
REPUBLIC OF TURKEY

YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

PREDICTION OF RESPONSE AND DAMAGE IN

REINFORCED CONCRETE JOINTS THROUGH

ARTIFICIAL INTELLIGENCE TECHNIQUES

Mehmet Ozan YILMAZ

DOCTOR OF PHILOSOPHY THESIS

Department of Civil Engineering

Program of Structural Engineering

Supervisor

Prof. Dr. Serkan BEKİROĞLU
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ABSTRACT

Prediction of Response and Damage in Reinforced
Concrete Joints Through Artificial Intelligence

Techniques

Mehmet Ozan YILMAZ

Department of Civil Engineering

Doctor of Philosophy Thesis

Supervisor: Prof. Dr. Serkan BEKİROĞLU

The modern approach to design of earthquake resistant reinforced concrete structures

is based on predictable ductile failure of structures. The most basic principle in

the operation of the ductile damage mechanism is to maintain the redistribution

of plastic strains in beams under earthquake effects up to ductility levels that can

meet high displacement demands. The design of columns to be stronger than beams

in terms of bearing capacity has been introduced in order to ensure that plastic

deformations occur in beams and has been accepted as the strongest guarantee of the

aforementioned damage mechanism in many cases. In addition, it has been accepted

in the analysis and design that the joints of reinforced concrete beams-columns, where

large shear forces are transmitted, do not produce nonlinear deformations.

It is clear that the occurrence of nonlinear deformations in the joint regions is an

obstacle to the ductile response of the frame. In recent years, some experimental

studies have shown that nonlinear reactions may develop in frame members where

these conditions are met, as well as in joints where the conditions set forth by modern

codes are not met. This situation reveals the necessity of taking into account the

nonlinear deflections occurring in the joints in the calculations performed both in the

evaluation of existing structures and in the design of new structural systems.

In the literature, the models proposed for the prediction of internal forces and

deformations under cyclic effects in joint regions can be categorised into two different

xxii



main groups. The first one is the models in which the results of a limited number

of experimental studies, each with different experimental conditions, are used in

calibration and the so-called super-elements, which are formed by one or more

uniaxial springs are used. The second class of models is the plane and space models in

which concrete and reinforcement are represented using more advanced finite element

and constitutive relations. Both model classes are studied, and the reasons they are not

commonly used in practical structural engineering evaluation and design applications

are revealed.

It has been evaluated that the ability of the super-elements presented in the literature

to simulate with acceptable approximation the nonlinear strain responses of a given

reinforced concrete column-beam joint region under cyclic effects is directly related

to the a priori estimation of the unidirectional incremental rotation-shear force

relationship of the relevant reinforced concrete column-beam region. Due to this,

two distinct models have been introduced which take the fundamental physical

variables of any joint region sample as input and estimate shear strain-stress. The

first one is an advanced artificial neural network model that utilises the results of

experimental studies reported in the literature. A second prediction model, which

serves the same purpose, is constructed by nonlinear regression between shear

strain-stress relationships obtained from numerical simulation models using advanced

finite element techniques and physical variables related to the joint region. Utilizing

a non-dominated sorting genetic algorithm, scalars based on the joint type have been

proposed to estimate the reduction in strength and stiffness of reinforced concrete

column-beam joints under cyclic effects.

Keywords: reinforced concrete joints, nonlinear finite element analysis, artificial

neural networks, genetic algorithm
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ÖZET

Betonarme Birleşim Bölgelerinde Tepki ve Hasarın
Yapay Zekâ Teknikleri Kullanılarak Tahmini

Mehmet Ozan YILMAZ

İnşaat Mühendisliği Anabilim Dalı

Doktora Tezi

Danı̧sman: Prof. Dr. Serkan BEKİROĞLU

Depreme dayanıklı betonarme yapı tasarımda çağdaş yaklaşım, yapıların öngörülebilir

sünek hasar alması üzerine kurulmuştur. Deprem etkileri altında plastik

şekildeği̧stirmelerin kiri̧slerde oluşarak yeniden dağılımın, yüksek yerdeği̧stirme

taleplerini karşılayabilecek süneklik seviyelerine kadar sürdürülebilmesi sünek hasar

mekanizmasının çalı̧stırılmasındaki en temel ilke olarak görülebilir. Kolonların

taşıma gücü bakımından kiri̧slerden daha güçlü olarak tasarlanması, plastik

şekildeği̧stirmelerin kiri̧slerde oluşmasını sağlamak amacıyla ortaya konmuş ve birçok

durumda anılan hasar mekanizmasının en güçlü güvencesi olarak kabul edilmi̧stir.

Bunun yanında, çözümlemede ve tasarımda, büyük kesme kuvvetlerinin aktarıldığı

betonarme kiri̧s-kolonların birleşim bölgelerinin doğrusal olmayan şekildeği̧stirmeler

yapmadığı kabul görmüştür.

Birleşim bölgelerinde doğrusal olmayan şekildeği̧stirmelerin oluşumunun, çerçevenin

sünek tepkiler oluşturmasının önünde bir engel olduğu açıktır. Son yıllarda

deneysel olarak gerçekleştirilen bazı çalı̧smalarda, çağdaş yönetmeliklerce ortaya

konan şartların sağlanmadığı birleşimlerin yanında, bu koşulların sağlandığı çerçeve

elemanlarında da doğrusal olmayan tepkilerin geli̧sebileceğine dair sonuçlara

ulaşmı̧stır. Bu durum, gerek mevcut yapıların değerlendirilmesinde, gerekse

yeni taşıyıcı sistemlerin tasarlanmasında yapılan hesaplarda birleşim bölgelerinde

oluşan doğrusal olmayan şekildeği̧stirmelerin gözönüne alınması gerekliliğini ortaya

koymaktadır.
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Literatürde, birleşim bölgelerinde çevrimsel etkiler altında oluşan iç kuvvet ve

şekildeği̧stirmelerin kestirim için ortaya konan modeller iki farklı temel sınıfta

incelenebilir. Bunlardan ilki, her biri farklı deney koşullarına sahip sınırlı sayıda

deneysel çalı̧smaya ait sonuçların kalibrasyonda kullanıldığı ve tek eksende çalı̧san

bir veya birden fazla yayın bir araya gelerek oluşturduğu süper-eleman olarak

adlandırılan elemanların kullanıldığı modellerdir. İkinci sınıf ise, betonun ve

donatının kıyasla daha geli̧smi̧s sonlu eleman ve bünye bağıntıları kullanılarak temsil

edildiği, düzlemde ve uzayda oluşturulan modellerdir. Her iki sınıftaki modeller

incelenerek, yapı mühendisliğinde pratik değerlendirme ve tasarım uygulamalarında

yer bulmamalarında etkili olduğu değerlendirilen nedenler ortaya konmuştur.

Yapılan irdelemelerde, literatürde ortaya konmuş süper-elemanların, çevrimsel etkiler

altındaki belli bir betonarme kolon-kiri̧s birleşim bölgesine ait doğrusal olmayan

şekildeği̧stirme tepkilerine kabul edilebilir yaklaşıklıkta benzetim kurabilme yetisinin,

ilgili betonarme kolon-kiri̧s bölgesinin tek yönlü artımsal dönme-kesme kuvveti

ili̧skisinin önsel kestirimi ile doğrudan ilintili olduğu değerlendirilmi̧stir. Bu

sebeple, herhangi bir birleşim bölgesi örneğini tanımlayan temel fiziksel deği̧skenleri

girdi olarak kabul eden ve kayma şekil deği̧stirme-gerilme kestirimi yapan iki

farklı model ileri sürülmüştür. Bunlardan ilki, literatürde sonuçları raporlanmı̧s

deneysel çalı̧smaların sonuçlarından faydalanan bir geli̧smi̧s yapay sinir ağları

modelidir. Aynı amaca hizmet eden ikinci bir kestirim modeli, güncel sonlu eleman

tekniği kullanılarak oluşturulan sayısal benzetim modellerinden elde edilen kayma

şekildeği̧stirme-gerilme ili̧skileri ile birleşim bölgesine ili̧skin fiziksel deği̧skenler

arasında yapılan doğrusal olmayan regresyon yoluyla oluşturulmuştur. Betonarme

kolon-kiri̧s birleşim bölgelerinin çevrimsel etkiler altında dayanımda ve rijitlikte

gösterdiği azalımın tahmini için ise baskın olmayan sıralama genetik algoritmayı

kullanan bir kestirim modeli ortaya konmuştur.

Anahtar Kelimeler: betonarme birleşim bölgeleri, doğrusal olmayan sonlu eleman

çözümlemesi, yapay sinir ağları, genetik algoritma

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

1.1 Research Background

Performance-Based Seismic Design (PBSD) is an advanced engineering approach, that

aims to achieve a desired level of structural performance and reliability under seismic

loading. This methodology grounded in probabilistic seismic hazard analysis and

structural response assessment, provides a comprehensive framework for addressing

the complex interactions between ground motion, structural behavior and damage

potential. By integrating both qualitative and quantitative aspects, PBSD allows for

efficient and sustainable designs that are tailored to specific performance objectives

and risk tolerance levels. The Structural Engineering Association of California [1]
made an effort to establish a relationship between performance levels and the

anticipated damage in the overall building, while simultaneously correlating these

performance levels and seismic hazards with a triad of performance objectives (see

Figure 1.1).

The initial stage involves the identification and quantification of seismic hazards

pertinent to the site under consideration. Probabilistic Seismic Hazard Analysis

(PSHA) is typically employed to estimate the likelihood of different levels of ground

motion occurring at the site over a specified time period. The methodology generates a

hazard curve which represents the relationship between ground motion intensity and

Figure 1.1 Performance levels defined in SEAOC [1]
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the corresponding annual rate of exceedance. In the following stage, the structural

system response to the defined seismic hazard is analysed using appropriate analytical

models. Structural analysis methods can be linear or nonlinear depending on the

desired accuracy and complexity. The final component entails evaluating the structural

performance under different seismic demand scenarios [2]. This evaluation is based

on predefined performance objectives which are typically categorized into operational,

life safety, and collapse prevention levels. By comparing the structural response to

these objectives, engineers can determine if the design meets the desired performance

criteria. In case of non-compliance, an iterative design process is undertaken until the

objectives are satisfied.

A crucial aspect of PBSD is the development of performance-based acceptance criteria,

which involve the establishment of performance levels and corresponding limit states.

These criteria are essential for quantifying structural damage and for ensuring that the

design meets the intended risk tolerance. The selection of appropriate performance

levels and limit states is guided by factors such as building occupancy, structural

importance, and societal expectations.

The methodology underpinning Performance-Based Seismic Design (PBSD) is

predicated on the assumption that structural members should adhere to ductile

behavior criteria. This ductility allows for the redistribution of forces and increased

energy dissipation, ultimately enhancing the overall seismic performance of the

structure. However, it is important to recognize the inherent brittleness of

beam-column joints, which arises due to the substantial shear forces they are subjected

to during seismic events [3]. This brittle nature presents a challenge in reconciling the

ductile behavior objectives of PBSD with the actual behavior of joints, necessitating

careful consideration and innovative design solutions to ensure adequate performance

under seismic loading.

A significant challenge concerning reinforced concrete joints emerges when

conducting performance assessments of existing buildings. It has been observed that

a considerable number of these structures lack appropriate reinforcement detailing.

Consequently, they are prone to joint failures, which can lead to substantial structural

damages. This underscores the need for diligent evaluation and retrofitting strategies

to mitigate potential hazards in such buildings.

Following the February 2023 earthquakes in Turkey and Syria, post-earthquake

investigations revealed significant damage not only in older buildings with inadequate

reinforcement detailing in joint regions, but also in more recent reinforced

concrete frames. Yılmaz et al. [4] reported that joint failure was evident in
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Figure 1.2 Joint failure in a building built in mid-2000s from Samandağ, Hatay [4]

numerous buildings constructed in compliance with contemporary seismic design

requirements. Interestingly, only a subset of these structures displayed discernible

faulty workmanship. This finding highlights the need to reevaluate current seismic

design standards and construction practices to ensure greater structural resilience.

In addition to field observations, there is a large amount of experimental evidence

indicating that deformations of both reinforced and unreinforced joints can control

the response of reinforced concrete frames [5–11].

The ACI318-71 [12] building code was the first to recommend transverse

reinforcement within the joint core for regions with high seismic activity. However,

Park and Paulay (1973) argued that the provisions set forth in [12] were insufficient.

Subsequently, numerous studies in the field prompted the development of ACI352-76

[13], which put forth a design guideline for beam-column joints. This guideline

introduced new criteria, such as moment strength ratio, shear strength, confinement,

and development length within the joint region, in order to achieve the necessary

strength and ductility [14].

Joint design in structural engineering primarily follows an approach that involves

maintaining joint dimensions within a specified range to reduce the acting shear

stress and ensure the provision of adequate reinforcement, which serves to confine

the concrete material in the core region [15]. The load transmission mechanism

is typically idealized as a concrete compression strut and reinforcement truss in

proximity to the joint core [16]. Furthermore, the force couple that forms the bending

moment at the joint face is transmitted to the joint core via bond force between the

concrete material and the reinforcement.

However, there are inconsistent findings concerning the critical factors influencing
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the actual stress state in the joint core [17, 18]. This may suggest that the prevailing

design approach may be an oversimplification of the complex behavior of joint regions.

Although this analogy might yield safe designs when the acting internal forces are

predicted accurately, it neglects non-linear inelastic deformations and the intricate

stress state present within the joint region, potentially limiting its applicability in

certain cases.

Numerous experimental studies conducted in recent decades, as well as

post-earthquake investigations, have underscored the need to reevaluate the

role of reinforced concrete joints within the framework of performance-based design

and assessment methodologies [3, 19]. The advancements in modern technology,

including sophisticated finite element analysis and soft computing techniques, offer

promising opportunities to facilitate this reevaluation process.

The idealization of the joint region should be scrutinized using state-of-the-art

techniques, such as advanced finite element analysis, to better understand and

represent their behavior under seismic loading. A comprehensive assessment of the

factors influencing joint seismic performance is necessary for designing more resilient

structures [16]. Consequently, it is essential to establish and incorporate well-defined

limits for joint elements in the evaluation of their performance.

Additionally, it is crucial to examine the uncertainties arising from the omission of

joint inelastic deformations and their impact on the overall structural system and load

redistribution [20]. By addressing these concerns, the field of earthquake engineering

can develop more accurate and reliable methodologies for designing and assessing the

seismic performance of reinforced concrete structures.

1.2 Objective and Scope

The primary goal of the research is to advance the understanding of reinforced

concrete joint modelling by thoroughly examining existing numerical methods and

identifying areas for improvement. For this purpose, the research is aimed to develop

novel approaches that facilitate the integration of joint inelastic deformations into

performance-based design and assessment processes. To accomplish this, the creation

of a prediction model for shear strain-stress behavior that accurately reflects the

complex deformation states in the joint region is intended, drawing upon experimental

results from the literature. In an effort to minimize reliance on experimental data, an

alternative prediction model using finite element simulations will also be developed.

Recognizing the significance of strength and stiffness deterioration due to cyclic effects
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associated with strong ground motions, the thesis will further aim to create the other

prediction model for these specific parameters.

1.3 Hypothesis

Employing an optimized artificial neural network architecture will enable the

development of a model that accurately estimates the shear strain-stress behavior

of reinforced concrete joints using their physical properties as input parameters.

Parametric finite element models, when subjected to monotonic simulations up

to severe damage conditions, will validate the microplane material and element

formulation against experimental results. From this, a secondary predictive model

for joint shear strain-stress relationships can be derived from regression analysis of

the finite element outcomes.

The use of the genetic algorithm and Non-dominated Sorting Genetic Algorithm

II (NSGA-II) will effectively assess the hysteresis model parameters necessary for

estimating strength and stiffness degradation due to cyclic loads.

Finally, integrating these predictive models will significantly enhance our

understanding of the seismic performance of reinforced concrete structures.

1.4 Organization of the Thesis

The thesis is organized into a rational sequence of chapters, beginning with a

comprehensive literature review in Chapter 2. This chapter provides an in-depth

exploration of current modelling techniques for reinforced concrete joints, including

spring-based elements, advanced finite element formulations, hysteresis models,

artificial intelligence fundamentals, and applications in structural engineering and

joint modelling. The chapter also covers calibration of joint models and fragility

curves of reinforced concrete frames and joints. Chapter 3 delves into the finite

element implementation of the joint super-element model, outlining the assumptions

regarding material behavior, hysteresis models, and calibration of joint parameters

and introduction the object oriented simulation framework used in simulations. The

focus of this chapter is the development of a practical super-element model for use in

structural engineering applications. Chapter 4 introduces the artificial neural network

models employed for the development of the prediction model for joint deformation

characteristics. In Chapter 5, the thesis examines the use of 2D and 3D finite element

analysis for joint simulation, presenting a description of the finite element models

generated within the scope of the research and the results obtained from the analyses.
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Chapter 6 proposes a methodology to calibrate fit-to-experiment parameters of a

commonly used hysteresis model and aims to provide insight for the nature of these

parameters to reduce dependency to the experimentation. In this chapter, results

from the prediction models proposed in Chapter 4 and Chapter 5 are used and their

efficiency are indirectly tested. Finally, Chapter 7 presents a discussion of the findings,

shedding light on the implications of the results and offering suggestions for further

research on the subject.
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2
LITERATURE REVIEW

The increasing loss due to seismic events around the world in recent decades has

emphasized the need to design earthquake-resistant structures, a concept that has

garnered significant interest from engineers. This research focuses on examining

the behavior of reinforced concrete (RC) joints under quasi-static cyclic and seismic

loading. Cutting-edge methods are utilized to adjust the model parameters necessary

for numerical simulations, assess different stages of structural damage, and determine

seismic fragility curves for various structural performance levels. As part of this

investigation, an extensive literature review has been carried out, offering a thorough

summary of the current state-of-the-art and key findings, which are explored in the

sections that follow.

Over the past several decades, there has been a comprehensive investigation into

understanding the behavior of joints under seismic conditions, utilizing a variety of

methods including experimental, statistical, analytical, and numerical approaches.

Within this chapter, a presentation of general definitions related to the concepts

utilized in the thesis is provided while referencing the relevant contemporary

literature.

2.1 Analytical Definition on RC Joint Problem

Joints within reinforced concrete frames are characterized as the spatial region

encompassing the depth of the deepest beam connecting to the column. These

joints are classified according to ACI352-R02 [21] into three categories: interior,

exterior, and corner, as depicted in Figure 2.1. In order to analyze the internal

forces of a reinforced concrete space frame subjected to lateral effects in orthogonal

directions, the beams framed to the column can be subdivided into plane frame beams

(represented by the color blue in Figure 2.1) and transverse beams (represented by the

color white in Figure 2.1). Considering the influence of transverse beams on the stress

distribution within the joint region as confinement [22], the number of joint region
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(f)(e)(d)

(c)(b)(a)

Figure 2.1 Joint types according to ACI352-R02 [21]: (a) interior, (b) exterior, (c) corner,
(d) roof-interior, (e) roof-exterior, (f) roof-corner

types defined by ACI352-R02 [21] can be minimized. In the existing literature, it is

commonly observed that the joint regions are analyzed as interior (Figure 2.1.(a)-(d)),

exterior (Figure 2.1.(b)-(c)), and knee (Figure 2.1.(e)-(f)) types in nearly all studies.

Consequently, the investigations conducted within the scope of this study align with

this established classification framework.

The considerable forces and performance requisites imposed on these joints

necessitate an enhanced comprehension of their seismic behavior. These forces

engender intricate mechanisms encompassing bond and shear interactions within the

joint. The first ever analytical effort to quantify joint response is carried out by W

Hanson and W Conner [23] determined joint shear force through a free-body diagram

from the mid-height section of the joint. Park and Paulay [24] postulated a strut-truss

mechanism includes a concrete struts which sustains only compression to transfer

shear forces and assumed to be formed in the potential failure plane. Paulay et al. [22]
improved the compression strut approach which is formed in the diagonal direction

between compression fields of beam and the column and tension forces are assumed to

be carried by joint reinforcement at horizontal direction and column reinforcement at

vertical direction. Vertical and horizontal reinforcement in the joint core region form

a truss mechanism to contribute to the shear resistance. Horizontal and vertical forces

transferred by bond form the beam and column flexural reinforcement are transmitted
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(a) (b)

Figure 2.2 Joint shear resistance mechanisms: (a) concrete strut, (b) concrete truss (per Kim
and LaFave [25])

to the core concrete. The shear resistance mechanisms idealized by Paulay et al. [22]
are shown in Figure 2.2. In the existing literature, various versions of strut-tie models

with minor adjustments are available, which are based on the traditional form of this

approach.

In the out-of-plane direction, the torsional resistance of beams contributes to the shear

stiffness of the joint region. Similarly, torsional strength also contributes to shear

strength. The warping occurring in these beams causes a confinement effect in the

joint region.

Hwang and Lee [26] proposed a softened strut-and-tie model capable of estimating the

shear strength of reinforced concrete joints for both interior and exterior connections.

The proposed softened strut-and-tie model adheres to the principles of mechanics,

namely equilibrium, compatibility, and constitutive relations for cracked reinforced

concrete. However, this version of the softened strut-and-tie model gives up the

advantage of simplicity that is characteristic of traditional strut-and-tie models in order

to adhere to these fundamental mechanical principles.

Murakami et al. [27] put forth a joint shear strength model exclusively for interior

connections, lacking out-of-plane members and joint eccentricity. The model

employed regression analysis to establish a joint shear strength model, taking into

account the concrete compressive strength. FEMA356 [28] recommended an envelope

curve for RC joint shear behavior, predominantly influenced by factors such as

column axial load, joint transverse reinforcement quantity and spacing, out-of-plane

geometry, and in-plane geometry. [29] introduced an analytical model to foresee

joint shear behavior in both interior and exterior connections, by specifying plane

strain conditions for the joint panel. They maintained that a joint panel’s shear
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resistance emanates from the bearing of beam and column compression zones, as well

as from the bond between reinforcement and the surrounding concrete. Attaalla [30]
offered an analytical equation to estimate joint shear strength for interior and exterior

connections, developed from the assumption of a stress distribution around the joint

panel satisfying equilibrium and taking into consideration a compression-softening

phenomenon correlated with cracked reinforced concrete. The parameters included

in the proposed equation consisted of the axial force in the beam and column, joint

reinforcement ratio in the longitudinal and transverse directions of the joint, and

geometry. Russo and Somma [31] recently proposed a joint shear strength model

solely for exterior connections, in the absence of out-of-plane members and joint

eccentricity. Shiohara [32] proposed a mathematical model to determine the joint

shear strength of interior, exterior, and knee connections. In this suggestion, the

so-called “quadruple flexural resistance” within a joint panel played an important

role in defining joint shear failures. Joint shear strength was determined from

satisfying force equilibrium in four rigid segments within the joint panel. They chose a

deterministic model, comprising the contribution of vertical stress transmitted by the

column, longitudinal beam reinforcement, and passive confinement of the joint due

to transverse reinforcement. Tsonos [8] suggested a shear strength model contingent

on concrete compressive strength and joint aspect ratio, grounded in the concrete

material model put forward by Scott et al. [33].

Kamimura et al. [18] also claimed that joint shear strength is not significantly

affected by the joint transverse reinforcement. Bonacci and Pantazoupoulou [17]
reported the same result on axial load effect while had opposite findings on the joint

transverse reinforcement. Joh et al. [34] claimed that the most influential factor is

the compressive strength of the concrete after a large experimental examination on

75 setups.

Tsonos [8] carried out an experimental and analytical study on beam-column joints.

He concluded shear strength values given by design codes are based on Paulay et

al. [22] and yields to overestimations. Tsonos [8] summarized the load transfer

mechanism and determination of shear strength of a joint region via following

formulation. The summation of vertical forces equals the vertical joint shear force

Vjv

Vjv = Dc y + Ds y = Dc y + (T1 + ...T4) (2.1)

where subindice Ti denotes forces acting on longitudinal steel bars and Dc y is the

compression strut in vertical direction. In horizontal direction joint shear force Vjh
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Vjh = Dcx + Dsx = Dcx + (D1x + ...+ Dvx) (2.2)

Figure 2.3 Forces acting on joint core concrete through strut and truss mechanism

Scheme shown in Figure 2.3 shows the forces acting on joint core region. Vertical

normal compressive stress σ and shear stress τ uniformly distributed over the plane

are given by

σ =
Vjv

h′c b′c
(2.3)

τ=
Vjh

h′c b′c
(2.4)

where h′c and b′c denotes the length and the width of joint core respectively. Following

relationship given in 2.5 between σ and τ can be established.

σ =
Vjv

Vjh
×τ (2.5)

It has been shown that

Vjv

Vjh
=

hb

hc
= α (2.6)

where α is the joint aspect ratio. Concrete biaxial strength curve is represented by a

fifth-degree parabola as a function of increased joint concrete compressive strength

due to confinement and first and second principle stresses; thus σ and τ.

−10
σI

fc
+ (
σI I

fc
)5 = 1 (2.7)

Substituting Eq. 2.5 into Eq. 2.7 and using τ= γ
p

fc gives following expression
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Assuming here

x =
αγ

2
p
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(2.9)

and

ψ=
αγ

2
p

fc

√

√

1+
4
α2

(2.10)

Eq. 2.8 can be transformed into

(x +ψ)5 + 10ψ− 10x = 1 (2.11)

The solution of system of Eq. 2.11 gives the ultimate shear strength τ= γ
p

fc.

Over recent decades, advancements in finite element technology have built upon

earlier analytical studies to facilitate a more comprehensive understanding of complex

stress states within reinforced concrete joints. This progression has led to research

utilizing springs with varying deformation capabilities, membrane elements and truss

analogy. A detailed presentation of such research can be found in Section 2.3.

2.1.1 Code recommendations

In design specifications, it is generally assumed that the joints will not undergo any

inelastic strain, as mentioned in the previous section. Therefore, the design process

is strength-based and the shear forces assumed to occur in the joint zone, which do

not exceed the shear strengths recommended by the specifications, may be considered

sufficient for the joint zone to be considered safe.

Within the parameters of ACI352-R02 [21], as well as ASCE41-17 [35] the shear

strength of the joint is ascertained by utilizing Equation 2.12

Vn = γ
Æ

fc b jhc (2.12)

where γ is the shear factor for the joint zone, fc is the compressive strength of the

concrete, b j is the effective width of the joint zone as determined by the column

and beam width; and hc is the depth of the column. The shear factor functions as
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a coefficient subject to variation, dependent on confinement of the joint by transverse

beams. It is worth to note that ACI318-19 [36] adopts an analogous methodology

for both external and knee-type joint zones, without discerning between the two. In

Turkish Design Code [37], joint shear strength is defined in a similar fashion described

in ACI352-R02 [21] with alterations in the coefficient takes into account the effect of

the transverse beams.

AIJ1999 suggested Equation 2.14 to determine the joint shear strength.

Vj = kφF j b j Dj (2.13)

F j = 0.8× ( fc)
0.7 (2.14)

The coefficient k pertains to the geometric properties of the joint region in the plane,

while the coefficientφ relates to the joint region’s out-of-plane geometry. The concrete

compressive strength coefficient, F j, is determined using Equation 2.14, and the

effective joint zone width, b j, is dependent on the widths of the column and beam

while Dj is the column depth or beam reinforcement anchorage length.

EC8 [38], the draft code to supercede EC8 [39], the principle stress criterion is

employed to evaluate joint strength by assuming that the joint volume is in a

plane stress condition. Equation 2.15 defines the joint stress by incorporating the

reinforcement ratio ρsh between joint horizontal transverse reinforcement and beam

longitudinal reinforcement ratio, the normalized axial force denoted as v and fc t ,

concrete tensile strength.

τp = fc

√

√

�

vρsh +
fc t

fc

��

v +
fc t

fc

�

(2.15)

Presuming that ρsh is equal to zero for an unreinforced joint, the tensile normalized

joint shear strength, denoted as v j t , can be derived from Equation 2.16. Similar to the

process employed for extracting Equation 2.16, Mohr’s Circle is utilized to find out the

compressive normalized joint shear strength, which is expressed in Equation 2.17. In

this context, η represents a reduction factor that accounts for the negative impact of

transverse tensile strains.
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v j,t =
fc t
p

fc

√

√

1+
v fc

fc t
(2.16)

v j,c = η
fc
p

fc

√

√

1−
v
η

(2.17)

Similar to EC8 [38], NZSEE-17 [40] describes strength with respect to shear stress,

as expressed in Equation 2.15, which assumes the utilization of the principal

stress method for assessing joint shear strength. Meanwhile, the normalized shear

strength for tensile and compressive forces is presented in Equations 2.16 and 2.17,

respectively. Within these equations, k j serves as an empirical coefficient that

accommodates the increased strength of the interior joint relative to the exterior, as

well as the strength reduction at a prescribed ductility level as noted by Hakuto et al.

[3].

v j =
fc

6α

f y jA jh

fb yA∗s
(2.18)

v j,t =
0.85
p

fc

r

(k j

Æ

fc)2 + k j

Æ

fc v fc (2.19)

v j,c =
0.85
p

fc

q

(0.60 f c)2 − 0.6 f 2
c v (2.20)

Unlike the strength-based approaches, in FEMA356 [28] and later ASCE41-17 [35],
the nonlinear response of the joint zones is described as rotation and the corresponding

generalised force, enabling the consideration of their effects on the behaviour of the

structural system in nonlinear static and dynamic analysis procedures.

While the inclusion of joint regions as distinct structural elements within the

FEMA356 [28] regulations represents a notable advancement, allowing for the

consideration of these elements’ deformations in the analysis of structural systems

under seismic impacts and the evaluation of their plastic rotations as damage in

the performance-based design process, a deficiency in the rational underpinnings

of the modeling parameters and acceptance criteria has been identified. For

non-linear dynamic procedure, complete hysteresis representation of each component

is suggested including stiffness and strength deterioration. Kim and LaFave [25]
highlighted that modelling parameters and acceptance criteria may alter significantly
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than proposed in the code depending on the physical parameters defining the

joint. This shortcoming hinders the approach from serving a restrictive and

determinative function in earthquake specifications applied across seismically active

regions worldwide.

2.2 Experimental Studies on RC Joint Testing

Since the early 1970s, it can be said that a significant portion of the scientific research

conducted on reinforced concrete joint regions has been on an experimental basis.

Although recent studies have focused on retrofitting joint regions with different

materials and applications, many of the experimental studies aim to interpret the

responses of the joint region under stress and deformation levels that can cause

damage, which can also be considered as the main objective of this study. Within

the scope of this study, the experiments conducted on only non-retrofitted specimens

in both classes were examined, and the data obtained from these experiments were

included in the databases used in the study.

By examining load transfer and damage mechanisms in joint regions, some pioneering

studies of their time are presented chronologically, attempting to convey the historical

development of experimental studies in identifying factors affecting the strength and

deformation properties of joint regions.

Joint shear demand was identified as a crucial parameter in determining if a joint will

exhibit brittle failure under earthquake loading by Higashi and Ohwada [41]. Minimal

lateral confinement of the joint and an increase in joint shear strength are provided

by interior column bars, as found by Meinheit and Jirsa [42]. They also concluded

that column axial load influences shear cracking stress magnitude and shear crack

inclination in the beam-column joint but not joint shear strength, and shear strength

is not a linear function of joint hoop reinforcement volume.

It was concluded by Birss [43] that the joint load transfer mechanism, proposed by

Paulay et al. [22], is satisfactory for design, and the beam-column joint region remains

within the elastic regime when beam hinges are relocated away from the column face.

Beckingsale [44] observed that specimens with low column axial load failed due to

bar-slip, while specimens with higher column axial loads did not. The development

of the two joint load-transfer mechanisms proposed by Paulay et al. [22] was also

confirmed.

Improved joint behavior resulted from relocating beam plastic hinges away from the

face of the joint, as found by Park and Milburn [45]. The conclusion of Otani et al. [46]
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was that the number of column middle reinforcements doesn’t significantly affect joint

response. However, the joint shear failure behavior can be improved by increasing

joint hoop steel and reducing joint shear stress demand.

The importance of joint transverse reinforcement for maintaining ductility levels in

reinforced concrete beam-to-column connections was determined by Durrani and

Wight [47]. They also found that joint shear stress significantly influences seismic

performance. More hoops with lower yield strength improve seismic performance, as

discovered by Ehsani and Wight [48]. They also concluded that when the moment

strength ratio (Mr) is greater than 1.4, plastic hinges in the joint are prevented or

prolonged.

Restrictions on beam bar diameter through the joint, joint shear stress demand, and

minimum lateral reinforcement in the joint region were suggested by Kitayama et al.

[49]. Their conclusions also stated that column axial load ratios below 0.3 do not

exhibit a beneficial effect on bond resistance along beam reinforcement within the

joint region, and those below 0.5 do not influence joint shear strength.

Endoh et al. [50] concluded that strength loss in post-peak load-deformation response

was more significant for lightweight concrete compared to normal strength concrete.

Additionally, they found that joint shear strengths of lightweight concrete were smaller

due to reduced compressive strength.

Interior frames were discovered to have higher displacement ductility compared to

exterior frames by Fujii and Morita [51]. Their conclusions also stated that column

axial load ratio does not impact joint shear strength, an increase in joint transverse

reinforcement ratio enhances joint shear capacity, and degradation of shear rigidity

accelerates once joint shear strain reaches 0.5%.

It was observed by Joh et al. [34] that higher joint transverse reinforcement ratios

reduce bond deterioration of longitudinal beam bars in the joint. Additionally, they

noted that a large volume of transverse joint reinforcement can enhance joint stiffness

after cracking and prevent bond deterioration by relocating the beam plastic hinge.

Ductility was found to increase with higher joint hoop reinforcement and axial loads

by Kaku and Asakusa [52]. Factors affecting bond behavior, such as column axial

load, transverse reinforcement in the connection region, and the ratio of bottom

beam reinforcement to top bar amount, were identified by Kaku and Asakusa [53].
They also found the anchorage length of beam bars to be significant. Ehsani and

Alameddine [54] discovered that high concrete compressive strength results in higher

shear capacity but lower ductility.
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Noguchi and Kashiwazaki [55] found that maximum joint shear strength did not

increase significantly with higher concrete compressive strength. They also discovered

that the confinement effect of joint lateral reinforcement became significant only

at large deformation levels, specifically drift angles exceeding 1/50 rad. Joint

shear capacity was found to increase with higher concrete compressive strength and

percentage of longitudinal reinforcement in beams by Oka and Shiohara [56], but the

relationship was not linear.

In tests on two interior beam-column-slab connection subassemblies, Guimaraes et al.

[57] observed that joint shear strength is a function of approximately the square root

of concrete compressive strength. Hayashi et al. [58] developed a model relating bond

strength to bar slip for beam longitudinal reinforcing steel, showing that both beam

bar bond and joint shear stress demand play roles in joint failure under earthquake

loading.

The ultimate shear strength of the joint panel and the shear panel envelope were

successfully predicted using a proposed empirical equation by Teraoka et al. [59].
Walker [60] found that joints maintain strength and adequate stiffness when drift

demand is under 1.5% and shear stress is under 10
p

fc psi, where fc represents

concrete compressive strength. Column interior bars were concluded to be necessary

for low axial load ratios by Park and Ruitong [61], who also recommended limiting

the diameter of longitudinal bars in interior beam-column joints to reduce bond stress

demand.

Zaid [62] confirmed conclusions of Shiohara [63] that the lever arm distance between

tension and compression forces at the joint perimeter changes with loading, indicating

that joint shear stress cannot be assumed to be proportional to the story shear.

Pantelides et al. [64] found that joint shear strength capacities were approximately

8 % higher for specimens with higher axial load, and specimens with an axial load of

0.1 fcAc dissipated about 20 % more energy than those with 0.25 fcAc axial load.

Attaalla [30] concluded that using joint shear strength as a function of the square root

of concrete compressive strength is an inappropriate measure of shear demand for

joints with high-strength concrete.

The existing literature reports some contradictory or inconsistent findings on the

behavior of reinforced concrete joints, which may be attributed to variations in

the sampling space of the specimens examined, boundary conditions, reinforcement

arrangements, and loading protocols across experimental studies. However, it is

widely accepted that certain parameters, such as concrete compressive strength, beam

longitudinal area and yield strength, column longitudinal reinforcement area, joint
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transverse reinforcement area, and column axial load, have a significant impact on

the response of the joints [65].

