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YAPAY SiNiR AGINA DAYALI YUKSEK DERECELI BULANIK ZAMAN
SERISi ONGORU MODELI

OZET

Bulanik zaman serisi analizi yontemleri geleneksel yontemlere gore bir¢ok
avantaji olan etkili yontemlerdir. Bulanik zaman serisi analizi yontemlerinin klasik
yontemlerdeki kisitlamalara sahip olmamasi, son yillarda bu ydntemlere olan ilgiyi
arttirmaktadir. Zaman serisi gozlemleri bir dnceki donemde gézlemlenmis veriye bagh
olabilecegi gibi genellikle daha 6nceki donemlerde gozlemlenmis verilere de baghdir.
Bu nedenle, yiiksek dereceli bulanik zaman serisi yaklasimlari, birinci dereceden
bulanik zaman serisi yaklasimlarina gore daha iyi 6ngorii sonuclart verecektir. Bunun
yaninda yliksek dereceli bulanik zaman serisi yaklasimlarinda bulanik iligki
belirlenmesi, birinci dereceden yaklagimlara gore, oldukca zor ve karmasiktir. Bu
calismada, bulanik iligkilerin ileri beslemeli yapay sinir aglar1 ile belirlendigi, yiiksek
dereceli bulamk zaman ©6ngdrii modeli Onerilmistir. Onerilen yeni yaklasimin
uygulamast, literatiirde sik¢a kullanilan Alabama Universitesi kayit verisine ve Tiirkiye
Tiketici Fiyat Endeksi verisine uygulanarak literatiirdeki diger yontemler ile
karsilagtirilmigtir.  Sonucta, Onerilen yeni yontemin bulanik iligki belirlemedeki
karmasiklig1 ortadan kaldirdigi gibi, diger yontemlere gére daha iyi dngorii sonuglari

verdigi de gorilmistiir.

Anahtar Sozciikler: Kesikli bulanik kiime, yiiksek dereceli bulanik zaman

serisi, bulanik mantik iliski, yapay sinir aglari, 6ngorii.
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HIGH ORDER FUZZY TIME SERIES FORCASTING MODEL BASED ON
ARTIFICIAL NEURAL NETWORKS

ABSTRACT

Fuzzy time series procedures have many advantages comparing to the
conventional time series methods. Since fuzzy time series procedures do not require
assumptions which are essential for the conventional techniques they are getting
popular. As a current observation of time series can be dependent of the observation
measured just one period before itself, it may depend on the several lagged
observations. Because of this dependency high-order fuzzy time series approaches can
give more reliable forecasting results than first-order fuzzy time series methods.
However the determination of fuzzy relationships by using high-order fuzzy time series
procedures is very difficult since it requires evaluating many complicated fuzzy
relationship tables. In this study a high-order fuzzy time series method is proposed in
which fuzzy relationships are determining by using feed-forward artificial neural
networks. The proposed approach has been applied to the data on enrollments at the
University of Alabama which is well-known and used in many other researches in
literature, as well as the data of Consumer Price Index of Turkey. The empirical results
are compared to the results from the conventional methods. It has been concluded that
as the proposed method prevents to evaluate massive fuzzy relation tables it provides

better results in terms of forecasting accuracy.

Key Words: Discrete fuzzy set, high order fuzzy time series, fuzzy logic

relation, artificial neural network, forecast.
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1. GIRIS

Bulanik zaman serisi analizi yontemleri model varsayimi ve gozlem sayisi
kisitlar1 icermeyen etkili yontemlerdir. Son yillarda bulanik zaman serisi yontemlerine,

bu tiir kisitlamalara sahip olmamas1 ve 6ngorii dogrulugu nedeniyle ilgi artmaktadir.

[k olarak Zadeh (1965) tarafindan verilen bulanik kiime teorisi birgok uygulama
alanina sahiptir. Bulanik zaman serisi kavramu ise ilk olarak Song ve Chissom (1993a,
1993b, 1994) tarafindan ortaya atilmistir. Tiim bu calismalar Zadeh (1973, 1975)
tarafindan verilen tanimlamalara dayanmaktadir. Song ve Chissom (1993a, 1993b,
1994) bulanik zaman serisinin tahmin edilmesi i¢in matris islemlerine dayali bir yontem
Onermistir ve bu yontem ii¢ asamadan olugmaktadir. Birinci asama gozlemlerin
bulaniklastirilmasi, ikinci asama bulanik iliskilerin belirlenmesi ve iigiincii asama ise
durulagtirma asmasidir. Literatiirde bulanik zaman serilerinde bu ii¢ asamanin da
iyilestirilmesi ig¢in ¢esitli calismalar yapilmistir. Bulanik iligkinin belirlenmesi
asamasinda, Chen (1996), Song ve Chissom (1993a, 1993b) tarafindan Onerilen
yontemdeki matris hesaplama islemleri yerine bulanik iligki tablosundan yararlanarak
daha kolay hesaplama yapabilen bir yontem 6nermistir. Huarng ve Yu (2006), bulanik
iligkinin belirlenmesinde, basit bir ileri beslemeli yapay sinir ag1 (feed-forward artificial
neural network) kullanimi 6nermistir. Huarng ve Yu (2006) tarafindan Onerilen bu
yontemde birinci dereceden bulanik zaman serisi yaklasimi ele alindigindan, kullanilan
ileri beslemeli yapay sinir ag1 modeli bir girdi, iki gizli tabaka birimi ve tek cikti
biriminden olusmaktadir. Literatiirdeki tiim bu yontemlerin hepsinde birinci derece
bulanik zaman serisi modeli ile ilgilenilmistir. Birinci dereceden bulanik zaman serisi
yaklagiminin sadece birinci dereceden otoregresif ( AR(1) ) yapili zaman serileri igin
uygulanmasi gerekir. Ancak gergek hayatta karsilasilan zaman serilerinin sadece AR(1)
yapisinda olmasi diisliniilemez. Birgok zaman serisi AR(2), AR(3) gibi yiiksek dereceli
iliskiler ile 6ngoriilebilir. Chen (2002) AR(1) yapili verilerin ¢éziimlenmesi i¢in yiiksek
dereceli bulanik zaman serisi yaklagimi Onermistir. Chen (2002)’nin Onerdigi bu
yontemde yiiksek dereceli modellerde tim gecikmeli bulanik degiskenler
bulunmaktadir. Yani 4. dereceden bir zaman serisinin ¢oziimlenmesinde F(z) bulanik
zaman serisi iken, F(t-1), F(t-2), F(t-3), F(t-4) bulanik gecikmeli degiskenleri modelde
yer almaktadir. Dolayisiyla Chen (2002)’nin ¢alismasinda tanimlanan yiiksek dereceli

bulanik zaman serisi modeli AR(p), p>1 yapili zaman serilerini de modelleyebilir.



Bunun yaninda yiiksek dereceli bulanik zaman serisi yaklagiminda derece arttikga,
bulanik iliskinin belirlenmesinde, Chen (2002) tarafindan verilen yontemin uygulanmasi
da oldukg¢a zorlasmaktadir. Yiiksek dereceli modelin ¢6ziimlenmesinde bulanik iliskiler,
yapay sinir agi ile belirlenir ise Chen (2002)’nin Onerdigi yontemdeki islem

yogunlugundan kurtulmak miimkiindjir.

Bu c¢alismada yiiksek dereceli bulanik zaman serisi modelini ¢oziimleyen,
bulanik iligkinin belirlenmesinde ileri beslemeli yapay sinir aginin kullanildigi, yeni bir
yontem Onerilmistir. Yapay sinir agina dayali bu yaklasim, ilk olarak literatiirde sik¢a
kullanilan Alabama Universitesi 1971-1992 yillarina ait kayit verisine ve daha sonra da
2003 Subat ve 2008 Subat aylar1 arasinda hesaplanan Tiirkiye Tiketici Fiyat Endeksi
zaman serisine uygulanarak sonuc¢lar elde edilmis ve diger yoOntemlerle
karsilagtirilmasiyla birlikte, yillik bazda hesaplanan sonuclar ayrica Tiirkiye
Cumhuriyeti Merkez Bankasi1 (T.C.M.B.) tarafindan her yilin belirli donemlerinde
yayinlanan, enflasyon beklentisi anketi sonuclar1 ile de karsilagtirilarak Onerilen

yaklagimin iistiin oldugu goriilmiistiir.

Caligmanin ikinci boliimiinde genel bilgiler ana baglig1 altinda sirasiyla, zaman
serileri ile ilgili temel tanim ve kavramlar, bulanik mantik yaklagimi ve genel
kavramlar1 ayrica yapay sinir aglar1 ve bilesenleri, liclincli boliimde ise materyal ve
yontem ana basligi altinda, bulanik zaman serileri ve ¢éziimleme yontemleri ile birlikte
Onerilen yontem tanitilmistir. Calismanin dordiincii boliimiinde bulgular ve tartisma ana
baslig1 altinda, Onerilen yonteme ait iic uygulama verilmis ve son olarak besinci
boliimde ise elde edilen sonuglar sonug ve Oneriler ana baglig1 altinda degerlendirilmis,
ortaya konabilecek yeni caligmalarda {izerinde durulmasi gereken konulara kisaca

deginilmistir.



2. GENEL BIiLGILER
2.1. Zaman Serileri ve Temel Kavramlari

llgilenilen zamana bagl bir olaymn, goézlem ya da deney sonucunda aldig:
degerlerden olusan veri topluluguna zaman serisi adi verilir. {lgilenilen Z degiskeninin

belirli bir ¢ aninda almis oldugu deger Z, ile gosterildiginde, Z,’lerin olusturdugu
{Z,,teT } kiimesi bir olasiliksal siirectir (Chatfield, 1989). Yani zaman serisi

genellikle, zamanin deterministik bir fonksiyonu degildir. Zaman serileri
¢Ozlimlenirken, serilere olasiliksal slire¢ olarak bakilmasi, tanimlanmasi ve olasiliksal

modeller kullanilmasi gerekir (Box ve Jenkins, 1970).

Zaman ig¢inde siirekli olarak kaydedilebilen verilere sahip serilere siirekli,
yalnizca belirli araliklarla elde edilebilen verilere sahip serilere kesikli zaman serileri
denir. Elektrik sinyalleri, ses titresimleri gibi miithendislik alanlarina ait veriler siirekli,
faiz orani, satig hacmi, enflasyon orani gibi iktisadi veriler de kesikli zaman serileri igin

ornek olarak verilebilir (Kadilar, 2005).

Zaman serisi terimleri, trend, mevsimsel dalgalanmalar, konjonktiirel
dalgalanmalar ve rassal dalgalanmalar olmak tizere dort etkenin etkisi altinda olusurlar.
Zaman serilerinde, i¢ bagimlilik olarak da isimlendirilebilen, gdézlem degerlerinin
birbirine bagli olmasi1 6zelligi nedeniyle, zaman serisinin ge¢mis donem gozlem

degerleri arasindaki iliski belirlenerek, ileriye doniik 6ngoriide bulunulur.

2.1.1. Zaman Serisi Coziimleme Araclar
2.1.1.1. Otokorelasyon Fonksiyonu (A.C.F.)

Otokorelasyon fonksiyonu, serinin duraganliginin, duragan degilse buna sebep
olan etmenlerin belirlenmesinde, otoregresif biitlinlesik hareketli ortalama modellerini
(ARIMA) tanimlama ve uygunluk sinamasinda kullanilir. Bir zaman serisinde Z, ve

Z,,, k gecikmeli iki deger arasindaki iliskinin standartlastirilmis 6l¢limii otokorelasyon

katsayis1 ve bu katsayilarin £ gecikmeye bagli olarak ifadesine de otokorelasyon

fonksiyonu ad1 verilir (Cryer, 1986).



p, (k) ile gosterilen kitle otokorelasyon fonksiyonu,

E[(Z _ﬂz)(Z k_ﬂz)]
p, k)= Lr &z 1 k=0,£1,+2,... (2.1)
E[(Zt_:uz) J

seklinde tanimlanir. (2.1) esitligindeki pay kismi otokovaryans fonksiyonu olarak bilinir

ve y,(k) ile, payda kismi ise Z, zaman serisinin varyansi olarak bilinir ve o ile

gosterilir. Bu durumda otokorelasyon fonksiyonu,

pz(k):yzigzyz(zk) k=0,+1,42,... (2.2)
Yz Oy

seklinde de ifade edilebilir.

Orneklem zaman serisine dayanarak, y,(k) nmn tahmini ¢, (k) ve p, (k) ’nm
tahmini de r,(k) ile gosterilir. Otokorelasyon fonksiyonu, gecikmenin simetrik bir

fonksiyonu olmasi nedeniyle, p, (k) = p,(—k) olacagindan, pozitif gecikmeler icin,

n—k
cz(k)=ﬁZ(Z, -72)Z,.,-Z) , k=0,12,....n (2.3)
- t=1
r, (k) = "Zg‘; : k=0,12,...n (2.4)
CZ

olarak verilebilir. k. gecikme i¢in hesaplanan 7 otokorelasyon katsayisinin varyansi

Barlett (1955)’de asagidaki gibi elde edilmistir.

Vir,)= l Z(VVZ + ”v2+k7”v2_k —4r,rr, , + 2rV2rk2) (2.5)

V=—00

(2.5)’deki formiiliin yaklasik ve daha kolay bir formu asagidaki gibidir.

V(r,) :%[1+2Z]{:rf} (2.6)



Incelenen zaman serisinin icerdigi bilesenlerin belirlenmesi ve bu bilesenlerin,

rassal bilesenden ayirt edilebilmesi i¢in, ortalamasi sifir ve standart hatasi yaklasik
olarak 1/ Jn olan, otokorelasyon katsayilarinin 6rnekleme dagilimindan yararlanilir

(Box ve Jenkins, 1976). Eger zaman serisi yalnizca rassal bileseni igeriyor ise, tim

otokorelasyonlar1 sifir olacagindan V(r,)=1/n olacagi agiktir ve zaman serisinin

otokorelasyon katsayilar1 +z, / Jn araliginda kaliyorsa serinin rassal oldugu sonucuna

varilir. Bununla birlikte bu siirlarin disinda kalan otokorelasyonlarin sifirdan farkli ve
anlamli oldugu, modellemede g6z ardi edilemeyecegi ve ARMA modelin derecesini
belirlemede kullanilacagi bilinmektedir. Zaman serisinin olasiliksal yapisinin
belirlenmesinde anlamli otokorelasyonlarin ve serinin rassal bilesen disindaki
bilesenlerinin ortaya c¢ikarilmasi Onemlidir. Ayni yontemle modelin yeterliligi de

arastirilabilir.

2.1.1.2. Kismi Otokorelasyon Fonksiyonu (P.A.C.F.)

Zamana bagli bir degiskenin simdiki degeri Z, 'nin, diger gecikmelere etkisi sabit
kalmak tizere, onceki Z, , degerleriyle iliskisini veren ol¢lim, & gecikmesi i¢in kismi
otokorelasyon adim1 alir ve ¢, ile ifade edilir (Markidakis ve Wheelwright, 1978).

Kismi otokorelasyon katsayisi, regresyon ¢oziimlemesinde, diger degiskenler sabit iken,
yani bu degiskenlerin etkilerinin olmadig1 varsayildiginda, iki degisken arasindaki

iliskinin miktarin1 veren kismi korelasyon katsayisina benzer.

Zaman serisi ¢oziimlemesinde, seriye uygun AR modelinin derecesi, ¢ok sayida
gecikme icin anlamli otokorelasyon katsayisi olacagindan otokorelasyon fonksiyonuna
gore belirlenemez. Bunun yaninda p’inci dereceden bir AR modeli igin, kismi
otokorelasyon fonksiyonunda p tane sifirdan istatistiksel olarak farkli kismi
otokorelasyon katsayis1 vardir ve diger gecikmelerde kismi otokorelasyon katsayilari
sifirdan farkli degildir. Ornegin, bir zaman serisinde kismi otokorelasyon fonksiyonuna
bakildiginda; yalnizca birinci gecikmede sifirdan farkli kismi otokorelasyon katsayisi
var ve diger gecikmeler i¢in katsayilarin sifirdan farkliliklart anlamli degilse, ilgili seri

i¢in belirlenecek model AR(1) olacaktir.



Genel olarak, k’inci dereceden AR siirecinde j’inci katsay1 ¢,; ve son katsay1 da

¢, 1le ifade edilir. ¢,, ’larin olusturdugu denklemler kiimesi, Yule-Walker denklemler

sistemi seklinde agagidaki gibi yazilarak, ¢oziimlenebilir (Box ve Jenkins, 1970);
P =0 Pt et Py Pkt +Pu Pk J=L2,....k (2.7)
Bu denklem sistemi daha acik bir ifadeyle agsagidaki gibi yazilabilir;

Py =P + Gy ety P
P =0 P + P +oo Py Prs (2.8)

Pi =P Pioy T P2 Prs Tty

Uygulamada, Yule-Walker denklem sisteminde p ’larin yerine, » Orneklem

otokorelasyon katsayilar1 kullanilarak ¢oziimleme yapilir ve & gecikmeleri i¢in ¢,,

tahminleri olan, ékk orneklem kismi otokorelasyon katsayilar1 elde edilir (Cryer, 1986).

Bir AR(p) modeli i¢in, tahmin edilmis kismi otokorelasyonlar p’inci gecikmeden

sonra, ortalamasi sifir, varyansi 1/n olan bir normal dagilima sahiptir ve belirlenen bir

anlam diizeyinde, *+ z, / Jn smirlart icinde kalir (Quenoulle, 1949).

Asagidaki iteratif yontem, kismi otokorelasyonlarin hesaplanabilmesi igin
verilebilir.

N,(j))=D,()) =p;
Nk (]) = Nk—l (] + 1) - Dk—l (j)‘ék—l,k—l

A j=0,12,... 29
Dy()=D ()= N s (G+D By ’ k=203,... (2.9)
o N k (1)
YD)
(2.9) formiillerinden kismi otokorelasyon katsay1 tahmini,
r, .k gecikmeli otokorelasyon katsayisi,
ékk :j’inci gecikmeli serinin etkisi yok edildiginde k& gecikmeli kismi otokorelasyon

katsay1 tahmini



olmak iizere;

(¢Ak—1,_; )(’”k—_; )

gl

v, —

A —1

Pu = A
1- ‘ (¢k—1,j)(rj)

-
Il

s ¢3k, = ¢?k—1,j - (¢?kk )(&k—l,k—_}') (2-10)

=
L

~

ifadesi ile hesaplanabilir (Kadilar, 2005).

2.1.2. Baz Olasiliksal Siirecler

Yaklasik 30 yili agskin bir siiredir literatiirde, ele alinan zaman serileri i¢in en
dogru tahmin yapilabilmesi amaciyla en uygun modelin bulunmasina c¢alisilmaktadir.
Otoregresif hareketli ortalamalar karma siireci (ARMA) yontemi olarak da bilinen ve
George E.P.Box ve Gwilym M. Jenkins tarafindan 1976 yilinda ortaya atilmis Box-
Jenkins yontemi bu c¢alismalardan biridir. Bu yontem temelde, ororegresif siiregler
(AR), hareketli ortalamalar siiregleri (MA) ve bu iki siirecin kombinasyonu ile olusan
ARMA siireclerine dayanmaktadir. Giliniimiize kadar birgok bilimsel ¢alismada
kullanilmis olan bu etkili yontem, ele alinan zaman serisinin duraganligi ve tersinirligi

varsayimini éngdrmektedir.

Box-Jenkins yontemi asagida belirtilmis dort ana asamadan olusmaktadir.

° Model bulma asamasi

. Parametre tahmini agsamasi

. Artik analizi agsamasi

. Gelecekle ilgili tahmin yapma asamasi

Simdi, bu yontemin 6ngoérdiigii zaman serilerinde duraganligi ve yine yontemin

temelini olusturan AR, MA ve ARMA siirecleri ile ilgili baz1 temel bilgileri ele alalim.



2.1.2.1. Ak Giiriiltii Siireci

Karsilikli bagimsiz ve ayni dagilimli Z, raslanti degiskenlerinin dizisinden

t
olusan olasiliksal siirece ak giiriiltii siireci denir. Duragan bir olasiliksal siire¢ olan ak

giirtiltii stireci asagidaki 6zelliklere sahiptir.

LEZ)=u,, M. €R
ii. V(Z)=0’, ol eR’
iii. y(k)=0, (k#0)

2.1.2.2. Otoregresif Siirecler

Z,, duragan ve g, hata terimleri bir ak giiriiltii siireci olmak kosulu ile p’inci

dereceden bir otoregresif siireg, bir baska ifade ile AR(p) modeli, a¢ik bir formda;
Z, =9 Z A9 Z, ,+...+9,Z,_, +a, (2.11)

seklinde ifade edilebilir. Aym zamanda B‘Z, =Z,, ile tammlanan geri Gteleme

operatorii kullanilarak (2.11) esitligi kapali bir formda,
(1-4,B-¢,B>—...—4,B")Z, = q, (2.12)
seklinde diizenlenebilir.

Genel olarak uygulamada birinci ve ikinci dereceden otoregresif siireglerin
kullanim1 yaygindir. Birinci dereceden otoregresif silireg, Markov siireci, ikinci

dereceden otoregresif siire¢ ise, Yule siireci olarak adlandirilir.

p’inci dereceden bir otoregresif siire¢ olan AR(p) modelinin karakteristikleri elde

edilmek istenir ise modelin otokorelasyon fonksiyonu;

P =P th Pt +0, 00, > k>0 (2.13)



Bunun yaninda y(0)=o’ ve y(k)=y(—=k)  Ozellikleri kullanilarak, siirecin

varyansi,

2
(o3

ol = « (2.14)
1_¢1 P _¢2 P> _"'_¢p Py

olarak elde edilir.

