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ABSTRACT 

 

LAPLACIAN EIGENVALUES OF THRESHOLD GRAPHS IN GRAPH 

THEORY  

 

Farah Basim Salim AL-MAHDI  

Master of Science in Mathematics  

Advisor: Asst. Prof. Dr. Celalettin KAYA 

June 2023 

 

The main source used in the preparation of this thesis is the graduate textbook "Graphs and 

Matrices", Bapat (2014). Essentially, what we do is to study the eleventh chapter of the mentioned 

textbook to understand and explain the “Laplacian eigenvalues of threshold graphs”, as can be 

understood from the title of the thesis. But of course, no part of the aforementioned book has been 

quoted exactly, a study has been put forward with our own words and our own sentences; almost 

every proof has been written in more detail, and parts of the book that were left to the reader have 

been explained completely and the subject has been presented more understandably. In addition 

to these, the sources listed in the references were also consulted. To summarize in outline: In the 

first chapter, basic notions are given about the majorization and related fundamental facts are 

proved. In the first section of the second chapter, threshold graphs are defined, and a 

characterization of threshold graphs according to the Laplacian eigenvalues is stated and proved; 

in the second section, the concept of Laplacian integral graph is introduced, and as an example, 

cographs are defined, which determine a class of Laplacian integral graphs containing the class 

of threshold graphs, also a characterization of spectral integral variation is stated and proved. In 

the third chapter, the last chapter before the conclusions and recommendation chapter, a brief 

literature review on the subject of the thesis is presented mainly by using the notes at the end of 

the eleventh chapter of the mentioned book. 

 

2023, 38 pages 

 

Keywords: Majorization, Threshold graphs, Laplacian eigenvalues, Spectral integral 

variation 
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ÖZET 

 

GRAF TEORİSİNDE EŞİK GRAFLARININ LAPLACE ÖZDEĞERLERİ  

 

Farah Basim Salim AL-MAHDI  

Matematik, Yüksek Lisans  

Tez Danışmanı: Dr. Öğr. Üyesi Celalettin KAYA 

Haziran 2023 

 

Bu tezin hazırlanmasında kullanılan başlıca kaynak, Bapat (2014)’in “Graphs and 

Matrices” başlıklı lisansüstü kitabıdır. Esas itibariyle bizim yaptığımız, tezin başlığından 

da anlaşılacağı üzere, “eşik graflarının Laplace özdeğerlerini anlamak ve anlatmak için, 

söz konusu kitabın on birinci bölümünün çalışılmasından ibarettir. Fakat tabi ki 

mevzubahis kitabın herhangi bir kısmı aynen alıntılanmamış, kendi sözcüklerimiz ve 

kendi cümlelerimizle bir çalışma ortaya konulmuştur ve hemen her ispat ayrıntılı bir 

şekilde yazılmış ve kitabın okuyucuya bırakılan bölümleri eksiksiz bir şekilde açıklanarak 

konu daha anlaşılır bir şekilde sunulmuştur. Bunlara ek olarak, referanslar kısmında 

listelenmiş olan kaynaklara da başvurulmuştur. Ana hatlarıyla özetlemek 

gerekirse: Birinci bölümde majorizasyonla ilgili temel kavramlar verilmiş ve ilgili temel 

sonuçlar ispat edilmiştir. İkinci bölümün ilk alt bölümünde, eşik grafları tanımlanmış ve 

eşik graflarının Laplace özdeğerlerine göre karakterizasyonu ifade ve ispat edilmiştir; 

ikinci alt bölümünde, Laplace integral graf kavramı verilmiş ve örnek olarak, eşik grafları 

sınıfını içeren, Laplace integral graflarının bir sınıfını belirleyen kograflar tanımlanmıştır, 

ayrıca spektral integral varyasyonun bir karakterizasyonu da ifade ve ispat edilmiştir. 

Tezin üçüncü, sonuç ve öneriler bölümünden önceki son bölümünde ise, esas olarak adı 

geçen kitabın on birinci bölümünün sonunda yer alan notlardan yararlanılarak, tezin 

konusuna ilişkin kısa bir literatür taraması sunulmuştur. 

 

2023, 38 sayfa 

 

Anahtar Kelimeler: Majorizasyon, Eşik graflar, Laplace özdeğerler, Spektral integral 

varyasyon 
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1. MAJORIZATION 

In the chapter, we review some fundamental facts about majorization, which we need in 

the sequel of the thesis.  

Definition 1.1 𝐿𝑒𝑡  𝑎 = [𝑎1, 𝑎2, … , 𝑎𝑛]𝑇 ∈  ℝ𝑛 , and let 𝑎[1]  ≥ 𝑎[2] ≥…≥ 𝑎[𝑛]  be a 

nonincreasing sequence of the components of the vector 𝑎. That is: 

𝑎[1] = 𝑚𝑎𝑥{𝑎1, 𝑎2, … , 𝑎𝑛}, and  𝑎[𝑗] = 𝑚𝑎𝑥({𝑎1, 𝑎2, …, 𝑎𝑛}\{𝑎[1], 𝑎[2], …, 𝑎[𝑗−1]}) for 

each 𝑗 = 2, 3, … , 𝑛. Let  𝑏 = [ 𝑏1, 𝑏2, … , 𝑏𝑛]𝑇 ∈ ℝ𝑛 . If we have:  

ⅰ)  ∑ 𝑎[𝑗]
𝑘
𝑗=1 ≤   ∑ 𝑏[𝑗]

𝑘
𝑗=1 , for each 𝑘 = 1, 2, … , 𝑛 − 1,  

ⅱ)  ∑ 𝑎[𝑗]
𝑛
𝑗=1 ≤   ∑ 𝑏[𝑗]

𝑛
𝑗=1 ,  

then we say that 𝑎 is “majorized” by 𝑏, or 𝑏 “majorizes” 𝑎, and it is denoted by 𝑎 < 𝑏. If 

𝑎 < 𝑏, we frequently say that  𝑎1, 𝑎2, …, 𝑎𝑛 are majorized by 𝑏1, 𝑏2, …, 𝑏𝑛. If 𝑐 and 𝑑 

are 1 × 𝑛 real vectors, and if  𝑐𝑇 < 𝑑𝑇 , then we say that 𝑐 is majorized by 𝑑, and it is 

also denoted by 𝑐 < 𝑑. 

Note 1.2 Let 𝑎 =[𝑎1, a2, …, 𝑎𝑛]T ∈ ℝ𝑛, and let ā = 𝑎1+𝑎2+⋯+𝑎𝑛 

𝑛
 be the arithmetic mean of 

the components of the vector 𝑎. Also let b = [ā, ā, ..., ā]T. Then < 𝑎 :  

First of all, ∑ 𝑏𝑛
𝑗=1 [𝑗]

=  ∑ 𝑎̅𝑛
𝑗=1  =  𝑛  ā = 𝑎1+ 𝑎2+ … +𝑎𝑛=  ∑ 𝑎[𝑗]

𝑛
𝑗=1 . 

∴ The condition (ii) in the previous definition is satisfied. 

Secondly, ā ≤ 𝑎[1] : Suppose not. That is, ā > 𝑎[1].  

Then, since 𝑎[1] ≥ 𝑎𝑗 for each 𝑗 =  1, … , 𝑛, ā > 𝑎[𝑗] for each 𝑗 =  1, … , 𝑛. 

⇒  nā >𝑎[1]+𝑎[2]+ … +𝑎[𝑛]=𝑎1+ 𝑎2+ … +𝑎𝑛, a contradiction. 

Now, we can show that the condition (ⅰ) of the previous definition is also satisfied:  

Suppose to the contrary that there is some 𝑘 ∈ {2, 3, … , 𝑛 − 1} s.t. ∑ 𝑏[𝑗]
𝑘
𝑗=1  >  ∑ 𝑎[𝑗]

𝑘
𝑗=1 . 

Let m be the smallest such 𝑘. That is,   ∑ 𝑏[𝑗]
𝑚−1
𝑗=1 ≤  ∑ 𝑎[𝑗]

𝑚−1
𝑗=1 , but  ∑ 𝑏[𝑗]

𝑚
𝑗=1  >  ∑ 𝑎[𝑗]

𝑚
𝑗=1 .  

⇒ In particular,  b[m] = ā > a[m]. 

⇒Since 𝑎[𝑚] ≥ 𝑎[𝑗] for each  𝑗 = 𝑚,𝑚 + 1,… , 𝑛, ā > 𝑎[𝑗] for each 𝑗 = 𝑚,𝑚 + 1,… , 𝑛. 

⇒ Since ∑ 𝑏[𝑗]
𝑚
𝑗=1 > ∑ 𝑎[𝑗],

𝑚
𝑗=1 ∑ 𝑏[𝑗]

𝑚
𝑗=1 + (𝑛 − 𝑚) 𝑎̅ > ∑ 𝑎[𝑗]

𝑚
𝑗=1 + ∑ 𝑎[𝑗]

𝑛
𝑗=𝑚+1 . 
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⇒ ∑ 𝑏[𝑗]
𝑛
𝑗=1  >  ∑ 𝑎[𝑗]

𝑛
𝑗=1  = 𝑎[1]+ … +𝑎[𝑛]  = 𝑎1+ … +𝑎𝑛 

⇒  𝑛ā > 𝑎1+ 𝑎2+ ... +𝑎𝑛, a contradiction. 

∴ The condition (ⅰ) of the previous definition must also be satisfied. As a result, 

[ā, ā, ..., ā]T  <  [𝑎1+ 𝑎2+ … +𝑎𝑛]T. 

Definition 1.3 Let  𝑀 = [𝑚𝑖𝑗]
  be a square matrix of order 𝑛. If  𝑚𝑖𝑗 ≥  0 for all 𝑖, 𝑗 =

1, 2, … , 𝑛, and each row sum and each column sum equal 1, then 𝑀 is called a “doubly 

stochastic matrix (DSM)”. 

Theorem 1.4 (Hardy-Littlewood-Polya Theorem) (Hardy, Littlewood, Polya (1934, 

1952))  𝐿𝑒𝑡  a = [a1, a2, …, a3]
T, b = [b1, b2, …, bn]

T  ∈  ℝ𝑛. Then: 

𝑎 < 𝑏 ⇔ There is a DSM 𝑀𝑛×𝑛 = [𝑚𝑖𝑗] s.t. 𝑎 = 𝑀𝑏. 

Proof.  

(⟸) Suppose that 𝑎 = 𝑀𝑏 for some DSM 𝑀𝑛𝑥𝑛. Then :   

𝑎𝑗 = [𝑀𝑏]𝑗 = 𝑀𝑗 𝑡ℎ 𝑟𝑜𝑤. 𝑏 =  𝑚𝑗1𝑏1 +  𝑚𝑗2𝑏2  + ⋯+  𝑚𝑗𝑛𝑏𝑛 = ∑  𝑚𝑗𝑙𝑏𝑙
𝑛
𝑙=1 .   

∴  ∑ 𝑎𝑗
𝑛
𝑗=1 = ∑ (𝑛

𝑗=1 ∑  𝑚𝑗𝑙𝑏𝑙
𝑛
𝑙=1 ) = ∑ ∑  𝑚𝑗𝑙𝑏𝑙

𝑛
𝑗=1

𝑛
𝑙=1 = ∑ 𝑏𝑙(

𝑛
𝑙=1 ∑  𝑚𝑗𝑙)

𝑛
𝑗=1 = ∑ 𝑏𝑙,

𝑛
𝑙=1  

because ∑  𝑚𝑗𝑙 = 1 𝑛
𝑗=1   

∴ Condition (ⅱ) of the first definition is satisfied. 

Now, let  𝑘 ∈  {1, 2, … , 𝑛 − 1} be a fixed integer.  

First of all, for simplicity of the notation, we can assume that  a1 ≥ a2 ≥ ... ≥ an and b1 ≥

 b2 ≥ ... ≥ bn :  

Let 𝜎 (respectively, 𝜏) be the permutation of the set [𝑛] = {1, 2, … , 𝑛} s.t. if we apply 𝜎 

(respectively, 𝜏) to the components of 𝑎 (respectively, 𝑏), then we obtain the ordering 

𝑎[1] ≥ 𝑎[2] ≥ ...  ≥ 𝑎[𝑛]  (respectively, b[1]  ≥  b[2]  ≥ ...  ≥  b[n]). Now, if we apply 𝜎 

(respectively, 𝜏) to the rows (respectively, columns) of the matrix 𝑀, and denote the 

obtained matrix with 𝑀,̃ then the equation a = 𝑀𝑏 becomes the equation 𝑎 ̃ = 𝑀 ̃𝑏̃, where 

𝑎 ̃= [𝑎[1], 𝑎[2], …, 𝑎[𝑛]]
T  and 𝑏̃ = [b[1], b[2], ..., b[n]]

T. Obviously, the resulting matrix 𝑀 ̃is 

still a DSM. As a result, the assumptions a1 ≥ a2 ≥ ... ≥ an and b1 ≥ b2 ≥ ... ≥ bn do not 

violate the generalization. 



3 
 

Now, let  𝑠𝑙 = ∑  𝑚𝑗𝑙
𝑘
𝑖=1   for each 𝑙 = 1, 2, … , 𝑛.  

Then: ∑ 𝑠𝑙
𝑛
𝑙=1 = ∑ ∑  𝑚𝑗𝑙

𝑘
𝑖=1

𝑛
𝑙=1  = ∑ ∑  𝑚𝑗𝑙

𝑛
𝑙=1

𝑘
𝑖=1  = ∑ 1𝑘

𝑖=1 = 𝑘. 

And, ∑ 𝑎𝑗
𝑘
𝑗=1  ≤  ∑ 𝑏𝑗

𝑘
𝑗=1 , or equivalently, ∑ (𝑎𝑗 − 𝑏𝑗)

𝑘
𝑗=1  ≤ 0: 

∑ (𝑎𝑗 − 𝑏𝑗)
𝑘
𝑗=1  = ∑ 𝑎𝑗

𝑘
𝑗=1  − ∑ 𝑏𝑗

𝑘
𝑗=1  = ∑ ( ∑ 𝑚𝑛

𝑙=1 𝑗𝑙
𝑘
𝑗=1 𝑏𝑙) − ∑ 𝑏𝑗

𝑘
𝑗=1  

                        = ∑ ∑  𝑚𝑗𝑙
𝑘
𝑗=1

𝑛
𝑙=1 𝑏𝑙 − ∑ 𝑏𝑗

𝑘
𝑗=1  

                        = ∑ 𝑏𝑙(
𝑛
𝑙=1 ∑  𝑚𝑗𝑙

𝑘
𝑗=1 ) − ∑ 𝑏𝑗

𝑘
𝑗=1  

                        = ∑ 𝑏𝑙𝑠𝑙
𝑛
𝑙=1 − ∑ 𝑏𝑗

𝑘
𝑗=1  + 𝑏𝑘 (𝑘 − ∑ 𝑠𝑙

𝑛
𝑙=1 ) 

                        = ∑ 𝑏𝑙𝑠𝑙
𝑛
𝑙=1  + ∑ 𝑏𝑙𝑠𝑙

𝑛
𝑙=𝑘+1 − ∑ 𝑏𝑙

𝑘
𝑙=1  + 𝑏𝑘𝑘 − ∑ 𝑏𝑘𝑠𝑙

𝑘
𝑙=1 − ∑ 𝑏𝑘𝑠𝑙

𝑛
𝑙=𝑘+1  

                        = ∑ 𝑏𝑙(𝑠𝑙 − 1) −𝑘
𝑙=1 ∑ 𝑏𝑙(𝑠𝑙 − 1) +𝑘

𝑙=1 ∑ (𝑏𝑙 − 𝑏𝑘)𝑠𝑙
𝑛
𝑙=𝑘+1  

                        = ∑ (𝑏𝑙 − 𝑏𝑘)(𝑠𝑙 − 1) +𝑘
𝑙=1 ∑ (𝑏𝑙 − 𝑏𝑘)𝑠𝑙

𝑛
𝑙=𝑘+1 ≤ 0,   

because 𝑏𝑙 ≥ 𝑏𝑘   for 𝑙 = 1, 2, … , 𝑘 and  𝑏𝑙 ≤ 𝑏𝑘   for 𝑙 = 𝑘 + 1, 𝑘 + 2,… , 𝑛, and also 0 ≤

𝑠𝑙 ≤ 1. 

∴ Condition (ⅰ) of the first definition is also satisfied.  

As a result, a < b.  

(⇒) (This part of the proof is taken from Zhang (2011).)  

To prove this necessity part, we first need a definition. 

A 2 × 2  matrix of the form = [
𝑡 1 − 𝑡

1 − 𝑡 𝑡
] , where 𝑡 ∈  [0, 1] , is called a “ 𝑇 - 

transform”. Let 𝑀 be an 𝑛 × 𝑛 matrix. If 𝑀 is obtained from the 𝑛 × 𝑛 identity matrix 𝐼 

by interchanging a 2 × 2 principal submatrix of 𝐼  with a 2 × 2 T-transform 𝑇, then 𝑀 is 

also called an "(n×n) T-transform". 

First, a T-transform 𝑀𝑛×𝑛 = [𝑚𝑖𝑗] is a DSM:  

Since 0 ≤ 𝑡 ≤ 1, 0 ≤ 1 − 𝑡 ≤ 1. 

