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Onur Sozii

Yiiksek Lisans Tezi olarak sundugum “Klasik Sonlu Fark Yontemleri ve
Uygulamalart” baglhikli bu ¢alismanin bilimsel ahlak ve geleneklere aykin diisecek bir
yardima basvurmaksizin tarafimdan yazildigim1 ve yararlandigim biitiin kaynaklarin,
hem metin i¢inde hem de kaynakcada yontemine uygun bicimde gosterilenlerden

olustugunu belirtir, bunu onurumla dogrularim.
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OZET
Yiiksek Lisans Tezi

KLASIK SONLU FARK YONTEMLERi VE UYGULAMALARI

BERNA BULUT
Inonii Universitesi
Fen Bilimleri Enstitiisii
Matematik Anabilim Dali
79+vi sayfa
2007

Tez Danigman : Prof. Dr. Selcuk KUTLUAY

Bes boliimden olusan bu caligmanin ilk boliimiinde sonraki boliimlerde
kullanilacak olan temel tanim ve teoremler verilmistir.

Ikinci boliimde calismanin ana konusu olan klasik sonlu fark yontemlerinden
acik, kapali ve Crank-Nicolson sonlu fark yaklagimlar farkli sinir sartlari ile verilen 1s1
iletim denklemi icin incelenmistir.

Uciincii boliimde farkli simir sartlarindaki 1s1 iletim denklemi icin acik, kapali ve
Crank-Nicolson sonlu fark yaklasimlarinin kararlilik analizleri matris ve von-Neumann
yontemleriyle yapilmistir.

Dordiincii boliimde 1s1 iletim probleminin agik, kapali ve Crank-Nicolson sonlu
fark yaklasimlarinin lokal kesme hatalar1 incelenmistir.

Besinci boliimde farkli simir sartlarindaki 1s1 iletim problemi igin model
problemler ele alinarak bu model problemlerin agik, kapali ve Crank-Nicolson sonlu
fark yaklagimlarmin matris ve Von-Neumann yontemleriyle kararlilik analizleri
incelenmis, elde edilen fark yaklagimlarinin niimerik ¢oziimleri ve analitik ¢oziimleri

karsilagtirmalr olarak tablolar halinde sunulmustur.

ANAHTAR KELIMELER: Ac¢ik Yontem, Kapali Yontem, Crank-Nicolson

Yontemi, Kararlilik Analizi, Lokal Kesme Hatasi.



ABSTRACT
MSec. Thesis

CLASSICAL FINITE DIFFERENCE METHODS AND THEIR APPLICATIONS

BERNA BULUT
Inonii University
Graduate School of Natural and Applied Sciences
Department of Mathematics
79+vi pages
2007

Supervisor: Prof. Dr. Selguk KUTLUAY

This study consists of five chapters. Chapter 1 aims to explain some basic
concepts and theorems which are used in the latter chapters.

The main issue of Chapter 2 includes explicit, implicit and Crank-Nicolson
methods — which are among classical finite difference methods — have been examined
for heat conduction equation with different boundary conditions.

In Chapter 3, for heat conduction equation with different boundary conditions,
stability analyses of explicit, implicit and Crank-Nicolson approaches were carried out
by using Matrix and von-Neumann methods.

In Chapter 4, an examination of the local truncation errors of explicit, implicit
and Crank-Nicolson approaches of heat conduction problem was carried out.

In Chapter 5, model problems were discussed for heat conduction problem with
different boundary conditions. Stability analysis of these approaches were conducted
with reference to Matrix and Von-Neumann methods and were examined for explicit,
implicit and Crank-Nicolson finite difference approaches on these model problems.

Numerical solutions and analytical solutions were presented as tables.

KEYWORDS: Explicit Method, Implicit Method, Crank-Nicolson Method,

Stability Analysis, Local Truncation Error.
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1. TEMEL TANIM VE TEOREMLER

Bu boliimde daha sonraki boliimlerde kullanilan bazi temel tamim ve teoremler

verilmistir.

Tamm 1.1: m ve n pozitif tamsayilar ve i=11)m, j=1(Dn olmak izere a,

sayilarinin olusturdugu

a;;p 4p 4y a,

Ay Gy Ay s,

A=|ay, ay ay as,
_aml amZ am3 ot amn B

bicimindeki sayilar tablosuna matris denir. Burada m sayisina matrisin satir sayisi, n
sayisina da matrisin siitun (kolon) sayist denir. m satirli ve n siitunlu matrise mXxn
boyutlu ya da mXxn tiirlinden bir matris denir. Matrisler [ ] veya () sembollerinden
biri ile gosterilir.

i=1()m, j=1(1)n olmak iizere mXn tirlinden bir A matrisi kisaca
A= lal.j me” biciminde gosterilir. Bir matriste /. satirla j. siitunun kesistigi yerdeki a;
sayisina matrisin (i, j). terimi adi verilir. Elemanlar: reel say1 olan mXxn boyutundaki

matrislerin kiimesi /R ile, elemanlar1 kompleks sayilar olan matrislerin kiimesi ise ¢

ile gosterilir [1].

Tamm 1.2: Satir ve siitun sayilar1 aym1 (m=mn) olan bir matrise kare matris denir.

a,,d,,...,a, clemanlarina da kare matrisin kosegen elemanlari, bu elemanlarin

> nn

bulundugu kosegene ise matrisin esas kdsegeni (esas diyagonali) veya kisaca kosegeni

denir [1].



Tanmm 1.3: Esas kosegen iizerindeki elemanlar sifirdan farkli, diger biitiin elemanlart

sifir olan bir kare matrise kosegen matris denir [1].

Tammm 1.4: k bir sabit say1 olmak lizere a,, =a,, =...=a,, =k olan bir kdsegen

nn

matrise skaler matris denir [1].

Tamm 1.5: Kosegen iizerindeki elemanlar1 1 ve kosegen disindaki elemanlart 0 olan

nxn boyutlu bir matrise n mertebeden birim matris denir ve I, ile gosterilir [1].

Tammm 1.6: A, mXxn boyutunda bir matris olmak iizere (j,i) bileseni A matrisinin
(i, j) bileseni olan bir nxm boyutundaki matrise A matrisinin transpozu denir ve A"

ile gosterilir. Yani A= laijJ ise A" = [aﬁ] dir [1].

Tanmm 1.7: Transpozu kendisine esit olan bir kare matrise simetrik matris denir. Bagka

bir ifadeyle A= l%-J olmak iizere A" = A ise A matrisine simetriktir denir [1].

Tanm 1.8: A= lal.jJ olmak iizere A" =—A ise A matrisine anti-simetrik matris denir

[1].

Tanim 1.9: Bir A matrisinin elemanlarindan bazilar1 (veya hepsi) kompleks sayilar ise,

bu sayilarin esleniklerini yazarak elde edilen matrise A matrisinin eslenigi veya

konjugesi denir ve A ile gosterilir [1].

Tammm 1.10: A7 = A ise A matrisine Hermitian matris, A” =—A ise A matrisine anti

hermitian matris denir [1].

Tamm 1.11: A ve B matrisleri AB=1 ve BA =1 bagmtlarin1 saglayan birer nxn

boyutunda matrisler ise B matrisine A matrisinin tersi (inversi) denir ve A~ ile

gosterilir [1]



Tamm 1.12: A€ IR} ve A€ IR olmak lizere P(A1)=det(A—AI) olarak tanimlanan P

polinomuna A matrisinin karakteristik polinomu denir [2].

Tamm 1.13: P, A< IR matrisin karakteristik polinomu ise P polinomunun koklerine

A matrisinin 6zdegerleri veya karakteristik degerleri denir [2].

Tanmim 1.14: Bir A€ IR} matrisinin 6zdegeri A olmak iizere sifirdan farkli xe IR"
vektorii igin (A—A7,)x=0 ozelligini saglayan x vektorine A matrisinin A

0zdegerine karsilik gelen 6zvektorii veya karakteristik vektorii denir [2].

Tamm 1.15: Bir Ae IR’ matrisinin A, (i =1(1)n) 6zdegerlerinin en biiyligiine A
matrisinin spektral yaricapt denir ve p(A) ile gosterilir. Bu tamima gore

p(A) =max | 4, | dir [3].

Tanmm 1.16: xe IR" olmak iizere

I I:IR" — IR"

x| 0 =[]

n

olarak tanmimlanan doniigiime /R" {izerinde bir vektor normu denir. Her x,ye IR" ve

c € IR ig¢in vektér normu

i. x#0isellxlI>0, x=01isellxlI=0,
ii.  lexli=lclix,

. x4+ ylI<lxl+yll

ozelliklerine sahiptir [2].

Tanmm 1.17: Ae IR olmak iizere

I I:IR" — IR*
ASl I (A) =l All

olarak tanimlanan doniisiime /R iizerinde bir matris normu denir. Her A,Be€ IR ve

1 n
c € IR icin matris normu

. A#0isellAlI>0, A=0ise llAl=0,



ii.  llcAll=lcl A,
iii. WA+BISIAI+IBI,
iv.  ITABI<IAIIBI

ozelliklerine sahiptir [2].

Ozel olarak IlAll,, IIAll,ve IlAll_ ile gosterilen normlar asagidaki gibi
tanimlanir.
||A||1:{§%§;|aij|,
Il All,=+/p(A" A),
||A||w=ﬁ22§;|aij|.

Tamm 1.18: £, bir x noktasinin komsulugunda tanimlanmis bir fonksiyon olsun.

lim f(x+AX)_f()C) ,
Ax—0 Ax

limiti veya u = x + Ax almakla elde edilen

lim f)— f(x)

u—x u—Xx

limiti mevcut ise bu limit degerine f fonksiyonunun x noktasindaki tiirevi denir ve

f'(x) veya ;ll ile gosterilir.
X

Tamm 1.19: f, x = a noktasinda n-inci mertebeden tiirevlenebilen bir fonksiyon olsun.

pla)= f(a), p'(a)= f'(a), ... ,p"(a)= f"(a) sartim gercekleyen ve derecesi n den

biiyiik olmayan bir tek p polinomu vardir. p(x) = Z fH(a)(x —a)* formiilii ile verilen
k=0

bu p polinomuna f fonksiyonu tarafindan x=a noktasinda iiretilen n-inci dereceden

Taylor polinomu denir [4].



Tanmm 1.20: f fonksiyonu a noktasimi igeren bir agik aralikta her mertebeden

= [ (a)

tirevlenebilir olsun. Z I
k=0 .

(x—a)* serisine a noktasinda f fonksiyonu tarafindan

iiretilen Taylor Serisi denir [4].

Teorem 1.1 (Birinci Gerschgorin Teoremi): Bir Ae IR) matrisin 6zdegerlerinin

modiiliiniin en bilyiigii matrisin herhangi bir satin veya herhangi bir kolonu {iizerinde
bulunan elemanlarimin modiiliiniin en bilyligiinii gecemez. Bagka bir ifadeyle

p(A)ZIAIl, veya p(A)<IlAIll_ dir [3].

Ispat: A, AzlaijJnXiz matrisinin 6zdegeri ve x, =(v,,v,,...,v,) de A, Ozdegerine
karsihk gelen 6zvektor olsun. Ozdeger ve ozvektor tammindan Ax, =A.x, (x, #0)

esitligi acik olarak

a, v, +a,v, +..+a,v, =A4v,

Ay V) +AyyVy +.oota,,v, =4V,
a,v,+a,v, +..+a,v, =Av,

a,v,+a,v, +..+a,v, =Av,
seklinde yazilabilir.

v, x; Ozvektoriiniin mutlak degerce en biiylik bileseni olsun. Yukaridaki

R

sistemin s-inci denkleminden

olarak yazilabilir. Buradan

Yy Y, Vo
ay|— |ta,| — |+...+a,| —
vs vs vS

|’1i| =




vn

1%

R

Va2

+

+..+

asZ a

sn

v
< |asl| —L
vS

5

bulunur. v, =mlax|vl.| olarak secildiginden |V,- /v,

<1 (@(=11)n) olup yukaridaki

esitsizlik

4] <

+

+..+

asl asZ asn ’ l: l(l)n
olur. Bu esitsizlik her A, icin saglandigindan 6zellikle | 4, |=max | A, | i¢in de saglanir.

Boylece p(A) <Il All_ elde edilir.
Bir A matrisinin 6zdegerleri ile transpozunun Ozdegerleri aym oldugundan,

yukaridaki ispata benzer sekilde p(A) <Il All, oldugu kolayca gosterilebilir.

Teorem 1.2 (Gerschgorin Cember Teoremi veya Brauer Teoremi): A= lal.j Jm
matrisinin a, kOsegen elemam hari¢ s-inci sira iizerinde bulunan elemanlarinin
modiilleri toplam1 P, olsun. Bu takdirde A matrisinin her bir 6zdegeri |A—a ISP,

s

cemberinin en az birinin i¢inde veya sinir1 tizerinde bulunur [3].

Ispat: A= [al.jon matrisinin 6zdegeri A,, ve bu Ozdegere karsilik gelen o6zvektor

x; =(v,,v,,...,v,)olsun. v, de x, Ozvektoriiniin mutlak degerce en biiyiik bileseni

olsun. Teorem 1.1’den

oldugu bilinmektedir. Buradan

1% v 1%
a,| L |+a,| =+ |+..4+0+..+a,| =
VS VS VS

oldugu goriilir. Bu esitlik mutlak deger tamimi ve |V,- /vS|S1 (i=1Dn) ozelligi

|/1i - ass

kullanilirsa



lel Yn

|4 —a, +o A0+ +

v
< |asl | — + |a‘§2|
1%

2
a sn
v s

5 5

olarak  yazilabilir. P =la,l+la,|+.+la,  I+la ., 1+.1a,| oldugundan,

ss-1 s+l

| A, —a, 1< P, oldugu agik olarak goriiliir ve bdylece ispat tamamlanmis olur.

