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ABSTRACT

Master’s Thesis

DYNAMIC PREVENTIVE MAINTENANCE SCHEDULE BASED ON USAGE
RATE FOR MEDICAL DEVICES: AN AHP AND IoT APPROACH WITH
MAGNETOMETER SENSOR

Aycan BULUCU

Ankara University
Graduate School of Natural and Applied Sciences
Department of Biomedical Engineering

Supervisor: Prof. Dr. Hilal GOKTAS

The management of medical equipment in hospitals directly affects treatment processes,
healthcare service quality, and the satisfaction of patients and healthcare professionals.
Proper planning can reduce the emergency priority failure rate in hospitals and ensure
suitable treatment methods are used for more patients. Biomedical units in hospitals
commonly use various types of software to manage this process because of the wide range
of medical devices available. Managing this process poses several challenges, given the
critical importance of medical devices in failures, maintenance, calibration process,
medical devices cost and, idle time.

This thesis focuses on utilizing Internet of Things (IoT) technology and sensors to
enhance the planning process of medical device maintenance. The magnetometer sensor
is integrated with hospital data to establish a dynamic preventive maintenance schedule.
The objective is to identify medical devices usage rates, optimize maintenance programs,
and offer recommendations to improve hospital resource management.

In this thesis, we analyzed sensor data using the K-means clustering method to measure
the usage rate of selected medical devices. The information gathered from the hospital
and the utilization data measured by magnetometer sensor were used in the Analytic
Hierarchy Process (AHP) to prioritize medical devices based on objective criteria. Our
findings revealed that the dynamic measurement of usage data resulted in changes to the
prioritization order.

February 2024, 80 pages

Key Words: Analytical Hierarchy Process (AHP), Internet of Things (IOT),
Magnetometer Sensor, Preventive Maintenance, Prioritization of Medical Devices,
Utilization Rate of Medical Devices
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OZET

Yiiksek Lisans Tezi

TIBBI CIHAZLARIN KULLANIM ORANINA DAYALI DINAMIK ONLEYICI
BAKIM TAKVIMI: MANYETOMETRE SENSORU ILE AHP VE 10T YAKLASIMI

Aycan BULUCU

Ankara University
Graduate School of Natural and Applied Sciences
Department of Biomedical Engineering

Danisman: Prof. Dr. Hilal GOKTAS

Hastanelerde medikal cihazlarin yonetimi, tedavi siireglerini, saglik hizmetlerinin
kalitesini, hasta ve saglik ¢alisanlarinin memnuniyetini dogrudan etkiler. Bu siirecin
dogru planlanmasi, hastanede acil oncelikli ariza oraninin azalmasini1 saglanmasini ve
daha fazla hastanin dogru methodlar ile tedavi olmasina olumlu etki eder. Cogunlukla,
hastanelerin biyomedikal birimleri medikal cihazlarin ¢esitliligi nedeniyle bu siireci
yonetmek icin ¢esitli yazilimlar kullanmay1 tercih eder. Bu siirecin ydnetimi, tibbi
cihazlarin sahip oldugu ariza, bakim, kalibrasyon siirecleri, maliyetleri ve
kullanilmadiklar siireler gibi kritik 6nem tasiyan 6zelliklerinden dolay1 birka¢ zorlugu
beraberinde getirir.

Bu tezde, tibbi cihaz bakim planlama siirecini gelistirmek igin Nesnelerin Interneti (IoT)
teknolojisi ve sensor kullanimina odaklanilmigtir. Manyetometre sensorii dinamik bir
onleyici bakim takvimi olusturmak i¢in hastane verileri ile entegre edilmistir. Amag, tibbi
cihazlarin kullanim oranlarmi belirlemek, bakim programlarini optimize etmek ve
hastane kaynak yonetimini iyilestirebilecek bir 6neri sunmaktir.

Bu tez calismasinda, segilen tibbi cihazlarin kullanim oranini 6lgmek i¢in sensorlerden
elde edilen verileri K-means kiimeleme yontemini kullanarak analiz ettik. Hastaneden
toplanan bilgiler ve manyetometre sensorti ile dl¢iilen kullanim verileri Analitik Hiyerarsi
Stireci'nde (AHP) kullanilarak tibbi cihazlarin objektif kriterlere gore onceliklendirilmesi
saglandi. Bulgularimiz, kullanim verilerinin dinamik Ol¢limiiniin 6nceliklendirme
sirasinda degisikliklere yol agtigini ortaya koydu.

Subat 2024, 80 sayfa

Anahtar kelimeler: Analitik Hiyerarsi Siireci (AHP), Nesnelerin Interneti (IOT),
Manyetometre Sensérii, Onleyici Bakim, Medikal Cihazlarin Onceliklendirilmesi, Tibbi
Cihazlarin Kullanim Orani
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1. INTRODUCTION

Technologies that combine and transmit data on all metrics related to hospital
organization and patient information are crucial to the future of healthcare services and
the management of medical device resources in hospitals. Medical device management is
a crucial metric that must be carefully monitored. It involves keeping track of the physical
assets and their specifications within hospitals. It can directly affect treatment processes,

healthcare service quality, and the satisfaction of both patients and healthcare workers.

Medium-sized to large-sized hospitals contain around 10,000 distinct types of medical
equipment (Ramezani et al., 2016). Standards have been established for tracking all
devices and managing medical device maintenance, calibration, and failure processes. All
medical devices must comply with a complex set of safety regulations. Too many patients
die each year from preventable medical errors due to malfunctioning medical monitoring

equipment and inaccurate diagnoses (Yang et al., 2019).

Inaccurate diagnoses can have several causes:

e The patient ignores the diagnosis, does not follow up, or postpones necessary medical
tests,

e Failed medical referrals,

e Medical equipment failures,

e Inaccuracy of the initial diagnosis.

In addition, under inadequate quality control procedures, non-standard medical
equipment is produced and causes inaccurate diagnoses. For this reason, clinical and
biomedical engineering departments have started to use more effective maintenance

techniques for asset management (Taghipour et al., 2011).

In the ever-evolving healthcare landscape, the efficient management and maintenance of

medical equipment are paramount. By digitalizing the healthcare environment, tools like



the Computerized Maintenance Management System (CMMS) are critical in ensuring

that medical devices have high availability.

CMMS software helps schedule maintenance, track work orders, monitor and report
maintenance tasks. This software can be used for healthcare organizations in efficient
management, including maintenance planning, calibration planning, and failure processes
of medical equipment. CMMS software aids in the streamlining of equipment
maintenance processes, monitoring inventory, ensuring compliance with regulatory

standards, and minimizing downtime (CRAM, 1998).

CMMS software, its integration with Internet of Things (IoT) technology, and the
potential offered by Radio Frequency Identification (RFID) technology, shedding light
on how these innovations collectively contribute to the enhancement of patient care,

safety, and overall operational efficiency in healthcare organizations.

loT technology and the use of sensors support maintenance methods have enabled work
to be carried out. 10T technology integration improves the monitoring, maintenance, and
performance of medical devices in the healthcare sector, enhancing patient care and safety
(Maktoubian & Ansari, 2019). 10T applications related to healthcare are expected to
increase by an estimated 17.8% in the next five years (lIoT Healthcare Market Size,
Statistics, Growth Analysis & Trends (2030), n.d.). The market will be propelled by the
need to automate several healthcare procedures to streamline operations, cut costs, and
boost efficiency (Ltd, n.d.).

With RFID technology within the scope of IoT, integration of the sensors, which are used
to track and monitor the real-time location of medical devices, can offer various
opportunities to biomedical and clinical departments in hospitals, allowing them to
provide a wealth of information related to medical devices. Additionally, temperature,
humidity, and pressure sensors have been preferred to determine if the device functions

correctly and establish traceable processes (Maktoubian & Ansari, 2019).



In hospitals, implementing fixed maintenance and calibration schedules that are not
sensitive to changes and not supported by real-time data causes excellent inefficiency
(Alkanat et al., 2021). Since device status is not monitored instantaneously, it causes
disruptions in planning and results in a decrease in service quality. This study proposes a
dynamic maintenance schedule based on a AHP model using real-time data from sensors

via RFID to eliminate inefficiencies and improve service quality.

This thesis aims to develop a comprehensive strategy that evaluates the application of
AHP and RFID technologies in combination with magnetometer sensors for medical
devices. The objective is to determine usage rates for medical devices by attaching a tag
to them, without any intervention. Subsequently, a dynamic schedule will be created
based on this information. With this study, the maintenance schedule will regulate device

control and idle time frequency.

As will be seen in literature review section, prior research has used historical data and
device-specific information for predictive maintenance, or employed sensors for
condition-based preventive maintenance. However, all sensors are not suitable for
measurements in medical devices. Presenting a dynamic preventive maintenance
schedule approach using a magnetometer sensor, in conjunction with actual hospital data,

1s the main aim of the thesis.

The main maintenance methods and their characteristics are covered in detail in literature
review section. The preventive maintenance method, which is the method analyzed and
selected in this thesis, is discussed in detail. The other two main steps of the thesis, RFID
technology, and sensors are examined. Methodologies section explains the
implementation of RFID technology with magnetometer sensors, which is one of the
methods employed in this thesis. The acquired data is integrated into the AHP method,
one of the multi-stage decision making methods. As a result, the impact of "utilization"

data on the maintenance schedule of medical devices is analyzed.



2. LITERATURE REVIEW

This chapter explores various methods that play a critical role in maintenance
management. This thesis examines three fundamental approaches to improve and
optimize maintenance management: Preventive Maintenance, RFID Technology, and
Sensor Technology. Each of them offers unique advantages that assist businesses in
improving operational efficiency. By thoroughly examining these three maintenance
approaches, this thesis aims to assist businesses in understanding their potential to

enhance maintenance management and select the most appropriate strategies.

2.1 Main Maintenance Methods

Maintenance aims to extend the life, ensure the safety, enhance the efficiency, and prevent
unexpected failures and downtime of the object, machine, or system. (Liao et al., 2021).
Maintenance encompasses all regular and special activities required to ensure that an
object, machine, or system can normally function and achieve optimum performance at
the beginning of 1960 (Barlow & Hunter, 1960). According to the study conducted by
Barlow and Hunter, non-periodic maintenance was usually conducted in response to
failures or unexpected downtime. These maintenance activities are event-based tasks not
part of a regular program. After a while, all biomedical devices were subjected to routine
inspections and preventive maintenance procedures in the 1970s. “The more, the better”
became the governing philosophy in many situations. It became apparent in the 1980s
that many of these initiatives wasted money and significantly raised the mission risk for

equipment management (EM) (Rice, 2007).

EM = Function + Physical Risk + Required Maintenance

The formula above, proposed by Rice in 2007, highlights the relationship between
maintenance strategies and three essential components: function, physical risk, and

required maintenance. Briefly,



e The function component represents the intended purpose or role of the equipment
within a system. Maintenance strategies should align with the desired function
and consider the criticality of the equipment's role.

e The physical risk component considers the likelihood and impact of equipment
failures, including factors such as failure probability, consequences, safety, and
environmental risks. Maintenance strategies need to address the level of physical
risk associated with the equipment.

e The required maintenance component encompasses the maintenance activities
necessary to ensure reliability, availability, and performance. It includes both
preventive and corrective tasks based on equipment specifications, manufacturer

recommendations, industry standards, and regulations.

By incorporating these three components into maintenance planning and decision-
making, organizations can develop effective strategies to optimize equipment reliability,

mitigate risks, and achieve the desired function.

Equipment management, asset management, or both take a more comprehensive and
holistic view by considering all types of assets and their interdependencies. Equipment
management, also termed asset management, is a systematic organizational effort to
realize the value of assets including maintenance management according to ISO
55000,2014 (Gao et al., 2021). This approach aims to extend the lifespan of the device
and lower maintenance and optimization costs (Maktoubian & Ansari, 2019). In order to
obtain the best results, including higher productivity, decreased expenses, increased
income, and improved return on investment (ROI), assets must be carefully managed and
used. Utilization, maintenance, lifecycle management, risk assessment, and financial
considerations are just a few variables considered. Asset management provides the

overarching framework and strategic direction for managing assets across their lifecycle.

An asset system is a collection of procedures designed to manage and preserve an
organization's assets. This system includes all the elements, processes, and resources
needed to efficiently manage assets throughout their lifecycle. In the context of systems

or equipment, the following are key terms related to their life cycle:



Mean Time to Failure (MTTF): MTTF is a measurement of the mean time elapsed
between two component failures. It is a measure of reliability and is typically calculated
based on statistical analysis or historical data. MTTF is often used for non-repairable

systems or components replaced rather than repaired after failure.

Mean Time Between Failures (MTBF): MTBF is similar to MTTEF, but it applies to
repairable systems or components. MTBF is a measurement of the mean time between
two consecutive failures, and it includes the time required to repair the system to its

operational state. It is a means of estimating the expected reliability of a system.

