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Kentleşme ve nüfus artışı nedeniyle artan enerji talebi ve sera gazı emisyonlarını azaltma ihtiyacı, 

enerji piyasalarını güneş fotovoltaikleri (PV) gibi yenilenebilir enerji kaynaklarına yönlendirmektedir. 

Bununla birlikte, güneş paneli verimliliği sınırlıdır (%15-25) ve çıkış gücü sıcaklık (T) ve ışınım (G) 

değişiklikleriyle dalgalanarak şebekeye bağlı PV uygulamalarını kısıtlar. Bu zorlukların üstesinden gelmek 

için bu tez, şebekeye bağlı 100 kW'lık bir PV sistemi için maksimum güç noktası izleme (MPPT) kontrolü 

olarak denetimli bir derin öğrenme uzun kısa süreli bellek (LSTM) ağı sunmaktadır. LSTM tabanlı MPPT, 

Simulink MATLAB2023© kullanılarak ileri beslemeli derin sinir ağı (FF-DNN) ve geleneksel değiştir ve 

gözle (P&O) MPPT ile karşılaştırılmıştır. DL tabanlı MPPT kontrolörlerinin performansı ortalama kare 

hata, kök ortalama kare hata, ortalama ortalama hata, R2 skoru ve güç tahmin hatası ile değerlendirilmiştir. 

Başlangıçta, bir milyon veri noktası toplanmış, ön işleme tabi tutulmuş (z-skor normalizasyonu) ve eğitim 

ve test setlerine 80/20 oranında bölünmeden önce görselleştirilmiştir (çubuk grafikler, histogram ve 

korelasyon matrisi). LSTM ve FF-DNN, Adam optimizer kullanılarak iki girdiye (T, G), tek hedefe (Vmp) 

ve iki gizli katmana (64 ve 32 birim) sahip zaman serisi veri odaklı yaklaşımlardır. DNN tarafından 

çıkarılan Vmp, gerçek Vpv ile karşılaştırılır ve hata sinyali, yükseltici tip DC-DC dönüştürücü çıkış 

voltajını giriş voltajına (Vpv) göre kontrol etmek için görev döngüsünü ayarlayan bir PI denetleyicisine 

verilir. Önerilen stack LSTM MPPT'nin yükseltici tip bir DC-DC dönüştürücü ile entegre edilmiş yüksek 

verimliliği göz önüne alındığında, DC bağlantı voltajının 800V'luk bir referansa göre düzenlenmiş 

kontrolünü sağlar. Ayrıca, bağımsız PI kontrolörlerine sahip 3 seviyeli nötr nokta kenetli (NPC) inverter 

kontrolü, güç şebekesiyle sorunsuz entegrasyon sağlamak için DC bara voltajının hassas bir şekilde 

düzenlenmesini sağlar. Özellikle, önerilen LSTM MPPT, PV dizisinden 98,7 kW güç çekmekte ve NPC 

inverter kontrolü ile 98,4kW aktif gücü şebekeye aktarmaktadır. Bu şekilde, güç kalitesinin dağıtılmış enerji 

kaynaklarının ve mikro şebekelerin şebeke ara bağlantısına yönelik uluslararası standartlara uygun olmasını 

sağlarken %99'un üzerinde bir güç aktarım verimliliği elde edilmektedir. 

Anahtar Kelimeler: Güneş Fotovoltaik Sistemi, Maksimum Güç Noktası İzleme Kontrolü, 

Yükseltici tip DC-DC dönüştürücü, NPC Şebekeye Bağlı İnvertör, Yapay Zekâ, Derin Öğrenme, Uzun Kısa 

Süreli Bellek Ağı, Derin Sinir Ağı.  
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Rising energy demand from urbanization and population growth coupled with the need to mitigate 

greenhouse gas emissions is driving energy markets toward renewable energy sources such as solar 

photovoltaics (PV). However, solar panel efficiency is limited (15-25%) and output power fluctuates with 

temperature (T) and irradiance (G) changes, constraining grid-tied PV applications. To address these 

challenges, this thesis presents a supervised deep learning long short-term memory (LSTM) network as a 

maximum power point tracking (MPPT) control for a 100-kW grid-connected PV system. The LSTM-based 

MPPT is compared to a feedforward deep neural network (FF-DNN) and conventional perturb and observe 

(P&O) MPPT using Simulink MATLAB. Performance of DL based MPPT controllers is evaluated via 

mean square error, root mean square error, mean average error, R2 score and power prediction error. 

Initially, one million data points are collected and pre-processed (z-score normalization), and visualized 

(bar charts, histogram, and correlation matrix) before an 80/20 split into training and test sets. The LSTM 

and FF-DNN are time series data driven approaches that have two inputs (T, G), single target (Vmp), and 

two hidden layers (64 and 32 units), using the Adam optimizer. The DNN extracted Vmp is compared to 

actual Vpv and the error signal is given to a PI controller, which adjusts the duty cycle to control the DC-

DC boost converter output voltage with respect to the input voltage (Vpv). Given the high efficiency of the 

proposed stacked LSTM MPPT integrated with a DC-DC boost converter enables regulated control of the 

DC link voltage to a reference of 800V. Furthermore, a 3-level neutral point clamped (NPC) inverter with 

independent PI controllers allows precise regulation of the DC bus voltage to ensure seamless integration 

with the power grid. In particular, the proposed LSTM MPPT draws 98.7 kW of power from the PV array 

and, together with the NPC inverter control, transfers 98.4kW of active power to the grid. In this way, a 

power transfer efficiency of over 99% is achieved while ensuring that the power quality complies with 

international standards for grid interconnection of distributed energy resources and microgrids. 

Keywords: Solar Photovoltaic System, Maximum Power Point Tracking Control, Boost 

Converter, NPC Grid-Tied Inverter, Artificial Intelligence, Deep Learning, Long Short-Term Memory 

Network, Deep Neural Network. 
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SİMGELER VE KISALTMALAR 

 

Simgeler 

 

A : Amper 

V : Volt 

W : Watt 

VAR : Reaktif amper volt 

Pu : Birim başına 

H : Henry 

s : Saniye 

M : Mega 

t : Zaman 

𝑉𝑑𝑐, 𝑉𝑏𝑢𝑠 : Bara gerilimi 

𝐼𝑎 , 𝐼𝑏, 𝐼𝑐 : Üç faz akım bileşenleri 

𝑉𝑎 , 𝑉𝑏, 𝑉𝑐 : Üç faz gerilim bileşenleri 

𝐼𝑑, 𝐼𝑞 : d-q akım bileşenleri 

𝑉𝑑, 𝑉𝑞 : d-q gerilim bileşenleri 

𝑁 : Toplam örnek sayısı 
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1.  GİRİŞ 

 

Bu tez, 100 kW'lık bir fotovoltaik sistemin, optimize edilmiş dağıtılmış güç 

üretimi için yapay zekâ (AI) tabanlı bir hibrit kontrolör kullanılarak bir elektrik mikro 

şebekesine entegrasyonunu ele almaktadır. Tezde kullanılan hibrit kavramı iki 

kontrolörün kombinasyonunu ifade etmektedir: (a) PV tarafında, Yapay Zeka (AI) 

kategorisine giren önerilen Derin Öğrenme (DL) tabanlı MPPT kontrolörü kullanılır, (b) 

şebeke tarafında, PV'nin DC gücünü AC'ye dönüştürmek ve şebeke entegrasyonuna 

uygun hale getirmek için düşüş (droop) kontrol olarak da bilinen ilgili PI kontrolörleri ile 

entegre edilmiş geleneksel akım ve gerilim kontrolörleri kullanılır. Merkezi olmayan bir 

PV kaynağı olarak, önerilen 100 kW'lık dağıtılmış güç üretimi yaklaşık 5 ev veya küçük 

bir endüstriyel tesisi besleyebilir. Önerilen sistem iki aşamada çalışmaktadır: İlk aşamada, 

100 kW dağıtılmış güneş enerjisi üretilir ve bir stack LSTM tabanlı MPPT kontrolörü, 

yükseltici tip (boost) DC-DC dönüştürücünün kontrol sinyalini düzenleyerek ve 800 V 

DC'lik bir voltaj çıkışı sağlayarak maksimum güce ulaşır. İkinci aşamada 800 V DC, 

şebekeye entegre edilmiş üç fazlı 3 seviyeli bir NPC (Nötr Nokta Kenetli) inverter 

tarafından AC'ye dönüştürülür ve aktif güç şebekeye aktarılır. Genel olarak, bu hibrit 

yapay zekâ kontrol yaklaşımı, optimize edilmiş dağıtılmış solar PV üretimi ve sorunsuz 

şebeke entegrasyonu sağlar. 

Bölüm 1, araştırma alanına kapsamlı bir giriş sunmakta, mevcut literatüre genel 

bir bakış sağlamakta, araştırma boşluklarını belirlemekte ve daha ileri araştırmalar için 

altyapı oluşturmaktadır. Araştırmanın kapsamı ve hedefleri tanımlanmakta, tezin yapısı 

özetlenmekte ve bölümün ana katkıları vurgulanarak sonuçlandırılmaktadır.  

 

1.1.  Araştırma Altyapısı 

 

Küresel enerji talebi nüfus artışı, sanayileşme, kentleşme ve ekonomik kalkınma 

nedeniyle katlanarak artmaktadır (Rehman et al., 2022). Günümüzde, elektrik enerjisinin 

başlıca küresel üretimi, Şekil 1.1'de gösterildiği gibi, bu büyük enerji talebini karşılamak 

için yaklaşık yüzde 80'ini oluşturan kömür, petrol, doğal gaz ve nükleer enerji gibi 

geleneksel enerji kaynaklarına dayanmaktadır (World Electricity Generation, 2023). 

Ancak kömür, petrol ve doğal gaz gibi fosil yakıtlı enerji kaynakları zamanla tükenmekte, 

yüksek yakıt fiyatlarını korumakta ve 2030 yılına kadar yaklaşık 40,4 Gt CO2 üretmesi 
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beklenen karbondioksit gibi büyük sera gazı emisyonlarına neden olmaktadır (Quadrelli 

& Peterson, 2007).  

 

 

 

Şekil 1.1. Elektrik enerjisi kaynaklarının başlıca küresel üretim katkısı 

 

Benzer şekilde, nükleer enerji sera gazı yaymadan büyük miktarlarda elektrik 

üretebilir, ancak yıkıcı kazalara neden olan radyoaktif atık üretir (Adamantiades & 

Kessides, 2009). Artan enerji talebiyle birlikte bu zorluklar daha belirgin hale gelmekte, 

güç kalitesi sorunları ve elektrik kesintilerine yol açmaktadır. ABD Hükümetine göre, 

elektrik kesintileri ve güç kalitesi sorunları Amerikan işletmelerine her yıl ortalama 100 

milyar dolardan fazla zarara mal olmaktadır (Aggarwal et al., 2010). Geleneksel enerji ile 

ilgili sorunları çözmek için birçok çalışma yenilenebilir enerjilerin kullanılması 

çağrısında bulunmuştur. Bu nedenle, Yenilenebilir Enerji Kaynakları (RES) 

entegrasyonu son on yılda değerli bir araştırma konusu haline gelmiştir. Avrupa 

Birliği'nin Yenilenebilir Enerji Direktifi, 2030 yılına kadar toplam üretimin %32'sinden 

fazlasını ve 2050 yılına kadar %100'ünü yenilenebilir enerjilerden elde etmeyi 

hedeflemektedir (Shah et al., 2015). 

Solar fotovoltaik (PV), rüzgâr enerjisi, hidroelektrik enerji, biyogaz, biyoenerji ve 

jeotermal enerji gibi RES'ler bol miktarda bulunur, doğal olarak yenilenebilir, sera gazı 

emisyonlarını azaltır ve hem merkezi hem de merkezi olmayan enerji sistemlerinin 

entegrasyonunu sağlar. RES'ler arasında güneş enerjisi ve rüzgar enerjisi, yazarların 

Coal, 36, 47%

Oil, 2.5, 3%

Nuclear, 9.8, 13%

Wind, 6.5, 8%

Solar, 3.6, 5%

Hydro, 15, 19%

Bio Geo, 2.7, 4%

Other, 0.9, 1%

[], []

Yakıt Kaynağı Yüzdesine Göre Enerji Karması Üretimi

Coal Oil Nuclear Wind Solar Hydro Bio Geo Other
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(Qazi et al., 2019)'de belirttiği gibi hızla artan enerji talebinin üstesinden gelmek için 

yaygın olarak kullanılan RES'lerdir. RES'in çeşitli faydalarına rağmen, Işınım (G) ve 

Sıcaklık (T) gibi değişken ortam parametreleri nedeniyle enerji üretimindeki kesinti, 

şebekeye bağlı güç sistemlerinde uygulamalarını sınırlamaktadır. Bu sınırlamalar, 

geleneksel enerji kaynaklarının yarattığı zorlukların üstesinden gelmek ve küresel artan 

enerji talebini karşılamak için daha verimli MPPT kontrolörleri, yeterli gelişmiş güç 

elektroniği kontrol teknikleri, pil yönetim sistemleri ve saha seçiminin dikkatli bir şekilde 

planlanmasıyla çözülebilir (Zeb et al., 2018). 

 

 
 

Şekil 1.2. 2001-2003 yılları arasında küresel PV enerji kurulumu 

 

Yarı iletken malzemeler, paketleme ve maliyet düşürme alanlarındaki ilerlemeler 

sayesinde solar enerjili PV'ler RES'ler arasında en hızlı büyümeyi yaşamıştır (Apeh et al., 

2022). Ayrıca, PV panelinin hareketli parçası yoktur, bu da onu uzun ömürlü, sağlam ve 

az bakım gerektiren bir cihaz haline getirir. Bu yüzyılın sonunda, toplam enerjinin 

%60'ına varan oranlarda RES'ler arasında en önemli üretime sahip olması beklenmektedir 

(Islam et al., 2015). Son yıllarda, Şekil 1.2'de gösterildiği gibi, dünya çapında bir PV 

sisteminin kurulu kapasitesi keskin bir şekilde artmıştır (Makkiabadi et al., 2021), (Javadi 

et al., 2020). Yirminci yüzyılın sonlarında ABD, 1996 yılında yaklaşık 77 MW'a ulaşan 

solar PV kurulumunun zirvesindeydi (Edenhofer et al., 2012). Japonya 2004 yılında 

ABD'yi geçerek 1132 MW'lık bir solar PV üretim kapasitesine ulaşmıştır. Almanya, takip 
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eden on yıl boyunca dünyanın en büyük solar PV'si ile üretilen elektrik üreticisi oldu ve 

2016 yılında yaklaşık 40 GW elektrik üretti. Çin, 2017 yılında Almanya'yı geride 

bırakarak sadece PV sistemlerinden 100 GW elektrik üreten ilk ülke olarak dünyayı şok 

etti (Edenhofer et al., 2011). 2018 sonu itibariyle dünya çapında 500 GW'tan fazla PV 

sistemi kurulmuştur.  

Bir solar PV sisteminin temel parçaları Şekil 1.3'te gösterildiği gibi (a) PV 

hücresi, (b) PV modülü veya paneli ve (c) PV dizisidir. Bir solar PV hücresi, fotovoltaik 

etkiyi kullanarak solar ışığını doğru akım (DC) elektriğe dönüştüren bir solar PV 

sisteminin en küçük yapı taşıdır. Bir PV modülü veya paneli, belirli bir miktarda güç 

üretmek için seri ve paralel olarak bağlanmış birkaç PV hücresi içerir. (c) Bir PV dizisi, 

bağımsız veya şebekeye bağlı bir PV sistemi için istenen çıkış gücünü elde etmek üzere 

seri ve/veya paralel kombinasyonlarda bağlanmış birkaç PV modülünden veya 

panelinden oluşur (J. Sadhukhan, 2018). 

 

 

 

Şekil 1.3. Bir PV hücresinin, PV modülünün ve PV dizisinin gösterimi 

 

Solar PV sistemlerinin iki çalışma modu vardır: (a) bağımsız çalışma ve (b) 

şebekeye bağlı mod. Bağımsız çalışmada, solar PV panelleri tarafından üretilen güç DC 

yüklere güç sağlamak için bir batarya bankasında depolanır ve konut AC yüklerine güç 

sağlamak için bir DC-AC inverteri kullanılır. Şebekeye bağlı çalışmada, PV panelin çıkış 

gücü bir DC-AC inverter kullanılarak AC'ye dönüştürülür ve ardından aktif ve/veya 

reaktif güç şebekeye aktarılır (Kaundinya et al., 2009).  

Şebeke bağlantılı PV sistemler ayrıca tek aşamalı ve iki aşamalı PV sistemler 

olarak sınıflandırılır. Tek kademede, PV gücü şebeke ile güç alışverişi için doğrudan DC-
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AC çeviriciye verilir. İki aşamalı dönüştürücüde, PV çıkışı DC-DC dönüştürücüye verilir 

ve Maksimum Güç Noktası İzleme (MPPT) kontrol teknikleri dönüştürücünün anahtarını 

kontrol eder (Chouhan et al., s2021). DC-DC dönüştürücünün çıkışı, DC bara veya DC 

bağlantı gerilimi olarak da adlandırılır, şebeke entegrasyonu için DC-AC invertere 

beslenir.  

 
 

Şekil 1.4. Önerilen 100 kW şebekeye bağlı PV sisteminin tek hat şeması 

 

Bu tezde, önerilen araştırma iki aşamalı 100 kW şebeke bağlantılı bir solar PV 

sistemine dayanmaktadır. İlk aşamada, yükseltici tip DC-DC dönüştürücü solar PV DC 

voltajını artırır ve LSTM tabanlı bir MPPT kontrolörü tarafından kontrol edilir. İkinci 

aşamada, aynı zamanda DC bağlantı gerilimi olan DC yükseltilmiş gerilim, üç fazlı üç 

seviyeli bir NPC inverter kullanılarak AC'ye dönüştürülür ve aktif ve doğrultucu güç 

aktarımı ve kontrolü Şekil 1.4'te gösterildiği gibi bir droop denetleyici kullanılarak 

gerçekleştirilir. 

 

1.2.  Araştırma Motivasyonu 

 

Mevcut ticari solar panellerinin verimliliği çok düşüktür ve hava parametrelerinin 

kesintili olması nedeniyle %10-25 aralığında kalmaktadır (Hassan et al., 2022). Buna ek 

olarak, T ve G'deki hızlı dalgalanmalar solar panellerinin çıkış akımı ve voltajı üzerinde 

önemli bir etkiye sahiptir ve şebekeye bağlı PV sistemleri için (a) düşük hücre verimliliği, 

(b) güç kaybı, (c) DC bağlantı veya DC bara voltajında dalgalanma, (d) şebekeye enjekte 

edilen gücün düşük kalitesi ve (e) şebeke senkronizasyonu gibi çeşitli zorluklara yol açar. 

İlgili zorlukların bir açıklaması aşağıda vurgulanmıştır: 
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• Güneş pillerinin çıkış gücü üretimi, G ile doğru orantılı ve T seviyesi ile ters 

orantılıdır, bu nedenle hava parametrelerindeki hızlı değişim PV sistemini 

maksimum kapasitesinin altında çalıştıracak, güç kaybına neden olacak ve 

verimliliğini azaltacaktır (Anani & Ibrahim, 2020).  

• Çift kademeli şebeke bağlantılı PV sistemlerde, DC-DC dönüştürücü aracılığıyla 

PV panelin çıkışına ve DC-DC inverterin girişine doğrudan bağlı olan DC 

bağlantı voltajının kararlılığı, PV sistemin verimliliğini artırmak için önemli bir 

rol oynar. Hava durumu parametrelerinin aralıklı olması DC bağlantı gerilimini 

nominal değerinden saptırır, böylece DC-AC eviricinin giriş tarafındaki 

kararsızlık eviricinin ve genel olarak şebekeye bağlı PV sistemin verimliliğini 

azaltır (Krishnamurthy et al., 2019). 

• Hem bağımsız hem de şebekeye bağlı PV sistemlerde, DC-DC dönüştürücünün 

veya DC-AC İnverterin güç elektroniği bileşenlerinin elektronik devresi 

harmonikleri ortaya çıkarır ve PV sistemin verimliliği için bir zorluk teşkil eder. 

Bu nedenle, sistemin verimliliğini artırmak için endüktif ve kapasitif bileşenlerin 

tasarımı da gereklidir. 

• Şebeke bağlantılı çalışmada, PV panelin çıkış gücü bir DC-AC İnverter 

kullanılarak AC'ye dönüştürülür ve ardından solar paneli ile bağlı şebeke arasında 

aktif ve/veya reaktif güç alışverişi yapılır. İletilen akım ve gücün harmonik 

azaltımı da verimliliği artırmak için çok önemlidir. 

Yukarıda bahsedilen zorluklarla başa çıkmak için MPPT algoritmaları, çalışma 

koşullarını mevcut hava koşullarına uyacak şekilde sürekli olarak ayarlayarak bir solar 

panelinin güç çıkışını optimize etmek için iyi bir seçimdir. Bu nedenle, yükseltici tip DC-

DC dönüştürücü tarafından takip edilen MPPT kontrol teknikleri, çalışma koşullarını 

mevcut hava koşullarına uyacak şekilde sürekli olarak ayarlayarak PV panelinin çıkış 

gücünü en üst düzeye çıkarır ve solar panelinin maksimum kapasitede çalışmasına 

yardımcı olur. Genel PV sisteminin verimliliğiyle ilgili yukarıda bahsedilen sorunlara ek 

olarak, MPPT'nin kendi verimliliği de şebekeye bağlı solar PV sisteminde önemli bir 

sorundur. Son teknoloji ürünü çalışmalarda, araştırmacılar bir PV sisteminin verimliliğini 

artırmak için çeşitli MPPT algoritmaları sunmuşlardır ve bunlar Bölüm 2'deki literatür 

taramasında kısaca açıklanmıştır. Makine Öğrenimi (ML) ve Derin Öğrenmenin (DL) 

ortaya çıkışı, solar PV sistemlerinin verimliliğini ve performansını önemli ölçüde artırma 

potansiyeline sahiptir (Forootan et al., 2022) ve bu alandaki araştırmalar, önerilen 
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çalışmanın ana motivasyonu olan yeni yöntemler ve algoritmalar geliştirmek için devam 

etmektedir. 

 

1.3.  Araştırma Hedefleri 

 

Önerilen araştırmanın amacı, geleneksel enerji kaynaklarının sınırlamalarını, temiz, 

ekonomik ve bol miktarda bulunan bir RES olan solar PV enerjisini entegre ederken 

ortaya çıkan zorlukları ele almak ve bütünsel LSTM tabanlı MPPT kontrol algoritmasını 

uygulayarak şebekeye bağlı PV sistemlerinin verimliliğini artırmaktır. Amaç, daha iyi 

performans için sistemin karmaşıklığını azaltırken MPPT algoritmasının doğruluğunu ve 

verimliliğini artırmaktır. Son teknoloji MPPT kontrolörlerinin aksine, LSTM tabanlı 

MPPT kontrolörleri geçmiş bilgileri depolayan hafıza hücrelerine sahiptir, bu da değişen 

koşullara daha iyi adapte olmalarını sağlar ve hava koşullarındaki hızlı değişikliklere 

rağmen MPPT algoritmasının doğruluğunu artırır  (K. Wang et al., 2019). Ayrıca, LSTM 

tabanlı MPPT kontrolörleri G, T, gerilim ve akım gibi zaman serisi verilerinin zamansal 

bağımlılıklarını dikkate alır. Bu, değişen koşullara daha iyi adapte olmalarını sağlar ve 

MPPT algoritmasının doğruluğunu artırır. LSTM tabanlı MPPT, PV hücresinin doğrusal 

olmayan yapısını ve dinamiklerini yönetebilir ve bu da daha iyi performans sağlar. Ek 

olarak, LSTM tabanlı MPPT kontrolörlerinin bellek hücreleri, MPPT takibi sırasında 

kısmi gölgelenme ve çoklu maksimum güç noktalarının ele alınmasına izin verir, bu da 

daha iyi performans sağlar (Gers et al., n.d.). Genel olarak, LSTM'nin zaman serisi 

verilerini, nonlineerliği, dinamikleri ve bellek hücrelerini işleme yeteneği, geleneksel 

MPPT denetleyicilerinden daha iyi performansa yol açar (Pengcheng & Jiawei, 2021). 

Ana hedef noktaları aşağıda vurgulanmıştır: 

• LSTM ağları, T, G, voltaj ve akım dahil olmak üzere PV sistemlerinden gelen 

zaman serisi verilerinin karmaşıklığını ve dinamiklerini idare edebilir. Ayrıca, bir 

bellek bileşeninin varlığı, veriler arasında bağımlılıklar oluşturmak için uygun 

hale getirir ve FFNN'ye kıyasla üstün performans sağlar. Bununla birlikte, 

LSTM'nin uzun süreli eğitimi performansını yavaşlatabilir. Bu nedenle, bu 

araştırmanın amacı, büyük zaman serisi verileri için verimli bir LSTM tabanlı 

MPPT geliştirmek ve daha iyi performans elde etmek için daha az gizli birimle 

karmaşıklığını azaltmaktır. 

• Önerilen çalışma, düşük MPP'ye sahip daha az sayıda PV panel ile daha yüksek 

güç seviyesi elde etmek ve aynı zamanda DC bağlantı voltajını düzenlemek için 
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MPPT ile DC-DC yükseltici tip DC-DC dönüştürücü kullanan çift aşamalı 

şebekeye bağlı bir PV entegrasyonu sunmaktadır. Bu yaklaşım, PV sisteminin 

çevresel koşullardaki değişikliklerden bağımsız olarak optimum noktada 

çalışmasına izin verecek ve bu da genel sistemin daha iyi performans 

göstermesine yol açacaktır. 

• DC bağlantı voltajı, PV dizisinin eviriciye bağlandığı voltaj seviyesidir ve PV 

dizisi tarafından üretilen DC gücünü şebekeye beslenebilecek AC gücüne 

dönüştürür. DC bağlantı voltajı regüle edilmezse, eviricinin optimum aralığının 

dışında çalışmasına neden olarak verimliliğin ve performansın düşmesine neden 

olabilir (Merai et al., 2021). Ayrıca, DC bağlantı voltajı çok yüksek veya çok 

düşükse, eviriciye ve sistemin diğer bileşenlerine zarar verebilir. DC bağlantı 

voltajını bir referans değerde düzenleyerek, sistem istikrarlı ve tutarlı bir güç 

çıkışı sağlayabilir ve ekipmanın uzun ömürlü olmasını sağlayabilir. 

• LSTM'nin büyük veri eğitimi ve hesaplama yükü, önerilen çift aşamalı şebekeye 

bağlı PV sisteminin karmaşıklığını artırmaktadır. Bu nedenle, önerilen çalışma 

inverter kontrol karmaşıklığını azaltmaya odaklanmıştır. İlk aşamada, LSTM 

ağında daha az gizli birim kullanılarak karmaşıklık azaltılır. İkinci aşamada, 

önerilen sistemin verimliliğinden ödün vermeden modelin basitliğini sağlamak 

için akım ve gerilim kontrol döngüsünde basit PI kontrolörü kullanılır. 

 

1.4.  Araştırma Katkıları 

 

Önerilen çalışmada, Simulink/MATLAB 2023® kullanılarak 100 kW üç fazlı çift 

kademeli 100 kW şebeke bağlantılı bir PV sistem modellenmiştir. Model iki aşamaya 

ayrılmıştır; (a) şebekeye bağlı PV sisteminin birinci aşaması ve (b) ikinci aşaması. İlk 

aşama solar PV dizisi, yükseltici tip DC-DC dönüştürücü ve MPPT kontrolöründen 

oluşmaktadır. İkinci aşama DC bağlantı gerilim kontrolü ve inverter kontrolünden 

oluşmaktadır. İnverter kontrol tasarımındaki voltaj kontrol döngüsü ve akım kontrol 

döngüsü, şebekeye saf AC gücü enjekte etmek için DC bağlantı voltajını korur. Tezin ana 

katkıları aşağıda listelenmiştir:  

• İlk aşamada, modül başına toplam 96 hücre, dizi başına 5 seri bağlı modül ve 100 kW 

maksimum güç elde etmek için 65 paralel diziden oluşan SunPower TS-SPR-315E 

PV paneli dikkate alınmıştır: 𝑃𝑝𝑣 = 𝑃𝑚𝑎𝑥 ∗  𝑁𝑝 ∗  𝑁𝑠 = 315 ∗  65 ∗ 5 = 102  𝑘𝑊. 
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• Hızlı hava değişimlerinin varlığında iki aşamalı şebekeye bağlı bir solar PV sistemi 

için bütünsel bir LSTM tabanlı MPPT algoritmasının tasarımı, modellenmesi ve 

simülasyonu gerçekleştirilmiştir. T ve G iki zaman serisi dizisi girdisidir ve MPP'deki 

PV voltajı önerilen LSTM ağının hedefi veya çıktısıdır. LSTM tarafından verilen çıkış 

gerilimleri ve gerçek PV gerilimi, sinüzoidal PWM modülasyonu için referans gerilim 

sinyalini çıkaran ve yükseltici tip DC-DC dönüştürücünün anahtarını kontrol etmek 

için görev döngüsünü üreten PI kontrolüne verilir. 

• DC giriş voltajının seviyesini 250-280 V'tan 800 V DC'ye çıkararak önemli bir rol 

oynayan, ani yük değişimi sırasında sistemi koruyan, şebeke gücünün uyumluluğunu 

ve kalitesini sağlamak için daha düşük MPP ile yüksek çıkış gücü elde etmeye 

yardımcı olan DC-DC yükseltici tip DC-DC dönüştürücünün tasarımı ve simülasyonu 

gerçekleştirilmiştir. 

• İkinci aşamada, yükseltici tip DC-DC dönüştürücünün çıkışı olan DC link veya DC 

bara voltaj kontrolü, ilk aşamadaki LSTM MPPT kontrolörü ve voltaj ve akım 

kontrolörleri için ilgili PI kontrolörü düzenlenmiştir. 

• Son olarak, DC-AC inverterin kararlı girişi, daha az harmonik içeren kararlı AC çıkışı 

üretir. PV paneli entegre şebekeye aktif akım (reaktif akım sıfır olarak kabul edilir) 

ve aktif güç enjekte eder. 

Önerilen LSTM MPPT kontrolörünün eğitimi ve testi MSE, RMSE, MAE, R2 ve kayıp 

fonksiyonu gibi performans indeksi parametreleri kullanılarak sağlanmıştır. Test edilen 

model daha sonra Simulink MATLAB'a aktarılmış ve şebekeye bağlı PV Simulink 

modeli ile entegre edilmiştir. Önerilen LSTM modelinin daha yüksek verimliliği, son 

teknoloji MPPT algoritmalarıyla karşılaştırılarak sağlanmıştır. Karşılaştırmalı analizin 

kolaylığı için, önerilen LSTM, aynı katman sayısına ve aynı gizli katman sayısına sahip 

ileri beslemeli Derin Sinir Ağı ile karşılaştırılmıştır. 

 

1.5.  Tez Organizasyonu 

 

Şekil 1.5 tezin yapısını göstermekte, 1 ila 6. bölümlerin kilit noktalarını 

özetlemekte ve her bölümün konularına ve katkılarına kısa ama kapsamlı bir genel bakış 

sağlamaktadır. Bu görsel temsil, tezin yapısının ve temel bulgularının kavranmasına 

yardımcı olmak için hızlı bir referans işlevi görmektedir. Tezin geri kalanı aşağıdaki 

şekilde düzenlenmiştir: 
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Şekil 1.5. Tüm bölümlerin ana temalarını ve katkılarını vurgulayarak tez organizasyonuna genel bakış 

 

• Bölüm 1'de (Giriş), geleneksel enerji kaynaklarının eksiklikleri, yenilenebilir 

enerji kaynaklarına duyulan ihtiyaç ve önerilen iki aşamalı PV sisteminin ilk 

aşamasında LSTM tabanlı MPPT denetleyicisinin ve ikinci aşamasında evirici 

kontrol tasarımının öneminden oluşan araştırma arka planının kısa bir açıklaması 

verilmiştir. Araştırma arka planını, bu tezde önerilen çalışmanın motivasyonu, 

hedefleri ve katkıları takip etmektedir. Son olarak, her bölümün kısa bir özeti tezin 

organizasyonunu vurgulamaktadır. 

• Bölüm 2'de (Literatür Taraması), şebekeye bağlı solar PV sistemlerinin iki 

aşamasına ilişkin kapsamlı bir literatür taraması açıklanmaktadır. İlk olarak, güç 

üretim aşaması için geleneksel, akıllı, hibrit ve AI/ML/DL tabanlı MPPT 

teknikleri gözden geçirilmiştir. Önceki MPPT çalışmalarından elde edilen temel 

bulgular, yaklaşımlar, sınırlamalar ve boşluklar analiz edilmektedir. Bölüm daha 

sonra ikinci aşama şebeke entegrasyon topolojileri ve kontrol stratejileri üzerine 

önceki çalışmaları gözden geçirmektedir. Son olarak, mevcut yöntemlerle ilgili 

kalan zorluklar vurgulanmakta ve önerilen LSTM tabanlı MPPT kontrolörünün 

kapsamı belirlenmektedir. Dolayısıyla, bu bölüm literatür hakkında kapsamlı bilgi 

sağlamakta, açık araştırma boşluklarını belirlemekte ve solar PV teknolojisinin 
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optimize edilmiş şebeke entegrasyonu için yapay zekâ tabanlı kontrolü ilerletmek 

üzere mevcut çalışmayı konumlandırmaktadır.   

• Bölüm 3 (Materyaller ve Yöntemler), tez araştırmasının odak noktası olan iki 

aşamalı şebekeye bağlı PV sistemini açıklamaktadır. Panel özellikleri, voltaj 

yükseltme için yükseltici tip DC-DC dönüştürücü tasarımı ve güneş enerjisi 

çıkarımını optimize etmek için bir maksimum güç noktası izleme kontrolörü dahil 

olmak üzere PV panellerden güç üretmenin ilk aşamasını detaylandırarak başlar. 

Bölüm daha sonra, şebekeye bağlı inverterler hakkında arka plan sağlayarak, 

çeşitli inverter topolojilerini ve mimarilerini gözden geçirerek, inverter kontrol 

yöntemlerini açıklayarak ve PV inverter sistemi için önerilen kademeli kontrol 

yaklaşımını ve LCL filtre tasarımını açıklayarak PV sistemini şebekeye entegre 

etmenin ikinci aşamasını kapsamaktadır. Bu metodoloji bölümünde sunulan 

detaylar, ilerleyen bölümlerde tartışılacak olan sistem uygulaması, deneyler ve 

sonuçlar için temel oluşturmaktadır.  

• Bölüm 4 (Önerilen Araştırma Metodolojisi)'inde şebekeye bağlı PV sisteminde 

MPPT kontrolü için önerilen stack LSTM ağ metodolojisi sunulmaktadır. LSTM 

ağ mimarisi, aktivasyon fonksiyonları, hiperparametreler ve bunların türleri 

sunulmuştur. Önerilen stack LSTM ağının geleneksel MPPT yaklaşımlarına 

kıyasla gelişmiş performans, uzun vadeli bağımlılık modellemesi, hiyerarşik 

temsil ve esneklik sunduğu açıklanmaktadır. Bölümde daha sonra stack LSTM'nin 

genel bir iki aşamalı PV sisteminde MPPT kontrolörü olarak nasıl uygulandığı 

açıklanmaktadır. Veri toplama, ön işleme, ağ yapılandırması, eğitim ve test ile 

ilgili ayrıntılar verilmektedir. MSE, RMSE, MAE, R2 ve doğrulama kaybı gibi 

performans değerlendirme metrikleri seçilmiştir. Son olarak, PV sistemde DC'den 

AC'ye dönüşüm için kullanılan 3 fazlı 3 seviyeli NPC İnverter topolojisi 

incelenmiştir. Bu şekilde DC bağlantı gerilimi düzenlenir ve aktif güç PV 

dizisinden elektrik şebekesine aktarılır. 

• Bölüm 5 (Sonuçlar ve Tartışma), şebekeye bağlı PV sistemlerinin MPPT 

kontrolü için stack bir LSTM ağının uygulanması sırasında elde edilen sonuçları 

ve tartışmayı sunmaktadır. Bölüm, LSTM ağını eğitmek ve test etmek için 

kullanılan giriş verilerinin elde edilmesi, ön işlemden geçirilmesi ve 

normalleştirilmesinin ayrıntılı bir açıklaması ile başlamaktadır. Bunu, verilerin 

görselleştirilmesi takip etmektedir. LSTM ve DNN-MPPT modellerinin eğitim 

süreci ve performans değerlendirmesi, LSTM'nin DNN ve geleneksel P&O 
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algoritmalarından daha yüksek doğruluk göstermesiyle analiz edilir. Eğitilen 

LSTM, tüm PV sisteminin gerçek zamanlı MPPT kontrolü için kullanılır ve 

sonuçlar etkili MPP çıkarımı gösterir. Üç seviyeli NPC inverterin çıkış gerilimi, 

şebeke bağlantısı ve güç enjeksiyonu sonuçları kararlı çalışma göstermektedir. 

Simülasyon sonuçları, istiflenmiş LSTM'nin FF-DNN ve P&O dahil olmak üzere 

diğer MPPT yöntemlerinden önemli ölçüde daha iyi performans gösterdiğini 

doğrulamaktadır. 

• Bölüm 6 (Sonuçlar ve Öneriler) tezin ana araştırma sonuçlarını ve kazanımlarını 

özetlemektedir. Şebekeye bağlı güneş enerjisi sistemlerinin MPPT kontrolü için 

stack LSTM ağının geliştirilmesi ve uygulanmasıyla elde edilen ana bulgulara ve 

katkılara kısa bir genel bakış sunmaktadır. Bölüm daha sonra araştırmanın 

önemini ve potansiyel etkisini vurgulayarak sona ermektedir. Son olarak, mevcut 

araştırmanın sonuçlarına dayanarak keşfedilecek olası uzantılar, iyileştirmeler ve 

açık sorular da dahil olmak üzere gelecekteki çalışmalar için öneriler 

sunulmaktadır. Genel olarak, bu sonuç bölümü tez sonuçlarını özetlemekte, 

araştırma değerini vurgulamakta ve yenilenebilir enerji sistemlerinde yapay zeka 

tabanlı kontrol tekniklerini ilerletmek için yeni yönlere işaret etmektedir. 
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2.  KAYNAK ARAŞTIRMASI 

 

Fotovoltaik (PV), çevre dostu olan ve artan enerji talebinin karşılanmasında 

önemli bir rol oynayan temiz, bol miktarda bulunan yenilenebilir bir kaynaktır. PV 

sistemlerinin elektrik şebekesine entegrasyonu, fosil yakıtlara olan bağımlılığı azaltmak 

ve iklim değişikliğiyle mücadele etmek için kritik öneme sahiptir. PV enerjinin çeşitli 

faydalarına rağmen, entegrasyonu, değişken hava koşullarında güç çıkarımını optimize 

etmek, PV tarafından üretilen enerjideki DC voltaj dalgalanmalarını yönetmek, DC-AC 

dönüşümündeki harmoniklerle başa çıkmak ve güç faktörü düzeltmesi yoluyla şebekeye 

istikrarlı ve senkronize güç enjeksiyonu sağlamak gibi çeşitli zorluklarla birlikte gelir 

(Mahlooji et al., 2018). Güneş enerjisi sistemlerindeki benzer şebeke entegrasyon 

zorlukları, tek aşamalı ve iki aşamalı yaklaşımlar karşılaştırılarak yazarlar tarafından 

(Chouhan et al., 2021)'de ele alınmıştır. İki aşamalı strateji, bir yükseltici tip DC-DC 

dönüştürücü aracılığıyla DC gücünü optimize eder ve ardından şebeke entegrasyonu için 

bir inverter kullanarak AC gücüne dönüştürür. İki aşamalı sistemler, MPPT, akım 

limitlerini azaltan voltaj yükseltme dönüşümü, DC bağlantı voltajı kararlılığı, inverter 

çalışması ve özel bileşenler nedeniyle güç enjeksiyonu açısından tek aşamalı 

benzerlerinden daha iyi performans gösterir. Ayrıca, Işınım (G) ve Sıcaklık (T) gibi 

değişken hava parametrelerinin varlığında bile daha yüksek verimlilik ve kararlılık sunar. 

İlk aşama PV dizisi, yükseltici tip DC-DC dönüştürücü ve MPPT kontrolörünü içerirken, 

ikinci aşama sorunsuz AC güç üretimi için inverter, PLL ve LCL filtresini içerir.  

Bölüm 2 (literatür taraması), iki aşamalı şebekeye bağlı PV sistemdeki geçmiş 

gelişmeleri ve ilgili zorlukları araştırmaktadır. İlk aşama PV panelleri, yükseltici tip DC-

DC dönüştürücü, MPPT kontrolörü ve inverter kontrolörünü içerir. İkinci aşama DC-AC 

dönüştürücü, PLL ve LCL filtresini içermektedir. Ayrıca geleneksel, akıllı ve derin 

öğrenme (DL) tabanlı MPPT yöntemleri de dahil olmak üzere en son MPPT yöntemlerini 

eleştirel bir şekilde incelemektedir. Bölüm 3'te tüm bileşenlerin modellenmesi ve tasarımı 

sunulmaktadır. Belirlenen zorlukların üstesinden gelmek için, Bölüm 3'te optimize 

edilmiş PV üretiminin doğruluğunu ve verimliliğini artırmak için yeni bir stack LSTM-

MPPT kontrolörü sunulmuştur. Model, DC bağlantı voltajını korumak için bir LSTM-

MPPT kontrolörü ve bir boost mekanizması, invertere giden güç çıkışını stabilize etmek 

için bir PI kontrolörü ve kritik sorunları çözmek ve genel verimliliği ve kararlılığı 

artırmak için diğer bileşenleri entegre eder. Bu bölümde, literatür taraması iki aşamada 

devam etmektedir- ilk olarak, şebekeye bağlı PV sistemlerde kullanılan farklı MPPT 
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stratejileri üzerine literatür taraması ve ardından evirici kontrol topolojileri üzerine 

literatür taraması. 

 

2.1.  Şebekeye Bağlı PV'nı̇n İlk Aşamasına İlı̇şkı̇n Lı̇teratür Taraması 

 

Bu bölüm, şebekeye bağlı solar PV sistemlerinin ilk aşaması hakkında kapsamlı bir 

literatür taraması yapmaktadır. Amaç hem geleneksel yaklaşımları hem de akıllı ve yapay 

zekâ tabanlı MPPT kontrol sistemlerini kullanan solar PV alanındaki son gelişmeleri göz 

önünde bulundurarak MPPT teknolojisinin önceki ve mevcut durumunu 

değerlendirmektir. Bu literatür taramasının amacı, mevcut bilgileri vurgulamak, 

eksikliklere işaret etmek ve bu yaklaşımların ortaya çıkardığı zorlukları tartışmaktır. Bu, 

önerilen araştırma yöntemimiz olan istiflenmiş LSTM MPPT kontrolörü için önemli bir 

temel sağlar. Bu yeni yaklaşım, şebekeye bağlı solar PV sistemlerinin ilk aşamasının 

doğruluğunu ve verimliliğini artırmayı amaçlamaktadır. Bu bölüm ayrıca aşağıda 

listelenen beş alt bölüme ayrılmıştır: 

• Geleneksel MPPT Yöntemlerinin Geçmiş Araştırmaları 

• Akıllı MPPT Yöntemleri Üzerine Literatür Taraması 

• Hibrit MPPT Yöntemleri Üzerine Literatür Taraması 

• AI, ML veya DL tabanlı MPPT Yöntemlerinde Tarihsel Gelişim 

• Son Teknoloji MPPT Yöntemleriyle İlgili Potansiyel Zorluklar 

• Önerilen Stack LSTM MPPT Yöntemleri 

 

2.1.1.  Geleneksel MPPT Yöntemlerine İlişkin Literatür Taraması  

 

FSCC (Kesirli Kısa Devre Akımı), Pertürbasyon ve Gözlem (P&O), Artımlı 

İletkenlik (IC), Tepe Tırmanışı (HC), Açık Devre Gerilimi (OCV) ve Kısa Devre Akımı 

(SCC) yöntemleri dahil olmak üzere PV sistemleri için geleneksel MPPT teknikleri 

ekonomik ve basittir. MPP'yi gerilim ve akım değişimlerini izleyerek (P&O ve IC), çıkış 

gerilimini kademeli olarak değiştirerek (HC) veya açık devre gerilimini ve kısa devre 

akımını inceleyerek (OCV ve SCC) belirlerler. Ancak bu yöntemler, yavaş yakınsama ve 

gürültüye duyarlılık nedeniyle büyük ölçekli şebeke bağlantılı sistemlerde zorluklarla 

karşılaşmaktadır. Aşağıda bu algoritmalarla ilgili bir literatür taraması yer almaktadır. 
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 (Das, 2016)'daki yazarlar, düşük maliyetli bir PIC mikroişlemci kullanarak FOCV 

tabanlı şebekeden bağımsız PV sistemleri için bir MPPT kontrolörü sunmuşlardır. Bu 

yaklaşım yalnızca düşük güçlü şebekeden bağımsız PV sistemleri için iyi çalışmaktadır, 

ancak, ani hava değişiklikleri sırasında MPP etrafındaki salınımlardan ve 

dalgalanmalardan etkilenecektir. Bu nedenle, şebekeye bağlı solar PV sistemleri için daha 

gelişmiş MPPT kontrolörlerine ihtiyaç vardır. 

 (Sher et al., 2015)’deki yazarlar şebekeden bağımsız PV sistemlerin MPPT'si için 

çevrimdışı kesirli kısa devre akımı (FSCC) yöntemini önermişlerdir. FSCC, optimize 

edilmiş kısa devre akımı ölçüm zamanlaması sayesinde modelleme etkinliğini 

artırmaktadır. Bununla birlikte, örnekleme sırasında güç kaybı yaşar ve P&O ve IC gibi 

gelişmiş çevrimiçi tekniklerin yanı sıra değişen koşullara hızla yanıt veremez. 

 (Bahari et al., 2016), verimliliği daha da artırmak için iki indüktörlü benzersiz bir 

Tek Uçlu Birincil İndüktör Dönüştürücü (SEPIC) ve bir anahtar kullanan bir HC MPPT 

teknolojisi sunmuştur. HC teknolojisi küçük PV sistemleri için basit ve ekonomik olsa da 

orta ve büyük ölçekli şebekeye bağlı PV sistemleri için gelişmiş MPPT kontrolörleri 

gereklidir. Bunun nedeni HC MPPT'nin MPP etrafında salınım yapma eğiliminde olması 

ve hızla değişen hava koşullarında kötü performans göstermesidir. 

Yazarlar, (John et al., 2018)’de hızlı yanıt ve düşük hesaplama karmaşıklığını göz 

önünde bulundurarak, bağımsız PV sistemi için değişken adım boyutlu bir P&O MPPT 

algoritması önermişlerdir. Bu yöntem, MPP'den uzaklığa göre pertürbasyon adım 

boyutlarını değiştirerek izleme verimliliğini ve doğruluğunu artırmayı amaçlamaktadır. 

Gelişmiş IC yöntemi çeşitli senaryolar altında gelişmiş performans gösterse de, P&O 

daha basit ve daha az karmaşıktır çünkü tipik olarak yalnızca voltaj (V) sensörlerini 

kullanırken, IC MPPT daha karmaşık bir kontrol algoritması için hem voltaj hem de akım 

sensörlerini kullanır. 

Doğruluğu daha da artırmak için, bağımsız solar PV sistemleri için geliştirilmiş 

bir IC MPPT yaklaşımı araştırmacılar tarafından (Huynh & Dunnigan, 2016)'da 

sunulmuştur. Değiştirilmiş IC yöntemi, basitleştirilmiş hesaplamaları ve sınırlı arama 

bölgesi nedeniyle daha hızlı ve daha yüksek doğrulukla yakınsamıştır. Bu değiştirilmiş 

IC, temel IC ve P&O yaklaşımlarından daha karmaşık olmasına rağmen, daha iyi 

performans göstermiş ve şebekeye bağlı PV sistemleri için gelişmiş MPPT 

algoritmalarının kullanılmasını önermiştir. P&O yöntemi gibi, IC yöntemi de ışınım ve 

sıcaklık hızla değiştiğinde MPP etrafında salınır. 
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Geleneksel MPPT yöntemlerinin basit, daha az karmaşık ve hızlı olduğu, ancak 

hava koşullarındaki hızlı değişiklikler altında orta veya büyük ölçekli şebekeye bağlı PV 

sistemleri için iyi performans göstermediği açıktır (Podder et al., 2019). Bu nedenle, bir 

sonraki alt bölümde açıklanan daha gelişmiş MPPT yöntemleri, büyük ölçekli şebekeye 

bağlı PV sistemler için gereklidir. 

 

2.1.2.  Akıllı MPPT Yöntemlerine İlişkin Literatür Taraması 

 

Geleneksel MPPT yöntemleri solar PV sistemleri için basit ve uygun maliyetli 

olmasına rağmen, bu yöntemler yakınsama gecikmelerine ve çevresel değişikliklere 

duyarlılığa eğilimlidir. Bu zorluklar nedeniyle, sistem performansını uyarlamak ve 

iyileştirmek için FLC, SMC, PSO, GA ve ANN gibi son teknoloji algoritmaları kullanan 

akıllı MPPT yöntemlerinin entegre edilmesi gerekmektedir. Yumuşak hesaplama 

kullanan bu akıllı yöntemler, geleneksel yöntemlerin dezavantajlarının üstesinden gelir 

ve MPP takibinin verimliliğini ve doğruluğunu artırır. Bu nedenle, literatürdeki bir dizi 

akıllı MPPT yöntemi bu alt bölümde sunulmuştur. 

 (Ansari et al., 2013)’de yazarları ayrı bir DC-DC dönüştürücüsü olmayan üç fazlı 

şebekeye bağlı bir PV sistemi için bir FLC-MPPT algoritması uygulamıştır. FLC tabanlı 

MPPT algoritmaları, güvenilir olması gereken daha büyük sistemler için uygundur, ancak 

kontrol kuralları geliştirmek için uzman bilgisi gerektirir. Karmaşık doğrusal olmayan 

etkileşimlerle başa çıkmada Yapay Sinir Ağı (ANN) yaklaşımları kadar akıllı değildir. 

MPPT'nin yanı sıra, FLC elektrik motorlarının kontrolünde de kullanılmaktadır. (Tarbosh 

et al., 2020)'deki yazarlar, motor sürücülerinde FLC uygulamalarını tartışan bir makale 

yayınlamışlardır. Benzer şekilde, (Anwer et al., 2020)'deki yazarlar, sensörsüz hız 

kontrollü bir PV sistemi ile çalışan bir sabit mıknatıslı senkron motor (PMSM) sürücüsü 

tasarlamak için Simulink'i kullanmışlardır. FLC tabanlı bir MPPT algoritması ve Model 

Referans Adaptif Sistem (MRAS) yaklaşımını kullanan sensörsüz hız tahmin edicili bir 

PMSM sürücüsü kullanmışlardır. Geleneksel kontrolörlerin aksine, FLC kural tasarımı 

karmaşık bir görevdir ve daha yüksek doğruluk için özel uzman bilgisi gerektirir.  

 (Ishaque et al., 2012)'de, bağımsız fotovoltaik sistemler için tipik tepe tırmanma 

yönteminin yerine geliştirilmiş bir PSO tabanlı MPPT önerilmiştir. Parçacıkların hızına 

ve konumuna bağlı olarak, PSO algoritması MPP'yi izlemek için dönüştürücünün görev 

döngüsünü değiştirir. Algoritma MATLAB/Simulink kullanılarak modellenmiş ve simüle 

edilmiştir. Daha sonra d-SPACE DS1104 teknolojisi kullanılarak programın bir prototipi 
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geliştirilmiştir. Sonuçlar, ışınım değişimleri, yük artışı ve kısmi tıkanıklık altında hızlı 

izleme ve temel HC'ye kıyasla kararlı durum salınımlarının olmadığını göstermektedir. 

