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ABSTRACT 
The Sparse Identification of Nonlinear Dynamical Systems (SINDy) is an algorithm 

used to discover the underlying physical equations of complex nonlinear dynamical 

systems. This data-driven algorithm is characterized by low computational cost and 

high interpretability, making it widely used in system modeling and governing 

equation discovery across various scientific disciplines. However, its application in the 

field of gas turbine engine dynamics remains limited in existing literature.  

This study aims to model the dynamic behavior of gas turbine engines using the SINDy 

algorithm. Gas turbine engines exhibit nonlinear dynamic characteristics, which can 

be modeled mathematically by thermodynamic equations. SINDy employs sparse 

regression techniques to identify dominant terms from a library of candidate functions, 

deriving a differential equation. This method achieves a balance between model 

complexity and accuracy. SINDy offers a simple, interpretable solution that mitigates 

overfitting. These attributes enable SINDy to offer a novel data-driven perspective to 

gas turbine engine modeling.  

The study examines the operational principles of gas turbine engines, focusing on 

dynamic modeling, investigating data analysis techniques, and data driven system 

modeling and the theory of SINDy and its application to gas turbine engine. 

Specifically, the study explores the use of SINDy in analyzing transient behavior, 

developing data-driven system models of the engine, estimating unmeasurable 

parameters, and detecting faults. The performance of SINDy-based models is 

compared with alternative system modeling approaches. The applicability and 

advantages of SINDy are discussed. 

The study demonstrates that the SINDy algorithm offers a data-driven solution for 

addressing gas turbine engine challenges. 
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ÖZET 
Doğrusal Olmayan Dinamiklerin seyrek modellenmesi (SINDy), karmaşık dinamik 

sistemlerin temel fiziksel denklemlerini keşfetmekte kullanılan bir algoritmadır. 

Veriye dayalı bu algoritma, düşük hesaplama maliyeti ile başarılı sonuç alınabilmesi 

ve yüksek yorumlanabilirlik sunmasıyla öne çıkmaktadır. Ayrıca, birçok bilimsel 

alanda sistem modellemelerinde ve denklem keşiflerinde yaygın olarak 

kullanılmaktadır. Literatürde, gaz türbinli motor dinamiği alanında uygulaması 

sınırlıdır. 

Bu çalışmada, gaz türbin motorlarının dinamik davranışlarının SINDy algoritması 

kullanılarak modellenmesi amaçlanmıştır. Gaz türbinli motorlar, doğrusal olmayan 

dinamik davranışlar sergilemekte olup matematiksel modellenmesi kompleks 

termodinamik denklemlerin çözümü ile mümkündür. SINDy, verideki davranışı 

oluşturulan muhtemel denklem seçeneklerinden baskın olanları seçerek seyrek 

regresyon teknikleri ile sistemi temsil eden en az sayıda terim içeren diferansiyel 

denkleminin bulunmasını sağlar. Modelin karmaşıklığı ve doğruluğu arasında bir 

denge kurulur. Veriye dayalı birçok algoritmaya kıyasla basit, aşırı uyumlamayı 

engelleyen, yorumlanabilir bir çözüm sunar. Bu özellikler, SINDy’nin gaz türbin 

motor modellenmesinde yenilikçi bir  veri odaklı  bakış açısı sunar.  

Bu çalışmada, gaz türbinli motorların çalışma prensipleri incelenmiş, dinamik 

modellemeye ve veri analizi tekniklerine odaklanılmıştır. Regresyon yöntemleri ve  

yapay sinir ağlarını içeren veri tabanlı sistem modelleme teknikleri incelenmiştir. 

SINDy’nin altında yatan teori ve gaz türbinli motorlara uygulanışı detaylandırılarak: 

SINDy’nin geçici hal davranışların analizinde, motorun veri odaklı sistem 

modellerinin geliştirilmesinde, ölçülemeyen parametrelerin tahmininde ve arıza 

tespitinde kullanımı irdelenmiştir. 

Netice itibariyle, SINDy algoritmasının gaz türbin motor dinamikleri uygulamalarında 

önemli avantajlar sunabileceği saptanmıştır. 
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1.  INTRODUCTION 

For over centuries, gas turbine engines have diverse applications across various 

industries, including power generation, marine, automotive and aviation, with both 

civil and military usage. Principally, gas turbine engines are classified into four 

categories: turbojet, turbofan, turboshaft and turboprop. Turbojet engines have the 

simplest structure, consisting of a compressor, combustion chamber, turbine and 

nozzle. The primary purpose of the engine is to accelerate the airstream through the 

components to generate thrust while increasing heat capacity by adding fuel into the 

combustion chamber. Turbofan engines are more complex versions of the turbojet 

engines, featuring an additional compressor, called as fan, which bypasses certain air 

to produce additional thrust and reduce fuel consumption. The bypass ratio of the 

turbofan engines varies depending on the intended use. Turboshaft and turboprop 

engines are optimized to produce shaft power rather than jet thrust with an additional 

turbine to extract heat energy and convert it into shaft power.  

Brayton Cycle represents the gas turbine engine operation principle. Air comes from 

the atmosphere via intake. The compressor pressurizes the air, the combustor adds heat 

energy from the fuel to the airstream, turbines extract the power and generate energy 

to proceed continuous cycle. Heated and accelerated air exits from the nozzle. Thus, 

thrust is generated. 

 

 

Figure 1.1 Bryton Cycle Temperature- Entropy (T-S) diagram for Turbojet Engines 
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Figure 1.1 illustrates the temperature – entropy diagram of simple turbojet engines. 

Entropy does not change during the ideal compression and expansion process which 

is illustrated with red lines. This hypothetical process is isentropic which is adiabatic 

and reversible. However, it is not the real case. Compression and expansion events 

occur with loss which increases the entropy. The actual compression process involves 

greater temperature rise and similarly, actual turbines expand the air to a higher 

temperature. Also, during the heat addition process and in progression of the air 

through the engine, there are pressure drops in real cases. Blue lines represent the real 

Brayton Cycle [1, 2, 3, 4, 5]. 

Thermodynamical performance models of engines guide the design process. These 

models establish the fundamental requirements for aerodynamic and mechanical 

design. They derive the overall performance criteria and objectives of the engine. 

There are several techniques for engine performance modeling. Primarily, 

performance modeling techniques are divided into two categories: dynamic modeling 

and data driven modeling. The most common dynamic modeling technique is zero-

dimensional component matching type thermodynamic modeling. (Hereafter it is 

mentioned as dynamic or thermodynamic model.) The dynamic model completely 

represents engine behavior during operation. If there is information about component 

performance, thermodynamical equations and system dynamics, engine behavior can 

simulate with creating dynamic models. Therewithal, gas turbine engine producers 

enquire about the system behavior to direct the engine design, constitute the system 

requirements. Hence, dynamic models become crucial.  

Basically, thermodynamic models are based on mass, energy and momentum 

conservation laws and include component performance maps, tables and mathematical 

calculations. Numerical methods are employed to estimate dependent variables while 

varying independents to achieve model convergence [1, 6, 7]. 

On the other hand, data-driven models may require lack of information about the 

system or basically to understand the test performance of the system [8, 9]. Data driven 

modeling of gas turbines is one of the main scopes of the study. Hence, before focusing 

on the gas turbines data driven models, general data driven modeling techniques are 

investigated. Figure 1.2 illustrates the diagram of system modeling techniques which 

includes the scope of the thesis. Upcoming sections explain the basic theory of the data 
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driven dynamical system modeling techniques and their literature applications to gas 

turbine engines. 

 

 

Figure 1.2 System Modeling Techniques 

 

Discovering the governing equation of dynamical systems, modeling from data is 

critical part of engineering, natural science and applied mathematics problems. Many 

approaches are proposed to understand the physical relation, detection of anomalies, 

deriving the equations. 

SINDy (Sparse Identification of Nonlinear Dynamics) is one of the recent interpretable 

algorithms to identify the governing equation of system with using fewest possible 

terms. It aims to avoid overfitting by promoting parsimony and maintaining a balanced 

level of complexity, robust to noise and capable of handling high-dimensional data 

[10, 11, 12, 59]. 

Some industries including aerospace have strict regulations and certification 

requirements to make the use of interpretable logics and algorithms crucial. As a result, 

use of machine learning or artificial intelligence derived algorithms is not preferred 

for onboard control systems [11].  

SINDy has advantages to understand complex physical systems, allowing an 

interpretable approach and discovering the mathematical equation behind the unknown 

system behavior, and serving as an alternative to machine learning models, while also 

enabling identification of system with limited data [12]. Table 1.1 demonstrates the 

advantages and disadvantages of SINDy. 
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Table 1.1 Advantages & Disadvantages of SINDy [11,12,19] 

Advantages Disadvantages 

• Interpretability 

• Parsimonious modeling 

• Requires low amount of data 

compared to machine learning 

algorithms 

• Flexibility of the candidate 

function libraries 

• Applicable in many scientific 

areas 

• Avoid overfitting 

• Effectiveness is highly 

dependent on chosen candidate 

library 

• Performance of SINDy may 

differ in a high dimensional 

system, some modifications may 

be required 

• Challenges with Stochastic 

Systems with random initial 

conditions requires multiple 

trajectories 

• Data quality, noise may affect to 

model 

 

The thesis is structured into five primary chapters. Chapter 2 presents literature review, 

encompassing the fundamentals of gas turbine engines, dynamic engine modeling, 

data analysis methodologies, data-driven system modeling and their applications to 

gas turbine engines. This includes regression analysis, artificial neural network 

(ANN), Nonlinear Autoregressive Exogenous (NARX) models, Dynamic Mode 

Decomposition (DMD) and an in-depth examination of Sparse Identification of 

Nonlinear Dynamics (SINDy). Chapter 3 provides a detailed explanation of the 

methodology and approaches including developed engine model for data generation, 

introducing created SINDy model and its parameters and validation and comparison 

techniques. Chapter 4 demonstrates the results of the SINDy model, discussions, and 

proposed applications ideas to real life challenges. Finally, Chapter 5 offers the 

conclusion.  
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2. LITERATURE REVIEW 

2.1. Gas Turbine Basics & Performance 

Total temperature and pressure terms are used in gas turbine thermodynamic 

calculations. From the isentropic relations Stagnation Pressure (or Total Pressure) can 

be found as below formula: 

Pt

Ps
= (1 + 

γ−1

2
M2)

γ

γ−1
..............................................(2.1) 

And the total temperature can be also calculated as: 

Tt

Ts
= 1 + 

γ−1

2
M2..................................................(2.2) 

Turbomachinery component performances represented with component map which 

indicate the working mass flow rate, isentropic efficiency and pressure ratio of the 

component. Component maps of the JT9D turbofan engine are illustrated in  

Figure 2.1, Figure 2.2 and Figure 2.3 which are derived from the T-MATS [6,7]. The 

axis of the maps is mass flow rate and pressure ratio. Black lines represent the rotating 

speeds, the blue lines indicate isentropic efficiencies, and red lines indicate the 

compressors stall line. If two of the parameters-mass flow rates, pressure ratio, or 

speed-are known, the third can be determined. Additionally, Kurzke [13] offered 

auxiliary lines to facilitate the reading of maps by gas turbine performance calculation 

programs. In addition to this, corrected parameters are used in component maps.  

Table 2.1 illustrates the corrected parameters and their calculations [2]. 
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Table 2.1 Gas Turbine Corrected Parameters 

Performance 

Parameter 

Symbol Unit Corrected Parameter 
 

Temperature T K or °C 𝑻

√𝜽
 

Pressure P kPa 𝑷

𝜹
 

Mass Flow Rate W, 𝐦̇ or m kg/s or lb/s 𝑾√𝜽

𝜹
 

Rotational Speed N rpm 𝑵

√𝜽
 

Shaft Power Pw kW 𝑷𝒘

𝜹√𝜽
 

 

 

 

Figure 2.1 JT9D Engine Model Fan & LPC Map 

 

 

 

Figure 2.2 JT9D Engine Model HPC Map 
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Figure 2.3 JT9D Engine Model HPT & LPT Map 

 

Table 2.2 presents the engine stations definitions of JT9D engine which is the high 

bypass unmixed turbofan type engine [6,7].   

