UNIVERSITY OF CUKUROVA
INSTITUTE OF NATURAL AND APPLIED SCIENCE

MSc THESIS

Firat KUMRU

REAL TIME MONITORING OF ELECTROCARDIOGRAPHY AND

BLOOD VOLUME USING RTAI ON LINUX

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ADANA, 2006

CUKUROVA UNIVERSITESI

FEN BiLIMLERI ENSTITUSU

REAL TIME MONITORING OF
ELECTROCARDIOGRAPHY AND BLOOD VOLUME
USING RTAI ON LINUX

Frrat KUMRU

YUK SEK LiSANSTEZi

ELEKTRIK ELEKTRONIK MUHENDISLIGI ANABILIM DALI

Bu tez /I Tarihinde Asagidaki Jiri Uyeleri Tarafindan Oybirligi ile
Kabul Edilmistir.

Imza.....cccc....... Imza.....cccoevn... Imza.....ccc...c.....

Yrd.Dog. Dr. Sami ARICA Prof. Dr. Mehmet TUMAY Yrd. Dog. Dr. Turgay IBRIKCI
DANISMAN UYE UYE

Bu tez Engtitiimiz Elektrik Elektronik Mihendisligi Anabilim Dalinda hazirlanmustir.

Kod No:
Prof. Dr. Aziz ERTUNC
Enstiti Madara
Bu calisma C.U. Bilimsel Arastirma Projeleri Birimi tarafindan desteklenmistir.
Proje No: MM F2004Y L 58
Not: Bu tezde kullamlan 6zgiin ve baska kaynaktan yapilan bildirislerin, gizelge,

sekil ve fotograflarin kaynak gosterilmeden kullanimi, 5846 sayil1 Fikir ve Sanat
Eserleri Kanunundaki hikimlere tabidir.

0z

YUK SEK LiSANSTEZi

REAL TIME LINUX KULLANARAK
ELEK TROK ARDIYOGRAFI VE KAN HACMININ GERCEK
ZAMANLI IZLENMESI

Firat KUMRU

ELEK TRiIK ELEK TRONiK MUHENDISLIiGIi ANABILiM DALI
FEN BiLIMLERI ENSTITUSU
CUKUROVA UNIVERSITESI

Damsman: Yrd. Dog. Dr. Sami ARICA
Yil: Eylul, 2006 Sayfa: 63
Juri: Yrd. Dog. Dr. Sami ARICA
Prof. Dr. Mehmet TUMAY
Yrd. Dog. Dr. Turgay IBRIK Ci

Bu calismada, elektrokardiyografi (EKG) sinyalleri ve Kan Basinci (KB)
sinyalleri alinarak Linux Real Time Application Interface (RTAI) ile okunarak
izlenmistir.

Real Time Application Interface Linux isletim sistemi tarafindan saglanan ,
Linux’ a gergek zamanl 6zellik kazandiran bir uygulamadir. EKG ve KB sinyalleri
gurdltiden temizlenmek ve yikseltilmek amaciyla yikseltici ve filtre sistemine
uygulnmustir. Temizlenen sinyaller 12 bit 1000 Hz Advantech veri toplama karti ile
bilgisayar ortamina aktarilmstir.

Gelistirilen yazilim ile sistolik ve diastolik kan basing degerleri, EKG
sinyalinin tepe nokta degerlerinin araliklari gézlemlenebilmektedir. Yazilim RTAI
fonsiyonlar1 ve C fonksiyonlarindan olusturulmustur.

Anahtar Keéimeler: Gergek Zamanlh, Veri Toplama, Linux
Elektrokardiyogram, Kan Basinci

ABSTRACT

MSc THESIS

REAL TIME MONITORING OF
ELECTROCARDIOGRAPHY AND BLOOD VOLUME
USING RTAI ON LINUX

Firat KUMRU

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
INSTITUTE OF NATURAL AND APPLIED SCIENCES
UNIVERSITY OF CUKUROVA

Supervisor: Assist. Prof. Dr. Sami ARICA
Year: September 2006, Pages. 63
Jury: Assist. Prof. Dr. Sami ARICA
Prof. Dr. Mehmet TUMAY
Assigt. Prof. Dr. Turgay IBRIK Ci

In this study, Real Time reading and monitoring of Electrocardiography (ECG)
and Blood Pressure (BP) have been implemented with the Real Time Application
Interface (RTAI) on Linux operating system.

The Real Time Application Interface supported by linux is used to provide real
time concept. The installation and running of RTAI are aso explained.

The ECG and BP signals have been applied to instrumentation amplifiers and
filters to clear and to amplify the signal. This clear signal is acquired by an
Advantech data acquisition card which has 12 bit resolution at 1000 Hz.

Software has been developed for analyzing signals. The changes of systolic and
diastolic pressure and the R points interval of ECG have been observed. The
baroreceptor sensitivity (BRS) has been calculated. The RTAI functions and C
programming language have been used in the software.

Keywords: Linux, Real Time Application Interface, Electrocardiogram, Blood
Pressure, Data Acquisition

ACKNOWLEDGEMENTS

The subject of this thesis was suggested by my supervisor, Assoc. Prof. Dr.
Sami ARICA to whom | would like to express my heartfelt thanks for his
supervision, guidance, encouragements and extremely useful suggestions throughout
thisthesis.

| would like to thank Dr. Firat INCE who has given opinions during the thesis
from beginning to the end and also for his supports and friendship. | would like to
thank him again especially for introducing me to scientific life.

| would like to express my appreciation to Prof. Dr. Siileyman GUNGOR,
head of the Department of Electrical and Electronics Engineering, providing
materials and study environment.

| would like to thank Prof. Dr. Mehmet TUMAY, head of the Computer
Engineering Department, for his valuable suggestions and endless support.

Finally, | would like to thank my fiance Fatma CEKMEZ and my family for
their help, moral support and patience.

CONTENTS

0z

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

LIST OF FIGURES

LIST OF ABBREVATIONS

1. INTRODUCTION

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE

2.1
2.2.
2.3.
2.2.

Electrocardiogram
Blood Pressure
Measurement of ECG

Measurement of BP

3. CIRCUITRY OF THE MEASUREMENT SYSTEM

3.1.

3.2.

Circuits of ECG and BP Amplifier

3.1.1. Instrumentation Amplifier

3.1.2. High Pass Filter

3.1.3. Low PassFilter

3.1.4. Peatient Protection

Optical Transducer Circuit of BP Measurement System

4. DATAACQUISITION OF THE SYSTEM

4.1.

DataAcquisition
4.1.1. Settings of the PCI 818 Data Acquisition Card
4.1.1.1. BaseAddress
4.1.1.2. Timer Clock Selection
4.1.1.3. Input Voltage Range
4.1.1.4. Channel Configuration
4.1.1.5. DI/A Reference Voltage
4.1.1.6. Internal Voltage Reference

PAGE

0o N B~ B

11
13
14
14
15
16
17
20
21
21
22
22
23
24
24
24
25

5 REAL TIME APPLICATION INTERFACE
5.1. Real Time Systems
5.1.1. Hard Real Time Systems
5.1.2. Soft Real Time Systems
5.2. Real Time Application Interface (RTAI)
5.2.1. Hardware Abstraction Layer
5.2.2. Schedules
5.2.3. Difference of RTOS Dueto Conventional Operating System
5.3. RTAI Installation
5.3.1. Downloading Kernel
5.3.2. Downloading Rtai Source
5.3.3. Extracting the Sources
5.3.4. Symbolic Links
5.3.5. Patching the Kernel with RTAI
5.3.6. Compiling the Kernel
5.3.7. Compiling the RTAI
5.3.8. Tedting Your RTAI
5.39. RTAI Modules
5.3.10. Compiling RTAI Modules
5.3.11. Building RTAI Examples
5.3.12. Troubleshooting
54. LXRT
5.4.1. Writing aLXRT Application
6. CONCLUSIONSAND FUTURE WORK

BIOGRAPHY
REFERENCES
APPENDIX A
APPENDIX B

27
27
29
29
30
31
33
33
35
35
36
36
36
36
37
39
40
40
41
42
46
48
48
53

55
56
59

LIST OF FIGURES

Figure2.1.a

Figure 2.1.b.

Figure 2.2
Figure2.3.a

Figure 2.3.b.

Figure 2.3.c.
Figure 2.4
Figure 3.a

Figure 3.1.1.
Figure 3.1.2.
Figure 3.1.3.
Figure 3.1.4.

Figure 3.2.
Figure4.l.a
Figure4.1.b.

Figure4.1.2.1.
Figure4.1.2.4.
Figure4.1.2.5.
Figure 4.1.2.6.

The Heart
Electrocardiography wave form
Blood Pressure wave form
Normal connection of electrodes
Standard leads and Einthoven triangle
Einthoven Triangle
Oximetry Method
ECG Measurement
Instrumentation amplifier
High pass filter
3 low pass filter with 100 Hz cutoff frequency
Patient protection circuit
Optical Blood Pressure Measurement Card Circuit
Block Diagram of the System
Block Diagram of Data Acquisition Part
Base Address Selection Map
Channel Selection Diagram
Voltage Selection Diagram

Internal Voltage Reference Selection Diagram

VI

© 0 N o1 b

10
12
13
14
15
16
18
20
21
22
25
26
27
28

LIST OF ABBREVIATIONS

RTAI Real Time Application Inteface
RT Real Time

RTOS Real Time Operating System
ECG Electrocardiogram

BP Blood Pressure

HR Heart Rate

BRS Baroreflex Sensitivity

VII

1.INTRODUCTION Firat KUMRU

1. INTRODUCTION

Linux operating system is maintaining to gain popularity in research and
student communities, and also in the business world (Sarolathi P., 2001). Linux is a
multitasking system, which provides fair, non-preemptive scheduling among several
dynamically created and deleted processes. The disadvantage of Linux is that it can
not guarantee response times for its processes. However, there are the application
areas which require real-time response, such as robotic devices, computers used in
health care and military, and various embedded systems used in different kinds of
devices.

