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YAPAY SİNİR AĞINA DAYALI YÜKSEK DERECELİ BULANIK ZAMAN 

SERİSİ ÖNGÖRÜ MODELİ 

 

ÖZET 

Bulanık zaman serisi analizi yöntemleri geleneksel yöntemlere göre birçok 

avantajı olan etkili yöntemlerdir. Bulanık zaman serisi analizi yöntemlerinin klasik 

yöntemlerdeki kısıtlamalara sahip olmaması, son yıllarda bu yöntemlere olan ilgiyi 

arttırmaktadır. Zaman serisi gözlemleri bir önceki dönemde gözlemlenmiş veriye bağlı 

olabileceği gibi genellikle daha önceki dönemlerde gözlemlenmiş verilere de bağlıdır. 

Bu nedenle, yüksek dereceli bulanık zaman serisi yaklaşımları, birinci dereceden 

bulanık zaman serisi yaklaşımlarına göre daha iyi öngörü sonuçları verecektir. Bunun 

yanında yüksek dereceli bulanık zaman serisi yaklaşımlarında bulanık ilişki 

belirlenmesi, birinci dereceden yaklaşımlara göre, oldukça zor ve karmaşıktır. Bu 

çalışmada, bulanık ilişkilerin ileri beslemeli yapay sinir ağları ile belirlendiği, yüksek 

dereceli bulanık zaman öngörü modeli önerilmiştir. Önerilen yeni yaklaşımın 

uygulaması, literatürde sıkça kullanılan Alabama Üniversitesi kayıt verisine ve Türkiye 

Tüketici Fiyat Endeksi verisine uygulanarak literatürdeki diğer yöntemler ile 

karşılaştırılmıştır. Sonuçta, önerilen yeni yöntemin bulanık ilişki belirlemedeki 

karmaşıklığı ortadan kaldırdığı gibi, diğer yöntemlere göre daha iyi öngörü sonuçları 

verdiği de görülmüştür. 

 

Anahtar Sözcükler: Kesikli bulanık küme, yüksek dereceli bulanık zaman 

serisi, bulanık mantık ilişki, yapay sinir ağları, öngörü.   
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HIGH ORDER FUZZY TIME SERIES FORCASTING MODEL BASED ON 

ARTIFICIAL NEURAL NETWORKS   

 

ABSTRACT 

Fuzzy time series procedures have many advantages comparing to the 

conventional time series methods. Since fuzzy time series procedures do not require 

assumptions which are essential for the conventional techniques they are getting 

popular. As a current observation of time series can be dependent of the observation 

measured just one period before itself, it may depend on the several lagged 

observations. Because of this dependency high-order fuzzy time series approaches can 

give more reliable forecasting results than first-order fuzzy time series methods. 

However the determination of fuzzy relationships by using high-order fuzzy time series 

procedures is very difficult since it requires evaluating many complicated fuzzy 

relationship tables. In this study a high-order fuzzy time series method is proposed in 

which fuzzy relationships are determining by using feed-forward artificial neural 

networks. The proposed approach has been applied to the data on enrollments at the 

University of Alabama which is well-known and used in many other researches in 

literature, as well as the data of Consumer Price Index of Turkey. The empirical results 

are compared to the results from the conventional methods. It has been concluded that 

as the proposed method prevents to evaluate massive fuzzy relation tables it provides 

better results in terms of forecasting accuracy. 

 

Key Words: Discrete fuzzy set, high order fuzzy time series, fuzzy logic 

relation, artificial neural network, forecast. 
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1. GİRİŞ 

Bulanık zaman serisi analizi yöntemleri model varsayımı ve gözlem sayısı 

kısıtları içermeyen etkili yöntemlerdir. Son yıllarda bulanık zaman serisi yöntemlerine, 

bu tür kısıtlamalara sahip olmaması ve öngörü doğruluğu nedeniyle ilgi artmaktadır. 

İlk olarak Zadeh (1965) tarafından verilen bulanık küme teorisi birçok uygulama 

alanına sahiptir. Bulanık zaman serisi kavramı ise ilk olarak Song ve Chissom (1993a, 

1993b, 1994) tarafından ortaya atılmıştır. Tüm bu çalışmalar Zadeh (1973, 1975) 

tarafından verilen tanımlamalara dayanmaktadır. Song ve Chissom (1993a, 1993b, 

1994) bulanık zaman serisinin tahmin edilmesi için matris işlemlerine dayalı bir yöntem 

önermiştir ve bu yöntem üç aşamadan oluşmaktadır. Birinci aşama gözlemlerin 

bulanıklaştırılması, ikinci aşama bulanık ilişkilerin belirlenmesi ve üçüncü aşama ise 

durulaştırma aşmasıdır. Literatürde bulanık zaman serilerinde bu üç aşamanın da 

iyileştirilmesi için çeşitli çalışmalar yapılmıştır. Bulanık ilişkinin belirlenmesi 

aşamasında, Chen (1996), Song ve Chissom (1993a, 1993b) tarafından önerilen 

yöntemdeki matris hesaplama işlemleri yerine bulanık ilişki tablosundan yararlanarak 

daha kolay hesaplama yapabilen bir yöntem önermiştir. Huarng ve Yu (2006), bulanık 

ilişkinin belirlenmesinde, basit bir ileri beslemeli yapay sinir ağı (feed-forward artificial 

neural network) kullanımı önermiştir. Huarng ve Yu (2006) tarafından önerilen bu 

yöntemde birinci dereceden bulanık zaman serisi yaklaşımı ele alındığından, kullanılan 

ileri beslemeli yapay sinir ağı modeli bir girdi, iki gizli tabaka birimi ve tek çıktı 

biriminden oluşmaktadır. Literatürdeki tüm bu yöntemlerin hepsinde birinci derece 

bulanık zaman serisi modeli ile ilgilenilmiştir. Birinci dereceden bulanık zaman serisi 

yaklaşımının sadece birinci dereceden otoregresif ( AR(1) ) yapılı zaman serileri için 

uygulanması gerekir. Ancak gerçek hayatta karşılaşılan zaman serilerinin sadece AR(1) 

yapısında olması düşünülemez. Birçok zaman serisi AR(2), AR(3) gibi yüksek dereceli 

ilişkiler ile öngörülebilir. Chen (2002) AR(1) yapılı verilerin çözümlenmesi için yüksek 

dereceli bulanık zaman serisi yaklaşımı önermiştir. Chen (2002)’nin önerdiği bu 

yöntemde yüksek dereceli modellerde tüm gecikmeli bulanık değişkenler 

bulunmaktadır. Yani 4. dereceden bir zaman serisinin çözümlenmesinde F(t) bulanık 

zaman serisi iken, F(t-1), F(t-2), F(t-3), F(t-4) bulanık gecikmeli değişkenleri modelde 

yer almaktadır. Dolayısıyla Chen (2002)’nin çalışmasında tanımlanan yüksek dereceli 

bulanık zaman serisi modeli AR(p), p>1 yapılı zaman serilerini de modelleyebilir. 
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Bunun yanında yüksek dereceli bulanık zaman serisi yaklaşımında derece arttıkça, 

bulanık ilişkinin belirlenmesinde, Chen (2002) tarafından verilen yöntemin uygulanması 

da oldukça zorlaşmaktadır. Yüksek dereceli modelin çözümlenmesinde bulanık ilişkiler, 

yapay sinir ağı ile belirlenir ise Chen (2002)’nin önerdiği yöntemdeki işlem 

yoğunluğundan kurtulmak mümkündür. 

Bu çalışmada yüksek dereceli bulanık zaman serisi modelini çözümleyen, 

bulanık ilişkinin belirlenmesinde ileri beslemeli yapay sinir ağının kullanıldığı, yeni bir 

yöntem önerilmiştir. Yapay sinir ağına dayalı bu yaklaşım, ilk olarak literatürde sıkça 

kullanılan Alabama Üniversitesi 1971-1992 yıllarına ait kayıt verisine ve daha sonra da 

2003 Şubat ve 2008 Şubat ayları arasında hesaplanan Türkiye Tüketici Fiyat Endeksi 

zaman serisine uygulanarak sonuçlar elde edilmiş ve diğer yöntemlerle 

karşılaştırılmasıyla birlikte, yıllık bazda hesaplanan sonuçlar ayrıca Türkiye 

Cumhuriyeti Merkez Bankası (T.C.M.B.) tarafından her yılın belirli dönemlerinde 

yayınlanan, enflasyon beklentisi anketi sonuçları ile de karşılaştırılarak önerilen 

yaklaşımın üstün olduğu görülmüştür. 

Çalışmanın ikinci bölümünde genel bilgiler ana başlığı altında sırasıyla, zaman 

serileri ile ilgili temel tanım ve kavramlar, bulanık mantık yaklaşımı ve genel 

kavramları ayrıca yapay sinir ağları ve bileşenleri, üçüncü bölümde ise materyal ve 

yöntem ana başlığı altında, bulanık zaman serileri ve çözümleme yöntemleri ile birlikte 

önerilen yöntem tanıtılmıştır. Çalışmanın dördüncü bölümünde bulgular ve tartışma ana 

başlığı altında, önerilen yönteme ait üç uygulama verilmiş ve son olarak beşinci 

bölümde ise elde edilen sonuçlar sonuç ve öneriler ana başlığı altında değerlendirilmiş, 

ortaya konabilecek yeni çalışmalarda üzerinde durulması gereken konulara kısaca 

değinilmiştir. 

 

 

 

 

 



 3

2. GENEL BİLGİLER 

2.1. Zaman Serileri ve Temel Kavramları 

İlgilenilen zamana bağlı bir olayın, gözlem ya da deney sonucunda aldığı 

değerlerden oluşan veri topluluğuna zaman serisi adı verilir. İlgilenilen Z değişkeninin 

belirli bir t anında almış olduğu değer tZ  ile gösterildiğinde, tZ ’lerin oluşturduğu 

{ }TtZt ∈,  kümesi bir olasılıksal süreçtir (Chatfield, 1989). Yani zaman serisi 

genellikle, zamanın deterministik bir fonksiyonu değildir. Zaman serileri 

çözümlenirken, serilere olasılıksal süreç olarak bakılması, tanımlanması ve olasılıksal 

modeller kullanılması gerekir (Box ve Jenkins, 1970). 

Zaman içinde sürekli olarak kaydedilebilen verilere sahip serilere sürekli, 

yalnızca belirli aralıklarla elde edilebilen verilere sahip serilere kesikli zaman serileri 

denir. Elektrik sinyalleri, ses titreşimleri gibi mühendislik alanlarına ait veriler sürekli, 

faiz oranı, satış hacmi, enflasyon oranı gibi iktisadi veriler de kesikli zaman serileri için 

örnek olarak verilebilir (Kadılar, 2005). 

Zaman serisi terimleri, trend, mevsimsel dalgalanmalar, konjonktürel 

dalgalanmalar ve rassal dalgalanmalar olmak üzere dört etkenin etkisi altında oluşurlar. 

Zaman serilerinde, iç bağımlılık olarak da isimlendirilebilen, gözlem değerlerinin 

birbirine bağlı olması özelliği nedeniyle, zaman serisinin geçmiş dönem gözlem 

değerleri arasındaki ilişki belirlenerek, ileriye dönük öngörüde bulunulur.  

 

2.1.1. Zaman Serisi Çözümleme Araçları 

2.1.1.1. Otokorelasyon Fonksiyonu (A.C.F.) 

Otokorelasyon fonksiyonu, serinin durağanlığının, durağan değilse buna sebep 

olan etmenlerin belirlenmesinde, otoregresif bütünleşik hareketli ortalama modellerini 

(ARIMA) tanımlama ve uygunluk sınamasında kullanılır. Bir zaman serisinde tZ  ve 

ktZ +  k gecikmeli iki değer arasındaki ilişkinin standartlaştırılmış ölçümü otokorelasyon 

katsayısı ve bu katsayıların k gecikmeye bağlı olarak ifadesine de otokorelasyon 

fonksiyonu adı verilir (Cryer, 1986). 
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)(kZρ  ile gösterilen kitle otokorelasyon fonksiyonu,  

( )( )[ ]
( )[ ]2)(

Zt

ZktZt
Z ZE

ZZE
k

µ
µµ

ρ
−

−−
= +  , K,2,1,0 ±±=k        (2.1) 

şeklinde tanımlanır. (2.1) eşitliğindeki pay kısmı otokovaryans fonksiyonu olarak bilinir 

ve )(kZγ  ile, payda kısmı ise tZ  zaman serisinin varyansı olarak bilinir ve 2
Zσ  ile 

gösterilir. Bu durumda otokorelasyon fonksiyonu,  

2

)(
)0(
)()(

Z

Z

Z

Z
Z

kkk
σ
γ

γ
γ

ρ ==   , K,2,1,0 ±±=k                     (2.2)  

şeklinde de ifade edilebilir. 

Örneklem zaman serisine dayanarak, )(kZγ ’nın tahmini )(kcZ  ve )(kZρ ’nın 

tahmini de )(krZ  ile gösterilir. Otokorelasyon fonksiyonu, gecikmenin simetrik bir 

fonksiyonu olması nedeniyle, )()( kk ZZ −= ρρ  olacağından, pozitif gecikmeler için, 

))((1)(
1

ZZZZ
kn

kc kt

kn

t
tZ −−

−
= +

−

=
∑  , nk ,,2,1,0 K=            (2.3) 

)0(
)()(

Z

Z
Z c

kckr =    , nk ,,2,1,0 K=             (2.4) 

olarak verilebilir. k. gecikme için hesaplanan kr  otokorelasyon katsayısının varyansı 

Barlett (1955)’de aşağıdaki gibi elde edilmiştir. 

( )∑
∞

−∞=
−−+ +−+=

v
kvkvvkkvkvvk rrrrrrrr

n
rV 22222 241)(            (2.5) 

(2.5)’deki formülün yaklaşık ve daha kolay bir formu aşağıdaki gibidir. 

 









+= ∑

=

k

i
ik r

n
rV

1

2211)(                                                                                (2.6) 
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İncelenen zaman serisinin içerdiği bileşenlerin belirlenmesi ve bu bileşenlerin, 

rassal bileşenden ayırt edilebilmesi için, ortalaması sıfır ve standart hatası yaklaşık 

olarak n1  olan, otokorelasyon katsayılarının örnekleme dağılımından yararlanılır 

(Box ve Jenkins, 1976).  Eğer zaman serisi yalnızca rassal bileşeni içeriyor ise, tüm 

otokorelasyonları sıfır olacağından nrV k 1)( =  olacağı açıktır ve zaman serisinin 

otokorelasyon katsayıları nzα±  aralığında kalıyorsa serinin rassal olduğu sonucuna 

varılır. Bununla birlikte bu sınırların dışında kalan otokorelasyonların sıfırdan farklı ve 

anlamlı olduğu, modellemede göz ardı edilemeyeceği ve ARMA modelin derecesini 

belirlemede kullanılacağı bilinmektedir. Zaman serisinin olasılıksal yapısının 

belirlenmesinde anlamlı otokorelasyonların ve serinin rassal bileşen dışındaki 

bileşenlerinin ortaya çıkarılması önemlidir. Aynı yöntemle modelin yeterliliği de 

araştırılabilir. 

 

2.1.1.2. Kısmi Otokorelasyon Fonksiyonu (P.A.C.F.) 

Zamana bağlı bir değişkenin şimdiki değeri tZ ’nin, diğer gecikmelere etkisi sabit 

kalmak üzere, önceki ktZ −  değerleriyle ilişkisini veren ölçüm, k gecikmesi için kısmi 

otokorelasyon adını alır ve kkφ  ile ifade edilir (Markidakis ve Wheelwright, 1978). 

Kısmi otokorelasyon katsayısı, regresyon çözümlemesinde, diğer değişkenler sabit iken, 

yani bu değişkenlerin etkilerinin olmadığı varsayıldığında, iki değişken arasındaki 

ilişkinin miktarını veren kısmi korelasyon katsayısına benzer. 

Zaman serisi çözümlemesinde, seriye uygun AR modelinin derecesi, çok sayıda 

gecikme için anlamlı otokorelasyon katsayısı olacağından otokorelasyon fonksiyonuna 

göre belirlenemez. Bunun yanında p’inci dereceden bir AR modeli için, kısmi 

otokorelasyon fonksiyonunda p tane sıfırdan istatistiksel olarak farklı kısmi 

otokorelasyon katsayısı vardır ve diğer gecikmelerde kısmi otokorelasyon katsayıları 

sıfırdan farklı değildir. Örneğin, bir zaman serisinde kısmi otokorelasyon fonksiyonuna 

bakıldığında; yalnızca birinci gecikmede sıfırdan farklı kısmi otokorelasyon katsayısı 

var ve diğer gecikmeler için katsayıların sıfırdan farklılıkları anlamlı değilse, ilgili seri 

için belirlenecek model AR(1) olacaktır. 
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Genel olarak, k’ıncı dereceden AR sürecinde j’inci katsayı kjφ  ve son katsayı da 

kkφ  ile ifade edilir. kkφ ’ların oluşturduğu denklemler kümesi, Yule-Walker denklemler 

sistemi şeklinde aşağıdaki gibi yazılarak, çözümlenebilir (Box ve Jenkins, 1970); 

kjkkkjkkjkj −+−−− +++= ρφρφρφρ 1)1(11 K  , kj ,,2,1 K=            (2.7) 

Bu denklem sistemi daha açık bir ifadeyle aşağıdaki gibi yazılabilir; 

kkkkkkk

kkkkk

kkkkk

φρφρφρ

ρφφρφρ
ρφρφφρ

+++=

+++=
+++=

−−

−

−

K

LLLLL

K

K

2211

22112

11211

          

(2.8) 

Uygulamada, Yule-Walker denklem sisteminde ρ ’ların yerine, r örneklem 

otokorelasyon katsayıları kullanılarak çözümleme yapılır ve k gecikmeleri için kkφ  

tahminleri olan, kkφ̂  örneklem kısmi otokorelasyon katsayıları elde edilir (Cryer, 1986). 

Bir AR(p) modeli için, tahmin edilmiş kısmi otokorelasyonlar p’inci gecikmeden 

sonra, ortalaması sıfır, varyansı n1  olan bir normal dağılıma sahiptir ve belirlenen bir 

anlam düzeyinde, nzα±  sınırları içinde kalır (Quenoulle, 1949). 

Aşağıdaki iteratif yöntem, kısmi otokorelasyonların hesaplanabilmesi için 

verilebilir. 

)0(
)1(ˆ

ˆ).1()()(

ˆ).()1()(

)()(

1,111

1,111

11

k

k
kk

kkkkk

kkkkk

j

D
N

jNjDjD

jDjNjN

jDjN

=

+−=

−+=

==

−−−−

−−−−

φ

φ

φ

ρ

              ,  
K

K

,3,2
,2,1,0

=
=

k
j

                   (2.9) 

(2.9) formüllerinden kısmi otokorelasyon katsayı tahmini, 

:kr k gecikmeli otokorelasyon katsayısı, 

:k̂kφ j’inci gecikmeli serinin etkisi yok edildiğinde k gecikmeli kısmi otokorelasyon    

katsayı tahmini 
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olmak üzere; 

∑

∑
−

=
−

−

=
−−

−

−
= 1

1
,1

1

1
,1

))(ˆ(1

))(ˆ(
ˆ

k

j
jjk

k

j
jkjkk

kk

r

rr

φ

φ
φ    , )ˆ)(ˆ(ˆˆ

,1,1 jkkkkjkkj −−− −= φφφφ    (2.10) 

ifadesi ile hesaplanabilir (Kadılar, 2005). 

 

2.1.2. Bazı Olasılıksal Süreçler 

Yaklaşık 30 yılı aşkın bir süredir literatürde, ele alınan zaman serileri için en 

doğru tahmin yapılabilmesi amacıyla en uygun modelin bulunmasına çalışılmaktadır. 

Otoregresif hareketli ortalamalar karma süreci (ARMA) yöntemi olarak da bilinen ve 

George E.P.Box ve Gwilym M. Jenkins tarafından 1976 yılında ortaya atılmış Box-

Jenkins yöntemi bu çalışmalardan biridir. Bu yöntem temelde, ororegresif süreçler 

(AR), hareketli ortalamalar süreçleri (MA) ve bu iki sürecin kombinasyonu ile oluşan 

ARMA süreçlerine dayanmaktadır. Günümüze kadar birçok bilimsel çalışmada 

kullanılmış olan bu etkili yöntem, ele alınan zaman serisinin durağanlığı ve tersinirliği 

varsayımını öngörmektedir. 

Box-Jenkins yöntemi aşağıda belirtilmiş dört ana aşamadan oluşmaktadır. 

