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ABSTRACT

The Sparse Identification of Nonlinear Dynamical Systems (SINDy) is an algorithm
used to discover the underlying physical equations of complex nonlinear dynamical
systems. This data-driven algorithm is characterized by low computational cost and
high interpretability, making it widely used in system modeling and governing
equation discovery across various scientific disciplines. However, its application in the
field of gas turbine engine dynamics remains limited in existing literature.

This study aims to model the dynamic behavior of gas turbine engines using the SINDy
algorithm. Gas turbine engines exhibit nonlinear dynamic characteristics, which can
be modeled mathematically by thermodynamic equations. SINDy employs sparse
regression techniques to identify dominant terms from a library of candidate functions,
deriving a differential equation. This method achieves a balance between model
complexity and accuracy. SINDy offers a simple, interpretable solution that mitigates
overfitting. These attributes enable SINDy to offer a novel data-driven perspective to
gas turbine engine modeling.

The study examines the operational principles of gas turbine engines, focusing on
dynamic modeling, investigating data analysis techniques, and data driven system
modeling and the theory of SINDy and its application to gas turbine engine.
Specifically, the study explores the use of SINDy in analyzing transient behavior,
developing data-driven system models of the engine, estimating unmeasurable
parameters, and detecting faults. The performance of SINDy-based models is
compared with alternative system modeling approaches. The applicability and
advantages of SINDy are discussed.

The study demonstrates that the SINDy algorithm offers a data-driven solution for
addressing gas turbine engine challenges.

Keywords: SINDy, Gas Turbine Engine, Sparse regression, Data-Driven Models,
Gas Turbine Modeling
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OZET

Dogrusal Olmayan Dinamiklerin seyrek modellenmesi (SINDy), karmasik dinamik
sistemlerin temel fiziksel denklemlerini kesfetmekte kullanilan bir algoritmadir.
Veriye dayali bu algoritma, diisiik hesaplama maliyeti ile basarili sonug alinabilmesi
ve yliksek yorumlanabilirlik sunmasiyla 6ne c¢ikmaktadir. Ayrica, bir¢cok bilimsel
alanda sistem modellemelerinde ve denklem kesiflerinde yaygmn olarak
kullanilmaktadir. Literatiirde, gaz tiirbinli motor dinamigi alaninda uygulamasi
siirhdir.

Bu calismada, gaz tiirbin motorlarinin dinamik davraniglarinin SINDy algoritmasi
kullanilarak modellenmesi amaglanmistir. Gaz tlirbinli motorlar, dogrusal olmayan
dinamik davranislar sergilemekte olup matematiksel modellenmesi kompleks
termodinamik denklemlerin ¢oziimii ile miimkiindiir. SINDy, verideki davranisi
olusturulan muhtemel denklem seceneklerinden baskin olanlar1 segerek seyrek
regresyon teknikleri ile sistemi temsil eden en az sayida terim igeren diferansiyel
denkleminin bulunmasini saglar. Modelin karmasikligi ve dogrulugu arasinda bir
denge kurulur. Veriye dayali bir¢cok algoritmaya kiyasla basit, agiri uyumlamay1
engelleyen, yorumlanabilir bir ¢6ziim sunar. Bu 6zellikler, SINDy’nin gaz tiirbin
motor modellenmesinde yenilik¢i bir veri odakli bakis agis1 sunar.

Bu calismada, gaz tlirbinli motorlarin calisma prensipleri incelenmis, dinamik
modellemeye ve veri analizi tekniklerine odaklanilmistir. Regresyon yontemleri ve
yapay sinir aglarini igeren veri tabanli sistem modelleme teknikleri incelenmistir.
SINDy’nin altinda yatan teori ve gaz tiirbinli motorlara uygulanist detaylandirilarak:
SINDy’nin gegici hal davraniglarin analizinde, motorun veri odakli sistem
modellerinin gelistirilmesinde, Ol¢lilemeyen parametrelerin tahmininde ve ariza
tespitinde kullanimi irdelenmistir.

Netice itibariyle, SINDy algoritmasinin gaz tiirbin motor dinamikleri uygulamalarinda
onemli avantajlar sunabilecegi saptanmustir.

Anahtar Kelimeler: SINDy, Gaz Tiirbinli Motorlar, Seyrek regrasyon, Veri
Odakh Modelleme, Gaz Tiirbin Modelleme
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1. INTRODUCTION

For over centuries, gas turbine engines have diverse applications across various
industries, including power generation, marine, automotive and aviation, with both
civil and military usage. Principally, gas turbine engines are classified into four
categories: turbojet, turbofan, turboshaft and turboprop. Turbojet engines have the
simplest structure, consisting of a compressor, combustion chamber, turbine and
nozzle. The primary purpose of the engine is to accelerate the airstream through the
components to generate thrust while increasing heat capacity by adding fuel into the
combustion chamber. Turbofan engines are more complex versions of the turbojet
engines, featuring an additional compressor, called as fan, which bypasses certain air
to produce additional thrust and reduce fuel consumption. The bypass ratio of the
turbofan engines varies depending on the intended use. Turboshaft and turboprop
engines are optimized to produce shaft power rather than jet thrust with an additional

turbine to extract heat energy and convert it into shaft power.

Brayton Cycle represents the gas turbine engine operation principle. Air comes from
the atmosphere via intake. The compressor pressurizes the air, the combustor adds heat
energy from the fuel to the airstream, turbines extract the power and generate energy
to proceed continuous cycle. Heated and accelerated air exits from the nozzle. Thus,

thrust is generated.

.

(}
'\ Turbine

Expansion

Temperature

Combustion Chamber
Heat Addition

Compressor
Compression

Entropy

Figure 1.1 Bryton Cycle Temperature- Entropy (T-S) diagram for Turbojet Engines



Figure 1.1 illustrates the temperature — entropy diagram of simple turbojet engines.
Entropy does not change during the ideal compression and expansion process which
is illustrated with red lines. This hypothetical process is isentropic which is adiabatic
and reversible. However, it is not the real case. Compression and expansion events
occur with loss which increases the entropy. The actual compression process involves
greater temperature rise and similarly, actual turbines expand the air to a higher
temperature. Also, during the heat addition process and in progression of the air
through the engine, there are pressure drops in real cases. Blue lines represent the real

Brayton Cycle [1, 2, 3, 4, 5].

Thermodynamical performance models of engines guide the design process. These
models establish the fundamental requirements for aerodynamic and mechanical
design. They derive the overall performance criteria and objectives of the engine.
There are several techniques for engine performance modeling. Primarily,
performance modeling techniques are divided into two categories: dynamic modeling
and data driven modeling. The most common dynamic modeling technique is zero-
dimensional component matching type thermodynamic modeling. (Hereafter it is
mentioned as dynamic or thermodynamic model.) The dynamic model completely
represents engine behavior during operation. If there is information about component
performance, thermodynamical equations and system dynamics, engine behavior can
simulate with creating dynamic models. Therewithal, gas turbine engine producers
enquire about the system behavior to direct the engine design, constitute the system

requirements. Hence, dynamic models become crucial.

Basically, thermodynamic models are based on mass, energy and momentum
conservation laws and include component performance maps, tables and mathematical
calculations. Numerical methods are employed to estimate dependent variables while

varying independents to achieve model convergence [1, 6, 7].

On the other hand, data-driven models may require lack of information about the
system or basically to understand the test performance of the system [8, 9]. Data driven
modeling of gas turbines is one of the main scopes of the study. Hence, before focusing
on the gas turbines data driven models, general data driven modeling techniques are
investigated. Figure 1.2 illustrates the diagram of system modeling techniques which

includes the scope of the thesis. Upcoming sections explain the basic theory of the data



driven dynamical system modeling techniques and their literature applications to gas

turbine engines.

Physic Informed NN
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Regression

System Identification

Supenvised Machine
Leaming

Dynamic Modeling

Data Driven
Dynamical System
Modeling

System Modeling

Classification

Figure 1.2 System Modeling Techniques

Discovering the governing equation of dynamical systems, modeling from data is
critical part of engineering, natural science and applied mathematics problems. Many
approaches are proposed to understand the physical relation, detection of anomalies,

deriving the equations.

SINDy (Sparse Identification of Nonlinear Dynamics) is one of the recent interpretable
algorithms to identify the governing equation of system with using fewest possible
terms. It aims to avoid overfitting by promoting parsimony and maintaining a balanced
level of complexity, robust to noise and capable of handling high-dimensional data

[10, 11, 12, 59].

Some industries including aerospace have strict regulations and -certification
requirements to make the use of interpretable logics and algorithms crucial. As a result,
use of machine learning or artificial intelligence derived algorithms is not preferred

for onboard control systems [11].

SINDy has advantages to understand complex physical systems, allowing an
interpretable approach and discovering the mathematical equation behind the unknown
system behavior, and serving as an alternative to machine learning models, while also
enabling identification of system with limited data [12]. Table 1.1 demonstrates the

advantages and disadvantages of SINDy.




Table 1.1 Advantages & Disadvantages of SINDy [11,12,19]

Advantages

Disadvantages

Interpretability

Parsimonious modeling
Requires low amount of data
compared to machine learning
algorithms

Flexibility of the candidate
function libraries

Effectiveness is highly
dependent on chosen candidate
library

Performance of SINDy may
differ in a high dimensional
system, some modifications may

e Applicable in many scientific be required

areas e Challenges with  Stochastic
* Avoid overfitting Systems with random initial
conditions requires multiple

trajectories

e Data quality, noise may affect to
model

The thesis is structured into five primary chapters. Chapter 2 presents literature review,
encompassing the fundamentals of gas turbine engines, dynamic engine modeling,
data analysis methodologies, data-driven system modeling and their applications to
gas turbine engines. This includes regression analysis, artificial neural network
(ANN), Nonlinear Autoregressive Exogenous (NARX) models, Dynamic Mode
Decomposition (DMD) and an in-depth examination of Sparse Identification of
Nonlinear Dynamics (SINDy). Chapter 3 provides a detailed explanation of the
methodology and approaches including developed engine model for data generation,
introducing created SINDy model and its parameters and validation and comparison
techniques. Chapter 4 demonstrates the results of the SINDy model, discussions, and
proposed applications ideas to real life challenges. Finally, Chapter 5 offers the

conclusion.



2. LITERATURE REVIEW

2.1. Gas Turbine Basics & Performance

Total temperature and pressure terms are used in gas turbine thermodynamic
calculations. From the isentropic relations Stagnation Pressure (or Total Pressure) can

be found as below formula:

o= (14 L2m2) @.1)

And the total temperature can be also calculated as:

Te _ Y=1yr2
—=1+1-M (2.2)

Turbomachinery component performances represented with component map which
indicate the working mass flow rate, isentropic efficiency and pressure ratio of the
component. Component maps of the JT9D turbofan engine are illustrated in
Figure 2.1, Figure 2.2 and Figure 2.3 which are derived from the T-MATS [6,7]. The
axis of the maps is mass flow rate and pressure ratio. Black lines represent the rotating
speeds, the blue lines indicate isentropic efficiencies, and red lines indicate the
compressors stall line. If two of the parameters-mass flow rates, pressure ratio, or
speed-are known, the third can be determined. Additionally, Kurzke [13] offered
auxiliary lines to facilitate the reading of maps by gas turbine performance calculation
programs. In addition to this, corrected parameters are used in component maps.