∴ 𝑚𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 =  1, 2, . . ., 𝑛.  Let 𝑀  be obtained from 𝐼  by interchanging its 

principal submatrix determined by 𝑖 th and 𝑗 th rows, and 𝑖 the and 𝑗 th columns. Then 

each row sum and each column sum of 𝑀 is equal to 1. (Let 𝑘 ≠ 𝑖, 𝑗. Then row k and 

column 𝑘 contain only one nonzero entry which is 1. And for 𝑘 ∈ {𝑖, 𝑗}, each of the sum 

of elements in row 𝑘 and in column 𝑘  is equal to 𝑡 + (1 − 𝑡) = 1.) Therefore, 𝑀 is a 

DSM. 
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Second, obviously, M = tI + (1−t) P, where 𝑡 ∈ [0, 1]  and 𝑃  is a permutation matrix 

corresponding to the interchanging columns 𝑖 and 𝑗 of the identity matrix. (If each row 

and each column of a square matrix 𝑃 contains exactly one nonzero entry which is equal 

to l, then 𝑃 is called a ''permutation matrix (PM)''.) 

Note that if  𝑡 = 0, then 𝑀 = 0𝐼 + (1 − 0) 𝑃 = 𝑃, that is, 𝑀 is a PM.  

Third, it is a well-known fact from algebra that a permutation 𝜎: [𝑛] → [𝑛]  can be 

expressed as a product (function composition) of permutations, each of which 

corresponds to a single interchange. Therefore, a PM can be expressed as a product 

(matrix product) of  T-transforms. 

Now, we can prove the necessity part by induction on 𝑛: 

𝑛 = 1 : In this case, 𝑎, 𝑏 ∈ ℝ.  Therefore, 𝑎 < 𝑏 ⇒ 𝑎 = b, by the definition of 

majorization. Thus, since 𝑀 = [1]1×1 is a DSM and trivially 𝑎 = 𝑀𝑏, the statement is 

true. 

∴ Suppose 𝑛 > 1 and the statement holds for 𝑛 − 1. 

(i) If 𝑎1 =  𝑏1 , Then since 𝑎 < 𝑏 , we have [𝑎2, 𝑎3, …… , 𝑎𝑛]𝑇 < [𝑏2, 𝑏3, …… , 𝑏𝑛]𝑇 . 

Then by the induction assumption, there are T-transforms 𝑀1, 𝑀2, . . . , 𝑀𝑘, each has order 

𝑛 − 1 s.t. [𝑎2, 𝑎3, … , 𝑎𝑛]𝑇= 𝑀1 𝑀
2. . .  𝑀𝑘 [𝑏2, 𝑏3, …… , 𝑏𝑛]𝑇 . 

Let 𝑁𝑖 = [
1 0̅𝑇

0̅ 𝑀𝑖
] for each 𝑖 = 1, 2, … , 𝑘. Then, each of 𝑁𝑖  is also a T-transform, and by 

block multiplication, [𝑎1, 𝑎2, … , 𝑎𝑛]𝑇= 𝑁1𝑁₂ . . .  𝑁𝑘  [𝑏1, 𝑏2, …… , 𝑏𝑛]𝑇.  

(ii) If 𝑎𝑖 = 𝑏𝑗 for some 𝑖 and 𝑗, then a permutation 𝜎 and 𝜏 can be applied to 𝑎 and 𝑏, 

respectively, s.t. 𝑎𝑖 and 𝑏𝑗  are the first coordinates of the obtained vectors, say 𝑎̃ and 𝑏̃, 

respectively. Let 𝑃𝜎  and 𝑃𝜏  be the corresponding PMs. Then 𝑎 ̃ = 𝑃𝜎  𝑎 and 𝑏 ̃ =  𝑃𝜏 𝑏. 

Then, since applying permutations does not charge the majorization relation (that is,   𝑎 <

𝑏 ⟺ 𝑎 ̃ < 𝑏 ̃), by the case proved in the previous paragraph, there are T-transforms 

𝑆1, 𝑆2, . . . ,  𝑆𝑙 s.t.  𝑎 ̃ = 𝑆1𝑆2 . . . 𝑆𝑙𝑏.̃ Therefore 𝑃𝜎  𝑎 =  𝑆1 𝑆2 . . .  𝑆𝑙𝑃𝜏𝑏. Thus, 𝑎 =

𝑃𝜎
−1 𝑆1 𝑆2 . . .  𝑆𝑙 𝑃𝜏 𝑏. (We know that every PM is invertible.)  

As a result, since each PM is a product of some T-transformations, 𝑎 = 𝑇1 𝑇2 …𝑇𝑘𝑏 for 

some T-transforms 𝑇1, 𝑇2, … , 𝑇𝑘. 

(iii) Suppose that 𝑎𝑖 ≠ 𝑏𝑗 for all 𝑖 and 𝑗. Wlog, suppose also that the vectors 𝑎 and 𝑏 are 

in non-increasing order. 
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First, we prove a general fact: Let 𝑥 =  [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 , y = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇  be two 

vectors whose coordinates are in non-increasing order. Suppose that 𝑥 < 𝑦. Then, there 

is some 𝑚 ∈ {1, 2, … , 𝑛} s.t. 𝑦𝑚 ≥ 𝑥𝑚 ≥ 𝑦𝑚+1 : Suppose not. Then, 𝑦𝑚 < 𝑥𝑚  or 𝑥𝑚 <

𝑦𝑚+1 for all 𝑚 = 1, 2,…, n. Since 𝑥 < 𝑦, by the definition of majorization, "𝑦𝑚 < 𝑥𝑚 for 

each 𝑚" is not possible. Therefore, the case "𝑥𝑚 < 𝑦𝑚 + 1  for each 𝑚" must hold. 

Then, 𝑥1 < 𝑦2, 𝑥2 < 𝑦3, … , 𝑥𝑛−1 < 𝑦𝑛. 

∴  ∑ 𝑥𝑗
𝑛−1
𝑗=1 < ∑ 𝑦𝑗

𝑛
𝑗=2   

∴ Since ∑ 𝑥𝑗
𝑛
𝑗=1 =∑ 𝑦𝑗

𝑛
𝑗=1  by the definition of majorization, 𝑥𝑛 > 𝑦1.  On the other hand, 

since the vector 𝑎 is in non-increasing order, 𝑥𝑛 ≤ 𝑥1. And, again by the definition of 

majorization, 𝑥1 ≤ 𝑦1. Therefore, 𝑥𝑛 ≤ 𝑦1, which contradicts with 𝑥𝑛 > 𝑦1. 

As a result, the statement is true, that is, 𝑦𝑚 ≥ 𝑥𝑚 ≥ 𝑦𝑚+1 for some 𝑚 ∈ {1, 2, . . . , 𝑛}. 

Now, by the fact proved in the previous paragraph, there is some 𝑚 ∈ [1, 2, . . . , 𝑛}  s.t. 

𝑏𝑚 ≥ 𝑎𝑚 ≥ 𝑏𝑚+1. But since  𝑎𝑖 ≠ 𝑏𝑗  for all 𝑖  and 𝑗,  this means that 𝑏𝑚 > 𝑎𝑚 > 𝑏𝑚+1 

some 𝑚.  

Therefore, 𝑎𝑚 =  𝑡𝑏𝑚 + (1 − 𝑡) 𝑏𝑚+1 for some 𝑚. 

Let M0 be the T-trasfom [
𝑡 1 − 𝑡

1 − 𝑡 𝑡
] corresponding to the rows 𝑚 and 𝑚 + 1, and 

columns 𝑚 and 𝑚 + 1. And let c = 𝑀0𝑏. Then, for each 𝑗 ≠ 𝑚, 𝑚 + 1,  𝑐𝑗 = 𝑏𝑗, and:       

𝑐𝑚 = 𝑡 𝑏𝑚 + (1 −  𝑡)𝑏𝑚+1 = 𝑎𝑚, 

𝑐𝑚+1 = (1 −  𝑡) 𝑏𝑚 + 𝑡𝑏𝑚+1   =  𝑏𝑚 + 𝑏𝑚+1 − (𝑡𝑏𝑚 + (1 −  𝑡)𝑏𝑚+1)  

         = 𝑏𝑚 + 𝑏𝑚+1 − 𝑎𝑚 . 

Now, 𝑎 < 𝑐: 

For 𝑘 ≠ 𝑚, that is, for 𝑘 < 𝑚 or 𝑘 > 𝑚, since 𝑐𝑚+ 𝑐𝑚+1 = 𝑏𝑚 + 𝑏𝑚+1 (for the case 𝑘 >

𝑚), ∑  𝑎𝑗 
𝑘
𝑗=1 ≤ ∑ 𝑏𝑗

𝑘
𝑗=1  = ∑  𝑐𝑗

𝑘
𝑗=1 ≤  ∑  𝑐[𝑗].

𝑘
𝑗=1   

And  for k = m, ∑  𝑎𝑗
𝑚
𝑗=1 ≤ ∑ 𝑏𝑗  

𝑚−1
𝑗=1 + 𝑎𝑚= ∑  𝑐𝑗

𝑚−1
𝑗=1 +𝑐𝑚 = ∑ 𝑐𝑗

𝑚
𝑗=1  ≤ ∑  𝑐[𝑗]

𝑚
𝑗=1 . 

∴ For each 𝑘 = 1, 2, …… , 𝑛 − 1, we have: ∑  𝑎𝑗
𝑘
𝑗=1 ≤ ∑  𝑐[𝑗]

𝑘
𝑗=1 . 

Also, for 𝑘 = 𝑛, we have: 

∑ 𝑎𝑗

𝑛

𝑗=1
= ∑ 𝑏𝑗

𝑛

𝑗=1
= ∑ 𝑏𝑗

𝑛

𝑗=1
𝑗≠𝑚,𝑚+1

+ 𝑏𝑚 + 𝑏𝑚+1 = ∑ 𝑐𝑗

𝑛

𝑗=1
𝑗≠𝑚,𝑚+1

+ 𝑐𝑚 + 𝑐𝑚+1 = ∑ 𝑐𝑗
𝑛

𝑗=1
 

∴  𝑎 < 𝑐. 
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Finally, since the vectors a and 𝑐 have the same components, namely, 𝑎𝑚 = 𝑐𝑚,   we have 

a = 𝑈1𝑈2 ... 𝑈𝑟  c for some T-transforms 𝑈1, 𝑈2, ..., 𝑈𝑟  by the above case (ii). Therefore, 

since 𝑐 = 𝑀0𝑏, a = 𝑈1𝑈2 ... 𝑈𝑟𝑀0𝑏, where all 𝑈1, 𝑈2, ..., 𝑈𝑟and 𝑀0 are T-transforms.  

As a result, in all three cases above, we showed that the vector 𝑎 is obtained from the 

vector b by a finite sequence of T-transforms. Since a product of  T-transforms is a DSM,  

the statement is proved. ∎ 

A significant corollary of the previous result is the following theorem: 

Theorem 1.5 Let 𝑀𝑛×𝑛 = [𝑚𝑖𝑗] be a symmetric matrix, and let the eigenvalues of 𝑀 be 

𝜇1, 𝜇2, … , 𝜇𝑛. Then we have: 

𝑚 = [𝑚11, 𝑚22, … ,𝑚𝑛𝑛] <  𝜇 = [𝜇1, 𝜇2, … , 𝜇𝑛]. 

Proof. First, since 𝑀 is symmetric, there is an orthogonal matrix 𝑄 = [𝑞𝑖𝑗] s.t. 

𝑀 = 𝑄 diag (𝜇1, 𝜇2, … , 𝜇𝑛) 𝑄𝑇   by the spectral theorem. 

∴ 𝑚𝑗𝑗 = (𝑄 𝑑𝑖𝑎𝑔(𝜇1, 𝜇2, … , 𝜇𝑛) 𝑄𝑇)𝑗𝑗     

          = (𝑄 𝑑𝑖𝑎𝑔(𝜇1, 𝜇2, … , 𝜇𝑛))𝑗 th row (𝑄𝑇)𝑗 th column 

           = [ 𝑞𝑗1 𝜇1, 𝑞𝑗2𝜇2, … , 𝑞𝑗𝑛𝜇𝑛] [ 𝑞𝑗1, 𝑞𝑗2, … , 𝑞𝑗𝑛]𝑇   

          = ∑ (𝑞𝑗𝑘 𝜇𝑘) 𝑞𝑗𝑘
𝑛
𝑘=1 = ∑  𝑛

𝑘=1 𝑞𝑗𝑘
2 𝜇𝑘, 𝑗 = 1, 2, … , 𝑛. 

Now, since 𝑄 is an orthogonal matrix, the columns (and the transpose of the rows) of 𝑄 

form an orthonormal basis of  ℝ𝑛.   In particular, each column (and each row) has a unit 

length. 

∴ The matrix 𝑅𝑛×𝑛  with (𝑖, 𝑗) entry equals 𝑞𝑖𝑗
2  is a DSM. 

∴ Since 𝑚𝑇 =  [𝑚11, 𝑚22, … ,𝑚𝑛𝑛]𝑇 = 𝑅 [𝜇1, 𝜇2, … , 𝜇𝑛]𝑇 , 𝑚𝑇 < 𝜇𝑇 . 

∴ 𝑚 < 𝜇. ∎ 

Definition 1.6 Let 𝛤  be a graph with 𝑉(𝛤) = [𝑛]  and 𝐸(𝛤) = {𝜀1, 𝜀2, … , 𝜀𝑚} . Let 

𝐿(𝛤) =  [𝑙𝑖𝑗] be the square matrix of order n defined as follows: If  𝑖 ≠ 𝑗 , 𝑙𝑖𝑗  = −1 if 

the vertices 𝑖  and 𝑗  are adjacent and 𝑙𝑖𝑗 = 0  otherwise; if 𝑖 = 𝑗, 𝑙𝑖𝑖 =  𝜌𝑖 , where  𝜌𝑖 =

𝑑𝑒𝑔(𝑖). Then 𝐿(𝛤) is called the “Laplacian matrix (LM)” of 𝛤. 
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Corollary 1.7 Let 𝛤  be a graph with 𝑉(𝛤) =  [𝑛]. Suppose that 𝜁1, 𝜁2, … , 𝜁𝑛   are the 

eigenvalues of 𝐿(𝛤), and 𝜌1, 𝜌2, … , 𝜌𝑛 are the degrees of vertices. Then we have:  

𝜌 =  [ 𝜌1, 𝜌2, … , 𝜌𝑛 ] <  𝜁 = [  𝜁1, 𝜁2, … , 𝜁𝑛 ]. 

Proof. Since 𝐿(𝛤)  is symmetric with diagonal entries  𝜌𝑖 ,  and eigenvalues 𝜁𝑖 ,  𝑖 =

1, 2, … , 𝑛, 𝜌 < 𝜁 by the previous theorem. ∎ 

Now, we study with vectors 𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑛]𝑇 ∈ ℤ𝑛 , that is, with vectors whose 

components are all integers. 

Definition 1.8 Let 𝑠1, 𝑠2, … , 𝑠𝑛 ∈ ℤ , and assume that 𝑠𝑘 > 𝑠𝑙 for some 1 ≤ 𝑘 ≠ 𝑙 ≤ 𝑛. 

Then, define:  

𝑠𝑘
′  = 𝑠𝑘 −1, 𝑠𝑙

′ = 𝑠𝑙 +1, and 𝑠𝑚
′  = 𝑠𝑚 for all 𝑚 ≠ k, l. 

Then 𝑠1
′ , 𝑠2

′ , …, 𝑠𝑛
′  are said to be gotten from 𝑠1, 𝑠2, … , 𝑠𝑛  by a “transfer (from k to l)”. Let 

𝑠, 𝑡 ∈  ℤ𝑛. If the components of 𝑡 are gotten from the components of 𝑠 by a transfer, then 

𝑡 is said to be gotten from 𝑠 by a “transfer”. 

Theorem 1.9 Let 𝑠 = [𝑠1, 𝑠2, … , 𝑠𝑛]𝑇 , 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑛]𝑇 ∈  ℤ𝑛 Then: 

𝑠 < 𝑡 ⇔  𝑠 is gotten from 𝑡 by a finite sequence of transfers. 

Proof.  

(⇐) Basic Step: Assume that 𝑠 is gotten from 𝑡 by only one transfer. Then, by definition 

of a transfer, 𝑠 and 𝑡 differ at only two components, say 𝑖 and 𝑗, s.t. 𝑡𝑖 > 𝑡𝑗   and 𝑠𝑖 = 𝑡𝑖 −

1, 𝑠𝑗 
= 𝑡𝑗 + 1. Now, let k ∈{1, 2, ..., n  ̶ 1}. 

Case 1.  𝑡𝑖 =  𝑡𝑖 + 1   ⇒ 𝑠𝑖 =  𝑡𝑖 − 1 =  𝑡𝑗,  𝑠𝑗 =  𝑡𝑗 + 1 = 𝑡𝑖.  

∴ The set of largest 𝑘 components of 𝑠 and 𝑡 are the same. 

∴ ∑ 𝑠[𝑙]
𝑘
𝑙=1  = ∑ 𝑡[𝑙]

𝑘
𝑙=1 . 
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Case  2. 𝑡𝑖 > 𝑡𝑗 + 2 ⇒ 𝑠𝑖 = 𝑡𝑖 − 1 > 𝑡𝑗 + 1, 𝑠𝑗 = 𝑡𝑗 + 1 < 𝑡𝑖 − 1 ⇒ 𝑠𝑗 < 𝑡𝑖 − 1 = 𝑠𝑖. 