2.1.2.3. Hareketli Ortalamalar Siireci

a, hata terimleri bir akgiiriilti stireci olmak kosulu ile g. dereceden bir hareketli

ortalamalar siireci, bir bagka ifade ile MA(q) modeli, agik bir formda;

Z =a,-6,a, ,-0,a,,—...—0_ a

q "t—q

(2.15)

seklinde ifade edilebilir. Aym1 zamanda, geri Gteleme operatorii kullanilarak (2.15)

esitligi kapal1 bir formda,

Z,=(1-6,B-6,B*~... -6, B )a, 016
=0(B)a, .
seklinde diizenlenebilir.
g. dereceden bir hareketli ortalamalar siirecinin otokorelasyon fonksiyonu;
-6, +6, ¢9k+12+0229k+2+..-2+¢9q_k9q F=12
P = 1467 +6;, +...4+0, (2.17)
0 k>q
olarak bulunur.
Bunun yaninda E(Z,)=0 ve Kov(Z,,Z, ,)=E(Z,,Z, ,) oldugundan,
) = (—60,+6,6,.,+60,0,,+-+6,,6,)0. k=12,....q 2.18)
0 k>q
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ifadesi elde edilir.

Siirecin varyansi ise, k=0 oldugu durumda;
7(0)=(1+6+6; +..46.) o, (2.19)

olacaktir.

2.1.2.4. Otoregresif Hareketli Ortalamalar Karma Siireci

a, hata terimleri bir akgiiriiltii stireci olmak kosulu ile (p,q)’uncu dereceden bir

hareketli ortalamalar siireci, bir baska ifade ile ARMA (p,q) modeli, agik bir formda;

Z =9 7Z +¢,7Z, , +...+¢p Z, ,+a, -6,a, ,-6,a,,—...-06_a (2.20)

q "t—q

seklinde ifade edilebilir. Aym1 zamanda, geri G6teleme operatorii kullanilarak (2.20)

esitligi kapal1 bir formda,

(1-¢,B-¢,B>~...~¢,B")Z,=(1-6,B-6,B°~ ... =0, B' Ja,

#(B)Z,=0(B)a, 220

seklinde diizenlenebilir.

ARMA(p,q) modelinin karakteristikleri elde edilmek istenir ise; modelin agik

formu olarak verilen (2.20) esitliginin her iki tarafi oncelikle Z, , ile carpilip, olusan

denklemin beklenen degeri alindiginda,
7(k) = ¢l 7//(71 +"'+¢p yk—p +7/za(k)_61 }/za (k _1)_"‘_9q }/za (k _q) (2'22)

sonucu bulunur. Burada y_ (k), Z ve a arasindaki ¢apraz kovaryans fonksiyonu,

7..(k)=E[Z _,a,] seklinde ifade edilir ve

0 k>0

- 223
#0 k<0 ( )

7.a(k) = {
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olur. Ayni zamanda k > g +1 oldugu durumda,

YR)Y=Q Vit Vit + D,V (2.24)
ve bdylece otokorelasyon fonksiyonu,

P =0 P td Pt b, 0, (2.25)
seklinde bulunur.

ARMA (p,q) modelinin varyansi ise, kK =0 oldugu durumda,
7/0 = ¢1 7/1 +"'+¢p yp +05 _01 yza(_l)_"'_gq j/za(_q) (2'26)

olarak elde edilir.

2.2. Bulanik Mantik

Bilgisayarlar ¢cok karmasik sayisal islemleri aninda ¢oziimleyebilmesine karsin,
idrak etme ve deneyimlerle kazanilmis bilgileri kullanabilme noktasinda oldukca
yetersizdir. Bunun yaninda, insan beyni diinyanin en karmasik makinesi olarak kabul
edilebilir ve sayisal bir islemi ancak birka¢ dakikada yapabilirken, idrak etmeye yonelik
olaylar1 ¢ok kisa bir siirede yapabilir. Insan1 ya da insan beynini {istiin kilan temel
ozellik, sinirsel algilayicilar vasitasi ile kazanilmis ve goreli olarak smiflandirilmig
bilgileri kullanmasidir. Acaba bir bilgisayar yardimi ile bdyle bir zeka {iretmek miimkiin
olabilir mi? Bu amagla gelistirilen, Uzman Sistemler (US), Bulanik Mantik (BM),
Genetik Algoritma (GA) ve Yapay Sinir Aglart (YSA) gibi yapay zeka alt dallan
ozellikle son yillarda, genis bir arastirma ve uygulama alani bulmaktadirlar (Elmas,

2003).

Bulanik mantik, bulanik kiime teorisine dayanan bir matematiksel disiplin olup,
insan mantiginda oldugu gibi, uzun-kisa, sicak-soguk, hizli-yavas, siyah-beyaz gibi
keskin degerler yerine, cok uzun-uzun-orta-kisa-cok kisa, sicak-ilik-az soguk-soguk-cok
soguk vb. gibi ara degerlere gore ¢caligmaktadir. Belirtilen bu ara deger terimleri sozel

terimler olup bulanik degiskenler olarak isimlendirilir. Bulanik mantik icin, gercek



12

diinyada her an degisen durumlarda degisik sonuglar ortaya c¢ikabileceginden,

matematigin ger¢ek diinyaya uygulanmasi denilebilir.

Bulanik mantik yaklagimi, makinelere, insanlarin 6zel verilerini isleyebilme ve
onlarin deneyimlerinden ve Onsezilerinden yararlanarak ¢alisabilme yetenegi verir. Bu
yetenegi kazandirirken de sayisal ifadeler yerine sembolik ifadeler kullanir ki bu
sembolik ifadelerin makinelere aktarilmasi matematiksel bir temele dayanir. Bu

matematiksel temel, bulanik mantik kiimeler kurami ve buna dayanan bulanik mantiktir.

Bulanik mantik yaklagimu ilk olarak 1956 yilinda Amerika Birlesik Devletlerinde
diizenlenen bir konferansta duyurulmasina karsin, ilk 6nemli ¢aligma, Lotfi A. Zadeh
tarafindan 1965 yilinda yayimlanan ve bulanik mantik ve bulanik kiime kuramini ortaya
koyan makaledir. Zadeh (1965), insan diislincesinin biiyiik cogunlugunun bulanik
oldugu, kesin olmadigi, sifir ve birle temsil edilen boolean mantigin bu diislince
islemini yeterli sekilde ifade etmedigini belirtmistir. Bulanik mantik, klasik mantigin

aksine, iki seviyeli degil, cok seviyeli islemleri kullanmaktadir.
Zadeh (1965), bulanik mantigin temel 6zelliklerini su sekilde ifade etmistir;

i.  Bulanik mantikta, kesin degerlere dayanan diisiinme yerine, yaklasik

distinme kullanilir.
1.  Bulanik mantikta her sey [0,1] araliginda belirli bir derece ile gosterilir.
iii.  Bulanik mantikta bilgi biiytik, kiiciik, ¢ok az gibi dilsel ifadeler seklindedir.

iv. Bulanik mantik ¢ikarim islemi dilsel ifadeler arasinda tanimlanan kurallar ile

yapilir.
v. Her mantiksal sistem bulanik olarak ifade edilebilir.

vi. Bulanik mantik matematiksel modeli ¢ok zor elde edilen sistemler i¢in ¢ok

uygundur.

Bulanik mantik uygulamasi ilk olarak, 1974 yilinda Mamdani tarafindan, bir
buhar makinesinin bulanik denetiminin gerceklestirilmesi ile olmustur. Bu calismay1

takiben, diinyanin cesitli yerlerindeki birgok firma bir¢cok basarili uygulama
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gerceklestirmistir. Bulanik mantik uygulamalari, son senelerde ozellikle Japonya,
Amerika ve Almanya’da ticari ve endiistri alanlarinda oldukg¢a yaygin ve basariyla
gergeklestirilmekte ve gelecekte de bu uygulamalarin hizla gelisecegi ve yayginlasacagi
ongoriilmektedir. Bulanik kuramimnin uygulamalariin iriinleri de Japonya’da 1990
yilinda tiiketicilerin hizmetine sunulmaya baslanmistir. Ornegin, bulamk denetimli
camagir makinesi, ¢camasirin cinsine, miktarina, kirliligine gore en etkili yikama ve su
kullanim programini secebilmektedir. Benzer uygulamalar arabalarda yakit piiskiirtme
ve ateslemede, elektrik siipiirgesi, televizyon ve miizik kiimeleri gibi aygitlarda da

kullanilabilmektedir (Elmas 2003).

2.2.1. Bulanik Kiime Kuram

Klasik kiime kuraminda bir eleman o kiimenin ya elemanidir ya da degildir,
kismi iiyelik s6z konusu olamaz. Nesnenin tiyelik degeri 1 ise kiimenin tam elemant, 0
ise eleman1 degildir yani klasik kiimelerde elemanlarin tiyelikleri {0,1} degerlerini alir.
Bulanik mantik, insanlarin giinliik yasantisinda nesnelere verdigi iiyelik degerlerini,
dolayisiyla insan davranislarini taklit eder. Ornegin elini sicak suya sokan bir kimse

suyun 1sisin1 tam olarak bilemez ve fakat sicak, az sicak, soguk, cok soguk gibi dilsel

belirtecler kullanir (Elmas 2003).

Uyelik
derecesi
A
1
05 Soguk Sicak
Sicaklik
(°C)
[ [ [ [ »n

»

I I | I 1 =
0 5 10 15 20 25 30 35 40

Sekil 2.1. Klasik kiime i¢in sicaklik 6rnegi

Klasik kiimelere 6rnek olarak, Sekil 2.1. incelendiginde, sicakligin 20 °C’nin

altinda olmasinin soguk, tistiinde olmasinin ise sicak olarak nitelendirildigi goriiliir. Bu
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durumda 19,5 °C sicak degildir. Dogal olarak bu mantigin esnekligi s6z konusu degildir.

Oysaki ger¢ek yasamda ise, sinirlar bu kadar keskin ¢izgilerle nitelendirilemezler.

Klasik kiimelerdeki bu keskin durumun aksine, bulanik kiimelerde elemanlarin
tiyelik dereceleri [O,l] araliginda sonsuz sayida degerler alabilir. Keskin kiimelerdeki
soguk-sicak, hizli-yavas, aydinlik-karanlik gibi ikili degiskenler, bulanik mantikta biraz
soguk, biraz sicak, biraz aydinlik gibi esnek betimleyicilerle esnetilerek gergek yasam

sartlarina benzetilirler.

Bulanik kiimelere 6rnek olarak, Sekil 2.2. incelendiginde, 10-40 C arasindaki
degerler, sicak kiimesine iiye olmalarina karsmn, 20-40 °C arasindaki sicaklik degerleri,
1 iiyelik degerine sahipken, 10-20 °C arasindaki sicaklik degerleri 0 ile 1 arasinda
degisen iiyelik derecelerine sahip olacaktir. Yani, 6rnegin 11 °C az sicak, 15 °C ise biraz

sicak olarak degerlendirilebilir.

Uyelik
derecesi
A
1
0.5 + Soguk Sicak
Sicaklik
(°C)

I 1 | 1 I 1 I
0 5 10 15 20 25 30 35 40

»
»

Sekil 2.2. Bulanik kiime i¢in sicaklik 6rnegi

20 °C’yi oda sicakhigi kabul ederek soguk bulanik kiimesi olusturulmak
istendiginde elde edilen Sekil 2.3. incelenir ise, 10-20 °C arasindaki degerlerin degisen
tiyelik dereceleriyle hem sicak hem de soguk bulanik kiimesine ait olduklar1 ve
dolayisiyla 15 °C degerinin de 0,5 iyelik derecesi ile sicak hem de soguk bulanik
kiimesine ait oldugu goriilir. Sekilde tarali olarak gosterilen alan 1ilgili bulamik

kiimelerin kesisim bolgesidir ve bulanik kiimelerin ortiisiimii olarak isimlendirilir.
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Uyelik
derecesi
A
1
0,5 | & Sicak
Sicaklik
’C)
[] [] >

1 1
o 5 10 15 20 25 30 35 40
Sekil 2.3. Bulanik kiimelerde ortiisiim

Bulanik kiimeler kuramini gerektigince anlayabilmek icin, bulamik kiimeler,

bulanik sayilar, genisleme prensibi, alfa () kesme, aralik aritmetigi, bulanik

fonksiyonlar gibi, bulamik kiimeler kuramima temel olusturacak, kavramlar

tanimlanmalidir.

2.2.1.1. Bulanik Kiime

Q herhangi bir kiime ve A4, Q’nin bulanik alt kiimesi olmak tizere, V xe Q i¢in
Q kiimesini [0,1] araligina eslestiren, 4 *nin bir iiyelik fonksiyonu A(x) ile gosterilsin.
Eger A(x,)=1 ise x,, A bulamk alt kiimesine aittir, 4(x,)=0 ise x,, 4 bulanik alt
kiimesine ait degildir. Eger Z(xz) =0.6 ise x,’nin 4 bulanik alt kiimesine iiyelik
degeri 0.6 dir. 4 ’nin bir iiyelik fonksiyonu , 4(x), daima 1 veya 0 degerleri aliyor ise

A, Q kiimesinin bir bulanik olmayan (crisp) altkiimesidir. Bulanik kiimelerin hemen

hepsinde bulanik sayilar kullanilir (Buckley, 2006).

2.2.1.2. Bulanik Say1

Bulanik saymnin genel bir tanim1 Buckley ve Elsami (2002), Klir ve Yuan (1995)

tarafindan yapilan caligsmalarda bulunabilir. Ancak bu g¢aligmada, bulanik sayilardan,
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daha c¢ok lcgensel ve yamuk bulanik sayilar ile ilgili bilgilerin verilmesi yeterli

gorilmiistiir.

e
(@)
I
1

Alfa 05

Sekil 2.4. Ucgensel bulanik say1

Bir N iicgensel bulanik sayisi, a<b<c olmak iizere, ii¢ say1 tarafindan
tanimlanir. Burada g, iiggensel bulanik sayinin sol ucunu, ¢, sag ucunu ve b ise orta

noktasini gostermektedir. [a,c] araligr lg¢genin temelini (tabanini), x =5 ise tepe
noktasii olusturur. Uggensel bulamk say1 bu parametrelere bagh olarak, N = (a/b/c)
seklinde gosterilir. Herhangi bir iiggensel bulanik say1, N =(1.2/2/2.4), Sekil 2.4.’de

gosterilmistir ve sekilden de goriilebilecegi gibi N(2) =1 ve N(1.6) = 0.5 olacaktir.

0.6
Alfa 05—+
0.4

0.2+

Sekil 2.5. Yamuk bulanik say1
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Bir M yamuk bulanik sayisi ise, a <b < ¢ <d olmak iizere dort say1 tarafindan
tanimlanir. Burada, [a,d ] araligi yamugun temelini (tabanini) ve [b,c]arahgl ise
merkezini (tavanini) olusturur. Yamuk bulanik sayr bu parametrelere bagli olarak,

M =(al/b,c/d) seklinde gosterilir. Herhangi bir yamuk bulank sayi,

M =(1.2/2,2.4/2.7), Sekil 2.5.’de gosterilmistir.

Bu iki tiir bulanik sayidan baska, liggensel bulanik sayiya benzer bir bagka
bulanik say1 tiirii, iiggensel bigimli bulanik sayidir. Bir P {iggensel bi¢imli bulanik
sayis1 parametrelere bagli olarak, P ~(a/b/c) seklinde ifade edilir. [a,c] araligi
ticgenin temelini (tabanini), x =5 ise tepe noktasini yani iiyelik degerinin 1 oldugu

noktay1 olusturur. Bir P = (a/b/¢) bulanik sayisinim tiggensel bigimli olmasi igin,
1. [a,b] araliginda monoton artan ve siirekli
1l [b,c] araliginda monoton azalan ve siirekli

olmas: yeterlidir. Herhangi bir iiggensel bigimli bulanik say1, P ~(1.2/2/2.4), Sekil
2.6.’da gosterilmis ve sekilden de goriilebilecegi gibi [1.2,2] ve [2,2.4] araliklar1 dogru
olmayan egriler ile birlestirilmistir. Verilen 6rnek {iggensel bigimli bulanik sayida,
[1.2,2.4] araligr iicgenin temelini (tabanini), x =2 ise tepe noktasini yani iiyelik

degerinin 1 oldugu merkez noktay1 olusturur.

0.6
Alfa 05—+
0.4

0.2

Sekil 2.6. Ucgensel bigimli bulanik say1
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Ucggensel bicimli bulanik sayiya benzer sekilde yamuk bicimli bulanik say1 da

tanimlanabilir.

2.2.1.3. Alfa Kesmeleri

Alfa kesmeleri bulanik sayimnin tiyelik degeri sabit tutuldugunda elde edilen alt

araliklara verilen isimdir. Herhangi bir Q kiimesinin bulamk bir alt kiimesi 4 ise, 4

icin a —kesme, Ala] seklinde yazilir ve
Ala]={x e Q/A(x) > a} O<a<l (2.27)

olarak tammlidir. & =0—kesme veya A[0] farkli tammlanmalidir. Herhangi bir A4
bulanik kiimesi icin, A[0], 4 bulamk kiimesinin temeli (base) olarak isimlendirilir ve
bazi caligmalarda bu temel deger (a,c)agik araligi ile de ifade edilebilmesine karsin bu
calismada [a,c] kapali araligr ile ifade edilecektir. o =0—kesme N =(1.2/2/2.4)
seklinde verilen bir {iggensel bulanik say1 icin, N [0] = [1.2,2.4], M =(1.2/2,2.4/2.7)
olarak verilen bir yamuk bulanik sayi i¢in, M[0]=[1.2,2.7] ve P ~(1.2/2/2.4) olarak

verilen bir iicgensel bigimli bulanik say1 i¢in de, P[0]=[1.2,2.4], (2.27) ifadesinden

elde edilebilmektedir.

Uyelik degerleri 1 olan elemanlarin meydana getirdigi kiime, bir bulanik saymin
merkezini (core) olusturur. N =(a/b/c)ve N =(a/b/c) seklinde ifade edilen
ticgensel ve licgensel bicimli bulanik sayilar i¢in merkez, tek bir b noktasidir. Bunun

yaninda M =(a/b,c/d) ve M ~(a/b,c/d) seklinde ifade edilen yamuk ve yamuk

bicimli bulanik sayilar i¢in ise merkez, [b,c] kapal1 aralig1 olacaktir.

Herhangi bir O bulanik sayisi i¢in 0 < & <1 olmak iizere, Q[a] kapal1 ve sinirh

bir araliktir ve agagidaki gibi gosterilir,

Ola]=(g,(@).q,(a)] (2.28)
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Burada, ¢,(o) alfanin artan, ¢,(«) ise alfanin azalan fonksiyonu ve dolayisi ile

g,(1) < q,(1) olmalidir. Eger Q iicgensel bicimli veya yamuk bi¢imli bulanik say1 ise,
i. q(a); [0,1] araliginda alfanin siirekli, monoton artan bir fonksiyonudur.
. gq,(a); [0,1] aralifinda alfanin siirekli, monoton azalan bir fonksiyonudur.

iii. Uggensel bigimli bulanik say1 igin; ¢,(1) =¢,(1) ve yamuk bigimli bulanik
say1i¢in; ¢,(1) < g, (1)

olacaktir.

Sekil 2.4’de verilen N =(1.2/2/2.4) iiggensel bulanik sayis1 igin
N [a] = [nl (a),n, (a)] seklinde ifade edilen alfa kesmesinde #n,(a)=1.2+0.8a ve
n,(a)=24-04a, 0<a <1 olarak elde edilir. Benzer sekilde, Sekil 2.5°de verilen
M =(1.2/2,2.4/2.7) yamuk bulanik sayist i¢in M[a|=[m, (), m, ()] seklinde ifade
edilen alfa kesmesinde m,(a)=1.2+0.8a ve m,(a)=2.7-03a, 0<a <1 olarak

elde edilir. Bu denklemler tiim alfa kesmeleri i¢in tanimlidir.

2.2.1.4. Esitsizlikler

N =(a/b/c) herhangi bir iiggensel bulanik say1 ve & herhangi bir reel sayi
olmak iizere, a>0=N3>5 ve a>0 = N> ifadeleri yazlabilecegi gibi

c<8=>N<J vec<d = N<J ifadeleri de yazilabilir.

A ve B, Q kiimesinin iki bulanik alt kiimesi olsun. Eger 4 <B ise Q
kiimesindeki tiim x elemanlart igin A4(x) < B(x) olacaktir ve 4, B bulanik kiimesinin

bir alt bulanik kiimesidir.
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2.2.1.5. Kesikli Bulanik Kiimeler

A, Q kiimesinin bulamk alt kiimesi olsun. Eger A(x), Q kiimesindeki x

degerlerinin sonlu sayisinda sifirdan farkli ise 4 bulamk kiimesi kesikli bulanik kiime

olarak isimlendirilir. Varsayilsin ki A(x), yalmzca x,,x,,x,,x, de sifir degildir. Bu

durumda bulanik kiime asagidaki gibi ifade edilebilir,

Z:{ﬂ L A ,ﬂ} (2.29)

X, X, X; X,

Burada i=1,2,3,40lmak iizere, u,,iiyelik degerini gostermektedir ve {yelik

fonksiyonu,
A0x) Mo, i=1234 (230)
X.)= .
’ 0 ,a.h

seklinde gosterilebilir.