Real Time (RT) is a software system in which the inputs represent digital data
from hardware or other software system's, and the outputs are digital data that control
external hardware. The time between the presentation of a set of inputs and the
appearance of all the associated outputs is called the response time. A RT system is
one that must satisfy explicit bounded response time constraints to avoid failure.
Briefly, RT provides the response within finite and specified interval.

The Real-Time Application Interface (RTAI) provides hard real-time
capabilities in a Linux environment. It adds a small real-time kernel below the
standard Linux kernel and treats the Linux kernel as a low priority real-time task.
RTAI provides a large selection of inter-process communication mechanisms and
other real-time services. Additionally, RTAI provides a LXRT (User Interface
Module for RTAI-LINUX) module for easy development of real-time applications in
user space.

Real-time Linux provides the capability of running special real-time tasks and
interrupt handlers on the same machine as standard Linux. These tasks and interrupt
handlers execute whenever they need to, regardless of what Linux is doing. Real-
time Linux extends the Standard Linux Programming Environment to real-time
problems. Real-time Linux tasks and interrupt handlers can communicate with
ordinary Linux processes through a device interface or shared memory. So the exact
response time can be obtained for each process. The Real Time Applications for
health care are our main concept.

1.INTRODUCTION Firat KUMRU

Asthe population of human grow, the need for health care increases. In recent
years, the progress in medical care has been rapid, especially in such fields as
cardiology. As the importance of the electronic systems increases, the technology of
the integrated measurement systems has gain essential role in studies and industrial
areas. The most important criteria are accurate measurement of the signals which are
supplied by body and response time characteristics of the system. All of these articles
can be achieved by RTAI.

Electrocardiogram (ECG) has vital role to detect any heart health state. The
ECG represents the heart beat electrical wave. For this reason, the ECG carries
information about the heart.

The Heart Rate (HR) and the Blood Pressure (BP) that are the effect of heart
beat are essential parameters for human health. These parameters which are
measured must have values in nominal range for healthy life. A heart beat creates
electrical signals. The Electrical signal called as biosignals at different levels of
potentials that human has is acquired by data acquisition systems. The measurement
and monitoring these signals can provide information about the patient’s health state.

The analysis of the HR and BP which are two main parameters provide to
obtain Baroreflex Sensitivity (BRS). It controls heart rate to keep the blood pressure
in nominal levels for life conditions. It is known that the sensitivity of baroreceptors
changes with cardiac pathologies (Ince, 2002). BRS is an important parameter for
detection of heart attack.

The measured signals are applied to a biosignal amplifier and filtered to
remove noise. Then the clear and amplified signal is applied to computer using a data
acquisition card. The acquired signal is captured and analyzed by code blocks under
RTAI — Linux operating system environment.

The content of the thesis is arranged as follows. After this introductory
chapter, Chapter 2 defines the ECG and BP signals and measurement methods are
introduced.

In Chapter 3, the electronic part of the system including amplifier and filters
are presented. Also, the amplifying basics and filtering basics are told.

1.INTRODUCTION Firat KUMRU

In Chapter 4, the data acquisition part of the system and PCI-818 DAQ card
is introduced.

In Chapter 5, the Real Time Application Interface installation and the basics
of the RTAI are presented. And also the challenges of the RTAI are explained.

At the end, the conclusion and the future work are explained.

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

2. ELECTROCARDIOGRAM AND BLOOD PRESSURE

2.1. Electrocardiogram (ECG)

The Heart is the pump of the body. It contains muscle fibers to control the
pumping process and cardiac activities. These activities form an electrical potential
that is measured by replacing electrodes to the parts of body.

The heart has four chambers that the two upper chambers, left and right atria
and the two lower chambers are the ventricles. The right atrium receives the blood
from the veins of the body and pumps it in to the right ventricle. The right ventricles
pumps the blood trough the lungs, where the blood is cleaned. The oxygenated blood
entersto the left atrium that pumps it to the left ventricle. The left ventricle sends the
blood into arteries to circulate throughout the body. This cycle is called as cardiac

cycle.

I: d{-_":"'di""_' : Wogus nerve
mrﬁgﬂ;ﬁlemfr —{cardiginhibitor nerval

Sinoatrial noda .j:::.'. \"

Ed
[pacemaker) f &
i _’l
Altriovent ricular - .: H-:_ \
noda =2 L /

Purkinje

Blundle of- fibers
His
.~.\ Il'
Right bundle = %, \ 7~ Left bundle

branch

Figure 2.1.aThe Heart (Evans. 1971)

The heart has a point that generates action potential regularly. This point is
called as pacemaker or sinoatrial (SA) node. To initiate the heart beat, the action
potential is produced by SA and is propagated in all directions. The wave is

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

terminated at a point near the center of the heart, called antriventricular (AV) node.
Some special fibers act as a delay line to provide the timing between the action of
atriaand ventricles. The electrical excitation passes trough the delay line, it is rapidly
spread to al parts of both ventricles by bundle of His (Cromwell L., Weibell F,
Pfeiffer E.A, 1980). The fibers in bundle are called as Purkinje Fibers, divides into
two branches to initiate action potentials simultaneously in the powerful musculature
of the two ventricles.

When the heart pumps, the cell wall offers greater permeability and an excess
of sodium is able to flow inside the cell. When the sodium flows into the cell there is
no longer a negative potential with respect to the outside. This is known as
depolarization. Eventually, when the excitation is completed, the cell depolarizes,
and the potential returns to a negative one (Carr, J.J., Brown, JM., 1981).

The graphic recording or display of the time variant voltages produced by the
myocardium during the cardiac cycle is defined as electrocardiogram. The P, QRS,
and the T waves reflect the rhythmic electrical depolarization and repolarization of
myocardium associated with the atria and ventricles. The ECG is used clinically in

diagnosing various diseases and conditions of the heart.

5

Figure 2.1.b The Electrocardiography wave form (Cromwell, Weibell, Pfeiffer. 1980)

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

The P wave represents depolarization of the atrial musculature. The QRS
complex is combined result of the repolarization of atria and the depolarization of the
ventricles which occur ailmost simultaneoudly. The T wave is the wave of ventricular
repolatization, whereas the U wave, if present, is generally the result of after-
potentials in the ventricular muscle.

The voltages changes due to the place of the electrodes that applied to the part
of the body. On the heart the QRS complex reaches over 3 mV. Both on the two arms
and on the one leg, the QRS reaches 0.2-0.3 mV.

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

2.2. Blood Pressure (BP)

The blood pressure (BP) is the force applied on a unit area of the blood
vessels. In other words, it is defined as the blood flow per unit area. The blood
pressure is the result of the cardiac activities of the heart. For this reason, the
monitoring the blood pressure gives information about the patient pulse rate. The
some cardiac status of the patient is observed with BP.

When the heart pumps the blood into the aorta, the highest pressure called
systolic pressure is obtained. When the heart relaxes and is filled with blood, the

lowest pressure called as diastolic pressure occurs. Blood pressure is formulized as:

BP = Tota Resistance * Cardiac Output (2.1

Cardiac Output = Heart Rate * Stroke (2.2

Fmenl G

- ‘Swmnlic Freszure
LT

1N O O N N

LA s e

Tinea

Figure 2.2. Blood Pressure

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

2.3. Measurement of ECG

In a standard ECG recording, there are five electrodes that connected to the
patient: right arm (RA), left arm (LA), left leg (LL), right leg (RL), and chest (C).
These electrodes can be connected to the input of a differential buffer amplifier
through a lead selector switch.

RA LA

RL ?Il LL

Figure 2.3.a. Normal Connection of Electrodes (Cromwell L., Weibell F., Pfeiffer
E.A., 1980)

All of the leads get different signals. Due to the connection of the leads, the
result signal is formed. Some of the connections types are showed in Figure 2.4.b.

The Einthoven triangle is the practical measurement concept that was
introduced by Einthoven in 1913. Einthoven postulated that the heart was at the
center of the en equilateral triangle, the apices of which were the right and left

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE

shoulders and the point where the both legs joined trunk (Geddes L.A., 1995). In
early studies, Einthoven used right and left arms and both feet in saline filled bucket
as the three electrodes. Thus, he adopted three standard leads:. right and left arms and

left foot.

The bipolar limb leads are those designated lead I, lead 11, and lead 111, and

from what is called the Einthoven triangle (Figure 2.3.b).

