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OZET

Bu calismada, dis manyetik alanin varliginda ve yoklugunda kiiresel bir kuantum
nokta yapmin elektronik oOzellikleri incelendi. Kuantum nokta yapinin sonlu ve
sonsuz sinirlandirict potansiyele sahip oldugu goéz oniline alinmistir. R yaricaph
GaAs/AlGa;«As kiiresel kuantum nokta yapida hidrojenik safsizligin 1s, 2p, 3d ve
4f enerji seviyeleri ve dalga fonksiyonlar1 Kuantum Genetik Algoritma(KGA) ve
Hartree-Fock Roothaan (HFR) methodu kullanilarak hesaplanmistir. Hesaplanan
dalga fonsiyonlar1 ve enerjileri kullanilarak, sonlu ve sonsuz smirlandirict
potansiyele sahip kuantum nokta yapmin baglanma enerjisi, nokta yaricapt ve
aliminyum katkilanma oranina bagli olarak hesaplandi. Ayrica bu ¢aligmada, dis
manyetik alanin kuantum nokta yapinin enerji seviyelerine ve baglanma enerjilerine
olan etkileri de incelenmistir. Kuantum nokta yapinin alt seviyeler arasindaki lineer
Zeeman ve kuadratik Zeeman gecis enerjileri nokta yarigapinin ve manyetik alanin
fonksiyonu olarak hesaplandi. Hesaplamalardan manyetik alan, safsizlik yiikii, nokta
yaricapt ve aliiminyum katkilanma oraninin, sistemin enerji seviyeleri Zeeman
enerjileri lizerinde giiglii bir etkiye sahip oldugu goriilmiistiir. Ayrica, dig manyetik
alan etkileri biiyiik nokta yaricaplarinda Zeeman seviyeleri arasindaki optiksel
gecisleri giiclii bir sekilde etkiledigi goriilmiistiir. Gii¢lii uzaysal siirlandirmanin
oldugu bolgelerde enerji seviyeleri manyetik alanin etkisinden ¢ok az etkilenirken,
orta smirlandirmanin oldugu bolgelerde alanin sinirlandirma etkisi ile uzaysal
sinirlandirma etkisinin yaristigl ve zayif sinirlandirma bolgesinde ise manyetik alan
etkisinin daha giiclii oldugu goriilmiistir.

Anahtar Kelimeler: Kiiresel kuantum nokta yapilar, Kuantum Genetik Algoritma
(KGA, Hartree-Fock Roothaan (HFR), Slater tipi orbital, Manyetik alan etkileri,
Baglanma enerjisi.

Eyliil, 2018; 82 sayfa
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ABSTRACT

In this study, in existence and absence of an external magnetic field, the electronic
properties of a spherical quantum dot were investigated. The quantum dot (QD) is
assumed to have a finite and an infinite confining potential well. 1s, 2p, 3d and 4f
energy levels and the wave functions of a hydrogenic impurity in GaAs/Al,Ga;-xAs
spherical quantum dot with radius R are calculated by the Quantum Genetic
Algorithm (QGA) and Hartree-Fock Roothan (HFR) method. Based on the wave
functions and energy states, the binding energy of the spherical QD is carried out as a
function of dot radius and aluminium concentration ratio. In addition, we report a
detailed theoretical investigation of the effect of an external magnetic field on the
energy states and binding energies of a spherical quantum dot. The Linear Zeeman
and quadratic Zeeman transition energies between subbands were computed as a
function of dot radius and magnetic field. The results show that the magnetic field,
impurity charge, dot radius and aluminium concentration ratio have a strong
influence on the energy states and the Zeeman transitions. Besides, the results
present that, in large dot radius, the external magnetic field affects strongly the
optical transitions between Zeeman states. In the strong spatial confinement cases,
energy level is relatively insensitive to the magnetic field, and electron spatial
confinement prevails over magnetic confinement.

Keywords: Spherical quantum dot, Quantum Genetik Algortihm (QGA), Hartree-
Fock Roothaan (HFR), Slater type orbital, Magnetic field effects, Binding energy.
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1.GIRIS

Yeryiiziinde bulunan biitiin maddeler atomlardan olugsmustur. Atom ise merkezde bir
¢ekirdek ve bunun etrafindaki farkli yoriingelerde hareket eden elektronlardan
olusmaktadir. Atom ve molekiillerin biraraya gelmesiyle de maddeler olugsmaktadir.
Maddeler elektrik akimini iletmelerine gore iletken, yalitkan ve yart iletken olmak
lizere iice ayrilirlar. Igerisinde elektronlarin serbestge hareket edebildigi maddelere
iletken maddeler, serbestce hareket edemedigi maddelere de yalitkan maddeler denir.
Maddelerin iletkenligini belirleyen en 6nemli faktor atomlarinin son yoriingesindeki
elektron sayisidir. Bu son yoriingeye "Valans Yoriinge" ve buradaki elektronlara da
"Valans Elektron" denir. Valans elektronlar atom ¢ekirdegine zayif olarak baglidir.
Bu yiizden kolaylikla uyarilabilir ya da koparilabilirler. Yari iletken malzemeler
dogada saf olarak bulunmaz, ancak teknolojik olarak {iretilebilirler. Periyodik
cetvelde 3. 4. ve 5. grupta bulunan elementler birbirleriyle katkilanmak suretiyle yar1
iletken malzemeler iiretilebilir. Yari iletkenlerin zdirengleri oda sicakliginda 102 Q
cm ile 10° Q cm arah@indadir. Bu aralik 10° Q.cm den kiigiik dzdirence sahip olan
iletkenler ile ozdirengleri 10'*-10?° Q cm arahginda olan yalitkanlar arasmdaki
bolgeye diiser. Bir yari iletkenin elektriksel iletkenligi sicakligina baglidir. Sicaklik
yiikseldik¢e yari iletkenin 6zdirencinin kii¢iilmesi onun en belirgin 6zelligidir. 1873
yilinda selenyumun fotoiletkenliginin kesfi ile yari iletken bilimi baslamis oldu
(Smith, 1873). Daha sonra 1940 I1 yillarin sonunda farkli fiziksel ve kimyasal
ozelliklere sahip yeni bir aygit olan transistoriin ortaya ¢ikmasi ile yari iletken
biliminde yeni bir donem basladi (Bardenn ve Brattain, 1948; Shockleey, 1949). Hall
vd., (1962) tarafindan yar1 iletken lazerin icat edilmesi ve birbirinden farkli en az iki
yart iletken kullanilarak olusturulan heteroeklemlerin ortaya ¢ikist (Anderson, 1962)
1960’1 yillarda kuantum mekaniginin katihal elektronigi iizerindeki -etkisini

arttirmistir.

Giliniimilizde yar iletken teknolojisinde goriilen olaganiistii gelismeler sayesinde
diisiik boyutlu yapilarin (low-dimesional structures) teknolojik olarak iiretimi
miimkiin hale gelmistir. Diislik boyutlu yapilar ayn1 zamanda nanoyapilar olarak ta
adlandirilir ve boyle yapilarin tiretilebildigi teknolojiye de nanoteknoloji ad1 verilir.
Nanoteknoloji asir1 kiiglik yapilarin iiretilebilmesi, onlarin ¢esitli fiziksel ve kimyasal
Ozelliklerinin  arastirllmas1 ve bunlardan yararlanilmasi {izerinde ¢alisir.

Nanoteknoloji maddeyi dolayli olarak atom boyutuna yani nanoboyuta indirgeme isi

1



olarak da ifade edilebilir. Drexler (1990)’in ifadesiyle nanoteknoloji “Yap1 lizerinde
atom atom oynama yaparak maddenin yapisinin molekiiler seviyede kontrol
edilmesi’’ anlamina gelmektedir. Bir baska ifadeyle nanoteknoloji biiyiikliigii
metrenin 100 milyon ile 1 milyar da biri arasinda degisen malzemelerin iiretimi,
montaj1 ve kullanimu ile ilgilenen teknoloji olarak ta adlandirilabilir. Nanobilim ise
nanometre (1nm:10'9m) boyutlarinda olan sistemlerle ilgilenen bir bilimdir. Bir
nanometre bir milimetrenin milyonda biri veya bir metrenin milyarda biri ya da insan
sa¢ telinin on binde biri kadar bir kalinliga tekabiil eder ve bu uzunluk atom ve
molekiillerin igindeki en kiigiik mesafeleri tanimlamak i¢in kullanilir. Boylece
nanoteknoloji atomlar1 tek tek kullanmak suretiyle makro diinyada olmayan
niteliklere sahip ¢ok kii¢iik cihazlarin iiretilmesi ve kullanilmasini amaglayan bir
alandir. Maddelerin nanoboyutta (veya atomik boyutta) incelenmesinin nedeni
maddeler bu boyutlarda farkli davranis sergilemektedir. Yani, olagan halde sert
olmayan maddelerin nano boyutta elmastan bile daha sert olmasi, ya da normal halde
elektrik ve 15181 ileten maddeler nano boyutta tam tersi Ozellikler gostermesi
miimkiindiir. Bununla birlikte malzemeler nano boyutta iretildigi zaman normal
halde goremedigimiz iistiin 6zellikleri ortaya ¢ikar. Nanoteknolojik olarak iiretilen
malzemeler daha dayanikli, daha hafif ve teknolojik olarak katma degeri daha

fazladir.

Dogada bulunan yapilar makroskopik (hareketlerin istatistiksel olarak
tanimlanabildigi), mikroskobik (hareketlerin atomik boyutlarda tanimlanabildigi) ve
mesozkopik olmak {izere iige ayrilirlar. Diisiik boyutlu yapilar ayni zamanda
Mezoskopik yapilar olarak ta adlandirilmaktadir. Bu yapilarin boyutlar1 yaklasik 10
A-1000 A (1 nm-100 nm) arasindadir. Boyle yapilarda tasiyicilarin (elektron veya
desikler) hareketlerinin engelleyici bir potansiyel ile sinirlandirilmast deneysel olarak
miimkiin olabilmektedir. Bunun i¢in yasak ener;ji araliklari farkli olan iki yar1 iletken
malzeme kullanilarak sandevi¢ yontemi ile ara yiizeyde bir potansiyel engeli
olusturulur. Boylece olusturulan bu potansiyel engeli ile yar1 iletken igerisindeki yiik
tastyicilarinin hareketleri siirlandirilmis olur. Bu durum asagidaki Sekil 1.1°de

gosterilmektedir.
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Sekil 1.1. Hetero yapilarda kuantum kuyusunun olusumu.

Burada yasak enerji araligi Eg; olan yari iletken malzeme icerisine, yasak enerji
araligi Eg olan bagka bir yari iletken malzeme atom katmanlar1 olarak biiyiitiiliir.
Boylece yasak enerji araliklarinin farkindan dolay1 ara yiizeyde bir potansiyel engeli
olugturulur. Bu engel yik yasiyicilarinin  hareketlerinin - bu  bdlgede
siirlandirilmasina neden olur. Diisiik boyutlu yapilar i¢erisindeki yiik tasiyicilarinin
hareketlerinin tek boyutta sinirlandirilmasiyla kuantum kuyular (quantum wells,
QWs) ve iki boyutta sinirlandirilmasiyla kuantum teller (quantum well wires,
QWWs) olusturulurken, yiik tasiyicilarmin iic boyutta sinirlandirilmasiyla da
quantum nokta yapilar (quantum dots, QDs) olusturulur. Kuantum nokta yapilar ayni
zamanda sifir boyutlu yapilar olarakta adlandiriimaktadir. Bu durumlar Sekil 1.2°de

gosterilmektedir.
Ly
AN £ -6
T
T —*| e — |+
(a) (b) (c)

Sekil 1.2. a) Kuantum kuyusu; b) Kuantum teli, ¢) Kuantum nokta yapisi

Nano teknolojideki son gelismeler ve tiretim tekniklerindeki ilerlemeler kuantum
nokta yapilar olarak bilinen sifir boyutlu yapilarin (quantum dots) iiretilmesine

olanak saglamaktadir. Kuantum nokta yapilar tek elektron transistorleri, 151k yayan



diyotlar, kuantum nokta lazerler, optiksel hafizalar, yiiksek-hizli elektro optik
modiilatorler, kuantum bilgisayarlar, kuantum infrared fotodedektorleri gibi
optoelektronik ve mikroelektronik cihazlarin teknolojik olarak iiretilmesinde ¢esitli
uygulama alanlarina sahiptir. Kuantum nokta yapilar kesikli enerji seviyeleri ve
kabuklu yapilara sahip olmasi gibi atomik ozellikler gosterdigi igin yapay atom
olarak da adlandirilmaktadir. Dolayisiyla bu yapilar ile ilgili yapilan ¢aligmalar

yogun madde fizigi, atom fizigi ve kuantum kimyasi ile yakindan ilgilidir.

Kuantum nokta yapilarin elektronik yapisit ve fiziksel 6zelliklerini inceleyen c¢ok
sayida teorik ve deneysel ¢alismalar yapilmistir. Varshni (1996) ve Bose ve Sarkar
(1998) sonlu kuantum nokta yapilarda varyasyonel ve pertiirbasyon metodunu
kullanarak nokta yapinin baglanma enerjilerini hesapladilar. Marin ve Cruz (1991)
sonsuz kiiresel kuyu igerisindeki hapsedilmis hidrojen atomu ve harmonik osilatoriin
enerji seviyelerini, Montenegro ve Perez (1992) kiiresel kuantum noktadaki
hidrojenik safsizligin taban durum enerjisi ve baglanma enerjisini varyasyonel metod
kullanarak hesapladilar. Grigoreko ve Garcia (2002), Sahin vd., (2005) hidrojenik
safsizligin taban ve bazi uyarilmis enerji seviyelerini ve baglanma enerjilerini KGA
yontemi kullanarak hesapladilar. Yang vd., (1998) tam ¢6ziim yontemi ile kuantum
nokta yapmin merkezine yerlestirilmis hidrojenik safsizligin enerji seviyelerini ve
ince yapt yarilmalarmin hesabimi yaptilar. Cakir vd., (2007, 2008) KGA ve HFR
yontemini kullanarak bir ve iki elektronlu hidrojenik safsizligin enerji seviyelerini ve
baglanma enerjilerini hesapladilar. Ayn1 zamanda Ozmen vd., (2009) , Cakir vd.,
(2015) ile Yakar vd., (2010, 2012 , 2015) yine ayn1 yontemi kullanarak bir ve iki
elektronlu kiiresel kuantum nokta yapilarin lineer ve nonlineer absorbsiyon
katsayilarini, kirllma indislerini ve baglanma enerjileri ile ilgili optiksel 6zellikleri
hesapladilar. Bunlarin yaninda Yakar vd., (2013) ile Cakir vd., (2016) yine
hidrojenik safsizlik i¢in kinetik enerji diizeltme terimi, LS etkilesim terimi ve Darwin

terimi gibi rolativistik terimlerini nokta yaricapinin fonksiyonu olarak hesapladilar.

Dis pertiirbasyonlar olarak bilinen elektrik ve manyetik alanin uygulanmasi
siirlandirilmig  sistemler hakkinda c¢ok degerli essiz bilgiler ortaya c¢ikarabilir.
Manyetik ve elektrik alan gibi dis pertiirbasyon etkileri kuantum noktalarin
elektronik ve optiksel 6zelliklerinin daha iyi anlasilmasinda artan bir ilgiye sahiptir.
Safsizlik (impurity) seviyelerinin simetrisi, dalga fonksiyonlarinin yapisi ve safsizlik

seviyelerinin diger 6zellikleri kuantum nokta yapilara dis manyetik alan uygulayarak

4



degistirilebilir. Boylece son zamanlarda manyetik alan varliginda kuantum nokta
yapilarin elektronik yapisi, enerji seviyeleri, baglanma enerjileri ve optiksel
Ozellikleri ile ilgili ¢alismalar artan bir ilgiye sahiptir. Xiao vd., (1996) varyasyonel
metodu kullanarak manyetik alan igerisindeki kiiresel kuantum nokta yapilarin
baglanma enerjilerini hesapladilar. Peter vd., (2005) ile Wu ve Won (2012) giiglii bir
dis manyetik alan igerisinde parabolik ve kiiresel kuantum noktalarin elektronik
yapisini ve baglanma enerjilerini incelediler. Zhang vd., (2010) ile Seddik vd.,
(2005) dis manyetik alanin parabolik kuantum noktalarin optiksel 6zellikler {izerine
olan etkilerini detayli olarak ¢alistilar. Yine dis manyetik alanin varliginda
varyasyonel yaklagimi kullanarak Yesilgiil vd., (2011) ile Ghazi vd., (2013) kuantum
tel ve kiiresel kuantum nokta yapilarin safsizlik konumunu ve baglanma enerjisini
incelediler. Niculescu ve Bejan (2015) piramit kuantum nokta yapisi igin elektronik
seviyeler ve lineer olmayan absorpsiyon katsayilar1 tizerinde manyetik alanin
etkilerini ve safsizligin konumunu calisti. Giiriiltiiniin varhiginda ve yoklugunda
kuantum nokta yapinin optiksel absorpsiyon katsayilarinin detayli bir ¢alismasi
Mandal vd., (2015) tarafindan yapildi. Cok yakin bir zamanda Cakir vd., (2016,
2017) ve Yakar vd., (2017) sonlu ve sonsuz sinirlandirict potansiyele sahip kiiresel
kuantum nokta yapilarin enerji seviyeleri, baglanma enerjileri ve absorbsiyon

katsayilari iizerinde manyetik alan etkilerini detayl bir sekilde incelediler.