Total Uptime

MTBF=

Number of Breakdowns

Mean Time to Repair or Restore (MTTR): MTTR is a measurement of the mean time to
repair a failed system or component to operating state. It includes the time spent
diagnosing the problem, acquiring the necessary resources or spare parts, and performing
the repair or restoration. MTTR is a measure of maintainability and is crucial in
determining system availability.

Total Downtime

MTTR=

Number of Breakdowns

Availability: Availability is a measurement that describes the operational time of a system
or equipment. It is commonly expressed as a percentage and is calculated using the
following formula:

MTBF

Availability= ———————* 100

MTBF+MTTR

Higher availability indicates better system reliability and maintainability.

These metrics assess systems and equipment's performance, reliability, and
maintainability throughout their life cycle. By monitoring and optimizing these factors,
organizations can improve system uptime, reduce downtime, and enhance overall

operational efficiency. The operational viewpoint is the maintenance procedures for a
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system to continue performing its defined function at the expected capacity (Basri et al.,
2017). Identifying the system and the units is necessary to determine its capacity. A unit
or component is a part of a system that requires maintenance. There are no sub-units

require maintenance (Nardo et al., 2021).

The system state is divided into two categories: single-unit and multi-unit systems. A
single-unit system consists of either one or multiple components. On the other hand,
multi-unit systems consist of several system units with several components (de Jonge &
Scarf, 2020). In a study, the system state has been described as follows: considering a
system's status is to depict it as either functioning normally, malfunctioning, or entirely
failing (Basri et al., 2017). Two basic categories of operating or failing are thought to
accurately reflect the system's state in the approach of another study (Lie & Chun, 1986).
Considering a system's state allows us to depict it as being in one of three states: normal,
operation and breakdown mode. As a result, decision-making according to preventive
maintenance planning is based on the analyzing the system's state and function (Yang et

al., 2019).

A repairable system is typically monitored periodically and non-periodically throughout
its life cycle. A repairable system can be restored to its initial condition after failure

without the need replacing the whole system (Maktoubian & Ansari, 2019).

Preventive replacement is necessary when the system's age, the number of failures, or the
total damage amount surpasses certain limits. Healthcare facilities can manage the timing
of repairs and replacements to reduce costs and increase operational efficiency by

implementing a well-designed policy (van Staden & Boute, 2021).

A study on repair and replacement decisions was conducted in the scope of healthcare
facilities. The age-old issue of repair vs replacement choices, which dates back to the
1960s and is still prevalent in many industries, was examined. In terms of modeling,
replacing or repairing a portion of a multi-unit system is always possible (de Jonge &

Scarf, 2020).



The delay time model refers to a state between the functioning and the failed state. (de
Jonge & Scarf, 2020). The time between the first moment when a fault is detected and the
occurrence of the fault is called delay time in a system. In the delay-time model, states

can generally be described as good, faulty, and fail (Maktoubian & Ansari, 2019).

In general, a piece of equipment can malfunction in one of two ways (Rice, 2007):

1. By producing readings that are not accurate or calibrated,

2. The machinery breaks down.

Failures might be silent or hidden, or they can be self-announcing, meaning that no
research is necessary to find them (Maktoubian & Ansari, 2019). A failure mode's
importance or criticality depends on the interactions of some variables, including severity,

probability, detectability, cost, and time (Rice, 2007).

It entails taking preventative action to avoid breakdowns, increase equipment uptime, and
use maintenance resources best. Reactive maintenance, referred to as “breakdown
maintenance” or “run-to-failure,” entails taking care of maintenance concerns and fixing
equipment only after a failure or breakdown occurs. Instead of aggressively preventing
problems, this strategy relies on responding to them as they occur. On the other hand, a
proactive maintenance strategy tries to identify and address possible issues before they
have a significant impact or cause considerable damage (Basri et al., 2017). By
implementing proactive maintenance measures, organizations can enhance their assets'
reliability, availability, performance, minimizing unexpected downtime and optimizing

overall operational efficiency.

As shown in Figure 2.1, maintenance approaches can be classified into reactive, semi-
proactive, and proactive maintenance. Preventive maintenance is performed regularly
based on scheduled time, independent of the equipment's condition. However, predictive

maintenance is performed when needed, not based on a specific time.



Maintenance

Reactive Semi Proactive Proactive
Preventive Condition Based
Predictive

Figure 2.1 Classification maintenance approaches

Table 2.1 provides a foundational overview to compare and contrast the distinctive
characteristics of each maintenance strategy, offering a starting point for understanding
maintenance strategy attributes and benefits.



Table 2.1 Comparison of main maintenance approaches and properties
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2.2 Preventive Maintenance

Any maintenance performed while the system is in use is preventive maintenance (Lie &
Chun, 1986). Actions for preventive maintenance should be scheduled or initiated, for

example, depending on data about the time, age, usage, or condition.

The three aspects of the PM planning are:

e Determining the objectives or purpose,

e Providing descriptions of the system's state in terms of both its importance and
functions,

e (Categorizing the methods that aid in identifying the best solutions for the
highlighted issues.

There are three strategies of planning-based PM: time-based, cost-based and failure-based
planning (Basri et al., 2017). Table 2.2 provides detailed information about these

strategies and the studies carried out explained in detail below.

a) Time-based Preventive Maintenance

The preventive maintenance approach based on time schedules maintenance activities at

set intervals. Various names may be used to refer to this approach in studies:

Calendar-based preventive maintenance

Scheduled preventive maintenance

Fixed-time preventive maintenance

Time-dependent preventive maintenance

Time-based maintenance can be considered for devices with an average criticality score
(Taghipour et al., 2011). A study considers age-based maintenance for a unit with a failure
rate that increases over time. The Poisson process models the number of events that occur

in a given time, such as equipment failure.
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Table 2.2 Preventive maintenance strategy comparison: time-based, cost-based and
failure-based
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These failures occur randomly throughout the lifespan of a given product and are
therefore used in age-based replacement models to optimize preventive maintenance

strategies. (Cha et al., 2017).

Another study aims to determine the structural outcomes of the most effective usage-
based approaches. The study investigates schedules that can be amended based on
corrective maintenance or maintained regardless of the number of failures between
routine maintenance procedures. The research aims to analyze the data using various
probability distributions to model the number of failures, time to repair (TTR), and the
number of failures within a 72-hour period. The frequency analysis results demonstrate
the most common reasons for infusion pump failures in the existing dataset, such as “No
Problem Found,” “Physical Damage,” and “Random Failure.” The sensitivity analysis
results demonstrate that the daily operating revenue and warranty duration impact the

decision to repair or replace (Liao et al., 2021).

In a study, usage intensity, also can be called as utilization, was defined as the relationship
between average consumption and the number of patients seen per hour (Taghipour et al.,
2011). A device often used may become worn out and damaged, requiring more frequent
maintenance. On the other hand, a low utilization rate brought on by prolonged inactivity
may result in problems and damage to specific components. Therefore, frequent periodic

maintenance is required for all devices, including those with moderate usage rates.

Another paper introduces a model for prioritizing medical equipment preventive
maintenance schedules using an alternative methodology. The criteria and sub-criteria
employed in the study include function, age, maintenance requirements, utilization level,
and failure rate. The model has been tested on 200 units of medical equipment,
encompassing 70 distinct device types. The results of the research suggest that there is a
need for urgent preventive maintenance for 15% of the cases, while a higher priority
should be given to 19%. Furthermore, 30% of the cases require medium priority, whereas
27% need low priority, and 9% necessitate the least priority for preventive maintenance

(Saleh et al., 2015).
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b) Cost-based Preventive Maintenance

Cost-based preventive maintenance is a planning-based approach that aims to minimize
maintenance costs while meeting availability requirements. This approach may be

referred to by various names in studies:

e Risk-based preventive maintenance
e Economical preventive maintenance

e (Cost-effective preventive maintenance

A study presents a novel approach to improving the series-parallel systems' preventive
maintenance (PM) schedule. The proposed method utilizes a genetic algorithm (GA) to
reduced PM cost, maintaining the system's availability at prescribed criteria. The GA
computes the optimum PM time vector to optimize the PM timing for each system
segment. The outcome is a meaningful reduction in the total maintenance expenses.
Furthermore, the study demonstrated that the GA-based PM schedule optimization
outperformed conventional techniques. By identifying more effective PM schedules in
terms of timing and frequency of activities, this approach can potentially reduce overall

maintenance costs by up to 20% (Samrout et al., 2005).

c) Failure-based Preventive Maintenance

Failure-Based Preventive Maintenance is an approach to maintenance whereby the
present condition of an asset is observed and maintenance is then performed according to
particular indications or signs of likely failure. This approach may be referred to by

various names in studies:

e (Condition based preventive maintenance
e Condition-sensitive preventive maintenance

e Failure-predictive preventive maintenance

Condition-based maintenance (CBM) is a strategy that objectively analyzes an asset's

current state to determine necessary maintenance. Maintenance should only be conducted
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under specific indicators showing decreased performance or impending failure, according
to CBM principles. Prior implementation of CBM requires condition monitoring, an

intervention that partially determines the unit's status (Maktoubian & Ansari, 2019).

CBM allows for real-time component monitoring, which assists in determining whether
to repair or replace a component. Since it has been shown that some medical equipment,
such as scanners and radiation equipment, is malfunctioning, preventive maintenance

programs and real-time monitoring systems can be useful (Williamson Sr., 2014).

In a study, a system becomes imbalanced once a specific component's deterioration level
reaches a critical point or when there is a certain threshold exceeded in the difference
between the deterioration levels of two symmetric components (Wang et al., 2021). The
study illustrates both failure-based and cost-based preventive maintenance. PM
thresholds are determined by minimizing system maintenance costs in a Semi-Markov
Decision Process (SMDP) to prevent such failures (Wang et al., 2021). An SMDP is a
stochastic model that enables decision-making under uncertainty. In the context of CBM,

the SMDP model takes into account the following variables:

e Availability: The probability that a system will be able to perform its required
function at a given time.

e Reliability: The likelihood that a system will not fail within a specific time frame.

e Cost of failure: The cost of a system failure, including the cost of lost production,
the cost of repairs, and the cost of safety incidents.

e Cost of preventive maintenance: The cost of inspecting and maintaining a system,

including the cost of labor, materials, and downtime.

The objective of the SMDP model is to minimize the total expected cost of the system
over a finite planning horizon. The SMDP model is solved using a dynamic programming
algorithm. The dynamic programming algorithm works by iteratively solving a series of
subproblems. Each subproblem considers the possible deterioration levels of the

components in the system and the possible maintenance actions that can be taken.
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Another study focused on evaluating the performance of a maintenance model using data
from an original equipment manufacturer (OEM). The researchers wanted to determine
whether deviating from the approved periodic maintenance schedule was necessary based
on their findings. The study used a Poisson generalized linear model and aggregated data
from different machine classes to improve predictions of machine failure behavior when
historical data is unavailable. The researchers found that their proposed strategies were,
on average, 5% more effective than existing strategies (Van Staden et al., 2022).
Previously, a study showed that recent machine failures increase the probability of
subsequent problems. Therefore, the availability of historical failure and maintenance
data is critical. The study concentrated on collecting prescriptions for unscheduled
preventive maintenance and accelerating regular periodic maintenance procedures

(Deprez et al., 2020).

After analyzing the potential usefulness of such data, the study provided policy
recommendations for different combinations of machine classes and usage intensities. In
addition, the suggested policies could identify underperforming or frequently failing
equipment, allowing for proactive maintenance. This approach could save up to 44% over

relying solely on scheduled periodic maintenance.

The results from various studies underscore the need for a customized and comprehensive
approach, as evidenced by the identification of specific devices requiring varying levels
of priority in preventive maintenance efforts. These findings contribute to the ongoing
efforts to enhance reliability, extend equipment lifespan, and optimize resource allocation

in the maintenance of medical equipment.

2.3 Preventive Maintenance with RFID

RFID technology is based on the use of wireless communication technology to unique
identify objects or people using tags. Its foundation is built on radio signals and radar
technology, with its first prominent usage dating back to World War II. The RFID system

consists of three crucial parts: a tag, a reader, and a controller system.

16



The U.S. Food and Drug Administration (FDA) advises against using wireless devices
without a license in some frequency ranges, including the Industrial, Scientific, and
Medical bands (Lie & Chun, 1986). Bluetooth Low Energy technology is one of these
bands (Williamson Sr, A. 2014). Briefly stated,

e The RFID tag: An RFID tag, also called a transponder, consists of a semiconductor
chip, antenna, and battery, depending on the tag type. An RFID tag with a battery
or an internal power source is classified as an active tag. The tag uses the power
source to obtain the necessary power to transmit data to the reader when data needs
to be transmitted. Active tags can communicate with readers over long distances
and send data (de Jonge & Scarf, 2020).

e The RFID reader: RFID reader consists of an antenna, a radio frequency electrical
element, and a control electronics element. A reader can communicate with
multiple tags and can repeatedly scan information on multiple products.

e The RFID controller: RFID controller consists of a computer workstation with a
database and management software. When an object with an RFID tag goes into
the communication area of the reader, the reader tells the tag to send the stored
data. After the reader accumulates the data from the tag, the reader sends the data

to the RFID controller by a network connection.