2.3 Numerical Studies on RC Joint Modelling

From the 1970s to the early 2000s, analytical and experimental investigations on joint

regions have led to the evolution of models used to calculate the response of joint

regions under earthquake effects, from strut-tie models exemplified within analytical

models to more complex deformation mechanisms that can be numerically expressed

in finite element solutions.

2.3.1 Super-element models

In the design of reinforced concrete (RC) frames, it is customary to assume

rigid joints regardless of the detailing provided as it is discussed in Chapter 1.

However, this assumption may not always hold true, particularly when evaluating

the seismic performance of non-ductile RC frames, as detailing deficiencies can lead

to a substantial reduction in joint stiffness. Moreover, joint failure might precede

the ultimate capacity attainment of adjoining beams and columns. Consequently,

accurately modeling joint inelastic behavior is crucial when assessing the seismic

performance of non-ductile RC frames, requiring the consideration of two primary

mechanisms: the shear response of the joint core, and bond-slip of longitudinal beam

bars.

Following the development of strut-tie models, various finite element formulations

have emerged to integrate joint behavior into the global modeling of frames.

A category of joint models, known as "super-elements," comprises solutions that

incorporate collections of finite elements representing different load transmission

mechanisms Cook et al. [66]. The aim of devising super-elements is to decrease the

number of degrees of freedom in large-scale finite element method problems while

preserving accuracy. By merging these elements, the number of degrees of freedom

can be reduced compared to representing the problem domain with plane or space

finite elements, significantly lowering computational costs.

In structural engineering, the prevailing practice involves using either centerline

(Figure 2.4.a) or rigid (Figure 2.4.b) joints, both of which disregard the effects of

joint flexibility [67]. El-Metwally and Chen [68] introduced one of the earliest models

incorporating zero-length rotational spring elements, positioned at the intersection

of beam and column members, to define the joint’s inelastic behavior through a

load-deformation response. This model, occasionally termed the scissors model
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Figure 2.4 Spring-based super-elements used for joint modelling

without rigid joints, was later refined by Alath and Kunnath [69] and became known

as the scissors model (Figure 2.4.c). While the cyclic response of the rotational spring

was calibrated to experimental shear stress-strain data, the bond-slip mechanism was

not considered.

Biddah and Ghobarah [70] employed distinct rotational springs to represent joint

shear and bond-slip responses, defining the joint shear envelope using Hsu [71]
softened truss model and calibrating bond-slip springs with experimental data (Figure

2.4.d). Youssef and Ghobarah [72] incorporated 12 translational springs forming a

truss at the panel zone and introduced separate bar-slip mechanisms (Figure 2.4.e),

calibrating each spring based on experimental findings.

Celik and Ellingwood [73] noted that the need for defining separate constitutive rules

and the availability of experimental data limit the applicability of the element model.

Shin and LaFave [74] proposed a joint element composed of hinged rigid links at the

joint perimeter, a rotational spring embedded in a hinge forming a panel zone, and

rotational springs at the member ends representing the bond-slip mechanism (Figure

2.4.f).

More recently, Lowes and Altoontash [16] introduced a continuum-type element

combined with transition interface elements for compatibility with beam-column

line elements (Figure 2.4.g). This model explicitly simulates three inelastic joint

mechanisms: (i) a rotational spring for the joint core’s shear response, (ii) eight

bar-slip springs for bond failure in longitudinal bars within beams and columns, and

(iii) four interface-shear springs to model shear load transfer loss at beam-joint and

column-joint interfaces due to concrete crushing. Despite offering high control over

various inputs, the model’s drawback is increased computational effort and limited

19



availability of detailed response models for specific components (e.g., bond-slip).

Consequently, Altoontash [75] simplified the Lowes and Altoontash [16] model,

resulting in the commonly referred Joint2D model (Figure 2.4.h). Joint2D includes

a rotational spring for joint core shear deformations and four zero-length rotational

springs at beam-joint and column-joint interfaces to model the bond-slip behavior of

longitudinal beam and column bars. Both the Lowes and Altoontash [16] model and

Altoontash [75] model have been implemented in OpenSEES [76].

In the models proposed by Lowes and Altoontash [16] and Altoontash [75], the strain

behaviour of the finite element representing the joint region as a panel is assigned by

the Modified Compression Field Theory developed by Vecchio and Collins [77]. Shear

stress-strain envelope of the panel zone was approximated with Modified Compression

Field Theory and stiffness/strength deterioration properties were assigned through

experimental data provided by [78].

The Modified Compression Field Theory (MCFT) is a model for evaluating the

load-deformation response of cracked reinforced concrete under shear stress [38].
It considers concrete stresses in principal directions and reinforcing stresses, which

are assumed to be axial. The MCFT model treats cracked concrete as a distinct

material with empirically determined stress-strain behavior, potentially deviating from

traditional stress-strain curves. The model takes into account average strains and

stresses, which encompass local strains at cracks, strains between cracks, stresses

between and at cracks. The validity of this assumption depends on including multiple

cracks when determining average behavior. Mitra and Lowes [79] stated that the use

of MCFT is not suitable especially for joints where transverse reinforcement is limited

and proposed another strut-tie based model.

In the estimation of shear stress-deformation characteristics at joint regions, the

simplifications made by strut-tie based understandings have proven to be inadequate

in reflecting the stress conditions formed under earthquake effects within the joint

region. Consequently, the models proposed in this field rely more on the examination

of various experimental studies using statistical methods rather than on mechanistic

approaches.

The backbone curve, shown in Figure 2.5, is typically characterized by four key points

Celik and Ellingwood [73]. Point τ1 signifies the shear stress at cracking, while

points τ2 and τ3 correspond to the shear stress in the joint when beams or columns

reach their yield and ultimate capacities, respectively, with both values limited by the

joint’s shear strength. Point τ4 represents the residual strength, and the associated

gamma (γ) values indicate shear strain. The combined effects of the joint panel’s
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Figure 2.5 Multi-linear definition of shear strain - shear stress envelope for spring-based
super-elements used for joint modelling

shear response and bar-slip of the lower longitudinal beam bars are integrated into

a single stress-strain relationship. Bar-slip is considered by diminishing the yield and

ultimate moment capacities of the beam under positive bending, utilizing a reduction

factor obtained from extensive experiments. To ascertain stress values for points two

and three, it is essential to identify the nature of joint failure: whether hinges develop

in the beams or column or if the joint shear strength is reached preceding the adjoining

members attaining their yield and ultimate capacities.

The backbone curve determination necessitates defining angular shear strain values

for key shear stress values, which dictates the joint’s deformation response Park

and Mosalam [80]. Literature primarily focuses on joint shear stress capacity

rather than deformation capacity. For primary lateral load-resisting systems, a 20%

reduction in peak strength is typically used to define joint failure; however, this

may be too conservative for secondary structural systems. Experimental testing on

non-ductile joints generally ceases upon observing significant joint damage and lateral

load-carrying capacity loss. Lower strain limits exhibit relatively constant joint strain,

implying shear strain values are less impacted by joint detailing Park and Mosalam

[80]. Park and Mosalam [81] noted joint aspect ratio’s influence on joint shear strain

response, and Jeon et al. [82] found exterior joints have lower deformation capacity

compared to interior joints, also accounting for bar-slip effects on exterior joints’

deformation response.

Hassan [83] and Hassan and Moehle [84] investigated the response of joints lacking

transverse reinforcement up to axial load failure, focusing solely on exterior joints.

They reported that the residual capacity of the joint at significant damage should be

considered as 70-80% of its peak capacity. Moreover, the maximum recommended

shear strain for the positive envelope (when the bottom beam bars experience tension)

21



Figure 2.6 Illustration of bond stress across the anchored bar in joint [16]

Table 2.1 Average bond stresses for anchorage-zone

Notation µavg Steel Strain Description
µte 2
p

fc 0< εs ≤ εy Tension in elastic regime
µt p 0.5
p

fc ε > εy Tension in post yield regime
µce 3.1
p

fc −εy ≤ εs < 0 Compression in elastic regime
µcp 3.1
p

fc εs < −εy Compression in post yield regime

is 0.03. They also suggested that if axial load failure is of specific interest, the final

point on the backbone curve could be extended to the shear strain corresponding to

50% of the joint’s peak capacity.

Another crucial mechanism impacting joint subassemblage response is the bond-slip

of the flexural reinforcement of the beams. Lowes and Altoontash [16] suggested a

constitutive model to delineate the load-deformation history of bond-slip, employing

uniaxial springs to simulate the inelastic anchorage zone response (see Figure 2.6).

Accurate reporting of bar-slip data is scarce in experimental investigations, as it

necessitates sophisticated instrumentation setups and the adoption of a definition for

slip. Due to challenges in conducting experiments and observing bar-slip response in

joints, experimental data is limited. Since available experimental results on bond-slip

behaviour in frame joints are limited in the literature, anchorage-zone cyclic loading

test results were used to define bar stress–slip envelope and cyclic deterioration

properties. Average bond strength (µavg) values are established based on experimental

data from Eligehausen et al. [85] and Eligehausen et al. [86]. Experimental evidence

indicates bond stress deterioration after exceeding a slip limit. Assuming the concrete

surrounding a beam longitudinal reinforcement bar anchored in a joint and stressed

in tension does not exceed yield stress, it is considered to be in compression or tension

with a defined crack width. Table 2.1 provides average bond stress values for various
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steel strain states. In the models by Celik and Ellingwood [73] and Jeon et al. [82],
the bond-slip mechanism is not explicitly considered but is incorporated in the shear

response of the panel spring.

To extend the monotonic bar stress with respect to slip history cyclically, calibration

of the unload-reload path and damage rules is required. Lowes and Altoontash [16]
introduced a set of rules to complete the definition of the model.

1. The unloading stiffness is presumed to be the same as the elastic stiffness,

2. Residual bar stress is calculated by assuming a uniform residual bond stress of

0.15
p

fc,

3. The slip at which reloading transpires is considered to be one fourth of the

maximum historical slip,

4. The force at which reloading occurs is estimated to be be one fourth of the force

developed at the maximum historical slip, based on experimental data provided

by Eligehausen et al. [85] and Hawkins et al. [87].

Experimental results provided by Ma et al. [88] indicated that as the cracks initiated at

the joint faces, flexibility of the shear transfer mechanism increases. This mechanism

is idealized with interface springs in the super-element definition. Walraven [89]
remarked that unloading stiffness does not deteriorate as a function of loading history

and reloading stiffness is approximately identical to the initial stiffness. Based upon

these facts, in numerical studies conducted by Altoontash [75], Lowes et al. [90] and

Mitra and Lowes [79], interface springs are assumed elastic and extremely stiff thus

the contribution of the shear transfer mechanism to the overall response of the joint

is neglected. However, calibration of the load transfer mechanism using experimental

data is recommended by Lowes et al. [90], while remarking the lack of experimental

data.

Lowes and Altoontash [16], Lowes et al. [90] and Mitra and Lowes [79] assumed a

very stiff uniaxial elastic spring and ignored interface flexibility remarking the lack

of available experimental data describing the phenomenon. Lowes et al. [90] stated

that interface shear stiffness can significantly decrease with increasing crack width

at beam end. All element models were validated through a set of experiments;

however, it should be noted all element models require a calibration process using

the varying level of data provided from the experiment itself. This fact makes the

element formulations useful to model any particular unit with available experimental
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data, but impractical for general use in design or performance assessment purposes

when specific experimental data is not available.

The shear stress strain models proposed for the introduced models should be

complemented by hysteretic response rules describing the characteristics such as

loading, unloading, deterioration in strength and stiffness under cyclic effects. Studies

on this subject are discussed in the next subsection.

Alternatively, Ning et al. [91] and Sengupta and Li [92] used Modified

Bouc-Wen-Baber-Noori (BWBN) model to replicate experimental response of columns

and joints respectively. Despite well-matched results after calibration through

experiments; generalization of calibration process is quite complicated since BWBN

models are defined with parameters that have little or no physical meaning.

2.3.2 Considerations on Hysteretic Response

For the definition of the response of any structural component to a cyclic

effect, hysteretic behaviour including unloading and reloading features should be

established. For reinforced concrete joint instance, pinching and degradation in

stiffness and strength should be covered as well. These parameters indeed are

dependent on the material properties, reinforcement configuration and geometry of

the specimen of interest [93]. Nevertheless, relation between parameters required to

generate one of the hysteretic models available in the literature and the mentioned

physical properties is questionable [67].

Numerous hysteresis models have been proposed over the years, such as the Takeda

model [94], Ibarra-Medina-Krawinkler Deterioration model [95], and Pinching4

model [16, 96]. Among these, the pinching4 model, available as a uniaxial material

model in OpenSEES, has gained popularity due to its versatility. Nonetheless,

recent research has critiqued the pinching4 model’s practicality, as it necessitates

defining 39 parameters for characterizing hysteretic behavior, prompting suggestions

for alternative models with fewer required parameters [91]. A key advantage of the

pinching4 model is its ability to directly define four critical points for the positive and

negative backbone, allowing for easy calibration of envelope responses in joints. In

contrast, other available hysteretic models enable direct definition of only up to three

critical points for the positive and negative envelope, often resulting in inaccurate

initial stiffness estimations due to the simplification of using three points instead of

four to define the backbone.

Lowes and Altoontash [16] suggested model parameters for cyclic response of
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concrete element

steel element

Figure 2.7 Truss analogy approach to model an interior joint [100]

pinching4 based on the experimental findings in [97] and [78]. Mitra and

Lowes [79] proposed constant values for a set of parameters controlling hysteretic

response of the pinching4 material and proposed empirical equations for degradation

parameters based on the statistical evaluation of 57 sub-assemblages from 12 different

experimental studies. Hysteretic parameters related to bond-slip spring response,

in a similar fashion with the introduced in pinching4 material, calibrated with the

experimental results of the test carried out by Viwathanatepa et al. [98] and Stevens et

al. [78]. Based on the investigation of the experimental results and analytical point of

view introduced by Shiohara [99], Celik and Ellingwood [73] postulated an approach

that is based on the reduction of joint strength due to poor bonding conditions. A

further detailed discussion on the model parameters governing the pinching4 material

is held in Section 3.2.1.1.

2.3.3 Nonlinear Truss Analogy

The truss analogy in the finite element method refers to a simplified approach used to

analyze and design structural elements, such as beams, columns, or joints, subjected

to various loading conditions like shear, flexure, and axial forces. In this approach,

the structural elements are modeled as a series of interconnected truss elements,

which are simple bar elements capable of resisting axial forces. Truss analogy

simplifies the complexity of real structural behavior by assuming that the forces are

distributed through the interconnected truss elements, which can deform only in the

axial direction.

Research on truss-based modeling approaches has been conducted for the design

and analysis of reinforced concrete (RC) members subjected to shear, flexure, and

axial forces [101–103]. Panagiotou et al. [104] refined existing truss modeling

methods by incorporating mesh size effects and biaxial effects for diagonal elements in

compression. Moharrami et al. [105] further improved the truss model for the analysis

of shear-critical RC columns, considering the contribution of aggregate interlock

effects. Bowers [106] and Xing et al. [100] proposed a hybrid numerical model for
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beam-column joints in non-ductile frames, including a nonlinear cyclic truss model for

the connection region and a distributed plasticity model for beams and columns.

2.3.4 2D and 3D FE Analysis of RC Joints

The use of advanced constitutive and finite element formulations has become

increasingly common in contemporary research and engineering applications, as

they enable more accurate and robust analyses of complex material behavior. A

comprehensive understanding of these formulations necessitates a solid foundation in

plasticity theory, which serves as the cornerstone of many advanced material models,

particularly for concrete and other quasi-brittle materials.

In this overview, the basic principles of plasticity theory and its utilization in concrete

material modeling are to be briefly examined. Additionally, a review will be provided

on the latest advancements that include damage-based models, improvements that

have the potential to amplify the predictive proficiency of these models. Finally, recent

instances of finite element analyses that are applied to reinforced concrete joints are

to be illustrated, showcasing the proficiency of these cutting-edge constitutive models

in encapsulating the intricate behavior of such structural elements.

2.3.4.1 Plasticity Theory Fundamentals

The theory of plasticity is commonly employed by researchers to characterize the

behavior of materials that exhibit permanent deformations under the influence of

external forces. However, concrete or similar materials possess unique characteristics

that make them challenging to represent solely through plasticity theory. Despite these

complexities, plasticity theory is still utilized to approximate the behavior of concrete,

albeit with varying degrees of accuracy.

Plasticity was initially introduced for metals subjected to loading beyond their elastic

limits, where deformation is proportional to the applied load. As the load surpasses

the elastic limit, materials begin to exhibit plastic (irreversible) strains. Unlike metals,

which maintain continuity until rupture, even with high levels of plastic strains,

concrete is a composite material comprising aggregates of varying sizes and interstitial

mortar, and tends to lose continuity more easily after only a portion of its strength

limit is reached (due to cracking and crushing). Furthermore, in contrast to metals

that harden after yielding, concrete softens after exceeding its strength limit, allowing

lower stresses with increasing levels of plastic strains. Consequently, a plasticity model

for concrete must be used in conjunction with a damage model to adequately represent

its behavior.
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In the literature, the definition of plasticity frequently commences with the

decomposition of strains into two distinct components: elastic strains (ϵe) and plastic

strains (ϵp).

ϵ = ϵel + ϵpl (2.21)

The stress generated is directly proportional to the elastic strains, while plastic strains

are assessed based on a specified yield criterion and flow rule.

σ = Dϵel (2.22)

The yield criterion is a function that incorporates stress σ, and internal variables,

denoted by ξ.

f (σ,ξ) = 0 (2.23)

Function f represents a particular form of yield criterion for each plasticity model and

gives a surface in stress space which an example is illustrated in Figure 2.8.(a)

Figure 2.8 Illustration of (a) yield surface in stress space, (b) flow rule, (c) hardening
(ANSYS 18.2 Material Reference

Yield condition, defines the stress states where the plastic strains occur. In elastic

conditions, stress state in principle stress space is in the area or volume bounded by

Equation 2.23. After reaching yield surface it is not possible for the material to produce

higher levels of stress. Following conditions often referred as Karush-Kuhn-Tucker

conditions must be satisfied in material behavior.

f ≤ 0, λ̇≥ 0, f λ̇= 0 (2.24)
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where λ is plastic strain increment. This conditions force material to remain in elastic

region (λ̇= 0) when f < 0 is satisfied. If f = 0, stress state is reached to yield surface

and increase in plastic strains (λ̇ > 0) are expected.

Material yielding decision must be independent of the coordinate system that the

calculations performed. For isotropic materials, yield condition depends only on stress

invariants (not necessarily all of them at once): trace of the stress tensor (I1) and

deviator invariants (J2,J3).

Once material starts to yield according to the condition given in Equation (2.24),

amount and direction of the plastic strain increment should be determined. Evolution

of plastic strains are determined by the following flow rule:

ϵ̇pl = λ̇
∂Q
∂ σ

(2.25)

where Q is plastic potential which is again a scalar function. In most cases, plastic

potential may be selected as the same function with the yield criterion. Plastic strain

increment is normal to the yield surface as it is illustrated in Figure 2.8.(b).

The yield criterion is not defined by a constant surface but a function of a set of

parameters and it is dependent on the history of loading and evolution of plastic

strains. The increase in yield criterion is called hardening. Isotropic hardening which

the stress state change from σ(t1) to σ(t2) as it is shown in Figure 2.8.(c) is defined

in the form:

F(σ)−σy(ξ) = 0 (2.26)

where σy(ξ) is the stress limit that yielding starts.

Isotropic hardening is often useful under monotonic loading but often does not give

realistic results for materials subjected to cyclic loads and plastic deformation after

a load reversal from a plastic stress state. For this cases, kinematic hardening is

introduced in the form

f (σ−α,ξ) = 0 (2.27)

where α is back stress tensor. Since softening phenomenon causes a decrease in

strength/stiffness, it is a significant and relatively complex feature of concrete material

modeling. A brief discussion about softening will be presented in the concrete
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constitutive models.

In addition to analytical and experimental investigations, numerous numerical studies

have employed finite element analysis as an approximation method for addressing the

issue of joint behavior. The thesis focuses on the most accurate and up-to-date research

in this domain. Generally, numerical solutions can be categorized into two primary

groups: those utilizing frame, spring, and plane elements in their numerical models,

and those implementing three-dimensional solid elements within the finite element

analysis.

Nonetheless, it is crucial to acknowledge that endeavors employing solid models have

frequently encountered inherent challenges related to the numerical representation

of concrete material. Consequently, the loading conditions in these studies have

predominantly remained monotonic, owing to the intricate nature of stress state

evaluation. While this research does not delve into the results derived from numerical

models, it does provide a comprehensive review of the modeling techniques employed.

Atta et al. [107] applied the concrete failure model proposed by William and Warnke

(1975) utilizing ANSYS software to replicate the experimental study conducted by

Scott [108]. Notably, even without specifying a bond rule between the concrete

and reinforcement elements, a strong correlation with the experimental results was

observed. A parametric investigation encompassing column axial load, reinforcement

detailing, concrete strength, and beam dimensions was executed. The focus of the

investigation remained on the strength basis, as the employed model demonstrated

instability in instances where strength loss occurred within the concrete material.

Subsequent to the emergence of tensile cracks, localized strains were not regularized

via a smeared crack approach in this analysis, rendering the results dependent on the

size of the finite elements and thus lacking objectivity. Additionally, it is important

to highlight that the models under investigation did not exhibit abrupt strength loss

attributable to a brittle failure mode; rather, they demonstrated a combination of beam

and joint failure.

Mitra [65] employed a Drucker-Prager-based continuum formulation, utilizing DIANA

9.1 software, to simulate the response of an interior reinforced concrete joint.

However, it was concluded that the simulation relies on an excessive number of

parameters, many of which possess minimal or no physical significance, indicating that

an enhanced comprehension of modeling parameters is necessary for the continuum

formulation of any reinforced concrete structure. Furthermore, Mitra [65] observed

that the continuum methodology is beset with convergence issues and necessitates

a considerable amount of computational time and complexity. This underscores the
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need for ongoing research to develop computationally stable and robust continuum

methods for structural analysis in this domain.

Allam et al. [109] performed finite element analysis utilizing concrete damage

plasticity (CDP), a modified version of the Drucker-Prager formulation, implemented

through ABAQUS software, to simulate the response of an exterior reinforced concrete

joint.

Kaliske and Zreid [110] employed a coupled plasticity-damage microplane model

[111] through ANSYS software to replicate the experimental study findings of a

reinforced concrete joint devoid of transverse reinforcement [112]. illustrates the

concurrence between experimental and numerical outcomes, as well as the efficacy of

the constitutive model in capturing the softening behavior of concrete material.

Ozbolt et al. [113] implemented a microplane relaxed kinematic constraint model

to simulate the cyclic response of two exterior joints. In this investigation, Ozbolt

et al. [113] obtained favorable outcomes (refer to Figure 8) employing a relatively

coarse mesh in comparison to contemporary studies, adopting an approach grounded

in crack band regularization. In addition to strain regularization, Ozbolt et al. [113]
incorporated a smeared slip approach in their work via calibrated contact elements.

Nevertheless, the authors did not provide further elaboration regarding the calibration

process.

Yılmaz et al. [114] presented closely aligned load-displacement histories under

monotonic loading up to 6.5% drift. Although there was concurrence between

the observed and computed reaction forces, a more in-depth examination of the

results disclosed that the calculated failure mode did not entirely correspond with

the experimental observations.

Comparison of the results of studies on modelling of reinforced concrete joints with

advanced finite element techniques with the results obtained experimentally indicates

that, as a common point, a large number of model parameters contained in the

complex constitutive and element relations used need to be calibrated by fine-tuning

on an experiment-specific basis, which indicates that the mentioned techniques are not

suitable for practical purposes. This emphasises the need for generalised calibration

methods in the use of these methods.

2.3.4.2 Constitutive Models used for Concrete Material in RC Joint Modelling

In the literature, there is a vast amount of studies which defines the features of

plasticity described in Section 2.3.4.1 according to the experiments carried out over
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concrete specimens. Dislike metals, internal friction materials such as rock and

concrete exhibits decrease in yield criterion after tension and compression strength

of the material exceeded. This phenomenon is named softening. Overall behavior

includes perfect elasto-plasticity and a non-smooth softening where further loading

does not experience any resistance to deformation. This fact often cause numerical

difficulties which lead to non-convergent results. Softening behavior is slightly

different than hardening since it is initiated and its evolution is maintained by localiza-

tion [115]. After exceeding the strength limit of concrete in tension or compression,

contrary to hardening phenomena; some parts of material stops to resist deformations

and stress is dissipated and localized in other parts. Hence, the primary issue with

the concrete plasticity modelling is introducing a feasible numerical solution to the

softening phenomenon.

Grassl [116] noted that associated flow rule produce overestimated maximum stress

for concrete-like materials which deform due to internal frictional sliding, remarking

that concrete material does not follow an associated flow rule. In non-associated flow

rule, plastic potential is not proportional to the yield surface and strain increment is

not in the same direction as the stress increments.

In ANSYS Mechanical APDL Material Reference [117] a set of generalized rules

described to be used in combination with applicable yield criterion and flow rules.

Yield function in compression Ωc is given by a nonlinear hardening function and a

linear softening function. Relative stress level at the onset of nonlinear hardening is

Ωci with a hardening yield function:

Ωc = Ωci + (1−Ωci)

√

√

√

2
κ

κcm
−
κ2

κ2
cm

(2.28)

where κ and κcm denote actual plastic strain value and plastic strain value when the

material strength is exceeded, respectively. After the state that peak compression

strength is exceeded, softening starts with the function:

Ωc = 1−
1−Ωcr

κcr −κcm
(κ− κcm) (2.29)

when κ exceeds defined critical plastic strain threshold κcr compression strength is

reduced to the pre-defined residual stress. Piece-wise set of equation 2.28 and 2.29

are plotted in figure 2.9.(a).

31



Figure 2.9 Hardening and Softening Rule under (a) Compression (b) Tension (ANSYS
Material Reference, 2019)

Under tension, yield function Ωt is given by a linear softening function where relative

yield stress equal to 1 at initial yielding and decreases to the given residual relative

stress Ωt r when effective plastic strain is κt r . Described function is plotted in

Figure 2.9.(b). Softening can be defined in an exponential form as well, surely that

definition requires intermediate parameters that control the skewness of the curve.

A better presentation might be defined based on Fracture Energy as Moharrami and

Koutromanos [118] suggests; but it is known that formulation is based on mesh area

and thus dependent on the mesh size. Only linear softening rule is used in this

research, but other mentioned rules may be included in further steps of the study.

Mises [119] introduced well-known yield criterion shown in Eq 2.30 which is only

dependent on J2 and material parameter.

f (J2) =
p

J2 −τ= 0 (2.30)

Materials with internal friction, slip surfaces are rough and shear stress needed to

activate slip is affected by the stress normal to the slip plane. Feenstra and De Borst

[120] states that to combine von Mises criterion with Rankine surface for tension may

yield realistic results for concrete material. Another well-known surface is proposed

by Drucker and Prager [121] in the form of

f (I1, J2) = αI1 +
p

J2 −τ0 (2.31)

where α and τ0 are material parameters. This indicates that the Drucker-Prager

32



Table 2.2 Plasticity Features of ANSYS APDL Plasticity Material Models ANSYS Mechanical
APDL Material Reference [117]

Name TB Lab Yield Criterion Flow Rule Hardening
Rule

Material Re-
sponse

Bilinear
Isotropic
Hardening

BISO von Mises/Hill associative work harden-
ing

bilinear

Nonlinear
Isotropic
Hardening

NLISO von Mises/Hill associative work harden-
ing

nonlinear

Classical
Bilinear
Kinematic
Hardening

BKIN von Mises/Hill associative
(Prandtl- Reuss
equations)

kinematic
hardening

bilinear

Nonlinear
Kinematic
Hardening

CHAB von Mises/Hill associative kinematic
hardening

nonlinear

Drucker -
Prager

DP von Mises with
dependence
on hydrostatic
stress

associative or
non- associative

none elastic- per-
fectly plastic

Extended
Drucker -
Prager

EDP von Mises with
dependence
on hydrostatic
stress

associative or
non- associative

work harden-
ing

multilinear

Cast Iron CAST von Mises with
dependence
on hydrostatic
stress

non- associative work harden-
ing

multilinear

Gurson GURS von Mises with
dependence
pressure and
porosity

associative work harden-
ing

multilinear

Menetrey -
Willam

MW von Mises with
dependence
on hydrostatic
stress

non-associative work harden-
ing

multilinear

yield criterion is the same with von Mises, except with the slight difference about the

fact that shear yield stress is adjusted to hydrostatic (volumetric) stress. Jirasek and

Bazant [122] notes that for concrete material, it is possible to obtain better matching

results in comparison with von Mises surface, however in tension, large deviations are

still observed. Available constitutive models representing plastic behavior of concrete

mostly rely on extension, combination or slight modification on Drucker-Prager model.

Available plasticity based concrete models offered in ANSYS Mechanical APDL

Material Reference [117] is shown in Table 2.2 with their plasticity features.

33



2.3.4.3 Microplane Plasticity-Damage Model

An unconventional but powerful approach is introduced by Zreid and Kaliske [111]
to overcome numerical issues due to localization of strains. Their formulation uses

microplane quantities which replaces tensorial formulation with uniaxial stress states

on planes with varying orientations. The main advantages of such approach are

(1) providing a constitutive model that the modeler need not worry about tensorial

invariance since it is satisfied by the summation of responses from microplanes of

various orientations; (2) ability to capture deviations from normality caused by

dilatancy in frictional materials and (3) direct characterization physical phenomena

associated with surfaces, i.e. slip friction, lateral confinement etc.
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Figure 2.10 Microplanes [122]

It is assumed that macroscopic (conventional) quantities are computed through

numerical integration over the sphere formed by micro-planes (see Fig. 2.10) using

Equation 2.32.

3
4π

∫

Ω

(.)dΩ=
21
∑

mic=1

(.)wmic (2.32)

Microplane counterpart of any yield criterion can be defined to establish a microplane

plasticity model. In this case, Drucker-Prager Drucker and Prager [121] yield function

is given in Equation 2.33.

f mic
DP =

√

√3
2
σe

Dσ
e
D +ασ

e
V −σ0 (2.33)

where σe
D is effective deviatoric stress, σe

V is effective volumetric stress, α is friction
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angle and σ0 is initial yield strength. Introduced function forms an open surface in

stress space. To cover all possible stress states, its form is bounded by compression and

tension caps as it is described in Equation 2.34 and ensured a continuous derivative.

f mic(σe
D,σe

V ,κ) =
3
2
σe

Dσ
e
D − f 2

1 (σ
e
V ,κ) fc(σ

e
V ,κ) ft(σ

e
V ,κ) (2.34)

where f1 is the plain Drucker-Prager yield surface. Compression bound function is

given by Equation 2.35 and 2.36.

fc = 1−Hc(σ
C
V −σ

e
V )
(σe

V −σ
C
V )

2

X 2
(2.35)

X = Rf1(σ
C
V ) (2.36)

where σC
V is abscissa of the intersection point between the compression cap and the

Drucker-Prager yield function and R is ratio between volumetric and minor axes of the

cap, H is the Heaviside function. Equation 2.37 and 2.38 reads the tension cap,

ft = 1−Ht(σ
e
V −σ

e
V )
(σe

V −σ
T
V )

2

(T −σT
V )2

(2.37)

T = T0 + Rt fh(κ) (2.38)

where σT
V is abscissa of the intersection of tension cap and Drucker-Prager yield

function and T0 is the initial intersection of the cap with the major axis. Hardening is

defined by Equation 2.39 where D is a material constant retrieved as a material input.

fh(κ) = Dκ (2.39)

Figure 2.11 shows a schematic representation of the yield surface generated by the

Equation 2.34.

Evaluation of plastic strains under monotonic loading is straightforward using the

theory presented above. However, under cyclic loading, realistic representation

without stiffness degradation is not possible. Equation 2.40 - 2.42 defines the damage

rule,

1− dmic = (1− dmic
c )(1− rwdmic

t ) (2.40)

35



Figure 2.11 Drucker-Prager Cap Surface [111]

d t
mic = 1− ex p(−βtγ

t
mic) (2.41)

d c
mic = 1− ex p(−βcγ

c
mic) (2.42)

where c and t index note split compression and tension damage parameters

respectively and they are controlled with user input β and γ. rw is split weight

factor and used to create distinct damage behavior under tension and compression.

In transition from tension to compression, stiffness degradation due to cracks is

recovered by crack closure mechanism rw is a function of principal strains.

Since the introduced constitutive model aims to reproduce concrete response including

softening branch, it is not possible to obtain any practical results due to the numerical

instability issues associated with plasticity models with negative hardening. The main

reason is that the softening region is infinitely small and total amount of energy

dissipated during the failure process is zero [123], thus there is no trivial solution

for the boundary value problem. In this context, this region is infinitely small, akin

to a mere theoretical point, rather than a physically measurable size. This is pivotal

because, in most systems, when a failure occurs, energy is typically lost or dissipated

into another form. However, in this scenario, the total energy dissipated during

the failure process is zero, implying no energy conversion. This combination of a

minuscule softening region and absence of energy dissipation makes the boundary

value problem particularly complex, ruling out a simple or "trivial" solution.

Several solutions to this problem were introduced in literature; a very effective

one among them is implicit gradient enhancement which replaces local variables

that make the solution unstable with non-local counterparts to prevent localization.

The non-local average of a local variable is computed assuming the non-local value
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governed by Helmholtz-type equation (see Eq. 2.43) with the homogenous Neumann

boundary condition (see Eq. 2.44).

η̄m − c∇2η̄m = ηm (2.43)

∇η̄mnb = 0 (2.44)

where ηm is the local variable (e.g. equivalent strain) to be enhanced and η̂m

is the non-local counterpart. c is the length-scale parameter which controls the

radius of interaction (or localization) and nb is the boundary normal vector. Implicit

regularization is obtained by the weighted combination of local and non-local variables

as it is described in Equation 2.45.

ˆηmic
i = mη̄mi + (1−m)ηmi (2.45)

where i = t, c note tension and compression respectively. m is regularization

parameter. Prevention of the localization or with other words homogenization of the

local variables over an interaction range requires two (for compression and tension)

additional degree of freedom for each element. This feature is available in CPT215

8-node coupled pore-pressure solid element [124].

2.3.4.4 Elastic Microplane Damage Model

Plasticity theory is used to describe the inelastic behavior of concrete materials,

specifically when they experience loading beyond their elastic limits, resulting in

permanent deformation. Damage theory, on the other hand, accounts for the

degradation of material properties due to the formation and growth of microcracks

and voids in the concrete structure. Combining these two theories provides a more

comprehensive representation of concrete behavior, as it takes into account both

irreversible deformations and material deterioration. In a concrete plasticity damage

model, the stress-strain relationship of concrete is described by considering the elastic,

plastic, and damage components. The model typically incorporates a yield criterion

to define the onset of plastic deformation and a flow rule to govern the evolution of

plastic strains. Simultaneously, the model includes a damage variable to quantify the

loss of material stiffness and strength due to crack formation and propagation.

Alternative to the tensorial definitions, Bazant and Prat [125] proposed a novel

approach that the material behavior is modelled through uniaxial stress-strain laws
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on various planes which are referred as microplanes.

Following the formulation presented in ANSYS Material Reference [117], Microplane

theory is based on the assumption that microscopic free energy on the microplane level

exists and its integral over all pre-defined microplanes is identical to the macroscopic

free Helmholtz energy, defined as;

Ψmac =
3

4π

∫

Ω

ΨmicdΩ (2.46)

In thermodynamics, free energy is a measure of the amount of energy in a system

that can perform work when temperature and volume are uniform throughout the

system. It represents the energy that is "free" or available to be used.Summing up

these energies from all microplanes yields a total corresponding to the macroscopic

Helmholtz free energy. The Helmholtz free energy, defined as , represents the energy

available to do work in a system at constant volume and temperature. Different

thermodynamic potentials, like the Helmholtz free energy, are used to simplify

analyses of specific conditions. In the case of the Helmholtz free energy, it is

particularly useful for systems with fixed volume and temperature, indicating the

maximum work obtainable excluding volume expansion.