Teorem 1.3: a,b,c€ IR ve bc >0 olmak iizere

a b
c a b
c a b
A=
c a b
c a

olarak verilen Ae IR, matrisinin A 6zdegerleri

ST

A, = a+2+/bc cos
‘ N +1

, s=1(DN

dir [3].

ispat: A, A matrisinin 6zdegeri ve x =(v,,v,,...,v,) de A Ozdegerine karsilik gelen

Ozvektor olsun. x # 0olmak tizere 6zdeger ve Ozvektor tanimindan Ax = Ax dir. Bu

sistem agik olarak

(a—Ayw, +bv, =0

v, +(a—A)yv, +bv, =0

v, +(a=Ay, +bv,, =0

vy, +(a-A)yv, =0



bi¢ciminde yazlabilir. Eger v,=v,,, =0 olarak tamimlanirsa yukaridaki N tane

denklem
v, +@a—Ay,+bv,, =0, j=1(HN (1.1)
denklemiyle temsil edilebilir. Bu denklem bir fark denklemi olup karakteristik denklemi
c+(a-Am+bm*> =0 (1.2)

dir. Daha sonra goriilecegi iizere bu denklemin farkli iki kokii vardir. Bu durum goz

Oniine alinirsa (1.1) fark denkleminin ¢6ziimii, B ve C keyfi sabitler olmak iizere,
v, = Bm/ +Cm}

seklindedir. Bu ¢oziimde v, =v,,, =0 sartlar1 kullanilirsa
B+C=0

ve
Bm' +Cm)* =0

bulunur. Buradan

N+1
[ﬁJ —1=e™, s=1)N, i=+~1

veya

m .
_l — elZSl[/(N-H) (1'3)
n,

elde edilir. (1.2) denkleminin koklerinin ¢arpimi

1.4)



dir. (1.3) ve (1.4) denklemlerinden m, ve m, sirasiyla

1

)2
ml —_| = €””/(N+1)
b

1

ey
m2 —_| = e is/(N+1)
b

olarak bulunur. (1.2) denkleminin koklerinin toplami1
m,+m, =(A-a)lb
olup buradan A4 6zdegeri

A=a+b(m, +m,)

veya
1= a+b\/§(eis7r/(N+l) +e—is7r/(N+l))
b
olarak elde edilir. O halde A matrisinin N tane 6zdegeri

A =a+2+bc cos 7
‘ N +1

, s =11N

seklindedir.
Kolayca gosterilebilir ki (1.2) denkleminin kokleri esit olamaz. Eger (1.2)

denkleminin kokleri esit olsaydi (1.1) denkleminin ¢oziimii

v, = (B+ Cj)mlj

olurdu. v, =v,,, =0 oldugundan B=C =0 ve dolayisiyla v=0 olurdu. Bu ise

0zdeger ve 0zvektor tanimina aykiridir.



2. KLASIK SONLU FARK YONTEMLERI

Sonlu fark yontemleri, lineer ve lineer olmayan bir¢cok kismi diferansiyel
denklemin ¢oziimiinde yaygin olarak kullanilmaktadir. Bir kismi diferansiyel denklemin
sonlu fark yaklagimi bulunurken oncelikle problemin ¢o6ziim bolgesi Sekil 2.1°de
gosterildigi gibi genellikle dikdortgensel sekiller iceren kafeslere boliiniir ve problemin
yaklasik ¢oziimil her bir kafesin diigiim (mesh veya grid) noktalar tizerinde hesaplanir.
Daha sonra diferansiyel denklemdeki tiirevler ve sinir sartlari yerine Taylor serisi
yardimiyla elde edilen uygun sonlu fark yaklasimlar1 yazilir. BoOylece diferansiyel
denklemin ¢6ziimii problemi, fark denklemlerinden olusan lineer veya non-lineer bir
cebirsel denklem sisteminin ¢Oziimii problemine indirgenir. Elde edilen cebirsel

denklem sistemi direkt veya iteratif yontemlerden biri yardimiyla kolayca coziiliir [5].

A

t
m,n+1
P(mh,nk)

nk

m-1, n m, n m+1,n

m, n-1

A

k

v g
< h> mh X

Sekil 2.1. Diigiim Noktalarinin Gosterimi.

U, x ve t degiskenlerine bagli bir fonksiyon olsun. Ax (=h), x yOniinde
konum adim uzunlugu, At (=k), t yoniinde zaman adim uzunlugu olmak iizere, konum

ve zaman koordinatlar x ve ¢ sirasiyla
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x=x, =mAx=mh, m=01)M , | =Mh

t=t, =nAt=nk, n=01)N

olarak gosterilir.

Temsili bir P(mh,nk) digiim noktas1 lizerinde U fonksiyonunun noktasal
degeri, U, =U(x,t) =U(mAx, nAt) =U, ile gosterilir. U fonksiyonunun birinci ve

ikinci mertebeden tiirevlerine sonlu fark yaklasimlari, Taylor serisi yardimiyla

aU Ull . _Ull
=== 4 O(h 2.1
o P (h) 2.1
U Un—U:ll +0(h) (2.2)
ox h '
aU U12+1 UI:IL 1 + O(h ) (2 3)
ox 2h '
aU Un+l Un
=——+0(k 2.4
= P (k) (2.4)
aU Un Un—l
=—m " L0k 25
= . (k) (2.5)
a U Un _2Un 1 Un )
m+ m+ O /’l 26
R 2 (h) (2.6)
U _Up,=2Up, +U,
s L ~+0(h 2.7
" e (h) 2.7

o’U U!,-2U!'+U",
= ml 4+ O(h? 2.8
" e (h™) (2.8)

olarak bulunur. Burada “ O ’; sonsuz terimli bir esitligin sonlu bir terimde kesildigini,
O(h) terimi hatanin 42 — 0 iken 4 ile orantili oldugunu gosterir ve O(h) terimine kesme
hatast denir. O(k) ise hatanin k& mertebesinde oldugunu ve bdylece k ile orantili olarak
azalacagim gostermektedir (2.1), (2.2) ve (2.3) ile verilen, x degiskenine gore birinci
mertebeden tiirev yaklasimlarina sirasiyla iki nokta ileri, geri ve iic nokta merkezi fark
formiilleri denir. Benzer sekilde (2.4) ve (2.5) ile verilen, ¢t degiskenine gbre birinci

mertebeden tiirev yaklagimlarina sirasiyla ileri ve geri fark formiilleri denir. (2.6), (2.7)
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ve (2.8) ile verilen, x degiskenine gore ikinci mertebeden tiirev yaklasimlarina ise
strastyla ii¢ nokta ileri, geri ve merkezi fark formiilleri denir [3].
Verilen bir diferansiyel denklemi sonlu fark formunda ifade etmek icin en ¢ok

kullanilan yontemler sunlardir:
e Acik (Explicit) Sonlu Fark Yontemi
e Kapali (Implicit) Sonlu Fark Yontemi

e (Crank-Nicolson Sonlu Fark Yontemi

Bu yontemler klasik sonlu fark yontemleri olarak bilinir.

Bu calismada
oU J°U
—=a ,08x<1,1>0 2.9
ot ox? 9
181 iletim denklemi
U,1)=f,(t
0.1)=A( )} (Dirichlet sinir sartlar) (2.10)
U(l,1) = f,(1)
oUu
—k, a—(OJ) =g,()
* (Neumann sinir sartlar) (2.11)

oU
klg(l,l) =g,()

k. 2% 0,0+ mU0,0) = h (1)
ox

U (Robbin sinir sartlari) (2.12)
ky,—(,t)+m,U(l,t)=h,(1)
ox
olarak verilen ii¢ tip sinir sart1 ve
Ux,0)=f(x) 0<x<l (2.13)
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baslangi¢ sart1 icin gz Oniine alinacaktir. Burada f,, f,, g,. g,, h,, h, fonksiyonlar
¢ nin bilinen fonksiyonlar1 olup k,, k,, m,, m, ve & sabit sayilardir.

Bundan sonra (2.9), (2.10) ve (2.13) denklemleriyle verilen probleme Dirichlet
siir sartli, (2.9), (2.11) ve (2.13) denklemleriyle verilen probleme Neumann sinir sarth
ve (2.9), (2.12) ve (2.13) denklemleriyle verilen probleme de Robbin sinir sartli 1s1

iletim problemi denilecektir.

2.1. Acik Sonlu Fark Yontemi

(2.9) denklemindeki 0U/dt ve 0°U/ox* tiirevleri yerine (2.5) ve (2.6)
denklemleriyle verilen sonlu fark yaklasimlar1 hatalar ihmal edilerek yazilirsa 1s1 iletim

denkleminin acik sonlu fark yaklasimi

Un+1_Un Un _2Un+Un
m k mo _ o m—1 hzm m+1 (214)

veya

1
U::l+ — rUﬂ

m—1

+A=-2nU} +rU}, , m=0OM , n=001)N (2.15)

m+l ?

olur. Burada r=ak/h*> olup hatanin mertebesinin O(k)+O(h*) oldugu agik¢a

n+l
m

goriilir. Eger ¢, zaman adiminda U] degerleri verilirse 7,,, zaman adiminda U

degerleri (2.15) denkleminden kolayca bulunur [3].

e Dirichlet Sumir Sartl Ist Iletim Problemi

(2.9) denkleminin sinir sartlarinin (2.10) ile verilen Dirichlet sinir sartlar1 olmasi
durumunda, r = k/h* olmak iizere, 1s1 iletim probleminin agik sonlu fark yaklagimi

1
U::l+ — rUﬂ

m—1

+(1=20U" +rU", s m=1OM -1, n=0)N  (2.16)

m+l *

13



n+l
m

dir. ¢, zaman adiminda U degerleri verilirse ¢,,, zaman adiminda U] degerleri

m+

(2.16) denkleminden kolayca bulunur.

e Neumann Suur Sarth Isi Iletim Problemi

Simdi de (2.9) 1s1 iletim denklemi (2.11) Neumann sinir sartlarina bagli olarak
gdz Oniine alinacaktir. (2.15) fark denklemi, m=0(x=0) ve m=M (x=1) igin
problemin ¢oziim bolgesi icine diismeyen (—1,17) ve (M +1,n) diigiim noktalarinda U ®
ve U, degerlerini icermektedir. (-1,n) ve (M +1,n) digim noktalarina hayali
noktalar, U", ve U,,,, degerlerine de hayali degerler ad1 verilir. Bu hayali degerler
(2.11) sinir sartlarindaki U tiirevi yerine (2.3) ile verilen merkezi fark yaklagiminin

kullanilmasiyla yok edilebilir. Boylece

Uit =2ru! +(1-2nU; +%gl(t)
1
ve
Uit =2ru},_ +(1-2rU;}, + %gz(t)

1

esitlikleri bulunur. O halde Neumann sinir sarth 1s1 iletim probleminin acgik sonlu fark

yaklagimi
U;+l =2rU  +(1-2r)U] +%gl(t), m=0 (2.17)
1
Ut =rU!  +(0-20U" +rU" ,, m=11OM -1 (2.18)
Ut =2rU!  +1-2r)U" +%g2(t), m=M (2.19)

1

olarak elde edilir.
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e Robbin Sumr Sartl Ist Iletim Problemi

Burada (2.9) 1s1 iletim denklemi (2.12) ile verilen Robbin sinir sartlarina baglh
olarak g6z oniine alindi. (2.15) fark denkleminde m =0(x=0) ve m=M (x=1) icin
ortaya ¢ikan U" ve U,,,, hayali degerleri (2.12) siur sartlarindaki U tiirevi yerine

(2.3) ile verilen merkezi fark yaklasiminin kullanilmasiyla sirasiyla

n n 2h n
U =U! +k—(hl ) -mU”) (2.20)

1

" n 2h .
Uya=Uy, +k_(h2(t)_m2UM) (2.21)

2

olarak elde edilir. Bu esitlikler m=0 ve m=M i¢in (2.15) fark denkleminde
kullanilarak U", ve U,,,, hayali degerleri yok edilebilir. Boylece Robbin sinir sartlar

ile verilen 1s1 iletim probleminin sonlu fark yaklagimi herhangi bir n-inci zaman

adiminda

2rh

Ut =1-2rB)U +2rU" +k—h1 ), m=0 (2.22)
1
Ut =rU!  +(0-20U" +rU" ,, m=11OM -1 (2.23)
n+l n n 2rh
Ut =2rU"  +(1-2r)U" + k—h2 ), m=M (2.24)

2

olarak bulunur. Burada g, =1+mh/k, ve B, =1+m,h/k, dir[6].

2.2. Kapali Sonlu Fark Yontemi

Bu yontemde (2.9) 1s1 iletim denklemindeki 0°U/dx* yerine n+1-inci zaman

2 n+l _2 n+l + n+l
% [2] _Un (2’2” U +O0(h*) merkezi fark formiilii ve 0U/dt tiirevi
x

yerine (2.4) ile verilen ileri fark formiilii hatalar ihmal edilerek yazilirsa 1s1 iletim

adimindaki

denkleminin kapali sonlu fark yaklagimi
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n+l n n+l 2 n+l + n+l
Um Um — aUm—l Um Um+1 (225)
k h?

veya

U™ + (14200 —rU =U"

m—1 m+1 m?

m=0)M , n=0(0)N (2.26)

dir. Burada r =« k/h* olup hatanin mertebesinin O(k)+O(h*) oldugu acikca goriiliir
[3].

e Dirichlet Sumir Sartl Is Iletim Problemi

Bu problem igin herhangi bir n-inci zaman adimindaki U™ ve U} degerleri
(2.10) sinir sartlarindan bilinen degerler oldugundan (2.9) 1s1 iletim denkleminin kapali

sonlu fark yaklagimi, r =« k/ h? olmak iizere,

U™ +(1+20U —rUM =U"

m—1 m+1 m?

m=10OM -1, n=0ON  (2.27)

dir.

e Neumann Sumr Sarth Isi Iletim Problemi

(2.11) ile verilen Neumann sinir sartlarinda oU/dx tiirevi yerine n+1-inci

zaman adimindaki

U n+l U n+l
aa_l)f — m+1 2h m—1 (228)

merkezi fark formiilii yazilirsa sirastyla

Url+l _ Url+l
1

_k -1 = t
1 2 8, (1)
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n+l n+l
UMH B UM—I

ky 0 =8,(1)
elde edilir. Bu esitlikler sirasiyla
2h
UizlJrl :Ull1+l+ gl(t)
kl
ve
2hg,(t
Uzl:;:l = U:j—ll + iz( )
1

olarak yazilabilirler. Goriildiigii gibi bu son esitliklerde problemin ¢oziim bolgesi i¢ine
diismeyen U"" ve U} hayali degerleri bulunmaktadir. Bu hayali degerler m =0 ve

m=M igin (2.26) fark yaklasgtminin kullanilmasiyla yok edilebilir. Boylece Neumann

sinir sartli 11 iletim probleminin kapali sonlu fark yaklasima,

A+2nU™ 2,0 —% g, =U", m=0 (2.29)

m+1 m?
1

—rUM™M +(+20U —rUM =U]

m—1 m+1 m?

m=11)M -1 (2.30)

—2rU™ + 1+ 20U —%gz(t):U" m=M (2.31)

m—1 m?
1

olarak bulunur.

e Robbin Sumr Sartl Ist Iletim Problemi

(2.12) ile verilen Robbin sinir sartlarinda dU/dx tiirevi yerine (2.28) ile verilen

merkezi fark yaklasimi yazilirsa, sol sinir iizerinde m =0(x=0) ve sag smur {izerinde

m = M (x=1) olacagindan sirasiyla

n+l n+l
U1 — U—l

—k,
2h

+m U = h () (2.32)
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n+l n+l
UM+1 B UM—I

ky = S U = (1) (2.33)
veya
n+l n+l h n+l
Ui =0, +2k_(hl (H-mU, ) (2.34)
1
n+l n+l h n+l
Uiy = U+ 22 (0 - mU) (2.35)

2

hayali degerleri elde edilir. Bu degerler m =0 ve m =M icin (2.26) fark yaklagiminin
kullanilmasiyla yok edilebilir. Boylece Robbin sinir sartli 1s1 iletim probleminin kapali

sonlu fark yaklasimi herhangi bir # -inci zaman adimi igin

(1+2rB U 27U —zk—rhh1 ®O=U", m=0 (2.36)
1

— U™ +(1+2r) U UM =U", m=1DM —1 (2.37)

22U +(L+ 218, U —%hm) =U", m=M (2.38)

2

olarak yazilabilir.