The RFID tag and reader use a specific radio frequency to communicate. In the healthcare
industry, passive RFID tags typically operate at 13.56 Hz, while active or passive tags use

the 900 MHz ultra-high frequency band.

RFID technology offers advantages such as a broad reading range, effortless data
transmission between a receiver and transmitter, secure data storage, and cost and time
efficiency. RFID provides a higher rate of process automation with better data integrity

and accuracy, enabling real-time response capabilities.

The use of RFID is subject to some limitations. One of these limitations is reader
interference, which occurs when several readers are used simultaneously and causes
signal interference and decreased tag identification accuracy. Environmental variables
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can also impact RFID system performance, including electromagnetic interference and
physical obstructions that interfere with communication between the reader and the tags.
The positioning of the tags about the reader might affect the signal strength and readability
since tags that are too close or far away from the reader may have trouble transmitting
data. The read range and effectiveness of the RFID system can also be impacted by the
separation between the reader and the tags and the reader's power level. These limits must
be considered and efficiently addressed to enable trustworthy and precise tag detection in

RFID systems.

Most RFID applications in healthcare are centered on locating and monitoring healthcare
supplies, equipment, and personnel. The primary goal of these applications is to digitize
the manual process. RFID technology tracks and monitors medical assets, preventing theft

and equipment loss (Williamson Sr, A. 2014).

For the past 18 years, RFID has generated interest in healthcare due to its ability to
simplify the identification process, track and manage medical resources, improve their
utilization, and reduce annual costs by preventing the purchase of unnecessary equipment

(Williamson, n.d.).

Additionally, doctors and nurses can access equipment more quickly and efficiently to
treat patients by tracking medical equipment. The result is increased staff productivity
and treatment of more patients. Also, small hospitals can save up to one million dollars

annually (de Jonge & Scarf, 2020).

Effective monitoring of medical equipment requires the capacity to make decisions in real
time. Nowadays, all healthcare disciplines have new chances to improve data gathering.
Data can be collected from medical device sensors to ensure the accuracy and reliability
of medical devices and to identify device-related hazards. The monitoring of devices
depend on real-time data processing. Implementing an autonomous integrity monitoring

system with IoT capabilities can significantly improve these procedures.
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Failure analysis requires the real-time detection of appropriate parameters using loT
technology and machine learning techniques to predict and categorize healthy and failing

equipment conditions (Rice, 2007).

According to a study conducted in 2020, the use of predictive maintenance was expected
to increase to 83% with the adoption of IoT (Shamayleh et al., 2020). Additionally, PdAM
is expected to decrease costs by 12%, increase uptime by 9%, reduce threats to safety,
health, environment, and quality by 14%, and extend asset lifetime by 20% (Williamson
Sr., 2014).

Predictive maintenance management of medical equipment depends on collecting
relevant parameters in real-time using [oT technology and machine learning tools, like
Support Vector Machine (SVM), to estimate and classify equipment status as healthy or
faulty.

2.4 Medical Equipment Maintenance with Sensor

Medical equipment's dependability and accuracy are crucial for providing high-quality
care. Sensor technology has improved the maintenance of these vital components by
offering real-time monitoring, diagnostics, and adaptive capabilities. This section
examines sensors' crucial role in maintaining medical equipment, emphasizing some

examples and the radical changes they have made to medical procedures.

In a study, a sensor-based system for computing maintenance costs and residual value of
medical equipment was built to improve the efficacy and financial success of medical
equipment recycling. This system aims to precisely predict maintenance costs and
residual value, enabling recycling businesses to make well-informed decisions regarding
the acquisition and disposal of equipment using information from sensors attached to

medical equipment (Williamson Sr, A. 2014).
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Vibration, sound pressure, motor current, magnetic field, and temperature variables are
mostly measured for predicted maintenance applications. Examples of potential sensors
are barometers, light sensors, magnetometers, moisture sensors, proximity sensors, and

thermometers (Liu, 2017).

According to the results of a study, most of the devices examined in a study of over 150
anesthetic machines and auxiliary monitors across 45 hospitals had significant problems
that could result in severe accidents. Information on current, humidity, light, pressure,
temperature, and vibration can be continuously collected from the equipment using self-
monitoring technology. There is an example of the usage of magnetometer sensors with
infusion pump. The infusion rate set to the medical device is expected to affect the
measured waveform from the magnetometer sensor. As the infusion rate increases,
motor's speed increases (Engku Ariff et al., 2021). The magnetometer sensor is expected
to monitor the strength of the magnetic field produced by the motor at varied infusion
rates. Although the magnetic flux strength fluctuation is not perfect, it can be used as a
general measure of how well a medical device is being used (Shamayleh et al., 2020).
The outcome shows that a magnetometer sensor can track the degree of usage of the

understudied infusion pumps.

Parameters like current, vibrations or voltage are measured to collect relevant data for
predictive maintenance. Signal processing techniques, such as filtering, amplification,
correlation, and compression, minimize artifacts and noise levels to ensure high-quality
signals. Commonly used filtering techniques, such as wavelet and Fourier transformation,
are used to reduce noise and enhance signal characteristics. The SVM prediction model
and ROC curve analysis is commonly employed in predictive maintenance to classify

equipment status and assess the model's performance.

In a thesis, the magnetic field sensors are used specifically for magnetic resonance
imaging (MRI) machines. These sensors were used to determine the strength of the
magnetic field. Based on sensor data, the K-nearest neighbor (k-NN) technique and the
multiple linear regression approach were used to anticipate maintenance costs and

residual values (Yang et al., 2019).
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3. METHODOLOGIES

Chapter 3 presents the time-based dynamic preventive maintenance schedule specifically
designed for medical devices. To achieve this, we harnessed the capabilities of a
magnetometer sensor and integrated it with an active tag. We used an active tag with a
battery and RFID technology capable of continuously transmitting data to the signal

receiver. The steps we followed are presented in the flowchart in Figure 3.1.

As seen in Figure 3.1, data collected from some medical devices conducted in a hospital
was analyzed, and it was determined that utilization data for selected medical devices
could be extracted. The recorded data was segmented into 24-hour sets and analyzed. As
a result of this, K-means clustering method as a machine learning model was identified,

and it was used to make predictions for subsequent days.

The obtained utilization data was used in the analytic hierarchy process method, which is
frequently used in prioritization studies of medical devices, to ensure that the thesis is
dynamic. It is suggested that the maintenance plan of the medical device can be brought
forward, carried out as planned or postponed with the Transformed Score Value (TSV)
calculated as a result of the AHP method. Literature TSV score ranges were adjusted for

this thesis study to classify when maintenance is necessary. (Taghipour et al., 2011).

The characteristics of the sensor and the specification of the tag used in this thesis are
examined in Section 3.1. Section 3.2 mentions the K-means clustering method used to
analyze the data. Section 3.3 includes a detailed discussion of AHP methods. As a result
of AHP methods, TSV scores were calculated according to the features of the medical
device that were selected for the thesis. Also, we calculated all possibilities according to
the parameters of medical devices, described in Appendix B Table 4.4, and recommended

updating the medical device maintenance schedule.
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3.1 Material Information

At the beginning of this section, some background information is provided on the
magnetometer sensor as a main material, followed by an explanation of its area of usage.
The main focus of this investigation was the IIS2MDC, which is a magnetometer sensor
code and a three-axis digital magnetic sensor with outstanding accuracy and extremely
low power consumption. The features include three magnetic field channels, a dynamic
range of about 50 gauss, and 16-bit data output for accurate readings. This sensor is built
for a variety of applications. Anti-tampering systems, positioning sensors, presence
detection, magnetic switches, and changeable magnetic field monitoring are just a few of

the sectors it finds use in (IIS2MDC - STMicroelectronics, n.d.)

The IIS2MDC offers versatility in power supply and operates within a voltage range of
1.71V to 3.6V. It can attain sampling speeds of up to 150 Hz in single-measurement mode.
Hard-iron adjustment, a programmable interrupt generator, self-test capability, and an
inbuilt temperature sensor enhance its performance and versatility. The IIS2MDC, housed
in a plastic Land Grid Array (LGA) package, functions effectively throughout a broad
temperature range of -40 °C to +85 °C. Accuracy of the sensor is £7 mG/ Least Significant
Bit (LSB). “£7mG/LSB” indicates that for each LSB change in the sensor's digital output,
the magnetic field sensitivity or resolution is approximately seven mG. The tag, enabling

real-time asset tracking, broadcasts the Bluetooth 5.1 compatible beacons.

The IIS2MDC magnetometer sensor also has applications in magnetic field-based
detecting systems in the medical industry. This sensor is employed in medical
applications, aiding in stroke rehabilitation, and developing real-time monitoring systems
(Gao et al., 2021). In assistive technology, the sensor is utilized for indoor navigation
systems, which is particularly beneficial for individuals with visual impairments (Ivanov,
2010). These studies aim to enhance medical diagnostics, patient monitoring, and
accessibility for individuals with specific needs highlighting the sensor's versatility and

significance in these domains.
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The primary reason for selecting this sensor is that it does not affect the medical devices
in any way. For this reason, it was analyzed with a magnetometer sensor to determine
whether the magnetic field change that the medical device would create while running

could be detected.

Another point to explain in this section is the tag's properties on which the magnetometer
sensor is placed. A magnetometer sensor has been positioned within a tag connected to
the signal receiver via Bluetooth. Figure 3.2 shows the microscope image of the

magnetometer sensor placed in the tag.

Figure 3.2 Image of the magnetometer sensor placed inside the tag

The tag can be affixed to assets using double-sided tape. Remote firmware and
configuration updates are also capabilities of the tag. The tag's specifications for assets
designed specifically for healthcare are shown in Table 3.1. The tag was placed in
designated positions on selected medical devices with double-sided tape, and a tag code
was determined for each tag to avoid confusion. The tags attached to the
Electrocardiogram (ECG) and infusion pump are shown in Appendix C, Figure C.1 as an
example. The frequencies of the tags are 1 Hz and labeled as follows: A1A5A6, A2A5A6,
EOAAB2, EOAAFS, EOAB44. When the preliminary studies were completed, tags were
fixed to medical devices for long-term data collection. The tag AIASAG6 is fixed to the
ECG device, A2A5AG6 is fixed to the infusion pump, EOAAB?2 is fixed to the Non-Stress
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Test (NST) device, EOAB44 is fixed to the defibrillator device, and finally, the device
EOAAFS is fixed to the Ultrasound (USG) device. The database records every bit of
information the tag delivers to the signal receiver. Appendix C, Figure C.2, shows the
signal receiver used. After the tests were completed, these tags were fixed to the selected

medical devices, and long-term data was taken.

Table 3.1 Tag’s key elements and specifications information

Key Elements Specifications
Outer Dimension 40 mm width, 35.5 mm height, 14.50 mm thickness
Weight 17.2 gram
Material Polycarbonate.
Battery Voltage 3V
Frequency Range 2400-2480 Hz.
Sensitivity -98.6 dBm
Maximum Indoor Range 30 meters

The data recorded from the sensor contains timestamp information. Also, the
magnetometer sensor receives three data: Field X, Field Y, and Field Z. Field X represent
the intensity information of the magnetic field measured on the x-axis, Field Y from the
y-axis, and Field Z from the z-axis. Recorded data from the sensor can be positive or
negative and it represent directional information. Attention has been paid to placing the

tag in the area closest to the engine the device has.

3.2 The K-means Clustering Method

In this section, we present the findings derived from the tests conducted at the hospital as
a preliminary studies and explain why the K-means clustering method was used. The data
obtained from the sensor must be processed with a method and must be estimated.
Because of environmental factors in the hospital, an approach such as the devices running
at a constant value only based on actual data has not been made. In line with the tests
performed, it was decided to use the K-means clustering method by using the standard

deviation values of the data. K-means clustering is a unsupervised machine learning
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approach that divides objects into K classes based on a set of attributes. The goal of K-
means clustering is to group similar data points while minimizing the variance within

each cluster (Javidan et al., 2023).

The following steps can explain the K-means clustering algorithm:
a) Data points are assigned to clusters that minimize the distance between the
cluster centers and the data points within the cluster,
b) The cluster centers are computed by averaging all data points within the
cluster,
c) The cluster centers are computed again,

d) Steps b and c are repeated until convergence is achieved.

In the following, the tests performed in the hospital environment are described in detail.
The K-means clustering algorithm result, which was applied to the test data, was
compared with the actual data to evaluate its accuracy. The K-means clustering method

was then applied to all of the acquired data, and examined.

After placing tags on the selected medical devices, the data was observed during
dependent real-time tests. Dependent real-time test means instantaneous observation of
the incoming data by operating the device in the hospital environment and recording the
“running” and “non-running” situations with timestamps. A control panel was developed
to view data at that moment. The results of the two tests performed are shown in detail as
examples. The first test was performed on the NST device. Timestamp and status

information for the test are shown in Table 3.2.

