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AUTOMOBILE INSURANCE RATEMAKING: CLASS RATING AND

MERIT RATING

ABSTRACT

The use of statistical modeling in actuarial science enables the integration of risk

factors into the premium pricing process, thereby enhancing the accuracy of insurance

premiums and mitigating the financial risk for insurers. One of the aims of this thesis

is to present a statistical analysis assessing the impact of various risk factors on direct

compensation property damage (DCPD) claims in private passenger vehicle

accidents. Using automobile insurance data in Ontario, Canada for the decade-year

period between 2003 and 2012, a statistical model of property damage (PD) is

explored via a generalized linear binary logit mixed model and considered the

imbalance between the classes of insureds. The results indicate that several risk

factors have a significant impact on the likelihood of DCPD claims, including usage,

training, outstanding loss, and incurred loss. The effects of these risk factors are

observed under the weights — the number of trials used to generate each success

proportion — in the different classes of insureds. The performance metrics calculated

by considering the class imbalance in binary outcomes, F1 score = 0.934, and PR

AUC = 0.953, indicate that the model performs well in the classification. The other

metrics also support this model’s ability to accurately predict classes.

Another aim of this thesis is to evaluate the premiums by considering the claim

types under third-party liability (TPL) insurance. In this thesis, a statistical analysis is

presented that examines the effect of various risk factors on incurred PD and bodily

injury (BI) losses in private passenger vehicle accidents. The PD and BI claims are

explored via a broker-specific random intercept effect model and a valuation

year-specific random intercept effect model, respectively.

The results indicate that several risk factors — class, modifier, claims history, and

time — have a significant impact on the incurred losses of PD claims. For BI claims,

the risk factors that are correlated with change of the incurred losses are also class,
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rate modifier, gender, valuation year, and time, observed their effects under the

heterogeneity of residual variances between the class groups. The performance

metrics, R-squared = 0.7779 for the PD claims, and R-squared = 0.7157 for the BI

claims, verify the ability of models to accurately predict the incurred losses. The other

metrics also support that these models perform well in the prediction.

Over these predicted incurred losses, credibility premiums are calculated for each

claim type by using the Bühlmann-Straub model. When calculating credibility

premiums, the predictions in statistical modeling are weighted by earned exposures.

The results obtained in the Bühlmann-Straub model indicate that the variance

between claim types is much smaller than the variance within the types of claim.

Furthermore, the credibility premium for BI claims is much higher than for PD

claims. In addition, bonus-malus scales are designed by considering the claim types.

The premiums are distributed reasonably to bonus-malus levels when the system is

designed by considering the types of claims.

In summary, the statistical modeling employed in this thesis provides information

about the risk characteristics of the policyholders crucial for determining the basic

premium. The findings of this analysis can help insurers better understand the

underlying drivers of PD and BI. In addition, these findings can support insurers in

developing more accurate and effective strategies for risk mitigation. These results

indicate that it is important to consider whether the claims are property or bodily in

the evaluation to be made based on both the severity of claims and the number of

claims.

Keywords: Credibility theory, bonus-malus scale, linear mixed models, premium

evaluation, third-party liability insurance.
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OTOMOBİL SİGORTASINDA AKTÜERYAL TARİFE: SINIF

DEĞERLENDİRMESİ VE HASARSIZLIK İNDİRİM DEĞERLENDİRMESİ

ÖZ

Aktüerya biliminde istatistiksel modelleme kullanımı, risk faktörlerinin prim

fiyatlandırma sürecine entegre edilmesini sağlayarak sigorta primlerinin doğruluğunu

arttırır ve sigorta şirketleri için finansal riski azaltır. Bu tezin amaçlarından biri, özel

binek araç kazalarında çeşitli risk faktörlerinin doğrudan tazmin edilen maddi hasarlar

(Direct Compensation Property Damage - DCPD) üzerindeki etkisini değerlendiren

istatistiksel bir analiz sunmaktır. 2003 ile 2012 yılları arasındaki on yıllık döneme ait

Ontario, Kanada’daki otomobil sigortası verileri kullanılarak, genelleştirilmiş

doğrusal ikili logit karma model aracılığıyla maddi (PD) hasarın istatistiksel bir

modeli araştırılmış ve sigortalıların sınıfları arasındaki dengesizlik dikkate alınmıştır.

Elde edilen sonuçlar, kullanım amacı, sürücü eğitimi, muallak hasar ve gerçekleşen

hasar dahil olmak üzere çeşitli risk faktörlerinin DCPD hasarlarının olasılığı üzerinde

önemli bir etkiye sahip olduğunu göstermektedir. Bu risk faktörlerinin etkileri, farklı

sigortalı sınıflarındaki ağırlıklar — her bir başarı oranını oluşturmak için kullanılan

deneme sayısı — altında gözlemlenmiştir. İkili sonuçlardaki sınıf dengesizliği

dikkate alınarak hesaplanan performans ölçümleri, F1 skoru = 0,934 ve PR AUC =

0,953, modelin sınıflandırmada iyi performans gösterdiğine işaret etmektedir. Diğer

ölçümler de, bu modelin sınıfları doğru tahmin etme yeteneğini desteklemektedir.

Bu tezin bir diğer amacı da, üçüncü şahıs mali mesuliyet (TPL) sigortası

kapsamındaki hasar türlerini dikkate alarak primleri değerlendirmektir. Bu tezde, özel

binek araç kazalarında gerçekleşen PD ve bedensel (BI) hasarları üzerinde çeşitli risk

faktörlerinin etkisini inceleyen istatistiksel bir analiz sunulmaktadır. PD ve BI

hasarları, sırasıyla sigorta aracısına (broker) özgü rastgele sabit etki modeli ve

değerlendirme yılına (valuation year) özgü rastgele sabit etki modeli aracılığıyla

incelenmiştir.
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Elde edilen sonuçlar, sınıf, modifikatör, hasar geçmişi ve zaman gibi çeşitli risk

faktörlerinin gerçekleşen PD hasarları üzerinde önemli bir etkisinin olduğunu

göstermektedir. BI hasarları için ise, gerçekleşen hasarların değişimi ile

ilişkilendirilen risk faktörleri, sınıf, oran modifikatörü, cinsiyet, değerlendirme yılı ve

zaman olup, etkileri sınıf grupları arasındaki artık varyanslarının heterojenliği altında

gözlemlenmiştir. Performans ölçümleri, PD hasarları için R2 = 0,7779 ve BI hasarları

için R2 = 0,7157, modellerin gerçekleşen hasarları doğru bir şekilde tahmin etme

yeteneğini doğrulamaktadır. Diğer ölçümler de, bu modellerin tahminde iyi bir

performans gösterdiğini desteklemektedir.

Tahmin edilen gerçekleşen hasarlar üzerinden, her hasar türü için

Bühlmann-Straub modeli kullanılarak kredibilite primleri hesaplanmaktadır.

Kredibilite primleri hesaplanırken, istatistiksel modellemedeki tahminler kazanılmış

risklere (earned exposures) göre ağırlıklandırılır. Bühlmann-Straub modelinden elde

edilen sonuçlar, hasar türleri arasındaki varyansın, hasar türleri içindeki varyanstan

çok daha küçük olduğunu göstermektedir. Ayrıca, BI hasarları için kredibilite primi

PD hasarlarına kıyasla çok daha yüksektir. Bunun yanı sıra, hasar türlerini dikkate

alarak ödül-ceza ölçekleri (bonus-malus scales) tasarlanmıştır. Sistem, hasar türlerini

göz önüne alarak tasarlandığında, primler ödül-ceza seviyelerine makul bir şekilde

dağılmaktadır.

Özetle, bu tezde kullanılan istatistiksel modelleme, sigortalıların temel primin

belirlenmesinde önemli olan risk özellikleri hakkında bilgi sağlamaktadır. Bu analizin

bulguları, sigortacıların PD ve BI hasarlarının altında yatan nedenleri daha iyi

anlamalarına yardımcı olabilir. Ayrıca bu bulgular, sigortacıların risk azaltımı için

daha doğru ve etkili stratejiler geliştirmelerine destek olabilir. Bu sonuçlar, hem hasar

şiddetlerine hem de hasar sayılarına göre yapılacak değerlendirmede, hasarların

maddi mi yoksa bedensel mi olduğunun dikkate alınmasının önemli olduğunu

göstermektedir.

Anahtar kelimeler: Kredibilite teorisi, ödül-ceza ölçeği, doğrusal karma modeller,

prim değerlendirmesi, üçüncü şahıs mali mesuliyet sigortası.
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CHAPTER ONE

INTRODUCTION

1.1 Statement of the Topic

In this introductory section, non-life insurance is presented, and the issue of pricing

in this industry is delineated. Non-life insurance pricing is the art of setting the price of

an insurance policy by considering various properties of the insured property and the

policyholder. A non-life insurance policy is also an agreement between an insurance

company and an insured to compensate the policyholder for certain unpredictable losses

occurring during a defined period in the future against the premium. By the insurance

contract, economic risk is transferred from the insured to the insurer, and the price, in

other words, the premium charged to policyholders should be based on the expected

loss transferred from the policyholder to the insurer. Hence, the premium serves as an

estimation of the forthcoming costs associated with the insurance coverage.

A non-life insurance policy can extend coverage to damages incurred on a car,

house, or other property, as well as losses resulting from bodily injury to the insured

or third-party liability (TPL). Essentially, any insurance excluding life coverage falls

under the non-life insurance category, commonly referred to as property and casualty

insurance. Consequently, automobile insurance is one of the types of property and

casualty insurance, with coverages divided into first and third-party coverage.

Mandatory TPL insurance protects the policyholder deemed legally responsible for

bodily injury (BI), death, or property damage (PD) to another party. This sector

constitutes a significant portion of the annual non-life premium collection in

developed countries. The economic significance and the accessibility of detailed

information, encompassing policyholders’ characteristics and claim histories, explain

why a substantial portion of non-life actuarial literature is dedicated to this particular

line of business.
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The rise in the global number of registered motor vehicles has led to an increase

in accidents, resulting in a higher number of fatalities and injuries. Consequently, this

situation has not only prompted the implementation of mandatory TPL insurance to

cover the adverse outcomes of accidents in many developing countries but has also

confronted actuaries with the problem of determining how the rating system should be

structured.

Today, the market has been deregulated in many countries. It means that if an

insurance company charges too high a premium for some contracts, these policies will

be lost to a competitor with a much fairer premium. This adverse selection will result

in economic loss both ways for the insurance company by losing profit and gaining

underpriced contracts. Therefore, in a competitive market, it is advantageous to

charge a fair premium for the policyholder, that is, by fairness each insured should

pay a premium corresponding to the expected losses transferred to the insurance

company. The expected losses differ among policies due to variations in the accident

rates of policyholders. Consequently, a driver with a higher likelihood of accidents

should incur higher premiums for automobile insurance. The 2012 final report to the

Insurance Bureau of Canada says that pricing adequacy in the aggregate is important

for the long-run sustainability of the insurance system. In private sector insurance

systems, pricing inadequacy will distort insurance supply, reducing competition, and

insurance availability. Hence, pricing models that are used in the premium

determination should be designed to maintain the encouragement for safe driving,

treat different policyholders fairly based on their risk characteristics, and provide

affordable insurance and a fair rate of return to insurers.

Because of the passing of the free tariff in traffic, not only do premiums differ

from company to company, but there is also a dramatic diversity between the

premiums charged by insurance companies. This situation raises unfair price

competition between insurance companies due to premium inadequacy and can’t

maintain to provide affordable premiums to policyholders. The lack of profitability

has become a chronic problem in the sector as a consequence of extreme competition

and wrong pricing.
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In light of this information, the requirement regarding the solution of pricing

problems in TPL insurance in the current market calls to mind the question of how

fairly and accurately the existing premium assessment is done.

1.2 Motivation

The accurate calculation of the premiums, which is the keystone of the sector,

plays a key role in the prevention of suffering loss in the insurance sector. The

accurate premium calculation means that the premium will cover the expected losses

and expenses and provide the targeted profit for the entity assuming the risk.

Therefore, one of the aims of this thesis is to determine the premium for compulsory

TPL insurance by estimating the losses next year.