2.3. Crank-Nicolson Sonlu Fark Yontemi

Bu yontem John Crank ve Phyllis Nicolson tarafindan 6nerilen modifiye edilmis
bir kapali yontemdir [3]. Bu yontem sirasiyla (2.15) ve (2.26) denklemleriyle verilen
acik ve kapali sonlu fark yaklasimlarinin sag taraflarinin averajlarinin alinmasiyla elde
edilmistir.

(2.9) 1s1iletim denkleminin Crank- Nicolson sonlu fark yaklasimi

n+l n
Um - Um
k

n+l 2 n+l + n+l n 2 n + n
Umfl Ulzn Um+1 + Umfl (]2’" Um“ (2.39)
h h

1
=—q
2
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dir. Bu denklem m =0(I)M ve n=0(1)N igin

—rUM +Q+20UM —rUM =rU!  +Q2=-21U" +rU!

m—1 m+1 m+1

(2.40)

olarak yazilabilir [7].

e Dirichlet Sumir Sartl Is: Iletim Problemi

Bu 1s1 iletim problemi i¢in herhangi bir n-inci ve n+1-inci zaman
adimlarindaki U/, U}, ve U;", U;" degerleri sirasiyla (2.10) smir sartlarindan
bilinen degerler oldugundan (2.9) 1s1 iletim denkleminin Crank-Nicolson sonlu fark

yaklasimi, r = k/h* olmak iizere, m =1(1)M —1 ve n=0(1)N igin

U™ +Q+2nUM™M —rUM =rU"

m—1 m+l m—1

+Q2=-2rU +rU;

m+1

(2.41)

seklindedir.

o Neumann Swumwr Sarth Isi Iletim Problemi

(2.11) ile verilen Neumann sinir sartlarinda oU/dx tiirevi yerine n -inci zaman

adimindaki (2.3) ve n+1-inci zaman adimindaki (2.28) merkezi fark formiilleri

yazilirsa sirasiyla

u'-u’
—k ——" > L=g,(1) (2.42)
Un+l _Un+l
—k, # =8,(0) (2.43)
U” _U”
kl w = gz(l) (244)
Un+l _Un+l
ke = =g, (1) (2.45)

2h
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elde edilir. Goriildiigii gibi bu son esitliklerde problemin ¢6ziim bolgesi i¢ine diismeyen
v, utt, upy.,, ve Uyt hayali degerleri bulunmaktadir. Bu hayali degerler m=0 ve
m=M icin (2.40) fark denklemi ve (2.42), (2.43), (2.44) ve (2.45) denklemleri

kullanilarak yok edilebilir. Boylece Neumann sarth 1s1 iletim probleminin Crank-

Nicolson sonlu fark yaklasim

1y hgkl O (2.46)

1

Q+2rUM =2ruMt =2-2nU" +2rU"

m+1 m+1

—rU+ Q420U = U =1U,,

m—1 m+1 m—1

+Q2-2rVu +ru;

m+1?

m=1OM -1 (2.47)

hg, (1
+(2=21U" +4r gkz( ) m=M (2.48)

1

—2rUM™ + 2+ 20U =2rU"

m—1

olarak elde edilir.

e Robbin Sumir Sartl Ist Iletim Problemi

(2.12) ile verilen Robbin sinir sartlarinda oU/dx tiirevi yerine n-inci zaman

adimindaki (2.3) ve n+1-inci zaman adimindaki (2.28) merkezi fark formiilleri, sol

sinir iizerinde m = 0(x=0) ve sag sinir tizerinde m = M (x=1) olacagindan sirasiyla

n n
U1 -U 1

—h = mUy =h @) (2.49)
Uy, —-U,
k, M+12h M4, U = hy(f) (2.50)
n+l n+l
~k, %WU{J“ = hy (1) 2.51)
ntl _ yprntl
k2 UM+12hUM_1 _l_sz[;;—l — /’l2 (l) (252)

elde edilir. Bu yaklasimlar problemin c¢oziim bolgesi icine diismeyen U", U”",
U} . ve Ul hayali degerlerini icermektedir. Bu hayali degerler m =0 ve m =M igin

(2.40) fark denklemi ve (2.49), (2.50), (2.51) ve (2.52) denklemleri kullanilarak yok
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edilebilir. Boylece Robbin sinir sartli 1s1 iletim probleminin Crank-Nicolson sonlu fark

yaklagimi
n+l n+l n n hhl (t)
Q+2rp)U =2¢rU =R =-2rB)HU. +2rU ., +4r . m=0 (2.53)
1
UM +Q+20UM —rUM =rU!  +Q=-21U" +rU",,, m=1()M -1 (2.54)
n+l n+l n n th (t)
=2rU + Q+2rB)HUN =2rU)  +2-2rB,)U] +4r P m=M (2.55)

2

olarak bulunur [6].

2.4. Agirlikh Averaj Yaklasim

(2.9) ile verilen 1s1 iletim denkleminin agirlikli averaj yaklasimi, 0 <6 <1 olmak

uzere,

U, =u, R

T - /’l2 m+l

_2UIZ+1+Un+1)+(1_0)( "L-2U + U )} (2.56)

m—1 m+1 m—1

veya

—r@U™ +(1+2rO U™ —rOU™ =r(1-0)U"  +(1-2r(1-0)U" +r(1-O)U" ,
(2.57)

seklindedir. Burada (2.57) denklemi €=0 i¢in (2.9) 1s1 denkleminin agik sonlu fark

yaklagimini, =1 icin tamamen kapali sonlu fark yaklagimini, €=1/2 ic¢in Crank-

Nicolson sonlu fark yaklagimini verir [3].
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3. KLASIK SONLU FARK YONTEMLERI
ICIN KARARLILIK ANALIZLERI

Bu boliimde lineer denklemler icin kullanilan kararlilik analizlerinden, Matris ve
von Neumann (Fourier Seri) yontemleri verilecektir. Bu yontemlerden 6nce lokal kesme
hatasi, tutarlilik, kararlilik ve yakinsaklik tanimlar ile birlikte Lax’1in denklik teoremi

ispatsiz olarak verilecektir.

Tamm 3.1. (Lokal Kesme Hatasi): (m,n)-inci diigim noktasinda bir kismi
diferansiyel denkleme yaklasan fark denklemi, # fark denkleminin tam c¢oziimii olmak

tizere, F_ (u)=0 olarak gosterilsin. (m,n)-inci diigim noktasinda sonlu fark

yaklagiminin lokal kesme hatasi, U kismi diferansiyel denkleminin tam ¢oziimii olmak

lizere, T, , = F, ,(U) olarak tamimlanir.

Lokal kesme hatasi, sonlu fark yaklagiminin kismi diferansiyel denkleme ne
derece iyi yaklastigin1 veren bir ol¢iidiir. Taylor seri ag¢iliminin kullanilmasiyla lokal
kesme hatasi, & ve k degerlerinin kuvvetleri ve (mh, nk) noktasinda kismi diferansiyel

denkleminin tam ¢6ztimiiniin (U ) kismi tiirevleri cinsinden kolayca agiklanabilir [3].

Tanim 3.2. (Tutarhilik): 4,k — 0 oldugunda lokal kesme hatasinin limit degeri sifira

yaklasiyorsa fark denklemi tutarhidir. Yani Ilikmo T, , =0 ise fark denklemi tutarlidir

denir [3].

Tamm 3.3. (Kararhlik): Kismi diferansiyel denkleme karsilik gelen sonlu fark
denkleminin c¢Oziimiiniin kismi diferansiyel denkleminin coziimiine yakin kaldigi

durumlarda yontem kararlidir denir [3].

Tamm 3.4. (Yakinsakhik): u, fark denkleminin ve U ise kismi diferansiyel denklemin

tam ¢oziimleri olmak iizere lim u) =U] ise sonlu fark denkleminin ¢6ziimii kismi
h,k—=0

diferansiyel denklemin ¢6ziimiine yakinsar denir [3].
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Teorem 3.1. (Lax’mm Denklik Teoremi): Sonlu fark yonteminin yakinsak olmasi igin

gerek ve yeter sart yontemin tutarl ve kararli olmasidir [3].

3.1. Matris Yontemi

Bu yontem diferansiyel denklemi ve sinir sartlarini igeren problemin sonlu fark
gosterimine karsilik gelen matrisin 6zdegerlerindeki hata dagilimim inceler.

Pes pese gelen n ve (n+1)-inci zaman adimlarinda bir sonlu fark denklemi,
katsayilar sabitler olmak iizere,

b Un+l =c Un

m+1~" m+1 m—=1~" m-1

Ull

n+l

Ui +b U™ +b

m—1~" m-1

+c, U +c

m+1

seklinde olsun. Bu yaklasim m =0 ve m = M sinir degerleri biliniyorsa, m =1(1)M —1

i¢in agik bicimde
~ M+l 7] r Al rrn B n n+l
b, b, 11U € ) U, ] Uy —=0yU,
n+l n
b, b, b, U)j c c, ¢ U, 0
. . — . N + .
+1
by by, by, U, Cys Cy—o Cyo ||Uy, 0
+1
i by, bM_IJ U["';_ll i Cuo Cyg | U,{;_IJ _CMU;I —-b,,Uy, |
B U c u™ d,

olarak veya kapal bicimde BU """ =CU™ +d, olarak yazlabilir. Burada B ve C

(M —1) mertebeden matrisler, U"" elemanlann U;",U;",...,U", olan kolon

vektorii ve d, bilinen simr degerlerinden ve sifirlardan olusan kolon vektoriidiir. Bu

son esitlik B tersi mevcut bir matris ise A=B"'C ve f, =B™'d, olmak iizere,

Ut =au" + f, (3.1)

olarak ifade edilebilir.

U ", U vektoriine bir yaklagim ise
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umtr =AU + f, (3.2)

olarak yazilabilir. Hata
e, =U,-U,"

(n

olarak tanimlansin. ¢ =[e]' ... e}, ,]" olmak iizere (3.2) ifadesi (3.1) ifadesinden

cikartilirsa
€(n-*-l) — Ag(n) . n > 0
elde edilir. Buradan

-1 -2 0
€(n) _ Ag(n ) :Azg(n ) = = Ang( ) (33)

bulunur. Burada ¢ = [elo e ...e;)v_l}r baslangi¢ hatasidir.

Baslangic hatasi t =0 noktasinda biliniyor olsun. Bu durumda ¢ degerinin ne
zaman smirli oldugu aragtirllmalidir. Bunun i¢in A matrisinin reel, simetrik ve ranki

(M —=1) olan bir matris oldugu kabul edilmelidir. Bu durumda A matrisi
A, A, ..., A, , Ozdegerlerine karsihk gelen (M —1) tane lineer bagimsiz
W, W,,...,W,,, ozvektorlerine sahiptir. Boylece W (s =1(1)M —1) o6zvektorleri
IR™™" uzayinm bir bazin1 olustururlar. O halde boyu (M —1) olan herhangi bir vektor
W ozvektorlerinin bir lineer birlesimi olarak yazilabilir. e e IR oldugundan,

e vektorii, W | 6zvektorlerinin lineer birlesimi olarak

§ —395

M-1
0
e® = ZO" W
s=1

seklinde yazilabilir. (3.3) denkleminde ¢™ = A"¢'” oldugundan
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e =A"S a W (3.4)
dir. Ozdeger ve 6zvektdr tanimindan A"W = A'W _ oldugundan (3.4) esitligi

M-1
(n) — n
4 - : ‘,asﬂ“XWs
s=1

(n)

olur. Buradan acikca goriildigii gibi e degerinin n artarken simirh kalmasi,

max | A, 1<1 olmasi ile miimkiindiir [3].

s

3.1.1. Acik Sonlu Fark Yaklasitmimin Matris Yontemiyle Kararhhk Analizi
e Dirichlet Sur Sarth Ist Iletim Problemi

Dirichlet sinir sartli 1s1 iletim probleminin (2.16) denklemi ile verilen agik sonlu

fark yaklagimi herhangi bir 7 -inci zaman adiminda acik olarak

UMt =ru) +(1-2ru; +rU}
U =rU!"+(1-2nU% +rU}
: (3.5)
um =rU; _+0=2nU}_, +rU}
um o =ru; _,+10=-2nU},_ +rU;,

seklindedir.
(2.10) smur sartlarindan U ve U,, bilinen degerler oldugundan (3.5) denklem

sistemi matris formunda
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_U1n+1 7 —(1 _ 2}") r - _Uln
Ut r a-2r) r U)
U}’(;_lz r a1-2r) r U,
U;l4+—11 | ro (1-2r)] U

L i . L i
Q(VH»I) U(H)

veya kisaca
Q(lﬁ—l) — AQ(H) +Q

olarak yazilabilir. Teorem 1.3’den dolay1 A matrisinin 6zdegerleri

A =(1-2r)+ 2rcos(ﬂ} s=1HM —1
| M
veya

s

A =1—4rsin2(£j, s=1OM —1
oM

dir. Matris yonteminde kararlilik i¢cin max |4, <1 yani

1—4rsin® (ﬂj
2M

olmalidir. Buradan;

<1, s=1OM -1

—1S1—4rsin2(ﬂjﬁl
M
veya

-2< —4rsin2(ﬂj <0
2M
bulunur. Bu esitsizligin sag par¢asindan r >0 ve sol pargasindan ise
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veya

bulunur ve boylece kararlilik parametresi r<1/2 olarak elde edilir. Dolayisiyla 1s1
iletim denkleminin acik yontem ile elde edilen yaklasik ¢6ziimiiniin, ancak 0 <r <1/2

oldugunda denklemin analitik ¢6ziimiine yakinsayacagi beklenir [3].

e Neumann Sumir Sartl Isi Iletim Problemi

Neumann smir sartli 1s1 iletim probleminin (2.17), (2.18) ve (2.19)

denklemleriyle verilen agik sonlu fark yaklagimi acik matris formunda

- _ ) . _2rhg1 l
Us™ | [1-2r 2r 10, k,
UM ro 1-2r r U/

N - N S
Uit r 1-2r r U, 0

_U[:I/IH | L 2r 1-2r| Uy 2rhg,

g A un L kl i
b

olarak veya kapali matris formunda
U =AU" +b
olarak yazilabilir. Teorem 1.2’den A matrisinin 6zdegerleri

