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ÖZET 

 

 

Bu çalışmada, dış manyetik alanın varlığında ve yokluğunda küresel bir kuantum 

nokta yapının elektronik özellikleri incelendi. Kuantum nokta yapının sonlu ve 

sonsuz sınırlandırıcı potansiyele sahip olduğu göz önüne alınmıştır. R yarıçaplı 

GaAs/AlxGa1-xAs küresel kuantum nokta yapıda hidrojenik safsızlığın 1s, 2p, 3d ve 

4f enerji seviyeleri ve dalga fonksiyonları Kuantum Genetik Algoritma(KGA) ve 

Hartree-Fock Roothaan (HFR) methodu kullanılarak hesaplanmıştır. Hesaplanan 

dalga fonsiyonları ve enerjileri kullanılarak, sonlu ve sonsuz sınırlandırıcı 

potansiyele sahip kuantum nokta yapının bağlanma enerjisi, nokta yarıçapı ve 

alüminyum katkılanma oranına bağlı olarak hesaplandı. Ayrıca bu çalışmada, dış 

manyetik alanın kuantum nokta yapının enerji seviyelerine ve bağlanma enerjilerine 

olan etkileri de incelenmiştir. Kuantum nokta yapının alt seviyeler arasındaki lineer 

Zeeman ve kuadratik Zeeman geçiş enerjileri nokta yarıçapının ve manyetik alanın 

fonksiyonu olarak hesaplandı. Hesaplamalardan manyetik alan, safsızlık yükü, nokta 

yarıçapı ve alüminyum katkılanma oranının, sistemin enerji seviyeleri Zeeman 

enerjileri üzerinde güçlü bir etkiye sahip olduğu görülmüştür. Ayrıca, dış manyetik 

alan etkileri büyük nokta yarıçaplarında Zeeman seviyeleri arasındaki optiksel 

geçişleri güçlü bir şekilde etkilediği görülmüştür. Güçlü uzaysal sınırlandırmanın 

olduğu bölgelerde enerji seviyeleri manyetik alanın etkisinden çok az etkilenirken, 

orta sınırlandırmanın olduğu bölgelerde alanın sınırlandırma etkisi ile uzaysal 

sınırlandırma etkisinin yarıştığı ve zayıf sınırlandırma bölgesinde ise manyetik alan 

etkisinin daha güçlü olduğu görülmüştür. 

 

 

Anahtar Kelimeler: Küresel kuantum nokta yapılar, Kuantum Genetik Algoritma 

(KGA, Hartree-Fock Roothaan (HFR), Slater tipi orbital, Manyetik alan etkileri, 

Bağlanma enerjisi. 
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ABSTRACT 

 

 

In this study, in existence and absence of an external magnetic field, the electronic 

properties of a spherical quantum dot were investigated. The quantum dot (QD) is 

assumed to have a finite and an infinite confining potential well. 1s, 2p, 3d and 4f 

energy levels and the wave functions of a hydrogenic impurity in GaAs/AlxGa1-xAs 

spherical quantum dot with radius R are calculated by the Quantum Genetic 

Algorithm (QGA) and Hartree-Fock Roothan (HFR) method. Based on the wave 

functions and energy states, the binding energy of the spherical QD is carried out as a 

function of dot radius and aluminium concentration ratio. In addition, we report a 

detailed theoretical investigation of the effect of an external magnetic field on the 

energy states and binding energies of a spherical quantum dot. The Linear Zeeman 

and quadratic Zeeman transition energies between subbands were computed as a 

function of dot radius and magnetic field. The results show that the magnetic field, 

impurity charge, dot radius and aluminium concentration ratio have a strong 

influence on the energy states and the Zeeman transitions. Besides, the results 

present that, in large dot radius, the external magnetic field affects strongly the 

optical transitions between Zeeman states. In the strong spatial confinement cases, 

energy level is relatively insensitive to the magnetic field, and electron spatial 

confinement prevails over magnetic confinement.  

 

 

Keywords: Spherical quantum dot, Quantum Genetik Algortihm (QGA), Hartree-

Fock Roothaan (HFR), Slater type orbital, Magnetic field effects, Binding energy. 
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1.GİRİŞ 

 

Yeryüzünde bulunan bütün maddeler atomlardan oluşmuştur. Atom ise merkezde bir 

çekirdek ve bunun etrafındaki farklı yörüngelerde hareket eden elektronlardan 

oluşmaktadır. Atom ve moleküllerin biraraya gelmesiyle de maddeler oluşmaktadır. 

Maddeler elektrik akımını iletmelerine göre iletken, yalıtkan ve yarı iletken olmak 

üzere üçe ayrılırlar. İçerisinde elektronların serbestçe hareket edebildiği maddelere 

iletken maddeler, serbestçe hareket edemediği maddelere de yalıtkan maddeler denir. 

Maddelerin iletkenliğini belirleyen en önemli faktör atomlarının son yörüngesindeki 

elektron sayısıdır. Bu son yörüngeye "Valans Yörünge" ve buradaki elektronlara da 

"Valans Elektron" denir. Valans elektronlar atom çekirdeğine zayıf olarak bağlıdır. 

Bu yüzden kolaylıkla uyarılabilir ya da koparılabilirler. Yarı iletken malzemeler 

doğada saf olarak bulunmaz, ancak teknolojik olarak üretilebilirler. Periyodik 

cetvelde 3. 4. ve 5. grupta bulunan elementler birbirleriyle katkılanmak suretiyle yarı 

iletken malzemeler üretilebilir. Yarı iletkenlerin özdirençleri oda sıcaklığında 10
-2

 Ω 

cm ile 10
9 

Ω cm aralığındadır. Bu aralık 10
-6

 Ω.cm den küçük özdirence sahip olan 

iletkenler ile özdirençleri 10
14

-10
20

 Ω cm
 
aralığında olan yalıtkanlar arasındaki 

bölgeye düşer. Bir yarı iletkenin elektriksel iletkenliği sıcaklığına bağlıdır. Sıcaklık 

yükseldikçe yarı iletkenin özdirencinin küçülmesi onun en belirgin özelliğidir. 1873 

yılında selenyumun fotoiletkenliğinin keşfi ile yarı iletken bilimi başlamış oldu 

(Smith, 1873). Daha sonra 1940 lı yılların sonunda farklı fiziksel ve kimyasal 

özelliklere sahip yeni bir aygıt olan transistörün ortaya çıkması ile yarı iletken 

biliminde yeni bir dönem başladı (Bardenn ve Brattain, 1948; Shockleey, 1949). Hall 

vd., (1962) tarafından yarı iletken lazerin icat edilmesi ve birbirinden farklı en az iki 

yarı iletken kullanılarak oluşturulan heteroeklemlerin ortaya çıkışı (Anderson, 1962) 

1960’lı yıllarda kuantum mekaniğinin katıhal elektroniği üzerindeki etkisini 

arttırmıştır. 

 Günümüzde yarı iletken teknolojisinde görülen olağanüstü gelişmeler sayesinde 

düşük boyutlu yapıların (low-dimesional structures) teknolojik olarak üretimi 

mümkün hale gelmiştir. Düşük boyutlu yapılar aynı zamanda nanoyapılar olarak ta 

adlandırılır ve böyle yapıların üretilebildiği teknolojiye de nanoteknoloji adı verilir. 

Nanoteknoloji aşırı küçük yapıların üretilebilmesi, onların çeşitli fiziksel ve kimyasal 

özelliklerinin araştırılması ve bunlardan yararlanılması üzerinde çalışır. 

Nanoteknoloji maddeyi dolaylı olarak atom boyutuna yani nanoboyuta indirgeme işi 



 

2 

 

olarak da ifade edilebilir. Drexler (1990)’in ifadesiyle nanoteknoloji “Yapı üzerinde 

atom atom oynama yaparak maddenin yapısının moleküler seviyede kontrol 

edilmesi’’ anlamına gelmektedir. Bir başka ifadeyle nanoteknoloji büyüklüğü 

metrenin 100 milyon ile 1 milyar da biri arasında değişen malzemelerin üretimi, 

montajı ve kullanımı ile ilgilenen teknoloji olarak ta adlandırılabilir. Nanobilim ise 

nanometre (1nm=10
-9

m) boyutlarında olan sistemlerle ilgilenen bir bilimdir. Bir 

nanometre bir milimetrenin milyonda biri veya bir metrenin milyarda biri ya da insan 

saç telinin on binde biri kadar bir kalınlığa tekabül eder ve bu uzunluk atom ve 

moleküllerin içindeki en küçük mesafeleri tanımlamak için kullanılır. Böylece 

nanoteknoloji atomları tek tek kullanmak suretiyle makro dünyada olmayan 

niteliklere sahip çok küçük cihazların üretilmesi ve kullanılmasını amaçlayan bir 

alandır. Maddelerin nanoboyutta (veya atomik boyutta) incelenmesinin nedeni 

maddeler bu boyutlarda farklı davranış sergilemektedir. Yani, olağan halde sert 

olmayan maddelerin nano boyutta elmastan bile daha sert olması, ya da normal halde 

elektrik ve ışığı ileten maddeler nano boyutta tam tersi özellikler göstermesi 

mümkündür. Bununla birlikte malzemeler nano boyutta üretildiği zaman normal 

halde göremediğimiz üstün özellikleri ortaya çıkar. Nanoteknolojik olarak üretilen 

malzemeler daha dayanıklı, daha hafif ve teknolojik olarak katma değeri daha 

fazladır.  

Doğada bulunan yapılar makroskopik (hareketlerin istatistiksel olarak 

tanımlanabildiği), mikroskobik (hareketlerin atomik boyutlarda tanımlanabildiği) ve 

mesozkopik olmak üzere üçe ayrılırlar. Düşük boyutlu yapılar aynı zamanda 

Mezoskopik yapılar olarak ta adlandırılmaktadır. Bu yapıların boyutları yaklaşık 10 

Å-1000 Å (1 nm-100 nm) arasındadır. Böyle yapılarda taşıyıcıların (elektron veya 

deşikler) hareketlerinin engelleyici bir potansiyel ile sınırlandırılması deneysel olarak 

mümkün olabilmektedir. Bunun için yasak enerji aralıkları farklı olan iki yarı iletken 

malzeme kullanılarak sandeviç yöntemi ile ara yüzeyde bir potansiyel engeli 

oluşturulur. Böylece oluşturulan bu potansiyel engeli ile yarı iletken içerisindeki yük 

taşıyıcılarının hareketleri sınırlandırılmış olur. Bu durum aşağıdaki Şekil 1.1’de 

gösterilmektedir. 
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Şekil 1.1. Hetero yapılarda kuantum kuyusunun oluşumu. 

 

Burada yasak enerji aralığı Eg1 olan yarı iletken malzeme içerisine, yasak enerji 

aralığı Eg2 olan başka bir yarı iletken malzeme atom katmanları olarak büyütülür. 

Böylece yasak enerji aralıklarının farkından dolayı ara yüzeyde bir potansiyel engeli 

oluşturulur. Bu engel yük yaşıyıcılarının hareketlerinin bu bölgede 

sınırlandırılmasına neden olur. Düşük boyutlu yapılar içerisindeki yük taşıyıcılarının 

hareketlerinin tek boyutta sınırlandırılmasıyla kuantum kuyular (quantum wells, 

QWs) ve iki boyutta sınırlandırılmasıyla kuantum teller (quantum well wires, 

QWWs) oluşturulurken, yük taşıyıcılarının üç boyutta sınırlandırılmasıyla da 

quantum nokta yapılar (quantum dots, QDs) oluşturulur. Kuantum nokta yapılar aynı 

zamanda sıfır boyutlu yapılar olarakta adlandırılmaktadır. Bu durumlar Şekil 1.2’de 

gösterilmektedir. 

   

(a) (b)   (c) 

Şekil 1.2. a) Kuantum kuyusu; b) Kuantum teli, c) Kuantum nokta yapısı  

 

Nano teknolojideki son gelişmeler ve üretim tekniklerindeki ilerlemeler kuantum 

nokta yapılar olarak bilinen sıfır boyutlu yapıların (quantum dots) üretilmesine 

olanak sağlamaktadır. Kuantum nokta yapılar tek elektron transistörleri, ışık yayan 
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diyotlar, kuantum nokta lazerler, optiksel hafızalar, yüksek-hızlı elektro optik 

modülatörler, kuantum bilgisayarlar, kuantum infrared fotodedektörleri gibi 

optoelektronik ve mikroelektronik cihazların teknolojik olarak üretilmesinde çeşitli 

uygulama alanlarına sahiptir. Kuantum nokta yapılar kesikli enerji seviyeleri ve 

kabuklu yapılara sahip olması gibi atomik özellikler gösterdiği için yapay atom 

olarak da adlandırılmaktadır. Dolayısıyla bu yapılar ile ilgili yapılan çalışmalar 

yoğun madde fiziği, atom fiziği ve kuantum kimyası ile yakından ilgilidir. 

Kuantum nokta yapıların elektronik yapısı ve fiziksel özelliklerini inceleyen çok 

sayıda teorik ve deneysel çalışmalar yapılmıştır. Varshni (1996) ve Bose ve Sarkar 

(1998) sonlu kuantum nokta yapılarda varyasyonel ve pertürbasyon metodunu 

kullanarak nokta yapının bağlanma enerjilerini hesapladılar. Marin ve Cruz (1991) 

sonsuz küresel kuyu içerisindeki hapsedilmiş hidrojen atomu ve harmonik osilatörün 

enerji seviyelerini, Montenegro ve Perez (1992) küresel kuantum noktadaki 

hidrojenik safsızlığın taban durum enerjisi ve bağlanma enerjisini varyasyonel metod 

kullanarak hesapladılar. Grigoreko ve Garcia (2002), Şahin vd., (2005) hidrojenik 

safsızlığın taban ve bazı uyarılmış enerji seviyelerini ve bağlanma enerjilerini KGA 

yöntemi kullanarak hesapladılar. Yang vd., (1998) tam çözüm yöntemi ile kuantum 

nokta yapının merkezine yerleştirilmiş hidrojenik safsızlığın enerji seviyelerini ve 

ince yapı yarılmalarının hesabını yaptılar. Çakır vd., (2007, 2008) KGA ve HFR 

yöntemini kullanarak bir ve iki elektronlu hidrojenik safsızlığın enerji seviyelerini ve 

bağlanma enerjilerini hesapladılar. Aynı zamanda Özmen vd., (2009) , Çakır vd., 

(2015) ile Yakar vd., (2010, 2012 , 2015) yine aynı yöntemi kullanarak bir ve iki 

elektronlu küresel kuantum nokta yapıların lineer ve nonlineer absorbsiyon 

katsayılarını, kırılma indislerini ve bağlanma enerjileri ile ilgili optiksel özellikleri 

hesapladılar. Bunların yanında Yakar vd., (2013) ile Çakır vd., (2016) yine 

hidrojenik safsızlık için kinetik enerji düzeltme terimi, LS etkileşim terimi ve Darwin 

terimi gibi rölativistik terimlerini nokta yarıçapının fonksiyonu olarak hesapladılar.  

Dış pertürbasyonlar olarak bilinen elektrik ve manyetik alanın uygulanması 

sınırlandırılmış sistemler hakkında çok değerli eşsiz bilgiler ortaya çıkarabilir. 

Manyetik ve elektrik alan gibi dış pertürbasyon etkileri kuantum noktaların 

elektronik ve optiksel özelliklerinin daha iyi anlaşılmasında artan bir ilgiye sahiptir. 

Safsızlık (impurity) seviyelerinin simetrisi, dalga fonksiyonlarının yapısı ve safsızlık 

seviyelerinin diğer özellikleri kuantum nokta yapılara dış manyetik alan uygulayarak 
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değiştirilebilir. Böylece son zamanlarda manyetik alan varlığında kuantum nokta 

yapıların elektronik yapısı, enerji seviyeleri, bağlanma enerjileri ve optiksel 

özellikleri ile ilgili çalışmalar artan bir ilgiye sahiptir. Xiao vd., (1996) varyasyonel 

metodu kullanarak manyetik alan içerisindeki küresel kuantum nokta yapıların 

bağlanma enerjilerini hesapladılar. Peter vd., (2005) ile Wu ve Won (2012) güçlü bir 

dış manyetik alan içerisinde parabolik ve küresel kuantum noktaların elektronik 

yapısını ve bağlanma enerjilerini incelediler. Zhang vd., (2010) ile Seddik vd., 

(2005) dış manyetik alanın parabolik kuantum noktaların optiksel özellikler üzerine 

olan etkilerini detaylı olarak çalıştılar. Yine dış manyetik alanın varlığında 

varyasyonel yaklaşımı kullanarak Yeşilgül vd., (2011) ile Ghazi vd., (2013) kuantum 

tel ve küresel kuantum nokta yapıların safsızlık konumunu ve bağlanma enerjisini 

incelediler. Niculescu ve Bejan (2015) piramit kuantum nokta yapısı için elektronik 

seviyeler ve lineer olmayan absorpsiyon katsayıları üzerinde manyetik alanın 

etkilerini ve safsızlığın konumunu çalıştı. Gürültünün varlığında ve yokluğunda 

kuantum nokta yapının optiksel absorpsiyon katsayılarının detaylı bir çalışması 

Mandal vd., (2015) tarafından yapıldı. Çok yakın bir zamanda Çakır vd., (2016, 

2017) ve Yakar vd., (2017) sonlu ve sonsuz sınırlandırıcı potansiyele sahip küresel 

kuantum nokta yapıların enerji seviyeleri, bağlanma enerjileri ve absorbsiyon 

katsayıları üzerinde manyetik alan etkilerini detaylı bir şekilde incelediler.  

Yukarıda ifade edilen çalışmaların çoğunda taban durum (L=0) ve ilk uyarılmış 

seviye 2p (L=1) ler üzerinde manyetik ve elektrik alan etkileri incelenmiştir. Bizim 

yaptığımız bu çalışmada ise taban durum (1s) ve çeşitli uyarılmış elektronik enerji 

seviyeler (2p, 3d ve 4f) üzerinde paramanyetik ve diyamanyetik alan etkileri 

incelenmiştir. Burada diyamanyetik terim pertürbasyon terimi olarak gözönüne 

alınmıştır. Taban ve uyarılmış enerji seviyelerinin grafikleri nokta yarıçapının 

fonksiyonu olarak elde edilmiş ve bu seviyeler arasındaki Zeeman enerji geçişleri 

nokta yarıçapının ve manyetik alanın fonksiyonu olarak ifade edilmiştir. Ayrıca 

diyamanyetik pertürbasyon teriminin Zeeman geçişlerine olan etkisi de incelenmiştir. 
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2. DÜŞÜK BOYUTLU YAPILAR 

2. 1. Düşük Boyutlu Yapı Çeşitleri 

2.1.1.Kuantum kuyuları 

Düşük boyutlu yapılar içerisindeki yük taşıyıcılarının hareketi bir boyutta 

sınırlandırıldığı zaman parçacıklar iki boyutta serbest olarak hareket edebilir. Böyle 

yapılara kuantum kuyular adı verilir. Kuantum kuyular yasak enerji aralığı büyük 

olan bir malzeme içerisine yasak enerji aralığı küçük olan bir malzemenin tabaka 

halinde yerleştirilmesi ile elde edilir. Şekil 1.2a’da görüleceği gibi elektronların 

hareketi y-doğrultusunda sınırlandırıldığı zaman elektronlar diğer iki boyutta 

serbestçe hareket ederler. Elektronların iki boyutta serbestçe hareket edebildiği 

yapılara iki boyutlu elektron gazı da denir. Kuantum kuyularında sınırlandırma 

sadece y doğrultusunda olduğu için kuantum etkisi sadece bu doğrultuda görülür. 

Elektronun x ve z doğrultusunda herhangi bir sınırlandırma olmadığı için dalga 

fonksiyonu; 

𝜓(x, y, z) = exp(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑧𝑧)ϕ(𝑦) 

ile verilir. Burada kx ve kz x ve z doğrultusundaki dalga vektörünün bileşenleridir. 𝜙𝑦 

fonksiyonu ise sınırlandırmanın olduğu doğrultuya karşılık gelen fonsiyonu tanımlar. 

Kuantum etkisinin görüldüğü y doğrultusu için Schrödinger denklemi aşağıdaki gibi 

yazılabilir. 

𝑑2𝜙(𝑦)

𝑑𝑦2 +
2𝑚

ћ
2 (𝐸𝑦 − 𝑉(𝑦)) 𝜙(𝑦) = 0 

Burada Ey ve V(y) parçacığın y-doğrultusundaki enerjisini ve sınırlandırıcı 

potansiyelini göstermektedir. Burada sınırlandırıcı potansiyel sonsuz yükseklikte 

alınırsa kuyu içerisinde V(y)=0 olur. Yani kuyu içerisinde serbest parçacık durumunu 

gösterir. Dalga fonksiyonunun y-doğrultusundaki bileşeni kuyu sınırlarında sınır 

şartları uygulandığında aşağıdaki denklem elde edilir. 

𝑘𝑛𝑦
=  

𝑛𝑦𝜋

𝐿𝑦
 

Burada Ly kuyu genişliğidir. Görüldüğü gibi dalga fonksiyonunun bileşeni kesikli 

değerler aldığı için kuyu içerisindeki parçacığın enerji özdeğeri  

(2.1) 

(2.2) 

(2.3) 



 

7 

 

𝐸𝑛𝑦
=

ℏ2

2𝑚
(

𝑛𝑦𝜋

𝐿𝑦
)

2

 

şeklinde olur. Bu durumda parçacığın toplam enerjisi 

𝐸 =
ℏ2

2𝑚
[𝑘𝑥

2 + 𝑘𝑧
2 + (

𝑛𝑦𝜋

𝐿𝑦
)

2

  ] 

ile verilir. 