2.2.1.6. Bulanik Aritmetige Giris

A ve B gibi iki bulanik sayr mevcut oldugunda bunlar arasinda toplama,
¢ikarma, carpma ve bolme gibi islemlere ihtiyag duyulabilir. 4 + B, 4 — B ve bunun

gibi hesaplamalar1 yapmanin iki yontemi vardir,

Bu yontemlerden ilki genisleme prensibidir ve su sekilde ifade edilebilir,

A ve B gibi iki bulanik say1 olsun. 4 +B =C oldugunda C igin iiyelik

fonksiyonu;
C(z) = sup{min(4(x), B(y))/x + y = z| (2.31)

seklinde ifade edilirken, eger C = 4 — B ise C igin iiyelik fonksiyonu;
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C(z) = sup{min(4 (x), B(y))/x - y = z} (2.32)

x,y

seklinde ifade edilir. Eger C = 4.B ise C igin iiyelik fonksiyonu;

C(z)= sup{min(Z(x),E(y)) /x.y = z} (2.33)
X,y

seklinde ifade edilirken, eger C = 4 /B ise C igin iiyelik fonksiyonu;
C(z) = sup{min(4(x), B(y))/x/ y = z} (2.34)
X,y

olarak ifade edilir ve bu durumda da C bir bulanik say: olacaktir. 4 ve B iicgensel (ya
da yamuk) bulanik sayilar oldugunda 4 + B, 4 — B de iiggensel (ya da yamuk) bulanik
sayilar olmasima karsin ¢arpma ve bolme islemlerinde durum boyle degildir. 4.B ve
A/ B ise iiggensel (ya da yamuk) bigimli bulanik say1 olacaktir. Burada sup ifadesi en
kiigiik tist siir1 gostermektedir. Q reel sayilarin bir kiimesi oldugunda eger Q en
biiyiik iiyeye sahip ise, sup(Q) =max(Q2) olmaktadir. Ornegin; Q =[0,1) oldugunda
sup(Q) =1 ve ancak Q =[0,1] oldugunda ise sup(Q2) = max(Q) = 1olarak elde edilir.

Yukarida verilen genisleme prensibine dayanan denklemler ile hesaplama
yapmak zor olabileceginden, genisleme prensibine denk bir yaklagim olarak alfa

kesmesi ve aralik aritmetigi kullanilabilir.

Bu c¢alismada aralik aritmetigine yalnizca kisa bir giris yapilacaktir. Bu konu ile
ilgili daha fazla bilgi Moore (1979) ve Neumaier (1990) tarafindan yapilan
calismalardan edinilebilir. . [al,bl] ve [az,bZ] iki kapali, smirh, gergel sayilarin aralig
olsun. * isareti ¢arpma, bolme, toplama veya ¢ikarmay1 gosterdiginde, ilgili islemler

[a,,b,]*[a,,b,]=[a, B] seklinde gésterilir ve burada;
[, pl={a*b/a, <a<b,, a, <b<b,} (2.35)

* isareti bolme islemini temsil ettiginde, [az,bz] araliginin sifir1 kapsamadigi varsayimi

altinda (2.35) esitligi daha basit bir sekilde,
[a19b1]+[a2’b2]:[a1+a2’b1 +b2] (2.36)

[al’bl]_[a2’b2]:[al —b,.b, _az] (2.37)
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[a,.5, )y b, 1= [a, ]Li H (2.38)
ve
[al’bl]'[a29b2]: [a,ﬂ] (2.39)

esitliklerine doniisiir. Burada,

a =min{a,a,,a,b,,ba,,bb,} (2.40)
veE

B =max{a,a,,ab,,ba,,bb,} (2.41)
seklindedir.

Eger a, >0 ve b, <0 veya b, >0ve b, <0ya da bunun gibi bilgiler biliniyor
ise garpma ve bolme islemleri daha kolay ifade edilebilirler. Ornegin a, >0 ve a, >0

oldugunda,

[a,,,)[a,.b,]=[a,a,,b,b,] (2.42)
b, <0 ancak a, >0 oldugunda ise,

[a,.b,][a,.b,]=[a,b,,a,b, ] (2.43)
bunun yaninda b, <0 ancak b, <0 oldugunda,

[a,.b,][a,.b,]=[b,b,,a,a,] (2.44)
a, >0 ancak b, <0 oldugunda ise,

[a,.b,][a,.b,]=[a,b,,b,a,] (2.45)

olacaktir.
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2.2.1.7 Bulanik Aritmetik

A ve B iki bulanik sayr olsun. Alfa kesmelerinin kapali, smnirl araliklar

oldugunu biliyoruz. Bu bulanik sayilar igin alfa kesmeleri

Ala]=[a,(@),a,()] , Bla]=[b (a),b,(a)] seklindedir. Eger C = 4 + B ise,

Cla]= 4la]+ Bl«] (2.46)
C =A4-B ise,
Cla]= 4[a]- Bla] (2.47)

esitlikleri [O,l] araligindaki her « igin yazilabilir. Bunun yaninda C = 4.B ise,

5[05] = Z[a] .E[a] (2.48)
ayrica her « igin B[a] degerlerinin sifirdan farkli olmasi kosulu ile C = 4/ B,

Cla]= 4la]/Bla] (2.49)

seklinde ifade edilir. Bu yontem bulanik aritmetigin genisleme prensibi ile esdeger bir

yontemdir.

2.2.1.8. Bulanik Fonksiyonlar

Bir bagimsiz degiskenli fonksiyon H(X)=Z seklinde tanimlansin. Genellikle

X iiggensel (ya da yamuk) bir bulanik say1 ise, Z de iiggensel (ya da yamuk) bigimli
bulanik say1 olarak elde edilir. Bulanik fonksiyon kavrami iki sekilde ortaya atilabilir.

Birincisi, genigleme prensibine dayali olarak su sekilde verilebilir,
Herhangi bir 4 : [a,b] — R, H(X) = Z i¢in asagidaki gibi genisletilebilir.

Z(z) = sup{X (x)/ h(x) = z,a < x < b} (2.50)
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bu denklem [a,b] araliginda herhangi bir tiggensel (ya da yamuk) bulanik say1, X , i¢in

Z ’nin iiyelik fonksiyonunu tamimlar. Eger & siirekli ise, Z ’nin « -kesmesi,

Z[a]=z,(a),z,(a)]ve 0 < a <1 olmak iizere,

z,(a) = min{h(x)/ x e X[ ]} 2.51)
z,(a) = max{h(x)/ x € X[a]} (2.52)
seklinde elde edilebilir.

Iki bagimsiz degisken s6z konusu oldugunda, [al,bl] araligindaki x ve [az,bz]
arahigindaki y degerleri icin z = A(x,y) olsun. Bu durumda H(X,Y)=Z icin h

genislemesi,

Z(z) = sup{min(X(x), Y ())/ h(x, ) = z (2.53)

X,y

seklinde olacaktir. Burada X ve Y, [al,bl] ve [az,bz] araliklarindaki birer liggensel

(ya da yamuk) bulanik sayidirlar. Eger h siirekli ise, Z ’nin « -kesmesi,

Z[a]=z,(a),z,(@)] ve 0<a <1 olmak iizere,

z,(@) = min{i(x, )/ x € X[a] y e Y]a]} (2.54)
z,(a) = max{i(x, )/ x € X[a)y € Y]a]} (2.55)
olarak elde edilir.

Bulanik fonksiyon kavrami ikinci olarak alfa kesmeler ve aralik aritmetigine

dayali olarak su sekilde verilebilir,

h:[a,b]—> R seklinde bir fonksiyon tanimlanmis olsun. X , [a,b] arahgma ait
olmak iizere H(X)=Z igin genisleme, (X [a]) =7 [a] (0<a £1), aralik aritmetigi
vasitasiyla hesaplanabilir. X [a] aralig1 fonksiyona verilerek Z [a] aralig1 elde edilir ve

burada, bu aralik iizerinde / geniglemesini tanimlayabilmek icin aritmetik operasyonlari
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uygulamaya ihtiya¢ duyulur. Z degerini elde edebilmek i¢in bu alfa kesmeleri koyulur.

Daha fazla bagimsiz degisken icin genisleme, benzer sekilde olacaktir. Ornegin,

Z=Hx)=2X*+8 (2.56)
CX+D

ile ifade edilen bulanik fonksiyonu dikkate alalm. X, [0,10] aralifinda ticgensel
bulanik say1 ve ayrica A,B,C,D iicgensel bulanik sayilar olmak tizere, C>0,D>0

ve CX + D > 0oldugunda genisleme,

XX+ X,

h(xlax27x3:x4:x): (257)

XX+ X,

ile ifade edilir. Burada, x,yerine A[a], x,yerine Bla], x,yerine Cla], x,yerine

D[a] ve xyerine X [a] araliklarini kullanarak arahik aritmetigi yoluyla Z igin Z [a]

hesaplanir.

2.3.  Yapay Sinir Aglar1 (YSA)

Yakin ge¢miste bulanik zaman serilerinin analizinde iligki belirleme ve bunun
gibi belirli asamalarinda, diger yontemlere secenek olarak yapay sinir aglar1 yontemi de
kullanilmaya baglanmistir. Huarng ve Yu (2006, 2008) calismalarinda bulanik zaman
serilerinde bulanik iligkilerin belirlenmesinde ileri beslemeli yapay sinir ag1
kullanmiglardir. Yapay sinir aglar1 ile bulamik iliski belirlenmesi, 6zellikle yiiksek
dereceli modellerde kolaylik saglar ve bulanik mantik iliski ve grup iligki tablolarinin

olusturulmasindaki karmasiklig1 ortadan kaldirdig: gibi 6ngoriileri de iyilestirir.

Diger analiz yontemlerine gore daha iyi sonuglar elde edildiginden, yapay sinir
aglarina olan ilgi giderek artmustir. Bu boliimde, yapay sinir aglarmin bilesenleri ve

Ongorii probleminde yapay sinir aglarinin kullanimu ile ilgili temel bilgiler verilecektir.

Yapay sinir aglarini, insan beyninin 6zelliklerinden olan 6grenme yolu ile yeni
bilgi tliretebilme, yeni bilgi olusturabilme ve kesfedebilme gibi yetenekleri herhangi bir

yardim almadan dogrudan gergeklestirmek amaci ile gelistirilen algoritmalar olarak
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tanimlanabilir (Oztemel, 2003). Yapay sinir aglar1, biyolojik sinir aglarini taklit eden
sentetik aglar olarak da tanimlanabilir. Giinlimiizde, yapay sinir aglari, kullanim
kolaylig1 ve tirettigi iyi sonuclardan dolayi, matematik, istatistik, fizik, mithendislik ve

bilgisayar bilimleri uygulama alanlarinda basariyla kullanilmaktadir.

Miihendislerin, matematikgilerin, istatistik¢ilerin ve fizikgilerin yeni fikirler elde
etmek i¢in biyolojik bilimlere olan ilgisi uzun bir ge¢gmise sahiptir. Yapay sinir aglarinin
olusturulmasinda da biyolojik sinir aglarindan esinlenilmis olmasina karsin, hala
biyolojik sinir sistemleri ile yapay sinir aglar1 arasinda hem mimarileri hem de
yetenekleri yoniinden biiylik farkliliklar bulunmaktadir. Hi¢bir model insan beyninin
performansinin aynisini taklit etmede basarili olamamistir. Bu nedenle, gelistirilen farkli
cesitlerdeki yapay sinir ag1 konfigiirasyonunda insan beyni sadece bir mecaz olarak

kalmustir.

Yapay sinir aglar1 genel olarak, biyolojik sinir aglarindan esinlenerek
olusturulmus matematiksel algoritmalar seklinde tanimlanabilir. Matematiksel bir
algoritma olarak tanimlanan yapay sinir aglari, 6rneklerden 6grenebilen ve 6grendigini
genellestirebilen algoritmadir. Ag gosterimi, matematiksel algoritmanin grafiksel

ifadesidir. (Giinay ve ark., 2007).

Yapay sinir aglariin isleyisini yonlendiren bilesenler, mimari yapi, aktivasyon

fonksiyonu ve 6grenme algoritmasi olmak iizere ii¢ ana baslik altinda toplanabilir.

2.3.1. Mimari Yapi

Yapay sinir aglari, birbirlerine bagli, yapay noéronlardan (diiglimler, birimler)
olusurlar. Yapay sinir ag1 mimarisinin temel birimi olan her bir néron i¢in, nérona gelen
girdi degeri ve bu ndronun diger ndron veya noronlara ilettigi bir ¢ikt1 degeri vardir.
Norona gelen girdi degeri tek bir nérondan gelen cikti degeri olabilecegi gibi birden
fazla norondan gelen cikt1 degerlerinin toplami da olabilir. Noronun aldigi bu girdi
degeri bir fonksiyon yardimiyla c¢ikti degerine doniistiiriiliir ve diger ndron ya da
noronlara girdi degeri olarak iletilir. Bir néronun ¢ikt1 degerinin diger bir ndrona girdi

degeri olarak iletilmesi islemine sinyal akis1 ad1 verilir.
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Ik olarak, 1943 yilinda McCulloch ve Pitts tarafindan tanimi yapilan bir yapay
néron modeli Sekil 2.7.’de goriilmektedir. x; girdileri (i=1.2,...,n), k anindaki girdi
degerinin yokluguna ya da varligina bagl olarak sirastyla 0 ya da 1 degerini alirlar.
Noronun ¢ikt1 degeri o ile gosterilmistir. Bu model i¢in £+1 aninda elde edilecek ¢ikti

degeri,

1, eger ZWixl.k >T
okl = = (2.58)
0, eger ZWixl.k <T
i=1

esitligi ile elde edilir. Burada, diger noronlarin ¢iktisi olan her bir x; girdi degeri, karsilik
gelen w; agirthyla (w; = +1,i=1, 2, ... ,n) carpilarak toplanir ve elde edilen deger eger T
gibi bir esik degerinden biiyiikse, ndronun k+1 anindaki o**' ¢iktis1 1 degerini alir, diger

durumda noronun ¢ikt1 degeri 0 olacaktir.

Sekil 2.7. McCulloch-Pitts néron modeli

Tanimlanacak yapay néron modelinde ise, agdaki tiim ndronlarin islemlerinin es
zamanlt oldugu varsayilir. Cikti degerleri [0,1] araliginda degerler alabilecektir.
Agirliklar model i¢inde diizeltilir ve sinyal akisi disinda agin ndronlar1 arasinda hicbir
etkilesim olmaz. Bu Ozellikleri tasiyan genel yapay noron modeli Sekil 2.8. de

gosterilmistir (¢ iist indisi devrikligi gosterir).



28

Girdi baglantilar
I' I,
wy _/, ,I
X, L
w /!
X - >
? o
[ ]
i N
. Seeo . -
w, -,
x .. . . . .
" Noron islem birimi
k )
V
Carpimsal agirliklar

Sekil 2.8. Genel yapay noron modeli

Sekilden de anlagilacagi gibi her yapay noéron, girdi baglantilarina sahiptir ve tek
ciktiya sahip bir iglem biriminden olusur. Noronun ¢ikti1 sinyal akisi gibi, x; néron
girdilerinin sinyal akist da tek yonlii olarak diistiniiliir. Tiim sinyal akiglarinin ileri yonlii

oldugu ag, ileri beslemeli yapay sinir ag1 olarak isimlendirilir. Noron ¢ikt1 degeri,
0= f(w'x) (2.59a)

ya da

0= f(i wl.xi] (2.59b)
i=1

seklinde ifade edilir. w, agirlik vektori,

w=[w w, .. w] (2.60)
ifadesi ile tanimlanabilirken x girdi vektorii ise,

x=[x x .. x] (2.61)
ile gosterilir.

Cok tabakali yapay sinir ag1i mimarileri, tek girdi ve ¢ikti tabakasi igerirken,

birden ¢ok gizli tabaka igerebilirler. Mimari yapinin belirlenmesi, tabakalardaki néron
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sayilarmin belirlenmesi anlamina gelir. Sekil 2.9.’da ¢ok tabakali ileri beslemeli bir

yapay sinir ag1 mimarisi goriilmektedir.

O Cikt1 tabakasi

Gizli tabaka

Girdi tabakasi

Sekil 2.9. Cok tabakali ileri beslemeli yapay sinir ag1 mimarisi

Sekilden de anlasilabilecegi iizere, noronlar birbirlerine agirliklarla baglidir, aynm
tabakanin noronlar1 arasinda baglant1 yoktur, baglantilar tek yonlii ve ileri dogrudur.
Sekilde ¢ikt1 tabakasinda yalnizca bir néron varken, istege gore birden ¢ok noron da
kullanilabilir. Burada wy, girdi tabakasindaki i ndronu ile gizli tabakadaki j noronu
arasindaki agirlign ve wy, gizli tabakadaki j néronu ile ¢ikti tabakasindaki & néronu
arasindaki agirlig1 gosterir. Sekilde ¢ikti tabakasinda, yalnizca bir néron oldugu icin, &
indisi bu tek noronu gostermektedir. Benzer sekilde olusturulabilecek bir baska
mimaride ise girdi tabakasindaki noronlar ile ¢ikt1 tabakasindaki néron (ya da noronlar)

arasinda dogrudan baglanti da kurulabilir.

2.3.2. Aktivasyon Fonksiyonu

Noron ¢ikt1 degerinin hesaplanmasinda kullanilan f{w',x) fonksiyonu, aktivasyon
fonksiyonu olarak adlandirilir. Aktivasyon fonksiyonunun dogru secilmesi agin
performansin1  dnemli derecede etkileyen faktorlerden biridir. Agirhk ve girdi

vektoriiniin skaler ¢arpimi olarak verilen ifade, net aktivasyon degeri olarak adlandirilir.

net = w'x (2.62)
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Bu durumda aktivasyon fonksiyonunun tanim kiimesi néron modelinin net aktivasyon
degerlerinin kiimesi olacaktir. Yapay sinir aglarinin farkl tiirleri i¢in farkli aktivasyon
fonksiyonlar1 kullanilir. Bunun yaninda ayni agin icinde bile, noronlarda, farkli
aktivasyon fonksiyonlar1 kullanilabilir. Aktivasyon fonksiyonu genel olarak tek kutuplu,
cift kutuplu ya da dogrusal olarak secilebilir. Tek kutuplu finef) aktivasyon fonksiyonu
icin, net € R ya da f(net) € (0,1) yazilabilecegi gibi ¢ift kutuplu f(net) aktivasyon
fonksiyonu icin ise net € Rve f(net) € (-1, 1)olacaktir. Bununla birlikte, aktivasyon
fonksiyonu kesikli ya da siirekli olabilir. Secilecek aktivasyon fonksiyonuna gore elde
edilecek noron ¢ikt1 degerleri Tablo 2.1.°de verilmistir. Tabloda, o, néronun c¢ikti

degerini gostermektedir.

Tablo 2.1. Aktivasyon fonksiyonu tipine gére ndron ¢ikt1 degeri

. ) .. Noron ¢ikti
Aktivasyon fonksiyonu tipi degeri
Stirekli o € (0,1)
Tek kutuplu
Kesikli o € {0,1}
) Stirekli o € (-1,1)
Cift kutuplu
Kesikli o e {-1,1}

Siklikla kullanilan aktivasyon fonksiyonlari ise agsagidaki gibi verilebilir.

o Dogrusal aktivasyon fonksiyonu:
f(net) = net (2.63)
o Adimsal aktivasyon fonksiyonu:
0, net>0
f(net) = (2.64a)
1, net<0

ya da
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-1, net>0
f(net)= (2.64b)
1, net<O
o A egim parametresini gostermek lizere Lojistik aktivasyon fonksiyonu:
1
S (net) = (2.652)

1 +exp(—A net)

ya da

f(net) = T+ exp(—A neD) -1 (2.65b)
. Radyal Temelli aktivasyon fonksiyonu:

f(net) = exp(—Anet*) (2.66)
o Tanjant hiperbolik aktivasyon fonksiyonu:

o e onee)
o Siniis, Kosiniis aktivasyon fonksiyonu:

f(net) = Sin(net) (2.68a)
f(net) = Cos(net) (2.68b)

2.3.3. Ogrenme Algoritmasi

Yapay sinir aglarinin beklide en 6nemli 6zelligi, bir bilgi kaynagindan (veriden)
ogrenebilme yetenegidir. Ogrenme islemi, agirliklarin en iyi degerinin bulunmasi
islemidir ve bu islem yapay sinir aginin egitimi olarak isimlendirilir. Yapay sinir
aglarinda 6grenme iglemi, Onceden belirlenmis bir dlgiite gére adim adim agirliklarin en
iyi degerine ulasilmaya ¢aligilan, 6grenme algoritmasi adi verilen algoritmanin

kullanilmasiyla ger¢eklestirilir.
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Yapay sinir aginda en iyi agirliklarin bulunmasi bir optimizasyon problemi
olarak diisiiniilebilir. Bununla birlikte yapay sinir aglarinin egitiminde kullanilan
yontemler arasinda, genetik algoritmalar, tavlama benzetimi ve tabu arama algoritmasi

gibi sezgisel algoritmalar da bulunmaktadir.

Ogrenme algoritmalari, 6grenme kurali ad1 verilen degisik kurallara gore isler.
En ¢ok bilinen ve kullanilan iki 6grenme kurali, denetimli (supervised) ve denetimsiz
(unsupervised) O0grenme kuralidir. Denetimli 6grenmede, elde edilecek her bir ¢ikt
degerinin, 6nceden bilinen bir hedef degeri vardir. Buna gore, 6grenme algoritmasinin
her bir adiminda, yapay sinir aginin ¢iktt degeri ve karsilik gelen hedef degeri
arasindaki hata azaltilarak agirlik degerleri gilincellenir. Bir baska sozle, denetimli
o0grenmede amag, yapay sinir aginin ¢ikt1 degeriyle, bu degerin hedef degeri arasindaki
farki minimum yapacak agirlik degerlerini bulmaktir. Denetimsiz 6grenmede ise ¢ikti
degerlerine karsilik gelen hedef degerleri yoktur. Girdi degerleri arasindaki
benzerliklere gore, bu degerler kiimelendirilir. Denetimsiz 6grenmede amag, yapay sinir
ag1 c¢iktistin, girdi verisindeki istatistiksel diizeni en 1iyi sekilde yakalamasim

saglayacak agirliklarin belirlenmesidir.

