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Deri kanseri dünya genelinde son yıllarda oldukça sık karşılaşılan bir halk sağlığı 

sorunudur. Güneş ışınlarının zararlı etkisi sonucunda onarılamayan DNA hasarına 

bağlı olarak deri hücrelerinin kontrolsüz büyümesi ile ortaya çıkmaktadır. Farklı türleri 

bulunan deri kanserinin en tehlikelisi olan ve insan yaşamını tehdit eden türü 

melanomadır. Diğer deri kanserlerinin yayılma kapasiteleri sınırlı iken, melanomanın 

esas tehlikesi çok hızlı yayılmasıdır. Neyse ki melanoma erken teşhis edildiğinde %99 

oranında tedavi edilebilir bir hastalıktır. Hastalığın teşhisi için dermoskop cihazı ile 

elde edilen dermoskopik görüntüler kullanılmaktadır. Hekimler tarafından incelenen 

görüntüler üzerinden elde edilen bilgiler ışığında lezyon şüpheli görülürse biyopsi 

yapılarak kesin teşhis konulmaktadır. Teşhis başarısı çoğunlukla hekim deneyimine 

bağlı olmakla birlikte özneldir. Yanlış teşhisler sonucu gereksiz biyopsi sayılarında 

artış görülmektedir. Ayrıca hastalığın geç teşhis edilmesi de ortaya çıkan olumsuz 

durumlardan bir tanesidir. Bu nedenle, güvenilir otomatik melanoma tarama 
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sistemleri, hekimlerin kötü huylu cilt lezyonlarını mümkün olduğunca erken tespit 

etmeleri için çok yardımcı olacaktır.  

Son beş yıl içinde derin öğrenme yöntemleri klasik görüntü işleme metotlarını geride 

bırakarak sınıflandırma problemlerinde büyük başarılar elde etmiştir. Özellikle 

evrişimsel sinir ağları medikal görüntüler üzerinden birçok hastalığın teşhisini başarı 

ile gerçekleştirmiştir. Bununla birlikte derin öğrenme yöntemlerinin başarım oranı 

kullanılan veri setinin büyüklüğü ile doğru orantılıdır. Bu çalışmada derin öğrenme 

yöntemlerinden evrişimsel sinir ağları vasıtası ile dermoskopik görüntülerden oluşan 

kısıtlı bir veri seti kullanılarak melanom olan lezyonların tespitine odaklanılmıştır. Bu 

amaçla üç aşamadan oluşan bir boru hattı mimarisi oluşturulmuştur. Önerilen 

mimarinin ilk aşaması lezyon üzerindeki kılların tespiti ve yok edilmesidir. Bu 

aşamada aktarım öğrenme yönteminden faydalanılarak Vgg tabanlı bir evrişim ağı ile 

üzerinde kıl olan lezyon tespit edildikten sonra üzerindeki kıllar çeşitli görüntü işleme 

yöntemleri ile temizlenmiştir. İkinci aşamada lezyonun sağlıklı dokudan ayrılmasıdır. 

Bu aşamada Yolov3 derin ağı görüntü içinde lezyonun bulunduğu bölgeyi tespit için 

düzenlenerek yeniden eğitilmiştir. Elde edilen yer bilgisi GrabCut algoritmasında 

kullanılarak lezyon bölgesi arka plandan ayrılmıştır. Son aşama ise lezyonun 

sınıflandırılmasıdır. Bu aşamada MobileNet, ResNet-50, Xception ağları aynı veri 

üzerinde ayrı ayrı eğitilerek test aşamasında oylama yöntemi ile sınıflandırma 

gerçekleştirilmiştir. Önerilen yöntemin ilk aşaması olan kılları tespit etme silmede 

%98 hassasiyet elde edilmiştir. Segmentasyon kısmında %90 hassasiyet ve en son 

sınıflandırmada ise %91 hassasiyet elde edilmiştir. 

 

 

Anahtar kelimeler: Deri Lezyonları, Deri Kanseri, Melanoma, Derin Öğrenme, 

Evrişimsel Sinir Ağları, Bilgisayarlı Görü, Medikal Görüntü 

İşleme. 

  



iii 

 

ABSTRACT 

 

DIAGNOSIS OF MELANOMA IN DERMOSCOPIC IMAGES WITH DEEP 
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Kırıkkale University 
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Department of Computer Engineering, Ph. D. Thesis 

Supervisor: Assoc. Prof. Halil Murat ÜNVER 

December 2019, 148 pages 

 

 

Skin cancer is a common worldwide public health problem in recent years. It is caused 

by the uncontrolled growth of skin cells due to irreparable DNA damage as a result of 

the harmful effect of sunlight. Melanoma is the most dangerous type of different skin 

cancers that threaten human life. While the spreading capacity of other skin cancers is 

limited, the main danger of melanoma is its rapid spread. Fortunately, melanoma is a 

99% curable disease when diagnosed in early stages. Dermoscopic images obtained 

with dermoscopic devices are used for the diagnosis of the disease. If the lesion is 

suspected in the light of the information obtained from the dermoscopic images 

examined by physicians, a definitive diagnosis is made by biopsy. The success of 

diagnosis depends on the experience of the physician and is subjective. The number of 

unnecessary biopsies increases due to misdiagnosis. In addition, late diagnosis of the 

disease is one of the emerging adverse conditions. Therefore, reliable automated 

melanoma screening systems will help physicians to detect malignant skin lesions as 

early as possible. In the last five years, deep learning methods have achieved great 

success in classification problems, leaving classical image processing methods behind. 
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Especially convolutional neural networks have successfully performed the diagnosis 

of many diseases through medical images. However, the performance of deep learning 

methods is directly proportional to the size of the used data set. This study focused on 

the detection of lesions with melanoma using a limited data set of dermoscopic images 

via convolutional neural networks, one of the deep learning methods. For this purpose, 

a pipeline architecture consisting of three phases has been created. The first stage of 

the proposed architecture is the detection and removing of the hairs on the lesion. At 

this stage, after the lesion on the hair was detected with a Vgg based convolutional 

neural network by using transfer learning method, the hairs on it were cleaned with 

various image processing methods. The second stage is the segmentation of the lesion 

from healthy tissue. At this stage, the Yolov3 deep network was rearranged and trained 

to detect the location of the lesion. Using the obtained location information of the 

lesion area, GrabCut algorithm segmented skin lesion from the background. The final 

stage is the classification of the lesion. At this stage, MobileNet, ResNet-50, Xception 

networks were trained separately on the same data and at the test stage, classification 

was performed by using a voting method. The first step of the proposed method is to 

detect hairs and remove, obtained 98% accuracy on ISBI 2017 dataset. In the same 

dataset, 90% sensitivity was achieved in the segmentation part. And finally, in the 

classification stage, 91% sensitivity was obtained. 

 

 

Key words: Skin Lesions, Skin Cancer, Melanoma, Deep Learning, Convolutional 

Neural Networks, Computer Vision, Medical Image Processing. 
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1. GİRİŞ 

Sürekli gelişip değişmekte olan teknoloji hayatımızın vazgeçilmez bir parçası haline 

gelmiştir. Gelişen teknoloji ile birlikte sürekli ilerlemeye ve araştırmaya açık olan tıp 

alanında, hekimler teşhis ve tedavi becerilerini geliştirmek için sonsuza kadar sürecek 

olan bir öğrenme süreci içeresindedirler. Doğru bir teşhis hastalığın tedavi sürecinde 

yer alan en önemli faktörlerden bir tanesidir. Bu süreçte ortaya çıkabilecek hatalar, 

yanlış tedaviye, tedavinin gecikmesine veya psikolojik hasarlara neden olmaktadır. Bu 

amaçla teşhis oluşumunun ve erişilebilirliğinin iyileştirilmesi tedavi sürecinde anahtar 

rol oynamaktadır [1]. Teşhis, iş birliğin hayati bir önem taşıdığı karmaşık ve çok 

disiplinli bir süreçtir. Bu süreç içirişinde teşhise yardımcı olacak çeşitli araçlar ve 

yöntemlerden faydalanılmaktadır. Zaman içerisinde bilgisayarların oldukça 

yaygınlaşması ile birlikte medikal alanında kullanılmaları da kaçınılmaz hale 

gelmiştir. İlk örnekler 1960’lı yıllarda X-ray görüntülerini analiz eden bir bilgisayarın 

kullanılması ile ortaya çıkmıştır [2-4]. Ancak bu sistemlerin o yıllarda bilgisayarların 

sahip olduğu sınırlı görme yetenekleri, görüntü işleme kabiliyetleri ve donanımsal 

kısıtlar sebebi ile bir hekimin yerini alamayacağı ortaya çıkmıştır. Çeşitli etik ve ahlaki 

nedenler sebebi ile araştırmacılar bilgisayarlı otomatik teşhis yöntemleri yerine 

hekimlere teşhis sürecinde yardımcı olacak bilgisayar destekli teşhis sistemleri 

(BDTS) üzerinde yoğunlaşmışlardır [5]. 

Günümüzde farklı makine öğrenmesi yöntemleri ile tasarlanan BDTS birçok tıbbi 

alanda aktif olarak kullanılmaktadır. Söz konusu sistemler, bu örneklerle sınırlı 

olmamakla birlikte meme kanseri [6], akciğer kanseri [7], bazı beyin hastalıkları [8] 

ve diyabetik retinopati [9] gibi çeşitli hastalıkların tespitinde kullanılmaktadır. Makine 

öğrenmesi yöntemleri sadece teşhis süreci ile sınırlı kalmamakla birlikte, görüntü 

işleme, kişisel tedavi, elektronik sağlık kayıtları, büyük veri çalışmaları (gen 

haritaları), ilaç keşfi, robotik cerrahi gibi birçok alanda kullanılmaktadır. Makine 

öğrenmesinin bir alt dalı olarak ortaya çıkan derin öğrenme görüntülerin çok aşamalı 

işlenmesinden faydalanarak daha karmaşık özelliklerini ortaya çıkaran bir yöntemdir. 

Bu özellikler sayesinde yüksek başarıya sahip görüntü sınıflandırıcılar tasarlamak 

mümkün olmaktadır. Son beş yıl içinde derin öğrenme yöntemleri klasik görüntü 

işleme yöntemlerini geride bırakarak sınıflandırma problemlerinde büyük başarılar 
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elde etmiştir. Özellikle evrişimsel sinir ağları medikal görüntüler üzerinden birçok 

hastalığın teşhisinde başarılı olmuştur. 

 Amaçlar 

Bu çalışmada deri kanserinin teşhisi için derin öğrenme yöntemlerinin kullanımına 

odaklanılmaktadır. Deri kanserleri içerisinde en tehlikeli ve ölümcül kanser türü olan 

melanomanın görülme oranı son yıllarda oldukça artmıştır. Amerika Birleşik 

Devletleri'ndeki Amerikan Kanser Derneğinin yıllık raporuna göre 2019 yılında 

yaklaşık 96480 yeni melanoma vakası olması beklenirken, aynı yıl için de 7230 kişinin 

bu hastalıktan öleceği tahmin edilmektedir [10]. Melanoma %1,26 ölüm oranı ile diğer 

deri kanserleri içinde en ölümcül olanıdır [11]. Neyse ki erken teşhis edildiğinde %99 

oranında tedavi edilebilir bir hastalıktır. Günümüzde deri lezyonlarının teşhisinde 

hekimler lezyonların bazı özelliklerini baz alan öznel yöntemler kullanmaktadır. 

Doğru teşhis koyma hekimin eğitimi, mesleki deneyimi ve vakayı yorumlamasına 

yüksek oranda bağlıdır. Kesin teşhis biyopsi işlemi ile anlaşılmakla birlikte, yanlış 

teşhisler sonucu gereksiz yere biyopsiler yapılmaktadır. Bu bilgiler ışığında gereksiz 

biyopsilerin önüne geçmek ve erken teşhis ile ölümleri engellemek için BDTS’ler 

önemli fırsatlar sunmaktadır.  

Makine öğrenmesi yöntemleri kullanılarak deri lezyonlarının sınıflandırılması popüler 

bir çalışma alanıdır [12]. Geçmiş yaklaşımlar iki adımdan oluşmaktadır; birincisinde 

görüntü işleme yöntemleri kullanılarak el ile dizayn edilmiş özellikler çıkarılır. 

İkincisinde ilk adımda çıkarılan özellikler ile sınıflandırıcı algoritma eğitilmektedir. 

Bu yaklaşımlardaki darboğaz sonuçların tasarlanan özellik çıkarıcının başarısına bağlı 

olarak değişmesidir. Bu yöntemler hekimleri teşhis aşamasında kullandıkları görsel 

teşhis özelliklerini taklit etme eğilimindedirler. Buradan yola çıkarak bu tez 

çalışmasında kendi özelliklerini kendisi öğrenen derin öğrenme temelli bir melanoma 

tespit sistemi geliştirilmesi hedeflenmektedir.  

 Araştırma Soruları 

Bu çalışmanın amacı derin öğrenme yöntemlerinden faydalanılarak az sayıda ve 

dengesiz veri seti ile deri kanserinin tespiti için kullanılacak bir boru hattı mimarisi 

oluşturmaktır. Oluşturulan mimari üç temel adımdan oluşmaktadır. Bunlar lezyon 
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üzerindeki gürültülerin temizlenmesi, lezyonun sağlıklı deriden ayrılması ve 

sınıflandırmanın yapılmasıdır. Bu çalışmanın amacını irdelemek için bazı araştırma 

soruları sormak gereklidir ve bu sorular aşağıdaki gibidir.  

1- Hangi aktarım öğrenme konfigürasyonu deri kanserinin sınıflandırılmasında daha 

iyi sonuçlar vermektedir? 

Daha önce ImageNet verisi ile eğitilmiş ve başarılı sonuçlar elde etmiş Vgg, 

ResNet, IncetionV3, Xception, MobileNet gibi derin ağların ağırlıklarını 

kullanarak deri kanseri verisi üzerindeki başarım oranları farklı konfigürasyonlar 

denenerek bir karşılaştırma yapılacaktır. Söz konusu ağların evrişimsel 

katmanlarının özellik çıkarıcı olarak kullanıldığında elde edilen sonuçlar 

doğrultusunda ince ayarlar yapılarak en iyi aktarım öğrenme konfigürasyonun elde 

edilmesi planlanmaktadır.  

2- Medikal alanda veri elde etmenin zorluğunun sonucu olarak yetersiz veri veya veri 

içindeki sınıflara ait örneklerin dengesizliğinin sınıflandırmaya olan olumsuz 

etkisi (ezberleme) ve bu etkiyi azaltmak için alınması gereken önlemler nelerdir? 

Dengesiz veri seti ile başa çıkmak için kullanılan yöntemlerden en önemlisi yapay 

veri çoğaltmadır. Eğitimde önce kullanılan bu yöntemde hem veri hem de özellik 

uzayı yapay olarak çoğaltılabilmektedir. Bu yöntem ile sayıca az olan sınıfın 

örnekleri temel alan kopyalar veya yapay örnekler ile veri seti dengelenmeye 

çalışılmaktadır. Ayrıca bu yöntem tüm veri seti üzerinde uygulanarak daha büyük 

bir veri seti elde etmek için de kullanılmaktadır. Eğitimden sonra test aşamasında 

değerlendirme kriterleri iyi seçilmeli, bu kriterler seçilirken dengesiz veri seti 

kullanıldığı göz önünde bulundurulmalıdır. Bu bağlamda deri lezyonlarının 

sınıflandırılmasında kullanılacak uygun veri çoğaltma yöntemleri ve 

değerlendirilme kriterleri belirlenerek kullanılacaktır. 

Derin öğrenme yöntemlerinde çok sık ortaya çıkan aşırı uyum yani ezberlemeye 

dikkat edilmelidir. Özellikle önceden eğitilmiş derin ağlarda aşırı uyumun ne 

zaman ortaya çıkacağı ve engellemek için alınacak önlemler belirlenmelidir. Bu 

amaçla rastgele veri çoğaltma, iletim sönümü ve düzenlileştirme gibi yöntemlere 

başvurulacaktır.  
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3- Deri lezyon görüntülerinde ön işleme aşamalarının segmentasyon için önemi var 

mıdır? 

Görüntü üzerindeki gürültülerden biri olan kılların segmentasyon performansına 

olan etkisi incelenecek, söz konusu kılların temizlenmesi için bir yöntem 

geliştirilecektir. Ayrıca segmentasyon yapılmış görüntüler ile yapılmamış 

görüntülerin sınıflandırma sonuçları karşılaştırılacaktır. 

4- Farklı derin ağ mimarilerinin deri lezyonları veri seti üzerinde farklı özellikleri 

ayırma gücü var mıdır, bu güç tüm modellerin birleştirilerek deri lezyonlarının 

sınıflandırılmasında olumlu yönde kullanılabilir mi? 

Farklı evrişimsel ağların deri lezyonlarının sınıflandırmadaki performansları göz 

önünde bulundurularak her birinin güçlü yanı alınıp birleştirilmek sureti ile daha 

iyi bir sınıflandırıcının tasarlanması planlanmaktadır.  
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2. DERİN ÖĞRENME 

Yirminci yüzyılın ortalarında Alan Turing tarafından makine öğrenmesi hakkında ileri 

sürülen fikirler hız kazanarak gerçekleşmeye devam etmektedir. Turing testi yapay bir 

sistemin insan ile etkileşime girmesi halinde akıllı olacağını varsayarken, başarı 

durumunu ise etkileşimde bulunulan insanın bunun farkında olmamasına 

bağlamaktadır [13]. Böylelikle makine öğrenmesi sistemleri toplum içine entegre 

edilmiş halde, çevrim içi aramalardan, kişiselleştirilmiş pazarlama amaçlarına, 

finansal ve ekonomik tahminlere kadar birçok alanda kullanılabilir. Dahası makine 

öğrenmesi tıp dünyasına girmeye başlamıştır [14]. Makine öğrenmesi BDTS ve kişisel 

tedavi planlaması alanlarında ileriye dönük açık bir yol izlemektedir. Mevcut 

yöntemlerin popülaritesi göz önüne alındığında, tıp dünyasında inkâr edilemez 

derecede güçlü teknikler dikkat çekmektedir. Bu sebepten ötürü söz konusu alanda 

çalışanların da yöntemlerin çalışma prensipleri hakkında fikir sahibi olmaları 

önemlidir. Bu yüzden tezin bu bölümü okuyucunun derin öğrenme konseptini 

anlamasını, makine öğrenmesi tekniklerini kullanırken dikkat etmesi gereken kritik 

noktaları fark etmesini amaçlamaktadır. Bu bölümde temel makine öğrenmesi kavram 

ve terimlerinin açıklaması yapılmaktadır. Problemin biyolojik doğası ile birlikte sinir 

bilim ile makine öğrenmesi arasındaki etkileşim ele alınmaktadır. Bu kavramlar ile 

birlikte derin sinir ağlarının ortaya çıkış sürecine değinilmiştir. Farklı yapılardaki derin 

sinir ağları gözlemlenerek mimarileri ve çalışma prensipleri incelenmiştir. Bu nedenle 

bu bölüm deri lezyonlarının sınıflandırılması için kullanılan BDTS’lerde faydalanılan 

sinir ağlarını temel seviyede tanıtmayı amaçlamaktadır. Hedeflenen sistem bir görüntü 

sınıflandırma problemi olduğu için bütün anlatımlar görüntüler üzerinden yapılacaktır.  

  Makine Öğrenmesi 

Makine öğrenmesi, gerçek dünyadan elde edilen verilerin bilgisayara öğretilmesi veya 

bilgisayarın gerçek dünya ile etkileşimi sonucunda elde ettiği verileri işleyerek karar 

verme, anlama, yorumlama yeteneği kazanmasını sağlayan bir araştırma alanıdır [15]. 

T. Mitchell tarafından yapılan hesaplamalı öğrenme tanımına göre: “Bir bilgisayar 

programı deneyimlerinden (D) öğrendiği aynı sınıfa ait görevlerde (G) performansı (P) 
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ölçebilir. Eğer T görevlerindeki performansı P olarak ölçülürse, deneyimleri (D) 

gelişme gösterecektir” [16].  

Görev: Eldeki bir verinin sahip olduğu bir dizi özellik kullanılarak istenilen çıktıya 

göre haritalandırılmasıdır. Daha somut bir örnek vermek gerekirse, bir görüntü 

sınıflandırma probleminde özellikleri ifade eden piksel değerleri, bazı görsel 

karakteristikler (kenar, köşe, şekiller) kullanılarak, sınıflandırmanın hedefini yani arzu 

edilen etiket ya da sınıf değerini elde etmektir. Makine öğrenmesi esas gücünü girişler 

ve çıkışlar arasında bulunan ve insan tarafından analiz edilemeyecek ilişkileri fark edip 

kullanabilmesinden almaktadır [15]. Klasik makine öğrenmesi yöntemlerinde 

problemlerin çözülmesi için veriden elde edilmesi gereken özellikler araştırmacı 

tarafından belirlenmektedir, bu durum problemin çözümünde araştırmacının 

deneyimini ön plana çıkarmaktadır. Derin öğrenme ile birlikte veri üzerinden kendi 

özelliklerini öğrenen öğrenme algoritmaları ortaya çıkarak araştırmacının deneyim 

faktörünü ortadan kaldırmıştır [17]. 

Performans: Makine öğrenmesi algoritmaları genel olarak N adet örnekten oluşan 

1{ , }Nx x x=   bir veri üzerinde eğitilir ve bu veriye eğitim seti denilmektir. Bu 

verileri parametre olarak alan bir ( )f x fonksiyonu sayesinde girdi ve çıktı arasında 

bir ilişki elde edilir. Eğitim setindeki her bir verinin algoritma tarafından işleme 

alınması sonucu bir sonuç elde edilmektedir. Beklenen sonuç ile elde edilen sonuç 

arasındaki fark algoritmanın doğru çalışma performansını ortaya koymaktadır. Bu 

performansı ölçmek için nicel bir değerlendirme yapılması gerekmektedir. Bu 

değerlendirme için genellikle doğruluk yani algoritmanın doğruluk oranı tahmin ettiği 

sonuçlar ve hata oranı, algoritmanın yanlış tahmin ettiği sonuçlar kullanılmaktadır. 

Ancak bu ölçütlerin seçilmesi algoritmadan istenilen göreve göre de 

değişebilmektedir. Performans değerlendirmesinde diğer önemli bir noktada ise, 

algoritmanın performansının daha önce görmediği bir test verisi üzerinde yapılmasıdır. 

Öğrenme: Bir makine öğrenmesi (MÖ) algoritmasının belirli bir görevi 

öğrenebileceği "deneyim", eğitim süreci boyunca sunulan mevcut verilere bağlı olarak 

değişebilmektedir [18]. Bu nedenle bir MÖ algoritmasının bir görevi yerine getirmesi 

için farklı öğrenme yöntemleri geliştirilmiştir. 
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Denetimli Öğrenme: Son yıllarda oldukça popüler olan bu öğrenme türünde MÖ 

sistemi girdilere karşılık etiketli çıktıları olan bir veri ile eğitilmektedir. Denetimli 

öğrenmede görev, bir x girdisinin istenilen hedef olan y çıktısı ile eşleştirilmesinden 

ibarettir. MÖ sistemi bu eşleşmeyi kendisine verilen bir x girdisi için daha önceki 

deneyimlerinden yola çıkarak bir y çıktısı üreterek elde etmektedir. Denetimli 

öğrenme problemleri sınıflandırma ve regresyon olmak üzere iki grup altında 

toplanmaktadır. Bir regresyon probleminde algoritmanın girdiye karşılık çıktısı gerçek 

veya sürekli bir değer olmaktadır. Bir kişinin yaşını tahmin etme, kilosunu tahmin 

etme veya satılık bir arabaya değer biçme regresyon problemine ait bazı örneklerdir. 

Sınıflandırma problemlerinde ise algoritmaya verilen girdi karşılığında algoritmanın 

cevabı bir kategori (sınıf) olmaktadır. Bir görüntü içinde belirlenen hastalığın varlığı 

ya da yokluğu veya bir mailin spam veya spam değil şeklinde ayrılması sınıflandırma 

problemlerine örnek olarak gösterilebilir.  

Denetimsiz Öğrenme: Bu öğrenme türünde MÖ algoritması etiketi olamayan bir veri 

ile beslenerek bu verinin sahip olduğu gizli yapıyı ve ilişkileri keşfederek veri 

üzerinden bilgi elde eder. Popüler uygulamaları arasında kümeleme (benzer verileri 

bir arada gruplama), yoğunluk tahmini (girdi uzayında verinin olasılık dağılımının 

keşfedilmesi) yer almaktadır. 

Pekiştirmeli Öğrenme: Pekiştirmeli öğrenmede sistem yalnızca etiketlenmemiş 

verileri alır. Ancak sistem, çevre ile etkileşimi sonucunda kendi performansı hakkında 

pozitif veya negatif geri bildirimler elde eder. Bu geri bildirimleri kullanarak öğrenir 

ve kendini adapte eder. Bir labirent robotunun labirent içini öğrenerek çıkışı bulması 

bu öğrenmeye örnek olarak gösterilebilir. 

Yarı Denetimli Öğrenme ve Kendi Kendine Öğrenme: Denetimli ve denetimsiz 

öğrenmenin arasında kalan öğrenme yöntemidir. Bu öğrenme türünde kısmen 

etiketlenmiş veri seti kullanılmaktadır. Etiketlenmiş veri kümelerinin elde edilmesi 

zaman alıcı ve maliyetli bir işlemdir. Kullanıma açık olan etiketli veri setleri ise 

sınırlıdır. Bu nedenle, yarı denetimli öğrenmenin amacı, sınırlı bir etiketli veriyi 

öğrenmeyi geliştirmek için etiketlenmemiş verilerle desteklemektir. Bu öğrenme 

türünün daha gelişmiş versiyonu kendi kendine öğrenmede ise etiketli veri sınıflarının 

herhangi birinden olduğu tahmin edilmeyen etiketsiz verilerle destelenmektedir [19]. 
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2.1.1 Model İnşa Etme 

Bir MÖ algoritmasının oluşturulması için çeşitli adımlar vardır. Bu adımlar sırası ile 

şöyledir. İlk olarak bir model oluşturulur, oluşturulan model probleme ait veri ile 

beslenir, sonra bir maliyet fonksiyonu belirlenir ve bu maliyet fonksiyonu ile model 

içindeki parametreler değiştirilerek ile optimize edilmesi sağlanır. Bu sayede model 

probleme adapte olur. Genellikle denetimsiz öğrenmede amaç olasılık fonksiyonunu 

maksimize ederek modelin veri üzerinde başarısının artması veya girdi ve çıktılar 

arasında sağlıklı bir ilişki kurmasıdır. Bu durum denetimli öğrenmede, negatif log-

olasılık maliyet fonksiyonun minimize edilmesi ile elde edilebilmektedir. Alternatif 

bir maliyet fonksiyonu olan ortalama kareler hatası (mean square error, MSE) ile 

beklenen çıktı ile modelin verdiği çıktı arasındaki farkın kareler toplamlarını hesaplar 

Hesaplanan değerler minimize edilmeye çalışılarak modelin veri üzerindeki 

hakimiyetini arttırılması amaçlanmaktadır. Farklı problemler için özel maliyet 

fonksiyonu seçilmesi modelin efektif eğitimi için önemli bir etmedir. 

2.1.2 Model Seçimi ve Değerlendirme 

Genel olarak bir model sadece kendi içinde bulunan parametrelerden p (ortalamalar, 

ağırlıklar, kovaryans matrisleri vb.) oluşmamaktadır. Bu parametrelerin yanında 

model için önemli olan modelin kurulumunda kullanılan hiper parametreler h

(modelin türü, veri giriş özellikleri, boyut vb.) bulunmaktadır. Bu durumu bir 

fonksiyon ile ifade edecek olursak ( , )f p h  olarak tanımlayabiliriz. Tüm hiper 

parametreler ayarlandığında, model eğitim esansında kendi parametrelerini optimize 

eder ve kendini test veri setini kullanarak değerlendirir. Modelin değerlendirilmesi 

aşamasında eğitim setinden tamamı ile farklı bir veri seti kullanabileceği gibi veri 

setinin küçük olduğu durumlarda çapraz doğrulama adı verilen bir yöntem ile eldeki 

az verinin mümkün olduğunca verimli kullanılması önerilmiştir [20]. Bu yöntemde 

veri seti k  adet parçaya bölünür (k-parça çapraz doğrulama), her bir iterasyonda bir 

parça k eğitim dışı tutularak model 1k −  parça ile eğitilir. Eğitim sonunda hariç tutulan 

veri parçası ile modelin doğruluğu test edilir. Bu durumu özetleyen bir görsel Şekil 2.1 

‘de gösterilmiştir. 
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Şekil 2.1 K- parça çapraz doğrulama yöntemi 

 

Devam eden iterasyonlar sonucu elde edilen doğruluk değerlerinin ortalamaları 

alınarak modelin veri seti üzerindeki performansı elde edilir. Daha sonra model tüm 

veri seti üzerinde eğitilebilir, daha önce elde edilen ortalama performans ise test 

performansı olarak değerlendirilir. Model belirleme aşamasında problem için 

belirlenen birden fazla model var ise ve bu modellerin biri seçilmek isteniyorsa, veri 

seti içerisinde doğrulama verisi olarak kullanılacak bir kısım eğitim verisinden hariç 

olarak ayırılması gerekmektedir. Bu durumda veri seti; eğitim, doğrulama ve test 

olmak üzere üçe ayrılarak kullanılır. Doğrulama veri seti sayesinde modellerin eğitim 

esnasında gösterdiği performans değerlerine bakılarak hiper parametreler 

düzenlenerek veriye uygun model seçilebilir. En son aşamada model test verisi 

üzerinde denenerek modelin veri üzerindeki performansı elde edilir.  

2.1.3 Aşırı Uyum ve Yetersiz Uyum (Overfitting ve Underfitting) 

Öğrenmenin temel amacı, eğitim seti ile eğitilen bir modelin eğitim sonunda test veri 

seti üzerinde başarılı sonuçlar elde etmesini sağlamaktır. Eğitilmiş bir modelin daha 

önce görmediği bir veri üzerinde başarı elde etmesi o modelin genelleme kapasitesinin 

ne kadar yüksek olduğunu göstermektedir. Modelin sahip olduğu parametrelerin sınırlı 

sayıda veri seti ile eğitilmesi sonucunda, iki istenmeyen durum ortaya çıkabilir. 