 

2.1.2 Kuantum teller 

Yük taşıyıcıların iki boyutta sınırlandırıldığı ve dolayısıyla tek boyutta serbestçe 

hareketin olabildiği sistemlere kuantum teller denir. Böyle sistemlerde 

kuantumlanma etkisi elektron hareketinin sınırlandırıldığı iki boyutta görülür. Bu 

durum Şekil 1.2b’de gösterilmektedir. Böyle bir sistem içerisindeki elektron tek 

serbestlik derecesi ile tanımlanır ve elektrona eşlik eden dalga fonksiyonu 

𝜓(x, y, z) = exp(𝑖𝑘𝑥𝑥)ϕ(𝑦, 𝑧) 

biçiminde yazılır.  

Burada ϕ(𝑦, 𝑧) sınırlandırmanın olduğu doğrultulara karşılık gelen dalga 

fonksiyonunu gösterir. İki boyutlu sınırlandırmanın olduğu sistemlerde Schrödinger 

dalga denklemi 

−
ℏ2

2𝑚
(

𝑑2

𝑑𝑦2
+

𝑑2

𝑑𝑧2
) ϕ(y, z) + V(y, z)ϕ(y, z) = Ey,zϕ(y, z) 

biçiminde yazılabilir. 

Burada y ve z doğrultusundaki sınırlandırıcı potansiyeller sonsuz yükseklikte alınırsa 

V(y,z) = 0 olur. Bu durumda dalga fonksiyonuna sınır şartları uygulandığında 

𝑘𝑛𝑦
=  

𝑛𝑦𝜋

𝐿𝑦
  𝑣𝑒 𝑘𝑛𝑧

=  
𝑛𝑧𝜋

𝐿𝑧
 

elde edilir ve enerji özdeğerleri 

𝐸 =
ℏ2

2𝑚
[𝑘𝑥

2 + (
𝑛𝑦𝜋

𝐿𝑦
)

2

+ (
𝑛𝑧𝜋

𝐿𝑧
)

2

] 

şeklinde verilir.  

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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2.1.3 Kuantum nokta yapılar 

Düşük boyutlu yapılarda yük taşıyıcıların hareketlerinin üç boyutlu sınırlandırıldığı 

yapılara kuantum nokta yapılar (quantum dots) denir. Bu durum Şekil 1.2c’de 

gösterilmiştir. Elektronların hareketi üç boyutta sınırlandırıldığı için kuantumlanma 

etkisi de üç boyutta da görülür. Böyle yapılardaki parçacıklar için Schrödinger 

denklemi  

−
ℏ2

2𝑚
(

𝑑2

𝑑𝑥2 +
𝑑2

𝑑𝑦2 +
𝑑2

𝑑𝑧2) ϕ(x, y, z) + V(x, y, z)ϕ(x, y, z) = Ex,y,zϕ(x, y, z) 

biçiminde yazılır.  

Buradaki sınırlandırıcı potansiyel sonsuz kuyu şeklinde alınırsa kuyu içerisinde 

potansiyelin değeri sıfır olur. Yani V(x,y,z) = 0 dır. Sınır şartları kullanılarak dalga 

vektörü bileşenleri de 

𝑘𝑛𝑥
=  

𝑛𝑥𝜋

𝐿𝑥
, 𝑘𝑛𝑦

=  
𝑛𝑦𝜋

𝐿𝑦
  𝑣𝑒 𝑘𝑛𝑧

=  
𝑛𝑧𝜋

𝐿𝑧
 

yazılır ve enerji özdeğerleri 

𝐸 =
ℏ2

2𝑚
((

𝑛𝑥𝜋

𝐿𝑥
)

2

+ (
𝑛𝑦𝜋

𝐿𝑦
)

2

+ (
𝑛𝑧𝜋

𝐿𝑧
)

2

) 

elde edilebilir.  

2.2. Serbest Elektron Modeli 

Katıyı oluşturmak için izole atomları bir araya getirme düşüncesinden ziyade, 

atomların kristalin örgü noktalarına yerleşmiş olduğu durumdan başlayarak da 

katıların bant yapısı elde edilebilir. Katıyı oluşturan her bir atom, konumu sabit olan 

ve valans elektronun katı içinde serbest olduğu pozitif yüklü iyon olarak 

düşünülebilir. Pozitif yüklü bu iyonlar kristal içinde periyodik olarak yerleşmiş 

olduklarından kristal boyunca yük yoğunluğu düzgün olarak dağılmış olacaktır. 

Pozitif yüklü iyonlar ile elektronlar arasındaki potansiyel enerjinin sıfır olduğu yani 

elektronun yalnızca kinetik enerjiye sahip olduğu ve elektronların içinde 

bulundukları kristalin sınırlarının V yüksekliğinde bariyerler olduğu düşünüldüğünde 

elektron enerjisinin bulunması problemi, kuantum kuyusu içindeki elektronun 

enerjisini bulmak için Schrödinger denkleminin çözülmesine indirgenmiş olur. Bu 

(2.10) 

(2.11) 

(2.12) 
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yöntem Serbest Elektron Modeli olarak adlandırılır. Serbest elektron modeli 

metallerin bazı özelliklerini açıklayan basit bir modeldir. Ancak katı cisimlerin 

metal, yarıiletken ve yalıtkan olarak sınıflandırılması bu model ile yapılamaz. 

 

Şekil 2.1. Serbest elektronun dispersiyon eğrisi. 

 

2.3. Kısmen Serbest Elektron Modeli 

Katıların elektriksel iletkenliğinin katıdan katıya nasıl ve neden değiştiğini açıklamak 

için elektronların pozitif iyonlarla etkileşmelerinin göz önüne alındığı kısmen serbest 

elektron modeli kullanılabilir. Kısmen serbest elektron modelinde kristal 

makroskobik boyutlardaki kuantum kuyusuyla temsil edilmektedir. Atomlar 

arasındaki Coulomb potansiyeli, katı içindeki iyonların birbirini iten alanlarından 

dolayı bağımsız atomlarda gözlenen potansiyelin indirgenmiş halidir. İyonlar 

arasında Coulomb potansiyelinin bu indirgenmiş hali komşu atomik yörüngelerin 

etkileşmesi sonucunda enerji seviyelerinde genişlemeye ve elektron yük dağılımının 

uzaysal olarak yayılmasına neden olur. Metallerde elektronlar atomlarından ayrıdır 

ve serbest olarak metal içinde hareket edebilirler. Ancak yarıiletkenlerde sıcaklığa 

bağlı olarak serbest elektron sayısı değişmekte ve bu nedenle yarı iletkenin 

iletkenliğide sıcaklığa bağlı olarak değişmektedir. Kısmen serbest elektron 

modelinde elektron katı cisim içinde pozitif iyonların oluşturduğu a periyoduyla 

değişen periyodik bir potansiyelin etkisi altındadır.  

 

Şekil 2.2’de kısmen serbest elektron modeli ve serbest elektron modelinin öngördüğü 

dispersiyon eğrileri birlikte gösterilmiştir. Kısmen serbest elektron modeli belli k 

değerlerinde elektron enerjisinin serbest elektron modelinden farklılaşacağını 

gösterir. Ancak bu k değerleri civarında dispersiyon eğrisinin nasıl değiştiği bilgisini 

E

k
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vermez. Bu değişimin nasıl olduğunu öngörebilmek için Bragg yasasından 

yararlanılır. Bragg yasasına göre 𝑘 = 𝑛𝜋
𝑎⁄  değerlerinde duran dalgalar oluşur yani 

elektronun grup hızı sıfırdır. Grup hızı dispersiyon eğrisinin birinci türeviyle 

(𝑣𝑔 =
𝑑𝜔

𝑑𝑘
) belirlendiği için bu k değerlerinde dispersiyon eğrisinin maksimuma ya 

da minimuma gidecek şekilde serbest elektron modelinin dispersiyon eğrisinden 

farklılık göstereceği öngörülebilir. Görüldüğü gibi periyodik örgü potansiyeli, 

dispersiyon eğrisinde hiçbir elektron durumunun olmadığı enerji aralıklarının 

oluşmasına neden olmaktadır. Bu bölgeler yasak enerji aralıkları yada bant aralıkları 

olarak tanımlanır. Elektronların izinli olduğu bölgeler enerji bantları olarak 

adlandırılır. Katılar yasak bant aralığının büyüklüğüne göre elektriksel olarak metal, 

yarımetal ve yalıtkan olarak sınıflandırılabilir. Katının ilkel hücresindeki valans 

elektron sayısı tek olduğunda, en yüksek enerjili bant kısmen doluyken, valans 

elektron sayısı çift olduğunda bant tamamen doludur. Dolayısıyla valans elektronu 

tek sayıda olan katılar metal, çift sayıda olanlar ise yasak bant aralığı küçükse 

yarıiletken, büyükse yalıtkan olarak adlandırılır. Metal, yarıiletken ve yalıtkana ait 

bant profilleri Şekil 2.3’de gösterilmektedir. Bu gösterimde yaklaşık mutlak sıfır 

sıcaklığında elektronlarla dolu en üsteki bant valans bandı, yasak bant aralığıyla 

valans bandından ayrılmış olan bant ise iletkenli bandı olarak adlandırılır. 

 

 

Şekil 2.2. Kısmen serbest elektron modeli (düz çizgiler) ve serbest elektron modeli 

(kesikli çizgiler) dispersiyon eğrilerinin birlikte gösterimi. 
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Şekil 2.3. a) İletken, b) Yarıiletken, c) Yalıtkana ait bant profilleri. Burada Eg yasak 

bant aralığını ve gölgeli bölgeler de elektronlarla dolu enerji seviyelerini 

temsil etmektedir. 

2.4. Düşük Boyutlu Yapıların Elde Edilme Yöntemleri 

2.4.1. Asitle eritme yöntemi 

Bu yöntem kuantum nokta yapıların üretiminde kullanılan ilk yöntemdir (Reed vd., 

1986). Bu yöntemin ilk aşamasında bir ya da birden fazla kuantum kuyusuna sahip 

bir yapının yüzeyi polimer maskeyle kaplanır. Sonra polimer maske elektron veya 

iyon demetine maruz bırakılarak oluşturulacak nano yapının sınırları ve şekli 

belirlenir. Polimer tabaka yüksek çözünürlüğe sahip olduğundan yapının şekli ve 

sınırları belirlenirken görünür bölgedeki elektromanyetik dalga kullanılmaz. Daha 

sonraki aşamada numunenin yüzeyi ince bir metal tabakayla kaplanır. Sonra seçilen 

yüzey dışındaki tüm yüzey aktive edilmiş iyon demetine maruz bırakılarak metal ve 

altındaki polimer tabaka temizlenir ve basit yapı elde edilir. Sınırlandırıcı bölge 

yüzeyi üzerindeki metal tabaka elektrot olarak kullanılabilir. Bundan sonra metal 

maskeyle korunmamış bölgeler kimyasal olarak aktif iyonlarla aşındırılır ve kuantum 

kuyu parçaları içeren ince yapılar oluşmuş olur. Son olarak bu yapılar kesilerek 

yüzeyden ayrılır (Jacak vd., 1998; Jacak, 2000; Reed, 1993). Böylece bu yöntemle 

boyutları 10-100 nm mertebesinde sınırlandırılmış kuantum yapılar elde edilir 

(Demel vd., 1990; Smith vd., 1988).  

2.4.2. Modüle edilmiş elektrik alan yöntemi 

Bu yöntem, kuantum kuyusu yüzeyi üzerine çok küçük elektrotlar yerleştirilmesi 

esasına dayanan litografik bir yöntemdir. Elektrotlara belli büyüklükteki potansiyel 

farkı uygulanması ile elektronların hareketini sınırlandıran çok küçük bir elektrik 

V a l a n s   b a n d ı 

I l e t k e n l i k   b a n d ı 

E g 

I l e t k e n l i k   b a n d ı 

E g 

V a l a n s   b a n d ı 

a ) b ) c ) 
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alanı oluşur. Bu elektrik alan uygulanan gerilim ile ayarlanabilir. Bu yöntemle elde 

edilen kuantum kuyuların kenarlarında eritme yönteminde oluşan malzemeye bağlı 

olan kenar kusurları oluşmaz. Aynı zamanda bu yöntemle eritme yönteminde olduğu 

gibi yan yana düzgün dizilmiş birden fazla kuantum noktası oluşturulabilir (Jacak, 

1998). 

2.4.3. Kendiliğinden büyütme yöntemi 

Bu yöntem kuantum kuyuların kendiliğinden kristalleştirilmesi yöntemidir (Petroff 

ve Denbaars, 1994). Bu yöntemde alt tabaka ve kristalleşen malzemenin örgü 

sabitleri önemli ölçüde farklılık gösteriyorsa sadece ilk çökeltilen tek tabakalar, örgü 

sabiti alt tabakanınkine eşit katmanlar olarak epitaksiyel formda kristalleşir. Kritik 

kalınlık aşıldığında tabaka içerisinde meydana gelen önemli ölçüdeki gerilme, 

düzenli yapının bozulmasına ve aynı boyutlarda düzenli biçimlere sahip rasgele 

dağılmış küçük odacıkların kendiliğinden oluşmasına neden olur. Bu odacıkların 

şekli ve büyüklüğü örgü sabitleri arasındaki uyuşmazlığa bağlı olarak tabaka içinde 

oluşan gerilme şiddetine, büyütmenin olduğu sıcaklığa ve büyütme hızına bağlıdır. 

Bu yolla elde edilen kuantum nokta yapıların boyutları küçük ve homojen 

büyüklükte, kenar kusurları olmayan ve oldukça elverişli büyüme süreçlerine sahip 

olduğu için opto elektronik ve mikro elektronik uygulamalarda ümit vaad etmektedir. 

2.4.4. Seçici büyütme yöntemi 

Bu yöntemde yasak enerji aralığı çok dar olan GaAs gibi yarı iletken bir malzeme 

yüzeyinin üzeri daha geniş yasak enerji aralığına sahip AlGaAs gibi bir malzemeyle 

kaplanır. Sonra bu tabakanın üzeride koruyucu bir tabaka (SiO2) ile kaplanır. Yüzey 

üzerinde büyütmenin yapılacağı alan belirlenir ve bu alan üzerinde eritme yapmak 

suretiyle minyatür üçgenler oluşturulur. Bu minyatür üçgen yüzeylere Metal-Organic 

Chemical Vapor Deposition (MOCVD) tekniği uygulanarak sıcaklıkları 700 
0
C-800 

0
C ye kadar çıkarılır. Sıcaklık etkisiyle hacimleri büyüyen üçgen yüzeyler tetrahedral 

piramit haline dönüşür ve büyütme tamamlanmış olur. Bu yöntemle elde edilen 

kuantum nokta yapının boyutları 100 nm den daha küçüktür (Grundmann vd., 1995; 

Raymond vd., 1996). 
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2.4.5. Kuantum kuyusu ve engel arası iç difüzyon yöntemi 

Bu yöntem kuantum kuyusunun belirlenen bir bölgesinin lazer demeti ile ısıtılmasına 

dayanan bir tekniktir. Kalınlığı yaklaşık olarak 3 nm olan GaAs kuantum kuyusu, 

yaklaşık olarak 20 nm kalınlığına sahip iki adet Al0.35Ga0.65As yapılarının arasına 

yerleştirilmesiyle bir kuantum kuyusu oluşturulabilir. Sonra 10 nm kalınlığında 

GaAs tabakası, AlGaAs tabakası üzerine yerleştirilir. Lazer demetinin neden olacağı 

erime veya oksitlenmeleri engellemek amacı için en üst yüzey yaklaşık 100 nm 

kalınlıklı SiN4 tabakası ile kaplanır (Jacak, 1998). 

2.4.6. Yarı iletken mikro kristaller 

Bu yöntemde herhangi bir dielektrik malzeme içerisine (örneğin cam) yarı iletken 

mikro kristaller yerleştirilmesi ile kuantum nokta yapıları elde edilir. Bunun için belli 

oranlarda CuCl, CdSe veya CdS gibi bileşikler silikat cam bileşiklerinin belirli 

oranlarıyla birkaç yüz santigrat derecede ısıya tabi tutulur. Sıcaklığa ve ısıtma 

süresine bağlı olarak istenilen büyüklükte ve boyutta kuantum noktaları elde 

edilebilir. Kristal yarıçapı a, ısıtma süresi t ve sıcaklık T olmak üzere  

𝑎−3 = 𝑡𝑒−
𝜀

𝑘𝑇 

bağıntısıyla üretilen kuantum nokta yapının genişligi kontrol edilebilir. Bu yöntem 

ile 1,2 nm ile 18 nm genişliğinde kuantum nokta yapılar üretilebilir (Ekimov vd., 

1985; Jacak, 1998). 

2.5. Kuantum Genetik Algoritma 

Ortama iyi uyum sağlayabilen bireylerin hayatta kalması, sağlayamayan bireylerin 

elenmesine genetik algoritma denir. Genetik algoritma ilk kez Holland (1975) 

tarafından kullanılmış olup daha ziyade mühendislik ve malzeme biliminde yaygın 

olarak kullanılmaktadır. Son yıllarda fiziğin birçok alanında da genetik algoritma 

yöntemi kullanılmaktadır. Örneğin kuantum mekaniksel sistemleri enerjisinin 

belirlenmesinde kullanılmaktadır. Genetik algoritma kuantumlu yapılarda 

kullanıldığında kuantum genetik algoritma (KGA) adını alır ve bu yöntem 

varyasyonel yöntemde olduğu gibi enerji minimizasyon ilkesine dayanır.  

Kuantum mekaniksel sistemleri temsil eden Schrödinger denkleminin çözümlerini 

bulmak için de kuantum genetik algoritma kullanılmaya başlanmıştır. Sayısal 

(2.13) 
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optimizasyon yöntemi olan KGA geleneksel olarak bilinen varyasyonel yöntemden 

önemli ölçüde farklılık arz eder. Varyasyonel yöntem bazı kurallara bağlı iken KGA 

rastgelelik tekniği üzerine dayanır. Varyasyonel yöntem çözüme tek bir noktadan 

veya analitik olarak ifade edilen bir sonuçtan başlarken KGA tekniği olası çözümleri 

oluşturan noktalar topluluğu (başlangıç popülasyonu) ile işe başlar. Varyasyonel 

yöntemde parametreler sıralı bir biçimde değiştirilirken KGA’da belli bir sıra yoktur. 

Yani parametreler aynı anda değiştirilebilir. 

KGA yöntemi kopyalama (yeniden oluşum), çaprazlama ve mutasyon olmak üzere 

üç temel unsur üzerine kurulmuştur. Burada yeniden oluşum sürecinde bireylerin 

hayatta kalma olasılıkları belirlenir. Hayatta kalma olasılığı en düşük olan bireyler 

elenirken hayatta kalma olasılığı yüksek olan bireyler bir sonraki nesle aktarılır. 

Bireyler çaprazlama sürecinde biyoloji biliminde kullanılan doğal çaprazlama 

işlemine benzer bir sürece tabi tutulur. Çaprazlama işlemi yeniden elde edilen 

bireyler üzerine uygulanır ve rastgele seçilen iki birey üzerinden yürütülür. İki 

bireyin genetik bilgileri (kodları) rastgele bir noktadan kesilerek birinci bireyin 

kesilen noktasından sonra kalan bilgiler ikinci bireyin kestiğimiz noktanın önünde 

kalan bilgiler ile eşleştirilir. Aynı durum ikinci birey için de geçerlidir. Böylece her 

iki birey de birbirlerinin genetik bilgilerini taşımış olurlar. Mutasyon işlemi KGA 

yönteminde yerel minimumlardan kurtulmak için uygulanan bir süreçtir. Nüfus 

içinden rastgele seçilen bir birey üzerinden mutasyon işlemi uygulanır. Mutasyon 

sürecinde gerçekleştirme olasılığı yanlış çözümlere gitmemek için mümkün mertebe 

düşük seçilir. Olasılığın büyük seçilmesi durumunda yakınsama güçleşir ve 

rastgelelik çok artar.  

KGA tekniği uygulanırken iki farklı yöntemden bahsedilebilir. Bunlardan birincisi 

parametre eniyilemesi, ikincisi ise dalga fonksiyonu eniyilemesidir (Çakır, 2007). 𝜓 

(c1,c2,….cn, ζ1, ζ2,…. ζn) kuantum mekanik sistemi temsil eden schrödinger 

denkleminin olası çözümü olsun. Eğer varyasyon yönteminde olduğu gibi parametre 

eniyilemesi yapılıp ci ve ζi değerleri belirlenecekse bu durumda başlangıç nüfusunun 

bireyleri ci ve ζi lerin rastgele belirlenmiş değerlerinden oluşur. Bu değerler dalga 

fonksiyonunun analitik ifadesinde kullanılır ve elde edilen bu analitik ifade 

kullanılarak hesaplamalar yapılır. Eğer dalga fonksiyonu eniyilemesi yapılacaksa ci 

ve ζi lerin rastgele belirlenen değerleri kullanılarak dalga fonksiyonunun sayısal 

değerlerinden oluşan başlangıç nüfusu oluşturulur ve bu dalga fonksiyonlarının her 
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biri bir birey alınır. Hesaplamalar bu sayısal dalga fonksiyonu üzerinden yapılır. 