The strains and stresses on microplanes are decomposed into volumetric and

deviatoric parts based on the V-D split in which the strain is expressed as

ε= εD + εV 1 (2.47)

εV = V : ε (2.48)

V =
1
3

1 (2.49)

εD = Dev : ε (2.50)

Dev = n ·Π−
1
3

n · 1⊗ 1= n ·Πdev (2.51)
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where εD and εV correspond to deviatoric and volumetric components of the total

calculated strain; V is the second-order volumetric projection tensor, 1 is second order

identity tensor, Pi is the fourth-order symmetric identity tensor and n is the normal

vector of the microplane. The stresses are evaluated by free energy derivative with

respect to the strain as

σ =
3

4π

∫

Ω

δψmic

δε
dΩ=

3
4π

∫

Ω

(VσV + 2DevTσD)dΩ (2.52)

where σv and σD are volumetric and deviatoric stresses respectively. Assuming

isotropic elasticity, they can be described respectively as

σV =
δψmic

δεV
= KmicεV (2.53)

σD =
δψmic

δεD
= DmicεD (2.54)

where Kmic and Gmic are microplane elasticity parameters, bulk and shear moduli

respectively and they can be related with the macroscopic properties as

Kmic = 3KGmic = G (2.55)

Integration over the approximate sphere surface (microplanes) to calculate the

homogenized stresses and strains is obtained by numerical integration

3
4π

∫

(.)micdΩ=
Np
∑

i=1

(.mic)iwi (2.56)

where wi is the weight factor stands for the contribution weight of each microplane

vector to the calculated quatity. This formulation leads to anisotropic behavior even

though the elastic uniaxial laws are defined for individual microplane vectors.

Strain-softening material models typically cause numerical instability due to stress

singularities which can be mitigated by implicit gradient regularization in some cases

[111, 123]. Implicit gradient regularization enhances a local variable by considering

its non-local counterpart as an extra degree of freedom governed by a Helmholtz-type

equation. Governing equations are given by the linear momentum-balance equation
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and modified Helmholtz equation defining the non-local equivalent strain field ηm.

∇ ·σ+ f = 0 (2.57)

η̂m − c∇2η̂m = ηm (2.58)

where σ is the Cauchy stress tensor, f is the body force vector,∇ is the divergence,∇2

is the gradient and is the Laplace operator. The gradient parameter c is the variable

governs the range of non-local interaction. With the homogenous Neumann boundary

condition defined as follows;

∇η̂m · nb = 0 (2.59)

where nb is the normal to the outer boundary of the non-local field, no explicit

definition of boundary conditions for the extra degree of freeom is required.

Bazant and Pijaudier-Cabot [126] suggests to identifiy the gradient parameter c

through the comparison of homogenous and nonhomogenous tensile tests of concrete

while the first specimen is subjected to a distributed damage field and the second

is a notched specimen and subjected to a localized damage. In such case, damage

parameter is obtained by calibrating distributed and localized damage specimens

force-displacement curves while keeping other parameters effecting material damage

as constant. However, experiments representing distributed damage field for complex

failure modes may not be possible. For such cases, Lehky and Novak [127] proposes

inverse calibration of force-deflection curves.

Damage is considered through modification of microscopic free energy function which

includes a damage parameter, dmic which is a normalized damage variable dmic.

Ψmic(εV ,εD, dmic) = (1− dmic)Ψmic(εV ,εD) (2.60)

The damage status of the material is described by the equivalent strain based damage

function φmic = φ(ηmic) − dmic ≤ 0 where ηmic is the equivalent strain which is a

scalar measure that controls the damage initialization and evolution. Among other

definitions, Bazant [123] defines equivalent strain as follows
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Figure 2.12 Failure surface of microplane material in invariant space

ηmic = k0I1 +
q

k2
1 l2

1 + k2J2 (2.61)

Isotropic damage model does not take into account the diffirent behavior of the

material under tension and compression. k0, k1, k2 are the result of the adoptation

of the model to different response of the material under different deformation states

defined by invariants I1 and J2 as it is illustrated in Figure 2.12. Figure 2.12 also shows

allowable deformation domain in invariant space where material behaves elastic (in

microplane level) while beyond the envelope, material is damaged.

The damage variable dmic itself is expressed with damage evolution law

dmic = 1−
γmic

0

γmic

�

1−αmic +αmic exp(βmic(γmic
0 − γ

mic))
�

(2.62)

where γmic, αmic and βmic respectively represent maximum history equivalent strain

maximum degradation and damage rate while γ0 is the equivalent strain threshold for

damage initialization.

2.4 Parameter Identification with Soft-Computing Methods

In structural mechanics, the parameter identification (i.e. inverse analysis) problem is

a crucial challenge that involves determining the material and geometrical properties
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of a structure or its components. These properties, often referred to as parameters, are

essential for accurate modeling, analysis, and prediction of structural behavior under

various loading conditions. The parameter identification problem can be approached

through a combination of experimental and computational methods. Experimental

data, such as displacement, stress, and strain measurements are acquired from

physical tests on the structure or its components. Computational methods, including

the finite element method and other numerical techniques are employed to develop

mathematical models that represent the structural behavior. The objective is to

calibrate these models to match the experimental data by adjusting the parameters

within their physically feasible ranges [128].

Kučerová [129] describes the solution to an inverse analysis into two distinct

directions: forward mode and inverse mode. The forward mode is characterized by

the minimization of an error function F(x), defined as the discrepancy between the

outputs of the model y M , a function of the model parameters and the experimental

output y E, i.e.

minF(x) = min∥y E −M(x)∥ (2.63)

Conversely, the inverse mode assumes the existence of an inverse model M INV

associated with the model M , satisfying

x = M INV (y) (2.64)

for all possible values of y .

In the context of the forward mode, which can be viewed as a solution to

an optimization problem, gradient-based optimization techniques are commonly

employed. Approaches inspired by simulated annealing methods [130], which utilize

a single solution at a time, or evolutionary algorithms [131–133], which operate with

populations of solutions, are typically adopted. Various genetic algorithm solutions

have been proposed for this class of problems in the literature [134, 135], including

multi-objective optimization techniques [136, 137]. Any solution offered which

is based on approximating the assumed inverse model, traditional artificial neural

network applications serve as an example for inverse mode inverse analysis [138].
A strong interest has been developed for formulating inverse analysis methods to

determine the quasi-brittle fracture behaviour of concrete [139–150].
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Figure 2.13 Illustration of inverse analysis through neural networks

Novak and Lehky [138] presented an approach to inverse analysis, integrating

stratified Monte Carlo simulations with artificial neural networks. The process consists

of several essential stages. Initially, a computational model for a specific issue

is formulated using suitable finite element method tools. The model undergoes

calibration via a trial-and-error method with model parameters (i.e. identification

parameters: IP) and preliminary computations, leading to an approximate alignment

with experimental measurement data (MD). Initial IP estimations rely on testing,

engineering discernment, and virtual computational simulations, with refinements

occurring in later stages. IP is regarded as random variables represented by probability

distributions, such as rectangular or Gaussian distributions. Monte Carlo simulations

are utilized to produce random IP realizations, with Latin Hypercube Sampling (LHS)

being the favored technique. Probable statistical correlations among parameters

are also taken into account to enhance inverse analysis and preserve computational

model coherence. Several deterministic calculations are executed using random IP

realizations (y), resulting in a statistical set of virtual responses (p). The suitable

number of simulations is contingent upon factors like problem intricacy, neural

network configuration, and IP variability. Random realizations (y) and computational

model responses (p) serve as the basis for training an artificial neural network. This

vital step is exemplified by a nonlinear load-deflection curve encompassing both

pre-peak and post-peak behaviors. The trained ANN is employed to pinpoint the

optimal IP set (yopt) that achieves the highest concordance with MD when used as

input for network simulations. Lastly, the results are validated by computing the

computational model with the optimal parameters (yopt) and contrasting the output

with MD to evaluate the effectiveness of the inverse analysis.

2.4.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a type of computational model inspired by the

structure and function of the human brain. ANNs are composed of a large number
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of simple processing elements, or neurons, which are connected to each other via

weighted connections. Each neuron receives input signals from other neurons or

from external sources, processes these signals using a mathematical function, and

produces an output signal that is transmitted to other neurons in the network. There

are numerous terms used to describe the field of artificial neural networks, including

connectionism, parallel distributed processing, neurocomputing, natural intelligent

systems, machine learning algorithms, and more [129].

Artificial neural networks have a long and rich history, dating back to the early days

of computing. In the 1940s, researchers such as McCulloch and Pitts [151] began to

explore the idea of modeling biological neurons using electronic circuits. This led to

the development of the first artificial neuron model, which consisted of a simple binary

threshold function that could be used to model logical operations. In the 1950s and

1960s, sophisticated neural network models are introduced, such as the perceptron

and the adaptive linear neuron [152, 153]. These models were capable of learning

from examples and could be used for pattern recognition and classification tasks. In

the 1970s and 1980s, new types of neural network models are introduced, such as the

Hopfield network [154] and the backpropagation algorithm [155]. These models were

capable of learning more complex patterns and could be used for tasks such as image

and speech recognition. In the 1990s, the field of ANNs experienced a resurgence

of interest, driven in part by the development of more powerful computers and the

availability of large datasets. Researchers began to develop new types of neural

network models, such as the radial basis function network and the self-organizing

map. In recent years, the field of ANNs has continued to evolve and grow, with new

developments such as deep learning and convolutional neural networks. These models

have achieved impressive results in a variety of fields, such as computer vision, natural

language processing, and speech recognition.

The structure and function of ANNs can vary widely depending on the specific

application, but they typically consist of multiple layers of neurons organized in a

hierarchical fashion. The input layer receives raw data from the outside world, while

the output layer produces the final output of the network. In between the input and

output layers, there may be one or more hidden layers of neurons that process the

input signals in increasingly complex ways. The interconnections within an artificial

neural network are typically denoted by numerical weights, signifying the magnitude

and direction of signal transmission between neurons. Throughout the training

process, these weights are modified according to the input-output pairs from a dataset,

enabling the network to generate accurate outputs for specific inputs. ANNs are a

potent method for addressing numerous real-world challenges. They can enhance

performance and adapt to environmental changes through experiential learning.
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Moreover, ANNs can manage incomplete or noisy data and excel in scenarios where

problem-solving rules or steps are undefined. Their straightforward implementation

and substantial parallelism render them highly efficient. The most significant

advantage of ANNs is their capacity to function as an arbitrary approximation

mechanism that learns from observed data. However, their utilization necessitates a

solid comprehension of the underlying theory. With proper selection of the model,

cost function, and learning algorithm, the resulting ANN can exhibit remarkable

robustness. The following subsection provides a review of several typical types of

artificial neural networks.

2.4.1.1 Feed-Forward Neural Networks

Feedforward neural networks (FFNNs) are a class of artificial neural networks

characterized by the unidirectional flow of information from input to output layers

without any feedback loops [156]. These networks consist of multiple layers of

interconnected neurons, including an input layer, one or more hidden layers, and

an output layer [157]. Each neuron within a layer is connected to every neuron in

the subsequent layer through weighted connections, where the weights signify the

strength and direction of the signal transmission.

In a feedforward neural network, the input data traverses through the network in a

single direction, undergoing a series of transformations as it passes from one layer to

the next. The neurons in the hidden layers apply activation functions to the weighted

sum of their inputs, introducing nonlinearity into the network [158]. Common

activation functions include the sigmoid, hyperbolic tangent, and rectified linear unit

(ReLU) functions [159].

Training a feedforward neural network entails adjusting the weights of the connections

to minimize a predefined cost function, which quantifies the discrepancy between

the network’s predicted output and the actual target values [160]. Gradient-based

optimization methods, such as stochastic gradient descent (SGD) or more advanced

variants like Adam, are typically employed to optimize the weights during the training

process [161]. The backpropagation algorithm, a fundamental technique in training

feedforward neural networks, computes the gradient of the cost function with respect

to each weight by applying the chain rule of calculus [155].

Feedforward neural networks have found extensive applications across various

domains, including image and speech recognition [162], natural language processing

[163], and financial forecasting [164]. Despite their simplicity and lack of recurrent

connections, FFNNs have demonstrated the ability to solve complex problems by

45



approximating arbitrary functions [165]. However, their performance is limited when

addressing tasks that require the processing of sequential or temporal data, as they lack

the inherent memory and feedback mechanisms present in recurrent neural networks

(RNNs) and other more sophisticated architectures [166].

The information in a feed-forward network flows from the input layer through the

hidden layers to the output layer, without any feedback loops. The output of a neuron

in a layer is computed using the following equations:

z(l)j =
Nl−1
∑

i=1

w(l)ji a(l−1)
i + b(l)j , (2.65)

a(l)j = f (l)(z(l)j ), (2.66)

where l denotes the layer number, Nl−1 is the number of neurons in layer l − 1, w(l)ji

is the weight connecting neuron i in layer l − 1 to neuron j in layer l, a(l−1)
i is the

activation of neuron i in layer l − 1, b(l)j is the bias term of neuron j in layer l, z(l)j is

the weighted input to neuron j in layer l, a(l)j is the activation of neuron j in layer l,

and f (l)(·) is the activation function of layer l.

Training a feed-forward neural network involves adjusting the weights and biases to

minimize the difference between the predicted outputs and the actual outputs for

a given set of training examples. This process is typically done using a supervised

learning algorithm, such as gradient descent combined with backpropagation. The

objective is to minimize a loss function, Ev(w, b), which measures the error between

the predicted outputs and the true outputs:

Ev(w, b) =
1
N

N
∑

i=1

1
2
( ŷi − yi) , (2.67)

where N is the number of training examples, ŷi is the predicted output and yi is the

true output for the i-th training example. A flowchart for definition, training and

validation of a back-propagation feed-forward neural network is given in Figure 2.14.

During the training process, the dataset is often split into two or more parts: a training

set and a validation set. The training set is used to adjust the weights and biases of the

network, while the validation set is used to evaluate the performance of the trained

model and to prevent overfitting. Overfitting occurs when the model learns to perform

very well on the training set but does not generalize well to new, unseen data. By
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monitoring the performance on the validation set, we can stop the training process

when the performance on the validation set starts to degrade, a technique known as

early stopping.

2.4.1.2 Radial Basis Function Networks

Radial basis function networks (RBFNs) are a specific class of feedforward artificial

neural networks that utilize radial basis functions (RBFs) as activation functions

within the hidden layer neurons. RBFNs have gained significant attention in the

field of machine learning and pattern recognition due to their excellent approximation

capabilities, fast training process, and simple structure [167–169].

The architecture of RBFNs typically consists of three layers: an input layer, a hidden

layer with RBF neurons, and an output layer. In the hidden layer, each neuron

computes the Euclidean distance between the input vector and its center vector, then

applies a radial basis function to this distance. The most commonly used RBF is the

Gaussian function, which has the advantage of smoothness and locality [167]. The

output layer consists of linear neurons that perform a weighted sum of the hidden

layer outputs to generate the final output [170].

RBFNs have been employed in various applications such as function approximation,

classification, regression, and time series prediction [157, 171]. One of the primary

advantages of RBFNs is their ability to approximate any continuous function to

arbitrary accuracy, given sufficient hidden layer neurons [169]. Additionally, RBFNs

offer a more localized response in comparison to other feedforward networks, such as

multilayer perceptrons (MLPs), which rely on global basis functions [168].

The output of a radial basis function network (RBFN) can be defined as a function of

the inputs, weights, and centers of the radial basis functions. Specifically, the predicted

output for class k, denoted yk, is given by:

yk =
H
∑

j=1

wk j ∗φ(∥x − c j∥) (2.68)

where x represents the input vector, c j is the center of the jth radial basis function,

wk j is the weight associated with the jth radial basis function for class k, and φ(·) is

the radial basis function.

To train an RBFN, the error between the predicted outputs and the true outputs is

minimized using a least squares approach. The error is given by:
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E =
1
2
∗

N
∑

n=1

K
∑

k=1

(ynk − ŷnk)
2 (2.69)

where N is the number of training samples, K is the number of classes, ynk is the true

output for the nth sample and kth class, and ŷnk is the predicted output for the nth

sample and kth class. A flowchart for definition, training and validation of a radial

basis function neural network is given in Figure 2.15.

A General Regression Neural Network (GRNN) is a type of radial basis function

network that is specifically designed for regression tasks. GRNN is a one-pass learning

algorithm that offers fast learning and smooth function approximation [172]. GRNN

is a single-pass learning algorithm with excellent generalization capabilities, making

it well-suited for function approximation, prediction, and classification tasks.

In GRNN, the pattern layer consists of neurons, each representing a data point from

49



the training set. These neurons employ radial basis functions, such as Gaussian

functions, as activation functions to measure the similarity or distance between the

input and the stored data points [172]. The width of the radial basis functions,

known as the smoothing parameter or spread constant, influences the network’s

performance and can be optimized based on the problem at hand. The summation

layer consists of two sets of neurons, one for the weighted sum of the radial basis

function outputs (the numerator) and another for the sum of the activation values

(the denominator). The output layer computes the ratio of the weighted sum and the

sum of the activation values, yielding the network’s final output, which corresponds

to the function approximation or prediction.

GRNN’s single-pass learning algorithm, smooth decision boundaries, and ability to

avoid overfitting make it an attractive choice for various applications, including time

series forecasting, classification, and regression tasks.

Architecture of GRNN consists of an input layer, a pattern (or radial basis) layer, a

summation layer, and an output layer. The output of a GRNN is calculated using the

following equation:

y(x) =

∑N
i=1 wiK(

∥x−xi∥
σ )yi

∑N
i=1 K( ∥x−xi∥

σ )
, (2.70)

where N is the number of training examples, x is the input vector, xi is the i-th training

input vector, yi is the corresponding target output, wi is the weight associated with

the i-th training example, σ is the kernel width parameter, and K(·) is the radial basis

function kernel.

Training a GRNN is straightforward, as it is a one-pass learning algorithm. The training

phase consists of setting the centers of the radial basis functions to the input vectors of

the training examples and the corresponding weights to the target output values. The

only parameter that needs to be determined during the training process is the kernel

width parameter, σ, which controls the smoothness of the function approximation.

The selection of σ can be done using techniques such as cross-validation or trial and

error.

Similar to other neural networks, the dataset for training a GRNN is usually divided

into a training set and a validation set. The training set is used to determine the centers

of the radial basis functions and the corresponding weights, while the validation set is

employed to evaluate the performance of the trained model and to select the optimal

kernel width parameter, σ. By monitoring the performance on the validation set,
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Figure 2.16 Generalized Regression Neural Network

we can avoid overfitting and choose the best value for σ that provides a balance

between fitting the training data and generalizing to new, unseen data. A flowchart

for definition, training and validation of a radial basis function neural network is given

in Figure 2.16.

2.4.1.3 Other Types of Artificial Neural Networks

Kohonen Self-Organizing Networks, also known as Self-Organizing Maps (SOMs), are

a type of unsupervised learning algorithm introduced by Teuvo Kohonen in the early

1980s [173]. SOMs are employed primarily for dimensionality reduction and data

visualization tasks, where they preserve the topology and relative distances of the
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input data in a lower-dimensional space. SOMs consist of an array of interconnected

neurons organized in a grid-like structure that adapt to the input patterns through

competitive learning, thereby forming a spatial representation of the input data [174].

Recurrent Neural Networks (RNNs) are a class of artificial neural networks

characterized by the presence of feedback connections, which allow the network to

exhibit dynamic temporal behavior and store information over time [175]. RNNs are

particularly effective in dealing with sequential data and have been widely applied

to tasks such as natural language processing, time series prediction, and speech

recognition [176, 177]. The most popular RNN architectures, Long Short-Term

Memory (LSTM) [166] and Gated Recurrent Units (GRU) [178], address the vanishing

gradient problem commonly faced by traditional RNNs.

Hopfield Networks, introduced by John Hopfield in 1982, are a type of recurrent

neural network that function as associative memory systems [154]. Hopfield networks

store patterns in their weight matrix and can recall the stored patterns when

provided with partial or noisy input. These networks are characterized by their

symmetrical weight matrix, which ensures energy minimization and convergence

to stable states. Hopfield networks have been applied to various tasks, including

optimization problems and image recognition [179].

Fuzzy Neural Networks are a hybrid approach that combines the principles of

fuzzy logic and artificial neural networks, aiming to overcome the limitations of

both techniques and improve the learning and generalization capabilities [180].
FNNs employ fuzzy reasoning within the network structure, enabling them to

handle imprecise, uncertain, or noisy data more effectively than traditional neural

networks. Applications of FNNs include control systems, decision-making, and pattern

recognition [181].

2.4.1.4 Training Set Preparation and Partitioning Techniques

The training and validation of artificial neural networks require a careful selection of

the dataset partitioning technique. This section provides an overview of the various

partitioning techniques commonly used in ANNs.

Proper partitioning of a dataset is crucial for training and validating artificial neural

networks (ANNs) to ensure the generalization of learned models in regression tasks

[157]. There are several approaches to divide the dataset into training and validation

sets:

The holdout technique entails randomly splitting the dataset into two separate subsets
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for training and validation purposes. The ANN is trained using the training subset and

validated against the validation subset to evaluate its performance and generalization

capabilities. While simple, this method may result in a high variance performance

assessment, particularly for smaller datasets [158].

k-Fold cross-validation addresses the variance issue of the holdout method by dividing

the dataset into k equal-sized folds. The ANN is trained and validated k times, with

each fold being used as a validation set exactly once while the remaining k − 1 folds

serve as the training set. The overall performance estimate is obtained by averaging

the performance metrics across the k iterations [158]. This method provides a more

reliable estimate of the model’s performance, especially for small datasets.

This method represents a specific case of k-fold cross-validation where k is equal to the

dataset’s total number of data points [182]. The ANN is trained on the entire dataset,

excluding one data point, and validated against the single excluded point. This process

is repeated for every data point in the dataset. While leave-one-out cross-validation

offers a low-bias performance evaluation, it can be computationally demanding for

larger datasets.

The bootstrap method generates multiple resampled datasets by drawing samples with

replacement from the original dataset. Each resampled dataset is used to train an ANN,

and the model’s performance is assessed using out-of-bag samples not included in the

resampled dataset. Although the bootstrap method can yield a robust performance

evaluation, it may introduce bias due to the replacement sampling [182].

The choice of a partitioning technique depends on several factors, including the size

of the dataset, the distribution of the data, and the computational resources available

for training and validation. A careful selection of the partitioning technique is crucial

in ensuring that the ANN is properly trained and can generalize well to new data.

2.4.2 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a statistical technique commonly used for

generating well-spaced, representative samples from high-dimensional data spaces.

LHS has been applied in various fields such as optimization, simulation, and

uncertainty quantification [183–185]. In the context of artificial neural networks,

LHS can be used as a random sampling technique for training data preparation. By

randomly selecting input values from an LHS distribution, the resulting training data

is more likely to capture the full range of input space and avoid overfitting, resulting

in better generalization performance [182, 186].
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Figure 2.17 Latin Hypercube Sampling (LHS) for creating random population

LHS works by dividing each input variable range into equal intervals and randomly

selecting one sample from each interval. This ensures that each sample is well-spaced

and representative of the input space. There are various techniques for generating

LHS samples, including the algorithm proposed by [183], which iteratively generates

a set of Latin hypercube samples by randomly selecting one sample per column, and

then shuffling the rows.

In summary, LHS is a powerful and widely used statistical technique for generating

well-spaced, representative samples from high-dimensional data spaces. In the

context of artificial neural networks, LHS can be used as a random sampling technique

for training data preparation, leading to improved generalization performance.

Several techniques for generating LHS samples exist, including the algorithm proposed

by [183]. A simplified flowchart describing the LHS procedure is given with Figure

2.17.

2.4.3 Genetic Algorithms

Genetic algorithms (GAs) are a family of optimization techniques inspired by the

process of natural selection and evolution [131]. These algorithms have been widely
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applied to solve various optimization problems due to their ability to search large and

complex solution spaces effectively [187]. GAs employ a population-based approach,

and their primary components include selection, crossover, and mutation operations,

which mimic the principles of survival of the fittest, recombination, and random

genetic variations, respectively [188].

There are several types of genetic algorithms, including the canonical genetic

algorithm, the steady-state genetic algorithm, and parallel and distributed genetic

algorithms [189]. The canonical genetic algorithm is the most basic form, which uses

a fixed-size population and applies genetic operations to generate offspring, replacing

a portion of the population in each generation. In contrast, the steady-state genetic

algorithm updates the population continuously by replacing one or a few individuals

at a time. Parallel and distributed GAs exploit the power of parallel computing to

perform multiple searches simultaneously, improving the efficiency and effectiveness

of the search process.

Genetic algorithms differ from traditional optimization methods in several ways. First,

GAs work with a population of solutions, whereas traditional methods typically focus

on a single solution. This population-based approach allows GAs to explore multiple

regions of the search space simultaneously, reducing the risk of converging to a local

optimum [190]. Second, GAs operate on encoded representations of solutions rather

than the solutions themselves, allowing them to handle discrete and combinatorial

problems more effectively than gradient-based methods, which require continuous

and differentiable objective functions [131]. Third, GAs are adaptive and stochastic

in nature, which makes them more robust to changes in the problem and less sensitive

to the initial conditions, in contrast to deterministic methods that can be heavily

influenced by the starting point [189].

A typical genetic algorithm formulation consists of several key steps that guide the

search process towards an optimal solution in a systematic and efficient manner [131]:

• Initialization: The first step in a GA is to create an initial population of

candidate solutions, often generated randomly [187]. The population size,

which is an essential parameter, is determined based on the problem complexity

and computational resources available [189].

• Evaluation: Each individual in the population is evaluated using a fitness

function that quantifies the quality of the solution concerning the optimization

objective(s) [188]. The fitness function plays a crucial role in guiding the search

process, and its design significantly influences the algorithm’s performance
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[190].

• Selection: The selection operator chooses individuals from the current

population to create a mating pool, favoring those with higher fitness values.

Various selection strategies exist, such as roulette wheel selection, tournament

selection, and rank-based selection, each with its advantages and drawbacks

[189]. Roulette wheel selection, also known as fitness proportionate selection,

is one of the earliest and most widely used selection techniques [187]. In this

method, the probability of selecting an individual is proportional to its fitness

relative to the total fitness of the population. This approach ensures that fitter

individuals have a higher chance of being chosen for reproduction, but it may

lead to premature convergence if a small number of individuals dominate the

selection process [131]. Tournament selection, introduced by Goldberg and Deb

[191], addresses some of the issues associated with roulette wheel selection.

In this method, a fixed number of individuals are randomly chosen from the

population to participate in a "tournament," with the winner being the fittest

among them. By adjusting the tournament size, the selection pressure can be

controlled, allowing for a balance between exploration and exploitation [189].
Rank-based selection, proposed by Baker [192], focuses on the relative fitness of

individuals rather than their absolute fitness. The population is sorted according

to their fitness values, and the selection probability is assigned based on their

rank. This method reduces the impact of extremely fit individuals on the

selection process, promoting diversity and preventing premature convergence

[189]. Elitism, though not a standalone selection method, is often incorporated

into other selection techniques to ensure that the best individuals in the

population are preserved across generations [193]. By retaining the fittest

individuals, elitism can prevent the overall fitness from decreasing and help

maintain the search’s direction towards optimal solutions [188].

• Crossover: The crossover operator combines the genetic material of selected

parents to generate offspring, mimicking the process of recombination in natural

evolution [187]. Crossover methods include single-point, multi-point, and

uniform crossover, among others, and the choice of a suitable crossover operator

depends on the problem representation and the desired exploration-exploitation

trade-off [188]. Single-point crossover, introduced by Holland (1975), is the

simplest and most intuitive crossover method. In this technique, a random

crossover point is chosen along the parent chromosomes, and the genetic

material is exchanged after this point to create the offspring. Although easy

to implement, single-point crossover can disrupt beneficial building blocks in

the solutions, known as schemata, which may hinder the GA’s performance.
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Multi-point crossover, or n-point crossover, generalizes single-point crossover

by using multiple crossover points [131]. By exchanging genetic information at

several points along the chromosomes, multi-point crossover aims to preserve

schemata more effectively and reduce the disruptive effect of the recombination

process. Uniform crossover, proposed by Syswerda [194], is another popular

crossover technique that operates at the gene level. Instead of using fixed

crossover points, uniform crossover randomly chooses which parent contributes

each gene to the offspring, with a predefined mixing ratio. This method allows

for a more fine-grained exploration of the search space and can be particularly

beneficial when the problem representation does not exhibit strong locality.

Order-based crossover methods, such as partially mapped crossover (PMX) by

Goldberg and Lingle [195] and cycle crossover by Oliver et al. [196], have been

specifically designed for permutation-based problems.

• Mutation: The mutation operator introduces small random perturbations in the

offspring’s genetic material to maintain diversity in the population and prevent

premature convergence [131]. Mutation rates and strategies vary depending

on the problem and representation, with common approaches including bit-flip,

swap, and Gaussian mutation [189].

• Replacement: The new offspring are integrated into the population, replacing

some or all of the current individuals, depending on the GA variant (canonical,

steady-state, or others) [190]. Replacement strategies can be generational,

where the entire population is replaced, or elitist, where the best individuals

are preserved to ensure that the overall fitness does not decrease [188].

• Termination: The algorithm iterates through steps 2-6 until a termination

criterion is met, which could be a predefined number of generations, a

convergence threshold, or a combination of factors.

A simplified flowchart of the process is also given in the Figure 2.18. The main

challenge in inverse analysis lies in the ill-posed nature of the problems, which

often exhibit non-uniqueness, instability, or non-linearity in the solution space [197].
Genetic algorithms (GAs) have been employed as a popular and effective optimization

technique to address these challenges in inverse analysis [198]. The population-based

search mechanism and global optimization capabilities of GAs make them well-suited

for solving ill-posed inverse problems [199]. GAs have been used in various

applications, including the identification of material parameters in solid mechanics

[200].
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Figure 2.18 Genetic Algorithm with Single Point Crossover
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2.4.3.1 Multiobjective Optimization

In practice, the process of calibrating or validating models typically involves

minimizing discrepancies between observed and simulated data across several

performance metrics. These metrics can be in conflict with one another, and

optimizing one may lead to the deterioration of another. Multi-objective optimization

algorithms, such as NSGA-II, provide a means to navigate these trade-offs and identify

a diverse set of Pareto-optimal solutions that represent the best compromise between

the competing objectives.

Multiobjective optimization, also known as multi-criteria or multi-objective decision

making, is an optimization process where multiple conflicting objectives must be

optimized simultaneously [190]. In real-world applications, it is often necessary to

balance trade-offs between various objectives, as improving one may result in the

degradation of another. Genetic algorithms (GAs) have emerged as a powerful tool

for solving multiobjective optimization problems due to their population-based search

mechanism and inherent parallelism [201].

In multiobjective optimization, the concept of Pareto optimality is of critical

importance. A solution is said to be Pareto optimal if no other solution can improve one

objective without worsening another [190]. The goal of multiobjective optimization

using GAs is to identify a set of Pareto-optimal solutions that provide decision-makers

with a range of alternatives, thereby enabling a better understanding of the problem’s

solution landscape [202]. Multi-objective optimization encourages the consideration

of multiple performance criteria during the inverse analysis process. This can

lead to better model performance, as calibrating a model to multiple objectives

simultaneously can help identify deficiencies or biases that might be overlooked when

optimizing for a single objective.

Several multiobjective genetic algorithms have been proposed in the literature, such

as the Non-dominated Sorting Genetic Algorithm (NSGA-II) [203], the Strength

Pareto Evolutionary Algorithm (SPEA2) [204], and the Multiobjective Evolutionary

Algorithm based on Decomposition (MOEA/D) [205]. These algorithms differ in their

selection, crossover, and mutation operators, as well as their strategies for handling

the Pareto front and maintaining diversity among the solutions [201].

A critical aspect of multiobjective optimization with GAs is the selection of appropriate

performance metrics to assess the quality of the obtained Pareto front. Common

performance metrics include the hypervolume indicator, the generational distance,

the inverted generational distance, and the epsilon indicator [206]. These metrics

provide insights into the convergence, diversity, and distribution of the solutions along
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the Pareto front [201].

The optimization performance of genetic algorithms is influenced by multiple factors,

each playing a critical role in determining the efficiency and effectiveness of the

search process [131, 207]. Appropriate population size and initialization are

vital for adequate search space exploration and convergence [208]. The fitness

function should be well-designed to guide the GA towards optimal solutions [131].
Selection strategy, crossover operator, and mutation operator and rate are crucial for

balancing exploration and exploitation [190]. Furthermore, the replacement strategy

determines the integration of offspring into the population, affecting convergence

behavior [208]. Termination criteria control the stopping point of the algorithm,

impacting overall performance. Additionally, algorithm variants and problem

representation can influence the efficiency of the search process [207].

2.4.3.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

The Non-dominated Sorting Genetic Algorithm II is a multi-objective optimization

algorithm that has gained widespread recognition in recent years due to its robust

performance and adaptability in solving various optimization problems. Introduced

by Deb et al. [203], the algorithm is designed to tackle the challenges posed by multiple

conflicting objectives in the optimization landscape. It employs a non-dominated

sorting approach coupled with a crowding distance measure to maintain diversity in

the population while evolving towards the Pareto-optimal front. The main procedure

of NSGA-II involves the following steps:

• Initialization: A population of candidate solutions is randomly generated,

where each solution is represented by a set of decision variables.

• Evaluation: Each candidate solution is evaluated by computing its fitness

based on multiple objective functions. The objective functions are typically

conflicting, meaning that improving one objective may lead to a decrease in

another objective.

• Non-dominated sorting: The candidate solutions are sorted into multiple levels

based on their non-domination relationships. A solution is non-dominated if

there is no other solution that is better in all objectives. Solutions in the first

level are non-dominated by all other solutions, solutions in the second level are

non-dominated by all solutions in the first level and so on.

• Crowding distance assignment: Solutions in the same level are then assigned

a crowding distance metric based on their distance to neighboring solutions.
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This metric is used to ensure that the diversity of the population is maintained

during selection.

• Selection: A new population is then created by selecting solutions from the

different levels and based on their crowding distance metric.

• Variation: The selected solutions are then subjected to genetic operators such

as crossover and mutation to create new candidate solutions.

• Repeat steps 2 to 6 until a termination criterion is met, such as reaching a

maximum number of generations or a satisfactory level of convergence.

The main difference between NSGA-II and the standard multi-objective optimization

procedure lies in the non-dominated sorting and crowding distance assignment

steps. These steps are used to maintain the diversity of the population and avoid

premature convergence to a single optimal solution. In contrast, the standard

multi-objective optimization procedure typically uses a weighted sum method to

combine the objectives into a single fitness function, which can lead to a biased search

towards a particular region of the solution space.

The non-dominated sorting step is a crucial component of the NSGA-II algorithm,

which is used to partition the population of candidate solutions into different levels of

non-dominated fronts. Non-dominated sorting is performed based on the concept of

Pareto dominance, which is a fundamental principle in multi-objective optimization

that characterizes the superiority of one solution over another in terms of objective

function values.

2.4.4 Meta-Modelling in Inverse Analysis

Meta-modelling, also known as surrogate modelling, has become an essential

tool for addressing complex and computationally expensive engineering problems,

particularly in inverse analysis applications [209, 210]. Inverse analysis seeks

to estimate unknown parameters or system properties based on observed data,

often involving the minimization of a discrepancy between model predictions and

measurements [197]. Any instance of artificial neural network application intended

to establish relation between input and output parameters of an engineering problem

is also an example of meta-modelling.

Meta-modelling process for an inverse analysis problem, which aims to approximate

the objective function (e.g., cost) is done through several key steps. First, an

approximative model, such as an artificial neural network, is estimated, requiring
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numerous simulations, appropriate topology determination, and training to minimize

the error between the original and approximative models. This model maps a few

inputs to tens or hundreds of outputs, presenting a complex task for the artificial

neural network. Secondly, optimization is performed on the approximative model

using either experimental or reference simulated data to determine the corresponding

inputs. Following this, the first verification step involves comparing the identified

inputs with the original input data for a reference data pair, ensuring the accuracy

of the identification procedure. The second verification step entails simulating the

computational model using the identified input data and comparing the resulting

outputs to the reference outputs. Lastly, validation is conducted by executing

the optimization process on experimental data and using the identified inputs to

simulate the computational model. The obtained outputs are then compared with

the experimental outputs to assess the performance of the meta-model [129].

An interesting approach in meta-modelling involves the approximation of the error

function rather than the objective function [211]. By constructing a surrogate model

that captures the relationship between the input parameters and the error in the model

predictions, researchers can focus on minimizing the error directly. This approach can

lead to improved accuracy and robustness in the inverse analysis, especially when

dealing with noisy or incomplete data [212].