Yazarlar, geleneksel MPPT yöntemlerine kıyasla performansın iyileştirildiğini ve 

yöntemlerin küçük bağımsız PV sistemleri için önerildiğini belirtmektedir. Bu nedenle, 

karmaşık şebekeye bağlı PV sistemlerde girişler ve çıkışlar arasındaki doğrusal olmayan 

karmaşıklığı izlemek için gelişmiş MPPT kontrolörleri önerilmektedir. 

PV sistemleri için üç fazlı şebekeye bağlı inverter için akıllı SMC tabanlı MPPT 

kontrolü (Kim, 2007)'de tartışılmıştır. Bu yaklaşımda endüktör akımı, MPP'yi izlemek 

için MPPT tarafından üretilen referans değeri takip etmek üzere SMC tarafından yönetilir. 

Bu nedenle, ayrı bir DC-DC dönüştürücü gerekli değildir. Simülasyon ve donanım 

sonuçları MPPT'nin farklı ışınım seviyelerinde hızlı ve doğru bir şekilde çalıştığını 

göstermektedir. Entegratörün yükseltme etkisi dikkate alınmamasına rağmen, tasarım 

karmaşıklığı geleneksel MPPT yöntemlerine kıyasla yüksektir. Bu yöntem, hızlı dinamik 

yanıtın kritik olduğu şebekeye bağlı PV sistemler için iyi bir izleme sağlar. Bununla 

birlikte, SMC geleneksel MPPT yöntemlerinden daha yüksek tasarım karmaşıklığına 

sahiptir ve veriler arasındaki doğrusal olmayan bağımlılıkları yakalayamaması nedeniyle 

ANN yönteminden daha az verimlidir.  

PV panellerin güç çıkışını artırmak için, (Hadji et al., 2018) 'deki yazarlar PV 

sistemleri için GA tabanlı bir MPPT kontrolörü önermişlerdir. Bu kontrolör, PID 

kontrolörünün ayarlarını yapmaktadır. GA tabanlı MPPT kontrolörü, verimlilik ve izleme 

hızı açısından geleneksel MPPT yöntemlerinden daha iyi performans göstermektedir. 

Doğruluk, hız ve kısmi gölgelenmenin kritik olduğu solar PV sistemleri için GA tabanlı 

MPPT kontrolörleri iyi bir izleme performansı sağlar. Geleneksel MPPT kontrolörleriyle 

karşılaştırıldığında, GA MPPT'nin tasarımı daha karmaşıktır ancak daha hızlı ve daha 

doğrudur. Buna ek olarak, GA'nın doğruluğu ANN yöntemine göre nispeten daha 

düşüktür çünkü ANN'nın büyük miktarda veri kullanılarak eğitilmesi ve bu verilere 

dayanarak daha yüksek doğruluk sağlaması gerekir.  

 (Zhao et al., 2021)'de, şebekeye bağlı PV sistemler için akıllı bir MPC MPPT 

tekniği sunulmuştur. Teknik, doğrusal bir PV dizisini modellemek için model 

tanımlamayı kullanır. Spektral dalga boylarına dayalı olarak, MPC kontrolörü sıcaklığın 

etkisini tahmin eder ve DQ-koordinatı inverter akımının yönetimini yönlendirir. Gerilim 

vektörleri, akım hatalarını azaltmak için tahmin modeli tarafından optimize edilir. 

Şebekeye bağlı üç fazlı bir PV inverter için MATLAB/Simulink simülasyonları, MPC'nin 

geleneksel yöntemlere kıyasla MPPT izleme performansını iyileştirdiğini göstermektedir. 
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Bununla birlikte, MPC tabanlı MPPT, P&O veya rampa tırmanma gibi basit 

yöntemlerden daha karmaşık bir tasarım gerektirir. Bununla birlikte, gelişmiş yapay zekâ 

tabanlı kontrolörler, küresel MPP'yi (GMPP) tahmin etmek için voltaj, akım veya ışınım 

verilerini izleyerek ve doğruluğu ve verimliliği artırmak için SMC tahminini geliştirerek 

bu yaklaşımı tamamlayabilir. 

Geleneksel ve akıllı MPPT yöntemlerinin sınırlamaları vardır. Bunları ele almak 

için (Kulaksiz & Akkaya, 2012b)'deki yazarlar, asenkron motor sürücülü bir PV 

sisteminde MPPT için bir ANN modelini optimize etmek için bir GA kullanmışlardır. 

Yazarlar, motor hızı için V/f kontrolü ve 3 fazlı inverter çalışması için SV-PWM 

uygulamış ve simülasyonlar ve deneyler yoluyla doğrulamışlardır. Benzer şekilde, (Rai 

et al., 2011)’de şebekeden bağımsız PV'de kısmi gölgelenme altında doğru MPPT için 

hızlı bir ANN ve HC algoritmasını birleştirmiştir. ANN tabanlı yöntemler geleneksel 

tekniklere kıyasla esneklik gösterirken, ML ve DL modelleri daha fazla ölçeklenebilirlik 

ve otomasyon sunar. Bu modeller transfer öğrenme kullanır ve mimarilerini otomatik 

olarak uyarlayarak daha az eğitim verisi gerektirir. 

Doğruluğu daha da artırmak için, bir sonraki alt bölümde geleneksel yöntemlerin 

ve akıllı yöntemlerin avantajlarını birleştiren ve daha iyi sonuçlar vaat eden hibrit bir 

MPPT algoritması analiz edilmektedir. 

 

2.1.3.  Hibrit MPPT Yöntemlerine İlişkin Literatür Taraması 

 

Hibrit MPPT yöntemleri hem geleneksel hem de akıllı kontrolörlerin özelliklerini 

birleştirir. Akıllı MPPT'ler uyarlanabilirlik ve performans optimizasyonu sağlarken, 

geleneksel MPPT'ler basit ve güvenilirdir. Bu hibrit yaklaşım, bağımsız yaklaşımlardan 

daha üstündür çünkü her iki kontrolörün de en iyi özelliklerine sahiptir, uyarlanabilirlikle 

birlikte verimlilik ve güvenilirlik sağlar (Bollipo et al., 2021). Araştırmacılar, farklı G ve 

T koşulları altında MPP izlemenin doğruluğunu ve verimliliğini artırmak için bu eksiksiz 

çözümü tercih etmektedir. 

 (Allahabadi et al., 2022), bağımsız PV'de kısmi gölgeleme altında MPPT 

sınırlamalarını ele almak için bir ANN önermiştir. ANN, hızlı ve doğru izleme için HC 

ile birleşir. Avantajları arasında yerel gölgeleme ve doğrusal olmayan etkileşimlerin ele 

alınması yer almaktadır. Bununla birlikte, sınırlamalar arasında yüksek hesaplama talebi, 

büyük eğitim verisi ihtiyaçları ve sonuçta ortaya çıkan derin öğrenme modellerinden daha 

düşük doğruluk bulunmaktadır. Benzer şekilde, (Kulaksiz & Akkaya, 2012a)'deki 
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yazarlar, doğrudan bağlı bir endüksiyon motoru sürücüsüne sahip bağımsız bir PV 

sisteminde MPPT için GA-optimizeli bir ANN kullanmışlardır. Tasarım, ANN'ların 

gürültü reddetme özelliğinden yararlanarak bir DC-DC dönüştürücüye olan ihtiyacı 

ortadan kaldırmaktadır. MPPT'deki değişen adım boyutu, izleme hızı ile MPP etrafındaki 

salınımlar arasındaki dengeyi ele almaktadır. Bununla birlikte, DL algoritmaları karmaşık 

doğrusal olmayan durumlarla başa çıkmak, değişen ortamlara uyum sağlamak ve GA-

optimize ANN algoritmasına kıyasla özellik öğrenmeyi otomatikleştirmek için uygun bir 

seçimdir. 

 (Bouaouaou et al., 2022)'de, beş seviyeli şebeke bağlantılı bir PV inverter sistemi 

için MPC ve ANN'dan oluşan hibrit bir teknik önerilmiştir. ANN tabanlı MPPT 

algoritması MPP'yi etkili bir şekilde izlerken, MPC algoritması DC bara voltajını kontrol 

eder ve inverteri şebekeye aktif ve reaktif güç enjekte etmeye yönlendirir. ANN, optimum 

gerilim/akım modellerine dayalı olarak GMPP komşularını hesaplarken, HC algoritması 

ANN tahmininden başlayarak gerçek GMPP'yi izler. Bununla birlikte, MPC'nin 

sağlamlığını sınırlayan model bağımlılığı gibi bazı dezavantajları vardır ve varyans ağı 

uzun bir eğitim süresi gerektirir. Bu zorlukların üstesinden gelmek için, veri kümesinin 

boyutunu ve hesaplama kaynaklarını artırarak daha fazla ilerleme kaydedilmesi 

gerekmektedir. 

 (Kulaksiz, 2013)'deki yazarlar, PV hücrelerinin tek diyotlu bir modelinde anahtar 

parametreleri elde etmek, performansı artırmak ve sistem maliyetlerini azaltmak için 

uyarlanabilir nöro-bulanık çıkarım sistemleri (ANFIS'ler) kullandılar. Çeşitli PV modül 

tiplerinde gösterilen yöntem, akü şarj uygulamaları olan bir PV sisteminde doğru MPPT 

kontrolü uygulamak için etkili olduğunu kanıtlamaktadır. Bir solar PV sisteminin çıkış 

gücünü en üst düzeye çıkarmak için (Revathy et al., 2022)’deki yazarlar, hem öğrenme 

yeteneği hem de basit bir tasarım sağlamak için ANFIS denetleyicisinde FLC ve ANN'yı 

birleştiren ANFIS tabanlı bir MPPT tekniği önermektedir. İki giriş, güneş radyasyonu ve 

sıcaklık kullanarak 400W PV dizisine bağlı bir DC-DC yükseltici tip DC-DC 

dönüştürücü için görev döngüsü sinyali üretir. Model, değişen hava koşulları ve kısmi 

gölge gibi çeşitli senaryolarda çalıştırılmıştır. Sonuçlar, ANFIS kontrolörünün hızlı 

izleme hızları ve yüksek dinamik yanıt verme özelliği ile iyi bir performans elde ettiğini 

göstermektedir. Standart P&O MPPT tekniği ile karşılaştırıldığında, önerilen ANFIS 

tabanlı MPPT tekniği daha etkilidir. ANFIS yöntemi de tasarım açısından karmaşıktır, 

hesaplama açısından yoğundur ve aşırı uyum sorunlarıyla karşılaşabilir. Ancak, bu aşırı 

uyum sorunları ML ve DL'nin gelişmiş veri ön işleme teknikleri kullanılarak çözülebilir.  
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Bu makalede (Vafaei et al., 2015), 4,4 kW şebeke bağlantılı bir PV sistemi için 

ANFIS-GA tabanlı hibrit bir MPPT yöntemi önerilmiştir. ANFIS kontrolörü, adaptif 

öğrenme için bulanık çıkarım ve sinir ağı eğitimini birleştirmektedir. GA optimizasyon 

yöntemi, ANFIS ağını eğitmek için en verimli veri kümesi örneklerini elde etmek için 

kullanılır. Model, farklı sıcaklık ve ışınımlarda MATLAB/Simulink simülasyonu ile test 

edilmiştir. ANFIS-GA tekniği, izleme hızı, MPP güç salınımı ve dinamik yanıt verme 

açısından Standart P&O, IC, FLC ve ANN'den daha iyi performans göstermiştir. Bununla 

birlikte, birden fazla algoritmanın birleştirilmesi karmaşıklığı artırır ve tek bir 

kontrolördeki problem genel sistemin performansını etkiler. Bununla birlikte, ML ve DL 

algoritmalarının entegrasyonu, genel sistem doğruluğunu ve verimliliğini artırmak için 

büyük veri kümesi üzerinde eğitim yaparak sorunu bağımsız olarak çözer.  

 (SIddaraj et al., 2023)'de, solar ve batarya enerji depolama sistemlerinden (BESS) 

oluşan hibrit mikro şebeke sistemleri için PSO-ANFIS MPPT kontrolörü adı verilen 

entegre bir kontrol yaklaşımı sunulmuştur. Yöntem, şebekeye bağlı ve adalı mikro 

şebekelerin kararlı çalışmasını sağlar. PSO-ANFIS MPPT, geleneksel MPPT 

yöntemlerine göre daha hızlı yakınsama ve daha doğru maksimum güç noktası takibine 

sahiptir. Bununla birlikte, yüksek veri ve eğitim gereksinimleri, donanım doğrulama 

eksikliği ve uygun verimlilik ve maliyet analizi eksikliği gibi bazı dezavantajları vardır. 

Bu sorunları çözmek için ML veya DL tabanlı daha verimli MPPT algoritmaları 

düşünülmeli, eğitim gereksinimleri azaltılmalı ve gerçek uygulamalar için derinlemesine 

maliyet-fayda çalışmaları yapılmalıdır. 

 

2.1.4.  AI, ML ve DL tabanlı MPPT Yöntemlerinin Literatür İncelemesi 

 

Yapay zekâ (AI), makine öğrenimi (ML) ve derin öğrenme (DL) endüstri 4.0 ve 

toplum 5.0'ın bel kemiğidir. Bu nedenle, solar PV sistemindeki uygulamalarına geçmeden 

önce kısa arka planlarını vurgulamak önemlidir. Bu nedenle, bu bölüm ilk olarak yapay 

zekâ, makine öğrenimi ve DL'nin arka planını vurgulamakta, ardından şebekeye bağlı PV 

sistemlerdeki uygulamalar üzerine bir literatür taraması yapmaktadır. Bu bölüm aşağıdaki 

şekilde ilerlemektedir: (a) AI açıklanmış, ardından (b) ML ve son olarak (c) DL 

kavramları sunulmuştur. 
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2.1.4.1.  AI, ML ve DL'nin Tanıtımı 

 

AI, ML ve DL'nin temel ve kısa tanıtımı verilen alt bölümlerde açıklanmıştır. 

 

• Yapay Zeka (AI) 

 

AI, insan zekasını makinelerde kopyalamayı ve geliştirmeyi amaçlayan bir 

bilgisayar bilimi alanıdır. 20. yüzyılın ortalarında Alan Turing ve John McCarthy gibi 

öncüler hesaplamalı zekâ alanında öncü araştırmalar yapmış ve 1956 yılında 'yapay zekâ' 

terimini ortaya atmışlardır. O zamandan bu yana yapay zekâ, Şekil 2.1'de gösterildiği gibi 

ML ve DL gibi alt kümelerin ortaya çıkmasıyla uzun bir yol kat etmiştir. 

Bu gelişmeler AI’yı teknolojinin ön saflarına taşımıştır ve her sektörde ve insan 

hayatının her alanında devrim yaratması beklenmektedir. Enerji sektöründe, zaman serisi 

tahmini, talep ve üretim tahmini gibi yapay zeka uygulamaları operasyonel verimliliği 

artırmış, arıza süresini azaltmış ve kaynak tahsisini optimize ederek maliyet tasarrufu ve 

sürdürülebilirliği artırmıştır (KARABİNAOĞLU et al., 2022). 

 

 
 

Şekil 2.1. AI, ML ve DL'nin temel tanıtımı ve karşılaştırılması 

 

• Makine Öğrenimi (ML) 

 

ML, bilgisayarların açık bir programlama olmadan geçmiş verilerden kendi 

kendilerine öğrenmelerini ve gelişmelerini sağlayan yapay zekanın bir alt kümesidir. ML 

yaklaşımları üç ana kategoriye ayrılır: Şekil 2.2'de gösterildiği gibi denetimli öğrenme, 
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denetimsiz öğrenme ve pekiştirmeli öğrenme. Facebook, Google ve Uber gibi önde gelen 

şirketler ML’yi aşamalı olarak operasyonlarına entegre etmektedir. ML, akıllı şebeke 

optimizasyonu, sürdürülebilir enerji yönetimi ve hassas tahmin de dahil olmak üzere 

enerji sektöründe de büyük ilgi görmüştür (KARABİNAOĞLU et al., 2022). 

 

 
 

Şekil 2.2. ML'nin, türlerinin ve türleri arasındaki farkların gösterilmesi 

 

Denetimli Öğrenme (SL) ve denetimsiz öğrenme (USL) gibi, pekiştirmeli 

öğrenme (RL) de akıllı şebeke optimizasyonu, sürdürülebilir enerji yönetimi ve MPPT 

kontrolü dahil olmak üzere enerji sektöründe birçok uygulaması olan bir makine öğrenimi 

alt kümesidir.  

 

 

 

Şekil 2.3. Pekiştirmeli öğrenme (RL) algoritmasının çalışma akışı 
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SL ve USL'den farklı olarak, RL bir başlangıç durumu, bir bitiş durumu ve çevreyi 

manipüle etmeye çalışan bir ajan içerir.  Aracı bir durumdan diğerine hareket eder. 

Temsilci başarı için bir ödül (tanınma) alır, ancak başarısızlık için ödül veya tanınma 

almaz. Bu şekilde ajan çevreden öğrenir. Temsilci insan müdahalesi olmadan öğrenir, 

ödüllerini en üst düzeye çıkarır ve cezasını en aza indirir. RL sürecinin iş akışı Şekil 2.3'te 

gösterilmiştir (Kofinas et al., 2017). 

 

• Derin Öğrenme (DL) 

 

DL, diğer özellik oluşturma tekniklerinden farklı olarak verilerden otomatik 

olarak özellik çıkaran bir makine öğrenimi alt kümesidir. Geleneksel makine öğreniminin 

aksine DL, verilerdeki karmaşık örüntüleri ve ilişkileri tanımlamak için birçok katmana 

sahip karmaşık sinir ağları kullanır. Bu derin mimari sayesinde DL, büyük veri setleriyle 

uğraşırken çok iyi performans gösterir ve özellikle denetimli öğrenme senaryolarında 

genellikle daha yüksek doğruluk elde eder. ML küçük veri setleri için hala etkili olsa da 

DL büyük miktarlardaki karmaşık verilerdeki ince desenleri tanımlamada üstündür. 

 
Çizelge 2.1. ML ve DL modellerinin karakteristik özelliklerinin karşılaştırılması 

Özellik Makine Öğrenimi Derin Öğrenme 

Eğitim veri kümesi Küçük Büyük 

Özellik mühendisliği Gerekli Otomatik 

Sınıflandırıcı sayısı Çok Az 

Eğitim süresi Kısa Uzun 

Doğruluk İyi Büyük Veri Kümeleri için İyi 

Uygulama Geniş Farklı görevler için özel modeller 

 

Hem ML hem de DL girdi verilerine dayanır, ancak Çizelge 2.1'de listelendiği 

gibi çeşitli kavramlarda önemli ölçüde farklılık gösterirler. ML genellikle özelliklerin ve 

ön bilgilerin manuel olarak oluşturulmasını gerektirirken, DL özellikleri otomatik olarak 

çıkarma konusunda mükemmeldir ve bunları açıkça oluşturma ihtiyacını azaltır. ML daha 

az hesaplama ve eğitim süresi gerektirir ve bu nedenle daha küçük veri kümelerinde iyi 

çalışır, DL ise özellikle denetimli öğrenmede sürekli olarak yüksek doğruluk sağlamak 

için büyük ve etiketli veri kümelerinden yararlanır. 
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2.1.4.2.  Şebekeye Bağlı PV Sistemlerinde AI, ML ve DL: Literatür Taraması 

 

Bu alt bölümde, şebekeye bağlı PV sistemlerinde yapay zekâ, makine öğrenimi 

ve DL dağıtımına ilişkin bir literatür taraması sunulmaktadır. 

Bu makalede (Sharmin et al., 2022), SL MPPT kontrolörü, DC-DC yükseltici tip 

DC-DC dönüştürücü ile birlikte şebekeden bağımsız solar PV sistemi için kullanılmıştır. 

Önerilen ML modeli hesaplama açısından ucuzdur, uygulaması kolaydır ve P&O (%67,4 

verimlilikle) gibi geleneksel yöntemlerden daha iyi performans göstererek yaklaşık 

%99,8 MPPT verimliliği elde eder. Bununla birlikte, kısmi gölgeleme için hareket 

kontrolünden yoksundur ve yük dalgalanmalarını dikkate almaz. DL yöntemleri, 

otomatik özellik çıkarma, büyük miktarda karmaşık veriyi işleme yeteneği ve kısmi 

gölgeler gibi değişen koşullara uyum sağlayan CNN ve LSTM gibi teknikler sayesinde 

bu sınırlamaların üstesinden gelebilir. Böylece MPPT'nin performansı geleneksel ML 

algoritmasına göre iyileştirilebilir. 

Yazarlar tarafından (Kofinas et al., 2017)'de önerilen araştırma, DC-DC azaltan 

(buck) tipte dönüştürücülü bağımsız bir PV sistemi için RL'ye dayalı bir MPPT yöntemi 

tasarlamıştır. Daha az kurulum süresi gerektiren ve önceden sistem bilgisi gerektirmeyen 

RL tabanlı strateji, verimlilik ve yakınsama hızı açısından daha geleneksel 

yaklaşımlardan daha iyi performans göstermektedir. Çevrimiçi öğrenerek birçok duruma 

uyum sağlayabilir. Bununla birlikte, DL tabanlı MPPT algoritmalarının kullanılması, 

geçit birimi yapılarını kullanarak karmaşık veriler arasındaki uzun vadeli ilişkiyi çıkarma 

kabiliyeti nedeniyle sistemin verimliliğini ve doğruluğunu daha da artırabilir. 

Yazarlar tarafından yapılan araştırma  (Phan et al., 2020), P-V eğrisindeki birden 

fazla tepe noktasıyla başa çıkabilen hızlı ve istikrarlı bir performansa sahip, kısmen 

gölgeli PV sistemlerine sahip akıllı şebekeler için DRL tabanlı bir MPPT yöntemi 

sunmaktadır. Bu DRL algoritması, mevcut gücü en üst düzeye çıkarmak, pilleri verimli 

bir şekilde şarj etmek ve enerjiyi DC yüküne aktarmak için PV modül voltajını ayarlar. 

Ayrıca, bu DRL yaklaşımı P&O gibi geleneksel tekniklere kıyasla hızlı yanıt ve kararlılık 

sağlar. Bununla birlikte, LSTM kullanan DL, hızla değişen hava koşulları altında 

doğruluk sınırlamalarını hafifleterek verimliliği, uyarlanabilirliği ve veri yönetimini 

geliştirebilir. 

DRL tabanlı bir MPPT algoritması, P-V eğrisindeki birçok tepe problemini ele 

alan, kısmen gölgeli PV sistemleri için hızlı ve verimli bir izleme yaklaşımı 

gerçekleştirmek için kullanılmıştır (Avila et al., 2020). MPPT, gerilim, akım ve güç 
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verileri kullanılarak optimize edilmiştir. DRL tabanlı bu MPPT, performans ve doğruluk 

açısından geleneksel MPPT kontrolörlerinden daha iyi performans göstermiştir. DC 

bağlantı voltajını, aktif / reaktif gücü düzenlemeden veya bir inverter kullanmadan 

MPPT'ye odaklanan bu DRL tabanlı MPPT tekniği, yükten önce bir DC-DC 

dönüştürücüye sahip bağımsız PV sistemleri için uygundur. Bununla birlikte, şebekeye 

bağlı PV sistemleri, karmaşıklığı artıran ve daha yüksek doğruluk gerektiren kararlı DC 

kuplajı gerektirir. Bu nedenle, DL'nin LSTM ile entegrasyonu, hızlı çevresel değişiklikler 

sırasında verimliliği, doğruluğu ve uyarlanabilirliği daha da artırabilir ve şebekeye bağlı 

PV sistemlerini stabilize edebilir. 

 (Roh, 2022)'deki yazarlar, önce DL algoritmasını kullanarak ışınımı tahmin 

ederek ve ardından şebekeden bağımsız PV sistemleri için DC-DC yükseltici tip DC-DC 

dönüştürücüyü kontrol etmek için MPPT ile kullanarak birleşik bir yaklaşım 

kullanmışlardır. Bu strateji, geleneksel P&O yöntemine kıyasla daha verimli ve daha hızlı 

izleme sağlar. Bununla birlikte, ışınım hızla dalgalandığında doğruluk sorunları ortaya 

çıkar. Bu nedenle, özellikleri otomatik olarak çıkaran, zamansal verileri işleyen ve geçit 

tasarımını kullanan LSTM ağı ile derin öğrenme kullanarak bu sınırlamaların üstesinden 

gelmek, MPPT'nin doğruluğunu, hızını ve esnekliğini artırabilir. 

Güç kalitesini daha da iyileştirmek için, akıllı bir inverter, bir DC-DC yükseltici 

tip DC-DC dönüştürücü ve bir LCL filtresi kullanan şebekeye bağlı PV kurulumları için 

DNN tabanlı bir MPPT sistemi (Srinivasan & Ramalingam Balamurugan, 2022)'da 

sunulmuştur. Sistem IEEE 1547 gerekliliklerine uygun olmasına rağmen, sabit DNN 

modeli çevresel değişikliklerle başa çıkma esnekliğini sınırlamaktadır. LSTM gibi 

gelişmiş derin öğrenme teknikleri, sabit DNN tasarımlarına kıyasla hızla değişen güneş 

ışınımı ortamlarında daha iyi performans gösterdikleri için verimliliği ve uyarlanabilirliği 

artırmak için önerilmektedir. LSTM kullanan DL, hızla değişen hava koşullarında 

doğruluk sınırlamalarını azaltarak verimliliği, uyarlanabilirliği ve veri yönetimini 

geliştirebilir. 

Bu bölüm, geleneksel, akıllı ve hibrit MPPT kontrolörleriyle ilişkili zorlukların 

üstesinden gelmek için kullanılan çeşitli ML ve DL stratejileri hakkında bir literatür 

incelemesi sunmaktadır. Ayrıca bu bölüm, şebekeye bağlı PV sistemi için önerdiğimiz 

DL tabanlı LSTM MPPT kontrolörünün de temelini oluşturmaktadır. Mevcut ML DL 

MPPT yöntemleri ile önerilen LSTM MPPT algoritmaları arasında kritik bir 

karşılaştırmalı analiz bölüm 1.4'te sunulmuştur. 
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Çizelge 2.2. Tüm geleneksel, akıllı, hibrit, ML ve DL tabanlı MPPT kontrol yöntemlerinin özellikleri 

 
Reference MPPT Category Stages GT/ 

SA 

DC 

Link 

Inverter 

Control 

Efficienc

y 

Speed Cost K 

Geleneksel MPPT Algoritmaları 

(Das, 2016) FOCV C SS SA × × ✔ F L L 

(Sher et al., 2015) FSCC C SS SA × × ✔ F L L 

(Bahari et al., 2016) HC C SS SA × × × F L L 

(John et al., 2018) P&O C SS SA × × × F L L 

(Huynh & 

Dunnigan, 2016) 

IC C SS SA × × × F L M 

Akıllı MPPT Algoritmaları 

(Ansari et al., 2013) FLC S SS GT × ✔ G F M M 

(Ishaque et al., 

2012) 

PSO S SS SA × × G F M M 

(Kim, 2007) SMC S SS GT × ✔ G F H H 

(Hadji et al., 2018) GA S SS SA × × G F M M 

(Zhao et al., 2021) MPC S SS GT × ✔ H F M H 

(Rai et al., 2011) 

(Kulaksiz & 

Akkaya, 2012) 

 
ANN 

 
S 

DS 
SS 

 
SA 

 
× 

 
× 

 
H 

 
F 

 
M 

 
H 

 
Hibrit MPPT Algoritmaları 

(Allahabadi et al., 

2022) 

ANN-

HC 

S SS SA × × H F M H 

(Kulaksiz & 

Akkaya, 2012a) 

GA-
ANN 

S SS SA × × H F M H 

(Akkaya et al., 

2007) 

GA-

MLP-
ANN 

S SS SA × × H F M H 

(Bouaouaou et al., 

2022) 

ANN 

MPC 

S SS GT ✔ ✔ H F H H 

(Revathy et al., 

2022) 

(Kulaksiz, 2013) 

 
ANFIS 

 
S 

 
SS 

 
SA 

 

✔ 

 
× 

 
G 

 
F 

 
M 

 
M 

(Vafaei et al., 2015) ANFIS 

GA 

S DS GT ✔ ✔ H F M M 

(SIddaraj et al., 

2023) 

PSO 

ANFIS 

S DS GT ✔ ✔ G F M H 

AI ML DL tabanlı MPPT Algoritmaları 
(Sharmin et al., 

2022) 

SML ML SS SA × × G NA M H 

(Kofinas et al., 

2017) 

RL ML SS SA × × G F M H 

(Phan et al., 2020) DRL ML-DL SS SA × × G F M M 

(Avila et al., 2020) DRL ML-DL SS SA × × H F M H 

(Roh, 2022) DNN DL DS GT ✔ ✔ H M H H 

(Srinivasan & 

Ramalingam 

Balamurugan, 

2022) 
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Çift Aşamalı Şebekeye Bağlı Solar PV İnverter Kontrolü 

(T. K. Roy & 

Mahmud, 2017) 

IC I DS GT ✔ ✔ M NA M L 

23 IC I DS GT ✔ ✔ M NA M L 

(Jagadeesan et al., 

2022) 

FOCV I DS GT ✔ ✔ M F M M 

(Krishna et al., 

2021) 

P&O I DS GT ✔ ✔ M F M M 

(Sharmin et al., 

2022) 

ANN ML DS GT ✔ ✔ G M M M 

(Srinivasan & 

Ramalingam 

Balamurugan, 

2022) 

 

RNN 

 

DL 

 

DS 

 

GT 

 

✔ 

 

✔ 

 

G 

 

M 

 

M 

 

H 

C: Conventional, S:Smart, SS: Single Stage, DS: Dual Stage, GT: Grid Tied, SA: Standalone, G: Good, F: Fast, M: 

Medium, L: Low, H: High, ✔: Yes, or Exists, ×: No or Absent, SML: Supervised Machine Learning 
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Tüm geleneksel, akıllı, hibrit, ML ve DL tabanlı MPPT kontrol stratejilerinin 

özellikleri Çizelge 2.2'de listelenmiştir. 

 

2.2.  Şebekeye Bağlı PV'nı̇n İkı̇ncı̇ Aşamasına İlı̇şkı̇n Lı̇teratür Taraması 

 

Bu bölümde, şebekeye bağlı PV sistemlerin ikinci aşaması ile ilgili literatür 

çalışmaları sunulmuştur. İkinci aşamanın ana bileşenleri DC-bağlantı kondansatörü, DC-

AC evirici, PLL, LCL filtresi ve şebekedir. Her bir bileşenin tasarımı, tipi, çalışması ve 

kontrolü Bölüm 3'te ayrıntılı olarak açıklanmaktadır. Birinci aşamadaki MPPT'ler ve 

yükseltici tip DC-DC dönüştürücüler, eviricinin girişi olan dc-bağlantı voltaj 

regülasyonunun kontrolünde önemli bir rol oynarken, LCL filtreleri harmonikleri en aza 

indirir. Bu ikinci aşamada evirici, PV dizisi tarafından üretilen gücü mikro şebekeye 

aktarmak için gerilim ve akım kontrol şemasını kullanır. Önceki bölümde (1.2), MPPT, 

yükseltici tip DC-DC dönüştürücü ve evirici ile entegre edilmiş şebekeye bağlı PV bu 

bölümün temeli olarak ele alınmıştır. Bu alt bölüm, şebekeye bağlı PV sistemler için dc-

link voltaj regülasyonu ve evirici kontrol topolojileri üzerine son teknoloji araştırmalara 

odaklanmaktadır. 

 (T. K. Roy & Mahmud, 2017)'deki yazarlar, şebekeye bağlı bir solar PV 

sistemindeki aktif gücü kontrol etmek için güvenilir doğrusal olmayan uyarlanabilir geri 

adımlamalı kontrolör tasarladılar. Maksimum PV güç üretimi elde etmek için IC-MPPT 

ile donatılmış bir DC-DC yükseltici tip DC-DC dönüştürücü kullanılır. İnverter akımının 

kontrol edilmesi DC bağlantı gerilimini düzenler. Uyarlanabilir kontrolör, bilinmeyen 

sistem parametrelerinin çevrimiçi tahminini sağlar. Lyapunov kararlılık analizi 

kullanılarak, kontrolör tasarlanırken parametre belirsizlikleri ve harici bozulmalar dikkate 

alınır. Bu, çeşitli çalışma koşulları altında sağlamlık sağlar. Gerekli aktif gücü sağlamak 

için kontrolör şebekeye yüksek kaliteli akım enjekte eder. Sistem, kontrolörün 

performansını değerlendirmek için MATLAB/Simulink'te modellenmiş ve simüle 

edilmiştir. 

 Yazarlar tarafından iki aşamalı şebekeye bağlı tek fazlı bir PV sistemi önerilmiştir 

(Jagadeesan et al., 2022). Analitik MPPT, maksimum güç elde etmek için bir yükseltici 

DC-DC dönüştürücü tarafından kullanılmaktadır. Şebeke bağlantı gerilimi ve güç 

faktörü, DC-AC inverter kullanılarak birim değerinde tutulmaktadır. İnverterin dahili 

akım döngüsü PI ve harici gerilim döngüsü tarafından kontrol edilir. PV sistemi, 
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verimliliği artırmak için PV eğrisinin uygun tarafında çalıştırılır. MPPT'nin gerçek 

zamanlı verimliliği optimize edilmiş bir analiz tekniği kullanılarak değerlendirilir. DC-

DC dönüştürücünün görev döngüsünün beklenen MPP'ye ve artıklık komutuna göre 

değiştirilmesi, yedek güç çalışmasına olanak tanır. Bu da enerji depolama 

mekanizmalarına olan ihtiyacı ortadan kaldırır. Önerilen sistemin modellenmesi için 

MATLAB/Simulink kullanılmış ve ardından deneysel olarak doğrulanmıştır. 

(Krishna et al., 2021)'deki yazarlar, transformatörsüz şebeke bağlantılı bir solar 

PV sistemi için verimli bir aktif güç kontrol tekniği sunmaktadır. Maksimum güç, P&O 

MPPT ile yüksek kazançlı bir boost DC-DC dönüştürücü kullanılarak elde edilir. Çift 

aktif köprü (DAB) DC-DC dönüştürücü, bataryayı her iki yönde şarj ve deşarj eder. PV, 

batarya ve yük arasındaki optimum güç dengesi, akıllı bir sabit güç dengeleme 

algoritması ile elde edilir. DC şebeke gerilimi, sabit şebeke gücü kullanılarak düzenlenir. 

Gerilim kaynaklı invertere, dahili bir akım düzenleme döngüsü ve harici bir gerilim 

düzenleme döngüsü PI aracılığıyla şebekeye güç sağlar. PLL ve LCL filtreleri şebeke 

senkronizasyonu ve harmonik bastırma sağlar. Önerilen kontrol tekniğini farklı koşullar 

altında doğrulamak için sistem MATLAB'da modellenmiştir. 

Yazarlar tarafından iki aşamalı şebekeye bağlı tek fazlı bir PV sistemi önerilmiştir 

(El Mezdi et al., 2023). Analitik MPPT, maksimum güç elde etmek için bir yükseltici 

DC-DC dönüştürücü tarafından kullanılmaktadır. DC bağlantı gerilimi inverter kontrolü 

kullanılarak düzenlenir, güç faktörü PV'den şebekeye sadece aktif güç aktarmak için bir 

tutulur. İnverterin dahili akım döngüsü PI ve harici gerilim döngüsü tarafından kontrol 

edilir. PV sistem, verimliliği artırmak için P/V eğrisinin uygun tarafında çalıştırılır. 

MPPT'nin gerçek zamanlı verimliliği optimize edilmiş bir analiz tekniği kullanılarak 

değerlendirilir. DC-DC dönüştürücünün görev döngüsünün beklenen MPP'ye ve 

yedekleme komutuna göre değiştirilmesi, yedek güç çalışmasına izin verir. Bu, enerji 

depolama mekanizmalarına olan ihtiyacı ortadan kaldırır. Önerilen sistemi modellemek 

için MATLAB/Simulink kullanılmış ve ardından deneysel olarak doğrulanmıştır. 

 (Sevilmi & Karaca, 2018)'nin yazarları, tek fazlı şebeke bağlantılı bir sistemde 

eviricinin şebeke gerilimi ile doğru ve hızlı senkronizasyonunun önemini 

vurgulamaktadır. Yazarlar üç fazlı SVPWM kontrollü şebeke bağlantılı bir inverteri 

MATLAB/Simulink'te simüle etmiş ve bir TMS320F28335 DSP kullanarak deneyler 

gerçekleştirmiştir. Simülasyon ve deneysel sonuçlar, bir faz kilitli döngü (PLL) 

algoritması kullanarak başarılı şebeke senkronizasyonunu doğrulamaktadır. Ayrıca, 

(Karaca & Bektas, 2016)'deki yazarlar da hem bağımsız hem de şebekeye bağlı 
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yenilenebilir enerji sistemlerinde basit harmonik eliminasyon (SHE) azaltımı için GA 

önermişlerdir. Ek olarak, PLL'nin döngü filtrelemesinde, (Sevilmiş & Karaca, 2021)'deki 

yazarlar, şebekeye bağlı güç sistemlerinde kararlı senkronizasyon elde etmek için inverter 

voltajının doğru fazını ve büyüklüğünü elde etmek için DC ofset reddetme tekniğini 

kullandılar. 

Çizelge 2.2'de ayrıca şebekeye bağlı bir PV sistemde iki aşamalı çalışma üzerine 

yapılan son araştırmalar da listelenmektedir. Önceki bölümlerde, özellikle son teknoloji 

MPPT kontrolörlerinin kategorilerine, ilerlemelerine ve sınırlamalarına odaklanılmıştır. 

Bu bölüm özellikle DC bara gerilim regülasyonu, evirici kontrol topolojileri, filtre 

tasarımı ve önceki araştırmacılar tarafından şebekeye bağlı bir PV sisteminde aktif reaktif 

güç kontrolünü vurgulamayı amaçlamaktadır. Bir sonraki bölüm, en son teknoloji ile 

önerilen çalışma arasındaki karşılaştırmalı değerlendirmeye odaklanmaktadır. 

 

2.3.  Geçmı̇ştekı̇ Zorluklar ve Önerı̇len Lstm Tabanlı Mppt'nı̇n Kapsamı 

 

Bu literatür taramasında, şebekeye bağlı PV sistemler için geleneksel, akıllı, hibrit 

ve makine/derin öğrenme tabanlı MPPT kontrolörleri üzerine geçmiş araştırmalar 

tartışılmaktadır. Buna ek olarak, evirici kontrol stratejileri de gözden geçirilmiştir. 

Ardından, derin öğrenme modelleri kullanan iki aşamalı şebekeye bağlı PV sistemler 

üzerine yapılan araştırmalar, zorluklar ve eksiklikler de dahil olmak üzere 

vurgulanmaktadır. Mevcut literatürdeki kısıtlamalara dayanarak, bu bölüm araştırmanın 

ihtiyacını ve kapsamını ortaya koymaktadır. Özet olarak, bu bölüm ilgili çalışmaları 

gözden geçirerek, derin öğrenme tabanlı iki aşamalı PV sistemlerle ilişkili açık zorlukları 

belirleyerek ve bu boşlukları ele almak için araştırma yönlerini belirleyerek araştırma 

bağlamını oluşturmaktadır. 

Şebeke dışı ve şebekeye bağlı fotovoltaikler (PV) için MPPT kontrolörlerinin 

geliştirilmesinde, performansı ve dolayısıyla doğruluğu ve verimliliği artırmak için 

gelişmiş teknikler kullanılarak önemli ilerlemeler kaydedilmiştir. Bu derleme, özellikle 

şebekeden bağımsız ve şebekeye bağlı PV enerji üretimi için geleneksel, akıllı, hibrit, 

yapay zekâ ve derin öğrenme yaklaşımları dahil olmak üzere çeşitli MPPT 

algoritmalarına kapsamlı bir genel bakış sunmaktadır. Tartışılan temel konular arasında 

hava değişimleri sırasında MPP etrafındaki dalgalanmalar, DC bağlantı voltajı 

kararsızlığı ve inverter çıkışındaki harmonik bozulma yer almaktadır. Bununla birlikte, 

kararlılık, verimlilik ve çevresel dinamiklere uyarlanabilirlik açısından hala sınırlamalar 
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vardır. Önerilen model, iki seviyeli şebeke bağlantılı bir sistemde DC-DC 

dönüştürücülerin gelişmiş MPPT kontrolü için stack bir LSTM ağ mimarisi sunmaktadır. 

Bu veri odaklı yaklaşım, mevcut literatürde tanımlanan zorlukların üstesinden gelmeyi 

amaçlamaktadır. 

 (Kulaksiz & Akkaya, 2012a)’daki yazarlar, GA optimizasyonlu bir ANN ve 

eviricinin PI kontrolünü kullanarak bağımsız bir PV sistemi için bir MPPT 

uygulamışlardır. ANN, G ve T verilerine dayalı olarak MPP'deki gerilimi belirlemek için 

çevrimdışı olarak eğitilmiştir. Bu, ANN'yı DSP/mikrodenetleyici uygulaması için 

yeterince küçük hale getirmektedir. Geleneksel P&O MPPT'nin aksine, PI kontrolördeki 

adım değişiklikleri salınım olmadan MPP'yi takip eder. Simülasyonlar ve deneyler, sabit 

adım boyutu yaklaşımına göre daha az hata ile daha hızlı izleme göstermektedir. Bununla 

birlikte, basit bir ANN yapısı doğruluğu ve uyarlanabilirliği sınırlayabilir. Buna karşılık, 

bu tezde sunulan araştırma, şebekeye bağlı bir PV sistemi için MPPT uygulamak üzere 

stack bir LSTM derin öğrenme modeli kullanmaktadır. Tezde kullanılan basit ANN ile 

karşılaştırıldığında, stack LSTM MPPT için daha yüksek doğruluk ve uyarlanabilirlik 

sağlar. Ayrıca, makalede ayrı MPPT ve inverter kontrolleri uygulanırken, önerilen 

çalışma MPPT ve inverterin droop kontrolünü sırasıyla LSTM ve PI kontrolörleri 

kullanarak gerçekleştirmektedir. Bu, inverter kontrolünün basitliğini korurken 

maksimum güç elde etmek için derin öğrenmenin kullanılmasına izin verir. 

 (Roh, 2022)'deki yazarlar, G'yi tahmin etmek ve çıkış gücünü maksimize etmek 

için DL tabanlı bir MPPT kontrol algoritması sunmuşlardır. Prosedür, MPP'nin mevcut 

değerini tahmin etmek için sıcaklık ve ışınım verilerini kullanır. Algoritma, mevcut P&O 

MPPT tekniklerine kıyasla daha iyi performansa sahiptir. Bununla birlikte, çalışmada veri 

kümesinin boyutu, eğitim ve test için gerekli veri bölümlemesi ve kullanılan gizli katman 

sayısı dahil olmak üzere DL model mimarisinin ayrıntıları eksiktir. Bu çalışmada yazarlar 

özellikle G seviyelerini tahmin etmiş, ardından MPPT algoritmasını uygulamış ve 

sonuçları P&O MPPT kontrolörüyle karşılaştırmıştır. Bu tezde önerilen çalışmada, MPPT 

kontrolörü olarak LSTM DL yöntemi kullanılmış ve sonuçlar geleneksel veya diğer akıllı 

MPPT'ler yerine diğer DL modeli olan FF-DNN ile karşılaştırılmıştır. Ek olarak, önerilen 

araştırma, PV dizisi tarafından üretilen aktif gücü elektrik mikro şebekesine aktarmak için 

inverter kontrolü de sağlamıştır. 

 (Ab-Belkhair et al., 2020)'deki yazarlar, 50 kW hibrit PV/Rüzgâr sistemi için bir 

MPPT algoritması geliştirmek üzere bir DNN kontrolörü kullanmaktadır. MPPT 

algoritması, 66.000 elemanlı bir veri kümesi ile bir DNN öğrenme algoritması 
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kullanılarak formüle edilmiş ve 20kW'lık bir PV dizisi ve bir yükseltici tip DC-DC 

dönüştürücü ile MATLAB'da simüle edilmiştir. DNN kontrolörünün mimarisi 1000 gizli 

katman nöronu ve bir çıkış nöronundan oluşmaktadır. Ayrıca yazarlar, inverter kontrolü 

için başka bir DNN kontrolörünü entegre ederek hem MPPT hem de inverter kontrolünü 

ele alarak anlayışı ilerleten kapsamlı bir yaklaşım sunmaktadır. Araştırma, DNN 

denetleyicisindeki en uygun gizli katman ve birim sayısının belirlenmesini 

araştırmaktadır. Özellikle, biri MPPT ve diğeri inverter kontrolü için 1000 gizli nörona 

sahip iki DNN modeli, toplam 66.000 veri örneği kullanılarak kullanılmıştır. Buna 

karşılık, bu tezde önerilen model, 1 milyon veri noktası kullanarak (64+32) gizli nöronlu 

LSTM ve inverter kontrolü için bir PI denetleyici kullanmaktadır. Genel olarak, daha 

fazla veri üzerinde eğitilen önerilen model daha az karmaşıklıkla daha üstün doğruluk 

elde etmektedir. 

Yazarlar (Srinivasan & Ramalingam Balamurugan, 2022), şebekeye bağlı PV 

sistemleri için DNN tabanlı bir MPPT algoritmasını, şebekeye bağlı evirici için Örümcek 

Maymun Optimizasyonu (SMO) ile ayarlanmış bir Orantılı Rezonans (PR) kontrolörü ile 

birleştiren yeni bir yaklaşım sunmuşlardır. DNN, Bald Eagle Search (BES) kullanılarak 

optimize edilmiş çoklu gizli katmanlara sahip bir Tekrarlayan Sinir Ağından (RNN) 

oluşmaktadır. Bununla birlikte, çalışma, veri örneği miktarını, gizli katman ağ yapısını ve 

G varyasyonunun PV performansı üzerindeki etkisini göz ardı ederek yalnızca hücre T 

varyasyonuna odaklanan bir hedef veri kümesini dikkate almaktadır. Ayrıca, yazarlar 

inverter kontrol kısmında bir PR kontrolörü kullanmaktadır. Buna karşılık, bu tezde 

önerilen araştırma, RNN'lere kıyasla uzun vadeli bağımlılıkları yakalama konusundaki 

üstün yeteneği nedeniyle MPPT kontrolörü olarak LSTM'yi kullanmaktadır. LSTM'nin 

seçimi, RNN'lerle ilişkili kaybolan gradyan sorununu ele alan mimarisi ile motive 

edilmiştir. LSTM için optimizasyon sürecini geliştiren Adam optimizer, özellikle zaman 

serisi veri uygulamalarında derin sinir ağı ağırlıklarını optimize etmede BES'ten daha 

etkili olduğunu kanıtlamıştır. Karmaşıklığı yönetmek için, evirici tarafında, PR 

denetleyicisine kıyasla daha az hesaplama karmaşıklığı ile gerçek zamanlı kontrol 

görevlerindeki etkinliği ile bilinen basit bir PI denetleyicisi kullanılır, bu da 

basitleştirilmiş uygulamaya ve iyileştirilmiş genel sistem verimliliğine katkıda bulunur. 

 (Dharma Raj et al., 2023)'te yazarlar 230W solar PV dizisi, 6 türbinli 575V hat 

gerilimli rüzgâr sistemi ve enerji depolama için kurşun-asit bataryayı entegre eden 

şebekeye bağlı hibrit bir sistemi tanımlamaktadır. MPPT denetleyicisi olarak katman 

başına 120 nöron içeren beş katmanlı bir BiLSTM ağı kullanılmış, ortalama karesel hata 
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kaybı ve ROA optimizasyonu kullanılarak 70-30 bölünmüş veri kümesi üzerinde 

eğitilmiştir. Sistem, %98,23 MPPT verimliliği ve %0,88 evirici çıkış gerilimi Toplam 

Harmonik Bozulma (THD) ile 2,83 MW toplam güç tüketimi elde etmektedir. Bununla 

birlikte, BiLSTM yapısının basitliği gibi doğruluğu ve uyarlanabilirliği etkileyebilecek 

potansiyel sınırlamalar kabul edilmektedir. Ayrıca, çalışmada ağdaki toplam nöron sayısı, 

veri ön işlemenin karmaşıklığı veya inverter kontrol yaklaşımı belirtilmemiştir. Buna 

karşılık, tez için önerilen araştırma, 2 katmanlı ve toplam 96 gizli nöronlu (64+32) stack 

LSTM tabanlı bir MPPT denetleyicisi kullanarak 100 kW'lık önemli bir PV dizisine sahip 

şebekeye bağlı bir PV sistemini tanıtmaktadır. Titiz bir veri ön işleme stratejisi, Z-skor 

normalizasyonunu ve histogram, kutu grafiği ve korelasyon matrisi analizleri yoluyla 

kapsamlı görselleştirmeyi içerir. Sistem, uygulamayı kolaylaştırmak ve hesaplama 

karmaşıklığını azaltmak için 12 anahtarlı 3 seviyeli sinüzoidal darbe genişlik 

modülasyonu bir inverterin yanı sıra inverter kontrolü için Oransal-İntegral (PI) 

kontrolörleri içerir. 98,2'lik bir verimlilik elde eden önerilen araştırma, yukarıda 

bahsedilen yazarların araştırmalarına kıyasla sistem kapasitesi, kontrolör karmaşıklığı ve 

metodolojik titizlik açısından iyileştirmeler göstermektedir. 

 

Çizelge 2.3. Yaygın olarak kullanılan MPPT yöntemleri arasında kısa bir karşılaştırma 

 
Yöntemi Avantajları Sınırlamalar 

P &O Basit tasarım, Kolay uygulama, Düşük 

karmaşıklık, Hızlı Hız 

MPP çevresinde salınımlar, Düşük verimlilik 

IC P&O'dan daha düşük salınımlar, 

P&O'dan daha yüksek verimlilik 

P&O'ya kıyasla karmaşık tasarım, P&O'dan 

daha düşük hız 

FLC Belirsiz koşullar altında daha iyi 

performans sunar, Değişken adım 

boyutu D sağlar 

ML becerilerine sahip değildir, FLC kuralları 

uzman bilgisi gerektirir, MPC tahmin 

parametrelerine karşı hassastır 

MPC Belirsiz koşullar altında daha yüksek 

verimlilik, FLC, MPC, IC ve P&O'dan 

daha yüksek doğruluk 

Gelişmiş ML algoritmalarından daha düşük 

doğruluk, Büyük veri uygulamaları için daha 

düşük doğruluk 

ANN Belirsiz koşullar altında daha yüksek 

verimlilik, FLC, MPC, IC ve P&O'dan 

daha yüksek doğruluk 

Gelişmiş ML algoritmalarından daha düşük 

doğruluk, Büyük veri uygulamaları için daha 

düşük doğruluk 

DNN Bellek öğelerinin eklenmesi doğruluğu 

artırdı, Belirsiz ortamın büyük 

verileriyle ilgilenir 

Büyük veriler için büyük eğitim süresi ancak 

gradyan kaybolma sorunu, Yüksek karmaşıklık 

(gizli birimlere ve veriye bağlıdır) 
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DL'nin PV için bir MPPT kontrolörü olarak kullanılması, halen araştırılmakta olan 

yeni bir araştırma alanıdır. Geleneksel ve akıllı MPPT kontrolörleri kullanan PV 

sistemleri için çok sayıda araştırma yapılmıştır, ancak DL algoritmaları kullanılarak çok 

fazla araştırma yapılmamıştır, bu nedenle karmaşıklığı azaltırken doğruluğu artırmak için 

ek araştırmalara ihtiyaç vardır. DL tabanlı MPPT kontrolörünün diğer MPPT 

kontrolörleriyle karşılaştırması Çizelge 2.3'te vurgulanmıştır. Son on yılda, sistem 

karmaşıklığı tarihsel olarak PV sistemlerinde AI algoritmalarının kullanımının önünde 

önemli bir engel olmuştur. DL algoritmaları, hava durumu parametrelerinin hızlı 

değişimlerine rağmen düşük hata ve yüksek doğrulukla MPPT için kullanılabildiğinden 

son zamanlarda dikkat çekmektedir. Önerilen LSTM tabanlı MPPT kontrolörü, FFNN ve 

geleneksel P&O'dan daha yüksek doğruluk elde ederken şebekeye bağlı PV sisteminin 

karmaşıklığını azaltmak için yalnızca 96 gizli nöron kullanır. Önerilen MPPT 

kullanılarak üretilen güç daha sonra basit ve daha az karmaşık bir PI denetleyici içeren 

inverter yapısı üzerinden şebekeye iletilir. Bununla birlikte, eğitim süresi genel işlem 

birimleri kullanılarak dakikalardan saniyelere kadar iyileştirilebilir. 