Table 2.1 illustrates the corrected parameters and their calculations [2].



Table 2.1 Gas Turbine Corrected Parameters

Performance Symbol Unit Corrected Parameter
Parameter
Temperature T K or °C T
Vo
Pressure P kPa p
é
Mass Flow Rate W, m or m kg/s or 1b/s w6
é
Rotational Speed N rpm N
Vo
Shaft Power Pw kW Pw
5\

600 BOO 1000 1200 1400 1600 1800 50 100 150 200 250
We, lomvs We, Ibm/s

Figure 2.1 JT9D Engine Model Fan & LPC Map

JT9D Engine Model HPC Map

10 20 30 40 50 60 70 80 90 100
We, Ibm/s

Figure 2.2 JT9D Engine Model HPC Map




JT9D Engine Model HPT Map

JTID Engine Model LPT Map

42

424 426 428
We, Ibm/s

422

55

4.5

PR

35

25 T 06e.

106 106 107 108 109 110 111 112 113 114 115
We, Ibm/s

Figure 2.3 JT9D Engine Model HPT & LPT Map

Table 2.2 presents the engine stations definitions of JT9D engine which is the high

bypass unmixed turbofan type engine [6,7].

S1

8

S13

S21
[ S22

S3 S5

S7

B i1y

Figure 2.4 JTOD Engine Stations & Nomenclature [6,7]

Table 2.2 JT9D Dynamic Engine Model Station Numbering & Actions

Station Definition Model Actions
Numbering
Sl Engine Inlet Alt, MN and dTamb are converted to Tt & Pt
S2 Fan Inlet Intake pressure loss is added
Fan component calculations are performed
Flow is split according to bypass ratio.
S13 Fan Bypass Exit Flow enters the bypass duct
Fan component calculations are performed
Flow is split according to bypass ratio.
S21 Fan Core Exit Flow enters the engine core.
S22 LPC Inlet FAN-LPC inter-duct pressure loss is added.
S23 LPC Exit LPC component calculations are performed.
S24 HPC Inlet LPC-HPC inter-duct pressure loss are added.

7




Table 2.3 Continued: JT9D Dynamic Engine Model Station Numbering & Actions

HPC component calculations are performed.

Cooling bleeds are extracted.
S3 HPC Exit HPC heat soakage is performed.

Burner component calculations are performed.
S4 Burner Exit Burner heat soakage is performed.

HPT component calculations are performed.
HPT  heat soakage is  performed.
S45 HPT Exit HPT cooling flow is added.

HPT-LPT inter-duct pressure loss is added.
LPT component calculations are performed.
LPT heat soakage is performed.

S5 LPT Exit HPT cooling flow is added

Bypass pressure loss is added.
S17 Bypass Nozzle Exit | Bypass flow exits from the nozzle.
S7 Core Nozzle Exit Core flow exits from the nozzle.

2.2. Engine Dynamic Modeling

Engine dynamical modelling is based on thermodynamics and continuity, energy and
momentum conservations laws. Table 2.2 also illustrates the processes performed at
each station during modeling. The basics of compressor, burner and turbine component
modeling calculations are illustrated as flow diagrams respectively in Figure 2.5,

Figure 2.6 and Figure 2.7 [6, 7,1, 4] .
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Figure 2.5 Flow Diagram of Basic Compressor Modeling Calculations
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‘ Get the CC eff, PR loss from table |
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Calculate the W,,,;
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I

Calculate the T,,,;
Tour = h2T(hgye, FARgyt)

Figure 2.6 Flow Diagram of Burner Modeling Calculations
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I

Figure 2.7 Flow Diagram of Basic Turbine Modeling Calculations

2.2.1. Transient Behaviors

The dynamics of the transient behavior of gas turbine engines are outlined in the
Figure 2.8. Each dynamic has to be employed to represent the precise transient

behavior of an engine.

Shaft Dynamics

Heat Soakge

Gas Turbine Engine
Dynamics

Volume Dynamics

Sensor & Actuator
Dynamics

Figure 2.8 Gas Turbine Engine Transient Dynamics

2.2.1.1. Shaft Dynamics

Shaft dynamics is the main behavior of the engine. While the engine is rotating a
steady-state condition, changing the fuel flow rate causes the power unbalance
between the turbines and the compressors. This power imbalance results in the transfer

of mechanical power between the compressor and turbine which are connected by a
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shaft until equilibrium is restored. Basically, if more fuel is supplied than in the steady

state, the shaft accelerates; if the fuel is reduced, the shaft decelerates [1, 2].

dN _ Tnet

n 1 (2.3)

2.2.1.2. Heat Soakage

Heat soakage involves heat transfer between gas flow and metal parts during thermal
disequilibrium. For the dynamic modeling aspect, heat transfer between complex
geometries of the engine is simplified for practical. Generally, lumped capacitance

models are preferred. [1, 14] Blades, disks and casings are assumed as bulk mass.

Heat transferred between the gas and metal can be calculated with following formula

Q=h= AS(Tgas — Tw) (2.4)

Also, it can be written as

m * Cp * d;{—;“ = h * Ag(Tgas — Trn) (2.5)

Thereby, the gas temperature can be calculated as

mxcp dT
h+Ag dt

Toas = Tm + (2.6)

With integrating the metal temperatures, a new state can be obtained.

2.2.1.3. Volume Dynamics

Volume Dynamics are high frequency dynamics of gas turbine engines. They represent
the mass flow transfer between the volumes. Volume Dynamics become crucial when

modeling of surge and stalls [2].

dp
Wi, — Wyt = Vol * — (2.7)
(1+ L2m2)YIRsT
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2.2.1.4. Sensor Modeling

The measurements exhibit inherent delays and uncertainties. Sensors can be modeled
as first-order lag where the time constant is the key parameter characterizing the delay.
Time constant represents the time required to reach ~63.2% of its final value under
step input. Additionally, uncertainties of the sensors can be effectively modeled using

random Gaussian noise generation [6,7].

Sensor Response with 1sec time constant

1000

Step input

900 | first order sensor response | |

800

700

600

500

Magnitude

400

300

200

100

0 2 4 6 8 10 12 14 16 18 20
Time[s]

Figure 2.9 First Order Sensor Modeling with 1 second time constant value

Chapter 3.2 will describe these dynamics application into JT9D Engine Model.

2.3. Data Analysis

Some metrics and quality parameters are used to determine model performance:

The difference between the observed value from the model and the corresponding

value is called as residual.
e = yi—Ji (2.8)

The Least square approach is used to optimize the model to find the best fitting curve

with minimizing the sum of squared residuals.

Mimimize RSS = YiL; wi(e)? = XiL; wi(y; —§i)? (2.9

Where:
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RSS is the Residual Sum of Squares or also called the sum of squared errors.
n: the number of observations.

y; : Observed value of the variable.

¥;: Predicted value of the variable.

w;: Weight factor. It can be used for specific problems when the residuals have

variance. However, for the basic approach, w; can be taken as 1 [10,15,16].

In practice, scientific programming of the regression on python, the library of “scikit-

learn (sklearn)” uses least square approach to fit the regression models [17,56,57].

2.3.1. Model Performance Metrics

Root Mean Squared Error (RMSE) can be used to decide the performance of the model
to make predictions and comparisons between the models. Lower RMSE indicates

better model performance.

RMSE = 252, 57— 9)2 (2.10)

Another important parameter, R? score, is a metric that indicates how well the model
explains variance in the data. R? is a proportion explanation and ranges from 0 to 1
and higher R? indicates a better model. 1 corresponds to the perfect fit but also can be
indicated of the overfitting into variables it may be problematic when extrapolation is

needed.

2

R? = 1 — D1 0902

2.11
Z?:l (yi__')_/ )2 ( )

Where:
y: Mean of actual values.

Variance & Standard Deviation are fundamental statistical measures that indicate the
dispersion of the dataset. Variance measures the average squared of deviation from the
mean of the dataset. On the other hand, standard deviation is the square root of the
variance [10, 15, 16]. Standard deviation is more comprehensive, expressed in the

same unit as the original data.
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Variance of population can be formulized as:

(6) =3k (i —7)? (2.12)

For a sample variance instead of population, n — 1 is used instead of n.

And standard deviation can be expressed as:

o = (Lt 0=y 2.13)

In normal distribution of data set, 68% of data falls in one standard deviation and two
standard deviations covers 95% of data set. Standard deviations are also used to

compute confidence intervals-levels.

Residual Standard Error is squared root of RSS divided by the degrees of freedom of

the model; this metric is a measure of accuracy of the regression model.

1
n—-p-1

RSE =

RSS (2.14)

and

1 PN
RSE= |3, (=917 (2.15)

p_l i=1

p: the number of independent variables. The term of (n — p — 1) is called as degrees

of freedom.

Lower RSE indicates goodness of predictions means that model’s predictions are close

to actual values. RSE is more direct measure of prediction error rather than R? score.

Also, Mean Percentages Error (MPE) can be formulated as below:

MPE = 220%Yi-5i (2.16)
n Yi

14



Akaike Information Criterion [15, 16, 10, 18] is one of the model selection criteria that
penalized log-likelihood measure, used to find best approximated model to true model

or data.

AIC = —2In(L) + 2p (2.17)

In other representation of AIC

AIC = nln (Z2) + 2p (2.18)

If the likelihood function increases score decreases therewithal number of terms
increases, AIC score increases with slope of 2p thus penalize non-parsimonious

models. AIC does not depend on the sample size.
Where:

L : likelihood function under the fitted model

p: number of parameters

SSE,: sum squared error

Bayesian Information Criterion (BIC) [10, 15, 16, 18] is similar to AIC but additionally

adding extra penalty term as the sample size. Higher the sample size increases to BIC

score.
BIC = —2In(L) + p * In(n) (2.19)
or
BIC = nln (222) + p «In(n) (2.20)
n
Where:

n : number of data points or sample size

Lowest AIC/BIC scores may indicate the better model for given data.
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2.4. Data Driven System Modeling

2.4.1. Supervised Machine Learning

Data-driven modelling of a system becomes apparent, when mathematical modelling
is not possible due to unavailability of the system [9]. Machine Learning is one of the
data driven techniques that allows to create models to make predictions and decisions.
These methods enable the identification of patterns and relationships within data. The
theoretical foundation of machine learning is based on regression techniques and
categorized as supervised machine learning and unsupervised machine learning.
Supervised machine learning involves two primary task types: regression and
classification. Classification models predict categorical outputs and regression models

predict continuous outputs [11]. Regression models are studies concern.