• Model bulma aşaması 

• Parametre tahmini aşaması 

• Artık analizi aşaması 

• Gelecekle ilgili tahmin yapma aşaması 

Şimdi, bu yöntemin öngördüğü zaman serilerinde durağanlığı ve yine yöntemin 

temelini oluşturan AR, MA ve ARMA süreçleri ile ilgili bazı temel bilgileri ele alalım. 
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2.1.2.1. Ak Gürültü Süreci 

Karşılıklı bağımsız ve aynı dağılımlı tZ  raslantı değişkenlerinin dizisinden 

oluşan olasılıksal sürece ak gürültü süreci denir. Durağan bir olasılıksal süreç olan ak 

gürültü süreci aşağıdaki özelliklere sahiptir. 

i. ℜ∈= zztZE µµ ,)(  

ii. +ℜ∈= 22 ,)( zztZV σσ  

iii. )0(,0)( ≠= kkγ  

 

2.1.2.2. Otoregresif Süreçler 

tZ , durağan ve ta  hata terimleri bir ak gürültü süreci olmak koşulu ile p’inci 

dereceden bir otoregresif süreç, bir başka ifade ile AR(p) modeli, açık bir formda; 

tptpttt aZZZZ ++++= −−− φφφ K2211         (2.11) 

şeklinde ifade edilebilir. Aynı zamanda ktt
k ZZB −=  ile tanımlanan geri öteleme 

operatörü kullanılarak (2.11) eşitliği kapalı bir formda, 

( ) tt
p

p aZBBB =−−−− φφφ K2
211         (2.12) 

şeklinde düzenlenebilir. 

Genel olarak uygulamada birinci ve ikinci dereceden otoregresif süreçlerin 

kullanımı yaygındır. Birinci dereceden otoregresif süreç, Markov süreci, ikinci 

dereceden otoregresif süreç ise, Yule süreci olarak adlandırılır. 

p’inci dereceden bir otoregresif süreç olan AR(p) modelinin karakteristikleri elde 

edilmek istenir ise modelin otokorelasyon fonksiyonu; 

pkpkkk −−− +++= ρφρφρφρ L2211    , 0>k     (2.13) 
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Bunun yanında 2)0( zσγ =     ve    )()( kk −= γγ    özellikleri kullanılarak, sürecin 

varyansı; 

pp

a
z ρφρφρφ

σ
σ

−−−−
=

L2211

2
2

1
         (2.14) 

olarak elde edilir. 

 

2.1.2.3. Hareketli Ortalamalar Süreci 

ta  hata terimleri bir akgürültü süreci olmak koşulu ile q. dereceden bir hareketli 

ortalamalar süreci, bir başka ifade ile MA(q) modeli, açık bir formda; 

qtqtttt aaaaZ −−− −−−−= θθθ K2211         (2.15) 

şeklinde ifade edilebilir. Aynı zamanda, geri öteleme operatörü kullanılarak (2.15) 

eşitliği kapalı bir formda, 

( )
( ) t

t
q

qt

aB

aBBBZ

θ

θθθ

=

−−−−= K2
211

         (2.16) 

şeklinde düzenlenebilir. 

q. dereceden bir hareketli ortalamalar sürecinin otokorelasyon fonksiyonu; 









>

=
++++

++++−

=
−++

qk

qk
q

qkqkkk

k

,0

,,2,1,
1 22

2
2

1

2211
K

K

L

θθθ
θθθθθθθ

ρ    (2.17) 

olarak bulunur. 

Bunun yanında 0)( =tZE  ve ),(),( kttktt ZZEZZKov −− =  olduğundan, 







>

=++++−
= −++

qk
qk

k aqkqkkk

,0
,,2,1,)(

)(
2

2211 KL σθθθθθθθ
γ     (2.18) 
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ifadesi elde edilir.  

Sürecin varyansı ise, k=0 olduğu durumda; 

222
2

2
1 )1()0( aq σθθθγ ++++= K           (2.19) 

olacaktır. 

 

2.1.2.4. Otoregresif Hareketli Ortalamalar Karma Süreci 

ta  hata terimleri bir akgürültü süreci olmak koşulu ile (p,q)’uncu dereceden bir 

hareketli ortalamalar süreci, bir başka ifade ile ARMA (p,q) modeli, açık bir formda; 

qtqtttptpttt aaaaZZZZ −−−−−− −−−−++++= θθθφφφ KK 22112211     (2.20) 

şeklinde ifade edilebilir. Aynı zamanda, geri öteleme operatörü kullanılarak (2.20) 

eşitliği kapalı bir formda, 

( ) ( )
( ) tt

t
q

qt
p

p

aBZB

aBBBZBBB

θφ

θθθφφφ

=

−−−−=−−−−

)(

11 2
21

2
21 KK

     (2.21) 

şeklinde düzenlenebilir. 

ARMA(p,q) modelinin karakteristikleri elde edilmek istenir ise; modelin açık 

formu olarak verilen (2.20) eşitliğinin her iki tarafı öncelikle ktZ −  ile çarpılıp, oluşan 

denklemin beklenen değeri alındığında,  

)()1()()( 111 qkkkk zaqzazapkpk −−−−−+++= −− γθγθγγφγφγ KK

  
   (2.22) 

sonucu bulunur. Burada )(kzaγ , Z ve a arasındaki çapraz kovaryans fonksiyonu, 

[ ]tktza aZEk −=)(γ   şeklinde ifade edilir ve 





≤≠
>=

=
0,0
0,0

)(
k
k

kzaγ
         

(2.23) 
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olur. Aynı zamanda 1+≥ qk  olduğu durumda, 

pkpkkk −−− +++= γφγφγφγ K2211)(           (2.24)  

ve böylece otokorelasyon fonksiyonu, 

pkpkkk −−− +++= ρφρφρφρ 12211 K            (2.25) 

şeklinde bulunur. 

ARMA(p,q) modelinin varyansı ise, 0=k   olduğu durumda, 

)()1(1
2

110 qzaqzaapp −−−−−+++= γθγθσγφγφγ KK

      
(2.26) 

olarak elde edilir. 

 

2.2. Bulanık Mantık 

Bilgisayarlar çok karmaşık sayısal işlemleri anında çözümleyebilmesine karşın, 

idrak etme ve deneyimlerle kazanılmış bilgileri kullanabilme noktasında oldukça 

yetersizdir. Bunun yanında, insan beyni dünyanın en karmaşık makinesi olarak kabul 

edilebilir ve sayısal bir işlemi ancak birkaç dakikada yapabilirken, idrak etmeye yönelik 

olayları çok kısa bir sürede yapabilir. İnsanı ya da insan beynini üstün kılan temel 

özellik, sinirsel algılayıcılar vasıtası ile kazanılmış ve göreli olarak sınıflandırılmış 

bilgileri kullanmasıdır. Acaba bir bilgisayar yardımı ile böyle bir zekâ üretmek mümkün 

olabilir mi? Bu amaçla geliştirilen, Uzman Sistemler (US), Bulanık Mantık (BM), 

Genetik Algoritma (GA) ve Yapay Sinir Ağları (YSA) gibi yapay zekâ alt dalları 

özellikle son yıllarda, geniş bir araştırma ve uygulama alanı bulmaktadırlar (Elmas, 

2003). 

Bulanık mantık, bulanık küme teorisine dayanan bir matematiksel disiplin olup, 

insan mantığında olduğu gibi, uzun-kısa, sıcak-soğuk, hızlı-yavaş, siyah-beyaz gibi 

keskin değerler yerine, çok uzun-uzun-orta-kısa-çok kısa, sıcak-ılık-az soğuk-soğuk-çok 

soğuk vb. gibi ara değerlere göre çalışmaktadır. Belirtilen bu ara değer terimleri sözel 

terimler olup bulanık değişkenler olarak isimlendirilir. Bulanık mantık için, gerçek 
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dünyada her an değişen durumlarda değişik sonuçlar ortaya çıkabileceğinden, 

matematiğin gerçek dünyaya uygulanması denilebilir. 

Bulanık mantık yaklaşımı, makinelere, insanların özel verilerini işleyebilme ve 

onların deneyimlerinden ve önsezilerinden yararlanarak çalışabilme yeteneği verir.  Bu 

yeteneği kazandırırken de sayısal ifadeler yerine sembolik ifadeler kullanır ki bu 

sembolik ifadelerin makinelere aktarılması matematiksel bir temele dayanır. Bu 

matematiksel temel, bulanık mantık kümeler kuramı ve buna dayanan bulanık mantıktır. 

Bulanık mantık yaklaşımı ilk olarak 1956 yılında Amerika Birleşik Devletlerinde 

düzenlenen bir konferansta duyurulmasına karşın, ilk önemli çalışma, Lotfi A. Zadeh 

tarafından 1965 yılında yayımlanan ve bulanık mantık ve bulanık küme kuramını ortaya 

koyan makaledir. Zadeh (1965), insan düşüncesinin büyük çoğunluğunun bulanık 

olduğu, kesin olmadığı, sıfır ve birle temsil edilen boolean mantığın bu düşünce 

işlemini yeterli şekilde ifade etmediğini belirtmiştir. Bulanık mantık, klasik mantığın 

aksine, iki seviyeli değil, çok seviyeli işlemleri kullanmaktadır.  

Zadeh (1965), bulanık mantığın temel özelliklerini şu şekilde ifade etmiştir; 

i. Bulanık mantıkta, kesin değerlere dayanan düşünme yerine, yaklaşık 

düşünme kullanılır. 

ii. Bulanık mantıkta her şey [0,1] aralığında belirli bir derece ile gösterilir. 

iii. Bulanık mantıkta bilgi büyük, küçük, çok az gibi dilsel ifadeler şeklindedir. 

iv. Bulanık mantık çıkarım işlemi dilsel ifadeler arasında tanımlanan kurallar ile 

yapılır. 

v. Her mantıksal sistem bulanık olarak ifade edilebilir.  

vi. Bulanık mantık matematiksel modeli çok zor elde edilen sistemler için çok 

uygundur. 

Bulanık mantık uygulaması ilk olarak, 1974 yılında Mamdani tarafından, bir 

buhar makinesinin bulanık denetiminin gerçekleştirilmesi ile olmuştur. Bu çalışmayı 

takiben, dünyanın çeşitli yerlerindeki birçok firma birçok başarılı uygulama 
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gerçekleştirmiştir. Bulanık mantık uygulamaları, son senelerde özellikle Japonya, 

Amerika ve Almanya’da ticari ve endüstri alanlarında oldukça yaygın ve başarıyla 

gerçekleştirilmekte ve gelecekte de bu uygulamaların hızla gelişeceği ve yaygınlaşacağı 

öngörülmektedir. Bulanık kuramının uygulamalarının ürünleri de Japonya’da 1990 

yılında tüketicilerin hizmetine sunulmaya başlanmıştır. Örneğin, bulanık denetimli 

çamaşır makinesi, çamaşırın cinsine, miktarına, kirliliğine göre en etkili yıkama ve su 

kullanım programını seçebilmektedir. Benzer uygulamalar arabalarda yakıt püskürtme 

ve ateşlemede, elektrik süpürgesi, televizyon ve müzik kümeleri gibi aygıtlarda da 

kullanılabilmektedir (Elmas 2003). 

 

2.2.1. Bulanık Küme Kuramı 

Klasik küme kuramında bir eleman o kümenin ya elemanıdır ya da değildir, 

kısmi üyelik söz konusu olamaz. Nesnenin üyelik değeri 1 ise kümenin tam elemanı, 0 

ise elemanı değildir yani klasik kümelerde elemanların üyelikleri { }1,0  değerlerini alır. 

Bulanık mantık, insanların günlük yaşantısında nesnelere verdiği üyelik değerlerini, 

dolayısıyla insan davranışlarını taklit eder. Örneğin elini sıcak suya sokan bir kimse 

suyun ısısını tam olarak bilemez ve fakat sıcak, az sıcak, soğuk, çok soğuk gibi dilsel 

belirteçler kullanır (Elmas 2003). 

 

Şekil 2.1. Klasik küme için sıcaklık örneği 

Klasik kümelere örnek olarak, Şekil 2.1. incelendiğinde, sıcaklığın 20 0C’nin 

altında olmasının soğuk, üstünde olmasının ise sıcak olarak nitelendirildiği görülür. Bu 

0 5 10 15 20 25 30 35 40

Üyelik 
derecesi 

1
 
 
0,5
 
 
  

Soğuk Sıcak 

Sıcaklık 
(0C) 
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durumda 19,5 0C sıcak değildir. Doğal olarak bu mantığın esnekliği söz konusu değildir. 

Oysaki gerçek yaşamda ise, sınırlar bu kadar keskin çizgilerle nitelendirilemezler. 

Klasik kümelerdeki bu keskin durumun aksine, bulanık kümelerde elemanların 

üyelik dereceleri [ ]1,0   aralığında sonsuz sayıda değerler alabilir. Keskin kümelerdeki 

soğuk-sıcak, hızlı-yavaş, aydınlık-karanlık gibi ikili değişkenler, bulanık mantıkta biraz 

soğuk, biraz sıcak, biraz aydınlık gibi esnek betimleyicilerle esnetilerek gerçek yaşam 

şartlarına benzetilirler. 

Bulanık kümelere örnek olarak, Şekil 2.2. incelendiğinde, 10-40 0C arasındaki 

değerler, sıcak kümesine üye olmalarına karşın, 20-40 0C arasındaki sıcaklık değerleri, 

1 üyelik değerine sahipken, 10-20 0C arasındaki sıcaklık değerleri 0 ile 1 arasında 

değişen üyelik derecelerine sahip olacaktır. Yani, örneğin 11 0C az sıcak, 15 0C ise biraz 

sıcak olarak değerlendirilebilir. 

 

Şekil 2.2. Bulanık küme için sıcaklık örneği 

20 0C’yi oda sıcaklığı kabul ederek soğuk bulanık kümesi oluşturulmak 

istendiğinde elde edilen Şekil 2.3. incelenir ise, 10-20 0C arasındaki değerlerin değişen 

üyelik dereceleriyle hem sıcak hem de soğuk bulanık kümesine ait oldukları ve 

dolayısıyla 15 0C değerinin de 0,5 üyelik derecesi ile sıcak hem de soğuk bulanık 

kümesine ait olduğu görülür. Şekilde taralı olarak gösterilen alan ilgili bulanık 

kümelerin kesişim bölgesidir ve bulanık kümelerin örtüşümü olarak isimlendirilir. 
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Şekil 2.3. Bulanık kümelerde örtüşüm 

Bulanık kümeler kuramını gerektiğince anlayabilmek için, bulanık kümeler, 

bulanık sayılar, genişleme prensibi, alfa )(α  kesme, aralık aritmetiği, bulanık 

fonksiyonlar gibi, bulanık kümeler kuramına temel oluşturacak, kavramlar 

tanımlanmalıdır. 

 

2.2.1.1. Bulanık Küme 

Ω  herhangi bir küme ve A , Ω ’nın bulanık alt kümesi olmak üzere, Ω∈∀ x  için 

Ω  kümesini [ ]1,0  aralığına eşleştiren, A ’nın bir üyelik fonksiyonu )(xA  ile gösterilsin. 

Eğer 1)( 0 =xA  ise 0x , A  bulanık alt kümesine aittir, 0)( 1 =xA  ise 1x , A  bulanık alt 

kümesine ait değildir. Eğer 6.0)( 2 =xA  ise 2x ’nin A  bulanık alt kümesine üyelik 

değeri 0.6 dır. A ’nın bir üyelik fonksiyonu , )(xA , daima 1 veya 0 değerleri alıyor ise 

A , Ω   kümesinin bir bulanık olmayan (crisp) altkümesidir. Bulanık kümelerin hemen 

hepsinde bulanık sayılar kullanılır (Buckley, 2006). 

 

2.2.1.2. Bulanık Sayı 

Bulanık sayının genel bir tanımı Buckley ve Elsami (2002), Klir ve Yuan (1995) 

tarafından yapılan çalışmalarda bulunabilir. Ancak bu çalışmada, bulanık sayılardan, 
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daha çok üçgensel ve yamuk bulanık sayılar ile ilgili bilgilerin verilmesi yeterli 

görülmüştür. 

      

Şekil 2.4. Üçgensel bulanık sayı 

Bir N  üçgensel bulanık sayısı, cba <<  olmak üzere, üç sayı tarafından 

tanımlanır. Burada a, üçgensel bulanık sayının sol ucunu, c, sağ ucunu ve b ise orta 

noktasını göstermektedir. [ ]ca ,  aralığı üçgenin temelini (tabanını), bx =  ise tepe 

noktasını oluşturur. Üçgensel bulanık sayı bu parametrelere bağlı olarak, )//( cbaN =  

şeklinde gösterilir. Herhangi bir üçgensel bulanık sayı, )4.2/2/2.1(=N , Şekil 2.4.’de 

gösterilmiştir ve şekilden de görülebileceği gibi 1)2( =N  ve 5.0)6.1( =N olacaktır. 

      

Şekil 2.5. Yamuk bulanık sayı 
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Bir M  yamuk bulanık sayısı ise, dcba <<<  olmak üzere dört sayı tarafından 

tanımlanır. Burada,  [ ]da ,  aralığı yamuğun temelini (tabanını) ve [ ]cb , aralığı ise 

merkezini (tavanını) oluşturur. Yamuk bulanık sayı bu parametrelere bağlı olarak, 

)/,/( dcbaM =  şeklinde gösterilir. Herhangi bir yamuk bulanık sayı, 

)7.2/4.2,2/2.1(=M , Şekil 2.5.’de gösterilmiştir. 

Bu iki tür bulanık sayıdan başka, üçgensel bulanık sayıya benzer bir başka 

bulanık sayı türü, üçgensel biçimli bulanık sayıdır. Bir P  üçgensel biçimli bulanık 

sayısı parametrelere bağlı olarak, )//( cbaP ≈  şeklinde ifade edilir. [ ]ca ,  aralığı 

üçgenin temelini (tabanını), bx =  ise tepe noktasını yani üyelik değerinin 1 olduğu 

noktayı oluşturur. Bir )//( cbaP ≈ bulanık sayısının üçgensel biçimli olması için, 

i. [ ]ba,  aralığında monoton artan ve sürekli 

ii. [ ]cb,  aralığında monoton azalan ve sürekli 

olması yeterlidir. Herhangi bir üçgensel biçimli bulanık sayı, )4.2/2/2.1(≈P , Şekil 

2.6.’da gösterilmiş ve şekilden de görülebileceği gibi [ ]2,2.1  ve [ ]4.2,2  aralıkları doğru 

olmayan eğriler ile birleştirilmiştir. Verilen örnek üçgensel biçimli bulanık sayıda, 

[ ]4.2,2.1  aralığı üçgenin temelini (tabanını), 2=x  ise tepe noktasını yani üyelik 

değerinin 1 olduğu merkez noktayı oluşturur. 

      

Şekil 2.6. Üçgensel biçimli bulanık sayı 
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Üçgensel biçimli bulanık sayıya benzer şekilde yamuk biçimli bulanık sayı da 

tanımlanabilir. 

 

2.2.1.3. Alfa Kesmeleri 

Alfa kesmeleri bulanık sayının üyelik değeri sabit tutulduğunda elde edilen alt 

aralıklara verilen isimdir. Herhangi bir Ω  kümesinin bulanık bir alt kümesi A  ise, A  

için kesme−α ,  [ ]αA  şeklinde yazılır ve  

[ ] { } 10,)(/ ≤<≥Ω∈= ααα xAxA        (2.27) 

olarak tanımlıdır. kesme−= 0α  veya [ ]0A  farklı tanımlanmalıdır. Herhangi bir A  

bulanık kümesi için, [ ]0A , A  bulanık kümesinin temeli (base) olarak isimlendirilir ve 

bazı çalışmalarda bu temel değer ),( ca açık aralığı ile de ifade edilebilmesine karşın bu 

çalışmada [ ]ca ,  kapalı aralığı ile ifade edilecektir. kesme−= 0α  )4.2/2/2.1(=N

şeklinde verilen bir üçgensel bulanık sayı için, [ ] [ ]4.2,2.10 =N , )7.2/4.2,2/2.1(=M

olarak verilen bir yamuk bulanık sayı için, [ ] [ ]7.2,2.10 =M  ve )4.2/2/2.1(≈P  olarak 

verilen bir üçgensel biçimli bulanık sayı için de, [ ] [ ]4.2,2.10 =P , (2.27) ifadesinden 

elde edilebilmektedir.  

Üyelik değerleri 1 olan elemanların meydana getirdiği küme, bir bulanık sayının 

merkezini (core) oluşturur. )//( cbaN = ve )//( cbaN ≈  şeklinde ifade edilen 

üçgensel ve üçgensel biçimli bulanık sayılar için merkez, tek bir b noktasıdır. Bunun 

yanında )/,/( dcbaM =  ve )/,/( dcbaM ≈  şeklinde ifade edilen yamuk ve yamuk 

biçimli bulanık sayılar için ise merkez, [ ]cb ,  kapalı aralığı olacaktır. 