Bunlardan ilki aşırı uyum modelin eğitim verisi üzerinde gösterdiği başarıyı test verisi 

üzerinde gösterememesinden ortaya çıkan bir durumdur. Kısaca modelin eğitim 

verisini ezberlemesi olarak tanımlanabilir. Diğer bir istenmeyen durum olan yetersiz 
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uyum ise modelin eğitim setinde bile iyi sonuçlar vermemesine denilmektedir. Şekil 

2.2 söz konusu durumları temsil eden bir görsel paylaşılmıştır.  

 

 

Şekil 2.2 Modelin uyum türleri 

 

Bu nedenle tasarlanan modelin verinin altında yatan eğilimleri yakalayacak kadar 

karmaşık, fakat veri içerisinde bulunan gürültüyü göz ardı edecek kadar esnek ve 

yeterli olması hedeflenmektedir. 

2.1.4 Düzenlileştirme (Regularization) 

Aşırı uyumu önlemek için kullanılan yöntemlerden biri modelin karmaşıklığını kontrol 

altına almaktır. Model karmaşıklığını kontrol altına almak için modelin optimize 

edilmesi için kullanılan maliyet fonksiyonuna ( )M  bir ceza terimi eklenmektedir. 

Maliyet fonksiyonuna eklenecek düzenlileştirme miktarı bir hiper parametre olan 

ile belirlenmektedir. Bununla birlikte yeni maliyet fonksiyonu 
'( * )M M = +   

ortaya çıkmaktadır [21]. En sık kullanılan düzenlileştirme yöntemlerinin başında L1 

ve L2 düzenlileştirme yer almaktadır. Tezin ileriki bölümlerinde bu düzenlileştirme 

yöntemlerine detaylıca değinilecektir. 

2.1.5 Özellik Seçimi ve Çıkarımı 

Aşırı uyumu engellemenin diğer bir yolu da modele verilecek olan veriden elde edilen, 

veriyi en iyi şekilde temsil eden özelliklerdir. Bu sayede girdi uzayı azaltılmış ve 

model gereksiz bilgiden arındırılmış olur. Özellik seçimi veri içerisindeki istenilen 

hedefe ulaşmak için gerekli olan bilgilerin çıkarılmasını amaçlamaktadır. Özellik 

çıkarımının diğer bir faydası da büyük boyutlardaki eğitim verisinden çıkarılan ve 
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veriyi temsil eden güçlü özellikler sayesinde hem verinin boyutunun düşürülmesi hem 

de girdiyi daha iyi temsil eden düşük boyutlu yeni bir eğitim verisi elde edilmesidir. 

Genellikle denetimsiz öğrenme yöntemleri Temel Bileşen Analizi (TBA) [22] yöntemi 

ile veri boyutunu düşürerek veriyi probleme uygun özellikler ile temsil etmek için 

kullanırlar. TBA orijinal veri ile yansıma veri arasındaki farkın karelerini minimize 

ederek verinin boyutunu düşürmektedir. Herhangi bir makine öğrenmesi algoritmasına 

verilecek olan çok boyutlu verinin normalize edilmesi büyük önem arz etmektedir. 

2.1.6 Neden Derin Öğrenme 

Klasik MÖ yöntemleri şimdiye kadar çok sayıda problemde başarılı sonuçlar elde 

etmişlerdir. Fakat problemlerin karmaşıklığı ile birlikte veri boyutunun da artması ile 

birlikte bu yöntemlerin genelleme kabiliyeti düşmeye başlamıştır. Bilgisayarlı 

görmede yer alan bir problem olan nesne tanıma gibi daha karmaşık problemler söz 

konusu olduğunda klasik MÖ yöntemleri görüntüde yer alan çok boyutlu özellik 

uzayını genellemede başarılı olamamıştır. Nesne tanımada, ham piksel verilerine 

bakmak yerine artık daha yüksek seviye özelliklere bakmak; örneğin görüntü içindeki 

kenar, köşe, şekiller, yer bilgisi sınıflandırmada kullanılmaktadır. Geçmişte nesne 

sınıflandırma problemi iki aşama halinde çözüme kavuşturulmaktaydı. İlk aşamada 

akıllı bir özellik çıkarma algoritması tasarlanarak veriden özellik çıkartılırdı. Bu 

özellik çıkarma işlemi problem bağımlı olmakla birlikte uzman bilgisi 

gerektirmekteydi. İlk adıma göre daha kolay bir adım olan ikinci adımda ise veriden 

elde edilen özellikler bir sınıflandırıcıya verilerek süreç tamamlanmış olmaktaydı. 

Fakat derin öğrenme ile birlikte herhangi bir uzman bilgisi gerektirmeden problemin 

çözümü için gerekli özellikleri veriden öğrenen sistemler ortaya çıkmaya başladı. 

Temsil öğrenme olarak da ismi geçen bu sistemler derin öğrenmenin altında yatan esas 

gücü barındırmaktadır [17]. Derin öğrenmeyi iyi kavrayabilmek için ilk olarak yapay 

sinir ağlarının iyi anlaşılması gerekmektedir.  

 Yapay Sinir Ağları 

Nöronlar beynin yapı taşlarını oluşturarak temel bilgi taşıma görevini yerine getiren 

sinir hücrelerdir. Şekil 2.3’ te gösterildiği gibi bir nöron üç ana parçadan oluşmaktadır. 

Bunlar dentrit, akson ve hücre gövdesidir. Bilgi nöron boyunca bir elektriksel sinyal 

olarak iletilmektedir. Bu elektriksel sinyale aksiyon potansiyeli denilir (AP). Hücreye 
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gelen girişler dentritler tarafından toplanarak hücre gövdesinde birleştirilir. Bu 

birleştirme sonucunda ortaya çıkan AP’ye bakılarak bir çıkış sinyali üretilip 

üretilmeyeceğine karar verilir. Eğer bir çıkış yapılacaksa AP sinyali aksonlar boyunca 

taşınarak diğer nöronlara iletilir. Nöronlar arasındaki bağlantılar ise sinaps adı verilen 

ve dentritlerde meydana gelen geçişlerle olmaktadır. Beyinde bir bilginin öğrenilmesi 

veya saklanması sinir hücreleri arasında gerçekleşen bir dizi elektriksel ve kimyasal 

olaylarla gerçekleştirilir. Nöronlar bilgi iletimi için kullandıkları AP’yi hücre 

duvarındaki voltajı değiştirerek oluştururlar. Söz konusu voltajı ise hücre içinde ve 

dışında dağılmış olan sodyum (Na), potasyum (K), kalsiyum (Ca) ve klor (Cl) gibi 

iyonları kullanarak elde ederler.  

 

Şekil 2.3 Sinir hücresinin yapısı [23] 

 

Sinir hücresine herhangi bir uyarı gelmemiş ise hücre dinlenme halindedir 

(polarizasyon). Bu durumda hücrede Na+ iyonları dışarda K+ iyonları içerde 

bulunmaktadır. Hücrenin dışı (+) yük ile, içi ise (–) yük ile yüklüdür ve bu haldeki 

elektriksel potansiyeli -70 mV’dur. Sinir hücresinin iki tarafındaki yük dağılımını 

ayarlayan mekanizmaya Na-K pompası denilmektedir. Dinlenme halinde iken bu 

pompa Na+ ’yı içten dışa K+ ‘yı ise dıştan içe doğru pompalamaktadır. Bu değişim 

sonucu hücre içinde ve dışında elektriksel farklılıklar ortaya çıkar.  
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Polarize halde olan sinir hücresi iletime hazır demektir. Sinir hücresi uyarıldığında iç 

tarafa çok sayıda Na iyonu geçerken, az sayıda K iyonu hücre dışına çıkmaktadır. Bu 

durumda hücre içi pozitif, hücre dışı ise negatif yükle yüklenir. Kutuplaşma bozulur 

ve bu sayede elektriksel yük değişimi oluşur. Oluşan bu yük değişimi eşik şiddetini 

aştı ise AP oluşturur ve iletim gerçekleştirilir. Bu duruma depolarizasyon 

denilmektedir. İletim bittiğinde ise hücre dinlenme haline geri döner ve bu duruma 

yeniden kutuplaşma (repolarizasyon) denir. Şekil 2.4’te iletim aşamaları sırası ile 

gösterilmiştir.  

 

Şekil 2.4 Sinir hücresinde iletim aşamaları 

 

Bilgisayar ortamında yapay bir sinir hücresi oluşturmak için biyolojik sinir 

hücrelerinin kilit noktaları göz önünde bulundurularak söz konusu kilit noktaların en 

uygun şekilde taklit edilmesi gerekmektedir. Bir nöronu, bilgi işlem birimi haline 

getirmek ve veriyi AP vasıtasıyla iletmek için aşağıdaki adımlar takip edilmelidir. 

Giriş: Bir sinir hücresi diğer sinir hücrelerinden ortalama 103 ile 104 arasında giriş 

almaktadır [24]. Bu giriş sinyallerini bir vektör ile temsil edecek olursak 

1 2[ , , ]nx x x x= , olmak üzere n vektör içinde bulunan eleman sayısını temsil 

etmektedir. 

Ağırlıklandırma: Sinapslar, postsinaptik terminalin zar potansiyelini etkileyen 

AP’nin değerini çeşitli yollarla değiştirir; nörotransmitter türü, değişken miktarda 

nörotransmitter salınımı, dendritik omurganın değişken büyüklüğü ve hacmi bu 

yollara örnek olarak gösterilebilir. Bu nedenle sinaptik bağlantının gücünü göstermek 

için her bir sinyal belirli bir ağırlıkla çapılır [25]. Bir nöronun n adet nörondan gelen 
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k  adet girdiyi aldığını göz önünde bulundurursak ağırlık vektörümüz 

1 2[ , , , ]k k nkw w w w=  olacaktır. 

Birleştirme: Dendritik arborizasyonlar boyunca oluşan dağınık sinyallerin ağırlıklılar 

ile çarpılıp toplanması işlemidir.  

 

     
1

n

k ik i

i

w x
=

=                (2.1) 

 

Aktivasyon: Birleştirme işleminde elde edilen akım değeri akson boyunca hareket 

eder. Eğer membran potansiyelindeki uyarılma düzeyi belirli bir eşik değeri geçerse, 

bir AP değeri ateşlenir. Buradan yola çıkarak, aktivasyon fonksiyonu   bir nöronun 

ne zaman ateşleneceğini ve çıkışın değer aralığını belirlemektedir. Genellikle 

aktivasyon fonksiyonuna eşik değer (bias) adı verilen kb  bir terim daha eklenerek 

aktivasyon fonksiyonu düzenlenir ve k k kv b= +  haline gelmektedir. Eşik değer 

teriminin eklenmesi ile birlikte kv fonksiyonu k ’ıncı nöronun aktivasyon değerini 

temsil etmektedir [25]. Aktivasyon fonksiyonun diğer bir amacı ise nöron çıkışlarında 

var olan doğrusal olmayan (non-linear) yapının elde edilmesini sağlamaktır. Bu 

doğrusal olmayan çıktının elde edilmesi için sigmoid, tanh vb. gibi doğrusal olmayan 

çıktı üreten fonksiyonlar kullanılmaktadır. Ayrıca, aktivasyon fonksiyonun verdiği 

olasılık değerine göre nöronun aktif ya da pasif olduğu anlaşılabilir. Bir stokastik ikili 

nöronun iki durumu bulunmaktadır (aktif (durum+1) veya pasif (durum-1)). Bu amaçla 

yapay sinir ağlarında farklı aktivasyon türleri kullanılmaktadır Şekil 2.8’de en sık 

tercih edilen aktivasyon fonksiyonları ve bu fonksiyonlara ait grafikler 

gösterilmektedir [25].  

Çıktı: Sonuç çıktısı formüle 
1

( ) ( )
n

k k k ik i k

i

y b w x b  
=

= + = +  göre elde edilen 

sayısal bir değerdir. Bu formüle alternatif olarak eşik değeri yerine ekstra bir giriş 

terimi 0 1x =  ve ağırlık terimi 0k kw b=  olarak eklendiğinde yeni çıktı formülü 2.2 elde 

edilmektedir. 
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0

( )
n

k ik i

i

y w x
=

=                 (2.2)  

Özetle en basit hali ile bir algılayıcı birden fazla ikili (1-0) girdisi olan 1 2, , , nx x x ve 

tek bir ikili çıktı üreten yapıdır. Şekil 2.5’te gösterilen algılayıcının 1 2 3, ,x x x  olmak 

üzere üç girdisi ve bir adet çıkışı bulunmaktadır. Girdi sayısı çözülmek istenilen 

probleme göre artırılabilir veya azaltılabilir.  

 

 

Şekil 2.5 Basit bir algılayıcı nöron 

 

Bir sinir ağını denetimli makine öğrenmesi problemlerinde kullanmak için ağın çıktısı 

problemin olası çözümlerinden oluşmalıdır. Ağın çözmesi gereken problem türüne 

göre çıkış biriminde farklı aktivasyon fonksiyonları tercih edilmektedir. Bu problem 

türlerine yakından bakacak olursak:  

Regresyon: Regresyon problemini açıklamadan önce süreli değişken ve kesikli 

değişken kavramlarını açıklamak gerekmektedir. Sürekli değişken sonsuz değer 

kümesinden herhangi bir değeri alabilmek manasına gelirken kesikli değişken sonlu 

olası değerler kümesi içinden herhangi bir değerin alınmasıdır. Bu durumda regresyon 

problemleri sonsuz olası değerler kümesi içinden bir değerin tahmin edilmesine 

dayanmaktadır. Bunun sonucunda çıkış birimi doğrusal bir nöron olarak seçilir, 

belirleyici fonksiyon çıktının herhangi bir değere ulaşmasını sağlar. Örneğin satılık ev 

fiyatlarını tahmin eden bir ağ bir regresyon problemine çözüm üretiyor demektir.  

İkili sınıflandırma: Tanımlanan bir görev için verilen x girdisine göre C1 ve C2 olmak 

üzere iki çıktı üreten sınıflandırma türüdür. Bu durumda ağın sonunda tek çıkış 

doğrusal olmayan bir adet nöron ile temsil edilir. Yaygın olarak sigmoid nöronu seçilir. 

Çıktı olarak varsayılan y=1, sonucun C1 sınıfını işaret ettiğini belirtir. Sigmoid 
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fonksiyonun çıktısı C1 sınıfına ait girişin olasılığı olarak yorumlanmaktadır 

( ( , ) (C1,x))y x w p= . Bu çıkış birimlerinin sayısı arttırılarak bu yöntem k adet ikili 

sınıflandırma görevi için kullanılabilir. Bu durumda k çıkış birimlerinin her birinin 

aktivasyon fonksiyonu sigmoid olur. 

Çoklu Sınıflandırma: Sınıflandırma görevinde k adet sınıf bulunuyorsa, verilen bir x 

girdisi için sinir ağının çıkışında k adet nöron olacak şekilde ayarlanır. Söz konusu 

çıkış nöronları için sinir ağının k adet sınıf içi yapmış olduğu tahmin olasılıklarını 

veriler ve bu olasılıkların toplamı 1’e eşit olmalıdır. Bu durumu elde etmek için 

aktivasyon fonksiyonu olarak sofmax kullanılır. 

 

     

1

( )
k

j

z
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j

e
z

e
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=

=


               (2.3) 

 

Yukarıda belirtilen kurallar çerçevesinde sinir ağlarının gelişim süreci şu şekilde 

olmuştur. İlk yapay sinir hücresi McCullohg ve Pitts tarafından 1943 yılında 

uygulamıştır [26]. Girdilerin doğrusal kombinasyonun belli bir eşik değeri geçmesi ile 

aktif hale gelen nöron yapısı basit bir elektrik devre ile gerçekleştirilmiştir. Daha sonra 

1949 yılında Donald Hebb tarafından yapılan bir çalışmada nöronların algılama 

seviyelerinin kullanımlarına ve birlikte aktif hale gelmelerine bağlı olarak pozitif 

yönde bir artış gösterdiği kanıtlanmıştır [27]. McCullogh, Pitts ve Hebb tarafından 

yapılan çalışmaların teşviki ile birlikte ilk algılayıcı Rosenblaatt tarafından 1957 

yılında modellenmiştir. İkili sınıflandırma görevleri için tasarlanan bu modelde, 

gerçek girdiler ve ağırlıklar, belirlenen öğrenme kuralları ile birlikte görüntü 

sınıflandırma görevleri için kullanılmıştır. 1969 yılında Minsky ve Papert tek katman 

algılayıcı bir katman giriş düğümleri, bir katman çıkış düğümleri olmak üzere en basit 

sinir ağı mimarisini önermişlerdir [28]. Ancak daha sonra yapılan çalışmalar tek ünite 

algılayıcıların sadece doğrusal sınıflandırma problemlerinde başarılı olduklarını ortaya 

çıkarmıştır [24]. Tek katmanlı algılayıcıların (perceptron) sınıflandırma gücü, girdi 

olarak aldığı özelliklerden çok büyük ölçüde etkilenmektedir. Tek katmanlı 

algılayıcıların söz konusu dezavantajlarını aşmak için doğrusal olmayan gizli 

nöronlardan oluşan gizli katmanlar ağ mimarilerine eklenmiştir [29]. Bununla birlikte 
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çok katmanlı algılayıcılar veya derin ağlar ortaya çıkmıştır. Rosenblatt tarafından 

çıktıyı hesaplamada basit bir kural önerilmiştir. Bu kurala göre ilgili girdilerin çıktıya 

olan önemini ifade etmek için ağırlıklar, 1 2, , , wnw w  kullanılmıştır. Nöronun çıktı 

değeri olan 0 ya da 1 ağırlık değerlerinin girdiler ile çarpılıp toplanması j j

j

w x

sonucu elde edilen çıktının belirli bir eşik değerini geçmesi ile belirlenmektedir. 

Ağırlıklar gibi söz konusu eşik değeri de gerçek bir sayı ile temsil edilmektedir. Bir 

algılayıcının en basit hali ile matematiksel modeli formül 2.4 ile ifade edilebilir.  

 

   

0,        

    

1,        

j jj

j jj

eğer w x eşikdeğer

çıktı

eğer w x eşikdeğer

 


= 








             (2.4) 

 

Ağırlık kavramını çok basit bir örnekle açıklanacak olursa: Bulunduğumuz şehirde bir 

müzik festivali yapıldığını farz edelim. Müziği de çok sevdiğimizi düşünürsek bu 

festivale katılmak istiyoruz. Fakat katılma durumumuzu etkileyecek üç faktör var. 

Bunlar hava durumu, katılacak arkadaş ve festival yerine olan ulaşımın kolaylığı. Bu 

durumlara 1 2 3, ,x x x  diyelim ve bunları temsilen ikilik sayı sistemini kullanalım. 

Örneğin hava yağmurlu ise 1 0x =  olsun, güzel ise 1 1x =  olsun, aynı şekilde festivale 

birlikte katılacak arkadaşımız var ise 2 1x = , yok ise 
2 0x =  olsun ve son olarak festival 

yerine ulaşım kolay ise 3 1x =  zor ise 3 0x =  olsun. Giriş değerleri belirlendikten sonra 

sıra bu değerlere verilen önemi belirlemeye geldi. Örneğin kötü havalardan hiç 

hoşlanmıyorsunuz ve bu havalarda dışarı çıkmak istemiyorsunuz. Bu nedenle her bir 

durum için bir ağırlık değeri belirlemeniz gerekiyor. Bu durumda hava durumu için 

ağırlık değerimiz 1 6w =  olsun diğer iki durum için ise 
2 2w =  ve 

3 2w =  değerlerini 

kullanalım. Burada kullandığımız ve en büyük ağırlık değerimiz olan 
1w  hava 

durumunu çok önemsediğimizi diğer durumları hava durumuna göre daha az 

önemsediğimizi göstermektedir. Son olarak bir eşik değeri belirliyoruz örneğin eşik 

değerimiz 5 olsun. Bu parametrelere göre algılayıcı modelimiz hava güzel ise sonucu 

1 değilse sonucu 0 gösterecektir. Festival için arkadaş olup olmaması ya da ulaşımın 

bir önemi yoktur. Buradan yola çıkıldığında, ağırlıkları ve eşik değerlerini değiştirerek 
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farklı karar verme modelleri elde edebiliriz. Örneğin festivale gitmek için 

oluşturduğumuz modelde eşik değerini 5 değil de 3 yapsaydık. Hava kötü olsa bile 

gidecek bir arkadaş ve ulaşım kolaylığı festivale gitmemiz için vereceğimiz kararda 

yeterli olacaktı. Başka bir değişle farklı bir karar verme modeli elde edilmiş olacaktı. 

Eşik değerini düşürmemiz festivale gitmeye daha istekli olduğumuz anlamına 

gelmektedir. Açıkçası, algılayıcı tam bir insan karar verme modeli değildir. Ancak, 

örneğin gösterdiği şey, bir algılayıcının karar vermek için farklı kanıt türlerini nasıl 

kullandığıdır. Bu sayede daha karmaşık ağlarda bulunan algılayıcıların davranışları 

hakkında fikir sahibi olmak mümkündür [30]. 

 

Şekil 2.6 Çok katmanlı algılayıcılar  

 

Şekil 2.6’ incelendiğinde, ilk katman algılayıcıları, girdiler ve ağırlıklarına bakarak üç 

basit karar vermektedir. İkinci katman algılayıcıları ise ilk katman algılayıcılarından 

gelen kararlar ve ağırlıklar doğrultusunda dört karar vermektedir. Bu şekilde ikinci 

seviyedeki algılayıcılar birinci seviyedekilere göre daha karmaşık ve daha soyut 

kararlar vermektedir. En son katmanda ise en karmaşık kararlar alınmaktadır. Bu yapı 

sayesinde çok katmanlı algılayıcılar karmaşık karar verme süreçlerinde 

kullanılabilmektedir. Algılayıcılarda eşik değer (bias) b  diye tabir edilen ve 

algılayıcının 1 çıktısını vermesini kolaylaştıran bir terim bulunmaktadır. Daha 

biyolojik bir ifade ile eşik değer; algılayıcının aktifleşmesinin ne kadar kolay 

olduğunun bir ölçüsüdür.  Büyük eşik değerine sahip bir algılayıcının 1 çıktısı vermesi 

oldukça kolaydır. Bununla birlikte eğer eşik değeri büyük bir negatif değer ise 

algılayıcının 1 çıktısı vermesi oldukça zordur [30]. 

 



 

 

19 

 

2.2.1  Sigmoid Nöronları 

Yapılan araştırmalar sonucu algılayıcıların doğrusal sınıflandırma problemlerinde 

başarılı sonuçlar elde etmesine karşın, doğrusal olmayan problemlerde aynı başarıyı 

gösteremedikleri gözlemlenmiştir. Daha önce de bahsedildiği üzere ağırlıklar ve eşik 

değerlerdeki küçük değişimler sınıflandırmayı doğrudan etkilemektedir. Bazen bu 

değişim miktarı çok az bile olsa bir algılayıcının karar verme durumunu değiştirmekte 

0 dediğine 1 diyebilmektedir. Bu durum bütün ağın davranışında değişikliğe neden 

olabilmektedir. Bu problemi çözmek için sigmoid nöron adı verilen yeni bir nöron türü 

önerilmiştir. Sigmoid nöronlar algılayıcılar ile benzer özellikler taşımalarına karşın bu 

nöronların ağırlık ve eşik değerlerinde yapılan küçük değişimlerin çıktılarına etkisi de 

küçük olmasını sağlayan bazı modifikasyonlar içermektedirler [30]. Sigmoid 

nöronlara biraz değinirsek; algılayıcı nöronlar gibi girdileri 
1 2, ,x x  bulunmaktadır. 

Ancak bu gidilerin değerleri 0 ya da 1’den ziyade 0 ile 1 arasındaki değerlerden 

oluşmaktadır. Algılayıcı nöronlar gibi sigmoid nöronları da ağırlıklar ve eşik değere 

sahiptir. Sigmoid nöronlarının çıktısı 1 ya da 0 yerine   sigmoid fonksiyonun 

çıktısıdır ( . )w x b + . Bu fonksiyona aktivasyon fonksiyonu denilmektedir ve formül 

2.5 ile ifade edilmektir [30]. 

 

     
1

(z)
1 ze


−

=
+

              (2.5) 

 

     
( )

1

1
j jj

w x b

e
− −

+
              (2.6) 

 

Formüle biraz daha yakından bakacak olursak .z w x b +  sonucunun büyük bir 

pozitif sayı olduğunu varsayalım. 0ze−   olduğunda ( ) 1z   olacaktır. Buradan yola 

çıkarak z wx b= + büyük ve pozitif bir sayı olduğunda sigmoid nöronun çıktısı 1 ‘e 

yaklaşırken tersi durumda 0’a yaklaşmaktadır. Sigmoid fonksiyonuna ait bir görsel 

Şekil 2.7’de verilmiştir. 
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Şekil 2.7 Sigmoid nöron 

 

Ağırlıklarda ve eşik değerde meydana gelen küçük değişikler jw  ve b çıkışta 

çıkış değişiklikleri ortaya çıkarır.  

 

    jj
j

çıkış çıkış
çıkış w b

w b

 
 =  + 

 
              (2.7) 

 

Çıktı fonksiyonun ağırlık ve eşik değerlerine göre kısmı türevleri toplamı kullanılarak 

elde edilen çıkış ağın ağırlık ve eşik değerlerinin güncellenmesinde 

kullanılmaktadır. Formüle göre çıkış  ağırlık jw ve eşik değerdeki b  

değişikliklerin doğrusal bir fonksiyonudur. Bu doğrusallık sayesinde çıktıda elde 

edilmek istenen herhangi bir küçük değişiklik, ağırlıklar ve eşik değerlerde yapılacak 

küçük değişiklikler sayesinde elde edilebilir. Bu yüzden sigmoid nöronlar normal 

algılayıcı nöronlarla aynı niteliksel davranışa sahip olmasına rağmen ağırlıklar ve eşik 

değerlerdeki değişimlerin çıktıyı nasıl etkileyeceğini bulmak daha kolay hale 

gelmektedir. Burada   sigmoid olarak tanımladığımız fonksiyona aktivasyon (.)f  

denilmektedir. Yapılan çalışmalar neticesinde yıllar boyunca farklı aktivasyon 

fonksiyonları kullanılmıştır. Şekil 2.8’de en popüler bazı aktivasyon fonksiyonları 

gösterilmektedir. Farklı bir aktivasyon fonksiyonu kullanıldığında değişen tek şey 

formül 2.7’de ki aktivasyon fonksiyonuna göre alınan kısmı türevler olacaktır.  
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Şekil 2.8 Yapay sinir ağlarında kullanılan bazı aktivasyon fonksiyonları 

 

2.2.2 Geri Yayılım (Back Propagation) 

Farz edelim ki elimizde çözülmesi gereken bir problem var ve bunu algılayıcılardan 

oluşan bir sinir ağını kullanarak yapmak istiyoruz. Bunu yapmak için ağ içindeki 

uygun ağırlık ve eşik değerlerini bulmak gerekmektedir. Ağırlık ve eşik değerlerini 

güncellemek için geri yayılım algoritması denilen bir algoritma kullanılmaktadır [30]. 

Geri yayılım algoritması ilk olarak 1970’li yıllarda önerilmesine karşın esas önemi 

David Rumelhart ve arkadaşları tarafından 1986 yılında yapılan bir çalışma ile ortaya 

çıkmıştır [31]. Geri yayılım algoritması sinir ağlarında öğrenme gücünün arkasında 

yatan en önemli faktördür (Şekil 2.9).  

 

Şekil 2.9 Sinir ağlarında geri yayılım [30] 
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Geri yayılım algoritmasına detaylı bakıldığında: Oluşturulan yapay sinir ağından 

beklenti girdilere karşılık olarak bir çıktı üretmesidir, arzu edilen bu çıktıya y(x) 

diyelim. Oluşturmuş olduğumuz ağın verdiği çıktı değeri ile beklenen çıktı değerini 

değerlendirecek bir maliyet (M) (kayıp) fonksiyonu belirleyelim, en bilinen örneği 

MSE’dir 

 

    
21

( , ) ( )
2 x

M w b y x a
n

= −               (2.8) 

 

Bu kayıp fonksiyonunda w  ağdaki bütün ağırlıkları, b bütün eşik değerlerini, n  

toplam eğitim örneği sayısını ve a  ise bir x  girdisine karşı ağın üretmiş olduğu 

çıktıyı temsil etmektedir. Maliyet fonksiyonun negatif sonuç üretmediği 

görülmektedir. Eğer ( , ) 0M w b   eşit olursa öğrenme algoritmamız iyi bir iş 

çıkarmakla birlikte uygun w  ve b  değerlerini bulmuş demektir. Maliyet fonksiyonu 

daha büyük değerler veriyorsa bu durumda amacımız maliyet fonksiyonunu minimize 

ederek hatayı düşürmektir [30]. Diğer bir değişle amaç en az hatayı verecek ağırlıkları 

ve eşik değerlerini bulmaktır. Mümkün olan en iyi sınıflandırma sonuçlarını elde 

etmek için model parametrelerinin optimizasyonu önemlidir. Bu optimizasyon 

sayesinde elde edilen bir dizi ağırlık w  ve eşik değerleri b  hata fonksiyonunu 

M( , )w b  minimize ederek istenilen sınıflandırma sonuçlarının elde edilmesini 

sağlamaktadır. Analitik olarak, bu durum hatayı en aza indiren ağırlık ve eşik değerleri 

bulmaktan geçer. Maliyet fonksiyonun minimize etmek için kullanılan en yaygın 

optimizasyon algoritmalardan biri gradyan inişidir (gradient descent). Geri yayılım 

algoritmasını detaylı olarak ele almadan önce formüllerde kullanılan bazı gösterimlere 

açıklık getirmek uygun olacaktır. Herhangi bir ağırlık değerini temsil etmek için 
l

jkw

gösterimini kullanacaktır. Bu gösterim ( 1)l − ’inci katmanda bulunan k  nöron ile .l  

katmanda bulunan .j nöron arasındaki ağırlığı temsil etmektedir. Şekil 2.10’da örneği 

gösterilmektedir.  
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Şekil 2.10 Gösterilen 
l

jkw ağırlık değeri ( 1)l − katmandaki k. nöronundan .l katmadaki 

.j nörona bağlantı ağırlığını değerini temsil etmektedir [30]. 

 

Aynı gösterim türünü eşik değeri için belirtecek olursak 
l

jb , .l  katmanda bulunan .j

nörona ait eşik değerini temsil etmektedir. Nöronların çıkışlarını temsilen 
l

ja , bu da  .l

katmanda bulunan .j nöronun aktivasyon değerini temsil etmektedir. Şekil 2.11 bu 

durumu temsil etmektedir. 

