
T. C.

GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ

MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

CONTROLLER AREA NETWORK

VE UYGULAMASI

Uğur COŞKUN

YÜKSEK LİSANS TEZİ

ELEKTRONİK MÜHENDİSLİĞİ

GEBZE

2008

T. C.

GEBZE YÜKSEK TEKNOLOJİ ENSTİTÜSÜ

MÜHENDİSLİK VE FEN BİLİMLERİ ENSTİTÜSÜ

CONTROLLER AREA NETWORK

VE UYGULAMASI

Uğur COŞKUN

Danışmanı

Yrd. Doç. Dr. Serdar S. ERDEM

YÜKSEK LİSANS TEZİ

ELEKTRONİK MÜHENDİSLİĞİ

GEBZE

2008

 iv

ÖZET

TEZİN BAŞLIĞI: Controller Area Network ve Uygulaması

YAZAR ADI : Uğur COŞKUN

CAN Bus 1986 yılında Robert Bosch tarafından otomobillerdeki çok sayıda sensör

ve mikro denetleyiciyi bir kablo yumağı ile bağlamak yerine bunlar arasındaki veri

transferini yazılım kontrollü tek bir hattan sağlamak amacıyla geliştirilmiştir. CAN,

otomotiv endüstrisindeki en bilinen haberleşme sistemidir. Her ne kadar başlangıçta

yalnızca otomotiv uygulamaları için tasarlanmış olsa da yüksek performansı

güvenirliliğinden dolayı birçok dağıtık (distributed) endüstriyel kontrol

uygulamalarında yaygın olarak kullanılmaktadır. Güvenliğin çok önemli olduğu

gerçek zamanlı uygulamalarda da kullanılır. Öyle ki istatistiksel olasılık hesapları

sonucunda bir asırda bir tane tespit edilemeyen mesaj hatası yapabileceği tespit

edilmiştir.

Uygulama alanı yüksek hızlı ağlardan düşük maliyetli çoklu kablolamalı sistemlere

kadar geniştir. CAN Bus, otomobil elektroniği, akıllı motor kontrolü, robot kontrolü,

akıllı sensörler, asansörler, makine kontrol birimleri, kaymayı engelleyici sistemler,

trafik sinyalizasyon sistemleri, akıllı binalar ve laboratuar otomasyonu gibi uygulama

alanlarında maksimum 1Mbit/sn'lik bir hızda veri iletişimi sağlar.

Bu tezde CAN 2.0B standardı incelenmiştir. ARM7 çekirdeği üzerine kurulu

STR752FR0 mikro denetleyicisinin donanım özellikleri ve yazılım kütüphanesi

açıklanmıştır. Bu mikro denetleyici bir CAN uygulaması yapılmıştır.

 v

SUMMARY

THESIS TITLE: Controller Area Network and Its Application

AUTHOR : Ugur COSKUN

CAN Bus standard was developed by Robert Bosch GmbH for the communication of

the sensors and microcontrollers in cars with each other through a single bus.

Because the ever increasing use of these components in cars results in a high level of

wiring burden and communication problems, CAN Bus soon becomes the most

popular communication standard in automotive industry. The high performance and

robustness of the protocol has expanded its use to many distributed automation and

industrial applications. It is also used in the real time applications where reliability is

the most important. Statistical probability calculations show that a CAN system can

miss only one faulty message in a century.

CAN bus can be used for a wide range of applications, even the ones requiring very

high-speeds. It supports the data rates up to 1 Mbit/s for the applications like

automotive electronics, intelligent engine control, robot control, intelligent sensors,

lift systems, machinery control systems, anti-skid systems, traffic signalization

systems, intelligent home and laboratory automation systems.

CAN Bus Specification 2.0B is investigated in this thesis. Hardware configuration

and software library of STR752FR0 microcontroller is analyzed. A CAN application

is implemented using this microcontroller.

 vi

TEŞEKKÜR

Bu tez çalışması sırasında beni yönlendiren ve yol gösteren sayın hocam Yrd.

Doç. Dr. Serdar Süer ERDEM’e, Ortem Elektronik Ltd. Şirketi’ne, eğitim hayatım

boyunca beni her konuda destekleyen aileme, tezimin hazırlanması sırasında

yardımlarını esirgemeyen arkadaşlarıma teşekkür ederim.

Uğur COŞKUN

 vii

İÇİNDEKİLER DİZİNİ

Sayfa

ÖZET iv

SUMMARY v

TEŞEKKÜR vi

İÇİNDEKİLER DİZİNİ vii

SİMGELER VE KISALTMALAR DİZİNİ xii

ŞEKİLLER DİZİNİ xiii

TABLOLAR DİZİNİ xiv

1. GİRİŞ 1

2. CAN BUS (Controller Area Network) 2

2.1 Giriş 2

2.2 Temel Kavramlar 4

2.2.1 Mesajlar 5

2.2.2 Veri Yönlendirme 5

2.2.3 CAN Bus Hızı 6

2.2.4 Öncelikler 7

2.2.5 Uzaktan Veri Talebi (Remote Data Request) 7

2.2.6 Multimaster 7

2.2.7 Karar Mekanizması (Arbitration) 8

2.2.8 Güvenilirlik 9

2.2.9 Hata Belirtme ve Düzeltme Zamanı 9

2.2.10 Hata Sınırlama 10

2.2.11 Bağlantılar 10

2.2.12 Tekli Fiziksel İletim Ortamı 10

 viii
2.2.13 Hat Değerleri 10

2.2.14 Onay Mekanizması (Acknowledgment) 11

2.2.15 Uyku Modu / Uyanma 11

2.2.16 Osilatör Toleransı 11

2.3 Can Mesajları ve Mesaj Çeşitleri 11

2.3.1 Data Frame 12

2.3.2 Remote Frame 14

2.3.3 Error Frame 15

2.3.4 Overload Frame 15

2.4 Mesaj Filtreleme 16

2.5 Mesaj Geçerliliği 16

2.6 Mesaj Kodlama 17

2.7 Hata Yönetimi 17

2.7.1 Hata Belirleme 17

2.7.2 Hata Belirtme 17

2.8 Hata Sınırlama Mekanizması 18

2.9 Can Bit Zamanlaması 19

3. STR750 MİKRO DENETLEYİCİSİ 20

3.1 Giriş 20

3.2 STR750 Donanım Özellikleri 20

3.2.1 CAN Çevresel Birimi 21

3.2.1.1 Başlıca Özellikler 21

3.2.1.2 Blok Diyagram 22

3.2.1.3 Fonksiyonel Özellikler 23

3.2.1.4 Yazmaçlar (Registers) 23

3.2.1.5 CAN Haberleşmesi 24

3.2.2 Gömülü Flash ve RAM içeren ARM7TDMI-S Çekirdeği 25

 ix
3.2.3 Gömülü Flash Hafızası 25

3.2.4 Gömülü SRAM 25

3.2.5 Gelişmiş Kesme Yöneticisi (Enhanced Interrupt Controller) 26

3.2.6 Seri Hafıza Arayüzü (Serial Memory Interface – SMI) 26

3.2.7 Saat Darbeleri ve Başlama (Clocks and Start-Up) 26

3.2.8 Başlama Modları (Boot Modes) 27

3.2.9 Güç Kaynağı Modları 27

3.2.10 Düşük Güç Modları 28

3.2.11 Diğer Çevresel Birimler 29

3.2.11.1 DMA 30

3.2.11.2 RTC (Real-Time Clock) 30

3.2.11.3 WDG (Watchdog Timer) 30

3.2.11.4 Timebase Timer (TB) 30

3.2.11.5 Senkronize Edilebilir Standart Zamanlayıcılar (TIM2:0) 30

3.2.11.6 Motor Kontrol PWM Zamanlayıcısı 31

3.2.11.7 I2C Bus 31

3.2.11.8 Yüksek Hızlı Üniversal Asenkron Alıcı Verici (UART) 31

3.2.11.9 Senkron Seri Çevresel Birim (SSP) 31

3.2.11.10 Universal Seri Bus (USB) 32

3.2.11.11 ADC (Analog Dijital Dönüştürücü) 32

3.2.11.12 GPIO (Genel Amaçlı Giriş Çıkış) 32

3.2.12 Blok Diyagram 32

3.3 STR750 Yazılım Kütüphanesi 34

3.3.1 Yazılım Kütüphanesi İçeriği 37

3.3.1.1 Örnekler (Examples) 37

3.3.1.2 Kütüphane (Library) 37

3.3.1.3 Proje (Project) 39

 x
3.3.2 Dosya Tanımları 39

4. CAN UYGULAMASI 42

4.1 Giriş 42

4.2 Uygulama Tanımı 42

4.3 ARM7 ile Araç İçi Veri Toplama ve Araç Kontrolü 43

4.4 CAN Bit Zamanlaması 46

4.4.1 CAN Bit Zamanının Yapılandırması 46

4.4.1.1 Nominal Bit Zamanı 47

4.4.1.2 Senkronizasyon Segmenti 47

4.4.1.3 Propagasyon Segmenti 47

4.4.1.4 Faz Segmenti 1 ve Faz Segmenti 2 48

4.4.1.4 Örnekleme Noktası 48

4.4.1.5 Bilgi İşleme Zamanı (Information Processing Time – IPT) 48

4.4.1.6 Senkronizasyon Atlama Genişliği (SJW) 48

4.4.1.7 Zaman Parçası (Time Quanta – tq) 48

4.4.2 Bit Zamanının Senkronize Edilmesi 49

4.4.2.1 Senkronizasyon 50

4.4.3 Bit Zamanlama Parametrelerinin Hesaplanması 50

4.5 Uygulama Kaynak Kodu 52

4.5.1 Main.c 53

4.5.1.1 Main 54

4.5.1.2 MRCC_Configuration 55

4.5.1.3 GPIO_Configuration 56

4.5.1.4 CAN_Configuration 57

4.5.1.5 EIC_Configuration 58

4.5.1.6 RTC_Configuration 58

4.5.1.7 ADC_Configuration 59

 xi
4.5.1.8 UART_Configuration 60

4.5.1.9 fputc 60

4.5.1.10 EXTIT_Configuration 61

4.5.1.11 I2C_ReceivedDataEvaluate 61

4.5.2 75x_it.c 62

4.5.2.1 CAN_IRQHandler 62

4.5.2.2 I2C_IRQHandler 63

4.5.2.3 EXTIT_IRQHandler 64

4.5.2.4 RTC_IRQHandler 65

4.5.2.5 ADC_IRQHandler 65

5. SONUÇLAR 66

KAYNAKLAR DİZİNİ 67

ÖZ GEÇMİŞ 69

 xii

SİMGELER VE KISALTMALAR DİZİNİ

CAN : Controller Area Network

ID : Identifier

SOF : Start of Frame

CRC : Cyclic Redundancy Check

RTR : Remote Transfer Request

DLC : Data Length Code

RTR : Remote Transmission Request

IDE : Identifier Extension Bit

EOF : End of Frame

TEC : Transmit Error Counter

REC : Receive Error Counter

RISC : Reduced Instruction Set Computer

ARM : Advanced RISC Machine

RTC : Real Time Clock

PWM : Pulse Width Modulation

ADC : Analog to Digital Converter

I2C : Inter Integrated Circuit

UART : Universal Asynchronous Receiver Transmitter

USB : Universal Serial Bus

GPIO : General Purpose Input Output

GSM : Global System for Mobile Communications

GPRS : General Packet Radio Service

GPS : Global Positioning System

SJW : Synchronization Jump Width

 xiii

ŞEKİLLER DİZİNİ

Şekil Sayfa

2.1 ISO 11898 Standart CAN Bus Bağlantı Şeması 4

2.2 CAN BUS Hat Uzunluğu - Hız Değişim Grafiği 7

2.3 CAN Mesaj Gönderme Karar Mekanizması 8

2.4 CAN Bus'daki Lojik Seviyeler 10

2.5 CAN Data Frame ve Bit Uzunlukları [3] 12

2.6 Control Field [3] 13

2.7 Remote Frame [3] 15

2.8 Error Frame [3] 15

2.9 Overload Frame [3] 16

3.1 CAN Arayüzü Blok Diyagramı 22

3.2 STR752F Blok Diyagramı [12] 33

3.3 Yazılım Kütüphanesi Dizin Yapısı [14] 38

3.4 Yazılım Kütüphanesi Dosya Mimarisi [14] 41

4.1 Araç Takip Sistemi Çalışma Prensibi [15] 42

4.2 Araç Takip Cihazı Blok Şeması 43

4.3 ARM7 Devre Şeması [16] 45

4.4 SAE J1939 29 Bit Identifier [18] 46

4.5 CAN Bit Zamanı Bölümleri [20] 47

4.6 tq ve Bit Periyodu [21] 49

4.7 Proje Çalışma Sayfası 53

 xiv

TABLOLAR DİZİNİ

Tablo Sayfa

2.1 CAN Standardı Gelişimi [8] 3

2.2 Hat Uzunluğuna Bağlı Hız Değişimi [10] 6

2.3 CAN Bus Doğruluk Tablosu (D: Dominant, R: Resesif) 11

2.4 Veri Baytları Kodlaması (d: Dominant, r: Resesif) 13

2.5 Hata Modları ve Şartları [3] 18

3.1 CAN Kütüphanesi Fonksiyonları 35

3.2 Yazılım Kütüphanesi Dosya Tanımları [14] 40

1. GİRİŞ

Bu çalışmanın amacı günümüzde otomotiv, endüstriyel otomasyon ve yüksek

güvenilirliğe ihtiyaç duyulan birçok alanda kullanılan CAN Bus protokolünü

tanıtmak ve bu protokol kullanılarak bir uygulama gerçekleştirmektir.

CAN çok yüksek güvenilirlik seviyesine sahip günümüzün en popüler seri

haberleşme protokollerindendir.

2. Bölüm’de CAN Bus standardı detaylı şekilde incelenmiş ve bu protokolü

kullanmanın neden doğru seçim olduğu açıklanmıştır. Ayrıca protokolün hata

önleme mekanizmaları açıklanarak yüksek güvenilirliğe sahip olmasının nedenleri

üzerinde durulmuştur.

3. Bölüm’de, bu tezde gerçekleştirilen uygulamada kullanılan mikro

denetleyici, donanım özellikleri ve yazılım kütüphanesi olarak ayrıntılı olarak

incelenmiştir.

4. Bölüm uygulamanın gerçekleştirildiği bölümdür. Bu bölümde uygulamaya

ait kaynak kodları sunulmuştur ve haberleşmenin performansını önemli ölçüde

etkileyen CAN bit zamanlaması açıklanmış ve hesapları yapılmıştır.

Sonuç bölümü olan 5. Bölüm’de uygulama ile elde edilen sonuçlar ve bu

uygulamanın gelişmeye açık yönleri anlatılmıştır.

 2

2. CAN BUS (Controller Area Network)

2.1 Giriş

CAN (Controller Area Network) istasyona değil mesaja dayalı, asenkron seri

CSMA/CD (Carrier Sense Multiple Access/Collision Detection), mikro

denetleyiciler arası bir haberleşme protokolüdür [1]. Protokol, Bosch Corporation

tarafından geleceğin otomobillerindeki birçok elektronik cihaz arasındaki veri

aktarımı sorununu çözmek için 1980’lerde geliştirilmiştir. Daha sonra geniş bir

kullanım alanı bulmuştur ve günümüzde endüstriyel otomasyon, otomotiv ve mobil

cihaz sektöründe yaygın olarak kullanılmaktadır. CAN Bus, zekâyı, hata toleransını

ve yüksek derecede güvenilirliği [2] birleştiren, gerçek zamanlı dağıtılmış kontrolü

[3] destekleyen bir protokoldür. Genel olarak, CAN zeki sistemlerin haberleşmesine

ihtiyaç duyulan her yerde kullanılabilir [4].

CAN’de merkezi bir birim yoktur ve iki veya daha fazla birim arasındaki

mesaj iletimi doğrudan, yönetici birim aracılığı olmadan yapılır. CAN, tek-gönder

çok-al modunda çalışabilir ve bu mod onu otomotiv uygulamalarında kullanmak için

çok avantajlı duruma getirir [5]. CAN kullanmanın diğer avantajları da sistem

düzeyinde kolay yapılandırılması ve merkezi bir tanı koyma (diagnose) imkânının

bulunmasıdır [6].

CAN protokolü çift yönlü seri veri haberleşmesi için bir ISO standardıdır.

ISO 11519 Standardı: Düşük hızlı uygulamalar içindir (Basic CAN ve Standard CAN

olarak da bilinir). ISO 11898 Standardı: Yüksek hızlı uygulamalar içindir (Full CAN

veya Extended Frame CAN olarak da bilinir).

