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Doç. Dr. Murat ATMACA’ya, Tarkan ÖNER’e, Matematik bölümünün tüm deǧerli

hocalarına ve araştırma görevlisi arkadaşlarıma, hayatımın her döneminde benden

desteklerini, sevgilerini ve ilgilerini hiç esirgemeyen aileme, M.Burç KANDEMİR’e,
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MUĜLA 2007



IV

İÇİNDEKİLER

SayfaNo:

ÖNSÖZ ........................................................................................................................ III

İÇİNDEKİLER ............................................................................................................ IV

ÖZET ............................................................................................................................ V

ABSTRACT .................................................................................................................VI

SEMBOLLER DİZİNİ ............................................................................................... VII

1. GİRİŞ.......................................................................................................................... 1

2. KAYNAK ÖZETLERİ .............................................................................................. 3

2.1. Homoloji Teori .................................................................................................3

2.2. Singüler Homoloji ............................................................................................3

2.3. Singüler Kohomoloji ........................................................................................8

3. MATERYAL ve YÖNTEM .....................................................................................10

3.1. Cup Çarpım .................................................................................................... 10

3.2. Özel Kohomoloji Operasyonları(Transformasyonları) .................................. 11

4. ARAŞTIRMA BULGULARI .................................................................................. 13

4.1. Steenrod Cebiri ...............................................................................................13

4.2. Adem Bağıntıları(Relations) .......................................................................... 20

5. TARTIŞMA VE SONUÇLAR..................................................................................21

5.1. Adem Bağıntılarında Katsayılar .....................................................................21

KAYNAKLAR ............................................................................................................ 37

ÖZGEÇMİŞ ................................................................................................................. 38



V
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rod Cebirinde verilen metod, Mod−p Steenrod Cebir yapısında var olan farklılıklarla
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1. GİRİŞ

Cebirsel topoloji, ”iki uzayın homeomorf olmadıǧını göstermek” gibi bazı topolo-

jik sorulara yanıt aranırken oluşmuş, topolojik kavramları cebir ile birleştiren bir

çalışma alanıdır. Herhangi iki topolojik uzay verildiǧinde bunların homeomorf olduǧunu

göstermek, homeomorf olmayan uzayları araştırmaktan daha zordur. Çünkü bu iki

uzay arasında birebir-örten, sürekli ve tersi sürekli bir fonksiyon bulmamız gerekir.

Bu da genelde pek kolay deǧildir.Mesela, R’nin R2’ye homeomorf olmadıǧını yol

baǧlantılılıǧı kullanarak şöyle bulabiliriz: R’den tek nokta çıkarırsak yol baǧlantılılık

bozulurken R2’den tek nokta çıkarırsak yol baǧlantılık bozulmaz, dolayısıyla bu iki

uzay homeomorf olamaz. Fakat R2’nin R3’e homeomorf olmadıǧı bilinen topolojik

özelliklerle ( baǧlantılılık, yol baǧlantılılık, kompaktlık, metriklenebilirlik, T0, T1, T2

vb.) gösterilemez. Bu sorunun cevabı içinde homotopi gruplarının tanımlanması

gerekir. Yani, homotopi funktoru bu iki uzaya uygulanarak elde edilen cebirsel yapılar

izomorf olmadıǧı için bu iki uzay homeomorf olamazlar.

Cebirsel topolojide, topoloji ile cebir arasında bu birleştirme funktorlar aracılıǧı

ile yapılır. Homoloji, kohomoloji, temel grup, homotopi funktorları gibi çeşitli funk-

torlarla, verilen herhangi iki topolojik uzaydan oluşturulan cebirsel yapılar ince-

lenerek, bu uzaylar hakkında bilgi elde etmeye çalışılır. Bu cebirsel yapıların ortaya

çıkışı genelde bir sorunun çözümü için ihtiyaç duyulması üzerine oluşturulmuştur.

Steenrod cebiri de Norman Steenrod’un Z2 katsayılı kohomoloji teori üzerindeki

kararlı kohomoloji operasyonlarının hareketini inşa ederken özel bir kohomoloji op-

erasyonuna ihtiyaç duymasıyla başlamıştır. Bu cebir yapısı Adem (1952), Cartan

(1955) ve Sere (1956) tarafından açıklanmaya çalışılmış ve Adem Baǧıntılarına göre

bölüm tensör cebiri olduǧu gösterilmişdir. Ayrıca Milnor (1958) de, Steenrod cebirinin

ko-komutatif Hopf cebiri yapısına sahip olduǧunu göstermiştir; sonuçta bu cebirin du-

ali de komütatif cebir olacaktır ve bu cebire cebir yapısı veren çarpım Milnor çarpımı

olarak adlandırılır. Steenrod cebirinde Admissible baz, Milnor bazı, Arnon bazı gibi

birden çok baz vardır.J.Silverman Mod-2 Steenrod Cebirinde Milnor çarpımı ve Adem

çarpımlarının ifadelerinde var olan ikiterimili (binomial) ve çok terimli (multinomial)

kombinasyonları (Silverman,J.H.1996) geliştirdiǧi bazı kombinatorik hesaplamalarla

yapmıştır. Bu hesaplamalarda, Lucas’ın (Lucas,E.1878), Kraines’in (Kraines,D.1971)

sonuçlarını da kullanmıştır.
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İkinci ve üçüncü bölümde cebirsel topolojide önemli yeri olan singüler homoloji,

singüler kohomoloji, cup çarpım konularında temel tanım ve teoremler verilmiş olup

bütünlüǧün bozulmaması açısından teoremler ispatsız olarak verilmiştir. Dördüncü

bölümde Steenrod cebir yapısı, bu cebirdeki bazlar ve özel kohomoloji trasformasyon-

ları hakkında temel tanımlar verilmiştir. Son bölümde de Adem baǧıntıları verilmiş

ve Silverman (Silverman,J.H.1996) tarafından mod − 2 Steenrod cebiri için verilen

yöntem mod − p Steenrod cebirine genelleştirilerekhem Admissible baza göre hem

de Milnor bazına göre aynı şekilde ifade edilebilen herhangi iki Steenrod elemanın

çarpımında bulunan terimlerin elde edilmesi başarılmış ve bazı özel tipte elemanlar

için genel formüller oluşturulmuştur.
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2. KAYNAK ÖZETLERİ

2.1. Homoloji Teori

Tanım 2..1 X bir topolojik uzay olsun. Bir homoloji teori

H∗(X) =

∞
∑

n=0

Hn(X)

n = 0, 1, 2, . . . için X uzayını Hn(X) deǧişmeli gruplarının bir ailesine ayrıştırır.

Burada X ve X
′

aynı homotopi tipine sahip uzaylar ise her n için

Hn(X) ≃ Hn(X
′

)

(grup izomorfizması) şartı saǧlanır.

H∗(X) direkt toplamına X ’in bir homolojisi ve her n için Hn(X) direkt toplam

terimine de X ’in n-inci homoloji grubu denir.

Tanımdan görülür ki; herhangi n için n-ci homoloji grupları Hn(X) ve Hn(X
′

)

izomorf deǧilse X ve X
′

aynı homotopi tipine sahip deǧildir. Böylece homoloji gru-

pları farklı olan uzaylar homeomorf olamazlar.

Homoloji teori tek deǧildir. Bir X topolojik uzayının homoloji gruplarını, bu

homoloji teorilerinden Singüler Homoloji Teori ile açıklayalım.

2.2. Singüler Homoloji

Tanım 2..2 x, y ∈ Rn olmak üzere x ve y noktalarını birleştiren doǧru parçası

{(1 − t)x + yt|0 ≤ t ≤ 1}

şeklinde tanımlanır.

Tanım 2..3 C ⊂ Rn kümesi verilsin.∀x, y ∈ C için x ve y noktalarını birleştiren

doǧru parçası C’de kalıyorsa C’ye konveks küme denir.

Tanım 2..4 A ⊂ Rn kümesi verilsin. A kümesini kapsayan konveks kümelerin kesişim

kümesine A’nın konveks hull’u denir.
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Tanım 2..5 Rn ’nin p + 1 noktası {x0, x1, . . . , xp} olsun. Eǧer

{x1 − x0, x2 − x0, . . . , xp − x0}

vektörleri lineer baǧımsız ise {x0, x1, . . . , xp} kümesinin konveks hull’una bir p-simpleks

denir.

S köşeleri x0, x1, . . . , xp olan sıralanmış p-simpleks olsun. σp kümesini aşaǧıdaki

şekilde tanımlayalım;

σp = {(t0, t1, . . . , tp) ∈ Rp+1 |
∑

ti = 1, ti > 0, i ∈ {0, . . . , p}}

f : σp −→ S

(t0, t1, . . . , tp) 7−→
∑

tixi

fonksiyonu bir homeomorfizmadır. Böylece her sıralanmış p-simpleksi σp’nin homeo-

morfik görüntüsüdür.

Tanım 2..6 σp , köşeleri x′

o = (1, 0, . . . , 0), . . . , x′

p = (0, . . . , 0, 1) olan bir sıralanmış

p-simplekstir. σp ’ye standart p-simpleks denir.

Tanım 2..7 X topolojik uzayı verilsin.

φ : σp −→ X

sürekli fonksiyonuna singüler p-simpleks denir.

