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ABSTRACT

LAPLACIAN EIGENVALUES OF THRESHOLD GRAPHS IN GRAPH
THEORY

Farah Basim Salim AL-MAHDI
Master of Science in Mathematics
Advisor: Asst. Prof. Dr. Celalettin KAYA
June 2023

The main source used in the preparation of this thesis is the graduate textbook "Graphs and
Matrices", Bapat (2014). Essentially, what we do is to study the eleventh chapter of the mentioned
textbook to understand and explain the “Laplacian eigenvalues of threshold graphs”, as can be
understood from the title of the thesis. But of course, no part of the aforementioned book has been
quoted exactly, a study has been put forward with our own words and our own sentences; almost
every proof has been written in more detail, and parts of the book that were left to the reader have
been explained completely and the subject has been presented more understandably. In addition
to these, the sources listed in the references were also consulted. To summarize in outline: In the
first chapter, basic notions are given about the majorization and related fundamental facts are
proved. In the first section of the second chapter, threshold graphs are defined, and a
characterization of threshold graphs according to the Laplacian eigenvalues is stated and proved,;
in the second section, the concept of Laplacian integral graph is introduced, and as an example,
cographs are defined, which determine a class of Laplacian integral graphs containing the class
of threshold graphs, also a characterization of spectral integral variation is stated and proved. In
the third chapter, the last chapter before the conclusions and recommendation chapter, a brief
literature review on the subject of the thesis is presented mainly by using the notes at the end of

the eleventh chapter of the mentioned book.

2023, 38 pages

Keywords: Majorization, Threshold graphs, Laplacian eigenvalues, Spectral integral

variation



OZET

GRAF TEORISINDE ESIK GRAFLARININ LAPLACE OZDEGERLERI

Farah Basim Salim AL-MAHDI
Matematik, Yiiksek Lisans
Tez Danigmani: Dr. Ogr. Uyesi Celalettin KAYA
Haziran 2023

Bu tezin hazirlanmasinda kullanilan baslica kaynak, Bapat (2014)’in “Graphs and
Matrices” baslikli lisansiistii kitabidir. Esas itibariyle bizim yaptigimiz, tezin baslhigindan
da anlasilacagi iizere, “esik graflarinin Laplace 6zdegerlerini anlamak ve anlatmak i¢in,
soz konusu kitabin on birinci boliimiiniin ¢alisilmasindan ibarettir. Fakat tabi ki
mevzubahis kitabin herhangi bir kismi aynen alintilanmamis, kendi sozciiklerimiz ve
kendi ciimlelerimizle bir ¢alisma ortaya konulmustur ve hemen her ispat ayrintili bir
sekilde yazilmis ve kitabin okuyucuya birakilan boliimleri eksiksiz bir sekilde aciklanarak
konu daha anlasilir bir sekilde sunulmustur. Bunlara ek olarak, referanslar kisminda
listelenmis olan kaynaklara da basvurulmustur. Ana hatlariyla Gzetlemek
gerekirse: Birinci boliimde majorizasyonla ilgili temel kavramlar verilmis ve ilgili temel
sonuglar ispat edilmistir. Ikinci béliimiin ilk alt bdliimiinde, esik graflar1 tanimlanmis ve
esik graflarinin Laplace 6zdegerlerine gore karakterizasyonu ifade ve ispat edilmistir;
ikinci alt boliimiinde, Laplace integral graf kavrami verilmis ve 6rnek olarak, esik graflar
sinifini igeren, Laplace integral graflarinin bir sinifini belirleyen kograflar tanimlanmustir,
ayrica spektral integral varyasyonun bir karakterizasyonu da ifade ve ispat edilmistir.
Tezin {iglincii, sonug ve Oneriler boliimiinden 6nceki son boliimiinde ise, esas olarak adi
gecen kitabin on birinci bolimiiniin sonunda yer alan notlardan yararlanilarak, tezin

konusuna iligkin kisa bir literatiir taramas1 sunulmustur.
2023, 38 sayfa

Anahtar Kelimeler: Majorizasyon, Esik graflar, Laplace 6zdegerler, Spektral integral

varyasyon
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1. MAJORIZATION

In the chapter, we review some fundamental facts about majorization, which we need in

the sequel of the thesis.

Definition 1.1 Let a = [a;,ay,...,a,]" € R™, and let ajy) > ap>...> apy) be a
nonincreasing sequence of the components of the vector a. That is:

apy) = max{a, a, ..., ap}, and apj) =max({ay, az, ..., ap}\{apy, app, ..., agj-q)}) for
eachj = 2,3,...,n. Let b = [ by, by, ..., b,]T € R™ . If we have:

i) Yi_iaps Xhoibyy foreachk =1,2,..,n—1,

i) Xi-1as Xj-1 by,

then we say that a is “majorized” by b, or b “majorizes” a, and it is denoted by a < b. If
a < b, we frequently say that a,,a,, ..., a, are majorized by b4, b,, ..., b,. If cand d
are 1 x n real vectors, and if ¢” < dT, then we say that c is majorized by d, and it is

also denoted by ¢ < d.

Note 1.2 Let a =[a,, &, ..., a,]" € R", and let g = 41+92*+dn he the arithmetic mean of
the components of the vector a. Also letb =1[a, a, ..., @]". Then< a :

First of all, Z;lzlb[j]Z i21@ = M A= ag+ Apr ... +0y= Yo Ap)

=~ The condition (ii) in the previous definition is satisfied.

Secondly, @ < a7 : Suppose not. That is, @ > apy.

Then, since ajy) = a; foreachj = 1,...,n,a@>ay; foreach j = 1,.

= nd >ap+agp)t ... Fap=ag+ A+ ... +ay, a contradiction.

Now, we can show that the condition (i) of the previous definition is also satisfied:
Suppose to the contrary that there is some k € {2,3,...,n — 1} s.t. Zle byj > Zﬁl agj
Let m be the smallest such k. Thatis, ¥723" by< X755  apyy, but X7, by > X7e,a
= In particular, bim;=a > am.

=3Since ajy) = apj foreach j =m,m+1,..,n,a> apforeachj =mm+1,.

= Since Z;nzlb[]] >Z;-”=1a Z] 1 (n—m)a >Z arj +Zj=m+1a[j].



= Xj=1by) > Ljmaap) = apyt - Fapy =@t tay
= Nd> ay+ ay+... +y, a contradiction.
-~ The condition (i) of the previous definition must also be satisfied. As a result,

[d, a, ..., d]T < [a1+ az+ ... +an]T.

Definition 1.3 Let M = [m;;] be a square matrix of order n. If m;; > 0for all i,j =

1,2, ...,n, and each row sum and each column sum equal 1, then M is called a “doubly

stochastic matrix (DSM)”.

Theorem 1.4 (Hardy-Littlewood-Polya Theorem) (Hardy, Littlewood, Polya (1934,
1952)) Let a=[a1, ay, ..., as]", b=[by, bz, ..., bs]" € R™. Then:

a < b & There isa DSM M,x,, = [m;;] s.t. a = Mb.

Proof.
(<) Suppose that a = Mb for some DSM M,,,.,. Then :
a; = [Mb]; = M;prow- b = mj1by + mjzb, + -+ my by = Y1 myb.

?:1 a; = 7:1(2?:1 m; b)) = =1 Z?:l m; b, = Yi=1 bz(Z?ﬂ m;) = Yi=1by,
because }j-; m;; =1
-~ Condition (ii) of the first definition is satisfied.
Now, let k € {1,2,...,n — 1} be a fixed integer.
First of all, for simplicity of the notation, we can assume that a; >a>>... > a,and by >
b>..>bn:
Let o (respectively, ) be the permutation of the set [n] = {1, 2, ...,n} s.t. if we apply o
(respectively, 7) to the components of a (respectively, b), then we obtain the ordering
apq] = apz) = ... = apy) (respectively, by = bzp = ... = bpy). Now, if we apply o
(respectively, 7) to the rows (respectively, columns) of the matrix M, and denote the
obtained matrix with M, then the equation a = Mb becomes the equation @ = M b, where
a=[apy, agy, - apgl” and b = [by, by, ..., brg]™. Obviously, the resulting matrix M is
still a DSM. As a result, the assumptions a1 > a2 > ... > an and by > b2 > ... > b, do not

violate the generalization.



Now, let s; = ¥, mj; foreachl =1,2,..,n.
Then: Yl s, = Xy Zi‘c=1 mj = Zi‘=1 Xi=1 mj; = Zi‘=1 1=k
And, ¥¥_, a; < ¥¥_; b;, or equivalently, ¥, (a; — b;) <0:
Yiaalay — b) =Xfap — Xfy by = Xioy (Bieamy b) — X by
=2i=1 Z?=1 my; by — Z?:l b;
=%y bu( Xy mi) — X by
=Xt bisi — Z?=1 bj + by (k — Xi=151)
= Y01 bisy + Xiigers bisy — Xieq by + bk — Xy bresp — Xl biesy
=Y bi(s =D =X bi(si = D) + Xliesa (b = bi)sy
= Yiea(by = b (s = 1) + X jesa (b — bi)sy < 0,
because b; = by, forl =1,2,...,kand by < b, forl =k +1,k+2,...,n,and also 0 <
;<1
-~ Condition (i) of the first definition is also satisfied.