CAN protokolünün otomotiv, endüstriyel otomasyon ve mühendisliğin çeşitli

alanlarında kabul edilmiş olmasının bazı sebepleri şunlardır: Multi-master yeteneği;

multicast özelliği; hataların bulunması ve belirtilmesi; gürültüye karşı önemli ölçüde

bağışıklık; gecikmelerin en aza indirilmesi; mesaj önceliği; öncelikteki karar

mekanizmasının zeki olması (zaman ve bilgi kaybı olmaması); sürekli ve geçici

 3
hataların ayırt edilmesi; başarısız (sürekli hatalı mesaj gönderip hattı gereksiz yere

meşgul eden) birimlerin kapatılması; yüksek iletim hızı (1Mbit/s); iletim hızının

ayarlanabilmesi; fiziksel iletim için sadece iki tel kullanılması; esneklik; güvenilirlik;

düşük maliyet; ISO standardı olması; standart donanımının bulunması [7].

Tablo 2.1’de CAN standardının gelişim aşamaları gösterilmiştir.

Tablo 2.1 - CAN Standardı Gelişimi [8]

Versiyon Yıl Değişiklikler

1.0 1985

1.1 1987 Bit zamanlama ihtiyaçları yeniden tanımlandı

1.2 1990 Osilatör toleransı artırıldı

Part A-Versiyon 1.2 ile aynı

2.0 1991 Part B – Data Frame ve Remote Frame için ikinci bir format

olan “Extended Frame” tanıtıldı

CAN protokolünün doğru seçim olmasının birçok sebebi vardır [9]:

• Gelişmiş bir standarttır: 20 yıldan uzun bir süredir (1986’dan beri)

kullanılmaktadır. Günümüzde piyasada birçok CAN ürünü bulunmaktadır.

• Protokolün donanım uygulaması: CAN protokolü silikon üzerine

kurulmuştur. Bu, CAN’e hata bulma ve düzeltme avantajlarını getirir.

• Basit bir iletim ortamı gerektirir.

• Mükemmel hata düzeltme: Bu, CAN’in güçlü yönlerinden biridir. Hata

düzeltme algoritmaları geliştirilmiştir. Hata bulma ve hatalı mesajın tekrar

gönderilmesi CAN donanımı tarafından otomatik olarak yapılır.

• Hatalı birimi kapatma: CAN sürekli hatalı iletim yapan birimi kapatarak

sistemi tıkamasını engeller.

Şekil 2.1’de standart CAN Bus bağlantısı gösterilmiştir.

 4

Şekil 2.1 – ISO 11898 Standart CAN Bus Bağlantı Şeması

2.2 Temel Kavramlar

CAN Bus şu özelliklere sahiptir:

• Mesaj önceliği

• Konfigürasyon esnekliği

• Veri kararlılığı

• Hata bulma ve bildirme

• Multimaster

• Çoğa gönderim (Multicast)

• Bozulmuş mesajları otomatik olarak yeniden iletme

• Geçici hataları sürekli hata ve eksikliklerden ayırt etme ve sürekli hatalı

gönderim yapan cihazları kapatma.

Tasarım saydamlığı ve uygulama esnekliği amacıyla CAN iki farklı alt

bölüme ayrılmıştır [7].

1. Veri Bağlantı Katmanı (Data Link Layer)

a. Lojik Bağlantı Kontrolü (Logical Link Control (LLC))

b. Ortam Geçiş Kontrolü (Medium Access Control (MAC))

2. Fiziksel Katman (Physical Layer)

 5

Fiziksel katman sinyallerin gerçekte nasıl iletildiği ile ilgilenir. Bit

zamanlama, bit paketleme ve senkronizasyon bu katmanda yapılır.

Ortam Geçiş Kontrolü (MAC) katmanı CAN protokolünün çekirdeğini temsil

eder. LLC alt katmanından gelen mesajları alır ve LLC alt katmanına gönderilecek

olan mesajları kabul eder. MAC alt katmanı mesaj paketleme, karar mekanizması,

onaylama, hata bulma ve belirtmeden sorumludur.

LLC alt katmanı mesaj filtreleme, aşırı yüklenme uyarısı ve geri alma işlemi

ile ilgilenir.

2.2.1 Mesajlar

Veriler farklı fakat sınırlı uzunluktaki sabit biçimli mesajlar şeklinde

gönderilir. Hat boş olduğunda hatta bağlı herhangi bir birim yeni mesaj gönderebilir.

CAN Bus’da mesaj iletimi, veri ve zaman kaybı olmadan gerçekleştirilir.

Ethernet’de bu mümkün değildir, iki veya daha fazla birim aynı anda hatta mesaj

göndermeye başlarsa ikisi de bir bozulma olduğunu anlayıp mesajı geri çeker ve

rastgele bir süre sonra mesajı tekrar yayınlar, bu ise zaman kaybına sebep olur.

CAN’de ise bu problem öncelik (arbitration) ile çözülmüştür. İki mesaj aynı anda

gönderilmeye başlanırsa daha yüksek önceliğe sahip mesaj öncelik hakkını elde eder,

zaman ve veri kaybı olmadan iletilir. Önceliği yüksek mesaj gönderilirken daha

düşük öncelikli mesaj gönderici birim tarafından anında geri çekilir ve hattaki mesajı

dinler. Yüksek öncelikli mesajın iletimi tamamlandığı anda diğer mesajlar

gönderilebilir.

2.2.2 Veri Yönlendirme

CAN sistemlerinde bir CAN biriminin sistem yapılandırılması (birim adresleri

gibi) hakkında herhangi bir bilgiye ihtiyacı yoktur. Bunun bazı önemli sonuçları

şunlardır:

 6

• Sistem Esnekliği: CAN hattına yeni birimler diğer birimlerde hiçbir yazılım,

donanım değişikliği yapılmadan ve uygulama katmanı değiştirilmeden

eklenebilir.

• Mesaj Yönlendirme: Mesaj içeriği Identifier ile belirtilir. Identifier mesajın

hedefini belirtmez, verinin anlamını belirtir, böylece hatta bağlı bütün

birimler Mesaj Filtreleme ile mesajın kendilerine ait olup olmadığına karar

verirler.

• Çoğa Gönderim (Multicast): Mesaj Filtreleme kavramının sonucu olarak

herhangi bir sayıdaki birim aynı mesajı aynı anda alıp değerlendirebilir.

• Veri Kararlılığı: CAN hattında mesajın eş zamanlı olarak bütün birimler

tarafından kabul edildiği veya hiçbir birim tarafından kabul edilmediği

garanti edilmiştir. Böylece sistemin veri kararlılığı çoğa gönderim ve hata

bulma kavramları tarafından gerçekleştirilir.

2.2.3 CAN Bus Hızı

CAN hattının hızı farklı sistemlerde farklı olabilir. Ancak bir sistem içindeki

hız (bit-rate) sabittir. Tablo 2.2’de seçilen bazı hat uzunluklarına karşılık gelen iletim

hızları verilmiştir.

Tablo 2.1 - Hat Uzunluğuna Bağlı Hız Değişimi [10]

Hat Uzunluğu (metre) Maksimum Hız
40 1 Mbit/s
100 500 kbit/s
200 250 kbit/s
500 125 kbit/s
6000 10 kbit/s

Şekil 2.2 hat uzunluğuna bağlı olarak iletim hızı değişim eğrisini

göstermektedir.

 7

Şekil 2.2 - CAN Bus Hat Uzunluğu - Hız Değişim Grafiği

2.2.4 Öncelikler

Identifier hattaki iletimde mesajın statik önceliğini tanımlar. Nümerik olarak

daha küçük öncelik alanına (arbitration field) sahip olan mesaj önceliğe sahip olur.

2.2.5 Uzaktan Veri Talebi (Remote Data Request)

Belirli bir veriye ihtiyaç duyan birim Remote Frame göndererek diğer bir

birimden ihtiyaç duyduğu veriyi göndermesini talep edebilir. Data Frame ve buna

karşılık gelen Remote Frame aynı Identifier ile adlandırılır.

2.2.6 Multimaster

Hat boş olduğunda herhangi bir birim mesaj göndermeye başlayabilir. Daha

yüksek öncelikli bir mesaj gönderen birim hat geçiş hakkını kazanır.

 8

2.2.7 Karar Mekanizması (Arbitration)

Hat boş olduğu anda herhangi bir birim mesaj göndermeye başlayabilir. Eğer

iki veya daha fazla birim aynı anda mesaj göndermeye başlarsa, ID üstündeki öncelik

bitleri (arbitration field) kullanılarak karar mekanizması işletilir. Bu karar

mekanizması veri ve zaman kaybı olmamasını garanti eder. Eğer aynı ID’ye sahip bir

Data Frame ve Remote Frame aynı anda iletime başlarsa, Data Frame önceliklidir.

Karar verme sürecinde her verici (transmitter) gönderilen bit seviyesi ile hatta

gözlenen hat seviyesini karşılaştırır. Eğer seviyeler eşit ise göndermeye devam eder.

‘Çekinik’ (recessive) bir seviye gönderilip hatta ‘baskın’ (dominant) bir seviye

gözlendiği anda gönderme hakkını kaybetmiş olur ve bir bit daha göndermeden

mesajı geri çeker [11].

Şekil 2.3’de karar mekanizmasının işletilmesi gösterilmiştir.

Şekil 2.3 - CAN Mesaj Gönderme Karar Mekanizması

 9

2.2.8 Güvenilirlik

Veri iletim güvenilirliğini en üst seviyede tutmak için, hatalı mesajı

belirlemede güçlü ölçümler, hata belirtme ve kendi kendini test (self-checking)

işlemleri bütün birimler tarafından gerçekleştirilir.

• Hata Belirleme

Hataları belirlemek için aşağıdaki ölçümler gerçekleştirilir:

o Gözleme (Vericiler gönderilecek bit seviyeleri ile hattaki bit

seviyesini karşılaştırır)

o CRC (Cyclic Redundancy Check)

o Bit Doldurma (Bit stuffing)

o Mesaj Bütünlük Kontrolü (Message Frame Check)

• Hata Belirleme Performansı

Hata belirleme mekanizması aşağıdaki özelliklere sahiptir:

o Bütün global hatalar belirlenir.

o Vericilerdeki bütün yerel hatalar belirlenir.

o Mesajdaki 5 adede kadar olan ve rastgele dağılmış hatalar belirlenir.

o Mesajdaki uzunluğu 15’ten daha az olan burst hataları belirlenir.

o Mesajdaki herhangi bir tekil sayı hatası belirlenir.

CAN Bus’da fark edilmeden kalan bozulmuş mesaj iletilme ihtimali 4.7x10-11

den daha azdır.

2.2.9 Hata Belirtme ve Düzeltme Zamanı

Bozulmuş mesajlar hatayı belirleyen herhangi bir birim tarafından işaretlenir.

Böyle mesajlar iptal edilir ve otomatik olarak yeninden gönderilir. Hatayı belirleme

ile sonraki mesajı gönderme arasında geçen süre -eğer daha fazla hata yoksa- en

fazla 31 bit zamanıdır.

 10

2.2.10 Hata Sınırlama

CAN birimleri geçici ve sürekli hataları ayırt eder. Sürekli hatalı mesaj

gönderen birimler kapatılır.

2.2.11 Bağlantılar

CAN seri iletişim hattı birçok birimin bağlanabileceği bir şebekedir.

Bağlanabilecek birim adedinin teorik bir limiti yoktur. Pratikte ise bağlanabilecek

toplam birim sayısı gecikme zamanları ve/veya hattaki elektriksek yük ile sınırlıdır.

2.2.12 Tekli Fiziksel İletim Ortamı

Hat, bitleri taşıyan tek bir kablodan oluşur. Buradan veriyi yeniden eş zamanlı

hale getirme (resynchronization) bilgisi türetilebilir.

2.2.13 Hat Değerleri

Hat birbirinin tersi olan iki lojik değeri alabilir: Baskın (dominant) veya

çekinik (recessive). Baskın ve çekinik bitlerin eş zamanlı iletimlerinde hattın seviyesi

baskın olacaktır. Örnek olarak kablolu-AND implementasyonunda dominant seviye

lojik 0, çekinik seviye ise lojik 1 olacaktır. Lojik seviyeler Şekil 2.4’te gösterilmiştir.

Şekil 2.4 - CAN Bus'daki Lojik Seviyeler

Hatta birden fazla birimin mesaj göndermesi durumunda hattın hangi

seviyede olacağını Tablo 2.3 açıklamaktadır.

“1” = çekinik

“0” =
baskın

 11
Tablo 2.2 - CAN Bus Doğruluk Tablosu (D: Dominant, R: Resesif)

BİRİM A BİRİM B BİRİM C BUS

D D D D
D D R D
D R D D
D R R D
R D D D
R D R D
R R D D
R R R R

2.2.14 Onay Mekanizması (Acknowledgment)

Bütün alıcılar alınan mesajın tutarlılığını kontrol eder ve mesajın tutarlı ya da

tutarsız olduğunu belirtir.

2.2.15 Uyku Modu / Uyanma

Sistemin güç tüketimini azaltmak için, bir CAN cihazı uyku moduna

ayarlanabilir.

2.2.16 Osilatör Toleransı

Bit zamanlama ihtiyaçları 125kbit/s hızlarına kadar seramik resonatör

kullanılmasına müsaade etmiştir. CAN standardındaki maksimum hat hızına ulaşmak

için quartz osilatör kullanılmalıdır.

2.3 Can Mesajları ve Mesaj Çeşitleri

CAN, istasyona değil mesaja dayalı bir protokoldür. Bu, bütün birimlerin

bütün iletimleri fark edebileceği anlamına gelir. Sadece özel bir birime mesaj

gönderilemez, bütün birimler hattaki trafiğin tamamını kontrol eder. CAN

donanımında yerel bir filtreleme yapılır, bu şekilde bütün birimler sadece

ilgilendikleri mesajları kabul ederler.

 12
CAN 2.0 tanımlamasına göre iki çeşit mesaj paketi vardır: standart ve

genişletilmiş (extended) biçim. Aralarındaki fark identifier bitlerinin sayısıdır.

Standart biçimde identifier 11 bit, genişletilmiş biçimde ise 29 bittir. Bu iki formatın

da kendine göre avantajlı tarafları vardır. Genişletilmiş formatta çok daha fazla (500

milyondan fazla) çeşitlilikte farklı mesajlar üretilebilir. Standart formatta hat geçiş

süresi daha kısadır ve bu format için üretilen donanım da daha çoktur. Standart

formatta network iletişimi 2032 farklı mesaj çeşidi ile yönetilir.

1 Mbit/s transfer hızında Standart Frame'in geçiş süresi 110/134 µs (doldurma

bitsiz/doldurma bitli) iken Extended Frame'de bu süre130/159 µs kadardır.

CAN kısa mesajlar kullanır. Mesajlarda adres bilgisi bulunmaz, bunun yerine

“içerik adresli” olduklarını söylenebilir.

Dört farklı mesaj çeşidi vardır:

1. Data Frame

2. Remote Frame

3. Error Frame

4. Overload Frame

Data Frame ve Remote Frame, Standart Mesaj formatında veya Extended

Mesaj formatında olabilir. Bunlar önceki mesajlardan Interframe Space ile ayrılır.

2.3.1 Data Frame

En yaygın mesaj tipidir ve hatta veri göndermek için kullanılır. Şekil 2.5 Data

Frame ve içeriğindeki bölümlerin bit uzunluklarını göstermektedir.

Şekil 2.5 - CAN Data Frame ve Bit Uzunlukları [8]

 13
SOF (Start Of Frame): Data Frame ve Remote Frame’in başlangıcını belirtir.

Tek bir dominant bitten oluşur.

Arbitration Field: Mesaj önceliğini belirler. (CAN 2.0A’da 11 bit, CAN

2.0B’de 29 bit ID içerir)

RTR (Remote Transfer Request): Data frame’de dominant, remote frame’de

resesiftir.

Control Field: Mesajda kaç adet veri baytı bulunduğunu belirten 4 adet veri

uzunluk biti içerir. Şekil 2.6’da Control Field gösterilmiştir. Tablo 2.4’te ise 4 bit

veri uzunluk bitinin durumlarına göre mesajın kaç bayt veri içerdiği gösterilmiştir.

Şekil 2.6 – Control Field [8]

Tablo 2.3 - Veri Baytları Kodlaması (d: dominant, r: resesif)

Veri Uzunluğu Kodu (DLC) Veri Baytları

Sayısı DLC3 DLC2 DLC1 DLC0
0 d d d d
1 d d d r
2 d d r d
3 d d r r
4 d r d d
5 d r d r
6 d r r d
7 d r r r
8 r d d d

SRR: Standart formattaki RTR yerine kullanılmıştır.

 14
IDE (Identifier Extension Bit): 11 bit standart ve 29 bit genişletilmiş yapıyı

ayırır. Standart yapıda dominanttır.

Data Field: 0-8 byte arasında veri içerir.

CRC Field: 15-bit checksum bilgisi içerir. Hata belirleme için kullanılır.

ACK (Acknowledgement) Slot: Onay bitidir. Gönderici bunu çekinik olarak

gönderir, alıcı mesajı doğru olarak alırsa baskın bir bit gönderir, gönderici bu baskın

bitten mesajın doğru olarak teslim edildiğini anlar. Eğer verici baskın bit almazsa

mesajı yeniden gönderir.

EOF (End Of Frame): Bütün Data Frame ve Remote Frame’ler 7 adet resesif

bit içeren mesaj sonu bitleri ile sonlandırılır.