If the set of largest 𝑘 components of 𝑠 does not contain 𝑠𝑖 (and thus it does not contain 𝑠𝑗), 

then ∑ 𝑠[𝑙]
𝑘
𝑙=1  = ∑ 𝑡𝑚𝑙

𝑘
𝑙=1  ≤ ∑ 𝑡[𝑙]

𝑘
𝑙=1 , where 𝑠[𝑙] = 𝑡𝑚𝑙

 for each 𝑙 ∈ {1, 2, … , 𝑘 − 1}. 

If the set of largest 𝑘 components of 𝑠 does contain  𝑠𝑖, but does not contain 𝑠𝑗, then  

∑ 𝑠[𝑙]
𝑘
𝑙=1 =  ∑ 𝑠[𝑙]

𝑘
𝑙=1

𝑙≠𝑚𝑖

+ 𝑠𝑖  =∑ 𝑠[𝑙]
𝑘
𝑙=1

𝑙≠𝑚𝑖

+ ( 𝑡𝑖 − 1 ) ≤ ∑ 𝑡𝑚𝑙

𝑘
𝑙=1
𝑙≠𝑖

 +  𝑡𝑖 − 1 ≤ ∑ 𝑡𝑚𝑙

𝑘
𝑙=1
𝑙≠𝑖

+ 𝑡𝑖  ≤ 

∑ 𝑡[𝑙]
𝑘
𝑙=1 , where 𝑠[𝑚𝑖]

 = 𝑠𝑖   and 𝑠[𝑙]  = 𝑠𝑚𝑙
 = 𝑡𝑚𝑙

 for each each 𝑙 ∈ ({1, 2, … , 𝑘 − 1} ∖

{𝑚𝑖}).  (Note that 𝑡𝑚𝑙
≠ 𝑡𝑖   for each 𝑙 ≠ 𝑖 and this is needed for the last inequality. ) 

If the set of largest 𝑘 components of 𝑠 does contain 𝑠𝑗  (and thus it does also contain 𝑠𝑖),  

then ∑ 𝑠[𝑙]
𝑘
𝑙=1  = ∑ 𝑠[𝑙] 

𝑘
𝑙=1

𝑙≠𝑚𝑖,𝑚𝑗

+ 𝑠𝑖 + 𝑠𝑗 = ∑ 𝑠[𝑙] 
𝑘

𝑙=1
𝑙≠𝑚𝑖,𝑚𝑗

+ (𝑡𝑖 − 1) + (𝑡𝑗 + 1)  

= ∑ 𝑡𝑚𝑙

𝑘
𝑙=1
𝑙≠𝑖,𝑗

+ 𝑡𝑖 + 𝑡𝑗 ≤ ∑ 𝑡[𝑙]
𝑘
𝑙=1 ,  where 𝑠[𝑚𝑖]

  =  𝑠𝑖 , 𝑠[𝑚𝑗]
= 𝑠𝑗   and  𝑠[𝑙]  = 𝑠𝑚𝑙

= 𝑡𝑚𝑙   
for 

each 𝑙 ∈ ({1, 2, … , 𝑘}\{𝑚𝑖, 𝑚𝑗  }) . (Note that 𝑡𝑚𝑙
   𝑡𝑖    and 𝑡𝑚𝑙

   𝑡𝑗    for each 𝑙 ≠  𝑖, 𝑗 , and 

this is needed for the last inequality.)  

Case 3.  𝑡𝑖 = 𝑡𝑗 + 2 ⇒  𝑠𝑖 = 𝑡𝑖  − 1, 𝑠𝑗  = 𝑡𝑗  + 1 ⇒  Since  𝑡𝑖 − 1 = 𝑡𝑗  + 1, 𝑠𝑖  =  𝑠𝑗 .  

With exactly the same manner as in Case 2, it can be shown easily that ∑ 𝑠[𝑙]
𝑘
𝑙=1   ≤ 

∑ 𝑡[𝑙]
𝑘
𝑙=1 . Therefore, in any case, we have: ∑ 𝑠[𝑙]

𝑘
𝑙=1  ≤ ∑ 𝑡[𝑙]

𝑘
𝑙=1 .  

Also, for 𝑘 = 𝑛, we have: 

∑ 𝑠𝑙
𝑛
𝑙=1  = ∑ 𝑠𝑙

𝑛
𝑙=1
𝑙≠𝑖,𝑗

+ 𝑠𝑖 + 𝑠𝑗 = ∑ 𝑡𝑙
𝑛
𝑙=1
𝑙≠𝑖,𝑗

+ (𝑡𝑖 − 1) + (𝑡𝑗  + 1) = ∑ 𝑡𝑙
𝑛
𝑙=1 . 

As a result, 𝑠 <  𝑡.  

∴  If 𝑠  is gotten from 𝑡  by a finite number of transfers, then it can be seen easily by 

applying the Basic Step finite number of times that 𝑠 < 𝑡.  

(⇒) Suppose that 𝑠 < 𝑡, 𝑠 ≠ 𝑡. And Wlog suppose also that 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑛 and  𝑡1 ≥

 𝑡2 ≥ ⋯ ≥ 𝑡𝑛. (We can assume this because the majorization relation is independent of 

the order of components.) 
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First, since 𝑠 < 𝑡, for each 𝑘 = 1, 2, … , 𝑛 − 1, ∑ 𝑠𝑖
𝑘
𝑖=1  =∑ 𝑠[𝑖] 

𝑘

𝑖=1
≤ ∑ 𝑡[𝑖]

𝑘

𝑖=1
 = ∑ 𝑡𝑖

𝑘
𝑖=1 , 

and since 𝑠 ≠ 𝑡, the above inequality is strict for some 𝑘 ∈ {1, 2, … , 𝑛 − 1}. Let 𝑙 be the 

greatest 𝑘 s.t. ∑ 𝑠𝑖
𝑙
𝑖=1  < ∑ 𝑡𝑖

𝑙
𝑖=1 . Then ∑ 𝑠𝑖

𝑙+1
𝑖=1  = ∑ 𝑡𝑖

𝑙+1
𝑖=1  by the maximality of 𝑙. 

⸫ 𝑠𝑙+1 >  𝑡𝑙+1. 

On the other hand, since ∑ 𝑠𝑖
𝑙
𝑖=1  < ∑ 𝑡𝑖

𝑙
𝑖=1 , there exists a greatest 𝑝 ≤ 𝑙 s.t. 𝑠𝑝 < 𝑡𝑝.   

⸫ 𝑠𝑖 ≥ 𝑡𝑖   for 𝑝 < 𝑖 ≤ 𝑙 if 𝑝 < 𝑙. But since 𝑙 is the greatest integer s.t. ∑ 𝑠𝑖
𝑙
𝑖=1  < ∑ 𝑡𝑖

𝑙
𝑖=1 , 

𝑠𝑖> 𝑡𝑖   for 𝑝 < 𝑖 ≤ 𝑙 is not possible. 

⸫ 𝑠𝑖= 𝑡𝑖    for 𝑝 < 𝑖 ≤ 𝑙 if  𝑝 < 𝑙. 

⸫ 𝑡𝑝 > 𝑠𝑝 ≥ 𝑠𝑙+1 > 𝑡𝑙+1. (Since 𝑝 < 𝑙, 𝑠𝑝 ≥ 𝑠𝑙+1 .) 

⸫ Since all the components of vectors are integers, we have:  

𝑡𝑝 ≥ 𝑠𝑝 + 1 ≥ 𝑠𝑙+1 + 1 ≥ (𝑡𝑙+1 + 1) + 1 = 𝑡𝑙+1 + 2. 

⸫  𝑡𝑝 ≥ 𝑡𝑙+1 + 2. 

⸫ 𝑡𝑝 − 1 ≥ 𝑡𝑙+1 + 1. 

Now, let  𝑡′  be gotten from t by the following transfer:  

𝑡𝑝
′ = 𝑡𝑝 − 1, 𝑡𝑙+1

  = 𝑡𝑙+1
′ + 1, 𝑡𝑘

′ = 𝑡𝑘 for 𝑘 ≠  𝑝, 𝑙 + 1. 

Then, by the Basic Step above, 𝑡′ < 𝑡. And, 𝑠 < 𝑡′:  

i) Let 𝑘 ∈  {1, 2, … , 𝑛 − 1}.  

If  𝑘 ≥  𝑙 + 1, then we have:  

∑ 𝑠𝑖
𝑘
𝑖=1  ≤  ∑ 𝑡𝑖

𝑘
𝑖=1  = ∑ 𝑡𝑖

𝑘
𝑖=1

𝑖≠𝑝,𝑙+1 

 + (𝑡𝑝  −1) + (𝑡𝑙+1+1) = ∑ 𝑡𝑖
′𝑘

𝑖=1  = ∑ 𝑡[𝑖]
′𝑘

𝑖=1 . 

(Note that since 𝑡1 ≥ 𝑡2 ≥ ⋯ ≥ 𝑡𝑝 ≥ ⋯ ≥ 𝑡𝑙+1 ≥ ⋯ ≥ 𝑡𝑛, and since 𝑡𝑝 − 1 ≥ 𝑡𝑙+1 + 1, 

the first greatest l+1 elements of 𝑡′ and those of t are the same. We use this fact in the last 

equation.) 

If 𝑘 < 𝑝, then we have:  

∑ 𝑠𝑖
𝑘
𝑖=1  ≤ ∑ 𝑡𝑖

𝑘
𝑖=1 = ∑ 𝑡𝑖

′𝑘
𝑖=1  = ∑ 𝑡[𝑖]

′𝑘
𝑖=1 . 

(Note that the first greatest p−1 elements of 𝑡 
′are  𝑡1

′= t1 ≥ 𝑡2
′= t2 ≥ ... ≥ 𝑡𝑝

′ = tp. We use 

this fact in the last equation.) 

If 𝑝 ≤ 𝑘 ≤ 𝑙, then we have: 

∑ 𝑠𝑖
𝑘
𝑖=1 = ∑ 𝑠𝑖

𝑝−1
𝑖=1  + 𝑠𝑝 + 𝑠𝑝+1 + ⋯+ 𝑠𝑙 ≤ ∑ 𝑡𝑖

𝑝−1
𝑖=1  + (𝑡𝑝 − 1) + 𝑡𝑝+1 + ⋯+ 𝑡𝑙 
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(Note that since 𝑠𝑝 < 𝑡𝑝, 𝑠𝑝 ≤ 𝑡𝑝 − 1, and also note that 𝑠𝑖 = 𝑡𝑖  for 𝑝 < 𝑖 ≤ 𝑙 if 𝑝 < 𝑙.) 

⇒ ∑ 𝑠𝑖
𝑘
𝑖=1  ≤ ∑ 𝑡𝑖

𝑘
𝑖=1
𝑖≠𝑝

 + 𝑡𝑝  − 1 ≤  ∑ 𝑡[𝑖]
′𝑘

𝑖=1 . 

Therefore, in any case, ∑ 𝑠𝑖
𝑘
𝑖=1  ≤ ∑ 𝑡[𝑖]

′𝑘
𝑖=1 . 

ii) ∑ 𝑠𝑖
𝑛
𝑖=1 = ∑ 𝑡𝑖

𝑛
𝑖=1 = ∑ 𝑡𝑖

𝑛
𝑖=1

𝑖≠𝑝,𝑙+1 

+  𝑡𝑝 +  𝑡𝑙+1 = ∑ 𝑡𝑖
′𝑛

𝑖=1
𝑖≠𝑝,𝑙+1

+ (𝑡𝑝 − 1) + (𝑡𝑙+1+1) 

                 =∑ 𝑡𝑖
′𝑛

𝑖=1
𝑖≠𝑝,𝑙+1

+ 𝑡𝑝
′ + 𝑡𝑙+1

′   = ∑ 𝑡𝑖
′𝑛

𝑖=1
. 

As a result, 𝑠 <  𝑡′. 

Therefore, since 𝑠 <  𝑡′ and 𝑡′ < 𝑡, we have 𝑠 <  𝑡′ < 𝑡.   

Also note that for the vectors 𝑠 and 𝑡, we have: 

𝑠𝑝 <  𝑡𝑝  and  𝑠𝑙+1 > 𝑡𝑙+1. 

⇒  𝑠𝑝 ≤ 𝑡𝑝 − 1 and   𝑠𝑙+1 ≥ 𝑡𝑙+1 + 1. 

⇒ 𝑠𝑝 ≤ 𝑡𝑝
′  and  𝑠𝑙+1 ≥ 𝑡𝑙+1

′ . 

⸫ After applying the same procedure finite number of steps, that is after applying a finite 

sequence of transfers, we obtain 𝑠 from 𝑡. ∎ 

Definition 1.10  Let 𝑠1, 𝑠2, … , 𝑠𝑛 ∈  ℤ+ ∪ {0}. Define 

𝑠𝑙
∗ = |{𝑠𝑗:    𝑠𝑗 ≥  𝑙}|, 𝑙 = 1, 2, … ,𝑚 = 𝑚𝑎𝑥{ 𝑠1, 𝑠2, … , 𝑠𝑛}. 

Therefore, 𝑠𝑙
∗  is the size of the set consisting of all 𝑠𝑗 ≥  𝑙. The sequence 𝑠1

∗, 𝑠2
∗, … , 𝑠𝑚

∗ , 

where  𝑚 = 𝑚𝑎𝑥{ 𝑠1, 𝑠2, … , 𝑠𝑛},  is called the ′′conjugate sequence′′ of the sequence 

𝑠1, 𝑠2, … , 𝑠𝑛.  

Definition 1.11 Let 𝑠𝑖 ∈ℤ+ ∪{0} for  𝑖 = 1, 2, … , 𝑛 , and let  𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑛 . The 

′′Ferrers diagram′′ of 𝑠1, 𝑠2, … , 𝑠𝑛   is the diagram consisting of  𝑠1 + 𝑠2 + ⋯+ 𝑠𝑛 square 

boxes s.t. all rows are left-justified and 𝑙 th row comprises of 𝑠𝑙 square boxes. If some 

𝑠𝑙 = 0, then remove the 𝑙 th row.  

Note 1.12 𝑠𝑙
∗ = |{𝑠𝑗: 𝑠𝑗 ≥  𝑙}| is equal to the number of square boxes in the l th column 

of the Ferrers diagram of the nonnegative integers 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑛. Therefore, since 

counting the square boxes row by row, and respectively, column by column, gives the 

same number, we have: 
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∑ 𝑠𝑙
𝑛
𝑙=1 = ∑ 𝑠𝑙

∗ 𝑚

𝑙=1
. 

Now, we can prove the following theorem: 

Theorem 1.13 (Gale-Ryser Theorem) (Gale (1957), Ryser (1957)) let 𝑎𝑖, 𝑏𝑗∈ ℤ
+∪ {0}, 

𝑖 = 1, 2, … ,𝑚  and  𝑗 = 1, 2, … , 𝑛,  s.t. 𝑛 ≥  𝑎1 ≥  𝑎2  ≥ ⋯ ≥ 𝑎𝑚, 𝑏1 ≥ 𝑏2  ≥ ⋯ ≥

 𝑏𝑛  and ∑ 𝑎𝑖
𝑚
𝑖=1  =∑ 𝑏𝑗

𝑛
𝑖=1  . Then there is a (0, 1)-matrix 𝑀𝑚×𝑛  with the 𝑖  th row sum 

(respectively, the 𝑗  th column sum) is 𝑎𝑖 (respectively, 𝑏𝑗) for each 𝑖 = 1, 2, … ,𝑚 

(respectively, 𝑗 = 1, 2, … , 𝑛) iff 𝑎1
∗ , 𝑎2

∗ , … , 𝑎𝑛
∗  majorizes 𝑏1, 𝑏2, … , 𝑏𝑛.  

Proof.  

(⇒) Let  𝑀 = [𝑚𝑖𝑗] be a (0-1)-matrix stated as in the theorem. Wlog, we can suppose 

that 𝑏1 ≥ 𝑏2 ≥ ⋯ ≥ 𝑏𝑛 (by permuting the columns of 𝑀 if it is needed). 

Now, assume that there are 𝑖0 , 𝑗0  s.t. 𝑎𝑖0𝑗0 = 0 and 𝑎𝑖0(𝑗0+1) = 1. Then define the 𝑚 × 𝑛 

matrix 𝑁 = [𝑛𝑖𝑗] as follows: 

𝑛𝑖0𝑗0 = 1, 𝑛𝑖0(𝑗0+1)= 0, and 𝑛𝑖𝑗 = 𝑚𝑖𝑗  𝑓𝑜𝑟 𝑖 ≠ 𝑖0, 𝑗 ≠ 𝑗0. 

Denote the j th column sum of 𝑁 by 𝑏𝑗
′ for each 𝑗 = 1, 2, … , 𝑛. Then, we obviously have: 

𝑏𝑗
′ = 𝑏𝑗+1, 𝑏𝑗+1

′ = 𝑏𝑗 − 1, and 𝑏𝑙
′ = 𝑏𝑙  for 𝑙 ≠ 𝑗, 𝑗 + 1. 

⸫ 𝑏1, 𝑏2, … , 𝑏𝑛  is gotten from 𝑏1
′ , 𝑏2

′ , … , 𝑏𝑛
′   by a transfer from 𝑗0 + 1 to 𝑗0. 

⸫ 𝑏1
′ , 𝑏2

′ , … , 𝑏𝑛
′  majorizes 𝑏1, 𝑏2, … , 𝑏𝑛 by the previous theorem. 