The main difference between meta-modeling of an error function and meta-modeling

of an objective function lies in the nature of the mapping between inputs and

outputs. In the case of meta-modeling the error function, an approximative function

(FF) is established to represent the error function (F). The inputs to this function

remain unchanged, but the number of outputs typically reduces to a single value,

representing the error. This process simplifies the task of approximating the error

function compared to the objective function. In certain situations, multiple objectives

may be incorporated into the error function, leading to a multi-objective formulation.

However, even in these cases, determining an approximative error function (FF) is

generally less complex than determining an approximative model (M).

On the other hand, when meta-modeling the objective function, the focus is on

approximating the original model (M) with its multiple outputs. This task can be

more complicated due to the increased complexity of the mapping between inputs

and outputs, and the need to accurately represent the relationships between them.
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3
IMPLEMENTATION OF THE SIMULATION FRAMEWORK

3.1 Overview

The literature survey presented in Chapter 2 revealed that the finite element method

provides possibilities for reinforced concrete joint modeling with varying degrees of

complexity. The complexity range starts with a single uniaxial spring and goes to

various plasticity models coupled with damage definitions. The survey also points out

that the complex is not always the best under every condition. Once the complexity

of the physical phenomenon increases, the numerical model representing it is often

computationally more expensive and requires more parameters, some of which are not

measurable directly from the physical definition of the problem. This often requires a

parametric search of the mentioned parameters for each individual simulation, where

the aim is to calibrate the simulation model parameters so that they can represent the

experimentally observed response.

A significant conceptual issue arises at this point: simulation models are created to

avoid costly experiments. Improving the fundamental understanding of a physical

problem (i.e., damage initiation and evolution in reinforced concrete beam-to-column

joints) requires the exploration of a large domain of effective variables that define

the problem of interest and its corresponding output. In other words, simulations are

done to imitate and replace experiments, but they need more and more experiments

to be refined.

Depending on the nature of the problem, this exploration process can be conducted

using a variety of methods. It is possible to conduct only experimental investigations,

but experiments can be expensive, time-consuming, and sometimes impractical,

especially in scenarios involving large-scale systems or hazardous conditions.

Additionally, certain phenomena may be challenging to capture experimentally due

to technical constraints. On the other hand, simulations offer the opportunity

for extensive parametric studies, enabling researchers to systematically vary input

parameters and observe their effects on the system’s behavior. This ability to
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explore the problem domain enhances the understanding of the underlying processes,

facilitates optimization efforts, and guides the design of experiments by identifying

critical variables and refining experimental protocols. Nevertheless, simulations

must be appropriately validated and verified to ensure their accuracy and reliability.

Validation involves comparing simulation results against experimental data to assess

the model’s ability to reproduce observed phenomena. Verification, on the other

hand, focuses on confirming the correctness of the simulation implementation. While

verification and validation establish the correctness and accuracy of the simulation

models, calibration ensures their ability to replicate experimental results. The extent

of calibration required may vary depending on the complexity of the simulation models

employed.

In complex simulation models (e.g., advanced finite element models employed in the

studies introduced in Chapter 5), calibration plays a crucial role due to the complicated

nature of the phenomena being studied. These models typically involve a variety

of variables, and in such cases, calibration becomes essential to refine the model’s

behavior and achieve agreement with experimental observations. By iteratively

adjusting model parameters, calibration seeks to minimize the discrepancies between

simulated and experimental results. This process helps improve the model’s predictive

capabilities and enhances its ability to capture the complex aspects of the real-world

system. However, it is crucial to consider the risks associated with calibration,

particularly the dangers of overfitting the model to specific experimental data.

Overfitting occurs when a simulation model becomes excessively tailored to match

experimental results, losing its generalization capabilities. This can lead to an overly

complex model that is unable to accurately predict outcomes beyond the specific

calibration data. Therefore, caution must be exercised to strike a balance between

fitting the model to experimental data and maintaining its ability to generalize

to broader scenarios. In contrast, relatively simplified simulation models (e.g.,

finite element models composed of uniaxial springs employed in the investigations

introduced in Chapter 4), often employed to handle computationally challenging

problems, may require less extensive calibration. These models, which will be referred

to as "simplified models" or "super-element models" in this manuscript, aim to capture

only the essential characteristics of the system while omitting relatively less significant

details and complexities. Due to their reduced complexity, simplified models may

rely on fewer adjustable parameters and exhibit less sensitivity to calibration. By

focusing on the fundamental aspects and key trends, these models can offer insights

into the underlying mechanisms. However, even in simplified models, calibration

is necessary to ensure that the fundamental behavior and key trends observed in

experiments are adequately represented. Simplified models often require fewer
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calibration parameters, making them less susceptible to overfitting and reducing the

risk of tailoring the model excessively to specific calibration data. On the other hand,

complex models, while capable of providing a more detailed representation, inherently

carry a higher risk of overfitting during the calibration process. With a larger number

of adjustable parameters, complex models possess a greater capacity to fit the model’s

behavior closely to the calibration data. However, this level of calibration precision

may come at the expense of generalization as the model becomes too finely tuned to

the specific calibration dataset. The lack of generalization in the existing model poses

a challenge for accurately representing the desired task. To achieve generalization,

calibration using a substantial amount of experimentally observed data is necessary.

However, conducting a large number of experiments is both difficult and costly.

This thesis proposes a solution by expanding the calibration dataset through the

application of artificial intelligence techniques. This approach is crucial in developing

a practical and robust joint element simulation, particularly for withstanding the

severe effects of earthquakes. By considering joint inelastic deformations, the

proposed method contributes to the advancement of performance-based design

and assessment processes. Complex models with sophisticated definitions often

fail to provide generalized solutions due to the need for extensive fine-tuning

and high computational costs. However, with instance specific calibration, the

beamcolumnjoint element in OpenSees, combined with the pinching4 material

definition, is explicitly proven to lead to realistic inelastic deformations in concrete

(shear), reinforcement, and bar-slip mechanisms [16, 65, 75, 79, 213]. The use of

explicit elements for joints has been recognized as a valuable strategy for enhancing

predictions regarding the failure mode and characteristic behavior of reinforced

concrete frames. By explicitly considering joint behavior, a more comprehensive

evaluation of the structural response can be achieved [9, 10, 214].

The thesis focuses on developing and evaluating a calibration approach that is

supported by a larger domain of model parameters that can be covered solely by

experimental investigations. The Figure 3.1 illustrates the research concept. As it

is discussed in detail in Section 2, it is essential to emphasize that the accuracy of

this representation heavily relies on the proper definition of the pinching4 model

parameters. The material model requires two sets of model parameters: the first

is the definition of joint shear strain and shear stress envelope (envelopeParams),

and the second is the calibration parameters controlling the deterioration equations

(deteriorationParams). In Chapter 5 and Chapter 4, two distinct prediction models

on envelopeParams are proposed based on advanced finite element techniques and

artificial neural networks, respectively. For accurate calibration of deteriorationParams

for a given reinforced concrete joint sub-assemblage, another prediction model
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Figure 3.1 General organization diagram of the present research

which utilizes multi-objective optimization and artificial neural network techniques

is introduced in Chapter 6.

The MATLAB implementation of the simulation framework used in this investigation

is designed to be object-oriented, meaning that it uses objects to represent different

components of the simulation model. This approach allows for greater flexibility

and modularity in the code, making it easier to modify and extend as needed. A

brief introduction of the class structure and workflow of the simulation framework

is introduced in this chapter. Also, the beamcolumjoint element and pinching4

material formulations and the theoretical foundations on which they are based will

be explained in addition to the details given in Section 2.3.1.

3.2 The Open System for Earthquake Engineering Simulation

(OpenSees)

OpenSees, or Open System for Earthquake Engineering Simulation, is an open-source

software framework that specializes in simulating the behavior of structural and

geotechnical systems under seismic loading, developed by the Pacific Earthquake

Engineering Research Center (PEER) at the University of California, Berkeley.

OpenSees provides researchers and engineers with a powerful and flexible tool for

advancing the field of earthquake engineering through the development of innovative
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simulation models and techniques. The software is designed with a modular

architecture, allowing users to build complex, large-scale models using a combination

of pre-built and user-defined elements, materials, and solution algorithms.

One of the significant capabilities of OpenSees is its ability to simulate reinforced

concrete (RC) structures and joints. The software offers a wide array of element types

and material models specifically tailored for RC components. These elements and

models can accurately capture the non-linear behavior of concrete and reinforcing

steel, such as cracking, crushing, and yielding. Additionally, OpenSees can handle the

complex interaction between the reinforcement and the surrounding concrete, which

is crucial for understanding the behavior of joints under various loading conditions.

In the context of reinforced concrete joint simulation, OpenSees enables researchers

and engineers to study the performance of beam-column joints, slab-column joints,

and other types of connections commonly found in RC structures. The software

can account for various joint configurations and reinforcement detailing practices,

making it possible to evaluate the influence of different design choices on the

overall performance of the joint. Furthermore, OpenSees can simulate the impact

of confinement, shear transfer mechanisms, and bond-slip effects on joint behavior,

which are essential factors to consider in seismic design.

In structural engineering problems with any level of plasticity involved, consideration

of the assumption on the dissipation of plastic strains is quite important in terms

of accuracy and computational cost. Distributed plasticity models, also known as

continuous or fiber-based plasticity models, consider the plastic behavior distributed

along the entire length of the element. These models account for the gradual spread

of plasticity and provide a detailed representation of the strain distribution across

the cross section and along the length of the member. They typically involve the

integration of the stress-strain response of many individual fibers within a cross-section

to accurately capture the overall behavior. This method can provide a more accurate

and realistic representation of the structural response, but it comes with higher

computational cost due to the increased complexity and number of computations

involved [215]. Lumped plasticity models, or concentrated plasticity models, assume

that plastic deformation occurs only at discrete points within the structure, usually at

the ends of the elements. In these models, the interior of the member is assumed to

remain elastic, and all the inelastic behavior is concentrated into these plastic hinge

regions. These models are simpler and more computationally efficient than distributed

plasticity models, making them suitable for large scale problems or for preliminary

design studies where a detailed representation of the strain distribution is not required.

However, they might not be able to capture the detailed strain distribution as
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accurately as the distributed plasticity models [216]. The choice between lumped

and distributed plasticity models is a trade-off between computational efficiency and

the level of detail in the representation of the strain distribution. The choice of the

appropriate model will depend on the specific requirements of the analysis and the

characteristics of the problem. In the present study, beams and columns framing to

the joint element are modelled with distributed plasticity approach.

OpenSees is also widely acknowledged for its impressive assortment of capabilities

regarding material and element formulations. This software platform, with its diverse

methodologies for approximating plastic deformations, has found extensive use in

academic literature for simulating joint responses under cyclical effects. The versatility

and applicability of OpenSees in a variety of research contexts is demonstrated by

its extensive use in exploring the complexities of material behavior under different

loading conditions.

In this section, a comprehensive discussion is conducted on the general assumptions

and formulations that are essential for the finite element analysis of reinforced

concrete joints, with a focus on the application of super-elements. The objective is to

illuminate the nuances of selecting and using appropriate elements within the broader

context of OpenSees simulations. The impact that various assumptions and element

formulations can have on the accuracy and realism of simulated joint responses is of

particular interest.

3.2.1 Material definition

One of the standout features of OpenSees is its extensive material modeling

capabilities, which cover a broad range of material behaviors, allowing for

various simulation cases. Among many material models, a wide range of

constitutive formulations are given in uniaxialMaterial class where the stress-strain

(i.e. force-displacement) relationship is represented by a uni-axial implementation.

Discussion in this subsection will be introducing material models commonly used in

the simulation of reinforced concrete elements including beam-to-column joints.

Beyond the implementations provided for simple uniaxial constitutive relations

provided for linear elastic, elastic and perfectly plastic and elastic with no tension

material (e.g. Elastic, ElasticPP, ENT respectively), a large variety of material

formulations for complex non-linear constitutive stress strain relationship of concrete

and steel materials is implemented (or contributed by various researchers) in

OpenSees. For instance, Concrete01 material uses formulation provided by Scott et al.

[33] model with degraded linear unloading-reloading stiffness based on the findings
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Figure 3.2 Comparison of the response of the concrete material classes implemented in
Opensees for different loading histories

of Karsan and Jirsa [217] while assuming zero tensile strength. Concrete02 provides a

similar formulation but adding tension strength to the material with capability of linear

tension softening while Concrete03 uses a control parameter β that enables non-linear

definition for tension softening. An advanced implementation of concrete material

under cyclic loads is provided with Concrete04 material class using the compressive

strain stress path proposed by Popovics [218].

Similar to the concrete, various material classes for steel (or reinforcement steel) with

varying degrees of sophistication are provided. Steel01 is implemented based on the

bi-linear force deformation relation with kinematic hardening. The Steel02 material

class is similarly takes into account a bilinear deformation curve with smoother

transition. The theoretical formulation used in formulation introduced by Menegotto

and Pinto [219] and later improved by Filippou et al. [220]. As the simulation

results of uniaxial spring units with Steel01 and Steel02 material models shown in

Figure 3.3 present, there is very slight difference between the responses produced by

two material classes, mainly on the smoothing of the transition between elastic and

elastoplastic regime [221]. However, it is worth noting that smooth transition between

two regimes might help to solve convergence issues in finite element simulations of

complex numerical models.

Figure 3.2 and Figure 3.3 show the comparison of the concrete and steel material
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Figure 3.3 Comparison of the response of the steel material classes implemented in
Opensees for different loading histories

classes strain stress response under a series of displacement loading histories,

respectively. In the first run, strain is applied in one direction, specifically tension,

unveiling how the material deforms and responds to unidirectional tensile stress.

This contrasts to the second run, where strain is applied solely in compression,

providing insight into the material’s behavior under the opposing stress. The third

and fourth runs introduce cycling of tension and compression at a low maximum-strain

level. Here, the distinction lies in the starting point of the cycle, with the third run

beginning with tension and the fourth with compression. These runs grant us the

opportunity to explore the material’s hysteresis behavior and understand its capacity

to regain its original shape after deformation. Run five and six escalate the previous

procedure to a higher maximum strain level, testing the material’s resilience under

larger deformations. Again, the difference lies in the starting point, tension for the

fifth run and compression for the sixth. Runs seven through ten introduce a more

complex scenario. Here, numerous cycles with increasing amplitude are applied.

In the seventh run, these cycles go up to a high maximum-strain level but remain

solely in tension. This pattern is expected to repeat in the eighth run, assuming

it might be intended to be applied in compression. The last two runs add another

level of complexity by applying these increasing amplitude cycles in both tension and

compression. Run nine goes up to a low maximum strain level, while run ten goes up to

a high maximum-strain level. These latter runs particularly shed light on the material’s

fatigue behavior under both tensile and compressive loads. Through these diverse
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loading patterns, a comprehensive overview of the material’s mechanical behavior

under various conditions is obtained.

3.2.1.1 pinching4 class

Beyond the representation of the relation between strain and stress for the various

materials, uni-axial material class in OpenSees is also commonly used to define the

force-displacement of macro-models (e.g. super-elements) which are intended to

simulate the response of the structural elements but requiring model parameters do

not correspond to direct measurable physical quantities.

In Section 2.3.2, a brief discussion is made on the pinching4 material class,

its assumptions and formulation since it is commonly used in a wide range of

macro-models for reinforced concrete elements including joints. Among other

material classes implemented in the software, pinching4 is found particularly suitable

for modeling the hysteretic response of reinforced concrete joints or masonry

structures where significant pinching of the hysteresis loops is typically observed due

to crack opening and closing, shear distortion and bond deterioration [16, 75].

In this study, the focus has been centered on the simulation of reinforced concrete

joints, a critical component in structures that often exhibits complex behavior under

cyclic loading. To capture this nuanced response, the pinching4 material model in

OpenSees was chosen, largely due to its inherent ability to replicate the characteristic

’pinching’ phenomenon frequently observed in such joints. This phenomenon,

typically resulting from bond deterioration or other related mechanisms, manifests

as a narrowed or pinched shape of the hysteresis loops in the stress-strain behavior of

the material.

The pinching4 model through its detailed mathematical formulation presented in

Mazzoni et al. [222], allows for the accurate representation of this behavior, thereby

providing a reliable tool for predicting the response of reinforced concrete joints

under various loading conditions. It should be noted that, while other material

models exist within the literature that are capable of capturing complex hysteretic

behavior, the pinching4 model was selected specifically for its suitability for joint

simulations. As such, a comparative evaluation of these alternative material models

was not undertaken as part of this study.

pinching4 material is introduced following its definition in Mitra [65] since it is

used within the scope of the present study due to its proven reliability and stronger

connection of its parameters to the observable measures of a joint specimen.
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State I

State II State III

State IV

deformation

load

Figure 3.4 Backbone (red) and hysteretic response of pinching4 material [65]

The four material states in Figure 3.4 define the material model’s behavior under

diverse loading conditions. States I and II, user-defined input parameters, represent

the loading response envelope and can be adjusted to simulate hysteretic strength

degradation. The load-paths for states III and IV are redefined with each deformation

reversal. Additional load-deformation points establish state III and state IV load paths:

one reached during significant unloading and another where considerable reloading

occurs. For states III and IV, the load during unloading is defined as a fraction of the

absolute maximum attainable. This sets the end of the substantial unload phase. The

load-deformation point for substantial reloading in states III and IV is determined as a

fraction of the absolute maximum historic deformation demand and a fraction of the

load developed at the absolute maximum deformation demand.

Deformation history impact on response is determined by three damage rules that

govern degradation in unloading stiffness, deterioration in strength achieved at

previously unattained deformation demands, and deterioration in strength near

maximum and minimum deformation demands. Each rule utilizes a damage index, δ

defined with Equations 3.1 and 3.2.

δ =
�

α1(ḋmax)
α3 +α2(κ)

α4
�

≤ δl im (3.1)

d̂max = max
�

dmax

Dmax
,

dmin

Dmin

�

(3.2)

In equation 3.1, α are parameters tailored to fit experimental data, δl im represents

the maximum possible damage index value which is used for numerical stability, dmax

and dmin denote the maximum and minimum historic deformation demands, Dmax and
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Dmin indicate the positive and negative deformations at which strength loss starts in

states I and II, subscript i pertains to the current load step, and κ measures energy

dissipation under cyclic loading, as outlined in Equations 3.3 and 3.4. Accumulated

hysteretic energy is given by 3.5

κ=
Ei

Emonotonic
(3.3)

κ=
∑

�

�

�

�

du
4umax

�

�

�

�

(3.4)

Ei =

∫

histor y

dE (3.5)

Emonotonic equals the energy required to achieve Dmax under monotonic loading, du

corresponds to the displacement in a load-deformation history, and umax refers to the

deformation achieved up to the current load step i.

Stiffness and strength degradation are defined in Equations 3.6, 3.7, and 3.8. k

represents the unloading stiffness, dmax is the unloading stiffness damage index, fmax

is the maximum strength of the response envelope, δ f
i is the strength damage index,

dmax is the maximum historic deformation demand and reloading target, δd
i is the

reloading stiffness damage index, and subscripts i and 0 refer to load step i and the

initial load step, respectively.

ki = k0(1−δk
i ) (3.6)

fmax ,i = fmax ,0(1−δ
f
i ) (3.7)

dmax ,i = dmax ,0(1+δ
d
i ) (3.8)

In OpenSees, pinching4 model is implemented as a material class that its constructor

requires inputs to utilize the formulation described by Equations 3.1 - 3.8. The first

set of input parameters (referred to as envelopeParams in this study) control the basic

strain-stress behavior of the material. Brief description of the first set is given below.
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• stress1p, stress2p, stress1n, stress2n: These parameters represent the stress levels

at specific points on the stress-strain curve. stress1p and stress2p refer to positive

(tensile) stress levels, and stress1n and stress2n refer to negative (compressive)

stress levels.

• strain1p, strain2p, strain1n, strain2n: These parameters represent the strain

levels at specific points on the stress-strain curve. strain1p and strain2p refer

to positive (tensile) strain levels, and strain1n and strain2n refer to negative

(compressive) strain levels.

The second set of parameters are for controlling the deterioration (referred to as de-

teriorationParams in this study) features of the material

• rDispP, rForceP, uForceP, rDispN, rForceN, uForceN: These parameters represent

control points on the hysteresis loop, which describe the material’s behavior

under cyclic loading. The "P" parameters are for the positive (tensile) direction,

and the "N" parameters are for the negative (compressive) direction.

• gammaK1, gammaK2, gammaK3, gammaK4, gammaKLimit: These parameters

control the rate of deterioration in stiffness under cyclic loading. Different values

of gammaK correspond to different stages of deterioration.

• gammaD1, gammaD2, gammaD3, gammaD4, gammaDLimit: These parameters

control the rate of deterioration in energy dissipation capacity under cyclic

loading. Different values of gammaD correspond to different stages of

deterioration.

• gammaF1, gammaF2, gammaF3, gammaF4, gammaFLimit: These parameters

control the rate of deterioration in strength under cyclic loading. Different

values of gammaF correspond to different stages of deterioration.

• gammaE: This parameter controls the final asymptotic value of cyclic

deterioration.

Existing literature suggests that researchers have identified potential values for the

parameters of the ’pinching4’ material model (see Section 2.3.2). These parameters

are grouped into two sets, serving different purposes in the modeling process. The

first set forms the definition of the joint panel deformation, a crucial component for a

realistic simulation of the overall response envelope and inelastic joint deformations.

The second set corresponds to parameters recommended for calibration based on
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actual experimental data, although analytical approximations with varying level of

accuracy for the first set are also available. The ultimate goal of this study, as stated in

the Section 1.2, is to establish prediction models for pinching4 material usage, thereby

removing the need for experimental investigation for any given joint sub-assemblage.

3.2.2 Element Formulations

The Force Method and the Displacement Method are the two primary approaches

to structural analysis, as well as finite element analysis. Both are fundamentally

about solving the system of equations that comes from equilibrium, compatibility, and

constitutive relations. However, they differ in the primary unknowns they consider

and the procedures they use to solve the system.

The Force (flexibility) Method takes forces (or moments, in the case of rotational

degrees of freedom) as the primary unknowns. In this method, one assembles

a flexibility matrix and then solves the system of equations to obtain the forces.

Displacements are then computed as secondary results from these forces. This method

can be more computationally expensive than the displacement method, especially for

large structures, because it requires the inversion of the flexibility matrix. However,

it can be more accurate for certain types of problems, such as those involving large

displacements or nonlinear material behavior.

In the Displacement Method (also known as the stiffness method), displacements are

the primary unknowns. The procedure involves assembling a stiffness matrix (which

characterizes how resistant the structure is to deformation) and solving a system

of equations to obtain the displacements. Forces are then computed as secondary

results from the displacements. This method is most often used in practice, and it is

particularly well-suited to computer-based solutions due to its matrix structure.

In the domain of finite element structural analysis, a variety of structures are analyzed,

including trusses, beams, plates, shells, or combinations thereof. The stiffness method

is a common approach in this field, which involves discretizing the displacement field

of the structure and interpolating it in terms of ndof generalized displacement degrees

of freedom, symbolized by q. Under the framework of the stiffness method, the

displacement field u(x) is formulated as

u(x) = N(x)q (3.9)

The matrix N is defined as:
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N =







Nu(x) 0 0

0 Nw(x) 0

0 0 N v(x)






(3.10)

It is a 3× ndo f matrix which encompasses the interpolation function vectors Nu, Nw

and N v for displacement fields u, w and v respectively. For the deformation field d(x),
the following expression holds:

d(x) = B(x)q (3.11)

Here, the strain-displacement transformation matrix B houses first and second

derivatives of displacement shape functions, respecting kinematic relationships. On

incorporating the differential form ∆d of the deformation field equation into the

constitutive relation ∆D = k∆d, the ensuing relation is:

∆D(x) = k(x)∆d(x) = k(x)B(x)∆q (3.12)

This gives the force field increment ∆D(x). By invoking the principle of virtual

displacement, we obtain the equilibrium condition:

Q =

∫ L

0

BT (x)D(x)d x (3.13)

This leads to its linearized form:

kδq = R (3.14)

It signifies a force-displacement relation where Q stands for the element resisting

forces. The element stiffness matrix is given by:

K =
∂Q
∂ q
=

∫ L

0

BT (x)k(x)B(x)d x (3.15)

In this equation,∆q and R are vectors signifying displacement increments and residual

forces respectively. The parameter L denotes the element length.
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(a) (b)

Figure 3.5 Joint model proposed by (a) Lowes and Altoontash [16] and (b) Altoontash [75]

3.2.2.1 Lowes - Altoontash Model

Lowes and Altoontash [16] proposed a comprehensive methodology to model the

response of reinforced concrete beam–column joints under two-dimensional structural

analyses. The strategy was to introduce a four-node super-element characterized

by twelve degrees of freedom. The super-element encapsulated three essential

components: a shear-panel component, bar-slip springs, and interface-shear springs,

each contributing to the overall behavior of the joint in distinct manners. An

illustration of the model is given in Figure 3.5.(a).

The shear-panel component primarily modeled the loss of strength and stiffness, which

is attributed to the failure of the joint core. Bar-slip springs, which comprised eight

in total, emulated the loss of stiffness and strength induced by damage within the

anchorage zone. Lastly, the model also incorporated four interface-shear springs.

These were particularly crucial in capturing the diminished capacity for shear transfer

at the joint perimeter, a phenomenon that arises due to crack development.

The Lowes and Altoontash [16] employed a one-dimensional load-deformation

response model to predict the behavior of these constituent components within the

joint element [16]. This model manifested through a multi-linear response envelope,

a tri-linear unload-reload path, and three damage rules, each of which played a pivotal

role in governing the evolution of the response path. The specific unload-reload path

adhered to the definition of the pinching4 material, a concept extensively discussed in

Section 3.2.1.1.

To implement this general load-deformation response model successfully, specific
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calibration procedures were deemed necessary for each component of the element. In

cases where the joints possess moderate to high volumes of transverse reinforcement,

the researchers advocate the utilization of the modified compression field theory

(MCFT) [77]. This theory is instrumental in delineating the response of the shear

panel and supplying necessary parameters to simulate cyclic response effectively. The

bond-slip spring response was defined based on the assumption of a constant or

piece-wise constant bond-stress distribution within the joint. Various bond strength

values, contingent on different bond-zone conditions, were provided alongside

parameters that aid in simulating response under cyclic loading conditions. Lastly, the

interface-shear springs were assumed to possess an elastic behavior, largely attributed

to the dearth of experimental data available to calibrate these components.

Altoontash [75] presents a refinement to the Lowes and Altoontash [16] Joint Model,

a schematic representation of which is depicted in Figure 3.5.(b). This streamlined

version features four zero-length rotational springs situated at the interfaces of the

beam-column. The purpose of these springs is to replicate the end-rotations of

the member arising from bond-slip phenomena. In addition to this, a panel zone

rotational spring is incorporated to mimic the shear deformation that occurs within

the joint. The constitutive relation for the panel zone remains the same to the

model developed by Lowes and Altoontash [16]. This similarity ensures that the

calculation of the constitutive parameters, derived from structural properties and

experimental responses, remains consistent and comparable. This simplified model,

therefore, provides a more streamlined and efficient approach, while maintaining the

key features and accuracy of the original formulation.

3.2.2.2 Mitra - Lowes Model

Mitra and Lowes [213] proposed several key modifications to the joint model,

initially presented by Lowes and Altoontash [16], aiming to enhance the accuracy

of response predictions across a wide range of design parameters. These amendments

included a reconfiguration of the joint element where bar-slip springs are now located

at the centroid of the beam and column flexural tension and compression zones,

an advancement that augments the simulation of bar-slip spring force demands.

Simultaneously, a novel model was proposed for calibrating the joint-panel component

which, diverging from the uniform shear stress field in the previous model, adopts

a diagonal compression strut mechanism for internal load transfer. This effectively

simulates strength losses due to cyclic loading and anchorage-zone damage. Lastly, a

new bar-slip response model was proposed, which combines hysteretic strength-loss

with a model that evades negative stiffness until the reinforcing steel reaches its
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(a) (b)

Figure 3.6 External and internal (a) nodal displacements and component deformations (b)
nodal forces and component forces [79]

ultimate strength. This approach mitigates numerical instability issues and also refines

the unload-reload model to provide an accurate simulation of frictional resistance for

bars under tension and compression.

The joint element formulation, as proposed by Lowes and Altoontash [16], was

refined to enhance the simulation of the response in the anchorage zone. This

was accomplished by transitioning the position of the bar-slip springs from the joint

element’s periphery to the centroid of the compression and tension zones in the

beam and column flexural. Figure a illustrates the component deformations ∆i,

internal nodal displacements vi, and external nodal displacements ui. It is essential

to note that while the external nodes are shared between the joint element and the

surrounding beam-column elements, the internal nodes are exclusive to the joint

element. Standard sign conventions apply to the deformations of the bar-slip spring

and shear-panel. For the interface-shear springs, a positive shear deformation is

associated with positive external and null internal displacement. The component

deformations can be expressed in Equation 3.16.

h, w, ĥ, ŵ are as defined in Figure 3.6.(a). The bar-slip spring separation distance,

ĥ and ŵ, incorporated into Equation 3.16, provides an improved depiction of

the bar-slip response. Figure b presents the component forces fi, internal nodal

resultants Φi, and external nodal resultants Fi. The component forces are linked

to the component deformations via the one-dimensional load-deformation response

relationships. Imposing equilibrium at the internal and external degrees of freedom

allows the computation of the external nodal resultants and internal nodal resultants

from component forces in Equation 3.17.
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2h

0

0 0 0 1 0 −
ĥ
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(3.17)

The uniqueness of the internal element nodes to the joint element requires that a valid

element state is realized when the internal nodal resultants are null. This condition

can be employed to compute the four internal nodal displacements, vi, given the

external nodal displacements, ui, which are computed as part of the global solution

algorithm. Further details on the formulation can be found in Mitra [65].
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3.3 Implementation of the Analysis Framework

Within the scope of this study, an object-oriented framework is implemented in

MATLAB to effectively utilize the capabilities provided by the beamcolumnjoint

element and pinching4 material formulations provided in OpenSees. The framework

is designed to facilitate the manipulation of stored data and consists of a set of class

structures that hold the necessary information of the relevant objects and method

functions.

The central component of the framework is the Joint class, which serves as the main

entry point and is responsible for generating object instances. Each object instance

represents a specific joint specimen from the experimental database. These joint

objects have several capabilities:

• Retrieve and store measured displacement and force data from .csv file,

• Retrieve and parameter values associated to the physical features of the joint

sub-assemblage,

• Generate and store beam and column objects (instances of Frame class)

associated with the stored physical features,

• Generate and store beamcolumnjoint and pinching4material objects associated

with the physical features,

• Generate a tcl script file that creates beam and column sections, beam and

column elements framing to the joint, a joint element, boundary conditions,

displacement loading history and analysis options.

Once the tcl scripts are generated for all the joint specimens, the framework proceeds

with simulating the response of each instance. During the analyses, multiple instances

may be created for each experimental specimen, particularly when conducting a

parametric search focused on the pinching4 model parameters. After completing

the analyses, the simulated response for each instance is stored within the Joint

object. This allows for a detailed comparison between the experimental and simulated

responses, which is essential for evaluating the accuracy and performance of the

simulation. The criteria for evaluating the difference between experimental and

simulated responses are described in Chapter 6, and the accuracy of the simulation is

assessed based on these criteria.

A diagram which illustrates the simplified object interaction of between the relevant

classes are presented in Figure 3.3. The most basic unit in the framework is a
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Frame Joint

Pinching4 Material

RC Section

Figure 3.7 Simplified class diagram of the beamColumnJoint-pinching4 analysis framework

RCSection object which consists the information related to concrete material and

reinforcement configuration. Any instance of RCSection class can be associated to

an instance of a Frame class. For example, using RCSection constructor function, two

different rectangular section (with varying geometrical dimensions and reinforcement

configurations) can be created and related information can be inherited to an instance

of Frame class, which corresponds to an object represents a beam or column. Methods

defined in RCSection can compute confined strain-stress curve and create a rectangular

section which consists of rectangular Patch layers for concrete material and Straight

fibers for longitudinal reinforcement, and return a string variable that can be executed

in OpenSees tcl script to create a Fiber section.

A Frame object has the inherited properties of an RCSection as well as the spatial

definition of the member. It has a method to generate a OpenSees tcl command to

create nonlinearBeamColumn elements. Three or four frame objects can be constructed

as the subclass of a Joint object and one or two of them should be defined as beam

to construct a Joint object. Additionally, material properties and related methods

are inherited by a subclass named Pinching4Material which is capable of storing

model parameters of a particular pinching4 material definition and return OpenSees

command as string to generate related material.

In accordance with Section 3.2.1.1, the primary approach relies on the calibration

of the pinching4 material. In relation to the experiments outlined in Table 4.1, a

collection of Joint entities is created, each associated with distinct pinching4 objects

possessing different model parameters while the properties of the corresponding

Frame objects remain constant throughout this process. Matlab script which defines

the Pinching4Material class including its constructor function and the method function

that returns OpenSees command is given in Listing 3.8

Overall, the framework provides a systematic approach to analyze and assess the

behavior of beam-column joints using the beamcolumnjoint element and pinching4

material in OpenSees. By leveraging the object-oriented nature of the framework and

the capabilities of the associated classes, it enables efficient data management, model

generation, and simulation for multiple joint specimens in the experimental database.
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1 c l a s s d e f P inch ing4Mater ia l < handle
2 p r o p e r t i e s
3 s t r e s s 1 p ; s t r e s s 2 p ; s t r e s s 1 n ; s t r e s s 2 n ;
4 s t r a in1p ; s t r a in2p ; s t r a in1n ; s t r a in2n ;
5 rDispP ; rForceP ; uForceP ; rDispN ; rForceN ; uForceN ;
6 gammaK1; gammaK2; gammaK3; gammaK4; gammaKLimit ;
7 gammaD1; gammaD2; gammaD3; gammaD4; gammaDLimit ;
8 gammaF1; gammaF2; gammaF3; gammaF4; gammaFLimit ; gammaE;
9 mate r i a l Id

10 end
11 methods
12
13 % Const ruc tor
14 func t ion obj = Pinch ing4Mater ia l ( mater ia l Id , envelopeParams , de te r io ra t ionParams )
15 obj . ma te r i a l Id = mate r i a l Id ;
16 i f length ( envelopeParams ) ~= 8
17 e r ro r ( ' envelopeParams vec to r should conta in 8 parameters ' )
18 end
19 i f length ( de te r io ra t ionParams ) ~= 22
20 e r ro r ( ' de te r io ra t ionParams vec to r should conta in 22 parameters ' )
21 end
22 [ obj . s t re s s1p , obj . s t r e s s2p , obj . s t re s s1n , obj . s t re s s2n , ...
23 obj . s t ra in1p , obj . s t ra in2p , obj . s t ra in1n , obj . s t r a in2n ] = envelopeParams { : } ;
24 [ obj . rDispP , obj . rForceP , obj . uForceP , obj . rDispN , obj . rForceN , obj . uForceN , ...
25 obj . gammaK1, obj . gammaK2, obj . gammaK3, obj . gammaK4, obj . gammaKLimit , ...
26 obj . gammaD1, obj . gammaD2, obj . gammaD3, obj . gammaD4, obj . gammaDLimit , ...
27 obj . gammaF1 , obj . gammaF2 , obj . gammaF3 , obj . gammaF4 , obj . gammaFLimit , ob j . gammaE]

= deter io ra t ionParams { : } ;
28 end
29
30 % Method to generate OpenSees command
31 func t ion cmdStr = getOpenSeesCommand( obj )
32 cmdStr = s p r i n t f ( ' u n i a x i a l M a t e r i a l Pinching4 %d %f %f %f %f %f %f %f %f %f %f %f

%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f ' , ...
33 obj . mater ia l Id , obj . s t r e s s1p , obj . s t r e s s2p , obj . s t re s s1n , obj . s t re s s2n , obj .

s t ra in1p , obj . s t ra in2p , obj . s t ra in1n , obj . s t ra in2n , ...
34 obj . rDispP , obj . rForceP , obj . uForceP , obj . rDispN , obj . rForceN , obj . uForceN , ...
35 obj . gammaK1, obj . gammaK2, obj . gammaK3, obj . gammaK4, obj . gammaKLimit , ...
36 obj . gammaD1, obj . gammaD2, obj . gammaD3, obj . gammaD4, obj . gammaDLimit , ...
37 obj . gammaF1 , obj . gammaF2 , obj . gammaF3 , obj . gammaF4 , obj . gammaFLimit , ob j . gammaE)

;
38 end
39 end
40 end

Figure 3.8 Class Definition for Pinching4Material Class
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4
ARTIFICIAL NEURAL NETWORKS IN JOINT MODEL

PARAMETER IDENTIFICATION

4.1 Overview

In this study, a predictive model for the shear strain-shear stress response in joint

cores using artificial neural network methods was developed. To achieve this, an

experimental database was collected from the available literature based on a set of

selection criteria, including material type, loading conditions, and joint geometry. The

most influential parameters on the shear strain-stress response were identified using

correlation matrices, which were then used as input parameters for the neural network

models. Several neural network models were trained using various architectures and

training algorithms, and their performance was evaluated using a range of metrics,

including mean squared error and coefficient of determination. The best-performing

neural network model was selected based on its ability to accurately predict the shear

strain-stress response for new input parameters. This model was validated using a

hold-out dataset and compared to the available prediction models in the literature,

demonstrating superior performance.