A =1+2r=2r =4 =1,

IA-(1-2r)|=2r =
( ) {ﬂz—l+2r:—2r =>4, =1-4r
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dir. Kararlilik i¢in | 4, I<1 (i =1, 2) olmalidir. Buradan

|4, 1<l den [1I<1 ve |4, I<1den 0<r<1/2

bulunur. Boylece Neumann smir sarthh 1s1 iletim probleminin agik sonlu fark

yaklagiminin ¢6ziimii ancak 0 <r <1/2 oldugunda analitik ¢6zlime yakinsar.

e Robbin Sumir Sartl Ist Iletim Problemi

Robbin smir sartli 1s1 iletim probleminin acik sonlu fark yaklasimi (2.22), (2.23)

ve (2.24) denklemleriyle verilen (M +1) bilinmeyenli (M +1)-tane lineer denklemden

olusan bir denklem sistemidir. Bu denklem sistemi matris formunda

[2rhh, |
Ul Ta-2r8) 2r 1ue 1 | &
UM r a-2r) r U’

D= . : + :
Ui r (1-2r) r U, 0
U,{'jl i 2r (1-2rp, )] U 2rhh,

y A T L k]
b

olarak veya kisaca

Q(VH'I) :AQ(”) +l_7

olarak yazilabilir. Teorem 1.2’den A matrisinin 6zdegerleri;

m=0 i¢in a, =1-2rf, ve P, =2r oldugundan,
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A —1+2rB =2r :Azl—Zrmk—lh,
1A-(1=2rB)1=2r = 1 ,
A —1+2rB =-2r = A, :1—2r(2+m—1}

1

m=11M -1 i¢in a, =1-2r ve P, =2r oldugundan,

A, —1+2r=2r =1, =1,

IA-(1-2r)=2r =
( ) {/14—1+2r:—2r => A, =1-4r,

m=M icin a, =1-2rf, ve P, =2r oldugundan,

myh

As=1+2rB, =2r =A,=1-2r
2

1A-(-2rB,)|=2r =

h
A —1+2rB, ==2r = A, :1—2r(2+m2 j

2

dir. Kararhlik i¢in 14 1<1 (i=1(1)6) olmaldir. Burada A, degerleri tek tek

incelendiginde,

|4, 1<1 den r <

mlh/kl ’

1

|2, 1<1den r<———— |
2+mh/k,

| 4,11 den 1111,

|4, 1<1 den rS%,

| A;1<1 den r <

mzh/kz
veE

1

1A 1<1 den r<—
2+m,h/k,
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bulunur. Boylece Robbin siir sartli 1s1 iletim probleminin agik sonlu fark

yaklasimindan elde edilecek c¢oziimler ancak < min ! , !
2+mh/k, 2+m,h/k,

oldugunda problemin analitik ¢6ziimiine yakinsar.

3.1.2. Kapali Sonlu Fark Yaklasimimin Matris Yontemiyle Kararlihk Analizi
e Dirichlet Stmir Sartl Is: Iletim Problemi

Dirichlet sir sartl 1s1 iletim probleminin kapali sonlu fark yaklasimi (2.16)
denklemi ile verilmistir. Bu sonlu fark yaklasimi herhangi bir n-inci zaman adiminda

acik olarak yazildiginda,

UM + 1+ 20U - Ut = U]
U™ +1+2nU —rUM =U]
: (3.6)
U+ q+2r)u, Ut =U;
—rUp, +A+2nUt Uit =u;,

denklem sistemi elde edilir. (3.6) denklem sistemi herhangi bir n-inci zaman adimi i¢in

matris formunda

_(1 + 2r) _ — _U1n+l T _Uln 7 —r:f1 —
—r (1+2r) —-r Ut U) 0
: =|: +|
-r (+2r) -r U1,\14+—12 U, 0
-r (1+2r)| |y U" rf,
L J1Yma ] Yy | LZ2J
A y o RO b

veya kisaca

AQ(”‘H) — Q(”) +l_)
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olarak yazilabilir. Bu matris formu, A tersi mevcut bir matris oldugundan,
U™ =a"U"+A"p

seklinde de ifade edilebilir. Burada kararlilik analizi i¢in A~ matrisinin 6zdegerlerine
ihtiyag vardir. A, A matrisinin dzdegerleri ise A~' matrisinin 6zdegerleri 1/ A4,

degeridir. A matrisinin 6zdegerleri Teorem 1.3’den

A =(1+2r)+2r cos(ﬂj  s=1OM -1
: M
olarak veya

A, =1+4rcos2(ﬂj, s=1)M -1
M

olarak bulunur. Béylece A~ matrisinin 6zdegerleri

1 ! ,s=1(OM -1

/15 1+ 4rcos? (s?[j
2M

dir. Matris yonteminde kararlilik icin gerek ve yeter sart max|1//15| <1 olmasidir.

Buradan

= ! <1, s=1(OM —1

1+ 4rcos’ (Mj
2M

bulunur. Bu esitsizlik Vr >0 icin saglandigindan yontem sartsiz kararlidir. Boylece

5

Dirichlet sinir sarth 1st iletim probleminin kapali yontem ile elde edilen yaklasik

¢cOziimii r kararlilik parametresinin herhangi bir se¢imi icin analitik ¢6ziime yakinsar.
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o Neumann Swunwr Sarth Isi Iletim Problemi

Neumann simir sartli 1s1 iletim probleminin kapali sonlu fark yaklasimi (2.29),

(2.30) ve (2.31) denklemleriyle verilen (M +1) bilinmeyenli (M +1)-tane lineer

denklemden olusan bir denklem sistemidir. Bu denklem sistemi matris bigciminde

~ o . _2rhg1 i
425 —2r ug™ | U k,
-r 1+2r —r um U/ 0

-r 1+2r —-r U;I“l U, , 0

— n+l n
i 2r 1+42r] _UM | _UM | 2rhg,
A U(HH) U(n) L kl n
N N b

olarak veya kisaca

AQ(”‘H) — Q(”) +l_7

olarak yazilabilir. Bu matris formu A tersi mevcut bir matris oldugundan,
U =A"U" +A"b
seklinde de ifade edilebilir. Teorem 1.2°den A matrisinin 6zdegerleri

A =1=-2r=2r= A4 =1+4r,
A —=1-2r==2r=1, =1

|/1—(1+2r)|:2r3{
olarak bulunur. A matrisinin dzdegerleri A, ise A~ matrisinin 6zdegerleri 1/,
degerleridir. O halde kararlilik i¢in |1/li| <1 (i=12)olmahdir. Buradan kararlilik

parametresi » >0 olarak bulunur. Boylece Neumann sinir sarth 1s1 iletim probleminin
kapali sonlu fark yaklasimi ile elde edilen yaklasik ¢oziimii r kararlilik parametresinin
herhangi bir se¢imi i¢in problemin analitik ¢6ziimiine yakinsar. Yani yontem sartsiz

kararhdir.
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e Robbin Sumir Sartl Ist Iletim Problemi

Robbin sinir sartli 1s1 iletim probleminin kapali sonlu fark yaklasimi (2.36),
(2.37) ve (2.38) denklemleriyle verilen (M +1) bilinmeyenli (M +1)-tane lineer

denklemden olusan bir denklem sistemidir. Bu denklem sistemi matris bigciminde

) . ) . _2rhhl ]
[(+2rB,) —2r 108" U, k,
-r a+2r) -r UM u' 0
-, : = |: + :
—r (A+2r) -r U;;_ll U, 0

i -2r (1+2rp, ) | _U[T/IH | _U;I | 2rhh,

X e TR

) v

veya kisaca

AU =U™ 4
olarak yazilabilir. Bu matris formu A tersi mevcut bir matris oldugundan,
U™ = A7U™ + A7
seklinde de ifade edilebilir. Teorem 1.2°den A matrisinin 6zdegerleri;

m=0 i¢in a, =1+2rf, ve P, =2r oldugundan

A —1-2rB =2r= 4, :1+2r(2+m—1h}
1

|A-(+2rB)l=2r = ,
A —1-2rB ==2r = A, =1+2r 22

1
m=11M -1 i¢in a, =1+2r ve P, =2r oldugundan

A —1-2r=2r= A, =1+4r,

A-(1+2r)=2
| ( r)| " 3{/14—1—2r=—2r:l4=1
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m=M icin a, =1+2rf, ve P, =2r oldugundan,

h
A —1-2rB, =2r = A :l+2r(2+m2 J

2

IA-+2rB,)1=2r =
myh

A —1-2rf, =2r = A, =1+2r

2

olarak bulunur.
A matrisinin dzdegerleri A, ise, A" matrisinin 6zdegerleri 1/A, degeridir. O
halde kararlilik i¢in 11/4,1<1 (i=1(1)6) olmalidir. Buradan kararlilik parametresi

r>0 olarak bulunur. Bdylece Robbin sinir sartli 1s1 iletim probleminin kapali sonlu
fark yontemi ile elde edilen yaklasik ¢oziimii r kararlilik parametresinin herhangi bir

secimi i¢in problemin analitik ¢dziimiine yakinsar. Yani yontem sartsiz kararlidir.

3.1.3. Crank-Nicolson Sonlu Fark Yaklasimimin Matris Yontemiyle Kararhihk

Analizi
e Dirichlet Sur Sarth Ist Iletim Problemi

Dirichlet sinir sarth 1s1 iletim probleminin Crank-Nicolson sonlu fark yaklagimi
(2.40) denklemiyle ifade edilmistir. Bu sonlu fark yaklasimi herhangi bir n-inci zaman

adiminda acik olarak yazilirsa,

UM +2+2r)U —rUY =rU] +(2-2r)U; + 71U}
—rUM™M +Q+2rnU —rU =rU +(2-2r)U} +rU!
: (3.7
U+ Q+20U, Ul = Ul +(2-20U L, + U}
—rUp, +Q+2nU —rU =rU;L L, +(2-20U  + U},

denklem sistemi elde edilir. (3.7) denklem sistemi herhangi bir n-inci zaman adimi i¢in

matris formunda
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[2+2r) -7 U] Te-2n) r Uy i, |
—r 2+2r) -r Ut r (2-2r) r U’ 0
: = : +1
-r 2+42r) —r||U, r (2-2r) r U, 0

i —-r (2+2r) | _UI:I/I+—11 | L r (2-2r) | ] ;ff_—,
A e B b

olarak veya kisaca
AU = BU™ +b

olarak yazilabilir. Bu matris formu A tersi mevcut bir matris oldugundan,
U™ =A"BU"™ +A'b

seklinde de ifade edilebilir. Dikkat edilirse B=41, ,—A oldugu kolaylikla goriiliir.
Buradan U""" =A™ -1 w)U ™ bulunur. A, A matrisinin bir 6zdegeri olmak iizere
4A™" -1, , matrisinin 6zdegeri 4/A—1 seklindedir. Bu yontemin Kararli olabilmesi
icin [4/4—1/ <1 olmalidir. Buradan 122 elde edilir.

A matrisinin A 6zdegerleri [2,2+4r] aralizinda olup Vr>0 icin A>2

oldugundan yontem sartsiz kararlidir.

e Neumann Sumir Sarth Isi Iletim Problemi

Neumann sinir sartl 1s1 iletim denkleminin Crank-Nicolson sonlu fark yaklagimi

(2.46), (2.47) ve (2.48) denklemleriyle verilen (M +1) bilinmeyenli (M +1)-tane lineer

denklemden olusan bir denklem sistemidir. Bu denklem sistemi matris bigciminde
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[24+2r —2r U
-r  242r -r U

-r 2+2r -r (UM,
=2r 2+2r| Ut

[2-2r 2r U; ky

veya kisaca
AU =BU"™ +b
olarak yazilabilir. Burada B =41, , — A oldugundan yontemin sartsiz kararli oldugu

yukaridakine benzer sekilde kolayca gosterilebilir.

e Robbin Sumir Sartl Ist Iletim Problemi

Robbin simir sartli (2.9) 1s1 iletim probleminin Crank-Nicolson sonlu fark
yaklagimi (2.53), (2.54) ve (2.55) denklemleriyle verilen (M +1) bilinmeyenli (M +1)-
tane lineer denklemden olusan bir denklem sistemidir. Bu denklem sistemi matris

biciminde

36



24218 —2r U
—-r 242r —r U

—-r 242r —r U}’;*_‘l
-2r 2+2r,32_ U;l;l

oD
) [ 4rhh, ]
[2-2rB, 2r 1Yo k,
r 2-2r r u/ 0
. : +|:
r 2-2r r U, , 0
i 2r 2-2rf, | U 4rhh,
B T | k]
b

veya kisaca

AQ(IHI) — Bg(n) +b

olarak yazilabilir. Burada B =41, , — A oldugundan yontemin sartsiz kararli oldugu

yukaridakine benzer sekilde kolayca gosterilebilir.

3.2. von Neumann (Fourier Seri) Yontemi

Fourier seri yontemi sadece diferansiyel denklemin kararliligim1 hata yayilimi
icin inceleler.

Burada T sonlu, &x=h —0, 0t=k —>0 ve N — o oldugunda 0<t<T = Nk
zaman araliginda U(x,t) icin lineer 2 zaman seviyeli fark denkleminin kararlilig
konusu incelenecektir. Fourier seri veya von Neumann metodu, ¢ = 0 diigiim noktasi
boyunca sonlu Fourier serisine gore baslangic degerini ifade eder. Boylece kismi
diferansiyel denklemleri ¢dzmek icin kullanilan “degiskenlerine ayirma” yodntemine
benzer olarak ¢ = 0 i¢in Fourier serilerine indirgenen bir fonksiyon gz 6niine alinir.

Her ne kadar Fourier serileri siniis ve cosiniis fonksiyonlarina gore ifade

edilebiliyorsa da cebirsel olarak iistel bicimde yazilmasi daha uygundur. Yani
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Za” COS(HTMJ veya an sin(nij ifadeleri yerine bu denklemlere denk olan

ZA”e""’D“/ ' iistel ifadesi yazilabilir. Burada i =+/—1 ve [, x araliginin uzunlugudur.