After repeating this procedure a finite number of times, we get a matrix 𝑀 ̃𝑚×𝑛 s.t. the i 

th   row sum of 𝑀 ̃ is ai for each 𝑖 = 1, 2, … ,𝑚;  and, i th row of 𝑀 ̃ is of the form 

(1, 1, … , 1, 0, 0, … , 0), where there are 𝑟𝑖 1 𝑠 and 𝑛 − 𝑟𝑖 0 𝑠; and also, the column sums, 

say 𝑏̃1, 𝑏̃2, … , 𝑏̃𝑛, majorize 𝑏1, 𝑏2, … , 𝑏𝑛.  

Finally, by using the Ferrers diagram, we see that 𝑏̃𝑖 = 𝑎𝑖
∗   for each 𝑖 = 1, 2, … , 𝑛 . 

Therefore, 𝑎1
∗ , 𝑎2

∗ , … , 𝑎𝑛
∗  majorizes 𝑏1, 𝑏2, … , 𝑏𝑛. 

(⟸) (This part of the proof is taken from Marshall and Olkin (1979).)  

We construct a required matrix M explicitly. We start with row 1 and successively with 

the residual rows, scatter ones in the matrix in the following way: 
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In the row 𝑖, put a one in the column 1 if < 𝑏1 ones have already been put in column 1 

and 𝑎𝑖 ≥ 1; put a one to the column 2 if < 𝑏2 ones have already been put in the column 2 

and < 𝑎𝑖 ones have been put in the row 𝑖. Generally, put a one in the column j (as (i, j)-

entry) if < 𝑏𝑗 ones have been put in the column j and rows  1, 2, . . . , 𝑖 − 1; and put a one 

in the row i (as the (i, j)-entry) if < 𝑎𝑖 ones have been put in row i and columns 

1, 2, … , 𝑗 – 1. 

Of course, we need to show that this construction can be accomplished every time. This 

can be proved by induction on m (the number of rows): 

𝑚 = 1: Let 𝑎1 = 𝑘. Then: 𝑎1
∗  = 𝑎2

∗  = ⋯  = 𝑎𝑘
∗ = 1, and 𝑎𝑘+1

∗ = 𝑎𝑘+2
∗ = ⋯ = 𝑎𝑛

∗ = 0. 

And since (𝑏1, 𝑏2, … , 𝑏𝑛) < (𝑎1
∗ , 𝑎2

∗  , … , 𝑎𝑛
∗ ) = (1, 1, … ,1, 0, 0, … , 0), 𝑏𝑖 = 0  or 1   for 

each 𝑖 = 1, 2, … , 𝑛, and ∑ 𝑏𝑖
𝑛
𝑖=1 = ∑ 𝑎𝑖

∗𝑛
𝑖=1  = 𝑘. Therefore, since 𝑏1 ≥ 𝑏2 ≥ ... ≥ 𝑏𝑛,  

𝑏1 = 𝑏2 = ⋯ = 𝑏𝑘 = 1 and  𝑏𝑘+1 = 𝑏𝑘+2 = ⋯ = 𝑏𝑛 = 0. 

As a result, 𝑀 = [1, 1, … , 1, 0, 0, … , 0] is the matrix satisfying the required condition. 

(The first 𝑘 entry of M is 1 and the remaining entries are all zero.) 

Now, assume that this construction can be accomplished with 𝑚 − 1 rows every time. 

Let 𝑟1  = (1, 1, … , 1, 0, 0, … , 0), where the first 𝑎1 coordinates are 1 and the last 𝑛 − 𝑎1 

coordinates are 0, be the first row of  𝑀 . To accomplish the construction, we need 

(𝑚 − 1) ×  𝑛 (0 − 1) matrix with row sums  𝑎2, 𝑎3, ... , 𝑎𝑚 and column sums 

𝑏1 − 1, 𝑏2 − 1,… , 𝑏𝑎1
− 1, 𝑏𝑎1+1, 𝑏𝑎1+2, … ,  𝑏𝑛. 

Now, to use the induction assumption, we must show that the hypotheses of the theorem 

are satisfied:   

i) n ≥ 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑚 ⇒ 𝑛 ≥ 𝑎2 ≥ 𝑎3 ≥ ⋯ ≥ 𝑎𝑚.  

And say 𝑎̃𝑘 = 𝑎𝑘+1 for each k =1, 2, ..., m−1. 

ii) 𝑏1 ≥ ⋯ ≥ 𝑏𝑛 ⇒ 𝑏1 − 1 ≥  𝑏2 − 1 ≥  …   ≥ 𝑏𝑎1
− 1 and 𝑏𝑎1+1 ≥ 𝑏𝑎1+2 ≥ ⋯𝑏𝑛.  

(We know that 𝑏𝑎1
≥ 𝑏𝑎1+1. But if  𝑏𝑎1

= 𝑏𝑎1+1, then  𝑏𝑎1
− 1 < 𝑏𝑎1+1.) 

Therefore, we may need to reorder these numbers to get the non-increasing sequence of 

them. But instead of such a reordering, we can proceed with these numbers. In fact, the 
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non-increasing assumption given in the statement is just for the simplicity of the notation, 

and thus it can be ignored. 

iii) ∑ 𝑎𝑖
𝑚
𝑖=1  = ∑ 𝑏𝑗

𝑛
𝑗=1  ⇒ ∑ 𝑎𝑖

𝑚
𝑖=2  = (∑ bj

n
j=1 )−𝑎1= ∑ (𝑏𝑗 − 1)

𝑎1
𝑗=1  + ∑ 𝑏𝑗

𝑛
𝑗=𝑎1+1 . 

iv) The following majorization relation must hold: 

(𝑏₁ − 1, 𝑏₂ − 1, … , 𝑏𝑎1
− 1, 𝑏𝑎1+1, … , 𝑏𝑛)  <  (𝑎̃1

∗ , 𝑎̃2
∗ , … , 𝑎̃𝑛

∗ ). 

Now, for each 𝑖 = 1, 2, … , 𝑎1, we have:  

𝑎̃𝑖
∗ =  |{𝑎̃𝑗

 ∶ 𝑎̃𝑗
 ≥ 𝑖 }| = 𝑎𝑖

∗ −1, 

and for each 𝑖 = 𝑎₁ + 1, 𝑎₁ + 2, … , 𝑛, we have:  

𝑎̃𝑖
∗ = 𝑎𝑖

 ∗. 

For 1 ≤ 𝑖 ≤ 𝑎₁ , the sequence 𝑠1 : 𝑎̃1 = 𝑎2 ≥ 𝑎̃2 = 𝑎3 ≥ ⋯ ≥ 𝑎̃𝑚−1 = 𝑎𝑚  dose not 

contain 𝑎1  and 𝑎1 ≥ 𝑎2. Therefor, for  1 ≤ 𝑖 ≤ 𝑎₁ “the number of terms in the sequence 

𝑠2 : 𝑎₁ ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑚  which are ≥ i.” Is equal to the "the number of terms in the 

sequence 𝑠1: 𝑎2 ≥ 𝑎3 ≥ ⋯ ≥ 𝑎𝑚 which are ≥ i + 1". 

∴ 𝑎̃𝑖
∗ = 𝑎𝑖

∗ − 1 for 1 ≤ 𝑖 ≤ 𝑎₁.  

For 𝑎₁ + 1 ≤ 𝑖 ≤ 𝑛, “the number of tums in the sequence 𝑠1 and 𝑠2 which one ≥ 𝑖” is 

equal. 

∴ 𝑎̃𝑖
∗ = 𝑎𝑖

∗ for ₁ + 1 ≤ 𝑖 ≤ 𝑛 .  

∴ (𝑎̃1
∗ , 𝑎̃2

∗ , … , 𝑎̃𝑛
∗ ) = (𝑎1

∗ − 1, 𝑎2
∗ − 1,… , 𝑎𝑎1

∗ − 1, 𝑎𝑎1
∗ + 1, … , 𝑎𝑛

∗ ). 

∴ We must show that the following majorization relation holds: 

(𝑏1 − 1,… , 𝑏𝑎1
− 1, 𝑏𝑎1+1, … , 𝑏𝑛)  < (𝑎1

∗ − 1,… , 𝑎𝑎1
∗ − 1, 𝑎𝑎1+1

∗ , … , 𝑎𝑛
∗ ). 

And this majorization relation holds by the lemma given after this theorem.  

Therefore, all the hypotheses of the theorem are satisfied. 

∴ By the induction assumption, there is an (𝑚 − 𝑙) × 𝑛(0, 1) − matrix, say 𝑁, s.t. the i 

th row sum of N is  𝑎𝑖+1 for each 𝑖 = 1, 2 , . . . , 𝑚 − 1; and the 𝑗 th column sum of  𝑁 is 

𝑏𝑗 − 1 for each 𝑗 = 1, 2, . . . , 𝑎1  and is 𝑏𝑗 for each 𝑗 = 𝑎1 + 1, 𝑎1 + 2,… , 𝑛. 

As a result, the block matrix 𝑀 = [
𝑟1

𝑁
]
 

is a matrix with the i th row sum 𝑎𝑖  for 𝑖 =

1, 2, … ,𝑚 and the j th column sum 𝑏𝑗 for 𝑗 = 1, 2, … , 𝑛. ∎ 
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Lemma 1.14 (Fulkerson and Ryser (1962).) Let 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑛, 𝑦1 ≥ 𝑦2 ≥ ⋯ ≥ 𝑦𝑛 

be integers. Reduce components. in positions 𝑘1, 𝑘2 , . . . , 𝑘𝑚 by 1 in the vector 𝑥 =

(𝑥1, 𝑥2, . . . , 𝑥𝑛) , and call the resulting vector by 𝑧.  Similarly, reduce components in 

positions 𝑙1, 𝑙2, . . . , 𝑙𝑚 . by 1 in the vector 𝑦 = ( 𝑦1, 𝑦2, . . . , 𝑦𝑛), and call the resulting 

vector by 𝑤. If  𝑘1 ≤ 𝑙1, 𝑘2 ≤ 𝑙2 , . . . , 𝑘𝑚 ≤ 𝑙𝑚, and if 𝑥 < 𝑦, then 𝑧 < 𝑤.  

Proof. (This proof is taken from Marshall and Olkin (1979).)  

We prove the theorem for 𝑚 = 1, and the general case can be obtained by the repeated 

application of the 𝑚 = 1 case. 

For simplicity of the notation, let 𝑘 = 𝑘1, 𝑙 = 𝑙1, and let 𝑒𝑗 be the vector with 1 in the j th 

coordinate and zeros elsewhere.  

Under this setting, we want to prove the following: 

"If 𝑘 ≤ 𝑙, and if  𝑥 < 𝑦, then 𝑧 = 𝑥 − 𝑒𝑘 < 𝑦 − 𝑒𝑙 = 𝑤". 

First of all, the components of the vectors 𝑧 and 𝑤 need not be in non-increasing order. 

But if we choose  𝑘′ ≥ 𝑘 and 𝑙′ ≥ 𝑙 s.t. 

𝑥𝑘 = 𝑥𝑘+1 = ⋯ = 𝑥𝑘′−1 = 𝑥𝑘′  and either 𝑥𝑘′ > 𝑥𝑘′+1 or  𝑘′ = 𝑛, 

𝑦𝑙 = 𝑦𝑙+1 = ⋯ = 𝑦𝑙′−1 = 𝑦𝑙′  and either 𝑦𝑙′ > 𝑦𝑙′+1 or  𝑙′ = 𝑛, 

then the vectors 𝑥 − 𝑒𝑘′, and 𝑦 − 𝑒𝑙′ have the components reordered decreasingly with 

the vectors 𝑥 − 𝑒𝑘 and 𝑦 − 𝑒𝑙, respectively. 

∴ Since reordering of components does not have any effect on the majorization relation, 

instead of showing 𝑧 = 𝑥 − 𝑒𝑘 < 𝑦 − 𝑒𝑙 = 𝑤, it is equivalent and more  convenient to 

show that 

𝑢 = 𝑥 − 𝑒𝑘′ <  𝑦 − 𝑒𝑙′ = 𝑣. 

i) If  𝑚 ≤ 𝑚𝑖𝑛 {𝑘′, 𝑙′}, then: ∑ 𝑢𝑖
𝑚
𝑖=𝑎  = ∑ 𝑥𝑖

𝑚
𝑖=1  ≤ ∑ 𝑦𝑖

𝑚
𝑖=1 = ∑ 𝑣𝑖

𝑚
𝑖=1 . 

ii) If  𝑚 ≥ 𝑚𝑎𝑥 {𝑘′, 𝑙′}, then: ∑ 𝑢𝑖
𝑚
𝑖=1  = ( ∑ 𝑥𝑖

𝑚
𝑖=1 ) − 1 ≤ ( ∑ 𝑦𝑖

𝑚
𝑖=1 ) − 1= ∑ 𝑣𝑖

𝑚
𝑖=1 . 

iii) If 𝑘′ ≤ 𝑙′ and 𝑘′ ≤ 𝑚 < 𝑙′, then:  

∑ 𝑢𝑖
𝑚
𝑖=1  = ( ∑ 𝑥𝑖

𝑚
𝑖=1 ) − 1 ≤ ( ∑ 𝑦𝑖

𝑚
𝑖=1 ) − 1 < ∑ 𝑦𝑖

𝑚
𝑖=1 = ∑ 𝑣𝑖

𝑚
𝑖=1 . 

iv) If 𝑘′ > 𝑙′ and 𝑙′ ≤ 𝑚 < 𝑘′, then again  ∑ 𝑢𝑖 ≤𝑚
𝑖=1 ∑ 𝑣𝑖

𝑚
𝑖=1 : 

First, since ∑ 𝑢𝑚
𝑖=1 i = ∑ 𝑥𝑖

𝑚
𝑖=1  and ∑ 𝑣𝑖

𝑚
𝑖=1  = ( ∑ 𝑦𝑖

𝑚
𝑖=1 ) − 1, 

∑ 𝑢𝑖
𝑚
𝑖=1 ≤ ∑ 𝑣𝑖

𝑚
𝑖=1  ⇔ ∑ 𝑥𝑖

𝑚
𝑖=1  ≤ ( ∑ 𝑦𝑖

𝑚
𝑖=1 ) − 1 ⇔ ∑ 𝑥𝑖

𝑚
𝑖=1 < ∑ 𝑦𝑖

𝑚
𝑖=1 .  

∴ It is equivalent to show that ∑ 𝑥𝑖
𝑚
𝑖=1  < ∑ 𝑦𝑖

𝑚
𝑖=1 :  



15 
 

Subcase (a). If  𝑥𝑚 +1 > 𝑦𝑚 +1, then: 

∑ (𝑦𝑖 − 𝑥𝑖)
𝑚
𝑖=1  > (∑ (𝑦𝑖 − 𝑥𝑖)

𝑚
𝑖=1 ) + (𝑦𝑚+1 − 𝑥𝑚+1) = (∑ (𝑦𝑖 − 𝑥𝑖)

𝑚+1
𝑖=1 ) ≥ 0 

(The last inequality holds, because 𝑥 < 𝑦.) 

∴ ∑ (𝑦𝑖 − 𝑥𝑖)
𝑚
𝑖=1 > 0 ⇔ ∑ 𝑥𝑖

𝑚
𝑖=1  < ∑ 𝑦𝑖

𝑚
𝑖=1 . 

Subcase (b). ∴ The only remaining case is 𝑥𝑚+1 < 𝑦𝑚+1: 

Since 𝑘 ≤ 𝑙 ≤ 𝑙′ ≤  𝑚 < 𝑘′, we have: 

𝑥𝑙′  =  𝑥𝑙′+1 = ⋯ = 𝑥𝑚 = 𝑥𝑚+1 ≤ 𝑦𝑚+1 ≤ 𝑦𝑚 ≤ ⋯ ≤ 𝑦𝑙′+1 < 𝑦𝑙′ . 

∴ 0 < ∑ (𝑦𝑖 − 𝑥𝑖)
𝑚
𝑖=𝑙′ (𝑥𝑙′ < 𝑦𝑙′  , 𝑥𝑙′+1 ≤ 𝑦𝑙′+1, … , 𝑥𝑚 ≤ 𝑦𝑚. ) 

      ≤ ∑ (𝑦𝑖 − 𝑥𝑖)
𝑚
𝑖=𝑙′ − ∑  (𝑦𝑖 − 𝑥𝑖)

𝑛
𝑖=𝑙′ ,  

           (𝑥 < 𝑦 ⇒ ∑ (𝑦𝑖 − 𝑥𝑖)
𝑠
𝑖=1 ≥  0  for any 1 ≤ 𝑠 ≤ 𝑛 – 1 and  ∑ (𝑦𝑖 − 𝑥𝑖)

𝑛
𝑖=1  = 0 

                          ⇒ ∑ (𝑦𝑖 − 𝑥𝑖)
𝑙′−1
𝑖=1 + ∑ (𝑦𝑖 − 𝑥𝑖)

𝑛
𝑖=𝑙′  = 0  

                          ⇒ Since ∑ (𝑦𝑖 − 𝑥𝑖)
𝑙′−1
𝑖=1 ≥ 0,  ∑ (𝑦𝑖 − 𝑥𝑖)

𝑛
𝑖=𝑙′  ≤ 0.) 

      = − ∑ (𝑦𝑖 − 𝑥𝑖)
𝑛
𝑖=𝑚+1 .  