Bu sorunları ele almak için akademide DL tabanlı çözümler önerilmiştir. Bu tezde, 

şebekeye bağlı PV sistemlerindeki iki kritik sorunu çözen yeni bir DL LSTM tabanlı 

MPPT yöntemi: (a) stack LSTM tabanlı bir MPPT denetleyicisi kullanarak 100 kW'lık 

bir PV dizisinden maksimum gücü elde etmek, (b) şebekeye bağlı bir PV sisteminde DC 

voltajını ve üç seviyeli bir inverterin çalışmasını kontrol etmek. Önerilen araştırma temel 

olarak MPPT kontrolörü ve DC bağlantı voltajı kontrolüne odaklanmakta ve aktif gücü 

şebekeye aktarmaktadır. DC bağlantı voltajı kontrolü şebekeye bağlı PV sistemlerde çok 

önemlidir çünkü eviricinin girişindeki düzgün ve kararlı bir DC bağlantı voltajı, eviricinin 

çıkış tarafındaki harmonikleri azaltma ve şebekeye kararlı güç enjeksiyonu sağlama 

eğilimindedir. İlk aşamada kullanılan PV dizisi, yükseltici tip DC-DC dönüştürücü, 

MPPT denetleyici gibi temel bileşenler modellenmiş, tasarlanmış ve Bölüm 3'te 

açıklanmıştır. Benzer şekilde, önerilen stack LSTM tabanlı MPPT'nin modellenmesi, 

tasarımı, çalışması, türleri, eğitimi ve testine dayalı ayrıntılı açıklama Bölüm 4'te 

açıklanmıştır. 
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3.  MATERYAL VE YÖNTEM 

 

Bu bölümde, önerilen çalışmada kullanılan araştırma arka planının, materyallerin 

ve yöntemlerin temel kavramları açıklanmaktadır. Bu tezde, (a) birinci kademe ve (b) 

ikinci kademe olmak üzere iki kademeye ayrılan 100 kW'lık üç fazlı çift kademeli şebeke 

bağlantılı bir PV sistem ele alınmıştır. Bu tezde kullanılan birinci ve ikinci aşamada 

kullanılan tüm bileşenleri gösteren blok diyagram Şekil 3.1'de gösterilmektedir. Birinci 

aşama güneş paneli, MPPT denetleyici ve yükseltici tip DC-DC dönüştürücüden 

oluşmaktadır. İkinci aşama ise inverter kontrolü, DC bara gerilimi kontrolü ve şebekeye 

güç aktarımının kontrolünü içermektedir. 

 

 
 

Şekil 3.1. Önerilen araştırmanın birinci ve ikinci aşamasında kullanılan bileşenler 

 

Blok diyagramından, PV dizisinin Işınım (G) ve Sıcaklık (T) değerlerine bağlı 

olarak değişken DC gerilimi ürettiği açıktır. PV geriliminin seviyesi bir DC-DC yükseltici 

tip DC-DC dönüştürücü kullanılarak artırılır. Artan voltaj seviyesi, güç dengesini 

korumak ve iletim kablolarındaki düşük kayıplarla uygun hale getirmek için akım 

seviyesini azaltmaya yardımcı olur. Yükseltici tip DC-DC dönüştürücünün anahtarı, PV 

panelinden maksimum gücü elde eden bir MPPT kontrolörü kullanılarak kontrol edilir. 

MPPT kontrolörü, MPP'deki akımı ve gücü belirleyen MPP'de bir referans voltaj sağlar. 

MPP'deki çıkarılan voltaj gerçek PV voltajıyla karşılaştırılır ve hata sinyali, yükseltici tip 

DC-DC dönüştürücünün anahtarının darbe genişliğini ayarlamak için Darbe Genişlik 

Modülasyonu (PWM) için bir referans sinyali olarak kullanılır. Bu tez çalışmasında 

kullanılan temel bileşenlerin listesi aşağıda verilmiştir: 
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• Solar PV Dizisi 

• Yükseltici tip DC-DC dönüştürücü  

• MPPT Denetleyici  

• Şebeke Bağlantılı İnverter 

• Darbe Genişlik Modülasyonu 

• Faz Kilitleme Döngüsü  

Bu bölümde ayrıca tezin birinci ve ikinci aşamalarında kullanılan tüm elektronik 

bileşenlerin modellenmesi, tasarımı ve çalışması da ele alınacaktır. 

 

3.1.  Şebekeye Bağlı PV Sistemin İlk Aşaması 

 

PV paneli, yükseltici tip DC-DC dönüştürücü ve MPPT kontrolörü, şebekeye bağlı 

PV sisteminin ilk aşamasındaki önemli unsurlardır. PV dizisi güneş enerjisini 

ayarlanabilir DC gücüne dönüştürür. Yükseltici tip DC-DC dönüştürücü, PV gerilimini 

inverter için uygun giriş seviyesine yükseltir. MPPT kontrolörü, yükseltici tip DC-DC 

dönüştürücünün görev döngüsünü kontrol ederek dalgalı koşullar altında optimum güç 

çıkarımı için çalışma noktasını optimize eder. Her bir bileşenin ayrıntılı açıklaması bu alt 

bölümde verilmektedir. 

 

3.1.1.  Solar PV Panel 

 

Bir solar PV hücresi, güneş ışığını "Fotovoltaik Etki" kullanarak elektrik 

enerjisine dönüştürmek için kullanılan en küçük birimdir (“Photovolt. Mater. Electron. 

Devices,” 2018). Güneş ışığının varlığında bir güneş pilinin çalışma prensibi Şekil 3.2'de 

gösterilmiştir.  

Yüksek verimlilik ve düşük maliyet nedeniyle silikon, solar PV hücrelerinde en 

sık kullanılan yarı iletken malzemelerden biridir. Güneş pili, elektrik üretmek için güneş 

ışığını kullanan PV sisteminin en küçük bileşeni ve yapı taşıdır. PV hücrelerinin 

kombinasyonu istenen elektrik aralığını üretmek için kullanılır ve bu kombinasyon 

genellikle (a) PV hücresi, (b) PV modülü, (c) PV paneli ve (d) PV dizisi olarak 

adlandırılır.  
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Aşağıdaki alt bölümde, ilk olarak fotovoltaik etki tanımlanmakta, daha sonra PV 

hücre, dizi ve modül gibi PV sistem bileşenleri açıklanmakta ve bunları bir PV hücrenin 

tasarımı ve çalışması takip etmektedir. 

 

 

3.1.1.1.  Fotovoltaik Etki 

 

"Fotovoltaik etki", silikon gibi yarı iletken bir malzeme güneşten gelen fotonları 

emdiğinde ve elektronlar yaydığında ortaya çıkan bir olgudur. Bu serbest elektronlar ilgili 

plakalar boyunca akar ve yarı iletken malzemedeki bu serbest elektronların akışı akımı 

oluşturur (Mertens, n.d.).  

 

 
 

Şekil 3.2. Solar PV hücresinin çalışma prensibi 

 

Yazarlar tarafından (Mukerjee & Thakur, 2011)'de belirtildiği gibi fotovoltaik 

süreçte yer alan ana adımlar aşağıda listelenmiştir: 

• Işık Absorpsiyonu: Güneşten gelen ışık, güneş pilinin yarı iletken malzemesi 

tarafından emilir. Soğurulan fotonlar, yarı iletken malzemenin elektronlarını 

serbest elektronlar haline getirmek için uyarır.  

• Yük taşıyıcılarının ayrılması: Yarı iletken malzemenin elektrik alanı bu 

elektronları ayırır. Hücrenin pozitif tarafı elektronları çeker ve pozitif taşıyıcılar 

hücrenin negatif tarafına doğru çekilir.  

• Akım Akışı: Elektronların pozitif hücreden negatif hücreye doğru bu akışı 

elektrik akımı oluşturur. 
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Bir güneş pilinin genel verimliliği, optik kayıplar, taşıyıcı kayıpları ve termal 

kayıplar nedeniyle düşüktür, bu nedenle bu işlemle üretilen elektriğin verimliliği, gelen 

ışığın yüzdesidir. Piyasada, bir güneş pilinin ortalama verimliliği %15 ila 17 civarındadır, 

son zamanlarda %20 verimliliğe sahip güneş pilleri de ticari olarak mevcuttur (Morales 

et al., 2019). Yarı iletken bilim insanları, güneş panellerinin verimliliğini artırmak için 

yeni malzeme ve tasarımlar araştırmaya devam etmektedir. 

 

3.1.1.2.  PV Sistemin Yapı Taşları 

 

Bir PV modülü, istenen voltajı elde etmek için paralel ve seri olarak bağlanan 

güneş pilleri grubudur. PV panel genellikle güneş modülleri ile eş anlamlı olarak 

kullanılır ve bu da belirli bir miktarda güç üretebilen tüm bir sistemi oluşturmak için bir 

araya getirilmiş bir grup güneş hücresini tanımlar. Bir PV dizisi, daha büyük bir güneş 

enerjisi sistemi oluşturmak için birleştirilen bir güneş panelleri koleksiyonudur.  

 

3.1.1.3.  Bir PV Hücresinin Tasarımı ve Çalışması 

 

Bir solar PV hücresinin çalışma prensibi, ters kutuplu bir PN bağlantı diyotu 

gibidir. Güneş ışığı sırasında güneş ışığını veya foto enerjiyi elektrik enerjisine 

dönüştürmek için çalışır ve geceleri güneş ışığı olmadığında küçük bir "karanlık akım" 

üretir (Ito et al., 2008). 

 

 
 

Şekil 3.3. Bir PV hücresinin tek diyot modeli 
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Bu tezde, istenen 100 kW çıkış gücünü elde etmek için modül başına toplam 96 

hücre, dizi başına 5 seri bağlı modül ve 65 paralel dizi dikkate alınmıştır. Önerilen PV 

dizisinin maksimum gücü verilen denklem kullanılarak hesaplanmıştır; 𝑃𝑝𝑣 = 𝑃𝑚𝑎𝑥 ∗

𝑁𝑝 ∗ 𝑁𝑠, bu da 315*65*5=100,2 kW verir. Basitlik ve hassasiyet göz önünde 

bulundurularak, PV dizisinin tek diyotlu eşdeğer modeli, (Beniysa et al., 2019), (Anani 

& Ibrahim, 2020)'de yazarlar tarafından da kullanılan Şekil 3.3'te gösterildiği gibi ele 

alınmıştır. PV hücrelerin güç üretimi temel olarak güneş ışınımı (G) ve güneş hücresi 

sıcaklığındaki (T) değişimlerden etkilenmektedir. 

PV hücrenin tek diyotlu modelinde, toplam akım denklem (3.1)'de modellendiği 

gibi Kirchhoff'un Akım Kanunu kullanılarak elde edilir. Işık akımı, diyot akımı ve şönt 

akımı dahil olmak üzere tüm akımların değerleri yerine konulduktan sonra, nihai çıkış 

akımı denklem (3.2)'de modellenir. Şönt direncinin değeri genellikle çok yüksek 

tutulduğu için şönt akımı çok küçük olacaktır. Bu nedenle, küçük şönt akımı ihmal 

edildikten sonra denklem (3.2), denklem (3.3) olarak daha da basitleştirilebilir. 

Matematiksel model, güneş pili konfigürasyonlarının tanıtılmasıyla daha da 

geliştirilebilir, bu nedenle denklem (3.4), seri ve paralel konfigürasyonlardaki güneş pili 

sayılarını kullanan nihai güncellenmiş akım denklemidir.  

𝐼 =  𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑠ℎ (3.1) 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑜{𝑒𝑥𝑝[𝑞(𝑣 + 𝐼𝑅𝑠)𝐴𝐾𝑇] − 1} − {(𝑣 + 𝐼𝑅𝑠)𝑅𝑠ℎ} (3.2) 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑜{𝑒𝑥𝑝[𝑞(𝑣 + 𝐼𝑅𝑠)𝐴𝐾𝑇𝑗] − 1} (3.3) 

𝐼 =  𝑁𝑝𝐼𝑝ℎ − 𝑁𝑝𝐼𝑜{𝑒𝑥𝑝[𝑞(𝑣 + (𝑅𝑠𝑁𝑠 𝑁𝑝⁄ ))𝐴𝐾𝑇𝑗] − 1} (3.4) 

Denklem (3.4), hem seri hem de paralel hücre düzenlemelerini dikkate alarak 

güneş pillerinin özelliklerini açıklamaktadır. Işık akımı ve şönt akımı kullanan bu 

denklemler, G ve T gibi harici parametrelerdeki değişimleri dikkate alır. Işık akımı, 

aydınlatılan hücrede akan akımı temsil ederken, şönt akımı güneş hücresinin şönt 

direncinden akar. Takip eden listede sembol tanımları ve (3.1)'den (3.4)'e kadar olan 

denklemlerde kullanılan çeşitli parametrelerin kısa açıklamaları kapsamlı bir şekilde 

verilmektedir. 

𝑁𝑠    :  Dize başına seri bağlı modüller 

𝑁𝑝    :  Paralel bağlı diziler 

Iph    :  Foto Akım 
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I𝑑     :  Diyot akımı 

I𝑠     :  Seri akımı 

I𝑠ℎ    :  Şönt akım 

𝑅𝑠ℎ   :  Şönt direnci 

𝑅𝑠    :  Seri direnç 

𝑞      :  Coulomb cinsinden elektrik yükü (1.602 ∗ 10−23C) 

𝐾     :  Sabit Boltzmann (1.38 ∗ 10−23J/K) 

𝑇𝑗    :  Eklem sıcaklığı 

𝐴     :  İdeallik faktörü 

Sıcaklıktaki değişim, güneş pilindeki seri direnci ve doygunluk akımını etkiler 

(bkz. Denklem 3.4), bu da hücre verimliliğinde bir düşüşe neden olabilir. MPPT 

kontrolörü, artan seri direnci hesaba katarak ve ideal voltaj seviyelerini koruyarak, bu 

etkileri telafi etmek için yükseltici tip DC-DC dönüştürücünün görev döngüsünü 

değiştirir. Öte yandan, aydınlatılmış hücrede akan akımı temsil eden fotoakım, esas olarak 

güneş ışınımının değişiminden etkilenir. MPPT kontrolörü, hücre çıkışını en üst düzeye 

çıkarmak için yükseltici tip DC-DC dönüştürücünün görev döngüsünü ayarlar, 

maksimum güç noktasına senkronize eder ve ışınımdaki dalgalanmalara rağmen verimli 

performans sağlar. Dolayısıyla, hücre sıcaklığı ve güneş ışınımındaki değişimler solar PV 

hücresinin performansını ve verimliliğini etkiler (Bhavani et al., 2023).  

Önerilen modelde, istenen 100 kW çıkış gücünü elde etmek için dizi başına 5 seri 

bağlı modül ve 65 paralel dizi bağlanmıştır. Önerilen modelin Simulink MATLAB© 

ortamında uygulanan tasarım parametreleri Çizelge 3.1'de listelenmiştir. 

 

Çizelge 3.1. Önerilen PV dizisinin tasarım parametreleri 

 
Sembol Değişkenin Adı Değer 

𝐍𝐬 Seri bağlı modül sayısı 5 

𝐍𝐩 Paralel bağlı modül sayısı 66 

𝐕𝐨𝐜 Açık devre gerilimi 64,2 V 

𝐕𝐦𝐩 Maksimum güç noktası voltajı 54,7 V 

𝐈𝐬𝐜 Kısa devre akımı 5,95 A 

𝐀 İdeallik faktörü 0.95 

𝛂 Isc için Sıcaklık Katsayısı 0.016 

𝛃 Voc için Sıcaklık Katsayısı -0.27 

𝐏𝐦𝐚𝐱 Maksimum Güç 315 Watt 

𝐤 Kompanzasyon Faktörü 3 
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Bu bölümde ayrıca yükseltici tip DC-DC dönüştürücünün model tasarımı ve 

ardından PV dizisinin maksimum gücünü çıkaran ve DC bağlantı voltaj regülasyonunda 

da önemli bir destek olan yükseltici tip DC-DC dönüştürücünün daha yüksek çıkışını 

düzenlemek için yükseltici tip DC-DC dönüştürücünün anahtarını kontrol eden son 

teknoloji MPPT algoritması ile devam etmektedir. 

 

3.1.2.  Yükseltici tip DC-DC dönüştürücünün Formülasyonu ve Tasarımı  

 

İlk aşamanın önemli bir bileşeni olan yükseltici tip DC-DC dönüştürücüyü 

tanımak için, bu tezde yükseltici tip DC-DC dönüştürücünün çalışma prensibi ve tasarımı 

anlatılmakta ve ardından tanıtımı yapılmaktadır.  

 

3.1.2.1.  Yükseltici tip DC-DC dönüştürücüye Giriş 

 

Bir yükseltici tip DC-DC dönüştürücü, çıkış voltajı giriş voltajından daha büyük 

olan bir DC-DC dönüştürücüdür. Giriş DC voltaj seviyesini artırdığı için 'yükseltici' 

dönüştürücü olarak da bilinir (Ayop & Tan, 2018).  

 

 
 

Şekil 3.4. Bir yükseltici tip DC-DC dönüştürücünün şematik diyagramı 

 

Yükseltici tip DC-DC dönüştürücünün tasarımında kullanılan ana elektronik 

bileşenler Şekil 3.4'te gösterildiği gibi kapasitör, indüktör bobini, yüksek frekanslı 

anahtarlar ve diyottur. Tek aşamalı şebekeye bağlı PV sistemlerin aksine, iki aşamalı 

şebekeye bağlı PV sistemler, PV paneller tarafından üretilen DC gücü AC elektriğe 

dönüştürmeden önce bir ara gerilime yükseltmek için yükseltici tip DC-DC dönüştürücü 
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kullanır.  DC-bara voltajını uygun seviyede tutmak ve PV panellerin her zaman en yüksek 

verimlilikte çalışmasını sağlamak için iki aşamalı sistemdeki MPPT kontrolörü, PV 

panellerin çıkışına bağlı olarak yükseltici tip DC-DC dönüştürücünün görev döngüsünü 

kontrol eder (Yaosuo Xue et al., 2004). (Ayop & Tan, 2018; Madouh et al., 2012; 

Rajkumar & Rathinam, 2023)’deki yazarlar tarafından listelenen yükseltici tip DC-DC 

dönüştürücünün temel faydaları aşağıda verilmiştir: 

• İki aşamalı şebekeye bağlı PV sisteminin verimliliğini artırmayı destekler. 

• Daha düşük harmonik bozulma ve güç kayıpları ile daha yüksek güç kalitesi sunan 

voltaj ve akımın düzenlenmesine yardımcı olur. 

• Panelden mümkün olan maksimum enerjinin alınmasını ve şebekeye iletilmesini 

garanti eden MPPT algoritmaları ile donatılmıştır. 

• Gerilim seviyesini ayarlayarak esnekliği artırır ve iki aşamalı şebekeye bağlı PV 

sisteminin performansını iyileştirir. 

• Gerilim seviyelerini kontrol edebilir, elektrik şebekesinin stabilizasyonuna 

katkıda bulunabilir ve güvenilir enerji üretimini garanti edebilir. 

İki aşamalı şebekeye bağlı PV sistemlerinde, güneş panelleri tarafından üretilen 

DC voltajını artırmak için bir yükseltici tip DC-DC dönüştürücü gereklidir. Bu voltaj 

artışı MPPT algoritmasının performansını ve bir sonraki inverter aşamasının verimliliğini 

artırır. Genel sistem verimliliğini ve enerji üretimini iyileştirmek için yükseltici tip DC-

DC dönüştürücü, gerilimi invertere uygulanmadan önce ideal seviyeye etkili bir şekilde 

yükselten bir ara adım görevi görür. Alt bölüm ayrıca şebekeye bağlı PV sisteminin 

çalışması ve tasarımı ile devam etmektedir.  

 

3.1.2.2.  Boost Konvertörün Çalışma Prensibi 

 

Kondansatör, diyot, yüksek frekans anahtarı ve indüktör, yükseltici 

dönüştürücünün ana elektronik parçalarıdır. Yüksek frekanslı anahtar (MOSFET veya 

IGBT) genellikle yükseltici dönüştürücüden gerekli çıkış voltajını elde etmek için 

kullanılır (Alhejji & Mosaad, 2021).  

Dönüştürücünün iki çalışma modu vardır (a) anahtar AÇIK modu ve (b) anahtar 

KAPALI modu.  ON modunda, giriş kaynağı Şekil 3.5'te gösterildiği gibi giriş tarafı 

indüktörüne bağlıyken anahtarlama cihazı açılır. Giriş akımı kapalı anahtardan ve 

indüktörden geçer. İndüktör akımı arttıkça manyetik alan artacak ve enerjiyi 
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elektromanyetik alan şeklinde depolayacaktır (Mohan et al., 2003). Anahtar daha uzun 

bir süre açık bırakılırsa, başlatma süresi ve görev döngüsü uzayacak ve yükseltici tip DC-

DC dönüştürücünün çıkış voltajı da artacaktır. 

 

 
 

Şekil 3.5. Anahtar ON (kapalı) olduğunda yükseltici tip DC-DC dönüştürücünün çalışması 

 

Anahtar KAPALI modunda akım azalmaya başlayacak ve manyetik alan 

çökecektir. Bu nedenle, indüktör polaritesini değiştirecek ve çıkış kondansatörü 

üzerinden deşarj olacaktır (Mohan et al., 2003).  

 

 
 

Şekil 3.6. Anahtar OFF (açık) olduğunda yükseltici tip DC-DC dönüştürücünün çalışması 
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İndüktör gerilimi artık giriş gerilimi ile seri haldedir ve kondansatör üzerindeki 

çıkış gerilimi Şekil 3.6'da gösterildiği gibi giriş ve indüktör gerilimlerinin toplamı 

olacaktır. Anahtarların sırası, istenen çıkış voltajını elde etmek için darbe genişlik 

modülasyonu şeması kullanılarak kontrol edilir (Santhoshi et al., 2022). Yükseltici 

dönüştürücünün çıkış gerilimi, kaynak ve indüktör gerilimlerinin toplamıdır, bu nedenle 

giriş geriliminden daha büyük olacaktır. Çıkış DC voltajının seviyesi indüktör, kapasitör, 

anahtarlama frekansı, dalgalanmalar ve modülasyon şemasının değerlerine bağlıdır. 

Yükseltici tip DC-DC dönüştürücünün iki çalışma modu vardır: sürekli ve süreksiz 

(Salado et al., 2021). 

Sürekli modda, dönüştürücünün AÇIK ve KAPALI fazlarında sıfır endüktör 

akımı hiçbir zaman yaşanmaz. Süreksiz modda, endüktör akımı AÇIK ve KAPALI fazları 

sırasında sıfıra ulaşır. Denklem (3.5) ve (3.6), kararlı durum ve kayıpsız koşullar altında 

giriş ve çıkış gerilimleri arasındaki ilişkiyi tanımlar. 

Sürekli Mod için: 

                                                             𝑉𝑜 =  
1

1 − 𝐷
∗ 𝑉𝑖                                                                             (3.5) 

Kesintili Mod için: 

                                                        𝑉𝑜 = 1 +  
𝐷2 ∗ 𝑇 ∗ 𝑉𝑖

2 ∗ 𝐿 ∗ 𝐼𝑜

                                                                       (3.6) 

Denklem (3.5) ve (3.6)'da kullanılan değişkenler tanımları ile aşağıda verilmiştir. 

𝑽𝒐: Çıkış gerilimi 

𝑽𝒊: Giriş gerilimi 

𝑰𝒐: Çıkış akımı. 

D: Görev döngüsü 

L: Endüktans 

T: Zaman periyodu 

 

3.1.2.3.  Yükseltici tip DC-DC dönüştürücünün Tasarımı 

 

Yükseltici tip DC-DC dönüştürücüdeki elektronik bileşenlerin tasarımı, 

uygulamaya geçmeden önce önemli bir adımdır. Bu çalışmada, yükseltici tip DC-DC 

dönüştürücü, solar PV dizisinden (250-280 V) giriş alacak ve bunu 800 V'a yükseltecek 

şekilde tasarlanmıştır. Yükseltici tip DC-DC dönüştürücünün bu yükseltilmiş voltajı (800 

V) üç seviyeli inverterin girişi haline gelir. Bu nedenle, yükseltici tip DC-DC 

dönüştürücünün çıkışı veya eviricinin girişi DC bağlantı gerilimi olarak da adlandırılır. 
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Yükseltici tip DC-DC dönüştürücünün parametreleri, girişin 250 V ve çıkışın 800 V 

olduğu maksimum seviyede tasarlanmıştır. Yükseltici tip DC-DC dönüştürücünün 

tasarım parametreleri Çizelge 3.2'de listelenmiştir. Yükseltici tip DC-DC 

dönüştürücünün giriş-çıkış gerilimi ve giriş-çıkış akımı ilişkileri sırasıyla (3.5) ve 

(3.6)'nın değiştirilmiş formları olan (3.7) ve (3.8)'de tanımlanmıştır. 

Görev döngüsü (D), anahtarlama sinyalinin iletim süresini belirleyen ve denklem 

(3.9)'da modellendiği gibi giriş gerilimine bağlı olarak çıkış gerilimini kontrol eden TON 

süresinin toplam süreye oranını ayarlayan önemli bir kontrol parametresidir. 

 

Çizelge 3.2. Yükseltici tip DC-DC dönüştürücünün tasarım parametreleri 

 
Parametre Formül Değer 

Giriş Voltajı (Vi) - 250 V 

Çıkış Voltajı (Vo) - 800 V 

Anahtarlama Frekansı (f) - 5 kHz 

Yük Dayanımı (R) - 320 Ω 

Görev Döngüsü (D) D = (1 – Vi / Vo) 0,65 – 0,68 

Çıkış Akımı (Io) Io = Vo/R 2,5 A 

Giriş Akımı (Ii) Ii = Io/(1-D) 7,14 A 

İndüktör Dalgalanma Akımı 

(ΔIL) 

ΔIL = 5 % (Io) 0,357 A 

Kondansatör Dalgalanma 

Gerilimi (ΔVC) 

ΔVC = 5 % (Vo) 40 V 

İndüktör (L) L = D Vi / f ΔIL 95 ≈ 100 mH 

Kondansatör (C) C = Io D  / f * ΔVC 8.5 ≈  10 μF 

 

Şebekeye bağlı PV sistemleri için bir yükseltici tip DC-DC dönüştürücü 

tasarımında görev döngüsünün değeri, belirli sistem gereksinimlerine bağlıdır. Daha 

yüksek bir görev döngüsü daha düşük giriş gerilimlerini etkili bir şekilde kontrol ederken, 

daha düşük bir görev döngüsü daha yüksek giriş gerilimlerini kontrol eder. Seçilen görev 

döngüsü, hesaplanan endüktans ve kapasitans değerlerini etkiler. Verimli tasarım için en 

iyi seçim voltaj aralıkları, verimlilik, dönüşüm oranları ve bileşen talebini dikkate alır. 

𝑉𝑑𝑐 =
𝑉𝑝𝑣

(1 − 𝐷)
 

(3.7) 

𝐼𝑜 = 𝐼𝑖 (1 − 𝐷) (3.8) 

𝐷 = 𝑇𝑜𝑛 𝑇⁄  (3.9) 
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Solar PV panelinin tahmini gücü 100 kW'tır. Giriş voltaj aralığı 250 V- 280 V'tur. 

Yükseltici tip DC-DC dönüştürücünün gerekli çıkış voltajı 800 V olarak seçilmiştir. 

Anahtarlar 5 kHz frekansında çalışır. Yukarıdaki tabloda belirtilen tüm bu hesaplanan 

değerler kullanılarak, indüktör ve kapasitörler sırasıyla denklem (3.10) ve (3.11) ile 

hesaplanır. 

                                                  𝐿 =  
𝑉𝑖 ∗ 𝐷

𝑓𝑠𝑤 ∗ 𝑑𝑒𝑙 𝑖𝑙
                                                          (3.10) 

                                                  𝐶 =  
𝐼𝑜 ∗ 𝐷

𝑓𝑠𝑤 ∗ 𝑑𝑒𝑙 𝑉𝐶
                                                          (3.11) 

Yükseltici tip DC-DC dönüştürücünün tasarımında, giriş voltajına, amaçlanan 

çıkış voltajına ve izin verilen dalgalanma seviyesine bağlı olarak uygun görev döngüsünü, 

anahtarlama frekansını, indüktör ve kondansatör boyutunu seçmek önemlidir. 

Hesaplamalar, inverterin çalışma prensiplerinden türetilen bu parametreler arasındaki 

ilişkileri kullanır. Spesifikasyonlar tanımlandıktan sonra, verimli ve istikrarlı dönüşüm 

sağlayacak doğru bileşen değerlerini bulmak için formüller kullanılabilir. Tasarım süreci 

tamamlandıktan sonra MATLAB Simulink tabanlı simülasyon gerçekleştirilir. 

Halihazırda mevcut olan güneş enerjisinden en iyi şekilde yararlanmak için, sonraki 

kısımda son teknoloji MPPT tekniklerini kullanarak maksimum güç noktasını izleme 

stratejileri tartışılacaktır.  

 

3.1.3.  Maksimum Güç Noktası Takip Kontrolörü 

 

İki aşamalı şebekeye bağlı bir PV sisteminde MPPT kullanımı, PV dizisinin 

çalışma noktasını sürekli olarak değiştirerek sistemin maksimum güneş enerjisi miktarını 

verimli bir şekilde yakalamasına izin verdiği için çok önemlidir (Suo et al., 2015). 

Değişen güneş ışınımı ve sıcaklık koşulları altında, bu dinamik optimizasyon optimum 

güç dönüşümü ve daha yüksek enerji üretimi sağlar. Bu, PV sistemin her zaman en 

verimli şekilde çalışmasını ve mümkün olan maksimum enerjiyi elde etmesini sağlar. 

Şekil 3.7'de MPPT'nin solar PV, bir yükseltici tip DC-DC dönüştürücü, bir inverter ve 

güç şebekesi ile birleştirilmiş genel blok diyagramı gösterilmektedir.  

Bu tezde, önerilen MPPT kontrolörü stack LSTM ağ topolojisi kullanmış ve 

performansı FF-DNN ve P&O MPPT kontrolörleri ile karşılaştırılmıştır. Bölüm 4'te 

açıklanan önerilen LSTM tabanlı MPPT kontrolörünü sunmadan önce, bu bölüm en yeni 

MPPT kontrolörlerine odaklanmaktadır. Bu bağlamda, bu bölümde ilk olarak bir PV 
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hücresinin P-V ve I-V karakteristikleri, ardından T ve G değişiminin MPP üzerindeki 

etkisi ve ardından MPPT kontrolörü olarak geleneksel bir P&O, ANN ve RNN'nin 

çalışması açıklanmaktadır. 

 

 
 

Şekil 3.7. MPPT'nin yükseltici tip DC-DC dönüştürücünün anahtarının görev döngüsünü kontrol 

etmesinin gösterilmesi 

Şekil 3.8'deki güç-voltaj (P-V) eğrisi, değişken sıcaklık ve ışınım koşulları altında 

bir PV hücresinin davranışını temsil etmektedir. PV karakteristiklerinde, açık devre 

gerilimi (Voc), kısa devre akımı (Isc) ve maksimum güç noktası (MPP) terimleri temel 

olarak kullanılır. Sıfır ön gerilimde, fotovoltaik hücre, hücrenin maksimum akımı olan 

Isc'yi üretir. Gerilim sıfırdan pozitife doğru arttığında, hücrenin iç direncindeki artış 

nedeniyle akım azalmaya başlar ve gerilim Vo seviyesine ulaştığında akım sıfır olur. 

 
 

Şekil 3.8. G ve T değerlerindeki değişimlerin PV dizisinin PV eğrisi üzerindeki etkisi 
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P-V veya I-V eğrisi üzerinde MPP olarak da bilinen, akım ve voltaj toplamının 

maksimuma ulaştığı bir dirsek noktası vardır ve çıkış gücü bu noktada maksimumdur. T 

ve G gibi harici parametrelerdeki değişikliklere rağmen, MPPT kontrolörü PV sistemini 

bu MPP noktasında çalıştırmaya çalışır. 

PV sistemlerin performansı T ve G parametrelerindeki değişimlerden etkilenir. 

Daha yüksek G değeri PV dizinin çıkış gücünü artırırken, daha yüksek T değeri PV 

dizinin çıkış gücünü azaltır. Bu nedenle, bu parametrelerin değişimleri göz önüne 

alındığında, PV dizisinin MPPT'sinin MPP'de çalışması gerekir. Bu nedenle, P&O, 

ANN'lar, RNN'ler ve diğer birçok teknik dahil olmak üzere dış parametrelerdeki 

değişikliklerle başa çıkmak için çeşitli ileri araştırma metodolojileri benimsenmiştir. Bu 

bölümde, tüm çalışma koşulları altında genelleştirilebilirliği artırmak için Bölüm 4'te 

açıklandığı gibi kısa süreli belleğe (LSTM) sahip stack bir mimari önermeden önce farklı 

stratejilerin avantajları ve dezavantajları değerlendirilmektedir. İlerleyen bölümlerde, son 

teknoloji MPPT stratejileri değerlendirilmektedir. 

 

3.1.3.1.  Değiştir ve Gözle (P&O) MPPT Kontrolörü 

 

P&O yaklaşımı, PV panelden maksimum gücü elde etmek için iyi bilinen bir tepe 

tırmanma tekniğidir. En basit MPPT algoritmasıdır, tek voltaj sensörü kullanır, 

uygulaması basittir ve düşük güç uygulamaları için etkili kılan düşük matematiksel 

hesaplamalar sunar (Salman et al., 2018).  

 

 
 

Şekil 3.9. PV eğrisi üzerinde MPP'yi çıkarmak için P&O yönteminin çalışma prensibi 



48 

 

 

Gerilim ve gücün mevcut ve önceki değerleri gereklidir. Bu şekilde P&O, PV eğrisi 

üzerindeki dirsek noktasına göre hareket yönüne karar verir ve ardından Şekil 3.9'da 

gösterildiği gibi doğru yöne doğru hareket eder. P&O MPPT tekniği, aşağıda açıklanan 

adımları izleyerek PV eğrisinde kullanılabilir. 

1. Algoritma, PV eğrisi üzerinde MPPT noktasından daha düşük bilinen bir 

noktadan başlar. 

2. PV sistemin voltajını veya akımını hafifçe değiştirir. 

3. Yeni değiştirilmiş voltaj veya akımdaki gücü belirler. 

4. Güç öncekinden yüksekse, algoritma yeni voltaj veya akıma geçer. 

5. Güç çıkışı önceki güç çıkışından daha azsa, algoritma önceki voltaj veya akıma 

geri döner. 

6. Algoritma MPP'ye ulaşana kadar 2'den 5'e kadar olan adımları iteratif olarak 

tekrarlar. 

 

Start
P&O

Sense: V(K) & I (K)

P (K) = V(K) * I (K)
dP = P(K) - P(K-1)
dV = V(K)- V(K-1)

dP == 0

dP > 0

dV > 0

D(k) = D(K-1) + delta D

dV > 0

Return

YESYES NONO

P (k-1) = P(k)
 V (K-1) = V(K)
D (K-1) = D(k)

NO

YES

Initialize: 
P, V, delta D
Dmin, Dmax, 

D(k) = D(K-1) - delta DD(k) = D(K-1) + delta D

function D = mppt(V,I)

Dmin = 0.01;

Dmax = 0.80;

deltaD = 0.000005;

 

persistent Vold Pold Dold;

if isempty (Vold)

    Vprev = 0;

    Pprev = 0;

    Dprev = Dst;

end

 

P = V * I;

dV = V - Vprev;

dP = P - Pprev

 

if dP~=0

    if dP < 0

        if dV > 0

            D = Dprev + deltaD;

        else

            D = Dprev _ deltaD;

        end

    else

        if dV > 0

            D = Dprev - deltaD;

        else

            D = Dprev + deltaD;

        end

    end

else

    D = Dprev;

end

 

if D >= Dmax

    D = Dmax;

elseif D <= Dmin

    D = Dmin;

end

 

Dprev = D;

Vprev = V;

Pprev = P;

P&O MATLAB CODE
P&O FLOWCHART

 
 

Şekil 3.10. P&O MPPT kontrolörünün akış şeması ve örnek MATLAB kodu 
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Şekil 3.10, P&O tabanlı MPPT algoritmasının akış şemasını, buna karşılık gelen 

MATLAB simülasyon kodunu göstermekte ve solar PV sisteminin fotovoltaik MPP'sini 

keşfetmek ve optimize etmek için gereken sıralı adımları ortaya koymaktadır. P&O 

MPPT algoritması basit, ucuz ve güvenilir olma avantajlarına sahiptir, ancak gecikmeli 

yakınsamadan etkilenecektir ve ayrıca gürültüye duyarlıdır. MPP'yi izlemek için P&O 

algoritması gerilime değiştirici yönde etki eder ve güç değişimini ölçer ancak tam MPP 

tepe noktasına ne zaman ulaşıldığını belirleyemez. Tepe noktasına ulaşıldığında, 

pertürbasyonlar yön değiştirerek negatif güç tarafına yol açar ve MPP etrafında salınmaya 

başlar. Güç gözlemlerinin aşırı basitleştirilmesi, bir işlemi MPP tepe noktasına 

yaklaştıran veya uzaklaştıran pertürbasyonlar arasında ayrım yapmayı zorlaştırır. 

Ayrıca, çalışma koşullarındaki hızlı değişiklikler güç salınımlarına yol açar 

(Femia et al., 2009). Daha küçük pertürbasyon adımları salınım büyüklüğünü azaltırken 

MPP izleme hızını yavaşlatır. Sonuç olarak, P&O MPPT'de izleme performansı ve 

salınımlar azalır.  

 

3.1.3.2.  Yapay Sinir Ağı (ANN) MPPT Kontrolörü 

 

İlk basit sinir modeli 1943 yılında matematikçiler tarafından geliştirilmiştir. 1980 

yılında, işlem gücü ve öğrenme yöntemlerindeki gelişmeler ANN'ların üstünlüğü yeniden 

ele geçirmesini sağlamış ve 2012 yılında bir görüntü tanıma yarışmasında insanları geride 

bırakarak doğrusal olmayan verileri işleme yeteneklerini göstermişlerdir. ANN'lar 

biyolojik sinirlerden ve nöronlar gibi düğümlerin birbirine bağlanmasından esinlenmiştir; 

ANN'lar ve beyin arasındaki benzerlik, bilgiyi aynı anda öğrenme, genelleme, soyutlama 

ve işleme yetenekleridir (Fine, 2005).  

ANN tabanlı MPPT algoritması, P&O, IC ve FLC gibi geleneksel tekniklerin 

eksikliklerinin üstesinden gelmek için tanıtılmıştır (Senthilkumar et al., 2023). Bu bölüm, 

sinir ağlarının teorik temellerinin, MPPT alanına uygulamalarının ve karmaşık 

sistemlerde uygulanmalarının ayrıntılı bir analizini sunmaktadır. Bu ağlar, ileri beslemeli 

ve geri beslemeli yapılar da dahil olmak üzere çeşitli topolojilere sahiptir. İleri beslemeli 

mimarinin, güneş pillerinin doğrusal olmayan özelliklerini yakalamada özellikle etkili 

olduğu kanıtlanmıştır. İleri beslemeli varyantlar arasındaki çok katmanlı yapılandırma, 

gizli katmanlar içindeki karmaşık ağırlıkları hesaplama kabiliyeti nedeniyle yaygın olarak 

övülmektedir (Sharkawy et al., 2023). Bu, MPPT bağlamında doğru modelleme sağlar. 
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ANN tabanlı MPPT algoritmasına geçmeden önce, bu bölümde ilk olarak ANN'nın temel 

yapı taşı olan "tek nöron modeli" açıklanmaktadır. 

 

3.1.3.2.1.  Tek Nöronlu Algılayıcı Modeli 

 

Tek bir nöron, "perceptron" olarak da bilinen sinir ağının en küçük bileşeni ve 

yapı taşıdır. Bir sinir ağı, bilgiyi eşzamanlı olarak işleyen çok sayıda bireysel nörondan 

oluşur. Bir ağ, aldığı girdiye ve üzerinde eğitildiği hedeflere dayalı olarak bir çıktıyı 

tahmin etmek için kullanılan nöronlar arasındaki bağlantılar tarafından oluşturulur 

(Hagan et al., 2002). Nöronun öğrenme sürecini iyileştirmek için, nöronlar arasındaki her 

bir bağlantıya atanan ağırlıklar optimizasyon algoritmaları kullanılarak güncellenir. 

Ağırlık güncellemeleri için yaygın olarak kullanılan optimizasyon algoritmaları stokastik 

gradyan iyi (SGD), geri yayılım (BP), uyarlanabilir moment tahmini (Adam) ve 

momentumdur (“Res. Anthol. Artif. Neural Netw. Appl.,” 2021).  

 

 
 

Şekil 3.11. Tek bir nöronun temel yapısı 

 

Adam optimizer, SGD ve momentumun birleşimidir ve gelişmiş performansı, 

ANN uygulamalarını tahmin, öngörü, konuşma tanıma, bilgisayar görüşü, tanımlama, 

sınıflandırma ve robotik otomasyon gibi çeşitli alanlarda daha da çeşitlendirmiştir (Gu et 

al., 2018). ANN, temel yapı taşları olarak yapay nöronlardan oluşur ve tek bir nöronun 

yapısı Şekil 3.11'de gösterilmiştir. 

Bir nöronun yapısında, girdi değerlerinin ağırlıklı bir toplamını ve aktivasyon 

fonksiyonunu kaydıran ve girdi/çıktı ofsetlerinin modellenmesini sağlayan ek bir bias 
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terimini kabul eder. Çıktı değeri daha sonra ağırlıklı girdilerin ve biasın bir aktivasyon 

fonksiyonundan geçirilmesiyle oluşturulur (Heaton, 2012). Girdiler, bias ofseti ve çıktı 

arasındaki karmaşık etkileşim doğrusal olmayan aktivasyon fonksiyonu tarafından 

çıkarılır. ANN'nın bir dizi girdi değeri için uygun çıktı değerlerini aldığı denetimli eğitim 

aşamasında, yapay nöronların ağırlıkları ve biasları öğrenilir. Bir ANN, eğitimin 

karmaşıklığını tam olarak yansıtan doğru çıktı değerleri üretene kadar nöronlarının 

ağırlıklarını ve önyargılarını yinelemeli olarak ayarlar. MPPT kontrolörü olarak tek bir 

nöronun temel bileşenleri aşağıda listelenmiştir: 

• Girdi: Yapay nöron, zaman serisi verilerine ait iki girdi (sıcaklık ve ışınım) alır. 

• Ağırlık: Nörona yapılan her girdiye, girdinin nöronun çıktısını ne kadar 

etkilediğini belirleyen bir ağırlık verilir. 

• Yanlılık: Aktivasyon fonksiyonuna geçmeden önce girdilerin ağırlıklı toplamına 

eklenen bir girdidir. Gerçek çıktıdan en az farka sahip nöronun çıktısını 

oluşturmak için aktivasyon fonksiyonunu sağa veya sola kaydırmaya yardımcı 

olur. 

• Aktivasyon Fonksiyonu: Bias ile birlikte girdilerin ağırlıklı toplamı, nihai çıktıyı 

üretmek için doğrusal olmayan dönüşüm uygulayan aktivasyon fonksiyonundan 

geçer. 

• Çıktı: Yapay nöronun çıktısı, aktivasyon fonksiyonundan gerçekleştirilir. 

Ağırlıklar, sapma ve aktivasyon işlevi, gerçek çıktıya yakın nihai çıktıyı tahmin 

etmede önemli bir rol oynar. 

Sinir ağlarında, tahmin veya kestirim doğruluğu büyük ölçüde optimizasyon 

algoritmasının ve aktivasyon fonksiyonunun seçimine bağlıdır (C. S. Chen et al., 2022). 

Doğrusal veya doğrusal olmayan aktivasyon fonksiyonunun seçimi, girdi verilerinin 

türüne dayanmaktadır. Sinir ağlarında kullanılan popüler aktivasyon fonksiyonları, 

sırasıyla (3.12) ila (3.15) denklemlerinde modellendiği gibi sigmoid aktivasyon 

fonksiyonu, ReLU, Tanh ve SoftMax aktivasyon fonksiyonlarını içerir. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

(3.12) 

𝑓(𝑥) = max (0, x) (3.13) 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(3.14) 

𝜎(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑘
𝑗=1

 
(3.15) 
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Aktivasyon fonksiyonlarının seçimi, girdinin doğasına ve kullanım amacına göre 

seçilir ve sinir ağının performansını belirlemede çok önemlidir. Bir girdiyi [0, 1] aralığına 

eşleyen Sigmoid fonksiyonu, olasılıksal gösterimiyle ikili sınıflandırma görevlerinde 

kullanım alanı bulur. ReLU, özellikle zaman serileri ile çalışırken negatif değerleri 

sıfırlayarak çeşitli veri formatları için kullanışlıdır. [-1, 1] aralığını kapsayan Tanh, sıfır 

merkezli veriler için uygundur. Girdileri olasılıklara dönüştüren Softmax, verileri birden 

fazla sınıfa sınıflandırmak için etkilidir. Çeşitli veri ayarları altında ağ performansını 

optimize etmek için, bu işlevler doğrusal olmama ve uyarlanabilirlik içerir. 

Bu bölümde, son teknoloji ürünü Maksimum Güç Noktası İzleme (MPPT) 

kontrolörü olarak "ANN" terimi tanıtılmaktadır. Tez, alternatif bir MPPT kontrolörü 

olarak bir Derin Öğrenme (DL) modeli, özellikle de stack LSTM önermektedir. Kapsamlı 

bir karşılaştırmayı kolaylaştırmak için çalışmada, ek bir gizli katmana sahip ileri 

beslemeli bir mimari ile karakterize edilen derin bir Yapay Sinir Ağı (ANN) 

kullanılmıştır. Bu derin ANN, Bölüm 5'te ayrıntılı olarak tartışılan önerilen stack LSTM 

modeline benzeyen karmaşıklığı nedeniyle seçilmiştir. 

 

3.1.3.2.2.  MPPT Kontrolörü Olarak ANN (FF-DNN) Simülasyonu 

 

Bu alt bölümde, Simulink MATLAB©, 100 kW güçte şebekeye bağlı bir PV 

sistemi için FF-DNN tabanlı bir MPPT'yi simüle etmek için kullanılmıştır. SunPower TS-

SPR-308E dizisi (250-280 V) üretir ve bunu yükseltici tip DC-DC dönüştürücüye besler 

ve MPPT kontrolörü, yükseltici tip DC-DC dönüştürücüdeki anahtarların görev 

döngüsünü ayarlayarak yükseltici tip DC-DC dönüştürücünün çıkışı olan 800 V'taki DC 

bağlantı voltajını düzenlemek için kullanılır. FF-DNN modelinin parametreleri ilerleyen 

alt bölümde daha ayrıntılı olarak açıklanmaktadır (ayrıca bkz. Bölüm 5). Eğitim ve test 

amaçları için dikkate alınan ortak adımlar arasında (a) Veri Toplama ve Ön İşleme, (b) 

Ağ Seçimi, (c) Ağ Eğitimi ve (d) Ağ Testi yer almaktadır. Alt bölüm ayrıca her bir adımın 

açıklaması ile devam etmektedir. 

 

• Veri Toplama ve Ön İşleme 

 

Bir ANN (FF-DNN) geliştirmenin ilk adımı girdi ve çıktı verilerini toplamaktır. 

Daha büyük bir veri kümesi ANN'nın performansını artırır. Bu çalışmada, G ve T'den 

gelen giriş verileri (3.16) ve (3.17) kullanılarak toplanırken, hedef veriler (3.18) 
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kullanılarak toplanmıştır. Değişken hava koşullarının varlığında, girdi ve hedef veriler 

toplanır, veriler ön işleme tabi tutulur ve ortalama ve birim varyans ile standartlaştırılır. 

Önceden işlenmiş ve standartlaştırılmış veriler daha sonra denetimli öğrenmede öğrenme 

yöntemini seçmek için kullanılır. 

G = [(𝐺𝑚𝑎𝑥 − 𝐺min)  × 𝑟𝑎𝑛𝑑 ] +  𝐺min (3.16) 

T = [(𝑇𝑚𝑎𝑥 − 𝑇min)  × 𝑟𝑎𝑛𝑑 ] +  𝑇min (3.17) 

𝑉𝑚𝑝 = 𝑉𝑚𝑝 (𝑆𝑇𝐶) + 𝛽(𝐾 ∗ 𝑇 − 𝑇𝑠) +  𝛼(1 + 𝐺) (3.18) 

 

• ANN (FF-DNN)'nın Ağ Tasarımı 

 

Katman sayısı, gizli nöronlar ve aktivasyon fonksiyonu dahil olmak üzere sinir 

ağı türünün seçimi, söz konusu görevin türüne, veri kümesinin boyutuna ve mevcut işlem 

gücüne bağlıdır (Jin et al., 2022). Simulink MATLAB©, sinir ağları oluşturmak ve 

eğitmek için otomasyon sunan kullanıcı dostu bir arayüz sağlar. Benzer şekilde, python, 

tahmin ve öngörü görevlerini gerçekleştirmek için veri kümesini toplamak, ön işleme tabi 

tutmak, eğitmek ve test etmek için kullanılabilecek TensorFlow, PyTorch, Keras ve 

numpy gibi ünlü kütüphanelere sahiptir. Tasarım sürecinde, tıpkı önerilen stack LSTM 

gibi, aslında bir DNN modeli olan iki katmanlı bir NN, ilk katmanda 64 gizli birim ve 

ikinci gizli katmanda 32 gizli birim ile ele alınmış, zaman serisi sıralı verilerimize en iyi 

uyan ReLU aktivasyon fonksiyonu kullanılmış ve eğitim verileri için tahminler ile gerçek 

çıktılar arasındaki farkı en aza indiren "Adam" optimizatörü kullanılmış, NN'nin 

ağırlıkları ve yanlılıkları eğitim sürecinde değiştirilmiştir.  

 

• ANN'nın Eğitimi (FF-DNN) 

 

ANN veya DNN'nin eğitimi, belirli bir girdi kümesi için bir çıktıyı kesin olarak 

tahmin edebilen bir model oluşturmak için gereklidir. NN, veri içindeki örüntüleri ve 

ilişkileri keşfetmek ve bu öğrenmeyi görülmeyen verilere genellemek için bir veri 

koleksiyonu üzerinde eğitilir. Eğitim verileri için tahminler ve gerçek çıktılar arasındaki 

farkı en aza indirmek için, NN'nin ağırlıkları ve bias değerleri eğitim süreci sırasında 

değiştirilir. Ağırlıkları ve biasları iteratif olarak güncellemek için kullanılan "Adam" 

optimizasyon teknikleri ve benzer optimize edici, yazarlar tarafından hastalık tahmini için 

(C. S. Chen et al., 2022)’de kullanılmıştır. Yeni, görülmemiş verileri doğru bir şekilde 
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tahmin etmek veya sınıflandırmak için, bir sinir ağının girdi verilerindeki örüntüleri tespit 

etmek üzere eğitilmesi gerekir. LSTM ağı, girdiler (G, T) ve hedef (Vmp) ile eğitilir.  