4.2 Problem Definition and Experimental Database

As Chapter 3 discusses, definition of reinforced concrete joint deformation in

any particular numerical model requires a priori information of shear strain-stress

information of the joint core. A comprehensive review on the available prediction

models including analytical, statistical and numerical is presented in Chapter 2.

Review on the available literature has shown that analytical approaches have

limitations to define a generalized behaviour taking all of the relevant parameters

into account. Despite the fact all of these models led to satisfactory results within

their calibration databases, their applicability to an arbitrary joint configuration is

disputable [223]. Empirical models are typically dependent on the dataset and the

used statistical method; thus, generalization is remained as an issue so far. Empirical
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models have other issues associated to their scope and reliability [224]. In this

study, a generalized solution for this problem through machine learning techniques

is sought. Ability of this methodology to provide a global and reliable solution is also

investigated.

The problem defined in the Chapter 3 is processed as a meta-modelling problem. The

major objective is assigned as building a collection of meta-models which predict shear

strain and stress values using characteristic physical properties of an arbitrary joint

sub-assemblage. Training and validation data for the prediction model is provided

from the experimental studies available in the literature.

In collection of experimental data, 120 reinforced concrete joint sub-assemblages

tested under monotonic or cyclic conditions carried out by Joh et al. [34], Ehsani

and Wight [48], Endoh et al. [50], Fujii and Morita [51], Kaku and Asakusa [52],
Kaku and Asakusa [53], Ehsani and Alameddine [54], Noguchi and Kashiwazaki [55],
Oka and Shiohara [56], Guimaraes et al. [57], Walker [60], Shin and LaFave [74],
Leon [97], Megget [225], Joh et al. [226], Kitayama et al. [227], Kurose et al. [228],
Meinheit and Jirsa [229], Kitayama et al. [230], Tsubosaki et al. [231], Raffaelle and

Wight [232], Goto and Joh [233], Ishida et al. [234], Yoshino et al. [235], Suzuki and

al. [236], Goto and Joh [237], Teng and Zhou [238], Kusuhara et al. [239], Morita et

al. [240], Watanabe et al. [241], Noguchi and Kurusu [242], and Joh et al. [243–245]
are gathered through following criteria:

• The sub-assemblage is tested under quasi-static loading conditions,

• No retrofitting material (e.g. FRP) is introduced to the sub-assemblage,

• The load is applied to the beam free-end while the column ends are simply

supported both for interior and exterior joint sub-assemblages,

• Joint shear stress with respect to the strain is reported,

• The sub-assemblage is loaded only in-plane,

• Reinforcement detailing is not changed between framing beams for exterior

joints and framing columns for both exterior and interior joints.

• Tested sub-assemblage experienced joint shear failure (J) or joint shear failure

in conjunction with beam yielding (BJ).

The basic statistical information about the experimental database is presented in Table

4.1. The detailed information of the collected data is provided in Table A in Section
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A. It is worth noting that the provided dataset includes different experimental sources

introduced in Section 2 considering the defined selection criteria listed above.

Table 4.1 Statistical description of the continuous variables

Var. Min Max Mean SD Histogram Var. Min Max Mean SD Histogram

fc 17.10 92.10 37.27 15.14 f y j 235 955 442.27 171.81

f y b 325 1091 516.52 187.90 f yc 245 1091 482.86 147.73

ρ j 0 0.024 0.006 0.0045 ρb 0.006 0.032 0.017 0.0058

ρc 0.011 0.068 0.030 0.012 b j 190 457 286.61 69.94

e 0 140 17.45 38.49 n 0 0.48 0.12 0.12

bb 150 406 237.48 76.17 hb 220 559 365.23 95.01

bc 220 508 335.60 80.72 hc 200 508 325.05 87.70

The basic statistical information about the physical parameters included in the

experimental database is presented in Table 4.1. fc is the compressive strength of the

concrete material, f y j is the yielding strength of the joint transverse reinforcement,

f y b is the yielding strength of the beam longitudinal reinforcement, f yc is the yielding

strength of the column longitudinal reinforcement, ρ j is the volumetric reinforcement

ratio in joint core, ρb is the longitudinal reinforcement ratio of the beam, ρc is the

longitudinal reinforcement ratio of the column, b j is effective joint width [37], e is the

eccentricity, n is the ratio between the applied axial force and capacity, bb and hb are

the beam width and depth, bc and hc are the column width and depth in respective

order.

Figure 4.1 presents visual representations of the correlation values between the

introduced parameters and the observed shear strength (a) as well as the shear strain

(b) recorded at the point of shear strength exceedance in an effort to simplify the

dataset for the prediction model and improve a preliminary understanding of the

parameters affecting the targeted values. The results of the correlation analysis
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indicate that the compressive strength of the concrete material, denoted as fc, has a

significant impact on joint strength. Additionally, the axial load ratio n, joint transverse

reinforcement ratio ρ j, beam transverse reinforcement ratio ρb, and yield strength of

the beam longitudinal reinforcement f y b exhibit a moderate level of influence on joint

strength while the remaining parameters have a relatively insignificant impact on the

ultimate stress attained in the core of the joint. In addition to the stress response,

the shear strain values corresponding to the point of ultimate stress measurement

are examined. Findings indicate that it can be inferred that the joint shear strain

response is moderately influenced by several parameters, including f y j, b j, bb, and

hb, in addition to the other parameters that were identified as impacting the stress

response. It is noteworthy that the influence of fc on the shear strain is comparatively

lower than its effect on the stress.

It is important to acknowledge that the distribution of variables in the sampling

space, as depicted in Table 4.1, is non-uniform. Therefore, it is possible that a

correlation analysis that includes a more comprehensive representation of all relevant

parameters may produce slightly different outcomes. However, it is essential to bear in

consideration that the correlation analysis primarily provides a preliminary assessment

of the most influential input variables for the objective of the proposed predictive

model.

The methodology employed involves the identification of three crucial points on the

curve that represents the stress-strain relationship within the joint core. Point A

represents the initial significant change in the slope (stiffness) of the curve. The

aforementioned alteration is indicating of the initiation of shear crack propagation

within the joint’s core. At this point, the strain and stress values are denoted as γA

and τA correspondingly. In this study, the process of identifying Point A is aided by the

determination of the peak value of the first derivative of the curve.

Point B is identified as the location where the greatest stress response is observed

throughout the recorded history. The values of strain and stress at this particular

location are denoted as γB and τB, respectively. It is noteworthy that the symbol τB

denotes the shear capacity. The reliability of the proposed model can be evaluated

by comparing its τB predictions with those of previous studies, which can provide

valuable insights.

The final point of interest is Point C, which is characterized by the highest observed

deformation level. The values of strain and stress at this particular point have been

designated as γC and τC , respectively. A significant obstacle in determining this

juncture pertains to its correlation with the intrinsic mechanical characteristics of the
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(a)

(b)

Figure 4.1 Visualization of correlation matrix between parameters presented in Table 4.1
and observed (a) joint shear strength τ j and (b) shear strain when the joint shear strength is

achieved
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Figure 4.2 Points A, B and C for the experimental setup tested by (a) Meinheit and Jirsa
[229] and overall database

articulation. In some cases, the capacity to quantify deformation may be restricted

by experimental constraints and measurement instrumentation, which may result in

the ultimate deformation value being a reflection of these limitations rather than

the maximum observable deformation. Despite its imprecise representation of the

ultimate deformation point, the determination of post-peak stiffness via Point C can

provide sufficient information for establishing constitutional relationships in joint

finite element simulations. The primary objective of this particular methodology is

to ascertain a correlation between strain and stress by means of the anticipated data

points.

In Figure 4.2 critical points are illustrated on the results of the experiment carried out

by Meinheit and Jirsa [42] and the overall database.

4.3 Meta-Modelling

In this section, meta-modelling methodology for the relation between effective

physical parameters for a reinforced joint sub-assemblage and characteristic points

defining shear strain - stress curve are discussed through a test function for clarity

and introduced for the mentioned problem. Test function is used for visualization

of the results since the true mathematical expression for joint shear strain stress

characteristic as a function of the aforementioned input parameters is quite complex

and unknown for the particular case.

The main focus is on the detection of the most efficient neural network type,

architecture and training method for the related problem which is defined in the

previous section. For the sake of clarity and visualization, a complex test function

is selected and expressed as f (x) =
∑N

i ex p(a ∗ (x − b)2) where a and b are arbitrary

scalars (e.g. N = 4, a = [5,−1,−3,−1], b = [−3,−6,−8,−11]). Two different

neural network types are investigated: feed-forward neural network and generalized
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regression neural network. For each type, different internal parameters (e.g. number

of hidden layers and neurons for FFNN and sigma parameter for GRNN) are used.

For both neural network types random partition of database to training and validation

and k-fold cross validation techniques are used. Pseudo-codes for the main procedure

used to generate FFNNs and GRNNs during the approximation are given in Algorithm

4.3 and 4.4

In Figure 4.5, the function approximation results from Feed forward Neural Networks

of different neural network architectures are displayed. Each figure corresponds to a

distinct partition of a 5-fold cross-validation test. The true function, the approximation

target is represented as a black solid line while the training samples are shown as

scattered red points. The approximated functions created by FFNNs with 1 to 5

hidden layers are also depicted as dashed lines of varying colors. The ability to

capture complex patterns in data is evaluated by comparing the approximations to

the true function. Over-fitting risk, which tends to increase with the complexity of the

model is managed by the cross-validation process. Through the Figures 4.5.(a)-(e), the

performance of each network architecture on training data and its generalization to

unseen data are assessed, guiding the selection of the optimal architecture for efficient

and accurate function approximation.
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Figure 4.3 FFNN training using k-fold cross validation
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Figure 4.4 GRNN training using k-fold cross validation
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Figure 4.5 Comparison of true function approximation using FFNNs with varying number of
hidden layers for (a) first, (b) second, (c) third, (d) fourth and (e) fifth data split in 5-fold

cross validation

The MSE values indicate the average squared difference between the network’s

predictions and the true function values. Lower MSE values indicate a better fit of

the model to the data. Therefore, the goal is to minimize the MSE for both the
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training and test data. From the given data, it can be observed that FFNNs with

more hidden layers generally achieve lower MSEs across different partitions. This

suggests these networks may be more capable of capturing the complexity of the

underlying function, leading to more accurate approximations. However, the MSEs

are not consistently minimized with increasing hidden layers. For example, the MSE

for the fourth partition significantly increases when moving from three to four hidden

layers. This could be due to over-fitting, where the model becomes too complex and

performs poorly on unseen data. The variance in MSE across different k-fold partitions

indicates the model’s performance variability with different splits of the data. This

emphasizes the importance of cross-validation in assessing the model’s robustness and

its ability to generalize to unseen data.

Table 4.2 Mean Squared Errors for FFNNs with varying architectures and k-fold partitions

K-Fold 1 H.L. 2 H.L. 3 H.L. 4 H.L. 5 H.L.
1 2.5256 1.8502 0.5620 1.5289 0.1937
2 1.7263 1.1737 5.4463 1.9134 0.6565
3 4.5832 1.1471 0.5023 2.9629 0.1449
4 3.3717 23.7516 1.6592 1.6682 0.1847
5 12.3821 5.6178 5.6920 2.0789 3.6076

The same test function is approximated by several GRNNs built with varying σ

parameter between 0.5 and 1.0. The analysis of mean squared error (MSE) results

(see 4.3) comparing General Regression Neural Network and Feed-Forward Neural

Network reveals a marked performance difference between the two approaches. On

average, the MSE from GRNN is approximately an order of magnitude lower than

that from FFNN. This remarkable distinction indicates that GRNN is far superior in

prediction accuracy when compared to FFNN.

Table 4.3 Mean Squared Errors for GRNNs with varying spread parameter σ and k-fold
partitions

K-Fold σ = 0.5 σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1.0
1 3.2371 3.2014 3.0679 2.8124 2.4912 2.1805
2 0.2817 0.2806 0.2765 0.2689 0.2601 0.2530
3 0.1811 0.1811 0.1814 0.1817 0.1820 0.1812
4 3.1593 3.1677 3.2008 3.2736 3.3888 3.5416
5 0.0086 0.0088 0.0093 0.0106 0.0133 0.0178

The results provided in Table 4.3 suggests an evaluation of MSE across varying spread

parameters for the GRNN for different runs of k-fold cross-validation (each row

representing a separate run). Observations from the data indicate an initial decrease in

MSE values as the spread parameter increases, reaching a minimum, and subsequently

increasing. This behavior is consistent with the expectation that there exists an

optimal spread parameter that minimizes the MSE, beyond which the model may start

over-fitting, thereby increasing the MSE. For instance, the first row representing one
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run of k-fold cross-validation shows MSE decreasing from 3.2371 to 2.1805 as the

spread parameter is increased. Similar trends are observed in subsequent runs as well.

The consistency of this trend across different runs suggests a robust behavior. It should

be noted that, while each k-fold partition is random and independent, the consistency

of trends across the different runs enhances the confidence in these observations.
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Figure 4.6 Comparison of true function approximation using GRNNs with varying σ for (a)
first, (b) second, (c) third, (d) fourth and (e) fifth data split in 5-fold cross validation

The figures 4.6 provide a visual representation of the test function, the training sample

data points from each k-fold partition and the GRNN approximations with varying

sigma (σ) parameters depicted by dashed lines. Each figure provides insight into
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the relationship between the true function the scattered training samples and the

GRNN approximations. The second and the fifth k-fold partitions stand out with their

performance. They seem to capture the underlying pattern of the true function more

accurately than the other approximations, demonstrating a higher level of accuracy in

replicating the test function. This result aligns with the observed performance metrics

in the associated table. The dashed lines representing the GRNN approximations

provide an important visualization of how the model’s accuracy can vary with changes

in the sigma parameter. The different dashed lines, therefore, help to identify optimal

sigma values that result in the lowest discrepancies between the GRNN approximations

and the true function.

Throughout the course of this section, an emphasis has been placed on the comparative

analysis of different neural network types and architectures. A test function has been

utilized for this purpose, primarily due to its capability for visualization. When a

known function is used the accuracy of any approximation model can be assessed

directly by comparing it with the true function. However, such comparison may not

provide sufficient information to conclude which neural network type is most suitable

for creating a meta-model of a complex approximation function which is intended to

predict the response of a joint over multiple parameters. The complexities of this task

might not be fully addressed by the test function alone.

In cases where visualization is not possible, other metrics like the mean squared error

(MSE) and coefficient of determination (R2) values are often calculated to assess the

performance of the meta-model. These metrics offer a quantitative evaluation of the

model’s predictions in relation to the actual values. As part of the research outlined

in this thesis, the best approaches for constructing approximation functions for joint

shear and strain values are being explored. Two distinct approximation functions are

sought: one for joint shear strength, and another for the corresponding shear strain

value.

A low MSE, along with a small variation across different k-fold partitions may suggest

an effective approach to meta-modelling this complex problem. This hypothesis is a

fundamental part of the current research. The ultimate aim is to apply these findings in

the construction of more accurate and reliable approximation functions for complex,

multi-parameter problems.

In Figure 4.7 and Figure 4.8, mean values of MSE for different k-fold runs are plotted

as bar charts for the FFNN and GRNN which are built to predict joint shear strength

after training with the data provided in Table 4.1 respectively. While the blue bars

show the mean values, variation in the various k-fold runs are shown with the solid
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black lines.
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Figure 4.7 Mean MSE values obtained by approximation with FFNNs with varying
architecture for joint shear prediction model

For joint strength prediction models, in the comparison of the Mean Squared Error

(MSE) of feedforward neural networks (FFNNs) and generalized regression neural

networks (GRNNs) in approximating joint shear strength, a discernible pattern arises.

This study employed 30 different FFNN architectures and 20 sigma spread values

in GRNN models, denoted as ’H.L. :i|N :j’ and numeric values respectively, each

corresponding to specific MSE results.

For the FFNNs, MSE values displayed a wide range, from as low as 0.0000433 to as

high as 0.0686870, with no evident correlation between the MSE and the network

architecture complexity. The highest MSE values were associated with relatively

simple architectures (’H.L. :1|N :3’ and ’H.L. :1|N :12’), while the lowest MSEs were

found in more complex architectures (’H.L. :5|N :15’ and ’H.L. :5|N :18’). It is also

noteworthy that not all complex architectures resulted in low MSEs, indicating that

complexity alone does not guarantee optimal performance.

On the other hand, the GRNNs exhibited a consistently increasing MSE as the spread

value increased, ranging from 0.0007119 to 0.0200590. The lowest MSE was

associated with the smallest spread (0.01) and the highest with the largest spread

(0.5). The monotonic increase in MSE with spread value suggests a direct correlation

between the two parameters in the context of the GRNN model’s performance.

For the shear strain corresponds to joint strength prediction model (see Figure 4.9), it
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Figure 4.8 Mean MSE values obtained by approximation with GRNNs with varying spread
parameter for joint shear prediction model

is observed that for FFNNs, the mean squared errors (MSE) vary widely across different

architectures. For instance, MSE values are significantly low (close to zero) for many

architectures such as ’H.L. :1|N :6’, ’H.L. :2|N :6’, and ’H.L. :3|N :9’. However, there

are a few architectures like ’H.L. :1|N :15’ and ’H.L. :5|N :12’ which exhibit higher

MSE values. This variation suggests that the architecture (number of hidden layers and

neurons) greatly influences the performance of FFNNs. It also implies that a careful

selection of architecture is required to obtain the optimal performance. For GRNNs

(see Figure 4.10), MSE values increase progressively with the increase in sigma values

from 0.1 to 0.5. The GRNN starts with a higher MSE value than FFNNs, but as the

sigma value increases, the MSE shows a consistent upward trend. This indicates that

the spread of the radial basis function, governed by the sigma parameter, significantly

impacts the model’s approximation accuracy. A larger sigma value causes the radial

basis function to spread more, which might lead to underfitting, resulting in a higher

MSE.

FFNN architectures showed varied performance, with the MSE not directly correlated

to the complexity of the architecture. Conversely, GRNN models displayed a clear

trend of increasing error with larger spread values. Overall, while both models

provide viable avenues for joint shear strength approximation, their performance is

highly dependent on the chosen parameters, underscoring the necessity of meticulous

parameter selection in these machine learning techniques.
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Figure 4.9 Mean MSE values obtained by approximation with FFNNs with varying
architecture for joint shear strain value corresponding to the shear strength prediction model
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Figure 4.10 Mean MSE values obtained by approximation with GRNNs with varying spread
parameter for joint shear strain value corresponding to the shear strength prediction model

Comparing two approaches, GRNNs have a simple and fast one-pass learning process.

Unlike FFNNs that require iterative training methods such as backpropagation,

GRNNs use the entire dataset in one step to adjust their weights. This results in

a much faster training process, making GRNNs more efficient for large datasets

or real-time applications. Although FFNNs with a large number of hidden layers

may yield lower MSEs, they are also more prone to overfitting, especially when

dealing with a limited amount of data. Overfitting is a situation where the model

performs well on the training data but poorly on unseen data. GRNNs, due to their

architecture and training process, are less prone to overfitting. GRNNs are known for

providing smooth function approximations. They make use of radial basis functions,

which result in smooth and continuous approximations. On the other hand, FFNNs

with sigmoid or ReLU activation functions can sometimes create discontinuities or

non-smooth approximations. GRNNs excel at capturing non-linear relationships in

the data without the need for complex architectures. They are capable of forming
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highly nonlinear decision boundaries, which is beneficial when dealing with complex

function approximation problems.

4.4 Results

Six GRNN models which are trained to predict the coordinates of Point A, Point B and

Point C on the strain-stress space. The training data-set is constructed from randomly

selected samples from the total data-set presented in Table A.1. The ratio of numbers

of test/training samples is 0.25 : 0.75, corresponds to 90 training and 30 testing

samples. To investigate the reliability and applicability of the proposed prediction

models, their performance are evaluated by the means of correlation coefficients (R)

for predictions for different target parameters. Also, its accuracy is monitored through

the mean values and coefficients of variation (C.O.V.) of ratio between predictions and

experimental outputs.

R=

∑

(x i − x̄)(yi − ȳ)
Æ
∑

(x i − ȳ)2
∑

(yi − ȳ)2

Correlation coefficient, theoretically shows the statistical dependence between two

random variables. R ≈ 1 indicate a perfect statistical dependence while R ≈ 0

shows that two variables are not associated to each other. Considering the high

number of input parameters, non-uniformity of the parameter samples in the dataset

and differentiations related to experimentation and measurement techniques, models

with R ≥ 0.75 remarked as acceptable in this study. It is worth noting that higher

performance can be achieved with customized databases, but for the sake of simplicity

and the objective of implementing a generalized practical framework, this level of

accuracy is adopted. The database presented in Table 4.1 is divided into subsets

regarding to the specimens’ framing type, failure mode and reinforcement ratio and

accuracy measures for these subsets are presented to distinguish the performance of

the models for different joint types, failure modes and joint ductility.

4.4.1 Point A

In the cases that large correlation coefficients are achieved in the training data, but

significantly lower in the test data imply an over-fitted model to the training set,

which is not able to make reasonable predictions for an arbitrary input, but fits almost

perfectly to the inputs in training set. In other words, larger correlation coefficients

for test data indicate an accurate model. Figure Figure 4.11 show model predictions
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Figure 4.11 GRNN predictions versus experimentally observed values, training data (top)
and all data (bottom) for Point A
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Figure 4.12 Scatter of γA GRNN predictions by type, failure type and reinforcement ratio
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Figure 4.13 Scatter of τA GRNN predictions by type, failure type and reinforcement ratio

versus experimentally observed results for γA and τA. In both models, determined

correlation coefficients for test and overall data are very close to each other, that fact

notes that models (γA, τA) are properly trained and not over-fitted.

In Figure 4.12 and Figure 4.13, it is shown that the ratio between model predicted

and experimentally observed values of γA and τA respectively scattered around the

ideal value of 1. Mean values for different subsets varies between 0.97 − 1.01 and

no significant differences between subsets are observed. However, examination of

coefficient of variations reveal that there is much larger dispersal in γA predictions

in comparison with τA. Moreover, variation in predictions for exterior joints is

significantly larger than the ones for interior joints, notes the proposed model is more

accurate for interior joints. Variations between coefficients of variation in failure type

and joint reinforcement subsets are statistically insignificant.

4.4.2 Point B

In Figure 4.14, scatter of the experimental versus predicted values are given for

γB and τB. Close correlation coefficient values (Rtest = 0.80, Rall = 0.78) are

obtained for test and overall data for γB. Significantly larger correlation among

predictions and experimental outputs for test and all data of τB is observed. Figure

4.15 and Figure 4.16 also verifies this significant difference between accuracy of

shear strain (γB) and shear stress models (τB) respectively. Much larger dispersion
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Figure 4.14 GRNN predictions versus experimentally observed values, training data (top)
and all data (bottom) for Point B
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Figure 4.15 Scatter of γB GRNN predictions by type, failure type and reinforcement ratio
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Figure 4.16 Scatter of τB GRNN predictions by type, failure type and reinforcement ratio

is observed in strain prediction output data in comparison with stress. Another fact to

stress out, mean values for strain prediction of exterior joints (0.93) and joints with

lower reinforcement ratio than 0.005 (0.91) are much lower than the mean values

determined for other subsets. This fact implies that accuracy of the strain model

should be improved with more well-quality data from these type of joints. Another

important factor contributes to the relatively lower performance in strain predictions,

after the first significant change in stiffness, stress response may exhibit only minor

variations until the ultimate point (Point C). Detection of the strain level at the point

with maximum stress response (Point B) may be challenging in cases that reported

results have not sufficient resolution to represent these minor variations.

4.4.3 Point C

In Figure 4.17, scatter of the experimental versus predicted values are given for γC in

which close correlation coefficient values Rtest = 0.87 for test data and Rall = 0.83 for

all data for γC predictions. As it was pointed in Point B results, there is a significant

performance difference between γC and τC results, noting that prediction model for

τC has Rtest = 0.92 and Rall = 0.94 implying a higher performance. Among other

uncertainties, a factor contribute to this fact is the limitation of the experimentation

or measurement technique. As the congestion of experimental output in the range

of 0.04−0.05 points out, some of the deformation measurements in the database are

limited to finite values close to 0.05, thus joint deformation capacity beyond this point
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Figure 4.17 GRNN predictions versus experimentally observed values, training data (top)
and all data (bottom) for Point C
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Figure 4.18 Scatter of γC GRNN predictions by type, failure type and reinforcement ratio
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Figure 4.19 Scatter of τC GRNN predictions by type, failure type and reinforcement ratio

is ignored.

Figure 4.18 and Figure 4.19 show that mean values for Point C predictions to

experimentally observed quantities vary between 0.98−1.04. Coefficient of variations

in τC exceeds 0.20 only for joint failure specimens. As expected, larger variation is

observed in γC in which the larger C.O.V. is calculated as 0.31 in beam-joint failure

joint specimen units.

To evaluate the accuracy of the proposed prediction method, joint shear strain-stress

envelopes predicted by the models are compared with the experimental observations,

analytical solution using MCFT [77] and statistical model based on Bayesian

parameter estimation method by Kim and LaFave [25].

Table 4.4 Comparison of prediction/experiment values obtained by different methods

γA τA γB τB γC τC

MCFT [77] Mean 1.00 0.99 0.59 0.81 0.88 0.63
SD 0.93 0.51 0.49 0.29 0.56 0.27

Kim and LaFave [25] Mean 1.61 1.19 1.12 1.02 1.11 1.08
SD 1.04 0.33 0.43 0.14 0.78 0.22

GRNN (Proposed) Mean 1.10 1.03 1.10 1.02 1.06 1.03
SD 0.37 0.19 0.37 0.15 0.32 0.18

In Table 4.4, mean values and standard deviations of the ratio between predicted

and experimentally observed values by MCFT, Kim and LaFave [25] equations and the

proposed GRNN model. It is seen that Point A properties are estimated by MCFT
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Figure 4.20 Comparison of experimental and predicted methods with various methods for
exterior joints with joint shear (top) and beam-joint shear (bottom) failure modes

most accurately in average, however, large standard deviations of the estimations

imply that MCFT can lead to misleading Point A predictions for some joint type and

design configurations. GRNN predictions have mean value of 1.10 and 1.03 mean

values for γA and τA respectively and relatively narrower band of predictions with

0.37 and 0.19 standard deviation in same respective order. Thus, it can be inferred

that GRNN has the ability to yield more consistent predictions among these methods.

In Point B, GRNN and Kim and LaFave [25] equations have almost identical statistical

results overall in terms of mean values and standard deviations while MCFT [77]
predictions are significantly less accurate for both γB and τB. For γC , proposed model

yielded predictions with slightly better mean value accuracy (mean(γC−Kim) : 1.11

and mean(γC−GRNN) : 1.06) but significantly less disperse in terms of coefficient of

variations (SD(γC−Kim) : 0.78 and SD(γC−GRNN ) : 0.32).

Considering the large number of specimens, only selected results are presented in

Figure 4.20 and Figure 4.21. Based on the plotted results for exterior joints in Figure

4.20, one can interpret that MCFT estimates joint shear strength with an acceptable

accuracy except for the specimen tested by Joh et al. [226] which the joint failure was

observed. In terms of deformation, MCFT underestimated the ultimate deformation

for the specimens with relatively larger amount of joint horizontal reinforcement [52].
Despite the fact that accurate estimations by Kim and LaFave [25] of joint strength
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Figure 4.21 Comparison of experimental and predicted methods with various methods for
interior joints with joint shear (top) and beam-joint shear (bottom) failure modes

for exterior joints are observed, joint deformation is only predicted for the specimen

with low amount of reinforcement which exhibited joint failure. It is also observed

that proposed model estimated joint strength and deformation significantly better for

exterior joints with varying reinforcement level and failure types.

Figure 4.21 shows that MCFT failed to estimate joint strength and ultimate

deformation level in interior joints for all plotted specimen results regardless of the

failure type and reinforcement amount. In a similar way of exterior joint results, Kim

and LaFave [25] model predicted joint shear strength level accurately, but failed to

predict deformation except the specimen tested by Morita et al. [240] while proposed

model predicts the full shear stress-strain envelope in an acceptable range.

Samples from different subsets are plotted to demonstrate the overall accuracy of the

model is not significantly affected by the joint’s type, failure mode or reinforcement

ratio and can be used in practice to estimate shear strain - stress history envelope

without any customization or modification on the structure of the framework.
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4.5 Conclusions

A large experimental database of reinforced concrete joints has been collected. Joint

specimens in the database were tested under static or quasi-static loading conditions

and exhibited a dominant joint shear failure or beam failure followed by joint shear

failure. Despite its upmost importance in finite element modelling of joints, there

are only few studies available in the literature aiming to predict joint strain - stress

envelope curve. A prediction framework is constructed in this study using specialized

neural networks.

Investigation of the statistical correlation between experimental observations and

model prediction output led to the conclusion that GRNN structure is capable of

predicting essential key-points on the strain-stress curve using only general input

data. Previous studies highlighted GRNN has strong priorities over conventional FFNN

structures. The most importantly, the GRNN approximation algorithm is controlled by

only one free parameter (σ) and optimization of the neural network structure is not

required. Expectedly, GRNN yielded reasonably acceptable predictions by collection of

120 experiments, without any need for manual classification of data before training.

Comparison of the model results with a widely used analytical approach [77] and a

statistical prediction model proposed by Kim and LaFave [25] demonstrated that the

proposed model has the most accurate predictions among them. To demonstrate the

capability of the proposed model in all various types of joints, the comparison was

made for combinations of interior/exterior types, joint/beam-joint failure types and

joints with smaller/greater reinforcement ratio than 0.005. For all comparison subsets,

proposed model performed significantly better than the others.

As a conclusion, proposed GRNN joint shear strain - stress envelope prediction model

is capable of making accurate predictions with only essential input and it has a good

potential to contribute finite element analyses to be done with super-elements. A soft

copy of the trained model is available in the Reference [246] in which the MATLAB

users can use to predict joint shear strain-stress envelope using the required input

parameters shown in Table 4.1.
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5
ADVANCED FINITE ELEMENT ANALYSIS OF

REINFORCED CONCRETE JOINTS

5.1 Overview

This chapter presents a detailed analysis and validation of microplane plasticity

damage material models for reinforced concrete joints. The primary objective is to

assess the accuracy and effectiveness of these models compared to other material

models implemented in ANSYS Parametric Design Language (APDL). The chapter

covers various aspects related to the analysis and validation process, highlighting

the advantages of microplane models, discussing the element formulation, addressing

limitations, and examining the practicality of these models in simulating cyclic effects

on reinforced concrete. Essential notes on the theoretical background of these

constitutive models can be found in Chapter 2, further details are available in the

relevant references.

Microplane models offer significant advantages over classical plasticity-based models

when simulating the behavior of concrete. These models excel at capturing the

anisotropic and heterogeneous nature of concrete materials, providing a more

accurate representation of their response. A key aspect of the analysis is the

element formulation employed in the microplane models. The chapter explores the

incorporation of additional degrees of freedom specifically designed to account for

tension and compression damage separately. This enhanced formulation extends the

accuracy of simulations by explicitly considering the damage behavior of concrete

materials. Additionally, the concept of regularization is introduced, which addresses

numerical challenges arising from the discontinuous nature of damage variables in

microplane models, enhancing their numerical stability.

However, the limitations of microplane models in simulating cyclic effects on

reinforced concrete structures are also addressed. The chapter examines the

challenges associated with accurately capturing the bar-slip mechanism within these

models. It emphasizes the need for further research to develop more realistic modeling
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approaches capable of effectively representing cyclic behavior. The calibration process

focuses on determining appropriate values for damage and non-local parameters

within the microplane plasticity damage material models. Experimental data from

laboratory tests on reinforced concrete structures are used for comparison and

alignment with the model predictions. This ensures that the material models

accurately represent the complex damage mechanisms occurring in reinforced

concrete under different loading scenarios.

Furthermore, the chapter explores the definition and investigation of critical points

along the joint strain-stress curve. These critical points are identified and analyzed

to establish their relationship with joint dimensions, reinforcement, and concrete

material properties. Nonlinear regression techniques are applied to understand the

influence of these parameters on the behavior of reinforced concrete joints, providing

valuable insights into their performance characteristics.

To enhance the accuracy of the regression analysis, the solution domain is divided

into subdomains. This subdomain splitting approach allows for a more refined

investigation, enabling a better understanding of the relationship between critical

points and various influencing factors. By analyzing these subdomains separately,

more robust regression models can be developed, improving the predictive capabilities

of the microplane plasticity damage material models.

5.2 Aspects on the numerical modelling through plasticity and

plasticity-damage material models

5.2.1 Unit Finite Element

A comprehensive parametric investigation was conducted to provide basic

understanding of the relation between control parameters in material formulations

introduced in Section 2.3.4.2 and corresponding output. The primary objective of

this investigation was to identify the most capable material formulation for accurately

reproducing the mechanical behavior of unreinforced concrete. Three distinct

material formulations were considered for evaluation: Drucker-Prager with HSD06,

MPLA (Elastic Microplane Material with Isotropic Damage and Implicit Gradient

Regularization), and MPDP (Drucker-Prager Microplane with Anisotropic Damage and

Implicit Gradient Regularization) [117].

To ensure simplicity in the analysis, the initial phase of the investigation utilized the

most basic finite element unit, representing a 100 x 100 x 100 mm cube discretized

with a single finite element (see Figure 5.1). This approach follows the methodology
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Figure 5.1 Sinlge finite element under cyclic displacement load

employed by Zreid and Kaliske [111]. The element is fixed at the bottom and

cyclic displacement histories are applied at the top nodes. Two different loading

protocol definitions were used to observe the response to different loading protocols.

Accordingly, loading protocol I describes a cyclic loading with one step between -0.6

mm and +0.06 mm, while loading protocol II takes these values as the ultimate

displacement and reaches these values incrementally with steps of -0.1 mm and +0.01

mm, respectively.

The investigation aimed to compare and assess the performance of the different

material formulations in terms of their ability to accurately reproduce softening

behavior under compression and tension, sensitivities to control parameters, the

number of parameters governing changes in the stress-strain curve, and computational

cost. The analyses were done and their results were compared to each other to

evaluate the efficiency of the material formulations in capturing the desired behavior

of unreinforced concrete. By considering various factors and metrics, this study aimed

to provide valuable insights into the capabilities and limitations of different material

formulations for simulating the mechanical response of unreinforced concrete. For

the sake of clarity, a subset of simulations with a range of material model parameters

is plotted in the following subsections, providing insight into the effect of these

parameters on the material response; however, it should be noted that numerous other

simulations have been conducted using a wider range of parameters.

5.2.1.1 Drucker-Prager combined with HSD06

As described in Section 2.3.4.2, plasticity based material models implemented in APDL

can be used combined with a Hardening-Softening-Dilatation (HSD) definition. One of

the most common HSD model is HSD06 which assumes linear softening after tension
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Figure 5.2 Stress strain curves of a unit finite element representing fc = 30M Pa concrete
material for various combinations of dilatation factors dt , dc (a) under loading protocol I and

(b) loading protocol II

limit is exceeded.