Yukarida ifade edilen ¢alismalarin ¢ogunda taban durum (L=0) ve ilk uyarilmis
seviye 2p (L=1) ler iizerinde manyetik ve elektrik alan etkileri incelenmistir. Bizim
yaptigimiz bu ¢alismada ise taban durum (1s) ve gesitli uyarilmis elektronik enerji
seviyeler (2p, 3d ve 4f) lizerinde paramanyetik ve diyamanyetik alan etkileri
incelenmistir. Burada diyamanyetik terim pertiirbasyon terimi olarak gozoniine
alinmigtir. Taban ve uyarilmis enerji seviyelerinin grafikleri nokta yarigapinin
fonksiyonu olarak elde edilmis ve bu seviyeler arasindaki Zeeman enerji gecisleri
nokta yarigapmin ve manyetik alanin fonksiyonu olarak ifade edilmistir. Ayrica

diyamanyetik pertiirbasyon teriminin Zeeman gegislerine olan etkisi de incelenmistir.



2. DUSUK BOYUTLU YAPILAR
2. 1. Diisiik Boyutlu Yapi Cesitleri
2.1.1.Kuantum kuyulari

Diisiik boyutlu yapilar igerisindeki yiikk tasiyicilarimin  hareketi bir boyutta
siirlandirildigi zaman pargaciklar iki boyutta serbest olarak hareket edebilir. Boyle
yapilara kuantum kuyular adi verilir. Kuantum kuyular yasak enerji aralig1 biiyiik
olan bir malzeme igerisine yasak enerji araligi kiigik olan bir malzemenin tabaka
halinde yerlestirilmesi ile elde edilir. Sekil 1.2a’da goriilecegi gibi elektronlarin
hareketi y-dogrultusunda sinirlandirildigi zaman elektronlar diger iki boyutta
serbestge hareket ederler. Elektronlarin iki boyutta serbestce hareket edebildigi
yapilara iki boyutlu elektron gazi da denir. Kuantum kuyularinda sinirlandirma
sadece y dogrultusunda oldugu i¢in kuantum etkisi sadece bu dogrultuda goriiliir.
Elektronun x ve z dogrultusunda herhangi bir sinirlandirma olmadigi igin dalga

fonksiyonu;

Y(x,y,z) = exp(ikex + ik,z)d(y) (2.1)

ile verilir. Burada ky ve k; x ve z dogrultusundaki dalga vektoriiniin bilesenleridir. ¢,,
fonksiyonu ise sinirlandirmanin oldugu dogrultuya karsilik gelen fonsiyonu tanimlar.
Kuantum etkisinin goriildiigli y dogrultusu i¢in Schrodinger denklemi asagidaki gibi
yazilabilir.

d? 2

P+ 5 (B - V) ) =0 (22)
Burada E, ve V() parcacigin y-dogrultusundaki enerjisini ve smirlandirici
potansiyelini gostermektedir. Burada smirlandirict potansiyel sonsuz ylikseklikte
alinirsa kuyu igerisinde V(y)=0 olur. Yani kuyu igerisinde serbest par¢acik durumunu
gosterir. Dalga fonksiyonunun y-dogrultusundaki bileseni kuyu sinirlarinda smir

sartlar1 uygulandiginda asagidaki denklem elde edilir.

K, = 2% (2.3)

y Ly

Burada Ly kuyu genisligidir. Goriildiigii gibi dalga fonksiyonunun bileseni kesikli

degerler aldig1 i¢in kuyu icerisindeki parcacigin enerji 6zdegeri



=2 (M)Z (2.4)

My T 2m\ Ly
seklinde olur. Bu durumda pargacigin toplam enerjisi

n2 |, 5 2 nym 2
E = % kx + kZ + (L_) (25)

y

ile verilir.
2.1.2 Kuantum teller

Yiik tastyicilarin iki boyutta sinirlandirildigi ve dolayisiyla tek boyutta serbestce
hareketin olabildigi sistemlere kuantum teller denir. Boyle sistemlerde
kuantumlanma etkisi elektron hareketinin sinirlandirildigr iki boyutta goriiliir. Bu
durum Sekil 1.2b’de gosterilmektedir. Boyle bir sistem icerisindeki elektron tek

serbestlik derecesi ile tanimlanir ve elektrona eslik eden dalga fonksiyonu
Y(x,y,z) = exp(ikyx)d(y, 2) (2.6)

bi¢iminde yazilir.

Burada ¢(y,z) smirlandirmanin  oldugu dogrultulara karsilik gelen dalga
fonksiyonunu gosterir. Iki boyutlu sinirlandirmanin oldugu sistemlerde Schrodinger

dalga denklemi

(4 ) 62 + VD6 2) = Ey b (52) 2.7)

2m \dy?

bi¢iminde yazilabilir.

Burada y ve z dogrultusundaki sinirlandirici potansiyeller sonsuz yiikseklikte alinirsa

V(y,z) = 0 olur. Bu durumda dalga fonksiyonuna sinir sartlart uygulandiginda

nym n;m
k, = 2 vek, = —=
y Ly z Ly

(2.8)

elde edilir ve enerji 6zdegerleri

_h_z 2 ny_ﬂ-'z nzn2
E—Zmlkx+(Ly) +(Lz)l 2.9)

seklinde verilir.



2.1.3 Kuantum nokta yapilar

Diisiik boyutlu yapilarda yiik tastyicilarin hareketlerinin {i¢ boyutlu sinirlandirildig
yapilara kuantum nokta yapilar (quantum dots) denir. Bu durum Sekil 1.2¢’de
gosterilmistir. Elektronlarin hareketi ii¢ boyutta sinirlandirildigi i¢in kuantumlanma
etkisi de ii¢ boyutta da goriiliir. Boyle yapilardaki pargaciklar i¢in Schrodinger

denklemi

W2 (a2 d? | a?
—— (— +oet E) dxy,2) +V(xy, )y, 2) = Eyy,d(x,y,2) (2.10)

2m \dx?

bi¢ciminde yazilir.

Buradaki sinirlandirict potansiyel sonsuz kuyu seklinde alinirsa kuyu igerisinde
potansiyelin degeri sifir olur. Yani V(X,y,z) = 0 dir. Sinir sartlar1 kullanilarak dalga

vektori bilesenleri de

Ny TT nym Nn,m
=, k, =X vek, = =
Ly y L, S A

kn, = (2.11)

yazilir ve enerji 6zdegerleri

B= () 4 (32) + () 212)

elde edilebilir.

2.2. Serbest Elektron Modeli

Katiyr olusturmak i¢in izole atomlar1 bir araya getirme diislincesinden ziyade,
atomlarin kristalin Orgii noktalarina yerlesmis oldugu durumdan baglayarak da
katilarin bant yapisi elde edilebilir. Katiy1 olusturan her bir atom, konumu sabit olan
ve valans elektronun kati icinde serbest oldugu pozitif yiikli iyon olarak
diisiiniilebilir. Pozitif yiiklii bu iyonlar kristal icinde periyodik olarak yerlesmis
olduklarindan kristal boyunca yiik yogunlugu diizgiin olarak dagilmis olacaktir.
Pozitif yiiklii iyonlar ile elektronlar arasindaki potansiyel enerjinin sifir oldugu yani
elektronun yalnizca kinetik enerjiye sahip oldugu ve elektronlarin icinde
bulunduklar1 kristalin sinirlarinin V yiiksekliginde bariyerler oldugu diistiniildiiglinde
elektron enerjisinin bulunmasi problemi, kuantum kuyusu ig¢indeki elektronun

enerjisini bulmak i¢in Schrédinger denkleminin ¢oziilmesine indirgenmis olur. Bu
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yontem Serbest Elektron Modeli olarak adlandirilir. Serbest elektron modeli
metallerin baz1 6zelliklerini aciklayan basit bir modeldir. Ancak kati cisimlerin

metal, yariiletken ve yalitkan olarak siniflandirilmasi bu model ile yapilamaz.

E

Sekil 2.1. Serbest elektronun dispersiyon egrisi.

2.3. Kismen Serbest Elektron Modeli

Katilarin elektriksel iletkenliginin katidan katiya nasil ve neden degistigini agiklamak
icin elektronlarin pozitif iyonlarla etkilesmelerinin goz 6niine alindig1 kismen serbest
elektron modeli kullanilabilir. Kismen serbest elektron modelinde kristal
makroskobik boyutlardaki kuantum kuyusuyla temsil edilmektedir. Atomlar
arasindaki Coulomb potansiyeli, kat1 i¢indeki iyonlarin birbirini iten alanlarindan
dolay1 bagimsiz atomlarda gozlenen potansiyelin indirgenmis halidir. Iyonlar
arasinda Coulomb potansiyelinin bu indirgenmis hali komsu atomik yoriingelerin
etkilesmesi sonucunda enerji Seviyelerinde genislemeye ve elektron yiik dagilimmin
uzaysal olarak yayilmasina neden olur. Metallerde elektronlar atomlarindan ayridir
ve serbest olarak metal i¢inde hareket edebilirler. Ancak yariiletkenlerde sicakliga
bagl olarak serbest elektron sayisi degismekte ve bu nedenle yari iletkenin
iletkenligide sicakliga bagli olarak degismektedir. Kismen serbest elektron
modelinde elektron kati cisim iginde pozitif iyonlarmn olusturdugu a periyoduyla

degisen periyodik bir potansiyelin etkisi altindadir.

Sekil 2.2°de kismen serbest elektron modeli ve serbest elektron modelinin 6ngdrdiigii
dispersiyon egrileri birlikte gdsterilmistir. Kismen serbest elektron modeli belli k
degerlerinde elektron enerjisinin serbest elektron modelinden farklilasacagini

gosterir. Ancak bu k degerleri civarinda dispersiyon egrisinin nasil degistigi bilgisini
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vermez. Bu degisimin nasil oldugunu Ongorebilmek i¢in Bragg yasasindan
yararlanilir. Bragg yasasina gore k = ™'/, degerlerinde duran dalgalar olusur yani

elektronun grup hizi sifirdir. Grup hizi dispersiyon egrisinin birinci tiireviyle
(Vg = ﬁ) belirlendigi i¢in bu k degerlerinde dispersiyon egrisinin maksimuma ya

da minimuma gidecek sekilde serbest elektron modelinin dispersiyon egrisinden
farklilik gosterece8i Ongoriilebilir. Gorildiigli gibi periyodik orgli potansiyeli,
dispersiyon egrisinde hicbir elektron durumunun olmadigi enerji araliklarin
olugsmasina neden olmaktadir. Bu bolgeler yasak enerji araliklar1 yada bant araliklar
olarak tanimlanir. Elektronlarin izinli oldugu bolgeler enerji bantlart olarak
adlandirilir. Katilar yasak bant araliginin biiyiikliigiine gore elektriksel olarak metal,
yarimetal ve yalitkan olarak siniflandirilabilir. Katinin ilkel hiicresindeki valans
elektron sayist tek oldugunda, en yiiksek enerjili bant kismen doluyken, valans
elektron sayisi ¢ift oldugunda bant tamamen doludur. Dolayisiyla valans elektronu
tek sayida olan katilar metal, ¢ift sayida olanlar ise yasak bant araligi kiigiikse
yariiletken, biiyiikse yalitkan olarak adlandirilir. Metal, yariiletken ve yalitkana ait
bant profilleri Sekil 2.3’de gosterilmektedir. Bu gosterimde yaklasik mutlak sifir
sicakliginda elektronlarla dolu en iisteki bant valans bandi, yasak bant araligiyla

valans bandindan ayrilmis olan bant ise iletkenli band1 olarak adlandirilir.

E

1 1 1 1 1 1

A : : : ; j

N\ I | R

1 1 1 1 1 1

1 1 1 1 1 1

: : ; i i 1Enerji bandi

1 1 1 1 1 I

1 1 1 1 1 1

1 1 1 1 1 1

I 1 1 1

: v : : o/ :Yasak bant araligi
1 1 1 1

: ?\‘: :/:' \Enerji band

[ 1\ 1 1 /7 1

! A A :Y T
1 1 1 1 1 1Yasa antaraligi
: : N_ﬂ/ | \Enerji band

-3n/a -2n/a  -n/a 0 +Nn/a +2n/a +3n/a k

Sekil 2.2. Kismen serbest elektron modeli (diiz ¢izgiler) ve serbest elektron modeli
g
(kesikli ¢izgiler) dispersiyon egrilerinin birlikte gosterimi.
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lletkenlik bandi

A

lletkenlik band:

=
Eg
\/
=
—Valahs-Dandr—| Valans bandi
a) b) c)

Sekil 2.3. a) iletken, b) Yariiletken, ¢) Yalitkana ait bant profilleri. Burada Eq yasak
bant araligin1 ve golgeli bolgeler de elektronlarla dolu enerji seviyelerini
temsil etmektedir.

2.4. Diisiik Boyutlu Yapilarin Elde Edilme Yontemleri
2.4.1. Asitle eritme yontemi

Bu yontem kuantum nokta yapilarin tiretiminde kullanilan ilk yontemdir (Reed vd.,
1986). Bu yontemin ilk asamasinda bir ya da birden fazla kuantum kuyusuna sahip
bir yapimnin yiizeyi polimer maskeyle kaplanir. Sonra polimer maske elektron veya
iyon demetine maruz birakilarak olusturulacak nano yapimin smnirlart ve sekli
belirlenir. Polimer tabaka yiiksek ¢oziiniirliige sahip oldugundan yapinin sekli ve
siurlar1 belirlenirken goriinlir bolgedeki elektromanyetik dalga kullanilmaz. Daha
sonraki asamada numunenin yiizeyi ince bir metal tabakayla kaplanir. Sonra secilen
yiizey disindaki tlim yiizey aktive edilmis iyon demetine maruz birakilarak metal ve
altindaki polimer tabaka temizlenir ve basit yap1 elde edilir. Smirlandirict bolge
yiizeyi lizerindeki metal tabaka elektrot olarak kullanilabilir. Bundan sonra metal
maskeyle korunmamis bolgeler kimyasal olarak aktif iyonlarla agindirilir ve kuantum
kuyu parcalar1 igeren ince yapilar olusmus olur. Son olarak bu yapilar kesilerek
yiizeyden ayrilir (Jacak vd., 1998; Jacak, 2000; Reed, 1993). Boylece bu yontemle
boyutlart 10-100 nm mertebesinde sinirlandirilmis kuantum yapilar elde edilir

(Demel vd., 1990; Smith vd., 1988).
2.4.2. Modiile edilmis elektrik alan yontemi

Bu yontem, kuantum kuyusu yiizeyi iizerine c¢ok kiiciik elektrotlar yerlestirilmesi
esasia dayanan litografik bir yontemdir. Elektrotlara belli biiytikliikteki potansiyel

farki uygulanmasi ile elektronlarin hareketini siirlandiran ¢ok kiigiik bir elektrik
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alani olusur. Bu elektrik alan uygulanan gerilim ile ayarlanabilir. Bu yontemle elde
edilen kuantum kuyularin kenarlarinda eritme yonteminde olugan malzemeye bagh
olan kenar kusurlar1 olusmaz. Ayni zamanda bu yontemle eritme yonteminde oldugu
gibi yan yana diizgiin dizilmis birden fazla kuantum noktasi olusturulabilir (Jacak,

1998).

2.4.3. Kendiliginden biiyiitme yontemi

Bu yontem kuantum kuyularin kendiliginden kristallestirilmesi yontemidir (Petroff
ve Denbaars, 1994). Bu yontemde alt tabaka ve kristallesen malzemenin Orgii
sabitleri dnemli dlgiide farklilik gosteriyorsa sadece ilk ¢okeltilen tek tabakalar, 6rgii
sabiti alt tabakaninkine esit katmanlar olarak epitaksiyel formda kristallesir. Kritik
kalinlik asildiginda tabaka icerisinde meydana gelen Onemli o6lgiideki gerilme,
diizenli yapinin bozulmasma ve ayni boyutlarda diizenli bi¢cimlere sahip rasgele
dagilmis kiiciik odaciklarin kendiliginden olusmasina neden olur. Bu odaciklarin
sekli ve biiytikliigii orgii sabitleri arasindaki uyusmazliga bagl olarak tabaka iginde
olusan gerilme siddetine, biiylitmenin oldugu sicakliga ve biiyiitme hizina baglidir.
Bu yolla elde edilen kuantum nokta yapilarin boyutlar1 kiiciik ve homojen
bliytikliikte, kenar kusurlar1 olmayan ve oldukga elverisli biiyiime siireclerine sahip

oldugu i¢in opto elektronik ve mikro elektronik uygulamalarda iimit vaad etmektedir.

2.4.4. Secici bilyiitme yontemi

Bu yontemde yasak enerji aralig1 ¢ok dar olan GaAs gibi yari iletken bir malzeme
ylizeyinin iizeri daha genis yasak enerji araligina sahip A1IGaAs gibi bir malzemeyle
kaplanir. Sonra bu tabakanin tizeride koruyucu bir tabaka (SiOy) ile kaplanir. Yiizey
izerinde biiyiitmenin yapilacag: alan belirlenir ve bu alan iizerinde eritme yapmak
suretiyle minyatiir tiggenler olusturulur. Bu minyatiir ticgen yiizeylere Metal-Organic
Chemical Vapor Deposition (MOCVD) teknigi uygulanarak sicakliklar1 700 0C-800
OC ye kadar ¢ikarilir. Sicaklik etkisiyle hacimleri biiyiiyen iiggen yiizeyler tetrahedral
piramit haline doniisiir ve biiyiitme tamamlanmis olur. Bu yontemle elde edilen
kuantum nokta yapinin boyutlart 100 nm den daha kiigiiktiir (Grundmann vd., 1995;
Raymond vd., 1996).
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2.4.5. Kuantum Kkuyusu ve engel arasi i¢ difiizyon yontemi

Bu yontem kuantum kuyusunun belirlenen bir bslgesinin lazer demeti ile 1sitilmasina
dayanan bir tekniktir. Kalinlig1 yaklasik olarak 3 nm olan GaAs kuantum kuyusu,
yaklasik olarak 20 nm kalinligina sahip iki adet Alg35GagesAS Yyapilarinin arasina
yerlestirilmesiyle bir kuantum kuyusu olusturulabilir. Sonra 10 nm kalinliginda
GaAs tabakasi, AlGaAs tabakasi iizerine yerlestirilir. Lazer demetinin neden olacagi
erime veya oksitlenmeleri engellemek amaci igin en ist yiizey yaklasik 100 nm
kalinlikl1 SiN,4 tabakasi ile kaplanir (Jacak, 1998).