      = ∑ (𝑦𝑖 − 𝑥𝑖)
𝑚
𝑖=1   (∑ (𝑦𝑖 − 𝑥𝑖)

𝑚
𝑖=1 + ∑ (𝑦𝑖 − 𝑥𝑖) 

𝑛
𝑖=𝑚+1 = 0 ⟹ ∑ (𝑦𝑖 − 𝑥𝑖)

𝑚
𝑖=1  

      = −∑ (𝑦𝑖 − 𝑥𝑖)
𝑛
𝑖=𝑚+1 . 

∴ ∑ (𝑦𝑖 − 𝑥𝑖)
𝑚
𝑖=1 > 0  ⇔ ∑ 𝑥𝑖

𝑚
𝑖=1  < ∑ 𝑦𝑖

𝑚
𝑖=1 . ∎  

Corollary 1.15 (A corollary of the previous theorem) 

Let 𝛤  be a graph with V(𝛤) = [𝑛],  and let deg(𝑗 )= 𝜌𝑗  for each 𝑗 = 1, 2, … , 𝑛 . Then, 

𝜌1
∗, 𝜌2

∗, … , 𝜌𝑛
∗  majorizes 𝜌1, 𝜌2, … , 𝜌𝑛. 

Proof. 𝐴(𝛤) is a (0, 1)-matrix s.t. both i th row sum and i th column sum of A(𝛤) is pi for 

each i = 1, 2, ..., n. 

⸫ By the previous theorem, 𝜌1
∗, 𝜌2

∗, … , 𝜌𝑛
∗  majorizes 𝜌1, 𝜌2, … , 𝜌𝑛. ∎ 

tel:0%201
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2. LAPLACIAN EIGENVALUES OF THRESHOLD GRAPHS 

2.1 Threshold Graphs 

Threshold graphs are encountered in various areas and their structures are very interesting. 

In this main chapter of the thesis, we study the basic properties of these graphs and their 

Laplacian eigenvalues. 

Definition 2.1 Let 𝛤  be a graph with V(𝛤) = [𝑛] , and let 𝑗 ∈ 𝑉(𝛤) . Then 𝑗  is called 

′′dominating′′ if  𝑗𝑙 ∈ 𝐸(𝛤) for every 𝑙 ∈ [𝑛]\{𝑗}. 

Definition 2.2 Let 𝛤 be a graph with V(𝛤) = [𝑛]. Assume that 𝛤 is constructed recursively 

as  follows: 

Begin with 𝐾1.  

Then apply the following (i)  or (ii)  process finitely many times in any order: Let 𝛤  be 

denote the present graph at each step, and  let 𝐾1 denote a new vertex not in 𝑉(𝛤).  

i) 𝛤 + 𝐾1.    

ii) 𝛤 ⋁ 𝐾1. 

Then 𝛤 is called a “threshold graph (TG)”. 

Now, let 𝛤 be a given graph. How can we understand whether 𝛤 is a TG or not? Is there 

a recursive process or an algorithmic procedure to determine whether 𝛤is a TG or not? 

The answer is affirmative: 

Case 1. 𝛤 is connected. 

The first necessary condition for 𝛤 to be a TG is to have a dominant 𝑣 ∈ ⋁(𝛤). Then the 

second necessary condition is that 𝛤\{𝑣}  has only one nontrivial component, say 𝛺 ⊆

𝛤\{𝑣} (and, there may be some trivial components). Moreover, 𝛤 is a TG iff Ω is a TG. 

Case 2. 𝛤 is disconnected.  

The first necessary condition for 𝛤 to be a TG graph is that 𝛤 has only one nontrivial 

component, say 𝛺 ⊆ 𝛤 (and, there may be some other trivial components). Moreover, 𝛤 

is a TG iff 𝛺 is a TG.  
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Now, to prove the main result of this section, we first state and prove two lemmas: 

Lemma 2.3 Let 𝛤 be a graph with V(𝛤) = [𝑛].  Assume that the eigenvalues of 𝐿(𝛤) 

are  𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛−1 ≥ 𝜇𝑛 = 0.Then for any𝑥 ∈ ℝ, 𝐿 + 𝑥𝐽 has eigenvalues:  𝜇1 ≥

𝜇2 ≥ ⋯ ≥ 𝜇𝑛−1 and 𝑛𝑥. 

Proof. First of all, since 𝐿 is symmetric, it is orthogonally diagonalizable. That is, there 

is an orthogonal matrix 𝑄 s.t. each of the columns of 𝑄 is an eigenvector of 𝐿. 

Wlog, assume that the last column of 𝑄 is [
1

√𝑛
 ,

1

√𝑛
, … ,

1

√𝑛
]
𝑇

. (By the definition of 𝐿, 𝐿1̅ =

0 = 0 1̅.  Therefore, 1̅ is an eigenvector of 𝐿 belonging to the eigenvalue 0. And since ||1̅|| =

√𝑛 ,
1

√𝑛
 1̅ a unit eigenvector of 𝐿 corresponding to the eigenvalue 0.) Then: 

  𝑄𝑇𝐿𝑄 = 𝑑𝑖𝑎𝑔 (𝜇1,  𝜇2, … , 𝜇𝑛−1,  𝜇𝑛 = 0). 

Now, let 𝑄 = [𝑐1, 𝑐2, … , 𝑐𝑛], where 𝑐𝑗  is the j th column of 𝑄. Then, by definition of an 

orthogonal matrix,  ||𝑐𝑖|| = 1  for any 𝑖 = 1, 2, … , 𝑛,  and 𝑐𝑖. 𝑐𝑗 = 0  for any 𝑖 ≠ 𝑗 ∈

{1, 2, … , 𝑛}. In particular the vector 1̅ is orthogonal to each column of 𝑄 except for the 

last column. Therefore, by the usual matrix product, we have: 

𝐽𝑄 =

[
 
 
 
0      0  … 0     √𝑛

0      0  … 0     √𝑛
⋮       ⋮   ⋱ ⋮         ⋮
0      0  … 0     √𝑛]

 
 
 

   

∴  𝑄𝑇𝐿𝑄 = 𝑑𝑖𝑎𝑔 (0, 0, . . . , 0, 𝑛) by the usual matrix product. 

∴  𝑄𝑇(𝐿 +  𝑥𝐽)𝑄 =  𝑄𝑇𝐿𝑄 +  𝑥   𝑄𝑇𝐽 𝑄 

                              = 𝑑𝑖𝑎𝑔 ( 𝜇1, 𝜇2, … , 𝜇𝑛−1, 0) + 𝑥 𝑑𝑖𝑎𝑔 (0, 0, … 0, 𝑛) 

                                  =  𝑑𝑖𝑎𝑔 (𝜇1,  𝜇2, … , 𝜇𝑛−1 , 𝑛𝑥). 

∴ The eigenvalues of 𝐿 +  𝑥𝐽 : 𝜇1 ≥ 𝜇2 ≥ ⋯ ≥ 𝜇𝑛−1 and 𝑛𝑥. ∎ 
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Lemma 2.4 Let 𝛤 be a graph with V(𝛤) = [𝑛]. Let deg (𝑗) = 𝜌𝑗 , for each 𝑗 = 1, 2, … , 𝑛, 

and assume that 𝑛 − 1 = 𝜌1 ≥ 𝜌2 ≥ ⋯ ≥ 𝜌𝑛.  Let Ω = 𝛤\{1}.  Then one of the 

eigenvalues of 𝐿(𝛤)  is n. Moreover, assume that the eigenvalues of 𝐿(𝛤)  are 𝜇2 ,

𝜇3, … , 𝜇𝑛−1, 𝑛 , 0. Then, 𝜇2 − 1, 𝜇3 − 1, . . ., 𝜇𝑛−1 − 1, 0 are the eigenvalues of 𝐿(Ω). 

Proof. First, by definition of Laplacian, 𝐿(𝛤) = [
𝑛 − 1 −1𝑇

−1̅ 𝐿( 𝛺) + 𝐼𝑛−1
] , where 1̅ =

 [1, 1, … , 1]𝑇 ∈  ℝ𝑛−1. (Since 𝛺 = 𝛤\{1}, and since 𝑑𝑒𝑔𝛤 (1)  = n−1, 𝑑𝑒𝑔𝛺 (𝑗) 𝑑𝑒𝑔𝛤 (𝑗) 

−1 for each  j = 2, 3, .., n. Therefore, we add 𝐼𝑛−1 to the block matrix corresponding to 

𝐿(𝛺).) 

⸫ 𝐿(𝛤)  +  𝐽𝑛  = [
𝑛 0̅𝑇

0̅ 𝐿( 𝛺) + 𝐼𝑛−1 + 𝐽𝑛−1
],  where  𝐽𝑛  is the 𝑛 × 𝑛 square matrix with 

all entries equal to 1, and 0̅ = [0, 0, ..., 0]T ∈ ℝ𝑛−1. 

 Now, by the previous lemma,  since the eigenvalues of 𝐿(𝛤) are 𝜇2, 𝜇3, … , 𝜇𝑛−1 , 𝑛 , 0, the 

eigenvalues of 𝐿(𝛤) +  𝐽𝑛 are 𝜇2, 𝜇3, … , 𝜇𝑛−1 and n with multiplicity 2.  

⸫  Since 𝐿( 𝛤) +  𝐽𝑛 = [
𝑛 0̅𝑇

0̅ 𝐿( 𝛺) + 𝐼𝑛−1 + 𝐽𝑛−1
],  the eigenvalues of 𝐿( Ω) + 𝐼𝑛−1  +

𝐽𝑛−1 are  𝜇2, 𝜇3, … , 𝜇𝑛−1 , 𝑛. 

⸫ The eigenvalues of  𝐿( Ω) + 𝐽𝑛−1are 𝜇2 − 1, 𝜇3 − 1,… , 𝜇𝑛−1 − 1 , 𝑛 − 1. 

(det (𝜇𝐼𝑛−1 − (𝐿(𝛺) + 𝐽𝑛−1 + 𝐼𝑛−1)) = det ((𝜇 −1)𝐼𝑛−1 − (𝐿(𝛺) + 𝐽𝑛−1  )). 

⸫ 𝜇 is an eigenvalue of 𝐿(𝛺) + 𝐽𝑛−1 + 𝐼𝑛−1 iff 𝜇 − 1 is an eigenvalue of 𝐿(𝛺) + 𝐽𝑛−1.) 

⸫ By the previous lemma again, the eigenvalues of 𝐿(𝛺) are 𝜇2 − 1,… , 𝜇𝑛−1 − 1, 0. ∎ 

Theorem 2.5 Let 𝛤  be a graph with  𝑉(𝛤) = [𝑛].  Let 𝑑𝑒𝑔(𝑗) = 𝜌𝑗 ,  for each 𝑗 = 1,

2, … , 𝑛. Then the eigenvalues of 𝐿(𝛤) are  𝜌1
∗,  𝜌2

∗, … , 𝜌𝑛
∗  iff  𝛤 is a TG.  

Proof. 

(⇐) Proof can be done by induction on the number of vertices.  

𝑛 = 1:  First of all, since we study only simple graphs, 𝐿(𝛤) = [0] . And the only 

eigenvalue of the zero matrix is 0. Also, 𝑑𝑒𝑔(1) = 0 = 𝜌1 and 𝜌1
∗ = |{𝜌𝑗: 𝜌𝑗 ≥ 1}| = 0, 

because there is only are 𝜌𝑗 which is 𝜌1 and 𝜌1 = 0. As a result, the only eigenvalue of 

𝐿(𝛤) is 0 =  𝜌1
∗.  
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Suppose that the result holds for all TGs with the number of vertices ≤ 𝑛 − 1. 

Now, let 𝛤 be a TG with |𝑉(𝛤)| = 𝑛. 

First of all, it is enough to demonstrate the conclusion for a connected case, because each 

vertex of degree zero appends a 0 both to the sequence of degrees of 𝛤 and to the list of 

eigenvalues of 𝐿(𝛤), simply because 0∗ = 0. 

⸫ Wlog, suppose that 𝛤 is connected. 

Now, by definition of being a TG, 𝛤 has a vertex with degree 𝑛 − 1, say 𝑑𝑒𝑔(1) = 𝑛 − 1. 

Let 𝛺 = 𝛤\{1}. 

Let 𝜇1, 𝜇2, … , 𝜇𝑛−1, 𝜇𝑛 = 0 be the eigenvalues of  𝐿(𝛤). Then, by the previous lemma, 

one of 𝜇𝑗 = 𝑛 for some 𝑗 ∈  {1, 2, … , 𝑛 − 1}, say  𝜇1 = 𝑛.  

And by the previous lemma, 𝜇2 − 1, 𝜇3 − 1,… , 𝜇𝑛−1 −1, 0 are the eigenvalues of 𝐿(𝛺).  

As mentioned above, if 𝑘 vertices each of which has degree 0, are added to a graph, then 

𝑘 0s are appended both to the sequence of degrees of the graph and the list of eigenvalues 

of the Laplacian of the graph. 

⸫ If the statement of the theorem holds for a graph, then it also holds if we add some 

vertices, each of which has degree 0, to that graph. As a result, since Ω has only one 

nontrivial component, which is threshold, and there may be some other trivial 

components; the eigenvalues of 𝐿(𝛺), namely, 𝜇2 − 1, 𝜇3 − 1,… , 𝜇𝑛−1 − 1, 0, satisfy the 

statement of the theorem by the induction hypothesis. That is, since 𝜌2-1, 𝜌3-1,…, 𝜌𝑛 −

1  is the sequence of degrees of the vertices in 𝛺 , (𝜌𝑗 − 1)∗ = 𝜇𝑗 − 1  for each  𝑗 =

2, 3, … , 𝑛 − 1, (𝜌𝑛 − 1)∗ = 0. On the other hand, since 𝜌1 = 𝑛 − 1 (that is, each vertex 

is adjacent to the vertex 1, and thus 𝜌𝑗 ≥ 1  for each 𝑗 = 1, 2, … , 𝑛), 𝜌1
∗ = |{𝜌𝑗: 𝜌𝑗 ≥

1}| = 𝑛.  Therefore, since 𝜇1 = 𝑛 , 𝜌1
∗ = 𝜇1.  Finally, for clearness and simplicity of the 

notation, say 𝜏𝑗−1 = 𝜌𝑗 − 1 for each 𝑗 = 2, 3, … , 𝑛 − 1. Then we have: 

(𝜌𝑗 − 1)∗ = 𝜏𝑗−1
∗ = |{𝜏𝑙 

: 𝜏𝑙   
≥ 𝑗 − 1}| 

                             = |{ 𝜌𝑙+1 − 1: 𝜌𝑙+1 − 1 ≥ 𝑗 − 1}| 

                             = |{ 𝜌𝑙+1 − 1: 𝜌𝑙+1 ≥ 𝑗}|  

                             = |{ 𝜌𝑘 − 1:  𝜌𝑘 ≥  𝑗}| 

                             = |{  𝜌𝑘:  𝜌𝑘 ≥  𝑗}| 

The last equation is true because the matter is not the set, the matter is only the number 

of elements in the set. 
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⸫ (𝜌𝑗 − 1)∗ = |{𝜌𝑘:  𝜌𝑘 ≥  𝑗}| for the sequence 𝜌2 − 1, 𝜌3 − 1,… , 𝜌𝑛−1 − 1, 0, for each 

𝑗 = 2, 3, … , 𝑛. 

⸫ For the sequence 𝑛 − 1 =  𝜌1, 𝜌2, 𝜌3, … , 𝜌𝑛−1, 𝜌𝑛 = 0, we have: 

𝜌𝑗
∗ = |{ 𝜌𝑙:  𝜌𝑙 ≥  𝑗}| = (𝜌𝑗 − 1)∗ + 1, for 𝑗 = 2, 3, … , 𝑛, 

because 𝜌1is the largest possible number in the sequence 𝜌1, 𝜌2, … , 𝜌𝑛 = 0, and thus 𝜌𝑙 ≥

𝑗 implies 𝜌1 ≥ 𝑗. (⸫ We add +1 to (𝜌𝑗 − 1)∗ to find 𝜌𝑗
∗.) 

⸫ 𝜌𝑗
∗ = (𝜌𝑗 − 1)∗ + 1 = (𝜇𝑗 − 1) + 1 =  𝜇𝑗 for each 𝑗 = 2, 3, … , 𝑛. 

And we know that 𝜌1
∗ = 𝑛 = 𝜇1. 

As a result, 𝜌𝑗
∗ = 𝜇𝑗 for each 𝑗 = 1, 2, … , 𝑛. 

(⇒)(This part of the proof is taken from Merris (1994).) 

The proof can be done easily by induction on the number of vertices n of 𝛤, and by using 

the recursive definition of a TG.  

Step 1. First of all,  if 𝛤 = 𝐾𝑛
𝑐, then 𝛤 is a TG by definition. 

If 𝛤 ≠ 𝐾𝑛
𝑐, then there exists, say 𝑚 > 1 vertices of 𝛤 with vertex degree > 0. Let 𝛺 be 

the subgraph of 𝛤 induced by these m vertices. Then: 

𝐿(𝛤) = [
𝐿(𝛺) 0𝑚×(𝑛−𝑚)

0(𝑛−𝑚)×𝑚 0𝑛−𝑚
]. 

∴  For each 𝑖 = 1 , 2 , . . . , 𝑚  for the following first two equations and for each 𝑖 = 1,

2, . . . , 𝑚 − 1 for the following last equation, we have: 

𝜇𝑖 (𝛤) = 𝜇𝑖 (𝛺), 𝜌𝑖 (𝛤) = 𝜌𝑖 (𝛺), 𝜌𝑖
∗ (𝛤) = 𝜌𝑖 

∗  (𝛺), 

where 𝜇𝑖  (𝛤), 𝜌𝑖(𝛤), and 𝜌𝑖
∗(𝛤) are the i th largest eigenvalue, the i th largest degree (in 

the degree sequence), and the i th conjugate element (in the conjugate sequence) of 𝛤. 