Table 3.2 Test times and conditions performed on the NST device on 03.10.2023 by
using the ALASAG tag

Test Time State
15.00:00 Tag was placed
15:03:20 NST was run
15:08:00 NST was closed
15:10:08 Tag was removed
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Figure 3.3 illustrates the standard deviation of actual data obtained as a result of these
tests. The standard deviation of the data collected from tag A1A5AG is calculated using a
rolling window of size 10 for this dependent test. This rolling process allows you to
observe variations and trends in the standard deviation across the entire dataset.
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Figure 3.3 Standard deviation data obtained from the sensor during the test performed on
the NST device on 03.10.2023 using the tag A1A5A6

Figure 3.4 shows K-means clustering result graphs. In Figure 3.4:

e Std. Dev. of Field X, Std. Dev. of Field Y, and Std. Dev. of Field Z shows the
standard deviation change in the respective axes of the actual data from the sensor,

e Operation Status shows the moments when the device is running as a result of K-
means clustering,

e Arranged Opr. Status shows the corrected version of the operation status with

Algorithm 1, which will be discussed.

Inaccurate data can come from sensors that are affected by the conditions of the hospital
and the environmental. Due to these erroneous data, the standard deviation values may
increase momentarily. Therefore, K-means may cluster these data as “running”.
“Algorithm-1" was used to correct this erroneous behavior. A pseudocode, “Algorithm-
17 is developed to correct this erroneous behavior, the detail given below. It is aimed to

prevent a false-positive situation that may occur when instantaneous standard deviation
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changes are encountered. As a result, the runtime of the device is calculated more

accurately.
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Figure 3.4 K-means analysis result of the test performed on the NST device on 03.10.2023
using the tag ALASA6

In Figure 3.4, the Arranged Opr. Status is shown in dark blue, and as can be seen from the
figure, the area labeled as device “running” between 15:03 and 15:09 is framed. This test
is a dependent test, and the result is consistent with the times recorded in Table 3.2. The
same dependent test was performed for the infusion pump. Timestamps and status

information of the test are shown in Table 3.3.

Table 3.3 Test times and conditions performed on the infusion pump device on
03.29.2023 using the tag EOAAB2

Test Time State
19:33:00 Tag was placed
19:35:00 Infusion Pump was run
19:37:30 Infusion Pump was closed
19:39:50 Infusion Pump was run
19:45:10 Infusion Pump was closed
19:47:32 Tag was removed
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Figure 3.5 illustrates the standard deviation of actual data obtained as a result of these
tests. The standard deviation of the data collected from tag EOAAB2 is calculated using
a rolling window of size 10 for this dependent test. Figure 3.6 shows K-means clustering
result graphs. In Figure 3.6, the device was found to be “running” between 19:35 and
19:43, and its area is indicated by the frame. The result is consistent with the times

recorded in Table 3.3 and Figure 3.5.
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Figure 3.1 Standard deviation data obtained from the sensor during the test performed
on the infusion pump device on 03.29.2023 using the tag EOCAAB2
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Figure 3.2 K-means analysis result of the test performed on the infusion pump device on
03.29.2023 using the tag EOAAB2
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During the conducted dependent tests, while medical devices were running (not just
plugged in or powered on, but actively performing functions) in the same environment,
any variations in the data received from the sensors were monitored. As a result of these
observations, it was noted that the frequency of data transmissions increased, and
deviations became more pronounced during the moments when the tested medical devices
were running. This observation highlights that these deviations were not merely tied to
the devices being plugged in or turned on but were specifically associated with their active

operational states.

All data recorded in a database. The standard deviation of the data collected from each
tag is calculated using a rolling window of size 1000. This means, for example, when
calculating the standard deviation in actual data, the first data is calculated with the
formula for the standard deviation of data between 1-1000, then the second data is
calculated with the formula for the standard deviation of data between 2-1001, and the
resulting number of standard deviation data is 1000 less than the number of actual data.
Then, these standard deviation values are clustered using the K-means clustering method.
In the above dependent tests, we determine the rolling window of size as 10 because the

test duration was short and the amount of data was, therefore, low.

The K-Means algorithm can group these examples based on Euclidean distance, which is

calculated using the equation one (Leskovec et al., 2014):

Distance = \/(xz —x1)2+ (2 —y1)? + (2, — 21)? 1

The collected data was analyzed based on standard deviation values due to the high
variability introduced by the hospital environment and device mobility. This approach

was adopted due to the dynamic nature of the hospital setting and the device operations.

As previously stated, there may be inaccuracies in K-Means clustering result due to
environmental factors. To avoid these, a corrective algorithm has been created as a
solution. The pseudocode of the algorithm is given in detail in “Algorithm-1". The

algorithm takes the output from K-Means clustering and two required thresholds. The
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required thresholds are: first, average utilization time of a device per a patient, called
“thWorking”, and second, the minimum amount of time each machine has to go between

two working processes, called “thMin”.

When the algorithm starts, it first examines the start and end times of the running times
in the loop. If the time between the end time of run t and the start time of run t+1 is less
than “thMin”, then runs t and t+1 is combined, and the loop is examined again. During
merging, the start time of run t and the end time of run t+1 are taken and merged. The run
time is recalculated. The running times are then analyzed. If the working time is less than

“thWorking”, it is marked as an anomaly and removed from the output.

“thWorking” time default value is five minutes. However, “thWorking” time was
determined specifically for each device, according to the function of each device and by
obtaining information from nurses. This time was determined as five minutes for ECG,
25 minutes for infusion pump, 15 minutes for NST, a minute for defibrillator, and five

minutes for ultrasound.

In the K-means clustering method, a specific reference day is required to predict how
much the device is running every day, taking data from the sensor. The results of the K-
means clustering method were compared with the data obtained from the hospital, and
reference days were determined. The following is the reference date selected for each
medical device in Table 3.4 and the result obtained when the devices were running. Table
3.4 can be explained as follows: The ECG device with tag code A1A5A6 was running on
05.10.2023. The standard deviation value resulting from the K-means clustering of the

24-hour data on this date is a maximum of 159.35 mG on field Z.

The data shown in Table 3.4 are the standard deviation values of the data obtained on
days when the devices are known to be operating. When the devices are running, the
standard deviation data increases for a long time and the data oscillates. Table 3.4 shows
the maximum and minimum points during this oscillation. “Mean” column shows the

average of all data obtained on the specified date.
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Algorithm 1 Pseudocode for MergeAlgorithm

1:
25

3:

bR =T

12:

22;

39:
40:
41:
42:
43:
44:
45:
46:

47T

Input:

- outputData: The output data obtained from the K-Means algorithm shows the
intervals in which the machine runs.

- thMin: The minimum time expected to elapse between two run times (The default
is 10 minutes)

- thWorking: The minimum working time in minutes for each machine (The default
is 5 minutes)

Output:
- outputData: The output data after processing in the algorithm.

procedure MERGEALGORITHM(outputData, thMin, thWorking)
change + 0

while change = 0 do
change + 1
sorted_keys - SortKeys(outputData)
delete keys ¢ [|
i+0

for k in sorted_keys[: —~1] do

e ¢ ParseDateTime(outputDatalk]['endtime'])

q ¢ sorted keys[i + 1]

s ¢ ParseDateTime(outputDatalq]|’ start time'])

if (s — e) then < thMin
change + 0
outputDatalk]['end_time'] « outputDatalg|['end_time’']
delete_keys.append(q)

ié=-is1

for k in delete_keys do
DeleteKey(outputData, k)

delete_list « ||

for k. v in Iterate(outputData) do
e + ParseDateTime(v] end_time'])
s « ParseDateTime(v] start _time'])
if (e — s) < thWorking then
delete list.append(k)

for k in delete_list do
DeleteKey(outputData, k)
j«0

for k in Sort(outputData) do
if j # k then
Set{outputData. i, outputDatalk])
DeleteKey(outputData, k)
=i+l
return outputData

32



Table 3.4 “Reference data” standard deviation rates in mG

Field X Field Y Field Z
Device Name Tag Date
Max. Min. | Mean | Max. Min. | Mean | Max. Min. | Mean
ECG A1AS5A6 | 05.10.23 | 139.16 | 2.69 15.45 | 159.35 | 2.63 1579 | 15935 | 2.79 18.33

Infusion Pump | A2A5A6 | 05.02.23 | 65.69 | 262 | 7.44 | 3927 | 3.09 | 595 | 3927 | 2.76 | 10.25

NST EOAAB2 | 07.06.23 | 156.21 | 3.52 11.27 | 76.92 296 | 10.75 | 76.92 933 | 21.04
Ultrasound EOAAFS | 07.11.23 | 13529 | 250 | 13.00 | 119.70 | 2.44 | 13.07 | 119.70 | 2.45 | 20.93
Defibrillator EOAB44 | 06.15.23 5.72 3.13 431 8.71 2.19 3.68 52.07 2.28 6.85

Table 3.5 was calculated by subtracting the background data specified below from the
actual data. So, the actual data, which occurred when the devices were running on the

reference day, was filtered from noisy data.

Table 3.5 “Reference data” filtered from background noisy data in mG

Field X Field Y Field Z
Device Name Tag Date
Max. Min. Max. Min. Max. Min.
ECG ATA5A6 | 05.10.23 421.62 -8.63 363.45 -171.05 337.30 -193.20
Infusion Pump A2A5A6 | 05.02.23 195.61 -53.89 87.14 -29.36 118.02 -286.98
NST EOAAB2 | 07.06.23 -264.17 -468.84 -35.43 -185.10 130.99 -273.68
Ultrasound EOAAFS | 07.11.23 101.50 -316.00 248.07 -195.43 457.82 -239.68
Defibrillator E0AB44 | 06.15.23 -34.34 -61.34 12.12 -33.88 -165.59 -305.59

When the device is not running, stored data is called background data, including
environmental conditions. Days when the device is not running, are confirmed by
consulting with the hospital and defined as background reference data. Table 3.6 and
Table 3.7 are based on an analysis of 24-hour data obtained from the hospital by selecting
days when the devices were never running. Table 3.6 is the standard deviation data for
the days when the selected devices were not running for 24 hours. Table 3.7 is the average
of actual data on Field X, Field Y, Field Z for the days when the selected devices were

not running for 24 hours.
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Table 3.6 shows the average of the standard deviation values of all data received on the
specified days. When the medical device is not working, very small oscillations occur and
the standard deviation values are small. Table 3.6 shows that the reference standard
deviation values are greater than the standard deviation values on days when the devices

defined as background reference standard deviation data are not working.

Table 3.6 “Background reference data” standard deviation rates in mG

Background Standard Deviation
Device Name Tag Date
Field X Field Y Field Z

ECG A1ASA6 05.28.2023 6.66 9.04 14.92
Infusion Pump A2A5A6 05.03.2023 13.00 6.10 10.70
NST E0OAAB2 07.15.2023 9.38 5.10 13.58
Ultrasound EOAAF5 07.30.2023 3.60 3.69 3.89
Defibrillator EOAB44 07.18.2023 4.92 3.86 3.22

Table 3.7 “Background reference data” filtered from background noisy data in mG

Device Name Background Actual Data
Tag Date

Field X Field Y Field Z
ECG A1A5A6 05.28.2023 1140.13 34.05 1119.70
Infusion Pump A2A5A6 05.03.2023 557.39 -401.64 1271.48
NST EOAAB2 07.15.2023 -15931.60 -5753.26 -11923.32
Ultrasound EOAAF5 07.30.2023 921.50 -310.57 -1169.32
Defibrillator EOAB44 07.18.2023 39.34 -280.12 -1544.41

The data stored in Table 3.4 was used as reference points, and all other data was loaded
and analyzed using the K-means clustering algorithm. As a result of the K-means cluster
analysis method, a graph and report are obtained. The information contained in the report

1s as follows:

e Duration information on which the device operates,
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e Start and end times of maximum and minimum points occurring during the device
running in the x, y, and z fields,
e Range value representing the difference between the maximum and minimum

points

For example, Table 3.8 shows the K-means clustering output report obtained from the

data received on 05.02.2023 from the tag A2A5AG6 installed on the infusion pump.

Table 3.8 shows the actual data at the time of device operation. The infusion pump ran
twice on the specified date as seen in the Table 3.8. In the “Duration” column, the running
time is indicated in seconds. The maximum and minimum points that occur during the
oscillation of the device and the range value expressing the difference between them are

given in the table.