Herhangi bir Q bulanık sayısı için 10 <≤α  olmak üzere, [ ]αQ  kapalı ve sınırlı 

bir aralıktır ve aşağıdaki gibi gösterilir, 

[ ] [ ])(,)( 21 ααα qqQ =               (2.28) 
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Burada, )(1 αq  alfanın artan, )(2 αq  ise alfanın azalan fonksiyonu ve dolayısı ile 

)1()1( 21 qq ≤  olmalıdır. Eğer Q üçgensel biçimli veya yamuk biçimli bulanık sayı ise, 

i. )(1 αq ; [ ]1,0  aralığında alfanın sürekli, monoton artan bir fonksiyonudur. 

ii. )(2 αq ; [ ]1,0  aralığında alfanın sürekli, monoton azalan bir fonksiyonudur.   

iii. Üçgensel biçimli bulanık sayı için;  )1()1( 21 qq =  ve yamuk biçimli bulanık 
sayı için;  )1()1( 21 qq <  

olacaktır. 

Şekil 2.4’de verilen )4.2/2/2.1(=N  üçgensel bulanık sayısı için

[ ] [ ])(),( 21 ααα nnN =  şeklinde ifade edilen alfa kesmesinde αα 8.02.1)(1 +=n  ve 

αα 4.04.2)(2 −=n , 10 ≤≤α   olarak elde edilir.  Benzer şekilde, Şekil 2.5’de verilen 

)7.2/4.2,2/2.1(=M  yamuk bulanık sayısı için [ ] [ ])(),( 21 ααα mmM =  şeklinde ifade 

edilen alfa kesmesinde αα 8.02.1)(1 +=m  ve αα 3.07.2)(2 −=m , 10 ≤≤α   olarak 

elde edilir. Bu denklemler tüm alfa kesmeleri için tanımlıdır. 

 

2.2.1.4. Eşitsizlikler 

)//( cbaN =  herhangi bir üçgensel bulanık sayı ve δ  herhangi bir reel sayı 

olmak üzere, δδ ≥⇒≥ Na  ve δδ >⇒> Na  ifadeleri yazılabileceği gibi 

δδ ≤⇒≤ Nc  ve δδ <⇒< Nc  ifadeleri de yazılabilir. 

A  ve B , Ω  kümesinin iki bulanık alt kümesi olsun. Eğer BA ≤  ise Ω

kümesindeki tüm x elemanları için )()( xBxA ≤  olacaktır ve A , B  bulanık kümesinin 

bir alt bulanık kümesidir. 
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2.2.1.5. Kesikli Bulanık Kümeler 

A , Ω  kümesinin bulanık alt kümesi olsun. Eğer )(xA , Ω  kümesindeki x 

değerlerinin sonlu sayısında sıfırdan farklı ise A  bulanık kümesi kesikli bulanık küme 

olarak isimlendirilir. Varsayılsın ki )(xA , yalnızca 4321 ,,, xxxx  de sıfır değildir. Bu 

durumda bulanık küme aşağıdaki gibi ifade edilebilir, 









=
4

4

3

3

2

2

1

1 ,,,
xxxx

A µµµµ
                 (2.29) 

Burada 4,3,2,1=i olmak üzere, ,iµ üyelik değerini göstermektedir ve üyelik 

fonksiyonu, 



 =

=
..,0

4,3,2,1,
)(

ha
i

xA i
i

µ
          (2.30) 

şeklinde gösterilebilir. 

 

2.2.1.6. Bulanık Aritmetiğe Giriş 

A  ve B  gibi iki bulanık sayı mevcut olduğunda bunlar arasında toplama, 

çıkarma, çarpma ve bölme gibi işlemlere ihtiyaç duyulabilir. BABA −+ , ve bunun 

gibi hesaplamaları yapmanın iki yöntemi vardır, 

Bu yöntemlerden ilki genişleme prensibidir ve şu şekilde ifade edilebilir, 

A  ve B  gibi iki bulanık sayı olsun. CBA =+  olduğunda C  için üyelik 

fonksiyonu; 

{ }zyxyBxAzC
yx

=+= /))(),(min(sup)(
,

        (2.31) 

şeklinde ifade edilirken, eğer BAC −= ise C  için üyelik fonksiyonu; 
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{ }zyxyBxAzC
yx

=−= /))(),(min(sup)(
,

        (2.32) 

şeklinde ifade edilir. Eğer  BAC .=  ise C  için üyelik fonksiyonu; 

{ }zyxyBxAzC
yx

== ./))(),(min(sup)(
,

        (2.33) 

şeklinde ifade edilirken, eğer BAC /=  ise C  için üyelik fonksiyonu; 

{ }zyxyBxAzC
yx

== //))(),(min(sup)(
,

        (2.34) 

olarak ifade edilir ve bu durumda da C  bir bulanık sayı olacaktır. A  ve B  üçgensel (ya 

da yamuk) bulanık sayılar olduğunda BA + , BA −  de üçgensel (ya da yamuk) bulanık 

sayılar olmasına karşın çarpma ve bölme işlemlerinde durum böyle değildir. BA.  ve 

BA /  ise üçgensel (ya da yamuk) biçimli bulanık sayı olacaktır. Burada sup ifadesi en 

küçük üst sınırı göstermektedir. Ω  reel sayıların bir kümesi olduğunda eğer Ω  en 

büyük üyeye sahip ise, )max()sup( Ω=Ω  olmaktadır. Örneğin; )1,0[=Ω olduğunda 

1)sup( =Ω  ve ancak ]1,0[=Ω  olduğunda ise 1)max()sup( =Ω=Ω olarak elde edilir. 

Yukarıda verilen genişleme prensibine dayanan denklemler ile hesaplama 

yapmak zor olabileceğinden, genişleme prensibine denk bir yaklaşım olarak alfa 

kesmesi ve aralık aritmetiği kullanılabilir. 

Bu çalışmada aralık aritmetiğine yalnızca kısa bir giriş yapılacaktır. Bu konu ile 

ilgili daha fazla bilgi Moore (1979) ve Neumaier (1990) tarafından yapılan 

çalışmalardan edinilebilir. . [ ]11,ba  ve [ ]22 ,ba  iki kapalı, sınırlı, gerçel sayıların aralığı 

olsun. * işareti çarpma, bölme, toplama veya çıkarmayı gösterdiğinde, ilgili işlemler 

[ ] [ ] [ ]βα ,,*, 2211 =baba  şeklinde gösterilir ve burada; 

[ ] { }2211 ,/*, bbabaaba ≤≤≤≤=βα             (2.35) 

* işareti bölme işlemini temsil ettiğinde, [ ]22 ,ba  aralığının sıfırı kapsamadığı varsayımı 

altında (2.35) eşitliği daha basit bir şekilde, 

[ ] [ ] [ ]21212211 ,,, bbaababa ++=+              (2.36) 

[ ] [ ] [ ]21212211 ,,, abbababa −−=−                  (2.37) 
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[ ] [ ] [ ] 







=

22
112211

1,1,,/,
ab

bababa                  (2.38) 

ve 

[ ] [ ] [ ]βα ,,., 2211 =baba                     (2.39) 

eşitliklerine dönüşür. Burada, 

{ }21212121 ,,,min bbabbaaa=α                  (2.40) 

ve 

{ }21212121 ,,,max bbabbaaa=β                  (2.41) 

şeklindedir. 

Eğer 01 >a  ve 02 <b  veya 01 >b ve 02 <b ya da bunun gibi bilgiler biliniyor 

ise çarpma ve bölme işlemleri daha kolay ifade edilebilirler. Örneğin 01 ≥a  ve 02 ≥a  

olduğunda, 

[ ] [ ] [ ]21212211 ,,., bbaababa =                     (2.42) 

01 <b  ancak 02 ≥a  olduğunda ise, 

[ ] [ ] [ ]12212211 ,,., babababa =                     (2.43) 

bunun yanında 01 <b  ancak 02 <b  olduğunda, 

[ ] [ ] [ ]21212211 ,,., aabbbaba =                     (2.44) 

01 ≥a  ancak 02 <b  olduğunda ise, 

[ ] [ ] [ ]12122211 ,,., abbababa =                     (2.45) 

olacaktır. 
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2.2.1.7 Bulanık Aritmetik 

A  ve B  iki bulanık sayı olsun. Alfa kesmelerinin kapalı, sınırlı aralıklar 

olduğunu biliyoruz. Bu bulanık sayılar için alfa kesmeleri 

[ ] [ ] [ ] [ ])(),(,)(),( 2121 αααααα bbBaaA ==  şeklindedir. Eğer BAC += ise, 

[ ] [ ] [ ]ααα BAC +=                        (2.46) 

BAC −=  ise, 

[ ] [ ] [ ]ααα BAC −=                        (2.47) 

eşitlikleri [ ]1,0 aralığındaki her α için yazılabilir. Bunun yanında BAC .=  ise, 

[ ] [ ] [ ]ααα BAC .=                        (2.48) 

ayrıca her α  için [ ]αB  değerlerinin sıfırdan farklı olması koşulu ile BAC /= , 

[ ] [ ] [ ]ααα BAC /=                        (2.49) 

şeklinde ifade edilir. Bu yöntem bulanık aritmetiğin genişleme prensibi ile eşdeğer bir 

yöntemdir. 

 

2.2.1.8. Bulanık Fonksiyonlar 

Bir bağımsız değişkenli fonksiyon ZXH =)(  şeklinde tanımlansın. Genellikle

X  üçgensel (ya da yamuk) bir bulanık sayı ise, Z  de üçgensel (ya da yamuk) biçimli 

bulanık sayı olarak elde edilir. Bulanık fonksiyon kavramı iki şekilde ortaya atılabilir. 

Birincisi, genişleme prensibine dayalı olarak şu şekilde verilebilir, 

Herhangi bir [ ] ℜ→bah ,: , ZXH =)(  için aşağıdaki gibi genişletilebilir. 

{ }bxazxhxXzZ
x

≤≤== ,)(/)(sup)(                 (2.50) 
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bu denklem [ ]ba,  aralığında herhangi bir üçgensel (ya da yamuk) bulanık sayı, X , için 

Z ’nin üyelik fonksiyonunu tanımlar. Eğer h sürekli ise, Z ’nin α -kesmesi, 

[ ] [ ])(),( 21 ααα zzZ = ve 10 ≤≤α  olmak üzere, 

[ ]{ }αα Xxxhz ∈= /)(min)(1                       (2.51) 

[ ]{ }αα Xxxhz ∈= /)(max)(2                      (2.52) 

şeklinde elde edilebilir. 

İki bağımsız değişken söz konusu olduğunda, [ ]11,ba  aralığındaki x ve [ ]22 ,ba

aralığındaki y değerleri için ),( yxhz =  olsun. Bu durumda ZYXH =),(  için h 

genişlemesi, 

( ){ }zyxhyYxXzZ
yx

== ),(/)(),(minsup)(
,

                  (2.53) 

şeklinde olacaktır. Burada X  ve Y , [ ]11,ba  ve [ ]22 ,ba  aralıklarındaki birer üçgensel 

(ya da yamuk) bulanık sayıdırlar. Eğer h sürekli ise, Z ’nin α -kesmesi, 

[ ] [ ])(),( 21 ααα zzZ =  ve 10 ≤≤α  olmak üzere, 

[ ] [ ]{ }ααα YyXxyxhz ∈∈= ,/),(min)(1                     (2.54) 

[ ] [ ]{ }ααα YyXxyxhz ∈∈= ,/),(max)(2                       (2.55) 

olarak elde edilir. 

Bulanık fonksiyon kavramı ikinci olarak alfa kesmeler ve aralık aritmetiğine 

dayalı olarak şu şekilde verilebilir, 

[ ] ℜ→bah ,:  şeklinde bir fonksiyon tanımlanmış olsun. X , [ ]ba,  aralığına ait 

olmak üzere ZXH =)( için genişleme, [ ] [ ]αα ZXh =)(  )10( ≤≤ α , aralık aritmetiği 

vasıtasıyla hesaplanabilir. [ ]αX  aralığı fonksiyona verilerek [ ]αZ  aralığı elde edilir ve 

burada, bu aralık üzerinde h genişlemesini tanımlayabilmek için aritmetik operasyonları 
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uygulamaya ihtiyaç duyulur. Z değerini elde edebilmek için bu alfa kesmeleri koyulur. 

Daha fazla bağımsız değişken için genişleme, benzer şekilde olacaktır. Örneğin,  

DXC
BXAXHZ

+
+

== )(                          (2.56) 

ile ifade edilen bulanık fonksiyonu dikkate alalım. X , [ ]10,0  aralığında üçgensel 

bulanık sayı ve ayrıca DCBA ,,,  üçgensel bulanık sayılar olmak üzere, 0≥C , 0>D

ve 0>+ DXC olduğunda genişleme,  

43

21
4321 ),,,,(

xxx
xxxxxxxxh

+
+

=                         (2.57) 

ile ifade edilir. Burada, 1x yerine [ ]αA , 2x yerine [ ]αB , 3x yerine [ ]αC , 4x yerine 

[ ]αD  ve x yerine [ ]αX  aralıklarını kullanarak aralık aritmetiği yoluyla Z için [ ]αZ  

hesaplanır. 

 

2.3. Yapay Sinir Ağları (YSA) 

Yakın geçmişte bulanık zaman serilerinin analizinde ilişki belirleme ve bunun 

gibi belirli aşamalarında, diğer yöntemlere seçenek olarak yapay sinir ağları yöntemi de 

kullanılmaya başlanmıştır. Huarng ve Yu (2006, 2008) çalışmalarında bulanık zaman 

serilerinde bulanık ilişkilerin belirlenmesinde ileri beslemeli yapay sinir ağı 

kullanmışlardır. Yapay sinir ağları ile bulanık ilişki belirlenmesi, özellikle yüksek 

dereceli modellerde kolaylık sağlar ve bulanık mantık ilişki ve grup ilişki tablolarının 

oluşturulmasındaki karmaşıklığı ortadan kaldırdığı gibi öngörüleri de iyileştirir. 

  Diğer analiz yöntemlerine göre daha iyi sonuçlar elde edildiğinden, yapay sinir 

ağlarına olan ilgi giderek artmıştır. Bu bölümde, yapay sinir ağlarının bileşenleri ve 

öngörü probleminde yapay sinir ağlarının kullanımı ile ilgili temel bilgiler verilecektir. 

Yapay sinir ağlarını, insan beyninin özelliklerinden olan öğrenme yolu ile yeni 

bilgi türetebilme, yeni bilgi oluşturabilme ve keşfedebilme gibi yetenekleri herhangi bir 

yardım almadan doğrudan gerçekleştirmek amacı ile geliştirilen algoritmalar olarak 
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tanımlanabilir (Öztemel, 2003). Yapay sinir ağları, biyolojik sinir ağlarını taklit eden 

sentetik ağlar olarak da tanımlanabilir. Günümüzde, yapay sinir ağları, kullanım 

kolaylığı ve ürettiği iyi sonuçlardan dolayı, matematik, istatistik, fizik, mühendislik ve 

bilgisayar bilimleri uygulama alanlarında başarıyla kullanılmaktadır. 

Mühendislerin, matematikçilerin, istatistikçilerin ve fizikçilerin yeni fikirler elde 

etmek için biyolojik bilimlere olan ilgisi uzun bir geçmişe sahiptir. Yapay sinir ağlarının 

oluşturulmasında da biyolojik sinir ağlarından esinlenilmiş olmasına karşın, hala 

biyolojik sinir sistemleri ile yapay sinir ağları arasında hem mimarileri hem de 

yetenekleri yönünden büyük farklılıklar bulunmaktadır. Hiçbir model insan beyninin 

performansının aynısını taklit etmede başarılı olamamıştır. Bu nedenle, geliştirilen farklı 

çeşitlerdeki yapay sinir ağı konfigürasyonunda insan beyni sadece bir mecaz olarak 

kalmıştır.  

Yapay sinir ağları genel olarak, biyolojik sinir ağlarından esinlenerek 

oluşturulmuş matematiksel algoritmalar şeklinde tanımlanabilir. Matematiksel bir 

algoritma olarak tanımlanan yapay sinir ağları, örneklerden öğrenebilen ve öğrendiğini 

genelleştirebilen algoritmadır. Ağ gösterimi, matematiksel algoritmanın grafiksel 

ifadesidir. (Günay ve ark., 2007). 

Yapay sinir ağlarının işleyişini yönlendiren bileşenler, mimari yapı, aktivasyon 

fonksiyonu ve öğrenme algoritması olmak üzere üç ana başlık altında toplanabilir. 

 

2.3.1. Mimari Yapı 

Yapay sinir ağları, birbirlerine bağlı, yapay nöronlardan (düğümler, birimler) 

oluşurlar. Yapay sinir ağı mimarisinin temel birimi olan her bir nöron için, nörona gelen 

girdi değeri ve bu nöronun diğer nöron veya nöronlara ilettiği bir çıktı değeri vardır. 

Nörona gelen girdi değeri tek bir nörondan gelen çıktı değeri olabileceği gibi birden 

fazla nörondan gelen çıktı değerlerinin toplamı da olabilir. Nöronun aldığı bu girdi 

değeri bir fonksiyon yardımıyla çıktı değerine dönüştürülür ve diğer nöron ya da 

nöronlara girdi değeri olarak iletilir. Bir nöronun çıktı değerinin diğer bir nörona girdi 

değeri olarak iletilmesi işlemine sinyal akışı adı verilir. 
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İlk olarak, 1943 yılında McCulloch ve Pitts tarafından tanımı yapılan bir yapay 

nöron modeli Şekil 2.7.’de görülmektedir. xi girdileri ( ni ,..,.,21= ), k anındaki girdi 

değerinin yokluğuna ya da varlığına bağlı olarak sırasıyla 0 ya da 1 değerini alırlar. 

Nöronun çıktı değeri o ile gösterilmiştir. Bu model için k+1 anında elde edilecek çıktı 

değeri, 


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eşitliği ile elde edilir. Burada, diğer nöronların çıktısı olan her bir xi girdi değeri, karşılık 

gelen wi ağırlıyla (wi = 1± , i = 1, 2, ... ,n) çarpılarak toplanır ve elde edilen değer eğer T 

gibi bir eşik değerinden büyükse, nöronun k+1 anındaki ok+1 çıktısı 1 değerini alır, diğer 

durumda nöronun çıktı değeri 0 olacaktır. 

 

Şekil 2.7. McCulloch-Pitts nöron modeli 

Tanımlanacak yapay nöron modelinde ise, ağdaki tüm nöronların işlemlerinin eş 

zamanlı olduğu varsayılır. Çıktı değerleri [0,1] aralığında değerler alabilecektir. 

Ağırlıklar model içinde düzeltilir ve sinyal akışı dışında ağın nöronları arasında hiçbir 

etkileşim olmaz. Bu özellikleri taşıyan genel yapay nöron modeli Şekil 2.8. de 

gösterilmiştir (t üst indisi devrikliği gösterir). 

1w
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Şekil 2.8. Genel yapay nöron modeli 

Şekilden de anlaşılacağı gibi her yapay nöron, girdi bağlantılarına sahiptir ve tek 

çıktıya sahip bir işlem biriminden oluşur. Nöronun çıktı sinyal akışı gibi, xi nöron 

girdilerinin sinyal akışı da tek yönlü olarak düşünülür. Tüm sinyal akışlarının ileri yönlü 

olduğu ağ, ileri beslemeli yapay sinir ağı olarak isimlendirilir. Nöron çıktı değeri, 

( )xwfo t=                     (2.59a) 

ya da 









= ∑

=

n

i
ii xwfo

1
                   (2.59b) 

şeklinde ifade edilir. w, ağırlık vektörü, 

[ ] t
nwwww ...21=               (2.60) 

ifadesi ile tanımlanabilirken x girdi vektörü ise, 

[ ] t
nxxxx ...21=               (2.61) 

ile gösterilir. 

Çok tabakalı yapay sinir ağı mimarileri, tek girdi ve çıktı tabakası içerirken, 

birden çok gizli tabaka içerebilirler. Mimari yapının belirlenmesi, tabakalardaki nöron 
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Nöron işlem birimi 

f(wtx)

Çarpımsal ağırlıklar 
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sayılarının belirlenmesi anlamına gelir. Şekil 2.9.’da çok tabakalı ileri beslemeli bir 

yapay sinir ağı mimarisi görülmektedir. 

 

Şekil 2.9. Çok tabakalı ileri beslemeli yapay sinir ağı mimarisi 

Şekilden de anlaşılabileceği üzere, nöronlar birbirlerine ağırlıklarla bağlıdır, aynı 

tabakanın nöronları arasında bağlantı yoktur, bağlantılar tek yönlü ve ileri doğrudur. 

Şekilde çıktı tabakasında yalnızca bir nöron varken, isteğe göre birden çok nöron da 

kullanılabilir. Burada wij, girdi tabakasındaki i nöronu ile gizli tabakadaki j nöronu 

arasındaki ağırlığı ve wjk, gizli tabakadaki j nöronu ile çıktı tabakasındaki k nöronu 

arasındaki ağırlığı gösterir. Şekilde çıktı tabakasında, yalnızca bir nöron olduğu için, k 

indisi bu tek nöronu göstermektedir. Benzer şekilde oluşturulabilecek bir başka 

mimaride ise girdi tabakasındaki nöronlar ile çıktı tabakasındaki nöron (ya da nöronlar) 

arasında doğrudan bağlantı da kurulabilir. 