In the literature, machine learning techniques have been extensively applied to
understand gas turbine engines nonlinear dynamics behavior such as the prediction of
component and sensor faults and diagnosis, performance estimations, engine

modelling [8, 9, 20, 21, 22, 23, 27, 30, 32, 33, 34].

2.4.2. Regression Analysis and Modeling

Regression method is a fundamental statistical technique for modelling the
relationship between dependent variables. Method helps to understand and predict the
relationship between variables, commonly used in engineering, science & economics.

[15] Regression models can be categorized into linear and nonlinear approaches.

2.4.2.1. Linear Regression
Linear regression model can be stated as follows:

Yi = fgo + BIXi + Si (221)

Y;: Response variable
3, and f3;: regression coefficients

X;: predictor variable
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g;: random error component, Errors are assumed to have mean zero and variance are

uncorrelated.

The relation between response and the predictor variables are linear. It is said to be

“Linear in the parameters and linear in the predictor variables” [16].

Let assume an experiment is done with a spring and various objects with known mass
(independent variable) to observation of Hooke’s Law and estimation of spring
constant. The extension of a spring was measured when different masses were
attached, and all data were collected. According to Hooke’s Law, the extension of
spring is proportional to the force applied, which is due to gravitation. In this
experiment Linear Regression model will be fitted to estimate the spring constant.
Another example is application of Linear Regression through measured data. Let
assume certain temperature measurements were done in a field in a field and data were

collected as a time variance as Figure 2.10.

Temperature Measurement in a Field
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Figure 2.10 Temperature Measurement in a Field

Measurement has some random error, and one can observe that, temperature is
increasing linearly with time. Regression models can be implemented to estimate

temperature in present and predict future behavior.
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Temperature Measurement in a Field
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Figure 2.11 Temperature Measurement in a Field with Linear Regression Model

Regression Model with least squares approach is fitted to data and the regression

equation is:

Y; = 6.04 + 2.8X; (2.22)

Models’ standard deviation of error is 3.4 and RSS value of 1193.99. Besides that, the
accuracy of the model can be enhanced. One can observe that there is some suspicious
data, these are not fit rationally to other measurements. It is called outlier. If the outlier

data are removed from the model, the performance is improved.
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Temperature Measurement in a Field
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Figure 2.12 Linear Regression Model without outliers

Hence, the standard deviation of Error becomes 1.84°C and RSS value is 388.68. Here,

model performance is significantly improved.

With obtained equation from the regression model, prediction of future behavior of the

system can be done.

2.4.2.2. Polynomial Regression

Polynomial regression models are special cases of linear regression. Models contain
higher order terms. For example, third order with two variables polynomial regression

model can be shown as [2]:

Yi = BO + ﬁlxl + BZXZ + E3X% + B4X% + fng% + B6X% + B7X%X2 + nglxg +
Box1%, + € (2.23)

2.4.2.3. Ridge Regression

Ridge regression, also known as L2 regularization, is one of the types of linear
regression models and is a statistical regularization technique to reduce errors caused
by overfitting. Rigge regression is used to correct multicollinearity when the least
squares estimates are unbiassed. When the RSS score goes to 0, models perfectly fit
the data however it could be indication of overfitting for training data set and tend to
highly sensitive any minor variance in the new test input set, another word, model can

be unstable if the coefficients are too high. Ridge regression is similar to the ordinary
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least square method but there is another parameter that regulates the high value model
coefficients. This term is called as regularization or penalty parameter in RSS function.

Penalty term is the sum of squares of the model’s coefficients [24, 25].

Minimizing:

L2 =RSS+AYL; B)*=XL; (i —Fi)*>+AXL; (B)?  (2.24)

Where:

Y (yi — §; )?%: residual sum of squares term. It is a measure of the difference between

the model prediction and the real term.

AYR ., (8;)?: regularization term or shrinkage penalty is small when the B model

coefficients are close to zero. This term cannot be zero.
A: Ridge parameter, penalty coefficient and should be A = 0
L (8)?%: sum of model coefficient

A term decides the impact of the coefficient magnitude, controlling the trade-off
between fitting the data and shrinking the coefficients. When the A closes to the 0, the
penalty term has no effect and ridge regression become ordinary least squares estimate.
However, A closes to the oo, the impact of the shrinkage penalty grows then the

coefficient estimations approach to zero and leading to underfitting to data.
An illustration of Ridge Regression Performance can be found in the example below.

Let be three features and dependent function as “x1, x2, x3 and y” in a random
generated data to create nearly collinear features. The first and second features are
almost identical but only x2 has noise and the third one is a sine function. Additionally,

y value has a noise.

Let y value be:

y = 5#*sin(2 * x * M) + 2 * x2 + error (2.25)

After that, data were split into two for training (60%) and test (40%). Then, trained
with high order polynomial regression model (15th Degree) to prone to overfitting.

RSS and Ridge Regularization terms were used. First A penalty coefficient is chosen

as 100.
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On the Figure 2.13 ordinary least square method (OLS) fit perfectly to training data

However, test data performance of OLS is significantly lower with comparing to Ridge

regularization in Figure 2.14.

Training Set: OLS vs. Ridge Regression Predictions

10.0 4 Training Data
— Ordinary Least Square Predictions (Train)
—— Ridge Predictions (a=100.0, Train)
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0.0 0.2 0.4 0.6 0.8 10
Feature x1

Figure 2.13 Ridge Regression Example Training Data Results

Test Set: OLS vs. Ridge Regression Predictions
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Figure 2.14 Ridge Regression Example Test Data Results

Another illustration in Figure 2.15 shows the difference of prediction with Least
Square method and Ridge method. Gray points show the true values, and red & blue

points show the trained model results. While prediction with OLS has 734.87 MSE,
Ridge regression has 6.1475 MSE.
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OLS vs Ridge Regression: Test Data Predictions
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Figure 2.15 Ridge Regression Example Performance

It is understood that Regularized term overcomes the overfitting problem while
decreasing the coefficient of parameters in this specific example. If the penalty

coefficient is close to 0, Ridge regression closes to Least square method.

2.4.2.4. Lasso Regression

Least Absolute Shrinkage and Selection Operator (Lasso) regression is similar to
Ridge regression but uses L1 penalty instead of L2. While L2 norms indicate sum of
squares of coefficients, L1 norm uses sum of absolute value of coefficients. L2 penalty
shrinks coefficients to zero but not able to become absolute zero, coefficients never
equal zero in Ridge regression. However, Lasso regression allows to reduce coefficient
to be zero. Lasso regression reduces the number of independent variables affecting the
output, has advantages when feature selection is critical in high dimensions

[24, 25, 58].
Minimizing:

L1 =RSS+AXL, IR =Xy (vi—9i)? + A%, I8 (2.26)
2.4.2.5. Elastic Net Regression

Elastic Net Regression is a combination of Lasso and Ridge Regression, penalizes the
L1 and L2 norm of the weights and can be formulized as below [10,26].
Minimizing:

22



RSS+ A Xty (B)? + A2 2Ly I8l = 2Ly (i —9i)? + A iy (B)? +
A Xing 1B (2.27)

With A;, 1, = 0

Deciding the A penalty term is a trade-off between bias and variance of the system. As
bias increases, a model tends to have less accurate predictions on the training data set.
Conversely, if variance increases, model predicts with lower accuracy on the test
dataset. Ridge, Lasso, or Elastic Net may introduce higher bias in training dataset
compared to the least square approach, which can result in a higher mean squared error
(MSE) in training. However, these methods often achieve lower variance in the test

dataset [24].

2.4.2.6. Nonlinear Regression

Nonlinear regression is a regression technique, where the functional form is nonlinear

in the parameters. The model may include exponential or logarithmic terms [16].

Yazar et al. [27] applied various regression models to predict a compressor and
turbines mass flow rates and efficiencies based on CFD data of radial compressor, high
pressure and low-pressure turbines. The state parameters of regression models were
speed and pressure ratios over a range of idle to maximum speed. They tried quadratic,

logarithmic, exponential, linear model and compared their performance with AIC.

2.4.2.7. Symbolic Regression & Genetic Programming

The concept of genetic programming, formalized by Koza [28], is a powerful paradigm
for addressing complex optimization problems. Genetic programming is extensively
employed across diverse scientific disciplines such as parameter estimation and
optimization. Notable applications include the tuning the controller gains [10] and

determination of optimum scaling factors for turbomachinery components maps [29].

Schmidt and Lipson [13], developed an automated approach to distill analytical natural
laws from experiment data, creating a model without prior expert knowledge. They
employed symbolic regression method, an evolutionary computational technique, for
identifying nontrivial conservation laws by analyzing partial-derivative relationships

in data and comparing symbolic derivatives from model to numerical partial
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derivatives from data and improves their models with the find to best equation from
random generated candidate symbolic functions including pendulums and harmonic

oscillators.

Kim et al. [30] introduced an approach to prediction of gas turbine engine transient
behaviors based on component map scaling factors. Also, heat soakage effects of
components and thermocouples were added into their model in an attempt to match
simulation results to test data. Applied scaling factors to component maps and heat
transfer coefficient were optimized by using genetic algorithm (MIGA). They created
a model for a low bypass F100 turbofan engine and verified them by applying their
method to F404-GE-400 engine. Figure 2.16 shows their method’s flowchart [30] first
adaptation cycle was done for steady state performance and second was for enhancing
transient performance of their model. Hence, heat transfer correction factors
optimization employed in second adaptation. They concluded that models normalized
root-mean-square deviation was significantly reduced after employing heat transfer

coefficient scaling optimization.
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Figure 2.16 Flowchart for the engine performance adaptation using component scaling
and Genetic Algorithm [30]

2.4.3. Artificial Neural Network (ANN or NN)

Neural Networks are characterized by their nodes and layered structure to learn
patterns from data. There are various applications in gas turbine engines, some of them

are mentioned below.
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At the beginning of the 2000’s Lazzaretto and Toffolo [31] implemented a two-layer
feed-forward neural network (NN) topology to predict the performance of industrial

61.54 MW power plant gas turbine engine.

Figure 2.17 Neural Network Topology for the plant [31]

The model used ambient pressure and temperature and plant output power as inputs
while the outputs included compressor outlet temperature, turbine outlet temperature,
compressor inlet mass flow rate, fuel mass flow rate, and the compressor pressure ratio.
A hyperbolic tangent sigmoid function was employed as hidden layer and output layer
transfer function; however linear transfer function was also employed as output layer
transfer function in some cases. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) and
Levenberg-Marquardt backpropagation algorithms were used as learning algorithms.
The authors reported the highest prediction error of approximately 1% across all output

parameters.