Böylece analitik ifade de ci ve ζi ler bir kez kullanılmış olur. 

 



 

16 

 

3. TANIMLAMALAR VE YÖNTEM 

3.1. Giriş 

Teknolojideki son gelişmeler sayesinde kuatum kuyular, kuatum teller ve kuantum 

nokta yapıların üretilmesi mümkün hale gelmiştir. Bu yapılar içerisinde özellikle 

kuantum nokta yapılar kesikli enerji seviyeleri ve kabuklu yapıya sahip olmasından 

dolayı atomlara benzer özellikler göstermektedir (Çakır, 2007, 2008). Bundan dolayı 

teknolojide mikroelektronik ve optoelektronik cihazların üretilmesinde potansiyel 

kullanım alanlarına sahiptir (Özmen, 2009). Bu nedenle son yıllarda birçok 

araştırmacı tarafından teorik ve deneysel çalışma konusu olarak tercih edilmektedir.  

Bu bölümde elektronun sonlu ve sonsuz küresel sınırlandırıcı potansiyel kuyusu 

içerisinde bulunduğu merkezinde safsızlık olan bir nokta yapı (hydrogenic impurity) 

göz önüne alınacaktır. Küresel nokta yapının taban ve çeşitli uyarılmış enerji 

seviyelerinin beklenen değeri ve bu seviyelere karşılık gelen en iyi dalga 

fonksiyonları Kuantum Genetik Algoritma prosedürü ve Hartree-Fock Roothaan 

metodu kullanılarak hesaplanacaktır. Hesaplamalarda tek elektron dalga 

fonksiyonları Slater tipi orbitallerin lineer bileşenlerinden oluşturulacaktır.  

3.2. Slater Tipi Orbitaller 

Zener (1930) Lityumdan Neona kadar olan atomlar için hidrojene benzer atomların 

dalga fonksiyonlarına ek parametreler katarak bu atomlar için dalga fonksiyonunu 

tanımladı. Slater (1930), Zener’in dalga fonksiyonlarını daha büyük atomlar için 

genelleştirerek atom ve iyonlar için yaklaşık analitik fonksiyonları bulmada bir 

yöntemi geliştirdi. Slater’ın bu yöntemine yarı deneysel genelleştirme olarak 

bakılabilir. Slater’ın yönteminde atomun herhangi bir elektronunun, yükü 2 − 𝛾 olan 

bir çekirdeğin oluştuduğu merkezcil alanda hareket ettiği kabul edilir. Burada 𝛾 

çekirdeğin yükünün diğer elektronlar tarafından perdelenmesidir. Hidrojene benzer 

atomların dalga fonksiyonlarının radyal kısmı r ye gore 𝑛 − ℓ − 1 sayıda terimi olan 

bir polinomdur. Polinomun en yüksek mertebeli terimi ℓ ye bağlı değildir ve r
n-1

 ile 

orantılıdır. Slater’a gore hidrojene benzer atomların dalga fonksiyonlarının yardımı 

ile atomların özellikleri incelenirken en önemli terim r nin derecesi en büyük olan 

terimdir. Yani r
n-1

 olan terimdir. Buna gore Slater atom orbitalinin (STO) radyal 

kısmı, 
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𝑅𝑛∗(ζ, 𝑟) = 𝐴𝑛∗(ζ)𝑟𝑛∗−1𝑒−ζ𝑟 

şeklinde tanımlamıştır. Burada ζ =
𝑍−𝛾

𝑛∗
 olup perdeleme sabiti, 𝐴𝑛∗(ζ ) 

normalizasyon katsayısı ve n
*
 etkin baş kuantum sayısıdır. n

*
 tam değerler aldığında 

(n
*
=n=1,2,3,….) normalizasyon katsayısı 𝐴𝑛(ζ ) =

(2ζ )
𝑛+1

2

√(2𝑛)!
 olur. Böylece Slater 

yaklaşımına göre n tam değerler aldığından bir elektronlu atom orbitalinin radyal 

kısmı 

𝑅𝑛(ζ𝑟) =
(2ζ)𝑛+

1
2

√(2𝑛)!
𝑟𝑛−1𝑒−ζ𝑟 

şeklinde ifade edilir.  

n ve 𝛾 deneysel özelliklerden yararlanarak bulunur ve Slater’ın kendi adını taşıyan 

bazı kurallara uyar. Bu değerler Slater’ın yarı deneysel kurallarından başka öz 

uyumlu alan (varyasyonel) yöntemiyle de bulunabilir. Küçük atomlarda Slater 

kurallarından bulunan ζ larla, büyük atomlarda ise öz uyumlu alandan bulunan ζ larla 

yapılan hesaplamalar daha iyi sonuç vermiştir. 

𝑌ℓ𝑚(𝜃, ϕ) küresel harmonikler olup 

𝑌ℓ𝑚(𝜃, ϕ) =
1

√2𝜋
𝑃ℓ|𝑚|(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜙 

şeklinde tanımlanır. Burada 𝑃ℓ|𝑚|(𝐶𝑜𝑠𝜃), normalize assosiye Legendre polinomu 

olup 

𝑃ℓ|𝑚|(𝑥) =
1

2ℓℓ!
[

2ℓ+1(ℓ−|𝑚|)!

2(ℓ+|𝑚|)!
]

1

2 (1 − 𝑥2)
|𝑚|

2
𝑑ℓ+|𝑚|

𝑑𝑥ℓ+|𝑚|
(𝑥2 − 1)ℓ 

ile verilir (Messiah, 1961). Burada ℓ yörünge açısal momentum, m ise manyetik 

açısal momentum kuantum sayılarıdır. Kompleks küresel harmonikler Condon-

Shortly (1970) fazında 𝑌ℓ−𝑚(𝜃, 𝜑) = (−1)ℓ𝑌ℓ𝑚
∗(𝜃, ϕ) ile verilir. Kompleks küresel 

harmonikler 

∫ ∫ 𝑌ℓ𝑚
∗ (𝜃, ϕ)𝑌

ℓ
′𝑚′(𝜃, ϕ)𝑑Ω

2𝜋

0

𝜋

0
= 𝛿

ℓℓ
′𝛿𝑚𝑚′ 

ortonormallik şartını sağlar. Burada dΩ = Sinθ dθ d ϕ dır. Böylece normalize Slater 

atom orbitalleri, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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χ
𝑛ℓ𝑚

(ζ , 𝑟𝜃𝜙) =
(2ζ )

𝑛+1
2

√(2𝑛)!
𝑟𝑛−1𝑒−ζ 𝑟𝑌ℓ𝑚(𝜃, ϕ) 

şeklinde verilir. Slater atom orbitallerinin radyal kısmı normalizedir ancak ortogonal 

değildir.  

Slater atom orbitalleri çekirdeğe çok yakın ve uzak bölgelerdeki uygun davranışları 

nedeniyle atom ve benzeri sistemlerin (kuantum nokta yapıların) elektronik 

yapısınının hesaplamalarında ideal temel fonksiyonlar olarak kullanılır. Ancak Slater 

atom orbitalleri kullanılarak yapılan hesaplamalarda karşılaşılan temel güçlük 

Hartree-Fock-Roothaan denklemlerinin çözümünde karşılaşılan çok merkezli 

integrallerin hesaplanmasında ortaya çıkmaktadır ve çok merkezli integrallerinin 

çözümünü zorlaştırmaktadır (Yakar, 2002). 

3.3.Hartree-Fock-Roothaan Yöntemi 

Zamandan bağımsız parçacık modelinde “her elektron bir etkin potansiyelde hareket 

eder ve çok elektronlu sistemdeki her elektron kendi dalga fonksiyonu ile 

tanımlanır’’ ifadelerinden hareketle Hartree, bireysel elektron dalga fonksiyonlarının 

denklemlerini yazdı ve çok elektronlu sistemin dalga fonksiyonunu tek elektron 

dalga fonksiyonlarının (orbitallerin) çarpımı şeklinde ifade etti. 

ψ(𝒓𝟏,𝒓𝟐,, … . , 𝒓𝑵,) = ∏ 𝜙𝑖
𝑁
𝑖=1  

Hartree ayrıca bu denklemlerin çözümü için bir tekrarlama (öz-uyum gerekliliğini 

temel alan) süreci önerdi. Böylece 1929’da D.Hartree tarafından yazılan Hartree 

denklemleri ile çok elektronlu sistemlerin (atom ve molekül) yapılarının incelenmesi 

yapıldı. Ancak bu yöntemi elektronların birer fermiyon olarak antisimetrik kuantum 

durumları(dalga fonksiyonları) ile temsil edilmesi gerektiğini hesaba katmamaktaydı. 

Yani toplam dalga fonksiyonu, elektron koordinatları bakımından antisimetrik 

değildi. 1930’lu yıllarda Fock ve Slater Pauli’nin dışarlama ilkesi ile getirilen bu 

antisimetri özelliğini dikkate alarak Hartree metodunu geliştirdi. Böylece Hartree-

Fock teorisi adı verilen ve günümüzde hala geçerliliğini koruyan bu teorinin 

temelleri atılmış oldu. Hartree- Fock yaklaşımında bağımsız parçacık yaklaşıklığı ve 

Pauli dışarlanma ilkesine uygun olarak N elektronlu bir sistemin dalga fonksiyonu ψ 

Slater determinant ile ifade edilir veya başka ifadeyle tek elektron spin 

yörüngemsilerinin antisimetrik bir çarpımı olduğu varsayılır. En iyi bireysel elektron 

spin yörüngemsileri Slater determinantının en iyi biçimi olan varyasyonel yöntemi 

(3.6) 

(3.7) 
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kullanılarak elde edilir. Bu yüzden Hartree-Fock yöntemi varyasyonel yöntemin özel 

bir halidir. Hartree-Fock teorisi uzaydaki elektron dağılımını ciddi ölçüde iyi bir 

şekilde verdiği için (sonuçlar X-ışını kırınım desenleri ile oldukça uyumlu) hala 

geçerliliğini korumaktadır. Yöntemin en buyuk avantajlarından biri çok elektronlu 

Schrödinger denklemini çok daha basit tek elektronlu denklemlere dönüştürmesidir. 

Ancak bu yöntem elektronlar arası etkileşim konusunda yetersiz kalmaktaydı ve bu 

nedenle hesaplanan toplam enerjiler gerçek enerjiden önemli ölçüde sapmaktadır. 

Enerjideki bu hata değerine korelasyon enerjisi denir.  

1950’li yıllarda HF yöntemi Roothaan tarafından moleküllere genişletildi ve Hartree-

Fock-Roothaan (HFR) yöntemi adını aldı. HFR yönteminde molekülün dalga 

fonksiyonu Slater determinant biçiminde yazılır ve bu determinantın elemanları 

moleküler orbitallerdir (tek elektron dalga fonksiyonları). Moleküler orbitaller ise 

atom orbitallerinin lineer toplamı şeklinde yazılır. 

3.4. Etkin Kütle Yaklaşımı 

Serbest bir parçacığın enerji ile dalga vektörü arasındaki ilişkiyi göz önüne alacak 

olursak momentumu 𝑝⃗ = ℏ𝑘⃗⃗ olan serbest bir elektronun kinetik enerjisi  

𝐸 =
ℏ2𝑘2

2𝑚
 

ile verilir. Kristal yapı içerisinde bir elektron periyodik bir potansiyel altında hareket 

ettiği için artık kristal içindeki elektronun momentumu serbest haldeki elektronun 

momentumundan farklı olur. Kristal yapıda örgü noktalarınınn periyodik potansiyeli 

altında hareket eden bir elektrona dışarıdan bir 𝑭𝒅 kuvveti uygulanırsa elektron 

dinamiğin ikinci yasasına göre 

𝑭𝒅 + 𝑭𝒊 = 𝑚
𝑑𝒗

𝑑𝑡
= 𝑚𝒂 

kuvveti altında ivmelenecektir. Buradaki 𝑭𝒊 kristal yapının elektrona uyguladığı iç 

kuvvettir. Bu iç kuvveti de kapsayacak şekilde yeni bir dış kuvvet tanımlaması 

yapılırsa 

𝑭𝑫 = 𝑚∗𝑎 = 𝑚∗
𝑑𝑣

𝑑𝑡
 

olur. Burada m
*
, elektronun Kristal yapı içindeki kütlesi olup etkin kütle olarak 

bilinir (Harrison, 1999 ve Davies, 1999).  

(3.8) 

(3.9) 

(3.10) 
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Kuantum teorisinin katıhal fiziğine getirdiği ilginç açıklamalardan biri de elektronun 

kristal yapı içerisindeki hareketleri ile ilgilidir. Elektron kristal yapı içerisinde dalga 

paketi gibi grup hızı  

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
 

olacak şekilde hareket eder. Kuantum enerjisi  

𝐸 = ℎ𝜐 = ℏ𝜔 

olduğuna gore grup hızı; 

𝑣𝑔 =
1

ℏ

𝑑𝐸

𝑑𝑘
 

şeklinde elde edilir. 

Denklem 3.8, 3.10 ve 3.13 birleştirilirse kristal yapı içerisindeki elektronun etkin 

kütlesi  

𝑚∗ =
ℏ2

𝑑2𝐸
𝑑𝑘2⁄

 

şeklinde elde edilir. Görüleceği gibi periyodik potansiyel içerisinde hareket eden 

elektronun etki kütlesi enerjisine bağlı olarak değişmektedir. 

 

 

 

 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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4. KUANTUM NOKTA YAPILARIN ELEKTRONİK ÖZELLİKLERİ 

4.1 Giriş 

Etkin kütle yaklaşımında, küresel potansiyel kuyu tarafından sınırlandırılan ve 

merkezinde safsızlık bulunan bir sistemin Hamiltoniyeni 

H= 
−ℏ2

2𝑚∗

 ∇2 −
𝑘𝑍𝑒2

𝜀𝑟 𝑟

 
+ Vc(r) 

ile verilir. Burada m
*
, 𝜀𝑟  ve Z sırasıyla elektronun etkin kütlesi, ortamın dielektrik 

sabiti ve safsızlığın yükünü göstermektedir. Denklem 4.1 atomik birimlerde (e= ℏ =

𝑚0 =𝑎0 = 1) ifade edilecek olursa 

H=−
𝛻2

2𝑚∗

 −
𝑍

𝜀𝑟 𝑟

 
+ Vc(r) 

şeklinde yazılabilir. Denklem 4.2 de verilen Hamiltoniyende eşitliğin sağindaki ilk 

terim kinetik enerji operatörü ve ikinci terim de potansiyel enerji operatörüdür. Vc(r) 

terimi ise sınırlandırıcı potansiyel (confining potential) olarak bilinir. Sınırlandırıcı 

potansiyelin formu sonsuz sınırlandırıcı potansiyel engeli durumda 

Vc(r)={
0   𝑟 < 𝑅
∞   𝑟 ≥ 𝑅

 

ile tanımlanırken, sonlu sınırlandırıcı potansiyel engeli durumunda 

Vc(r)={
0   𝑟 < 𝑅
𝑉0  𝑟 ≥ 𝑅

 

şeklinde alınır. Burada V0 sınırlandırıcı potansiyel yüksekliğini (bariyer yüksekliği) 

ve R de kuantum noktanın yarıçapını göstermektedir. Sonlu sınırlandırıcı potansiyel 

durumunda Denklem 4.1 ve 4.2’de verilen etkin kütle m
*
  ve dielektrik sabiti 𝜀𝑟 kuyu 

içinde ve kuyu dışında. 














dot

dot

Rr
m

m

Rr

rm
,

,1

)(

1

2  













dot

dot

r Rr

Rr

r
,

,1

)(

1

2



  

şeklinde tanımlanır (Çakır, 2007). Burada GaAs ve AlGaAs nin içerisinde 

elektronların etkin kütleleri sırasıyla m1 ve m2, dielektrik sabitlerini de 1 ve 2 olarak 

alındı. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
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4.2 Dalga Fonksiyonu ve Sınır Şartları 

Tek elektron spin orbitalleri 𝜓𝑛ℓ𝑠𝑚𝑚𝑠
(𝒒) elektronun uzaysal  𝜓𝑛ℓ𝑚(𝒓) ve spin 𝜎𝐦𝑠

(𝑠) 

fonksiyonlarının çarpımı şeklinde iafede edilir, yani 𝜓𝑛ℓ𝑠𝑚𝑚𝑠
(𝒒) = 𝜓𝑛ℓ𝑚(𝒓)𝜎𝐦𝑠

(𝑠). 

Eğer Hamiltoniyen spin operatörü içermiyorsa enerji dalga fonksiyonları spin 

kısmından bağımsız olur ve etkilenmez. Böylece tek elektron dalga fonksiyonunun 

uzaysal kısmı baz fonksiyonlarının (Slater tipi orbital  ) lineer toplamından ibaret 

olacak şekilde aşağıdaki gibi yazılabilir 

𝜓 p=∑ 𝑐𝑝𝑘
𝜎
𝑘=1 𝜒𝑘(ζ

𝑘
, 𝑟) 

Burada k → nk, ℓk, mk baz setlerinin kuantum sayıları, 𝜎 baz seti sayısı, cpk açılım 

katsayısı, ζ
𝑘
 perdeleme sabitidir. 𝜓 dalga fonksiyonu aşağıda verildiği gibi 

∫ |𝜓𝑟<𝑅|2 
𝑟<𝑅

𝑑𝑉 + ∫ |𝜓𝑟≥𝑅|2 
𝑟≥𝑅

𝑑𝑉 = 1 

normalizasyon şartını sağlar. 𝜓𝑟<𝑅 kuyu içerisindeki dalga fonksiyonunu, 𝜓𝑟≥𝑅  de 

kuyu dışındaki dalga fonksiyonunu göstermektedir. Dalga fonksiyonunun kendisi ve 

birinci türevi sınırlarda süreklilik şartını sağlaması gerekir ve 

𝜓𝑟<𝑅|𝑟=𝑅=𝜓𝑟≥𝑅|𝑟=𝑅 

𝑑

𝑚1
∗ 𝑑𝑟

𝜓𝑟<𝑅|𝑟=𝑅=
𝑑

𝑚2
∗ 𝑑𝑟

 𝜓𝑟≥𝑅|𝑟=𝑅 

4.3 Kuantum Nokta Yapıların Schrödinger Denklemi ve Çözümü 

Rölativistik olmayan bir sistemin Schrödinger denklemi 

𝐻𝜓(𝒓) = 𝐸𝜓(𝒓) 

ile verilir. Burada E Hamiltoniyen operatörünün özdeğer enerjisi ve 𝜓(𝒓) de bu 

operatörün öz fonksiyonunu gösterir. 𝜓(𝒓) fonksiyonu eğer normalize dalga 

fonksiyonu şeklinde alınırsa bu durumda sistemin enerjisinin beklenen değeri  

𝐸 = ⟨𝜓|𝐻|𝜓⟩  

şeklinde ifade edilir. Denklem 4.2 de verilen Hamiltoniyen burada yerine konulursa 

enerjinin beklenen değeri atomik birimlerde 

E=⟨𝜓|−
∇2

2𝑚∗
|𝜓⟩-⟨𝜓|

𝑍

𝜀𝑟 𝑟
|𝜓⟩ + ⟨𝜓|𝑉𝑐 (𝑟)|𝜓⟩ 

elde edilir. 

(4.7) 

(4.8) 

(4.9a) 

(4.9b) 

(4.10) 

(4.11) 

(4.12) 
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Denklem 4.7 kullanılarak Denklem 4.12’nin sağ tarafında verilen enerjilerin 

beklenen değerleri STO lar üzerinden aşağıdaki gibi ifade edilebilir: 

Kinetik enerji; 

Tp= ⟨𝜓|−
∇2

2𝑚∗ |𝜓⟩ =  ∑ ∑ 𝑐𝑝𝑘𝑐
𝑝𝑘′
∗

𝑘′𝑘  ∫ 𝜒𝑘
∗ −𝛻2

2𝑚∗ 𝜒𝑘′𝑑𝑉 

Potansiyel enerji; 

Vp= ⟨𝜓|−
𝑍

𝜀𝑟 𝑟
|𝜓⟩ = ∑ ∑ 𝑐𝑝𝑘𝑐

𝑝𝑘′
∗

𝑘′𝑘 ∫ 𝜒𝑘
∗ −𝑍

𝜀𝑟 𝑟
 𝜒𝑘′𝑑𝑉 

ve sınırlandırıcı potansiyel enerji de; 

Vc(r)= ⟨𝜓|𝑉𝑐 (𝑟)|𝜓⟩ = ∑ ∑ 𝑐𝑝𝑘𝑐
𝑝𝑘′
∗

𝑘′𝑘 ∫ 𝜒𝑘
∗ 𝑉𝑐(𝑟) 𝜒𝑘′𝑑𝑉   

ile verilir. Burada p tek elektron dalga fonksiyonlarının kuantum sayılarını gösterir.  

