  tersi mevcut bir matris ise CBA
1−

=  ve nn dBf
1−

=  olmak üzere, 

 

n

nn
fUAU +=

+ )()1(
 (3.1) 

 

olarak ifade edilebilir.  

*
U , U  vektörüne bir yaklaşım ise 
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n

nn
fUAU +=

+ )*()*1(
 (3.2) 

 

olarak yazılabilir. Hata 

 

)*(n

m

n

m

n

m UUe −=  

 

olarak tanımlansın. Tn
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=  olmak üzere (3.2) ifadesi (3.1) ifadesinden 

çıkartılırsa 
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elde edilir. Buradan 
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bulunur. Burada [ ]
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−
= …  başlangıç hatasıdır.  

 Başlangıç hatası 0=t  noktasında biliniyor olsun. Bu durumda 
)(n

e  değerinin ne 

zaman sınırlı olduğu araştırılmalıdır. Bunun için A  matrisinin reel, simetrik ve rankı 

)1( −M  olan bir matris olduğu kabul edilmelidir. Bu durumda A  matrisi 

121 ,,,
−Mλλλ …  özdeğerlerine karşılık gelen )1( −M  tane lineer bağımsız 

121 ,,,
−MWWW …  özvektörlerine sahiptir. Böylece sW  )1)1(1( −= Ms  özvektörleri 

1−M
IR  uzayının bir bazını oluştururlar. O halde boyu )1( −M  olan herhangi bir vektör 

sW  özvektörlerinin bir lineer birleşimi olarak yazılabilir. 1)0( −

∈
M

IRe   olduğundan, 

)0(
e  vektörü, sW  özvektörlerinin lineer birleşimi olarak  
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şeklinde yazılabilir. (3.3) denkleminde 
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=  olduğundan  

 



 25 

∑
−

=

=

1

1

)(
M

s

ss

nn
WAe α  (3.4) 

 

dir. Özdeğer ve özvektör tanımından 
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WWA λ=  olduğundan (3.4) eşitliği  
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olur. Buradan açıkça görüldüğü gibi 
)(n

e  değerinin n artarken sınırlı kalması, 

1||max ≤s
s

λ  olması ile mümkündür [3].  

 

 

3.1.1. Açık Sonlu Fark Yaklaşımının Matris Yöntemiyle Kararlılık Analizi 

 

• Dirichlet Sınır Şartlı Isı İletim Problemi 

 

Dirichlet sınır şartlı ısı iletim probleminin (2.16) denklemi ile verilen açık sonlu 

fark yaklaşımı herhangi bir n -inci zaman adımında açık olarak  
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şeklindedir.  

(2.10) sınır şartlarından n
U 0  ve n

MU  bilinen değerler olduğundan (3.5) denklem 

sistemi matris formunda 

 



 26 

�
b

U

n

M

n

M

n

n

A
U

n

M

n

M

n

n

rf

rf

U

U

U

U

rr

rrr

rrr

rr

U

U

U

U

nn























+















































−

−

−

−

=

























−

−

+

−

+

−

+

+

+

2

1

1

2

2

1

1
1

1
2

1
2

1
1

0

0

)21(

)21(

)21(

)21(

)()1(

�

���

�

������� �������� ��

�

���

�  

 

veya kısaca 
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olarak yazılabilir. Teorem 1.3’den dolayı A matrisinin özdeğerleri 
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olmalıdır. Buradan;  
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bulunur. Bu eşitsizliğin sağ parçasından 0≥r  ve sol parçasından ise 
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bulunur ve böylece kararlılık parametresi 2/1≤r  olarak elde edilir. Dolayısıyla ısı 

iletim denkleminin açık yöntem ile elde edilen yaklaşık çözümünün, ancak 2/10 ≤< r  

olduğunda denklemin analitik çözümüne yakınsayacağı beklenir [3]. 

 

 

• Neumann Sınır Şartlı Isı İletim Problemi 

 

Neumann sınır şartlı ısı iletim probleminin (2.17), (2.18) ve (2.19) 

denklemleriyle verilen açık sonlu fark yaklaşımı açık matris formunda 
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olarak veya kapalı matris formunda 
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olarak yazılabilir. Teorem 1.2’den A  matrisinin özdeğerleri 
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dir. Kararlılık için 1|| ≤iλ  ( 2,1=i ) olmalıdır. Buradan  

 

1|| 1 ≤λ  den 1|1| ≤  ve 1|| 2 ≤λ den 2/10 ≤≤ r  

 

bulunur. Böylece Neumann sınır şartlı ısı iletim probleminin açık sonlu fark 

yaklaşımının çözümü ancak 2/10 ≤< r  olduğunda analitik çözüme yakınsar. 

 

 

• Robbin Sınır Şartlı Isı İletim Problemi 

 

Robbin sınır şartlı ısı iletim probleminin açık sonlu fark yaklaşımı (2.22), (2.23) 

ve (2.24) denklemleriyle verilen )1( +M  bilinmeyenli )1( +M -tane lineer denklemden 

oluşan bir denklem sistemidir. Bu denklem sistemi matris formunda 
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olarak veya kısaca  
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olarak yazılabilir. Teorem 1.2’den A  matrisinin özdeğerleri; 

 

0=m  için 121 βrass −=  ve rPs 2=  olduğundan,  
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dir. Kararlılık için 1|| ≤iλ  ( 6)1(1=i ) olmalıdır. Burada iλ  değerleri tek tek 

incelendiğinde,  
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bulunur. Böylece Robbin sınır şartlı ısı iletim probleminin açık sonlu fark 

yaklaşımından elde edilecek çözümler ancak 








++

≤

2211 2

1
,

2

1
min

khmkhm
r  

olduğunda problemin analitik çözümüne yakınsar. 

 

 

3.1.2. Kapalı Sonlu Fark Yaklaşımının Matris Yöntemiyle Kararlılık Analizi 

 

• Dirichlet Sınır Şartlı Isı İletim Problemi 

 

Dirichlet sınır şartlı ısı iletim probleminin kapalı sonlu fark yaklaşımı (2.16) 

denklemi ile verilmiştir. Bu sonlu fark yaklaşımı herhangi bir n-inci zaman adımında 

açık olarak yazıldığında, 
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denklem sistemi elde edilir. (3.6) denklem sistemi herhangi bir n -inci zaman adımı için 

matris formunda 
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olarak yazılabilir. Bu matris formu, A  tersi mevcut bir matris olduğundan, 
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şeklinde de ifade edilebilir. Burada kararlılık analizi için 1−

A  matrisinin özdeğerlerine 

ihtiyaç vardır. sλ , A  matrisinin özdeğerleri ise 1−A  matrisinin özdeğerleri sλ/1  

değeridir. A  matrisinin özdeğerleri Teorem 1.3’den 
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dir. Matris yönteminde kararlılık için gerek ve yeter şart 11max ≤s
s

λ  olmasıdır. 