2.4.6. Yari iletken mikro kristaller

Bu yontemde herhangi bir dielektrik malzeme igerisine (6rnegin cam) yari iletken
mikro Kkristaller yerlestirilmesi ile kuantum nokta yapilar1 elde edilir. Bunun igin belli
oranlarda CuCl, CdSe veya CdS gibi bilesikler silikat cam bilesiklerinin belirli
oranlartyla birkag yiiz santigrat derecede isiya tabi tutulur. Sicakliga ve 1sitma
stiresine bagli olarak istenilen biiyiiklikte ve boyutta kuantum noktalari elde

edilebilir. Kristal yarigap1 a, 1sitma siiresi t ve sicaklik T olmak tizere

a3 = tei (2.13)

bagintisiyla tiretilen kuantum nokta yapmin genisligi kontrol edilebilir. Bu yontem
ile 1,2 nm ile 18 nm genisliginde kuantum nokta yapilar iretilebilir (Ekimov vd.,
1985; Jacak, 1998).

2.5. Kuantum Genetik Algoritma

Ortama iyl uyum saglayabilen bireylerin hayatta kalmasi, saglayamayan bireylerin
elenmesine genetik algoritma denir. Genetik algoritma ilk kez Holland (1975)
tarafindan kullanilmis olup daha ziyade miihendislik ve malzeme biliminde yaygin
olarak kullanilmaktadir. Son yillarda fizigin birgok alaninda da genetik algoritma
yontemi kullanilmaktadir. Ornegin kuantum mekaniksel sistemleri enerjisinin
belirlenmesinde  kullanilmaktadir. Genetik  algoritma kuantumlu yapilarda
kullanildiginda kuantum genetik algoritma (KGA) adin1 alir ve bu yontem

varyasyonel yontemde oldugu gibi enerji minimizasyon ilkesine dayanir.

Kuantum mekaniksel sistemleri temsil eden Schrodinger denkleminin ¢dziimlerini

bulmak icin de kuantum genetik algoritma kullanilmaya baslanmistir. Sayisal
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optimizasyon yontemi olan KGA geleneksel olarak bilinen varyasyonel yontemden
onemli Olclide farklilik arz eder. Varyasyonel yontem bazi kurallara bagh iken KGA
rastgelelik teknigi ilizerine dayanir. Varyasyonel yontem c¢oziime tek bir noktadan
veya analitik olarak ifade edilen bir sonugtan baslarken KGA teknigi olas1 ¢oziimleri
olusturan noktalar toplulugu (baslangic popiilasyonu) ile ise baslar. Varyasyonel
yontemde parametreler siral1 bir bicimde degistirilirken KGA’da belli bir sira yoktur.

Yani parametreler ayn1 anda degistirilebilir.

KGA yontemi kopyalama (yeniden olusum), caprazlama ve mutasyon olmak iizere
tic temel unsur lizerine kurulmustur. Burada yeniden olusum siirecinde bireylerin
hayatta kalma olasiliklar1 belirlenir. Hayatta kalma olasilig1 en diisiikk olan bireyler
elenirken hayatta kalma olasilig1 yliksek olan bireyler bir sonraki nesle aktarilir.
Bireyler caprazlama siirecinde biyoloji biliminde kullanilan dogal caprazlama
islemine benzer bir siirece tabi tutulur. Caprazlama islemi yeniden elde edilen
bireyler iizerine uygulanir ve rastgele segilen iki birey iizerinden yiiriitiiliir. Iki
bireyin genetik bilgileri (kodlar1) rastgele bir noktadan kesilerek birinci bireyin
kesilen noktasindan sonra kalan bilgiler ikinci bireyin kestigimiz noktanin oniinde
kalan bilgiler ile eslestirilir. Ayni1 durum ikinci birey i¢in de gegerlidir. Boylece her
iki birey de birbirlerinin genetik bilgilerini tasimis olurlar. Mutasyon islemi KGA
yonteminde yerel minimumlardan kurtulmak ic¢in uygulanan bir siiregtir. Niifus
icinden rastgele segilen bir birey iizerinden mutasyon islemi uygulanir. Mutasyon
siirecinde gerceklestirme olasiligl yanlis ¢6ziimlere gitmemek icin miimkiin mertebe
diisiik secilir. Olasiligin  biiylik sec¢ilmesi durumunda yakinsama giiclesir ve

rastgelelik ¢ok artar.

KGA teknigi uygulanirken iki farkli yontemden bahsedilebilir. Bunlardan birincisi
parametre eniyilemesi, ikincisi ise dalga fonksiyonu eniyilemesidir (Cakir, 2007). ¥
(c1,€2,....Cn, G1, Co,.... Gn) kuantum mekanik sistemi temsil eden schrodinger
denkleminin olasi ¢oziimii olsun. Eger varyasyon yonteminde oldugu gibi parametre
entyilemesi yapilip c; ve ; degerleri belirlenecekse bu durumda baslangi¢ niifusunun
bireyleri c; ve  lerin rastgele belirlenmis degerlerinden olusur. Bu degerler dalga
fonksiyonunun analitik ifadesinde kullanilir ve elde edilen bu analitik ifade
kullanilarak hesaplamalar yapilir. Eger dalga fonksiyonu eniyilemesi yapilacaksa c;
ve (i lerin rastgele belirlenen degerleri kullanilarak dalga fonksiyonunun sayisal

degerlerinden olusan baslangi¢ niifusu olusturulur ve bu dalga fonksiyonlarinin her
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biri bir birey alinir. Hesaplamalar bu sayisal dalga fonksiyonu iizerinden yapilir.

Boylece analitik ifade de ¢; ve {; ler bir kez kullanilmis olur.
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3. TANIMLAMALAR VE YONTEM
3.1. Giris

Teknolojideki son gelismeler sayesinde kuatum kuyular, kuatum teller ve kuantum
nokta yapilarin tlretilmesi miimkiin hale gelmistir. Bu yapilar igerisinde 6zellikle
kuantum nokta yapilar kesikli enerji seviyeleri ve kabuklu yapiya sahip olmasindan
dolay1 atomlara benzer 6zellikler gostermektedir (Cakir, 2007, 2008). Bundan dolay1
teknolojide mikroelektronik ve optoelektronik cihazlarin iiretilmesinde potansiyel
kullanim alanlarina sahiptir (Ozmen, 2009). Bu nedenle son yillarda birgcok

arastirmaci tarafindan teorik ve deneysel ¢alisma konusu olarak tercih edilmektedir.

Bu boliimde elektronun sonlu ve sonsuz kiiresel sinirlandirici potansiyel kuyusu
igerisinde bulundugu merkezinde safsizlik olan bir nokta yapi (hydrogenic impurity)
g6z Oniline alinacaktir. Kiiresel nokta yapinin taban ve g¢esitli uyarilmis enerji
seviyelerinin beklenen degeri ve bu seviyelere karsilik gelen en iyi dalga
fonksiyonlar1 Kuantum Genetik Algoritma prosediiri ve Hartree-Fock Roothaan
metodu kullanilarak  hesaplanacaktir. Hesaplamalarda tek elektron dalga

fonksiyonlar Slater tipi orbitallerin lineer bilesenlerinden olusturulacaktir.

3.2. Slater Tipi Orbitaller

Zener (1930) Lityumdan Neona kadar olan atomlar i¢in hidrojene benzer atomlarin
dalga fonksiyonlarma ek parametreler katarak bu atomlar i¢in dalga fonksiyonunu
tanimladi. Slater (1930), Zener’in dalga fonksiyonlarini daha biiylik atomlar i¢in
genellestirerek atom ve iyonlar icin yaklasik analitik fonksiyonlari bulmada bir
yontemi gelistirdi. Slater’in bu yontemine yar1 deneysel genellestirme olarak
bakilabilir. Slater’in yonteminde atomun herhangi bir elektronunun, yiikii 2 — y olan
bir ¢ekirdegin olustudugu merkezcil alanda hareket ettigi kabul edilir. Buraday
cekirdegin yiikiinlin diger elektronlar tarafindan perdelenmesidir. Hidrojene benzer
atomlarin dalga fonksiyonlariin radyal kismi1 r ye gore n — € — 1 sayida terimi olan
bir polinomdur. Polinomun en yiiksek mertebeli terimi £ ye bagh degildir ve r"* ile
orantilidir. Slater’a gore hidrojene benzer atomlarin dalga fonksiyonlarinin yardimi
ile atomlarin 6zellikleri incelenirken en 6nemli terim r nin derecesi en biiyilik olan
terimdir. Yani r"* olan terimdir. Buna gore Slater atom orbitalinin (STO) radyal

kismu,
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Ry (1) = Ap-(Qr™ e ™ (3.1)

Z-y

n*

seklinde tamimlamistir. Burada ( = olup perdeleme sabiti, A,-(()

normalizasyon katsayisi ve n’ etkin bag kuantum sayisidir. n tam degerler aldiginda

n+1
(n"=n=1,2,3,....) normalizasyon Kkatsayisi A4,(() = (\2/2% olur. Boylece Slater
yaklasimima gore n tam degerler aldigindan bir elektronlu atom orbitalinin radyal
kismi1
1
Rn(Cr) = (jg—) et (32)
seklinde ifade edilir.

n ve y deneysel 6zelliklerden yararlanarak bulunur ve Slater’in kendi adini tagiyan
baz1 kurallara uyar. Bu degerler Slater’in yar1 deneysel kurallarindan baska 6z
uyumlu alan (varyasyonel) yontemiyle de bulunabilir. Kiigiik atomlarda Slater
kurallarindan bulunan ¢ larla, bliylik atomlarda ise 6z uyumlu alandan bulunan { larla

yapilan hesaplamalar daha iyi sonug¢ vermistir.

Y (6, ¢) kiiresel harmonikler olup
Y (6,9) = P5|m|(0059)€lm¢ (3.3)

seklinde tanimlanir. Burada P, (Cos@), normalize assosiye Legendre polinomu
olup

1 [2€+1(€ Iml)'] 1- ":' at+iml
2000 20+ |m) dxt+iml

Py (x) = (x? —1)f (3.4)

ile verilir (Messiah, 1961). Burada { yoriinge agisal momentum, m ise manyetik
acisal momentum kuantum sayilaridir. Kompleks kiiresel harmonikler Condon-
Shortly (1970) fazinda Y,_,,(8, @) = (—1)‘Y;,,," (6, ¢) ile verilir. Kompleks kiiresel

harmonikler

foﬂ fozn Yl;;n (6' d))Y[’m'(g' ¢)dQ = 6% 6‘mm (35)

ortonormallik sartin1 saglar. Burada dQ = Sinf dO d ¢ dir. Béylece normalize Slater

atom orbitalleri,
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n+1

g (61 708) = T Y (6,0) (3.6)

seklinde verilir. Slater atom orbitallerinin radyal kismi1 normalizedir ancak ortogonal
degildir.

Slater atom orbitalleri ¢ekirdege ¢ok yakin ve uzak bolgelerdeki uygun davraniglart
nedeniyle atom ve benzeri sistemlerin (kuantum nokta yapilarm) elektronik
yapisininin hesaplamalarinda ideal temel fonksiyonlar olarak kullanilir. Ancak Slater
atom orbitalleri kullanilarak yapilan hesaplamalarda karsilasilan temel giigliik
Hartree-Fock-Roothaan denklemlerinin ¢6ziimiinde karsilasilan ¢ok merkezli
integrallerin hesaplanmasinda ortaya ¢ikmaktadir ve ¢ok merkezli integrallerinin

¢Ozliimiinii zorlastirmaktadir (Yakar, 2002).

3.3.Hartree-Fock-Roothaan Yontemi

Zamandan bagimsiz pargacik modelinde “her elektron bir etkin potansiyelde hareket
eder ve cok elektronlu sistemdeki her elektron kendi dalga fonksiyonu ile
tanimlanir’’ ifadelerinden hareketle Hartree, bireysel elektron dalga fonksiyonlarinin
denklemlerini yazdi ve ¢ok elektronlu sistemin dalga fonksiyonunu tek elektron

dalga fonksiyonlarinin (orbitallerin) ¢arpimi seklinde ifade etti.
W(ryry, o ry) = T, b (3.7)

Hartree ayrica bu denklemlerin ¢6ziimii i¢in bir tekrarlama (6z-uyum gerekliligini
temel alan) siireci Onerdi. Boylece 1929°da D.Hartree tarafindan yazilan Hartree
denklemleri ile ¢ok elektronlu sistemlerin (atom ve molekiil) yapilarinin incelenmesi
yapildi. Ancak bu yontemi elektronlarin birer fermiyon olarak antisimetrik kuantum
durumlari(dalga fonksiyonlari) ile temsil edilmesi gerektigini hesaba katmamaktaydi.
Yani toplam dalga fonksiyonu, elektron koordinatlari bakimindan antisimetrik
degildi. 1930’lu yillarda Fock ve Slater Pauli’nin disarlama ilkesi ile getirilen bu
antisimetri 0zelligini dikkate alarak Hartree metodunu gelistirdi. Béylece Hartree-
Fock teorisi adi verilen ve giliniimiizde hala gecerliligini koruyan bu teorinin
temelleri atilmis oldu. Hartree- Fock yaklasiminda bagimsiz pargacik yaklasikligi ve
Pauli disarlanma ilkesine uygun olarak N elektronlu bir sistemin dalga fonksiyonu v
Slater determinant ile ifade edilir veya baska ifadeyle tek elektron spin
yoriingemsilerinin antisimetrik bir ¢arpimi oldugu varsayilir. En iyi bireysel elektron

spin yoriingemsileri Slater determinantinin en iyi bi¢imi olan varyasyonel yontemi
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kullanilarak elde edilir. Bu yilizden Hartree-Fock yontemi varyasyonel yontemin 6zel
bir halidir. Hartree-Fock teorisi uzaydaki elektron dagilimini ciddi 6lgiide iyi bir
sekilde verdigi i¢in (Sonuglar X-1s1n1 kirmim desenleri ile olduk¢a uyumlu) hala
gecerliligini korumaktadir. Yontemin en buyuk avantajlarindan biri ¢ok elektronlu
Schrodinger denklemini ¢ok daha basit tek elektronlu denklemlere doniistiirmesidir.
Ancak bu yontem elektronlar arasi etkilesim konusunda yetersiz kalmaktaydi ve bu
nedenle hesaplanan toplam enerjiler gergek enerjiden onemli 6lgiide sapmaktadir.

Enerjideki bu hata degerine korelasyon enerjisi denir.

1950’1i yillarda HF yontemi Roothaan tarafindan molekiillere genisletildi ve Hartree-
Fock-Roothaan (HFR) yontemi admi aldi. HFR yonteminde molekiiliin dalga
fonksiyonu Slater determinant bi¢ciminde yazilir ve bu determinantin elemanlar
molekiiler orbitallerdir (tek elektron dalga fonksiyonlari). Molekiiler orbitaller ise

atom orbitallerinin lineer toplami seklinde yazilir.

3.4. Etkin Kiitle Yaklasimi

Serbest bir parcacigin enerji ile dalga vektorii arasindaki iligkiyi gz Oniine alacak

olursak momentumu p = ak olan serbest bir elektronun Kinetik enerjisi

h2k?2
T 2m

E

(3.8)

ile verilir. Kristal yap1 igerisinde bir elektron periyodik bir potansiyel altinda hareket
ettigi i¢cin artik kristal i¢indeki elektronun momentumu serbest haldeki elektronun
momentumundan farkli olur. Kristal yapida 6rgii noktalarininn periyodik potansiyeli
altinda hareket eden bir elektrona digsaridan bir Fg kuvveti uygulanirsa elektron
dinamigin ikinci yasasina gore

dv
Fd+Fi—mE—ma (3.9)

kuvveti altinda ivmelenecektir. Buradaki F; kristal yapinin elektrona uyguladigi i¢

kuvvettir. Bu i¢ kuvveti de kapsayacak sekilde yeni bir dig kuvvet tanimlamasi

yapilirsa

dv (3.10)
Fn=m‘'a=m"— .
p=ma=m ”

olur. Burada m’, elektronun Kristal yapi igindeki kiitlesi olup etkin kiitle olarak
bilinir (Harrison, 1999 ve Davies, 1999).
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Kuantum teorisinin katihal fizigine getirdigi ilging agiklamalardan biri de elektronun

kristal yap1 igerisindeki hareketleri ile ilgilidir. Elektron kristal yap1 icerisinde dalga

paketi gibi grup hizi
dw
vy = — (3.11)
olacak sekilde hareket eder. Kuantum enerjisi
E=h=hw (3.12)
olduguna gore grup hizi;
1dE
Vg =2 (3.13)

seklinde elde edilir.

Denklem 3.8, 3.10 ve 3.13 birlestirilirse kristal yap1 igerisindeki elektronun etkin
kiitlesi

x h?

Ny dZE/
dk?

