T. C.
GEBZE YUKSEK TEKNOLOJi ENSTITUSU
MUHENDISLIK VE FEN BILIMLERI ENSTIiTUSU

CONTROLLER AREA NETWORK
VE UYGULAMASI

Ugur COSKUN

YUKSEK LiSANS TEZi
ELEKTRONIK MUHENDISLIiGi

GEBZE
2008

T. C.
GEBZE YUKSEK TEKNOLOJi ENSTITUSU
MUHENDISLIK VE FEN BILIMLERI ENSTIiTUSU

CONTROLLER AREA NETWORK
VE UYGULAMASI

Ugur COSKUN

Danismam

Yrd. Dog¢. Dr. Serdar S. ERDEM

YUKSEK LiSANS TEZi
ELEKTRONIK MUHENDISLIiGi

GEBZE
2008

MUHENDISLiK VE FEN BILIMLERL ENSTITUSU
JURL ONAY FORMU

GEBZE YUKSEK TEKNOLOJ1
ENSTITUSO

JURi

UYE (BASKAN) : Yrd.Dog.Dr.Serdar Stier ERDEM

,(ﬂ J_ W

UYE : Yrd.Dog.Dr.Abdilkadir BALIKCI

UYE : Yrd.Dog.Dr. Tugrul YANIK

g

Gebze Yiiksek Teknoloji Enstitiisii Miihendislik ve Fen Bilimleri Enstitiisii Yonetim

Kurulu'nun 28/07/2008 tarih ve 2008/25 sayili karan ile yukaridaki dgretim elemanlarindan

olusmus jiiri tarafindan diizenlenen 21/10/2008 tarihli Tez Savunma Tutanagi neticesinde

Yiiksek Lisans égrencisi Ugur COSKUNun ¢aliymasi GYTE Miihendislik ve Fen Bilimleri

Yonetim Kurulu’nun foiiii lieinn tarih ve foveians sayili karariyla Elektronik

Miihendisligi Anabilim Dalinda Yiiksek Lisans tezi olarak onaylanmustir.

iMzA/MUHUR

FR/19/KP 7.01/Rev.01

v

OZET

TEZIiN BASLIGI: Controller Area Network ve Uygulamasi
YAZAR ADI : Ugur COSKUN

CAN Bus 1986 yilinda Robert Bosch tarafindan otomobillerdeki ¢ok sayida sensor
ve mikro denetleyiciyi bir kablo yumag: ile baglamak yerine bunlar arasindaki veri
transferini yazilim kontrollii tek bir hattan saglamak amaciyla gelistirilmistir. CAN,
otomotiv endiistrisindeki en bilinen haberlesme sistemidir. Her ne kadar baslangicta
yalnizca otomotiv uygulamalar1 icin tasarlanmis olsa da yiiksek performansi
giivenirliliginden dolayr bircok dagitik (distributed) endiistriyel kontrol
uygulamalarinda yaygin olarak kullanilmaktadir. Giivenligin ¢ok ©nemli oldugu
gercek zamanl uygulamalarda da kullanilir. Oyle ki istatistiksel olasilik hesaplari
sonucunda bir asirda bir tane tespit edilemeyen mesaj hatas1 yapabilecegi tespit

edilmistir.

Uygulama alam yiiksek hizli aglardan diisiik maliyetli ¢oklu kablolamali sistemlere
kadar genistir. CAN Bus, otomobil elektronigi, akillt motor kontrolii, robot kontrolii,
akilli sensorler, asansorler, makine kontrol birimleri, kaymay1 engelleyici sistemler,
trafik sinyalizasyon sistemleri, akilli binalar ve laboratuar otomasyonu gibi uygulama

alanlarinda maksimum 1Mbit/sn'lik bir hizda veri iletisimi saglar.

Bu tezde CAN 2.0B standardi incelenmistir. ARM7 ¢ekirdegi {izerine kurulu
STR752FRO mikro denetleyicisinin donanim ozellikleri ve yazilim kiitiiphanesi

aciklanmistir. Bu mikro denetleyici bir CAN uygulamasi yapilmistir.

SUMMARY

THESIS TITLE: Controller Area Network and Its Application

AUTHOR : Ugur COSKUN

CAN Bus standard was developed by Robert Bosch GmbH for the communication of
the sensors and microcontrollers in cars with each other through a single bus.
Because the ever increasing use of these components in cars results in a high level of
wiring burden and communication problems, CAN Bus soon becomes the most
popular communication standard in automotive industry. The high performance and
robustness of the protocol has expanded its use to many distributed automation and
industrial applications. It is also used in the real time applications where reliability is
the most important. Statistical probability calculations show that a CAN system can

miss only one faulty message in a century.

CAN bus can be used for a wide range of applications, even the ones requiring very
high-speeds. It supports the data rates up to 1 Mbit/s for the applications like
automotive electronics, intelligent engine control, robot control, intelligent sensors,
lift systems, machinery control systems, anti-skid systems, traffic signalization

systems, intelligent home and laboratory automation systems.

CAN Bus Specification 2.0B is investigated in this thesis. Hardware configuration
and software library of STR752FR0 microcontroller is analyzed. A CAN application

is implemented using this microcontroller.

vi

TESEKKUR

Bu tez calismasi sirasinda beni yonlendiren ve yol gosteren sayin hocam Yrd.
Dog. Dr. Serdar Siier ERDEM’e, Ortem Elektronik Ltd. Sirketi’ne, egitim hayatim
boyunca beni her konuda destekleyen aileme, tezimin hazirlanmasi sirasinda

yardimlarini esirgemeyen arkadaglarima tesekkiir ederim.

Ugur COSKUN

vil

ICINDEKILER DIZiNi

Sayfa

OZET iv
SUMMARY v
TESEKKUR vi
ICINDEKILER DIiZiNI vii
SIMGELER VE KISALTMALAR DIZINI xii
SEKILLER DIZiNI Xiii
TABLOLAR DIZINI xiv
1. GIRIS 1
2. CAN BUS (Controller Area Network) 2
2.1 Giris 2
2.2 Temel Kavramlar 4
2.2.1 Mesajlar 5
2.2.2 Veri Yonlendirme 5
2.2.3 CAN Bus Hiz1 6
2.2.4 Oncelikler 7
2.2.5 Uzaktan Veri Talebi (Remote Data Request) 7
2.2.6 Multimaster 7
2.2.7 Karar Mekanizmasi1 (Arbitration) 8
2.2.8 Giivenilirlik 9
2.2.9 Hata Belirtme ve Diizeltme Zamani 9
2.2.10 Hata Sinirlama 10
2.2.11 Baglantilar 10

2.2.12 Tekli Fiziksel Tletim Ortam1 10

viii

2.2.13 Hat Degerleri 10

2.2.14 Onay Mekanizmas1 (Acknowledgment) 11
2.2.15 Uyku Modu / Uyanma 11
2.2.16 Osilator Toleransi 11
2.3 Can Mesajlar1 ve Mesaj Cesitleri 11
2.3.1 Data Frame 12
2.3.2 Remote Frame 14
2.3.3 Error Frame 15
2.3.4 Overload Frame 15
2.4 Mesaj Filtreleme 16
2.5 Mesaj Gecgerliligi 16
2.6 Mesaj Kodlama 17
2.7 Hata Y 6netimi 17
2.7.1 Hata Belirleme 17
2.7.2 Hata Belirtme 17
2.8 Hata Simrlama Mekanizmasi 18
2.9 Can Bit Zamanlamasi 19
3. STR750 MIKRO DENETLEYICISI 20
3.1 Giris 20
3.2 STR750 Donanim Ozellikleri 20
3.2.1 CAN Cevresel Birimi 21
3.2.1.1 Baslica Ozellikler 21
3.2.1.2 Blok Diyagram 22
3.2.1.3 Fonksiyonel Ozellikler 23
3.2.1.4 Yazmaglar (Registers) 23
3.2.1.5 CAN Haberlesmesi 24

3.2.2 Gomiilii Flash ve RAM iceren ARM7TDMI-S Cekirdegi 25

3.2.3 Gomiilii Flash Hafizas1
3.2.4 Gomiili SRAM
3.2.5 Gelismis Kesme Yoneticisi (Enhanced Interrupt Controller)
3.2.6 Seri Hafiza Arayiizii (Serial Memory Interface — SMI)
3.2.7 Saat Darbeleri ve Baslama (Clocks and Start-Up)
3.2.8 Baslama Modlar1 (Boot Modes)
3.2.9 Gii¢ Kaynag Modlar1
3.2.10 Diisiik Giic Modlar1
3.2.11 Diger Cevresel Birimler
3.2.11.1 DMA
3.2.11.2 RTC (Real-Time Clock)
3.2.11.3 WDG (Watchdog Timer)
3.2.11.4 Timebase Timer (TB)
3.2.11.5 Senkronize Edilebilir Standart Zamanlayicilar (TIM2:0)
3.2.11.6 Motor Kontrol PWM Zamanlayicisi
3.2.11.7 ’C Bus
3.2.11.8 Yiiksek Hizli Universal Asenkron Alic1 Verici (UART)
3.2.11.9 Senkron Seri Cevresel Birim (SSP)
3.2.11.10 Universal Seri Bus (USB)
3.2.11.11 ADC (Analog Dijital Doniistiiriicii)
3.2.11.12 GPIO (Genel Amacl Giris Cikis)
3.2.12 Blok Diyagram
3.3 STR750 Yazilim Kiitiiphanesi
3.3.1 Yazilim Kiitiiphanesi Icerigi
3.3.1.1 Ornekler (Examples)
3.3.1.2 Kiitiiphane (Library)

3.3.1.3 Proje (Project)

1X
25

25

26

26

26

27

27

28

29

30

30

30

30

30

31

31

31

31

32

32

32

32

34

37

37

37

39

3.3.2 Dosya Tanimlar1
4. CAN UYGULAMASI
4.1 Giris
4.2 Uygulama Tanimi
4.3 ARM7 ile Arag i¢i Veri Toplama ve Arag¢ Kontrolii
4.4 CAN Bit Zamanlamasi
4.4.1 CAN Bit Zamaninin Yapilandirmasi
4.4.1.1 Nominal Bit Zamani
4.4.1.2 Senkronizasyon Segmenti
4.4.1.3 Propagasyon Segmenti
4.4.1.4 Faz Segmenti 1 ve Faz Segmenti 2
4.4.1.4 Ornekleme Noktasi
4.4.1.5 Bilgi Isleme Zamani (Information Processing Time — IPT)
4.4.1.6 Senkronizasyon Atlama Genigligi (SJTW)
4.4.1.7 Zaman Par¢as1 (Time Quanta — t,)
4.4.2 Bit Zamaninin Senkronize Edilmesi
4.4.2.1 Senkronizasyon
4.4.3 Bit Zamanlama Parametrelerinin Hesaplanmasi
4.5 Uygulama Kaynak Kodu
4.5.1 Main.c
4.5.1.1 Main
4.5.1.2 MRCC_Configuration
4.5.1.3 GPIO_Configuration
4.5.1.4 CAN_Configuration
4.5.1.5 EIC_Configuration
4.5.1.6 RTC_Configuration

4.5.1.7 ADC_Configuration

42

42

42

43

46

46

47

47

47

48

48

48

48

48

49

50

50

52

53

54

55

56

57

58

58

59

4.5.1.8 UART_Configuration
4.5.1.9 fputc
4.5.1.10 EXTIT_Configuration
4.5.1.11 I2C_ReceivedDataEvaluate
4.5.275x_it.c

4.5.2.1 CAN_IRQHandler
4.5.2.2 I2C_IRQHandler
4.5.2.3 EXTIT_IRQHandler
4.5.2.4 RTC_IRQHandler
4.5.2.5 ADC_IRQHandler

5. SONUCLAR

KAYNAKLAR DIZINI

0OZ GECMIS

X1

60

60

61

61

62

62

63

64

65

65

66

67

69

CAN
ID
SOF
CRC
RTR
DLC
RTR
IDE
EOF
TEC
REC
RISC
ARM
RTC
PWM
ADC
I’C
UART
USB
GPIO
GSM
GPRS
GPS
SIW

SIMGELER VE KISALTMALAR DIZiNi

: Controller Area Network

: Identifier

: Start of Frame

: Cyclic Redundancy Check

: Remote Transfer Request

: Data Length Code

: Remote Transmission Request

: Identifier Extension Bit

: End of Frame

: Transmit Error Counter

: Receive Error Counter

: Reduced Instruction Set Computer
: Advanced RISC Machine

: Real Time Clock

: Pulse Width Modulation

: Analog to Digital Converter

: Inter Integrated Circuit

: Universal Asynchronous Receiver Transmitter
: Universal Serial Bus

: General Purpose Input Output

: Global System for Mobile Communications
: General Packet Radio Service

: Global Positioning System

: Synchronization Jump Width

Xii

Sekil

2.1
22
23
24
2.5
2.6
2.7
2.8
29
3.1
32
33
34
4.1
4.2
4.3
44
4.5
4.6
4.7

SEKILLER DiZiNi

ISO 11898 Standart CAN Bus Baglant1 Semasi
CAN BUS Hat Uzunlugu - Hiz Degisim Grafigi
CAN Mesaj Gonderme Karar Mekanizmasi
CAN Bus'daki Lojik Seviyeler

CAN Data Frame ve Bit Uzunluklar1 [3]
Control Field [3]

Remote Frame [3]

Error Frame [3]

Overload Frame [3]

CAN Arayiizii Blok Diyagrami

STR752F Blok Diyagrami [12]

Yazilim Kiitiiphanesi Dizin Yapisi [14]
Yazilim Kiitiiphanesi Dosya Mimarisi [14]
Arag Takip Sistemi Caligma Prensibi [15]
Arag¢ Takip Cihazi Blok Semasi

ARMY7 Devre Semasi [16]

SAE J1939 29 Bit Identifier [18]

CAN Bit Zamani Boliimleri [20]

tq ve Bit Periyodu [21]

Proje Calisma Sayfasi

xiii

10
12
13
15
15
16
2
33
38
41
42
43
45
46
47
49
53

TABLOLAR DIZiNi

Tablo

2.1
22
23
24
2.5
3.1
32

CAN Standardi Gelisimi [8]

Hat Uzunluguna Bagli Hiz Degisimi [10]

CAN Bus Dogruluk Tablosu (D: Dominant, R: Resesif)
Veri Baytlar1 Kodlamasi (d: Dominant, r: Resesif)
Hata Modlar1 ve Sartlar [3]

CAN Kiitiiphanesi Fonksiyonlar1

Yazilim Kiitiiphanesi Dosya Tanimlar1 [14]

X1v

11
13
18
35
40

1. GIRIS

Bu ¢alismanin amaci giiniimiizde otomotiv, endiistriyel otomasyon ve yiiksek
giivenilirlige ihtiya¢ duyulan bircok alanda kullanilan CAN Bus protokoliinii

tanitmak ve bu protokol kullanilarak bir uygulama gerceklestirmektir.

CAN cok yiiksek giivenilirlik seviyesine sahip giiniimiiziin en popiiler seri

haberlesme protokollerindendir.

2. Boliim’de CAN Bus standardi detayli sekilde incelenmis ve bu protokolii
kullanmanin neden dogru se¢im oldugu aciklanmistir. Ayrica protokoliin hata
onleme mekanizmalar1 agiklanarak yiliksek giivenilirlige sahip olmasinin nedenleri

izerinde durulmustur.

3. Bolim’de, bu tezde gerceklestirilen uygulamada kullanilan mikro
denetleyici, donamim Ozellikleri ve yazilim kiitiiphanesi olarak ayrmtili olarak

incelenmistir.

4. Boliim uygulamanin gerceklestirildigi boliimdiir. Bu boliimde uygulamaya
ait kaynak kodlar1 sunulmustur ve haberlesmenin performansini onemli Olciide

etkileyen CAN bit zamanlamas1 aciklanmis ve hesaplar1 yapilmastir.

Sonug¢ boliimii olan 5. Boliim’de uygulama ile elde edilen sonuclar ve bu

uygulamanin gelismeye acik yonleri anlatilmigtir.

2. CAN BUS (Controller Area Network)

2.1 Giris

CAN (Controller Area Network) istasyona degil mesaja dayali, asenkron seri
CSMA/CD (Carrier Sense Multiple Access/Collision Detection), mikro
denetleyiciler aras1 bir haberlesme protokoliidiir [1]. Protokol, Bosch Corporation
tarafindan gelecegin otomobillerindeki bir¢ok elektronik cihaz arasindaki veri
aktarim1 sorununu ¢dzmek icin 1980’lerde gelistirilmistir. Daha sonra genis bir
kullanim alan1 bulmustur ve giiniimiizde endiistriyel otomasyon, otomotiv ve mobil
cihaz sektoriinde yaygin olarak kullamlmaktadir. CAN Bus, zekayi, hata toleransini
ve yiiksek derecede giivenilirligi [2] birlestiren, gercek zamanl dagitilmis kontrolii
[3] destekleyen bir protokoldiir. Genel olarak, CAN zeki sistemlerin haberlesmesine

ihtiya¢ duyulan her yerde kullanilabilir [4].

CAN’de merkezi bir birim yoktur ve iki veya daha fazla birim arasindaki
mesaj iletimi dogrudan, yonetici birim araciligi olmadan yapilir. CAN, tek-génder
cok-al modunda calisabilir ve bu mod onu otomotiv uygulamalarinda kullanmak i¢in
cok avantajli duruma getirir [5]. CAN kullanmanin diger avantajlar1 da sistem
diizeyinde kolay yapilandirilmasi ve merkezi bir tam1 koyma (diagnose) imkaninin

bulunmasidir [6].

CAN protokolii cift yonli seri veri haberlesmesi icin bir ISO standardidir.
ISO 11519 Standardi: Diisiik hizli uygulamalar i¢indir (Basic CAN ve Standard CAN
olarak da bilinir). ISO 11898 Standard1: Yiiksek hizli uygulamalar i¢indir (Full CAN
veya Extended Frame CAN olarak da bilinir).

CAN protokoliiniin otomotiv, endiistriyel otomasyon ve miithendisligin ¢esitli
alanlarinda kabul edilmis olmasinin bazi1 sebepleri sunlardir: Multi-master yetenegi;
multicast 6zelligi; hatalarin bulunmasi ve belirtilmesi; giiriiltiiye kars1 6nemli dlciide
bagisiklik; gecikmelerin en aza indirilmesi; mesaj Onceligi; Oncelikteki karar

mekanizmasinin zeki olmast (zaman ve bilgi kayb1 olmamasi); siirekli ve gegici

3

hatalarin ayirt edilmesi; basarisiz (siirekli hatali mesaj gonderip hatti1 gereksiz yere

mesgul eden) birimlerin kapatilmast; yiiksek iletim hizi (1Mbit/s); iletim hizinin

ayarlanabilmesi; fiziksel iletim icin sadece iki tel kullanilmasi; esneklik; giivenilirlik;

diisiik maliyet; ISO standard1 olmasi; standart donaniminin bulunmasi [7].