An improvement in the premium assessment for this line of business will make the

insurance business one of the most dynamic sectors of the economy. Therefore, the

fact that pricing models that are used in the premium determination are designed to

charge fairly policyholders premium is of vital importance in terms of constructing

more efficient systems in risk evaluations and premium calculation. Another purpose

of this thesis is to evaluate claims as PD and BI separately, obtain the rating factors

important for each claim type through statistical models, and calculate the premiums

for PD and BI claims based on the predictions obtained from these models.

Class rating and merit rating are highly effective premium calculation methods in

determining insurance rates. In this research, the Bühlmann-Straub credibility model

as class rating and the multi-event bonus-malus scales as merit rating will be

examined. Both the class rating and the merit rating will be designed taking into

account the types of claims and the results will be compared with the insurance

company’s written premium.

In light of this information, it is expected that in this thesis, the combination of class

rating andmerit rating considering the PD and BI claims separately in private passenger
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vehicle accidents will play an effective role in premium production.

Direct Compensation Property Damage (DCPD) claims have a significant share in

TPL insurance compared to PD claims. Quantifying the impact of risk factors on the

likelihood of DCPD claims versus PD claims can help insurers make more informed

decisions about insurance underwriting and policy design. Another motivation for this

thesis is to create a statistical model that identifies the impact of the most important

risk factors on DCPD claims in private passenger vehicle accidents.

1.3 Theoretical Orientation

The classical method in literature is the Bühlmann credibility or its variants. The

method can be applied to determine pure premiums in various insurance policies. In the

Bühlmann model, it is assumed that the random variables representing the outcomes

for the same number of observations are independently and identically distributed with

identical means and variance. The requirement that the random variables for risk be

identically distributed is a major assumption that is easily violated in practice since

risk characteristics can change for a variety of reasons. Since the assumptions of the

Bühlmann-Straubmodel are reasonable for practice and Bayesian credibility is not easy

to apply in practice, the Bühlmann-Straub model is used in this research.

In addition, the bonus-malus system (BMS) can be seen as a commercial

simplification of credibility mechanisms. All the classical BMSs are based on a single

type of event. Thus, the classical BMS is commonly used in automobile insurance. In

that case, the severity of the claims cannot be integrated into the premiums. Both

integration of the severity of claims and recognition of the partial liability of the

policyholder can be considered by designing bonus-malus scales involving different

types of claims as PD and BI. Therefore, the multi-event bonus-malus scales are used

in this research.
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1.4 Research Questions

Since premium income plays an important role in the development of the insurance

industry, the main purpose of this thesis is to contribute to the progress of the

insurance sector by constructing premium evaluation in TPL insurance via an

empirical study involving the class rating and the merit rating. The following primary

research questions detailed into sub-questions guide us toward this objective.

1. How is taken into account separately of the PD and BI claims on the premium

evaluation of private passenger vehicle accidents in TPL?

• Can the PD and BI claims be introduced separately into both the class rating

model and the merit rating model?

2. How to be classified the policyholders into homogeneous classes?

• Which rating factors are significant in the risk classification?

3. Do premiums calculated according to class rating, taking into account claim

types, give better results than written premiums of the insurance company?

4. Does the distribution of premiums to the bonus-malus levels differ according to

whether bonus-malus scales take into account claim types or not?

5. What is the effect of the PD claims, the BI claims, and the combination of class

rating and merit rating on premium production?

6. What is the impact of risk factors on the likelihood of DCPD claims versus PD

claims covered by TPL insurance?
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1.5 Outline of the Thesis

The rest of this thesis is organized as follows:

In chapter two, the impact of rating factors on the DCPD claims in Canadian

automobile insurance is examined via a generalized linear binary logit model. The

methodological framework used in this study is given by introducing the basic

concepts of generalized linear mixed models (GLMMs). Each section of this chapter

mentions the structure of Canadian automobile insurance data, statistical analysis of

binary outcomes, the performance measure metrics used in this study, and the results

of the developed model.

In chapter three, a premium evaluation is made using the Bühlmann-Straub

credibility model and the multi-level bonus malus scales for private passenger vehicle

accidents in Canadian TPL insurance. Some background information about the

models used in this study is given by introducing the basic concepts. The data is

described in detail. The results of the developed models in both statistical modeling

and actuarial modeling are mentioned.

Chapter four provides a comprehensive conclusion derived from the findings of this

thesis and proposes potential approaches for future research.
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CHAPTER TWO

QUANTIFYING THE IMPACT OF RISK FACTORS ON DIRECT

COMPENSATION PROPERTY DAMAGE IN CANADIAN AUTOMOBILE

INSURANCE

2.1 Introduction

DCPD is a type of automobile insurance coverage that is designed to provide

compensation to policyholders for damages to their vehicles caused by another driver

in an accident. Under DCPD coverage, the policyholders’ own insurer handles the

claim and pays for the damages up to the limit of their coverage in cases where the

accident was caused by another driver and was not their own fault; instead of seeking

compensation from the other driver’s insurance company. This coverage involves

only PD and not BI claims occurring in a car accident; while enabling the repair of

damage on the vehicle of the policyholders faster, without the delays and

complications that might arise when dealing with another driver’s insurer. Therefore,

being an efficient and fair approach to insurance claims and vehicle repairs, DCPD

coverage is available in several provinces in Canada, including Ontario, Quebec,

Nova Scotia, New Brunswick, and Prince Edward Island. If the policyholders are at

fault for the accident, they will need to rely on other types of coverage, such as

collision or liability insurance, to cover the cost of damages.

One of the major problems facing actuaries in TPL insurance is the building of an

accurate mathematical model to calculate insurance premiums. This is because it is

essential to strike a balance between charging premiums that are affordable for

policyholders and generating enough revenue to cover the costs of potential claims

and provide a profit for the insurer. To develop an accurate mathematical model,

actuaries should consider various risk factors that might influence the likelihood and

cost of claims. Accurate assessment of risk factors is a complex process that involves

analyzing historical claims data. The improper models built in the analysis of the

historical claims data lead to the premiums being determined lower than they should
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be, and thus increase the risk of sector failure. Overall, the accurate assessment of risk

factors and the development of predictive models that estimate the likelihood of an

insured event are crucial components for insurers in the automobile insurance sector,

in terms of effectively managing their risk and providing their policyholders with

affordable coverage. Actuaries typically use statistical models to calculate insurance

premiums; considering the estimated risk of an insured and the potential cost of a

claim. By using statistical models to price insurance premiums that reflect the true

risk of potential claims, actuaries can help insurers to provide affordable coverage to

policyholders; while also ensuring the long-term stability and success of the insurance

industry.

Various problems in actuarial science rely on the creation of a mathematical model

that can be used in premium pricing. The accurate calculation of premiums for

compulsory TPL insurance is particularly important because this type of insurance

has a significant impact on the non-life premium income of insurers. By improving

the premium evaluation for this line of business, the potential financial losses of the

insurance sector can be prevented. DCPD is a mandatory component of automobile

insurance in Ontario and is included in all basic auto policies along with TPL

insurance. Therefore, it has a considerable share of the yearly non-life premium

income. Quantifying the impact of risk factors on the likelihood of DCPD claims

versus PD claims covered by TPL insurance can help insurers make more informed

decisions about insurance underwriting and policy design. By taking these risk factors

into account, the actuaries can calculate insurance premiums appropriate for the level

of risk being assumed by the insurer, so that identifying the most significant risk

factors leads to a more efficient and effective insurance market.

This chapter is structured as follows: Section 2.2 gives the literature background of

GLMMs. In Section 2.3, the methodological framework used in this study is described

with the basic concepts of GLMMs. Section 2.4 mentions the structure of automobile

insurance data provided by a Canadian insurance company. Section 2.5 includes a

statistical analysis of binary outcomes such as DCPD claims and PD claims covered

by TPL insurance, and how risk factors are identified. In addition, in Section 2.6, the
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performance metrics used in this study are explained in detail. Section 2.7 presents the

results of the model developed for estimating the likelihood of DCPD claims. Section

2.8 introduces the main conclusions of this study.

2.2 Literature Review

The use of GLMMs in actuarial science allows for the incorporation of risk factors

into the premium pricing process, improving the accuracy of insurance premiums and

reducing the risk of financial losses for insurers. Most actuarial pricing techniques in

use today are based on the generalized linear model research of Nelder & Wedderburn

(1972) and McCullagh & Nelder (1989). Over the last 30 years, generalized linear

models (GLMs) have been one of the most commonly used statistical tools for

modeling actuarial data in actuarial work. In an actuarial context, Haberman &

Renshaw (1996) provides an overview of the applications of GLMs in actuarial

science and shows that GLMs are not limited to models for automobile insurance

premiums. Embrechts & Wüthrich (2022) in the case of non-life insurance

demonstrates how combining traditional statistical methods, such as GLMs with

neural networks, improves comprehension and interpretation of actuarial data.

Many actuarial problems have a data structure that includes repeated

measurements, especially panel data, which are characterized by a tendency to

correlate repeated observations on a group of subjects over time. This correlation

between observations on the same subject leads to extra difficulties during the

analysis. Since the assumption of independence is not fulfilled in GLMs due to this

correlation, GLMMs, which are extensions of GLMs, can be used for correlated data.

Statistical techniques are considered for modeling panel data within the framework of

GLMs in Antonio & Beirlant (2007). They also discuss the advantages of the GLM

approach and represent the usage of GLMMs in actuarial mathematics. Miao (2018),

using a hierarchical generalized linear model, shows that GLMMs can more

effectively reflect the differences between distinct risk individuals as well as the

heterogeneity and correlation of risk individual loss over multiple insurance periods.
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The GLMM approach has been frequently used to model actuarial data and

provides a useful approach in the analysis of unbalanced panel data. This approach

procures extra flexibility in estimating the model and helps eliminate the extra

complexity resulting from the internal correlation of each subject. Yau et al. (2003)

consider the application of the GLMM approach to the analysis of repeated claim

frequency data in motor insurance. All of these mentioned features also make

GLMMs a powerful tool for identifying risk factors. Antonio & Valdez (2012) present

a risk classification based on GLMs in insurance. Garrido et al. (2016) explore how

the assumption that claim counts and amounts are independent in non-life insurance

can be relaxed via GLMs while incorporating rating factors into the model.

2.3 Methodology

2.3.1 Generalized Linear Mixed Models

A logistic regression model that can be viewed as a GLM is generally used to

model binary or more than two categories under the assumption of independence.

However, in many actuarial problems, observations on the same subject over time are

often correlated. In these circumstances, the logistic GLM might not be appropriate to

model repeated observations due to the structure of correlation between observations

of the same subject. GLMs are extended to GLMMs by including random effects in

the linear estimator that determine the inherent correlation between observations on

the same subject. Thus, the random effect also accounts for unobserved heterogeneity

between subjects due to unobserved characteristics.

GLMM provides a more flexible approach in terms of normality and

homoscedasticity assumptions since it is extended to distributions from the

exponential family. In addition, in GLMM, the additive effect of independent

variables is modeled on a transformation of the mean (Antonio & Beirlant, 2007).

Here, the model is extended to include random effects since the focus will be on

longitudinal design, which is repeated observations on a group of subjects over time.
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We consider a model where the conditional distribution of y, a vector of the outcome

variable yij , given the random effects, follows a binomial distribution such that the

property damage type of the ith subject in time j. A GLMM for binary data with

logit-link, which is the link function g(µij) determining how the mean is related to the

independent variables x, is written in the form:

g(µij) = logit(µij) = x′

ijβ+ z′ijbi, i = 1, ..., n, j = 1, ..., ti (2.1)

where β(dx1) is a vector of fixed effect parameters; bi(f x1) is a vector of random

effects which represent the influence of subject i on its repeated observations, having

dimension n; xij(dx1) is a vector of independent variables associated with the ijth

observation, and zij(f x1) is a vector of variables having random effects (Antonio &

Beirlant, 2007). GLMM utilizes the logit-link for the analysis of dichotomous data,

namely

g(µij) = logit(µij) = loge

[
µij

1− µij

]
(2.2)

where µij is the probability of an event on subject i in time j. Here, the conditional

expectation equals the conditional probability of a response given the random effects

and covariate values, i.e.,

µij = E(yij|bi, xij) = P (yij = 1|bi, xij) (2.3)

(Hedeker, 2005). Assuming that the random effects are mutually independent and

identically distributed completes the specification of the GLMM. Furthermore, a

correlation between observations on the same subject occurs since they share the

same random effects bi (Antonio & Beirlant, 2007).
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For more information on the theory and application of GLMs, see McCullagh &

Nelder (1989), De Jong & Heller (2008), Kaas et al. (2008), Frees (2010), and Ohlsson

& Johansson (2010).