The main advantage of using this combined material formulation is the intuitiveness

of the model parameters that control the stress-strain relationship. The dependence of

the control parameters on the compressive strength characterising the concrete leads

to a significant reduction of the free variables within the formulation. Accordingly,

a definition of plasticity can be made with uniaxial compressive strength fc, tensile

strength ft , which is considered to be approximately 1/10 of the compressive strength

and biaxial concrete compressive strength fb, which can be considered to be 1.15 −
1.20 times the compressive strength [247], and dilatation factors dt and dc, which

are defined separately for tension and compression. In addition, the softening

that will occur after the strength is exceeded in compression and tension can be

obtained by defining the relative stress ratios (Ωci,Ωcm,Ωcr and the plastic strain

values (κcm,κcr ,κt r) corresponding to the softening trend. A disadvantage is that the

parameters controlling the softening trend must be estimated in advance and given

to the model. However, it can be assumed that the physical quantities represented by

these parameters are close to the values given by ANSYS Mechanical APDL Material

Reference [117] for concrete materials in a wide range of compressive strengths.

Figure 5.2.(a) shows the response of a unit finite element with 30M Pa compressive

strength for Protocol I, which is a one-step cyclic loading targeting the endpoint

displacement in tension and compression. Although there is no noticeable difference

between the measured responses for different parameters, a significant difference was

observed in the number of Newton-Raphson iterations performed to arrive at these

solutions. For example, for the solution of the simulation with dt = 0.75, dc = 1.00,

approximately half of the Newton Raphson iteration was performed for the solution
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of the simulation with dt = 0.50, dc = 1.00, although it gave the same response

results. Figure 5.2 plots the stress and strain responses of the unit finite element for

incremental cyclic displacement loading procedure (Protocol II) for different dilatation

factors. Accordingly, while the strength goes to infinity in simulations where the

compressive dilatation factor dc is below unit, meaningful results can be obtained

only in simulations where the tensile dilatation factor dt is close to 0 among the other

cases.

5.2.1.2 Elastic Microplane Damage

The responses obtained from the material model constructed using the elastic

microplane damage formulation are controlled by the variables k0, k1, and k2, as well

as the damage parameters (β , α, and γ0) of the equivalent strain (see Equation 2.61)

and the damage (see Equation 2.3.4.4) equations, respectively. This can be expressed

as

I2
1

�k2
o − k2

1

k2

�

+ I1

�−2γk0

k2

�

+
γ2

k2
= J2 (5.1)

Simplifying this expression yields

I2
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
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


(5.3)

Solving the resulting linear equation system allows to obtain the damage surface in

the invariant space (see Figure 2.12), thus k0, k1 and k2.

For the purpose of comparison, considering a concrete material with a characteristic

strength of 30M Pa, an elastic modulus of approximately E = 30000, a Poisson’s

ratio of approximately 0.2, and assuming that the tensile strength is approximately

one-tenth of the compressive strength, as mentioned in Section 5.2.1.1, the variables

k0, k1, and k2 can be obtained as 0.703, 0.703, and 0.215, respectively.

Assuming the value of gamma is taken as suggested in the ANSYS Mechanical APDL

Material Reference [117], ft/E, the scope of this parametric study can be limited to
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Figure 5.3 Stress strain curves of a unit finite element representing fc = 30M Pa concrete
material for various combinations of damage parameter variables α,β (a) under loading

protocol I and (b) loading protocol II

0 1 2 3 4 5 6 7

Strain (mm/mm) 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
a

m
a

g
e

 P
a

ra
m

e
te

r

 = 0.96,  = 0

 = 0.96,  = 50

 = 0.96,  = 500

 = 0.96,  = 5000

 = 0.96,  = 0.00

 = 0.05,  = 50

 = 0.50,  = 500

(a)

0 1 2 3 4 5 6 7

Strain (mm/mm) 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

a
m

a
g

e
 P

a
ra

m
e

te
r

 = 0.96,  = 0

 = 0.96,  = 50

 = 0.96,  = 500

 = 0.96,  = 5000

 = 0.96,  = 0.00

 = 0.05,  = 50

 = 0.50,  = 500

(b)

Figure 5.4 Damage parameter with respect to strain of a unit finite element representing
fc = 30M Pa concrete material for various combinations of damage parameter variables α,β

(a) under loading protocol I and (b) loading protocol II

investigating the influence of β and α parameters on the stress-strain response.

Finite element simulations conducted with CPT215 [124] element with an additional

degree of freedom reserved for isotropic damage parameter dmic. No implicit gradient

regularization used in simulations.

Simulation results are shown in Figure 5.3. Firstly, contrary to the results obtained

with the Drucker-Prager material model, it can be observed that the stress-strain

curves and strain-damage parameter curves are independent of the displacement

loading procedure. Additionally, during both unloading stages under compression and

tension, it can be observed that the stiffness curve follows a zero-strain point target

rather than the elastic or damaged stiffness.
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The strain-damage parameter curves shown in Figure 5.4 also indicate that the

material is more prone to damage for values of β ranging between 500 and 5000

compared to other parameter ranges. Furthermore, it was only possible to reach

the state where the material’s strength is completely exhausted by using a simulation

model with β = 5000.

In terms of damage parameters, it is expected that the damage parameter will be

close to dmic = 1 for both loading procedures considering that the total ultimate strain

values are exceeded for a standard fc = 30M Pa concrete. This is demonstrated by the

simulation conducted with a value of β = 5000, thereby supporting the conclusion

that the sensitivity is relatively low for the remaining β values. Additionally, it is

observed that the realistic representation of the material’s stress behavior during

unloading is not reflected in the results.

5.2.1.3 Drucker-Prager Microplane Damage

In a similar manner to the Elastic Microplane Damage model described in the

previous section, the proposed material model by Zreid and Kaliske [111] includes

damage parameters defined with an exponential function, coupled with stress-strain

relationships. The loss of load-carrying capacity of the material occurs as these damage

parameters approach unity. A notable difference is that the damage definition is

separately formulated for tension and compression, which is considered to be more

realistic. Steinke et al. [247] suggests a relationship between the tensile damage

variable βt and the compressive damage variable βc as βt = 1.5βc

Additionally, definitions related to plastic yielding, hardening, and softening are

described in Section 2.3.4.3, involving seven parameters, including fc, ft , and fb.

Steinke et al. [247] remarks low sensitivity to parameters R and Rt and, Zreid and

Kaliske [111] suggest σcV as a function of fc. As a result of this variable reduction,

reactions for Procedure I and Procedure II were simulated and observed for different

values of βt (tensile damage variable) and D (material constant controls hardening),

solely for a concrete material with a compressive strength of 30M Pa.

116



0 1 2 3 4 5 6 7

Strain (mm/mm) 10-3

-10

0

10

20

30

40

50

60

S
tr

e
s
s
 (

M
P

a
)

D = 4e5, B
t
 = 1500

D = 1e5, B
t
 = 1500

D = 4e5, B
t
 = 1000

D = 1e5, B
t
 = 1000

(a)

0 1 2 3 4 5 6 7

Strain (mm/mm) 10-3

-10

0

10

20

30

40

50

60

S
tr

e
s
s
 (

M
P

a
)

D = 4e5, B
t
 = 1500

D = 1e5, B
t
 = 1500

D = 4e5, B
t
 = 1000

D = 1e5, B
t
 = 1000

(b)

Figure 5.5 Stress - strain curves of a unit finite element representing fc = 30M Pa concrete
material for various combinations of damage parameter variables βt , D (a) under loading

protocol I and (b) loading protocol II
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Figure 5.6 Tensile damage parameter with respect to strain of a unit finite element
representing fc = 30M Pa concrete material for various combinations of damage parameter

variables βt , D (a) under loading protocol I and (b) loading protocol II
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Figure 5.7 Compressive damage parameter with respect to strain of a unit finite element
representing fc = 30M Pa concrete material for various combinations of damage parameter

variables βt , D (a) under loading protocol I and (b) loading protocol II
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Figure 5.5 illustrates the strain-stress relationship for simulations with different MPDP

model parameters. The simulations show varying stress levels as strain increases.

The solid blue line exhibits a decreasing trend, indicating that stress decreases with

increasing strain. The light blue line shows a similar trend but with a steeper slope.

The orange line demonstrates a moderate decline in stress as strain increases, while

the green line demonstrates a gradual decrease in stress. The stress-strain data reveals

that varying the βt and D parameters has distinct effects on the material’s response

to stress. Increasing the βt parameter leads to a decrease in stress, indicating that the

material becomes less resistant to deformation and requires less stress to produce a

given strain. Conversely, as the D parameter decreases, there is a significant increase

in stress, suggesting that the material becomes more susceptible to deformation and

requires higher stress levels to achieve the same amount of strain. These observations

highlight the importance of these parameters in influencing the material’s behavior

under stress, with higher βt values leading to a weaker response and lower D values

resulting in a stronger response. Alteration in slopes for the unloading sections

indicates that distinct from MPLA material, the material unloads with a reduction

in the initial stiffness. An important note about the effect of the loading history on the

material response is clearly shown through the simulations for D = 4e5, βt = 1500

and D = 1e5, βt = 1000 model parameters run for Protocol I and II.

Figure 5.6 depicts the relationship between strain and the tensile damage parameter.

The simulations reveal changes in the tensile damage parameter as strain magnitude

escalates. The solid blue line shows an increasing trend, indicating that the tensile

damage parameter rises with increasing strain. The light blue line displays a

steeper increase, while the orange line exhibits a moderate increase. The green line

demonstrates a gradual increase in the tensile damage parameter with increasing

strain. Figure 5.7 represents the relationship between strain and the compressive

damage parameter. The simulations reveal variations in the compressive damage

parameter with increasing strain. The solid blue line showcases a gradual increase

in the compressive damage parameter as strain magnitude increases. The light blue

line displays a steeper incline, while the orange line exhibits a moderate increase. The

green line demonstrates a gradual increase in the compressive damage parameter with

increasing strain.

5.2.2 Exterior Joint Specimens Tested by Tsonos [8]

In order to extend the investigations carried out on the unit finite element to a real

engineering problem, three finite element models were produced that reflect the

geometry of the experimental studies carried out by Tsonos [8]. In the first of these, the
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Figure 5.8 Experimental configuration of E1 specimen tested under cyclic loads [8]

concrete material was discretized using the SOLID186 finite element and the material

formulation was made by combining the classical Drucker-Prager plasticity material

model with the HSD06 dilatation definition. In the second model, the CPT215 finite

element formulation was used and an additional degree of freedom was created for the

isotropic damage formula, and in the third model, the same finite element formulation,

two degrees of freedom were added for tensile and compressive damage.

In all three finite element models, flexural reinforcement and transverse reinforcement

were modelled explicitly and BEAM188 element formulation was used for

discretization. The stress-strain behaviour of the reinforcement is based on the yield

strengths reported in the experimental study using a isotropic hardening bilinear

material formulation. Full interlock between the reinforcement and the concrete

material is assumed [65].

In order to realistically reflect the boundary conditions and loading protocol, it is

considered that the loading jack is constituted by a rotatable mechanism and all nodal

points on the beam end section surface are connected to an imaginary nodal point

formed at the section centre with MPC184 elements with rigid link formulation and

cyclic displacement loading is performed through this imaginary nodal point. The

same arrangement was made for the supports at the column ends. The upper end

of the column was not fixed vertically and a vertical load of 200 kN, which was kept

constant throughout the experiment, was applied at the upper end of the column.

38160 elements are used to discretize the problem domain and symmetrical boundary

conditions are applied to the vertical axis passing through the centroid of the beam

section.
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(a)
                                                                              

(b)

Figure 5.9 Finite element model of E1 specimen [8] (a) concrete body (b) reinforcement and
constraints (red) for boundary conditions (purple)

The simulation results of the finite element model of specimen E1, which was

experimentally tested by Tsonos [8], using the introduced material models and

the displacement loading procedure applied in the experiment are shown in Figure

5.10.The figure shows the simulation responses with the least error compared to the

experimental results in the parametric analyses performed with the model parameters

mentioned in the previous section. In the comparison, in addition to the numerical

magnitude of the response, the prediction of the damage mode received by the joint

region was also used. In Figure 5.11, the damage conditions at the joint region are

presented for different loading steps of the experiment while Figure 5.13 displays

the loading cycle and the measured amount of total strain of the yielding transverse

reinforcement within the joint region, as observed in the experimental model. For

comparison purposes, Figure 5.14 provides the total equivalent total strain map of the

concrete body modeled using different material models in finite element models at

various loading steps. Figure 5.13 illustrates the distribution of total principle strain

in the transverse reinforcement observed in the simulation models.

120



-50 -40 -30 -20 -10 0 10 20 30 40 50

Displacement [mm]

-80

-60

-40

-20

0

20

40

60

80

V
e

rt
ia

l 
R

e
a

c
ti
o

n
 [

k
N

]
Experimental

DP + HSD06

(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Displacement [mm]

-80

-60

-40

-20

0

20

40

60

80

V
e

rt
ia

l 
R

e
a

c
ti
o

n
 [

k
N

]

Experimental

MPLA

(b)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Displacement [mm]

-80

-60

-40

-20

0

20

40

60

80

V
e

rt
ia

l 
R

e
a

c
ti
o

n
 [

k
N

]

Experimental

MPDP

(c)

Figure 5.10 Comparison of the simulated response to the experimentally observed response
for the simulation models built with (a) DP + HSD06, (b) MPLA, (c) MPDP material

formulations
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Figure 5.11 Observed damage in E1 specimen due to cyclic deformation in 1st, 3rd, 6th and
11th cycles [8]
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Figure 5.12 Total equivalent strains simulated with FE models using (a) DP + HSD06, (b)
MPLA, (c) MPDP material formulations
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Figure 5.13 Total strain measurement versus total vertical reaction in transverse joint
reinforcement of subassemblage E1 [8]
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Figure 5.14 Total strains in joint transverse reinforcements simulated with FE models using
(a) DP + HSD06, (b) MPLA, (c) MPDP material formulations
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According to the results presented in Figure 5.10.(a), although the results obtained

with the material model in which the Drucker-Prager plasticity model is used in

combination with HSD06 have consistent responses for the initial cycle, the section

reaches its bearing capacity by the yielding of the beam reinforcement at the end of

the beam, not in the joint region, contrary to the experimental observation (see Figure

5.11 and 5.14.(a)). In addition, since the material model does not include any damage

definition, the initial stiffness of the section is observed at the stages of unloading. On

the other hand, it was observed experimentally that the stiffness decreased at each

stage of loading. The cycle curve obtained by simulations using this material model is

far from reflecting the actual plastic deformation.

In the simulations performed with the MPLA material model in Figure 5.10.(b),

although the force response obtained in each cycle is observed realistically, it is

observed that the stiffness is equal to the secant stiffness in all cases during the

unloading phases of the loading. In accordance with the experimental observations, it

was found that no beam hinge was observed in the joint and intense total equivalent

deformations (EPTO) were observed in the joint region (see Figure 5.11 and 5.14.(b)).

The phase in which the damage in the joint region is intensified can be determined

as the phase in which the transverse reinforcement yields. As Figure 5.13 and 5.14

demonstrate, in the simulation results, there is a discrepancy between the total strain

of the joint transverse reinforcement and the cycle in which this strain occurs.

When examining the results obtained from simulations using the MPDP material

model plotted in Figure 5.10.(c), which provides the most realistic outcome, it can

be concluded that there are fewer inconsistencies compared to other models. Analysis

of the total equivalent strain values reveals that plastic deformations occur as expected

in the joint region, and the actual force responses observed during all loading stages

are better represented by this material model compared to others. Additionally, the

damage parameters defined in the material model demonstrate a gradual decrease

in stiffness during the unloading stages. Although there may not be a perfect match

between the experimentally measured unit strain values and the simulated values, it

is deemed acceptable that realistic results are obtained to a satisfactory extent.

The comparison between the results obtained from the simulation model built using

the MPDP model and the experimental observations revealed the most significant

difference to be the pinching behavior, which is one of the fundamental characteristics

of hysteretic response in the joint region. Pinching, which appeared to be quite

prominent in the experimental results, was observed to a limited extent in the

simulation results. This can be interpreted as follows: there are two main sources

for the occurrence of pinching in the hysteretic response. The first is the reversible
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Figure 5.15 Illustration of non-linear spring definition [124]
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Figure 5.16 Comparison of the FEM results obtained by bond-spring and MPDP material
definition

opening and closing of cracks in the concrete material, leading to changes in stiffness

along the section during loading and unloading cycles, influencing the load transfer

throughout the cycle. The second source is the bond-slip mechanism that controls the

load transfer and slippage between the concrete and reinforcement. Incorporating the

bond-slip mechanism in finite element analyses can be achieved by defining springs

that represent the nonlinear load-displacement relationship along the reinforcement

axis, rather than defining constraints acting in all directions between the finite

element nodes representing the reinforcement and concrete material. In this regard,

a parametric study was conducted and zero-length (COMB39) elements were defined

between the node points corresponding to the same spatial coordinates (see Figure

5.15). The main challenge in establishing this definition lies in the uncertainty

of the load-displacement relationship during loading and unloading phases. This

definition was created by scaling the results of pull-out tests using the cyclic pinching

material model within the framework of a super-element formulation. However,

specifying the load-displacement characteristics of this mechanism for individual node

points involves considerable uncertainty. The response results of the simulation

model generated by incorporating this definition into the parametric investigation are

provided in Figure 5.16, in comparison with the experimental responses.
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The responses obtained from the solution of the simulation models are compared

with experimental observations and presented in Figure 5.16. These models utilize

the MPDP material model for concrete and the COMB39 zero-length uniaxial spring

element. The bi-linear isotropic hardening load-displacement relationship is defined

for the bond-slip mechanism. Bond strength values are fixed to the values defined in

Table 2.1 and displacements are introduced as random variables. The comparisons

demonstrate a certain level of agreement with experimental observations. However,

the contribution of this definition to the complexity of the model outweights the

realism effect. The increased complexity of the model results in an increase in

computational effort required for achieving a single solution. Additionally, it involves

the inclusion of new parameters that influence the behavior, and a significant effort is

needed to create a simulation example that yields responses within acceptable error

bounds. The parametric search at this stage follows the conventional trial and error

method thus lacks an objective quantitative measurement of the increase in effort.

Nevertheless, it is evident that the solutions obtained through this approach exceed

the practical limits of the current study in terms of scope and objectives.

A secondary objective here is to simplify the material formulation and modelling

technique, whose ability to represent the real problem has been validated, in order

to meet the main objectives described in this thesis. Remembering that the purpose of

the simulation models is to determine the boundaries (envelope) of the deformation

likely to occur in the joint region, a more effective solution method in terms of

practicality is to perform the displacement loading directly as the envelope of the

cyclic displacement loading, instead of obtaining cyclic responses by simulation and

using their envelope as the model output. In this case, it is clear that there will be

some deviation in the internal forces and displacements to be obtained. However, as

can be seen from the comparison of the computational effort required to realise an

example of the simulations in Figure 5.17, it was order of magnitude more practical

to apply the displacement loading in monotonic procedure. Validation tests for the

monotonic loading case have shown that this deviation is acceptable. The validation

tests presented in Section 5.3 cover the entire experimental database, not only the

simulation model of specimen E1.

In order to obtain more statistically significant results for the validation and calibration

process simulations performed for each sample in the experimental database as

described in Appendix A, it is important to perform as many simulations as practicality

allows. Therefore, in order to reduce the computational cost for each simulation run,

the dimension in which the problem is defined within the validated assumptions is

reduced from space to the plane. The strain in the cross-section due to the confinement

effect can be considered close to the plane strain assumption. A comparison of the
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Figure 5.17 (a) Mean computational time for simulations (b) Number of simulations to
converge an accurate solution

simulation results in 3 dimensions (CPT215) and 2 dimensions (CPT213) with plane

strain assumption under monotonic loading conditions is given in Figure 5.18. In the

same figure, the results obtained from finite element models discretized with different

number of elements are also given comparatively to verify finite element discretization

technique used.

It should be noted that there is an order difference in the finite element models

discretized with CPT213 and CPT215 due to the size of the problem and each

discretization requires a regularisation process. For this reason, the interaction

parameter c appropriate to the discretization dimension is used for each model whose

result is shown in the Figure 5.18.

Using three different material models defined in ANSYS Parametric Design Language

(APDL) Material reference, a finite element model comprising a unit element and

an experimentally tested joint subassemblage was constructed. The objective was to

qualitatively observe the sensitivity of these material models to the various parameters

of the model. Through this analysis, it was determined that the Drucker-Prager

Microplane Damage (MPDP) model offers a realistic description of concrete material

behavior based on cyclic and monotonic tests conducted on the unit finite element.

The MPDP model can be effectively controlled by adjusting the two most sensitive

parameters associated with it. To achieve the most accurate representation of

the joint specimen’s response to cyclic displacement loads, which was supported

by available experimental results, a modeling approach involving the definition of
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Figure 5.18 Load - displacement response of Tsonos E1 joint sub-assemblage under
monotonic procedure using CPT215 3D model and CPT213 plane strain model

springs with nonlinear load-displacement characteristics at the nodes where the finite

elements representing concrete and reinforcement coincide was employed. Although

this approach yields a more realistic representation, it introduces limitations and

increased complexity to the simulation process. When the expected magnitude of

the output at the end of the simulations is specified as an envelope curve depicting

joint deformation, the simulations conducted to achieve this outcome can be viewed

as an envelope of the displacements that are cyclically applied. This approach enables

a comprehensive assessment of the joint’s behavior. Furthermore, the presence of the

confinement effect allows for the assumption that the stress-strain state within the

joint zone is a plane strain state, thereby significantly reducing the computational

cost. This simplification contributes to more efficient calculations while still capturing

the essential characteristics of the joint’s response.

The MPDP material model exhibits the capability to provide realistic results in both

unidirectional and cyclic simulations of joint regions, owing to its constitutive relations

and implicit gradient regularization feature. Additionally, the model’s advantageous

characteristics include a small number of parameters governing material behavior and

simplifications that effectively reduce computational costs. These benefits make the

MPDP model particularly valuable for calibrating the models used in this approach.

5.3 Calibration of MPDP Model Parameters

As mentioned in the previous section, the parameters of the material model used

in simulations need to be calibrated for each experiment. This calibration is done

by classical trial-and-error in many studies in the literature. The necessity of the

trial-and-error method in MPDP material is also emphasized by Zreid and Kaliske
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[111] through the interaction parameter c that governs the regularization process.

The interaction parameter controls the area of damage propagation and is related

to the characteristic length of the material. The approach used by Bazant and

Pijouder to determine the characteristic length by comparing the energy dissipation

in cases where the damage is diffuse and localized is not possible in cases where

the damage is diffuse, such as joint damage. On the other hand, the approach

followed by Zreid and Kaliske [111], where damage (or plastic deformation) initiation

and evolution and load-displacement characteristics are monitored and compared

with experimental measurements, can lead to appropriate approximate regularization

processes. In addition, since the damage patterns and finite element discretization

magnitudes of the specimens forming the calibration sample pool are equivalent and

there are no order of magnitude differences in terms of geometric dimensions and

material character, a single characteristic length and hence interaction parameter can

be assumed. In this case, the need for trial and error for the interaction parameter

will be eliminated and a calibration process can be carried out based on the model

parameters βt and D of the MPDP material model as implemented in the previous

section.

Another point that should be emphasized at this stage is that the damage generation

and propagation should be equivalent for each specimen. This implies that the damage

must occur in the joint region in all simulated joint region specimens. For this reason,

in the experimental database table given in Appendix A, only the results of specimens

showing "J" joint damage or "BJ" beam-joint combined damage are considered. In

addition, the results of the experiment conducted by Vecchio and Collins [77] in which

reinforced concrete panels were subjected to pure shear stresses were also added to

the database. Material properties of the reinforced concrete panels tested by Vecchio

and Collins [77] are given in the Table 5.1 Thus, finite element models of a total of 40

specimens experimentally determined to have shear damage were generated and 50

sets of βt and D model parameters were generated for each model using LHS sampling

for better representation of the sampling domain. The remaining control parameters

were determined and used depending on the concrete compressive strength ( fc) as

suggested by Steinke et al. [247]. The interaction parameter was taken equal to the

value obtained by trial-and-error approach for the E1 joint specimen (c = 625) of

Tsonos [8] in the previous section.

Within the 50 simulations performed for each specimen in the experimental dataset,

the experimental response was considered as the envelope of the force response

to cyclic displacement loading and an error value was calculated between the

experimental and simulation results by interpolating the simulation response for each

displacement point forming this curve. Among the 50 simulations performed for each
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Table 5.1 Material properties of specimens experimentally tested by [77]

Specimen f c f y x(M Pa) ρx f y y(M Pa) ρy

PV3 26.6 662 0.00483 662 0.00483
PV4 26.6 242 0.01056 242 0.01056
PV6 29.8 266 0.01785 266 0.01785
PV9 11.6 455 0.01785 455 0.01785
PV10 14.5 276 0.01785 276 0.00999
PV11 15.6 235 0.01785 235 0.01306
PV12 16 469 0.01785 269 0.00446
PV13 18.2 248 0.01785 - 0
PV16 21.7 255 0.0074 255 0.0074
PV18 19.5 431 0.01785 412 0.00315
PV19 19 458 0.01785 299 0.00713
PV20 19.6 460 0.01785 297 0.00885

specimen, the material model parameters belonging to the value with the least error

were determined as the parameter set that most appropriately represents the response

of the relevant specimen.

As mentioned in the previous section, the parameters of the material model used

in simulations need to be calibrated for each experiment. This calibration is done

by classical trial-and-error in many studies in the literature. The necessity of the

trial-and-error method in MPDP material is also emphasised by Zreid and Kaliske

[111] through the interaction parameter c, which controls the regularisation process.

The interaction parameter controls the area of damage propagation and is associated

with the characteristic length of the material. The approach used by Bazant and

Pijaudier-Cabot [126] to determine the characteristic length by comparing the energy

dissipation in cases where the damage is diffuse and localised is not possible in cases

where the damage is diffuse, such as joint damage. On the other hand, the approach

followed by Zreid and Kaliske [111], where damage (or plastic strain) formation

and progression and load-displacement characteristics are monitored and compared

with experimental measurements, can lead to appropriate approximate regularisation

processes. In addition, since the damage patterns and finite element discretization

magnitudes of the specimens forming the calibration sample pool are identical and

there are no order of magnitude differences in terms of geometrical dimensions and

material character, a single characteristic length and therefore interaction parameter

can be assumed. In this case, the need for trial and error for the interaction parameter

will be eliminated and a calibration process based on the model parameters βt and D

of the MPDP material model as applied in the previous section can be carried out.

Similar to Steinke et al. [247], where most of the material model parameters are

obtained as a function of concrete compressive strength, the values of D and βt
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Figure 5.19 The surface fitted for the scatter of βt , D values yielding the best result with
respect to the concrete strength fc of the corresponding specimen
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Figure 5.20 (a) Scatter plot of damage parameter βt versus concrete strength fc (b) Scatter
plot of hardening parameter D versus concrete strength fc

parameters selected for the calibration of the material model, which give the most

approximate result for each simulation, are given as a surface in the fc-βt-D space

in Figure 5.19. The surface shows that a correlation can be established between the

variable fc and D and βt .

For the sake of simplicity, linear regression technique is used to express the model

parameters βt and D as a function of concrete compressive strength. Figures 5.20

show the scatter plots of βt- fc and D- fc and the nonlinear functions describing the

relationship. Accordingly, Equation 5.4 is proposed for the βt- fc relationship and

Equation 5.5 for the D- fc relationship.

Bt = 73.76 fc + 435.53 (5.4)
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Figure 5.21 Comparison of the experimental responses to the simulated responses obtained
through CPT213 Plane Strain MPDP models which βt and D parameters are assigned with

Equation 5.4 and 5.5

D = −4563.4 fc + 39243 (5.5)

The scatter plots given in Figure 5.20.(a) and Figure 5.20.(b) show that there

is no statistically significant difference in the determination of βt and D for the

reinforced concrete panel, internal joint region or external joint region. Therefore,

it is considered as appropriate to use Equation 5.4 and Equation 5.5 for all three types

of simulations.

5.4 Validation

Proposed Equations 5.4 and 5.5 have been tested for all sub-assemblages and

reinforced concrete panels tested by Tsonos [8] and Vecchio and Collins [77]. Figure

5.21 presents a comparison between the simulated responses and the experimentally

measured responses for the models described in [8]. In simulation models A1 and

E1, the initiation of plastic strains at the column face and their propagation to the

beam body resulted in the formation of a flexural hinge, which aligns well with the

observations from the experiment (see Figure 5.22.(a)). However, it should be noted

that while specimen A1 remained intact even after a 4.5% drift, in the simulation

model, plastic strains were formed in the joint region after 3.5% drift, indicating a

coupled failure mode. For models G1 and E2, plastic strains were observed to initiate

in the vicinity of the joint core and propagate inside the joint, resulting in a premature

failure mode similar to the experimental observations (see Figure 5.22.(b)). The

simulation models successfully captured the formation of this failure mode as well
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Figure 5.22 Total strain plots for the simulations at the final state of (a) G1 and (b) E2
specimens tested by Tsonos [8]

as the overall response. However, there was a slight overestimation of the flexural

capacity by approximately 15% in model A1, and in both models A1 and G1, a

beam-joint failure mode was observed, whereas the severe joint failure was reported

in the experiment. These findings indicate that the simulation models provide a

reasonable representation of the structural behavior and can effectively predict the

formation of failure modes observed in the experiments. Despite some discrepancies

in flexural capacity estimation and the occurrence of specific failure modes, the overall

response of the reinforced concrete panels under cyclic loading was well-predicted.

These insights contribute to a better understanding of the structural response under

shear effects and inform the design and assessment of reinforced concrete structures

subjected to similar loading conditions.

The maximum shear stress, first principal stress, and second principal stress values

obtained from the finite element analysis were compared with the corresponding

experimentally observed values for the reinforced concrete panels. This comparison

aimed to assess the accuracy and reliability of the numerical simulation. To visually

illustrate the agreement between the measured and calculated values, scatter plots

were generated, as shown in Figure 5.23. Each point on the scatter plot represents a

specific panel configuration, and its position indicates the corresponding values of the

maximum shear stress, first principal stress, and second principal stress obtained from

both experimental measurements and finite element analysis. Upon analyzing the

scatter plots, it was observed that there is a strong correlation between the measured

and calculated values. The coefficients of determination (R-squared values) were

determined to quantify this correlation. The coefficient of determination measures

the proportion of the total variation in the experimental data that can be explained by

the calculated values.
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Figure 5.23 Comparison of experimentally reported and simulated (a) maximum shear
stress (b) first principal stress and (c) second principal stress for the specimens tested by

Vecchio and Collins [77]
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The coefficients of determination between the measured and calculated maximum

shear stresses, first principal stresses, and second principal stresses were found to be

R2 = 0.92, R2 = 0.96, and R2 = 0.88, respectively. These high R-squared values

indicate a significant level of agreement between the experimental and numerical

results, suggesting that the finite element analysis accurately predicts the response

of the reinforced concrete panels under shear effects. The obtained coefficients of

determination provide confidence in the reliability of the numerical simulation and

demonstrate its capability to capture the essential features of the panel behavior. The

strong correlation between the measured and calculated values confirms the suitability

of the developed prediction model for estimating the characteristic points of joint shear

strain-stress curves.

5.5 Parametric Simulations

This section focuses on the parametric analyses and the generation of a comprehensive

dataset for the prediction model related to joint shear strain-stress curves’

characteristic points. Three distinct simulation types were conducted, namely interior

joint simulations, exterior joint simulations, and panel simulations. A substantial

number of 500 simulations were performed for each simulation type, resulting in

a comprehensive dataset comprising a total of 1500 simulations. The simulations

aimed to analyze the influence of various model parameters on the response of these

structural elements under varying loading conditions.

The interior and exterior joint simulations involved a meticulous examination of model

parameters, excluding beam eccentricity due to the adoption of plane modeling and

the limited variations observed in the dataset. Notably, the concrete body dimensions,

including the width and depth of the joint in the plane (hc, hb), as well as the

configuration of reinforcement in the beam and column, were thoroughly investigated.

Additionally, the joint transverse reinforcement ratio and the material strength of the

concrete were varied within prescribed ranges outlined in Table 5.2. For the purpose

of analysis, the yielding strength of the reinforcement was maintained at 200 MPa

for half of the simulations and 400 MPa for the remaining half, as the variability in

this parameter was deemed relatively low when compared to the concrete material.

Furthermore, the reinforcement configuration exhibited diversity as specified in Table

5.2, augmenting the comprehensiveness of the investigations. Alongside this, the

panel simulations incorporated variations in panel dimensions, reinforcement ratio,

and concrete material strength, all within the intervals prescribed in Table 5.2.

Consistent with the joint simulations, the yielding strength of the reinforcement

was divided into two groups: 200 MPa and 400 MPa, ensuring a comprehensive
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Table 5.2 Descriptions and bounds of the input parameters of the panel parametric
simulation set

Type Parameter Bounds Units Description
Int. and Ext. Joints fc 10 - 90 MPa Compressive strength of the concrete
(see Fig. 5.24.(a-b)) f y b 200, 400 MPa Yield strength of the beam long. reinf.

f yc 200, 400 MPa Yield strength of the column long. reinf.
f yc 200, 400 MPa Yield strength of the joint trans. reinf.
ρb 0.001 - 0.025 Beam reinforcement ratio
ρc 0.001 - 0.025 Column reinforcement ratio
ρ j 0.000 - 0.025 Joint volumetric reinf. ratio
ρbt 0.0005 - 0.002 Beam transverse reinf. ratio
ρc t 0.0005 - 0.002 Column transverse reinf. ratio
hb 200 - 1300 mm Beam height
hc 200 - 1300 mm Column height
bb 200 - 600 mm Beam width
bc 200 - 600 mm Column width
n 0 - 0.6 Column axial force to capacity ratio

RC Panels fc 10 - 90 MPa Compressive strength of the concrete
(see Fig. 5.24.(c)) fx 200, 400 MPa Yield strength of the reinf. along x dir.

f y 200, 400 MPa Yield strength of the reinf. along y dir.
ρx 0.000 - 0.025 Reinforcement ratio in x dir.
ρy 0.000 - 0.025 Reinforcement ratio in y dir.
b 200 - 1300 mm Panel width
h 200 - 1300 mm Panel height

examination of its effects. It is also worth noting that in panel simulations, number of

reinforcement kept constant and different joint reinforcement ratios are obtained by

altering the size of the reinforcement bars.

In order to effectively cover a larger portion of the sampling domain while minimizing

the number of required samples, the generation of the simulation sampling space

was conducted using Latin hypercube sampling. By leveraging Latin hypercube

sampling, the simulation space was efficiently explored, ensuring a comprehensive

representation of the varying model parameters and their effects on the structural

behavior of reinforced concrete elements. This approach enabled the researchers to

obtain meaningful and statistically significant results, despite the relatively limited

number of simulations performed. It reduces the likelihood of missing important

regions or clusters within the domain, allowing for a more representative sampling

of the input variables. By partitioning the space into equally probable intervals

along each dimension, LHS offers a higher level of coverage and exploration of

the parameter space. Thus, the adoption of Latin hypercube sampling allowed for

the efficient utilization of computational resources while maintaining a robust and

extensive coverage of the parameter space, thereby enhancing the overall validity and

reliability of the study’s findings.

The collective outcomes of these simulations present a valuable contribution to the

understanding of interior joints, exterior joints, and panels, shedding light on their
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structural behavior under severe effects. To establish a relationship between the model

parameters and the desired outputs, nonlinear regression techniques are employed.

This approach allows for the identification of the interdependencies and correlations

between the various parameters influencing the joint’s behavior and the resulting

characteristic points. By accurately modeling this relationship, a prediction model

can be developed to estimate the joint shear strain-stress curve’s characteristic points

based on the input parameters.

5.5.1 Investigation of Critical Points along the Joint Strain-Stress Curve

In order to establish a relationship between the model input parameters defining

the joint model and the shear strain-stress output, a selection process is used to

identify multiple points that effectively characterize the shear strain-stress output.

This selection is founded on predetermined criteria. These principles are defined using

two separate methodologies. The first strategy focuses on the damage formulation

of the concrete material model, which involves minimizing the load transformation

capacity of the discrete elements that represent the concrete material. The results of

this methodology are presented in the Section 5.5.1.1. Alternately, a method based on

the stress limit conditions of both the concrete and the joint reinforcement material

is developed. In the Section 5.5.1.2 the results of the analyses conducted using this

methodology are presented.

The correlation analysis conducted in Section 4.2 reveals that the concrete strength,

denoted by fc, exerts a significantly greater influence on the shear strain and stress

output than other model parameters. In order to assess the sensitivity of the

aforementioned output to other influential model parameters, correlation coefficients

between simulation outputs belong to the various sub-domains of the sampling

domain and concrete strength, fc. As a result, fc is chosen as the principal variable

upon which the input-output relation is constructed. To establish a mathematical

representation of the obtained outputs in relation to concrete strength, curves are fit

to the selected coordinates. Utilizing both nonlinear regression techniques, the most

statistically robust relationship is determined.