Tablo 2.1’de CAN standardinin gelisim asamalar1 gosterilmistir.

Tablo 2.1 - CAN Standardi Gelisimi [8]

Versiyon | Yil Degisiklikler

1.0 1985
1.1 1987 | Bit zamanlama ihtiyaclar1 yeniden tanimlandi
1.2 1990 | Osilator toleransi artirildi
Part A-Versiyon 1.2 ile ayni
2.0 1991 | Part B — Data Frame ve Remote Frame i¢in ikinci bir format

olan “Extended Frame” tanitild:

CAN protokoliiniin dogru se¢im olmasinin birgok sebebi vardir [9]:

e Gelismis bir standarttir: 20 yildan uzun bir siiredir (1986’dan beri)
kullanilmaktadir. Giiniimiizde piyasada bircok CAN iiriinii bulunmaktadir.

e Protokoliin donanim uygulamasi:: CAN protokolii silikon iizerine
kurulmustur. Bu, CAN’e hata bulma ve diizeltme avantajlarini getirir.

e Basit bir iletim ortam1 gerektirir.

e Miikemmel hata diizeltme: Bu, CAN’in giiclii yonlerinden biridir. Hata
diizeltme algoritmalar1 gelistirilmistir. Hata bulma ve hatalt mesajin tekrar
gonderilmesi CAN donanimu tarafindan otomatik olarak yapilir.

e Hatali birimi kapatma: CAN siirekli hatali iletim yapan birimi kapatarak

sistemi tikamasini engeller.

Sekil 2.1°de standart CAN Bus baglantis1 gosterilmistir.

120 Ohm[]

[] 120 Ohm

Birim 1 Birim 2 Birim N
Mikro Mikro Mikro
Denetleyici Denetleyici Denetleyici
T | | =
Denetleyici Denetleyici Denetleyici
CAN . CAN CAN
Suriiciisi Siiriiciisi Suriiciisi
CAN_H
CAN BUS CAN_L -
Veri Akugi

Sekil 2.1 - 1SO 11898 Standart CAN Bus Baglanti Semasi

2.2 Temel Kavramlar

CAN Bus su dzelliklere sahiptir:

e Mesaj onceligi

e Konfigiirasyon esnekligi

e Veri kararliligi

e Hata bulma ve bildirme

o Multimaster

e (oga gonderim (Multicast)

e Bozulmus mesajlar1 otomatik olarak yeniden iletme

® Gegici hatalar siirekli hata ve eksikliklerden ayirt etme ve siirekli hatali

gonderim yapan cihazlar1 kapatma.

Tasarim saydamligt ve uygulama esnekligi amaciyla CAN iki farkli alt

boliime ayrilmistir [7].

1. Veri Baglant1 Katmani (Data Link Layer)
a. Lojik Baglant1 Kontrolii (Logical Link Control (LLC))

b. Ortam Gegis Kontrolii (Medium Access Control (MAC))
2. Fiziksel Katman (Physical Layer)

Fiziksel katman sinyallerin gercekte nasil iletildigi ile ilgilenir. Bit

zamanlama, bit paketleme ve senkronizasyon bu katmanda yapilir.

Ortam Gegis Kontrolii (MAC) katman1 CAN protokoliiniin ¢ekirdegini temsil
eder. LLC alt katmanindan gelen mesajlar1 alir ve LLC alt katmanina gonderilecek
olan mesajlar1 kabul eder. MAC alt katmani mesaj paketleme, karar mekanizmasi,

onaylama, hata bulma ve belirtmeden sorumludur.

LLC alt katmani1 mesaj filtreleme, asir1 yiiklenme uyaris1 ve geri alma iglemi

ile ilgilenir.

2.2.1 Mesajlar

Veriler farkli fakat smirli uzunluktaki sabit big¢imli mesajlar seklinde

gonderilir. Hat bos oldugunda hatta bagli herhangi bir birim yeni mesaj gonderebilir.

CAN Bus’da mesaj iletimi, veri ve zaman kaybi olmadan gerceklestirilir.
Ethernet’de bu miimkiin degildir, iki veya daha fazla birim ayni anda hatta mesaj
gondermeye baslarsa ikisi de bir bozulma oldugunu anlayip mesaji geri ¢eker ve
rastgele bir siire sonra mesaji tekrar yaymlar, bu ise zaman kaybina sebep olur.
CAN’de ise bu problem oncelik (arbitration) ile ¢oziilmiistiir. Iki mesaj ayn1 anda
gonderilmeye baglanirsa daha yiiksek oncelige sahip mesaj dncelik hakkinm elde eder,
zaman ve veri kayb1 olmadan iletilir. Onceligi yiiksek mesaj gonderilirken daha
diisiik oncelikli mesaj gdnderici birim tarafindan aninda geri cekilir ve hattaki mesaji
dinler. Yiiksek oOncelikli mesajin iletimi tamamlandigi anda diger mesajlar

gonderilebilir.

2.2.2 Veri Yonlendirme

CAN sistemlerinde bir CAN biriminin sistem yapilandirilmast (birim adresleri
gibi) hakkinda herhangi bir bilgiye ihtiyaci yoktur. Bunun bazi 6nemli sonuclari

sunlardir:

Sistem Esnekligi: CAN hattina yeni birimler diger birimlerde hicbir yazilim,
donanim degisikligi yapilmadan ve uygulama katmani degistirilmeden

eklenebilir.

Mesaj Yonlendirme: Mesaj igerigi Identifier ile belirtilir. Identifier mesajin
hedefini belirtmez, verinin anlamini belirtir, boylece hatta bagli biitiin
birimler Mesaj Filtreleme ile mesajin kendilerine ait olup olmadigina karar

verirler.

Coga Gonderim (Multicast): Mesaj Filtreleme kavraminin sonucu olarak

herhangi bir sayidaki birim ayn1i mesaj1 ayn1 anda alip degerlendirebilir.

Veri Kararliligi: CAN hattinda mesajin es zamanli olarak biitlin birimler
tarafindan kabul edildigi veya hicbir birim tarafindan kabul edilmedigi
garanti edilmistir. Boylece sistemin veri kararliligi ¢oga génderim ve hata

bulma kavramlar tarafindan gerceklestirilir.

2.2.3 CAN Bus Hizi

CAN hattinin hiz1 farkl sistemlerde farkli olabilir. Ancak bir sistem i¢indeki

hiz (bit-rate) sabittir. Tablo 2.2’de secilen bazi hat uzunluklarina karsilik gelen iletim

hizlar1 verilmistir.

Tablo 2.1 - Hat Uzunluguna Bagli Hiz Degisimi [10]

Hat Uzunlugu (metre) | Maksimum Hiz
40 1 Mbit/s

100 500 kbit/s

200 250 kbit/s

500 125 kbit/s

6000 10 kbit/s

Sekil 2.2 hat uzunluguna bagli olarak iletim hiz1 degisim egrisini

gostermektedir.

'
1000
500 _|
Q 200 |
O
=
N 100 | :
I :
50
20 |
o _|
5
| \ \ \ o
0 10 40 100 200 100D LODOO
CAN BUS Uzunludu (metre)
Sekil 2.2 - CAN Bus Hat Uzunlugu - Hiz Degisim Grafigi
2.2.4 Oncelikler

Identifier hattaki iletimde mesajin statik onceligini tanimlar. Niimerik olarak

daha kii¢iik oncelik alanina (arbitration field) sahip olan mesaj dncelige sahip olur.

2.2.5 Uzaktan Veri Talebi (Remote Data Request)

Belirli bir veriye ihtiya¢ duyan birim Remote Frame gondererek diger bir
birimden ihtiya¢ duydugu veriyi gondermesini talep edebilir. Data Frame ve buna

karsilik gelen Remote Frame ayn1 Identifier ile adlandirilir.

2.2.6 Multimaster

Hat bos oldugunda herhangi bir birim mesaj gondermeye baslayabilir. Daha

yiiksek oncelikli bir mesaj gonderen birim hat gecis hakkini kazanur.

2.2.7 Karar Mekanizmasi (Arbitration)

Hat bos oldugu anda herhangi bir birim mesaj géndermeye baslayabilir. Eger
iki veya daha fazla birim ayn1 anda mesaj géndermeye baslarsa, ID iistiindeki oncelik
bitleri (arbitration field) kullamilarak karar mekanizmas: isletilir. Bu karar
mekanizmasi veri ve zaman kaybi olmamasini garanti eder. Eger ayn1 ID’ye sahip bir
Data Frame ve Remote Frame ayn1 anda iletime baglarsa, Data Frame onceliklidir.
Karar verme siirecinde her verici (transmitter) gonderilen bit seviyesi ile hatta
gbzlenen hat seviyesini karsilastirir. Eger seviyeler esit ise gondermeye devam eder.
‘Cekinik’ (recessive) bir seviye gonderilip hatta ‘baskin’ (dominant) bir seviye
gozlendigi anda gonderme hakkini kaybetmis olur ve bir bit daha gdndermeden

mesaji geri ceker [11].

Sekil 2.3’de karar mekanizmasinin igletilmesi gosterilmistir.

g Mesaj basglangic1 (SOF)

-« Oncelik ID'si

S i N

Birim 2: TXD — __|_|J_|_

Birim 3: TXD -

CAN Bus -

=

Birim 2'nin 6nceligi Birim 1'in 6nceligi
kaybetmesi kaybetmesi

1
1
I
1
1
1
1
!
1
| | i Birim 3'lin 6ncelidi kazanmasi
:
1
:
1
1
I
i
1

L
L

Sekil 2.3 - CAN Mesaj Gonderme Karar Mekanizmasi

2.2.8 Giivenilirlik

Veri iletim giivenilirligini en {ist seviyede tutmak icin, hatali mesaji
belirlemede gii¢lii Ol¢iimler, hata belirtme ve kendi kendini test (self-checking)

islemleri biitiin birimler tarafindan gerceklestirilir.

® Hata Belirleme
Hatalar1 belirlemek i¢in asagidaki Sl¢timler gerceklestirilir:
o Gozleme (Vericiler gonderilecek bit seviyeleri ile hattaki bit
seviyesini karsilastirir)
o CRC (Cyclic Redundancy Check)
o Bit Doldurma (Bit stuffing)
o Mesaj Biitiinliik Kontrolii (Message Frame Check)

® Hata Belirleme Performansi
Hata belirleme mekanizmasi asagidaki dzelliklere sahiptir:
o Biitiin global hatalar belirlenir.
o Vericilerdeki biitiin yerel hatalar belirlenir.
o Mesajdaki 5 adede kadar olan ve rastgele dagilmis hatalar belirlenir.
o Mesajdaki uzunlugu 15°ten daha az olan burst hatalar1 belirlenir.

o Mesajdaki herhangi bir tekil say1 hatasi belirlenir.

CAN Bus’da fark edilmeden kalan bozulmus mesaj iletilme ihtimali 4.7x10™"!

den daha azdir.

2.2.9 Hata Belirtme ve Diizeltme Zamani

Bozulmus mesajlar hatay: belirleyen herhangi bir birim tarafindan isaretlenir.
Boyle mesajlar iptal edilir ve otomatik olarak yeninden gonderilir. Hatayr belirleme
ile sonraki mesaji gbnderme arasinda gecen siire -eger daha fazla hata yoksa- en

fazla 31 bit zamanidir.

10
2.2.10 Hata Smirlama

CAN birimleri gegici ve siirekli hatalar1 ayirt eder. Siirekli hatali mesaj

gonderen birimler kapatilir.

2.2.11 Baglantilar

CAN seri iletisim hatt1 bircok birimin baglanabilecegi bir sebekedir.
Baglanabilecek birim adedinin teorik bir limiti yoktur. Pratikte ise baglanabilecek

toplam birim sayis1 gecikme zamanlar1 ve/veya hattaki elektriksek yiik ile sinirhdir.

2.2.12 Tekli Fiziksel iletim Ortam

Hat, bitleri tasiyan tek bir kablodan olusur. Buradan veriyi yeniden es zamanli

hale getirme (resynchronization) bilgisi tiiretilebilir.

2.2.13 Hat Degerleri

Hat birbirinin tersi olan iki lojik degeri alabilir: Baskin (dominant) veya
cekinik (recessive). Baskin ve ¢ekinik bitlerin es zamanl iletimlerinde hattin seviyesi
baskin olacaktir. Ornek olarak kablolu-AND implementasyonunda dominant seviye

lojik 0, ¢ekinik seviye ise lojik 1 olacaktir. Lojik seviyeler Sekil 2.4’te gosterilmistir.

_____ ___H__- ——————- -- -- ----“1” = ¢ekinik

440” _
| I

1.

Sekil 2.4 - CAN Bus'daki Lojik Seviyeler

Hatta birden fazla birimin mesaj gondermesi durumunda hattin hangi

seviyede olacagini Tablo 2.3 aciklamaktadir.

11
Tablo 2.2 - CAN Bus Dogruluk Tablosu (D: Dominant, R: Resesif)

BiRiM A | BIRIM B | BIRiM C | BUS

il llvliviivi v,

e llvliviiclizcliviiv)
vl livilsliwlizcllw)
mIS|Ieeeee s

2.2.14 Onay Mekanizmasi (Acknowledgment)

Biitiin alicilar alinan mesajin tutarliligini kontrol eder ve mesajin tutarli ya da

tutarsiz oldugunu belirtir.
2.2.15 Uyku Modu / Uyanma

Sistemin gii¢ tiikketimini azaltmak icin, bir CAN cihaz1 uyku moduna

ayarlanabilir.
2.2.16 Osilator Toleransi

Bit zamanlama ihtiyaclar1 125kbit/s hizlarina kadar seramik resonator
kullanilmasina miisaade etmistir. CAN standardindaki maksimum hat hizina ulasmak

icin quartz osilator kullanilmalidir.

2.3 Can Mesajlar1 ve Mesaj Cesitleri

CAN, istasyona degil mesaja dayali bir protokoldiir. Bu, biitiin birimlerin
biitiin iletimleri fark edebilecegi anlamina gelir. Sadece 0zel bir birime mesaj
gonderilemez, biitiin birimler hattaki trafigin tamamim kontrol eder. CAN
donaniminda yerel bir filtreleme yapilir, bu sekilde biitin birimler sadece

ilgilendikleri mesajlar1 kabul ederler.

12
CAN 2.0 tanmimlamasma gore iki ¢esit mesaj paketi vardir: standart ve

genigletilmis (extended) bicim. Aralarindaki fark identifier bitlerinin sayisidir.
Standart bicimde identifier 11 bit, genisletilmis bicimde ise 29 bittir. Bu iki formatin
da kendine gore avantajl taraflar1 vardir. Genisletilmis formatta ¢ok daha fazla (500
milyondan fazla) cesitlilikte farkli mesajlar iiretilebilir. Standart formatta hat gecis
siiresi daha kisadir ve bu format icin iiretilen donanim da daha ¢oktur. Standart

formatta network iletisimi 2032 farkli mesaj ¢esidi ile yonetilir.

1 Mbit/s transfer hizinda Standart Frame'in gecis siiresi 110/134 ps (doldurma
bitsiz/doldurma bitli) iken Extended Frame'de bu siire130/159 us kadardir.

CAN kisa mesajlar kullanir. Mesajlarda adres bilgisi bulunmaz, bunun yerine

“icerik adresli” olduklarini soylenebilir.

Dort farkh mesaj ¢esidi vardir:
1. Data Frame

2. Remote Frame

3. Error Frame
4

Overload Frame

Data Frame ve Remote Frame, Standart Mesaj formatinda veya Extended

Mesaj formatinda olabilir. Bunlar 6nceki mesajlardan Interframe Space ile ayrilir.
2.3.1 Data Frame

En yaygin mesaj tipidir ve hatta veri gondermek i¢in kullanilir. Sekil 2.5 Data

Frame ve icerigindeki boliimlerin bit uzunluklarim gostermektedir.

recessive

IFS or |SOF| Arbitration Field| Control Field | Data Field | CRC Field | ACK | EOF IFS
Bus Idle .| 12-bits (Std ID) o m . .
_ 1-bit 32-bits (Ext ID) 6-bits 0-8 bytes 16-bits 2-bits| 7-bits
dominant
- Bit Stuffing >

Sekil 2.5 - CAN Data Frame ve Bit Uzunluklar [8]

13
SOF (Start Of Frame): Data Frame ve Remote Frame’in baslangicini belirtir.

Tek bir dominant bitten olusur.

Arbitration Field: Mesaj 6nceligini belirler. (CAN 2.0A’da 11 bit, CAN
2.0B’de 29 bit ID igerir)

RTR (Remote Transfer Request): Data frame’de dominant, remote frame’de

resesiftir.

Control Field: Mesajda kac adet veri bayti bulundugunu belirten 4 adet veri
uzunluk biti icerir. Sekil 2.6’da Control Field gosterilmistir. Tablo 2.4’te ise 4 bit

veri uzunluk bitinin durumlarina gére mesajin kac bayt veri icerdigi gosterilmistir.

Arbitration —jwl—— CONTROL FIELD — - Data
Field Standard Format and Extended Format Field
or
IDE / r1 r0 DLC3 DLC2 DLC1 DLCO CRC
Field
reserved Data Length Code
bits

Sekil 2.6 — Control Field [8]

Tablo 2.3 - Veri Baytlari Kodlamasi (d: dominant, r: resesif)

Veri Baytlari Veri Uzunlugu Kodu (DLC)
Sayist DLC3 DLC2 | DLC1 | DLCO
0 d d d d
1 d d d r
2 d d r d
3 d d r r
4 d r d d
5 d r d r
6 d r r d
7 d r r r
8 r d d d

SRR: Standart formattaki RTR yerine kullanilmustir.

14
IDE (Identifier Extension Bit): 11 bit standart ve 29 bit genisletilmis yapiy1

ayirir. Standart yapida dominanttir.

Data Field: 0-8 byte arasinda veri igerir.

CRC Field: 15-bit checksum bilgisi igerir. Hata belirleme i¢in kullamlir.