(3.14)

seklinde elde edilir. Goriilecegi gibi periyodik potansiyel igerisinde hareket eden

elektronun etki kiitlesi enerjisine bagh olarak degismektedir.
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4., KUANTUM NOKTA YAPILARIN ELEKTRONIK OZELLIKLERI
4.1 Giris

Etkin kiitle yaklasiminda, kiiresel potansiyel kuyu tarafindan sinirlandirilan ve

merkezinde safsizlik bulunan bir sistemin Hamiltoniyeni

_H2 2
H= vz - V() (4.1)

2m*

ile verilir. Burada m”, &, ve Z sirasiyla elektronun etkin kiitlesi, ortamin dielektrik
sabiti ve safsizligin yiikiinii géstermektedir. Denklem 4.1 atomik birimlerde (e=h =

my =a, = 1) ifade edilecek olursa

He— 2 — 2 4 vy(r) (4.2)

2m* &1

seklinde yazilabilir. Denklem 4.2 de verilen Hamiltoniyende esitligin sagindaki ilk
terim Kinetik enerji operatorii ve ikinci terim de potansiyel enerji operatoriidiir. V(r)
terimi ise smirlandiric1 potansiyel (confining potential) olarak bilinir. Sinirlandirict

potansiyelin formu sonsuz sinirlandirici potansiyel engeli durumda

0 r<R
ven={, TS, (4.3)
ile tanimlanirken, sonlu sinirlandirict potansiyel engeli durumunda
0 r<R
Vc(r)‘{vo r>R (4.4)

seklinde alinir. Burada V, siirlandirict potansiyel yiiksekligini (bariyer yiiksekligi)
ve R de kuantum noktanin yarigapini gostermektedir. Sonlu siirlandirici potansiyel

durumunda Denklem 4.1 ve 4.2°de verilen etkin kiitle m”~ ve dielektrik sabiti &, kuyu

icinde ve kuyu disinda.
1L r<Ry,
m* ry=<m 4.5
( ) _2’ r> Rdot ( )
1
1, r<Ry,
e (r)=+¢ 4.6
I’( ) _2’ r > Rdot ( )
&

seklinde tamimlanir (Cakir, 2007). Burada GaAs ve AlGaAs nin igerisinde
elektronlarin etkin kiitleleri sirasiyla m; ve my, dielektrik sabitlerini de & ve & olarak

alindi.
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4.2 Dalga Fonksiyonu ve Simir Sartlar

Tek elektron spin orbitalleri 1y, zsmm (q) elektronun uzaysal y,,e, (r) ve spin oy, (s)
fonksiyonlarmin ¢arpimi seklinde iafede edilir, yani Yppsmm, (@) = Ynem(@)0m, (5).
Eger Hamiltoniyen spin operatorii icermiyorsa enerji dalga fonksiyonlar1 spin
kismindan bagimsiz olur ve etkilenmez. Boylece tek elektron dalga fonksiyonunun

uzaysal kismi baz fonksiyonlarinin (Slater tipi orbital ) lineer toplamindan ibaret

olacak sekilde asagidaki gibi yazilabilir
Y p=2f=1 Cpi Xk (C T) (4.7)

Burada k — ny, €k, Mg baz setlerinin kuantum sayilari, o baz seti sayis1, cpk agilim

katsayisi, {, perdeleme sabitidir. i dalga fonksiyonu asagida verildigi gibi

[ Wr<RIZ av + [ [p™=F|2 av =1 (4.8)

normalizasyon sartin1 saglar. 1" <R kuyu icerisindeki dalga fonksiyonunu, ">k de
kuyu disindaki dalga fonksiyonunu gostermektedir. Dalga fonksiyonunun kendisi ve

birinci tiirevi sinirlarda siireklilik sartin1 saglamasi gerekir ve

lpr<R |r=R:¢T2R |r=R (4-93-)
d d >
m¢r<R|T=R:m§dr l;br_erzR (49b)

4.3 Kuantum Nokta Yapilarin Schrodinger Denklemi ve Coziimii

Rolativistik olmayan bir sistemin Schrodinger denklemi
HY(r) = EY(r) (4.10)

ile verilir. Burada E Hamiltoniyen operatoriiniin 6zdeger enerjisi ve (1) de bu
operatoriin 6z fonksiyonunu gosterir. Y (r) fonksiyonu eger normalize dalga

fonksiyonu seklinde alinirsa bu durumda sistemin enerjisinin beklenen degeri

E = (PIH ) (4.11)

seklinde ifade edilir. Denklem 4.2 de verilen Hamiltoniyen burada yerine konulursa

enerjinin beklenen degeri atomik birimlerde

VZ
2m

E={p] - o [0 | Z [w) + wive 1) (412

elde edilir.
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Denklem 4.7 kullanilarak Denklem 4.12°nin sag tarafinda verilen enerjilerin

beklenen degerleri STO lar iizerinden asagidaki gibi ifade edilebilir:

Kinetik enerji;

Vz * * _‘72
To= (- = [9) = S Zecmucyy St mpicdV (4.13)
Potansiyel enerji;
Z * x —Z
Vp= <¢|_€r_r 1/’> =Xk Zk'cpkcpk’f)(kgr_r XpdV (4.14)

ve sinirlandirici potansiyel enerji de;
Ve(n)= WIVe MIY) = Zi Ty cprCpye [ Xie Ve(r) xi0dV (4.15)
ile verilir. Burada p tek elektron dalga fonksiyonlarinin kuantum sayilarini gosterir.

Kuantum nokta yapilarin sonlu smirlandirici potansiyel engeline sahip olmasi

durumunda Denklem 4.13, 4.14 ve 4.15 ile verilen enerjiler

T, = Ty<F + T5*% (4.16)
Vp — Vpr<R + V;g‘r‘ER (417)
) 2
ve() =V, [ [, ()| av (4.18)

seklinde ifade edilir. Yani elektronun Kinetik enerjisi kuyu igerisinde ve kuyu
disarisindaki enerjilerinin toplami seklinde olacaktir. Benzer durum diger enerjiler
icinde gegerlidir. Kuantum nokta yapilar icin bu enerji integrallerinin analitik
ifadeleri Yakar vd., (2006, 2007) tarafindan atomlar i¢in verilen ifadelerin modifiye
edilmesi ile elde edilebilir. Denklem 4.13, 4.14 ve 4.15’in Slater orbitalleri {izerinden

analitik olarak elde edilmis hali Ek A’da verilmistir.
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5. DIS MANYETIK ALAN ICERISINDEKI KUANTUM NOKTA YAPILAR

Diizgiin bir dis manyetik alan igerisine konulmus merkezinde safsizlik olan R
yaricapli kiiresel kuantum nokta yap1 géz oniline alinsin. Spinsiz bir pargagik ayni
anda hem skaler merkezcil bir potansiyel hem de manyetik alan kaynakli bir vektor
potansiyelinin etkisi altinda kaldiginda bdyle bir sistemin Hamiltoniyeni asagidaki

gibi yazilabilir (Xiao vd., 1996; An ve Liu 2006; Cakir vd., 2016).

2

H= 21 (p+eA) _4Ze

T,

+V (1) (5.1)

*

Burada p parcacigin lineer (gizgisel) momentumu ve A da vektoér potansiyelini
gostermektedir. Burada dis manyetik alan B, vektor potansiyeline bagli olarak

B = V X A seklinde tanimlanir. Diizgiin bir manyetik alanda V.4 = 0 alinirsa vektor
potansiyeli A(r) = %B X r olarak ifade edilebilir. Dis manyetik alan igerisindeki

kuantum nokta yapmin kiiresel koordinatlarda Hamiltoniyeni atomik birimlerde
asagidaki gibi ifade edilebilir:

H:_LVZ_i_%LrBr+§Br2rzsin29+Vc (5.2)

2m* EyT
Denklem 5.2 ile verilen Hamiltoniyenin elde edilisi Ek B’de verilmistir. Eger dis
manyetik alan z- yoniinde segilirse (B=Bk), denklem 5.2 de verilen Hamiltoniyen
asagidaki gibi yazilabilir.

V2 VA 1 1 2.2 .2
H= == 45yl +5y7r?sin?0 + Ve (7) ©3

2m* & T

Burada birinci terim elektronun Kinetik enerjisini, ikinci terim elektronla safsizlik
arasindaki Coulomb potansiyel enerjiyi, tiglincli ve dordiincti terimlerde manyetik
alandan kaynaklanan paramanyetik Zeeman (lineer Zeeman terim) ve diamanyetik
Zeeman (kuadratik terim) terimlerini gostermektedir. Burada, L, elektronun agisal
momentum operatoriiniin z-bilesenini gostermektedir. Denklem 5.3 deki y terimi
Yy = a3 %B seklinde ifade edilir ve manyetik alanin boyutsuz bir 6l¢iisiinii tanimlar. y
terimi etkin kiitle ve dielektrik sabitine bagli oldugundan dolayi, manyetik alanin
verilen bir degerinde, y terimi yariiletkenden yariiletkene degisebilmektedir.
Denklem 5.3 de esitligin sagindaki iiglincii terim (yLz) manyetik alan igerisinde
yoriinge agisal momentum vektoriiniin presesyon hareketinden ileri gelir ve bu

durum Zeeman etkisi olarak da bilinir. Bu etki dis manyetik alanla elektronun
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yorlinge manyetik dipol arasindaki etkilesim enerjisini tanimlar. Di1g manyetik alan
kuantum nokta yapilarin enerji seviyeleri lizerindeki m dejenereligini kaldirir. Enerji
seviyelerindeki yarilma yoriinge ag¢isal momentum kuantum sayisi olarak bilinen £ ile
iliskilidir ve manyetik alanin varhifinda yarilan seviyelerin sayis1 2¢+1 kadardir.
Yani her seviye 2¢+1 kez yarilir. s seviyesinde {=0 (manyetik kuantum sayis1 m=0)
oldugundan manyetik alan igerisinde yarilmaz. 2p seviyesinde ¢=1 oldugu icin
manyetik alan icerisinde 3 seviyeye yarilir. Benzer sekilde 3d enerji seviyesinde £=2
olacagindan manyetik alan ig¢erisinde 5 e yarilir. Lineer Zereman etkisi olarak bilinen
paramanyetik terim vy ile orantili iken quadratik Zeeman etkisi olarak bilinen
diamanyetik terimde 72 ile orantilidir. Paramanyetik terim enerji seviyelerinde
yarilmalara neden olurken diamanyetik terim ise bu seviyelerin kaymasina neden

olmaktadir.

Diamaynetik terim perturbasyon terimi olarak g6z oniine alinirsa Denklem 5.3 ile

verilen Hamiltoniyen

H=H°+H’ (5.4)
seklinde yazilabilir. Burada
2

ile verilir ve pertiirbe olmamis Hamiltoniyeni gosterir. Diger taraftan kuadratik terim

pertiirbasyon Hamiltoniyeni olarak gozoniine alinir ve
H r_ 1 2,2 ain2 6
= 57/ resin (5.6)

ile verilir. Burada diisiik manyetik alan siddetlerinde H, H' ile karsilastirildiginda
¢ok kiigiiktiir (H<<HO).

Pertiirbe olmamis Hamiltoniyen i¢in Schrodinger denklemi asagidaki gibi yazilir

HOYY) () = E%%S) (r), (5.7)

nfm nfm

burada H° pertiirbe olmamis Hamiltoniyeni, E® pertiirbe olmamis Hamiltoniyenin
(0)

Ozdeger enerjisini, Y, ;.

da bu Hamiltoniyenin 6zfonksiyonunu gostermektedir ve

ném de atomik orbitallerin kuantum sayilarini gosterir.

Yukarida verilen Denklem 4.7, 4.11 ve 5.5 kullanilarak biraz sikici bir islemden

sonra kiiresel nokta yapinin pertiirbe olmamis enerjisi asagidaki gibi elde edilebilir:
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V? Z 1
———+zvL,

p 2m*  gr 2

E0=< (0)_

(0)>
P

= Znt’m 12 "'m'=1 pnt’mcpn’t” ! {{)l([’+1)_2n’(n’_1)]n+n’—2(C + C’) +
G = ZV -1 G+ ) = 2 [0 + ¥ s €+ )} 8,08 (5.8)
(5.8)

N

burada Jy (oc): re *"dr seklinde verilir ve incomplate gamma integralidir.

oO+— 3

Denklem 4.7, 4.11 ve 5.6 kullanilarak diamanyetik terimin perturbasyon enerjisi
r < |1 (o)>
14

8
g g - yz
:chpkcpk {12 n+n+2(C+C) 1 mm
k k'

L= S

seklinde elde edilebilir. Burada L,;, = max{|f —£'|,Im —m'|} , Lypax = £ + €' ve

,> ‘] n+n'+2 (é/ + é/,)é‘LZé‘m—m'O} (59)

(fm|£'m'|LM) de Gaunt katsayist olarak bilinir ve L>M, M =|m—m’|. Binom

katsayilar1 cinsinden Gaunt katsayilarmin analitik ifadesi Yakar vd., (2007)

tarafindan tanimlanmis ve bazi niimerik degerleri Ek C’de verilmistir.
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6. HESAPLAMA METODU

Genel bir arastirma ve optimizasyon yontemi olan genetik algoritma (GA), yeniden
olusum (veya kopyalama), ¢aprazlama ve mutasyon olmak iizere ti¢ temel ilke
tizerine kurulmustur (Coley, 2001 ve Goldberg, 1999). Bu metot problemin olasi
¢oziimlerini olusturan baslangi¢ popiilasyonu ile ise baslar. Baslangi¢ niifusu r=R de
sinir sartlarini saglayacak sekilde Denklem 4.10 un olast ¢oziimleri olan ve rastgele
belirlenen Denklem 4.7 deki c; ve (; degerlerinden olusturulduktan sonra her bir birey
normalize edilir. Ayni tip atomik orbitallerin diklestirilmesinde Gram-Schmidt
yontemi kullanilmistir (Arfken, 1985). Cesitliligi arttirmak i¢in baslangi¢ niifus
sayist 100 secildi. Normalize edilen bu baslangi¢ bireyleri kullanilarak her bir birey
i¢in enerjinin beklenen degeri Denklem 4.12 den hesaplandi (Yakar, 2006). Enerjinin
beklenen degeri bir nesil i¢in hesaplanirken hizi arttirmak amaciyla
Snifimi,njt’jm,-(ci' (j) degerleri bir kere hesaplanip bir diziye yerlestirildi. Bu da
hesaplamada art1 bir hiz kazandirdi. Buna ilaveten her nesilde enerjisi en diisiik dort
birey bir sonraki nesle aktarildi ve bdylece ¢alkantilar engellendi. Genetik algoritma
yontemi ¢ok kiiciik kuantumlu sistemlere uygulanmasiyla kuantum genetik algoritma
(KGA) olarak adlandirilmaktadir. KGA yontemi tamamen rastgelelie dayanan
problemlerin olasi ¢oziimlerini olusturan baslangic niifusu ile baslar. Bu ¢alismada

uygulanan KGA yontemi asagidaki gibi 6zetlenebilir (Cakir, 2007).
1) Yeniden Olusum (Uretme)

Yeniden iiretim (veya kopyalama) siirecinde yeni nesil olusturmak i¢in her bir
bireyin uygunluk degerlerine bakilir ve uygunluk degeri biiyiik olan bireyler yeni
nesle aktarilirken uygunluk degeri kiiclik olan bireyler ise elenir. Herhangi bir 1.
bireyin enerji beklenen degeri E; asagidaki esitlikle uygun (fitness) bir F; degerine

dontstiiriliir.
Fl' — e—ﬁ(Ei—E)/(Emax_Emin) (61)

Burada E, E,, and E., sirasiyla ortalama, maksimum and minimum enerjileri

gosterir ve 3 ayar parametresidir. Yeniden olusumda Nyop bireyleri bir onceki
nesilden segilir. P; olasiligma sahip her bir birey uygun(fitness) F; ile orantilidir.

Ornegin
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F.
P =5 (6.2)

pop

2F

i=1

Bu islemde bazi1 bireylerin gelme olasiligi birden fazla olurken bazi bireylerin

gelmeme olasilig1 vardir.

2) Caprazlama (Crossover) islemi

Caprazlama islemi yeniden olusturma islemi yapildiktan sonra yeni kusaktan rast
gele secilen iki birey arasinda gerceklestirilir. Olusturulan popiilasyon iginden
rasgele iki birey segilir. Secilen bireylerden birisi 0-1 araliginda rast gele bir s

sayistyla garpilirken diger birey ise (1-s) ile ¢arpilir ve yeni nesil bireyler

1 =88, +1=8,)C, (6.32)
s =86, +(1-8,)C, (6.3b)
C; =8, +(1-5;)c, (6.3c)
C; =5,C; +(1=5;)¢ (6.3d)

islemiyle yeni bireyler olusturuludu. Burada s ler 0 ile 1 arasinda rastgele belirlenmis

sayilardir. Hesaplamalarda caprazlama olasiligini 0.95 olarak alindi.

3)Mutasyon

Mutasyon islemi yerel minimunlardan kurtulmak i¢in 6nemli bir rol oynar. Mutasyon
olasiligini yiiksek secmek dalga fonksiyonunda istenmeyen kirikliklara, ya da yanlis
¢oziimlere neden olabilir. Bu yiizden mutasyon olasilig1 1y1 yakinsamanin gozlene
bilmesi i¢in ¢ok kiigiik secilmelidir. Mutasyon islemi rast gele secilen bir birey

tizerinden asagidaki gibi bir islemle yiiriitiilebilir.
Ci=A+(, (6.4a)
¢ =(-)" B+c, (6.4b)

Burada A ve B, (0-1) arasinda rasgele belirlenen mutasyon siddetidir. M ise rastgele
belirlenen dogal bir sayidir. Hesaplamalarda mutaysan olasilig1 0.05 alindi. Bireyleri

secme isleminde rulet ¢arki modelini uygulanir.