An additional control subroutine is implemented for the damage-based method to

arrange strain outputs in ascending order based on the damage index. Likewise, a

control subroutine is implemented for the material strength-based method, permitting

the shear strain points corresponding to intermediate limit states to be evaluated in any

order. Although these control subroutines do not significantly improve the statistical

metrics for the curve-fitting process, they effectively prevent overlapped strain point

predictions.
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(a) Interior Joint reinforcement configuration (left) and concrete body (right)

(b) Exterior Joint reinforcement configuration (left) and concrete body (right)

(c) Reinforced concrete panel subjected to pure shear

Figure 5.24 Illustration of discretization and boundary conditions of the finite element
models
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Figure 5.25 Shear strain - stress plots of simulations (gray solid lines) and scatters of the
strain - stress values that specified material damage occurred for Limit A, Limit B, Limit C,

Limit D and Limit E

5.5.1.1 Damage Index Based Approach

In this chapter, the primary objective is the development of explicit equations to

provide a clear representation of the phenomena under study. To achieve this,

a process of simplification and selection has been adopted. The most influential

parameter, fc, which stands for the concrete compressive strength, has been singled

out for this purpose. All other quantities are then intended to be expressed as a

function of this critical parameter. The selection of fc as the central variable is due

to its established role in significantly affecting the outcomes in the system.

While fc serves as the central variable, it is also essential to acknowledge that

the complexity of the system involves other parameters. These include the joint

reinforcement ratio and the joint geometry (hc/hb), which have also been found to be

influential, based on empirical evidence. These parameters have thus been included

in the categorization of the subdomains of the sampling space.

A simple correlation analysis, similar to what was conducted in Chapter 4, would

reveal the influence of these additional parameters. The inclusion of these factors

adds depth to the analysis, ensuring that while fc remains the primary variable,

other significant parameters are also considered. This approach provides a more

comprehensive, yet focused, method to understand and represent the system. The

resulting explicit equations thus offer a balanced account of the complexity of the

system, highlighting the predominant influence of fc while acknowledging the roles

of other critical parameters.

Two different approaches to the selection of critical points are developed
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comparatively. In the first one, using the damage definition (dmic, see Eq. 2.40)

proposed by Zreid and Kaliske [111] for the material model, limit points with equal

intervals between 0 (undamaged material) and 1 (0.99: damaged material) were

selected. Although it does not have a direct physical meaning, dmic is important in

terms of representing the numerical equivalent of the damage state of concrete. Figure

5.25 shows the strain-stress pairs as scatter plots on the simulation bundle. In this

approach, the values of dmic = 0.05,0.25, 0.50,0.75, 0.95 are named as Limit A, Limit

B, Limit C, Limit D and Limit E, respectively.

Regardless of the shear stress level received by the concrete material, it is observed

that the limit described as Limit A is exceeded in a very narrow range, even at small

loading steps. The points where the whole population reached Limit A had a mean

value of 9.0029e − 04 and a standard deviation of 4.1462e − 04. Similarly, the Limit

B value determined as dmic = 0.25 was also realised in small loading steps and in a

narrow band similar to Limit A. The mean of the points where the whole population

reaches Limit B is 0.0015 and the standard deviation is 5.4522e−04, similar to Limit

A. The mean of the points where the whole population reaches Limit B is 0.0015 and

the standard deviation is 5.4522e−04, similar to Limit A. After reaching Limit B, it can

be seen that the plateau to be covered On the strain axis, the mean values for Limit

C, Limit D and Limit E are 0.0028, 0.0061, 0.0122 and the standard deviations are

0.0012, 0.0061, 0.0066. In stress terms, mean shear stress for the entire population

values are 10.2018, 10.9540, 9.5885, 5.5338 and 3.1589 MPa for Limit A, B, C, D

and E respectively. Standard deviations for the same limit points are 6.0278, 4.9655,

3.6581, 2.0355 and 1.2885. It was observed that the standard deviations of the stress

values decreased with the stress value at which the limit exceedance occurred, but the

standard deviations of the strain values increased as the strain value increased.

In the Figure 5.26, the relationship between the deformation values of the

sub-populations separated according to aspect ratio hc/hb and joint reinforcement

ratio ρ j values and the concrete compressive strength fc is expressed in terms of

coefficient of correlation. Accordingly, regardless of the hc/hb values, it is seen

that the simulated specimens reinforced with relatively lower reinforcement ratio are

more sensitive to the concrete compressive strength. In the subdomain low level

reinforcement is included in the joint region (ρ < 0.0059), the mean correlation

coefficient calculated between fc and shear strains for defined limit states is remarked

very strong (R2
mean = 0.63) It is considered that the correlation among the concrete

strength fc and the shear strain output for the high level reinforcement subdomain

(ρ > 0.0059) is not equally powerful as it is seen in the low level reinforcement

subdomain; but still accepted as a sufficient correlation (R2
mean = 0.41) for including

samples from all subdomains. Correlation between fc and shear strength values did
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not given since no significant difference with respect to the defined subdomains are

observed.

The variables γA( fc), γB( fc), γC( fc), γD( fc), and γE( fc) indicate the shear strain as a

function of concrete strength while indices denote the corresponding limits defined

in this subsection. Table 5.3 shows fitted equations, proposed coefficients for 90%

prediction bounds and correlation coefficients as goodness of fit measure for each

equation fitted. For strain functions denote limit states A, B, C and E are represented

with cubic polynomials while an exponential equation is fitted to the limit state D.

Similarly, the variables τA( fc), τB( fc), τC( fc), τD( fc), and τE( fc) are power-law curve

fits, representing the relationship between concrete strength fc and the expected shear

stress values at limit states A, B, C, D and E, respectively. It is worth noting that

all curves proposed for shear stress are power-law equations that predicts 0.5 for

exponent coefficient of base variable fc. The correspondence with numerous academic

investigations and established design codes that suggests a potent correlation between

the square root of concrete strength and ultimate shear strength is significant. Curve

fitting results indicate that the that strong connection is valid for the other stress states

corresponds to defined criteria. Stress values did not show a significant correlation

difference within the decomposed population as was the case for strain values.

Although the sensitivity of the different limit states to the compressive strength of

concrete shows small differences, there is no dependence in terms of other parameters.

The curve fitting study for shear stresses is given in Table 5.4.

Fitted curves are shown with scattered data and 90% prediction bounds are given in

Figure 5.27 and Figure 5.28. As it was remarked in the results presented in Table

5.3 and Table 5.4, stress curves significantly better correlation with the scattered data

compared to the strain curves.

As can be seen in the Tables 5.3 and 5.4 and Figures 5.27 and 5.28, the data based

on the proposed curves show a large amount of dispersion. Therefore, the proposed

curves for different strain or stress states, although statistically well representing the

data they represent, may take inconsistent values with each other. In other words,

accurate prediction of the shear strain stress curve requires sequential representation

of limit states A, B, C, D and E (or at least one limit state to be chosen from B, C and

D). This may not be straightforward for curves fitted separately for the data. In this

study, each fitted curve is checked for the displacement equivalents of the different

limit states to ensure that they do not cross each other in such a way as to create

inconsistencies. With Figure 5.29, the strain prediction curves corresponding to each

limit state are plotted on the same figure to show that the described logical order is

not broken.
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(a) (b)

(c) (d)

(e)

Figure 5.26 Coefficient of correlation between concrete compression strength fc of the shear
strains belong to different levels of average ρ and aspect ratio hc/hb
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Considering that the determination coefficients representing goodness of fit of the

fitted curves are not strong particularly for shear strain values corresponding to the

intermediate steps of damage index based criteria; a surface fitting application based

on cubic polynomials accepting other influential parameters, joint reinforcement

ratio ρ j and aspect ratio hc/hb as well as the concrete strength fc. The surface

fitting results are presented in Figure B.5 and Figure B.6, dependent on fc and

ρ j, and fc and hc/hb, respectively. Determination coefficients are calculated as

R2 = 0.7501,0.6961, 0.8106,0.6828, 0.6150 for the surface fitted between strains

dependent on fc and ρ j while R2 = 0.7143,0.8276, 0.6721,0.7824, 0.6349 for the

surface fitted to strains dependent on fc and hc/hb.

A similar surface fitting application is employed for the shear stress values

corresponding to the damage index limit states. The resulting surfaces along

with the scattered data are presented in Figure B.3 and Figure B.4 for the

stress surfaces as three-degrees polynomials as functions of fc and ρ j and fc and

hc/hb. Their goodness of fit is demonstrated by determination coefficients R2 =
0.7291,0.8632, 0.7924,0.8197, 0.8803 for the shear stress surfaces as functions of fc

and ρ j while R2 = 0.7512, 0.9225,0.8367, 0.7331,0.9078 for the shear stress surfaces

as functions of fc and hc/hb.

As a conclusion, specimens with lower reinforcement ratios demonstrated greater

sensitivity to concrete compressive strength. This was evident from a stronger

correlation between fc and shear strain outputs for the subdomain with lower

level reinforcement. Curve fitting studies involving shear strain and shear stress

further revealed that while stress curves had a better correlation with scattered data

compared to strain curves, data based on these curves displayed significant dispersion.

This suggests that an accurate prediction of the shear strain-stress curve requires a

sequential representation of all the limit states.

Surface fitting applications using cubic polynomials, which incorporated parameters

such as joint reinforcement ratio, aspect ratio, and concrete strength, were conducted

to address weaknesses in goodness of fit, particularly for shear strain values. Both

stress and strain surfaces demonstrated a generally high determination coefficient,

indicating good agreement with the data. As a whole, these findings underline

the fact that of considering multiple factors and using complex methodologies can

approximate better predictions but for the sake of simplicity and practicality, both

shear strain and stress values corresponds to the predefined limit states can be

predicted with acceptable accuracy using fc as the governing variable.
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Table 5.3 Descriptions of the fitted curves for simulation shear strain output based on
damage index approach

Variable Equation Coefficient Value Lower Bound Upper Bound R2

γA( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 −3.734× 10−8 −5.375× 10−8 −2.092× 10−8 0.5451

p2 6.229× 10−6 3.68× 10−6 8.778× 10−6

p3 −0.0003308 −0.0004502 −0.0002113

p4 0.01131 0.009718 0.01289

γB( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 −7.679× 10−8 −1.096× 10−7 −4.399× 10−8 0.5912

p2 1.289× 10−5 7.793× 10−6 1.798× 10−5

p3 −0.0006843 −0.0009229 −0.0004456

p4 0.02287 0.0197 0.02604

γC ( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 −1.109× 10−7 −1.596× 10−7 −6.214× 10−8 0.4913

p2 1.846× 10−5 1.089× 10−5 2.603× 10−5

p3 −0.0009835 −0.001338 −0.0006289

p4 0.03392 0.0292 0.03863

γD( fc) a · exp(b · fc) + c · exp(d · fc) a 1.083 −1.067 3.233 0.5561

b −0.3103 −0.4439 −0.1767

c 0.02556 0.02348 0.02765

d −0.001936 −0.003267 −0.0006046

γE( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 −1.898× 10−7 −2.709× 10−7 −1.088× 10−7 0.5136

p2 3.183× 10−5 1.925× 10−5 4.441× 10−5

p3 −0.001701 −0.002291 −0.001112

p4 0.05736 0.04952 0.0652

Table 5.4 Descriptions of the fitted curves for simulation shear stress output based on
damage index approach

Variable Equation Coefficient Value Lower Bound Upper Bound R2

τA( fc) a · f b
c + c a 13.78 −35.68 63.23 0.6711

b 0.1522 −0.198 0.5024

c −17.15 −72.44 38.14

τB( fc) a · f b
c + c a 1.27 −0.684 3.224 0.7196

b 0.5448 0.2697 0.82

c −1.382 −6.13 3.367

τC ( fc) a · f b
c + c a 1.502 −0.8945 3.899 0.7233

b 0.5157 0.2353 0.7961

c −1.616 −7.045 3.813

τD( fc) a · f b
c + c a 1.52 −0.6408 3.681 0.7425

b 0.5275 0.2759 0.7792

c −1.941 −6.976 3.095

τE( fc) a · f b
c + c a 2.11 −1.007 5.228 0.6925

b 0.4763 0.2234 0.7292

c −3.166 −9.602 3.27
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Figure 5.27 Scatter and fitted equations for shear strain values, γx y(y) and concrete strength
values, fc (x) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D and (e) Limit E

145



10 20 30 40 50 60 70 80 90

-5

0

5

10

15

20

(a)

10 20 30 40 50 60 70 80 90

-5

0

5

10

15

20

25

(b)

10 20 30 40 50 60 70 80 90

-5

0

5

10

15

20

25

(c)

10 20 30 40 50 60 70 80 90

-5

0

5

10

15

20

25

(d)

10 20 30 40 50 60 70 80 90

-5

0

5

10

15

20

25

(e)

Figure 5.28 Scatter and fitted equations for shear strain values, τx y(y) and concrete
strength values, fc (x) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D and (e) Limit E
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Figure 5.29 Strain prediction curves proposed for Limit A, Limit B, Limit C, Limit D and
Limit E

5.5.1.2 Material Strength Based Approach

Within the scope of this study, in addition to the approach based on the concrete

damage index, another approach based on the critical points of the material was

developed. In figure, scatter of the strain stress pairs corresponding to the states that

several limit states exceeded. These limit states are described as;

1. Limit I: Cracking of concrete, when the first principal stress exceeds the tensile

strength.

2. Limit II: Rebar Yielding, first plastic strains developed in rebars in any direction.

3. Limit III: Crushing of concrete, second principal stress exceeds the compressive

strength.

4. Limit IV: Maximum shear stress, state that maximum shear stress is observed

over history

5. Limit V: Ultimate concrete stress, state that 50% of compressive strength

achieved after softening plateau

In the Figure 5.30, the shear strain shear stress pairs are scattered where the described

limit states are realized. The mean of the strain points where the whole population

reaches Limit A is 0.0012 with a standard deviation of 7e-04. The mean of the

strain points where the whole population reaches Limit B is 0.0060 with a standard

deviation of 0.0109. The mean strain values for Limit C, Limit D, and Limit E are

0.0019, 0.0017, and 0.008 with standard deviations of 0.0015, 0.0012, and 0.0093,
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Figure 5.30 Shear strain and shear stress pairs scattered where the described limit states are
occurred

respectively. In terms of shear stress in joint, the mean values for the entire population

are 13.6843M Pa, 4.3329M Pa, 13.2673M Pa, 12.3657M Pa, and 3.9978M Pa for

Limit A, B, C, D, and E, respectively. The standard deviations for these limit points

are 5.0510, 7.3714, 6.5619, 6.1159, and 3.1413, respectively.

When the 5.30 is analyzed in terms of shear stress, it is seen that the Limit I case is

spread in a wide band between 5M Pa and 15M Pa. This trend does not change for

Limit III and Limit IV. However, Limit V is found to take values in a narrower stress

band. Among these limit states, the propagation of Limit B is unique among the others,

as is its definition. While the other limit cases are defined in terms of concrete material,

Limit II is defined in terms of steel reinforcement yielding. Limit II, unlike the other

limit states, is spread over the entire stress band. In strain terms, strain values that

Limit I, Limit III and Limit IV are reached, are located in a narrow strain band, while

Limit IV and Limit V are spread over a wider strain field.

The relationship between the limit states (I-V) based on stress and the damage index

dmic was investigated. A scatter plot of shear stress damage index pairs, shown in

Figure 5.31.(b), was used to illustrate this relationship. Interestingly, the analysis

indicated that the correlations between shear stress and damage for Limits I, III,

IV, and V were quite weak. This was evidenced by the correlation coefficients of

0.0024, 0.0026, 0.0164, and 0.1123, respectively, suggesting an absence of a strong,

direct relationship between these two parameters. A similar trend was observed when

examining the relationships in terms of strain, with correlation coefficients of 0.0023,

0.1657, 0.2561, and 0.3015 for Limits I, III, IV, and V, respectively, further affirming

the lack of substantial correlation. However, a significant exception was observed

in the case of Limit II, which pertains to the yielding of the joint reinforcement.
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Figure 5.31 Damage index with respect to shear stress (a) and damage index with respect to
shear strain (b)

Here, a strong correlation was discovered between concrete strength fc and both

shear strain and shear stress, with a coefficient of determination (R2) of 0.8515

for shear strain and 0.9154 for shear stress. Such a robust correlation suggested a

potent linear relationship. This finding reveals that a strong direct relationship exists

between the yielding of the reinforcement bars and the damage definition based on

the concrete material. This finding may have practical implications, suggesting that

valuable insights into the overall health and status of the concrete material could be

provided by careful observation and monitoring of the strain and stress in the joint

reinforcement. Consequently, this understanding may be instrumental in predictive

maintenance and failure prevention in concrete structures.

The correlation between the deformation values of sub-domains, predicated on

their hc/hb and ρ j values, and the compressive strength of concrete is depicted

in Figure 5.32. An interesting revelation made through this analysis is that the

specimens with moderate aspect ratios (bc/bh) demonstrate a higher sensitivity to

the compressive strength of concrete. This observation is valid irrespective of the

variations in the average reinforcement ρ j values, thereby establishing a consistent

pattern. Furthermore, a distinctive segment within the population, characterized

by aspect ratios ranging between 0.667 and 1.556, was identified. This sub-group

displayed unique characteristics in relation to the concrete compressive strength,

setting them apart from the rest of the population. With a similar reason explained in

previous subsection, no significant difference between various subdomains is observed

in terms of correlation coefficients, relation between concrete strength fc and shear

strength is not included.

However, it is worth noting that a residual segment of the population exists that falls

outside this distinctive group. When a correlation analysis was performed on the shear
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Figure 5.32 Coefficient of correlation between concrete compression strength fc of the shear
strains belong to different levels of average ρ and aspect ratio hc/hb
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strain and stress responses from the simulation samples of this remaining segment,

an R2 value of 0.4191 and 0.6116 were obtained. This is considerably lower than

the R2 value of 0.6321 noted for the sub-domain with aspect ratios between 0.7364

and 1.556. This discrepancy suggests a more robust relationship between the aspect

ratios and compressive strength in the distinguished sub-domain, as compared to the

remaining population.

Table 5.5 illustrates the proposed strain prediction equations for the limit states I to V

(γI to γV ) as a function of the concrete compressive strength fc. Different functional

forms have been used for each limit state, reflecting the unique strain behaviors

observed. For γI( fc), a cubic polynomial form has been employed. The coefficient

values for p1, p2, p3, and p4 suggest that the response is highly sensitive to variations

in fc, with the coefficients covering a wide range of magnitudes. The strain prediction

for γI I( fc), meanwhile, is modeled by a sum of two exponential terms. The wide range

of the coefficients of a, b, c, and d indicate complex exponential behavior, which

may be indicative of the nonlinear behavior typically observed in steel reinforcement

yielding. The function form used for γI I I( fc) is a power function. The parameter b

takes a wide range of values between 0.4919 and 12.8, suggesting that fc is raised to

a higher power, indicating a potentially high sensitivity to fc. For γIV ( fc) and γV ( fc),
a cubic polynomial form is again used. The coefficients exhibit significant variability,

which, akin to γI( fc), suggests a complex response to variations in fc.

Table 5.6 presents the proposed stress prediction curves for the limit states I to V (τI

to τV ), as a function of the concrete compressive strength fc. For all limit states,

a power function has been employed, indicative of the nonlinear stress responses

observed. For τI( fc), the coefficients a, b, and c have values spanning from negative

to positive, hinting at a complex relationship between stress and compressive strength.

The coefficient of b lies in the range 0.9252 to 1.543, implying that fc is predominantly

raised to the first power, while the wide range for c may suggest a constant stress offset.

The τI I( fc) curve, similar to τI( fc), is modeled using a power function. The a and c

coefficients exhibit a wider range, signifying potential variation in the underlying data.

For τI I I( fc), the coefficient b falls between 0.3001 and 0.7863, suggesting a less steep

response curve to fc changes. The coefficient c varies widely, with a negative lower

bound, indicative of a possible shift in the stress response. The model for τIV ( fc)
shows a smaller value for b between 0.06381 and 0.6109, indicating a potential lower

degree of sensitivity to changes in fc. The coefficient c varies from negative to positive,

possibly indicating a shifted baseline for the stress values. Finally, the τV ( fc) model

shares similar characteristics with τI I I( fc) and τIV ( fc), with the b coefficient value

ranging from 0.2327 to 0.7993 and the c coefficient ranging from negative to positive.
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Fitted curves are shown with scattered data and 90% prediction bounds are given in

Figure 5.34 and Figure 5.35. As it was remarked in the results presented in Table

5.5 and Table 5.6, stress curves significantly better correlation with the scattered data

compared to the strain curves.

Table 5.5 Strain prediction curves proposed for Limit I, Limit II, Limit III, Limit IV and Limit V

Variable Equation Coefficient Value Lower Bound Upper Bound R2

γI )( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 8.061× 10−8 6.733× 10−8 9.389× 10−8 0.6154
p2 −9.033× 10−6 −1.11× 10−5 −6.971× 10−6

p3 0.0002745 0.0001779 0.0003711
p4 0.001618 0.0003333 0.002903

γI I ( fc) a · eb· fc + c · ed· fc a −4.191× 10−6 −4.108× 10−5 3.27× 10−5 0.4685
b 0.08135 −0.01272 0.1754
c 0.01464 0.01344 0.01585
d 0.001705 −0.001702 0.005111

γI I I ( fc) a · f b
c + c a −3.028× 10−16 −8.576× 10−15 7.971× 10−15 0.5631

b 6.647 0.4919 12.8
c 0.01411 0.01373 0.01448

γIV ( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 −9.742× 10−8 −1.392× 10−7 −5.568× 10−8 0.6354
p2 1.61× 10−5 9.621× 10−6 2.259× 10−5

p3 −0.000846 −0.00115 −0.0005423
p4 0.02845 0.02441 0.03249

γV ( fc) p1 · f 3
c + p2 · f 2

c + p3 · fc + p4 p1 −2.147× 10−7 −2.975× 10−7 −1.319× 10−7 0.5874
p2 3.555× 10−5 2.269× 10−5 4.84× 10−5

p3 −0.001862 −0.002464 −0.00126
p4 0.05951 0.0515 0.06751

Table 5.6 Stress prediction curves proposed for Limit I, Limit II, Limit III, Limit IV and Limit V

Variable Equation Coefficient Value Lower Bound Upper Bound R2

τI ( fc) a · f b
c + c a 0.03635 −0.0163 0.08901 0.7151

b 1.234 0.9252 1.543
c 3.463 2.562 4.365

τI I ( fc) a · f b
c + c a 0.1634 −0.1122 0.4391 0.6841

b 0.9175 0.5742 1.261
c 2.795 0.9768 4.613

τI I I ( fc) a · f b
c + c a 1.485 −0.5351 3.504 0.6512

b 0.5432 0.3001 0.7863
c −2.002 −6.89 2.886

τIV ( fc) a · f b
c + c a 5.405 −4.472 15.28 0.7321

b 0.3374 0.06381 0.6109
c −8.7 −23.78 6.383

τV ( fc) a · f b
c + c a 1.459 −0.8922 3.811 0.6663

b 0.516 0.2327 0.7993
c −1.978 −7.308 3.351

The coefficients and their corresponding ranges reveal the complex, nonlinear

response of the system, while the different functional forms reflect the unique behavior

observed at each limit state. However, it should be noted that these models are subject

to the usual assumptions and limitations of curve fitting, and the ranges provided give

a measure of the uncertainty inherent in the fitting process.

As described in the previous subsection, the order of occurrence of limit states in a

prediction based on independent data must remain within the limits of logic. However,

since no gradual change of a variable is taken into account here, as in the definition

of the damage index, it is logically possible for all intermediate steps between Limit

I and Limit V to transition to each other. Therefore, in this part of the method, it is
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Figure 5.33 Strain prediction curves proposed for Limit I, Limit II, Limit III, Limit IV and
Limit V

advisable to use the strain and stress values of limit states B, C or D in the intermediate

steps. This can be seen by comparing the strain values corresponding to the boundary

states for different values of fc in the Figure 5.33.

5.6 Conclusion

In this chapter, the shear strain - stress envelope of reinforced concrete joints was

investigated through the utilization of advanced finite element method simulations.

The lack of unified experimental configurations in literature made it necessary to seek

alternatives for the statistical implementation of strain stress prediction models.

The need for a solution led to the exploration of artificial intelligence techniques

as a means to provide a connection between the physical characteristics of the

RC joint sub-assemblages and the resulting shear strain-stress outcomes. Although

these techniques often provide black-box solutions that can be effective in many

modelling applications, they usually offer limited insight into the characteristics of

the problem being defined. The approach in this study involved introducing a

specialized type of artificial neural network structure in regression applications while

also exploring basic statistical methods to establish a direct relationship between

the aforementioned quantities. The lack of abundant data samples in literature

necessitated the use of advanced finite element methods to create an accurate

statistical model. The application of finite element modelling techniques which

includes particularly sophisticated solutions for high-level nonlinear behavior of

concrete material helped overcome the issues encountered due to the diversity of

configurations, measurement techniques, design code alterations, and insufficient
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Figure 5.34 Scatter and fitted equations for shear strain values, γx y(y) and concrete strength
values, fc (x) for (a) Limit I, (b) Limit II, (c) Limit III, (d) Limit IV and (e) Limit V
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Figure 5.35 Scatter and fitted equations for shear strain values, τx y(y) and concrete
strength values, fc (x) for (a) Limit I, (b) Limit II, (c) Limit III, (d) Limit IV and (e) Limit V
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Figure 5.36 Comparison of experimental measurements with the predicted joint shear strain
- shear stress response for interior joints with (a) fc = 29.6 MPa (b) fc = 81.8 MPa (c)

fc = 40.4 MPa (d) fc = 40.9 MPa
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Figure 5.37 Comparison of experimental measurements with the predicted joint shear strain
- shear stress response for interior joints with (a) fc = 30.6 MPa (b) fc = 17.1 MPa (c)

fc = 77.9 MPa (d) fc = 41.4 MPa
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information about test setups in the existing literature. A calibration procedure for

the MPDP material model [111] was proposed, based solely on concrete strength, fc,

following the methodology introduced by Steinke et al. [247]. It was concluded that,

with the use of equations provided by Steinke et al. [247] and this chapter, a test

specimen expected to have joint panel damage or coupled joint panel beam flexure

damage can be accurately simulated.

The generation of 1500 simulation samples under predefined assumptions was

executed, with the results being classified based on limit states defined by the concrete

material damage index and the exceedance of concrete or reinforcement material

strength. Regression techniques were applied to these outcomes, and it was concluded

that the shear strain-stress envelope of any given joint sub-assembly with a known

concrete strength can be predicted with acceptable accuracy. It was found that the

inclusion of auxiliary terms such as ρ j and hc/hb could further enhance this accuracy.

However, for the sake of simplicity, the proposed equations were determined to be

adequate for the prediction of the mentioned quantities.

In conclusion, it was shown that the proposed equations are capable of calibrating the

MPDP material for use in joint specimens. Furthermore, the fitted equations from the

simulation results can predict the general characteristics of the joint shear strain-stress

envelope within acceptable limits.

Overall, a significant contribution has been made towards the practical applications

of joint modeling, with the insights gained from this work aiding in the further

understanding of the shear strain-stress behavior of RC joints. These findings

present opportunities for further refinement of these models and an expansion of

understanding in future studies.

Table 5.7 Mean and standard deviation for the damage index based approach and material
strength approach (Gamma γ Variables)

γA γB γC
Mean Std Dev Mean Std Dev Mean Std Dev

Damage Index Based Approach 1.2510 0.4645 1.5010 0.5328 1.7747 0.6750
Material Strength Based Approach 1.2062 0.3806 1.3960 0.5904 1.4198 0.6787

Table 5.8 Mean and standard deviation for the damage index based approach and material
strength approach (Tau τ Variables)

τA τB τC
Mean Std Dev Mean Std Dev Mean Std Dev

Damage Index Based Approach 1.4644 0.5637 1.4703 0.5282 0.8645 0.2602
Material Strength Based Approach 0.9031 0.4213 1.5359 0.5478 0.9625 0.3364
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In Table 5.7 and Table 5.8, mean values and standard deviations for ratio between

joint shear strain and stress predictions and experimental observations based on the

criteria defined in Chapter 4. The present definition was based on the geometrical

properties of the shear strain - shear stress curve, enabling the objective comparison

between experimental and simulated quantities. Even though the definition of the

curves based on the limit states give more comprehensive insight on the mechanics

of the joint deformation, due to the lack of reported objective information about the

experimental observations on the limit state exceedence.

In Table 5.7 presenting the joint shear predictions, the Damage Index Based Approach

shows higher mean values for each of γA, γB, and γC compared to the Material Strength

Based Approach. This indicates that, on average, the Damage Index Based Approach

predicts higher gamma values, suggesting a more severe damage. However, the

standard deviation values for the Damage Index Based Approach are also consistently

higher, implying greater variability or spread in the predicted values. This could mean

that while the Damage Index Based Approach generally predicts more severe damage,

it also comes with a higher level of uncertainty in the predictions.

In Figure 5.36 - 5.37, comparison between experimental results and predicted

joint shear strain-stress curves of the specimens experimentally tested by various

researchers are given. Table 5.8 displays the mean and standard deviation values

for the joint shear stress predictions. Here, a mixed picture is presented. For τA, the

Material Strength Based Approach predicts a lower mean value with lower variability,

suggesting that it predicts less severe damage with less uncertainty. However, for τB

and τC , the Material Strength Based Approach predicts higher mean values, which

suggests it predicts more severe damage for these variables. In the case of τB,

the standard deviation is slightly higher for the Material Strength Based Approach,

implying slightly more variability or spread in these predictions. For τC , however, the

standard deviation is higher for the Material Strength Based Approach, suggesting a

higher degree of uncertainty in these predictions.

In summary, while the Damage Index Based Approach generally predicts higher levels

of damage (as reflected in the shear strain and stress variables), it also exhibits higher

variability, suggesting greater uncertainty in these predictions. The Material Strength

Based Approach, on the other hand, shows mixed results with lower predicted levels

of damage for some variables, but higher predicted levels for others. It also exhibits a

generally lower degree of variability, indicating less uncertainty in these predictions.

These considerations should be taken into account when choosing between these two

approaches for predicting damage in reinforced concrete joints.
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6
CALIBRATION OF JOINT MODEL THROUGH GENETIC

ALGORITHM

6.1 Overview

Building on the detailed discussions in Chapter 3, the goal is to construct a

mathematical model that is expected to be capable of predicting the inelastic response

of any reinforced concrete joint with known basic physical properties. The model’s

purpose extends to its application in practical design and evaluation tasks. Apart from

incorporating the envelope parameters estimated in the previous sections, it is also

necessary to estimate the deterioration parameters. These parameters are critical in

controlling the responses to cyclic loads.

In this chapter, a calibration method for the deterioration parameters (referred to

as deteriorationParams) is proposed based on the collection of artificial intelligence

algorithms. The objective is to estimate the deterioration parameters that control

the joint panel shear deformation envelope for each experiment. Two methods are

employed for parameter estimation: the Finite Element Method using the MPDP

material model, introduced in Chapter 5, and generalized regression neural networks

trained using experimental results, as discussed in Chapter 4.

The process begins by estimating the model parameters for each experiment using

the aforementioned methods. Next, a set of deteriorationParams is generated for

each experiment using Latin Hypercube Sampling (LHS). These deteriorationParams

populations serve as the initial generation. The joint sub-assemblage model,

constructed using the reported features, is then simulated using the simulation

framework introduced in Chapter 3.

The simulated responses of the joint sub-assemblage model representing each sample

introduced in Table A.2 are compared to the experimentally observed responses. A

different experimental database is used in this process, since the all the samples of

database used in Chapter 5 and Chapter 4 did not apply cyclic loading procedure. The
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fitness or error of each simulation is assessed using several criteria explained in Section

6.2. Error assignment involves adopting two different methods: in the first, the error

is directly evaluated based on the simulation results while in the second method, a

relatively larger initial population is created, and an error meta-model is generated

using artificial neural networks.

Based on the criteria introduced in Section 6.2, multiple objectives are evaluated,

and the simulation that leads to the least error is determined using a non-dominated

sorting algorithm. In the generations following the initial population, simulations

for the new population are performed through the direct method in the first

error assessment method (Method I). In the second method (Method II), the error

meta-model is evaluated in each run. The deteriorationParams set that provide the best

solution for each experimental test are listed and statistically investigated to establish

a relationship between the physical features of the joint sub-assemblage. Nonlinear

regression results are presented to analyze the obtained data.

This chapter presents a comprehensive method for calibrating deterioration

parameters using artificial intelligence algorithms. The approach combines parameter

estimation techniques, simulation frameworks, and error assessment methods to find

the optimal solution for each experimental test. The results obtained provide valuable

insights into the relationship between the physical features of the joint sub-assemblage

and the corresponding deterioration parameters.

6.2 Problem Definition

A sub-assemblage is a portion of a moment frame isolated at approximate zero moment

sections. General configuration a simulation model representing a testing unit is

presented in Figure 6.1. In both exterior and interior joint models, both translational

degrees of freedoms are fixed at the bottom column end while vertical translation is

free at top column to allow axial loading. The cyclic displacement load is applied to

the free beam ends.

In the given experimental setup configuration, experimentally measurable parameters

(concrete strength ( fc), longitudinal reinforcement in beams and columns (ρb,ρc),

transverse reinforcement in beams, columns and joint region (ρbt , ρc t , ρ j t), section

width and height in beams and columns (bb,hb,bc,hc) and clear length of beams and

columns (Lb,Lc) are typically reported for the available test results in the literature.

Despite the uncertainty consisted in the measurement of these quantities, these

parameters are considered deterministic.
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beamColumnJoint

beamColumnJoint

(a) (b)

Figure 6.1 Idealization of the experimental setups for (a) interior and (b) exterior reinforced
concrete frame joints

Concrete material properties are defined with uniaxial Kent-Scott-Park Model [33]
which considers linear unloading/reloading stiffness and no tensile strength. Confined

concrete properties are derived through the definition of unconfined concrete and

provided reinforcement at any section according to Scott et al. [33] confinement

model. In steel reinforcement, Menegotto and Pinto [219] steel model with isotropic

strain hardening material model is used. Beside the basic characteristic parameters

representing the bilinear load-deformation response curve of reinforcement steel

material, a group of parameters are required to control the transition between elastic

and plastic regions which has a strong impact in the hysteresis unloading and reloading

behaviour. These parameters denoted by R0, CR1, CR2 and a1−a4 are considered as

deterministic scalars of their recommended values [220].

Along with the deterministic input parameters representing measurable features of an

arbitrary joint sub-assemblage, and prediction of the general characteristics defined

with envelopeParams which are discussed in Chapter 4 and Chapter 5; a complete

mathematical representation with pinching4 in OpenSees require proper estimation

of the damage rule defined in Equation 3.1 - 3.8. This process require proper

estimation of aforementioned deteriorationParams which is inherently challenging due

to the large number of combinations of the governing parameters and corresponding

outcomes. Descriptions and bounds observed in the previous studies available in the

literature are presented in Table 6.1.

In estimation of these parameters, conventional trial-error procedure is often followed

in the literature, as it is discussed in further detail in Chapter 2. However, examination
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Table 6.1 Description and bounds of the deteriorationParams

Parameter Description Bounds
rDisp Pinching displacement reloading parameter 0.0 − 0.4
rForce Pinching response reloading parameter 0.0 − 0.4
uForce Pinching response unloading parameter 0.0− 0.25
gK1 − gK4 Hysteresis stiffness degradation parameter 0.0 − 1.0
gD1 − gD4 Hysteresis displacement degradation parameter 0.0 − 1.0
gF1 − gF4 Hysteresis response degradation parameter 0.0 − 1.0
gE Hysteresis energy degradation parameter 1.0− 10.0

of the common approach reveals the lack of rational prediction through principles

of structural mechanics in the numerical representation of stiffness and strength

degradation phenomenon in reinforced concrete joints. Moreover, the same approach

has led to the use of existing equations (see Equations 3.1 - 3.8) controlling

deterioration only for the purpose of matching simulation results with experimental

observations, thus ensuring full dependence on experimental results. The fact is,

however, that there are practically no experimentally reported observations for each

joint region sample for which civil engineers have to estimate inelastic responses

during structural design or evaluation.