Similarly, 𝜇𝑖(𝛺), 𝜌𝑖(𝛺), and 𝜌𝑖
∗(𝛺) denote the same notions for 𝛺. 

Step 2. Now, 𝜌1
∗(𝛺) =  𝑚. (𝜌1

∗(𝛺) = |{𝜌𝑖(𝛺)|𝜌𝑖(𝛺) ≥ 1}| = 𝑚, because every vertex of 

𝛺  has a degree  > 0,  i.e., has a degree  ≥ 1. )  Therefore, since 𝜇1(𝛤)  =  𝜌1
∗(𝛤)  by 

hypothesis and 𝜇1(𝛺) = 𝜇1(𝛤), 𝜇1(𝛺) =  𝜌1
∗(𝛺) = 𝜌1

∗(𝛤) = 𝑚. 
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Step 3.  Furthermore, for any graph Λ,  

𝜇𝑖(Λ)  =  𝑛 − 𝜇𝑛−𝑖 (Λ
𝑐) , 1 ≤  𝑖 <  𝑛 ( ∗∗∗ ): 

𝐿(Λ) + 𝐿(Λ𝑐) = 𝑛𝐼𝑛 − 𝐽𝑛 by the definition of  LM.  

Therefore, since 𝐿(Λ)commutes with itself, with 𝐼𝑛 , and with 𝐽𝑛 , and since 𝐿(Λ𝑐) = 

𝑛𝐼𝑛 − 𝐽𝑛 −  𝐿(Λ), 𝐿(Λ)  commutes with 𝐿(Λ𝑐). Then it is a well-known fact from Linear 

Algebra that the matrices 𝐿(Λ) and 𝐿(Λ𝑐) are simultaneously triangularizable. That is, 

there exists an invertible matrix, 𝑃 s.t. 𝑃−1𝐿(Λ) 𝑃 and 𝑃−1𝐿(Λ𝑐) 𝑃 are both triangular 

matrices. Now, the eigenvalues of a triangular matrix are the main diagonal entries of that 

matrix. Therefore, we have: 

𝑃−1(𝐿(Λ) + 𝐿(Λ𝑐)) 𝑃 = 𝑃−1 (𝑛𝐼𝑛 − 𝐽𝑛) 𝑃  

⇒ 𝑃−1 𝐿 (Λ) 𝑃+ 𝑃−1 𝐿 (Λ𝑐) 𝑃 = 𝑛𝐼𝑛 − 𝑃−1𝐽𝑛 𝑃. 

On the other hand, the eigenvalues of 𝑛𝐼𝑛 − 𝑃−1𝐽𝑛 𝑃 are 𝑛 with multiplicity 𝑛 − 1 and 0 

with multiplicity 1. (First, since 𝐽𝑛 and 𝑃−1𝐽𝑛 𝑃   are similar matrices, they have the same 

eigenvalues. 𝐽𝑛 is a symmetric matrix and rank(𝐽𝑛 ) = 1. Therefore, there is only one 

nonzero eigenvalue of 𝐽𝑛. Thus, since the sum of all the eigenvalues is equal to the trace, 

and since (n −1) of the eigenvalues of  𝐽𝑛 is 0, the unique nonzero eigenvalue of 𝐽𝑛 must 

be 𝑛 =  𝑡𝑟( 𝐽𝑛 ). Therefore, the eigenvalues of  𝐽𝑛  are 0 with multiplicity 𝑛 − 1 and n 

with multiplicity 1. As a result, the eigenvalues of 𝑛𝐼𝑛 − 𝐽𝑛 are n with multiplicity 𝑛 − 1 

and 𝑛 − 𝑛 = 0 with multiplicity 1: 𝑑𝑒𝑡(𝐼𝑛 − (𝑛𝐼𝑛 − 𝐽𝑛)) = 𝑑𝑒𝑡 ((𝑥 − 𝑛)𝐼𝑛 − (−𝐽𝑛). 

Now, 𝑑𝑒𝑡(𝑥𝐼𝑛 − (−𝐽𝑛)) = 0 ⇔  𝑥 = 0  with multiplicity 𝑛 − 1   and x =  − n with 

multiplicity 1. Therefore, 𝑑𝑒𝑡 ((𝑥 − 𝑛 ) 𝐼𝑛 − (− 𝐽𝑛 )) = 0 ⇔ (𝑥 − 𝑛) = 0  with 

multiplicity 𝑛 − 1  and (𝑥 − 𝑛)  = −𝑛  with multiplicity 1 ⇔  𝑥 = 𝑛  with multiplicity 

𝑛 − 1 and 𝑥 = 0 with multiplicity 1.) 

∴ The eigenvalues of 𝑃−1  𝐿 (Λ) 𝑃+ 𝑃−1  𝐿 (Λ𝑐) 𝑃 are 𝑛  with multiplicity 𝑛 − 1 and 0 

with multiplicity 1. 

∴  Since the eigenvalues of 𝑃−1  𝐿(𝛤) 𝑃+ 𝑃−1  𝐿(𝛤𝑐) 𝑃 , which are the same as the 

eigenvalues of 𝐿(Γ)+ 𝐿(𝛤𝑐), are the main diagonal entries, we have:  

𝜇𝑖 (𝛤)  + 𝜇𝑛−𝑖 (𝛤
𝑐)  =  𝑛  for each  1 ≤  𝑖 <  𝑛.  ( * ) 
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(Since (𝑃−1𝐿(𝛤) 𝑃)𝑖𝑖  + (𝑃−1𝐿(𝛤𝑐) 𝑃)𝑖𝑖= 𝑛 for each 𝑖 =  1, 2, . . . , 𝑛 − 1, the constant 

𝑛; if one of them is large, then the other must be small. That is: 𝜇1 (𝛤) + 𝜇𝑛−1 (𝛤
𝑐) = 𝑛, 

𝜇2 (𝛤) + 𝜇𝑛−2 (𝛤
𝑐) =  𝑛,… , 𝜇𝑛−1 (𝛤)  + 𝜇1 (𝛤

𝑐)   =  0.) 

In addition, we know that the remaining eigenvalue of 𝐿 (𝛤) is 0 with multiplicity 1 and 

1̅ is one of the corresponding eigenvectors. 

Step 4.  Now, if we apply (*) to 𝛺, then we get: 

𝜇𝑖 (𝛺) + 𝜇𝑚−𝑖(𝛺
𝑐) = 𝑚 for each 1 ≤ 𝑖 < 𝑚. 

∴ Since 𝜇1(𝛺
𝑐) = m, 𝜇𝑝−1 (𝛺) = 0. 

∴ 𝛺𝑐 is a disconnected graph.  

∴ Since a graph and its complement can not be both disconnected, 𝛺 must be connected. 

∴ 𝜇𝑚−1(𝛺) ≠ 0. 

∴ Since 𝜇𝑚−1 (𝛺) = 𝜌𝑚−1
∗  (𝛺) by the hypothesis, 𝜌𝑚−1

∗  (𝛺) ≠ 0. 

∴ Since 𝜌𝑚−1
∗  (𝛺) =|{𝜌𝑖

  (𝛺) ∶  𝜌𝑖
  (𝛺) ≥  𝑚 − 1}|, and since ∆(𝛺) ≤  𝑚 − 1 (because 𝛺 

contain m vertices), ∆(𝛺) = 𝑚 − 1. 

∴ 𝜌1(𝛺) = 𝑚 − 1. 

Step 5. Now, suppose that there are 𝑠 vertices of degree 𝑚 − 1 in 𝛺. 

Then for a uniquely determined subgraph Λ of  𝛺, we have :  

𝛺 = Λ 𝑉𝐾𝑠. 

Step 6. ∴  𝜇𝑠+𝑖 (𝛺) = 𝜇𝑖 (Λ) +  𝑠, 1 ≤  𝑖 < 𝑡, where 𝑡 = 𝑚 − 𝑠 is |𝑉(Λ)|: 

First of all, for any two graphs 𝜑 and 𝜓 we have (𝜑 𝑉 𝜓) = (𝜑𝑐 + 𝜓𝑐)𝑐:  

𝑉(𝜑 𝑉 𝜓 ) = 𝑉(𝜑) ∪ 𝑉(𝜓 ) = 𝑉((𝜑𝑐 + 𝜓𝑐)𝑐 ). 

𝑒 = { 𝛼, 𝛽} ∈ 𝐸 ((𝜑𝑐 + 𝜓𝑐)𝑐 ) ⇔ 𝑒 = { 𝛼 , 𝛽 } ∉ 𝐸 (𝜑𝑐 + 𝜓𝑐) 

⇔  𝑒 ∉ 𝐸(𝜑𝑐) or 𝑒 ∉ 𝐸 (𝜓𝑐) or "one of the end vertices of 𝑒, say 𝛼, is in 𝑉(𝜑𝑐) = 𝑉(𝜑) 

and 𝛽 is in 𝑉(𝜓𝑐) = 𝑉(𝜓)".  

⇔ 𝑒 ∈ 𝐸(𝜑) or 𝑒 ∈ 𝐸(𝜓) or "𝛼 ∈ 𝑉(𝜑) and 𝛽 ∈ 𝑉(𝜓) ". 

⇔ 𝑒 ∈ 𝐸(𝜑 𝑉 𝜓) 

∴ (𝜑 𝑉 𝜓) = (𝜑𝑐 + 𝜓𝑐)𝑐. 
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Now, by using the equation given in Step 3, we can prove the required equation: 

𝜇𝑠+𝑖(𝛺) = 𝜇𝑠+𝑖 (Λ𝑉𝐾𝑠) = 𝜇𝑠+𝑖((Λ
𝑐 + 𝐾𝑠

𝑐)𝑐 )  

              = 𝑚 − 𝜇𝑚−(𝑠+𝑖)(Λ
𝑐 + 𝐾𝑠

𝑐)  (𝛺 = (Λ𝑐 + 𝐾𝑠
𝑐)𝑐  has 𝑚 vertices.) 

              = 𝑚 − 𝜇𝑚−(𝑠−𝑖) (Λ𝑐) (𝐾𝑠
𝑐 is s isolated vertices. Thus, the corresponding block of 

𝐾𝑠
𝑐 in 𝐿(𝛺) is the 𝑠 × 𝑠 zero matrix.) 

              = 𝑚 − ((𝑚 − 𝑠 )– 𝜇(𝑚−𝑠) − (𝑚−𝑠−𝑖)(Λ)) ( Λ has 𝑚 − 𝑠 vertices)  

              = s + 𝜇𝑖(Λ) .  

∴ 𝜇𝑠+𝑖 (𝛺) = 𝜇𝑖(Λ) + 𝑠, where 1 ≤ 𝑖 < 𝑡 = 𝑚 − 𝑠 = |𝑉 (Λ)|. 

(Note that 1 ≤ 𝑖 < (𝑚 − 𝑠) ⇒ −(𝑚 − 𝑠) < −𝑖 ≤  −1 

                                             ⇒ 0 < 𝑚 − 𝑠 − 𝑖 ≤ 𝑚 − 𝑠 − 1 

                                             ⇒ 1 ≤ 𝑚 − 𝑠 − 𝑖 ≤ 𝑚 − 𝑠 − 1 = 𝑡 − 1 ≤ 𝑚 − 1 < 𝑚, 

i.e, 1 ≤ 𝑚 − 𝑠 − 𝑖 < 𝑚. Therefore, we can apply (∗∗∗) in the first case above. Similarly, 

1 ≤ 𝑚 − 𝑠 − 𝑖 < 𝑚 − 𝑠, because 1 ≤ 𝑖 < 𝑚 − 𝑠. Therefore we can apply (∗∗∗) in the 

second case above.) 

Step 7.   𝜌𝑠+𝑖
∗ (𝛺) =  𝜌𝑖

∗(Λ) + 𝑠, 1 ≤  𝑖 < 𝑡 ∶ 

𝜌𝑠+𝑖 
∗ (𝛺) = |{𝜌𝑗

 (𝛺): 𝜌𝑗
 (𝛺) ≥ 𝑠 + 𝑖}| = |{𝜌𝑗

 ((Λ𝑉𝐾𝑠): 𝜌𝑗
 ((Λ𝑉𝐾𝑠) ≥  𝑠 + 𝑖}| 

               = |{𝜌𝑗(Λ𝑉𝐾𝑠): 𝜌𝑗(Λ) + 𝑠 ≥ 𝑠 + 𝑖 }| + 𝑠  

(Note that 𝑣 ∈ 𝑉(Λ𝑉𝐾𝑠) ⇒ 𝑣 ∈ 𝑉(Λ) 𝑜𝑟 𝑣 ∈ 𝑉(𝐾𝑠 ). 

𝑣 ∈ 𝑉(Λ) ⇒  𝜌Λ𝑉𝐾𝑠
(𝑣) = 𝜌(𝑣)Λ + 𝑠, because each vertex of Λ is adjacent to every vertex 

of 𝐾𝑠. 

𝑣 ∈ 𝑉(𝐾𝑠) ⇒  𝜌Λ𝑉𝐾𝑠
(𝑣) = 𝜌𝐾𝑠

(𝑣) + |𝑉(Λ )|, because each vertex of 𝐾𝑠  is adjacent to 

every vertex of Λ. 

∴ 𝑣 ∈ 𝑉( 𝐾𝑠) ⇒ 𝜌Λ𝑉𝐾𝑠
(𝑣) = (𝑠 −  1) + (𝑚 −  𝑠) = 𝑚 − 1 ≥  𝑠 + 𝑖 for each 1 ≤ 𝑖 < 𝑡, 

because 1 ≤ 𝑖 < 𝑡 = 𝑚 − 𝑠 ⇒ 𝑠 + 1 ≤ 𝑠 + 𝑖 < (𝑚 − 𝑠) 𝑡𝑠 = 𝑚 ⇒  𝑠 + 𝑖 < 𝑚 − 1. 

Also, note that |{𝜌𝑗(Λ𝑉𝐾𝑠): 𝜌𝑗(Λ) ≥  𝑖 }| = |{ 𝜌𝑗(Λ): 𝜌𝑗(Λ) ≥ 𝑖 }|,  because only the 

order of the set does matter. In both cases, we count j's for which 𝜌𝑗(Λ) ≥ 𝑖.) 

Step 8.   ∴ Since  𝜌𝑠+𝑖
∗ (𝛺) = 𝜌𝑠+𝑖

∗ (𝛤) = 𝜇𝑠+𝑖(𝛤) = 𝜇𝑠+𝑖(𝛺)  

(the second equation holds by hypothesis, and the other two equations hold by Step 1), 
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both 𝜇𝑠+𝑖(𝛺)  = 𝜇𝑖(Λ) + 𝑠 (Step 6) and 𝜌𝑠+𝑖
∗ (𝛺)=𝜌𝑖

∗(Λ) + 𝑠 (Step 7) imply that 𝜌𝑖
∗(Λ)  =

𝜇𝑖(Λ) + 𝑠. 

∴  𝜌𝑖
∗(Λ) = 𝜇𝑖(Λ) for each 1 ≤ 𝑖 < 𝑡 = |𝑉(Λ)|. 

(Note that 1 ≤ 𝑖 < 𝑡 = 𝑚 − 𝑠 ⇒  𝑠 + 1 ≤ 𝑠 + 𝑖 < 𝑚. Therefore, the equations proved 

in Step 1 can be applied.) 

Step 9. Since  𝜌𝑖
∗(Λ) = 𝜇𝑖(Λ) for each 1 ≤ 𝑖 < 𝑡 = |𝑉(Λ)|, and since 𝑡 = |𝑉(Λ)| = 𝑚 −

𝑠 < 𝑚 ≤ 𝑛, t < n.  

∴ Since  Λ satisfies the hypothesis of the theorem, Λ is a TG by induction assumption. 

∴ Since  𝛺 =  Λ𝑉𝐾𝑠, 𝛺 is a TG by the recursive definition of TGs. 

∴ Since 𝛤 = 𝛺 + 𝐾𝑛−𝑚, 𝛤 is a TG again by the recursive definition of TGs. 

(Note that we can not apply induction assumption to the graph 𝛺, because |𝑉(𝛺)| = 𝑚 =

𝑛 = 𝑉(𝛤) is possible.) ∎      

2.2 Spectral Integral Variation 

Definition 2.6 Let 𝛤 be a graph and let µ1, µ2, … , µn be the eigenvalues of 𝛤. If µ𝑗 ∈ ℤ for 

each 𝑗 = 1, 2, … , 𝑛, then 𝛤 is called a ′′Laplacian integral (LI)′′ graph. 

From the last theorem of the previous section, a TG is LI. But there are more, that is, the 

set of LI graphs properly contains the set of TGs. Now, we define a new type of graph, 

which is LI, and TG belongs to the set of this type of graphs. 

Definition 2.7 Let 𝛤 be a graph. 𝛤 is said to be a ′′cograph′′ if it is obtained recursively 

by obeying the following principles: 

a) 𝐾1, i.e., a single vertex is a cograph. 

b) If 𝛺 is a cograph, then 𝛺 ̅ is a cograph. 

c) If 𝛺 and Λ are two cographs s.t. 𝑉(𝛺) ∩ 𝑉(Λ) = Ø, then 𝛺 + Λ is a graph.  

Proposition 2.8  If  𝛤 is a cograph, then it is LI. 