2.4 Data Description

Data about only private passenger automobiles are provided from the automobile

portfolio of an active insurance company in Canada. The dataset includes insurance

information about a total of 1,946 observations for 1,397 policies that have been in

the portfolio for ten complete years, each of which consists of the claim experience

for several rating factors and a given calendar year. The data do not contain insurance

details for the policy year in which no claim was filed.

The analysis is performed on the company’s liability insurance claim experience

for 2003–2012. The data comprise outstanding loss (x(12)), which only includes zero

and positive claim amounts, incurred loss (x(13)), which only includes positive claim

amounts, and several rating factors for each policy that consist of age (x(1)), territory

(x(2)), usage (x(3)), time (x(4)), class (x(5)), driver record (x(6)), claims history (x(7)),

claims-free years (x(8)), experience (x(9)), training (x(10)), and gender (x(11)). Table 2.1

gives detailed information about the rating factors of the policy.

In the following analysis, territory (x(2)), usage (x(3)), class (x(5)), training (x(10)),

and gender (x(11)) are treated as factor covariates while age (x(1)), time (x(4)), driver

record (x(6)), claims history (x(7)), claims-free years (x(8)), experience (x(9)),

outstanding loss (x(12)), and incurred loss (x(13)) are treated as continuous covariates

in the model.

Driver characteristics also involve the date of birth of the policyholders. At the same

time, the claim profiles include information on the type of coverage regarding property

damage, such as 0 (PD covered by liability insurance) and 1 (DCPD), policy effective

and expiry date, claim identification number, and accident date.
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Table 2.1 Variables in the dataset

Variable Definition
Age Age of policyholder at the time of claim
Territory Residential area

0: Urban; 1: Rural
Usage Vehicle usage

0: Work/Business; 1: Pleasure
Time Accident year

j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, corresponding to values of 2003, 2004,
2005, 2006, 2007, 2008, 2009, 2010, 2011 and 2012, respectively

Class The code of the class
0: Vehicle used for pleasure or having vehicle usage restrictions for
commuting to work one way and the driver is 25 years of age or over;
1: Vehicle used for pleasure and business or not having vehicle usage
restrictions for commuting to work one way and the driver is 25 years
of age or over;
2: Vehicle not having the vehicle usage restrictions and the driver is
under 21 years of age;
3: Vehicle not having vehicle usage restrictions, and the driver is under
25 years of age, but not under 21 years of age

Driver
record

The number of claims-free years for each policy (in the last 6 years)
0 (No claims-free years), 1 (One claims-free year), 2, 3, 4, 5, 6

Claims
history

The number of claims the risk has had in the last 6 years before the
policy was rated
0 (Number of chargeable claims is zero), 1, 2 (Number of chargeable
claims is two or more)

Claims-
free years

The number of years since the risk had a claim
0 (Zero year), 1, 2, 3, 4, 5, 6, 7, 8, 9 (Nine or more years)

Experience Number of years the driver has been licensed
0 (Zero year), 1, 2, 3, 4, 5, 6, 7, 8, 9 (Nine or more years)

Training Driving education provided to all candidates
0: Drivers have taken the course in Ontario;
1: Drivers have taken the course, but maybe a different jurisdictionally
specific one;
2: Drivers have not taken the course

Gender 0: Female; 1: Male
Outstanding
loss

Losses reported to the insurer but are still in the process of settlement

Incurred
loss

The amount paid in losses during a specified time

Property
damage
type

0: PD covered by liability insurance
1: DCPD covered by liability insurance
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The model is fitted using the claims for the years 2003–2008, and its predictive

ability is evaluated using the claims from 2009–2012. The data for 2003–2008 consist

of 1,169 observations on 942 policies for 179 brokers, and each observation includes

the claim experience at the individual policy level. Of the 1,169 observations, 88

(7.5%) have PD covered by liability insurance and 1,081 (92.5%) have DCPD. These

observations are summarized as shown in Table 2.2.

Table 2.2 Summary statistics of the data

Variable Mean Std.Dev. Minimum Maximum
Age 45.05 13.33 18.42 85.10
Time 3.78 1.54 1.00 6.00
Driver record 5.54 1.33 0.00 6.00
Claims history 0.08 0.28 0.00 2.00
Claims-free years 7.69 2.60 0.00 9.00
Experience 8.37 1.78 0.00 9.00
Outstanding loss 620.50 1356.19 0.00 5550.00
Incurred loss 3625.20 4129.49 26.84 43539.90

The analysis herein focuses on estimating the model using the property damages that

occurred during each individual year to examine the likelihood of DCPD claims versus

PD claims covered by TPL insurance. Table 2.3 presents the mean of the outstanding

and incurred losses used in the forthcoming estimations for each of the six years.

Table 2.3 Mean of outstanding and incurred loss distribution by years

Year Outstanding Loss Incurred Loss
2003 1172.18 2502.82
2004 307.43 3498.63
2005 603.57 3612.98
2006 431.30 3735.09
2007 814.31 3695.84
2008 778.56 3966.12

To optimize the merits of the variables in the model, a transformation is applied to

both outstanding and incurred losses. The Yeo-Johnson transformation handles both

positive and negative values, whereas the Box-Cox transformation only handles

positive values. Because outstanding loss only includes zero and positive claim

amounts, the Yeo-Johnson transformation is made for outstanding loss. Incurred loss,
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on the other hand, only includes positive claim amounts. Therefore, the Box-Cox

transformation is applied for incurred loss.

In the insurance portfolio, these observations are handled as separate classes. The

frequency table of the classes is given in Table 2.4.

Table 2.4 Frequency table of the class

Variable Group Number of Observations Percent (%)
Class 0 1,002 85.71

1 126 10.78
2 31 2.65
3 10 0.86

Total 1,169 100.00

Of the 1,169 observations, 1,002 (85.71%) include the drivers who are 25 years of

age or over and use their vehicle for pleasure or have vehicle usage restrictions for

commuting to work one way, 126 (10.78%) consist of drivers who are 25 years of

age or over and use their vehicle for pleasure and business or not have vehicle usage

restrictions for commute to work one way, 31 (2.65%) contain drivers who are under 21

years of age and not have vehicle usage restrictions, and 10 (0.86%) comprise drivers

who are under 25 years of age, but not under 21 years of age and not have vehicle usage

restrictions. Because the observations in the data are not distributed in a balanced way

among the categories of class (x(5)) from the factor covariates, the weights on class

(x(5)), which are the number of trials, are used to generate each success proportion. As

a result, since the dataset is unbalanced, using weights allows us to consider the relative

importance of various possible target values and to better fit the model.

Among the rating variables in the dataset, claims-free years (x(8)) and experience

(x(9)) are highly correlated. The models are built considering the correlation between

these variables and then compared to one another to determine the best model. In the

following analysis, the best-fitted model is presented. Table 2.5 shows the correlation

between the independent variables in this fitted model.

As a result, the model presented below does not exhibit any multicollinearity issue.

Within this model, 650 (55.6%) of the 1,169 observations use the vehicle for work and
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Table 2.5 Correlation matrix of independent variables in the model

x(3) x(4) x(10) x(11) x(12) x(13)
x(3) 1.000 – 0.012c 0.007a 0.033b 0.016c – 0.027c
x(4) – 0.012c 1.000 0.059c* – 0.018c 0.064d 0.106d
x(10) 0.007a 0.059c* 1.000 0.037a – 0.058c* 0.030c*
x(11) 0.033b – 0.018c 0.037a 1.000 0.016c – 0.014c
x(12) 0.016c 0.064d – 0.058c* 0.016c 1.000 0.051d
x(13) – 0.027c 0.106d 0.030c* – 0.014c 0.051d 1.000

*The greatest correlation between the discrete or continuous variable and all possible
pairs of levels of the nominal variable

aGoodman and Kruskal’s Lambda
bPhi coefficient
cPoint-biserial correlation coefficient
dSpearman correlation coefficient
(Khamis, 2008)

business, while 519 (44.4%) use it for pleasure. 20 (1.7%) of the observations include

the drivers who have taken the course in Ontario, whereas 1,130 (96.7%) consist of

those who have taken it in another jurisdiction. 19 (1.6%) of the observations also

comprise the drivers who have not taken the course. Female drivers make up 524

(44.8%) of the observations, while male drivers add up to 645 (55.2%).

2.5 Fitted Model

A random intercept effect model is a type of GLMM that allows for the inclusion

of individual-specific random effects in addition to more general risk factors. This

model can help to account for unobserved heterogeneity in the data, which can have

a significant impact on the likelihood of claims. By incorporating random intercepts

into the model, the effect of unobserved heterogeneity can be accounted for, resulting

in more accurate estimates of risk and more appropriate insurance premiums.

This study aims to determine how the most significant risk factors affect DCPD

claims under TPL insurance. Two categories are addressed to model the property

damage coverage type following a traffic accident: DCPD or PD covered by liability
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insurance. The GLMM described in Section 2.1 is fitted using the glmer function in R

with logit-link.

Using GLMM analysis for the subject-specific random intercept effect model, the

best-fitting random intercept effect model is specified as follows:

g(µijk) = β0 + β1x
(3)
ijk + β2x

(4)
ijk + β3x

(10)
ijk + β4x

(11)
ijk + β5x

(12)
ijk + β6x

(13)
ijk + b0k,

i = 1, ..., n, j = 1, ..., ti, k = 1, ...,m
(2.4)

where n is the total number of different policies; m is the total number of different

brokers; ti is the number of repeated observations in policy i. ti is the same for all

policies in balanced panel data, but conversely, the panel data structure here is

unbalanced. In addition, µijk is the probability of a claim on policy i (i=1,...,942) at

time j (j=1,...,6) for broker k (k=1,...,179).

In the fixed-effects part of the model, the parameters β0, β1, and β2 define an

overall intercept, the change in the expected log odds of DCPD claims for vehicle

usage, and the change caused by a one-year change in time, for a given the random

intercept, respectively. The change in the expected log odds of DCPD claims for

driving education and gender are expressed in parameters β3 and β4, for a given

random intercept, respectively. Additionally, β5 and β6 describe how the expected log

odds of DCPD claims have changed due to a unit increase in both outstanding loss

and incurred loss for a given random intercept.

In the random-effects part of the model, the term b0k in Equation 2.4 denotes a

broker-specific random intercept. The random intercept b0k is a subject-specific

deviation from the fixed intercept β0. The results of the panel data generalized linear

binary logit mixed model are summarized in Table 2.6.
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Table 2.6 Generalized linear binary logit mixed model estimation results

Variable Estimated
Coefficients

Std. Error z-value Pr(>|z|) Exp(β)

Intercept - 4.691 0.694 - 6.761 < 0.001 *** 0.009
Usage1 - 1.083 0.268 - 4.038 < 0.001 *** 0.339
Time 0.157 0.085 1.844 0.065 · 1.170
Training1 1.215 0.464 2.621 0.009 ** 3.372
Training2 3.411 1.235 2.763 0.006 ** 30.279
Gender1 - 0.463 0.275 - 1.680 0.093 · 0.629
Outstanding loss 0.187 0.063 2.948 0.003 ** 1.205
Incurred loss 0.946 0.075 12.665 < 0.001 *** 2.576

Random parameter
Std. dev. of broker 0.632
- 2 Log-likelihood 462.0
AIC 480.1
BIC 525.7
Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’·’ 0.1 ’ ’ 1

2.6 Performance Metrics

In this study, the GLMM approach is applied to unbalanced panel data to

determine which factors have a significant impact on the likelihood of DCPD claims

that policyholders will make next year. To inform model selection, the Akaike

information criterion (AIC) and the likelihood ratio test (LRT) are used. If the number

of observations (N) is large enough, v < (N /40), AIC is defined as

AIC = −2ln(L̂) + 2v (2.5)

where v represents the number of estimated parameters in the fitted model and ln(L̂)

is the maximum log-likelihood value (Portet, 2020). Equation 2.5 is used to calculate

the AIC value since v = 9 is smaller than N /40 = 29.225 for N = 1169, and the model

with a lower AIC value is preferred.
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The reference model, which includes weights (the number of trials used to generate

each success proportion) in the different classes of insureds, is compared to the nested

model, which is reduced to a model without weights, using likelihood ratio tests to

determine which is statistically preferable. The likelihood ratio test is shown in

Equation 2.6.