 

 

Figure 2.4 JT9D Engine Stations & Nomenclature [6,7] 

 

 

Table 2.2 JT9D Dynamic Engine Model Station Numbering & Actions 

Station 

Numbering 
Definition Model Actions 

S1 Engine Inlet Alt, MN and dTamb are converted to Tt & Pt  

S2 Fan Inlet Intake pressure loss is added 

S13 Fan Bypass Exit 

Fan component calculations are performed   

Flow is split according to bypass ratio.  

Flow enters the bypass duct 

S21 Fan Core Exit 

Fan component calculations are performed   

Flow is split according to bypass ratio. 

Flow enters the engine core. 

S22 LPC Inlet FAN-LPC inter-duct pressure loss is added. 

S23 LPC Exit LPC component calculations are performed. 

S24 HPC Inlet LPC-HPC inter-duct pressure loss are added. 



 

8 
 

Table 2.3 Continued: JT9D Dynamic Engine Model Station Numbering & Actions 

S3 HPC Exit 

HPC component calculations are performed.  

Cooling bleeds are extracted. 

HPC heat soakage is performed. 

S4 Burner Exit 

Burner component calculations are performed. 

Burner heat soakage is performed. 

S45 HPT Exit 

HPT component calculations are performed. 

HPT heat soakage is performed. 

HPT cooling flow is added. 

S5 LPT Exit 

HPT-LPT inter-duct pressure loss is added. 

LPT component calculations are performed. 

LPT heat soakage is performed. 

HPT cooling flow is added 

S17 Bypass Nozzle Exit 

Bypass pressure loss is added.  

Bypass flow exits from the nozzle. 

S7 Core Nozzle Exit Core flow exits from the nozzle. 
 
 

2.2. Engine Dynamic Modeling 

Engine dynamical modelling is based on thermodynamics and continuity, energy and 

momentum conservations laws. Table 2.2 also illustrates the processes performed at 

each station during modeling. The basics of compressor, burner and turbine component 

modeling calculations are illustrated as flow diagrams respectively in Figure 2.5, 

Figure 2.6 and Figure 2.7 [6, 7, 1, 4] . 
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Figure 2.5 Flow Diagram of Basic Compressor Modeling Calculations 

 
 

 

Figure 2.6 Flow Diagram of Burner Modeling Calculations 
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Figure 2.7 Flow Diagram of Basic Turbine Modeling Calculations 

 

2.2.1. Transient Behaviors 

The dynamics of the transient behavior of gas turbine engines are outlined in the 

Figure 2.8. Each dynamic has to be employed to represent the precise transient 

behavior of an engine. 

 

 

Figure 2.8 Gas Turbine Engine Transient Dynamics 
 

2.2.1.1. Shaft Dynamics 

Shaft dynamics is the main behavior of the engine. While the engine is rotating a 

steady-state condition, changing the fuel flow rate causes the power unbalance 

between the turbines and the compressors. This power imbalance results in the transfer 

of mechanical power between the compressor and turbine which are connected by a 
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shaft until equilibrium is restored. Basically, if more fuel is supplied than in the steady 

state, the shaft accelerates; if the fuel is reduced, the shaft decelerates [1, 2]. 

dN

dt
=

TNet

I
.........................................................(2.3) 

2.2.1.2.  Heat Soakage 

Heat soakage involves heat transfer between gas flow and metal parts during thermal 

disequilibrium. For the dynamic modeling aspect, heat transfer between complex 

geometries of the engine is simplified for practical. Generally, lumped capacitance 

models are preferred. [1, 14] Blades, disks and casings are assumed as bulk mass. 

Heat transferred between the gas and metal can be calculated with following formula 

Q = h ∗ AS(Tgas − Tm)…………………………..……(2.4) 

Also, it can be written as 

m ∗ cp ∗
dTm

dt
= h ∗ AS(Tgas − Tm)...................................(2.5) 

Thereby, the gas temperature can be calculated as 

Tgas = Tm +
m∗cp

h∗As

dTm

dt
.............................................(2.6) 

With integrating the metal temperatures, a new state can be obtained. 

2.2.1.3. Volume Dynamics 

Volume Dynamics are high frequency dynamics of gas turbine engines. They represent 

the mass flow transfer between the volumes. Volume Dynamics become crucial when 

modeling of surge and stalls [2]. 

Win − Wout = Vol ∗
dP

dt

(1+ 
γ−1

2
M2)

1
γ−1R∗T

 ..................................(2.7) 
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2.2.1.4. Sensor Modeling 

The measurements exhibit inherent delays and uncertainties. Sensors can be modeled 

as first-order lag where the time constant is the key parameter characterizing the delay. 

Time constant represents the time required to reach ~63.2% of its final value under 

step input. Additionally, uncertainties of the sensors can be effectively modeled using 

random Gaussian noise generation [6,7]. 

 

 

Figure 2.9 First Order Sensor Modeling with 1 second time constant value 

 

Chapter 3.2 will describe these dynamics application into JT9D Engine Model. 

2.3. Data Analysis 

Some metrics and quality parameters are used to determine model performance: 

The difference between the observed value from the model and the corresponding 

value is called as residual.  

ei = yi − ŷi  ................................................(2.8) 

The Least square approach is used to optimize the model to find the best fitting curve 

with minimizing the sum of squared residuals.  

Mimimize RSS =  ∑  wi(ei)
2n

i=1 = ∑  wi(yi − ŷi )
2n

i=1   ..................(2.9) 

Where: 



 

13 
 

RSS is the Residual Sum of Squares or also called the sum of squared errors. 

𝑛: the number of observations. 

𝑦𝑖 : Observed value of the variable. 

𝑦̂𝑖: Predicted value of the variable. 

𝑤𝑖 : Weight factor. It can be used for specific problems when the residuals have 

variance. However, for the basic approach, 𝑤𝑖 can be taken as 1 [10,15,16]. 

In practice, scientific programming of the regression on python, the library of “scikit-

learn (sklearn)” uses least square approach to fit the regression models [17,56,57]. 

2.3.1. Model Performance Metrics 

Root Mean Squared Error (RMSE) can be used to decide the performance of the model 

to make predictions and comparisons between the models. Lower RMSE indicates 

better model performance. 

RMSE = √
1

n
∑  (yi − ŷi )2n

i=1 .......................................(2.10) 

Another important parameter, R2 score, is a metric that indicates how well the model 

explains variance in the data. R2 is a proportion explanation and ranges from 0 to 1 

and higher R2 indicates a better model. 1 corresponds to the perfect fit but also can be 

indicated of the overfitting into variables it may be problematic when extrapolation is 

needed.  

𝑹𝟐 = 1 − 
∑  (𝑦𝑖−𝑦̂𝑖 )

2𝑛
𝑖=1

∑  (𝑦𝑖−𝑦̅ )2𝑛
𝑖=1

.........................................(2.11) 

Where: 

𝑦̅: Mean of actual values. 

Variance & Standard Deviation are fundamental statistical measures that indicate the 

dispersion of the dataset. Variance measures the average squared of deviation from the 

mean of the dataset. On the other hand, standard deviation is the square root of the 

variance [10, 15, 16]. Standard deviation is more comprehensive, expressed in the 

same unit as the original data.  
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Variance of population can be formulized as: 

 (𝜎 )2 = ∑
1

𝑛
 (𝑦𝑖 − 𝑦̅ )2𝑛

𝑖=1 ......................................(2.12) 

For a sample variance instead of population, 𝑛 − 1 is used instead of 𝑛. 

And standard deviation can be expressed as: 

𝜎 = √∑
1

𝑛
 (𝑦𝑖 − 𝑦̅ )2𝑛

𝑖=1  ......................................(2.13) 

In normal distribution of data set, 68% of data falls in one standard deviation and two 

standard deviations covers 95% of data set. Standard deviations are also used to 

compute confidence intervals-levels. 

Residual Standard Error is squared root of RSS divided by the degrees of freedom of 

the model; this metric is a measure of accuracy of the regression model. 

RSE = √
1

n−p−1
RSS ...............................................(2.14) 

and 

RSE =  √
1

n−p−1
∑  (yi − ŷi )2n

i=1   .....................................(2.15) 

 

p: the number of independent variables. The term of (n − p − 1) is called as degrees 

of freedom.  

Lower RSE indicates goodness of predictions means that model’s predictions are close 

to actual values. RSE is more direct measure of prediction error rather than 𝐑𝟐 score. 

Also, Mean Percentages Error (MPE) can be formulated as below: 

MPE =
100%

n

yi−ŷi

yi
..................................................(2.16) 
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Akaike Information Criterion [15, 16, 10, 18] is one of the model selection criteria that 

penalized log-likelihood measure, used to find best approximated model to true model 

or data. 

AIC = −2ln(L) + 2p............................................(2.17) 

In other representation of AIC  

AIC = n ln (
SSEp

n
) + 2p.........................................(2.18) 

If the likelihood function increases score decreases therewithal number of terms 

increases, AIC score increases with slope of 2p  thus penalize non-parsimonious 

models. AIC does not depend on the sample size.  

Where: 

L : likelihood function under the fitted model 

p: number of parameters 

SSEp: sum squared error 

Bayesian Information Criterion (BIC) [10, 15, 16, 18] is similar to AIC but additionally 

adding extra penalty term as the sample size. Higher the sample size increases to BIC 

score. 

BIC = −2ln(L) + p ∗ ln(n).......................................(2.19) 

or 

BIC = n ln (
SSEp

n
) + p ∗ ln(n).....................................(2.20) 

Where: 

𝑛 : number of data points or sample size  

Lowest AIC/BIC scores may indicate the better model for given data. 
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2.4. Data Driven System Modeling 

2.4.1. Supervised Machine Learning 

Data-driven modelling of a system becomes apparent, when mathematical modelling 

is not possible due to unavailability of the system [9]. Machine Learning is one of the 

data driven techniques that allows to create models to make predictions and decisions. 

These methods enable the identification of patterns and relationships within data. The 

theoretical foundation of machine learning is based on regression techniques and 

categorized as supervised machine learning and unsupervised machine learning. 

Supervised machine learning involves two primary task types: regression and 

classification. Classification models predict categorical outputs and regression models 

predict continuous outputs [11].  Regression models are studies concern.  

In the literature, machine learning techniques have been extensively applied to 

understand gas turbine engines nonlinear dynamics behavior such as the prediction of 

component and sensor faults and diagnosis, performance estimations, engine 

modelling [8, 9, 20, 21, 22, 23, 27, 30, 32, 33, 34]. 

2.4.2. Regression Analysis and Modeling 

Regression method is a fundamental statistical technique for modelling the 

relationship between dependent variables. Method helps to understand and predict the 

relationship between variables, commonly used in engineering, science & economics. 

[15] Regression models can be categorized into linear and nonlinear approaches.  

2.4.2.1. Linear Regression 

Linear regression model can be stated as follows: 

Yi = ß0 + ß1Xi + εi.........................................(2.21) 

Yi: Response variable  

ß0 and ß1: regression coefficients 

Xi: predictor variable 
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εi: random error component, Errors are assumed to have mean zero and variance are 

uncorrelated. 

The relation between response and the predictor variables are linear. It is said to be 

“Linear in the parameters and linear in the predictor variables” [16]. 

Let assume an experiment is done with a spring and various objects with known mass 

(independent variable) to observation of Hooke’s Law and estimation of spring 

constant. The extension of a spring was measured when different masses were 

attached, and all data were collected. According to Hooke’s Law, the extension of 

spring is proportional to the force applied, which is due to gravitation. In this 

experiment Linear Regression model will be fitted to estimate the spring constant.  