ACK (Acknowledgement) Slot: Onay bitidir. Gonderici bunu ¢ekinik olarak
gonderir, alic1 mesaji dogru olarak alirsa baskin bir bit gonderir, gdnderici bu baskin
bitten mesajin dogru olarak teslim edildigini anlar. Eger verici baskin bit almazsa

mesaj1 yeniden gonderir.

EOF (End Of Frame): Biitiin Data Frame ve Remote Frame’ler 7 adet resesif

bit iceren mesaj sonu bitleri ile sonlandirilir.

Eger sistem icinde birka¢ birim ayni anda aym ID’ye sahip mesaj
gonderirlerse gecis Onceligi icin su kurallar uygulanir. Data frame remote frame’e

kars1 6ncelige sahiptir, standart frame extended frame’e kars1 onceliklidir.

2.3.2 Remote Frame

Data Frame ile benzerdir. Fakat iki tane onemli farklilik vardir.

e RTR biti ¢ekiniktir.
e Data field yoktur.

Remote Frame’in amaci veri transfer isteginde bulunmaktir. CAN birimleri
remote framelere otomatik olarak cevap vermek icin veya sadece CPU’yu haberdar
etmek icin kullanilabilir. Remote Frame ve icerigindeki béliimlerin bit uzunluklari

Sekil 2.7’ de gosterilmistir.

15

recessive — -
IFSor | SOF | Arbitration Field | contro| Field CRCField | ACK | EOF | IFS
Bus-Idle | 12-bits (Std ID)] . . ‘
g 1-bit | 32-bits (Ext ID) | 6-bits 16-bits 2-bits | 7-bits
ominant
* Bit Stuffing .

Sekil 2 - Remote Frame [8]

2.3.3 Error Frame

CAN’in mesaj kurallarini ihlal eden mesajlardir. Hatta bagl bir birim hata
belirlediginde error frame iletir ve boylece diger birimler de hatadan haberdar olur ve
error frame iletir. Bu durumda mesaji ileten birim otomatik olarak mesaji yeniden
gonderir. CAN’deki kontrol algoritmasi bir birimin siirekli hatali mesajlar ileterek

hatt1 mesgul etmesini engeller. Sekil 2.8 Error Frame’i gostermektedir.

Datz —We=-—— ERROR FRAME ———— |- Interframe
Erame Space or

— Error Flag Owverload
Frame

|l—— superposition of ——f
Errar Flags

Error Delimiter

Sekil 2.8 - Error Frame [8]

Error frame, error flag ve error delimiter icerir. Error flag ayn1 degere sahip
ardigik 6 bit icerir. Bu, bit doldurma kurallarim ihlal eder. Error delimiter 8 ¢ekinik
bitten olusur ve diger birimlerin error flagi ilk belirlediklerin de onlarin da error flag

gondermesi i¢in bir aralik saglar.

2.3.4 Overload Frame

Cok mesgul olan bir birim tarafindan sonraki data veya remote frame’in
gecikmesini istemek icin gonderilir. Fakat giiniimiizdeki CAN denetleyicileri

overload frame kullanilmasim gerektirmeyecek kadar hizli ve zekidir.

Bir sonraki remote veya data frame’i geciktirmek icin art arda en fazla iki

overload frame gonderilebilir. Overload Frame’nin yapis1 Sekil 2.9°da gosterilmistir.

16

End of Frame or OVERLOAD FRAME Inter
Error Delimiter or Frame
Overload Delimiter Space or

lt— Overload —f Overload
Flag Frame

l#—— superposition of ——
Overload Flags

Overload Delimiter

Sekil 2.9 - Overload Frame [8]

2.4 Mesaj Filtreleme

Mesaj filtreleme islemi Identifier’a bagl olarak yapilir. Istege baglh maske
yazmaclar filtreleme yapilmamas1 yoniinde ayarlanabilecegi gibi istenen bir grup
Identifier’n alinan mesaj tamponuna baglanmasini ve sadece o mesajlarin kabul

edilmesi yoniinde de kullanilabilir.

Maske yazmaclart mesaj filtrelemek i¢in aktif ve pasif yapilabilir. Maske
yazmagclarinin uzunlugu Indentifier’in bir kismini kaplayabilecegi gibi tamamimi da

kaplayabilir.

2.5 Mesaj Gecerliligi

Mesajin gegerli olduguna karar verilen nokta, verici (transmitter) ve alici

(receiver) i¢in farklidir.

Vericiler: Verici icin mesajin gecerli olmasit EOF (End Of Frame) sonuna
kadar hata olmamasi durumundadir. Eger mesaj bozulmugsa, mesajin otomatik

olarak yeniden gonderimi oncelik kurallarina gore yapilir.

Alicdar: Alicilar icin mesaj EOF’in sondan Onceki bir bitine kadar hata
olmamas1 durumunda gecerlidir. EOF’in son biti Onemsiz (don’t care) olarak

degerlendirilir ve baskin bir deger Form Error’a sebep olmaz.

17
2.6 Mesaj Kodlama

Bit Dizisi Kodlamasi: Mesaj frame béliimleri olan Start Of Frame, Arbitration
Field, Control Field, Data Field ve CRC siras1 bit doldurma (bit stuffing) metodu ile
kodlanir. Verici gonderilecek mesajda bes adet ayni degere sahip ardisik bite

rastladig1 anda otomatik olarak araya ters degerde bir bit ekler.
Data Frame ve Remote Frame’in geriye kalan diger béliimleri (CRC
Delimiter, Ack Field ve End Of Frame) sabittir ve bunlara bit doldurma uygulanmaz.

Error Frame ve Overload Frame’de sabit formlara sahiptir ve bit doldurma metodu

bu mesajlar i¢cin de kullanilmaz.

2.7 Hata Yonetimi

2.7.1 Hata Belirleme

5 farkli hata 6nleme ve kontrol yontemi vardir:

1. Bit gozleme (Bit monitoring)

2. Bit doldurma (Bit stuffing)

3. Frame kontrolii (Frame check)

4. Onay kontrolii (Acknowledgement check)

5. CRC (Periyodik Fazlalik Kontrolii) (15 bit)
2.7.2 Hata Belirtme

CAN protokoliinde kullanilan hata kontrolii ve diizeltmesinin CAN sisteminin
performansi i¢in biiyiik bir odnemi vardir. Hata kontrolii hattaki hatali mesajlarin
bulunmasini ve bunlarin yeniden iletilmesini amaglar. Hatta bagli biitin CAN
kontrolorleri mesajdaki hatalar1 belirleyebilir. Eger bir hata bulunursa, bunu bulan
birim hatta bir error flag gonderir, bu sekilde hattaki trafik akis1 degisir. Diger
birimler de error flag tarafindan sebep olan hatay belirler (eger hala orijinal hatay1

belirlememislerse) ve hatali mesaji1 kabul etmezler.

18
Her birim iki sayicinin durumunu degistirebilir. Bunlar Génderme Hatas1

Sayicist (Transmit Error Counter) ve Alim Hatasi Sayicisidir (Receive Error
Counter). Bu sayicilar belli bir degeri gectikten sonra hat Error Passive ve Bus Off

gibi konumlara gecebilir.

2.8 Hata Sinirlama Mekanizmasi

Biitiin CAN kontrolorleri hattaki mesajlardaki hatalari bulmaya calisir. Eger
bir hata bulunursa, bunu bulan birim bir error flag iletir ve hattaki mesaj trafigi
bozulur. Diger birimler de eger daha ©nce hatali mesajdan kaynaklanan hatayi

belirlememislerse bu error flagi fark eder ve hatali mesaji reddeder.

Her bir birim iki hata sayicisinin degerini degistirebilir. Bunlar gonderme hata
sayicist ve alici hata sayicisidir. Bu sayaclarin degerlerinin nasil artirilip
azaltilacagina dair cesitli kurallar vardir. Kisaca, hata belirleyen bir verici kendi
gonderme hata sayacini bu mesaji dinleyen birimler alic1 hata sayaglarini artirmadan

daha Once artirir.

Biitiin birimler Error Active modda ¢alismaya baglar. Sayaglardan herhangi
biri 127’yi gectigi zaman birim Error Passive moda gecer. Gonderme hata sayicisi
255’1 gectiginde ise birim Bus Off durumuna gecer. Bu durum Tablo 2.5°te

gosterilmistir.

Tablo 2.4 - Hata Modlari ve Sartlari (TEC: Transmit Error Counter, REC:ReceiveError Counter) [8]

CAN Birimi Durumu Gerekli Sart

Normal Mode TEC=REC=0

Error Active Mode TEC < 128 ve REC < 128
Error Passive Mode TEC >= 128 veya REC >= 128
Bus Off Mode TEC >255

e Error active durumundaki birim hata belirlediginden active error flag iletir.
e Error passive birim hata belirlediginde passive error flag iletir.

¢ Bus Off durumundaki birim hatta hi¢cbir mesaj gondermez.

19
Hata sayaclarinin degerlerinin artirilip azaltilmasina ait kurallar karmagiktir

ancak prensip basittir. Gonderme hatalar1 8 hata puanmi, alim hatalar1 ise 1 hata
puanidir. Dogru iletilen ve/veya alinan mesajlar da hata sayaclarinin degerinin

azaltilmasina sebep olur.

2.9 CAN Bit Zamanlamasi

CAN Bus bit zamanlamas1 Boliim 3.3’de aciklanmistir. Ayrica uygulamaya

ait bit zaman1 hesaplamas1 da ayni1 boliimde yapilmaistir.

20
3. STR750 MIKRO DENETLEYICISI

3.1 Giris

Uygulamada ST Microelectronics tarafindan iiretilen STR752FR0O mikro
denetleyicisi kullanilmigtir. Bu, ARM7TDMI-S cekirdegi iizerine kurulu, 32-bit,

RISC mimarisinde bir mikro denetleyicidir.

Kaynak kod C Programlama Dili’nde olusturulmustur ve ST Microelectronics

tarafindan saglanan yazilim kiitiiphanesi kullanilmigtir.

3.2 STR750 Donanim Ozellikleri

STR750 ailesi, 32-bit RISC (Reduced Instuction Set Computer) ¢ekirdegine
sahip ARM7TDMI ile yiiksek performans, ¢ok diisiik giic tiiketimi, yogun kod
ozelligi, zengin cevresel birimler ve ST Microelectronics’in en gelismis 0.18p Flash
teknolojisini birlestirmektedir. STR750 ailesi, genelde bir¢ok islemcide bulunan
cevresel birimleri icerdigi gibi USB, CAN, gelismis motor kontrol zamanlayicis1 ve
saat darbesi hatasi belirleme gibi baz1 gelismis 6zellikleri de icerir. Girig gerilimi
olarak 3.3V veya 5V kullanilabilir ve genisletilmis sicaklik sahasinda (-40 -
+105°C) kullanilabilir. Biitiin bu &zellikler bu aileyi genis bir uygulama sahasinda

kullanilabilecek orijinal bir genel amag¢li mikro denetleyici ailesi yapar[12]:

e CAN uygulamalar1

e USB cevresel birimleri, UPS, alarm sistemleri

¢ Fir¢asiz motor siiriiciileri

® Programlanabilir lojik denetleyiciler (PLC), devre kesiciler, inverterler

* Tibbi ve portatif gerecler

21
STR750F ailesi 64 pin ve 100 pin paketler igerir. Uygulamamizda kullanilan

STR752FRO 64 pine sahiptir. Her iki paket tipi de asagidaki ortak ozellikleri

icermektedir:

3.2.1 CAN Cevresel Birimi

STR752FR0’da CAN c¢evresel birimi CAN Cekirdegi (CAN Core), Mesaj
Hafizas1 (Message RAM), Mesaj Isleyici (Message Handler), Kontrol Yazmaglar
(Control Registers) ve Modiil Arayiizii’'nden (Module Interface) olusur. Fiziksel
katmana baglant1 i¢in ek bir donanim gereklidir ve bizim uygulamamizda MCP2551

kullanilmustir.

CAN hattina baglanti icin ayr1 Mesaj Nesneleri yapilandirilir. Mesaj
Nesneleri ve kabul filtrelemesi icin kullanilan Tanitict Maskeleri (Indentifier Masks)

mesaj hafizasinda depolanir.

Mesajlarin islenmesi ile ilgili biitin fonksiyonlar Mesaj Isleyici’de
gerceklestirilir. Bu fonksiyonlar kabul filtrelemesi, mesajlarin CAN Cekirdegi ve
Mesaj Hafizas1 arasindaki iletimi, iletim isteklerinin islenmesi ve modiil

kesmelerinin tiretilmesini igerir.

CPU, CAN cevresel biriminin yazmag¢ grubuna modiil arayiizii vasitasi ile
dogrudan erigebilir. Bu yazmaclar CAN Cekirdegi ve Mesaj isleyicinin

denetimi/yapilandirilmasi i¢in ve Mesaj Hafizas1’na erisim icin kullanilir.
3.2.1.1 Bashca Ozellikler

® CAN protokol versiyon 2.0 A ve B’yi destekler.

e 1 MBit/s hat hizin1 destekler.

e 32 Mesaj Nesnesi vardir.

e Her bir Mesaj Nesnesi’nin kendi ayr1 tanitict maskesi vardir.

¢ Programlanabilir FIFO modu vardir.

Maskelenebilir kesmeler bulunur.

22
e Zaman tetiklemeli CAN uygulamalari i¢in otomatik yeniden géndermeyi iptal

edebilme modu vardir.

e Kendi-kendini test i¢in programlanabilir geri dongii modu (Loop-back mode)

bulunur.

e APB (Advanced Peripheral Bus) hatt1 i¢in iki adet 16-bit modiil arayiizii

vardir.

3.2.1.2 Blok Diyagram

CAN cevresel birimine ait blok diyagram Sekil 3.1°de gosterilmistir. CAN
Cekirdegi, CAN protokolii denetleyicisidir ve Rx/Tx kaydirma yazmaglarini (shift
register) icerir. Mesaj Hafizasi, Mesaj Nesnelerini ve Tanitici Maskeleri’ni depolar.
Yazmaglar, CAN arayiiziinii denetlemek ve yapilandirmak igin biitiin yazmaclar1
icerir. Mesaj Isleyici, CAN Cekirdegi'ndeki Rx/Tx Kaydirma Yazmaclar1 ile Mesaj
Hafizas1 arasindaki veri transferini denetler ve Kontrol ve Yapilandirma
Yazmaglar’’nda programlandig: sekilde kesmeleri iiretir. Modiil Arayiizii, APB 16-

bit bus ile CAN cevresel birimi yazmaglar1 arasinda bir arayiiz vazifesi goriir.

CAN_TX CAN_RX

CAN Arayiizii % ¢

CAN CEKIRDEG] |-

S
i &
i} T
o
4 MESAJ HAFIZAS] |- 2
i
=
— KAYDECICILER -
—
E¢
|/ MODUL ARAYUZU z
E:i

:

Clock
Reset
Kesme -

Kontrol
DatalM
DataOUT

Adres (7:0)

Sekil 3.1 - CAN Arayiizii Blok Diyagrami

23
3.2.1.3 Fonksiyonel Ozellikler

Alinan mesajlar eger Mesaj Isleyici’nin kabul filtresini gecerlerse uygun
Mesaj Nesneleri’'nde saklanir. Mesajin biitiin boliimleri Mesaj Nesnesi’'nde
depolanir. Aynm1 anda bircok Mesaj Nesnesi icin transfer istegi olabilir ve Mesaj
Nesneleri kendi déhili Onceliklerine gore gonderilir. Mesaj Nesnesi’nin
yapilandiriimasina bagli olarak talep edilen bir mesajin iletimi otomatik olarak

yapilabilir.

CAN cevresel birimi iletim swrasinda Onceligi kaybeden veya bozulan
mesajlarin yeniden iletimini destekler. Bu 6zellik Zaman Tetiklemeli CAN (TTCAN,
ISO11898-1) ortamut icin devre dis1 birakilabilir.

CAN cevresel biriminde bazi test amagl modlar vardir. Sessiz Mod’da sadece
CAN hatt1 dinlenir ve gegerli mesajlar alinir, hatta hicbir mesaj gonderilmez. Bu
modda hatt1 etkilememek i¢in dominant bit gonderilmez ve CAN hattin1 analiz etmek
icin kullanilabilir. Geri Dongii Modu kendi kendini test icin kullanilir ve kendi
gonderdigi mesajlar1 hattan alinan mesajlar gibi depolar. Temel Mod’da CAN

cevresel birimi Mesaj Hafizas1 olmadan calisir.

3.2.1.4 Yazmaclar (Registers)

256 baytlik adres alam1 16 bitlik yazmaglar seklinde diizenlenmistir. CAN
protokoli ile iligkili yazmaglar; calisma modlarmin, CAN bit zamanlamasinin

yapilandiriimasini kontrol eder ve durum bilgisi saglar.

Iki yazmag grubu (IF1 ve IF2) CPU’ nun Mesaj Hafizasi’na erisimini kontrol
eder ve bu sekilde CPU erisimi ile mesaj alimi/génderimi arasindaki ¢akismayi onler.
Bu yazmaglar transfer edilecek mesajlar i¢in bir arabellek vazifesi gorerek bu isi
basarir. Tek bir transferde, Mesaj Hafizas1 ile IFn Mesaj Arabellek Yazmaclari
arasinda tam bir Mesaj Nesnesi transfer edilebilecegi gibi Mesaj Nesnesi’nin bir
boliimii de transfer edilebilir. Mesaj Arabellek Yazmaclari, Mesaj Hafizasi’ndaki

Mesaj Nesneleri’nin tam bir kopyasini icerir.

24
Mesaj Hafizasinda 32 Mesaj Nesnesi vardir. CPU erisimi ile mesaj

alimi/gonderimi arasindaki cakismadan kacinmak icin CPU bu Mesaj Nesneleri'ne

dogrudan erisemez. Bu erisimler IFn Yazmaglari {izerinden gerceklestirilir.

Mesaj Isleyici Yazmaglari; salt okunur yazmaglardir. Bu yazmaclar Mesaj
Hafizasr’ndaki biitiin Mesaj Nesneleri i¢in Yeni Veri (NewDat), Bekleyen Kesme
(IntPnd), Mesaj Gegerli (MsgVal) bilgilerini icerir ve CPU bu yazmaclar1 okuyarak
hangi Mesaj Nesnesi’nin veri baytlarinda giincelleme olup olmadigini, bekleyen
kesme istegi olup olmadigini ve Mesaj Nesnesi'nin gecerli olup olmadigini kontrol

edebilir.