Sina et al. [20] claims that Dynamical Neural Network (DNN) is an effective tool to
fault detection and isolation of two spool jet engines. They focused on component
faults such as decreasing efficiency and capacity of the turbines and compressors and
created DNN models for each fault which are taking sensor measurements such as
shaft speed, temperature and pressure measurements as input. Each fault has own DNN
model to isolate fault from health model Figure 2.18 shows the schematic diagrams

of fault isolation.
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Figure 2.18 Sina et al. Proposed Fault Detection Schematic with Dynamic Neural
Network Architecture [22]

Asgari et al. [21] studied black box modelling of a single shaft gas turbine engine with
using Recurrent Neural Networks (RNN) as a part of Artificial Neural Networks. In
RNN, each layer has a recurrent connection. RNN algorithm was adjusted to predict
accurately of gas turbine engine dynamics. As selected inputs were fuel flow, load,
ambient temperature and pressure so shaft speed, temperature and pressure of some
points, compressor pressure ratio and efficiency of gas turbine were output parameters
of RNN structure. Results claim that the percentage of RMSE is averagely smaller than
3% on test data.

Hidden Layer

\ .

Figure 2.19 Asgari et al.'s Structure of the Recurrent Neural Network RNN 4-H-9 of
a single shaft gas turbine engine [23]
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Kim et al. [32] designed an approach to predict transient behavior of aircraft engines
with employed ANN model with a radial basis function (RBF). They created an NPSS
based model of low bypass F100-PW-100 turbofan engine from literature data called
as first principle model to create data to train ANN model, and they built a simulation
approach to enhance the performance of data-driven ANN model. Inputs of the model
were fuel mass flow rate and ambient conditions. They claim that their proposed
approach performs better than conventional ANN with RBF models, the R-squared

values of the output parameters are higher than 0.98, one can show in Figure 2.20.
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Figure 2.20 Kim et.al.' s approach to data driven ANN with RBF model for turbofan
engine [32]

Liu and Karimi [23] investigated the performance prediction of heavy-duty gas turbine
in a power plant by employing machine learning. They developed models to predict
performance parameters, such as compressor and turbine operating characteristics and
related gas temperatures based on various input variables and model structures.
Specifically, they employed surrogate models including High Dimensional Model
Representation (HDMR), and supervised machine learning techniques, such as ANN,
trained on historical data. The ANN was configured as multi-layer perception (MLP)
with one hidden layer. Their results claim that both HDMR and ANN models offer
effective prediction of gas turbine characteristics. Furthermore, they developed
correction curves that can serve as a basis for health monitoring and fault diagnosis of

the engine.
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2.4.4. Nonlinear Auto Regressive with External (Exogenous) Input
Model (NARX)

NARX is a recurrent neural network structure that is characterized by a delay of input

and output signals used for modeling time series data [13]. It predicts the current value

of an output based on its past values. NARX model, as a recurrent neural network, has

the capability of capturing dynamics of complicated systems such as gas turbines [50].
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Figure 2.21 NARX model Structure [8]

Yu and Shu [8] introduced NARX identification modelling approach for high-bypass
JTOD turbofan engine. Above idle engine data sets were generated by integrating the
NASA T-MATS [6, 7] module for the prediction model. The fuel-air ratio (FAR) was
used as the model input while high- and low-pressure spool speeds were predicted.
They demonstrated that NARX model accurately identifies the dynamic characteristics
of JTID turbofan engine with the mean error value (An) of 0.008, where An was

defined as

o= [ty -

Where:

N, : low pressure shaft speed, Ny: high pressure shaft speed and N/, N;;: predicted

value.

Asgari et al. [9] applied NARX model to investigate the starting phase of heavy-duty-
single-shaft gas turbine engine. They utilized over 1300 test data sets to train the model
and validated it with test data under varying ambient and load condition. The observed
RMSE values depended on training curves. The number of hidden layers and input

parameters was selected to optimize performance while maintaining model simplicity.
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The results demonstrated that NARX models have the potential to predict engine
dynamics effectively. Furthermore, the authors noted data-driven models could

provide diagnostic information for the gas turbines.

Pogorelov et al. [13] developed a dynamic model for gas turbines by using recurrent
neural networks (RNN) with NARX. The model was trained using start-up, ground
and flight test data from the engine and implemented in a hardware-in-the-loop (HIL)
system with a Full Authority Digital Engine Control (FADEC) closed-loop-control.
Consequently, the NARX model performed successfully in HIL test bed with a
FADEC. However, the authors also noted that the neural network model exhibited
reduced performance during sharp transition point such as starter shutdown and end of

the acceleration.

Giorgi and Quarta [33] investigated the application of machine learning and artificial
neural network techniques to predict Exhaust Gas Temperature (EGT) using their
Viper 632-43 engine model, comparing the performance of these methods. Various
input combinations, including atmospheric conditions, shaft speed, turbine inlet
temperature, fuel mass flow rate, were tested using MultiGene Genetic Programming
(MGGP) as Machine Learning techniques to explore mathematical relationship
between input parameters and EGT. The results indicated that MGGP is an effective
technique for EGT estimation. Additionally, the Nonlinear Autoregressive with
Exogenous Inputs (NARX) model, employed as an ANN, was used to predict EGT for
the next time step. The authors employed Bayesian Regularization, Scaled conjugate
gradient and Levenberg-Marquardt as training algorithm, with They reported Bayesian
Regularization has higher R-squared performance. However, they noted that NARX
networks require the output parameter from the previous time step. In the case of

output parameters that are unavailable, NARX models cannot be used.

2.4.5. Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition is used to dimensional reduction of high dimensional
systems and create a model how the system evolves in time. DMD is an equation-free,
data driven method to obtain linear reduced order models allows estimate the spatial
temporal modes without requiring any pre-knowledge about the system

[10, 34].
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Basic application of the DMD start with collecting number of pairs of snapshots of the

systems states.

I
X; Xz o .. Xn_l] (2.29)

And

||
Xy X3 e Xn] (2.30)

Where n represent snapshots, thereby each column are snapshots along to dynamics of
the system. X matrices represent of each spatial measurement snapshot per At,

however X' is the matrices of shifted At time step into future.

DMD algorithm’s objective is to find the best fit linear operator "A". Essentially, DMD
approximates the leading eigen decomposition of the eigenvalues, computes the

dominant eigenvalues and eigenvectors of A without computing totally A matrices.

X' ~ AX 2.31)

Basically, on theory of DMD, X is recomposed with using singular value
decomposition to find dominant coherent structure. Then, some matrix operations are
computed with using reduced matrix to find eigenvalues and eigenvectors (called as
modes). Finally, obtained low-rank structure represents the systems’ future state

behaviors [10,35].

Krishnan and Sever [34] investigated the vibration response of an aero engine using
Input-Output Dynamic Mode Decomposition (ioDMD) method. They found that
10DMD method requires full access to state of the systems, which is challenging for
aero engines due to their limited measurement capabilities. To address this, the authors
proposed a multi-resolution i0DMD approach, which enables the approximation of the
states of the system. This approach improves capturing of dynamical behavior of

measured vibration data [34].

30



2.4.6. Sparse Identification of Nonlinear Dynamics (SINDy)

2.4.6.1. Lasso Regression

A matrix with most of its elements are zero defined as sparse matrix. For instance, A

matrix is sparse matrix.

0 0 0
A=10 0 096 (2.32)
0 121 0

LASSO regression can be used in parameter selection problems. Iy regularization
manages the sparsity and weights the parameters relation and effectiveness to the

system dynamic.
f=al‘g€minllf'@—YI|z+ AMIE (2.33)

Sparsity balances the complexity and accuracy of the model which can be in optimal
position in a Pareto front. [11, 36] A parameter weights the sparsity constraints. SINDy
algorithm uses l; regularization or sequential thresholded least square (STLSQ)
[11, 12, 36]. [; regularization has more sparse representation however STLSQ is most

robust with noisy data [19].

Pseudo logistic diagram of sequential thresholded least square (STLSQ) can be

illustrated as follows.

yes

Define the ]
threshold of Force to .sparsﬂy _Of no Perform regression
sparsity > terms while updating *| which have non-zero Update x;

the coefficients coefficient

A

i |

Figure 2.22 Logistic Diagram of Sequential Thresholded Least Square, based on
Brunton et al. [12]
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2.4.6.2. Theory

SINDy algorithm is explained in detail on the original paper. [12] The underlying
theory and practical solution proposal of finding dynamical system governing
equations have inspired this thesis. This section summarizes the theory of SINDy

based on original paper [10,12].

Below notation description is stated as follows. Scalar quantities represent in lower
case letters (e. g., x), vector quantities represent in bolt lower case letters (e. g., x), and

bolt capital letters indicate matrices.

Let x(t) € R™1 is the n-dimensional state vector at time t.

x(0) = f(x(D)) (2.34)
Where,
x(t) = [x1(t) x(t) - x,(®)]T and f (x(t)) is nonlinear function that define
the system.

The object is that estimate the function f from collected time-based data where f

consist of a few elements making it sparse in the space of possible functions.

XT(tl) | | I
x=[¥)| [xl(ti) (8 . Xn(t) (2.35)
|

o (m) |

Where, X € R™™ is matrices collection of the data which is composed n -

dimensional state and m- dimensional time snapshots. ¢; indicates the i-th time step.

And the derivative of X matrix can be represented as below. Derivatives can be
measured or numerically calculated. Besides, filtering may be required due to high

noise level.

XT(tl) | | |
O e R EACA A AR (D (236)

T m) | |
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Candidate nonlinear function library of @(X) is constructed. Selection of the functions
are arbitrary based on operator decision. Candidate functions can consist of

polynomial, trigonometric or any other terms.

0(X) =

I I | | |
1 X XxP2 xPs . XPm sin(X) cos(X) sin(2X) cos(2X) --|(2.37)

|| | | .. | .
0X)=1[1 X XxPz xP3 . XPm .. (2.38)
| | | .. I

To illustrate, the above candidate function library consists of first degree (X), quadratic
(XP2), cubic (XP3) and nth degree polynomial terms. Also, trigonometric functions are

stacked into matrix. Quadratic term from the candidate library can be expanded as

below.
[¥1(t) X)Xt - 23(t)  x(t)xs(ty) i xA(ty)]

XPz = x%(_tz) X1(6)%2(L2) - x%(‘tﬂ X2 (E2)%3(12) 5x121(_t1) (2.39)
() X1(tn)02(m) . () Ta(ta)xz(m) § xR

Likewise cubic polynomials or trigonometric functions can be expanded. Operator is

free to choose any nonlinear function while creating of candidate function library.

Thereby, general equation of nonlinear system can be written as below.
X = 0(X)E (2.40)
Where E is sparse regression coefficient. Matrix can be illustrated as below.

[
E= [f1 $2 fn] (2.41)
[ I

The aim of the algorithm is that which arbitrary function is active in each row and how
the system behavior is represented in optimum and simple way with a few terms.

Hence, sparse regression problem is solved to obtain sparse regression coefficient E to
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determine the active terms. On the E matrix, only a few terms should be active while

many elements should be zero otherwise, solution cannot be sparse.

For some cases derivate of the function have noise. Then the equation becomes

X=0X)Z+ nZ (2.42)

Where Z is a matrix of independent Gaussian noise with zero means. 1 is the noise
magnitude. Measurement noise in the data can decrease the performance of SINDy.
Hsin et al. [19] suggested that smoothing the noisy measurement with Gaussian

process regression improves the effectiveness of SINDy, called as GPSINDy.