 

2.3.2. Aktivasyon Fonksiyonu 

Nöron çıktı değerinin hesaplanmasında kullanılan f(wt,x) fonksiyonu, aktivasyon 

fonksiyonu olarak adlandırılır. Aktivasyon fonksiyonunun doğru seçilmesi ağın 

performansını önemli derecede etkileyen faktörlerden biridir. Ağırlık ve girdi 

vektörünün skaler çarpımı olarak verilen ifade, net aktivasyon değeri olarak adlandırılır. 

xwnet t=                     (2.62) 

Çıktı tabakası 

Gizli tabaka 

Girdi tabakası 

 jkw  

 ijw  
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Bu durumda aktivasyon fonksiyonunun tanım kümesi nöron modelinin net aktivasyon 

değerlerinin kümesi olacaktır. Yapay sinir ağlarının farklı türleri için farklı aktivasyon 

fonksiyonları kullanılır. Bunun yanında aynı ağın içinde bile, nöronlarda, farklı 

aktivasyon fonksiyonları kullanılabilir. Aktivasyon fonksiyonu genel olarak tek kutuplu, 

çift kutuplu ya da doğrusal olarak seçilebilir. Tek kutuplu f(net) aktivasyon fonksiyonu 

için, ℜ∈net  ya da )1,0()( ∈netf  yazılabileceği gibi çift kutuplu f(net) aktivasyon 

fonksiyonu için ise ℜ∈net ve )1,1()( −∈netf olacaktır. Bununla birlikte, aktivasyon 

fonksiyonu kesikli ya da sürekli olabilir. Seçilecek aktivasyon fonksiyonuna göre elde 

edilecek nöron çıktı değerleri Tablo 2.1.’de verilmiştir. Tabloda, o, nöronun çıktı 

değerini göstermektedir. 

Tablo 2.1. Aktivasyon fonksiyonu tipine göre nöron çıktı değeri  

Aktivasyon fonksiyonu tipi Nöron çıktı 
değeri 

Tek kutuplu 
 

Sürekli o ∈  (0,1) 

Kesikli o ∈  {0,1} 

Çift kutuplu 
 

Sürekli o ∈  (-1,1) 

Kesikli o ∈ {-1,1} 

Sıklıkla kullanılan aktivasyon fonksiyonları ise aşağıdaki gibi verilebilir. 

• Doğrusal aktivasyon fonksiyonu: 

netnetf =)(                         (2.63) 

• Adımsal aktivasyon fonksiyonu: 





<
>

=
0,1
0,0

)(
net
net

netf                         (2.64a) 

ya da 
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


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>−

=
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netf                         (2.64b) 

• λ  eğim parametresini göstermek üzere Lojistik aktivasyon fonksiyonu: 

)exp(1
1)(

net
netf

λ−+
=                         (2.65a) 

ya da 

1
)exp(1

1)( −
−+

=
net

netf
λ

                   (2.65b) 

• Radyal Temelli aktivasyon fonksiyonu: 

)exp()( 2netnetf λ−=                         (2.66) 

• Tanjant hiperbolik aktivasyon fonksiyonu: 

( )
( ))exp()exp(

)exp()exp()(
netnet
netnetnetf

−+
−−

=                      (2.67) 

• Sinüs, Kosinüs aktivasyon fonksiyonu: 

)()( netSinnetf =                            (2.68a) 

)()( netCosnetf =                            (2.68b) 

 

2.3.3. Öğrenme Algoritması 

Yapay sinir ağlarının beklide en önemli özelliği, bir bilgi kaynağından (veriden) 

öğrenebilme yeteneğidir. Öğrenme işlemi, ağırlıkların en iyi değerinin bulunması 

işlemidir ve bu işlem yapay sinir ağının eğitimi olarak isimlendirilir. Yapay sinir 

ağlarında öğrenme işlemi, önceden belirlenmiş bir ölçüte göre adım adım ağırlıkların en 

iyi değerine ulaşılmaya çalışılan, öğrenme algoritması adı verilen algoritmanın 

kullanılmasıyla gerçekleştirilir. 
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Yapay sinir ağında en iyi ağırlıkların bulunması bir optimizasyon problemi 

olarak düşünülebilir. Bununla birlikte yapay sinir ağlarının eğitiminde kullanılan 

yöntemler arasında, genetik algoritmalar, tavlama benzetimi ve tabu arama algoritması 

gibi sezgisel algoritmalar da bulunmaktadır. 

Öğrenme algoritmaları, öğrenme kuralı adı verilen değişik kurallara göre işler. 

En çok bilinen ve kullanılan iki öğrenme kuralı, denetimli (supervised) ve denetimsiz 

(unsupervised) öğrenme kuralıdır. Denetimli öğrenmede, elde edilecek her bir çıktı 

değerinin, önceden bilinen bir hedef değeri vardır. Buna göre, öğrenme algoritmasının 

her bir adımında, yapay sinir ağının çıktı değeri ve karşılık gelen hedef değeri 

arasındaki hata azaltılarak ağırlık değerleri güncellenir. Bir başka sözle, denetimli 

öğrenmede amaç, yapay sinir ağının çıktı değeriyle, bu değerin hedef değeri arasındaki 

farkı minimum yapacak ağırlık değerlerini bulmaktır. Denetimsiz öğrenmede ise çıktı 

değerlerine karşılık gelen hedef değerleri yoktur. Girdi değerleri arasındaki 

benzerliklere göre, bu değerler kümelendirilir. Denetimsiz öğrenmede amaç, yapay sinir 

ağı çıktısının, girdi verisindeki istatistiksel düzeni en iyi şekilde yakalamasını 

sağlayacak ağırlıkların belirlenmesidir. 

 

2.3.3.1. Geri Yayılım Öğrenme Algoritması 

Geri yayılım (backpropagation) öğrenme algoritması genelleştirilmiş delta kuralı 

olarak da bilinir. İlk olarak Werbos (1974) tarafından ortaya konmuş ve Parker (1982) 

tarafından yeniden gündeme taşınmıştır. Rumelhart ve ark. (1986) da bu konuda 

çalışmışlar ve Le Chun (1988) yaptığı çalışmada çok benzer bir algoritma sunmuştur. 

Bu bölümde, ileri beslemeli çok tabakalı yapay sinir ağları için geri yayılım 

öğrenme algoritması tanıtılacaktır. İleri beslemeli çok tabakalı bir yapay sinir ağı, 

verilen girdi ve elde edilen çıktı değerleri arasında, seçilen aktivasyon fonksiyonunun 

sağladığı eğrisel eşleşmeyi gerçekleştirir. İleri beslemeli çok tabakalı bir yapay sinir 

ağında öğrenme, hedef çıktı ve elde edilen çıktı değerleri arasındaki farkı makul bir 

seviyede tutacak ağırlıkları belirlemeyi içerir. Geri yayılım algoritması, uygun bir 

şekilde oluşturulmuş hata fonksiyonunun (maliyet fonksiyonu veya enerji fonksiyonu) 

kısıtsız optimizasyon problemi olarak da düşünülebilir. 
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Şekil 2.10. ile verilen örnek bir yapay sinir ağı için geri yayılım öğrenme 

algoritmasının algoritması beş temel adımda incelenebilir. 

  

Şekil 2.10. Geri yayılım öğrenme algoritması için örnek yapay sinir ağı 

Adım 1. Ağırlıkların başlangıç değerlerinin seçilmesi 

Ağırlıkların başlangıç değerlerinin belirlenmesinde çeşitli yöntemler kullanılabilir, 

ancak Smith ve Gupta (2002) başlangıç değerlerinin,    

v
w

v
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ji
5.05.0 ][ ≤≤−                              (2.69) 

aralığından rastgele seçilmesini önermişlerdir. Burada v, s tabakasındaki nöron sayısını 

gösterir. 

Adım 2. Nöronların çıktı değerinin hesaplanması. 

Gizli tabakalardaki nöronlar için: 
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Çıktı tabakasındaki nöronlar için: 

∑
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Adım 3. Tüm tabakalar için hata sinyallerinin hesaplanması. 

Çıktı tabakasındaki nöronlar için: 
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Gizli tabakalardaki nöronlar için: 
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Adım 4. Ağırlıkların güncellenmesi. 

Çıktı tabakasındaki ağırlıklar için değişim miktarı: 

]1[][][ .. −=∆ s
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s
ij ocw δ                              (2.74) 

Gizli tabakalardaki ağırlıklar için değişim miktarı: 
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i

s
j

s
ij ocw δ                              (2.75) 

Tüm ağırlıkların güncellenmesi: 

)()()1( ][][][ kwkwkw s
ji

s
ji

s
ji ∆+=+                      (2.76) 

şeklindedir. Burada c parametresi, geri yayılım algoritmasının öğrenme oranını 

göstermektedir. Geri yayılım algoritmasında, öğrenme oranının doğru olarak seçilmesi, 

optimal sonuca yaklaşmada çok önemlidir. Öğrenme oranı, sabit bir değer alınabileceği 

gibi, algoritmanın işleyişine göre dinamik olarak da güncellenebilir. 
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Adım 5. Algoritmanın durdurulması. 

Bir sonraki öğrenme örneğine ilişkin girdi değerleri alınır ve 2. Adım’a geri dönülür. 

jiw  ağırlıkları belli bir değere yakınsayıncaya kadar algoritma sürdürülür. 

 

2.3.3.2. Levenberg – Marquardt Öğrenme Algoritması 

İleri beslemeli ağlarda kullanılan öğrenme algoritmaları, performans 

fonksiyonunu en küçük yapacak ağırlıkları ayarlayabilmek için, performans 

fonksiyonunun gradyenini kullanırlar. Geriye yayılım algoritması da, ağ boyunca 

gradyen hesaplamalarını geriye doğru yapar. En basit geriye yayılım öğrenme 

algoritması Gradyen Azalması algoritmasıdır. Bu algoritmada ağırlıklar, performans 

fonksiyonunun azalması yönünde ayarlanır. Fakat bu yöntem, pek çok problem için çok 

yavaş kalmaktadır.  

Bu algoritmadan daha hızlı, daha yüksek performanslı algoritmalar da vardır. 

Bunlardan bazıları, standart sayısal optimizasyon yöntemlerini kullanan, eşlenik 

gradyen öğrenme algoritması, Newton öğrenme algoritmaları ve Levenberg – 

Marquardt öğrenme algoritmasıdır. 

Öğrenme algoritmaları, kendisinden önce geliştirilen algoritmalara alternatif 

olarak ortaya çıkmıştır ve önceki algoritmaların iyi yönlerini geliştirip, kötü yönlerini 

azaltmaya yönelmiştir. Levenberg – Marquardt algoritması da, Newton ve Gradyen 

Azalması algoritmalarının en iyi özelliklerinden oluşur ve kısıtlamalarını ortadan 

kaldırır (Bolat ve Kalenderli, 2003). 

Eşlenik gradyen öğrenme algoritmasına alternatif olarak sunulan Newton 

yöntemlerinde, temel adım, performans fonksiyonunun ağırlıklara göre ikinci dereceden 

türevlerinden oluşan, Hessian matrisini elde etmektir. Hessian matrisi, ağırlık uzayının 

farklı doğrultularındaki gradyen değişimini gösterir. 
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burada H, Hessian matrisi, E, performans fonksiyonu, w, ağın sinaptik ağırlığıdır. 

Performans fonksiyonu, duruma göre toplam ani hata veya ortalama karesel hata olarak 

alınabilir. Bu çalışmada, ileri beslemeli ağların çoğunda olduğu gibi, performans 

fonksiyonu olarak, ortalama karesel hata kullanılmıştır. 
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1)()(                        (2.78) 

burada N, eğitim kümesindeki toplam örüntü sayısını, ej, hata işaretini, C, ağın çıkış 

katmanındaki bütün nöronları içeren kümeyi göstermektedir. dj hedef değer, yj ağın 

çıktısı olmak üzere hata, 

)()()( nyndne jjj −=                        (2.79) 

ifadesi ile elde edilebilir. Hessian matrisi hesaplandıktan sonra, tersi bulunarak 

ağırlıklar yenilenebilir. Ancak Hessian matrisi çok karmaşık ve ileri beslemeli bir yapay 

sinir ağı için hesaplanması zor bir matristir. Newton yöntemlerinin içinde, ikinci 

dereceden türevlerin hesaplanmadan işlem yapılan bir sınıf vardır. Bu sınıftaki 

yöntemler, Quasi –Newton yöntemleri olarak adlandırılırlar. Quasi – Newton 

yöntemleri, algoritmanın her iterasyonunda, Hessian matrisinin yaklaşık bir şeklini 

kullanır. 

Levenberg – Marquardt algoritması da Quasi – Newton yöntemleri gibi, Hessian 

matrisinin yaklaşık değerini kullanır. Levenberg – Marquardt algoritması için Hessian 

matrisinin yaklaşık değeri, 

InJnJnH T µ+= )()()(                        (2.80) 

şeklinde ifade edilir. Burada, µ  Marquardt parametresi, I birim matrisi gösterirken, 

hataların ağırlıklara göre birinci türevlerinden oluşan J, Jakobien matris olarak 

isimlendirilir ve 
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ifadesi ile bulunabilir. Bu ifade, e, ağ hata vektörüdür. Jakobien matrisi, Hessian 

matrisine göre daha kolay hesaplanabilir olduğundan uygulamada tercih edilir. Ağın 

gradyeni ise, 

)()()( nenJng T=                        (2.82) 

şeklinde hesaplanır ve sonuç olarak ağırlıklar, 

[ ] )()()()1( 1 ngnHnwnw −−=+                     (2.83) 

ifadesine göre değiştirilerek güncellenir. 

Marquardt parametresi, µ, skaler bir sayıdır. Eğer µ sıfırsa, bu yöntem yaklaşık 

Hessian matrisini kullanan Newton algoritması; eğer µ büyük bir sayı ise, küçük adımlı 

gradyen azalması yöntemi haline gelir. Newton yöntemleri, en küçük hata yakınlarında 

daha hızlı ve kesindir. Her başarılı adımdan sonra, yani performans fonksiyonunun 

azalmasında µ azaltılır ve sadece deneme niteliğindeki bir adım performans 

fonksiyonunu yükseltecekse µ arttırılır. Bu yöntemle, algoritmanın her iterasyonunda, 

performans fonksiyonu daima azaltılır. 

Genel olarak Levenberg – Marquardt algoritması yavaş yakınsama probleminden 

etkilenmez. Burada hedef, performans fonksiyonun en küçük yapacak ağırlık değerini 

bulmaktadır (Ngia, 2000, Oğuz, 2001). 

 

 

 

 

 

 

 



 38

3. MATERYAL VE YÖNTEM 

3.1. Bulanık Zaman Serileri 

Bulanık zaman serisi analizi yöntemleri, son zamanlarda, doğrusal ya da eğrisel 

model özelliği taşıyan, gözlem sayısını koşul olarak almaksızın az ya da çok sayıda 

gözlem içeren tüm verilere kolaylıkla uygulanabilmesi nedeniyle literatürde sıklıkla 

tercih edilmektedir. 

İlk olarak Song ve Chissom (1993a, 1993b, 1994) tarafından ortaya atılan 

bulanık zaman serisi kavramı Zadeh (1965, 1973, 1975) tarafından verilen bulanık 

küme teorisine dayanmaktadır. Bulanık zaman serisi analizi yöntemleri genel olarak, 

gözlemlerin bulanıklaştırılması, bulanık ilişkilerin belirlenmesi ve durulaştırma olmak 

üzere üç aşamadan oluşmaktadır. Huarng ve Yu (2005 ve 2006), Huarng (2001a), Yu 

(2005a) ve Huarng ve Yu (2004) çalışmalarında bulanık zaman serisi yöntemlerinde 

bulanıklaştırma aşamasının geliştirilmesi ile ilgilenilmiştir. Bulanık ilişkinin 

belirlenmesi aşamasında ise Song ve Chissom (1993a, 1993b) tarafından önerilen ve 

matris hesaplama işlemlerine dayanan yöntemin yerine Chen (1996), bulanık ilişki 

tablolarını kullanan, daha kolay ve etkin bir yöntem önermiştir. Bunun yanında, Huarng 

ve Yu (2006) ise basit bir ileri beslemeli yapay sinir ağı kullanılarak bulanık ilişkilerin 

belirlendiği başka bir birinci dereceden bulanık zaman serisi yaklaşımı önermiştir.  

Bunun dışında Sullivan ve Woodal (1994), Song ve ark. (1995), Song ve Leland 

(1996), Hwang ve ark. (1998), Chen(2000), Chen ve Hwang (2000), Huarng (2001b), 

Huanrg ve Yu (2005) ve Yu (2005b) tarafından bu konudaki diğer önemli çalışmalar 

ortaya koyulmuştur. Bu yöntemlerin hepsinde birinci derece bulanık zaman serisi 

modeli ile ilgilenilmiştir. Chen (2002) ise yüksek dereceli bulanık zaman serisi 

yaklaşımı önermiştir. Chen (2002) tarafından önerilen bu yaklaşımda modelde tüm 

gecikmeli bulanık değişkenlerin bulunması nedeniyle derece arttıkça bulanık ilişkinin 

belirlenmesi ve dolayısıyla yöntemin uygulanması oldukça zorlaşmaktadır. Yüksek 

dereceli modelin çözümlenmesinde bulanık ilişkiler, yapay sinir ağı ile belirlenir ise 

Chen (2002) tarafından önerilen bu yöntemdeki işlem yoğunluğundan kurtulmak 

mümkündür. 
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Bulanık zaman serisi yaklaşımları bazı temel kavram ve tanımlara bağlıdır. Bu 

tanım ve kavramlar aşağıda özetlenmiştir. 

{ }buuuU ,...,, 21= , evrensel küme ve evrensel kümenin belirlenen bir sabit aralık 

uzunluğuna göre parçalanması ile elde edilen iu ’ler alt aralıklar olmak üzere bulanık 

kümeler, 

bbAAAi uufuufuufA
iii

/)(/)(/)( 2211 +++= L               (3.1) 

şeklinde tanımlanır. Burada, 
iAf , iA  bulanık kümesinin üyelik fonksiyonunu gösterir ve 

[ ]1,0: →Uf
iA  olacaktır. Bunun yanında )( aA uf

i
 ise au alt aralığının iA  bulanık 

kümesine ait olmasının üyelik derecesidir ve ba ≤≤1  olmak üzere [ ]1,0)( ∈aA uf
i

olacaktır. 

Tanım 1. Y(t), (t=…, 0, 1, 2, …) reel değerli zaman serisi olsun. Zaman serisine uygun 

evrensel küme tanımı ve alt aralıkların tespit edilmesinden sonra bunlara bağlı olarak 

elde edilen iA  bulanık kümelerinden oluşan yeni zaman serisi, F(t) bulanık zaman serisi 

olarak adlandırılır. 

F(t) bulanık zaman serisi hakkında, Tanım 1. gereğince, şunlar söylenebilir, 

i. F(t) zamanın bir fonksiyonudur. 

ii. F(t) bulanık kümeler tarafından temsil edilen dilsel değerlere sahip, dilsel 

değişkenler olarak ifade edilebilir. 

Tanım 2. “*” herhangi bir operatörü göstermek üzere, eğer F(t) bulanık zaman serisi 

yalnızca bir gecikmeli F(t-1) bulanık zaman serisinden etkilenmekte ise, F(t) ile F(t-1) 

bulanık zaman serisi arasındaki bulanık ilişki, 

)1,()1()( −∗−= ttRtFtF                     (3.2) 

şeklinde ifade edilir ve birinci dereceden bulanık zaman serisi öngörü modeli olarak 

adlandırılır. Bu ilişki Song ve Chissom (1993a) tarafından aşağıdaki gibi 

tanımlanmıştır, 
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)()1( tFtF →−                          (3.3) 

Sonuç olarak iAtF =− )1(  ve jAtF =)(  olduğunda F(t) ile F(t-1) bulanık zaman serisi 

arasındaki bulanık ilişki, 

ji AA →                           (3.4) 

olacaktır, ki burada iA , bulanık ilişkinin sol yanı, jA  ise bulanık ilişinin sağ yanı olarak 

isimlendirilir. 

Tanım 3. Eğer F(t) bulanık zaman serisi, gecikmeli )(,),2(),1( ntFtFtF −−− K

bulanık zaman serilerinden etkilenmekte ise, F(t) bulanık zaman serisi ile 

)(,),2(),1( ntFtFtF −−− K  bulanık zaman serileri arasındaki bulanık ilişki, 

)()1(),2(),...,( tFtFtFntF →−−−            (3.5) 

ifadesi ile verilebilir ve n’nci dereceden bulanık zaman serisi öngörü modeli olarak 

adlandırılır. 