Eğer sistem içinde birkaç birim aynı anda aynı ID’ye sahip mesaj

gönderirlerse geçiş önceliği için şu kurallar uygulanır. Data frame remote frame’e

karşı önceliğe sahiptir, standart frame extended frame’e karşı önceliklidir.

2.3.2 Remote Frame

Data Frame ile benzerdir. Fakat iki tane önemli farklılık vardır.

• RTR biti çekiniktir.

• Data field yoktur.

Remote Frame’in amacı veri transfer isteğinde bulunmaktır. CAN birimleri

remote framelere otomatik olarak cevap vermek için veya sadece CPU’yu haberdar

etmek için kullanılabilir. Remote Frame ve içeriğindeki bölümlerin bit uzunlukları

Şekil 2.7’de gösterilmiştir.

 15

Şekil 2 - Remote Frame [8]

2.3.3 Error Frame

CAN’in mesaj kurallarını ihlal eden mesajlardır. Hatta bağlı bir birim hata

belirlediğinde error frame iletir ve böylece diğer birimler de hatadan haberdar olur ve

error frame iletir. Bu durumda mesajı ileten birim otomatik olarak mesajı yeniden

gönderir. CAN’deki kontrol algoritması bir birimin sürekli hatalı mesajlar ileterek

hattı meşgul etmesini engeller. Şekil 2.8 Error Frame’i göstermektedir.

Şekil 2.8 - Error Frame [8]

Error frame, error flag ve error delimiter içerir. Error flag aynı değere sahip

ardışık 6 bit içerir. Bu, bit doldurma kurallarını ihlal eder. Error delimiter 8 çekinik

bitten oluşur ve diğer birimlerin error flagi ilk belirlediklerin de onların da error flag

göndermesi için bir aralık sağlar.

2.3.4 Overload Frame

Çok meşgul olan bir birim tarafından sonraki data veya remote frame’in

gecikmesini istemek için gönderilir. Fakat günümüzdeki CAN denetleyicileri

overload frame kullanılmasını gerektirmeyecek kadar hızlı ve zekidir.

Bir sonraki remote veya data frame’i geciktirmek için art arda en fazla iki

overload frame gönderilebilir. Overload Frame’nin yapısı Şekil 2.9’da gösterilmiştir.

 16

Şekil 2.9 - Overload Frame [8]

2.4 Mesaj Filtreleme

Mesaj filtreleme işlemi Identifier’a bağlı olarak yapılır. İsteğe bağlı maske

yazmaçları filtreleme yapılmaması yönünde ayarlanabileceği gibi istenen bir grup

Identifier’ın alınan mesaj tamponuna bağlanmasını ve sadece o mesajların kabul

edilmesi yönünde de kullanılabilir.

Maske yazmaçları mesaj filtrelemek için aktif ve pasif yapılabilir. Maske

yazmaçlarının uzunluğu Indentifier’ın bir kısmını kaplayabileceği gibi tamamını da

kaplayabilir.

2.5 Mesaj Geçerliliği

Mesajın geçerli olduğuna karar verilen nokta, verici (transmitter) ve alıcı

(receiver) için farklıdır.

Vericiler: Verici için mesajın geçerli olması EOF (End Of Frame) sonuna

kadar hata olmaması durumundadır. Eğer mesaj bozulmuşsa, mesajın otomatik

olarak yeniden gönderimi öncelik kurallarına göre yapılır.

Alıcılar: Alıcılar için mesaj EOF’in sondan önceki bir bitine kadar hata

olmaması durumunda geçerlidir. EOF’in son biti önemsiz (don’t care) olarak

değerlendirilir ve baskın bir değer Form Error’a sebep olmaz.

 17

2.6 Mesaj Kodlama

Bit Dizisi Kodlaması: Mesaj frame bölümleri olan Start Of Frame, Arbitration

Field, Control Field, Data Field ve CRC sırası bit doldurma (bit stuffing) metodu ile

kodlanır. Verici gönderilecek mesajda beş adet aynı değere sahip ardışık bite

rastladığı anda otomatik olarak araya ters değerde bir bit ekler.

Data Frame ve Remote Frame’in geriye kalan diğer bölümleri (CRC

Delimiter, Ack Field ve End Of Frame) sabittir ve bunlara bit doldurma uygulanmaz.

Error Frame ve Overload Frame’de sabit formlara sahiptir ve bit doldurma metodu

bu mesajlar için de kullanılmaz.

2.7 Hata Yönetimi

2.7.1 Hata Belirleme

5 farklı hata önleme ve kontrol yöntemi vardır:

1. Bit gözleme (Bit monitoring)

2. Bit doldurma (Bit stuffing)

3. Frame kontrolü (Frame check)

4. Onay kontrolü (Acknowledgement check)

5. CRC (Periyodik Fazlalık Kontrolü) (15 bit)

2.7.2 Hata Belirtme

CAN protokolünde kullanılan hata kontrolü ve düzeltmesinin CAN sisteminin

performansı için büyük bir önemi vardır. Hata kontrolü hattaki hatalı mesajların

bulunmasını ve bunların yeniden iletilmesini amaçlar. Hatta bağlı bütün CAN

kontrolörleri mesajdaki hataları belirleyebilir. Eğer bir hata bulunursa, bunu bulan

birim hatta bir error flag gönderir, bu şekilde hattaki trafik akışı değişir. Diğer

birimler de error flag tarafından sebep olan hatayı belirler (eğer hala orijinal hatayı

belirlememişlerse) ve hatalı mesajı kabul etmezler.

 18
Her birim iki sayıcının durumunu değiştirebilir. Bunlar Gönderme Hatası

Sayıcısı (Transmit Error Counter) ve Alım Hatası Sayıcısıdır (Receive Error

Counter). Bu sayıcılar belli bir değeri geçtikten sonra hat Error Passive ve Bus Off

gibi konumlara geçebilir.

2.8 Hata Sınırlama Mekanizması

Bütün CAN kontrolörleri hattaki mesajlardaki hataları bulmaya çalışır. Eğer

bir hata bulunursa, bunu bulan birim bir error flag iletir ve hattaki mesaj trafiği

bozulur. Diğer birimler de eğer daha önce hatalı mesajdan kaynaklanan hatayı

belirlememişlerse bu error flagi fark eder ve hatalı mesajı reddeder.

Her bir birim iki hata sayıcısının değerini değiştirebilir. Bunlar gönderme hata

sayıcısı ve alıcı hata sayıcısıdır. Bu sayaçların değerlerinin nasıl artırılıp

azaltılacağına dair çeşitli kurallar vardır. Kısaca, hata belirleyen bir verici kendi

gönderme hata sayacını bu mesajı dinleyen birimler alıcı hata sayaçlarını artırmadan

daha önce artırır.

Bütün birimler Error Active modda çalışmaya başlar. Sayaçlardan herhangi

biri 127’yi geçtiği zaman birim Error Passive moda geçer. Gönderme hata sayıcısı

255’i geçtiğinde ise birim Bus Off durumuna geçer. Bu durum Tablo 2.5’te

gösterilmiştir.

Tablo 2.4 - Hata Modları ve Şartları (TEC: Transmit Error Counter, REC:ReceiveError Counter) [8]

CAN Birimi Durumu Gerekli Şart

Normal Mode TEC = REC = 0

Error Active Mode TEC < 128 ve REC < 128

Error Passive Mode TEC >= 128 veya REC >= 128

Bus Off Mode TEC >255

• Error active durumundaki birim hata belirlediğinden active error flag iletir.

• Error passive birim hata belirlediğinde passive error flag iletir.

• Bus Off durumundaki birim hatta hiçbir mesaj göndermez.

 19
Hata sayaçlarının değerlerinin artırılıp azaltılmasına ait kurallar karmaşıktır

ancak prensip basittir. Gönderme hataları 8 hata puanı, alım hataları ise 1 hata

puanıdır. Doğru iletilen ve/veya alınan mesajlar da hata sayaçlarının değerinin

azaltılmasına sebep olur.

2.9 CAN Bit Zamanlaması

CAN Bus bit zamanlaması Bölüm 3.3’de açıklanmıştır. Ayrıca uygulamaya

ait bit zamanı hesaplaması da aynı bölümde yapılmıştır.

 20

3. STR750 MİKRO DENETLEYİCİSİ

3.1 Giriş

Uygulamada ST Microelectronics tarafından üretilen STR752FR0 mikro

denetleyicisi kullanılmıştır. Bu, ARM7TDMI-S çekirdeği üzerine kurulu, 32-bit,

RISC mimarisinde bir mikro denetleyicidir.

Kaynak kod C Programlama Dili’nde oluşturulmuştur ve ST Microelectronics

tarafından sağlanan yazılım kütüphanesi kullanılmıştır.

3.2 STR750 Donanım Özellikleri

STR750 ailesi, 32-bit RISC (Reduced Instuction Set Computer) çekirdeğine

sahip ARM7TDMI ile yüksek performans, çok düşük güç tüketimi, yoğun kod

özelliği, zengin çevresel birimler ve ST Microelectronics’in en gelişmiş 0.18µ Flash

teknolojisini birleştirmektedir. STR750 ailesi, genelde birçok işlemcide bulunan

çevresel birimleri içerdiği gibi USB, CAN, gelişmiş motor kontrol zamanlayıcısı ve

saat darbesi hatası belirleme gibi bazı gelişmiş özellikleri de içerir. Giriş gerilimi

olarak 3.3V veya 5V kullanılabilir ve genişletilmiş sıcaklık sahasında (-40 -

+105°C) kullanılabilir. Bütün bu özellikler bu aileyi geniş bir uygulama sahasında

kullanılabilecek orijinal bir genel amaçlı mikro denetleyici ailesi yapar[12]:

• CAN uygulamaları

• USB çevresel birimleri, UPS, alarm sistemleri

• Fırçasız motor sürücüleri

• Programlanabilir lojik denetleyiciler (PLC), devre kesiciler, inverterler

• Tıbbi ve portatif gereçler

 21
STR750F ailesi 64 pin ve 100 pin paketler içerir. Uygulamamızda kullanılan

STR752FR0 64 pine sahiptir. Her iki paket tipi de aşağıdaki ortak özellikleri

içermektedir:

3.2.1 CAN Çevresel Birimi

STR752FR0’da CAN çevresel birimi CAN Çekirdeği (CAN Core), Mesaj

Hafızası (Message RAM), Mesaj İşleyici (Message Handler), Kontrol Yazmaçları

(Control Registers) ve Modül Arayüzü’nden (Module Interface) oluşur. Fiziksel

katmana bağlantı için ek bir donanım gereklidir ve bizim uygulamamızda MCP2551

kullanılmıştır.

CAN hattına bağlantı için ayrı Mesaj Nesneleri yapılandırılır. Mesaj

Nesneleri ve kabul filtrelemesi için kullanılan Tanıtıcı Maskeleri (Indentifier Masks)

mesaj hafızasında depolanır.

Mesajların işlenmesi ile ilgili bütün fonksiyonlar Mesaj İşleyici’de

gerçekleştirilir. Bu fonksiyonlar kabul filtrelemesi, mesajların CAN Çekirdeği ve

Mesaj Hafızası arasındaki iletimi, iletim isteklerinin işlenmesi ve modül

kesmelerinin üretilmesini içerir.

CPU, CAN çevresel biriminin yazmaç grubuna modül arayüzü vasıtası ile

doğrudan erişebilir. Bu yazmaçlar CAN Çekirdeği ve Mesaj işleyicinin

denetimi/yapılandırılması için ve Mesaj Hafızası’na erişim için kullanılır.

3.2.1.1 Başlıca Özellikler

• CAN protokol versiyon 2.0 A ve B’yi destekler.

• 1 MBit/s hat hızını destekler.

• 32 Mesaj Nesnesi vardır.

• Her bir Mesaj Nesnesi’nin kendi ayrı tanıtıcı maskesi vardır.

• Programlanabilir FIFO modu vardır.

• Maskelenebilir kesmeler bulunur.

 22
• Zaman tetiklemeli CAN uygulamaları için otomatik yeniden göndermeyi iptal

edebilme modu vardır.

• Kendi-kendini test için programlanabilir geri döngü modu (Loop-back mode)

bulunur.

• APB (Advanced Peripheral Bus) hattı için iki adet 16-bit modül arayüzü

vardır.

3.2.1.2 Blok Diyagram

CAN çevresel birimine ait blok diyagram Şekil 3.1’de gösterilmiştir. CAN

Çekirdeği, CAN protokolü denetleyicisidir ve Rx/Tx kaydırma yazmaçlarını (shift

register) içerir. Mesaj Hafızası, Mesaj Nesnelerini ve Tanıtıcı Maskeleri’ni depolar.

Yazmaçlar, CAN arayüzünü denetlemek ve yapılandırmak için bütün yazmaçları

içerir. Mesaj İşleyici, CAN Çekirdeği’ndeki Rx/Tx Kaydırma Yazmaçları ile Mesaj

Hafızası arasındaki veri transferini denetler ve Kontrol ve Yapılandırma

Yazmaçları’nda programlandığı şekilde kesmeleri üretir. Modül Arayüzü, APB 16-

bit bus ile CAN çevresel birimi yazmaçları arasında bir arayüz vazifesi görür.

Şekil 3.1 - CAN Arayüzü Blok Diyagramı

 23
3.2.1.3 Fonksiyonel Özellikler

Alınan mesajlar eğer Mesaj İşleyici’nin kabul filtresini geçerlerse uygun

Mesaj Nesneleri’nde saklanır. Mesajın bütün bölümleri Mesaj Nesnesi’nde

depolanır. Aynı anda birçok Mesaj Nesnesi için transfer isteği olabilir ve Mesaj

Nesneleri kendi dâhili önceliklerine göre gönderilir. Mesaj Nesnesi’nin

yapılandırılmasına bağlı olarak talep edilen bir mesajın iletimi otomatik olarak

yapılabilir.

CAN çevresel birimi iletim sırasında önceliği kaybeden veya bozulan

mesajların yeniden iletimini destekler. Bu özellik Zaman Tetiklemeli CAN (TTCAN,

ISO11898-1) ortamı için devre dışı bırakılabilir.

CAN çevresel biriminde bazı test amaçlı modlar vardır. Sessiz Mod’da sadece

CAN hattı dinlenir ve geçerli mesajlar alınır, hatta hiçbir mesaj gönderilmez. Bu

modda hattı etkilememek için dominant bit gönderilmez ve CAN hattını analiz etmek

için kullanılabilir. Geri Döngü Modu kendi kendini test için kullanılır ve kendi

gönderdiği mesajları hattan alınan mesajlar gibi depolar. Temel Mod’da CAN

çevresel birimi Mesaj Hafızası olmadan çalışır.

3.2.1.4 Yazmaçlar (Registers)

256 baytlık adres alanı 16 bitlik yazmaçlar şeklinde düzenlenmiştir. CAN

protokolü ile ilişkili yazmaçlar; çalışma modlarının, CAN bit zamanlamasının

yapılandırılmasını kontrol eder ve durum bilgisi sağlar.

İki yazmaç grubu (IF1 ve IF2) CPU’nun Mesaj Hafızası’na erişimini kontrol

eder ve bu şekilde CPU erişimi ile mesaj alımı/gönderimi arasındaki çakışmayı önler.

Bu yazmaçlar transfer edilecek mesajlar için bir arabellek vazifesi görerek bu işi

başarır. Tek bir transferde, Mesaj Hafızası ile IFn Mesaj Arabellek Yazmaçları

arasında tam bir Mesaj Nesnesi transfer edilebileceği gibi Mesaj Nesnesi’nin bir

bölümü de transfer edilebilir. Mesaj Arabellek Yazmaçları, Mesaj Hafızası’ndaki

Mesaj Nesneleri’nin tam bir kopyasını içerir.

 24
Mesaj Hafızasında 32 Mesaj Nesnesi vardır. CPU erişimi ile mesaj

alımı/gönderimi arasındaki çakışmadan kaçınmak için CPU bu Mesaj Nesneleri’ne

doğrudan erişemez. Bu erişimler IFn Yazmaçları üzerinden gerçekleştirilir.

Mesaj İşleyici Yazmaçları; salt okunur yazmaçlardır. Bu yazmaçlar Mesaj

Hafızası’ndaki bütün Mesaj Nesneleri için Yeni Veri (NewDat), Bekleyen Kesme

(IntPnd), Mesaj Geçerli (MsgVal) bilgilerini içerir ve CPU bu yazmaçları okuyarak

hangi Mesaj Nesnesi’nin veri baytlarında güncelleme olup olmadığını, bekleyen

kesme isteği olup olmadığını ve Mesaj Nesnesi’nin geçerli olup olmadığını kontrol

edebilir.

3.2.1.5 CAN Haberleşmesi

Bir Mesaj Nesnesi’nin yapılandırılması iki Arayüz Yazmaçları’ndan birinin

Maske, Öncelik, Kontrol ve Veri alanlarını istenen değerlere programlamakla yapılır.