Genetik siiregteki her bir adimda yeniden olusturma, caprazlama ve mutasyon

islemleri rast gelelige dayanir ve genetik siire¢ sonunda olusturulan yeni
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poplilasyonun her bir bireyi normalize edilir. Bu islemler en iyi yakinsama elde

edilene kadar yiiriitiiliir.
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7. BULGULAR VE TARTISMA

Bu calismada dis manyetik alanin varliginda ve yoklugunda sonsuz kiiresel
potansiyel kuyu ile sinirlandirilmis merkezinde hidrojen benzeri safsizlik olan GaAs
yapisinin taban ve bazi uyarilmis seviyelerinin enerjileri nokta yaricapina ve
manyetik alan siddetine bagli olarak hesaplandi. Manyetik alan varliginda enerji
seviyelerindeki Zeeman yarilmalarini nokta yarigapinin ve manyetik alan siddetinin
fonksiyonu olarak sayisal degerleri elde edildi ve grafikleri ¢izildi. Kuadratik terim
olarak adlandirilan diamanyetik terim pertiirbasyon yaklasimi ile hesaplanarak
Zeeman enerji seviyelerindeki kayma ve bu seviyeler arasindaki Zeeman gegisleri
hesaplandi ve grafikleri olusturuldu. Benzer sekilde yine dis manyetik alan
yoklugunda ve varliginda sonlu kiiresel potansiyel ile sinirlandirilmis merkezinde
hidrojen benzeri safsizlik olan GaAs/AlyGa.xAs kiiresel nokta yapinin taban ve bazi
uyarilmis enerji seviyeleri yine nokta yaricapma ve manyetik alan siddetine bagh
olarak hesaplandi. Ayni zamanda aliiminyum katkilanma oranma (X) bagli olarak
enerji degisimleri incelendi. Malzeme parametreleri olarak kuyu i¢cinde GaAs 1n kuyu
disinda ise AlGaAs in parametreleri kullanilmig olup Sinirdaki degisimler ihmal
edilmistir. Hesaplamalar boyunca atomik birimler kullanilmistir ve etkin Bohr

yarigapt a* = 101.6 A°, etkin Rydberg enerjisi Ry = 5.72 meV ve smirlandirma
potansiyelin degeri V, =0.6(1.155x+0.37x?) eV olarak alinmustir. Meteryal
parametreleri icin Mgy, =0.0665M,, g, =13.18 Ve My, = 0.0665+0.0835x,

€ noans =13.18-3.12X olarak alindi (Adachi 1994). Burada mg serbest elektron

kiitlesi ve X aliminyumun katkilanma oranidir.

Hesaplamalarda kuantum nokta yapilarin kuantum mekaniksel analizleri igin
safsizlik yakinlarinda ger¢ek dalga fonksiyonu 6zelligi gosteren Slater Tipi Orbitaller
(STOs) kullanilmistir. Hesaplamalarda atomik orbitaller farkli s,p,d ve f tipi STO
lardan olusturulmustur. Ornek olarak sonsuz kuyu durumunda atomik orbitaller 5
tane STO larin toplamindan olusturulurken sonlu kuyu durumunda 7 tane
STO’lardan olusturulmustur. Ek C’de verilen tablodaki degerler kullanilarak 1s
seviyesinin atomik orbitali 5 tane STO lardan olusturulmus olup Slater atom

orbitalleri ve cpy agilim katsayilari asagidaki gibi tanimlanmistir.

X1 = X100(5.720926753898663,709) , X2 = X100(1.748386928072556, r0¢),
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X3 = X100(11.599766282174546,700) , x4 = X100(0.312476500643129, r0¢)
Xs = X100(3.536330391874470, 76¢)

ve

i1 = —0.360751857711E+01 , ¢;5, = —0.209122299345E+02

153 = —0.703790499830E-01 , ¢4, = 0.443758622181E+01

¢1s5 = 0.139081389988E+02.

Burada E+x in anlam1 10" degerine karsilik gelmektedir. Bu degerler denklem 4.7’te

yerine yazilirsals atomik orbitali

Y15 = C151X1 F C1s2X2 + C1s3X3 + CrsaXa + C1s5Xs

seklinde yazilir. Ayni sekilde 2p seviyesinin atomik orbitali 5 tane STO lardan
olusturulmus olup Slater tipi orbitaller ve cpc agilim katsayilar1 asagidaki gibi

alinmustir.

X1 = X210(57.442551599026132,70¢) , X2 = X210(1.895032636433436,710¢),
X3 = X210(50.874780064698356,70¢) , x4 = X210(3.350529289229958,r0¢)
Xs = X210(1.596182309756163,1r0¢)

ve

C2p1 = —0.430456888472E-02 , c3,, = 0.230781396153E+03

C2p3 = —0.262267896295E-02 , cps = —0.612700314386E£+02

C2ps = —0.160562780530E+03.

Bu degerler denklem 4.7°de yerine yazilirsa 2p atomik orbitalinin dalga foksiyonu
Yop = Cop1X1 + CopaXa + Cop3X3 + CopaXa T CopsXs

seklinde yazilir. Aym sekilde 3d seviyesinin atomik orbitali 5 tane STO lardan
olusturulmus olup Slater tipi orbitaller ve cy agilim katsayilar1 asagidaki gibi

yazilabilir.

X1 = X320(4.149051854990039,70¢) , x» = X320(2.930026942315004, r0¢),
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X3 = X320(5.219132793926557, 70¢) , Xa = X320(2.810650202256157, r0¢h)
Xs = X320(3.067515177508485, 70¢)

ve

C3q1 = 0.778166220382E+03 , ¢34, = 0.461369619400E+03

Caqs = —0.143234545482E+03 , ¢34, = 0.108977902938E+04

Caqs = —0.218551167394E+04.

Benzer sekilde bu degerler denklem 4.7°de yerine yazilirsa 3d atomik orbitalinin

dalga foksiyonu

Y3q = C3q1X1 + C3a2X2 + C3a3X3 + C3q4Xa + C3a5Xs

seklinde yazilir. Ayni1 sekilde 4f seviyesinin atomik orbitali 5 tane STO lardan
olusturulmus olup Slater tipi orbitaller ve Cy agilim katsayilar1 asagidaki gibi

alinmustir.
X1 = X430(3.746058002408961,760¢) , 2 = X430(7.542338863192025,70¢),
X3 = Xa30(1.986273133100385,70¢) , X4 = X430(5.589746458014304,r6¢)

Xs = Xa30(1.693049177654420,16¢)
ve
a1 = —0.150709040059E+04 , c4f, = —0.117382746697E+04

Capz = 0.879467182221E+03, c4py = 0.215226023656E+04
C4rs = —0.502849889593E+03.

Yine bu degerler denklem 4.7°de yerine yazilirsa 4f atomik orbitalinin dalga

foksiyonu

l,b4f = C4f1X1 T CafaX2 + Caf3X3 + CapaXa + CapsXs
seklinde yazilir.

Bu ¢alismamizda sonlu kuyu durumunda da baz fonksiyonu sayist kuyu i¢inde ve
kuyu disinda yedi (7) tane STO dan olusturuldu. Aliiminyum konsantrasyon oranlari

x=0.1, 0.2, 0.3 ve 0.4 alindi. Boylece smirlandirma potansiyeli X degerine bagh
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olarak degistirilmis oldu. Hesaplamalarda nokta yaricap R ise her orbital i¢in 0.3a"
dan 20a" ya kadar degistirildi.

Dis manyetik alan olmadan sonsuz sinirlandirict potansiyele sahip kuantum nokta
yapinin taban ve cesitli uyarilmis durumlarina ait hesaplanan ve c¢izilen enerji
seviyelerinin grafikleri sekil 7.1°de ve ¢izelge 7.1°de, sonlu kuyu i¢in hesaplanan ve
cizilen grafikler x=0.1 i¢in ¢izelge 7.2 ve sekil 7.2a’de, x=0.2 i¢in ¢izelge 7.3 ve sekil
7.2b’de, x=0.3 igin ¢izelge 7.4 ve sekil 7.2c’de ve x=0.4 igin ¢izelge 7.5 ve sekil
7.2d’de verilmistir.
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Sekil 7.1. Nokta yarigapmin fonksiyonu olarak sonsuz sinirlandirict potansiyele
sahip kiiresel kuantum nokta yapinin enerji seviyeleri.
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Cizelge 7.1. Sonsuz kiiresel sinirlandirici potansiyele sahip kuantum nokta yapinin
taban ve cesitli uyarilmis durumlarina ait enerji degerleri. Tim enerji
degerleri atomik birimde (Hartree) verilmistir.

R(@@) Eis(Z=1) Eap(Z=1) Ezu(Z=1) Eu(Z=1)
0.3 46.602098 106.010484 179.114625 266.232453
0.4 24.638206 58.466741 99.723112 148.902201
0.5 14.749544 36.669499 63.193391 94.696023
0.6 9.528673 24.963545 43.428422 65.334099
0.7 6.470572 17.943110 31.569574 47.694588
0.8 4.543879 13.443438 23.913489 36.273647
0.9 3.262486 10.388500 18.690789 28.476398
1.0 2.374206 8.225787 14977351 22.910487
1.2 1.269359 5.448360 10.170373 15.698026
14 0.647140 3.807855 7.301842 11.376852
1.6 0.271321 2.767435 5.467442 8.593167
1.8 0.032560 2.067286 4.213560 6.701441
2.0 -0.125000 1.576504 3.330988 5.392737
2.2 -0.232033 1.221930 2.682628 4.359033
2.4 -0.306396 0.958996 2.195714 3.609342
2.6 -0.358976 0.758578 1.822391 3.029937
2.8 -0.396664 0.603547 1.528050 2.592835
3.0 -0.423965 0.481437 1.293264 2.207429
3.2 -0.443897 0.383893 1.104660 1.908493
3.4 -0.458543 0.304982 0.950441 1.664969
3.6 -0.469347 0.240697 0.820576 1.461416
3.8 -0.477336 0.187599 0.712996 1.290171
4.0 -0.483256 0.143541 0.621755 1.145512
5.0 -0.496411 7.595943e-3 0.329419 0.670482
6.0 -0.499270 -0.055555 0.180419 0.422215
7.0 -0.499861 -0.087479 0.096691 0.279926
8.0 -0.499973 -0.104449 0.046098 0.189355
9.0 -0.499995 -0.113726 0.014162 0.128903
10 -0.499999 -0.118857 -7.035584e-3 0.088941
12 -0.500000 -0.123252 -0.031250 0.038746
15 -0.500000 -0.124755 -0.046641 2.798144e-3
20 -0.500000 -0.124994 -0.053967 -0.020000
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Cizelge 7.2. Sonlu (x=0.1) kiiresel sinirlandiric1 potansiyele sahip kuantum nokta
yapinin taban ve gesitli uyarilmis durumlarina ait enerji degerleri. Tiim
enerji degerleri atomik biriminde (Hartree) verilmistir.

R@)  Es(z=D) Ex(Z=D) Es(Z=1) Eu(Z=1)
0.2 5.570500 6.105250 6.186637 6.215123
0.3 5.246700 6.105136 6.186637 6.215123
0.4 4.516400 6.104559 6.186637 6.215123
0.5 3.608800 6.102448 6.186637 6.215123
0.6 2.779600 6.093476 6.186634 6.215123
0.7 2.117500 6.004034 6.186627 6.215123
0.8 1.612100 5.495782 6.186604 6.215123
0.9 1.194200 4.797864 6.186536 6.215123
1.0 0.898600 4.135761 6.186268 6.215123
1.2 0.470500 3.076765 5.659785 6.215123
14 0.213600 2.343175 4505158 6.215123
1.6 -0.026400 1.796394 3.599599 5.610432
1.8 -0.186700 1.356803 2.891307 4.595588
2.0 -0.206400 1.126884 2.383850 3.900069
2.2 -0.251000 0.917920 1.976696 3.294927
24 -0.295400 0.773277 1.649954 2.833596
2.6 -0.341800 0.604144 1.390388 2.452544
2.8 -0.370400 0.515350 1.193745 2.153527
3.0 -0.415100 0.420300 1.015010 1.914680
3.2 -0.428900 0.366383 0.883486 1.768523
3.4 -0.437600 0.293973 0.766908 1.618538
3.6 -0.457600 0.224705 0.668286 1.464550
3.8 -0.462600 0.188562 0.579425 1.315466
4.0 -0.471000 0.159670 0.510126 1.198326
5.0 -0.491300 0.054321 0.274420 0.734275
6.0 -0.497900 0.025336 0.155069 0.542397
8.0 -0.499900 -0.083689 0.034943 0.266521
10.0 -0.500000 -0.107974 -8.202081e-3 0.155705
15.0 -0.500000 -0.124778 -0.047358 3.857037e-3
20.0 -0.500000 -0.124993 -0.054069 -0.020172
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Cizelge 7.3. Sonlu (x=0.2) kiiresel sinirlandirict potansiyele sahip kuantum nokta
yapinin taban ve ¢esitli uyarilmis durumlaria ait enerji degerleri. Tiim
enerji degerleri atomik biriminde (Hartree) verilmistir.

R(a") E1(Z=1) Exp(Z=1) Esa(Z=1) Ea(Z=1)

0.2 11.751051 12.720563 12.815593 12.848849
0.3 9.864531 12.720023 12.815594 12.848850
0.4 7.350578 12.716032 12.815592 12.848850
0.5 5.348244 12.611225 12.815590 12.848850
0.6 3.901141 10.975794 12.815571 12.848849
0.7 2.866212 8.982601 12.815493 12.848849
0.8 2.115333 7.351789 12.610261 12.848849
0.9 1.560646 6.059680 10.919327 12.848850
1.0 1.144233 5.042011 9.227115 12.848847
1.2 0.579291 3.588371 6.828926 10.442781
1.4 0.231572 2.633949 5.187449 8.084259
1.6 7.880359e-3 1.981500 4.039289 6.394299
1.8 -0.140917 1.519250 3.213089 5.144847
2.0 -0.242008 1.181955 2.601175 4.215167
2.2 -0.312463 0.929588 2.136559 3.504936
2.4 -0.361041 0.736745 1.776890 2.952120
2.6 -0.400159 0.586801 1.493422 2.513245
2.8 -0.426484 0.468329 1.266690 2.160222
3.0 -0.445353 0.373606 1.082468 1.872413
3.2 -0.459432 0.296786 0.931280 1.635130
3.4 -0.470271 0.233969 0.805740 1.436615
3.6 -0.477891 0.182169 0.700587 1.269841
3.8 -0.483666 0.139049 0.612359 1.128313
4.0 -0.487819 0.103365 0.538181 1.018892
5.0 -0.497302 -0.010510 0.288122 0.624381
6.0 -0.499305 -0.064423 0.160538 0.387502
8.0 -0.499976 -0.106480 0.039093 0.174963
10.0 -0.499997 -0.118970 -6.698080e-3 0.093424
15.0 -0.500000 -0.124751 -0.044480 0.016446
20.0 -0.500000 -0.124988 -0.053255 -0.011192
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Cizelge 7.4. Sonlu (x=0.3) kiiresel sinirlandirict potansiyele sahip kuantum nokta
yapinin taban ve ¢esitli uyarilmis durumlaria ait enerji degerleri. Tiim
enerji degerleri atomik biriminde (Hartree) verilmistir.

R(@) Ei(Z=1) Eap(Z2=1) Eau(Z=1) Es(Z=1)
0.2 17.482500 19.732093 19.842108 19.880591
0.3 12.882519 19.729997 19.842110 19.880591
0.4 8.944073 19.638972 19.842107 19.880591
0.5 6.274961 16.432498 19.842087 19.880592
0.6 4.483183 12.888814 19.841769 19.880591
0.7 3.252557 10.179744 17.575266 19.880591
0.8 2.383525 8.151515 14.499033 19.880594
0.9 1.753583 6.625947 12.035832 17.992081
1.0 1.286802 5.458957 10.085752 15.302259
1.2 0.661863 3.833535 7.306568 11.288219
1.4 0.282612 2.790502 5.486871 8.586537
1.6 0.040806 2.086995 4.240670 6.721795
1.8 -0.118958 1.593494 3.354017 5.373275
2.0 -0.227575 1.235946 2.704009 4.381116
2.2 -0.303085 0.970017 2.214117 3.629309
2.4 -0.356048 0.767589 1.836589 3.047820
2.6 -0.390465 0.610745 1.540385 2.592081
2.8 -0.422359 0.487534 1.304075 2.220634
3.0 -0.441755 0.388765 1.112834 1.921450
3.2 -0.457250 0.309138 0.956188 1.675846
34 -0.468320 0.244095 0.826468 1.469919
3.6 -0.475676 0.190509 0.717965 1.301203
3.8 -0.481588 0.145996 0.626489 1.151663
4.0 -0.484739 0.111478 0.548680 1.050390
5.0 -0.496876 -7.889386e-3 0.297583 0.627955
6.0 -0.499395 -0.062944 0.165942 0.413687
8.0 -0.499963 -0.105776 0.042516 0.178614
10.0 -0.499998 -0.117046 -4.202917e-3 0.102328
15.0 -0.500000 -0.124254 -0.042107 0.022218
20.0 -0.500000 -0.124982 -0.052729 -7.683827e-3
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Cizelge 7.5. Sonlu (x=0.4) kiiresel sinirlandirict potansiyele sahip kuantum nokta
yapinin taban ve ¢esitli uyarilmis durumlaria ait enerji degerleri. Tiim
enerji degerleri atomik biriminde (Hartree) verilmistir.

R(@) Ei(Z=1) Eap(Z2=1) Eau(Z=1) Es(Z=1)
0.2 22.152468 27.132505 27.259070 27.303288
0.3 14.922496 27.123465 27.259070 27.303288
0.4 9.982589 24.283576 27.259059 27.303289
0.5 6.868290 18.371411 27.258880 27.303288
0.6 4.855537 13.995534 23.922548 27.303288
0.7 3.497488 10.875438 19.149250 27.303289
0.8 2.552933 8.625391 15.484639 23.160545
0.9 1.874928 6.964265 12.704681 19.249582
1.0 1.375819 5.709215 10.568955 16.158723
1.2 0.713725 3.981160 7.585556 11.752114
1.4 0.314173 2.885001 5.663431 8.874262
1.6 0.061174 2.150819 4.359329 6.905503
1.8 -0.105239 1.638382 3.438293 5.506286
2.0 -0.202807 1.268662 2.765316 4.478118
2.2 -0.292273 0.994191 2.260174 3.703492
2.4 -0.334088 0.809030 1.872965 3.103793
2.6 -0.390737 0.625216 1.570652 2.632602
2.8 -0.419393 0.498746 1.326497 2.255717
3.0 -0.430444 0.405144 1.151340 1.969355
3.2 -0.450807 0.316493 0.971543 1.709229
34 -0.463125 0.250127 0.839360 1.544408
3.6 -0.472938 0.195647 0.728312 1.378572
3.8 -0.478967 0.150154 0.637516 1.206710
4.0 -0.485833 0.112340 0.557734 1.069219
5.0 -0.496808 -6.331668e-3 0.300894 0.659654
6.0 -0.499299 -0.061499 0.168860 0.417287
8.0 -0.499966 -0.106205 0.042112 0.180879
10.0 -0.499997 -0.117414 3.198142¢-4 0.111584
15.0 -0.500000 -0.124195 -0.042862 0.021323
20.0 -0.500000 -0.124962 -0.052465 -6.503718e-3
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Sekil 7.2. Nokta yaricapmin fonksiyonu olarak sonlu (x=0.1, 0.2, 0.3 ve 0.4)
siirlandirict potansiyele sahip kiiresel kuantum nokta yapiin enerji
seviyeleri.