Buna goére

A eilmx/l =A einﬂmh/l A ei/)’”mh

n n n

yazilabilir. Burada S, = nzx/Mh ve Mh =1 olarak alinmistir.

t=0 pivot noktasindaki baslangic degerlerini U(mh,0)=U°, m=001)M

seklinde olan (M+1)-tane denklem, A,,A,,...,A,, bilinmeyen sabitlerini tek tiirlii

belirlemek i¢in yeterlidir. Bu ise baslangi¢ diigiim degerlerinin kompleks iistel formda
aciklanabildigini gosterir. Buna gore goz Gniine alman lineer fark denkleminin e’
gibi yalmiz bir baglangic degerinden elde edilmesi miimkiindiir. Ciinkii lineer fark
denklemi bagimsiz ¢oziimlerin lineer birlesimi seklinde yazilabilir.

t degerinin artigina gore iistel dagilima bakmak icin
U:L :eiﬁ’xem — eiﬁmheomk :eiﬁmhgn (3.8)

ifadesi goz oniine alinir. Burada @ genellikle kompleks bir sabit olmak iizere &=e®
olarak kullanilir ve € genellikle giiclendirme faktorii (amplification factor) olarak
adlandirilir.

Sonlu fark denkleminin kararlilig1 icin 2#—0 ve k — 0 oldugunda her n < N
ve baslangi¢ sartin1 saglayan tim /£ degerleri i¢in 1U | kalintis1 sabit olmalidir. Bu

ifade Lax-Richtmyer tanimi olarak bilinir.
Sonlu fark denkleminin tam ¢6ziimii zamana bagl olarak iistel bicimde artmiyor

ise kararlilik i¢in gerek ve yeter sart

lel<1

yani —1< & <1 olmalidir.
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Bununla birlikte U zamana bagh olarak artiyor ise kararlilik i¢in gerek ve

yeter sart; K pozitif sayisi, A, k, ve S degerlerinden bagimsiz olmak iizere

lel<1+ Kk =1+ 0(k)

olmasidr.

Bu yontem sabit katsayili lineer denklemler icin uygulanir ve [ periyotlu
periyodik baslangi¢ degerli problemler icin gegerlidir.

3 veya daha fazla zaman seviyeli ya da iki veya daha fazla bagimli degisken
iceren fark denklemleri i¢in von Neumann sartlar1 gereklidir; ancak bu sartlar yeterli

olmayabilir [3].

3.2.1. von Neumann Yontemiyle Kararhlik Analizi

(2.9) ile verilen 1s1 iletim denkleminin agirlikli (2.57) ile verilen averaj

yaklagiminda (3.8) esitligi yerine konulup gerekli diizenlemeler yapilirsa

e(—rle™™ + (1+2r0)—r6e™) = r(1-0)e ™ + (1-2r(1-6)) + r(1—0)e™”"

elde edilir. Bu esitlikte e =cos@g+ising Euler formiiliiniin kullanilmasiyla &

giiclendirme carpan

o 1=4r(1=6)sin’(Bh/2)

3.9
1+4r@sin*(Bh/2) -9

olarak elde edilir.

e Acik Sonlu Fark Yaklasuninin von Neumann Yontemiyle Kararlilik Analizi

(2.57) agirhikli averaj yaklastmi =0 icin (2.15) ile verilen agik sonlu fark
yaklasimina karsilik gelir. 8 =0 oldugunda (3.9) ile verilen & degeri
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g=1—4rsin’(Bh/2)
dir. Yontemin kararl olabilmesi i¢in |8| <1 olmalidir. O halde

lel=1—4rsin®(Bh/2)+11<1
veya
—2<—4rsin’*(Bh/2)<0
olmalidir. Bu esitligin sag parcasindan r >0, sol parcasindan ise

1

PP S
2sin’(Bh/2) " 2

bulunur. Boylece acik sonlu fark yaklagimi ancak 0 < r < % oldugunda kararlidir.

*  Kapali Sonlu Fark Yaklasiminin von Neumann Yontemiyle Kararlilik Analizi

(2.57) agirlikhi averaj yaklasimi @ =1 icin (2.26) ile verilen kapali sonlu fak

yaklasimina karsilik gelir. 8 =1 oldugunda (3.9) ile verilen £ degerinin

1
E =
1+ 4rsin®(Bh/2)

oldugu goriiliir. Yontemin kararli olabilmesi igin |€| <1 yani

g = ! <1
\1+4rsin2(/)’h/2)\
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olmalidir. Bu durumda tiim £ degerleri i¢in | £1<1 dir. Boylece kapali yontem sartsiz

kararlidir.
e Crank-Nicolson Sonlu Fark Yaklagiminin von Neumann Yontemiyle
Kararlihik Analizi

(2.57) agirlikli averaj yaklasimi @=1/2 ig¢in (2.40) ile verilen Crank-Nicolson

sonlu fak yaklasimina karsilik gelir. & =1/2 oldugunda (3.9) ile verilen € degerinin

_1-2rsin’(Sh/2)
1+ 2rsin®(Bh/2)

oldugu goriiliir. Yontemin kararli olabilmesi i¢in |8| <1 olmaldr. Tim £ degerleri icin

| £I<1 esitsizligi saglandigindan, Crank-Nicolson yontemi sartsiz kararhidir.
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4. KLASIK SONLU FARK YONTEMLERININ
LOKAL KESME HATASI

Bu bolimde a =1 i¢in (2.9) 1s1 iletim denkleminin agik, kapali ve Crank-
Nicolson sonlu fark yaklasimlarinin lokal kesme hatalarinin mertebesi hesaplanacaktir.

a =1 i¢in (2.9) 1s1 iletim denklemi

2
U _dU_,

hdl = 4.1
ot ox’ “1)

olur. (4.1) 1s1 iletim denkleminin tam ¢oziimii U, ve bu denkleme karsilik gelen

herhangi bir sonlu fark denkleminin tam ¢oziimii de u, olsun. Bu durumda u, = U,

dir.

4.1. Acik Sonlu Fark Yaklasimimin Lokal Kesme Hatasi

(4.1) denklemine karsilik gelen agik sonlu fark denklemi

n+l n n n
_ um _um um—l _2um +um+l _
Fm,n (M) - k - h2 =0

n

seklindedir. Boylece lokal kesme hatasinin tanimindan

Un+l_UVl UV! _2UVI +UV!
e = vaﬂ _ m k m. _ m—1 h2m m+1 (42)

n
Um—l

dir. U"

m+l1

ve U ifadelerinin Taylor seri agilimlari sirasiyla

n
Um+l

=U{(m+Dhnk}=U(x, +h,t,)
2 3 4.3
=U,’;+h(a—Uj L 8121 +lh3 E)ISJ +...( )
ax m,n 2 ax m,n 6 ax m,n
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n
Um—l

=U{(m—1Dh,nk}=U(x, —h,t,)

2 3 4.4
=U,§—h(a—Uj Ly J (2] Ly J 13] +...( )
a'x m,n 2 ax m,n 6 ax m,n

U, =U{mh,(n+ 1)k} =U (x,,,1, +k)

2 3 4.5
:U,’;+k(a—Uj +lk2 U (2] +lk3 a—g] +...( )
at m,n 2 at m,n 6 at m,n

dir. (4.2) esitliginde (4.3), (4.4) ve (4.5) esitliklerinin yazilmasiyla

2 2 4
p (U dU) vy 1o
' or oJx - 2 | ot - 12 ox o

3 6
+lk{aUJ _ 1.9

(4.6)

6 or? 360 ox°

elde edilir. U, verilen kismi diferansiyel denklemin tam ¢6ziimii oldugundan acik¢a

oU 90U
= _ =0
ot ox2 -

dir. Boylece lokal kesme hatasinin esas kismi

2 4
lkalzj_i;ﬁaa]
2 ot 12 ox o

seklindedir. O halde lokal kesme hatas1
T,,=0(k)+ o(h*)

dir [6].
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4.2. Kapali Sonlu Fark Yaklasimimin Lokal Kesme Hatasi

(4.1) denklemine karsilik gelen kapali sonlu fark denklemi

n+l n n+l n+l n+l
_ l/i um um—l - 2um + um+1 _
Fm n (l/i) k - h2 =0

seklindedir. Boylece lokal kesme hatasinin tanimindan

UrH—l _Un Un+l 2Un+l +Un+l
Tm _ Fm ) (U) — m k m m—1 h2 m+1 (47)

dir. U, U ve U ifadelerinin Taylor seri agilimlari sirasiyla

m+1 m—1

UM =U{(m+Dh,(n+1k}=U(x, +h,t, +k)

m+1
2
= U:H—l ( j l a [2] +
m+l,n 2 at m+1,n

4.8)
=U) + noY lh2 U"+h— —hzalzj
ox 2 ox
2
+— k2a u’ +ha—U+1h2a2
2 or’ ox 2 ox

Ul =U{(m—-1)h,(n+)k}=U(x, —h,t, +k)

m—1
2
ml+k(an L 812] +...
ot )1, 2 o )

=U:l—ha—U+lh2 —+...
ox 2 ox ot

2 2
+— k2a U,’;—ha—U+lhzal2]—... +...
2 ot ox 2 ox

4.9)

dir. (4.7) esitliginde (4.5), (4.8) ve (4.9) esitliklerinin yazilmasiyla
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2 2 4
T, = a_U_a_U +lk B_U _LhZ U
’ or  ox’ w2 or? 24 ox* o

2 2
BRI TS
or\ ox? 2 ot* ox?

elde edilir. U, verilen kismi diferansiyel denklemin tam ¢6ziimii oldugundan,

oU 9°U
— - =0
or  ox> o

dir. Boylece lokal kesme hatasinin esas kismi,

279 24 ot

2 4
(1kaU 1hzaUJ

seklindedir. O halde kapal1 yontem icin lokal kesme hatasinin

T =0(k)+0h?)

m,n

oldugu goriiliir [3].

4.3. Crank-Nicolson Sonlu Fark Yaklasiminin Lokal Kesme Hatasi

(4.1) denklemine karsilik gelen Crank-Nicolson sonlu fark denklemi

n+l
m+1

n

m+1 — 0

n+l _ . n n+l

1
u u' ou =2u’" +u
F (u): m m _ m—l m

" k 2h*

+u’

m—1

—2u, +u

seklindedir. Lokal kesme hatasinin tanimindan

P oor @ VR SUL UL 20 UL UL, 205+ UL
m,n m,n k 2h2
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dir. (4.3), (4.4), (4.5), (4.8) ve (4.9) ifadelerinin Taylor seri acilimlarinin (4.10)

esitliginde yerlerine yazilmasiyla

w_ou) 10

1
6

k

1 oU U
T =T k| L2
i ( or  ox’ l 2 ar{ or  ox’ l

283U_ih2 ‘U

ST S T O + Ok

elde edilir. U fonksiyonu verilen kismi diferansiyel denklemin tam ¢dziimii oldugundan

acikca

oU 9°U
— - =0
or  ox’ o

dir. Boylece lokal kesme hatasinin esas kismi

6 ot* 12 ox'

(1 2 U 1 2 84UJ

seklindedir. O halde Crank-Nicolson yontemi i¢in lokal kesme hatasinin mertebesi

T =0(k*+0kh%)

m,n

dir [8].
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5. MODEL PROBLEMLER

Bu boliimde (2.9) ile verilen 1s1 iletim denklemi i¢in farkli simir ve baslangig
sartlarina bagh olarak model problemler ele alinacaktir. Bu problemler i¢in acik, kapali
ve Crank-Nicolson sonlu fark yaklagimlarinin matris ve von Neumann yontemleriyle
kararliliklar1 incelenecek ve elde edilen niimerik coziimlerle analitik ¢oziimler

karsilastirilacaktir.

Problem 1: Bu problemde

w_av
ot  ox’

,0<x<1,r20

denklemiyle verilen 1-boyutlu zamana bagli 1s1 iletim denklemi

U©,1)=0,1r=0
Ul,t)=0,120

s1mir sartlarl veE

2x
Ux,0)=f(x
(x0) = f(x) = {2 .
baslangic sartina bagli olarak goz oniine alinmistir. Bu problemin analitik ¢6ziimii

U(x,t)= iZliz(sm nﬂj sinnm)e "™
T

=1 n

dir [3].
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¢ Acik Sonlu Fark Yaklasimi

Bu problemin acik sonlu fark yaklagimi

UM =rU"  +(1=20U" +rU",,, m=11)M -1, n=0(1)N (5.1)

m—1
seklindedir. (5.1) ile verilen yaklagim ag¢ik bigimde

UMt =rU) +(1-2rU; +rU}
UM =rU!"+(1-2nU% +rU}
: (5.2)
um =rU; _+0=2nU}_, +rU}
uw o =ru; ,+10=-2nU},_ +rU;,

olarak yazilabilir.

o  Matris Yontemi

Problem 1’in smir sartlart U(0,1)=0 ve U(l,#) =0 olarak verildiginden (5.2)

denklem sistemi acik matris formunda

_Uln+l 7 _(1 _ 2}") 7 = _Uln T
Ut r (1-2r) r U,
Uyl ro(1=2n r Up,

_U:;_ll | L r (1 - 2r)_ _UII;I—I |

QWH) Q(n)

veya kapali matris formunda

U (n+1) — AU (n)
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olarak yazilabilir. Bu sonlu fark yaklagimin kararliliginin incelenmesinde A matrisinin

0zdegerlerinin bulunmasina ihtiya¢ vardir. Teorem 1.3’den A matrisinin 6zdegerleri,

A =(1-2r)+ 2rcos(£}, s=1)M -1
| M
veya

A, :1—4rsin2(£j, s=1HM —1
oM

dir. Matris yonteminde kararlilik i¢in gerek ve yeter sart max|A I<1 olmasidir. O

halde, sonlu fark yonteminin kararli olmasi i¢in

1—4rsin® (ﬂj
2M

<1, s=1OM -1

veya

elde edilir. O halde kararhilik parametresi r <1/2 dir. Boylece problem 1’in agik

yontem ile elde edilen yaklasik ¢oziimleri ancak 0<r<1/2 oldugunda problemin

analitik ¢coziime yakinsar.

o vyon Neumann Yontemi

(5.1) denklemiyle verilen fark yaklasiminda (3.8) esitligi yerine yazilir ve sonra

gerekli diizenlemeler yapilirsa
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e=—4rsin’(Ph/2)+1
elde edilir. Kararlilik i¢in gerek ve yeter sart | £ <1 olmasidir. Buradan
—2<—4rsin’*(Bh/2)<0

bulunur. Bu esitsizligin sag parcasindan r >0 ve sol parcasindan ise

re— 1
2sin’(Bhi2)” 2

elde edilir. O halde kararlilik parametresi r <1/2 oldugunda elde edilen yaklagik ¢6ziim

problemin analitik ¢6ziimiine yakinsar.