Karşılık gelen IFn Komut İstek Yazmacı’na yazmakla IFn Mesaj Arabellek

Yazmaçları, Mesaj Hafızası’ndaki adreslenen Mesaj Nesnesi’ne yüklenir.

STR752FR0’da IFn Komut Maske Yazmacına yazılan değer Mesaj

Nesnesi’nin bir kısmının veya tamamının transfer edileceğini belirler. Öncelikle,

Mesaj Nesnesi’nin değiştirilmeyecek kısmı Mesaj Hafızası’ndan okunur ve sonra

Mesaj Arabellek Yazmaçları’nın tam içeriği Mesaj Nesnesi’ne yazılır.

Mesaj Nesneleri, gönderilecek veya alınacak mesajların bölümlerinin bir

araya getirilerek anlamlı bir bütün oluşturduğu nesnelerdir. Mesaj Hafızası’nda yer

alırlar. Bir sonraki iletimde sadece öncekine göre değişen kısımlar değiştirilerek

verimli bir iş yapılır ve bu iş için gerekli süre kısaltılmış olur.

Eğer bekleyen çeşitli kesmeler varsa, CAN Kesme Yazmacı, kronolojik

sıraya bakmadan en yüksek öncelikli kesmeyi işaret edecektir.

CAN bit zamanlamasının yapılandırılmasındaki küçük hatalar hemen bir hata

ile sonuçlanmasa da, CAN hattının performansını önemli ölçüde azaltır. Çoğu

durumda, CAN bit senkronizasyonu hatalı bit zamanlamasını düzeltecektir ve

 25
nadiren bir hata mesajı üretilecektir. Ancak iki birim mesajı aynı anda göndermeye

başlayıp öncelik alma durumu söz konusu olduğunda mesajın yanlış noktada

örneklenmesi göndericilerin Error Passive olmasına sebep olacaktır. Bu durum

devam ederse de birimler Bus Off olarak CAN hattından izole edilirler. Bu yüzden

CAN bit zamanının yapılandırılmasına dikkat edilmelidir.

3.2.2 Gömülü Flash ve RAM içeren ARM7TDMI-S Çekirdeği

STR750 ailesi gömülü ARM çekirdeğine sahiptir ve böylece bütün ARM

araçlarıyla ve yazılımlarıyla uyumludur. Yüksek performanslı ARM7TDMI-S CPU

ile zengin çevresel birimleri ve gelişmiş Giriş/Çıkış (I/O) yeteneklerini birleştirir. Bu

ailenin bütün üyeleri gömülü olarak yüksek hızlı tek voltaj gerektiren FLASH ve

yüksek hızlı RAM’e sahiptir.

3.2.3 Gömülü Flash Hafızası

Bank 0, programları ve verileri depolamak için 256KB gömülü Flash içerir.

Ekstra Bank 1, 16KB RWW (Read While Write – Yazarken Okunabilen) hafıza

içerir ki bu anında silme/programlama yeteneği kazandırır. Bu iki bölüme ayırma

özelliği uygulama parametrelerini depolamak için idealdir.

• Burst modda yapılandırıldığında Flash hafızaya erişim CPU saat hızında

gerçekleştirilir. Bu modda ardışık adreslere erişimlerde hiç gecikme olmaz,

rastgele adreslere yapılan erişimlerde ise 1 saat darbesi kadar gecikme vardır

(maksimum 60 MHz).

• Burst modda yapılandırılmadığında Flash hafızaya erişim CPU saat hızında

gerçekleştirilir ve hiç gecikme olmaz (maksimum 32 MHz).

3.2.4 Gömülü SRAM

16 KB gömülü SRAM’a hiç gecikme olmaksızın CPU hızında erişilir

(okuma/yazma).

 26

3.2.5 Gelişmiş Kesme Yöneticisi (Enhanced Interrupt Controller)

Standart ARM kesme yöneticisine ilave olarak, STR750F 32 kesme vektörü

olan ve 16 öncelik seviyesine sahip iç içe geçmiş kesme yöneticisi içerir. Eklenen bu

donanım bloğu, minimum gecikmeyle esnek kesme yönetimi özelliği sağlar.

3.2.6 Seri Hafıza Arayüzü (Serial Memory Interface – SMI)

Bu seri hafıza ara yüzü 4 adede kadar seri Flash aygıtına doğrudan

bağlanabilir. Bu ara yüz veriye ulaşmak, doğrudan kod çalıştırmak veya uygulamayı

dışarıdaki birimden başlatmak (boot) için kullanılabilir. Her biri 16 MB genişliğine

kadar olan 4 farklı hafıza bölgesini adresleyebilmektedir.

3.2.7 Saat Darbeleri ve Başlama (Clocks and Start-Up)

Yeniden başladıktan sonra veya Düşük Güç Modu’ndan çıkarken, CPU saat

darbesi 5 MHz’lik dâhili RC osilatör (FREEOSC) tarafından anında sağlanır, böylece

uygulama kodu herhangi bir gecikme olmadan çalışmaya başlamış olur. Bu işlemle

paralel olarak, 4/8 MHz’lik harici osilatör etkinleştirilir ve bu işe adanmış bir sayıcı

tarafından stabilizasyon zamanı gözlenir [13].

Bir osilatör arızası algılandığında, XT1 pini üzerinde saat darbesi

kaybolduğunda, otomatik olarak dâhili FREEOSC osilatörüne geçilir ve bir kesme

üretilir.

Çalışma modunda, AHB ve ABP saat darbesi hızları PLL ve önbölücü

(prescaler) kullanılarak çok çeşitli frekanslara ayarlanabilir: Flash’dan çalışırken

AHB için 60 MHz’e kadar ve ABP için 32MHz’e kadardır (SRAM’den çalışırken bu

hızlar 64 MHz ve 32MHz’dir).

 27
Yavaş çalışma modunda (Slow Mode) güç tüketimini azaltmak için AHB saat

darbesi hızı belirgin olarak düşürülebilir.

Yerleşik saat darbesi yöneticisi (Clock Controller) aynı zamanda fazladan

osilatöre veya PLL’e ihtiyaç duymadan 48 MHz USB saat darbesini de sağlar. Örnek

olarak, 4 MHz’lik bir kristal osilatör ile paralel olarak 60 MHz’lik AHB saat darbesi,

USB için 48 MHz saat darbesi ve ABP çevresel birimleri için 30 MHz’lik saat

darbesi elde etmek mümkündür [13].

3.2.8 Başlama Modları (Boot Modes)

Başlama sırasında, dört başlama seçeneğinden birini seçmek için başlama

pinleri kullanılır [12].

• Dâhili Flash’dan başlama

• Harici seri Flash hafızdan başlama

• Dâhili başlangıç yükleyicisinden (boot loader) başlama

• Dâhili SRAM’den başlama

SMI hafızadan başlama, seri Flash’dan başlatmaya izin verir. Alternatif

olarak, STR750F dâhili başlangıç yükleyicisinden başlayabilir bu da UART’dan

başlatmayı gerçekleştirir.

3.2.9 Güç Kaynağı Modları

Uygulamaya bağlı olarak aşağıdaki güç modlarından herhangi biri

kullanılabilir.

• Güç Modu 1: Tek bir harici 3.3 V güç kaynağı. Bu düzende dâhili lojik

tarafından ihtiyaç duyulan VCORE gerilimi dâhili olarak ana voltaj regülatörü

tarafından üretilir ve VBACKUP kaynağı ise dâhili düşük güç voltaj regülatörü

 28
tarafından üretilir. Bu düzenin avantajı tek bir 3.3 V güç kaynağına ihtiyaç

duymasıdır.

• Güç Modu 2: 3.3 V ve 1.8 V’luk çift harici güç kaynağı. Bu düzende

VREG_DIS pininin yüksek seviyeye gelmesi zorlanarak dâhili voltaj

regülatörleri kapatılır. VCORE, harici olarak V18 and V18REG güç pinlerinden,

VBACKUP ise V18_BKP pininden sağlanır. Bu güç düzeni hâlihazırda 1.8 V güç

regülatörü olan uygulamalarda güç tüketimini azaltmayı amaçlamaktadır.

• Güç Modu 3: Tek bir harici 5.0 V güç kaynağı. Bu düzende dâhili lojik

tarafından ihtiyaç duyulan VCORE gerilimi dâhili olarak ana voltaj regülatörü

tarafından üretilir ve VBACKUP kaynağı ise dâhili düşük güç voltaj regülatörü

tarafından üretilir. Bu düzenin avantajı tek bir 5.0 V güç kaynağına ihtiyaç

duymasıdır.

• Güç Modu 4: 5.0 V ve 1.8 V’luk çift harici güç kaynağı. Bu düzende

VREG_DIS pininin yüksek seviyeye gelmesi zorlanarak dâhili voltaj

regülatörleri kapatılır. VCORE, harici olarak V18 and V18REG güç pinlerinden,

VBACKUP ise V18_BKP pininden sağlanır. Bu güç düzeni 5V seviyesinde

giriş/çıkış sağlamayı amaçlamaktadır. 5.0V ile güç verildiğinde USB çevre

birimi çalışmamaktadır.

3.2.10 Düşük Güç Modları

STR750F 5 adet düşük güç modunu destekler: SLOW, PCG, WFI, STOP ve

STANDBY [13].

• SLOW Modu: System saat darbesi hızı düşürülür. Alternatif olarak, PLL ve

ana osilatör durdurulabilir ve sistem düşük güçlü saat darbesi (fRTC)

tarafından sürülebilir. Bu 32.768 kHz’lik harici osilatör olabileceği gibi dâhili

düşük güçlü RC osilatör de olabilir.

• PCG Modu (Peripheral Clock Gating Mode): Çevresel birimler

kullanılmadığında, onların APB saat darbeleri ayrılarak güç tüketimi optimize

edilir.

 29
• WFI Modu (Wait For Interrupts – Kesmeyi Bekle): Sadece CPU saat darbesi

durdurulur, bütün çevresel birimler çalışmaya devam eder ve kesme

oluştuğunda CPU uyanabilir.

• STOP Modu: Bütün saat darbeleri ve çevresel birimler durdurulur. Aynı

zamanda osilatörleri ve Ana Voltaj Regülatörü’nü durdurmak da mümkündür

(VCORE, tamamen V18_BKP tarafından beslendiğinde). Bu mod ile SRAM ve

yazmaç içerikleri tutularak en düşük güç tüketiminin başarılması

amaçlanmıştır. Sistem, harici kesmeler (external interrupts) / uyanma hatları

(wake-up lines) veya isteğe bağlı olarak çalışır durumda bırakılabilen RTC

zamanlayıcısı tarafından uyandırılabilir. RTC’nin saat darbesi sağlayıcısı

32.768 kHz’lik harici kristal veya Düşük Güçlü RC osilatör olabilir.

Alternatif olarak STOP mod, main osilatör veya Flash ya da Ana Voltaj

Regülatörü’nün açık bırakılarak uyandıktan sonra hızlı bir başlangıç

yapılabilmesi esnekliğini de sunar (fakat bu fazladan güç tüketimine sebep

olacaktır).

• STANDBY Modu: Bu mod sadece tek kaynaklı güç modlarında uygulanabilir

ve yükselen sıcaklıklarda bile en düşük güç tüketimini başarmayı

amaçlamaktadır. Dijital güç kaynağı (VCORE) tamamen kaldırılır (yüksek

ortam sıcaklıklarında bile sızıntı olmaz). SRAM ve bütün yazmaç içerikleri

kaybedilir. Sadece V18_BKP tarafından beslenen RTC’nin gücü kesilmez.

STR750F, STANDBY’dan tekrar RUN moduna WKP_STDBY pininin

tetiklenmesiyle veya RTC sayıcısındaki alarm zaman aşımı ile geçebilir.

VDD_IO güç kaynağının gücü, STANDBY modu dâhil bütün düşük güç

modlarında kesinlikle kesilmemelidir.

3.2.11 Diğer Çevresel Birimler

STR750 ailesi zengin ve gelişmiş kesme kabiliyetleri olan çevresel birimlere

sahiptir [12].

 30
3.2.11.1 DMA

Esnek, 4 kanal genel amaçlı DMA, hafızadan hafızaya, çevresel birimden

hafızaya ve hafızadan çevresel birime transfer yapılmasını yönetebilir. DMA

denetleyicisi dairesel tampon hafıza yönetimini destekler ve denetleyici tampon

hafızanın sonuna ulaştığında kesme üretilmesini engeller.

DMA ana çevresel birimler ile kullanılabilir: UART0, SSP0, Motor kontrol

PWM zamanlayıcısı, standart TIM0 zamanlayıcısı ve ADC.

3.2.11.2 RTC (Real-Time Clock)

RTC, uygun bir yazılım ile saat ve takvim fonksiyonlarının

gerçekleştirilebileceği sürekli çalışan sayıcılar sağlar ve alarm kesmesi ve periyodik

kesme üretir. Saat darbesi kaynağı olarak harici 32.768 kHz osilatör veya dâhili

düşük güçlü RC osilatör kullanılabilir. RC’nin tipik frekansı 300 kHz’dir ve

ayarlanabilir.

3.2.11.3 WDG (Watchdog Timer)

Watchdog sayıcısı 16 bit aşağı doğru sayan bir sayıcıya ve 8 bir ön bölücüye

(prescaler) dayalı olarak çalışır. Bir problem oluştuğunda cihazı yeniden başlatmak

için veya zaman aşımı amaçlarıyla serbest çalışan bir zamanlayıcı olarak

kullanılabilir.

3.2.11.4 Timebase Timer (TB)

Bu zamanlayıcı 16 bit otomatik olarak yeniden yüklenen bir sayıcıya bağlıdır,

giriş/çıkış pinlerine bağlanmamıştır. Yazılım tetikleyicisi olarak veya gerçek zamanlı

işletim sisteminin (RTOS) zamanlama tablosunu gerçekleştirmek için kullanılabilir.

3.2.11.5 Senkronize Edilebilir Standart Zamanlayıcılar (TIM2:0)

Bu üç standart zamanlayıcı 16 bit otomatik olarak yeniden yüklenen bir

sayıcıya bağlıdır ve 2 giriş yakalama (input capture), 2 de çıkış karşılaştırma (output

 31
compare) özelliğine sahiptir. Senkronizasyon ve durum değiştirme için zamanlayıcı

bağlama özelliği kullanılarak PWM zamanlayıcısı ile birlikte çalışabilirler. Standart

zamanlayıcılardan herhangi biri PWM çıkışı üretmek için kullanılabilir. Bir

zamanlayıcı (TIM0) DMA kanalına eşleştirilebilir.

3.2.11.6 Motor Kontrol PWM Zamanlayıcısı

Motor Kontrol PWM Zamanlayıcısı (PWM), 6 kanala çoklanmış şekilde üç

fazlı PWM şeklinde görülebilir. 16 bit PWM üreteci tam modülasyon yeteneğine

sahiptir (0 - %100), kenara veya merkeze hizalanmış desenler oluşturulabilir ve ölü

zaman (dead time) eklemeyi de destekler. Standart TIM zamanlayıcıları ile ortak

birçok özelliği vardır ve senkronizasyon veya durum değiştirme amacı ile

zamanlayıcı bağlama özelliği sayesinde standart TIM zamanlayıcıları ile birlikte

çalışabilir. PWM zamanlayıcısı bir DMA kanalına eşleştirilmiştir.

3.2.11.7 I2C Bus

I2C Bus ara yüzü multi-master veya slave modda çalışabilir. Standart ve hızlı

modları destekler (400 kHz’e kadar).

3.2.11.8 Yüksek Hızlı Üniversal Asenkron Alıcı Verici (UART)

3 adet UART ara yüzü 2 Mbit/s hızında haberleşebilmektedir. CTS ve RTS

sinyallerinin donanım olarak yönetimini sağlar ve LIN Master yeteneğine sahiptir.

İşlemci ve çevresel birim arasındaki iletimi optimize etmek için her biri 16 byte’lık

iki FIFO (alma/gönderme) gerçekleştirilmiştir. Bir UART (UART0), DMA

denetleyicisi tarafından desteklenebilir.

3.2.11.9 Senkron Seri Çevresel Birim (SSP)

İki SSP, standart full duplex 4 pin ara yüz modunda, master olarak 8 Mbit/s

(SSP1) veya 16 Mbit/s (SSP0), slave olarak ise 2.66 Mbit/s hızında haberleşebilir.

İşlemci ve çevresel birim arasındaki iletimi optimize etmek için her biri 8x16 bit

word’luk iki FIFO (alma/gönderme) gerçekleştirilmiştir. SSP’ler, Motorala SPI veya

 32
TI SSI protokollerini destekler. Bir SSP (SSP0), DMA denetleyicisi tarafından

desteklenebilir.

3.2.11.10 Universal Seri Bus (USB)

STR750F, USB Full speed 12 Mbit/s ile uyumlu USB çevresel birimi içerir.

Yazılımla yapılandırılabilen son nokta (endpoint) ayarları ve askıya alma/devam

etme (suspend/resume) desteği vardır. USB için ayrılmış 48 MHz saat darbesi, dâhili

ana PLL’den üretilir. USB’nin çalışması için VDD 3.3V ± %10 seviyesinde olmalıdır.