 

 
 

Şekil 3.12. Tüm ANN, ML ve DL ağlarının çalışma sürecini temsil eden akış şeması 

 

PV dizinin her biri 1 milyon (1.000.000) veri noktasından (gözlem) oluşmaktadır 

ve bunlar 4. ve 5. bölümlerde ayrıntılı olarak açıklanmıştır. Başlangıçtan itibaren, toplam 

veri kümesinin %80'i eğitim için kullanılmış ve sonda kalan %20'lik kısım ise yazarlar 

tarafından önerildiği gibi test ve doğrulama için kullanılmıştır (Korkmaz & Acikgoz, 

2022). ANN'nın eğitim sürecindeki adımlar Şekil 3.12'teki akış şemasında 

gösterilmektedir. 
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• ANN'nın (DNN) Test Edilmesi 

 

Bir sinir ağı sisteminin bir uygulamada kullanılabilmesi için önce test edilmesi 

gerekir. Test süreci, tipik olarak mevcut tüm verilerin %20'si olan görünmeyen verileri 

içerir (Korkmaz & Acikgoz, 2022). Modelin test seti üzerindeki performansını 

değerlendirmek için geri çağırma, kesinlik, doğruluk ve F1 puanı gibi ölçütler kullanılır. 

Ağ tasarımı bölümünde açıklandığı gibi, hata oranı belirli bir eşiği aştığında, hiper 

parametreler, mimari, eğitim verileri ve diğer faktörler değiştirilerek model yeniden 

eğitilmelidir. Aşırı ezberden kaçınmak için modelin doğru şekilde genelleştirilmesini 

sağlamak önemlidir. Testler, modelin pratik kullanım için sağlam ve güvenilir olduğunu 

doğrulamaktadır.  

 

• Performans Metrikler 

 

ANN (DNN) ağının performansı, Ortalama Kare Hata (MSE), Ortalama Kare 

Hatanın Kökü (RMSE), Hareketli Ortalama Hata (MAE) ve doğrulama kaybı gibi 

performans endekslerine göre test edilir. Tüm performans parametrelerinin matematiksel 

formu denklem (3.19) ila (3.22)'de modellenmiştir. Benzer metrikler yazarlar tarafından 

(Salam et al., 2015)'te ele alınmıştır. Yukarıdaki denklemlerde, N 1.000.000 net veri 

örneğini, Vmp gerçek çıktı veya hedef değeri ve Vmp LSTM modelinden tahmin edilen 

veya izlenen çıktı veya hedef değeri temsil etmektedir.  

MSE =
1

𝑁
∑(𝑉𝑚𝑝 − 𝑉̂𝑚𝑝)

𝑛

𝑖=1

 
(3.19) 

RMSE = √
1

𝑁
∑(𝑉𝑚𝑝 − 𝑉̂𝑚𝑝)

2
𝑛

𝑖=1

 

(3.20) 

MAE =
1

𝑁
∑|𝑉𝑚𝑝 − 𝑉̂𝑚𝑝|

𝑛

𝑖=1

 
(3.21) 

Validation Loss =
1

2
(

1

𝑁
∑(𝑉𝑚𝑝 − 𝑉̂𝑚𝑝)

𝑛

𝑖=1

) 
(3.22) 

Zaman serisi tahmin uygulamaları bağlamında, ileri beslemeli ANN veya 

DNN'nin performans değerlendirmesi, modelin doğruluğunu ve etkinliğini 
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değerlendirmek için çok önemlidir. Model, test seti üzerindeki performansı tatmin edici 

olana kadar hizmete sokulmamalıdır. 

 

3.1.3.3.  Tekrarlayan Sinir Ağı (RNN) MPPT Kontrolörü 

 

Tekrarlayan sinir ağları (RNN'ler), sıralı veriler aracılığıyla geçmiş veya tarihsel 

bilgileri depolamak için tasarlanmış özel bir sinir ağı türüdür (Tsantekidis et al., 2022). 

RNN'ler dinamik zamansal aktivite sergileyebilir çünkü benzersiz aktivasyon 

fonksiyonlarına ve kendi kendine döngülü bağlantılara sahip tekrarlayan nöronlara 

sahiptirler. Tekrarlayan topoloji nedeniyle, RNN'ler dizinin önceki girdileri hakkında 

bilgi depolamak için dahili belleğe sahiptir. Farklı yapıları nedeniyle, RNN'ler sıralı 

verileri daha iyi işleyebilir ve önceki girdileri hatırlayabilir ve bunları gelecekteki çıktıları 

tahmin etmek için kullanabilir, bu nedenle RNN'ler zaman serisi tahmini için FFNN'lere 

daha iyi bir alternatiftir (Mohammad & Musa, 2022). RNN'nin blok diyagramı Şekil 

3.13'te sunulmuştur. 

 

 
 

Şekil 3.13. Bir RNN'nin yapısı ve katlanmamış açıklaması 

 

Bir RNN, giriş verilerini birbirine bağlı bloklardan oluşan bir ağ aracılığıyla 

sırayla işleyerek çalışır. Her zaman adımında RNN, giriş verilerine ve önceki gizli 

duruma dayalı olarak belirli ağırlıkları kullanarak mevcut gizli durumu hesaplar. Bu gizli 

durum, ağın önceki zaman adımlarından gelen verileri tutarak döngüsel kalıpları 

tanımasını sağlar. 

Belirli bir zaman adımının çıktısı mevcut gizli duruma göre oluşturulur. Çıktının 

bir sonraki zaman adımının girdisi olmasına neden olan döngü, RNN'nin verilerin 

zamansal bağımlılıklarını öğrenmesini ve hatırlamasını sağlar. Sekans boyunca tekrar 
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eden bu yinelemeli süreç sayesinde RNN'ler sekansları ve zamansal bağımlılıkları başarılı 

bir şekilde modelleyebilir (Mohammad & Musa, 2022). Mevcut durum, giriş verilerinin, 

önceki gizli durumun ve (3.23)'te modellendiği gibi durumu güncellemek için ilişkili 

ağırlıkların ve aktivasyon fonksiyonunun kombinasyonudur. Tanh aktivasyon fonksiyonu 

uygulandıktan sonra güncellenmiş denklem (3.24)'te belirtilmiştir. Mevcut gizli duruma 

veya son gizli duruma bağlı olarak, RNN çıkış katmanı (3.25)'te modellendiği gibi bir 

tahmin veya nihai çıktı üretir. 

ℎ𝑡 = 𝑓(𝑊 𝑋𝑡, 𝑈ℎ𝑡−1) (3.23) 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊 𝑋𝑡, 𝑈ℎ𝑡−1) (3.24) 

𝑌𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑜 ℎ𝑡 + 𝑏𝑜) (3.25) 

Hem RNN hem de FFNN (tek katmanlı ve DNN) geri yayılım tabanlı öğrenme 

kullanır, ancak RNN tekrarlayan topolojisi ve kısa süreli belleği nedeniyle dizileri 

modellemede daha iyidir (Mohammad & Musa, 2022). Bu, ışınım gibi hava 

değişkenlerindeki değişiklikler nedeniyle fotovoltaik sistemlerin MPPT kontrolünde çok 

önemli olan zamansal dinamikleri ele almalarına olanak tanır. RNN'ler, FFNN'lerin 

aksine, bu tür zamansal kalıpları öğrenebilir ve bu da onları MPPT kontrolörleri için 

uygun hale getirir.  

Farklı topolojilere sahip olmalarına rağmen, RNN'ler ve FFNN'ler veri hazırlama, 

eğitim stratejileri ve performans değerlendirmesi açısından önemli benzerlikler 

göstermektedir. Her iki model de veri hazırlama, temizleme ve eğitim, doğrulama ve test 

kümelerine ayırma gerektirir. Vektörler ve diziler uygun şekilde normalleştirilmeli ve 

dönüştürülmelidir. Her iki model de eğitim aşamasında kayıp gradyanlarını hesaplar ve 

ağırlıkları geri yayılıma göre ayarlar. Toplu öğrenme, düzenlileştirme, optimizasyon 

teknikleri ve MSE gibi kayıp ölçümlerinin tümü benzerdir. Her iki ağ da deneyimsiz 

verilerdeki performansı değerlendirmek için doğruluk, doğruluk/geri çağırma ve F1 puanı 

ölçümleri kullanılarak test edildi. Aynı temel denetimli öğrenme ilkeleri, mimariden 

bağımsız olarak, ileri beslemeli veya tekrarlı olarak geçerlidir. 

Seçilen topolojiler veri işleme açısından farklılık gösterir: FFNN statik vektörler 

kullanırken, RNN sıralı dizilere dayanır. FFNN'lerin aksine, RNN'ler eğitim sırasında 

zamansal bir korelasyon sergiler. Değerlendirme yöntemleri de farklıdır: RNN'ler sıralı 

çıkarım gerektirirken, FFNN'ler genellikle daha fazla veri ve farklı örnek boyutları 

gerektirir. Her ikisi de kaybolan gradyanlar sorunuyla karşı karşıyadır ve RNN'ler uzun 
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vadeli ilişkilere dayandıkları için daha hassastırlar. Yinelemeli RNN mimarileri, özel 

veriler ve eğitim ayarlamaları olmadan dinamik modeller oluşturmakta zorluk çekebilir. 

 

3.1.3.4.  LSTM Ağının kapsamı 

 

Temel RNN, küçük ağırlıkların sürekli yayılımında uzun kaybolan ve patlayan 

gradyan serileri sergiler. Bu nedenle, uzun vadeli bağlantıları öğrenmek ve bilgileri uzun 

vadeli bellekte saklamak zordur. Bu nedenle, LSTM bilgi akışını dikkatlice kısıtlayan ve 

bu sorunları ele alan bir geçit mekanizması içerir (Mohammad & Musa, 2022). Giriş, 

çıkış ve unutma kapıları, hangi bilgilerin saklanacağına ve hangilerinin silineceğine karar 

vermek için seçici güncellemeler kullanır. Gradyanların korunması ve uzun vadeli 

bağımlılıkların yakalanması, karmaşık zaman serisi tahmin görevleri için çok önemlidir. 

RNN'lerin temel sınırlamalarının ötesine geçen özel olarak tasarlanmış bir LSTM geçit 

mimarisi, uzun dizilerin verimli bir şekilde modellenmesini sağlar. 

Önerilen LSTM tabanlı stack MPPT kontrolörü, Bölüm 4, "Önerilen Araştırma 

Metodolojisinde ayrıntılı olarak açıklanan bu tezin hedeflerini yerine getirmektedir. DNN 

dahil en son MPPT algoritmalarının ve önerilen LSTM tabanlı MPPT kontrolörünün 

sonuçları Bölüm 5'in "Sonuçlar ve Tartışma" bölümünde sunulmuştur. Bölümün bu 

noktasına kadar, önerilen şebekeye bağlı PV sisteminin ilk aşaması açıklanmıştır ve 

önerilen çalışmanın ikinci aşamasına, yani şebekeye bağlı evirici kontrol aşamasına 

geçilmektedir.  

 

3.2.  Şebeke Bağlantılı PV Sisteminin İkinci Aşaması 

 

Bu bölüm, şebekeye bağlı PV sistemler için evirici tasarımı ve kontrol stratejilerini 

ele alan şebekeye bağlı PV sistemin ikinci aşamasına dayanmaktadır. Şebeke 

entegrasyonunda eviricilerin rolüne ve şebeke entegrasyonu için solar PV dizisinin doğru 

akımının alternatif akıma verimli bir şekilde dönüştürülmesine özel önem verilmektedir. 

İşlenen konular arasında PWM yöntemleri, kontrol topolojileri (senkron döner çerçeve, 

PR kontrolörlü sabit çerçeve, PI kontrolörlü doğal çerçeve), evirici tasarımı ve NPC 

eviriciler gibi daha gelişmiş seçenekler yer almaktadır. Şebeke zorlukları, PLL, gerilim 

kaynaklı inverter kontrolü, PWM, filtreler ve çıkış filtresi tasarımı da incelenmektedir. 

İnverter tasarımı ve kontrolü, şebekeye bağlı PV sistemlerin güç aktarımını en üst düzeye 

çıkarma ve güç kalitesini iyileştirme becerisinde önemli faktörler olarak 
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vurgulanmaktadır. Bu bölüm, yukarıda bahsedilen her bir bileşenin açıklamasıyla devam 

etmektedir.  

 

3.2.1.  Şebekeye Bağlı İnverterlere Genel Bakış 

 

Solar enerjinin şebekeye entegrasyonu büyük ölçüde şebekeye bağlı PV 

sisteminin inverterlerine dayanır. İnverterler, gerilim ve frekans fazlarını şebeke ile 

senkronize ederek PV panellerin çalışmasını optimize eder ve aynı zamanda PV 

panellerin DC gücünü şebekeye dağıtmak için AC gücüne dönüştürür (Gawhade & Ojha, 

2021).  

 

 

 

Şekil 3.14. Önerilen araştırmanın ikinci aşamasında akım ve gerilim kontrolörünün gösterilmesi 

 

Bu süreç iki aşamadan oluşmaktadır: ilk aşamada voltaj seviyesini referans DC bağlantı 

voltajına yükseltmek için bir DC-DC dönüştürücü kullanılır ve MPPT, MPP'yi belirler ve 

PV dizisini maksimum verimlilikle çalıştırır ve bu Bölüm 3.1’de açıklanan DC bağlantı 

voltajını düzenlemek için inverter anahtarlarının görev döngüsünü kontrol eder ve ikinci 

aşamada DC gücünü Şekil 3.14'te gösterildiği gibi şebeke uyumlu AC gücüne 

dönüştürmek için bir DC-AC İnverteri kullanılır. 

Şebekeye bağlı PV sistemlerinin kararlılığı, güvenilirliği ve verimliliği (a) DC 

bağlantı geriliminin düzenlenmesi, (b) aktif ve reaktif güç akışlarının kontrol edilmesi ve 
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(c) şebeke gerilimi ve frekans senkronizasyonunun sağlanması gibi aşağıdaki faktörlere 

bağlıdır. İnverterin ana görevleri aşağıda listelenmiştir: 

• Şebekeye verilen aktif gücün kontrolü. 

• DC bağlantı voltaj regülasyonu. 

• Şebekeye yüksek kalitede güç enjeksiyonunun sağlanması 

• Şebeke senkronizasyonu. 

 

3.2.2.  İnverter Kontrol Topolojileri 

 

Şebekeye entegre PV sistemlerde, ana inverter kategorileri transformatörüz, tek 

kademeli, çok kademeli ve mikro inverter topolojileridir. İnverter kategorisinin seçimi, 

söz konusu PV sisteminin boyutuna, istenen verimliliğe ve kurulum maliyetlerine 

bağlıdır.  

 
Çizelge 3.3. Şebekeye Bağlı PV Sistemler için inverter topolojilerinin karşılaştırmalı analizi 

Topoloji Avantajları Dezavantajları 

NPC Daha yüksek güç seviyelerinde çalışma 

Geliştirilmiş harmonikler 

Daha yüksek karmaşıklık 

H5 Serisi Basit Uygulama 

Daha düşük maliyet 

Daha düşük verimlilik 

Daha yüksek harmonik bozulma 

HERİK 

 

H5 ve NPC'nin melezi 

Her ikisinin de avantajlarından birkaçını sunar 

 

H5'ten daha karmaşık 

 

H6 Serisi 

 

NPC'den daha basit 

Daha az harmonikle iyi verimlilik 

 

NPC kadar verimli değil 

 

 

Akıllı inverterler mükemmel performans, uzun kullanım ömrü ve düşük üretim 

maliyetleri sunar. Silikon teknolojisi ile üretilen inverterlerin verimliliği %94 ila 96 

arasında değişmektedir ve güçleri ve verimlilikleri seçilen topolojiye bağlıdır (Mirafzal 

& Adib, 2020). Bir topoloji seçerken, maliyet, işlenebilirlik ve yalıtım ve dönüşüm 

aşamalarının sayısı gibi sistem gereksinimleri dikkate alınmalıdır. İnverter topolojilerinin 

karşılaştırmalı analizi Çizelge 3.3'te listelenmiştir.  

Transformatörsüz, iki aşamalı, tek aşamalı ve diğer tasarımlar arasındaki farkları 

anlamak, belirli bir PV kurulumu için en iyi seçeneği belirlemeyi kolaylaştırır. Bu 

nedenle, bu bölümde her bir topolojinin ayrıntılı bir açıklaması ele alınmaktadır. Verilen 

inverter topolojilerinin blok diyagramı Şekil 3.15'te sunulmuştur (Blaabjerg et al., 2006). 
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Şekil 3.15. Literatürde kullanılan inverter topolojileri 

 

3.2.2.1.  Transformatörsüz İnverterler  

 

Transformatörsüz dönüştürücüler, büyük düşük frekanslı transformatörlere olan 

ihtiyacı ortadan kaldırarak verimliliği artırabilen, boyutu ve ağırlığı azaltabilen ve 

maliyeti düşürebilen gelişmiş bir güç dönüştürme teknolojisidir (P & J, 2021). Bu 

dönüştürücülerde transformatör bulunmaması, transformatörlerdeki bakır kayıplarını 

ortadan kaldırdığı için önemli avantajlara sahiptir. Şebekeden galvanik olarak izole 

edilmediklerine dikkat etmek önemlidir.  

NPC, H5, H6 ve HERIC gibi çeşitli yaygın transformatörüz inverter topolojileri, 

yazarlar tarafından vurgulandığı gibi şebekeye bağlı PV sistemlerinde yaygın olarak 

kullanılmaktadır (Khan et al., 2020). Örneğin, NPC topolojisinde, nötr nokta DC'ye 

bağlanır, bu da anahtar voltajını telafi edebilir ve gücü artırmaya yardımcı olabilir 

(Rodriguez et al., 2010). H5 topolojisinde, köprü anahtarında tek kutuplu modülasyon 

kullanılır ve bu da verimliliği artırır. HERIC topolojisi ise hem H-köprüsü tasarımının 

hem de NPC'nin avantajlarını bir araya getirmektedir (Zeb et al., 2018). Kaçak akım 

sorunları, dikkatli yerleşim tasarımı ve topraklama prosedürleri ile etkili bir şekilde ele 

alınabilir.  

Özetle, transformatörüz inverterler, gelişmiş güç dönüşüm verimliliği, daha küçük 

alan gereksinimleri ve daha düşük maliyetler dahil olmak üzere çeşitli avantajlar sunar. 
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3.2.2.2.  Çok Aşamalı İnverterler 

 

Çok kademeli inverterler, güç kalitesini, kontrol doğruluğunu ve voltaj kazancını 

iyileştirmek için birden fazla güç dönüştürme aşaması kullanan gelişmiş güç elektroniği 

cihazlarıdır  (Rajkumar & Rathinam, 2023). Çok aşamalı inverterler, birden fazla 

dönüştürme işlemini tek bir cihazda birleştirerek tek aşamalı inverterlerden daha iyi 

performans gösterir. İlk aşama DC-DC inverterler genellikle güneş enerjisinden verimli 

bir şekilde güç elde etmek ve maksimum güç noktasını belirlemek için kullanılır. Şebeke 

entegrasyonu, PV dizisinin doğru akımını senkron alternatif akıma dönüştüren bu 

inverterlerin ikinci aşaması tarafından sağlanır. Çok aşamalı inverterlere, doğaları gereği 

karmaşık olmaları nedeniyle daha karmaşık kontrol stratejileri gerektirir, ancak sistemin 

performansını artırır (Khan et al., 2020). 

 

3.2.2.3.  Modül Entegre İnverterler 

 

Modüle entegre inverterlere, inverter ve PV modülünü sorunsuz bir şekilde tek bir 

"AC modülünde" birleştirir ve devrim niteliğinde bir yaklaşım örneğidir (Zhang et al., 

2018). Bu fikrin kapsamı, sistemin yaşam döngüsü boyunca çeşitli avantajlar sunan güç 

üretimi ve dönüşümünün tek bir ünitede birleştirilmesinden oluşmaktadır. Ana 

avantajlardan biri, entegre modüllerin gerçek "tak ve çalıştır" işlevselliği sayesinde 

basitleştirilmiş sistem tasarımı ve kurulum prosedürleridir. Bu inverterlere, harici 

İnverterlere olan ihtiyacı azaltarak verimli inverter-PV ölçeklendirmesi sağlar. Ayrıca 

modüller arasındaki uyumsuzluk kayıplarını azaltarak sistem verimliliğini de artırırlar 

(Islam et al., 2015). Ancak bu yaklaşımın her bir modül için watt başına daha yüksek 

fiyatlara yol açabileceğine dikkat etmek önemlidir. Esneklik ve uyarlanabilirlik sunan 

mikro inverterler, modül entegre sistemler dünyasında çoğalmıştır. Modül entegre 

inverterler, güç üretimi ve dönüşümünü sorunsuz bir şekilde birleştirdikleri, kurulum 

prosedürlerini basitleştirdikleri ve özelleştirilmiş inverter entegrasyonu yoluyla sistem 

performansını artırdıkları için kapsamlı bir çözüm sunmaktadır. 

 

3.2.2.4.  Kaskat H Köprü İnverter  

 

Kaskat H-köprüsü tasarımı, birkaç tam köprü inverter modülünün sıralı 

bağlantısını içeren bir başka gelişmiş güç elektroniği topolojisidir (Ramasamy et al., 
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2022). Kapsamı, daha düşük harmonik içeriğe sahip çok seviyeli, merdiven basamaklı bir 

çıkış dalga formu üretmek için bu bağımsız modüllerin her birini kullanmayı ve güç 

dönüştürme uygulamaları için çeşitli faydaları içerir. Kademeli konfigürasyondaki her bir 

H-köprüsü modülünün çıkışı bir kare dalgadır. Bununla birlikte, kademelendirmenin 

yarattığı sinerji, daha az harmoniğe sahip çok katmanlı bir dalga şeklinin üretilmesini 

sağlayarak orta gerilim şebekelerine entegrasyonu kolaylaştırır (Yaosuo Xue et al., 2004). 

Bu topolojinin önemli bir avantajı, daha yüksek güç gereksinimlerini karşılamak için daha 

fazla H-köprüsünün dahil edilmesine olanak tanıyan modüler ve ölçeklenebilir 

tasarımıdır. Sonuç olarak, kademeli H-köprüsü şeması, tam köprü inverter modüllerini 

birleştirerek, harmonikleri etkili bir şekilde azaltarak ve şebeke entegrasyon yeteneklerini 

artırarak çok seviyeli sinyaller üretmek için sofistike bir yöntem sunar. Bu şemanın birçok 

güç dönüşüm ortamındaki popülerliği büyük ölçüde uyarlanabilirliği ve 

ölçeklenebilirliğinden kaynaklanmaktadır. 

 

3.2.3.  İnverter Kontrol Mimarileri (İnverter Çeşitleri) 

 

İki tür şebekeye bağlı PV inverter topolojisi vardır: gerilim kaynaklı inverterler 

(VSI) ve akım kaynaklı inverterler (CSI). Gerilim kaynaklı inverterlere, aktif gücü ve 

gerilimi bağımsız olarak kontrol edebildikleri için şebekeye bağlı PV sistemlerde 

genellikle tercih edilir. Ancak bu iki inverter arasında seçim yaparken güç faktörü 

kontrolü, verimlilik ve harmonik yönetimi gibi sistem gereksinimleri göz önünde 

bulundurulmalıdır (Sahan et al., 2011). Her bir topoloji daha sonra ayrıntılı olarak 

açıklanmaktadır.  

 

3.2.3.1.  Gerilim Kaynaklı İnverter 

 

VSI, gelişmiş çalışma metodolojisi ile karakterize edilen şebekeye bağlı PV 

sistemlerinin önemli bir bileşenidir. VSI, devresine neredeyse sabit bir DC girişi 

sağlamak ve sonraki işlem için zemini hazırlamak için birkaç paralel kapasitör kullanır 

(Chang et al., 2022). İnverterin esnek çalışmasının önemli bir unsuru, kontrollü 

anahtarlama yoluyla değişen darbe genişliklerine sahip alternatif bir çıkış voltajı dalga 

formunun üretilmesidir.  Gerilimin harmonik içeriğini azaltmak için bu darbe dizisinde 

şebeke tarafında bir LCL filtreleme cihazı gereklidir (GHOSHAL & JOHN, 2015). 

VSI'lar hem gerilim hem de akım kontrol modlarında iyi performans gösterir. Gerilim 
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kontrol modunda VSI, çıkış gerilimini şebeke gerilimine uyacak şekilde ayarlayarak 

senkronizasyon ve verimli güç aktarımı sağlar. Akım kontrol modunda VSI, kararlılığı 

korumak ve güç çıkarımını optimize etmek için PV dizisinin çıkış akımını düzenler. 

  

 
 

Şekil 3.16. (a) gerilim kaynaklı inverter ve (b) akım kaynaklı inverterin blok diyagram gösterimi 

 

Bu kontrol modları, PV sistem performansını optimize etmek için çıkış akımını 

ayarlayarak güneş aktivitesindeki dalgalanmalara uyum sağlayarak genel enerji kalitesini 

ve verimliliğini artırır. Yazarlar tarafından (Calais et al., 1999)'da kullanılan Şekil 3.16, 

H-köprülü inverter ve LCL filtreli tek fazlı VSI topolojisine genel bir bakışı 

göstermektedir ve bu düzenlemeye bir örnektir.  

 

3.2.3.2.  Akım Kaynaklı İnverter 

 

Bir CSI, özel güç yönetimi özelliklerinin benzersiz avantajlar sunduğu şebekeye 

bağlı PV sistemleri de dahil olmak üzere bir dizi uygulamada yaygın olarak kullanılan bir 

güç elektroniği cihazıdır. Bir CSI'ın operasyonel tasarımının önemli bir bileşeni, sabit bir 

giriş akımı sağlamak için DC tarafında büyük bir indüktör kullanılmasıdır. İnverter 

adaptasyonunun hassas anahtarlama kontrol bileşeni, ayarlanabilir genişliklere sahip 

modüle edilmiş AC darbe sinyallerinin üretilmesini mümkün kılar (Kwak & Toliyat, 

2006). Bir LCL filtresinin dahil edilmesi, bu darbeli akım dalga biçimini yumuşatmaya 

yardımcı olur. Yük parametreleri çıkış geriliminin genliğini ve şeklini etkiler. VSI'larla 

karşılaştırıldığında, CSI'ların iletim kayıpları daha yüksektir ancak anahtarlama kayıpları 

da daha düşüktür. H-köprülü inverter ve LCL filtreli üç fazlı bir CSI topolojisi görsel 

olarak gösterilmekte ve bu dinamik tasarımın kapsamlı bir şekilde anlaşılmasını 

sağlamaktadır. 
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Şebekeye bağlı PV sistemler için VSI ve CSI arasında seçim yapma kararı, sistem 

gereksinimleri, kontrol şeması ve çalışma koşulları dahil olmak üzere çeşitli değişkenlere 

dayanmaktadır. Hem VSI hem de CSI'ın avantajları ve dezavantajları vardır. VSI tipik 

olarak şebekeye bağlı sistemler için seçilir çünkü doğal olarak daha iyi voltaj ve güç 

kalitesi kontrolü sağlar. Ancak CSI'ın da daha iyi akım düzenleme kabiliyeti ve daha basit 

topoloji gibi avantajları vardır (Attanasio et al., 2008). Kararın temeli, projenin özel 

gereksinimlerinin ve kısıtlamalarının ayrıntılı bir analizi olmalıdır.  

 

3.2.4.  İnverter Kontrolü 

 

Şebekeye bağlı PV sistemlerde senkronizasyon, güvenilir çalışma ve optimum 

güç akışını sağlamak için inverter kontrolü çok önemlidir. Dönen referans çerçeve 

kontrolü, sabit referans çerçeve kontrolü ve doğal referans çerçeve kontrolü gibi inverter 

kontrol yöntemleri akımların ve gerilimlerin daha verimli kontrolünü sağlar. Evirici 

çıkışını şebeke gerilimi ile senkronize eden PLL entegrasyonu, bu yöntemler için gereken 

hassas senkronizasyonu sağlar (Ali et al., 2018; Sureshbabu & Aseem, 2022). Buna ek 

olarak, gerilim seviyesini ayarlamak ve güç akışını kontrol etmek için PWM teknikleri 

de gereklidir (Kabalcı et al., 2021). Bu alt bölümde, daha gelişmiş inverter kontrol 

yöntemlerine geçmeden önce PLL ve PWM açıklanmaktadır. 

 

3.2.4.1.  Sinüzoidal Darbe Genişlik Modülasyonu 

 

Şebekeye bağlı PV sistemlerinde sinüzoidal PWM, darbe genişliklerini 

ayarlayarak, harmonikleri en aza indirerek ve gelişmiş kararlılık ve güç kalitesi için 

gerçek ve reaktif güç kontrolü sağlayarak senkronize ve verimli güç dönüşümü sağlayan 

önemli bir anahtarlama kontrol tekniğidir (YOUNAS et al., 2019).  

Bu tür sistemlerde sabit bir DC bağlantı gerilimi elde etmek için, DC-DC 

dönüştürücü ilk olarak daha önceki bölümde açıklanan mümkün olan maksimum gücü 

elde etmek için MPPT kullanır. Bu güç daha sonra NPC gibi bir inverter kullanılarak 

şebekeye iletilmek üzere AC gücüne dönüştürülür. Bu durumda, SPWM ikinci 

kademenin inverterinin kontrolünde önemli bir rol oynar. Sinüzoidal PWM'de inverter 

anahtarlaması, Şekil 3.17'de gösterildiği gibi yüksek frekanslı bir üçgen taşıyıcı dalga ile 

düşük frekanslı bir sinüzoidal referans sinyalinin zıtlaştırılmasıyla modüle edilir (Kabalcı 

et al., 2021). 
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Şekil 3.17. Tek fazlı sinüzoidal PWM'nin anahtarlama sinyalleri 

 

Denklem (3.26)'da modellenen modülasyon indeksi ma, sinüzoidal referans 

sinyalinin genliklerinin taşıyıcı sinyale oranını ölçer ve daha sonra inverter çıkış 

voltajının temel bileşenini doğrusal olarak değiştirmek için kullanılır. Tek bir fazın 

kontrol mekanizması denklem (3.27) ile temsil edilir, burada V_ph1 faz çıkış geriliminin 

tepe genliğidir. 

𝑚𝑎 =  𝑉𝑚 𝑉𝑐⁄  (3.26) 

𝑉𝑝ℎ1 = 0.5 ∗ 𝑚𝑎 ∗ 𝑉𝑠  (3.27) 

Şebeke bağlantılı inverterlere bu modülasyon tekniği ile doğrusal ve ayarlanabilir 

gerilim kontrolü sağlayabilir. SPWM, transformatörüz, iki aşamalı, tek aşamalı, izole 

şebekeye bağlı ve çok aşamalı izole mikro inverter konfigürasyonları dahil olmak üzere 

çeşitli inverter topolojilerine kolayca dahil edilebilir (Daolian Chen et al., 2017). 
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3.2.4.2.  Faz Kilitleme Döngüsü 

 

Şebekeye bağlı PV dizisinde PLL, PV inverterlerin çıkış geriliminin fazını ve 

frekansını şebeke gerilimiyle senkronize etmek için kullanılır ve etkili güç enjeksiyonu 

sağlar, harmonikleri azaltır ve güç kalitesini artırır (Sureshbabu & Aseem, 2022). 

Geleneksel faz algılama yöntemi şebeke geriliminin sıfır geçiş noktalarına dayanmasına 

rağmen, algılama boşlukları şebeke frekansının her yarım döngüsünde meydana 

geldiğinden ve ideal dinamik performanstan daha azına neden olduğundan dezavantajları 

vardır. Alternatif bir strateji, çeşitli PLL algoritmalarına entegre edilmiş senkron veya 

döner referans çerçevesi tekniğini kullanır. Bu yöntemde PLL bloğundan elde edilen 

dönüş açısı, hat-nötr gerilim verilerini dq formuna dönüştürmek için kullanılır. PLL 

kapalı döngüsü stabilize olur ve dq dönüşümünden gelen eksenin karesel bileşeni sıfır 

olur. Şekil 3.18'de (Gorai et al., 2020) sunulan PLL blok diyagramı senkronize referans 

çerçevesini göstermektedir. 

 

 
 

Şekil 3.18. PLL senkronizasyon devresinin yapısı 

 

PLL yapısı tipik olarak bir abc'den dq'ya dönüşüm ve ardından referans ve gerçek 

şebeke gerilimi arasındaki hatayı işlemek için bir PI kontrolörü içerir. PI denetleyici 

tarafından üretilen hata sinyali daha sonra evirici çıkışı ile şebeke gerilimi arasındaki 

sapmaları telafi eden bir integral teriminden geçirilerek uzun vadeli kararlılık sağlar ve 

yukarıdaki şekilde şematik olarak gösterildiği gibi senkronizasyon sürecini iyileştirir (Ali 

et al., 2018). 
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3.2.4.3.  Dönen Referans Çerçevesi (DQ) Kontrolü 

 

Şebekeye bağlı PV sistemlerinde, dq döner referans çerçevesindeki akım ve 

gerilimi hassas bir şekilde kontrol etmek ve böylece sistem kararlılığını ve performansını 

artırmak için döner referans çerçeve kontrol yöntemi kullanılır. Park dönüşümü 

denklemleri, vektör kontrolü olarak da bilinen döner referans çerçevesi kontrolünde, üç 

fazlı abc akımlarını (3.28) ve (3.29) denklemlerinde modellendiği gibi bir dq döner 

referans çerçevesine dönüştürmek için kullanılır (O’Rourke et al., 2019). θ açısı, a fazı 

ile d ekseni arasındaki dönüş açısını gösterir. d ekseni hat gerilim vektörüne paraleldir ve 

q ekseni 90 derecelik bir açıya sahiptir. Zamana bağlı sinüzoidal akımlar, PLL 

kullanılarak şebeke frekansına senkronize edilen bu döner referans çerçevesi kullanılarak 

sabit DC değerlerine dönüştürülür. 

𝑖𝑑 = 𝑖𝑎cos (𝜃) + 𝑖𝑏cos (𝜃 − 120𝑜) + 𝑖𝑐cos (𝜃 + 120𝑜) (3.28) 

𝑖𝑞 = 𝑖𝑎sin (𝜃) + 𝑖𝑏sin (𝜃 − 120𝑜) + 𝑖𝑐sin (𝜃 + 120𝑜) (3.29) 

Bu şekilde, id ve iq basit PI kontrolörleri kullanılarak ayrı ayrı düzenlenebilir. 

Salınım sinyallerinin olmaması nedeniyle, şebeke frekansında dönme kontrol işlemlerini 

basitleştirir. Dönen çerçeve ile şebeke geriliminin gerçek fazı arasındaki farkı azaltmak 

için, ince ayarlı bir PLL aracılığıyla şebeke ile senkronizasyon gereklidir. Bu, id ve iq'nun 

ayrık bir şekilde kontrol edilmesine olanak tanıyarak şebekeye enjekte edilen aktif gücü 

dolaylı olarak kontrol eder ve gerekli reaktif güç veya güç faktörü ayarlamalarını yapar 

(Vasquez et al., 2020).  

 

3.2.4.4.  Sabit Referans Koordinat Eksenleri (αβ) Kontrolü  

 

Sabit referans kontrol sistemi, üç fazlı abc gerilimlerini ve akımlarını αβ sabit 

referans sistemine dönüştürerek şebekeye bağlı inverterleri dönel dönüşümlere gerek 

kalmadan kontrol eder (Abo-Elyousr & Abdelaziz, 2018). Bu, dönen referans 

çerçeveleriyle ilişkili karmaşıklıkları ve şebeke ile doğru senkronizasyon ihtiyacını 

ortadan kaldırır. Sabit Referans Koordinat Eksenleri Kontrolü, Clarke dönüşümünün 

(3.30) ve (3.31) denklemlerini kullanarak üç fazlı abc akımlarını şebeke gerilim vektörü 

boyunca yönlendirilmiş sabit bir αβ referans çerçevesine dönüştürür.  

𝛼 = 2 3⁄ ∗ (𝑖𝑎 − 𝑖𝑏 2⁄ − 𝑖𝑐 2⁄ ) (3.30) 

𝛽 = (1 √3⁄ ∗ (𝑖𝑏 − 𝑖𝑐)) (3.31) 
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αβ sabit referans çerçevesi şebekenin gerilim açısına göre sabittir ve dönen bir 

referans çerçevesi gibi dönmez (Rodríguez et al., 2012). Şebeke ile senkronize edilen α 

akımı, şebeke ile senkronize edilmiş pozitif dizi bileşenidir ve β negatif diziyi temsil eder. 

Dengeli üç fazlı çalışma, sabit referans çerçevesinin α ve β'sını kontrol ederek de elde 

edilebilir. Sabit bir sistemde kararlı durum hataları olmadan doğru akım kontrolü elde 

etmek için, şebeke frekansında büyük bir kazanç sağlayan bir PR kontrolörü kullanılır 

(Vanti et al., 2022). Şebeke senkronizasyonu ve akım regülasyonu PR kontrol 

kullanılarak kontrol edilirken, sabit referans kontrolü α ve β bileşenleriyle ilgilenir. 

  

3.2.4.5.  Doğal Çerçeve Kontrolü 

 

Doğal çerçeve kontrolü, çerçeve dönüşümlerinden kaçınarak üç fazlı abc 

akımlarını doğrudan zaman alanında kontrol eden basit bir tekniktir. Kontrol stratejisi 

basitleştirilmiş olsa da faz-faz ayrıştırması yoktur. Doğal çerçeve kontrolü, çerçeve 

dönüşümlerine ihtiyaç duymadan abc akımlarını doğrudan kontrol eder (Madouh et al., 

2012). Geçici durum performansı, her bir fazın bağımsız olarak ele alınmasıyla 

iyileştirilebilir. Ancak, ayrıştırma eksikliği sinüzoidal sinyalleri izlemek için gereken 

kontrol sisteminin karmaşıklığını artırır. Her fazın kendi PI kontrolörü vardır ve fazlar 

arasındaki sistem etkileşimlerini hesaba katmak zordur. Doğal çerçeve kontrolü, Park 

veya Clarke dönüşümlerini kullanarak sabit çerçeveleri döndürmez veya takip etmez. Bu, 

çerçeve değişikliklerinin hesaplama yükünü ortadan kaldırır, ancak ayrık kontrolün 

avantajlarından vazgeçer (Ting et al., 2016), ancak ayrıştırma tekniklerinin olmaması 

performansını ve verimliliğini artırır.  

 

3.2.5.  Şebekeye Bağlı PV İnverterin Kademeli Kontrolü 

 

Bu alt bölümde, şebekeye bağlı inverterlerin optimum güç akışını sağlayan önemli 

kademeli kontrol döngüleri analiz edilmektedir. Bu kontrol döngüleri sabit güç 

enjeksiyonu, şebeke bozukluklarına hızlı tepki ve verimli güç kalitesinin korunması için 

çok önemlidir. Gerilim kontrol döngüsü ve akım kontrol döngüsü, hassas şebeke 

senkronizasyonu ve güvenilir güç dağıtımı elde etmek için bu mimarinin temel 

bileşenleridir. Her bir kontrol döngüsünün ayrıntılı açıklaması aşağıdaki alt bölümlerde 

sunulmuştur. 
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3.2.5.1.  Gerilim Kontrol Döngüsü (Dış Döngü) 

 

Şebeke bağlantılı evirici sistemlerinde, gerilim kontrolü hiyerarşik bir yapıda dış 

kontrol döngüsü olarak görev yapar ve senkron çalışma sırasında şebeke gerilimine 

uyması için evirici çıkış gerilimini dq senkron çerçevesinde düzenler (Altin et al., 2018). 

Gerilim döngüsü, ölçülen gerilimler ile PLL tarafından üretilen 𝑣𝑑
∗  ve 𝑣𝑑

∗  referans 

gerilimleri arasındaki hataları en aza indirmek için iki PI denetleyicisi kullanır ve 

gözlemlenen üç fazlı şebeke gerilimini abc'den dq'ya çevirir. Daha yavaş olan dış gerilim 

düzenleme döngüsü, şebeke ile faz senkronizasyonunu korurken evirici çıkış gerilimini 

sürekli olarak şebeke referans gerilimine ayarlayarak daha hızlı olan iç kontrol döngüsü 

için referans akımı ayarlar. Gerilim kontrol döngüsünün çalışmasını gösteren şematik 

diyagram Şekil 3.19'da gösterilmiştir. 

 

 

 

Şekil 3.19. Gerilim ve akım kontrol döngüsünün çalışmasını gösteren şematik diyagram 

 

Ayrıca voltaj regülatörü, PV kaynağından şebekeye güç aktarımını en üst düzeye 

çıkarmak için gereken DC bağlantı voltajını kontrol eder (Huang et al., 2013). PI 

regülatörlerinin kazançları, kararlılık ve performans sağlamak için dikkatlice 

ayarlanmalıdır. Şebekeye bağlı eviricinin voltaj regülasyonu, senkronizasyon ve güç 

dağıtımını aynı anda gerçekleştirme yeteneği harici bir voltaj regülasyon döngüsü ile 

sağlanır. 
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3.2.5.2.  Akım Kontrol Döngüsü (İç Döngü) 

 

Şebeke bağlantılı inverterlerde, akım kontrol döngüsü daha hızlı bir iç döngü 

olarak hareket eder ve harici gerilim döngüsü tarafından ayarlanan referans değerleri 

takip etmek için dq çerçevesindeki çıkış AC akımını kontrol eder (Lopez-Santos, 2015). 

PWM ve inverter anahtarlarını kontrol etmek için bağımsız PI kontrolörleri, akım 

hatalarını en aza indirmek için 𝑣𝑑
∗  ve 𝑣𝑑

∗  gerilim referans değerlerini üretir (Shayestegan, 

2018). Dış gerilim döngüsünden daha yüksek bir frekansta çalışan bir iç akım döngüsü, 

kararlı çalışma ve sorunsuz şebeke entegrasyonu için akım ayar noktalarının hassas 

kontrolünü sağlar (Altin et al., 2018). Şekil 3.19'da, iç akım kontrol döngüsünün şematik 

gösterimini temsil etmektedir.  

d-ekseni akım ayar noktası d-akım bağlantı gerilimiyle eşleştirilir ve reaktif güç 

q-ekseni bileşeni tarafından kontrol edilir (Lopez-Santos, 2015). İç akım kontrol döngüsü, 

PV dizisinin çıkış akımını referanslarla karşılaştırarak optimum güç kalitesi ve kararlılık 

için şebekeye hassas, harmoniksiz akım enjeksiyonunu kontrol eder. 

Şebekeye bağlı PV sistemlerinde hem harici hem de dahili kontrol döngülerinin birleşik 

rolü vazgeçilmezdir. Park-Clarke dönüşümü ve PLL gibi kontrol veya dönüşüm teknikleri 

bu entegrasyona önemli bir katkı sağlar. Harici kontrol veya voltaj kontrol döngüsü DC 

bağlantı voltajının düzenlenmesine yardımcı olur ve böylece voltaj dalgalanmalarını 

azaltır ve sabit bir güç akışı sağlar. Eş zamanlı olarak, dahili kontrol veya akım kontrol 

döngüsü şebekeye doğru akım aktarımını sağlar ve PV dizisinin çıkış gücünü referans 

değerlerle hizalamaya yardımcı olur. Bu hassas etkileşim, şebeke uyumluluğunu ve güç 

kalitesini büyük ölçüde iyileştirir. Buna ek olarak, LCL filtresi, harmonik içerikleri 

azaltmak ve şebekeye bağlı PV sistemin performansını ve verimliliğini artırmak için 

evirici ile şebeke arasındaki en önemli unsurlardan biridir. Bu alt bölüm, söz konusu 

sistem için LCL filtresinin tasarımı ile devam etmektedir. 

 

3.2.6.  Şebekeye Bağlı PV Sistem için LCL Filtre Tasarımı 

 

İnverter ve şebeke arasındaki çıkış LCL filtresi, güç kalitesi standartlarını 

karşılamak için anahtarlama harmoniklerinin zayıflatılmasında hayati bir rol oynar 

(Chatterjee, 2023). Filtre tasarım süreci, zayıflatma hedeflerine, kararlılığa ve maliyet 

etkinliğine ulaşmak için indüktör ve kapasitör değerlerinin seçimini içerir. İndüktör (L) 

ve kapasitör (C) değerlerinin gerekli zayıflama, kararlılık ve maliyet etkinliği göz önünde 
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bulundurularak seçilmesi gerekir (Pilla et al., 2018). Filtre kesim frekansı (fc), harmonik 

içeriği bastırmak için kasıtlı olarak inverter anahtarlama frekansının (fs) altına ayarlanır. 

Rezonans frekansı (𝑓𝑟𝑒𝑠), kararlılığı korumak için fc'den daha yüksek olmalıdır. Benzer 

şekilde, empedans parametrelerinin L1/L2 oranının 0,1'in altında tutulması gerekir. Bu 

parametre, güvenilir filtre performansı ve etkili rezonans bastırma desteği için en yüksek 

öneme sahiptir. L1/L2 oranı 0,1'i aşarsa, istenmeyen rezonanslar ve empedans farklılıkları 

oluşabilir ve bu da LCL filtresinin filtreleme kabiliyetine ve genel performansına zarar 

verebilir. Rezonans elde etmek için bu bileşenlerin dengelenmesi gerekir ve sönümleme 

direnci (R) gerekli sönümleme ve geçici tepkinin sağlanmasına yardımcı olur.  

LCL filtresinin tasarım sürecinde kullanılan matematiksel denklemler aşağıda 

modellenmiştir. Bu LC parametre değerlerinin seçimi, PV dizisinin nominal gücü ve DC 

bağlantı voltajı dahil olmak üzere sistem yapılandırmasına bağlıdır. LCL bileşenleri, 

istenmeyen harmoniklerin giderilmesine yardımcı olan bir rezonans noktası oluşturmak 

için seçilir. Belirli harmonikleri hedefleyen rezonans frekansının formülü denklem 

(3.32)'de modellenmiştir. L1 ve L2 değerleri denklem (3.33) kullanılarak hesaplanır. 

Rezonansı gerçekleştirmek için, C değeri indüktör değerinin tamamlayıcısı olarak kabul 

edilir. Sönümleme oranı denklem (3.34) kullanılarak hesaplanır. Sönümleme direncini 

hesaplamak için denklem (3.35) kullanılır. Dolayısıyla, rezonans frekansındaki LCL filtre 

empedansı denklem (3.36) ile modellenir. 

𝑓𝑟𝑒𝑠 = 1 (2 ∗ π ∗ √𝐿 ∗ 𝐶)⁄  (3.32) 

𝐿 = 1 (4 ∗ π2 ∗ 𝐶 ∗ 𝑓𝑟𝑒𝑠
2)⁄  (3.33) 

𝜉 = 𝑅 (2 ∗ √𝐿 𝐶⁄ )⁄  (3.34) 

𝑅 = 2 ∗ 𝜉 ∗ √𝐿 𝐶⁄  (3.35) 

𝑍 =  𝑅 +  𝑗𝜔𝐿 +  1  (𝑗𝜔𝐶)⁄  (3.36) 

LCL filtresinin başarılı rezonans tasarımı, şebekeye bağlı PV sistemlerinde yüksek 

frekanslı harmoniklerin azaltılması için özellikle uygundur (Mishra et al., 2023). Filtre, 

yüksek geçişli bir filtre görevi görerek evirici tarafından üretilen yüksek frekanslı 

harmonikleri zayıflatır ve şebekenin temel frekansı gibi daha düşük frekanslı bileşenlerin 

geçmesine izin verir. Bu işlev, istenmeyen yüksek frekanslı harmoniklerin şebekeyi 

etkilemeden önce filtrelenmesini ve böylece güç kalitesinin korunmasını sağlar. 
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3.3.  Bölüm Özeti 

 

Bu bölümde, iki aşamalı şebeke bağlantılı bir PV sistem ayrıntılı olarak ele 

alınmaktadır. İlk olarak, yükseltici tip DC-DC dönüştürücü tasarımı ve PV panel 

teknolojisi analiz edilmiştir. P&O, ANN (DNN) ve RNN gibi MPPT kontrolörleri de 

tartışılmış ve önerilen LSTM modeli hakkında kısa bilgi verilmiştir. Bir sonraki bölümde 

(Bölüm 4), stack LSTM'lere dayalı bir MPPT kontrolörü önerilmektedir. Bunu şebekeye 

bağlı eviricinin topolojisi, tasarımı ve kontrol stratejisinin açıklaması takip etmektedir. 

Bölüm 4'te, NPC eviricilerin uygulanması ayrıntılı olarak açıklanmaktadır. Bu bölüm, 

şebekeye bağlı PV sistemlerin entegrasyon ve kontrol stratejisinin anlaşılmasını 

kolaylaştırmaktadır. 



74 

 

 

4.  ÖNERİLEN ARAŞTIRMA 

 

Bu bölümde, önerilen araştırmanın altında yatan temel kavramlar açıklanmaktadır. 

Bu tez, Derin Öğrenme (DL) tabanlı bir Maksimum Güç Noktası İzleme (MPPT) 

kontrolörünü şebekeye bağlı bir solar Fotovoltaik (PV) sistemine entegre etmek için yeni 

bir konsept önermektedir. Makine Öğrenimi (ML) ve DL, şu anda çeşitli Endüstri 4.0 

uygulamalarına ve Endüstri 5.0 uygulamalarına hizmet eden Yapay Zekanın (AI) 

gelişmekte olan alt alanlarıdır (Akundi et al., 2022). Bu nedenle, solar PV sisteminde 

MPPT kontrolörü olarak Uzun Kısa Süreli Bellek (LSTM) ağı DL algoritmasının 

entegrasyonu gibi gelişmiş teknolojilerin kullanılması, genel performansı ve verimliliği 

daha da artırmaktadır. Bu nedenle, bu bölüm önerilen araştırma yaklaşımına kapsamlı bir 

genel bakış sağlamakta ve PV sistemde MPPT için LSTM ağlarının kullanımına 

odaklanmaktadır. Başarılı bir MPPT kontrolörü tasarlamak için LSTM ağ mimarisine, 

aktivasyon fonksiyonlarına, hiper parametrelerine ve çeşitli LSTM ağ türlerine bakmak 

faydalı olabilir. Buna ek olarak, performans ölçütlerinin ve eğitim seçeneklerinin 

değerlendirilmesi, araştırmacılara LSTM ağlarını kullanarak güneş enerjisinden elektrik 

güç üretimi sistemlerini optimize etmek için önemli araçlar sağlar, böylece yenilenebilir 

enerji kullanımını artırır ve sürdürülebilir enerji üretimini destekler. Bu bölümde ele 

alınan LSTM ağının ana konuları aşağıda vurgulanmıştır: 

• Giriş, arka plan ve LSTM Ağlarına genel bakış 

• LSTM Ağlarının yapısı ve mimarisi 

• ML ve DL Modellerinde Kullanılan Aktivasyon Fonksiyonları 

• DL Modellerinde Hiperparametrelerin Seçimi 

• LSTM Ağlarının Türleri 

• Önerilen stack LSTM ağı 

• MPPT Kontrolörü olarak önerilen LSTM modeli 

• Önerilen Kontrolörün Giriş ve Çıkışları için Model Tasarımı 

• DL modellerinin eğitimi ve test edilmesi 

• DL modelleri için performans değerlendirme metrikleri 

Bu bölüm, önerilen çalışmanın yukarıda belirtilen bileşenlerinin her birinin adım 

adım açıklamasıyla devam etmektedir.   
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4.1.  LSTM Ağlarının Gı̇rı̇şı̇ 

 

Bu bölüm, LSTM ağlarına genel bakışı ve ardından çeşitli sektörlerdeki 

uygulamalarını özetlemektedir. Sıralı veri kümelerindeki uzak ilişkileri tespit etmek için 

LSTM ağlarının önemini vurgulamaktadır. Bölüm, LSTM ağının genel görünümü, 

tarihsel dönüşümü ve evrimi ile farklı sektörlerdeki uygulamaları ile devam etmektedir.  