I LN, MELRS SOMIMSY MORE"

LEAD I

LEAD I

LEAD IO

LEAD AVR **

LEAD AVL**

LEAD AVF **

** Aleo kmown 2E supmented’ leads

UNIPOLAR CHEST LEADS

! .-'Ié- A —
mefi] s ™ wrrenz |
«rll.,_!—-;jrﬁ T |
| |
.
k! & ||
1 sk *

LEAD V=

Figure 2.3.b. Standard leads and Einthoven

Fourth intescostz! space,
at right sternal margin,

:-'::n]:r!.'l'_ intercostal space,
i Lell steroal macgin,

Midwey berween Ve and Ve

‘,‘_] Fifth 1'|tr~rr' glal space, al
mid-clavieralar lineg,

|
g Fame lr.-te as ‘-.1,] |
tarior axillary line. |

Same level as Vg, on mld-
axillary line,

E Eneiorm, baseof sternam.

CH POSTTTONS
rel

Einthoven triangle

CH FOSITIONS

triangle @) Limb and chest leads b)

Firat KUMRU

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

Lead I: LA is connected to the amplifier's noninverting input, while RA is
connected to the inverting input.

Lead Il: The LL electrode is connected to the amplifier’s noninverting input,
while the RA is connected to the inverting input (LA is shorted to RL).

Lead IlIl: The LL is connected to the noninverting input, while LA is
connected to the inverting input (RA is shorted to RL).

The unipolar limb leads, also known as the augment limb leads, examine the
composite potential from all three limbs simultaneously. In all three augmented
leads, the signals from two limbs are summed in a resistor network, and then applied
to the amplifier’s inverting input, while the signal from the remaining limb electrode
is applied to the noninverting input.

Lead AVR: RA is connected to the noninverting input, while LA and LL are
summed at the inverting input.

Lead AVL: LA is connected to the noninverting input, while RA and LL are
summed at the inverting input.

Lead AVF: LL is connected to the noninverting input, while RA and LA are

summed at the inverting input.

Figure 2.3.c. Einthoven Triangle (Aydin A., 2004)

10

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

According to Einthoven triangle law (Figure 2.3.c), if only two bipolar lead
potentials are measured and the other bipolar lead can be calculated by using the
following equation. On all three lines, the vector sum of the projections is equal to

Z€ero.

Lead | + Lead Il + Lead 111 =0 (3.3)

2.4. M easurement of BP

At the one of the previous parts of this study, it is declared that the BP is
considered a good indicator of the status of the cardiovascular system. The
measurement methods of BP are branched as noninvasive and invasive methods. The
noninvasive method is explained as the measurement over the skin, no interaction
with vessels. But the invasive methods need to reach vessels to observe the flow of
the blood.

The methods are used in clinical applications. But in routine clinical tests, the
BP is measured by means of an indirect method using sphygmomanometer. This is
largely used method but it does not continuous recording of pressure variations. This
method gives opportunity to get systolic and diastolic pressures, but no other details
of the pressure waveform. Furthermore, this method will be failed, if the blood
pressure is very low.

All these conditions for measuring by sphygmomanometer are overcame by
direct methods or some of the indirect methods with optical transducers. Invasive
methods allow more precise and continuous measurement for blood pressure. These
methods use gauge sensors, linear variable differential transducers and piezoelectric
or capacitance sensors. But such methods are expensive and often applied in
intensive care. Non-invasive methods, on the other hand, are easier to implement but
less precise.

The pulse oximetry is one of the noninvasive methods that are based on
optical permeability of the finger (Flewelling R, 1995). This method is used for the

11

2. ELECTROCARDIOGRAPH AND BLOOD PRESSURE Frat KUMRU

measurement of oxygen. But this method can be used for measurement of blood
volume in vessels of finger tips.

Light Source %

CO000000D0O0000CO00000D0,
(—-]o =
Yy 1
Finger % :%
vascular Bed RSy
0O Q (e} < [«] c o0 o o

Photodetector I-_%

Figure 2.4. Oximetry Method (Flewelling R., 1995)

The passing blood enlarges the volume of elastic vessels or capillary at the tip
of fingers. The decreased light force is observed at the photodetector. The
transmission of the light is a function of the thickness, light color, structure of the
skin, bone, blood, and the other material through which the light passes. This
obtained blood volume change has a form of the blood pressure and also gives
information as blood pressure measurement.

12

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

3. CIRCUITRY OF THE MEASUREMENT SYSTEM

Biosignals that the body produces are low level signals approximately ranges
1 uV to 1 mV. These ranges are very low for the data acquisition systems. The signal
reguiresto be amplified.

The disturbances and noises at the environment also affect the signal. The
corrupt signal can cause to get wrong information about patient’s health state. This
noisy wrong data can cause the doctors make wrong comments. For this reason, the
data also must be kept away from noise and such signals. The filtering is the concept
that the signal is purified from the noise.

The ECG measurement system has instrumentation amplifier for
amplification, high pass filter for neglecting DC levels that was produced by
operational amplifiers, low pass filter for neglecting high frequency parts of the
signal, and notch filter to neglect the interference produced by electrical devices at

the environment and 50 Hz noise.

| DIFFERENTIAL AMPLIFIER

-

1
.
i
'
L mscmscsesmcssn s e s mme s g s remr At A nm s

Figure 3.a ECG Measurement (Nagel J.H., 1995)

The blood pressure measurement system has optical to electrical converting

part before the amplification stage.

13

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

For both of these systems, the amplifier produced by Abdulaziz Aydin is used.
3.1. Circuitsof ECG and BP Amplifier

As explained in the previous section, same amplifier is used for ECG which
is applied from channell and BP which is applied from channel2. The amplifier
providesto increase the level of voltage for both signals.

3.1.1. Instrumentation Amplifier

The first stage of both of the circuits are called instrumentation amplifier,
which isshownin Figure 3.1.1.a

Tk
Lary

Figure 3.1.1. Instrumentation amplifier

Transfer function of the above stage is;

o

2* R, &R,
R, %R, g

(3.1)

Q

e
H@:g+

14

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

Where R, =100KW, R, =3.9KWW, R, =47KW, R, =22KW. All of the

resistors have 0.1% tolerance except Rg resistor. To get a good CMRR and cancel
interferences, resistors have to be matched perfectly. Total gain of circuit is
52.2 x 2.1=1009.

3.1.2. High Pass Filter
In this stage given in Figure 3.1.2., cut off frequency between ECG At low

frequencies, there is important knowledge signal of ECG so cut off frequency was
selected 0.495 Hz.

-

Figure 3.1.2. High pass filter

Transfer function of the high passfilter;

H(g) = s’°C,C, -
SCC, +4(C, +C,)R, +0- KICGR]+RR, ©¥
with the cutoff frequency and Q (quality factor);
1
We=—"——— 3.3.
° R1R2C1C2 ()

15

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

RR,

TR +R,

(3.4

The value of components for the ECG circuit is R, =220KW, R, =470KW,
C,=C,=InF.

3.1.3. Low Pass Filter

Low pass filters were designed with cutoff frequency at 100 Hz for ECG.

=

L 1

il

Figure 3.1.3. 3% low pass filter with 100 Hz cutoff frequency

Transfer function of thefilter is;

H.(9 = 1/(RR,C,C,) 35)
! Sz<§1 1+(1-K)8S+ 1 ~
e
éRlcs R2C3 chz a R1R2C3C2

16

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

1

HZ(S):—SC R +1

(3.6.)

Thus, total transfer functionisH (s) =H,(s)* H,(s).

For this filter, the values of the components were selected as
R =R, =R, =R=10KW, and C,=0.33nF, C,=08hF and C,=0.15nF.
Cutoff frequency is equal to fc at each stage. That is, for the first stage is

1
W, =——= 3.7.
R,/C.C, (3.7)
for the second stage is
1
W =——_
) R.C, (3.8)

3.1.4. Patient Protection

The most important problem at biomedical devices is protection of patient
from macro shock or leak currents. If electrical equipments are not insulated very
well or there is rifled a cable environment of patient, the patient can touch them.
Basics of ECG medical devices procedure that reduces or eliminates the resistance of
the skin increases possible current flows and makes the patient more vulnerable to
macro shock. For example, biopotential electrode paste or jell reduces skin
resistance. Thus, in case of touching of patient, leak current can flow through body of
patient to ground lead. If the current is adequately large, width and dangerous
wounds can expose on body. Both of the ECG circuit is designed with a protection

17

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

circuit to prevent this type of problem, as shown in the following schema in Figure

3.1.4.

+YEE -

7,

A g
™ e

e T |

a o

Figure 3.1.4 Petient protection circuit

The protection circuit behaves like a current limiter. When current on the
ground electrode reaches to 0.45mA, the circuit cuts connection of ground that come
from patient immediately. If any leak current does not flow up to falling below
0.45mA ared led will turn on. In this case, for measurement, it must be pushed to a
button. Even if there is still a leak current on the ground electrode, the circuit will
disconnect the connection between ground electrode and patient so that the circuit
does not permit flowing of leak current. For this purpose, D flip-flop, LM358,
transistor and role were used.

In the circuit, ground electrode come from patient was connected to ground
with arole and 100W resistor. A reference voltage at point 1 that is input of op-amp

was selected as;

18

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

e V 0
Vref =—=—* R, =, where Vref=0.45mV (3.9)
R7 + Re (4]

D flip-flop is state of reset at the beginning and output (Q) is equal to OV. if
current on the ground electrode is lower then 0.45mA, out put of op-amp is OV. As
seen in the circuit schema, output of op-amp was connected to input of SET of D
flip-flop. In this case output of the flip-flop is Q (logic-0) and state of transistor is
OFF so that role can not change state. However, if current on the ground electrode is
higher than 0.45mA, firstly output of op-amp will be +Vcc then output of flip-flop
will be +Vcc (logic-1). After when state of transistor is ON, role will change state
and red led turn on. Thus, the connection between patient and ground will be
disconnected. In this case, even if it was pressed to the button, the flip-flop,
transistor, and role does not change state, according to the truth table of CD4013BE.
Disconnection will go on to protect patient. If current drops under 0.45mA, in this
case out put of opamp will be OV and connection can be provided by pressing to the
button again. Because input of SET is equal OV and input of RESET will be logic-1
by pressing to the button. The output of flip-flop will equal to logic-0. If output of
flip-flop is logik-0, state of transistor will be OFF. Circuit components are LM 358,
BJT 237 transistor and CD4013BE dual D flip-flop.