 

3.1.1. Chen’ nin Yüksek Dereceli Bulanık Zaman Serisi Yöntemi 

Chen, 2002 yılında yaptığı çalışmada öngörü elde etmede yüksek dereceli 

bulanık zaman serisi yaklaşımını önermiştir. Chen (2002) tarafından verilen bu 

yöntemde yüksek dereceli modellerde tüm gecikmeli bulanık değişkenler 

bulunmaktadır. Yani 4. dereceden bir zaman serisinin çözümlenmesinde, F(t) bulanık 

zaman serisi iken, F(t-1), F(t-2), F(t-3), F(t-4) bulanık gecikmeli değişkenleri modelde 

yer almaktadır. Birinci dereceden bulanık zaman serisi öngörü modellerine göre daha 

iyi sonuçlar veren, bu yüksek dereceli bulanık zaman serisi yönteminin algoritması 

aşağıdaki adımlardan oluşur (Chen 2002). 

Adım 1. Evrensel küme ve alt aralıklar tanımlanır. 

Veri setinin en küçük ve en büyük değerleri sırasıyla minD  ve maxD  , ayrıca keyfi iki 

sayı 1D  ve 2D  olmak üzere evrensel küme, 
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[ ]2max1min , DDDDU +−=                  (3.6) 

şeklinde ve sabit aralık uzunluğuna sahip iu  alt aralıkları, 

{ }buuuU ,,, 21 K=                      (3.7) 

olacak şekilde tanımlanır. 

Adım 2. Evrensel küme ve belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 

tanımlanır. 

Üyelik dereceleri, 








=+−=

=
=

..,0
,,2,1,1,1,5.0

,1

wo
bjjjk

jk
a jk K             (3.8) 

olmak üzere, bulanık kümeler aşağıdaki gibi tanımlanır. 

bjuauauaA bjbjjj ,,2,1,/// 2211 KL =+++=            (3.9) 

Adım 3. Gözlemler bulanıklaştırılır. 

Her bir veri bulunduğu aralığın en büyük üyelik değerine sahip olduğu bulanık küme ile 

eşleştirilerek zaman serisi bulanıklaştırılır. 

Adım 4. Bulanık mantık ilişki ve grup ilişki tablosu oluşturulur. 

Bulanık mantık ilişki ve grup ilişki tablosu oluşturulmasını kavrayabilmek için birkaç 

örnekle açıklamaya çalışalım. Örneğin, birinci dereceden bulanık mantık ilişkiler, 

kiiiji AAAAAA →→→ ,,  

şeklinde verilmişken, bulanık mantık grup ilişkisi, 

kiji AAAA ,,→   
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olarak elde edilir. Benzer şekilde genel bir ifade ile n’nci dereceden bulanık mantık 

ilişkiler, 

jpiniin

jiniin

jiniin

AAAA

AAAA

AAAA

→

→

→

−

−

−

1)1(

21)1(

11)1(

,,,

,,,

,,,

K

MM

K

K

 

şeklinde verilmişken, bulanık mantık grup ilişkisi, 

jpjjiniin AAAAAA ,,,,,, 211)1( KK →−  

olarak elde edilir. Bulanık mantık ilişki ve grup ilişki tabloları, elde edilen bu bulanık 

mantık ilişki ve grup ilişkilerden oluşur. 

Adım 5. Bulanık öngörüler elde edilir. 

n’nci dereceden bulanık zaman serisi öngörü modeli için bulanık öngörüler elde 

edilirken üç durum söz konusudur. 

Durum 1. n’nci dereceden bulanık mantık grup ilişki tablosunda, 

jiniin AAAA →− 1)1( ,,, K            (3.10) 

ilişkisi mevcut ise bulanık öngörü, jA  olacaktır. 

Durum 2. n’nci dereceden bulanık mantık grup ilişki tablosunda, 

jpjjiniin AAAAAA ,,,,,, 211)1( KK →−              (3.11) 

ilişkisi mevcut ise bulanık öngörüde belirsizlik söz konusudur ve bulanık öngörünün 

elde edilebilmesi için belirsizlik giderilene kadar incelenen derecenin bir üst derecesine 

bakılarak m>n olmak üzere, 

jimiim AAAA →− 1)1( ,,, K            (3.12) 

ilişkisini veren m aranır ve bu durumda bulanık öngörü, yine jA  olacaktır. 
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Durum 3. n’nci dereceden bulanık mantık grup ilişki tablosunda, 

BoşAAA iniin →− 1)1( ,,, K            (3.13) 

ilişkisi mevcut ise reel öngörü, 1)1( ,,, iniin AAA K−  bulanık kümelerine bağlı olarak, 

1)1( ,,, iniin uuu K−  aralıklarının orta noktaları, 1)1( ,,, iniin mmm K−  olmak üzere, 

n
mnmm iniin

+++

×++×+× −

L

L

21
21 1)1(          (3.14) 

ifadesi ile elde edilir. 

Adım 6. Durulaştırma işlemi uygulanır. 

Durulaştırmada merkezileştirme yöntemi kullanılır. Öngörülerin elde edilmesinde 

karşılaşılan Durum 1. ve Durum 2. için bulanık öngörü jA  olarak elde edilmişken, 

durulaştırılmış öngörü, jA  bulanık kümesinde en yüksek üyelik değerine sahip olan ju  

aralığının orta noktası olacaktır. Durum 3. için ise reel öngörünün, 1)1( ,,, iniin AAA K−  

bulanık kümelerine bağlı olarak nasıl elde edildiği daha önce belirtilmişti. 

 

3.1.2. Y.S.A.’na Dayalı Yüksek Dereceli Bulanık Zaman Serisi Yöntemi 

Chen (2002) tarafından tanımlanan yüksek dereceli bulanık zaman serisi modeli 

AR(p), p>1 yapılı zaman serilerini de modelleyebilir. Bunun yanında, yüksek dereceli 

bulanık zaman serisi yaklaşımında derece arttıkça, bulanık ilişkinin belirlenmesinde, 

Chen (2002) tarafından önerilen yöntemin uygulanması da oldukça zorlaşmaktadır. 

Yüksek dereceli modelin çözümlenmesinde bulanık ilişkiler, yapay sinir ağı ile 

belirlenir ise Chen (2002) tarafından önerilen yöntemde bulanık mantık ilişki ve grup 

ilişki tablolarının oluşturulmasındaki karmaşıklıktan ve işlem yoğunluğundan 

kurtulmak, bunun yanında daha iyi öngörüler elde etmek mümkündür. Bu çalışmada bu 

dezavantajları olmayan, yapay sinir ağlarına dayalı yeni bir yöntem önerilmiştir. 

Önerilen yöntemin algoritması aşağıdaki adımlardan oluşur. 
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Adım 1. Evrensel küme ve alt aralıklar tanımlanır. 

Veri setinin en küçük ve en büyük değerleri sırasıyla minD  ve maxD  , ayrıca keyfi iki 

sayı 1D  ve 2D  olmak üzere evrensel küme, 

[ ]2max1min , DDDDU +−=                (3.15) 

şeklinde ve sabit aralık uzunluğuna sahip iu  alt aralıkları, 

{ }buuuU ,,, 21 K=                    (3.16) 

olacak şekilde tanımlanır. 

Adım 2. Evrensel küme ve belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 

tanımlanır. 

Üyelik dereceleri, 








=+−=

=
=

..,0
,,2,1,1,1,5.0

,1

wo
bjjjk

jk
a jk K           (3.17) 

olmak üzere, bulanık kümeler aşağıdaki gibi tanımlanır. 

bjuauauaA bjbjjj ,,2,1,/// 2211 KL =+++=          (3.18) 

Adım 3. Gözlemler bulanıklaştırılır. 

Her bir veri bulunduğu aralığın en büyük üyelik değerine sahip olduğu bulanık küme ile 

eşleştirilerek zaman serisi bulanıklaştırılır. 

Adım 4. Bulanık mantık ilişkileri ileri beslemeli yapay sinir ağı kullanılarak oluşturulur. 

• Sinir ağının girdileri gecikmeli değişkenlerden, çıktıları öngörülerden ve hedef 

değerleri ise gerçek verinin bulanık değerlerinden oluşur. 

• Sinir ağı verilen girdi ve çıktılara göre eğitilir. 

• Girdi nöronlarının sayısı modelin derecesi olacaktır. 
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• Gizli tabaka birim sayısına deneme yanılma yöntemi ile karar verilir. 

• Çıktı birimlerindeki nöron sayısının ise bir olacağı açıktır. 

Bu özellikleri taşıyan ileri beslemeli yapay sinir ağı mimarisi Şekil 3.1.’de verilmiştir. 

 

Şekil 3.1. İleri beslemeli yapay sinir ağı mimarisi 

Bulanık mantık ilişkilerin, ileri beslemeli yapay sinir ağı kullanılarak oluşturulması ve 

ağın girdi, çıktı ve hedef değerlerini daha iyi kavrayabilmek için elimizde 6 gözlemden 

oluşan herhangi bir F(t) bulanık zaman serisi olduğunu ve ikinci gecikme için ileri 

beslemeli yapay sinir ağı ile bulanık ilişki belirlenmesinin istendiğini düşünelim. Bu 

durumda, 

• İlk olarak F(t-1) ve F(t-2) gecikmeli bulanık zaman serileri oluşturulur. 

• Ağın girdi tabakası 2 ve çıktı tabakası 1 nörondan oluşacaktır. 

• Girdiler, gecikmeli değişkenler olup, gecikmeli bulanık zaman serisinin sınıf 

numaralarından ve hedef değerler, bulanık zaman serisinin kendi sınıf 

numaralarından oluşur. 

Bu özellikleri taşıyan, ikinci dereceden bulanık zaman serisi öngörü modeli için bulanık 

ilişkilerin ileri beslemeli yapay sinir ağı ile belirlendiği, ağın girdi, çıktı ve hedef 

değerlerini Tablo 3.1.’de görebiliriz. 

 

)1( −tF  

)( ltF −  

)1( +− ltF  

)( ktF −  

)(ˆ tF  
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Tablo 3.1. İkinci dereceden bulanık zaman serisi öngörü modeli için örnek  

Gözlem No F(t-2) F(t-1) F(t) Girdi - 1 Girdi - 2 Hedef 
1 --- --- A6 --- --- --- 
2 --- A6 A2 --- --- --- 
3 A6 A2 A3 6 2 3 
4 A2 A3 A7 2 3 7 
5 A3 A7 A4 3 7 4 
6 A7 A4 A2 7 4 2 

 

Adım 5. Bulanık öngörüler elde edilir. 

n’nci dereceden bulanık zaman serisi öngörü modeli için bulanık öngörüler elde 

edilirken yalnızca tek durum söz konusudur. n’nci dereceden bulanık ilişkisi, 

jiniin AAAA →→− 1)1( ,,, K          (3.19) 

olarak elde edildiğinde bulanık öngörü jA  olacaktır. Burada 1)1( ,,, iniin AAA K−  yapay 

sinir ağının girdilerini, jA  ise çıktısını temsil etmektedir. 

Adım 6. Durulaştırma işlemi uygulanır. 

Durulaştırmada merkezileştirme yöntemi kullanılır. Bulanık öngörü jA  olarak elde 

edildiğinde, durulaştırılmış öngörü, jA  bulanık kümesinde en yüksek üyelik değerine 

sahip olan ju  aralığının orta noktası olacaktır. 

 

 

 

 

 

 

YSA
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4. BULGULAR VE TARTIŞMA 

Önerilen yeni yöntemin uygulaması, sırasıyla, literatürde sıkça kullanılan 1971-

1992 yıllarına ait Alabama Üniversitesi kayıt verisine (enrollment data) ve Şubat 2003 - 

Şubat 2008 dönemleri arasında hesaplanan aylık bazda Türkiye Tüketici Fiyat Endeksi 

(TÜFE) ve yine aynı zaman serisi kullanılarak Şubat 2004 ve Şubat 2008 dönemleri 

arasında her bir ay için hesaplanan yıllık bazda Türkiye Tüketici Fiyat Endeksi zaman 

serisine uygulanmıştır.  

Enflasyon öngörülerinin elde edilmesi önemli bir ekonomik problemdir. 

Öngörülerin daha doğru elde edilmesi daha doğru ekonomik politikalar doğuracaktır. 

T.C.M.B. her yılın belirli dönemlerinde, enflasyon beklentisi anketi sonuçlarının yer 

aldığı, enflasyon raporları yayınlamaktadır. Tüketici fiyat endeksi zaman serisi belirtilen 

dönemlerde, hem literatürde yer alan bazı bulanık zaman serisi yaklaşımları, hem de bu 

çalışmada önerdiğimiz yöntem ile aylık ve yıllık bazda ayrı ayrı tahmin edilerek 

sonuçlar öngörü doğruluğu açısından karşılaştırılmış ve bunun yanında, yıllık bazda 

elde edilen öngörüler aynı zamanda T.C.M.B. enflasyon beklentisi anketi sonuçları ile 

de karşılaştırılmıştır. 

Çözümleme aşamasında MATLAB programlama dilinde yazılmış programlar 

kullanılmış olup, örnek iki programın açık kodları Ek 3. ve Ek 4.’ de verilmiştir. 

 

4.1. Alabama Üniversitesi Kayıt Verisi Çözümlemesi 

Önerilen yöntem ilk olarak literatürde sıkça kullanılan ve grafiği Şekil 4.1.’de 

verilen, 1971-1992 yıllarına ait Alabama Üniversitesi kayıt verisine (enrollment data) 

uygulanmıştır. 

Bu veri için birinci, ikinci, üçüncü ve dördüncü dereceden bulanık zaman serisi 

modelleri ile uygulama yapılmıştır. Uygulamada iu  aralık uzunlukları Huarng 

(2001a)’ın çalışmasında olduğu gibi 200, 300, 400, 500, 600, 700, 800, 900 ve 1000 

olarak belirlenmiştir. Algoritmanın 4. adımında kullanılan ileri beslemeli yapay sinir ağı 

mimarisinde gizli tabaka birim sayısı, ağın genelleştirme yeteneğini kaybetmemesi için 

1-4 arasında sınırlandırılmıştır. 



 48

 

Şekil 4.1. 1971-1992 yılları Alabama Üniversitesi kayıt verisi 

Adım 1. Evrensel küme ve alt aralıklar tanımlanır. 

Veri setinin en küçük değerinin 13055 ve en büyük değerinin 19337 olması sebebiyle 

sırasıyla 13055min =D  ve 19337max =D  , ayrıca keyfi iki sayı 551 =D  ve 6632 =D  

olmak üzere evrensel küme, 

[ ]20000,13000=U  

ve bununla birlikte aralık uzunluğu verideki artışı kapsayacak şekilde 1000 olarak 

seçildiğinde, sabit aralık uzunluğuna sahip iu  alt aralıkları, 

[ ]14000,130001 =u ,  [ ]15000,140002 =u ,  [ ]16000,150003 =u , 

[ ]17000,160004 =u ,  [ ]18000,170005 =u ,  [ ]19000,180006 =u , 

[ ]20000,190007 =u  

şeklinde elde edilir. Bunun yanında aralık uzunluğu 200, 300, 400, 500, 600, 700, 800 

ve 900 olarak alındığında da iu  alt aralıkları benzer şekilde elde edilir.  

Adım 2. Evrensel küme ve belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 

tanımlanır. 

Adım 1.’de belirlenen evrensel küme ve aralık uzunluğunun sabit 1000 olduğu durumda 

belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 
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şeklinde elde edilir. Bunun yanında aralık uzunluğu 200, 300, 400, 500, 600, 700, 800 

ve 900 olarak alındığında da jA  bulanık kümeleri benzer şekilde elde edilir. 

Adım 3. Gözlemler bulanıklaştırılır. 

Her bir veri bulunduğu aralığın en büyük üyelik değerine sahip olduğu bulanık küme ile 

eşleştirilerek zaman serisi bulanıklaştırılır. Tablo 4.1.’de gözlemlere ait reel ve aralık 

uzunluğunun sabit 1000 olduğu durum için bulanıklaştırılmış değerler verilmiştir. 

Bunun yanında, diğer tüm aralık uzunlukları için de bulanık değerler benzer şekilde elde 

edilir. 

Tablo 4.1. Kayıt verisine ait reel ve bulanık değerler 

Yıl Değer Bulanık 
Değer Yıl Değer Bulanık 

Değer 
1971 13055 A1 1982 15433 A3 
1972 13563 A1 1983 15497 A3 
1973 13867 A1 1984 15145 A3 
1974 14696 A2 1985 15163 A3 
1975 15640 A3 1986 15984 A3 
1976 15311 A3 1987 16859 A4 
1977 15603 A3 1988 18150 A6 
1978 15861 A3 1989 18970 A6 
1979 16807 A4 1990 19328 A7 
1980 16919 A4 1991 19337 A7 
1981 16388 A4 1992 18876 A6 

 

Adım 4. Bulanık mantık ilişkileri ileri beslemeli yapay sinir ağı kullanılarak oluşturulur. 

Çözümlemede kullanılan yapay sinir ağı bileşenlerini aşağıdaki özellikleri taşımaktadır. 
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• Mimari Yapı: Tüm mümkün aralık uzunlukları için, girdi tabakasındaki birim 

sayısının her bir derece için sırasıyla 1, 2, 3 ve 4, gizli tabakadaki birim sayısının 

ise her bir durum için 1-4 arasında değiştiği ve çıktı tabakasında tek birimin 

kullanıldığı toplam 16 farklı mimari ile çözümleme yapılmıştır. 

• Öğrenme Algoritması: Öğrenme parametresinin her bir iterasyonda 

güncellendiği Levenberg – Marquardt algoritması en iyi ağırlıkların elde 

edilmesinde kullanılmıştır. 

• Aktivasyon Fonksiyonu: Tüm birimlerde eğrisel aktivasyon fonksiyonlarından 

olan ve eğim parametresi 1=γ  olmak üzere, aşağıdaki eşitlik ile ifade edilen 

Lojistik aktivasyon fonksiyonu kullanılmıştır. 

1))exp(1()( −−+= xxf γ             (4.1) 

 Adım 5. Bulanık öngörüler elde edilir. 

Aralık uzunluğunun sabit 1000 olduğu durum için ileri beslemeli yapay sinir ağı 

kullanılarak, ikinci dereceden bulanık zaman serisi öngörü modeli için oluşturulan 

bulanık mantık ilişkilerinden yararlanılarak elde edilen bulanık öngörüler Tablo 4.2.’de 

verilmiştir.  

Tablo 4.2. Kayıt verisine ait bulanık öngörüler 

Yıl Bulanık 
Değer 

Bulanık 
Öngörü Yıl Bulanık 

Değer 
Bulanık 
Öngörü 

1971 A1 --- 1982 A3 A4 
1972 A1 --- 1983 A3 A3 
1973 A1 A2 1984 A3 A3 
1974 A2 A2 1985 A3 A3 
1975 A3 A3 1986 A3 A3 
1976 A3 A3 1987 A4 A3 
1977 A3 A3 1988 A6 A5 
1978 A3 A3 1989 A6 A6 
1979 A4 A3 1990 A7 A7 
1980 A4 A5 1991 A7 A7 
1981 A4 A4 1992 A6 A7 
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Bunun yanında aralık uzunluğu olarak 200, 300, 400, 500, 600, 700, 800 ve 900 

alındığında da ikinci dereceden bulanık zaman serisi öngörü modeli için bulanık 

öngörüler ve ayrıca tüm aralık uzunluklarında birinci, üçüncü ve dördüncü dereceden 

bulanık zaman serisi öngörü modelleri için bulanık öngörüler benzer şekilde elde edilir. 

Adım 6. Durulaştırma işlemi uygulanır. 

Durulaştırmada merkezileştirme yöntemi kullanılır. Aralık uzunluğunun sabit 1000 

olduğu durumda, ikinci dereceden bulanık zaman serisi öngörü modeli için elde edilen 

bulanık öngörüler dikkate alınarak yapılan durulaştırma işlemi sonucunda ulaşılan 

durulaştırılmış öngörüler Tablo 4.3.’de verilmiştir. Ayrıca diğer tüm aralık uzunlukları 

ve dereceler için de durulaştırılmış öngörüler benzer şekilde elde edilir. 

Tablo 4.3. Kayıt verisine ait durulaştırılmış öngörüler 

Yıl Bulanık 
Öngörü 

Duru 
Öngörü Yıl Bulanık 

Öngörü 
Duru 

Öngörü 

1971 --- --- 1982 A4 16500 
1972 --- --- 1983 A3 15500 
1973 A2 14500 1984 A3 15500 
1974 A2 14500 1985 A3 15500 
1975 A3 15500 1986 A3 15500 
1976 A3 15500 1987 A3 15500 
1977 A3 15500 1988 A5 17500 
1978 A3 15500 1989 A6 18500 
1979 A3 15500 1990 A7 19500 
1980 A5 17500 1991 A7 19500 
1981 A4 16500 1992 A7 19500 

 

Önerilen yöntemin algoritmasını oluşturan 6 adım, tüm mümkün durumlar için 

uygulandı ve elde edilen durulaştırılmış öngörüler )ˆ( iy  ile verinin gerçek değerleri 

)( iy  kullanılarak, tüm bu durumlar için hata kareler ortalanması karekökü (H.K.O.K.), 

n

yy
KOKH

n

t
tt∑

=

−
= 1

2)ˆ(
....             (4.2) 
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formülü ile hesaplandı. Tüm mümkün durumlar için hesaplanan H.K.O.K. sonuçları 

Tablo 4.4.’de verilmiştir.  