LRT = 2{logLik(reference)− logLik(nested)} (2.6)

where logLik (reference) and logLik (nested) are the log-likelihood of the

generalized linear mixed model with weights (under the alternative hypothesis) and

the generalized linear mixed model without weights (under the null hypothesis) for

the same dataset, respectively. With degrees of freedom equal to the difference in the

number of parameters between the two models, the test statistic is a chi-square

distribution (Pai & Walch, 2020). The chi-square value of the test is 64.058 with one

degree of freedom. The corresponding p-value is (0.5)Pr(χ2
1>64.058). From the

chi-square table, we can conclude that Pr(χ2
1>7.88)=0.005 and hence the p-value is

significantly lower than 0.0025. The model under the alternative hypothesis is chosen

since the p-value is much less than 0.05. In other words, the random-effects model

with weights is preferred because it significantly differs from the random-effects

model without weights.

The evaluation metrics used in this analysis include measures of sensitivity (recall)

(SN), specificity (SP), precision (P), accuracy (ACC), balanced accuracy (BA), F1

score, and area under the curve (AUC), to assess the performance of each model and

to determine which model is most effective for predicting the likelihood of DCPD

claims. These measures are defined based on a confusion matrix, as shown in

Table 2.7 (Hossin & Sulaiman, 2015).

In this confusion matrix, TP (true positive) and TN (true negative) denote the

number of positive (classifying the claim as DCPD) and negative (classifying the

claim as PD covered by liability insurance) claims that are correctly classified,
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Table 2.7 Confusion matrix for the binary classification

Prediction
Actual DCPD PD
DCPD TP FN
PD FP TN

respectively. Additionally, FP (false positive) and FN (false negative) represent the

number of positive and negative claims that are incorrectly classified, respectively. In

other words, TP and TN indicate DCPD claims correctly identified as DCPD and PD

claims identified as PD, respectively. FP stands for PD claims incorrectly identified

as DCPD, whereas FN implies DCPD claims incorrectly identified as PD. The

performance evaluation metrics used in this analysis are generated as shown in

Equations 2.7 – 2.12.

SN =
TP

TP+FN
(2.7)

SP =
TN

TN+FP
(2.8)

P =
TP

TP+FP
(2.9)

ACC =
TP+TN

TP+FP+TN+FN
(2.10)

BA =
SN+SP

2
(2.11)

F1 score =
2TP

2TP+ FP + FN
(2.12)
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Precision and recall are employed as the evaluation metrics in this study since the

developed model aims to predict 1 as accurately as feasible and to identify as many

actual 1 as possible. In classification issues, accuracy is one of the most frequently

used evaluation metrics. It is helpful when the target class is well-balanced but not a

suitable option when the classes are unbalanced. This study assesses the target classes

that are to be applied to a severely unbalanced dataset in which positives greatly

outnumber negatives. Balanced accuracy is chosen as a performance measure in this

analysis because it is a better metric when dealing with imbalanced data, and it also

accounts for both positive and negative classes and avoids data imbalances that could

be misleading. Additionally, the F1 score is a commonly employed evaluation metric

to measure the performance of binary classification and outperforms accuracy in

enhancing the target classes for binary classification problems. Therefore, it is used in

this analysis as a performance measure rather than an accuracy measure.

Another evaluation metric is the Receiver Operating Characteristic (ROC) curve,

which assesses the predictive performance of the fitted model. The ROC curve is a

plot of the true positive rate (SN) versus the false positive rate (1 - SP), which shows

how the number of correctly classified positive instances varies with the number of

incorrectly classified negatives when evaluating binary decision problems. The ROC

curve captures the trade-off between these performance measure parameters for

different possible thresholds. The resulting score known as the AUC is the area under

the ROC curve and illustrates the model’s ability to accurately predict classes. A

higher score indicates a higher probability of making correct predictions and can be

viewed as a measure of accuracy (Davis & Goadrich, 2006).

A Precision-Recall (PR) curve, on the other hand, evaluates the fraction of true

positives among positive predictions. By offering valuable insights into the

effectiveness of the classification model in capturing and correctly labeling minority

class instances, the PR curve can provide an accurate prediction of future

classification performance. The PR curve outperforms the ROC curve in terms of

both information and power when dealing with binary classes on unbalanced datasets

(Saito & Rehmsmeier, 2015). Due to class imbalance in this analysis, presenting
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results by considering only the ROC curve could be misleading about the reliability of

classification performance. In this study, as well as the ROC curve, the PR curve is

also considered to evaluate the classification performance because the PR curve can

explicitly reveal claim differences in imbalanced cases. The resulting score known as

the PR AUC is the area under the PR curve and emphasizes the performance of the

model for predicting the positive class. A high PR AUC means that the model

performs better in predicting the positive class. These performance assessment

measures are acquired as presented in Table 2.8

Table 2.8 Performance evaluation metrics

Sensitivity Specificity Precision Accuracy
0.906 0.647 0.964 0.883

Balanced
Accuracy F1 Score AUC PR AUC

0.776 0.934 0.776 0.953

The fitted model’s F1 score of 0.934, which is regarded as a very good value,

indicates that it can both capture positive classes and accurately predict the classes it

does capture. Regarding the balanced accuracy, it has a value of 0.776, indicating that

the fitted model performs well at predicting whether policyholders will make DCPD

claims. Due to the imbalanced classes in this analysis, the balanced accuracy gives us

a more realistic picture of how well the model classifies both groups correctly. To

evaluate the predictive performance of the fitted model, the ROC and PR curves are

plotted as shown in Figure 2.1.

For the fitted model using different probability thresholds, the ROC curve highlights

the trade-off between the true positive rate and the false positive rate. The fitted model

provides a good fit to the data according to the computed AUC of 0.776. For the fitted

model employing different probability thresholds, the PR curve highlights the trade-off

between the true positive rate and the positive predictive value. Compared to the ROC

curve, the PR curve is preferable to the ROC curve for imbalanced datasets. Due to the

class imbalance in this analysis, the PR AUC, calculated as 0.953, describes that the
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Figure 2.1 Predictive performance of the fitted model:
(a) the ROC curve and (b) the PR curve

fitted model performed very well in predicting the positive class.

2.7 Results

This paper describes a generalized linear binary logit mixed model considering the

imbalance between the classes of policyholders using automobile insurance data. This

model assesses the impact of various risk factors on DCPD claims in private

passenger vehicle accidents. The risk factors having a significant impact on the

likelihood of DCPD claims are the independent variables named “usage”, “time”,

“training”, “gender”, “outstanding loss”, and “incurred loss” estimated in unbalanced

longitudinal data.

Gender and time are included in the model even if they are thought to be ineffective.

However, these two variables are significant at the 0.10 level, as shown in Table 2.6.

The results of these variables indicate that female drivers are 1.59 times more likely to

make a DCPD claim than male drivers and that the risk of a DCPD claim occurring is

1.17 times higher when time increases by 1 year.
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As for other significant variables, usage, training, outstanding loss, and incurred

loss have a significant effect on the likelihood of DCPD claims. For policyholders who

use their vehicles for work or business, the risk of making a DCPD claim is 2.95 times

greater than for those who use them for pleasure. Since drivers who commute to work

or use the vehicle for business are far more likely to be in traffic than those who drive

for pleasure, this result is meaningful and the vehicle usage has a quite significant effect

on DCPD claims.

Driver training is of vital importance in preventing traffic accidents. Even if most

drivers in Ontario have taken courses, some have not taken any training. Given that

Ontario is one of the provinces with the highest number of immigrants, many drivers

have taken driver training in various jurisdictions, whereas some have taken it in

Ontario. According to the results of the training variable in the model, policyholders

who have taken the driver training in a separate jurisdiction are 3.37 times more likely

to make a DCPD claim than those who have taken it in Ontario; whereas

policyholders who have not taken courses are 30.28 times more likely to make a

DCPD claim than those with driver training in Ontario. These results indicate that

drivers who have taken courses in a different jurisdiction or have not taken any

training pose a risk in traffic and support the importance of driver training in

preventing traffic accidents.

For insurers to manage their claims liabilities, determine appropriate premium rates,

and evaluate their overall financial circumstances, outstanding loss and incurred loss

are crucial. The claim reported to the insurance company but has not yet been paid is

known as an outstanding loss. This claim is an estimate of the insurer’s future financial

obligations. Incurred loss, also called paid loss, is the actual loss that the insurance

company has paid or became obligated to pay during a specific period. The results of

these two variables in the model demonstrate that the risk of a DCPD claim occurring

is 1.21 times higher when the outstanding loss increases by $1 and that the risk of a

DCPD claim occurring is 2.58 times greater when the incurred loss increases by $1.
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DCPD claims are one of the most common types of damage insurance companies

incur. DCPD coverage under TPL insurance provides compensation to policyholders

for damages by the policyholders’ own insurer in cases where another driver caused

the accident and was not their own fault. It can indeed be advantageous to consider

these rating factors which significantly affect the likelihood of DCPD claims for

evaluating insurance premiums and enhancing the financial stability of an insurance

company. By incorporating these factors into the premium evaluation process,

insurers can more accurately estimate the risk associated with each policyholder and

price premiums accordingly.

It is recommended that the above rating factors having a significant impact on the

likelihood of DCPD claims be considered in the premium evaluation since it is

believed to help the financial stability of the insurance company. The financial

stability of the company could potentially be affected if the insurance company pays

more compensation than it collects in premiums.

2.8 Summary

The purpose of this study is to develop a statistical model that identifies the impact

of the most important risk factors on DCPD claims under TPL insurance in private

passenger vehicle accidents in Ontario, Canada. GLMMs are approaches that are

constantly used to model actuarial data and provide an advantage in the analysis of

unbalanced panel data. This approach eliminates the extra complexity resulting from

the internal correlation of each policy. Therefore, the developed model in this study

analyzes the likelihood of DCPD claims in the context of a generalized linear binary

logit mixed model by dealing with unbalanced panel data, and also, the imbalance

between the classes of insureds is considered in this model.

As a type of data application, the data in this study include many factors associated

with the driver and claim characteristics found critical to the likelihood of DCPD

claims. The estimation results from the proposed model demonstrate that the broker,
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which is a time-varying factor, has a significant influence on the likelihood of DCPD

claims as a random parameter. In addition, rating factors such as usage patterns,

driver training, outstanding loss and incurred loss have been found to correlate with

the likelihood of DCPD claims as fixed effects. Observing the effects of these risk

factors under the weights in the different classes of policyholders highlights the

importance of developing class-specific risk assessment models. Moreover, by

considering the performance evaluation metrics in detail, this study ensures a

comprehensive assessment that accounts for the potential challenges of imbalanced

datasets and provides a more reliable interpretation of the results.

Taking these factors into account during premium evaluation helps insurers

maintain financial stability by ensuring that premiums are adequately priced based on

the associated risks. This, in turn, helps the company avoid potential financial

instability caused by underpricing policies or facing a higher volume of claims than

anticipated.

Ultimately, incorporating rating factors that have a significant impact on the

likelihood of DCPD claims in premium evaluation promotes a fair and sustainable

insurance pricing strategy, benefiting both the insurance company and its

policyholders.
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CHAPTER THREE

DEVELOPING A PURE PREMIUMMODEL TO REDUCE RISK OF

SECTOR FAILURE FOR THE THIRD-PARTY LIABILITY INSURANCE

3.1 Introduction

When insurers are faced with as accurately as possible a premium calculation

problem for each policyholder in automobile insurance, posteriori ratemaking

mechanisms, which are provided by experience rating systems, play an important role

in the sector. Partitioning policies according to their risk characteristics as a priori

ratemaking is crucial in automobile ratemaking. The idea behind risk classification

within the pricing process is that the insurer wants to optimally group the risks in the

portfolio. Thus, the policyholders with a similar risk profile pay the same premium

rate. However, the fact that risk classes maintain heterogeneity due to posteriori risk

characteristics leads to insurers experience rating.