Buradan  
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bulunur. Bu eşitsizlik 0>∀r  için sağlandığından yöntem şartsız kararlıdır. Böylece 

Dirichlet sınır şartlı ısı iletim probleminin kapalı yöntem ile elde edilen yaklaşık 

çözümü r  kararlılık parametresinin herhangi bir seçimi için analitik çözüme yakınsar. 
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• Neumann Sınır Şartlı Isı İletim Problemi 

 

Neumann sınır şartlı ısı iletim probleminin kapalı sonlu fark yaklaşımı (2.29), 

(2.30) ve (2.31) denklemleriyle verilen )1( +M  bilinmeyenli )1( +M -tane lineer 

denklemden oluşan bir denklem sistemidir. Bu denklem sistemi matris biçiminde 

 

�����

�

���

�

���

�

�������� ��������� ��

�

b

U

n

M

n

M

n

n

U

n

M

n

M

n

n

A k

rhg

k

rhg

U

U

U

U

U

U

U

U

rr

rrr

rrr

rr

nn




























+

























=















































+−

−+−

−+−

−+

−

+

+

−

+

+

+ 1

2

1

1

1

1

0

1

1
1

1
1

1
0

2

0

0

2

212

21

21

221

)()1(

 

 

olarak veya kısaca 
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olarak yazılabilir. Bu matris formu A  tersi mevcut bir matris olduğundan, 
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şeklinde de ifade edilebilir. Teorem 1.2’den A  matrisinin özdeğerleri 
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olarak bulunur. A  matrisinin özdeğerleri 
iλ  ise 1−

A  matrisinin özdeğerleri 
iλ1  

değerleridir. O halde kararlılık için 11 ≤iλ  ( )2,1=i olmalıdır. Buradan kararlılık 

parametresi 0>r  olarak bulunur. Böylece Neumann sınır şartlı ısı iletim probleminin 

kapalı sonlu fark yaklaşımı ile elde edilen yaklaşık çözümü r  kararlılık parametresinin 

herhangi bir seçimi için problemin analitik çözümüne yakınsar. Yani yöntem şartsız 

kararlıdır. 
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• Robbin Sınır Şartlı Isı İletim Problemi 

 

Robbin sınır şartlı ısı iletim probleminin kapalı sonlu fark yaklaşımı (2.36), 

(2.37) ve (2.38) denklemleriyle verilen )1( +M  bilinmeyenli )1( +M -tane lineer 

denklemden oluşan bir denklem sistemidir. Bu denklem sistemi matris biçiminde 
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olarak yazılabilir. Bu matris formu A  tersi mevcut bir matris olduğundan, 
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şeklinde de ifade edilebilir. Teorem 1.2’den A  matrisinin özdeğerleri; 
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Mm =  için 221 βrass +=  ve rPs 2=  olduğundan,  

rr 2|)21(| 2 =+− βλ  ⇒
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olarak bulunur.  

A  matrisinin özdeğerleri iλ  ise, 1−

A  matrisinin özdeğerleri iλ/1  değeridir. O 

halde kararlılık için 1|/1| ≤iλ  ( 6)1(1=i ) olmalıdır. Buradan kararlılık parametresi 

0>r  olarak bulunur. Böylece Robbin sınır şartlı ısı iletim probleminin kapalı sonlu 

fark yöntemi ile elde edilen yaklaşık çözümü r  kararlılık parametresinin herhangi bir 

seçimi için problemin analitik çözümüne yakınsar. Yani yöntem şartsız kararlıdır.  

 

 

3.1.3. Crank-Nicolson Sonlu Fark Yaklaşımının Matris Yöntemiyle Kararlılık       

          Analizi  

 

• Dirichlet Sınır Şartlı Isı İletim Problemi 

 

Dirichlet sınır şartlı ısı iletim probleminin Crank-Nicolson sonlu fark yaklaşımı  

(2.40) denklemiyle ifade edilmiştir. Bu sonlu fark yaklaşımı herhangi bir n-inci zaman 

adımında açık olarak yazılırsa, 
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denklem sistemi elde edilir. (3.7) denklem sistemi herhangi bir n-inci zaman adımı için 

matris formunda  
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olarak veya kısaca 
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olarak yazılabilir. Bu matris formu A  tersi mevcut bir matris olduğundan, 

 

bAUBAU
nn 1)(1)1( −−+

+=  

 

şeklinde de ifade edilebilir. Dikkat edilirse AIB M −=
−14  olduğu kolaylıkla görülür. 

Buradan  
)(

1
1)1(

)4(
n

M

n
UIAU

−

−+

−=  bulunur. λ , A matrisinin bir özdeğeri olmak üzere 

1
14

−

−

− MIA  matrisinin özdeğeri 14 −λ  şeklindedir. Bu yöntemin kararlı olabilmesi 

için 114 ≤−λ  olmalıdır. Buradan 2≥λ  elde edilir. 

A  matrisinin λ  özdeğerleri [ ]r42,2 +  aralığında olup 0>∀r  için 2≥λ  

olduğundan yöntem şartsız kararlıdır. 

 

 

• Neumann Sınır Şartlı Isı İletim Problemi 

 

Neumann sınır şartlı ısı iletim denkleminin Crank-Nicolson sonlu fark yaklaşımı 

(2.46), (2.47) ve (2.48) denklemleriyle verilen )1( +M  bilinmeyenli )1( +M -tane lineer 

denklemden oluşan bir denklem sistemidir. Bu denklem sistemi matris biçiminde 
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veya kısaca  
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olarak yazılabilir. Burada AIB M −=
−14  olduğundan yöntemin şartsız kararlı olduğu 

yukarıdakine benzer şekilde kolayca gösterilebilir.  

 

 

• Robbin Sınır Şartlı Isı İletim Problemi 

 

Robbin sınır şartlı (2.9) ısı iletim probleminin Crank-Nicolson sonlu fark 

yaklaşımı (2.53), (2.54) ve (2.55) denklemleriyle verilen )1( +M  bilinmeyenli )1( +M -

tane lineer denklemden oluşan bir denklem sistemidir. Bu denklem sistemi matris 

biçiminde 
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veya kısaca  
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olarak yazılabilir. Burada AIB M −=
−14  olduğundan yöntemin şartsız kararlı olduğu 

yukarıdakine benzer şekilde kolayca gösterilebilir.  

 

 

3.2. von Neumann (Fourier Seri) Yöntemi 

 

Fourier seri yöntemi sadece diferansiyel denklemin kararlılığını hata yayılımı 

için inceleler.   

Burada T sonlu, 0→= hxδ , 0→= ktδ  ve ∞→N  olduğunda NkTt =≤≤0  

zaman aralığında ),( txU  için lineer 2 zaman seviyeli fark denkleminin kararlılığı 

konusu incelenecektir. Fourier seri veya von Neumann metodu, t = 0 düğüm noktası 

boyunca sonlu Fourier serisine göre başlangıç değerini ifade eder. Böylece kısmi 

diferansiyel denklemleri çözmek için kullanılan “değişkenlerine ayırma” yöntemine 

benzer olarak t = 0 için Fourier serilerine indirgenen bir fonksiyon göz önüne alınır. 

Her ne kadar Fourier serileri sinüs ve cosinüs fonksiyonlarına göre ifade 

edilebiliyorsa da cebirsel olarak üstel biçimde yazılması daha uygundur. Yani 
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∑ 








l

xn
an

π

cos  veya ∑ 








l

xn
bn

π

sin  ifadeleri yerine bu denklemlere denk olan 

lxin

neA
π∑  üstel ifadesi yazılabilir. Burada 1−=i  ve l, x aralığının uzunluğudur. 

Buna göre  

 

mhi

n

lmhin

n

lxin

n
neAeAeA

βππ

==   

 

yazılabilir. Burada Mhnn πβ =  ve lMh =  olarak alınmıştır. 

0=t  pivot noktasındaki başlangıç değerlerini 0)0,( mUmhU = , Mm )1(0=  

şeklinde olan (M+1)-tane denklem, MAAA ,,, 10 …   bilinmeyen sabitlerini tek türlü 

belirlemek için yeterlidir. Bu ise başlangıç düğüm değerlerinin kompleks üstel formda 

açıklanabildiğini gösterir. Buna göre göz önüne alınan lineer fark denkleminin mhi
e

β  

gibi yalnız bir başlangıç değerinden elde edilmesi mümkündür. Çünkü lineer fark 

denklemi bağımsız çözümlerin lineer birleşimi şeklinde yazılabilir. 

 t  değerinin artışına göre üstel dağılıma bakmak için  

 

nmhinkmhitxin

m eeeeeU ε
βαβαβ

===  (3.8) 

 

ifadesi göz önüne alınır. Burada α  genellikle kompleks bir sabit olmak üzere k
e

α

ε =  

olarak kullanılır ve ε  genellikle  güçlendirme faktörü (amplification factor) olarak 

adlandırılır.  