19

3. CIRCUITRY OF MEASUREMENT SYSTEM Firat KUMRU

3.2. Optical Transducer Circuit of BP M easurement System

This part of the system is constructed with two resistors to adjust the voltage
and current on LDR and LED. The finger whom blood volume is to be detected is
put between LED and the LDR. The led emits high wavelength red light. The light
passing trough the finger is absorbed by LDR according to blood volume in finger.
The light intensity on the LDR causes the resistance changes and so voltage changes.

This voltage change will affect the output of the system.

+WEE

Figure 3.2. Optical Blood Pressure Measurement Card Circuit

The led has wavelength between 600-770 nm (red light) wavelengths. This
red light passes easier than the other colors. Infrared LED could be used to provide
high light intensity at the LDR surface. But as a result at voltage level, there would
be no much difference between red led or infrared led.

20

4. DATAACQUISITION OF THE SYSTEM Firat KUMRU

4. DATAACQUISITION OF THE SYSTEM

4.1. Data Acquisition

Data acquisition involves gathering signals from measurement sources and
digitizing the signal for storage, analysis, and presentation on a personal computer
(PC). Data acquisition (DAQ) systems come in many different PC technology forms
for great flexibility when choosing the studied equipment. Data acquisition is one of
the essential parts for measurement systems.

This DAQ system contains PCL 818 Advantech Data Acquisition Card. The
systemisillustrated in figure 4.1.a

) PC with Linux & ':'r']];“ﬂfiﬂg
RTAI Systems _-ﬂnalysis
PCI 818
DAG
F
\ OPTICAL BP
) | |TRANSDUCER
QMJ\' |cnz
ECG
AMPLIFIER B
(=

Figure 4.1.a Block Diagram of the System

21

4. DATAACQUISITION OF THE SYSTEM Firat KUMRU

PC with Linux &
RTAI Systems

FS

_ PCI818
DAQ CARD

Figure 4.1.b Block Diagram of Data Acquisition Part

The PCL-818 is a high performance multi-function data acquisition card for
computers. It offers the five most desired measurement and control functions: 12-bit
A/D conversion, D/A conversion, digital input, digital output and timer/counter
(Advantech, 1994). Automatic channel scanning circuitry and on-board SRAM let
you perform multiple-channel A/D conversion with DMA and individual channel
gains.

The specifications of the card which are supplied by Advantech Cooperation
are explained in Appendix A.

4.1.1. Settings of the PCI 818 Data Acquisition Card

The card has one function switch and seven jumper settings. These settings
must be done carefully due to the needs. These settings provide your signal to be
acquired correctly due to your frequency choice, gain tune, clock choice. The
sampling rate will be changed.

4.1.1.1. Base Address

We control the card operations by reading or writing data to PC’'s I/O port
address. S1 switch is used to set up the base address. Valid base address must be

22

4. DATAACQUISITION OF THE SYSTEM Firat KUMRU

detected from Hex 000 to Hex 3F0. Some of these addresses may be used by some
other devices. The switch set is shown in figure.

Range (hex) Switch position
1 2 3 4 5 &

000 - DOF . ® . . ° .
010- 011 e e . L e o
200 - 20F o ®
210 - 21¢ o * L . . o

300 - 30F o o

aF0 - 2FF o i . o i o
oo Ot ® 0N o detadlt

Figure 4.1.1.1. Base Address Selection Map (Advantech, 1994)

We adjusted the base address to H0210 by setting the switches SW1 and SW6
are OFF. Via this selection, the status address is H0216 and the control address is
H0219.

4.1.1.2. Timer Clock Selection

The jumper 2 (JP2) controls the input clock frequency for the timer. Two
choices are support by the card. These are 10MHz and 1MHz. The pacer rate is
calculated as

Pacer Rate = Fclk / (Div1*Div2) (4.2)

where Fclk is clock frequency at IMHz or 10 MHz, Divl and Div2 are the
dividers set in counterl and counter 2. Our selection is1 MHz.

23

4. DATAACQUISITION OF THE SYSTEM Firat KUMRU

4.1.1.3. Input Voltage Range

The jumper 7 selects the input voltage range for A/D converter. When we set
JP7 to 5, the maximum input voltage range is +5 V. When we set JP7 to 5, the
maximum input voltage range is+10 V.
4.1.1.4. Channel Configuration

The PCL-818L offers 16 single-ended or eight differential analog input

channels. Jumper JP6 switches the channels between single ended or differential
input, as shown below:

16 S. E. inputs Eight differential inputs (default)

Figure 4.1.1.4. Channel Selection Diagram (Advantech, 1994)

We set the system channels to single ended form.

4.1.1.5. D/A Reference Voltage

Jumper JP4 selects reference voltage source for the PCL-818L's D/A
converters. You can use the card's internal reference or supply an external reference.

24

4. DATAACQUISITION OF THE SYSTEM Firat KUMRU

External ref. Internal ref. (default)

INT EXT

Figure 4.1.1.5. Voltage Selection Diagram (Advantech, 1994)

Setting the JP4 to INT, the D/A converter takes its reference voltage input
from the card's on-board reference. Jumper JP5 sets the on-board reference to either -
5V or-10 V. With JP4 set to INT, the D/A channel has an output range of 0V to +5
V or 0V to +10 V. When you set JP4 to EXT, the D/A converter takes its reference
voltage input from pin 31 of connector CN3. We apply any voltage between -10 V
and +10 V to this pin to function as the external reference. The reference input can be
either DC or AC (<100 KHz).

Using an external reference with voltage Vref provides to program the D/A
channel to output from O V to -Vref. The D/A converter act as a programmable
attenuator. The attenuation factor between reference input and analog output is:

Attenuation factor = G / 4095 (4.1.15)
Where G is a value you write to the D/A registers between 0 and 4095. For
example, if you set G to 2048, then the attenuation factor is 0.5. A sine wave of 10 V
amplitude applied to the reference input will generate a sine wave of 5V amplitude
on the analog outpui.
4.1.1.6. Internal Voltage Reference
Using an internal reference voltage (set with JP4) forces the PCL-818L to

select a choice of DC internal reference voltage sources: -5V and - 10 V. JP5 selects
the source, as shown below:

25

4. DATAACQUISITION OF THE SYSTEM Firat KUMRU

-5V (detault)

Figure 4.1.1.6. Internal Voltage Reference Selection Diagram (Advantech, 1994)

26

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5. REAL TIME APPLICATION INTERFACE

5.1. Real Time Systems

The word meaning of “Real Time” is occurring immediately. We can
describe real-time system that responds the inputs immediately.

A real-time system means that it performs its functions and responds to
external, asynchronous events within a specified amount of time. So a real-time
operating system can be defined as a system capable of guaranteeing timing
requirements of the processes under its control (Stankovic J.A., Ramamritham K.,
1993). In another words, a real-time system is any information processing system
which has to respond to externally generated input stimuli within a finite and
specified period.

The systems can face some difficulties and time delays while making
computations, multiprocessing, task changes. This causes the needed operation to be
delayed. For this reason, real time systems are used. The real time systems can take
priority at CPU dueto the scheduled tasks.

A real-time operating system (RTOS) schedules the tasks to be performed
according to a set of established priorities. Under "normal" conditions, tasks follow a
predictable schedule of execution. The ability to respond to environmental inputsin a
priority-based manner allows a real-time operating system to respond almost
instantaneously to events as they occur. This makes it the ideal control system for
mission-critical applications - such as medical monitoring devices, flight consoles,
automated assembly lines, telecom hubs, or off-planet vehicles.

Real-time systems must perform computations according to deadlines. By
definition, if a hard real-time system misses a deadline, something catastrophic
happens. The system fails. The computed results are useless. In the worg-case
scenario, lives are lost.

The system response must be fast and predictable. Fast means that it has a
low latency, i.e. it responds to external, asynchronous events in a short time. The
lower the latency, the better the system will respond to events which require

27

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

immediate attention. Predictable means that it is able to determine task's completion
time with certainty.

Typically areal time system represents the computer controlling system that
manages and coordinates the activities of a controlled system, that can be viewed as
the environment with which the computer interacts. The interaction is bidirectional,
says through various sensors (environment -> computer) and actuators (computer ->
environment), and is characterized by timing correctness constraints.

It is desirable that time-critical and non time-critical activities coexist in a
real time system. Both are called tasks and a task with a timeliness requirement is
called a real time task. Typically real time tasks have the following types of
requirements and/or constraints.

Timing constraints. The most common types are either periodic or
aperiodic. An aperiodic task has a deadline by which it must finish or start, or it may
have a constraint on both start and finish times. A periodic task has to be repeated
once per period. Most sensory processing is periodic, while aperiodic requirements
can arise from dynamic events.