Tanım 2..8 φ bir singüler p-simpleks ve i ∈ {0, 1, . . . , p} ise ∂iφ singüler

(p − 1)-simpleksi

∂iφ : σp−1 −→ X

(t0, . . . , tp) 7−→ φ(t0, . . . , ti−1, 0, ti, . . . , tp−1)

şeklinde tanımlanır. ∂iφ’ye φ’nini i. yüzü denir.
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f : X −→ Y sürekli bir fonksiyon ve φ X ’de singüler p-simpleks olsun.Bu

takdirde Y ’de bir f#(φ) singüler p-simpleksi

f#(φ) = f ◦ φ

şeklinde tanımlanır. Benzer şekilde g : Y −→ W , 1X : X −→ X sürekli fonksiyonları

için

(g ◦ f)#(φ) = (g# ◦ f#)(φ)

ve

1#(φ) = φ

eşitlikleri vardır.

Tanım 2..9 X topolojik uzayı verilsin.X uzayındaki tüm singüler n-simplekslerin üretmiş

olduǧu serbest deǧişmeli grubu Sn(X) ile gösterelim. Sn(X) ’in bir elemanına n-zincir

denir ve bir n-zincir
∑

φ

nφ.φ

formundadır öyleki nφ ∈ Z+ ve sonlu sayıda φ hariç sıfırdır.

∂i, i. yüz operatörü singüler n-simplekslerden singüler (n−1)-simplekslere bir fonksiyon

olduǧu için tek bir

∂i : Sn(X) −→ Sn−1(X)

∑

φ

nφ.φ 7−→
∑

φ

nφ.∂iφ

homomorfizması vardır. Bu homomorfizmalar yardımı ile sınır operatörü aşaǧıdaki

şekilde tanımlanır

∂ : Sn(X) −→ Sn−1(X)

∂ = ∂0 − ∂1 + · · · + (−1)n∂n =

n
∑

i=0

(−1)i∂i

Özellik 2..1 ∂ ◦ ∂ = 0
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Tanım 2..10 c ∈ Sn(X) n-zinciri için ∂(c) = 0 ise c ’ye n-devir denir. d ∈ Sn(X)

n-zinciri için ∂(e) = d olacak şekilde bir e ∈ Sn+1(X) (n + 1)-zinciri varsa d ’ye

n-sınır denir.

∂ homomorfizma olduǧundan n-devirlerden oluşan Ker∂ kümesi Sn(X) ’in alt grubudur

ve Zn(X) ile gösterilr.Benzer şekilde n-sınırlardan oluşan İm∂ kümesi Sn(X) ’in alt

grubudur ve Bn(X) ile gösterilir. Özellik 2..1 ’den Bn(X) ⊂ Zn(X) elde edilir.

Tanım 2..11

Hn(X) = Zn(X)/Bn(X)

bölüm grubuna X uzayının n. homoloji grubu denir.

Tanım 2..12 ℘, (X,A) ikilisi ve n tamsayısını ℘n(X,A) deǧişmeli grubu ile ve her

f : (X, A) −→ (Y,B)

ikililerin dönüşümünü

f∗ : ℘n(X,A) −→ ℘n(Y, B)

homomorfizması ile eşleştiren bir fonksiyon ve her n için

∂ : ℘n(X, A) −→ ℘n−1(X, A)

homomorfizması var olsun. Eǧer ℘ aşaǧıdaki aksiyomları saǧlar ise ℘ bir homoloji

teori üretir denir.

1. id : (X, A) −→ (X, A) birim dönüşüm ise

id∗℘n(X, A) −→ ℘n(X, A)

birim homomorfizmadır.

2. f : (X, A) −→ (X ′, A′), g : (X ′, A′) −→ (X ′′, A′′) ikililerin dönüşümleri ise

(g ◦ f)∗ = g∗ ◦ f∗

dır.
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3. f : (X, A) −→ (Y,B) ikililerin dönüşümü ise

∂ ◦ f∗ = (f |A)∗ ◦ ∂

4. i : (A, ∅) −→ (X, ∅) ve j : (X, ∅) −→ (X,A) içerme dönüşümleri ise

· · ·
∂

−→ ℘n(A)
i∗−→ ℘n(X)

j∗
−→ ℘n(X, A)

∂
−→ ℘n−1(A) −→ · · ·

dizisi tamdır.

5. f, g : (X,A) −→ (Y, B) ikili dönüşümleri homotopik ise

f∗ = g∗

6. (X,A) ikilisinde U ⊂ A ve Ū ⊂ int(A) ise

i : (X − U,A − U) −→ (X,A)

içerme dönüşümü için

i∗ : ℘n(X − U,A − U) −→ ℘n(X,A)

izomorfizmadır.

7. n 6= 0 için ℘n(pt) = 0 dır ve ℘n(pt) ’ye katsayı grubu denir.

Tanım 2..13 S(X) bir singüler zincir kompleksi ve G bir deǧişmeli grup olsun.

S(X) ⊗ G de bir singüler zincir kompleksidir ve

Hn(S(X); G) =
ker(∂n ⊗ 1)

Im(∂n+1 ⊗ 1)

grubuna G katsayılı n-inci homoloji grubu denir. Bu grup Hn(X; G) ile gösterilir.
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2.3. Singüler Kohomoloji

Tanım 2..14 A ve G deǧişmeli gruplar olmak üzere

Hom(A,G) = {f | f : A −→ G, f homomorfizma}

şeklinde tanımlanır. Hom(A,G) kümesi fonksiyonların toplama işlemine göre deǧişmeli

gruptur.

Tanım 2..15 G deǧişmeli grubu ve {C, ∂} zincir kompleksi verilsin. Her n için Cn

deǧişmeli grupları

Cn = Hom(Cn, G)

şeklinde tanımlanır. ∂ : Cn+1 −→ Cn sınır operatörü için

∂# : Cn −→ Cn+1

homomorfizması vardır ve

∂# ◦ ∂# = (∂ ◦ ∂)# = 0

olur.

Tanım 2..16 {Cn, δ}, δ : Cn −→ Cn+1 olacak şekilde deǧişmeli grupların ve homo-

morfizmaların bir topluluǧu olsun. Eǧer

δ ◦ δ = 0

ise bu diziye kozincir kompleks, δ homomorfizmasınada kosınır operatörü denir.

cn ∈ Cn elemanına da n−kozincir denir.

{Cn, δ} kozincir kompleksi için Dn = C−n ve ∂ = δ : Dn −→ Dn−1 tanımlamalarını

yaparsak {Dn, ∂} bir zincir kompleks olur. Böylece bu iki yapının birbirinin duali

olduǧu görülmüş olur.
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Tanım 2..17 C = {Cn, δ} kozincir kompleks olsun. n-kodevirlerin grubu

Zn(C) = Kerδn

n-kosınırların grubu

Bn(C) = İmδn−1

şeklinde tanımlanır. Böylece

Hn(C) = Zn(C)/Bn(C)

ifadesine C kozincir kompleksinin n.kohomoloji grubu denir.

Tanım 2..18 G deǧişmeli grup ve S(X) = {Sn(X), ∂n} singüler zincir kompleksi

olsun. Bu durumda,

Cn(X; G) = Cn(S(X); G) = Hom(Sn(X), G)

kümesine S(X) in G katsayılı n-inci kozinciri denir.

Tanım 2..19 {Cn(X; G), δn} G katsayılı singüler kozincir kompleksinin n-inci koho-

moloji grubu

Hn(X; G) = Hn(S(X); G) =
kerδn+1

imδn

olarak tanımlanır.
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3. MATERYAL VE YÖNTEM

3.1. Cup Çarpım

Tanım 3..1 X topolojik uzayı ve R deǧişmeli halkası verilsin. φ : σp+q −→ X olmak

üzere

Sp(X; R) × Sq(X; R)
∪

−→ Sp+q(X; R)

< cp ∪ cq, φ >=< cp, φ ◦ l(ε0, ε1, . . . , εp) > · < cq, φ ◦ l(εp, εp+1, . . . , εp+q) >

dönüşümü tanımlansın. Buradaki cp∪cq kozincirine cp, cq kozincirlerinin cup(bardak)

çarpımı denir. φ ◦ l(ε0, ε1, . . . , εp) dönüşümü φ singüler (p + q)-simpleksinin ön p

yüzüne, φ ◦ l(εp, εp+1, . . . , εp+q) dönüşümü ise φ singüler (p + q)-simpleksinin arka q

yüzüne kısıtlanışlarıdır.

Teorem 3..1 Kozincirlerin cup çarpımı bilineer ve birleşmelidir. z0 tüm

0-simplekslerdeki deǧeri 1 olan kozincir olsun. z0 birim elemandır. Ayrıca

δ(cp ∪ cq) = (δcp) ∪ cq + (−1)pcp ∪ (δcq)

kosınır formülü geçerlidir.

Teorem 3..2 Kozincirlerin cup çarpımı bilineer ve birleşmeli

Hp(X; R) × Hq(X; R)
∪

−→ Hp+q(X; R)

operatörünü üretir. [z0] kohomoloji sınıfı birim elemandır.

Tanım 3..2 H∗(X; R) = ⊕H i(X; R) olmak üzere cup çarpımı bu grubu birimli halkaya

dönüştürür ve bu halkaya X uzayının R katsayılı kohomoloji halkası denir.
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3.2. Özel Kohomoloji Operasyonları (Transformasyonları)

Tanım 3..3 f : X −→ Y bir dönüşüm olsun.

Hp(X, G)
ΦX−→ Hq(X,G

′

)

↑ f ∗ ↑ f∗

Hp(Y, G)
ΦY−→ Hq(Y, G

′

)

diyagramını deǧişmeli kılan ΦX fonksiyonlarının ailesine X uzayı için (G, p; G
′

, q)

tipinde bir kohomoloji operatörü denir ve o(G, p; G
′

, q) ile gösterilir.