The premium adjustment relies on the policyholder’s historical data to mitigate

unobserved risk characteristics, thereby restoring fairness among policyholders.

Credibility theory is an appropriate model for premium adjustment because it allows

an insurer to perform prospective experience rating adjusting future premiums based

on the individual claim experience.

In addition, the allowance for the severity of claims is as important as taking the

number of claims into account in the premium evaluation. The evaluation only by the

number of claims leads to the same premium surcharge for the policyholders who

have the same claim frequency although they have different claim severity, thus this

situation results in injustice for the policyholder who hasn’t severe damage. In this

chapter, a credibility model is developed by subdividing the claims into two

categories, PD and BI, for third-party liability automobile insurance. The idea behind

the determined model is to calculate future premiums based on both collective and

individual information. In real-life automobile insurance, the numbers of exposure
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units and the distribution of claim sizes differ across past policy years. The

Bühlmann-Straub model accommodates these diversities; therefore, in this chapter, a

Bühlmann-Straub model reflecting pricing is determined under one-dimensional

credibility assumptions.

The objective of this chapter is to develop a statistical model that assesses the

incurred losses of different claim types separately. The statistical model is examined

using a linear mixed-effect model (LMM) for the PD and BI claims, revealing various

risk factors that have a significant impact on the incurred losses associated with

different claim types. Subsequently, credibility premiums are obtained for the PD and

BI claims by weighting the predicted losses through earned exposures, and then the

bonus-malus scales are designed by taking into account the types of claims.

The remainder of this chapter is organized as follows: The next section discusses

literature, focusing on possible alternatives for evaluating premiums via credibility

theory and bonus-malus scales. A methodology is presented as the theoretical

approaches for credibility theory and bonus-malus scales, and then a section

describing data follows it. Subsequently, the results of the analysis are contrasted and

a summary section is presented.

3.2 Literature Review

Credibility has a long history in actuarial science, with fundamental contributions

dating back to (Mowbray, 1914). Mowbray wants to distinguish between situations

when large employers with substantial information would use their own experience

and when small employers with limited experience would use external sources.

Subsequently, Whitney (1918) introduces the concept of using a weighted average of

claims from the risk class (the group’s claims experience) and claims over all risk

classes (a manual rate) to predict future expected claims. Credibility theory has been

used for more than 50 years in insurance pricing before it is placed on a firm

mathematical foundation by Bühlmann (1967). Bühlmann hypothesizes the existence
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of unobserved characteristics of the group.

Traditional approaches of credibility theory consider one unobserved risk parameter,

for each policyholder and treat one policy or coverage. Thus, these approaches are

based on the ideas of Bichsel (1967), Bühlmann (1967), and more recently Lemaire

(1995). A large number of extensions related to credibility theory have been derived

by Jewell (1974), Hachemeister (1975), Sundt (1979, 1981), and Zehnwirth (1985)

after the approaches are presented by Bühlmann (1967) and Bühlmann et al. (1970).

A concise review of credibility theory can be found in (Norberg, 2004). Hachemeister

(1975) contributes to the credibility context by introducing a regression model.

Evolutionary models are not new in credibility theory. This approach is introduced

in the 1970s for one-dimensional credibility models by Gerber & Jones (1975a), Gerber

& Jones (1975b), De Vijlder (1976), De Vylder (1977), Sundt (1981), Kremer (1982),

and Pinquet et al. (2001). In Sundt (1983), the generalized Bühlmann-Straub model is

proposed with consecutive error terms assumed to follow AR(1) dependences. Pinquet

et al. (2001) show that the date of the claim does matter because the effects of a claim

on the risk evaluation diminish over time. Much of the work on the time-dependent

models focuses on credibility formulas of the updating type. Pinquet et al. (2001) and

Bolancé et al. (2003) present empirical studies performed on panel data. Furthermore,

these studies support time-varying random effects.

Sundt (1988) has studied experience rating for motor insurance based on

credibility estimators with geometric weights within the simple Bühlmann model. He

has discussed how to find optimal weights. He has also compared the estimators with

geometric weights to the traditional credibility estimators and he has shown to be

more robust against a certain type of violations against the model assumptions, but he

could not go any further into practical modifications of his scheme in this paper.

The multidimensional generalization of the credibility approach to more than one

line of business is first introduced by Jewell (1973, 1974). Pinquet (1997, 1998) also

include examples that are given of experience rating that incorporate additional claim
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information, from the number and the cost of claims and claims at fault and not at fault

within the same line of business. In brief, with the aid of multi-equation Poissonmodels

with random effects, Pinquet (1998) designs an optimal credibility model for different

types of claims. Pinquet (1997) also allows for the costs of the claims. Autoregressive

specifications of the error structure in the credibility context have been proposed by

Bolancé et al. (2003).

Englund et al. (2008) have investigated a concept of multivariate pricing, which

includes claim history for more than one line of business and is a generalization of

the Bühlmann-Straub model. They have extended the multivariate credibility model to

allow for the age of claims to influence the estimation of future claims. They have also

applied this model to data from a portfolio of commercial lines of business.

In 2008, Couret and Venter considered the estimation of the percentage of loss that

is over high deductibles. By Couret & Venter (2008), a key element of the excess

percentage is the frequency of loss by injury type, and the vector of claim frequency

by injury type can be estimated by class of business using multidimensional credibility

techniques. They have shown that credibility estimation by class produces additional

information in comparison to large groups of classes in workers compensation.

Englund et al. (2009) considers insurance business lines for the pricing

methodology. They have compared the multivariate credibility approach with the

classical one-dimensional credibility theory. They have concluded that the

multivariate approach is capable of improving the quality of estimation. They have

also contributed to this theory with new robust estimation methods for time

(in)dependency. They have concluded that adding a time effect will improve

prediction if the average duration of information is long enough.

As to the various theoretical approaches regarding merit rating, Pinquet et al. (2001)

have purposed to use the age of claims in the prediction of risks. They have presented

a dynamic random effects model on longitudinal count data since an optimal BMS

estimated from short histories and applied to a longer duration will overestimate the
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individual credibilities.

Brouhns et al. (2003) have proposed a computer-intensive methodology to build

bonus-malus scales in automobile insurance. They have compared four different

credibility models based on real data: static versus dynamic heterogeneity, with and

without recognizing a priori risk classification.

In 1997, Taylor considered the operation of a BMS, superimposed on a premium

system involving several other rating variables. He has discussed the issue that to the

extent that good risks are rewarded in their base premiums, through the other rating

variables, the size of the bonus they require for equity is reduced. He has considered

the extent to which the BMS differentiates the risk classes over time, in other words,

the extent to which the BMS differentiates individuals over time. As to methods

incorporating data from different business lines on the same policyholder, the study

by Desjardins et al. (2001) mentions that the BMSs for fleets of vehicles are derived

from the claims or safety offenses history. Pitrebois et al. (2003) has also proposed an

analytic analog to the simulation procedure described in Taylor (1997). They have

discussed the interaction between a priori and a posteriori ratemakings.

In 1976, Norberg developed optimal credibility premium scales for Markovian

BMSs, with given transition rules, under an infinite horizon approach, and assumed

the minimization of the expected squared difference between the true net premium

and the premium paid by the policyholder. The premium relativities are traditionally

computed with the help of a quadratic loss function in Norberg (1976). Borgan 1 &

Hoem (1981) have generalized this result to a finite horizon approach. Andrade e

Silva & Centeno (2005) underline some potential problems of the linear scales, and

they propose the use of geometric scales as a possible solution. Gilde & Sundt (1989)

assume that the BMS forms a first-order Markov chain and introduce the optimal

bonus scales.
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Pitrebois et al. (2006) have offered an alternative approach to traditional

bonus-malus scales. They have designed bonus-malus scales involving different types

of claims as bodily injuries and material damage instead of considering one type of

claim to integrate the severity of the claims and to recognize the partial liability of the

policyholder. Different bonus-malus scale models for each type of insured are

proposed by using recursive partitioning methods instead of classic past claim rating

models in Boucher (2022).

3.3 Methodology

3.3.1 Linear Mixed Models

LMMs extend the capabilities of the linear model by accommodating clustered or

longitudinal data.

The linear mixed model may be expressed as

yi = Xiβ+ Ziui + εi, i = 1, ..., n (3.1)

where

• β (dx1) describes the d fixed effects in the model. These are fixed unknown

regression parameters and they are common to all subjects.

• ui (f x1) is the vector with the random effects for the ith subject in the data. The

use of random effects reflects that there is heterogeneity among subjects for a

subset of the regression coefficients in β.

• Xi (rixd) andZi (rixf) are the designmatrices for the d fixed and f random effects

where ri describes the repeated observations for the ith subject over time.

• εi (rix1) contains the residual components for subject i.
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ui ∼ N(0, σ2
u)

εi ∼ N(0, σ2
ε)

Following the fitting of an LMM and preceding any inferences drawn from it, it

is crucial to verify the fulfillment of model assumptions. The principal distributional

assumption pertains to the normality of the residual errors, commonly assessed through

a quantile-quantile plot (q-q plot). Substantial deviations from linearity in observations

or asymmetrical scales serve as indicators of a departure from normality in the residuals.

Ensuring that the model is not unduly influenced by individual observations or a

small subset is crucial. Such influence could suggest overfitting or sensitivity to

specific observations included in the model. Assessing leverage and influence in

mixed models can be challenging, with limited tools available; commonly used tools

include leverage and/or Cook’s distance for linear mixed models.

Other main distributional assumptions pertain to the normality of the random effects.

Practically, the assessment of the normality assumption for ui should rely on comparing

the outcomes derived from an LMM with and without assuming normality. For more

details, see Ga-ecki & Burzykowski (2013).

3.3.2 Bühlmann-Straub Credibility Model

The basic idea of credibility theory is to use claims experience and additional

information to develop a pricing formula. In this way, the premiums charged using

credibility theory take the driving capabilities of both individual and whole portfolios

into account.

In the context of the one-dimensional Bühlmann-Straub model, the observation

vector associated with risk i in year t is represented by the claims ratio or average

claim size, denoted as Xi = (Xi1,Xi2, ...,Xiti)
′ i = 1, ..., n, j = 1, ..., ti. Moreover,

the associated known weights are denoted as wij .
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An individual risk is a member of a larger population and the risk has an associated

risk parameter that distinguishes the individual’s risk characteristics (Dean, 2005).

Although these characteristics are unobserved features of the group, they are common

to all observations in the group. The risk i is characterized by its individual risk

profile θi, which is itself the realization of a random variable θi. The model

assumptions for the one-dimensional Bühlmann-Straub model are as follows:

1. Conditionally, given θi, the Xij j = 1, ..., ti are independent with

E[Xij|θi] = µ(θi)

Var(Xij|θi) =
σ2(θi)
wij

2. The pairs (θi,Xi) i = 1, 2, ..., n are independent, and θ1, θ2, ..., θn are

independent and identically distributed.

The credibility estimator for the individual risk premium, µ(θi), depends only on

the observations from the ith risk and all data. Because the fact that E[Xi] = µ0, the

credibility estimator is of the form,

µ̂(θi) = ziXi + (1− zi)µ0, (3.2)

where µ0=E[µ(θi)] is collective premium and zi = wi./(wi. +
σ2

τ2
) is a credibility

factor.

Average variance within individual risk and variance between individual risk

premiums are σ2=E[σ2(θi)] and τ 2=Var[µ(θi)], respectively. For more details, see

Bühlmann & Gisler (2005).