 Sonlu fark denkleminin kararlılığı için 0→h  ve 0→k  olduğunda her Nn ≤  

ve başlangıç şartını sağlayan tüm β  değerleri için || n

mU  kalıntısı sabit olmalıdır. Bu 

ifade Lax-Richtmyer tanımı olarak bilinir.  

 Sonlu fark denkleminin tam çözümü zamana bağlı olarak üstel biçimde artmıyor 

ise kararlılık için gerek ve yeter şart 

 

1|| ≤ε  

 

yani 11 ≤≤− ε  olmalıdır. 
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Bununla birlikte n

mU   zamana bağlı olarak artıyor ise kararlılık için gerek ve 

yeter şart; K pozitif sayısı, h, k, ve β  değerlerinden bağımsız olmak üzere 

 

)(11|| kOKk +=+≤ε   

 

olmasıdır. 

 Bu yöntem sabit katsayılı lineer denklemler için uygulanır ve l periyotlu 

periyodik başlangıç değerli problemler için geçerlidir. 

3 veya daha fazla zaman seviyeli ya da iki veya daha fazla bağımlı değişken 

içeren fark denklemleri için von Neumann şartları gereklidir; ancak bu şartlar yeterli 

olmayabilir [3]. 

 

 

3.2.1. von Neumann Yöntemiyle Kararlılık Analizi 

 

 (2.9) ile verilen ısı iletim denkleminin ağırlıklı (2.57) ile verilen averaj 

yaklaşımında (3.8) eşitliği yerine konulup gerekli düzenlemeler yapılırsa  

 

hihihihi
errererrer

ββββ

θθθθθθε )1())1(21()1())21(( −+−−+−=−++−
−−

 

elde edilir. Bu eşitlikte φφ
φ sincos ie

i
+=  Euler formülünün kullanılmasıyla ε  

güçlendirme çarpanı 

 

)2/(sin41

)2/(sin)1(41
2

2

hr

hr

βθ

βθ

ε

+

−−

=  (3.9) 

 

olarak elde edilir.  

 

 

• Açık Sonlu Fark Yaklaşımının von Neumann Yöntemiyle Kararlılık Analizi 

 

(2.57) ağırlıklı averaj yaklaşımı 0=θ  için (2.15) ile verilen açık sonlu fark 

yaklaşımına karşılık gelir. 0=θ  olduğunda (3.9) ile verilen ε  değeri 
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)2/(sin41 2
hr βε −=  

 

dir. Yöntemin kararlı olabilmesi için 1≤ε  olmalıdır. O halde  

 

1|1)2/(sin4||| 2
≤+−= hr βε  

 

veya 

 

0)2/(sin42 2
≤−≤− hr β  

 

olmalıdır. Bu eşitliğin sağ parçasından 0>r , sol parçasından ise  

 

2

1

)2/(sin2

1
2

≤≤

h
r

β

 

 

bulunur. Böylece açık sonlu fark yaklaşımı ancak 
2

1
0 ≤< r  olduğunda kararlıdır. 

 

 

• Kapalı Sonlu Fark Yaklaşımının von Neumann Yöntemiyle Kararlılık Analizi 

 

(2.57) ağırlıklı averaj yaklaşımı 1=θ  için (2.26) ile verilen kapalı sonlu fak 

yaklaşımına karşılık gelir. 1=θ  olduğunda (3.9) ile verilen ε  değerinin 

 

)2/(sin41

1
2

hr β

ε

+

=  

 

olduğu görülür. Yöntemin kararlı olabilmesi için 1≤ε  yani 

 

1
)2/(sin41

1
2

≤

+

=

hr β

ε  
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olmalıdır. Bu durumda tüm β  değerleri için 1|| ≤ε  dir. Böylece kapalı yöntem şartsız 

kararlıdır. 

 

 

• Crank-Nicolson Sonlu Fark Yaklaşımının von Neumann Yöntemiyle 

Kararlılık Analizi 

 

 (2.57) ağırlıklı averaj yaklaşımı 2/1=θ  için (2.40) ile verilen Crank-Nicolson 

sonlu fak yaklaşımına karşılık gelir. 2/1=θ  olduğunda (3.9) ile verilen ε  değerinin 

 

)2/(sin21

)2/(sin21
2

2

hr

hr

β

β

ε

+

−

=  

 

olduğu görülür. Yöntemin kararlı olabilmesi için 1≤ε  olmalıdır. Tüm β  değerleri için 

1|| ≤ε  eşitsizliği sağlandığından, Crank-Nicolson yöntemi şartsız kararlıdır.   
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4. KLASİK SONLU FARK YÖNTEMLERİNİN 

LOKAL KESME HATASI 
 

Bu bölümde 1=α  için (2.9) ısı iletim denkleminin açık, kapalı ve Crank-

Nicolson sonlu fark yaklaşımlarının lokal kesme hatalarının mertebesi hesaplanacaktır.  

1=α  için (2.9) ısı iletim denklemi  

 

0
2

2

=

∂

∂

−

∂

∂

x

U

t

U
 (4.1) 

 

olur. (4.1) ısı iletim denkleminin tam çözümü n

mU  ve bu denkleme karşılık gelen 

herhangi bir sonlu fark denkleminin tam çözümü de n

mu  olsun. Bu durumda n

m

n

m Uu ≅  

dir. 

 

 

4.1. Açık Sonlu Fark Yaklaşımının Lokal Kesme Hatası 

 

(4.1) denklemine karşılık gelen açık sonlu fark denklemi 
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şeklindedir. Böylece lokal kesme hatasının tanımından 
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dir. n

mU 1+
, n

mU 1−
 ve 1+n

mU  ifadelerinin Taylor seri açılımları sırasıyla 
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dir. (4.2) eşitliğinde (4.3), (4.4) ve (4.5) eşitliklerinin yazılmasıyla  
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elde edilir. U, verilen kısmi diferansiyel denklemin tam çözümü olduğundan açıkça  
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dir. Böylece lokal kesme hatasının esas kısmı  
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şeklindedir. O halde lokal kesme hatası 
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, hOkOT nm +=  

 

dir [6]. 
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4.2. Kapalı Sonlu Fark Yaklaşımının Lokal Kesme Hatası  

 

(4.1) denklemine karşılık gelen kapalı sonlu fark denklemi 
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şeklindedir. Böylece lokal kesme hatasının tanımından 
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dir. (4.7) eşitliğinde (4.5), (4.8) ve (4.9) eşitliklerinin yazılmasıyla  
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elde edilir. U, verilen kısmi diferansiyel denklemin tam çözümü olduğundan,  
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dir. Böylece lokal kesme hatasının esas kısmı,  
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şeklindedir. O halde kapalı yöntem için lokal kesme hatasının   
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olduğu görülür [3]. 