Another example is application of Linear Regression through measured data. Let 

assume certain temperature measurements were done in a field in a field and data were 

collected as a time variance as Figure 2.10. 

 

 

Figure 2.10 Temperature Measurement in a Field 

 

Measurement has some random error, and one can observe that, temperature is 

increasing linearly with time. Regression models can be implemented to estimate 

temperature in present and predict future behavior. 

 



 

18 
 

 

Figure 2.11 Temperature Measurement in a Field with Linear Regression Model 

 

Regression Model with least squares approach is fitted to data and the regression 

equation is: 

𝑌𝑖 = 6.04 + 2.8𝑋𝑖..................................................(2.22) 

Models’ standard deviation of error is 3.4 and RSS value of 1193.99. Besides that, the 

accuracy of the model can be enhanced. One can observe that there is some suspicious 

data, these are not fit rationally to other measurements.  It is called outlier. If the outlier 

data are removed from the model, the performance is improved. 
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Figure 2.12 Linear Regression Model without outliers 

 

Hence, the standard deviation of Error becomes 1.84°C and RSS value is 388.68. Here, 

model performance is significantly improved. 

With obtained equation from the regression model, prediction of future behavior of the 

system can be done.  

2.4.2.2.  Polynomial Regression 

Polynomial regression models are special cases of linear regression. Models contain 

higher order terms. For example, third order with two variables polynomial regression 

model can be shown as [2]: 

Yi = ß0 + ß1x1 + ß2x2 + ß3x1
2 + ß4x2

2 + ß5x1
3 + ß6x2

3 + ß7x1
2x2 + ß8x1x2

2 +
ß9x1x2 + ε.....(2.23) 

2.4.2.3. Ridge Regression 

Ridge regression, also known as L2 regularization, is one of the types of linear 

regression models and is a statistical regularization technique to reduce errors caused 

by overfitting. Rigge regression is used to correct multicollinearity when the least 

squares estimates are unbiassed. When the RSS score goes to 0, models perfectly fit 

the data however it could be indication of overfitting for training data set and tend to 

highly sensitive any minor variance in the new test input set, another word, model can 

be unstable if the coefficients are too high. Ridge regression is similar to the ordinary 
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least square method but there is another parameter that regulates the high value model 

coefficients. This term is called as regularization or penalty parameter in RSS function. 

Penalty term is the sum of squares of the model’s coefficients [24, 25]. 

Minimizing: 

L2 = RSS + λ∑  (ßi)
2n

i=1 = ∑  (yi − ŷi )
2 + λ∑  (ßi)

2n
i=1  n

i=1 ….(2.24) 

Where:  

∑ (yi − ŷi )
2n

i=1 : residual sum of squares term. It is a measure of the difference between 

the model prediction and the real term. 

λ∑  (ßi)
2n

i=1 : regularization term or shrinkage penalty is small when the ß model 

coefficients are close to zero.  This term cannot be zero. 

𝜆: Ridge parameter, penalty coefficient and should be 𝜆 ≥ 0 

∑  (ßi)
2n

i=1 : sum of model coefficient  

𝜆  term decides the impact of the coefficient magnitude, controlling the trade-off 

between fitting the data and shrinking the coefficients. When the 𝜆 closes to the 0, the 

penalty term has no effect and ridge regression become ordinary least squares estimate. 

However, 𝜆  closes to the ∞ , the impact of the shrinkage penalty grows then the 

coefficient estimations approach to zero and leading to underfitting to data. 

An illustration of Ridge Regression Performance can be found in the example below. 

Let be three features and dependent function as “x1, x2, x3 and y” in a random 

generated data to create nearly collinear features. The first and second features are 

almost identical but only x2 has noise and the third one is a sine function. Additionally, 

y value has a noise. 

Let y value be: 

y = 5 ∗ sin(2 ∗ x ∗ π) + 2 ∗ x2 + error.........................(2.25) 

After that, data were split into two for training (60%) and test (40%). Then, trained 

with high order polynomial regression model (15th Degree) to prone to overfitting. 

RSS and Ridge Regularization terms were used. First 𝝀 penalty coefficient is chosen 

as 100.  
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On the Figure 2.13 ordinary least square method (OLS) fit perfectly to training data 

However, test data performance of OLS is significantly lower with comparing to Ridge 

regularization  in Figure 2.14.   

 

 

Figure 2.13 Ridge Regression Example Training Data Results 

 
 

 

Figure 2.14 Ridge Regression Example Test Data Results 

 

Another illustration in Figure 2.15 shows the difference of prediction with Least 

Square method and Ridge method. Gray points show the true values, and red & blue 

points show the trained model results. While prediction with OLS has 734.87 MSE, 

Ridge regression has 6.1475 MSE.  
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Figure 2.15 Ridge Regression Example Performance 

 

It is understood that Regularized term overcomes the overfitting problem while 

decreasing the coefficient of parameters in this specific example. If the penalty 

coefficient is close to 0, Ridge regression closes to Least square method.  

2.4.2.4. Lasso Regression 

Least Absolute Shrinkage and Selection Operator (Lasso) regression is similar to 

Ridge regression but uses L1 penalty instead of L2. While L2 norms indicate sum of 

squares of coefficients, L1 norm uses sum of absolute value of coefficients. L2 penalty 

shrinks coefficients to zero but not able to become absolute zero, coefficients never 

equal zero in Ridge regression. However, Lasso regression allows to reduce coefficient 

to be zero. Lasso regression reduces the number of independent variables affecting the 

output, has advantages when feature selection is critical in high dimensions 

[24, 25, 58]. 

Minimizing: 

L1 = RSS + λ∑  |ßi|
n
i=1 = ∑  (yi − ŷi )

2 + λ∑  |ßi|
n
i=1  n

i=1 ……..(2.26) 

2.4.2.5. Elastic Net Regression 

Elastic Net Regression is a combination of Lasso and Ridge Regression, penalizes the 

L1 and L2 norm of the weights and can be formulized as below [10,26]. 

Minimizing: 
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RSS + λ1 ∑  (ßi)
2n

i=1 + λ2 ∑  |ßi|
n
i=1 = ∑  (yi − ŷi )

2 + λ1 ∑  (ßi)
2n

i=1 +n
i=1

λ2 ∑  |ßi|
n
i=1  …(2.27) 

With 𝜆1, 𝜆2 ≥ 0 

Deciding the λ penalty term is a trade-off between bias and variance of the system. As 

bias increases, a model tends to have less accurate predictions on the training data set. 

Conversely, if variance increases, model predicts with lower accuracy on the test 

dataset. Ridge, Lasso, or Elastic Net may introduce higher bias in training dataset 

compared to the least square approach, which can result in a higher mean squared error 

(MSE) in training. However, these methods often achieve lower variance in the test 

dataset [24]. 

2.4.2.6. Nonlinear Regression 

Nonlinear regression is a regression technique, where the functional form is nonlinear 

in the parameters. The model may include exponential or logarithmic terms [16]. 

Yazar et al. [27] applied various regression models to predict a compressor and 

turbines mass flow rates and efficiencies based on CFD data of radial compressor, high 

pressure and low-pressure turbines. The state parameters of regression models were 

speed and pressure ratios over a range of idle to maximum speed.  They tried quadratic, 

logarithmic, exponential, linear model and compared their performance with AIC. 

2.4.2.7.  Symbolic Regression & Genetic Programming 

The concept of genetic programming, formalized by Koza [28], is a powerful paradigm 

for addressing complex optimization problems.  Genetic programming is extensively 

employed across diverse scientific disciplines such as parameter estimation and 

optimization. Notable applications include the tuning the controller gains [10] and 

determination of optimum scaling factors for turbomachinery components maps [29]. 

Schmidt and Lipson [13], developed an automated approach to distill analytical natural 

laws from experiment data, creating a model without prior expert knowledge. They 

employed symbolic regression method, an evolutionary computational technique, for 

identifying nontrivial conservation laws by analyzing partial-derivative relationships 

in data and comparing symbolic derivatives from model to numerical partial 



 

24 
 

derivatives from data and improves their models with the find to best equation from 

random generated candidate symbolic functions including pendulums and harmonic 

oscillators.  

Kim et al. [30] introduced an approach to prediction of gas turbine engine transient 

behaviors based on component map scaling factors. Also, heat soakage effects of 

components and thermocouples were added into their model in an attempt to match 

simulation results to test data. Applied scaling factors to component maps and heat 

transfer coefficient were optimized by using genetic algorithm (MIGA). They created 

a model for a low bypass F100 turbofan engine and verified them by applying their 

method to F404-GE-400 engine. Figure 2.16 shows their method’s flowchart [30] first 

adaptation cycle was done for steady state performance and second was for enhancing 

transient performance of their model. Hence, heat transfer correction factors 

optimization employed in second adaptation. They concluded that models normalized 

root-mean-square deviation was significantly reduced after employing heat transfer 

coefficient scaling optimization. 

 

 

Figure 2.16 Flowchart for the engine performance adaptation using component scaling 

and Genetic Algorithm [30] 

2.4.3. Artificial Neural Network (ANN or NN) 

Neural Networks are characterized by their nodes and layered structure to learn 

patterns from data. There are various applications in gas turbine engines, some of them 

are mentioned below. 
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At the beginning of the 2000’s Lazzaretto and Toffolo [31] implemented a two-layer 

feed-forward neural network (NN) topology to predict the performance of industrial 

61.54 MW power plant gas turbine engine.  

 

 

Figure 2.17 Neural Network Topology for the plant [31] 

 

The model used ambient pressure and temperature and plant output power as inputs 

while the outputs included compressor outlet temperature, turbine outlet temperature, 

compressor inlet mass flow rate, fuel mass flow rate, and the compressor pressure ratio. 

A hyperbolic tangent sigmoid function was employed as hidden layer and output layer 

transfer function; however linear transfer function was also employed as output layer 

transfer function in some cases. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) and 

Levenberg-Marquardt backpropagation algorithms were used as learning algorithms. 

The authors reported the highest prediction error of approximately 1% across all output 

parameters.  

Sina et al. [20] claims that Dynamical Neural Network (DNN) is an effective tool to 

fault detection and isolation of two spool jet engines. They focused on component 

faults such as decreasing efficiency and capacity of the turbines and compressors and 

created DNN models for each fault which are taking sensor measurements such as 

shaft speed, temperature and pressure measurements as input. Each fault has own DNN 

model to isolate fault from health model Figure 2.18 shows the schematic diagrams 

of fault isolation. 
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Figure 2.18 Sina et al. Proposed Fault Detection Schematic with Dynamic Neural 

Network Architecture [22] 

 

Asgari et al. [21] studied black box modelling of a single shaft gas turbine engine with 

using Recurrent Neural Networks (RNN) as a part of Artificial Neural Networks. In 

RNN, each layer has a recurrent connection. RNN algorithm was adjusted to predict 

accurately of gas turbine engine dynamics. As selected inputs were fuel flow, load, 

ambient temperature and pressure so shaft speed, temperature and pressure of some 

points, compressor pressure ratio and efficiency of gas turbine were output parameters 

of RNN structure. Results claim that the percentage of RMSE is averagely smaller than 

3% on test data. 

 

 

Figure 2.19 Asgari et al.'s Structure of the Recurrent Neural Network RNN 4-H-9 of 

a single shaft gas turbine engine [23] 
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Kim et al. [32] designed an approach to predict transient behavior of aircraft engines 

with employed ANN model with a radial basis function (RBF). They created an NPSS 

based model of low bypass F100-PW-100 turbofan engine from literature data called 

as first principle model to create data to train ANN model, and they built a simulation 

approach to enhance the performance of data-driven ANN model. Inputs of the model 

were fuel mass flow rate and ambient conditions. They claim that their proposed 

approach performs better than conventional ANN with RBF models, the R-squared 

values of the output parameters are higher than 0.98, one can show in Figure 2.20. 