Resource requirements. A real time task may require access to certain
resources such as I/0 devices, data structures, files and databases.

Communication requirements. Tasks should be allowed to communicate
with messages.

Concurrency constraints: Tasks should be allowed concurrent access to
common resources providing the consistency of the resource is not violated.

Criticalness. Depending on the functionality of a task, meeting the deadline
of one task may be considered more critical than another. For example, a task that
reacts to an emergency situation, such as fire on the factory floor, probably will be
more critical than the task that controls the movements of a robot under normal
operating conditions.

Precedence relationships: A complex task (for example, one requiring
access to many resources) is better handled by breaking it up into multiple subtasks

related by precedence constraints and each requiring a subset of the resources.

28

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.1.1. Hard Real Time Systems

A hard real-time system is a system that requires a guaranteed response to
specific events within a defined time period. The failure of a hard real-time system to
meet these requirements typically results in a severe failure of the system. It is

absolutely imperative that responses occur within the required deadline.

5.1.2. Soft Real Time Systems

Soft real time is a property of the timeliness of a computation where the value
diminishes according to its tardiness. A soft real time system can tolerate some late
answers to soft real time computations, as long as the value hasn’'t diminished to
zero. A soft real time system will often carry meta requirements such as a stochastic
model of acceptable frequency of late computations.

Soft real time is often improperly applied to operating systems that don't
satisfy the necessary conditions for guaranteeing that computations can be completed
on time. In thistype of real time, deadlines are important but which will still function

correctly if deadlines are occasionally missed.

29

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.2. Real Time Application Interface (RTAI)

Real-Time Application Interface (RTAI) is areal-time Linux implementation
based on RT Linux. RTAI is not areal time operating system. It adds a small real-
time kernel below the standard Linux kernel and treats the Linux kernel as a low
priority real-time task. RTAI provides a large selection of inter-process
communication mechanisms and other real-time services.

RTAI treats the conventional Linux kernel as a low-priority real-time task,
which may do its normal operations whenever there are no higher priority real-time
tasks running. In the basic RTAI operation, the real-time tasks are implemented as
Linux kernel modules, similarly to RTLinux. RTAI handles the interrupts from
peripherals and dispatches the interrupts to Linux kernel after handling the possible
real-time actions triggered by the interrupts.

Figure 5.2. shows the basic architecture of RTAI, which is rather similar to
RTLinux architecture. There are interrupts originating from processor and
peripherals, of which processor originated interrupts (mainly error signals such as
division error) are sill handled by the standard Linux kernel but the interrupts from
the peripherals (e.g. timer) are handled by RTAI’s Interrupt dispatcher. The RTAI
forwards the interrupts to the standard Linux kernel handlers when there are no
active real-time tasks. The interrupt disabling and enabling instructions in Linux
kernel are replaced by macros that forward the instructions to RTAI. When interrupts
are disabled in the standard kernel, RTAI queues the interrupts to be delivered after
the Linux kernel has enabled the interrupts again.

When an interrupt occurs, the real time kernel intercepts the interrupt and
decides what to dispatch. If there is a real time handler for the interrupt, the
appropriate handler is invoked. If there is no real time interrupt handler, or if the
handler indicates that it wants to share the interrupt with Linux, then the interrupt is
marked as pending. If Linux has requested that interrupts be enabled, any pending
interrupts are enabled, and the appropriate Linux interrupt handler invoked - with

hardware interrupts re-enabled.

30

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

Fa 7N — i
PROCESSES | a1 |, | A2, /7 N /7 N
A . /| T1) | T2 | TASKS
— — "___ 1_ ____,/'
Scheduler | IPC |
LINUX - .
HW Management IPC Scheduler RTAI
1. Interrupt Dispatcher
I i
HARDWARE Processor | Peripherals

Figure 5.2. Architecture of RTAI (Sarolahti P.,2001)

For RTAI all interrupts are initially handled by the real time kernel and are
passed to Linux only when there are no active real time tasks. Changes to the Linux
kernel are minimized by providing the kernel with a software emulation of the
interrupt control hardware. Thus, when Linux has disabled interrupts, the emulation
software will queue interrupts that have been passed on by the real time kernel.

5.2.1. Hardware Abstraction L ayer

RTAI developers introduce the concept of Real-Time Hardware Abstraction
Layer (RTHAL) which is used for intercepting the hardware interrupts and processing
them. RTHAL is a structure installed in the Linux kernel which gathers the pointers
to the internal hardware related kernel data and functions needed by the RTAI to
operate. The purpose of RTHAL is to minimize the number of changes needed to
make to the kernel code and thereby improve the maintainability of RTAI and Linux
kernel code. With RTHAL, the different operations (e.g. the interrupt handlers) are
easy to be changed or modified without having to interfere with the Linux
implementation. For example, the RTHAL structure contains the interrupt handler
table, which lists the functions that are called for handling different interrupts.

When RTHAL is installed on Linux, the RTSAI function calls, and data
structures related to hardware interaction are replaced by pointers to the RTHAL

structure. Initially, the structure contains the pointers to the original functions and

31

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

data of the Linux implementation, but when RTAI is enabled, the needed
replacements are made to the pointers in the RTHAL table.

Briefly, RTHAL intercepts all hardware interrupts and routes them to either
standard Linux or to real-time tasks depending on the requirements of the RTAI
schedulers.

Advantages and Disadvantages of the RTHAL

The main advantages of using a RTHAL approach compared to a relatively
kernel intrusive:

The changes needed to the standard Linux kernel are minimal, a few
lines in eleven source files plus configuration additions to three files
in the build structure, (Makefile, configuration files etc). This lower
intrusion on the standard Linux kernel improves the code
maintainability, and makes it easier to keep the real time
modifications up-to-date with the latest release of the Linux kernel
(DIAPM, Lineo Inc., 2002).

The real time extensions can easily be removed by replacing the
interrupt function pointers with the original Linux routines. This is
especially useful in certain debugging situations when it is necessary
to remove the extensions, and when verifying the performance of
standard Linux with and without the real time extensions (DIAPM,
Lineo Inc., 2002).

The Linux kernel suffers aslight, but essentially negligible, performance loss
when RTAI is added due to the indirection through pointers to the interrupt mask,
unmask and flag functions.

In consideration of both strengths and weaknesses, this technique has shown
itself to be both efficient and flexible, because it removes none of the capability of
standard Linux, yet it provides guaranteed scheduling and response time for critical
tasks.

32

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.2.2. Schedules

The scheduling units of RTAI are called tasks. There is always at least one
task, namely the Linux kernel which is run as a low-priority task. When real time
tasks are added, the scheduler gives them priority over the Linux kernel. The
scheduler provides services such as suspend, resume, yield, make periodic, wait until,
which are used in various real-time operating systems.

The scheduler is implemented as a dedicated kernel module (again similarly
to RTLinux), which makes it easy to implement alternative schedulers if necessary.
There are three different types of schedulers depending on the machine type.
Uniprocessor (UP) scheduler is intended to be used on uniprocessor platforms, and it
can not be used with multiprocessor machines. Symmetric Multiprocessor (SMP)
scheduler is designed for SMP machines and it provides an interface for the
applications to select the processor or the pool of processors on which agiven task is
run. If the user does not specify any processor for the task, SMP selects the processor
based on the processor load status. Multi-uniprocessor (MUP) scheduler can be used
with both multi and uniprocessor machines. Unlike with the SMP scheduler, the
tasks must be bound to specific processor when MUP scheduler is used. On positive
side, MUP scheduler allows more flexible timer mechanisms for the tasks than SMP
or UP scheduler

5.2.3. Difference of RTOS Due to the Conventional Operating System

A conventional OS, such as Linux, attempts to use a “fairness’ policy when
scheduling threads and processes to the CPU (Furr S., 2002). This gives all
applications in the system a chance to make progress, but does not establish the
supremacy of realtime threads in the system or preserve their relative priorities, as is
required to guarantee that they finish on time. Likewise, all priority information is
usually lost when a system service, usually performed in a kernel call, is executing
on behalf of the client thread. These results in unpredictable delays and, thus prevent
an activity from completing on time. By contrast, the micro kernel architecture used

33

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

in the RTOS is designed to deal directly with all of these requirements (Furr S.,
2002). The microkernel itself simply manages processes - and threads - within the
system, and allows them to communicate with each other. Scheduling is always
performed at the thread level, and threads are always scheduled according to their
fixed priority - or, in the case of priority inversion, by the priority as adjusted by the
microkernel to compensate for priority inversions.

Consequently, a high-priority thread that becomes ready to run can preempt a
lower-priority thread. Within this framework all device drivers and operating system
services apart from basic scheduling and interprocess communication (1PC) exist as
Separate processes within the system. All services are accessed through a
synchronous message-passing |PC mechanism that allows the receiver to inherit the
priority of the client. This priority-inheritance scheme allows Operating System
Requirements (OSR) 5 to be met by carrying the priority of the original real-time
activity into all service requests and subsequent device-driver requests. Using this
model, an operating service or device driver can be swapped out in favor of a
realtime version that satisfies these requirements.

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3. RTAI Installation

Rta offers the same services of Linux kernel core, adding the features of an
industrial real time operating system. The Hal provides few dependencies to Linux
Kernel.

Rtai works with set of kernel versions which are provided trough internet. In
the following subjects in this chapter are about installation of RTAI step by step.