As aresult, a<b.

(=) (This part of the proof is taken from Zhang (2011).)

To prove this necessity part, we first need a definition.
A 2 x 2 matrix of the form = [1£t 1;t], where t € [0,1], is called a “T -

transform”. Let M be an n X n matrix. If M is obtained from the n X n identity matrix I
by interchanging a 2 x 2 principal submatrix of I with a 2 x 2 T-transform T, then M is
also called an "(nxn) T-transform".

First, a T-transform M,,,, = [m;;] is a DSM:

Since0<t<1,0<1-t<1.

~my; =0 for all i,j=1,2,..., n. Let M be obtained from I by interchanging its
principal submatrix determined by i th and j th rows, and i the and j th columns. Then
each row sum and each column sum of M is equal to 1. (Let k # i,j. Then row k and
column k contain only one nonzero entry which is 1. And for k € {i, j}, each of the sum
of elements in row k and in column k is equal to t + (1 —t) = 1.) Therefore, M is a
DSM.



Second, obviously, M = tl + (1—t) P, where t € [0,1] and P is a permutation matrix
corresponding to the interchanging columns i and j of the identity matrix. (If each row
and each column of a square matrix P contains exactly one nonzero entry which is equal
to I, then P is called a "permutation matrix (PM)".)

Note that if t = 0,then M = 0/ + (1 — 0) P = P, thatis, M isa PM.

Third, it is a well-known fact from algebra that a permutation o: [n] = [n] can be
expressed as a product (function composition) of permutations, each of which
corresponds to a single interchange. Therefore, a PM can be expressed as a product
(matrix product) of T-transforms.

Now, we can prove the necessity part by induction on n:

n=1: In this case, a,b € R. Therefore, a <b = a =Db, by the definition of
majorization. Thus, since M = [1],x, IS @a DSM and trivially a = Mb, the statement is
true.

~ Suppose n > 1 and the statement holds for n — 1.

(i) If a;= by, Then since a < b, we have [a,, as, ... ... ,a,]T < [by, b3, ... ... ,b,]".
Then by the induction assumption, there are T-transforms M;, M,, ..., My, each has order
n—1st [ay as, ..., a,]"= My M%... M, [by, bs, ... ... b, 1.

10
0 M

block multiplication, [a,, ay, ..., an]"= NyN5 ... Ny [by, by, ... ... ,b,]".

Let N; = [ ]for eachi = 1,2, ..., k. Then, each of N; is also a T-transform, and by

(ii) If a; = b; for some i and j, then a permutation o and = can be applied to a and b,
respectively, s.t. a; and b; are the first coordinates of the obtained vectors, say a and b,
respectively. Let P, and P, be the corresponding PMs. Then@ = P,aand b = P, b.
Then, since applying permutations does not charge the majorization relation (that is, a <
b < @ < b), by the case proved in the previous paragraph, there are T-transforms
$1,S5,..., 8 st. @ =5,S,...5b. Therefore P,a= S,;S,... SP,b. Thus, a =
P;1S, S,... S P, b. (We know that every PM is invertible.)

As a result, since each PM is a product of some T-transformations, a = T; T, ... T, b for
some T-transforms Ty, T, ..., Ty.

(iii) Suppose that a; # b; forall i and j. Wlog, suppose also that the vectors a and b are

in non-increasing order.



First, we prove a general fact: Let x = [xq, %5, ..., X,]7, YV = [V, Y2, ..., Yo7 be two
vectors whose coordinates are in non-increasing order. Suppose that x < y. Then, there
is somem € {1,2,..,n} S.t. YV, = X = Yinyeq - Suppose not. Then, y,, < x,, OF X, <
ym+1 forallm =1, 2, ..., n. Since x < y, by the definition of majorization, "y, < x,, for
each m" is not possible. Therefore, the case "x,, < y,, + 1 for each m" must hold.
Then, x; < y2,%, < V3, e, X1 < Vno

Z;l;% xj < Xi=2 Y

= Since Y%, x;=X -, y; by the definition of majorization, x,, > y;. On the other hand,
since the vector a is in non-increasing order, x, < x;. And, again by the definition of
majorization, x; < y;. Therefore, x,, < y;, which contradicts with x,, > y;.

As a result, the statement is true, that is, y,, = X, = Ym4q forsomem € {1, 2,...,n}.
Now, by the fact proved in the previous paragraph, there is some m € [1,2,...,n} s.t.
by = ay = byyq. But since a; # b; for all i and j, this means that b,, > a,;, > by

some m.

Therefore, a,,, = tb,, + (1 —t) by, for some m.
Let Mo be the T-trasfom [1 i ; 1 ; t] corresponding to the rows m and m + 1, and

columns m and m + 1. And let ¢ = Myb. Then, for eachj # m, m+ 1, ¢; = b;, and:
Cm =tbym + (1= Obpir = am,
Cm+1 = (1 — ) by + thpyr = b+ b1 — (tbm + (1 — Obyq)

= by + b1 — Ay -
Now, a < c:
For k # m, thatis, for k < mor k > m,since c,,+ ¢;py1 = by + bypy1 (forthe case k >
m), Xio1 4 <Xjo b =Y g < Xi oy
Andfork=m, Y7, a; < Y75 by + ap= 275" citen = Xk ¢ < BT -
~Foreachk =1,2,....,n—1,we have: T¥_, a; < ¥*_; ¢y

Also, for k = n, we have:

n

n n n n
Z a}=z b]: Z b]+bm+bm+1: Z Cj+Cm+Cm+1=Z Cj
j=1 j=1 = - j=1

j=1
jEMm+1 jEMmm+1

~a<ec.



Finally, since the vectors a and ¢ have the same components, namely, a,, = ¢,,, We have
a = Uu,U, ... U, ¢ for some T-transforms u,, U,, ..., U, by the above case (ii). Therefore,
since ¢ = Myb, a=U,U, ... U.Myb, where all u,, U,, ..., U.and M, are T-transforms.

As a result, in all three cases above, we showed that the vector a is obtained from the
vector b by a finite sequence of T-transforms. Since a product of T-transforms is a DSM,

the statement is proved. m
A significant corollary of the previous result is the following theorem:

Theorem 1.5 Let My, = [m;;] be a symmetric matrix, and let the eigenvalues of M be

U1, U, -, Uy Then we have:

m = [Myq, My, oo, Mpp] < U= [Ug, Uy oon s P ).

Proof. First, since M is symmetric, there is an orthogonal matrix Q = [Qij] s.t.
M = Q diag (uq, 4y, ..., ty) QT by the spectral theorem.
wmy; = (Q diag(uy, i, -, 1n) Q1) jj
= (Q diag (i1, Uz, -» #n))j th row (@) ; th column
= [qj1 1, Qj2b2, ) Ajntin] [ 951, Qj2s 0 Qin]”
= Yro1(qk i) Qe = iy Ul J = 1,2, .,
Now, since Q is an orthogonal matrix, the columns (and the transpose of the rows) of Q
form an orthonormal basis of R™. In particular, each column (and each row) has a unit
length.
=~ The matrix R,«, With (i, ) entry equals ql-z]- isa DSM.
~Sincem” = [myq, My, o, Mun]” = R [, tgy ooty )T, mT < u.

sm<u. n

Definition 1.6 Let I' be a graph with V(I') = [n] and E(I') = {&1, &5, ..., &m}. Let
L(I") = [l;;] be the square matrix of order n defined as follows: If i #j,[;; =—1if
the vertices i and j are adjacent and [;; = 0 otherwise; if i = j,1; = p;, where p; =

deg(i). Then L(I') is called the “Laplacian matrix (LM)” of I.



Corollary 1.7 Let I" be a graph with V(I') = [n]. Suppose that {3, {5, ..., {, are the

eigenvalues of L(I"), and p4, p,, ..., p, are the degrees of vertices. Then we have:

p = [pllpZ""'pn] < (Z [ <1'<21""{n]'

Proof. Since L(I') is symmetric with diagonal entries p;, and eigenvalues {;, i =

1,2,...,n, p < { by the previous theorem. m

Now, we study with vectors s = [sy,s,, ...,s,]7 € Z", that is, with vectors whose

components are all integers.