3.2.11.11 ADC (Analog Dijital Dönüştürücü)

10 bit analog dijital dönüştürücü, 16 adede kadar harici kanalı tek bakış

(single-shot) veya tarama modunda dönüştürür. Tarama modunda, seçilmiş bir grup

analog giriş üzerinde sürekli olarak dönüşüm gerçekleştirilir. Örnekleme zamanı

dâhil asgari dönüşüm zamanı 3.75µs’dir.

Analog watchdog özelliği, en fazla dört kanala kadar çevrilen voltaj

seviyelerinin çok hassas olarak gözlenmesini sağlar. Dönüştürülen voltaj seviyesi

programlanan eşik seviyelerinin dışında olduğu anda bir kesme üretilir.

Uygulamada A/D dönüştürücüleri ve zamanlayıcıları senkronize etmek için

TIM0, TIM2 ve PWM zamanlayıcıları dâhili olarak ADC başlama tetiği olarak

bağlanabilir.

3.2.11.12 GPIO (Genel Amaçlı Giriş Çıkış)

72 adet GPIO’nun her biri yazılım ile çıkış (push-pull veya open-drain)

olarak, giriş (pull-up veya pull-down olabilir ya da olmayabilir) olarak veya çevresel

birime göre değişimli fonksiyonda yapılandırılabilir. GPIO’ların birçoğu dijital veya

analog değişimli fonksiyonlarla paylaşılmıştır.

3.2.12 Blok Diyagram

Şekil 3.2’de STR752F mikro denetleyicisinin blok diyagramı gösterilmiştir.

 33

 Blok diyagramdaki bazı pinlerde yer alan AF (Alternate Function) belirteci,

Giriş/çıkış pini üzerinde değişimli fonksiyon tanımlı olduğunu göstermektedir.

Şekil 3.2 - STR752F Blok Diyagramı [12]

 34

3.3 STR750 Yazılım Kütüphanesi

STR750 yazılım kütüphanesi, bütün standart STR750 çevresel birimleri için

cihaz sürücüleri içeren bir yazılım paketidir. Bu kütüphane sayesinde bütün çevresel

birimler hakkında derinlemesine bir çalışma yapmadan uygulamalarda STR750

ailesini kullanmak mümkündür. Sonuç olarak, bu kütüphaneyi kullanmak bize

oldukça fazla zaman kazandıracak, böylece kodlama için aşırı vakit ayırmanın önüne

geçilecek ve uygulama geliştirme maliyetleri düşecektir.

Her bir cihaz sürücüsü, çevresel birimin özelliklerini kapsayan bir takım

fonksiyonlar içerir. STR750 çevresel birimlerinin ve bu birimlere ait yazmaçların

(register) hafıza-haritalı (memory-mapped) olmasından dolayı, bir çevresel birim ‘C’

kodlarıyla kolaylıkla yönetilebilir. ‘C’ dilinde geliştirilen kaynak kod tamamen

dokümante edilmiştir. Bu kütüphaneyi kullanabilmek için ‘C’ programlama bilgisi

gereklidir. Kütüphanedeki tüm kodlar ‘C’ dilinde olduğu için ARM uyumlu herhangi

bir ‘C’ derleyicisi ile birlikte kullanılabilir.

CAN çevresel biriminde tamamen yapılandırılabilen 32 Mesaj Nesnesi vardır.

Yazılım kütüphanesindeki bir dizi fonksiyon bu çevresel birimin ve Mesaj

Nesneleri’nin yapılandırılması için kullanılır. Bu fonksiyonlar sayesinde kullanıcının

CAN çevresel birimine ait yazmaçları yapılandırmak için bit düzeyinde işlem

yapmasına gerek kalmaz.

Tablo 3.1’de CAN kütüphanesinde kullanılan çeşitli fonksiyonlar

listelenmiştir

 35
Tablo 3.1 - CAN Kütüphanesi Fonksiyonları

Fonksiyon Adı Açıklama

CAN_DeInit CAN çevresel birimi yazmaçlarını varsayılan

değerlerine ilkler.

CAN_Init CAN hücresini ilkler ve bit hızını ayarlar.

CAN_StructInit Her bir CAN_StructInit üyesini varsayılan değeri ile

doldurur.

CAN_EnterInitMode CAN ilkleme moduna girilir.

CAN_LeaveInitMode İlkleme modundan çıkılır (normal moda geçilir).

CAN_EnterTestMode CAN test moduna girilir.

CAN_LeaveTestMode Test modundan çıkılır (normal moda geçilir).

CAN_SetBitrate Standart CAN hızını ayarlar.

CAN_SetTiming CAN zamanlamasını belirli parametrelerle ayarlar.

CAN_SetUnusedMsgObj Mesaj nesnesini kullanılmamış şeklinde yapılandırır.

CAN_SetTxMsgObj Mesaj nesnesini TX (gönderme) şeklinde yapılandırır.

CAN_SetRxMsgObj Mesaj nesnesini RX (alma) şeklinde yapılandırır.

CAN_InvalidateAllMsgObj Bütün mesaj nesnelerini kullanılmamış olarak

yapılandırır.

CAN_ReleaseMessage Mesaj nesnesini serbest bırakır.

CAN_ReleaseTxMessage Gönderme mesaj nesnesini serbest bırakır.

CAN_ReleaseRxMessage Alma mesaj nesnesini serbest bırakır.

CAN_SendMessage Mesaj gönderme işlemini başlatır.

CAN_ReceiveMessage Eğer ulaşmış bir mesaj varsa, onu alır.

CAN_WaitEndOfTx Güncel iletim bitene kadar bekler.

CAN_BasicSendMessage BASIC moda mesaj iletimine başlar.

CAN_BasicReceiveMessage Eğer ulaşmış bir mesaj varsa, BASIC modda onu alır.

CAN_IsMessageWaiting Alınan mesajın bekleme durumunu test eder.

CAN_IsTransmitRequested Mesaj gönderme isteği olup olmadığını test eder.

CAN_IsInterruptPending Mesaj nesnesinin kesme durumunu test eder.

CAN_IsObjectValid Mesaj nesnesinin geçerliliğini (kullanıma hazırlık) test

eder.

 36
CAN_Init fonksiyonu, CAN çevresel birimini CAN_InitStruct’da belirtilen

parametrelere göre ilkler. Bu fonksiyon içerisinde CAN_EnterInitMode(),

CAN_SetBitrate(), CAN_LeaveInitMode(), CAN_LeaveTestMode() fonksiyonları

çağrılır.

Bu ve bunun gibi diğer fonksiyonda kullanılan CAN yapılandırma

parametreleri 75x_can.h dosyasında tanımlanmıştır. Bu dosya içinde farklı

tanımlamalar yaparak fonksiyonlara farklı parametreler geçirmek mümkündür.

Bunun pratikte faydası yokmuş gibi görünse de özel uygulamalar için (örneğin

standart hızlar dışında farklı bir CAN bit hızı kullanılması) faydalı olabilirler.

Yazılım kütüphanesinde birbirleri ile bağlantılı fonksiyonlar mevcuttur. Bu

fonksiyonlardan birini kullanmak diğerini de kullanmayı gerektirir. Örnek olarak

kesmeleri etkin hale getirmek için kullanılan CAN_EnterInitMode(CAN_CR_IE)

fonksiyonunu müteakip CAN_LeaveInitMode fonksiyonu kesin olarak

kullanılmalıdır.

Mesaj Nesneleri, CAN kütüphanesinde üzerinde yoğunlaşılan ve

yapılandırılan temel öğelerdir. Bu fonksiyonların birçoğu IF0 ve IF1 yazmaçlarını

okuyup bu değerlere göre Mesaj Nesnelerini yapılandırmak için kullanılır.

Gönderme ve alma işlemi yapılırken hangi Mesaj Nesnesi numarasının

kullanılacağı belirtilirken nesnelerin öncelik seviyeleri hesaba katılmalıdır. Nesne

tipine bakılmaksızın, daha düşük numaralı nesne (0) en büyük önceliğe, daha büyük

numaralı nesne ise (31) en küçük önceliğe sahiptir. En iyi performans için, nesne

listesinde nesneler arasında boşluklar olmamalıdır.

Mesaj gönderimi sırasındaki öncelik için kullanılan CAN ID, idLow ve

idHigh olarak iki parçadan oluşmuştur. Bu ID aralığı seçimine dikkat edilmelidir.

ID’ler donanım tarafından filtrelenmektedir, bu yüzden idLow ve idHigh

bölümlerinin bütün kombinasyonları her zaman beklenen sonucu üretmeyebilir. Bu

ölçüt alınan bir mesaja şu şekilde uygulanır: Alınan ID ve Mask ID bit düzeyinde VE

operatörü işleminden geçirilerek Öncelik ID’si elde edilir. Sonuç olarak idLow için

bazı LSB bitleri sıfırlanmış bir değer seçmek ve idHigh için ise mantıksal olarak

 37
idLow’u içeren ve bazı LSB bitleri bir olan değerler seçmek daha iyidir. Örnek

olarak 0x100-0x3FF çalışacaktır fakat 0x100-0x2FF çalışmayacaktır, çünkü 0x100

mantıksal olarak 0x2FF içinde yoktur (0x100 & 0x2FF = 0).

Fonksiyonlarda Mesaj Nesneleri’ne çağrı yapmak için Komut İstek

Yazmacı’na Mesaj Nesnesi numarası değil 1+MesajNesnesi değeri yazılmalıdır.

3.3.1 Yazılım Kütüphanesi İçeriği

Yazılım kütüphanesi dizin yapısı Şekil 3.3’de gösterilmiştir.

3.3.1.1 Örnekler (Examples)

Bu dizin her bir çevresel birim için ayrı bir alt dizin içerir. Bir çevresel

birimin nasıl kullanılacağına ait tipik bir örneği çalıştırmak için gerekli minimum

dosyalar:

• Readme.txt: Örneği tanımlayan ve nasıl çalışır hale getirileceğini açıklayan

kısa bir metin dosyasıdır.

• 75x_conf.h: Kullanılan çevresel birimleri yapılandırmak ve çeşitli

tanımlamaları yapmak için başlık dosyasıdır.

• 75x_it.c: Kesme sonrasında icra edilen fonksiyonları içeren kaynak

dosyasıdır (kullanılmayan fonksiyon gövdeleri boştur).

• main.c: Örnek program dosyasıdır.

Bütün örnekler kullanılan geliştirme ortamından bağımsızdır.

3.3.1.2 Kütüphane (Library)

Bu dizin kütüphanenin çekirdeğini oluşturan bütün alt dizinleri ve dosyaları

içerir.

• inc alt dizini, kullanıcı tarafından değiştirilmemesi gereken yazılım

kütüphane başlık dosyalarını içerir:

 38
o 75x_type.h: Diğer bütün dosyalarda kullanılan ortak veri tiplerini ve

listelemeleri içerir.

o 75_map.h: Çevresel birimlerin hafıza haritalamalarını ve yazmaçların

veri yapılarını içerir.

o 75_lib.h: Diğer bütün başlık dosyalarını içeren ana başlık dosyasıdır.

o 7x_ppp.h (her çevresel birim için bir başlık dosyası): Fonksiyon

prototiplerini, veri yapılarını ve listelemeleri içerir.

• src alt dizini, kullanıcı tarafından değiştirilmemesi gereken yazılım kaynak

dosyalarını içerir:

o 7x_ppp.c (her çevresel birim için bir kaynak dosyası): Her bir çevresel

birimin fonksiyon gövdelerini içerir.

Bütün kütüphane dosyaları ANSI-C olarak kodlanmıştır ve geliştirme

ortamından bağımsızdır.

Şekil 3.3 - Yazılım Kütüphanesi Dizin Yapısı [14]

 39
3.3.1.3 Proje (Project)

Bu dizin bütün kütüphane dosyalarını derleyen bir standart proje şablonu

içerir. Aynı zamanda yeni bir proje oluşturmak için kullanıcı tarafından

değiştirilebilecek dosyalar da bu dizindedir.

• 75x_conf.h: Varsayılan olarak tanımlanmış bütün çevresel birimler için

yapılandırma ayarlarını içeren başlık dosyasıdır.

• 75x_it.c: Kesme fonksiyonlarını içeren kaynak dosyasıdır (bu şablon içinde

fonksiyon gövdeleri boştur).

• main.c: Ana program gövdesidir.

3.3.2 Dosya Tanımları

Yazılım kütüphanesinde çeşitli dosyalar kullanılmıştır. Tablo 3.2

kütüphanede kullanılan farklı dosyaları listelemekte ve tanıtmaktadır.

 40
Tablo 3.2 - Yazılım Kütüphanesi Dosya Tanımları [14]

Dosya Adı Tanım

75x_conf.h Parametre yapılandırma dosyasıdır. Herhangi bir uygulama

çalıştırılmadan önce kütüphane ile ilişkilendirmek için çeşitli

parametreleri belirtmek için kullanıcı tarafından değiştirilmelidir.

Eğer şablon kullanılıyorsa çevresel birimler aktif/pasif hale

getirilebilir ve harici osilatörün değeri de değiştirilebilir.

main.c Ana örnek program dosyasıdır.

75x_it.c Çevresel birim kesme fonksiyonları dosyasıdır. Uygulamada

kullanılan kesme fonksiyonlarına ait kodlar kullanıcı tarafından

değiştirilebilir. Aynı kesme vektörüne ait birden çok kesme isteği

olması durumunda, fonksiyon kesme bayraklarını bakarak kesmenin

gerçek kaynağını belirler. Bu fonksiyonların isimleri yazılım

kütüphanesinde tanımlanmıştır.

75x_lib.h Bütün çevresel birimlere ait başlık dosyalarını içeren başlık

dosyasıdır. Kullanıcı uygulamasının kütüphane ile ilişkisini kurmak

için dâhil edilmesi gereken tek dosyadır.

75x_lib.c Hata ayıklama modu başlangıç dosyasıdır. Her birinin belirli bir

çevre biriminin ilk adresini işaret ettiği değişken işaretçilerinin

tanımlarını içerir. Aynı zamanda hata ayaklama moduna

girildiğinde çağrılan fonksiyonların tanımlarını da içerir. Bu

fonksiyon tanımlanan işaretçilerinin başlangıç ayarlarını yapar.

75x_map.h Bu dosya hem geliştirme hem de hata ayaklama amaçlarıyla hafıza

haritalamasını gerçekleştirir ve fiziksel yazmaç adreslerinin

tanımlarını içerir. Bu dosya bütün çevre birimleri için sağlanmıştır.

75x_type.h Ortak tanımlar dosyasıdır. Bütün çevre birimleri tarafından

kullanılan ortak tipleri ve sabitleri içerir.

75x_ppp.c C dilinde yazılan PPP çevresel birimine ait sürücü kaynak kodudur.

75x_ppp.h PPP çevresel birimi için başlık dosyasıdır. PPP çevresel birimine ait

fonksiyon tanımlarını ve bu fonksiyonlarda kullanılan değişkenleri

içerir.

 41

Yazılım kütüphanesi mimarisi ve dosya içerme ilişkisi Şekil 3.4’de
gösterilmiştir.

Şekil 3.4 - Yazılım Kütüphanesi Dosya Mimarisi [14]

Her çevre birimin 75x_ppp.c şeklinde kaynak kod dosyası ve 75x_ppp.h

şeklinde başlık dosyası vardır. 75x_ppp.c dosyası ilgili çevresel birimi kullanabilmek

için gerekli olan bütün yazılım fonksiyonlarını içerir. Bütün çevresel birimler için

75x_map.h adında tek bir hafıza haritalama dosyası bulunmaktadır. Bu dosya, hem

geliştirme hem de hata ayıklama için gerekli olan bütün yazmaç tanımlamalarını

içerir.

75x_lib.h başlık dosyası bütün çevresel birimlerin başlık dosyalarını içerir.

Bu, kullanıcı uygulamasının kütüphane ile ilişkilendirilmesi için içerilmesi gereken

tek dosyadır [14].

uygulama.c

75x_lib.h

75x_it.c 75x_conf.h

75x_map.h 75x_type.h

75x_lib.c
75x_ppp.h

75x_ppp.c

75x_ppp.c
Donanım

Uygulama
Katmanı

Katmanı
API

 42

4. CAN UYGULAMASI

4.1 Giriş

Bu bölümde donanım ve yazılım olarak gerçekleştirilen bir CAN Bus

uygulaması anlatılacaktır. Uygulamanın detayları, CAN Bus performansı için gerekli

olan bit zamanı hesaplamaları ve uygulamaya ait açıklamalı kaynak kodlar bu

bölümde yer almaktadır.

4.2 Uygulama Tanımı

Bu uygulama bir araç takip cihazında kullanılmak üzere gerçekleştirilmiştir.

Araç takip cihazı araç üzerine monte edilir ve GPS uydularından aldığı konum, hız,

yön gibi bilgiler ile araçtan toplanan yakıt seviyesi, sıcaklık, motor devri, ses,

görüntü vb. gibi uygulamanın gerektirdiği daha birçok bilgi ile birleştirip GSM alt

yapısını kullanarak bir merkeze gönderir. Kullanıcılar internet üzerinden bu bilgilere

ulaşabilirler. Şekil 4.1’de araç takip sisteminin çalışma prensibi gösterilmiştir.