Kuantum nokta yapıların sonlu sınırlandırıcı potansiyel engeline sahip olması 

durumunda Denklem 4.13, 4.14 ve 4.15 ile verilen enerjiler 

𝑇𝑝 = 𝑇𝑝
𝑟<𝑅 + 𝑇𝑝

𝑟≥𝑅 

𝑉𝑝 = 𝑉𝑝
𝑟<𝑅 + 𝑉𝑝

𝑟≥𝑅 

Vc(r) = 𝑉0 ∫ |𝜓𝑝(𝑟)|
2∞

𝑅
𝑑𝑉 

şeklinde ifade edilir. Yani elektronun kinetik enerjisi kuyu içerisinde ve kuyu 

dışarısındaki enerjilerinin toplamı şeklinde olacaktır. Benzer durum diğer enerjiler 

içinde geçerlidir. Kuantum nokta yapılar için bu enerji integrallerinin analitik 

ifadeleri Yakar vd., (2006, 2007) tarafından atomlar için verilen ifadelerin modifiye 

edilmesi ile elde edilebilir. Denklem 4.13, 4.14 ve 4.15’in Slater orbitalleri üzerinden 

analitik olarak elde edilmiş hali Ek A’da verilmiştir. 

 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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5. DIŞ MANYETIK ALAN İÇERISINDEKI KUANTUM NOKTA YAPILAR 

Düzgün bir dış manyetik alan içerisine konulmuş merkezinde safsızlık olan R 

yarıçaplı küresel kuantum nokta yapı göz önüne alınsın. Spinsiz bir parçaçık aynı 

anda hem skaler merkezcil bir potansiyel hem de manyetik alan kaynaklı bir vektör 

potansiyelinin etkisi altında kaldığında böyle bir sistemin Hamiltoniyeni aşağıdaki 

gibi yazılabilir (Xiao vd., 1996; An ve Liu 2006; Çakır vd., 2016).  

  )(
2

1 2
2

rAp C

0

V
r4

Ze
e

m
H 

 
 

Burada p parçacığın lineer (çizgisel) momentumu ve A da vektör potansiyelini 

göstermektedir. Burada dış manyetik alan 𝑩, vektör potansiyeline bağlı olarak 

𝑩 = 𝛁 × 𝑨 şeklinde tanımlanır. Düzgün bir manyetik alanda 𝛁. 𝑨 = 𝟎 alınırsa vektör 

potansiyeli 𝑨(𝒓) =
1

2
𝐁 × 𝒓 olarak ifade edilebilir. Dış manyetik alan içerisindeki 

kuantum nokta yapının küresel koordinatlarda Hamiltoniyeni atomik birimlerde 

aşağıdaki gibi ifade edilebilir: 

𝐻 = −
1

2𝑚∗ ∇2 −
𝑍

𝜀𝑟𝑟
−

1

2
𝐿𝑟𝐵𝑟 +

1

8
𝐵𝑟

2𝑟2 sin2 𝜃 + 𝑉𝐶 

Denklem 5.2 ile verilen Hamiltoniyenin elde edilişi Ek B’de verilmiştir. Eğer dış 

manyetik alan z- yönünde seçilirse (B=B𝑘̂), denklem 5.2 de verilen Hamiltoniyen 

aşağıdaki gibi yazılabilir. 

𝐻 = −
∇2

2𝑚∗ −
𝑍

𝜀𝑟𝑟
+

1

2
𝛾𝐿𝑍 +

1

8
𝛾2𝑟2𝑠𝑖𝑛2𝜃 + 𝑉𝐶(𝑟) 

Burada birinci terim elektronun kinetik enerjisini, ikinci terim elektronla safsızlık 

arasındaki Coulomb potansiyel enerjiyi, üçüncü ve dördüncü terimlerde manyetik 

alandan kaynaklanan paramanyetik Zeeman (lineer Zeeman terim) ve diamanyetik 

Zeeman (kuadratik terim) terimlerini göstermektedir. Burada, Lz elektronun açısal 

momentum operatörünün z-bileşenini göstermektedir. Denklem 5.3 deki  𝛾 terimi 

𝛾 = 𝑎0
2 𝑒

ℏ
𝐵 şeklinde ifade edilir ve manyetik alanın boyutsuz bir ölçüsünü tanımlar. 𝛾 

terimi etkin kütle ve dielektrik sabitine bağlı olduğundan dolayı, manyetik alanın 

verilen bir değerinde, 𝛾 terimi yarıiletkenden yarıiletkene değişebilmektedir. 

Denklem 5.3 de eşitliğin sağındaki üçüncü terim (γLZ) manyetik alan içerisinde 

yörünge açısal momentum vektörünün presesyon hareketinden ileri gelir ve bu 

durum Zeeman etkisi olarak da bilinir. Bu etki dış manyetik alanla elektronun 

(5.1) 

(5.2) 

(5.3) 
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yörünge manyetik dipol arasındaki etkileşim enerjisini tanımlar. Dış manyetik alan 

kuantum nokta yapıların enerji seviyeleri üzerindeki m dejenereliğini kaldırır. Enerji 

seviyelerindeki yarılma yörünge açısal momentum kuantum sayısı olarak bilinen ℓ ile 

ilişkilidir ve manyetik alanın varlığında yarılan seviyelerin sayısı 2ℓ+1 kadardır. 

Yani her seviye 2ℓ+1 kez yarılır. s seviyesinde ℓ=0 (manyetik kuantum sayısı m=0) 

olduğundan manyetik alan içerisinde yarılmaz. 2p seviyesinde ℓ=1 olduğu için 

manyetik alan içerisinde 3 seviyeye yarılır. Benzer şekilde 3d enerji seviyesinde ℓ=2 

olacağından manyetik alan içerisinde 5 e yarılır. Lineer Zereman etkisi olarak bilinen 

paramanyetik terim γ ile orantılı iken quadratik Zeeman etkisi olarak bilinen 

diamanyetik terimde γ
2
 ile orantılıdır. Paramanyetik terim enerji seviyelerinde 

yarılmalara neden olurken diamanyetik terim ise bu seviyelerin kaymasına neden 

olmaktadır. 

Diamaynetik terim perturbasyon terimi olarak göz önüne alınırsa Denklem 5.3 ile 

verilen Hamiltoniyen  

HHH  0  

şeklinde yazılabilir. Burada  

𝐻0 = −
∇2

2𝑚∗ −
𝑍

𝜀𝑟𝑟
+

1

2
𝛾𝐿𝑍 + 𝑉𝐶(𝑟) 

ile verilir ve pertürbe olmamış Hamiltoniyeni gösterir. Diğer taraftan kuadratik terim 

pertürbasyon Hamiltoniyeni olarak gözönüne alınır ve  

θrH 222 sin
8

1
  

ile verilir. Burada düşük manyetik alan şiddetlerinde H
0
 , 𝐻′

 ile karşılaştırıldığında 

çok küçüktür (H
'
<<H

0
). 

Pertürbe olmamış Hamiltoniyen için Schrödinger denklemi aşağıdaki gibi yazılır  

𝐻0𝜓𝑛ℓ𝑚
(0) (𝒓) = 𝐸0𝜓𝑛ℓ𝑚

(0) (𝒓), 

burada H
0
 pertürbe olmamış Hamiltoniyeni, E

0 
pertürbe olmamış Hamiltoniyenin 

özdeğer enerjisini, 𝜓𝑛ℓ𝑚
(0)

 da bu Hamiltoniyenin özfonksiyonunu göstermektedir ve 

nℓm de atomik orbitallerin kuantum sayılarını gösterir.  

Yukarıda verilen Denklem 4.7, 4.11 ve 5.5 kullanılarak biraz sıkıcı bir işlemden 

sonra küresel nokta yapının pertürbe olmamış enerjisi aşağıdaki gibi elde edilebilir: 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
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𝐸0 = ⟨𝜓𝑝
(0)

|−
∇2

2𝑚∗
−

𝑍

𝜀𝑟𝑟
+

1

2
𝛾𝐿𝑧|𝜓𝑝

(0)
⟩ 

= ∑ ∑ 𝑐𝑝𝑛ℓ𝑚
∗ 𝑐𝑝𝑛′ℓ′𝑚′

𝜎
𝑛′ℓ′𝑚′=1

𝜎
𝑛ℓ𝑚=1 {

ℓ′(ℓ′+1)−𝑛′(𝑛′−1)

2
𝐽𝑛+𝑛′−2(ζ + ζ

′) +

[𝑛′ζ
′ − 𝑍]𝐽𝑛+𝑛′−1(ζ + ζ

′) −
1

2
[ζ

′2
+ 𝛾𝑚] 𝐽𝑛+𝑛′(ζ + ζ

′)} 𝛿ℓℓ′𝛿𝑚𝑚′ 

 (5.8)  

burada   drerJ r
R

N
N




0

 şeklinde verilir ve incomplate gamma integralidir. 

Denklem 4.7, 4.11 ve 5.6 kullanılarak diamanyetik terimin perturbasyon enerjisi 

𝐸′ = ⟨𝜓𝑝
(0)

|
1

8
𝛾2𝑟2𝑠𝑖𝑛2𝜃|𝜓𝑝

(0)
⟩ 

  mmll2nn
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2 max
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45

16

8
mmLnn

L

LL

JmmLmllm 


 

şeklinde elde edilebilir. Burada 𝐿𝑚𝑖𝑛 = 𝑚𝑎𝑥{|ℓ − ℓ′|, |𝑚 − 𝑚′|} , 𝐿𝑚𝑎𝑥 = ℓ + ℓ′ ve 

〈ℓ𝑚|ℓ′𝑚′|𝐿𝑀〉 de Gaunt katsayısı olarak bilinir ve ML  , mmM  . Binom 

katsayıları cinsinden Gaunt katsayılarının analitik ifadesi Yakar vd., (2007) 

tarafından tanımlanmış ve bazı nümerik değerleri Ek C’de verilmiştir. 

 

(5.9) 

(5.8) 
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6. HESAPLAMA METODU 

Genel bir araştırma ve optimizasyon yöntemi olan genetik algoritma (GA), yeniden 

oluşum (veya kopyalama), çaprazlama ve mutasyon olmak üzere üç temel ilke 

üzerine kurulmuştur (Coley, 2001 ve Goldberg, 1999). Bu metot problemin olası 

çözümlerini oluşturan başlangıç popülasyonu ile işe başlar. Başlangıç nüfusu r=R de 

sınır şartlarını sağlayacak şekilde Denklem 4.10 un olası çözümleri olan ve rastgele 

belirlenen Denklem 4.7 deki ci ve ζi değerlerinden oluşturulduktan sonra her bir birey 

normalize edilir. Aynı tip atomik orbitallerin dikleştirilmesinde Gram-Schmidt 

yöntemi kullanılmıştır (Arfken, 1985). Çeşitliliği arttırmak için başlangıç nüfus 

sayısı 100 seçildi. Normalize edilen bu başlangıç bireyleri kullanılarak her bir birey 

için enerjinin beklenen değeri Denklem 4.12 den hesaplandı (Yakar, 2006). Enerjinin 

beklenen değeri bir nesil için hesaplanırken hızı arttırmak amacıyla 

𝑆𝑛𝑖ℓ𝑖𝑚𝑖,𝑛𝑗ℓ𝑗𝑚𝑗
(ζi, ζj)  değerleri bir kere hesaplanıp bir diziye yerleştirildi. Bu da 

hesaplamada artı bir hız kazandırdı. Buna ilaveten her nesilde enerjisi en düşük dört 

birey bir sonraki nesle aktarıldı ve böylece çalkantılar engellendi. Genetik algoritma 

yöntemi çok küçük kuantumlu sistemlere uygulanmasıyla kuantum genetik algoritma 

(KGA) olarak adlandırılmaktadır. KGA yöntemi tamamen rastgeleliğe dayanan 

problemlerin olası çözümlerini oluşturan başlangıç nüfusu ile başlar. Bu çalışmada 

uygulanan KGA yöntemi aşağıdaki gibi özetlenebilir (Çakır, 2007). 

1) Yeniden Oluşum (Üretme) 

Yeniden üretim (veya kopyalama) sürecinde yeni nesil oluşturmak için her bir 

bireyin uygunluk değerlerine bakılır ve uygunluk değeri büyük olan bireyler yeni 

nesle aktarılırken uygunluk değeri küçük olan bireyler ise elenir. Herhangi bir i. 

bireyin enerji beklenen değeri Ei aşağıdaki eşitlikle uygun (fitness) bir Fi değerine 

dönüştürülür.  

𝑭𝑖 = 𝑒−𝛽(𝐸𝑖−𝐸̅) (𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛)⁄  

Burada max, EE  and minE  sırasıyla ortalama, maksimum and minimum enerjileri 

gösterir ve   ayar parametresidir. Yeniden oluşumda Npop bireyleri bir önceki 

nesilden seçilir. Pi olasılığına sahip her bir birey uygun(fitness) 𝐹i ile orantılıdır. 

Örneğin  

(6.1) 
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Bu işlemde bazı bireylerin gelme olasılığı birden fazla olurken bazı bireylerin 

gelmeme olasılığı vardır. 

2) Çaprazlama (Crossover) işlemi 

Çaprazlama işlemi yeniden oluşturma işlemi yapıldıktan sonra yeni kuşaktan rast 

gele seçilen iki birey arasında gerçekleştirilir. Oluşturulan popülasyon içinden 

rasgele iki birey seçilir. Seçilen bireylerden birisi 0-1 aralığında rast gele bir s 

sayısıyla çarpılırken diğer birey ise (1-s) ile çarpılır ve yeni nesil bireyler  

21111 )1(  ss  

11212 )1(  ss  

22121 )1( cscsc   

12222 )1( cscsc   

işlemiyle yeni bireyler oluşturuludu. Burada s ler 0 ile 1 arasında rastgele belirlenmiş 

sayılardır. Hesaplamalarda çaprazlama olasılığını 0.95 olarak alındı. 

3)Mutasyon  

Mutasyon işlemi yerel minimunlardan kurtulmak için önemli bir rol oynar. Mutasyon 

olasılığını yüksek seçmek dalga fonksiyonunda istenmeyen kırıklıklara, ya da yanlış 

çözümlere neden olabilir. Bu yüzden mutasyon olasılığı iyi yakınsamanın gözlene 

bilmesi için çok küçük seçilmelidir. Mutasyon işlemi rast gele seçilen bir birey 

üzerinden aşağıdaki gibi bir işlemle yürütülebilir. 

11  A  

11 )1( cBc M   

Burada A ve B, (0-1) arasında rasgele belirlenen mutasyon şiddetidir. M ise rastgele 

belirlenen doğal bir sayıdır. Hesaplamalarda mutaysan olasılığı 0.05 alındı. Bireyleri 

seçme işleminde rulet çarkı modelini uygulanır. 

Genetik süreçteki her bir adımda yeniden oluşturma, çaprazlama ve mutasyon 

işlemleri rast geleliğe dayanır ve genetik süreç sonunda oluşturulan yeni 

(6.2) 

(6.3a) 

(6.3b) 

(6.3c) 

(6.3d) 

(6.4a) 

(6.4b) 
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popülasyonun her bir bireyi normalize edilir. Bu işlemler en iyi yakınsama elde 

edilene kadar yürütülür. 
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7. BULGULAR VE TARTIŞMA 

Bu çalışmada dış manyetik alanın varlığında ve yokluğunda sonsuz küresel 

potansiyel kuyu ile sınırlandırılmış merkezinde hidrojen benzeri safsızlık olan GaAs 

yapısının taban ve bazı uyarılmış seviyelerinin enerjileri nokta yarıçapına ve 

manyetik alan şiddetine bağlı olarak hesaplandı. Manyetik alan varlığında enerji 

seviyelerindeki Zeeman yarılmalarını nokta yarıçapının ve manyetik alan şiddetinin 

fonksiyonu olarak sayısal değerleri elde edildi ve grafikleri çizildi. Kuadratik terim 

olarak adlandırılan diamanyetik terim pertürbasyon yaklaşımı ile hesaplanarak 

Zeeman enerji seviyelerindeki kayma ve bu seviyeler arasındaki Zeeman geçişleri 

hesaplandı ve grafikleri oluşturuldu. Benzer şekilde yine dış manyetik alan 

yokluğunda ve varlığında sonlu küresel potansiyel ile sınırlandırılmış merkezinde 

hidrojen benzeri safsızlık olan GaAs/AlxGa1-xAs küresel nokta yapının taban ve bazı 

uyarılmış enerji seviyeleri yine nokta yarıçapına ve manyetik alan şiddetine bağlı 

olarak hesaplandı. Aynı zamanda alüminyum katkılanma oranına (x) bağlı olarak 

enerji değişimleri incelendi. Malzeme parametreleri olarak kuyu içinde GaAs ın kuyu 

dışında ise AlGaAs ın parametreleri kullanılmış olup sınırdaki değişimler ihmal 

edilmiştir. Hesaplamalar boyunca atomik birimler kullanılmıştır ve etkin Bohr 

yarıçapı 𝑎∗ = 101.6 𝐴0, etkin Rydberg enerjisi 𝑅𝑦
∗ = 5.72 meV ve sınırlandırma 

potansiyelin değeri )37.0155.1(6.0 2

0 xxV   eV olarak alınmıştır. Meteryal 

parametreleri için 00665.0 mmGaAs  , 18.13GaAs  ve xmAlGaAs 0835.00665.0  , 

x3-AlGaAs 12.18.13  olarak alındı (Adachi 1994). Burada m0 serbest elektron 

kütlesi ve x alüminyumun katkılanma oranıdır. 

Hesaplamalarda kuantum nokta yapıların kuantum mekaniksel analizleri için 

safsızlık yakınlarında gerçek dalga fonksiyonu özelliği gösteren Slater Tipi Orbitaller 

(STOs) kullanılmıştır. Hesaplamalarda atomik orbitaller farklı s,p,d ve f tipi STO 

lardan oluşturulmuştur. Örnek olarak sonsuz kuyu durumunda atomik orbitaller 5 

tane STO ların toplamından oluşturulurken sonlu kuyu durumunda 7 tane 

STO’lardan oluşturulmuştur. Ek Ç’de verilen tablodaki değerler kullanılarak 1s 

seviyesinin atomik orbitali 5 tane STO lardan oluşturulmuş olup Slater atom 

orbitalleri ve cpk açılım katsayıları aşağıdaki gibi tanımlanmıştır. 

𝜒1 = 𝜒100(5.720926753898663, 𝑟𝜃𝜙) , 𝜒2 = 𝜒100(1.748386928072556, 𝑟𝜃𝜙), 
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𝜒3 = 𝜒100(11.599766282174546, 𝑟𝜃𝜙) , 𝜒4 = 𝜒100(0.312476500643129, 𝑟𝜃𝜙) 

𝜒5 = 𝜒100(3.536330391874470, 𝑟𝜃𝜙)  

ve 

𝑐1𝑠1 = −0.360751857711𝐸+01 , 𝑐1𝑠2 = −0.209122299345𝐸+02 

𝑐1𝑠3 = −0.703790499830𝐸-01 , 𝑐1𝑠4 = 0.443758622181𝐸+01 

𝑐1𝑠5 = 0.139081389988𝐸+02. 

Burada E+x in anlamı 10
x
 değerine karşılık gelmektedir. Bu değerler denklem 4.7’te 

yerine yazılırsa1s atomik orbitali  

𝜓1𝑠 = 𝑐1𝑠1𝜒1 + 𝑐1𝑠2𝜒2 + 𝑐1𝑠3𝜒3 + 𝑐1𝑠4𝜒4 + 𝑐1𝑠5𝜒5  

şeklinde yazılır. Aynı şekilde 2p seviyesinin atomik orbitali 5 tane STO lardan 

oluşturulmuş olup Slater tipi orbitaller ve cpk açılım katsayıları aşağıdaki gibi 

alınmıştır.  

𝜒1 = 𝜒210(57.442551599026132, 𝑟𝜃𝜙) , 𝜒2 = 𝜒210(1.895032636433436, 𝑟𝜃𝜙), 

𝜒3 = 𝜒210(50.874780064698356, 𝑟𝜃𝜙) , 𝜒4 = 𝜒210(3.350529289229958, 𝑟𝜃𝜙) 

𝜒5 = 𝜒210(1.596182309756163, 𝑟𝜃𝜙)  

ve 

𝑐2𝑝1 = −0.430456888472𝐸-02 , 𝑐2𝑝2 = 0.230781396153𝐸+03 

𝑐2𝑝3 = −0.262267896295𝐸-02 , 𝑐2𝑝4 = −0.612700314386𝐸+02 

𝑐2𝑝5 = −0.160562780530𝐸+03. 

Bu değerler denklem 4.7’de yerine yazılırsa 2p atomik orbitalinin dalga foksiyonu 

𝜓2𝑝 = 𝑐2𝑝1𝜒1 + 𝑐2𝑝2𝜒2 + 𝑐2𝑝3𝜒3 + 𝑐2𝑝4𝜒4 + 𝑐2𝑝5𝜒5  

şeklinde yazılır. Aynı şekilde 3d seviyesinin atomik orbitali 5 tane STO lardan 

oluşturulmuş olup Slater tipi orbitaller ve cpk açılım katsayıları aşağıdaki gibi 

yazılabilir.  

𝜒1 = 𝜒320(4.149051854990039, 𝑟𝜃𝜙) , 𝜒2 = 𝜒320(2.930026942315004, 𝑟𝜃𝜙), 
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𝜒3 = 𝜒320(5.219132793926557, 𝑟𝜃𝜙) , 𝜒4 = 𝜒320(2.810650202256157, 𝑟𝜃𝜙) 

𝜒5 = 𝜒320(3.067515177508485, 𝑟𝜃𝜙)  

ve 

𝑐3𝑑1 = 0.778166220382𝐸+03 , 𝑐3𝑑2 = 0.461369619400𝐸+03 

𝑐3𝑑3 = −0.143234545482𝐸+03 , 𝑐3𝑑4 = 0.108977902938𝐸+04 

𝑐3𝑑5 = −0.218551167394𝐸+04. 