3.2.1.5 CAN Haberlesmesi

Bir Mesaj Nesnesi’'nin yapilandirilmasi iki Arayiiz Yazmaclari’ndan birinin
Maske, Oncelik, Kontrol ve Veri alanlarini istenen degerlere programlamakla yapulir.
Karsilik gelen IFn Komut Istek Yazmacr'na yazmakla IFn Mesaj Arabellek

Yazmaglari, Mesaj Hafizas’ ndaki adreslenen Mesaj Nesnesi’'ne yiiklenir.

STR752FR0’da IFn Komut Maske Yazmacimna yazilan deger Mesaj
Nesnesi'nin bir kisminin veya tamammin transfer edilecegini belirler. Oncelikle,
Mesaj Nesnesi’nin degistirilmeyecek kismi1 Mesaj Hafizasi’'ndan okunur ve sonra

Mesaj Arabellek Yazmaglari’nin tam icerigi Mesaj Nesnesi'ne yazilir.

Mesaj Nesneleri, gonderilecek veya almacak mesajlarin boliimlerinin bir
araya getirilerek anlamli bir biitiin olusturdugu nesnelerdir. Mesaj Hafizasi’nda yer
alirlar. Bir sonraki iletimde sadece Oncekine gore degisen kisimlar degistirilerek

verimli bir i yapilir ve bu is i¢in gerekli siire kisaltilmis olur.

Eger bekleyen cesitli kesmeler varsa, CAN Kesme Yazmaci, kronolojik

siraya bakmadan en yiiksek oncelikli kesmeyi isaret edecektir.

CAN bit zamanlamasinin yapilandirilmasindaki kii¢iik hatalar hemen bir hata
ile sonuglanmasa da, CAN hattimn performansin1 6nemli Olgiide azaltir. Cogu

durumda, CAN bit senkronizasyonu hatali bit zamanlamasini diizeltecektir ve

25
nadiren bir hata mesaj1 iiretilecektir. Ancak iki birim mesaji1 ayn1 anda gondermeye

baglayip oOncelik alma durumu s6z konusu oldugunda mesajin yanlis noktada
orneklenmesi gondericilerin Error Passive olmasina sebep olacaktir. Bu durum
devam ederse de birimler Bus Off olarak CAN hattindan izole edilirler. Bu yiizden

CAN bit zamaninin yapilandirilmasina dikkat edilmelidir.

3.2.2 Gomiilii Flash ve RAM iceren ARM7TDMI-S Cekirdegi

STR750 ailesi gomiili ARM cekirdegine sahiptir ve boylece biitin ARM
araglariyla ve yazilimlariyla uyumludur. Yiiksek performanslit ARM7TDMI-S CPU
ile zengin ¢evresel birimleri ve gelismis Giris/Cikis (I/O) yeteneklerini birlestirir. Bu
ailenin biitiin iiyeleri gomiilii olarak yiiksek hizli tek voltaj gerektiren FLASH ve
yiiksek hizli RAM’e sahiptir.

3.2.3 Gomiilii Flash Hafizas1

Bank 0, programlar1 ve verileri depolamak icin 256KB gomiilii Flash icerir.
Ekstra Bank 1, 16KB RWW (Read While Write — Yazarken Okunabilen) hafiza
icerir ki bu aninda silme/programlama yetenegi kazandirir. Bu iki bdlime ayirma

ozelligi uygulama parametrelerini depolamak icin idealdir.

e Burst modda yapilandiridiginda Flash hafizaya erisim CPU saat hzinda
gerceklestirilir. Bu modda ardigik adreslere erisimlerde hi¢c gecikme olmaz,
rastgele adreslere yapilan erisimlerde ise 1 saat darbesi kadar gecikme vardir
(maksimum 60 MHz).

e Burst modda yapilandirilmadiginda Flash hafizaya erisim CPU saat hizinda

gerceklestirilir ve hi¢ gecikme olmaz (maksimum 32 MHz).

3.2.4 Gomiilii SRAM

16 KB gomiili SRAM’a hi¢ gecikme olmaksizin CPU hizinda erisilir

(okuma/yazma).

26

3.2.5 Gelismis Kesme Yoneticisi (Enhanced Interrupt Controller)

Standart ARM kesme yoneticisine ilave olarak, STR750F 32 kesme vektorii
olan ve 16 dncelik seviyesine sahip i¢ ice gecmis kesme yoneticisi igerir. Eklenen bu

donanim blogu, minimum gecikmeyle esnek kesme yonetimi 6zelligi saglar.

3.2.6 Seri Hafiza Arayiizii (Serial Memory Interface — SMI)

Bu seri hafiza ara yiizii 4 adede kadar seri Flash aygitina dogrudan
baglanabilir. Bu ara yiiz veriye ulagsmak, dogrudan kod calistirmak veya uygulamayi
disaridaki birimden baglatmak (boot) icin kullanilabilir. Her biri 16 MB genisligine

kadar olan 4 farkli hafiza bolgesini adresleyebilmektedir.

3.2.7 Saat Darbeleri ve Baslama (Clocks and Start-Up)

Yeniden bagladiktan sonra veya Diisiik Giic Modu’ndan cikarken, CPU saat
darbesi 5 MHz’lik dahili RC osilatér (FREEOSC) tarafindan aninda saglanir, boylece
uygulama kodu herhangi bir gecikme olmadan ¢alismaya baglamis olur. Bu iglemle
paralel olarak, 4/8 MHz’lik harici osilator etkinlestirilir ve bu ise adanmig bir sayici

tarafindan stabilizasyon zamani gozlenir [13].

Bir osilator arizast algilandiginda, XT1 pini iizerinde saat darbesi
kayboldugunda, otomatik olarak dahili FREEOSC osilatoriine gegilir ve bir kesme

uretilir.

Calisma modunda, AHB ve ABP saat darbesi hizlar1 PLL ve Onbdliici
(prescaler) kullanilarak ¢ok c¢esitli frekanslara ayarlanabilir: Flash’dan calisirken
AHB i¢in 60 MHz’e kadar ve ABP i¢in 32MHz’e kadardir (SRAM’den ¢alisirken bu
hizlar 64 MHz ve 32MHz’dir).

27
Yavas ¢alisma modunda (Slow Mode) gii¢ tiikketimini azaltmak icin AHB saat

darbesi hiz1 belirgin olarak diisiiriilebilir.

Yerlesik saat darbesi yoneticisi (Clock Controller) ayn1 zamanda fazladan
osilatére veya PLL’e ihtiyac duymadan 48 MHz USB saat darbesini de saglar. Ornek
olarak, 4 MHz’lik bir kristal osilator ile paralel olarak 60 MHz’lik AHB saat darbesi,
USB icin 48 MHz saat darbesi ve ABP cevresel birimleri icin 30 MHz’lik saat
darbesi elde etmek miimkiindiir [13].

3.2.8 Baslama Modlar1 (Boot Modes)

Baslama sirasinda, dort baglama seceneginden birini secmek icin baglama

pinleri kullanilir [12].

e Dahili Flash’dan baglama

e Harici seri Flash hafizdan baslama

e Dahili baslangi¢ yiikleyicisinden (boot loader) baglama
e Dahili SRAM’den baslama

SMI hafizadan baglama, seri Flash’dan baslatmaya izin verir. Alternatif
olarak, STR750F dahili baslangi¢ yiikleyicisinden baslayabilir bu da UART’dan

baglatmay1 gerceklestirir.

3.2.9 Gii¢ Kaynag1 Modlari

Uygulamaya bagli olarak asagidaki giic modlarindan herhangi biri
kullanilabilir.

e Gii¢c Modu 1: Tek bir harici 3.3 V gii¢ kaynagi. Bu diizende dahili lojik
tarafindan ihtiya¢ duyulan Vcogrg gerilimi dahili olarak ana voltaj regiilatorii

tarafindan iiretilir ve Vpackup kaynagi ise dahili diisiik giic voltaj regiilatorii

28
tarafindan {iiretilir. Bu diizenin avantaji tek bir 3.3 V giic kaynagina ihtiyag

duymasidir.

Gii¢ Modu 2: 3.3 V ve 1.8 V’luk cift harici gii¢ kaynagi. Bu diizende
VREG_DIS pininin yiiksek seviyeye gelmesi zorlanarak dahili voltaj
regiilatorleri kapatilir. Vcorg, harici olarak Vg and Vigreg gii¢ pinlerinden,
Veackup ise Vig pxp pininden saglanir. Bu gii¢ diizeni halihazirda 1.8 V gii¢
regiilatorii olan uygulamalarda giic tiiketimini azaltmayi amaglamaktadir.
Gii¢ Modu 3: Tek bir harici 5.0 V gii¢ kaynagi. Bu diizende dahili lojik
tarafindan ihtiya¢ duyulan Vcogrg gerilimi dahili olarak ana voltaj regiilatorii
tarafindan iiretilir ve Veackur kaynagi ise dahili diisiik gii¢ voltaj regiilatorii
tarafindan {iiretilir. Bu diizenin avantaji tek bir 5.0 V giic kaynagina ihtiyag
duymasidir.

Gii¢c Modu 4: 5.0 V ve 1.8 V’luk cift harici gii¢ kaynagi. Bu diizende
VREG_DIS pininin yiiksek seviyeye gelmesi zorlanarak dahili voltaj
regiilatorleri kapatilir. Vcogrg, harici olarak Vg and Vigrgg gii¢ pinlerinden,
Veackup ise Vis pkp pininden saglanir. Bu giic diizeni 5V seviyesinde
girig/cikis saglamayr amaglamaktadir. 5.0V ile gii¢ verildiginde USB ¢evre

birimi ¢calismamaktadir.

3.2.10 Diisiik Giic Modlar:

STR750F 5 adet diisiik giic modunu destekler: SLOW, PCG, WFI, STOP ve

STANDBY [13].

SLOW Modu: System saat darbesi hiz1 diisiiriiliir. Alternatif olarak, PLL ve
ana osilator durdurulabilir ve sistem diisiik giiclii saat darbesi (frrc)
tarafindan siiriilebilir. Bu 32.768 kHz’lik harici osilator olabilecegi gibi dahili
diisiik gii¢lii RC osilator de olabilir.

PCG Modu (Peripheral Clock Gating Mode): Cevresel birimler
kullanilmadiginda, onlarin APB saat darbeleri ayrilarak gii¢ tiiketimi optimize

edilir.

29
e WFI Modu (Wait For Interrupts — Kesmeyi Bekle): Sadece CPU saat darbesi

durdurulur, biitin cevresel birimler ¢aligmaya devam eder ve kesme
olustugunda CPU uyanabilir.

e STOP Modu: Biitiin saat darbeleri ve cevresel birimler durdurulur. Ayni
zamanda osilatorleri ve Ana Voltaj Regiilatorii’nii durdurmak da miimkiindiir
(Vcore, tamamen Vg pgp tarafindan beslendiginde). Bu mod ile SRAM ve
yazmag¢ icerikleri tutularak en diisik giic tiikketiminin basarilmasi
amagclanmstir. Sistem, harici kesmeler (external interrupts) / uyanma hatlar1
(wake-up lines) veya istege bagli olarak calisir durumda birakilabilen RTC
zamanlayicis1 tarafindan uyandirilabilir. RTC’nin saat darbesi saglayicisi

32.768 kHz’lik harici kristal veya Diisiik Giiclii RC osilator olabilir.

Alternatif olarak STOP mod, main osilator veya Flash ya da Ana Voltaj
Regiilatorii’niin agik birakilarak uyandiktan sonra hizli bir baslangig
yapilabilmesi esnekligini de sunar (fakat bu fazladan gii¢ tiiketimine sebep
olacaktir).

e STANDBY Modu: Bu mod sadece tek kaynakli gii¢c modlarinda uygulanabilir
ve yikselen sicakliklarda bile en diisiik giic tiiketimini basarmayi
amagclamaktadir. Dijital giic kaynagt (Vcore) tamamen kaldirilir (yliksek
ortam sicakliklarinda bile sizint1 olmaz). SRAM ve biitiin yazmag¢ igerikleri
kaybedilir. Sadece Vs gxp tarafindan beslenen RTC’nin giicii kesilmez.
STR750F, STANDBY’dan tekrar RUN moduna WKP_STDBY pininin

tetiklenmesiyle veya RTC sayicisindaki alarm zaman agimu ile gecebilir.

Vop_io glic kaynagimmin giicii, STANDBY modu dahil biitin diisik gii¢

modlarinda kesinlikle kesilmemelidir.

3.2.11 Diger Cevresel Birimler

STR750 ailesi zengin ve gelismis kesme kabiliyetleri olan ¢evresel birimlere

sahiptir [12].

30
3.2.11.1 DMA

Esnek, 4 kanal genel amacli DMA, hafizadan hafizaya, cevresel birimden
hafizaya ve hafizadan c¢evresel birime transfer yapilmasini yonetebilir. DMA
denetleyicisi dairesel tampon hafiza yonetimini destekler ve denetleyici tampon

hafizanin sonuna ulastiginda kesme {iretilmesini engeller.

DMA ana c¢evresel birimler ile kullanilabilir: UARTO, SSPO, Motor kontrol
PWM zamanlayicisi, standart TIMO zamanlayicis1 ve ADC.

3.2.11.2 RTC (Real-Time Clock)

RTC, wuygun bir yazilm ile saat ve takvim fonksiyonlarimin
gerceklestirilebilecegi siirekli ¢alisan sayicilar saglar ve alarm kesmesi ve periyodik
kesme iiretir. Saat darbesi kaynagi olarak harici 32.768 kHz osilator veya dahili
diisiik giicli RC osilator kullanilabilir. RC’nin tipik frekans1 300 kHz’dir ve

ayarlanabilir.

3.2.11.3 WDG (Watchdog Timer)

Watchdog sayicist 16 bit asag1 dogru sayan bir sayiciya ve 8 bir 6n boliiciiye
(prescaler) dayali olarak ¢aligir. Bir problem olustugunda cihazi yeniden baglatmak
icin veya zaman asimi amaclariyla serbest calisan bir zamanlayici1 olarak

kullanilabilir.

3.2.11.4 Timebase Timer (TB)

Bu zamanlayici 16 bit otomatik olarak yeniden yiiklenen bir sayiciya baghdir,
girig/cikis pinlerine baglanmamistir. Yazilim tetikleyicisi olarak veya ger¢ek zamanl

isletim sisteminin (RTOS) zamanlama tablosunu gerceklestirmek icin kullanilabilir.

3.2.11.5 Senkronize Edilebilir Standart Zamanlayicilar (TIM2:0)

Bu ii¢ standart zamanlayici1 16 bit otomatik olarak yeniden yiiklenen bir

sayiciya baghdir ve 2 giris yakalama (input capture), 2 de ¢ikis karsilagtirma (output

31
compare) 6zelligine sahiptir. Senkronizasyon ve durum degistirme i¢in zamanlayici

baglama 6zelligi kullamilarak PWM zamanlayicisi ile birlikte ¢aligabilirler. Standart
zamanlayicilardan herhangi biri PWM cikist {iretmek icin kullanilabilir. Bir
zamanlayici (TIMO) DMA kanalina eslestirilebilir.

3.2.11.6 Motor Kontrol PWM Zamanlayicisi

Motor Kontrol PWM Zamanlayicis1 (PWM), 6 kanala ¢oklanmis sekilde ti¢
fazli PWM seklinde goriilebilir. 16 bit PWM iireteci tam modiilasyon yetenegine
sahiptir (0 - %100), kenara veya merkeze hizalanmis desenler olusturulabilir ve 6lii
zaman (dead time) eklemeyi de destekler. Standart TIM zamanlayicilar ile ortak
bircok 0Ozelligi vardir ve senkronizasyon veya durum degistirme amaci ile
zamanlayic1 baglama 0zelligi sayesinde standart TIM zamanlayicilar ile birlikte

caligabilir. PWM zamanlayicis1t bir DMA kanalina eslestirilmistir.

3.2.11.7 I*C Bus

I°C Bus ara yiizii multi-master veya slave modda calisabilir. Standart ve hizl

modlar1 destekler (400 kHz’e kadar).

3.2.11.8 Yiiksek Hizh Universal Asenkron Alici Verici (UART)

3 adet UART ara yiizii 2 Mbit/s hizinda haberlesebilmektedir. CTS ve RTS
sinyallerinin donanim olarak yonetimini saglar ve LIN Master yetenegine sahiptir.
Islemci ve cevresel birim arasindaki iletimi optimize etmek icin her biri 16 byte’lik
iki FIFO (alma/gonderme) gerceklestirilmistir. Bir UART (UARTO), DMA

denetleyicisi tarafindan desteklenebilir.

3.2.11.9 Senkron Seri Cevresel Birim (SSP)

Iki SSP, standart full duplex 4 pin ara yiiz modunda, master olarak 8 Mbit/s
(SSP1) veya 16 Mbit/s (SSPO), slave olarak ise 2.66 Mbit/s hizinda haberlesebilir.
Islemci ve gevresel birim arasindaki iletimi optimize etmek i¢in her biri 8x16 bit

word’luk iki FIFO (alma/génderme) gerceklestirilmistir. SSP’ler, Motorala SPI veya

32
TI SSI protokollerini destekler. Bir SSP (SSP0), DMA denetleyicisi tarafindan

desteklenebilir.

3.2.11.10 Universal Seri Bus (USB)

STR750F, USB Full speed 12 Mbit/s ile uyumlu USB cevresel birimi igerir.
Yazilimla yapilandirilabilen son nokta (endpoint) ayarlar1 ve askiya alma/devam
etme (suspend/resume) destegi vardir. USB icin ayrilmis 48 MHz saat darbesi, dahili

ana PLL’den iiretilir. USB’nin ¢alismasi i¢in Vpp 3.3V *+ %10 seviyesinde olmalidir.

3.2.11.11 ADC (Analog Dijital Doniistiiriicii)

10 bit analog dijital doniistiiriicli, 16 adede kadar harici kanali tek bakis
(single-shot) veya tarama modunda doniistiiriir. Tarama modunda, se¢ilmis bir grup
analog giris iizerinde siirekli olarak doniisiim gergeklestirilir. Ornekleme zamani
dahil asgari doniisiim zamani 3.75us’dir.

Analog watchdog ozelligi, en fazla dort kanala kadar cevrilen voltaj
seviyelerinin ¢ok hassas olarak gozlenmesini saglar. Doniistiiriilen voltaj seviyesi
programlanan esik seviyelerinin disinda oldugu anda bir kesme iiretilir.

Uygulamada A/D doniistiiriiciileri ve zamanlayicilar1 senkronize etmek i¢in
TIMO, TIM2 ve PWM zamanlayicilar1 dahili olarak ADC baslama tetigi olarak
baglanabilir.