Proof.  We use the recursive definition of cographs and the following two facts: 
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1) 𝛺 and Λ are LI ⇒  𝛺 + Λ is LI:  

Since 𝐿(𝛺 + Λ) =  [
𝐿(𝛺) 0

0 𝐿(𝛺)
], the set the of eigenvalues 𝐿(𝛺 + Λ) is the union of 

the set of eigenvalues of 𝐿(𝛺) and 𝐿(Λ), counting with multiply . 

Now, since 𝛺 and  Λ are LI  their eigenvalues are all integers. 

∴ The eigenvalues of 𝐿(𝛺 + Λ) are integers.  

∴  𝐿(𝛺 + Λ) is LI . 

2) Γ is LI ⇒ 𝛤 is LI:  

We know from Step 3 of the proof of the last theorem of the previous section that for any 

graph 𝛺, we have: 

𝜇𝑛−𝑖
∗ (𝛺𝑐) = 𝑛 − 𝜇𝑖 (𝛺) for each 1 ≤ 𝑖 <  𝑛, where 𝑛 = |𝑉(𝛺)| . 

And, for any graph 𝛺, 𝜇𝑛(𝛺) = 0: 

Step  1. Let 𝐿(𝛺) = [ 𝑛 ]  and 𝐸(𝛺) = {𝑒1, 𝑒2, … , 𝑒𝑚}. Assume that each edge of 𝛺  is 

given a direction. Let 𝐵(𝛺) = 𝐵 = [𝑏𝑖𝑗] be the 𝑛 × 𝑚 matrix, whose rows (respectively, 

columns) are indexed by 𝑉(𝛺) (respectively, 𝐸(𝛺)) s.t. 

𝑏𝑖𝑗 = {

0,       𝑖𝑓    𝑖 ∉ 𝑒𝑗 = {𝑣,𝑤};                                                      

1,       𝑖𝑓 𝑖 ∈ 𝑒𝑗 = {𝑣,𝑤} is the initial vertex of 𝑒𝑗;           

−1,       𝑖𝑓 𝑖 ∈ 𝑒𝑗 = {𝑣,𝑤} is the final vertex of 𝑒𝑗;                 

 

Then, 𝐵(𝛺) = 𝐵 is called the "incidence matrix (IM)” of 𝛺. 

Step 2.  Let 𝛺 be a connected graph. Then rank 𝐵(𝛺) = 𝑛 – 1: 

Let 𝑣 = [𝑣1 , 𝑣2 , … , 𝑣𝑛]𝑇 ∈ ℝ𝑛   be s.t. 𝑣𝑇B = 0̅. Thus, by definition of  𝐵, if 𝑖~𝑗 ( 𝑖 . 𝑗 ∈

𝑉(𝛺)), then 𝑣𝑖 − 𝑣𝑗  = 0, (respectively, 𝑣𝑗– 𝑣𝑖 = 0) if 𝑖 (respectively, 𝑗) is the initial vertex 

of the edge 𝑒 = {𝑖 , 𝑗}. 

Therefore, if there is an 𝑣𝑎𝑣𝑏 - path between the vertexes 𝑣𝑎 and 𝑣𝑏, then 𝑣𝑎 = 𝑣𝑏: 

 Let 𝑃 = 𝑖1 = 𝑣𝑎, 𝑖2, …, 𝑖𝑚−1, im= 𝑣𝑏 be a va vb – 𝑝 a th. Then 𝑖1 ~ 𝑖2, 𝑖2 ~ 𝑖3, … , 𝑖𝑚−1 ~ 

𝑖𝑚. Therefore,  𝑣𝑎  = 𝑣𝑖1  =  𝑣𝑖2,  𝑣𝑖2=  𝑣𝑖3, … ,  𝑣𝑖𝑚−1
 =  𝑣𝑖𝑚= 𝑣𝑏. Thus, 𝑣𝑎 = 𝑣𝑏. 

∴  Since there is an 𝑖𝑗 − path in 𝛺   for any two vertices 𝑖, 𝑗 ∈ 𝑉(𝛺)  (because 𝛺  is 

connected), all the components of  𝑣 must be equal to each other. 
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∴ dim (𝒩(𝐵)) ≤ 1. (dim(left 𝒩)) = dim (right 𝒩) = dim (𝒩).) 

∴ rank (𝐵)  ≥ 𝑛 − 1. 

On the other hand, by definition of 𝐵, the sum of entries in each column (in fact, there are 

only two non-zero entries, one of them is 1 and the other is −1) is zero. Therefore, the 

sum of all the rows of 𝐵 is [0, 0, … ,0]. Thus, the rows of 𝐵 are linearly independent. 

∴ rank (𝐵) ≤ 𝑛 − 1. 

∴ rank (𝐵) = 𝑛 − 1. 

Step 3. If 𝛺 has 𝑘 components, then rank (𝐵 (𝛺)) = 𝑛 − 𝑘:  

Let 𝛺1,  𝛺2, …, 𝛺𝑘 be the components of 𝛺. Then, after relabeling the elements of 𝑉(𝛺) 

and 𝐸(𝛺) if necessary, IM, of 𝛺 is the  following block diagonal matrix:  

𝐵(𝛺)  = 

[
 
 
 
 

𝐵 (𝛺1)      0        …      0

    0         𝐵 (𝛺2) …     0 
          0         

      ⋮            ⋮             ⋱          ⋮ 
         0       0         …     𝐵 (𝛺𝑘)]

 
 
 
 

 

Now, for each 𝑖 =  1, 2, . . . , 𝑘, since 𝛺𝑖  is connected, rank 𝐵(𝛺𝑖 ) = |𝑉 (𝛺𝑖 )|−1 by the 

previous step. 

∴ rank(𝐵(𝛺)) = rank(𝐵(𝛺1)) + rank (𝐵(𝛺2)) + … + rank (𝐵(𝛺𝑘)) 

                       = (|𝑉(𝛺1)| −1) + (|𝑉(𝛺2)| −1) + … + (|𝑉(𝛺𝑘)| −1) 

                       = (|𝑉(𝛺1)| + |𝑉(𝛺2)| + … + |𝑉(𝛺𝑘)|) −k 

                       = 𝑛 − 𝑘. 

Step 4. For any matrix  𝑀, (rank (𝑀𝑀𝑇)) = rank (𝑀𝑇𝑀) = rank 𝑀:  

 𝒩(𝑀𝑇𝑀) = 𝒩(𝑀): 

(⊆) ∶ 𝑥 ∈  𝒩(𝑀𝑇𝑀) ⇒ 𝑀𝑇𝑀 𝑥 = 0 ⇒  𝑥𝑇   𝑀𝑇𝑀𝑥 =  0 ⇒  (𝑀𝑛)𝑇(𝑀𝑛) = 0  

                                        ⇒  ||𝑀𝑥|| = 0 ⇒  𝑀𝑥 = 0̅  ⇒  𝑥 ∈  𝒩(𝑀). 

(⊇) 𝑥 ∈ 𝒩(𝑀)  ⇒   𝑀𝑥 = 0 ⇒   𝑀𝑇𝑀𝑥 =  0 ⇒ 𝑥 ∈ 𝒩(𝑀𝑇𝑀). 

∴ 𝒩(𝑀𝑇𝑀) =  𝒩(𝑀). 

∴ nullity (𝑀𝑇𝑀) = nullity (𝑀). 

∴ Since rank + nullity = The number of columns of  𝑀, a fixed number, rank (𝑀𝑇𝑀) = 

rank (𝑀). 
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Step 5. 𝐿(𝛺) = 𝐵(𝛺)𝐵(𝛺)𝑇: 

Let 𝐿(𝛺) = 𝐿 = [𝑙𝑖𝑗] , 𝐵(𝛺) = 𝐵 = [𝑏𝑖𝑗 ] and 𝐵(𝛺)𝑇 = 𝐵𝑇 = [𝑏𝑖𝑗
𝑇 ]. Then: 

𝑖 = 𝑗:  𝑙𝑖𝑖 = 𝜌𝑖 = 𝑑𝑒𝑔 (𝑖) by definition of 𝐿. And(𝐵𝐵𝑇)𝑖𝑖 = ∑ 𝑏𝑖𝑘
𝑛
𝑘=𝑙  𝑏𝑘𝑖

𝑇  = ∑ 𝑏𝑖𝑘
𝑛
𝑘=1  𝑏𝑖𝑘 

= ∑ (𝑏𝑖𝑘)
2𝑛

𝑘=1  = ∑ (𝑏𝑖𝑘)
2

𝑘~𝑖  = ∑ (±1)2
𝑘~𝑖 = ∑ 1𝑘~𝑖 = 𝜌𝑖 = deg (𝑖). 

∴  𝑙𝑖𝑖 = (𝐵𝐵𝑇)𝑖𝑖 . 

𝑖 ≠ 𝑗 : 𝑙𝑖𝑗  = {
   0, 𝑖𝑓   𝑖 ≁ 𝑗;
−1, 𝑖𝑓   𝑖~ 𝑗.

   And (𝐵𝐵𝑇 )𝑖𝑗  =  ∑ 𝑏𝑖𝑘
𝑛
𝑘=1  𝑏𝑘𝑗

𝑇  =  ∑ 𝑏𝑖𝑘
𝑛
𝑘=1  𝑏𝑗𝑘 

= ∑ 𝑏𝑖𝑘𝑏𝑗𝑘
 
𝑖∈𝑒𝑘={𝑣,   𝑤}

𝑗∈𝑒𝑘={𝑣,   𝑤}

 , because if 𝑖 ∉ 𝑒𝑘 = {𝑣,𝑤} or if 𝑗 ∉ 𝑒𝑘 = {𝑣,𝑤}, then 𝑏𝑖𝑘 = 0 or 

𝑏𝑗𝑘 = 0, respectively. Then, 𝑏𝑖𝑘𝑏𝑗𝑘 = 0. 

Therefore, if 𝑖 ≁ 𝑗, i.e., if there is no edge with end vertices 𝑖 and 𝑗, then there is no non-

zero term in the sum. Thus, (𝐵𝐵𝑇 )𝑖𝑗 = 0. And if 𝑖~𝑗, i.e., if there is an edge. 𝑒 = {𝑖, 𝑗}, 

then there is only one non-zero term in the sum which corresponds to the term, say k = 

m, that is, 𝑒𝑚 = {i, j}. In this case, "𝑏𝑖𝑘 = 1 and 𝑏𝑗𝑘 = −1" or "𝑏𝑖𝑘 = −1 and 𝑏𝑗𝑘 =1", 

and  thus (𝐵𝐵𝑇)𝑖𝑗  = 𝑏𝑖𝑚𝑏𝑗𝑚 = −1. 

∴ 𝑙𝑖𝑗 = (𝐵𝐵𝑇 )𝑖𝑗 . 

As a result, 𝐿 = 𝐵𝐵𝑇. 

 Step 6.  𝑟𝑎𝑛𝑘 (𝐿(𝛺)) =  𝑟𝑎𝑛𝑘(𝐵(𝛺)𝐵(𝛺)𝑇)        (Step 5) 

                                     =  𝑟𝑎𝑛𝑘(𝐵(𝛺))                     (Step 4) 

                                     ≤ 𝑛 −  1                                  (Step 3). 

∴ nullity (𝐿(𝛺)) ≥ 1. 

∴ There is a non-zero vector in the null space of 𝐿(𝛺). 

∴ 0 is the eigenvalue of  𝐿(𝛺), that is, 𝜇𝑛(𝛺) = 0.  

(Note that 𝐿(𝛺) = 𝐵(𝛺)𝐵(𝛺)𝑇 ⇒  𝐿(𝐺) is (symmetric) and positive semi-definite 

matrix ⇒ Each eigenvalue of  𝐿(𝛺) ≥ 0.) 

 Finally: 𝛤 is  𝐿𝐼 ⇒ 𝜇𝑖(𝛤) ∈ ℤ for each 1 ≤ 𝑖 ≤ 𝑛. 

⇒ Since 𝜇𝑛−𝑖( 𝛤
𝑐) = 𝑛 − 𝜇𝑖(𝛤)  for each 1 ≤ 𝑖 ≤ 𝑛, 𝜇𝑛−𝑖(𝛤

𝑐) ∈ ℤ for each 1 ≤ 𝑖 ≤ 𝑛. 

⇒ Since  also 𝜇𝑛(𝛤𝑐) = 0 ∈ ℤ , 𝜇𝑖(𝛤
𝑐) ∈ ℤ  for each 1≤ i ≤ n. 

⇒𝛤𝑐  is LI.  

tel:710
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Now, by using these two facts, we can prove the proposition:  

First of all, 𝐾1 is trivially LI. Let 𝛺 and 𝛬 be two cographs. Assume that both are LI. Then 

the cograph 𝛺̅ is LI by Fact (2) above, and the cograph 𝛺 + 𝛬  is LI by Fact (1) above. 

∴ Recursively obtained each cograph is also LI. 

As a result, if 𝛤  is a cograph, then it is LI. ∎ 

Proposition 2.9 If 𝛤 is a TG, then it is a cograph. 

Proof. Wlog, we can assume that 𝛤 is connected, because if 𝛤 is disconnected, then it has 

only one nontrivial component, and (if exists) the remaining components are all trivial, 

i.e., each remaining component comprises of a single vertex; thus, they are all cographs, 

and disjoint union cographs is a cograph. 

Now, proof can be done by induction on |𝑉(Г)| = 𝑛: 

𝑛 = 1: 𝛤 = 𝐾1 ⇒ 𝛤 is a cograph.  

Assume that the proposition is true for all graphs with the number of vertices ≤ 𝑛 − 1. 

Let 𝛤 be a connected TG with |𝑉(𝛤)| = 𝑛 > 1.  

Since 𝛤 is a nontrivial TG, it has a dominating vertex, say 𝑣 ∈ 𝑉(𝛤). Let 𝛺 =  𝛤\{𝑣}. 

Then, 𝛺  is a TG with |𝑉(𝛺)| = 𝑛 − 1 . Therefore, by the induction hypothesis, 𝛺  is a 

cograph. Thus, 𝛺̅ is a cograph. 

⸫ 𝛺̅ + {𝑣} is a cograph.  

⸫ 𝛺 + {𝑣}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝛺̿ ⋁{𝑣} = 𝛺⋁{𝑣} = 𝛤 is a cograph.  

As a result, the proposition is proved by induction. ∎ 

Note 2.10 The converse of the previous proposition does not hold. That is, there are 

cographs that are not threshold. For example, 𝐶4  is a cograph (𝐾1is a cograph, by part (a) 

of the definition of cograph. 4𝐾1 = 𝐾1 + 𝐾1 + 𝐾1 + 𝐾1  is a cograph part (c) of the 

definition of cograph. Thus, 4𝐾1 = 𝐶4  is a cograph by part (b) of the definition of 

cograph); but 𝐶4 is not a TG. (𝐶4 is connected, but does not have a dominating vertex.) 
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Now, Let 𝛤  be a graph, and e be an edge not in 𝛤.  Then, we want to understand the 

variation in the eigenvalues of 𝐿(𝛤) if we add e to 𝛤. To study this variation, we need a 

result from Linear Algebra about the consequence of the rank 1 perturbation process on 

the eigenvalues of 𝐴, where 𝐴 is a square matrix of order 𝑛 and 𝐴𝑇 = 𝐴. (A square matrix 

𝐵 = 𝐴 + 𝑥𝑦𝑇, where 𝑥, 𝑦 ∈  ℝ𝑛, is called a "rank 1 perturbation" of A.) 

First, we study two lemmas which are needed to prove the mentioned result.  

Lemma 2.11 Let 𝑀 be a square matrix of order n, and 𝑀𝑇 = 𝑀. Partition 𝑀 as follows:  

𝑀 = [
𝑚11 𝑦𝑇

𝑦 𝑀(1|1)
]. 

Let 𝛼1, 𝛼2, … , 𝛼𝑛 be the eigenvalues of 𝑀. Assume that the set of eigenvalues of 𝑀 (1|1) 

is a subset of the set of eigenvalues of M. Then 𝑦 is the zero vector.  

Proof. First, by the assumption, the eigenvalues of 𝑀 (1|1) are 

𝛼1, 𝛼2, … , 𝛼𝑡−1 , 𝛼𝑡+1, … , 𝛼𝑛 for some 𝑡 ∈ {1, 2, … , 𝑛}. 

Then we have: 

𝑡𝑟(𝑀) − 𝑡𝑟(𝑀(1|1)) = 𝛼𝑡 . 

And since the trace of the square of a matrix 𝐴 is equal to the sum of the squares of 

eigenvalues of  𝐴, we also have:             

𝑡𝑟(𝑀2) − 𝑡𝑟(𝑀(1|1)2) = 𝛼𝑡
2. 

On the other hand, from the statement of the lemma, we have: 

𝑡𝑟(𝑀) − 𝑡𝑟(𝑀(1|1)) = 𝑚11. 

And since 𝑀2 = [
𝑚11

2 + 𝑦𝑇𝑦 𝑚11𝑦
𝑇 + 𝑦𝑇 𝑀(1|1)

𝑦𝑚11 +  𝑀(1|1)𝑦 𝑦𝑦𝑇 + 𝑀(1|1) 2
], we have:  

𝑡𝑟(𝑀2) =  𝑚11
2 + 𝑦𝑇𝑦 + 𝑡𝑟(𝑦𝑦𝑇 + 𝑀(1|1)2) 

             =  𝑚11
2 + 𝑦𝑇𝑦 + 𝑡𝑟(𝑦𝑦𝑇) + 𝑡𝑟(𝑀 (1|1)2) 

             = 𝑚11
2 + 𝑦𝑇𝑦 + 𝑡𝑟(𝑦𝑇𝑦) + 𝑡𝑟(𝑀(1|1)2) 

             = 𝑚11
2 +2𝑦𝑇𝑦  + 𝑡𝑟(𝑀(1|1)2).  

