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ABSTRACT

THE QUERY COMPLEXITY OF ESTIMATING ENTROPY

We investigate the query complexity of additively estimating entropy of a discrete

probability distribution in two settings. Let p be an unknown probability distribution

on [n] := {1, 2, . . . n}, and define two kinds of queries: A SAMP query takes no input

and returns x ∈ [n] with probability p[x]; a PMF query takes as input x ∈ [n] and

returns the value p[x]. In the SAMP model of query complexity, the only allowed

interaction with p is via SAMP queries. In the SAMP+PMF model, both SAMP and

PMF queries are utilized to interact with p.

In particular, we consider the task of estimating the entropy of p to within ±∆

(with high probability). For the usual Shannon entropy H(p), we review the matching

upper and lower bounds established by Valiant and Valiant in the SAMP model, and

describe the algorithm constructed by Canonne and Rubinfeld in the SAMP+PMF

model. For the Rényi entropy Hα(p), we analyze three different matching upper and

lower bound pairs introduced by Acharya et al. in the SAMP model.

We show that Ω(log2 n/∆2) queries are necessary to estimate the Shannon en-

tropy H(p) in the SAMP+PMF model, matching a recent upper bound of Canonne and

Rubinfeld. In addition, we prove that Θ
(
n1−1/α

)
queries are necessary and sufficient

to estimate the Rényi entropy Hα(p) in the SAMP+PMF model, where α > 1. This

complements recent work of Acharya et al. in the SAMP model that showed O(n1−1/α)

queries suffice when α is an integer, but roughly n queries are necessary when α is a

noninteger. All of our lower bounds extend to the SAMP+CDF model, where SAMP

and CDF queries (given x, return
∑

y≤x p[y]) are allowed. We give a matching lower

bound on estimating the support size (the number of domain elements with nonzero

probability) of an unknown distribution p in the SAMP+CDF model. Lastly, we present

an upper bound on additively estimating Tsallis entropy in the SAMP+PMF model.
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ÖZET

ENTROPİ KESTİRİMİNİN SORGU KARMAŞIKLIĞI

Bu çalışmada, ayrık olasılık dağılımının entropisinin toplanır hata payıyla kes-

tirimi iki farklı kurguda irdelenmektedir. Buna göre bilinmeyen bir olasılık dağılımı

p’ye erişim iki farklı sorgu türüyle sağlanmaktadır. Herhangi bir girdisi olmayan SAMP

sorgusu p [x] olasılığıyla x ∈ [n] döndürmektedir. Girdi olarak x ∈ [n] alan PMF

sorgusunun ise çıktısı p [x]’dir. SAMP modeli ismini verdiğimiz ilk kurguda p ile sadece

SAMP sorgusu vasıtasıyla iletişim sağlanmaktadır. SAMP+PMF modeli olarak ad-

landırdığımız ikinci kurgudaysa hem SAMP hem de PMF sorguları kullanılabilmektedir.

Daha kesin bir ifadeyle, bu çalışmanın odak noktası olasılık dağılımı p’nin ent-

ropisinin yüksek ihtimalle ±∆ toplanır hata payıyla kestirimi problemidir. Shan-

non entropisi H (p)’nin kestirimini incelediğimiz bölümde Valiant ve Valiant’ın SAMP

modelinde göstermiş olduğu eşleşen alt ve üst sınırları ve Canonne ve Rubinfeld’in

SAMP+PMF modelinde inşa etmiş olduğu algoritmayı tasvir ediyoruz. Rényi entropisi

Hα (p)’yi incelediğimiz bölümdeyse Acharya ve diğerleri tarafından sunulan üç farklı

eşleşen alt ve üst sınır çiftini analiz ediyoruz.

Kendi katkımız olarak, önce SAMP+PMF modelinde Shannon entropisi H (p)’nin

kestirimi probleminin Ω( log2 n
∆2 ) sayıda sorgu gerektirdiğini kanıtlayarak Canonne ve

Rubinfeld’in sunduğu üst sınırın optimal olduğunu gösteriyoruz. İkinci olarak, yine

SAMP+PMF modelinde Rényi entropisi Hα (p)’yi α > 1 değerlerinde kestirebilmek

için Θ
(
n1−1/α

)
sayıda sorgunun gerekli ve yeterli olduğunu ispatlıyoruz. Böylelikle

Acharya ve diğerleri tarafından yakın zamanda elde edilen, SAMP modelinde Rényi

entropisi Hα (p)’yi α > 1 tamsayı değerlerinde kestirebilmek için O
(
n1−1/α

)
sayıda

sorgunun yeterli olduğu fakat α > 1 tamsayı olmayan değerlerinde kestirebilmek için

kabaca n sayıda sorgunun gerekli olduğu yönündeki sonuçları tamamlamış oluyoruz.
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1. INTRODUCTION

The question of what to infer about an unknown probability distribution p given

samples from it is fundamental to the field of statistics and has been researched for

decades. However, the practicality of traditional techniques has been shaken due to the

rapidly growing size of data in scientific study, a phenomenon designated as big data. In

the absence of simplifying assumptions about a probability distribution such as being

of a specific type or possessing certain smoothness properties, the number of samples

utilized by such techniques grows linearly in the size of the domain of a distribution

which is huge in the realm of big data. Thus, the task of constructing algorithms with

sublinear sample complexity has become all-important, and the aforementioned ques-

tion has been recently investigated within the theoretical computer science framework

of property testing. In this framework, as its name implies, a certain characteristic of a

distribution is put under the microscope. In addition, the only assumption made about

p is that it is a discrete probability distribution on a finite domain [n] := {1, 2, . . . , n}

where n ∈ N. For a detailed exploration of the field, see the surveys by Rubinfeld [1]

and Canonne [2].

One of the most significant characteristics of a probability distribution is its Shan-

non entropy, H (p) = −
n∑
i=1

p [i] logp [i],1 which represents the “amount of randomness”

a distribution possesses. The first focal point of this work is estimating Shannon en-

tropy to within additive error ∆ with probability at least 1− δ. (In a typical scenario

∆ = 1 and δ = 1/3.) The reason we limit ourselves to additive rather than multiplica-

tive estimation is that it is directly related to the estimation of mutual information.

That is, if p is a joint probability distribution of two random variables X, Y , then

additively estimating mutual information I (X, Y ) = H (X) + H (Y ) − H (X, Y ) is

realized via additively estimating H (p). For deeper analysis of Shannon entropy and

mutual information see Paninski [3]. The second focal point of this work is estimating

another popular type of entropy, Rényi entropy Hα (p) = 1
1−α log

(
n∑
i=1

p [i]α
)

, to within

additive error ∆ with probability at least 1− δ, where α ∈ [0, 1) ∪ (1,∞) . Both tasks

1In this work, log denotes log2.
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are investigated in two different settings.

In the conventional setting, which we refer to as the SAMP model, the only

allowed interaction with a probability distribution p is via independent samples. As

recently shown in [3–6], Θ
(

n
logn

)
samples are necessary and sufficient to estimate

Shannon entropy to within a constant additive error with high probability. The case

for estimating Rényi entropy is more complicated; three different results for three

classes of α are obtained in [7], the most efficient one being for the class of integer

α > 1 with Θ
(
n1−1/α

)
sample complexity. These quantities are not always convenient,

considering the aforementioned tendency in science and technology.

In the “unconventional” setting referred to as the SAMP+PMF model, aside from

drawing independent samples as in the SAMP model, querying a probability mass

function (PMF)2 of an arbitrary domain element, that is, learning p [i] of an element

i ∈ [n] is allowed. This extended version of the SAMP model, called the “Genera-

tion+Evaluation” model in [8] and the “combined model” in [9], is introduced to over-

come the difficulty described above. The results achieved in [10] imply that estimating

Shannon entropy is possible with polylog(n) SAMP+PMF queries, exponentially better

than the Ω
(

n
logn

)
queries in the SAMP model.

Although described as unconventional, the SAMP+PMF model becomes practical

in many applications. For instance, the number of occurrences, and therefore the

probability of a certain element in a sorted database can be calculated via at most

logarithmically many interactions with the database. For a concrete example, consider

the Google n-gram database in which the frequency of each n-gram is published, and a

random n-gram is easily obtained from the underlying text corpus. Another motivation

for the SAMP+PMF model stems from its strong relation with the streaming model [11],

where entropy estimation has been thoroughly studied [12–17]. To exhibit the relation

between the two, note that any q-query estimation algorithm in the SAMP+PMF model

can be converted to a q · polylog(n)-space streaming algorithm with one or two passes

2In this work, PMF, CDF and SAMP are abbreviations for probability mass function, cumulative
distribution function and sampling, respectively.
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(details of the conversion depend on the model for how the items in the stream are

ordered). For more motivation and results for the SAMP+PMF model, see Canonne

and Rubinfeld [10].

Our main contribution [18] is to establish a lower bound matching the upper

bound obtained in [10] on additively estimating Shannon entropy, Ω
(
log2 n

)
. In addi-

tion, we found upper and lower bounds matching in their dependence on n for additive

estimation of Rényi entropy when α > 1, Θ
(
n1−1/α

)
.

1.1. Organization

In Chapter 2, we focus on the task of additively estimating entropy in the SAMP

model. Section 2.1 is devoted to rigorously analyzing optimal upper and lower bounds

achieved in three successive works [19–21]. Section 2.2 explores three different matching

upper and lower bound pairs on additive estimation of Rényi entropy obtained in [7].

In Chapter 3, we concentrate on additively approximating the Shannon entropy in

the SAMP+PMF model. We describe the exponentially better algorithm constructed

by Canonne and Rubinfeld [10]. In addition, we introduce the SAMP+CDF model,

which is an extension of the SAMP+PMF model.

In Chapter 4, we demonstrate our contribution to the problem. Section 4.1

includes a comparison between our results and the prior work. In Section 4.2, we build

an optimal lower bound on additively estimating Shannon entropy, and in Section 4.3,

we present upper and lower bounds on additive estimation of Rényi entropy in the

SAMP+PMF and SAMP+CDF models. In Section 4.4, we establish a lower bound on

estimating the support size of a probability distribution in the SAMP+CDF model.

Section 4.5 is devoted to constructing an algorithm for additively estimating Tsallis

entropy in the SAMP+PMF model.

Finally, we state some open questions in the conclusion and give the inequalities

used throughout this work in the appendix.
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2. SAMP MODEL

We start with the formal definition of the conventional model.

Definition 2.1. (sampling-only model) Let p be a probability distribution on [n] and

SAMP denote a type of query which takes no input and returns i ∈ [n] with probability

p [i] independently of all previous calls. The SAMP model is a model of query complexity

in which the only allowed interaction with p is via SAMP queries.

Although there are different metrics to measure the distance between two proba-

bility distributions p1,p2, the most commonly used metric is total variation distance,

denoted by dTV and defined as

dTV (p1,p2) :=
1

2
‖p1 − p2‖1 =

1

2

n∑
i=1

∣∣p1 [i]− p2 [i]
∣∣. (2.1)

The following identity unveils the “mystery” behind the constant factor 1
2
.

dTV (p1,p2) = max
E⊆[n]

{p1 (E)− p2 (E)} (2.2)

Proof. Let A = {i : p1 [i] ≥ p2 [i]}. Then

dTV (p1,p2) =
1

2
(p1 (A)− p2 (A)) +

1

2

(
p2

(
A
)
− p1

(
A
))

= p1 (A)− p2 (A) ,

where A := [n] \A. The next step is to show that A is an event maximizing the right-

hand side of Equation 2.2. If one adds another element j ∈ [n] to A, the difference

p1 (A) − p2 (A) decreases, since by definition p1 [j] < p2 [j]. Similarly, removing an

element j from A leads to a decrease in p1 (A)− p2 (A), since p1 [j] ≥ p2 [j].



5

2.1. Shannon Entropy

Shannon entropy, named after Claude E. Shannon [22], represents the expected

information a probability distribution contains, thus, measures the randomness in a

distribution and the compressibility of the data produced by that distribution. Shannon

entropy is defined as

H (p) = −
n∑
i=1

p [i] logp [i] . (2.3)

By convention, the quantity p [i] logp [i] is set to 0 in the case of p [i] = 0 for

some i which is consistent with the following: lim
x→0+

x log x = 0. Note that

0 ≤ H (p) ≤ log n. (2.4)

The left-hand side of Inequality 2.4 is trivial, since −p [i] logp [i] ≥ 0 for all i.

The right-hand side of Inequality 2.4 follows from the fact that H (p) = Ei∼p

[
log 1

p[i]

]
and log x is a concave function. By applying Jensen’s inequality,3

H (p) = E
i∼p

[
log

1

p [i]

]
≤ log

(
E
i∼p

[
1

p [i]

])
= log n. (2.5)

Shannon entropy has many applications such as measuring genetic diversity [23],

quantifying neural activity [3], and detecting network anomalies [13].

This work concentrates on additive approximation to the entropy, though we also

state the results regarding its multiplicative counterpart. Batu, Dasgupta, Kumar and

Rubinfeld [9] construct an algorithm approximating H (p) of a distribution p within

a multiplicative factor of γ using Õ
(
n(1+o(1))/γ2

)
samples given H (p) = Ω (γ) for

any γ > 1. They also show that no algorithm exists which γ− approximates the

entropy of every distribution. Furthermore, Valiant [5] proves that Ω
(
n1/γ2

)
samples

are necessary for the task given H (p) = Ω
(

logn
γ2

)
.

