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ABSTRACT 

Master’s Thesis 

DYNAMIC PREVENTIVE MAINTENANCE SCHEDULE BASED ON USAGE 

RATE FOR MEDICAL DEVICES: AN AHP AND IoT APPROACH WITH 

MAGNETOMETER SENSOR 

Aycan BULUCU 

Ankara University 

Graduate School of Natural and Applied Sciences 

Department of Biomedical Engineering 

Supervisor: Prof. Dr. Hilal GÖKTAŞ 

The management of medical equipment in hospitals directly affects treatment processes, 

healthcare service quality, and the satisfaction of patients and healthcare professionals. 

Proper planning can reduce the emergency priority failure rate in hospitals and ensure 

suitable treatment methods are used for more patients. Biomedical units in hospitals 

commonly use various types of software to manage this process because of the wide range 

of medical devices available. Managing this process poses several challenges, given the 

critical importance of medical devices in failures, maintenance, calibration process, 

medical devices cost and, idle time. 

This thesis focuses on utilizing Internet of Things (IoT) technology and sensors to 

enhance the planning process of medical device maintenance. The magnetometer sensor 

is integrated with hospital data to establish a dynamic preventive maintenance schedule. 

The objective is to identify medical devices usage rates, optimize maintenance programs, 

and offer recommendations to improve hospital resource management. 

In this thesis, we analyzed sensor data using the K-means clustering method to measure 

the usage rate of selected medical devices. The information gathered from the hospital 

and the utilization data measured by magnetometer sensor were used in the Analytic 

Hierarchy Process (AHP) to prioritize medical devices based on objective criteria. Our 

findings revealed that the dynamic measurement of usage data resulted in changes to the 

prioritization order.  

 

February 2024, 80 pages 

Key Words: Analytical Hierarchy Process (AHP), Internet of Things (IOT), 

Magnetometer Sensor, Preventive Maintenance, Prioritization of Medical Devices, 

Utilization Rate of Medical Devices 
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ÖZET 

Yüksek Lisans Tezi 

TIBBI CIHAZLARIN KULLANIM ORANINA DAYALI DINAMIK ÖNLEYICI 

BAKIM TAKVIMI: MANYETOMETRE SENSÖRÜ ILE AHP VE IOT YAKLAŞIMI 

Aycan BULUCU 

Ankara University 

Graduate School of Natural and Applied Sciences 

Department of Biomedical Engineering 

 

Danışman: Prof. Dr. Hilal GÖKTAŞ 

Hastanelerde medikal cihazların yönetimi, tedavi süreçlerini, sağlık hizmetlerinin 

kalitesini, hasta ve sağlık çalışanlarının memnuniyetini doğrudan etkiler. Bu sürecin 

doğru planlanması, hastanede acil öncelikli arıza oranının azalmasını sağlanmasını ve 

daha fazla hastanın doğru methodlar ile tedavi olmasına olumlu etki eder. Çoğunlukla, 

hastanelerin biyomedikal birimleri medikal cihazların çeşitliliği nedeniyle bu süreci 

yönetmek için çeşitli yazılımlar kullanmayı tercih eder. Bu sürecin yönetimi, tıbbi 

cihazların sahip olduğu arıza, bakım, kalibrasyon süreçleri, maliyetleri ve 

kullanılmadıkları süreler gibi kritik önem taşıyan özelliklerinden dolayı birkaç zorluğu 

beraberinde getirir. 

Bu tezde, tıbbi cihaz bakım planlama sürecini geliştirmek için Nesnelerin İnterneti (IoT) 

teknolojisi ve sensör kullanımına odaklanılmıştır. Manyetometre sensörü dinamik bir 

önleyici bakım takvimi oluşturmak için hastane verileri ile entegre edilmiştir. Amaç, tıbbi 

cihazların kullanım oranlarını belirlemek, bakım programlarını optimize etmek ve 

hastane kaynak yönetimini iyileştirebilecek bir öneri sunmaktır. 

Bu tez çalışmasında, seçilen tıbbi cihazların kullanım oranını ölçmek için sensörlerden 

elde edilen verileri K-means kümeleme yöntemini kullanarak analiz ettik. Hastaneden 

toplanan bilgiler ve manyetometre sensorü ile ölçülen kullanım verileri Analitik Hiyerarşi 

Süreci'nde (AHP) kullanılarak tıbbi cihazların objektif kriterlere göre önceliklendirilmesi 

sağlandı. Bulgularımız, kullanım verilerinin dinamik ölçümünün önceliklendirme 

sırasında değişikliklere yol açtığını ortaya koydu.  

 

Şubat 2024, 80 sayfa 

Anahtar kelimeler: Analitik Hiyerarşi Süreci (AHP), Nesnelerin İnterneti (IOT), 

Manyetometre Sensörü, Önleyici Bakım, Medikal Cihazların Önceliklendirilmesi, Tıbbi 

Cihazların Kullanım Oranı 
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1. INTRODUCTION 

Technologies that combine and transmit data on all metrics related to hospital 

organization and patient information are crucial to the future of healthcare services and 

the management of medical device resources in hospitals. Medical device management is 

a crucial metric that must be carefully monitored. It involves keeping track of the physical 

assets and their specifications within hospitals. It can directly affect treatment processes, 

healthcare service quality, and the satisfaction of both patients and healthcare workers. 

Medium-sized to large-sized hospitals contain around 10,000 distinct types of medical 

equipment (Ramezani et al., 2016). Standards have been established for tracking all 

devices and managing medical device maintenance, calibration, and failure processes. All 

medical devices must comply with a complex set of safety regulations. Too many patients 

die each year from preventable medical errors due to malfunctioning medical monitoring 

equipment and inaccurate diagnoses (Yang et al., 2019). 

Inaccurate diagnoses can have several causes:  

 The patient ignores the diagnosis, does not follow up, or postpones necessary medical 

tests, 

 Failed medical referrals, 

 Medical equipment failures, 

 Inaccuracy of the initial diagnosis. 

In addition, under inadequate quality control procedures, non-standard medical 

equipment is produced and causes inaccurate diagnoses. For this reason, clinical and 

biomedical engineering departments have started to use more effective maintenance 

techniques for asset management (Taghipour et al., 2011).  

In the ever-evolving healthcare landscape, the efficient management and maintenance of 

medical equipment are paramount. By digitalizing the healthcare environment, tools like 
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the Computerized Maintenance Management System (CMMS) are critical in ensuring 

that medical devices have high availability.  

CMMS software helps schedule maintenance, track work orders, monitor and report 

maintenance tasks. This software can be used for healthcare organizations in efficient 

management, including maintenance planning, calibration planning, and failure processes 

of medical equipment. CMMS software aids in the streamlining of equipment 

maintenance processes, monitoring inventory, ensuring compliance with regulatory 

standards, and minimizing downtime (CRAM, 1998).  

CMMS software, its integration with Internet of Things (IoT) technology, and the 

potential offered by Radio Frequency Identification (RFID) technology, shedding light 

on how these innovations collectively contribute to the enhancement of patient care, 

safety, and overall operational efficiency in healthcare organizations. 

IoT technology and the use of sensors support maintenance methods have enabled work 

to be carried out. IoT technology integration improves the monitoring, maintenance, and 

performance of medical devices in the healthcare sector, enhancing patient care and safety 

(Maktoubian & Ansari, 2019). IoT applications related to healthcare are expected to 

increase by an estimated 17.8% in the next five years (IoT Healthcare Market Size, 

Statistics, Growth Analysis & Trends (2030), n.d.). The market will be propelled by the 

need to automate several healthcare procedures to streamline operations, cut costs, and 

boost efficiency (Ltd, n.d.). 

With RFID technology within the scope of IoT, integration of the sensors, which are used 

to track and monitor the real-time location of medical devices, can offer various 

opportunities to biomedical and clinical departments in hospitals, allowing them to 

provide a wealth of information related to medical devices. Additionally, temperature, 

humidity, and pressure sensors have been preferred to determine if the device functions 

correctly and establish traceable processes (Maktoubian & Ansari, 2019). 
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In hospitals, implementing fixed maintenance and calibration schedules that are not 

sensitive to changes and not supported by real-time data causes excellent inefficiency 

(Alkanat et al., 2021). Since device status is not monitored instantaneously, it causes 

disruptions in planning and results in a decrease in service quality. This study proposes a 

dynamic maintenance schedule based on a AHP model using real-time data from sensors 

via RFID to eliminate inefficiencies and improve service quality. 

This thesis aims to develop a comprehensive strategy that evaluates the application of 

AHP and RFID technologies in combination with magnetometer sensors for medical 

devices. The objective is to determine usage rates for medical devices by attaching a tag 

to them, without any intervention. Subsequently, a dynamic schedule will be created 

based on this information. With this study, the maintenance schedule will regulate device 

control and idle time frequency.  

As will be seen in literature review section, prior research has used historical data and 

device-specific information for predictive maintenance, or employed sensors for 

condition-based preventive maintenance. However, all sensors are not suitable for 

measurements in medical devices. Presenting a dynamic preventive maintenance 

schedule approach using a magnetometer sensor, in conjunction with actual hospital data, 

is the main aim of the thesis.   

The main maintenance methods and their characteristics are covered in detail in literature 

review section. The preventive maintenance method, which is the method analyzed and 

selected in this thesis, is discussed in detail. The other two main steps of the thesis, RFID 

technology, and sensors are examined. Methodologies section explains the 

implementation of RFID technology with magnetometer sensors, which is one of the 

methods employed in this thesis. The acquired data is integrated into the AHP method, 

one of the multi-stage decision making methods. As a result, the impact of "utilization" 

data on the maintenance schedule of medical devices is analyzed. 
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2. LITERATURE REVIEW 

This chapter explores various methods that play a critical role in maintenance 

management. This thesis examines three fundamental approaches to improve and 

optimize maintenance management: Preventive Maintenance, RFID Technology, and 

Sensor Technology. Each of them offers unique advantages that assist businesses in 

improving operational efficiency. By thoroughly examining these three maintenance 

approaches, this thesis aims to assist businesses in understanding their potential to 

enhance maintenance management and select the most appropriate strategies. 

2.1 Main Maintenance Methods 

Maintenance aims to extend the life, ensure the safety, enhance the efficiency, and prevent 

unexpected failures and downtime of the object, machine, or system. (Liao et al., 2021). 

Maintenance encompasses all regular and special activities required to ensure that an 

object, machine, or system can normally function and achieve optimum performance at 

the beginning of 1960 (Barlow & Hunter, 1960). According to the study conducted by 

Barlow and Hunter, non-periodic maintenance was usually conducted in response to 

failures or unexpected downtime. These maintenance activities are event-based tasks not 

part of a regular program. After a while, all biomedical devices were subjected to routine 

inspections and preventive maintenance procedures in the 1970s. “The more, the better” 

became the governing philosophy in many situations. It became apparent in the 1980s 

that many of these initiatives wasted money and significantly raised the mission risk for 

equipment management (EM) (Rice, 2007). 

EM = Function + Physical Risk + Required Maintenance 

The formula above, proposed by Rice in 2007, highlights the relationship between 

maintenance strategies and three essential components: function, physical risk, and 

required maintenance. Briefly, 
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 The function component represents the intended purpose or role of the equipment 

within a system. Maintenance strategies should align with the desired function 

and consider the criticality of the equipment's role. 

 The physical risk component considers the likelihood and impact of equipment 

failures, including factors such as failure probability, consequences, safety, and 

environmental risks. Maintenance strategies need to address the level of physical 

risk associated with the equipment. 

 The required maintenance component encompasses the maintenance activities 

necessary to ensure reliability, availability, and performance. It includes both 

preventive and corrective tasks based on equipment specifications, manufacturer 

recommendations, industry standards, and regulations. 

By incorporating these three components into maintenance planning and decision-

making, organizations can develop effective strategies to optimize equipment reliability, 

mitigate risks, and achieve the desired function. 

Equipment management, asset management, or both take a more comprehensive and 

holistic view by considering all types of assets and their interdependencies. Equipment 

management, also termed asset management, is a systematic organizational effort to 

realize the value of assets including maintenance management according to ISO 

55000,2014 (Gao et al., 2021). This approach aims to extend the lifespan of the device 

and lower maintenance and optimization costs (Maktoubian & Ansari, 2019). In order to 

obtain the best results, including higher productivity, decreased expenses, increased 

income, and improved return on investment (ROI), assets must be carefully managed and 

used. Utilization, maintenance, lifecycle management, risk assessment, and financial 

considerations are just a few variables considered. Asset management provides the 

overarching framework and strategic direction for managing assets across their lifecycle. 

An asset system is a collection of procedures designed to manage and preserve an 

organization's assets. This system includes all the elements, processes, and resources 

needed to efficiently manage assets throughout their lifecycle. In the context of systems 

or equipment, the following are key terms related to their life cycle: 
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Mean Time to Failure (MTTF): MTTF is a measurement of the mean time elapsed 

between two component failures. It is a measure of reliability and is typically calculated 

based on statistical analysis or historical data. MTTF is often used for non-repairable 

systems or components replaced rather than repaired after failure. 

Mean Time Between Failures (MTBF): MTBF is similar to MTTF, but it applies to 

repairable systems or components. MTBF is a measurement of the mean time between 

two consecutive failures, and it includes the time required to repair the system to its 

operational state. It is a means of estimating the expected reliability of a system. 

MTBF=
𝑇𝑜𝑡𝑎𝑙 𝑈𝑝𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
 

Mean Time to Repair or Restore (MTTR): MTTR is a measurement of the mean time to 

repair a failed system or component to operating state. It includes the time spent 

diagnosing the problem, acquiring the necessary resources or spare parts, and performing 

the repair or restoration. MTTR is a measure of maintainability and is crucial in 

determining system availability. 