Definition 1.8 Let sy, s, ..., s, € Z, and assume that s, > s; for some1 <k #[ < n.
Then, define:

Sk =Sk —1, s/ =s; +1, and s, = s,,, for all m #k, 1.
Then s, s3, ..., S, are said to be gotten from sy, s, ..., s,, by a “transfer (from k to I)”. Let
s,t € Z™. If the components of t are gotten from the components of s by a transfer, then

t is said to be gotten from s by a “transfer”.

Theorem 1.9 Lets = [sy,5S5, ..., 5,]7, t = [t1, by, ..., ty]T € Z™ Then:

s < t & s isgotten from t by a finite sequence of transfers.

Proof.
(<) Basic Step: Assume that s is gotten from t by only one transfer. Then, by definition

of a transfer, s and ¢ differ at only two components, say i and j, s.t. t; > t; and s; = t; —

1,s; =t; + 1. Now, letk €{1, 2, .., n—-1}.

Case 1. t; = tl+1 =5 = ti—lz tj, Sj = t]+1=tl

=~ The set of largest k components of s and t are the same.

. vk _
S X S = i b



Case2.t;>t;j+2 =5, =t;—1>t;+1, s;=t;+1<t;—1=>s;<t; —1=s,.
If the set of largest k components of s does not contain s; (and thus it does not contain s;),
then Xy sy = Xicy tm, < 2=y by, Where sp; = i, foreach 1 € {1,2, ...,k — 1}.

If the set of largest k components of s does contain s;, but does not contain s;, then

k
Y ispy= X s+ s =25 s +(t_1)<211tml ti—1< Yimitm * t; <

l+m; l+m; l#i L+
Yyt Where Stm;] = Si and sy = sy, = tiy, for each each 1 € ({1,2,..,k — 1} \
{m;}). (Note that t,,,, # t; for each [ = i and this is needed for the last inequality. )

If the set of largest k components of s does contain s; (and thus it does also contain s;),

then Zf:l S = Zk 1=1 S[ptsit s :Zk =1 S|t (¢, — 1)+ (tj +1)

l:tmi,mj l:tml-,mj

_ \V'k k — — — —
= le=.1. bt ¢ +t < Zl=1 t, where Sim;] = Si» S[mj] = Sj and S = Smy = by for
#i,j

each l € ({1, 2, ..., k}\{m;, m; }). (Note that t,, # t; and t, # t; for eachl # i,j, and

this is needed for the last inequality.)

Case 3. ti=tj+2$5i=ti—1,5j=tj+1=>SiIlCCti—1=tj+1,Si=Sj.
With exactly the same manner as in Case 2, it can be shown easily that Y~ , s <
i1ty Therefore, in any case, we have: Y=, s < Xy {]

Also, for k = n, we have:

YL =Yl s tsitsi =Yt (G -1+t + 1))=Yt

1#i,j l#i,j

Asaresult, s < t.
~ If s is gotten from t by a finite number of transfers, then it can be seen easily by

applying the Basic Step finite number of times that s < t.

(=) Suppose that s < t, s # t. And Wlog suppose also that s; = s, = -+ = s, and t; =
t, = -+ = t,. (We can assume this because the majorization relation is independent of

the order of components.)



First, since s < t, foreachk = 1,2,...,n — 1, YF , 5, ZZLS[[-] < Zle t =X, b,
and since s # t, the above inequality is strict for some k € {1, 2, ...,n — 1}. Let [ be the
greatest k s.t. ¥!_; s; <Xl , t;. Then ¥it1ls; = ¥'1*1¢; by the maximality of L.

SoSi41 > b

On the other hand, since ¥}_; s; < Xi_; t;, there exists a greatest p < [ s.t. s, < tp.
~.s;=t; forp <i<lifp <l But sincelis the greatest integer s.t. ¥'_, s; <Yi_, t;,
si>t; forp <i < lisnot possible.

L=t forp<i<lifp<lL

Sty > Sy = Sppq > tpyq. (Sincep < I, s, =541 )

.. Since all the components of vectors are integers, we have:
tp=2syt1=2s54+1=2({+D+1=1¢,+2

ooty 2ty + 2.

Lty—1=2t,+ 1

Now, let t" be gotten from t by the following transfer:

ty=t,—1, tj;yy =tj1+1, tpy =t fork=+ p,l+1.

Then, by the Basic Step above, t' < t.And, s < t":

I)Letk € {1,2,..,n—1}.

If k= [+ 1, then we have:

K k . _vk _ vk vk
=151 S D i =27 =1 G T (b =) F (b T = X, b = Xty
i#p,l+1

(Note thatsince t; = t, = - = t, =+ = tj4q = - 2 ty,andsince t, — 1 =544 + 1,
the first greatest /+1 elements of t’ and those of ¢ are the same. We use this fact in the last
equation.)

If k < p, then we have:

{'(=1 5; = f:l t; = ?:1 t; = ?:1 t[,i]-
(Note that the first greatest p—1 elements of t'are t;=1 = t;= 6 > ... 2 t,=t,. We use
this fact in the last equation.)

If p < k < [, then we have:

-1 -1
si=X sitsy +Sp o+ <X i+t — D4ty ++ 4



(Note that since s, < t,,s, < t, — 1, and also note that s; = t; forp <i < lifp <.

k K k
= Xis1Si < Z§=1 ti+t, —1< X, t[,i]'
i£p

Therefore, in any case, Xi=y §; < Xiey b1

- n
)Y si =Xt =2 o ittt b= ) =1 it (G — 1)+ (L t])
i#p,l+1 i#p,l+1

n n
=2 = i+ttt =)t
i#p,l+1

Asaresult, s < t'.

Therefore, since s < t'and t' < t,wehaves < t' <'t.

Also note that for the vectors s and t, we have:

Sp < tp and Spyq > tyyq.

= Sp <t,—land s;4q = tj4; + 1.

= s, <tpand S;4q =ty

.. After applying the same procedure finite number of steps, that is after applying a finite

sequence of transfers, we obtain s from t. m

Definition 1.10 Let sy, sy, ..., S, € Z* U {0}. Define
si={s;p s = B,l=12,..,m=max{sy,s; ..., 5}
Therefore, s; is the size of the set consisting of all s; = [. The sequence s7, 53, ..., S,

where m = max{ s4,S,, ..., Sp}, is called the "conjugate sequence” of the sequence

S1,S2, «) Sp-

Definition 1.11 Let s; €Z*U{0} fori =1,2,...,n, and let s; = s, =+ =>s,. The
"Ferrers diagram” of s4, S5, ..., S,, 1s the diagram consisting of s; + s, + -+ + s, square
boxes s.t. all rows are left-justified and [ th row comprises of s; square boxes. If some

s; = 0, then remove the [ th row.

Note 1.12 5] = |{sj: Sj = l}| is equal to the number of square boxes in the / th column
of the Ferrers diagram of the nonnegative integers s; = s, = +-- = s,,. Therefore, since
counting the square boxes row by row, and respectively, column by column, gives the

same number, we have:
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n _ VM
=151 = lelsz .

Now, we can prove the following theorem:

Theorem 1.13 (Gale-Ryser Theorem) (Gale (1957), Ryser (1957)) let a;, b€ Z*U {0},
i=12,.,mand j=1, 2,..,n, st. n=>a; = a, == ay, by = b, ==
b, and Y%, a;=X"; b;. Then there is a (0, 1)-matrix M, with the i th row sum
(respectively, the j th column sum) is a; (respectively, b;) for each i =1, 2,...,m

(respectively, j = 1,2, ...,n) iff aj, a3, ..., ay majorizes by, b, ..., by,.

Proof.

(=) Let M = [m;;] be a (0-1)-matrix stated as in the theorem. Wlog, we can suppose
that by = b, = --- = b,, (by permuting the columns of M if it is needed).

Now, assume that there are iy, j, s.t. a;,j, = 0 and a; (j,+1) = 1. Then define the m X n
matrix N = [n;;] as follows:

Nigjs = 1L, Niy(jo+1)= 0, and ngj = my; for i # iy, j # jo.

Denote the j th column sum of N by b]f for each j = 1, 2, ..., n. Then, we obviously have:
bj = bj+1,bj,; =bj—1,and by = b, forl #j, j + 1.

. by, by, ..., by is gotten from by, by, ..., by, by a transfer from j, + 1 to j,.

.. by, by, ..., by, majorizes by, b,, ..., by, by the previous theorem.

After repeating this procedure a finite number of times, we get a matrix M ,,x, s.t. the i
th  row sum of M is a; for eachi = 1,2,...,m; and, i th row of M is of the form
(1,1,..,1,0,0,...,0), where there are r; 1 s and n — r; 0 s; and also, the column sums,
say 51, 52, e, En, majorize by, by, ..., by,.

Finally, by using the Ferrers diagram, we see that b; = a for each i = 1,2,...,n.
Therefore, a3, a3, ..., ay, majorizes by, b,, ..., by,.