 

4.1.1.  LSTM Ağlarına Genel Bakış 

 

Son yıllarda, Yapay Sinir Ağlarının (ANN) zaman serisi tahmini ve öngörü 

uygulamalarında kullanılması, tarihsel girdi ile öngörülen çıktı arasındaki karmaşık 

ilişkilerin modellenmesinde iyi bir doğruluk sunmuştur (Fine, 2005). ANN'larda bilgi 

sadece tek bir yönde, girdi katmanından çıktı katmanına doğru akar. Buna ek olarak, ANN 

girdi ve çıktı arasındaki geçmiş veri bağımlılıklarını verimli bir şekilde ele 

alamamaktadır. Bu nedenle, ANN modelleri normalde sınıflandırma ve regresyon 

modellerinde kullanılır. 

Öte yandan, Tekrarlayan Sinir Ağı (RNN) bilgiyi kalıcı hale getiren döngülere 

sahiptir, bu da onu zaman serisi verileri, metin verileri ve konuşma verileri gibi sıralı 

verilerin işlenmesi için uygun hale getirir. Geleneksel ANN'larla ilişkili zorlukların 

üstesinden gelmek için RNN, çıktısı önceki hesaplamalara bağlı olan bir dizi veriyi 

işlemek için uzmanlaşmış bir ANN türüdür. RNN'ler zaman serileri, konuşma ve dil 

verileri gibi sıralı girdiye sahip görevler için kullanılır. RNN'ler aynı anda birkaç girdi 

alabilir ve zaman serisi verilerini tahmin etmek için yararlı bir dizi çıktı üretebilir. RNN, 

önceki zaman adımlarından gelen bilgileri dahil etmek için ağ döngülerini kullanır ve 

geleneksel ANN'lardan daha yüksek tahmin doğruluğu sunar (Tsantekidis et al., 2022). 

RNN'ler kısa vadeli bağıntıları yönetmek için daha iyi doğruluk ve performans sunarken, 

"kaybolan gradyan" ve "artan gradyan" sorunları nedeniyle uzun vadeli bağımlılıklarla 

mücadele ederler. Gradyan kaybolması, gradyanlar üstel olarak azaldığında meydana 

gelir ve daha önceki zaman adımlarından bilgilerin hatırlanmasını zorlaştırır. Gradyan 

büyümesi, gradyan eğitim sırasında üstel olarak arttığında ve kararsızlığa neden 

olduğunda ortaya çıkar. LSTM ve Gated Recurrent Units (GRU) bu gradyan sorunlarıyla 

başa çıkmak için iyi alternatiflerdir. Bu mimariler uzun vadeli bağımlılıkları yakalamada 

daha iyi performans gösterir. 
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LSTM ağı, gradyanları ve bilgi akışını kontrol etmek için özel geçit 

mekanizmaları içerir (Duan et al., 2022; Indrakumari et al., 2021). LSTM ağlarında, 

RNN'lerin kaybolan ve patlayan gradyanlar gibi sorunlarının üstesinden gelen temel 

unsur, bir bellek hücresinin dahil edilmesidir. Bu hafıza hücresi, LSTM ağlarının uzun 

diziler boyunca bilgileri seçici olarak tutmasına ve unutmasına olanak tanıyarak 

verilerdeki uzun vadeli bağımlılıkları yakalamalarını sağlar. LSTM ağları, bellek 

hücreleri ve daha sofistike bir geçit mekanizması ekleyerek kaybolan gradyanlar 

sorununun üstesinden gelebilir ve sıralı verileri gelişmiş doğruluk ve performansla etkili 

bir şekilde işleyebilir. Bu bellek hücreleri sigmoid ve eleman-bilge çarpımından oluşan 

kapı mekanizmalarıyla kontrol edilir. Bu modifikasyonların uzun vadeli bağımlılık 

sorununu ele almada etkili olduğu kanıtlanmış ve çeşitli zaman serisi tahmin 

uygulamalarında gelişmiş performans göstermiştir (ilerleyen bölüme bakınız). Bu 

değişikliklerin uzun vadeli bağımlılık sorununu ele almada etkili olduğu kanıtlanmış ve 

çeşitli zaman serisi tahmin uygulamalarında gelişmiş performans göstermiştir. 

 

4.1.2.  LSTM Ağının Uygulamaları 

 

LSTM ağları, uzun vadeli bağımlılıkları yakalama ve sıralı verileri işleme 

yetenekleriyle çeşitli alanlardaki uygulamaları ortaya çıkarmıştır. LSTM'nin hâkim 

teknoloji sektörlerindeki uygulamalarından birkaçı aşağıda listelenmiştir: 

 

4.1.2.1.  Zaman Serisi Analizi ve Tahmin Uygulamaları 

 

• Solar PV'de MPP Çıkarımı: Önerilen araştırmanın kapsamına göre, LSTM 

ağları, solar PV sisteminin MPPT'sini izlemek için MPPT algoritmaları olarak 

kullanılabilme özelliğine sahiptir. LSTM ağlarının MPPT tahmini ve takibindeki 

bu uygulaması, PV sistemlerinin verimli çalışmasına katkıda bulunur. Sonraki 

noktalarda bahsedilen uygulamalarda, araştırmacılar LSTM ağını tahmin 

amacıyla zaten kullanmış ve daha yüksek doğruluk sağlamışlardır.   

• Hava Durumu Tahmini: LSTM ağları, sıcaklık ve ışınım gibi geçmiş hava 

durumu verilerini analiz etmek ve doğru tahminler yapmak için kullanılmış ve 

gelişmiş hava tahmin modellerine katkıda bulunmuştur (Hossain & Mahmood, 

2020). 
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• Enerji Yükü Tahmini: LSTM ağları, enerji tüketim modellerini tahmin etmek 

için uygulanmış ve enerji şirketlerinin enerji üretimini ve dağıtımını optimize 

etmesine yardımcı olmuştur. (Bouktif et al., 2020)'deki yazarlar elektrik yükünü 

tahmin etmek için LSTM yaklaşımını kullanmışlardır. 

• Borsa Tahmini: LSTM ağları, (Kalbandi et al., 2021)’deki yazarlar tarafından 

geçmiş fiyat verilerindeki kalıpları ve bağımlılıkları yakalayarak hisse senedi 

fiyatlarını tahmin etmek ve yatırımcıların bilinçli kararlar almasına yardımcı 

olmak için kullanılmıştır. 

 

4.1.2.2.  Doğal Dil İşleme (NLP) Uygulamaları 

 

LSTM ağları, bir cümlenin bağlamını modelleyerek doğru çevirileri anlamak ve 

üretmek için Google Translate gibi makine çeviri sistemlerinde kullanılmıştır. 

Benzer şekilde, LSTM ağları konuşma tanıma sistemlerinde, konuşulan 

kelimelerin gelişmiş doğrulukla yazılı metne çevrilmesine yardımcı olmak için 

kullanılmıştır (Al-muzaini et al., 2018). Modern jeneratif AI sohbet robotları da 

LSTM modelleri kavramlarını kullanmaktadır. 

 

4.1.2.3.  Sağlık ve Biyomedikal Uygulamaları 

 

LSTM ağları, hastalıkları teşhis ve tahmin etmek için hasta verilerini (örneğin 

elektronik tıbbi kayıtlar ve tıbbi görüntüler) analiz etmede sağlık uzmanlarını 

desteklemek için kullanılır (Al-muzaini et al., 2018). Buna ek olarak, LSTM 

ağları, örneğin yaşlılarda düşmeleri tespit eden sistemlerde ve fitness 

ekipmanlarında aktivite izleme için insan faaliyetlerini izlemek ve sınıflandırmak 

için de kullanılır. 

 

4.1.2.4.  Otonom Araçlar ve Robotik 

 

Endüstri 4.0'dan 5.0'a geçişle birlikte otomasyon ve robotik kullanımı hızla 

artmaktadır. Bu bağlamda LSTM'ler, sürücüsüz araçlar için şerit algılama, nesne 

tanıma ve diğer yol kullanıcılarının davranışlarını tahmin etme gibi otonom sürüş 

sistemlerinde önemli bir rol oynamaktadır (Yuntao Xue & Chen, 2023). LSTM 

ağları, robotların birbirini izleyen davranış kalıplarını öğrenerek ve tahmin ederek 
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karmaşık görevleri yerine getirmelerini sağlamak için robotikte de 

kullanılmaktadır. 

LSTM ağları, çeşitli alanlarda belirli veri yönetimi ve zamana bağlı modelleme için 

mükemmel uyarlanabilirlik göstermiştir; LSTM'nin bu esnekliği, onu zamansal olarak 

bağlantılı veriler ve büyük veri kümeleri ile zor görevlerin üstesinden gelmek için etkili 

bir araç haline getirir. 

 

4.2.  LSTM Ağ Mimarisi 

 

Bir LSTM hücre mimarisinin yapısı, Şekil 4.1'de gösterildiği gibi giriş kapısı, 

unutma kapısı, bellek hücresi (bellek öğesi veya hücre durumu) ve çıkış kapısından oluşur 

(Patterson & Gibson, 2019). Bu bölümde ayrıca her bir kapının ve hücre durumunun 

ayrıntılı açıklaması, matematiksel denklemleri ve işleyişi anlatılmaktadır.  

 

4.2.1.  Bir LSTM Hücresinin Kapıları (Gates) 

 

Tek bir LSTM hücresinin toplam üç kapısı (giriş kapısı, unutma kapısı ve çıkış 

kapısı) ve bir hücre durumu vardır. Giriş kapısı, bellek hücresinde depolanan yeni veri 

bilgisinin miktarını kontrol eder. Nokta çarpımı bir sigmoid katman ile birlikte kullanılır. 

Mevcut girdi ve önceki gizli durum göz önüne alındığında, sigmoid katman her girdi 

bileşeni için 0 ile 1 arasında bir değer döndürür ve bellek hücresine ne kadar bilgi 

girilmesi gerektiğini gösterir.  

 

 
 

Şekil 4.1. LSTM hücresi ile örneklendirilen temel LSTM bileşeninin ağ yapısı 
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Bu sigmoid çıktı ve tanh çıktısı noktasal olarak çarpılır ve girdi veri aralığını -1 

ve 1'e dönüştürür. Sonuç olarak, girdinin filtrelenmiş bir versiyonu bellek hücresi 

durumuna eklenir ve LSTM ağına hangi yeni bilgilerin depolanacağını yönetme yeteneği 

verir. Bellek hücreleri ve geçitlime tekniklerinin kullanımı sayesinde LSTM ağları zaman 

serisi verilerindeki uzun vadeli bağımlılıkları yakalayabilir (Gers et al., n.d.). Bu şekilde 

LSTM ağları, bilgileri seçici olarak depolayarak, unutarak ve güncelleyerek zaman serisi 

verilerindeki uzun vadeli bağımlılıkları verimli bir şekilde ele alabilir.  

Aşağıdaki bölümlerde LSTM hücresinin yapısı, matematiksel formülü ve her bir 

kapısının çalışması açıklanmaktadır. 

 

4.2.1.1.  Unutma Kapısı (Forget Gate) 

 

Bir LSTM hücresindeki unutma kapısı, hücre durumundan bilginin tutulmasını 

veya çıkarılmasını kontrol etmekten sorumludur. Mevcut zaman adımının ve önceki gizli 

durumun giriş verilerini alır. Bu girdiler daha sonra sigmoid bir aktivasyon fonksiyonu 

tarafından işlenir ve hücre durumunun her bir elemanı için 0 ile 1 arasında değerlere sahip 

bir çıkış vektörü elde edilir (KARABİNAOĞLU et al., 2022). Unutma kapısının amacı, 

bir önceki hücre durumundan hangi bilginin atılması gerektiğine karar vermektir. Değerin 

0'a yakın olması söz konusu hücre durumu unsurunun unutulması veya atılması 

gerektiğini gösterirken, 1'e yakın bir değer bilginin korunması ve saklanması gerektiğini 

gösterir. Unutma kapısının amacı, bir önceki hücre durumundan hangi bilgilerin atılması 

gerektiğine karar vermektir. 0'a yakın bir değer, hücre durumunun ilgili unsurunun 

unutulması veya atılması gerektiğini gösterirken, 1'e yakın bir değer bilginin tutulması ve 

saklanması gerektiğini gösterir. Unutma kapısı için matematiksel denklem (4.1)'de 

gösterilmiştir. 

𝑓𝑡 = σ (𝑊𝑓 .  [ ℎ𝑡−1 , 𝑋𝑡] + 𝑏𝑓) (4.1) 

Bu denklemde 𝑓𝑡, t zaman adımındaki unutma geçidinin çıkışını temsil eder. 

Önceki gizli durumun ve mevcut girdinin doğrusal kombinasyonu, sigmoid aktivasyon 

fonksiyonundan (σ) geçirilen [ ℎ𝑡−1 , 𝑋𝑡] ile temsil edilir. Doğrusal kombinasyonla ilişkili 

ağırlıklar ve yanlılık sırasıyla  𝑊𝑓 ve 𝑏𝑓 ile gösterilir. Unutma kapısı, önceki hücre 

durumundan ne kadar bilginin LSTM hücresi tarafından tutulacağını veya unutulacağını 

kontrol eder. Önceki hücre durumunun bileşenlerini seçici olarak ölçeklendirerek ve 0 ile 
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1 arasında değerler üreterek LSTM hücresindeki uyarlanabilir unutma sürecini 

hızlandırır. 

 

4.2.1.2.  Giriş Kapısı (Input Gate) 

 

Giriş kapısı, yeni bilgilerin hücre durumuna nasıl girdiğini kontrol eden bir LSTM 

ağının temel unsurlarından biridir. Mevcut girdiyi önceki gizli durumla birleştirmek için 

bir sigmoid aktivasyon fonksiyonu kullanır ve girdi bilgisinin önemini veya alaka 

düzeyini gösteren 0 ile 1 arasında bir çıktı değeri üretir. Aday değer hiperbolik tanjant 

aktivasyonu ile elde edildikten sonra, kapı bu değerin birim duruma dahil edilip 

edilmeyeceğine karar verir (Indrakumari et al., 2021). Giriş kapısının çıktısını aday değer 

öğesiyle çarparak, LSTM önemli girdileri tutabilir ve daha az önemli bilgileri göz ardı 

edebilir. Bu şekilde, giriş kapısı yeni bilgilerin hücre durumu üzerindeki etkilerini seçici 

olarak kontrol edebilir. Giriş kapısının matematiksel formu (4.2)'de gösterilmiştir. 

𝑖𝑡 = σ (𝑊𝑓 .  [ ℎ𝑡−1 , 𝑋𝑡] + 𝑏𝑓) (4.2) 

Denklem (4.2)'de 𝑖𝑡, t zamanındaki giriş kapısının çıkışıdır. σ sigmoid fonksiyonu, 

[ℎ𝑡−1, 𝑥𝑡] olarak gösterilen önceki gizli durum ℎ𝑡−1 ve mevcut giriş 𝑥𝑡 'nin doğrusal 

kombinasyonuna uygulanır. 𝑊𝑖  Ağırlıklar ve 𝑏𝑖 bu doğrusal kombinasyon girdisi ve 

önceki gizli durumla ilişkili yanlılık terimleridir. Hücre durumunu değiştirmek için yeni 

giriş verilerinin önemi, bir LSTM hücresindeki giriş kapısı tarafından belirlenir. Bir 

sigmoid aktivasyon fonksiyonu kullanarak ne kadar yeni bilginin asimile edilmesi 

gerektiğini gösteren 0 ile 1 arasında değerler üretir. LSTM hücresi, anahtar girdiyi seçici 

olarak tutması nedeniyle sıralı verilerdeki uzun vadeli bağımlılıkları verimli bir şekilde 

tanımlayabilir ve modelleyebilir. 

 

4.2.1.3.  Çıkış Kapısı (Output Gate) 

 

LSTM hücresinin çıkış kapısı, hücre durumundan çıkışa veya tahmine bilgi akışını 

yönetmekten sorumludur. Çıkış kapısı mevcut girdiyi ve önceki gizli durumu girdi olarak 

alır. Her iki girdi de daha sonra sigmoid aktivasyon fonksiyonu aracılığıyla işlenir ve 0 

ile 1 arasında değişen değerlere sahip bir çıktı vektörü verir. Çıktı kapısı, hücre 

durumunda tutulan verilerin çıktıyı oluşturmak için önemli veya ilgili olup olmadığını 

seçer. 1'e yakın bir değer, çıktı üzerinde büyük bir alaka ve önemli bir etki anlamına 
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gelirken, 0'a yakın bir değer, hücre durumunun karşılık gelen öğesinin çıktı üzerinde çok 

az etkisi olması gerektiğini önerir (Jason, 2018). Çıktı kapısının matematiksel formu 

(4.3)'te sunulmuştur. 

𝑂𝑡 = σ (𝑊𝑜 .  [ ℎ𝑡−1 , 𝑋𝑡] + 𝑏𝑜) (4.3) 

Burada, 𝑊𝑜 önceki gizli durum ℎ𝑡−1 ve mevcut giriş 𝑥𝑡 'nin birleştirilmesi için 

ağırlık matrisidir. [ ℎ𝑡−1 , 𝑋𝑡] bölümü önceki gizli durum ile mevcut girdinin birleşimini 

temsil eder, 𝑏𝑜 çıkış kapısı için bias terimidir ve σ giriş değerlerini 0 ile 1 arasında 

düzenleyen sigmoid aktivasyon fonksiyonudur. Tüm kapıların bireysel bilgileri Şekil 

4.2'de gösterilmiştir. 

 

 

 

Şekil 4.2. Bir LSTM hücresindeki üç kapının her birinin ayrı ayrı vurgulanması 

 

Tüm kapı bilgilerinin hücre durumuyla güçlü bir bağlantısı vardır, bu nedenle bu 

alt bölüm hücre durumunun ayrıntılı bir açıklamasıyla devam etmektedir.  

 

4.2.2.  LSTM Hücresinde Hücre Durumu (Bellek Hücresi) 

 

Bir LSTM hücresinin gizli durumu, belirli bir zaman adımına kadar giriş 

dizisinden ilgili verileri toplar ve kodlar. Zaman serisi tahmini de dahil olmak üzere çeşitli 

uygulamalar için gereklidir ve çıkış kapısı kullanılarak hücre durumundan üretilir. Gizli 

durum hem son hem de geçmiş verileri birleştirerek giriş dizisinin sıkıştırılmış bir temsili 

olarak hizmet eder. Gizli durum, uzun vadeli bağımlılıkların ve karmaşık örüntülerin 

öğrenilmesini kolaylaştırır. Zaman içindeki örüntüleri tanımayı ve bunlar hakkında 

tahminlerde bulunmayı içeren faaliyetler için gereklidir. Hücre durumunun matematiksel 

gösterimi denklem (4.4)'te verilmiştir. 
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ℎ𝑡 = 𝑂𝑡 tanh (𝐶𝑡) (4.4) 

Son olarak, hücre durumu 𝐶𝑡 ve gizli durum ℎ𝑡 LSTM'nin çıktısıdır ve bir sonraki 

katmana geçer. Hata hedef kümeye yaklaşana kadar süreç tekrarlanır. Modelin ağırlık 

parametresini ve sapma terimlerini öğrenerek ve optimize ederek, LSTM ağının çıktısı 

ile gerçek eğitim örnekleri arasındaki sapma minimuma indirilir. 

(1)'den (4)'e kadar olan denklemler, yazarların (Duan et al., 2022)'deki açıklamalarına 

göre vurgulanmıştır. Bir LSTM hücresinde, giriş kapısı, unutma kapısı ve çıkış kapısının 

her biri mevcut girişi ve önceki gizli durumu giriş olarak kabul eder ve daha sonra bu 

girişleri 0 ile 1 arasında değerler veren sigmoid aktivasyonundan geçirir, ancak her 

kapının LSTM mimarisinde farklı bir işlevi vardır. Unutma kapısı önceki hücre 

durumundan bilginin silinmesini veya korunmasını yönetirken, giriş kapısı hücre 

durumunun güncellenmesi için yeni giriş bilgisinin önemini belirler. Unutma kapısı 

mevcut bilgiyi seçici olarak korur veya atarken, giriş kapısı yalnızca uygun olduğunda 

yeni bilgi eklemeye odaklanır. Çıkış kapısı, hücre durumundan çıkışa bilgi akışını kontrol 

eder ve hücre durumundan gelen bilginin istenen çıktıyı üretmek için gerekli olup 

olmadığını belirler. Bir LSTM'deki kapıların (unutma kapısı, giriş kapısı ve çıkış kapısı) 

ve hücre durumlarının kombinasyonu, sıralı verilerdeki uzun vadeli bağımlılıkları etkili 

bir şekilde yakalamasına ve modellemesine olanak tanır. Buna ek olarak, aktivasyon 

fonksiyonları LSTM ağlarında doğrusal olmayan özellikleri ortaya çıkaran, ağın karmaşık 

zamansal ilişkileri modellemesini ve sıralı verilerdeki uzun vadeli bağımlılıkları 

yakalamasını sağlayan çok önemli bir unsurdur. 

 

4.3.  LSTM Ağları İçin Aktivasyon Fonksiyonları 

 

Aktivasyon fonksiyonları, ANN'larda ve ML modellerinde bir nöronun çıktısına 

doğrusal olmayan özellikler katmak için kullanılan matematiksel fonksiyonlardır. 

LSTM'de aktivasyon fonksiyonları tek tek nöronlar yerine LSTM hücresi içinde 

kullanılır. Aktivasyon fonksiyonu, ağırlıklı toplamı hesaplayarak ve buna bias ekleyerek 

bir nöronun veya LSTM hücresinin etkinleştirilip etkinleştirilmeyeceğine karar verir. 

Aktivasyon fonksiyonunun amacı, sinir ağının öğrenmesi ve daha karmaşık görevleri 

yerine getirmesi için gerekli olan bir nöronun çıktısına doğrusal olmayan bir özellik 

katmaktır  (Sharma et al., 2020), (Husein & Chung, 2019). İki tür aktivasyon fonksiyonu 

vardır: doğrusal ve doğrusal olmayan aktivasyon fonksiyonları. Doğrusal aktivasyon 

fonksiyonları, ANN'lara beslenen olağan verilerin karmaşıklığına veya çeşitli 



83 

 

 

parametrelerine yardımcı olmayan basit fonksiyonlardır. Öte yandan, doğrusal olmayan 

aktivasyon fonksiyonları, düğümlerin verilerdeki daha karmaşık yapıları öğrenmesine 

izin verdiği için tercih edilir. Birkaç önemli aktivasyon fonksiyonunun grafiksel gösterimi 

Şekil 4.3'te verilmektedir. 

 

 
 

Şekil 4.3. Birkaç önemli aktivasyon fonksiyonunun grafiksel gösterimi (a) Sigmoid, (b) Tanh ve (c) 

RELU aktivasyon fonksiyonu 

 

Bu bölüm, her bir aktivasyon fonksiyonunun detaylı açıklamasıyla devam 

etmektedir. 

 

4.3.1.  Doğrultulmuş Doğrusal Birim (RELU) Aktivasyon Fonksiyonu 

 

ReLU aktivasyon fonksiyonu, hesaplama verimliliği ve "kaybolan gradyan" 

sorununu hafifletme kabiliyeti nedeniyle DL'de yaygın olarak kullanılan doğrusal bir 

aktivasyon fonksiyonudur. Pozitifse giriş değerini, aksi takdirde 0 değerini döndürerek 

daha hızlı hesaplama ve verimli gradyan yayılımı sağlar. "ReLU Doygunluğu" 

probleminden muzdarip olmasına rağmen, Sızdıran ReLU ve ELU gibi varyantlar bu 

sınırlamayı ele alır. ReLU, basitliği, yorumlanabilirliği ve DL'deki karmaşık görevleri ele 

alma yeteneği nedeniyle yaygın olarak kullanılmaktadır. ReLU'nun matematiksel formu 

(4.5)'de açıklanmıştır. 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) (4.5) 
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Burada, x fonksiyonun girdisini temsil eder ve f(x) çıktıdır. ReLU fonksiyonu, 

pozitif (sıfırdan büyük veya sıfıra eşit) olması durumunda giriş değerini döndürür ve 

herhangi bir negatif giriş için 0 döndürür. 

 

4.3.2.  Sigmoid Aktivasyon Fonksiyonu 

 

Denklem (4.6)'da gösterilen sigmoid aktivasyon fonksiyonu, ANN ve DL 

problemlerinde olasılıkları temsil etmek için yaygın olarak kullanılan doğrusal olmayan 

bir aktivasyon fonksiyonudur, ancak ağın öğrenmesini zorlaştıran "kaybolan gradyan" 

probleminden etkilenmiştir (Srinivasan & Ramalingam Balamurugan, 2022).  

σ(x) =
1

1 + 𝑒−𝑥
 

(4.6) 

"Kaybolan gradyan" sorunu, sigmoid fonksiyonunun 0 ile 0,25 arasında olan 

türevlerinden kaynaklanır ve DL'de yavaş öğrenmeye veya hiç öğrenmemeye yol açabilir. 

Bu sorunun üstesinden gelmek için araştırmacılar ReLU, Leaky ReLU ve ELU gibi sıfır 

olmayan türevlere sahip olan ve ağın öğrenme performansını artıran diğer aktivasyon 

fonksiyonlarının kullanılmasını önermişlerdir. 

 

4.3.3.  Hiperbolik Tanjant Aktivasyon Fonksiyonu 

 

Tanh (hiperbolik tanjant) aktivasyon fonksiyonu sigmoid benzeri doğrusal 

olmayan bir aktivasyon fonksiyonudur, girişi belirli bir aralığa, bu durumda -1 ile 1 

arasına eşler. Tanh genellikle ANN'ların veya DL ağlarının gizli katmanlarında kullanılır. 

Ağın daha kolay eğitilmesini sağlayan daha dik gradyanı nedeniyle sigmoid fonksiyonuna 

göre tercih edilir (Srinivasan & Ramalingam Balamurugan, 2022). Daha dik gradyan, 

öğrenme süreci sırasında daha hızlı yakınsama sağlayarak ağın daha verimli bir şekilde 

öğrenmesini sağlar. Tanh aktivasyon fonksiyonunun matematiksel formu (4.7)'de 

sunulmuştur. 

tanh (x) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(4.7) 

Önerilen çalışmada, LSTM modeli için aktivasyon fonksiyonu olarak hiperbolik 

tanjant (tanh) aktivasyon fonksiyonu kullanılmıştır. Doğrusal olmama ve hücre durumu 

boyunca bilgi akışını kontrol etme normalde bu aktivasyon fonksiyonu kullanılarak 

LSTM ağlarında gerçekleştirilir. Giriş değerlerini [-1, 1] aralığına eşleyen tanh 
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aktivasyon fonksiyonu ile kaybolan gradyan sorunundan kaçınılır. Bu, LSTM hücrelerini 

zaman içinde bilgi edinmek ve saklamak için ideal hale getirir. 

 

4.4.  LSTM Ağının Hiperparametreleri 

 

Hiperparametreler, ağ yapısını ve LSTM ağının eğitimini belirleyen değişkenlerdir. 

LSTM hiper parametreleri (örneğin hücre sayısı, katmanlar, öğrenme oranı, blok boyutu 

ve dizi uzunluğu) zaman serisi tahmini için çok önemlidir. Hiper parametreler model 

karmaşıklığına, yakınsamaya ve sabitlene bilirliğe bağlıdır ve bu nedenle tahmin 

doğruluğu üzerinde doğrudan bir etkiye sahiptir. Hiper parametrelerin uygun şekilde 

ayarlanması, eğitim sürecini ve önerilen LSTM tabanlı MPPT modelinin tahmin 

kapasitesini etkiler. Bu bölüm, önerilen LSTM ağında kullanılan hiper parametrelerin 

kısa bir açıklamasına doğru ilerlemektedir. Önerilen LSTM'de kullanılan hiper 

parametreler Çizelge 4.1'de listelenmiştir. 

 

Çizelge 4.1. Önerilen LSTM'de kullanılan hiperparametrelerin listesi 

 
Değişkenin Adı Değer 

Ağ Türü Stack LSTM 

Katman Sayısı 2 

LSTM Ünitesinin Türü Stack 

Nöron Sayısı 64, 32 

Toplu İş Büyüklüğü 32 

Dönem Sayısı 50 

Öğrenme Oranı 0.05 

Aktivasyon Fonksiyonları Tanh 

 

Zaman serisi tahmini için bir LSTM ağı tasarlarken, hiper parametreler ağın 

performansını belirlemede çok önemli bir rol oynar. Bir LSTM ağının tasarımında yer 

alan hiper parametrelerden bazıları ağ tipi, katman sayısı, LSTM birimi tipi, nöron veya 

LSTM hücresi sayısı, stack boyutu, epok sayısı ve öğrenme oranını içerir. Hiper 

parametrelerin kısa açıklaması aşağıda vurgulanmıştır ve önerilen LSTM modelinde 

kullanılan tüm parametrelerin ayrıntıları LSTM ağının eğitiminin eğitim seçenekleri alt 

bölümünde açıklanmıştır. 

• Veri hazırlama sürecini etkilediği için ağ türünün seçilmesi önemlidir. Bu 

çalışmada, MPPT görevini yerine getirmek için stack LSTM düşünülmüştür. 
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• Gizli katman sayısının seçimi, problemin karmaşıklığına bağlıdır. Karmaşık 

girdilere sahip karmaşık modeller, doğruluğu artırmak için çoklu gizli katmanlara 

ihtiyaç duyar. Bu çalışmada, girdiler ve hedef için büyük veri (1 milyon) dikkate 

alınmıştır, bu nedenle model iki LSTM katmanlarını kullanmıştır.  

• Her katmandaki nöron veya LSTM hücrelerinin sayısı ağın performansını 

etkileyebilir. Daha fazla sayıda nöron ağın doğruluğunu artırır ancak diğer yandan 

hesaplama süresini artırır. Bu çalışmada, ilk gizli katmanda 64, ikinci katmanda 

32 nöron dikkate alınmıştır.  

• Stack boyutu, model güncellenmeden önce işlenen örnek sayısını ifade eder. stack 

boyutu ne kadar büyük olursa doğruluk o kadar artar, ancak daha fazla bellek 

gerektirir ve hesaplama karmaşıklığını artırır. Daha küçük bir stack boyutu daha 

az bellek tüketirken, aynı zamanda yavaş yakınsamaya sahiptir ve doğruluğu da 

daha düşüktür. 

• Epok sayısı, modelin tüm veri kümesi üzerinde toplam kaç kez eğitildiğini ifade 

eder. Çok sayıda epok, modelin verileri birçok kez görmesine yardımcı olur ve 

model yeni girdilere kolayca genelleme yapabilir, ancak çok sayıda epok da aşırı 

uyum sorunlarıyla karşı karşıyadır. Öte yandan, küçük bir epok zaman ve bellek 

tasarrufu sağlar, model doğruluğu da azalır çünkü model tüm veriyi daha kısa 

sürede görür. 

• Öğrenme oranı, hedef çıktıyı tahmin etmek için eğitim sırasında modelin 

güncellendiği adım boyutudur. Daha küçük öğrenme oranı daha yüksek doğruluğa 

yol açar, ancak eğitim süresini artırır. Daha büyük öğrenme oranı hızlı eğitim 

sunarken aynı zamanda doğruluğu da azaltır (Jepkoech et al., 2021).  

• Aktivasyon fonksiyonunun seçimi, ağın performansını ve zaman serisi 

verilerindeki karmaşık ilişkileri modelleme yeteneğini önemli ölçüde etkileyebilir 

(Farzad et al., 2019). Bu çalışmada, gradyan kaybolma problemleriyle başa 

çıkabilen tanh aktivasyon fonksiyonu kullanılmıştır. 

 

4.5.  LSTM Ağının Türleri 

 

LSTM ağları uzun vadeli bağımlılıkları yakalama avantajına sahiptir ve bu nedenle 

dizileri tahmin etmek için etkili bir yöntemdir. Girdi örüntüleri, ters bağımlılıklar ve 
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hesaplama gereksinimleri gibi faktörlere bağlı olarak farklı LSTM türleri vardır. 

Aşağıdaki bölüm, çeşitli uygulamalar için farklı LSTM ağ tasarımlarını vurgulamaktadır: 

 

4.5.1.  Tek katmanlı LSTM 

 

Tek katmanlı LSTM mimarisi, sonuçları tahmin etmek için yalnızca bir gizli ve 

bir çıkış katmanından oluşur. Bu temel tasarım genellikle duygu analizi, dil modelleme 

veya basit zaman serisi tahmini gibi görevler için kullanılır. 

 

4.5.2.  Stack LSTM 

 

Bir listeyi veya birden fazla LSTM katmanını sıkıştıran LSTM ağ modeli Stack 

LSTM mimarisidir. Derin LSTM Ağ Modeli, Stack LSTM Ağ Modeli olarak da bilinir. 

Bu mimaride, tek bir çıktı değeri tahmin etmek yerine, her LSTM katmanı başka bir 

LSTM katmanına gönderilmek üzere bir dizi çıktı tahmin eder. Bundan sonra, son LSTM 

katmanı tarafından tek bir çıktı tahmin edilir.  

Stack LSTM'ler iki LSTM katmanlı görevlerde kullanılır ve uygulamaları zaman 

serisi tahmini, konuşma tanıma, makine çevirisi veya video analizi için geçerlidir. 

 

4.5.3.  Çift Yönlü LSTM 

 

Bu mimaride, giriş dizisi hem ileriye hem de geriye doğru işlenerek eski ve yeni 

bağlamlardan eşzamanlı veri toplanması sağlanır. Çift yönlü LSTM mimarisi, soldan sağa 

doğru ileri yönler için bir LSTM ve soldan sağa doğru geri yönler için başka bir LSTM 

yerine iki LSTM'ye dayanmaktadır.  

Bu mimari, ağa geleneksel bir LSTM'den daha fazla bağlam bilgisi sağlayabilir 

çünkü sol ve sağ olmak üzere her iki taraftaki kelimeler hakkında veri toplayabilecektir. 

Sıralama ile ilgili sınıflandırma problemlerinin performansı hızlanacaktır.  

Çift yönlü LSTM, zaman serisi tahmini, konuşma tanıma, varlıkların isimleri ve 

duygu analizi gibi görevler için zaten uygulanmıştır. 
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4.5.4.  CNN-LSTM 

 

CNN LSTM mimarisi hem CNN hem de LSTM mimarilerinden oluşmaktadır. 

Temel özellikleri girdiden almak ve bunları dizi tahmini için kullanılabilmeleri amacıyla 

LSTM katmanına göndermek için bu mimari bir CNN ağ katmanı kullanır.  

 

4.5.5.  Dikkat tabanlı LSTM 

 

Dikkat mekanizmaları, işleme sırasında farklı girdi öğelerinin önemini dinamik 

olarak tartmak için LSTM ağlarına eklenir. Bu tasarım, makine çevirisi, resim altyazısı 

veya belge özetleme gibi görevlerde performansı artırır. 

 

4.5.6.  Multimodal LSTM 

 

Metin, görüntü veya ses gibi birden fazla girdi verisi modalitesinin LSTM 

mimarisine dahil edilmesi, ağın aynı anda farklı bilgi kaynaklarından öğrenmesini sağlar. 

Multimodal LSTM'ler, multimodal duygu analizi veya multimodal makine çevirisi gibi 

görevlerde performansı artırır. 

Bu tez, tek katmanlı LSTM, çift yönlü LSTM, CNN-LSTM, çok modlu LSTM ve 

geleneksel makine öğrenimi teknikleri gibi diğer yöntemlere kıyasla uzun vadeli 

bağımlılık modelleme ve tahmin doğruluğunu artırmak için stack LSTM ağlarını 

kullanmaktadır. Çok katmanlı mimari, stack LSTM'nin birden fazla tarihsel faktörün 

çıktıları etkilediği PV verilerindeki karmaşık zamansal ilişkileri öğrenmesine olanak 

tanır. Stack LSTM, karmaşık zaman serisi bağımlılıklarını yakalamada tek katmanlı tek 

yönlü LSTM'den daha iyi performans gösterir (Khumaidi et al., 2020). Derinlik ayrıca 

CNN-LSTM veya multimodal LSTM'den daha güçlü temsili öğrenme sağlar. Bununla 

birlikte, karmaşıklık düzenlileştirme, artan eğitim süresi ve aşırı ezber riski gerektirir. 

LSTM'deki stack katmanlarının artırılması korelasyon modellemesini ve zaman serisi 

tahminini iyileştirir, ancak verimlilik ve bellek karmaşıklığı da dikkate alınmalıdır. 

 

4.6.  Önerilen Stack LSTM Ağı 

 

Bu tezde, uzun vadeli karşılıklı bağımlılığı simüle edebilen ve doğru tahminler 

yapmak için karmaşıklığı kullanabilen stack LSTM ağı kullanılmıştır. Uzun vadeli 
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dizileri başarıyla yakalayan ve temsil kabiliyetini artırmak için çok katmanlı yapıdan 

yararlanan stack LSTM'lerin kullanımı, PV sistemlerinin tahminlerini iyileştirmek için 

seçilmiştir. Bu çalışmanın amacı, MPPT PV güneş enerjisi çıkarımında mükemmel 

performans elde etmek için stack LSTM'ler oluşturmak ve bunların temsili niteliklerinden 

yararlanmaktır. Önerilen stack LSTM yaklaşımı, diğer LSTM yaklaşımlarına göre çeşitli 

avantajlar sunduğu için aralıklı T ve G verilerinin varlığında solar PV dizisinin MPP'sini 

çıkarmak için kullanılır. Stacked LSTM yaklaşımının bir MPPT denetleyicisi olarak 

avantajları aşağıda gösterilmiştir: 

 

4.6.1.  Geliştirilmiş Model Performansı 

 

Bilgi dizilerini tahmin etmek için, stack LSTM'lerin güneş enerjisi tahmini ve 

öngörüsü alanında daha iyi performans gösterebildiği gösterilmiştir. Buna ek olarak, stack 

LSTM modelinin çoklu gizli katmanları, giriş verilerinin (G, T) daha karmaşık bir şekilde 

temsil edilmesine olanak tanıyarak güneş enerjisi üretiminin tahmininde doğruluğun 

artmasını sağlar. 

 

4.6.2.  Uzun Vadeli Bağımlılıkların Yakalanması 

 

Doğru solar üretim tahminleri için gerekli olan LSTM'ler, zaman serisi 

verilerindeki uzun vadeli zamansal bağımlılıkları yakalayabilir. Bir LSTM stack 

modelindeki birden fazla katmanla, ağ uzun bir zaman ufkundaki kalıpları tespit edip 

hatırlayabilir ve daha doğru tahmin yapmasına olanak tanır. 

 

4.6.3.  Hiyerarşik Temsil 

 

Çeşitli soyutlama seviyeleri ve 1 milyon veri noktası içeren girdi verilerinin (G, 

T) temsilleri, LSTM stack modelinin her katmanı tarafından öğrenilir. Düşük seviyeli 

özellikler en alt katmanlar tarafından yakalanırken, daha soyut ve karmaşık modeller üst 

katmanlar tarafından yakalanır. Bu temsil hiyerarşisi, modellerin çeşitli ayrıntı 

düzeylerinde gerekli bilgileri çıkarmasını ve kullanmasını sağlayarak MPP çıkarma 

performansını artırır. 
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4.6.4.  Esneklik ve Uyarlanabilirlik 

 

Stack LSTM, model mimarisi açısından esneklik sunar ve eldeki sorunun özel 

gereksinimlerine uyacak şekilde kolayca özelleştirilebilir. LSTM katmanlarının sayısı ve 

her katmandaki bellek hücrelerinin sayısı, veri kümesinin karmaşıklığına ve istenen 

doğruluk düzeyine göre ayarlanabilir. 

 

4.7.  Solar PV Sistemi İçin MPPT Olarak LSTM Stack 

 

Şebekeye bağlı 100 kW solar PV sistemi için LSTM tabanlı MPPT kontrolörünü 

entegre etmek olan önerilen araştırmanın temel amacı göz önüne alındığında. PV 

sistemlerine genel bakış, bir MPPT kontrolörüne duyulan ihtiyaç, LSTM MPPT'nin 

geleneksel algoritmalara göre avantajları ve önerilen LSTM MPPT kontrolörünün 

karşılaştırılması bu alt bölümde vurgulanmaktadır. LSTM'nin MPPT kontrolörü olarak 

uygulanmasına geçmeden önce, bir PV sistemindeki MPPT kontrolörü kavramı kısaca 

açıklanmaktadır. Daha sonraki alt bölüm LSTM'yi MPPT kontrolörü olarak entegre etme 

konseptine doğru ilerlemektedir. Solar PV sistemi, MPPT kontrolörü ve IV-PV 

özelliklerinin ayrıntılı açıklaması 3. bölümde zaten açıklanmıştır. Bu alt bölüm sadece 

MPPT'nin temel kavramını vurgulamakta ve daha sonra önerilen stack LSTM'nin MPPT 

kontrolörü olarak entegrasyonuna doğru ilerlemektedir.  

 

4.7.1.  Önerilen Solar PV Sistemine Genel Bakış 

 

LSTM DL algoritmasının önemi, daha yüksek doğruluğu ve düşük tahmin hatası 

göz önüne alındığında, bu araştırma MATLAB 2023© kullanarak 100 kW şebekeye bağlı 

bir solar PV sistemi için LSTM tabanlı bir MPPT kontrolörü tasarlamıştır. Önerilen 

sistemin tam şematik diyagramı Şekil 4.4'te gösterilmektedir.  

Bu bağlamda, maksimum 100,2 kW PV çıkışına sahip SunPower TS-SPR-315 PV 

modülü dikkate alınmıştır. G ve T Standart Test Koşullarında (STC), dizi başına 5 seri 

bağlı modül ve 65 paralel bağlı dizi, yaklaşık 100 kW olan 99,87'lik istenen çıkış gücünü 

verir. Amaç, stack bir LSTM MPPT denetleyicisi kullanarak değişken girişlerin (T ve G) 

varlığında PV dizisinin bu maksimum gücünü elde etmektir. Önerilen modelde, PV dizisi, 

MPPT kontrolörü, yükseltici tip DC-DC dönüştürücü ve inverter kontrol stratejisi 

araştırmanın önemli parçalarıdır. Bu alt bölüm, aynı zamanda MPPT denetleyicisinin 
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girdileri olan PV dizisi için giriş dizisi verilerinin oluşturulmasını takiben PV dizisi 

spesifikasyonunun tasarımı ile devam etmektedir. PV dizinin çıkış voltajı, yükseltici tip 

DC-DC dönüştürücünün giriş voltajını verir ve MPPT kontrolörünün çıkışı, anahtarlar 

için bir kontrol sinyali görevi görür. 

 

 

 

Şekil 4.4. Önerilen araştırmada şebekeye bağlı PV dizisinin birinci ve ikinci aşamalarını da gösteren 

eksiksiz şematik diyagram. 

 

4.7.1.1.  PV Dizisinin Tasarım Parametreleri 

 

PV tasarım parametreleri, söz konusu PV dizisinin özelliklerini açıklar. Bu 

özellikler, PV sisteminin davranışının modellenmesi ve değerlendirilmesinde kritik 

öneme sahiptir. Önerilen PV sisteminin tasarım parametreleri Çizelge 3.1'de 

listelenmiştir. Ana parametrelerin kapsamı ve önemi aşağıda açıklanmaktadır. 
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• Seri ve Paralel Bağlı PV Modüller 

 

Nseries (𝑁𝑠) ve Nparallel (𝑁𝑝) değerleri sırasıyla sistemdeki seri bağlı ve paralel 

bağlı PV modüllerinin sayısını gösterir. Bunlar PV sistemin toplam gerilim ve akım 

değerlerini belirler. Bu değişkenler, toplam PV modül sayısını tahmin etmek ve şebekeye 

elektrik bağlantıları kurmak için gereklidir. PV modüllerin seri ve paralel olarak 

yerleştirilmesi sistemin gerilim ve akım seviyelerini etkileyerek performansını ve 

verimliliğini etkiler. Önerilen modelde, istenen 100 kW çıkış gücünü elde etmek için dizi 

başına 5 seri bağlı modül ve 65 paralel dizi bağlanmıştır. Daha fazla sayıda paralel modül, 

güç üretimini artıran büyük akım üretirken, daha az sayıda seri modül, belirli inverterlere 

daha uygun olan ve güvenliği artıran daha düşük voltaj üretir. Bu kombinasyon sistemin 

genel verimliliğini, uyarlanabilirliğini ve performansını artırır. 

 

• Kısa Devre ve MPP Akımı 

 

Bir PV sisteminde Isc ve Imp kritik parametrelerdir. Isc kısa devre akımı içindir 

ve güvenlik nedenleriyle önemli olan kısa devre sırasında maksimum akım akışını 

tanımlar. Öte yandan Imp, maksimum güç noktası akımıdır ve belirtilen koşullar altında 

maksimum güç çıkışını ifade eder. Bu değişkenlerin anlaşılması, güvenlik cihazlarının 

boyutlandırılmasına ve sistemin çeşitli koşullardaki davranışının tanımlanmasına 

yardımcı olur. Önerilen PV modülünün kısa devre değeri 5,95 A'dir.  

 

• Açık Devre ve MPP Gerilimi 

 

𝑉𝑜𝑐 ile 𝑉𝑚𝑝 bir PV sisteminin temel kontrol değişkenleridir. Voc, maksimum voltaj 

çıkışını gösteren açık devre voltajıdır, Vmp ise maksimum güç noktasındaki voltajdır. Bu 

değerler sistemin çalışma aralığının belirlenmesine, uygun güç elektroniği bileşenlerinin 

seçilmesine ve gerilim-akım eğrisi kullanılarak sistemin davranışının analiz edilmesine 

yardımcı olur. Tek bir PV hücresi için açık devre gerilimi (𝑉𝑜𝑐), önerilen PV modülünün 

teknik özelliklerinde belirtildiği gibi 64,2V olarak kabul edilir.  
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• Gerilim ve Akımın Sıcaklık Katsayısı 

 

Denklem (4.11)'de kullanılan dengeleme faktörleri (α, β), sırasıyla sıcaklığın PV 

modül voltajı ve akımı üzerindeki etkisini açıklayan sıcaklık katsayılarıdır. Bunlar, 

gerçek dünyadaki sıcaklık dalgalanmalarını dikkate alırken PV sisteminin verimliliğini 

doğru bir şekilde ortaya koymak için önemlidir. Sistem modelleme ve analizinde, bu 

katsayılar PV modül özelliklerindeki sıcaklığa bağlı değişiklikleri hesaplamak için 

kullanılır. 

 

4.7.1.2.  Girdi ve Hedef Veriler için Model Formülasyonu 

 

G verileri National Renewable Energy Laboratory (NREL), European Solar 

Radiation Atlas ve World Radiation Data Centre (WRDC) gibi farklı kaynaklarda 

mevcuttur ve coğrafi konuma göre 0 ile 1000 W/m^2 arasında değişmektedir. Yukarıdaki 

kaynaklardan elde edilen veri noktalarını ve ilgili sınırları analiz ettikten sonra, bu 

çalışma (Roy et al., 2021)’deki yazarlar tarafından önerildiği gibi (4.8) ve (4.9) 

denklemlerini kullanarak G ve T'nin çoğaltılmış verilerini oluşturmuştur. 

G = [(𝐺𝑚𝑎𝑥 − 𝐺min)  × 𝑟𝑎𝑛𝑑 ] + 𝐺min (4.8) 

T = [(𝑇𝑚𝑎𝑥 − 𝑇min)  × 𝑟𝑎𝑛𝑑 ] +  𝑇min (4.9) 

G seviyesi PV çıkış gücü ile doğru orantılıdır ve T, PV dizisi tarafından üretilen 

çıkış gücü ile ters orantılıdır. Bir PV sisteminde 𝑉𝑚𝑝, ilgili T ve G değerlerini takiben PV 

panelinin maksimum gücünü verir. Giriş (G, T) verilerine ek olarak, denetimli DL (stack 

LSTM) ağını eğitmek için 𝑉𝑚𝑝 için başlangıç hedef verileri de gereklidir. Yazarlar 

(Srinivasan & Ramalingam Balamurugan, 2022), yalnızca T girişine bağlı olan denklem 

(4.10)'ü kullanarak hedef verileri oluşturmuştur. 

𝑉𝑚𝑝 = 𝑉𝑚𝑝 (𝑆𝑇𝐶) + 𝛽(𝑇𝑠 − 𝑇) (4.10) 

Bu nedenle, bu çalışmada (4.10) numaralı denklem, Simulink MATLAB'da 

SunPower TS-SPR-315 PV modülü kullanılarak T ve G'nin farklı değerlerine karşı 

𝑉𝑚𝑝'nin hedef yanıtı manuel olarak toplanarak değiştirilmiş ve daha sonra bu değerler 

kullanılarak PV modülünün α ve β değerleriyle de eşleşen sabit değerleri elde etmek için 

LSQRT doğrusal regresyon uygulanmıştır. LSTM'nin ilk eğitimi için önerilen 𝑉𝑚𝑝 

denklemi (4.11)'de modellenmiştir ve MPPT kontrolörünün hem G hem de T girişine 

bağlıdır. PV akımı için denklem (4.12)'de modellenmiştir. 
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𝑉𝑚𝑝 = 𝑉𝑚𝑝 (𝑆𝑇𝐶) + 𝛽(𝐾 ∗ 𝑇 − 𝑇𝑠) +  𝛼(1 + 𝐺) (4.11) 

𝐼𝑚𝑝 = {𝐼𝑚𝑝 (𝑆𝑇𝐶) + [
𝐺

𝐺𝑠

(1 + 𝛼(𝑇 − 𝑇𝑠))]} 
(4.12) 

𝑃𝑚𝑝 = {𝑉𝑚𝑝 ∗ 𝐼𝑚𝑝} (4.13) 

Denklem (4.13)'te MPP'deki akım ve gerilimin çarpımı olan güç modellenmiştir. 

(4.8)'den (4.13)'e kadar olan denklemler önerilen LSTM MPPT kontrolörünün girdileri 

ve hedef formülasyonu için kullanılmış ve değişkenlerin değerleri PV dizisinin kullanılan 

diğer parametreleriyle birlikte Çizelge 3.1'de sunulmuştur. Daha sonra, T ve G'nin bu 

giriş verileri, önerilen PV dizisi için önerilen bir MPPT denetleyicisi olarak kullanılan 

önerilen stack LSTM'yi eğitmek ve test etmek için kullanılacaktır. Hedef değer (Vmp), 

PV dizisinin veya MPPT denetleyicisinin her iki girişine (T ve G) bağlıdır. G değeri ne 

kadar yüksek olursa Vmp değeri de o kadar yüksek olur. Daha yüksek T değeri ise Vmp 

değerini düşürür. 

 

4.7.2.  Solar PV Sisteminde MPPT'ye Genel Bakış 

 

Solar PV enerjisi, G ve T parametrelerindeki hızlı değişimler nedeniyle düşük 

enerji dönüşüm verimliliği (%10-25) ve enerji çıkışı sergilemektedir. Bu hızlı 

dalgalanmalar akım, gerilim ve güçte salınımlara neden olarak güneş enerjisinin şebeke 

ile entegrasyonunda zorluklar yaratmaktadır (El-Khozondar et al., 2016). PV panellerin 

T ve G değişimlerine göre PV karakteristikleri Şekil 3.8'de sunulmuştur. MPP'deki 

gerilim (Vmp), PV panelin maksimum güç ürettiği çalışma noktasını temsil etmektedir. 

G'deki değişiklikler Vmp üzerinde minimum etkiye sahipken, T'deki değişikliklerin 

değeri üzerinde büyük bir etkisi vardır (Esram ve Chapman, 2007). MPP'deki voltaj 

(𝑉𝑚𝑝), PV panelin maksimum güç ürettiği çalışma noktasını temsil eder. 