⸫  𝑡𝑟(𝑀2) – 𝑡𝑟(𝑀(1|1)2) = 𝑚11
2 +2𝑦𝑇𝑦. 

⸫  𝑚11 = 𝛼𝑡  ,  𝑚11
2 + 2𝑦𝑇𝑦 =  𝛼𝑡

2. 

⸫ 𝑦𝑇𝑦 = 0 ⇒   ||𝑦||2 = 0. 

⸫ 𝑦 = 0. ∎ 
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Lemma 2.12 By  the same notation of the previous lemma, let 0 ≠ 𝛿 ∈ ℝ , and let  

𝑁 = [
𝑚11 +  𝛿 𝑦𝑇

𝑦 𝑀 (1|1)
] 

be a block matrix. 

Assume that the eigenvalues of 𝑀  (respectively, N) are 𝛼1, 𝛼2, … , 𝛼𝑛  (respectively, 

𝛼1, 𝛼2, … , 𝛼𝑡−1, 𝛼𝑡  +  𝛿, 𝛼𝑡+1, … , 𝛼𝑛  for some 𝑡 ∈ {1, 2, … , 𝑛}). Then y is the zero vector.  

Proof. First of all, we have: 

𝑐𝑀(𝜇) = 𝑑𝑒𝑡(𝜇𝐼 − 𝑀) = (𝜇 − 𝛼1)(𝜇 − 𝛼2)… (𝜇 − 𝛼𝑛),  

𝑐𝑀(𝜇) = 𝑑𝑒𝑡(𝜇𝐼 − 𝑁) = (𝜇 − 𝛼1)… (𝜇 − 𝛼𝑡−1)(𝜇 − 𝛼𝑡 −  𝛿)(𝜇 − 𝛼𝑡+1)… (𝜇 −

 𝛼𝑛).  

⸫   𝑐𝑁(𝜇) =  𝑐𝑀(𝜇) − 𝛿(𝜇 − 𝛼1)… (𝜇 − 𝛼𝑡−1)(𝜇 − 𝛼𝑡+1)… (𝜇 − 𝛼𝑛). 

On the other hand, from the statement of the lemma, we have:  

𝑐𝑁(𝜇) = |
𝜇 − 𝑚11 −  𝛿 −𝑦𝑇

−𝑦 𝜇𝐼 − 𝑀(1|1)
| = |

𝜇 − 𝑚11 −𝑦𝑇

−𝑦 𝜇𝐼 − 𝑀(1|1)
| + |

− 𝛿 0𝑇

−𝑦 𝜇𝐼 − 𝑀(1|1)
| 

          = 𝑑𝑒𝑡(𝜇𝐼 − 𝑀) − 𝛿 𝑑𝑒𝑡(𝜇𝐼 − 𝑀(1|1))  

          = 𝑐𝑁(𝜇) −  𝛿 𝑑𝑒𝑡(𝜇𝐼 − 𝑀(1|1)). 

⸫ 𝛿(𝜇 − 𝛼1)… (𝜇 − 𝛼𝑡−1) (𝜇 − 𝛼𝑡+1)… (𝜇 − 𝛼𝑛) = 𝛿 𝑑𝑒𝑡(𝜇𝐼 − 𝑀(1|1)). 

⸫ Since δ   0 by assumption, we have: 

𝑑𝑒𝑡(𝜇𝐼 − 𝑀(1|1)) = (𝜇 − 𝛼1)… (𝜇 − 𝛼𝑡−1) (𝜇 − 𝛼𝑡+1)… (𝜇 − 𝛼𝑛). 

⸫ The eigenvalues of 𝑀(1|1) comprises of 𝑛 − 1 eigenvalues of  𝑀.  

⸫ By the previous lemma, 𝑦 is the zero matrix. ∎ 

Theorem 2.13 Let 𝑀  and 𝑁  be square matrices of order 𝑛 s.t. 𝑀𝑇 = 𝑀  and 𝑁𝑇 = 𝑁, 

rank(𝑁) = 1. Let  𝛼1, 𝛼2, … , 𝛼𝑛  (respectively, 0 ≠  𝛿, 0, … , 0) be the eigenvalues of M 

(respectiely, N). Then matrix 𝑀 + 𝑁 has the eigenvalues 𝛼1, … ,  𝛼𝑡−1, 𝛼𝑡 𝛿, 𝛼𝑡+1, … , 𝛼𝑛  

for some 𝑡 ∈ {1, 2, … , 𝑛} iff 𝑀 and N commute.  

Proof.  

(⇐) Since 𝑀 and N are commuting symmetric matrices, there is an orthogonal matrix 𝑃 

s.t.  
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𝑃𝑀𝑃𝑇 =  𝑑𝑖𝑎𝑔(𝛼1, 𝛼2, … , 𝛼𝑛), 𝑃𝑁𝑃𝑇 = 𝑑𝑖𝑎𝑔(0,… ,0, 𝛿, 0, … 0), 

where 𝛿 is the t th diagonal entry of the matrix 𝑃𝑁𝑃𝑇 for some 𝑡 ∈ {1, 2, … , 𝑛}.  

Then we have:  

𝑃(𝑀 + 𝑁)𝑃𝑇 = 𝑃𝑀𝑃𝑇 + 𝑃𝑁𝑃𝑇 = 𝑑𝑖𝑎𝑔(𝛼1, … ,  𝛼𝑡−1, 𝛼𝑡 + 𝛿 ,  𝛼𝑡+1, … , 𝛼𝑛), 

for some 𝑡 ∈  {1, 2, … , 𝑛}. 

⸫  The eigenvalues of 𝑀 + 𝑁  are 𝛼1, … ,  𝛼𝑡−1, 𝛼𝑡 + 𝛿 ,  𝛼𝑡+1, … , 𝛼𝑛  for some 𝑡 ∈

{1, 2, … , 𝑛}. 

(⇒) Wlog, we can suppose that 𝑁 =  𝑑𝑖𝑎𝑔 (𝛿, 0, … ,0) (Since 𝑁 is symmetric, there is an 

orthogonal matrix 𝑃  s.t. 𝑃𝑁𝑃𝑇 =  𝑑𝑖𝑎𝑔 (𝛿, 0, … ,0) . And since (orthogonally) similar 

matrices have the same eigenvalues, both 𝑀 and 𝑃𝑀𝑃𝑇 , also both 𝑀 + 𝑁 and 𝑃(𝑀 +

𝑁)𝑃𝑇 have the same eigenvalues. Therefore, instead of studying with 𝑀 and N, we can 

study with 𝑃𝑀𝑃𝑇  and 𝑃𝑁𝑃𝑇 . And thus we may suppose that 𝑁 =  𝑑𝑖𝑎𝑔(𝛿, 0, … ,0).) 

Let                    𝑀 = [
𝑚11 𝑦𝑇

𝑦 𝑀(1|1)
]. 

Then        𝑀 + 𝑁 = [
𝑚11 +  𝛿 𝑦𝑇

𝑦 𝑀 (1|1)
]. 

Now, the eigenvalues of 𝑀 (respectively, 𝑀 + 𝑁 ) are 𝛼1, 𝛼2, … , 𝛼𝑛  (respectively,    

𝛼1, … ,  𝛼𝑡−1, 𝛼𝑡 + 𝛿 ,  𝛼𝑡+1, … , 𝛼𝑛) for some 𝑡 ∈ {1, 2, … , 𝑛} by the hypothesis.  

⸫ By the previous lemma, 𝑦 is the zero vector. 

⸫ 𝑀 = [
𝑚11 0𝑇

0 𝑀(1|1)
].                                                           

⸫ Since 𝑁 = 𝑑𝑖𝑎𝑔 (𝛿, 0, … ,0),𝑀 and N commute. ∎ 

Now, we apply the previous theorem to Laplacian matrices.  

Let 𝛤 be a graph with 𝑉(𝛤) = [𝑛], and suppose that {𝑖, 𝑗} ∉ 𝐸(𝛤). Let 𝛺 = 𝛤 + {𝑖, 𝑗}. 

Then:  

𝐿(𝛺) = 𝐿(𝛤) + 𝑒𝑖𝑗𝑒𝑖𝑗
𝑇 , 

where 𝑒𝑖𝑗 ∈ ℝ𝑛 is the vector whose i th component is 1,   j th component is −1, and all the 

remaining components are zero.  
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⸫ By the related interlacing result, if 𝛼1, 𝛼2, … , 𝛼𝑛 = 0 (respectively, 𝛽1,  𝛽2 , … , 𝛽𝑛 = 0) 

are the eigenvalues of 𝐿(𝛤) (respectively, L(𝛺)), then we have: 

 𝛽1 ≥ 𝛼1 ≥  𝛽2 ≥ 𝛼2 ≥ ⋯ ≥ 𝛼𝑛−1 ≥  𝛽𝑛 ≥ 𝛼𝑛. 

Also note that: 

𝑡𝑟(𝐿(𝛺)) = 𝑡𝑟(𝐿(𝛤) + 𝑒𝑖𝑗 𝑒𝑖𝑗
𝑇 ) = 𝑡𝑟(𝐿(𝛤)) + 𝑡𝑟( 𝑒𝑖𝑗 𝑒𝑖𝑗

𝑇) = 𝑡𝑟(𝐿(𝛤)) + 2. (*) 

Assume that 𝛤 is LI. Also assume in consideration of (*) above that one of the following 

holds: 

a) Either 𝛽𝑗𝑚 = 𝛼𝑖𝑚  for 𝑚 = 1, 2, … , 𝑛 − 1, and  𝛽𝑗𝑛  =  𝛼𝑖𝑛  + 2; 

b) Or  𝛽𝑗𝑚 = 𝛼𝑖𝑚 for 𝑚 = 1, 2,… , 𝑛 − 2, and   𝛽𝑗𝑛−1
 =  𝛼𝑖𝑛−1

 + 1. 

Then, in consideration of (*) above, 𝛺 is also LI.  

Definition 2.14 If case (a) (respectively, (b)) occurs, then it is said that “spectral integral 

variation happens in 1 (respectively, 2) position(s).” 

The following theorem characterizes case (a). 

Theorem 2.15 Let 𝛤 be a graph with 𝑉(𝛤) = [𝑛] and {𝑖, 𝑗} ∉ 𝐸(𝛤). Let 𝛺 = 𝛤 + {𝑖, 𝑗}. 

Then, 𝑛 − 1 eigenvalues of 𝐿(𝛤) and 𝐿(𝛺) concur iff 𝑁(𝑖) = 𝑁(𝑗). 

Proof. First, we showed above that (𝛺) = 𝐿(𝛤) + 𝑒𝑖𝑗 𝑒𝑖𝑗
𝑇  . By the previous theorem, 𝑛 −

1 eigenvalues of 𝐿(𝛤) and 𝐿(𝛺) concur. 

⇔ 𝐿(𝛤)  𝑒𝑖𝑗 𝑒𝑖𝑗
𝑇  = 𝑒𝑖𝑗 𝑒𝑖𝑗

𝑇   𝐿(𝛤). 

⇔ (By block multiplication) (𝑐𝑖 − 𝑐𝑗) 𝑒𝑖𝑗
𝑇 = 𝑒𝑖𝑗  (𝑟𝑖 − 𝑟𝑗), where 𝑐𝑘  (respectively, 𝑟𝑘) is 

the k th column (respectively, k th row) of  𝐿(𝛤) for 𝑘 =  𝑖, 𝑗.  

⇔ (𝑟𝑖
𝑇 - 𝑟𝑗

𝑇) 𝑒𝑖𝑗
𝑇  = 𝑒𝑖𝑗 (𝑟𝑖 − 𝑟𝑗) (because 𝐿(𝛤) is a symmetric matrix). 

⇔ (𝑟𝑖 − 𝑟𝑗)
𝑇 
𝑒𝑖𝑗

𝑇 = 𝑒𝑖𝑗 (𝑟𝑖 − 𝑟𝑗). 

⇔ (𝑒𝑖𝑗 (𝑟𝑖 − 𝑟𝑗))
𝑇 = 𝑒𝑖𝑗(𝑟𝑖 − 𝑟𝑗). 

⇔ (By block multiplication) since  

𝑒𝑖𝑗 (𝑟𝑖 − 𝑟𝑗) = [0,… , 0, (𝑟𝑖 − 𝑟𝑗)
𝑇 
, 0, … , 0, (𝑟𝑗 − 𝑟𝑖)

𝑇 
, 0, … , 0]

𝑇

, 

 𝑟𝑖 − 𝑟𝑗 = [0,… , 0, 𝑙𝑖𝑖 − 𝑙𝑗𝑖, 0, … , 0, 𝑙𝑗𝑖 − 𝑙𝑖𝑖, 0, … , 0], where 𝐿(𝛤) = [𝑙𝑗𝑖]. 
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⇔ ( 𝑟𝑖 − 𝑟𝑗)𝑘 = 𝑙𝑖𝑘 − 𝑙𝑗𝑘 = 0 for each 𝑘 ≠ 𝑖, 𝑗  and( 𝑟𝑖 − 𝑟𝑗)𝑖 = 𝑙𝑖𝑖 − 𝑙𝑗𝑖 ,  ( 𝑟𝑖 − 𝑟𝑗)𝑗 =

𝑙𝑗𝑖 − 𝑙𝑖𝑖   

⇔ 𝑙𝑖𝑘  = 𝑙𝑗𝑘 for each 𝑘 ≠ 𝑖, 𝑗 and  𝑙𝑖𝑖 − 𝑙𝑗𝑖 = 𝑙𝑖𝑖 − 𝑙𝑗𝑖 , 𝑙𝑖𝑗 − 𝑙𝑗𝑗 = 𝑙𝑗𝑖 − 𝑙𝑖𝑖  (Note that 

since {𝑖, 𝑗} ∉ 𝐸(𝛤), 𝑙𝑖𝑗 = 𝑙𝑗𝑖 = 0.)  

⇔ 𝑙𝑖𝑘  = 𝑙𝑗𝑘  for each 𝑘 ≠ 𝑖, 𝑗 and 𝑙𝑖𝑖 = 𝑙𝑗𝑗 . 

⇔ The i th and j th rows of 𝐿(𝐺) are identical. 

⇔ 𝑁(𝑖) = 𝑁(𝑗). ∎ 

Corollary 2.16 Let 𝛤 be a graph with 𝑉(𝛤) = [𝑛] and {𝑖, 𝑗} ∉ 𝐸(𝛤), also assume that 

𝑁(𝑖) = 𝑁(𝑗). And let 𝛺 =  𝛤 + {𝑖, 𝑗}. Then 𝛤 is LI iff  𝛺 is LI.  

Proof. First of all, since 𝑁(𝑖) = 𝑁(𝑗), (𝑛 − 1) eigenvalues of 𝐿(𝛤) and 𝐿(𝛺) concur by 

the previous theorem. Therefore, 𝛤  is LI iff these concurrent eigenvalues and the 

remaining eigenvalue of 𝐿(𝛤)  are all integers iff (Since 𝑡𝑟(𝛺) = 𝑡𝑟(𝛤) + 2 ,) these 

concurrent eigenvalues and the remaining eigenvalue of 𝐿(𝛺) are all integers iff 𝛺 is LI. 

∎
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3. LITERATURE REVIEW 

First of all, as it is known, there are lots of good resources about graph theory and matrix 

theory. One of the best textbooks written on graph theory is West (2002). For matrix 

theory, we recommend Zhang (2011), or a more detailed textbook Horn and Johnson 

(2012). Bapat (2014) is a perfect book combining these two areas of mathematics. 

About majorization, a well-known classic resource is Marshall and Olkin (1979); and 

about threshold graphs, a comprehensive textbook is Mahadev and Peled (1995). 

The first and the second sections of chapter two predicate on Merris (1994) and So (1999), 

respectively. 

A construction of an infinite class of Laplacian integral graphs which are not cographs 

was given in Grone and Merris (2008). 

One of the well-known conjectures about the Laplacian spectrum of a graph was asserted 

by Grone and Merris (1994), and this conjecture claimed that the conjugate of a degree 

sequence of a graph majorizes the Laplacian characteristic values of this graph. That 

conjecture is solved by Bai (2011). 
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4. CONCLUSIONS AND RECOMMENDATION 

This thesis is a review study, it does not contain any original results. As stated before, the 

main source used in the preparation of the thesis is Bapat (2014). 

The topic of Laplacian eigenvalues of threshold graphs is one of the fundamental topics 

in graph theory. In this thesis, we introduced the basic notions and theorems about 

majorization, threshold graphs, and Laplacian eigenvalues, and we surveyed some of the 

recent results in this area. 

The purpose of this thesis is to introduce this rich and active research area at a basic level 

and to present some of the recent results and developments in a very compact form. In 

other words, our purpose is not to solve an open problem in this area or to obtain an 

original result about this area. But we aim to present a survey or a review/tutorial source 

about Laplacian eigenvalues of threshold graphs for non-experts in this area. In other 

words, we aim our thesis to be an introduction source related to this area. Therefore, we 

hope this thesis will be useful for students and researchers who want to learn the basics 

of this pleasurable and influential area of mathematics. 
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