(&) (This part of the proof is taken from Marshall and Olkin (1979).)

We construct a required matrix M explicitly. We start with row 1 and successively with

the residual rows, scatter ones in the matrix in the following way:
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In the row i, put a one in the column 1 if < b; ones have already been put in column 1
and a; = 1; put a one to the column 2 if < b, ones have already been put in the column 2
and < a; ones have been put in the row i. Generally, put a one in the column j (as (i, j)-
entry) if < b; ones have been put in the column j and rows 1,2,...,i — 1; and put a one
in the row i (as the (i, j)-entry) if < a; ones have been put in row i and columns
1,2,..,j-1.

Of course, we need to show that this construction can be accomplished every time. This

can be proved by induction on m (the number of rows):

m=1: Leta; =k. Then:a] =a; =+ =ay=1,and ay,; = aysy = =a, =0.
And since (bq, by, ..., by) < (aj,a;,..,ay) =(1,1,..,1,0,0,...,0), b =0 o0or 1 for
eachi=1,2,..,n,and i, b; = X7, a; = k. Therefore, since b; > b, > ... > b,,

by =b,=--=by=1and byy; = bgyy, =+ =b, =0.
As a result, M = [1,1,...,1,0,0, ...,0] is the matrix satisfying the required condition.
(The first k entry of M is 1 and the remaining entries are all zero.)
Now, assume that this construction can be accomplished with m — 1 rows every time.
Letr, =(1,1,...,1,0,0,...,0), where the first a, coordinates are 1 and the last n — a,
coordinates are 0, be the first row of M. To accomplish the construction, we need
(m —1) x n (0 — 1) matrix with row sums a,, as, ..., a,, and column sums

by —1,by—1,..,bs, —1,bg,41,bq 42, s bn.

Now, to use the induction assumption, we must show that the hypotheses of the theorem

are satisfied:

DnN=>a;, = a,=2a,>n=0a; =0a3 = = Ay

And say @, = a4, foreachk =1, 2, ..., m—1.

)by =+ 2b,=>by—12=2by—12= .. 2b,, —1andby, 41 = by, 42 = by.
(We know that b,, = bg, +1. Butif by =b, .1, then by, —1 < b,y 41.)
Therefore, we may need to reorder these numbers to get the non-increasing sequence of

them. But instead of such a reordering, we can proceed with these numbers. In fact, the
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non-increasing assumption given in the statement is just for the simplicity of the notation,

and thus it can be ignored.
i) X a; =Xf b= X, = (B by)—a=Xi2, (b — D) + Xfg, 1 b

iv) The following majorization relation must hold:
(b1 —1,by —1,...,bg, —1,bg 41, ..., bp) < (@1, 03, ..., 07).
Now, foreachi = 1,2, ..., a;, we have:
a; = {a;:a; =i} =q; -1,
and foreach i = a; + 1,a4 + 2, ..., n, we have:

=a;.

~%
a; i

i
For 1<i<a,, the sequence s;: @; =a, =>d, =az =+ = d,,_1 = a,, dose not
contain a; and a, > a,. Therefor, for 1 < i < a, “the number of terms in the sequence
Sy ay = a, =+ = a, which are > 1.” Is equal to the "the number of terms in the
sequence s;: a, = az = -+ = a,, Whichare > i+ 1".
~ad;=a;—1for1 <i<a,.
Fora; + 1 <i < n, “the number of tums in the sequence s, and s, which one > i” is
equal.
~ad;=a;for;+1<i<n.
~(aj,as,..,ap)=(a;—1,a; -1, v lg, —1,ag, + 1, ., @),
=~ We must show that the following majorization relation holds:

(by —1,..,bg, = 1,bg 11, .., by) <(ai—1,..,a5, —1,ag,,,,..,ap).
And this majorization relation holds by the lemma given after this theorem.
Therefore, all the hypotheses of the theorem are satisfied.
=~ By the induction assumption, there is an (m — [) x n(0, 1) — matrix, say N, s.t. the i
th row sum of N is a;,, foreachi =1,2,...,m — 1; and the j th column sum of N is

bj —1foreachj =1,2,...,a; andis b;foreachj =a; +1,a; +2,..,n
As a result, the block matrix M = [%] IS @ matrix with the i th row sum q; fori =

1,2, ..., m and the j th column sum bj forj=1,2,..,n.m
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Lemma 1.14 (Fulkerson and Ryser (1962).) Letx; = x, = =Xy, Y1 =V = = Yy
be integers. Reduce components. in positions k4, k,,..., k, by 1 in the vector x =
(x1,%5,...,%x,), and call the resulting vector by z. Similarly, reduce components in
positions [y, 1,,...,L,,. by 1 in the vector y = (y4,¥2,...,¥,), and call the resulting

vectorby w. If ky < U1,k < Uy, ..ok < Lp,and if x < y, thenz < w.

Proof. (This proof is taken from Marshall and Olkin (1979).)
We prove the theorem for m = 1, and the general case can be obtained by the repeated
application of the m = 1 case.
For simplicity of the notation, let k = ky,[ = [;, and let e; be the vector with 1 in the j th
coordinate and zeros elsewhere.
Under this setting, we want to prove the following:
"Mk <l,andif x<y,thenz=x—¢e, <y—¢ =w".
First of all, the components of the vectors z and w need not be in non-increasing order.
But if we choose k' > kandl' > [s.t.
X = Xpq1 = ** = X/, = X and either x,» > x,7,; 0r k' =n,
Y1 =Yi41 ==Yy =yp andeither yy >yp or ' =n,
then the vectors x — e+, and y — e;» have the components reordered decreasingly with
the vectors x — e, and y — e;, respectively.
= Since reordering of components does not have any effect on the majorization relation,
instead of showing z = x — e, <y —e; = w, it is equivalent and more convenient to
show that
u=x—ey < y—ey="n.

) If m <min{k’,l'}, then: X2 u; = X2, x; < X% vi= Xt vs.

i) If m = max {k',l'}, then: X%, u; = (X2 %) — 1< (X2, y) — 1= 22 vi.
i) Ifk’" <l"and k' <m < l', then:

= (X)) — 1< (ZEy) — 1< XL yi= XL v

iv) If k' > 1"and I’ < m < k', then again 7% u; <X v
First, since X% wi= X% x; and X% v, = (X%, y) — 1,

SNt v @YX S (XEy)—1e Xt x < Xty

=~ Itis equivalent to show that 7%, x; < Y%, v
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Subcase (a). If x,, 41 > Vi +1, then:

Yt i —x) > QR — %)) + Uma1 — Xma1) = (Z?:il(% —x))=0
(The last inequality holds, because x < y.)

SR —x)> 0 Y x <X v

Subcase (b). -~ The only remaining case iS X, 11 < Vim+1-
Sincek <1 <1l'"< m<k', we have:
X = Xpg1 = T X T X1 S Yma1 S Ym S S Vg <Y
20 < By —x) Oy <y xpgn < Yign oo Xm < Yme)
< Y —x) =Xy i —xp)
x<y =2Xi_-1i—x)= 0 foranyl<s<n-1land Xi-;(y; —x;) =0
= X5 = x) + I —x) =0
= Since Xi5' i = x) = 0, Ty (i — x) <0.)
== Zitm1 i — x).
=Xt —x) EE10i — x)*+ Bt (i — ) = 0= X%, (v — x;)
= = Yiem+1 (i — x0).

Sxmi i —x)>0 e Xty <Yliy.m

Corollary 1.15 (A corollary of the previous theorem)
Let I be a graph with J(I") = [n], and let deg(j)= p; for each j = 1,2,...,n. Then,

D1, P2, -, Py, MAJOTIZES P1, P2, - ) P
Proof. A(I") is a (0, 1)-matrix s.t. both i th row sum and i th column sum of A(I") is pi for

eachi=1,2, ..., n.

.. By the previous theorem, p7, p3, ..., p, Mmajorizes py, Pz, -, Pp- M
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2. LAPLACIAN EIGENVALUES OF THRESHOLD GRAPHS

2.1 Threshold Graphs

Threshold graphs are encountered in various areas and their structures are very interesting.
In this main chapter of the thesis, we study the basic properties of these graphs and their

Laplacian eigenvalues.

Definition 2.1 Let I’ be a graph with V(I') = [n], and let j € V(I'). Then j is called
"dominating” if jl € E(I") for every l € [n]\{j}.

Definition 2.2 Let I be a graph with /(I") = [n]. Assume that I is constructed recursively
as follows:

Begin with K.

Then apply the following (i) or (ii) process finitely many times in any order: Let I" be
denote the present graph at each step, and let K; denote a new vertex not in V (I").

) I'+K;.

i) I'VK;.

Then I' is called a “threshold graph (TG)”.