MTTR=
𝑇𝑜𝑡𝑎𝑙 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠
 

Availability: Availability is a measurement that describes the operational time of a system 

or equipment. It is commonly expressed as a percentage and is calculated using the 

following formula: 

Availability= 
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
∗ 100 

Higher availability indicates better system reliability and maintainability. 

These metrics assess systems and equipment's performance, reliability, and 

maintainability throughout their life cycle. By monitoring and optimizing these factors, 

organizations can improve system uptime, reduce downtime, and enhance overall 

operational efficiency. The operational viewpoint is the maintenance procedures for a 
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system to continue performing its defined function at the expected capacity (Basri et al., 

2017). Identifying the system and the units is necessary to determine its capacity. A unit 

or component is a part of a system that requires maintenance. There are no sub-units 

require maintenance (Nardo et al., 2021).  

The system state is divided into two categories: single-unit and multi-unit systems. A 

single-unit system consists of either one or multiple components. On the other hand, 

multi-unit systems consist of several system units with several components (de Jonge & 

Scarf, 2020). In a study, the system state has been described as follows: considering a 

system's status is to depict it as either functioning normally, malfunctioning, or entirely 

failing (Basri et al., 2017). Two basic categories of operating or failing are thought to 

accurately reflect the system's state in the approach of another study (Lie & Chun, 1986). 

Considering a system's state allows us to depict it as being in one of three states: normal, 

operation and breakdown mode. As a result, decision-making according to preventive 

maintenance planning is based on the analyzing the system's state and function (Yang et 

al., 2019). 

A repairable system is typically monitored periodically and non-periodically throughout 

its life cycle. A repairable system can be restored to its initial condition after failure 

without the need replacing the whole system (Maktoubian & Ansari, 2019).  

Preventive replacement is necessary when the system's age, the number of failures, or the 

total damage amount surpasses certain limits. Healthcare facilities can manage the timing 

of repairs and replacements to reduce costs and increase operational efficiency by 

implementing a well-designed policy (van Staden & Boute, 2021). 

A study on repair and replacement decisions was conducted in the scope of healthcare 

facilities. The age-old issue of repair vs replacement choices, which dates back to the 

1960s and is still prevalent in many industries, was examined. In terms of modeling, 

replacing or repairing a portion of a multi-unit system is always possible (de Jonge & 

Scarf, 2020). 
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The delay time model refers to a state between the functioning and the failed state. (de 

Jonge & Scarf, 2020). The time between the first moment when a fault is detected and the 

occurrence of the fault is called delay time in a system. In the delay-time model, states 

can generally be described as good, faulty, and fail (Maktoubian & Ansari, 2019). 

 In general, a piece of equipment can malfunction in one of two ways (Rice, 2007):  

1. By producing readings that are not accurate or calibrated, 

2. The machinery breaks down. 

Failures might be silent or hidden, or they can be self-announcing, meaning that no 

research is necessary to find them (Maktoubian & Ansari, 2019). A failure mode's 

importance or criticality depends on the interactions of some variables, including severity, 

probability, detectability, cost, and time (Rice, 2007). 

It entails taking preventative action to avoid breakdowns, increase equipment uptime, and 

use maintenance resources best. Reactive maintenance, referred to as “breakdown 

maintenance” or “run-to-failure,” entails taking care of maintenance concerns and fixing 

equipment only after a failure or breakdown occurs. Instead of aggressively preventing 

problems, this strategy relies on responding to them as they occur. On the other hand, a 

proactive maintenance strategy tries to identify and address possible issues before they 

have a significant impact or cause considerable damage (Basri et al., 2017). By 

implementing proactive maintenance measures, organizations can enhance their assets' 

reliability, availability, performance, minimizing unexpected downtime and optimizing 

overall operational efficiency.  

As shown in Figure 2.1, maintenance approaches can be classified into reactive, semi-

proactive, and proactive maintenance. Preventive maintenance is performed regularly 

based on scheduled time, independent of the equipment's condition. However, predictive 

maintenance is performed when needed, not based on a specific time. 
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Figure 2.1 Classification maintenance approaches 

 

Table 2.1 provides a foundational overview to compare and contrast the distinctive 

characteristics of each maintenance strategy, offering a starting point for understanding 

maintenance strategy attributes and benefits. 
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Table 2.1 Comparison of main maintenance approaches and properties 
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2.2 Preventive Maintenance 

Any maintenance performed while the system is in use is preventive maintenance (Lie & 

Chun, 1986). Actions for preventive maintenance should be scheduled or initiated, for 

example, depending on data about the time, age, usage, or condition. 

The three aspects of the PM planning are:  

 Determining the objectives or purpose, 

 Providing descriptions of the system's state in terms of both its importance and 

functions, 

 Categorizing the methods that aid in identifying the best solutions for the 

highlighted issues. 

There are three strategies of planning-based PM: time-based, cost-based and failure-based 

planning (Basri et al., 2017). Table 2.2 provides detailed information about these 

strategies and the studies carried out explained in detail below.  

a) Time-based Preventive Maintenance 

The preventive maintenance approach based on time schedules maintenance activities at 

set intervals. Various names may be used to refer to this approach in studies: 

 Calendar-based preventive maintenance 

 Scheduled preventive maintenance 

 Fixed-time preventive maintenance 

 Time-dependent preventive maintenance 

Time-based maintenance can be considered for devices with an average criticality score 

(Taghipour et al., 2011). A study considers age-based maintenance for a unit with a failure 

rate that increases over time. The Poisson process models the number of events that occur 

in a given time, such as equipment failure.  
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Table 2.2 Preventive maintenance strategy comparison: time-based, cost-based and 

failure-based 
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These failures occur randomly throughout the lifespan of a given product and are 

therefore used in age-based replacement models to optimize preventive maintenance 

strategies. (Cha et al., 2017). 

Another study aims to determine the structural outcomes of the most effective usage-

based approaches. The study investigates schedules that can be amended based on 

corrective maintenance or maintained regardless of the number of failures between 

routine maintenance procedures. The research aims to analyze the data using various 

probability distributions to model the number of failures, time to repair (TTR), and the 

number of failures within a 72-hour period. The frequency analysis results demonstrate 

the most common reasons for infusion pump failures in the existing dataset, such as “No 

Problem Found,” “Physical Damage,” and “Random Failure.” The sensitivity analysis 

results demonstrate that the daily operating revenue and warranty duration impact the 

decision to repair or replace (Liao et al., 2021). 

In a study, usage intensity, also can be called as utilization, was defined as the relationship 

between average consumption and the number of patients seen per hour (Taghipour et al., 

2011). A device often used may become worn out and damaged, requiring more frequent 

maintenance. On the other hand, a low utilization rate brought on by prolonged inactivity 

may result in problems and damage to specific components. Therefore, frequent periodic 

maintenance is required for all devices, including those with moderate usage rates. 

Another paper introduces a model for prioritizing medical equipment preventive 

maintenance schedules using an alternative methodology. The criteria and sub-criteria 

employed in the study include function, age, maintenance requirements, utilization level, 

and failure rate. The model has been tested on 200 units of medical equipment, 

encompassing 70 distinct device types. The results of the research suggest that there is a 

need for urgent preventive maintenance for 15% of the cases, while a higher priority 

should be given to 19%. Furthermore, 30% of the cases require medium priority, whereas 

27% need low priority, and 9% necessitate the least priority for preventive maintenance 

(Saleh et al., 2015). 
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b) Cost-based Preventive Maintenance 

Cost-based preventive maintenance is a planning-based approach that aims to minimize 

maintenance costs while meeting availability requirements. This approach may be 

referred to by various names in studies: 

 Risk-based preventive maintenance 

 Economical preventive maintenance 

 Cost-effective preventive maintenance 

A study presents a novel approach to improving the series-parallel systems' preventive 

maintenance (PM) schedule. The proposed method utilizes a genetic algorithm (GA) to 

reduced PM cost, maintaining the system's availability at prescribed criteria. The GA 

computes the optimum PM time vector to optimize the PM timing for each system 

segment. The outcome is a meaningful reduction in the total maintenance expenses. 

Furthermore, the study demonstrated that the GA-based PM schedule optimization 

outperformed conventional techniques. By identifying more effective PM schedules in 

terms of timing and frequency of activities, this approach can potentially reduce overall 

maintenance costs by up to 20% (Samrout et al., 2005). 

c) Failure-based Preventive Maintenance 

Failure-Based Preventive Maintenance is an approach to maintenance whereby the 

present condition of an asset is observed and maintenance is then performed according to 

particular indications or signs of likely failure. This approach may be referred to by 

various names in studies: 

 Condition based preventive maintenance 

 Condition-sensitive preventive maintenance 

 Failure-predictive preventive maintenance 

Condition-based maintenance (CBM) is a strategy that objectively analyzes an asset's 

current state to determine necessary maintenance. Maintenance should only be conducted 
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under specific indicators showing decreased performance or impending failure, according 

to CBM principles. Prior implementation of CBM requires condition monitoring, an 

intervention that partially determines the unit's status (Maktoubian & Ansari, 2019). 

CBM allows for real-time component monitoring, which assists in determining whether 

to repair or replace a component. Since it has been shown that some medical equipment, 

such as scanners and radiation equipment, is malfunctioning, preventive maintenance 

programs and real-time monitoring systems can be useful (Williamson Sr., 2014). 

In a study, a system becomes imbalanced once a specific component's deterioration level 

reaches a critical point or when there is a certain threshold exceeded in the difference 

between the deterioration levels of two symmetric components (Wang et al., 2021). The 

study illustrates both failure-based and cost-based preventive maintenance. PM 

thresholds are determined by minimizing system maintenance costs in a Semi-Markov 

Decision Process (SMDP) to prevent such failures (Wang et al., 2021). An SMDP is a 

stochastic model that enables decision-making under uncertainty. In the context of CBM, 

the SMDP model takes into account the following variables: 

 Availability: The probability that a system will be able to perform its required 

function at a given time. 

 Reliability: The likelihood that a system will not fail within a specific time frame. 

 Cost of failure: The cost of a system failure, including the cost of lost production, 

the cost of repairs, and the cost of safety incidents. 

 Cost of preventive maintenance: The cost of inspecting and maintaining a system, 

including the cost of labor, materials, and downtime.  

The objective of the SMDP model is to minimize the total expected cost of the system 

over a finite planning horizon. The SMDP model is solved using a dynamic programming 

algorithm. The dynamic programming algorithm works by iteratively solving a series of 

subproblems. Each subproblem considers the possible deterioration levels of the 

components in the system and the possible maintenance actions that can be taken.  
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Another study focused on evaluating the performance of a maintenance model using data 

from an original equipment manufacturer (OEM). The researchers wanted to determine 

whether deviating from the approved periodic maintenance schedule was necessary based 

on their findings. The study used a Poisson generalized linear model and aggregated data 

from different machine classes to improve predictions of machine failure behavior when 

historical data is unavailable. The researchers found that their proposed strategies were, 

on average, 5% more effective than existing strategies (Van Staden et al., 2022). 

Previously, a study showed that recent machine failures increase the probability of 

subsequent problems. Therefore, the availability of historical failure and maintenance 

data is critical. The study concentrated on collecting prescriptions for unscheduled 

preventive maintenance and accelerating regular periodic maintenance procedures 

(Deprez et al., 2020). 

After analyzing the potential usefulness of such data, the study provided policy 

recommendations for different combinations of machine classes and usage intensities. In 

addition, the suggested policies could identify underperforming or frequently failing 

equipment, allowing for proactive maintenance. This approach could save up to 44% over 

relying solely on scheduled periodic maintenance. 

The results from various studies underscore the need for a customized and comprehensive 

approach, as evidenced by the identification of specific devices requiring varying levels 

of priority in preventive maintenance efforts. These findings contribute to the ongoing 

efforts to enhance reliability, extend equipment lifespan, and optimize resource allocation 

in the maintenance of medical equipment. 

2.3 Preventive Maintenance with RFID 

RFID technology is based on the use of wireless communication technology to unique 

identify objects or people using tags. Its foundation is built on radio signals and radar 

technology, with its first prominent usage dating back to World War II. The RFID system 

consists of three crucial parts: a tag, a reader, and a controller system. 
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The U.S. Food and Drug Administration (FDA) advises against using wireless devices 

without a license in some frequency ranges, including the Industrial, Scientific, and 

Medical bands (Lie & Chun, 1986). Bluetooth Low Energy technology is one of these 

bands (Williamson Sr, A. 2014). Briefly stated, 

 The RFID tag: An RFID tag, also called a transponder, consists of a semiconductor 

chip, antenna, and battery, depending on the tag type. An RFID tag with a battery 

or an internal power source is classified as an active tag. The tag uses the power 

source to obtain the necessary power to transmit data to the reader when data needs 

to be transmitted. Active tags can communicate with readers over long distances 

and send data (de Jonge & Scarf, 2020). 

 The RFID reader: RFID reader consists of an antenna, a radio frequency electrical 

element, and a control electronics element. A reader can communicate with 

multiple tags and can repeatedly scan information on multiple products. 

 The RFID controller: RFID controller consists of a computer workstation with a 

database and management software. When an object with an RFID tag goes into 

the communication area of the reader, the reader tells the tag to send the stored 

data. After the reader accumulates the data from the tag, the reader sends the data 

to the RFID controller by a network connection. 

The RFID tag and reader use a specific radio frequency to communicate. In the healthcare 

industry, passive RFID tags typically operate at 13.56 Hz, while active or passive tags use 

the 900 MHz ultra-high frequency band.  