3.3.3 Bonus-Malus Scale Model

With some types of insurance, especially automobile insurance, charging a

premium based exclusively on factors known a priori, such as age, sex, occupation of
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the main driver, region of residence, type of car, and so on is insufficient. Since the

values of such variables can be determined before the insured starts to drive, they are

called a priori rating variables. The main purpose for their use is to subdivide

insureds into homogeneous classes, but heterogeneous driving behaviors, such as

state of health, reflexes, accident proneness, and so on are still observed in each tariff

cell, and such variables are called a posteriori rating variables. The insurers can base

prices on the above-mentioned unobservable characteristics by taking into account the

prior claims experience of the policyholder. Merit rating which modifies premiums

with claim history penalizes the policyholders responsible for one or more accidents

by an additional premium or malus, and rewards claim-free insureds by awarding a

discount or bonus. Such systems on the one hand use premiums based on a priori

factors, on the other hand, they adjust these premiums by use of merit rating. In this

way, premiums reflect the exact driving capabilities of the driver much better. This

situation can be modeled as a Markov chain.

BMSs are special cases of Markov processes. In such processes, one goes from

one state to another in time. The Markov property says that the process is in a sense

memoryless: the probability of such transitions does not depend on how one arrived in

a particular state (Kaas et al., 2002). It means that the knowledge of the present class

and the number of claims for the year suffices to determine next year’s class.

The number of claims reported during the year, N, is Poisson distributed with

expected claim frequency, λ. The N claims may be classified into h categories,

according to a multinomial partitioning scheme with probabilities q1, q2, ..., qh that

the claim is of type 1, 2, ..., h, respectively, for a policyholder in risk class.

In this study, the claims reported by the policyholders are distinguished into two

separate categories PD and BI. Each type of claim induces a specific penalty for the

policyholder. The number of the types of claims is denoted as h, and h is equal to 2 for

the above-mentioned distinction.

For this model, the following assumption is considered:
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The number of claims of type c, Nc, has a Binomial distribution with parameters

n and qc. The expected value of Nc is nqc. Then the random variables N1, ...,Nh are

independent and Poisson distributed with respective parameters λq1, ..., λqh. The joint

probability mass function is as follows:

Pr[N1 = n1, ...,Nh = nh] =
h∏

c=1

exp(−λqc)
(λqc)

nc

nc!
(3.3)

Let pl1,l2(λ; q) be the probability of moving from level l1 to level l2 for an insured

with annual expected claim frequency λ and vector probability q = (q1, ..., qh)
T; qh

is the probability that the claim be of type h. The transition matrix consisting of qhs,

P(λ; q), is also the one-step transition matrix for s levels and is represented below:

P(λ; q)=


p0,0(λ; q) · · · p0,s(λ; q)

... . . . ...

ps,0(λ; q) · · · ps,s(λ; q)



The Markov chain possesses a stationary distribution

π(λ; q) = (π0(λ; q), π1(λ; q), ..., πs(λ; q))T,

where πl(λ; q) is the stationary probability for a policyholder with expected

frequency λ to be in level l, l = 1, ..., s. For more details, see Lemaire (1995) and

Denuit et al. (2007).

3.4 Data Description

Data about only private passenger automobiles are provided from the automobile

portfolio of an active insurance company in Ontario, Canada. The dataset does not

contain information about the policyholders who transferred their policy to a different

36



insurance company at any time and insurance details for the policy year in which no

claim was filed. These policies have been in the portfolio for ten complete years, each

of which consists of the claim experience for several rating factors and a given calendar

year. There are no missing observations in the data. There are two types of claims in

the data set: PD and BI. The dataset about PD claims comprises insurance details for

a total of 156 observations across 147 policies, whereas the dataset associated with BI

claims encompasses information for a total of 134 observations of 124 policies.

The analysis is performed on the company’s liability insurance claim experience

for 2003–2012. The data comprise outstanding loss, which only includes zero and

positive claim amounts, incurred loss, which only includes positive claim amounts,

and several rating factors for each policy that consist of age, territory, usage, time,

valuation year, class, modifier, rate modifier, driver record, claims history, claims-free

years, experience, training, and gender.

Driver characteristics also involve the date of birth of the policyholders, while the

claim profiles include information on the type of coverage regarding PD and BI, policy

effective and expiry date, claim identification number, and accident date.

In the analysis, territory, usage, class, modifier, rate modifier, training, and gender

are treated as factor covariates while age, time, valuation year, driver record, claims

history, claims-free years, experience, outstanding loss, and incurred loss are treated as

continuous covariates in the model. In the following section, the best-fitted models for

PD claims and BI claims are presented. In the PD model, the significant explanatory

variables are class (x(1)), modifier1 (x(2)), modifier2 (x(3)), claims history (x(4)) and

time (x(5)) while the independent variables are class (x(1)), rate modifier1 (x(2)), rate

modifier2 (x(3)), gender (x(4)), valuation year (x(5)) and time (x(6)) in the BI model.

Table 3.1 and Table 3.2 give detailed information about significant rating factors in the

PD and BI models, respectively. In addition, the descriptive statistics of continuous

covariates in these models are summarized as shown in Table 3.3.
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Table 3.1 Variables in the PD model

Variable Definition

Time
Accident year
j = 1, 2, 3, 4, 5, 6, corresponding to values of 2003, 2004, 2005, 2006,
2007 and 2008, respectively

Class

0: Pleasure use only; driver is 25 years of age or over; No male driver
under 25 years of age; maximum annual distance driven 18,000 km
1: Pleasure or commute use over 20 km one way; driver is 25 years of
age or over; No male driver under 25 years of age; No annual distance
driven restrictions

Modifier
A single value or the rating groups used to adjust a policy’s premium
based on a set of risk characteristics
(Three groups : 0; 1; 2)

Claims
history

0 (Number of chargeable claims is zero), 1, 2 (Number of chargeable
claims is two or more)

Table 3.2 Variables in the BI model

Variable Definition

Time
Accident year
j = 1, 2, 3, 4, 5, 6, corresponding to values of 2003, 2004, 2005, 2006,
2007 and 2008, respectively

Class

0: Pleasure use only; driver is 25 years of age or over; No male driver
under 25 years of age; maximum annual distance driven 18,000 km
1: Pleasure or commute use over 20 km one way; driver is 25 years of
age or over; No male driver under 25 years of age; No annual distance
driven restrictions

Rate
modifier

A single value or the rating groups used to adjust a policy’s premium
based on a set of risk characteristics
(Three groups: 0; 1; 2)

Gender 0: Male
1: Female

Valuation
year

Loss and expense information is provided by valuation year
j = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, corresponding to values of 2004, 2005,
2006, 2007, 2008, 2009, 2010, 2011, 2012, and 2013, respectively
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Table 3.3 Summary statistics of the variables in the models

Variable Mean Std.Dev. Minimum Maximum
Time 3.432 1.468 1.000 6.000

Property Damage Claims history 0.046 0.259 0.000 2.000
Incurred loss 878.420 1912.304 26.840 9961.710

Time 3.658 1.543 1.000 6.000
Bodily Injury Valuation year 6.165 2.705 1.000 10.000

Incurred loss 49874.300 80664.390 5.000 492488.900

The models of PD and BI claims are fitted using the claims for the years 2003–

2008, and their predictive ability is evaluated using the claims from 2009–2012. The

PD data for 2003–2008 consists of 88 observations on 84 policies for 62 brokers, and

each observation includes the claim experience at the individual policy level. The BI

data for 2003–2008 consists of 79 observations on 75 policies for 10 valuation years,

and each observation includes the claim experience at the individual policy level. Of

the 167 observations, 88 (52.69%) have PD claims covered by liability insurance and

79 (47.31%) have BI claims.

The analysis herein predicts the incurred losses for PD and BI claims covered by

TPL insurance. Table 3.4 presents the mean of the incurred losses of PD and BI claims

used in the forthcoming estimations for each of the six years.

Table 3.4 Distribution of losses by years

Property Damage Bodily Injury
Year Mean ($) Mean ($)
2003 223.492 71375.340
2004 971.011 18915.500
2005 1123.777 51496.350
2006 602.406 42494.930
2007 822.963 56468.520
2008 225.507 65004.330

The models are built considering the correlation between the variables to prevent

multicollinearity issues. Table 3.5 and Table 3.6 show the correlation between the

explanatory variables in the fitted models for the PD and BI claims, respectively. As a

result, the models presented below do not exhibit any multicollinearity issues.
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Table 3.5 Correlation matrix of independent variables in the PD model

x(1) x(2) x(4) x(5)
x(1) 1.000 0.059a – 0.134b* 0.202b*
x(2) 0.059a 1.000 – 0.204b* 0.141b*
x(4) – 0.134b* – 0.204b* 1.000 0.086c
x(5) 0.202b* 0.141b* 0.086c 1.000

*The greatest correlation between the discrete or continuous
variable and all possible pairs of levels of the nominal variable

aGoodman and Kruskal’s Lambda
bPoint-biserial correlation coefficient
cSpearman correlation coefficient
(Khamis, 2008)

Table 3.6 Correlation matrix of independent variables in the BI model

x(1) x(2) x(4) x(5) x(6)
x(1) 1.000 0.033a 0.029a 0.168b* 0.134b*
x(2) 0.033a 1.000 0.055a 0.248b* 0.285b*
x(4) 0.029a 0.055a 1.000 – 0.089b – 0.160b
x(5) 0.168b* 0.248b* – 0.089b 1.000 0.393c
x(6) 0.134b* 0.285b* – 0.160b 0.393c 1.000

*The greatest correlation between the discrete or continuous variable and
all possible pairs of levels of the nominal variable

aGoodman and Kruskal’s Lambda
bPoint-biserial correlation coefficient
cSpearman correlation coefficient
(Khamis, 2008)

3.5 Statistical Modeling

3.5.1 Fitted Model for Property Damage Claims

Using LMM analysis for the subject-specific random intercept effect homogeneous

model, the best-fitting random intercept effect model is specified as follows:

yijk = β0 + β1x
(1)
ijk + β2x

(2)
ijk + β3x

(3)
ijk + β4x

(4)
ijk + β5x

(5)
ijk + b0k + εijk,

i = 1, ..., n, j = 1, ..., ti, k = 1, ...,m
(3.4)

40



where n is the total number of different policies; m is the total number of different

brokers; ti is the number of repeated observations in policy i. ti is the same for all

policies in balanced panel data, but conversely, the panel data structure here is

unbalanced. In addition, yijk is the incurred loss on policy i (i=1,...,84) at time j

(j=1,...,6) for broker k (k=1,...,62).

In the fixed-effects part of the model, for a given random intercept, the parameter β0

defines an overall intercept. β1, β2, and β3 express the change in the incurred loss for

class, modifier1, and modifier2, respectively. The change caused by a one-year change

in claims history and time is specified in parameters β4 and β5, respectively.

In the random-effects part of the model, the term b0k in Equation 3.4 denotes a

broker-specific random intercept, while εijk is a residual random error. The random

intercept b0k is a subject-specific deviation from the fixed intercept β0. The variance

of the residuals is constant (homogeneous) across the groups of the categorical

variables in the model.

In this model, the Box-Cox transformation is applied to incurred losses. The

residuals are checked with the Shapiro-Wilk test to ensure that the normality

assumption is validated. As a result, the residuals are normally distributed according

to this test (p-value = 0.1873). Due to the panel data structure, the Durbin-Watson

test, which can be applied to unbalanced data, is used to evaluate whether the

residuals are independent. According to the Durbin-Watson test (DW = 2.1684;

p-value = 0.2500), the residuals appear to be independent and not autocorrelated.

When the outliers detected according to Cook’s distance are removed from the data,

there is no significant change in the parameters of the model. Since there are no

influential observations among the outliers, no observations are removed from the

data. The results of the broker-specific random intercept effect model for PD claims

are summarized in Table 3.7.
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Table 3.7 The broker-specific random intercept effect model estimation results

Variable Estimated
Coefficients

Std.
Error DF t-value p-value

Intercept 0.7298 0.0006 61 1269.6987 0.0000 ***

Class1 – 0.0018 0.0008 21 – 2.1841 0.0404 *

Modifier1 0.0009 0.0004 21 2.1550 0.0429 *

Modifier2 0.0015 0.0005 21 3.1515 0.0048 **

Claims history 0.0013 0.0007 21 1.8970 0.0717 ·

Time 0.0000 0.0001 21 0.2624 0.7956

Random parameter
Std. dev. of broker 0.0012
Log-likelihood 399.413
AIC – 782.826
BIC – 763.572
Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’·’ 0.1 ’ ’ 1

3.5.2 Fitted Model for Bodily Injury Claims

Using LMM analysis for the subject-specific random intercept effect heterogeneous

model, the best-fitting random intercept effect model is specified as follows:

yijk = β0 + β1x
(1)
ijk + β2x

(2)
ijk + β3x

(3)
ijk + β4x

(4)
ijk + β5x

(5)
ijk + β6x

(6)
ijk + b0k + εijk,

i = 1, ..., n, j = 1, ..., ti, k = 1, ...,m
(3.5)

where n is the total number of different policies; m is the total number of different

valuation years; ti is the number of repeated observations in policy i. ti is the same

for all policies in balanced panel data, but conversely, the panel data structure here

is unbalanced. In addition, yijk is the incurred loss on policy i (i=1,...,75) at time j

(j=1,...,6) for valuation year k (k=1,...,10).