¢ Kapali Sonlu Fark Yaklasim

Problem 1’in kapal1 sonlu fark yaklagimi

—rUM™ +(1+20U —rUM =U"

m—1 m+1 m? m= l(l)M _1 , = 0(1)N (53)
dir. Bu sonlu fark yaklagimi herhangi bir #n-inci zaman adiminda acik olarak

yazildiginda

UM + (20U —rUt =0
—rUM™ +1+2nU —rUM =U]
: (5.4)
U+ q+2r)u, —-rult =U;
—rUp, +a+2nut Uit =u;,

denklem sistemi elde edilir.
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o  Matris Yontemi

Problem 1 in sinir sartlart U(0,7)=0 ve U(1l,1) =0 olarak verildiginden her n

icin U, =U,, =0 olup (5.4) denklem sistemi acik matris formunda

((+2r) —r vt oy
—r (1+2r) —-r Ut U,

-r (A+2r) -r U;;_lz U™

M=2
—r (+2r n+l n
L ( )— _UM—l | _UM—l |
A
Q(Ml) Q(,,,

veya kapali matris formunda
AU =g
olarak yazilabilir. A tersi mevcut bir matris oldugundan AU """ =U " sistemi
Ut = Aty ™
seklinde de ifade edilebilir. Burada kararlilik analizi i¢cin A~ matrisinin 6zdegerlerine

ihtiyag vardir. A matrisinin 6zdegerleri A, ise A~ matrisinin ozdegerleri 1/4,

degeridir. Teorem 1.3’den A matrisinin 6zdegerleri

A =(1+2r)+2r cos(ﬂj Cs=1OM -1
| M
veya

A =1+4rcos2(ﬂj, s=1OM -1
oM

olarak bulunur. Béylece A~ matrisinin 6zdegerleri
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1 ! ,s=1(OM -1

/15 1+ 4rcos? (s?[j
2M

seklindedir. Kararlilik i¢in max11/4, <1 olmasi gerek ve yeter sarttir. O halde goz

Oniine alinan yontemin kararli olmasi i¢in

= ! <1, s=1(DM —1

1+ 4rcos? (mj
2M

olmalidir. Vr >0 icin bu esitsizlik saglandigindan yontem sartsiz kararlidir. Boylece 1s1
iletim probleminin kapali yontem ile elde edilen yaklasik ¢coziimiiniin » > 0 oldugunda

analitik ¢oziime yakinsadig goriiliir.

e yon Neumann Yontemi

(5.3) denklemiyle verilen fark yaklasiminda (3.8) esitligi yerine konulup, gerekli

islemler yapildiginda € degeri

£= !
1+ 4rsin®(Bh/2)

olarak bulunur. Kararlilik i¢in gerek ve yeter sart | £I<1 olmasidir. Acik¢a her » >0 ve

S degerleri icin | £ I<1 dir. Boylece kapali sonlu fark yontemi sartsiz kararhdir.

¢ Crank-Nicolson Sonlu Fark Yaklasim

Problem 1’in Crank-Nicolson sonlu fark yaklasimi

U™ +Q+2nUM —rUM =rU"

m—1 m+1 m—1

+Q2-2r)Vu +rU;

m+1

(5.5)
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dir. Bu sonlu fark yaklagimi herhangi bir #z-inci zaman adiminda acik olarak

yazildiginda

UM +Q2+2r)U —rU =rU] +(2-2r)U; + 71U}
—rUM™M +Q+2rnU —rU =rU +(2-2r)U} +rU!
: (5.6)
U+ 20U, Ul = Ul +(2-20U L, + U}
— U+ Q20U —rUL = UL, +Q2=20UL_ +rU],

denklem sistemi elde edilir.

o  Matris Yontemi

Smir sartlart U(0,¢)=U(1,1) =0 olarak verildiginden Vn i¢in U, =U,, =0

olup (5.6) denklem sistemi matris formunda

[(242r) —r 1Mol 1e-2n - Moy ]
—r 2+2r) —-r Ut r (2-2r) r U’
-r 242r) -r U;I*_lz r (2-2r) r U, _,
| —r (2+2r) | _U;;;_ll | L r (2-2r) | Uy |
A (n+1) B (n)
v U

veya

AU (n+1) — BU(n)

olarak yazilabilir. A tersi mevcut bir matris oldugundan bu sistem U™ = A"'BU"™

seklinde de ifade edilebilir. Dikkat edilecek olursa B =41,, , — A dir. Boylece

Q(VH‘I) — (4A—1 _IM_I )Q(H)
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yazilabilir. A reel ve simetrik bir matris oldugundan 4A™' —1,, , matrisi de reel ve
simetriktir. Oyleyse I14A™" =1, | l= p(4A™" =1, ) dir. 4A™" —1,, | matrisinin tiim
0zdegerlerinin modiilleri 1 den kiiciik oldugunda kararlilik sarti saglanir. Yani; A

matrisinin bir dzdegeri 4 olmak iizere [4/4—1/<1 olmalidir. Bu esitsizlikten 1>2

elde edilir. A matrisi i¢in a,, =2+ 2r ve P_=2r oldugundan Teorem 1.2’den

|IA—2-2rI<2r veya 2<A<2+4r

oldugu goriiliir. Boylece Vr >0 igin 4>2 oldugundan yontem sartsiz kararhdir.

o vyon Neumann Yontemi

(5.5) fark yaklasiminda (3.8) esitligi yerine konulup, gerekli islemler
yapildiginda

o 1=2rsin® (Bn/2)
1+ 2rsin®(Bh/2)

elde edilir. Kararlilik i¢cin gerek ve yeter sart | £1<1 olmasidir. Bu durumda tim >0

degerleri i¢in | £ I<1 esitsizligi gegerlidir. Boylece yontem sartsiz kararlidir.

Niimerik Sonuclar

Bu calismada biitiin hesaplamalar Intel P4 bilgisayarda Fortran derleyicisi
kullanilarak yapildi. Niimerik ¢oziimlerin analitik ¢coziimlere ne kadar yakin oldugunu
gostermek i¢cin U (x

t,) ve U, swasiyla U(x,t) nin (x,,¢,) noktasindaki tam ve

m? m?

niimerik degerleri olmak iizere asagidaki gibi tanimlanan ||e|| ,» L, ve L_ hata normlari

hesaplandi:
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1 M-
e, =7 21~

U('xm *“n )

0| =

M 2
L, {h U(x,.1,)-U. } :
m=1

p— n
Loo - mn?x m’tn)_Um :

k =0.00001 ve farkli mesh uzunlugu % icin #=0.1 zamaninda Problem 1’in
acik yontem ile elde edilen niimerik ¢oziimlerinin analitik ¢oziimle karsilastirilmasi
Tablo 5.1°de, kapali yontem ile elde edilen niimerik ¢oziimlerinin analitik ¢oziimle
karsilagtirilmas: Tablo 5.2°de ve Crank-Nicolson yontemi ile elde edilen niimerik
cOziimlerinin analitik coziimle karsilastirilmasi Tablo 5.3’de verildi. Tablolardan
kolayca goriilecegi lizere mesh uzunlugu # ne kadar kiiciik segilirse niimerik
cOziimlerin analitik ¢6ziime o kadar yaklastigi kolayca goriilir. Buradaki h ve k
degerleri kararlilign bozmayacak sekilde secilmistir.

k =0.00001 ve h=0.0125degerleri icin Problem 1’in agik, kapali ve Crank-
Nicolson yontemleriyle elde edilen ¢=0.5 zamanindaki niimerik coziimlerin
karsilagtirilmas1t Tablo 5.4 ile verilmistir. Tablodan kolayca goriilecegi gibi analitik
cOziime en yakin sonuclar acik yontemden daha sonra sirasiyla Crank-Nicolson ve

kapali yontemlerinden elde edilmistir.
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Tablo 5.1. Acik Yontem: k =0.00001 ve h’nin farkli degerleri icin #=0.1 zamaninda

Problem 1’in niimerik ve analitik ¢oziimleri

Niimerik Coziim Analitik
x h=0.1 h=0.05 h=0025 |h=00125 |Cozim
0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.094867 _ |0.093721 _ |0.093436 | 0.093365 | 0.093346
0.2 0.180463  |0.178277  |0.177734 _ |0.177598 _ |0.177561
0.3 0248411 0245392 0244642 | 0.244455 | 0.244405
0.4 0292049  |0.288490  |0.287607  |0.287386 | 0.287327
0.5 0307088 0303342 0302413 |0.302181 __ |0.302118
0.6 0292049 |0.288490  |0.287607 _ |0.287386 | 0.287327
0.7 0248411 0245392 0244642 | 0.244455 | 0.244405
0.8 0.180463  [0.178277  |0.177734 | 0.177598 | 0.177561
0.9 0.094867  |0.093721 _ |0.093436 | 0.093365 | 0.093346
1.0 0.0 0.0 0.0 0.0 0.0
Hata Normu
le], 0.014737  |0.003835  |0.000947  |0.000204
L, 0.003505  |0.000864  |0.000208 | 0.000044
L. 0.004970  |0.001224  |0.000295 | 0.000063

Tablo 5.2. Kapali Yontem: k =0.00001 ve A’nin farkli degerleri i¢in # =0.1 zamaninda

Problem 1’in niimerik ve analitik ¢6ziimleri

Niimerik Coziim Analitik
x h=0.1 h=0.05 h=0025 | h=00125 |Céziim
0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.094876  |0.093730  |0.093445  |0.093374 | 0.093346
0.2 0.180480  |0.178294  |0.177751  |0.177615  |0.177561
0.3 0248435 0245416 | 0244666  |0.244479 | 0.244405
0.4 0292077 0288518  |0.287635  |0.287414  |0.287327
0.5 0307117 0303372 |0.302442 0302210  |0.302118
0.6 0292077 0288518  |0.287635  |0.287414  |0.287327
0.7 0248435 0245416 | 0244666 0244479 | 0.244405
0.8 0.180480  |0.178294  |0.177751  |0.177615  |0.177561
0.9 0.094876  |0.093730  |0.093445  |0.093374 | 0.093346
1.0 0.0 0.0 0.0 0.0 0.0
Hata Normu
el 0.014824  |0.003927  |0.001042  |0.000300
L, 0.003526  |0.000885  |0.000229  |0.000065
L. 0.004999  |0.001254  |0.000324  |0.000092
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Tablo 5.3. Crank-Nicolson Yontemi: k =0.00001 ve h’nin farkli degerleri icin #=0.1

zamaninda Problem 1’in niimerik ve analitik ¢6ziimleri

Niimerik Coziim Analitik
x h=0.1 h=005 | h=0025 |h=00125 |Cézim
0.0 0.0 0.0 0.0 0.0 0.0
0.1 0.094871  |0.093726  |0.093441  |0.093369  |0.093346
0.2 0.180471  |0.178286  |0.177742  |0.177607  |0.177561
0.3 0248423 | 0245404  |0.244654  |0.244467  |0.244405
0.4 0.292063  |0.288504  |0.287621  |0.287400  |0.287327
0.5 0307103  |0.303357  |0.302427  |0.302195  |0.302118
0.6 0.292063  |0.288504  |0.287621  |0.287400  |0.287327
0.7 0248423 | 0245404  |0.244654  |0.244467  |0.244405
0.8 0.180471  |0.178286  |0.177742  |0.177607  |0.177561
0.9 0.094871  |0.093726  |0.093441  |0.093369  |0.093346
1.0 0.0 0.0 0.0 0.0 0.0
Hata Normu
= 0.014781  [0.003881  |0.000995  |0.000252
L, 0.003515  |0.000874  |0.000218 | 0.000055
L. 0.004984  |0.001239  |0.000309  |0.000077

Tablo 5.4. h=0.0125 ve k =0.00001degerleri i¢in #=0.5 zamaninda Problem 1’in

niimerik ve analitik ¢6ziimlerinin karsilastirilmasi

Crank-

Acik Kapah Nicolson Analitik
x Yontem Yontem Yontemi Coziim
0.0 0.0 0.0 0.0 0.0
0.1 0.001803 0.001803 0.001803 0.001802
0.2 0.003429 0.003430 0.003429 0.003427
0.3 0.004719 0.004721 0.004720 0.004717
0.4 0.005548 0.005550 0.005549 0.005545
0.5 0.005833 0.005836 0.005835 0.005830
0.6 0.005548 0.005550 0.005549 0.005545
0.7 0.004719 0.004721 0.004720 0.004717
0.8 0.003429 0.003430 0.003429 0.003427
0.9 0.001803 0.001803 0.001803 0.001802
1.0 0.0 0.0 0.0 0.0
Hata Normu
el 0.000513 0.000994 0.000753
L, 0.000002 0.000004 0.000003
L, 0.000003 0.000006 0.000004
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Problem 2: Bu problemde

w_ov
ot  ox®

,0<x<1, r20

1-boyutlu zamana bagl 1s1 iletim denklemi

WO _
o0x

oU(1,1) _»
ox

s1mir sartlarl veE

Ux0)=f(x)= x* + 1+ cos(xx)

baslangi¢ sartina bagli olarak verilmistir. Bu problemin analitik ¢oziimii

Ux,t)=2t+x>+1+e ™" +cos(m)

dir [9].

¢ Ack Sonlu Fark Yaklasimi

Problem 2’nin agik sonlu fark yaklagimi

1
urt=2ru’

m+1

+(1-21U", m=0

m?

Ut =rU!  +(0-21U" +rU!

m—1 m+l

m=11)M -1

1
vt =2ru’

m—1

+A-2nU) +4rh, m=M

seklindedir. Bu yaklagim acik bicimde
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U™ =2rU™ +(1-2rU7
UM =rUl +(1=20U" +rU}
.(]§+1 :rUlﬂ +(1_2r)U2"+rU; (5.10)
U =0 +(1=20U" +rU",
U;z;l — er;l;—ll + (1_ 2r)U;I +4rh

olarak yazilabilir.

®  Matris Yontemi

(5.10) denklem sistemi

Ut T-2r 2r Tue 110 7
v ro 1=-2r r U/ 0
: = ' : +]:
U[’;;_ll r 1-2r r U, 0
U | 2r 1-2r| Ul | 4rh |
- U<n+1) - A - U(n) - [—7

olarak veya kisaca
QIHI — AQn + b

formunda yazilabilir. Burada kararlilik icin A matrisinin 6zdegerlerine ihtiya¢ vardir.