2.3.3.1.Geri Yayiim Ogrenme Algoritmasi

Geri yayilim (backpropagation) 6grenme algoritmasi genellestirilmis delta kurali
olarak da bilinir. Ik olarak Werbos (1974) tarafindan ortaya konmus ve Parker (1982)
tarafindan yeniden gilindeme tasinmigtir. Rumelhart ve ark. (1986) da bu konuda

calismiglar ve Le Chun (1988) yaptig1 calismada ¢ok benzer bir algoritma sunmustur.

Bu boéliimde, ileri beslemeli ¢ok tabakali yapay sinir aglari i¢in geri yayilim
ogrenme algoritmasi tanitilacaktir. Ileri beslemeli ¢ok tabakali bir yapay sinir agi,
verilen girdi ve elde edilen ¢ikti degerleri arasinda, segilen aktivasyon fonksiyonunun
sagladig1 egrisel eslesmeyi gergeklestirir. ileri beslemeli ¢ok tabakali bir yapay sinir
aginda 0grenme, hedef c¢ikt1 ve elde edilen ¢ikt1 degerleri arasindaki farki makul bir
seviyede tutacak agirliklar1 belirlemeyi igerir. Geri yayilim algoritmasi, uygun bir
sekilde olusturulmus hata fonksiyonunun (maliyet fonksiyonu veya enerji fonksiyonu)

kisitsiz optimizasyon problemi olarak da diisiiniilebilir.
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Sekil 2.10. ile verilen 6rnek bir yapay sinir agi i¢in geri yayilim ogrenme

algoritmasinin algoritmasi bes temel adimda incelenebilir.

\
- M
Girdi tabakasi Gizli tabaka Cikt1 tabakasi
Sekil 2.10. Geri yayilim 6grenme algoritmasi i¢in 6rnek yapay sinir ag1

Adim 1. Agirliklarin baslangi¢ degerlerinin secilmesi

Agirliklarin baslangic degerlerinin belirlenmesinde ¢esitli yontemler kullanilabilir,

ancak Smith ve Gupta (2002) baslangi¢ degerlerinin,

(2.69)

araligindan rastgele secilmesini 6nermislerdir. Burada v, s tabakasindaki néron sayisini

gosterir.
Adim 2. Néronlarin ¢ikti degerinin hesaplanmasi.

Gizli tabakalardaki noronlar i¢in:

Ny

oE.S] _ z (ol 'Wi[iS] (2.70)

i=l1
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Cikt1 tabakasindaki ndronlar i¢in:

n.

i-1
ol =" el ™y Wl (2.71)

i=1
Adim 3. Tiim tabakalar i¢in hata sinyallerinin hesaplanmasi.

Cikt1 tabakasindaki ndronlar i¢in:

af[S]
sl =e, f“ (net?)y=(y, -d,). (2.72)
Gne 51
Gizli tabakalardaki néronlar igin:
[S] af[S] ’1#15 $+1 s+1] ’ 73
j 0 [s] Z ( : )
net i-1
Adim 4. Agirliklarin giincellenmesi.
Cikt1 tabakasindaki agirliklar i¢in degisim miktart:
Awil = .58 ol (2.74)
Gizli tabakalardaki agirliklar i¢in degisim miktari:
AT = .51 ol (2.75)
Tiim agirliklarin glincellenmesi:
wil (ke +1) = wlil (k) + Awld (k) (2.76)

seklindedir. Burada c¢ parametresi, geri yayilim algoritmasinin d&grenme oranini
gostermektedir. Geri yayilim algoritmasinda, 6grenme oraninin dogru olarak secilmesi,
optimal sonuca yaklasmada ¢ok énemlidir. Ogrenme orani, sabit bir deger almabilecegi

gibi, algoritmanin isleyisine gore dinamik olarak da giincellenebilir.
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Adim 5. Algoritmanin durdurulmasi.

Bir sonraki 6grenme Ornegine iliskin girdi degerleri alinir ve 2. Adim’a geri doniiliir.

w,; agirhiklari belli bir degere yakinsayincaya kadar algoritma stirdiirtilir.

2.3.3.2.Levenberg — Marquardt Ogrenme Algoritmasi

fleri beslemeli aglarda kullamlan 6grenme algoritmalari, performans
fonksiyonunu en kii¢iik yapacak agirliklar1 ayarlayabilmek icin, performans
fonksiyonunun gradyenini kullanirlar. Geriye yayilim algoritmasi da, ag boyunca
gradyen hesaplamalarin1 geriye dogru yapar. En basit geriye yayilim Ogrenme
algoritmas1 Gradyen Azalmasi algoritmasidir. Bu algoritmada agirliklar, performans
fonksiyonunun azalmasi yoniinde ayarlanir. Fakat bu yontem, pek ¢ok problem icin ¢ok

yavas kalmaktadir.

Bu algoritmadan daha hizli, daha yiiksek performansh algoritmalar da vardir.
Bunlardan bazilari, standart sayisal optimizasyon yoOntemlerini kullanan, eslenik
gradyen Ogrenme algoritmasi, Newton Ogrenme algoritmalar1 ve Levenberg —

Marquardt 6grenme algoritmasidir.

Ogrenme algoritmalari, kendisinden once gelistirilen algoritmalara alternatif
olarak ortaya ¢ikmistir ve onceki algoritmalarin iyi yonlerini gelistirip, kotii yonlerini
azaltmaya yoOnelmistir. Levenberg — Marquardt algoritmasi da, Newton ve Gradyen

Azalmasi algoritmalarinin en 1iyi Ozelliklerinden olusur ve kisitlamalarini ortadan

kaldirir (Bolat ve Kalenderli, 2003).

Eslenik gradyen ogrenme algoritmasina alternatif olarak sunulan Newton
yontemlerinde, temel adim, performans fonksiyonunun agirliklara gore ikinci dereceden
tiirevlerinden olusan, Hessian matrisini elde etmektir. Hessian matrisi, agirlik uzayinin

farkli dogrultularindaki gradyen degisimini gosterir.

H(n) = 0°E(n)

= D) (2.77)
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burada H, Hessian matrisi, E, performans fonksiyonu, w, agin sinaptik agirligidir.
Performans fonksiyonu, duruma gore toplam ani hata veya ortalama karesel hata olarak
almabilir. Bu calismada, ileri beslemeli aglarin ¢ogunda oldugu gibi, performans

fonksiyonu olarak, ortalama karesel hata kullanilmistir.

N
1
E) = E, (D)5 () (2.78)
n= je
burada N, egitim kiimesindeki toplam Oriintli sayisini, ej, hata isaretini, C, agin ¢ikis
katmanindaki biitiin noronlar1 iceren kiimeyi gostermektedir. dj hedef deger, yj agin

¢iktis1 olmak {izere hata,
e,(n)=d,(n)=y,(n) (2.79)

ifadesi ile elde edilebilir. Hessian matrisi hesaplandiktan sonra, tersi bulunarak
agirliklar yenilenebilir. Ancak Hessian matrisi ¢ok karmasik ve ileri beslemeli bir yapay
sinir ag1 icin hesaplanmasi zor bir matristir. Newton ydntemlerinin iginde, ikinci
dereceden tiirevlerin hesaplanmadan islem yapilan bir simif vardir. Bu smiftaki
yontemler, Quasi —Newton yontemleri olarak adlandirilirlar. Quasi — Newton
yontemleri, algoritmanin her iterasyonunda, Hessian matrisinin yaklasik bir seklini

kullanir.

Levenberg — Marquardt algoritmast da Quasi — Newton ydntemleri gibi, Hessian
matrisinin yaklagik degerini kullanir. Levenberg — Marquardt algoritmasi i¢in Hessian

matrisinin yaklasik degeri,
Hm)y=J"(n)J(n)+ ul (2.80)

seklinde ifade edilir. Burada, # Marquardt parametresi, / birim matrisi gosterirken,

hatalarin agirliklara gore birinci tiirevlerinden olusan J, Jakobien matris olarak

isimlendirilir ve

Oe(n)

T = 1)

(2.81)
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ifadesi ile bulunabilir. Bu ifade, e, ag hata vektoriidiir. Jakobien matrisi, Hessian
matrisine gore daha kolay hesaplanabilir oldugundan uygulamada tercih edilir. Agin

gradyeni ise,
g(n)=J" (n)e(n) (2.82)

seklinde hesaplanir ve sonug olarak agirliklar,

w(n+1) = w(n)—~[Hm]" g(n) (2.83)
ifadesine gore degistirilerek gilincellenir.

Marquardt parametresi, p, skaler bir sayidir. Eger p sifirsa, bu yontem yaklagik
Hessian matrisini kullanan Newton algoritmast; eger p biiyiik bir say1 ise, kii¢iik adimli
gradyen azalmasi yontemi haline gelir. Newton yontemleri, en kiiciik hata yakinlarinda
daha hizli ve kesindir. Her basarili adimdan sonra, yani performans fonksiyonunun
azalmasinda p azaltilir ve sadece deneme niteligindeki bir adim performans
fonksiyonunu yiikseltecekse p arttirilir. Bu yontemle, algoritmanin her iterasyonunda,

performans fonksiyonu daima azaltilir.

Genel olarak Levenberg — Marquardt algoritmasi yavas yakinsama probleminden
etkilenmez. Burada hedef, performans fonksiyonun en kiiciik yapacak agirlik degerini

bulmaktadir (Ngia, 2000, Oguz, 2001).
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3. MATERYAL VE YONTEM
3.1. Bulanik Zaman Serileri

Bulanik zaman serisi analizi yontemleri, son zamanlarda, dogrusal ya da egrisel
model 6zelligi tasiyan, gbzlem sayisini kosul olarak almaksizin az ya da ¢ok sayida
gozlem igeren tiim verilere kolaylikla uygulanabilmesi nedeniyle literatiirde siklikla

tercih edilmektedir.

[Ik olarak Song ve Chissom (1993a, 1993b, 1994) tarafindan ortaya atilan
bulanik zaman serisi kavrami Zadeh (1965, 1973, 1975) tarafindan verilen bulanik
kiime teorisine dayanmaktadir. Bulanik zaman serisi analizi yontemleri genel olarak,
gozlemlerin bulaniklastirilmasi, bulanik iligkilerin belirlenmesi ve durulastirma olmak
lizere iic asamadan olusmaktadir. Huarng ve Yu (2005 ve 2006), Huarng (2001a), Yu
(2005a) ve Huarng ve Yu (2004) calismalarinda bulanik zaman serisi yontemlerinde
bulaniklagtirma asamasinin gelistirilmesi ile ilgilenilmistir. Bulanik iligkinin
belirlenmesi asamasinda ise Song ve Chissom (1993a, 1993b) tarafindan oOnerilen ve
matris hesaplama islemlerine dayanan yontemin yerine Chen (1996), bulanik iligki
tablolarin1 kullanan, daha kolay ve etkin bir yontem 6nermistir. Bunun yaninda, Huarng
ve Yu (20006) ise basit bir ileri beslemeli yapay sinir ag1 kullanilarak bulanik iliskilerin

belirlendigi baska bir birinci dereceden bulanik zaman serisi yaklasimi 6nermistir.

Bunun disinda Sullivan ve Woodal (1994), Song ve ark. (1995), Song ve Leland
(1996), Hwang ve ark. (1998), Chen(2000), Chen ve Hwang (2000), Huarng (2001b),
Huanrg ve Yu (2005) ve Yu (2005b) tarafindan bu konudaki diger 6nemli ¢aligmalar
ortaya koyulmustur. Bu yontemlerin hepsinde birinci derece bulanik zaman serisi
modeli ile ilgilenilmistir. Chen (2002) ise yiiksek dereceli bulanik zaman serisi
yaklagimi Onermistir. Chen (2002) tarafindan Onerilen bu yaklasimda modelde tim
gecikmeli bulanik degiskenlerin bulunmasi nedeniyle derece arttikga bulanik iliskinin
belirlenmesi ve dolayisiyla yontemin uygulanmasi oldukc¢a zorlagsmaktadir. Yiiksek
dereceli modelin ¢éziimlenmesinde bulanik iligkiler, yapay sinir agi1 ile belirlenir ise
Chen (2002) tarafindan Onerilen bu yontemdeki islem yogunlugundan kurtulmak

miumkindiir.
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Bulanik zaman serisi yaklasimlar1t bazi temel kavram ve tanimlara baglidir. Bu

tanim ve kavramlar asagida 6zetlenmistir.

U :{ul,uz,...,ub}, evrensel kiime ve evrensel kiimenin belirlenen bir sabit aralik
uzunluguna gore parcalanmasi ile elde edilen u,’ler alt araliklar olmak iizere bulanik

kiimeler,
4, =fA[.(u1)/ul +fA,.(u2)/u2 +"'+fA,.(ub)/”b (3.1)

seklinde tanimlanir. Burada, f, , 4, bulanik kiimesinin tiyelik fonksiyonunu gosterir ve
S U —>[0,1] olacaktir. Bunun yaninda f, (u,) ise u,alt araligimn 4, bulanik
kiimesine ait olmasmin iyelik derecesidir ve 1<a<b olmak lizere f, (u,)e [0,1]

olacaktir.

Tamm 1. Y(?), (t=..., 0, 1, 2, ...) reel degerli zaman serisi olsun. Zaman serisine uygun
evrensel kiime tanimi ve alt araliklarin tespit edilmesinden sonra bunlara bagli olarak

elde edilen A4, bulanik kiimelerinden olusan yeni zaman serisi, F(¢) bulanik zaman serisi

olarak adlandirilir.
F(¢) bulanik zaman serisi hakkinda, Tanim 1. geregince, sunlar sdylenebilir,
i.  F(t) zamann bir fonksiyonudur.

1.  F(t) bulanik kiimeler tarafindan temsil edilen dilsel degerlere sahip, dilsel

degiskenler olarak ifade edilebilir.

AT 33

Tanimm 2. herhangi bir operatorii gostermek lizere, eger F(t) bulanik zaman serisi
yalnizca bir gecikmeli F(z-1) bulanik zaman serisinden etkilenmekte ise, F(?) ile F(t-1)

bulanik zaman serisi arasindaki bulanik iliski,
F@)=F(t-1)*R(t,t -1) (3.2)

seklinde ifade edilir ve birinci dereceden bulanik zaman serisi 6ngorii modeli olarak
adlandirilir. Bu iliski Song ve Chissom (1993a) tarafindan asagidaki gibi

tanimlanmistir,
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F(t-1)— F(t) (3.3)

Sonug olarak F(z1—1)= 4, ve F(t)= A, oldugunda F(z) ile F(¢-1) bulanik zaman serisi

arasindaki bulanik iliski,

A4, —> A, (3.4)

i J

olacaktir, ki burada 4, , bulanik iligkinin sol yani, 4, ise bulanik ilisinin sag yani olarak
isimlendirilir.

Tanmm 3. Eger F(#) bulanik zaman serisi, gecikmeli F(¢-1),F(t—2),...,F(t—n)
bulanik zaman serilerinden etkilenmekte ise, F(?) bulanik zaman serisi ile

F(-1),F(t-2),...,F(t —n) bulanik zaman serileri arasindaki bulanik iliski,
F(t-n),... ,F(t=2),F({t-1)— F(t) (3.5

ifadesi ile verilebilir ve n’nci dereceden bulanik zaman serisi dngdérii modeli olarak

adlandirlir.

3.1.1. Chen’ nin Yiiksek Dereceli Bulanik Zaman Serisi Yontemi

Chen, 2002 yilinda yaptigi c¢alismada Ongorii elde etmede yiiksek dereceli
bulanik zaman serisi yaklagimini Onermistir. Chen (2002) tarafindan verilen bu
yontemde yiiksek dereceli modellerde tim gecikmeli bulanik degiskenler
bulunmaktadir. Yani 4. dereceden bir zaman serisinin ¢dziimlenmesinde, F(¢) bulanik
zaman serisi iken, F(t-1), F(t-2), F(t-3), F(t-4) bulanik gecikmeli degiskenleri modelde
yer almaktadir. Birinci dereceden bulanik zaman serisi 6ngdrii modellerine gore daha
iyl sonuglar veren, bu yiiksek dereceli bulanik zaman serisi yonteminin algoritmasi

asagidaki adimlardan olusur (Chen 2002).

Adim 1. Evrensel kiime ve alt araliklar tanimlanair.

Veri setinin en kii¢lik ve en biiylik degerleri sirasiyla D, . ve D ayrica keyfi iki

max

say1 D, ve D, olmak lizere evrensel kiime,
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U =Dy =Dy Dy + D, ] (3.6)

seklinde ve sabit aralik uzunluguna sahip u, alt araliklari,
U:{ul,uz,...,ub} (3.7)
olacak sekilde tanimlanir.

Adim 2. Evrensel kiime ve belirlenen alt araliklara bagh olarak 4; bulanik kiimeleri

tanimlanir.

Uyelik dereceleri,

1 k=g
a, =105 ,k=j—1,j+1 : j=12,...b (3.8)

0 ,ow.

olmak tizere, bulanik kiimeler asagidaki gibi tanimlanir.
A, =a,lu+a,/u,++a,lu, , j=L2,...,b (3.9)

Adim 3. Gozlemler bulaniklastirilir.

Her bir veri bulundugu arali§in en biiytiik iiyelik degerine sahip oldugu bulanik kiime ile

eslestirilerek zaman serisi bulaniklastirilir.
Adim 4. Bulanik mantik iliski ve grup iliski tablosu olusturulur.

Bulanik mantik iliski ve grup iliski tablosu olusturulmasini kavrayabilmek i¢in birkag

ornekle agiklamaya ¢alisalim. Ornegin, birinci dereceden bulanik mantik iliskiler,

A4, —> A, , A, — A4, , A, — A,

i J i
seklinde verilmisken, bulanik mantik grup iliskisi,

A, = A, 4,4,
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olarak elde edilir. Benzer sekilde genel bir ifade ile n’nci dereceden bulanik mantik

iliskiler,

Ain > Ai(n—l) seces Ail - Ajl
in> i(n—l)"“’Ail - Aj2

Ay Ayygyseen Ay —> A4,

seklinde verilmigken, bulanik mantik grup iliskisi,

A A A

j2orAgp

in’Ai(nfl)"'”Ail - Ajl’

olarak elde edilir. Bulanik mantik iligski ve grup iliski tablolari, elde edilen bu bulanik

mantik iliski ve grup iliskilerden olusur.
Adim 5. Bulanik 6ngoériiler elde edilir.

n’nci dereceden bulanik zaman serisi 6ngdrii modeli i¢in bulanik Ongoriiler elde

edilirken ti¢ durum s6z konusudur.
Durum 1. n’nci dereceden bulanik mantik grup iligki tablosunda,

A, A4 A, = A, (3.10)

in®“ti(n=1)2°" 2451 j

iligkisi mevceut ise bulanik 6ngérti, 4, olacaktir.

Durum 2. n’nci dereceden bulanik mantik grup iligki tablosunda,

Ay Aigyyysees Ay = A Ay A (3.11)

iligkisi mevcut ise bulanik 6ngoriide belirsizlik s6z konusudur ve bulanik 6ngoriiniin
elde edilebilmesi icin belirsizlik giderilene kadar incelenen derecenin bir iist derecesine

bakilarak m>n olmak tizere,

Ay Ay seees Ay = 4 (3.12)

J

iligkisini veren m aranir ve bu durumda bulanik 6ngérti, yine 4, olacaktir.
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Durum 3. n’nci dereceden bulanik mantik grup iligki tablosunda,

Ayys Aiyays- -5 Ay —> Bos (3.13)

in >

iligkisi mevcut ise reel ongorl, 4,,,4,,..,...,4, bulanik kiimelerine bagl olarak,

in?>

u. ,u

in®"i(n-1)2*" in?®

.,u, araliklarimn orta noktalari, m,, ,m,, ,,...,m, olmak iizere,

Ixm, +2xm, , +---+nxm, (3.14)

I+2+--+n

ifadesi ile elde edilir.
Adim 6. Durulastirma islemi uygulanir.

Durulastirmada merkezilestirme yontemi kullamlir. Ongoriilerin elde edilmesinde

karsilagilan Durum 1. ve Durum 2. igin bulamik 0ngérii 4, olarak elde edilmisken,
durulagtirlmig 6ngorii, 4, bulanik kiimesinde en yiiksek tiyelik degerine sahip olan u

araliginin orta noktast olacaktir. Durum 3. i¢in ise reel Ongoriiniin, 4, , A A

ind“i(n=1)2°°*2 7l

bulanik kiimelerine bagli olarak nasil elde edildigi daha 6nce belirtilmisti.

3.1.2. Y.S.A.na Dayal Yiiksek Dereceli Bulanik Zaman Serisi Yontemi

Chen (2002) tarafindan tanimlanan yiiksek dereceli bulanik zaman serisi modeli
AR(p), p>1 yapili zaman serilerini de modelleyebilir. Bunun yaninda, yiiksek dereceli
bulanik zaman serisi yaklasiminda derece arttik¢a, bulanik iliskinin belirlenmesinde,
Chen (2002) tarafindan Onerilen yontemin uygulanmasi da olduk¢a zorlasmaktadir.
Yiiksek dereceli modelin ¢oziimlenmesinde bulanik iligkiler, yapay sinir ag1 ile
belirlenir ise Chen (2002) tarafindan onerilen yontemde bulanik mantik iliski ve grup
iligki tablolarmmin olusturulmasindaki karmasikliktan ve islem yogunlugundan
kurtulmak, bunun yaninda daha iyi 6ngoriiler elde etmek miimkiindiir. Bu ¢alismada bu
dezavantajlar1 olmayan, yapay sinir aglarima dayali yeni bir yOntem Onerilmistir.