 PV enerjisi, ışınım ve sıcaklıktaki hızlı değişimler nedeniyle düşük enerji 

dönüşüm verimliliği (%10-25) ve enerji çıkışı sergilemektedir. Bu hızlı dalgalanmalar 

akım, gerilim ve güçte salınımlara neden olmakta ve şebeke ile solar PV entegrasyonunda 

zorluklar yaratmaktadır. PV panellerinin T ve G değişimlerine göre P/V karakteristikleri 

sırasıyla Şekil 3.8 (a) ve (b)'de sunulmuştur. MPP'deki (𝑉𝑚𝑝) gerilim, PV panelin 

maksimum gücü ürettiği çalışma noktasını temsil eder (Esram & Chapman, 2007). G'deki 

değişiklikler 𝑉𝑚𝑝 üzerinde minimum etkiye sahipken, T değişikliklerinin değeri üzerinde 

büyük bir etkisi vardır.  
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Bir PV panelin güç çıkışını en üst düzeye çıkarmak için, yazarlar tarafından (Podder 

et al., 2019; Ram et al., 2017) belirtildiği gibi, PV panelin 𝑉𝑚𝑝'sini başarılı bir şekilde 

yöneten uygun bir MPPT tekniğinin uygulanması gerekmektedir. PV sistem, verimli bir 

MPPT tekniği kullanarak güç çıkarımını iyileştirir ve değişen çevresel koşullara tepki 

verir, böylece PV sistemin genel performansını ve enerji verimliliğini en üst düzeye 

çıkarır. 

 

4.8.  MPPT Kontrolörü Olarak Önerilen Stack LSTM 

 

Bu araştırmada, stack LSTM ağ mimarisi kullanan yeni bir MPPT yöntemi 

önerilmiştir. Şekil 6, önerilen sistemin tüm şematik diyagramını göstermektedir. Sabit 

adım boyutu, MPP etrafındaki salınımlar ve P&O, IC gibi geleneksel yaklaşımların yavaş 

izleme hızı, LSTM MPPT denetleyicisi ile aşılmaktadır (M. Sabri & Hassouni, 2022). 

Stack LSTM, ileri beslemeli DNN ve RNN ile karşılaştırıldığında, üstün uzun vadeli 

bağımlılık modellemesi, artan temsil gücü ve gelişmiş tahmin doğruluğu sunar.  

Önerilen stack LSTM MPPT kontrolörü, girişler (G, T) ve hedef (𝑉𝑚𝑝) veri kümesi 

arasındaki karmaşık korelasyonları etkili bir şekilde öğrenir. Giriş özellikleri T ve G iken, 

𝑉𝑚𝑝 hedef çıktıdır. Modelimizin MPP'deki gerilimi doğru bir şekilde tahmin etme 

kapasitesi, operasyonel PV dizisi verileri üzerinde eğitim ile kolaylaştırılmıştır. Bu 

çalışmada sunulan yaklaşımda, PI denetleyici ile birlikte MPPT'nin çıkışı, yazarlar 

tarafından önerildiği gibi yükseltici tip DC-DC dönüştürücünün bir IGBT anahtarını 

kontrol etmek için kullanılır (KARABİNAOĞLU et al., 2022). Sonuç olarak, PV sistemi 

MPPT çıkarımı için öngörülen MPP voltajında PWM kontrolü kullanılarak çalıştırılabilir. 

Önerilen stack LSTM MPPT stratejisi, iki aşamalı şebekeye bağlı çift mimaride gelişmiş 

enerji hasadı için güneş enerjisini etkili bir şekilde yakalar. 

LSTM ağı tabanlı MPPT kontrolörü, geleneksel tekniklerin yanı sıra ANN 

yöntemlerine göre çeşitli avantajlar sunmaktadır. LSTM modeli, P&O ve IC'yi etkileyen 

sabit adım boyutu, MPP etrafında salınım ve yavaş izleme gibi sorunları azaltır (M. Sabri 

& Hassouni, 2022). Ayrıca, ileri beslemeli ve RNN gibi ANN yöntemlerinin karşılaştığı 

uzun eğitim süresi, aşırı uyum, kaybolan gradyan gibi sorunları da önler (Los, n.d.). 

LSTM, bellek hücresi mimarisi sayesinde PV verilerindeki uzun vadeli zamansal 

bağımlılıkları yakalayabilir (Mohammed Sabri & El Hassouni, 2022). Bu, PV dizisinin 

doğrusal olmamasına rağmen MPP'nin doğru ve hızlı bir şekilde izlenmesini sağlar. Ek 
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olarak, önerilen LSTM, sıralı öğrenme yetenekleri nedeniyle değişen çalışma koşullarına 

iyi genelleme yapar. 

 

4.9.  LSTM'yi Geleneksel MPPT ile Karşılaştırma  

 

Bu bölüm, ilk olarak önerilen yığılmış LSTM'nin diğer MPPT ağlarına göre 

avantajlarını vurgulayarak ve ardından önerilen LSTM'nin geleneksel tekniklerle 

karşılaştırılmasıyla devam etmektedir.  

LSTM-MPPT kontrolörünün P&O, IC, FLC ve ANN dahil olmak üzere 

geleneksel ve akıllı MPPT yöntemlerine göre birçok önemli avantajı vardır. Aşırı eğitim, 

kaybolan gradyanlar ve sabit adım boyutu gibi ilişkili sorunların üstesinden gelerek daha 

güvenilir ve verimli performans sağlar. LSTM mimarisinin dahili bellek özellikleri ve 

kapı yapısı da MPP'nin doğru bir şekilde izlenmesine olanak tanıyarak değişen çevresel 

koşullar ve PV dizisindeki doğrusal olmayan durumlar için esnekliği artırır. Bu 

niteliklerin bir sonucu olarak, LSTM-MPPT kontrolörü, solar PV dizisinin maksimum 

gücünü elde etmek için uygun ve üstün bir seçenektir.  

LSTM ağının yüksek doğruluğu, performansı ve verimliliği göz önüne 

alındığında, çeşitli araştırmalar geleneksel ve akıllı ANN modelleri yerine DL 

modellerini tercih etmiştir. Yazarlar tarafından (Forootan et al., 2022)'de analiz edilen 

geleneksel ve akıllı MPPT kontrolörleri yerine derin ağ kullanılarak MPPT kontrolörünün 

değişken ortamdaki izleme doğruluğu ve verimliliği artırılabilir. Tek LSTM gücü, 

yazarlar tarafından önerilen kararlılık, yanıt verme ve maliyet etkinliği açısından ANN'ya 

hakimdir (Ozdemir et al., 2022; M. Sabri & Hassouni, 2022).  

Tek katmanlı LSTM daha az karmaşık olmasına, daha az eğitim süresi sunmasına 

ve yığılmış LSTM'ye kıyasla daha düşük aşırı uyum riskine sahip olmasına rağmen, 

yığılmış LSTM'nin çoklu katmanları karmaşık ve büyük veri kümelerindeki ilişkiyi 

bulabilir, çoklu katmanlar uzun vadeli bilgileri depolamak için daha fazla bellek sunar ve 

bağımlılıkları yakalayabilir, bu da onları daha verimli hale getirir. Çift yönlü LSTM, 

geçmişten ve gelecekten bilgi tutma avantajı sunar, ancak aşırı uyum sorununa karşı en 

savunmasız olanlardır. Bununla birlikte, stack LSTM'nin sıralı yapısı bilgi akışını 

düzenler ve aşırı uyumu önler ve stack LSTM'nin çoklu katmanları da çift yönlü 

LSTM'den daha fazla bellek sunar. Benzer şekilde, stack LSTM, analiz edilen verilerin 

doğası nedeniyle zaman serisi veri tahmini veya öngörüsünde CNN-LSTM'den daha iyi 

performans gösterir. CNN-LSTM görüntü verileri için iyi performans gösterirken ve 



97 

 

 

verileri işlemek için konvolüsyon katmanları kullanırken, toplu LSTM zaman serisi veri 

tahmini için daha uygundur. Bununla birlikte, önerilen toplu LSTM'nin diğer tekniklere 

göre yukarıdaki avantajları göz önüne alındığında, önerilen zaman serisi verileri 

(MPP'deki T, G ve voltaj) için daha uygun ve verimli olmasını sağlar. 

 

4.10.  LSTM Ağının Eğitimi 

 

LSTM ağını eğitmeden önceki en önemli adımlar giriş ve hedef verilerinin 

toplanması ve ardından toplanan verilerin ön işlemden geçirilmesidir. Bu çalışmada, G 

ve T için giriş verileri sırasıyla (4.8) ve (4.9) kullanılarak toplanırken, hedef veriler (4.11) 

kullanılarak toplanmıştır. Veriler ön işleme tabi tutulmuş ve ortalama ve birim varyans 

ile standardize edilmiştir. Bu çalışmada, G ve T için girdi verileri sırasıyla (4.8) ve (4.9) 

kullanılarak toplanırken, hedef verileri (4.11) kullanılarak toplanmaktadır. Veriler 

önceden işlenir ve ortalama ve birim varyans ile standartlaştırılır. LSTM ağı girdiler (G, 

T) ve hedef (𝑉𝑚𝑝) ile eğitilir. Dizinin her biri 1 milyon (1.000.000) veri noktası (gözlem) 

içermektedir. Başlangıçtan itibaren, toplam veri kümesinin %80'i eğitim için kullanılır ve 

sondan kalan %20'lik kısım test ve doğrulama için kullanılır (H. Wang et al., 2022). 

LSTM ağ eğitiminde yer alan adımlar Şekil 4.5'te gösterilmektedir. 

Eğitim aşaması, makine öğrenimi ve derin öğrenme modellerinin geliştirilmesinde 

büyük önem taşımaktadır. Makine öğreniminde modeller, büyük veri kümelerine maruz 

bırakılarak eğitilir ve açık programlama olmadan görevleri yerine getirmeyi öğrenmeleri 

sağlanır (Forootan et al., 2022). Derin öğrenme algoritmaları, çeşitli ve yapılandırılmamış 

verilerden oluşan kapsamlı veri kümelerine dayanır. Eğitim verilerinin kalitesi, modelin 

performansını ve karar verme yeteneklerini büyük ölçüde etkiler. Eğitim sırasında 

modeller, eğitim matrisleri için rastgele değerlerle başlatılır ve bu ilk değerlere dayanarak 

çıktıyı tahmin etmeye çalışır. Başlangıçta, hata tipik olarak yüksektir, ancak yinelemeli 

ayarlamalar yoluyla, derin öğrenme algoritmaları hatalarından öğrenir, tahminleri ve 

ayarlamaları iyileştirir. Eğitimin birincil amacı, çeşitli sorguları ele almada yüksek 

düzeyde doğruluk gösteren son derece hassas bir model oluşturmaktır. Bir LSTM ağını 

eğitme ve test etme adımları Şekil 4.5’te özetlenmiştir (Malakar et al., 2021; M. Sabri & 

Hassouni, 2022; Mohammed Sabri & El Hassouni, 2022). 
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4.10.1. Veri Ön İşleme 

 

Girdi ve hedef verilerin oluşturulması ve yüklenmesinin ardından bu araştırma, 

verileri LSTM model eğitimine hazırlamak için veri ön işleme süreçlerinin en önde gelen 

ve temel adımlarından birini ele almıştır (H. Wang et al., 2022).  

Veri setinin kalitesini doğrulamak için, eksik değerler ilgili veri örneğinin 

ortalama değerleriyle dikkatlice doldurulmuş, veriler temizlenmiş ve aykırı değerler 

kaldırılmıştır. Ayrıca, LSTM modellerinin giriş özelliklerinden etkili bir şekilde 

öğrenmesi için gerekli olan verileri karşılaştırılabilir bir boyuta standartlaştırdık. Bu veri 

ön işleme işlemlerini yaparak LSTM ağının verilerdeki önemli örüntüleri ve 

bağımlılıkları yakalama kapasitesini artırdık. Bu da daha iyi yakınsama sağladı, ölçekle 

ilgili zorlukları azalttı ve LSTM modelinin temel bilgileri çıkarmasını sağlayarak güneş 

panelinin 𝑉𝑚𝑝 'sini tahmin etmede gelişmiş doğruluk ve genelleştirme sağladı. Ön işleme 

için benimsenen ortak adımlar aşağıda vurgulanmıştır.  

 

4.10.2. Veri Toplama 

 

NASA, NREL ve ESA gibi kaynaklardan alınan verileri ve kısıtlama limitlerini 

görselleştirdikten sonra, bu araştırma, (4.8) ve (4.9) denklemlerinde belirtildiği gibi 

verilen aralıklar dahilinde giriş verileri (T ve G) için rastgele sinyaller oluşturmak için 

MATLAB komut dosyası kullandı. Hedef veriler hem T hem de G değerlerinden 

etkilenen (4.11) kullanılarak oluşturulur. 100000 veri noktasından oluşturulan veri 

kümesinin tamamı, kolay depolama ve dağıtım için bir CSV dosyası olarak saklanır. 

Veriler, csvread veya readmatrix komutu gibi yöntemler kullanılarak MATLAB'a geri 

yüklenir ve verimli model eğitimi ve değerlendirmesine olanak tanır.  

CSV dosyasının girdilerine ve hedef değerlerine erişim, modelin LSTM tabanlı 

regresyon performansının daha fazla araştırılmasını ve değerlendirilmesini sağlar. Bu 

diziler, LSTM ağını eğitmek ve test etmek için kullanılacak geçmiş verileri temsil 

etmektedir. 
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Şekil 4.5. Bir LSTM ağının eğitim sürecinin kontrol akışı 

 

4.10.2.1.  Veri Normalizasyonu 

 

LSTM model eğitimi için 𝑉𝑚𝑝 hedef değerlerinin Z-skor normalizasyonu 

gereklidir. 𝑉𝑚𝑝'nin -1,7 ila 1,7 arasında ölçeklendirilmesi hızlı yakınsama, gradyan 
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kararlılığı sağlar ve taşma/alt taşma sorunlarını önler. Ayrıca görünmeyen veriler için 

genelleştirmeye yardımcı olarak eğitim verimliliğini ve kararlılığını artırır. Tanh 

aktivasyon fonksiyonu, normalize edilmiş girdiler ve hedeflerle iyi çalıştığı ve eğitim 

sırasında daha yumuşak yakınsamayı kolaylaştırdığı için uygundur. Bu normalleştirme, 

modelin T ve G girdilerine dayalı olarak Vmp'yi doğru bir şekilde tahmin etmek için 

verilerden etkili bir şekilde öğrenmesini sağlar. 

 

4.10.2.2.  Veri Setini Bölme 

 

Bir LSTM modelinin performansını değerlendirmek için, üretilen veriler iki 

kümeye ayrılır: eğitim verileri ve test verileri. Tipik olarak, yaygın bir uygulama, verilerin 

belirli bir yüzdesini (örneğin, %80) LSTM ağını eğitmek için ayırmak, kalan yüzdeyi 

(örneğin, %20) ise test ve doğrulama veri kümeleri arasında bölmektir (Khumaidi et al., 

2020). Verilerin bölünmesi iki ana fayda sağlar; eğitim optimizasyon sunar ve test 

çalışmaları genelleme değerlendirmesine dayanır. 

Eğitim verileri, modelin parametrelerini optimize etmek ve LSTM modeli eğitim 

süreci sırasında iç ağırlıklarını değiştirmek için kullanılır. LSTM modeli, tahmin edilen 

ve gerçek hedef değerler Vmp arasındaki boşluğu en aza indirmek için eğitim verilerinden 

öğrenir. Bu optimizasyon prosedürü, LSTM modelinin tahmin doğruluğunu artırmasına 

ve karmaşık veri bağımlılıklarını verimli bir şekilde dahil etmesine olanak tanır.  

Test verileri, eğitilen LSTM modelinin görülmeyen çevresel koşullara ne kadar 

iyi genelleme yapabileceğini değerlendirir. Bilinmeyen çevresel koşullara genelleme 

yeteneği, modelin pratikte kullanılabilirliği açısından önemlidir. Eğitimli LSTM 

modelinin çeşitli gerçek dünya koşullarında sonuçları doğru bir şekilde tahmin 

edebilmesini sağlayarak onu güneş sistemlerinde veya başka herhangi bir uygulamada 

tahmin ve karar verme için güvenilir bir araç haline getirir. Bu nedenle, aşırı eğitimden 

ve bilinmeyen ortamlara genelleştirmeden kaçınmak için üretilen verileri eğitim ve teste 

bölmek gerekir. 

 

4.10.2.3.  Eğitim için Veri Hazırlama 

 

Bu adımda, veriler LSTM model eğitimi için gereken formatta düzenlenir. Giriş 

ve hedef dizileri, verileri her satırın bir zaman adımını temsil ettiği ve her sütunun bir 

özelliğe karşılık geldiği sıralı bir biçime dönüştürmek için yer değiştirir. Bu değişiklik, 
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LSTM ağlarının verilerdeki zamansal ilişkileri ve örüntüleri tespit edebilmesi için 

gereklidir. Verilerin bu şekilde yapılandırılmasıyla, LSTM modeli geçmiş verilerden 

başarılı bir şekilde öğrenebilir ve girdilerin zaman serisi yapısına dayalı tahminler 

oluşturabilir. Verilerin sıralı formatta hazırlanması, LSTM modelinin geçmiş gözlemlere 

dayanarak kesin tahminler yapmasına olanak tanıyan kritik bir adımdır. 

 

4.10.2.4.  Veri Görselleştirme 

 

Normalleştirme, bölme ve eğitim için veri hazırlama işlemlerinin ardından, zaman 

serisi verilerinin çizilmesini, eğilimlerin, korelasyonların ve dağılımların keşfedilmesini 

ve LSTM ağının eğitimini ve performansını etkileyebilecek herhangi bir anormalliğin 

veya mevsimselliğin belirlenmesini içeren verilerin görselleştirilmesi adımı önemlidir. 

Bu çalışmada, girdiler ve hedef verilerden oluşan eksiksiz veri seti görselleştirilmekte ve 

bunu eğitim verileri, test verileri ve normalleştirme öncesi ve sonrası veriler gibi çeşitli 

diğer grafikler takip etmektedir. Veri görselleştirmeye dayalı sonuçların tamamı bir 

sonraki bölüm 5'te ele alınmaktadır. 

 

4.10.3. LSTM'nin Tanımlayıcı Yapısı  

 

LSTM ağının yapısının tanımlanması, LSTM katmanlarının sayısının ve her 

katmandaki gizli birimlerin sayısının belirlenmesini içerir. Yapı, problemin 

karmaşıklığına ve gereksinimlerine bağlı olarak tam bağlantılı katmanlar veya çıktı 

katmanları gibi ek katmanlar da içerebilir. 

 

4.10.3.1.  LSTM Katmanlarını Tanımlama 

 

Ağ içindeki ayrı LSTM katmanları yapılandırılır. Her LSTM katmanı için aktivasyon 

fonksiyonları, düzenleme teknikleri (varsa) ve diğer hiper parametreleri belirtilir. Bu 

adım, LSTM ağının öğrenme dinamiklerini ve uyarlanabilirliğini kontrol etmeye 

yardımcı olur (Khumaidi et al., 2020). Bu araştırma, LSTM mimarisindeki LSTM 

katmanlarını tanımlamak için MATLAB'ın Derin Ağ Tasarımcısı Araç Kutusunu 

kullanmaktadır. PV sisteminin çevresel koşulları (T ve G) ve buna karşılık gelen hedef 

çıktı 𝑉𝑚𝑝, zaman serisi verilerine örnektir ve önerilen LSTM katmanları, bu verilerdeki 
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karmaşık zaman serisi bağımlılıklarını işlemek ve öğrenmek için özellikle uygundur. 

LSTM katmanlarının mimarisi aşağıda açıklanmaktadır. 

• Giriş Katmanı (Dizi Giriş Katmanı) 

LSTM ağının ilk katmanı olan giriş katmanı, sıralı giriş verilerini almaktan 

sorumludur. Çalışmamızda bu katman çevresel girdiler olan T ve G'yi zaman serisi verisi 

şeklinde almaktadır. Giriş katmanında kullanılan özellik sayısı, bu araştırmada kullanılan 

giriş değişkenlerinin (T ve G) sayısına karşılık gelen 2 olarak belirlenmiştir. 

• LSTM Katmanı (Dizi Giriş Katmanı) 

LSTM katmanları, ağın zamansal bağlantıları ve örüntüleri tespit edebilmesini 

sağlayan temel unsurlardır. Bu çalışmada, LSTM tasarımının stack LSTM olarak bilinen 

ve birden fazla LSTM katmanını üst üste yığan bir çeşidi kullanılmıştır. Bu, modelin 

verilerin karmaşık bağımlılıklarını daha derinlemesine seçmesini sağlar ve tahmin edilen 

performansı artırır. Her bir LSTM katmanında ayarlanan gizli birim sayısı, ağın mevcut 

veri kümesinde bulunan karmaşık ilişkileri ne kadar iyi öğrenebileceğini ve temsil 

edebileceğini etkiler. Araştırmamızdaki ilk LSTM katmanında 64 gizli birim ve ikinci 

LSTM katmanında 32 gizli birim vardır ve ağın doğruluğu, 16 gizli birime sahip üçüncü 

bir LSTM katmanı eklenerek daha da geliştirilebilir. Bununla birlikte, daha yüksek sayıda 

LSTM katmanı sistemin yoğunluğunu, hesaplama süresini ve karmaşıklığını artırır. 

• Tam Bağlantılı Katman 

LSTM katmanlarından elde edilen çıktılar birleştirilir ve tam bağlı katman 

tarafından tek bir çıkış nöronuna eşlenir. Araştırmamızdaki tam bağlı katman, LSTM 

çıktılarını birleştirir ve öngörülen 𝑉𝑚𝑝 'yi temsil eden tek bir çıktı üretir. 

• Regresyon Katmanı 

Regresyon katmanı, öncelikle hedef verimiz 𝑉𝑚𝑝 gibi zaman serisi verilerinin 

tahmin edilmesi, öngörülmesi, izlenmesi gibi regresyon görevleri için oluşturulan LSTM 

ağının son katmanıdır. Eğitim sırasında, ağın farklılıklardan öğrenmesine ve performansı 

artırmasına yardımcı olmak için beklenen ve gerçek hedef 𝑉𝑚𝑝 arasındaki kaybı hesaplar. 

 

4.10.4. Eğitim Seçeneklerinin Yapılandırılması 

 

Eğitim seçeneklerinin yapılandırılması, LSTM modelinin verimliliğini ve 

performansını doğrudan etkilediği için çok önemlidir.  
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Çizelge 4.2. Önerilen LSTM modelinin eğitimi için kullanılan eğitim seçenekleri 

 
Değişkenin Adı Değer 

Çözücü Âdem 

İlk öğrenme oranı 0.005 

Maksimum dönemler 1000 

Sıra uzunluğu Uzun 

L2Düzenlileştirme 0.0001 

Gradyan eşiği yöntemi I2norm 

Gradyan eşiği 1 

 

Bu, optimizasyon algoritmasının (ör. Adam optimizer), kayıp fonksiyonunun (ör. 

ortalama karesel hata) ve öğrenme oranı, stack boyutu ve maksimum epok sayısı gibi 

diğer eğitim parametrelerinin tanımlanmasını içerir (Khumaidi et al., 2020). Bu 

seçenekler, eğitim sırasında LSTM modelinin yakınsamasını ve performansını etkiler. 

Önerilen stack LSTM modelinde kullanılan eğitim seçenekleri  Çizelge 4.2'de 

listelenmiştir. DL modellerinin eğitim sürecinde, eğitim seçeneklerinin dikkatli bir 

şekilde özelleştirilmesi modelin parametrelerinin yapılandırılması için önemlidir. Bu 

adımda, önerilen çalışmada (T, G, 𝑉𝑚𝑝) verileri olan veri kümesi üzerinde modelin 

performansını artırmak için öğrenme prosedürü değiştirilir. Aşağıda eğitim 

seçeneklerinden bazıları verilmiştir: 

• Optimizasyon Algoritması (Adam Optimizer) 

Gerçek çıktı arasındaki tahmin hatasını en aza indirmek için, eğitim sırasında 

parametrelerin güncellemelerini belirlemek için optimizasyon algoritması kullanılır. 

Araştırmamızda, Adam optimize edicisi, uyarlanabilir öğrenme oranı, momentum, bias 

düzeltme ve uyarlanabilir ölçekleme yeteneği nedeniyle geleneksel stokastik gradyan 

inişine (SGD) tercih edilmiştir (Cocianu et al., 2022). Bu nedenle, LSTM ağları bu 

optimize edici ile daha iyi optimizasyon ve daha hızlı yakınsama sağlar. Momentum ve 

bias düzeltme, optimizasyon ortamındaki düz alanlarda daha etkili hareket etmeye 

yardımcı olurken, uyarlanabilir öğrenme oranı bireysel parametre öğrenme oranlarını 

yönetir. Bu avantajlar nedeniyle, Adam optimize edicisinin çeşitli öğrenme oranlarını 

yönetme ve optimizasyon verimliliğini artırma kapasitesini de desteklemektedir. 
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• Maksimum Epok Sayısı 

Maksimum epok sayısı, tüm veri kümesinin eğitim için güncellendiği geçiş 

sayısını veya sayısını ifade eder. Bu çalışmada, maksimum epok sayısı 50 olarak 

seçilmiştir, bu da LSTM modelinin tüm veri kümesi boyunca 50 kez yineleneceğini 

göstermektedir. Çok sayıda epok, gerçek ve hedef değer arasındaki hatayı azaltarak 

doğruluğu açıkça artırır, ancak aynı zamanda modelin karmaşıklığını ve hesaplama 

yoğunluğunu da artırır. Çok fazla sayıda epok da aşırı eğitmeye yol açabilir. Aşırı uyum 

sağlayan model aynı veri kümesini iyi bir şekilde ezberler ancak görülmeyen veriler 

üzerinde genelleme yapamaz. 

• Mini Grup Büyüklüğü 

Mini grup boyutu (mini batch size), modelin parametrelerini güncellemek için her 

iterasyonda kullanılan örnek sayısını tanımlar. Araştırmamızda, eğitim verimliliğini ve 

bellek kullanımını dengeleyen mini grup boyutunu 32 olarak belirledik. Bu çalışmada, 50 

epok ve 30 mini grup boyutu ile toplam 1.000.000 veri noktası vardır, 1.000.000 veri 

noktası ve 30 mini grup boyutu ile 33.333 mini grup boyutuverecektir. Projenin bir 

parçası olarak model, her biri epok başına 30 veri örneği içeren 33.333 mini grup üzerinde 

çalışacaktır. Her mini grupten sonra modelin parametreleri ayarlanacak ve bu döngü 100 

kez tekrarlanacaktır. Model, parametrelerini 30 mini grup boyutuyla etkili bir şekilde 

güncelleyebilir, bu da eğitim sırasında daha hızlı yakınsama ve daha verimli bellek 

kullanımı sağlar. 

• İlk Öğrenme Oranı 

Başlangıçtaki öğrenme oranı bir adım boyutu gibidir. Bu çalışmada öğrenme oranı 

0,01 olarak kabul edilmiştir ve eğitim süreci boyunca parametreleri günceller. Adam 

optimize edici, belirlenen hedef değer gibi istenen tahmini çıktıyı elde etmek için eğitim 

sürecini optimize etmek üzere bu öğrenme oranını benimser. 

• Veri Karıştırma 

Eğitim sırasında verileri karıştırmak, LSTM modelinin veri örneklerinin sırasını 

ezberlemesini ve belirli kalıplara aşırı uyum sağlamasını önlemek için çok önemli bir 

stratejidir. Araştırmamızda her dönemden sonra verileri karıştırarak modele her 

dönemdeki verilere farklı bir bakış açısı kazandırıyoruz. Bu, modeli yeni görülmemiş 

veriler üzerinde performansı artıran daha güçlü, daha aktarılabilir kalıpları keşfetmeye 

iter. 
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• Verbose Yapılandırması 

Çalışmamızda, kapsamlı eğitim ilerleme bildirimlerini görüntüleyen "Verbose" 

seçeneği "true" olarak ayarlanmıştır. Bu sayede eğitim sırasında modelin ilerleme durumu 

ve performansı görselleştirilebilmektedir. Birden fazla dönemle uzun eğitim oturumları 

çalıştırmak, çıktı istemini dolu ve yüklü tuttuğu için biraz dağınık hale gelir. 

• Grafiklerin Görselleştirilmesi 

Bu tezde, "Plots" seçeneği "training-progress" olarak ayarlanmış ve eğitimin 

ilerleyişini görmemizi sağlamıştır.  

Bu görselleştirme, RMSE ve kayıp fonksiyonunun zaman içinde nasıl 

küçüldüğünü göstererek LSTM modelinin girdiyi ne kadar iyi özümsediğini izlememize 

olanak tanır. Çizim, modelin ideal bir çözüme doğru yakınsamasını sağlamaya yardımcı 

olur ve eğitim sürecine ilişkin faydalı bilgiler sunar.Eğitim seçeneklerinin dikkatli bir 

şekilde seçilmesi ve ayarlanması, LSTM ağının PV sistemi veri setinden öğrenmesine 

yardımcı olmak için kritik öneme sahiptir.  

LSTM modeli, parametrelerini değiştirerek T ve G giriş varyasyonlarına yanıt 

olarak Vmp'yi yüksek doğrulukla tahmin etme yeteneğini geliştirir. İyi tasarlanmış LSTM 

katmanları, istenen tahmin performansını elde etmek ve gelişmiş doğruluk ve genelleme 

yeteneklerine sahip oldukça etkili bir PV sistem modeli oluşturmak için optimize edilmiş 

eğitim seçenekleriyle birlikte çalışmalıdır. 

 

4.10.5. LSTM Ağının Eğitimi  

 

LSTM model eğitimi, bir PV sistemi için hedef verileri (Vmp) tahmin etmek veya 

izlemek için hazırlanan verileri kullanan en önemli adımlardan biridir. Bu çalışmada, 

LSTM ağının stack katmanının tasarımı, özellikle T ve G olmak üzere giriş kaynakları ile 

MPP'deki hedef çıkış voltajı arasındaki karmaşık bağlantıların anlaşılmasını sağlar. 

LSTM modeli, tahmin edilen 𝑉𝑚𝑝 değerleri ile normalleştirilmiş hedef değerler arasındaki 

farkı azaltmak için eğitim sırasında dahili parametrelerini tekrar tekrar değiştirir. LSTM 

ağı artık verilerdeki anlamlı örüntüleri ve bağımlılıkları yakalayabilir ve değişken 

çevresel koşulların varlığında doğru 𝑉𝑚𝑝 tahminlerine olanak tanır (Yu et al., 2021). 

Eğitim sırasında LSTM ağı, tahmin edilen değerler (Vmp) ile gerçek hedefler arasındaki 

farkı en aza indirmek için geri yayılım ve optimizasyon algoritmalarını kullanarak 

ağırlıklarını ve önyargılarını yinelemeli olarak ayarlar. Hata tatmin ediciyse, eğitim süreci 

başarılı kabul edilir. Aksi takdirde, LSTM modelinin hiper parametrelerinin ayarlanması 
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gerekir; bu da ağ yapısını değiştirerek veya alternatif optimizasyon tekniklerini 

keşfederek yapılabilir (Ergen & Kozat, 2018). 

 

4.11.  LSTM Ağının Test Edilmesi  

 

Bu adım, test veri kümesini (1 milyon veri kümesinin son %20'si) kullanarak 

eğitilmiş LSTM modelinin performansının değerlendirilmesini içerir. Test dizileri LSTM 

ağına girilir ve tahmin edilen 𝑉𝑚𝑝 değerleri gerçek hedeflerle karşılaştırılır. Performans, 

LSTM modelinin diğer MPPT kontrolörlerine (DNN, P&O) göre doğruluğunu ve 

güvenilirliğini değerlendirmek için ortalama karesel hata (MSE), kök ortalama karesel 

hata (RMSE) veya belirleme katsayısı (R-kare) gibi performans değerlendirme metrikleri 

kullanılarak hesaplanır. 

 

4.11.1. Eğitilmiş LSTM Ağının Değerlendirilmesi 

 

Eğitim süreci tamamlandıktan sonra, LSTM modelinin performansı hem eğitim 

hem de test veri kümeleri kullanılarak değerlendirilir. Eğitilen LSTM ağı her iki veri 

kümesi için 𝑉𝑚𝑝 değerlerini tahmin ettiğinde, normalleştirilmiş tahminleri orijinal 

ölçeklerine döndürmek için denormalizasyon yöntemi kullanılır. Modelin hassasiyetini 

ve genelleştirilebilirliğini değerlendirmek için, tahmin edilen Vmp değerleri gerçek hedef 

değerlerle karşılaştırılır. Bu değerlendirme, model iyileştirme ve optimizasyon için 

potansiyel alanların belirlenmesine yardımcı olur ve modelin gerçek dünya koşulları 

altındaki tahmin gücü hakkında fikir verir. 

 

4.11.2. Eğitim ve Test Hatalarının Görselleştirilmesi 

 

Bu adım, eğitim ve test verileri için gerçek hedef değerleri istenen hedef Vmp 

değerleriyle karşılaştıran görseller sağlar, böylece LSTM modelinin performansının tam 

bir resmini verir. Simüle edilen ve gerçek 𝑉𝑚𝑝 değerleri arasındaki farkları daha da 

vurgulamak için eğitim hatası ve test hatası grafikleri oluşturulur. Modelin doğruluğu ve 

etkinliği, eğitimli modeldeki kalıpları ve aykırı değerlerin varlığını belirlemeye yardımcı 

olabilecek görsel temsiller yardımıyla daha iyi değerlendirilebilir. 
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4.12.  Performans Değerlendirme Metriklerinin Seçimi 

 

Dinamik sistemleri modellemek ve analiz etmek için grafiksel bir programlama 

ortamı olan Simulink - MATLAB, eğitilmiş LSTM modelini içe aktarmak için kullanılır. 

Sonuç olarak, LSTM modeli analiz edilmiş ve 100 kW şebekeye bağlı PV'nin Simulink 

modeli ile entegre edilmiştir. MSE, RMSE, MAE, R2 ve doğrulama kaybı gibi en önemli 

performans endeksleri, yazarlar tarafından (Chollet, n.d.)'de önerildiği gibi LSTM ağının 

performansını ölçmek için kullanılır. Zaman serisi tahmin uygulamaları bağlamında, bir 

LSTM ağının performans değerlendirmesi, modelin doğruluğunu ve etkinliğini 

değerlendirmek için çok önemlidir. Burada, zaman serisi tahmini için bir LSTM ağının 

performansının değerlendirilmesinde yer alan farklı adımların bir dökümü yer almaktadır. 

LSTM ağının performansı MSE, RMSE, MAE ve doğrulama kaybı gibi performans 

endekslerine göre test edilir. 

 

4.12.1. Ortalama Kare Hata (MSE) 

 

Zaman serisi projeksiyonlarında regresyon modellerinin performansını 

değerlendirmek için MSE önemli bir metriktir. Zaman serileri boyunca beklenen değerler 

ile gerçek değerler arasındaki kare farklarındaki ortalama değişimin bir ölçüsüdür. MSE, 

hataları bir arada gruplandırarak daha büyük hataları RMSE'den daha ağır bir şekilde 

cezalandırır. Ancak RMSE'den farklı olarak MSE karekök almaz, bu da verilerin orijinal 

biriminde olmadığı anlamına gelir. RMSE'de olduğu gibi, düşük MSE değerleri gelişmiş 

model performansına işaret eder. RMSE'nin matematiksel gösterimi denklem (4.14)'te 

belirtilmiştir. 

MSE =
1

𝑁
∑(𝑉𝑚𝑝 − 𝑉̂𝑚𝑝)

2
𝑛

𝑖=1

 
(4.14) 

Bu çalışmada, beklenen 𝑉𝑚𝑝 değerleri ile gerçek hedef değerler arasındaki 

sapmaların karelerinin ortalaması MSE ile hesaplanmıştır. Daha iyi tahmin doğruluğu 

daha düşük bir MSE ile gösterilir. Araştırmada düşük bir MSE, LSTM modelinin 

tahminlerinin gerçek Vmp değerlerinden çok az farklı olduğunu ve modelin sağlanan 

girdilere dayalı olarak 𝑉𝑚𝑝'yi tahmin etmedeki başarısını gösterir. 
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4.12.2. Kök Ortalama Kare Hata (RMSE) 

 

RMSE, zaman serisi tahminlerinin ve regresyonlarının doğruluğu için yaygın 

olarak kullanılan bir tahmin göstergesidir (Haifa Zahrah et al., 2021; Novitasari et al., 

2020). Bir zaman serisinde tahmin edilen ve gerçek değerler arasındaki farkın ortalama 

karekökü ölçülür. Tahminler ile gerçeklik arasındaki hataların büyüklüğünü ölçer. 

RMSE'nin büyük hatalara karşı hassasiyeti vardır ve daha düşük RMSE, gelişmiş model 

performansını gösteren daha düşük hata anlamına gelir. MSE'nin matematiksel gösterimi 

denklem (4.15)'te verilmiştir.  

RMSE = √
1

𝑁
∑(𝑉𝑚𝑝 − 𝑉̂𝑚𝑝)

2
𝑛

𝑖=1

 

 

(4.15) 

Sıcaklık ve ışınım girdilerine dayalı doğru bir 𝑉𝑚𝑝 tahmini, daha yüksek 

performans anlamına gelen düşük RMSE değerleri ile gösterilmektedir. Modelin 

tahminleri, daha düşük RMSE değerlerine sahip olduklarında gerçek 𝑉𝑚𝑝 değerlerine 

yakındır. 

 

4.12.3. Ortalama Mutlak Hata (MAE) 

 

Zaman serisi tahminlerinde regresyon modellerinin analizinde MAE yaygın 

olarak uygulanan bir diğer metriktir. Tahmin değerleri ile gerçek değerler arasındaki 

mutlak farkların ortalaması olarak hesaplanır. MAE, RMSE gibi hataları ölçmez, böylece 

aykırı değerlerin hassasiyetini azaltır. Hataların yönünü dikkate almaz ve büyüklüklerinin 

bir ölçüsünü kullanır. Daha düşük MAE değerleri, söz konusu modelin daha yüksek 

performansını temsil eder. Matematiksel olarak MAE denklem (4.16)'da verilmiştir. 

MAE =
1

𝑁
∑|𝑉𝑚𝑝 − 𝑉̂𝑚𝑝|

𝑛

𝑖=1

 
(4.16) 

MAE, ulaşılan hedef değerler ile tahmin edilen 𝑉𝑚𝑝 değerleri arasındaki mutlak 

tutarsızlıkların ortalamasını ifade eder. RMSE gibi, düşük MAE değerleri daha yüksek 

tahmin doğruluğu gösterir. MAE, RMSE'ye göre aykırı değerlere daha az duyarlı 

olduğundan model değerlendirmesi için güvenilir bir istatistiktir. Çalışma bağlamında, 

düşük bir MAE değeri, modelin LSTM tahminlerinin gerçek 𝑉𝑚𝑝 değerlerini tahmin 

etmede tipik olarak oldukça doğru olduğunu göstermektedir. 
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4.12.4. R-kare (R2) veya Belirleme Katsayısı 

 

R2 Regresyon, hedef değişkendeki (Vmp) varyasyonun ne kadarının LSTM 

modeli tarafından açıklanabileceğinin bir ölçüsüdür. Ölçek 0 ila 1 arasında değişir; burada 

1, modelin varyasyonu tamamen açıkladığı ve 0, yatay bir çizgi olarak düşük performans 

gösterdiği anlamına gelir. Girdiler (T ve G) ile hedef çıktı 𝑉𝑚𝑝 arasındaki ilişki LSTM 

modeli tarafından tam olarak yakalanabildiği için daha büyük bir R2 değeri tercih edilir 

(Chicco et al., 2021). Araştırma bağlamında, yüksek bir R2 değeri modelin tahmin 

gücünü teyit eder ve mevcut çevresel parametrelere dayalı olarak 𝑉𝑚𝑝'yi başarılı bir 

şekilde tahmin etme yeteneğini gösterir. 

 

4.12.5. Doğrulama Kaybı 

 

LSTM ağının eğitim sürecinde, eğitim için kullanılan veri kümesi test veri 

kümesinden farklıdır. Burada doğrulama kaybı, MSE veya MAE gibi belirli bir hata 

fonksiyonu kullanılarak, beklenen değerler doğrulama veri kümesindeki gerçek 

değerlerle karşılaştırılarak hesaplanır (Chicco et al., 2021). Kayıp fonksiyonu, modellerin 

yeni, görülmemiş verileri ne kadar iyi genelleştirebileceğini dikkate alır. Model, 

doğrulama kaybını azaltmak amacıyla eğitim süreci sırasında dahili parametrelerini 

değiştirmek için bir optimizasyon yaklaşımı (stokastik gradyan inişi gibi) kullanır. 

Modelin daha iyi genelleme performansı, daha küçük bir doğrulama kaybı ile gösterilir. 

Doğrulama kaybı için matematiksel denklem, denklem (4.17)'de verilmiştir. 

Doğrulama Kaybı =
1

2
(

1

𝑁
∑(𝑉𝑚𝑝 − 𝑉̂𝑚𝑝)

𝑛

𝑖=1

) 
(4.17) 

Denklem (4.14) ila (4.17)'de modellenen tüm performans endeks parametrelerinin 

matematiksel formu, ML ve DL algoritmalarının performansını değerlendirmek için 

temel ve yaygın olarak kullanılan değerlendirme ölçütleridir (Forootan et al., 2022). (4.7) 

ila (4.10) arasındaki denklemlerde, N 1.000.000 net veri örneğini, Vmp gerçek çıktıyı 

veya hedef değeri ve 𝑉𝑚𝑝 LSTM modelinden tahmin edilen veya izlenen çıktıyı veya 

hedef değeri temsil eder. MATLAB'de bir LSTM ağının performansını değerlendirmek 

için model eğitilmeli ve doğrulanmalı, ölçümler hesaplanmalı ve model daha sonra 

sonuçlara göre ayarlanmalıdır. RMSE ve MAE, tahmin doğruluğunu ölçmek için 
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kullanımı kolay ve yaygın olarak kullanılan göstergelerdir. Geri çağırma ve F1 puanı, 

LSTM hassasiyeti ile zaman serisi tahmini için uygun değildir. 

 

4.13.  Şebekeye Bağlı PV Sistem İçin Üç Fazlı İnverter 

 

Üç fazlı PV inverter, güneş panellerinden gelen Doğru Akımı (DC) şebeke ile 

senkronize alternatif akıma dönüştürdüğü için bir PV dizisini şebekeye entegre etmek için 

gereken çok önemli bir bileşendir. Altı anahtarlı basit iki aşamalı inverterler bu dönüşümü 

gerçekleştirebilir, ancak artan harmonikler, voltaj adımları ve daha düşük verimlilik gibi 

dezavantajları vardır. Faz başına ikiden fazla gerilim seviyesine sahip çok seviyeli 

inverterler (MLI) şebeke entegrasyonu için daha iyi dalga şekilleri sağlayabilir. 

İnverterlerdeki daha fazla artış harmonikleri azaltır ancak anahtarlama kaybını da artırır 

(Karaca & Bektas, 2016); (Zeb et al., 2018). Bu tezde, DC bağlantı kapasitörleri, 

anahtarlar ve diyotların kombinasyonunu kullanan popüler bir üç fazlı MLI, yani NPC 

voltaj kaynaklı inverter incelenmiştir. NPC inverter, geleneksel iki seviyeli inverterlere 

göre daha düşük harmonik bozulma, daha düşük gerilim dalgalanması, daha yüksek 

verimlilik ve daha az gürültü avantajlarına sahiptir. Bu özellikler NPC inverterleri 

yenilenebilir enerji kaynaklarının şebekeye entegrasyonu için ideal bir çözüm haline 

getirmektedir. 

 

4.13.1. NPC İnvertöre Genel Bakış 

 

NPC inverterler, faz başına üç veya daha fazla çıkış gerilimi seviyesi sağlamak 

için giriş tarafı kapasitörleri ile DC barasının merkezi noktasını alır. İki seviyeli bir 

inverterle karşılaştırıldığında, NPC'nin çok katmanlı yapısı, üç seviyeli bir dalga formu 

oluşturarak daha küçük voltaj adımlarına ve harmoniklere izin verir. Daha küçük gerilim 

adımları ve çok katmanlı dalga biçimleri düşük dereceli harmoniklerin ve dv/dt 

geriliminin azaltılmasına yardımcı olur (Bektas & Karaca, 2019). NPC inverterler bu 

avantajı modüle edilmiş tamamlayıcı çift anahtarlama ve nötr nokta erişimi ile elde eder. 

Olağanüstü harmonik özellikleri nedeniyle NPC inverterler, sinüzoidal PWM kullanan üç 

fazlı şebekeye bağlı PV sistemleri için özellikle uygundur. NPC inverterler, düşük 

bozulma ile yüksek kaliteli sinyaller üretebildikleri için şebeke gereksinimlerini karşılar. 
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4.13.2. NPC İnvertör Tasarımı 

 

Üç fazlı bir NPC inverter sistemi, her biri A, B ve C Fazları olarak etiketlenmiş 

farklı fazları temsil eden üç ayrı dal veya bacaktan oluşur. Şekil 4.6'da gösterildiği gibi 

faz bacağı, tüm fazlar için toplam 12 anahtar ve 12 diyot olmak üzere dört anahtar ve dört 

diyot içerir.  

S1a

S3a

S2a

S4a

S1b

S4b

S3b

S2b

S1c

S2c

S3c

S4c

La

Lb

Lc

N

- Vdc/2

+ Vdc/2

Vpv
(Vdc)

A

B

C

Phase A Phase B Phase C

Ga

Gb

Gc

N

 
 

Şekil 4.6. Üç fazlı NPC gerilim kaynaklı dönüştürücünün şematik diyagramı 

 

Kontrollü güç akışı, bağlı fazın her bir bacağında tamamlayıcı çiftler halinde 

çalışan anahtarlar tarafından üretilir. Faz A çalışması S1a, S2a, S3a ve S4a olarak 

adlandırılan dört anahtar tarafından kontrol edilir. Benzer şekilde, Faz B bacağında üst 

tamamlayıcı anahtarlar S1b ve S2b ve alt tamamlayıcı anahtarlar S3b ve S4b bulunur. 

Aynı şekilde, Faz C bacağında üst tamamlayıcı anahtar çifti S1c ve S2c ve alt tamamlayıcı 

anahtar çifti S3c ve S4c bulunur. 

Bu yapılandırma, her bir faz terminali ile DC kaynağı arasında akan akımın hassas 

bir şekilde kontrol edilmesini sağlar. A fazı için NPC invertörünün çıkışındaki üç voltaj 

seviyesine (+Vdc/2, 0, -Vdc/2) erişim mekanizması aşağıda açıklanmıştır. Benzer bir 

süreç diğer iki faz (B ve C) için de geçerlidir.  

 

4.13.3. NPC İnverterin Çalışması 

 

NPC inverterin çalışması, 3 fazlı bir güç sisteminde çok seviyeli çıkış 

gerilimlerinin üretimi üzerinde hassas kontrol sağlayan sofistike bir anahtar ve diyot 

konfigürasyonu gerektirir. NPC invertör, geleneksel 2 seviyeli invertöre kıyasla daha az 

harmonik içeriğe sahip 3 seviyeli bir çıkış sağlar. İstenen 3 seviyeli gerilimleri elde etme 

mekanizması (+Vdc/2, 0, -Vdc/2) (Abdelsalam et al., 2021; YOUNAS et al., 2019).  
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Üç fazlı bir NPC invertör, her biri A, B ve C Fazları olarak etiketlenmiş farklı 

fazları temsil eden üç ayrı dal veya bacaktan oluşur. Her faz bacağı, tüm fazlar için toplam 

12 anahtar ve 12 diyot için dört anahtar ve dört diyot içerir. Kontrollü güç akışı, bağlı 

fazın her bir bacağında tamamlayıcı çiftler halinde çalışan anahtarlar tarafından üretilir. 

Faz A çalışması S1a, S2a, S3a ve S4a olarak adlandırılan dört anahtar tarafından kontrol 

edilir. Benzer şekilde, Faz B bacağında üst tamamlayıcı anahtarlar S1b ve S2b ve alt 

tamamlayıcı anahtarlar S3b ve S4b bulunur. Benzer şekilde, Faz C bacağında üst 

tamamlayıcı anahtar çiftleri S1c ve S2c ve alt tamamlayıcı anahtar çiftleri S3c ve S4c 

bulunur. 

NPC inverter, her faz için üç çıkış voltaj seviyesi üretmek üzere toplam 12 aktif 

anahtar (faz ayağı başına 4) ve 12 sıkıştırma diyotu (faz ayağı başına 4) kullanır. Her faz 

bacağı 2 tamamlayıcı anahtar çifti içerir- bir üst çift (S1, S2) ve bir alt çift (S3, S4). 

Serbest dönüş diyodu (D1, D2, D3, D4), S1 veya S2 açıkken D1 ve D2 çıkışı pozitif DC 

barasına sıkıştıracak, S3 veya S4 açıkken D3 ve D4 negatif DC bara rayına sıkıştıracak 

şekilde düzenlenmiştir. 𝑉𝑑𝑐/2 çıkışı için S1 ve S2 açılır ve faz çıkışı D1 ve D2'nin orta 

noktasına kelepçelenir. 0V çıkış için S1 ve S3 veya S2 ve S4 açılır ve çıkış sırasıyla D2 

ve D3 veya D1 ve D4 üzerinden DC barasının orta noktasına kelepçelenir. 

Aynı şekilde-𝑉𝑑𝑐/2 çıkışı için S3 ve S4 açılır ve faz D3 ve D4 üzerinden negatif 

DC rayına bağlanır. Yedeklilik ek esneklik ve hata toleransı sağlar. Anahtarlama 

durumları ile çalışma prensibi Çizelge 4.3'te listelenmiştir. 

 

Çizelge 4.3. NPC inverterin her fazındaki anahtarlama durumları ve karşılık gelen çıkış gerilimi 

 
Faz S1 S2 S3 S4 Çıkış Gerilimi 

 

 

A 

ON ON OFF OFF +Vdc/2 

OFF ON ON OFF 0V 

OFF OFF ON ON -Vdc/2 

 

 

B 

ON ON OFF OFF +Vdc/2 

OFF ON ON OFF 0V 

OFF OFF ON ON -Vdc/2 

 

 

C 

ON ON OFF OFF +Vdc/2 

OFF ON ON OFF 0V 

OFF OFF ON ON -Vdc/2 
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Üç seviyeli nötr nokta kenetli (NPC) inverter, DC güneş enerjisini verimli bir 

şekilde AC şebeke uyumlu güce dönüştüren şebekeye bağlı solar PV sistemlerinin 

ayrılmaz bir parçasıdır. Geleneksel iki seviyeli invertörlerle karşılaştırıldığında, daha 

geniş bir çıkış voltajı aralığına sahip üç seviyeli NPC invertörler üstün performans 

gösterir ve harmonikleri en aza indirir. Çıkış dalga biçiminin kalitesini artırmak için hat 

gerilimi modülasyonu, darbe genişlik modülasyonu (PWM) teknikleri ve alçak geçiren 

LC filtreleri (LCL) kullanılır.  

Bölüm 3'te tartışıldığı gibi, sinüzoidal PWM dalga biçimi verimliliği artırır ve 

anahtarlama kayıplarını azaltır. LCL filtresi ile elde edilen harmonik azaltma ve sistem 

stabilizasyonu işlevi de Bölüm 3'te ayrıntılı olarak açıklanmaktadır. Entegre NPC 

invertör, PWM ve LCL filtreleme içeren bu karmaşık sistem, gelecekte sürdürülebilir 

enerji gelişimi için verimli ve harmoniksiz güç dönüşümü ve şebeke entegrasyonu 

sağlayacak şebeke bağlantılı solar PV sistemlerindeki ilerlemeleri göstermektedir. 

 

4.14.  Bölüm Özeti 

 

Önerilen bu araştırma metodolojisi bölümü genel bir bakış, mimari, 

hiperparametreler ve çeşitli LSTM türlerinin açıklamalarını içermektedir. Çeşitli LSTM 

ağları arasından önerilen stack LSTM'nin seçimi, kapsamı ve avantajları 

vurgulanmaktadır. Önerilen stack LSTM hem geleneksel hem de son teknoloji ürünü 

akıllı MPPT kontrolörleri ile karşılaştırıldıktan sonra, önerilen LSTM'nin 

uygulanabilirliği doğrulanmıştır. Stack LSTM'yi önerilen PV sisteminde bir MPPT 

denetleyicisi olarak uygulamadan önce, önerilen PV sisteminin kısa bir açıklaması, PV 

dizisinin özellikleri ve MPPT denetleyicisinin çalışması vurgulanmakta, ardından 

girişlerin (T, G) ve hedef (Vmp) verilerinin oluşturulması gelmektedir. Eğitim seçenekleri 

seçildikten sonra, toplu LSTM modeli hiper parametrelerle optimize edilir ve üretilen 

veriler üzerinde eğitilir. Model daha sonra görünmeyen veriler kullanılarak test edilir ve 

önerilen modelin ne kadar iyi çalıştığını göstermek için değerlendirme kriterleri 

tanımlanır. Tüm açıklamanın sonuçları 5. bölümde görselleştirilmekte ve 

tartışılmaktadır. 