Table 3.8 K-means clustering results for infusion pump with tag A2A5A6 on 05.02.2023

inmG
Start End Duration Field X Field Y Field Z
time time - - -
(sec) Max. Min. Range | Max. Min. | Range | Max. Min. Range
2:54:51 3:30:36 2145 864 455 409 -253 -422 169 1481 1109 372
PM PM
11:11:32 | 11:50:05 2313 642 552 90 -376 -440 64 1298 860 438
PM PM

Figure 3.7 shows that the standard deviation data increase six times during the day. Since
four of these increases lasted less than 25 minutes with the algorithm used, they can be
considered as deviations due to environmental. As a result of K-means clustering, two of
these data increase do not belong to the “running” category. The accuracy of this output

was confirmed by the nurse working in the service and using the device.
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Figure 3.3 Standard deviation of K-means clustering results of infusion pump with tag
A2A5A6 on 05.02.2023

In this thesis, since the data was measured in real time from the hospital, the actual data
from the sensor was not sufficient for decision making. For example, location, phone call,
and other factors may affect the actual data coming from the sensor and the actual data
may increase or decrease momentarily. This change increases the standard deviation only
momentarily and Algorithm-1 was used for these reasons. The accuracy of measurements
made using actual data on stationary devices may be high, but it is correct to use standard
deviation data across all devices. Figure 3.7 is an example of why standard deviation data
is used in this thesis because actual data is insufficient for decision-making due to the

variation of actual data according to the surrounding conditions.

3.2.1 An Illustrative Example

An illustrative example based on the tests mentioned previously has been presented in
order to support the method utilized in this section. A specific time was examined as an
example and compared to the actual data obtained to verify the K-means clustering
results. The first row in Table 3.8 has been examined, and the examined section area is
indicated by the red frame in Figure 3.7. If the K-means clustering result shows that the
device is running, when the actual data of fields x, y, and z are displayed on the graph,

the range between the data is expected to be significant. Because the standard deviation
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increases while devices are running. The accuracy can be observed by comparing the

actual data graph with the K-means clustering result graphs.

In this illustrative example, as a result of K-means clustering from actual data, 1000 rows-
data were selected from the time interval in which the device was running. Due to the

high standard deviation in the selected interval, it is aimed to observe the change.
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Figure 3.4 Data on the field X in the section determined as “running” and sampled as a
result of K-means clustering results for infusion pump with tag A2A5A6 on
05.02.2023
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Figure 3.5 Data on the field Y in the section determined as “running” and sampled as a
result of K-means clustering results for infusion pump with tag A2A5A6 on
05.02.2023
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Figure 3. 6 Data on the field Z in the section determined as “running” and sampled as a
result of K-means clustering results for infusion pump with tag A2A5A6 on
05.02.2023

The reason why the graph reads negative data on the field y is that no offset value is added
in the sensor software. For this reason, negative values were recorded in the actual data.
In addition, observed a change in the y and z axes but not in the x axis at 15:30. Since the
standard deviation data is grouped according to the Euclidean distance formula in the K-

means clustering method, it does not affect the result.

Because of the dependent tests that called preliminary study, it was decided that the K-
means clustering method is suitable for estimating the operating status of the devices for
independent tests planned to be performed with long-term data. By processing the data
obtained from the tags attached to the device with the K-means clustering method, it was
determined how long the devices worked on which day, and the results are examined in

result and discussion section.

3.3 Analytic Hierarchy Process (AHP)

In this section, we describe the AHP model which is used to create a dynamic maintenance
schedule by prioritizing the devices using utilization data as a result of K-means clustering

method.
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The Analytic Hierarchy Process is a decision-making method developed by Thomas L.
Saaty (Saaty, 1990). It is a structured and systematic approach used to solve complex

decision-making problems where multiple criteria and alternatives need to be considered.

The application steps of the AHP method can be summarized in four steps:

a. Criteria Identification

e Problem Definition: The decision problem to be addressed using AHP is defined.
The main objective and criteria contributing to achieving that objective are
identified.

e Hierarchical Structure: The criteria are organized into a hierarchical structure.
The top level is occupied by the main objective, followed by intermediate levels
for primary criteria, secondary criteria, and so forth. This hierarchical arrangement

aids in the breakdown of the complex decisions into manageable components.

b. Comparison and Scoring

o Comparison Matrices: Matrices are created for each level of criteria to facilitate
the comparison of the importance of each criteria in relation to others. Preference
values are assigned to each comparison using Saaty's scale. Appendix B Table B.1
defines the Saaty's scale. (Saaty, 2008).

e Figenvalue Calculation: Normalized eigenvectors for each matrix are calculated.
This step entails the calculation of the average of each column in the matrix,
followed by normalization to ensure a sum of one. The eigenvector denotes the

relative importance of criteria within each level.

c. Synthesis and Weight Calculation

o Sub-criteria Synthesis: Similar to criteria, comparison matrices are formed for

sub-criteria, and their normalized eigenvectors are calculated.
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e Aggregation: The criteria eigenvector is multiplied by the sub-criteria normalized
eigenvectors, producing aggregated weights for each sub-criteria.

o Alternative Evaluation: Matrices are devised to assess alternatives concerning
each sub-criteria, yielding weighted scores for alternatives based on aggregated

sub-criteria weights.

d. Consistency Check

e Consistency Ratio (CR): CR is calculated for each comparison matrix to assess
judgment reliability. Decisions may need to be revised if the CR exceeds a

predefined level (typically 0.1).

By adhering to these steps, criteria, sub-criteria, and alternatives are systematically
evaluated, incorporating the preferences and intensity assessments of experts. The AHP
process culminates in weighted scores for alternatives that guide the decision-making
process. In this thesis, these four criteria have been applied step by step in the following

part.

3.3.1 Application of AHP

Generally, maintenance and calibration schedules of medical devices cannot be arranged
and prioritized according to their status. In accordance with this problem, the AHP method

was used to prioritize medical devices.

a. Criteria Identification

First of all, the main criteria and sub-criteria determined to establish the hierarchy
structure are shown in Table 3.9. Table 3.9 lists the criteria and sub-criteria determined

by obtaining information from the hospital where the tests were performed.
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Table 3.9 Main criteria and sub-criteria for priorization of medical devices

Main criteria Function
and Subcriteria
for Priorization
of Medical

Devices Age

Maintenance Requirement

Functionality Utilization

Alternative Device

Total Risk Failure Frequency
Detectability
Failure Conseguence

Main criteria, sub-criteria, and their categories are detailed in Appendix B Table B.4. The
parameters shown in Table B.4 are used to prioritize medical devices. Main criteria and

Sub-criteria are as follows:

Function: The functions of the medical devices used are the categories currently used by
the hospital. Medical devices are categorized based on their existing functions within the

treatment process.

Age: It is the duration elapsed since the purchase date of the devices. The biomedical
department of hospitals indicates that after five years, devices tend to generate more

malfunctions, requiring more maintenance tasks such as battery replacements

Maintenance Requirement: Some medical devices require daily checks and maintenance.
For instance, the defibrillator device used in this thesis is intended for emergency
situations and needs to be inspected daily. Nurses perform these checks twice a day, and

their monitoring is ensured.

Functionality: The functionality has been analyzed in two categories: utilization and the

number of alternative devices. In this thesis, utilization is dynamically calculated using
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the employed sensor. The count of alternative devices represents the devices present in
the hospital and ready for use at any time. Some of these devices can be kept in stock, but
it is essential to manage this process carefully. It is crucial for utilization values to be
balanced for each device. For example, if one device is heavily utilized on one floor while
another device on a different floor is never used, adjustments can be made according to

the needs.

Total Risk: In this thesis, the total risk of a device is analyzed in three contexts. Failure
frequency answers the question of how often a device fails. This provides a prediction for
the number of failures that may occur in the future. Detectability answers whether the
device warns when a malfunction occurs or is observable in advance. Most medical
devices generate these alerts and signals, and users should pay careful consideration to
them. Failure consequences answer how long the device remains unusable when it fails.
In this thesis, information was obtained from the hospital about the number of failures

and the cause of the failure of the devices of the same type as those tested.

Briefly, we identified the criteria used to prioritize medical devices when creating their
maintenance and calibration schedules in this section. Section two determines the
significance of these criteria and the extent to which changes in device condition affect
their prioritization rate. The degree of significance indicates how much a medical device's

prioritization rate will alter over time in response to changes in condition.

b. Comparison and Scoring

We created comparison matrices for all main criteria, sub-criteria and their categories
identified in section a. The importance levels of the criteria in the comparison matrices
were determined according to the Saaty scale defined in Appendix B Table B.1 (Saaty,
2008).

Table 3.10 is an illustrative example to showcase the implementation of AHP and shows

the comparison matrix created for the main criteria. The equations used are explained

through this example for AHP analysis. Table 3.10 is based on the opinions of individuals
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working in the biomedical field. This provides a relative measure of the importance or

intensity of the element in comparison to the others.

Table 3.10 Main criteria comparison matrix A

Main Criteria | Function | Functionality Age };(its?{l &ﬁﬁ;ﬁ:ﬁlﬁ;ﬁ
Function 1 2 3 6 5
Functionality 1/2 1 4 7 8
Age 1/3 1/4 1 4 3
Total Risk 1/6 1/7 1/4 1 2
Maintenance 1/5 1/8 1/3 1/2 1
Requirement

The reciprocal main criteria value in the columns and rows listed in Table 3.10 are one,
because the same criteria have equal priority over each other. Another example, the value
of the function criteria in the row corresponding to the age criterion is three. This means
that in the maintenance calendar created for medical devices, the function criterion of the
devices is moderate importance according to the age criterion, and this corresponds to

three points in the Saaty scale (Saaty, 2008).

The consistency of the comparison matrix is evaluated by calculating the consistency ratio
defined in the fourth step of the AHP application process. The formulas for computing
the consistency ratio are described step by step and applied to the comparison matrix

generated for the main criteria indicated in Table 3.10.

e The matrix A is a square matrix that compares the main criteria and is shown by a
matrix equation. The matrix entry a;; refers to the relative importance or

preference of element i over element j.
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-1 2 3
12 1 4
A=|1/3 174 1
1/6 1/7 1/4
[1/5 1/8 1/3 1/2

=l = )
I.-waooul-l

e For every column j, the elements a;;, are acquired by dividing each element a;;

by the sum of the elements present in the same column.

a;i
a;jr = n—] 2
Zi=1 aij

The normalized matrix A; is then computed.

10.45 0.57 035 0.32 0.267
0.23 0.28 047 0.38 042
A;=10.15 0.07 0.12 0.22 0.16
0.07 0.04 0.03 0.05 0.10
0.09 0.04 0.04 0.03 0.05-

c. Synthesis and Weight Calculation

e The total of every row in matrix A is divided by n, representing the number of

criteria. The result is the eigenvector w;.

-0.39"
0.36

wi=|0.14
0.06

L0.05-

e Multiply the original matrix A by the eigenvector w; to obtain the eigenvalue.

Eigen Value = w' = Aw;
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-1 2 3 6 3 -0.39" 12147
12 1 4 7 8 0.36 1.94
A=|1/3 1/4 1 4 3|, wi=]0.14], w'=|0.75
1/6 1/7 1/4 1 2 0.06 0.31
15 1/8 1/3 1/2 1. L0.05. 0.25

Table 3.11 displays the eigenvalue and eigenvector ratio calculations for each criteria in

the decision matrix.

Table 3.11 Calculation of eigen values and eigenvector ratios

Main Criteria w; w' w'/w;
Function 0.39 2.14 5.46
Functionality 0.36 1.94 5.46
Age 0.14 0.75 5.27
Total Risk 0.06 0.31 5.09
Maintenance Requirement 0.05 0.25 5.10
Sum 1.00 5.39 26.39

d. Consistency Check

The A4, formula calculates the maximum eigenvalue. It's the average of the ratio of each

eigenvalue to its corresponding eigenvector value.

1w’ w wy,'

A =— + S L 4
max n(W1 W, Wn)

The Consistency Index (CI) provides a measure of how consistent the matrix is.

CI:M 5
n—1

The Random Index (RI) is a constant that depends on the order of the matrix (the number

of criteria). It is pre-determined and based on the size of the matrix (Saaty, 2004).
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The Consistency Ratio (CR) is the ratio of the consistency index to the random index. It
is used to assess the consistency of the decision matrix. If CR is close to 0, it indicates

good consistency; otherwise, it suggests that the decision matrix may be too inconsistent.

Table 3.12 Consistency analysis with A and RI

A max Consistency Index RI CR
5.27 0.067 1.12 0.060

Table 3.12 shows that the consistency check score of this comparison matrix is 6%, and
the maximum lambda value is 5.27. If the calculated consistency ratio values are less than
0.10, the comparison is consistent, and accordingly, the comparison matrix in Table 3.10
is consistent (Saaty, 2004). These steps were applied to all the comparison matrices we
created for the main criteria, sub-criteria and their categories. All comparison matrices we

create are consistent.

Using these comparison matrices, a transformed score value (TSV) is calculated to
prioritize medical devices. This calculation is calculated using the following equations.
(Taghipour et al., 2011). The equations mentioned below are applied to all comparison
matrices. Explained the application of these equations for the main criteria comparison

matrix as an example.