Now, let I" be a given graph. How can we understand whether I' is a TG or not? Is there
a recursive process or an algorithmic procedure to determine whether I'is a TG or not?
The answer is affirmative:

Case 1. I" is connected.

The first necessary condition for I' to be a TG is to have a dominant v € V(I"). Then the
second necessary condition is that I'\{v} has only one nontrivial component, say 2 €
I'\{v} (and, there may be some trivial components). Moreover, I" is a TG iff Q is a TG.
Case 2. I' is disconnected.

The first necessary condition for I" to be a TG graph is that I" has only one nontrivial
component, say {2 € I' (and, there may be some other trivial components). Moreover, I’

isa TG iff 2 is a TG.
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Now, to prove the main result of this section, we first state and prove two lemmas:

Lemma 2.3 Let I' be a graph with (I") = [n]. Assume that the eigenvalues of L(I")
are Uy = Uy =+ = U1 = Uy = 0.Thenforanyx € R, L + xJ has eigenvalues: u, =

Uy =+ = Uy_q and nx.

Proof. First of all, since L is symmetric, it is orthogonally diagonalizable. That is, there
is an orthogonal matrix Q s.t. each of the columns of Q is an eigenvector of L.

RN L]T
V'V’ T
0 = 0 1. Therefore, 1 is an eigenvector of L belonging to the eigenvalue 0. And since ||1|| =

WiIog, assume that the last column of Q is [ . (By the definitionof L, L1 =

Vn, in 1 a unit eigenvector of L corresponding to the eigenvalue 0.) Then:

QTLQ = diag (1y, Hz) -+ » Un-1, Hn = 0).

Now, let @ = [cy, ¢z, ..., ¢ ], Where ¢ is the j th column of Q. Then, by definition of an
orthogonal matrix, |[c;|| =1 for any i =1, 2,..,n, and c;.c; =0 for any i #j €
{1,2, ...,n}. In particular the vector 1 is orthogonal to each column of Q except for the

last column. Therefore, by the usual matrix product, we have:

0 0.. 0 +n
]onoz.(:)\/?
0 0 0 Vn

~ QTLQ =diag (0,0,...,0,n) by the usual matrix product.
Q'L+ x)Q =Q"LQ + x Q'] Q
= diag ( Uy, Uz, o) Un-1,0) + x diag (0,0, ...0,n)

= dlag (.111, Uy ey Up—1 ,nx).
~ The eigenvaluesof L + xJ:puy = pu, =+ = yp_, andnx. m
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Lemma 2.4 Let I be a graph with J(I") = [n]. Let deg (j) = pj, for each j = 1,2, ..., n,
and assume that n—1=p; > p, > >p,. Let Q=TI\{1}. Then one of the
eigenvalues of L(I') is n. Moreover, assume that the eigenvalues of L(I") are u,,

U3y ooy Up—1,m,0. Then, u, — 1, u3 — 1,..., w1 — 1, 0 are the eigenvalues of L(Q).

n-1 —17
1 LD+,

[1,1,...,1]7 € R* 1. (Since 2 = I'\{1}, and since degy (1) = n—1, deg, (j) degr (j)

Proof. First, by definition of Laplacian, L(I') = [ , where 1 =

—1 for each j =2, 3, .., n. Therefore, we add I,,_; to the block matrix corresponding to

L(12).)
. = n GT
s L(F) + ]n ~ 10 L(,Q) + In—l +]n—1

all entries equal to 1, and 0 =10, 0, ..., 0]” € R*1,

], where [, is the n X n square matrix with

Now, by the previous lemma, since the eigenvalues of L(I") are yy, Uz, «.., fn—1, 1,0, the
eigenvalues of L(I") + J, are uy, Uz, ..., Un—1 and n with multiplicity 2.

n oT

= Since L(T) + Jp, = 0 L(D)+Liq+]ns

], the eigenvalues of L(Q) + I,_; +

Jn-1 are fy, Uz, ., 1, M.

.. The eigenvalues of L(Q) + J,_qjare uy — L,uzs — 1, ..., 1 —1,n— 1.

(det (uly—y — (L(2) + Jpn—1 + In—1)) =det (U —=Dlp—y — (L(2) + Jn-1 ).

. p1s an eigenvalue of L(2) + J,_1 + I,_1 iff u — 1 is an eigenvalue of L(2) + J,,_1.)

.. By the previous lemma again, the eigenvalues of L(2) are yu, — 1, ..., 1 — 1,0. m

Theorem 2.5 Let I' be a graph with V(I') = [n]. Let deg(j) = pj, for each j =1,

2, ...,n. Then the eigenvalues of L(I") are p;g, p5, ..., py iff 'isa TG.

Proof.

(&) Proof can be done by induction on the number of vertices.

n = 1: First of all, since we study only simple graphs, L(I") = [0]. And the only
eigenvalue of the zero matrix is 0. Also, deg(1) = 0 = p; and p] = |{pj: pj = 1}| =0,
because there is only are p; which is p; and p; = 0. As a result, the only eigenvalue of

L(I)is 0 = pi.
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Suppose that the result holds for all TGs with the number of vertices <n — 1.
Now, let I be a TG with |V (I")| = n.
First of all, it is enough to demonstrate the conclusion for a connected case, because each
vertex of degree zero appends a 0 both to the sequence of degrees of I" and to the list of
eigenvalues of L(I"), simply because 0* = 0.
.. Wlog, suppose that I is connected.
Now, by definition of being a TG, I has a vertex with degree n — 1, say deg(1) =n — 1.
Let 2 =T\{1}.
Let uq, py, -, Un—1, Un = 0 be the eigenvalues of L(I"). Then, by the previous lemma,
one of u; = n forsomej € {1,2,..,n—1},say py =n.
And by the previous lemma, y, — 1, u; — 1, ..., u,,_1 —1, 0 are the eigenvalues of L({2).
As mentioned above, if k vertices each of which has degree 0, are added to a graph, then
k Os are appended both to the sequence of degrees of the graph and the list of eigenvalues
of the Laplacian of the graph.
.. If the statement of the theorem holds for a graph, then it also holds if we add some
vertices, each of which has degree 0, to that graph. As a result, since ©Q has only one
nontrivial component, which is threshold, and there may be some other trivial
components; the eigenvalues of L(2), namely, u, — 1,u3 — 1, ..., 1 — 1, 0, satisfy the
statement of the theorem by the induction hypothesis. That is, since p,-1, p3-1,..., pp —
1 is the sequence of degrees of the vertices in 2, (p; —1)" = u; — 1 for each j =
2,3,...,n—1,(pp, —1)* = 0. On the other hand, since p; = n — 1 (that is, each vertex
is adjacent to the vertex 1, and thus p; = 1 for each j = 1,2,..,n), p; = [{pj: p; =
1}| = n. Therefore, since yu; = n, p; = ;. Finally, for clearness and simplicity of the
notation, say 7;_y = p; — 1 foreach j = 2,3,...,n — 1. Then we have:
(pj—D'=1_1={r;:7, =2j—1}

=l{pi+1—Lipy1 —12j -1}

= {p1+1 = L:p141 2 j}

= l{px —1: pr = j}

={ pr: pr = j}
The last equation is true because the matter is not the set, the matter is only the number

of elements in the set.
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s (pj — 1) = [{px: pr = j}| for the sequence p, — 1,p3 — 1,...,pp_1 — 1,0, for each
j=23..,n
.. For the sequence n — 1 = pq, P2, P3, ) Pn_1, Pn = 0, we have:

pi=Wp: pzj} =@ -1 +1Lforj=23..,n,
because p,is the largest possible number in the sequence p4, p3, ... , prn = 0, and thus p; >
j implies p; = j. (. We add +1 to (p; — 1)" to find p;.)
spi=@i—1D"+1=(uj—1)+1= pjforeachj=23,..,n
And we know that p; = n = .

Asaresult, p; = pj foreachj =1,2,..,n.

(=)(This part of the proof is taken from Merris (1994).)
The proof can be done easily by induction on the number of vertices n of I', and by using

the recursive definition of a TG.

Step 1. Firstof all, if I' = K5, then I" is a TG by definition.
If I' # K, then there exists, say m > 1 vertices of I" with vertex degree > 0. Let (2 be

the subgraph of I induced by these m vertices. Then:
L(Q) Omx(n—m)

Ly = Omn—myxm  On-m

~ For eachi=1,2,...,m for the following first two equations and for each i =1,
2,...,m — 1 for the following last equation, we have:

pi (0) = w; (), p; () = p; (D), p; () = p; (D),

where u; (I'), p;(I"), and p; (I') are the i th largest eigenvalue, the i th largest degree (in
the degree sequence), and the i th conjugate element (in the conjugate sequence) of I'.