Zp = Z/pZ ve p tek asal sayı olsun. 0 −→ Zp −→ Z2 −→ Zp −→ 0 tam dizisine

karsılık gelen

β : Hq(X; Zp) −→ Hq+1(X; Zp)

Bockstein ko-sınır operasyonu, β2 = 0 ve β(x.y) = β(x)y + (−1)qxβ(y), dim(x) = q

özelliklerini saǧlayan bir doǧal homomorfizma olarak bilinmektedir.

Tanım 3..4 Steenrod kare operasyonları olarak bilinen Sqi operasyonları, her biri her

q için (Z2, q; Z2, q + i) tipinde kohomoloji operasyonlarıdır.

Hq(X, Z2)
Sqi

−→ Hq+i(X, Z2)

↑ f ∗ ↑ f ∗

Hq(Y, Z2)
Sqi

−→ Hq+i(Y, Z2)

Sqi : Hq(X) −→ Hq+i(X)

Steenrod kare operasyonları aşaǧıdaki özellikleri saǧlarlar.

1. Sq0 : Hq(X) −→ Hq(X), Sq0 = 1

2. deg u = q ise Sqq(u) = u2

3. deg u < q ise Sqq(u) = 0

4. Cartan formülü: Sqi(u.v) =
∑

i=j+k Sqj(u).Sqk(v)



12

5. Sq1 : Hq(X) −→ Hq+1(X) homomorfizması 0 −→ Z2 −→ Z4 −→ Z2 −→ 0 tam

dizisine karşılık gelen Bockstein ko-sınır homomorfizmasıdır.

G = Zp alırsak, P i Steenrod kuvvet operasyonu her q için (Zp, q; Zp, q + 2i(p − 1))

tipinde kohomolji operasyonudur. P i : Hq(X,Zp) −→ Hq+2i(p−1)(X,Zp) Steenrod

kuvvet operasyonları aşaǧıdaki özellikleri saǧlarlar.

1. P 0 : Hq(X) −→ Hq(X), P 0 = 1

2. deg u = q ise P q(u) = up

3. deg u < 2q ise P q(u) = 0

4. Cartan formülü: P i(u.v) =
∑

i=j+l

P j(u).P l(v)
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4. ARAŞTIRMA BULGULARI

4.1. Steenrod Cebiri

R deǧişmeli halka ve i ≥ 0 olmak üzere, M = (Mi) R-modüllerinin bir dizisi

ise M ’ye graded(dereceli) modül ve Mi nin elemanlarına da i boyutlu veya i-inci

dereceden denir. M ve N graded modüller ise,

fi : Mi −→ Ni

homomorfizm dizisine graded modül homomorfizmi denir ve

f : M −→ N

şeklinde gösterilir. M ve N graded modüller ise,

(M ⊗ N)r =
∑

i

Mi ⊗ Nr−i

olmak üzere M ⊗ N = ((M ⊗ N)r) dizisi de bir graded modüldür. Eǧer

φ : A ⊗ A −→ A

homomorfizma ve 1 birim elemanı varsa A graded R-modülüne graded cebir denir.Eǧer

A ⊗ A ⊗ A
φ⊗1
−→ A ⊗ A

↓ φ ⊗ 1 ↓ φ

A ⊗ A −→
φ

A

diyagramı komütatif ise bu graded cebire birleşmeli denir. B bir graded cebir ve

boy(a) = p, boy(b) = q olmak üzere

T : A ⊗ B −→ B ⊗ A

T (a ⊗ b) = (−1)pqb ⊗ a

şeklinde tanımlansın. Eǧer
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A ⊗ A
T

−→ A ⊗ A

φ ց ւ φ

A

diyagramı komütatif ise bu graded cebire komütatif denir. Bir

f : A −→ B

graded cebir homomorfizması

1. f(1) = 1

2. f(φA) = φB(f ⊗ f)

özelliklerini saǧlayan bir modül homomorfizmasıdır.

A = (Ai) graded vektör uzayı olsun öyleki i < 0 için Ai = 0 olsun. Bu durumda

A0 = 〈1〉 ise (A, φ) graded cebirine baǧlantılı cebir denir.

M bir baǧlantılı graded cebir, γ : M −→ M ⊗M bir homomorfizma olsun. Eǧer

γ birimli bir cebir homomorfizması ve dim(a) > 0, dim(bi) > 0, dim(ci) > 0 için

γ(a) = a ⊗ 1 + 1 ⊗ a +
∑

bi ⊗ ci

formunda ise (M, φ, γ) ya baǧlantılı Hopf cebiri denir. (M, φ, γ) bir Hopf cebiri ise,

aşaǧıdaki özellikleri saǧlayan χ : M −→ M homomorfizması vardır:

1. χ(1) = 1

2. dim(a) > 0 için γ(a) =
∑

a
′

i ⊗ a
′′

i ise
∑

a
′

i ⊗ χ(a
′′

i ) = 0

M bir graded modül ve A da bir graded cebir olsun. Eǧer A cebirine ait birim

elemanı koruyan ve aşaǧıdaki diyagramı komütatif yapan bir

ψ : A ⊗ M −→ M

dönüşümü var ise M ye bir A-modülü denir.

A ⊗ A ⊗ M
1⊗ψ
−→ A ⊗ M

↓ φ ⊗ 1 ↓ ψ

A ⊗ M
ψ

−→ M
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Eǧer B graded cebir ise A ⊗ B deki graded cebir yapısı

A ⊗ B ⊗ A ⊗ B
1⊗T⊗1
−→ A ⊗ A ⊗ B ⊗ B

φ⊗φ
−→ A ⊗ B

çarpımı yardımıyla tanımlanır. Eǧer N bir B-modül ise

A ⊗ B ⊗ M ⊗ N
1⊗T⊗1
−→ A ⊗ M ⊗ B ⊗ N

ψ⊗ψ
−→ M ⊗ N

dönüşümüyle M ⊗ N de bir A ⊗ B-modül olur. R halkası i > 0 için Ri = 0 olan bir

graded modül olarak düşünülebilir.

A mod−p Steenrod cebiri, dercesi 1 olan β elemanı ve derecesi 2i(p−1) olan P i

elemanlarıyla üretilen komütatif graded cebir olarak tanımlanır. A Steenrod cebirine

ait bir monomial; εi = 0 veya 1 ve ri ≥ 0 olmak üzere

βε0P r1βε1P r2βε2 . . . P rkβεk

şeklinde ifade edilebilir. I = (ε0, r1, ε1, r2, ε2, . . . , rk, εk) olmak üzere bu monomiali

P I şeklinde göstereceǧiz.

Tanım 4..1 T = (t1, t2, . . . , tm) elemanları negatif olmayan bir tamsayı dizisi ol-

sun. Eǧer 1 ≤ i ≤ m için ti ≥ pti+1 eşitsizliǧi varsa bu diziye admissible dizi ve

P t1P t2 . . . P tm monomialine de admissible monomial denir.

Bütün admissible monomiallerin oluşturduǧu küme A steenrod cebiri için bir baz

oluşturur ve βAdm ile gösterilir. P t1P t2 . . . P tm monomiali P T ile de gösterilir.

Tanım 4..2 Milnor, A Steenrod cebirinin A∗ dualinin, dereceleri 2(pi − 1) olan ξi

üreteçlere sahip Fp [ξ1, ξ2, . . .] polinom cebri ile dereceleri 2pi − 1 olan τi üreteçlere

sahip E [τ0, τ1, τ2, . . .] exterior cebirin tensör çarpımı olduǧunu göstermiştir. A∗ daki

bu monomial bazın A daki dual bazı Milnor bazı diye adlandırılır ve βMil ile gösterilir.

A∗ daki τ ε0
0 , ξr1

1 , τ ε1
1 , ξr2

2 , . . . elemanının duali P (r1, r2, . . .) ile gösterilir.

R = (r1, r2, . . .) negatif olmayan tamsayılardan oluşan sonlu bir dizi ise P (r1, r2, . . .)

yerine P (R) kullanırız.

Notasyonlar kıyaslandıǧında P (n) = P n olduǧu bilinmelidir.



16

Milnor bazında cebir yapısı Milnor çarpımı denilen çarpım ile verilir. P (r1, r2, . . .),

P (s1, s2, . . .) Milnor elemanları olmak üzere, Milnor çarpımı

P (r1, r2, . . .).P (s1, s2, . . .) =
∑

X

β(X)P (t1, t2, . . .)

şeklinde verilir ki buradaki toplam aşaǧıdaki şartları saǧlayan bütün X = (xij) ma-

trisleri üzerinden alınır;

1.
∑

i

xij = sj

2.
∑

j

xijp
j = ri

3. β(X) =
∏

h

(xh,0, xh−1,1, . . . , x0,h) ∈ Zp,

burada

(xh,0, xh−1,1, . . . , x0,h) ≡
(xh,0 + xh−1,1 + xh−2,2 + . . . + x0,h)!

xh,0!.xh−1,1!.xh−2,2! . . . x0,h!
mod p dir.

4.
∑

i+j=k xij = tk

t1 t2

ր ր

X =















x00 x01 x02 . . .

x10 x11 x12 . . .

x20 x21 x22 . . .
...

...
...

. . .















→

→

r1

r2

↓ ↓

s1 s2

Hesaplamalarda x0,0 = 0 kabul edilir. 1 ve 2 şartlarını saǧlayan X = (xij)

matrisine (R − S)-toleranslı matris denir. Ayrıca sadece 4. maddeyi saǧlayan X

matrisine P (t1, t2, . . .) elemanını üretir denir.