Lo 7 o2 R
L True Lorenz System rr Z9 LTy ey ERT ‘E“I o xi_ 1 xi_2' txi_30
1 Y [ o1 [ 0] I 0]
b= oly-2) 1 R R
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IIL. Identified System
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II. Sparse Regression to Solve for Active Terms in the Dynamics

Figure 2.23 Schematic of the SINDy algorithm, demonstrated on the Lorenz Equation,
Reprinted from Brunton et al. [12]

Figure 2.23 is the demonstration of SINDy algorithm under Lorenz system.
Measurements are collected in time based on the states of X and derivatives X. X
Matrix is consisted of X,y z states. Then, arbitrary candidate function @(X) are
constructed as consist of polynomial functions including first to fifth degree terms.
Sparse regression problem is solved to find coefficient matrix E = [§4, 5, &3] -
Colourful dots in the E matrix represent the active terms in function. Identified system

representation is demonstrated at the end of figure [59].
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SINDy performs well in system with low state dimensions and is applicable to various
types of systems. However, Corberta [11] mentioned that SINDy may be less capable
in higher-dimensional system, where determining the candidate library can be
challenging.  For stochastic system with random initial conditions, multiple
trajectories are required to accurately determine dynamics, which may require more

training data and that increase computational costs.

PySINDy is an open-source python package to apply the SINDy algorithm to scientific
model discovery [12, 37, 38]. The package involves many customizable features for
numerical differentiation, candidate function libraries (polynomial, Fourier), sparse
regression techniques. Also, it includes tutorials, guidelines and many application
examples. Figure 2.24, shows the basics of usage of PySINDy based on cited
packages.

Import the Related Libraries
(e.g. numpy, pysindy, matplotlib, scipy etc. )

‘ Import the data extract training and testing data set ‘

‘ Select the differentiation method ‘

!

Differentiate the data if measurements do not have
differentiation

1

Select the optimizer and threshold (e.g. STLSQ,
LASSO)
l

Select the candidate library from the feature library
(e.g. polynomial, Fourier)

!

[ Fit the model |

l

‘ Simulate the function ‘

|

‘ Compare the results ‘

Figure 2.24 Flow Diagram of Discovering the model with PySINDy package [37,38]

2.4.6.3. Applications

Machado and Jones [39] proposed SINDy-SI, an enhancement of the Sparse
Identification of Nonlinear Dynamics (SINDy) method, designed to model nonlinear
dynamical systems using sparse, noisy data by incorporating Side Information (SI)-
prior knowledge and constraints about the considered system. The authors highlight

that many existing system identification methods produce unreliable models, violate

35



physical laws and exhibit unreliable behavior outside of the training data. Therefore,
they propose SINDy-SI, integrates SINDy with Sum-of-Squares (SOS) programming,
enforcing sparsity and physical consistency through iterative optimization while

adhering to side information constraints.

The paper demonstrates SINDy-SI’s performance through numerical experiment on
the generated Lorenz system data with different noise scenarios and Single-Machine-
Infinite-Bus (SMIB) systems. Results show that SINDy-SI outperforms methods like
SINDy and Ordinary-Least-Squares, achieving a better balance in sparsity, accuracy,

adherence to system properties.

The authors of [40,60] employed SINDY during the system identification phase to
develop a nonlinear state space model of angular velocity dynamics for small-scale
turbojet engines enabling to estimate thrust. They highlight the difficulty of direct
measurement of thrust due to limited instrumentation of small turbojet engines. Hence
accurate thrust estimations become challenging. To address this, authors propose a
combination data driven method to estimate thrust: Grey-box modelling of the jet
engine to identify the system with using SINDy method and EKF (Extended Kalman
Filter) refines the model parameters and thrust estimation from angular speed
measurement. They conclude to use second order candidate functions library based on
angular speed, first and second derivative of angular speed and input signal,
additionally to enhance accuracy they add steady state function derived from

experimental data. They identify the system as below [40]:

& = f(w,®,u) = Kgs(w — ayuPt — ;) + Kgi + K g0 + Kypaw?e  (2.43)

Where K, Kq , Kya»> Koea are model parameters, aq, by are identified from

regression on steady state data and ¢4 is idle angular speed.

Then, they use EKF to estimate thrust. Validation on a test bench with JetCat P160
and P220 turbojets shows an absolute mean error in thrust estimation below 2% of max

thrust, even during engine failures [40].

Numerical techniques allow accurate simulations of gas-turbine engine behavior
nevertheless require significant computational power during real- time application. A
turboshaft examples covers to prediction of delivered torque based on various flight

data of the AWI189 Twin Engine Leonardo’s helicopter [41]. Authors employ

36



supervised data driven techniques architectures, which are Feed-Forward Neural
Network (FFNN) and Long-Short-Term-Memory (LSTM) as a Multi Input Single
Output (MISO) Model and SINDy to derive the relationship between torque and
delivered fuel flow as low dimensional dynamical modelling. They conclude that
FFNN is not able to predict the torque properly and LSTM has better predictions. On
the other hand, SINDy allows interpretable, more accurate results without knowing

underlying dynamics especially using second order model to train SINDy model [41].

L’Erario et. al. [42] investigated data driven modelling for small turbojet engine’s
thrust. They applied second-order SINDy, Extended Kalman Filter (EKF) based
identification and iterative Least Square methods to analyze thrust behavior of the
engine in response to input and compared the method results with measured data. Their
findings suggest that EKF based identification outperforms SINDy and iterative least

squared method.
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3. METHODOLOGY

From the scope of thesis, SINDy algorithm is employed to the gas turbine engines as
a data-driven model. Identification and validation of data-driven modelling should be
based on real engine ground or flight test data. Since accessing such a big flight and
ground test data about real engines are company restricted, engine dynamic models
can be employed to generate time dependent data as other data driven examples on
literature. Concurrently, one of the fundamental principles of thesis is to conduct an

open-source study, ensuring transparency and accessibility.

NASA T-MATS tool is employed to generate dynamic engine data [6, 7]. T-MATS
tool was generated in MATLAB/Simulink environment. On the tool there is an
example of Pratt & Whitney unmixed high bypass turbofan JT9D engine course model.
Building upon the T-MATS structure and engine of this example, additional
enhancements have been incorporated while maintaining fidelity to the original design.
Detailed information about the modelling of JTI9D engine will be provided in

upcoming sections.

The PySINDy tool, a python package for SINDy [37, 38], is used to generate SINDy
model upon the JTID engine. PySINDy tool provides systematic and basic approaches
to application of SINDy algorithm. The research has focused on utilizing SINDy to
propose solutions for the challenges encountered in gas turbine engines. Thrust
estimation, turbine temperature prediction, fault diagnosis, and development of
SINDy-based dynamic engine model are the main aspect of the research. Figure 3.1

shows the methodology diagram of creating SINDy-based model.

|

Set the SINDy

Create & Simulate Model Parameters Compare the
the Engine — andCreatea [— Results
Model

M,

Sufficient

‘

Output ?

ATLAR 4
SIMULINK

Y V2

1) Create Dynamic Engine 1) Load the train and test
Model on data set to PySINDy
MATLAB/Simulink 2) Set Input and Variables
+ Includes: 3) Set Optimizer

*  Shaft Dynamics 4) Set Feature Library

= Heat Soakage 5) Set Differentiation

= Sensor & Valve Method

Dynamics 6) Train the Model

2) Set the Input Parameters 7) Simulate the test data
3) Run the Model

4) Generate Train & Test
Data

Figure 3.1 Methodology Diagram of Creating SINDy based Model
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3.1. The JTID Engine

The JT9D was Pratt & Whitney’s (P&W) commercial high bypass unmixed turbofan
engine. It was the first high-bypass ratio jet engine to power a wide-body aircraft. The
program was launched in 1965, and the first engine tested in 1966. The engine powered

the Boeing 747, Boeing 767, Airbus A300, Airbus A310, McDonnell Duglas DC-10

[43,44].

Figure 3.2 Pratt& Whitney JT9D Engine Cutaways [43, 44]

The engine has a single stage fan, 3-stage low pressure and 11-stage high pressure
compressors, annular type combustor and 2 stage high pressure and 4- stage low
pressure turbine. The engine’s weight is approximately 4150 kg. According to P&W
website [43] engine characteristics can be tabulated as below. Since the engine has

been in service for an extended period, its specifications may vary from one model to

another.

Table 3.1 JTO9D Engine Specification

JTID Engine Specification British Unit SI Unit

Fan Tip Diameter 93.4 inches 2372.4 mm
Length, flange to flange 132.7 inches 3370.6 mm
Take-off thrust 48000-56000 Ibf | 231.5-249 kN
Flat rated temperature 86 °F 30 °C

Bypass Ratio 4.8
Overall Pressure Ratio 26.7
Fan Pressure Ratio 1.67
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From the literature review some useful specifications are collected and deduced. It

should be noted that, the provided data depends on the variation model of JT9D engine
[6, 7, 45,46,47].

Engine controlled with Electronic Engine Control (EEC) unit.
Engine modulates the thrust with Engine Pressure Ratio
HPC has variable stator vanes.

JT9D engine uses handling bleed while acceleration to compensate surge margin of

HPC.

Inlet total temperature (Tt2), Inlet Total Pressure (Pt2), Low Pressure Spool Speed
(NL), High Pressure Spool Speed (NH), Low Pressure Turbine Exit total
temperature (Tt7, Exhaust Gas Temperature, EGT), Low Pressure Turbine Exit
total pressure (Pt7), Compressor Exit Static Pressure (Ps3, however it called as Ps4
on literature but remaining faithful to research station numbering, considering as

Ps3).

Electronic Engine Control limits the engine thrust according to maximum allowable

EGT and max spool speeds based on the ratings.
Engine is cruising at ~0.85 Mach
100% Low pressure spool speed is 3750 rpm.

100% High pressure spool speed is 8000 rpm.

JT9D-20 TURBOFAN ENGINE

©2014 Unitep TecHNOLOGIES CORPORATION — PRATT & WHITNEY DivisioN

Figure 3.3 Pratt &Whitney JT9D Engine Cutaway [43]
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3.2. JT9D Engine Model

JT9D dynamical engine model is developed in MATLAB/Simulink using NASA’s
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)
[6,7]. T-MATS provides a comprehensive library of gas turbine components, enabling
modular design within Simulink. The model generates time-dependent solutions based
on specific inputs. The overall comprises the JT9D engine component, sensor and

actuator models.

The model’s inputs include fuel flow rate (Wf) and atmosphere information such as
pressure altitude (Alt), flight Mach number (MN) and delta from ISA condition
(dTISA). These inputs are delivered to dynamic engine model which incorporates
thermodynamic calculations to produce outputs, including temperature, pressure, mass
flow rate and fuel air ratio at each station. Additional outputs include shaft speeds,
metal temperatures and performance outputs such as thrust, specific fuel consumption
(SFC). Selected outputs of the engine model are then transferred to sensor models

which are sensed. Figure 3.4 illustrates a simplified schematic of the model structure.