RFID technology offers advantages such as a broad reading range, effortless data 

transmission between a receiver and transmitter, secure data storage, and cost and time 

efficiency. RFID provides a higher rate of process automation with better data integrity 

and accuracy, enabling real-time response capabilities. 

The use of RFID is subject to some limitations. One of these limitations is reader 

interference, which occurs when several readers are used simultaneously and causes 

signal interference and decreased tag identification accuracy. Environmental variables 
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can also impact RFID system performance, including electromagnetic interference and 

physical obstructions that interfere with communication between the reader and the tags. 

The positioning of the tags about the reader might affect the signal strength and readability 

since tags that are too close or far away from the reader may have trouble transmitting 

data. The read range and effectiveness of the RFID system can also be impacted by the 

separation between the reader and the tags and the reader's power level. These limits must 

be considered and efficiently addressed to enable trustworthy and precise tag detection in 

RFID systems. 

Most RFID applications in healthcare are centered on locating and monitoring healthcare 

supplies, equipment, and personnel. The primary goal of these applications is to digitize 

the manual process. RFID technology tracks and monitors medical assets, preventing theft 

and equipment loss (Williamson Sr, A. 2014).  

For the past 18 years, RFID has generated interest in healthcare due to its ability to 

simplify the identification process, track and manage medical resources, improve their 

utilization, and reduce annual costs by preventing the purchase of unnecessary equipment 

(Williamson, n.d.).  

Additionally, doctors and nurses can access equipment more quickly and efficiently to 

treat patients by tracking medical equipment. The result is increased staff productivity 

and treatment of more patients. Also, small hospitals can save up to one million dollars 

annually (de Jonge & Scarf, 2020). 

Effective monitoring of medical equipment requires the capacity to make decisions in real 

time. Nowadays, all healthcare disciplines have new chances to improve data gathering. 

Data can be collected from medical device sensors to ensure the accuracy and reliability 

of medical devices and to identify device-related hazards. The monitoring of devices 

depend on real-time data processing. Implementing an autonomous integrity monitoring 

system with IoT capabilities can significantly improve these procedures.  
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Failure analysis requires the real-time detection of appropriate parameters using IoT 

technology and machine learning techniques to predict and categorize healthy and failing 

equipment conditions (Rice, 2007). 

According to a study conducted in 2020, the use of predictive maintenance was expected 

to increase to 83% with the adoption of IoT (Shamayleh et al., 2020). Additionally, PdM 

is expected to decrease costs by 12%, increase uptime by 9%, reduce threats to safety, 

health, environment, and quality by 14%, and extend asset lifetime by 20% (Williamson 

Sr., 2014).  

Predictive maintenance management of medical equipment depends on collecting 

relevant parameters in real-time using IoT technology and machine learning tools, like 

Support Vector Machine (SVM), to estimate and classify equipment status as healthy or 

faulty. 

2.4 Medical Equipment Maintenance with Sensor 

Medical equipment's dependability and accuracy are crucial for providing high-quality 

care. Sensor technology has improved the maintenance of these vital components by 

offering real-time monitoring, diagnostics, and adaptive capabilities. This section 

examines sensors' crucial role in maintaining medical equipment, emphasizing some 

examples and the radical changes they have made to medical procedures. 

In a study, a sensor-based system for computing maintenance costs and residual value of 

medical equipment was built to improve the efficacy and financial success of medical 

equipment recycling. This system aims to precisely predict maintenance costs and 

residual value, enabling recycling businesses to make well-informed decisions regarding 

the acquisition and disposal of equipment using information from sensors attached to 

medical equipment (Williamson Sr, A. 2014).  
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Vibration, sound pressure, motor current, magnetic field, and temperature variables are 

mostly measured for predicted maintenance applications. Examples of potential sensors 

are barometers, light sensors, magnetometers, moisture sensors, proximity sensors, and 

thermometers (Liu, 2017). 

According to the results of a study, most of the devices examined in a study of over 150 

anesthetic machines and auxiliary monitors across 45 hospitals had significant problems 

that could result in severe accidents. Information on current, humidity, light, pressure, 

temperature, and vibration can be continuously collected from the equipment using self-

monitoring technology. There is an example of the usage of magnetometer sensors with 

infusion pump. The infusion rate set to the medical device is expected to affect the 

measured waveform from the magnetometer sensor. As the infusion rate increases, 

motor's speed increases (Engku Ariff et al., 2021). The magnetometer sensor is expected 

to monitor the strength of the magnetic field produced by the motor at varied infusion 

rates. Although the magnetic flux strength fluctuation is not perfect, it can be used as a 

general measure of how well a medical device is being used (Shamayleh et al., 2020). 

The outcome shows that a magnetometer sensor can track the degree of usage of the 

understudied infusion pumps. 

Parameters like current, vibrations or voltage are measured to collect relevant data for 

predictive maintenance. Signal processing techniques, such as filtering, amplification, 

correlation, and compression, minimize artifacts and noise levels to ensure high-quality 

signals. Commonly used filtering techniques, such as wavelet and Fourier transformation, 

are used to reduce noise and enhance signal characteristics. The SVM prediction model 

and ROC curve analysis is commonly employed in predictive maintenance to classify 

equipment status and assess the model's performance. 

In a thesis, the magnetic field sensors are used specifically for magnetic resonance 

imaging (MRI) machines. These sensors were used to determine the strength of the 

magnetic field. Based on sensor data, the K-nearest neighbor (k-NN) technique and the 

multiple linear regression approach were used to anticipate maintenance costs and 

residual values (Yang et al., 2019). 



  21 

 

3. METHODOLOGIES 

Chapter 3 presents the time-based dynamic preventive maintenance schedule specifically 

designed for medical devices. To achieve this, we harnessed the capabilities of a 

magnetometer sensor and integrated it with an active tag. We used an active tag with a 

battery and RFID technology capable of continuously transmitting data to the signal 

receiver. The steps we followed are presented in the flowchart in Figure 3.1. 

As seen in Figure 3.1, data collected from some medical devices conducted in a hospital 

was analyzed, and it was determined that utilization data for selected medical devices 

could be extracted. The recorded data was segmented into 24-hour sets and analyzed. As 

a result of this, K-means clustering method as a machine learning model was identified, 

and it was used to make predictions for subsequent days.  

The obtained utilization data was used in the analytic hierarchy process method, which is 

frequently used in prioritization studies of medical devices, to ensure that the thesis is 

dynamic. It is suggested that the maintenance plan of the medical device can be brought 

forward, carried out as planned or postponed with the Transformed Score Value (TSV) 

calculated as a result of the AHP method. Literature TSV score ranges were adjusted for 

this thesis study to classify when maintenance is necessary. (Taghipour et al., 2011). 

The characteristics of the sensor and the specification of the tag used in this thesis are 

examined in Section 3.1. Section 3.2 mentions the K-means clustering method used to 

analyze the data. Section 3.3 includes a detailed discussion of AHP methods. As a result 

of AHP methods, TSV scores were calculated according to the features of the medical 

device that were selected for the thesis. Also, we calculated all possibilities according to 

the parameters of medical devices, described in Appendix B Table 4.4, and recommended 

updating the medical device maintenance schedule. 
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Figure 3.1 Flowchart of dynamic preventive maintenance schedule development                          

process                                                                                  
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3.1 Material Information  

At the beginning of this section, some background information is provided on the 

magnetometer sensor as a main material, followed by an explanation of its area of usage. 

The main focus of this investigation was the IIS2MDC, which is a magnetometer sensor 

code and a three-axis digital magnetic sensor with outstanding accuracy and extremely 

low power consumption. The features include three magnetic field channels, a dynamic 

range of about 50 gauss, and 16-bit data output for accurate readings. This sensor is built 

for a variety of applications. Anti-tampering systems, positioning sensors, presence 

detection, magnetic switches, and changeable magnetic field monitoring are just a few of 

the sectors it finds use in (IIS2MDC - STMicroelectronics, n.d.) 

The IIS2MDC offers versatility in power supply and operates within a voltage range of 

1.71V to 3.6V. It can attain sampling speeds of up to 150 Hz in single-measurement mode. 

Hard-iron adjustment, a programmable interrupt generator, self-test capability, and an 

inbuilt temperature sensor enhance its performance and versatility. The IIS2MDC, housed 

in a plastic Land Grid Array (LGA) package, functions effectively throughout a broad 

temperature range of -40 °C to +85 °C. Accuracy of the sensor is ±7 mG/ Least Significant 

Bit (LSB). “±7mG/LSB” indicates that for each LSB change in the sensor's digital output, 

the magnetic field sensitivity or resolution is approximately seven mG. The tag, enabling 

real-time asset tracking, broadcasts the Bluetooth 5.1 compatible beacons.   

The IIS2MDC magnetometer sensor also has applications in magnetic field-based 

detecting systems in the medical industry. This sensor is employed in medical 

applications, aiding in stroke rehabilitation, and developing real-time monitoring systems 

(Gao et al., 2021). In assistive technology, the sensor is utilized for indoor navigation 

systems, which is particularly beneficial for individuals with visual impairments (Ivanov, 

2010). These studies aim to enhance medical diagnostics, patient monitoring, and 

accessibility for individuals with specific needs highlighting the sensor's versatility and 

significance in these domains. 
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The primary reason for selecting this sensor is that it does not affect the medical devices 

in any way. For this reason, it was analyzed with a magnetometer sensor to determine 

whether the magnetic field change that the medical device would create while running 

could be detected. 

Another point to explain in this section is the tag's properties on which the magnetometer 

sensor is placed. A magnetometer sensor has been positioned within a tag connected to 

the signal receiver via Bluetooth. Figure 3.2 shows the microscope image of the 

magnetometer sensor placed in the tag. 

 

Figure 3.2 Image of the magnetometer sensor placed inside the tag 

The tag can be affixed to assets using double-sided tape. Remote firmware and 

configuration updates are also capabilities of the tag. The tag's specifications for assets 

designed specifically for healthcare are shown in Table 3.1. The tag was placed in 

designated positions on selected medical devices with double-sided tape, and a tag code 

was determined for each tag to avoid confusion. The tags attached to the 

Electrocardiogram (ECG) and infusion pump are shown in Appendix C, Figure C.1 as an 

example. The frequencies of the tags are 1 Hz and labeled as follows: A1A5A6, A2A5A6, 

E0AAB2, E0AAF5, E0AB44. When the preliminary studies were completed, tags were 

fixed to medical devices for long-term data collection. The tag A1A5A6 is fixed to the 

ECG device, A2A5A6 is fixed to the infusion pump, E0AAB2 is fixed to the Non-Stress 



  25 

 

Test (NST) device, E0AB44 is fixed to the defibrillator device, and finally, the device 

E0AAF5 is fixed to the Ultrasound (USG) device. The database records every bit of 

information the tag delivers to the signal receiver. Appendix C, Figure C.2, shows the 

signal receiver used. After the tests were completed, these tags were fixed to the selected 

medical devices, and long-term data was taken. 

Table 3.1 Tag’s key elements and specifications information 

Key Elements Specifications 

Outer Dimension 40 mm width, 35.5 mm height, 14.50 mm thickness 

Weight 17.2 gram 

Material Polycarbonate. 

Battery Voltage 3V 

Frequency Range 2400-2480 Hz. 

Sensitivity -98.6 dBm 

Maximum Indoor Range 30 meters 

 

The data recorded from the sensor contains timestamp information. Also, the 

magnetometer sensor receives three data: Field X, Field Y, and Field Z. Field X represent 

the intensity information of the magnetic field measured on the x-axis, Field Y from the 

y-axis, and Field Z from the z-axis. Recorded data from the sensor can be positive or 

negative and it represent directional information. Attention has been paid to placing the 

tag in the area closest to the engine the device has.  

3.2 The K-means Clustering Method 

In this section, we present the findings derived from the tests conducted at the hospital as 

a preliminary studies and explain why the K-means clustering method was used. The data 

obtained from the sensor must be processed with a method and must be estimated. 

Because of environmental factors in the hospital, an approach such as the devices running 

at a constant value only based on actual data has not been made. In line with the tests 

performed, it was decided to use the K-means clustering method by using the standard 

deviation values of the data. K-means clustering is a unsupervised machine learning 
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approach that divides objects into K classes based on a set of attributes. The goal of K-

means clustering is to group similar data points while minimizing the variance within 

each cluster (Javidan et al., 2023). 

 

The following steps can explain the K-means clustering algorithm: 

a) Data points are assigned to clusters that minimize the distance between the 

cluster centers and the data points within the cluster, 

b) The cluster centers are computed by averaging all data points within the 

cluster, 

c) The cluster centers are computed again, 

  d) Steps b and c are repeated until convergence is achieved. 

 

In the following, the tests performed in the hospital environment are described in detail. 

The K-means clustering algorithm result, which was applied to the test data, was 

compared with the actual data to evaluate its accuracy. The K-means clustering method 

was then applied to all of the acquired data, and examined. 

 

After placing tags on the selected medical devices, the data was observed during 

dependent real-time tests. Dependent real-time test means instantaneous observation of 

the incoming data by operating the device in the hospital environment and recording the 

“running” and “non-running” situations with timestamps. A control panel was developed 

to view data at that moment. The results of the two tests performed are shown in detail as 

examples. The first test was performed on the NST device. Timestamp and status 

information for the test are shown in Table 3.2.  

Table 3.2 Test times and conditions performed on the NST device on 03.10.2023 by     

using the A1A5A6 tag 

Test Time State 

15.00:00 Tag was placed 

15:03:20 NST was run 

15:08:00 NST was closed 

15:10:08 Tag was removed 
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Figure 3.3 illustrates the standard deviation of actual data obtained as a result of these 

tests. The standard deviation of the data collected from tag A1A5A6 is calculated using a 

rolling window of size 10 for this dependent test. This rolling process allows you to 

observe variations and trends in the standard deviation across the entire dataset. 