3.2.11.12 GPIO (Genel Amach Giris Cikis)

72 adet GPIO’nun her biri yazilim ile ¢ikis (push-pull veya open-drain)
olarak, giris (pull-up veya pull-down olabilir ya da olmayabilir) olarak veya ¢evresel
birime gore degisimli fonksiyonda yapilandirilabilir. GPIO’larin bircogu dijital veya
analog degisimli fonksiyonlarla paylagilmistir.

3.2.12 Blok Diyagram

Sekil 3.2’de STR752F mikro denetleyicisinin blok diyagrami gosterilmistir.

33

Blok diyagramdaki bazi pinlerde yer alan AF (Alternate Function) belirteci,

Girig/cikis pini lizerinde degisimli fonksiyon tanimli oldugunu gostermektedir.

BOOT1, |
BOOTOD

as AF_|

TEST
MJTR

JTDI]
JTCK
JTMS
JTDO
as AF

MISO as AF —

SCLK, MOsI
4 CS as AF

15AF
PO[31:0]
P1[19:0]

P2[19:0]

2xICaP, ExOCI\-'IE
as A

2xICaP, ExOCI\-'IE
as A

2xICAP, 2x0CM
asz Al

F

IR

-

<) TIMT TIMER

=

<~ >| TIMo TIMER

ARM7TOMI-S HEESETN
CPU
PRESETN +
soMHz [AHB X PSR
o
= SRAM 16KB \pout 0COC
JTAG & ICE-RT| S AM 16 Voors || 5 0%0C
i) BACKL - - H
SROMA TaHB IR || |4 FLASH 258K DDA_FL MaIN
=] §‘ hyel +16KB (RWW) UDDA_)HD LOW POWER
1T (O NESTED _|+32xIRQ
2 |"Y|INTERRUPT CTL |+ 2xFIQ &
o
SERIAL MEMORY |, & OSC
INTERFACE] E’ CK_RTC +— 0SC| |
= a2k
% CK_SYS «— cLOCK
= MANAGE- FREE
HOLK +—{MANAG ot
POLK +—| —
BRIDGE PLL| | aM
CK_USB+—
EX]
WAKEUP < — > USB Full Speed

GPIO PORT 27— >
[om s K=
[WATGHD0G K=>

TB TIMER

TIMz2 TIMER
PWM TIMER

CaN 2.0B

s PR 5T

= axbtitbi] ssPo

=] oz ssp |

e 12C

APB (up to 32 MHz)

|| [MRSTIN
NRSTOUT

Voo o

Eie
1BEKP

Ves

RTC_XT1
RTCZXT2

XT1
XT2

Vopa_pLL
54 PLL

| T USBDP
ﬁ>—[USBOM

e

RX,TX
as AF

RX,TX,CTS,
RTS as AF

AN
AL

MOSI,MISO,

SCK.NSS
as AF

MOSI,MISO,

SCK NSS
as AF

SCL.SDA
as AF

Sekil 3.2 - STR752F Blok Diyagrami [12]

34
3.3 STR750 Yazihm Kiitiiphanesi

STR750 yazilm kiitiiphanesi, biitiin standart STR750 cevresel birimleri i¢in
cihaz siiriiciileri igeren bir yazilim paketidir. Bu kiitiiphane sayesinde biitiin cevresel
birimler hakkinda derinlemesine bir ¢aligma yapmadan uygulamalarda STR750
ailesini kullanmak miimkiindiir. Sonu¢ olarak, bu kiitiiphaneyi kullanmak bize
oldukca fazla zaman kazandiracak, boylece kodlama icin agir1 vakit ayirmanin dniine

gecilecek ve uygulama gelistirme maliyetleri diisecektir.

Her bir cihaz siiriiciisii, ¢evresel birimin 6zelliklerini kapsayan bir takim
fonksiyonlar icerir. STR750 c¢evresel birimlerinin ve bu birimlere ait yazmaclarin
(register) hafiza-haritali (memory-mapped) olmasindan dolayi, bir ¢evresel birim ‘C’
kodlariyla kolaylikla yonetilebilir. ‘C’ dilinde gelistirilen kaynak kod tamamen
dokiimante edilmistir. Bu kiitiiphaneyi kullanabilmek i¢in ‘C’ programlama bilgisi
gereklidir. Kiitiiphanedeki tiim kodlar ‘C’ dilinde oldugu icin ARM uyumlu herhangi
bir ‘C’ derleyicisi ile birlikte kullanilabilir.

CAN cevresel biriminde tamamen yapilandirilabilen 32 Mesaj Nesnesi vardir.
Yazilim kiitiiphanesindeki bir dizi fonksiyon bu cevresel birimin ve Mesaj
Nesneleri’nin yapilandirilmasi i¢in kullanilir. Bu fonksiyonlar sayesinde kullanicinin
CAN cevresel birimine ait yazmaglar1 yapilandirmak icin bit diizeyinde islem

yapmasina gerek kalmaz.

Tablo 3.1°de CAN Kkiitiiphanesinde kullanmlan ¢esitli fonksiyonlar

listelenmistir

35

Tablo 3.1 - CAN Kiitiiphanesi Fonksiyonlar:

Fonksiyon Ad1 Aciklama

CAN_Delnit CAN cevresel birimi yazmaglarini varsayilan
degerlerine ilkler.

CAN_Init CAN hiicresini ilkler ve bit hizin1 ayarlar.

CAN_ Structlnit

Her bir CAN_Structlnit iiyesini varsayillan degeri ile

doldurur.

CAN_EnterInitMode

CAN ilkleme moduna girilir.

CAN_LeavelnitMode

IIkleme modundan ¢ikilir (normal moda gegilir).

CAN_EnterTestMode

CAN test moduna girilir.

CAN_LeaveTestMode

Test modundan ¢ikilir (normal moda gegilir).

CAN_SetBitrate

Standart CAN hizini ayarlar.

CAN_SetTiming

CAN zamanlamasin belirli parametrelerle ayarlar.

CAN_SetUnusedMsgObj

Mesaj nesnesini kullanilmamis seklinde yapilandirir.

CAN_SetTxMsgObj

Mesaj nesnesini TX (gonderme) seklinde yapilandirir.

CAN_SetRxMsgObj

Mesaj nesnesini RX (alma) seklinde yapilandirir.

CAN_Invalidate AlIMsgObj

Biitin mesaj nesnelerini kullanilmamis olarak

yapilandirir.

CAN_ReleaseMessage

Mesaj nesnesini serbest birakir.

CAN_ReleaseTxMessage

Gonderme mesaj nesnesini serbest birakir.

CAN_ReleaseRxMessage

Alma mesaj nesnesini serbest birakir.

CAN_SendMessage

Mesaj gonderme islemini baglatir.

CAN_ReceiveMessage

Eger ulagmig bir mesaj varsa, onu alir.

CAN_WaitEndOfTx

Giincel iletim bitene kadar bekler.

CAN_BasicSendMessage

BASIC moda mesaj iletimine baglar.

CAN_BasicReceiveMessage

Eger ulagsmis bir mesaj varsa, BASIC modda onu alir.

CAN_IsMessageWaiting

Alinan mesajin bekleme durumunu test eder.

CAN_IsTransmitRequested

Mesaj gonderme istegi olup olmadigini test eder.

CAN_IsInterruptPending

Mesaj nesnesinin kesme durumunu test eder.

CAN_IsObjectValid

Mesaj nesnesinin gegerliligini (kullanima hazirlik) test

eder.

36
CAN_Init fonksiyonu, CAN c¢evresel birimini CAN_InitStruct’da belirtilen

parametrelere gore ilkler. Bu fonksiyon igerisinde CAN_EnterInitMode(),
CAN_SetBitrate(), CAN_LeavelnitMode(), CAN_LeaveTestMode() fonksiyonlar1

cagrilir.

Bu ve bunun gibi diger fonksiyonda kullanilan CAN yapilandirma
parametreleri 75x_can.h dosyasinda tammlanmistir. Bu dosya iginde farkli
tanimlamalar yaparak fonksiyonlara farkli parametreler ge¢irmek miimkiindiir.
Bunun pratikte faydasi yokmus gibi goriinse de 6zel uygulamalar i¢in (Ornegin

standart hizlar disinda farkli bir CAN bit hiz1 kullanilmasi) faydali olabilirler.

Yazilim kiitiiphanesinde birbirleri ile baglantili fonksiyonlar mevcuttur. Bu
fonksiyonlardan birini kullanmak digerini de kullanmay:1 gerektirir. Ornek olarak
kesmeleri etkin hale getirmek icin kullanilan CAN_EnterInitMode(CAN_CR_IE)
fonksiyonunu miiteakip = CAN_LeavelnitMode fonksiyonu kesin olarak

kullanilmalidir.

Mesaj Nesneleri, CAN Kkiitiiphanesinde iizerinde yogunlagilan ve
yapilandirilan temel 6gelerdir. Bu fonksiyonlarin bircogu IFO ve IF1 yazmaglarii

okuyup bu degerlere gore Mesaj Nesnelerini yapilandirmak i¢in kullanilir.

Gonderme ve alma islemi yapilirken hangi Mesaj Nesnesi numarasinin
kullanilacag belirtilirken nesnelerin oncelik seviyeleri hesaba katilmalidir. Nesne
tipine bakilmaksizin, daha diisiik numarali nesne (0) en biiyiik oncelige, daha biiyiik
numarali nesne ise (31) en kiigiik 6ncelige sahiptir. En iyi performans i¢in, nesne

listesinde nesneler arasinda bosluklar olmamalidir.

Mesaj gonderimi sirasindaki Oncelik i¢in kullamlan CAN ID, idLow ve
idHigh olarak iki parcadan olusmustur. Bu ID aralig1 se¢imine dikkat edilmelidir.
ID’ler donanim tarafindan filtrelenmektedir, bu yiizden idLow ve idHigh
boliimlerinin biitiin kombinasyonlar1 her zaman beklenen sonucu iiretmeyebilir. Bu
oOlciit alian bir mesaja su sekilde uygulamr: Alinan ID ve Mask ID bit diizeyinde VE
operatorii isleminden gegirilerek Oncelik ID’si elde edilir. Sonug olarak idLow icin

bazi LSB bitleri sifirlanmis bir deger secmek ve idHigh icin ise mantiksal olarak

37
idLow’u igeren ve bazi LSB bitleri bir olan degerler secmek daha iyidir. Ornek

olarak 0x100-0Ox3FF calisacaktir fakat 0x100-0x2FF calismayacaktir, ¢iinkii 0x100
mantiksal olarak 0x2FF icinde yoktur (0x100 & 0x2FF = 0).

Fonksiyonlarda Mesaj Nesneleri'ne cagri yapmak icin Komut Istek

Yazmaci'na Mesaj Nesnesi numarasi degil 1+MesajNesnesi degeri yazilmalidir.

3.3.1 Yazahm Kiitiiphanesi Icerigi

Yazilim kiitiiphanesi dizin yapis1 Sekil 3.3’de gosterilmistir.

3.3.1.1 Ornekler (Examples)

Bu dizin her bir ¢evresel birim i¢in ayr1 bir alt dizin icerir. Bir ¢evresel
birimin nasil kullamlacagma ait tipik bir 6rnegi calistrmak i¢in gerekli minimum

dosyalar:

® Readme.txt: Ornegi tamimlayan ve nasil ¢alisir hale getirilecegini aciklayan
kisa bir metin dosyasidir.

e 75x_conf.h: Kullanilan cevresel birimleri yapilandirmak ve cesitli
tanimlamalar1 yapmak icin baslik dosyasidir.

e 75x_itc: Kesme sonrasinda icra edilen fonksiyonlar1 igeren kaynak
dosyasidir (kullanilmayan fonksiyon gdvdeleri bostur).

* main.c: Ornek program dosyasidir.

Biitiin ornekler kullanilan gelistirme ortamindan bagimsizdir.

3.3.1.2 Kiitiiphane (Library)
Bu dizin kiitiiphanenin ¢ekirdegini olusturan biitiin alt dizinleri ve dosyalar1

icerir.

e inc alt dizini, kullanict tarafindan degistirilmemesi gereken yazilim

kiitiiphane bagslik dosyalarim igerir:

38
o 75x_type.h: Diger biitiin dosyalarda kullanilan ortak veri tiplerini ve

listelemeleri igerir.

o 75_map.h: Cevresel birimlerin hafiza haritalamalarin1 ve yazmaglarin
veri yapilarini igerir.

o 75_lib.h: Diger biitiin bashik dosyalarini iceren ana baglik dosyasidir.

o 7x_ppp.h (her cevresel birim i¢in bir baslik dosyasi): Fonksiyon
prototiplerini, veri yapilarim ve listelemeleri icerir.

e grc alt dizini, kullanici tarafindan degistirilmemesi gereken yazilim kaynak
dosyalarim igerir:
o 7x_ppp.c (her ¢cevresel birim icin bir kaynak dosyasi1): Her bir cevresel

birimin fonksiyon gdvdelerini igerir.

Biitiin kiitiphane dosyalar1 ANSI-C olarak kodlanmistir ve gelistirme

ortamindan bagimsizdir.

=3 StdLib
=-{3) examples
+- ADC
+-{3 CAN
{3 DMA
#{3 EIC
+-{3 EXTIT
+-{) GPIO
#{ 12C
+{3 MRCC
+-{2) PwM
{2y RTC
+-{C3 SMi
+-{3) 55P
+{ T8
3 TIM
+{ UART
() WDG
-4 library
-3 inc
sre
=13y project
) EWARM
+ {7 RVDK
[Z] 75%_confh
[E] o itc
[Z] main.c

Sekil 3.3 - Yazilm Kiitliiphanesi Dizin Yapisi [14]

39
3.3.1.3 Proje (Project)

Bu dizin biitiin kiitiiphane dosyalarin1 derleyen bir standart proje sablonu
icerir. Aynm1 zamanda yeni bir proje olusturmak icin kullanici tarafindan
degistirilebilecek dosyalar da bu dizindedir.

e 75x_conf.h: Varsayillan olarak tanimlanmis biitin g¢evresel birimler igin
yapilandirma ayarlarini iceren baslik dosyasidir.

e 75x_it.c: Kesme fonksiyonlarimi iceren kaynak dosyasidir (bu sablon icinde
fonksiyon govdeleri bostur).

® main.c: Ana program govdesidir.

3.3.2 Dosya Tanimlari

Yazilim kiitiiphanesinde ¢esitli dosyalar kullanilmistir. Tablo 3.2

kiitiiphanede kullanilan farkli dosyalari listelemekte ve tanitmaktadir.

40

Tablo 3.2 - Yazilim Kiitiiphanesi Dosya Tanimlari [14]

Dosya Adi

Tanimm

75x_conf.h

Parametre yapilandirma dosyasidir. Herhangi bir uygulama
calistirilmadan Once kiitiiphane ile iligkilendirmek icin c¢esitli
parametreleri belirtmek icin kullanici tarafindan degistirilmelidir.
Eger sablon kullaniliyorsa c¢evresel birimler aktif/pasif hale

getirilebilir ve harici osilatoriin degeri de degistirilebilir.

main.c

Ana 6rnek program dosyasidir.

75x_it.c

Cevresel birim kesme fonksiyonlar1 dosyasidir. Uygulamada
kullanilan kesme fonksiyonlarina ait kodlar kullanici tarafindan
degistirilebilir. Ayn1 kesme vektoriine ait birden ¢ok kesme istegi
olmast durumunda, fonksiyon kesme bayraklarin1 bakarak kesmenin
gercek kaynagini belirler. Bu fonksiyonlarin isimleri yazilim

kiitiiphanesinde tanimlanmistir.

75x_lib.h

Biitiin cevresel birimlere ait baglik dosyalarini iceren baghk
dosyasidir. Kullanici uygulamasinin kiitiiphane ile iligkisini kurmak

icin dahil edilmesi gereken tek dosyadir.

75x_lib.c

Hata ayiklama modu baglangi¢c dosyasidir. Her birinin belirli bir
cevre biriminin ilk adresini isaret etti§i degisken isaretcilerinin
tanimlarim1 icerir. Aymi zamanda hata ayaklama moduna
girildiginde cagrilan fonksiyonlarin tanimlarimi da igerir. Bu

fonksiyon tanimlanan isaret¢ilerinin baslangi¢ ayarlarini yapar.

75x_map.h

Bu dosya hem gelistirme hem de hata ayaklama amagclariyla hafiza
haritalamasin1 gerceklestirir ve fiziksel yazmag¢ adreslerinin

tanimlarini icerir. Bu dosya biitiin ¢evre birimleri icin saglanmistir.

75x_type.h

Ortak tanmmlar dosyasidir. Biitiin c¢evre birimleri tarafindan

kullanilan ortak tipleri ve sabitleri icerir.

75x_ppp-c

C dilinde yazilan PPP cevresel birimine ait siiriicii kaynak kodudur.

75x_ppp.h

PPP cevresel birimi i¢in baglik dosyasidir. PPP cevresel birimine ait
fonksiyon tanimlarini ve bu fonksiyonlarda kullanilan degiskenleri

icerir.

41

Yazilim kiitiiphanesi mimarisi ve dosya icerme iligkisi Sekil 3.4’de
gosterilmistir.

Uygulama uygulama.c
atmam
m 75x_conf.h
75x_lib.h [
A 4
75x_map.h [75x_type.h
API
Katmam
A
75x .h
—PPP 75x_lib.c
v
75x_ppp-c
Donamim .
75x_ppp.c

Sekil 3.4 - Yazilim Kiitiiphanesi Dosya Mimarisi [14]

Her cevre birimin 75x_ppp.c seklinde kaynak kod dosyasi ve 75x_ppp.h
seklinde baglik dosyasi vardir. 75x_ppp.c dosyasi ilgili cevresel birimi kullanabilmek
icin gerekli olan biitiin yazilim fonksiyonlarini igerir. Biitiin ¢evresel birimler i¢in
75x_map.h adinda tek bir hafiza haritalama dosyasi bulunmaktadir. Bu dosya, hem
gelistirme hem de hata ayiklama igin gerekli olan biitiin yazmac tanimlamalarini

icerir.

75x_lib.h basglik dosyas1 biitiin ¢evresel birimlerin baslik dosyalarini icerir.
Bu, kullanici uygulamasinin kiitiiphane ile iligkilendirilmesi i¢in igerilmesi gereken
tek dosyadir [14].

4
4. CAN UYGULAMASI

4.1 Giris

Bu boliimde donanim ve yazilim olarak gerceklestirilen bir CAN Bus
uygulamasi anlatilacaktir. Uygulamanin detaylari, CAN Bus performansi i¢in gerekli
olan bit zamam hesaplamalar1 ve uygulamaya ait aciklamali kaynak kodlar bu

boliimde yer almaktadir.