3For the definitions of the inequalities used throughout this work, see Appendix A.



6

Initially, we introduce a trivial upper bound on additively estimating Shannon

entropy.

Fact 2.2. There exists an algorithm estimating (with high probability) the Shannon

entropy to within arbitrarily small constant ∆ using O
(
n log2 n

∆2

)
samples.

Proof. The overall idea is to build a distribution p′ which is close to p in total variation

distance and output H (p′) as an approximation of H (p). We utilize the “plug-in”

distribution for p′. Namely, let X1, . . . , Xm be m independent samples drawn from p

and define p′ [i] = 1
m

m∑
j=1

1{Xj=i} for each i ∈ [n] where 1E is the indicator function for

an event E. Observe that p′ [i] is an unbiased estimator of p [i] since E [p′ [i]] = p [i]

for each i. To show that |H (p′)−H (p) | ≤ ∆ we use the following fact:

Fact 2.3. ([24], Lemma 8) Let p1,p2 be two arbitrary probability distributions such

that dTV (p1,p2) ≤ ∆
4 logn

, then |H (p1)−H (p2) | ≤ ∆ where ∆ is an arbitrarily small

constant.

The final step is to prove that dTV (p′,p) ≤ ∆
4 logn

with high probability when

m = O
(
n log2 n

∆2

)
. Similarly, p′ [E] := 1

m

m∑
j=1

1{Xj∈E} is an unbiased estimator of p [E] for

any event E ⊆ [n]. Observe that Pr
[∣∣p′ [E]− p [E]

∣∣ > ∆
4 logn

]
≤ 2e

− ∆2

8 log2 n
m

= e−O(n)

for such m, which is easily derived via the Hoeffding bound. Then,

Pr

[
dTV (p′,p) >

∆

4 log n

]
= Pr

[
max
E⊆[n]

{p′ (E)− p (E)} > ∆

4 log n

]

≤ Pr

 ⋃
E⊆[n]

{
p′ (E)− p (E) >

∆

4 log n

}
≤
∑
E⊆[n]

Pr

[
p′ (E)− p (E) >

∆

4 log n

]
≤ 2n · e−O(n) = o (1) .

The task of achieving an additive estimation of entropy is fulfilled in its entirety in

three successive works [19], [20] and [21]. Valiant and Valiant establish matching upper
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and lower bounds on additively estimating a major class of symmetric properties (a

property is symmetric if it is immune to any permutation of domain elements) including

entropy. It is proven that Θ
(

n
logn

)
samples are necessary and sufficient for additive

estimation of entropy of a probability distribution with support size at most n. We use

a rather technical narrative for two reasons. First, each work has an intricate structure

requiring an attentive analysis. Second, the techniques deployed in the process utilize

a wide range of mathematical notions that may be of independent interest.

2.1.1. Upper Bound I

In this part, we introduce the algorithm constructed in [20] estimating entropy up

to an arbitrarily small constant using O
(

n
logn

)
independent samples. As the title of the

paper (Estimating the unseen: A sublinear-sample canonical estimator of distributions)

suggests, Valiant and Valiant employ a canonical approach to delicately approximate

an unobserved portion of a probability distribution rather than directly estimating

entropy. In other words, based on the samples drawn from an unknown probability

distribution p, the estimator builds a probability distribution p′ such that with high

probability the two are “close”, and returns the entropy of p′ as an approximation

of the entropy of p. The success of obtaining sublinear-sample complexity is due to

exploiting features of symmetry and using a different distance metric to better capture

the “closeness” between p and p′. Before going into the details, we introduce some key

definitions.

Definition 2.4. A property of a distribution is a function π : pn → R, where pn is

the set of distributions on domain [n]. A property π is called a symmetric property

if for all distributions p, and all permutations σ, π (p) = π (p ◦ σ).

Note that entropy is a symmetric property.

Definition 2.5. Given a sequence of samples X = {X1, . . . , Xm}, let the associated

fingerprint, denoted by FX , be the vector whose ith component, FX (i) is the number

of domain elements that occur exactly i ≥ 1 times in sample X .
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Intuitively, the fingerprint of a sample should hold all necessary information about

a sample for the task of estimating a symmetric property. We formalize this intuition

via the following fact.

Fact 2.6. ([9], Lemma 8) For any algorithm A that approximates the entropy of a

distribution to within additive ∆ from samples, there exists an algorithm A′ which gets

as input only the fingerprint of the generated sample and has the error probability upper

bounded by that of A.

Proof. Let p be an unknown distribution and FX denote the fingerprint of the set of

samples X = {X1, . . . , Xm} drawn from p. Algorithm A′ is constructed as follows:

• Choose FX (i) elements at random from [n] without replacement for each i,4

• Build X ′ so that an element chosen in step i occurs exactly i times in X ′,

• Output the value that A outputs on X ′.

The next step is to prove the correctness of A′. Let π be a permutation on [n]

and define a permuted distribution π (p) such that π (p) [i] = p [π (i)]. Let π (X ) be a

set of samples by relabeling the members of X according to π. Observe that the set

X ′ generated by A′ is π (X ) for some random permutation π. Lastly, let A (X ) denote

the output of A on the sample set X . Then,

Pr [A′ estimates H (p) to within ∆]

=
∑
X

Pr [p generates X ] · E
π

[Pr [A (π (X )) estimates H (p) to within ∆]]

= E
π

[∑
X

Pr [p generates X ] · Pr [A (π (X )) estimates H (p) to within ∆]

]

= E
π

[∑
X

Pr [π (p) generates π (X )] · Pr [A (π (X )) estimates H (p) to within ∆]

]
= E

π
[Pr [A estimates H (π (p)) to within ∆]]

≥ min
π

Pr [A estimates H (π (p)) to within ∆] ,

4Note that n− ‖FX ‖1 is the number of elements not seen in the sample set X .
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which is the correctness probability of A.

Similarly we define a histogram of the distribution which categorizes the domain

elements according to their probability values.

Definition 2.7. The histogram of a distribution p is a mapping h : (0, 1]→ Z, where

h (x) = |{i : p [i] = x}|. Additionally, generalized histograms are allowed which do not

necessarily take integral values.

Observe that, a symmetric property is a function of the histogram of a distribu-

tion. For instance, Shannon entropy can be written as

H (p) = −
n∑
i=1

p [i] logp [i] =
∑

x:h(x)6=0

h (x)x log
1

x
. (2.6)

We now define a new distance metric to obtain a better measure for proximity

between distributions.

Definition 2.8. For two histograms (or generalized histograms) h1, h2, let the relative

earthmover distance between them, R (h1, h2), be the minimum over all schemes of

moving the probability mass of the first histogram to yield the second histogram, of the

cost of moving that mass, where the per-unit cost of moving mass from probability x to

y is | log (x/y) |.

Distributions which are close to each other according to this new metric have

similar entropies.

Definition 2.9. A symmetric property π is (∆, ϑ)-continuous if for all distributions

p1,p2 with respective histograms h1, h2 satisfying R (h1, h2) ≤ ϑ it follows that

|π (p1)− π (p2) | ≤ ∆. (2.7)

Fact 2.10. ([20], Fact 9) For a probability distribution p, and ∆ > 0 the Shannon

entropy, H (p) = −
n∑
i=1

p [i] logp [i] is (∆,∆)-continuous, with respect to the relative

earthmover distance.
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We describe a well-known sampling technique known as Poisson sampling. Recall

that in the standard approach of estimating a certain p [i], one needs to draw m

independent samples X1, . . . , Xm from p and calculate the multiplicity of a domain

element i, that is, the number of occurrences of i among m samples. Observe that

the multiplicities of any two elements are not independent, complicating the overall

analysis: for a start, the sum of the multiplicities of all domain elements must be equal

to m. To overcome this difficulty, instead of drawing exactly m independent samples

from p we draw M ∼ Pois(m) samples, where Pois(m) is the Poisson distribution

with parameter m. Let X1, . . . , XM be independent samples drawn from p, then the

multiplicity of a domain element i is defined as

Ni = | {1 ≤ j ≤M : Xj = i} |. (2.8)

Fact 2.11. The multiplicities {Ni} are independent random variables and distributed

as Pois (m · p [i]).

Proof. Let Bin (y, z) be a Binomial distribution with parameters y ∈ N and z ∈ [0, 1].

Then

Pr [Ni = j] =
∞∑

M=0

(Pr [Pois (m) = M ] · Pr [Bin (M,p [i]) = j])

=
∞∑
M=j

(Pr [Pois (m) = M ] · Pr [Bin (M,p [i]) = j])

=
∞∑
M=j

(
e−mmM

M !
· M !

j! (M − j)!
· p [i]j (1− p [i])M−j

)

=
e−mp [i]j

j!

∞∑
M ′=0

(
mM ′+j

M ′!
· (1− p [i])M

′
)

=
e−m · (mp [i])j

j!

∞∑
M ′=0

(
(m (1− p [i]))M

′

M ′!

)

=
e−m · (mp [i])j · em−mp[i]

j!

=
e−mp[i] · (mp [i])j

j!
= Pois(mp [i] , j).
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Now we show that the Ni’s are independent.

Pr [N1 = M1 & · · · & Nn = Mn] = Pr [M ] · Pr [N1 = M1 & · · · & Nn = Mn|M ]

=
e−mmM

M !
· M !

M1! · · ·Mn!
· p [1]M1 · · ·p [n]Mn

=
e−mp[1] (mp [1])M1

M1!
· · · e

−mp[n] (mp [n])Mn

Mn!

= Pr [N1 = M1] · · ·Pr [Nn = Mn] .

Observe that Ni/m is an unbiased estimator for p [i] because E[Ni
m

] =
E[Ni]

m
=

p [i]. Consider the distribution of the jth entry of a Pois (m)-sample fingerprint,

F (j) =
n∑
i=1

1 {Ni = j} ⇒ E [F (j)] =
n∑
i=1

Pois (mp [i] , j) =
∑

x:h(x) 6=0

h (x) Pois (mx, j). (2.9)

The direct consequence ofNi’s being independent is that for each j, F (j) is closely

concentrated around its expectation, having an easy proof by a direct application of the

Chernoff bound. The other advantage of Poisson sampling is that its sample complexity

is comparable to the sample complexity of usual sampling, because Poisson distribution

also has a concentration around its expectation.

Proposition 2.12. ([20], Proposition 21) Given m > 30, and any set of fingerprints A,

let A be the set of fingerprints that can be obtained by adding or removing at most m0.6

samples from some fingerprint in set A. Let F denote a random m-sample fingerprint,

and let F ′ denote a fingerprint obtained from choosing M ∼ Pois (m), random samples.

Then

Pr [F ∈ A] ≤ Pr
[
F ′ ∈ A

]
+ e−m

0.1/2.

The construction of the estimator starts with building a linear program that

focuses on the low probability portion of a distribution. Based on a fingerprint F

of an unknown histogram h, the objective is to derive a histogram h′ such that for
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each domain element i and for a fingerprint FX (i) obtained from a sample X of h′,

E [FX (i)] ≈ F (i). However, for the high probability portion of a distribution, that is,

for elements with probability at least m−1+α for some small constant α ∈ (0, 1), the

histogram is set as h′
(
j
m

)
= F (j).

Definition 2.13 (The Linear Program LP). Given an m-sample fingerprint F

and α = 1/50, c ∈ [1, 2], bounds A := cm−1+α, B := 4m−1+0.6α, and a real number

γ := m−3/2, the linear program consists of variables vx ≥ 0 for all x ≤ A+B/2 in the

set X := {γ, 22γ, 32γ, . . . , A+B/2}, subject to the following condition:

1.
∑

x∈X:x≥A
xvx ≤ 16m−0.4α

2.
∑
x∈X

xvx +
∑

j≥m(A+B)

j
m
Fj = 1

3. For all integers i ≤ m (A+B/4),

∑
x∈X

vx Pois (mx, i) ∈
[
F (i)− 4m0.6+α,F (i) + 4m0.6+α

]
.

The set X is chosen carefully to adjust the time complexity of LP to be linear in

the number of samples. The first constraint is to guarantee that the probability mass

residing in the neighborhood of the threshold probability, A ≈ m−1+α, is small. The

second constraint is to guarantee that the sum of the total probability mass of rarely

occurring elements and the total probability mass of frequently occurring elements is

1. The third constraint is to guarantee that for rarely occurring domain elements the

expectation of a fingerprint distribution F ′ of a histogram h′ is close to a fingerprint

F of a histogram h.

Observe that a solution v = {vx} does not necessarily yield a proper histogram

h′ since vx’s can be nonintegers. The following definition is to construct a proper

histogram which is referred as the histogram associated to a solution v.

Definition 2.14. Let X := {γ, 22γ, 32γ, . . . , A + B/2} be the set of probabilities for

which LP solves. Given a m−fingerprint F and a solution v to the associated LP, the

corresponding histogram hv is derived from v according to the following process.
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1. set hv (∗) = 0.