 

 

Figure 2.20 Kim et.al.' s approach to data driven ANN with RBF model for turbofan 

engine [32] 

 

Liu and Karimi [23] investigated the performance prediction of heavy-duty gas turbine 

in a power plant by employing machine learning. They developed models to predict 

performance parameters, such as compressor and turbine operating characteristics and 

related gas temperatures based on various input variables and model structures. 

Specifically, they employed surrogate models including High Dimensional Model 

Representation (HDMR), and supervised machine learning techniques, such as ANN, 

trained on historical data. The ANN was configured as multi-layer perception (MLP) 

with one hidden layer.  Their results claim that both HDMR and ANN models offer 

effective prediction of gas turbine characteristics. Furthermore, they developed 

correction curves that can serve as a basis for health monitoring and fault diagnosis of 

the engine.  
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2.4.4. Nonlinear Auto Regressive with External (Exogenous) Input 

Model (NARX) 

NARX is a recurrent neural network structure that is characterized by a delay of input 

and output signals used for modeling time series data [13]. It predicts the current value 

of an output based on its past values. NARX model, as a recurrent neural network, has 

the capability of capturing dynamics of complicated systems such as gas turbines [50]. 

 

 

Figure 2.21 NARX model Structure [8] 

 

Yu and Shu [8] introduced NARX identification modelling approach for high-bypass 

JT9D turbofan engine. Above idle engine data sets were generated by integrating the 

NASA T-MATS [6, 7] module for the prediction model. The fuel-air ratio (FAR) was 

used as the model input while high- and low-pressure spool speeds were predicted. 

They demonstrated that NARX model accurately identifies the dynamic characteristics 

of JT9D turbofan engine with the mean error value (∆𝑛) of 0.008, where ∆𝑛 was 

defined as 

∆n = √(
NL−NL

′

NL
)
2

+ (
NH−NH

′

NH
)
2

 ....................................(2.28) 

Where: 

 𝑁𝐿: low pressure shaft speed, 𝑁𝐻: high pressure shaft speed and 𝑁𝐿
′ , 𝑁𝐻

′ : predicted 

value. 

Asgari et al. [9] applied NARX model to investigate the starting phase of heavy-duty-

single-shaft gas turbine engine. They utilized over 1300 test data sets to train the model 

and validated it with test data under varying ambient and load condition. The observed 

RMSE values depended on training curves. The number of hidden layers and input 

parameters was selected to optimize performance while maintaining model simplicity. 
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The results demonstrated that NARX models have the potential to predict engine 

dynamics effectively. Furthermore, the authors noted data-driven models could 

provide diagnostic information for the gas turbines. 

Pogorelov et al. [13] developed a dynamic model for gas turbines by using recurrent 

neural networks (RNN) with NARX. The model was trained using start-up, ground 

and flight test data from the engine and implemented in a hardware-in-the-loop (HIL) 

system with a Full Authority Digital Engine Control (FADEC) closed-loop-control. 

Consequently, the NARX model performed successfully in HIL test bed with a 

FADEC. However, the authors also noted that the neural network model exhibited 

reduced performance during sharp transition point such as starter shutdown and end of 

the acceleration.  

Giorgi and Quarta [33] investigated the application of machine learning and artificial 

neural network techniques to predict Exhaust Gas Temperature (EGT) using their 

Viper 632-43 engine model, comparing the performance of these methods. Various 

input combinations, including atmospheric conditions, shaft speed, turbine inlet 

temperature, fuel mass flow rate, were tested using MultiGene Genetic Programming 

(MGGP) as Machine Learning techniques to explore mathematical relationship 

between input parameters and EGT. The results indicated that MGGP is an effective 

technique for EGT estimation. Additionally, the Nonlinear Autoregressive with 

Exogenous Inputs (NARX) model, employed as an ANN, was used to predict EGT for 

the next time step. The authors employed Bayesian Regularization, Scaled conjugate 

gradient and Levenberg-Marquardt as training algorithm, with They reported Bayesian 

Regularization has higher R-squared performance. However, they noted that NARX 

networks require the output parameter from the previous time step. In the case of 

output parameters that are unavailable, NARX models cannot be used. 

2.4.5. Dynamic Mode Decomposition (DMD) 

Dynamic Mode Decomposition is used to dimensional reduction of high dimensional 

systems and create a model how the system evolves in time. DMD is an equation-free, 

data driven method to obtain linear reduced order models allows estimate the spatial 

temporal modes without requiring any pre-knowledge about the system 

[10, 34]. 
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Basic application of the DMD start with collecting number of pairs of snapshots of the 

systems states. 

𝐗 =  [
| | …
x1 x2 … 
| | …

 |
    xn−1

|
]………………………..(2.29) 

And 

𝐗′ =   [
| | …
x2 x3 … 
| | …

 |
    xn

|
]………….………..……(2.30) 

 

Where n represent snapshots, thereby each column are snapshots along to dynamics of 

the system. 𝐗  matrices represent of each spatial measurement snapshot per ∆𝒕 , 

however  𝐗′ is the matrices of shifted ∆𝒕 time step into future.  

DMD algorithm’s objective is to find the best fit linear operator "A". Essentially, DMD 

approximates the leading eigen decomposition of the eigenvalues, computes the 

dominant eigenvalues and eigenvectors of A without computing totally A matrices. 

𝐗′  ≈  𝐀𝐗......................................................(2.31) 

Basically, on theory of DMD, 𝐗  is recomposed with using singular value 

decomposition to find dominant coherent structure. Then, some matrix operations are 

computed with using reduced matrix to find eigenvalues and eigenvectors (called as 

modes). Finally, obtained low-rank structure represents the systems’ future state 

behaviors [10,35]. 

Krishnan and Sever [34] investigated the vibration response of an aero engine using 

Input-Output Dynamic Mode Decomposition (ioDMD) method. They found that 

ioDMD method requires full access to state of the systems, which is challenging for 

aero engines due to their limited measurement capabilities. To address this, the authors 

proposed a multi-resolution ioDMD approach, which enables the approximation of the 

states of the system. This approach improves capturing of dynamical behavior of 

measured vibration data [34]. 
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2.4.6. Sparse Identification of Nonlinear Dynamics (SINDy) 

2.4.6.1.   Lasso Regression 

A matrix with most of its elements are zero defined as sparse matrix. For instance, A 

matrix is sparse matrix. 

A =  [
0 0 0
0 0 0.96
0 1.21 0

]………………………….(2.32) 

LASSO regression can be used in parameter selection problems. 𝒍𝟏  regularization 

manages the sparsity and weights the parameters relation and effectiveness to the 

system dynamic.  

𝜉 = argmin
𝜉′

||𝜉′Θ − y ||2 +  λ ||𝜉′||1   ......................(2.33) 

Sparsity balances the complexity and accuracy of the model which can be in optimal 

position in a Pareto front. [11, 36] λ parameter weights the sparsity constraints. SINDy 

algorithm uses 𝑙1  regularization or sequential thresholded least square (STLSQ)  

[11, 12, 36]. 𝑙1 regularization has more sparse representation however STLSQ is most 

robust with noisy data [19]. 

Pseudo logistic diagram of sequential thresholded least square (STLSQ) can be 

illustrated as follows. 

 

 

Figure 2.22 Logistic Diagram of Sequential Thresholded Least Square, based on 

Brunton et al. [12] 
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2.4.6.2. Theory 

SINDy algorithm is explained in detail on the original paper. [12] The underlying 

theory and practical solution proposal of finding dynamical system governing 

equations have inspired this thesis.  This section summarizes the theory of SINDy 

based on original paper [10,12]. 

Below notation description is stated as follows. Scalar quantities represent in lower 

case letters (e. g. , 𝑥), vector quantities represent in bolt lower case letters (𝑒. 𝑔. , 𝒙), and 

bolt capital letters indicate matrices. 

Let 𝒙(𝒕) ∈ ℝ𝒏𝒙𝟏 is the 𝒏-dimensional state vector at time 𝒕.  

𝒙̇(𝒕) = 𝒇(𝒙(𝒕))............................................(2.34) 

Where, 

 𝒙̇(𝒕) = [𝒙𝟏(𝒕) 𝒙𝟐(𝒕) ⋯ 𝒙𝒏(𝒕)]𝑻  and 𝒇(𝒙(𝒕)) is nonlinear function that define 

the system. 

The object is that estimate the function 𝒇 from collected time-based data where 𝒇 

consist of a few elements making it sparse in the space of possible functions. 

𝑿 =

[
 
 
 
𝐱𝑻(𝒕𝟏)

𝐱𝑻(𝒕𝟐)
⋮

𝐱𝑻(𝒎)]
 
 
 

 =   [

| | …

𝒙𝟏(𝒕𝒊) 𝒙𝟐(𝒕𝒊) … 
| | …

 |

    𝒙𝒏(𝒕𝒊)

|
]..............(2.35) 

Where, 𝑿 ∈ ℝ𝒏𝒙𝒎  is matrices collection of the data which is composed 𝒏 - 

dimensional state and   𝒎- dimensional time snapshots. 𝒕𝒊 indicates the 𝑖-th time step. 

 And the derivative of 𝑿  matrix can be represented as below. Derivatives can be 

measured or numerically calculated.  Besides, filtering may be required due to high 

noise level. 

𝑿̇ =

[
 
 
 
𝐱̇𝑻(𝒕𝟏)

𝐱̇𝑻(𝒕𝟐)
⋮

𝐱̇𝑻(𝒎)]
 
 
 

 =   [

| | …

𝒙̇𝟏(𝒕𝒊) 𝒙̇𝟐(𝒕𝒊) … 
| | …

 |

    𝒙̇𝒏(𝒕𝒊)

|
]...............(2.36) 
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Candidate nonlinear function library of 𝚯(𝑿) is constructed. Selection of the functions 

are arbitrary based on operator decision. Candidate functions can consist of 

polynomial, trigonometric or any other terms. 

𝚯(𝑿) =

 [

| | |

𝟏 𝑿 𝑿𝑷𝟐

| | |
   

| … |

𝑿𝑷𝟑 … 𝑿𝑷𝒎  
| … |

  |
 𝐬𝐢𝐧 (𝑿)

 |

| | |
    𝐜𝐨𝐬 (𝑿) 𝐬𝐢𝐧 (𝟐𝑿) 𝐜𝐨𝐬 (𝟐𝑿)

| | |

    …
    …
    …

](2.37) 

𝚯(𝑿) =  [

| | |

𝟏 𝑿 𝑿𝑷𝟐

| | |
   

| … |

𝑿𝑷𝟑 … 𝑿𝑷𝒎  
| … |

    …
    …
    …

].......................(2.38) 

To illustrate, the above candidate function library consists of first degree (𝑿), quadratic 

(𝑿𝑷𝟐), cubic (𝑿𝑷𝟑) and nth degree polynomial terms. Also, trigonometric functions are 

stacked into matrix. Quadratic term from the candidate library can be expanded as 

below. 