The weight (v) of main criteria comparison matrix's grades (a;;) can be obtained as

follows:

1
5 a. /s
__Uay) i=1..5j=1..5 6

v = 5 1/
Z. 1(1715=1aij) 5
i=

The Intensity (/) of main criteria comparison matrix's grades can be obtained as follows:

Ui

© max(v;)
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To calculate the TSV score, it is necessary to first calculate the Minimum Total Score
(MTS) value and the MTS value is a constant metric. MTS is calculated as a weighed
sum of minimum intensity values of the main criteria. In the same vein, minimum
intensity values of the main criteria are calculated as the weighed sum of their sub criteria,
if there are any. The calculated values of the main criteria and sub-criteria are shown in

Table 4.8. This process can be expressed with the formulas (8) and (9):

5

MTS = Zvixi 8

i=1
M

X = Z BrYk 9

k=1

Here, x; represents minimum intensity of each one of the 5 different main criteria (i.e.
function, mission critically, age, total risk and maintenance requirement values) and v; is
the corresponding weight values. And if any of the main criteria x; has sub-criteria, yj

represent each one of those M sub-criteria with [, being the corresponding weight value.

The Total Score (TS) is a measure that may be compared to the established thresholds to
determine which category the item belongs in. Total score is the weighted sum of the all-
possible intensity values of the main criteria. If main criteria have sub-criteria, intensity

of the main criteria is, again, the weighted sum of their intensities.

5

TS = Zvili 10

i

In equation 10, v; is the weight value for each intensity value I;. The calculated total

scores can be transformed to percentage values using the following equation:

TS— MTS
1-MTS

TSV = 11

The TSV score is created for combinations of all parameters, for the main criterion, sub-
criteria and their categories. In other words, a TSV score was obtained for all states of a

medical device.
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To sum up, the application steps of the AHP method and the method of using the criteria
and sub-criteria used in AHP are evaluated together. The results of equation 11, as
presented in chapter 4, play a crucial role in determining the category of medical devices

for preventive maintenance.
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4. RESULT AND DISCUSSION

Chapter 4 gives a thorough examination of two essential components of our research: the
results of K-means clustering and the outcomes provided by the AHP. The application of
these analytical techniques plays an integral role in our effort to unveil and interpret
complex data patterns and relationships. The K-means clustering results reveal how our
data naturally segregates into distinct clusters. Similarly, the AHP results provide a robust
framework for decision-making, enabling the establishment of priorities and preferences
within a complex hierarchy of criteria and alternatives. This chapter represents the

findings generated by these two methodologies are analyzed, discussed, and interpreted.

4.1 Analysis of K-means Clustering Results

In this section, the results obtained as a result of K-means clustering of all data are
analyzed in detail. As a result of K-means clustering model, the total duration of running
for the tested medical devices was determined in seconds throughout the entire period.
For the analysis of these values obtained using the K-means clustering method, the

average of the values obtained during the entire period was taken.

The advantages of knowing utilization time of medical devices are as follows:

1. The Biomedical Department of the hospital can organize and control procurement
requests and analyze the distribution of device numbers on a floor-by-floor basis
within the hospital.

2. User-based malfunctions can be prevented through frequent checks of frequently
used devices, and assessments can be made for electronic and mechanical failures.

3. Unused or forgotten devices in large hospitals can be identified, delivered to a
suitable floor, or stored as backups for future use in case of malfunctions with
other devices.

4. The device's location can be determined based on the data received from the data
collection point.

Table 4.1 shows the category of the selected devices, the code of tag which sends data,

the number of days data was received, the total utilization time calculated during this
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period, and the average daily utilization data. Actually, table 4.1 summarizes the
functions of the medical devices used and their respective running durations.
According to the usage data provided, the ranking of the most to least used devices

during the testing process is as follows:

e Infusion pump > NST > Ultrasound > Defibrillator > ECG

Table 4.1 Utilization time and device information measured on selected devices

Y Total Daily Average
Device Category Narme Tag Day Utilization Utilization
Time (Sec.) Time

Life Support and Infusion A2A5A6 | 107 2684718.91 6:58:10
Treatment Pump
Physiological Signal | NsT EOAAB2 75 867308.72 3:12:44
Monitoring Devices
Imagingand Ultrasound EOAAF5 63 158376.44 0:41:54
Radiology Devices
Physiological Signal | cg A1A5AG 86 84186.16 0:16:19
Monitoring Devices
Life Support and Defibrillator | EOAB44 50 58236.58 0:19:25
Treatment

Table 4.2 shows the average actual data during the running of medical devices. Data
specified in Table 4.2 was calculated by averaging the data obtained from the K-means
clustering method when the selected devices ran throughout the entire period.

Table 4.2 “Average actual data’ during medical devices running in mG

Field Y
Field X Field Z

Tag

Max. Min. Range Max. Min. Range Max. Min. Range

A1AS5A6 | 1227.49 721.39 506.10 842.30 311.96 530.35 2535.30 1950.03 585.27

A2A5A6 -660 -1446 786 1396 750 646 7 -1252 1259

EOAAB2 | -12529.6 | -14633.6 2104.01 | -5286.45 | -6396.83 1110.38 -6931.52 -9097.14 2165.62

EOAAF5 151.86 -252.41 404.28 -608.59 -932.81 324.21 -1080.37 -1727.81 647.43

EOAB44 40.31 -6.15 46.46 -260.01 -364.09 104.08 -1547.92 -1758.84 210.92
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Table 4.3 shows the average standard deviation when the medical device is running for
the number of days data is collected. The time of medical devices running is the result of

the K-means clustering on the data collected over 24 hours and recorded daily.

Table 4.3 “Average standard deviation data” during medical devices running in mG

Field X Field Y Field Z
Tag

Max. Min. Mean Max. Min. Mean Max. Min. Mean
ALA5A6 151.85 2.55 15.78 155.81 2.55 15.61 164.06 2.71 18.63
A2A5A6 231.43 2.88 126.59 213.64 3.06 133.22 398.83 2.83 235.05
EOAAB2 679.02 3.27 22.37 331.20 3.24 18.16 618.99 9.86 53.15
EOAAF5 135.13 2.60 13.80 95.70 2.65 11.16 203.30 2.90 19.84
EOAB44 9.32 2.97 4.48 18.04 2.17 4.12 59.53 221 7.37

Table 4.3 shows that the standard deviation of the defibrillator data is lower than that of
the other devices. The reason is that the defibrillator device is checked twice daily by the
nurse at 8 a.m. and 8 p.m. by opening the defibrillator and checking it according to the
specified procedures. At the same time, defibrillators with self-control features can do this
once a day on their own. Figure 4.1 shows the example of K-means clustering result for

defibrillator on 06.17.2023. Controls and self-control were detected in the defibrillator.

=0 Std. Dev. of Field X

Std. Dev. of Field Y
Std. Dev. of Field Z
40 ——Operation Status

— Arranged Opr. Status

mG

20

10

Time

Figure 4.1 Standard deviation of K-means clustering results of tag EOAB44 on 06.17.2023

51



Table 4.4 shows the actual data without background data calculated by averaging long-
term data. While the device is running, data oscillates due to the increase in standard
deviation. The average maximum minimum data and the difference values obtained when

the device is running are given in Table 4.4

Table 4.4 “Average actual data” filtered from background noisy data during medical
devices running in mG

Tag Field X Field Y Field Z
Max. Min. Range Max. Min. Range Max. Min. Range
A1A5A6 87.35 -418.74 506.09 808.25 277.90 530.34 1415.60 830.32 585.27
A2A5A6 -1205.55 -1986.07 780.52 1762.27 1122.94 639.33 | -1277.35 | -2527.81 | 1250.46

EOAAB2 3407.66 1256.25 2151.41 485.25 -655.66 114091 | 4928.61 | 2705.22 | 2223.38

EOAAFS5 -769.63 -1173.91 404.28 -298.03 -622.25 324.21 88.9408 -558.49 647.43

EOAB44 0.89 -45.85 46.75 18.58 -86.20 104.78 -17.19 -229.06 211.86

As a result, utilization data was calculated with K-means clustering method and the data
obtained from the sensor was analyzed. To conduct an evaluation in accordance with the
AHP criteria and sub-criteria definitions, information about the medical devices used in
the hospital where the test was conducted was collected in addition to utilization data.
The hospital has 150 beds, eight operating theatres, 48 clinics, and is accredited by the
Joint Commission International. The data received is from a software used and includes
the information entered by the users, but there may be missing information due to the user

or the system.

In addition to utilization data, the number of hospital devices in each category and the
failure rates of these devices for the last two years were analyzed to determine the failure
frequency. In 2022, two malfunction records for the tested USG and ECG devices were
due to electronic malfunctions. The USG device malfunctioned on March 3, 2022, and
the ECG device malfunctioned on January 19, 2022. In Table 4.5, the “Total Device”
column indicates the total number of the respective medical devices in the hospital. The
“Number of Failures” column represents the known number of failures in those medical

devices. The “Number of Failures (%)” column indicates the ratio of the occurred failures
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to the total number of devices. The breakdown rates for the selected devices category in
the years 2022 and 2023 are presented in Figure 4.2 and Figure 4.3. Table 4.5 shows that
when the number of devices in the same category is small, properly and timely

maintenance must be in place to avoid recurrence of failures.

Table 4.5 Number of devices in the hospital with the same device category as the selected
devices, total number of failures in 2022 and 2023 and percentage of failures

Device Category Total Device Number of Number of

Name Failures Failures (%)
Infusion Pump 116 22 18%
NST 10 5 50%
Ultrasound 16 20 125%
ECG 16 7 43%
Defibrillator 30 5 16%

2022 Breakdown Rate

Failure Number
ON DO O

> P = = > (<] > k7S = = = =
S § & § ® 5 5 3 383 8 %3 3
> > © < = - — = e S IS IS

c = s > [ °
[ Q2 < Q | &) [ [5)
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Figure 4.2 Failure rates of selected medical device category in 2022

2023 Breakdown Rate
10

Failure Number
(9]
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Month

EKG Infusion Pump Ultrason NST = Defibrilator

Figure 4.3 Failure rates of selected medical device category in 2023
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The calculations of accessible and operational devices based on the device quantities are
provided in Table 4.6. Table 4.6 calculates according to the ratio of the total number of
defective devices to the total number of devices in the same category. For example, 25%
of the total number of ECG devices failed in January 2022. Hospitals need to check and
track failure data regularly. How often the device fails, for what reasons, the cause of the
failure, and the downtime due to this failure are essential for resource and time

management.

Table 4.6 Monthly failure rate of medical devices in the same category

Year Month ECG Infusion Pump Ultrasound NST Defibrillator
January 25% 1% 6% 10% 3%
February 0% 1% 13% 10% 7%
March 0% 0% 25% 10% 3%
April 0% 2% 19% 10% 0%
May 0% 1% 6% 0% 0%
June 0% 3% 13% 0% 0%
2022
July 6% 0% 0% 0% 0%
August 13% 6% 6% 10% 0%
September 0% 3% 13% 0% 0%
October 0% 0% 6% 0% 0%
November 0% 0% 0% 0% 0%
December 0% 0% 6% 0% 0%
January 0% 2% 6% 0% 0%
February 0% 0% 6% 0% 3%
March 0% 0% 0% 0% 0%
2023
April 0% 0% 0% 0% 0%
May 0% 0% 0% 0% 0%
June 0% 0% 0% 0% 0%
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Table 4.7 presents data sourced from the software employed for fault analysis in the
hospital. It details the priority status assigned to user-entered faults and the causes for
their occurrence. 27% of these failures are urgent-priority failures of selected devices.
Two of the urgent-priority failures have the highest importance and are caused by the
user. As one of the objectives of the thesis, it is expected that these failures will decrease

due to regular follow-up with the maintenance schedules to be created.

Table 4.7 Failure causes and priority status

Reason Electronic User Base | Mechanical Others
Device 1 5 5 .
Category U H M L U L U L U H | M L
Name
Defibrillator 4 1
ECG 1 1 2 1 1
Infusion Pump 1 5 2 6 3
NST 1 1 1 1 1
Ultrasound 2 2 8 1 1 1 2 1
Total 1 7 4 16 2 1 1 2 1 4 7 5

"Urgent, 2High, *Medium, “Low

These data were used to decide which class the selected devices belong to in the
maintenance schedule created according to the definitions specified in the AHP and are

explained in the next section.