Şekil 4.1 – Araç Takip Sistemi Çalışma Prensibi [15]

Araç takip sistemleri kullanılarak araçlardan toplanan bütün bilgiler internet

üzerinden geçmişe dönük olarak da rapor edilebilmektedir. Araca ait bilgilerin

düzenli periyotlarla kaydedilmesi, arıza ve benzeri durumların izlenebilmesi ve tüm

 43
bunların raporlanması önemlidir. Bu veriler motorlu araç üreticilerine arıza yapan

sistemlerin düzeltilmesinde ve mevcut sistemlerin iyileştirilmesinde yol gösterir.

Ayrıca ilerde bu sistem kullanılarak araca uzaktan müdahale (CAN Bus’a bağlı bir

birime yapılandırma mesajı göndererek farklı çalışmasını sağlamak) etmek ve

böylece servis maliyetlerini düşürmek mümkün olacaktır.

Bizim uygulamamızın içinde yer alacağı sistem; ARM7 ve ARM9

mimarisinde iki adet mikro denetleyici, GPS Modem, GSM Modem ve bu birimlerin

çevresel elemanlarından oluşur. Sistemin blok şeması Şekil 4.2’de gösterilmiştir. İki

mikro denetleyici aralarında I2C protokolünü kullanarak haberleşir. ARM7 işlemci

araç üzerindeki analog girişleri, dijital girişleri ve CAN Bus hattı üzerindeki veriyi

okuyup değerlendirir ve bunları I2C hattı üzerinden ARM9 işlemciye iletir. ARM9

işlemci bu verileri GPS konum bilgileri ile birleştirerek istenen bir mobil telefona

SMS olarak veya GPRS Modemi kullanarak sabit bir IP adresine gönderir.

Şekil 4.2 – Araç Takip Cihazı Blok Şeması

4.3 ARM7 ile Araç İçi Veri Toplama ve Araç Kontrolü

Bizim uygulamamız araç takip sisteminin ARM7 mikro denetleyicisi ile

gerçekleştirilen kısmını kapsamaktadır.

ARM7 işlemci sistemde şu görevleri üslenmiştir:

 44
• CAN Bus hattındaki ihtiyaç duyulan bilgileri okuyup değerlendirerek anlamlı

hale getirip ARM9 işlemciye iletmek.

• Frekansı azami 10 kHz olan 4 adet kare dalga işareti okuyup Hz cinsinden

ARM9 işlemciye iletmek (Harici kesmeler kullanılarak).

• 4 kanal analog girişi 10 bit analog dijital dönüştürücü (ADC) kullanarak

okuyup ARM9 işlemciye iletmek.

• 2 adet UART (Universal Asynchronous Receiver-Transmitter) kullanılarak

diğer çevresel birimlerle veya PC ile haberleşmek.

• 4 adet çıkışı ARM9 işlemciden gelen komut ile aktif ya da pasif yapmak (Bu

komut kullanıcı tarafından araca müdahale şeklinde internet üzerinden veya

SMS ile verilebilir).

• Kilitlenmesi durumunda ARM9 işlemciyi yeniden başlatmak.

• RTC (Real Time Clock) ile gerçek zamanı tutmak.

• I2C protokolünü kullanarak ARM9 işlemci ile haberleşmek.

Şekil 4.3’de ARM7 işlemciye ve bazı çevresel birimlerine ait devre şeması

gösterilmiştir.

 45

Şekil 4.3 - ARM7 Devre Şeması [16]

ARM7 işlemci 4 MHz’lik harici osilatör ile çalışmaktadır. Bu osilatör

frekansı mikro denetleyici içindeki dâhili PLL (Phase Locked Loop) ile 64 MHz

seviyesine yükseltilerek ana sistem saat darbesi elde edilmiş olur. Bu sistem

frekansından sistemin farklı birimleri (çekirdek, çevresel birimler, RTC, vb.) için

frekans bölücüler vasıtasıyla farklı frekanslar elde edilir [12].

STR752 mikro denetleyicisinin CAN hattına bağlantısını sağlamak için 2.0B

protokolünü destekleyen CAN alıcı/vericisi olan MCP2551 tercih edilmiştir.

MCP2551’nin mikro denetleyici ve CAN Bus arasındaki bağlantısı Şekil 4.3’de

gösterilmiştir. Ayrıca bu sürücü SPI TM seri ara yüzü içerir, bu yüzden herhangi bir

mikro denetleyicinin CAN Bus’a bağlantısı için kullanılabilir [17]. CAN hattına

bağlanan fiziksel yol 120 Ohm sonlandırma direnci ile sonlandırılmıştır.

Araç üzerindeki CAN mesajları SAE J1939 standardına göre

yapılandırılmıştır. SAE (Society of Automotive Engineers) J1939, motorlu araç

 46
bileşenleri arasındaki haberleşme ve sistem kontrolü için kullanılan bir standarttır.

Araç üzerine fiziksel olarak dağıtılmış elektronik kontrol ünitelerinin gerçek zamanlı

kapalı çevrim kontrol fonksiyonlarını icra etmek üzere tasarlanmıştır. J1939

standardına göre 29 bit identifier Şekil 4.4’te gösterilmiştir [18].

Şekil 4.4 – SAE J1939 29 Bit Identifier [18]

Aracın haberleşme sistemi olan CAN Bus üzerinde araca ait bütün bilgiler

J1939 standardında bulunmaktadır [19]. Araç üzerindeki CAN Bus hattından

aşağıdaki mesajlar alınarak değerlendirilip anlamlı bir şekilde sunucuya

gönderebilmesi için ARM9 işlemciye iletilmektedir.

1. Araç Hızı

2. Yakıt Seviyesi

3. Motor Devri

4. Motor Harareti (Sıcaklığı)

5. Dış Ortam Hava Sıcaklığı

4.4 CAN Bit Zamanlaması

CAN Bus performansı ve birimlerin hatalı duruma düşmelerini engellemek

için bit zamanlaması yapılmalıdır. Burada hesaplama için gerekli temel kavramlar

verilmiş ve bizim uygulamamız için hesaplama yapılarak mikro denetleyicinin CAN

zamanlama yazmacına yazılacak değer belirlenmiştir.

4.4.1 CAN Bit Zamanının Yapılandırması

CAN bit zamanı üst üste binmeyen bölümlerden oluşmuştur. Bu bölümlerden

her biri Zaman Parçası (Time Quanta – tq) adı verilen tam sayı birimlerden oluşur.

 47
Nominal Bit Hızı (NBR) hiçbir senkronizasyona ihtiyaç duyulmadan ideal bir verici

tarafından saniyede gönderilen bit sayısıdır ve Eşitlik 4.1 ile tanımlanır:

bit

bit
t

fNBR
1

== (4.1)

Şekil 4.5 - CAN Bit Zamanı Bölümleri [20]

4.4.1.1 Nominal Bit Zamanı

Nominal Bit Zamanı (NBT) veya tbit, Şekil 4.5’de gösterilen ve üst üste

binmeyen parçalardan oluşur. Sonuç olarak NBT Eşitlik 4.2’deki bölümlerin

toplamından oluşur.

21Pr PSPSopSnkSegbit ttttt +++= (4.2)

4.4.1.2 Senkronizasyon Segmenti

Nominal Bit Zamanı içindeki ilk bölümdür ve hatta bağlı birimleri senkronize

etmek için kullanılır. Bite ait yükselen ve düşen kenarların bu bölüm içinde oluşması

beklenir. 1 tq genişliğinde sabittir.

4.4.1.3 Propagasyon Segmenti

Hatta bağlı birimler arasındaki fiziksel gecikmeleri telafi içindir. Propagasyon

gecikmesi fiziksel hat üzerindeki sinyal yayılım zamanlarının toplamının iki katı

 48
olarak tanımlanmıştır ve CAN sürücüsünden kaynaklanan gecikmeyi de içerir. Bu

bölüm 1 – 8 tq arasında programlanabilir.

4.4.1.4 Faz Segmenti 1 ve Faz Segmenti 2

Bu iki bölüm kenar faz hatalarını telafi etmek için bulunmaktadır. Yeniden

eşleme (resyncronization) ile PS1 uzatılabilir ve PS2 kısaltılabilir. PS1 1- 8 tq arası

uzunlukta, PS2 ise 2- 8 tq arası uzunlukta programlanabilir.

4.4.1.4 Örnekleme Noktası

Lojik seviyesinin okunup değerlendirildiği noktadır. Örnekleme noktası Faz

Segmenti 1’den sonra yerleştirilmiştir.

4.4.1.5 Bilgi İşleme Zamanı (Information Processing Time – IPT)

Örneklenen bitin seviyesini (lojik 1/0) belirlemek için ihtiyaç duyulan süredir.

4.4.1.6 Senkronizasyon Atlama Genişliği (SJW)

Gönderilen mesajla senkonizasyonun sağlanabilmesi için bit saat darbesini 1

– 4 tq arasında (yapılandırılan şekilde) ayarlar.

4.4.1.7 Zaman Parçası (Time Quanta – tq)

Bit zamanını oluşturan her bir bölüm tam sayı katı olarak ifade edilen zaman

bölümlerinden (Time Quanta – tq) oluşur. Her bir zaman parçasının uzunluğu osilatör

periyoduna (tOSC) bağlıdır. Ana zaman parçacığı yapılandırılmaya bağlı olarak

osilatör periyodunun katlarına eşittir. Şekil 4.6 bit periyodunun osilatör periyodundan

elde edilmesini göstermektedir.

 49

Şekil 4.6 - tq ve Bit Periyodu [21]

tq uzunluğu bir tq saat darbesi uzunluğuna (tBRPCLK) eşittir ve programlanabilir

bir ön bölümleyici olan Baud Rate Prescaler (BRP) kullanılarak programlanabilir. Bu

Eşitlik 4.3’de gösterilmiştir:

OSC

OSCq
f

BRP
TBRPt

⋅
=⋅⋅=

2
2 (4.3)

4.4.2 Bit Zamanının Senkronize Edilmesi

CAN Bus üzerindeki bütün birimler aynı nominal bit hızına sahip olmalıdır.

Gürültü, faz kaymaları ve osilatör dalgalanmaları, nominal bit hızının sistemdeki

gerçek bit hızına eşit olmaması durumlarını yaratır. Bu nedenle, hattaki mesajlarla

senkronize olabilen bir metoda ihtiyaç vardır.

CAN spesifikasyonu olabilecek en kötü osilatör toleransının % 1.58 olduğunu

ve bu toleransın da yavaş iletimler (125 kb/s ve altı) için uygun olduğunu belirtir.

CAN protokolü, mesaj önceliği için kullanılan zararsız karar vermek

mekanizmasını gerçekleştirmek için çekinik (lojik 1) ve baskın (lojik 0) durumlar

 50
tanımlamıştır. Bu mekanizma en fazla yayılma gecikmelerinden etkilenmektedir. Her

bir birim öncelik mekanizmasını işletebilmek için aynı bit zamanı için her bir bit

seviyesini örneklemek zorundadır. Örnek olarak farklı uçlardaki iki birim aynı anda

mesajlarını göndermeye başladığında öncelik kontrol mekanizmasını işletmelidir.

Öncelik mekanizmasının işletilmesi de her iki birimin de aynı bit zamanı süresince

örnekleme yapabilmesi durumunda etkilidir. Bu gerçek, belirlenen veri iletim hızları

için CAN iletim hattının sınırlı olduğunu belirtir. Bir CAN sisteminin propagasyon

gecikmesi, fiziksel hat üzerinde sinyalin iletilmesi (tbus), çıkış sürücüsü gecikmesi

(tdrv) ve giriş karşılaştırıcısının (tcmp) toplamları olarak Eşitlik 4.4’deki gibi

hesaplanır:

)(2Pr drvcmpbusop tttt ++⋅= (4.4)

4.4.2.1 Senkronizasyon

Mesajların doğru olarak değerlendirilebilmesi için alıcılar gönderilen mesaja

kendilerini senkronize etmek zorundadırlar. Senkronizasyonu gerçekleştirmek için

iki metot vardır.

• Hard Senkronizasyon: Bu senkronizasyon türü sadece hat seviyesinin

çekinikten baskına değişimi sırasında olur (mesaj başlangıcında). Bit

sayıcısının Senkronizasyon Segmenti ile yeniden başlatılmasını sağlayarak

senkronizasyonu sağlar. Bu noktada bütün alıcılar gönderici ile senkron

duruma gelir. Hard senkronizasyon bir mesaj boyunca sadece bir kez yapılır.

• Yeniden Senkronizasyon: Bu senkronizasyonun amacı hard senkronizasyon

ile yapılan düzenin korunmasıdır. Bu senkronizasyon olmadan alıcı birimler

osilatörlerindeki dalgalanmalardan dolayı senkronizasyon dışı kalabilirler.

4.4.3 Bit Zamanlama Parametrelerinin Hesaplanması

Zamanlama yapılandırılması için önce istenen hat hızı belirlenmelidir.

Buradan da minimum bit zamanı ortaya çıkar. Bit zamanı 4-25 arası zaman parçacığı

 51
(tq) içerebilir. tq’nun uzunluğu bit hızı ön bölümleyicisi (BRP) tarafından tq = (BRP)

fsys eşitliği ile tanımlanır. Burada fsys sistem saat darbesi frekansıdır.

Bit zamanı, uzunlukları tq’nun katı olan segmentlerden oluşur. Bunlardan ilki

PropSeg uzunluğudur. Bu uzunluk hat uzunluğuyla doğru orantılı olarak değişir.

Sonuçta elde edilen PropSeg, zaman parçacığı (tq) cinsinden bulunur. SenkSeg sabit

olup 1 tq uzunluğundadır. PropSeg ve SenkSeg’den arta kalan süre (Bit Süresi –

PropSeg – 1) faz segmentleri tarafından kullanılır. Eğer arta kalan bu süre çift sayıda

tq içeriyorsa FazSeg1 = FazSeg2 olur, tek sayıda tq içeriyorsa FazSeg2 = FazSeg1 +1

eşitliği sağlanır. FazSeg2 uzunluğunun [0..2] tq olan bilgi işleme zamanından (IPT)

daha kısa olamayacağı göz önünde bulundurulmalıdır. SJW (Syncronization Jump

Width) uzunluğu maksimum değerine ayarlanır. Bu da 4 veya FazSeg1’den kısa

olanına eşittir.

Yapılandırmada osilatör toleransı, propagasyon gecikmesi ve benzeri

durumlar hesaba katılmalıdır. Eğer birden fazla yapılandırma mümkünse en yüksek

osilatör toleransına müsaade eden yapılandırma seçilmelidir. Çünkü CAN sisteminin

osilatör toleransı sistemdeki en düşük toleransa sahip biriminki ile sınırlıdır. CAN

Bus üzerindeki propagasyon zamanı hesaplaması, en fazla gecikmeye sahip birimler

hesaba katılarak yapılmalıdır. Aynı bit hızını elde etmek için farklı sistem saat

darbelerine sahip birimler farklı yapılandırmalar gerektirir.

CAN bit zamanlamasının protokole uygun olarak yapılandırması için,

hesaplama sonucu hat uzunluğunun veya iletim hızının düşürülmesini, osilatör

frekansının artırılmasını işaret edebilir.

Eşitlik 4.5 ile oluşturulan yapılandırma, Bit Zamanlama Yazmacı’na (Bit

Timing Register) yazılır:

)1(&)1(&)1Pr1(&)12(−−−+− iciÖnBölümleySJWopSegFazSegFazSeg (4.5)

 52
Bizim uygulamamızda çevresel birimler için kullanılan saat darbesi frekansı

(APB_CLK) 8 MHz, bit hızı ön bölücüsü (BRP) 0 ve iletim hızı 250 kbit/s olarak

seçilmiştir. Bu değerlere göre bit zamanı hesaplandığında [13]:

tq 125 ns = tAPB_CLK
CAN Bus sürücü gecikmesi 50 ns
Alıcı devre gecikmesi 30 ns
Hat uzunluğu gecikmesi (40m) 220 ns
tProp 750 ns = qt⋅6

tSJW 125 ns = qt⋅1

tTSeg1 875 ns = tProp + tSJW
tTSeg2 250 ns = Bilgi işleme zamanı (IPT) +

qt⋅1

tSenkSeg 125 ns = qt⋅1

Bit zamanı (tbit) 1250 ns = tSenkSeg + tTSeg1 + tTSeg2

APB_CLK toleransı 0.78 %
)2_13(2

)2,1min(

PBzamanibit

PBPB

−××
=

)25.025.113(2

25.0

ss

s

µµ

µ

−××
=

Bu hesaplamalar sonucunda Bit Zamanlama Yazmacı’na programlanacak

değer:

)1(&)1(&)1Pr1(&)12(−−−+− iciÖnBölümleySJWopSegFazSegFazSeg (Bkz.

4.5)

ile uygun olarak Eşitlik 4.6 ile:

(2 -1)1 & (16 - 1)15 & (1 - 1)0 & (1 – 1)0 = 0x1F00 (4.6)

olarak bulunur.