2. for all x ∈ X let hv (x) = vx.

3. for all integers j ≥ m (A+B), let hv
(
j
m

)
= F (j).

4. for all x such that hv (x) 6= 0, set hv ((1 + ε)x) = bhv (x)c where ε =

∑
x∈X

x(vx−bvxc)

1−
∑
x∈X

x(vx−bvxc) .

The first and second steps assign v to hv. The third step makes the histogram

hv for frequently occurring elements agree with the F of a histogram h. The last step

converts the histogram values to integers while compensating the resulting loss in total

probability mass by renormalizing the distribution.

Lastly, we establish the connection between LP and the aforementioned O
(

n
logn

)
sample complexity.

Algorithm: ESTIMATOR I

• Fix m = O
(

n
logn

)
. (For details see [20].)

• Draw M ∼ Pois (m) independent samples X1, . . . , XM from p.

• Construct LP corresponding to the fingerprint F obtained from X1, . . . , XM .

• Find a solution v to LP.

• Compute histogram hv associated to solution v, as defined in Definition 2.14.

• Output
∑

x:hv(x)6=0

hv (x)x log 1
x

.

Figure 2.1. Canonical Estimator of Shannon Entropy.

Theorem 2.15. ([20], Theorem 2) For a constant ε ∈ (0, 1], consider a sample con-

sisting of m independent samples from a histogram h of support size at most εm logm.

With probability at least 1−e−m0.04
, LP has a solution and furthermore, for any solution

to LP, v, the histogram hv associated to v as in Definition 2.14 satisfies

R (h, hv) = O
(√

ε ·max{1, | log ε|}
)
.
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Theorem 2.15 combining with Fact 2.10 imply that entropy of the resulting his-

togram hv is close to the entropy of an unknown histogram h. The proof of The-

orem 2.15 consists of two parts; in the first part it is shown that with the claimed

probability there exists a feasible point v̂ such that the associated histogram hv̂ is

close to h. We informally describe how the existence of a feasible point v̂ is proven.

A feasible point v̂ is manually constructed via discretizing the low probability

portion of an unknown histogram h. For each probability y ≤ A + B
2

let xi, xi+1 be

consecutive members of the set X such that xi ≤ y ≤ xi+1, then h (y) > 0 is distributed

between v̂xi
and v̂xi+1

as follows:

All initially being equal to 0, set v̂xi
:= v̂xi

+ h (y) xi+1−y
xi+1−xi , and v̂xi+1

:= v̂xi+1
+

h (y) y−xi
xi+1−xi . Observe that such interpolation preserves both the probability mass re-

siding on y and the quantity h (y). Then it is proven that for each y,

h (y)
∣∣∣ ( xi+1 − y

xi+1 − xi
Pois (mxi, j) +

y − xi
xi+1 − xi

Pois (mxi+1, j)

)
− Pois (my, j)

∣∣∣ (2.10)

is bounded. Since fingerprint entries are closely concentrated around their expectations,

bounding Expression 2.10 implies that the third condition of LP is satisfied. Intuitively,

Expression 2.10 is bounded due to the sufficiently dense structure of the set X. In the

next step of the construction of v′, a normalization is realized to ensure that the second

constraint of LP is satisfied, that is, the probability mass shared among the members

of the set X and the probability mass in the empirical distribution derived from the

fingerprint of frequently occurring elements add up to 1. Then it is shown that such

normalization has a small effect on Expression 2.10. Therefore, v̂ is in the feasible

region with high probability. Intuitively, the associated histogram hv̂ is close to h

with respect to relative earthmover distance, since for the low probability portion of

the distribution, the two histograms are highly similar by construction, and for the

high probability portion of the distribution, hv̂
(
i
m

)
= Fi is close to h

(
i
m

)
because

each element of the fingerprint, with high probability, has true probability close to its

observed probability.
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In the second part of the proof of Theorem 2.15, it is shown that for any two

solutions v,w the associated histograms hv and hw are close. We start with key

definitions.

Definition 2.16. For a given m, a β−bump earthmoving scheme is defined by a se-

quence of positive real numbers {ci}, the bump centers, and a sequence of functions

{fi} : (0, 1] → R such that
∞∑
i=0

fi (x) = 1 and for each x, and each function fi may

be expressed as a linear combination of Poisson functions fi (x) =
∞∑
j=0

aij Pois (mx, j)

such that
∞∑
j=0

|aij| ≤ β. Given a generalized histogram h, the scheme works as follows:

for each x such that h(x) 6= 0, and each integer i > 0, move xh(x) · fi(x) probability

mass from x to ci. We denote the histogram resulting from this scheme by (c, f)(h).

Definition 2.17. For given n,m, a bump earthmoving scheme (c, f) is ε−good if for

any generalized histogram h, the relative earthmover distance between h and (c, f)(h)

is at most ε.

As these definitions hint, it is sufficient to construct a “good” bump earthmov-

ing scheme such that, given two solutions v,w, when the scheme is applied to the

associated histograms hv, hw, the resulting histograms (c, f)(hv) and (c, f)(hw) have

small distance. Then it immediately follows that (c, f)(hv) and (c, f)(hw) have similar

entropies, leading to the same conclusion about the entropies of hv and hw which ends

the proof.

Lemma 2.18. ([20], Lemma 16) For n > m, letting ς be such that n = ςm logm, there

exists an O (
√
ς ·max{1, | log ς|})− good m0.3−bump earthmoving scheme.

We only present the general idea of the proof due to its laborious details which

may be tiresome for a reader to follow. The building block of the construction of a

“good” bump earthmoving scheme is to use two different classes of functions for {fi}.

For i ≥ logm Poisson functions Pois(mx, i) are utilized. For i < logm Chebyshev

polynomials Ti (x) are employed where the ith Chebyshev polynomial is the polynomial

of degree i such that Ti (cos y) = cos (i · y). The sequence {ci} is assigned to be { i
m
} for
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i ≥ logm, and
{

2 logm
5m

(
1− cos

(
5(i+1)π

logm

))}
for i < logm. Then by leveraging the fact

that any two solutions v,w must have close fingerprint expectations, it is shown that

the resulting histograms (c, f)(hv) and (c, f)(hw) have small earthmoving distance.

2.1.2. Lower Bound

In the second part, we introduce the lower bound established in [19] on esti-

mating entropy. Valiant and Valiant prove that the task of estimating entropy up

to an additive error has sample complexity Ω
(

n
logn

)
by constructing two probability

distributions p+ and p− with large relative earthmover distance yet having close fin-

gerprint distributions. In other words, p+ and p− are built such that the difference,

|H (p+) − H (p−) |, is big enough to distinguish p+ from p−, however, no algorithm

can differentiate between the fingerprint obtained from p+ and the fingerprint obtained

from p− by drawing o
(

n
logn

)
samples. In addition, Valiant and Valiant provide two

new central limit theorems (CLT) for establishing the lower bound. We choose to avoid

the details of the proof of the central limit theorems in order to preserve the smoothness

of the explanation.

Definition 2.19. The generalized multinomial distribution parameterized by a non-

negative matrix ρ each of whose rows sum to at most 1, is denoted Mρ, and is defined

by the following random process: for each row ρ (i, ·) of matrix ρ, interpret it as a

probability distribution over the columns of ρ — including, if
∑m

j=1 ρ (i, j) < 1, an

“invisible” column 0 — and draw a column index from this distribution; return a row

vector recording the total number of samples falling into each column (the histogram of

the samples).

The generalized multinomial distribution is employed to capture the fingerprint

distribution of a probability distribution. We introduce the first central limit theo-

rem that relates the sum of independent distributions to a Gaussian distribution with

respect to earthmover distance.

Theorem 2.20. ([19], Theorem 2) Given n independent distributions {Zi} of mean 0

in Rm and a bound β such that ‖Zi‖ < β for any i and any sample, the earthmover
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distance between
∑n

i=1 Zi and the normal distribution of corresponding mean (0) and

covariance is at most βm(2.7 + 0.83 log n).

The second central limit theorem approximates a generalized multinomial dis-

tribution by a Gaussian distribution with respect to statistical distance. Note that

the statistical distance between a generalized multinomial distribution and a Gaussian

distribution is 1 since the first is discrete but the second is continuous. Therefore,

Gaussian distribution is discretized by rounding to the nearest lattice points.

Definition 2.21. The m−dimensional discretized Gaussian distribution, with mean

µ and covariance matrix Σ, denoted N disc (µ,Σ), is the distribution with support Zm

obtained by picking a sample according to the Gaussian N (µ,Σ), then rounding each

coordinate to the nearest integer.

Theorem 2.22. ([19], Theorem 4) Given a generalized multinomial distribution Mρ,

with m dimensions and n rows, let µ denote its mean and Σ denote its covariance

matrix, then

dTV

(
Mρ,N disc (µ,Σ)

)
≤ m4/3

σ1/3
· 2.2 · (3.1 + 0.83 log n)2/3 ,

where σ2 is the minimum eigenvalue of Σ.

We present how distributions p+ and p− are constructed.

Definition 2.23. Given a real number φ ∈
(
0, 1

4

)
, consider the degree logm + 2

polynomial Mlogm,φ (x) := −
(
x− φ 1

logm

)(
x− 2φ 1

logm

)
Llogm (x) such that Lj (x) =

ex

j!
dj

dxj
(e−xxj) is the jth Laguerre polynomial. Let v(x) be the function that takes value

1/M ′
logm,φ (x) for every x where Mlogm,φ (x) = 0, and is 0 otherwise, where M ′ is the

derivative of M . Define the distributions p+
logm,φ,p

−
logm,φ such that for each x where

v(x) > 0, the distribution p+
logm,φ contains v(x)ex/32 probability mass at probability

1
32m

x, and for each x where v(x) < 0 the distribution p−logm,φ contains |v(x)|ex/32 prob-

ability mass at probability 1
32m

x, where each distribution is then normalized to have

total probability mass 1.
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Observe that since the probability of each element of either p+
logm,φ or p−logm,φ

is defined to be at least φ
32m logm

, both distributions have support at most 32
φ
m logm.

Thus, the connection between the sample and domain sizes necessary for the lower

bound is formed. The second condition on p+
logm,φ, p−logm,φ is that the difference

|H
(
p+
logm,φ

)
−H

(
p−logm,φ

)
| is sufficiently big. This can be achieved by proving that

p+
logm,φ, p

−
logm,φ are close in the relative earthmover distance to two different distri-

butions q+, q−, respectively, such that H (q+) is distant from H (q−).

Lemma 2.24. ([19], Lemma 13) Distributions p+
logm,φ, p

−
logm,φ are O (φ| log φ|)−close,

respectively, in the relative earthmover distance to the uniform distributions on 32
φ
m logm

and 16
φ
m logm elements.

Note that the relative earthmover distance, therefore by Fact 2.10, the difference

of the entropies is H
(
U
([

32
φ
m logm

]))
− H

(
U
([

16
φ
m logm

]))
= 1, where U ([n])

denotes the uniform distribution with support size equal to n. That is, p+
logm,φ and

p−logm,φ are distinguishable. The third condition is that p+
logm,φ, p

−
logm,φ have finger-

print distributions Fp+ , Fp− , respectively, such that the statistical distance between

Fp+ and Fp− is small. Similarly, it is shown that Fp+ , Fp− are approximated by two

statistically close, discretized Gaussian distributions N disc
+ , N disc

− , respectively. First,

we state a weaker result.

Lemma 2.25. ([19], Lemma 16) For any i, the ith fingerprint expectations for distri-

butions p+
logm,φ,p

−
logm,φ are equal to within o(1).

It is necessary for p+
logm,φ, p

−
logm,φ to have bigger variance in both directions due

to obtaining better bounds when aforementioned central limit theorems are applied.

Therefore, p+
logm,φ, p

−
logm,φ are modified to get “fat” distributions p

F+

logm,φ, p
F−
logm,φ

such that both are statistically close to their “thin” counterparts, respectively. A “fat”

distribution is constructed as follows:

Definition 2.26. Define the fattening operator F that, given a histogram h, constructs

a new histogram hF as follows:
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• Provisionally set hF (x) =
(

1− logm−1
2 log2m

)
h (x) for each x;

• For each integer i ∈ {1, . . . , logm}, increment hF
(
i
m

)
← hF

(
i
m

)
+ m

log3m
.

Note that operator F returns a proper probability distribution and preserves the

previous upper bound on support size since no element with probability less than 1/m

is added to the support. Intuitively, it also “fattens” a distribution because the number

of low probability elements is increased substantially. Moreover, operator F does not

negatively affect the bounds of Lemma 2.25 since both distributions p+
logm,φ, p

−
logm,φ

are modified identically. We are ready to state the main result.

Proposition 2.27. ([19], Proposition 21) For a positive constant φ < 1/4, the statis-

tical distance between the distribution of Pois (m)−sample fingerprints from p
F+

logm,φ

and p
F−
logm,φ goes to 0 as m goes to infinity.

Recall that Theorem 2.22 is utilized to approximate the fingerprint distributions

of p
F+

logm,φ, p
F−
logm,φ by two statistically close, discretized Gaussian distributions, re-

spectively. We only explain the necessary conditions for Theorem 2.22, skipping the

details of its application.