4.2 Analyzing the Analytic Hierarchy Process Results

The AHP method serves as a crucial tool in the selection process of medical devices. In
this section, we will present the results and discussion of applying the AHP method in
prioritizing medical devices using the methodology in chapter 3. The weight and intensity
values shown in Table 4.8 were calculated using equation six and equation seven from

the comparison matrices created for main criteria and sub-criteria.
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Table 4.8 Determining weights and intensities of criteria, sub-criteria and their categories

in AHP analysis
Main Criteria and Sub-criteria maay | (nd 1%.)1/ 5 |  Weight Intensity
1. Function 180.000 2.825 0.396 1.000
1.1 Life Support and Treatment 336.000 3.201 0.458 1.000
1.2 Auxiliary Hospital Equipment 0.005 0.349 0.050 0.108
lljgvli’(l:leyssiological Signal Monitoring 22500 1.864 0.267 0.582
1.4 Imaging and Radiology Devices 2.178 1.168 0.167 0.365
1.5 Sterilization Devices 0.011 0.407 0.058 0.127
2. Functionality 112.000 2.569 0.360 0.909
2.1 Utilization 3.000 1.732 0.75 1.000
2.1.1 High 6.000 1.817 0.673 1.000
2.1.2 Medium 0.167 0.550 0.204 0.303
2.13 Low 0.037 0.333 0.123 0.183
2.2 Alternative Device 0.333 0.577 0.25 0.333
2.2.1 Low 54.000 3.780 0.770 1.000
2.2.2 Medium 0.500 0.794 0.162 0.210
2.2.3 High 0.037 0.333 0.068 0.088
3. Age 1.000 1.000 0.140 0.354
3.101d 315.000 4213 0.510 1.000
3.2 Almost Old 12.000 1.861 0.225 0.442
3.3 Average 2.000 1.189 0.144 0.282
3.4 New 1.000 1.000 0.121 0.237
4. Total Risk 0.001 0.412 0.057 0.145
4.1 Failure Frequency 15.000 2.466 0.637 1.000
4.1.1 High 32.000 3.175 0.717 1.000
4.1.2 Medium 0.750 0.909 0.205 0.286
4.1.3 Low 0.042 0.347 0.078 0.109
4.2 Detectability 0.067 0.405 0.105 0.164
4.2.1 Low 32.000 3.175 0.717 1.000
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Table 4.9 Determining weights and intensities of criteria, sub-criteria and their categories

in AHP analysis
Main Criteria and Sub-criteria i ay (m 1%.)1/ 5 | Weight Intensity
4.2.2 Medium 0.750 0.909 0.205 0.286
4.2.3 High 0.042 0.347 0.078 0.109
4.3 Failure Consequences 1.000 1.000 0.258 0.405
4.3.1 High 32.000 3.175 0.716 1.000
4.3.2 Medium 0.750 0.909 0.205 0.286
4.3.3 Low 0.042 0.347 0.078 0.109
5. Maintenance Requirement 0.004 0.334 0.047 0.118
5.1 High 54.000 3.780 0.770 1.000
5.2 Medium 0.500 0.794 0.162 0.210
5.3 Low 0.037 0.333 0.068 0.088

Table 4.9 shows the weight values calculated for each category and subcategory and the
minimum weight value to be used to calculate the total score. Considering these values,
function is the most prioritized feature used in the comparison matrices when creating a
preventive maintenance schedule.The total score value specified in equation five was

obtained and used in equation six for calculating the TSV score.

When all of these conditions are listed, there are a total of 2916 possibilities for each
device and a total of 14580 rows. The list, containing probabilities calculated for each
tested category of medical device, is sorted from the highest to the lowest based on the

TSV score. In total, there are 14580 rows in the list.
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Table 4.10 Weight values determined by AHP comparison matrix and calculated
minimum density values for main criteria and sub-criteria

Main Criteria and Sub Criteria Weight Minimum Intensity
Function 0.396 0.108
Functionality 0.355 0.159
Utilization 0.750 0.183
Alternative Device 0.250 0.088
Age 0.143 0.237
Total Risk 0.061 0.107
Failure Frequency 0.633 0.109
Detectability 0.106 0.109
Failure Consequences 0.260 0.109
Maintenance Req. 0.049 0.088

Minimum Total Score 0.144

In Figure 4.4, a section has been selected from the list of all possibilities as an example.

For example, under certain conditions, the TSV score of some devices may exceed 50%,

even if they are not life support devices, and should be prioritized in the maintenance

schedule.
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TSV Score

Medical Devices

Figure 4.4 TSV score result graph from all decision definition possibilities
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Table 4.11 TSV scores calculated according to conditions selected as examples in the
dynamically created preventive maintenance schedule model
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Table 4.10 displays the category in which the devices chosen from Figure 4.4 are situated
within the main and sub-criteria. For example, suppose the usage rate of an infusion pump
device is high, the number of alternative devices is low, age is high, failure frequency is
increased, failure detectability rate is low, failure consequences rate is high, and
maintenance need is low. The TSV score of this device is 94.78%, and maintenance
should be prioritized. The values specified in this section as High, Low, Medium, and
Almost Old are defined in Table B.3 in Appendix B. The categorizations and
classifications identified in this thesis can vary based on hospital management and
requirements. The crucial aspect is measuring medical device usage status through this
method, in turn, enhancing patient well-being and care management by organizing the
maintenance and calibration of frequently employed devices. The proposed method
serves as a stimulus to recognize high-usage devices that necessitate maintenance and

calibration.

Table 4.11 shows the minimum and maximum TSV scores calculated for each device

category for these possibilities.

Table 4.12 Minimum and maximum TSV score as a result of AHP

Device Name Min. TSV Score Max. TSV Score
Infusion pump 41% 100%
NST 22% 81%
Ultrasound 12% 71%
Defibrillator 41% 100%
ECG 22% 81%

Table 4.12 shows the number of possibilities in the group determined according to the
classification in Table B.3 as a percentage. For example, Table 4.12 shows that a device
in the defibrillator and infusion pump category cannot be included in the “Postpone” class

under any circumstances. That is, its maintenance must be completed on time.
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Table 4.13 Distribution of maintenance recommendations based on AHP results

TSV Score Defibrillator | ECG I‘l‘,fl‘l‘ig“ NST | Ultrasound | Total
50% < TSV < 100% 16.41% 691% | 1641% | 6.91% 3.12% 49.76%
20% < TSV < 50% 3.52% 13.09% | 3.59% | 13.09% 13.77% | 47.06%
0% < TSV <20% 0% 0% 0% 0% 3.11% 3.11%

As aresult, there is a 47.06% probability that the maintenance date should not be delayed,
and it is in the “set a maintenance schedule” class. 49.76% of the devices are in the “bring

forward” class.

Among all probabilities, probabilities with “high” utilisation data were filtered and shown
in Table 4.13.

Table 4.14 Distribution of maintenance recommendations based on AHP results for high
utilization category

TSV Score Defibrillator | ECG I‘;fl‘l‘;:;“ NST | Ultrasound | Total
50% < TSV < 100% 6.67% 626% | 667% | 626% 3.12% 28.96%
20% < TSV < 50% 0% 0.41% 0% 0.41% 3.55% 437%
Total 6.67% 626% |  6.67% | 6.26% 3.12% 28.96%

When the AHP results are evaluated based on the utilization value for devices with the
Life Support and Treatment function, where the score value is above 50%, and the
utilization rate is high, the percentage of devices requiring maintenance is 28.96%.
Among all functions, devices with the Life Support and Treatment function require
maintenance with a priority of 32.82%. Physiological Signal Monitoring Devices

constitute 13.82%, while Imaging and Radiology Devices comprise 3.12%.

Based on the intervals defined in Appendix B Table B.3, it is recommended to prioritize
the maintenance plan of the defibrillator and infusion pump as a result of the TSV score
in Table 4.14. The categorization of the devices into low, medium, or high conditions for
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their criteria and sub-criteria is by the definitions provided in Table B.4. This
classification is derived from the utilization values and failure data calculated in the
thesis. Results have been drawn from the TSV score calculated for each condition of these

devices.

Table 4.15 TSV scores calculated for devices tested in a dynamically generated
preventive maintenance schedule model

Device Utilization Altcrn.atlvc Age Failure Detectability Failure Malnfenancc TSV
Device Consequences Requirement

Name Frequency
IPnJrlTj]splon High High Medium Medium Medium Low High 73.13%
Defibrillator Low High Medium Medium High High High 47.92%
NST Medium Medium Medium High Low High Low 33.77%
ECG Low High Medium High Low High Low 28.79%
Ultrasound Low High Medium High Low Medium Medium 18.20%

For example, an infusion pump is a life support device. It works for an average of seven
hours a day. Since the utilization data of devices working 24 hours a week is defined as
high, it is a device with high utilization. In addition, there are 116 infusion pumps in the
hospital, and the alternate device ratio is high. Since there has been no known malfunction
in the last year, the frequency of malfunction is average. Since the infusion pump comes
into contact with liquid medicines, its sensors may give a warning, and the failure
detection is average. When it malfunctions, repair time is short. Due to contact with
liquid, maintenance is required every day regarding device cleaning. In line with these
rates, the infusion pump should be prioritized.
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5. CONCLUSIONS

In this thesis, a dynamic preventive maintenance schedule strategy based on the usage
rates of medical devices have been developed to improve the medical devices
management process in the biomedical department of hospitals. Managing medical device
maintenance, calibration, and failure processes has become increasingly challenging with
the growth of hospital capacities. The maintenance of these devices directly affects patient
health and treatment processes. Many CMMS programs have been developed for this
process, and hospitals use these programs to manage the process digitally. Keeping

records of historical data is essential for tracking the history of any medical device.

The identified problem stems from the large number of hospital devices, which leads to
extended maintenance and calibration processes and makes tracking difficult. Some
medical devices have spare parts. These spare parts need to be replaced after a certain
period, especially after the device's warranty has expired. The procurement process for
these spare parts can be lengthy due to logistics and purchasing procedures. Non-original
parts may be preferred to shorten this process. It is essential to know how long each device

is used in which service to plan these processes correctly.

IoT technology, which has become widespread and integrated into the healthcare field, is
explored in addition to using sensors in RFID tags to obtain information about how much
time medical devices are used. For this thesis, we conducted trials using appropriate
equipment at the chosen hospital and collected data from the identified medical devices
around the clock. Care was taken to select devices that are actively used and have different

functions.

As a result of the tests:
1. When the device is plugged in, there is no change in the data from the sensor.
2. When the device is turned on, there is no change in the data from the sensor.
3. When the device starts to operate, especially near the device's motor, changes are

observed in the data from the sensor.
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Based on these tests, it is observed that usage data of the device can be obtained from the
sensor. The tests conducted in the hospital determined how long the device operates every
24 hours using the K-Means clustering method on data from other days. The obtained
data was integrated into the existing AHP model, a ranking method, to propose a

maintenance schedule.

Based on the characteristics of the selected devices, the results indicate that the
maintenance schedule for the infusion pump device should be rescheduled to an earlier
time than currently planned. The advantage of using this schedule is that it will facilitate
process planning and help prevent high-priority and urgent breakdowns from occurring.
It will also make it easier to track maintenance and calibration. Additionally, through
collaboration between the biomedical department and users, continuous monitoring and
maintenance will reduce user-based failure rates. Criteria, sub-criteria, and decision
definitions, which may vary for each hospital, can be changed and integrated into the

software used in the hospital.

5.1 Proposal

In the realm of healthcare, the reliability and optimal functioning of medical devices are
of paramount importance, as they directly impact patient care and safety. The concept of
dynamic preventive maintenance, particularly when based on the usage rate, has gained
prominence as a proactive strategy for ensuring the continuous availability and efficiency
of these devices. This thesis has explored the application of an innovative approach,
combining Analytical Hierarchy Process (AHP) and Internet of Things (IoT)
technologies, with a focus on magnetometer sensors. The utilization of these sensor
technologies for real-time monitoring of medical device conditions has shown significant

promise in enhancing preventive maintenance schedules.

The research findings indicate that the AHP-based decision-making framework enables a
systematic and comprehensive evaluation of maintenance priorities, considering multiple

criteria and their relative importance. Incorporating IoT technology has provided real-
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time data monitoring capabilities, which enable predictive maintenance and reduce the

likelihood of unexpected device failures.

Building on the research conducted in this thesis, there are several areas for future

investigation and development:

Battery Life Enhancement: In the thesis, the battery of tags was replaced 3-4 months after
the independent tests started. Prior to this study, no battery life optimization study had
been conducted considering the sensor frequency or any other factor. Conducting this

research is fundamental to the practical implementation of the thesis.

Machine Learning Models: Different machine learning methods other than the K-means

method can be used to make decisions with the data obtained from sensors.

Alternative Sensor Technologies: In addition to magnetometer sensors, the incorporation
of supplementary sensor technologies can offer a more complete perspective of the health
status of medical devices. Vibration sensors, temperature and humidity sensors can be
providing monitoring environmental conditions can be critical for the longevity of certain

medical devices.

Real-World Implementation and Validation: Longer independent tests can be conducted
to evaluate its practicality and effectiveness. By including different medical devices, data
can be collected, especially on whether a device's malfunction can be detected in advance.
Collaboration with healthcare institutions and medical device manufacturers can provide
valuable insight and validation of system performance. The software can be used to

monitor the process and make the right decisions by analyzing the correct data.

In conclusion, this thesis lays a strong foundation for a dynamic preventive maintenance
system based on usage rate, AHP, and loT with magnetometer sensors for medical

devices. Further research and development in the aforementioned areas can lead to the
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creation of more advanced, efficient, and reliable maintenance strategies, ultimately
benefiting both healthcare providers and patients by ensuring the continuous availability

of critical medical equipment.
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APPENDIX A

Table A.1 shows the long-term independent test dates performed using the magnetometer
sensor and the running time in seconds on those dates. The “-” sign in the Table A.l

indicates that no data was received from the sensor that day.