4.2 Uygulama Tanim

Bu uygulama bir arac takip cihazinda kullanilmak iizere gerceklestirilmistir.
Arac takip cihazi arac iizerine monte edilir ve GPS uydularindan aldig1 konum, hiz,
yon gibi bilgiler ile aractan toplanan yakit seviyesi, sicaklik, motor devri, ses,
goriintii vb. gibi uygulamanin gerektirdigi daha bir¢ok bilgi ile birlestirip GSM alt
yapisini kullanarak bir merkeze gonderir. Kullanicilar internet iizerinden bu bilgilere

ulasabilirler. Sekil 4.1°de arac takip sisteminin caligma prensibi gosterilmistir.

.
m o
13 v

w Asag Takip Cihaz

Sekil 4.1 — Arag Takip Sistemi Calisma Prensibi [15]

Kullanic:

Arag takip sistemleri kullanilarak araglardan toplanan biitiin bilgiler internet
izerinden ge¢mise doniik olarak da rapor edilebilmektedir. Araca ait bilgilerin

diizenli periyotlarla kaydedilmesi, ariza ve benzeri durumlarin izlenebilmesi ve tim

43
bunlarin raporlanmasi1 6nemlidir. Bu veriler motorlu arag iireticilerine ariza yapan

sistemlerin diizeltilmesinde ve mevcut sistemlerin iyilestirilmesinde yol gosterir.
Ayrica ilerde bu sistem kullanilarak araca uzaktan miidahale (CAN Bus’a bagh bir
birime yapilandirma mesaji gondererek farkli ¢aligmasim saglamak) etmek ve

boylece servis maliyetlerini diisiirmek miimkiin olacaktir.

Bizim uygulamamizin i¢inde yer alacagi sistem; ARM7 ve ARMY9
mimarisinde iki adet mikro denetleyici, GPS Modem, GSM Modem ve bu birimlerin
cevresel elemanlarindan olusur. Sistemin blok semas: Sekil 4.2°de gosterilmistir. Tki
mikro denetleyici aralarinda I°C protokoliinii kullanarak haberlesir. ARM7 islemci
arag iizerindeki analog girisleri, dijital girisleri ve CAN Bus hatt1 {izerindeki veriyi
okuyup degerlendirir ve bunlari I°C hatt1 iizerinden ARM9 islemciye iletir. ARM9
islemci bu verileri GPS konum bilgileri ile birlestirerek istenen bir mobil telefona

SMS olarak veya GPRS Modemi kullanarak sabit bir IP adresine génderir.

[GPSMODEM
B SDA SDA
ANALOG GIRISLER]
— - ScL SCL
DIJITAL GIRISLER
UART ARM?7 (STRT5x) ARM®
DIJITAL CIKISLAR RESET

GSM MODEM

-

CANH

CANL

Sekil 4.2 — Arag Takip Cihazi Blok Semasi

4.3 ARM?7 ile Arac Ici Veri Toplama ve Arac Kontrolii

Bizim uygulamamiz ara¢ takip sisteminin ARM7 mikro denetleyicisi ile
gerceklestirilen kismini kapsamaktadir.

ARM7 islemci sistemde su gorevleri iislenmistir:

44
¢ CAN Bus hattindaki ihtiya¢ duyulan bilgileri okuyup degerlendirerek anlamli

hale getirip ARM9 islemciye iletmek.

e Frekans1 azami 10 kHz olan 4 adet kare dalga isareti okuyup Hz cinsinden

ARMO islemciye iletmek (Harici kesmeler kullanilarak).

e 4 kanal analog girisi 10 bit analog dijital doniistiiriicii (ADC) kullanarak
okuyup ARMD islemciye iletmek.

e 2 adet UART (Universal Asynchronous Receiver-Transmitter) kullanilarak

diger ¢evresel birimlerle veya PC ile haberlesmek.

® 4 adet cikist ARMO islemciden gelen komut ile aktif ya da pasif yapmak (Bu
komut kullanic1 tarafindan araca miidahale seklinde internet iizerinden veya

SMS ile verilebilir).
e Kilitlenmesi durumunda ARM9 islemciyi yeniden baglatmak.
e RTC (Real Time Clock) ile gercek zamani tutmak.
e I’C protokoliinii kullanarak ARM9 islemci ile haberlesmek.

Sekil 4.3°de ARM?7 islemciye ve bazi cevresel birimlerine ait devre semasi

gosterilmistir.

45

. RIIS =
NESTIN BTN | VBATTL ARATTL
— PS4 VI p—orn]
BT ———— ——— B2 10 C28+| | 1LF10V
m 1l
VBATT1 us] C32 | | 100uF
E,,T £— VCCEST f— VSSA_ADC VDDA_ADC 2‘-} b Can+| (InEA0T
i @D vSsi§ VIEREG — A R
: Vss13 Vis S| EE
100F MXDISI6URT o o 8 T ” = Ie
L V55102 VDD 10 — =P
= VS510 5 VDD 105 2 S | -
CANL VSSA FLL VDDEPL —— | ST |
e VSSBEP VIEEED o by @
15 VS5 10 4 VREG_DIS
DO.16/SSP] SCLE —2 ¢
CANE Xn BOITSSP] MOS0 <
= X1l PO.18/55P1 MOST —2—
N PO.19/55P1 NS5 09—
w3 oD 25w s BLILUARTO RTS D1 -
E : »31 ymra PO0BTIC SCL o e SCL
T CANH THD m— %3 ¥RTCD PO.0YTIC SDA — 01— i SOA
| CANL BYD 5 POIQUARTO BX (3 — 0] uC_RXDI
: : RSO —a— NESTOUT DU IVUARTOTX —15 : W TXDI
BS ao 2 | NRSTINT_ 40 | ey B01JUARTO_CTS <17 3¢
MCP235115K = al " POI3ARTD RTSETCE — o5
T @D) LR ; 15 T
PO.I4/CAN RX st ——Eal
e = m1gmor —+— 0L
£ o PLi7TDo 53— 10
B——p P00 PLISITCE T8
T Bs PLIOTTMS —r—r—
B3 POs POIOUARTI RX 0 T uC RXD2
T PO PALUARTI_TX LU W TN
Tz B =
—a m TEST _6—“|
o 3 . P X o
M diapy P00 o AN
Y DO.OWBOOTD —+—
o X POMMED —— X
alE 2 e 200 o
% L pogs P12 q:;l—m-& GPIO33
STRTS2FRITS

Sekil 4.3 - ARM7 Devre Semasi [16]

ARM7 islemci 4 MHz’lik harici osilator ile ¢alismaktadir. Bu osilator
frekans1 mikro denetleyici icindeki dahili PLL (Phase Locked Loop) ile 64 MHz
seviyesine yiikseltilerek ana sistem saat darbesi elde edilmis olur. Bu sistem
frekansindan sistemin farkli birimleri (cekirdek, cevresel birimler, RTC, vb.) i¢cin

frekans boliiciiler vasitasiyla farkli frekanslar elde edilir [12].

STR752 mikro denetleyicisinin CAN hattina baglantisim saglamak i¢in 2.0B
protokoliinii destekleyen CAN alici/vericisi olan MCP2551 tercih edilmistir.
MCP2551’nin mikro denetleyici ve CAN Bus arasindaki baglantis1 Sekil 4.3’de
gosterilmistir. Ayrica bu siiriicii SPI TM seri ara yiizii icerir, bu ylizden herhangi bir
mikro denetleyicinin CAN Bus’a baglantis1 i¢in kullanilabilir [17]. CAN hattina

baglanan fiziksel yol 120 Ohm sonlandirma direnci ile sonlandirilmastir.

Ara¢ lizerindeki CAN mesajlan SAE J1939 standardina gore
yapilandiridmistir. SAE (Society of Automotive Engineers) J1939, motorlu arag

46

bilesenleri arasindaki haberlesme ve sistem kontrolii icin kullanilan bir standarttir.

Arag iizerine fiziksel olarak dagitilmig elektronik kontrol {initelerinin ger¢ek zamanl

kapali cevrim kontrol fonksiyonlarim icra etmek iizere tasarlanmistir. J1939

standardina gore 29 bit identifier Sekil 4.4’te gosterilmistir [18].

CAM EXTEMDED | & IDENTIFIER

5| 1 IDENTIFIER EXTENSION R

FRAME FORMAT | 0 1183 Rl o 18 8ITs .
F R| E R

333 s | priormy || 0| FRRTRTLFT | s) 1) er POU SPECIFIC B3) SOURCE ADDRESS ..

FRAME FORMAT | O P R| | e :

Flalz] a|7|e|s|e|3| gl gl 2[v | o FETETAEY] 2) 1| 8| 7| ¢ 5| 4| s|2|1|R
11333 FRAME BIT —
poson 1023 |a|s|e|7 85| 10| v 12 13 14 15] 16) 17| 18] 15) 20| 21) 22 23| 24 25| 26) 27 28 253031 |32] 33

CANZSEIITID' 28 |27 (26 (25|24 |23 (22 (21| 20 13 1§ 7] 18| 15 14) 13 12| 11| 1 3| 8| 7| E| S| 4 I|T |1 [0
POSTION

Sekil 4.4 — SAE 1939 29 Bit Identifier [18]

Aracin haberlesme sistemi olan CAN Bus iizerinde araca ait biitiin bilgiler

J1939 standardinda bulunmaktadir [19]. Arac¢ iizerindeki CAN Bus hattindan

asagidaki mesajlar almarak degerlendirilip anlamli bir sekilde sunucuya

gonderebilmesi icin ARMY islemciye iletilmektedir.

1.

2
3.
4.
5

Arac Hiz1

Yakat Seviyesi

Motor Devri

Motor Harareti (Sicaklig)

Di1s Ortam Hava Sicaklig

4.4 CAN Bit Zamanlamasi

CAN Bus performanst ve birimlerin hatali duruma diismelerini engellemek

icin bit zamanlamas1 yapilmalidir. Burada hesaplama i¢in gerekli temel kavramlar

verilmis ve bizim uygulamamiz i¢in hesaplama yapilarak mikro denetleyicinin CAN

zamanlama yazmacina yazilacak deger belirlenmistir.

4.4.1 CAN Bit Zamaninin Yapilandirmasi

CAN bit zamani iist iiste binmeyen boliimlerden olugsmustur. Bu boliimlerden

her biri Zaman Pargas1 (Time Quanta — t;) adi1 verilen tam say1 birimlerden olusur.

47
Nominal Bit Hiz1 (NBR) hicbir senkronizasyona ihtiya¢ duyulmadan ideal bir verici

tarafindan saniyede gdnderilen bit sayisidir ve Esitlik 4.1 ile tanimlanir:

NBR=f,, = 1 “4.n

bit

Senk. Seqg. Propagasyon Seq. Faz Seq. 1 (P51) Faz Seg. 2 (P52)

A

Ornekleme
Noktasi

Nominal Bit Zamam (NBT),

Sekil 4.5 - CAN Bit Zamani Boliimleri [20]

4.4.1.1 Nominal Bit Zamam

Nominal Bit Zaman1 (NBT) veya ty, Sekil 4.5’de gosterilen ve {ist iiste
binmeyen parcalardan olusur. Sonu¢ olarak NBT Esitlik 4.2°deki boliimlerin
toplamindan olusur.

Lyir = Usnkseg T lprop TEpsy T1pgy 4.2)

4.4.1.2 Senkronizasyon Segmenti

Nominal Bit Zamani i¢indeki ilk boliimdiir ve hatta bagli birimleri senkronize
etmek icin kullanilir. Bite ait yiikselen ve diigsen kenarlarin bu béliim icinde olugmasi

beklenir. 1 t; genisliginde sabittir.

4.4.1.3 Propagasyon Segmenti

Hatta bagl birimler arasindaki fiziksel gecikmeleri telafi i¢indir. Propagasyon

gecikmesi fiziksel hat iizerindeki sinyal yayilim zamanlarinin toplaminin iki kati

48
olarak tammmlanmistir ve CAN siiriiclisiinden kaynaklanan gecikmeyi de icerir. Bu

boliim 1 — 8 tq arasinda programlanabilir.
4.4.1.4 Faz Segmenti 1 ve Faz Segmenti 2

Bu iki boliim kenar faz hatalarini telafi etmek i¢in bulunmaktadir. Yeniden
esleme (resyncronization) ile PS1 uzatilabilir ve PS2 kisaltilabilir. PS1 1- 8 tq aras1

uzunlukta, PS2 ise 2- 8 tq arast uzunlukta programlanabilir.
4.4.1.4 Ornekleme Noktas

Lojik seviyesinin okunup degerlendirildigi noktadir. Ornekleme noktas1 Faz

Segmenti 1’den sonra yerlestirilmistir.
4.4.1.5 Bilgi Isleme Zamam (Information Processing Time — IPT)

Orneklenen bitin seviyesini (lojik 1/0) belirlemek icin ihtiya¢ duyulan siiredir.

4.4.1.6 Senkronizasyon Atlama Genisligi (SJW)

Gonderilen mesajla senkonizasyonun saglanabilmesi icin bit saat darbesini 1

—4 tq arasinda (yapilandirilan sekilde) ayarlar.
4.4.1.7 Zaman Parcasi (Time Quanta - t,)

Bit zamanini olusturan her bir béliim tam say1 kat1 olarak ifade edilen zaman
boliimlerinden (Time Quanta — t;) olusur. Her bir zaman pargasinin uzunlugu osilator
periyoduna (tosc) baghdir. Ana zaman parcacigi yapilandirilmaya bagli olarak
osilator periyodunun katlarina esittir. Sekil 4.6 bit periyodunun osilator periyodundan

elde edilmesini gostermektedir.

t Senk PropSeq
BIT (sabit) (Programlanabhilir) {Programlanabilin) (Programlanabilir)
| | | | | |
TQ |
|t
R | | | | | | | | >
| | | | | | | | |
|-q CAN Bit Zamam p-l

Sekil 4.6 - t ve Bit Periyodu [21]

tq uzunlugu bir t; saat darbesi uzunluguna (tgrpcrk) esittir ve programlanabilir
bir 6n béliimleyici olan Baud Rate Prescaler (BRP) kullanilarak programlanabilir. Bu

Esitlik 4.3’de gosterilmistir:

2-BRP
t,=2-BRP T, = (4.3)

osc

4.4.2 Bit Zamaninin Senkronize Edilmesi

CAN Bus iizerindeki biitiin birimler aynm1 nominal bit hizina sahip olmalidir.
Giiriiltli, faz kaymalar1 ve osilator dalgalanmalari, nominal bit hizinin sistemdeki
gercek bit hizina esit olmamasi1 durumlarini yaratir. Bu nedenle, hattaki mesajlarla

senkronize olabilen bir metoda ihtiya¢ vardir.

CAN spesifikasyonu olabilecek en kotii osilator toleransinin % 1.58 oldugunu

ve bu toleransin da yavas iletimler (125 kb/s ve alt1) icin uygun oldugunu belirtir.

CAN protokolii, mesaj Onceligi icin kullanilan zararsiz karar vermek

mekanizmasim gerceklestirmek icin ¢ekinik (lojik 1) ve baskin (lojik 0) durumlar

50
tanimlamistir. Bu mekanizma en fazla yayilma gecikmelerinden etkilenmektedir. Her

bir birim 6ncelik mekanizmasin isletebilmek icin ayni bit zamam i¢in her bir bit
seviyesini 6rneklemek zorundadir. Ornek olarak farkli uglardaki iki birim aym anda
mesajlarin1 gondermeye bagsladiginda Oncelik kontrol mekanizmasini isletmelidir.
Oncelik mekanizmasimn isletilmesi de her iki birimin de ayni1 bit zamani siiresince
ornekleme yapabilmesi durumunda etkilidir. Bu gercek, belirlenen veri iletim hizlar1
icin CAN iletim hattinin sinirlt oldugunu belirtir. Bir CAN sisteminin propagasyon
gecikmesi, fiziksel hat {izerinde sinyalin iletilmesi (tyys), ¢ikis siiriiciisii gecikmesi
(ta) ve giris karsilastiricisimin (tenp) toplamlart olarak Esitlik 4.4°deki gibi

hesaplanir:

tPrnp =2 (tbus + tcmp + tdrv) (44)

4.4.2.1 Senkronizasyon

Mesajlarin dogru olarak degerlendirilebilmesi icin alicilar gonderilen mesaja
kendilerini senkronize etmek zorundadirlar. Senkronizasyonu gerceklestirmek icgin
iki metot vardir.

e Hard Senkronizasyon: Bu senkronizasyon tiiri sadece hat seviyesinin
cekinikten baskina degisimi sirasinda olur (mesaj baslangicinda). Bit
sayicisinin Senkronizasyon Segmenti ile yeniden baglatilmasini saglayarak
senkronizasyonu saglar. Bu noktada biitiin alicilar gonderici ile senkron

duruma gelir. Hard senkronizasyon bir mesaj boyunca sadece bir kez yapilir.

* Yeniden Senkronizasyon: Bu senkronizasyonun amaci hard senkronizasyon
ile yapilan diizenin korunmasidir. Bu senkronizasyon olmadan alict birimler

osilatorlerindeki dalgalanmalardan dolayr senkronizasyon dis1 kalabilirler.

4.4.3 Bit Zamanlama Parametrelerinin Hesaplanmasi

Zamanlama yapilandirilmast icin Once istenen hat hizi belirlenmelidir.

Buradan da minimum bit zamani ortaya cikar. Bit zamani1 4-25 aras1 zaman pargacigi

51
(tg) icerebilir. t;’nun uzunlugu bit hiz1 6n boliimleyicisi (BRP) tarafindan ty = (BRP)

foys esitligi ile tanimlanir. Burada £y sistem saat darbesi frekansidir.

Bit zamani, uzunluklar1 t;’nun kat1 olan segmentlerden olusur. Bunlardan ilki
PropSeg uzunlugudur. Bu uzunluk hat uzunluguyla dogru orantili olarak degisir.
Sonugta elde edilen PropSeg, zaman parcacig (tq) cinsinden bulunur. SenkSeg sabit
olup 1 ty uzunlugundadir. PropSeg ve SenkSeg’den arta kalan siire (Bit Siiresi —
PropSeg — 1) faz segmentleri tarafindan kullamlir. Eger arta kalan bu siire ¢ift sayida
tq iceriyorsa FazSegl = FazSeg? olur, tek sayida tq iceriyorsa FazSeg2 = FazSegl +1
esitligi saglanir. FazSeg2 uzunlugunun [0..2] t4 olan bilgi isleme zamanindan (IPT)
daha kisa olamayacagi goz Oniinde bulundurulmalidir. SJW (Syncronization Jump
Width) uzunlugu maksimum degerine ayarlanir. Bu da 4 veya FazSegl’den kisa

olanina esittir.