 

Figure 3.3 Standard deviation data obtained from the sensor during the test performed on 

the NST device on 03.10.2023 using the tag A1A5A6 

 

Figure 3.4 shows K-means clustering result graphs. In Figure 3.4: 

 Std. Dev. of Field X, Std. Dev. of Field Y, and Std. Dev. of Field Z shows the 

standard deviation change in the respective axes of the actual data from the sensor,  

 Operation Status shows the moments when the device is running as a result of K-

means clustering,   

 Arranged Opr. Status shows the corrected version of the operation status with 

Algorithm 1, which will be discussed.  

Inaccurate data can come from sensors that are affected by the conditions of the hospital 

and the environmental. Due to these erroneous data, the standard deviation values may 

increase momentarily. Therefore, K-means may cluster these data as “running”. 

“Algorithm-1” was used to correct this erroneous behavior. A pseudocode, “Algorithm-

1” is developed to correct this erroneous behavior, the detail given below. It is aimed to 

prevent a false-positive situation that may occur when instantaneous standard deviation 
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changes are encountered. As a result, the runtime of the device is calculated more 

accurately. 

 

Figure 3.4 K-means analysis result of the test performed on the NST device on 03.10.2023 

using the tag A1A5A6 

 

In Figure 3.4, the Arranged Opr. Status is shown in dark blue, and as can be seen from the 

figure, the area labeled as device “running” between 15:03 and 15:09 is framed. This test 

is a dependent test, and the result is consistent with the times recorded in Table 3.2. The 

same dependent test was performed for the infusion pump. Timestamps and status 

information of the test are shown in Table 3.3.  

Table 3.3 Test times and conditions performed on the infusion pump device on 

03.29.2023 using the tag E0AAB2 

Test Time State 

19:33:00 Tag was placed 

19:35:00 Infusion Pump was run 

19:37:30 Infusion Pump was closed 

19:39:50 Infusion Pump was run 

19:45:10 Infusion Pump was closed 

19:47:32 Tag was removed 
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Figure 3.5 illustrates the standard deviation of actual data obtained as a result of these 

tests. The standard deviation of the data collected from tag E0AAB2 is calculated using 

a rolling window of size 10 for this dependent test. Figure 3.6 shows K-means clustering 

result graphs. In Figure 3.6, the device was found to be “running” between 19:35 and 

19:43, and its area is indicated by the frame. The result is consistent with the times 

recorded in Table 3.3 and Figure 3.5. 

 

Figure 3.1 Standard deviation data obtained from the sensor during the test performed            

on the infusion pump device on 03.29.2023 using the tag E0AAB2 

 

Figure 3.2 K-means analysis result of the test performed on the infusion pump device on 

03.29.2023 using the tag E0AAB2 
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During the conducted dependent tests, while medical devices were running (not just 

plugged in or powered on, but actively performing functions) in the same environment, 

any variations in the data received from the sensors were monitored. As a result of these 

observations, it was noted that the frequency of data transmissions increased, and 

deviations became more pronounced during the moments when the tested medical devices 

were running. This observation highlights that these deviations were not merely tied to 

the devices being plugged in or turned on but were specifically associated with their active 

operational states. 

  

 All data recorded in a database. The standard deviation of the data collected from each 

tag is calculated using a rolling window of size 1000. This means, for example, when 

calculating the standard deviation in actual data, the first data is calculated with the 

formula for the standard deviation of data between 1-1000, then the second data is 

calculated with the formula for the standard deviation of data between 2-1001, and the 

resulting number of standard deviation data is 1000 less than the number of actual data. 

Then, these standard deviation values are clustered using the K-means clustering method. 

In the above dependent tests, we determine the rolling window of size as 10 because the 

test duration was short and the amount of data was, therefore, low. 

 

The K-Means algorithm can group these examples based on Euclidean distance, which is 

calculated using the equation one (Leskovec et al., 2014): 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2 1 

     

The collected data was analyzed based on standard deviation values due to the high 

variability introduced by the hospital environment and device mobility. This approach 

was adopted due to the dynamic nature of the hospital setting and the device operations. 

 

As previously stated, there may be inaccuracies in K-Means clustering result due to 

environmental factors. To avoid these, a corrective algorithm has been created as a 

solution. The pseudocode of the algorithm is given in detail in “Algorithm-1”. The 

algorithm takes the output from K-Means clustering and two required thresholds. The 
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required thresholds are: first, average utilization time of a device per a patient, called 

“thWorking”, and second, the minimum amount of time each machine has to go between 

two working processes, called “thMin”.  

 

When the algorithm starts, it first examines the start and end times of the running times 

in the loop. If the time between the end time of run t and the start time of run t+1 is less 

than “thMin”, then runs t and t+1 is combined, and the loop is examined again. During 

merging, the start time of run t and the end time of run t+1 are taken and merged. The run 

time is recalculated.  The running times are then analyzed. If the working time is less than 

“thWorking”, it is marked as an anomaly and removed from the output. 

 

“thWorking” time default value is five minutes. However, “thWorking” time was 

determined specifically for each device, according to the function of each device and by 

obtaining information from nurses. This time was determined as five minutes for ECG, 

25 minutes for infusion pump, 15 minutes for NST, a minute for defibrillator, and five 

minutes for ultrasound. 

 

In the K-means clustering method, a specific reference day is required to predict how 

much the device is running every day, taking data from the sensor. The results of the K-

means clustering method were compared with the data obtained from the hospital, and 

reference days were determined. The following is the reference date selected for each 

medical device in Table 3.4 and the result obtained when the devices were running.  Table 

3.4 can be explained as follows: The ECG device with tag code A1A5A6 was running on 

05.10.2023. The standard deviation value resulting from the K-means clustering of the 

24-hour data on this date is a maximum of 159.35 mG on field Z.  

The data shown in Table 3.4 are the standard deviation values of the data obtained on 

days when the devices are known to be operating. When the devices are running, the 

standard deviation data increases for a long time and the data oscillates. Table 3.4 shows 

the maximum and minimum points during this oscillation. “Mean” column shows the 

average of all data obtained on the specified date. 
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Table 3.4 “Reference data” standard deviation rates in mG 

Device Name Tag Date 
Field X Field Y Field Z 

Max. Min. Mean Max. Min. Mean Max. Min. Mean 

ECG A1A5A6 05.10.23 139.16 2.69 15.45 159.35 2.63 15.79 159.35 2.79 18.33 

Infusion Pump A2A5A6 05.02.23 65.69 2.62 7.44 39.27 3.09 5.95 39.27 2.76 10.25 

NST E0AAB2 07.06.23 156.21 3.52 11.27 76.92 2.96 10.75 76.92 9.33 21.04 

Ultrasound E0AAF5 07.11.23 135.29 2.50 13.00 119.70 2.44 13.07 119.70 2.45 20.93 

Defibrillator E0AB44 06.15.23 5.72 3.13 4.31 8.71 2.19 3.68 52.07 2.28 6.85 

 

Table 3.5 was calculated by subtracting the background data specified below from the 

actual data. So, the actual data, which occurred when the devices were running on the 

reference day, was filtered from noisy data. 

Table 3.5 “Reference data” filtered from background noisy data in mG 

Device Name Tag Date 

Field X 

 

Field Y 

 

Field Z 

 
Max. Min. Max. Min. Max. Min. 

ECG A1A5A6 05.10.23 421.62 -8.63 363.45 -171.05 337.30 -193.20 

Infusion Pump A2A5A6 05.02.23 195.61 -53.89 87.14 -29.36 118.02 -286.98 

NST E0AAB2 07.06.23 -264.17 -468.84 -35.43 -185.10 130.99 -273.68 

Ultrasound E0AAF5 07.11.23 101.50 -316.00 248.07 -195.43 457.82 -239.68 

Defibrillator E0AB44 06.15.23 -34.34 -61.34 12.12 -33.88 -165.59 -305.59 

 

When the device is not running, stored data is called background data, including 

environmental conditions. Days when the device is not running, are confirmed by 

consulting with the hospital and defined as background reference data. Table 3.6 and 

Table 3.7 are based on an analysis of 24-hour data obtained from the hospital by selecting 

days when the devices were never running. Table 3.6 is the standard deviation data for 

the days when the selected devices were not running for 24 hours. Table 3.7 is the average 

of actual data on Field X, Field Y, Field Z for the days when the selected devices were 

not running for 24 hours. 
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Table 3.6 shows the average of the standard deviation values of all data received on the 

specified days. When the medical device is not working, very small oscillations occur and 

the standard deviation values are small. Table 3.6 shows that the reference standard 

deviation values are greater than the standard deviation values on days when the devices 

defined as background reference standard deviation data are not working. 

Table 3.6 “Background reference data” standard deviation rates in mG 

Device Name Tag Date 

Background Standard Deviation 

Field X Field Y Field Z 

ECG A1A5A6 05.28.2023 6.66 9.04 14.92 

Infusion Pump A2A5A6 05.03.2023 13.00 6.10 10.70 

NST E0AAB2 07.15.2023 9.38 5.10 13.58 

Ultrasound E0AAF5 07.30.2023 3.60 3.69 3.89 

Defibrillator E0AB44 07.18.2023 4.92 3.86 3.22 

 

Table 3.7 “Background reference data” filtered from background noisy data in mG 

Device Name 

 
Tag Date 

Background Actual Data 

Field X Field Y Field Z 

ECG A1A5A6 05.28.2023 1140.13 34.05 1119.70 

Infusion Pump A2A5A6 05.03.2023 557.39 -401.64 1271.48 

NST E0AAB2 07.15.2023 -15931.60 -5753.26 -11923.32 

Ultrasound E0AAF5 07.30.2023 921.50 -310.57 -1169.32 

Defibrillator E0AB44 07.18.2023 39.34 -280.12 -1544.41 

 

The data stored in Table 3.4 was used as reference points, and all other data was loaded 

and analyzed using the K-means clustering algorithm. As a result of the K-means cluster 

analysis method, a graph and report are obtained. The information contained in the report 

is as follows: 

 Duration information on which the device operates, 
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 Start and end times of maximum and minimum points occurring during the device 

running in the x, y, and z fields,  

 Range value representing the difference between the maximum and minimum 

points 

For example, Table 3.8 shows the K-means clustering output report obtained from the 

data received on 05.02.2023 from the tag A2A5A6 installed on the infusion pump. 

Table 3.8 shows the actual data at the time of device operation. The infusion pump ran 

twice on the specified date as seen in the Table 3.8. In the “Duration” column, the running 

time is indicated in seconds. The maximum and minimum points that occur during the 

oscillation of the device and the range value expressing the difference between them are 

given in the table. 

Table 3.8 K-means clustering results for infusion pump with tag A2A5A6 on 05.02.2023 

in mG 

Start      

time 

End 

time 

Duration 

(sec) 

Field X Field Y Field Z 

Max. Min. Range Max. Min. Range Max. Min. Range 

2:54:51 
PM 

3:30:36 
PM 

2145 864 455 409 -253 -422 169 1481 1109 372 

11:11:32 
PM 

11:50:05 
PM 

2313 642 552 90 -376 -440 64 1298 860 438 

 

Figure 3.7 shows that the standard deviation data increase six times during the day. Since 

four of these increases lasted less than 25 minutes with the algorithm used, they can be 

considered as deviations due to environmental. As a result of K-means clustering, two of 

these data increase do not belong to the “running” category. The accuracy of this output 

was confirmed by the nurse working in the service and using the device. 
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Figure 3.3 Standard deviation of K-means clustering results of infusion pump with tag 

A2A5A6 on 05.02.2023 

 

 In this thesis, since the data was measured in real time from the hospital, the actual data 

from the sensor was not sufficient for decision making. For example, location, phone call, 

and other factors may affect the actual data coming from the sensor and the actual data 

may increase or decrease momentarily. This change increases the standard deviation only 

momentarily and Algorithm-1 was used for these reasons. The accuracy of measurements 

made using actual data on stationary devices may be high, but it is correct to use standard 

deviation data across all devices. Figure 3.7 is an example of why standard deviation data 

is used in this thesis because actual data is insufficient for decision-making due to the 

variation of actual data according to the surrounding conditions.  

3.2.1 An Illustrative Example 

An illustrative example based on the tests mentioned previously has been presented in 

order to support the method utilized in this section. A specific time was examined as an 

example and compared to the actual data obtained to verify the K-means clustering 

results. The first row in Table 3.8 has been examined, and the examined section area is 

indicated by the red frame in Figure 3.7. If the K-means clustering result shows that the 

device is running, when the actual data of fields x, y, and z are displayed on the graph, 

the range between the data is expected to be significant. Because the standard deviation 
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increases while devices are running. The accuracy can be observed by comparing the 

actual data graph with the K-means clustering result graphs. 

 

In this illustrative example, as a result of K-means clustering from actual data, 1000 rows-

data were selected from the time interval in which the device was running. Due to the 

high standard deviation in the selected interval, it is aimed to observe the change. 

 

 

Figure 3.4 Data on the field X  in the section determined as “running” and sampled as a 

result of K-means clustering results for infusion pump with tag A2A5A6 on 

05.02.2023 

 

Figure 3.5 Data on the field Y in the section determined as “running” and sampled as a 

result of K-means clustering results for infusion pump with tag A2A5A6 on 

05.02.2023 
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Figure 3. 6 Data on the field Z in the section determined as “running” and sampled as a 

result of K-means clustering results for infusion pump with tag A2A5A6 on 

05.02.2023 

 

The reason why the graph reads negative data on the field y is that no offset value is added 

in the sensor software. For this reason, negative values were recorded in the actual data. 