𝐗𝐏𝟐 = 

[
 
 
 
𝒙𝟏

𝟐(𝒕𝟏) 𝒙𝟏(𝒕𝟏)𝒙𝟐(𝒕𝟏) … 

𝒙𝟏
𝟐(𝒕𝟐) 𝒙𝟏(𝒕𝟐)𝒙𝟐(𝒕𝟐) …
⋮

𝒙𝟏
𝟐(𝒕𝒎)

⋮
𝒙𝟏(𝒕𝒎)𝒙𝟐(𝒎)

⋱
…

 

 𝒙𝟐
𝟐(𝒕𝟏) 𝒙𝟐(𝒕𝟏)𝒙𝟑(𝒕𝟏) ⋮

 𝒙𝟐
𝟐(𝒕𝟏) 𝒙𝟐(𝒕𝟐)𝒙𝟑(𝒕𝟐) ⋮
 ⋮

 𝒙𝟐
𝟐(𝒕𝟏)

⋮
𝒙𝟐(𝒕𝒎)𝒙𝟑(𝒎)

⋱
⋮

  

𝒙𝒏
𝟐(𝒕𝟏)

𝒙𝒏
𝟐(𝒕𝟏)
⋮

𝒙𝒏
𝟐(𝒕𝟏)]

 
 
 

..(2.39) 

Likewise cubic polynomials or trigonometric functions can be expanded. Operator is 

free to choose any nonlinear function while creating of candidate function library.  

Thereby, general equation of nonlinear system can be written as below. 

𝐗̇ = 𝚯(𝐗)𝚵..................................................(2.40) 

Where 𝚵 is sparse regression coefficient. Matrix can be illustrated as below. 

𝚵 = [

| | …
𝝃𝟏 𝝃𝟐 … 
| | …

  |
   𝝃𝒏

|
]............................................(2.41) 

The aim of the algorithm is that which arbitrary function is active in each row and how 

the system behavior is represented in optimum and simple way with a few terms. 

Hence, sparse regression problem is solved to obtain sparse regression coefficient 𝚵 to 
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determine the active terms. On the  𝚵 matrix, only a few terms should be active while 

many elements should be zero otherwise, solution cannot be sparse. 

For some cases derivate of the function have noise. Then the equation becomes 

𝐗̇ = 𝚯(𝐗)𝚵 +  𝜼𝒁.............................................(2.42) 

Where 𝒁 is a matrix of independent Gaussian noise with zero means. 𝜼 is the noise 

magnitude. Measurement noise in the data can decrease the performance of SINDy. 

Hsin et al. [19] suggested that smoothing the noisy measurement with Gaussian 

process regression improves the effectiveness of SINDy, called as GPSINDy. 

 

 

Figure 2.23 Schematic of the SINDy algorithm, demonstrated on the Lorenz Equation, 

Reprinted from Brunton et al. [12] 

 

Figure 2.23 is the demonstration of SINDy algorithm under Lorenz system. 

Measurements are collected in time based on the states of 𝐗  and derivatives 𝐗̇. 𝐗 

Matrix is consisted of 𝐱, 𝐲 𝐳  states. Then, arbitrary candidate function 𝚯(𝐗)  are 

constructed as consist of polynomial functions including first to fifth degree terms. 

Sparse regression problem is solved to find coefficient matrix 𝚵 = [𝝃𝟏, 𝝃𝟐, 𝝃𝟑] . 

Colourful dots in the 𝚵 matrix represent the active terms in function. Identified system 

representation is demonstrated at the end of figure [59]. 
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SINDy performs well in system with low state dimensions and is applicable to various 

types of systems. However, Corberta [11] mentioned that SINDy may be less capable 

in higher-dimensional system, where determining the candidate library can be 

challenging.  For stochastic system with random initial conditions, multiple 

trajectories are required to accurately determine dynamics, which may require more 

training data and that increase computational costs.  

PySINDy is an open-source python package to apply the SINDy algorithm to scientific 

model discovery [12, 37, 38]. The package involves many customizable features for 

numerical differentiation, candidate function libraries (polynomial, Fourier), sparse 

regression techniques. Also, it includes tutorials, guidelines and many application 

examples. Figure 2.24, shows the basics of usage of PySINDy based on cited 

packages. 

 

 

Figure 2.24 Flow Diagram of Discovering the model with PySINDy package [37,38] 

 

2.4.6.3.   Applications 

Machado and Jones [39] proposed SINDy-SI, an enhancement of the Sparse 

Identification of Nonlinear Dynamics (SINDy) method, designed to model nonlinear 

dynamical systems using sparse, noisy data by incorporating Side Information (SI)-

prior knowledge and constraints about the considered system. The authors highlight 

that many existing system identification methods produce unreliable models, violate 



 

36 
 

physical laws and exhibit unreliable behavior outside of the training data. Therefore, 

they propose SINDy-SI, integrates SINDy with Sum-of-Squares (SOS) programming, 

enforcing sparsity and physical consistency through iterative optimization while 

adhering to side information constraints.  

The paper demonstrates SINDy-SI’s performance through numerical experiment on 

the generated Lorenz system data with different noise scenarios and Single-Machine-

Infinite-Bus (SMIB) systems. Results show that SINDy-SI outperforms methods like 

SINDy and Ordinary-Least-Squares, achieving a better balance in sparsity, accuracy, 

adherence to system properties.  

The authors of [40,60] employed SINDY during the system identification phase to 

develop a nonlinear state space model of angular velocity dynamics for small-scale 

turbojet engines enabling to estimate thrust. They highlight the difficulty of direct 

measurement of thrust due to limited instrumentation of small turbojet engines. Hence 

accurate thrust estimations become challenging. To address this, authors propose a 

combination data driven method to estimate thrust: Grey-box modelling of the jet 

engine to identify the system with using SINDy method and EKF (Extended Kalman 

Filter) refines the model parameters and thrust estimation from angular speed 

measurement. They conclude to use second order candidate functions library based on 

angular speed, first and second derivative of angular speed and input signal, 

additionally to enhance accuracy they add steady state function derived from 

experimental data. They identify the system as below [40]: 

ω̈ = f(ω, ω̇, u) = Kss(ω − a1u
b1 − c1) + Kdω̇ + Kωdωω̇ + Kωωdω

2ω̇.....(2.43) 

Where Kss , Kd  , Kωd , Kωωd  are model parameters, 𝒂𝟏 , 𝒃𝟏  are identified from 

regression on steady state data and 𝒄𝟏 is idle angular speed.  

Then, they use EKF to estimate thrust. Validation on a test bench with JetCat P160 

and P220 turbojets shows an absolute mean error in thrust estimation below 2% of max 

thrust, even during engine failures [40]. 

Numerical techniques allow accurate simulations of gas-turbine engine behavior 

nevertheless require significant computational power during real- time application. A 

turboshaft examples covers to prediction of delivered torque based on various flight 

data of the AW189 Twin Engine Leonardo’s helicopter [41]. Authors employ 
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supervised data driven techniques architectures, which are Feed-Forward Neural 

Network (FFNN) and Long-Short-Term-Memory (LSTM) as a Multi Input Single 

Output (MISO) Model  and SINDy to derive the relationship between torque and 

delivered fuel flow as low dimensional dynamical modelling. They conclude that 

FFNN is not able to predict the torque properly and LSTM has better predictions. On 

the other hand, SINDy allows interpretable, more accurate results without knowing 

underlying dynamics especially using second order model to train SINDy model [41]. 

L’Erario et. al. [42] investigated data driven modelling for small turbojet engine’s 

thrust. They applied second-order SINDy, Extended Kalman Filter (EKF) based 

identification and iterative Least Square methods to analyze thrust behavior of the 

engine in response to input and compared the method results with measured data. Their 

findings suggest that EKF based identification outperforms SINDy and iterative least 

squared method. 
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3.  METHODOLOGY 

From the scope of thesis, SINDy algorithm is employed to the gas turbine engines as 

a data-driven model. Identification and validation of data-driven modelling should be 

based on real engine ground or flight test data. Since accessing such a big flight and 

ground test data about real engines are company restricted, engine dynamic models 

can be employed to generate time dependent data as other data driven examples on 

literature. Concurrently, one of the fundamental principles of thesis is to conduct an 

open-source study, ensuring transparency and accessibility. 

NASA T-MATS tool is employed to generate dynamic engine data [6, 7]. T-MATS 

tool was generated in MATLAB/Simulink environment. On the tool there is an 

example of Pratt & Whitney unmixed high bypass turbofan JT9D engine course model.  

Building upon the T-MATS structure and engine of this example, additional 

enhancements have been incorporated while maintaining fidelity to the original design. 

Detailed information about the modelling of JT9D engine will be provided in 

upcoming sections. 

The PySINDy tool, a python package for SINDy [37, 38], is used to generate SINDy 

model upon the JT9D engine. PySINDy tool provides systematic and basic approaches 

to application of SINDy algorithm. The research has focused on utilizing SINDy to 

propose solutions for the challenges encountered in gas turbine engines. Thrust 

estimation, turbine temperature prediction, fault diagnosis, and development of 

SINDy-based dynamic engine model are the main aspect of the research. Figure 3.1 

shows the methodology diagram of creating SINDy-based model. 

 

 

Figure 3.1 Methodology Diagram of Creating SINDy based Model 
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3.1. The JT9D Engine 

The JT9D was Pratt & Whitney’s (P&W) commercial high bypass unmixed turbofan 

engine. It was the first high-bypass ratio jet engine to power a wide-body aircraft. The 

program was launched in 1965, and the first engine tested in 1966. The engine powered 

the Boeing 747, Boeing 767, Airbus A300, Airbus A310, McDonnell Duglas DC-10 

[43,44]. 

 

 

Figure 3.2 Pratt& Whitney JT9D Engine Cutaways [43, 44] 

 

The engine has a single stage fan, 3-stage low pressure and 11-stage high pressure 

compressors, annular type combustor and 2 stage high pressure and 4- stage low 

pressure turbine. The engine’s weight is approximately 4150 kg. According to P&W 

website [43] engine characteristics can be tabulated as below. Since the engine has 

been in service for an extended period, its specifications may vary from one model to 

another. 

 

Table 3.1 JT9D Engine Specification 

JT9D Engine Specification British Unit SI Unit 

Fan Tip Diameter 93.4 inches 2372.4 mm 

Length, flange to flange 132.7 inches 3370.6 mm 

Take-off thrust 48000-56000 lbf 231.5-249 kN 

Flat rated temperature 86 °F 30 °C 

Bypass Ratio 4.8 

Overall Pressure Ratio 26.7 

Fan Pressure Ratio 1.67 
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From the literature review some useful specifications are collected and deduced. It 

should be noted that, the provided data depends on the variation model of JT9D engine 

[6, 7, 45,46,47]. 

• Engine controlled with Electronic Engine Control (EEC) unit. 

• Engine modulates the thrust with Engine Pressure Ratio 

• HPC has variable stator vanes. 

• JT9D engine uses handling bleed while acceleration to compensate surge margin of 

HPC. 

• Inlet total temperature (Tt2), Inlet Total Pressure (Pt2), Low Pressure Spool Speed 

(NL), High Pressure Spool Speed (NH), Low Pressure Turbine Exit total 

temperature (Tt7, Exhaust Gas Temperature, EGT), Low Pressure Turbine Exit 

total pressure (Pt7), Compressor Exit Static Pressure (Ps3, however it called as Ps4 

on literature but remaining faithful to research station numbering, considering as 

Ps3). 

• Electronic Engine Control limits the engine thrust according to maximum allowable 

EGT and max spool speeds based on the ratings. 

• Engine is cruising at ~0.85 Mach 

• 100% Low pressure spool speed is 3750 rpm.  

• 100% High pressure spool speed is 8000 rpm.  

 

 

Figure 3.3 Pratt &Whitney JT9D Engine Cutaway [43] 
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3.2. JT9D Engine Model 

JT9D dynamical engine model is developed in MATLAB/Simulink using NASA’s 

Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)  

[6, 7]. T-MATS provides a comprehensive library of gas turbine components, enabling 

modular design within Simulink. The model generates time-dependent solutions based 

on specific inputs. The overall comprises the JT9D engine component, sensor and 

actuator models.   

The model’s inputs include fuel flow rate (Wf) and atmosphere information such as 

pressure altitude (Alt), flight Mach number (MN) and delta from ISA condition 

(dTISA). These inputs are delivered to dynamic engine model which incorporates 

thermodynamic calculations to produce outputs, including temperature, pressure, mass 

flow rate and fuel air ratio at each station. Additional outputs include shaft speeds, 

metal temperatures and performance outputs such as thrust, specific fuel consumption 

(SFC). Selected outputs of the engine model are then transferred to sensor models 

which are sensed. Figure 3.4 illustrates a simplified schematic of the model structure. 