The condition to be satisfied is that fingerprint distributions F
p
F+ , FpF− obtained

from distributions p
F+

logm,φ, p
F−
logm,φ, respectively, have close variance and covariance.

This is proven by using the result in Lemma 2.25, that is, fingerprint distributions

having close expectations. Recall that for a histogram h, expectation of the ith fin-

gerprint entry is E [Fi] =
∑

x:h(x)6=0

h (x) · Pois (mx, i), and covariance of two random

variables X, Y is defined as Cov [X, Y ] = E [XY ] − E [X] E [Y ]. Combining with

Equation 2.9, it follows that covariance of the ith and jth fingerprint entries, for i 6= j,

equals Cov [Fi,Fj] =
∑

x:h(x)6=0

−h (x) ·Pois (xm, i) Pois (xm, j). After the simplification,

Pois (xm, i) Pois (xm, j) =
(xm)i+j e−2xm

i!j!
= 2−(i+j)

(
i+ j

i

)
Pois (2xm, i+ j) .
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Recall that variance of a random variable X is Var [X] = E [X2]−E2 [X]. Then

for the ith fingerprint entry, Var [Fi] =
∑

x:h(x)6=0 h (x) ·
(
Pois (mx, i)− Pois (mx, i)2).

Note that Pois (mx, i)2 = 2−2i
(

2i
i

)
· Pois (2mx, 2i). The following relates Poisson func-

tions with different parameters.

Lemma 2.28. ([19], Lemma 20) For any ε > 0 and integer i ≥ 0, one may approximate

Pois (2x, i) as a linear combination
∑∞

j=0 α (j) Pois (x, j) such that

1. For all x ≥ 0, |Pois (2x, i)−
∑∞

j=0 α (j) Pois (x, j) | ≤ ε; and

2.
∑∞

j=0 |α (j) | ≤ 1
ε
· 200 max

{
4
√
i, 24 log3/2 1

ε

}
.

Therefore, both variance and covariance of fingerprint distributions of p
F+

logm,φ

and p
F−
logm,φ can be expressed as linear combinations of Poisson functions. It is al-

ready known that fingerprint distributions of p
F+

logm,φ, p
F−
logm,φ have close expectations

which themselves are expressed as linear combinations of Poisson functions. Then, at

least intuitively, fingerprint distributions of p
F+

logm,φ, p
F−
logm,φ have similar variance and

covariance.

Theorem 2.29. ([19], Theorem 1) For any positive constant φ < 1/4 there exists a

pair of distributions p+,p− that are O (φ| log φ|) − close in the relative earthmover

distance, respectively, to the uniform distributions on n and n/2 elements, but which

are indistinguishable to m = φ
32
· n

logn
−sample testers.

2.1.3. Upper Bound II

In the final part of this section, we present an improved upper bound on esti-

mating entropy up to an additive ∆. The bounds given in [19, 20] are matching in

their dependence on n, whereas for the dependence on ∆ this is not the case. The es-

timator constructed in [20] has sample complexity O
(

n
∆2 logn

)
, while the lower bound

established in [19] is Ω
(

n
∆ logn

)
, which leaves open the question of error decrease rate.

The problem is resolved in [21] by constructing an optimal estimator which estimates

the entropy of a distribution to within additive accuracy ∆, with probability at least

1 − o (poly (n)), given O
(

n
∆ logn

)
independent samples from a distribution with sup-
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port size at most n. Differently than the previous one which is based on a canonical

approach, Valiant and Valiant construct an estimator focusing directly on entropy.

Definition 2.30. A symmetric property π is linear if there exists some function fπ :

[0, 1] → R, denoted as characteristic function of π, such that for any distribution

p with histogram hp, π (p) =
∑

x:hp(x) 6=0

hp (x) fπ (x) .

Observe that Shannon entropy is a linear property, and its characteristic function

is f (x) = x| log x|. The new estimator is based on approximating the characteristic

function of entropy as a linear combination of Poisson functions. The following clarifies

the motivation behind this approach. Assume there exists a sequence of coefficients

{βi} such that for all x ∈ (0, 1] ,
∑∞

i=1 βi Pois (mx, i) = x| log x| = f (x). Then,

∑
x:h(x) 6=0

h(x)f(x) =
∑

x:h(x)6=0

h(x)
∑
i≥1

βi Pois (mx, i)

=
∑
i≥1

βi
∑

x:h(x)6=0

h(x) Pois (xm, i)

=
∑
i≥1

βi E [Fi] = E

[∑
i≥1

βiFi

]
.

(2.11)

That is, the quantity
∑
i≥1

βiFi is an unbiased estimator for entropy. Recall that for

each i, a fingerprint entry Fi is concentrated around its expectation. Then, roughly,

for
∑
i≥1

βiFi having relatively small variance one needs the coefficients {βi} to be small

comparing to 1/
√
m. However, instead of approximating the characteristic function

f (x) = x| log x| directly, the function f(x)
x

= | log x| is expressed as a linear combi-

nation of Poisson functions,
∑∞

i=0 zi Pois(mx, i). Observe that these approaches are

equivalent in the sense that βi = i
m
·zi−1, since xPois(mx, i) = Pois(mx, i+1) i+1

m
. The

following formalizes the relationship between the magnitudes of coefficients, error in

approximating | log x| and the estimator defined above.

Proposition 2.31. ([21], Proposition 17) Given integers m,n, and a set of coefficients

z0, z1, . . . such that if for positive real numbers a, b, c the following conditions hold:

1.
∣∣| log x| −

∞∑
i=0

zi Pois(mx, i)
∣∣ < a+ b

x
,
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2. for all j ≥ 1 let βj = j
m
zj−1 with β0 = 0, then for any j,l such that |j − l| ≤

√
j logm we have |βj − βl| ≤ c

√
j
m

.

Then the estimator described in Equation 2.11 estimates entropy with error at most

a + bn + c logm, with probability at least 1 − o (1/poly (m)) when given a fingerprint

derived from a set of m independent samples chosen from a distribution with support

size at most n.

The task of finding such coefficients {zi} is realized via linear programming. A

linear program is constructed with constraints describing the conditions of Proposi-

tion 2.31 and with the objective function minimizing error in the estimation.

Algorithm: ESTIMATOR II

• Fix m = O
(

n
∆ logn

)
. (For details see [21].)

• Draw M ∼ Pois (m) independent samples X1, . . . , XM from p.

• Construct the linear program as in Definition 18 [21], corresponding to F .

• Find a solution {zi} to the the linear program.

• Calculate the coefficients {βi}.

• Output
∑
i≥1

βiFi.

Figure 2.2. Linear Estimator of Shannon Entropy.

Aside from employing linear programming to find convenient coefficients {zi},

Valiant and Valiant explicitly construct an optimal estimator such that givenO
(

n
∆ logn

)
independent samples from a distribution with support size at most n, it estimates

entropy of a distribution to within additive accuracy ∆, with probability at least

1 − o (poly (n)). We briefly describe how an optimal estimator is constructed. Re-

call that the objective is to approximate the function log x as a linear combination of

Poisson functions,
∑∞

i=0 zi Pois(mx, i). A straightforward choice for coefficients {zi}

is the sequence
{

log i
m

}
. Note that log i

m
is a “plug-in” estimator for entropy. The

following lemma bounds the precision of any “plug-in” estimator.
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Lemma 2.32. ([21], Lemma 19) Given a function f : R→ R whose fourth derivative

at x is bounded in magnitude by α
x4 for x ≥ 1 and by α for x ≤ 1, and whose third

derivative at x is bounded by α
x3 , then for any real x,

∑∞
i=0 f (i) Pois(x, i) is within

O
(
α
x2

)
of f (x) + 1

2
xf ′′ (x) .

For a “plug-in” estimator log i
m

, this lemma suggests that

log x−
∞∑
i=0

log (i/m) Pois (mx, i) =
−1

2 ln 2 ·mx
+O

(
1

m2x2

)
. (2.12)

Observe that for a high probability, error of approximation is small, whereas

for a low probability such as x ≤ 1
m

, the right-hand side of Equation 2.12 becomes

unbounded. In other words, “plug-in” estimator is satisfactory for high probability

portion of a distribution, however, it behaves poorly for low probability portion of a

distribution. Similar techniques are used as in bump earthmoving scheme described in

Subsection 2.1.1 to resolve the issue. We only give an outline of the proof due to its

laborious details.

Two different functions are used for approximating log x as a linear combination

of Poisson functions. For probabilities x ≥ O (logm) “plug-in” estimator log i
m

and

for probabilities x < O (logm) a function of Chebyshev polynomials referred as the

Chebyshev bumps are utilized. The next step is to establish a Chebyshev bump version

of Lemma 2.32 and to show that the Chebyshev bumps can be expressed as a linear

combination of Poisson functions with relatively small coefficients. The proof ends by

applying Proposition 2.31.

2.2. Rényi Entropy

We investigate Rényi entropy, first introduced by Alfréd Rényi [25] which is a

popular generalization of Shannon entropy. It is defined as follows:

Definition 2.33. Let α ≥ 0 be a real number. The Rényi entropy of order α of a

distribution p, denoted by Hα(p), is
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for α 6= 1

Hα(p) =
1

1− α
log

(∑
x

p[x]α

)
, (2.13)

and for α = 1

H1(p) = lim
α→1

Hα(p) (2.14)

For α = 0, H0(p) = log supp (p), where supp (p) denotes the support size of the

distribution p. For α = 1, H1(p) = H(p), that is, Rényi entropy becomes Shannon

entropy, as easily derived via L’Hôpital’s rule. For α = ∞, Hα(p) is the min-entropy

H∞(p), where by definition H∞(p) = − log max
i

p[i].

Rényi entropy has many applications. Particularly, H2 (p) is used for measuring

the quality of random number generators [26], for testing the closeness of probability

distributions [27, 28], for characterizing the number of reads needed to reconstruct a

DNA sequence [29], etc.

Recall that Θ
(

n
logn

)
samples are necessary and sufficient for estimating Shannon

entropy, which are only better by a polylogarithmic factor than Θ
(
n log2 n

)
, a trivial

upper bound for this task. Thus, being a generalization of Shannon entropy, deter-

mining the complexity of estimating Rényi entropy becomes additionally intriguing.

Acharya, Orlitsky, Suresh, and Tyagi [7] provide near-optimal upper and lower bounds

for three different cases of α; it is shown that to estimate Rényi entropy to within an

additive error one requires (i) for α < 1, super-linear, roughly n1/α samples (ii) for

noninteger α > 1, near-linear, roughly n samples (iii) for integer α > 1, sub-linear,

Θ
(
n1−1/α

)
samples. Note that in the case of α > 1 being integer, estimating Rényi

entropy becomes substantially easier than estimating Shannon entropy.
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2.2.1. Upper Bounds

In the first part we illustrate the upper bounds established in [7]. Defining the

αth moment of p as Mα(p) =
n∑
i=1

(p [i])α, Rényi entropy can be expressed as Hα(p) =

1
1−α logMα(p). Observe that estimating Hα(p) to an additive accuracy of ±∆ is

equivalent to estimating Mα(p) to a multiplicative accuracy of 2±∆(1−α). Acharya et

al. construct two different multiplicative estimators, denoted by M̂e
α and M̂u

α, the first

for α 6∈ Z and the latter for α ∈ Z.

To simplify the analysis, Poisson sampling technique is utilized as in the case of

estimating Shannon entropy whose explicit description is given in Section 2.1. Recall

that in the Pois (m)-sampling scheme Ni/m is an unbiased estimator for p [i] where

Ni denotes the multiplicity of an element i. We define the aforementioned estimators

M̂e
α, M̂u

α.

Definition 2.34. For α 6∈ Z, let the empirical estimator for Mα(p), denoted by M̂e
α,

be

M̂e
α =

∑
i∈[n]

(
Ni

m

)α
. (2.15)

Observe that M̂e
α is biased. For α ∈ Z+, let nα = n · (n−1) · · · (n−α+1) denote

the αth falling power of n.

Definition 2.35. For integer α > 1, let the bias-corrected estimator for Mα(p), de-

noted by M̂u
α, be

M̂u
α =

∑
i∈[n]

Nα
i

mα
. (2.16)

We demonstrate the central lemma for establishing upper bounds, which essen-

tially constructs an error reduction algorithm to increase the accuracy of an estimator

given certain bounds on its bias and variance.
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Lemma 2.36. ([7], Lemma 6) For M ∼ Pois(m), let the estimator M̂α have bias and

variance satisfying

∣∣∣E [M̂α

]
−Mα(p)

∣∣∣ ≤ γ

2
Mα(p),

Var
[
M̂α

]
≤ γ2

12
Mα(p)2.

Then, there exists an estimator M̂′
α that uses O (m log (1/δ)) samples, and en-

sures

Pr
[∣∣∣M̂′

α −Mα(p)
∣∣∣ > γMα(p)

]
≤ δ.