In addition, observed a change in the y and z axes but not in the x axis at 15:30. Since the 

standard deviation data is grouped according to the Euclidean distance formula in the K-

means clustering method, it does not affect the result. 

 

Because of the dependent tests that called preliminary study, it was decided that the K-

means clustering method is suitable for estimating the operating status of the devices for 

independent tests planned to be performed with long-term data. By processing the data 

obtained from the tags attached to the device with the K-means clustering method, it was 

determined how long the devices worked on which day, and the results are examined in 

result and discussion section. 

 

3.3 Analytic Hierarchy Process (AHP) 

 

In this section, we describe the AHP model which is used to create a dynamic maintenance 

schedule by prioritizing the devices using utilization data as a result of K-means clustering 

method.  
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The Analytic Hierarchy Process is a decision-making method developed by Thomas L. 

Saaty (Saaty, 1990). It is a structured and systematic approach used to solve complex 

decision-making problems where multiple criteria and alternatives need to be considered. 

 

The application steps of the AHP method can be summarized in four steps: 

a. Criteria Identification 

 

 Problem Definition: The decision problem to be addressed using AHP is defined. 

The main objective and criteria contributing to achieving that objective are 

identified. 

 Hierarchical Structure: The criteria are organized into a hierarchical structure. 

The top level is occupied by the main objective, followed by intermediate levels 

for primary criteria, secondary criteria, and so forth. This hierarchical arrangement 

aids in the breakdown of the complex decisions into manageable components. 

 

b. Comparison and Scoring 

 

 Comparison Matrices: Matrices are created for each level of criteria to facilitate 

the comparison of the importance of each criteria in relation to others. Preference 

values are assigned to each comparison using Saaty's scale. Appendix B Table B.1 

defines the Saaty's scale. (Saaty, 2008). 

 Eigenvalue Calculation: Normalized eigenvectors for each matrix are calculated. 

This step entails the calculation of the average of each column in the matrix, 

followed by normalization to ensure a sum of one. The eigenvector denotes the 

relative importance of criteria within each level. 

 

c. Synthesis and Weight Calculation 

 

 Sub-criteria Synthesis: Similar to criteria, comparison matrices are formed for 

sub-criteria, and their normalized eigenvectors are calculated. 
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 Aggregation: The criteria eigenvector is multiplied by the sub-criteria normalized 

eigenvectors, producing aggregated weights for each sub-criteria. 

 Alternative Evaluation: Matrices are devised to assess alternatives concerning 

each sub-criteria, yielding weighted scores for alternatives based on aggregated 

sub-criteria weights. 

 

d. Consistency Check 

 

 Consistency Ratio (CR): CR is calculated for each comparison matrix to assess 

judgment reliability. Decisions may need to be revised if the CR exceeds a 

predefined level (typically 0.1). 

By adhering to these steps, criteria, sub-criteria, and alternatives are systematically 

evaluated, incorporating the preferences and intensity assessments of experts. The AHP 

process culminates in weighted scores for alternatives that guide the decision-making 

process. In this thesis, these four criteria have been applied step by step in the following 

part. 

3.3.1 Application of AHP  

Generally, maintenance and calibration schedules of medical devices cannot be arranged 

and prioritized according to their status. In accordance with this problem, the AHP method 

was used to prioritize medical devices.  

a. Criteria Identification 

First of all, the main criteria and sub-criteria determined to establish the hierarchy 

structure are shown in Table 3.9. Table 3.9 lists the criteria and sub-criteria determined 

by obtaining information from the hospital where the tests were performed. 
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Table 3.9 Main criteria and sub-criteria for priorization of medical devices 

 

Main criteria, sub-criteria, and their categories are detailed in Appendix B Table B.4. The 

parameters shown in Table B.4 are used to prioritize medical devices. Main criteria and 

Sub-criteria are as follows: 

 

Function: The functions of the medical devices used are the categories currently used by 

the hospital. Medical devices are categorized based on their existing functions within the 

treatment process.  

 

Age: It is the duration elapsed since the purchase date of the devices. The biomedical 

department of hospitals indicates that after five years, devices tend to generate more 

malfunctions, requiring more maintenance tasks such as battery replacements 

 

Maintenance Requirement: Some medical devices require daily checks and maintenance. 

For instance, the defibrillator device used in this thesis is intended for emergency 

situations and needs to be inspected daily. Nurses perform these checks twice a day, and 

their monitoring is ensured. 

 

Functionality: The functionality has been analyzed in two categories: utilization and the 

number of alternative devices. In this thesis, utilization is dynamically calculated using 

Main criteria 
and Subcriteria 
for Priorization 
of Medical 
Devices

Function

Age

Maintenance Requirement

Functionality Utilization

Alternative Device

Total Risk Failure Frequency

Detectability

Failure Consequence
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the employed sensor. The count of alternative devices represents the devices present in 

the hospital and ready for use at any time. Some of these devices can be kept in stock, but 

it is essential to manage this process carefully. It is crucial for utilization values to be 

balanced for each device. For example, if one device is heavily utilized on one floor while 

another device on a different floor is never used, adjustments can be made according to 

the needs. 

 

Total Risk: In this thesis, the total risk of a device is analyzed in three contexts. Failure 

frequency answers the question of how often a device fails. This provides a prediction for 

the number of failures that may occur in the future. Detectability answers whether the 

device warns when a malfunction occurs or is observable in advance. Most medical 

devices generate these alerts and signals, and users should pay careful consideration to 

them. Failure consequences answer how long the device remains unusable when it fails. 

In this thesis, information was obtained from the hospital about the number of failures 

and the cause of the failure of the devices of the same type as those tested. 

 

Briefly, we identified the criteria used to prioritize medical devices when creating their 

maintenance and calibration schedules in this section. Section two determines the 

significance of these criteria and the extent to which changes in device condition affect 

their prioritization rate. The degree of significance indicates how much a medical device's  

prioritization rate will alter over time in response to changes in condition. 

b. Comparison and Scoring 

We created comparison matrices for all main criteria, sub-criteria and their categories 

identified in section a. The importance levels of the criteria in the comparison matrices 

were determined according to the Saaty scale defined in Appendix B Table B.1 (Saaty, 

2008).  

 

Table 3.10 is an illustrative example to showcase the implementation of AHP and shows 

the comparison matrix created for the main criteria. The equations used are explained 

through this example for AHP analysis. Table 3.10 is based on the opinions of individuals 
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working in the biomedical field. This provides a relative measure of the importance or 

intensity of the element in comparison to the others. 

Table 3.10 Main criteria comparison matrix A 

Main Criteria Function Functionality Age 
Total 

Risk 

Maintenance 

Requirement 

Function 1 2 3 6 5 

Functionality 1/2 1 4 7 8 

Age 1/3 1/4 1 4 3 

Total Risk 1/6 1/7 1/4 1 2 

Maintenance 

Requirement 
1/5 1/8 1/3 1/2 1 

 

 

The reciprocal main criteria value in the columns and rows listed in Table 3.10 are one, 

because the same criteria have equal priority over each other. Another example, the value 

of the function criteria in the row corresponding to the age criterion is three. This means 

that in the maintenance calendar created for medical devices, the function criterion of the 

devices is moderate importance according to the age criterion, and this corresponds to 

three points in the Saaty scale (Saaty, 2008).  

 

The consistency of the comparison matrix is evaluated by calculating the consistency ratio 

defined in the fourth step of the AHP application process. The formulas for computing 

the consistency ratio are described step by step and applied to the comparison matrix 

generated for the main criteria indicated in Table 3.10. 

 The matrix A is a square matrix that compares the main criteria and is shown by a 

matrix equation. The matrix entry 𝑎𝑖𝑗 refers to the relative importance or 

preference of element i over element j. 
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A= 

[
 
 
 
 
 
 

1 2 3 6 5

1/2 1 4 7 8

1/3 1/4 1 4 3

1/6 1/7 1/4 1 2

1/5 1/8 1/3 1/2 1]
 
 
 
 
 
 

 

 For every column j, the elements 𝑎𝑖𝑗′ are acquired by dividing each element 𝑎𝑖𝑗 

by the sum of the elements present in the same column. 

𝑎𝑖𝑗′ =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛

𝑖=1

2 

The normalized matrix 𝐴1 is then computed. 

𝐴1= 

[
 
 
 
 
 
 
0.45 0.57 0.35 0.32 0.26

0.23 0.28 0.47 0.38 0.42

0.15 0.07 0.12 0.22 0.16

0.07 0.04 0.03 0.05 0.10

0.09 0.04 0.04 0.03 0.05]
 
 
 
 
 
 

 

c. Synthesis and Weight Calculation 

 The total of every row in matrix 𝐴1 is divided by n, representing the number of 

criteria. The result is the eigenvector 𝑤𝑖.       

𝑤𝑖 =

∑ 𝑎𝑖𝑗′

𝑛

𝑖=1

𝑛
3

 

𝑤𝑖= 

[
 
 
 
 
 
 
0.39

0.36

0.14

0.06

0.05]
 
 
 
 
 
 

 

 Multiply the original matrix A by the eigenvector 𝑤𝑖 to obtain the eigenvalue. 

Eigen Value = 𝑤′ = 𝐴𝑤𝑖 
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A= 

[
 
 
 
 
 
 

1 2 3 6 5

1/2 1 4 7 8

1/3 1/4 1 4 3

1/6 1/7 1/4 1 2

1/5 1/8 1/3 1/2 1]
 
 
 
 
 
 

,  𝑤𝑖= 

[
 
 
 
 
 
 
0.39

0.36

0.14

0.06

0.05]
 
 
 
 
 
 

 , 𝑤′= 

[
 
 
 
 
 
 
2.14

1.94

0.75

0.31

0.25]
 
 
 
 
 
 

 

Table 3.11 displays the eigenvalue and eigenvector ratio calculations for each criteria in 

the decision matrix. 

Table 3.11 Calculation of eigen values and eigenvector ratios 

Main Criteria 𝒘𝒊 𝒘′ 𝒘′ / 𝒘𝒊 

Function 0.39 2.14 5.46 

Functionality 0.36 1.94 5.46 

Age 0.14 0.75 5.27 

Total Risk 0.06 0.31 5.09 

Maintenance Requirement 0.05 0.25 5.10 

Sum 1.00 5.39 26.39 

 

d. Consistency Check 

The λ𝑚𝑎𝑥 formula calculates the maximum eigenvalue. It's the average of the ratio of each 

eigenvalue to its corresponding eigenvector value.  

𝜆𝑚𝑎𝑥 =
1

𝑛
(
𝑤1′

𝑤1

+
𝑤2′

𝑤2

+ ⋯……
𝑤𝑛′

𝑤𝑛

) 4 

The Consistency Index (CI) provides a measure of how consistent the matrix is.             

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
5 

The Random Index (RI) is a constant that depends on the order of the matrix (the number 

of criteria). It is pre-determined and based on the size of the matrix (Saaty, 2004). 
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The Consistency Ratio (CR) is the ratio of the consistency index to the random index. It 

is used to assess the consistency of the decision matrix. If CR is close to 0, it indicates 

good consistency; otherwise, it suggests that the decision matrix may be too inconsistent.  

Table 3.12  Consistency analysis with λ and RI 

λ max Consistency Index RI CR 

5.27 0.067 1.12 0.060 

 

Table 3.12 shows that the consistency check score of this comparison matrix is 6%, and 

the maximum lambda value is 5.27. If the calculated consistency ratio values are less than 

0.10, the comparison is consistent, and accordingly, the comparison matrix in Table 3.10 

is consistent (Saaty, 2004). These steps were applied to all the comparison matrices we 

created for the main criteria, sub-criteria and their categories. All comparison matrices we 

create are consistent. 

Using these comparison matrices, a transformed score value (TSV) is calculated to 

prioritize medical devices. This calculation is calculated using the following equations. 

(Taghipour et al., 2011). The equations mentioned below are applied to all comparison 

matrices. Explained the application of these equations for the main criteria comparison 

matrix as an example. 

The weight (𝑣) of main criteria comparison matrix's grades (𝑎𝑖𝑗) can be obtained as 

follows:              

                                 𝑣 =
(𝛱𝑗=1

5 𝑎𝑖𝑗)
1

5⁄

∑ (𝛱𝐽=1
5 𝑎𝑖𝑗)

1
5⁄

5

𝑖=1

     𝑖 = 1… ,5, 𝑗 = 1…5 6 

The Intensity (I) of main criteria comparison matrix's grades can be obtained as follows: 

                   𝐼 =  
𝑣𝑖

𝑚𝑎𝑥(𝑣𝑖)
     𝑖 = 1… ,5 7 
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To calculate the TSV score, it is necessary to first calculate the Minimum Total Score 

(MTS) value and the MTS value is a constant metric. MTS is calculated as a weighed 

sum of minimum intensity values of the main criteria. In the same vein, minimum 

intensity values of the main criteria are calculated as the weighed sum of their sub criteria, 

if there are any. The calculated values of the main criteria and sub-criteria are shown in 

Table 4.8. This process can be expressed with the formulas (8) and (9): 

𝑀𝑇𝑆 =  ∑𝑣𝑖𝑥𝑖  

5 

𝑖=1

8 

𝑥𝑖 = ∑ 𝛽𝑘𝑦𝑘

𝑀

𝑘=1

9 

Here, 𝑥𝑖 represents minimum intensity of each one of the 5 different main criteria (i.e. 

function, mission critically, age, total risk and maintenance requirement values) and 𝑣𝑖 is 

the corresponding weight values. And if any of the main criteria 𝑥𝑖 has sub-criteria, 𝑦𝑘 

represent each one of those 𝑀 sub-criteria with 𝛽𝑘 being the corresponding weight value. 