Similarly, u; (), p; (£2), and p; (2) denote the same notions for (2.
Step 2. Now, p;(2) = m. (p;(2) = |{p;(Q)|p;(©2) = 1}| = m, because every vertex of

N has a degree >0, i.e., has a degree > 1.) Therefore, since u,(I') = p;(I') by
hypothesis and p; (2) = s (1), 1 (2) = pi(2) = pi(I') = m.
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Step 3. Furthermore, for any graph A,

wi(A) =n — pp (A),1 < i < n(xxx):

L(A) + L(A®) = nl, — ], by the definition of LM.

Therefore, since L(A)commutes with itself, with I,,, and with J,,, and since L(A°) =
nl, — J, — L(A),L(A) commutes with L(A€). Then it is a well-known fact from Linear
Algebra that the matrices L(A) and L(A€) are simultaneously triangularizable. That is,
there exists an invertible matrix, P s.t. P~1L(A) P and P~1L(A) P are both triangular
matrices. Now, the eigenvalues of a triangular matrix are the main diagonal entries of that
matrix. Therefore, we have:

PYLA) + L(A) P =P Y (nl, — J,) P

>P LA P+P L) P=nl,— P, P

On the other hand, the eigenvalues of nl,, — P~1J,, P are n with multiplicity n — 1 and 0
with multiplicity 1. (First, since J,, and P~1J,, P are similar matrices, they have the same
eigenvalues. J,, is a symmetric matrix and rank(J,,) = 1. Therefore, there is only one
nonzero eigenvalue of J,,. Thus, since the sum of all the eigenvalues is equal to the trace,
and since (n —1) of the eigenvalues of J,, is 0, the unique nonzero eigenvalue of J,, must
be n = tr(J,). Therefore, the eigenvalues of J, are 0 with multiplicity n — 1 and n
with multiplicity 1. As a result, the eigenvalues of nl,, — J,, are n with multiplicity n — 1
and n —n = 0 with multiplicity 1: det(l, — (nl,, — J,)) = det ((x — n)I, — (—],).
Now, det(xIl, — (=J,)) =0 < x =0 with multiplicity n—1 and x = —n with
multiplicity 1. Therefore, det (x—n)IL,—(—J,)) =0 (x—n)=0 with
multiplicity n — 1 and (x — n) = —n with multiplicity 1 & x = n with multiplicity
n —1and x = 0 with multiplicity 1.)

=~ The eigenvalues of P71 L (A) P+ P~ L (A°) P are n with multiplicity n — 1 and 0
with multiplicity 1.

=~ Since the eigenvalues of P~ L(I') P+ P~1 L(I'°) P, which are the same as the
eigenvalues of L(1)+ L(I'), are the main diagonal entries, we have:

wi () + pp; (r’)y =n foreach 1<i < n (*)

21



(Since (PIL(I) P);; + (P7IL(I¢) P)j=nforeachi = 1, 2,...,n — 1, the constant
n; if one of them is large, then the other must be small. That is: yy (I') + pp—, (') = n,
po (D) + pp T) =1,y (0 +p, (') = 0)

In addition, we know that the remaining eigenvalue of L (I") is 0 with multiplicity 1 and

1 is one of the corresponding eigenvectors.

Step 4. Now, if we apply (*) to 2, then we get:

i (D) + Ui (29 =mforeach 1 <i <m.

=~ Since p;, (2°) =m, pp—4 (2) =0.

~ ¢ is a disconnected graph.

=~ Since a graph and its complement can not be both disconnected, £2 must be connected.
s Um_1(0) # 0.

=~ Since py,—1 (2) = py—1 (£2) by the hypothesis, p;,,_; (2) # 0.

=~ Since py,_1 () =|{p; (2) : p; (2) = m —1}|, and since A(£2) < m — 1 (because {2
contain m vertices), A(2) = m — 1.

~pi()=m-—1.

Step 5. Now, suppose that there are s vertices of degree m — 1 in 0.
Then for a uniquely determined subgraph A of 2, we have :
0 =AVK,.

Step 6.~ psri (D) =w; (A + s, 1< i<t,wheret=m—sis|V(A):

First of all, for any two graphs ¢ and i we have (¢ V ) = (¢¢ + y©)°:

VeV ) =V(@)uV@) =V((e+y¥)°).
e={a,peE((p°+yY))ee={a,B}EE (p°+Y°)

S e g E(p ore & E (Y©) or "one of the end vertices of e, say a, is in V(¢€) =V (@)
and Bisin V(@) =V @)".

o e€E(p)oree E@)or"aeV(p)andp eV ()"

Se EE(pVY)

“ (V) = (¢ + PO)©.

22



Now, by using the equation given in Step 3, we can prove the required equation:
ts+i(2) = psri (AVKS) = poy i (A° + KS))
=M — s+ (A + K$) (2 = (A° + Kg)° has m vertices.)
=M — Um_(s-i) (A°) (K is s isolated vertices. Thus, the corresponding block of
K¢ in L(Q) is the s X s zero matrix.)
=m— ((m— 5 )~ Uin-s) - m-s—i)(A)) (A has m — s vertices)
=5+ ().
Slsri () =pui(A) +s,wherel <i<t=m-—s=|V(A).
(Notethat1 <i<(m—-s)=>-(m—-s)<—-i < —1
>0<m-s—i<m-s-—1
2>1<m-s—-i<m-s—-1=t—1<m-—-1<m,
i.e,1 <m —s—i < m. Therefore, we can apply (x=*x) in the first case above. Similarly,
1<m-s—i<m-—s, because 1 <i < m — s. Therefore we can apply (xx) in the

second case above.)

Step 7. psyi(D) = pi(A)+s,1< i<t:
Piai (@) = Hpj(@): p; () 2 s + B = [{p; (AVK): p;(AVKS) = s + i}

= |[{pj(AVKs):pj(A) +s=s+i}|+s
(Note that v € V(AVK,) > v € V(A) or v € V(K ).
v EV(A) = payk, (V) = p(v), + s, because each vertex of A is adjacent to every vertex
of K;.
v EV(Ks) = pavk,(v) = pg,(v) +|V(A)|, because each vertex of K is adjacent to
every vertex of A.
2V EV(KY) = ppyg, W) =(G6—1D+(m —s)=m—-1=s+iforeachl <i<t,
because 1 <i<t=m-s 2s+1<s+i<(m-s)ts=m=> s+i<m-1.
Also, note that |{p;(AVK): p;(A) = i}| = |{pj(A):p;(A) = i}|, because only the

order of the set does matter. In both cases, we count j's for which p;(A) > i.)

Step8. - Since psyi(2) = psii (1) = psri(I) = Us4i(42)
(the second equation holds by hypothesis, and the other two equations hold by Step 1),
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both p5,:(2) = p;(A) + s (Step 6) and pg,;(2)=p; (A) + s (Step 7) imply that p; (A) =
pi(A) +s.

& pi(A) =pi(A)foreach 1 <i <t =|V(A).

(Notethat1 <i<t=m—s = s+ 1<s+i<m. Therefore, the equations proved

in Step 1 can be applied.)

Step 9. Since p;(A) = pu;(A) foreach1 <i <t =|V(A)|,andsincet = |[V(A)| =m —
s<m<n, t<n.

=~ Since A satisfies the hypothesis of the theorem, A isa TG by induction assumption.

~ Since N = AVK,, 2 isa TG by the recursive definition of TGs.

~SinceI' = Q + K,,_,, I' is a TG again by the recursive definition of TGs.

(Note that we can not apply induction assumption to the graph 2, because |V(2)| = m =

n = V(I') is possible.) m

2.2  Spectral Integral Variation

Definition 2.6 Let I be a graph and let py, Wy, ..., 1, be the eigenvalues of I'. If u; € Z for
eachj =1,2,...,n, then T is called a "Laplacian integral (LI)" graph.

From the last theorem of the previous section, a TG is LI. But there are more, that is, the
set of LI graphs properly contains the set of TGs. Now, we define a new type of graph,
which is LI, and TG belongs to the set of this type of graphs.

Definition 2.7 Let I" be a graph. I is said to be a "cograph” if it is obtained recursively
by obeying the following principles:

a) K, i.e., a single vertex is a cograph.

b) If 2 is a cograph, then 2 is a cograph.

¢) If 2 and A are two cographs s.t. V(2) N V(A) = @, then 2 + A is a graph.

Proposition 2.8 If I is a cograph, then it is LI.

Proof. We use the recursive definition of cographs and the following two facts:
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1) andAareLl= 2 +AisLl:

L) 0
0 L)

the set of eigenvalues of L(£2) and L(A), counting with multiply .

Since L(2 +A) = [ ] the set the of eigenvalues L(2 + A) is the union of

Now, since 2 and A are LI their eigenvalues are all integers.
=~ The eigenvalues of L(2 + A) are integers.
~ L2+ A)isLl.