Örnek 4..1 p = 5 için P (1, 5).P (6) çarpımını bulalım. Yukarıdaki koşulları saǧlayan

sadece

X1=









0 6

1 0

5 0









, X2 =









0 5

1 0

0 1









matrisleri vardır.
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X1 matrisi için β(X1)’ i hesaplayalım.

h = 1 için
(x10 + x01)!

x10!.x01!
=

(1 + 6)!

1!.6!
= 7 ≡ 2 mod 5

h = 2 için
(x20 + x11 + x02)!

x20!.x11!.x02!
=

(5 + 0 + 0)!

5!.0!.0!
= 1 ≡ 1 mod 5

h = 3 için
(x30 + x21 + x12 + x03)!

x30!.x21!.x12!.x03!
=

(0 + 0 + 0 + 0)!

0!.0!.0!.0!
= 1 ≡ 1 mod 5

β(X1) =
∏

h

(xh,0, xh−1,1, . . . , x0,h) = 2.1.1 = 2 mod 5.

X2 matrisi için β(X2)’ yi hesaplayalım.

h = 1 için
(x10 + x01)!

x10!.x01!
=

(1 + 5)!

1!.5!
= 5 ≡ 1 mod 5

h = 2 için
(x20 + x11 + x02)!

x20!.x11!.x02!
=

(0 + 0 + 0)!

0!.0!.0!
= 1 ≡ 1 mod 5

h = 3 için
(x30 + x21 + x12 + x03)!

x30!.x21!.x12!.x03!
=

(0 + 1 + 0 + 0)!

0!.1!.0!.0!
= 1 ≡ 1 mod 5

β(X2) =
∏

h

(xh,0, xh−1,1, . . . , x0,h) = 1.1.1 = 1 mod 5

P (1, 5).P (6) = 2.P (7, 5) + 1.P (6, 0, 1) olarak bulunur.

Tanım 4..3 P (R) = P (r1, r2, . . . , rm) formundaki Milnor baz elemanının derecesi

|R| =

m
∑

k=1

(pk − 1).rk

olmak üzere 2. |R| şeklinde tanımlanır ve

deg(P (R)) = deg(P (r1, r2, . . . , rm)) = |P (R)|

ifadelerinden birisiyle gösterilir.
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Tanım 4..4 P (R) = P (r1, r2, . . . , rm) formundaki Milnor baz elemanının excess’ i

ex(R) =

m
∑

k=1

rk

olmak üzere 2.ex(R) olarak tanımlanır ve

ex(P (R)) = ex(P (r1, r2, . . . , rm))

ile gösterilir.

Tanım 4..5 P (R) = P (r1, r2, . . . , rm) formundaki Milnor baz elemanının uzunluǧu

R dizisinin eleman sayısı yani m olarak tanımlanır ve l(P (R)) ile gösterilir.

Örnek 4..2 p = 3, T = (2, 5, 1) için,

|T | = 2.(31 − 1) + 5.(32 − 1) + 1.(33 − 1) = 70

deg(P (T )) = 2. |T | = 2.70 = 140

ex(T ) = 2 + 5 + 1 = 8

l(P (T )) = 3

f bir pozitif tamsayı olsun. µ(f) olarak da f ’ nin pi − (p − 1) formundaki

yazılımında bulunan terim sayısı olsun.Bu durumda

1 ≤ q1 ≤ q2 ≤ . . . ≤ qp2−p < qp2−p+1 ≤ qp2−p+2 ≤ . . .

≤ qp2 < qp2+1 ≤ qp2+2 ≤ . . .

≤ qp2+p < . . .

< qp2+(µ(f)−3).p+1 ≤ qp2+(µ(f)−3).p+2 ≤ . . .

≤ qp2+(µ(f)−2).p

olmak üzere

f =

p2+(µ(f)−2).p
∑

i=1

(pqi − (p − 1))

formunda tek türlü yazılımı vardır. mi i’ ye eşit olan qj lerin sayısı olmak üzere
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M0(f) = (m1,m2, . . . , mqµ(f)
)

dizisini tanımlayalım. Bu takdirde

ex(P (M0(f))) = m1 + m2 + . . . + mµ(f) = µ(f)

dir.

Önerme 4..1 s ≥ 0 ve bir tamsayı olsun. Bu durumda

Ms(f) = ([ps+1 − (p − 1)].m1, [p
s+1 − (p − 1)].m2, . . . , [p

s+1 − (p − 1)].mqµ(f)
)

dizisinin dercesi

deg(P (Ms(f))) = 2.(ps+1 − (p − 1)).(f + (p − 2).µ(f))

dir.

İspat:

deg(P (Ms(f))) = 2.[(ps+1 − (p − 1)).m1.(p
1 − 1) + (ps+1 − (p − 1)).m2.(p

2 − 1) +

. . . + (ps+1 − (p − 1)).mqµ(f)
.(pqµ(f) − 1)]

= 2.(ps+1 − (p − 1))[m1.(p
1 − 1) + m2.(p

2 − 1) +

. . . + mqµ(f)
.(pqµ(f) − 1)]

= 2.(ps+1 − (p − 1))[m1.(p
1 − (p − 1)) + m2.(p

2 − (p − 1)) +

. . . + mqµ(f)
.(pqµ(f) − (p − 1)) + (p − 2).m1 + (p − 2).m2 +

. . . + (p − 2).mqµ(f)
]

= 2.(ps+1 − (p − 1)).(f + (p − 2).µ(f)) ¤

Önerme 4..2 s ≥ 0 ve bir tamsayı olsun.

Ms(f) = ([ps+1 − (p − 1)].m1, [p
s+1 − (p − 1)].m2, . . . , [p

s+1 − (p − 1)].mqµ(f)
)

dizisinin excess’ i

ex(P (Ms(f))) = (ps+1 − (p − 1)).µ(f)

dir.
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İspat:

ex(P (Ms(f))) = (ps+1 − (p − 1)).m1 + (ps+1 − (p − 1)).m2 + . . .

+(ps+1 − (p − 1)).mµ(f)

= (ps+1 − (p − 1)).[m1 + m2 + . . . + mµ(f)]

= (ps+1 − (p − 1)).µ(f) .¤

4.2. Adem Baǧıntıları(Relations)

Steenrod kare operasyonlarının veya kuvvet operasyonlarının bileşkesi alındıǧı

zaman, bileşke Adem Relations olarak bilinen aşaǧıdaki baǧıntıları saǧlar:

a < 2b ise SqaSqb =

[a
2 ]

∑

j=0

(

b − j − 1

a − 2j

)

Sqa+b−jSqj,

a < pb ise P aP b =

[a
p ]

∑

j=0

(−1)a+j

(

(p − 1)(b − j) − 1

a − pj

)

P a+b−jP j,

a ≤ pb ise

P aβP b =

[a
p ]

∑

j=0

(−1)a+j

(

(p − 1)(b − j)

a − pj

)

βP a+b−jP j +

[a−1
p ]

∑

j=0

(−1)a+j−1

(

(p − 1)(b − j) − 1

a − pj − 1

)

P a+b−jβP j

dir. Burada

(

m

n

)

= 0 ⇔ m < n veya m veya n negatifse.

Örnek 4..3 p = 3 için

P 9.P 5 =

[ 9
3 ]

∑

j=0

(−1)9+j

(

(3 − 1)(5 − j) − 1

9 − 3j

)

P 9+5−jP j

=

3
∑

j=0

(−1)9+j

(

9 − 2j

9 − 3j

)

P 9+5−jP j

= −

(

9

9

)

.P 14.P 0 +

(

7

6

)

.P 13.P 1 −

(

5

3

)

.P 12.P 2 +

(

3

0

)

.P 11.P 3

= −P 14 + P 13.P 1 − P 12.P 2 + P 11.P 3
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5. TARTIŞMA VE SONUÇLAR

5.1. Adem Baǧıntılarında Katsayılar

Tanım 5..1 n pozitif bir tamsayı ve p tek asal sayı olsun. 0 ≤ αi(n) < p olmak üzere

n sayısının

n =

∞
∑

i=0

αi(n).pi

şeklinde tek türlü belirli bir açılımı vardır ve buna n-tamsayısının p-adik açılımı denir.

Lemma 5..1 a, b ∈ N, b < a, p tek asal sayı ve 0 ≤ αi, βi < p olmak üzere a =
∞

∑

i=0

αi.p
i, b =

∞
∑

i=0

βi.p
i de bu sayıların p-adik açılımları olsun. Bu durumda

(

a

b

)

≡
∏

i

(

αi

βi

)

mod p

denkliǧi geçerlidir.

İspat: Lemmanın ispatında kullanacaǧımız, her p asal sayısı için geçerli olan

(1 + x)pi

≡ (1 + xpi

)modp

denkliǧini gösterelim.

(1 + x)P i

= 1 + pi.x +
pi.(pi − 1)

2
x2 +

pi.(pi − 1).(pi − 2)

2
x3 + . . .

+
pi.(pi − 1)

2
xpi−2 + pi.xpi−1 + xpi

≡ (1 + xpi

)modp

dir.modp ye göre

(1 + x)a = (1 + x)
 

i αip
i

=
∏

i

(1 + x)αip
i

≡
∏

i

(1 + xpi

)αimodp

dir. Bu denklikteki (1 + x)a nın açılımında xb nin katsayısı
(

a

b

)

ve (1 + xpi

)αi nin

açılımındaki xb nin katsayısı da
∏

i

(

αi

βi

)

olduǧundan
(

a

b

)

≡
∏

i

(

αi

βi

)

mod p elde edilir.¤
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Lemma 5..1 de ∀i için αi ≥ βi ise a sayısı b sayısını domine eder denir ve a º b

ile gösterilir. Bu notasyon dikkate alındıǧında;

(

n

k

)

6= 0 modp ⇔ n º k (5.1)

olduǧu bilinmektedir. p tek asal sayı olmak üzere keyfi bir F > 0 tamsayısının

F = fn.p
n + fn−1.p

n−1 + . . . + f1.p
1 + f0

p-adik açılımının fi.p
i+fi−1.p

i−1+. . .+f1.p
1+f0 kısmını F [i] notasyonu ile gösterelim.