Onerilen yéntemin algoritmasi asagidaki adimlardan olusur.
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Adim 1. Evrensel kiime ve alt araliklar tanimlanair.

Veri setinin en kii¢lik ve en biiyiik degerleri sirasiyla D, ve D ayrica keyfi iki

max ?

say1 D, ve D, olmak iizere evrensel kiime,

U=[D,. -D,.D,. +D,] (3.15)

seklinde ve sabit aralik uzunluguna sahip u, alt araliklari,
U={u,uy,...,u,} (3.16)
olacak sekilde tanimlanir.

Adim 2. Evrensel kiime ve belirlenen alt araliklara bagh olarak 4; bulanik kiimeleri

tanimlanir.

Uyelik dereceleri,

1 k=j
a, =105 ,k=j-1,j+1 , j=12,....b (3.17)

0 ,ow.

olmak {izere, bulanik kiimeler asagidaki gibi tanimlanir.
A, =a,lu+a,/u,+-+a,lu, , j=L2,....b (3.18)

Adim 3. Gozlemler bulaniklastirilir.

Her bir veri bulundugu araligin en biiyiik iiyelik degerine sahip oldugu bulanik kiime ile

eslestirilerek zaman serisi bulaniklastirilir.
Adim 4. Bulanik mantik iliskileri ileri beslemeli yapay sinir ag1 kullanilarak olusturulur.

o Sinir agimin girdileri gecikmeli degiskenlerden, ¢iktilar1 ongoériilerden ve hedef
degerleri ise gerg¢ek verinin bulanik degerlerinden olusur.
o Sinir ag1 verilen girdi ve ¢iktilara gore egitilir.

o Girdi ndronlarinin sayis1 modelin derecesi olacaktir.
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o Gizli tabaka birim sayisina deneme yanilma yontemi ile karar verilir.

. Cikt1 birimlerindeki néron sayisinin ise bir olacagi agiktir.

Bu 6zellikleri tagiyan ileri beslemeli yapay sinir ag1 mimarisi Sekil 3.1.’de verilmistir.

F(-1)

F(t-1)

F(t—1+1)

F(t—k)

Sekil 3.1. ileri beslemeli yapay sinir ag1 mimarisi

Bulanik mantik iligkilerin, ileri beslemeli yapay sinir ag1 kullanilarak olusturulmasi ve
agin girdi, ¢ikt1 ve hedef degerlerini daha iyi kavrayabilmek i¢in elimizde 6 gézlemden
olusan herhangi bir F(#) bulanik zaman serisi oldugunu ve ikinci gecikme igin ileri

beslemeli yapay sinir ag1 ile bulanik iliski belirlenmesinin istendigini diisiinelim. Bu

durumda,

. [lk olarak F(t-1) ve F(t-2) gecikmeli bulanik zaman serileri olusturulur.

o Agin girdi tabakasi 2 ve ¢ikti1 tabakasi 1 ndrondan olusacaktir.

. Girdiler, gecikmeli degiskenler olup, gecikmeli bulanik zaman serisinin sinif

numaralarindan ve hedef degerler, bulanik zaman serisinin kendi smif

numaralarindan olusur.

Bu o6zellikleri tagiyan, ikinci dereceden bulanik zaman serisi dngorii modeli i¢in bulanik
iligkilerin ileri beslemeli yapay sinir agi ile belirlendigi, agin girdi, ¢ikti ve hedef

degerlerini Tablo 3.1.’de gorebiliriz.
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Tablo 3.1. Ikinci dereceden bulanik zaman serisi 6ngorii modeli igin drnek

GozlemNo | F@-2) | F(t-1) | F@) |Girdi-1]|Girdi-2| Hedef
1 As
2 As As
3 As As As 6 2 3
4 As As A; 2 3 7
5 As A Ay 3 7 4
6 A; Ay As 7 4 2

Adim 5. Bulanik 6ngoériiler elde edilir.

n’nci dereceden bulanik zaman serisi 6ngdrii modeli i¢in bulanik Ongoriiler elde

edilirken yalnizca tek durum s6z konusudur. n’nci dereceden bulanik iligkisi,
Aps Ay dn =~ Y SA — 4, (3.19)

olarak elde edildiginde bulanik 6ngorii 4, olacaktir. Burada 4,,,4,, ,,...,4, yapay

sinir agimn girdilerini, 4, ise ¢iktisini temsil etmektedir.

Adim 6. Durulagtirma iglemi uygulanir.

Durulagtirmada merkezilestirme yontemi kullanilir. Bulanik ongérii 4, olarak elde
edildiginde, durulastirilmig 6ngérti, 4, bulanik kiimesinde en ytiksek tyelik degerine

sahip olan u; araliginin orta noktasi olacaktir.
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4. BULGULAR VE TARTISMA

Onerilen yeni ydntemin uygulamasi, sirastyla, literatiirde sik¢a kullanilan 1971-
1992 yillarma ait Alabama Universitesi kayit verisine (enrollment data) ve Subat 2003 -
Subat 2008 donemleri arasinda hesaplanan aylik bazda Tiirkiye Tiiketici Fiyat Endeksi
(TUFE) ve yine aym1 zaman serisi kullanilarak Subat 2004 ve Subat 2008 dénemleri
arasinda her bir ay icin hesaplanan yillik bazda Tiirkiye Tiketici Fiyat Endeksi zaman

serisine uygulanmistir.

Enflasyon ongoriilerinin elde edilmesi Onemli bir ekonomik problemdir.
Ongoriilerin daha dogru elde edilmesi daha dogru ekonomik politikalar doguracaktir.
T.C.M.B. her yilin belirli déonemlerinde, enflasyon beklentisi anketi sonuglarinin yer
aldig1, enflasyon raporlar1 yayinlamaktadir. Tiiketici fiyat endeksi zaman serisi belirtilen
donemlerde, hem literatiirde yer alan bazi bulanik zaman serisi yaklagimlari, hem de bu
calismada Onerdigimiz yontem ile aylik ve yillik bazda ayri ayr1 tahmin edilerek
sonuglar 6ngorii dogrulugu agisindan karsilagtirilmis ve bunun yaninda, yillik bazda
elde edilen ongoriiler ayn1 zamanda T.C.M.B. enflasyon beklentisi anketi sonuglari ile

de karsilastirilmistir.

Coziimleme asamasinda MATLAB programlama dilinde yazilmig programlar

kullanilmis olup, 6rnek iki programin agik kodlar1 Ek 3. ve Ek 4.” de verilmistir.

4.1.  Alabama Universitesi Kayit Verisi Coziimlemesi

Onerilen yontem ilk olarak literatiirde sik¢a kullanilan ve grafigi Sekil 4.1.°de
verilen, 1971-1992 yillarina ait Alabama Universitesi kayit verisine (enrollment data)

uygulanmistir.

Bu veri i¢in birinci, ikinci, li¢ilincli ve dordiincii dereceden bulanik zaman serisi
modelleri ile uygulama yapilmistir. Uygulamada u, aralik uzunluklari Huarng
(2001a)’1n ¢alismasinda oldugu gibi 200, 300, 400, 500, 600, 700, 800, 900 ve 1000
olarak belirlenmistir. Algoritmanin 4. adiminda kullanilan ileri beslemeli yapay sinir ag1
mimarisinde gizli tabaka birim sayisi, agin genellestirme yetenegini kaybetmemesi i¢in

1-4 arasinda siirlandirilmistir.
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Sekil 4.1. 1971-1992 yillar1 Alabama Universitesi kayit verisi
Adim 1. Evrensel kiime ve alt araliklar tanimlanair.

Veri setinin en kiiclik degerinin 13055 ve en biiylik degerinin 19337 olmas1 sebebiyle
sirastyla D, =13055 ve D, =19337 , ayrica keyfi iki say1r D, =55 ve D, =663

olmak iizere evrensel kiime,
U =[13000,20000]

ve bununla birlikte aralik uzunlugu verideki artis1 kapsayacak sekilde 1000 olarak

secildiginde, sabit aralik uzunluguna sahip u, alt araliklari,

u, =[13000,14000], u, = [14000,15000], u, = [15000,16000],
u, =[16000,17000], ug =[17000,18000], u, =[18000,19000],
u, = [19000,20000]

seklinde elde edilir. Bunun yaninda aralik uzunlugu 200, 300, 400, 500, 600, 700, 800

ve 900 olarak alindiginda da u, alt araliklar1 benzer sekilde elde edilir.

Adim 2. Evrensel kiime ve belirlenen alt araliklara bagl olarak 4, bulanik kiimeleri

tanimlanir.

Adim 1.’de belirlenen evrensel kiime ve aralik uzunlugunun sabit 1000 oldugu durumda

belirlenen alt araliklara bagli olarak 4; bulanik kiimeleri
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A =1/ u +05/u, +0/ uy; +0/u, +0/ us +0/u, +0/u,
A, =05/ u, +1/u, +0.5/ uy +0/u, +0/ us +0/us +0/u,
A, =0/ u +0.5/uy, +1/ uy; +0.5/u, +0/ us +0/uy, +0/u,
A, =0/u, +0/u, +0.5/ uy; +1/u, +0.5/ us +0/us +0/u,
A, =0/ u, +0/u, +0/ uy; +0.5/u, +1/ us +0.5/u, +0/u,
A, =0/ u, +0/u, +0/ u; +0/u, +0/ us +0.5/ug +1/u,

seklinde elde edilir. Bunun yaninda aralik uzunlugu 200, 300, 400, 500, 600, 700, 800
ve 900 olarak alindiginda da A4, bulanik kiimeleri benzer sekilde elde edilir.

Adim 3. Gozlemler bulaniklastirilir.

Her bir veri bulundugu araligin en biiyiik iiyelik degerine sahip oldugu bulanik kiime ile
eslestirilerek zaman serisi bulaniklastirilir. Tablo 4.1.de gozlemlere ait reel ve aralik
uzunlugunun sabit 1000 oldugu durum ig¢in bulaniklastirilmis degerler verilmistir.
Bunun yaninda, diger tiim aralik uzunluklar1 i¢in de bulanik degerler benzer sekilde elde

edilir.

Tablo 4.1. Kayit verisine ait reel ve bulanik degerler

Yil Deger B]l)liagzik Yil Deger B]l)liagzik
1971 13055 Al 1982 15433 A3
1972 13563 Al 1983 15497 A3
1973 13867 Al 1984 15145 A3
1974 14696 A2 1985 15163 A3
1975 15640 A3 1986 15984 A3
1976 15311 A3 1987 16859 A4
1977 15603 A3 1988 18150 A6
1978 15861 A3 1989 18970 A6
1979 16807 A4 1990 19328 A7
1980 16919 A4 1991 19337 A7
1981 16388 A4 1992 18876 A6

Adim 4. Bulanik mantik iliskileri ileri beslemeli yapay sinir ag1 kullanilarak olusturulur.

Coziimlemede kullanilan yapay sinir ag1 bilesenlerini asagidaki 6zellikleri tasimaktadir.
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o Mimari Yapi: Tiim miimkiin aralik uzunluklar i¢in, girdi tabakasindaki birim
sayisinin her bir derece i¢in sirastyla 1, 2, 3 ve 4, gizli tabakadaki birim sayisinin
ise her bir durum i¢in 1-4 arasinda degistigi ve cikt1 tabakasinda tek birimin
kullanildig1 toplam 16 farkli mimari ile ¢oziimleme yapilmustir.

o Ogrenme _ Algoritmasi: Ogrenme parametresinin  her bir iterasyonda

giincellendigi Levenberg — Marquardt algoritmasi en iyi agirliklarin elde

edilmesinde kullanilmistir.

. Aktivasyon Fonksiyonu: Tiim birimlerde egrisel aktivasyon fonksiyonlarindan

olan ve egim parametresi ¥ =1 olmak iizere, asagidaki esitlik ile ifade edilen

Lojistik aktivasyon fonksiyonu kullanilmastir.

f(x) = (1+exp(—p))” (4.1)
Adim 5. Bulanik 6ngoriiler elde edilir.

Aralik uzunlugunun sabit 1000 oldugu durum igin ileri beslemeli yapay sinir agi
kullanilarak, ikinci dereceden bulanik zaman serisi 0ngorii modeli i¢in olusturulan
bulanik mantik iligkilerinden yararlanilarak elde edilen bulanik 6ngoriiler Tablo 4.2.°de

verilmistir.

Tablo 4.2. Kayit verisine ait bulanik dngoriiler

vil Bulamik | Bulamk vil Bulamk | Bulamk
Deger | Ongorii Deger | Ongorii
1971 Al --- 1982 A3 A4
1972 Al --- 1983 A3 A3
1973 Al A2 1984 A3 A3
1974 A2 A2 1985 A3 A3
1975 A3 A3 1986 A3 A3
1976 A3 A3 1987 A4 A3
1977 A3 A3 1988 A6 A5
1978 A3 A3 1989 A6 A6
1979 A4 A3 1990 AT A7
1980 A4 A5 1991 AT A7
1981 A4 A4 1992 A6 AT
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Bunun yaninda aralik uzunlugu olarak 200, 300, 400, 500, 600, 700, 800 ve 900
alindiginda da ikinci dereceden bulanik zaman serisi Ongorii modeli i¢in bulanik
ongoriiler ve ayrica tiim aralik uzunluklarinda birinci, {iglincli ve dordiincii dereceden

bulanik zaman serisi 6ngorii modelleri i¢in bulanik 6ngoriiler benzer sekilde elde edilir.
Adim 6. Durulagtirma iglemi uygulanir.

Durulastirmada merkezilestirme yontemi kullanilir. Aralik uzunlugunun sabit 1000
oldugu durumda, ikinci dereceden bulanik zaman serisi 6ngorii modeli i¢in elde edilen
bulanik Ongoriiler dikkate alinarak yapilan durulastirma islemi sonucunda ulasilan
durulastirilmig 6ngoriiler Tablo 4.3.’de verilmistir. Ayrica diger tiim aralik uzunluklar

ve dereceler i¢in de durulastirilmis ongoriiler benzer sekilde elde edilir.

Tablo 4.3. Kayit verisine ait durulastirilmis 6ngdriiler

vil ]§ulan1k "Duru vil l}ulanlk "Duru
Ongorii | Ongorii Ongorii | Ongorii
1971 --- -—- 1982 A4 16500
1972 -—- -—- 1983 A3 15500
1973 A2 14500 1984 A3 15500
1974 A2 14500 1985 A3 15500
1975 A3 15500 1986 A3 15500
1976 A3 15500 1987 A3 15500
1977 A3 15500 1988 A5 17500
1978 A3 15500 1989 A6 18500
1979 A3 15500 1990 A7 19500
1980 A5 17500 1991 AT 19500
1981 A4 16500 1992 A7 19500

Onerilen yontemin algoritmasimi olusturan 6 adim, tiim miimkiin durumlar i¢in

uygulandi ve elde edilen durulastirilmig ongoériiler (p,) ile verinin gercek degerleri

(»,) kullanilarak, tiim bu durumlar i¢in hata kareler ortalanmas: karekokii (H.K.O.K.),

Z(yz _j‘;[)2
t=1

HKOK.= (4.2)

n
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formiilii ile hesaplandi. Tiim miimkiin durumlar i¢in hesaplanan H.K.O.K. sonuglar1

Tablo 4.4.’de verilmistir.

Tablo 4.4. Onerilen yéntemin kayit verisi icin H.K.O.K. degerleri

H.K.O.K. Degeri
Aralik | Gizli Tabaka | Birinci Ikinci Uciincii | Dordiincii
Uzunlugu | Birim Sayis1 | Derece | Derece | Derece | Derece
200 1 537.27 44431 874.39 | 1083.94
300 1 578.91 521.16 519.56 [ 1089.57
400 1 551.67 482.18 511.84 [ 1085.94
500 1 614.04 557.62 49226 | 1135.43
600 1 636.10 630.53 507.34 989.55
700 1 527.76 361.67 724.60 [ 1550.24
800 1 683.79 639.82 713.81 | 1069.31
900 1 641.49 463.77 617.16 [ 1160.89
1000 1 758.06 680.36 648.26 | 1069.63
200 2 3398.23 | 41291 | 3319.91 | 1105.73
300 2 3529.50 | 433.44 | 3453.59 | 1205.40
400 2 3311.60 | 394.83 | 3231.58 | 1081.66
500 2 3354.82 | 455.35 | 3275.66 | 1096.06
600 2 3398.23 | 482.94 | 3319.91 | 1090.27
700 2 3706.73 | 379.61 | 3633.81 | 1166.89
800 2 3140.72 | 553.83 | 3057.09 | 1099.11
900 2 3796.20 | 439.87 | 3724.68 | 1141.39
1000 2 3573.58 | 600.99 | 3498.44 | 970.91
200 3 420.17 | 3237.23 | 607.47 | 1180.21
300 3 474.27 | 3368.58 | 608.81 | 1183.40
400 3 431.08 | 3150.59 | 609.44 | 1085.94
500 3 466.28 432.08 677.77 | 1078.46
600 3 542.63 502.90 554.62 | 1650.48
700 3 468.33 347.85 697.30 | 1223.51
800 3 616.40 553.83 602.00 [ 1064.86
900 3 629.89 512.01 775.03 | 1134.09
1000 3 728.59 600.99 496.96 | 1436.85
200 4 419.49 259.99 629.96 | 1148.32
300 4 488.63 277.96 621.03 [ 1136.00
400 4 444.05 288.19 621.38 967.33
500 4 464.75 410.78 643.92 | 1127.22
600 4 556.56 424.42 622.39 | 3410.87
700 4 466.19 294.57 697.30 | 1183.08
800 4 626.81 553.83 647.23 | 3139.86
900 4 554.09 476.60 688.69 [ 1134.09
1000 4 723.02 636.47 496.96 | 3594.10
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Tim miimkiin durumlar i¢in hesaplanan H.K.O.K. sonuglarinin verildigi Tablo 4.4.
incelendiginde genel olarak ikinci dereceden bulanik zaman serisi 6ngdrii modelinden
elde edilen sonuclarin diger dereceden modellere gore daha iyi sonuglar verdigi
goriilmektedir. Onerilen yontemin en iyi sonucu ile birlikte literatiirde uygulanan diger
yontemlere ait en iyi sonuglar Tablo 4.5.’de verilmektedir. Bu tablo incelendiginde ise
literatiirde uygulanan diger yontemler arasinda en iyi sonucun Chen (2002) tarafindan
Onerilen yontemde, iclincii dereceden bulanik zaman serisi Ongdrii modeli i¢in
H.K.O.K. degeri, 294.44 ile elde edildigi goriiliirken, bu calismada Onerilen yontemde
ise en iyl sonuca, ikinci dereceden bulanik zaman serisi 6ngdrii modelinde, bulanik
iliskinin 2-4-1 mimarisi ile belirlendigi ve aralik uzunlugunun 200 oldugu durumda,

259.99 H.K.O.K. degeri ile ulagilmastir.

Tablo 4.5. Onerilen ve Literatiirdeki diger yontemlerin en iyi sonuglar

Yontem Derece H.K.O.K.
Song ve Chissom (1993a) 1 642.26
Song ve Chissom (1994) 1 880.73
Sullivan ve Woodall (1994) 1 621.33
Chen (1996) 1 638.36
Hwang, Chen, ve Lee (1998) 5 528.13
Chen (2002) 3 294.44
Onerilen Yontem 2 259.99

4.2.  Ayhk Bazdaki TUFE Verisi Céziimlemesi

Onerilen yeni yontem, ikinci olarak, grafigi Sekil 4.2.’de verilen, Subat 2003 ve
Subat 2008 donemleri arasinda hesaplanan aylik bazda Tiirkiye Tiiketici Fiyat Endeksi

(TUFE) zaman serisine uygulanmustir.
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Sekil 4.2. Subat 2003 ve Subat 2008 aylik bazda TUFE verisi

Uygulamada ilgilenilen zaman serisine ait aylik bazda bulunan veri kiimesinden
ilk 49 veri egitim kiimesi ve son 12 veri de Onerilen yontem sonuglarinin literatiirdeki
diger yontem sonugclar1 ile karsilastirilabilmesi igin test kiimesi olarak alinmistir. Bu
zaman serisi i¢in birinci dereceden baslayarak on ikinci dereceye kadar olan bulanik
zaman serisi modelleri ile uygulama yapilmistir. Uygulamada u, aralik uzunluklari,
verinin artis1 géz onlinde bulundurularak 0.10 ile 0.50 arasinda her bir agsamada 0.05
arttirilarak belirlenmistir. Algoritmanin 4. adiminda kullanilan ileri beslemeli yapay
sinir ag1 mimarisinde gizli tabaka birim sayisi, agin genellestirme yetenegini

kaybetmemesi i¢gin 1-6 arasinda sinirlandirilmistir.

Aylik bazda bulunan zaman serisinin ¢éziimlemesi su sekilde 6zetlenebilir.

Adim 1. Evrensel kiime ve alt araliklar tanimlanair.

Veri setinin en kiiclik degerinin -0.73 ve en biiylik degerinin 2.25 olmas1 sebebiyle

sirastyla D, =-0.73 ve D, , =2.25 , ayrica keyfi iki say1 D, =0.27 ve D, =0.75

olmak iizere evrensel kiime,

U =[-1.00, 3.00]

ve bununla birlikte aralik uzunlugu verideki artisi kapsayacak sekilde 0.50 olarak

secildiginde, sabit aralik uzunluguna sahip u, alt araliklari,
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u, =[-1.00,-0.50], u, =[-0.50,0.00], u; =[0.00,0.50],
u, =[0.50,1.00], ug =[1.00,1.50], u, =[1.50,2.00],
u, =[2.00,2.50] ug =[2.50,3.00]

seklinde elde edilir. Bunun yaninda aralik uzunlugu olarak, 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40 ve 0.45 alindiginda da u; alt araliklar1 benzer sekilde elde edilir.