[Wi] >

Engine Model Sensor Model

Inputs Sensor Output

Figure 3.4 JT9D Engine Simplified Schematic of Model Structure

The engine model employs a multi-loop architecture. The outer loop iterates over time
t with integrator blocks generating the system’s next time-step solutions by integrating
the derivatives of shaft speeds and metal temperatures. These solutions are fed into the
inner loop, which consists of turbomachinery components in thermodynamical
imbalance. The systems imbalanced terms, dependents variables, transferred to
iterative solver. The iterative solver utilizes the Newton-Raphson (NR) method to

advance the plant model toward a solution by generating Jacobian matrices. The
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dependent variables, representing the inner loop’s component errors, are iterated using
a while-loop iterator until the converged tolerance is achieved. Upon convergence of
the step, the solver produces thermodynamically balanced independent variables,
which are unknows of the inner loop. The independents variables may include the input
mass flow rate (W2), bypass ratio (BPR), compressors R-Lines (or Beta Lines),
turbines pressure rations. Consequently, the system’s state solution is obtained,
allowing the model to progress to the next time step until solutions for all time steps

within the specified duration are achieved [6,7].

Inputs u(t) I = Inner Loop Engine Model 7 . $(t) Outputs

AI v b g f(x()

Iteration . Iterations
Frmah o [ ‘While Iterator

Alt, MN, dTISA, Wf

Stmulink Block

X(k+1) Tterative Solver
Independents TMATS Block Dependents
Tteration
Tmetal, N1, N2 Outer Loop Tmetal, N1, N2

Integrator Blocks

Figure 3.5 T-MATS Based Model Architecture [6, 7]

Figure 3.6 illustrates the engine modular modelling via Simulink. Component models
are arranged to solve step solutions and make thermodynamic calculations. The
calculations behind the component are based on Section 2.1. Employed components
maps FAN, LPC, HPC, HPT and LPT turbomachinery were illustrated in
Figure 2.1, Figure 2.2 and Figure 2.3. Each component block input/outputs are
defined as stations, to identify designated points based on ARP 755 standards [48].

Table 2.2 represents the JT9D engine station nomenclature.
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A B

Figure 3.6 JT9D Representative Schematic of Engine Modular Component Structure

The steady state performance of the JT9D engine model at 100% LP Spool Speed in
sea level static condition is presented in Table 3.2. The engine model has relatively
sufficient output performance with comparing literature information. The steady-state
outputs conform to the model described in the T-MATS example, ensuring consistency

with established benchmarks [7].
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Table 3.2 JT9D Engine Model Steady State SLS Output

Alt [ft] Flight MN dTamb Pamb [kPa] [le(‘]mb
0 0 0 101.325 288.15
Fuel Flow [kg/s] N1 [rpm] N2 [rpm] BPR EPR
2.364 3750.0 7887.5 5.1554 1.6029
Net Thrust [KN] Fg [kN] Fbypass [kN] Fcore [KN] | OPR
233.33 233.33 179.04 54.29 21.53
Station W [kg/s] Tt [K] Pt [kPa] FAR
S1 732.433 288.15 101.325 0
S2 732.433 288.15 100.514 0
S21 118.989 336.39 164.0930 0
S13 613.443 336.39 164.0930 0
S22 118.989 336.39 163.682 0
S23 118.989 440.84 378.829 0
S24 118.989 440.84 377.8823 0
S3 108.280 752.84 2163.751 0
S4 110.645 1480.82 2044.745 0.02184
S45 121.354 1153.79 758.044 0.01987
S5 121.354 813.31 161.116 0.01987
S7 121.354 813.31 159.505 0.01987
S17 613.443 336.39 162.862 0
FAN
Power
Rel. Corr. Speed We [kg/s] Pressure Ratio | Efficiency | [kW]
0.9511 738.34 1.6325 0.8961 35508.2
LPC
Power
Rel. Corr. Speed We [kg/s] Pressure Ratio | Efficiency | [kW]
0.9478 79.59 2.314 0.8742 12576.5
HPC
Power
Rel. Corr. Speed We [kg/s] Pressure Ratio | Efficiency | [kW]
1.003 39.46 5.726 0.8214 39284.6
HPT
Power
Rel. Corr. Speed We [kg/s] Pressure Ratio | Efficiency | [kW]
0.9978 19.26 4.994 0.9027 39284 .4
LPT
Power
Rel. Corr. Speed We [kg/s] Pressure Ratio | Efficiency | [kW]
1.0159 50.55 6.135 0.8988 48084.7
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From the perspective of dynamic modeling, the JTOD engine model incorporates shaft,
heat, sensor and actuator dynamics. These dynamics are sufficient to represent the
engine’s transient behavior above idle conditions. However, advanced dynamics, such
as stall and surge behavior, require volume dynamic modeling to simulate the
momentum and transition of the gas flow and energy between the volumes. As this is

beyond the scope of the thesis, volume dynamics were not modeled.

Shaft dynamic is the main dynamic of a transient behavior of the engine. The input of
the dynamic is shaft inertias, which have been taken as they are in the example: LP

shaft inertia is 135.6 kg.m? and HP shaft inertia 27.1 kg.m?.

Heat dynamics called as heat soakage, are employed for HPC, CC, HPT and LPT
components. However, according to low temperature behavior, heat dynamics are not
implemented to FAN and LPC. T-MATS has its own heat soakage calculation library
block. Lumped heat transfer models are employed. Thereby, each component is
modeled as a representative bulk mass. Inputs of each heat transfer block are tabulated

as Table 3.3. Input parameters are derived from literature [6 ,7 ,14]:

Table 3.3 JTOD Heat Soakage Model Parameters

Heat
Surface | Transfer
Wdesign | Tdesign | Area Coefficient | Mass | cp
Component | [kg/s] K] [m?] [W/m?K] [kg] | [J/kgK]
HPC 108.9 600 9.3 3271 608 520
CC 111.1 1111 0.9 3148 192 520
HPT 122.5 1278 4.6 3148 816 520
LPT 117.9 983 4.6 1022 704 520

The order of magnitude of heat transfer between the gas and metal is deemed
approximately appropriate and can be represented as heat transferred energy divided
by component power while accelerating the engine from idle to maximum thrust level

based on the following figure [1].
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Figure 3.7 JTOD Heat Transfer Model Behavior

Measurements exhibit inherent delays and uncertainties in their natural behavior. To
simulate realistic behavior, these dynamics were implemented into the engine model.
Sensors are modeled as first order lag systems with specific uncertainty values derived
from random noise generation. Table 3.4 specifies sensor modeling input parameters

for each sensor. Time constants represent the delay of the sensor under response to a

step input.
Table 3.4 JT9D Engine Model Sensor Specification
Time
Constant Max
Sensor [s] Range Uncertainty
N1- LP Shaft Speed [rpm] N/A 4500 rpm 0.20%
N2 — HP Shaft Speed [rpm] N/A 10000 rpm 0.20%
Tt2 -Fan Inlet Temperature[°C] 2 130 °C Max 1.5°C

Pt2 - Fan Inlet Pressure [kPa] 0.05 300 kPa 0.10%

Pt3- HPC Exit Pressure [kPa] 0.05 3000 kPa 0.10%

Pt7- Core Nozzle Exit Pressure [kPa] 0.05 300 kPa 0.10%

Tt7 - Core Nozzle Exit Temperature [°C] 3 725°C Max 5°C

Fuel flow is injected into the engine via metering unit, which is modeled as a first-

order lag system with a time constant of 0.7 seconds.

The model is generated in MATLAB/Simulink. Time step of the simulations is taken
as 0.01 seconds and Runge-Kutta (ode4) is used as solver [49, 50].
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The dynamics described above enable the model to adequately represent the transient

dynamics of JT9D engine.

3.3. Inputs to Generating Train and Test Data Set

The general input variables for a gas turbine engine include fuel flow rate, variable
vane actuator position, nozzle actuator positions (for engines with variable nozzle area)
and atmospheric conditions. Within the scope of this study, only fuel flow rate is
considered to model single-input-multiple-output system, simplifying the
methodology by excluding variable vanes. Besides, corrected parameters represent the
atmosphere effects quite effectively, thus sea level static condition performance of the

engine is of interest for generating inputs for the SINDy model [2].

The ability of data-driven models, such as the Sparse Identification of Nonlinear
Dynamics (SINDy) model, to generate successful predictions depends on the scope
and quality of the input data. The data quality must encompass the engine’s entire
operational domain and all relevant dynamics. Consequently, the input data represents
one of the most critical factors. Hence, various fuel flow inputs are generated to cover
a wide range from idle to max speed, the range of the fuel flow is from 0.43 kg/s to

2.5 kg/s.

Ten data set were generated, including sinusoidal, ramp, square, stairs maneuvers to
involve the response of the system dynamic. Table 3.5 provides details and graphical

representation of the input data sets.
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Table 3.5 System Fuel Inputs Options

Input Definition
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3.4. SINDy Model

Generated measured data sets are used to train SINDy model and create governing.
Flow diagram at Figure 3.8 demonstrates the steps of the selection of SINDy model

inputs.

Selection of Inputs Selection of States Selection of Selection of Selection of
from collected from collected Candidate Library Optimizer Differentiation
measurements Threshold Method

measurements [ |
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sufficient to Selection of which Deciding which robustness, sparsity differentiation method
represent the dynamics is functions able to balance and solution have the best
dynamics predicted represent dynamics effectiveness performance

Figure 3.8 The Diagram to Selection of SINDy Model Parameters

There are various model parameters that can directly affect the results. Different
combinations of parameters yield better results depending on the specific objective.
Consequently, this gives rise to multiple possibilities that need to be evaluated.
Although gas turbine engines exhibit complex dynamics, the selection of parameters
that better represent their behavior should not be determined randomly. Major model
parameters, such as inputs, state variables, and the selection of the candidate library
must align with both mathematical approaches and the physics underlying the systems

dynamics [10, 12].

Estimating unmeasurable parameters, such as thrust and exhaust gas temperature
(EGT), and developing a dynamic model based on SINDy are among the objectives
considered. The objective of the model determines which parameters employ as inputs
and which are used as state variables. Estimated parameters are chosen as states, other
states and inputs are attempted which one is performing better. An increase in the
number of inputs and state variables may result in a more complex model, thereby

elevating the risk of overfitting. In response to this, if the model’s sparsity threshold is
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raised to reduce the number of terms, this may lead to the failure to capture essential
dynamics, potentially compromising accuracy. On the other hand, if fewer inputs and
state variables are used, the model may struggle to represent the dynamics with a
limited number of terms. Consequently, balance between accuracy and complexity is

required while selection of input and state variables.

A similar step involves the selection of the candidate library. Typically, polynomial
and Fourier libraries are employed. Polynomial libraries are more feasible to
turbomachinery dynamics. Therese, unless a specific case requires otherwise, the use
of polynomial libraries is appropriate. When determining the degree of polynomial
features and the interaction between parameters, a balance is achieved between

complexity and accuracy.