Yapilandirmada osilatdr toleransi, propagasyon gecikmesi ve benzeri
durumlar hesaba katilmalidir. Eger birden fazla yapilandirma miimkiinse en yiiksek
osilator toleransina miisaade eden yapilandirma secilmelidir. Ciinkii CAN sisteminin
osilator toleransi sistemdeki en diisiik toleransa sahip biriminki ile sinirhidir. CAN
Bus iizerindeki propagasyon zamam hesaplamasi, en fazla gecikmeye sahip birimler
hesaba katilarak yapilmalidir. Aymi bit hizin1 elde etmek i¢in farkli sistem saat

darbelerine sahip birimler farkli yapilandirmalar gerektirir.

CAN bit zamanlamasinin protokole uygun olarak yapilandirmasi igin,
hesaplama sonucu hat uzunlugunun veya iletim hizinin diisiiriilmesini, osilatér

frekansinin artirilmasini isaret edebilir.

Esitlik 4.5 ile olusturulan yapilandirma, Bit Zamanlama Yazmaci'na (Bit

Timing Register) yazilir:

(FazSeg2 —1) & (FazSegl +PropSeg —1) & (SIW —1) & (OnBoliimleyici —1) (4.5)

52
Bizim uygulamamizda ¢evresel birimler i¢in kullanilan saat darbesi frekansi

(APB_CLK) 8 MHz, bit hiz1 6n bdliiciisii (BRP) 0 ve iletim hiza 250 kbit/s olarak

secilmistir. Bu degerlere gore bit zamani hesaplandiginda [13]:

tq 125 ns = tAPB_CLK

CAN Bus siiriicii gecikmesi 50 ns

Alic1 devre gecikmesi 30 ns

Hat uzunlugu gecikmesi (40m) 220 ns

tprop 750 ns =61,

tsyw 125 ns =1t p

trsegt 875 ns = tprop + tsyw

tTSeg2 250 ns = Bilgi isleme zamam (IPT) +

1z,

{SenkSeg 125 ns =1 [q

Bit zaman (ty;) 1250 ns = tsenkSeg + tTSegl + tTseg2

APB_CLK toleransi 0.78 % = min(PBl, PB2)
2X(13xbit _ zamani— PB2)

_ 0.25us
2x(13x1.25us —0.25us)
Bu hesaplamalar sonucunda Bit Zamanlama Yazmaci’na programlanacak
deger:

(FazSeg2 —1) & (FazSegl +PropSeg —1) & (SJW —1) & (OnBéliimleyici — 1) (Bkz.
4.5)

ile uygun olarak Esitlik 4.6 ile:
2-1)1 & [16-1)15&(1-1)& (1 —-1)o=0x1F00 (4.6)

olarak bulunur.

4.5 Uygulama Kaynak Kodu

Uygulama gelistirilirken C Programlama Dili kullanilmistir. Uygulama

gelistirme ortami olarak Keil puVision3 v3.53 tercih edilmistir.

53
Projeye ait kaynak kodu dosyalarim1 ve kullanilan kiitiiphane dosyalarini

gosteren proje calisma sayfasi Sekil 4.7°de goriilmektedir.

Ana program main.c dosyasi i¢inde yer almaktadir. Olusan kesmeler (CAN,
12C, RTC, harici seviye degisimi, ADC cevrim tamamlanmasi) sonucunda kesme

vektorlerinin dallanip icra ettigi fonksiyonlar ise 75x_it.c dosyasinda bulunmaktadir.

Project Workspace]

E-£23 STR7S® Release
Ea Startup Code
. STR7Sx.5
-5 Inkerrupts
B [#] Tt
-5 Retarget
Retarget.c
Ea Library

...... STR7S=R.LIE

L STR75xD.LIE
=-£3 Source
- [£] main.c

=N EREEEEN

Sekil 4.7 - Proje Calisma Sayfasi

4.5.1 Main.c

Main.c dosyasi icinde yer alan kaynak kodlar1 asagida verilmistir. Bu
fonksiyonda Oncelikle farkli sistemlerin saat darbelerini ve cevresel birimleri
yapilandiran alt fonksiyonlar ¢agrilmaktadir. Daha sonra watchdog zamanlayicisi
kurularak sonsuz bir dongii icerisine girilmektedir. Bu dongii igerisinde watchdog
zamanlayicist siirekli olarak sifirlanarak tasip sistemi yeninden baglatilmasi
onlenmektedir. CAN Bus lizerinden alinan mesajlar da burada degerlendirilip uygun
degiskenlere yazilmaktadir. Harici kesme ile okunan frekans degerleri degiskenlere
atanmakta ve temizlenerek bir sonraki saniyede okunmaya hazir hale gelmektedir.
Ayrica bizim sistemimize bagli olan ARMY islemcinin kilitlenmesi durumunda

yeniden baslatilmasi da main fonksiyonu i¢inde yapilmaktadir.

4.5.1.1 Main

void main()

{

/* Sistem clock yapilandirilmasi */
MRCC_Configuration () ;

/* Giris cikis portlari yapilandirilmasi
GPIO_Configuration();

/* CAN yapilandirilmasi */
CAN_Configuration();

/* I2C yapilandirilmasi */
I2C_Configuration();

/* RTC yapilandirilmasi */
RTC_Configuration();

/* ADC yapilandirilmasi */
ADC_Configuration();

/* UART vyapilandirilmasi */
UART_Configuration();

/* EXTIT yapilandirilmasi */
EXTIT Configuration();

/* Harici kesme yapilandirilmasi */
EIC_Configuration();

*/

/* Watchdog zamanlayicisini 4.2s icin kur */
WDG_InitStructure.WDG_Mode = WDG_Mode_WDG;

WDG_InitStructure.WDG_Preload = OxXFFFF;
WDG_InitStructure.WDG_Prescaler = 0xFF;
WDG_Init (&WDG_InitStructure);

WDG_Cmd (ENABLE) ;

while (1)

{

/* Watchdog zamanlayicisini yeniden baslat */

WDG->KR = OxA55A;
WDG->KR = O0x5AA5;

/* CAN Bus'dan okunan mesajlari degerlendir */

if (CAN_Data_Received) {

switch (RxCanMsg.Id)
{
case 0xOCFEF17A: /* Arac hizi */

SpeedL RxCanMsg.Datal[l];
SpeedH = RxCanMsg.Datal[Z2];
SpeedH <<= 8;
Speed = (SpeedH | SpeedL) /
break;

256;

case O0x1CFEFCBl: /* Yakit seviyesi */

Fuellevel = RxCanMsg.Datal[l]
break;

case 0xOCFO004EE: /* Motor devri */
RpmL = RxCanMsg.Datal[3];

* 4 / 10;

54

55
RpmH = RxCanMsg.Datal4];
Rpm <<= §;

Rpm = (RpmH | RpmL) / 8;
break;

case O0xOCFEEEEE: /* Motor sicakligi */
EngTemp = RxCanMsg.Data[0] - 40;
break;

case Ox1CFEF5AC: /* Ortam hava sicakligi */
AmbTempl = RxCanMsg.Data[3];
AmbTempRpmH = RxCanMsg.Datal[4];
AmbTemp <<= 8;
AmbTemp = (AmbTempH | AmbTempL) - 273;
break;
CAN_Data_Received = TRUE;
break;

default:
break;

CAN_Data_Received = FALSE;
}
}

if (TimeDisplay == TRUE) /* Saniyede bir kez icra edilecek */
{

fl = fregl_value;

£f2 = freg2_value;

£f3 = freg3_value;

f4 = fregd_value;

freql_value = freg2_value = freqg3_value = freqg4_value=

0;
if ((GPIO_ReadBit (GPIO1l, GPIO_Pin_3) == Bit_RESET)&&
(ResetTimer >= 60)) {
GPIO_WriteBit (GPIO1, GPIO_Pin_3, Bit_SET);
printf ("Yeniden baslatilma sona erdi!\n\r");
}
ResetTimer++;

if (ResetTimer >= 900) {
GPIO_WriteBit (GPIO1, GPIO_Pin_3, Bit_RESET);
printf ("ARM9 yeniden baslatildi!\n\r");
ResetTimer = 0;

}

TimeDisplay = FALSE;
}

4.5.1.2 MRCC_Configuration

Farkli sistemlerin saat darbeleri bu fonksiyon i¢inde yapilandirilmaktadir.

void MRCC_Configuration(void)
{

56

/* 4MHz’1ik osilatorun baslamasini bekle */
0SC4MStartUpStatus = MRCC_WaitForOSC4MStartUp() ;

if (OSC4MStartUpStatus == SUCCESS)
{
/* HCLK 32MHz */
MRCC_HCLKConfig (MRCC_CKSYS_Div2) ;

/* CKTIM 16MHz */
MRCC_CKTIMConfig (MRCC_HCLK_Div2) ;

/* PCLK 8MHz */
MRCC_PCLKConfig (MRCC_CKTIM Div2) ;

/* CKSYS 64MHz */
MRCC_CKSYSConfig (MRCC_CKSYS_0OSC4MPLL, MRCC_PLL_Mul_16);

}

/* Giris-cikis pinlerini 3.3V icin yapilandir */
MRCC_IOVoltageRangeConfig (MRCC_IOVoltageRange_3V3);

/* Kullanilan cevresel birimlerin saat darbelerini aktif et */

MRCC_PeripheralClockConfig (MRCC_Peripheral_ I2C |
MRCC_Peripheral ADC | MRCC_Peripheral_GPIO | MRCC_Peripheral UARTO |
MRCC_Peripheral EXTIT | MRCC_Peripheral_ CAN, ENABLE);

/* 4MHz’1ik osilatoru 128’e bolerek RTC saat darbesini olustur */
MRCC_CKRTCConfig (MRCC_CKRTC_0OSC4M_Div128);

/* RTC’nin hazir olmasini bekle */
while (MRCC_GetFlagStatus (MRCC_FLAG_CKRTCOK) == RESET);

4.5.1.3 GPIO_Configuration

Giris c¢ikis pinleri kullanimlarma uygun olarak bu fonksiyon iginde

yapilandirilir.

void GPIO_Configuration(void)

{
GPIO_InitTypeDef GPIO_InitStructure;

/* CAN TX ve CAN RX pinlerini yapilandir */
GPIO_StructInit (&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_ AF_ PP;
GPIO_WriteBit (GPIO0, GPIO_Pin_15, Bit_SET);
GPIO_Init (GPIOO0, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init (GPIOO0, &GPIO_InitStructure);

/* I2C SCL ve SDA pinlerini yapilandir */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 ;
GPIO_Init (GPIOO0, &GPIO_InitStructure);

57
/* UARTO_Rx pinini yapilandir */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init (GPIOO, &GPIO_InitStructure);

/* UARTO0_Tx pinini yapilandir */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_ AF_ PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_Init (GPIOO0, &GPIO_InitStructure);

/* P0.04, P0.05, P0.06, P0.07 pinlerini Open-Drain cikis yap */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_=6

GPIO_Pin_7;
GPIO_Init (GPIOO0, &GPIO_InitStructure);

/* ADC kanal 9, 10 ve 11 pinlerini yapilandir */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_ AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_6 | GPIO_Pin_S8

GPIO_Init (GPIO1l, &GPIO_InitStructure);

/* ADC kanal 8 pinini yapilandir */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_ AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_29;
GPIO_Init (GPIOO0, &GPIO_InitStructure);

/* Frekans girisi pinlerini yapilandir */

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin 5 | GPIO_Pin_7 | GPIO_Pin_9
| GPIO_Pin_10 | GPIO_Pin_12;

GPIO_Init (GPIO1l, &GPIO_InitStructure);

/* ARM9'u resetleyen cikis pinini yapilandir*/
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;
GPIO_Init (GPIO1l, &GPIO_InitStructure);

4.5.1.4 CAN_Configuration

CAN cevresel biriminin yapilandirildigi fonksiyondur.

void CAN_Configuration (void)

{
/* CAN Buz hizini ayarla, kesmeleri etkinlestir */
CAN_Struct.CAN_ConfigParameters=CAN_CR_IE;
CAN->BTR = 0x1FO00;
CAN_Struct.CAN_Bitrate=CAN_BITRATE_250K;
CAN_Init (&CAN_Struct);

/* Mesaj nesnelerini yapilandir */
CAN_InvalidateAllMsgObij();
CAN_SetTxMsgObj (CAN_TX_ MSGOBJ, CAN_EXT_ID);
CAN_SetRxMsgObj (CAN_RX_ MSGOBJ, CAN_EXT_ID, 1, CAN_LAST_EXT_ID,
TRUE) ;
}

58

4.5.1.5 EIC_Configuration

Cevresel birimlere ait kesmelerin yapilandirildigir ve onceliklerinin atandigi

fonksiyondur.

void EIC_Configuration (void)

{
EIC_IRQInitTypeDef EIC_IRQInitStructure;

/* CAN kesmesini yapilandir ve onceligini ata */
EIC_IRQInitStructure.EIC_IRQChannel=CAN_IRQChannel;
EIC_IRQInitStructure.EIC_IRQChannelPriority=1;

/* I2C kesmesini yapilandir ve onceligini ata */
EIC_IRQInitStructure.EIC_IRQChannel = I2C_IRQChannel;
EIC_IRQInitStructure.EIC_IRQChannelPriority = 2;

/* Harici kesmeyi yapilandir ve onceligini ata */
EIC_IRQInitStructure.EIC_IRQChannel = EXTIT_IRQChannel;
EIC_IRQInitStructure.EIC_IRQChannelPriority = 3;

/* RTC kesmesini yapilandir ve onceligini ata */
EIC_IRQInitStructure.EIC_IRQChannel = RTC_IRQChannel;
EIC_IRQInitStructure.EIC_IRQChannelPriority = 4;

/* ADC kesmesini yapilandir ve onceligini ata */
EIC_IRQInitStructure.EIC_IRQChannel = ADC_IRQChannel;
EIC_IRQInitStructure.EIC_IRQChannelPriority = 5;

EIC_IRQInitStructure.EIC_IRQChannelCmd = ENABLE;

EIC_IRQInit (&EIC_IRQInitStructure);
EIC_IRQCmd (ENABLE) ;

4.5.1.6 RTC_Configuration

RTC (gercek zamanli saat) ve saniye degisimlerinde kesme iiretilmesi bu

fonksiyon icinde yapilandirilir.

void RTC_Configuration (void)
{
/* RTC'yi etkinlestir */
MRCC_PeripheralClockConfig (MRCC_Peripheral_RTC, ENABLE);

/* RTC yazmaclarinin senkronize olmasini bekle */
RTC_WaitForSynchro () ;

/* RTC yazmaclarina yazma isleminin bitmesini bekle */
RTC_WaitForLastTask () ;

/* RTC Saniye kesmesini etkinlestir */
RTC_ITConfig (RTC_IT_Second, ENABLE);

/* RTC yazmaclarina yazma isleminin bitmesini bekle */

RTC_WaitForLastTask () ;

/* RTC periyodunu 1 saniyeye ayarla */
RTC_SetPrescaler (31249);

/* Saati ayarla */
THH = 00;

/* Dakikayi ayarla */
TMM = 00;

/* Saniyeyi ayarla */
TSS = 00;

/* Sayici degerini hesapla */
Tmp = THH * 3600 + TMM * 60 + TSS;

/* RTC yazmaclarina yazma isleminin bitmesini bekle */

RTC_WaitForLastTask () ;

/* Sayici degerini ayarla */
RTC_SetCounter (Tmp) ;

}
4.5.1.7 ADC_Configuration

59

Analog dijital cevrimin nasil yapilacagi ve hangi durumda kesme iiretecegi bu

fonksiyon icinde yapilandirilir.

void ADC_Configuration (void)

{
ADC_InitTypeDef ADC_InitStructure;

ADC_InitStructure.ADC_ConversionMode = ADC_ConversionMode_Scan;
ADC_InitStructure.ADC_ExtTrigger = ADC_ExtTrigger_Disable;
ADC_InitStructure.ADC_AutoClockOff = ADC_AutoClockOff_Disable;

ADC_InitStructure.ADC_SamplingPrescaler = 5;
ADC_InitStructure.ADC_ConversionPrescaler =

ADC_InitStructure.ADC_FirstChannel = ADC_CHANNELS;

ADC_InitStructure.ADC_ChannelNumber = 4;
ADC_Init (&ADC_InitStructure);

/* Secilen kanallarin tamami cevrildikten sonra kesme

olusturulmasini
etkin kil */
ADC_ITConfig (ADC_IT_ECH, ENABLE);

/* ADC'yi etkinlestir */
ADC_Cmd (ENABLE) ;

/* Kalibrasyonu baslat */

ADC_StartCalibration (ADC_CalibAverage_Enable);

/* Cevrim islemine basla */
ADC_ConversionCmd (ADC_Conversion_Start);

60
4.5.1.8 UART_Configuration

Bu fonksiyonda UART belirtilen ayarlar ile yapilandirilmistir.

void UART_Configuration(void)
{
UART_InitTypeDef UART_InitStructure;

/* UARTO yapilandirilmasi */

/* UARTO su sekilde yapilandirilmistir:

- Veri bitleri = 8 bit

- Dur bitleri = 1 bit

- Eslik = tek

- Saniyedeki bit sayisi = 115200

- Akis denetimi = yok

- Gonderme ve alma etkin
*/
UART_InitStructure.UART WordLength = UART WordLength_8D;
UART_InitStructure.UART_StopBits = UART_StopBits_1;
UART_InitStructure.UART_ Parity = UART_Parity_0dd ;
UART_InitStructure.UART_BaudRate = 115200;
UART_InitStructure.UART_ HardwareFlowControl=
UART_HardwareFlowControl_None;
UART_InitStructure.UART_Mode = UART_Mode_ Tx_Rx;
UART_InitStructure.UART_FIFO = UART_FIFO_Disable;

UART_Init (UARTO, &UART_InitStructure);

/* UARTO etkinlestir */
UART_Cmd (UARTO, ENABLE);

4.5.1.9 fputc

Bu fonksiyon ile C kiitiiphanesindeki printf fonksiyonu UARTO0’a
baglanmaktadir. Yani printf fonksiyonu ile yazdirilan karakterler UARTO iizerine
gonderilmektedir. Bizim uygulamamizda bu hata ayiklama mesajlar1 bastirmak igin

kullanilmastir.