Adim 2. Evrensel kiime ve belirlenen alt araliklara bagh olarak A, bulanik kiimeleri

tanimlanir.

Adim 1.’de belirlenen evrensel kiime ve aralik uzunlugunun sabit 0.50 oldugu durumda

belirlenen alt araliklara bagh olarak A4, bulanik kiimeleri

=1/u,+05/u, +0/ u; +0/u, +0/ us +0/uy, +0/u, +0/ug

—_

,=05/u, +1/uy, +0.5/ u; +0/u, +0/ us +0/ug +0/u, +0/u,
=0/u, +0.5/uy, +1/ u; +0.5/u, +0/ us +0/u, +0/u, +0/u
=0/ u +0/u, +0.5/ uy +1/u, +0.5/ ug +0/ug +0/u, +0/u,
=0/u +0/uy, +0/ u; +0.5/u, +1/ us +0.5/uy +0/u, +0/ug
e =0/u +0/u, +0/ uy; +0/u, +0.5/ us+1/us +0.5/u, +0/u,
=0/u, +0/u, +0/ u; +0/u, +0/ uy +0.5/us +1/u; +0.5/ug
=0/u, +0/uy, +0/ u; +0/u, +0/ uys +0/u, +0.5/u, +1/ug

N W [

o NN N N« SO SOR < SO N N

=3

seklinde elde edilir. Bunun yaninda aralik uzunlugu olarak 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40 ve 0.45 alindiginda da A, bulanik kiimeleri benzer sekilde elde edilir.

Adim 3. Gozlemler bulaniklastirilir.

Her bir veri bulundugu araligin en biiyiik iiyelik degerine sahip oldugu bulanik kiime ile
eslestirilerek zaman serisi bulaniklastirilir. Tablo 4.6.’da gozlemlere ait reel ve aralik
uzunlugunun sabit 0.50 oldugu durum i¢in bulaniklastirilmis degerler verilmistir. Bunun

yaninda, diger tiim aralik uzunluklari i¢in de bulanik degerler benzer sekilde elde edilir.
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Tablo 4.6. Aylik TUFE verisine ait reel ve bulanik degerler

. - Bulanik .. - Bulanik

Donem | Deger Deger Donem | Deger Deger
Subat 03 1.54 A6 Mart 05 0.26 A3
Mart 03 1.96 A6 Nisan 05 0.71 A4
Nisan 03 0.99 A4 Mayis 05 0.92 A4
Mayis 03 0.96 A4 Haziran 05 0.10 A3
Haziran 03 0.08 A3 Temmuz 05| -0.57 Al
Temmuz 03| -0.19 A2 Agustos 05 0.85 A4
Agustos 03 0.16 A3 Eyliil 05 1.02 A5
Eyliil 03 1.35 A5 Ekim 05 1.79 A6
Ekim 03 0.93 A4 Kasim 05 1.40 A5
Kasim 03 1.27 A5 Aralik 05 0.42 A3
Aralik 03 0.42 A3 Ocak 06 0.75 A4
Ocak 04 0.66 A4 Subat 06 0.22 A3
Subat 04 0.52 A4 Mart 06 0.27 A3
Mart 04 0.96 A4 Nisan 06 1.34 A5
Nisan 04 0.50 A4 Mayis 06 1.88 Ab
Mayis 04 0.43 A3 Haziran 06 0.34 A3
Haziran 04 -0.13 A2 Temmuz 06| 0.85 A4
Temmuz 04| 048 A3 Agustos 06 -0.44 A2
Agustos 04 0.76 A4 Eyliil 06 1.29 A5
Eyliil 04 0.95 A4 Ekim 06 1.27 A5
Ekim 04 2.25 A7 Kasim 06 1.29 A5
Kasim 04 1.31 A5 Aralik 06 0.23 A3
Aralik 04 0.32 A3 Ocak 07 1.00 A5
Ocak 05 0.55 A4 Subat 07 0.43 A3
Subat 05 0.02 A3

Adim 4. Bulanik mantik iligkileri ileri beslemeli yapay sinir ag1 kullanilarak olusturulur.

Coziimlemede kullanilan yapay sinir ag1 bilesenlerini asagidaki 6zellikleri tagimaktadir.

Mimari Yapi: Tiim miimkiin aralik uzunluklar i¢in, girdi tabakasindaki birim
sayisinin her bir derece i¢in sirastyla 1-12, gizli tabakadaki birim sayisinin ise
her bir durum icin 1-6 arasinda degistigi ve ¢ikt1 tabakasinda tek birimin
kullanildig1 toplam 72 farkli mimari ile ¢oziimleme yapilmustir.

Ogrenme _ Algoritmasi: Ogrenme parametresinin  her bir iterasyonda

giincellendigi Levenberg — Marquardt algoritmast en iyi agirliklarin elde

edilmesinde kullanilmistir.
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o Aktivasyon Fonksiyonu: Tiim birimlerde egrisel aktivasyon fonksiyonlarindan
olan ve egim parametresi ¥ =1 olmak flizere, asagidaki esitlik ile ifade edilen

Lojistik aktivasyon fonksiyonu kullanilmastir.

f(x) = (L+exp(—p))” (4.3)
Adim 5. Bulanik 6ngoriiler elde edilir.

Aralik uzunlugunun sabit 0.50 oldugu durum igin ileri beslemeli yapay sinir agi
kullanilarak, besinci dereceden bulanik zaman serisi 6ngorii modeli i¢in olusturulan
bulanik mantik iliskilerinden yararlanilarak elde edilen ve test kiimesine ait bulanik
ongoriiler Tablo 4.7.’de verilmistir. Bunun yaninda aralik uzunlugu 0.10, 0.15, 0.20,
0.25, 0.30, 0.35, 0.40 ve 0.45 olarak alindiginda da besinci ve diger tiim derecelerde
bulanik zaman serisi 6ngdrii modeli i¢in test kiimesine ait bulanik ongoriiler benzer

sekilde elde edilir.
Adim 6. Durulastirma islemi uygulanir.

Durulastirmada merkezilestirme yontemi kullanilir. Aralik uzunlugunun sabit 0.50
oldugu durumda, besinci dereceden bulanik zaman serisi 6ngdrii modeli i¢in elde edilen
bulanik ongoriiler ile birlikte, durulastirma islemi sonucunda ulasilan durulagtirilmis
ongoriiler Tablo 4.7.’de verilmistir. Ayrica diger tiim aralik uzunluklar1 ve dereceler

icin de durulastirilmis 6ngoriiler benzer sekilde elde edilir.

Tablo 4.7. Aylik TUFE verisine ait bulanik ve duru dngériiler

Dénem “Duru liulanlk Dénem ”Duru ].S_ulamk

Ongorii| Ongorii Ongorii | Ongorii
Mart 07 0.25 A3 Eyliil 07 1.25 A5
Nisan 07 1.25 A5 Ekim 07 2.25 A7
Maysis 07 0.25 A3 Kasim 07 2.25 A7
Haziran 07 0.25 A3 Aralik 07 0.25 A3
Temmuz 07 | 0.25 A3 Ocak 08 0.25 A3
Agustos 07 0.25 A3 Subat 08 0.25 A3
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Onerilen yéntemin algoritmasini olusturan 6 adim, aylik bazdaki TUFE verisine

tim miimkiin durumlar i¢in uygulandi ve elde edilen durulastirilmig dngériiler (p,) ile

verinin gercek degerleri (y,) kullanilarak, tiim bu durumlar i¢in hata kareler

ortalanmasi karekokii (H.K.O.K.),

Z(yt _)A}t)z
=1

HKOK.= (4.4)

n
formiilii ile hesaplandi. Tiim miimkiin durumlar i¢in hesaplanan H.K.O.K. sonuglar1 EK

1’de mevcut olan tablolarda verilmistir.

Tim miimkiin durumlar i¢in hesaplanan H.K.O.K. sonuglarimin verildigi
tablolardan da goriilebilecegi gibi, Chen (2002) tarafindan Onerilen yontemde en iyi
sonug, on ikinci dereceden bulanik zaman serisi ongdrii modeli i¢in aralik uzunlugunun
0.50 oldugu durumda, 0.81903 H.K.O.K. degeri ile elde edilmis olup, Huarng ve Yu
(2006) tarafindan Onerilen yontemde ise en iyi sonug, aralik uzunlugunun 0.15 ve gizli
tabaka birim sayisinin alt1 oldugu durumda, 0.66194 H.K.O.K. degeri ile elde edilmistir.
Bu calismada 6nerilen yontemde ise en iyi sonuca, besinci dereceden bulanik zaman
serisi Ongdrii modeli i¢in aralik uzunlugunun 0.50 ve girdi tabakasi birim sayisinin bes,
gizli tabaka birim sayisinin iki oldugu, yani bulanik iliskinin 5-2-1 mimarisi ile
belirlendigi durumda, 0.53878 H.K.O.K. degeri ile elde edilmistir. Her {i¢ yontemin en

1yi sonuglarmni igeren Tablo 4.8. asagida verilmistir.

Tablo 4.8. Aylik TUFE verisi i¢in ydntemlerin en iyi sonuglar

Yontem Derece Arahky G%Z.l i Tabaka H.K.O.K.
Uzunlugu Birim Sayisi
Chen (2002) 12 0.50 - 0.81903
Huarng ve Yu (2006) 1 0.15 6 0.66194
Onerilen Yontem 5 0.50 2 0.53878

Bu sonuglar g6z Oniine alindiginda bu calismada o6nerilen Y.S.A.’na dayali
yiiksek dereceli bulanik zaman serisi yontemin literatiirdeki diger yontemlere gore daha
iyl sonuglar verdigi Onerilen ve alternatif yOntemlerin Ongoriilerinin, zaman serisi

gercek degerleri ile birlikte ¢izilen ve Sekil 4.3.’de verilen grafikten de goriilmektedir.
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Sekil 4.3. Mart 2007 ve Subat 2008 aylik bazda TUFE ve Ongoriiler

4.3.  Yilhk Bazdaki TUFE Verisi Céziimlemesi

Onerilen yeni ydntem, son olarak Subat 2004 ve Subat 2008 dénemleri arasinda
her bir ay i¢in hesaplanan yillik bazda Tiirkiye Tiiketici Fiyat Endeksi (TUFE) zaman
serisine uygulanmistir. Oncelikle aylik olarak gdzlenmis veri yillik veriye

donistiirtilmiistiir. Tablo 4.9. yillik bazda elde edilen zaman serisini icermektedir.

Ayni zamanda yillik bazda bulunan veri kiimesinden ilk 37 veri egitim kiimesi ve
son 12 veri de Onerilen yontem sonuglarinin literatiirdeki diger yontem ve enflasyon
beklentisi anketi sonuglari ile karsilastirilabilmesi igin test kiimesi olarak alinmistir. Bu
zaman serisi i¢in birinci dereceden baglayarak on ikinci dereceye kadar olan bulanik
zaman serisi modelleri ile uygulama yapilmistir. Uygulamada u, aralik uzunluklari,
verinin artigt gz Oniinde bulundurularak 0.10 ile 0.50 arasinda her bir asamada 0.05
arttirilarak belirlenmistir. Algoritmanin 4. adiminda kullanilan ileri beslemeli yapay
sinir ag1 mimarisinde gizli tabaka birim sayisi, agin genellestirme yetenegini

kaybetmemesi i¢in 1-6 arasinda sinirlandirilmastir.

Yillik bazda bulunan zaman serisinin ¢dziimlemesi su sekilde 6zetlenebilir.
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Adim 1. Evrensel kiime ve alt araliklar tanimlanair.

Veri setinin en kiigiik degerinin 6.91 ve en biiyiik degerinin 11.70 olmas1 sebebiyle

sirastyla D, =691 ve D =11.70 , ayrica keyfi iki say1 D, =091 ve D, =0.30

olmak iizere evrensel kiime,
U =[6.00, 12.00]

ve bununla birlikte aralik uzunlugu verideki artis1 kapsayacak sekilde 0.50 olarak

secildiginde, sabit aralik uzunluguna sahip u, alt araliklari,

u, =[6.00,6.50], u, =[6.50,7.00], uy =[7.00,7.50],
u, =[7.50,8.00], us = [8.00,8.50], u, =[8.50,9.00],
u, =[9.00,9.50], ug =[9.50,10.00], uy =[10.00,10.50],
u,, =[10.50,11.00], u,, =[11.00,11.50], u,, =[11.50,12.00],

seklinde elde edilir. Bunun yaninda aralik uzunlugu 0.10, 0.15, 0.20, 0.25, 0.30, 0.35,
0.40 ve 0.45 olarak alindiginda da u, alt araliklar1 benzer sekilde elde edilir.

Adim 2. Evrensel kiime ve belirlenen alt araliklara bagh olarak A, bulanik kiimeleri

tanimlanir.

Adim 1.’de belirlenen evrensel kiime ve aralik uzunlugunun sabit 0.50 oldugu durumda

belirlenen alt araliklara bagh olarak A4, bulanik kiimeleri

A =1/ u, +0.5/u, +0/ uy; +0/u, +0/ us+0/ug +0/u; +0/ug +0/uy +0/1u,y +0/u,, +0/u,,

A, =05/ u, +1/u,+0.5/ u; +0/u, +0/ g +0/us +0/u, +0/ug +0/uy +0/u,y +0/u,, +0/u,,
Ay =0/ u, +05/u, +1/ u; +0.5/u, +0/ us +0/ug +0/u, +0/ug +0/uy +0/1u,y +0/u;, +0/u,,
A, =0/ u, +0/u, +0.5/ uy; +1/u, +0.5/ uy +0/ug +0/u, +0/ug +0/uy +0/u,y +0/u,, +0/u,,
A =0/ u, +0/u, +0/ uy; +0.5/u, +1/ us +0.5/ug +0/u, +0/ug +0/uy +0/1u,y +0/u,, +0/u,,
A¢=0/u, +0/u, +0/ uy; +0/u, +0.5/ us+1/ug +0.5/u, +0/ug +0/uy +0/1u,y +0/u,, +0/u,,
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A, =0/ u, +0/u, +0/ u; +0/u, +0/ ug +0.5/ug+1/u, +0.5/uy; +0/uy +0/u,y +0/u,, +0/u,,
A, =0/ u, +0/u, +0/ u; +0/u, +0/ us +0/ug +0.5/u; +1/ug +0.5/1ug +0/u,y +0/u;, +0/u,,
Ay =0/ u, +0/u, +0/ uy; +0/u, +0/ u;+0/us+0/u, +0.5/ug +1/uy +0.5/u,, +0/u,, +0/u,,
Ay =0/u, +0/u,+0/ u; +0/u, +0/ us +0/u, +0/u, +0/ug +0.5/ug +1/u,, +0.5/u,, +0/u,,
A, =0/ u, +0/u, +0/ uy, +0/u, +0/ uy +0/us+0/u, +0/ug +0/uy +0.5/u,y +1/u,, +0.5/u,,
A, =0/ u, +0/u, +0/ u; +0/u, +0/ u, +0/uy+0/u; +0/uy +0/uy +0/1,y +0.5/u,, +1/u,,

seklinde elde edilir. Bunun yaninda aralik uzunlugu olarak 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40 ve 0.45 alindiginda da A, bulanik kiimeleri benzer sekilde elde edilir.

Adim 3. Gozlemler bulaniklastirilir.

Her bir veri bulundugu araligin en biiyiik iiyelik degerine sahip oldugu bulanik kiime ile
eslestirilerek zaman serisi bulaniklastirilir. Tablo 4.9.’de gozlemlere ait reel ve aralik
uzunlugunun sabit 0.50 oldugu durum i¢in bulaniklastirilmis degerler verilmistir. Bunun

yaninda, diger tiim aralik uzunluklari i¢in de bulanik degerler benzer sekilde elde edilir.

Tablo 4.9. Yillik TUFE verisine ait reel ve bulanik degerler

. - Bulamk . - Bulamk
Donem Deger Deger Donem Deger Deger
Subat 04 9.48 A7 Eyliil 05 7.99 A4
Mart 04 8.40 AS Ekim 05 7.50 A4

Nisan 04 7.88 A4 Kasim 05 7.60 A4

Mayis 04 7.31 A3 Aralik 05 7.71 A4

Haziran 04 7.09 A3 Ocak 06 7.92 A4
Temmuz 04 7.81 A4 Subat 06 8.14 A5
Agustos 04 8.45 A5 Mart 06 8.15 A5

Eyliil 04 8.02 A5 Nisan 06 8.82 A6

Ekim 04 9.44 A7 Mayis 06 9.86 A8

Kasim 04 9.48 A7 Haziran 06 10.12 A9

Aralik 04 9.37 A7 Temmuz 06 | 11.70 Al2

Ocak 05 9.25 A7 Agustos 06 10.27 A9

Subat 05 8.71 A6 Eyliil 06 10.56 Al0Q

Mart 05 7.95 A4 Ekim 06 10.00 A9

Nisan 05 8.18 A5 Kasim 06 9.88 A8

Mayis 05 8.71 A6 Aralik 06 9.67 A8

Haziran 05 8.96 A6 Ocak 07 9.94 A8

Temmuz 05 7.82 A4 Subat 07 10.17 A9

Agustos 05 7.92 A4
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Adim 4. Bulanik mantik iliskileri ileri beslemeli yapay sinir ag1 kullanilarak olusturulur.
Coziimlemede kullanilan yapay sinir ag1 bilesenlerini asagidaki 6zellikleri tagimaktadir.

. Mimari Yapi: Tiim miimkiin aralik uzunluklar i¢in, girdi tabakasindaki birim
sayisinin her bir derece i¢in sirastyla 1-12, gizli tabakadaki birim sayisinin ise
her bir durum i¢in 1-6 arasinda degistigi ve cikti tabakasinda tek birimin
kullanildig: toplam 72 farkli mimari ile ¢6ziimleme yapilmustir.

. Ogrenme _ Algoritmasi: Ogrenme parametresinin  her bir iterasyonda

giincellendigi Levenberg — Marquardt algoritmasi en iyi agirliklarin elde
edilmesinde kullanilmistir.

. Aktivasyon Fonksiyonu: Tiim birimlerde egrisel aktivasyon fonksiyonlarindan

olan ve egim parametresi ¥ =1 olmak fizere, asagidaki esitlik ile ifade edilen

Lojistik aktivasyon fonksiyonu kullanilmistir.

S(x) =1 +exp(-m))” (4.5)
Adim 5. Bulanik 6ngoriiler elde edilir.

Aralik uzunlugunun sabit 0.50 oldugu durum i¢in ileri beslemeli yapay sinir agi
kullanilarak, ii¢iincii dereceden bulanik zaman serisi dngdrii modeli i¢in olusturulan
bulanik mantik iligkilerinden yararlanilarak elde edilen ve test kiimesine ait bulanik
ongoriiler Tablo 4.10.’de verilmistir. Bunun yaninda aralik uzunlugu 0.10, 0.15, 0.20,
0.25, 0.30, 0.35, 0.40 ve 0.45 olarak alindiginda da iiglincii ve diger tiim derecelerde
bulanik zaman serisi 6ngdrii modeli i¢in test kiimesine ait bulanik 6ngoriiler benzer

sekilde elde edilir.
Adim 6. Durulastirma islemi uygulanir.

Durulastirmada merkezilestirme yontemi kullanilir. Aralik uzunlugunun sabit 0.50
oldugu durumda, {i¢iincii dereceden bulanik zaman serisi ongorii modeli i¢in elde edilen
bulanik ongoriiler ile birlikte, durulastirma islemi sonucunda ulasilan durulastirilmis
ongoriiler Tablo 4.10.’da verilmistir. Ayrica diger tiim aralik uzunluklar1 ve dereceler

icin de durulastirilmis 6ngoriiler benzer sekilde elde edilir.
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Tablo 4.10. Yillik TUFE verisine ait bulanik ve duru éngériiler

Dénem “Duru liulanlk Dénem ._Duru ].S_ulamk

Ongorii | Ongorii Ongorii | Ongorii
Mart 07 11.25 All Eylil 07 7.25 A3
Nisan 07 10.75 Al0 Ekim 07 7.25 A3
Mayis 07 10.25 A9 Kasim 07 7.75 A4
Haziran 07 8.25 A5 Aralik 07 8.75 A6
Temmuz 07 | 6.25 Al Ocak 08 8.75 A6
Agustos 07 7.25 A3 Subat 08 8.75 A6

Onerilen yéntemin algoritmasini olusturan 6 adim, yillik bazdaki TUFE verisine

tim miimkiin durumlar i¢in uygulandi ve elde edilen durulastirilmig dngériiler (p,) ile
verinin gercek degerleri (»,) kullanilarak, tim bu durumlar i¢in hata kareler

ortalanmasi karekokii (H.K.O.K.),

Z(yt _)’}z)z
t=1

HKOK.= (4.6)

n
formiilii ile hesaplandi. Tiim miimkiin durumlar i¢in hesaplanan H.K.O.K. sonuglar1 EK

2’de mevcut olan tablolarda verilmistir.

Tim mimkiin durumlar i¢in hesaplanan H.K.O.K sonuglarin verildigi
tablolardan da goriilebilecegi gibi, Chen (2002) tarafindan Onerilen yontemde en iyi
sonug, ikinci dereceden bulanik zaman serisi 6ngorii modeli i¢in aralik uzunlugunun
0.40 oldugu durumda, 0.75745 H.K.O.K. degeri ile elde edilmis olup, Huarng ve Yu
(2006) tarafindan Onerilen yontemde ise en iyi sonug, aralik uzunlugunun 0.30 ve gizli
tabaka birim sayisinin dort oldugu durumda, 0.60270 H.K.O.K. degeri ile elde

edilmistir.