Our system works with the kernel version of linux-2.6.7 and Rtai-3.1 on
Fedora 2 which is one of the Linux operating system versions.

5.3.1. Downloading K ernel

The kernel source is downloaded from the web site address given below.

ftp://ftp.kernel .ora/pub/linux/kernel/v.2.6/linux-2.6.7.tar.qz

The downloaded source is our source but some versions of this source may
need a patch which is got from the web site address below.

ftp://ftp.kernel .org/pub/linux/kernel/patches

We have to download the patch version 2.6.7 as patch-2.6.7.bz2

5.3.2. Downloading RTAI Source

In the same manner, the rtai source is downloaded from web site address
given below.

http: //www.aero.polimi.it/RTAl/rtai-3.1.tar.bz22

35

ftp://ftp.kernel.org/pub/linux/kernel/v.2.6/linux-2.6.7.tar.gz
ftp://ftp.kernel.org/pub/linux/kernel/patches
http://www.aero.polimi.it/RTAI/rtai-3.1.tar.bz2

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3.3. Extracting the Sources

Both of the kernel and the rtai sources are extracted into the /usr/src/ folder.

5.3.4. Symboalic Links

The Linux OS provides symbolic links to specified folders, to reach the

folders easily. It is like a short cut.

In —s/usr/src/linux-2.6.7 linux

In—s/usr/src/rtai-3.1 rtai

This command produces virtual linksto the source folders. It is not necessary,

but it is useful while compiling kernel and compiling rtai.
5.3.5. Patching theKernel with RTAI
The kernel must be patched with the appropriate rtai patch. This provides the
kernel to be introduced to rtai. This introduction process loads the kernel with rtai
specifications. The ¢ source filesin kernel are replaced with rtai ¢ sourcefiles.
cd/usr/src/linux
patch —pl</usr/src/rtai/rtai-core/arch/i386/patches/hal 6-2.6.7.patch
Some patches related with rtai may be found in same folder. That patch can

not be compatible. It notices you while you are patching. It says that the versions are

uncompatible.

36

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3.6. Compiling theKerne

The most important part of the compiling kernel is to create .config file.
Every Linux program is an executable file holding the list of opcodes the CPU
executes to accomplish specific operations. For instance, the Is command is provided
by the file /bin/ls, which holds the list of machine instructions needed to display the
list of filesin the current directory onto the screen. The behaviors of almost every
program can be customized to your preferences or needs by modifying its
configuration files. Shortly, the configuration file is a file created by an application
program that stores the choices you make when you install (or configure) the
program so that they're available the next time you start the program.

You must copy the configuration file under boot folder to linux source folder.
The default linux version was Linux-2.6.9. We decided to change it to Linux 2.6.7 to
work with the rtai-3.1 source to provide stable work. The copying process is done
with the command below.

cp /boot/config-2.6.9-1.667 /usr/src/linux/

Then the configuration selection can be done running the command below.
This command provides selection menu for configuration. Some important changes
or selections must be done as following.

Adeos is selected (Adeos Support)

“Loadable Kernel Module Support- Module Versioning Support” is
disabled.

“Kernel Hacking-Compile the kernel with frame pointers” is disabled.

Adeos is a resource virtualization layer available as a Linux kernel patch.
Adeos enables multiple entities called domains to exist simultaneously on the same
machine. These domains do not necessarily see each other, but all of them see Adeos.

A domain is most probably a complete OS, but there is no assumption being made

37

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

regarding the sophistication of what is in a domain. However, all domains are likely
to compete for processing external events (e.g. interrupts) or internal ones (e.g. traps,
exceptions), according to the system wide priority they have been given. Adeos
support enables rtai modulesto run.

Kernel Module Support provides to insert a module to kernel or remove a
module from kernel.

The following command provides to run configuration program.

make menuconfig

After choosing and then closing the configuration menu, running the
“bzlmage” command identifies the dependencies and the “make” command forms
the objects of kernel which will be loaded. For identifying the dependencies of the
installation “make dep” command is ran before “make bzl mage”.

make dep

make bzl mage

make

make modules_ingtall

make install

These command sets provides you to install linux-2.6.7 kernel on your pc.

You can use following instruction format while compiling the kernel. The

“&&" characters are used to run commands with one command line.

make bzlmage & & make & & make modules_install & & make install

38

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3.7. Compiling the RTAI

Compiling the RTAI is approximately same as compiling RTAI. Firstly,
change the folder to rtai source code.

cd /usr/src/rtai

The configuration is made by the command “make menuconfig”. Some
options are chosen due to your needs. For example, if you want to write a rtai
application by using parallel ports, you must enable the configuration of the ports
with “Y” choice. In this step, the important issue is selecting the path to linux source
tree. Write the path to linux source tree as /usr/src/linux.

Then you select all your choices or you can select defaults. After selecting the
configuration options, close and save the configuration file. The “make” command is

run.

make

This command forms the object files for installation. “make install” command
will installs the rtai.

These instruction sets modify the kernel. The grub.conf which is boot loader
file isautomatically modified.

After rebooting your system the RTAI-Linux is ready to write applications. At
the beginning, you have to test your RTAI using test modules or written applications.

39

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3.8. Testing Your RTAI

If all the parts of installation has done properly, the test operations could be
done.

For testing, you must run the test program which is about latency test under
realtime/testsuite directory.

cd /usr/realtime/testsuite/kern/latency

Jrun

You can see the output of latency test as maximum, minimum and average

values.

5.3.9. RTAl Modules

RTAI is very much module oriented. Linux allows dynamically loading or
unloading components of the operating system. The way to manually insert a module
into the kernel is using the “insmod” command. Modules are removed by “rmmod”
command. A kernel module has to have at least two functions: “init_module()”,
which is called when module is inserted into kernel, and “cleanup_module()”, which
iscalled just beforeit is removed.

To use RTAI, you load the modules that implement whatever RTAI
capabilities you need. There are three core modules. rtai module (rtai.o), scheduler
module (rtl_sched.0) and the module that implements rt-fifos (rt_fifo.0). The
application process is written as a kernel module, and this kernel module is compiled.
The result of compilation is load with the kernel core modules.

insmod rtai.o

insmod rtl_fifo.o
insmod rt_sched.o

40

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

insmod /home/deneme/surucu.o

The last command provides application modules to be ran as a part of
system’s kernel. The module executes the function in the init_module. To stop the

application following commands are executed.

rmmod surucu
rmmod rt_sched
rmmod rtl_fifo

rmmod rtai

5.3.10. Compiling RTAI Modules

To compile any kernel module, gcc command is used:

gcc—<-D__ KERNEL__ -DMODULE_ -0 ornek ornek.c

This command set produces ornek.o module as an application. For the files
more than one, this command set is not very useful. Instead of this command set,
using makefile for compilation is very advantageous.

The makefile has a vital role to produce driver and executable file. The
“make” command is important tool for linux systems. This command looks for
Makefile to run. A Makefile is a file that instructs the program how to be compiled
and to be linked to a program. A Makefile can include several source files for

compilation. A makefile example:

all: ornek.o ornek

RTLINUX:-I /usr/src/linux/include -1 /usr/src/realtime/include
CFLAGS: -0O2 -Wall -DMODULE -D__ KERNEL___
ornek.o:ornek.c

gcc $(RTLINUX) $(CFLAGS) — ornek.c

41

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3.11. Building RTAI Example

RTAI needs executable rtai file, rtai code, related makefile, optinal script
which is not necessary to load rtai modules such as rtai.o, rtai_hal.o, and sometimes
run.info file.

The existence of these files, “make” command is ran to form object files due
to the codes in makefile. This command produces “.ko” extension files that are
related with driver.

The first example is sine wave. The code is saved as sine.c

#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/io.h>
#include <math.h>
#include <rtai.h>

#include <rtai_sched.h>

#include <rtai_fifos.h>

#define TICK_PERIOD 1000000
#define TASK_PRIORITY 1
#define STACK_SIZE 10000
#define FIFO O

static RT_TASK rt_task;

static void fun(int t)
{

int counter = 0;
float sin_value;
while (1) {

42

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

sin_value =sin(2*M_PI*1*rt_get_cpu_time_ns()/1E9);
/[sin_value =rt_get_cpu_time _ns()/1E9;

rtf_put(FIFO, &counter, sizeof(counter));

rtf_put(FIFO, &sin value, sizeof(sin_value));
counter++;

rt_task_wait_period();

int init_module(void)
{
RTIME tick_period;
rt_set periodic_mode();
rt_task_init(&rt_task, fun, 1, STACK_SIZE, TASK_PRIORITY, 1, 0);
rtf_create(FIFO, 8000);
tick_period = start_rt_timer(nano2count(TICK_PERIOD));
rt_task_make periodic(&rt_task, rt_get time() + tick_period,
tick_period);
return O;

void cleanup_module(void)

{
stop_rt_timer();
rtf_destroy(FIFO);
rt_task delete(&rt_task);
return;

}

MODULE_LICENSE("GPL");

43

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

This code provides realtime sine wave pulse due to the priority at kernel
space. To see the output of these program you need a user space program called as
kullanici.c to communicate with kernel space program.

include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

#include <signal.h>

static int end;
static void endme(int dummy)

{
end=1;

int main(int argc, char * argv[])
{
int fifo, counter;
float sin_value;
if ((fifo = open("'/dev/rtf0", O_RDONLY)) < 0) {
fprintf(stderr, "Hata /dev/rtfO\n");
exit(1);
}
signal(SIGINT, endme);
while ('end) {
read(fifo, & counter, sizeof(counter));
read(fifo, &sin_value, sizeof(sin_value));
printf(" Sayac : %d Deger : %f \n", counter, sin_value);

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

return O;

The makefile has a unige name as “Makefile”’ in al linux systems. For 2.6.x

kernel versions, makefile format is like:

obj-m :=sine.o
KDIR :=/lib/modules/$(shell uname -r)/build

PWD := $(shell pwd)

EXTRA_CFLAGS := -l/usr/redltime/include -1/usr/include/ -ffast-math -
mhard-float

default:

$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
gcc -o kullanici kullanici.c

A run script is used to load rtai_load module.

lusr/realtime/bin/rtai_load

runinfo file regulates the modules, and other executable files while you run
your executable file. It coordinates the files, modules which may loaded. .runinfo file
contains the lines below.