 

 

Figure 3.4 JT9D Engine Simplified Schematic of Model Structure 

 

The engine model employs a multi-loop architecture. The outer loop iterates over time 

t with integrator blocks generating the system’s next time-step solutions by integrating 

the derivatives of shaft speeds and metal temperatures. These solutions are fed into the 

inner loop, which consists of turbomachinery components in thermodynamical 

imbalance. The systems imbalanced terms, dependents variables, transferred to 

iterative solver. The iterative solver utilizes the Newton-Raphson (NR) method to 

advance the plant model toward a solution by generating Jacobian matrices. The 
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dependent variables, representing the inner loop’s component errors, are iterated using 

a while-loop iterator until the converged tolerance is achieved. Upon convergence of 

the step, the solver produces thermodynamically balanced independent variables, 

which are unknows of the inner loop. The independents variables may include the input 

mass flow rate (W2), bypass ratio (BPR), compressors R-Lines (or Beta Lines), 

turbines pressure rations. Consequently, the system’s state solution is obtained, 

allowing the model to progress to the next time step until solutions for all time steps 

within the specified duration are achieved [6,7]. 

 

 

Figure 3.5 T-MATS Based Model Architecture [6, 7] 

 

Figure 3.6 illustrates the engine modular modelling via Simulink. Component models 

are arranged to solve step solutions and make thermodynamic calculations. The 

calculations behind the component are based on Section 2.1. Employed components 

maps FAN, LPC, HPC, HPT and LPT turbomachinery were illustrated in  

Figure 2.1, Figure 2.2 and Figure 2.3. Each component block input/outputs are 

defined as stations, to identify designated points based on ARP 755 standards [48]. 

Table 2.2 represents the JT9D engine station nomenclature. 
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Figure 3.6 JT9D Representative Schematic of Engine Modular Component Structure 

 

The steady state performance of the JT9D engine model at 100% LP Spool Speed in 

sea level static condition is presented in Table 3.2. The engine model has relatively 

sufficient output performance with comparing literature information. The steady-state 

outputs conform to the model described in the T-MATS example, ensuring consistency 

with established benchmarks [7]. 
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Table 3.2 JT9D Engine Model Steady State SLS Output 

Alt [ft] Flight MN dTamb Pamb [kPa] 
Tamb 

[K] 

0 0 0 101.325 288.15 

Fuel Flow [kg/s] N1 [rpm] N2 [rpm] BPR EPR 

2.364 3750.0 7887.5 5.1554 1.6029 

Net Thrust [kN] Fg [kN] Fbypass [kN] Fcore [kN] OPR 

233.33 233.33 179.04 54.29 21.53 

Station W [kg/s] Tt [K] Pt [kPa] FAR 

S1 732.433 288.15 101.325 0 

S2 732.433 288.15 100.514 0 

S21 118.989 336.39 164.0930 0 

S13 613.443 336.39 164.0930 0 

S22 118.989 336.39 163.682 0 

S23 118.989 440.84 378.829 0 

S24 118.989 440.84 377.8823 0 

S3 108.280 752.84 2163.751 0 

S4 110.645 1480.82 2044.745 0.02184 

S45 121.354 1153.79 758.044 0.01987 

S5 121.354 813.31 161.116 0.01987 

S7 121.354 813.31 159.505 0.01987 

S17 613.443 336.39 162.862 0 

FAN 

Rel. Corr. Speed Wc [kg/s] Pressure Ratio Efficiency 

Power 

[kW] 

0.9511 738.34 1.6325 0.8961 

-

35508.2 

LPC 

Rel. Corr. Speed Wc [kg/s] Pressure Ratio Efficiency 

Power 

[kW] 

0.9478 79.59 2.314 0.8742 

-

12576.5 

HPC 

Rel. Corr. Speed Wc [kg/s] Pressure Ratio Efficiency 

Power 

[kW] 

1.003 39.46 5.726 0.8214 

-

39284.6 

HPT 

Rel. Corr. Speed Wc [kg/s] Pressure Ratio Efficiency 

Power 

[kW] 

0.9978 19.26 4.994 0.9027 39284.4 

LPT 

Rel. Corr. Speed Wc [kg/s] Pressure Ratio Efficiency 

Power 

[kW] 

1.0159 50.55 6.135 0.8988 48084.7 



 

45 
 

From the perspective of dynamic modeling, the JT9D engine model incorporates shaft, 

heat, sensor and actuator dynamics. These dynamics are sufficient to represent the 

engine’s transient behavior above idle conditions. However, advanced dynamics, such 

as stall and surge behavior, require volume dynamic modeling to simulate the 

momentum and transition of the gas flow and energy between the volumes. As this is 

beyond the scope of the thesis, volume dynamics were not modeled. 

Shaft dynamic is the main dynamic of a transient behavior of the engine. The input of 

the dynamic is shaft inertias, which have been taken as they are in the example: LP 

shaft inertia is 135.6 kg.m2 and HP shaft inertia 27.1 kg.m2.  

Heat dynamics called as heat soakage, are employed for HPC, CC, HPT and LPT 

components. However, according to low temperature behavior, heat dynamics are not 

implemented to FAN and LPC. T-MATS has its own heat soakage calculation library 

block. Lumped heat transfer models are employed. Thereby, each component is 

modeled as a representative bulk mass. Inputs of each heat transfer block are tabulated 

as Table 3.3. Input parameters are derived from literature [6 ,7 ,14]:  

 

Table 3.3 JT9D Heat Soakage Model Parameters 

Component 

Wdesign 

[kg/s] 

Tdesign 

[K] 

Surface  

Area 

[m2] 

Heat 

Transfer 

Coefficient 

[W/m2K] 

Mass 

[kg] 

cp 

[J/kgK] 

HPC 108.9 600 9.3 3271 608 520 

CC 111.1 1111 0.9 3148 192 520 

HPT 122.5 1278 4.6 3148 816 520 

LPT 117.9 983 4.6 1022 704 520 

 

The order of magnitude of heat transfer between the gas and metal is deemed 

approximately appropriate and can be represented as heat transferred energy divided 

by component power while accelerating the engine from idle to maximum thrust level 

based on the following figure [1].  
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Figure 3.7 JT9D Heat Transfer Model Behavior 

 

Measurements exhibit inherent delays and uncertainties in their natural behavior. To 

simulate realistic behavior, these dynamics were implemented into the engine model. 

Sensors are modeled as first order lag systems with specific uncertainty values derived 

from random noise generation. Table 3.4 specifies sensor modeling input parameters 

for each sensor. Time constants represent the delay of the sensor under response to a 

step input.  

 

Table 3.4 JT9D Engine Model Sensor Specification 

Sensor 

Time 

Constant 

[s] 

Max 

Range Uncertainty 

N1- LP Shaft Speed [rpm] N/A 4500 rpm 0.20% 

N2 – HP Shaft Speed [rpm] N/A 10000 rpm 0.20% 

Tt2 -Fan Inlet Temperature[°C] 2 130 °C Max 1.5°C 

Pt2 - Fan Inlet Pressure [kPa] 0.05 300 kPa 0.10% 

Pt3- HPC Exit Pressure [kPa] 0.05 3000 kPa 0.10% 

Pt7- Core Nozzle Exit Pressure [kPa] 0.05 300 kPa 0.10% 

Tt7 - Core Nozzle Exit Temperature [°C] 3 725°C Max 5°C 
 

Fuel flow is injected into the engine via metering unit, which is modeled as a first-

order lag system with a time constant of 0.7 seconds. 

The model is generated in MATLAB/Simulink. Time step of the simulations is taken 

as 0.01 seconds and Runge-Kutta (ode4) is used as solver [49, 50]. 
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The dynamics described above enable the model to adequately represent the transient 

dynamics of JT9D engine. 

3.3. Inputs to Generating Train and Test Data Set 

The general input variables for a gas turbine engine include fuel flow rate, variable 

vane actuator position, nozzle actuator positions (for engines with variable nozzle area) 

and atmospheric conditions. Within the scope of this study, only fuel flow rate is 

considered to model single-input-multiple-output system, simplifying the 

methodology by excluding variable vanes. Besides, corrected parameters represent the 

atmosphere effects quite effectively, thus sea level static condition performance of the 

engine is of interest for generating inputs for the SINDy model [2]. 

The ability of data-driven models, such as the Sparse Identification of Nonlinear 

Dynamics (SINDy) model, to generate successful predictions depends on the scope 

and quality of the input data. The data quality must encompass the engine’s entire 

operational domain and all relevant dynamics. Consequently, the input data represents 

one of the most critical factors. Hence, various fuel flow inputs are generated to cover 

a wide range from idle to max speed, the range of the fuel flow is from 0.43 kg/s to  

2.5 kg/s. 

Ten data set were generated, including sinusoidal, ramp, square, stairs maneuvers to 

involve the response of the system dynamic. Table 3.5 provides details and graphical 

representation of the input data sets.  

 

 

 

 

 

 

 

 

 



 

48 
 

Table 3.5 System Fuel Inputs Options 

Input 

Name Duration [s] 

Definition 

Input Graph 

Fuel 

Input 1 300 

Sinusoidal 

 

Fuel 

Input 2 150 

Square with 

sinusoidal 

 

Fuel 

Input 3 500 

Narrower square with 

sinusoidal 

 

Fuel 

Input 4 900 

Stairs 

 

Fuel 

Input 5 500 

Square 

 

Fuel 

Input 6 500 

Higher frequence 

sinusoidal 

 

Fuel 

Input 7 1500 

Stairs + Sinusoidal 

with random gaussian 

noise 

 

Fuel 

Input 8 1000 

sinusoidal with 

varying frequencies 

 

Fuel 

Input 9 1200 

Stairs + sinusoidal 

with high  random 

gaussian noise 

 

Fuel 

Input 

10 3000 

sinusoidal with 

varying frequencies, 

square + stairs 
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3.4. SINDy Model 

Generated measured data sets are used to train SINDy model and create governing. 

Flow diagram at Figure 3.8 demonstrates the steps of the selection of SINDy model 

inputs.    

 

 

Figure 3.8 The Diagram to Selection of SINDy Model Parameters 

 

There are various model parameters that can directly affect the results. Different 

combinations of parameters yield better results depending on the specific objective. 

Consequently, this gives rise to multiple possibilities that need to be evaluated. 

Although gas turbine engines exhibit complex dynamics, the selection of parameters 

that better represent their behavior should not be determined randomly. Major model 

parameters, such as inputs, state variables, and the selection of the candidate library 

must align with both mathematical approaches and the physics underlying the systems 

dynamics [10, 12]. 

Estimating unmeasurable parameters, such as thrust and exhaust gas temperature 

(EGT), and developing a dynamic model based on SINDy are among the objectives 

considered. The objective of the model determines which parameters employ as inputs 

and which are used as state variables. Estimated parameters are chosen as states, other 

states and inputs are attempted which one is performing better. An increase in the 

number of inputs and state variables may result in a more complex model, thereby 

elevating the risk of overfitting. In response to this, if the model’s sparsity threshold is 
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raised to reduce the number of terms, this may lead to the failure to capture essential 

dynamics, potentially compromising accuracy. On the other hand, if fewer inputs and 

state variables are used, the model may struggle to represent the dynamics with a 

limited number of terms. Consequently, balance between accuracy and complexity is 

required while selection of input and state variables. 

A similar step involves the selection of the candidate library. Typically, polynomial 

and Fourier libraries are employed. Polynomial libraries are more feasible to 

turbomachinery dynamics. Therese, unless a specific case requires otherwise, the use 

of polynomial libraries is appropriate. When determining the degree of polynomial 

features and the interaction between parameters, a balance is achieved between 

complexity and accuracy.  