Tiim satirlar igin a ;, =1-2r ve P =2r oldugundan Teorem 1.2°den

A =1+2r=2r =4 =1,

1A—(-2r)1=2r =
(1=2nyl=2r {/12—1+2r:—2r:/12=1—4r

bulunur. Kararlilik icin |4, I<1 (i=1,2) olmahdir. Burada A, degerleri tek tek

incelenmelidir:
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| 2,1<1 den 1111
ve

|4, 1<1den0<r<1/2

bulunur. Buradan kararlilk parametresi r <1/2 olarak elde edilir. Boylece Problem
2’nin agik yontem ile elde edilen yaklagik ¢oziimii ancak 0 < r <1/2 oldugunda analitik

¢Oziime yakinsar.

e yon Neumann Yontemi

(2.15) ile verilen agik sonlu fark yaklasiminda (3.8) esitligi ile birlikte

e’ =cos@+isin¢ Euler formiilii kullamlir ve sonra gerekli islemler yapilirsa
g=—4rsin*(fh/2)+1

elde edilir. Kararlilik i¢in gerek ve yeter sart | £ <1 olmasidir. Buradan
—2<—4rsin’(Bh/2)<0

bulunur. Bu esitligin sag parcasindan r >0 ve sol parcasindan ise

1

PO S
2sin>(Bh/2)” 2

bulunur. Boylece kararlilik parametresi r <1/2 olarak elde edilir. O halde Problem
2’nin agik yontem ile elde edilen yaklasik ¢oziimii ancak 0 < r <1/2 oldugunda analitik

cOziime yakinsar.
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¢ Kapali Sonlu Fark Yaklasimi

Problem 2’nin kapali sonlu fark yaklasimi

(l+2r)U:fl—2rU,’,’:r11 =U!, m=0 (5.11)
—rUM™M +(A+20U —rUM =U", m=1)M -1 (5.12)
—2rUM + (420U —drh=U", m=M (5.13)
seklindedir. Bu yaklagim acgik olarak yazildiginda
A+2nUy" =2rU™ =U,
UM +A+2nU™ Uit =U;
- rU™ +A+20U" = U =U; (5.14)
Ut +A+2nUt Uit =u;
—2rU +A+20)U L —4rh=U},
denklem sistemi elde edilir.
*  Matris Yontemi
(5.14) denklem sistemi agik matris formunda
1+2r —2r Tos | [us ] 1o 7
-r 1+2r -r U U/ 0
: =|: +1:
-r 1+2r —-r U[’;f_ll U, 0
i =2r 1+2r| U;VIIH Ul | 4rh |
A —— = T
QMH) U(n) 2

olarak ve kapali matris formunda
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AQ(IHI) — Q(”) + Q

olarak yazilabilir. Bu denklem sistemi A tersi mevcut bir matris oldugundan,
U™ =A"U" +A"b
seklinde de ifade edilebilir. Teorem 1.2’den A matrisinin 6zdegerleri

A —=1=-2r=2r= A =1+4r,

A-(+2r)=2r=
A —-1-2r=-2r=24, =1

olarak bulunur. A matrisinin ozdegerleri A, ise A~ matrisinin ozdegerleri 1/4,

degerleridir. O halde kararhilik icin |1//11.| <1 (i=12)olmahdir. Buradan kararlihk

parametresi r >0 olarak bulunur. Boylece Neumann sinir sartl 1s1 iletim probleminin
kapali sonlu fark yaklasimi ile elde edilen yaklasik ¢oziimii r kararlilik parametresinin
herhangi bir se¢imi icin problemin analitik ¢6ziimiine yakinsar. Yani yontem sartsiz

kararhdir.

e yon Neumann Yontemi

(2.26) ile verilen kapali sonlu fark yaklasiminda (3.8) esitligi ile birlikte
e =cos@+ising Euler formiili kullanilir ve sonra gerekli islemler yapilirsa &

giiclendirme faktorii

E= ! s
1+ 4rsin®(Bh/2)

olarak bulunur. Kararlilik icin gerek ve yeter sart | €1<1 olmasidir. Acik¢a her >0 ve

B degerleri igin | £1<1 dir. Boylece kapali yontem sartsiz kararhdir.
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¢ Crank-Nicolson Sonlu Fark Yaklasim

Problem 2’nin Crank-Nicolson sonlu fark yaklasimi
Q420U 27U =Q2=-2nU"! +2rU",,, m=0 (5.15)
m—1

—rU+ Q420U —rU N =rU,  +(2=20U, +rU,.,, m=11)M -1 (5.16)

=2rUM + 420U =270 +(2-2r)U" +8rh, m=M (5.17)
seklindedir. Bu sonlu fark yaklasimlar1 acik olarak yazildiginda

Q2+2nUy" =2rU™ =(2-2r)U, +2rUY
UM +Q+2UM —rUSY = UL +2-2r)U; +rU}
—rUM™ +Q+2rU —rUM =rU +(2-2r)U} +rU!

(5.18)
—-rUt +Q+2r)U —rul =rU; L, +Q2-2r)U]_ + U],
—2rU + 42U =2rU} +(2=2r)U]}, +8rh
denklem sistemi elde edilir.
®  Matris Yontemi
(5.18) denklem sistemi
[(2+2F) —2r 1ue' ] Te-2n 2r Mue | 1o 7
-r 2+2r) -r v r (2-2r) r U/ 0
- : = - : +| :
-r 2+2r) -r U;’;_ll r (2-2r) r U, 0
i =2r (2+2r)] _U,’fjl | L 2r (2-2r) | vy | 87 |
A — B —

Q(nﬂ)

olarak veya kisaca

AQ(IHI) — Bg(n) +b
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olarak yazilabilir. Bu denklem sistemi A tersi mevcut bir matris oldugundan,
U™ =A"BU" +A"'b

seklinde de ifade edilebilir. Dikkat edilirse B=41,,,, —A oldugu kolaylikla goriiliir.
Buradan U """ = (4A‘1 =1, E(") yazilabilir. A matrisinin bir 6zdegeri A olmak iizere
4A™" —1,,,, matrisinin dzdegeri 4/A—1 seklindedir. Bu yontemin kararli olabilmesi
icin |4/ A- 1| <1 olmalidir. Bu durumda A >2 elde edilir. O halde A matrisi i¢in Teorem

1.2’den

|IA—-2-2rI<2r veya 2<A<2+4r

oldugu goriiliir. Bu durumda Vr >0 i¢in 4> 2 oldugundan yontem sartsiz kararhdir.

o vyon Neumann Yontemi

(2.40) ile verilen Crank-Nicolson sonlu fark yaklagiminda (3.8) esitligi yerine
konulup, gerekli islemler yapildiginda

_1-2rsin’(Sh/2)
1+ 2rsin®(Bh/2)

oldugu goriiliir. Kararlilik i¢in gerek ve yeter sart | €1<1 olmasidir. Acgikca her » >0 ve

S degerleri icin | £ I<1 olup yontem sartsiz kararhdir.

Niimerik Sonuclar
k =0.00001 ve farkli mesh uzunlugu % i¢in #=0.1 zamaninda Problem 2’nin

acik yontem ile elde edilen niimerik ¢oziimlerinin analitik ¢oziimle karsilastirilmasi

Tablo 5.5°de, kapali yontem ile elde edilen niimerik ¢oziimlerinin analitik ¢oziimle
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kargilagtirilmas: Tablo 5.6’da ve Crank-Nicolson yontemi ile elde edilen niimerik
coziimlerinin analitik c¢oziimle karsilagtirilmast Tablo 5.7°de verildi. Tablolardan
kolayca goriilecegi lizere mesh uzunlugu # ne kadar kiiciik segilirse niimerik
cOziimlerin analitik ¢oziime o kadar yaklastigi kolayca goriiliir. Buradaki i ve k
degerleri kararlilign bozmayacak sekilde secilmistir.

k =0.001 ve h=0.1degerleri i¢cin Problem 2’nin acik, kapal1 ve Crank-Nicolson
yontemleriyle elde edilen ¢#=0.5 zamanindaki niimerik coziimlerin karsilagtirilmasi
Tablo 5.8 ile verilmistir. Tablodan kolayca goriilecegi gibi analitik ¢dziime en yakin
sonuglar agik yontemden daha sonra Crank-Nicolson ve kapali yontemlerinden elde

edilmistir.

Tablo 5.5. Acik Yontem: k =0.00001 ve h’nin farkli degerleri icin #=0.1 zamaninda

Problem 2’nin niimerik ve analitik ¢6ziimleri

Niimerik Coziim Analitik

X h=0.1 h=0.05 h=0.025 h=0.0125 |Coziim
0.0 1.575718 1.573446 1.572879 1.572737 1.572708
0.1 1.567329 1.565168 1.564629 1.564494 1.564466
0.2 1.543962 1.542124 1.541665 1.541551 1.541527
0.3 1.510841 1.509506 1.509173 1.509089 1.509072
0.4 1.476103 1.475401 1.475226 1.475182 1.475173
0.5 1.450000 1.450000 1.450000 1.450000 1.450000
0.6 1.443897 1.444599 1.444774 1.444818 1.444827
0.7 1.469159 1.470494 1.470827 1.470911 1.470928
0.8 1.536038 1.537876 1.538335 1.538449 1.538473
0.9 1.652671 1.654832 1.655371 1.655506 1.655534
1.0 1.824282 1.826554 1.827121 1.827263 1.827292
Hata Normu

||e||1 0.001037 0.000279 0.000067 0.000012

L, 0.002128 0.000522 0.000121 0.000021

L, 0.00301 0.000738 0.000171 0.000029
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Tablo 5.6. Kapali Yontem: k = 0.00001 ve A’nin farkli degerleri i¢in # =0.1 zamaninda

Problem 2’nin niimerik ve analitik ¢6ziimleri

Niimerik Coziim Analitik

x h=0.1 h=0.05 h=0025 |h=00125 |Coziim
0.0 1575754 1573482 |1.572915  |[1.572773  |1.572708
0.1 1567363 |1.565203 | 1.564663 | 1.564528 | 1.564466
0.2 1543991 |1.542154 | 1.541695  |1.541580 | 1.541527
0.3 1510862 |1.509527 | 1.509194  |1.509111 | 1.509072
0.4 1476114 | 1475412 | 1475237 |1.475193 | 1.475173
0.5 1450000 | 1450000 | 1.450000 | 1.450000 | 1.450000
0.6 1443886 |1.444588 1444763  |1.444807 | 1.444827
0.7 1469138 |1470473  |1.470806  |1.470889 | 1.470928
0.8 1536009 | 1537846 | 1.538305 | 1.53842 1.538473
0.9 1652637 |1.654797 | 1.655337  |1.655472 | 1.655534
1.0 1824246 |1.826518 | 1.827085  |1.827227 | 1.827292
Hata Normu

le], 0.001049  |0.000292  |0.000081  |0.000026

L, 0.002154 | 0.000548  |0.000147 | 0.000046

L 0.003046  |0.000775  |0.000207 | 0.000065

Tablo 5.7. Crank-Nicolson Yontemi: k =0.00001 ve /&’nin farkli degerleri i¢in 7 =0.1

zamaninda Problem 2’nin niimerik ve analitik ¢oziimleri

Niimerik Coziim Analitik

x h=01 h=005 h=0025 |h=00125 |Cozim
0.0 1575736 1573464  |1.572897  |1.572755 | 1.572708
0.1 1567346 1565186 |1.564646 | 1.564511 | 1.564466
0.2 1543976 1542139 | 1.54168 1541565 | 1.541527
0.3 1510852 1509517  |1.509183  |1.509100 | 1.509072
0.4 1476109 1475407  |1.475231 | 1475188  |1.475173
05 1450000 1450000  |1.450000 | 1.450000 | 1.450000
0.6 1443801 | 1444593 | 1444763 | 1.444812 | 1.444827
0.7 1460148 1470483  |1.470817 | 1.470900 | 1.470928
0.8 1536024 1537861 |1.53832 1538435 | 1.538473
0.9 1652654 | 1.654814  |1.655354 | 1.655480 | 1.655534
1.0 1824264 |1.826536  |1.827103 | 1.827245 | 1.827292
Hata Normu

le], 0.001043  10.000285  |0.000074  |0.000019

L, 0.002141  |0.000535  |0.000134 | 0.000033

L. 0.003028  |0.000757  |0.000189 | 0.000047
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Tablo 5.8. h=0.1 ve k =0.001degerleri i¢in # =0.5 zamaninda Problem 2’nin niimerik

ve analitik ¢6ziimlerinin karsilagtirilmasi

Crank-

Acik Kapah Nicolson Analitik
x Yontem Yontem Yontemi Coziim
0.0 2.007310 2.007669 2.007488 2.007192
0.1 2.016953 2.017294 2.017122 2.016840
0.2 2.045914 2.046204 2.046058 2.045818
0.3 2.094297 2.094508 2.094402 2.094227
0.4 2.162259 2.162370 2.162314 2.162222
0.5 2.250000 2.250000 2.250000 2.250000
0.6 2.357741 2.357630 2.357686 2.357778
0.7 2.485703 2.485492 2.485598 2.485773
0.8 2.634086 2.633796 2.633942 2.634182
0.9 2.803047 2.802706 2.802878 2.803160
1.0 2.992690 2.992331 2.992511 2.992808
Hata Normu
el 0.000027 0.000110 0.000068
L, 0.000084 0.000337 0.000210
L, 0.000118 0.000477 0.000297

Problem 3: Bu problemde

w_ou
ot ox’

0<x<1,t20

1-boyutlu zamana bagli 1s1 iletim denklemi
U(x,0)=1
baslangi¢ sart1 ve

oU (0,1) _

U s
o0x
oU(1,1) U
ox

Robbin siir sartlarina bagli olarak goz oniine alinmistir. Bu problemin analitik ¢oziimii
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| seca 4y 1
U(x,t)=4) i———-—¢e " cos| 2a,| x——
o ;{<3+4a3> ( ( 2n}

dir. Burada «, degerleri atan =1/2 denkleminin pozitif kokleridir [3].

¢ Ack Sonlu Fark Yaklasimi

Problem 3’iin agik sonlu fark yaklagimi

1
urt=2ru’

m+1

+[1-2r(d+ MU, m=0

m?

urt=rul, +(1=2rU" +rU!

m—1 m+l?

m=11)M -1

1
urt=2ru’

m—1

+[1-2r+mWU), m=M
seklindedir. Bu problemin agik sonlu fark yaklagimi agik olarak yazildiginda

U =2rU; +[1-2r(1+ W)U
UMt =ru; +(1-2ru; +rU}

Uil =rUy_,+(0=-20U;,_ +rU,,
Uy =2rU,, [1-2r(l+ W)U}, ]

denklem sistemi elde edilir.