2) I'is LI = s LI:
We know from Step 3 of the proof of the last theorem of the previous section that for any
graph £2, we have:
Un_i(Q)=n—p; (2)foreach 1 <i < n,wheren = |V(2)].
And, for any graph 2, u,(2) =0:

Step 1. Let L(2) =[n] and E(R2) = {ey, ey, ..., €n}. Assume that each edge of 02 is
given a direction. Let B(2) = B = [bl-j] be the n x m matrix, whose rows (respectively,
columns) are indexed by V (£2) (respectively, E(2)) s.t.

0, if i¢e ={v,w}

b;j = 1, if i € ¢; = {v,w}istheinitial vertex of e;;
—1, if i € e; = {v,w}is the final vertex of e;;

Then, B(2) = B is called the "incidence matrix (IM)” of 2.

Step 2. Let {2 be a connected graph. Then rank B(2) = n - 1:

Letv = [vy,v,,...,1,]7 € R" bes.t. vTB = 0. Thus, by definition of B, ifi~j (i.j €
V(12)), then v; — v; =0, (respectively, v;- v; = 0) if i (respectively, j) is the initial vertex
of theedgee = {i, j}.

Therefore, if there is an v, v, - path between the vertexes v, and v, then v, = v):

LetP =i, = v, iy, .., i1, Immvp DEAVaVo—p ath. Then iy ~ iy, iy ~ iz, ..., ey ~
im. Therefore, v, =v;, = v, vi,= vy, ..., vy, = V= Vp. TUS, v, = 1p,.

=~ Since there is an ij — path in 2 for any two vertices i,j € V() (because 2 is

connected), all the components of v must be equal to each other.
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~dim (W(B)) < 1. (dim(left v)) = dim (right ') = dim (V).)
~rank (B) =2n—1.

On the other hand, by definition of B, the sum of entries in each column (in fact, there are
only two non-zero entries, one of them is 1 and the other is —1) is zero. Therefore, the
sum of all the rows of B is [0, 0, ...,0]. Thus, the rows of B are linearly independent.
~rank (B) <n-—1.

~rank (B) =n—1.

Step 3. If 2 has k components, then rank (B (2)) = n — k:
Let 04, 0,, ..., 2, be the components of 2. Then, after relabeling the elements of V()
and E () if necessary, IM, of 2 is the following block diagonal matrix:

B@) 0 . 0
0 B, . 0
B = . 0 . )
0 0 .. B

Now, for each i = 1,2,...,k, since £; is connected, rank B(£2;) = |V (2;)|—1 by the
previous step.
~ rank(B(2)) = rank(B(£2,)) + rank (B(£2;)) + ... + rank (B({2))

=(V(@2)] =1) + (V(22)] =1) + ... + (V ()] =1)

= (V@) + V(2 + o+ V(2)]) K

=n—k.

Step 4. For any matrix M, (rank (MMT)) = rank (MT M) = rank M:
NMTM) = N (M):
(©):x€e NMT™M)>M"™Mx=0 = xT MM, = 0= (M,)T(M,) =0
= ||Mx||=0 > Mx=0>x € ¥(M).
QQx ENM) > Mx=0= M'Mx =0=>x € N(MTM).
S N(MTM) = N(M).
~ nullity (MT M) = nullity (M).
= Since rank + nullity = The number of columns of M, a fixed number, rank (MTM) =
rank (M).
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Step 5. L(2) = B(N)B(Q)T:

Let L(2) = L = [l;;], B(2) = B = [b;; 1and B(2)" = B" = [b}]. Then:

i =j: l;; = p; = deg (i) by definition of L. And(BBT);; = X%_; by bt; = X%, bix bix
= Yk=10ik)? = Zp~i(bix)? = Tp~i(£1D)? = Xp~i 1 = p; = deg (i)

~ ly=(BB") .

. 0, if i~+];
i#jity = {007 A @By = Bibu bl = Bheabe b

= Yicey={v, w} bixDji , because if i & e, = {v,w}orifj & e, = {v,w}, then by =0 or

jeex={v, w}
bj, = 0, respectively. Then, by by, = 0.
Therefore, if i ~ j, i.e., if there is no edge with end vertices i and j, then there is no non-
zero term in the sum. Thus, (BB” );;= 0. And if i~j, i.e., if there is an edge. e = {i, j},
then there is only one non-zero term in the sum which corresponds to the term, say k =
m, that is, e,, = {i, j}. In this case, "b; = 1 and by, = —1" or "b;, = —1 and by, =1",
and thus (BB™);; = bynbjm = —1.
~ L= (BBT)y;.
As aresult, L = BBT.

rank(B(2)B(2)T)  (Step5)
= rank(B(.Q)) (Step 4)
<n-1 (Step 3).
~ nullity (L(2)) = 1.
=~ There is a non-zero vector in the null space of L(£2).
=~ 0is the eigenvalue of L(2), thatis, u,(2) =0.
(Note that L(2) = B(?)B(2)T = L(G) is (symmetric) and positive semi-definite

Step 6. rank (L(.Q))

matrix = Each eigenvalue of L(2) = 0.)

Finally: I'is LI = u;(I') € Zforeach1 <i <n.

= Since p,,_i(r‘y=n—p;(I') foreach1 <i <n, u,_;(I'°) e Zforeach1 <i <n.
= Since also u,(r‘)y=0€Z, u;(rc) e Z foreach 1<i<n.

=TI isLl.
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Now, by using these two facts, we can prove the proposition:

Firstof all, K, istrivially LI. Let 2 and A be two cographs. Assume that both are LI. Then
the cograph 2 is LI by Fact (2) above, and the cograph 2 + A is LI by Fact (1) above.

~ Recursively obtained each cograph is also LI.

As aresult, if I' is a cograph, thenitisLIl. m

Proposition 2.9 If I is a TG, then it is a cograph.

Proof. Wlog, we can assume that I is connected, because if I is disconnected, then it has
only one nontrivial component, and (if exists) the remaining components are all trivial,
1.e., each remaining component comprises of a single vertex; thus, they are all cographs,
and disjoint union cographs is a cograph.

Now, proof can be done by induction on |V (T)| = n:

n=1:I = K; = I is a cograph.

Assume that the proposition is true for all graphs with the number of vertices < n — 1.
Let I' be a connected TG with |V(I")| =n > 1.

Since I" is a nontrivial TG, it has a dominating vertex, say v € V(I'). Let 2 = I'\{v}.
Then, 2 is a TG with |V(2)| = n — 1. Therefore, by the induction hypothesis, 2 is a
cograph. Thus, 2 is a cograph.

- 02 + {v} is a cograph.

- 0+ (v} = 0 V{v} = QV{v} = I is a cograph.

As a result, the proposition is proved by induction. m

Note 2.10 The converse of the previous proposition does not hold. That is, there are
cographs that are not threshold. For example, C, is a cograph (K;is a cograph, by part (a)
of the definition of cograph. 4K; = K; + K; + K; + K, is a cograph part (c) of the
definition of cograph. Thus, 4K; = C, is a cograph by part (b) of the definition of

cograph); but C, is nota TG. (C, is connected, but does not have a dominating vertex.)
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Now, Let I be a graph, and e be an edge not in I'. Then, we want to understand the
variation in the eigenvalues of L(I") if we add e to I'. To study this variation, we need a
result from Linear Algebra about the consequence of the rank 1 perturbation process on
the eigenvalues of A, where A is a square matrix of order n and AT = A. (A square matrix
B = A+ xyT, where x,y € R", is called a "rank 1 perturbation" of A.)

First, we study two lemmas which are needed to prove the mentioned result.

Lemma 2.11 Let M be a square matrix of order n, and M7 = M. Partition M as follows:
M = [mn e ]
y M(1]1)
Let aq, ay, ..., @, be the eigenvalues of M. Assume that the set of eigenvalues of M (1]1)

is a subset of the set of eigenvalues of M. Then y is the zero vector.

Proof. First, by the assumption, the eigenvalues of M (1|1) are
A1, Ay ey Qg1 , Apyq, -, Ay TOrsome t € {1,2, ...,n}.
Then we have:
tr(M) — ter(M(1|1)) = a.

And since the trace of the square of a matrix A is equal to the sum of the squares of
eigenvalues of A, we also have:

tr(M?) — tr(M(1]1)?) = a?.
On the other hand, from the statement of the lemma, we have:

tr(M) — tr(M(1|11)) = my;.

mi; + yTy my " +y" M(1]1)
ym;; + M(1Dy  yy" + M(1]1) 2

tr(M?) = mf; +yTy + tr(yy” + M(1|1)?)
=m§ +yTy +tr(yy") + tr(M (1]1)?)