 

Şekil 2.11 Eşik değer ve çıktı parametrelerinin gösterimi [30] 

 

Herhangi bir katmandaki bir nöronun aktivasyon çıktısı 
l

ja  kendisinden önceki ( 1)l −

katmanda bulunan nöronların aktivasyon çıktıları ile ilişkilidir. Bu durum formül 2.9 

ile ifade edilebilir.  
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1l l l l

j jk k j

k

a w a b − 
= + 

 
               (2.9) 

 

Yukarıdaki fonksiyonda her bir katmanda birden fazla nöron olduğu için girdiler, 

çıktılar, ağırlıklar ve eşik değerleri vektörel olarak düşünülmelidir. Bu durumda 

formül 2.9’u  
1( )

l l l la w a b −= +  şeklinde ifade edebiliriz. Yeni formüle göre 
l

a  

değeri hesaplanırken 1l l l lz w a b− + ’de hesaplanmaktadır. lz  bir katmanda yer alan 

tüm nöronların ağırlıklı giriş toplamlarını temsil eden vektördür. Herhangi bir 

katmandaki herhangi bir nöronun ağırlıklı giriş toplamı formülü 2.10’daki gibidir.  

 

     
1l l l l

j jk k jk
z w a b−= +             (2.10) 

 

Bu durumda aktivasyon vektörü ( )l la z= formülüne göre de ifade edilebilmektedir. 

Geriye yayılım, bir ağdaki ağırlıklar ve önyargıların maliyet fonksiyonundaki değişim 

ile nasıl değiştiğini anlamakla ilgilidir. Geri yayılım algoritmasının arkasında 

bilinmesi gereken dört önemli formül bulunmaktadır. Geri yayılım algoritması 

beklenen çıktı ile ağın verdiği çıktı arasındaki hatayı kullanarak ağdaki ağırlıkları ve 

önyargıları güncellemektedir. Hata 
l

j  olarak temsil edilecek olursa, bu ifade .l

katmanındaki .j  nörona ait hatayı göstermektedir. Geri yayılım algoritması bu hatayı 

l

j  hesaplamak ve onu / l

jkM w ve / bl

jM  ile ilişkilendirmek için bazı prosedürleri 

takip etmektedir [30]. 

 

     
'( )L L

j jL

j

M
z

a
 


=


            (2.11) 

 

Formül 2.11’de sağ taraftaki ilk terim / L

jM a , .j  aktivasyon fonksiyonun maliyete 

göre nasıl değiştiğini ölçmektedir. İkinci terim 
'( )L

jz ise aktivasyon fonksiyonun 
L

jz  

deki değişim hızını ölçmektedir. Formül 2.11’i matris formunda gösterecek olursak 

2.12 gösterimi kullanabiliriz. 
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'( ) ( )L L L

ja y z = −            (2.12) 

 

Formülde gösterilen aM terimi kısmi türevlerin / L

jM a  vektörel gösterimini temsil 

etmektedir. ( )L

aM a y = −  = / L

jM a ile temsil edildiğinde formülün son hali 

2.13’teki gibi olacaktır 

 

    
'( )L L

a jM z =             (2.13) 

 

Bir sonraki katmandaki hatayı hesaplamak için bir önceki katmandaki hatalar 

kullanılmaktadır: 

 

     
1 1 '(( ) ) ( )l l T l L

jw z  + +=            (2.14) 

 

Formül 2.14’e göre çıkış katmanında ortaya çıkan hata ağda geriye doğru hareket 

ettirilmektedir. 2.11 ve 2.14 formüllerinin birleştirilmesi ile birlikte ağda istenilen 

katmandaki hatalar hesaplanmaktadır. Bir sonraki formülde ise ağdaki herhangi bir 

önyargıya bağlı olarak maliyet değişim oranını hesaplamak için kullanılan formül 

2.15’dir. 

 

    
l

jl

j

M

b



=


  

M

b



=


           (2.15) 

 

Hata 
l

j , / bl

jM  deki değişim oranına eşittir. Söz konusu hata formül 2.11 ve 2.14’te 

hesaplanmıştır. Bir sonraki denklem ise maliyet fonksiyonundaki değişim oranına göre 

ağırlıkların güncellenmesi için kullanılan formüldür.  
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1l l

k jl

jk

M
a

w
−


=


     (2.16) 

 

Formülde l  ve 1la −  kullanılarak / l

jkM w   kısmı türevler hesaplanarak ağırlıklar 

güncellenmektedir.  

    

'

1 1 '

1

Geri yayılım formüllerinin özeti

( ) ( )

(( ) ) ( )

L L L

j

l l T l L

j

l

jl

j

l l

k jl

jk

a y z

w z

M

b

M
a

w

 

  





+ +

−

= −

=


=




=



  (2. 17) 

 

Geri yayılım algoritmasının formülleri incelendiğinde neden geri yayılım denildiği 

daha net anlaşılmaktadır. Son katmandan başlayarak hata vektörleri geriye doğru 

hesaplanmaktadır. Bu hesaplama yöntemine zincir kuralı denilmektedir. Hesaplanan 

hata vektörleri kullanılarak ağırlıklar ve eşik değerleri güncellenmektedir [30].  

2.2.3 Yapay Sinir Ağlarında Eğitim Türleri 

Eğitim verilerinin kullanılma şekillerine göre farklı eğitim türleri bulunmaktadır. 

• Yığın öğrenme (Batch learning): Bütün eğitim örnekleri işlenerek amaç 

fonksiyonu ile değerlendirilir sistem parametrelerinde ayarlamalar yapılır. 

• Online öğrenme (Online learning): Bu eğitim türünde her bir örnek amaç 

fonksiyonu tarafından tek tek değerlendirilerek sistem parametreleri her bir 

örneğe göre yeniden ayarlanmaktadır. 

• Mini yığın öğrenme (Mini-batch learning): Bu yöntemde tek bir örnek 

kullanmak yerine veri seti içinden rastgele bir örnek grubu kullanılarak sistem 

parametreleri ayarlanmaktır. Rastgele alınan bu örnek veri grubuna mini-yığın 

adı verilmektedir. 
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 Evrişimsel Sinir Ağları (ESA) 

Bilgisayarlı görme alanında karşılaşılan sorunların üstesinden gelebilmek için 

araştırmacılar insan görsel algısından ilham alarak ESA’ları keşfettiler [32]. Son 

yıllarda ortaya çıkan ESA’lar özellikle girdisi görüntü olan problemlerde büyük 

başarılar elde etmiştir. ESA’ları daha iyi kullanabilmek için çıkış noktalarını bilmek 

faydalı olacaktır.  

2.3.1 Biyolojik Görsel Algı 

Görme, duyusal sistemler arasında en karmaşık yapıya sahip olanıdır. Örneğin optik 

sinir bir milyon lif içerirken, işitme siniri yaklaşık otuz bin lif içermektedir. Biyolojik 

görsel algı klasik olarak iki ayrı retino-cortikal yoldan meydana geldiği 

düşünülmektedir. Bu kapsamda yapılan bir çalışmada Newcombe ve Russell ikinci 

dünya savaşında beyin hasarı almış gaziler ile yaptıkları bir çalışmada beyinde “ne” 

ve “nerede” olmak üzere iki yol bulunduğunu keşfettiler [33]. Diğer bir çalışmada 

parietal lobdaki lezyonlar, hastaların labirent öğrenme performansını olumsuz 

etkilerken, temporal lobdaki lezyon, görsel tamamlama yeteneğinin azalmasına, yani 

zihinsel olarak eksik bilgilere dayanan görüntünün yeniden oluşturulmasını olumsuz 

etkilediği gözlemlenmiştir. [34]. 

 

Şekil 2.12 Beyinde yer alan nerede ve ne yolları [34] 

 

Ortaya atılan bu modeli kanıtlayan nitelikte bir çalışma Ungerleider ve Mishkin 

tarafından yapılmıştır. Çalışmada makak maymunlarının beyinciklerine focal 

lezyonlar ile zarar verilerek anatomik ve elektrofizyolojik etkileri gözlemlenmiştir 

[35]. Elde ettikleri sonuçlar, birincil görsel korteks V1’den çıkan iki yol arasında bir 
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ayrım olduğunu göstermiştir: Söz konusu yollar posterior parietal lob için çıkıntılı bir 

dorsal yol ve temporal lob için inferior ventral yol ki bu yol biyolojik görmenin görsel 

işleyişinde rol oynamaktadır [36]. Şekil 2.12 ve Şekil 2.13’te bu yollara ve 

işlevselliklerine ait bir görsel paylaşılmıştır.  

 

Şekil 2.13 İki görsel akışın basitleştirilmiş gösterimi: dorsal yol ve ventral yol [37] 

 

Şekil 2.14 'te gösterildiği gibi, her iki yol da girişlerini retinadaki foto reseptörlerden 

alır ve uzamsal yollara ayrılmadan önce aynı cortikal alanların çoğundan geçmektedir. 

 

Şekil 2.14 İki görsel yolun organizasyonunun karşılaştırmalı gösterimi ve S ve C  

hücrelerinin istiflenmesi [38] 

 

Gerekli çıkışlara göre yollar arasında başka ayrımlar yapılabilir. Parietal lob'a çıkıntı 

yapan dorsal yol, bir eylemi yürütmek için gereken bilgiyi, yani söz konusu yolun 



 

 

29 

 

yüksek zamansal hassasiyeti ile desteklenen sahnenin uzamsal bir tanımını (pozisyon, 

oryantasyon ve yapı) iletir. Arka parietal lob, her ikisine de duyarlı olan girişi alır. 

Nesnelerin ve kendiliğinden başlatılan hareketlerin mekânsal sahnesi, vücudun 

çevresine olan pozisyonunu ilişkilendirir ve ön lobuna yansıtır. Böylece uzuvların 

hareket etmelerinde rol oynar örneğin el ve ayak hareketleri ve oküler kontrol [39]. 

Öte yandan ventral yol, objektif olarak ayrıntılı algılanan temporal lob için daha yavaş 

çözünürlük bilgileri sağlar. Ventral akışta yer alan yapılar görsel algı, hafıza ve 

öğrenmede rol oynar [34, 38, 40]. 

Ventral akışın işleyişine daha derinden bakmak için, biyolojik görüntü işleme ile ilgili 

temel keşifler, 1960'lı yıllarda nörofizyologlar D. Hubel ve T. Wiesel tarafından 

yapılmıştır [41, 42]. Kediler üzerinde yaptıkları deneylerde, kedilerin görsel 

korteksindeki nöronlarının, alıcı alan olarak tanımladıkları bölgedeki bazı hücrelerin 

belirli yönelimdeki ışığa tepki verdiklerini keşfettiler. Basit hücre olarak 

adlandırdıkları bu hücreler ile birlikte keşfettikleri ve karmaşık hücre adını verdikleri 

hücreler görme sistemimize dair önemli bilgiler sunmuştur. Bununla birlikte bu buluş, 

retina ve korteks arasındaki algılama farklılıklarının yanı sıra girdi nöronların alıcı 

alanlarını çevreleyen engelleyici alanların olası önemini göstermiştir. İkinci olarak 

görsel korteksin topografik bir yapısını kurmuşlar, bu yapıda retina algı haritaları 

kortekste benzer topografik haritalarda temsil edilerek, burada sütun yapıları aynı 

bilgiyi işleyen hücreleri temsil etmişlerdir. Üçüncü olarak görsel yoldaki hücrelerin 

organizasyonunda hiyerarşik bir yapı gözlemlediler. Basit, karmaşık, daha düşük 

dereceli ve daha yüksek dereceli hiper kompleks hücrelerin ayırt edilmesiyle, bilgi 

işlemenin giderek daha karmaşık hücrelerin bu sekansı boyunca hiyerarşik olduğu 

varsayılmıştır. Daha karmaşık hücrelerin, çizgilerin kesin konumuna daha az duyarlı 

oldukları, bilgi entegrasyonuna dayandıkları ve bir nokta kaynağı hattına çok fazla 

cevap vermedikleri için daha büyük alıcı alanlara sahip oldukları görülmüştür. 

Böylece, Hubel ve Wiesel, farklı hücre tiplerinde birincil görsel korteks V1'de 

bilgilerin hiyerarşik olarak alıcı alanlarına ve toleranslarına göre ayrılarak işlendiğini 

göstermişlerdir [43-45]. 
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2.3.2 Biyolojik Görsel Algıdan Bilgisayarlı Görüye Geçiş 

Yukarıda bahsedilen temel araştırmaların sonucunda elde edilen bulgular bilgisayarlı 

görü için ilham kaynağı olmuştur. Biyolojik görsel algıdan alınan temel fikir, ventral 

yol gibi, ham görüntüleri çeşitli aşamalardan geçirerek, değişken olan girdiden 

bağımsız kompakt, ancak açıklayıcı ve farklı bir gösterime dönüştürmektir [46]. 

Buradan yola çıkılarak ileri yayılım esnasında “tek bakışta görüş” kavramına 

odaklanılarak hücrelerin artan seçicilik ve tolerans özelliklerini birleştirmeyi 

hedefleyen hiyerarşik bir model fikri ortaya atılmıştır. Bu modeli oluşturmak için, 

V1'de bulunan basit ve karmaşık hücreler kavramını, modellerde kendi davranışlarını 

simüle eden alternatif hücre katmanları oluşturarak taklit edilmiştir. Özetle görme 

merkezinde bulunan hücreler tüm görseli kapsayacak şekilde alt bölgelere ayrılarak, 

basit olan hücreler kenar, köşe benzeri özelliklere karmaşık hücreler ise daha geniş 

alıcılarla, tüm görsele yoğunlaştığı mantığıyla hareket edilmiştir. Buradaki 

matematiksel evrişim işlemi, bir nöronun kendi uyarı alanından uyaranlara verdiği 

cevap olarak düşünülebilir. 

Bunu gerçekleştiren ilk yapay sinir ağı Neocognitron, Fukushima tarafından 1980 

yılında oluşturulmuştur [47]. Önerilen çok katmanlı sinir ağı, alternatif S-hücreleri ve 

C-hücreleri katmanlarından oluşmaktadır. Modelin mimarisi Şekil 2.15’te verilmiştir.  

 

Şekil 2.15 Fukushima'nın neocognitron mimarisi [48] 
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Modern evrişimsel sinir ağlarının atası olan LeNet, Fukushima’nın neocognitron'una 

benzeyen bir mimari ile Y.LeCun tarafından 1998 yılında geliştirilmiştir [49]. LeNet 

ESA tüm parametreler üzerinde geri yayılım algoritması yoluyla global minimumları 

bulması için eğitilmiştir. LeNet, ABD'de banka çeklerinde elle yazılmış rakamları 

otomatik olarak sınıflandırmak için kullanılmıştır. Bu mimari üç ana fikir etrafında 

oluşturulmuştur, yerel algılayıcı bölgeler, paylaşılan ağırlıklar ve alt örnekleme. 

Paylaşılan ağırlıklara sahip yerel algılayıcı alanlar, evrişim katmanın özüdür ve 

aşağıda açıklanan mimarilerin çoğu, evrişim katmanlarını farklı yapılarda 

kullanmaktadırlar. LeNet'in önemli bir mimari olmasının diğer bir nedeni ise, 

LeNet’ten önce karakter tanıma işleminin, el ile belirlenmiş özelliklerinin 

çıkarılmasının ardından bu özelliklerin sınıflandırılmasını bir makine öğrenme 

modelinin kullanılarak yapılmasıydı. LeNet ile birlikte kendi özelliklerini kendisi 

öğrenen ve bu özellikleri kullanarak sınıflandırma yapan bir ESA modeli 

geliştirilmiştir. LeNet basit bir mimariye sahiptir, sadece yedi katmanı bulunan 

LeNet’te bu katmanların üç tanesi evrişimsel katman, iki tanesi havuzlama katmanı, 

bir tane tam bağlı katman ve buna bağlı bir çıkış katmanıdır. Evrişimsel katmanlar 5x5 

filtreleri 1 adım sayısı ile kullanırken, 2x2 ortalama havuzlama yöntemi 

kullanılmaktadır. Aktivasyon fonksiyonu olarak tanh ve sigmoid tercih edilmiştir. 

LeNet mimarisinin detayları Şekil 2.16’da gösterilmektedir. 

 

Şekil 2.16 LeNet ESA mimarisi [49] 
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 Bilgisayarlı Görüde Evrişimsel Sinir Ağları 

ESA’ların klasik ve tartışmasız en popüler kullanım yeri, görüntü işleme alanındadır. 

ESA’lar 1998 yılında kullanılmasına karşın bilgisayarlı görüde esas popülaritesini 

2012 yılından sonra elde etmişlerdir. Bu popülaritenin ortaya çıkmasının üç temel 

sebebi bulunmaktadır. Bunlardan ilki, gelişen teknoloji ile birlikte üretim 

teknolojilerinin de gelişmesi, bu sayede ekran kartlarının hesaplama gücünün artması, 

ikincisi büyük verinin toplanması ve bu veriye ulaşımın kolaylaşması, üçüncüsü 

geliştirilen güçlü algoritmaların ortaya çıkmasıdır. Temel bir ESA iki parçadan 

oluşmaktadır. Bunlar evrişimsel katmanlar ve sınıflandırıcı katmanlardır. Evrişimsel 

katmanlar bir dizi evrişim ve biriktirme işleminden oluşmaktadır. Bu katmanın amacı 

görüntüden özellikler çıkartmaktır. Sınıflandırıcı ise bir dizi tam bağlı katmandan 

oluşmaktadır. Evrişimsel katmanlar tarafından çıkarılan özellikler sınıflandırıcı 

tarafından kullanılarak probleme uygun kategori değeri üretmektedir. Tezin bu 

bölümünde ESA’nın temel bileşenlerinden bahsedilecektir.  

 ESA’ların Temel Kavramları 

2.5.1 Evrişimsel Katman (Convolutional Layer) 

Daha önce değinildiği üzere görme merkezinde bulunan hücrelerin tüm görseli 

kapsayacak şekilde alt bölgelere ayrılarak, basit olan hücrelerin kenar, köşe benzeri 

özelliklere karmaşık hücrelerin ise daha geniş alıcılarla, tüm görsele yoğunlaştığı 

mantığından yola çıkılarak matematiksel bir model oluşturulmuştur. Bu modelde 

evrişim işlemi, bir nöronun kendi uyarı alanından uyaranlara verdiği cevap olarak 

düşünülebilir. Normal bir sinir ağında bir görüntüyü ağa girdi olarak verebilmek için 

bu görüntüyü vektörel hale getirmek gerekmektedir. Vektörel hale getirilen 

görüntülerde şekiller arası uzamsal ilişkiler kaybolmaktadır. Bu durum görüntü tabanlı 

problemlerde sınıflandırma sonucunu olumsuz etkileyebilmektedir. Beyinin görsel 

korteks bölgesinden ilham alınarak tasarlanan evrişimsel katmanlar sayesinde girdi 

olarak verilen görüntülerin uzamsal ilişkileri kaybolmamakta, bu sayede özellikle 

girdisi görüntüler olan problemlerin çözümünde olumlu sonuçlar elde edilmektedir. 

Evrişimsel katmanı daha somut bir örnek ile ifade edecek olursak. Elimizde bir el 

feneri olduğunu ve bu fener ile bir görüntünün sol üst köşesini aydınlattığımızı 

düşünelim. Aydınlatılan bölgenin ise 5x5 piksellik bir alan olduğunu varsayalım. 
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Fenerin tüm resim üzerinde kaydırılarak hareket ettirilmesi ile her seferinde resimde 

fenerin denk geldiği kısım aydınlanmakta ve detayları ortaya çıkmaktadır. Bu örnekte 

fenerin aydınlattığı kısma alıcı alan (recepive field) fenere ise filtre ya da kernel gibi 

isimler verilmektedir. Söz konusu filtre de bir sayı dizisinden oluşmaktadır. Bu sayılar 

ağın ağırlıklarını temsil etmektedir. Fenerin aydınlattığı alıcı alanda bulunan pikseller 

ile fenerin yani filtrenin sahip olduğu ağırlık değerleri çarpılıp toplanarak bir piksel 

değeri elde edilmektedir. Toparlayacak olursak en basit tabiri ile evrişim işlemi 

görüntü üzerinde dolaştırılan bir filtre ile filtrenin örtüştüğü kısımdaki piksellerin 

çarpılıp toplanması ile yeni bir piksel değeri elde edilmesidir. Şekil 2.17’de bu durumu 

özetleyen bir görsel paylaşılmıştır. 

 

Şekil 2.17 Evrişim operasyonu 

 

Evrişim işlemi sonucu elde edilen yeni görüntüye aktivasyon haritası veya özellik 

haritası (feature map) denilmektedir. Filtre sayısı arttıkça özellik haritalarının sayısı 

da bu oranda artacaktır. Kullanılan her bir filtreye özellik tanımlayıcı denilmektir. 

Herhangi bir görüntüde özellik denildiğinde akla gelen, düz kenarlar, renkler, köşeler, 

eğriler vb. gelmektedir. Burada dikkat edilmesi gereken bir konu eğer girdi resmi 

(32x32x3) RGB ise kullanılacak filtrenin de aynı derinliğe (5x5x3) sahip olması 

gerekmektedir. Evrişim işleminde dikkat edilmesi gereken diğer bir husus Şekil 

2.17’de görüldüğü gibi çıktı görüntüsünün küçülmesidir. Bu durum filtrenin adım 
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(stride) sayısına bağlıdır. Filtre boyutu (f), resim boyutu (r), adım sayısı (s), ve kenarlık 

(padding) (p) gibi parametreler kullanılarak formül 2.18’e göre çıktının boyutlarını 

(uzunluk, yükseklik) hesaplamak mümkündür. 

 

    
2
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w h
s

+ −
= +    (2.18) 

 

Yukarıdaki formüle göre 32x32x3 lük bir görüntü üzerinde 5x5x3 lük bir filtre adım 

sayısı 1 kenarlık değeri 0 olacak şekilde gezdirildiğinde elde edilen çıktı görüntüsü 

28x28x1 olmaktadır. Bazı durumlarda girdi görüntüsünün sabit boyutta kalması 

istenebilir. Bunun için görüntü etrafında kenarlık (padding) denilen 0 rakamları 

eklenerek boyut indirgenmesinin önüne geçilmiş olmaktadır. Evrişimsel katmanı daha 

somut bir örnek ile ifade edecek olursak; 7x7x3 boyutlarında eğri tespiti için 

eğittiğimiz filtre Şekil 2.18’de gösterilmiştir. Bir eğri detektörü olarak, filtrenin bir 

eğri şekli olan alan boyunca daha yüksek sayısal değerler olacağı bir piksel yapısı 

olacaktır. 

 

Şekil 2.18 Eğri bulmak için detektör filtre [50] 

 

Matematiksel olarak bakacak olursak filtrenin çalışma mantığı şu şekildedir. Bu 

filtreyi, giriş resminin sol üst köşesinde bulundurduğumuzda, o bölgedeki filtre ve 

piksel değerleri arasındaki çarpımları hesaplanır. Şekil 2.19‘daki fare resminden yola 

çıkılacak olursa: 
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Şekil 2.19 Örnek fare resmi [50] 

 

Filtredeki değerler ile görüntüdeki orijinal pikseller çarpılarak toplanır. Şekil 2.20’de 

bu durum gösterilmektedir.  

 

Şekil 2.20 Evrişim işleminin matematiksel hesabı [50] 

 

Temelde, giriş görüntüsünde, genellikle bu filtrenin temsil ettiği eğri andıran bir şekil 

varsa, bir araya getirilen çarpmaların hepsinin büyük bir değere neden olacağı 

görülmektedir. Filtremizi resmimizin farklı bölgelerine doğru kaydırdığımızda ise 

sonuç Şekil 2.21’deki gibi olacaktır. 
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Şekil 2.21 Negatif sonuç [50] 

 

Görüldüğü gibi işlem sonucunda çok küçük bir değer elde edildi. Bunun nedeni, 

görüntünün ilgili bölümünde eğri detektör filtresine yanıt veren herhangi bir şey 

olmamasıdır. Bu filtreleme işleminin sonucunun bir özellik haritası olduğunu daha 

önce belirtmiştik. Bu nedenle, basit bir filtre ile yapılan evrişim işlemi (bu filtre bir 

eğri detektörüyse) sonucunda aktivasyon haritasında görüntüdeki eğrilerin büyük 

olasılıkla bulunduğu alanları ortaya çıkarmaktadır. Bu örneğe göre 28 x 28 x 1 

aktivasyon haritamızın sol üst değeri 6600 olacaktır. Bu yüksek değer, girdi görüntüde 

filtrenin etkinleştirilmesine neden olan bir çeşit eğri bulunması olasılığı olduğu 

anlamına gelmektedir. Örnekteki filtremiz sadece dışarıya ve sağa doğru eğri çizgileri 

algılayacak bir filtredir. Filtreler ne kadar çok olursa, aktivasyon haritasının derinliği 

o kadar artar ve girdi görüntüsü ile ilgili daha fazla bilgi elde edilir. Örnekte kullanılan 

filtre basit bir filtredir. Şekil 2.22’de eğitimli bir ağın ilk evrişimsel katmanda yer alan 

filtrelerin görselleştirmelerine ilişkin örnekler gösterilmiştir. 
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Şekil 2.22 Eğitilmiş bir ağdan elde edilen filtreler [51] 

 

Evrişimsel katmandaki diğer önemli bir konu ise paylaşılan ağırlıklar kavramıdır. Bu 

sayede ağdaki parametre sayısı düşürülerek az parametre ile daha iyi sonuçlar elde 

edilmesi sağlanmıştır. 28x28x1 boyutlara sahip bir görüntümüz olduğunu farz edelim. 

Bu görüntüyü normal bir yapay sinir ağına girdi olarak verdiğimizde 784 adet girişimiz 

olması gerekir. Üç nörondan oluşan bir gizli katmanımız olduğunu varsayarsak 

toplamda 784x3 =2352 adet ağrılık değerine ihtiyaç duyulmaktadır. Bunun yanında 

bir adet eşik değer (bias) terimi ile 2353 adet parametreyi güncellemek gerekmektedir. 

Böylesine küçük bir ağ için bile bu kadar parametreyi eğitmek zor olabilmektedir. 

Evrişimsel katmanda ağırlıklar filtreler ile temsil edilmektedir. 3x3 lük bir ağırlık tüm 

resim üzerinde kullanılarak yeni bir özellik haritası elde edilmektedir. Girdi katmanın 

görüntünün düzlemsel boyutu bozulmadığı için ortak kullanılabilen ağırlıklar 

sayesinde daha az parametre ile hesaplama yapılıp daha iyi sonuçlar elde edilmektedir.  

2.5.2 ESA’larda Aktivasyon ve Hata Fonksiyonları 

Tezin önceki bölümlerinde aktivasyon ve hata fonksiyonlarının görevlerinden ve 

öneminden detaylıca bahsedilmişti. Bu bölümde özellikle ESA’larda kullanılan 

aktivasyon ve hata fonksiyonlarına değinilecektir. Aktivasyon fonksiyonlarının 

bilinen en basit hali hiçbir değişim uygulanmayan doğrusal aktivasyon 

fonksiyonlarıdır. Bu aktivasyon fonksiyonlarına sahip bir ağın eğitimi oldukça kolay 

olmasına karşın verideki karmaşık özellikleri keşfedemezler. Ancak doğası gereği 

regresyon problemlerinde kullanımları devam etmektedir. Bununla birlikte sigmoid, 

tanh gibi doğrusal olmayan aktivasyon fonksiyonları verideki karmaşık ilişkileri daha 
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iyi belirleyebilmektedir. Fakat bu fonksiyonlarında ağın ilerleyen katmanlarına doğru 

türevleri sıfır olduğu için ağırlıklarda güncelleme yapılamaması gibi dezavantajları 

bulunmaktadır. Bu nedenle ESA’larda sıklıkla tercih edilen aktivasyon fonksiyonu 

düzeltilmiş doğrusal birim fonksiyonu bilinen adı ile (Rectified Linear Unit) 

ReLU’dur. Fonksiyon negatif bir değer aldığında sıfır sonucu üretirken, pozitif bir 

değer aldığında ise alınan değeri geri döndürmektedir. Formülü 2.19’daki gibidir. 

Grafiksel olarak gösterimi ise Şekil 2.23’te verilmiştir.  

 

 ( ) max(0, )f x x=     (2.19) 

 

 

Şekil 2.23 ReLU fonksiyon grafiği 

 

2.5.3 Havuzlama (Pooling) 

Evrişimsel katmandan sonra genellikle havuzlama katmanı gelmektedir. Bu katman 

aşağı örnekleme katmanı olarak da bilinir. Global ortalama havuzlama, ortalama 

havuzlama gibi farklı havuzlama yöntemleri olmasına karşın en sık kullanılan 

havuzlama yöntemi maksimum havuzlamadır (max pooling). Genellikle 2x2’lik bir 

filtre görüntü üzerinde dolaştırılır. Fitrenin oturduğu kısımdaki maksimum değer 

dikkate alınarak diğer pikseller ihmal edilir. Şekil 2.24’te ortalama ve maksimum 

havuzlama yöntemlerinin örnekleri verilmiştir. 
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Şekil 2.24 Havuzlama İşlemi [18] 

 

Görüldüğü gibi bu katman, girdi hacminin uzamsal boyutunu (uzunluk ve genişlik 

değişikliği değil derinlik) büyük ölçüde azaltır. Bu işlem iki temel amaca hizmet 

etmektedir. Birincisi, parametrelerin veya ağırlıkların miktarının %75 oranında 

azaltılması, böylece hesaplama maliyetinin azaltılmasıdır. İkincisi, gereğinden fazla 

uyumu kontrol ederek azalmasında rol oynamaktadır. 

2.5.4 Tam Bağlı Katmanlar (Fully Connected Layers) 

ESA’ların sonunda bulunan katman veya katmanlardır. Normal bir yapay sinir ağından 

bir farkı bulunmamaktadır. Genellikle sınıflandırıcı görevi görmektedir. Bir dizi 

evrişimsel katmandan sonra elde edilen özellikler tam bağlı katmanlara vektörel hale 

getirilerek yollanmaktadır. Tam bağımlı katmanlar bu özellikleri kullanarak ilgili 

probleme dair bir sonuç üretmektedir. 