L atency:ksched+fifos:push sine;./kullanici;popall:control_c

After having your all files, you run “make’” command to compile the codes.

After running this command you will get sine.mod.c, sine.mod.o, sine.ko, and scope
executable files.

45

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.3.12. Troubleshooting

When rebooting your system, you can get kernel panic error. This is caused
by enabling SELinux. This problem can be solved by modifying the part for the new
kernel in /etc/grub.conf

title RTAI_Fedora (2.6.7-adeos)

root (hd0,0)

kernel /vmlinuz-2.6.7-adeos ro root =/dev/VolGroup00/LogVol00
enforcing=0 rhgb quiet

initrd /initrd-2.6.7-adeos.img

All RTAI programs need a device to provide communication between
hardware and software. While you test your RTAI, you may face a permission error
such as “Permission Denied” due to nonexisting device /dev/rtf3. This problem is
solved by running a script as below.

I/bin/bash

mknod —m 666 /dev/rtai_shm c 10 254
fornin‘seq09

do

f=/dev/rtf$n

mknod —m 666 $f ¢ 150 $n

done

Instead of the script, you can manually solve such a problem by running lines
containing these lines

mknod —m 666 /dev/rtai_sch ¢ 10 254

mknod —m 666 /dev/rtf0 ¢ 150 0
mknod —m 666 /dev/rtf1 ¢ 150 1

46

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

mknod —m 666 /dev/rtf2 ¢ 150 2
mknod —m 666 /dev/rtf3 ¢ 150 3

Every RTAI code needs a makefile to compose object files. If you try to form

an object or executable file without makefile you will have an error such as “No

target specified and no makefile”. This problem can be solved by writing a makefile.

47

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

5.4. LXRT

LXRT that alows hard real-time programs to run in user space is extension
on RTAI. RTAI programs are kernel space programs. LXRT brings the kernel space
program API to user land. It allows user to observe any application’s outputs on user
gpace. The real time or non real time threads such as normal Linux processes and
your rtai program are ran at the same program. To run any LXRT application,
rtai_Ixrt and rtai_sem modules are loaded.

insmod /usr/src/realtime/modules/rtai_Ixrt
insmod /usr/src/realtime/modules/rtai_sem

5.4.1. Writing a LXRT Application

Linux Scheduler must be initialized at the beginning of the program.

#include <sched.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)

{
struct sched _param mysched; //definition of the scheduler

mysched.sched_priority = sched _get_priority_max(SCHED_FIFO) - 1;
if(sched_setscheduler(0, SCHED_FIFO, & mysched) == -1) { //starting
puts("ERROR IN SETTING THE SCHEDULER");

perror("errno”);

exit(1);

48

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

return O;

The threads is transformed an rtai task. This allowsto use RTAI
synchronization and communication primitives,

#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>

#include <rtai_|Ixrt.n>

int main(void)

{
RT _TASK* task; // Storesahandle.
int priority=0; // Highest
int stack_size=0; // Use default (512)
int msg_size=0; // Use default (256)

struct sched _param mysched;

mysched.sched_priority = sched _get_priority_max(SCHED_FIFO) - 1;
if(sched_setscheduler(0, SCHED_FIFO, &mysched) ==-1) {
puts("ERROR IN SETTING THE SCHEDULER");
perror("errno”);
exit(1);
}

task = rt_task_init(nam2num("Name"), priority, stack_size, msg_size);

49

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

/[your program ... anything you can think of is allowed here.
rt_task_delete(task);
return O;

}

Every RT_TASK in LXRT need a “Name” to which it can be referenced
from kernel and userspace. Having names is an easy way to identify tasks and
communication when program is running. The name must be unique. To provide
automatic selection of the name rt_get_name(0) function is used for valid, thread

safe, name.

unsigned int processor_mask = OXFF; // all processors

if ((task = rt_task_init_schmod(nam2num(*Name"), priority, stack size,
msg_size, SCHED_FIFO, processor_mask)))

{

printf("CANNOT INIT TASK %u\n", taskname(task));

exit(1);

}

This function initializes the scheduler and the main() task. To make a
thread function an RTAI task, add the rt_task init() and rt_task delete() function
calls at the start and at the end of that function thread. The scheduler only needsto be
initialized once from main. To avoid being swapped out, the process is locked at
RAM. For this locking action, the following code before rt_task init() is inserted.

#include <sys'mman.h>
...

int main(void)

{

...

50

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

mlockall(MCL_CURRENT | MCL_FUTURE);
...
}

The application is soft redtime and was scheduled with the native Linux
FIFO scheduler. To get the deterministic realtime scheduling of RTAI, the timer
must be started and the hard real time capabilities must be add to application.

Start the realtime timer (do this ONCE) rt_gart_timer() : The rt_timer (or
scheduler) programs the interrupt controller of the processor to generate periodic
interrupts (periodic_mode) or reprograms the timer each time to fire when the next
task must be started (oneshot_mode). Oneshot mode is less efficient but more
flexible than periodic mode. This is further explained in the RTAI documentation.
You can check if the timer is started with rt_is_hard_timer_running(). Stopping the
timer is normally not necessary, unless you want to reconfigure it, which requires
stopping all your hard realtime tasks.

Make your RT_TASK periodic and hard realtime rt_make hard realtime()
and rt_make soft_realtime() : These calls make the calling thread switch from the
Linux scheduler to the RTAI scheduler and back.

int main(void)
{
...
/] after rt_init_task
if (oneshot)
rt_set_oneshot_mode();
else
rt_set periodic_mode();
/I <period_in_nanosecs> isthe clock rate of the realtime scheduler
/[(rt_timer) in nano seconds.
period = (int) nano2count((RTIME)period_in_nanosecs);
start_rt_timer(period);
I/ Periodic HardRT tasks are able to run now.

51

5. REAL TIME APPLICATION INTERFACE Firat KUMRU

...

}

{
...

/' InaRT_TASK thread function or in main, after the timer is started
if (hard_realtime) {

rt_make hard real_time();

}

/I this determines when rt_wait_period() will wake the first time.
rt_task_make periodic(hrt_task, rt_get _time() + period, period);

while (continue)

{

I put periodic functionality here
...

rt_wait_period();

}

if (hard_realtime) {
rt_make soft real_time();
}

/l end of program/thread
...

}

52

6. CONCLUSIONSAND FUTURE WORK

The ECG and BP signals are represented. The continuous non invasive blood
volume measurement system is introduced. A new method called oximetry which is
measured by optical system gives opinion about the heart rate and blood pressure. It
shows proportional change in time.

RTAI provides a real-time support for Linux. It adds small kernels in to
standard kernel. These small kernels provide scheduling, and priority identification.
When the priority of any application gets low value (higher priority), CPU takes the
interrupts by hardware abstraction layer and decides to priority for the application.
All tasks or processes of the CPU are neglected and the application is executed. The
time delay becomes smaller. The completion time has no deviation.

This time concept of any RTAI module provides instantaneous response of
any process. Some experiments such as counting the pulses from external pulse
generator shows that the count of pulses measured by RTAI application in specific
time interval is greater than the count of pulses measured by Linux application.

Furthermore, for future researches, the measurement results will be evaluated
by the assistance of a doctor for non invasive optical measurement system. The data
acquisition module can be implemented as portable system with RTAI. Some
publications about results will be done to show the optical measurement of non
invasive method isreliable or not.

53

BIOGRAPHY

| was born in Ordu, Turkey, in 1980. | completed the high school education in
Samsun. | received the B.S. degree in Electrical and Electronics Engineering from
Cukurova University, Adana, Turkey in 2003. After completion my B.S. training, |
have started M Sc degree in the department of Electrical and Electronics Engineering
in Cukurova University and have been working there as a research assistant since
2004.

My areas of interest include software developing with Delphi, C++ and Linux
operating system’s kernel development tools and Real Time modeling and electronic
signal implementation devices.

| am a member of Turkish Chamber of Electrical Engineers.

REFERENCES

ADVANTECH Co. Ltd., 1994. PCL 818 DAQ Card Manual.

AYDIN, A. 2004. Simple and Low-Cost Biosignal Amplifier Design for ECG and
EEG, McS Thesis.

CARR, JJ, BROWN, JM., 1981. Introduction To Biomedica Equipment
Technology. John Wiley & Sons, 430s

DERIN O., 2005 A Crude Survey on Real Time Application Interface.

EVANS W.F., 1971. Anatomy and Phsicology, The Basic Principles, Englewood
Cliffs, N.J., Prentice Hall, Inc.