And since M? = ] we have:

=mi; +yTy +tr(y"y) + tr(M(1]1)?)
=mi, +2yTy + tr(M(1]|1)?).
L tr(M?) — tr(M(1]1)?) = m2,+2yTy.
"My = ap, mi,+2yTy = af.
~yTy=0= ||y||>=0.
~y=0.m
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Lemma 2.12 By the same notation of the previous lemma, let 0 #= § € R, and let
N = [m11 + 6 y’
y M (1]1)
be a block matrix.
Assume that the eigenvalues of M (respectively, N) are ay, a,, ..., a, (respectively,

A1, Az, ey A1, A + 8, Apyq, -, ap fOrsome t € {1, 2, ...,n}). Theny is the zero vector.

Proof. First of all, we have:
ey(p) =det(ul —M) = (p— a))(u— az) .. (0 — ay),

ey(p) =det(ul —N)=(@p— a) .. (u— D) — ar— U — aryq) . (u—
ay).

oy = o) —S(u—aq) o (p— @) (U= apgg) (0 — ).

On the other hand, from the statement of the lemma, we have:

—my— 6 —yT —-m —yT -6 0"
ey () = u 11 y :|# B 11 y |

+

-y pl —M(1]1) y w-MQAD|I -y wpl—M(1[1)

=det(ul — M) — & det(ul — M(1|1))

=cy(u)— 6 det(,u] — M(1|1)).
28— ar) e (= @e1) (= Qpyr) o (W= an) = 6 det(ul — M(1]1)).
. Since & # 0 by assumption, we have:

det(ul = M(1|1)) = (u— a1) . (B — @p—1) (B — Qy1) o (1 — ap).

.. The eigenvalues of M (1|1) comprises of n — 1 eigenvalues of M.

.. By the previous lemma, y is the zero matrix. m

Theorem 2.13 Let M and N be square matrices of order n s.t. M = M and NT = N,
rank(N) = 1. Let ay, ay, ..., @, (respectively, 0 # 4,0, ..., 0) be the eigenvalues of M
(respectiely, N). Then matrix M + N has the eigenvalues ay, ..., a¢_1, @t 8, X¢yq, ) Oy

forsome t € {1, 2, ...,n} iff M and N commute.

Proof.
(<) Since M and N are commuting symmetric matrices, there is an orthogonal matrix P

S.t.
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PMPT = diag(ay, ay, ..., @), PNPT = diag(0,...,0,6,0,...0),

where § is the t th diagonal entry of the matrix PNPT for some t € {1, 2, ..., n}.
Then we have:

P(M + N)PT = PMPT + PNPT = diag(ay, ..., Qr_1, @ + 8, Qpy1, ) Ay),
forsomet € {1,2,..,n}.
. The eigenvalues of M + N are ay,.., &;_1, &+ 6, Qyq, ...,y fOr some t €
{1,2,..,n}.
(=) WIlog, we can suppose that N = diag (6,0, ...,0) (Since N is symmetric, there is an
orthogonal matrix P s.t. PNPT = diag (6,0, ...,0). And since (orthogonally) similar
matrices have the same eigenvalues, both M and PMPT, also both M + N and P(M +
N)PT have the same eigenvalues. Therefore, instead of studying with M and N, we can
study with PMPT and PNPT. And thus we may suppose that N = diag(é,0, ...,0).)

T
m y
Let M =[ 1 ]
y M(1]1)
my+ 6 yT
Then M4+N=| 1 ]
y M (1]1)

Now, the eigenvalues of M (respectively, M + N) are a,,a,, ..., a, (respectively,
QAqy ey Ap_1, 0 + 0, Apyq, ..., ay) fOrsome t € {1, 2, ..., n} by the hypothesis.

.. By the previous lemma, y is the zero vector.

~ M= ["B“ M(01T|1)]'

. Since N = diag (4,0, ...,0),M and N commute. m
Now, we apply the previous theorem to Laplacian matrices.

Let I be a graph with V(I") = [n], and suppose that {i,j} &€ E(I"). Let2 =T + {i,j}.
Then:

L(2) = L(T) + e;e]],
where e;; € R™ is the vector whose i th component is 1, j th component is —1, and all the

remaining components are zero.
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.. By the related interlacing result, if a4, a5, ..., a,, = 0 (respectively, B4, B2, ..., fn = 0)
are the eigenvalues of L(I") (respectively, L(£2)), then we have:
Prza1 = fr=za, =2 =ay 1= Bp=ay

Also note that:

tr(L(2)) = tr(L(I") + ¢;; el-Tj) = tr(L(I") + tr(e; eiTj) =tr(L(I)) + 2. ™
Assume that I" is LI. Also assume in consideration of (*) above that one of the following
holds:
a) Eitherg; = a; form=1,2,..,n—1,and B; = a; +2;
b)Or g; =a; form=12..,n—-2,and B; =a;  +1

Then, in consideration of (*) above, 2 is also LI.

Definition 2.14 If case (a) (respectively, (b)) occurs, then it is said that “spectral integral
variation happens in 1 (respectively, 2) position(s).”

The following theorem characterizes case (a).

Theorem 2.15 Let I" be a graph with V(I') = [n] and {i,j} € E(I'). LetQ =T + {i,j}.
Then, n — 1 eigenvalues of L(I") and L(£2) concur iff N(i) = N(j).

Proof. First, we showed above that (2) = L(I') + e;; el-T]- . By the previous theorem, n —
1 eigenvalues of L(I") and L(£2) concur.

& L) ejjel; =ejel; L.

< (By block multiplication) (¢; — ¢;) el-Tj = e;j (r; — 1;), where ¢, (respectively, ry,) is
the k th column (respectively, k th row) of L(I") fork = 1i,j.

e (rf -1) el; = e;j (r; — 17) (because L(I") is a symmetric matrix).

e (r— Tj)T el = eij (i — 17).

e (e (=)' = eij(ri - Tj)-

< (By block multiplication) since

eij (ri - rj) = [O, ., 0, (ri - rj)T, o,..,0, (rj - ri)T, o,.., O]T,

rn— 1= [O, .., 0, ll'i - lji' o,..,0, ljl - lii' o,.., 0], where L(F) = [l]l]
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S (ri—nk=lg—lxp=0foreach k#ijand(r,—1);=1l;—l;, (ri—1); =
Li = Ll

© iy =1y for each k#i,jand l; —1; =1l; — U, lij —lj; =1; —1l;; (Note that
since {i,j} ¢ E(I"), l;;=1;=0.)

© Ly =1y foreach k #i,jand [;; = ;.

& The i th and j th rows of L(G) are identical.

© N({)=N(). =

Corollary 2.16 Let I' be a graph with V(I') = [n] and {i,j} &€ E(I'), also assume that
N@) =N(@).AndletQ = I' + {i,j}. Then I" is LI iff 2isLlI.

Proof. First of all, since N(i) = N(j), (n — 1) eigenvalues of L(I") and L(£2) concur by
the previous theorem. Therefore, I" is LI iff these concurrent eigenvalues and the
remaining eigenvalue of L(I") are all integers iff (Since tr(Q) =tr(I') + 2,) these
concurrent eigenvalues and the remaining eigenvalue of L(2) are all integers iff 2 is LI.
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3. LITERATURE REVIEW

First of all, as it is known, there are lots of good resources about graph theory and matrix
theory. One of the best textbooks written on graph theory is West (2002). For matrix
theory, we recommend Zhang (2011), or a more detailed textbook Horn and Johnson

(2012). Bapat (2014) is a perfect book combining these two areas of mathematics.

About majorization, a well-known classic resource is Marshall and Olkin (1979); and

about threshold graphs, a comprehensive textbook is Mahadev and Peled (1995).

The first and the second sections of chapter two predicate on Merris (1994) and So (1999),

respectively.

A construction of an infinite class of Laplacian integral graphs which are not cographs

was given in Grone and Merris (2008).

One of the well-known conjectures about the Laplacian spectrum of a graph was asserted
by Grone and Merris (1994), and this conjecture claimed that the conjugate of a degree
sequence of a graph majorizes the Laplacian characteristic values of this graph. That

conjecture is solved by Bai (2011).
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4. CONCLUSIONS AND RECOMMENDATION

This thesis is a review study, it does not contain any original results. As stated before, the

main source used in the preparation of the thesis is Bapat (2014).

The topic of Laplacian eigenvalues of threshold graphs is one of the fundamental topics
in graph theory. In this thesis, we introduced the basic notions and theorems about
majorization, threshold graphs, and Laplacian eigenvalues, and we surveyed some of the

recent results in this area.

The purpose of this thesis is to introduce this rich and active research area at a basic level
and to present some of the recent results and developments in a very compact form. In
other words, our purpose is not to solve an open problem in this area or to obtain an
original result about this area. But we aim to present a survey or a review/tutorial source
about Laplacian eigenvalues of threshold graphs for non-experts in this area. In other
words, we aim our thesis to be an introduction source related to this area. Therefore, we
hope this thesis will be useful for students and researchers who want to learn the basics

of this pleasurable and influential area of mathematics.
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