 

 

4.3. Crank-Nicolson Sonlu Fark Yaklaşımının Lokal Kesme Hatası 
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şeklindedir. Lokal kesme hatasının tanımından 
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dir. (4.3), (4.4), (4.5), (4.8) ve (4.9) ifadelerinin Taylor seri açılımlarının (4.10) 

eşitliğinde yerlerine yazılmasıyla  
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elde edilir. U fonksiyonu verilen kısmi diferansiyel denklemin tam çözümü olduğundan 

açıkça  
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dir. Böylece lokal kesme hatasının esas kısmı  
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şeklindedir. O halde Crank-Nicolson yöntemi için lokal kesme hatasının mertebesi 

 

)()( 22
, hOkOT nm +=  

 

dir [8]. 
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5. MODEL PROBLEMLER  

 

Bu bölümde (2.9) ile verilen ısı iletim denklemi için farklı sınır ve başlangıç 

şartlarına bağlı olarak model problemler ele alınacaktır. Bu problemler için açık, kapalı 

ve Crank-Nicolson sonlu fark yaklaşımlarının matris ve von Neumann yöntemleriyle 

kararlılıkları incelenecek ve elde edilen nümerik çözümlerle analitik çözümler 

karşılaştırılacaktır.  

 

Problem 1: Bu problemde 
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başlangıç şartına bağlı olarak göz önüne alınmıştır. Bu problemin analitik çözümü 
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♦ Açık Sonlu Fark Yaklaşımı 

 

Bu problemin açık sonlu fark yaklaşımı 
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şeklindedir. (5.1) ile verilen yaklaşım açık biçimde  
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olarak yazılabilir. 

 

 

• Matris Yöntemi  

 

 Problem 1’in sınır şartları 0),0( =tU  ve 0),1( =tU  olarak verildiğinden (5.2) 

denklem sistemi açık matris formunda 
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veya kapalı matris formunda  
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olarak yazılabilir. Bu sonlu fark yaklaşımın kararlılığının incelenmesinde A  matrisinin 

özdeğerlerinin bulunmasına ihtiyaç vardır. Teorem 1.3’den A  matrisinin özdeğerleri, 
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dir. Matris yönteminde kararlılık için gerek ve yeter şart 1||max ≤s
s

λ  olmasıdır. O 

halde, sonlu fark yönteminin kararlı olması için 
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olmalıdır. Bu eşitsizliğin sağ parçasından 0≥r  ve sol parçasından ise 
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elde edilir. O halde kararlılık parametresi 21≤r  dir. Böylece problem 1’in açık 

yöntem ile elde edilen yaklaşık çözümleri ancak 210 ≤< r  olduğunda problemin 

analitik çözüme yakınsar.  

 

 

• von Neumann Yöntemi 

 

(5.1) denklemiyle verilen fark yaklaşımında (3.8) eşitliği yerine yazılır ve sonra 

gerekli düzenlemeler yapılırsa 
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elde edilir. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. Buradan 
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bulunur. Bu eşitsizliğin sağ parçasından 0≥r  ve sol parçasından ise 
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elde edilir. O halde kararlılık parametresi 21≤r  olduğunda elde edilen yaklaşık çözüm 

problemin analitik çözümüne yakınsar. 

 

 

♦ Kapalı Sonlu Fark Yaklaşımı 

 

Problem 1’in kapalı sonlu fark yaklaşımı  
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dir. Bu sonlu fark yaklaşımı herhangi bir n-inci zaman adımında açık olarak 

yazıldığında 
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denklem sistemi elde edilir.  
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• Matris Yöntemi 

 

Problem 1 in sınır şartları 0),0( =tU  ve 0),1( =tU  olarak verildiğinden her n  

için 00 ==
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n
UU  olup (5.4) denklem sistemi açık matris formunda 
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veya kapalı matris formunda 
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olarak yazılabilir. A  tersi mevcut bir matris olduğundan 
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şeklinde de ifade edilebilir. Burada kararlılık analizi için 1−A  matrisinin özdeğerlerine 

ihtiyaç vardır. A matrisinin özdeğerleri 
sλ  ise 1−

A  matrisinin özdeğerleri 
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değeridir. Teorem 1.3’den A matrisinin özdeğerleri 
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şeklindedir. Kararlılık için 1|1|max ≤s
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λ  olması gerek ve yeter şarttır. O halde göz 

önüne alınan yöntemin kararlı olması için 
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olmalıdır. 0>∀r  için bu eşitsizlik sağlandığından yöntem şartsız kararlıdır. Böylece ısı 

iletim probleminin kapalı yöntem ile elde edilen yaklaşık çözümünün 0>r olduğunda 

analitik çözüme yakınsadığı görülür.  

 

 

• von Neumann Yöntemi 

 

(5.3) denklemiyle verilen fark yaklaşımında (3.8) eşitliği yerine konulup, gerekli 

işlemler yapıldığında ε  değeri 
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olarak bulunur. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. Açıkça her 0>r  ve 

β  değerleri için 1|| ≤ε  dir. Böylece kapalı sonlu fark yöntemi şartsız kararlıdır. 

 

 

♦ Crank-Nicolson Sonlu Fark Yaklaşımı 

 

Problem 1’in Crank-Nicolson sonlu fark yaklaşımı 
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dir. Bu sonlu fark yaklaşımı herhangi bir n-inci zaman adımında açık olarak 

yazıldığında 
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denklem sistemi elde edilir.  

 

 

• Matris Yöntemi 
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olarak yazılabilir. A  tersi mevcut bir matris olduğundan bu sistem 
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yazılabilir. A reel ve simetrik bir matris olduğundan 1
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− MIA  matrisi de reel ve 
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matrisinin bir özdeğeri λ  olmak üzere 114 ≤−λ  olmalıdır. Bu eşitsizlikten 2≥λ  

elde edilir. A matrisi için ra ss 22 +=  ve rPs 2=  olduğundan Teorem 1.2’den 

 

rr 2|22| ≤−−λ  veya r422 +≤≤ λ   

 

olduğu görülür. Böylece 0>∀r  için 2≥λ  olduğundan yöntem şartsız kararlıdır.  

 

 

• von Neumann Yöntemi 

 

(5.5) fark yaklaşımında (3.8) eşitliği yerine konulup, gerekli işlemler 

yapıldığında 

 

)2/(sin21

)2/(sin21
2

2

hr

hr

β

β

ε

+

−

=  

 

elde edilir. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. Bu durumda tüm 0>r  

değerleri için 1|| ≤ε  eşitsizliği geçerlidir. Böylece yöntem şartsız kararlıdır.  

 

 

Nümerik Sonuçlar 

 

Bu çalışmada bütün hesaplamalar Intel P4 bilgisayarda Fortran derleyicisi 

kullanılarak yapıldı. Nümerik çözümlerin analitik çözümlere ne kadar yakın olduğunu 

göstermek için ),( nm txU  ve n

mU  sırasıyla ),( txU  nin ),( nm tx  noktasındaki tam ve 

nümerik değerleri olmak üzere aşağıdaki gibi tanımlanan 
1

e , 2L  ve 
∞

L  hata normları 

hesaplandı: 
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00001.0=k  ve farklı mesh uzunluğu h  için 1.0=t  zamanında Problem 1’in 

açık yöntem ile elde edilen nümerik çözümlerinin analitik çözümle karşılaştırılması 

Tablo 5.1’de, kapalı yöntem ile elde edilen nümerik çözümlerinin analitik çözümle 

karşılaştırılması Tablo 5.2’de ve Crank-Nicolson yöntemi ile elde edilen nümerik 

çözümlerinin analitik çözümle karşılaştırılması Tablo 5.3’de verildi. Tablolardan 

kolayca görüleceği üzere mesh uzunluğu h  ne kadar küçük seçilirse nümerik 

çözümlerin analitik çözüme o kadar yaklaştığı kolayca görülür. Buradaki h  ve k  

değerleri kararlılığı bozmayacak şekilde seçilmiştir.  