Tablo 4.4. Önerilen yöntemin kayıt verisi için H.K.O.K. değerleri 

  H.K.O.K. Değeri 
Aralık 

Uzunluğu 
Gizli Tabaka 
Birim Sayısı 

Birinci 
Derece 

İkinci 
Derece 

Üçüncü 
Derece 

Dördüncü 
Derece 

200 1 537.27 444.31 874.39 1083.94 
300 1 578.91 521.16 519.56 1089.57 
400 1 551.67 482.18 511.84 1085.94 
500 1 614.04 557.62 492.26 1135.43 
600 1 636.10 630.53 507.34 989.55 
700 1 527.76 361.67 724.60 1550.24 
800 1 683.79 639.82 713.81 1069.31 
900 1 641.49 463.77 617.16 1160.89 
1000 1 758.06 680.36 648.26 1069.63 
200 2 3398.23 412.91 3319.91 1105.73 
300 2 3529.50 433.44 3453.59 1205.40 
400 2 3311.60 394.83 3231.58 1081.66 
500 2 3354.82 455.35 3275.66 1096.06 
600 2 3398.23 482.94 3319.91 1090.27 
700 2 3706.73 379.61 3633.81 1166.89 
800 2 3140.72 553.83 3057.09 1099.11 
900 2 3796.20 439.87 3724.68 1141.39 
1000 2 3573.58 600.99 3498.44 970.91 
200 3 420.17 3237.23 607.47 1180.21 
300 3 474.27 3368.58 608.81 1183.40 
400 3 431.08 3150.59 609.44 1085.94 
500 3 466.28 432.08 677.77 1078.46 
600 3 542.63 502.90 554.62 1650.48 
700 3 468.33 347.85 697.30 1223.51 
800 3 616.40 553.83 602.00 1064.86 
900 3 629.89 512.01 775.03 1134.09 
1000 3 728.59 600.99 496.96 1436.85 
200 4 419.49 259.99 629.96 1148.32 
300 4 488.63 277.96 621.03 1136.00 
400 4 444.05 288.19 621.38 967.33 
500 4 464.75 410.78 643.92 1127.22 
600 4 556.56 424.42 622.39 3410.87 
700 4 466.19 294.57 697.30 1183.08 
800 4 626.81 553.83 647.23 3139.86 
900 4 554.09 476.60 688.69 1134.09 
1000 4 723.02 636.47 496.96 3594.10 



 53

Tüm mümkün durumlar için hesaplanan H.K.O.K. sonuçlarının verildiği Tablo 4.4. 

incelendiğinde genel olarak ikinci dereceden bulanık zaman serisi öngörü modelinden 

elde edilen sonuçların diğer dereceden modellere göre daha iyi sonuçlar verdiği 

görülmektedir. Önerilen yöntemin en iyi sonucu ile birlikte literatürde uygulanan diğer 

yöntemlere ait en iyi sonuçlar Tablo 4.5.’de verilmektedir. Bu tablo incelendiğinde ise 

literatürde uygulanan diğer yöntemler arasında en iyi sonucun Chen (2002) tarafından 

önerilen yöntemde, üçüncü dereceden bulanık zaman serisi öngörü modeli için 

H.K.O.K. değeri, 294.44 ile elde edildiği görülürken, bu çalışmada önerilen yöntemde 

ise en iyi sonuca, ikinci dereceden bulanık zaman serisi öngörü modelinde, bulanık 

ilişkinin 2-4-1 mimarisi ile belirlendiği ve aralık uzunluğunun 200 olduğu durumda, 

259.99 H.K.O.K. değeri ile ulaşılmıştır. 

Tablo 4.5. Önerilen ve Literatürdeki diğer yöntemlerin en iyi sonuçları 

Yöntem Derece H.K.O.K. 

Song ve Chissom (1993a) 1 642.26 

Song ve Chissom (1994) 1 880.73 

Sullivan ve Woodall (1994) 1 621.33 

Chen (1996) 1 638.36 

Hwang, Chen, ve Lee (1998) 5 528.13 

Chen (2002) 3 294.44 

Önerilen Yöntem 2 259.99 

 

4.2. Aylık Bazdaki TÜFE Verisi Çözümlemesi 

Önerilen yeni yöntem, ikinci olarak,  grafiği Şekil 4.2.’de verilen, Şubat 2003 ve 

Şubat 2008 dönemleri arasında hesaplanan aylık bazda Türkiye Tüketici Fiyat Endeksi 

(TÜFE) zaman serisine uygulanmıştır.  
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Şekil 4.2. Şubat 2003 ve Şubat 2008 aylık bazda TÜFE verisi 

Uygulamada ilgilenilen zaman serisine ait aylık bazda bulunan veri kümesinden 

ilk 49 veri eğitim kümesi ve son 12 veri de önerilen yöntem sonuçlarının literatürdeki 

diğer yöntem sonuçları ile karşılaştırılabilmesi için test kümesi olarak alınmıştır. Bu 

zaman serisi için birinci dereceden başlayarak on ikinci dereceye kadar olan bulanık 

zaman serisi modelleri ile uygulama yapılmıştır. Uygulamada iu  aralık uzunlukları, 

verinin artışı göz önünde bulundurularak 0.10 ile 0.50 arasında her bir aşamada 0.05 

arttırılarak belirlenmiştir. Algoritmanın 4. adımında kullanılan ileri beslemeli yapay 

sinir ağı mimarisinde gizli tabaka birim sayısı, ağın genelleştirme yeteneğini 

kaybetmemesi için 1-6 arasında sınırlandırılmıştır. 

Aylık bazda bulunan zaman serisinin çözümlemesi şu şekilde özetlenebilir. 

Adım 1. Evrensel küme ve alt aralıklar tanımlanır. 

Veri setinin en küçük değerinin -0.73 ve en büyük değerinin 2.25 olması sebebiyle 

sırasıyla 73.0min −=D  ve 25.2max =D  , ayrıca keyfi iki sayı 27.01 =D  ve 75.02 =D  

olmak üzere evrensel küme, 

[ ]00.3,00.1−=U  

ve bununla birlikte aralık uzunluğu verideki artışı kapsayacak şekilde 0.50 olarak 

seçildiğinde, sabit aralık uzunluğuna sahip iu  alt aralıkları, 
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[ ]50.0,00.11 −−=u ,  [ ]00.0,50.02 −=u ,  [ ]50.0,00.03 =u , 

[ ]00.1,50.04 =u ,  [ ]50.1,00.15 =u ,  [ ]00.2,50.16 =u , 

[ ]50.2,00.27 =u   [ ]00.3,50.28 =u  

şeklinde elde edilir. Bunun yanında aralık uzunluğu olarak, 0.10, 0.15, 0.20, 0.25, 0.30, 

0.35, 0.40 ve 0.45 alındığında da iu  alt aralıkları benzer şekilde elde edilir.  

Adım 2. Evrensel küme ve belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 

tanımlanır. 

Adım 1.’de belirlenen evrensel küme ve aralık uzunluğunun sabit 0.50 olduğu durumda 

belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 
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şeklinde elde edilir. Bunun yanında aralık uzunluğu olarak 0.10, 0.15, 0.20, 0.25, 0.30, 

0.35, 0.40 ve 0.45 alındığında da jA  bulanık kümeleri benzer şekilde elde edilir. 

Adım 3. Gözlemler bulanıklaştırılır. 

Her bir veri bulunduğu aralığın en büyük üyelik değerine sahip olduğu bulanık küme ile 

eşleştirilerek zaman serisi bulanıklaştırılır. Tablo 4.6.’da gözlemlere ait reel ve aralık 

uzunluğunun sabit 0.50 olduğu durum için bulanıklaştırılmış değerler verilmiştir. Bunun 

yanında, diğer tüm aralık uzunlukları için de bulanık değerler benzer şekilde elde edilir. 
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Tablo 4.6. Aylık TÜFE verisine ait reel ve bulanık değerler 

Dönem Değer Bulanık 
Değer Dönem Değer Bulanık 

Değer 
Şubat 03 1.54 A6 Mart 05 0.26 A3 
Mart 03 1.96 A6 Nisan 05 0.71 A4 
Nisan 03 0.99 A4 Mayıs 05 0.92 A4 
Mayıs 03 0.96 A4 Haziran 05 0.10 A3 
Haziran 03 0.08 A3 Temmuz 05 -0.57 A1 
Temmuz 03 -0.19 A2 Ağustos 05 0.85 A4 
Ağustos 03 0.16 A3 Eylül 05 1.02 A5 
Eylül 03 1.35 A5 Ekim 05 1.79 A6 
Ekim 03 0.93 A4 Kasım 05 1.40 A5 
Kasım 03 1.27 A5 Aralık 05 0.42 A3 
Aralık 03 0.42 A3 Ocak 06 0.75 A4 
Ocak 04 0.66 A4 Şubat 06 0.22 A3 
Şubat 04 0.52 A4 Mart 06 0.27 A3 
Mart 04 0.96 A4 Nisan 06 1.34 A5 
Nisan 04 0.50 A4 Mayıs 06 1.88 A6 
Mayıs 04 0.43 A3 Haziran 06 0.34 A3 
Haziran 04 -0.13 A2 Temmuz 06 0.85 A4 
Temmuz 04 0.48 A3 Ağustos 06 -0.44 A2 
Ağustos 04 0.76 A4 Eylül 06 1.29 A5 
Eylül 04 0.95 A4 Ekim 06 1.27 A5 
Ekim 04 2.25 A7 Kasım 06 1.29 A5 
Kasım 04 1.31 A5 Aralık 06 0.23 A3 
Aralık 04 0.32 A3 Ocak 07 1.00 A5 
Ocak 05 0.55 A4 Şubat 07 0.43 A3 
Şubat 05 0.02 A3     
 

Adım 4. Bulanık mantık ilişkileri ileri beslemeli yapay sinir ağı kullanılarak oluşturulur. 

Çözümlemede kullanılan yapay sinir ağı bileşenlerini aşağıdaki özellikleri taşımaktadır. 

• Mimari Yapı: Tüm mümkün aralık uzunlukları için, girdi tabakasındaki birim 

sayısının her bir derece için sırasıyla 1-12, gizli tabakadaki birim sayısının ise 

her bir durum için 1-6 arasında değiştiği ve çıktı tabakasında tek birimin 

kullanıldığı toplam 72 farklı mimari ile çözümleme yapılmıştır. 

• Öğrenme Algoritması: Öğrenme parametresinin her bir iterasyonda 

güncellendiği Levenberg – Marquardt algoritması en iyi ağırlıkların elde 

edilmesinde kullanılmıştır. 
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• Aktivasyon Fonksiyonu: Tüm birimlerde eğrisel aktivasyon fonksiyonlarından 

olan ve eğim parametresi 1=γ  olmak üzere, aşağıdaki eşitlik ile ifade edilen 

Lojistik aktivasyon fonksiyonu kullanılmıştır. 

1))exp(1()( −−+= xxf γ             (4.3) 

 Adım 5. Bulanık öngörüler elde edilir. 

Aralık uzunluğunun sabit 0.50 olduğu durum için ileri beslemeli yapay sinir ağı 

kullanılarak, beşinci dereceden bulanık zaman serisi öngörü modeli için oluşturulan 

bulanık mantık ilişkilerinden yararlanılarak elde edilen ve test kümesine ait bulanık 

öngörüler Tablo 4.7.’de verilmiştir. Bunun yanında aralık uzunluğu 0.10, 0.15, 0.20, 

0.25, 0.30, 0.35, 0.40 ve 0.45 olarak alındığında da beşinci ve diğer tüm derecelerde 

bulanık zaman serisi öngörü modeli için test kümesine ait bulanık öngörüler benzer 

şekilde elde edilir. 

Adım 6. Durulaştırma işlemi uygulanır. 

Durulaştırmada merkezileştirme yöntemi kullanılır. Aralık uzunluğunun sabit 0.50 

olduğu durumda, beşinci dereceden bulanık zaman serisi öngörü modeli için elde edilen 

bulanık öngörüler ile birlikte, durulaştırma işlemi sonucunda ulaşılan durulaştırılmış 

öngörüler Tablo 4.7.’de verilmiştir. Ayrıca diğer tüm aralık uzunlukları ve dereceler 

için de durulaştırılmış öngörüler benzer şekilde elde edilir. 

Tablo 4.7. Aylık TÜFE verisine ait bulanık ve duru öngörüler 

Dönem Duru 
Öngörü 

Bulanık 
Öngörü Dönem Duru 

Öngörü
Bulanık 
Öngörü 

Mart 07 0.25 A3 Eylül 07 1.25 A5 
Nisan 07 1.25 A5 Ekim 07 2.25 A7 
Mayıs 07 0.25 A3 Kasım 07 2.25 A7 

Haziran 07 0.25 A3 Aralık 07 0.25 A3 
Temmuz 07 0.25 A3 Ocak 08 0.25 A3 
Ağustos 07 0.25 A3 Şubat 08 0.25 A3 
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Önerilen yöntemin algoritmasını oluşturan 6 adım, aylık bazdaki TÜFE verisine 

tüm mümkün durumlar için uygulandı ve elde edilen durulaştırılmış öngörüler )ˆ( iy  ile 

verinin gerçek değerleri )( iy  kullanılarak, tüm bu durumlar için hata kareler 

ortalanması karekökü (H.K.O.K.), 

n

yy
KOKH

n

t
tt∑

=

−
= 1

2)ˆ(
....             (4.4)  

formülü ile hesaplandı. Tüm mümkün durumlar için hesaplanan H.K.O.K. sonuçları EK 

1’de mevcut olan tablolarda verilmiştir. 

Tüm mümkün durumlar için hesaplanan H.K.O.K. sonuçlarının verildiği 

tablolardan da görülebileceği gibi, Chen (2002) tarafından önerilen yöntemde en iyi 

sonuç, on ikinci dereceden bulanık zaman serisi öngörü modeli için aralık uzunluğunun 

0.50 olduğu durumda, 0.81903 H.K.O.K. değeri ile elde edilmiş olup, Huarng ve Yu 

(2006) tarafından önerilen yöntemde ise en iyi sonuç, aralık uzunluğunun 0.15 ve gizli 

tabaka birim sayısının altı olduğu durumda, 0.66194 H.K.O.K. değeri ile elde edilmiştir. 

Bu çalışmada önerilen yöntemde ise en iyi sonuca, beşinci dereceden bulanık zaman 

serisi öngörü modeli için aralık uzunluğunun 0.50 ve girdi tabakası birim sayısının beş, 

gizli tabaka birim sayısının iki olduğu, yani bulanık ilişkinin 5-2-1 mimarisi ile 

belirlendiği durumda, 0.53878 H.K.O.K. değeri ile elde edilmiştir.  Her üç yöntemin en 

iyi sonuçlarını içeren Tablo 4.8. aşağıda verilmiştir.  

Tablo 4.8. Aylık TÜFE verisi için yöntemlerin en iyi sonuçları 

Yöntem Derece Aralık 
Uzunluğu 

Gizli Tabaka 
Birim Sayısı H.K.O.K. 

Chen (2002) 12 0.50 - 0.81903 
Huarng ve Yu (2006) 1 0.15 6 0.66194 
Önerilen Yöntem 5 0.50 2 0.53878 

 Bu sonuçlar göz önüne alındığında bu çalışmada önerilen Y.S.A.’na dayalı 

yüksek dereceli bulanık zaman serisi yöntemin literatürdeki diğer yöntemlere göre daha 

iyi sonuçlar verdiği önerilen ve alternatif yöntemlerin öngörülerinin, zaman serisi 

gerçek değerleri ile birlikte çizilen ve Şekil 4.3.’de verilen grafikten de görülmektedir. 
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.  

Şekil 4.3. Mart 2007 ve Şubat 2008 aylık bazda TÜFE ve Öngörüler 

 

4.3. Yıllık Bazdaki TÜFE Verisi Çözümlemesi 

Önerilen yeni yöntem, son olarak Şubat 2004 ve Şubat 2008 dönemleri arasında 

her bir ay için hesaplanan yıllık bazda Türkiye Tüketici Fiyat Endeksi (TÜFE) zaman 

serisine uygulanmıştır. Öncelikle aylık olarak gözlenmiş veri yıllık veriye 

dönüştürülmüştür. Tablo 4.9. yıllık bazda elde edilen zaman serisini içermektedir. 

Aynı zamanda yıllık bazda bulunan veri kümesinden ilk 37 veri eğitim kümesi ve 

son 12 veri de önerilen yöntem sonuçlarının literatürdeki diğer yöntem ve enflasyon 

beklentisi anketi sonuçları ile karşılaştırılabilmesi için test kümesi olarak alınmıştır. Bu 

zaman serisi için birinci dereceden başlayarak on ikinci dereceye kadar olan bulanık 

zaman serisi modelleri ile uygulama yapılmıştır. Uygulamada iu  aralık uzunlukları, 

verinin artışı göz önünde bulundurularak 0.10 ile 0.50 arasında her bir aşamada 0.05 

arttırılarak belirlenmiştir. Algoritmanın 4. adımında kullanılan ileri beslemeli yapay 

sinir ağı mimarisinde gizli tabaka birim sayısı, ağın genelleştirme yeteneğini 

kaybetmemesi için 1-6 arasında sınırlandırılmıştır. 

Yıllık bazda bulunan zaman serisinin çözümlemesi şu şekilde özetlenebilir. 
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Adım 1. Evrensel küme ve alt aralıklar tanımlanır. 

Veri setinin en küçük değerinin 6.91 ve en büyük değerinin 11.70 olması sebebiyle 

sırasıyla 91.6min =D  ve 70.11max =D  , ayrıca keyfi iki sayı 91.01 =D  ve 30.02 =D  

olmak üzere evrensel küme, 

[ ]00.12,00.6=U  

ve bununla birlikte aralık uzunluğu verideki artışı kapsayacak şekilde 0.50 olarak 

seçildiğinde, sabit aralık uzunluğuna sahip iu  alt aralıkları, 

[ ]50.6,00.61 =u ,  [ ]00.7,50.62 =u ,  [ ]50.7,00.73 =u , 

[ ]00.8,50.74 =u ,  [ ]50.8,00.85 =u ,  [ ]00.9,50.86 =u , 

[ ]50.9,00.97 =u ,  [ ]00.10,50.98 =u ,  [ ]50.10,00.109 =u ,

[ ]00.11,50.1010 =u ,  [ ]50.11,00.1111 =u ,  [ ]00.12,50.1112 =u ,   

şeklinde elde edilir. Bunun yanında aralık uzunluğu 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 

0.40 ve 0.45 olarak alındığında da iu  alt aralıkları benzer şekilde elde edilir.  

Adım 2. Evrensel küme ve belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 

tanımlanır. 

Adım 1.’de belirlenen evrensel küme ve aralık uzunluğunun sabit 0.50 olduğu durumda 

belirlenen alt aralıklara bağlı olarak jA  bulanık kümeleri 
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şeklinde elde edilir. Bunun yanında aralık uzunluğu olarak 0.10, 0.15, 0.20, 0.25, 0.30, 

0.35, 0.40 ve 0.45 alındığında da jA  bulanık kümeleri benzer şekilde elde edilir. 

Adım 3. Gözlemler bulanıklaştırılır. 

Her bir veri bulunduğu aralığın en büyük üyelik değerine sahip olduğu bulanık küme ile 

eşleştirilerek zaman serisi bulanıklaştırılır. Tablo 4.9.’de gözlemlere ait reel ve aralık 

uzunluğunun sabit 0.50 olduğu durum için bulanıklaştırılmış değerler verilmiştir. Bunun 

yanında, diğer tüm aralık uzunlukları için de bulanık değerler benzer şekilde elde edilir. 

Tablo 4.9. Yıllık TÜFE verisine ait reel ve bulanık değerler 

Dönem Değer Bulanık 
Değer Dönem Değer Bulanık 

Değer 
Şubat 04 9.48 A7 Eylül 05 7.99 A4 
Mart 04 8.40 A5 Ekim 05 7.50 A4 
Nisan 04 7.88 A4 Kasım 05 7.60 A4 
Mayıs 04 7.31 A3 Aralık 05 7.71 A4 

Haziran 04 7.09 A3 Ocak 06 7.92 A4 
Temmuz 04 7.81 A4 Şubat 06 8.14 A5 
Ağustos 04 8.45 A5 Mart 06 8.15 A5 

Eylül 04 8.02 A5 Nisan 06 8.82 A6 
Ekim 04 9.44 A7 Mayıs 06 9.86 A8 
Kasım 04 9.48 A7 Haziran 06 10.12 A9 
Aralık 04 9.37 A7 Temmuz 06 11.70 A12 
Ocak 05 9.25 A7 Ağustos 06 10.27 A9 
Şubat 05 8.71 A6 Eylül 06 10.56 A10 
Mart 05 7.95 A4 Ekim 06 10.00 A9 
Nisan 05 8.18 A5 Kasım 06 9.88 A8 
Mayıs 05 8.71 A6 Aralık 06 9.67 A8 

Haziran 05 8.96 A6 Ocak 07 9.94 A8 
Temmuz 05 7.82 A4 Şubat 07 10.17 A9 
Ağustos 05 7.92 A4 
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Adım 4. Bulanık mantık ilişkileri ileri beslemeli yapay sinir ağı kullanılarak oluşturulur. 