4.5 Uygulama Kaynak Kodu

Uygulama geliştirilirken C Programlama Dili kullanılmıştır. Uygulama

geliştirme ortamı olarak Keil µVision3 v3.53 tercih edilmiştir.

 53
Projeye ait kaynak kodu dosyalarını ve kullanılan kütüphane dosyalarını

gösteren proje çalışma sayfası Şekil 4.7’de görülmektedir.

Ana program main.c dosyası içinde yer almaktadır. Oluşan kesmeler (CAN,

I2C, RTC, harici seviye değişimi, ADC çevrim tamamlanması) sonucunda kesme

vektörlerinin dallanıp icra ettiği fonksiyonlar ise 75x_it.c dosyasında bulunmaktadır.

Şekil 4.7 - Proje Çalışma Sayfası

4.5.1 Main.c

 Main.c dosyası içinde yer alan kaynak kodları aşağıda verilmiştir. Bu

fonksiyonda öncelikle farklı sistemlerin saat darbelerini ve çevresel birimleri

yapılandıran alt fonksiyonlar çağrılmaktadır. Daha sonra watchdog zamanlayıcısı

kurularak sonsuz bir döngü içerisine girilmektedir. Bu döngü içerisinde watchdog

zamanlayıcısı sürekli olarak sıfırlanarak taşıp sistemi yeninden başlatılması

önlenmektedir. CAN Bus üzerinden alınan mesajlar da burada değerlendirilip uygun

değişkenlere yazılmaktadır. Harici kesme ile okunan frekans değerleri değişkenlere

atanmakta ve temizlenerek bir sonraki saniyede okunmaya hazır hale gelmektedir.

Ayrıca bizim sistemimize bağlı olan ARM9 işlemcinin kilitlenmesi durumunda

yeniden başlatılması da main fonksiyonu içinde yapılmaktadır.

 54
4.5.1.1 Main

void main()

{

 /* Sistem clock yapilandirilmasi */

 MRCC_Configuration();

 /* Giris cikis portlari yapilandirilmasi */

 GPIO_Configuration();

 /* CAN yapilandirilmasi */

 CAN_Configuration();

 /* I2C yapilandirilmasi */

 I2C_Configuration();

 /* RTC yapilandirilmasi */

 RTC_Configuration();

 /* ADC yapilandirilmasi */

 ADC_Configuration();

 /* UART yapilandirilmasi */

 UART_Configuration();

 /* EXTIT yapilandirilmasi */

 EXTIT_Configuration();

 /* Harici kesme yapilandirilmasi */

 EIC_Configuration();

 /* Watchdog zamanlayicisini 4.2s icin kur */

 WDG_InitStructure.WDG_Mode = WDG_Mode_WDG;

 WDG_InitStructure.WDG_Preload = 0xFFFF;

 WDG_InitStructure.WDG_Prescaler = 0xFF;

 WDG_Init(&WDG_InitStructure);

 WDG_Cmd(ENABLE);

 while(1)

 {

 /* Watchdog zamanlayicisini yeniden baslat */

 WDG->KR = 0xA55A;

 WDG->KR = 0x5AA5;

 /* CAN Bus'dan okunan mesajlari degerlendir */

 if (CAN_Data_Received) {

 switch (RxCanMsg.Id)

 {

 case 0x0CFEF17A: /* Arac hizi */

 SpeedL = RxCanMsg.Data[1];

 SpeedH = RxCanMsg.Data[2];

 SpeedH <<= 8;

 Speed = (SpeedH | SpeedL) / 256;

 break;

 case 0x1CFEFCB1: /* Yakit seviyesi */

 FuelLevel = RxCanMsg.Data[1] * 4 / 10;

 break;

 case 0x0CF004EE: /* Motor devri */

 RpmL = RxCanMsg.Data[3];

 55
 RpmH = RxCanMsg.Data[4];

 Rpm <<= 8;

 Rpm = (RpmH | RpmL) / 8;

 break;

 case 0x0CFEEEEE: /* Motor sicakligi */

 EngTemp = RxCanMsg.Data[0] - 40;

 break;

 case 0x1CFEF5AC: /* Ortam hava sicakligi */

 AmbTempL = RxCanMsg.Data[3];

 AmbTempRpmH = RxCanMsg.Data[4];

 AmbTemp <<= 8;

 AmbTemp = (AmbTempH | AmbTempL) - 273;

 break;

 CAN_Data_Received = TRUE;

 break;

 default:

 break;

 CAN_Data_Received = FALSE;

 }

 }

 if(TimeDisplay == TRUE) /* Saniyede bir kez icra edilecek */

 {

 f1 = freq1_value;

 f2 = freq2_value;

 f3 = freq3_value;

 f4 = freq4_value;

 freq1_value = freq2_value = freq3_value = freq4_value=

0;

 if ((GPIO_ReadBit(GPIO1, GPIO_Pin_3) == Bit_RESET)&&

 (ResetTimer >= 60)) {

 GPIO_WriteBit(GPIO1, GPIO_Pin_3, Bit_SET);

 printf("Yeniden baslatilma sona erdi!\n\r");

 }

 ResetTimer++;

 if (ResetTimer >= 900) {

 GPIO_WriteBit(GPIO1, GPIO_Pin_3, Bit_RESET);

 printf("ARM9 yeniden baslatildi!\n\r");

 ResetTimer = 0;

 }

 TimeDisplay = FALSE;

 }

 }

}

4.5.1.2 MRCC_Configuration

 Farklı sistemlerin saat darbeleri bu fonksiyon içinde yapılandırılmaktadır.

void MRCC_Configuration(void)

{

 56
 /* 4MHz’lik osilatorun baslamasini bekle */

 OSC4MStartUpStatus = MRCC_WaitForOSC4MStartUp();

 if(OSC4MStartUpStatus == SUCCESS)

 {

 /* HCLK 32MHz */

 MRCC_HCLKConfig(MRCC_CKSYS_Div2);

 /* CKTIM 16MHz */

 MRCC_CKTIMConfig(MRCC_HCLK_Div2);

 /* PCLK 8MHz */

 MRCC_PCLKConfig(MRCC_CKTIM_Div2);

 /* CKSYS 64MHz */

 MRCC_CKSYSConfig(MRCC_CKSYS_OSC4MPLL, MRCC_PLL_Mul_16);

 }

 /* Giris-cikis pinlerini 3.3V icin yapilandir */

 MRCC_IOVoltageRangeConfig(MRCC_IOVoltageRange_3V3);

 /* Kullanilan cevresel birimlerin saat darbelerini aktif et */

 MRCC_PeripheralClockConfig(MRCC_Peripheral_I2C |

MRCC_Peripheral_ADC | MRCC_Peripheral_GPIO | MRCC_Peripheral_UART0 |

MRCC_Peripheral_EXTIT | MRCC_Peripheral_CAN, ENABLE);

 /* 4MHz’lik osilatoru 128’e bolerek RTC saat darbesini olustur */

 MRCC_CKRTCConfig(MRCC_CKRTC_OSC4M_Div128);

 /* RTC’nin hazir olmasini bekle */

 while(MRCC_GetFlagStatus(MRCC_FLAG_CKRTCOK) == RESET);

}

4.5.1.3 GPIO_Configuration

Giriş çıkış pinleri kullanımlarına uygun olarak bu fonksiyon içinde

yapılandırılır.

void GPIO_Configuration(void)

{

 GPIO_InitTypeDef GPIO_InitStructure;

 /* CAN TX ve CAN RX pinlerini yapilandir */

 GPIO_StructInit(&GPIO_InitStructure);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

 GPIO_WriteBit(GPIO0, GPIO_Pin_15, Bit_SET);

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 /* I2C SCL ve SDA pinlerini yapilandir */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 ;

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 57
 /* UART0_Rx pinini yapilandir */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 /* UART0_Tx pinini yapilandir */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 /* P0.04, P0.05, P0.06, P0.07 pinlerini Open-Drain cikis yap */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6

|

 GPIO_Pin_7;

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 /* ADC kanal 9, 10 ve 11 pinlerini yapilandir */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_6 | GPIO_Pin_8

;

 GPIO_Init(GPIO1, &GPIO_InitStructure);

 /* ADC kanal 8 pinini yapilandir */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_29;

 GPIO_Init(GPIO0, &GPIO_InitStructure);

 /* Frekans girisi pinlerini yapilandir */

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7 | GPIO_Pin_9

| GPIO_Pin_10 | GPIO_Pin_12;

 GPIO_Init(GPIO1, &GPIO_InitStructure);

 /* ARM9'u resetleyen cikis pinini yapilandir*/

 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;

 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3;

 GPIO_Init(GPIO1, &GPIO_InitStructure);

}

4.5.1.4 CAN_Configuration

CAN çevresel biriminin yapılandırıldığı fonksiyondur.

void CAN_Configuration(void)

{

 /* CAN Buz hizini ayarla, kesmeleri etkinlestir */

 CAN_Struct.CAN_ConfigParameters=CAN_CR_IE;

 CAN->BTR = 0x1F00;

 CAN_Struct.CAN_Bitrate=CAN_BITRATE_250K;

 CAN_Init(&CAN_Struct);

 /* Mesaj nesnelerini yapilandir */

 CAN_InvalidateAllMsgObj();

 CAN_SetTxMsgObj(CAN_TX_MSGOBJ, CAN_EXT_ID);

 CAN_SetRxMsgObj(CAN_RX_MSGOBJ, CAN_EXT_ID, 1, CAN_LAST_EXT_ID,

TRUE);

}

 58

4.5.1.5 EIC_Configuration

Çevresel birimlere ait kesmelerin yapılandırıldığı ve önceliklerinin atandığı

fonksiyondur.

void EIC_Configuration(void)

{

 EIC_IRQInitTypeDef EIC_IRQInitStructure;

 /* CAN kesmesini yapilandir ve onceligini ata */

 EIC_IRQInitStructure.EIC_IRQChannel=CAN_IRQChannel;

 EIC_IRQInitStructure.EIC_IRQChannelPriority=1;

 /* I2C kesmesini yapilandir ve onceligini ata */

 EIC_IRQInitStructure.EIC_IRQChannel = I2C_IRQChannel;

 EIC_IRQInitStructure.EIC_IRQChannelPriority = 2;

 /* Harici kesmeyi yapilandir ve onceligini ata */

 EIC_IRQInitStructure.EIC_IRQChannel = EXTIT_IRQChannel;

 EIC_IRQInitStructure.EIC_IRQChannelPriority = 3;

 /* RTC kesmesini yapilandir ve onceligini ata */

 EIC_IRQInitStructure.EIC_IRQChannel = RTC_IRQChannel;

 EIC_IRQInitStructure.EIC_IRQChannelPriority = 4;

 /* ADC kesmesini yapilandir ve onceligini ata */

 EIC_IRQInitStructure.EIC_IRQChannel = ADC_IRQChannel;

 EIC_IRQInitStructure.EIC_IRQChannelPriority = 5;

 EIC_IRQInitStructure.EIC_IRQChannelCmd = ENABLE;

 EIC_IRQInit(&EIC_IRQInitStructure);

 EIC_IRQCmd(ENABLE);

}

4.5.1.6 RTC_Configuration

RTC (gerçek zamanlı saat) ve saniye değişimlerinde kesme üretilmesi bu

fonksiyon içinde yapılandırılır.

void RTC_Configuration(void)

{

 /* RTC'yi etkinlestir */

 MRCC_PeripheralClockConfig(MRCC_Peripheral_RTC, ENABLE);

 /* RTC yazmaclarinin senkronize olmasini bekle */

 RTC_WaitForSynchro();

 /* RTC yazmaclarina yazma isleminin bitmesini bekle */

 RTC_WaitForLastTask();

 /* RTC Saniye kesmesini etkinlestir */

 RTC_ITConfig(RTC_IT_Second, ENABLE);

 59
 /* RTC yazmaclarina yazma isleminin bitmesini bekle */

 RTC_WaitForLastTask();

 /* RTC periyodunu 1 saniyeye ayarla */

 RTC_SetPrescaler(31249);

 /* Saati ayarla */

 THH = 00;

 /* Dakikayi ayarla */

 TMM = 00;

 /* Saniyeyi ayarla */

 TSS = 00;

 /* Sayici degerini hesapla */

 Tmp = THH * 3600 + TMM * 60 + TSS;

 /* RTC yazmaclarina yazma isleminin bitmesini bekle */

 RTC_WaitForLastTask();

 /* Sayici degerini ayarla */

 RTC_SetCounter(Tmp);

}

4.5.1.7 ADC_Configuration

Analog dijital çevrimin nasıl yapılacağı ve hangi durumda kesme üreteceği bu

fonksiyon içinde yapılandırılır.

void ADC_Configuration(void)

{

 ADC_InitTypeDef ADC_InitStructure;

 ADC_InitStructure.ADC_ConversionMode = ADC_ConversionMode_Scan;

 ADC_InitStructure.ADC_ExtTrigger = ADC_ExtTrigger_Disable;

 ADC_InitStructure.ADC_AutoClockOff = ADC_AutoClockOff_Disable;

 ADC_InitStructure.ADC_SamplingPrescaler = 5;

 ADC_InitStructure.ADC_ConversionPrescaler = 1;

 ADC_InitStructure.ADC_FirstChannel = ADC_CHANNEL8;

 ADC_InitStructure.ADC_ChannelNumber = 4;

 ADC_Init(&ADC_InitStructure);

 /* Secilen kanallarin tamami cevrildikten sonra kesme

olusturulmasini

 etkin kil */

 ADC_ITConfig(ADC_IT_ECH, ENABLE);

 /* ADC'yi etkinlestir */

 ADC_Cmd(ENABLE);

 /* Kalibrasyonu baslat */

 ADC_StartCalibration(ADC_CalibAverage_Enable);

 /* Cevrim islemine basla */

 ADC_ConversionCmd(ADC_Conversion_Start);

}

 60
4.5.1.8 UART_Configuration

Bu fonksiyonda UART belirtilen ayarlar ile yapılandırılmıştır.

void UART_Configuration(void)

{

 UART_InitTypeDef UART_InitStructure;

/* UART0 yapilandirilmasi */

 /* UART0 su sekilde yapilandirilmistir:

 - Veri bitleri = 8 bit

 - Dur bitleri = 1 bit

 - Eslik = tek

 - Saniyedeki bit sayisi = 115200

 - Akis denetimi = yok

 - Gonderme ve alma etkin

 */

 UART_InitStructure.UART_WordLength = UART_WordLength_8D;

 UART_InitStructure.UART_StopBits = UART_StopBits_1;

 UART_InitStructure.UART_Parity = UART_Parity_Odd ;

 UART_InitStructure.UART_BaudRate = 115200;

 UART_InitStructure.UART_HardwareFlowControl=

 UART_HardwareFlowControl_None;

 UART_InitStructure.UART_Mode = UART_Mode_Tx_Rx;

 UART_InitStructure.UART_FIFO = UART_FIFO_Disable;

 UART_Init(UART0, &UART_InitStructure);

 /* UART0 etkinlestir */

 UART_Cmd(UART0, ENABLE);

}

4.5.1.9 fputc

Bu fonksiyon ile C kütüphanesindeki printf fonksiyonu UART0’a

bağlanmaktadır. Yani printf fonksiyonu ile yazdırılan karakterler UART0 üzerine

gönderilmektedir. Bizim uygulamamızda bu hata ayıklama mesajları bastırmak için

kullanılmıştır.

int fputc(int ch, FILE *f)

{

 UART_SendData(UART0, (u8) ch);

 while(UART_GetFlagStatus(UART0, UART_FLAG_TxFIFOFull) != RESET);

 return ch;

}

 61
4.5.1.10 EXTIT_Configuration

Bu fonkiyonda harici kesme kanalları kare dalganın düşen kenarında kesme

üretmek üzere yapılandırılmaktadır.

void EXTIT_Configuration(void)

{

 EXTIT_InitTypeDef EXTIT_InitStructure;

 /* 7,8,9,10 harici kesme kanallarindaki bekleyen biti temizle

*/

 EXTIT_ClearITPendingBit(EXTIT_ITLine7 | EXTIT_ITLine8 |

 EXTIT_ITLine9 | EXTIT_ITLine10 | EXTIT_ITLine12);

 /* 7,8,9,10 harici kesme kanallarinin dusen kenarlarinda kesme

uretecek sekilde yapilandir */

 EXTIT_InitStructure.EXTIT_ITLine = EXTIT_ITLine7 |

EXTIT_ITLine8|

 EXTIT_ITLine9 | EXTIT_ITLine10 | EXTIT_ITLine12;

 EXTIT_InitStructure.EXTIT_ITTrigger = EXTIT_ITTrigger_Falling;

 EXTIT_InitStructure.EXTIT_ITLineCmd = ENABLE;

 EXTIT_Init(&EXTIT_InitStructure);