 00001.0=k  ve 0125.0=h değerleri için Problem 1’in açık, kapalı ve Crank-

Nicolson yöntemleriyle elde edilen 5.0=t  zamanındaki nümerik çözümlerin 

karşılaştırılması Tablo 5.4 ile verilmiştir. Tablodan kolayca görüleceği gibi analitik 

çözüme en yakın sonuçlar açık yöntemden daha sonra sırasıyla Crank-Nicolson ve 

kapalı yöntemlerinden elde edilmiştir.  
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Tablo 5.1. Açık Yöntem: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  zamanında 

Problem 1’in nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 0.0 0.0 0.0 0.0 0.0 
0.1 0.094867 0.093721 0.093436 0.093365 0.093346 
0.2 0.180463 0.178277 0.177734 0.177598 0.177561 
0.3 0.248411 0.245392 0.244642 0.244455 0.244405 
0.4 0.292049 0.288490 0.287607 0.287386 0.287327 
0.5 0.307088 0.303342 0.302413 0.302181 0.302118 
0.6 0.292049 0.288490 0.287607 0.287386 0.287327 
0.7 0.248411 0.245392 0.244642 0.244455 0.244405 
0.8 0.180463 0.178277 0.177734 0.177598 0.177561 
0.9 0.094867 0.093721 0.093436 0.093365 0.093346 
1.0 0.0 0.0 0.0 0.0 0.0 

Hata Normu      

1
e  0.014737 0.003835 0.000947 0.000204  

2L  0.003505 0.000864 0.000208 0.000044  

∞
L  0.004970 0.001224 0.000295 0.000063  
 

 

Tablo 5.2. Kapalı Yöntem: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  zamanında 

Problem 1’in nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.094876 0.093730 0.093445 0.093374 0.093346 

0.2 0.180480 0.178294 0.177751 0.177615 0.177561 

0.3 0.248435 0.245416 0.244666 0.244479 0.244405 

0.4 0.292077 0.288518 0.287635 0.287414 0.287327 

0.5 0.307117 0.303372 0.302442 0.302210 0.302118 

0.6 0.292077 0.288518 0.287635 0.287414 0.287327 

0.7 0.248435 0.245416 0.244666 0.244479 0.244405 

0.8 0.180480 0.178294 0.177751 0.177615 0.177561 

0.9 0.094876 0.093730 0.093445 0.093374 0.093346 

1.0 0.0 0.0 0.0 0.0 0.0 

Hata Normu      

1
e  0.014824 0.003927 0.001042 0.000300  

2L  0.003526 0.000885 0.000229 0.000065  

∞
L  0.004999 0.001254 0.000324 0.000092  
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Tablo 5.3. Crank-Nicolson Yöntemi: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  

zamanında Problem 1’in nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.094871 0.093726 0.093441 0.093369 0.093346 

0.2 0.180471 0.178286 0.177742 0.177607 0.177561 

0.3 0.248423 0.245404 0.244654 0.244467 0.244405 

0.4 0.292063 0.288504 0.287621 0.287400 0.287327 

0.5 0.307103 0.303357 0.302427 0.302195 0.302118 

0.6 0.292063 0.288504 0.287621 0.287400 0.287327 

0.7 0.248423 0.245404 0.244654 0.244467 0.244405 

0.8 0.180471 0.178286 0.177742 0.177607 0.177561 

0.9 0.094871 0.093726 0.093441 0.093369 0.093346 

1.0 0.0 0.0 0.0 0.0 0.0 

Hata Normu     

1
e  0.014781 0.003881 0.000995 0.000252 

2L  0.003515 0.000874 0.000218 0.000055 

∞
L  0.004984 0.001239 0.000309 0.000077 

 

 

Tablo 5.4. 0125.0=h  ve 00001.0=k değerleri için 5.0=t  zamanında Problem 1’in 

nümerik ve analitik çözümlerinin karşılaştırılması 

x 

Açık 

Yöntem 

Kapalı 

Yöntem 

Crank- 

Nicolson 

Yöntemi 

Analitik 

Çözüm 

0.0 0.0 0.0 0.0 0.0 
0.1 0.001803 0.001803 0.001803 0.001802 
0.2 0.003429 0.003430 0.003429 0.003427 
0.3 0.004719 0.004721 0.004720 0.004717 
0.4 0.005548 0.005550 0.005549 0.005545 
0.5 0.005833 0.005836 0.005835 0.005830 
0.6 0.005548 0.005550 0.005549 0.005545 
0.7 0.004719 0.004721 0.004720 0.004717 
0.8 0.003429 0.003430 0.003429 0.003427 
0.9 0.001803 0.001803 0.001803 0.001802 
1.0 0.0 0.0 0.0 0.0 

Hata Normu     

1
e  0.000513 0.000994 0.000753 

 

2L  0.000002 0.000004 0.000003  

∞
L  0.000003 0.000006 0.000004  
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Problem 2: Bu problemde 

 

2

2

x

U

t

U

∂

∂

=

∂

∂

, 10 ≤≤ x ,  0≥t   

 

1-boyutlu zamana bağlı ısı iletim denklemi 

 

0
),0(

=

∂

∂

x

tU
, 

2
),1(

=

∂

∂

x

tU
 

 

sınır şartları ve  

 

)cos(1)()0,( 2
xxxfxU π++==  

 

başlangıç şartına bağlı olarak verilmiştir. Bu problemin analitik çözümü 

 

)cos(12),(
22

xexttxU
t

π
π

++++=
−  

 

dir [9]. 

 

 

♦ Açık Sonlu Fark Yaklaşımı 

 

Problem 2’nin açık sonlu fark yaklaşımı  

 

n

m

n

m

n

m UrrUU )21(2 1
1

−+=
+

+ , 0=m  (5.7) 

n

m

n

m

n

m

n

m rUUrrUU 11
1 )21(

+−

+

+−+= , 1)1(1 −= Mm  (5.8) 

rhUrrUU
n

m

n

m

n

m 4)21(2 1
1

+−+=
−

+ , Mm =  (5.9) 

 

şeklindedir. Bu yaklaşım açık biçimde 
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olarak yazılabilir. 

 

 

• Matris Yöntemi 

 

(5.10) denklem sistemi 
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olarak veya kısaca 

 

bUAU
nn

+=

+1
 

 

formunda yazılabilir. Burada kararlılık için A  matrisinin özdeğerlerine ihtiyaç vardır. 

Tüm satırlar için rass 21 −=  ve rPs 2=  olduğundan Teorem 1.2’den  

 

rr 2|)21(| =−−λ





−=⇒−=+−

=⇒=+−

⇒
rrr

rr

41221

,1221

22

11

λλ

λλ

 

 

bulunur. Kararlılık için 1|| ≤iλ  ( 2,1=i ) olmalıdır. Burada iλ  değerleri tek tek 

incelenmelidir: 
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1|| 1 ≤λ  den 1|1| ≤   

ve  

1|| 2 ≤λ den 2/10 ≤≤ r  

 

bulunur. Buradan kararlılık parametresi 21≤r  olarak elde edilir. Böylece Problem 

2’nin açık yöntem ile elde edilen yaklaşık çözümü ancak 210 ≤< r  olduğunda analitik 

çözüme yakınsar.  

 

 

• von Neumann Yöntemi 

 

(2.15) ile verilen açık sonlu fark yaklaşımında (3.8) eşitliği ile birlikte 

φφ
φ sincos ie

i
+=  Euler formülü kullanılır ve sonra gerekli işlemler yapılırsa 

 

1)2/(sin4 2
+−= hr βε   

 

elde edilir. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. Buradan  

 

0)2/(sin42 2
≤−≤− hr β  

 

bulunur. Bu eşitliğin sağ parçasından 0>r  ve sol parçasından ise 

 

2

1

)2/(sin2

1
2

≤≤

h
r

β

  

 

bulunur. Böylece kararlılık parametresi 21≤r  olarak elde edilir. O halde Problem 

2’nin açık yöntem ile elde edilen yaklaşık çözümü ancak 210 ≤< r  olduğunda analitik 

çözüme yakınsar. 
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♦ Kapalı Sonlu Fark Yaklaşımı 

 

 Problem 2’nin kapalı sonlu fark yaklaşımı 
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şeklindedir. Bu yaklaşım açık olarak yazıldığında 
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denklem sistemi elde edilir. 