Çözümlemede kullanılan yapay sinir ağı bileşenlerini aşağıdaki özellikleri taşımaktadır. 

• Mimari Yapı: Tüm mümkün aralık uzunlukları için, girdi tabakasındaki birim 

sayısının her bir derece için sırasıyla 1-12, gizli tabakadaki birim sayısının ise 

her bir durum için 1-6 arasında değiştiği ve çıktı tabakasında tek birimin 

kullanıldığı toplam 72 farklı mimari ile çözümleme yapılmıştır. 

• Öğrenme Algoritması: Öğrenme parametresinin her bir iterasyonda 

güncellendiği Levenberg – Marquardt algoritması en iyi ağırlıkların elde 

edilmesinde kullanılmıştır. 

• Aktivasyon Fonksiyonu: Tüm birimlerde eğrisel aktivasyon fonksiyonlarından 

olan ve eğim parametresi 1=γ  olmak üzere, aşağıdaki eşitlik ile ifade edilen 

Lojistik aktivasyon fonksiyonu kullanılmıştır. 

1))exp(1()( −−+= xxf γ             (4.5) 

 Adım 5. Bulanık öngörüler elde edilir. 

Aralık uzunluğunun sabit 0.50 olduğu durum için ileri beslemeli yapay sinir ağı 

kullanılarak, üçüncü dereceden bulanık zaman serisi öngörü modeli için oluşturulan 

bulanık mantık ilişkilerinden yararlanılarak elde edilen ve test kümesine ait bulanık 

öngörüler Tablo 4.10.’de verilmiştir. Bunun yanında aralık uzunluğu 0.10, 0.15, 0.20, 

0.25, 0.30, 0.35, 0.40 ve 0.45 olarak alındığında da üçüncü ve diğer tüm derecelerde 

bulanık zaman serisi öngörü modeli için test kümesine ait bulanık öngörüler benzer 

şekilde elde edilir. 

Adım 6. Durulaştırma işlemi uygulanır. 

Durulaştırmada merkezileştirme yöntemi kullanılır. Aralık uzunluğunun sabit 0.50 

olduğu durumda, üçüncü dereceden bulanık zaman serisi öngörü modeli için elde edilen 

bulanık öngörüler ile birlikte, durulaştırma işlemi sonucunda ulaşılan durulaştırılmış 

öngörüler Tablo 4.10.’da verilmiştir. Ayrıca diğer tüm aralık uzunlukları ve dereceler 

için de durulaştırılmış öngörüler benzer şekilde elde edilir. 
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Tablo 4.10. Yıllık TÜFE verisine ait bulanık ve duru öngörüler 

Dönem Duru 
Öngörü 

Bulanık 
Öngörü Dönem Duru 

Öngörü
Bulanık 
Öngörü 

Mart 07 11.25 A11 Eylül 07 7.25 A3 
Nisan 07 10.75 A10 Ekim 07 7.25 A3 
Mayıs 07 10.25 A9 Kasım 07 7.75 A4 

Haziran 07 8.25 A5 Aralık 07 8.75 A6 
Temmuz 07 6.25 A1 Ocak 08 8.75 A6 
Ağustos 07 7.25 A3 Şubat 08 8.75 A6 

 

Önerilen yöntemin algoritmasını oluşturan 6 adım, yıllık bazdaki TÜFE verisine 

tüm mümkün durumlar için uygulandı ve elde edilen durulaştırılmış öngörüler )ˆ( iy  ile 

verinin gerçek değerleri )( iy  kullanılarak, tüm bu durumlar için hata kareler 

ortalanması karekökü (H.K.O.K.), 

n

yy
KOKH

n

t
tt∑

=

−
= 1

2)ˆ(
....             (4.6) 

formülü ile hesaplandı. Tüm mümkün durumlar için hesaplanan H.K.O.K. sonuçları EK 

2’de mevcut olan tablolarda verilmiştir. 

Tüm mümkün durumlar için hesaplanan H.K.O.K sonuçların verildiği 

tablolardan da görülebileceği gibi, Chen (2002) tarafından önerilen yöntemde en iyi 

sonuç, ikinci dereceden bulanık zaman serisi öngörü modeli için aralık uzunluğunun 

0.40 olduğu durumda, 0.75745 H.K.O.K. değeri ile elde edilmiş olup, Huarng ve Yu 

(2006) tarafından önerilen yöntemde ise en iyi sonuç, aralık uzunluğunun 0.30 ve gizli 

tabaka birim sayısının dört olduğu durumda, 0.60270 H.K.O.K. değeri ile elde 

edilmiştir.  

Bununla birilikte, T.C.M.B. tarafından her yılın belirli dönemlerinde yayınlanan, 

Tablo 4.11’ de verilen, 2007 yılı ikinci dönemine ait enflasyon beklentisi anketi 

sonuçlarının yer aldığı, enflasyon raporlarında ise H.K.O.K. değerleri, birinci anket 

sonucunda 2.69045 ve ikinci anket sonucunda 2.62527 olarak elde edilmiştir (T.C.M.B., 

2007). 
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Tablo 4.11. Yıllık TÜFE verisine ait T.C.M.B. beklenti anketi öngörüleri 

Dönem 

T.C. 
Merkez 
Bankası 
Beklenti 
Anketi 1 

Öngörüleri 

T.C. 
Merkez 
Bankası 
Beklenti 
Anketi 2 

Öngörüleri

Dönem 

T.C. 
Merkez 
Bankası 
Beklenti 
Anketi 1 

Öngörüleri 

T.C. 
Merkez 
Bankası 
Beklenti 
Anketi 2 

Öngörüleri
Mart 07 5.46 5.44 Eylül 07 7.62 7.54 
Nisan 07 5.41 5.47 Ekim 07 7.38 7.31 
Mayıs 07 5.57 5.83 Kasım 07 7.13 7.16 

Haziran 07 6.66 7.48 Aralık 07 7.23 7.11 
Temmuz 07 7.89 8.07 Ocak 08 6.84 6.84 
Ağustos 07 7.98 7.94 Şubat 08 6.77 6.75 

 Bu çalışmada önerilen yöntemde ise en iyi sonuca, üçüncü dereceden bulanık 

zaman serisi öngörü modeli için aralık uzunluğunun 0.50 ve bunun yanında girdi ve 

gizli tabaka birim sayısının üç olduğu yani bulanık ilişkinin 3-3-1 mimarisi ile 

belirlendiği durumda, 0.49640 H.K.O.K. değeri ile elde edilmiştir. Her üç yöntemin en 

iyi sonuçlarını içeren Tablo 4.12. aşağıda verilmiştir.  

Tablo 4.12. Yıllık TÜFE için anket sonuçları ve yöntemlerin en iyi sonuçları 

Yöntem Derece Aralık 
Uzunluğu 

Gizli Tabaka 
Birim Sayısı H.K.O.K. 

Enflasyon Beklenti Anketi (1) - - - 2.69045 
Enflasyon Beklenti Anketi (2) - - - 2.62527 
Chen (2002) 2 0.40 - 0.75745 
Huarng ve Yu (2006) 1 0.30 4 0.60270 
Önerilen Yöntem 3 0.50 3 0.49640 
 

Bu sonuçlar göz önüne alındığında bu çalışmada önerilen Y.S.A.’na dayalı yüksek 

dereceli bulanık zaman serisi yöntemin literatürdeki diğer yöntemlere göre daha iyi 

sonuçlar verdiği, önerilen ve alternatif yöntemlerin öngörülerinin zaman serisi gerçek 

değerleri ile birlikte çizilen ve Şekil 4.4.’de verilen grafikten de görülmektedir.  
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 Şekil 4.4. Mart 2007 ve Şubat 2008 yıllık bazda TÜFE ve öngörüler 
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5. SONUÇ VE ÖNERİLER 

Bulanık zaman serisi analizi yöntemleri klasik zaman serisi analizi 

yöntemlerindeki model varsayımları ve gözlem sayısı gibi kısıtlamalara gerek 

duymaması ve geleneksel yöntemlere göre daha iyi öngörü performansına sahip olması 

nedeniyle son yıllarda literatürde sıkça kullanılmaya başlanmıştır. 

Bulanık zaman serisi kavramı ilk olarak Song ve Chissom (1993a, 1993b, 1994) 

tarafından ortaya atılmıştır. Song ve Chissom (1993a, 1993b, 1994) bu çalışmalarında 

bulanık zaman serisinin tahmin edilmesi için matris işlemlerine dayalı bir yöntem 

önermiştir. Önerilen bu yöntem üç aşamadan oluşmaktadır. Birinci aşama gözlemlerin 

bulanıklaştırılması, ikinci aşama bulanık ilişkilerin belirlenmesi ve üçüncü aşama ise 

durulaştırma aşmasıdır. Literatürde bulanık zaman serilerinde bu üç aşamanın da 

iyileştirilmesi için çeşitli çalışmalar yapılmıştır. Huarng ve Yu (2006) birinci dereceden 

bulanık zaman serisi öngörü modeli için bulanık ilişkinin belirlenmesinde, basit bir ileri 

beslemeli yapay sinir ağı kullanımını önermiştir. Huarng ve Yu (2006) önerdikleri bu 

yöntemde ilişki belirlemede 1-2-1 sinir ağı mimarisi kullanmışlardır. Gizli tabakadaki 

birim sayısı, yapay sinir ağının genelleştirme yeteneğini kaybetmemesi için, iki olarak 

alınmış olunmasına rağmen, gizli tabaka birim sayısının 3 ve 4 alınması da 

genelleştirme yeteneğini kaybettirmeyecektir. Chen (2002) ise yüksek dereceli bulanık 

zaman serisi yaklaşımı önermiştir. Chen (2002) tarafından önerilen bu yaklaşımda, 

modelde tüm gecikmeli bulanık değişkenlerin bulunması ve bulanık ilişki tablolarına 

dayalı işlem yapılması nedeniyle derece arttıkça bulanık ilişkinin belirlenmesi ve 

dolayısıyla yöntemin uygulanması oldukça zorlaşmaktadır. Yüksek dereceli modelin 

çözümlenmesinde bulanık ilişkiler, yapay sinir ağı ile belirlenir ise bu yöntemdeki işlem 

yoğunluğundan kurtulmak mümkündür. 

Bu çalışmada yüksek dereceli bulanık zaman serisi modelini çözümleyen, 

bulanık ilişkinin belirlenmesinde ileri beslemeli yapay sinir ağının kullanıldığı, yeni bir 

yöntem önerilmiştir. Yapay sinir ağına dayalı bu yaklaşım, ilk olarak literatürde sıkça 

kullanılan Alabama Üniversitesi 1971-1992 yıllarına ait kayıt verisine ve daha sonra da 

Şubat 2003 - Şubat 2008 dönemleri arasında hesaplanan aylık bazda Türkiye Tüketici 

Fiyat Endeksi (TÜFE) ve yine aynı zaman serisi kullanılarak Şubat 2004 ve Şubat 2008 

dönemleri arasında her bir ay için hesaplanan yıllık bazda Türkiye Tüketici Fiyat 
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Endeksi zaman serisine uygulanarak sonuçlar elde edilmiş ve diğer yöntemlerle 

karşılaştırılmasıyla birlikte, yıllık bazda hesaplanan sonuçlar ayrıca T.C. Merkez 

Bankası tarafından her yılın belirli dönemlerinde yayınlanan, enflasyon beklentisi anketi 

sonuçları ile de karşılaştırılarak önerilen yaklaşımın üstün olduğu görülmüştür. 

Tüm bu sonuçlar göz önüne alındığında, bu çalışmada önerilen, yüksek dereceli 

bulanık zaman serisi modelini çözümleyen, bulanık ilişkinin belirlenmesinde ileri 

beslemeli yapay sinir ağının kullanıldığı yöntemin, bulanık ilişki ve grup ilişki 

tablolarının oluşturulmasındaki karmaşıklığı ortadan kaldırdığı gibi öngörüleri de 

iyileştirdiği görülmektedir.  

Bunun yanında, yöntemin uygulanmasında önemli aşamalardan biri olan, ileri 

beslemeli yapay sinir ağları ile ilişki belirlenmesi aşamasında, ağın mimari yapısının 

öngörülere olan etkisi göz önünde bulundurularak, mimari yapının belirlenmesi 

konusunda belirli kıstaslar ortaya koyabilecek yeni çalışmalar oluşturulabilir. Ayrıca 

ağın girdilerinin belirlenmesi de, üzerinde durulması ve gelecek çalışmalara konu 

edilmesi gerekli olan önemli bir meseledir. 
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7. EKLER 

Ek 1. Aylık TÜFE Verisi İçin Elde Edilen H.K.O.K. Değerleri  

Ek Tablo 1.1. Birinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu 

(Huarng ve Yu (2006)) 

Huarng ve Yu (2006) 
Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.71980 1.70498 0.94311 0.85953 0.84771 1.10828 
0.15 0.72812 1.68275 0.78464 0.78225 0.73953 0.66194 
0.20 0.70707 1.74965 0.94231 0.86330 0.87728 0.87728 
0.25 0.73773 1.81718 0.74699 0.77840 0.71856 0.74307 
0.30 0.77122 1.61657 0.74819 0.80795 0.95120 0.83324 
0.35 0.77567 1.77210 0.94793 0.94885 0.95315 0.77265 
0.40 0.68917 1.83982 1.07251 0.83683 1.08241 0.93823 
0.45 0.68019 1.81718 0.72191 0.72191 0.72191 0.72191 
0.50 0.76667 1.70498 0.76667 0.77585 0.76667 0.76667 

Ek Tablo 1.2. İkinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu  

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.77886 0.71632 0.81932 0.95452 1.00984 1.70498 0.83660 
0.15 0.77840 0.67075 0.82274 0.83196 1.68275 1.68275 0.99003 
0.20 0.72843 0.70424 0.65647 0.98283 1.07080 1.74965 0.95407 
0.25 0.78054 0.80317 0.89284 1.00295 0.96505 0.68196 0.96294 
0.30 0.80423 0.72338 1.67430 0.91038 0.81442 1.61657 0.99270 
0.35 0.77378 0.71460 0.79241 1.15639 0.79498 1.47871 1.01003 
0.40 0.77090 0.74316 0.83204 1.05243 1.07033 1.83982 1.07802 
0.45 0.75839 0.74794 0.68294 0.62021 0.88100 0.81142 1.01566 
0.50 0.79285 0.77585 0.77585 1.13076 1.00679 1.70498 1.13263 
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Ek Tablo 1.3. Üçüncü Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu  

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.70056 1.70498 0.73140 1.13627 1.20158 1.04902 0.89471 
0.15 0.70136 1.68275 0.71548 0.63573 1.01571 0.82714 1.02706 
0.20 0.70163 1.74965 0.92373 0.85982 1.01355 1.03213 0.99770 
0.25 0.71332 1.81718 0.88886 0.70981 1.06462 1.18536 0.86659 
0.30 0.65862 1.61657 0.70872 0.84308 0.98096 0.95801 1.04849 
0.35 0.70474 1.77210 0.82769 0.89116 1.24739 1.18603 1.03715 
0.40 0.67697 1.83982 0.89309 1.08702 1.21557 1.42371 1.02734 
0.45 0.65548 1.81718 0.64452 0.79367 1.12912 1.06907 0.98042 
0.50 0.67227 1.70498 1.00097 0.91667 1.11405 1.12633 1.06165 

Ek Tablo 1.4. Dördüncü Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.58931 0.89700 0.87870 1.70498 1.70498 1.17209 0.90370 
0.15 0.70136 0.83016 0.67890 0.58814 1.68275 1.05944 0.90719 
0.20 0.64520 0.88503 0.78291 1.74965 1.74965 0.94408 0.88783 
0.25 0.64135 0.85566 0.70035 1.81718 1.81718 1.91444 0.87392 
0.30 0.66655 0.85574 0.89263 1.61657 1.61657 0.66127 0.91803 
0.35 0.70474 0.92394 1.77210 1.77210 0.76773 1.77210 0.93796 
0.40 0.71434 0.89905 1.83982 1.83982 1.39246 0.86156 0.89391 
0.45 0.60738 0.71303 0.83780 1.81718 1.81718 1.22929 0.88593 
0.50 0.64053 0.66417 0.57034 1.70498 1.70498 1.16345 0.87068 

Ek Tablo 1.5. Beşinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu  

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.70175 0.67721 1.04528 1.25191 0.82792 1.68388 0.88789 
0.15 0.71197 0.71844 0.85391 0.83316 1.45582 1.41710 0.88963 
0.20 0.65494 0.89886 0.65571 0.79159 1.05449 1.58901 0.87538 
0.25 0.60662 0.66464 0.81756 1.37085 0.97515 1.16372 0.85849 
0.30 0.74517 0.75019 0.68358 0.75052 1.49425 1.37251 0.89875 
0.35 0.70017 0.84926 0.78054 1.16318 1.35606 1.79759 0.91565 
0.40 0.81585 0.60024 0.98130 0.70872 1.14001 1.15106 0.87861 
0.45 0.72087 0.77695 0.67687 1.08647 1.08647 1.26862 0.87482 
0.50 0.64053 0.53878 0.74517 0.80433 0.76122 1.06276 0.85517 
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Ek Tablo 1.6. Altıncı Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.67153 0.78525 1.01413 1.02638 1.01790 1.20504 0.86690 
0.15 0.86323 0.84626 0.68148 0.88553 1.14549 1.51671 0.86878 
0.20 0.57904 0.60933 0.72407 0.88371 1.15309 1.59560 0.85672 
0.25 0.60662 0.89284 0.90027 1.21195 1.61235 1.27544 0.83984 
0.30 0.79516 0.59185 1.07461 1.39096 1.35804 1.47928 0.87486 
0.35 0.70845 0.70598 1.28970 1.17441 1.24552 1.57646 0.89020 
0.40 0.76307 0.62686 0.93752 0.78589 1.58270 1.17372 0.85922 
0.45 0.69976 0.68568 0.88989 1.28420 1.35745 1.37528 0.85655 
0.50 0.62606 0.74741 0.89225 0.95844 1.02321 1.26930 0.83652 

Ek Tablo 1.7. Yedinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.55252 0.88409 0.84850 1.68699 0.89738 1.67490 0.85229 
0.15 0.56028 0.68294 0.77599 1.58860 1.36562 1.24946 0.85528 
0.20 0.69782 0.60933 0.77821 1.26463 1.40355 1.26687 0.84358 
0.25 0.60041 0.81756 0.85102 1.41306 0.81450 1.07842 0.82843 
0.30 0.64481 0.97636 1.16803 0.59311 1.52177 1.31483 0.85946 
0.35 0.70017 0.90318 0.69179 0.91058 1.62475 1.77210 0.87213 
0.40 0.65799 0.71154 1.30369 1.11667 0.86619 0.83123 0.84607 
0.45 0.58409 0.79414 0.83556 1.26892 1.14068 1.81718 0.84406 
0.50 0.67227 0.59885 0.58548 0.82226 0.87146 0.68334 0.82647 

Ek Tablo 1.8. Sekizinci Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.68028 0.64855 0.70056 1.43583 1.70498 1.35122 0.84902 
0.15 0.71074 0.65948 1.06485 1.24375 1.68275 1.81216 0.85320 
0.20 0.60604 0.75407 1.14497 1.36380 1.74965 1.52642 0.84189 
0.25 0.65453 0.73688 0.88675 1.52236 1.81718 1.19464 0.82843 
0.30 0.57557 0.67289 0.59564 0.63819 1.61657 1.32845 0.85620 
0.35 0.59818 0.79754 0.91026 1.36933 1.77210 1.23092 0.86620 
0.40 0.71434 0.77435 1.83982 1.17372 1.83982 1.32374 0.84379 
0.45 0.66795 0.68019 0.95886 1.33263 1.81718 1.02903 0.84246 
0.50 0.57760 0.76395 0.74852 1.14504 0.77532 1.15229 0.82762 
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Ek Tablo 1.9. Dokuzuncu Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.60960 0.87566 1.47104 1.59686 1.53111 1.41967 0.84904 
0.15 0.65108 0.70651 1.40700 1.67277 1.03617 1.09300 0.85419 
0.20 0.59885 0.83184 1.61729 1.20677 0.94953 1.54476 0.84286 
0.25 0.65038 1.00502 0.83820 1.13030 1.45333 1.28650 0.83172 
0.30 0.97636 1.18355 1.05037 1.31179 1.40028 1.18101 0.85618 
0.35 0.72915 0.96983 0.89442 0.95894 1.24177 1.53332 0.86428 
0.40 0.83563 0.92066 1.04417 1.31261 1.58649 1.45176 0.84373 
0.45 0.62623 0.77647 1.31535 1.08024 1.18043 1.08232 0.84495 
0.50 0.64053 0.73617 0.98883 1.52871 1.00554 1.06589 0.83061 