2.5.5 Evrişimsel Sinir Ağlarında Aşırı Uyum ve Engelleme Yöntemleri 

Derin ağların en büyük problemlerinden bir tanesi aşırı uyum veya ezberleme 

problemidir. Aşırı uyum problemi eğitim sırasında yüksek oranlarda doğruluk oranı 

elde eden ağın test esnasında düşük doğruluk oranı vermesidir, kısaca ağımızın 

verimizi ezberlemesidir. Bu durum genelde eğitim için yeterli verinin olmadığı 

problemlerde ortaya çıkmaktadır. Az veri ile yüksek doğruluk oranı elde etmek için 

çalışmalar devam etmektedir. Özellikle tıbbi alanlarda yüksek boyutlarda veri elde 

etmek zor ve zahmetli bir süreçtir. Bu yüzden çeşitli veri çoğaltma yöntemleri derin 

ağlarda kullanılmakta ve başarılı sonuçlar elde edilmektedir.  
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Veri Çoğaltma (Data Augmentation): Özellikle girdisi görüntüler olan ağlarda 

oldukça başarılı sonuçlar elde eden bir yöntemdir. Bu yöntem ile baz alınan 

görüntüden; döndürme, kesme, kırpma, kontrast arttırma vb. gibi çeşitli görüntü işleme 

yöntemleri ile yeni görüntüler üretilerek eğitim için kullanılan veri seti 

genişletilmektedir. Yukarıda belirtilen çoğaltma işlemlerinin temeli çeşitli görüntü 

işleme yöntemlerine dayanmaktadır. Veriye özel çoğaltma yöntemleri 

geliştirilebileceği gibi bu yöntemleri bir araya getiren hazır kütüphaneler de 

bulunmaktadır. Bu kütüphanelerden bir tanesi olan Keras ImageDataGenerator 

kullanım kolaylığı ve sunduğu avantajlı özellikler sayesinde en popüler olanlardan bir 

tanesidir. Kütüphanenin içeriği ve kullanım detayları web sayfasında bulunmaktadır 

[52]. 

İletim Sönümü (Dropout): Aşırı uyum önleme yöntemlerinden bir tanesi olan iletim 

sönümü yöntemi, eğitim sırasında gerçekleşen geri yayılım sürecinde daha önce 

belirlenen oranda rastgele bazı nöronların ağırlık güncelleme işlemine dahil 

edilmemesidir. Her geri yayılım sürecinde farklı nöronlar seçildiği için bu yöntem 

sıkça kullanılmakta ve başarılı sonuçlar elde etmektedir. Yöntemin uygulanmasına 

ilişkin bir görsel Şekil 2.25‘te gösterilmektedir. 

 

Şekil 2.25 İletim sönümü yönteminin gösterimi, solda normal ağ sağda ise iletim 

sönümü uygulanmış bir ağ gösterilmektedir. 

 

Düzenlileştirme Yöntemleri L1, L2 (Regularization Methods): Aşırı uyum 

probleminin diğer çözümlerinden bir tanesi de ağın boyutlarını küçültmektir. Fakat 

büyük ağlar küçük ağlara göre daha iyi sonuçlar vermektedir. Bu yüzden bu yöntem 

pek kullanılan bir yöntem değildir. Bunun yerine düzenlileştirme yöntemleri 

bulunmaktadır. Bu yöntemlerden en popüler olanlardan bir tanesi ağırlık azalımı 
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(weight decay) ya da diğer adıyla L2 düzenlileştirmesidir. Bu yöntemde maliyet 

fonksiyonuna ekstra terim eklenmesi yapılmaktadır. Bu terime düzenlileştirme terimi 

denilmektedir. Aşağıda çeşitli M fonksiyonlarında ve genelleştirilmiş hali ile L2 

düzenlileştirme yönteminin kullanımı gösterilmektedir.  
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Formüle göz atacak olursak L2 düzenlileştirme yönteminde ağ içindeki o anki mevcut 

ağırlıkların karelenin toplamının λ / (2n) ile çarpılması ile ortaya çıkan değerin maliyet 

fonksiyonuna eklenmesidir. Burada λ, 0-1 arasında düzenlileştirme parametresi, n ise 

kullanılan veri setindeki örnek sayısını temsil etmektedir. Diğer bir düzenlileştirme 

yöntemi olan L1 düzenlileştirme ise L2 den farklı olarak formül 2.23’te görüldüğü 

üzere ağdaki ağırlıkların mutlak toplamının λ/(2n) ile çarpılıp maliyet fonksiyonuna 

eklenmesi ile elde edilmektedir. 
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Aktarım Öğrenme (Transfer Learning): Aktarım öğrenme, belirli bir problemi 

çözmek için elde edilen bilginin, başka bir problemin çözümünde kullanılmasıdır [53]. 

Bunu günlük hayattan bisiklet süren birinin motosiklet öğrenmeyi daha kolay 

öğrenmesine benzetebiliriz. Aktarım öğrenme bilgisayarlı görü problemlerinde doğru 

modelleri hızlı bir şekilde uygulamaya olanak sağlayan oldukça popüler bir yöntemdir 

[54]. Aktarım öğrenme de öğrenme sürecini baştan başlatmak yerine önceden 

öğrenilmiş filtreler kullanılarak farklı bir problemin çözümünde kullanılmaktadır. 
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ImageNet [55] tarafından sağlanan 1,2 milyon görüntü ve 1000 kategoriden oluşan 

veri  üzerinde eğitilen farklı evrişimsel derin ağlar (Vgg, Inception, MobileNet, ResNet 

vb.) araştırmacılar tarafından yeni problemlerin çözümünde kullanılmaktadır. Temel 

bir ESA’da evrişimsel katmanlar özellik çıkarmak için, tam bağlı ise çıkarılan 

özellikleri sınıflandırarak probleme uygun kategori değeri üretmek için çalışmaktadır. 

Şekil 2.26’da basitleştirilmiş bir ESA mimarisi görseline yer verilmiştir.  

 

Şekil 2.26 Temel bir ESA mimari yapısı 

 

ESA’nın en büyük avantajı eğitim verisini kullanarak veriye ait ayırt edici özellikleri 

kendi kendilerine öğrenmeleridir. Bunu yaparken ilk katmanlarda daha genel 

özellikler olan kenarlar, çizgiler, renkleri algılarken ileriki katmanlara doğru daha veri 

spesifik özellikleri gizli bağlantıları ortaya çıkarmaktadırlar. Bu durum sayesinde 

evrişimsel ağlar aktarım öğrenmeye oldukça uygundur. Şekil 2.27’den de görüleceği 

üzere ImageNet verisi ile eğitilmiş bir ağın farklı katmalarındaki filtrelerinin ve özellik 

haritalarının görselleştirilmiş halleri verilmiştir.  
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Şekil 2.27 Farklı katmanlarda yer alan öğrenilmiş filtreler [56] 

 

Evrişimsel bir sinir ağını kendi amaçlarımız için eğitirken aktarım öğrenmeyi 

kullanmanın bazı stratejileri bulunmaktadır. İlk olarak ağın sonunda bulunan 

sınıflandırıcıyı kaldırıp kendi sınıflandırıcımız eklenir. Daha sonra ise ağ üzerinde üç 
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farklı hassas ayar (fine-tunning) stratejisinden birini kullanarak eğitim yapılır. Bu 

stratejileri yakından inceleyecek olursak. 

1- Tüm modeli eğitmek: Daha önce eğitilmiş modeli ağrılıklarını başlangıç 

noktası kabul ederek kendi veri setimiz ile tüm ağı eğitiriz. Bu seçenekte 

yüksek boyutlarda veriye ve hesaplama gücüne ihtiyaç duyulmaktadır. Aksi 

takdirde istenilen sonuçlar elde edilemez. 

2- Bazı katmanları dondurup bazılarını eğitmek: Yukarıda bahsedildiği gibi bir 

evrişimsel sinir ağında ilk katmanlar veri bağımsız özellikleri öğrenirken son 

katmanlara doğru daha veriye bağımlı özellikleri ortaya çıkarmaktadır. Bu 

bağlamda bazı evrişim katmanlarını deneme yanılma yolu ile dondurarak yani 

eğitim esnasında ağırlıklarının değişmesini engelleyerek kendi problemimize 

uyarlamak mümkündür. Eğer küçük bir veri setimiz varsa ve seçtiğiniz 

modelin parametre sayısı çok fazla ise ezberlemeyi önlemek için donmuş 

katman sayısını fazla tutmak faydalı olacaktır. Bununla birlikte eğer veri 

setimiz büyük ve modelinizdeki parametre sayısı az ise yeni katmanlar 

ekleyebilir veya daha fazla evrişimsel katmanı eğitime katabilirsiniz.  

3- Tüm evrişimsel katmanları dondurmak: Bu seçenekte tüm evrişimsel 

katmanlar dondurularak sadece sınıflandırıcı kısmında bulunan tam bağlı 

katmanlar eğitilmektedir. Bu seçeneğin uygulaması için genelde daha önce 

eğitilmiş modelin veri seti ile verimizin benzerlik oranın yüksek olduğu ayrıca 

veri setimizin ve hesaplama gücümüzün yeterli olmadığı durumlardır. Şekil 

2.28’de üç farklı durumu gösteren bir görsel verilmiştir. 
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Şekil 2.28 ESA aktarım öğrenme stratejileri 

 

Strateji 3’ün aksine strateji 1 ve 2’de eğitim esansında evrişimsel katmanlardaki 

öğrenme oranına dikkat edilmesi gerekmektedir. Bu oran ağda yer alan parametrelerin 

hangi oranda değişeceğini belirleyen önemli bir hiper parametredir. Daha önceden 

eğitilmiş bir ESA modelini eğitirken bu oranı düşük tutmak yeni eğitim için önemli 

bir etmendir, eğer bu oran yüksek olursa daha önce eğitilmiş modelin elde ettiği 

bilgilerin de kaybolma ihtimali yüksektir.  

Pratikte aktarım öğrenme süreci aşağıda belirtilen sıra ile gerçekleştirilmelidir. 

1- Eğitilmiş model seçimi: Probleme uygun olarak daha önceden eğitilmiş bir 

model seçilir. Eğer Keras gibi bir derin öğrenme kütüphanesinden 

faydalanılıyorsa eğitilmiş birçok evrişimsel modeli hazır olarak elde 

edilebilmektedir (Vgg, ResNet, Inception, Xception vb.). 

2- Veri analizi: Problemin veri setinin büyüklüğü ve daha önce eğitilmiş olan 

modelde kullanılan veri seti ile benzerlik oranı aktarım öğrenmede önemli bir 

etmendir. Genel bir kural olarak veri setinizde sınıf başına 1000 görüntüden az 

veriniz var ise veri setinizin küçük olduğu kabul edilir. Veri setlerinin 

benzerliği noktasında ise eğer probleminiz kedi köpek sınıflandırmak ise ve 
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ImageNet alt yapısını kullanıyorsanız zaten bu veri içinde kedi köpek olduğu 

için çok az bir eğitimle iyi sonuçlar elde edilebilir. Fakat problem kanser 

sınıflandırma ise ImageNet verisi ile benzerlik söz konusu değildir.  

3- Hassas ayar: Burada veri yapısı ve seçilen modelin parametre sayısı göz önüne 

alındığında dört durum ortaya çıkmaktadır. Şekil 2.29’da verilen benzerlik 

matrisine göre bu durumlardan birisi tercih edilerek eğitime başlanır. Bu 

durumlara kısaca değinilirse: 

• Eğer probleme ait veri seti büyük fakat daha önceden eğitilmiş ağın veri seti 

ile benzerliği yoksa bu durumda strateji 1 uygulanmaya alınabilir. Elde 

büyük veri seti varsa model sıfırdan eğitilebilir. Bununla birlikte her ne 

kadar veriler arası benzerlik olmasa da eğitime daha önce eğitilmiş modelin 

ağırlıkları ile başlamak yararlıdır. 

• Probleme ait yeterli veri var ve modelin daha önce eğitildiği veri ile 

benzerlik oranın yüksek ise en iyi yol strateji 2 olacaktır. Veri setinin 

büyüklüğü ağın ezberlemesini engeller. Ayrıca veri benzerliği sayesinde 

uzun eğitim sürecine ihtiyaç kalmamaktadır. Bu nedenle sınıflandırıcı ve 

evrişimsel katmanların üst katmanlarını eğitmek yeterli olacaktır. 

• Probleme ait veri seti küçük ve daha önce eğitilmiş model ile benzerlik 

taşımıyorsa yine en uygun yol strateji 2 olarak görülmektedir. Eğitilmesi ve 

dondurulması gereken katman sayısını ayarlamak oldukça güçtür. Burada 

veri çoğaltma yöntemleri kullanılarak örnek sayısını arttırmanın yanında 

daha çok evrişimsel katman eğitime katılmaktadır.  

• Probleme ait veri seti küçük fakat daha önce eğitilmiş ağ ile benzerlik oranı 

yüksek ise strateji 3’ü kullanmak daha mantıklıdır. Sadece sınıflandırıcı 

eğitilip evrişimsel katmanlar dondurularak kısa süre başarılı sonuçlar elde 

edilebilir.  
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Şekil 2.29 Aktarım öğrenme veri seti ilişkisi 

 

 ESA Mimarisindeki Son Gelişmeler ve Tasarım Öğeleri 

Her ne kadar evrişimsel sinir ağları, LeNet'in tanıtımını takiben bilgisayarlı görü ve 

makine öğrenim topluluklarında iyi bilinse de hemen sahaya hâkim olmadılar. 

Bilgisayarlı görü problemlerinin çözümünde ESA’lar 2012 yılından sonra yükselişe 

geçmiş ve klasik makine öğrenmesi yöntemlerinin yerini almışlardır. Sınıflandırma, 

segmentasyon, nesne yer tespiti ve yapay veri üretme gibi görüntü temelli problemler 

için farklı ESA mimarileri geliştirilmiştir (Şekil 2.30). Dolayısı ile bu bölümde son 

birkaç yıl boyunca geliştirilen ve bu çalışma esnasında faydalanılan güçlü ESA 

modellerinden bahsedilecektir. 

 

Şekil 2.30 ESA modellerinin farklı kullanım alanları 
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2.6.1 Sınıflandırıcı ESA 

AlexNet: Alex Krizhevsky ve arkadaşları tarafından tasarlanan AlexNet 2012 yılında 

(ImageNet Large Scale Visual Recognition Competition) ILSVRC tarafından yıllık 

olarak düzenlenen 1,2 milyon görüntünün 1000 kategoride sınıflandırılmasını 

amaçlayan ImageNet yarışmasında bir önceki yılda elde edilen %26’lık top-5 hata 

oranını %15’e çekmeyi başarmıştır [32]. Top-5 hata oranı modelin yaptığı en yüksek 

oranlı ilk 5 tahmin arasında doğru sınıfın olmasıyla sonucun doğru kabul edilmesidir. 

Aynı yarışmada ikinci olan klasik makine öğrenmesi yöntemi top-5 hata oranında 

%26,2’de kalmıştır. AlexNet yapı olarak daha önce değinilen LeNet’e benzemektedir. 

Ancak daha derin bir mimariye sahiptir. Beş adet evrişimsel katman ve üç tam bağlı 

katmandan oluşmaktadır. Evrişimsel katmanlarda 11x11, 5x5 ve 3x3 filtreler, 

maksimum havuzlama, iletim sönümü, yapay veri çoğaltma, ReLU aktivasyon 

fonksiyonu ve SGD ile birlikte momentum kullanımı gibi pek çok yenilik ilk kez 

AlexNet’te kullanılmıştır [32]. AlexNet mimarisi Şekil 2.31’de detaylı olarak 

verilmiştir.  

 

 

Şekil 2.31 AlexNet mimarisi [32] 

 

AlexNet bilgisayarlı görüde bir dönüm noktasıdır. 2012 yılından itibaren düzenlenen 

bütün ImageNet yarışmalarını her yıl derin öğrenme temelli ağlar kazanmakla birlikte 

bununla da kalmayıp hata oranını insan hata oranının altına indirmeyi başarmışlardır.  

 



 

 

49 

 

VggNet: VggNet 2014 yılında Simonyan ve arkadaşları tarafından tasarlanmıştır. Vgg 

mimarisi ile birlikte ilk kez ESA’larda derinlik algısına vurgu yapılmış, derinlik 

arttırıldığında sınıflandırma başarısın da artacağını 2014 yılında katıldıkları ImageNet 

yarışmasında top-5 hata oranında %7,3 değerini elde ederek kanıtlamışlardır [57]. Vgg 

ağında büyük filtreler kullanmak yerine 3x3 lük küçük filtreler birer adımlık 

ilerlemeler ile kullanılmıştır. Bu sayede AlexNet’den daha fazla derinliğe sahip 

olmasına karşın Vgg’nin daha az parametresi bulunmaktadır. Evrişim işlemlerinden 

sonra ReLU aktivasyon fonksiyonu kullanılmış ardından maksimum havuzlama 

yönteminden faydalanılmıştır. Farklı varyasyonları olan VggNet’in en sık kullanılan 

mimarileri Vgg-16 ve Vgg-19’dur. 16 ve 19 sayıları sahip oldukları katman sayısını 

temsil etmektedir [57]. Örneğin Şekil 2.32’de yer alan Vgg-16 mimarisi 13 evrişimsel, 

3 tam bağlı katmandan oluşmaktadır.  

 

 

Şekil 2.32 Vgg-16 mimarisi [57] 

 

GoogleNet (Inception V1): Vgg, ImageNet veri setinde olağanüstü bir doğruluk elde 

etse de o yıllarda en mütevazı büyüklükteki GPU'larda bile kullanımı hem bellek hem 

de zaman açısından büyük hesaplama gereksinimleri nedeniyle bir sorun 

oluşturmaktaydı. Standart bir ESA mimarisinde peş peşe gelen bir dizi evrişim 

katmanları ve havuzlama katmanları ve en son tam bağlı katmanlar bulunmaktadır. Bu 



 

 

50 

 

model yapısı, yüksek miktarda hafıza ihtiyacı, yüksek miktarda hesaplama gücü, aşırı 

uyuma meyil etme, kaybolan gradyan problemi gibi bazı dezavantajları da beraberinde 

getirmekteydi. GoogLeNet söz konusu problemlere çözüm üretmek için 2014 yılında 

Christian Szegedy ve arkadaşları tarafından tasarlanmıştır. Toplamda 22 katmandan 

oluşan ağ aynı yıl düzenlenen ImageNet yarışmasında %6,67 top-5 hata oranını elde 

ederek birinci olmuştur [58]. GoogLeNet diğer bir adıyla Inception V1 beraberinde 

birçok yeniliği getirmiştir. Bunlardan bazıları şunlardır. GoogLeNet'te 1×1 evrişim, 

hesaplamayı azaltmak için boyut küçültme modülü olarak kullanılmıştır. Bu sayede 

hesaplama darboğazı azaltılarak derinlik ve genişlik arttırılmıştır. 1x1 evrişimin diğer 

bir faydası ise aşırı uyumu engellemesidir. GoogLeNet ile gelen başka bir yenilik ise 

inception modülüdür. Daha önce bahsi geçen AlexNet, VggNet gibi ağlarda evrişim 

katmanında filtre boyutları sabitti. Bu modül ile birlikte 1x1, 3x3, 5x5 filtreler ve 3x3 

maksimum havuzlama girdi görüntüsüne aynı anda uygulanıp sonuçlar 

birleştirilmiştir. Şekil 2.33’te görseli bulunan bu yapıya inception modül adı 

verilmiştir. Görüntüye uygulanan farklı filtreler sayesinde farklı özellik haritaları elde 

edilmektedir. Elde edilen özellik haritaları birleştirilerek bir sonraki modülün girişi 

oluşturulmaktadır. 

 

 

Şekil 2.33 Inception modülü [58] 

 

GoogLeNet ile birlikte gelen başka bir yenilik ise global ortalama havuzlama 

yöntemidir. Bu yöntemden önce tam bağlı katman öncesinde tüm veriler vektörel hale 
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getirilmekteyken kullanılan 1x1 filtre ile daha çok özellik daha az parametre ile temsil 

edilir hale getirilmiştir. Şekil 2.34’te global ortalama havuzlamaya (GOH) ait bir 

görsel paylaşılmıştır. 

  

Şekil 2.34 Solda normal sağda ise GOH yöntemi [59] 

 

Araştırmacılar Inception V1 üzerinde yaptıkları bazı geliştirmeler ile birlikte Inception 

V2, Inception V3, Inception V4 gibi daha yeni versiyonlarını geliştirmişlerdir. 

ResNet: 2015 yılında Microsoft ekibi, Kaiming He ve arkadaşları tarafından 

geliştirilen (Deep Residual Network) 152 katmanlı ResNet aynı yıl düzenlenen 

ILSVRC yarışmasında %3,57’lik top-5 hata oranı ile birinci olmuştur [60]. Aldığı bu 

başarı ile %5 olan insan hata oranını geçerek büyük bir başarı elde etmiştir. ResNet 

sahip olduğu bazı avantajları sıralayacak olursak; mimarisinin hızlı eğitilmesi, geniş 

bir ağ yerine derin bir mimari kullanmasının bir sonucu daha az parametreli bir yapıya 
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sahip olması, gradyan yok olması problemini çözmesi ve özellikle görüntü 

sınıflandırma alanında büyük bir başarı yüzdesine sahip olmasıdır. Biraz deha detaylı 

açıklayacak olursak evrişimsel ağlarda derinlik yani katman sayısı önemli bir 

parametredir. Teorik olarak derinliğin artması ağın temsil kapasitesini arttıracağı 

düşünülmektedir. Bunun sonucunda daha başarılı ağ mimarilerinin ortaya çıkması 

beklenirken ortaya iki önemli sorun çıkmaktadır. Bu sorunlardan ilki (vanishing / 

exploiding gradients) eğimin sıfır olması sonucu eğitim esnasında bazı nöronların 

ölmesidir. Biraz daha açarsak geri yayılım esnasında güçlü aktivasyonları olmayan 

nöronların uzun katman zincirleri arasında kaybolması ve ağın eğitimine katkı 

verememesidir. Diğer bir sorunda derinlik arttıkça parametrelerin optimizasyonun 

zorlaşmasıdır. ResNet’in getirdiği yenilik ise ağın derinliğini arttırmasına rağmen 

yukarda bahsedilen sorunları (residual connections) artık bağlantılar ismini verdiği bir 

yöntem ile çözmüş olmasıdır.  

 

Şekil 2.35 ResNet’in artık bağlantıları [60] 

 

Şekil 2.35’te gösterilen yöntem incelendiğinde normal şartlarda girişten çıkışa kadar 

olan kısmı doğrusal olmayan H(x) fonksiyonu ile haritalandırabilmektedir. ResNet 

mimarisinde bu yol, H(x) yerine F(x):=H(x)-x olarak tanımlanan başka bir doğrusal 

olmayan fonksiyon kullanılarak haritalandırılmaktadır. Buna ek olarak da girişten 

çıkışa bir kısa yol bağlantısı yapılarak, x (giriş) değeri F(x) fonksiyonuna aritmetik 

olarak ekleniyor. Daha sonra F(x)+x fonksiyonu birlikte ReLU’dan geçiriliyor. 

Dolayısıyla ikinci katmanın sonuna girişte eklenerek, geçmiş katmanlardaki değerlerin 

ileriki katmanlara daha güçlü bir şekilde iletilmesi sağlanmış olmaktadır. ResNet’in 

Şekil 2.36’da gösterildiği gibi farklı katmanlara sahip mimarileri bulunmaktadır.  
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Şekil 2.36 Farklı ResNet mimarileri [60] 

 

Xception: 2017 yılında François Chollet tarafından Inception V3 mimarisinden ilham 

alınarak tasarlanmıştır [61]. Xception modelin özgün yanı normal evrişim işlemi 

yapmak yerine derinlemesine ayrılabilir evrişim (SeparableConv) işlemini modifiye 

ederek kullanmasıdır. Bu yöntemde özellik haritalarına önce 1x1 filtre uygulanarak 

özellik haritaları daraltılmakta, daraltılan haritaların her birine ayrı 3x3 filtre 

uygulanarak sonuçlar birleştirilmektedir. Şekil 2.37’de bu durumu anlatan bir görsele 

yer verilmiştir.  

 

Şekil 2.37 Xception mimarisinde kullanılan derinlemesine ayrılabilir evrişim 

yaklaşımı [61] 
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Xception modelinin özellik çıkarmak için 36 evrişimsel katmanı ve tam bağlı 

katmanlar, çıkışta mantıksal sınıflandırma katmanı bulunmaktadır. Toplamda 14 

modülden oluşan evrişimsel katmanların her biri doğrusal artık bağlantılara sahiptir. 

 

Şekil 2.38 Xception mimarisi [61] 

 

MobileNet: Andrew G. Howard ve arkadaşları tarafından 2017 yılında tasarlanan 

MobileNet’in esas tasarlanma amacı mobil veya gömülü sistemlerde kullanılabilecek 

hafif ama etkili bir model ortaya çıkarmaktır [62]. MobileNet mimarisi derinlemesine 

ayrılabilir evrişim işleminden faydalanarak parametre sayısını, işlem hacmini ve 

model karmaşıklığını düşürmüş, bu sayede donanımsal olarak kısıtları olan mobil ve 

gömülü cihazlarda kullanılabilir hale getirilmiştir (Şekil 2.39). Detaylı MobileNet 

mimarisi Şekil 2.40’ta verilmiştir. 
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Şekil 2.39 Derinlemesine ayrılabilir evrişim [62] 

 

 

Şekil 2.40 MobileNet mimarisi [62] 
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2.6.2 ESA’ların Segmentasyonda Kullanımı  

Derin ağların görüntü sınıflandırma problemlerinin yanı sıra diğer bir kullanım alanı 

da görüntü segmentasyonudur. Segmentasyonun sınıflandırmadan farkı ise; 

sınıflandırmada, sınıflandırılmak istenilen sınıflara dair bir aidiyet değeri elde 

edilirken segmentasyonda ise girdi görüntüsüne karşılık istenilen nesnenin görüntü 

içerisinde arka plandan ayrılmış halinin elde edilmesidir. Bu durumun sağlanabilmesi 

için eğitim esnasında giriş görüntüsünün yanında onun segmente edilmiş görüntüsü de 

kullanılmaktadır. Şekil 2.41’de bir lezyon ve onun ikili halde segmente edilmiş hali 

etiketi (ground truth) ve segmentasyon sonucu gösterilmiştir.  

 

Şekil 2.41 Segmentasyon işlemi (a) orijinal görüntü (b) lezyonun arka plandan 

yarılmış ikili görüntüsü(etiketi), (c) orijinal görüntü ile iki görüntünün 

birleştirilmesi sonucu elde edilen segmentasyon görüntüsü 

 

Sınıflandırmaya nazaran segmentasyon çok daha zor bir problemdir. Bu amaçla farklı 

derin ağlar geliştirilmiştir. Aşağıda bunlardan bazılarının mimari detaylarına 

değinilecektir. 

FCN (Fully Convolutional Network): Tam Evrişimli Ağ 2015 yılında Jonathan Long 

ve arkadaşları tarafından anlamsal segmentasyon için önerilmiştir [63]. Ana fikir sahne 

hakkında fikir sahibi olmak yani görüntüde neler var ve kabaca görüntünün neresinde 

yar aldıklarıdır. Esasında bir ESA olan FCN’nin farkı tam bağlı katmanların evrişimsel 

katmanlar ile değiştirilmesi ve yukarı örnekleme katmanları kullanılarak kategori 

bilgisi yerine bir sıcaklık haritası elde etmesidir. Şekil 2.42’de tam bağlı katmanların 

evrişimsel katmanlara dönüştürülmesini konu alan bir görsel paylaşılmıştır. FCN-8, 

FCN-16, FCN-32 gibi farklı mimariler bulunmaktadır [63]. 
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Şekil 2.42 FCN model mimarisi [63] 

 

U-Net: Olaf Ronneberger ve arkadaşları tarafından 2015 yılında geliştirilen U-Net 

mimarisi özellikle medikal görüntülerin sınıflandırılmasında kullanılmak üzere 

tasarlanmıştır [64]. İsmini U şeklindeki yapısından alan mimari Şekil 2.43’te 

gösterilmektedir. 

 

Şekil 2.43 U-Net mimarisi [64] 
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U-Net mimarisi incelediğinde üç farklı bölümden oluştuğu görülmektedir. Bunlar 

daralma, darboğaz ve genişlemedir. Daralma bölümü, daralma bloklarından 

oluşmaktadır. Her bir blok girdiye, 3x3 filtre kullanarak evrişim işlemi uygulamakta 

ve bunu 2x2 maksimum havuzlama takip etmektedir. Filtre sayısı her blokta iki kat 

arttırılmıştır. Bu sayede daha karmaşık yapılar öğrenilebilmektedir. Darboğaz katmanı 

ise daralma ile genişleme arasında aracılık etmektedir. U-Net mimarisinin getirdiği 

ana yenilik genişleme kısmındadır. Daralma katmanı gibi genişleme katmanı da 

bloklardan oluşmaktadır. Her blokta 3x3 filtreler ile evrişim yapılmasının ardından 

2x2 üst örnekleme yapılmaktadır. Her blokta daralma katmanı ile olan simetriyi 

korumak adına bir önceki katmandaki özellik haritalarının yarısı alınır. Daralma 

bloklarından gelen özellik haritaları genişleme bloğunda karşılık gelen özellik 

haritalarına eklenmektedir. Bu sayede, görüntüyü daraltırken öğrenilen özellikleri onu 

yeniden yapılandırmak için kullanılacaktır. Genişleme bloğu sayısı, daralma bloğu 

sayısı ile aynıdır. Genişleme katmanın sonlarına doğru 3x3’lük filtreler kullanılarak 

yapılan evrişim işlemleri ile özellik haritaları segmentasyon sonucunu elde etmek için 

daraltılmaktadır. 

SegNet: 2016 yılında Vijay Badrinarayanan ve arkadaşları tarafından önerilen model 

kodlayıcı ve çözücü olmak üzere iki bölümden oluşmaktadır [65]. Şekil 2.44’te 

önerilen mimarinin detaylarına ait bir görsel paylaşılmıştır.  