Generally, Sequential Thresholded Least Squares (STLSQ) algorithms perform well
for the engine dynamics, additionally which is more robust to noise than LASSO. [12]
An optimization between threshold of STLSQ and maximum degree of the polynomial
features is employed. As the final parameter, derivative methods were tested to identify

the best solution.

3.5. Model Validation and Comparison

Model performance metrics facilitate comparison of results across models with
varying SINDy model parameter configurations. Given the time-dependent nature of
the dataset and the regression-based problem, regression metrics are suitable for
evaluating performance. Mean Percentage Error (MPE), Root Mean Squared Error
(RMSE), and the R-squared coefficient are employed as performance metrics. The
one exhibiting a higher R-squared and lower MPE and RMSE values is selected.
Additionally, the SINDy model response and training dataset were visualized in the
time domain, with their dynamics' similarity and physical consistency observed and
evaluated across different responses. Subsequently, the selected model performance

was tested with different dataset.

To compare the SINDy’s performance with different data driven models is another
validation technique of the study. Nonlinear Auto-Regressive with External

(Exogenous) Input Model (NARX) is employed as a neural network time domain data
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driven model. There are several gas turbine modeling applications of NARX in the

literature [8, 9, 13, 33].

X(t) Hidden

Figure 3.9 Structure of NARX model [51]

The NARX model was trained for each output at the same time by using 10 hidden
layers and 2 number of delays. Levenberg-Marquardt was configured as training
algorithm. Wf was provided as input, while N1, N2, P3, P7, T7 are as output. The Fuel
Input 10 dataset was utilized, randomly divided into 70% for training 15% for
validation and 15% for testing [51]. Training was terminated after 125 epochs. The
model was validated with different Fuel Input dataset and compared to the SINDy

model.
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4. RESULT & DISCUSSION

4.1. Estimating Thrust

The primary function of the jet engines is to provide thrust to aircraft. Despite the
existence of few methods, the measurement of thrust during flight is highly
challenging [56]. Extensive instrumentation is required. Due to this reason, it is
impractical particularly for military applications during operation. Fortunately, Thrust
is highly correlated with engine mass flow rate, spool speeds Engine Pressure Ratio
(EPR) or turbine temperature. However, transient behavior, envelope effects, engine

deterioration, bleed and power off taken and engine anomalies affect the thrust level.
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Figure 4.1 N1 vs Thrust & EPR vs Thrust Curves of JT9D Engine

Knowledge of thrust during flight offers essential insights for mission profile planning,
maneuverability and the operational conditions of engine. Model-based and data-
driven methods provide solution proposals for the requirement of thrust estimation

[14,57,52,53].

SINDy offers interpretable readily applicable practical solutions to prediction of thrust.
To overcome this challenge, the SINDy model was trained with various fuel inputs
and SINDy model configuration parameters. The comparison of multiple options
reveals that Figure 4.1 demonstrates the best model configuration with the best
prediction performance. Due to its comprehensive profile, Fuel Input 10 contributed

to an improvement in the solution's performance. Thrust (Fn) is the state of the model
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and as an input variable, fuel flow (Wf), N1 Spool Speed and EPR combination

achieved the best performance as expected.

Table 4.1 SINDy Model Parameters for Estimating Thrust

Differentiation
Training Data | Variables Library Optimizer Method
Xora | Pl TSI
Fuel Input 10 | u= Wf, N1, : ) Difference
EPR ' Wlthogt Threshold 7nd order
interaction 0.05 alpha

The governing equation, as below, has polynomial second order variables without

interaction between variables and the coefficients of the parameters are listed in

Table 4.2.
dditn =¢; + ¢,Fn + ¢3N1 + ¢,EPR + csWf + ¢,EPR? + c,Wf?  (4.1)
Table 4.2 Thrust Estimation Model Coefficients
Coefficient cl c2 c3 c4 c5 c6 c7
Fn [kN] -2607.7 | -5.038 0.15]3232.61 | 65.534 | -815.1| -5.158

The model prediction response and its residual can be visualized as shown in Figure

4.2.
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Figure 4.2 Thrust Estimation SINDy Model Response & Residual
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Additionally, using the same input profile the NARX model was employed for
comparison, and the performance metrics of both models are listed in Table 4.3
Concurrently, Figure 4.3 presents the time-dependent graph of the data and the
models. The training model performs well with a higher R-squared value and a low
error rate. Error rates are lower than 1%. Even NARX model provides ten times better
performance than SINDy, with parsimonious architecture, SINDy model delivers

adequate performance.

Table 4.3 Thrust Estimation Model Training Performance Metrics

Mean Percentage

Model R-squared | RMSE [kN] Error [%]
0

SINDy 0.999657 1.134 0.7139
NARX 0.999994 0.148 0.0927
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Figure 4.3 Thrust Comparison Between Training Dataset and SINDy Model

The trained model was validated with two different input profiles. The first test is
acceleration and deceleration test and Fuel Input 4. The test results demonstrate that
the model can predict thrust with 1% error without overfitting. However, it was

observed that the model yields noisy outputs particularly at low velocity levels.
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Table 4.4 Thrust Estimation Model’s Test Data Performance

Test Data Response SINDy Model Prediction vs
Thrust Measurement
Accel Decel
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Table 4.5 Thrust Estimation Model Test Performance Metrics

Mean Percentage
Input Model RMSE Error [%)]
Acceleration- SINDy 1.161 1.055
Deceleration NARX 0.169 0.110
SINDy 0.964 0.713
Fuel I 4
uel Input NARX 0.107 0.073

The SINDy-based thrust model can be implemented into Simulink, utilizing four real-

time sensor feeds and an integrator block for continuous thrust estimation.
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Figure 4.4 Simulink Diagram of SINDy Model for Thrust Estimation

4.2. Estimating Exhaust Gas Temperature (EGT)

Gas turbine engines operate at high temperatures, burner exit temperatures reach up to
1800°C. Particularly in military applications, where they are required to operate at the
maximum temperature limits permitted by material. As turbine blades are subjected to
extreme temperatures and mechanical stress, their service life is inherently limited.
Consequently, regulating turbine temperatures to balance extended engine life with the
ability to meet high-performance demands represents one of the most critical functions
of the engine control unit. Since measuring the blade temperature requires extensive
instrumentation, exhaust gas temperature or turbine exit temperature indirectly
provides insights into turbine blade metal temperatures. Consequently, exhaust gas
temperature (EGT) serves as a critical indicator of engine health, enabling fault

detection and monitoring of performance degradation [3, 4, S, 51, 54].

Typically, EGT are measured by thermocouples. To avoid the inherent delays
associated with thermocouples and enhance measurement reliability, the need for a
temperature estimation model may arise [54, 55]. In this study, the applicability of

SINDy as a data-driven solution has been investigated.

Similar to the thrust estimation, the SINDy model was trained in various
configurations. Table 4.6 demonstrates the best training model configuration. T7

(EGT) is the state of the model, the combination of fuel flow and engine pressure ratio
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interaction of parameters.

exhibited the best prediction via using second order polynomial functions with

Table 4.6 SINDy Model Parameters for Estimating EGT

Training Differentiation
Data Variables Library Optimizer Method
Polynomial STLSQ Smoothed Finite
Fuel Tnput 10 X=T7 2nd Qrder 0.05 ' Difference
u= Wf, EPR with Threshold | with Savitzky Golay
interaction 0.05 alpha filter 2nd order

The governing equation of the specified model and coefficient of the variables are as

follows.
% =¢; + ¢;WFf+ c3EPR + ¢, T7 * EPR + ¢ Wf? + c,Wf * EPR + c,EPR? (4.2)
Table 4.7 EGT Estimation Model Coefficients
Model cl c2 c3 c4 c5 c6 c7
T7 694.508 | 387.348 | -1361.1 -0.16 | 49.676 | -380.38 | 756.525

The prediction performance metrics indicate that the model fits well. Although, its R-
squared value is slightly lower than thrust estimation model performance, 0.98 R-
squared value with 1.7% error rate it remains noteworthy due to SINDy’s sparse and

parsimonious modeling approach.
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Figure 4.5 EGT Estimation SINDy Model Response & Residual
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Table 4.8 EGT Estimation Model Training Performance Metrics

Model R-squared | RMSE [°C] | Mean Percentage Error [%)]
SINDy 0.9815 8.453 1.68
NARX 0.99998 0.26 0.045
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Figure 4.6 EGT Comparison Between Training Dataset and SINDy Model

Figure 4.6 shows the illustration of model outputs with sensor data, NARX and SINDy

prediction. SINDy effectively follow sensor dynamic behavior and suppressed existing

noise. However, its prediction became more challenging during sharp maneuvers.

The estimation model was tested with various inputs and two notable results are
presented in tables below. Fuel Input 5 represents one of the model’s reported
responses, achieving an RMSE of approximately 9°C. Additionally, the model was
evaluated using a dataset involving snap fuel injection, a highly extreme maneuver in
practice, potentially resulting from controller or fuel metering faults. In this case study,
the SINDy model demonstrated an acceptable response to the snap fuel injection.

Although sensor dynamics could not accurately capture real T7 behavior due to their

response delays, the SINDy model’s results were closer to real T7 value.
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Table 4.9 EGT Estimation Model’s Test Data Performance

Test Data Response SINDy Model Prediction
vs EGT Measurement

Fuel Input 5

Snap Fuel Injection

nnnnnnnnnnn
Porloct Prodicion

wwwwwwwwwwwwww

SINDy Model T7["G]
H
7rc)

450 500
Sensor T7[°C]

The NARX model EGT estimation performs better than SINDy due to the complex
NN algorithms behind. However, it can be stated that SINDy’s performance criteria

are also satisfactory.

Table 4.10 EGT Estimation Model Test Performance Metrics

Mean
Model RMSE [°C] Percentage
Input Error [%)]
. SINDy 8.89 1.73
Fuel input 3 NARX 0.301 0.048
Snap Fuel SINDy 110.6 18.2
Injection NARX 4.018 0.148

The SINDy-based EGT estimation model can be implemented into Simulink, utilizing
three real-time sensor feeds and an integrator block for continuous EGT estimation as

Figure 4.7.
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Figure 4.7 Simulink Diagram of SINDy Model for EGT Estimation

4.3. SINDy Based Data Driven Model

SINDy allow to capture dynamics of the system, generate governing equations and can
be used for system identification [12]. In this chapter, SINDy’s data driven system
modeling capabilities will be examined using the JT9D turbofan engine, and the

performance of the developed model will be discussed.