Ek Tablo 1.10. Onuncu Dereceden Bulanık Zaman Serisi Öngörü Modeli Soncu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.71224 0.71527 1.77711 1.48187 1.38803 1.58302 0.84630 
0.15 0.87072 1.06825 1.27442 1.33282 1.30582 1.19579 0.85219 
0.20 0.57180 0.85496 1.43025 1.05717 1.14497 1.35841 0.84083 
0.25 0.67552 0.77276 1.23224 0.97322 1.13929 1.44715 0.83201 
0.30 0.57209 0.58162 1.09260 1.15943 1.61657 1.41184 0.85298 
0.35 0.69850 1.47693 1.48284 1.22307 1.54110 1.30789 0.86064 
0.40 0.68820 1.15857 1.70067 1.13238 1.83982 1.12796 0.84035 
0.45 0.76773 0.59301 1.30591 1.13310 1.05708 1.08612 0.84559 
0.50 0.80743 0.84820 1.21906 1.08295 1.17450 1.37032 0.82979 

Ek Tablo 1.11. Onbirinci Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.57543 0.71189 1.70498 0.88343 1.19253 0.69626 0.84001 
0.15 0.82895 0.86395 1.68275 1.22980 1.12023 0.96910 0.84604 
0.20 0.69758 1.04289 1.74965 1.31274 1.50564 1.09603 0.83499 
0.25 0.88675 0.82920 1.81718 1.58129 1.04924 1.25933 0.82830 
0.30 0.56858 0.83862 1.61657 0.97508 1.05512 1.54103 0.84590 
0.35 0.66294 1.39173 1.77210 1.56327 0.93959 1.19655 0.85330 
0.40 0.58846 1.35829 1.83982 1.35362 1.26318 1.67141 0.83385 
0.45 0.90245 0.97476 1.81718 1.27717 1.27599 1.53237 0.84179 
0.50 0.58405 1.14468 1.70498 1.20116 0.83782 1.41637 0.82564 
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Ek Tablo 1.12. Onikinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Soncu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.73708 1.22866 1.16874 1.22002 1.47895 1.15663 0.83178 
0.15 0.71844 0.71844 1.21095 1.10200 1.12235 1.01484 0.83753 
0.20 0.63452 1.06581 0.92265 1.97711 1.25961 1.62017 0.82704 
0.25 0.61209 0.72892 1.46447 1.58090 1.15311 1.71940 0.82158 
0.30 0.63030 1.01355 1.41148 0.79861 0.89710 1.36062 0.83733 
0.35 0.76277 0.97762 1.37337 1.31855 1.92408 1.54526 0.84401 
0.40 0.91812 1.04353 1.12322 1.09344 1.38719 1.70693 0.82607 
0.45 0.63809 0.97630 1.37310 1.51934 1.14462 1.28973 0.83437 
0.50 0.61260 0.94089 1.46439 1.19036 1.27552 1.14140 0.81903 
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Ek 2. Yıllık TÜFE Verisi İçin Elde Edilen H.K.O.K. Değerleri  

Ek Tablo 2.1. Birinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu 

(Huarng ve Yu (2006)) 

Huarng ve Yu (2006) 
Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.75172 3.41817 0.71233 0.70799 1.43936 1.43936 
0.15 0.71929 3.44153 0.98495 0.68328 1.45065 2.14310 
0.20 0.77325 3.37154 0.70799 0.94388 1.46136 0.96432 
0.25 0.76346 3.30176 0.70737 0.62346 1.39745 1.91952 
0.30 0.71397 3.51173 0.69264 0.60270 0.65973 0.60477 
0.35 0.79112 3.44153 0.71248 0.66505 0.79527 0.79527 
0.40 0.73320 3.46491 0.70065 1.42861 0.94882 1.11934 
0.45 0.77193 3.30176 0.70596 0.63492 0.63492 0.63492 
0.50 0.82447 3.41817 0.71280 0.71280 0.61285 0.75150 

Ek Tablo 2.2. İkinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu  

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.73320 0.75592 0.73320 1.74597 0.97652 3.41817 0.90933 
0.15 0.72431 0.75357 1.56289 0.72569 1.82992 3.44153 0.90372 
0.20 0.71151 0.81440 1.72170 1.86635 1.85389 3.37154 0.78057 
0.25 0.70146 0.78286 0.71528 1.08319 0.98275 0.99915 0.83616 
0.30 0.66839 0.73161 0.66839 1.59930 1.68530 1.62458 0.84513 
0.35 0.73147 0.72666 0.96766 0.73147 0.90312 0.81876 0.78407 
0.40 0.68720 0.66301 1.50806 0.90494 1.73000 3.22701 0.75745 
0.45 0.73357 0.72120 0.73357 0.74322 0.97462 3.30176 0.83683 
0.50 0.71746 0.68356 1.66025 0.63947 0.63947 3.41817 0.77348 

Ek Tablo 2.3. Üçüncü Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu  

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.69348 3.41817 0.95180 1.41242 1.74330 1.62078 1.01811 
0.15 0.67814 3.44153 0.98228 1.49579 1.98006 1.35624 1.01203 
0.20 0.71827 3.37154 1.63358 1.69123 0.83242 1.50574 1.03260 
0.25 0.68523 3.30176 1.08319 0.94910 1.27784 1.19057 0.99764 
0.30 0.71116 3.51173 0.95013 0.93742 2.36860 1.53452 0.99463 
0.35 0.75578 3.44153 0.87823 0.77371 0.81017 1.74837 1.02128 
0.40 0.72543 3.46491 0.50818 1.73462 1.98299 1.04829 1.04895 
0.45 0.73357 3.30176 0.98799 1.56329 1.09047 1.30322 1.01826 
0.50 0.71746 3.41817 0.49640 1.01312 1.75231 2.13848 1.03095 
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Ek Tablo 2.4. Dördüncü Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.71804 1.61645 1.35342 3.41817 3.41817 3.41817 1.11229 
0.15 0.68383 1.62984 1.57238 3.44153 1.46659 3.44153 1.10698 
0.20 0.71920 1.58354 1.39556 3.37154 3.37154 3.37154 1.12400 
0.25 0.69339 1.56763 0.97914 3.30176 3.30176 3.30176 1.09235 
0.30 0.71116 0.83741 0.98805 3.51173 1.78375 3.51173 1.09166 
0.35 0.77934 0.76346 0.71534 3.44153 1.46141 3.44153 1.11304 
0.40 0.69779 0.87192 0.61934 3.46491 3.46491 3.46491 1.16715 
0.45 0.73357 2.07711 1.56257 3.30176 3.30176 3.30176 1.11127 
0.50 0.69384 0.94194 1.20128 3.41817 3.41817 3.41817 1.14683 

Ek Tablo 2.5. Beşinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu  

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 1.26079 0.90595 1.47233 1.81239 2.39797 2.32194 1.18333 
0.15 3.44153 0.82923 1.56137 1.72217 1.55953 3.24683 1.17895 
0.20 0.71292 0.85220 1.49496 2.00929 0.96519 1.54464 1.19253 
0.25 0.67974 0.90598 1.33852 1.23253 2.00405 2.00727 1.16237 
0.30 0.94194 1.10465 0.88783 1.06946 2.62874 1.53842 1.16497 
0.35 0.77484 0.79012 2.03657 2.34230 2.41489 1.38770 1.18179 
0.40 1.30087 0.96346 1.30624 1.89936 2.06452 1.41524 1.24064 
0.45 0.82500 0.91795 1.34094 1.18475 1.61752 3.41531 1.18536 
0.50 0.82497 0.84641 1.34434 1.89884 2.05987 1.98886 1.22323 

Ek Tablo 2.6. Altıncı Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.75812 0.96112 1.43402 3.41817 2.15934 1.85775 1.23297 
0.15 0.75606 1.64229 1.22071 1.58284 2.05216 2.07723 1.22936 
0.20 0.91081 1.76302 1.69172 2.02112 2.84053 1.97760 1.24031 
0.25 1.22609 1.64695 1.07740 1.76575 1.48855 2.72029 1.21065 
0.30 0.77055 1.72199 1.53566 3.51173 1.71937 1.18438 1.21665 
0.35 1.03917 0.78716 2.11897 2.26030 2.52680 1.89195 1.22997 
0.40 0.74044 0.86809 1.09860 1.62734 2.62759 1.37074 1.23908 
0.45 0.73714 1.03362 1.08806 2.16012 2.64308 1.15850 1.23572 
0.50 0.77174 1.70213 2.04648 2.11812 2.13965 2.79534 1.23071 
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Ek Tablo 2.7. Yedinci Dereceden Bulanık Zaman Serisi Öngörü Modeli Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.75592 3.41817 1.62155 1.61160 2.10929 1.83255 1.26860 
0.15 0.75589 3.44153 1.53603 1.80614 2.14828 3.44153 1.26509 
0.20 0.77001 1.40377 1.75402 1.74028 2.83271 2.20581 1.27506 
0.25 0.71790 3.30176 1.71390 1.90470 1.78721 1.64948 1.24501 
0.30 0.77734 3.51173 1.68990 1.85047 1.74721 1.82462 1.25307 
0.35 0.78196 1.86790 1.74637 1.79723 1.90240 1.65742 1.26457 
0.40 0.74044 1.05052 1.51490 1.78033 1.66280 1.71957 1.27473 
0.45 0.73357 1.98384 1.83456 1.67425 2.71088 2.46650 1.27131 
0.50 0.67001 1.26448 2.03975 1.41619 1.72788 2.26453 1.26382 

Ek Tablo 2.8. Sekizinci Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.77444 1.01485 1.01485 1.49429 3.24139 2.50917 1.29231 
0.15 0.79867 0.65869 1.32273 1.85165 3.31841 2.73777 1.28861 
0.20 0.76979 1.00793 1.46944 2.38933 1.91770 1.78155 1.29816 
0.25 0.75523 1.43975 2.22326 1.41376 2.86770 2.13930 1.26778 
0.30 0.90291 1.15877 1.21891 1.77038 1.84845 2.88752 1.27708 
0.35 0.88221 1.24243 2.47690 1.91417 3.29307 3.07543 1.28856 
0.40 0.72451 1.08670 1.41053 1.87339 1.88173 2.63583 1.29870 
0.45 0.74069 0.77918 3.30176 1.95087 1.67582 2.42309 1.29549 
0.50 0.90953 1.83682 2.38077 2.05461 1.89092 2.45606 1.28551 

Ek Tablo 2.9. Dokuzuncu Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.72646 1.17972 2.04542 1.60034 1.31400 2.62019 1.31203 
0.15 0.71981 1.94451 1.87120 1.79858 1.47712 1.77013 1.30800 
0.20 0.71292 0.71292 1.92352 1.56245 1.70555 2.91340 1.31768 
0.25 0.72655 0.95914 2.04409 1.57638 1.86770 1.99436 1.28742 
0.30 0.86444 2.05311 2.16096 1.53011 1.37976 1.79492 1.29750 
0.35 0.70837 1.95801 2.05723 1.96796 1.34609 1.95517 1.30912 
0.40 0.83999 0.89270 3.28840 1.38501 2.17154 1.15596 1.31894 
0.45 0.75870 1.55945 2.32209 1.28379 1.35236 2.67145 1.31493 
0.50 0.77766 1.22089 1.89664 1.68144 1.43866 2.38095 1.30429 
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Ek Tablo 2.10. Onuncu Dereceden Bulanık Zaman Serisi Öngörü Modeli Soncu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 0.71978 2.21278 1.75236 1.11411 1.44612 2.59501 1.33334 
0.15 1.08045 1.62600 2.40315 1.26021 0.89478 1.80489 1.32913 
0.20 0.74872 2.21907 2.24676 1.51940 1.79060 1.37680 1.33885 
0.25 0.74496 1.89351 2.84780 2.71998 1.37385 2.40303 1.30908 
0.30 1.10962 1.67190 1.42259 2.13898 1.95659 2.25205 1.31997 
0.35 0.70837 0.80981 2.76459 1.53613 1.94980 1.95577 1.33180 
0.40 0.68038 2.14855 2.45742 2.57337 2.10735 1.52236 1.34118 
0.45 0.81171 1.21166 1.56281 1.51900 1.46931 2.08504 1.33609 
0.50 0.77766 2.45131 1.42411 2.89866 1.69625 1.56543 1.32565 

Ek Tablo 2.11. Onbirinci Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 1.05242 2.99468 0.97626 1.29708 3.41817 2.97101 1.35751 
0.15 1.30350 1.42281 3.44153 1.81235 3.44153 2.09389 1.35320 
0.20 1.71170 2.14210 3.37154 1.88589 3.37154 3.13144 1.36274 
0.25 1.54622 2.80891 3.30176 1.11428 3.30176 2.70616 1.33378 
0.30 1.36647 1.30528 1.28792 0.87479 3.51173 0.87621 1.34522 
0.35 1.99168 1.73917 0.92640 1.12774 3.44153 2.69146 1.35730 
0.40 0.72175 1.91126 1.70301 0.96207 3.46491 2.59286 1.36595 
0.45 1.08045 1.47872 3.30176 1.80177 3.30176 2.58121 1.36014 
0.50 1.03710 2.81465 2.77949 1.44184 3.41817 1.93557 1.35055 

Ek Tablo 2.12. Onikinci Dereceden Bulanık Zaman Serisi Öngörü Modeli 

Sonucu 

ÖNERİLEN YÖNTEM 
CEHN 
(2002) Gizli Tabaka Birim Sayısı 

A
R

A
LI

K
 U

ZU
N

LU
Ğ

U
 

LA m=1 m=2 m=3 m=4 m=5 m=6 
0.10 1.14175 1.20737 1.45639 1.16665 1.93557 2.84808 1.38608 
0.15 1.13143 1.12233 1.70540 1.90463 1.53334 3.08871 1.38179 
0.20 1.12187 1.38308 1.44519 1.47702 0.86694 1.94865 1.39098 
0.25 1.03981 0.71207 1.49567 2.75325 1.73492 1.51477 1.36289 
0.30 1.10420 2.70134 2.36151 3.09277 0.99762 1.10238 1.37491 
0.35 0.75346 1.64789 2.58127 0.94077 1.56342 3.30950 1.38711 
0.40 0.78629 1.18726 1.69850 1.24321 2.13235 1.83746 1.39491 
0.45 0.69687 0.70543 1.32434 2.57131 1.66707 1.41576 1.38848 
0.50 1.10480 2.40498 2.37464 1.26349 2.04913 2.54160 1.37989 
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Ek 3. Üçüncü Dereceden Bulanık Zaman Serisi Öngörü Modeli İçin Örnek 

MATLAB Programı  

Program Girdi ve Parametreleri 
 x: Zaman serisi 
m: Gizli tabaka birim sayısı 
salt: Evrensel küme alt sınırı 
ss: Bulanık küme sayısı 
la: Evrensel küme alt aralık uzunluğu 
ntest: Test kümesi genişliği 
 

function output=fuzzytg3tli(x,m,salt,ss,la,ntest) 

rand('seed',4.9276984E7); 

n=size(x,1)-ntest; 

for i=1:ss 

 ualt(i)=salt+(i-1)*la; 

 uust(i)=salt+i*la; 

 mb(i)=(ualt(i)+uust(i))/2; 

end 

for i=1:n+ntest 

 for j=1:ss 

      if ((x(i)<=uust(j))&(x(i)>=ualt(j))) 

           fs(i)=j; 

      end 

 end 

end 

zd1=(fs-min(fs))/(max(fs)-min(fs)); 

Gegt=[zd1(1:(n-3));zd1(2:(n-2));zd1(3:(n-1))]'; 

yegt=zd1(4:n)'; 

net=newff(minmax(Gegt'),[m,1],{'tansig','tansig'},'trainlm'); 

net.trainParam.show=500; 

net.trainParam.epochs=500; 

net.trainParam.goal=1e-8; 

 [net,tr]=train(net,Gegt',yegt'); 

 ycegt=sim(net,Gegt'); 

yc=round(ycegt*(max(fs)-min(fs))+min(fs)); 
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 for i=1:(n-3) 

  if yc(i)<=0  

   yc(i)=1; 

 end 

end 

  

for i=1:(n-3) 

 ong(i)=mb(yc(i)); 

end 

 for i=1:(n-3) 

 hatakare(i)=(x(i+2)-ong(i))^2; 

end 

 for j=1:ntest 

 Gegt=[zd1(n+j-3);zd1(n+j-2);zd1(n+j-1)]'; 

 ycegt2(j)=sim(net,Gegt'); 

end 

 yc2=round(ycegt2*(max(fs)-min(fs))+min(fs)); 

 for i=1:(ntest) 

 if yc2(i)<=0  

  yc2(i)=1; 

 end 

end 

for i=1:ntest 

 ong2(i)=mb(yc2(i)); 

end 

for i=1:ntest 

 hatakare2(i)=(x(i+n)-ong2(i))^2; 

end 

MSE=(sum(hatakare)/(n-3)) 

RMSE=(sum(hatakare)/(n-3))^0.5 

MSEtest=(sum(hatakare2)/(ntest)) 

RMSEtest=(sum(hatakare2)/(ntest))^0.5 

output=[RMSEtest]; 



 83

Ek 4. Beşinci Dereceden Bulanık Zaman Serisi Öngörü Modeli İçin Örnek 

MATLAB Programı  

Program Girdi ve Parametreleri 
x: Zaman serisi 
m: Gizli tabaka birim sayısı 
salt: Evrensel küme alt sınırı 
ss: Bulanık küme sayısı 
la: Evrensel küme alt aralık uzunluğu 
ntest: Test kümesi genişliği 
 

function output=fuzzytg5tli(x,m,salt,ss,la,ntest) 

rand('seed',4.9276984E7); 

n=size(x,1)-ntest; 

for i=1:ss 

 ualt(i)=salt+(i-1)*la; 

 uust(i)=salt+i*la; 

  mb(i)=(ualt(i)+uust(i))/2; 

end 

for i=1:n+ntest 

 for j=1:ss 

  if ((x(i)<=uust(j))&(x(i)>=ualt(j))) 

   fs(i)=j; 

  end 

 end 

end 

zd1=(fs-min(fs))/(max(fs)-min(fs)); 

Gegt=[zd1(1:(n-5));zd1(2:(n-4));zd1(3:(n-3));zd1(4:(n-2));zd1(5:(n-1))]'; 

yegt=zd1(6:n)'; 

net=newff(minmax(Gegt'),[m,1],{'tansig','tansig'},'trainlm'); 

net.trainParam.show=500; 

net.trainParam.epochs=500; 

net.trainParam.goal=1e-8; 

 [net,tr]=train(net,Gegt',yegt'); 

 ycegt=sim(net,Gegt'); 

yc=round(ycegt*(max(fs)-min(fs))+min(fs)); 
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for i=1:(n-5) 

 if yc(i)<=0  

  yc(i)=1; 

 end 

end 

for i=1:(n-5) 

 ong(i)=mb(yc(i)); 

end 

for i=1:(n-5) 

 hatakare(i)=(x(i+2)-ong(i))^2; 

end 

for j=1:ntest 

 Gegt=[zd1(n+j-5);zd1(n+j-4);zd1(n+j-3);zd1(n+j-2);zd1(n+j-1)]'; 

 ycegt2(j)=sim(net,Gegt'); 

end 

 yc2=round(ycegt2*(max(fs)-min(fs))+min(fs)); 

 for i=1:(ntest) 

  if yc2(i)<=0  

  yc2(i)=1; 

 end 

end 

for i=1:ntest 

 ong2(i)=mb(yc2(i)); 

end 

for i=1:ntest 

 hatakare2(i)=(x(i+n)-ong2(i))^2; 

end 

MSE=(sum(hatakare)/(n-5)) 

RMSE=(sum(hatakare)/(n-5))^0.5 

MSEtest=(sum(hatakare2)/(ntest)) 

RMSEtest=(sum(hatakare2)/(ntest))^0.5 

output=[RMSEtest]; 

 



 85

8. ÖZGEÇMİŞ 

1977 yılında Gaziantep’te doğdum. İlk ve orta öğrenimimi İstanbul’da 

tamamladım. 1999 yılında kaydolduğum Ondokuz Mayıs Üniversitesi Fen Edebiyat 

Fakültesi İstatistik Bölümünden 2003 yılında bölüm 3.’sü olarak mezun oldum. 2006 

yılında Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü İstatistik Anabilim Dalında 

Yüksek Lisans öğrenimime başladım ve 2007 yılında yine Ondokuz Mayıs Üniversitesi 

Fen Bilimleri Enstitüsü İstatistik Anabilim Dalında Araştırma Görevlisi olarak 

başladığım görevime devam etmekteyim. 

 