®  Matris Yontemi

(5.22) denklem sistemi
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(5.19)
(5.20)

(5.21)

(5.22)



Ud™ | T=2r(1+h) 2r 11U,
uM r 1-2r r U/
uto| r 1-2r r U’
U,’;f_ll r 1-2r r U,
v | L 2 1-201+ 1) || 1

L | ; L J
QMH) QM)

biciminde yazilabilir. Teorem 1.2’den A matrisinin 6zdegerleri:

m=0ve m=M igin a, =1-2r(1+h) ve P, =2r oldugundan

A —1+2r(l+h)=2r = A =1-2rh,

|A=1+2r(1+h)1=2r =
A —142r(l+h)==2r = A, =1-2r(2+h),

m=11M -1 i¢in a_ =1-2r ve P, =2r oldugundan

A =1+2r=2r =1, =1,

IA-(A-2n1=2r =>4 °
A, =14+2r==22r =>4, =1-4r

olarak bulunur. Kararlilik analizi igin | 4, I<1 (i =1(1)4) olmalidir. Burada A, degerleri

tek tek incelenmelidir:

| 4, 1<1 den OSrSl,

ol

|4, 1<1 den OSrSL,
2+h

|2, 1<1 den I11<1,

|4, 1<1 den 0<r<1/2
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bulunur. Kararhlik igin » <min{l/k,1/(2+h),1,1/2} olmaldir. Buradan kararlilik
parametresi r <1/(2+h) olarak elde edilir. Boylece Robbin sinir sarth 1s1 iletim
probleminin agik yontem ile elde edilen yaklagik ¢oziimiiniin ancak 0<r <1/(2+h)

oldugunda analitik ¢6ziime yakinsadigi goriiliir.

o vyon Neumann Yontemi

(2.15) ile verilen agik sonlu fark yaklasiminda (3.8) esitli§i yerine konulup,
gerekli islemler yapildiginda

£=—4rsin’(Ph/2)+1
elde edilir. Kararlilik icin gerek ve yeter sart | £1<1 olmasidir. O halde

—2<—4rsin’(Bh/2)<0

olur. Bu esitliklerin sag parcasindan r = 0 ve sol parcasimdan ise

1

PP S
2sin’(Bh/2)" 2

bulunur. Buradan kararlilik parametresi » <1/2 olarak elde edilir. Boylece Robbin sinir
sartll 1s1 iletim denkleminin acik yontem ile elde edilen yaklasik ¢6ziimii ancak

0 < r <1/2 oldugunda analitik ¢6ziime yakinsar.

¢ Kapali Sonlu Fark Yaklasimi

Problem 3’iin kapali sonlu fark yaklasimi

M+2r(+ WU =27U =U", m=0 (5.23)

m+1 m?

UM +A+20U -yt =’

m—1 m+1 m?

m=110M —1 (5.24)
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—2rU™ 4[4+ 2r(A+ WU =U", m=M (5.25)

m—1 m?

seklindedir. Bu sonlu fark yaklasimi acik olarak yazildiginda

[+2r(d+ W)U =2°U™ =U]
UM+ +2nU ™ Ut =0}
—rU™ +(+20U" —rUM = U (5.26)
—rU ++2r)UL UM =U]
=2rU 1+ 2r(+ W)U = U},

denklem sistemi elde edilir.

o  Matris Yontemi

(5.26) denklem sistemi

(+2r(l+h) —2r 11U || Uy
—r A+2r) —r urtt ooy
—r 14+42r —-r Ut _ U)
-r (+2r) -r U Ul
I ~2r 1+2r4 0] g | |y |
A
U(n+l) Q(")

veya

AU (n+1) — U (n)

olarak ifade edilebilir. A tersi mevcut bir matris oldugundan AU g™

sistemiU "™ = A7U"™ olarak yazilabilir. Burada kararhlik analizi i¢cin A~ matrisinin
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ozdegerlerine ihtiyag vardir. A matrisinin 6zdegerleri A, ise A~ matrisinin 6zdegerleri

1/A, degeridir. Teorem 1.2°den A matrisinin 6zdegerleri

m=0ve m=M icin a, =1+2r(1+h) ve P_=2r oldugundan

A =1=-2r(l1+h)=2r = A =1+2r(2+h),

IA-1-2r(1+h)1=2r =
(L+h) {/12—1+2r(1+h)=—2r = A, =1+2rh,

m=11)M -1 igin a, =1+ 2r ve P_=2r oldugundan

A, —=1-2r=2r = A, =1+4r,

IA-(1+2r)=2r=
A, =1-2r==2r =1, =1

dir. Yontemin kararli olmast i¢in |1/ /11.| <1 (i=1(1) 4) olmalidir. Burada 1/4, degerleri

tek tek incelendiginde

<1 den r=0,

=

<ldenr=0,

<1 den r=0,

—|<1denlll<1

elde edilir. Boylece yontem sartsiz kararlidir.

e yon Neumann Yontemi

(2.26) ile verilen kapali sonlu fark yaklagiminda (3.8) esitligi yerine konulup,
gerekli islemler yapildiginda

1
E =
1+ 4rsin®(Bh/2)
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elde edilir. Kararlilik i¢in gerek ve yeter sart | £1<1 olmasidir. O halde

1< 1 <1

C1+4rsin®(Br/2)

elde edilir. Bu esitsizlik her » >0 icin saglanir. Boylece Robbin sinir sartli 1s1 iletim

probleminin kapal1 sonlu fark yaklagimi sartsiz kararhdir.

¢ Crank-Nicolson Sonlu Fark Yaklasim

Problem 3’iin Crank-Nicolson sonlu fark yaklagimi

2+2r(l+ WU =27 UM =[2=-2r(1+ W)U +2rU",,, m=0 (5.27)

m+1

UM +Q+20UM —rUM =rU!

m—1 m+1 m—1

+Q2=27U" +rU",,, m=1D)M -1  (5.28)

m+1°

=2rUM™ +[2+2r(1+ WU =2rU"

m—1 m—1

+2-2r(+MU, m=M (5.29)

m?

seklindedir. Bu sonlu fark yaklasimi agik olarak yazildiginda

2+ 2rA+WUS" =2rU™ =[2-2r(1+ W)U, +2rU;
UM +Q+2rUM —rUS =rU) +(2-2r)U; +rU}
- UM + Q420U —rUM =rU +(2-20US +rU! (5.30)
-rU +Q+2r)U —rU =rUl L, +(2-2r)U;,  +rU},
=2rU +2+2r(+ WU =2rU;, | +[2-2r(1+ W)U},

denklem sistemi elde edilir.

o  Matris Yontemi

(5.30) denklem sistemi agik matris formunda

73



24 2r(+h) —2r T | [2=2r04h) 2r U
-r (2421 -r U roooQ2-2r) r Uy
-r 242r -r uyt.| r 2-2r r U’
-r 242r) —-r U:;ll r 2-2r) r Ul
~2r 242r(1+h) | | 2r 2-2r(+ ) ||y
' LM < LM
A g(ml) B g(n)

olarak veya kapali matris formunda
AQ(IHI) — Bg(n)

olarak yazilabilir. A tersi mevcut bir matris oldugundan AU“*" =BU"™ sistemi
v =A"Bu" olarak yazilabilir. B=41I,,—-A oldugundan
U™ =@4A™ ~1,,,)U™ dir. A matrisinin bir ozdegeri A olmak iizere 4A~' —1,,
matrisinin 6zdegeri 4/4—1 seklindedir. Bu yontemin kararli olabilmesi i¢in |4/ A- 1| <1

olmalidir. Bu durumda 4> 2 elde edilir. Teorem 1.2°den A matrisinin 6zdegerleri:

m=0ve m=M igin a, =2+ 2r(1+h) ve P_=2roldugundan

A =2=2r(l+h)=2r = A =2+2r(2+h),

|A-2-2r(1+h)|=2r
A =2+2r(l+h) =—=2r = A, =2+2rh,

m=11)M -1 i¢in a, =2+ 2r ve P, =2r oldugundan

A, =2-2r=2r = A, =2+4r,

11— (2 +2r)1=2
(2+20) r{/14—2—2r=—2r — 4, =2

olarak bulunur. A¢ik¢a Vr >0 i¢in 4>2 oldugundan yontem sartsiz kararlidir.

o yon Neumann Yontemi

(2.40) ile verilen Crank-Nicolson sonlu fark yaklasiminda (3.8) esitligi yerine

konulup gerekli islemler yapildiginda
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o L=2rsin®(Bh/2)
1+ 2rsin®(Bh/2)

elde edilir. Kararlilik icin gerek ve yeter sart | £1<1 olmasidir. O halde

)
_1S1—2rsm (,b’h/2)Sl
1+ 2rsin®(Bh/2)

elde edilir. Bu esitsizlik her » >0 icin saglanir. Boylece Robbin sinir sartli 1s1 iletim

probleminin Crank-Nicolson sonlu fark yaklasimi sartsiz kararlidir.

Niimerik Sonuclar

k =0.00001 degeri ve farkli mesh uzunlugu % icin #=0.1 zamaninda
Problem3’iin acik yontem ile elde edilen niimerik c¢oziimlerinin analitik ¢oziimle
karsilagtirilmas1 Tablo 5.9’da, kapali yontem ile elde edilen niimerik ¢oziimlerinin
analitik ¢6ziimle kargilagtirnlmasi Tablo 5.10’da ve Crank-Nicolson yontemi ile elde
edilen niimerik ¢oziimlerinin analitik ¢6ziimle karsilastirilmast Tablo 5.11°de verildi.
Tablolardan kolayca goriilecegi iizere mesh uzunlugu /# ne kadar kiiciik secilirse
niimerik ¢6ziimlerin analitik ¢6ziime o kadar yaklastigi kolayca goriiliir. Buradaki & ve
k degerleri kararliligi bozmayacak sekilde secilmistir.

k =0.001 ve h=0.1degerleri i¢in Problem 3’iin acik, kapali ve Crank-Nicolson
yontemleriyle elde edilen f#=0.5 zamanindaki niimerik ¢6ziimlerin karsilagtirilmasi
Tablo 5.12 ile verilmigstir. Tablodan kolayca goriilecegi gibi analitik ¢coziime en yakin
sonucglar agik yontemden daha sonra Crank-Nicolson ve kapali yontemlerinden elde

edilmistir.
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Tablo 5.9. Acik Yontem: k =0.00001 ve h’nin farkli degerleri icin #=0.1 zamaninda

Problem 3’iin niimerik ve analitik ¢6ztimleri

Niimerik Coziim Analitik

x h=0.1 h=0.05 h=0025 |h=00125 |Cozim
0.0 0.718024 (0717672 |0.717587 0717566 |0.717527
0.1 0.783425  0.782924  |0.782801  |0.782771 _ |0.782733
0.2 0.834964  |0.834404 | 0.834266  |0.834231 _ |0.834195
0.3 0.872019  |0.871463  |0.871324  |0.871290 _ |0.871255
0.4 0.894308  |0.893777  |0.893644 | 0.893610 | 0.893577
05 0901742 |0.901225 _ |0.901094 _ |0.901061 _ |0.901028
0.6 0.894308  |0.893777 _ |0.893644  |0.893610 | 0.893577
0.7 0.872019  |0.871463  |0.871324  |0.871290 _ |0.871255
0.8 0.834964  |0.834404 | 0.834266 | 0.834231 | 0.834195
0.9 0783425  |0.782924  |0.782801 _ |0.782771 | 0.782733
1.0 0718024 |0.717672 0717587 |0.717566 _ 0.717527
Hata Normu

le], 0.000780  |0.000224  |0.000079 | 0.000042

L, 0.000717  |0.000197 | 0.000068 | 0.000036

L 0.000770  |0.000210  |0.000071 | 0.000039

Tablo 5.10. Kapali Yontem: k =0.00001 ve A’nin farkli degerleri icin r=0.1

zamaninda Problem 3’iin niimerik ve analitik ¢oziimleri

Niimerik Coziim Analitik
x h=01 h=005  |h=0025 |h=00125 |Coziim
0.0 0718029 0717677 10717591 |0.717570 _ |0.717527
0.1 0783429 |0.782928  |0.782806  |0.782775 _ |0.782733
0.2 0.834967  |0.834407  [0.834269  |0.834234 _ |0.834195
0.3 0.872021  |0.871465 [0.871326  |0.871292 _ [0.871255
0.4 0.804308  |0.893778 _ |0.893645  |0.893611 _ |0.893577
05 0001742 [0.901225  [0.901094  [0.90106] _ [0.901028
0.6 0.804308  |0.893778  |0.893645  |0.893611 | 0.893577
0.7 0.872021  |0.871465 [0.871326  |0.871292  |0.871255
0.8 0.834967  0.834407  [0.834269  |0.834234 _ |0.834195
0.9 0783429 |0.782928  |0.782806  |0.782775 _ |0.782733
1.0 0718029 0717677 [0.717591 __|0.717570 _ |0.717527
Hata Normu
le], 0.000782 | 0.000227  |0.000082 | 0.000045
L, 0.000719 | 0.000200 |0.000071 | 0.000039
L. 0.000773 | 0.000213  |0.000074 | 0.000043
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Tablo 5.11. Crank-Nicolson Yontemi: £ =0.00001 ve A’nin farkli degerleri i¢in # =0.1

zamaninda Problem 3’iin niimerik ve analitik ¢oziimleri

Niimerik Coziim Analitik
x h=0.1 h=0.05 h=0025 |h=00125 |Coziim
0.0 0718026 [0.717674 10717589 |0.717568  0.717527
0.1 0.783427 0782926  |0.782804 |0.782773 | 0.782733
0.2 0.834966  |0.834405  |0.834267 |0.834233  |0.834195
0.3 0.872020  |0.871464 0871325 |0.871291  |0.871255
0.4 0.894308  |0.893778  |0.893644 | 0.893611 |0.893577
05 0001742 0901225 _ |0.901094 |0.901061 _|0.901028
0.6 0.894308  |0.893778  |0.893644 | 0.893611 _|0.893577
0.7 0.872020 0871464  |0.871325 |0.871291 | 0.871255
0.8 0.834966  |0.834405 _ |0.834267 |0.834233 |0.834195
0.9 0.783427  |0.782926  |0.782804 | 0.782773  |0.782733
1.0 0718026 0717674  |0.717580  |0.717568  |0.717527
Hata Normu
le], 0.000781  |0.000226  |0.000081 | 0.000044
L, 0.000718  |0.000199  |0.000069 | 0.000037
L 0.000771  |0.000212  |0.000073 | 0.000041

Tablo 5.12. h=0.1 ve k=0.001degerleri i¢cin #=0.5 zamaninda Problem 3’iin

niimerik ve analitik ¢oziimlerinin karsilastirilmasi

Crank-

Acik Kapah Nicolson Analitik
x Yontem Yontem Yontemi Coziim
0.0 0.361560 0.362088 0.361824 0.361895
0.1 0.394627 0.395203 0.394915 0.394901
0.2 0.420950 0.421565 0.421258 0.421174
0.3 0.440081 0.440724 0.440403 0.440267
0.4 0.451692 0.452352 0.452022 0.451855
0.5 0.455584 0.456250 0.455917 0.455740
0.6 0.451692 0.452352 0.452022 0.451855
0.7 0.440081 0.440724 0.440403 0.440267
0.8 0.420950 0.421565 0.421258 0.421174
0.9 0.394627 0.395203 0.394915 0.394901
1.0 0.361560 0.362088 0.361824 0.361895
Hata Normu
”e" 1 0.000436 0.000878 0.000221
L, 0.000226 0.000412 0.000120
L, 0.000335 0.000510 0.000177
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