 

 

• Matris Yöntemi 

 

(5.14) denklem sistemi açık matris formunda 
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olarak ve kapalı matris formunda 
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olarak yazılabilir. Bu denklem sistemi A  tersi mevcut bir matris olduğundan, 
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şeklinde de ifade edilebilir. Teorem 1.2’den A  matrisinin özdeğerleri 
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olarak bulunur. A  matrisinin özdeğerleri iλ  ise 1−

A  matrisinin özdeğerleri iλ1  

değerleridir. O halde kararlılık için 11 ≤iλ  ( )2,1=i olmalıdır. Buradan kararlılık 

parametresi 0>r  olarak bulunur. Böylece Neumann sınır şartlı ısı iletim probleminin 

kapalı sonlu fark yaklaşımı ile elde edilen yaklaşık çözümü r  kararlılık parametresinin 

herhangi bir seçimi için problemin analitik çözümüne yakınsar. Yani yöntem şartsız 

kararlıdır. 

 

 

• von Neumann Yöntemi 

 

(2.26) ile verilen kapalı sonlu fark yaklaşımında (3.8) eşitliği ile birlikte 

φφ
φ sincos ie

i
+=  Euler formülü kullanılır ve sonra gerekli işlemler yapılırsa ε  

güçlendirme faktörü 

 

)2/(sin41

1
2

hr β

ε

+

= ,  

 

olarak bulunur. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. Açıkça her 0>r  ve 

β  değerleri için 1|| ≤ε  dir. Böylece kapalı yöntem şartsız kararlıdır. 
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♦ Crank-Nicolson Sonlu Fark Yaklaşımı 

 

Problem 2’nin Crank-Nicolson sonlu fark yaklaşımı 
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şeklindedir. Bu sonlu fark yaklaşımları açık olarak yazıldığında 
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denklem sistemi elde edilir. 

 

• Matris Yöntemi 

 

(5.18) denklem sistemi  
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olarak veya kısaca 
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olarak yazılabilir. Bu denklem sistemi A  tersi mevcut bir matris olduğundan, 

 

  bAUBAU
nn 1)(1)1( −−+

+=  

 

şeklinde de ifade edilebilir. Dikkat edilirse AIB M −=
+14  olduğu kolaylıkla görülür. 

Buradan ( )
)(

1
1)1(

4
n

M

n
UIAU

+

−+

−=  yazılabilir. A matrisinin bir özdeğeri λ  olmak üzere 

1
14

+

−

− MIA  matrisinin özdeğeri 14 −λ  şeklindedir. Bu yöntemin kararlı olabilmesi 

için 114 ≤−λ  olmalıdır. Bu durumda 2≥λ  elde edilir. O halde A matrisi için Teorem 

1.2’den 

 

rr 2|22| ≤−−λ  veya r422 +≤≤ λ   

 

olduğu görülür. Bu durumda 0>∀r  için 2≥λ  olduğundan yöntem şartsız kararlıdır. 

 

 

• von Neumann Yöntemi 

 

(2.40) ile verilen Crank-Nicolson sonlu fark yaklaşımında (3.8) eşitliği yerine 

konulup, gerekli işlemler yapıldığında 

 

)2/(sin21

)2/(sin21
2

2

hr

hr

β

β

ε

+

−

=  

 

olduğu görülür. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. Açıkça her 0>r  ve 

β  değerleri için 1|| ≤ε  olup yöntem şartsız kararlıdır. 

 

 

Nümerik Sonuçlar 

 

00001.0=k  ve farklı mesh uzunluğu h  için 1.0=t  zamanında Problem 2’nin 

açık yöntem ile elde edilen nümerik çözümlerinin analitik çözümle karşılaştırılması 

Tablo 5.5’de, kapalı yöntem ile elde edilen nümerik çözümlerinin analitik çözümle 
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karşılaştırılması Tablo 5.6’da ve Crank-Nicolson yöntemi ile elde edilen nümerik 

çözümlerinin analitik çözümle karşılaştırılması Tablo 5.7’de verildi. Tablolardan 

kolayca görüleceği üzere mesh uzunluğu h  ne kadar küçük seçilirse nümerik 

çözümlerin analitik çözüme o kadar yaklaştığı kolayca görülür. Buradaki h  ve k  

değerleri kararlılığı bozmayacak şekilde seçilmiştir.  

 001.0=k  ve 1.0=h değerleri için Problem 2’nin açık, kapalı ve Crank-Nicolson 

yöntemleriyle elde edilen 5.0=t  zamanındaki nümerik çözümlerin karşılaştırılması 

Tablo 5.8 ile verilmiştir. Tablodan kolayca görüleceği gibi analitik çözüme en yakın 

sonuçlar açık yöntemden daha sonra Crank-Nicolson ve kapalı yöntemlerinden elde 

edilmiştir.  

 

 

Tablo 5.5. Açık Yöntem: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  zamanında 

Problem 2’nin nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 1.575718 1.573446 1.572879 1.572737 1.572708 
0.1 1.567329 1.565168 1.564629 1.564494 1.564466 
0.2 1.543962 1.542124 1.541665 1.541551 1.541527 
0.3 1.510841 1.509506 1.509173 1.509089 1.509072 
0.4 1.476103 1.475401 1.475226 1.475182 1.475173 
0.5 1.450000 1.450000 1.450000 1.450000 1.450000 
0.6 1.443897 1.444599 1.444774 1.444818 1.444827 
0.7 1.469159 1.470494 1.470827 1.470911 1.470928 
0.8 1.536038 1.537876 1.538335 1.538449 1.538473 
0.9 1.652671 1.654832 1.655371 1.655506 1.655534 
1.0 1.824282 1.826554 1.827121 1.827263 1.827292 

Hata Normu      

1
e  0.001037 0.000279 0.000067 0.000012  

2L  0.002128 0.000522 0.000121 0.000021  

∞
L  0.00301 0.000738 0.000171 0.000029  
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Tablo 5.6. Kapalı Yöntem: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  zamanında 

Problem 2’nin nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 1.575754 1.573482 1.572915 1.572773 1.572708 
0.1 1.567363 1.565203 1.564663 1.564528 1.564466 
0.2 1.543991 1.542154 1.541695 1.541580 1.541527 
0.3 1.510862 1.509527 1.509194 1.509111 1.509072 
0.4 1.476114 1.475412 1.475237 1.475193 1.475173 
0.5 1.450000 1.450000 1.450000 1.450000 1.450000 
0.6 1.443886 1.444588 1.444763 1.444807 1.444827 
0.7 1.469138 1.470473 1.470806 1.470889 1.470928 
0.8 1.536009 1.537846 1.538305 1.53842 1.538473 
0.9 1.652637 1.654797 1.655337 1.655472 1.655534 
1.0 1.824246 1.826518 1.827085 1.827227 1.827292 

Hata Normu     

1
e  0.001049 0.000292 0.000081 0.000026 

2L  0.002154 0.000548 0.000147 0.000046 

∞
L  0.003046 0.000775 0.000207 0.000065 
 

 