Proof. By Chebyshev’s inequality,

Pr
[∣∣∣M̂α −Mα(p)

∣∣∣ > γMα(p)
]

≤ Pr
[∣∣∣M̂α − E

[
M̂α

] ∣∣∣+
∣∣∣E [M̂α

]
−Mα(p)

∣∣∣ > γMα(p)
]

≤ Pr
[∣∣∣M̂α − E

[
M̂α

] ∣∣∣ > γ

2
Mα(p)

]
≤

4 Var
[
M̂α

]
γ2M̂α

2 ≤ 1

3
.

Mα(p) is estimated in t independent rounds, and M̂ ′
α is assigned to be the sample

median of these rounds. More specifically, let M̂i denote the result of round i, and let

1Ei be the indicator function of the event Ei =
{∣∣∣M̂i −Mα(p)

∣∣∣ > γMα(p)
}

. Then

the expectation satisfies E [1Ei ] ≤ 1/3, and by the Hoeffding bound,

Pr

[
t∑
i=1

1Ei >
t

2

]
≤ e−t/18.

To reduce the probability of error to δ, set t = 18 log (1/δ). What this means is

that with probability at least 1− δ, the majority of the rounds, therefore, the sample

median M̂′
α satisfies the condition

∣∣∣M̂i −Mα(p)
∣∣∣ ≤ γMα(p).
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The next step is to bound the bias and variance of both estimators, M̂e
α, M̂u

α, in

order to apply Lemma 2.36, which finalizes the proof. Note that independence gained

due to Poisson sampling simplifies the analysis in bounding variance. We only state

related results regarding the bias-corrected estimator.

Lemma 2.37. ([7], Lemma 2) Let X ∼ Pois(λ). Then, for all r ∈ N

E[Xr] = λr,

Var[Xr] ≤ λr ((λ+ r)r − λr) .

Proof. The expected value is

E[Xr] =
∞∑
i=0

Pois(λ, i) · ir =
∞∑
i=r

e−λ
λi

i!
· i!

(i− r)!
= λr

∞∑
i=0

e−λ
λi

i!
= λr.

We bound the following

E[(Xr)2] =
∞∑
i=0

Pois(λ, i) · (ir)2

=
∞∑
i=r

e−λ
λi

i!
· (i!)2

(i− r)!2

= λr
∞∑
i=0

e−λ
λi

i!
(i+ r)r

= λr E[(X + r)r]

= λr E

[
r∏
j=1

[(X + 1− j) + r]

]

≤ λr E

[
r∑
j=0

(
r

j

)
Xj · rr−j

]

= λr
r∑
j=0

(
r

j

)
λj · rr−j

= λr (λ+ r)r .
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Hence,

Var[Xr] = E[(Xr)2]− E[Xr]2 ≤ λr ((λ+ r)r − λr) .

Finally, we state the upper bound results for estimating Rényi entropy.

Theorem 2.38. ([7], Theorem 9) For an integer α > 1, any ∆ > 0, and 0 < δ < 1,

there exists an algorithm estimating with probability at least 1 − δ the Rényi entropy

Hα(p) of an unknown distribution p on [n] to within ±∆ with O

(
n1−1/α

(1− 2(1−α)∆)
2 log

1

δ

)
samples.

Algorithm: ESTIMATOR III

• Fix γ = 1− 2(1−α)∆ and m = O
(
n1−1/α

γ2

)
. (For details see [7].)

• Repeat the following for t = d18 log 1
δ
e independent rounds.

· Draw M ∼ Pois (m) independent samples X1, . . . , XM from p.

· Compute the multiplicity Ni based on the samples X1, . . . , XM for 1 ≤ i ≤ n.

· Set M̂j =
∑
i∈[n]

N
α
i

mα
for round 1 ≤ j ≤ t.

• Output 1
1−α log M̂α where M̂α is the median of the sequence {M̂j}.

Figure 2.3. SAMP Estimator of Rényi Entropy (of integer degree α > 1)

Theorem 2.39. ([7], Theorem 7) For α > 1, ∆ > 0, and 0 < δ < 1, there exists

an algorithm estimating with probability at least 1 − δ the Rényi entropy Hα(p) of an

unknown distribution p on [n] to within ±∆ with O

(
n

γmax{4,1/(α−1)} log
1

δ

)
samples

where γ = 1− 2(1−α)∆.

Theorem 2.40. ([7], Theorem 8) For α < 1, ∆ > 0, and 0 < δ < 1, there exists

an algorithm estimating with probability at least 1 − δ the Rényi entropy Hα(p) of an

unknown distribution p on [n] to within ±∆ with O

(
n1/α

γmax{4,2/α} log
1

δ

)
samples where

γ = 1− 2(α−1)∆.
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Algorithm: ESTIMATOR IV

• Fix γ = 1− 2(1−α)∆ and m = O
(

n
γmax{4,1/(α−1)}

)
. (For details see [7].)

• Repeat the following for t = d18 log 1
δ
e independent rounds.

· Draw M ∼ Pois (m) independent samples X1, . . . , XM from p.

· Compute the multiplicity Ni based on the samples X1, . . . , XM for 1 ≤ i ≤ n.

· Set M̂j =
∑
i∈[n]

(
Ni
m

)α
for round 1 ≤ j ≤ t.

• Output 1
1−α log M̂α where M̂α is the median of the sequence {M̂j}.

Figure 2.4. SAMP Estimator of Rényi Entropy (of noninteger degree α > 1)

We skip the algorithmic view of additively estimating the Rényi entropy for α < 1,

since it is easily obtained by setting m = O

(
n1/α

(1−2(α−1)∆)
max{4,2/α}

)
in Figure 2.4.

Very recently, Acharya, Orlitsky, Suresh, and Tyagi [30] have improved the upper

bound results for additively estimating the Rényi entropy for noninteger values of α.

For α < 1 and noninteger α > 1, they construct algorithms additively estimating

(with high probability) the Rényi entropy Hα(p) of an unknown distribution p using

O
(
n1/α

logn

)
and O

(
n

logn

)
samples, respectively. Both algorithms employ empirical and

bias-corrected estimators, M̂e
α and M̂u

α, and achieve a factor of log n improvement

due to exploiting the polynomial approximation technique. In particular, for domain

elements i with Ni > τ , the empirical estimator M̂e
α is utilized, where τ = O (log n).

On the other hand, for domain elements i with Ni ≤ τ , the task of estimating Hα(p)

is conducted in two steps. Firstly, the function xα is approximated by an integer

d−degree polynomial p (x) =
d∑
j=0

cjx
j. Secondly, the quantity (p [i])α is estimated by

utilizing the bias-corrected estimator M̂u
α for each term of p (p [i]).

2.2.2. Lower Bounds

In the second part of this section, we exhibit lower bounds [7] on the task of esti-

mating Rényi entropy to within an additive error. The techniques utilized for the task
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resemble to the ones used for establishing a lower bound on estimating Shannon entropy.

Unsurprisingly, since Rényi entropy is a symmetric property, the fingerprint of a sample

is satisfactory for the analysis, as described in Section 2.1. Acharya et al. construct

two probability distributions p and q such that the difference, |Hα (p) − Hα (q) |, is

sufficiently big to distinguish p from q. However, the fingerprint distributions, pF , qF ,

corresponding to p, q, respectively, have small total variation distance so that given a

fingerprint it is impossible to decide which distribution it is obtained from when the

number of samples is less than certain quantity. The following sets a bound on the

total variation distance between the fingerprint distributions.

Theorem 2.41. ([7], Theorem 13) Given distributions p and q such that

max
x

max{px, qx} ≤
ε

40m
, for Poisson sampling with M ∼ Pois (m), it holds that

‖pF − qF‖ ≤
ε

2
+ 5

∑
α

mα|Mα(p)−Mα(q)|.

Thus, it is sufficient to build p, q with distant Rényi entropies, yet having identical

moments. For a probability distribution p, let ‖p‖r =

(
n∑
i=1

∣∣p [i]
∣∣r)1/r

, where r is a

positive real number. We present the main ingredients of constructing such p, q pairs.

Lemma 2.42. ([7], Lemma 14) For every d ∈ N and noninteger α, there exist positive

vectors x, y ∈ Rd such that

‖x‖r = ‖y‖r, 1 ≤ r ≤ d− 1

‖x‖d 6= ‖y‖d,

‖x‖α 6= ‖y‖α.

Definition 2.43. For every positive integer d and every vector x = (x1, . . . , xd) ∈ Rd,

construct a distribution px with support size dn as follows

pxij =
|xi|
n‖x‖1

, 1 ≤ i ≤ d, 1 ≤ j ≤ n.5

5Analyzing probability distributions with support size dn instead of the ones with support size n
is only for practical reasons and does not affect the lower bound results stated above.
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It only remains to construct distributions p, q based on Lemma 2.42 and Defini-

tion 2.43 for three different cases of α and apply Theorem 2.41 to finalize the proof.

Before stating the lower bound results on estimating Rényi entropy to within additive

error, we give one last definition.

Definition 2.44. Let f (n) =
≈
Ω
(
nβ
)

indicate that for all sufficiently large n and for all

η > 0, f (n) > nβ−η where f : R → R and β ∈ R. That is, f (n) grows polynomially

in n with exponent not less than β.

Theorem 2.45. ([7], Theorem 15) For any integer α > 1, Ω
(
n1−1/α

)
samples are

necessary to estimate (with high probability) the Rényi entropy Hα(p) of an unknown

distribution p on [n] to within ±∆.

Theorem 2.46. ([7], Theorem 16) For any noninteger α > 1,
≈
Ω (n) samples are

necessary to estimate (with high probability) the Rényi entropy Hα(p) of an unknown

distribution p on [n] to within ±∆.

Theorem 2.47. ([7], Theorem 17) For any 1 > α > 0,
≈
Ω
(
n1/α

)
samples are necessary

to estimate (with high probability) the Rényi entropy Hα(p) of an unknown distribution

p on [n] to within ±∆.
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3. SAMP+PMF MODEL

We formally define the “unconventional” model.

Definition 3.1. Let p be a probability distribution on [n] and PMF denote a type of

query which takes input i ∈ [n] and returns its probability mass function p [i]. The

SAMP+PMF model is a model of query complexity in which both SAMP and PMF

queries are utilized to interact with p.

Note that a trivial upper bound on estimating entropy is n, since one can learn p

fully via n PMF queries. We start with the results regarding multiplicatively estimating

entropy. As shown in [9, 12], estimating H(p) (with high probability) to within a

multiplicative factor of 1 + γ requires between

Ω

(
log n

max(γ, γ2)

)
· 1

H(p)
(3.1)

and

O

(
log n

γ2

)
· 1

H(p)
(3.2)

SAMP+PMF queries. One disadvantage of these bounds is them depending quantita-

tively on the entropy H(p) itself.

The task of estimating (with high probability) Shannon entropy to within ad-

ditive error is examined in [10]. Canonne and Rubinfeld construct an algorithm with

O
(
log2 n

)
query complexity, demonstrating superiority of SAMP+PMF model to SAMP

model in which Ω
(

n
logn

)
samples are necessary for the same task. They build the al-

gorithm on the following:

H (p) =
∑
i∈[n]

p [i] log
1

p [i]
= E

i∼p

[
log

1

p [i]

]
(3.3)
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Since it is difficult to give an upper bound on the quantity log 1
p[i]

, Identity 3.3 is

reconstructed. Note that the function f (x) = x log
(

1
x

)
is increasing for x ∈

(
0, 1

e

)
and

lim
x→0+

f (x) = 0. Then for any threshold τ ∈
(
0, 1

e

)
,

H (p) =
∑

i:p[i]≥τ

p [i] log
1

p [i]
+
∑

i:p[i]<τ

p [i] log
1

p [i]
⇒

H (p) ≥
∑

i:p[i]≥τ

p [i] log
1

p [i]
= H (p)−

∑
i:p[i]<τ

p [i] log
1

p [i]
≥ H (p)− n · τ log

1

τ

(3.4)

Assume ∆
n
< 1

2
, and let τ =

∆
n

10 log n
∆

, so that n · τ log 1
τ
≤ ∆

2
. Define a function

ϕ (x) = log 1
x
1{x≥τ}. Then, Equation 3.4 implies that

H (p) ≥ E
i∼p

[ϕ (p [i])] ≥ H (p)− ∆

2
.

Consequently, estimating Ei∼p [ϕ (p [i])] to within additive ∆
2

is sufficient for es-

timating H (p) to within additive ∆. Observe that 0 ≤ ϕ (p [i]) ≤ log 1
τ
≈ log n

∆
.

Let X1, . . . , Xm be independent samples drawn from p where m = O
(

log2 n
∆

∆2

)
. If we

compute the quantities ϕ (p [Xj]) via PMF queries and apply the Hoeffding bound on

random variables Yj =
ϕ (p [Xj])

log 1
τ

for 1 ≤ j ≤ m,

Pr

[∣∣∣ 1

m

m∑
j=1

ϕ (p [Xj])− E
i∼p

[ϕ (p [i])]
∣∣∣ ≥ ∆

2

]
≤ 2e

− ∆2m

log2 1
τ ≤ 1

3
.

Theorem 3.2. ([10], Theorem 10) In the SAMP+PMF model, there exists an algo-

rithm estimating Shannon entropy (with high probability) to within ±∆ with sample

complexity O
(

log2 n
∆

∆2

)
.