Figure 4.8 illustrates the diagram of the model. Two real-time sensor measurements
are required to use as input which are fuel flow and P2 measurement for calculating
Engine Pressure Ratio. The output includes N1, N2, P3, T7 and T7, which represent
the sensors of JT9D engine and system’s state variables. Each state has their own
model and interacts with others when one state uses another variable as an input.
Integrator blocks compute the next step of the predictions and the outputs feed back to
the model. The desired model is simpler, parsimonious, independent from complex

thermodynamic calculations and does not require any numerical iteration methods.
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Figure 4.8 Simulink Diagram of Data Driven JT9D Engine SINDy Based Model
Several combinations of model parameters were examined to provide the best

performance of their own and interaction with each other. Table 4.11 highlight the

selected models.
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Table 4.11 SINDy Based Model Selected Parameters

Training Differentiation
Data Variables Library Optimizer | Method
Pol ol STLSQ
Fuel Input | X =N1, N2 20 dyno(inla 0.1 Finite Difference
10 u=Wf haoreer Threshold 2nd order
with interaction
0.05 alpha
_ Polynomial STLSQ Smoothed Finite
X=P3 Difference
Fuel Input _ 3rd order 0.05 . .
u= Wi, NI, . with Savitzky
10 without Threshold
N2 . . Golay filter
interaction 0.05 alpha
2nd order
. STLSQ Srpoothed Finite
_ Polynomial Difference
Fuel Input | X =P7 0.1 . :
_ 2nd order with Savitzky
10 u=Wf oy . Threshold
with interaction 0.05 alph Golay filter
2 AP ond order
. STLSQ Smoothed Finite
_ Polynomial Difference
Fuel TRQRL | XL 2nd order 0.05 with Savitzk
10 u = Wf, EPR o . Threshold y
with interaction Golay filter
0.05 alpha
2nd order

Fuel flow serves as a consistent input for each model. The results indicate that N1, N2
or EPR become an input for the models as anticipated from SINDy’s sparse parameter
selection algorithm. The reason of that N1 and N2 represent the actual state of the
turbofan engine system while EPR effectively captures the system dynamics. N1 and
N2 are solved concurrently during the training phase, and T7’s governing equation
was established in the previous section. Polynomial libraries outperform Fourier
libraries in representing dynamics, as is known. The STLSQ optimizer performs
effectively due to its noise performance and robust structure, with a specified threshold
value. In certain cases, smoothed finite difference is preferred over the standard finite

difference method for differentiation. The governing equations of each model are

presented below.
% = ¢; + N1 + ¢3N2 + ¢, Wf + csN1 * Wf + ¢gN2 * Wf + ¢, Wf? (4.3)
% = ¢y + ;N1 + c3N2 + ¢, WF + csN1 « W + ¢ N2 * Wf + c,Wf? (4.4)
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dpP3

= = 61 + P34+ csWi+ ¢4N1 + c5sN2 + ceWF?2 + ¢, Wf3 (4.5)
dp7 2
F = Cl + C2P7 + C3Wf+ C4Wf (46)
Table 4.12 SINDy Based Data Driven Model Coefficients
Parameter cl c2 c3 c4 c5 c6 c7
Fn -2607.7 | -5.038 0.15 ]3232.61 | 65.534 | -815.1 -5.158
N1 17419.2 | 1.68 -3.29 | 4650.61 | -1.026 | -0.084 | 340.466
N2 14523.4 | 1.441 -2.745 | 3087.98 | -0.847 | 0.027 | 256.806
P3 8427.89 | -2.25 [2214.95| 1.102 | -1.508 |-232.02 | 19.355
P7 102.787 | -1.004 | 13.443 | 4.817
T7 694.508 | 387.348 | -1361.1 | -0.16 | 49.676 | -380.38 | 756.525

Table 4.13, Table 4.14 and Table 4.15 demonstrate the training performance of the

model. The model exhibited a performance with an error rate below 2% for all

variables and an R-squared value above 0.98, which is readily acceptable for such a

parsimonious data-driven model.

N1 and P3 exhibit relatively high error rates and fail to adequately capture the system

behavior at high power settings, which could not be improved within the scope of this

study. However, it can be stated that the prediction performance for the other variables

is preferable.

Table 4.13 SINDy Based Engine Model Performance Metrics

Training Mean Percentage
Data R-squared RMSE Error [%] AIC
N1 0.9802 79.6 rpm 1.9997 26264
N2 0.998 18.4 rpm 0.1697 17464
P3 0.9924 43.4 kPa 1.9647 22629
P7 0.9955 1.23 kPa 0.6086 12580
T7 0.983 8.4 °C 1.582 12774
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Table 4.14 SINDy Based Model Response and Residual of each Variable

Parameter

Response

Residual
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Table 4.15 Output and Comparison Between Training Dataset and SINDy Based

Model

Parameter

Training Dataset and SINDy
Model Comparison

SINDy and NARX Model
Comparison
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Finally, the model was tested with several data sets and selected two results (Fuel

Inputl and Fuel Input 6) are presented in below tables.

Table 4.16 SINDy Based Model Test Results for Fuel Input 1

Parameter
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Table 4.17 SINDy Based Model Test Results for Fuel Input 6
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Table 4.18 SINDy Based Model Test Performance Metrics for Fuel Input 1

Model Mean Percentage
Parameter RMSE Error [%)]

NI SINDy 56.243 1.825
[rpm] NARX 0.648 0.017
“ SINDy 22.957 0.255
[rpm] NARX 0.931 0.006
SINDy 25.074 1.794
P3 [kPa] NARX 0.513 0.031
SINDy 2.301 1.371
P7 [kPa] NARX 0.434 0.278
] SINDy 16.480 3.241
T71°C] NARX 0.405 0.064

Table 4.19 SINDy Based Model Test Performance Metrics for Fuel Input 6

Model

Mean Percentage Error

Parameter oL [Yo]

SINDy 52216 1.635

N1 [rpm]
NARX 1.114 0.025
SINDy 21.767 0.236

N2 [rpm]
NARX 1.009 0.008
SINDy 30.098 1.775
P3 [kPa] NARX 0.918 0.052
SINDy 2.344 1.391
P7 [kPa] NARX 0.660 0.405
] SINDy 11313 2.072
T71°Cl NARX 0379 0.064

The results and performance metrics indicates that, SINDy Based Model exhibits

acceptable performance. The error rates can be further reduced through improvements,

enabling the model to serve as a representative system model for various applications.

Although the NARX model achieved significantly better predictions compared to

SINDy model, SINDy's inherent interpretability, structural simplicity, physical

consistent formulation, and acceptable error margins make it a suitable candidate

within the scope of this research on gas turbine engine applications.
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4.4. Improvements and Applications to Real Life Problems

4.4.1. Envelope Model

Within the scope of this study, the SINDy models are created as single-input models,
only fuel flow effects are considered. The models represent sea level performance and
estimations. Atmospheric effects can be partially accounted by using corrected
parameters [2]. However, comprehensive envelope performance model requires direct
atmospheric information as input. It can be pressure and temperature measurements at
the engine inlet or flight Mach number and altitude provided by the aircraft. Flight
condition measurements can be implemented to SINDy models as an input. The
coefficients of the governing equations for each state can be trimmed with envelope
information, In the cases of JT9D engine, it would be P2 and T2 measurements. To
achieve this, a time-dependent dataset should be generated or tested from various
points on the envelope, and the SINDy model should be trained for each point.
Subsequently, the coefficients matrix is generated with dimensions of P2 and T2
measurements. SINDy based engine models provide acceptable predictions of sensor
outputs with low computational cost making them suitable for controller design as an

alternative to complex thermodynamic models.

4.4.2. Single Sensor Failures

SINDy based models can provide to detect single sensor failures. The logic of fault
detection algorithm over EGT faults is illustrated in Figure 4.9 via Simulink.
Generally, real time EGT’s are measured with multiple thermocouples and the multiple
measurements are averaged, transmitted to engine controller for temperature limiting
function. In the case of, one or several thermocouples are broken physically or
electrically, the failure detection algorithm can detect and isolate the failure based on
SINDy EGT estimation model. If the difference between real time sensor value and
model exceed the threshold value, fault signal is transmitted to controller to take an

action.
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Figure 4.9 Single Sensor Failure Detection with SINDy Model

4.4.3. The Whole Engine Model for Deterioration Calculation and
Anomaly Detection

Gas turbine engines, which operate under high temperatures and stress, experience
performance degradation over time. This deterioration leads to increased fuel
consumption and a reduction in thrust [S1]. Additionally, the components used in these
engines undergo wear and deformation, eventually requiring maintenance. Detection
of maintenance requirements is essential for minimizing operational costs and
ensuring sustained engine performance. To achieve this, real-time implementation
within the engine's control and/or monitoring unit is necessary. Various remaining
useful life estimations and predictive maintenance techniques have been proposed in

the literature to address this challenge [47, 20].

Degradation effects to drop compressors and turbines efficiencies varies the capacities
[S1]. If there is certain information about of the component’s deterioration behavior
and whole engine measurement signals test or validated thermodynamic model data,
SINDy can offer practical solution to deterioration estimation of the engine.
Figure 4.10 shows the logic for deterioration detection, as a similar diagram to

Tayarani-Bathaie et. al. [20] studies.

New and component deteriorated SINDy models are inserted to logic. The algorithm
takes the SINDy models outputs and real-time temperature measurements, compare
and weight the models and isolate components deterioration rates and send the signal
to monitoring unit to inform pilot and adjust the controller if there is any trim is
required due to degradation. The critical aspect in this concept is having a certain
pre-knowledge about the component degradation behavior and impacts to the engine’s

performance measures.
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Figure 4.10 Whole Engine Model Logic for Deterioration Calculation

Similar to the deterioration model, whole engine failure can be detected with using

SINDy Faulted Engine Models.

Y
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Figure 4.11 Whole Engine Model Logic for Anomaly Detection
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5. CONCLUSION

Data driven modeling and exploring governing equations are crucial to understanding
existing system behaviors. Sparse Identification of Nonlinear Dynamics (SINDy)
allow to analyze system in a parsimonious, interpretable way with comparing the other
data driven approaches. In this thesis SINDy algorithm is applied to gas turbine engine
dynamics focusing on exploring governing equations and models to represent the
system simplest and adequate way. JTID high bypass turbofan engine dynamic engine
model is employed to generate data sets for SINDy model. SINDy model parameters
are analyzed, and the best models are selected. Furthermore, SINDy models are

validated and compared with NARX models.

SINDy models are created to propose an approach to real life gas turbine challenges.
Instant estimation of thrust and EGT while engine is operating are some of concerns.
The results indicate that SINDy models perform adequate to prediction of parameters.
The other scope of the study is generating SINDy based data driven models. May of
black box data driven models are far from interpretability, hereby especially in
certifications required industries such as aviation and aerospace these models may not
be inserted to the real time systems. SINDy based models propose an explainable
solution besides complex thermodynamic iterative modeling, simple governing

equations are employed to identify system behaviors.

The models can be used to detect single sensor failures, anomaly detection and
deterioration calculations for gas turbine engines Chapter 4.4 Improvements and

Applications to Real Life Problems comprise the approaches to these challenges.

In conclusion, the study highlights that the SINDy algorithm offers a novel data-driven

approach to gas turbine engine challenges.
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