Bununla birilikte, T.C.M.B. tarafindan her yilin belirli dénemlerinde yayinlanan,
Tablo 4.11° de verilen, 2007 yili ikinci donemine ait enflasyon beklentisi anketi
sonuglarmin yer aldigi, enflasyon raporlarinda ise H.K.O.K. degerleri, birinci anket
sonucunda 2.69045 ve ikinci anket sonucunda 2.62527 olarak elde edilmistir (T.C.M.B.,
2007).



64

Tablo 4.11. Yillik TUFE verisine ait T.C.M.B. beklenti anketi ngoriileri

T.C. T.C. T.C. T.C.

Merkez Merkez Merkez Merkez

Dénem Bankas1. Bankas1. Dénem Bankas1' Bankas1'

Beklenti Beklenti Beklenti Beklenti

Anketi 1 Anketi 2 Anketi 1 Anketi 2

Ongoriileri | Ongoriileri Ongoriileri | Ongoriileri

Mart 07 5.46 5.44 Eyliil 07 7.62 7.54
Nisan 07 5.41 5.47 Ekim 07 7.38 7.31
Mayis 07 5.57 5.83 Kasim 07 7.13 7.16
Haziran 07 6.66 7.48 Aralik 07 7.23 7.11
Temmuz 07 7.89 8.07 Ocak 08 6.84 6.84
Agustos 07 7.98 7.94 Subat 08 6.77 6.75

Bu ¢alismada onerilen yontemde ise en iyi sonuca, li¢iincii dereceden bulanik
zaman serisi ongorii modeli i¢in aralik uzunlugunun 0.50 ve bunun yaninda girdi ve
gizli tabaka birim sayisinin ii¢ oldugu yani bulanik iligkinin 3-3-1 mimarisi ile
belirlendigi durumda, 0.49640 H.K.O.K. degeri ile elde edilmistir. Her {ic yontemin en

1yi sonuglarini iceren Tablo 4.12. asagida verilmistir.

Tablo 4.12. Y1illik TUFE i¢in anket sonuglar1 ve yontemlerin en iyi sonuglari

Y ontem Derece U?Jrﬂ:lkgu gﬁllrlnTSa:;l;? H.K.O.K.
Enflasyon Beklenti Anketi (1) - - - 2.69045
Enflasyon Beklenti Anketi (2) - - - 2.62527
Chen (2002) 2 0.40 - 0.75745
Huarng ve Yu (2006) 1 0.30 4 0.60270
Onerilen Yontem 3 0.50 3 0.49640

Bu sonuclar g6z oniine alindiginda bu g¢aligmada onerilen Y.S.A.’na dayali yiiksek
dereceli bulanik zaman serisi yontemin literatiirdeki diger yontemlere gore daha iyi
sonuglar verdigi, onerilen ve alternatif yontemlerin dngoriilerinin zaman serisi gergek

degerleri ile birlikte cizilen ve Sekil 4.4.’de verilen grafikten de goriilmektedir.
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5. SONUC VE ONERILER

Bulanik zaman serisi analizi yontemleri klasik zaman serisi analizi
yontemlerindeki model varsayimlari ve gozlem sayisi gibi kisitlamalara gerek
duymamasi ve geleneksel yontemlere gore daha iyi ongorii performansina sahip olmasi

nedeniyle son yillarda literatiirde sik¢a kullanilmaya baglanmistir.

Bulanik zaman serisi kavrami ilk olarak Song ve Chissom (1993a, 1993b, 1994)
tarafindan ortaya atilmistir. Song ve Chissom (1993a, 1993b, 1994) bu calismalarinda
bulanik zaman serisinin tahmin edilmesi i¢in matris islemlerine dayali bir yontem
onermistir. Onerilen bu ydntem ii¢ asamadan olusmaktadir. Birinci asama gdzlemlerin
bulaniklastirilmasi, ikinci asama bulanik iliskilerin belirlenmesi ve iigiincii asama ise
durulastirma asmasidir. Literatiirde bulanik zaman serilerinde bu ii¢ asamanin da
tyilestirilmesi i¢in ¢esitli caligmalar yapilmistir. Huarng ve Yu (2006) birinci dereceden
bulanik zaman serisi 6ngorii modeli i¢in bulanik iligkinin belirlenmesinde, basit bir ileri
beslemeli yapay sinir ag1 kullanimini 6nermistir. Huarng ve Yu (2006) 6nerdikleri bu
yontemde iligki belirlemede 1-2-1 sinir ag1 mimarisi kullanmislardir. Gizli tabakadaki
birim sayis1, yapay sinir agiin genellestirme yetenegini kaybetmemesi i¢in, iki olarak
alinmis olunmasmma ragmen, gizli tabaka birim sayisinin 3 ve 4 almmast da
genellestirme yetenegini kaybettirmeyecektir. Chen (2002) ise yiiksek dereceli bulanik
zaman serisi yaklasimi Onermistir. Chen (2002) tarafindan 6nerilen bu yaklasimda,
modelde tiim gecikmeli bulanik degiskenlerin bulunmasi ve bulanik iliski tablolarina
dayali islem yapilmasi nedeniyle derece arttikga bulanik iliskinin belirlenmesi ve
dolayisiyla yontemin uygulanmasi oldukg¢a zorlagmaktadir. Yiiksek dereceli modelin
coziimlenmesinde bulanik iligkiler, yapay sinir ag1 ile belirlenir ise bu yontemdeki islem

yogunlugundan kurtulmak miimkiindiir.

Bu c¢aligmada yiiksek dereceli bulanik zaman serisi modelini ¢odziimleyen,
bulanik iliskinin belirlenmesinde ileri beslemeli yapay sinir aginin kullanildigi, yeni bir
yontem Onerilmistir. Yapay sinir agina dayali bu yaklasim, ilk olarak literatiirde sik¢a
kullanilan Alabama Universitesi 1971-1992 yillarina ait kayit verisine ve daha sonra da
Subat 2003 - Subat 2008 donemleri arasinda hesaplanan aylik bazda Tiirkiye Tiiketici
Fiyat Endeksi (TUFE) ve yine ayn1 zaman serisi kullanilarak Subat 2004 ve Subat 2008

donemleri arasinda her bir ay i¢in hesaplanan yillik bazda Tiirkiye Tiiketici Fiyat
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Endeksi zaman serisine uygulanarak sonuglar elde edilmis ve diger yontemlerle
karsilastirilmasiyla birlikte, yillik bazda hesaplanan sonuglar ayrica T.C. Merkez
Bankasi tarafindan her yilin belirli donemlerinde yayinlanan, enflasyon beklentisi anketi

sonuglari ile de karsilagtirilarak onerilen yaklagimin iistiin oldugu gortilmustiir.

Tiim bu sonuglar goz oniine alindiginda, bu calismada Onerilen, yiiksek dereceli
bulanik zaman serisi modelini ¢oziimleyen, bulanik iliskinin belirlenmesinde ileri
beslemeli yapay sinir agmin kullanildigi yOntemin, bulanik iliski ve grup iliski
tablolarinin olusturulmasindaki karmasikligi ortadan kaldirdigi gibi ongoriileri de

tyilestirdigi goriilmektedir.

Bunun yaninda, yontemin uygulanmasinda onemli agamalardan biri olan, ileri
beslemeli yapay sinir aglari ile iliski belirlenmesi asamasinda, agin mimari yapisinin
ongoriilere olan etkisi goz Onilinde bulundurularak, mimari yapinin belirlenmesi
konusunda belirli kistaslar ortaya koyabilecek yeni ¢aligmalar olusturulabilir. Ayrica
agin girdilerinin belirlenmesi de, iizerinde durulmasi ve gelecek c¢alismalara konu

edilmesi gerekli olan 6nemli bir meseledir.
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7. EKLER
Ek 1. Aylik TUFE Verisi i¢in Elde Edilen H.K.O.K. Degerleri

Ek Tablo 1.1. Birinci Dereceden Bulanik Zaman Serisi Ongorii Modeli Sonucu

(Huarng ve Yu (20006))

Huarng ve Yu (2006)
Gizli Tabaka Birim Sayis1

LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.71980 | 1.70498 [ 0.94311 [ 0.85953 | 0.84771 | 1.10828
’% 0.15 0.72812 [ 1.68275 | 0.78464 | 0.78225 | 0.73953 | 0.66194
%] 0.20 0.70707 [ 1.74965 | 0.94231 [ 0.86330 [ 0.87728 [ 0.87728
Q 0.25 0.73773 | 1.81718 | 0.74699 [ 0.77840 [ 0.71856 [ 0.74307
= 0.30 0.77122 | 1.61657 [ 0.74819 | 0.80795 | 0.95120 | 0.83324
é 0.35 0.77567 | 1.77210 [ 0.94793 [ 0.94885 [ 0.95315 | 0.77265
é 0.40 0.68917 | 1.83982 [ 1.07251 [ 0.83683 [ 1.08241 | 0.93823
< 0.45 0.68019 [ 1.81718 | 0.72191 [ 0.72191 | 0.72191 | 0.72191

0.50 0.76667 | 1.70498 | 0.76667 [ 0.77585 [ 0.76667 [ 0.76667

Ek Tablo 1.2. Ikinci Dereceden Bulanik Zaman Serisi Ongorii Modeli Sonucu

ONERILEN YONTEM

Gizli Tabaka Birim Sayisi CEHN
(2002)

LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.77886 | 0.71632 | 0.81932 | 0.95452 | 1.00984 | 1.70498 | 0.83660
’8 0.15 0.77840 | 0.67075 | 0.82274 | 0.83196 | 1.68275 | 1.68275 | 0.99003
%] 0.20 0.72843 | 0.70424 | 0.65647 | 0.98283 | 1.07080 | 1.74965 | 0.95407
Q 0.25 0.78054 | 0.80317 | 0.89284 | 1.00295 | 0.96505 | 0.68196 | 0.96294
- 0.30 0.80423 | 0.72338 | 1.67430 | 0.91038 | 0.81442 | 1.61657 | 0.99270
é 0.35 0.77378 | 0.71460 | 0.79241 1.15639 | 0.79498 | 1.47871 1.01003
§ 0.40 0.77090 | 0.74316 | 0.83204 | 1.05243 | 1.07033 | 1.83982 | 1.07802
< 0.45 0.75839 | 0.74794 | 0.68294 | 0.62021 | 0.88100 | 0.81142 | 1.01566
0.50 0.79285 | 0.77585 | 0.77585 | 1.13076 | 1.00679 | 1.70498 | 1.13263
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Ek Tablo 1.3. Ugiincii Dereceden Bulanik Zaman Serisi Ongérii Modeli Sonucu

ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
D 0.10 0.70056 1.70498 | 0.73140 1.13627 1.20158 1.04902 | 0.89471
g 0.15 0.70136 1.68275 0.71548 0.63573 1.01571 0.82714 1.02706
% 0.20 0.70163 1.74965 | 0.92373 0.85982 1.01355 1.03213 | 0.99770
Q 0.25 0.71332 1.81718 | 0.88886 | 0.70981 1.06462 1.18536 | 0.86659
- 0.30 0.65862 1.61657 | 0.70872 | 0.84308 | 0.98096 | 0.95801 1.04849
é 0.35 0.70474 1.77210 | 0.82769 | 0.89116 1.24739 1.18603 1.03715
§ 0.40 0.67697 1.83982 | 0.89309 1.08702 1.21557 1.42371 1.02734
< 0.45 0.65548 1.81718 0.64452 0.79367 1.12912 1.06907 0.98042
0.50 0.67227 1.70498 1.00097 | 0.91667 1.11405 1.12633 1.06165
Ek Tablo 1.4. Dérdiincii Dereceden Bulanik Zaman Serisi Ongodrii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayis1 CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
D 0.10 0.58931 0.89700 | 0.87870 1.70498 1.70498 1.17209 | 0.90370
’% 0.15 0.70136 | 0.83016 | 0.67890 | 0.58814 1.68275 1.05944 | 0.90719
g 0.20 0.64520 | 0.88503 0.78291 1.74965 1.74965 | 0.94408 | 0.88783
N 0.25 0.64135 0.85566 0.70035 1.81718 1.81718 1.91444 | 0.87392
- 0.30 0.66655 | 0.85574 | 0.89263 1.61657 1.61657 | 0.66127 | 0.91803
é 0.35 0.70474 | 0.92394 1.77210 1.77210 | 0.76773 1.77210 | 0.93796
é 0.40 0.71434 | 0.89905 1.83982 1.83982 1.39246 | 0.86156 | 0.89391
< 0.45 0.60738 | 0.71303 0.83780 1.81718 1.81718 1.22929 | 0.88593
0.50 0.64053 0.66417 | 0.57034 1.70498 1.70498 1.16345 | 0.87068
Ek Tablo 1.5. Besinci Dereceden Bulanik Zaman Serisi Ongérii Modeli Sonucu

ONERILEN YONTEM

Gizli Tabaka Birim Sayisi CEHN
(2002)

LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.70175 | 0.67721 1.04528 | 1.25191 | 0.82792 | 1.68388 | 0.88789
’8 0.15 0.71197 | 0.71844 | 0.85391 | 0.83316 | 1.45582 | 1.41710 | 0.88963
%] 0.20 0.65494 | 0.89886 | 0.65571 | 0.79159 | 1.05449 | 1.58901 | 0.87538
Q 0.25 0.60662 | 0.66464 | 0.81756 | 1.37085 | 0.97515 | 1.16372 | 0.85849
- 0.30 0.74517 | 0.75019 | 0.68358 | 0.75052 | 1.49425 | 1.37251 | 0.89875
é 0.35 0.70017 | 0.84926 | 0.78054 | 1.16318 | 1.35606 | 1.79759 | 0.91565
§ 0.40 0.81585 | 0.60024 | 0.98130 | 0.70872 | 1.14001 1.15106 | 0.87861
< 0.45 0.72087 | 0.77695 | 0.67687 | 1.08647 | 1.08647 | 1.26862 | 0.87482
0.50 0.64053 | 0.53878 | 0.74517 | 0.80433 | 0.76122 | 1.06276 | 0.85517




74

Ek Tablo 1.6. Altinc1 Dereceden Bulanik Zaman Serisi Ongérii Modeli Sonucu

ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.67153 | 0.78525 | 1.01413 | 1.02638 | 1.01790 | 1.20504 | 0.86690
g 0.15 0.86323 | 0.84626 | 0.68148 | 0.88553 1.14549 | 1.51671 | 0.86878
% 0.20 0.57904 [ 0.60933 | 0.72407 | 0.88371 1.15309 [ 1.59560 | 0.85672
Q 0.25 0.60662 | 0.89284 | 0.90027 | 1.21195 | 1.61235 | 1.27544 | 0.83984
~ 0.30 0.79516 | 0.59185 | 1.07461 1.39096 [ 1.35804 | 1.47928 | 0.87486
é 0.35 0.70845 | 0.70598 | 1.28970 | 1.17441 1.24552 | 1.57646 | 0.89020
§ 0.40 0.76307 | 0.62686 | 0.93752 | 0.78589 | 1.58270 | 1.17372 | 0.85922
< 0.45 0.69976 | 0.68568 | 0.88989 | 1.28420 | 1.35745 1.37528 | 0.85655
0.50 0.62606 | 0.74741 | 0.89225 | 0.95844 | 1.02321 1.26930 | 0.83652
Ek Tablo 1.7. Yedinci Dereceden Bulanik Zaman Serisi Ongorii Modeli Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayist CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.55252 | 0.88409 | 0.84850 | 1.68699 [ 0.89738 | 1.67490 | 0.85229
)(DD 0.15 0.56028 [ 0.68294 | 0.77599 | 1.58860 [ 1.36562 | 1.24946 | 0.85528
g 0.20 0.69782 | 0.60933 | 0.77821 1.26463 | 1.40355 | 1.26687 | 0.84358
N 0.25 0.60041 [ 0.81756 | 0.85102 | 1.41306 | 0.81450 | 1.07842 | 0.82843
-~ 0.30 0.64481 | 0.97636 | 1.16803 | 0.59311 1.52177 1.31483 | 0.85946
é 0.35 0.70017 | 0.90318 | 0.69179 | 0.91058 1.62475 1.77210 | 0.87213
é 0.40 0.65799 [ 0.71154 | 1.30369 | 1.11667 | 0.86619 | 0.83123 | 0.84607
< 0.45 0.58409 [ 0.79414 | 0.83556 | 1.26892 [ 1.14068 | 1.81718 | 0.84406
0.50 0.67227 | 0.59885 | 0.58548 | 0.82226 | 0.87146 | 0.68334 | 0.82647
Ek Tablo 1.8. Sekizinci Dereceden Bulanik Zaman Serisi Ongérii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.68028 | 0.64855 | 0.70056 | 1.43583 1.70498 1.35122 | 0.84902
’8 0.15 0.71074 [ 0.65948 | 1.06485 | 1.24375 | 1.68275 | 1.81216 | 0.85320
% 0.20 0.60604 | 0.75407 | 1.14497 | 1.36380 [ 1.74965 | 1.52642 | 0.84189
Q 0.25 0.65453 | 0.73688 | 0.88675 | 1.52236 | 1.81718 | 1.19464 | 0.82843
~ 0.30 0.57557 | 0.67289 | 0.59564 | 0.63819 | 1.61657 | 1.32845 | 0.85620
é 0.35 0.59818 | 0.79754 | 0.91026 | 1.36933 | 1.77210 | 1.23092 | 0.86620
§ 0.40 0.71434 | 0.77435 1.83982 1.17372 1.83982 1.32374 | 0.84379
< 0.45 0.66795 | 0.68019 | 0.95886 | 1.33263 1.81718 1.02903 | 0.84246
0.50 0.57760 | 0.76395 | 0.74852 | 1.14504 | 0.77532 | 1.15229 | 0.82762




Ek Tablo 1.9. Dokuzuncu Dereceden Bulanik Zaman Serisi Ongdrii Modeli
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Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.60960 | 0.87566 | 1.47104 | 1.59686 | 1.53111 1.41967 | 0.84904
’8 0.15 0.65108 | 0.70651 1.40700 [ 1.67277 | 1.03617 | 1.09300 | 0.85419
%] 0.20 0.59885 | 0.83184 | 1.61729 | 1.20677 | 0.94953 | 1.54476 | 0.84286
Q 0.25 0.65038 [ 1.00502 | 0.83820 | 1.13030 | 1.45333 | 1.28650 | 0.83172
~ 0.30 0.97636 | 1.18355 | 1.05037 | 1.31179 | 1.40028 | 1.18101 | 0.85618
é 0.35 0.72915 | 0.96983 | 0.89442 | 0.95894 | 1.24177 1.53332 | 0.86428
§ 0.40 0.83563 | 0.92066 | 1.04417 | 1.31261 1.58649 | 1.45176 | 0.84373
< 0.45 0.62623 [ 0.77647 | 1.31535 | 1.08024 [ 1.18043 | 1.08232 | 0.84495
0.50 0.64053 | 0.73617 | 0.98883 | 1.52871 1.00554 | 1.06589 | 0.83061
Ek Tablo 1.10. Onuncu Dereceden Bulanik Zaman Serisi Ongorii Modeli Soncu
ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.71224 | 0.71527 | 1.77711 | 1.48187 | 1.38803 | 1.58302 0.84630
’8 0.15 0.87072 | 1.06825 | 1.27442 | 1.33282 | 1.30582 | 1.19579 0.85219
g 0.20 0.57180 | 0.85496 | 1.43025 | 1.05717 | 1.14497 | 1.35841 0.84083
N 0.25 0.67552 | 0.77276 | 1.23224 | 0.97322 | 1.13929 | 1.44715 0.83201
o~ 0.30 0.57209 | 0.58162 [ 1.09260 | 1.15943 | 1.61657 | 1.41184 0.85298
é 0.35 0.69850 | 1.47693 | 1.48284 | 1.22307 | 1.54110 | 1.30789 0.86064
é 0.40 0.68820 | 1.15857 | 1.70067 | 1.13238 | 1.83982 | 1.12796 0.84035
< 0.45 0.76773 | 0.59301 | 1.30591 | 1.13310 | 1.05708 | 1.08612 0.84559
0.50 0.80743 | 0.84820 | 1.21906 | 1.08295 | 1.17450 | 1.37032 0.82979
Ek Tablo 1.11. Onbirinci Dereceden Bulamk Zaman Serisi Ongérii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayist CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.57543 | 0.71189 | 1.70498 | 0.88343 | 1.19253 | 0.69626 | 0.84001
)(DD 0.15 0.82895 | 0.86395 | 1.68275 | 1.22980 [ 1.12023 | 0.96910 | 0.84604
g 0.20 0.69758 | 1.04289 | 1.74965 | 1.31274 | 1.50564 | 1.09603 | 0.83499
N 0.25 0.88675 | 0.82920 | 1.81718 | 1.58129 | 1.04924 | 1.25933 | 0.82830
-~ 0.30 0.56858 | 0.83862 1.61657 | 0.97508 1.05512 1.54103 | 0.84590
é 0.35 0.66294 | 1.39173 1.77210 | 1.56327 | 0.93959 | 1.19655 | 0.85330
é 0.40 0.58846 [ 1.35829 | 1.83982 | 1.35362 | 1.26318 | 1.67141 | 0.83385
< 0.45 0.90245 | 097476 | 1.81718 | 1.27717 | 1.27599 | 1.53237 | 0.84179
0.50 0.58405 | 1.14468 | 1.70498 | 1.20116 | 0.83782 | 1.41637 | 0.82564




Ek Tablo 1.12. Onikinci Dereceden Bulanik Zaman Serisi Ongérii Modeli Soncu
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ONERILEN YONTEM

Gizli Tabaka Birim Sayisi CEHN
(2002)