The Total Score (TS) is a measure that may be compared to the established thresholds to 

determine which category the item belongs in. Total score is the weighted sum of the all-

possible intensity values of the main criteria. If main criteria have sub-criteria, intensity 

of the main criteria is, again, the weighted sum of their intensities. 

𝑇𝑆 =  ∑𝑣𝑖𝐼𝑖

5

𝑖

10 

In equation 10, 𝑣𝑖 is the weight value for each intensity value 𝐼𝑖 . The calculated total 

scores can be transformed to percentage values using the following equation: 

𝑇𝑆𝑉 =
𝑇𝑆− 𝑀𝑇𝑆

1−𝑀𝑇𝑆
11   

The TSV score is created for combinations of all parameters, for the main criterion, sub-

criteria and their categories. In other words, a TSV score was obtained for all states of a 

medical device. 
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To sum up, the application steps of the AHP method and the method of using the criteria 

and sub-criteria used in AHP are evaluated together. The results of equation 11, as 

presented in chapter 4, play a crucial role in determining the category of medical devices 

for preventive maintenance. 
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4. RESULT AND DISCUSSION  

Chapter 4 gives a thorough examination of two essential components of our research: the 

results of K-means clustering and the outcomes provided by the AHP. The application of 

these analytical techniques plays an integral role in our effort to unveil and interpret 

complex data patterns and relationships. The K-means clustering results reveal how our 

data naturally segregates into distinct clusters. Similarly, the AHP results provide a robust 

framework for decision-making, enabling the establishment of priorities and preferences 

within a complex hierarchy of criteria and alternatives.  This chapter represents the 

findings generated by these two methodologies are analyzed, discussed, and interpreted. 

4.1 Analysis of K-means Clustering Results 

In this section, the results obtained as a result of K-means clustering of all data are 

analyzed in detail. As a result of K-means clustering model, the total duration of running 

for the tested medical devices was determined in seconds throughout the entire period. 

For the analysis of these values obtained using the K-means clustering method, the 

average of the values obtained during the entire period was taken. 

 

The advantages of knowing utilization time of medical devices are as follows: 

1. The Biomedical Department of the hospital can organize and control procurement 

requests and analyze the distribution of device numbers on a floor-by-floor basis 

within the hospital. 

2. User-based malfunctions can be prevented through frequent checks of frequently 

used devices, and assessments can be made for electronic and mechanical failures. 

3. Unused or forgotten devices in large hospitals can be identified, delivered to a 

suitable floor, or stored as backups for future use in case of malfunctions with 

other devices. 

4. The device's location can be determined based on the data received from the data 

collection point. 

Table 4.1 shows the category of the selected devices, the code of tag which sends data, 

the number of days data was received, the total utilization time calculated during this 
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period, and the average daily utilization data. Actually, table 4.1 summarizes the 

functions of the medical devices used and their respective running durations. 

According to the usage data provided, the ranking of the most to least used devices 

during the testing process is as follows: 

 Infusion pump > NST > Ultrasound > Defibrillator > ECG 

Table 4.1 Utilization time and device information measured on selected devices 

Device Category 
Device 

Name 
Tag  Day 

Total 

Utilization 

Time (Sec.) 

Daily Average 

Utilization 

Time  

Life Support and 

Treatment 

Infusion 

Pump 
A2A5A6 107 2684718.91 6:58:10 

Physiological Signal 

Monitoring Devices 
NST E0AAB2 75 867308.72 3:12:44 

Imaging and 

Radiology Devices 
Ultrasound E0AAF5 63 158376.44 0:41:54 

Physiological Signal 

Monitoring Devices 
ECG A1A5A6 86 84186.16 0:16:19 

Life Support and 

Treatment 
Defibrillator E0AB44 50 58236.58 0:19:25 

 

Table 4.2 shows the average actual data during the running of medical devices. Data 

specified in Table 4.2 was calculated by averaging the data obtained from the K-means 

clustering method when the selected devices ran throughout the entire period. 

Table 4.2 “Average actual data’ during medical devices running in mG 

Tag 

Field X  
Field Y  

 
Field Z  

Max. Min. Range Max. Min. Range Max. Min. Range 

A1A5A6 1227.49 721.39 506.10 842.30 311.96 530.35 2535.30 1950.03 585.27 

A2A5A6 -660 -1446 786 1396 750 646 7 -1252 1259 

E0AAB2 -12529.6 -14633.6 2104.01 -5286.45 -6396.83 1110.38 -6931.52 -9097.14 2165.62 

E0AAF5 151.86 -252.41 404.28 -608.59 -932.81 324.21 -1080.37 -1727.81 647.43 

E0AB44 40.31 -6.15 46.46 -260.01 -364.09 104.08 -1547.92 -1758.84 210.92 
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Table 4.3 shows the average standard deviation when the medical device is running for 

the number of days data is collected. The time of medical devices running is the result of 

the K-means clustering on the data collected over 24 hours and recorded daily. 

Table 4.3 “Average standard deviation data” during medical devices running in mG 

Tag 

Field X Field Y Field Z 

Max. Min. Mean Max. Min. Mean Max. Min. Mean 

A1A5A6 151.85 2.55 15.78 155.81 2.55 15.61 164.06 2.71 18.63 

A2A5A6 231.43 2.88 126.59 213.64 3.06 133.22 398.83 2.83 235.05 

E0AAB2 679.02 3.27 22.37 331.20 3.24 18.16 618.99 9.86 53.15 

E0AAF5 135.13 2.60 13.80 95.70 2.65 11.16 203.30 2.90 19.84 

EOAB44 9.32 2.97 4.48 18.04 2.17 4.12 59.53 2.21 7.37 

  

Table 4.3 shows that the standard deviation of the defibrillator data is lower than that of 

the other devices. The reason is that the defibrillator device is checked twice daily by the 

nurse at 8 a.m. and 8 p.m. by opening the defibrillator and checking it according to the 

specified procedures. At the same time, defibrillators with self-control features can do this 

once a day on their own. Figure 4.1 shows the example of K-means clustering result for 

defibrillator on 06.17.2023. Controls and self-control were detected in the defibrillator. 

 

 

Figure 4.1 Standard deviation of K-means clustering results of tag E0AB44 on 06.17.2023 
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Table 4.4 shows the actual data without background data calculated by averaging long-

term data. While the device is running, data oscillates due to the increase in standard 

deviation. The average maximum minimum data and the difference values obtained when 

the device is running are given in Table 4.4 

Table 4.4 “Average actual data” filtered from background noisy data during medical 

devices running in mG 

Tag 

 

Field X  Field Y  Field Z  

Max. Min. Range Max. Min. Range Max. Min. Range 

A1A5A6 87.35 -418.74 506.09 808.25 277.90 530.34 1415.60 830.32 585.27 

A2A5A6 -1205.55 -1986.07 780.52 1762.27 1122.94 639.33 -1277.35 -2527.81 1250.46 

E0AAB2 3407.66 1256.25 2151.41 485.25 -655.66 1140.91 4928.61 2705.22 2223.38 

E0AAF5 -769.63 -1173.91 404.28 -298.03 -622.25 324.21 88.9408 -558.49 647.43 

E0AB44 0.89 -45.85 46.75 18.58 -86.20 104.78 -17.19 -229.06 211.86 

 

As a result, utilization data was calculated with K-means clustering method and the data 

obtained from the sensor was analyzed. To conduct an evaluation in accordance with the 

AHP criteria and sub-criteria definitions, information about the medical devices used in 

the hospital where the test was conducted was collected in addition to utilization data. 

The hospital has 150 beds, eight operating theatres, 48 clinics, and is accredited by the 

Joint Commission International. The data received is from a software used and includes 

the information entered by the users, but there may be missing information due to the user 

or the system. 

 

In addition to utilization data, the number of hospital devices in each category and the 

failure rates of these devices for the last two years were analyzed to determine the failure 

frequency. In 2022, two malfunction records for the tested USG and ECG devices were 

due to electronic malfunctions. The USG device malfunctioned on March 3, 2022, and 

the ECG device malfunctioned on January 19, 2022. In Table 4.5, the “Total Device” 

column indicates the total number of the respective medical devices in the hospital. The 

“Number of Failures” column represents the known number of failures in those medical 

devices. The “Number of Failures (%)” column indicates the ratio of the occurred failures 
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to the total number of devices. The breakdown rates for the selected devices category in 

the years 2022 and 2023 are presented in Figure 4.2 and Figure 4.3. Table 4.5 shows that 

when the number of devices in the same category is small, properly and timely 

maintenance must be in place to avoid recurrence of failures. 

Table 4.5 Number of devices in the hospital with the same device category as the selected 

devices, total number of failures in 2022 and 2023 and percentage of failures 

Device Category 

Name 
Total Device Number of 

Failures 

Number of 

Failures (%) 

Infusion Pump 116 22 18% 

NST 10 5 50% 

Ultrasound 16 20 125% 

ECG 16 7 43% 

Defibrillator 30 5 16% 

 

 

Figure 4.2 Failure rates of selected medical device category in 2022 

 

 

Figure 4.3 Failure rates of selected medical device category in 2023 
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The calculations of accessible and operational devices based on the device quantities are 

provided in Table 4.6. Table 4.6 calculates according to the ratio of the total number of 

defective devices to the total number of devices in the same category. For example, 25% 

of the total number of ECG devices failed in January 2022. Hospitals need to check and 

track failure data regularly. How often the device fails, for what reasons, the cause of the 

failure, and the downtime due to this failure are essential for resource and time 

management.  

Table 4.6 Monthly failure rate of medical devices in the same category 

Year Month ECG Infusion Pump Ultrasound NST Defibrillator 

2022 

January 25% 1% 6% 10% 3% 

February 0% 1% 13% 10% 7% 

March 0% 0% 25% 10% 3% 

April 0% 2% 19% 10% 0% 

May 0% 1% 6% 0% 0% 

June 0% 3% 13% 0% 0% 

July 6% 0% 0% 0% 0% 

August 13% 6% 6% 10% 0% 

September 0% 3% 13% 0% 0% 

October 0% 0% 6% 0% 0% 

November 0% 0% 0% 0% 0% 

December 0% 0% 6% 0% 0% 

2023 

January 0% 2% 6% 0% 0% 

February 0% 0% 6% 0% 3% 

March 0% 0% 0% 0% 0% 

April 0% 0% 0% 0% 0% 

May 0% 0% 0% 0% 0% 

June 0% 0% 0% 0% 0% 
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Table 4.7 presents data sourced from the software employed for fault analysis in the 

hospital. It details the priority status assigned to user-entered faults and the causes for 

their occurrence. 27% of these failures are urgent-priority failures of selected devices. 

Two of the urgent-priority failures have the highest importance and are caused by the 

user. As one of the objectives of the thesis, it is expected that these failures will decrease 

due to regular follow-up with the maintenance schedules to be created. 

Table 4.7 Failure causes and priority status 

Reason 

Device 

Category  

Name 

Electronic User Base Mechanical Others 

U1 H2 M3 L4 U L U L U H M L 

Defibrillator  4  1         

ECG 1   1    2   1 1 

Infusion Pump   1 5      2 6 3 

NST  1 1 1 1  1      

Ultrasound  2 2 8 1 1   1 2  1 

Total 1 7 4 16 2 1 1 2 1 4 7 5 

       1Urgent, 2High, 3Medium, 4Low 

These data were used to decide which class the selected devices belong to in the 

maintenance schedule created according to the definitions specified in the AHP and are 

explained in the next section. 

4.2 Analyzing the Analytic Hierarchy Process Results 

 

The AHP method serves as a crucial tool in the selection process of medical devices. In 

this section, we will present the results and discussion of applying the AHP method in 

prioritizing medical devices using the methodology in chapter 3. The weight and intensity 

values shown in Table 4.8 were calculated using equation six and equation seven from 

the comparison matrices created for main criteria and sub-criteria. 