 

 

Şekil 2.44 SegNet mimarisi [65] 
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SegNet’in kodlayıcı kısmında birbirini takip eden evrişimler ve havuzlama işlemleri 

yer almaktadır. Vgg-16’dan baz alınarak kodlayıcı bölümünde 13 evrişim katmanı 

bulunmaktadır. Mimarinin çözücü kısmında ise yukarı örnekleme ve evrişim işlemleri 

birbirini takip eden sıra ile uygulanmıştır. En sonda ise bir softmax sınıflandırıcısı 

kullanılarak pikseller kategorilere ayrılmıştır. Kodlayıcı katmandaki özellik haritaları 

çözücü katmandaki karşılık gelen özellik haritalarına eklenmektedir. SegNet, U-Net 

ile benzer bir mimariye sahiptir. SegNet’de havuzlama indisleri yerine tüm özellik 

haritaları kodlayıcıdan çözücüye aktarılmıştır. 

Yolo: Sınıflandırma algoritmaları görüntü içerisinde önceden belirlenen bir nesnenin 

varlığını bulmaya çalışırken, tespit algoritmaları sınıflandırmanın yanında söz konusu 

objenin etrafında bir dikdörtgen çizerek görüntüdeki yerini de tespit etmektedir. Bu 

amaç için geliştirilmiş derin öğrenme tabanlı farklı algoritmalar bulunmaktadır. Bu 

algoritmalar iki gruba ayrılmaktadır. İlk grup algoritmalar iki aşamadan oluşmaktadır. 

İlk aşamada görüntü üzerinde belirli sayıda sınırlayıcı kutu oluşturulur. İkinci aşamada 

bu sınırlayıcı kutular ESA sınıflandırıcıları kullanılarak içinde nesne olup olmadığı 

tespit edilmeye çalışılır. Sınıflandırıcıdan gelen sonuçlar bazı son işleme adımları ile 

(yinelenen tespitlerin ortadan kaldırılması, sınırlayıcı kutuların resimdeki nesnelere 

göre yeniden sıralanması vb.) geliştirilerek nihai sonuç elde edilir. Bu süreç oldukça 

yavaş, optimize edilmesi zor ve karmaşıktır. En bilinen örnekleri alan tabanlı 

evrişimsel sinir ağlarıdır RCNN, Fast-RCNN, Faster-RCNN. İkinci grup algoritmalar 

ise sınırlayıcı kutuları daha önceden belirlemek yerine tek seferde hem sınırlayıcı 

kutuyu hem de sınıfları tespit etmeyi amaçlamaktadır. 

Yolo derin öğrenme yöntemleri kullanan ikinci grup algoritmalarının en başarılısı ve 

nesne tespit hızı en iyi olan örneklerinden bir tanesidir. Yolo’nun ilk versiyonu 

Redmon ve arkadaşları tarafından 2016 yılında tanıtıldı [66]. Yolo saniyede 45 kare 

görüntü içerisinden gerçek zamanlı olarak nesne tespiti yapabilmektedir. Bunu tek bir 

ESA ağını kullanarak yapmaktadır. Yolo’nun çalışma prensibi oldukça basittir. Bir 

ESA ağı birden çok sınırlayıcı kutuyu ve onlara ait sınıf olasılıklarını tahmin 

etmektedir. Bunu yaparken tam görüntüyü tek seferde kullandığı için nesneler arası 

ilişkileri öğrenme kapasitesi rakiplerine nazaran yüksektir. Yolo nesne tespit 

problemini regresyon problemine dönüştürmüştür. Ağın tahminleri 

(SXS)*B*(5+C)’lik tensorlar ile temsil edilmektedir. Yolo’nun nesne tespitindeki 
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gücünü anlamak için ilk olarak tahmin tensor’unu anlamak gerekmektedir. Yolo ilk 

olarak ele aldığı görüntüyü birbirini kesmeyen (SXS) sayıda ızgaraya bölmektedir. 

Eğer bir nesnenin orta noktası bir ızgara hücresinin ortasına denk gelirse, bu ızgara 

hücresi bu nesneyi tespit etmekle sorumludur. Bu amaçla her ızgara hücresi B adet 

sınırlayıcı kutu ve bu kutulara ait güven puanlarını hesaplamaktadır. Güven puanı 

kavramı, sınırlayıcı kutu içerisinde bir nesne olup olmadığının göstergesidir. Yolo’nun 

tespit aşamaları Şekil 2.45’te gösterilmiştir. 

 

 

Şekil 2.45 Yolo lezyon yerini tespit aşamaları [67] 

 

Güven puanı, mevcut nesnenin görüntüde olma olasılığının ve kesişme yüzdesinin 

(IOU) çarpımı ile elde edilmektedir. 

 

  
arzu edilen

tahmin edilenGüvenpuanı = Pr *IOU(Nesne)    (2.24) 
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Şekil 2.46 Kesişme yüzdesi hesaplama formülü 

 

Eğer ilgili hücrede herhangi bir nesne yok ise güven puanı sıfır olmalıdır. Aksi takdirde 

güven puanı IOU değerine eşittir. Her sınırlayıcı kutu x, y, w, h ve güven puanı olmak 

üzere beş parametreye sahiptir. Bu parametrelerden x ve y sınırlayıcı kutunun 

merkezini temsil ederken w ve h değerleri sınırlayıcı kutunun genişlik ve uzunluğudur. 

Ayrıca sınıf puanlarını temsil eden ekstra bir C parametresi bulunmaktadır (Şekil 

2.47). Her ızgara hücresi C adet sınıf olasılığını tahmin etmektedir Pr (Sınıfi | Nesne). 

Yolo sınıf olasılık tahminlerini aşağıdaki formüle göre hesaplamaktadır. Bu puanlar, 

o sınıfın kutuda ortaya çıkma olasılığını ve öngörülen kutunun nesneye ne kadar uygun 

olduğunu göstermektedir. 

 

arzu edilen arzu edilen

tahmin edilen tahmin edilenPr(Sınıf *I| Nesne)*Pr(Nesne) (OU Pr *IOSını ) Ufi i=  (2.25) 
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Şekil 2.47 Sınırlayıcı kutuların içerdikleri parametreler [67] 

 

Yolo'nun mimarisi GoogLeNet'ten [58] esinlenmiştir. Özellik çıkarımı için 24 

evrişimli katman ve olasılıkların ve koordinatların çıktısını öngörmek için tam bağlı 

iki katmandan oluşur. Yolo, son katman için doğrusal bir aktivasyon işlevi kullanırken, 

sızdıran rektifiye doğrusal aktivasyon (LReLU) işlevi, aşağıdaki formülde görüldüğü 

gibi diğer katmanlar için kullanılır. 

 

   ( )
,       eğer  0

0.1 ,   aksi takdirde     

x x
x

x



= 


   (2.26) 

 

Yolo hata fonksiyonu olarak MSE kullanmaktadır. Hata fonksiyonun detayları formül 

2.27’de verilmiştir. 
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Yukarıda verilen hata formülünde x ve y sınırlayıcı kutunun orta noktasının 

koordinatlarını temsil ederken, w ve h genişlik ve yüksekliği temsil etmektedir. Ci 

güven puanını pi ise sınıflandırma tahmini temsil etmektedir. Lambda sabitleri 

sınırlayıcı kutu tahminlerini arttırmak ve hiçbir nesne içermeyen sınırlayıcı kutulardan 

gelen güven tahminlerinin kaybını için kullanılmaktadır. Bu değerler lambda=5, ve 0.5 

olmak üzere ayarlanır. Son olarak 1obj
i, i hücresinde görünen bir nesnenin varlığını 

belirtmekle birlikte ayrıca 1obj
ij, i hücresindeki j. sınırlayıcı kutunun bu tahminden 

sorumlu olduğunu gösterir. Formülde ilk iki katman lokalizasyon kaybını hesaplarken, 

üçüncü katman güven kaybını hatasını hesaplar ve son katman sınıflandırma hatasını 

belirler. Yolo, görüntüye bir kez baktığından ve karmaşık işlemler gerektirmediğinden 

diğer nesne algılama ve sınıflandırma algoritmalarına kıyasla oldukça hızlıdır. Ayrıca, 

tüm görüntüyü tararken daha doğru tahminler yapar. 

Bu çalışmada, önceki Yolo ağlarının en son ve gelişmiş versiyonu olan Yolov3 modeli 

kullanılmıştır [68]. Nesne algılama algoritmalarındaki son gelişmelere paralel olarak, 

önceki Yolo versiyonlarındaki az ama etkili geliştirmeler sonucu Yolov3 ortaya 

çıkmıştır. Yolov3'teki ana değişiklikler aşağıda listelenmiştir: 

• Yolov3, sınırlayıcı kutularının güven puanlarını tahmin ederken, kayıp 

fonksiyonu olarak lojistik regresyon kullanmaktadır. 

• Yolov3, sınıf olasılıklarının tahmini için softmax fonksiyonu yerine çoklu 

bağımsız lojistik sınıflandırıcı kullanmaktadır. Görüntüde birden fazla nesne 

olduğunda bu gelişme büyük avantaj sağlamaktadır. 

• Yolov3, 53 evrişim katmanı ve artık blokları olan DarkNet-53 adlı güçlü bir 

özellik çıkarıcı ağdan yararlanmaktadır. DarkNet-53'e ek olarak, algılama 
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görevi için 53 katman daha eklenerek 106 katmanlı tamamen evrişimli bir 

mimari yapılmıştır. Şekil 2.48, DarkNet-53 mimarisini göstermektedir. 

 

 

Şekil 2.48 DarkNet 53 mimarisi [68] 

 

• Yolov3, maksimum havuzlama yerine alt örnekleme için kademeli evrişim 

yöntemi kullanmaktadır. 

• Yolov3, temel özellik çıkarıcı katmanlara ek olarak birçok evrişimsel 

katmandan oluşur ve bu sayede ağın üç farklı boyutta tahmin yapabilme 

kabiliyetini arttırır. Bu, sistemin görüntüdeki küçük nesneler üzerinde daha 

doğru tespitler yapmasını sağlar. 

• Yolov3'teki son gelişme, tahmin katmanları arası bağlantılardır. Yukarı 

örnekleme işleminden elde edilen özellik haritaları, birleştirme işlemi 

kullanılarak önceki katmanların özellik haritaları ile birleştirilmiştir. Bu 

kombinasyon sayesinde küçük nesnelerde daha doğru algılama performansı 

sağlamıştır. 

 GrabCut 

GrabCut, yinelemeli yarı otomatik bir görüntü segmentasyon tekniğidir [69]. Bu 

teknikte, segmente edilecek görüntü bir graf ile temsil edilir. Bu graf, görüntünün en 

iyi şekilde segmente edilmesini sağlamak için minimum bir maliyet azaltma 
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fonksiyonu kullanılarak oluşturulur. Oluşturulan grafta düğümler görüntüdeki 

piksellerden oluşur. Başka bir deyişle, görüntüdeki her piksel, graftaki bir düğüm ile 

sembolize edilir. Bu düğümlere ek olarak, grafa, ön plan ve arka plan denilen iki ekstra 

düğüm daha eklenir. Görüntüdeki her bir piksel, yani graftaki her bir düğüm bu iki 

düğümden birine bağlanır. Arka plan düğümü arka piksellerin bağlantı noktasını 

oluştururken ön plan düğümüne ise segmente edilecek alandaki pikseller 

bağlanmaktadır. Bu bağlanma işlemi görüntüdeki sınır bilgisine ve renk bilgisine göre 

belirlenen bir ağırlıklandırma bilgisine göre yapılmaktadır. GrabCut tekniği 

görüntüdeki renk bilgisini kullanarak bölge bilgisini elde eden Gauss Karışım 

Modellerini (GKM'ler) [70] kullanır. Daha sonra ağırlıklandırılan grafı segmente 

etmek için bir minimum kesme / maksimum akış tekniği kullanılır. Algoritmanın 

matematiksel ifadesi aşağıdaki gibidir. N sayıda pikselden oluşan bir görüntüye I

diyelim ve pikselleri temsilen bir ( )1 2, , , Np p p p=  vektörümüz olsun. Vektör 

içindeki piksellerin renk dağılımlarını RGB uzayında ( ), ,i i i ip R G B=  ile temsil 

edelim,  1, ,i N . Segmentasyon ise görüntüdeki her bir pikselin piksellerin arka 

plana veya ön plana ait olup olmadığının belirlenmesidir. Vektörel olarak ifade edersek

1 2( , , , )Ns s s s= ,  0,1is  . GrabCut algoritması kullanıcı tarafından segmente 

edilmek istenilen objenin etrafına bir sınırlayıcı kutu ( )R  çizilmesi ile başlar. R  

tanımlanmasından sonra görüntü üç farklı bölgeye ayrılır bunlar BR , FR , UR . Bu 

bölgeler sırası ile arka plan pikselleri, ön plan pikselleri ve bilinmeyen piksellerdir. R  

dışında kalan pikseller BR  olarak düşünülürken, içinde kalan pikseller UR  olarak ele 

alınır. GrabCut algoritması UR piksellerinin BR  ‘yemi yoksa FR  ‘yemi ait olduğunu 

belirlemeye çalışır. Bunu yapabilmek için GKM’ler tarafından sağlanan renk bilgisini 

kullanır. GKM’ler görüntüyü komponentlere ( )C  ayırır, bu komponentler arka plan 

için ( )0is =  ön plan için ( )1is = ’dır.  

 

  ( ) ( ) ( )   , , , , , , 0,1 , 1, ,s c s c s c s c C  =   =   (2.28) 

 



 

 

66 

 

Formül 2.28’e göre   ağırlıkları,   GKM’lerin ortamalarını, modelin kovaryans 

matrislerlerini temsil eder. ( )1, , ,i Nc c c c= , ( )1, ,ic C ,  1, ,i N  dizindeki 

bileşenlere göre ip  pikselin arka plana mı ön plana mı ait olduğu belirlenir. Enerji 

fonksiyonu ise: 

 

  ( ) ( ) ( ), , , , , , ,E s c p U s c p V s p = +    (2.29) 

 

U olasılık potansiyelidir ve GKM’lerin olasılık dağılımı ise p(.) formül 2.30’a göre 

belirlenir.  

 

  ( ), , , log (  | s , , ) log ( , )i i i i i iU s c p pr p c s c  =  − −   (2.30) 

 

V, her pikselin etrafındaki bir C bölgesini göz önünde bulundurarak bölümlere 

ayrılmış bölgelerin renk açısından tutarlı olması gerektiğini varsayarak düzenli bir 

önceliktir. 

   
 

2

,
( , ) exp( )n m m nm n C

V s p s s p p 


=  − −    (2.31) 

Bu enerji azaltma şeması, verilen ilk dikdörtgenin bulunduğu görüntüye uygulanır. 

Minimum kesim yöntemi kullanılarak elde edilen son bölümlendirme Şekil 2.49'da 

verilmiştir. 

 

 

Şekil 2.49 GrabCut yöntemi [71] 
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Algoritmanın işleyiş süreci: 

1- İlk adım, kullanıcı tarafından elle çizilmiş olan ve ilgilenilen nesneyi 

çevreleyen bir dikdörtgenle başlar. Bu adım, ilgilenilen alanın arka planı ve ön 

planı hakkında bilgi verir. Dikdörtgenin içindeki pikseller bilinmeyen olarak 

kabul edilirken, dikdörtgenin dışındaki pikseller arka plan olarak kabul edilir. 

Bu bilgilere dayanarak, algoritma bilinmeyen piksellerin ön plana mı yoksa 

arka plana mı ait olduğunu belirlemek için bir model oluşturur. 

2- Bilinmeyen piksellerin ön plan sınıfı olarak kabul edildiği ve bilinmeyen 

piksellerin dışındaki diğer tüm piksellerin arka plan olarak kabul edildiği bir 

başlangıç segmentasyon modeli oluşturulur. 

3- Başlangıç arka plan ve ön plan sınıfları GKM’ler kullanılarak, iki bölge için C 

parça GKM bileşenleri oluşturularak yapılır. 

4- Arka plan sınıfındaki her piksel, arka plan GKM'sindeki en olası Gauss 

bileşenine atanmıştır. Aynı işlem, en muhtemel ön plan Gaussian bileşenine 

atanan ön plan pikselleri için de gerçekleştirilir.  

5- Önceki adımda oluşturulan piksel kümeleri kullanılarak yeni GKM'ler elde 

edilir. 

6- N düğümlü bir graf oluşturulur ve bağlantılar arasındaki ağırlık değerleri 

belirlenir. Bundan sonra, ön plan ve arka plan piksellerini belirlemek için 

minimum kesim algoritması kullanılır. 

7- Nihai segmentasyon sonucunu elde edene kadar 4-6 arasındaki adımlar 

tekrarlanır. 
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3. DERİ KANSERİ 

Tezin bu bölümünde deri lezyonlarının biyolojik yapısı ve literatürde deri 

lezyonlarının sınıflandırılmasında kullanılan makine öğrenmesi yöntemlerine 

değinilecektir. Bölüm cilt lezyonlarının genel patolojisi hakkında verilen kısa bir 

bilgilendirme ile başlayıp deri kanserinin detaylarını, teşhis ve tedavi sürecini ele 

almaktadır. Daha sonra deri lezyonlarının tanı sürecine yardımcı olmak için geliştirilen 

derin öğrenme yöntemlerinden bahsedilecektir. Bölümün sonunda derin öğrenme 

yöntemlerinin literatürdeki yerleri değerlendirilecek gelecek çalışmalar ve araştırmalar 

hakkında bilgi verilecektir. 

 Deri Lezyonları ve Deri Kanseri 

3.1.1 Derinin Yapısı 

Deri insan vücudunun en büyük organı olmakla beraber yetişkin bir insanın toplam 

vücut ağırlığının %15’ini oluşturmaktadır. Vücudu dışardan gelebilecek kimyasal ve 

fiziksel etkilere karşı korumak, vücuttaki su dengesini ayarlamak, vücut ısısını 

dengelemek gibi birçok hayati görevi yerine getirmektedir. Kötü huylu deri 

hastalıklarını anlamak için derinin biyolojik yapısını ve bu yapıda yer alan dokuların 

işlevlerini anlamak önemlidir. Şekil 3.1’ de görüldüğü üzere deri üç ana katmandan 

meydana gelmektedir.  
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Şekil 3.1 Derinin katmanları [72] 

 

En alt katman olan hipodermis, deri altı doku olarak bilinir; gevşek bağ dokularından 

ve yağ depolama özelliğine sahip temel yağ dokularından oluşmaktadır. Bu katmanda 

yoğun bir şekilde bulunan yağ lobları enerji rezervi, yalıtım ve koruma katmanı 

oluşturmak gibi görevleri üstlenmektedir, ayrıca bu katmanda sinirler büyük kan 

damarları ve lenfatik damarlar bulunmaktadır. Hipodermisin üzerinde kollajen ve 

elastik liflerden, yani bağ dokusundan oluşan bir tabaka olan dermis bulunmaktadır. 

Bu katman kan ve lenfatik damarları, duyusal reseptörleri saç köklerini ve ter bezlerini 

içermektedir [73]. Üst deri tabakası olan epidermis keratinleşmiş olan çok katlı yassı 

epitel hücrelerinden meydana gelmektedir. Epidermis; stratum corneum, stratum 

lucidum, stratum granulosum, stratum spinosum ve stratum basele olmak üzere beş 

katmandan oluşmaktadır. Şekil 3.2’de epidermisin katmanlarını temsil eden bir görsel 

paylaşılmıştır. Bu katmanlardan epidermis ile dermis arasında uzanan ve en alt katman 

olan stratum basale canlı hücrelerden oluşmaktadır. Yukarı ki katmanlara doğru 

çıkıldıkça hücreler şekil değiştirip farklı özellikler kazanarak canlılığını yitirmektedir. 

Cildimizin en önemli katmanlarından bir tanesi olan stratum basale kübik şekildeki 

keratinosit hücrelerinden meydana gelmektedir [73]. Bu katmanda yer alan keratinosit 

hücrelerinin mitoz bölünmesi ile ortaya çıkan yeni hücreler sayesinde deri kendisini 

yenilemektedir. Mitoz bölünme sonucunda oluşan keratinositler ortalama 21 ila 25 

günlük bir süreç içerisinde üst katmanlara doğru şekil ve yapı değiştirerek yol 

almaktadırlar. Üst katmanlara çıkan hücreler eski hücreler ile yer değiştirerek 
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yenilenmeyi tamamlamaktadır. Bir keratinositin bütün tabakaları geçerek cansız bir 

kreatin tabakası haline gelmesi kadar geçen süreye derinin çevrimi denilmektedir [74]. 

 

 

Şekil 3.2 Epidermisin katmanları [75] 

 

Epirdermis keratinositin hücrelerin yanı sıra bir dizi farklı hücreyi de bünyesinde 

bulundurmaktadır. Bu hücrelerden Langerhans hücreleri deri bağışıklık sistemine 

aitken [76], Merkel hücreleri mekanoreseptör görevi görmekte, mekanik basıncı 

algılayıp, nöronlar vasıtası ile beyne iletmektedir [77]. Son olarak bu hücrelerden en 

önemlisi olan Melanositler, sinir-kret türevli hücrelerdir ve derinin yanı sıra saçta 

iriste, iç kulakta, sinir sisteminde ve kalpte bulunurlar [78]. Başlıca işlevleri, 

melanozom olarak bilinen özel organeller için melanin üretimidir. Melanin farklı 

formları olan doğal bir pigmenttir; kahverengi/siyah eumelanin, kırmızı/sarı 

pheomelanin ve kahverengi / siyah neuromelanin. Derideki en belirgin tip olan 

eumelanin, bir ışın emici görevi görür ve güneşten gelen UV ışınlarının % 99.9'undan 

fazlasını emerek deriyi oluşabilecek zararlardan korur [79]. Melanozomlar, bu koruma 

görevini melaninleri stratejik bir şekilde biriktiği keratinositlere taşıyarak hücrelerin 

UV'ye maruz kalan tarafında kapak benzeri bir örtü oluşturarak yerine getirmektedir. 

(Şekil 3.3) [80].  
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Şekil 3.3 Bronzlaşma yoluyla UV radyasyonuna maruz kalma, melanin üretimini 

artırarak cildin pigmentasyonunda değişikliklere neden olur [81]. 

 

Deri pigmentasyonundaki farklılıklar, melanosit miktarındaki farklılıktan ziyade, 

melanogenez miktarı (melanin üretimi), melanozomların dağılımı, büyüklüğü ve 

içeriğindeki bir farka dayanmaktadır [80]. UV'ye maruz kalmaya yanıt olarak melanin 

üretiminin, keratinositlerin kendi kontrolü altında olduğu düşünülmektedir [82]. 

3.1.2 Deri Kanseri Patolojisi 

Deri lezyonları, deri hücrelerinde meydana gelen anormal değişimlerin sonucu olarak 

ortaya çıkmaktadırlar. Kanserli, kanser öncesi ve kansersiz olmak üzere üç tür lezyon 

bulunmaktadır. Deri kanseri, deri hücrelerinin anormal düzeyde çoğalması ile ortaya 

çıkan bir hastalıktır. Güneş ışığından kaynaklanan ultraviyole radyasyonun (UVR) 

deri kanserinin en önemli nedeni olduğu iyi bilinmektedir [83]. Güneş yanığı, güneşe 

aşırı maruz kalmak, solaryum cihazları deri kanserinin patogenezinde rol oynayan 

immünosüpresyona neden olan kümülatif hasardan sorumludur. Ozon tabakasının 

incelmesi, UV ışığının seviyeleri, enlem, irtifa ve ayrıca hava koşulları, dünya 

yüzeyine ulaşan UV radyasyon emisyonunu etkilemektedir. Ayrıca, çevresel 

kirleticiler, kimyasal kanserojenler ve kanserojenlere mesleki maruziyetler de deri 

kanserini tetikleyen etmenler arasında gösterilmektedir. Son olarak, Çin tescilli bazı 

ilaçları kullanma, inorganik arsenik içeren içme suyu tüketimi, ten rengi ve sigara 

ekstra risk faktörleri arasındadır [83]. 

Deri kanserinin en önemli kaynağı olarak bilinen olan UVR içerdiği dalga boylarına 

göre üç ayrı kategoriye ayrılmıştır: (1) Ultraviyole A, UVA ışınları 315-400 nm 

aralığında dalga boyuna sahip olmakla birlikte UVR ışınlarının çoğunluğunu 
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oluşturmaktadır ve ozon tabakasını rahatlıkla geçebilmektedirler. (2) UVB ışınları 

280-325 nm aralığında dalga boyuna sahiptir ve çoğunluğu ozon tabakası tarafından 

yakalanmaktadır. Sadece %1-10’luk kısmı dünya yüzeyine ulaşmaktadır ancak ozon 

tabakasının son yıllarda aldığı hasardan dolayı bu ışına maruz kalınma riski artmıştır. 

(3) En yüksek enerjili radyosuna sahip olan UVC ışınlarının dalga boyu 100-280 nm 

arasındadır. Bu Işınların tamamı ozon tabakası tarafından dünya yüzeyine varmadan 

filtrelenmektedir [84]. Söz konusu ışınlardan UVA deriye derinlemesine nüfus 

edebilmekle birlikte derinin dermis tabakasının alt kısımlarına kadar inebilmektedir. 

Bununla birlikte daha yüksek enerjili UVB ışınları derinin daha üst katmanlarına etki 

edebilmektedir [84]. 

UVR deri üzerinde çok çeşitli akut ve kronik etkilerden sorumludur. İnsan derisinin 

UVR’ye karşı akut tepkileri photodamage(çiller), erythema, mutasyon, 

immunosuppression, D vitamini sentezi ve bronzlaşmadır. Kronik UVR etkileri 

fotoyaşlanma ve fotokarsinogenez; mutasyon ve immünosüpresyon ile uyarıldığı 

düşünülmektedir [85]. 

UVB radyasyonu DNA ve onarım sistemlerine verdiği hasar ile birlikte immnünitenin 

kısmi baskılanmasıyla birlikte immün sistemdeki değişiklikler sonucu çoğu deri 

kanserinin birincil derecede sorumlusudur [86]. Öte yandan daha önceleri kanserojen 

etkisi olmadığı düşülen UVA radyasyonunun hayvanlara aşırı doz uygulanmasının 

deri kanserini ortaya çıkardığı kanıtlanmıştır [87]. Bununla birlikte bronzlaşma 

salonlarında kullanılan yapay UVA radyasyonun uzun dönem kullanımına bağlı olarak 

özellikle melanom olmayan deri kanseri (NMDK) riskini arttırdığı gözlemlenmiştir 

[88]. UVC radyasyonu güçlü bir kanserojendir fakat çoğunluğu ozon tabakası 

tarafından filtrelendiği için kanserojen etkisi azdır. Ancak ozon tabakasındaki incelme 

artmaya devam ederse UVC radyasyonun kanser oluşturma potansiyelinde artış 

gerçekleşeceği öngörülmektedir. Ozon tabakasının %1’lik incelmesi ile birlikte deri 

kanseri riskinin %2 ila %4 oranında arttığı gözlemlenmiştir [89]. UVR’nin %90 

oranında NMDK’ların sorumlusu olduğu tahmin edilmektedir.  

3.1.3 Tehlikeli Olmayan Deri Kanseri 

Melanom olmayan deri kanseri (NMDK), özellikle Avrupa popülasyonunda sık 

rastlanan bir deri kanseri türüdür. Temel olarak keratinocyte tümürlerinden oluşmakla 
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birlikte ve basal cell carcinoma (BCC) ve squamous cell carcinoma (SCC) olmak üzere 

iki türü bulunmaktadır [90]. Amerika Birleşik Devletlerindeki (ABD) Amerikan 

Kanser Derneği’nin (AKD) verdiği istatistiklere göre 2012 yılında tahminen 5,4 

milyon BCC ve SCC vakası teşhis edilmiştir [91].  

BCC çok yaygın bir NMDK türü olmakla birlikte NMDK vakalarının %80’ni 

oluşturmaktadır [92]. Çoğunlukla boyun kafa gibi vücudun güneşe maruz kalan 

kısımlarında görülür, ancak yavaş gelişir ve vücudun diğer kısımlarına yayılma 

olasılığı oldukça düşüktür. SCC deri kanseri vakalarının %19’unu oluşturmakla 

birlikte eller, kulaklar, kollar, bacaklar gibi güneşe maruz kalan bölgelerde ve kimyasal 

yollarla zarar görmüş deride görülür. Vücudun diğer bölgelerine yayılma olasılığı 

yüksek olsa da bu yayılma olasılığı %2 ila 5 arasında kalmaktadır. NMDK vakalarının 

sadece %1 ini oluşturan merkel cell carcinoma, cutaneous lymphoma ve kaposi 

sarcoma gibi NMSK türleri bulunmaktadır [90-92]. Farklı seviyelerde deri kanseri 

türlerini gösteren bir görsel Şekil 3.4’te verilmiştir. 

 

 

Şekil 3.4 Deri kanseri türleri [93] 

 

NMDK’ların özellikle güneşe maruz kalan bölgelerde ortaya çıktığı düşünüldüğünde 

UV radyasyonunun hastalıktaki etkin rolü ortaya çıkmaktadır. DNA hasarının 

birikmesi genellikle mutasyonları ortaya çıkarır. Bu mutasyonlar hem tümör 

baskılayıcı genlerde hem de oncogenlerde görülmektedir. İnsanlarda görülen deri 

kanserinin %50’sinden fazlasında p53’ün üretilmesinden sorumlu tümür baskılayıcı 

gen olan TP53 genindeki mutasyonlar olduğu gözlemlenmiştir. TP53 geni hücrenin 
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dış strese karşı sağlıklı kalmasında anahtar rol alan bir gendir. Daha spesifik olarak, 

tüm BCC’lerin yaklaşık %50’si ve tüm SCC’lerin%90’ı TP53 mutasyonuna sahip 

oldukları tespit edilmiştir [94, 95]. Bu genlere ek olarak CDKN2A locus ve RAS 

oncogenleri de NMSK oluşumunda etkili oldukları gözlemlemiştir [96].  

3.1.4 Melanoma Deri Kanseri 

Melanoma ölümcül bir deri kanseri türüdür. AKD’nin 2019 yılı başlarında yayınladığı 

rapora göre 96,480 yeni melanoma vakası olacağı ve bu vakalardan 7230’unun ölümle 

sonuçlanacağı öngörülmektedir [10]. Melanomanın diğer deri kanserleri arasında 

görülme olasılığı %1 olmasına karşın ölüm ile sonuçlanma oranı %75’dir. ABD’de 

yıllar içinde melanoma görülme sıklığı artış gösterirken ölüm oranı sabit kalmıştır 

[91]. Bu artış oranı yaşlanan popülasyon ile birlikte insan davranışlarındaki değişim 

ile (sık güneşlenme gibi) ilişkili olma ihtimali bulunmaktadır. Bununla birlikte tarama 

yöntemlerinin geliştirilmesi ve sıklığının arttırılması da bu oranın artmasına sebep 

olmuş olabilir.  