int fputc(int ch, FILE *f)
{
UART_SendData (UARTO, (u8) ch);
while (UART_GetFlagStatus (UARTO, UART_FLAG_TxFIFOFull) != RESET);

return ch;

61
4.5.1.10 EXTIT_Configuration

Bu fonkiyonda harici kesme kanallar1 kare dalganmin diisen kenarinda kesme

tiretmek lizere yapilandirimaktadir.

void EXTIT_Configuration (void)
{
EXTIT _InitTypeDef EXTIT_InitStructure;

/* 7,8,9,10 harici kesme kanallarindaki bekleyen biti temizle
*/

EXTIT ClearITPendingBit (EXTIT_ ITLine7 | EXTIT ITLine8 |

EXTIT ITLine9 | EXTIT_ITLinelO | EXTIT_ITLinel2);

/* 7,8,9,10 harici kesme kanallarinin dusen kenarlarinda kesme
uretecek sekilde yapilandir */

EXTIT InitStructure.EXTIT_ITLine = EXTIT_ITLine7 |
EXTIT _ITLine8|

EXTIT ITLine9 | EXTIT_ITLinelO | EXTIT_ITLinel2;

EXTIT _InitStructure.EXTIT_ITTrigger = EXTIT_ITTrigger_Falling;

EXTIT InitStructure.EXTIT_ITLineCmd = ENABLE;

EXTIT _Init (&EXTIT_InitStructure);

}
4.5.1.11 I2C_ReceivedDataEvaluate

Bu fonksiyon I2C kesmesi olustugu anda 75x_it.c dosyasi igindeki
[12C_IRQHandler fonksiyonu tarafindan cagrilmaktadir. ARM9 islemciden gelen veri
istegi degerlendirilip uygun karsilik bir tampon hafizaya yazilmaktadir. ARMO9
islemcinin bu bilginin kendisine gonderilmesini istemesi durumunda ise tampon
hafizadaki mesaj yine 75x_it.c dosyast i¢indeki I2C_IRQHandler fonksiyon

tarafindan gonderilmektedir.

void I2C_ReceivedDataEvaluate (void)

{

if ((Rx_Buffer[0]) !'= ("#"')) {
sprintf (Tx_Buffer, "#HATALI MESAJ ALINDI!");
} else if ((Rx_Buffer[1l]) == ('C")) { /* CAN Mesajlari*/
if ((Rx_Buffer[2]) == ('1")) {
sprintf (Tx_Buffer, "#C1%04X!", Speed) ;
} else if ((Rx_Buffer[2]) == ('2")) {
sprintf (Tx_Buffer, "#C2%04X!",FuelLevel) ;
} else if ((Rx_Buffer[2]) == ('3")) {
sprintf (Tx_Buffer, "#C3%04X!", Rpm) ;
} else if ((Rx_Buffer[2]) == ('4")) {
sprintf (Tx_Buffer, "#C4%04X!", EngTemnp) ;
} else if ((Rx_Buffer[2]) == ('5")) {

sprintf (Tx_Buffer, "#C5%04X!", AmbTemp) ;
}
} else if ((Rx_Buffer[l]) == ('A')) { /* Analog degerler*/
if ((Rx_Buffer[2]) == ('1")) {
sprintf (Tx_Buffer, "#A1%02X!",adcl_value);

} else if ((Rx_Buffer[2]) ==
sprintf (Tx_Buffer, "#A2%02X!",adc2_value) ;
} else if ((Rx_Buffer[2]) ==
sprintf (Tx_Buffer, "#A3%02X!", adc3_value) ;
} else if ((Rx_Buffer[2]) ==
sprintf (Tx_Buffer, "#A4%02X!",adc4_value);

}
} else if ((Rx_Buffer[1l])
if ((Rx_Buffer[2])

("F"))

("17))

62
(r2')) |

('3')) |

(*4')) |

{ /* Frekans degerleri */

{

sprintf (Tx_Buffer, "#F1%02X!", freql_value) ;
} else if ((Rx_Buffer[2]) ==
sprintf (Tx_Buffer, "#F2%02X!", freq2_value) ;
} else if ((Rx_Buffer[2]) ==
sprintf (Tx_Buffer, "#F3%02X!", freg3_value) ;
} else if ((Rx_Buffer[2]) ==
sprintf (Tx_Buffer, "#F4%02X!", freqg4_value) ;

}
}

printf ("$s\n\r",Rx_Buffer);

Rx_Buffer[Rx_Idx — 1] = 0;

(r2')) |
('3')) |

(*4')) |

4.5.2 75x_it.c

75x_it.c dosyast kesme (interrupt) {iretilmesi

fonksiyonlar1

icermektedir.

main.c dosyasi

sonucunda

icra edilen

icindeki EIC_Configuration

fonksiyonunda kesme iiretmek icin yapilandirilan ¢evresel birimlerin (CAN, I°C,

harici kenar degisimi kesmesi, RTC, ADC) iirettigi kesmeler bu dosya icindedir.

4.5.2.1 CAN_IRQHandler

CAN Bus iizerinden mesaj alindiginda bir kesme tiretilmektedir. CAN kesme

vektorii bu kesme fonksiyonuna dallanmaktadir. Burada kesme olusmasina sebep

olan durum belirlenmekte ve bir degisken true yapilmaktadir. main.c dosyas1 i¢indeki

ana dongli icindeki kod tarafindan ise alinan mesaj islenerek anlamli hale

getirilmektedir.

void CAN_IRQHandler (void)

{
u32 msgobj = 0;

if (CAN->IDR == 0x8000)
(void) CAN->SR;
} else 1if (CAN->IDR >=

/* kesme olusmasina sebep olan mesaj nesnesi numarasini al */

{ /* durum kesmesi */

/* yazmaci temizlemek icin oku*/

1 && CAN->IDR <= 32) {

63
switch (msgobj = CAN->IDR - 1)
{
case 0 /* CAN_TX MSGOBJ - Gonderme kesmesi */:
CAN_ReleaseTxMessage (msgobj) ;
break;

case 1 /* CAN_RX_MSGOBJ - Alma kesmesi */:
CAN_ReceiveMessage (msgobj, TRUE, &RxCanMsqg);
switch (RxCanMsg.Id)
{
case 0xOCFEF17A: /* Arac hizi */
case 0x1CFEFCBl: /* Yakit seviyesi */
case 0xOCFOO4EE: /* Motor devri */
case 0xOCFEEEEE: /* Motor sicakligi */
case O0x1CFEF5AC: /* Ortam hava sicakligi */
CAN_Data_Received = TRUE;
break;

default:
break;

}

CAN_ReleaseRxMessage (msgobij) ;
break;

default:
CAN_ReleaseMessage (msgobij) ;
break;

4.5.2.2 I2C_IRQHandler

I°C haberlesmesi gereksiz kod isletilmesini Onlemek icin siirekli gozleme
yerine kesme kontroliinde yapilmaktadir. I°C ile alman mesajlar main.c icindeki
[12C_ReceivedDataEvaluate fonkiyonunda degerlendirilerek gerekli yanit mesaji bir
tampon hafizaya yazilmaktadir. Tampon hafizadaki bu mesaj yine kesme

kontroliinde aliciya iletilmektedir.

void I2C_IRQHandler (void)
{
switch (I2C_GetLastEvent())
{
case I2C_EVENT_SLAVE_ADDRESS_MATCHED:
Rx_Idx = Tx_Idx = 0;
break;

case I2C_EVENT_SLAVE_BYTE_RECEIVED:
Rx_Buffer [Rx_Idx++] = I2C_ReceiveDatal();
if (Rx_Buffer[Rx_Idx — 1] == "'!") {
I2C_ReceivedDataEvaluate () ;
}

break;

64
case I2C_EVENT_SLAVE_BYTE_TRANSMITTED:
I12C_SendData (Tx_Buffer [Tx_Idx++]);
break;

case I2C_EVENT_SLAVE_ACK_FAILURE:
I2C_SendData (0xFF) ;
break;

case I2C_EVENT_SLAVE_STOP_DETECTED:
Rx_Idx = Tx_Idx = 0;
break;

default:
break;

4.5.2.3 EXTIT_IRQHandler

Harici kesme ile 4 adet 10kHz seviyesine kadar frekans girisi okunmakta ve
ayn1 zamanda ARMY islemcinin gdnderdigi kare dalga isaretler okunarak bu isaret
kesildiginde ARMY islemci resetlenmektedir. Bu islemi yanligsiz ve en etkin sekilde
yapmanin yolu bu girislerde yiikselen veya diisen bir kenar goriildiiglinde kesme
olusturmaktadir. Bu uygulama diisen kenarlarda kesme iiretilmesi igin
yapilandirimistir. Kesmeye sebep olan diisen kenarin hangi kanal {izerinde olustugu

da EXTIT_GetITStatus fonksiyonu ile belirlenmektedir.

void EXTIT_IRQHandler (void)
{

1f (EXTIT_GetITStatus (EXTIT_ITLine7) != RESET)

{
freqg4_value++;

/*Harici kesme kanali 7'nin kesme bekleme bitini temizle*/
EXTIT_ClearITPendingBit (EXTIT_ITLine7);

} else 1f(EXTIT_GetITStatus(EXTIT_ITLine8) != RESET)

{
freqg3_value++;

/* Harici kesme kanali 8'in kesme bekleme bitini temizle */
EXTIT_ClearITPendingBit (EXTIT_ITLine8);

} else 1f(EXTIT_GetITStatus(EXTIT_ITLine9) != RESET)

{
freqg2_value++;

/* Harici kesme kanali 9'un kesme bekleme bitini temizle */
EXTIT_ClearITPendingBit (EXTIT_ITLine9);

} else 1f(EXTIT_GetITStatus(EXTIT_ITLinel(O) != RESET)

{
freqgl_value++;

/*Harici kesme kanali 10'un kesme bekleme bitini temizle*/
EXTIT_ClearITPendingBit (EXTIT_ITLinelO);

}

/*ARM9 islemci 12 nolu harici kesme kanalinin seviyesini

65
degistirirse ARM9'un resetlenmesini onlemek icin sayiciyi
sifirla */
1f (EXTIT_GetITStatus (EXTIT_ITLinel2) != RESET)

{

ResetTimer = 0;
/*Harici kesme kanali 12'nin kesme bekleme bitini temizle*/
EXTIT_ClearITPendingBit (EXTIT_ITLinel2);

4.5.2.4 RTC_IRQHandler

Saniyede bir kez RTC kesmesi olugsmakta ve bu fonksiyon icra edilerek

zaman giincellenmektedir.

void RTC_IRQHandler (void)
{
if (RTC_GetITStatus (RTC_IT_Second) != RESET)
{
/* RTC saniye kesmesi bekleme bitini temizle */
RTC_ClearITPendingBit (RTC_IT_Second) ;

/* RTC yazmaclarina yazma isleminin bitmesini bekle */
RTC_WaitForLastTask () ;
}

/* Zamani guncelle */
TimeDisplay = TRUE;

4.5.2.5 ADC_IRQHandler

Biitiin kanallardaki analog dijital ¢evrim tamamlandiktan sonra bir kesme

olusturularak bu fonksiyon icra edilir ve ¢evrim sonuclar1 gerekli degiskenlere atanir.

void ADC_IRQHandler (void)

{
/* Analog dijital cevrim sonuclarini al */
adcl_value = ADC_GetConversionValue (ADC_CHANNEL11) ;
adc2_value ADC_GetConversionValue (ADC_CHANNEL1O0) ;
adc3_value = ADC_GetConversionValue (ADC_CHANNEL9) ;
adc4_value = ADC_GetConversionValue (ADC_CHANNELS) ;

/* Cevrim sonunda kesme bekleme bitini temizle */
ADC_ClearITPendingBit (ADC_IT_ECH);

66
5. SONUCLAR

Bu calismada CAN Bus cevresel birimine sahip ARM7 mimarisindeki
STR752FRO mikro denetleyicisi kullanilarak bir uygulama gelistirilmistir.

Gelistirilen uygulama Arag Takip Cihazi’nin bir parcasidir. Arag takip cihazi,
aracin internet lizerinden izlenmesi, araca ait ¢esitli bilgilerin uzaktan goriilebilmesi,
gerekli durumlarda aracin bir sistemini cahistirmak i¢in komut gonderilmesi gibi
amaglarla kullanilmaktadir. Bu cihaz giiniimiizde araclarda standart hale gelen CAN
Bus haberlesme sistemine baglanarak sistemden ihtiyag¢ duyulan bilgileri alip
degerlendirmekte ve bir merkeze kablosuz olarak gondermektedir. Uygulamanin
biitiinliik arz etmesi amaciyla CAN Bus’dan alinan bilgiler haricinde ara¢ tizerindeki
frekans bilgileri, analog bilgiler gibi olabilecek diger bilgiler de alinarak

degerlendirilmektedir.

CAN Bus sistemine bagli cihazlarin hatasiz ve yiiksek performansta
calismalar1 icin bit zamanlamalar1 yapilmalidir. Bu uygulamada bit zamanlama
hesaplamalar1 ag¢iklamali olarak yapilmis ve mikro denetleyici hesaplanan bu degere

gore yapilandirilmistir.

CAN verileri gonderildikleri merkezde ara¢ sahipleri tarafindan
incelenebilecegi gibi arag iireticileri tarafindan da incelenebilir. Bu veriler aractaki
arizali parcalari, aracin kullanim istatistiklerini, hiz, devir, hararet gibi daha bir¢cok
bilgiyi icerebilir. Aragc CAN haberlesme sisteminde bu ve bunun gibi araca ait tiim
bilgiler mevcuttur. Arac ireticilerinin bu bilgileri incelemeleri sonucunda ariza

olusan parcalarda gelistirme ve performans dl¢iimii yapilabilir.

Bu uygulamanin bir ileri sathas1 okunan bu verilerin incelenmesi ve ornek
olarak aracta CAN Bus’a bagli bir birimin merkezden 6zel bir mesaj gdonderilmesi
yoluyla tekrar calisir hale gelmesi olabilir. Bu, servis maliyetlerini onemli Olciide

azaltacaktir ve arag iireticilerinin ihtiya¢ duydugu bir 6zelliktir.

67
KAYNAKLAR DIiZiNi

[1] Syed Misbahuddin, Nizar Al-Holou, 'Efficient Data Communication Techniques
for Controller Area Network (CAN) Protocol', ACS/IEEE International Conference
on Computer Systems and Applications, Tunis, pp.6-11, 2003.

[2] Hans A, Hansson Thomas Nolte and Christer Norstrom, 'Integrating Reliability
and Timing Analysis of CAN-based Systems', IEEE Transactions on Industrial
Electronics, Vol.49, no.6, pp.1240-1250, 2002.

[3] E. Gil-Dolcet, J. M. Fuertes, 'A New Communication Protocol for Automotive
Real-time Applications', The 26th IFAC/IFIP/IEEE Workshop on Real-Time
Programming, Poland, pp.147-152, 2003.

[4] Introduction to Controller Area Network (CAN), Microchip Technology
Incorporated, Web Seminar, 2004

[5] Jin Hui, Zhang Hong-kun and Ge An-lin, 'The Application of CAN Bus to the
Vehicle Intelligent Shift System', Journal of Highway and Transportation Research
and Development, Vol.21, no.3, pp.114-116, 2004.

[6] Esd Gmbh Hannover, “Controller Area Network, A Serial Bus System- Not Just

For Vehicles”, www.esd-electronics.com/pdffile/CAN/English/intro-e.pdf; pp. 1-8.
[7] 12" International CAN Conference, Conference Handouts, Barcelona, 2008
[8] CAN Specification Version 2.0, Robert Bosch GmbH, Stuttgart, 1991

[9] P. Gohner, Universitit Stuttgart, Institute of Industrial Automation and Software

Engineering, CAN Bus Theory, Stuttgart, 2006

[10] Murphy, N., A Short Trip On The CAN Bus, Embedded Systems Design,
http://www.embedded.com/columns/murphyslaw/13000304? requestid=639577,
Erigsim Tarihi Mayis 2008

68
[11] CAN in Automation, Physical Layer Standards, http://www.can-

cia.de/index.php 7id=88#c2029, Erisim Tarihi Nisan 2008

[12] STR750F ARM7TDMI-S 32-bit MCU with Flash, SMI, 3 Std 16-bit Timers,
PWM Timer, Fast 10-bit ADC, I2C, UART, SSP, USB and CAN User Manual Rev.
2.0, ST Microelectronics, France, 2006

[13] STR750 ARM7TDMI-S-Based Microcontroller Family Reference Manual Rev.
3.0, ST Microelectronics, France, 2007

[14] STR75X Software Library Rev. 1.0, ST Microelectronics, France, 2006

[15] ATAK Ara¢ Takip Sistemi Kullanim Kilavuzu Rev. 2.1, Ortem Elektronik
Sanayi ve Ticaret Limited Sirketi, Gebze, 2007

[16] ATAK Arag¢ Takip Sistemi Devre Semast Rev. 4.53, Ortem Elektronik Sanayi
ve Ticaret Limited Sirketi, Gebze, 2007

[17] Wang Xin-jie, Tang Xiao-qi and Yang Bo, 'Computer Monitor Network of Car
Based on CAN Bus', Machinery and Electronics, Vol.2, pp.21-23, 2002.

[18] Recommended Practice for a Serial Control and Communications Vehicle

Network Rev. 2005-01, SAE International, 2005

[19] Surface Vehicle Recommended Practice Vehicle Application Layer Rev. 2005-
01, SAE J1939-71, SAE International, 2005

[20] CAN in Automation, http://www.can-cia.de/index.php?id=88, Erisim Tarihi
Nisan 2008

[21] Richards, P., Understanding Microchip’s CAN Module Bit Timing, Microchip
Technology Incorporated, Application Note, 2001

Adi-Soyadi
Dogum Tarihi/Yeri
Egitim
Ilkogretim
Ortadgretim

Lisans

Yiiksek Lisans

Siirekli Adres

Telefon

E-Posta

OZ GECMIS

: Ugur Coskun
:22.01.1981 / Konya

: Lalebahge Ilkdgretim Okulu, Konya, 1993
: Konya Lisesi, Konya, 2000

: Erciyes Universitesi, Elektronik Miihendisligi Boliimii,

Kayseri, 2005

: Gebze Yiiksek Teknoloji Enstitiisii,

Elektronik Miihendisligi Boliimii, Gebze, 2008

: Giilbah¢e Mh. Yenigay Sk. No: 10 Meram / Konya
: 0535 5608835

: ucoskun@gyte.edu.tr

69

70