}

4.5.1.11 I2C_ReceivedDataEvaluate

Bu fonksiyon I2C kesmesi oluştuğu anda 75x_it.c dosyası içindeki

I2C_IRQHandler fonksiyonu tarafından çağrılmaktadır. ARM9 işlemciden gelen veri

isteği değerlendirilip uygun karşılık bir tampon hafızaya yazılmaktadır. ARM9

işlemcinin bu bilginin kendisine gönderilmesini istemesi durumunda ise tampon

hafızadaki mesaj yine 75x_it.c dosyası içindeki I2C_IRQHandler fonksiyon

tarafından gönderilmektedir.

void I2C_ReceivedDataEvaluate(void)

{

 if ((Rx_Buffer[0]) != ('#')) {

 sprintf(Tx_Buffer,"#HATALI MESAJ ALINDI!");

 } else if ((Rx_Buffer[1]) == ('C')) { /* CAN Mesajlari*/

 if ((Rx_Buffer[2]) == ('1')) {

 sprintf(Tx_Buffer,"#C1%04X!",Speed);

 } else if ((Rx_Buffer[2]) == ('2')) {

 sprintf(Tx_Buffer,"#C2%04X!",FuelLevel);

 } else if ((Rx_Buffer[2]) == ('3')) {

 sprintf(Tx_Buffer,"#C3%04X!",Rpm);

 } else if ((Rx_Buffer[2]) == ('4')) {

 sprintf(Tx_Buffer,"#C4%04X!",EngTemp);

 } else if ((Rx_Buffer[2]) == ('5')) {

 sprintf(Tx_Buffer,"#C5%04X!",AmbTemp);

 }

 } else if ((Rx_Buffer[1]) == ('A')) { /* Analog degerler*/

 if ((Rx_Buffer[2]) == ('1')) {

 sprintf(Tx_Buffer,"#A1%02X!",adc1_value);

 62
 } else if ((Rx_Buffer[2]) == ('2')) {

 sprintf(Tx_Buffer,"#A2%02X!",adc2_value);

 } else if ((Rx_Buffer[2]) == ('3')) {

 sprintf(Tx_Buffer,"#A3%02X!",adc3_value);

 } else if ((Rx_Buffer[2]) == ('4')) {

 sprintf(Tx_Buffer,"#A4%02X!",adc4_value);

 }

 } else if ((Rx_Buffer[1]) == ('F')) { /* Frekans degerleri */

 if ((Rx_Buffer[2]) == ('1')) {

 sprintf(Tx_Buffer,"#F1%02X!",freq1_value);

 } else if ((Rx_Buffer[2]) == ('2')) {

 sprintf(Tx_Buffer,"#F2%02X!",freq2_value);

 } else if ((Rx_Buffer[2]) == ('3')) {

 sprintf(Tx_Buffer,"#F3%02X!",freq3_value);

 } else if ((Rx_Buffer[2]) == ('4')) {

 sprintf(Tx_Buffer,"#F4%02X!",freq4_value);

 }

 }

 printf("%s\n\r",Rx_Buffer);

 Rx_Buffer[Rx_Idx - 1] = 0;

}

4.5.2 75x_it.c

75x_it.c dosyası kesme (interrupt) üretilmesi sonucunda icra edilen

fonksiyonları içermektedir. main.c dosyası içindeki EIC_Configuration

fonksiyonunda kesme üretmek için yapılandırılan çevresel birimlerin (CAN, I2C,

harici kenar değişimi kesmesi, RTC, ADC) ürettiği kesmeler bu dosya içindedir.

4.5.2.1 CAN_IRQHandler

CAN Bus üzerinden mesaj alındığında bir kesme üretilmektedir. CAN kesme

vektörü bu kesme fonksiyonuna dallanmaktadır. Burada kesme oluşmasına sebep

olan durum belirlenmekte ve bir değişken true yapılmaktadır. main.c dosyası içindeki

ana döngü içindeki kod tarafından ise alınan mesaj işlenerek anlamlı hale

getirilmektedir.

void CAN_IRQHandler(void)

{

 u32 msgobj = 0;

 if(CAN->IDR == 0x8000) { /* durum kesmesi */

 (void)CAN->SR; /* yazmaci temizlemek icin oku*/

 } else if(CAN->IDR >= 1 && CAN->IDR <= 32) {

 /* kesme olusmasina sebep olan mesaj nesnesi numarasini al */

 63
 switch(msgobj = CAN->IDR - 1)

 {

 case 0 /* CAN_TX_MSGOBJ - Gonderme kesmesi */:

 CAN_ReleaseTxMessage(msgobj);

 break;

 case 1 /* CAN_RX_MSGOBJ - Alma kesmesi */:

 CAN_ReceiveMessage(msgobj, TRUE, &RxCanMsg);

 switch (RxCanMsg.Id)

 {

 case 0x0CFEF17A: /* Arac hizi */

 case 0x1CFEFCB1: /* Yakit seviyesi */

 case 0x0CF004EE: /* Motor devri */

 case 0x0CFEEEEE: /* Motor sicakligi */

 case 0x1CFEF5AC: /* Ortam hava sicakligi */

 CAN_Data_Received = TRUE;

 break;

 default:

 break;

 }

 CAN_ReleaseRxMessage(msgobj);

 break;

 default:

 CAN_ReleaseMessage(msgobj);

 break;

 }

 }

}

4.5.2.2 I2C_IRQHandler

I2C haberleşmesi gereksiz kod işletilmesini önlemek için sürekli gözleme

yerine kesme kontrolünde yapılmaktadır. I2C ile alınan mesajlar main.c içindeki

I2C_ReceivedDataEvaluate fonkiyonunda değerlendirilerek gerekli yanıt mesajı bir

tampon hafızaya yazılmaktadır. Tampon hafızadaki bu mesaj yine kesme

kontrolünde alıcıya iletilmektedir.

void I2C_IRQHandler(void)

{

 switch (I2C_GetLastEvent())

 {

 case I2C_EVENT_SLAVE_ADDRESS_MATCHED:

 Rx_Idx = Tx_Idx = 0;

 break;

 case I2C_EVENT_SLAVE_BYTE_RECEIVED:

 Rx_Buffer[Rx_Idx++] = I2C_ReceiveData();

 if (Rx_Buffer[Rx_Idx - 1] == '!') {

 I2C_ReceivedDataEvaluate();

 }

 break;

 64
 case I2C_EVENT_SLAVE_BYTE_TRANSMITTED:

 I2C_SendData(Tx_Buffer[Tx_Idx++]);

 break;

 case I2C_EVENT_SLAVE_ACK_FAILURE:

 I2C_SendData(0xFF);

 break;

 case I2C_EVENT_SLAVE_STOP_DETECTED:

 Rx_Idx = Tx_Idx = 0;

 break;

 default:

 break;

 }

}

4.5.2.3 EXTIT_IRQHandler

Harici kesme ile 4 adet 10kHz seviyesine kadar frekans girişi okunmakta ve

aynı zamanda ARM9 işlemcinin gönderdiği kare dalga işaretler okunarak bu işaret

kesildiğinde ARM9 işlemci resetlenmektedir. Bu işlemi yanlışsız ve en etkin şekilde

yapmanın yolu bu girişlerde yükselen veya düşen bir kenar görüldüğünde kesme

oluşturmaktadır. Bu uygulama düşen kenarlarda kesme üretilmesi için

yapılandırılmıştır. Kesmeye sebep olan düşen kenarın hangi kanal üzerinde oluştuğu

da EXTIT_GetITStatus fonksiyonu ile belirlenmektedir.

void EXTIT_IRQHandler(void)

{

 if(EXTIT_GetITStatus(EXTIT_ITLine7) != RESET)

 {

 freq4_value++;

 /*Harici kesme kanali 7'nin kesme bekleme bitini temizle*/

 EXTIT_ClearITPendingBit(EXTIT_ITLine7);

 } else if(EXTIT_GetITStatus(EXTIT_ITLine8) != RESET)

 {

 freq3_value++;

 /* Harici kesme kanali 8'in kesme bekleme bitini temizle */

 EXTIT_ClearITPendingBit(EXTIT_ITLine8);

 } else if(EXTIT_GetITStatus(EXTIT_ITLine9) != RESET)

 {

 freq2_value++;

 /* Harici kesme kanali 9'un kesme bekleme bitini temizle */

 EXTIT_ClearITPendingBit(EXTIT_ITLine9);

 } else if(EXTIT_GetITStatus(EXTIT_ITLine10) != RESET)

 {

 freq1_value++;

 /*Harici kesme kanali 10'un kesme bekleme bitini temizle*/

 EXTIT_ClearITPendingBit(EXTIT_ITLine10);

 }

 /*ARM9 islemci 12 nolu harici kesme kanalinin seviyesini

 65
degistirirse ARM9'un resetlenmesini onlemek icin sayiciyi

sifirla */

 if(EXTIT_GetITStatus(EXTIT_ITLine12) != RESET)

 {

 ResetTimer = 0;

 /*Harici kesme kanali 12'nin kesme bekleme bitini temizle*/

 EXTIT_ClearITPendingBit(EXTIT_ITLine12);

 }

}

4.5.2.4 RTC_IRQHandler

Saniyede bir kez RTC kesmesi oluşmakta ve bu fonksiyon icra edilerek

zaman güncellenmektedir.

void RTC_IRQHandler(void)

{

 if(RTC_GetITStatus(RTC_IT_Second) != RESET)

 {

 /* RTC saniye kesmesi bekleme bitini temizle */

 RTC_ClearITPendingBit(RTC_IT_Second);

 /* RTC yazmaclarina yazma isleminin bitmesini bekle */

 RTC_WaitForLastTask();

 }

 /* Zamani guncelle */

 TimeDisplay = TRUE;

}

4.5.2.5 ADC_IRQHandler

Bütün kanallardaki analog dijital çevrim tamamlandıktan sonra bir kesme

oluşturularak bu fonksiyon icra edilir ve çevrim sonuçları gerekli değişkenlere atanır.

void ADC_IRQHandler(void)

{

 /* Analog dijital cevrim sonuclarini al */

 adc1_value = ADC_GetConversionValue(ADC_CHANNEL11);

 adc2_value = ADC_GetConversionValue(ADC_CHANNEL10);

 adc3_value = ADC_GetConversionValue(ADC_CHANNEL9);

 adc4_value = ADC_GetConversionValue(ADC_CHANNEL8);

 /* Cevrim sonunda kesme bekleme bitini temizle */

 ADC_ClearITPendingBit(ADC_IT_ECH);

}

 66

5. SONUÇLAR

Bu çalışmada CAN Bus çevresel birimine sahip ARM7 mimarisindeki

STR752FR0 mikro denetleyicisi kullanılarak bir uygulama geliştirilmiştir.

Geliştirilen uygulama Araç Takip Cihazı’nın bir parçasıdır. Araç takip cihazı,

aracın internet üzerinden izlenmesi, araca ait çeşitli bilgilerin uzaktan görülebilmesi,

gerekli durumlarda aracın bir sistemini çalıştırmak için komut gönderilmesi gibi

amaçlarla kullanılmaktadır. Bu cihaz günümüzde araçlarda standart hale gelen CAN

Bus haberleşme sistemine bağlanarak sistemden ihtiyaç duyulan bilgileri alıp

değerlendirmekte ve bir merkeze kablosuz olarak göndermektedir. Uygulamanın

bütünlük arz etmesi amacıyla CAN Bus’dan alınan bilgiler haricinde araç üzerindeki

frekans bilgileri, analog bilgiler gibi olabilecek diğer bilgiler de alınarak

değerlendirilmektedir.

CAN Bus sistemine bağlı cihazların hatasız ve yüksek performansta

çalışmaları için bit zamanlamaları yapılmalıdır. Bu uygulamada bit zamanlama

hesaplamaları açıklamalı olarak yapılmış ve mikro denetleyici hesaplanan bu değere

göre yapılandırılmıştır.

CAN verileri gönderildikleri merkezde araç sahipleri tarafından

incelenebileceği gibi araç üreticileri tarafından da incelenebilir. Bu veriler araçtaki

arızalı parçaları, aracın kullanım istatistiklerini, hız, devir, hararet gibi daha birçok

bilgiyi içerebilir. Araç CAN haberleşme sisteminde bu ve bunun gibi araca ait tüm

bilgiler mevcuttur. Araç üreticilerinin bu bilgileri incelemeleri sonucunda arıza

oluşan parçalarda geliştirme ve performans ölçümü yapılabilir.

Bu uygulamanın bir ileri safhası okunan bu verilerin incelenmesi ve örnek

olarak araçta CAN Bus’a bağlı bir birimin merkezden özel bir mesaj gönderilmesi

yoluyla tekrar çalışır hale gelmesi olabilir. Bu, servis maliyetlerini önemli ölçüde

azaltacaktır ve araç üreticilerinin ihtiyaç duyduğu bir özelliktir.

 67

KAYNAKLAR DİZİNİ

[1] Syed Misbahuddin, Nizar Al-Holou, 'Efficient Data Communication Techniques

for Controller Area Network (CAN) Protocol', ACS/IEEE International Conference

on Computer Systems and Applications, Tunis, pp.6-11, 2003.

[2] Hans A, Hansson Thomas Nolte and Christer Norstrom, 'Integrating Reliability

and Timing Analysis of CAN-based Systems', IEEE Transactions on Industrial

Electronics, Vol.49, no.6, pp.1240-1250, 2002.

[3] E. Gil-Dolcet, J. M. Fuertes, 'A New Communication Protocol for Automotive

Real-time Applications', The 26th IFAC/IFIP/IEEE Workshop on Real-Time

Programming, Poland, pp.147-152, 2003.

[4] Introduction to Controller Area Network (CAN), Microchip Technology

Incorporated, Web Seminar, 2004

[5] Jin Hui, Zhang Hong-kun and Ge An-lin, 'The Application of CAN Bus to the

Vehicle Intelligent Shift System', Journal of Highway and Transportation Research

and Development, Vol.21, no.3, pp.114-116, 2004.

[6] Esd Gmbh Hannover, “Controller Area Network, A Serial Bus System- Not Just

For Vehicles”, www.esd-electronics.com/pdffile/CAN/English/intro-e.pdf; pp. 1-8.

[7] 12th International CAN Conference, Conference Handouts, Barcelona, 2008

[8] CAN Specification Version 2.0, Robert Bosch GmbH, Stuttgart, 1991

[9] P. Göhner, Universität Stuttgart, Institute of Industrial Automation and Software

Engineering, CAN Bus Theory, Stuttgart, 2006

[10] Murphy, N., A Short Trip On The CAN Bus, Embedded Systems Design,

http://www.embedded.com/columns/murphyslaw/13000304?_requestid=639577,

Erişim Tarihi Mayıs 2008

 68
[11] CAN in Automation, Physical Layer Standards, http://www.can-

cia.de/index.php?id=88#c2029, Erişim Tarihi Nisan 2008

[12] STR750F ARM7TDMI-S 32-bit MCU with Flash, SMI, 3 Std 16-bit Timers,

PWM Timer, Fast 10-bit ADC, I2C, UART, SSP, USB and CAN User Manual Rev.

2.0, ST Microelectronics, France, 2006

[13] STR750 ARM7TDMI-S-Based Microcontroller Family Reference Manual Rev.

3.0, ST Microelectronics, France, 2007

[14] STR75X Software Library Rev. 1.0, ST Microelectronics, France, 2006

[15] ATAK Araç Takip Sistemi Kullanım Kılavuzu Rev. 2.1, Ortem Elektronik

Sanayi ve Ticaret Limited Şirketi, Gebze, 2007

[16] ATAK Araç Takip Sistemi Devre Şeması Rev. 4.53, Ortem Elektronik Sanayi

ve Ticaret Limited Şirketi, Gebze, 2007

[17] Wang Xin-jie, Tang Xiao-qi and Yang Bo, 'Computer Monitor Network of Car

Based on CAN Bus', Machinery and Electronics, Vol.2, pp.21-23, 2002.

[18] Recommended Practice for a Serial Control and Communications Vehicle

Network Rev. 2005-01, SAE International, 2005

[19] Surface Vehicle Recommended Practice Vehicle Application Layer Rev. 2005-

01, SAE J1939-71, SAE International, 2005

[20] CAN in Automation, http://www.can-cia.de/index.php?id=88, Erişim Tarihi

Nisan 2008

[21] Richards, P., Understanding Microchip’s CAN Module Bit Timing, Microchip

Technology Incorporated, Application Note, 2001

 69

ÖZ GEÇMİŞ

Adı-Soyadı : Uğur Coşkun

Doğum Tarihi/Yeri : 22.01.1981 / Konya

Eğitim

 İlköğretim : Lalebahçe İlköğretim Okulu, Konya, 1993

 Ortaöğretim : Konya Lisesi, Konya, 2000

 Lisans : Erciyes Üniversitesi, Elektronik Mühendisliği Bölümü,

 Kayseri, 2005

 Yüksek Lisans : Gebze Yüksek Teknoloji Enstitüsü,

 Elektronik Mühendisliği Bölümü, Gebze, 2008

Sürekli Adres : Gülbahçe Mh. Yeniçay Sk. No: 10 Meram / Konya

Telefon : 0 535 5608835

E-Posta : ucoskun@gyte.edu.tr

 70