Belçika’da yer alan bir rapora göre 2013 yılında 2635 yeni Melanoma vakası tanısı 

konulduğu belirtilmiştir. Bu yıl baz alındığında Belçika’da kadınlarda en sık görülen 

dördüncü erkekler de ise en sık görülen yedinci kanser türüdür [97]. Belçika’da 2014-

2024 yılları arası olası melanoma görülme oranı tahminlere göre bir artışın olacağı 

öngörülmektedir. Bu artış miktarının yıllık %49 civarı olabileceği ve melanoma 

vakalarının yıllık 2925 ila 4356 arasında artacağı beklenmektedir [98].  

Sağlık bakanlığının verilerine göre ülkemizde melanoma görülme sıklığı kadınlarda 

1,3/ 100.000 iken erkeklerde 1,9/100.000 olarak saptanmıştır [99]. 

Hücre içi bozulan sinyalleşmenin bir sonucu olarak melanositler keratinositlerin sıkı 

kontrolünden kurtulur ve sonuç olarak kontrolsüz çoğalmaya ve dağılarak yayılmaya 

başlarlar. Bu süreci konu alan bir görsel Şekil 3.5’te paylaşılmıştır. 
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Şekil 3.5 Melanoma yayılma süreci [100] 

 

İlk olarak epidermiste başlayan çoğalma, dermis tabakası boyunca devam ederek daha 

alt tabakalara kadar ilerlemektedir. Radyal büyüme evresi (RBE) genellikle kötü huylu 

kanserin başlangıcı olarak nitelendirilmektedir. Bu evrede dermis tabakasında küçük 

gruplar halinde istilalar başlamaktadır. Daha tehlikeli dikey büyüme evresine (DBE) 

ulaşıldığında, çoğalan hücrelerin kümeleri dermis tabakasında bulunur ve buradan 

diğer bölgelere kolayca yayılabilmektedir [100]. Bu yayılmacı tavırları melanomayı 

tehlikeli yapan başlıca unsurdur.  

3.1.5 Deri Kanseri Risk Faktörleri ve Korunma 

İki tip, melanom ve melanom dışı cilt kanseri şu anda Avrupa popülasyonunda en 

yaygın görülen malignite türüdür. Hastalığın görülme oranın yüksek olmasına karşın 

ölüm oranları düşüktür ancak hastalığın tedavi süreci ekonomiye ağır bir yük 

getirmektedir. ABD’de yıllık 650 milyon dolar bu hastalığın çeşitli tedavi süreçleri 

için harcanmaktadır [101]. Sonuç olarak deri kanserini erken teşhis etmek ya da 

önlemek güçlü bir ihtiyaçtır. Bu hedefe ulaşmak için iki aşamalı bir program üzerine 

odaklanılmalıdır. Bir yandan toplumun davranış biçimleri incelenirken diğer yandan 

erken teşhis için bir dizi önlemler uygulanmalıdır.  

NMDK vakalarında güçlü kişisel ve çevresel risk faktörleri bulunmaktadır. Kişisel risk 

faktörleri arasında cinsiyet, genetik yatkınlık ve yaş bulunmaktadır. Günümüz yaşam 

şartları kalitesinde görülen artış ile birlikte uzayan yaşam süresi artan deri kanseri 

vakaları ile birlikte düşüşe geçmiştir. Güneş ışığına maruz kalmak çevresel faktörlerin 

başında gelmektedir. Bu nedenle korunma stratejisi birinci hedef olmalıdır. SCC 

vakalarında uzun süreli güneş ışığına maruz kalmanın risk faktörünü arttığı 

gözlemlenmiştir. Bununla birlikte çalışmalar BCC’larda daha karmaşık bir bağlantının 
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olduğunu, çocukluk döneminde güneşe maruz kalmak ve kapalı bronzlaşma risk 

faktörleri olarak gösterilmektedir [102]. Bu durumda kamuoyunu güneş ışığına 

doğrundan maruz kalma noktasında bilgilendirme eğitimi vermek bu hastalıkların 

önlemesi noktasında önemli bir önlemdir.  

Deri kanserini ikinci önleme stratejisi ise, uzmanlar tarafından sık periyot aralıklarında 

yapılan muayenelerle hastalığın erken teşhis edilmesidir. Bu konuda toplum 

bilinçlendirilerek oluşan lezyonları kendileri değerlendirip riske girmeden bir uzman 

yardımı istemesi sağlanabilir [103]. Melanoma vakalarında derinliği 1mm’nin altında 

olan lezyonların cerrahi bir müdahale ile çıkarılmasından sonra hastanın iyileşme oranı 

%95’in üzerindedir. Daha öncede belirtildiği gibi bu oran daha ileriki safhalarda 

düşmektedir. Bu yüzden erken teşhis melanoma vakalarında çok önemlidir. Bu yüzden 

deri lezyonlarının iyi huylu veya kötü olmak üzere doğru bir şekilde sınıflandırılması 

uygun tedavi planın oluşturulması için bir gerekliliktir [37]. 

3.1.6 Melanomanın Diğer Lezyonlardan Ayrılması 

Deri lezyonlarının teşhis süreci lezyon tipine göre risk faktörlerinin incelenmesi ile 

başlamaktadır. Yerleşim yeri, yaş, cinsiyet, lezyonların vücuttaki dağılımı gibi çeşitli 

risk faktörlerinin de göz önünde bulundurulması ile birlikte lezyonun görsel 

muayenesi ile çeşitli özellikleri incelenmektedir. Bir deri lezyonuna melanoma 

denilebilmesi için araştırmacılar bugüne kadar farklı yöntemler geliştirmişlerdir. Bu 

yöntemlerden en popüler olanı 1985 yılından Friedman ve arkadaşları tarafından 

önerilen ve melanomayı erkin teşhis etmede kullanılan ABCDE yöntemidir [104]. 

Günümüzde halen pigmente olmuş deri lezyonlarının incelenmesinde bu yöntem 

kullanılmaya devam etmektedir. Şekil 3.6’da da görüleceği üzere bu yöntemde, 

lezyonun bazı spesifik karakteristik özelliklerine bakılmaktadır. Bu özellikler asimetri, 

kenar (border), renk (color) ve çap (diameter) ve son olarak gelişim (evaluation)’dir. 

Yöntem ismini bu karakteristik özelliklerin baş harflerinin birleşiminden almaktadır. 

İlk çıktığında ABCD yöntemi olarak anılan bu yönteme melanomanın hızlı gelişimi 

göz önünde bulundurularak sonradan gelişim (evaluation) parametresi de eklenmiştir 

[105]. 



 

 

77 

 

 

Şekil 3.6 ABCDE yöntemi [106] 

 

Yöntem incelendiğinde Melanoma şüphesi olan bir lezyonun asimetrik olmaması, 

düzensiz sınırlara sahip olması, içerisinde birden fazla renk bulundurması, 6.35 

mm’den daha geniş çapa sahip olması ve hızlı gelişimi, Melanoma kıstaslarını 

sağladığının göstergesidir [105]. 

Her ne kadar bu yöntem deri lezyonlarının değerlendirilmesinde yarı-sayısal (kantatif) 

ölçümler sunmuş olsa da doktorlar lezyonların sınıflandırılmasında kendi bilgi, 

deneyim ve öznel algılarına daha çok güvenmektedirler. ABCDE yönteminde deri 

lezyonun derinliği hakkında herhangi bir bilgi bulunmamaktadır. Breslow kalınlığı 

veya derinliği, lezyonun epidermisin granüler tabakasında yaptığı istilanın derinliğini 

belirler ve teşhis sürecinde dikkate alınması gereken önemli bir ipucudur [107]. Fakat 

melanomanın tipik özelliklerini göstermeyen sapkın lezyonlar bu değerlendirme ile 

gözden kaçabilmektedir. Bu metotların yani sıra 7 nokta kontrol listesi (seven point 

check list), Mezines ve CASH (Color, architecture, symmetry and homogeneity) 

yöntemleri de melanomanın teşhisi için önerilen bazı metotlardır [108, 109].  

Melanoma teşhisini zorlaştıran diğer bir faktör, her ikisi de melanostik kökenlerini 

paylaşan pigmente cilt lezyonlarına olan benzerliğidir (nevus, doğum lekeleri, moles). 

Nevus melanosit birikimin neden olduğu iyi huylu lezyonlara verilen isimdir. En 

yaygın tipleri common nevus, blue nevus, dysplasytic nevus ve congenital nevus 

(doğum lekesi). Bununla birlikte bir nevus melanomanın öncüsü olabilmektedir. Bu 

yüzden bu tür lezyonların takip edilmesi önemlidir [104]. 
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Deri lezyonlarını yakından incelemek için araştırmacılar geçmişten günümüze farklı 

yöntemler geliştirmişlerdir. Bu yöntemlerden bir tanesi olan ve epilüminesans 

mikroskobu olarak da bilinen dermoskopi, cilt yüzeyindeki yansımayı azaltarak uygun 

ışıklandırma ve yakınlaştırma ile deri lezyonlarının daha detaylı incelenmesini 

sağlayan cerrahi olmayan bir yöntemdir. Dermoskopide iki farklı yöntem ile kullanılır: 

(1) stratum korneumun ışık yansımasını azaltmak için kullanılan polarize olmayan ışık 

mikroskobu; (2) derinin daha derinlerine inebilecek ve yansımayı azaltacak bir filtreye 

sahip polarize bir ışık mikroskobu [110, 111]. 

Dermoskopik görüntülerin muayenesinde, lezyonların öncelikle renginden, 

yapılarından ve desenlerinden bilgiler çıkarılır bu bilgiler daha sonra lezyonun 

sınıflandırılması için önemlidir [112]. Şekil 3.7’de normal bir kamera ile çekilmiş bir 

lezyon görüntüsünün, dermoskop cihazı ile alınmış görüntüsü bulunmaktadır. 

Şekilden de görüleceği üzere demoskopik görüntüde daha detaylı bilgi elde 

edilebilmektedir. Bu yöntem sayesinde uzmanın deneyimine göre hastalığın teşhis 

oranında %50 artış olduğu gözlemlenmiştir [113].  

 

 

Şekil 3.7 Dermoskopik görüntü örneği [114] 

 

Bununla birlikte lezyon görünümlerinde hasta farkından dolayı ortaya çıkan 

değişiklikler, kanserli ve kansersiz lezyonlar arasındaki benzerlikler nedeni ile 

lezyonları görsel olarak sınıflandırmak oldukça zor ve özneldir. Bu yüzden tanının 

kesin olarak doğrulanması için doktorlar histopatolojik incelemelere ihtiyaç 

duymaktadırlar. Dermoskopi sayesinde gereksiz biyopsilerde bir düşüş olduğu 

gözlemlenmiştir [115]. Ayrıca dermoskopinin lezyonların takibinde de kullanışlı 

olduğu kanıtlanmıştır. Sadece lezyonların gelişimlerini incelemede değil, yeni ortaya 
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çıkan lezyonlarında değerlendirilmesinde güçlü bir araçtır. Şüphe edilen her lezyona 

cerrahi müdahalede bulunup biyopsi yapılması uygun değildir [108-110]. 

Her ne kadar dermoskop cihazı teşhis oranlarında bir iyileştirme sağlasa da 

dermoskopik bir görüntü üzerinde bir deneyimsiz doktorun doğru tanı yapması %75 

ile %84 oranında değişmektedir [116]. Bu nedenle hastalığın teşhis sürecinde doktora 

yardımcı olabilecek gereksiz biyopsilerin önüne geçebilecek bilgisayarlı destek 

sistemlerine ihtiyaç duyulmaktadır. 

 Deri Kanserinin Teşhisinde Kullanılan Makine Öğrenmesi Yöntemleri 

Daha önceki bölümlerde bahsedildiği gibi melanomanın erken teşhis edilmesi ölüm 

riskini ortadan kaldırmaktadır. Bununla birlikte melanom olan ve olmayan lezyon 

görüntüleri arasındaki benzerlik, lezyon görüntülerinde hastalar arası değişkenlik gibi 

nedenlerden ötürü tanı koymak karmaşık bir hal almaktadır. Doktorların tanı koymada 

deyimleri en büyük yardımcılarıdır. Bunun yanında tanısı konulan bir lezyonun kesin 

hasta olup olmadığını belirlemek için biyopsi yapılması bir gerekliliktir. Dermoskopi 

ile birlikte deri lezyonlarının yüksek çözünürlüklü, büyültülmüş görüntüleri elde 

edilmiştir. Bu sayede BDTS deri lezyonlarının teşhisinde yardımcı bir araç olarak 

ortaya çıkmıştır. 

3.2.1 Veri Setleri 

Dermoskopi yönteminin gelişmesi ile birlikte hekimler deri lezyonlarının açıkça 

aydınlatılarak yakınlaştırılması ile daha fazla detaya sahip yüksek çözünürlüklü 

görüntülerini elde etmeye başlamışladır. Dermoskopi yönteminin yaygınlaşması ile 

birlikte 2000’li yıllarda çeşitli veri setleri ortaya çıkmaya başlamıştır. Bunlardan 

bazıları kullanıma açık olarak araştırmacılara sunulurken bazılarına erişim 

kısıtlanmıştır. Bu veri setlerinden en büyüğü ve kapsamlısı Uluslararası Deri 

Görüntüleme İş birliği (ISIC) tarafından farklı kaynaklardan elde edilen klinik ve 

dermoskopik deri lezyonu görüntülerini bir araya getirerek araştırmacılara sunulan 

ISIC arşividir [117]. Birliğin sağladığı görüntü veri tabanı şu an ki verilere 

bakıldığında 23906 bin civarındadır. ISIC’in temel amacı, dijital görüntüler vasıtası 

ile melanoma teşhisini iyileştirmek, erken teşhisi arttırmak ve gereksiz biyopsileri 

azalmaktır. Ayrıca ISIC hali hazırda kliniklerde elde edilen görüntülerin gizlilik ve 
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farklı platformlar arasında paylaşılma olasılığına karşı çeşitli standartlar oluşturmak 

için çalışmalar sürdürmektedir. Birlik 2016 yılından bu yana temel veri setinden 

oluşturdukları kısmı veri setlerini araştırmacılara sunarak üç farklı dalda yarışmalar 

düzenlemektedir. Oluşturdukları veriyi eğitim, doğrulama ve test olarak ayıran birlik 

lezyon segmentasyonu, dermoskopik özellik çıkarma, lezyon sınıflandırma 

kategorilerinde yarışmacılara sunmaktadır [118]. Kullanıma açık diğer bir veri seti 

olan PH2 Porto üniversitesinden bir araştırma grubu tarafından Portekiz’deki bir 

hastanenin dermatoloji servisinden elde edilerek araştırmacılara sunulmuştur [119]. 

Toplamda 200 dermoskopik görüntüden oluşmaktadır. Diğer bir veri seti olan EDRA 

1757 klinik görüntüden oluşmaktadır [120]. Klinik görüntüler normal görüntüleme 

cihazları ile elde edildikleri için dermoskopik görüntüler kadar detaylı bilgiye sahip 

değildir. Bu yüzden teşhis sürecinde sık tercih edilmemektedir. 

3.2.2 Klasik Makine Öğrenmesi Yöntemleri 

Araştırmacılar klasik makine öğrenmesi yöntemlerini deri lezyonlarının 

sınıflandırılmasında bir hayli kullanmışlardır. Bu teşhis sistemleri bir lezyonun türünü 

belirlemede genellikle aynı metodolojiyi takip etmektedir. Bir deri lezyonun 

bilgisayarlı sistemler tarafından sınıflandırılması genellikle 4 temel adımdan 

oluşmaktadır. Bunlar ön işleme, segmentasyon, özellik çıkarma ve sınıflandırmadır. 

Konu ile ilgili klasik yöntemler oldukça fazla olduğu için detaylı bilgi için Arasi ve 

arkadaşları tarafından yapılan çalışma incelenebilir [121]. 

Görüntü Ön İşleme (Image Preprocessing): Dermoskop cihazı ile alınan lezyon 

görüntüleri üzerinde, kıllar, mürekkep izleri, cetvel izleri, işaretleyici, siyah köşeler, 

jel baloncukları gibi bazı gürültülerle birlikte görüntünün alındığı koşullara göre 

değişiklik gösteren, kontrast, yoğunluk, açı, perspektif gibi sınıflandırmayı etkileyecek 

önemli engeller bulunmaktadır. Bu engellerin olduğu bir görsel Şekil 3.7’de 

verilmiştir. Bu nedenle görüntüler üzerinde ön işleme aşamaları uygulanmaktadır. Bu 

ön işleme aşamaları genellikle görüntü iyileştirme, gürültü silme, bulanıklık giderme, 

kılları temizleme gibi işlemlerden oluşmaktadır [122]. Başlı başına bir çalışma alanı 

olan bu konuda araştırmacılar halen çalışmalarını sürdürmektedir.  
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Şekil 3.8 Dermoskopik görüntüler üzerinde bulunan; bulunan kıllar, mürekkep, siyah 

daire, cetvel, jel baloncukları ve aşırı aydınlatma gibi gürültüler [67]. 

 

Segmentasyon: Görüntü içerisindeki ilgi duyulan bölgeyi arka plandan çıkarmak için 

yapılan işleme segmentasyon denilmektedir. Bu bağlamda lezyonun kendisini 

çevreleyen sağlıklı dokudan ayırt edilmesi gerekmektedir (Şekil 3.8). Lezyonu 

çevreleyen sağlam dokudan ayırmak, lezyonlu bölgeden daha fazla özellik 

çıkarılmasını sağlayarak daha iyi sınıflandırma sonuçları vermektedir [123, 124]. 

Şimdiye kadar araştırmacılar otomatik ya da yarı otomatik olmak üzere birçok deri 

lezyon segmentasyon yöntemi geliştirmişlerdir [12, 124-126]. Bu yöntemler beş ana 

gruba ayrılmaktadır. Histogram eşikleme yöntemleri, lezyonun çevresindeki dokudan 

segmetasyonu için bir eşik değeri belirlemeye çalışmaktadır [127-129]. Denetimsiz 

kümeleme yaklaşımları, homojen bölgeler elde etmek için RGB dermoskopik 

görüntülerin renk uzayı özelliklerini kullanırlar [130-133] Kenar tabanlı ve bölge 

tabanlı yöntemler, kenar operatöründen ve bölge bölme veya birleştirme gibi farklı 

algoritmalardan yararlanır [134-136]. Aktif kontur yöntemleri lezyonun 

segmentasyonu için sezgisel algoritmaları kullanırlar, (genetik algoritmalar ve yılan 

algoritmaları vb.) [131, 137, 138]. 

Son grup denetimli segmentasyon yöntemleridir. Bu yöntemler lezyon 

segmentasyonunda eğitilmiş tanımlayıcıları kullanırlar bunlara örnek olarak; destek 

vektör makineleri, karar ağaçları, yapay sinir ağları vb. [131, 139]. Bu yöntemler 

hakkında daha kapsamlı ve detaylı bilgi verilen çalışmalarda bulunabilir [12, 140, 
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141]. Son yıllarda derin öğrenmenin popülaritesinin artması ile birlikte derin ağlar bu 

problemin çözümü için kullanılmaya başlanmıştır.  

 

 

Şekil 3.9 Lezyon segmentasyonu 

 

Özellik Çıkarma (Feature Extraction): Sınıflandırmanın hesaplama maliyetini 

düşürmek için, makine öğrenmesi yöntemlerine veri içerisinden belirli sayıda girdi 

görevi görebilecek özellikler çıkarılmalıdır. Bu özelliklerin kalitesi deri lezyonlarının 

sınıflandırılması ile doğrudan ilişkilidir. Bu yüzden çıkarılan özelliklerin kalitesi 

sınıflandırıcının başarısını arttıracaktır. Genellikle bu özelliklerin belirlenmesinde deri 

lezyonlarının teşhisinde kullanılan yöntemler taklit edilmektedir. (ABCDE, 7 noktalı 

kontrol, Mezine) [142]. Sınıflandırıcı belirlenen özellikler çeşitli görüntü işleme 

yöntemleri ile elde edilerek sınıflandırıcıya girdi olarak verilmekte ve sınıflandırıcıdan 

lezyonun türü ile ilgili bir çıktı alınmaktadır. Derin öğrenme ile birlikte bu aşama 

ortadan kalkmıştır. 

Sınıflandırma (Classification): Çıkarılan özelliklere, destek vektör makineleri 

(DVM), en yakın k komşuluk algoritması (K-NN) ve karar ağaçları gibi farklı bir 

makine öğrenmesi yöntemi uygulanmaktadır. Bir dizi farklı tekniğin karşılaştırmalı bir 

değerlendirmesi daha önce yapılmış çalışmalar arasındadır [143]. El yordamı ile 

belirlenen özelliklere dayalı teşhis sistemleri bu tarz makine öğrenmesi yöntemlerinde 

bir darboğaz oluşturmaktadır. Daha çok dermatologlar tarafından kullanılan bu 

yöntemlerin öznel ve güvenilmez olduğu kanıtlanmıştır. Ayrıca elle çıkarılan 

özelliklerde, özellikleri belirleyen kişinin deneyimi ve özelliklerin çıkarılmasında 

kullanılan yöntemlerin performansı büyük ölçüde etkilemektedir. Bu durum kişi 

bağımlı bir sınıflandırmayı beraberinde getirmektedir. Bunun yanında seçilen 

özelliklerin ve özellik çıkarma yöntemlerinin belirli bir veri seti için tasarlanmış 
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olması, başka veri setleri üzerinde doğru sonuçlar vermemesine yol açabilmektedir. 

Bu nedenle son zamanlarda ortaya çıkan ve kendi özelliklerini kendisi öğrenen derin 

ağlara olan merak bu alanda da olumlu sonuçlar ortaya çıkarmıştır.  

3.2.3 Literatür: Derin Öğrenme Tabanlı Metotlar 

Derin öğrenme yöntemlerinden olan ESA’lar son yıllarda özellikle sınıflandırma, 

nesne takibi, segmentasyon gibi bilgisayarlı görüde önemli problemlerde başarılı 

sonuçlar elde etmişlerdir. Bu durumun altında yatan ana etmen ESA’ların ham görüntü 

verisindeki hiyerarşik özellikleri çıkarması ve anlamlandırmasıdır. Doğal görüntülerin 

sınıflandırılmasının yanı sıra ESA’lar birçok medikal problemin çözümünde 

kullanılmıştır. Örneğin beyin MR görüntülerinden tümör segmentasyonu [144], 

mamografi görüntülerinden meme kanseri tespiti [145], fundus görüntüleri üzerinden 

retinopati hastalığı tespiti [146] gibi örneklerini çoğaltmak mümkündür. Derin ağlar 

ile medikal görüntüler üzerinde yapılan farklı çalışmaların buluğu bir derleme Litjens 

ve arkadaşları tarafından yapılmıştır [147]. Diğer medikal problemlerde elde edilen 

başarılı sonuçlar araştırmacıları deri lezyonlarının sınıflandırılmasında derin ağların 

özellikle ESA’ların kullanılabilirliğini sorgulatmaya ve bu alanda çalışmalar yapmaya 

itmiştir. Denetimli öğrenme türlerinden bir tanesi olan ESA kendisine verilen görevi 

yerine getirebilmesi için büyük miktarlarda eğitim verisine ihtiyaç duymaktadır. 

Medikal alanda verilerin toplanması, etiketlenmesi ve etik kaygılar gibi olumsuz 

etkenler medikal veriye olan ulaşımı oldukça güçleştirmektedir. Ancak ISIC arşivinin 

oluşturulması araştırmacıların bu alanda yapacakları çalışmalara bir nebze olsun 

kolaylık sağlamıştır.  

Deri lezyonlarının teşhisinde derin ağlar sentetik veri üretiminden segmentasyona, 

özellik çıkarmadan sınıflandırmaya kadar çeşitli görevlerde kullanılmaktadır. Bazı 

çalışmalarda söz konusu adımların hepsi bir arada kullanılırken bazılarında farklı 

kombinasyonlarından faydalanılmaktadır.  

Christoph Baur ve arkadaşları 2018 yılında yayınladıkları çalışmalarında [148] üretici 

çekişmeli ağları (Generative Adversarial Networks (GANs)) kullanarak uzmanların 

bile gerçeğinden ayırt etmekte zorlanacağı yüksek çözünürlükte sentetik deri lezyon 

görüntüleri üretmeyi başarmışlardır. Kullandıkları yöntem olan ilerici büyüyen üretici 

ters ağlar (Progressive Growing GAN (PGGAN)) [149] diğer derin öğrenme 
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modellerinden (DCGAN [150], LAPGAN [151]) daha başarılı sonuçlar elde etmiştir. 

Şekil 3.10’da üretilen görüntülere ait bir görsel paylaşılmıştır. 

 

Şekil 3.10 (a) gerçek görüntüleri temsil ederken (b) DCGAN, (c) LAPGAN, (d) 

PGGAN tarafından oluşturulmuş yapay görüntüleri göstermektedir [148]. 

 

Sentetik veri üretmenin yanı sıra çeşitli görüntü işleme yöntemleri kullanılarak da deri 

lezyon görüntülerinde arttırma yapılmaktadır. Bu yöntemlerin geneline verilen isim 

veri çoğaltmadır. Bu yöntemin sentetik veri üretmekten farkı ise derin ağlar 

kullanılmadan mevcut görüntüler üzerinde çeşitli görüntü işleme yöntemleri (çevirme, 

belirli açı ile döndürme, kırpma, yakınlaştırma, aydınlatma, karartma vb.) ile yeni 

görüntülerin elde edilmesidir. 2018 yılında Fabio Prez ve arkadaşlarının yayınlamış 

oldukları bir çalışmada 13 farklı veri çoğaltma yöntemini (saturasyon, kontrast, 

aydınlatma, affine, flips, random crops, random earising, elastic, lesion mix) farklı 

kombinasyonlarda kullanarak elde ettikleri veri ile Incepiton-V4, ResNet-152 ve 

DenseNet-161 deri ağlarını eğitmişlerdir. Elde ettikleri sonuca göre en iyi veri 

çoğaltma senaryosu lezyonların geometrik ve renk değişimlerini birlikte kullandıkları 

olmuştur (random crop-affine-flips-saturation-contrast, brightness, and hue) [152].  

Yine Ayan ve arkadaşları tarafından yapılan bir çalışmada kullanılan çeşitli görüntü 

işleme yöntemleri (döndürme, çevirme, yakınlaştırma) ile çoğaltılan görüntülerle 
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eğitilen bir ESA modelinin çoğaltılmamış veri setiyle eğitilen modelden % 4 oranında 

daha başarılı sonuçlar elde ettiğini bulmuşlardır [153]. 

Lezyon görüntülerine ait bazı belirleyici özellikler BDTS tarafından melanomanın 

sınıflandırılmasında kritik bir rol oynamaktadır. Söz konusu özellikler ancak lezyonun 

etrafını çevreleyen sağlam dokudan ayırt edilmesi ile elde edilebilmektedir. Bu ayırt 

etme işlemine deri lezyonun segmentasyonu denilmektedir. Deri lezyonlarının 

segmentasyonunda derin ağlar oldukça başarılı sonuçlar elde ettiğini ortaya 

koymuşlardır.  

2017 yılında Yu ve arkadaşları tarafından geliştirilen bir FCRN (Fully Convolutional 

Residual Network) modeli deri lezyonlarını segmente etmek için kullanılmış ve ISIC 

tarafından düzenlenen (IEEE International Symposium on Biomedical Imaging) ISBI 

2016 yarışmasının lezyon segmentasyon kategorisinde %94,9 doğruluk oranı elde 

ederek ikinci olmuştur [154]. Aynı ekip tarafından geliştirilen DRN (Deep Residual 

Network) modeli FCRN tarafından segmente edilmiş görüntüler üzerinde aynı 

yarışmanın sınıflandırma kategorisinde elde ettiği %85 doğruluk oranı ile birinci 

olmuştur [154]. 

Yuan ve arkadaşları tarafından 2017 yılında yapılan başka bir çalışmada, herkes 

tarafından bilinen FCN (Fully Convulutional Network) modeli için Jaccard distance 

formülünü maliyet fonksiyonu olarak kullanılmıştır [155]. Kullandıkları bu maliyet 

fonksiyonu sayesinde normal deri dokusuna ait piksel sayısı ile lezyona ait piksel 

sayısı arasındaki dengesizliğin yol açtığı problemleri çözdüler. Geliştirdikleri FCN 

modeli ISBI 2016 ve PH2 veri setleri üzerinde test etmişler ve test sonucu sırası ile 

%95,5 ve %93,8 doğruluk oranlarını bulmuşlardır [155].  

2017 yılında, Bi ve arkadaşları tarafından geliştirilen çok kademeli bir FCN modeli ve 

modelin devamında kullanılan (parallel integration) PI yöntemi dermoskop 

görüntülerinin segmentasyonunda kullanılmıştır [156]. FCN ile birlikte kullanılan PI 

metodu segmente edilmiş lezyonların sınırlarının iyileştirilmesinde kullanılmıştır. 

Geliştirilen yöntem ISBI 2016 ve PH2 veri setleri üzerinde test edilmiş ve sırası ile 

%95,51 ile %94,24 doğruluk oranları elde edilmiştir [156].  

2017 yılında Goyal ve arkadaşları geliştirdikleri bir FCN ağını birden fazla lezyon 

tipini segmente etmekle birlikte aynı zaman sınıflandırmak için eğitmişlerdir [157]. 
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Önerdikleri model üç farklı lezyon türünü; Melanoma, benign, seborrheic keratoses 

olmak üzere segmente etmeyi başarmıştır. ISBI 2017 veri seti ile değerlendirdikleri 

model üç farklı lezyon türünde %57, %65 ve %78,5 Dic değerlerini elde etmiştir [157]. 

Lin ve arkadaşları yapmış oldukları bir çalışmada klasik C-means kümeleme yöntemi 

ile derin öğrenme tabanlı model U-Net’i deri lezyonlarını segmente etmedeki 

başarılarını karşılaştırmışlardır. Bu karşılaştırmayı ISBI 2017 veri seti üzerinde test 

etmişlerdir. Derin öğrenme tabanlı U-Net %77 Dic değeri elde ederken klasik 

kümeleme yöntem %61’de kalmıştır [158]. 

2018 yılında Hang Li ve arkadaşlarının geliştirdiği yeni bir DNN (Dense 

Deconvolutional Network) deri lezyonlarının segmentasyonunda kullanılmıştır [159]. 