Tablo 5.7. Crank-Nicolson Yöntemi: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  

zamanında Problem 2’nin nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 1.575736 1.573464 1.572897 1.572755 1.572708 
0.1 1.567346 1.565186 1.564646 1.564511 1.564466 
0.2 1.543976 1.542139 1.54168 1.541565 1.541527 
0.3 1.510852 1.509517 1.509183 1.509100 1.509072 
0.4 1.476109 1.475407 1.475231 1.475188 1.475173 
0.5 1.450000 1.450000 1.450000 1.450000 1.450000 
0.6 1.443891 1.444593 1.444768 1.444812 1.444827 
0.7 1.469148 1.470483 1.470817 1.470900 1.470928 
0.8 1.536024 1.537861 1.53832 1.538435 1.538473 
0.9 1.652654 1.654814 1.655354 1.655489 1.655534 
1.0 1.824264 1.826536 1.827103 1.827245 1.827292 

Hata Normu     

1
e  0.001043 0.000285 0.000074 0.000019 

2L  0.002141 0.000535 0.000134 0.000033 

∞
L  0.003028 0.000757 0.000189 0.000047 
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Tablo 5.8. 1.0=h  ve 001.0=k değerleri için 5.0=t  zamanında Problem 2’nin nümerik 

ve analitik çözümlerinin karşılaştırılması 

x 

Açık 

Yöntem 

Kapalı 

Yöntem 

Crank-

Nicolson 

Yöntemi 

Analitik 

Çözüm 

0.0 2.007310 2.007669 2.007488 2.007192 
0.1 2.016953 2.017294 2.017122 2.016840 
0.2 2.045914 2.046204 2.046058 2.045818 
0.3 2.094297 2.094508 2.094402 2.094227 
0.4 2.162259 2.162370 2.162314 2.162222 
0.5 2.250000 2.250000 2.250000 2.250000 
0.6 2.357741 2.357630 2.357686 2.357778 
0.7 2.485703 2.485492 2.485598 2.485773 
0.8 2.634086 2.633796 2.633942 2.634182 
0.9 2.803047 2.802706 2.802878 2.803160 
1.0 2.992690 2.992331 2.992511 2.992808 
Hata Normu     

1
e  0.000027 0.000110 0.000068  

2L  0.000084 0.000337 0.000210  

∞
L  0.000118 0.000477 0.000297  
 

 

Problem 3: Bu problemde 

 

2

2

x

U

t

U

∂

∂

=

∂

∂

10 ≤≤ x , 0≥t  

 

1-boyutlu zamana bağlı ısı iletim denklemi 

 

1)0,( =xU   

 

başlangıç şartı ve 

 

U
x

tU
=

∂

∂ ),0(
, 

U
x

tU
−=

∂

∂ ),1(
 

 

Robbin sınır şartlarına bağlı olarak göz önüne alınmıştır. Bu problemin analitik çözümü 
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dir. Burada nα  değerleri 2/1tan =αα  denkleminin pozitif kökleridir [3]. 

 

 

♦ Açık Sonlu Fark Yaklaşımı 

 

Problem 3’ün açık sonlu fark yaklaşımı  

 

n

m

n

m

n

m UhrrUU )]1(21[2 1
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+−+=
+

+ , 0=m  (5.19) 

n
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n

m rUUrrUU 11
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+−+= , 1)1(1 −= Mm  (5.20) 
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m

n

m UhrrUU )]1(21[2 1
1

+−+=
−

+ , Mm =  (5.21) 

 

şeklindedir. Bu problemin açık sonlu fark yaklaşımı açık olarak yazıldığında 
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denklem sistemi elde edilir.  

 

 

• Matris Yöntemi 

 

(5.22) denklem sistemi 
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olarak veya kısaca 

 

);()1( nn
UAU =

+

 

 

biçiminde yazılabilir. Teorem 1.2’den A  matrisinin özdeğerleri: 

 

0=m  ve Mm =  için )1(21 hra ss +−=  ve rPs 2= olduğundan  

rhr 2|)1(21| =++−λ





+−=⇒−=++−

−=⇒=++−

⇒
),2(212)1(21

,212)1(21

22

11

hrrhr

rhrhr

λλ

λλ

 

 

1)1(1 −= Mm  için rass 21 −=  ve rPs 2=  olduğundan  

rr 2|)21(| =−−λ





−=⇒−=+−

=⇒=+−

⇒
rrr

rr

41221

,1221

44

33

λλ
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olarak bulunur. Kararlılık analizi için 1|| ≤iλ  ( 4)1(1=i ) olmalıdır. Burada iλ  değerleri 

tek tek incelenmelidir: 

 

1|| 1 ≤λ  den 
h

r
1

0 ≤≤ , 

1|| 2 ≤λ  den 
h

r
+

≤≤

2

1
0 , 

1|| 3 ≤λ  den 1|1| ≤ , 

1|| 4 ≤λ  den 2/10 ≤≤ r  

 



 70 

bulunur. Kararlılık için { }21,1,)2(1,1min hhr +≤  olmalıdır. Buradan kararlılık 

parametresi )2(1 hr +≤  olarak elde edilir. Böylece Robbin sınır şartlı ısı iletim 

probleminin açık yöntem ile elde edilen yaklaşık çözümünün ancak )2(10 hr +≤<  

olduğunda analitik çözüme yakınsadığı görülür. 

 

 

• von Neumann Yöntemi 

 

(2.15) ile verilen açık sonlu fark yaklaşımında (3.8) eşitliği yerine konulup, 

gerekli işlemler yapıldığında 

 

1)2/(sin4 2
+−= hr βε  

 

elde edilir. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. O halde 

 

0)2/(sin42 2
≤−≤− hr β  

olur. Bu eşitliklerin sağ parçasından 0≥r  ve sol parçasından ise 

 

2

1

)2/(sin2

1
2

≤≤

h
r

β

  

 

bulunur. Buradan kararlılık parametresi 2/1≤r  olarak elde edilir. Böylece Robbin sınır 

şartlı ısı iletim denkleminin açık yöntem ile elde edilen yaklaşık çözümü ancak 

2/10 ≤< r  olduğunda analitik çözüme yakınsar. 

 

 

♦ Kapalı Sonlu Fark Yaklaşımı 

 

Problem 3’ün kapalı sonlu fark yaklaşımı 
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n
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1 )]1(21[2 , Mm =  (5.25) 

 

şeklindedir.  Bu sonlu fark yaklaşımı açık olarak yazıldığında 
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denklem sistemi elde edilir. 

 

 

• Matris Yöntemi 

 

(5.26) denklem sistemi 
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veya  

)()1( nn
UUA =

+

 

 

olarak ifade edilebilir. A  tersi mevcut bir matris olduğundan 
)()1( nn

UUA =

+

 

sistemi
)(1)1( nn

UAU
−+

=  olarak yazılabilir. Burada kararlılık analizi için 1−

A  matrisinin 
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özdeğerlerine ihtiyaç vardır. A matrisinin özdeğerleri iλ  ise 1−A  matrisinin özdeğerleri 

iλ1  değeridir. Teorem 1.2’den A  matrisinin özdeğerleri 

 

0=m  ve Mm =  için )1(21 hra ss ++=  ve rPs 2= olduğundan  
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dir. Yöntemin kararlı olması için 11 ≤iλ  ( 4)1(1=i ) olmalıdır. Burada 
iλ1  değerleri 

tek tek incelendiğinde 

1
1

1

≤

λ

 den 0≥r , 

1
1

2

≤

λ

 den 0≥r , 

1
1

3

≤

λ

 den 0≥r , 

1
1

4

≤

λ

 den 1|1| ≤  

elde edilir. Böylece yöntem şartsız kararlıdır. 

 

 

• von Neumann Yöntemi 

 

(2.26) ile verilen kapalı sonlu fark yaklaşımında (3.8) eşitliği yerine konulup, 

gerekli işlemler yapıldığında 

 

)2/(sin41
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=  
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elde edilir. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. O halde 

 

1
)2/(sin41

1
1

2
≤

+

≤−

hr β

 

 

elde edilir. Bu eşitsizlik her 0≥r  için sağlanır. Böylece Robbin sınır şartlı ısı iletim 

probleminin kapalı sonlu fark yaklaşımı şartsız kararlıdır. 