Benzer şekilde bu değerler denklem 4.7’de yerine yazılırsa 3d atomik orbitalinin 

dalga foksiyonu 

𝜓3𝑑 = 𝑐3𝑑1𝜒1 + 𝑐3𝑑2𝜒2 + 𝑐3𝑑3𝜒3 + 𝑐3𝑑4𝜒4 + 𝑐3𝑑5𝜒5  

şeklinde yazılır. Aynı şekilde 4f seviyesinin atomik orbitali 5 tane STO lardan 

oluşturulmuş olup Slater tipi orbitaller ve cpk açılım katsayıları aşağıdaki gibi 

alınmıştır.  

𝜒1 = 𝜒430(3.746058002408961, 𝑟𝜃𝜙) , 𝜒2 = 𝜒430(7.542338863192025, 𝑟𝜃𝜙), 

𝜒3 = 𝜒430(1.986273133100385, 𝑟𝜃𝜙) , 𝜒4 = 𝜒430(5.589746458014304, 𝑟𝜃𝜙) 

𝜒5 = 𝜒430(1.693049177654420, 𝑟𝜃𝜙)  

ve 

𝑐4𝑓1 = −0.150709040059𝐸+04 , 𝑐4𝑓2 = −0.117382746697𝐸+04 

𝑐4𝑓3 = 0.879467182221𝐸+03 , 𝑐4𝑓4 = 0.215226023656𝐸+04 

𝑐4𝑓5 = −0.502849889593𝐸+03. 

Yine bu değerler denklem 4.7’de yerine yazılırsa 4f atomik orbitalinin dalga 

foksiyonu 

𝜓4𝑓 = 𝑐4𝑓1𝜒1 + 𝑐4𝑓2𝜒2 + 𝑐4𝑓3𝜒3 + 𝑐4𝑓4𝜒4 + 𝑐4𝑓5𝜒5  

şeklinde yazılır. 

Bu çalışmamızda sonlu kuyu durumunda da baz fonksiyonu sayısı kuyu içinde ve 

kuyu dışında yedi (7) tane STO dan oluşturuldu. Alüminyum konsantrasyon oranları 

x=0.1, 0.2, 0.3 ve 0.4 alındı. Böylece sınırlandırma potansiyeli x değerine bağlı 
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olarak değiştirilmiş oldu. Hesaplamalarda nokta yarıçapı R ise her orbital için 0.3a
* 

dan 20a
* 

ya 
 
kadar değiştirildi. 

Dış manyetik alan olmadan sonsuz sınırlandırıcı potansiyele sahip kuantum nokta 

yapının taban ve çeşitli uyarılmış durumlarına ait hesaplanan ve çizilen enerji 

seviyelerinin grafikleri şekil 7.1’de ve çizelge 7.1’de, sonlu kuyu için hesaplanan ve 

çizilen grafikler x=0.1 için çizelge 7.2 ve şekil 7.2a’de, x=0.2 için çizelge 7.3 ve şekil 

7.2b’de, x=0.3 için çizelge 7.4 ve şekil 7.2c’de ve x=0.4 için çizelge 7.5 ve şekil 

7.2d’de verilmiştir. 

Nokta yarıçapı R (a*)
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Şekil 7.1. Nokta yarıçapının fonksiyonu olarak sonsuz sınırlandırıcı potansiyele 

sahip küresel kuantum nokta yapının enerji seviyeleri. 
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Çizelge 7.1. Sonsuz küresel sınırlandırıcı potansiyele sahip kuantum nokta yapının 

taban ve çeşitli uyarılmış durumlarına ait enerji değerleri. Tüm enerji 

değerleri atomik birimde (Hartree) verilmiştir. 

 

R(a
*
) E1s(Z=1) E2p(Z=1) E3d(Z=1) E4f(Z=1) 

0.3 46.602098 106.010484 179.114625 266.232453 

0.4 24.638206 58.466741 99.723112 148.902201 

0.5 14.749544 36.669499 63.193391 94.696023 

0.6 9.528673 24.963545 43.428422 65.334099 

0.7 6.470572 17.943110 31.569574 47.694588 

0.8 4.543879 13.443438 23.913489 36.273647 

0.9 3.262486 10.388500 18.690789 28.476398 

1.0 2.374206 8.225787 14.977351 22.910487 

1.2 1.269359 5.448360 10.170373 15.698026 

1.4 0.647140 3.807855 7.301842 11.376852 

1.6 0.271321 2.767435 5.467442 8.593167 

1.8 0.032560 2.067286 4.213560 6.701441 

2.0 -0.125000 1.576504 3.330988 5.392737 

2.2 -0.232033 1.221930 2.682628 4.359033 

2.4 -0.306396 0.958996 2.195714 3.609342 

2.6 -0.358976 0.758578 1.822391 3.029937 

2.8 -0.396664 0.603547 1.528050 2.592835 

3.0 -0.423965 0.481437 1.293264 2.207429 

3.2 -0.443897 0.383893 1.104660 1.908493 

3.4 -0.458543 0.304982 0.950441 1.664969 

3.6 -0.469347 0.240697 0.820576 1.461416 

3.8 -0.477336 0.187599 0.712996 1.290171 

4.0 -0.483256 0.143541 0.621755 1.145512 

5.0 -0.496411 7.595943e-3 0.329419 0.670482 

6.0 -0.499270 -0.055555 0.180419 0.422215 

7.0 -0.499861 -0.087479 0.096691 0.279926 

8.0 -0.499973 -0.104449 0.046098 0.189355 

9.0 -0.499995 -0.113726 0.014162 0.128903 

10 -0.499999 -0.118857 -7.035584e-3 0.088941 

12 -0.500000 -0.123252 -0.031250 0.038746 

15 -0.500000 -0.124755 -0.046641 2.798144e-3 

20 -0.500000 -0.124994 -0.053967 -0.020000 
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Çizelge 7.2. Sonlu (x=0.1) küresel sınırlandırıcı potansiyele sahip kuantum nokta 

yapının taban ve çeşitli uyarılmış durumlarına ait enerji değerleri. Tüm 

enerji değerleri atomik biriminde (Hartree) verilmiştir. 

 

R(a
*
) E1s(Z=1) E2p(Z=1) E3d(Z=1) E4f(Z=1) 

0.2 5.570500 6.105250 6.186637 6.215123 

0.3 5.246700 6.105136 6.186637 6.215123 

0.4 4.516400 6.104559 6.186637 6.215123 

0.5 3.608800 6.102448 6.186637 6.215123 

0.6 2.779600 6.093476 6.186634 6.215123 

0.7 2.117500 6.004034 6.186627 6.215123 

0.8 1.612100 5.495782 6.186604 6.215123 

0.9 1.194200 4.797864 6.186536 6.215123 

1.0 0.898600 4.135761 6.186268 6.215123 

1.2 0.470500 3.076765 5.659785 6.215123 

1.4 0.213600 2.343175 4.505158 6.215123 

1.6 -0.026400 1.796394 3.599599 5.610432 

1.8 -0.186700 1.356803 2.891307 4.595588 

2.0 -0.206400 1.126884 2.383850 3.900069 

2.2 -0.251000 0.917920 1.976696 3.294927 

2.4 -0.295400 0.773277 1.649954 2.833596 

2.6 -0.341800 0.604144 1.390388 2.452544 

2.8 -0.370400 0.515350 1.193745 2.153527 

3.0 -0.415100 0.420300 1.015010 1.914680 

3.2 -0.428900 0.366383 0.883486 1.768523 

3.4 -0.437600 0.293973 0.766908 1.618538 

3.6 -0.457600 0.224705 0.668286 1.464550 

3.8 -0.462600 0.188562 0.579425 1.315466 

4.0 -0.471000 0.159670 0.510126 1.198326 

5.0 -0.491300 0.054321 0.274420 0.734275 

6.0 -0.497900 0.025336 0.155069 0.542397 

8.0 -0.499900 -0.083689 0.034943 0.266521 

10.0 -0.500000 -0.107974 -8.202081e-3 0.155705 

15.0 -0.500000 -0.124778 -0.047358 3.857037e-3 

20.0 -0.500000 -0.124993 -0.054069 -0.020172 
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Çizelge 7.3. Sonlu (x=0.2) küresel sınırlandırıcı potansiyele sahip kuantum nokta 

yapının taban ve çeşitli uyarılmış durumlarına ait enerji değerleri. Tüm 

enerji değerleri atomik biriminde (Hartree) verilmiştir. 

 

 R(a*) E1s(Z=1) E2p(Z=1) E3d(Z=1) E4f(Z=1) 

0.2 11.751051 12.720563 12.815593 12.848849 
0.3 9.864531 12.720023 12.815594 12.848850 
0.4 7.350578 12.716032 12.815592 12.848850 
0.5 5.348244 12.611225 12.815590 12.848850 
0.6 3.901141 10.975794 12.815571 12.848849 
0.7 2.866212 8.982601 12.815493 12.848849 
0.8 2.115333 7.351789 12.610261 12.848849 
0.9 1.560646 6.059680 10.919327 12.848850 
1.0 1.144233 5.042011 9.227115 12.848847 
1.2 0.579291 3.588371 6.828926 10.442781 
1.4 0.231572 2.633949 5.187449 8.084259 
1.6 7.880359e-3 1.981500 4.039289 6.394299 
1.8 -0.140917 1.519250 3.213089 5.144847 
2.0 -0.242008 1.181955 2.601175 4.215167 
2.2 -0.312463 0.929588 2.136559 3.504936 
2.4 -0.361041 0.736745 1.776890 2.952120 
2.6 -0.400159 0.586801 1.493422 2.513245 
2.8 -0.426484 0.468329 1.266690 2.160222 
3.0 -0.445353 0.373606 1.082468 1.872413 
3.2 -0.459432 0.296786 0.931280 1.635130 
3.4 -0.470271 0.233969 0.805740 1.436615 
3.6 -0.477891 0.182169 0.700587 1.269841 
3.8 -0.483666 0.139049 0.612359 1.128313 
4.0 -0.487819 0.103365 0.538181 1.018892 
5.0 -0.497302 -0.010510 0.288122 0.624381 
6.0 -0.499305 -0.064423 0.160538 0.387502 
8.0 -0.499976 -0.106480 0.039093 0.174963 

10.0 -0.499997 -0.118970 -6.698080e-3 0.093424 
15.0 -0.500000 -0.124751 -0.044480 0.016446 
20.0 -0.500000 -0.124988 -0.053255 -0.011192 
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Çizelge 7.4. Sonlu (x=0.3) küresel sınırlandırıcı potansiyele sahip kuantum nokta 

yapının taban ve çeşitli uyarılmış durumlarına ait enerji değerleri. Tüm 

enerji değerleri atomik biriminde (Hartree) verilmiştir. 

 

R(a
*
) E1s(Z=1) E2p(Z=1) E3d(Z=1) E4f(Z=1) 

0.2 17.482500 19.732093 19.842108 19.880591 

0.3 12.882519 19.729997 19.842110 19.880591 

0.4 8.944073 19.638972 19.842107 19.880591 

0.5 6.274961 16.432498 19.842087 19.880592 

0.6 4.483183 12.888814 19.841769 19.880591 

0.7 3.252557 10.179744 17.575266 19.880591 

0.8 2.383525 8.151515 14.499033 19.880594 

0.9 1.753583 6.625947 12.035832 17.992081 

1.0 1.286802 5.458957 10.085752 15.302259 

1.2 0.661863 3.833535 7.306568 11.288219 

1.4 0.282612 2.790502 5.486871 8.586537 

1.6 0.040806 2.086995 4.240670 6.721795 

1.8 -0.118958 1.593494 3.354017 5.373275 

2.0 -0.227575 1.235946 2.704009 4.381116 

2.2 -0.303085 0.970017 2.214117 3.629309 

2.4 -0.356048 0.767589 1.836589 3.047820 

2.6 -0.390465 0.610745 1.540385 2.592081 

2.8 -0.422359 0.487534 1.304075 2.220634 

3.0 -0.441755 0.388765 1.112834 1.921450 

3.2 -0.457250 0.309138 0.956188 1.675846 

3.4 -0.468320 0.244095 0.826468 1.469919 

3.6 -0.475676 0.190509 0.717965 1.301203 

3.8 -0.481588 0.145996 0.626489 1.151663 

4.0 -0.484739 0.111478 0.548680 1.050390 

5.0 -0.496876 -7.889386e-3 0.297583 0.627955 

6.0 -0.499395 -0.062944 0.165942 0.413687 

8.0 -0.499963 -0.105776 0.042516 0.178614 

10.0 -0.499998 -0.117046 -4.202917e-3 0.102328 

15.0 -0.500000 -0.124254 -0.042107 0.022218 

20.0 -0.500000 -0.124982 -0.052729 -7.683827e-3 
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Çizelge 7.5. Sonlu (x=0.4) küresel sınırlandırıcı potansiyele sahip kuantum nokta 

yapının taban ve çeşitli uyarılmış durumlarına ait enerji değerleri. Tüm 

enerji değerleri atomik biriminde (Hartree) verilmiştir. 

 

R(a
*
) E1s(Z=1) E2p(Z=1) E3d(Z=1) E4f(Z=1) 

0.2 22.152468 27.132505 27.259070 27.303288 

0.3 14.922496 27.123465 27.259070 27.303288 

0.4 9.982589 24.283576 27.259059 27.303289 

0.5 6.868290 18.371411 27.258880 27.303288 

0.6 4.855537 13.995534 23.922548 27.303288 

0.7 3.497488 10.875438 19.149250 27.303289 

0.8 2.552933 8.625391 15.484639 23.160545 

0.9 1.874928 6.964265 12.704681 19.249582 

1.0 1.375819 5.709215 10.568955 16.158723 

1.2 0.713725 3.981160 7.585556 11.752114 

1.4 0.314173 2.885001 5.663431 8.874262 

1.6 0.061174 2.150819 4.359329 6.905503 

1.8 -0.105239 1.638382 3.438293 5.506286 

2.0 -0.202807 1.268662 2.765316 4.478118 

2.2 -0.292273 0.994191 2.260174 3.703492 

2.4 -0.334088 0.809030 1.872965 3.103793 

2.6 -0.390737 0.625216 1.570652 2.632602 

2.8 -0.419393 0.498746 1.326497 2.255717 

3.0 -0.430444 0.405144 1.151340 1.969355 

3.2 -0.450807 0.316493 0.971543 1.709229 

3.4 -0.463125 0.250127 0.839360 1.544408 

3.6 -0.472938 0.195647 0.728312 1.378572 

3.8 -0.478967 0.150154 0.637516 1.206710 

4.0 -0.485833 0.112340 0.557734 1.069219 

5.0 -0.496808 -6.331668e-3 0.300894 0.659654 

6.0 -0.499299 -0.061499 0.168860 0.417287 

8.0 -0.499966 -0.106205 0.042112 0.180879 

10.0 -0.499997 -0.117414 3.198142e-4 0.111584 

15.0 -0.500000 -0.124195 -0.042862 0.021323 

20.0 -0.500000 -0.124962 -0.052465 -6.503718e-3 
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Şekil 7.2. Nokta yarıçapının fonksiyonu olarak sonlu (x=0.1, 0.2, 0.3 ve 0.4) 

sınırlandırıcı potansiyele sahip küresel kuantum nokta yapının enerji 

seviyeleri. 

 

Şekil 7.2 nokta yarıçapının fonksiyonu olarak sonlu sınırlandırıcı potansiyele sahip 

küresel kuantum nokta yapının taban ve çeşitli uyarılmış durumlarının enerji 

seviyeleri dört farklı sınırlandırıcı potansiyel değeri (veya Al konsantrasyon değeri x) 

için çizilmiştir. Eğrilerden görüleceği gibi nokta yarıçapı artarken tüm enerjilerin 

azalarak belli bir değere gittiği görülmektedir. Nokta yarıçapının daha büyük 

değerlerinde sistem atom modeline benzeyeceği için hem sonlu hem sonsuz 

(tablodaki değerlerden görüleceği gibi) durumdaki enerji değerleri hidrojen 

atomunun enerji değerlerine gitmektedir. Bu durum çizelgelerde de açık şekilde 

görülmektedir. Yani çok büyük nokta yarıçaplarında, örneğin R=20 de, 1s 

seviyesinin enerji değeri -0.5 Hartree’ye, 2p seviyesinin enerji değeri -0.124 Hartree 

değerine yaklaştığı görülmektedir. Aynı şekilde çok daha ileri nokta yarıçaplarında 
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3d ve 4f seviyelerinin enerjileri de -0.0466 Hartree ve 0.0030 Hartree olarak 

bulunmuştur. Bu değerler hidrojen atomunun enerji değerleri ile aynıdır. Bu 

şekillerde aynı zamanda enerji seviyeleri üzerinde kuyu derinliğinin sınırlandırma 

etkisi açık olarak görülmektedir. Küçük nokta yarıçapında enerjinin maksimum 

değerleri kuyu derinliğine bağlı olarak değişmektedir. Yani nokta yarıçapı azalırken 

enerji artıyor ve kuyu yüksekliğine karşılık gelen bir limit değere (kritik nokta 

yarıçapına) yaklaşıyor. Enerjilerin maksimum değeri V0 kuyu derinliği değerine 

kadar çıkabilmektedir. Diğer taraftan çok büyük nokta yarıçaplarında kuyu 

potansiyelinin sınırlandırma etkisinin çok zayıfladığı ve enerji seviyeleri üzerinde 

çok zayıf bir etkisinin olduğu, bu sonuçlardan söylenebilir. Bu tablolarda görülen 

negatif işaret elektronun safsızlığa bağlandığını göstermektedir. Yani elektron bu 

nokta yarıçapından sonra çekirdeğe bağlanıyor. Böylece toplam enerji negatif 

olmaktadır. Bu durum 1s orbitalindeki elektron için R≈1.8, 2p orbitalindeki 

elektronun R≈5, 3d orbitalindeki elektronun R≈10 civarlarında negatif enerjiye 

düştüğü görülmektedir. 

Dış pertürbasyonlar içerisindeki kuantum nokta yapıların enerji seviyelerinin 

incelenmesi onların fiziksel özelliklerinin anlaşılabilmesi açısından oldukça önem 

arzetmektedir. Elektrik ve manyetik alan gibi dış pertürbasyonların uygulanması 

kuantum nokta yapıların enerji seviyeleri hakkında oldukça değerli bilgiler ortaya 

çıkarmaktadır. Örneğin kuantum nokta yapılara bir dış manyetik alan uygulandığı 

zaman ilave bir sınırlandırma potansiyeli ortaya koyar ve aynı zamanda safsızlık 

enerji seviyelerinin simetrisini ve sistemin bağlanma enerjisindeki değişime neden 

olan dalga fonksiyonlarının yapısını değiştirir. Dış manyetik alanın enerji seviyeleri 

üzerindeki en belirgin etkisi s dışı seviyelerde yarılmalara neden olmasıdır. Bu 

durum enerji seviyelerinin m manyetik kuantum sayıları üzerindeki dejenereliğini de 

ortadan kaldırmış olur. Böylelikle enerji seviyeleri arasında Zeeman geçişleri 

gözlenebilir.  

Bu çalışmada lineer Zeeman terimi Denk (5.3) ile verilen temel Hamiltoniyen 

içerisinde ele alınmış olup quadratik Zeeman terimi de pertürbasyon terimi olarak 

göz önüne alınmıştır. Pertürbasyon teriminin hesabında lineer Zeeman teriminin de 

içinde bulunduğu pertürbe olmamış özfonksiyonlar kullanılmıştır. Kuadratik terim 

pertürbasyon terimi olarak göz önüne alındığı için düşük manyetik alan değerlerinde 

(örneğin 𝛾=0.10, 0.15, 0.2 ve 0.5 gibi) hesaplamalar yapılmıştır. 
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Zeeman enerji seviyeleri arasındaki elektrik dipol geçişleri Zeeman geçişleri olarak 

adlandırılır. Elektrik dipol geçişleri Δℓ=±1 ve Δm=±1,0 seçim kuralları içerisinde 

gerçekleşir. Geçişlere karşılık gelen spektral çizgiler aynı zamanda kutuplanma 

(polarizasyon) etkilerini gösterir. Kutuplanmanın elektromanyetik alanın titreşim 

doğrultusunda olması gerekir. Elektrik dipol operatörü tek pariteli olduğu için izinli 

geçişlerde Δℓ=±1 olmalıdır. Bu durumda Δm=0 a karşılık gelen geçiş π polarizasyon 

geçişi olarak adlandırılır. Burada elektrik dipol vektörü z-ekseni boyunca lineer 

titreşim yapar. Δm=+1(-1) durumuna karşılık gelen σ
+
(σ

-
) geçişlerde soğrulan yada 

yayılan ışık dairesel olarak kutuplanır. Bu durumda dipol vektörü (+) durum için saat 

yönünün tersi yönünde, (-) durum için saat yönünde  z-ekseni etrafında xy 

düzleminde döner.  