Apart from achieving an exponentially better bound, the simplicity of the algo-

rithm compared to the entangled nature of the estimators described in Section 2.1 is

sufficient to illuminate the power a PMF query adds to the model. Yet, how helpful is

it for estimating Rényi entropy? We will examine this question in Section 4.3.
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Algorithm: ESTIMATOR V

• Fix τ =
∆
n

10 log n
∆

and m =
⌈

ln 6
∆2 log2 1

τ

⌉
.

• Draw m independent samples X1, . . . , Xm from p.

• Compute Yj = log 1
p[Xj ]

1{p[Xj ]≥τ} by evaluating PMF on Xj for 1 ≤ j ≤ m.

• Output 1
m

m∑
j=1

Yj.

Figure 3.1. SAMP+PMF Estimator of Shannon Entropy

We can extend the SAMP+PMF model by making a slight modification on a PMF

query.

Definition 3.3. Let p be a probability distribution on [n] and CDF denote a type of

query which takes input i ∈ [n] and returns its cumulative distribution function
i∑

j=1

p [j].

The SAMP+CDF model is a model in which both SAMP and CDF queries are utilized

to interact with p.

Observe that since PMF (i) = CDF (i) − CDF (i− 1), a PMF query is simulated

by at most two CDF queries. Canonne and Rubinfeld [10] show that in certain cases

the SAMP+CDF model is more powerful than the SAMP+PMF model in estimating

Shannon entropy. More specifically, if a probability distribution p is known to be

monotone, Ω (log n) queries are necessary for estimating H (p) in the SAMP+PMF

model, however, there exists an algorithm in the SAMP+CDF model usingO
(
log2 log n

)
queries for the same task. Does this hold true for estimating entropy of an arbitrary

distribution? Answers to these and more questions are presented in the next chapter.
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4. OPTIMAL BOUNDS FOR ESTIMATING ENTROPY

WITH PMF QUERIES

4.1. Our Results, and Comparison with Prior Work

As described in Chapter 3, Canonne and Rubinfeld [10] build a SAMP+PMF algo-

rithm estimating with high probability Shannon entropy to within ±1 using O(log2 n)

queries. In addition, they prove that Ω(log n) queries are necessary for the task. Our

first main result is an improved, optimal lower bound:

First main theorem. In the SAMP+PMF model, Ω(log2 n) queries are necessary to

estimate (with high probability) the Shannon entropy H(p) of an unknown distribution

p on [n] to within ±1.

Remark 4.1. Our lower bound and the lower bound for multiplicative estimation of

Shannon entropy given in Expression 3.1 hold even under the promise that H(p) =

Θ(log n). Note that Expression 3.1 yields a nonoptimal Ω(log n) lower bound for addi-

tive estimation problem by taking γ = 1
logn

.

More precisely, Canonne and Rubinfeld show that O( log2 n
∆2 ) queries are sufficient

for estimating Shannon entropy to within ±∆.6 However, this result is trivial once

∆ ≤ logn√
n

since p can be learned exactly via n PMF queries. In fact, our first main

theorem gives a matching lower bound for essentially the full range of ∆: we prove

that Ω( log2 n
∆2 ) SAMP+PMF queries are necessary for any 1

n0.4999 ≤ ∆ ≤ logn
16·106 .

Our second main result is regarding the estimation of Rényi entropy Hα(p) for

various parameters 0 ≤ α ≤ ∞. Recall that Acharya et al. [7] establish three different

lower and upper bound pairs on additively estimating Hα(p) in the SAMP model. They

prove that Θ(n1−1/α) samples are necessary and sufficient when α > 1 is an integer;

6They actually state O( log2(n/∆)
∆2 ), but this is the same as O( log2 n

∆2 ) because the range of interest

is logn√
n
≤ ∆ ≤ log n.
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≈
Ω (n) samples are necessary when α > 1 is a noninteger;

≈
Ω
(
n1/α

)
samples are necessary

when 1 > α > 0. We give matching upper and lower bounds on estimating Hα(p) for

all α > 1. Apparently, PMF queries provide no advantage in estimating Rényi entropy

for integer α, whereas they are advantageous for noninteger α.

Second main theorem. Let α > 1 be a real number. In the SAMP+PMF model,

Ω
(
n1−1/α

22∆

)
queries are necessary and O

(
n1−1/α

(1−2(1−α)∆)
2

)
queries are sufficient to estimate

(with high probability) the Rényi entropy Hα(p) of an unknown distribution p on [n]

to within ±∆.

We show that our two bounds extend to the SAMP+CDF model, thus, answering

the question of the previous chapter. In addition, we give a matching lower bound for

estimating support size to within ±εn in the SAMP+CDF model. Lastly, we provide

an upper bound on additively estimating Tsallis entropy in the SAMP+PMF model.

4.2. First Main Theorem

We present a well-known fact which is of key importance in establishing a lower

bound on additively estimating Shannon entropy in the SAMP+PMF model.

Lemma 4.2. For λ ∈
(
0, 1

4

]
, Θ

(
1
λ2

)
samples are necessary and sufficient to dis-

tinguish between the uniform distribution p1 =
(

1
2
, 1

2

)
and the biased distribution

p2 =
(

1
2

+ λ, 1
2
− λ
)
.7

Proof. We start with proving the upper bound. Let X1, . . . , Xm be m independent

samples drawn from p which is a probability distribution promised to be either a

uniform or a biased distribution. Then 1
m

m∑
i=1

1{Xi=1} is an unbiased estimator for p [1],

where 1{E} is an indicator function of an event E. We need to approximate (with

high probability) p [1] to within some ε < λ
2

to properly distinguish between two

7The range of λ can be easily extended to
(
0, 1

2 − ξ
]
, where ξ is an arbitrarily small constant.
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distributions. By applying the Hoeffding bound,

Pr

[∣∣∣ 1

m

m∑
i=1

1{Xi=1} − p [1]
∣∣∣ > ε

]
≤ 2e−2ε2m.

Obviously, to bound the right-hand side of the inequality m = O
(

1
λ2

)
samples

are sufficient. Now we prove the lower bound.

Definition 4.3. Let d1,d2 be discrete probability distributions. The Kullback-Leibler

(KL) divergence is defined as

KL (d1‖d2) =
∑
x

d1 [x] log
d1 [x]

d2 [x]
. (4.1)

By convention, d1 [x] logd1 [x] is set to 0 if d1 [x] = 0. We exploit the KL-

divergence for the particular class of probability distributions.

Fact 4.4. Let X1, . . . , Xm be m i.i.d random variables drawn from d1 (respectively

d2), where m ∈ N. Let dm1 (respectively dm2 ) denote a joint probability distribution of

random variables X1, . . . , Xm. Then

KL
(
dm1 ‖d

m
2

)
= mKL (d1‖d2) .

Proof. By definition dm1 = (d1)m and dm2 = (d2)m. We prove the statement via strong

induction.

Base case: For m = 2,

KL
(
d2
1‖d

2
2

)
=
∑
X1

∑
X2

d1 [X1]d1 [X2] · log

(
d1 [X1]d1 [X2]

d2 [X1]d2 [X2]

)
=
∑
X1

∑
X2

d1 [X1]d1 [X2] ·
(

log
d1 [X1]

d2 [X1]
+ log

d1 [X2]

d2 [X2]

)
=
∑
X1

d1 [X1] log
d1 [X1]

d2 [X1]

∑
X2

d1 [X2] +
∑
X1

d1 [X1]
∑
X2

d1 [X2] log
d1 [X2]

d2 [X2]
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=
∑
X1

d1 [X1] log
d1 [X1]

d2 [X1]
+
∑
X2

d1 [X2] log
d1 [X2]

d2 [X2]

= 2 KL (d1‖d2) .

Induction step: Assume that the statement is true for all i ≤ m− 1. Then

KL
(
dm1 ‖d

m
2

)
=
∑
X1

· · ·
∑
Xm

(
m∏
i=1

d1 [Xi] log

(
m∏
j=1

d1 [Xj]

d2 [Xj]

))

=
∑
X1

· · ·
∑
Xm

(
m∏
i=1

d1 [Xi]

(
m∑
j=1

log
d1 [Xj]

d2 [Xj]

))

=
∑
X1

d1 [X1] log
d1 [X1]

d2 [X1]

∑
X2

d1 [X2] · · ·
∑
Xm

d1 [Xm]

+
∑
X1

d1 [X1]
∑
X2

· · ·
∑
Xm

(
m∏
i=2

d1 [Xi]

(
m∑
j=2

log
d1 [Xj]

d2 [Xj]

))

=
∑
X1

d1 [X1] log
d1 [X1]

d2 [X1]
+
∑
X2

· · ·
∑
Xm

(
m∏
i=2

d1 [Xi]

(
m∑
j=2

log
d1 [Xj]

d2 [Xj]

))

= KL (d1‖d2) + KL
(
dm−1
1 ‖dm−1

2

)
= mKL (d1‖d2) .

Lemma 4.5. Let d̂1, d̂2 be discrete probability distributions on the universe U , and let

f : U → [0, C] be a real-valued function for some positive constant C. Then

∣∣∣E
d̂1

[f (x)]− E
d̂2

[f (x)]
∣∣∣ ≤ C · ‖d̂1 − d̂2‖1.

Proof.

∣∣∣E
d̂1

[f (x)]− E
d̂2

[f (x)]
∣∣∣ =

∣∣∣∑
x∈U

d̂1 [x] f (x)−
∑
x∈U

d̂2 [x] f (x)
∣∣∣

=
∣∣∣∑
x∈U

(
d̂1 [x]− d̂2 [x]

)
f (x)

∣∣∣
≤
∑
x∈U

∣∣∣ (d̂1 [x]− d̂2 [x]
) ∣∣∣f (x)

≤ C
∑
x∈U

∣∣∣ (d̂1 [x]− d̂2 [x]
) ∣∣∣
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= C · ‖d̂1 − d̂2‖1.

As a final ingredient we give an upper bound on the KL-divergence between the

biased distribution and the uniform distribution.

KL (p2‖p1) =

(
1

2
+ λ

)
log

1
2

+ λ
1
2

+

(
1

2
− λ
)

log
1
2
− λ
1
2

=
1

2
log ((1− 2λ) (1 + 2λ)) + λ log

(
1 + 2λ

1− 2λ

)
≤ λ log

(
1 + 2λ

1− 2λ

)
=

λ

ln 2
ln

(
1 +

4λ

1− 2λ

)
≤ 4λ2

ln 2
· 1

1− 2λ

≤ 8λ2

ln 2
,

(4.2)

where the second inequality follows from the exponential inequality.

Suppose for the sake of contradiction that there exists a hypothetical algorithm

D such that given m = o
(

1
λ2

)
independent samples, decides whether p = p1 or p = p2

with probability of error at most 1
3
. Let D output 1 to indicate that p = p1 and

output 0 to indicate that p = p2. Denote by X the set of m independent samples

{X1, . . . Xm}. Then

Pr
[
D
(
X ∼ pm1

)
= 1
]
≥ 2

3
and Pr

[
D
(
X ∼ pm2

)
= 0
]
≥ 2

3
.

In other words,

E
X∼pm1

[D (X )] ≥ 2

3
and E

X∼pm2
[D (X )] ≤ 1

3
,
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which gives

E
X∼pm1

[D (X )]− E
X∼pm2

[D (X )] ≥ 1

3
. (4.3)

Letting d̂1 = pm1 , d̂2 = pm2 and f = D, Lemma 4.5 and Inequality 4.3 imply

‖pm1 − pm2 ‖1 ≥
1

3
. (4.4)

Then

o

(
1

λ2

)
= m =

KL
(
pm1 ‖pm2

)
KL (p1‖p2)

(Fact 4.4)

≥ 1

2 ln 2
· ‖pm1 − pm2 ‖

2
1 ·

1

KL (p1‖p2)
(Pinsker’s inequality)

≥ 1

18 ln 2
· 1

KL (p1‖p2)
(Inequality 4.4)

≥ 1

144λ2
= Ω

(
1

λ2

)
, (Inequality 4.2)

which is a contradiction.

We establish a tight lower bound on estimating Shannon entropy in the following

theorem.

Theorem 4.6. In the SAMP+PMF model, Ω
(

log2 n
∆2

)
queries are necessary to estimate

(with high probability) the Shannon entropy H(p) of an unknown distribution p on [n]

to within ±∆, where 1
n0.4999 ≤ ∆ ≤ logn

16·106 .

Proof. We will show that a hypothetical SAMP+PMF algorithm E that can estimate

the entropy of an unknown distribution on [n] to within ±∆ using o
(

log2 n
∆2

)
queries

would contradict Lemma 4.2 stating that Ω(1/λ2) coin tosses are necessary to determine

whether a given coin is fair, or comes up heads with probability 1/2 + λ.
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The idea is to use the given coin to realize the probability distribution that E will

work on. Let n be the smallest one millionth power of a natural number that satisfies

4·106∆
logn

≤ λ.8 Partition the domain [n] into M = n0.999999 consecutive blocks I1, . . . , IM ,

each containing K = n
M

= n0.000001 elements. Each block will be labeled either as a

tails or a heads block. The internal distribution of each heads block is uniform, i.e.

each element has probability mass 1
MK

= 1
n
. In each tails block, the first element has

probability mass 1
n0.999999 , while the rest of the elements have probability mass 0. Note

that the total probability mass of each block is K · 1
MK

= 1
M

= 1
n0.999999 , regardless of its

label. We will now describe a costly method of constructing a probability distribution

p of this kind, using a coin that comes up heads with probability d:

• Throw the coin M times to obtain the outcomes X1, . . . , XM ,

• Set the label of block Im to Xm, for all m ∈ [M ] .