Generally, Sequential Thresholded Least Squares (STLSQ) algorithms perform well 

for the engine dynamics, additionally which is more robust to noise than LASSO. [12] 

An optimization between threshold of STLSQ and maximum degree of the polynomial 

features is employed. As the final parameter, derivative methods were tested to identify 

the best solution. 

3.5. Model Validation and Comparison 

Model performance metrics facilitate comparison of results across models with 

varying SINDy model parameter configurations. Given the time-dependent nature of 

the dataset and the regression-based problem, regression metrics are suitable for 

evaluating performance. Mean Percentage Error (MPE), Root Mean Squared Error 

(RMSE), and the R-squared coefficient are employed as performance metrics.  The 

one exhibiting a higher R-squared and lower MPE and RMSE values is selected. 

Additionally, the SINDy model response and training dataset were visualized in the 

time domain, with their dynamics' similarity and physical consistency observed and 

evaluated across different responses. Subsequently, the selected model performance 

was tested with different dataset. 

To compare the SINDy’s performance with different data driven models is another 

validation technique of the study. Nonlinear Auto-Regressive with External 

(Exogenous) Input Model (NARX) is employed as a neural network time domain data 
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driven model. There are several gas turbine modeling applications of NARX in the 

literature [8, 9, 13, 33]. 

 

 

Figure 3.9 Structure of NARX model [51] 

 

The NARX model was trained for each output at the same time by using 10 hidden 

layers and 2 number of delays. Levenberg-Marquardt was configured as training 

algorithm. Wf was provided as input, while N1, N2, P3, P7, T7 are as output. The Fuel 

Input 10 dataset was utilized, randomly divided into 70% for training 15% for 

validation and 15% for testing [51]. Training was terminated after 125 epochs. The 

model was validated with different Fuel Input dataset and compared to the SINDy 

model. 
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4. RESULT & DISCUSSION 

4.1. Estimating Thrust 

The primary function of the jet engines is to provide thrust to aircraft. Despite the 

existence of few methods, the measurement of thrust during flight is highly 

challenging [56]. Extensive instrumentation is required. Due to this reason, it is 

impractical particularly for military applications during operation. Fortunately, Thrust 

is highly correlated with engine mass flow rate, spool speeds Engine Pressure Ratio 

(EPR) or turbine temperature. However, transient behavior, envelope effects, engine 

deterioration, bleed and power off taken and engine anomalies affect the thrust level.  

 

 

Figure 4.1 N1 vs Thrust & EPR vs Thrust Curves of JT9D Engine 

 

Knowledge of thrust during flight offers essential insights for mission profile planning, 

maneuverability and the operational conditions of engine. Model-based and data-

driven methods provide solution proposals for the requirement of thrust estimation 

[14,57,52,53]. 

SINDy offers interpretable readily applicable practical solutions to prediction of thrust. 

To overcome this challenge, the SINDy model was trained with various fuel inputs 

and SINDy model configuration parameters. The comparison of multiple options 

reveals that Figure 4.1 demonstrates the best model configuration with the best 

prediction performance. Due to its comprehensive profile, Fuel Input 10 contributed 

to an improvement in the solution's performance. Thrust (Fn) is the state of the model 
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and as an input variable, fuel flow (Wf), N1 Spool Speed and EPR combination 

achieved the best performance as expected. 

 

Table 4.1 SINDy Model Parameters for Estimating Thrust 

Training Data Variables Library Optimizer 

Differentiation 

Method 

Fuel Input 10 

X = Fn 

u = Wf, N1, 

EPR 

Polynomial 

2nd order 

without 

interaction 

STLSQ 

0.01 

Threshold 

0.05 alpha 

Finite 

Difference 

2nd order 

 

The governing equation, as below, has polynomial second order variables without 

interaction between variables and the coefficients of the parameters are listed in 

 

Table 4.2. 

dFn

dt
= c1 + c2Fn + c3N1 + c4EPR + c5Wf + c6EPR2 + c7Wf2......(4.1) 

 

Table 4.2 Thrust Estimation Model Coefficients 

Coefficient c1 c2 c3 c4 c5 c6 c7 

Fn [kN] -2607.7 -5.038 0.15 3232.61 65.534 -815.1 -5.158 
 

The model prediction response and its residual can be visualized as shown in Figure 

4.2. 

 

 

Figure 4.2 Thrust Estimation SINDy Model Response & Residual 
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Additionally, using the same input profile the NARX model was employed for 

comparison, and the performance metrics of both models are listed in Table 4.3 

Concurrently, Figure 4.3 presents the time-dependent graph of the data and the 

models. The training model performs well with a higher R-squared value and a low 

error rate. Error rates are lower than 1%. Even NARX model provides ten times better 

performance than SINDy, with parsimonious architecture, SINDy model delivers 

adequate performance. 

 

Table 4.3 Thrust Estimation Model Training Performance Metrics 

Model R-squared RMSE [kN] 
Mean Percentage 

Error [%] 

SINDy 0.999657 1.134 0.7139 

NARX 0.999994 0.148 0.0927 

 

 

 

 

Figure 4.3 Thrust Comparison Between Training Dataset and SINDy Model 

 

The trained model was validated with two different input profiles. The first test is 

acceleration and deceleration test and Fuel Input 4. The test results demonstrate that 

the model can predict thrust with 1% error without overfitting. However, it was 

observed that the model yields noisy outputs particularly at low velocity levels. 
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Table 4.4 Thrust Estimation Model’s Test Data Performance 

Test Data Response SINDy Model Prediction vs 

Thrust Measurement 

Accel Decel 

Test 

Response 

  

Fuel Input 4 

 
 

 

 

Table 4.5 Thrust Estimation Model Test Performance Metrics 

Input 
Model RMSE 

Mean Percentage 

Error [%] 

Acceleration- 

Deceleration 

SINDy 1.161 1.055 

NARX 0.169 0.110 

Fuel Input 4 
SINDy 0.964 0.713 

NARX 0.107 0.073 

 

The SINDy-based thrust model can be implemented into Simulink, utilizing four real-

time sensor feeds and an integrator block for continuous thrust estimation.  
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Figure 4.4 Simulink Diagram of SINDy Model for Thrust Estimation 

 

4.2. Estimating Exhaust Gas Temperature (EGT) 

Gas turbine engines operate at high temperatures, burner exit temperatures reach up to 

1800°C. Particularly in military applications, where they are required to operate at the 

maximum temperature limits permitted by material. As turbine blades are subjected to 

extreme temperatures and mechanical stress, their service life is inherently limited. 

Consequently, regulating turbine temperatures to balance extended engine life with the 

ability to meet high-performance demands represents one of the most critical functions 

of the engine control unit. Since measuring the blade temperature requires extensive 

instrumentation, exhaust gas temperature or turbine exit temperature indirectly 

provides insights into turbine blade metal temperatures. Consequently, exhaust gas 

temperature (EGT) serves as a critical indicator of engine health, enabling fault 

detection and monitoring of performance degradation [3, 4, 5, 51, 54]. 

Typically, EGT are measured by thermocouples. To avoid the inherent delays 

associated with thermocouples and enhance measurement reliability, the need for a 

temperature estimation model may arise [54, 55]. In this study, the applicability of 

SINDy as a data-driven solution has been investigated. 

Similar to the thrust estimation, the SINDy model was trained in various 

configurations.  Table 4.6 demonstrates the best training model configuration. T7 

(EGT) is the state of the model, the combination of fuel flow and engine pressure ratio 



 

57 
 

exhibited the best prediction via using second order polynomial functions with 

interaction of parameters.  

 

Table 4.6 SINDy Model Parameters for Estimating EGT 

Training 

Data Variables Library Optimizer 

Differentiation 

Method 

Fuel Input 10 
X = T7 

u = Wf, EPR 

Polynomial 

2nd order 

with 

interaction 

STLSQ 

0.05 

Threshold 

0.05 alpha 

Smoothed Finite 

Difference 

with Savitzky Golay 

filter 2nd order 

 

The governing equation of the specified model and coefficient of the variables are as 

follows. 

dT7

dt
= c1 + c2Wf + c3EPR + c4T7 ∗ EPR + c5Wf2 + c6Wf ∗ EPR + c7EPR2....(4.2) 

 

Table 4.7 EGT Estimation Model Coefficients 

Model c1 c2 c3 c4 c5 c6 c7 

T7 694.508 387.348 -1361.1 -0.16 49.676 -380.38 756.525 

 

The prediction performance metrics indicate that the model fits well.  Although, its R-

squared value is slightly lower than thrust estimation model performance, 0.98 R-

squared value with 1.7% error rate it remains noteworthy due to SINDy’s sparse and 

parsimonious modeling approach.  

 

 

Figure 4.5 EGT Estimation SINDy Model Response & Residual 
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Table 4.8 EGT Estimation Model Training Performance Metrics 

Model R-squared RMSE [°C] Mean Percentage Error [%] 

SINDy 0.9815 8.453 1.68 

NARX 0.99998 0.26 0.045 

 

 

 

Figure 4.6 EGT Comparison Between Training Dataset and SINDy Model 

 

Figure 4.6 shows the illustration of model outputs with sensor data, NARX and SINDy 

prediction. SINDy effectively follow sensor dynamic behavior and suppressed existing 

noise. However, its prediction became more challenging during sharp maneuvers. 

The estimation model was tested with various inputs and two notable results are 

presented in tables below. Fuel Input 5 represents one of the model’s reported 

responses, achieving an RMSE of approximately 9°C. Additionally, the model was 

evaluated using a dataset involving snap fuel injection, a highly extreme maneuver in 

practice, potentially resulting from controller or fuel metering faults. In this case study, 

the SINDy model demonstrated an acceptable response to the snap fuel injection. 

Although sensor dynamics could not accurately capture real T7 behavior due to their 

response delays, the SINDy model’s results were closer to real T7 value. 

 

 

 

 



 

59 
 

Table 4.9 EGT Estimation Model’s Test Data Performance 

Test Data Response SINDy Model Prediction 

vs EGT Measurement 

Fuel Input 5 

 
 

Snap Fuel Injection 

 

  

 

 

The NARX model EGT estimation performs better than SINDy due to the complex 

NN algorithms behind. However, it can be stated that SINDy’s performance criteria 

are also satisfactory. 

 

Table 4.10 EGT Estimation Model Test Performance Metrics 

Input 

Model RMSE [°C] 

Mean 

Percentage 

Error [%] 

Fuel input 5 
SINDy 8.89 1.73 

NARX 0.301 0.048 

Snap Fuel 

Injection 

SINDy 110.6 18.2 

NARX 4.018 0.148 

 

The SINDy-based EGT estimation model can be implemented into Simulink, utilizing 

three real-time sensor feeds and an integrator block for continuous EGT estimation as 

Figure 4.7.  
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Figure 4.7 Simulink Diagram of SINDy Model for EGT Estimation 

 

4.3. SINDy Based Data Driven Model 

SINDy allow to capture dynamics of the system, generate governing equations and can 

be used for system identification [12].  In this chapter, SINDy’s data driven system 

modeling capabilities will be examined using the JT9D turbofan engine, and the 

performance of the developed model will be discussed. 

Figure 4.8 illustrates the diagram of the model. Two real-time sensor measurements 

are required to use as input which are fuel flow and P2 measurement for calculating 

Engine Pressure Ratio. The output includes N1, N2, P3, T7 and T7, which represent 

the sensors of JT9D engine and system’s state variables. Each state has their own 

model and interacts with others when one state uses another variable as an input. 