In the fixed-effects part of the model, for a given random intercept, the parameter β0

defines an overall intercept. β1, β2, β3, and β4 express the change in the incurred loss

for class, rate modifier1, rate modifier2, and gender, respectively. The change caused

by a one-year change in valuation year and time is specified in parameters β5 and β6,
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respectively.

In the random-effects part of the model, the term b0k in Equation 3.5 denotes a

valuation year-specific random intercept, while εijk is a residual random error. The

random intercept b0k is a subject-specific deviation from the fixed intercept β0. The

variance of the residuals is not constant (heterogeneous) across the class groups in

this model. The variance of the residuals for the class0 and class1 is denoted as σ2
0

and σ2
1 , respectively.

In this model, the logarithmic transformation is applied to incurred losses. The

residuals are normally distributed according to the Shapiro-Wilk test (p-value =

0.1874). The Durbin-Watson test (DW = 2.1529; p-value = 0.5080) shows that the

residuals appear to be independent and not autocorrelated. When the outliers detected

according to Cook’s distance are removed from the data, there is no significant

change in the parameters of the model. Since there are no influential observations

among the outliers, no observations are removed from the data. The results of the

valuation year-specific random intercept effect model for BI claims are summarized

in Table 3.8.

3.5.3 Performance Metrics

In this study, the LMM approach is applied to unbalanced panel data to determine

which factors have a significant impact on the incurred losses of PD and BI claims that

policyholders will make next year and to predict the losses for next year. To inform

model selection, the AIC and LRT are used.

The evaluation metrics used in this analysis are R-squared, Root Mean Square

Error (RMSE), Mean Square Error (MSE), and Mean Absolute Percentage Error

(MAPE). These performance metrics are the most common metrics used to measure

the prediction accuracy of a model.
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Table 3.8 The valuation year-specific random intercept effect model estimation results

Variable Estimated
Coefficients

Std.
Error DF t-value p-value

Intercept 4.5138 1.0835 64 4.1660 0.0001 ***

Class1 0.7321 0.3757 64 1.9483 0.0558 ·

Rate modifier1 0.9184 0.3923 64 2.3410 0.0224 *

Rate modifier2 – 2.7084 0.5033 64 – 5.3817 0.0000 ***

Gender1 – 1.0485 0.3455 64 – 3.0349 0.0035 **

Valuation year 0.8981 0.1627 8 5.5212 0.0006***
Time – 0.2519 0.1367 64 – 1.8432 0.0699 ·

Random parameter
Std. dev. of
valuation year 1.281
Log-likelihood – 154.775
AIC 329.550
BIC 352.317

σ2
0 1.000

σ2
1 0.263

Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’·’ 0.1 ’ ’ 1

R-squared is a statistical measure in a regression model that determines the

proportion of variance in the dependent variable that can be explained by the

independent variable. R-squared is shown in Equation 3.6.

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(3.6)

where n is the number of observations, ŷi is the predicted value for the ith observation

in the dataset, and yi is the observed value for the ith observation. Generally, a higher

R-squared indicates more variability which is explained by the model. It takes values

between 0 and 1.

RMSE measures the average difference between predicted values by a model and

the actual values. The model with a lower RMSE is considered a better model. RMSE
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is shown in Equation 3.7.

RMSE =

√∑n
i=1(yi − ŷi)2

n
(3.7)

MSE measures the amount of error in statistical models. This metric assesses the

average squared difference between the observed and predicted values. Themodel with

a lower MSE is considered a better model. MSE is shown in Equation 3.8.

MSE =

∑n
i=1(yi − ŷi)

2

n
(3.8)

MAPE measures the prediction accuracy in statistical models. Lower MAPE values

indicate better model performance. It usually expresses the accuracy as a ratio defined

by Equation 3.9.

MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

x100 (3.9)

These performance assessment measures are acquired as presented in Table 3.9.

Table 3.9 Performance evaluation metrics

R-squared RMSE MSE MAPE
Property Damage 0.7779 0.0009 9.834e-7 36.0236

Bodily Injury 0.7157 1.5408 2.3739 2.5105

Regarding the R-squared of the PD and BI models, the fitted model’s R-squared of

0.7779 and 0.7157, respectively. 78% of the variation in the incurred losses for PD

claims is accounted for by the values of the explanatory variables in the model while

72% of the variation in the incurred losses for BI claims is explained by the values of

the variables in the model. In other words, these R-squared values show that the models

fit the data well. Additionally, the small RMSE and MSE values support these results.
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A MAPE of 36.0236% implies that, on average, the predictions of the incurred PD

losses are 36.0236% off the actual values. This metric describes that the fitted model

reasonably predicts the incurred PD losses. In the predictions of the incurred BI losses,

a MAPE of 2.5105% shows that the fitted model predicts the incurred BI losses highly

accurately.

3.6 Actuarial Modeling

3.6.1 Bühlmann-Straub Credibility Model

In the class rating part of this study, the predicted incurred losses for PD and BI

claims in the previous sections are weighted with the earned exposures. Earned

exposure is one of the most commonly used exposure statistics. In the context of

automobile insurance, ”earned exposure” typically refers to the exposure or risk that

an insurance company has accumulated over a specific period for a policyholder. This

exposure is considered ”earned” because it corresponds to the time for which the

insurance coverage has been provided and is in force. Earned exposure is often used

in the calculation of insurance premiums. The insurance companies use earned

exposure calculations to assess the amount of risk they have assumed during a

specific period and to determine the appropriate premium to charge for providing

coverage. This approach helps insurers align premiums with the actual level of risk

exposure over time. The average earned exposures by year are given in Table 3.10 as

month-to-date (MTD).

Using the one-dimensional Bühlmann-Straub model, the credibility premium

calculated for each claim type is specified in Table 3.11.

A loss ratio is a fundamental financial metric used in the insurance industry to

measure the profitability of an insurance company. The loss ratio is calculated as

incurred losses divided by earned premiums over a specified period. The results in

Table 3.12 are obtained by weighting the loss ratios with the earned exposure.
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Table 3.10 Distribution of average earned exposures by years

Property Damage Bodily Injury
Year Mean (MTD) Mean (MTD)
2003 0.1321 0.1132
2004 1.3861 1.4564
2005 1.8988 1.8957
2006 1.6241 1.7432
2007 1.4833 1.8336
2008 1.7581 2.2039
2009 1.7568 1.4249
2010 1.8278 1.9929
2011 1.7430 2.0971
2012 1.9982 1.8609

Table 3.11 Bühlmann-Straub credibility model estimation results for incurred losses

Claim Type Individual Mean Weight Credibility Factor Credibility
Premium

Property Damage 1356.796 132.305 0.9753 12711.3

Bodily Injury 791957.440 128.986 0.9747 894315.1

Structure parameters estimators

Collective premium (µ0) 453513.2
Between claim types variance (τ 2) 3.047112e5
Within claim types variance (σ2) 1.020628e12

The average inflation rate of the six years in the data that we use in the statistical

modeling is 0.1437. The premiums are calculated considering this ratio.

3.6.2 Bonus-Malus Scale Model

In the merit rating part of this study, bonus-malus scales are examined for two

scenarios: one claim type and two claim types (PD and BI).

For both scenarios, the scale with seven levels (numbered from 0 to 6) is used. The

policyholders enter the system in the sixth level and move between levels based on
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Table 3.12 Bühlmann-Straub credibility model estimation results for loss ratio

Claim Type Individual Mean Weight Credibility Factor Credibility
Premium

PropertyDamage 3.591 132.305 0.834 21.420

Bodily Injury 186.039 128.986 0.830 195.015

Structure parameters estimators

Collective premium (µ0) 108.217
Between claim types variance (τ 2) 13846.230
Within claim types variance (σ2) 365396.200

whether they have a claim or not. As they incur claims, they progress from level 6 to

level 0.

Scenario 1: −1/ + 2

The total number of claims, N, is Poisson distributed with annual mean claim

frequency, λ = 0.1856. The observed and fitted distribution of the number of claims is

given in Table 3.13.

Table 3.13 Observed and fitted distribution of number of claims

a na pa npa
0 744 0.8306 617.9707
1 145 0.1542 22.3533
2 11 0.0143 0.1574

≥3 0 0.0009 0
Total 900 640.4813

In this bonus-malus scale, only one claim type is considered. The claims with

property damage only result in a penalty of two levels. If no claims are reported, the

policyholder moves up by one level. The transition matrix for a policyholder with

annual mean claim frequency λ is as below:
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P(λ) =



0.8306 0 0.1542 0 0.0143 0 0.0009

0.8306 0 0 0.1542 0 0.0143 0.0009

0 0.8306 0 0 0.1542 0 0.0152

0 0 0.8306 0 0 0.1542 0.0152

0 0 0 0.8306 0 0 0.1694

0 0 0 0 0.8306 0 0.1694

0 0 0 0 0 0.8306 0.1694



Scenario 2: −1/ + 2/ + 3

The total number of claims, N, is Poisson distributed with annual mean claim

frequency, λ = 0.1751. The probability that each claim is classified in one of the two

possible categories, PD or BI, is q1 = 0.1729 and q2 = 0.1236, respectively. The

number of PD claims, N1, is Poisson distributed with annual mean claim frequency,

λq1 = 0.0303, while the number of BI claims, N2, is Poisson distributed with annual

mean claim frequency, λq2 = 0.0216. The observed and fitted distribution of the

number of claims is given in Table 3.14.

Table 3.14 Observed and fitted distribution of number of claims

a na pa npa
0 789 0.8394 662.2654
1 163 0.1469 23.9568
2 2 0.0129 0.0257

≥3 0 0.0008 0
Total 954 686.2479

In this bonus-malus scale, instead of considering one type of claim, the claims are

penalized differently as claims with PD only and BI. The claims with PD only result in a

penalty of two levels while the claims with BI are penalized by three levels. If n1 claims

with PD only and n2 claims with BI are reported during the year, the policyholders

move 2n1+3n2 levels down. If no claims are reported, the policyholder moves up by

one level. The transition matrix for a policyholder with annual mean claim frequency

λ and vector probability q = (q1, q2)T is as below:
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P(λ; q) =



0.9494 0 0.0287 0.0205 0.0004 0.0006 0.0004

0.9494 0 0 0.0287 0.0205 0.0004 0.0010

0 0.9494 0 0 0.0287 0.0205 0.0014

0 0 0.9494 0 0 0.0287 0.0219

0 0 0 0.9494 0 0 0.0506

0 0 0 0 0.9494 0 0.0506

0 0 0 0 0 0.9494 0.0506



For both scenarios mentioned above, the stationary probabilities for a policyholder

with mean frequency λ to be in level l are obtained. The collective premium obtained

over predicted incurred losses for 2010 in the previous section and the written premium

of the insurance company for 2010 are distributed to the bonus-malus levels for both

scenarios by the following Equation 3.10 and 3.11.

For−1/ + 2;

Premium = P ∗ πl (3.10)

and for−1/ + 2/ + 3;

Premium = P ∗ πl ∗ w1 + P ∗ πl ∗ w2 (3.11)

where P is collective premium or written premium, πl is the stationary probabilities

for a policyholder to be in level l. w1 = 0.5269 and w2 = 0.4731 are weights of PD and

BI claims in the portfolio, respectively.