Let X be the number of heads blocks in p. Then µ = E [X] = Md. Let X = X
M

denote the proportion of heads blocks in p. Then we can calculate the entropy H (p)

by calculating the individual entropies of the blocks. For a heads block, the entropy is

K · 1
MK
· log(MK) = 1

M
log n. The entropy of a tails block is 1

n0.999999 log(n0.999999) =

0.999999
M

log n. Since there are MX heads blocks and M(1 − X) tails blocks, the total

entropy becomes

H (p) = MX · 1
M

log n+M(1−X) · 0.999999
M

log n

= X log n+ 0.999999(1−X) log n

= (0.999999 + 0.000001X) log n.

(4.5)

Note that this function is monotone with respect to X. Define two families

of distributions P1 and P2 constructed by the above process, taking d to be p1 = 1
2

and p2 = 1
2

+ λ, respectively. Let p1 ( respectively p2) be a probability distribution

randomly chosen from P1 (respectively P2).

8Since Lemma 4.2 holds for λ ∈
(
0, 1

2 − ξ
]
, where ξ is an arbitrarily small constant, the upper

bound on ∆ can be extended to (1−2ξ) logn
8·106 .
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Proposition 4.7. p1 has entropy at most 0.9999995 log n+ ∆ with high probability.

Proof. We prove this by using the Chernoff bound on the number of heads blocks in

the distribution.

Pr
[
X ≥

(
p1 + 106∆

logn

)
M
]

= Pr
[
X ≥ M

2

(
1 + 2·106∆

logn

)]
≤ exp

(
−

4·1012∆2

log2 n

2 + 2·106∆
logn

M
2

)
= exp

(
− 1012∆2M

log n(log n+ 106∆)

)
≤ exp

(
− 1012 · n0.999999/n0.999998

log2 n(1 + 106)

)
= exp

(
− 1012 · n0.000001

log2 n(1 + 106)

)
= o(1).

The last term indicates that the number of heads blocks X <
(
p1 + 106∆

logn

)
M , and

the proportion of the heads blocks X <
(
p1 + 106∆

logn

)
with high probability. Thus, with

high probability

H[p1] = (0.999999 + 0.000001X) log n < 0.9999995 log n+ ∆.

Proposition 4.8. p2 has entropy at least 0.9999995 log n+ 3∆ with high probability.

Proof. We find a similar bound by;

Pr
[
X ≤

(
p2 − 106∆

logn

)
M
]

= Pr
[
X ≤ p2M

(
1− 106∆

p2 logn

)]
≤ exp

(
−

1012∆2

p2
2 log2 n

2
p2M

)
= exp

(
− 1012∆2M

2p2 log2 n

)
= exp

(
− 1012∆2M

2
(

1
2

+ λ
)

log2 n

)
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≤ exp

(
− n0.000001

log2 n

)
= o(1).

The last term indicates that the number of heads blocks X >
(
p2− 106∆

logn

)
M , and

the proportion of the heads blocks X >
(
p2 − 106∆

logn

)
with high probability. Thus, with

high probability

H[p2] = (0.999999 + 0.000001X) log n

>

(
0.999999 + 0.000001

(
1

2
+ λ− 106∆

logn

))
log n

= 0.9999995 log n+ 0.000001(λ− 106∆
logn

) log n (4.6)

≥ 0.9999995 log n+ 0.000001(3·106∆
logn

) log n

= 0.9999995 log n+ 3∆.

Since the entropies of p1 and p2 are sufficiently far apart from each other, our

hypothetical estimator E can be used to determine whether the underlying coin has

probability p1 or p2 associated with it. To arrive at the contradiction we want, we must

ensure that the coin is not thrown too many times during this process. This is achieved

by constructing the distribution “on-the-fly” [10] during the execution of E , throwing

the coin only when it is required to determine the label of a previously undefined block:

When E makes a SAMP query, we choose a block Im uniformly at random (since

each block has probability mass 1
M

), and then flip the coin for Im to decide its label

if it is yet undetermined. We then draw a sample i ∼ dm from Im, where dm is the

normalized distribution of the mth block.

When E makes a PMF query on i ∈ [n], we flip the coin to determine the label of

the associated block Im if it is yet undetermined. We then return the probability mass

of i.
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By this procedure, the queries of E about the probability distribution p (known

to be either p1 or p2) can be answered by using at most one coin flip per query, i.e.

o
(

log2 n
∆2

)
times in total.

Since we selected n so that 1/λ2 = Θ( log2 n
∆2 ), this would mean that it is possible to

distinguish between the two coins using only o(1/λ2) throws, which is a contradiction,

letting us conclude that no algorithm can estimate the Shannon entropy H(p) of an

unknown distribution p on [n] to within ±∆ with high probability making o
(

log2 n
∆2

)
queries.

We now give a similar lower bound for the SAMP+CDF model.

Corollary 4.9. In the SAMP+CDF model, any algorithm estimating (with high prob-

ability) the Shannon entropy H(p) of an unknown distribution p on [n] to within ±∆

must make Ω
(

log2 n
∆2

)
queries.

Proof. The construction is identical to the one in the proof of Theorem 4.6, except

that we now have to describe how the CDF queries of the estimation algorithm must

be answered using the coin:

When E makes a CDF query on i ∈ [n], we flip the coin to determine the label

of the associated block Im if this is necessary. We then return the sum of the total

probability mass of the blocks preceding Im (which is m−1
M

, since each block has a total

probability mass of 1
M

regardless of its label) and the probability masses of the elements

from the beginning of Im up to and including i itself. At most one coin flip per CDF

query is therefore sufficient.
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4.3. Second Main Theorem

4.3.1. Lower Bound

We present another well-known fact about distinguishing coins.

Fact 4.10. Ω
(

1
λ

)
samples are necessary to distinguish between the distribution p1 =

(1, 0) and the distribution p2 = (1− λ, λ).

Proof. Let X1, . . . , Xm be m independent samples drawn from p, which is a probability

distribution promised to be either p1 or p2. Note that observing the domain element

2 even once suffices to distinguish between two distributions, since p1 [2] = 0. The

probability of the most unfortunate case, not observing any 2 when p = p2, is

Pr

[
m∑
i=1

1{Xi=1} = m

]
= (1− λ)m ≤ e−λm (4.7)

where the inequality follows from the exponential inequality. Obviously, to bound the

right-hand side of Inequality 4.7, m = Ω
(

1
λ

)
samples are necessary.

We establish a lower bound on estimating Rényi entropy in the following theorem.

Theorem 4.11. For any α > 1, Ω

(
n1−1/α

22∆

)
SAMP+PMF queries are necessary to

estimate (with high probability) the Rényi entropy Hα(p) of an unknown distribution p

on [n] to within ±∆.

Proof. We will first prove the theorem for rational α, and show that it remains valid

for irrationals at the end.

The proof has the same structure as that of Theorem 4.6. One difference is that

we reduce from the problem of distinguishing a maximally biased coin that never comes

up tails from a less biased one (instead of the problem of distinguishing a fair coin from

a biased one).
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Suppose that we are given a coin whose probability of coming up heads is promised

to be either p1 = 1 or p2 = 1−λ for a specified number λ, and we must determine which

is the case. As Fact 4.10 indicates, this task requires at least Ω(1/λ) coin throws. We

will show that this fact is contradicted if one assumes that there exist natural numbers

s and t, where α =
s

t
> 1, such that it is possible to estimate (with high probability)

the Rényi entropy Hα(p) of an unknown distribution p on [n] to within ±∆ using an

algorithm, say R, that makes only o(
n1−1/α

22∆
) SAMP+PMF queries.

Let n be the smallest number of the form
(
d22∆ej

)s
that satisfies 5·d22∆e

n1−1/α ≤ λ,

where j is some natural number. Partition [n] into M = n1−1/α

d22∆e consecutive blocks

I1, I2, . . . IM , each of size K = d22∆e·n1/α. As in the proof of Theorem 4.6, a probability

distribution p can be realized by throwing a given coin M times to obtain the outcomes

X1, . . . , XM , and setting the label of block Im to Xm, for all m ∈ [M ], where each

member of each heads block again has probability mass 1/n. The first member of each

tails block has probability mass d22∆e
n1−1/α , and the remaining members have probability

mass 0. We again have that each block has total probability mass K
n

= d22∆en1/α

n
= 1

M

regardless of its label, so this process always results in a legal probability distribution.

If the coin is maximally biased, then p becomes the uniform distribution, and

Hα(p) = log n. We will examine the probability of the same distribution being obtained

using the less biased coin. Let P2 be the family of distributions constructed by the

process described above, using a coin with probability p2 of coming up heads. Let p2 be

a probability distribution randomly chosen from P2. The probability of the undesired

case where p2 is the uniform distribution is

Pr [p2 = U ([n])] = pM2 = (1− λ)M ≤
(

1− 5 · d22∆e
n1−1/α

)M
≤ e

− 5·d22∆e
n1−1/α

M
= e−5 ≤ 1

1000
.

That is, with probability ≥ 0.999, p2 has at least one element with probability

mass d2
2∆en

1
α

n
. Let X be the number of heads outcomes, and let B and W denote the

number of elements with probability mass 1
n

and d2
2∆en

1
α

n
, respectively. It is not difficult

to see that B = K · X and W = M − X. We just showed that X < M with high
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probability.

Then the Rényi entropy of the constructed distribution p2 ∈ P2 is, with high

probability:

Hα (p2) =
1

1− α
log

(
B · 1

nα
+W ·

(
d22∆en 1

α

n

)α)

=
1

1− α
log

(
K ·X/n+ (M −X) d22∆eα

nα−1

)
= log n− 1

α− 1
log
(
K ·X/n+ (M −X) d22∆eα

)
≤ log n− 1

α− 1
log
(
d22∆eα

)
< log n− 2∆.

Because Hα(U([n]))−Hα (p2) > 2∆, R has to be able to distinguish U([n]) and

p2 with high probability. We can then perform a simulation of R involving an “on-the-

fly” construction of distribution p exactly as described in the proof of Theorem 4.6. As

discussed in Section 4.2, this process requires no more coin throws than the number of

SAMP+PMF queries made by R, allowing us to determine the type of the coin using

only o(
n1−1/α

22∆
), that is, o(1/λ) tosses with high probability, a contradiction.

Having thus proven the statement for rational α, it is straightforward to cover the

case of irrational α: Note that Hα(p) is a continuous function of α for fixed p. Given

any p and ε, for any irrational number αi greater than 1, there exists a rational αr

which is so close to αi such that Hαi(p)−Hαr(p) < ε. An efficient entropy estimation

method for some irrational value of α would therefore imply the existence of an equally

efficient method for some rational value, contradicting the result obtained above.

These results are generalized to the SAMP+CDF model in the same way as in

Section 4.2.

Corollary 4.12. For any α > 1, Ω

(
n1−1/α

22∆

)
SAMP+PMF or SAMP+CDF queries are

necessary to estimate (with high probability) the Rényi entropy Hα(p) of an unknown

distribution p on [n] to within ±∆.
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4.3.2. Upper Bound

We now show that PMF queries are useful for estimating Hα for noninteger α.

Theorem 4.13. For any number α > 1, there exists an algorithm estimating (with high

probability) the Rényi entropy Hα(p) of an unknown distribution p on [n] to within ±∆

with O

(
n1−1/α

(1− 2(1−α)∆)
2

)
SAMP+PMF queries.

Proof. We will prove this statement for rational α. The generalization to irrational

α discussed in the proof of Theorem 4.11 can be applied. Recall that Rényi entropy

can be expressed as Hα(p) = 1
1−α logMα(p), where Mα(p) =

n∑
i=1

(p [i])α is the αth

moment of p. Then, estimating Hα(p) to an additive accuracy of ±∆ is equivalent to

estimating Mα(p) to a multiplicative accuracy of 2±∆(1−α). Therefore, we construct a

multiplicative estimator for Mα(p).

Let γ = 1− 2(1−α)∆ and m =
⌈100n1−1/α

γ2

⌉
, and let X1, . . . , Xm be i.i.d. random

variables drawn from p. Define Yi = (p [Xi])
α−1, where p [Xi] can be calculated using

a PMF query on Xi for 1 ≤ i ≤ m. Note that

E [Yi] =
n∑
j=1

p [j] (p [j])α−1 =
n∑
j=1

(p [j])α =Mα(p).

Then 1
m

m∑
i=1

Yi is an unbiased estimator of Mα(p), since

E

[
1

m

m∑
i=1

Yi

]
=

1

m

m∑
i=1

E [Yi] =Mα(p).