Bu notasyon ve Lemma 5..1 gözönüne alındıǧında ve k > 0 tamsayısının p-adic açılımı

k = κt.p
t + κt−1.p

t−1 + . . . + κ1.p
1 + κ0 olmak üzere

Lemma 5..2 (p − 1).
k

p
+ F º k gerek ve yeter koşul

(p − 1)κi+1 + fi +

[

F [i−1] + (p − 1).k[i]

p

pi

]

≥ κi mod p

olmasıdır.¤

Bu tezde, yukarıda verilen Adem çarpımının saǧ tarafındaki ikiterimli (binomial)

kombinasyon katsayısının mod p’ de sıfırdan farklı olduǧu durumları tespit eden farklı

bir metod geliştireceǧiz.

Sabit bir a, b ve a < p.b için J(a, b) kümesi

(

(p − 1)(b − j) − 1

a − pj

)

katsayısını sıfırdan farklı yapan j’ lerin kümesi olsun. J(a, b) kümesinin oluşturulması

a ve b sayıları yerine sadece

F = (p − 1).b + (p − 1).

[

a

p

]

− 1

sayısına baǧlı olarak bulunabilir. Verilen bir F pozitif tamsayısı için

K(F ) =











k ∈ pN :

(

(p − 1).
k

p
+ F

k

)

6= 0 mod p











K i(F ) =

{{

k ∈ K(F ) : (p − 1).
k

p
+ F ≥ i mod p, i 6= 0

}

, 1 ≤ i ≤ p − 1

}
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kümelerini tanımlayalım. Bununla beraber Admissible olmayan bir P a.P b = P (a).P (b)

Steenrod elemanı verildiǧinde,

a
′

= a − i , a ≡ i mod p

Ka(F ) =







{k ∈ K(F ) : k ≤ a
′

} a ≡ 0 mod p

{k ∈ Ki(F ) : k ≤ a
′

} a ≡ i mod p

tanımlamalarını yapalım.

Teorem 5..1 Yukarıdaki notasyonlar ile,

j ∈ J(a, b) olması için gerek ve yeter koşul k = a
′

− p.j ∈ Ka(F )

olmasıdır.

İspat: Bu ispatı iki durumda inceleyelim.

Durum 1: a ≡ 0 mod p ise a = a
′

olur. J(a, b) ve Ka(F ) kümelerinin tanımından,

j ∈ J(a, b) ise

0 6=

(

(p − 1)(b − j) − 1

a − pj

)

=

(

(p − 1)(b − j) − 1

a′ − pj

)

=

(

(p − 1).k
p

+ F

k

)

olur.

Tersine k = a
′

− p.j ∈ Ka(F ) ise

0 6=

(

(p − 1).k
p

+ F

k

)

=

(

(p − 1)(b − j) − 1

a′ − pj

)

=

(

(p − 1)(b − j) − 1

a − pj

)

olur.

Durum 2: a ≡ i mod p olsun. Bu durumda a
′

= a− i ve a = a
′

+ i olur. j ∈ J(a, b)

ise

0 6=

(

(p − 1)(b − j) − 1

a − pj

)

=

(

(p − 1).k
p

+ F

a′

+ i − p.j

)

olur ve saǧdaki kombinasyonun mod p’ de sıfırdan farklı olması için gerek ve

yeter koşul

(

(p − 1).k
p

+ F

a′ − p.j

)

6= 0 mod p ve

(

(p − 1).k
p

+ F

i

)

6= 0 mod p
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olmasıdır. Gerçekten a
′

− p.j p ’nin bir katı olup 1 ≤ i < p sayısı

(p − 1).
k

p
+ F º a

′

− p.j olmasını deǧiştirmez.Yani j ≥ 1 için pj ’inci adımdaki

dominantlık i ’den baǧımsız ve p0 ’ıncı adımdaki dominantlık sadece i ’ye

baǧlıdır.Soldaki kombinasyonun sıfırdan farklı olduǧu, ilk durumdan açıktır.

Ki(F ) ’nin tanımından (p − 1).
k

p
+ F ≥ i olduǧu için saǧdaki kombinasyon da

sıfırdan farklıdır.

Bu durumda 1 ≤ αk < p olmak üzere

P (a).P (b) =
∑

k∈Ka(F )

αk.P (a + b −
a

′

− k

p
).P (

a
′

− k

p
) (5.2)

olur.

Burada özel olarak a
′

= a ve a > p.F ise Ka(F ) = {k ∈ K(F ) : k ≤ a} olur

ve K(F ) ’nin tanımından

(

(p − 1).
k

p
+ F

k

)

6= 0 mod p yapan k ’lar p.F ’den

dolayısıyla a ’dan küçüktür. Buradan Ka(F ) = K(F ) dir.

Örnek 5..1 p = 3 için P (5).P (7) çarpımındaki elemanları belirleyelim ve 5 ≡ 2 mod

p olduǧundan,

F = (p − 1).b + (p − 1).

[

a

p

]

− 1

= (3 − 1).7 + (3 − 1).

[

5

3

]

− 1

= 11

K(F ) =











k ∈ pN :

(

(p − 1).
k

p
+ F

k

)

6= 0 mod p











K(11) =







k ∈ 3N :

(

2.
k

3
+ 11

k

)

6= 0 mod 3







= {0, 3, 6, 9, 18, 21, 27, 30, 33}

K2(F ) =

{

k ∈ K(F ) : (p − 1).
k

p
+ F ≥ 2 mod p

}

K2(11) =

{

k ∈ K(11) : 2.
k

3
+ 11 ≥ 2 mod p

}

= {0, 9, 18, 27}

Ka(F ) = {k ∈ Ki(F ) : k ≤ a
′

}

K5(11) = {k ∈ K1(11) : k ≤ 3}

= {0}
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Bu durumda

P (5 + 7 −
3 − 0

3
).P (

3 − 0

3
) = α.P (11).P (1)

terimi P (5).P (7) ’nin tek toplam terimidir.

Bundan sonraki ifadeleri daha kısa ifade edebilmek amacıyla 1 ≤ l ≤ nF ve

pl−1 + 1 ≤ gl ≤ pl için

pl
∑

i=gl

pi ∈ K(F ) elemanını Spl
gl

ile gösterelim.

Önerme 5..1 F = fn.p
n + fn−1.p

n−1 + . . . + f1.p
1 + f0 olsun.

1 ≤ p1 < p2 < . . . < pnF
= n + 1 indis kümesini fpl

= 0 iken fpl−1 6= 0 ve fpl
= p − 1

iken fpl−1 = 0 olacak şekilde seçelim. Bu durumda 1 ≤ l ≤ nF ve pl−1 + 1 ≤ gl ≤ pl

için

k =
∑

i

κi.p
i =

pl
∑

i=gl

pi ∈ K(F )

dir.

İspat: k = ppl + ppl−1 + . . . + pgl alalım ve Lemma 5..2 ’yi kullanarak k ∈ K(F )

olduǧunu yani (p − 1)
k

p
+ F ºi k olduǧunu gösterelim.

F i
k :=

[

F [i−1] + (p − 1).k[i]

p

pi

]

olsun.

Durum 1: fpl
6= 0 ve fpl−1 = fpl−2 = . . . = fpl−1

= 0 için,

Durum 1.1: i = pl ise κi+1 = 0, κi = 1 olup

F i
k =

[

fpl−1.ppl−1+fpl−2.ppl−2+...+f1.p1+f0+(p−1).ppl−1+(p−1).ppl−2+...+(p−1).pgl−1

ppl

]

=
[

(fpl−1+p−1).ppl−1+(fpl−2+p−1).ppl−2+...+(fgl−1+p−1)pgl−1+...+f1.p1+f0

ppl

]

dır. Bu durumda F i
k = 0 olur ve dolayısıyle 0 + fpl

+ 0 ≥ 1 elde edilir.

Durum 1.2: gl ≤ i < pl için κi+1 = 1 , κi = 1 ve F i
k = 0 olur ve dolayısıyle

1 + 0 + 0 ≥ 1 saǧlanır.

Durum 2: fpl
6= p − 1 iken fpl−1 = fpl−2 = . . . = fpl−1+1 = p − 1 olsun.
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Durum 2.1: i = pl ise κi+1 = 0, κi = 1,fpl
6= p − 1

F i
k =

[

fpl−1.ppl−1+fpl−2.ppl−2+...+f1.p1+f0+(p−1).ppl−1+(p−1).ppl−2+...+(p−1).pgl−1

ppl

]

=
[

(fpl−1+p−1).ppl−1+(fpl−2+p−1).ppl−2+...+(fgl−1+p−1)pgl−1+...+f1.p1+f0

ppl

]

olup F i
k = 1 ’dir ve 0 + fpl

+ 1 ≥ 1 bulunur.

Durum 2.2: gl ≤ i < pl için κi+1 = 1 , κi = 1 ,fi = p − 1 ve F i
k = 1 olur ve

dolayısıyle 1 + (p − 1) + 1 ≥ 1 saǧlanır.