Şekil 7.3a, 7.3b ve 7.3c manyetik alan içerisindeki 1s ve 2p enerji seviyelerini 

göstermektedir. Şekilden de görüleceği gibi s seviyelerinde herhangi bir Zeeman 

yarılması gözlenmezken (ℓ=0 olduğundan dolayı) p seviyesi 3 Zeeman enerji 

seviyesine yarılmıştır (m=1,0,-1). Bu şekil üzerinde 2p→1s Zeeman geçişleri de 

gösterilmiştir. Şekilde görüleceği gibi 2p seviyesi m=0 enerji seviyesine göre 

simetrik bir yarılma göstermektedir ve nokta yarıçapı artarken enerji seviyeleri 

azalmaktadır. Daha büyük nokta yarıçaplarında ise bu enerjilerin sabit enerji 

değerlerine gittiği görülmektedir. m değeri +1 den -1 e değişirken enerji seviyelerinin 

azaldığı görülmektedir. Bunun nedeni Denk 5.3 de verilen lineer Zeeman terimindeki 

m nin değerinden kaynaklanmaktadır. Şekil 7.3a, 7.3b, 7.3c’de görüleceği gibi 

manyetik alan artarken Zeeman seviyeleri arasındaki enerji farkı da artmaktadır. Bu 

durumda Zeeman enerji seviyeleri arasındaki σ
-
 polarizasyon geçiş enerjisinin 

azaldığı, σ
+
 polarizasyon geçiş enerjisinin arttığı görülmüştür. 

Şekil 7.4a, 7.4b ve 7.4c’de nokta yarıçapına bağlı olarak Zeeman geçiş enerjileri 

gösterilmiştir. Burada da yine nokta yarıçapı artarken geçiş enerjilerinin azaldığı 

görülmektedir. Çok büyük nokta yarıçaplarına giderken yarılmanın sabit kaldığı 

görülmüştür. 
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Şekil 7.3. a.b.c. Nokta yarıçapının fonksiyonu olarak 1s ve 2p Zeeman enerji 

seviyeleri 
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Şekil 7.4. a.b.c. Nokta yarıçapının fonksiyonu olarak 1s ve 2p Zeeman geçiş 

enerjileri 
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Şekil 7.5a, 7.5b ve 7.5c manyetik alanın 3 farklı değeri 𝛾 =0.1, 0.15 ve 0.2 için 2p ve 

3d Zeeman enerji seviyelerini göstermektedir. Şekilden de görüleceği gibi p seviyesi 

3 Zeeman enerji seviyesine yarılırken (m=1,0,-1) d seviyesi de 5 enerji seviyesine 

yarılmıştır (m=2,1,0,-1,-2). Eğrilerden görüleceği gibi 2p ve 3d seviyeleri m=0 enerji 

seviyesine göre simetrik olarak yarılmalar göstermektedir. Kuantum nokta yarıçapı 

artarken Zeeman enerji seviyeleri azalmaktadır. Daha büyük nokta yarıçaplarında ise 

bu enerjilerin sabit enerji değerlerine gittiği görülmektedir. m’in negatif değerleri 

için enerji seviyelerinin azaldığı görülmektedir. Bunun nedeni yukarıda da ifade 

edildiği gibi Denk. 5.3 de verilen lineer Zeeman terimindeki m den 

kaynaklanmaktadır. Şekil 7.5a, 7.5b ve 7.5c de görüleceği gibi manyetik alan 

artarken Zeeman seviyeleri arasındaki enerji farkı da artmaktadır.  

Şekil 7.6a, 7.6b ve 7.6c’de nokta yarıçapına bağlı olarak 2p ve 3d seviyeleri arasında 

zeeman geçiş enerjileri gösterilmiştir. Burada da yine nokta yarıçapı artarken geçiş 

enerjilerinin azaldığı görülmektedir.  

Şekil 7.3 ve 7.6’daki eğrilerden görüleceği üzere güçlü uzaysal sınırlandırılmış 

bölgede (R<1) manyetik alanın enerji seviyeleri üzerinde çok zayıf bir etkisinin 

olduğu görülmüştür. Elektronun orta uzaysal sınırlandırma bölgesinde (1≤R≤3) ise s 

dışı seviyeler üzerinde manyetik alan etkileri görülmeye başlanmış ve böylece bu 

bölgede enerji seviyeleri birbirinden ayrılmaya başlamıştır. Elektronun zayıf uzaysal 

sınırlandırma bölegesinde ise (R>3) manyetik alan etkisi enerji seviyeleri üzerinde 

çok açık net bir şekilde görülmektedir ve seviyelerin dejenereliği bu bölgede ortadan 

kalkmaktadır. 
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Nokta yarıçapı R(a*)

0 2 4 6 8 10 12 14

P
e

rt
ü
rb

e
 o

lm
a

m
ış

 e
n
e

rj
i(

H
a

rt
re

e
)

-0,3

0,0

0,3

0,6

0,9

1,2

1,5

E
0
2p için m=1

E
0
2p için m=0

E
0
2p  için m= -1

E
0
3d için m= 2

E
0
3d  için m= 1

E
0
3d için m= 0

E
0
3d için m= -1

E
0
3d için m= -2

=0.10

Nokta yarıçapı R(a*)

0 2 4 6 8 10 12 14

P
e

rt
ü
rb

e
 o

lm
a

m
ış

 e
n
e

rj
i(

H
a

rt
re

e
)

-0,3

0,0

0,3

0,6

0,9

1,2

1,5

E
0
2p için m=1

E
0
2p  için m=0

E
0
2p için m= -1

E
0
3d için m= 2

E
0
3d  için m= 1

E
0
3d  için m= 0

E
0
3d  için m= -1

E
0
3d  için m= -2

=0.20

a

Nokta yarıçapı R(a*)

0 2 4 6 8 10 12 14

P
e

rt
ü
rb

e
 o

lm
a

m
ış

 e
n
e

rj
i(

H
a

rt
re

e
)

-0,3

0,0

0,3

0,6

0,9

1,2

1,5

E
0
2p için m=1

E
0
2p için m=0

E
0
2p için m= -1

E
0
3d için m= 2

E
0
3d  için m= 1

E
0
3d  için m= 0

E
0
3d için m= -1

E
0
3d  için m= -2

=0.15
b

c

 

Şekil 7.5. a. b. c. Nokta yarıçapının fonksiyonu olarak 2p ve 3d Zeeman enerji 

seviyeleri. 
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Şekil 7.6. a. b. c. Nokta yarıçapının fonksiyonu olarak 2p ve 3d Zeeman geçiş 

enerjileri. 
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Şekil 7.7 ve 7.8’de γ’nın 3 farklı değeri için (0.10, 0.15 ve 0.20) 1s 2p 3d ve 4f 

seviyelerinin diyamanyetik (kuadratik) pertürbasyon enerjileri m=0 ve m=1 

durumunda nokta yarıçapının fonksiyonu olarak çizilmiştir. Bu grafiklerden 

görüleceği gibi diyamanyetik (pertürbasyon) enerjileri hem nokta yarıçapı hem de 

manyetik alan artarken artmaktadır. Şekil 7.7’deki pertürbasyon enerji katkısı küçük 

nokta yarıçaplarında çok zayıftır. Nokta yarıçapının artmasıyla bu davranış değişir ve 

artmaya başlar. Pertürbasyon enerjisi kritik bir nokta yarıçapından sonra sabit bir 

değere gittiği görülmektedir. Bu durum 1s ve 2p orbitalleri için Şekil 7.7 ve 7.8’de 

açık olarak görülmektedir. Daha büyük nokta yarıçaplarına gidildiğinde yukarı 3d ve 

4f seviyelerine ait eğrilerin de sabit değerlere gideceği söylenebilir. Bu limit değer 

elektronun hiçbir yerde sınırlandırılmadığı duruma karşılık gelir ve elektron coulomb 

etkileşimiyle safsızlığa bağlanmış olur. Kritik nokta yarıçapı açısal momentum ve 

daha sonra göz önüne alınan seviyenin uzaysal alanına bağlıdır ve ℓ’nin artan değeri 

ile artmaktadır. Aynı zamanda pertürbasyon enerjisi de ℓ’nin artan değeri ile 

artmaktadır. Bu durum daha büyük ℓ’li seviyelerin dalga fonksiyonları daha büyük 

uzaysal mekâna sahip olduğu için diyamanyetik etkileşim enerjisinin de artmasıyla 

sonuçlanmaktadır şeklinde yorumlanabilir. Şekil 7.7 ve 7.8 karşılaştırılırsa m=0 

durumundaki diyamanyetik pertürbasyon enerjilerinin m=1 durumundaki 

diyamanyetik pertürbasyon enerjilerinden daha küçük olduğu görülmektedir. Bu 

durumda xy düzleminde dalga fonksiyonlarının daha büyük uzaysal mekâna 

yayıldığı şeklinde yorumlanabilir.  
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Şekil 7.7. a,b,c. γ nın 3 farklı değeri için 1s, 2p, 3d ve 4f seviyelerinin m=0 

durumunda nokta yarıçapının fonksiyonu olarak pertürbasyon enerjileri  

b 
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Şekil 7.8. a,b,c. γ nın 3 farklı değeri için 1s, 2p, 3d ve 4f seviyelerinin m=1 

durumunda nokta yarıçapının fonksiyonu olarak pertürbasyon enerjileri  
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Şekil 7.9a, 7.9b ve 7.9c’de sonsuz potansiyel kuyusu içerisinde küresel kuantum 

nokta yapının 1s ve 2p Zeeman enerji seviyeleri nokta yarıçapının fonksiyonu olarak 

üç farklı manyetik alan değeri 𝛾 =0.1, 0.15 ve 0.2 için çizilmiştir. Şekillerden 

görüleceği üzere s orbitallerinde herhangi bir yarılma gözlenmezken p orbitali üç 

Zeeman enerji seviyesine yarılmaktadır. Burada düz çizgiler pertürbe olmamış 

(lineer Zeeman terimini içeren) enerji seviyelerini gösterirken, kesikli çizgiler lineer 

Zeeman terimi ile birlikte kuadratik Zeeman terimini de içeren pertürbe olmuş enerji 

seviyelerini göstermektedir. Şekilden görüleceği gibi küçük nokta yarıçaplarında 

manyetik alanın ve kuadratik terimin etkisinin olmadığı görülürken büyük nokta 

yarıçaplarında hem manyetik alanın hem de quadratik terimin etkisi açık bir şekilde 

görülmektedir. Yani büyük nokta yarıçaplarında sistemin pertürbe olmuş enerjisi 

artmaktadır. Bu artışlarda m=0 olduğu seviyelerde lineer Zeeman terimi sıfır olup 

kuadratik terimden bir katkı gelmektedir. m=±1 olduğu seviyelerde ise sistemin 

toplam enerjisine hem lineer Zeeman teriminden hem de kuadratik Zeeman 

teriminden katkılar gelmektedir. Böylece büyük nokta yarıçaplarında m=±1 olduğu 

seviyelerdeki enerji değişimi m=0 olduğu seviyeye göre daha fazla olmaktadır. 

Küçük nokta yarıçaplarında ve küçük manyetik alan değerlerinde kuadratik terimden 

gelen katkı küçük olurken, büyük nokta yarıçaplarında buralardan gelen katkılar 

büyük olmaktadır. Yani quadratik Zeeman terimi, sistemin toplam enerjisine bir güç 

yasası gibi katkıda bulunur.  
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Şekil 7.9. a.b.c. γ nın üç farklı değeri için nokta yarıçapının fonksiyonu olarak 

pertürbe olmuş ve olmamış 1s ve 2p enerji seviyeleri  
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Şekil 7.10a ve 7.10b’de sonsuz potansiyel kuyusuna sahip küresel kuantum nokta 

yapıda pertürbe olmuş ΔE ve pertürbe olmamış ΔE
0
 2p→1s enerji seviyeleri arasında 

iki farklı nokta yarıçapında manyetik alanın fonksiyonu olarak Zeeman geçiş 

enerjileri gösterilmiştir. Burada kesikli çizgiler pertürbe olmuş (lineer Zeeman + 

kuadratik terim) enerji seviyelerini, düz çizgiler ise pertürbe olmamış (Lineer 

Zeeman terimi) enerji seviyelerini göstermektedir. 2p’den 1s’e olan (2p→1s) 

Zeeman geçişlerinde Δm=0,±1 durumlarındaki geçişler gösterilmiştir. Şekillerden 

görüleceği gibi pertürbe olmamış Zeeman seviyelerinde manyetik alan artmasıyla 

m=+1 durumundaki enerji seviyesi lineer olarak artarken m=-1 durumundaki enerji 

seviyesi de lineer olarak azalmaktadır. Bunun nedeni Denk.(5.3)’de görüleceği gibi 

lineer Zeeman terimi m=+1 durumunda sistemin toplam enerjisine pozitif bir katkı 

getirirken (enerjiyi arttırıyor) m=-1 durumunda ise sistemin toplam enerjisine negatif 

bir katkı getirmektedir. Böylece enerji lineer olarak azalmaktadır. Pertürbe olmuş 

enerji seviyelerinde; m=+1 durumundaki enerji seviyesi pozitif olarak artarken, m=-1 

durumundaki enerji seviyesinde ise toplam enerji önce azalıyor bir minimum değere 

ulaştıktan sonra tekrar artmaya başlıyor. Bunun nedeni 𝛾 ve r’nin büyük değerleri 

için kuadratik terim güç yasası gibi davranacağından sistemin toplam enerjisinde 

daha baskın olmasından dolayıdır. Buradan Zeeman geçişlerinde yayılan ışığın 

frekansının uygulanan manyetik alanın şiddetiyle ayarlanarak değişebileceği 

görülmektedir.  

Şekil 7.11, 7.12 ve 7.13’de 2p enerji seviyeleri üzerinde R=2, 4 ve 10 kuantum nokta 

yarıçaplarında ve manyetik alanın γ=0.1, 0.15, 0.20 üç farklı değerinde paramanyetik 

ve diyamanyetik kaymaklar şematik olarak diyagram üzerinde gösterilmiştir. 
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Şekil 7.10. a.b. Manyetik alanın fonksiyonu olarak R=3 ve R=6 için pertürbe olmuş 

ΔE ve pertürbe olmamış ΔE
0
 2p ve 1s enerji seviyeleri arasındaki 

Zeeman geçiş enerjileri 

 

 

 



 

54 

 

 

Şekil 7.11. R=2 nokta yarıçapında γ nın üç farklı değeri için 2p Zeeman enerji 

seviyesinde diamagnetik terimin etkisini gösteren diyagram. 
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Şekil 7.12. R=4 nokta yarıçapında γ nın üç farklı değeri için 2p Zeeman enerji 

seviyesinde diamagnetik terimin etkisini gösteren diyagram 
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Şekil 7.13. R=10 nokta yarıçapında γ nın üç farklı değeri için 2p Zeeman enerji 

seviyesinde diamagnetik terimin etkisini gösteren diyagram. 
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Şekil 7.14a, 7.14b, 7.14c ve 7.14d’de sonsuz potansiyel kuyuya sahip kuantum nokta 

yapının bağlanma enerjileri üç farklı manyetik alan değeri için nokta yarıçapına bağlı 

olarak çizilmiştir. Şekillerden görüleceği gibi tüm seviyelerde nokta yarıçapı artarken 

bağlanma enerjisi önce monotonik olarak hızlı bir şekilde azalıyor ve bir minimum 

değere ulaştıktan sonra tekrar artmaya başılıyor. Küçük nokta yarıçaplarında (güçlü 

uzaysal sınırlandırmanın olduğu bölgelerde) çeşitli manyetik alan değerleri için 

bağlanma enerji seviyelerinde herhangi bir ayrışma görülmezken büyük nokta 

yarıçaplarına (zayıf uzaysal sınırlandırmanın olduğu bölgelere) doğru gidildikçe 

bağlanma enerji seviyeleri üzerinde manyetik alan etkisi açıkça görülmektedir. Yani 

büyük nokta yarıçaplarında manyetik alan artarken bağlanma enerjiside artmaktadır. 

Bunun fiziksel nedeni şu şekilde açıklanabilir. Zayıf uzaysal sınırlandırmanın olduğu 

bölgelerde (büyük nokta yarıçaplarında) manyetik alan elektronun dalga 

fonksiyonunu büzer ve elektronu safsızlığa daha yakın olmaya doğru iter. Yani 

elektronu safsızlıga yaklaştırır. Böylece elektron safsızlık arasındaki mesafe 

azalacağından dolayı elektronun bağlanma enerjisi tekrar artmaya başlar. Manyetik 

alanın değeri ne kadar çok artırılırsa elektron büyük nokta yarıçaplarında manyetik 

alanın sınırlandırma etkisi daha fazla artar. Diğer taraftan eğrilerden görüleceği gibi 

yukarı seviyeler için büyük nokta yarıçaplarında bağlanma enerjilerinin daha yavaş 

arttığı görülmektedir. Küçük nokta yarıçaplarında yani güçlü sınırlandırma bölgeside 

(R<1) tüm seviyeler için elektronun uzaysal sınırlandırmasının manyetik alan 

sınırlandırmasından daha güçlü olduğu görülmektedir. Orta sınırlandırma 

bölgelerinde (1≤R≤3) ise uzaysal sınırlandırma ile manyetik sınırlandırma birbiri ile 

yarışırken zayıf sınırlandırma bölgesinde (R>3) manyetik alan sınırlandırmasının 

bağlanma enerjisi üzerinde daha baskın olduğu görülmektedir. Bu durum ℓ’si küçük 

olan orbitallerde (1s ve 2p) açık bir şekilde görülmektedir. Bağlanma enerji 

eğrilerinden görüleceği gibi nokta yarıçapının daha büyük değerlerinde manyetik 

alanın artışıyla bağlanma enerjilerinin de arttığı görülmektedir. 
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Şekil 7.14. a.b.c.d. γ nın üç farklı değeri için sonsuz sınırlandırıcı potansiyele sahip 

kuantum noktanın 1s,2p,3d ve 4f seviyelerinin bağlanma enerjileri 

 

Şekil 7.15a, 7.15 b, 7.15c ve 7.15d’de sonlu sınırlandırıcı potansiyele sahip küresel 

kuantum nokta yapının manyetik alan içerisindeki 1s, 2p, 3d ve 4f seviyelerinin 

bağlanma enerjileri (EB=E(Z=0)-E(Z)) çizilmiştir. Şekillerden görüleceği gibi nokta 

yarıçapı azalırken tüm seviyelerin bağlanma enerjileri monotonik olarak artmaktadır 

ve bir maksimum değere ulaştıktan sonra hızlı bir şekilde düşmektedir. Nokta 

yarıçapının daha büyük değerlerine gidildiğinde (zayıf sınırlandırıcı bölge) bağlanma 

enerjilerinin tekrar arttığı görülmektedir. Bunun fiziksel nedeni yukarıda 

açıklanmıştır. Manyetik alan değerleri arttırılırken büyük nokta yarıçaplarında 

bağlanma enerjisinin arttığı görülmektedir. Bunun nedeni Denklem (5.3)’te 

görüleceği gibi pertürbasyon enerjisi r
2
 ve γ2 ile orantılı olmasından dolayı hem 

büyük nokta yarıçapılarında hem de büyük manyetik alan değerlerinde güç yasası 

gibi davranmasından kaynaklanmaktadır. Böylece pertürbasyon enerjisi sistemin 

toplam enerjisi üzerinde büyük nokta yarıçaplarında daha baskın olduğu 

görülmektedir. 
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Şekil 7.15. a.b.c.d. γ nın üç farklı değeri için sonlu sınırlandırıcı potansiyele sahip 

kuantum noktanın 1s,2p,3d ve 4f seviyelerinin bağlanma enerjileri 

 

Şekil 7.16a, 7.16b, 7.16c ve 7.16d’de görüleceği gibi sabit bir x değeri için yine 

nokta yarıçapı azalırken bağlanma enerjilerinin arttığı görülüyor ve bir maksimuma 

ulaştıktan sonra tekrar düşüyor. Bağlanma enerji eğrilerinde görüleceği gibi küçük 

nokta yarıçaplarında sınırlandırma potansiyelinin etkisi açık bir şekilde 

görülmektedir. Katkılanma oranı (veya alüminyum konsantrasyonu) x’in değerleri 

artarken sınırlandırma potansiyelinin değeri de artmaktadır. Buna bağlı olarak 

bağlanma enerjisi de artmaktadır. Yani sınırlandırma potansiyeli artarken bağlanma 

enerjilerinin maksimumları daha küçük nokta yarıçaplarına doğru kaydığı 

görülmektedir. bu durumda bize sınırlandırma potansiyeli artarken daha küçük nokta 

yarıçaplarında sistemin daha kararlı olduğunu göstermektedir.   
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Şekil 7.16. a.b.c.d. x’in üç farklı değeri için sonlu sınırlandırıcı potansiyele sahip 

kuantum noktanın 1s,2p,3d ve 4f seviyelerinin bağlanma enerjileri. 
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8. SONUÇ VE ÖNERİLER 

Sonsuz ve sonlu küresel sınırlandırıcı potansiyele sahip kuantum nokta yapının taban 

durum ve çeşitli uyarılmış seviyelerine ait enerji grafikleri nokta yarıçapına bağlı 

olarak çizildi. Bu grafiklerden nokta yarıçapı arttıkça enerji değerlerinin azaldığı 

görüldü. Aynı zamanda bu grafiklerde daha büyük nokta yarıçaplara gidildikçe 

sistem atom modeline benzeyeceğinden enerji değerleri hidrojen atomunun enerji 

değerlerine gittiği görülmüştür. Ayrıca bu gafiklerde sonlu küresel sınırlandırıcı 

potansiyele sahip kuantum nokta yapının enerji seviyeleri üzerinde kuyu derinliğinin 

sınırlandırma etkisi açık olarak görülmektedir. 