Bir sonraki bölümde, önerilen LSTM tabanlı MPPT kontrolörünün bulguları 

açıklanmakta ve son teknoloji algoritmaların bulguları ile karşılaştırılmakta ve ardından 

elde edilen maksimum güç verimli bir şekilde şebekeye aktarılmaktadır. Bu araştırma, 

yenilenebilir enerji kaynaklarının kullanımını en üst düzeye çıkarmak ve PV sistemin 
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genel performansını iyileştirmek için içgörülü farkındalık sağlayarak, solar PV 

sistemlerinde verimli güç üretimi için LSTM ağlarının potansiyelini vurgulamaktadır. 
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5.  SONUÇLAR VE TARTIŞMA 

 

Bu bölümde, şebekeye bağlı PV sistemleri için önerilen Uzun Kısa Süreli Bellek 

(LSTM) tabanlı maksimum güç noktası izleme (MPPT) kontrolörünün simülasyon 

sonuçları ve tartışması Simulink MATLAB 2023© Derin Ağ Tasarımcısı (DND) Araç 

Kutusu kullanılarak gerçekleştirilmiştir. SunPower fotovoltaik (PV) modülü, 

MATLAB'daki simülasyonlar için dikkate alınmıştır. Bu sadece uygun maliyetli, güvenli 

ve yinelemeli bir yaklaşım sağlamakla kalmaz, aynı zamanda gerçek zamanlı endüstri 

ihtiyaçlarını büyük ölçüde karşılar ve karmaşık sistemleri anlamada ve yenilenebilir 

enerji alanındaki profesyonelleri eğitmede öneminin altını çizer. Kullanılan SunPower 

TS-SPR-315 PV modülü 100,2 kW güç sağlamaktadır (Pmp = Pmax* Np* Ns=315* 

65*5=102 kW).  

Önerilen model, ışınım (G) ve sıcaklık (T) olmak üzere iki girdiye (öngörücü) ve 

MPP'deki gerilim (Vmp) olan tek bir hedef çıktıya dayanmaktadır. PV dizisinin 

hesaplanan gücü 100,2 kW olup, Standart Test Koşullarında (STC) G = 1000 W/m² ve T 

= 25 °C'de yaklaşık 100 kW gerçek güç vermektedir. Önerilen LSTM tabanlı MPPT 

kontrolörünün simülasyon sonuçları, geleneksel P&O MPPT ve Derin Öğrenme (DL) 

tabanlı DNN- MPPT kontrolörü ile karşılaştırılmış ve performans değerlendirme 

parametreleri kullanılarak önerilen LSTM'nin üstünlüğü sağlanmıştır. Simülasyon 

sürecinde, veri toplama, ön işleme ve bölme dahil olmak üzere Makine Öğrenimi (ML) 

ve DL algoritmalarının eğitilmesi ve test edilmesi için gerekli tüm adımlar MATLAB M-

File kodlaması kullanılarak gerçekleştirilmiştir. Ardından, eğitilen MPPT modelleri, 

şebekeye bağlı PV modeline entegre edilmek üzere Simulink'e aktarılır. Daha sonra, 

MPPT kontrolörlerinin verimliliğini, DC bağlantı voltaj regülasyonunu ve şebekeye güç 

aktarımını değerlendirmek için eğitilmiş MPPT modellerine yeni görünmeyen giriş 

sinyalleri (G, T) verilir. Bölümün geri kalanı aşağıdaki gibi düzenlenmiştir: 

• Veri Toplama, Ön İşleme ve Görselleştirme 

• Model Eğitimi ve Testi 

• Eğitilmiş Modelin Simulink'e Aktarımı ve Şebekeye Bağlı PV'ye Entegre Edilmesi 

• İlk Aşamada MPPT Kontrolör Performansı 

• İnvertör Kontrolü ve PV'den Şebekeye Güç Aktarımı 
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5.1.  Verı̇ Toplama 

 

Denetimli ML ve DL ağlarında, girdi ve hedef veri setlerinin toplanması, ağın 

tasarlanması ve eğitilmesinden önceki en önemli adımdır. Bu tezde, toplanan veri seti 

hem girdiler (G, T) hem de tek bir hedef veya çıktı (𝑉𝑚𝑝) için bir milyon veri noktası 

içermektedir. Giriş ve hedef veri setinin toplanması ve bölünmesi için ayrıntılı adımlar 

hem DNN hem de önerilen stack LSTM için geçerli olan aşağıdaki alt bölümlerde 

açıklanmaktadır. 

 

5.1.1.  Tam Girdi Veri Seti 

 

Denetimli bir DL yöntemi olarak önerilen stack LSTM ağı, girdi ve hedef veriler 

arasındaki karmaşık ilişkileri anlamak için hem girdi hem de hedef verilere ihtiyaç duyar. 

Kullanılan veri seti, küçük, dağıtılmış 100 kW PV sistemlerinin karmaşıklığını ve kaynak 

kısıtlamalarını dengeleyen ve pratik kaynak kısıtlamaları dahilinde LSTM'nin 

performansını artıran bir milyon veri noktası içermektedir. W/m^2 birimindeki güneş G 

verileri Ulusal Yenilenebilir Enerji Laboratuvarı (NREL), Avrupa Güneş Radyasyon 

Atlası (ESRA) ve Dünya Radyasyon Veri Merkezi (WRDC) gibi çeşitli saygın 

kaynaklardan temin edilebilir.  

Bu kaynaklarda mevcut olan değerler PV tesisinin coğrafi konumuna göre değişir 

ancak bu değerler 0 ila 10 veya 20 w/m2 gibi çok küçük aralıklardadır. Normalde, 

simülasyon 0 ile 1000 𝑤/𝑚2 arasındaki G değerleri üzerinde gerçekleştirilir. Bu tezde, 

gerçek G değerleri ve etkileri analiz edilmiş ve daha sonra Bölüm 4'te açıklandığı gibi 

denklemler kullanılarak kendi verileri oluşturulmuştur. 

Bu tezde, veri yapısı ve girdilerin davranışı ilk olarak yukarıdaki kaynaklardan 

doğrulanmış ve ardından MATLAB 2023© kullanılarak istenen aralıkta örnek bir veri 

kümesi oluşturulmuştur. Benzer veri oluşturma veya toplama yaklaşımları (R. B. Roy et 

al., 2021), ve (Srinivasan & Ramalingam Balamurugan, 2022)'de yazarlar tarafından 

benimsenmiştir. Girdileri ve hedef verileri içeren veri setinin tamamı Şekil 5.1'de 

gösterilmektedir. Bu tezde kullanılan iki giriş sinyali G ve T'dir; burada G 0- 1000 𝑤/𝑚2 

arasında ve T 20- 80°C arasında değişmektedir ve her ikisi de sırasıyla (4.8) ve (4.9) 

denklemlerinden elde edilmektedir. G ve T değerleri için benzer bir veri toplama 

yaklaşımı (R. B. Roy et al., 2021) tarafından da kullanılmıştır. Hedef çıkış, yazarların 

(Srinivasan & Ramalingam Balamurugan, 2022)'deki tavsiyelerini takiben denklem 
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(4.11) kullanılarak 255-275V arasında değişen 𝑉𝑚𝑝'dir. Giriş ve hedef veri denklemleri 

ve ayrıntılı açıklamalar Bölüm 4'te verilmiştir. Bu kapsamlı veri seti, önerilen stack 

LSTM modellerinin, girişlerin değerlerindeki değişikliklere rağmen doğru MPPT için 

doğrusal olmayan karmaşık giriş-hedef ilişkilerini ortaya çıkarmasını sağlar.  

 

 
 

Şekil 5.1. Her biri 1 milyon veri noktası içeren tam girdi ve hedef veri seti 

 

5.1.2.  Eğitim Veri Seti 

 

Veri setinin bir eğitim ve bir test grubuna doğru şekilde bölünmesi, denetimli DL 

modelleri için çok önemlidir. Bu tezde, (Gholamy et al., 2018)'de önerilen standart 80/20 

veri bölme kuralı dikkate alınmıştır. 1 milyon örneğin ilk %80'i eğitim için, kalan %20'si 

ise modelin genellemesini test etmek için kullanılır. Eğitim ve test arasındaki bu 

kategorizasyon, aşırı öğrenmeyi önler ve gerçekçi bir performans tahmini sağlar. Eğitim 

veri kümesi, her biri sırasıyla 0-1000 w/m^2, 20-80°C ve 255-275V arasında değişen G, 

T ve hedef 𝑉𝑚𝑝 değerleri için toplam veri kümesinin %80'i olan 800.000 örnek içerir ve 

bu değerler Şekil 5.2'de gösterildiği gibi LSTM ağlarının karmaşık giriş-çıkış ilişkilerini 
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öğrenmesi için çok önemlidir. Çok sayıda etiketli veri seti örneği, LSTM modelinin 

gerçek dünyadaki çalışma koşullarını optimum 𝑉𝑚𝑝 ile eşleştirmesini sağlar. Çok sayıda 

etiketli örnek, veri odaklı DL yaklaşımını destekleyerek LSTM modelinin geleneksel 

tekniklerle yakalanamayan MPPT kontrolörünü genelleştirmek için kısıtlı kalıpları tespit 

etmesini sağlar. Böylece, 800.000 farklı eğitim örneği, gerçek dünya uygulamalarında 

değişken PV sistemleri için sağlam MPPT performansı elde etmek için temel sağlar. 

 

 
 

Şekil 5.2. Toplam veri örneklerinin ilk %80'ini içeren eğitim veri seti 

 

5.1.3.  Test Veri Seti 

 

Toplam örneklerin %20'si olan 200.000 örnekten oluşan test veri seti, gerçek 

performansın dikkatli bir şekilde değerlendirilmesini sağlar. Sırasıyla 0-1000 w/m2, 20-

80 °C ve 255-275V değerlerini içeren G, T ve Vmp'yi temsil eden test verileri, Şekil 5.3'te 

gösterildiği gibi görünmeyen veriler olarak kabul edilir. Bu kapsamlı test verisi, model 

doğruluk tahminlerinde yanlılığı önler. Büyük miktarda görünmeyen verinin 

değerlendirilmesi, eğitilmiş ML veya DL modelinin genelleştirilebilirliğini ölçer. Test 
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metrikleri, iyi eğitilmiş bir LSTM modelinin aşırı uyum olmadan gerçek dünya MPPT 

kontrolündeki etkinliğini göstermektedir. Esasen, tüm veri setinin %20'si olan 200.000 

farklı test vakası, PV çalışma ortamında MPPT'nin etkinliğini gerçekten yansıtmaktadır 

(Alsharef et al., 2022). Test veri seti ve sonuçları, geleneksel tekniklere karşı 

kıyaslamanın ayrılmaz bir parçasıdır. 

 

 
 

Şekil 5.3. Toplam veri örneklerinin son %20'sini içeren test veri seti 

 

5.2.  Verı̇ Ön İşleme ve Normalleştı̇rme 

 

Verileri eğitim ve test veri setlerine ayırdıktan sonra, bir diğer önemli adım, toplu 

LSTM DL modelini eğitmek için uygun verileri temizlemek ve normalleştirmek için 

kullanılan "veri ön işlemedir". Bir DL modelini eğitmeden önce verilerin 

normalleştirilmesi çok önemlidir çünkü tüm özellikleri ortak bir ölçeğe dönüştürür ve 

istikrarlı bir yakınsama sağlar. Normalleştirme olmadan, farklı veri aralıkları 

modellemeyi bozabilir ve saptırabilir. İki yaygın yöntem, öz değerlerin 0-1 aralığında 

ölçeklendirildiği min-max normalizasyonu ve verilerin ortalama etrafında ortalanmış 
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standart sapma ile ölçeklendirildiği z-skor normalizasyonudur (Bhanja & Das, 2018). 

Ortalama, veri kümesinin ortalama değerini temsil ederken, standart sapma, ortalama 

etrafındaki değerlerin dağılımını ölçerek verilerin dağılımı hakkında fikir verir. Ortalama 

ve standart sapma kullanılarak hesaplanan Z skorları aykırı değerlere karşı dayanıklıdır 

ve bu nedenle aşırı değerlerin ölçekleme yöntemini bozabileceği gerçek dünya veri 

kümelerinde özellikle değerlidir. Ayrıca normalleştirme, DL algoritmalarının her bir 

özelliğin katkılarını etkili bir şekilde öğrenmesi için ortak bir temel sağlar. 

 

5.2.1.  Eğitim Verilerinin Normalleştirilmesi 

 

G, T ve 𝑉𝑚𝑝'nin ham eğitim veri seti değerleri, önceki alt bölümlerde açıklandığı 

gibi sırasıyla 0-1000, 20-80 ve 255-275 arasında değişmektedir. Ham verileri ortalaması 

0 ve standart sapması -3 ila 3 olan normalleştirilmiş z-değerlerine dönüştüren Z-skor 

normalizasyonu uygulanmıştır. Bu çalışmadaki veriler -1,7 ile 1,7 arasında STD 

değerlerine sahiptir, bu da verilerin çoğunun ortalama değere yakın olduğunu ve aykırı 

değer olmadığını gösterir (Asesh, 2022). Tüm değişkenler için y ekseni z değerleri -1,7 

ila 1,7 arasında değişirken, x ekseni sınırları (%80 örneklem) Şekil 5.4'te gösterildiği gibi 

değişmeden kalmıştır.  

 
 

Şekil 5.4. Ham eğitim veri setine uygulanan Z-skor normalizasyonu 
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Normalizasyonun -1,7 ile 1,7 arasındaki tekdüze dağılım aralığı, farklı 

değişkenleri çarpıklık olmadan ortak bir ölçeğe getirmede başarılı olduğunu 

göstermektedir. Z-değeri normalizasyonu, sabit kesme değerleri yerine her bir değişkenin 

dağılımının istatistiklerine odaklanarak aykırı değerler için bile dengeli bir normalizasyon 

sağlar. 

 

5.2.2.  Test Verilerinin Normalizasyonu 

 

Modelin genellenebilirliğini değerlendirmek için örneklerin son %20'si test veri 

seti olarak ayrılmıştır. Eğitim verilerinde olduğu gibi, test veri setinin girdi ve çıktı 

değişkenleri de z değeri normalleştirme yöntemi kullanılarak normalleştirilmiştir. Bu 

işlem, ham G, T ve 𝑉𝑚𝑝 test verilerini Şekil 5.5'te gösterildiği gibi -1,7 ila 1,7 arasında 

normalleştirilmiş bir aralığa dönüştürmüştür.  

 

 
 

Şekil 5.5. Ham test veri setine uygulanan Z-skor normalizasyonu 
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Verilerin bölünmesine rağmen tutarlı normalize edilmiş aralıklar, test verilerinin 

dağılımının eğitim seti gibi olduğunu göstermektedir. Eğitim dağılımının yalnızca 

ortalamasını ve standart sapmasını kullanan normalizasyon, aynı istatistiksel dönüşümün 

test verilerine de uygulanmasını sağlar. Bu tutarlı normalizasyon, modelin aynı 

operasyonel dağılımdan yeni örneklere genelleme yeteneğinin tarafsız bir 

değerlendirmesi için gereklidir. Normalize edilmiş alan, test verilerinin eğitim setinin 

özelliklerine göre etkili bir şekilde normalleştirildiğini doğrular.  

Bu bölümde, bölünmüş eğitim ve test verileri, DL modellerinin eğitimi için çok 

önemli bir adım olan normalizasyona tabi tutulur. Normalizasyon hızlı yakınsama sağlar, 

doğru aktivasyon fonksiyonunun seçilmesine yardımcı olur ve aşırı uyumu önlerken 

model kararlılığını artırır. Normalleştirmeden sonra bölüm, eğitimden önce veri 

özelliklerini anlamak için veri görselleştirmeye doğru ilerlemektedir. 

 

5.3.  Veri Görselleştirme 

 

Veri görselleştirme, 1 milyon örnekten oluşan örneklenmiş veri kümesinin 

tamamında veri toplama ve normalleştirmenin ardından gelen bir diğer hayati adımdır. 

Bu, G (0-1000) ve T (20-80) girdilerini hedef 𝑉𝑚𝑝 (255-275) çıktısına eşler. Bu önceden 

işlenmiş verilerin görselleştirilmesi, ham verilerde belirgin olmayan gizli kalıpları ve 

ilişkileri ortaya çıkarır. Kutu grafikleri, histogramlar ve korelasyon matrisleri gibi 

teknikler verilerdeki dağılımları, aykırı değerleri, korelasyonları ve doğrusal olmayan 

ilişkileri etkili bir şekilde görselleştirebilir.  

Yüksek kaliteli görselleştirmeler uygun normalleştirmeyi sağlar, anomalileri 

yakalar, özelliklerin önemini vurgular ve sadece ham verilere bakarak kolayca gözden 

kaçabilecek içgörüleri ortaya çıkarır (Inglis et al., 2022). Bu nedenle, DL'de 

normalleştirilmiş verilerin görselleştirilmesi, model seçimi ve hiperparametrelerin veri 

özelliklerine göre ayarlanması için paha biçilmez bir rehberlik sağlar. Etkileşimli görsel 

analitik araçlar, özellik etkileşimlerini ölçmek için verileri birden fazla perspektiften 

dilimlemeye olanak tanır. Verilerin zamansal veya mekansal boyutlarda 

görselleştirilmesi, kaliteli temsiller sağlamak için zaman serileri ve mekansal modeller 

için de kritik öneme sahiptir. Genel olarak, çok yönlü görselleştirmeler yoluyla "verilerin 

görünürlüğü" üstün makine öğrenimi modellerini katalize eder. 
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5.3.1.  Kutu Grafikleri ve Histogram Tabanlı Veri Görselleştirme 

 

Kutu grafikleri ve histogramlar istatistiksel analizde önemli araçlardır; kutu 

grafikleri meydanları, çeyrekleri ve aykırı değerleri gösterirken, histogramlar verilerin 

frekans dağılımını gösterir (Asesh, 2022). Her ikisi de merkezi eğilimi, dağılımı, şekli ve 

aykırı değerlerin varlığını kısaca göstererek ham verilerin önemli yönlerini ortaya 

çıkarabilir. Bu grafiksel gösterimler yalnızca verilerin netliğini artırmakla kalmaz, aynı 

zamanda bilim ve araştırmada sağlam modelleme için paha biçilmez bir destek sağlar. 

Şekil 5.6, X ekseninin parametre değerlerini (G: 0-1000 W/m², T: 20-80 °C ve Vmp: 255-

275 V) ve Y ekseninin frekansları temsil ettiği standartlaştırılmamış veri setinin nispeten 

tekdüze dağılımını göstermektedir. Bu tutarlılık, veri temsilinde çeşitlilik sağlamakta ve 

tahmin aralığını doğrulamaktadır. Veri setlerini temsil etmek için kutu grafikleri ve 

histogramların kullanılması, önemli kalıpları ve aykırı değerleri vurgularken veri setinin 

bütünlüğünü artırarak daha gerçekçi hale getirir. 

 

 
 

Şekil 5.6. Normalleştirilmemiş verilerin kutu grafiği ve histogram tabanlı görselleştirilmesi 

 

Şekil 5.7 histogramı ve kutu grafiklerini tek tip bir ölçekte (-1,7 ila 1,7) ve z'ye 

normalize edilmiş olarak göstermektedir. Normalizasyon, farklı verilerin ortak bir ölçeğe 

normalize edilmesini sağlayarak karşılaştırmayı kolaylaştırır. Bu, veri tutarlılığı ve model 

esnekliği sağlar. Ayrıca histogram analizi, değiştirilmiş veri setinin davranışını anlamaya 
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yardımcı olur. -1,7 ila 1,7 aralığında, -1 veya 1'e yakın değerler ortalamaya yaklaşıldığını 

gösterirken, diğer değerler ortalamadan sapmayı gösterir. Dağılım modellerinin tam 

olarak bilinmesi, sonraki analizlerin güvenilirliğini artırır ve ön işleme aşamasının 

geçerliliğini teyit eder. 

 

 
 

Şekil 5.7. Normalleştirilmiş verilerin kutu grafiği ve histogram tabanlı görselleştirilmesi 

 

5.3.2.  Korelasyon Tabanlı Veri Görselleştirme 

 

Korelasyon matrisi, girdi değişkenleri ile hedef değişkenler arasındaki ilişkiyi 

anlamak için kullanışlı bir veri görselleştirme aracıdır (Haas et al., 2018). Isı haritaları, 

bir veri setindeki her bir değişken çifti arasındaki korelasyon katsayısını göstermek için 

kullanılır. Korelasyon katsayısı, iki değişken arasındaki doğrusal ilişkinin gücünü ve 

yönünü gösterir. Korelasyon katsayısının -1 olması mükemmel bir negatif korelasyonu, 

1 olması mükemmel bir pozitif korelasyonu ve 0 olması ise korelasyon olmadığını 

gösterir. Önerilen girdi değişkenleri (G, T) ile hedef değişkenler arasındaki ilişki Şekil 

5.8'de gösterildiği gibi bir korelasyon matrisi olarak temsil edilmekte ve noktalar aşağıda 

özetlenmektedir: 

• İki girdi değişkeni (G, T) ve bir hedef (𝑉𝑚𝑝) kendi aralarında mükemmel bir 

korelasyona sahiptir ki bu doğrudur çünkü her değişken kendi içinde mükemmel bir 

korelasyona sahip olmalıdır.  
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• G ve T arasındaki 0,23 korelasyon değeri zayıf bir pozitif korelasyondur, yani G 

değeri arttıkça T değeri de bir miktar artacaktır. Bununla birlikte, ilişki çok güçlü 

değildir ve verilerde hala büyük bir dağılım vardır. 

• T ve G arasında korelasyon yoktur (0.00), bu da iki değişken (T ve G) arasında bir 

ilişki olmadığını ve T değişkenindeki değişikliklerin G değişkeninin değerlerini 

etkilemediğini göstermektedir. 

• G ve 𝑉𝑚𝑝 arasında güçlü bir pozitif korelasyon vardır (0.73). Bu, G değeri arttıkça 

Vmp değerinin de artma eğiliminde olduğu anlamına gelmektedir. İlişki güçlü ve 

pozitiftir ve verilerde nispeten az değişkenlik vardır. 

• T ve 𝑉𝑚𝑝 değişkenleri -0,83 korelasyon değerine sahiptir ve bu da güçlü bir negatif 

ilişki sergilemektedir; yani T değeri arttıkça Vmp değeri azalacak ve bunun tersi de 

geçerli olacaktır. İlişki güçlüdür ve verilerde nispeten az dalgalanma vardır.   

Yukarıdaki korelasyon analizi, verilerin doğru şekilde oluşturulmasını, 

normalleştirilmesini ve dağıtılmasını sağlayan PV dizisi yaklaşımımızı takip etmektedir. 

Solar PV'de G, 𝑉𝑚𝑝 ve PV gücünü doğrudan etkiler ve T, G ile Vmp arasında güçlü bir 

pozitif ilişki ve T ile 𝑉𝑚𝑝 arasında güçlü bir negatif ilişki ile yukarıdaki korelasyon 

analizinden de anlaşılacağı üzere 𝑉𝑚𝑝 ve PV gücü ile ters orantılıdır. Şekil 5.8'de 

gösterilen korelasyon sonuçlarından çıkan önemli bir sonuç, hem orijinal hem de 

normalleştirilmiş veriler için matris sonuçlarının benzerliğidir ve benzer durum yazarlar 

tarafından (Choi & Shin, 2021) 'de de önerilmektedir. G, T ve Vmp arasındaki 

korelasyonlar z-değeri normalizasyonundan etkilenmez, bu da göreceli ilişkilerin ve 

korelasyonların korunduğunu gösterir. Korelasyonların değişmeden kalması, 

normalleştirmenin doğru olduğunu ve ön işlemenin bütünlüğünün korunduğunu gösterir. 

Korunan korelasyon yapısı hem ham hem de normalleştirilmiş verileri kullanarak 

doğrudan karşılaştırma ve eğitime olanak tanır, böylece veri içeriğini değiştirmeden 

modelleme esnekliği sağlar. 

Güçlü normalleştirme ve ayrıntılı görselleştirme dahil olmak üzere özenle 

seçilmiş 1 milyon örnek veri seti, kanıta dayalı DL'yi kolaylaştırır. Normalleştirme 

önemli ilişkilerden ödün vermeden tutarlılığı korurken, görselleştirme çok değişkenli 

korelasyonları ve varyansı ortaya çıkarır. Bu ön işleme, veri bütünlüğünü sağlar ve etkili 
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DL modellerini mümkün kılar. Doğru ön işleme esastır ve yapılandırılmış veri tabanları 

artık DNN ve LSTM DL model eğitimi için hazırdır. 

 

 
 

Şekil 5.8. Normalleştirilmiş ve ham girdilerin (G, T) ve hedef (Vmp) verilerin korelasyon matrisi 

 

5.4.  DL Tabanlı MPPT Modelı̇nı̇n Eğı̇tı̇mı̇ 

 

Başarılı veri toplama, normalleştirme ve görselleştirmeden sonra bu bölüm, bu 

araştırmanın temel alanı olan hem DNN hem de LSTM için geçerli olan DL modellerinin 

eğitimine doğru ilerlemektedir. Bu tezde, 100 kW'lık bir PV dizisini mikro şebekeye 

bağlamak için üç ana MPPT kontrolörü dikkate alınmıştır: (a) P&O MPPT kontrolörü, 

(b) DNN tabanlı MPPT kontrolörü ve önerilen stack LSTM tabanlı MPPT kontrolörü. 

P&O, ML veya DL tabanlı bir MPPT yöntemi değil, geleneksel bir yaklaşımdır ve eğitim 

veri setine ihtiyaç duymaz, bu nedenle P&O'nun kodu doğrudan MATLAB'da yazılır ve 

şebekeye bağlı PV modelinde kullanılmak üzere Simulink'e aktarılır. DNN ve LSTM 

dahil olmak üzere iki MPPT kontrolörünün geri kalanı, iki girişli (G, T) ve tek hedef 

çıkışlı (𝑉𝑚𝑝) 1 milyon veri noktasından oluşan önceden işlenmiş bir veri kümesi üzerinde 

eğitilmiştir. Bu DL modellerinin başarılı bir şekilde eğitilmesinden sonra, eğitim ve test 

hataları hesaplanmış ve her iki modelin performansı, performans değerlendirme 

parametreleri açısından karşılaştırılmıştır. Bu alt bölüm, ilk olarak DNN'nin eğitim 

sürecini ve ardından LSTM ağının eğitim ve test sürecini açıklayarak devam etmektedir. 
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5.4.1.  DNN tabanlı MPP Ağ Eğitimi 

 

İleri beslemeli çok katmanlı DNN'ler, karmaşık kalıpları ve doğrusal olmayan 

ilişkileri yakalamada yalnızca bir gizli katmana sahip geleneksel ANN'lardan daha iyi 

performans gösterir. Daha fazla katman ekleyerek, DNN'ler bilgiyi katmanlandırmak için 

soyut özellikler çıkarabilir ve hedef 𝑉𝑚𝑝 'yi tahmin etmek için değişkenlerdeki (örneğin, 

T ve G) karmaşık kalıpları yakalayabilir (Huo & Meckl, 2022). Bu nedenle, bu alt bölüm 

DNN ağının tasarımı ile devam etmekte, ardından etkili eğitim için hiperparametrelerin 

seçimi yapılmakta ve daha sonra görünmeyen veriler üzerinde test edilmektedir. 

 

5.4.1.1.  DNN Mimarisi 

 

Tek gizli katmanlı ANN, hedef değişken olarak 𝑉𝑚𝑝'yi ve T ve G değişkenlerimiz 

gibi belirli girdiler arasındaki doğrusal olmayan ilişkileri tahmin ederken nispeten daha 

basit veri modellerini modellemek için çok uygundur.  

 

 
 

Şekil 5.9. 64 ve 32 birimlik iki gizli katmana sahip ileri beslemeli DNN mimarisi 
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Bununla birlikte, problem karmaşıklığı arttıkça, girdi verilerindeki kesinti ve hızlı 

değişikliklerle birlikte, ANN dizi tahmininde ağırlık optimizasyonunun üstesinden 

gelmek için birden fazla gizli katman gerektirir. 

Buna karşılık, Şekil 5.9'da gösterildiği gibi sırasıyla 64 ve 32 birimlik iki gizli 

katmana sahip çok katmanlı ileri beslemeli DNN mimarisi, girdilerdeki (G, T) karmaşık 

örüntüleri yakalamada mükemmeldir. Bu çoklu katmanlar yalnızca regresyon görevlerini 

optimize etmekle kalmaz, aynı zamanda aşırı uyumu önleyerek hedef çıktımızı (𝑉𝑚𝑝) 

tahmin etmek için çeşitli senaryolarda güçlü performans sağlar.  

Z-skoru normalize edilmiş girdi veri seti (G ve T), sırasıyla 64 ve 32 nörondan 

oluşan katmanlar aracılığıyla işlemek için tanh aktivasyon fonksiyonunu kullanan DNN 

ağına aktarılmıştır. tanh, -1 ile 1 arasındaki kısıtlı aralıkta karmaşık doğrusal olmayan 

modelleri yakalayabildiği için seçilmiştir (Sharma et al., 2020). Bu karar, ağın tutarlılığını 

korurken ve gradyan kaybolma sorunlarından kaçınırken verilerdeki karmaşık ilişkileri 

temsil edebilmesini garanti eder. DNN'nin çıktısı, doğrusal bir fonksiyonla etkinleştirilen 

ve 255 ila 275 hedef aralığında tahminler üreten son çıktı katmanı tarafından problem 

alanının bağlamıyla uyumlu hale getirilir. 

 

5.4.1.2.  DNN Hiperparametre Seçimi 

 

Doğru hiperparametrelerin seçilmesi etkili eğitimin anahtarıdır. Bu tezde, eğitim 

ve test verileri için 80-20 bölme kuralı takip edilmiştir. Her iterasyondaki eğitim 

örneklerinin sayısını belirlemek için mini yığın boyutu 32 olarak seçilmiştir ve tüm eğitim 

veri kümesinin tam bir çalışmasını veya döngüsünü temsil eden toplam 50 epok dikkate 

alınmıştır. Epok sayısının daha da artırılması eğitim ilerlemesini iyileştirebilir, ancak aynı 

zamanda hesaplama süresini ve karmaşıklığını da artırır. Dikkatle seçilen 0,05 öğrenme 

oranı stabilizasyona, hızlı yakınsamaya ve parametre ayarının optimizasyonuna yardımcı 

olur (Liao et al., 2022). Ayrıca, L2 düzenlemesi (0.0001) aşırı ağırlık artışını önler ve 

Adam optimizasyon algoritması öğrenme sürecini hızlandırır. DNN'nin model mimarisi, 

hiperparametreleri ve performans değerlendirme parametreleri Çizelge 5.1'de 

listelenmiştir.  
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Çizelge 5.1. DNN ağının ağ tasarımı, hiperparametreleri ve performans endeksleri 

Parametre Değer 

DNN Mimarisi 

Katman 

İki Gizli Katman 

(64 adet, 32 adet) 

Hiperparametreler 

Öğrenme Oranı 0.05 

Bozunma Mekanizması Uygulanan 

İlklendirme Başlatma 

L2 Düzenlemesi 0.0001 

Optimizasyon Algoritması Âdem 

Mini Grup Boyutu 32 

Eğitim-Doğrulama Ayrımı 80-20 

Performans Metrikleri 

Ortalama Kare Hatası (MSE) 0.18561 

Kök Ortalama Kare Hatası (RMSE) 0.43083 

Ortalama Mutlak Hata (MAE) 0.33843 

Kayıp Fonksiyonu Değeri < 0.1 

R-Kare (R²) 0.80438 

 

5.4.1.3.  DNN Eğitim İlerleme Durumu 

 

Önceki aşamalarda 1 milyon kayıttan oluşan veriler toplanmış, normalize edilmiş 

ve görselleştirilmiştir. Veri kümesi %80 eğitim kümesi ve %20 test kümesi olarak 

ayrılmıştır. DNN ağı şimdi "train" fonksiyonu kullanılarak eğitim veri kümesi (Xtrain ve 

Ytrain) üzerinde eğitilmiştir. Model performansı ortalama karesel hata (MSE) ve kayıp 

fonksiyonu kullanılarak değerlendirilmiştir. Şekil 5.10'da gösterildiği gibi, 50 eğitim 

epokundan sonra MSE 0,18561'e düşmüş ve kayıp 0,1'in altına inmiştir. Bu azalmalar, 

gerçek hedef değerlerle hizalanmış giderek daha doğru tahminlere işaret etmektedir. 

Düşük nihai MSE ve kayıp değerleri, DNN modelinin yeni görülmeyen verilere etkili bir 

şekilde genelleme yapmasını sağlayan optimum eğitimi gösterir. 
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Şekil 5.10. FF DNN Ağının artan epoklarla eğitim ilerleme durumu 

 

 
 

Şekil 5.11. (a) normalize edilmiş girdiler, (b) tahmin edilen değer ve (c) FF DNN kullanılarak gerçek ve 

tahmin edilen hedef Vmp arasındaki eğitim hatası 
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Normalize edilmiş eğitim girdileri (G, T), Şekil 5.11(a)'da gösterildiği gibi 

tasarlanan iki katmanlı DNN ağına beslenir ve ardından tahmin edilen çıktılar Şekil 5.11  

(b)'de gösterildiği gibi eğitim hatasını hesaplamak için gerçek eğitim hedefleriyle 

karşılaştırılır. Şekil 5.11 (c)'de gösterilen eğitim hatası 0,45 gibi küçük bir aralıktadır, bu 

da hata büyüklüğünün küçük ve sıfıra yakın olduğunu gösterir, bu da gelecekte diğer 

bilinmeyen veri kümeleri üzerinde yapılacak testler için sağlamlık sağlar. Eğitim 

sürecinde 0,18'lik bir MSE değeri fark edilmesine rağmen, RMSE değeri neredeyse 0,45 

olur, bu da tahmin edilen ve gerçek hedef değerler arasındaki fark hatası ile neredeyse 

aynıdır. DNN'lerin iyi eğitim performansı ve güvenilirliği göz önüne alındığında, bu 

sonuçlar aynı zamanda eğitilmiş DNN'lerin şebekeye bağlı PV sistemlerinin MPPT'si için 

uygun bir yaklaşım olarak kullanılmasını desteklemektedir. 

 

5.4.1.4.  DNN Ağının Test Edilmesi 

 

Eğitilen DNN modeli daha sonra görünmeyen verilerin kalan %20'si üzerinde test 

edilir. Test girişleri (G, T) Şekil 5.12 (a)'da gösterildiği gibi eğitilmiş DNN'ye verilir ve 

bu görünmeyen test edilmiş veriler üzerinde tahmin edilen çıktı elde edilir, ardından bu 

tahmin edilen çıktı Şekil 5.12 (b)'de gösterildiği gibi gerçek test hedefiyle karşılaştırılır. 

Sonuçlar, Şekil 5.12 (c)'de gösterildiği gibi, eğitim durumunda gözlemlendiği gibi sürekli 

olarak 0,45 hata aralığında kalmıştır. Yaklaşık 0,45 olan düşük hatalar da modelin 

geçerliliğini teyit etmekte ve gerçek dünyadaki güvenilirliğini ve PV sistemlerinin enerji 

üretimini yüksek doğrulukla optimize etme potansiyelini sağlamaktadır.  

Başlangıçta, DNN modeli verilerin %80'i üzerinde eğitilir ve eğitim hatası gerçek 

hedef ile tahmin edilen hedef arasındaki fark alınarak hesaplanır. Daha sonra, DNN 

modeli verilerin görülmeyen %20'si üzerinde test edilir ve hata hesaplaması için benzer 

bir yaklaşım kullanılır. Eğitilen DNN modellerinin performansı yaygın kullanılan 

performans matrisleri kullanılarak değerlendirilir. 

Performans parametrelerinin değerleri Çizelge 5.1'de listelenmiştir; Kök 

Ortalama Kare Hatası (RMSE) 0,43083'tür ve tahmin hatalarının ortalamasını ölçer. 

Ortalama Kare Hata (MSE) 0.18561'dir ve tahmin edilen değer ile gerçek hedef değer 

arasındaki ortalama kare sapmayı temsil eder. Ortalama Mutlak Hata (MAE) 0,33843'tür 

ve tahmin edilen değer ile hedef değer arasındaki ortalama mutlak farktır. Kayıp 

fonksiyonunun 0,1'den küçük değerleri, model parametrelerini optimize etmek için 

kullanılan tahmin edilen ve gerçek sonuçlar arasındaki farkı yansıtır. Son olarak, 
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0,9134'lük R-kare (R2), modelin girdilerden gelen hedefteki varyans oranını tahmin 

edebildiğini göstermektedir. Birlikte ele alındığında, bu ölçütler DNN modelinin 

değişken ışınım ve sıcaklık girdilerine dayalı olarak bir PV sisteminin 𝑉𝑚𝑝 hedef 

değerini sağlam bir şekilde uydurabildiğini ve doğru bir şekilde tahmin edebildiğini 

göstermektedir. Düşük hata ve yüksek R2, bu zaman serisi tahmin görevinde modelin iyi 

uygunluğunun ve güvenilirliğinin altını çizmektedir. 

 

 
Şekil 5.12. (a) Test girdileri, (b) tahmin edilen test ve (c) FF DNN kullanılarak gerçek ve tahmin edilen 

hedef Vmp arasındaki test hatası 

 

5.4.2.  LSTM tabanlı MPP Ağ Eğitimi 

 

LSTM, benzersiz geçitli hücre yapısı sayesinde özellikle zaman serisi regresyon 

görevinde (G, T girdileri ve hedef 𝑉𝑚𝑝) etkili performans sunar. Bu kapılı yapı, uzun 

vadeli bağımlılıkları korur ve uzun bir süre boyunca veri değişkenleri arasındaki 

örüntüleri tespit eder. DNN'lerin aksine, LSTM gradyan kaybını önler ve geçmişten gelen 

ilgili bilgilerin korunmasını sağlar. Bu dahili hafıza özelliği, hava durumu 

parametrelerinin eğilimlerini optimum güneş paneli konfigürasyonlarına eşlemek gibi 

görevler için kritik öneme sahiptir (Ozdemir et al., 2022). Ayrıca, LSTM sürekli verileri 
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işlemek için özel eğitim yöntemleri kullanır ve bu da DNN'lere göre üstün performansını 

büyük ölçüde artırır. 

 

5.4.2.1.  LSTM Mimarisi 

 

Solar PV dizisinde MPP çıkarımı için önerilen 100 kW PV şebekeye bağlı 

sistemimizin LSTM yapısı (zaman serisi regresyon görevi) Şekil 5.13'te gösterildiği gibi 

bir giriş katmanı, iki LSTM katmanı, iki bırakma katmanı, bir çıkış katmanı ve bir 

regresyon çıkış katmanından oluşmaktadır. 

 

 
 

Şekil 5.13. MATLAB'ın Derin Ağ Tasarımcısı Araç Kutusunda LSTM katmanlarının gösterimi 

 

Önerilen LSTM ağında, z-skor normalize edilmiş girdilere (0 ile 1000 arasında G 

değerleri ve 20 ile 80 arasında T değerleri) dayalı olarak, önerilen model 250 ile 280 

arasında Vmp değerlerini tahmin etmektedir. Bu girdilere ve hedef çıktıya dayalı olarak, 

bilgi sırayla girdilerden birinci LSTM katmanına, ardından ikinci LSTM katmanına, daha 

sonra tam bağlantılı katmana ve son olarak istenen tahmini çıktıyla regresyon katmanına 

akar. İlk LSTM katmanı 64 gizli birimden ve -1 ile 1 arasındaki değerleri bastırarak 

zamansal örüntüleri yakalamak için tanh aktivasyonundan oluşur. Bunu, genelleştirmeyi 

kolaylaştırmak için bir bırakma katmanı (birimlerin %20'si devre dışı bırakılır) izler. Her 

LSTM katmanını, eğitim sırasında sinir bağlantılarının %20'sini rastgele devre dışı 

bırakarak aşırı uyumu önlemek için 0,2'lik bir bırakma katmanı takip eder. İkinci LSTM 
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katmanı, aynı aralığı koruyarak örüntüyü iyileştiren 32 birimden oluşur. İkinci LSTM 

katmanından sonra, başka bir bırakma katmanı kullanılır. Ardından, çıkış katmanına 

ulaşmadan önce, sağlamlığı artırmak için bir regresyon katmanı kullanılır. Önerilen 

LSTM mimarisindeki regresyon katmanı, ardışık Vmp değerlerini tahmin ederek 255 ile 

275 arasındaki belirli bir hedef aralığını doğru bir şekilde eşler. LSTM ağının katman 

yapısı veya düzenlemesi Şekil 5.14'te gösterilmektedir. Çıkış katmanı, giriş hava 

koşulları (G, T) ile istenen çıkış voltajı (Vmp) arasındaki ince zamansal korelasyonu 

yakalamak için dikkatlice kalibre edilmiştir. 

 

 
 

Şekil 5.14. Derin Ağ Tasarımcısında LSTM katmanlarının sırası 

 

 

5.4.2.2.  LSTM Hiperparametre Seçimi 

 

LSTM modeli, aynı karmaşıklığa sahip iki DL modelinin (DNN, LSTM) doğru 

bir şekilde karşılaştırılmasını sağlamak için DNN ağının hiper parametrelerine uyacak 
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şekilde optimize edilmiştir. Sabit bir 0,05 öğrenme oranı yakınsamayı sağlar ve 

uyarlanabilir bir Adam optimize edici öğrenme oranını dinamik olarak değiştirir. Aşırı 

uyumu önlemek için aynı eğitim/doğrulama oranı olan 80/20 kullanılmıştır. Verimliliği 

ve genellemeyi dengelemek için stack boyutu 32 olarak ayarlanmıştır. Model 50 epok ile 

eğitilmiştir; daha fazla epok RMSE'yi daha da azaltmış ancak hesaplama süresini 

artırmıştır. 0,05'lik bir öğrenme oranı, yetersiz uyum olmadan makul bir yakınsama oranı 

sağlamıştır. Uyarlanabilir Adam optimize edici, kararlılığı artırmak için eğitim sırasında 

öğrenme oranını dinamik olarak ayarlar. Hiperparametreler, doğruluğu en üst düzeye 

çıkarmak için girdi verilerine (G, T) dayalı olarak hassas şekilde ayarlanmıştır. Çizelge 

5.2, ağ tasarımı, hiperparametreler ve LSTM ağı aracılığıyla elde edilen performans 

değerlendirme parametreleri sonuçlarının seçimini özetlemektedir.  

 
Çizelge 5.2. LSTM ağının ağ tasarımı, hiperparametreleri ve performans endeksleri 

 
Parametre Değer 

LSTM Mimarisi 

Katman 

İki Gizli Katman 

(64 adet, 32 adet) 

Hiperparametreler 

Öğrenme Oranı 0.05 

Bozunma Mekanizması Uygulanan 

İlklendirme Başlatma 

L2 Düzenlemesi 0.0001 

Optimizasyon Algoritması Âdem 

Mini Grup Boyutu 32 

Eğitim-Doğrulama Ayrımı 80-20 

Performans Metrikleri 

Ortalama Kare Hatası (MSE) 0.0023295 

Kök Ortalama Kare Hatası (RMSE) 0.048265 

Ortalama Mutlak Hata (MAE) 0.033978 

Kayıp Fonksiyonu Değeri < 0.05 

R-Kare (R²) 0.99768 
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Bu parametreler, optimum 𝑉𝑚𝑝 tahmini için G ve T modellerinin çoğaltılmasını 

sağlar. Performans değerlendirme sonuçları, zaman serisi verilerinin tahmini ve öngörüsü 

için tanınan LSTM'nin, şebekeye bağlı PV sistemleri için MPPT izleme veya çıkarma için 

çok uygun olduğunu göstermektedir. Simulink MATLAB Derin Ağ Tasarımcısı araç 

kutusu hiper-parametrelerin seçimini ve değiştirilmesini kolaylaştırmaktadır. 

 

5.4.2.3.  LSTM Eğitimi İlerleme Durumu 

 

Eğitim sürecinde, LSTM ağı RMSE açısından tutarlı bir iyileşme gösterirken, 

DNN yöntemi varsayılan olarak MSE açısından iyileşmeler göstermektedir. Şekil 5.15'te 

gösterildiği gibi LSTM'nin eğitim süreci, 50 eğitim epoku boyunca RMSE'yi kademeli 

olarak azaltmakta ve son epoka kadar 0,048265 gibi dikkate değer bir RMSE 

düşüklüğüne ulaşarak DNN'nin 0,43083'lük RMSE'sini geride bırakmaktadır. Ayrıca, 

LSTM'nin kayıp fonksiyonu değerleri 0.05'in altında kalırken, DNN'nin değerleri 0.1'in 

altındadır. Bu sonuçlar, Şekil 5.15'te gösterilen stratejik mimari ile birlikte, şebekeye 

bağlı PV sistemleri için güneş MPPT'sini tahmin etmede LSTM'nin yüksek düzeydeki 

doğruluğunun altını çizmektedir. 

 

 
 

Şekil 5.15. LSTM ağının artan epoklarla eğitim ilerlemesi 

Şekil 5.16, LSTM modelinin eğitim sonuçlarını göstermektedir. LSTM ağı, Şekil 

5.16(a)'da gösterildiği gibi 1 milyon girdi örneğinin (G ve T değişkenleri dahil) ilk %80'i 

ve karşılık gelen hedef değişkenler (Vmp) üzerinde eğitilir. Bu girdiler (G ve T) eğitilmiş 

LSTM ağına beslenir ve ardından tahmin edilen çıktı, Şekil 5.16 (b)'de gösterildiği gibi 

eğitim hatasını hesaplamak için gerçek eğitim hedefiyle karşılaştırılır. Şekil 5.16 (c)'de 



137 

 

 

gösterilen eğitim hatası 0.048 gibi küçük bir aralıktadır, bu da hatanın son derece küçük 

olduğunu ve tahmin edilen sonucun gerçek çıktı ile yaklaşık olarak aynı olduğunu 

gösterir. Bu doğruluk, diğer görünmeyen veri kümeleriyle gelecekteki testler için modelin 

sağlamlığını garanti eder. LSTM'nin mükemmel performansı ve güvenilirliği göz önüne 

alındığında, bu sonuçlar şebekeye bağlı PV sistemleri için MPPT için uygun bir yöntem 

olarak eğitilmiş bir LSTM kullanımını doğrulamaktadır. 

 
 

Şekil 5.16. LSTM kullanarak (a) eğitim girdileri, (b) tahmin edilen hedef ve (c) gerçek ve tahmin edilen 

hedef Vmp arasındaki eğitim hatası 

 

5.4.2.4.  LSTM Ağının Test Edilmesi  

Şekil 5.17(a)'da gösterildiği gibi eğitilmiş LSTM'ye verilir ve bu görünmeyen test 

edilmiş veri üzerinde tahmin edilen çıktı ile test hedefi Şekil 5.17 (b)'de gösterildiği gibi 

karşılaştırılır. Sonuçlar, Şekil 5.17 (c)'de gösterildiği gibi sürekli olarak 0,048 hata 

aralığında kalmıştır. Yaklaşık 0,048 olan çok düşük hatalar da modelin geçerliliğini teyit 

etmekte ve gerçek dünyadaki güvenilirliğini ve PV sistemlerinin MPP'sindeki gerilimi 

yüksek doğrulukla optimize etme potansiyelini sağlamaktadır. 
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Şekil 5.17. (a) Test girdileri, (b) gerçek test hedefine karşı öngörülen hedef ve (c) LSTM kullanılarak 

gerçek ve öngörülen hedef Vmp arasındaki test hatası 

 

5.4.3.  DNN ve LSTM Modellerinin Performans Değerlendirme Karşılaştırması 

 

Önceki adımlarda, her iki DL modeli (LSTM, DNN) için (a) veri toplama, (b) 

normalleştirme, (c) görselleştirme, (d) bölme, (e) ağ tasarımı, (f) hiper parametrelerin 

seçimi, (g) eğitim ve (h) her iki DL modelinin test edilmesi dahil olmak üzere tüm önemli 

adımlar sırayla gerçekleştirilir. Şimdi, her iki modelin performansını karşılaştırma 

zamanı. ML ve DL'de MSE, RMSE, MAE ve R-kare gibi performans parametreleri 

modelin güvenilirliğini, doğruluğunu ve verimliliğini değerlendirmek için çok önemlidir 

(Dewang Chen et al., 2022).  

Performans sonuçlarına geçmeden önce, performans metriklerinin bir özeti 

vurgulanmıştır. MSE, gerçek ve tahmin edilen değerler arasındaki ortalama karesel 

sapmanın bir ölçüsüdür ve modelin genel doğruluğu hakkında bilgi sağlar. MSE'den 

türetilen RMSE, tahmin edilen ve gerçek değerler arasındaki karesel farkların 

ortalamasının karekökünü temsil eder ve bir tahmin modelinin tahminlerinin 
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doğruluğunun bir ölçüsünü sağlar. MAE, tahmin edilen hedef ile gerçek hedef arasındaki 

ortalama mutlak hatayı hesaplar. Model uyumu, girdilerden tahmin edilebilen hedef 

varyansını analiz eden R-kare (R2) ile belirlenir. Genel olarak, bu ölçütler ML ve DL 

modellerinin performansının belirlenmesinde önemli bir rol oynamaktadır. DNN ve 

LSTM modellerinin hem ham veriler hem de normalleştirilmiş veriler için performansı 

Çizelge 5.3'te listelenmiştir. 

 
Çizelge 5.3. Hem ham hem de normalleştirilmiş veriler için DNN ve LSTM performans parametrelerinin 

karşılaştırılması. 

Performans Metrikleri Norm LSTM Orijinal 

LSTM 

Norm DNN Orijinal 

DNN 

Ortalama Kare Hatası 

(MSE) 

0.0023295 0.046674 0.18561 3.7189 

Ortalama Karekök Hatası 

(RMSE) 

0.048265 0.21604 0.43083 1.9285 

Ortalama Mutlak Hata 

(MAE) 

0.033978 0.15209 0.33843 1.5148 

R-kare (R2) 0.99768 0.99768 0.80438 0.80438 

 

Kolay bir karşılaştırmalı analiz için, DNN ve LSTM'nin performansı arasındaki çubuk 

grafik tabanlı grafiksel analiz Şekil 5.18'te gösterilmiştir. 10. Grafiksel sonuçlar, 

LSTM'nin MSE'sinin 0,0023295 iken DNN'ninkinin 0,18561 olduğunu; RMSE ve 

MAE'nin sırasıyla 0,048265 ve 0,43083 ve 0,033978 ve 0,33843 olduğunu ve R2'nin 

sırasıyla 0,99768 ve 0,80438 olduğunu göstermektedir.  

Bu sonuçlar, LSTM'nin DNN'den daha iyi performans gösterdiğini ve önemli 

doğruluk, hassasiyet ve tahmin yeteneği ortaya koyduğunu göstermektedir. Bunun 

nedeni, LSTM'nin depolama biriminin bilgiyi daha uzun süre saklayabilmesi ve böylece 

sürekli verilerin işlenmesini kolaylaştırmasıdır. Konuşma tanıma, dil çevirisi ve borsa 

tahmini gibi sürekli veri içeren görevlerde, DNN'ler bu yetenekten yoksun oldukları ve 

girdileri yalnızca bağımsız olarak işleyebildikleri için daha az etkilidir. Tüm metriklerde, 

LSTM'nin doğruluğu ideal doğruluğa çok yakındır, bu da LSTM'nin verilerdeki karmaşık 

örüntüleri yakalamadaki etkinliğini vurgulamakta ve bu çalışmada DNN'den daha iyi 

performans gösterdiğini kanıtlamaktadır.  
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Şekil 5.18. Her iki DL (DNN ve LSTM) Ağı arasındaki performans karşılaştırma analizi. 