FLEWELLING R., 1995. Noninvasive Optical Monitoring, Biomedical Engineering
Handbook, Prentice Hall, Inc.

FURR S., 2002. What is Real Time and Why do | need 1t?. QNX Software Systems
Ltd.

GEDDES L.A., 1995. The Electrocardiography, Biomedical Engineering Handbook,
Prentice Hall, Inc.

INCE, N.F., 2002. A Computer Based Data Acquisition and Signal Processing
System for Measuring the Baroreceptor Sensitivity.

NAGEL, JH., 1995. The Biomedical Engineering HandBook., CRC Press Inc,
pp.1185-1189.

ROUCHOUSE B., 2003. Rtai Installation Guide.

SAROLAHTI P, 2001. Real Time Application Interface, Research seminar on Real

STANKOVIC JA, RAMAMRITHAM K, 1993. Advances in Real Time Systems,
Published |EEE Computer Society.

The DIPARTIMENTO DI INGENERIA AEORSPAZIALE POITECNICO DI
MILANO (DIAPM) RTAlI RESEARCH GROUP, 2000. Rtai Programming
Guide 1.0, Lineo Inc.

The DIPARTIMENTO DI INGENERIA AEORSPAZIALE POITECNICO DI
MILANO (DIAPM) RTAI RESEARCH GROUPR 2002. Rtai Beginners

Guide. (www.aero.polimi.it/rtai/documentation/articles/quide.html)

Time Linux and Java, University of Helsinki.

55

http://www.aero.polimi.it/rtai/documentation/articles/guide.html

APPENDIX A

Specifications of the PCI 818

Analog Input (A/D converter):
Channels: 16 single-ended or 8 differential, switch selectable
Resolution: 12 bits
Input ranges (bipolar, VDC): £0.625, + 1.25, £2.5, +5 or £1.25, + 2.5, +5,
+10
Overvoltage: Continuous +30 V max.
Conversion type: Successive approximation
Conversion rate: 40 KHz max.
Accuracy: +(0.01% of reading), £1 bit
Linearity: £1 bit
Trigger mode: Software trigger, on-board programmable pacer trigger or
external trigger
Ext. trigger: TTL compatible.
Load is0.4 mA max. at 0.5V and -0.05 mA max. at 2.7 V
Data transfer: Program, interrupt or DMA
Analog output (D/A converter):
Channels: 1 channel
Resolution: 12 bits
Output range: 0to +5 (+10) V with on-board -5 (-10) V reference. x. £10 V
with external DC or AC reference
Reference:
Internal: -5V or -10 V
External DC or AC: £10 V max.
Conversion type: 12 bit monolithic multiplying
Linearity: £0.5 bit
Output drive: £5 mA max.

56

Settling time: 5 microseconds
Digital input

Channel: 16 bits

Level: TTL compatible
Input voltage:

Low: 0.8 V max.

High: 2.0 V min.

Input load:

Low: 0.4 mA max. at 0.5V
High: 0.05 mA max. at 2.7V
Digital Output

Channel: 16 bits

Level: TTL compatible

Output voltage:

Low: Sink 8 mA at 0.5V max.

High: Source-0.4 mA at 2.4V min.

Programmable timer/counter

Device: Intel 8254 or equivalent

Counters: 3 channels, 16 bit.

2 channels are permanently configured as programmable pacers
1 channel is free for your applications

Input, gate: TTL/CMOS compatible

Time base:

Pacer channel 1: 10 MHz or 1 MHz, switch selectable

Pacer channel 2: Takes input from channel 1

Pacer channel O: Internal 100 KHz or external clock (10 MHz max).
Source selected with Timer/Counter Enable Register (BASE+10)
Pacer output: 0.00023 Hz (71 minutes/pulse) to 2.5 MHz

Interrupt channel

57

Level: IRQ 2to 7, software selectable
Enable: ViaINTE bit of Control Register (BASE+9)
DMA channel
Level: 1 or 3, jumper selectable
Enable: Via DMAE hit of Control Register (BASE+9)
General
Power consumption:
+5V: 210 mA typical, 500 mA max.
+12V: 20 mA typical, 100 mA max.
-12V: 20 mA typical, 40 mA max.
I/O connector: 20 pin post headers for 1/0O connection. Adapter available to
convert to DB-37 connector
Analog input/output/counter connector: DB-37
1/0O base: Requires 16 consecutive address locations. Base address definable
by the DIP switch SW1 for address line A9-A4. (Factory setting is Hex 300).

58

APPENDIX B

RTAI Hard Real-Time LXRT Parallel Port Example

The parallel port interrupt handler LXRT codeisillustrated below.

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <sched.h>
#include <signal.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <rtai_Ixrt.h>
#include <rtai_sem.h>
#include <rtai_usi.h>
#include <sys/io.h>
#define PARPORT _IRQ 7
#define BASEPORT 0x378

static SEM *intsem, * dspsem;

static volatile int end = 1;

static volatile int endsquare = 1;

static volatile int ovr, intcnt, retval, maxcnt;

#define PERIOD 1000000000

static void *timer_handler(void *args)
{
RT_TASK *handler;
if (!(handler = rt_task_init_schmod(nam2num("HANDLR"), 0O, 0O, 0,
SCHED_FIFO, 0xF))) {

59

printf("CANNOT INIT HANDLER TASK > HANDLR <\n");
exit(1);
}
rt_allow_nonroot_hrt();
mlockal(MCL_CURRENT | MCL_FUTURE);
rt_make hard real_time();
end = 0;
while ('end) {
do {
ovr = rt_wait_intr(intsem, (void *)&retval);
hard_sti();
if (end) break;
/l overrun processing, if any, goes here
if (ovr >0){
rt_sem signal(dspsem);
}
/* normal processing goes here */

intcnt++;

rt_sem signal(dspsem); Il notify main()

rt_ack_irq(PARPORT_IRQ);
} while (ovr > 0);
rt_pend_linux_irg(PARPORT _IRQ);
}
rt_make soft real_time();
rt_task_delete(handler);
intcnt = maxcnt;
return O,

}

static void * square_handler(void *args)

{
RT_TASK *handler;

60

RTIME period;

if (Y(handler = rt_task_init_schmod(nam2num("SQHDLR"), 0, 0, O,
SCHED_FIFO, 0xF))) {
printf("CANNOT INIT HANDLER TASK > SQHDLR <\n");
exit(1);
}
rt_allow_nonroot_hrt();
mlockal(MCL_CURRENT | MCL_FUTURE);

rt_set_oneshot_mode();
start_rt_timer(0);
period = nano2count(PERIOD);
rt_make hard real_time();
endsquare = 0;
rt_task_make periodic(handler, rt_get time() + period, period);

while ('endsguare) {
outb_p(0, BASEPORT);
rt_task_wait_period();
outb _p(255, BASEPORT);
rt_task_wait_period();

stop_rt_timer();
rt_make soft real_time();
rt_task_delete(handler);
intcnt = maxcnt;

return O;

}

static pthread t thread, squarethread;

int main(void)

61

RT_TASK *maint;

printf("GIVE THE NUMBER OF INTERRUPTS YOU WANT TO COUNT: "),

scanf("%d", & maxcnt);

if (!(maint = rt_task_init(ham2num("MAIN"), 1, 0, 0))) {
printf("CANNOT INIT MAIN TASK > MAIN <\n");
exit(1);

}

/I Create semaphore for notification when interrupt occurs

/I Inthe thread we wait with rt_wait_intr until an interrupt occurs

if (!(intsem = rt_sem _init(nam2num("IRQSEM"), 0))) {
printf("CANNOT INIT SEMAPHORE > IRQSEM <\n");
exit(1);

}

/I creste semaphore to notify main() when interrupt occurs

if (!(dspsem = rt_sem_init(nam2num("DSPSEM"), 0))) {
printf("CANNOT INIT SEMAPHORE > DSPSEM <\n");
exit(1);

}

if (iopl(3)) { // ask for permission to access the parallel port from user-space
printf("iopl err\n");
rt_task_delete(maint);
rt_sem delete(intsem);
rt_sem delete(dspsem);
exit(1);

outb_p(0x10, BASEPORT + 2); //set port to interrupt mode; pins are output

/I create thread
pthread create(&thread, NULL, timer_handler, NULL);
/! wait until thread went to hard real time

62

while (end) {
usleep(100000);

/I create squarethread
pthread create(& squarethread, NULL, square_handler, NULL);
/[wait until thread went to hard real time
while (endsquare) {

usleep(100000);
}
/I request the interrupt and bind it to semaphore
rt_request_global_irg(PARPORT _IRQ, intsem, USI_SEM));
rt_startup_irg(PARPORT _IRQ);
rt_enable irq(PARPORT _IRQ);

while (intcnt < maxcnt) {
rt_sem wait(dspsem);
printf("RETVAL %d, OVERRUNS %d, INTERRUPT COUNT %/d\n",
retval, ovr, intcnt);
}
end =1;
endsquare = 1;
printf("TEST ENDS\n");
outb_p(0, BASEPORT);
outb _p(255, BASEPORT); // generate final interrupt to unblock rt_wait_intr
outb_p(0, BASEPORT);
pthread_join(thread, NULL);
pthread_join(squarethread, NULL);
rt_free_global_irq(PARPORT _IRQ);
rt_task_delete(maint);
rt_sem delete(intsem);
rt_sem delete(dspsem);
return O;
}

63