Written premium denotes the overall amount customers are obligated to pay for

insurance coverage on policies issued by a company during a specific period. The

total written premium of the insurance company in 2010 is obtained at $15226.08

(with inflation rate) as month-to-date. The calculated collective premium for the
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incurred losses in 2010 is $453513.2 (with inflation rate).

The distribution of the collective premium and the written premium to the levels are

given in Table 3.15 and Table 3.16, respectively.

Table 3.15 Results for the bonus-malus systems -1/+2/+3 and -1/+2 for collective premium

-1/+2/+3 -1/+2
Level l πl Premium ($) πl Premium ($)

0 0.1601% 726.08 2.1519% 9759.15
1 0.3779% 1713.83 2.9279% 13278.41
2 0.6283% 2849.42 5.4255% 24605.36
3 2.5092% 11379.55 6.3112% 28622.13
4 4.8740% 22104.23 14.0913% 63905.91
5 4.6274% 20985.87 11.7042% 53080.09
6 86.8231% 393754.20 57.3880% 260262.20

Table 3.16 Results for the bonus-malus systems -1/+2/+3 and -1/+2 for written premium(MTD)

-1/+2/+3 -1/+2
Level l πl Premium ($) πl Premium ($)
0 0.1601% 24.38 2.1519% 327.65
1 0.3779% 57.54 2.9279% 445.80
2 0.6283% 95.67 5.4255% 826.09
3 2.5092% 382.05 6.3112% 960.95
4 4.8740% 742.12 14.0913% 2145.55
5 4.6274% 704.57 11.7042% 1782.09
6 86.8231% 13219.75 57.3880% 8737.94

3.7 Results

This study aims to evaluate premiums using the Bühlmann-Straub credibility

model and the bonus-malus scales by considering the claim types as PD and BI in the

TPL insurance. LMMs are employed to predict PD and BI incurred losses separately,
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given the unbalanced nature of the data structure with repeated measures. Within the

LMM framework, random effects not only ascertain the correlation structure among

observations from the same subject but also account for subject-specific heterogeneity

arising from unobserved characteristics.

In LMM analysis for the broker-specific random intercept effect homogeneous

model of PD claims, the risk factors having a significant impact on the incurred losses

are “class”, “modifier”, and “claims history”. The ”time” is included in the model

even if it is thought to be ineffective and a one-year change in time causes increased

incurred losses of PD claims. The most important feature that distinguishes class0

and class1 is that there are no annual distance-driven restrictions in class1. The class1

provides a mitigating effect on the incurred claims compared to class0. The reason for

this may be that since drivers in class1 are both pleasure and commute users and are

in traffic much more than drivers in class0, they have gained experience and hence

tend to make claims less. The modifier groups, modifier1 and modifier2, determined

by the insurance company have an increasing effect on the incurred losses compared

to modifier0. In addition, as claims history increases, the incurred losses of PD claims

also increase.

In LMM analysis for the valuation year-specific random intercept effect

heterogeneous model of BI claims, the risk factors having a significant impact on the

incurred losses are “class”, “rate modifier”, “gender”, “valuation year”, and “time”.

The class1 provides an increasing effect on the incurred losses compared to class0.

The rate modifier groups, rate modifier1, and rate modifier2, determined by the

insurance company are rating factors linked to the modifier. The rate modifier1 has

an increasing effect on the incurred losses compared to rate modifier0 whereas the

drivers in rate modifier2 tend to make fewer BI claims. Female drivers make fewer BI

claims than male drivers. Being a long-distance driver increases the risk of BI claims.

Because male drivers drive more intercity than female drivers, they may tend to make

much more BI claims. A one-year change in the accident year causes decreased

incurred losses of BI claims while a one-year change in the valuation year causes

increased incurred losses. In other words, as the accident year decreases, the incurred
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losses of BI also decrease. If the valuation year increases after the claim is reported,

the process may be taking longer because there is a BI claim.

The statistical models mentioned above both provide us with information about the

risk characteristics of the policyholders used in the basic premium calculation and give

predictions of the incurred losses according to the claim types. These predicted incurred

losses byweightingwith earned exposures, credibility premiums are calculated for each

claim type.

The results obtained in the Bühlmann-Straub model indicate that the variance

between claim types is much less than the variance within the types of claim.

Furthermore, the credibility premium for BI is much higher than PD when these

results are evaluated on a portfolio basis. The credibility factor represents that the

policyholders’ claims are weighted more than the average of the portfolio (µ0) in the

premium evaluation made based on the incurred losses. When these results are

compared with ones obtained on loss ratios, in the premium evaluation based on loss

ratios the overall mean is weighted much more than the evaluation made on the

incurred losses.

Transition probabilities at the bonus-malus scales are examined under two

scenarios. The first is to evaluate the number of claims only as PD and the other is to

evaluate the claims according to whether they are PD or BI. When the distribution of

the collective premium and the written premium to the levels is examined, the

collective premium and the written premium are distributed more reasonably between

the levels in the system taking into account the claim types. Most of the policyholders

are expected to concentrate at the starting level in the long term and thus, the intensity

of the levels decreases towards zero level. The results of scenario 2 (-1/+2/+3)

support this expectation.
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3.8 Summary

The main purpose of this study is to make a fair premium evaluation by

considering the claim types under TPL insurance in private passenger vehicle

accidents in Ontario, Canada. LMMs are consistently employed for modeling

actuarial data, offering a distinct advantage in analyzing unbalanced panel data. This

methodology mitigates the additional complexity stemming from the inherent

correlation within each policy.

In this study, the developed model for PD claims analyzes the change of the incurred

losses in the context of a broker-specific random intercept effect homogeneous model

by dealing with unbalanced panel data. The estimation results obtained from the model

demonstrate that the broker, which is a time-varying factor, has a significant influence

on the change of the incurred losses of PD claims as a random parameter. In addition,

rating factors such as class, modifier, and claims history have been found to correlate

with the change of the incurred losses as fixed effects.

The constructed model for BI claims examines the variation in incurred losses

within the framework of a valuation year-specific random intercept effect

heterogeneous model, addressing the challenges posed by unbalanced panel data. In

addition, it considers the difference in the variances of the residuals across classes.

The estimation results obtained from the model reveal a notable impact of the

valuation year treated as a time-varying factor, on the variation in incurred losses for

BI claims as a random parameter. Furthermore, the fixed-effects part of the model

indicates that the rating factors including class, rate modifier, gender, valuation year,

and time are correlated with changes in incurred losses. Moreover, by considering

different performance evaluation metrics, this study represents the models that fit the

data well and hence provides a more reliable interpretation of the results.

The rating factors obtained in the statistical modeling show that these risk

characteristics are important in premium evaluation. The predictions obtained from

these statistical models are weighted by earned exposures and credibility premiums
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are calculated for each claim type. The fact that the premium for BI claims is much

more than the premium for PD claims emphasizes the importance of considering

claim types when evaluating premiums. In the bonus-malus scale, the reasonable

distribution of premiums to BMS levels over the transition matrix prepared by

considering the types of claims shows how important it is to take the number of

claims into account whether they are PD or BI.

In this study, the emphasis has been placed on a fairer premium assessment over

the severity of claims and the number of claims by taking into account the PD and BI

claims, separately. In this way, the sector will be prevented from suffering losses and

a more fair determination will be made to the policyholders.
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CHAPTER FOUR

CONCLUSIONS AND FUTUREWORKS

The use of statistical modeling in actuarial science enables the integration of risk

factors into the premium pricing process, thereby enhancing the accuracy of insurance

premiums and mitigating the financial risk for insurers. One of the aims of this study

is to present a statistical analysis assessing the impact of various risk factors on

DCPD claims in private passenger vehicle accidents. Using automobile insurance

data in Ontario, Canada for the decade-year period between 2003 and 2012, a

statistical model of PD is explored via a generalized linear binary logit mixed model

and considered the imbalance between the classes of insureds. The results indicate

that several risk factors have a significant impact on the likelihood of DCPD claims,

including usage, training, outstanding loss, and incurred loss. The effects of these risk

factors are observed under the weights — the number of trials used to generate each

success proportion — in the different classes of insureds. The GLMMs analysis

provides a powerful tool for quantifying the impact of risk factors on binary

outcomes, which are called DCPD claims and PD claims covered by TPL insurance.

These models can also inform insurance underwriting and policy design, focusing on

identifying the most significant risk factors. The performance metrics calculated by

considering the class imbalance in binary outcomes verify the model’s ability to

accurately predict classes. The F1 score, an evaluation metric to measure the

performance of classification, is calculated as 0.934. In addition, the PR AUC, which

is the area under the PR curve, is computed as 0.953. These high scores indicate that

the model performs well in the classification. The other metrics also support the

classification accuracy of the model. The findings of the analysis can help insurers

better understand the underlying drivers of property damages and develop more

accurate and effective strategies for risk mitigation. Furthermore, this study

highlights the importance of developing class-specific risk assessment models to

account for the imbalance across different classes.
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Another aim of this study is to evaluate the premiums by considering the claim

types under TPL insurance. In this study, a statistical analysis is presented that

examines the effect of various risk factors on incurred PD and BI losses in private

passenger vehicle accidents. The statistical models of the PD and BI claims are

explored via a subject-specific random intercept effect. The estimation results

obtained from the models demonstrate that the broker, which is a time-varying factor,

has a significant influence on the change of the incurred losses of PD claims as a

random parameter whereas the predictions reveal a notable impact of the valuation

year treated as a time-varying factor, on the variation in incurred losses for BI claims

as a random parameter. The results indicate that several risk factors, class, modifier,

claims history, and time, have a significant impact on the incurred losses of PD

claims. For BI claims, the risk factors that are correlated with change of the incurred

losses are class, rate modifier, gender, valuation year, and time, observed their effects

under the heterogeneity of residual variances between the class groups. The LMM

analysis provides information about the risk characteristics of the policyholders used

in the basic premium calculation and gives predictions of the incurred losses

according to the claim types. The LMMs are usually used in automobile insurance

since actuaries have frequently repeated measurements over time in the insurance

industry.

The performance metrics verify the model’s ability to accurately predict the incurred

losses. The R-squared, an evaluation metric to measure the variation of the incurred

losses, is calculated, for PD and BI claims, as 0.7779 and 0.7157, respectively. These

high scores indicate that the models perform well in the prediction. The other metrics

also support the prediction accuracy of these models.

Over these predicted incurred losses, credibility premiums are calculated for each

claim type by using the Bühlmann-Straub model. When calculating credibility

premiums, the predictions in statistical modeling are weighted by earned exposures.

The results obtained in the Bühlmann-Straub model indicate that the variance

between claim types is much less than the variance within the types of claim.

Furthermore, the credibility premium for BI claims is much higher than for PD
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claims. In addition, bonus-malus scales are designed by considering the claim types.

The premiums are distributed reasonably to bonus-malus levels when the system is

designed by considering the types of claims. These results indicate that it is important

to consider whether the claims are property or bodily in the evaluation to be made

based on both the severity of claims and the number of claims. The severity of claims

plays a role as important as the frequency information of claims in the premium

evaluation. In BMS, the severity information is indirectly reflected model by

distinguishing the claims into two categories, PD and BI, although the system is

designed based on the number of claims.

In future work, under the linear credibility approach, the multidimensional

credibility model may be considered as the Bühlmann-Straub model with time

dependence. Thanks to adding the time effect to the credibility model, it is assumed

that the ability of drivers is not constant over time, and this assumption can raise the

quality of the estimator in the case of being adequate claim history. The interpretation

of this approach is that new claim information will affect the claim prediction more

than old claim information. Furthermore, the premiums may be evaluated by taking

into account the claim modifications. In additional work, a new bonus-malus scale

theory could explore how insurers might develop different bonus-malus scales to

account for the differences in a priori risk and the possible transitions between

different scale models because the a priori risk can change over time. Transition rules

within the classic bonus-malus scale models do not depend on the a priori risk,

therefore; this experience rating model generates the same surcharges and the same

discounts for all policyholders, Hence, this system may appear unfair to many

policyholders. In addition, the assumption of independence between observations is

retained in classical linear models. This assumption fails when correlation prevails

among the observations. To extend the application of classical linear models to the

case that longitudinal data with measurements for a subject taken at different time

points are considered, a generalized estimating equation (GEE) may be used instead

of GLMM and LMM.
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