Table A.1 Measured running times of medical devices as a result of K-means clustering

ECG Infusion Pump NST Ultrasound | Defibrillator
pate A1A5A6 A2A5A6 EOAAB2 EOAAF5 EO0AB44
4/11/2023 - 8032.78 7568.56 - -
4/12/2023 - 6550.08 27358.79 - -
4/13/2023 - 0.00 18077.585 - -
4/14/2023 - 6083.60 6819.96 - -
4/15/2023 - 9137.76 2596.68 - -
4/16/2023 - 0.00 4091.62 - -
4/17/2023 - 5588.27 0.00 - -
4/18/2023 - 0.00 0.00 - -
4/19/2023 - 1955.99 6964.80 - -
4/20/2023 - 12927.38 5740.48 - -
4/21/2023 - 5201.02 - - -
4/22/2023 - 0.00 - - -
4/23/2023 916.23 0.00 - - -
4/24/2023 0.00 0.00 - - -
4/25/2023 0.00 5454.34 - - -
4/26/2023 3166.65 0.00 - - -
4/27/2023 4449.45 0.00 - - -
4/28/2023 0.00 0.00 - - -
4/29/2023 1343.65 0.00 - - -
4/30/2023 1145.62 0.00 - - -
5/1/2023 1493.54 0.00 - - -
5/2/2023 1851.19 4458.24 - - -
5/3/2023 751.258 0.00 - - -
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ECG Infusion Pump NST Ultrasound | Defibrillator
pae A1A5A6 A2A5A6 EOAAB2 EOAAF5 EO0AB44
5/4/2023 0.00 2119.48 - - -
5/5/2023 3623.71 0.00 - - -
5/6/2023 1651.10 0.00 - - -
5/7/2023 622.239 0.00 - - -
5/8/2023 1017.646 0.00 - - -
5/9/2023 1634.05 0.00 - - -
5/10/2023 3218.90 0.00 - - -
5/11/2023 2833.07 0.00 - - -
5/12/2023 0.00 8546.11 - - -
5/13/2023 0.00 37207.00 - - -
5/14/2023 0.00 63360.71 - - -
5/15/2023 657.31 6023.85 - - -
5/16/2023 893.80 0.00 - - -
5/17/2023 577.224 16745.25 - - -
5/18/2023 1018.371 5603.13 - - -
5/19/2023 0.00 2032.00 - - -
5/20/2023 1578.31 3884.14 - - -
5/21/2023 0.00 17411.42 - - -
5/22/2023 2995.57 64706.61 - - -
5/23/2023 1203.842 57456.40 - - -
512472023 0.00 50513.24 - - -
5/25/2023 901.128 62989.42 - - -
5/26/2023 1558.09 65084.37 - - -
5/27/2023 914.33 73326.69 - - -
5/28/2023 0.00 71823.40 - - -
5/29/2023 1037.29 70196.02 0.00 - -
5/30/2023 1228.24 77732.59 3281.873 8062.26 -
5/31/2023 - 74801.43 22265.63 3142.85 -
6/1/2023 - 28549.44 12757.21 0.00 -
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ECG Infusion Pump NST Ultrasound | Defibrillator

pate A1A5A6 A2A5A6 EOCAAB2 EOAAF5 EOAB44
6/2/2023 - 62018.00 9822.70 0.00 -
6/3/2023 - 1893.84 4722.01 12233.90 -
6/4/2023 - - 20268.17 0.00 -
6/5/2023 - - 29522.14 0.00 -
6/6/2023 - 0.00 14785.06 9380.76 -
6/7/2023 - 0.00 0.00 0.00 -
6/8/2023 - 2418.446 5703.11 0.00 -
6/9/2023 - - 0.00 14811.97 -
6/10/2023 - - 0.00 0.00 -
6/11/2023 - - 0.00 0.00 -
6/12/2023 - - 0.00 8722.96 -
6/13/2023 = - 5305.73 4121.71 -
6/14/2023 356.89 1809.01 6523.19 712.3 1367.32
6/15/2023 848.61 2293.93 0.00 0.00 385.41
6/16/2023 906.474 21427.37 1598.78 0.00 450.85
6/17/2023 697.149 7889.17 11782.22 0.00 918.89
6/18/2023 1012.04 3885.93 1099.57 4078.39 1329.75
6/19/2023 0.00 12290.89 0.00 5011.68 889.91
6/20/2023 543.03 6667.47 8573.66 5011.68 1548.97
6/21/2023 914.71 32848.13 10696.92 2385.45 871.76
6/22/2023 0.00 40718.87 4969.99 1958.55 1249.48
6/23/2023 0.00 9813.85 5745.56 7665.06 1319.64
6/24/2023 0.00 21853.63 2301.98 2989.46 1667.15
6/25/2023 620.476 0.00 0.00 0.00 1126.75
6/26/2023 1523.65 35382.58 8591.41 0.00 1203.17
6/27/2023 811.21 69303.00 0.00 6432.50 1233.80
6/28/2023 0.00 81579.95 9072.01 4695.82 742.71
6/29/2023 938.108 55597.50 0.00 0.00 1184.91
6/30/2023 550.21 24093.36 0.00 0.00 1171.15
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ECG Infusion Pump NST Ultrasound | Defibrillator

pate A1A5A6 A2A5A6 EOAAB2 EOAAF5 EOAB44
7/1/2023 0.00 15098.86 2154.85 0.00 1213.34
71212023 0.00 8320.03 9139.03 1356.62 1054.84
713/2023 0.00 24424.25 2876.09 0.00 1298.06
71412023 0.00 69251.13 1595.92 0.00 1679.54
7/5/2023 684.50 6844.94 1207.37 445551 1205.74
7/6/2023 2601.18 0.00 11416.37 3045.74 1968.74
717/2023 644.057 0.00 4715.33 0.00 1692.43
7/8/2023 907.031 0.00 15502.49 2283.70 1105.00
7/9/2023 0.00 0.00 85975.00 0.00 613.24
7/10/2023 0.00 0.00 33488.21 885.01 1254.90
7/11/2023 1425.46 0.00 7397.63 2310.20 953.00
7/12/2023 3312.24 1590.19 21692.19 0.00 1287.16
7/13/2023 1857.76 1617.91 0.00 4884.76 1100.80
7/14/2023 3686.80 0.00 4216.28 0.00 920.82
7/15/2023 0.00 0.00 0.00 0.00 974.54
7/16/2023 0.00 0.00 0.00 0.00 974.12
7/17/2023 0.00 32616.25 2896.64 0.00 1019.35
7/18/2023 1279.34 68210.67 0.00 0.00 0.00
7/19/2023 829.78 74508.09 3101.87 5717.02 1753.93
7/20/2023 0.00 69390.79 1535.04 7529.95 125941
7/21/2023 0.00 62129.73 3635.17 0.00 835.78
7/22/2023 781.172 74511.23 0.00 0.00 1305.02
7/23/2023 1345.34 72981.14 13573.176 0.00 1178.62
7/24/2023 996.357 54426.35 5126.76 3283.31 1360.50
7/25/2023 1565.39 79818.09 0.00 5663.54 815.44
7/26/2023 3342.58 81134.12 19241.85 4227.17 1430.53
712712023 719.305 81931.37 41647.27 4303.69 1331.44
7/28/2023 1644.53 81547.58 85727.526 1494.62 1314.04
7/29/2023 377.46 83723.78 75623.623 1646.65 1384.24
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ECG Infusion Pump NST Ultrasound | Defibrillator

pate A1A5A6 A2A5A6 EOAAB2 EOAAF5 EOAB44
7/30/2023 0.00 69725.29 44490.90 0.00 1338.33
7/31/2023 2181.52 53013.88 52356.34 3871.65 1028.33
8/1/2023 787.29 52747.24 38368.41 1496.71 1378.13
8/2/2023 3208.661 45868.96 0.00 5792.51 1545.67
8/3/2023 446.02 42710.76 7155.21 0.00 1325.26
8/4/2023 0.00 6370.90 2792.96 4096.12 1541.68
8/5/2023 2426.52 0.00 0.00 4691.54 1283.37
8/6/2023 1538.11 1606.05 11817.80 0.00 1277.88
8/7/2023 5575.47 2531.95 8707.78 3151.08 1404.60
Sum 84186.16 2684718.91 867308.72 | 158376.44 58236.58
Number of Data 86.00 107.00 75.00 63.00 50.00
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APPENDIX B

Table B.1 The essential absolute number scale (Saaty, 2008).

Intensity of Definition Explanation
Importance

1 Equal Importance T\yo af:tlvmes contribute equally to the
objective

2 Weak or slight -

3 Moderate importance Experlgnge and judgement slightly favour
one activity over another

4 Moderate Plus -

5 Strong importance Experlgnge and judgement strongly favour
one activity over another

6 Strong plus -

Very strong or An activity is favoured very strongly over
7 demonstrated another; its dominance demonstrated in
importance practice

8 Very very strong -
The evidence favouring on activity over

9 Extreme importance another is of the highest possible order of
affirmation

Table B.2 Random Index (Saaty, 2004).
n® 1 2 3 4 5 6 7 8 9 10

Random 0 0 052 089 112 125 135 140 145 1.49

n®= number of criteria

Table B.3 The decision definitions based on the specified TSV score intervals.

TSV Score Range Action
50%<TSV<100% Bring Forward
20%<TSV<50% Set a Maintenance Schedule
0%<TSV<20% Postpone
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Table B.4 The decision parameters corresponding to the intensity values calculated with
comparison matrices for the specified main criteria, sub-criteria and their

categories.
Main Criteria and Sub o .
e . Description Intensity
criteria

1. Function Eva}uates the primary purpose of medical 1.000
devices

1.1 Life Support and Treatment Devices related to sustaining life and medical 1.000
treatment.

1.2 Auxiliary Hospital Equipment | Equipment that supports hospital operations. 0.109

1.3 P’hysolologlca‘l Signal Devices for monitoring vital signs. 0.582

Monitoring Devices

1.4 Imaging and Radiology Equipment for medical imaging and 0365

Devices radiology. '

15 Sterilization Devices Deches used for sterilization in healthcare 0127
settings.

9. Fansionslisy Assesses how effectively devices serve their 0.909
intended purpose

S Assessing how often and how extensively a
2 tilicason medical device is used in healthcare settings. Y
. Devices that are used intensively, with more

2.1.1 High than 24 hours of usage per week. 1.000

2 1.2 Medium Devices that see moderate.usage, with 12 to 0303
24 hours of weekly operation.

213 Low Devices with limited usage, operating less 0183
than 12 hours per week.
Evaluating the availability of substitute

2.2 Alternative Device devices or options to replace the primary 0.333
medical device.

221 Low Devices in this category haV.e very 11.m1ted or 1.000
less than one alternative options available
These devices have one to four alternative

2.2.2 Medium options, allowing for some flexibility and 0.210
potential substitution.
These devices have over four available

2.2.3 High alternatives, reducing dependence on a 0.088
specific model or brand.

3. Age Considers the age of devices in use 0.354
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Main Criteria and Sub

o Description Intensit

criteria P y

3.10ld Devices that have been in use for over a 1.000
decade.

3.2 Almost Old Devices that are Betv&:f:en 5 and 10 years old, 0442
approaching the “old” category.

3.3 Average Dewces Wl.th a standard age of 3 to 5 years 0.282
since their introduction or purchase.

3.4 New Devices that are relatively new, having been 0237
used for less than 3 years.

4 Total Risk Exapnnes the overall risk associated with 0.145
device usage
Examining how often a medical device

4.1 Failure Frequency experiences malfunctions or failures during 1.000
its operation.

4.1.1 High Likely to occur (several occurrences in 1 1.000
year)
Several occurrences in 1-2 years) 0.33

4.1.2 Medium Uncommon Possible to occur (one 0.286
occurrence in 2—5 years)

4.1.3 Low Unlikely occur (1-10 years) 0.109
Determining how easily and promptly

4.2 Detectability failures or malfunctions in a medical device 0.164
can be identified or detected.

4.2.1 Low Not detected by regular inspection 1.000

4.2.2 Medium Visible by naked eye 0.286

4.2.3 High Self-announcing 0.109
Assessing the impact and severity of

4.3 Failure Consequences potential consequences when a medical 0.405
device malfunctions or fails.

. Extended periods of non-operation with

4.3.1 High downtime exceeding 24 hours. 1000

432 Medium Brief non-operational periods with downtime 0264
less than 24 hours.

433 Low Devices that remain functional without 0101

significant downtime
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Main Criteria and Sub

e Description Intensity
criteria

5, MitETemee e Focuses on thg level of maintenance needed 0118
for proper device operation
Maintenance involves shift test, auto test, and

5.1 High user test, indicating more frequent and 1.000
comprehensive maintenance procedures.
Maintenance primarily includes user test,

5.2 Medium suggesting moderate maintenance 0.210
requirements.
Maintenance is simplified and mainly

5.3 Low involves auto Test, indicating minimal 0.088

maintenance needs.
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APPENDIX C

Figure C.1 The ECG and A1A5AG tag used are shown on the left, and the infusion pump
and the A2ABAG tag attached to its side are shown on the right.

Figure C.2 The signal receiver used data from the tag with RFID technology.
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