Geliştirilen bu model DDL (Dense Convolutional Layers), CRP (Chained Residual 

Pooling) ve HS (Hierarchical Supervision) gibi alt fonksiyonlardan oluşmaktadır. 

Kullanılan DDL sayesinde girdi görüntüsü ile çıktı arasında çözünürlük farkı 

olmamasını sağlanmıştır [159]. CRP kullanılarak lokal ve global özelliklerin 

harmanlanıp birlikte kullanılmasına olanak sağlanmıştır. Tahmin maskesini düzelmek 

için ise HS yönteminden faydalanmışlardır. Modelin kodlayıcı kısmında ResNet 

mimarisi kullanılmıştır. Geliştirdikleri modeli ISBI 2017 veri seti üzerinde 

değerlendirmişler ve 0,86 Dic, 0,76 Jac ve 0,93 doğruluk değerlerini elde etmişlerdir 

[159]. 

2018 yılında Al-Masni ve arkadaşları tarafından FrCN (Full resolution Convolutional 

Network) isminde yeni bir lezyon segmentasyon yöntemi önerilmiştir [160]. Bu 

modelin sunduğu avantajlardan biride alt örnekleme katmanlarının olmamasıdır. Bu 

sayede girdi görüntüsünün çözünürlüğü azalmaz ve lezyona ait daha belirgin özellikler 

kaybolmaz ve daha yüksek çözünürlükte segmentasyon sonuçları elde edilir. 

Geliştirilen model ISBI 2017 ve PH2 veri setleri üzerinde denemiş ve sırası ile %85.40, 

%96,69, %94,03 ve %93,72, %95,65, %95,08, duyarlılık, özgüllük, doğruluk değerleri 

elde edilmiştir [160]. 

2018 yılında yapılan başka bir çalışmada Peng Yanjun ve arkadaşları çekişmeli 

ağlardan faydalanarak bir segmentasyon mimarisi önermişlerdir [161]. Önerdikleri 

model iki aşamadan oluşmaktadır. İlk aşamada U-Net tabanlı bir ağ ile lezyonu 

segmente etmişler daha sonra çekişmeli (adversarial) bir ağı ayırıcı olarak 
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tasarlamışlar, segmente edilen bölgenin ne kadar doğru segmente edildiğine dair bu 

ağdan gelen geri beslemeyi sonucu geliştirmekte kullanmışlardır. Sistem ISBI 2016 ve 

PH2 veri setleri ile test edilmiş ve ISBI 2016 veri setinde 0,97 doğruluk ve 0,94 Dic 

değerleri elde etmişlerdir [161]. 

Yine 2018 yılında yapılan bir çalışmada, Jeremy Kawahara ve arkadaşları, dermoskop 

görüntülerinden elde edilen ve tanı için kullanılan belirli klinik özellikleri tespit 

edebilmek için süper piksel yöntemini segmentasyon problemi olarak ele almışlar ve 

bu amaçla bir FCN ağını eğitmişlerdir [162]. 2017 yılında düzenlenen ISBI 2017 

yarışmasının dermoskopik özellik sınıflandırma kategorisinde 0,895 AUC (eğri altında 

kalan alan) değeri ile birinci olmuşlardır [162].  

Yading Yuan ve arkadaşların 2019 yılında yayınladıkları çalışmalarında farklı renk 

kanallarını kullanarak çoğalttıkları veri ile CDNN (Convolutional-Deconvolutional 

Neural Network) modelini eğitmişlerdir. Geliştirdikleri modeli ISBI 2017 veri seti 

üzerinde test etmişler ve 0,756 Jac değerini elde etmişlerdir [163]. 

2019 yılında Ünver ve arkadaşları tarafından dermoskopik görüntüler kullanılarak deri 

lezyonlarının segmentasyonu için Yolo ve GrabCut yöntemlerini birleştiren bir boru 

hattı önermişlerdir. Önerilen yöntem görüntü içerisinde Yolo tarafından lezyonun yeri 

tespit edilmekte, bu yer bilgisi daha sonra GrabCut algoritması tarafından lezyonun 

segmentasyonu için kullanılmaktadır. Bu melez sistem ISBI 2017 ve PH2 veri 

setlerinde test edilmiş ve %91 duyarlılık oranı elde etmiştir [67].  

2017 yılında Estava ve arkadaşları tarafından yayınlanan çalışma deri lezyonlarının 

sınıflandırılmasında önemli bir dönüm noktası olmuştur [164]. Yapılan çalışmada 

3374’ü dermoskopik olmak üzere toplamda 129450 klinik görüntü kullanılmıştır. 

Herhangi bir ön işleme, özellik çıkarma, ya da segmentasyon işlemi uygulanmamıştır. 

Aktarım öğrenme yöntemi ile birlikte Incetion-V3 modeli söz konusu veri seti 

üzerinde eğitilmiştir. Inception-V3 ağının çıkış katmanı 757 farklı deri hastalığını 

sınıflandıracak şekilde düzenlenmiştir. Yapılan testlerde eğitilen modelin %72,1 

doğruluk oranı ile uzman dermatologlardan daha iyi sonuçlar elde ettiği 

gözlemlenmiştir. Ayrıca önerilen modelin Melanoma sınıflandırmada %94 AUC 

değeri elde ettiği belirtilmiştir [164]. 
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2017 yılında Codella ve arkadaşları deri lezyonlarını sınıflandırmak için iki aşamadan 

oluşan bir sınıflandırma metodu öne sürdüler [142]. Yaptıkları çalışmada U-Net 

tabanlı bir derin ağ ile segmente edilen lezyon, el ile çıkarılan özellik çıkarıcıları, 

seyrek kodlama yöntemlerini, SVM ve derin ağları birlikte kullanarak sınıflandırma 

işlemi yapmışlardır. Önerdikleri yöntemi ISBI 2016 veri seti üzerinde test etmişler ve 

0,83 AUC değeri elde etmişlerdir [142].  

2017 yılında Lopez ve arkadaşları, melanomanın erken teşhisi için image-net üzerinde 

eğitilmiş Vgg-16 derin ağını aktarım öğrenme yönteminden de faydalanarak 

dermoskopik görüntüler üzerinde eğitmişlerdir [165]. Eğittikleri derin ağı ISBI 2016 

veri seti üzerinde test etmişler %81 doğruluk, %78,66 duyarlılık, %79,74 özgüllük 

değerlerini elde etmişlerdir [165].  

2018 yılında, Harangi Balanz deri lezyonlarını melanoma, nevus, and seborrheic 

keratosis olmak üzere üç sınıfa ayırmak için; GoogLeNet, AlexNet, ResNet ve VggNet 

ağlarını eğiterek test aşamasında ağların verdiği sonuçları birleştirmiş daha yüksek bir 

doğruluk oranı elde etmeyi hedeflemişlerdir [166]. Ağlarının sonuçlarını birleştirirken 

ağırlıklı toplam yöntemi uygulamışladır. Ağırlıklı toplama yönteminde her bir ağa 

veriyi yalnız başına sınıflandırma performansına göre bir ağırlık değeri atanır ve bu 

ağırlık değerleri toplamları bire eşit olur. Böylelikle daha iyi sınıflandırma 

performansına sahip olan ağın toplam sonuçta daha çok etkisi olmaktadır. ISBI 2017 

verisinde test edilen sistem 0,89 AUC değeri elde etmiştir [166]. 

2018 yılında Rezvantalab, Amirreza ve arkadaşları sunmuş oldukları çalışmalarında 

sekiz farklı deri hastalığını (melanoma, melanocytic nevi, basal cell carcinoma, benign 

keratosis, actinic keratosis and intraepithelial carcinoma, dermatofibroma, vascular 

lesions, ve atypical nevi) sınıflandırmak için daha önce ImageNet verisi ile eğitilmiş 

derin ağları (DenseNet 201, ResNet 152, Inception v3, InceptionResNet v2) 

HAM1000 ve PH2 veri setleri ile yeniden eğitmişlerdir [167]. Çalışmanın amacı derin 

öğrenme ile deneyimli bir uzmanın deri hastalıklarını sınıflandırma başarısını 

karşılaştırmak. Yapılan testler sonucu deri hastalıklarının sınıflandırılmasında derin 

öğrenme yöntemlerinin deneyimli bir uzmandan %11’lik bir farkla daha başarılı sonuç 

elde ettiği görülmüştür. Ayrıca Melanoma ve basal cell carcinoma için en iyi ROC 

AUC değerlerini %94,40 (ResNet 152) ve %99,30 (DenseNet 201) elde etmiştir. 

Bununla birlikte deneyimli uzman %82,26 ve %88,82 de kalmıştır [167]. 
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2018 yılında Yang, Jiawen ve arkadaşları, ESA tabanlı bir sistem ile melanoma teşhisi 

yapmışlardır [168]. Çalışmada lezyon bölgesini daha iyi tespit edebilmek için global 

ortalama havuzlama yerine bölgesel ortalama havuzlama kullanmışlardır. Önerdikleri 

ESA modelinde segmentasyon ve sınıflandırmayı birleştirerek daha iyi sınıflandırma 

sonuçları elde etmişlerdir. Ayrıca modelin sonunda kullandıkları RAPooling olarak 

adlandırdıkları sınıflandırma yöntemi ile direk ROC değeri üreten sınıflandırma 

sonuçları elde etmişlerdir. Önerdikleri ESA modelini ISBI 2017 veri seti üzerinde test 

etmişler ve 0,84 AUC ve 0,833 doğruluk değerlerini elde etmişlerdir [168].  

2018 yılında Lee, Yeong Chan ve arkadaşları 7 farklı deri lezyonunu sınıflandırmak 

için WonDerM ismini verdikleri bir boru hattı tasarlamışlardır [169]. Önerdikleri boru 

hattı içinde lezyon görüntülerine sırası ile veri çoğaltma, kıl tespiti ve silinmesi, 

lezyonun segmentasyonu ve sınıflandırma adımları bulunmaktadır. Boru hattının ilk 

adımında eğittikleri bir yapay sinir ağı ile üzerinde kıl bulunan lezyon görüntüsü tespit 

edilerek DullRazor [170] algoritması ile kıllar temizlenmiştir. İkinci aşamada 

modifiye edilmiş U-Net modeli lezyonu çevreleyen sağlam dokundan ayırmak için 

kullanılmıştır. Sınıflandırma aşamasında ise dört adet CNN ağından gelen sonuç 

ağırlıklandırma toplam yöntemi ile birleştirilmiş ve sonuç elde edilmiştir. Yöntem 

ISBI 2018 veri seti üzerinde test edilmiş ve 0,83 oranında doğruluk oranı elde 

etmişlerdir [169].  

2018 yılında Yap Jordan ve arkadaşları, beş farklı deri hastalığını (nevus, melanoma, 

basal cell carcinoma, squamous cell carcinoma, pigmented benign keratoses) 

sınıflandırmak için çok işlevli bir derin ağ modeli önermişlerdir [171]. ResNet-50 

mimarisini özellik çıkarıcı olarak kullanan ekip, iki ResNet-50’yi dermoscopik, 

macroskopik görüntülerle ayrı ayrı eğitmiş, eğitilmiş ResNet-50’lerden gelen 

özelliklere ek olarak hastaya ait meta-data bilgisini (yaş, cinsiyet vb.) de dahil ederek 

sınıflandırıcıya sokmuşlardır. Yapıkları test sonuçlarına göre 0,72 doğruluk değeri ve 

0,86 melanoma AUC değeri elde etmişlerdir [171]. 

2018 yılında Burdick ve arkadaşları Vgg-16 ve Inception-V3 ağlarını kullanarak 

segmente edilmiş deri lezyonlarında, lezyon çevresinde bulunan yakın dokunun 

sınıflandırmaya etkisini gösteren bir çalışma yapmışlardır [172]. Bu çalışmada 

lezyonu çevreleyen dokunun bir belirli bir kısmının sınıflandırmada faydalı olduğu 

mükemmel segmentasyona göre daha iyi sonuçlar elde edildiği gösterilmiştir. 
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Çalışmada ISBI 2016 veri seti üzerinde test edilmiş Inception-V3 derin ağı segmente 

deri edilmiş görüntülerine her yöne 75 piksel eklenmesi ile elde edilen sonuçlarda en 

iyi doğruluk 0,69, duyarlılık 0,76, özgüllük 0,72, AUC 0,73 değerlerini elde etmiştir 

[172]. 

2019 yılında Khalid M. Hosny ve arkadaşları tarafından yayınlanan bir çalışmada, 

Alex-Net mimarisi üzerinde farklı kombinasyonlarda aktarım öğrenme ve ince ayar 

yöntemleri kullanılarak deri lezyonlarının sınıflandırılmasında kullanılmıştır [173]. 

Çalışmada veri çoğaltma yöntemlerinden de faydalanılmıştır. Önerilen model Med-

Node, Derm, ve ISIC veri setleri ile test edilmiş ve %96,86, sırası %97,70 ve %95,91 

doğruluk oranları elde edilmiştir [173].  

2019 yılında yapılan başka bir çalışmada Sara Hosseinzadeh Kassani bilinen ünlü 

derin ağların; ResNet50, Vgg-16, Vgg-19, AlexNet ve Xception’nın deri kanseri 

teşhisinde gösterdikleri performansları karşılaştırılmıştır [174]. Aktarım öğrenme ve 

veri çoğaltma yöntemlerinden faydalanılan kullanılan çalışmada tüm modeller ISBI 

2018 veri seti üzerinde eğitilerek test edilmiş, en iyi sonucu ResNet-50 modeli, 0,93 

hassasiyet, 0,92 duyarlılık, 0,92 f-skor, 0,92 doğruluk değerlerini elde ederek 

kazanmıştır [174]. 

3.2.4 Zorluklar 

ISIC arşivinin varlığı ile birlikte, BDTS’nin deri lezyon teşhisinde kullanılması 

oldukça popüler bir araştırma alanı olmuştur. Her bir araştırma bireysel bileşenlere 

sahip olmakla birlikte, belirli özelliklere odaklanmaktadır, bununla birlikte daha global 

özelliklere odaklanan karşılaştırmalı bir bakış açısı elde etmek oldukça güçtür. Açık 

araştırma alanları genelde AUC (Eğri altında kalan alan) değerini yükseltmeye 

odaklıdır.  
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4. MELANOMA TESPİTİ İÇİN ÖNERİLEN MODEL 

Bu bölümde deri kanserinin tespiti için yapılan çalışmalara ek olarak tez kapsamında 

yapılan çalışmalar ve katkılar yer almaktadır. Ayrıca sırası ile kullanılan veri seti, 

metotlara detaylıca değinilecektir. 

 Uygulama Ortamı 

4.1.1 Programlama Dili ve Kütüphaneler 

Çalışmada kullanılan bütün yöntemler python programlama dili kullanılarak 

kodlanmıştır. Kullanılan ESA mimarileri arka planında Tensorflow kütüphanesini 

kullanan Keras [52] derin öğrenme kütüphanesi ile modellenmiştir. Ayrıca OpenCV 

[175] görüntü işleme kütüphanesinden de faydalanılmıştır. Tüm işlemler Ubuntu 14.04 

işletim sistemi bulunan bir bilgisayar üzerinde gerçekleştirilmiştir. 

4.1.2  Donanımsal İhtiyaçlar 

Derin ağların eğitilmesinde güçlü donanıma sahip bilgisayarlar hesaplama zamanı 

yönünden büyük avantaj sağlamaktadır. Özellikle derin öğrenme kütüphanelerini 

destekleyen bir ekran kartıyla, işlemci ile aylar sürecek bir eğitim sürecini saatler 

içinde gerçekleştirebilmektedir. Bu nedenle önerilen boru hattı mimarisinin bütün 

süreçleri iki Xenon işlemcili, 32GB RAM, 512 GB SDD ve Nvidia GTX 1080 Ti ekran 

kartına sahip bir iş istasyonu kullanılarak gerçekleştirilmiştir.  

 Çalışmada Kullanılan Veri Setleri 

Çalışmada iki farklı veri seti kullanılmıştır bu veri setlerinden ilki ISBI 2017 [176] 

olarak bilinen: “Melanom Teşhisine Yönelik Deri Lezyon Analizi” isimli yarışma için 

ISIC veri setinden oluşturulmuş bir alt veri setidir. Bu veri seti 2000’i eğitim verisi 

(374 melanoma, 254 seborrheic keratosis ve 1372 zararsız nevus) 150’si doğrulama 

verisi ve 600’ü test verisi olmak üzere toplamda 2750 dermoskopik görüntüden 

oluşmaktadır. Verinin detaylı dağılımı Çizelge 4.1’de verilmiştir. Veri setini 540 × 722 

ile 4499 × 6748 arasında değişken çözünürlükteki 8 bit RGB görüntüler 
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oluşturmaktadır. Veri setinin segmentasyon için kullanılmak üzere uzmanlar 

tarafından oluşturulmuş ikili segmentasyon görüntüleri de bulunmaktadır.  

Çalışmada kullanılan diğer bir veri seti ise PH2 olarak bilinen veri setidir [119]. PH2 

veri seti Porto üniversitesindeki bir grup araştırmacı tarafından Pedro Hispano 

hastanesinin dermatoloji servisinden toplanmıştır. Aynı hastaneden aynı şartlar altında 

aynı cihaz ile çekilmiş görüntüler 768x560 çözünürlüğe sahip 200 adet 8 bit RGB 

dermoskopik görüntüden oluşmaktadır. Veri setinin sınıf bazından dağılımı Çizelge 

4.1’de verilmiştir. Bu veri seti de uzman dermatologlar tarafından segmente edilmiş 

ikili segmentasyon verisine sahiptir. Veri setlerinden bazı örnek görüntüler Şekil 

4.1’de verilmiştir. 

 

Çizelge 4.1 ISBI 2017 ve PH2 veri setleri sınıf dağılımları 

Veri 

seti 

Eğitim Doğrulama Test Top 

Etiket N M SK Top N M SK Top  N M SK AT Top  

ISBI 

2017 

1372 374 254 2000 78 30 42 150 393 117 90 * 600 2750 

PH2 * * * * * * * * 80 40 * 80 200 200 

Top  2000  150  800 2950 

N-Normal, M-Melanoma, SK-Seborrheic keratosis, AT-Atypical nevus 

 

 

Şekil 4.1 (a) ISBI 2017 veri setinden orijinal görüntü ve ikili segmentasyonu (b) PH2 

veri setinden orijinal görüntü ve ikili segmentasyonu 
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 Deri Lezyonlarının Sınıflandırılması İçin Önerilen Boru Hattı Mimarisi 

Bu çalışmada deri lezyonlarının sınıflandırılması için üç temel adımdan oluşan bir 

boru hattı mimarisi önerilmiştir. Bu mimarideki ilk adım lezyon üzerindeki kılların 

tespiti ve silinmesi, ikinci adım lezyonun sağlıklı dokudan ayrılması ve son adım ise 

lezyonun türünü belirlemek için sınıflandırılmasıdır. Her adım kendi içinde birçok alt 

yöntemi barındırmaktadır. Bu yöntemlerin uygulanması ve detayları, ilgili başlıklar 

altında detaylıca anlatılacaktır. Önerilen mimarinin adımlarını gösteren bir görsel 

Şekil 4.2’de verilmiştir.  

 

 

Şekil 4.2 Önerilen boru hattı mimarisinin adımları 

 

 Kılların Tespiti ve Temizlenmesi 

Mimarinin ilk adımı olan kılların tespiti ve temizlenmesi iyi bir sınıflandırma sonucu 

elde etmek için oldukça önemlidir. Özellikle lezyonun sağlıklı dokudan ayrımı 

esnasında lezyon üzerini kapatan kıllar büyük sorun teşkil etmektedir. İyi segmente 

edilmemiş görüntüler ise sınıflandırmada başarı oranını düşürmektedir [177]. Bu 

amaçla geliştirdiğimiz iki aşamadan oluşan bir yöntem ile dermoskopik lezyon 

görüntüleri üzerindeki kılların temizlenmesi sağlanmıştır. İlk aşama görüntü içinde kıl 

olup olmadığının tespit edilmesidir. Bu aşama için bir ESA’dan faydalanılmıştır. 

İkinci aşamada ise üzerinde kıl olduğu tespit edilen lezyonun üzerindeki kıllar bir dizi 

görüntü işleme yöntemi ile temizlenmiştir. Şekil 4.3’te önerilen yöntem ile 

temizlenmiş bazı görüntülere yer verilmiştir. 
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Şekil 4.3 Üzerinde kıl bulunan lezyonların temizlik işleminden sonraki durumları 

 

4.4.1  Kılların Tespit Edilmesi 

Görüntü üzerindeki kılların otomatik olarak temizlenebilmesi için ilk adım görüntüde 

kıl olup olmadığının tespit edilmesidir. Ancak bu aşamadan sonra temizleme işlemine 

geçilebilmektedir. Görüntü üzerinde kılların tespitini yapabilmek için Vgg-16 tabanlı 

ESA modeli kullanılmıştır. Bu ağ aktarım öğrenme yöntemi ve ince ayar yöntemleri 

kullanılarak kıl içeren ve içermeyen lezyon görüntüleri ile yeninden eğitilmiştir. 

Eğitim esnasında Vgg-16 ağının tüm evrişimsel katmaları dondurulmuş yani eğitime 

katılmamıştır. Sınıflandırmak için ise 256’lık bir tam bağımlı katman eklenmiştir. 

Evrişimsel katman ile tam bağımlı katman arasında global ortalama havuzlama 

yöntemi kullanılmıştır. Kullanılan ağın konfigürasyonu Şekil 4.4’te gösterilmiştir.  
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Şekil 4.4 Kılların tespit edilmesi için kullanılan aktarım öğrenme mimarisi 

 

Düzenlenen ESA modelini eğitmek için ISIC veri setinden 4473 temiz 3525 kıllı 

olmak üzere toplamda 7998 lezyon görüntüsü kullanılmıştır. Doğrulama için ise 

1000’i temiz 1000’i kıllı olmak üzere 2000 lezyon görüntüsü kullanılmıştır. Sistemin 

testinde ise 120’si kıllı olmak üzere 600 adet görüntü kullanılmıştır. Ağ 25 epok 

boyunca eğitilmiş, ayrıca eğitim esnasında veri çoğaltma yöntemi, tam bağımlı 

katmandan önce ve sonra iletim sönümü ve normalizayon yöntemleri kullanılmıştır. 

Çıkış katmanında softmax aktivasyon fonksiyonu kullanılmış, harici katmanlarda 

ReLU aktivasyon fonksiyonundan faydalanılmıştır. Hata fonksiyonu olarak kategorik 

çapraz düzensizlik (categorical_crossentropy), optimizasyon algoritması olarak ise 

Adam kullanılmıştır. Elde edilen sonuçlar tezin sonuçlar kısmında verilecektir. Şekil 

4.5’te ağın eğitimi esnasında elde edilen hata ve doğruluk eğrileri paylaşılmıştır.  
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Şekil 4.5 Kıl tespiti için eğitilen ESA'nın doğruluk ve hata eğrileri 

 

4.4.2 Kılların Temizlenmesi 

Üzerinde kıl olan lezyon tespit edildikten sonraki aşama bu kılların lezyon üzerinden 

temizlenmesidir. Bu amaçla bir dizi görüntü işleme yöntemi kullanılmıştır. İlk olarak 

kırmızı (Red), yeşil (Green) ve mavi (Blue) (RGB) kanallardaki piksellerden oluşan 

görüntü (0,3xR) + (0,59xG) + (0,11xB) formülü kullanılarak gri renk uzayına yani tek 

kanala çevrilmiştir. Gri görüntü üzerinde kenarları daha kolay tespit edebilmek için 

ortanca filtre (median) kullanılarak görüntü bulanıklaştırılmıştır. Bulanıklaştırılan gri 

görüntüye adaptif eşikleme yöntemi uygulanarak gri görüntü ikili görüntüye 

çevrilmiştir. İkili görüntü üzerinde Canny [178] kenar bulma algoritması kullanılarak 

kıllar tespit edilmiştir. Tespit edilen kılları belirginleştirmek için bir dizi morfolojik 

işlemler ikili görüntü üzerine uygulanmıştır. İlk morfolojik işlem olan açma yöntemi 

ile tespit dilen kıllar daha belirgin hale getirilmiştir. İkinci morfolojik işlem olan 

kapama ile görüntü üzerindeki küçük siyah noktalar temizlenmiştir [175]. Elde edilen 

ikili maske görüntüsü ile renkli görüntü birleştirilmiş kılları yer aldığı beyaz gölgeler 

dolgu (inpainting) yöntemiyle komşu pikseller ile doldurularak işlem sonlandırılmıştır 

[175]. Algoritma aşamalarını ve sonucu gösteren bir görsel Şekil 4.6’da gösterilmiştir. 
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Şekil 4.6 Görüntü üzerinde bulunan kılların temizlenme adımları ve her bir adım 

sonrası görüntünün işlenmiş hali 

 

 Deri Lezyon Görüntülerinin Segmentasyonu 

Bilgisayar destekli sistemlerin iyi bir sınıflandırma yapması için segmentasyon önemli 

adımlardan bir tanesidir. Segmente edilmiş lezyon görüntülerinden sınıflandırmayı 

kolaylaştıracak belirgin özellikleri çıkarmak daha kolay olmakta, bu sayede 

sınıflandırma performansı artmaktadır [154, 155]. Çalışmanın bu bölümünde Yolov3 

ve GrabCut algoritmalarının güçlü yanları birleştirilerek çözünürlük bağımsız bir 

segmentasyon yöntemi geliştirilmiştir. Önerdiğimiz boru hattı mimarisinin ikinci 

adımı olan segmentasyon üç alt adımdan oluşmaktadır. Adımlardan ilkinde Yolov3 

yardımı ile görüntü içerisinde lezyon bölgesi tespit edilmekte, ikincisinde tespit edilen 

bölge GrabCut algoritması kullanılarak lezyonun arka plandan ayrılması sağlanmakta, 

son adımda ise bazı morfolojik işlemler ile küçük gürültüler temizlenmektedir. 

Segmentasyon adımlarını gösteren bir görsel Şekil 4.7’de paylaşılmıştır.  
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Şekil 4.7 Lezyonun görüntü içerisinde tespit edilmesi ve segmentasyonu 

 

4.5.1 Lezyonlu Bölgenin Tespit Edilmesi 

Yarı otomatik segmentasyon algoritmalarından biri olan GrabCut algoritmasında 

kullanıcı tarafından sınırlanan bölge bilgisi kullanılarak segmentasyon yapılmaktadır. 

Yaptığımız çalışma ile bu algoritmayı Yolov3 ile birleştirerek otomatik segmentasyon 

yapar hale getirdik. Bu amaçla Yolov3 görüntü içerisindeki lezyon bölgesini tespit 

etmesi kullanılmıştır. Yolov3’ün eğitiminde ISBI 2017 veri seti kullanılmıştır. Eğitim 

için 2000, doğrulama için 150 ve test için 600 dermoskopik lezyon görüntüsü 

kullanılmıştır. Yolov3’ü eğitmek için görüntüler Yolov3’ün istediği çıktıya göre 

etiketlenmiştir. Bu amaçla python programlama dili kullanılarak bir etiketleme aracı 

geliştirilmiştir. Bu araca ait bir görsel Şekil 4.8’de paylaşılmıştır. Kullanılan bu araç 

sayesinde her bir lezyon görüntüsü için lezyonu çevreleyen kutunun orta noktasının x, 

y koordinatları ve sınırlayıcı kutuya ait w, h genişlik ve yükseklik değerleri bir txt 

dosyasında saklanmıştır. Yolov3’ün verdiği çıktıya ait detaylara Bölüm 2’de 

değinilmiştir. Şekil 4.8’de bu çıktıların hesaplanmasına dair bir görsel paylaşılmıştır.  
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Şekil 4.8 Yolov3 veri etiketleme işlemi 

 

Etiketleme işlemi bittikten sonra daha önce ImageNet verisi üzerinde 1000 farklı sınıfı 

tanımak üzere eğitilmiş olan Yolov3 ağında sadece lezyonları ve yerlerini tespit etmesi 

için bazı değişiklikler yapılmıştır. Bu değişikliklere ait detaylar Şekil 4.9’da kırmızı 

renkte verilmiştir. Bunun yanında Yolov3 eğitilirken aktarım öğrenme yöntemi 

kullanılarak ImageNet verisi ile eğitilmiş ağırlıklardan da faydalanılmıştır. Bütün bu 

ayarlamalar ile birlikte Yolov3 ağı 10000 iterasyon boyunca eğitilmiştir. Eğitim 

sonucu yapılan testlere ait bazı sonuçlar Şekil 4.10’da gösterilmektedir.  
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Şekil 4.9 Görüntü içerisinde lezyon bölgesini tespit etmek için modifiye edilmiş 

Yolov3. 
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Şekil 4.10 Yolov3 tarafından yeri doğru tespit edilmiş örnekler 

 

4.5.2 Lezyonlu Bölgenin Arka Plandan Ayrılması 

Yolov3 yardımı ile lezyonlu bölgenin yeri tespit edildikten sonraki aşama bu bilginin 

kullanılarak lezyonun arka plandan ayrılması yani segmentasyonudur. Bu amaçla 

Bölüm 2’de detaylı olarak değinilen GrabCut algoritması kullanılmıştır. Yarı otomatik 

olan bu algoritma bu sayede tam otomatik hale getirilmiştir. Bunun yanında 

çözünürlük bağımsız segmentasyon yapabilme yeteneğine sahip bir yöntem ortaya 

konulmuştur [67]. Segmentasyonu yapılan ikili görüntü üzerinde bazı morfolojik 

işlemler sırası ile (açma, kapama) uygulanarak küçük gürültüler ortadan kaldırılmıştır. 

Son adımda segmente edilmiş ikili görüntü ile orijinal RGB görüntü birleştirilerek 

işlem sonlandırılmıştır. Elde edilen sonuçlara dair bazı görseller Şekil 4.11’de 

verilmiştir.  