LA m=1 m=2 m=3 m=4 m=5 m=6
- 0.10 0.73708 | 1.22866 | 1.16874 | 1.22002 | 1.47895 | 1.15663 | 0.83178
’8 0.15 0.71844 | 0.71844 | 1.21095 | 1.10200 | 1.12235 | 1.01484 | 0.83753
% 0.20 0.63452 | 1.06581 | 0.92265 | 1.97711 | 1.25961 | 1.62017 | 0.82704
Q 0.25 0.61209 | 0.72892 | 1.46447 | 1.58090 | 1.15311 | 1.71940 | 0.82158
= 0.30 0.63030 | 1.01355 | 1.41148 | 0.79861 | 0.89710 | 1.36062 | 0.83733
é 0.35 0.76277 | 097762 | 1.37337 | 1.31855 | 1.92408 | 1.54526 | 0.84401
é 0.40 091812 | 1.04353 | 1.12322 | 1.09344 | 1.38719 | 1.70693 | 0.82607
< 0.45 0.63809 | 0.97630 | 1.37310 | 1.51934 | 1.14462 | 1.28973 | 0.83437
0.50 0.61260 | 0.94089 | 1.46439 | 1.19036 | 1.27552 | 1.14140 | 0.81903
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Ek 2. Yillik TUFE Verisi I¢in Elde Edilen H.K.O.K. Degerleri

Ek Tablo 2.1. Birinci Dereceden Bulanik Zaman Serisi Ongorii Modeli Sonucu

(Huarng ve Yu (20006))

Huarng ve Yu (2006)
Gizli Tabaka Birim Sayisi

LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.75172 | 3.41817 | 0.71233 | 0.70799 [ 1.43936 [ 1.43936
)(DD 0.15 0.71929 | 3.44153 | 0.98495 | 0.68328 [ 1.45065 [ 2.14310
g 0.20 0.77325 | 3.37154 | 0.70799 | 0.94388 | 1.46136 | 0.96432
Q 0.25 0.76346 | 3.30176 [ 0.70737 [ 0.62346 [ 1.39745 [ 1.91952
= 0.30 0.71397 [ 3.51173 [ 0.69264 [ 0.60270 [ 0.65973 [ 0.60477
é 0.35 0.79112 [ 3.44153 | 0.71248 [ 0.66505 [ 0.79527 [ 0.79527
§ 0.40 0.73320 | 3.46491 | 0.70065 | 1.42861 [ 0.94882 [ 1.11934
< 0.45 0.77193 | 3.30176 | 0.70596 | 0.63492 | 0.63492 | 0.63492

0.50 0.82447 | 3.41817 | 0.71280 | 0.71280 [ 0.61285 [ 0.75150

Ek Tablo 2.2. Ikinci Dereceden Bulanik Zaman Serisi Ongorii Modeli Sonucu

ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6

- 0.10 0.73320 [ 0.75592 [ 0.73320 [ 1.74597 | 0.97652 | 3.41817 | 0.90933
’% 0.15 0.72431 [ 0.75357 [ 1.56289 [ 0.72569 | 1.82992 | 3.44153 | 0.90372
% 0.20 0.71151 | 0.81440 [ 1.72170 [ 1.86635 | 1.85389 | 3.37154 | 0.78057
Q 0.25 0.70146 [ 0.78286 [ 0.71528 [ 1.08319 | 0.98275 | 0.99915 | 0.83616
= 0.30 0.66839 [ 0.73161 [ 0.66839 | 1.59930 | 1.68530 | 1.62458 | 0.84513
é 0.35 0.73147 [ 0.72666 [ 0.96766 [ 0.73147 | 0.90312 | 0.81876 | 0.78407
§ 0.40 0.68720 [ 0.66301 [ 1.50806 [ 0.90494 [ 1.73000 | 3.22701 | 0.75745
< 0.45 0.73357 [ 0.72120 [ 0.73357 [ 0.74322 | 0.97462 | 3.30176 | 0.83683
0.50 0.71746 [ 0.68356 [ 1.66025 [ 0.63947 | 0.63947 | 3.41817 | 0.77348

Ek Tablo 2.3. Ugiincii Dereceden Bulanik Zaman Serisi Ongdrii Modeli Sonucu

ONERILEN YONTEM

Gizli Tabaka Birim Sayisi CEHN
(2002)

LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.69348 | 3.41817 | 0.95180 | 1.41242 | 1.74330 | 1.62078 | 1.01811
’% 0.15 0.67814 | 3.44153 | 0.98228 | 1.49579 | 1.98006 | 1.35624 | 1.01203
%] 0.20 0.71827 | 3.37154 | 1.63358 | 1.69123 | 0.83242 | 1.50574 | 1.03260
Q 0.25 0.68523 | 3.30176 | 1.08319 | 0.94910 | 1.27784 | 1.19057 | 0.99764
= 0.30 0.71116 | 3.51173 | 0.95013 | 0.93742 | 2.36860 | 1.53452 | 0.99463
% 0.35 0.75578 | 3.44153 | 0.87823 | 0.77371 | 0.81017 | 1.74837 | 1.02128
§ 0.40 0.72543 | 3.46491 | 0.50818 | 1.73462 | 1.98299 | 1.04829 | 1.04895
< 0.45 0.73357 | 3.30176 | 0.98799 | 1.56329 | 1.09047 | 1.30322 | 1.01826
0.50 0.71746 | 3.41817 | 0.49640 | 1.01312 | 1.75231 | 2.13848 | 1.03095
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Ek Tablo 2.4. Dérdiincii Dereceden Bulanik Zaman Serisi Ongorii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.71804 [ 1.61645 1.35342 | 3.41817 | 3.41817 | 3.41817 | 1.11229
’8 0.15 0.68383 [ 1.62984 | 1.57238 | 3.44153 | 1.46659 | 3.44153 | 1.10698
%] 0.20 0.71920 | 1.58354 | 1.39556 | 3.37154 | 3.37154 | 3.37154 | 1.12400
Q 0.25 0.69339 [ 1.56763 | 0.97914 | 3.30176 | 3.30176 | 3.30176 | 1.09235
~ 0.30 0.71116 [ 0.83741 [ 0.98805 | 3.51173 | 1.78375 | 3.51173 | 1.09166
% 0.35 0.77934 | 0.76346 [ 0.71534 | 3.44153 | 1.46141 | 3.44153 | 1.11304
§ 0.40 0.69779 | 0.87192 | 0.61934 | 3.46491 | 3.46491 | 3.46491 1.16715
< 0.45 0.73357 | 2.07711 1.56257 | 3.30176 | 3.30176 | 3.30176 | 1.11127
0.50 0.69384 | 0.94194 | 1.20128 | 3.41817 | 3.41817 | 3.41817 | 1.14683
Ek Tablo 2.5. Besinci Dereceden Bulanik Zaman Serisi Ongérii Modeli Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayis1 CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 1.26079 | 0.90595 | 1.47233 [ 1.81239 | 2.39797 | 2.32194 | 1.18333
’8 0.15 344153 | 0.82923 | 1.56137 | 1.72217 | 1.55953 | 3.24683 | 1.17895
g 0.20 0.71292 [ 0.85220 | 1.49496 | 2.00929 | 0.96519 | 1.54464 | 1.19253
N 0.25 0.67974 | 0.90598 | 1.33852 | 1.23253 | 2.00405 | 2.00727 | 1.16237
o~ 0.30 0.94194 [ 1.10465 | 0.88783 | 1.06946 | 2.62874 | 1.53842 | 1.16497
é 0.35 0.77484 | 0.79012 | 2.03657 | 2.34230 | 2.41489 | 1.38770 | 1.18179
é 0.40 1.30087 | 0.96346 | 1.30624 | 1.89936 | 2.06452 | 1.41524 | 1.24064
< 0.45 0.82500 [ 0.91795 | 1.34094 | 1.18475 | 1.61752 | 3.41531 1.18536
0.50 0.82497 | 0.84641 1.34434 | 1.89884 | 2.05987 | 1.98886 | 1.22323
Ek Tablo 2.6. Altinc1 Dereceden Bulanik Zaman Serisi Ongérii Modeli Sonucu

ONERILEN YONTEM

Gizli Tabaka Birim Sayisi CEHN
(2002)

LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.75812 | 096112 | 1.43402 | 3.41817 | 2.15934 | 1.85775 | 1.23297
’8 0.15 0.75606 | 1.64229 | 1.22071 1.58284 | 2.05216 | 2.07723 | 1.22936
%] 0.20 0.91081 1.76302 | 1.69172 | 2.02112 | 2.84053 | 1.97760 | 1.24031
Q 0.25 1.22609 | 1.64695 | 1.07740 | 1.76575 | 1.48855 | 2.72029 | 1.21065
- 0.30 0.77055 | 1.72199 | 1.53566 | 3.51173 | 1.71937 | 1.18438 | 1.21665
é 0.35 1.03917 | 0.78716 | 2.11897 | 2.26030 | 2.52680 | 1.89195 | 1.22997
§ 0.40 0.74044 | 0.86809 | 1.09860 | 1.62734 | 2.62759 | 1.37074 | 1.23908
< 0.45 0.73714 | 1.03362 | 1.08806 | 2.16012 | 2.64308 | 1.15850 | 1.23572
0.50 0.77174 | 1.70213 | 2.04648 | 2.11812 | 2.13965 | 2.79534 | 1.23071
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Ek Tablo 2.7. Yedinci Dereceden Bulanik Zaman Serisi Ongorii Modeli Sonucu

ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.75592 | 3.41817 | 1.62155 | 1.61160 | 2.10929 | 1.83255 | 1.26860
’% 0.15 0.75589 | 3.44153 | 1.53603 | 1.80614 | 2.14828 | 3.44153 | 1.26509
% 0.20 0.77001 1.40377 | 1.75402 | 1.74028 | 2.83271 | 2.20581 1.27506
Q 0.25 0.71790 | 3.30176 | 1.71390 | 1.90470 | 1.78721 1.64948 | 1.24501
a 0.30 0.77734 | 3.51173 | 1.68990 | 1.85047 | 1.74721 1.82462 | 1.25307
5 0.35 0.78196 | 1.86790 | 1.74637 | 1.79723 | 1.90240 | 1.65742 | 1.26457
§ 0.40 0.74044 [ 1.05052 | 1.51490 | 1.78033 | 1.66280 | 1.71957 | 1.27473
< 0.45 0.73357 1.98384 | 1.83456 | 1.67425 | 2.71088 | 2.46650 | 1.27131
0.50 0.67001 1.26448 | 2.03975 | 1.41619 | 1.72788 | 2.26453 | 1.26382
Ek Tablo 2.8. Sekizinci Dereceden Bulanik Zaman Serisi Ongérii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayis1 CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.77444 | 1.01485 | 1.01485 | 1.49429 | 3.24139 | 2.50917 | 1.29231
)g 0.15 0.79867 | 0.65869 | 1.32273 | 1.85165 | 3.31841 | 2.73777 | 1.28861
% 0.20 0.76979 [ 1.00793 | 1.46944 | 2.38933 | 191770 | 1.78155 | 1.29816
N 0.25 0.75523 1.43975 | 2.22326 | 1.41376 | 2.86770 | 2.13930 | 1.26778
o~ 0.30 0.90291 1.15877 | 1.21891 1.77038 | 1.84845 | 2.88752 | 1.27708
é 0.35 0.88221 1.24243 | 2.47690 | 1.91417 | 3.29307 | 3.07543 | 1.28856
é 0.40 0.72451 1.08670 [ 1.41053 | 1.87339 | 1.88173 | 2.63583 | 1.29870
< 0.45 0.74069 [ 0.77918 | 3.30176 | 1.95087 | 1.67582 | 2.42309 | 1.29549
0.50 0.90953 | 1.83682 | 2.38077 | 2.05461 1.89092 | 2.45606 | 1.28551
Ek Tablo 2.9. Dokuzuncu Dereceden Bulanik Zaman Serisi Ongdrii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayist CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.72646 | 1.17972 | 2.04542 | 1.60034 [ 1.31400 | 2.62019 | 1.31203
)(DD 0.15 0.71981 1.94451 1.87120 [ 1.79858 | 1.47712 | 1.77013 | 1.30800
g 0.20 0.71292 | 0.71292 | 1.92352 | 1.56245 | 1.70555 | 2.91340 | 1.31768
N 0.25 0.72655 | 0.95914 | 2.04409 | 1.57638 | 1.86770 | 1.99436 | 1.28742
-~ 0.30 0.86444 | 2.05311 | 2.16096 | 1.53011 1.37976 | 1.79492 1.29750
é 0.35 0.70837 1.95801 | 2.05723 1.96796 | 1.34609 | 1.95517 1.30912
é 0.40 0.83999 [ 0.89270 | 3.28840 | 1.38501 [ 2.17154 | 1.15596 | 1.31894
< 0.45 0.75870 [ 1.55945 | 2.32209 | 1.28379 | 1.35236 | 2.67145 | 1.31493
0.50 0.77766 | 1.22089 | 1.89664 | 1.68144 | 1.43866 | 2.38095 | 1.30429
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Ek Tablo 2.10. Onuncu Dereceden Bulanik Zaman Serisi Ongorii Modeli Soncu

ONERILEN YONTEM
Gizli Tabaka Birim Sayisi CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 0.71978 | 2.21278 | 1.75236 | 1.11411 | 1.44612 | 2.59501 1.33334
g 0.15 1.08045 | 1.62600 | 2.40315 | 1.26021 | 0.89478 | 1.80489 1.32913
% 0.20 0.74872 | 2.21907 | 2.24676 | 1.51940 | 1.79060 | 1.37680 1.33885
Q 0.25 0.74496 | 1.89351 | 2.84780 | 2.71998 | 1.37385 | 2.40303 1.30908
a 0.30 1.10962 | 1.67190 | 1.42259 | 2.13898 | 1.95659 | 2.25205 1.31997
5 0.35 0.70837 | 0.80981 | 2.76459 | 1.53613 [ 1.94980 [ 1.95577 1.33180
§ 0.40 0.68038 | 2.14855 | 2.45742 | 2.57337 | 2.10735 | 1.52236 1.34118
< 0.45 0.81171 1.21166 | 1.56281 | 1.51900 | 1.46931 | 2.08504 1.33609
0.50 0.77766 | 2.45131 | 1.42411 | 2.89866 | 1.69625 | 1.56543 1.32565
Ek Tablo 2.11. Onbirinci Dereceden Bulamk Zaman Serisi Ongérii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayis1 CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 1.05242 | 2.99468 | 0.97626 | 1.29708 | 3.41817 | 2.97101 1.35751
)g 0.15 1.30350 [ 1.42281 | 3.44153 | 1.81235 | 3.44153 | 2.09389 | 1.35320
% 0.20 1.71170 [ 2.14210 | 3.37154 | 1.88589 | 3.37154 | 3.13144 | 1.36274
N 0.25 1.54622 | 2.80891 | 3.30176 | 1.11428 | 3.30176 | 2.70616 | 1.33378
= 0.30 1.36647 | 1.30528 | 1.28792 | 0.87479 | 3.51173 | 0.87621 1.34522
é 0.35 1.99168 [ 1.73917 | 0.92640 | 1.12774 | 3.44153 | 2.69146 | 1.35730
é 0.40 0.72175 | 1.91126 | 1.70301 | 0.96207 | 3.46491 | 2.59286 | 1.36595
< 0.45 1.08045 | 1.47872 | 3.30176 | 1.80177 | 3.30176 | 2.58121 1.36014
0.50 1.03710 | 2.81465 | 2.77949 | 1.44184 | 3.41817 | 1.93557 | 1.35055
Ek Tablo 2.12. Onikinci Dereceden Bulanik Zaman Serisi Ongorii Modeli
Sonucu
ONERILEN YONTEM
Gizli Tabaka Birim Sayist CEHN
(2002)
LA m=1 m=2 m=3 m=4 m=5 m=6
) 0.10 1.14175 | 1.20737 | 1.45639 | 1.16665 | 1.93557 | 2.84808 | 1.38608
)(DD 0.15 1.13143 [ 1.12233 | 1.70540 | 1.90463 | 1.53334 | 3.08871 1.38179
g 0.20 1.12187 | 1.38308 | 1.44519 | 1.47702 | 0.86694 | 1.94865 | 1.39098
N 0.25 1.03981 [ 0.71207 | 1.49567 | 2.75325 | 1.73492 | 1.51477 | 1.36289
-~ 0.30 1.10420 [ 2.70134 | 2.36151 3.09277 | 0.99762 1.10238 1.37491
é 0.35 0.75346 | 1.64789 | 2.58127 | 0.94077 1.56342 | 3.30950 | 1.38711
é 0.40 0.78629 [ 1.18726 | 1.69850 | 1.24321 | 2.13235 | 1.83746 | 1.39491
< 0.45 0.69687 [ 0.70543 | 1.32434 | 2.57131 1.66707 | 1.41576 | 1.38848
0.50 1.10480 | 2.40498 | 2.37464 | 1.26349 | 2.04913 | 2.54160 | 1.37989
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Ek 3. Uciincii Dereceden Bulanik Zaman Serisi Ongdrii Modeli I¢in Ornek
MATLAB Programi

Program Girdi ve Parametreleri

X: Zaman serisi

m: Gizli tabaka birim sayis1

salt: Evrensel kiime alt sinir1

ss: Bulanik kiime sayis1

la: Evrensel kiime alt aralik uzunlugu
ntest: Test kiimesi genisligi

function output=fuzzytg3tli(x,m,salt,ss,la,ntest)
rand('seed',4.9276984E7);
n=size(x,1)-ntest;
for i=1:ss
ualt(i)=salt+(i-1)*Ia;
uust(i)=salt+i*la;
mb(i)=(ualt(i)+uust(i))/2;
end

for i=1:n+ntest

for j=1:ss
if (x(1)<=uust(j))&(x(1)>=ualt(j)))
fs(1)=);
end
end

end
zd1=(fs-min(fs))/(max(fs)-min(fs));
Gegt=[zd1(1:(n-3));zd1(2:(n-2));zd1(3:(n-1))]";
yegt=zd1(4:n)';
net=newff(minmax(Gegt'),[m,1],{'tansig','tansig'},'trainlm");
net.trainParam.show=500;
net.trainParam.epochs=500;
net.trainParam.goal=1e-8;
[net,tr]=train(net,Gegt',yegt');
ycegt=sim(net,Gegt');
yc=round(ycegt*(max(fs)-min(fs))+min(fs));
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for i=1:(n-3)
if yc(i)<=0
ye(i)=1;
end
end
for i=1:(n-3)
ong(i)=mb(yc(1));
end
for i=1:(n-3)
hatakare(i)=(x(i+2)-ong(1))"2;
end

for j=1:ntest
Gegt=[zd1(n+j-3);zd1(n+j-2);zd1(n+j-1)]';
ycegt2(j)=sim(net,Gegt');
end
yc2=round(ycegt2*(max(fs)-min(fs))+min(fs));
for i=1:(ntest)
if yc2(1)<=0
yc2(i)=1;
end
end
for i=1:ntest
ong2(i)=mb(yc2(i));
end
for i=1:ntest
hatakare2(i)=(x(i+n)-ong2(i))"2;
end
MSE=(sum(hatakare)/(n-3))
RMSE=(sum(hatakare)/(n-3))"0.5
MSEtest=(sum(hatakare2)/(ntest))
RMSEtest=(sum(hatakare2)/(ntest))"0.5
output= RMSEtest];
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Ek 4. Besinci Dereceden Bulamk Zaman Serisi Ongérii Modeli I¢in Ornek
MATLAB Programi

Program Girdi ve Parametreleri

X: Zaman serisi

m: Gizli tabaka birim sayis1

salt: Evrensel kiime alt sinir1

ss: Bulanik kiime sayis1

la: Evrensel kiime alt aralik uzunlugu
ntest: Test kiimesi genisligi

function output=fuzzytg5tli(x,m,salt,ss,la,ntest)
rand('seed',4.9276984E7);
n=size(x,1)-ntest;
for i=1:ss
ualt(i)=salt+(i-1)*Ia;
uust(i)=salt+i*la;
mb(i)=(ualt(1)+uust(i))/2;
end

for i=1:n+ntest

for j=1:ss
if (x(1)<=uust(j))&(x(1)>=ualt(j)))
fs(1)=);
end
end

end
zd1=(fs-min(fs))/(max(fs)-min(fs));
Gegt=[zd1(1:(n-5));zd1(2:(n-4));zd1(3:(n-3));zd1(4:(n-2));zd1(5:(n-1))]";
yegt=zd1(6:n)";
net=newff(minmax(Gegt'),[m,1],{'tansig','tansig'},'trainlm");
net.trainParam.show=500;
net.trainParam.epochs=500;
net.trainParam.goal=1e-8;

[net,tr]=train(net,Gegt',yegt');

ycegt=sim(net,Gegt');
yc=round(ycegt*(max(fs)-min(fs))+min(fs));
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for i=1:(n-5)

if yc(i)<=0
ye()=1;

end

end

for i=1:(n-5)
ong(i)=mb(yc(i));

end

for i=1:(n-5)
hatakare(i)=(x(i+2)-ong(1))"2;

end

for j=1:ntest
Gegt=[zd1(ntj-5);zd1(nt+j-4);zd1(n+j-3);zd1(n+j-2);zd 1 (ntj-1)]';
ycegt2(j)=sim(net,Gegt');
end
yc2=round(ycegt2*(max(fs)-min(fs))+min(fs));
for i=1:(ntest)
if yc2(1)<=0
yc2(1)=1;
end
end
for i=1:ntest
ong2(i)=mb(yc2(i));
end
for i=1:ntest
hatakare2(1)=(x(i+n)-ong2(i))"2;
end
MSE=(sum(hatakare)/(n-5))
RMSE=(sum(hatakare)/(n-5))"0.5
MSEtest=(sum(hatakare2)/(ntest))
RMSEtest=(sum(hatakare2)/(ntest))"0.5
output=| RMSEtest];
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