Örnek 5..2 p = 3 ve F = 268 = 1.35 + 0.34 + 0.33 + 2.32 + 2.31 + 1.30 olsun. Bu

durumda p1 = 3 , p2 = 5 , p3 = 6 olup

K(F ) = {33, 33 + 32, 33 + 32 + 31, 33 + 32 + 2.31, 2.33, 2.33 + 32 + 31, 2.33 + 32 + 2.31,

2.33 + 2.32, 2.33 + 2.32 + 31, 35, 35 + 33, 35 + 33 + 32, 35 + 33 + 32 + 31,

35 + 33 + 32 + 2.31, 35 + 2.33, 35 + 2.33 + 32, 35 + 2.33 + 32 + 31,

35 + 2.33 + 32 + 2.31, 35 + 2.33 + 2.32, 35 + 2.33 + 2.32 + 31, 35 + 34,

2.35, 2.35 + 33, 2.35 + 33 + 32, 2.35 + 33 + 32 + 31, 2.35 + 33 + 32 + 2.31,

2.35 + 2.33, 2.35 + 2.33 + 32, 2.35 + 2.33 + 32 + 31, 2.35 + 2.33 + 32 + 2.31,

2.35 + 2.33 + 2.32, 2.35 + 2.33 + 2.32 + 31, 2.35 + 34, 2.35 + 2.34,

2.35 + 2.34 + 33, 2.35 + 2.34 + 33 + 32, 2.35 + 2.34 + 33 + 32 + 31,

2.35 + 2.34 + 33 + 32 + 2.31, 36, 36 + 33, 36 + 33 + 32, 36 + 33 + 32 + 31,

36 + 33 + 32 + 2.31, 36 + 2.33, 36 + 2.33 + 32, 36 + 2.33 + 32 + 31,

36 + 2.33 + 32 + 2.31, 36 + 2.33 + 2.32, 36 + 2.33 + 2.32 + 31}

dir ve birkaç Spl
gl

elemanını yazalım.

S3
1 = 33 + 32 + 31 ∈ K(F ), S5

4 = 35 + 34 ∈ K(F )’dir.

Önerme 5..2 F = fn.p
n +fn−1.p

n−1 + . . .+f1.p
1 +f0 , 1 ≤ j ≤ t ≤ n , ft+1 6= p−1,

ft = ft−1 = . . . = fj = p − 1 , fj−1 6= 0, p − 1 olmak üzere fj−1 ≤ γ ≤ p − 2 ve

γ + ft+1 < p için

γpt+1 + γpt + γpt−1 + . . . + γpj+1 + (γ + 1)pj ∈ K(F )

dir.
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İspat: Lemma 5..2 ’nin saǧlandıǧını gösterelim.

Durum 1: i = t + 1 olsun. Bu durumda κi+1 = 0, κi = γ, fi 6= p − 1 dır.

F i
k =

[

F [i−1] + (p − 1).k[i]

p

pi

]

diyelim.

F [i−1] + (p − 1).
k[i]

p
= (p − 1).pi−1 + (p − 1).pi−2 + . . . + (p − 1).pj +

fj−1.p
j−1 + . . . + f1.p

1 + f0 + (p − 1).γ.pi−1 + . . . +

(p − 1).γ.pj + (p − 1).(γ + 1).pj−1

= (p − 1).(γ + 1).pi−1 + (p − 1).(γ + 1).pi−2 + . . . +

(p − 1).(γ + 1).pj + [(p − 1).(γ + 1) + fj−1] .p
j−1 +

fj−2.p
j−2 + . . . + f1.p

1 + f0 . . . (5.3)

dır. Verilen şartlar altında [(p − 1).(γ + 1) + fj−1] ≡ γ mod p olup pj nin

katsayısı (p − 1).(γ + 1) + γ olur. Bu da (p − 1).(γ + 1) + γ ≡ γ eşit olup

pj+1 nin katsayısı (p − 1).(γ + 1) + γ ≡ γ mod p olur.Bu şekilde devam edilirse

F i
k = γ olur. Dolayısıyla 0 + fi + γ º γ elde edilir.

Durum 2: j < i < t + 1 olsun. Bu durumda κi+1 = γ, κi = γ, fi = p − 1 dır. (5.3)

eşitliǧi, verilen şartlar altında [(p − 1).(γ + 1) + fj−1] ≡ γ mod p olup pj′ nin

katsayısı (p−1).(γ+1)+γ olur. Bu da (p−1).(γ+1)+γ ≡ γ eşit olup pj+1’ nin

katsayısı (p − 1).(γ + 1) + γ ≡ γ mod p olur.Bu şekilde devam edilirse F i
k = γ

olur. Bu durumda (p − 1).γ + (p − 1) + γ ≡ p − 1 º γ elde edilir.

Durum 3: i = j olsun. Bu durumda κi+1 = γ, κi = γ + 1, fi = p − 1 olup

F [i−1] + (p − 1).
k[i]

p
= fi−1.p

i−1 + . . . + f1.p
1 + f0 + (p − 1).(γ + 1).pi−1

dir. pi−1’ in katsayısı (p − 1).(γ + 1) + fi−1 ≡ γ mod p olup F i
k = γ’ dır ve

dolayısıyle (p − 1).γ + (p − 1) + γ ≡ p − 1 º γ + 1 bulunur.

Önerme 5..3 Her k ∈ K(F ) elemanı
∑nF

l=1 ǫl.S
pl
gl

, ǫl = 0, 1, 2, . . . , (p − 1) ve önerme

5..2’deki elemanların lineer kombinasyonudur.
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İspat: F = fn.p
n + fn−1.p

n−1 + . . . + f1.p
1 + f0 olmak üzere her i için fi 6= p − 1 ve

ardarda gelen herhangi iki fi sıfırdan farklı ise p1, p2, . . . , pn+1 ∈ K(F ) olduǧundan

lineer kombinasyon olarak yazılır. Bu durumda bakmamız gereken sadece en az bir

fi = p − 1 ve ardışık iki fi’nin sıfır olma durumlarıdır.

Durum 1: ft+1 6= p − 1, ft = ft−1 = . . . = fj = p − 1, fj−1 6= 0, p − 1 olsun.

Eǧer k = κt.p
t + κt−1.p

t−1 + . . . + κj.p
j için κi ≤ κi+1 ,j < i ≤ t ve κj ≤

κj+1 +1 ise önerme 5..1 ve önerme 5..2 den bu k elemanı önerme 5..1 ve önerme

5..2 deki elemanların lineer toplamı olarak yazılır. Önermeyi ispatlamak için

K(F )’de
∑nF

l=1 ǫl.S
pl
gl

, ǫl = 0, 1, 2, . . . , (p − 1) ve önerme 5..2 ’deki elemanların

lineer kombinasyonu olarak yazılamayan elemanların bulunmadıǧını göstermek

yeterlidir.

Durum 1.1 κi > κi+1, j < i ≤ t K(F )’ de olmadıǧını gösterelim. Varsayalım

ki ∃i için κi > κi+1 ve j + 1’den i’ ye kadar olan tüm κi’ler için κi ≤ κi+1

ve κj ≤ κj+1 + 1 olsun. Bu durumda (p − 1)k
p

+ F ºi k olamayacaǧını

gösterelim.

F [i−1] + (p − 1).
k[i]

p
= (p − 1).pi−1 + (p − 1).pi−2 + . . . + (p − 1).pj +

fj−1.p
j−1 + . . . + f1.p

1 + f0 + (p − 1).κi.p
i−1 +

. . . + (p − 1).κj.p
j−1

= (p − 1).(κi + 1).pi−1 + (p − 1).(κi−1 + 1).pi−2 +

. . . + [(p − 1).κj + fj−1] .p
j−1 + . . . + f1.p

1 + f0

(5.4)

dir. pj−1’ nin katsayısı [(p − 1).κj + fj−1] ≡ κj mod p veya

[(p − 1).κj + fj−1] ≡ κj+1 mod p dir. pj’ nin katsayısı (p−1).(κj+1+1)+κj

veya (p−1).(κj+1 +1)+κj +1 her ikisi de κj+1’ e denktir. pj+1’ in katsayısı

(p − 1).(κj+2 + 1) + κj+1 ’ e dentir. Bu şekilde devam edilirse F i
k = κi’ dir

ve dolayısıyle (p − 1).κi+1 + (p − 1) + κi ≡ κi − κi+1 − 1 � κi elde edilir.

Durum 1.2: i = j için κj > κj+1 + 1 olmadıǧını gösterelim. Varsayalım ki

κj > κj+1 + 1 olsun. (5.4) eşitliǧinden pj−1’ nin katsayısı fj−1 ≥ κj için

(p − 1).κj + fj−1 ≡ κj mod p olup F i
k = κj ve fj−1 < κj için (p − 1).κj +

fj−1 ≡ κj − 1 mod p olup F i
k = κj − 1 ’dir ve dolayısıyle fj−1 ≥ κj için

(p − 1).κj+1 + p − 1 + κj ≡ κj+1 + 1 � κj ve fj−1 < κj için (p − 1).κj+1 +

p − 1 + κj − 1 ≡ κj+1 + 1 � κj olur.
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Durum 2: ft = ft−1 = . . . = fj = 0, ft+1, fj−1 6= 0 olsun.

k = κt.p
t+κt−1.p

t−1+. . .+κj.p
j ∈ K(F ) için j ≤ i < t iken κi > κi+1 olmadıǧını

gösterelim. Varsayalım ki ∃i için κi > κi+1 ve j’den i’ ye kadar olan tüm κi’ler

için κi ≤ κi+1olsun. Bu durumda (p − 1)k
p

+ F ºi k olamayacaǧını gösterelim.