 

 

Şekil 4.11 Segmentasyon sonuçları 
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 Sınıflandırma 

Önerilen sistemin son aşaması olan sınıflandırma safhasında segmente edilen 

görüntüler ile Xception, MobileNet ve ResNet-50 ESA modellerinin melanom teşhisi 

için yeniden yapılandırılmış mimarileri ayrı ayrı eğitilmiştir. Ağların eğitim sürecinde 

iki farklı aktarım öğrenme sürecinden faydalanılmıştır. İlk eğitim sürecinde her bir 

ağın evrişim katmanları ImageNet ağırlıkları kullanılarak eğitime başlatılmış 

sınıflandırıcı katmanların ağırlıkları sıfırdan atanmıştır. Hiçbir katmanda dondurma 

yapılmadan her bir ağ ISIC verisinden alınan 5000’i sağlam 4000’i melanoma olmak 

üzere toplamda 9000 görüntü belirli açılarla döndürme, rasgele kırpma, parlaklık, 

kontrast geliştirme, yakınlaştırma gibi yöntemlerle çoğaltılarak elde edilen 50.000 

görüntü ile eğitilmiştir. Eğitim sonunda elde edilen ağırlıklar kaydedilmiştir. İkinci 

eğitim sürecinde ise modellerin segmente edilmiş görüntüler ile eğitimine bu ağırlıklar 

kullanılarak başlanmıştır. Fakat modeller tam eğitilmemiş modelin büyüklüğüne göre 

bazı evrişimsel katmanlar eğitime katılmamıştır. Ağların sınıflandırıcı kısımları ise 

sıfırdan eğitilmiştir. Her bir ağın segmente edilmiş lezyon görüntülerinden melanoma 

tespiti için düzenlenmiş son hali Şekil 4.12’de verilmiştir. Ayrıca Çizelge 4.3’te 

ağların toplam katman sayıları, toplam parametre sayıları, eğitilen katman sayısı ve 

parametre sayıları verilmiştir. 
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Şekil 4.12 Sınıflandırma için önerilen oylama modeli 

 

Öte yandan aşırı uyumu engellemek için evrişimsel ve tam bağımlı katmanlarda L2 

düzenlileştirme, iletim sönümü, yığın normalizasyonu ve eğitim anında ve öncesinde 

veri çoğaltma yöntemleri kullanılmıştır. Modellerin eğitimi için kullanılan ISBI 2017 

veri setinde dengesiz bir dağılım görülmektedir. Bu yüzden görüntüler sağa, sola, 

aşağı, yukarı ve çeşitli açılarda döndürülerek yeni örnekler ile sınıflar arası bir denge 
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elde edilmiştir. Her bir ağ toplamda 20000 görüntü ile eğitilmiş 1000 görüntü ile 

doğrulama yapılmıştır. Veri çoğaltma sonucu elde edilen yeni görüntülerden bazı 

örnekler Şekil 4.13’te verilmiştir.  

 

Şekil 4.13 Çeşitli görüntü işleme yöntemleri ile orijinal görüntüden elde edilmiş yeni 

örnekler 

 

Her bir ağ aynı parametreler ile eşit koşullarda 100 epok boyunca eğitilmiştir. Eğitim 

esansında Xception ağında 299x299 çözünürlüğe sahip RGB görüntüler kullanılırken 

MobileNet ve ResNet-50 ağlarında 224x224 çözünürlüklü görüntüler kullanılmıştır. 

Yığın (Batch) büyüklüğü 32, öğrenme katsayısı 1e-4, çıkış katmanı hariç bütün 

katmanlarda ReLU aktivasyon fonksiyonu kullanılmıştır. Çıkış katmanında softmax 

aktivasyon fonksiyonu tercih edilmiştir. Hata fonksiyonu olarak 

categorical_crossentropy, hatayı minimize etmek için ise Adam optimizasyon 

algoritması kullanılmıştır. Ayrıca her epok sonunda en iyi model saklanmış, aşırı 

uyumu engellemek için ise erken durma(early_stop) yönteminden faydalanılmıştır. 

Test esnasında her bir ağ test verisi üzerinde kendi yöntemlerini uygulayarak bir sonuç 

çıkarmakta, üretilen sonuçlar oylama yöntemi kullanılarak nihai sonuç ortaya 

çıkmıştır. Oylama işleminin formülü 4.1’de verilmiştir. Formüle göre nihai karar her 

bir modelin çıktı olasılıklarının toplamının model sayısına bölünmesi ile ede 

edilmektedir. Eğer karar değeri 0,5 ‘e eşit veya büyük ise 1 yani melanoma aksi 

takdirde 0 yani sağlıklı olmaktadır. 
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Çizelge 4.2 Modellere ait aktarım öğrenme detayları 

 Toplam 

Parametre 

Sayısı 

Eğitilen 

Parametre 

Sayısı 

Eğitilmeyen 

Parametre 

Sayısı 

Toplam 

Katman 

Sayısı 

Eğitilmeyen 

Katman 

Sayısı 

ResNet-50 24.910.722 23.271.170 1.639.552 183 80 

Xception 22.184.490 17.252.138 4.932.352 140 60 

MobileNet 4.023.490 3.460.610 562.880 90 45 
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Ağların eğitimi esnasında ortaya çıkan doğruluk ve hata grafikleri Şekil 4.14’te 

gösterilmiştir.  

 

 

Şekil 4.14 ResNet-50, MobileNet, Xception modellerinin eğitim sırasındaki doğruluk 

ve hata eğrileri 
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5. ARAŞTIRMA SONUÇLARI 

Tezin bu bölümünde önerilen boru hattı mimarisinin test verisi üzerinde gösterdiği 

performans sonuçları paylaşılacaktır. Ön işleme, segmentasyon ve sınıflandırma 

sonuçları ayrı ayrı değerlendirilmiştir. Değerlendirme kriterleri literatüre ve adımlara 

uygun olarak seçilmiştir.  

 Değerlendirme Kriterleri 

Bu çalışmada önerdiğimiz boru hattı mimarisini üç adımı da ayrı ayrı 

değerlendirilmiştir. İlk adımda lezyon üzerindeki kılların doğru tespit edilmesini, 

ikinci adımda segmentasyon sonuçlarını ve en son adımda ise genel sınıflandırma 

sonuçlarının değerlendirilmesi yapılmıştır. Her bir adıma uygun değerlendirme 

kriterleri belirlenmiştir. Kullanılan değerlendirme kriterleri: 

Doğruluk (Accuracy, Doğ): Doğruluk, sınıflandırma problemleri için yaygın olarak 

kullanılan bir değerlendirme ölçütüdür. Doğru tahmin sayısının toplam numune 

sayısına bölünmesi ile ortaya çıkan oran ile temsil edilmektedir. Verideki sınıflara ait 

örnek sayısı eşit ise daha kayda değer sonuçlar vermektedir.  

Duyarlılık (Sensitivitiy, Duy): Hasta olan örnekler içinden doğru olarak tespit edilmiş 

örnek sayınını temsil etmektedir. Önerilen modelin gerçek hastaları ayırma 

yeteneğidir. 

Özgüllük (Specificity, Özg): Sağlam olan örnekler içinden doğru olarak tespit edilmiş 

örnek sayısını temsil etmektedir. Önerilen modelin sağlamları tespit etme yeteneğidir.  

Eğri Altındaki Alan (Area Under Curve, AUC) ve (Receiver Operating 

Characteristics, ROC) Eğrisi: ROC bir olasılık eğrisidir ve AUC ayırıla bilirliğinin 

derecesini veya ölçüsünü temsil etmektedir. Modelin sınıflar arasında yaptığı ayırma 

kapasitesi hakkında bilgi vermektedir. ROC eğrisi altında kalan alana AUC 

denilmektedir. AUC değerinin yüksek olması sınıflandırma başarımının yüksek 

olduğu manasına gelmektedir. Grafiğin y ekseninde doğru pozitiflerin orantısı (DPO) 

veya duyarlılık, x ekseninde ise yanlış pozitiflerin orantısı (YPO) veya özgüllük ROC 

eğrisini oluşturmaktadır (Şekil 5.1).  
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Şekil 5.1 ROC eğrisi grafiği 

 

Interseciton over union (IOU): Nesne lokalizasyon problemlerinde kullanılan bu 

değerlendirme kriteri model tarafından bulunan arzu edilen nesneyi içine alan bir 

sınırlayıcı kutu ile asıl elde edilmesi istenilen sınırlayıcı kutunun kesişim oranını 

temsil etmektedir. Bu oran kutuların keşim değerinin birleşim değerine bölünmesi ile 

elde edilmektedir.  

Jaccard Indeksi (Jacard index Jac): Deri lezyonlarında lezyon bölgesi sağlam dokuya 

göre daha fazla alan kapladığı için, doğruluk, duyarlılık ve özgüllük her zaman 

gerçekçi sonuçlar elde edememektedir. Özellikle segmentasyon problemlerinde 

segmentasyonun performansını ölçmek için kullanılan bu kriter elde edilen 

segmentasyon sonucu amaçlanan sonucun kesişim oranını temsil etmektedir.  

Diece katsayısı (Diece coefficient, Dic): Segmentasyon problemlerinde yoğun olarak 

tercih edilen bu değerlendirme ölçütü elde edilen segmentasyon sonucu ile arzu 

segmentasyon sonucu arasındaki benzerlik oranını ölçmektedir.  

Söz konusu ölçütleri hesaplamak için belirlenen bazı parametreler ve formüller 

kullanılmaktadır. Ölçütleri hesaplamak için kullanılan parametreler Doğru Pozitif, 

Yanlış Negatif, Yanlış Pozitif, Doğru Negatif’ dir. Şekil 5.2’de gösterilen karmaşıklık 

matrisinde kriterlerin durumları verilmiştir.   

Doğru Pozitif (DP): Sistemin test sonucunda hasta dediği ve gerçekten hasta olan 

vakalar. 

Yanlış Negatif (YN): Sistemin test sonucunda hasta değil dediği ama gerçekte hasta 

olan vakalar. 
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Yanlış Pozitif (YP): Sistemin test sonucunda hasta dediği fakat gerçekte hasta olmayan 

vakalar. 

Doğru Negatif (DN): Sistemin test sonucunda hasta değil dediği ve gerçekten hasta 

olmayan vakalar. 

 

Şekil 5.2 Karmaşıklık matrisi 

 

Yukarıda belirtilen ölçütler DP, YN, YP, DN parametrelerini kullanarak aşağıdaki 

formüllere göre hesaplanmaktadır. 
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=
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 (4.6) 

 

 
DP DN

Doğ
DP DN YN YP

+
=

+ + +
 (4.7) 

 

 Kılların Doğru Tespit Edilme Sonuçları 

İyi bir segmentasyon sonucu elde etmek için görüntü üzerinde bulunan kılların tespit 

edilip temizlenmesi büyük önem arz etmektedir. Önerilen mimarinin ilk adımı olan 

kılların temizlenmesi iki adımdan oluşmaktadır. İlk adım üzerinde kıl bulunan 

lezyonun tespiti, ikinci adım ise silinmesidir. Kılların silinmesi için literatür 

incelendiğinde bir değerlendirme ölçütü yer almamaktadır. Bu yüzden bu bölümde 

eğitilen evrişimsel ağın, üzerinde kıl olan görüntüleri bulmadaki başarısına yer 

verilmiştir. ISBI 2017 test veri seti üzerinde denenen sistem %95 AUC oranı elde 

ederken PH2 veri setinde %96 AUC elde edilmiştir. Test için kullanılan ISBI 2017 

veri setinde 466’sı kılsız 134’ü kıllı olmak üzere toplam 600 görüntü bulunmaktadır. 

Diğer bir test veri seti PH2’de ise 53’ü kıllı 147’si kılsız olmak üzere toplada 200 

görüntü bulunmaktadır. Şekil 5.3’te her iki veri setinde yapılan testler sonucu elde 

edilen karmaşıklık matrisleri ve ROC eğrileri verilmiştir. Ayrıca Çizelge 5.1’de 

doğruluk, özgüllük, duyarlılık gibi ölçütlere dair bilgiler sunulmaktadır. 
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Şekil 5.3 Eğitilen ESA ağının (a) ISBI 2017 ve (b) PH2 veri setlerinde kıl tespitinde 

elde ettiği karmaşıklık matrisleri ve ROC eğrileri 

 

Çizelge 5.1 Vgg tabanlı ESA'nın ISBI 2017 ve PH2 veri setlerinde kıllı lezyonları 

tespit yüzdeleri 

Veri Seti Doğ Duy Özg AUC 

ISBI 2017 %97 %98 %95 %95 

PH2 %97 %97 %96 %96 

 

 Lezyon Segmentasyon Sonuçları 

Önerilen boru hattı mimarisinin ikinci adımı olan lezyonların arka plandan ayrılması 

işleminin değerlendirilmesi iki aşamada gerçekleştirilmiştir. İlk aşamada önerilen 

sistemin lezyon yerini tespit etme başarısı, ikinci aşamada segmentasyon başarısı 

değerlendirilmiştir. Bu amaçla PH2 ve ISIC 2017 veri setleri kullanılmıştır.  
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5.3.1 Görüntü İçerisinde Lezyon Yeri Tespit Sonuçları 

Önerilen sistemin lezyon yerini tespit etme performansı iki ölçüt ile 

değerlendirilmiştir. İlk ölçüt olan doğruluğa göre yöntem PH2 veri setinde %94 başarı 

elde etmiştir. 200 görüntü içerisinde yalnızca 6 görüntüde lezyon yerini tespit 

edememiştir. ISBI 2017 veri setinde ise %96,4 doğruluk değeri elde edilmiş, yöntem 

600 görüntü içerisinde 22 görüntüde lezyon yerini tespit edememiştir. Değerlendirme 

ölçütlerinden bir diğeri olan IOU ölçütüne göre önerilen yöntem PH2 veri setinde %90 

ISIC 2017 veri setinde ise %86 değerini elde etmiştir. Şekil 5.4’te her iki veri setinden 

başarılı ve başarısız tespit örneklerine verilmiştir. Ayrıca lezyon yeri tespit sonuçları 

Çizelge 5.2 ’de gösterilmektedir.  

 

Çizelge 5.2 Yolov3’ün lezyon yeri tespit başarı oranı (%) 

Veri Seti Doğ IOU Tespit edilemeyen 

PH2 94,40 90 200 resimde 6 

ISBI 2017 96 86 600 resimde 22 
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Şekil 5.4 Yolov3 tarafından lezyon yerinin doğru tespit edildiği (a), (c) ve tespit 

edilemediği durumlar (b), (d) [67]. 

 

5.3.2 Lezyon Segmentasyon Sonuçları 

Lezyon yerini tespit etme başarımın değerlendirmesinden sonra, önerilen yöntemin 

segmentasyon başarısı değerlendirildi. Bu başarıyı tespit edebilmek için Doğ, Duy, 

Özg, Jac, Dic gibi literatürce kabul görmüş değerlendirme ölçütleri kullanıldı. PH2 ve 

ISIC 2017 veri seti üzerinde yapılan testler sonucu Çizelge 5.3’teki sonuçlar elde 

edilmiştir. Ayrıca Şekil 5.5’te her iki veri setinden başarılı segmente edilmiş 

görüntülere ait örnekler paylaşılmıştır.  
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Çizelge 5.3 Önerilen yöntemin yüzde üzerinden segmentasyon sonuçları 

Veri Seti Doğ Duy Özg Jac Dic 

PH2 92,99 83,63 94,02 79,54 88,13 

ISBI 2017 93,39 90,82 92,68 74,81 84,26 

 

 

Şekil 5.5 Önerilen yöntemin segmentasyon sonuçları (a) orijinal resim, (b) Yolov3 

tarafından yeri tespit edilen lezyon, (c) istenilen segmentasyon, (d) önerilen 

yöntem ile elde edilen segmentasyon, (e) sonucu [67]  

 Sınıflandırma Sonuçları 

Çalışmanın sınıflandırma aşamasında üç farklı ESA modeli test veri setleri üzerinde 

değerlendirilmiş, belirlenen başarı kriterleri her bir ağ için hesaplanmıştır. Daha sonra 

her bir ESA’nın verdiği çıktılar oylama sistemi ile değerlendirilerek nihai sonuç elde 

edilmiştir. Sınıflandırmada 0 zararsız lezyon 1 ise melanoma olarak belirlenmiştir. 

Çizelge 5.4’te ISBI 2017 veri setinde edilen sonuçlar paylaşılmıştır. Ayrıca Şekil 

5.6’ve Şekil 5.7’de her bir modele ait karmaşıklık matrisi ve ROC eğrisi paylaşılmıştır. 
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Çizelge 5.4 Modellerin ISBI 2017 veri seti değerlendirmesi 

Modeller Doğ Duy Özg AUC 

ResNet-50 0,89 0,81 0,91 0,86 

Xception 0,92 0,87 0,93 0,90 

MobileNet 0,88 0,87 0,89 0,88 

Birleşim 0,95 0,91 0,96 0,94 

 

 

Şekil 5.6 ResNet-50 ve Xception mimarilerinin ISBI 2017 veri setinde 

değerlendirilmesinden elde edilen karmaşıklık matrisleri ve ROC eğrileri 
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Şekil 5.7 MobileNet ve Birleşim Modelin ISBI 2017 veri setinde 

değerlendirilmesinden elde edilen karmaşıklık matrisleri ve ROC eğrileri 

 

Çizelge 5.5’de ise modellerin PH2 veri setindeki değerlendirme sonuçlarına yer 

verilmiştir. Bununla birlikte PH2 veri seti ile yapılan testler sonucu elde edilen 

karmaşıklık matrisleri ve ROC eğrileri Şekil 5.8’ de ve Şekil 5.9’da gösterilmektedir.  

 

Çizelge 5.5 Modellerin PH2 veri seti performans yüzdeleri 

Modeller Doğ Duy Özg AUC 

ResNet-50 0,85 0,81 0,97 0,66 

Xception 0,92 0,70 0,98 0,84 

MobileNet 0,89 0,72 0,94 0,83 

Birleşim 0,93 0,70 0,99 0,84 
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Şekil 5.8 ResNet-50 ve Xception mimarilerinin PH2 veri setinde 

değerlendirilmesinden elde edilen karmaşıklık matrisleri ve ROC 

eğrileri 
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Şekil 5.9 MobileNet ve Birleşim Modelin mimarilerinin PH2 veri setinde 

değerlendirilmesinden elde edilen karmaşıklık matrisleri ve ROC eğrileri 
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6. TARTIŞMA  

Çalışma kapsamında önerilen sistem dermoskopik görüntülerden melanomanın tespiti 

için gerekli olan adımları içermektedir. Bu kapsamda literatürde yapılan çalışmalar 

arasında melanomanın teşhisinde bütün adımları içeren ve başarılı sonuçlar elde edilen 

çalışmalardan bir tanesidir. Çalışmanın ilk adımı olan ön işleme kısmında lezyon 

üzerindeki kılların tespiti ve bir dizi görüntü işleme yöntemi ile temizlenmesi 

sağlanmıştır. Bu sayede daha iyi segmentasyon sonuçları elde edilmiştir. Şekil 6.1’de 

bu durumu doğrular nitelikte örnekler verilmiştir. Görüldüğü üzere kıllarından 

temizlenmiş görüntülerde daha başarılı segmentasyon sonuçları elde edilmiştir. 

 

 

Şekil 6.1 (a) ve (c) üzerinde kıl bulunan bir görüntünün orijinal ve segmente edilmiş 

halini temsil ederken, (b) ve (d) aynı görüntülerin kıllardan arındırılmış 

hallerinin ve segmentasyon sonuçlarını temsil etmektedir. 

 

Literatüre bakıldığında kılların tespiti için kullanılmış bir ESA örneğine 

rastlanılmamıştır. Bu amaçla kullanılmak için bazı değişiklikler yapılmış Vgg tabanlı 

bir ESA ile ISBI 2017 ve PH2 veri setinde %97 doğruluk oranında üzerinde kıl olan 

lezyonlar doğru tespit edilmiştir. Tespit işleminden sonra ise bir dizi görüntü işleme 

algoritması ile lezyon üzerindeki kıllar temizlenmiştir. Lezyon üzerinden kılların 

temizlenmesi için bilinen algoritmalardan olan DullRazor’a alternatif bir yöntem 

geliştirilmiştir.  

Segmentasyon aşamasında ise literatürde ilk kez Yolov3 ile GrabCut algoritması 

birleştirilerek deri lezyonu segmentasyonu için kullanılmıştır. Önerilen yöntemin 
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avantajı lezyon görüntülerini çözünürlük bağımsız olarak segmente edebilmesidir. Bu 

sayede sınıflandırma için kullanılabilecek daha detaylı özellikler korunmuş olacaktır. 

Dezavantajı ise literatürdeki derin öğrenme tabanlı yöntemler ile karşılaştırıldığında 

daha kaba bir segmentasyon sonucu vermesidir. Fakat yapılan bir çalışmaya göre 

lezyon çevresindeki dokunun sınıflandırmada faydalı olduğu bu sayede daha başarılı 

sonuçlar elde edildiği öne sürülmüştür [172]. Önerilen segmentasyon yöntemi U-Net 

tabanlı bir yöntem [158], ISBI 2017 de ilk sırayı almış yöntemler [179-181] ve FrCN 

[160] gibi literatürdeki başarılı çalışmalar ile karşılaştırılması Çizelge 6.1’de 

verilmiştir.  

 

Çizelge 6.1 ISBI 2017 veri seti test edilmiş literatürdeki çalışmalar ile önerilen 

segmentasyon yönteminin karşılaştırılması 

Referanslar Doğ Duy Özg Jac Dic 

Yuan ve ark. (CDNN) [179] 93,40 82,50 97,50 76,50 84,90 

Li ve ark. [180]  93,20 82,00 97,80 76,20 84,70 

Bi ve ark. (ResNets) [181] 93,40 80,20 98,50 76,00 84,40 

Lin ve ark. (U-Net) [158] - - - 62,00 77,00 

Al-Masni ve ark. [160] 94,03 85,40 96,69 77,11 87,08 

Önerilen yöntem 93,39 90,82 92,68 74,81 84,26 

 

Çizelge 6.1 incelendiğinde önerilen yöntemin duyarlılık kriterinde %90,82 ile en 

yüksek sonucu elde etmiştir. Ayrıca Li ve arkadaşlarının önerdiği yöntemden %74,81 

Jac ve %84,26 Dic oranları elde ederek daha başarılı olmuştur. Ayrıca diğer sonuçlara 

göre değerlendirilecek olursa, önerilen yöntemin rakiplerine çok yakın değerler elde 

ettiği görülmektedir. Önerilen yöntemin lezyon yerini tespit aşamasında düşük 

kontrastlı resimlerde sorunlar yaşandığı gözlemlenmiştir (Şekil 5.4). Bu sorun eğitim 

esnasında düşük kontrastlı verilerin sayısını arttırmakla veya kontrast iyileştirme 

yöntemi kullanılarak çözümü sağlanabilir.  

Önerilen yöntemin sınıflandırma kısmında kullanılan farklı ESA modellerinin veri seti 

üzerinde gösterdiği başarı sıralaması Çizelge 5.4 ve Çizelge 5.5 incelendiğinde iyiden 

kötüye doğru Xception, MobileNet ve ResNet-50 sıralaması ile ortaya çıkmıştır. 

Bununla birlikte, bazı modeller iyi örneklerde yüksek başarı oranı elde ederken bazı 

modeller kötü huylu örneklerde daha iyi sonuçlar vermiştir. Şekil 6.2’de bu durumu 
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gösteren bir görsele yer verilmiştir. Karmaşıklık matrislerinden anlaşılacağı üzere 

ResNet-50 normal veriler üzerinde MobileNet modeline göre daha iyi performans 

gösterirken MobileNet’de kötü huylu örneklerde daha iyi sonuçlar elde etmiştir.  

  

 

Şekil 6.2 (a) PH2 test verisinde ResNet-50 karmaşıklık matrisi (b) aynı veri setinde 

MobileNet karmaşıklık matrisi 

 

Bu noktadan yola çıkılarak önerilen, modeller arasında oylamaya dayalı bir test 

sisteminin kullanımı sonucunda modellerin bireysel başarımlarının ortaklaşa 

başarımlarından daha düşük olduğu görülmüştür. Bu durum Çizelge 5.4‘te görüleceği 

üzere oylama yönteminin başarı sonuçları ağların bireysel başarı sonuçlarından yüksek 

olması ile kanıtlanmıştır. Şekil 6.3’te oylama yöntemi sayesinde doğru tespit edilen 

bazı örneklere yer verilmiştir. Örneğin gerçekte melanoma olan (a) görüntüsünü 

MobileNet ve Xception melanoma olarak yorumlarken ResNet-50 normal olarak 

değerlendirmiştir. Fakat yapılan oylamada ResNet-50 ikiye karşı birle kaybetmiş 

sonuç bu sayede doğru tahmin edilmiştir. Öte yandan gerçekte normal olan (g) 

görüntüsüne MobileNet ve ResNet-50 normal derken Xception bu görüntüyü 

melanoma olarak değerlendirmiştir. Sonuç olarak ikiye birle kaybetmiş doğru sonuç 

bu sayede elde edilmiştir. 
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Şekil 6.3 Oylama yöntemi sayesinde doğru tespit edilmiş melanoma (a), (b), (c) ve 

normal (e), (f), (g) lezyon örnekleri 

 

Önerilen oylama yöntemi ile elde edilen sonuçların literatürdeki derin öğrenme temelli 

çalışmalar karşılaştırılması Çizelge 6.2’de verilmiştir.  

 

Çizelge 6.2 Önerilen yöntemin ISBI 2017 veri setindeki başarım oranın literatürdeki 

çalışmalar ile karşılaştırılması 

Referanslar Doğ Duy Özg AUC 

Yang [168] 0,83 0,60 0,88 0,84 

Harangi [166] 0,85 0,40 0,71 0,85 

Sultana [182] 0,83 0,52 0,90 0,78 

Li [180] 0,85 0,49 0,96 0,91 

Önerilen Yöntem 0,95 0,91 0,96 0,94 

 

Çizelge 6.2’ye göre önediğimiz aktarım öğrenme tabanlı ESA ağlarının oylamaya 

dayalı sınıflandırma sonuçları literatürdeki diğer yöntemlerden bütün ölçütlerde daha 

iyi sonuçlar elde etmiştir. Bu başarının arkasında etkili aktarım öğrenme ve ince ayar 
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yöntemleri, veri çoğaltma yöntemi, kıl temizleme yöntemi ve segmentasyon yöntemi 

yatmaktadır. Çizelge 6.3’te segmente edilmemiş ve ince ayar yapılmamış görüntüler 

üzerinde aynı ağların elde ettiği sonuçlar paylaşılmıştır. Çizelge incelendiğinde 

sonuçların segmente edilmiş görüntüler kullanılarak yapılan sınıflandırma 

sonuçlarından oldukça düşük olduğu görülmektedir. Bu bağlamda kullanılan 

yöntemlerin sınıflandırmayı olumlu etkilediği görülmektedir. 

 

Çizelge 6.3 ISBI 2017 veri setinde modellerin segmentasyon ve aktarım öğrenme 

yapılmadan elde ettikleri başarı oranları 

Modeller Doğ Duy Özg AUC 

ResNet-50 0,79 0,44 0,88 0,66 

Xception 0,85 0,36 0,96 0,67 

MobileNet 0,82 0,63 0,86 0,75 

Birleşim  0,88 0,50 0,97 0,73 
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7. SONUÇ VE ÖNERİLER 

Deri kanseri türlerinden biri olan melanoma çeşitli çevresel faktörlerin etkisiyle 

birlikte son yıllarda görülme oranı artan ölümcül bir hastalıktır. Erken teşhis 

edildiğinde tedavi edilebilen bir hastalık olan melanomanın kesin teşhis süreci 

demoskopik görüntüler kullanılarak yapılan muayene sonucuna göre şüpheli lezyona 

biyopsi yapılması ile elde edilmektedir. Melanom olmayan lezyonlarla melanom olan 

lezyonların gösterdiği benzerlikler, hekimin deneyimi, uzman hekim sayısı gibi 

faktörler göz önünde bulundurulduğunda hastalığın geç fark edilmesi ya da gereksiz 

biyopsiler gibi olumsuz durumlar ortaya çıkabilmektedir. Bu nedenle hekimlere teşhis 

sürecinde yol gösterecek BDTS sistemleri son yıllarda oldukça popüler bir konu haline 

gelmiştir. Özellikle derin öğrenme tabanlı yöntemlerin elde ettiği başarılar hastalığın 

erken teşhisinde hekimlere yardımcı olması açısında umut vericidir.  

Bu çalışma kapsamında ölümcül kanser türlerinden bir olan deri kanseri melanomanın 

erken teşhisi için kullanılabilecek derin öğrenme temelli bir BDTS geliştirilmiştir. 

Önerilen sistem bir boru hattı mimarisi mantığı ile kurgulanmış olup ön işlem, 

segmentasyon ve sınıflandırma adımlarından oluşmaktadır. Mimari ISBI 2017 ve PH2 

veri setlerinde test edilmiştir. Sistemin ilk adımı olan kılların tespiti ve 

temizlenmesinde %98 oranında duyarlılık elde edilmiştir. Boru hattı mimarisinin 

ikinci aşamasında lezyonun segmentasyonunda %90 duyarlılık oranı elde edilmiştir. 

Bu aşamada geliştirilen yöntem çözünürlük bağımsız segmentasyon yapabilmektedir. 

Yöntem uyarladığı taktirde farklı medikal görüntülerin segmentasyonunda kullanılma 

imkânı sağlamaktadır. Önerilen boru hattı mimarisinin en son adımı olan 

sınıflandırmada ise ISBI 2017’de %94 ve PH2’de %84 AUC değerleri elde edilmiştir. 

Sınıflandırmadaki bu başarıda etkili aktarım öğrenme teknikleri, veri çoğaltma 

yöntemleri, segmentasyon ve ön işleme işlem aşamalarının önemli derecede katkısı 

olmuştur. 

Görüntü çözünürlüğüne göre değişen teşhis süreci ortalama 13 saniye sürmektedir. .Bu 

süre donanımda yapılacak iyileştirmeler ile düşürülebilir. Önerilen yönteme uygun 

ekipman (dermoskop) ve donanım eklendiği takdirde klinik muayenelerde uzmanın 

sistemi ikinci bir görüş almak için kullanması mümkündür. Buna ek olarak şüpheli 

lezyonların izlenmesi değişimlerinin gözlemlenmesi yapılabilir. Sistem sayesinde 
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dermatologların iş yükü azalacak, uzun zaman alan lezyon inceleme süreleri azalarak 

hastaya ayrılan vakit artacaktır. Ayrıca uzman dermatolog bulunmayan bölgelerde 

rutin ziyaretlere gelen hastalarda kullanılması ile hastalığın erken teşhisi sağlanabilir. 

İleriki süreçlerde yöntemin mobil cihazlar üzerinde çalışabilir hale getirilmesi ile hasta 

kendi muayenesini evinden gerçekleştirebilir. Bu sayede gereksiz klinik ziyaretler 

azaltılarak, erken teşhis oranları arttırılabilir.  
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