Sekil 7.2 nokta yarigapimnin fonksiyonu olarak sonlu sinirlandirict potansiyele sahip
kiiresel kuantum nokta yapmin taban ve g¢esitli uyarilmis durumlarinin enerji
seviyeleri dort farkli sinirlandirict potansiyel degeri (veya Al konsantrasyon degeri )
icin ¢izilmistir. Egrilerden goriilecegi gibi nokta yarigapi artarken tiim enerjilerin
azalarak belli bir degere gittigi gorilmektedir. Nokta yaricapinin daha biiyiik
degerlerinde sistem atom modeline benzeyecegi icin hem sonlu hem sonsuz
(tablodaki degerlerden goriilece§i gibi) durumdaki enerji degerleri hidrojen
atomunun enerji degerlerine gitmektedir. Bu durum cizelgelerde de agik sekilde
goriilmektedir. Yani ¢ok biiylik nokta yaricaplarinda, ornegin R=20 de, 1s
seviyesinin enerji degeri -0.5 Hartree’ye, 2p seviyesinin enerji degeri -0.124 Hartree

degerine yaklastig1 goriilmektedir. Ayni1 sekilde ¢ok daha ileri nokta yarigaplarinda
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3d ve 4f seviyelerinin enerjileri de -0.0466 Hartree ve 0.0030 Hartree olarak
bulunmustur. Bu degerler hidrojen atomunun enerji degerleri ile aynidir. Bu
sekillerde ayn1 zamanda enerji seviyeleri {lizerinde kuyu derinliginin sinirlandirma
etkisi agik olarak goriilmektedir. Kiiglik nokta yarigapinda enerjinin maksimum
degerleri kuyu derinligine bagli olarak degismektedir. Yani nokta yarigapi azalirken
enerji artiyor ve kuyu yliksekligine karsilik gelen bir limit degere (kritik nokta
yarigapina) yaklasiyor. Enerjilerin maksimum degeri Vo kuyu derinligi degerine
kadar c¢ikabilmektedir. Diger taraftan ¢ok biiyilkk nokta yarigaplarinda kuyu
potansiyelinin smirlandirma etkisinin ¢ok zayifladig1 ve enerji seviyeleri tizerinde
¢ok zayif bir etkisinin oldugu, bu sonuglardan sdylenebilir. Bu tablolarda goriilen
negatif isaret elektronun safsizliga baglandigini gostermektedir. Yani elektron bu
nokta yarigapindan sonra ¢ekirdege baglaniyor. Boylece toplam enerji negatif
olmaktadir. Bu durum 1s orbitalindeki elektron i¢in R=1.8, 2p orbitalindeki
elektronun R=S5, 3d orbitalindeki elektronun R=~10 civarlarinda negatif enerjiye

diistiigii goriilmektedir.

Dis pertlirbasyonlar igerisindeki kuantum nokta yapilarin enerji seviyelerinin
incelenmesi onlarin fiziksel 6zelliklerinin anlasilabilmesi agisindan olduk¢a 6nem
arzetmektedir. Elektrik ve manyetik alan gibi disg pertlirbasyonlarin uygulanmasi
kuantum nokta yapilarin enerji seviyeleri hakkinda olduk¢a degerli bilgiler ortaya
cikarmaktadir. Ornegin kuantum nokta yapilara bir dig manyetik alan uygulandig
zaman ilave bir sinirlandirma potansiyeli ortaya koyar ve ayn1 zamanda safsizlik
enerji seviyelerinin simetrisini ve sistemin baglanma enerjisindeki degisime neden
olan dalga fonksiyonlarinin yapisini degistirir. D1 manyetik alanin enerji seviyeleri
tizerindeki en belirgin etkisi S dis1 seviyelerde yarilmalara neden olmasidir. Bu
durum enerji seviyelerinin m manyetik kuantum sayilari tizerindeki dejenereligini de
ortadan kaldirmis olur. Bdylelikle enerji seviyeleri arasinda Zeeman gegisleri

gozlenebilir.

Bu calismada lineer Zeeman terimi Denk (5.3) ile verilen temel Hamiltoniyen
icerisinde ele alinmis olup quadratik Zeeman terimi de pertiitbasyon terimi olarak
g6z Oniline alinmistir. Pertiirbasyon teriminin hesabinda lineer Zeeman teriminin de
icinde bulundugu pertiirbe olmamis 6zfonksiyonlar kullanilmistir. Kuadratik terim
pertiirbasyon terimi olarak g6z oniine alindig1 igin diisiik manyetik alan degerlerinde

(6rnegin y=0.10, 0.15, 0.2 ve 0.5 gibi) hesaplamalar yapilmistir.
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Zeeman enerji seviyeleri arasindaki elektrik dipol gegisleri Zeeman gegisleri olarak
adlandirilir. Elektrik dipol gegisleri Al=t1 ve Am==%1,0 se¢im kurallar1 igerisinde
gerceklesir. Gegislere karsilik gelen spektral ¢izgiler ayn1 zamanda kutuplanma
(polarizasyon) etkilerini gosterir. Kutuplanmanin elektromanyetik alanin titresim
dogrultusunda olmasi gerekir. Elektrik dipol operatdrii tek pariteli oldugu igin izinli
gecislerde Al=+1 olmalidir. Bu durumda Am=0 a karsilik gelen gecis m polarizasyon
gecisi olarak adlandirilir. Burada elektrik dipol vektorii z-ekseni boyunca lineer
titresim yapar. Am=+1(-1) durumuna karsilik gelen 6'(c") gegislerde sogrulan yada
yayilan 151k dairesel olarak kutuplanir. Bu durumda dipol vektorii (+) durum igin saat
yoniiniin tersi yoniinde, (-) durum igin saat yoniinde z-ckseni etrafinda xy

diizleminde doner.

Sekil 7.3a, 7.3b ve 7.3¢ manyetik alan igerisindeki Is ve 2p enerji seviyelerini
gostermektedir. Sekilden de goriilecegi gibi s seviyelerinde herhangi bir Zeeman
yarilmas1 gozlenmezken (£=0 oldugundan dolay1l) p seviyesi 3 Zeeman enerji
seviyesine yarilmistir (m=1,0,-1). Bu sekil {lizerinde 2p—1s Zeeman gecisleri de
gosterilmistir. Sekilde goriilecegi gibi 2p seviyesi m=0 enerji seviyesine gore
simetrik bir yarilma gostermektedir ve nokta yarigapi artarken enerji seviyeleri
azalmaktadir. Daha biiyiik nokta yarigaplarinda ise bu enerjilerin sabit ener;ji
degerlerine gittigi goriilmektedir. m degeri +1 den -1 e degisirken enerji seviyelerinin
azaldig1 goriilmektedir. Bunun nedeni Denk 5.3 de verilen lineer Zeeman terimindeki
m nin degerinden kaynaklanmaktadir. Sekil 7.3a, 7.3b, 7.3c’de goriilece8i gibi
manyetik alan artarken Zeeman seviyeleri arasindaki enerji farki da artmaktadir. Bu
durumda Zeeman enerji seviyeleri arasindaki ¢ polarizasyon ge¢is enerjisinin

azaldig1, 6" polarizasyon gegis enerjisinin arttigi goriilmiistiir.

Sekil 7.4a, 7.4b ve 7.4c’de nokta yarigapina bagli olarak Zeeman gecis enerjileri
gosterilmistir. Burada da yine nokta yaricapr artarken gecis enerjilerinin azaldigi
goriilmektedir. Cok biiyiik nokta yarigaplarina giderken yarilmanin sabit kaldigi

gorilmiistiir.
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Sekil 7.3. a.b.c. Nokta yarigapinin fonksiyonu olarak Is ve 2p Zeeman enerji
seviyeleri
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Sekil 7.4. ab.c. Nokta yaricapinin fonksiyonu olarak 1s ve 2p Zeeman gecis
enerjileri
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Sekil 7.5a, 7.5b ve 7.5¢ manyetik alanin 3 farkli degeri y =0.1, 0.15 ve 0.2 igin 2p ve
3d Zeeman enerji seviyelerini gostermektedir. Sekilden de goriilecegi gibi p seviyesi
3 Zeeman enerji seviyesine yarilirken (m=1,0,-1) d seviyesi de 5 enerji seviyesine
yartlmistir (m=2,1,0,-1,-2). Egrilerden goriilecegi gibi 2p ve 3d seviyeleri m=0 enerji
seviyesine gore simetrik olarak yarilmalar gostermektedir. Kuantum nokta yarigapi
artarken Zeeman enerji seviyeleri azalmaktadir. Daha biiyiik nokta yari¢aplarinda ise
bu enerjilerin sabit enerji degerlerine gittigi goriilmektedir. m’in negatif degerleri
icin enerji seviyelerinin azaldigi goriilmektedir. Bunun nedeni yukarida da ifade
edildigi gibi Denk. 5.3 de verilen lineer Zeeman terimindeki m den
kaynaklanmaktadir. Sekil 7.5a, 7.5b ve 7.5¢ de goriilecegi gibi manyetik alan

artarken Zeeman seviyeleri arasindaki enerji farki da artmaktadir.

Sekil 7.6a, 7.6b ve 7.6c’de nokta yaricapina bagl olarak 2p ve 3d seviyeleri arasinda
zeeman gegis enerjileri gosterilmistir. Burada da yine nokta yarigap: artarken gecis

enerjilerinin azaldig goriilmektedir.

Sekil 7.3 ve 7.6’daki egrilerden goriilecegi tizere giiclii uzaysal sinirlandirilmig
bolgede (R<1) manyetik alanin enerji seviyeleri lizerinde ¢ok zayif bir etkisinin
oldugu goriilmiistiir. Elektronun orta uzaysal siirlandirma bolgesinde (1<R<3) ise s
dis1 seviyeler lizerinde manyetik alan etkileri goriilmeye baslanmig ve bdylece bu
bolgede enerji seviyeleri birbirinden ayrilmaya baslamistir. Elektronun zayif uzaysal
siirlandirma bolegesinde ise (R>3) manyetik alan etkisi enerji seviyeleri tizerinde
cok acik net bir sekilde goriilmektedir ve seviyelerin dejenereligi bu bolgede ortadan

kalkmaktadir.
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Sekil 7.5. a. b. c¢. Nokta yaricapmin fonksiyonu olarak 2p ve 3d Zeeman enerji
seviyeleri.
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Sekil 7.6. a. b. c¢. Nokta yaricapimin fonksiyonu olarak 2p ve 3d Zeeman gegis
enerjileri.
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Sekil 7.7 ve 7.8’de y’nin 3 farkli degeri icin (0.10, 0.15 ve 0.20) 1s 2p 3d ve 4f
seviyelerinin diyamanyetik (kuadratik) pertiirbasyon enerjileri m=0 ve m=1
durumunda nokta yarigapinin fonksiyonu olarak ¢izilmistir. Bu grafiklerden
gorilecegi gibi diyamanyetik (pertiirbasyon) enerjileri hem nokta yarigapt hem de
manyetik alan artarken artmaktadir. Sekil 7.7°deki pertiirbasyon enerji katkis1 kiiclik
nokta yaricaplarinda ¢ok zayiftir. Nokta yaricapinin artmasiyla bu davranis degisir ve
artmaya baglar. Pertiirbasyon enerjisi kritik bir nokta yarigapindan sonra sabit bir
degere gittigi gorilmektedir. Bu durum 1s ve 2p orbitalleri i¢in Sekil 7.7 ve 7.8’de
acik olarak goriilmektedir. Daha biiyiik nokta yaricaplarina gidildiginde yukari 3d ve
4f seviyelerine ait egrilerin de sabit degerlere gidecegi sdylenebilir. Bu limit deger
elektronun hicbir yerde sinirlandiriimadigi duruma karsilik gelir ve elektron coulomb
etkilesimiyle safsizliga baglanmis olur. Kritik nokta yarigapr agisal momentum ve
daha sonra g6z Oniine alinan seviyenin uzaysal alanina baglidir ve £’nin artan degeri
ile artmaktadir. Ayn1 zamanda pertiirbasyon enerjisi de (’nin artan degeri ile
artmaktadir. Bu durum daha biiyiik €’li seviyelerin dalga fonksiyonlar1 daha biiyiik
uzaysal mekana sahip oldugu icin diyamanyetik etkilesim enerjisinin de artmasiyla
sonuclanmaktadir seklinde yorumlanabilir. Sekil 7.7 ve 7.8 karsilastirilirsa m=0
durumundaki diyamanyetik pertiirbasyon enerjilerinin - m=1  durumundaki
diyamanyetik pertiirbasyon enerjilerinden daha kiiciik oldugu goriilmektedir. Bu
durumda xy diizleminde dalga fonksiyonlarinin daha biiylik uzaysal mekana

yayildig1 seklinde yorumlanabilir.
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Sekil 7.7. a,b,c. y nin 3 farkli degeri icin 1s, 2p, 3d ve 4f seviyelerinin m=0
durumunda nokta yaricapinin fonksiyonu olarak pertiirbasyon enerjileri
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Sekil 7.8. a,b,c. y nin 3 farkli degeri igin 1s, 2p, 3d ve 4f seviyelerinin m=1
durumunda nokta yarigapinin fonksiyonu olarak pertiirbasyon enerjileri
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Sekil 7.9a, 7.9b ve 7.9c’de sonsuz potansiyel kuyusu igerisinde kiiresel kuantum
nokta yapimin 1s ve 2p Zeeman enerji seviyeleri nokta yarigapinin fonksiyonu olarak
tic farkli manyetik alan degeri y =0.1, 0.15 ve 0.2 i¢in ¢izilmistir. Sekillerden
goriilecedi iizere s orbitallerinde herhangi bir yarilma gézlenmezken p orbitali {i¢
Zeeman enerji seviyesine yarilmaktadir. Burada diiz cizgiler pertiitbe olmamis
(lineer Zeeman terimini igeren) enerji seviyelerini gosterirken, kesikli ¢izgiler lineer
Zeeman terimi ile birlikte kuadratik Zeeman terimini de igeren pertiirbe olmus enerji
seviyelerini gostermektedir. Sekilden goriilecegi gibi kii¢iik nokta yarigaplarinda
manyetik alanin ve Kuadratik terimin etkisinin olmadig1 goriiliirken biiylik nokta
yarigaplarinda hem manyetik alanin hem de quadratik terimin etkisi acik bir sekilde
goriilmektedir. Yani biiyilk nokta yarigaplarinda sistemin pertiirbe olmus enerjisi
artmaktadir. Bu artiglarda m=0 oldugu seviyelerde lineer Zeeman terimi sifir olup
kuadratik terimden bir katki gelmektedir. m=+1 oldugu seviyelerde ise sistemin
toplam enerjisine hem lineer Zeeman teriminden hem de kuadratik Zeeman
teriminden katkilar gelmektedir. Boylece biiylik nokta yarigaplarinda m=+1 oldugu
seviyelerdeki enerji degisimi m=0 oldugu seviyeye gore daha fazla olmaktadir.
Kii¢iik nokta yarigaplarinda ve kiiciik manyetik alan degerlerinde kuadratik terimden
gelen katki kiigiik olurken, biiyiik nokta yaricaplarinda buralardan gelen katkilar
biiylik olmaktadir. Yani quadratik Zeeman terimi, sistemin toplam enerjisine bir giic

yasasi gibi katkida bulunur.
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Sekil 7.9. a.b.c. y nin ii¢ farkli degeri i¢in nokta yarigapinin fonksiyonu olarak
pertiirbe olmus ve olmamis 1S ve 2p enerji seviyeleri
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Sekil 7.10a ve 7.10b’de sonsuz potansiyel kuyusuna sahip kiiresel kuantum nokta
yapida pertiirbe olmus AE ve pertiirbe olmamis AE® 2p—1s enerji seviyeleri arasinda
iki farkli nokta yaricapinda manyetik alanin fonksiyonu olarak Zeeman gegis
enerjileri gosterilmistir. Burada kesikli ¢izgiler pertiirbe olmus (lineer Zeeman +
kuadratik terim) enerji seviyelerini, diiz gizgiler ise pertiirbe olmamis (Lineer
Zeeman terimi) enerji seviyelerini gostermektedir. 2p’den 1s’e olan (2p—1s)
Zeeman gecislerinde Am=0,+1 durumlarindaki gegisler gosterilmistir. Sekillerden
gorlilecegi gibi pertiirbe olmamis Zeeman seviyelerinde manyetik alan artmasiyla
m=+1 durumundaki enerji seviyesi lineer olarak artarken m=-1 durumundaki enerji
seviyesi de lineer olarak azalmaktadir. Bunun nedeni Denk.(5.3)’de goriilecegi gibi
lineer Zeeman terimi m=+1 durumunda sistemin toplam enerjisine pozitif bir katki
getirirken (enerjiyi arttirtyor) m=-1 durumunda ise sistemin toplam enerjisine negatif
bir katki getirmektedir. BOylece enerji lineer olarak azalmaktadir. Pertiirbe olmus
enerji seviyelerinde; m=+1 durumundaki enerji seviyesi pozitif olarak artarken, m=-1
durumundaki enerji seviyesinde ise toplam enerji 6nce azaliyor bir minimum degere
ulastiktan sonra tekrar artmaya bagliyor. Bunun nedeni ¥y ve r’nin biiyilk degerleri
icin kuadratik terim gii¢ yasasi gibi davranacagindan sistemin toplam enerjisinde
daha baskin olmasindan dolayidir. Buradan Zeeman gegislerinde yayilan 1518in
frekansinin uygulanan manyetik alanin siddetiyle ayarlanarak degisebilecegi

gorilmektedir.