Moreover,

Var [Yi] = E
[
Y 2
i

]
− E [Yi]

2 =
n∑
j=1

p [j] (p [j])2α−2 − E[Yi]
2 =M2α−1(p)−M2

α(p).
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Since the Yi’s are also i.i.d. random variables,

Var

[
1

m

m∑
i=1

Yi

]
=

1

m2

m∑
i=1

Var [Yi] =
m

m2
Var [Y ] =

1

m

(
M2α−1 (p)−M2

α (p)
)
.

We use the following fact from [7] to find an upper bound for the variance of our

empirical estimator.

Fact 4.14. ([7], Lemma 1) For α > 1 and 0 ≤ β ≤ α

Mα+β (p) ≤ n(α−1)(α−β)/αM2
α (p) .

By taking β = α− 1, we get

σ2 = Var

[
1

m

m∑
i=1

Yi

]
=

1

m

(
M2α−1 (p)−M2

α (p)
)

≤ 1

m

(
n(α−1)/αM2

α (p)−M2
α (p)

)
=

1

m
M2

α (p)
(
n1−1/α − 1

)
≤ γ2

100
M2

α (p) .

We obtain a similar upper bound for the standard deviation of our empirical estimator,

σ =

√
Var

[
1
m

m∑
i=1

Yi

]
≤
√

γ2

100
M2

α (p) ≤ γ
10
Mα (p).

By Chebyshev’s inequality we have

Pr

[∣∣∣ 1

m

m∑
i=1

Yi −Mα (p)
∣∣∣ > 10σ

]
≤ 1

100
⇒

Pr

[∣∣∣ 1

m

m∑
i=1

Yi −Mα (p)
∣∣∣ ≤ γMα (p)

]
≥ 0.99
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Thus we can estimate Mα (p) to a desired multiplicative accuracy with

O

(
n1−1/α

(1− 2(1−α)∆)
2

)
queries, which ends the proof.

Algorithm: ESTIMATOR VI

• Fix γ = 1− 2(1−α)∆ and m =
⌈100n1−1/α

γ2

⌉
• Draw m independent samples X1, . . . , Xm from p.

• Compute Yi = (p [Xi])
α−1 by evaluating PMF on Xi for 1 ≤ i ≤ m.

• Output 1
1−α log

(
1
m

m∑
i=1

Yi

)
.

Figure 4.1. SAMP+PMF Estimator of Rényi Entropy (of degree α > 1)

4.4. Support Size

Definition 4.15. For a probability distribution p, support size of p is defined as

supp (p) = | {i : p [i] 6= 0} |, the number of domain elements with nonzero probabil-

ity.

Recall that H0 (p) = log supp (p). The techniques described in Section 2.1 should

be applicable to the distribution support size, since it is a symmetric property. In fact,

Valiant and Valiant [19, 20] prove that for any positive constant ε < 1
4
, estimating the

support size of a distribution whose support members occur with probability at least

1
n
,9 to within ±εn requires Θ( n

logn
) independent samples. In addition, Canonne and

Rubinfeld [10] show that Θ(1/ε2) SAMP+PMF queries are necessary (and sufficient)

for estimating supp (p) with the guarantee that p [i] ≥ 1
n

for all support members i, to

within ±εn. We modify their proof to establish a matching lower bound for this task

in the SAMP+CDF model.

Theorem 4.16. Ω

(
1

ε2

)
SAMP+CDF queries are necessary to estimate (with high

probability) the support size of an unknown distribution p on domain [n] to within

±εn.
9It is typical to assume that all elements in the support occur with probability at least 1

n ; since
without such a lower bound it is impossible to estimate support size.
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Proof. Assume that there exists a program S which can accomplish the task specified

in the theorem statement with only o
(

1
ε2

)
queries. Let us show how S can be used to

determine whether a given a coin is fair, or comes up heads with probability p2 = 1
2

+λ.

Set ε = λ
6
, and let n be the smallest even number satisfying n ≥ 10/ε2. Partition

the domain [n] into M = n
2

blocks I1, . . . , IM where Im = {2m− 1, 2m} for all m ∈ [M ].

The construction of a probability distribution p based on coin flips is as follows:

• Throw the coin M times, with outcomes X1, . . . , XM ,

• Set p[2m− 1] = 2
n

and p[2m] = 0 if Xm is heads,

• Set p[2m− 1] = p[2m] = 1
n

if Xm is tails, for each m ∈ [M ] .

Note that by construction p[2m − 1] + p[2m] = 2
n

for all m ∈ [M ]. Let P1 and

P2 be the families of distributions constructed by the above process, using the fair

and biased coin, respectively. Let p1 ( respectively p2) be a probability distribution

randomly chosen from P1 ( respectively P2). Then

E [supp (p1)] = n−M 1

2
= n

(
1− 1/2

2

)
=

3

4
n,

E [supp (p2)] = n−Mp2 = n
(

1− p2

2

)
= n

(
3

4
− λ

2

)
=

(
3

4
− 3ε

)
n,

and via the additive Chernoff bound,

Pr

[
supp (p1) ≤ 3

4
n− ε

2
n

]
≤ e−

ε2n
2 ≤ e−5 <

1

1000

Pr

[
supp (p2) ≥ 3

4
n− 5ε

2
n

]
≤ e−

ε2n
2 ≤ e−5 <

1

1000
.

In other words, the resulting distributions will satisfy (with high probability)

supp (p1)− supp (p2) > 2εn, distant enough for S to distinguish between two families.

As in our previous proofs, we could use S (if only it existed) to distinguish between

the two possible coin types by using the coin for an on-the-fly construction of p. As

before, SAMP and CDF queries are answered by picking a block randomly, throwing
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the coin if the type of this block has not been fixed before, and returning the answer

depending on the type of the block. Since o
(

1
ε2

)
=o
(

1
λ2

)
coin tosses would suffice for

this task, we have reached a contradiction based on Lemma 4.2.

4.5. Tsallis Entropy

Tsallis entropy [31], defined as

Sα(p) =
kB
α− 1

(
1−

n∑
i=1

(p [i])α
)
, (4.8)

is a generalization of Boltzmann-Gibbs entropy where α ∈ R and kB is the Boltzmann

constant. Harvey et al. [17] gives an algorithm to estimate the Tsallis entropy which is

also used to approximate the Shannon entropy in the most general streaming model.

Without loss of generality we focus on additively estimating the quantity Tα(p) := Sα(p)
kB

which appears to be a generalization of Shannon entropy, easily derived via L’Hôpital’s

rule.

Lemma 4.17. For any number α > 1, there exists an algorithm estimating (with high

probability) the Tsallis entropy of an unknown distribution p on [n] to within ±∆ with

O
(

1
(α−1)2∆2

)
SAMP+PMF queries.

Proof. Observe that for α > 1

n1−α ≤Mα(p) ≤ 1 ⇒ 0 ≤ Tα (p) ≤ 1

α− 1
− n1−α

α− 1
.

To estimate Tα (p) to within additive error ∆, one needs to estimate Mα(p) to

within γ = (α− 1) ∆. Note that ∆ < 1
α−1

, therefore, γ < 1 must satisfy for achieving

nontrivial approximations of Tα (p) and Mα(p), respectively. We use the estimator

constructed for Rényi entropy in Theorem 4.13.
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Let m = d 3
(α−1)2∆2 e and draw m independent samples X1, . . . , Xm from p. Define

Yi = (p [Xi])
α−1 where p [Xi] is computed using a PMF query on Xi for 1 ≤ i ≤ m.

Recall that

E[Yi] =
∑
j

(p [j])α−1 =
∑
j

(p [j])α =Mα(p).

Obviously, 1
m

m∑
i=1

Yi is an unbiased estimator of Mα(p). Observe that Yi ∈ [0, 1]

since α > 1. By applying the Hoeffding bound, we get

Pr

[∣∣∣ 1

m

m∑
i=1

Yi −Mα(p)
∣∣∣ > γ

]
≤ 2e−2γ2m.

It easily follows that m = O
(

1
(α−1)2∆2

)
= O

(
1
γ2

)
queries are sufficient to bound

the right-hand side of the inequality.

Jiao, Venkat and Weissman [32] construct an algorithm approximating Tsallis

entropy Sα(p) of a distribution p to within additive error using O
(
n2/α−1

)
SAMP

queries for 1 < α < 2. More interestingly, they also prove that one requires only

constant number of SAMP queries to additively estimate Sα(p) for α ≥ 2.10

10Acharya et al. [30] improve this result by constructing an algorithm for this task using only O (1)
samples for all α > 1.



54

5. CONCLUSION

In this work, we investigate the task of additively estimating entropy in two

settings based on two types of queries. A SAMP query takes no input and returns

x ∈ [n] with probability p[x]; a PMF query takes as input x ∈ [n] and returns the value

p[x]. The first setting is the SAMP model, where only SAMP queries are allowed. The

second setting is the SAMP+PMF model in which both SAMP and PMF queries are

utilized.

The motivation behind this work has both practical and theoretical reasons.

Firstly, the SAMP+PMF model can be practical in many applications. For a concrete

example, consider the Google n-gram database in which the frequency of each n-gram

is published, and a random n-gram is easily obtained from the underlying text corpus.

Secondly, the SAMP+PMF model is strongly related to the streaming model of com-

putation which is an important field of computer science. Moreover, the SAMP+PMF

model may illuminate the limitations of estimating entropy in the SAMP model.

We thoroughly analyzed the optimal bounds for estimating the Shannon entropy

and the near-optimal bounds for estimating the Rényi entropy in the SAMP model. We

described the exponentially faster algorithm constructed for estimating the Shannon

entropy in the SAMP+PMF model. We established a matching lower bound for the

estimation of the Shannon entropy H (p) in the SAMP+PMF model, Ω
(
log2 n

)
. We

gave optimal bounds for the estimation of the Rényi entropy Hα (p) in the SAMP+PMF

model, Θ
(
n1−1/α

)
.

Apparently, PMF queries provided no advantage in estimating Rényi entropy

for integer α > 1, whereas they were advantageous for noninteger α > 1. However,

the proximity between Ω
(
n1−1/α

)
and O (n), the lower and upper bound results for

estimating Rényi entropy Hα (p) for noninteger α > 1 in the SAMP+PMF and SAMP

models, respectively, indicated the amount of the advantage a PMF query added to

the model. In addition, the exponential gap between O
(
log2 n

)
and Ω

(
n1−1/α

)
, the
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upper and lower bound results for estimating Shannon entropy and Rényi entropy in

the SAMP+PMF model, respectively, implied the difficulty of the latter problem.

We proved that the bounds were easily extended to the SAMP+CDF model, where

SAMP and CDF queries (given x, return
∑

y≤x p[y]) were allowed. We gave a matching

lower bound for estimating support size to within ±εn in the SAMP+CDF model.

Lastly, we constructed an algorithm for additively estimating Tsallis entropy Sα (p)

using a constant number of SAMP+PMF queries.

One problem left open by our work is that of optimal bounds for estimating

the Rényi entropy Hα(p) in the SAMP+PMF model for α < 1. The work [7] shows

that in the model where only SAMP are allowed,
≈
Ω (n1/α) queries are necessary when

0 < α < 1. It is interesting to ask whether there exists a sublinear algorithm for this

task in the SAMP+PMF model.

Moreover, it is obvious that the SAMP+PMF model is superior to the SAMP

model. However, degree of the superiority of the SAMP+PMF model is an open prob-

lem. In other words, how is the SAMP+PMF model affected if one has restricted

number of such as O (1) or o(log2 n) PMF queries?
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APPENDIX A: INEQUALITIES

Theorem A.1. (Chebyshev’s Inequality) Let X be a real-valued random variable such

that Var [X] is well-defined. Then, ∀t > 0,

Pr [|X − E [X] | > t] ≤ Var [X]

t2
.

Theorem A.2. (Jensen’s Inequality) Let X be an integrable random variable and

ϕ : R→ R be a convex function. Then,

E [ϕ (X)] ≥ ϕ (E [X]) .

Theorem A.3. (Pinsker’s Inequality) Let p1 and p2 be two probability distributions

on the universe U . Then

KL (p1‖p2) ≥ 1

2 ln 2
· ‖p1 − p2‖2

1

Theorem A.4. (Exponential Inequality) Let x be a real number. Then,

1 + x ≤
(

1 +
x

n

)n
≤ ex for n > 1, |x| ≤ n.

Theorem A.5. (Chernoff Bound) Let X1, . . . Xm be m independent random variables

that take on values in [0, 1], where E [Xi] = pi, and
m∑
i=1

pi = P . For any γ ∈ (0, 1] we

have

Pr

[
m∑
i=1

Xi > (1 + γ)P

]
≤ e−γ

2P/3, Pr

[
m∑
i=1

Xi < (1− γ)P

]
≤ e−γ

2P/2.
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Theorem A.6. (Hoeffding Bound)11 Let X1, . . . Xm be m independent random vari-

ables that take on values in [0, 1], where E [Xi] = pi, and
m∑
i=1

pi = P . For any γ ∈ (0, 1]

we have

Pr

[
m∑
i=1

Xi > P + γm

]
≤ e−2γ2m, Pr

[
m∑
i=1

Xi < P − γm

]
≤ e−2γ2m.

11Usually, the Hoeffding bound is referred to as the additive Chernoff bound, whereas Theorem A.5
is referred to as the multiplicative Chernoff bound.