 Dış manyetik alan içindeki sonsuz sınırlandırıcı potansiyele sahip küresel kuantum 

nokta yapının Zeeman enerji seviyelerinin ve Zeeman geçiş enerjilerinin grafikleri 

nokta yarıçapının fonksiyonu olarak çizilmiştir. Bu grafiklerde s seviyesinde 

herhangi bir yarılma gözlemlenmezken (ℓ=0 olduğundan) p seviyesi 3 , d seviyesi 5 

Zeeman enerjisine yarıldığı görülmüştür. Ayrıca nokta yarıçapı artarken enerji 

seviyelerinin azaldığı ve daha büyük nokta yarıçaplarında sabit bir değere gittiği 

görülmüştür. Aynı zamanda grafiklerde manyetik alan artarken Zeeman seviyeleri 

arasındaki enerji farkının arttığı görülmüştür. Yine nokta yarıçapı artarken Zeeman 

geçiş enerjilerinin azaldığı ve çok büyük nokta yarıçaplarına giderken yarılmanın 

sabit kaldığı görülmüştür. 

Manyetik alanın farklı değerleri için taban durum ve çeşitli uyarılmış seviyelerin 

pertürbasyon enerjileri m=0 ve m=1 durumunda nokta yarıçapının fonksiyonu olarak 

çizilmiştir. Grafiklerden pertürbasyon enerjilerinin hem nokta yarıçapı hem de 

manyetik alan artarken arttığı görülmüştür. Pertürbasyon enerjilerinin kritik bir nokta 

yarıçapından sonra sabit bir değere gittiği görülmektedir. Bu limit değer elektronun 

hiçbir yerde sınırandırılmadığı duruma karşılık gelmektedir. Ayrıca grafiklerde m=0 

durumundaki pertürbasyon enerjilerinin m=1 durumundaki pertürbasyon 

enerjilerinden daha küçük olduğu görülmektedir. Bu durumda xy düzleminde dalga 

fonksiyonlarının daha büyük uzaysal mekana yayıldığı şeklinde yorumlamabilir. 

Manyetik alanın farklı değerleri için sonsuz potansiyel kuyuya sahip kuantum nokta 

yapının bağlanma enerjilerinin grafikleri nokta yarıçapına bağlı olarak çizilmiştir. 

Grafiklerde nokta yarıçapı artarken bağlanma enerjilerinin önce monotonik olarak 

hızlı bir şekilde azaldığı  ve bir minimum değere ulaştıktan sonra tekrar artmaya 
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başladığı görülmüştür. Ayrıca büyük nokta yarıçaplarında yani zayıf uzaysal 

sınırlandırmanın olduğu bölgelerde manyetik alanın artışıyla bağlanma enerjilerinin 

arttığı görülmektedir. Çünkü bu bölgelerde manyetik alan elektronun dalga 

fonksiyonunu büzer ve elektronu safsızlığa doğru iter. Böylece elektron safsızlığa 

yaklaşmış olur ve bağlanma enerjisi tekrar artar. 

Manyetik alan içerisindeki sonlu sınırlandırıcı potansiyele sahip küresek kuantum 

nokta yapının taban durum ve çeşitli uyarılmış seviyelerinin bağlanma enerjileri 

nokta yarıçapının fonksiyonu olarak çizilmiştir. Grafiklerden nokta yarıçapı azalırken 

tüm seviyelerin bağlanma enerjilerinin monotonik olarak arttığı ve bir maksimum 

değere ulaştıktan sonra hızlı bir şekilde düştüğü görülmektedir. Manyetik alan değeri 

arttıkça ve büyük nokta yarıçaplarında bağlanma enerjisinin arttığı görülmektedir. 

Çünkü pertürbasyon enerjisi bu durumlarda bir güç yasası gibi davranıp sistemin 

toplam enerjisi üzerinde daha baskın olur.  

Sonlu sınırlandırıcı potansiyele sahip küresel kuantum nokta yapının taban durum ve 

çeşitli uyarılmış seviyelerinin bağlanma enerjileri farklı alüminyum katkılanma oranı 

değerleri için nokta yarıçapına bağlı olarak çizilmiştir. Grafiklerde nokta yarıçapı 

azalırken bağlanma enerjilerinin arttığı ne bir maksimuma ulaştıktan sonra tekrar 

düştüğü görülüyor. Ayrıca bu grafiklerde küçük nokta yarıçaplarında sınırlandırma 

potansiyelinin bağlanma enerjileri üzerindeki etkisi açık bir şekilde görülüyor. 

Katkılanma oranının değeri artarken sınırlandırma potansiyeli buna bağlı olarak ta 

bağlanma enerjileri artmaktadır. Yani sınırlandırıcı potansiyel artarken daha küçük 

nokta yarıçaplarında sistemin daha kararlı olduğu görülüyor. 
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örtme (overlap) ve enerji integralleri: 
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Ek A: Kuyu içi ve kuyu dışı sınırlandırıcı potansiyele sahip kuantum nokta yapının 

örtme (overlap) ve enerji integralleri: 

Ek A1 Kuyu içi örtme (overlap) integrali: 

𝑆𝑛𝑖ℓ𝑖𝑚𝑖𝑛𝑗ℓ𝑗𝑚𝑗

𝑟≤𝑅 =  ⟨𝜙𝑖|𝜙𝑗⟩
𝑟≤𝑅

= ∫ ∫ ∫ ∑ 𝑐𝑖𝑝

∗ 𝜒𝑝
∗ (𝑟) ∑ 𝑐𝑗𝑝

𝜎

𝑗

𝜎

𝑖=1

2𝜋

0

𝜋

−𝜋

𝑅

0

𝜒𝑝(𝑟)𝑟2 drsin 𝜃𝑑𝜃𝑑𝜙   

= ∑ 𝑐𝑛𝑖ℓ𝑖𝑚𝑖

∗

𝑖𝑗

𝑐𝑛𝑗ℓ𝑗𝑚𝑗
∫ 𝑟𝑛𝑖+𝑛𝑗

𝑅

0

𝑒−(ζ 𝑖+ζ 𝑗)𝑅𝑑𝑟 ∫ 𝑌∗
ℓ𝑖𝑚𝑖

(𝜃𝜙)
Ω

𝑌ℓ𝑗𝑚𝑗
(𝜃𝜙)𝑑Ω 

= ∑ 𝑐𝑛𝑖ℓ𝑖𝑚𝑖

∗ 𝑐𝑛𝑗ℓ𝑗𝑚𝑗
 

(𝑛𝑖 + 𝑛𝑗)!

(ζ 𝑖 + ζ 𝑗)
𝑛𝑖+𝑛𝑗+1 (1 − 𝑒−(ζ 𝑖+ζ 𝑗)𝑅 ∑

[𝑅(ζ 𝑖 + ζ 𝑗)]
𝑘

𝑘!

𝑛𝑖+𝑛𝑗

𝑘=0

) 𝛿ℓ𝑖ℓ𝑗
𝛿𝑚𝑖𝑚𝑗

𝑖𝑗

 

 

Burada n,ℓ,m baz fonksiyonunun kuantum sayılarını, 𝜎 baz seti sayısı, cpk ve ζk’lar 

açılım katsayıları ve orbital üstelleri (perdeleme sabitini) göstermektedir. 

 

Ek A2 Kuyu dışı overlap integrali: 

𝑆𝑛𝑖ℓ𝑖𝑚𝑖𝑛𝑗ℓ𝑗𝑚𝑗

𝑟>𝑅 =  ⟨𝜙𝑖|𝜙𝑗⟩
𝑟>𝑅

= ∫ ∫ ∫ ∑ 𝑑𝑖𝑝

∗ 𝜒𝑝
∗ (𝑟) ∑ 𝑑𝑗𝑝

𝜎

𝑗=1

𝜎

𝑖=1

2𝜋

0

𝜋

−𝜋

∞

𝑅

𝜒𝑝(𝑟)𝑟2 drsin 𝜃𝑑𝜃𝑑𝜙 

= ∑ 𝑑𝑛𝑖ℓ𝑖𝑚𝑖

∗ 𝑑𝑛𝑗ℓ𝑗𝑚𝑗
∫ 𝑟𝑛𝑖𝑛𝑗

∞

𝑅𝑖𝑗

𝑒−(ζ 𝑖+ζ 𝑗)𝑅𝑑𝑟 ∫ 𝑌ℓ𝑖𝑚𝑖

∗

Ω

(𝜃𝜙)𝑌ℓ𝑗𝑚𝑗
(𝜃𝜙)𝑑Ω 

= ∑ 𝑑𝑛𝑖ℓ𝑖𝑚𝑖

∗ 𝑑𝑛𝑗ℓ𝑗𝑚𝑗

(𝑛𝑖 + 𝑛𝑗)!

(ζ
𝑖

+ ζ
𝑗
)

𝑛𝑖+𝑛𝑗+1 (𝑒−(ζ 𝑖+ζ 𝑗)𝑅 ∑
[𝑅(ζ 𝑖 + ζ 𝑗)]

𝑘

𝑘!

𝑛𝑖+𝑛𝑗

𝑘=0

) 𝛿ℓ𝑖ℓ𝑗
𝛿𝑚𝑖𝑚𝑗

𝑖𝑗
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Ek A3 Kuyu içinde elektron-safsızlık etkileşim enerjisi ( nüclear attraction): 

 

𝑉𝑟≤𝑅 = ∫ ∫ ∫ 𝜙𝑛𝑖ℓ𝑖𝑚𝑖

∗
2𝜋

0

𝜋

−𝜋

(𝑟⃗⃗) (
−𝑍

𝜀𝑟𝑟
) 𝜙𝑛𝑗ℓ𝑗𝑚𝑗

(𝑟⃗⃗) 𝑟
2

drsin 𝜃𝑑𝜃𝑑𝜙
𝑅

0

 

= ∫ ∫ ∫ ∑ 𝑐𝑖𝑝

∗
2𝜋

0

𝜋

−𝜋
𝜒𝑛𝑖ℓ𝑖𝑚𝑖

∗ (𝑟⃗⃗) (
−𝑍

𝜀𝑟𝑟
) 𝑐𝑗𝑝

 𝜒𝑛𝑗ℓ𝑗𝑚𝑗
(𝑟⃗⃗) 𝑟

2
𝑑𝑟 sin 𝜃𝑑𝜃𝑑𝜙

𝑅

0

 

 

= −
1

𝜀𝑟
∑ 𝑐𝑛𝑖ℓ𝑖𝑚𝑖

𝑐𝑛𝑗ℓ𝑗𝑚𝑗
{
ζ 𝑖 + ζ 𝑗

𝑛𝑖 + 𝑛𝑗
𝑆𝑛𝑖ℓ𝑖𝑚𝑖 𝑛𝑗ℓ𝑗𝑚𝑗

𝑟≤𝑅 +
𝑅𝑛𝑖+𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑒−(ζ 𝑖+ζ 𝑗)𝑅}

𝑖𝑗

 

 

Ek A4 Kuyu dışında elektron-safsızlık etkileşim enerjisi ( nüclear attraction): 

 

𝑉𝑟>𝑅 = ∫ ∫ ∫ 𝜙𝑛𝑖ℓ𝑖𝑚𝑖

∗
2𝜋

0

𝜋

−𝜋

(𝑟⃗⃗) (
−𝑍

𝜀𝑟𝑟
) 𝜙𝑛𝑗ℓ𝑗𝑚𝑗

(𝑟⃗⃗) 𝑟
2

drsin 𝜃𝑑𝜃𝑑𝜙
∞

𝑅

 

 

= ∫ ∫ ∫ ∑ 𝑑𝑖𝑝

∗
2𝜋

0

𝜋

−𝜋
𝜒𝑛𝑖ℓ𝑖𝑚𝑖

∗ (𝑟⃗⃗) (
−𝑍

𝜀𝑟𝑟
) 𝑑𝑗𝑝 𝜒𝑛𝑗ℓ𝑗𝑚𝑗

(𝑟⃗⃗) 𝑟
2

drsin 𝜃𝑑𝜃𝑑𝜙
∞

𝑅

 

 

= −
1

𝜀𝑟
∑ 𝑑𝑛𝑖ℓ𝑖𝑚𝑖

∗ 𝑑𝑛𝑗ℓ𝑗𝑚𝑗
{𝑆𝑛𝑖ℓ𝑖𝑚𝑖 𝑛𝑗ℓ𝑗𝑚𝑗

𝑟>𝑅 −
𝑅𝑛𝑖+𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑒−(ζ 𝑖+ζ 𝑗)𝑅}

𝑖𝑗

 

 

Ek A5 Kuyu içinde kinetik enerji: 

 

𝑇𝑛𝑖ℓ𝑖𝑚𝑖𝑛𝑗ℓ𝑗𝑚𝑗

𝑟≤𝑅 = ∫ ∫ ∫ 𝜙𝑛𝑖ℓ𝑖𝑚𝑖

∗2𝜋

0

𝜋

−𝜋
(𝑟⃗⃗) (

−∇2

2𝑚𝑖ç
∗ ) 𝜙𝑛𝑗ℓ𝑗𝑚𝑗

(𝑟⃗⃗) 𝑟
2

drsin 𝜃𝑑𝜃𝑑𝜙
𝑅

0
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   =
1

𝑚𝑖ç
∗ ∑ 𝑐𝑛𝑖ℓ𝑖𝑚𝑖

∗ 𝑐𝑛𝑗ℓ𝑗𝑚𝑗
{(

ℓ𝑗(ℓ𝑗 + 1) − 𝑛𝑗(𝑛𝑗 − 1)(ζ 𝑖 + ζ 𝑗)
2

2(𝑛𝑖 + 𝑛𝑗 − 1)(𝑛𝑖 + 𝑛𝑗)
+ ζ 𝑗𝑛𝑗

ζ 𝑖 + ζ 𝑗

𝑛𝑖 + 𝑛𝑗
𝑖𝑗

−
ζ 𝑗

2

2
) 𝑆𝑛𝑖ℓ𝑖𝑚 𝑖𝑛𝑗ℓ𝑗𝑚𝑗

𝑟≤𝑅

+
ℓ𝑗(ℓ𝑗 + 1) − 𝑛𝑗(𝑛𝑗 − 1)

2(𝑛𝑖 + 𝑛𝑗 − 1)
𝑅𝑛𝑖+𝑛𝑗−1𝑒−(ζ 𝑖+ζ 𝑗)𝑅 (1 +

(ζ 𝑖 + ζ 𝑗)𝑅

𝑛𝑖 + 𝑛𝑗
)

+
ζ 𝑗𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑅𝑛𝑖+𝑛𝑗𝑒−(ζ 𝑖+ζ 𝑗)𝑅} 

Ek A6 Kuyu dışında kinetik enerji ifadesi: 

 

𝑇𝑛𝑖ℓ𝑖𝑚𝑖𝑛𝑗ℓ𝑗𝑚𝑗

𝑟>𝑅 = ∫ ∫ ∫ 𝜙𝑛𝑖ℓ𝑖𝑚𝑖

∗2𝜋

0

𝜋

−𝜋
(𝑟⃗⃗) (

−∇2

2𝑚𝑑𝚤ş
∗ ) 𝜙𝑛𝑗ℓ𝑗𝑚𝑗

(𝑟⃗⃗) 𝑟
2

drsin 𝜃𝑑𝜃𝑑𝜙
∞

𝑅
  

 

                         =
1

𝑚𝑑𝚤ş
∗ ∑ 𝑑𝑛𝑖ℓ𝑖𝑚𝑖

∗ 𝑑𝑛𝑗ℓ𝑗𝑚𝑗
{(

ℓ𝑗(ℓ𝑗+1)−𝑛𝑗(𝑛𝑗−1)(ζ𝑖+ζ 𝑗)
2

2(𝑛𝑖+𝑛𝑗−1)(𝑛𝑖+𝑛𝑗)
+ ζ 𝑗𝑛𝑗

ζ 𝑖+ζ 𝑗

𝑛𝑖+𝑛𝑗
−𝑖𝑗

                           
ζ 𝑗

2

2
) 𝑆𝑛𝑖ℓ𝑖𝑚𝑖 𝑛𝑗ℓ𝑗𝑚𝑗

𝑟>𝑅 +
ℓ𝑗(ℓ𝑗+1)−𝑛𝑗(𝑛𝑗−1)

2(𝑛𝑖+𝑛𝑗−1)
𝑅𝑛𝑖+𝑛𝑗−1𝑒−(ζ 𝑖+ζ 𝑗)𝑅 (−1 −

(ζ 𝑖+ζ 𝑗)𝑅

𝑛𝑖+𝑛𝑗
) −

                           
ζ 𝑗𝑛𝑗

𝑛𝑖+𝑛𝑗
𝑅𝑛𝑖+𝑛𝑗𝑒−(ζ𝑖+ζ 𝑗)𝑅}  
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Ek B: Dış manyetik alan içerisindeki küresel kuantum nokta yapının atomik 

birimlerdeki Hamiltoniyenin elde edilişi 

𝐻 =
1

2𝑚𝑒
[𝑝⃗ − 𝑞𝐴]

2
+ 𝑉(𝑟) 

𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴 da 𝐵⃗⃗ düzgün homojen ise yani 𝐵⃗⃗ = 𝐵𝑘̂ ise 𝐴 = −
1

2
(𝑟 × 𝐵⃗⃗) =

1

2
(𝐵⃗⃗ × 𝑟) 

[p⃗⃗ +
𝑞

2
( r⃗ × )]

2

= p⃗⃗2 +
𝑞

2
[p⃗⃗(r⃗ × B⃗⃗⃗ ) + (r⃗ × B⃗⃗⃗ )p⃗⃗] +

𝑞2

4
(r⃗ × B⃗⃗⃗)

2
 

L⃗⃗ = r⃗ × p⃗⃗ = −(p⃗⃗ × r⃗) olduğundan 

[p⃗⃗ +
𝑞

2
( r⃗ × B⃗⃗⃗ )]

2

= p⃗⃗2 +
𝑞

2
[B⃗⃗⃗(p⃗⃗ × r⃗ ) − (r⃗ × p⃗⃗ )B⃗⃗⃗] +

𝑞2

4
(r⃗ × B⃗⃗⃗)

2
   

= p⃗⃗2 − 𝑞L⃗⃗. B⃗⃗⃗ +
𝑞2

4
[𝑟2𝐵2 − (r⃗. B⃗⃗⃗)

2
] 

{
𝑞2

4
(r⃗ × B⃗⃗⃗)

2
=

𝑞2

4
(𝑟 × 𝐵⃗⃗)(𝑟 × 𝐵⃗⃗) =

𝑞2

4
(𝑟𝐵 sin 𝜃)(𝑟𝐵 sin 𝜃) =

𝑞2

4
𝑟2𝐵2 sin2 𝜃

=
𝑞2

4
𝑟2𝐵2(1 − cos2 𝜃) =

𝑞2

4
𝑟2𝐵2 [1 − (

𝑟. 𝐵⃗⃗

𝑟𝐵
)

2

]

=
𝑞2

4
𝑟2𝐵2 [1 −

(𝑟. 𝐵⃗⃗)
2

𝑟2𝐵2
] =

𝑞2

4
[𝑟2𝐵2 − (𝑟. 𝐵⃗⃗)

2
]} 

elde edilmiş olur. 