 



  56 

 

Table 4.8 Determining weights and intensities of criteria, sub-criteria and their categories 

in AHP analysis 

Main Criteria and Sub-criteria 𝝅𝒋=𝟏
𝟓 𝒂𝒊𝒋 (𝝅𝒋=𝟏

𝟓 𝒂𝒊𝒋)
𝟏

𝟓⁄  Weight Intensity 

1. Function 180.000 2.825 0.396 1.000 

1.1 Life Support and Treatment 336.000 3.201 0.458 1.000 

1.2 Auxiliary Hospital Equipment 0.005 0.349 0.050 0.108 

1.3 Physiological Signal Monitoring 

Devices 
22.500 1.864 0.267 0.582 

1.4 Imaging and Radiology Devices 2.178 1.168 0.167 0.365 

1.5 Sterilization Devices 0.011 0.407 0.058 0.127 

2. Functionality 112.000 2.569 0.360 0.909 

2.1 Utilization 3.000 1.732 0.75 1.000 

2.1.1 High 6.000 1.817 0.673 1.000 

2.1.2 Medium 0.167 0.550 0.204 0.303 

2.1.3 Low 0.037 0.333 0.123 0.183 

2.2 Alternative Device 0.333 0.577 0.25 0.333 

2.2.1 Low 54.000 3.780 0.770 1.000 

2.2.2 Medium 0.500 0.794 0.162 0.210 

2.2.3 High 0.037 0.333 0.068 0.088 

3. Age 1.000 1.000 0.140 0.354 

3.1 Old 315.000 4.213 0.510 1.000 

3.2 Almost Old 12.000 1.861 0.225 0.442 

3.3 Average 2.000 1.189 0.144 0.282 

3.4 New 1.000 1.000 0.121 0.237 

4. Total Risk 0.001 0.412 0.057 0.145 

4.1 Failure Frequency 15.000 2.466 0.637 1.000 

4.1.1 High 32.000 3.175 0.717 1.000 

4.1.2 Medium 0.750 0.909 0.205 0.286 

4.1.3 Low 0.042 0.347 0.078 0.109 

4.2 Detectability 0.067 0.405 0.105 0.164 

4.2.1 Low 32.000 3.175 0.717 1.000 
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Table 4.9 Determining weights and intensities of criteria, sub-criteria and their categories 

in AHP analysis 

Main Criteria and Sub-criteria 𝝅𝒋=𝟏
𝟓 𝒂𝒊𝒋 (𝝅𝒋=𝟏

𝟓 𝒂𝒊𝒋)
𝟏

𝟓⁄  Weight Intensity 

4.2.2 Medium 0.750 0.909 0.205 0.286 

4.2.3 High 0.042 0.347 0.078 0.109 

4.3 Failure Consequences 1.000 1.000 0.258 0.405 

4.3.1 High 32.000 3.175 0.716 1.000 

4.3.2 Medium 0.750 0.909 0.205 0.286 

4.3.3 Low 0.042 0.347 0.078 0.109 

5. Maintenance Requirement 0.004 0.334 0.047 0.118 

5.1 High 54.000 3.780 0.770 1.000 

5.2 Medium 0.500 0.794 0.162 0.210 

5.3 Low 0.037 0.333 0.068 0.088 

 

Table 4.9 shows the weight values calculated for each category and subcategory and the 

minimum weight value to be used to calculate the total score. Considering these values, 

function is the most prioritized feature used in the comparison matrices when creating a 

preventive maintenance schedule.The total score value specified in equation five was 

obtained and used in equation six for calculating the TSV score.  

When all of these conditions are listed, there are a total of 2916 possibilities for each 

device and a total of 14580 rows. The list, containing probabilities calculated for each 

tested category of medical device, is sorted from the highest to the lowest based on the 

TSV score. In total, there are 14580 rows in the list. 
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Table 4.10 Weight values determined by AHP comparison matrix and calculated 

minimum density values for main criteria and sub-criteria 

Main Criteria and Sub Criteria Weight Minimum Intensity 

Function 0.396 0.108 

Functionality 0.355 0.159 

Utilization 0.750 0.183 

Alternative Device 0.250 0.088 

Age 0.143 0.237 

Total Risk 0.061 0.107 

Failure Frequency 0.633 0.109 

Detectability 0.106 0.109 

Failure Consequences 0.260 0.109 

Maintenance Req. 0.049 0.088 

Minimum Total Score 0.144 

 

In Figure 4.4, a section has been selected from the list of all possibilities as an example. 

For example, under certain conditions, the TSV score of some devices may exceed 50%, 

even if they are not life support devices, and should be prioritized in the maintenance 

schedule. 

 

Figure 4.4 TSV score result graph from all decision definition possibilities 
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Table 4.11 TSV scores calculated according to conditions selected as examples in the  

dynamically created preventive maintenance schedule model                                                                
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Table 4.10 displays the category in which the devices chosen from Figure 4.4 are situated 

within the main and sub-criteria. For example, suppose the usage rate of an infusion pump 

device is high, the number of alternative devices is low, age is high, failure frequency is 

increased, failure detectability rate is low, failure consequences rate is high, and 

maintenance need is low. The TSV score of this device is 94.78%, and maintenance 

should be prioritized. The values specified in this section as High, Low, Medium, and 

Almost Old are defined in Table B.3 in Appendix B. The categorizations and 

classifications identified in this thesis can vary based on hospital management and 

requirements. The crucial aspect is measuring medical device usage status through this 

method, in turn, enhancing patient well-being and care management by organizing the 

maintenance and calibration of frequently employed devices. The proposed method 

serves as a stimulus to recognize high-usage devices that necessitate maintenance and 

calibration. 

Table 4.11 shows the minimum and maximum TSV scores calculated for each device 

category for these possibilities. 

Table 4.12 Minimum and maximum TSV score as a result of AHP 

Device Name Min. TSV Score  Max. TSV Score 

Infusion pump 41% 100% 

NST 22% 81% 

Ultrasound 12% 71% 

Defibrillator 41% 100% 

ECG 22% 81% 

 

Table 4.12 shows the number of possibilities in the group determined according to the 

classification in Table B.3 as a percentage. For example, Table 4.12 shows that a device 

in the defibrillator and infusion pump category cannot be included in the “Postpone” class 

under any circumstances. That is, its maintenance must be completed on time. 

 



  61 

 

Table 4.13 Distribution of maintenance recommendations based on AHP results 

TSV Score Defibrillator ECG 
Infusion 

Pump 
NST Ultrasound Total 

50% ≤ TSV ≤ 100% 16.41% 6.91% 16.41% 6.91% 3.12% 49.76% 

20% ≤ TSV < 50% 3.52% 13.09% 3.59% 13.09% 13.77% 47.06% 

0% ≤ TSV < 20% 0% 0% 0% 0% 3.11% 3.11% 

As a result, there is a 47.06% probability that the maintenance date should not be delayed, 

and it is in the “set a maintenance schedule” class. 49.76% of the devices are in the “bring 

forward” class. 

Among all probabilities, probabilities with “high” utilisation data were filtered and shown 

in Table 4.13. 

Table 4.14 Distribution of maintenance recommendations based on AHP results for high 

utilization category 

TSV Score Defibrillator ECG 
Infusion 

Pump 
NST Ultrasound Total 

50% ≤ TSV ≤ 100% 6.67% 6.26% 6.67% 6.26% 3.12% 28.96% 

20% ≤ TSV < 50% 0% 0.41% 0% 0.41% 3.55% 4.37% 

Total 6.67% 6.26% 6.67% 6.26% 3.12% 28.96% 

 

When the AHP results are evaluated based on the utilization value for devices with the 

Life Support and Treatment function, where the score value is above 50%, and the 

utilization rate is high, the percentage of devices requiring maintenance is 28.96%. 

Among all functions, devices with the Life Support and Treatment function require 

maintenance with a priority of 32.82%. Physiological Signal Monitoring Devices 

constitute 13.82%, while Imaging and Radiology Devices comprise 3.12%. 

Based on the intervals defined in Appendix B Table B.3, it is recommended to prioritize 

the maintenance plan of the defibrillator and infusion pump as a result of the TSV score 

in Table 4.14. The categorization of the devices into low, medium, or high conditions for 
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their criteria and sub-criteria is by the definitions provided in Table B.4. This 

classification is derived from the utilization values and failure data calculated in the 

thesis. Results have been drawn from the TSV score calculated for each condition of these 

devices. 

Table 4.15 TSV scores calculated for devices tested in a dynamically generated 

preventive maintenance schedule model 

Device 

Name 

Utilization 
Alternative 

Device 
Age Failure 

Frequency 

Detectability 
Failure 

Consequences 

Maintenance 

Requirement 
TSV 

 

Infusion 

Pump 
High High Medium Medium Medium Low High 73.13%  

Defibrillator Low High Medium Medium High High High 47.92%  

NST Medium Medium Medium High Low High Low 33.77%  

ECG Low High Medium High Low High Low 
 

28.79%  

Ultrasound Low High Medium High Low Medium Medium 18.20%  

 

For example, an infusion pump is a life support device. It works for an average of  seven 

hours a day. Since the utilization data of devices working 24 hours a week is defined as 

high, it is a device with high utilization. In addition, there are 116 infusion pumps in the 

hospital, and the alternate device ratio is high. Since there has been no known malfunction 

in the last year, the frequency of malfunction is average. Since the infusion pump comes 

into contact with liquid medicines, its sensors may give a warning, and the failure 

detection is average. When it malfunctions, repair time is short. Due to contact with 

liquid, maintenance is required every day regarding device cleaning. In line with these 

rates, the infusion pump should be prioritized. 
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5. CONCLUSIONS 

In this thesis, a dynamic preventive maintenance schedule strategy based on the usage 

rates of medical devices have been developed to improve the medical devices 

management process in the biomedical department of hospitals. Managing medical device 

maintenance, calibration, and failure processes has become increasingly challenging with 

the growth of hospital capacities. The maintenance of these devices directly affects patient 

health and treatment processes. Many CMMS programs have been developed for this 

process, and hospitals use these programs to manage the process digitally. Keeping 

records of historical data is essential for tracking the history of any medical device. 

 

The identified problem stems from the large number of hospital devices, which leads to 

extended maintenance and calibration processes and makes tracking difficult. Some 

medical devices have spare parts. These spare parts need to be replaced after a certain 

period, especially after the device's warranty has expired. The procurement process for 

these spare parts can be lengthy due to logistics and purchasing procedures. Non-original 

parts may be preferred to shorten this process. It is essential to know how long each device 

is used in which service to plan these processes correctly. 

 

IoT technology, which has become widespread and integrated into the healthcare field, is 

explored in addition to using sensors in RFID tags to obtain information about how much 

time medical devices are used. For this thesis, we conducted trials using appropriate 

equipment at the chosen hospital and collected data from the identified medical devices 

around the clock. Care was taken to select devices that are actively used and have different 

functions. 

 

 As a result of the tests: 

1. When the device is plugged in, there is no change in the data from the sensor. 

2. When the device is turned on, there is no change in the data from the sensor. 

3. When the device starts to operate, especially near the device's motor, changes are 

observed in the data from the sensor. 
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Based on these tests, it is observed that usage data of the device can be obtained from the 

sensor. The tests conducted in the hospital determined how long the device operates every 

24 hours using the K-Means clustering method on data from other days. The obtained 

data was integrated into the existing AHP model, a ranking method, to propose a 

maintenance schedule.  

 

Based on the characteristics of the selected devices, the results indicate that the 

maintenance schedule for the infusion pump device should be rescheduled to an earlier 

time than currently planned. The advantage of using this schedule is that it will facilitate 

process planning and help prevent high-priority and urgent breakdowns from occurring. 

It will also make it easier to track maintenance and calibration. Additionally, through 

collaboration between the biomedical department and users, continuous monitoring and 

maintenance will reduce user-based failure rates. Criteria, sub-criteria, and decision 

definitions, which may vary for each hospital, can be changed and integrated into the 

software used in the hospital. 

5.1 Proposal 

In the realm of healthcare, the reliability and optimal functioning of medical devices are 

of paramount importance, as they directly impact patient care and safety. The concept of 

dynamic preventive maintenance, particularly when based on the usage rate, has gained 

prominence as a proactive strategy for ensuring the continuous availability and efficiency 

of these devices. This thesis has explored the application of an innovative approach, 

combining Analytical Hierarchy Process (AHP) and Internet of Things (IoT) 

technologies, with a focus on magnetometer sensors. The utilization of these sensor 

technologies for real-time monitoring of medical device conditions has shown significant 

promise in enhancing preventive maintenance schedules. 

 

The research findings indicate that the AHP-based decision-making framework enables a 

systematic and comprehensive evaluation of maintenance priorities, considering multiple 

criteria and their relative importance. Incorporating IoT technology has provided real-
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time data monitoring capabilities, which enable predictive maintenance and reduce the 

likelihood of unexpected device failures.  

 

Building on the research conducted in this thesis, there are several areas for future 

investigation and development: 

 

Battery Life Enhancement: In the thesis, the battery of tags was replaced 3-4 months after 

the independent tests started. Prior to this study, no battery life optimization study had 

been conducted considering the sensor frequency or any other factor. Conducting this 

research is fundamental to the practical implementation of the thesis. 

 

Machine Learning Models: Different machine learning methods other than the K-means 

method can be used to make decisions with the data obtained from sensors. 

 

Alternative Sensor Technologies: In addition to magnetometer sensors, the incorporation 

of supplementary sensor technologies can offer a more complete perspective of the health 

status of medical devices. Vibration sensors, temperature and humidity sensors can be 

providing monitoring environmental conditions can be critical for the longevity of certain 

medical devices. 

 

Real-World Implementation and Validation: Longer independent tests can be conducted 

to evaluate its practicality and effectiveness. By including different medical devices, data 

can be collected, especially on whether a device's malfunction can be detected in advance. 

Collaboration with healthcare institutions and medical device manufacturers can provide 

valuable insight and validation of system performance. The software can be used to 

monitor the process and make the right decisions by analyzing the correct data.  

 

In conclusion, this thesis lays a strong foundation for a dynamic preventive maintenance 

system based on usage rate, AHP, and IoT with magnetometer sensors for medical 

devices. Further research and development in the aforementioned areas can lead to the 
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creation of more advanced, efficient, and reliable maintenance strategies, ultimately 

benefiting both healthcare providers and patients by ensuring the continuous availability 

of critical medical equipment. 
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APPENDIX A 

Table A.1 shows the long-term independent test dates performed using the magnetometer 

sensor and the running time in seconds on those dates. The “-” sign in the Table A.1 

indicates that no data was received from the sensor that day. 