F [i−1] + (p − 1).
k[i]

p
= fj−1.p

j−1 + . . . + f1.p
1 + f0 + (p − 1).κi.p

i−1 +

. . . + (p − 1).κj.p
j−1

= (p − 1).κi.p
i−1 + . . . + (p − 1).κj+1.p

j +

[(p − 1).κj + fj−1] .p
j−1 + f2.p

j−2 + . . . + f1.p
1 + f0

dir. Bu durumda pj−1 ’in katsayısı fj−1 ≥ κj için (p − 1).κj + fj−1 ≡ κj ve

fj−1 < κj için (p − 1).κj + fj−1 ≡ κj − 1 ’dir. pj ’nin katsayısı fj−1 ≥ κj için

(p − 1).κj+1 + κj ≡ κj+1 veya (p − 1).κj+1 + κj ≡ κj+1 − 1 ve fj−1 < κj için

(p − 1).κj+1 + κj − 1 ≡ κj+1 − 1 dir. Bu şekilde devam edilirse F i
k = κj veya

F i
k = κj − 1 olarak bulunur ve dolayısıyle F i

k = κj için (p − 1).κi+1 + fi + κi =

(p − 1).κi+1 + κi ≡ κi+1 � κi ve F i
k = κj − 1 için (p − 1).κi+1 + fi + κi − 1 =

(p − 1).κi+1 + κi − 1 ≡ κi+1 � κi olur.¤

Önerme 5..4 α ≥ 0, α 6= 1 ve c ∈ Z+ ∪ {0} olsun. Bu durumda 1 ≤ n < α − 1 ve

∀i ∈ {n, n + 1, . . . , α − 2} için γi ≥ γi−1 ve γα−1 + 1 ≥ γα−2 , γα−1 6= p − 1 olmak

üzere P (p.c + (p − 1).pα + pα−1 +
∑α−1

i=α−n γip
i−1).P (c + (p − 2).pα−1 +

∑α−1
i=α−n+1(p − 1 − γi).p

i−1 + (p − γα−n).pα−n−1) elemanı

P (p.c + (p − 1).pα).P (c + pα)

çarpımının bir toplam terimidir.

İspat: α = 0 için a = p.c + p − 1, b = c + 1 ve a = p.b − 1 ’dir. Adem Baǧıntısından

j’ nin alacaǧı deǧerler 0 ≤ j ≤
[

a
p

]

= b − 1 aralıǧında olup bu aralıktaki j ’ler için

(p − 1).(b − j) − 1 < p.b − 1 − p.j olduǧundan

(

(p − 1).(b − j) − 1

p.b − 1 − p.j

)

kombinasyonu sıfırdır. Eşitliǧin saǧ tarafı da P (p.c+p−1).P (c) olup p.c+p−1 ≥ p.c

olduǧundan Admissible iki elemanın çarpımı sıfırdır.
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α ≥ 2 için,

F = (p − 1).
[

(c + pα) − (c + (p − 1).pα−1)
]

− 1

= (p − 1).[pα−1.(p − p + 1)] − 1

= (p − 1).pα−1 − 1

olduǧundan

F = (p − 2).pα−2 + (p − 1).pα−3 + . . . + (p − 1).p0

olup K(F ) kümesinin elemanları 1 ≤ n < α için

k = γα−1.p
α−1 + γα−2.p

α−2 + . . . + γα−n.p
α−n ,

1 ≤ i < α − 1 için γi ≥ γi−1 ve γα−1 + 1 ≥ γα−2 şeklindedir. Gerçekten ∀i için

(p − 1).
k

p
+ F ≥i k olduǧunu gösterelim.

Durum 1: i = α − 1 için κi+1 = 0 , κi = γα−1 , fi = 0 olup

F [i−1] + (p − 1).
k[i]

p
= (p − 2).pα−2 + (p − 1).pα−3 + . . . + (p − 1).p0 +

(p − 1).γα−1.p
α−2 + (p − 1).γα−2.p

α−3 + . . . +

(p − 1).γα−n.pα−n−1

= pα−2.(p − 2 + (p − 1).γα−1) + pα−3.(p − 1).(1 + γα−2) +

. . . + pα−n−1.(p − 1).(1 + γα−n) + (p − 1).pα−n−2 +

. . . + (p − 1).p0

olup F i
k = γα−1 ’dir ve dolayısıyle 0 + 0 + γα−1 ≥ γα−1 saǧlanır.

Durum 2: i = α − 2 için κi+1 = γα−1 , κi = γα−2 , fi = p − 2 olup

F [i−1] + (p − 1).
k[i]

p
= (p − 1).pα−3 + (p − 1).pα−4 + . . . + (p − 1).p0 +

(p − 1).γα−2.p
α−3 + (p − 1).γα−3.p

α−4 + . . . +

(p − 1).γα−n.pα−n−1

= pα−3.(p − 1).(1 + γα−2) + pα−4.(p − 1).(1 + γα−3) +

. . . + pα−n−1.(p − 1).(1 + γα−n) + (p − 1).pα−n−2 +

. . . + (p − 1).p0
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ve F i
k = γα−2 ’dir. Bu durumda (p − 1).γα−1 + p − 2 + γα−2 ≥ γα−2 ’nin

saǧlandıǧını gösterelim.

γα−1 = γα−2 − 1 ise (p − 1).γα−2 − (p − 1) + p − 2 + γα−2 ≡ p − 1 ≥ γα−2 elde

edilir.

γα−1 > γα−2 − 1 ise γα−1 − γα−2 + 1 = k ∈ {1, 2, . . . , p − 2} ’dir.

k = 1 için γα−1 = γα−2 olup (p − 1).γα−2 + p − 2 + γα−2 ≡ p − 2 ≥ γα−2 elde

edilir.

k = 2 için γα−1 = γα−2 +1 olup (p− 1).(γα−2 +1)+ p− 2+ γα−2 ≡ p− 3 ≥ γα−2

elde edilir.

...

k = p− 2 için γα−1 = γα−2 + p− 3 olup (p− 1).(γα−2 + p− 3) + p− 2 + γα−2 ≡

1 ≥ γα−2 elde edilir.

Durum 3: α − 2 < i ≤ α − n için κi+1 = γi+1 , κi = γi , fi = p − 1 olup

F [i−1] + (p − 1).
k[i]

p
= (p − 1).pi−1 + (p − 1).pi−2 + . . . + (p − 1).p0 +

(p − 1).γi.p
i−1 + (p − 1).γi−1.p

i−2 + . . . +

(p − 1).γα−n.p
α−n−1

= pi−1.(p − 1).(1 + γi) + pi−2.(p − 1).(1 + γi−1) + . . . +

pα−n−1.(p − 1).(1 + γα−n) + (p − 1).pα−n−2 + . . . +

(p − 1).p0

ve F i
k = γi ’dir. Bu durumda (p−1).γi+1 +p−1+γi ≥ γi olduǧunu gösterelim.

γi+1 = γi ise (p − 1).γi + p − 1 + γi ≡ p − 1 ≥ γi olur.

γi+1 > γi ise γi+1 − γi = k ∈ {1, 2, . . . , p − 2} ’dir.

k = 1 için γi+1 = γi + 1 olup (p − 1).(γi + 1) + p − 1 + γi ≡ p − 2 ≥ γi elde

edilir.

k = 2 için γi+1 = γi + 2 olup (p − 1).(γi + 2) + p − 1 + γi ≡ p − 3 ≥ γi elde

edilir.

...

k = p − 2 için γi+1 = γi + p − 2 olup (p − 1).(γi + p − 2) + p − 1 + γi ≡ 1 ≥ γi

elde edilir.
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a > p.F olduǧundan Ka(F ) = K(F ) ’dir ve teorem 5..1 ’den bu k ∈ K(F ) ’lere

karşılık gelen j ∈ J(a, b) ’ler,

j =
a

′

− k

p

=
c.p + (p − 1).pα − [γα−1.p

α−1 + γα−2.p
α−2 + . . . + γα−n.pα−n]

p

= c + (p − 1).pα−1 −
[

γα−1.p
α−2 + γα−2.p

α−3 + . . . + γα−n.pα−n−1
]

olup Adem Baǧıntısından

P (p.c + (p − 1).pα + c + pα − j).P (j) = P (p.c + (p − 1).pα + c + pα−

[c + (p − 1).pα−1 − [γα−1.p
α−2 + γα−2.p

α−3 + . . . + γα−n.pα−n−1]])×

P (c + (p − 1).pα−1 − [γα−1.p
α−2 + γα−2.p

α−3 + . . . + γα−n.p
α−n−1])

= P (p.c + (p − 1).pα + pα−1 + γα−1.p
α−2 + γα−2.p

α−3 + . . . + γα−n.pα−n−1)×

×P (c + (p − 2).pα−1 + (p − 1 − γα−1).p
α−2 + (p − 1 − γα−2).p

α−3

+ . . . + (p − 1 − γα−n+1).p
α−n−2 + (p − γα−n).pα−n−1)

dır, bu da önermenin tam olarak saǧ taraftaki kısmına eşittir.

Önerme 5..5 α ≥ 0 ve c ∈ Z+ ∪ {0} olsun. Bu durumda için 1 < i ≤ α − 1 için

γi ≥ γi−1 , γ2 = p − 2 iken γ1 ≤ 1 + γ2 ve γ2 = p − 1 iken γ1 ≤ γ2 − 1 olmak üzere

P (p.c + pα +

α−2
∑

i=n−1

(1 + γi+1).p
i +

n−2
∑

i=0

pi).P (c +

α−2
∑

i=n

(p− γi+1).p
i + (p− γn).pn−1) ifadesi

P (p.c + pα).P (c +

α−1
∑

i=0

pi)

nin bir toplam terimidir.