 

Eğitilen LSTM ve DNN modelleri artık hazırdır ve önerilen 100 kW şebeke bağlantılı 

PV sisteminde kullanılmak üzere Simulink'e aktarılmıştır. 

 

5.5.  Şebekeye Bağlı PV ı̇çı̇n MPPT Kontrolü 

 

Bu çalışmanın odak noktası, şebekeye bağlı PV sistemler için LSTM tabanlı bir 

MPPT kontrolörü geliştirmek ve bunu FF DNN tabanlı geleneksel P&O ve DL tabanlı 

MPPT kontrolörleri ile karşılaştırmaktır.  

 

 
 

Şekil 5.19. 100 kW şebekeye bağlı PV sisteminin Simulink modeli 
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Önerilen modelin Simulink diyagramı Şekil 5.19'de gösterilmektedir. MPPT 

kontrolörünün (LSTM, DNN, P&O) her biri ayrı ayrı modele entegre edilmiş ve 

simülasyon sonuçları elde edilmiş ve ardından karşılaştırılmıştır. DL tabanlı 

kontrolörlerin (LSTM, DNN) veri işleme görevleri arasında veri toplama, veri işleme, 

eğitim ve test yer almaktadır. P&O yöntemi verilerle ilgilenmediği için doğrudan 

MATLAB M-File kodlaması ile kodlanmıştır. Simulink fonksiyon blokları kullanılarak, 

P&O doğrudan PV sisteminin Simulink modeline uygulanır ve şebekeye bağlı PV 

sisteminin Simulink modeliyle entegre edilir. P&O yönteminin ayrıntılı açıklaması, blok 

diyagramı ve sözlü kodu Bölüm 3'te verilmiştir.  

FF DNN yönteminde, eğitilen DNN modeli gensim komutu kullanılarak 

Simulink'e aktarılır, ancak LSTM ağı bu tür yerleşik gensim komutlarını kabul etmez. Bu 

nedenle, LSTM ağı M-File Coding kullanılarak tasarlanır ve ardından önceden işlenmiş 

veri kümesi Deep Network Designer'a (DND) yüklenir. DND araç kutusu, eğitilmiş 

LSTM modelini Simulink'e aktarmak için esneklik sunar ve PV sisteminin şebekeye bağlı 

Simulink modeliyle sorunsuz entegrasyon sağlar. 

 

 
 

Şekil 5.20. Şebekeye bağlı PV sistemindeki tüm sinyallerin görselleştirilmesi ve çizilmesi 

 

Simülasyon sonuçları önce Simulink'te analiz edilir ve Scope bloğu ile 

görselleştirilir. Sinyal verileri daha sonra "toworkspace" Simulink bloğu aracılığıyla 

workspace'e gönderilir. Bu işlem, Şekil 5.20'de gösterildiği gibi, şebekeye bağlı PV 

sisteminin her aşaması için akım, gerilim ve güç gibi değişkenler için simülasyon 

sonuçları ve diyagramları oluşturmak için kullanılır. 
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5.5.1.  Simulink'te Şebekeye Bağlı PV Sistemin MPPT'si için Giriş Sinyalleri 

 

Önceden eğitilen modeller (LSTM, DNN) veri setinin %20'si üzerinde test 

edilmiştir. Şimdi, eğitilen modeller Simulink'e aktarılarak 100 kW şebeke bağlantılı PV 

sisteminin Simulink modeliyle entegre edilmesi modellenmektedir. G ve T sinyalleri 

toplam 1,5 birim örnekleme süresi (𝑇𝑠) boyunca uygulanır ve powergui bloğunda 

örnekleme süresi 1𝑒−6 olarak varsayılır, bu giriş sinyalleri bu 𝑇𝑠 süresinde yaklaşık 1,5 

milyon örnekleme değerine sahiptir. Performansını ve davranışını kapsamlı bir şekilde 

değerlendirmek için Şekil 5.21'de gösterildiği gibi G ve T değişken sinyalleri 

kullanılmıştır. Sinyaller, her biri x ekseninde 0,15'lik artışlardan sonra G ve T girişlerinin 

belirli bir davranışına karşılık gelen 9 farklı duruma (1'den 9'a) ayrılmıştır. 

 

 
 

Şekil 5.21. Simulink ortamında MPPT kontrolörlerine (LSTM, DNN, P&O) G ve T giriş sinyalleri 

Bu yaklaşım, değişen G ve T koşulları altında modelin tepkisinin ayrıntılı bir 

şekilde değerlendirilmesine olanak tanır. Bu, MPPT kontrolörünün farklı çevresel 

senaryolar altındaki davranışına ilişkin değerli bilgiler sağlar. Önerilen modelin analizini 

kolaylaştırmak için 9 durum aşağıdaki gibi düzenlenmiştir: 

• Durum 1: STC - G = 1000 W/m^2, T = 25 °C 

Bu ilk durumda, her iki giriş (G, T) de STC değerlerinde tutulmuştur. Çünkü bu 

tezde PV dizisi maksimum 100 kW güç üretmektedir. Bu durum, STC koşulunda her bir 
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MPPT denetleyicisi tarafından üretilen maksimum gücün analiz edilmesine yardımcı 

olur.  

• Durum 2: Azalan G, T = 25 °C 

Bu ikinci durumda, T değeri STC'de sabit kalmakta ve azalan G'nin solar PV dizisinin 

çıkış gücü üzerindeki etkisini analiz etmek için G doğrusal olarak azalmaktadır. 

• Durum 3: Artan G, T = 25 °C 

Bu üçüncü durumda, T hala STC değerinde sabittir ve G şimdi artan G'nin çıkış PV gücü 

üzerindeki etkisini analiz etmek için doğrusal olarak artmaktadır. 

• Durum 4: G = 1000 𝒘/𝒎𝟐, T 80 °C'ye Yükseltildi 

Bu dördüncü durumda, G değeri STC değerinde sabit kalırken, T en yüksek değerine 

yükselir ve bu da yüksek sıcaklığın PV dizisinin performansı üzerindeki etkisini analiz 

etmeye yardımcı olur. 

• Durum 5: G = 1000 𝒘/𝒎𝟐, T Doğrusal Olarak Azalır 

Bu beşinci durumda, G değeri STC değerinde sabit tutulmuş ve T değerindeki azalmanın 

PV'nin çıkış gücü üzerindeki etkisini incelemek için T değeri azaltılmıştır. 

• Durum 6: G = 1000 𝒘/𝒎𝟐, T Doğrusal Olarak Artıyor 

Bu altıncı durumda, G değeri STC'de sabit kalmakta ve artan T değerinin PV dizisinin 

çıkış gücü üzerindeki etkisini gözlemlemek için T doğrusal olarak artmaktadır. 

• Durum 7: G = 500 𝒘/𝒎𝟐, T = 80 °C 

Bu yedinci durumda, azalan G ve artan T değerlerinin PV gücü üzerindeki etkisini 

araştırmak için G maksimum STC değerinden STC değerinin yarısı olan 500'e 

düşürülmüş ve T STC'nin üzerinde artırılmıştır. 

• Durum 8: T = 25°C, G Rastgele Değişir 

Bu sekizinci durumda, T STC değerinde sabit kalmakta ve G değişiminin PV gücü 

üzerindeki etkisini incelemek için G rastgele değişmektedir (artmakta ve azalmaktadır). 

• Durum 9: G = 1000 /𝒎𝟐, T Rastgele Değişir 

Bu dokuzuncu durumda, G değeri STC değerinin yarısında (500 𝑤/𝑚2) sabit tutulur ve 

T değerindeki değişimin PV gücü üzerindeki etkisini fark etmek için T rastgele değişir 

(artar ve azalır). 

Bu bölümdeki analizin geri kalanında, yukarıda açıklandığı gibi G ve T girdilerinin belirli 

değerlerini ve davranışlarını temsil eden durum 1 veya durum 2 gibi belirli bir durumu 

belirtmek için yalnızca durum numarası yazılmıştır. 
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5.5.2.  G ve T Sinyallerine Karşı Solar PV Ölçümü 

 

Bu giriş parametreleri (G, T) ile PV dizisinin çıkışı (akım, gerilim ve güç) 

arasındaki ilişkinin kapsamlı bir analizi Şekil 5.22'de analiz edilmiştir. Şekil 5.22 (a) 0 

ila 1.000 𝑊/𝑚2 arasında değişen G giriş sinyalini temsil etmektedir. Şekil 5.22 (b) 20 ila 

80°C arasında değişen T giriş sinyalini göstermektedir.  

 

 
 

Şekil 5.22. Değişken girişlere (G, T) göre solar PV modül çıkışları (V, I, P) 

 

Bu girişler PV dizisine uygulandıktan sonra, SunPower TS-SPR-315 PV modülünden PV 

dizisinin voltajı, akımı ve gücü dahil olmak üzere ölçülen çıkışlar toplanır. PV modülünün 

gerilimi 𝑉𝑝𝑣 250 ila 280 volt arasında değişir, solar PV akımı, sırasıyla Şekil 5.22 (c) ila 

(e)'de gösterildiği gibi PV dizisinden 100 kW güç sağlamak için PV gerilimindeki 

değişikliklere göre değişir. 

MPPT entegrasyonuna geçmeden önce, yukarıda açıklanan 9 duruma göre 

girişlerin (G, T) davranışı yukarıdaki sonuçlardan analiz edilebilir. G'nin PV'nin çıkış 
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gücü ile doğru orantılı olduğu ve T'nin PV dizisinin çıkış gücü ile ters orantılı olduğu ve 

STC'de önerilen PV modülünün 99.87 kW güç ürettiği görülebilir. Bu istatistikler MPPT 

kontrolörünün optimizasyonu için önemli girdilerdir ve bir sonraki alt bölümde daha 

ayrıntılı olarak ele alınacaktır. Farklı koşullar altında gerçek çıkış gücünü (yaklaşık 100 

kW) izleyerek, modelin doğruluğu ve uyarlanabilirliği sağlanır ve bu da MPPT 

kontrolörlerinin entegrasyonu için önemli bilgiler sağlar.  

 

5.5.3.  Stack LSTM, FF-DNN ve P&O MPPT Kontrolörlerinin Karşılaştırmalı 

Sonuçları 

 

Üç farklı MPPT kontrolörünün simülasyon performansı: Stack LSTM, FF DNN 

ve P&O Simulink MATLAB 2023© kullanılarak gerçekleştirilmiş, karşılaştırmalı 

sonuçlar Şekil 5.23'te sunulmuştur. Performans değerlendirmesi, Şekil 5.23 (a) ve (b)'de 

özetlenen belirli girdilere göre performanslarına odaklanmaktadır.  

Bu tezde, PV eğrisi üzerinde MPP'deki (𝑉𝑚𝑝) voltajı çıkaran MPPT çıkarımı için 

voltaj kontrol yöntemi benimsenmiştir (bkz. Bölüm 4). Amaç, PV gerilimini (𝑉𝑝𝑣) 

MPP'nin bulunduğu gerilimde çalıştırmaktır. Bu nedenle, 𝑉𝑚𝑝 çıkışı MPPT kontrolörleri 

tarafından Vpv ile karşılaştırılır ve fark hata sinyali, önerilen modelin ilk aşamasında 

yükseltici tip DC-DC dönüştürücüde kullanılan 5 kHz IGBT anahtarının görev 

döngüsünü kontrol eden PI kontrolörüne beslenir. 

TS-SPR-315 PV modülü tarafından üretilen hesaplanan güç yaklaşık 102 kW'tır, 

ancak bu PV modülü tarafından girişlerin STC'sinde üretilen gerçek ölçülen güç 99,87 

kW'tır.  Performans değerlendirme parametrelerinin sonuçları, stack LSTM'nin eğitim ve 

test hatalarının FF-DNN'ninkilerden daha küçük olmasını sağlamıştır. Bu nedenle, LSTM 

(98,84 kW) MPPT kontrolörü kullanılarak elde edilen maksimum çıkış gücü, Şekil 

5.24'te gösterildiği gibi DNN (96,32 kW) ve P&O (94,05 kW) kontrolörlerinden daha 

yüksektir. Ayrıca, DL algoritmaları (LSTM ve DNN) 1 milyon veriden oluşan büyük bir 

veri kümesi üzerinde eğitildiğinden, eğitim bilgilerine dayanarak hedefe erken karar 

verebilirler ve P&O dalgalanırken MPP etrafında dalgalanmazlar, bu da P&O MPPT 

yönteminin ortalama gücünün daha düşük olmasına neden olur. 
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Şekil 5.23. Stack LSTM, FF-DNN ve P&O MPPT Kontrolörleri arasında karşılaştırmalı analiz 

 

Buna ek olarak, FF DNN'ler yalnızca ileri bilgileri işler, ancak geri bildirim süreci 

ve bellek birimleri LSTM'nin karmaşık kalıpları hızlı bir şekilde öğrenmesine ve 

maksimum performans elde etmesine olanak tanır.  

 

 
 

Şekil 5.24. STC'de LSTM, DNN ve P&O MPPT Kontrolörleri arasındaki maksimum güç çıkarma 

karşılaştırması. 
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Bu nedenle, stack LSTM diğer MPPT kontrolörlerinden daha iyi performans 

gösterir ve diğer kontrolörlere kıyasla daha fazla doğruluk ve daha az salınım ile daha 

yüksek güç sunar. Önerilen stack LSTM tabanlı MPPT kontrolörünün baskınlığı 

sağlandıktan sonra, önerilen stack LSTM MPPT kontrolörü kullanılarak inverter kontrol 

sonuçları elde edilmiştir. 

 

5.5.4.  Birinci Aşamada MPPT Entegre Yükseltici tip DC-DC dönüştürücü Çıkış 

Gerilimi  

 

Çift aşamalı şebeke bağlantılı PV sistemlerde, yükseltici tip DC-DC dönüştürücü 

ilk aşamadaki en önemli elemanlardan biridir. Bu tezde, MPPT kontrolörleri Şekil 5.25'te 

gösterildiği gibi değişen G ve T giriş sinyallerine göre Vmp'yi belirleyerek PV dizisinin 

maksimum gücünü elde eder.  

 
 

Şekil 5.25. Değişken girişlere (G, T) göre PV dizinin hedef gerilimi, görev döngüsü ve yükseltme 

gerilimi 
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Ardından, hesaplanan 𝑉𝑚𝑝 ile Şekil 5.25'te gösterilen gerçek FV çıkış gerilimi 

(𝑉𝑝𝑣) karşılaştırılarak bir hata sinyali üretilir ve bu hata PI denetleyiciye verilir. (𝑉𝑚𝑝- 𝑉𝑝𝑣) 

hatasına yanıt olarak PI denetleyici, FV sistemin ayrılmaz bir bileşeni olan yükseltici tip 

DC-DC dönüştürücünün görev döngüsünü (D) ayarlar. Spesifik olarak, D'nin artırılması 

yükseltici tip DC-DC dönüştürücü çıkış voltajını artırır ve böylece PV çalışma noktasını 

I-V eğrisinin sağ tarafına doğru kaydırır. Tersine, D'nin azaltılması çalışma noktasını sol 

tarafa kaydırır. Bu dinamik ayarlama, sistemin çalışma noktasının Vmp ile hizalanmasını 

sağlayarak fotovoltaik diziden maksimum güç elde edilmesine olanak sağlar. 

MPPT kontrolörü tarafından kontrol edilen 𝑉𝑚𝑝 250 ila 280 arasında 

değiştiğinden, yükseltici tip DC-DC dönüştürücü neredeyse sabit 800 V'ta tutulan 

düzenlenmiş bir doğru akım (DC) bağlantı voltajı sağlar. Bu kontrol stratejisiyle, değişen 

G ve T koşulları altında PV güç çıkarımını optimize etmek mümkündür. Vmp'yi sürekli 

izleyerek ve hata güdümlü bir yöntem kullanarak yükseltici tip DC-DC dönüştürücünün 

görev döngüsünü (D) ayarlayarak, bu yaklaşım sistemin en yüksek verimlilikte 

çalışmasını ve sonuçta maksimum güç çıkışına ulaşmasını sağlar. 

 

5.6.  Şebekeye Bağlı PV'nı̇n İnverter Kontrolü 

 

İnverter, şebekeye bağlı bir PV sistemde PV sistem ile şebeke arasında bir arayüz 

olarak çok önemli bir rol oynar. İnvertör kontrol sisteminin ana hedefleri, PV dizisinden 

şebekeye aktif güç akışını kontrol etmek ve şebeke ile senkronize tutmak ve DC bağlantı 

voltajını düzenlemektir.  

 

 
 

Şekil 5.26. Şebekeye bağlı inverter kontrolünün Simulink modeli 
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PI kontrolörleri ile vektör kontrolü, PWM üretimi ve PLL senkronizasyonu gibi 

gelişmiş kontrol teknikleri, yüksek kaliteli AC gücü sağlamak için gereklidir. İnvertör 

kontrolü, kapalı döngü kontrolü yoluyla aktif akım (Id) bileşenini düzenleyerek PV 

jeneratör tarafından üretilen DC bağlantı voltajını sabit tutar. Reaktif güç, reaktif akımın 

(Iq) sıfıra ayarlanmasıyla ortadan kaldırılır. Şebeke senkronizasyonu, eviricinin çıkış 

voltajı ve frekansının bir faz kilitli döngü (PLL) aracılığıyla şebekeyle eşleştirilmesiyle 

elde edilir. Ayrıca, modülasyon indeksi ve anahtarlama modları, istenen genlikte temiz 

bir sinüzoidal dalga formu çıkışı için kontrol edilir. İnvertör kontrol bölümünün Simulink 

diyagramı Şekil 5.26'da sunulmuştur. 

Gelişmiş inverter kontrolü, güç kalitesini korurken PV sisteminin şebekeye 

sorunsuz bir şekilde entegre edilmesini sağlar. Bu nedenle, güvenilir, yüksek 

performanslı inverter kontrolü istikrarlı, verimli bir şebekeye bağlı PV sistem için 

gereklidir. Bu alt bölümde, inverter kontrolüne ilişkin sonuçlar ve tartışma verilen sırayı 

takip etmektedir: 

 

• DC Bağlantı Gerilim Regülasyonu 

 

Önceki bölümde, PV dizisinin maksimum gücü MPPT kontrolörleri kullanılarak 

elde edilmiştir. Elde edilen PV gerilimi 800 V'a yükseltilir. Bu yükseltme gerilimi DC 

bağlantı gerilimidir. Gerilim, akım ve gücün yüksek kaliteli AC dalga şekillerini üretmek 

için DC bağlantı geriliminin düzenlenmesi ve kontrolü gereklidir.  

 

• NPC İnvertör Çıkış Dalga Formları 

 

İnverter, PV dizisi tarafından üretilen DC gücünü AC gücüne dönüştürmek için 

hayati bir rol oynar. Amaç, inverter gerilimini ve akımını daha az harmonik ile üretmektir.  

 

• Şebeke Senkronizasyonu 

 

Şebeke senkronizasyonu, şebekeye bağlı bir PV eviricinin çıkış geriliminin faz 

açısının (θ) şebeke gerilimi ile hizalanmasını ifade eder. Bu hizalama kesintisiz güç 

aktarımı, şebeke kararlılığının korunması ve şebeke standartları ve yönetmeliklerine 

uyum için gereklidir. 
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• Direkt ve Kuadratik Eksen Akımları 

 

Şebekeye bağlı bir PV sistemindeki doğru eksen (𝐼𝑑) ve karesel eksen (𝐼𝑞) 

akımları, senkronize olarak dönen bir referans sistemindeki akım bileşenlerini temsil 

eder. 𝐼𝑑, şebeke gerilimiyle aynı açıdayken, 𝐼𝑞 şebeke gerilimine dik olan bir karesel 

akımdır. 𝐼𝑑 ve 𝐼𝑞 'nun kontrolü, verimli güç aktarımı ve şebeke stabilizasyonu için 

şebekeye beslenen aktif ve reaktif gücün hassas bir şekilde düzenlenmesini sağlar. 

 

• Aktif ve Reaktif Güç Aktarımı 

 

NPC inverterde 𝐼𝑑 ve 𝐼𝑞 kontrol akımlarının yanı sıra şebeke gerilim ve akım 

sinyalleri, PV sistem ile şebeke arasındaki aktif ve reaktif güç alışverişinin hassas bir 

şekilde kontrol edilmesini sağlar. PV gücünün şebekeye tek bir güç faktöründe doğru 

şekilde aktarıldığını doğrulayarak verimli enerji aktarımı sağlar. Her bir adımın ayrıntılı 

sonuçları ve tartışması aşağıda sunulmuştur: 

 

5.6.1.  NPC İnvertörün Giriş (DC Link) ve Çıkış Gerilimi  

 

Stack LSTM, FF-DNN ve P&O MPPT denetleyicisi de dahil olmak üzere bu tezde 

ele alınan tüm kontrolörler arasında, kalan invertör kontrol simülasyonlarının sonuçlarını 

elde etmek için en verimli ve doğru yığın LSTM MPPT kabul edilir. 100 kW'lık bir PV 

sisteminin şebeke entegrasyonu iki aşamalı bir süreçte gerçekleştirildi. İlk aşamada, daha 

önce açıklandığı gibi, PV sistemi, takviye dönüştürücü ve MPPT kontrolörü ana 

unsurlardır. PV sistemi 250 ila 280 volt voltajlarda çalışır ve değişken G (0-1000 ) 𝑊/𝑚2 

ve T (20-80 oC) varlığında 350 ila 400 amper akım üretir. Değişken G ve T'nin varlığında, 

stack LSTM MPPT kontrolörü, takviye dönüştürücünün görev döngüsünü (D) ayarlar ve 

düzenlenmiş DC bağlantı voltajının (Vdc) minimum dalgalanmalarla 800 voltluk belirli 

bir değerde tutulmasında rol oynar. İkinci aşamada, akım ve gerilim kontrol yöntemlerini 

kullanarak DC bağlantı voltajını daha fazla kontrol etmek ve PV sisteminden şebekeye 

aktif güç sağlamak için bir invertör kontrol stratejisi kullanılır. 

Düzenlenmiş veya Kontrollü DC bağlantı voltajı Vdc (800 V), aynı zamanda NPC 

invertörünün girişi olan takviye dönüştürücünün çıkışıdır. Vdc, çıkış faz gerilimlerinin 

büyüklüğünü hassas bir şekilde düzenleyen 3 fazlı, 3 seviyeli bir NPC invertöre, yani 
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Vdc/2 (+400), 0 ve -V dc/2 (-400) beslenir, seviyelerdeki bu artış harmonikleri azaltır ve 

iyi bir güç dönüşümü sağlar ( Bektaş ve Karaca, 2022).  

 

Şekil 5.27. 3 seviyeli NPC inverterin çıkışındaki 3 fazlı voltaj ve akım. 

İnverter, 400 voltluk bir çıkış voltajı ve 201 amperlik bir hat veya faz akımı 

üretmek üzere tasarlanmıştır (Y-bağlıda hat ve faz akımı aynı kalır), ve Şekil 5.27'da 

gösterildiği gibi inverterin çıkışında verilen 100 kW'lık beklenen güç gereksinimine 

karşılık P = 3 ∗ Vrms ∗ Iline, 3 ∗ (P = 3 ∗ (
400

sqrt(2)
) ∗ (

201

sqrt(2)
) , = 98.4 kW) gelir.  

Önerilen stack LSTM tarafından PV tarafından çıkarılan 98,7 kW gücün 98,4 kW 

gücünün, invertörün çıkışına aktarıldığı anlamına gelir. Bu konfigürasyon, 400 V şebeke 

standartlarına uygunluğu sağlar. Ek olarak, NPC invertör, invertör anahtarlarının IGBT 

anahtarlama durumlarını düzenleyerek 201 amperlik gerekli akım çıkışına ulaşır. Voltaj 

ve akımın bu hassas kontrolü, PV'den mikro şebekeye kesintisiz ve verimli güç aktarımı 

sağlayarak onu şebekeye bağlı PV sistemleri için güçlü bir çözüm haline getirir. İnverter 

kontrolünün ayrıntılı bir açıklaması Bölüm 4'te verilmiştir. NPC invertör, standart test 

koşulları (STC) altında 400 V'luk bir hat voltajını korur, Şekil 5.28'de gösterildiği gibi Y 

bağlantılı şebeke bağlantısı nedeniyle hat akımı 144 A'lık bir hat akımına eşdeğer kalır. 
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Şekil 5.28. İnverterin çıkışındaki faz hattı voltajı ve akımı. 

 

Güç kalitesi standartları, güç sisteminin kararlılığını ve güvenilirliğini sağlamak 

için gereklidir. Bu standartlar, ülkeden ülkeye değişebilen ters voltaj ve akım dalga 

biçimlerinde THD için belirli limitler içerir. Güç kalitesi ağ kodları için uluslararası 

standart, THD değerlerini %5'e eşit veya daha az önerir. Türkiye'de, Türkiye Elektrik 

İletim Anonim Şirketi (TEİAŞ) aynı THD limitlerini sunan güç kalitesi standartlarını 

düzenler ve Pakistan'da aynı THD'ye izin verilir, Ulusal Elektrik Düzenleme Kurumu 

(NEPRA) elektrik sektörünü denetler ve güvenilir bir şebeke sağlamak için güç kalitesi 

yönergeleri ve limitleri belirler. Önerilen invertör, Türkiye ve Pakistan dahil olmak üzere 

uluslararası standartların kriterlerini karşılamaktadır. 
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5.6.2.  Değişken Girişlere (G, T) Göre Şebeke Gerilimi ve Akımı 

 

230 V faz gerilimi değeri, Avrupa'nın çoğu, Asya ve Afrika ve Güney Amerika'nın 

bazı bölgeleri de dahil olmak üzere dünyanın birçok ülkesinde düşük-orta gerilim elektrik 

dağıtımı ve çeşitli endüstriyel uygulamalar için kullanılan standart bir gerilim seviyesidir 

(Gullu et al., 2022). Bu gerilimin kullanımı, kabloda daha düşük enerji kayıpları ve daha 

az bakır kullanımı gibi çeşitli avantajlar sunar. NPC inverterler, 400 V hat ve 144 A 

şebeke standartlarına uygun olarak belirli çıkış gerilimleri ve akımları üretmek için 

önemli bir rol oynamaktadır. 

Değişken girişlere (G, T) dayalı olarak 230 V faz geriliminde ve 144 A hat 

akımında çalışan bütünleşmiş bir mikro şebeke sisteminde akım ve gerilim kontrol 

döngülerini kullanan bir düşme kontrol stratejisi kullanılır. Düşme (droop) kontrolünde 

reaktif akımın sıfır olduğu varsayılır, bu nedenle bütünleşmiş sistemde reaktif yük akışı 

olmayacaktır. Bu üç fazlı sistem için gerçek güç (P), reaktif gücün olmadığı P = 3 × Vrms 

× Irms × Irms × Irms × cos(θ) kullanılarak elde edilir, bu nedenle şebeke voltajı ve akımı 

cos (0) = 1 içeren fazdadır ve optimum aktif güç aktarımı için birim güç faktörünü korur. 

Mikro şebekenin kararlılığı, DC bara voltaj regülasyon kontrolüne, frekans/voltaj 

regülasyonuna ve güç paylaşımına dayanır. Bu stratejiler, sistemi maksimum aktif güç 

aktarımı için optimize eden, verimliliği ve güvenilirliği artıran belirli değerler tarafından 

yönlendirilir. 

 

5.6.3.  Direkt ve Kuadratür Eksen Akımları 

 

PV dizisinden üç fazlı (400V/144A) bir şebekeye aktif güç sağlamak için, 

yükseltici dönüştürücü önce PV çıkış voltajını (250-280 V) 800 V'a yükseltir. Bu voltaj, 

id ve iq akımlarını kontrol etmek için anahtarlama oranını ayarlayan PI kontrollü bir NPC 

invertöre beslenir. PI kontrolü, çıkış voltajı vektörünü şebeke voltajı vektörüyle 

karşılaştırarak bir hata sinyali üretir. Çıkış voltajı daha yüksek veya daha düşükse, 

inverterin modülasyon indeksi ve görev döngüsü kontrol edilerek 800V referansına göre 

düzenlenir. 

İnverterin çıkışında faz voltajı 230V, karşılık gelen hat akımı 142.4A ve hat voltajı 

400V'dir. Y bağlantılı bir konfigürasyonda hem hat hem de faz akımları aynıdır. NPC 

invertördeki giriş gücü 98.7kW DC, çıkış gücü ise 98.4kW AC'dir. Ayrıca, 𝐼𝑑 ve 𝐼𝑞 

değerleri Park dönüşümü ile elde edilir: 𝐼𝑑 = 144∠0°A ve 𝐼𝑞 = 0∠0°A, birim güç 
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faktöründe 144A'lık bir aktif akımı gösterir. Bu dönüşüm, Şekil 5.29'da gösterildiği gibi 

aktif ve reaktif güç bileşenlerini verimli bir şekilde ayırır. 

 
 

Şekil 5.29. İnverter kontrol bölümünde d ekseni ve q ekseni akımlarının gösterilmesi 

 

5.6.4.  PV Entegre Şebekeye Sağlanan Aktif Reaktif Güç 

 

Bu araştırmada, stack LSTM, MPPT'de FF-DNN ve P&O algoritmalarından daha 

iyi performans göstermektedir. LSTM MPPT'nin doğruluğundan yararlanan inverter 

kontrol ayarları, şebeke koşullarına uygun istenen sonuçları elde etmek için optimize 

edilmiştir. Bu çalışmada kullanılan değişken girdiler sırasıyla Şekil 5.30'da gösterildiği 

gibi G ve T'dir. PV modülü tarafından üretilen toplam güç 99,86 kW'tır ve istiflenmiş 

LSTM MPPT 98,7 kW çıkardı ve ardından 98,4 kW aktif gücü verimli bir şekilde 

şebekeye aktardı ve Şekil 5.30'da gösterildiği gibi olağanüstü verimliliğinin altını çizdi.  

Üretilen ve iletilen güç arasındaki küçük fark, potansiyel olarak olası güç kaybının yarı 

iletken kayıplarından, anahtarlama kayıplarından ve direnç kayıplarından 

kaynaklanabileceğini gösterir. 
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Şekil 5.30. PV dizisinden mikro şebekeye aktarılan aktif ve reaktif güç 

 

Bu tez çalışmasında, mikro şebeke entegrasyonu için üstün verimliliği ve düşük 

anahtarlama kayıpları ile bilinen 3 seviyeli bir NPC invertör kullanılmıştır. Mikro şebeke, 

STC'de 400 voltluk standart üç fazlı voltajda ve 144 amperlik bir akımda çalıştı. DC 

bağlantı voltajı, her ikisi de ilgili PI kontrolörleri tarafından düzenlenen bir dahili akım 

kontrol döngüsü ve bir harici voltaj kontrol döngüsü tarafından kolaylaştırılan invertör 

kontrolü kullanılarak 800 voltta düzenlenir. Bu kontrolörler, şebeke kararlılığı için hayati 

önem taşıyan hassas voltaj regülasyonu sağladı. Sinüzoidal PWM kullanıldı ve harmonik 

içerik bir LCL filtresi ile daha da minimize edildi. Toplam Harmonik Bozulma (THD) 

%5'in altında tutularak Pakistan, Türkiye ve uluslararası şebeke kodu standartlarını 

karşıladı. Bu iyileştirmeler yalnızca güç aktarımını optimize etmekle kalmadı, aynı 

zamanda sıkı şebeke düzenlemelerine uyumu sağlayarak mikro şebekenin güvenilirliğini 

ve performansını da artırdı. 
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5.7.  Bölüm Özetı̇  

 

Bölüm 5'te, ilk olarak bir derin öğrenme modeli için en önemli adım olan 1 milyon 

veri noktası içeren bir veri kümesi toplandı. Normalleştirme, z-skoru kullanılarak 

gerçekleştirilir, ardından kutu grafikleri, histogramlar ve korelasyon analizi kullanılarak 

veri analizi yapılır. Eğitim için %80 veri ve test için kalan %20 veri kullanmak için 80/20 

bölme kuralına uyulur. LSTM ve DNN gibi derin öğrenme modelleri, MSE, RMSE, MAE 

ve R2 gibi metrikler kullanılarak MPPT performansı için geliştirilmiş ve 

değerlendirilmiştir. Karşılaştırma sonuçları, LSTM modelinin güç çıkarımını en üst 

düzeye çıkarmada daha avantajlı olduğunu göstermektedir. Eğitilmiş LSTM ve DNN 

modeli Simulink'e entegre edildi ve karşılaştırma sonuçları, stack LSTM MPPT'nin 

FFDNN ve P&O MPPT'lerden daha iyi performans gösterdiğini gösterdi. Stack 

LSTM'nin hakimiyetini kurduktan sonra, önerilen LSTM modeli kullanılarak invertör 

kontrolü için daha fazla sonuç ve tartışma gerçekleştirildi. Değişken G ve T giriş 

sinyallerinin varlığında, PV gücü, takviye dönüştürücü kullanılarak 800V DC'ye 

yükseltilir ve bu DC bara voltaj regülasyonu hem MPPT kontrolörü hem de inverter 

kontrolünün droop kontrolörü (Akım ve gerilim kontrolörü) katkısıyla üretilir. Bu regüle 

edilmiş DC bağlantı voltajı, üç aşamalı NPC invertöre beslenir ve tek tip güç faktörü ile 

şebeke bağlantısı elde etmek için 400V/144A'ya evirilir. Son olarak, önerilen LSTM 

stackı kullanılarak, PV dizisinden mikro şebekeye (400 V hattan hatta veya 230 V hattan 

nötre) 98,7 kW aktif güç aktarımı sağlandı, bu da düşük-orta gerilim elektrik dağıtımı için 

kullanılan standart bir voltaj seviyesidir ve Avrupa, Asya ve Afrika ve Güney Afrika'da 

kullanılmaktadır. Amerika'nın bazı bölgeleri de dahil olmak üzere dünyanın çeşitli 

yerlerinde uygulanabilir. 
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6.  SONUÇLAR VE ÖNERİLER 

 

Bu sonuç bölümü, 100 kW'lık şebekeye bağlı bir PV sistemi için tasarlanmış 

önerilen stack LSTM tabanlı MPPT denetleyicisi ile ilgili son açıklamaları ve gelecekteki 

potansiyel gelişmeleri özetlemektedir. 

 

6.1.  Sonuçlar 

 

Bu tez çalışmasında, Maksimum Güç Noktası için derin öğrenme (DL) tabanlı 

Uzun Kısa Süreli Bellek (LSTM) ağı kullanan 100 kW'lık çift aşamalı şebekeye bağlı 

fotovoltaik (PV) cihaz izleme (MPPT) kontrol sistemi sunulmuştur. Simülasyon Simulink 

MATLAB 2023'te gerçekleştirildi. Sistem Önerilen sistem iki ana aşamadan 

oluşmaktadır: ilk aşama 100 kW'lık bir PV dizisi, voltajı 250-280'den 800 V'a çıkarmak 

için bir takviye dönüştürücü, DC'nin mevcut değerini geri kazanmak için önerilen LSTM 

tabanlı MPPT kontrolörü G ve T'dir. İkinci aşama, DC'den AC'ye dönüştürme için 3 fazlı 

Nötr Nokta Kelepçeli (NPC) invertör, harmonik azaltma için bir LCL filtresi ve şebeke 

aktif güç aktarımı için entegrasyon kontrolleridir. Sistemde, LSTM ağı, dalgalanma 

koşulları altında PV dizisinin maksimum güç noktası voltajını sürekli olarak tahmin 

etmek ve izlemek için 1 milyon örnekten oluşan kapsamlı bir veri kümesi üzerinde 

eğitilmiştir. Önerilen modelin performansı daha sonra MSE, RMSE, MAE, validasyon 

kaybı ve R-kare kullanılarak değerlendirildi. Her bölümün ayrıntılı katkısı aşağıdaki 

paragraflarda açıklanmıştır. 

İlk aşamada, önerilen sistem, yenilenebilir enerji sağlayan 100 kW TS-SPR-315 

PV dizisine dayanmaktadır. PV dizisi, modül başına 96 hücreden, dizi başına 5 seri bağlı 

modülden ve toplam 102 kW hesaplanmış güç çıkışı için 65 paralel modülden oluşan bir 

diziden oluşur. Dizinin maksimum gücü Ppv = Pmax * Np * Ns denklemi kullanılarak 

hesaplanır; burada Pmax modül başına en yüksek güçtür, Np paralel modüllerin sayısıdır 

ve Ns seri modüllerin sayısıdır. Bu sistemdeki değerler için Ppv, 315 * 65 * 5 = 102-kW'a 

eşittir, ancak ölçülen güç 99.86kW'dır (yaklaşık 100 kW'dır). MATLAB/Simulink'te 

simüle edilen model, güneş dizisi I-V ve P-V eğrilerini temsil etmek için yaygın olarak 

kullanılan tek diyot modelini kullanır. Tek diyot modeli ve sistem boyutlandırması, bu 

şebekeye bağlı PV sistemi için yenilenebilir enerji üretim temeli olarak hizmet veren 

doğru bir 100 kW PV dizisi kaynağı oluşturur. 
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PV sisteminin ilk aşamasının ikinci önemli bileşeni, ters çevirmeden önce hayati 

voltaj yükseltme işlemini gerçekleştiren DC-DC yükseltme dönüştürücüsüdür. Bu 

çalışmada, takviye dönüştürücü, güneş panelinden değişken 250-280V girişi alır ve sabit 

bir 800V DC bağlantı voltajına yükseltir. Bu 800V çıkış, hem bir sonraki NPC invertör 

aşamasının girişini hem de DC bağlantısının kendisini oluşturur. Buna göre, takviye 

konvertörü, sistemin maksimum üretim koşulları (PV dizisinden 250V giriş ve 800V 

çıkış) göz önünde bulundurularak tasarlanmış. Takviye dönüştürücünün görev döngüsünü 

modüle ederek, 800V'luk hedef DC bağlantı voltajı dalgalanan girişten korunabilir. Bu 

görev döngüsü kontrolü, hem diziyi optimum voltajda çalıştırarak maksimum güce ulaşan 

hem de DC bağlantı barasını düzenleyen önerilen LSTM tabanlı MPPT kontrolörü 

tarafından gerçekleştirilir. Böylece, takviye dönüştürücü, PV dizisi çıkışını ters çevirme 

ve şebeke bağlantısı için gereken DC bağlantı voltajına dönüştürür. 

100kW PV sisteminin ilk aşamasının son unsuru, değişen radyasyon (G) ve 

sıcaklık (T) altında solar PV dizisinden maksimum güç elde etmek için hayati önem 

taşıyan Maksimum Güç Noktası İzleme (MPPT) kontrolörüdür. P&O ve IC gibi 

geleneksel teknikler basitlik sunar, ancak hızlı değişen koşullar sırasında izleme hızından 

yoksundur. FLC, PSO ve GA gibi hesaplamalı zekâ yöntemleri uyarlanabilirliği artırır, 

ancak uygulamada karmaşıklığa sahiptir ve geçmiş verilerden öğrenme yeteneğinden 

yoksundur. ANN'lar gibi makine öğrenimi yöntemleri doğruluk sağlar, ancak büyük veri 

kümelerinde performans düşer. RNN mimarileri, geri bildirim kullanarak doğruluğu 

modeller, ancak eğitim sırasında gradyanların kaybolması sorunuyla karşı karşıyadır. 

Önerilen çalışma, dahili olarak kapılı hücre durumu akışları aracılığıyla RNN gradyan 

sorunlarını hafifleten yenilikçi bir derin LSTM ağı uygulamaktadır. LSTM'nin bellek 

özellikleri, G, T girişleri ve PV dizisi MPP voltajı (𝑉𝑚𝑝) arasındaki karmaşık doğrusal 

olmayan eşlemeyi doğru bir şekilde öğrenmesini sağlar. LSTM MPPT, 1 milyon örnekten 

oluşan kapsamlı bir veri kümesi üzerinde eğitilmiştir. Sonuçlar, modelleme doğruluğu ve 

güç toplama performansı açısından geleneksel P&O ve İleri Beslemeli Derin Sinir Ağı 

(FFDNN) MPPT ile karşılaştırıldı. Eğitim metodolojisi, model değerlendirmesi ve test 

sonuçları bir sonraki paragrafta sunulmuştur. 

Sağlam bir veri işlem hattı ve modelleme yaklaşımı, derin öğrenme MPPT 

çözümleri için kritik öneme sahiptir. İlk olarak, çalışma aralıkları boyunca kaydedilen 

ışınım, sıcaklık ve karşılık gelen maksimum güç noktası voltaj değerlerini içeren 1 milyon 

örnekten oluşan kapsamlı bir veri seti derlenir. Bu ham veriler daha sonra kullanılmadan 

önce gürültü filtreleme ve z-skoru normalleştirme gibi ön işleme adımlarından geçirilir. 
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Normalleştirilmiş veriler daha sonra histogramlar, çubuk grafikler ve korelasyon 

kullanılarak görselleştirilir. Keşifsel görselleştirme analizi, sinir ağı tasarımını 

bilgilendirmek için kullanılır. Hem LSTM hem de karşılaştırmalı ileri beslemeli DNN 

MPPT denetleyicileri, Adam optimizasyon yöntemi, ışınım ve sıcaklık giriş 

parametreleri, MPP voltajı olarak hedef çıkış ve sırasıyla 64 ve 32 birimlik iki gizli 

katmandan oluşan bir topoloji dahil olmak üzere temel hiperparametreleri paylaşır. 

Hazırlanan verilerin %80'i model parametrelerini eğitmek için kullanılırken, %20'si 

yalnızca görünmeyen veriler üzerindeki performansı ve genellenebilirliği değerlendirmek 

için tutuldu. Değerlendirme, Ortalama Kare Hata (MSE), Ortalama Kare Hata Kökü 

(RMSE), Ortalama Mutlak Hata (MAE) ve belirleme katsayısı (R-kare) gibi standart 

istatistiksel ölçümlerle ölçülür. Veri toplama, ön işleme, modelleme ve değerlendirmeden 

oluşan bu titiz işlem hattı, optimum derin öğrenme destekli MPPT için temel sağlar. 

Karşılaştırmalı ileri beslemeli Derin Sinir Ağı (DNN) MPPT denetleyicisi, 

0.18561 MSE, 0.43083 RMSE, 0.33843 MAE, 0.1'den düşük kayıp fonksiyonu değeri ve 

0.80438 R-kare (R2) belirleme katsayısı performans kriterlerine ulaştı. Buna karşılık, 

önerilen LSTM MPPT kontrolörü, 0.0023295 MSE, 0.048265 RMSE, 0.033978 MAE, 

0.05'ten düşük kayıp değeri ve 0.99768 R2 katsayısı gibi üstün değerlendirme kriterlerine 

ulaşmıştır. DNN'nin tüm kriterlerdeki puanlarını önemli ölçüde aşan LSTM, PV 

koşullarından maksimum güç noktası voltajlarına kadar doğru eşlemeleri öğrenmedeki 

olağanüstü yeterliliğini deneysel olarak doğrulamıştır. 80 kattan fazla MSE azaltımı, 9 

kat daha düşük RMSE, yaklaşık 10 kat MAE iyileştirmesi ve model uyum ölçüsünde iki 

kattan fazla artış LSTM'ler, DNN mimarisine göre güneş enerjisi hasadı yeteneklerini 

önemli ölçüde iyileştirdi. 

Önerilen LSTM MPPT kontrolörü hem eğitim hem de test performansında 

DNN'den daha iyi performans gösterdiğinden, bu modeller 100kW'lık bir PV sisteminin 

Simulink simülasyonuna aktarıldı ve idealden aşırı ışınım ve sıcaklık koşullarına kadar 

dokuz çalışma senaryosu altında standart P&O yaklaşımıyla karşılaştırıldı. P&O veriye 

dayalı bir tasarım gerektirmese de MPPT kodu doğrudan girişlerden (PV dizisinden voltaj 

ve akım) M-Dosya kodlamasında uygulanmıştır ve salınımlı çıkışı, maksimum güç 

noktasını hızlı bir şekilde izlemek için öğrenilmiş eşlemeleri kullanan LSTM ve DNN'ye 

kıyasla daha düşük ortalama güç sağlar. LSTM'nin yinelemeli mimarisi ve belleği, 

gelişmiş örüntü tanıma ve daha hızlı adaptasyon sağlayarak 98,7 kW'lık bir güç çıkışı 

sağlar ve DNN'nin 96,32 kW ve P&O'nun 94,05 kW'lık performansını geride bırakır. 

LSTM MPPT, veriye dayalı optimizasyondan dinamik simülasyon testine kadar çeşitli 
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tasarım aşamalarında üstünlüğünü kanıtlamıştır ve uçtan uca kararlı çalışmayı 

doğrulamak ve gerçek dünya sistemlerinde derin öğrenme tabanlı maksimum güç 

hasadının fizibilitesini belirlemek için düşüş (droop) invertör kontrolörleri ile entegre 

edilmiştir. 

Önerilen LSTM MPPT, Maksimum Güç Noktasını (MPP) izlemede dikkate değer 

bir performans sergiledi. Sonuç olarak, LSTM kontrolörü kullanılarak 100 kW'lık çift 

aşamalı şebekeye bağlı bir PV sistemi üzerinde simülasyonlar gerçekleştirildi. DC-AC 

dönüşümü için 3 seviyeli bir Nötr Nokta Kenetlemeli (NPC) invertör kullanıldı. Bu 

invertör 800V DC bağlantısını üç seviyeye ayırır: +400V, 0 ve -400V. 144A'lik 3 fazlı 

akım çıkışı ile şebeke tarafında 100 kW'lık güç aktarımı, P = 3 × Vrms formülü 

kullanılarak elde edilir × Irms × cos(θ), burada Vrms invertör çıkış voltajıdır, Irms kök 

ortalama kare akımdır ve θ güç faktörünü temsil eder. ABB PVS-100/101 gibi piyasada 

bulunan 100 kW dizi invertörler, gerekli 144A/400V değerlerini kolayca sağlayabilir. 

NPC invertörü, DC bağlantısını harici bir voltaj kontrol döngüsü ve bir dahili akım 

döngüsü aracılığıyla düzenleyerek kararlılığı korur. Şebeke gerilimi fazı ile senkronize 

olan invertör, herhangi bir reaktif güç akışı olmadan birim güç faktöründe tam aktif güç 

enjeksiyonu sağlar. 

Şebekeye bağlı PV sistemlerinin kararlılığı, aktif güç aktarımını optimize etmek, 

verimliliği ve güvenilirliği artırmak için DC bara voltajının, frekansının ve güç paylaşım 

stratejilerinin etkili bir şekilde düzenlenmesine dayanır. NPC invertörün simüle edilmiş 

çıkış dalga biçimleri, voltaj %2'nin altında ve akım %3'ün altında olmak üzere düşük 

toplam harmonik bozulma (THD) sergiler ve katı şebeke yönetmelikleri gereksinimlerini 

karşılar. Türkiye'de TEİAŞ, Pakistan'da NEPRA gibi otoriteler tarafından belirlenen 

standartlara ve uluslararası şebeke kodlarına uygunluk, THD seviyeleri %5'in altında 

olacak şekilde sorunsuz şebeke senkronizasyonu sağlar. Bu sonuçlar, inverterin şebeke 

ara bağlantısı için uygun yüksek kaliteli sinüzoidal voltajlar ve akımlar üretme 

kabiliyetini doğrulayarak kararlı ve güvenilir şebeke çalışmasını teşvik eder. 

LCL filtresi, gerekli harmonik zayıflamayı sağlarken minimum reaktif güç için 

kısıtlı bir optimizasyon stratejisi kullanılarak tasarlanmıştır. Bileşen boyutlandırma, 

dönüştürücü tarafı indüktör dalgalanma limitlerini, şebeke tarafı yüksek frekans 

zayıflamasını dikkate alır. Nihai değerler- L1=3mH, L2=2mH, C=15μF'dir. Bu değerler, 

tüm reaktif gücün dahili olarak çekildiği şebeke koduna uygun bir filtre çıkışı sağlar. NPC 

invertör ile birlikte LCL filtresi, fotovoltaik dizinin 97kW aktif gücünün %100'ünün 

tehlikeli harmonikler veya reaktif kaynak tüketimi olmadan şebekeye aktarılmasını 
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sağlar. Bu, optimize edilmiş filtrenin ve hassas kontrolün şebeke korumasına katkıda 

bulunduğunu ve yenilenebilir enerjinin entegrasyonunu sağladığını kanıtlıyor. 

Sonuç olarak, bu çalışma, LSTM derin öğrenme ağı tabanlı maksimum güç 

noktası izleme özelliğine sahip, şebekeye entegre 100 kW'lık bir solar PV sistemini 

göstermektedir. LSTM, geleneksel teknikleri geride bırakır ve mevcut PV kaynağından 

98,4 kW'a ulaşır. 800V DC bağlantısı daha sonra harmonikleri katı %5 THD sınırları 

içinde azaltmak için LCL filtrelemeli çok seviyeli bir invertör aracılığıyla 400V/144A'ya 

dönüştürülür. Önerilen yaklaşım, 98,4 kW güneş enerjisinin şebekeye transferini 

kolaylaştırdı ve uluslararası standartları doğrulayan simülasyonlarla doğrulandı. %95-

99'luk verimli bir LSTM çıkarımı ile örneklenen gelişmiş makine öğrenimi çözümleri, 

temiz enerji sistemleri için etkili yenilenebilir enerji kullanımının ilerlemesini kanıtlıyor. 

 

6.2.  Öneriler 

 

Önerilen 100kW dağıtık sistem, eğitim veri hacmi, yüksek öğrenme için model 

karmaşıklığı ve bileşen ölçeklendirmesi artırılarak daha büyük akıllı şebeke ağlarına 

genişletilebilir. Işınım, sıcaklık ve gerilim veri kümelerinin daha geniş operasyonel 

ortamlarda genişletilmesi, farklı koşullarda doğru çok değişkenli haritalama sağlar. Daha 

yüksek boyutlu uzay dönüşümlerine sahip daha derin ağ topolojileri, karmaşık şebeke 

davranışlarını daha iyi yakalar. Seri-paralel güç elektroniği konfigürasyonları da geniş 

coğrafi bölgelerde dağıtımı kolaylaştırır. 

3 seviyeli bir NPC inverter mevcut sisteme yeterince hizmet verecek olsa da daha 

büyük tesisler filtreleme gereksinimlerini ve kayıpları en aza indirmek için daha düzgün, 

neredeyse mükemmel sinüzoidal çıkışlar sentezlemek üzere kademeli çok seviyeli 

inverterler veya modüler çok seviyeli dönüştürücüler kullanabilir. Ek voltaj seviyeleri, 

yüksek kapasiteli yenilenebilir entegrasyonu için güç kalitesini artırır. Dönüştürücü 

modülerleştirmesi ayrıca birkaç kilovattan yüzlerce megavata kadar yapılandırılabilir 

tasarımlara olanak tanır. 

Sağlam istatistiksel ölçümler ve kontrolsüz dinamikler üzerinde testler 

kullanılarak simülasyonda kapsamlı bir şekilde yürütülen model eğitimi ve 

değerlendirmesiyle, maliyetli prototip oluşturmadan önce gerçek dünyadaki dağıtımın 

fizibilitesi kanıtlanmıştır. Yerleşik sinir ağı MPPT denetleyicilerine beslenen ADC 

sensörü veri toplama ile doğrudan simüle edilmiş prototiplerin üzerine pratik uygulama 

oluşturulabilir. Sorunsuz fiziksel entegrasyon, eşzamanlı veri akışı ve model çıkarımı için 
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doğru kalibrasyona, bant genişliğinin algılanmasına, analog filtre tasarımlarına ve yeterli 

veri yolu hızlarına dayanır. Simülasyonun yazılım ve donanım uygulamalarına metodik 

geçişi, yenilenebilir enerjinin ilerlemesini sağlar. 
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