 

Table A.1 Measured running times of medical devices as a result of K-means clustering 

 

Date 
ECG Infusion Pump NST Ultrasound Defibrillator 

A1A5A6 A2A5A6 E0AAB2 E0AAF5 E0AB44 

4/11/2023 - 8032.78 7568.56 - - 

4/12/2023 - 6550.08 27358.79 - - 

4/13/2023 - 0.00 18077.585 - - 

4/14/2023 - 6083.60 6819.96 - - 

4/15/2023 - 9137.76 2596.68 - - 

4/16/2023 - 0.00 4091.62 - - 

4/17/2023 - 5588.27 0.00 - - 

4/18/2023 - 0.00 0.00 - - 

4/19/2023 - 1955.99 6964.80 - - 

4/20/2023 - 12927.38 5740.48 - - 

4/21/2023 - 5201.02 - - - 

4/22/2023 - 0.00 - - - 

4/23/2023 916.23 0.00 - - - 

4/24/2023 0.00 0.00 - - - 

4/25/2023 0.00 5454.34 - - - 

4/26/2023 3166.65 0.00 - - - 

4/27/2023 4449.45 0.00 - - - 

4/28/2023 0.00 0.00 - - - 

4/29/2023 1343.65 0.00 - - - 

4/30/2023 1145.62 0.00 - - - 

5/1/2023 1493.54 0.00 - - - 

5/2/2023 1851.19 4458.24 - - - 

5/3/2023 751.258 0.00 - - - 
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Date 
ECG Infusion Pump NST Ultrasound Defibrillator 

A1A5A6 A2A5A6 E0AAB2 E0AAF5 E0AB44 

5/4/2023 0.00 2119.48 - - - 

5/5/2023 3623.71 0.00 - - - 

5/6/2023 1651.10 0.00 - - - 

5/7/2023 622.239 0.00 - - - 

5/8/2023 1017.646 0.00 - - - 

5/9/2023 1634.05 0.00 - - - 

5/10/2023 3218.90 0.00 - - - 

5/11/2023 2833.07 0.00 - - - 

5/12/2023 0.00 8546.11 - - - 

5/13/2023 0.00 37207.00 - - - 

5/14/2023 0.00 63360.71 - - - 

5/15/2023 657.31 6023.85 - - - 

5/16/2023 893.80 0.00 - - - 

5/17/2023 577.224 16745.25 - - - 

5/18/2023 1018.371 5603.13 - - - 

5/19/2023 0.00 2032.00 - - - 

5/20/2023 1578.31 3884.14 - - - 

5/21/2023 0.00 17411.42 - - - 

5/22/2023 2995.57 64706.61 - - - 

5/23/2023 1203.842 57456.40 - - - 

5/24/2023 0.00 50513.24 - - - 

5/25/2023 901.128 62989.42 - - - 

5/26/2023 1558.09 65084.37 - - - 

5/27/2023 914.33 73326.69 - - - 

5/28/2023 0.00 71823.40 - - - 

5/29/2023 1037.29 70196.02 0.00 - - 

5/30/2023 1228.24 77732.59 3281.873 8062.26 - 

5/31/2023 - 74801.43 22265.63 3142.85 - 

6/1/2023 - 28549.44 12757.21 0.00 - 
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Date 
ECG Infusion Pump NST Ultrasound Defibrillator 

A1A5A6 A2A5A6 E0AAB2 E0AAF5 E0AB44 

6/2/2023 - 62018.00 9822.70 0.00 - 

6/3/2023 - 1893.84 4722.01 12233.90 - 

6/4/2023 - - 20268.17 0.00 - 

6/5/2023 - - 29522.14 0.00 - 

6/6/2023 - 0.00 14785.06 9380.76 - 

6/7/2023 - 0.00 0.00 0.00 - 

6/8/2023 - 2418.446 5703.11 0.00 - 

6/9/2023 - - 0.00 14811.97 - 

6/10/2023 - - 0.00 0.00 - 

6/11/2023 - - 0.00 0.00 - 

6/12/2023 - - 0.00 8722.96 - 

6/13/2023 - - 5305.73 4121.71 - 

6/14/2023 356.89 1809.01 6523.19 712.3 1367.32 

6/15/2023 848.61 2293.93 0.00 0.00 385.41 

6/16/2023 906.474 21427.37 1598.78 0.00 450.85 

6/17/2023 697.149 7889.17 11782.22 0.00 918.89 

6/18/2023 1012.04 3885.93 1099.57 4078.39 1329.75 

6/19/2023 0.00 12290.89 0.00 5011.68 889.91 

6/20/2023 543.03 6667.47 8573.66 5011.68 1548.97 

6/21/2023 914.71 32848.13 10696.92 2385.45 871.76 

6/22/2023 0.00 40718.87 4969.99 1958.55 1249.48 

6/23/2023 0.00 9813.85 5745.56 7665.06 1319.64 

6/24/2023 0.00 21853.63 2301.98 2989.46 1667.15 

6/25/2023 620.476 0.00 0.00 0.00 1126.75 

6/26/2023 1523.65 35382.58 8591.41 0.00 1203.17 

6/27/2023 811.21 69303.00 0.00 6432.50 1233.80 

6/28/2023 0.00 81579.95 9072.01 4695.82 742.71 

6/29/2023 938.108 55597.50 0.00 0.00 1184.91 

6/30/2023 550.21 24093.36 0.00 0.00 1171.15 
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Date 
ECG Infusion Pump NST Ultrasound Defibrillator 

A1A5A6 A2A5A6 E0AAB2 E0AAF5 E0AB44 

7/1/2023 0.00 15098.86 2154.85 0.00 1213.34 

7/2/2023 0.00 8320.03 9139.03 1356.62 1054.84 

7/3/2023 0.00 24424.25 2876.09 0.00 1298.06 

7/4/2023 0.00 69251.13 1595.92 0.00 1679.54 

7/5/2023 684.50 6844.94 1207.37 4455.51 1205.74 

7/6/2023 2601.18 0.00 11416.37 3045.74 1968.74 

7/7/2023 644.057 0.00 4715.33 0.00 1692.43 

7/8/2023 907.031 0.00 15502.49 2283.70 1105.00 

7/9/2023 0.00 0.00 85975.00 0.00 613.24 

7/10/2023 0.00 0.00 33488.21 885.01 1254.90 

7/11/2023 1425.46 0.00 7397.63 2310.20 953.00 

7/12/2023 3312.24 1590.19 21692.19 0.00 1287.16 

7/13/2023 1857.76 1617.91 0.00 4884.76 1100.80 

7/14/2023 3686.80 0.00 4216.28 0.00 920.82 

7/15/2023 0.00 0.00 0.00 0.00 974.54 

7/16/2023 0.00 0.00 0.00 0.00 974.12 

7/17/2023 0.00 32616.25 2896.64 0.00 1019.35 

7/18/2023 1279.34 68210.67 0.00 0.00 0.00 

7/19/2023 829.78 74508.09 3101.87 5717.02 1753.93 

7/20/2023 0.00 69390.79 1535.04 7529.95 1259.41 

7/21/2023 0.00 62129.73 3635.17 0.00 835.78 

7/22/2023 781.172 74511.23 0.00 0.00 1305.02 

7/23/2023 1345.34 72981.14 13573.176 0.00 1178.62 

7/24/2023 996.357 54426.35 5126.76 3283.31 1360.50 

7/25/2023 1565.39 79818.09 0.00 5663.54 815.44 

7/26/2023 3342.58 81134.12 19241.85 4227.17 1430.53 

7/27/2023 719.305 81931.37 41647.27 4303.69 1331.44 

7/28/2023 1644.53 81547.58 85727.526 1494.62 1314.04 

7/29/2023 377.46 83723.78 75623.623 1646.65 1384.24 
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Date 
ECG Infusion Pump NST Ultrasound Defibrillator 

A1A5A6 A2A5A6 E0AAB2 E0AAF5 E0AB44 

7/30/2023 0.00 69725.29 44490.90 0.00 1338.33 

7/31/2023 2181.52 53013.88 52356.34 3871.65 1028.33 

8/1/2023 787.29 52747.24 38368.41 1496.71 1378.13 

8/2/2023 3208.661 45868.96 0.00 5792.51 1545.67 

8/3/2023 446.02 42710.76 7155.21 0.00 1325.26 

8/4/2023 0.00 6370.90 2792.96 4096.12 1541.68 

8/5/2023 2426.52 0.00 0.00 4691.54 1283.37 

8/6/2023 1538.11 1606.05 11817.80 0.00 1277.88 

8/7/2023 5575.47 2531.95 8707.78 3151.08 1404.60 

Sum 84186.16 2684718.91 867308.72 158376.44 58236.58 

Number of Data 86.00 107.00 75.00 63.00 50.00 
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APPENDIX B 

Table B.1 The essential absolute number scale (Saaty, 2008). 

Intensity of 

Importance 
Definition Explanation 

1 Equal Importance 
Two activities contribute equally to the 

objective 

2 Weak or slight - 

3 Moderate importance 
Experience and judgement slightly favour 

one activity over another 

4 Moderate Plus - 

5 Strong importance 
Experience and judgement strongly favour 

one activity over another 

6 Strong plus - 

7 

Very strong or 

demonstrated 

importance 

An activity is favoured very strongly over 

another; its dominance demonstrated in 

practice 

8 Very very strong - 

9 Extreme importance 

The evidence favouring on activity over 

another is of the highest possible order of 

affirmation 

 

Table B.2 Random Index (Saaty, 2004). 

𝒏𝟓 1 2 3 4 5 6 7 8 9 10 

Random 

Index 

0 0 0.52 0.89 1.12 1.25 1.35 1.40 1.45 1.49 

    n5= number of criteria 

 

Table B.3 The decision definitions based on the specified TSV score intervals. 

TSV Score Range Action 

50%≤TSV≤100% Bring Forward 

20%≤TSV<50% Set a Maintenance Schedule 

0%≤TSV<20% Postpone 
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Table B.4 The decision parameters corresponding to the intensity values calculated with 

comparison matrices for the specified main criteria, sub-criteria and their 

categories. 

Main Criteria and Sub 

criteria 
Description Intensity 

1. Function 
Evaluates the primary purpose of medical 

devices 
1.000 

1.1 Life Support and Treatment 
Devices related to sustaining life and medical 

treatment. 
1.000 

1.2 Auxiliary Hospital Equipment Equipment that supports hospital operations. 0.109 

1.3 Physiological Signal 

Monitoring Devices 
Devices for monitoring vital signs. 0.582 

1.4 Imaging and Radiology 

Devices 

Equipment for medical imaging and 

radiology. 
0.365 

1.5 Sterilization Devices 
Devices used for sterilization in healthcare 

settings. 
0.127 

2. Functionality  
Assesses how effectively devices serve their 

intended purpose 
0.909 

2.1 Utilization 
Assessing how often and how extensively a 

medical device is used in healthcare settings. 
1.000 

2.1.1 High 
Devices that are used intensively, with more 

than 24 hours of usage per week. 
1.000 

2.1.2 Medium 
Devices that see moderate usage, with 12 to 

24 hours of weekly operation. 
0.303 

2.1.3 Low 
Devices with limited usage, operating less 

than 12 hours per week. 
0.183 

2.2 Alternative Device 

Evaluating the availability of substitute 

devices or options to replace the primary 

medical device. 

0.333 

2.2.1 Low 
Devices in this category have very limited or 

less than one alternative options available 
1.000 

2.2.2 Medium 

These devices have one to four alternative 

options, allowing for some flexibility and 

potential substitution. 

0.210 

2.2.3 High 

These devices have over four available 

alternatives, reducing dependence on a 

specific model or brand. 

0.088 

3. Age Considers the age of devices in use 0.354 
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Main Criteria and Sub 

criteria 
Description Intensity 

3.1 Old 
Devices that have been in use for over a 

decade. 
1.000 

3.2 Almost Old 
Devices that are between 5 and 10 years old, 

approaching the “old” category. 
0.442 

3.3 Average 
Devices with a standard age of 3 to 5 years 

since their introduction or purchase. 
0.282 

3.4 New 
Devices that are relatively new, having been 

used for less than 3 years. 
0.237 

4. Total Risk 
Examines the overall risk associated with 

device usage 
0.145 

4.1 Failure Frequency 

Examining how often a medical device 

experiences malfunctions or failures during 

its operation. 

1.000 

4.1.1 High 
Likely to occur (several occurrences in 1 

year) 
1.000 

4.1.2 Medium 

Several occurrences in 1–2 years) 0.33 

Uncommon Possible to occur (one 

occurrence in 2–5 years) 

0.286 

4.1.3 Low Unlikely occur (1-10 years) 0.109 

4.2 Detectability 

Determining how easily and promptly 

failures or malfunctions in a medical device 

can be identified or detected. 

0.164 

4.2.1 Low Not detected by regular inspection 1.000 

4.2.2 Medium Visible by naked eye 0.286 

4.2.3 High Self-announcing 0.109 

4.3 Failure Consequences 

Assessing the impact and severity of 

potential consequences when a medical 

device malfunctions or fails. 

0.405 

4.3.1 High 
Extended periods of non-operation with 

downtime exceeding 24 hours. 
1.000 

4.3.2 Medium 
Brief non-operational periods with downtime 

less than 24 hours. 
0.264 

4.3.3 Low 
Devices that remain functional without 

significant downtime 
0.101 
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Main Criteria and Sub 

criteria 
Description Intensity 

5. Maintenance Requirement  
Focuses on the level of maintenance needed 

for proper device operation 
0.118 

5.1 High 

Maintenance involves shift test, auto test, and 

user test, indicating more frequent and 

comprehensive maintenance procedures. 

1.000 

5.2 Medium 

Maintenance primarily includes user test, 

suggesting moderate maintenance 

requirements. 

0.210 

5.3 Low 

Maintenance is simplified and mainly 

involves auto Test, indicating minimal 

maintenance needs. 

0.088 
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APPENDIX C 

        

Figure C.1 The ECG and A1A5A6 tag used are shown on the left, and the infusion pump 

and the A2A5A6 tag attached to its side are shown on the right. 

 

     

Figure C.2 The signal receiver used data from the tag with RFID technology. 

 

 