 

 

♦ Crank-Nicolson Sonlu Fark Yaklaşımı 

 

Problem 3’ün Crank-Nicolson sonlu fark yaklaşımı 
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şeklindedir. Bu sonlu fark yaklaşımı açık olarak yazıldığında 
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denklem sistemi elde edilir.  

 

 

• Matris Yöntemi 

 

(5.30) denklem sistemi açık matris formunda 
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olarak veya kapalı matris formunda 
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matrisinin özdeğeri 14 −λ  şeklindedir. Bu yöntemin kararlı olabilmesi için 114 ≤−λ  

olmalıdır. Bu durumda 2≥λ  elde edilir. Teorem 1.2’den A  matrisinin özdeğerleri: 
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olarak bulunur. Açıkça 0>∀r  için 2≥λ  olduğundan yöntem şartsız kararlıdır. 

 

 

• von Neumann Yöntemi 

 

(2.40) ile verilen Crank-Nicolson sonlu fark yaklaşımında (3.8) eşitliği yerine 

konulup gerekli işlemler yapıldığında 
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elde edilir. Kararlılık için gerek ve yeter şart 1|| ≤ε  olmasıdır. O halde 
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elde edilir. Bu eşitsizlik her 0≥r  için sağlanır. Böylece Robbin sınır şartlı ısı iletim 

probleminin Crank-Nicolson sonlu fark yaklaşımı şartsız kararlıdır. 

 

 

Nümerik Sonuçlar 

 

00001.0=k  değeri ve farklı mesh uzunluğu h  için 1.0=t  zamanında 

Problem3’ün açık yöntem ile elde edilen nümerik çözümlerinin analitik çözümle 

karşılaştırılması Tablo 5.9’da, kapalı yöntem ile elde edilen nümerik çözümlerinin 

analitik çözümle karşılaştırılması Tablo 5.10’da ve Crank-Nicolson yöntemi ile elde 

edilen nümerik çözümlerinin analitik çözümle karşılaştırılması Tablo 5.11’de verildi. 

Tablolardan kolayca görüleceği üzere mesh uzunluğu h  ne kadar küçük seçilirse 

nümerik çözümlerin analitik çözüme o kadar yaklaştığı kolayca görülür. Buradaki h  ve 

k  değerleri kararlılığı bozmayacak şekilde seçilmiştir.  

 001.0=k  ve 1.0=h değerleri için Problem 3’ün açık, kapalı ve Crank-Nicolson 

yöntemleriyle elde edilen 5.0=t  zamanındaki nümerik çözümlerin karşılaştırılması 

Tablo 5.12 ile verilmiştir. Tablodan kolayca görüleceği gibi analitik çözüme en yakın 

sonuçlar açık yöntemden daha sonra Crank-Nicolson ve kapalı yöntemlerinden elde 

edilmiştir.  
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Tablo 5.9. Açık Yöntem: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  zamanında 

Problem 3’ün nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 0.718024 0.717672 0.717587 0.717566 0.717527 
0.1 0.783425 0.782924 0.782801 0.782771 0.782733 
0.2 0.834964 0.834404 0.834266 0.834231 0.834195 
0.3 0.872019 0.871463 0.871324 0.871290 0.871255 
0.4 0.894308 0.893777 0.893644 0.893610 0.893577 
0.5 0.901742 0.901225 0.901094 0.901061 0.901028 
0.6 0.894308 0.893777 0.893644 0.893610 0.893577 
0.7 0.872019 0.871463 0.871324 0.871290 0.871255 
0.8 0.834964 0.834404 0.834266 0.834231 0.834195 
0.9 0.783425 0.782924 0.782801 0.782771 0.782733 
1.0 0.718024 0.717672 0.717587 0.717566 0.717527 

Hata Normu     

1
e  0.000780 0.000224 0.000079 0.000042 

2L  0.000717 0.000197 0.000068 0.000036 

∞
L  0.000770 0.000210 0.000071 0.000039 
 

 

Tablo 5.10. Kapalı Yöntem: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  

zamanında Problem 3’ün nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 0.718029 0.717677 0.717591 0.717570 0.717527 
0.1 0.783429 0.782928 0.782806 0.782775 0.782733 
0.2 0.834967 0.834407 0.834269 0.834234 0.834195 
0.3 0.872021 0.871465 0.871326 0.871292 0.871255 
0.4 0.894308 0.893778 0.893645 0.893611 0.893577 
0.5 0.901742 0.901225 0.901094 0.901061 0.901028 
0.6 0.894308 0.893778 0.893645 0.893611 0.893577 
0.7 0.872021 0.871465 0.871326 0.871292 0.871255 
0.8 0.834967 0.834407 0.834269 0.834234 0.834195 
0.9 0.783429 0.782928 0.782806 0.782775 0.782733 
1.0 0.718029 0.717677 0.717591 0.717570 0.717527 

Hata Normu     

1
e  0.000782  0.000227 0.000082 0.000045 

2L  0.000719  0.000200 0.000071 0.000039 

∞
L  0.000773  0.000213 0.000074 0.000043 
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Tablo 5.11. Crank-Nicolson Yöntemi: 00001.0=k  ve h’nin farklı değerleri için 1.0=t  

zamanında Problem 3’ün nümerik ve analitik çözümleri 

Nümerik Çözüm 

x 1.0=h  05.0=h  025.0=h  0125.0=h  

Analitik 

Çözüm 

0.0 0.718026 0.717674 0.717589 0.717568 0.717527 
0.1 0.783427 0.782926 0.782804 0.782773 0.782733 
0.2 0.834966 0.834405 0.834267 0.834233 0.834195 
0.3 0.872020 0.871464 0.871325 0.871291 0.871255 
0.4 0.894308 0.893778 0.893644 0.893611 0.893577 
0.5 0.901742 0.901225 0.901094 0.901061 0.901028 
0.6 0.894308 0.893778 0.893644 0.893611 0.893577 
0.7 0.872020 0.871464 0.871325 0.871291 0.871255 
0.8 0.834966 0.834405 0.834267 0.834233 0.834195 
0.9 0.783427 0.782926 0.782804 0.782773 0.782733 
1.0 0.718026 0.717674 0.717589 0.717568 0.717527 

Hata Normu     

1
e  0.000781 0.000226 0.000081 0.000044 

2L  0.000718 0.000199 0.000069 0.000037 

∞
L  0.000771 0.000212 0.000073 0.000041 
 

 

Tablo 5.12. 1.0=h  ve 001.0=k değerleri için 5.0=t  zamanında Problem 3’ün 

nümerik ve analitik çözümlerinin karşılaştırılması 

x 

Açık  

Yöntem 

Kapalı 

Yöntem 

Crank-

Nicolson 

Yöntemi 

Analitik 

Çözüm 

0.0 0.361560 0.362088 0.361824 0.361895 
0.1 0.394627 0.395203 0.394915 0.394901 
0.2 0.420950 0.421565 0.421258 0.421174 
0.3 0.440081 0.440724 0.440403 0.440267 
0.4 0.451692 0.452352 0.452022 0.451855 
0.5 0.455584 0.456250 0.455917 0.455740 
0.6 0.451692 0.452352 0.452022 0.451855 
0.7 0.440081 0.440724 0.440403 0.440267 
0.8 0.420950 0.421565 0.421258 0.421174 
0.9 0.394627 0.395203 0.394915 0.394901 
1.0 0.361560 0.362088 0.361824 0.361895 
Hata Normu     

1
e  0.000436 0.000878 0.000221  

2L  0.000226 0.000412 0.000120  

∞
L  0.000335 0.000510 0.000177  
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