Integrator blocks compute the next step of the predictions and the outputs feed back to 

the model. The desired model is simpler, parsimonious, independent from complex 

thermodynamic calculations and does not require any numerical iteration methods. 
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Figure 4.8 Simulink Diagram of Data Driven JT9D Engine SINDy Based Model 

 

Several combinations of model parameters were examined to provide the best 

performance of their own and interaction with each other. Table 4.11 highlight the 

selected models. 
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Table 4.11 SINDy Based Model Selected Parameters 

Training 

Data Variables Library Optimizer 

Differentiation 

Method 

Fuel Input 

10 

X = N1, N2 

u = Wf 

Polynomial 

2nd order 

with interaction 

STLSQ 

0.1 

Threshold 

0.05 alpha 

Finite Difference 

2nd order  

Fuel Input 

10 

X = P3 

u = Wf, N1, 

N2 

Polynomial 

3rd order 

without 

interaction 

STLSQ 

0.05 

Threshold 

0.05 alpha 

Smoothed Finite 

Difference 

with Savitzky 

Golay filter 

2nd order 

Fuel Input 

10 

X = P7 

u = Wf 

Polynomial 

2nd order 

with interaction 

STLSQ 

0.1 

Threshold 

0.05 alpha 

Smoothed Finite 

Difference 

with Savitzky 

Golay filter 

2nd order 

Fuel Input 

10 

X = T7 

u = Wf, EPR 

Polynomial 

2nd order 

with interaction 

STLSQ 

0.05 

Threshold 

0.05 alpha 

Smoothed Finite 

Difference 

with Savitzky 

Golay filter 

2nd order 

 

Fuel flow serves as a consistent input for each model. The results indicate that N1, N2 

or EPR become an input for the models as anticipated from SINDy’s sparse parameter 

selection algorithm. The reason of that N1 and N2 represent the actual state of the 

turbofan engine system while EPR effectively captures the system dynamics. N1 and 

N2 are solved concurrently during the training phase, and T7’s governing equation 

was established in the previous section. Polynomial libraries outperform Fourier 

libraries in representing dynamics, as is known. The STLSQ optimizer performs 

effectively due to its noise performance and robust structure, with a specified threshold 

value. In certain cases, smoothed finite difference is preferred over the standard finite 

difference method for differentiation. The governing equations of each model are 

presented below. 

dN1

dt
= c1 + c2N1 + c3N2 + c4Wf + c5N1 ∗ Wf + c6N2 ∗ Wf + c7Wf2....(4.3) 

dN2

dt
= c1 + c2N1 + c3N2 + c4Wf + c5N1 ∗ Wf + c6N2 ∗ Wf + c7Wf2....(4.4) 
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dP3

dt
= c1 + c2P3 + c3Wf + c4N1 + c5N2 + c6Wf2 + c7Wf3..........(4.5) 

dP7

dt
= c1 + c2P7 + c3Wf + c4Wf2.............................(4.6) 

 

Table 4.12 SINDy Based Data Driven Model Coefficients 

Parameter c1 c2 c3 c4 c5 c6 c7 

Fn -2607.7 -5.038 0.15 3232.61 65.534 -815.1 -5.158 

N1 17419.2 1.68 -3.29 4650.61 -1.026 -0.084 340.466 

N2 14523.4 1.441 -2.745 3087.98 -0.847 0.027 256.806 

P3 8427.89 -2.25 2214.95 1.102 -1.508 -232.02 19.355 

P7 102.787 -1.004 13.443 4.817     

T7 694.508 387.348 -1361.1 -0.16 49.676 -380.38 756.525 

 

Table 4.13, Table 4.14 and Table 4.15 demonstrate the training performance of the 

model. The model exhibited a performance with an error rate below 2% for all 

variables and an R-squared value above 0.98, which is readily acceptable for such a 

parsimonious data-driven model. 

N1 and P3 exhibit relatively high error rates and fail to adequately capture the system 

behavior at high power settings, which could not be improved within the scope of this 

study. However, it can be stated that the prediction performance for the other variables 

is preferable. 

 

Table 4.13 SINDy Based Engine Model Performance Metrics 

Training 

Data R-squared RMSE 

Mean Percentage 

Error [%] AIC 

N1 0.9802 79.6 rpm 1.9997 26264 

N2 0.998 18.4 rpm 0.1697 17464 

P3 0.9924 43.4 kPa 1.9647 22629 

P7 0.9955 1.23 kPa 0.6086 12580 

T7 0.983 8.4 °C 1.582 12774 
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Table 4.14 SINDy Based Model Response and Residual of each Variable 

Parameter Response Residual 

N1 

 
 

N2 

  

P3 

3  
 

P7 

 

 

T7 
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Table 4.15 Output and Comparison Between Training Dataset and SINDy Based 

Model 

Parameter Training Dataset and SINDy 

Model Comparison 

SINDy and NARX Model 

Comparison 

N1 

  

N2 

  

P3 

  

P7 

 
 

T7 
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Finally, the model was tested with several data sets and selected two results (Fuel 

Input1 and Fuel Input 6) are presented in below tables.  

 

Table 4.16 SINDy Based Model Test Results for Fuel Input 1 

Parameter Response SINDy Model Prediction 

N1 

  

N2 

 
 

P3 

 
 

P7 

 
 

T7 

  



 

67 
 

Table 4.17 SINDy Based Model Test Results for Fuel Input 6 

Paramete

r 

Response SINDy Model Prediction 

N1 

  

N2 

  
P3 

  
P7 

 
 

T7 
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Table 4.18 SINDy Based Model Test Performance Metrics for Fuel Input 1 

Parameter 

Model 
RMSE 

Mean Percentage 

Error [%] 

N1 [rpm] 
SINDy 56.243 1.825 

NARX 0.648 0.017 

N2 [rpm] 
SINDy 22.957 0.255 

NARX 0.931 0.006 

P3 [kPa] 
SINDy 25.074 1.794 

NARX 0.513 0.031 

P7 [kPa] 
SINDy 2.301 1.371 

NARX 0.434 0.278 

T7 [°C] 
SINDy 16.480 3.241 

NARX 0.405 0.064 

 

 

Table 4.19 SINDy Based Model Test Performance Metrics for Fuel Input 6 

Parameter 

Model   
RMSE 

Mean Percentage Error 

[%] 

N1 [rpm] 
SINDy   52.216 1.635 

NARX   1.114 0.025 

N2 [rpm] 
SINDy   21.767 0.236 

NARX   1.009 0.008 

P3 [kPa] 
SINDy   30.098 1.775 

NARX   0.918 0.052 

P7 [kPa] 
SINDy   2.344 1.391 

NARX   0.660 0.405 

T7 [°C] 
SINDy   11.313 2.072 

NARX   0.379 0.064 

 

The results and performance metrics indicates that, SINDy Based Model exhibits 

acceptable performance. The error rates can be further reduced through improvements, 

enabling the model to serve as a representative system model for various applications. 

Although the NARX model achieved significantly better predictions compared to 

SINDy model, SINDy's inherent interpretability, structural simplicity, physical 

consistent formulation, and acceptable error margins make it a suitable candidate 

within the scope of this research on gas turbine engine applications. 
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4.4. Improvements and Applications to Real Life Problems 

4.4.1. Envelope Model 

Within the scope of this study, the SINDy models are created as single-input models, 

only fuel flow effects are considered. The models represent sea level performance and 

estimations. Atmospheric effects can be partially accounted by using corrected 

parameters [2]. However, comprehensive envelope performance model requires direct 

atmospheric information as input. It can be pressure and temperature measurements at 

the engine inlet or flight Mach number and altitude provided by the aircraft. Flight 

condition measurements can be implemented to SINDy models as an input. The 

coefficients of the governing equations for each state can be trimmed with envelope 

information, In the cases of JT9D engine, it would be P2 and T2 measurements. To 

achieve this, a time-dependent dataset should be generated or tested from various 

points on the envelope, and the SINDy model should be trained for each point. 

Subsequently, the coefficients matrix is generated with dimensions of P2 and T2 

measurements. SINDy based engine models provide acceptable predictions of sensor 

outputs with low computational cost making them suitable for controller design as an 

alternative to complex thermodynamic models. 

4.4.2. Single Sensor Failures 

SINDy based models can provide to detect single sensor failures. The logic of fault 

detection algorithm over EGT faults is illustrated in Figure 4.9 via Simulink. 

Generally, real time EGT’s are measured with multiple thermocouples and the multiple 

measurements are averaged, transmitted to engine controller for temperature limiting 

function. In the case of, one or several thermocouples are broken physically or 

electrically, the failure detection algorithm can detect and isolate the failure based on 

SINDy EGT estimation model. If the difference between real time sensor value and 

model exceed the threshold value, fault signal is transmitted to controller to take an 

action. 
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Figure 4.9 Single Sensor Failure Detection with SINDy Model 

 

4.4.3. The Whole Engine Model for Deterioration Calculation and 

Anomaly Detection 

Gas turbine engines, which operate under high temperatures and stress, experience 

performance degradation over time. This deterioration leads to increased fuel 

consumption and a reduction in thrust [51]. Additionally, the components used in these 

engines undergo wear and deformation, eventually requiring maintenance. Detection 

of maintenance requirements is essential for minimizing operational costs and 

ensuring sustained engine performance. To achieve this, real-time implementation 

within the engine's control and/or monitoring unit is necessary. Various remaining 

useful life estimations and predictive maintenance techniques have been proposed in 

the literature to address this challenge [47, 20]. 

Degradation effects to drop compressors and turbines efficiencies varies the capacities 

[51]. If there is certain information about of the component’s deterioration behavior 

and whole engine measurement signals test or validated thermodynamic model data, 

SINDy can offer practical solution to deterioration estimation of the engine.  

Figure 4.10 shows the logic for deterioration detection, as a similar diagram to 

Tayarani-Bathaie et. al. [20] studies. 

New and component deteriorated SINDy models are inserted to logic. The algorithm 

takes the SINDy models outputs and real-time temperature measurements, compare 

and weight the models and isolate components deterioration rates and send the signal 

to monitoring unit to inform pilot and adjust the controller if there is any trim is 

required due to degradation. The critical aspect in this concept is having a certain  

pre-knowledge about the component degradation behavior and impacts to the engine’s 

performance measures. 
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Figure 4.10 Whole Engine Model Logic for Deterioration Calculation 

 

Similar to the deterioration model, whole engine failure can be detected with using 

SINDy Faulted Engine Models.  

 

 

Figure 4.11 Whole Engine Model Logic for Anomaly Detection 
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5.  CONCLUSION 

Data driven modeling and exploring governing equations are crucial to understanding 

existing system behaviors. Sparse Identification of Nonlinear Dynamics (SINDy) 

allow to analyze system in a parsimonious, interpretable way with comparing the other 

data driven approaches. In this thesis SINDy algorithm is applied to gas turbine engine 

dynamics focusing on exploring governing equations and models to represent the 

system simplest and adequate way. JT9D high bypass turbofan engine dynamic engine 

model is employed to generate data sets for SINDy model. SINDy model parameters 

are analyzed, and the best models are selected. Furthermore, SINDy models are 

validated and compared with NARX models. 

SINDy models are created to propose an approach to real life gas turbine challenges. 

Instant estimation of thrust and EGT while engine is operating are some of concerns. 

The results indicate that SINDy models perform adequate to prediction of parameters. 

The other scope of the study is generating SINDy based data driven models. May of 

black box data driven models are far from interpretability, hereby especially in 

certifications required industries such as aviation and aerospace these models may not 

be inserted to the real time systems. SINDy based models propose an explainable 

solution besides complex thermodynamic iterative modeling, simple governing 

equations are employed to identify system behaviors.    

The models can be used to detect single sensor failures, anomaly detection and 

deterioration calculations for gas turbine engines Chapter 4.4 Improvements and 

Applications to Real Life Problems comprise the approaches to these challenges. 

In conclusion, the study highlights that the SINDy algorithm offers a novel data-driven 

approach to gas turbine engine challenges. 
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