İspat: α = 0 için P (p.c + 1).P (c) ifadesi admissible olduǧundan sıfır olup her iki

tarafta sıfır olur.

α = 1 için P (p.c + p).P (c + 1) ifadesi admissible olduǧundan çarpımları sıfır,

P (p.c + p).P (c) ifadesi de admissible olduǧundan çarpımları sıfırdır.

α ≥ 2 için a = p.c + pα, b = c +

α−1
∑

i=0

pi ve F = pα−1 − 2 = (p − 1).pα−2 + (p −

1).pα−3 + . . . + (p−1).p1 +(p−2).p0 olup bunlara karşılık gelen k ∈ K(F ) elemanları

1 < i ≤ α−1 için γi ≥ γi−1 ve γ2 = p−2 iken γ1 ≤ 1+γ2, γ2 = p−1 iken γ1 ≤ γ2−1

olmak üzere

α−1
∑

i=n

γip
i formundadır. Gerçekten;
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Durum 1: n > 1, i = α − 1 için, κi = γα−1, κi+1 = 0, fi = 0 olup

F [i−1] + (p − 1).
k[i]

p
= (p − 1).pα−2 + (p − 1).pα−3 + . . . + (p − 2).p0 +

(p − 1).γα−1.p
α−2 + (p − 1).γα−2.p

α−3 + . . . +

(p − 1).γn.p
n−1

= pα−2.(p − 1).(1 + γα−1) + pα−3.(p − 1).(1 + γα−2) +

. . . + pn−1.(p − 1).(1 + γn) + (p − 1).pn−2 + . . . +

(p − 2).p0

dir ve F i
k = γα−1’ dir. Buradan (∗) ifadesi 0 + 0 + γα−1 ≥ γα−1 saǧlanır.

Durum 2: n ≤ i < α − 1 için κi = γi, κi+1 = γi+1, fi = p − 1 olup

F [i−1] + (p − 1).
k[i]

p
= (p − 1).pi−1 + (p − 1).pi−2 + . . . + (p − 2).p0 +

(p − 1).γi.p
i−1 + (p − 1).γi−1.p

i−2 + . . . +

(p − 1).γn.p
n−1

= pi−1.(p − 1).(1 + γi) + pi−2.(p − 1).(1 + γi−1) + . . . +

pn−1.(p − 1).(1 + γn) + (p − 1).pn−2 + . . . + (p − 2).p0

olup F i
k = γi ’dir. Bu durumda (p − 1).γi+1 + p − 1 + γi ≥

? γi ’nin saǧlandıǧını

gösterelim. γi+1 = γi ise (p − 1).γi + p − 1 + γi ≡ p − 1 ≥ γi saǧlanır.

γi+1 > γi ise γi+1 − γi = k ∈ {1, 2, . . . , p − 2} ’dir.

k = 1 için γi+1 = γi +1 olup (p− 1).(γi +1)+ p− 1+γi ≡ p− 2 ≥ γi elde edilir.

k = 2 için γi+1 = γi +2 olup (p− 1).(γi +2)+ p− 1+γi ≡ p− 3 ≥ γi elde edilir.

...

k = p− 2 için γi+1 = γi + p− 2 olup (p− 1).(γi + p− 2) + p− 1 + γi ≡ 1 ≥ γα−2

elde edilir.
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Durum 3: n = i = 1 için κi = γ1, κi+1 = γ2, fi = p − 1 olup

F [i−1] + (p − 1).
k[i]

p
= (p − 2).p0 + (p − 1).γ1.p

0

olup F i
k = γ1 −1 ’dir ve (p−1).γ2 +p−1+γ1 −1 ≥? γ1 saǧlandıǧını gösterelim.

Buradaki işlemler yukarıdakine benzer olarak yapılır. Sadece farklı olarak γ2 =

p − 2, γ1 = p − 1 olduǧunu ve γ2 = p − 1, γ1 = p − 1 olamayacaǧını gösterelim.

γ2 = p−2, γ1 = p−1 olsun. Bu durumda (p−1).(p−2)+p−1+p−2 ≡ p−1 ≥ p−1

’dir.

γ2 = p−1, γ1 = p−1 olsun. Bu durumda (p−1).(p−1)+p−1+p−2 ≡ p−2 � p−1

’dir.

p.c + pα > pα−1 − 2 yani a > p.F olduǧundan Ka(F ) = K(F ) ’dir ve

teorem 5..1 ’den bu k ∈ K(F ) ’lere karşılık gelen j ∈ J(a, b) ’ler,

j =
a

′

− k

p

=
p.c + pα − [γα−1.p

α−1 + γα−2.p
α−2 + . . . + γn.pn]

p

= c + pα−1 −
[

γα−1.p
α−2 + γα−2.p

α−3 + . . . + γn.p
n−1

]

olup Adem Baǧıntısından

P (p.c + pα + c +

α−1
∑

i=0

pi − c − pα−1 +
[

γα−1.p
α−2 + γα−2.p

α−3 + . . . + γn.pn−1
]

) ×

P (c + pα−1 −
[

γα−1.p
α−2 + γα−2.p

α−3 + . . . + γn.pn−1
]

)

= P (p.c + pα +

α−2
∑

i=n−1

(1 + γi+1).p
i +

n−2
∑

i=0

pi).P (c +

α−2
∑

i=n

(p − γi+1).p
i + (p − γn).pn−1)

olarak bulunur.¤

Verilen bir f sayısı için, λ(f) ve Λ(f) ’ i aşaǧıdaki gibi tanımlayalım:

Λ(f) = [logp(f + (p − 1))]

Önerme 5..6 γΛ+1 ≤ 1, β ≥ 2 ve γΛ+1 = 1 iken γΛ = 0, γΛ+1 = 0 iken 1 ≤ i ≤ Λ

için γi = 0, 1 ve γi ≥ γi−1
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olmak üzere

P (p.f−(p−2−γΛ+1).p
Λ−(p−1−γΛ).pΛ−1− . . .−(p−1−γβ).pβ−1 +(p−1).

β−2
∑

i=0

pi)×

× P (f − pΛ(1 + γΛ+1) −
Λ−1
∑

i=β−1

γi+1.p
i) elemanı

P (p.f − (p − 1).

Λ
∑

i=0

pi).P (f)

çarpımının bir toplam terimidir.

İspat: a = p.f − (p − 1).

Λ
∑

i=0

pi ve b = f için

F = (p − 1)(f − f + (p − 1).

Λ−1
∑

i=0

pi + 1) − 1

= (p − 1).(pΛ − 1 + 1) − 1

= (p − 1).pΛ − 1

= (p − 2).pΛ + (p − 1).pΛ−1 + (p − 1).pΛ−2 + . . . + (p − 1).p0

olup bunlara karşılık gelen k ∈ K(F ) ’ler γΛ+1 + 1 ≥ γΛ, γΛ+1 6= p − 1 ve 1 ≤ i ≤ Λ

için γi ≥ γi−1 olmak üzere k = γΛ+1.p
Λ+1 + γΛ.pΛ + . . . + γβ.pβ formunda olduǧu

önceki önermede olduǧu gibi kolayca gösterilebilir.

Teorem 5..1 ’den a ≡ p − 1, Ka(F ) = {k ∈ Kp−1(F ) : k ≤ a
′

},

Ki(F ) = {k ∈ K(F ) : (p − 1).k
p

+ F ≥ p − 1 mod p} olup

(p − 1).
k

p
+ F ≥ p − 1 ⇒ (p − 1).

k

p
+ (p − 1).pΛ − 1 ≡ p − 1

⇒ (p − 1).(
k

p
+ pΛ) ≡ 0

⇒
k

p
≡ t.p, 1 ≤ t ≤ pΛ−1, t ∈ Z

olur. Yani K(F ) kümesindeki p1 ’i içeren k ’lar Ka(F ) kümesinde yoktur ve k =
Λ+1
∑

i=β

γi.p
i , γΛ+1 ≤ 1, β ≥ 2 ve γΛ+1 = 1 iken γΛ = 0, γΛ+1 = 0 iken 1 ≤ i ≤ Λ için

γi = 0, 1 ve γi ≥ γi−1 formundadır.
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Buradan j ∈ J(a, b) elemanlarını bulalım.

j =
a

′

− k

p
=

p.f − pΛ+1 − γΛ+1.p
Λ+1 − γΛ.pΛ − . . . − γβ.pβ

p

=
p.f − (γΛ+1 + 1).pΛ+1 − γΛ.pΛ − . . . − γβ.pβ

p

= f − pΛ(1 + γΛ+1) − γΛ.pΛ−1 − . . . − γβ.pβ−1

olur. Adem Baǧıntılarından P (p.f − (p − 1).

Λ
∑

i=0

pi).P (f) = I ifadesi

I = P (p.f − (p − 1).

Λ
∑

i=0

pi + f − (f − pΛ(1 + γΛ+1) − γΛ.pΛ−1 − . . . − γβ.pβ−1)).

P (f − pΛ(1 + γΛ+1) − γΛ−1.p
Λ−1 − . . . − γβ−1.p

β−1)

= P (p.f − (p − 2 − γΛ+1).p
Λ − (p − 1 − γΛ).pΛ−1 − . . . − (p − 1 − γβ).pβ−1 +

(p − 1).

β−2
∑

i=0

pi).P (f − pΛ(1 + γΛ+1) −
Λ−1
∑

i=β−1

γi+1.p
i)

elde edilir.¤
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