Sekil 7.11, 7.12 ve 7.13’de 2p enerji seviyeleri lizerinde R=2, 4 ve 10 kuantum nokta
yarigaplarinda ve manyetik alanin y=0.1, 0.15, 0.20 ¢ farkl1 degerinde paramanyetik

ve diyamanyetik kaymaklar sematik olarak diyagram iizerinde gosterilmistir.
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Sekil 7.10. a.b. Manyetik alanin fonksiyonu olarak R=3 ve R=6 i¢in pertiirbe olmus
AE ve pertiirbe olmamis AE® 2p ve 1s enerji seviyeleri arasmndaki
Zeeman gegis enerjileri
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Y=0.1 ve R=2

"1.62744559

2p A

1.576353

1.576353

1.52743713

B=0 B#0
Perturbe olmamis
Y=0.15ve R=2
,-" 1.65243244
2p
1.576353 1.576353
1.50240197
B=0 B#0
Perturbe olmamis
Y=0.2ve R=2
,-° 1.67744585
p
1.576353 1.576353
1.47743713
B=0 B#0

Perturbe olmamis

Sekil 7.11. R=2 nokta yarigapinda y nin ii¢ farkli degeri i¢in 2p Zeeman enerji

1.6288514

1.5770552

1.5288402

B0+

0.001405501
% 0.00070223

% 0.001403092

Perturbe olmus

1.6555898

1.5779330

1.5055626

B0+

0.0031573495
| 0.00158001574

% 0.00316064599

Perturbe olmus

16830679 |
______________________ ] 0.0056220020
1.5791619
______________________ % 0.00280891687
14830495 |
...................... | 0.00561236641
B=0+

Perturbe olmus

seviyesinde diamagnetik terimin etkisini gosteren diyagram.
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Y=0.1ve R=4

2p

0.143559

Y=0.15ve R=4

2p

0.143559

Y=0.2veR=4

2p

0.143559

Sekil 7.12. R=4 nokta yarigapinda y nin li¢ farkli degeri i¢in 2p Zeeman enerji

”'0.1935989

0.143559

0.0943981

B=0
Perturbe olmamis

"0.2193981

0.1987839 |
______________________ : 0.00518495
0.1461543
______________________ % 0.00259531
0.0995978 |
______________________ | 0.00519969
B0+

Perturbe olmus

0.143559

0.0693981

B=0
Perturbe olmamis

.- 0.2443981

0.1987839 |
______________________ : 0.011699
0.1493984
______________________ % 0.0058394
00810974 |
...................... | 0011699
B0+

Perturbe olmus

0.143559

0.0436008

B=0
Perturbe olmamis

0.2651969 |
______________________ 1 0.0207988
0.1539402
______________________ % 0.0103812
0.0643453 |
...................... | 0.02074454
B0+

Perturbe olmus

seviyesinde diamagnetik terimin etkisini gésteren diyagram



Y=0.1ve R=10

-0.0471304 |
______________________ 0.0217150395
7100688454244 ‘
-0.1080221
2 o | 0.0107898834
0.118812 - -0.118812 1
B -0.1471304 |
-0.168845424 U | 0.0258027983
B=0 B=0 B=0+
Perturbe olmamis Perturbe olmus
Y=0.15ve R=10
5.0134139%-3 |
L : 0.0488588389
-~ -0.043845425
-0.0945348
2p P e | 0.0242772376
-0.118812 -, -0.118812 1
%o -0.1449866 |
-0.193845424 O TTTTTTTTT¢C | 0.0488588389
B=0 B=0 B0+
Perturbe olmamis Perturbe olmus
Y=0.2ve R=10
00798432 |
_____________________ 0.0868601581
7.0.01884542244 ‘
-0.756525
2p oo T | 0.0431595335
-0.118812 -0.118812 1
" -0.1319853
-0.218845424 T TTTTTTTTTTTTOTCT | 0.0868601581
B=0 B=0 B0+

Sekil 7.13. R=10 nokta yarigapinda y nin ii¢ farkli degeri i¢in 2p Zeeman enerji

Perturbe olmamis

Perturbe olmus

seviyesinde diamagnetik terimin etkisini gdsteren diyagram.
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Sekil 7.14a, 7.14b, 7.14c ve 7.14d’de sonsuz potansiyel kuyuya sahip kuantum nokta
yapinin baglanma enerjileri li¢ farkli manyetik alan degeri igin nokta yarigapina baglh
olarak ¢izilmistir. Sekillerden goriilecegi gibi tiim seviyelerde nokta yarigcapi artarken
baglanma enerjisi 6nce monotonik olarak hizli bir sekilde azaliyor ve bir minimum
degere ulastiktan sonra tekrar artmaya basiliyor. Kiiciik nokta yarigaplarinda (giiglii
uzaysal smirlandirmanin oldugu boélgelerde) ¢esitli manyetik alan degerleri igin
baglanma enerji seviyelerinde herhangi bir ayrisma goriilmezken biiyiik nokta
yarigaplarina (zayif uzaysal siirlandirmanin oldugu bolgelere) dogru gidildikge
baglanma enerji seviyeleri lizerinde manyetik alan etkisi agik¢a goriilmektedir. Yani
biiyiik nokta yarigaplarinda manyetik alan artarken baglanma enerjiside artmaktadir.
Bunun fiziksel nedeni su sekilde agiklanabilir. Zayif uzaysal sinirlandirmanin oldugu
bolgelerde (biiyilk nokta yarigaplarinda) manyetik alan elektronun dalga
fonksiyonunu biizer ve elektronu safsizliga daha yakin olmaya dogru iter. Yani
elektronu safsizliga yaklastirir. Boylece elektron safsizlik arasindaki mesafe
azalacagindan dolay1 elektronun baglanma enerjisi tekrar artmaya baslar. Manyetik
alanin degeri ne kadar ¢ok artirilirsa elektron biiyiik nokta yarigaplarinda manyetik
alanin sinirlandirma etkisi daha fazla artar. Diger taraftan egrilerden goriilecegi gibi
yukar1 seviyeler i¢in biiylik nokta yaricaplarinda baglanma enerjilerinin daha yavas
arttig1 goriilmektedir. Kiiglik nokta yarigaplarinda yani gii¢lii sinirlandirma bolgeside
(R<1) tiim seviyeler i¢in elektronun uzaysal smirlandirmasmin manyetik alan
sinirlandirmasindan  daha  giiglii  oldugu  goriilmektedir. Orta sinirlandirma
bolgelerinde (1<R<3) ise uzaysal siirlandirma ile manyetik sinirlandirma birbiri ile
yarisirken zayif sinirlandirma bdlgesinde (R>3) manyetik alan smirlandirmasinin
baglanma enerjisi iizerinde daha baskin oldugu goriilmektedir. Bu durum £’si kiigiik
olan orbitallerde (1s ve 2p) agik bir sekilde gorilmektedir. Baglanma enerji
egrilerinden goriilecedi gibi nokta yarigapmin daha biiylik degerlerinde manyetik

alanin artistyla baglanma enerjilerinin de arttigi goriillmektedir.
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Sekil 7.14. a.b.c.d. y nin ti¢ farkli degeri i¢in sonsuz smirlandiric1 potansiyele sahip
kuantum noktanin 1s,2p,3d ve 4f seviyelerinin baglanma enerjileri

Sekil 7.15a, 7.15 b, 7.15¢c ve 7.15d’de sonlu siirlandiric1 potansiyele sahip kiiresel
kuantum nokta yapinin manyetik alan igerisindeki 1s, 2p, 3d ve 4f seviyelerinin
baglanma enerjileri (Eg=Ez-0)-E(z) ¢izilmistir. Sekillerden goriilecegi gibi nokta
yarigapt azalirken tiim seviyelerin baglanma enerjileri monotonik olarak artmaktadir
ve bir maksimum degere ulastiktan sonra hizli bir sekilde diismektedir. Nokta
yari¢apinin daha biiyiik degerlerine gidildiginde (zayif sinirlandirici bolge) baglanma
enerjilerinin  tekrar arttigi goriilmektedir. Bunun fiziksel nedeni yukarida
aciklanmistir. Manyetik alan degerleri arttirilirken biiyiik nokta yarigcaplarinda
baglanma enerjisinin arttig1 goriilmektedir. Bunun nedeni Denklem (5.3)’te
gorlilece8i gibi pertiirbasyon enerjisi r? ve y2 ile orantili olmasindan dolayr hem
biiyiik nokta yarigapilarinda hem de biiylik manyetik alan degerlerinde gii¢c yasasi
gibi davranmasindan kaynaklanmaktadir. Boylece pertiirbasyon enerjisi Sistemin
toplam enerjisi {izerinde biliyiilk nokta yaricaplarinda daha baskin oldugu

gorilmektedir.
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Sekil 7.15. a.b.c.d. y nin ii¢ farkli degeri igin sonlu sinirlandirici potansiyele sahip
kuantum noktanin 1s,2p,3d ve 4f seviyelerinin baglanma enerjileri

Sekil 7.16a, 7.16b, 7.16¢c ve 7.16d’de goriilecegi gibi sabit bir X degeri i¢in yine
nokta yarigapr azalirken baglanma enerjilerinin arttig1 goriiliiyor ve bir maksimuma
ulastiktan sonra tekrar diisiiyor. Baglanma enerji egrilerinde goriilecegi gibi kiiciik
nokta yarigaplarinda smirlandirma potansiyelinin  etkisi agik bir gsekilde
goriilmektedir. Katkilanma orani (veya aliiminyum konsantrasyonu) X’in degerleri
artarken sinirlandirma potansiyelinin degeri de artmaktadir. Buna bagli olarak
baglanma enerjisi de artmaktadir. Yani sinirlandirma potansiyeli artarken baglanma
enerjilerinin - maksimumlart daha kiicik nokta yarigaplarina dogru kaydigi
gorilmektedir. bu durumda bize sinirlandirma potansiyeli artarken daha kiigiik nokta

yaricaplarinda sistemin daha kararl oldugunu géstermektedir.
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Sekil 7.16. a.b.c.d. X’in ii¢ farkli degeri i¢in sonlu sinirlandirict potansiyele sahip
kuantum noktanin 1s,2p,3d ve 4f seviyelerinin baglanma enerjileri.
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8. SONUC VE ONERILER

Sonsuz ve sonlu kiiresel sinirlandiric potansiyele sahip kuantum nokta yapinin taban
durum ve gesitli uyarilmis seviyelerine ait enerji grafikleri nokta yari¢capina bagl
olarak ¢izildi. Bu grafiklerden nokta yarigapi arttikga enerji degerlerinin azaldigi
goriildi. Ayn1 zamanda bu grafiklerde daha biiyiik nokta yarigaplara gidildikge
sistem atom modeline benzeyeceginden enerji degerleri hidrojen atomunun enerji
degerlerine gittigi gorilmiistiir. Ayrica bu gafiklerde sonlu kiiresel smirlandirici
potansiyele sahip kuantum nokta yapinin enerji seviyeleri lizerinde kuyu derinliginin

siirlandirma etkisi agik olarak goriilmektedir.

D1s manyetik alan i¢indeki sonsuz siirlandirici potansiyele sahip kiiresel kuantum
nokta yapmin Zeeman enerji seviyelerinin ve Zeeman gecis enerjilerinin grafikleri
nokta yaricapinin fonksiyonu olarak ¢izilmistir. Bu grafiklerde s seviyesinde
herhangi bir yarilma gézlemlenmezken ({=0 oldugundan) p seviyesi 3 , d seviyesi 5
Zeeman enerjisine yarildigi gorlilmiistiir. Ayrica nokta yaricapt artarken enerji
seviyelerinin azaldigr ve daha biiyiik nokta yaricaplarinda sabit bir degere gittigi
goriilmiistiir. Ayn1 zamanda grafiklerde manyetik alan artarken Zeeman seviyeleri
arasindaki enerji farkinin arttigi goriilmiistiir. Yine nokta yaricapi artarken Zeeman
gecis enerjilerinin azaldig1 ve ¢ok biiyiik nokta yarigaplarina giderken yarilmanin

sabit kaldig1 goriilmiistiir.

Manyetik alanin farkli degerleri i¢in taban durum ve ¢esitli uyarilmis seviyelerin
pertiirbasyon enerjileri m=0 ve m=1 durumunda nokta yarigapinin fonksiyonu olarak
cizilmistir. Grafiklerden pertlirbasyon enerjilerinin hem nokta yaricapt hem de
manyetik alan artarken arttig1 goriilmistiir. Pertiirbasyon enerjilerinin kritik bir nokta
yaricapindan sonra sabit bir degere gittigi goriilmektedir. Bu limit deger elektronun
hicbir yerde sinirandirilmadigi duruma karsilik gelmektedir. Ayrica grafiklerde m=0
durumundaki  pertiirbasyon  enerjilerinin - m=1 durumundaki pertiirbasyon
enerjilerinden daha kiigiik oldugu goriilmektedir. Bu durumda xy diizleminde dalga

fonksiyonlarinin daha biiyiik uzaysal mekana yayildig1 seklinde yorumlamabilir.

Manyetik alanin farkli degerleri i¢in sonsuz potansiyel kuyuya sahip kuantum nokta
yapinin baglanma enerjilerinin grafikleri nokta yaricapina bagli olarak ¢izilmistir.
Grafiklerde nokta yaricapr artarken baglanma enerjilerinin 6nce monotonik olarak

hizli bir sekilde azaldigi ve bir minimum degere ulastiktan sonra tekrar artmaya
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basladig1 goriilmustiir. Ayrica biiyilk nokta yaricaplarinda yani zayif uzaysal
siirlandirmanin oldugu bolgelerde manyetik alanin artigiyla baglanma enerjilerinin
arttigr  gorilmektedir. Ciinkii bu bdlgelerde manyetik alan elektronun dalga
fonksiyonunu biizer ve elektronu safsizlifa dogru iter. Boylece elektron safsizliga

yaklagmisg olur ve baglanma enerjisi tekrar artar.

Manyetik alan igerisindeki sonlu siirlandirict potansiyele sahip kiiresek kuantum
nokta yapinin taban durum ve ¢esitli uyarilmis seviyelerinin baglanma enerjileri
nokta yaricapinin fonksiyonu olarak ¢izilmistir. Grafiklerden nokta yarigap1 azalirken
tiim seviyelerin baglanma enerjilerinin monotonik olarak arttigr ve bir maksimum
degere ulastiktan sonra hizli bir sekilde diistiigii goriilmektedir. Manyetik alan degeri
arttikga ve biiylik nokta yarigaplarinda baglanma enerjisinin arttigi goriilmektedir.
Ciinkii pertiirbasyon enerjisi bu durumlarda bir gii¢ yasasi gibi davranip sistemin

toplam enerjisi tizerinde daha baskin olur.

Sonlu smirlandirict potansiyele sahip kiiresel kuantum nokta yapinin taban durum ve
cesitli uyarilmis seviyelerinin baglanma enerjileri farkli aliiminyum katkilanma orani
degerleri i¢in nokta yaricapina bagl olarak ¢izilmistir. Grafiklerde nokta yaricapi
azalirken baglanma enerjilerinin artti§1 ne bir maksimuma ulastiktan sonra tekrar
diistiigii goriiliiyor. Ayrica bu grafiklerde kiiclik nokta yarigaplarinda sinirlandirma
potansiyelinin baglanma enerjileri lizerindeki etkisi agik bir sekilde goriiliiyor.
Katkilanma oraninin degeri artarken sinirlandirma potansiyeli buna bagh olarak ta
baglanma enerjileri artmaktadir. Yani siirlandirici potansiyel artarken daha kiiciik

nokta yaricaplarinda sistemin daha kararli oldugu goriiliiyor.
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Ek A: Kuyu i¢i ve kuyu dist sinirlandirict potansiyele sahip kuantum nokta yapinin
ortme (overlap) ve enerji integralleri:
Ek Al Kuyu i¢i 6rtme (overlap) integrali:

2T o

R m o
Sriisffminjfjmj - ¢ |¢] f f f Z C;p)(; (?) Z ij Xp(?)rz drsin 9d9d¢
0 -m0 j
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ij k=0

Burada n,f,m baz fonksiyonunun kuantum sayilarini, ¢ baz seti sayisi, cpk ve {¢’lar

acilim katsayilar1 ve orbital istelleri (perdeleme sabitini) gostermektedir.