 

𝐻 =
(p⃗⃗)2

2𝑚𝑒
−

𝑞

2𝑚𝑒
L⃗⃗. B⃗⃗⃗ +

𝑞2

8𝑚𝑒
[𝑟2𝐵2 − (𝑟. 𝐵⃗⃗)

2
] + 𝑉(𝑟) 

𝐻 =
(p⃗⃗)2

2𝑚𝑒
−

𝑞

2𝑚𝑒
L⃗⃗. B⃗⃗⃗ +

𝑞2

8𝑚𝑒
𝐵2𝑟2𝑆𝑖𝑛2𝜃 + 𝑉(𝑟) 

Şimdi Hamiltoniyen operatörünü  𝑉(𝑟) =
𝑍𝑒2

4𝜋𝜀0𝑟
+ 𝑉𝑐 için yaparsak; 

−
ℏ2

2𝑚

𝜕2𝜓

𝜕𝑟2
−

1

4𝜋𝜀0

𝑍𝑒2

𝑟
𝜓 −

𝑒

2𝑚
L⃗⃗. B⃗⃗⃗ 𝜓 +

𝑒2

8𝑚
𝐵2𝑟2𝑆𝑖𝑛2𝜃𝜓 + 𝑒𝑉(𝑟)𝜓(𝑟) = 𝐸𝜓(𝑟) 

 

𝜓𝑟 =
𝜓

𝜓0
  ve  [𝜓0] = 𝑎0

3 2⁄
=

(4𝜋𝜀0)3 2⁄ ℏ3

𝑚𝑒3 2⁄ 𝑒3
   tanımlaması yapılırsa 
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−
ℏ2

2𝑚

𝑎0

−
3
2

𝑎0
2  

𝜕2𝜓𝑟(𝑟)

𝜕𝑟𝑟
2

−
1

4𝜋𝜀0

𝑎0

−
3
2𝑒2

𝑎0
 
𝜓𝑟

𝑟𝑟
−

𝑒

2𝑚
ℏ

𝑒

4𝜋𝜀0

𝑎0

−
3
2

𝑎0
2𝛼𝑐

𝐿𝑟𝐵𝑟  𝜓𝑟

+
𝑒2

8𝑚

𝑒2𝑎0

−
3
2𝑎0

2

(4𝜋𝜀0)2(𝛼𝑐)2𝑎0 
4 𝐵𝑟

2𝑟𝑟
2𝑆𝑖𝑛2𝜃𝜓𝑟 +

𝑒

𝑒

𝑒2𝑎0

−
3
2

4𝜋𝜀0𝑎0
4 𝑉(𝑟)𝜓(𝑟)

=
𝑒2𝑎0

−
3
2

4𝜋𝜀0𝑎0
𝐸𝑟𝜓𝑟 

 

𝑎0 =
4𝜋𝜀0ℏ2

𝑚𝑒2 =
ℏ

𝑚𝑒𝛼𝑐
  yi kullanırsak; 𝛼𝑐 =

𝑒2

4𝜋𝜀0ℏ
 

−
ℏ2

2𝑚

𝑚𝑒2

4𝜋𝜀0ℏ2
 
𝜕2𝜓𝑟

𝜕𝑟𝑟
2

−
1

4𝜋𝜀0
𝑒2  

𝑍𝜓𝑟

𝑟𝑟
−

𝑒2

2𝑚

ℏ

4𝜋𝜀0

𝑚𝛼𝑐

ℏ𝛼𝑐
𝐿𝑟𝐵𝑟 𝜓𝑟

+
𝑒2

8𝑚

𝑒2

(4𝜋𝜀0)2

𝑚𝛼𝑐

ℏ(𝛼𝑐)2
𝐵𝑟

2𝑟𝑟
2𝑆𝑖𝑛2𝜃𝜓𝑟 +

𝑒2

4𝜋𝜀0
𝑉𝑟𝜓𝑟 =

𝑒2

4𝜋𝜀0
𝐸𝑟𝜓𝑟 

−
1

2

𝜕2𝜓𝑟

𝜕𝑟𝑟
2

−  
𝑍

𝑟𝑟
𝜓𝑟 −

1

2
𝐿𝑟𝐵𝑟 𝜓𝑟 +

𝑒2

8ℏ

4𝜋𝜀0ℏ

4𝜋𝜀0𝑒2
𝐵𝑟

2𝑟𝑟
2𝑆𝑖𝑛2𝜃𝜓𝑟 + 𝑉𝑟𝜓𝑟 = 𝐸𝑟𝜓𝑟 

−
1

2

𝜕2𝜓

𝜕𝑟2
−  

𝑍

𝑟
𝜓 −

1

2
𝐿𝑟𝐵𝑟 𝜓 +

1

8
𝐵𝑟

2𝑟2𝑆𝑖𝑛2𝜃𝜓 + 𝑉𝑟𝜓𝑟 = 𝐸𝑟𝜓𝑟 
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Ek C : Gaunt katsayılarının binom katsayıları cinsinden ifade edilişi ve rekörsif bağıntıdan 

hesaplanan sonuçlar (Yakar vd., 2007) 

 

Ek C1 ⟨ℓ𝑚|ℓ′𝑚′|𝐿𝑀⟩ ile verilen Gaunt katsayıları Yakar ve ark (2007) tarafından 

binom katsayıları cinsinden aşağıdaki gibi ifade edilmiştir. 

⟨ℓ𝑚|ℓ′𝑚′|𝐿𝑀⟩ = (−1)
ℓ′−ℓ−𝐿

2
𝐹(ℓ′−ℓ+𝐿) 2⁄ (𝐿)𝐹𝐿 (ℓ′ + ℓ + 𝐿) 2⁄

(ℓ′ + ℓ + 𝐿 + 1)𝐹2𝐿(ℓ′ + ℓ + 𝐿)
 

× [
(2𝐿 + 1)(2ℓ + 1)(2ℓ′ + 1)

4𝜋

×
𝐹ℓ+𝑚(ℓ′ + ℓ + 𝑀)𝐹ℓ′+ℓ+𝑀(ℓ′ + ℓ + 2𝐿 + 𝑀)

𝐹ℓ−𝑚(ℓ′ + ℓ − 𝑀)𝐹𝐿−𝑀(2𝐿)𝐹𝐿+𝑀(2𝐿 + 2𝑀)𝐹ℓ′+ℓ−𝑀(2𝐿 + ℓ′ + ℓ + 𝑀)
]

1
2⁄

 

× ∑(−1)𝑞
𝐹𝐿−𝑚−𝑞(ℓ′ − 𝑚′ + 𝐿 − 𝑀 − 𝑞)𝐹𝑞(ℓ + 𝑚 + 𝑞)𝐹ℓ−𝑚−𝑞(ℓ′ + ℓ − 𝐿)𝐹ℓ′+ℓ−𝐿(ℓ′ + ℓ + 𝑀)

𝐹ℓ+𝑚(ℓ′ + ℓ + 𝑀)
𝑞

 

 

𝑚𝑎𝑥{0, 𝐿 − 𝑚 − ℓ′} ≤ 𝑞 ≤ 𝑚𝑖𝑛{ℓ − |𝑚|, 𝐿 − 𝑀, 𝐿 + ℓ′ − 𝑚}, |ℓ − ℓ′| ≤ 𝐿 ≤ ℓ + ℓ′, 𝐿 ≥
|𝑀| ve 𝑀 = 𝑚 − 𝑚′. 
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Ek C2 Rastgele seçilmiş kauntum sayıları için hesaplanan Gaunt katsayıları  

L 
1l  1m  2l  2m  Eq.(4) 

0 2 1 2 1 0.282094791773878E+00 

0.282094791773878E+00
b
 

4 2 1 2 1 -0.161197023870788E+00 

-0.161197023870788E+00
b 

2 3 2 1 1 -0.261169028265409E+00 

-0.261169028265409E+00
b
 

1 2 0 3 -1 0.202300659403421E+00 

0.202300659403421E+00
b 

3 2 0 3 -1 0.126156626101008E+00 

0.126156626101008E+00
b 

8 5 -3 3 -2 -0.577179416122379E-01 

-0.577179416122379E-01
b 

6 5 -3 3 -2 0.166435054107857E+00 

0.166435054107857E+00
b 

4 2 1 6 4 0.246389008389718E+00 

0.246389008389718E+00
b 

20 10 10 10 10 0.124000989596611E-05 

0.124000989596611E-05
b 

10 10 10 10 10 -0.220569655086274E-01 

-0.220569655086274E-01
b 

8 2 1 8 4 0.146978734884738E+00 

0.146978734884738E+00
b 

4 5 -1 3 1 -0.106334650671765E+00 

-0.106334650671765E+00
b 

13 8 7 5 3 -0.629313205158472E-02 

-0.629313205158472E-02
b 

9 8 7 5 3 -0.131589326317861E+00 

-0.131589326317861E+00
b 

27 20 15 9 7 0.132387381565477E-02 

0.132387381565477E-02
b 

17 20 15 9 7 -0.456832005985146E-01 

-0.456832005985146E-01
b 

11 3 -2 10 -5 -0.159852949232758E+00 

-0.159852949232758E+00
b 

6 4 4 4 4 -0.284505520638337E-01 

-0.284505520638337E-01
b 

29 9 9 20 20 -0.228141063914733E-07 

-0.228141063914733E-07
b 

13 6 6 7 7 0.134702006343087E-03 

0.134702006343087E-03
b 

12 11 9 5 -3 -0.150385940825138E+00 

-0.150385940825138E+00
b 

18 10 0 10 0 0.123588851112340E+00 

0.123588851112340E+00
b 

4 3 -1 5 -3 0.144235946147335E+00 

0.144235946147335E+00
b 
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EK Ç: R=1 ve R=2 nokta yarıçaplarında sonlu kuyu içinde ve dışında, sonsuz kuyu 

içinde Z=1, x=0.3, γ=0.2, m=0123 için elde edilen enerji değeri, STO’ların açılım ve 

üstel katsayıları 

Çizelge Ç.1 R=1 nokta yarıçapında sonlu kuyu içinde ve dışında Z=1, x=0.3, 𝛾=0.2, 

m=0123 için elde edilen enerji değeri, STO’ların açılım ve üstel katsayıları 

Enerji(ab)(E1s) 0.0149308390374 

Baz seti sayısı 
ik  ikc  

K
u

y
u

 i
çi

n
d

e 
 

1s 4.643054957558320 -0.146105783084842E+03 

1s 2.981401547087605 0.974140904688170E+03 

1s 4.728776920039579 0.419582503519410E+02 

1s 2.931051654283672 -0.160455452213478E+03 

1s 2.345043740952533 0.206683164549191E+03 

1s 4.188633229982269 0.941775062307761E+02 

1s 2.803184689246878 -0.101594388312514E+04 

K
u

y
u

 d
ış

ın
d

a 

1s 6.835527065818807 -0.365541678477713E+04 

1s 6.458382661325253 -0.700219748915913E+04 

1s 6.127283327683765 0.371124886109057E+04 

1s 6.788715653904264 -0.579571249151806E+03 

1s 6.298388521579385 -0.145652551528584E+04 

1s 7.042776489845846 -0.399450350313331E+05 

1s 6.998071345946654 0.487121000750279E+05 

Enerji(ab)(E2p) 0.0641731517849 

Baz seti sayısı 
ik  ikc  

K
u

y
u

 i
çi

n
d

e 

2p 5.286017182859633 -0.125786706208272E+03 

2p 2.784349623487510 0.134389478801725E+03 

2p 5.197382120928983 0.610751094568953E+03 

2p 4.098522793701495 0.646842264912042E+03 

2p 5.825272381368794 -0.455311025819995E+03 

2p 5.269459164107722 0.209800179286912E+02 

2p 3.680195321377918 -0.847298038915758E+03 

K
u

y
u

 d
ış

ın
d

a 

2p 5.209889864590167 0.129398320715942E+04 

2p 6.135786176502101 -0.660190212271351E+03 

2p 4.931353530790197 -0.306807067283438E+04 

2p 4.998704804256475 -0.361872848814677E+04 

2p 4.796555866821574 0.689277298924026E+03 

2p 5.339851618512110 -0.501211597185896E+04 

2p 5.103880739961916 0.962274931124079E+04 
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Çizelge Ç.1 (Devam) R=1 nokta yarıçapında sonlu kuyu içinde ve dışında Z=1, 

x=0.3, 𝛾=0.2, m=0123 için elde edilen enerji değeri, STO’ların açılım ve üstel 

katsayıları 

Enerji(ab)(E3d) 0.1176504905133 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

3d 3.558542477439886 -0.848950870773065E+03 

3d 3.595497384354026 -0.925745948373301E+03 

3d 4.485674716226181 0.216663583978530E+02 

3d 2.298790829419449 0.118219972820293E+03 

3d 4.646360448360309 -0.162998005819069E+04 

3d 4.435092244155390 0.566388000016627E+03 

3d 4.078484608847938 0.267663293476669E+04 

K
u
y
u
 d

ış
ın

d
a 

3d 5.977304491409809 0.266034497900034E+03 

3d 5.385155313606877 0.579428491493444E+02 

3d 6.507974927031206 0.123616172623078E+05 

3d 5.472184995383594 -0.125314126623431E+04 

3d 4.677923255415171 0.118054197893296E+03 

3d 6.454588576667156 -0.183333157523270E+04 

3d 6.864707327431317 -0.128408979447179E+05 

Enerji(ab)(E4f) 0.1785596113876 

  

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

4f 1.408440769055955 -0.197514232165428E+02 

4f 5.428167229395761 0.138882297091812E+03 

4f 3.837559976132456 0.236522075645885E+03 

4f 3.555227755907112 0.123258495091200E+04 

4f 5.306210859191797 0.834816993824389E+02 

4f 6.941999442719693 -0.940600015090879E+02 

4f 3.813137850896449 -0.159158706521199E+04 

K
u
y
u
 d

ış
ın

d
a 

4f 5.154830284895899 -0.113414973318758E+03 

4f 5.171466923935185 0.524722119135729E+02 

4f 6.217680593003902 0.402685280520283E+04 

4f 6.759616327908340 -0.176367108097747E+05 

4f 5.482564480371863 0.232847758645604E+03 

4f 5.708809859684085 -0.147354307979421E+03 

4f 7.240853278068601 0.189494824096153E+05 
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Çizelge Ç.2 R=2 nokta yarıçapında sonlu kuyu içinde ve dışında Z=1, x=0.3, 𝛾=0.2, 

m=0123 için enerji değeri, STO’ların açılım ve üstel katsayıları 

 

Enerji(ab)(E1s) -0.0026022706971 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

 
1s 5.675786613214588 -0.279167191819557E+00 

1s 8.648161486610865 0.140157204024258E+01 

1s 0.224868795824282 0.108282909225270E+01 

1s 1.733926625354060 0.805806632663453E+00 

1s 8.407149966860507 -0.124970200724093E+01 

1s 1.509891338736171 -0.853857817903392E-02 

1s 0.872120418190822 -0.460568882662983E+01 

K
u
y
u
 d

ış
ın

d
a 

1s 8.196795805114396 -0.104742567704385E+02 

1s 9.639314455392533 0.321747084020413E+01 

1s 2.399553755480347 0.536329494504766E+00 

1s 8.905818920224357 0.170923099593767E+01 

1s 4.914540098602542 0.870217482076754E+01 

1s 3.111584349042177 0.363725542209187E+00 

1s 7.386681004806187 -0.248221677043809E+06 

Enerji(ab)(E2p) 0.0152825168232 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

2p 5.773099596734349 -0.143778057491085E+02 

2p 2.282889915946047 -0.312591358517694E+01 

2p 0.360021054969221 0.109325069183906E+01 

2p 2.853201770430894 0.185064223160910E+02 

2p 5.787427853588930 0.194917874593850E+02 

2p 3.973723994226226 -0.161884523040591E+02 

2p 1.212034652461389 -0.720396288651136E+01 

K
u
y
u
 d

ış
ın

d
a 

2p 4.418027490895443 0.566780752045518E+02 

2p 6.718321787708275 0.199015052514895E+03 

2p 10.095507472189148 0.832261989123601E+01 

2p 4.903990000252447 -0.998090659785866E+02 

2p 4.296030423687387 0.572656324953614E+02 

2p 4.128853197725944 -0.593866786112160E+02 

2p 8.235851853385004 -0.115084091708318E+07 
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Çizelge Ç.2 (Devam) R=2 nokta yarıçapında sonlu kuyu içinde ve dışında Z=1, 

x=0.3, 𝛾=0.2, m=0123 için enerji değeri, STO’ların açılım ve üstel katsayıları 

 

Enerji(ab)(E3d) 0.0334539223094 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

3d 4.738594178377467 -0.113064660528891E+03 

3d 1.589637181930681 -0.104877065956304E+02 

3d 4.498968923883558 -0.106558953165224E+03 

3d 3.277311687950673 -0.708617105082337E+03 

3d 3.960165673139358 0.706272478099422E+03 

3d 4.159430661770731 -0.534598083441105E+02 

3d 2.709460978427817 0.288156234907946E+03 

K
u
y
u
 d

ış
ın

d
a 

3d 5.069637771204206 -0.218294987424839E+05 

3d 4.398964331554972 0.232631863766001E+04 

3d 4.131549572988503 0.634702621120503E+04 

3d 5.380802142804972 0.814596720690344E+05 

3d 4.188318343326603 -0.830380736840331E+04 

3d 5.807093453663958 -0.149769686941335E+05 

3d 5.338762871710927 -0.326249022359216E+05 

Enerji(ab)(E4f) 0.0535749721926 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

4f 2.294464475203582 0.769056114538134E+02 

4f 5.068733413825871 -0.137000042434710E+02 

4f 3.733907706585554 0.559555844470760E+03 

4f 4.453824590817787 -0.435515828063041E+02 

4f 3.468667349204475 -0.548211841636609E+03 

4f 5.613410412765772 -0.118721192889336E+02 

4f 1.679445151378285 -0.151749944650661E+02 

K
u
y
u
 d

ış
ın

d
a 

4f 5.182522866033011 -0.772872435097425E+03 

4f 5.197753556421503 -0.963066377036943E+03 

4f 5.412127258430768 0.693582823833503E+04 

4f 5.571009746077531 -0.418847167009932E+05 

4f 3.766365500873023 -0.270773467139930E+02 

4f 4.272395292199549 0.358344238965559E+03 

4f 5.889958108678016 0.655805417617305E+05 



 

79 

 

Çizelge Ç.3 R=1 nokta yarıçapında sonsuz kuyu içinde Z=1, x=0.3, 𝛾=0.2, m=0123 

için enerji değeri, STO’ların açılım ve üstel katsayıları 

 

Enerji(ab)(E1s) 0.0271634962 

Baz seti sayısı 
ik  ikc  

K
u
y
u

 i
çi

n
d
e 

1s 5.720926753898663 -0.360751857711E+01 

1s 1.748386928072556 -0.209122299345E+02 

1s 11.599766282174546 -0.703790499830E-01 

1s 0.312476500643129 0.443758622181E+01 

1s 3.536330391874470 0.139081389988E+02 

Enerji(ab)(E2p) 0.095337481 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

2p 57.442551599026132 -0.430456888472E-02 

2p 1.895032633433436 0.230781396153E+03 

2p 50.874780064698356 -0.262267896295E-02 

2p 3.350529289229958 -0.612700314386E+02 

2p 1.596182309756163 -0.160562780530E+03 

 

 

Enerji(ab)(E3d) 0.173761357 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

3d 4.149051854990039 0.778166220382E+03 

3d 2.930026942315004 0.461369619400E+03 

3d 5.219132793926557 -0.143234545482E+03 

3d 2.810650202256157 0.108977902938E+04 

3d 3.067515177508485 -0.218551167394E+04 

Enerji(ab)(E4f) 0.265400732 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

4f 3.746058002408961 -0.150709040059E+04 

4f 7.542338863192025 -0.117382746697E+04 

4f 1.986273133100385 0.879467182221E+03 

4f 5.589746458014304 0.215226023656E+04 

4f 1.693049177654420 -0.502849889593E+03 
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Çizelge Ç.4. R=2 nokta yarıçapında sonsuz kuyu içinde Z=1, x=0.3, 𝛾=0.2, m=0123 

için enerji değeri, STO’ların açılım ve üstel katsayıları 

 

Enerji(ab)(E1s) -0.00142999942 

Baz seti sayısı 
ik  ikc  

K
u
y
u

 i
çi

n
d
e 

 
1s 2.466182404342958 -0.226869694931E+00 

1s 2.131226372661700 0.620703938341E+00 

1s 0.700250666945850 -0.597879526107E+01 

1s 2.226982147203455 -0.231347822679E+00 

1s 0.310545168579007 0.273410954825E+01 

Enerji(ab)(E2p) 0.0191899806 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

2p 56.341904662505698 -0.627619400555E+00 

2p 1.441533901708723 0.326532051603E+02 

2p 130.861692096132460 -0.142353956921E+01 

2p 1.127590947701715 -0.671368780231E+02 

2p 0.913396657045857 0.323884646461E+02 

 

 

Enerji(ab)(E3d) 0.0403979395 

Baz seti sayısı 
ik  ikc  

K
u
y
u

 i
çi

n
d
e 

3d 1.414969033051170 0.398366153637E+02 

3d 1.768659359156914 -0.449623682503E+02 

3d 1.359621308589739 0.383657357919E+02 

3d 0.769028321412173 0.104228550378E+02 

3d 0.998188510413729 -0.427830069866E+02 

Enerji(ab)(E4f) 0.0645695733 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

4f 0.792303020270732 0.276336724125E+01 

4f 4.819069584337679 0.379787858728E+02 

4f 1.397925931084631 -0.619126472818E+02 

4f 3.284562790018917 -0.499005202267E+02 

4f 1.607539979980507 0.817273894302E+02 
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Çizelge Ç.5.R=1 nokta yarıçapında sonsuz kuyu içinde Z=1, x=0.3, 𝛾=2, m=0123 

için enerji değeri, STO’ların açılım ve üstel katsayıları 

 

Enerji(ab)(E1s) 0.0271634955 

Baz seti sayısı 
ik  ikc  

K
u
y
u

 i
çi

n
d
e 

 
1s 5.720926753898588 -0.362303857460E+01 

1s 1.748386928071629 -0.209177887594E+02 

1s 11.599766288411569 -0.641801799909E-01 

1s 0.312476500643128 0.443838316821E+01 

1s 3.536330391811947 0.139230862339E+02 

Enerji(ab)(E2p) 0.106006415 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

2p 0.022758814733060 -0.742389219192E+04 

2p 0.063115224676321 0.265161545268E+05 

2p 28.391897624902239 -0.295113281515E+00 

2p 86.009888494510975 -0.101114403324E+02 

2p 0.080101020350917 -0.191083628664E+05 

 

 

Enerji(ab)(E3d) 0.194371788 

Baz seti sayısı 
ik  ikc  

K
u
y
u

 i
çi

n
d
e 

3d 3.663339506650494 0.784626655099E+03 

3d 4.409657803797010 0.564123017558E+00 

3d 2.244386427866946 0.106229477167E+00 

3d 2.579422247155640 0.558740548894E+03 

3d 3.068684177905690 -0.134467804217E+04 

Enerji(ab)(E4f) 0.296334578 

Baz seti sayısı 
ik  ikc  

K
u
y
u
 i

çi
n
d
e 

4f 8.841042083275319 -0.885784632323E+03 

4f 3.655785367296179 -0.166411269634E+04 

4f 5.798279875174870 0.163753517714E+04 

4f 2.450939538186677 0.147259583784E+04 

4f 2.159655332734594 -0.769659682479E+03 
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