Ek A2 Kuyu dis1 overlap integrali:
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Ek A3 Kuyu i¢inde elektron-safsizlik etkilesim enerjisi ( niiclear attraction):

R R rm 271 _7 ,
r<R _ % o . .
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Ek A4 Kuyu disinda elektron-safsizlik etkilesim enerjisi ( niiclear attraction):
© L (2 2
YR =f f f ¢ni1?imi @) <e_r> d)n}.gjmj(?) r~ drsin 0d6d¢
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© ~M 2T v il - A o -
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Ek A5 Kuyu iginde Kkinetik enerji:
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Ek A6 Kuyu disinda kinetik enerji ifadesi:
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Ek B: Dis manyetik alan igerisindeki kiiresel kuantum nokta yapimnin atomik
birimlerdeki Hamiltoniyenin elde edilisi

>2
2me [B —q4] +V(r)

— -

B=VxAdaB diizglin homojen ise yamB Bkise A = ——(r X B) = —(B X r)

2
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2 2
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elde edilmis olur.
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Simdi Hamiltoniyen operatériini V(r) = + V. i¢in yaparsak;
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Ek C : Gaunt katsayilarinin binom katsayilari cinsinden ifade edilisi ve rekorsif bagintidan
hesaplanan sonuglar (Yakar vd., 2007)

Ek C1 (¢m|€¢'m'|LM) ile verilen Gaunt katsayilar1 Yakar ve ark (2007) tarafindan
binom katsayilar1 cinsinden asagidaki gibi ifade edilmistir.
o oL Fpr_py)p(LF, (8" + £+ L)/2
(emlm|LM) = (=1) 2 (0 +¢+L+DFE,, (£ +¢+1L)

QL+ D2+ 122+ 1)
X [ 4

y Fpaom(@ 4 €+ M)Fyrypo (£ + £+ 2L+ M)
Fpo (8" + € — M)F,_p;QL)F, 3y (2L + 2M)F pryp_py QL + €' + £ + M)

1,

X Z( 1)‘1 FL_m_q(fl —m+L-M- q)Fq({’ +m+ Q)F{’—m—q(fl +4- L)F{J’.HJ_L(‘B’ +4+ M)
- Fpom(£ + €+ M)

max{0,L—-m—~¢'}<qg<min{ —|m|,L-ML+¢ —m},|[£{—¢|<L<{t+{,L=>
IM|ve M =m —m'.
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Ek C2 Rastgele secilmis kauntum sayilari i¢in hesaplanan Gaunt katsayilari

Lol fm [, | m, Eq.(4)
02 [1 |2 |1 0.282094791773878E+00
0.282094791773878E+00°
4 |2 |1 |2 |1 -0.161197023870788E+00
-0.161197023870788E+00"
2 (3 [2 |1 |1 -0.261169028265409E+00
-0.261169028265409E+00"
112 o [3 |1 0.202300659403421E+00
0.202300659403421E+00°
312 [0 |3 |1 0.126156626101008E+00
0.126156626101008E+00°
8 |5 [3 |3 |-2 -0.577179416122379E-01
-0.577179416122379E-01°
6 |5 [-3 |3 |-2 0.166435054107857E+00
0.166435054107857E+00°
4 |2 |1 |6 |4 0.246389008389718E+00
0.246389008389718E+00"
2010 [ 10 |10 |10 0.124000989596611E-05
0.124000989596611E-05"
1010 [ 10 |10 |10 -0.220569655086274E-01
-0.220569655086274E-01"
8 |2 [1 |8 |4 0.146978734884738E+00
0.146978734884738E+00°
4 |5 [-1 [3 |1 -0.106334650671765E+00
-0.106334650671765E+00"
13/8 |7 |5 |3 -0.629313205158472E-02
-0.629313205158472E-02"
9 [8 |7 |5 |3 -0.131589326317861E+00
-0.131589326317861E+00°
27120 |15 |9 |7 0.132387381565477E-02
0.132387381565477E-02"
17120 |15 |9 |7 -0.456832005985146E-01
-0.456832005985146E-01°
113 |2 [10|-5 -0.159852949232758E+00
-0.159852949232758E+00"
6 |4 |4 |4 |4 -0.284505520638337E-01
-0.284505520638337E-01"
2919 [9 |20 |20 -0.228141063914733E-07
-0.228141063914733E-07°
136 |6 |7 |7 0.134702006343087E-03
0.134702006343087E-03"
12/12 |9 [5 [-3 -0.150385940825138E+00
-0.150385940825138E+00"
1810 |0 |10 ]0 0.123588851112340E+00
0.123588851112340E+00"
4 |3 |1 |5 |-3 0.144235946147335E+00
0.144235946147335E+00°
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EK C: R=1 ve R=2 nokta yarigaplarinda sonlu kuyu i¢inde ve disinda, sonsuz kuyu
icinde Z=1, x=0.3, y=0.2, m=0123 i¢in elde edilen enerji degeri, STO’larin acilim ve
iistel katsayilar

Cizelge C.1 R=1 nokta yarigapinda sonlu kuyu i¢inde ve disinda Z=1, x=0.3, y=0.2,
m=0123 i¢in elde edilen enerji degeri, STO’larin a¢ilim ve iistel katsayilari

Enerji(ab)(E1) 0.0149308390374
Baz seti sayis1 gik Ci,
Is | 4.643054957558320 | -0.146105783084842E+03
Is | 2.981401547087605 | 0.974140904688170E+03
1s | 4.728776920039579 | 0.419582503519410E+02
® 1s | 2.931051654283672 | -0.160455452213478E+03
% 1s | 2.345043740952533 | 0.206683164549191E+03
é Is | 4.188633229982269 | 0.941775062307761E+02
< 1s | 2.803184689246878 | -0.101594388312514E+04
1s | 6.835527065818807 | -0.365541678477713E+04
1s | 6.458382661325253 | -0.700219748915913E+04
Is | 6.127283327683765 | 0.371124886109057E+04
s Is | 6.788715653904264 | -0.579571249151806E+03
% 1s | 6.298388521579385 | -0.145652551528584E+04
; Is | 7.042776489845846 | -0.399450350313331E+05
< 1s | 6.998071345946654 | 0.487121000750279E+05
Enerji(ab)(Ezp) 0.0641731517849
Baz seti sayisi é/ik Ci
2P | 5.286017182859633 | -0.125786706208272E+03
2P | 2.784349623487510 | 0.134389478801725E+03
2p | 5.197382120928983 | 0.610751094568953E+03
2P | 4.008522793701495 | 0.646842264912042E+03
-§ 2P | 5.825272381368794 | -0.455311025819995E+03
:i_:: 2P | 5.269459164107722 | 0.209800179286912E+02
5 2P | 3.680195321377918 | -0.847298038915758E+03
2P | 5.209889864590167 | 0.129398320715942E+04
2P | 6.135786176502101 | -0.660190212271351E+03
2P | 4.931353530790197 | -0.306807067283438E+04
2P | 4.998704804256475 | -0.361872848814677E+04
é 2P | 4,796555866821574 | 0.689277298924026E+03
g 2P | 5.339851618512110 | -0.501211597185896E+04
5 2P | 5.103880739961916 | 0.962274931124079E+04
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Cizelge C.1 (Devam) R=1 nokta yari¢apinda sonlu kuyu i¢inde ve disinda Z=1,
x=0.3, y=0.2, m=0123 icin elde edilen enerji degeri, STO’larin a¢ilim ve iistel

katsayilari
Enerji(ab)(Esq) 0.1176504905133
Baz seti sayisi <o Ci
3d | 3.558542477439886 | -0.848950870773065E+03
3d | 3.595497384354026 | -0.925745948373301E+03
3d | 4.485674716226181 | 0.216663583978530E+02
® 3d | 2.298790829419449 | 0.118219972820293E+03
.Fé 3d | 4.646360448360309 | -0.162998005819069E+04
; 3d | 4.435092244155390 | 0.566388000016627E+03
< 3d | 4.078484608847938 | 0.267663293476669E+04
3d | 5.977304491409809 | 0.266034497900034E+03
3d | 5.385155313606877 | 0.579428491493444E+02
3d | 6.507974927031206 | 0.123616172623078E+05
g 3d | 5.472184995383594 | -0.125314126623431E+04
% 3d | 4.677923255415171 | 0.118054197893296E+03
; 3d | 6.454588576667156 | -0.183333157523270E+04
< 3d | 6.864707327431317 | -0.128408979447179E+05
Enerji(ab)(E4s) 0.1785596113876
Baz seti sayisi <o Cy
4f | 1.408440769055955 | -0.197514232165428E+02
4f | 5428167229395761 | 0.138882297091812E+03
4f | 3.837559976132456 | 0.236522075645885E+03
® 4f | 3.555227755907112 | 0.123258495091200E+04
.Fé 4f | 5306210859191797 | 0.834816993824389E+02
é 4f | 6.941999442719693 | -0.940600015090879E+02
< 4f | 3.813137850896449 | -0.159158706521199E+04
4f | 5.154830284895899 | -0.113414973318758E+03
4f | 5171466923935185 | 0.524722119135729E+02
4f | 6.217680593003902 | 0.402685280520283E+04
g 4f | 6.759616327908340 | -0.176367108097747E+05
% 4f | 5.482564480371863 | 0.232847758645604E+03
; 4f | 5.708809859684085 | -0.147354307979421E+03
< 4f | 7.240853278068601 | 0.189494824096153E+05
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Cizelge C.2 R=2 nokta yari¢apinda sonlu kuyu i¢inde ve disinda Z=1, x=0.3, y=0.2,

m=0123 i¢in enerji degeri, STO’larin acilim ve ustel katsayilari

Enerji(ab)(E1s) -0.0026022706971
Baz seti sayisi <o Ci
Is | 5.675786613214588 | -0.279167191819557E+00
Is | 8.648161486610865 | 0.140157204024258E+01
Is | 0.224868795824282 | 0.108282909225270E+01
® Is | 1.733926625354060 | 0.805806632663453E+00
.1% Is | 8.407149966860507 | -0.124970200724093E+01
é Is | 1.509891338736171 | -0.853857817903392E-02
< Is | 0.872120418190822 | -0.460568882662983E+01
Is | 8.196795805114396 | -0.104742567704385E+02
Is | 9.639314455392533 | 0.321747084020413E+01
Is | 2.399553755480347 | 0.536329494504766E+00
3 Is | 8.905818920224357 | 0.170923099593767E+01
%. Is | 4.914540098602542 | 0.870217482076754E+01
; Is | 3.111584349042177 | 0.363725542209187E+00
< Is | 7.386681004806187 | -0.248221677043809E+06
Enerji(ab)(Ezp) 0.0152825168232
Baz seti sayisi <o Cie
2p | 5.773099596734349 | -0.143778057491085E+02
2p | 2.282889915946047 | -0.312591358517694E+01
2p | 0.360021054969221 | 0.109325069183906E+01
® 2p | 2.853201770430894 | 0.185064223160910E+02
% 2p | 5.787427853588930 | 0.194917874593850E+02
é 2p | 3.973723994226226 | -0.161884523040591E+02
< 2p | 1.212034652461389 | -0.720396288651136E+01
2D | 4.418027490895443 | 0.566780752045518E+02
2p | 6.718321787708275 | 0.199015052514895E+03
2p | 10.095507472189148 | 0.832261989123601E+01
3 2p | 4.903990000252447 | -0.998090659785866E+02
% 2D | 4.296030423687387 | 0.572656324953614E+02
; 2p | 4.128853197725944 | -0.593866786112160E+02
< 2p | 8.235851853385004 | -0.115084091708318E+07
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Cizelge C.2 (Devam) R=2 nokta yarigapinda sonlu kuyu i¢inde ve diginda Z=1,

x=0.3, y=0.2, m=0123 i¢in enerji degeri, STO’larin agilim ve listel katsayilari

Enerji(ab)(Esq)

0.0334539223094

Baz seti sayisi

é/ik

Cik

3d

4.738594178377467

-0.113064660528891E+03

3d

1.589637181930681

-0.104877065956304E+02

3d

4.498968923883558

-0.106558953165224E+03

3d

3.277311687950673

-0.708617105082337E+03

3d

3.960165673139358

0.706272478099422E+03

3d

4.159430661770731

-0.534598083441105E+02

3d

Kuyu i¢inde

2.709460978427817

0.288156234907946E+03

3d

5.069637771204206

-0.218294987424839E+05

3d

4.398964331554972

0.232631863766001E+04

3d

4.131549572988503

0.634702621120503E+04

3d

5.380802142804972

0.814596720690344E+05

3d

4.188318343326603

-0.830380736840331E+04

3d

5.807093453663958

-0.149769686941335E+05

Kuyu disinda

3d

5.338762871710927

-0.326249022359216E+05

Enerji(ab)(Ea4s)

0.0535749721926

Baz seti sayisi

é/ik

Cig

4f

2.294464475203582

0.769056114538134E+02

4f

5.068733413825871

-0.137000042434710E+02

4f

3.733907706585554

0.559555844470760E+03

4f

4.453824590817787

-0.435515828063041E+02

4f

3.468667349204475

-0.548211841636609E+03

4f

5.613410412765772

-0.118721192889336E+02

Kuyu i¢inde

4f

1.679445151378285

-0.151749944650661E+02

4f

5.182522866033011

-0.772872435097425E+03

4f

5.197753556421503

-0.963066377036943E+03

4f

5.412127258430768

0.693582823833503E+04

4f

5.571009746077531

-0.418847167009932E+05

4f

3.766365500873023

-0.270773467139930E+02

4f

4.272395292199549

0.358344238965559E+03

Kuyu disinda

4f

5.889958108678016

0.655805417617305E+05
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Cizelge C.3 R=1 nokta yaricapinda sonsuz kuyu i¢inde Z=1, x=0.3, y=0.2, m=0123

icin enerji degeri, STO’larin agilim ve iistel katsayilari

Enerji(ab)(Eys) 0.0271634962
Baz seti sayisi i Ci
1s | 5.720926753898663 | -0.360751857711E+01
—3; 1s | 1.748386928072556 | -0.209122299345E+02
g 1s | 11.599766282174546 | -0.703790499830E-01
5 1s | 0.312476500643129 | 0.443758622181E+01
1s | 3.536330391874470 | 0.139081389988E+02
Enerji(ab)(Ezp) 0.095337481
Baz seti sayisi Ci Ci
2p | 57.442551599026132 | -0.430456888472E-02
—°é 2p | 1.895032633433436 | 0.230781396153E+03
g 2p | 50.874780064698356 | -0.262267896295E-02
5 2p | 3.350529289229958 | -0.612700314386E+02
2p | 1.596182309756163 | -0.160562780530E+03

Enerji(ab)(Esq)

0.173761357

Baz seti sayisi <o Cye
3d | 4.149051854990039 | 0.778166220382E+03
—?é 3d | 2.930026942315004 | 0.461369619400E+03
;3 3d | 5.219132793926557 | -0.143234545482E+03
é‘ 3d | 2.810650202256157 | 0.108977902938E+04
3d | 3.067515177508485 | -0.218551167394E+04
Enerji(ab)(E4) 0.265400732
Baz seti sayisi <o Cy
4f | 3.746058002408961 | -0.150709040059E+04
Af | 7.542338863192025 | -0.117382746697E+04
é 4f | 1.986273133100385 | 0.879467182221E+03
;: 4f | 5.589746458014304 | 0.215226023656E+04
> 4f | 1.693049177654420 | -0.502849889593E+03
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Cizelge C.4. R=2 nokta yaricapinda sonsuz kuyu i¢inde Z=1, x=0.3, y=0.2, m=0123
icin enerji degeri, STO’larin agilim ve iistel katsayilari

Enerji(ab)(Eus) -0.00142999942
Baz seti sayisi i Cy
Is 2.466182404342958 | -0.226869694931E+00
® Is 2.131226372661700 | 0.620703938341E+00
% Is 0.700250666945850 | -0.597879526107E+01
é Is 2.226982147203455 | -0.231347822679E+00
< Is 0.310545168579007 | 0.273410954825E+01
Enerji(ab)(Ezp) 0.0191899806
Baz seti sayisi Ci Cy
2p | 56.341904662505698 | -0.627619400555E+00
hy 2p | 1.441533901708723 | 0.326532051603E+02
E 2p | 130.861692096132460 | -0.142353956921E+01
;: 2p | 1.127590947701715 | -0.671368780231E+02
< 2p | 0.913396657045857 | 0.323884646461E+02
Enerji(ab)(Ezq) 0.0403979395
Baz seti sayisi <o Cye
3d | 1.414969033051170 | 0.398366153637E+02
. 3d | 1.768659359156914 | _0.449623682503E+02
.—% 3d | 1.359621308589739 | 0.383657357919E+02
é 3d | 0.769028321412173 | 0.104228550378E+02
> 3d | 0.998188510413729 | -0.427830069866E+02
Enerji(ab)(E4) 0.0645695733
Baz seti sayis1 Ci Cy
4f | 0.792303020270732 | 0.276336724125E+01
o 4f | 4.819069584337679 | 0.379787858728E+02
E 4f | 1.397925931084631 | -0.619126472818E+02
;: 4f | 3.284562790018917 | -0.499005202267E+02
< 4f | 1.607539979980507 | 0.817273894302E+02
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Cizelge C.5.R=1 nokta yaricapinda sonsuz kuyu i¢inde Z=1, x=0.3, y=2, m=0123
icin enerji degeri, STO’larin agilim ve iistel katsayilari

Enerji(ab)(Eus) 0.0271634955

Baz seti sayisi i Ci
1s | 5.720926753898588 | -0.362303857460E+01
® Is | 1.748386928071629 | -0.209177887594E+02
E 1s | 11.599766288411569 | -0.641801799909E-01
; Is | 0.312476500643128 | 0.443838316821E+01
< Is | 3.536330391811947 | 0.139230862339E+02

Enerji(ab)(Ezp) 0.106006415

Baz seti sayisi Ci Ci
2p | 0.022758814733060 | -0.742389219192E+04
b 2p | 0.063115224676321 | 0.265161545268E+05
E 2p | 28.391897624902239 | -0.295113281515E+00
; 2p | 86.009888494510975 | -0.101114403324E+02
< 2p | 0.080101020350917 | -0.191083628664E+05

Enerji(ab)(Ezq) 0.194371788

Baz seti sayisi <o Cy
3d | 3.663339506650494 | 0.784626655099E+03
) 3d | 4.409657803797010 | 0.564123017558E+00
.—é 3d | 2.244386427866946 | 0.106229477167E+00
é 3d | 2.579422247155640 | 0.558740548894E+03
> 3d | 3.068684177905690 | -0.134467804217E+04

Enerji(ab)(E4) 0.296334578

Baz seti sayis1 <o Cie
4f | 8.841042083275319 | _0.885784632323E+03
4f | 3.655785367296179 | _0.166411269634E+04
.%é) 4f | 5.798279875174870 | 0.163753517714E+04
;: 4f | 2.450939538186677 | 0.147259583784E+04
< 4f | 2.159655332734594 | _0.769659682479E+03
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