6.3 Methodology

The methodological framework presented in this chapter follows a structured and

systematic process, ensuring a comprehensive exploration of the parameter space.

Initially, an experimental database is compiled, encompassing only those specimens

subjected to a cyclic displacement procedure.

Distinct from the experimental database used in the previous two chapters, the

experimental database to be used for the intended purpose should include reported

observations of cyclic loading protocols. A new database is collected from the available

literature and the detailed information about the model parameters described

experimental setups is given in Table A.2. Interior joint sub-assemblages of 52

different configurations tested by Fernandes [248], Lee et al. [249], Alaee and Li [250],
Pantelides et al. [251], Liu [252], Noguchi and Kurusu [253], Dhakal and Pan [254],
Xin et al. [255], RaffaelleE and Wight [256], Kurose et al. [257], and Kusuhara and

Shiohara [258], 45 different exterior joint sub-assemblage tested by Tsonos [8], Kaku

and Asakusa [52], Ehsani and Alameddine [54], Shafaei et al. [214], Ehsani and Wight

[259], Ehsani et al. [260], and Chutarat and Aboutaha [261] are used as experimental

database.

Subsequently, their envelope parameters are predicted utilizing the dual

methodologies proposed in Chapters 4 and 5. A crucial aspect of the methodology
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is the adoption of Latin Hypercube Sampling to sample deterioration parameters,

aiming to achieve a comprehensive coverage of the sampling domain. The efficacy

of LHS lies in its ability to ensure a uniformly distributed and representative sample

across the entire problem space, thereby reducing the risks associated with overfitting

or underfitting and enhancing the robustness of the derived models.

Subsequently, OpenSees models are built by the collected information, the predicted

shear strain-stress curve, and randomly sampled deterioration parameters. Each

simulation sample is then evaluated based on predefined error (or fitness) criteria,

and a new generation of deterioration parameters is created following the principles

of the non-dominated sorting genetic algorithm. The algorithm iteratively seeks

the optimal solution until the convergence criteria are satisfied. Following this

optimization process, the obtained deterioration parameters are associated with the

physical features of the experimental specimens. This leads to the establishment

of relationships between the measurable features of joint sub-assemblies and the

detected deterioration parameters. The resulting correlations provide valuable

insights, paving the way for more accurate and efficient prediction and analysis in

future research and applications. In the subsections of this section, essential aspects

of the developed methodology are introduced.

6.3.1 Parameter Sampling

Training data preparation is a critical step in the effective implementation of both

feed-forward neural networks (FFNNs) and regression models, particularly in cases

where the ability to design the learning database exists. In such instances, one does

not merely rely on collected data, but can leverage the power of generated data,

enabling the creation of rich, diverse, and balanced datasets. In this regard, the data

generation process becomes a potent tool, enabling the provision of comprehensive

and representative training sets which can facilitate improved learning and modeling

of intricate underlying relationships. Along with the quality of data, the method

employed for training sample selection is also of significant importance. Techniques

such as Latin Hypercube Sampling (LHS) play a pivotal role in ensuring a uniformly

distributed and representative sample from the entirety of the problem domain.

This balanced sampling approach mitigates the risks of overfitting or underfitting,

enhancing the robustness of the derived models. As such, the thoughtful design

and generation of the training database, incorporating effective sampling strategies

like LHS, are vital to enhancing the accuracy and performance of both FFNNs and

regression models.

In Figure 6.2, two subfigures are observed, illustrating the performance of
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feed-forward neural networks (FFNNs) in approximating a given true function, which

is represented by a blue solid line. The effects of different training sample selection

methods, namely uniform random sampling and Latin Hypercube Sampling (LHS),

on the approximation accuracy are demonstrated by the subfigures. For the sake

of clarity and visualization, a complex test function is selected and expressed as

f (x) =
∑N

i ex p(a ∗ (x − b)2) where a and b are arbitrary scalars (e.g. N = 4,

a = [5,−1,−3,−1], b = [−3,−6,−8,−11]). In the Figure 6.2.(a), the true function

is compared with several approximation functions, which are derived from FFNNs

with varying numbers of hidden layer neurons. These approximation functions are

depicted as dashed lines of different colors. The training samples are generated by

having random numbers drawn within the function’s domain, following a uniform

distribution. While some of the approximation functions closely follow the true

function, a higher degree of deviation is exhibited by others, indicating the varying

performance of the FFNNs with different architectures. In contrast, the performance

of FFNNs with the same architectures as in the Figure 6.2.(a) is presented in the Figure

6.2.(b), but the training samples are now selected using LHS. This sampling method

ensures that the training dataset is more evenly distributed across the entire input

space, thus reducing the likelihood of overfitting or underfitting. As evident from

the Figure 6.2.(b), a much closer adherence to the true function is exhibited by the

approximation functions provided by the FFNNs trained with LHS samples, compared

to their counterparts in the 6.2.(b).

By providing a more balanced and representative set of training samples, LHS

allows the neural networks to learn the underlying patterns of the true function

more efficiently. The utilization of LHS for sample selection in training dataset

preparation can lead to improved performance and generalization in feed-forward

neural network-based approximations, as demonstrated by the findings.

During the training of a feedforward neural network (FFNN), the weights and biases

are adjusted to establish a relationship between the inputs and outputs presented in

the training dataset (as explained in Section 2.4.1). The performance of the network

is evaluated using an error function (such as mean squared error) by comparing the

neural network response to the desired output. However, according to Celikoglu

[262], FFNNs may struggle to find a global optimum solution or require a large

amount of training data when many input parameters are involved, even when using

advanced optimization algorithms (e.g., Newton or Levenberg-Marquardt). In such

cases, finding an effective neural network structure (e.g., number of input and hidden

layers, number of neurons, activation function) may require significant effort through

trial-and-error. Additionally, Cigizoglu and Alp [263] notes that the accuracy of the

neural network is heavily dependent on the random initialization of the input weights.
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Figure 6.2 Approximation to selected true function by FFNN through points sampled
through the domain with (a) uniform distribution (b) Latin Hypercube Sampling
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Figure 6.3 Approximation to selected true function by GRNN through points sampled
through the domain with (a) uniform distribution (b) Latin Hypercube Sampling

Furthermore, depending on the dataset and target, a unique FFNN structure may be

required for each target parameter, as one structure may not be effective for all targets.

Figure 6.3 presents two subfigures comparing the performance of Generalized

Regression Neural Networks (GRNNs) with varying spread parameters (σ), using

uniform random sampling and Latin Hypercube Sampling (LHS) for training sample

selection. The results highlight the superior approximation accuracy achieved by

GRNNs trained with LHS samples, emphasizing the importance of LHS in enhancing

performance and generalization in GRNN-based approximations.

6.3.2 Error Definition

In the evaluation of simulation accuracy, several critical fitness or error criteria are

considered based on the investigation of experimental specimens listed in Table A.3,

which offer a comprehensive understanding of how closely the simulated response
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matches the experimentally observed response.

The first criterion, maximum strength ( f1), refers to the highest lateral load the

sub-assemblage can resist. This measure is essential because it directly corresponds

to the sub-assemblage’s load-bearing capacity, a crucial factor in determining the

robustness of the simulated response.

The second criterion is the drift at maximum lateral load ( f2), a measurement derived

from the ratio of the lateral displacement at the column top to the total height of

the sub-assemblage when the load is at its peak. This metric provides insight into

the structural deformation under the maximum load, thereby revealing the structural

integrity of the simulated response under peak stress conditions.

The strength loss at the last cycle ( f3), which signifies the reduction in strength from

the maximum during the final load cycle, is the third criterion. This quantifies the

progressive deterioration of the structure’s load-bearing capability over successive load

cycles, providing crucial information about the simulation’s depiction of structural

fatigue.

The fourth and fifth criteria are derived from the load-displacement history of the

specimen. Tangent stiffness ( f4) offers a measure of the rate of change of loading

with respect to displacement. It is influenced by multiple factors, including behavior

within the joint core and the flexural stiffness of the beams and columns. Unloading

stiffness ( f5), on the other hand, is indicative of the stiffness deterioration of the

specimen linked to inelastic response within the joint core. Both measures offer vital

information about the load-displacement characteristics and the stiffness deterioration

of the structure under simulated conditions. The final criterion, ( f6), is the convex hull

area of the load deformation history which has a particular importance to represent

the accuracy in terms of pinching.

In conclusion, these six criteria, while individually providing unique insights into

various aspects of the simulated structural response, collectively give a comprehensive

understanding of how well the simulated response mirrors the experimentally

observed response. As such, they serve as critical benchmarks for evaluating the

accuracy of the simulations. Illustrative representation of the criteria is shown in

Figure 6.4

One of the most essential aspects affecting the quality and accuracy is the definition

of error or the fitness of the each individual simulation sample. In the present study,

two approaches are proposed; the first defines the optimization problem based on the

minimization error defined by one criterion, or the norm of the defined criteria. This
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Figure 6.4 Illustration of the error definitions used in multi-objective error minimization
problem

approach corresponds to a uni-objective unconstrained optimization problem which

requires less sophisticated solutions compared to the second. The second approach

aims to minimize a collection of error criteria simultaneously. In the result section,

effect of the objective definition is investigated.

6.3.3 Optimization Problem

In the present study, the proper modeling of an arbitrary joint sub-assemblage is

defined as an optimization problem where the best solution is aimed and the de-

teriorationParams leading to the optimal solution. After assessment of the deteri-

orationParams for the all specimens introduced in Table A.1, factors affecting the

alteration of the members of this parameter set and its sensitivities to the joint features

are investigated.

Among many, genetic algorithms are often adopted for such parameter identification

problems [129]. One of the biggest benefits is that they can search the entire solution

space which is particularly helpful in avoiding local optima, which are points that look

like the best solution within a small sub-domain. What sets genetic algorithms apart is

their adaptability. Genetic algorithms are not rigid, but rather capable of evolving over

time, adjusting to changes in the problem space. This makes them particularly useful

for dynamic optimization problems where the optimal solution might shift as time

progresses. In addition, genetic algorithms shine due to their problem-independent

nature. They don’t demand specific knowledge about the problem in order to

find solutions. As long as a fitness function is provided to guide the evolutionary
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process, genetic algorithms can be employed to solve a wide array of optimization

problems. Genetic algorithms are well-equipped to handle non-linear parameters and

discontinuous search spaces, thanks to their robustness and flexibility. Even when

a problem has complex interactions between variables, or numerous local optima,

genetic algorithms can still navigate the solution space effectively. Notably, they also

excel at multi-objective optimization. Through techniques like Pareto optimization,

genetic algorithms can find solutions that optimize several conflicting objectives at

once [146].

In the mathematical representation of the joint deformation problem, the i-th

simulated response in the j-th population is expressed as

vi j = f (di j, ci j, si j, pi j, t), i ∈ [1, n]Z , j ∈ [1, m]Z (6.1)

where di j, ci j, si j and pi j are vectors of input parameters related to model dimensions,

concrete material, steel (reinforcement) material and pinching4 material respectively

and f stands for structural analysis operator. While the di j, ci j and si j are consisted

of only deterministic scalar variables, pi j consists of both deterministic scalars (pdet
i j )

and a set of random scalars (prand
i j ) which were recommended to be fitted to the

experimental data.

The fitness of each simulation sample gi j is defined as the squared error between

simulated (vi j(t)) and experimentally observed (vex p(t)) response (the objective

output defined in terms of various response quantities in the previous section).

gi j(vi j, vex p) = (vi j − vex p)
2 (6.2)

The calibration process is adopted as an optimization problem that targets to minimize

the fitness function. The squared error is used to define fitness to overcome the

issue related to the fact negative error values may lead to inaccurate predictions of

simulations’ fitness.

After generation of the j-th population of n converged solutions, each sample is sorted

in the respective order of their normalized fitness ( ĝ) values. ps ∈ [0, 1]R is a random

variable to be returned for each selection while F( ĝ = P((̂g) ≤ ps)) corresponds to

the selection case where F is the cumulative distribution function. Since simulation

samples with less fitness values have higher F( ĝ) values returned, thus have greater

chance to be selected in comparison with the other simulation samples.
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After random selection of parent simulation samples, new sets of simulations samples

(referred as child) of the next generation are generated with the crossover process.

Probability of crossover is defined as P(pc ∈ [0,1]R < p̂c) and exceedence of a given

threshold p̂c (typically assigned a high value e.g. 0.9 to enhance variation in solutions)

corresponds to realization of generation of new random parameters deriving from

selected solution samples.

yk
i, j+1 = β · y

k
α, j + (1− β) · y

k
b, j (6.3)

where a and b are indices of selected samples, β ∈ [0, 1]R is a random parameter

that controls contribution of parameters from genes and superscript indicates the

kth component of model parameter vector. At last, generated model parameters

(genes) are mutated to a value randomly generated within the sampling interval with

probability defined as P(pm ∈ [0,1]R < p̂m) to expand solution domain. Members of

the mth population are expected to be consisted of the solution samples with the least

error.

6.3.4 Multiobjective Optimization

Use of more than one objectives in optimization process turns the case to a

multi-objective optimization problem. Within the scope of the present study,

a collection of functions has been developed and implemented for the purpose

of addressing multi-objective optimization problems as needed. These functions

have been designed to be compatible with MATLAB’s built-in ’gamultiobj’ function,

which utilizes the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for

solving multi-objective optimization problems [264]. Performance evaluation of the

optimization process is carried out by monitoring the hypervolume metric across

successive generations. This metric offers valuable insights into the convergence and

diversity properties of the algorithm, thereby facilitating the assessment of the quality

of the Pareto front approximations obtained during the optimization process.

A generic function is introduced to describe essential concepts used in the optimization

process used in the present study. To evaluate the performance of the developed

methodology, the well-established ZDT1 test problem (Equation ??) has been

employed as a benchmark [265]. This particular test problem has been extensively

utilized in the literature for assessing the efficacy of various optimization algorithms.

The ZDT1 function is challenging to optimize because it exhibits both convex and

non-convex regions in the search space. The non-linear nature of the second objective

function also adds to the difficulty. Therefore, optimization algorithms need to
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be able to balance between exploring the search space to find diverse solutions

and exploiting the solutions found to improve the objective values. Because of its

complexity and difficulty, ZDT1 is widely used as a benchmark test function in the

field of multi-objective optimization.

NSGA-II is an extension of the classical genetic algorithm framework, incorporating

several key modifications to enhance its ability to address multi-objective optimization

problems. These include a fast non-dominated sorting procedure, an elitist

preservation strategy, and a crowding distance sorting mechanism. By integrating

these features, NSGA-II effectively balances the exploration and exploitation aspects

of the search process, allowing it to converge to the Pareto-optimal set more efficiently.

A primary advantage of NSGA-II is its ability to generate a diverse set of Pareto-optimal

solutions. This diversity stems from the crowding distance calculation, which serves

to estimate the density of solutions surrounding a given individual in the objective

space. By incorporating this measure into the selection process, NSGA-II promotes

a more uniform distribution of solutions along the Pareto front, thereby enabling

decision-makers to identify a wider range of trade-offs between conflicting objectives.

An illustrative flowchart of NSGA-II algorithm is presented with Figure 6.5.

Regardless of the used algorithm, in multi-objective optimization, the Pareto front is

described a set of solutions that are not dominated by any other solution in terms of

all objective functions. Specifically, a solution is Pareto optimal if there is no other

solution that is better in all objectives, and there is at least one objective in which the

other solution is worse. The Pareto front is the set of all Pareto optimal solutions.

The Pareto front is a useful tool for decision making, as it represents the trade-offs

between the different objectives. A decision maker can choose a solution from

the Pareto front based on their preferences or priorities for the different objectives.

Figure 6.6 displays the Pareto fronts of different generations during the optimization

process. The x-axis represents the first objective, while the y-axis represents the second

objective. Each dot represents a solution, and the Pareto fronts are shown in different

colors. As the optimization progresses, the Pareto fronts move closer to the true

Pareto front, which might be not available in all cases. The figure demonstrates the

convergence of the optimization algorithm towards the true Pareto front and provides

insight into the trade-offs between the different objectives.

In a Pareto front, there is no single "best" solution that dominates all others in terms

of all objectives. Instead, the best solution for a particular decision maker or problem

depends on their preferences and priorities for the different objectives.

One approach to finding the best solution among a Pareto front using Euclidean
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distance to the origin is to first normalize the objective values of each solution in

the Pareto front by subtracting the ideal solution and dividing by the range between

the ideal solution and the Nadir point. This normalization transforms the Pareto front

into a unit hypercube centered at the origin.

Supposing a Pareto front with m objectives and n solutions. Let yi ∈ Rm denote the

objective values of the i-th solution in the Pareto front, where i = 1, . . . , n.

Ideal solution yideal and the Nadir point ynadir are defined as follows:

yideal = min
i=1,...,n

yi (6.4)

ynadir = max
i=1,...,n

yi (6.5)

Next, objective values can be normalized of each solution in the Pareto front as follows:

y′i =
yi − yideal

ynadir − yideal
(6.6)

This normalization transforms the Pareto front into a unit hypercube centered at the

origin. Then, the Euclidean distance can be calculated of each solution to the origin

as follows:

172



di =

√

√

√

m
∑

j=1

(y ′i j)2 (6.7)

The solution with the smallest Euclidean distance to the origin is considered the best

solution among the Pareto front in terms of Euclidean distance:

i∗ = arg min
i=1,...,n

di (6.8)

The best solution among the solutions in the Pareto front of the last generation is

remarked in yellow in Figure 6.6.

6.3.5 Performance Metrics and Validation

Generational Distance (GD) and Hypervolume (HV) are two popular performance

indicators used to evaluate the quality of solutions obtained from multiobjective

optimization algorithms. They provide quantitative measures of the performance of

the algorithms and help in comparing their effectiveness [266].

Generational Distance is a measure of the average distance between the obtained

Pareto front and the true Pareto front while Hypervolume is a measure of the size

of the space dominated by the obtained Pareto front. It quantifies the convergence

of the algorithm towards the true Pareto front. Both Generational Distance and

Hypervolume are valuable performance indicators in multiobjective optimization.

While Generational Distance focuses on convergence to the true Pareto front,

Hypervolume takes into account both convergence and diversity of the solutions. By

tracking the indicators over generations, you can observe how the algorithm converges

towards the true Pareto front. If the hypervolume value increases rapidly at first

and then starts to plateau, it’s an indication that the algorithm has converged to a

reasonable approximation of the Pareto front.

In most inverse analysis problems, analytical form of objective functions may not

be available thus true Pareto front is unknown. Deb and Jain [267] remark the

limitations of generational distance and propose the use of hypervolume as a more

suitable performance indicator, especially when the true Pareto front in such cases.

The authors argue that hypervolume has some desirable properties that make it a

convenient choice for evaluating the quality of the Pareto front approximations.

Hypervolume provides information about both the convergence of the algorithm

173



Figure 6.7 Histogram of the norm of error vector minimized for the entire dataset through
uni-objective optimization (Method I)

(how close the obtained Pareto front is to the true Pareto front) and the diversity

of the solutions (how well the solutions are spread along the Pareto front). A larger

hypervolume indicates better performance in terms of convergence and diversity. To

calculate the hypervolume, a reference point is required, which should be strictly

worse than any point in the true Pareto front. The hypervolume is then calculated as

the volume of the space enclosed between the obtained Pareto front and the reference

point.

6.4 Results

In this section, the optimization processes carried out with different objective

functions and modelling approaches are evaluated in terms of efficiency and obtained

coefficients. In these processes, firstly, the problem is considered as a single

objective function optimisation problem and the optimum result is sought by using

the modelling approaches presented in Chapter 4 and Chapter 5. The single objective

function chosen can be defined as the norm of the vector of scalar values of the criteria

defined in Section 6.3.2. The operation carried out here is referred to as Method I. In

the second part of the analysis, the aim is to simultaneously minimize the quantities

constituting the error vector as separate objective functions. Similar to Method I, both

GRNN predictions and equations obtained from FEM are used as modelling approach.

Since the accurate prediction of the cyclic response in both methods depends to a great

extent on the correct estimation of the envelope curve, an objective comparison can

only be made on the results using the same assumptions.

Firstly, in order to compare the effectiveness of both approaches, Figure 6.7-6.9
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Figure 6.8 Histograms of the objective functions minimized for the entire dataset through
multi-objective optimization (Method II) based on the FEM predicted shear strain stress curve

Figure 6.9 Histograms of the objective functions minimized for the entire dataset through
multi-objective optimization (Method II) based on the GRNN predicted shear strain stress

curve
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show the lowest relative error (see Section 6.3.2) obtained in simulations with 50

generations of 50 individuals each, for each sample in the database characterised in

Tables A.2 and A.3. The distributions of the relative error vector generated from the

defined criteria f1 - f6 for the two different modelling approaches performed in Method

I are given in Figure 6.7. Accordingly, it is seen that the results obtained from the

optimisation scheme based on the envelope estimation with GRNN can obtain more

convergent results at the same number of function cycles compared to the models

based on the envelope estimation with FEM. In the results obtained with FEM, there

are also results around 20% in the relative error vector, whereas there are very few

simulation examples with errors beyond 5% relative error in the results obtained by

GRNN.

Secondly, the relative error distributions obtained as a result of the multi-objective

optimisation process based on the joint deformation envelope obtained by FEM in the

Method II application, which includes 6 different objective functions, are shown in

Figure 6.8. According to this, it is seen that the function f1, which is based only on

the strength value, converged to the minimum values for most of the specimens, and

the objective functions remained far from the acceptable convergence range within

the defined number of function cycles. On the other hand, it is seen in Figure 6.9 that

with the error minimization process carried out over the joint deformation envelope

predictions made by GRNN, relative errors at reasonable levels can be obtained for

almost all discrete objective functions within the defined number of common function

cycles.

Accordingly, it is obvious that running both optimization methods with the predictions

made with GRNN is more efficient. In the comparison of the optimisation processes

carried out with Method I and Method II using the predictions from GRNN, it can

be suggested that more convergent results can be obtained with the multiobjective

optimization process based on the relevant results.

6.4.1 Estimation of deteriorationParams

Due to the nature of the problem, it is not entirely possible to relate the results obtained

as a result of the optimisation process carried out in this chapter to measurable

quantities describing the simulation models, or the corresponding experimental

samples, as was done in Chapters 4 and 5. Since the set of parameters obtained in

each solution work together to create a damage description, it is not acceptable to

relate the parameters obtained separately from the individual solutions to different

quantities. Nevertheless, it is still possible to make certain inferences by examining

the outputs obtained through the optimization process of these parameters.

176



Figure 6.10 Histograms of the pinching parameters resulted from the optimization
procedure of Method II GRNN approach

In Figure 6.10, strong accumulations are observed between the values of 0.20 - 0.25

for the pinching parameters rDisp, rForce while uForce is highly dissipated along the

sampling space. However, no distinguishable difference is observed based on concrete

strength fc, reinforcement ratio ρ j, aspect ratio b/h or joint type. On the other hand

the distribution of second to fourth terms of cyclic unloading stiffness degradation

parameters (gK2, gK3, gK4), cyclic reloading stiffness degradation parameters

(gD2, gD3, gD4), cyclic strength degradation parameters (gF2, gF3, gF4) and

maximum energy dissipation under cyclic loading parameter (gE) have shown very

large variance almost approximating an uniform distribution along the space. The

dissipation of the parameters along the sampling interval can indicate the low

sensitivity of the simulation model to the listed parameters.

When the distribution of the parameter gK1, which is outside the listed parameters,

is examined separately according to the type of the joint area, it is observed that the

values best approximating the result form two distinct clusters as it is shown in Figure

6.11. The data for the interior joints varies significantly, suggesting a diverse range of

behaviors within this category. The values, while predominantly centering around the

mid-range, have a wide span. Conversely, the gK1 values for exterior joints appear to

be generally higher, indicating a potential difference in the behavioral characteristics

between interior and exterior joints. This observation might suggest that exterior

joints generally exhibit higher gK1 values.

A similar clustering is also present for the gD1 values, albeit in a more variant form.

When a distinction is made specific to the type of joint, a notable separation is observed

in the distribution of parameters that yield convergent results. Upon analyzing the

gD1 values for interior and exterior joints, we can observe a couple of distinct features.
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Figure 6.11 Histograms of gK1 parameters resulted from the optimization procedure of
Method II GRNN approach split data based on the joint type

For interior joints, the data seems to vary more widely than that of exterior joints.

The mean value for gD1 for interior joints is approximately 0.39, suggesting that

most of the data points cluster around this value. However, the standard deviation of

approximately 0.17 indicates a high level of variance, showing that the data is spread

out over a large range. The minimum and maximum values lie between approximately

0.07 and 0.78 respectively, thus indicating the wide dispersion.

On the other hand, for exterior joints, the mean value is around 0.72, which is

significantly higher than that of interior joints. This suggests that the gD1 values for

exterior joints tend to be higher on average. The standard deviation is approximately

0.20, indicating a more spread out data set than the interior joint data, but also, it is

consistent with the larger mean value. The minimum and maximum values span from

approximately 0.30 to 1.00.

The gF1 parameter exhibits a certain level of consistency across both interior and

exterior joints, indicating that this specific parameter might not be significantly

influenced by the joint type. The parameter is characterized by a relatively low mean

value of around 0.15, suggesting that the majority of gF1 values are clustered in

this region. Furthermore, the standard deviation of 0.21, though higher than the

mean, indicates a reasonable level of dispersion around this mean value. However,

it is noteworthy to mention that no discernible patterns or clusters specific to either

interior or exterior joints have been observed within the data for gF1. This signifies

that the gF1 values remain relatively consistent regardless of the joint type, hinting at

a level of universality for this particular parameter across different types of joints in the

studied system. This can be an intriguing area of study to understand the underlying

factors causing such uniformity and its implications on the overall behavior of the
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Figure 6.12 Histograms of gD1 parameters resulted from the optimization procedure of
Method II GRNN approach split data based on the joint type
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Figure 6.13 Comparative presentation of experimental and simulated responses for
Specimen 1B [259], (a) Optimized deteriorationParams through Method I GRNN Approach

(b) Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72

system.

6.4.2 Numerical Examples

The conclusions drawn from the findings of this section are tested on an experimental

set, with an optimised interior and exterior joint sub-assemblages. In the previous

section, it was evaluated that it was appropriate to use the norms of both criteria as

the objective function in the genetic algorithm in the evaluation made on the relative

errors obtained over the whole data set through scatter plots. In Figure 6.13.(a), a

simulation result obtained with the Method I GRNN approach is shown in comparison

with experimental observations reported by Ehsani and Wight [259] about Specimen

1B.
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Figure 6.14 Comparative presentation of experimental and simulated responses for
Specimen LL1 [54], (a) Optimized deteriorationParams through Method I GRNN Approach

(b) Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72
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Figure 6.15 Comparative presentation of experimental and simulated responses for
Specimen LL1 [53], (a) Optimized deteriorationParams through Method I GRNN Approach

(b) Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72

Figure 6.13.(b) shows the result of a simulation with the proposed values of the 4

effective parameters (rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72) for

an external joint region without optimisation based on simple estimations based on

inferences made from the distribution of the parameters. Comparison between error

norms between two simulations lead to 21% increase in the relative error.

Figure 6.14, Figure 6.15 and Figure 6.16 show the optimized and predicted simulation

responses in comparison with experimental measurements reported by Ehsani and

Alameddine [54], Kaku and Asakusa [53] and Kaku and Asakusa [52] in respective

order. Commonly, Method I with GRNN approach is used for joint deformation

envelope prediction.
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Figure 6.16 Comparative presentation of experimental and simulated responses for
Specimen 6 [52], (a) Optimized deteriorationParams through Method I GRNN Approach (b)

Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.30 and gD1 = 0.39

6.5 Conclusion

In conclusion, this chapter has conducted a thorough investigation into the application

of genetic algorithms for the problem of reinforced concrete joint modelling.

Two distinct genetic algorithm forms were employed and the divergence between

simulated and observed responses was systematically classified to delineate different

aspects of joint deformation characteristics. A meticulous search was undertaken for

the parameter set that would yield the minimum error.

The techniques applied were twofold: the first method aimed for the minimization

of the norm of the error criteria (Method I), while the second one took a more

complex approach in minimizing all the objective functions simultaneously using the

principles of NSGA-II (Method II). Both techniques were tested using two different

joint deformation prediction models proposed in the preceding chapters, with findings

indicating superior accuracy from the GRNN-based prediction model.

The results clearly indicate that the employment of both methods in conjunction

with the GRNN joint deformation prediction model is capable of producing highly

approximate solutions, leveraging the robust capabilities of the Genetic Algorithm.

A comprehensive exploration of the procured deterioration parameters demonstrated

that the vast majority of parameters have minimal impact on the joint response.

However, four parameters — rDisp, uDisp, gK1, and gD1 — were found to significantly

influence the joint response. The effect of these crucial parameters was analyzed

separately based on the joint type, and their effective ranges were identified.

The mean values obtained from this statistical analysis were subsequently applied
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to both interior and exterior specimens. The results were found to be suitable

for practical applications, reinforcing the validity and efficacy of the methods and

models adopted in this study. This research lays a substantial foundation for further

exploration and improvement in the field of reinforced concrete joint modeling.
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7
DISCUSSION and FUTURE WORK

In summary, this thesis presents a comprehensive exploration into the shear

strain-stress envelope of reinforced concrete joints, leveraging advanced finite

element method simulations and artificial intelligence techniques. The research

was necessitated by the lack of unified experimental configurations in the literature,

resulting in the need for alternative statistical implementation of strain stress

prediction models.

In response to this, the study introduced a specialized type of artificial neural network

structure and explored basic statistical methods to establish a relationship between

the physical characteristics of the RC joint sub-assemblies and the resulting shear

strain-stress outcomes. The scarcity of data samples from the literature led to the

utilization of advanced finite element methods to create an accurate statistical model,

which was achieved by applying intricate solutions for high-level nonlinear behavior

of concrete material.

The study generated a significant number of simulation samples under predefined

assumptions. These results were systematically classified and regression techniques

were applied, leading to the conclusion that the shear strain-stress envelope of any

given joint sub-assembly can be predicted with acceptable accuracy. It was further

observed that including auxiliary terms could enhance this accuracy, although for the

sake of simplicity, the proposed equations were deemed sufficient.

The thesis subsequently delved into the practical application of genetic algorithms

for reinforced concrete joint modeling. Employing two distinct forms of genetic

algorithms, the study systematically classified the divergence between simulated and

observed responses to delineate different aspects of joint deformation characteristics.

It was found that a combination of these genetic algorithm forms and the GRNN joint

deformation prediction model could produce highly approximate solutions. Further

analysis revealed that the majority of deterioration parameters had minimal impact

on joint response. However, a select few – rDisp, uDisp, gK1, and gD1 – were found
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to have a significant effect, laying the groundwork for future research in this area.

The study has demonstrated that the GRNN-based model provides the most accurate

predictions among existing models, thereby showcasing the potential of the GRNN

model in enhancing the understanding of joint deformation characteristics and aiding

practical applications of joint modeling. A publicly accessible version of the trained

model has been provided to facilitate its wider use and further improvements.

Continuing from the findings of this thesis, a comprehensive parametric study of joint

mechanics is an important next step. The proposed methods, tools, and equations in

this thesis form a foundation for this study, allowing for the inclusion of more factors

in the exploration. By considering a broader range of parameters, a more detailed

understanding of joint mechanics may be achieved, which could lead to even more

accurate predictive models.

Microplane material formulation and bond springs under cyclic loading conditions

have shown significant potential. However, their application is often restricted due to

the high computational demands. Therefore, a future focus is to develop a calibration

technique to replace the current laborious trial and error fine-tuning process. This

could simplify the implementation of more comprehensive models and allow for more

detailed investigations.

Moreover, the proposed approach from this study could be adapted and integrated

into the existing design and assessment processes described in seismic codes and

provisions. Embedding these advanced modeling techniques into industry standards

could streamline the design process and possibly lead to structures that are more

efficient and safer. Based on the results of the parametric analyses, the possibility

of considering joint failures in force-based assessment methods through the use

of reduction factors will also be examined. Incorporating joint failures into these

methods could offer a more realistic representation of joint behavior under different

loads. This could contribute to the development of more accurate and safer structural

designs.

Incremental dynamic analyses and similar methods also present an interesting area

for future study. These methods could be used to represent the failure probabilities of

joints with varying characteristics in the form of fragility curves. This could provide

important insights for engineers and architects when assessing structural resilience

under different loading conditions.

In conclusion, this thesis has made a substantial contribution to the understanding of

the shear strain-stress behavior of RC joints. It has shown the feasibility of advanced
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AI techniques in predicting the strain-stress envelope, the effectiveness of genetic

algorithms in finding the most appropriate parameter set, and the superiority of the

GRNN model in predicting joint deformation. The insights and methods provided

by this study will certainly aid in the further understanding and improvement of

reinforced concrete joint modeling. Future research directions promise to significantly

contribute to the ongoing development and refinement of reinforced concrete joint

modeling. They offer a promising path towards enhancing our understanding of joint

behavior, leading to safer and more resilient structures.
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A
EXPERIMENTAL DATABASES

In this appendix chapter, experimental database collected from the available literature
are presented. In Table A.1, database used for generalized regression neural network
training and validation is shown. The sub-assemblages in this collection include only
experimental studies which reported joint shear strain versus shear stress in an explicit
form. Further details are given in Chapter 4. The same database, with addition
of reinforced concrete panel test carried out by Vecchio and Collins [77] is used in
calibration and validation of the method introduced in Chapter 5.

The second collection of experimental studies is presented in Table A.2 and Table
A.3, indicating the joint and column properties of the sub-assemblages and beam
configuration in respective order. In this database, all the sub-assemblages are
subjected to cyclic loads at least 5% drift ratio and their overall response are reported
in the cited references. The experimental results are used to evaluate and minimize
the error based on the defined criteria according to the method introduced in Chapter
6 through the simulation framework introduced in Chapter 3.
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Table A.1 Experimental Database

Ref Unit Joint Type # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fcc fyc rhoc hc bc n Failure Type
Meinheit and Jirsa [229] 12 INT 0 35.2 423 51 0.024 305 35.2 449 0.022 457 279 35.2 449 0.043 457 330 0.3 BJ
Watanabe et al. [241] WJ-1 INT 0 29 364 36 0.013 250 29 326 0.008 300 200 29 358 0.026 300 300 0.07 BJ
Watanabe et al. [241] WJ-3 INT 0 29 364 36 0.013 250 29 364 0.008 300 200 29 373 0.026 300 300 0.07 BJ
Leon [97] BCJ2 INT 0 27.6 414 51 0.005 229 27.6 414 0.009 305 203 27.6 414 0.028 254 254 0 BJ
Leon [97] BCJ3 INT 0 27.6 414 51 0.004 254 27.6 414 0.009 305 203 27.6 414 0.023 254 305 0 BJ
Noguchi and Kashiwazaki [55] OKJ-1 INT 0 70 955 50 0.009 250 70 718 0.023 300 200 70 718 0.028 300 300 0.12 BJ
Noguchi and Kashiwazaki [55] OKJ-4 INT 0 70 955 50 0.009 250 70 718 0.018 300 200 70 718 0.028 300 300 0.12 BJ
Goto and Joh [233] BJ-PH INT 0 30.5 326 40 0.009 250 30.5 395 0.014 350 200 30.5 640 0.031 300 300 0.17 BJ
Kaku et al. [268] J11A INT 0 57.6 893 86 0.005 280 57.6 371 0.022 350 260 57.6 371 0.033 400 300 0.24 BJ
Kaku et al. [268] J12A INT 0 56.6 893 86 0.005 280 56.6 371 0.03 350 260 56.6 371 0.033 400 300 0.25 BJ
Kaku et al. [268] J32A INT 0 55.2 893 65 0.006 280 55.2 363 0.032 350 260 55.2 371 0.033 400 300 0.25 BJ
Ishikawa and Kamimura [269] No.3 INT 0 23.3 330 50 0.01 215 23.3 373 0.016 250 180 23.3 373 0.032 250 250 0.18 BJ
Kitayama et al. [227] B2 INT 0 24.5 235 54 0.003 250 24.5 371 0.021 300 200 24.5 351 0.035 300 300 0.08 BJ
Meinheit and Jirsa [229] 13 INT 0 41.3 409 51 0.015 305 41.3 449 0.022 457 279 41.3 449 0.043 457 330 0.25 J
Meinheit and Jirsa [229] 14 INT 0 33.2 409 51 0.011 432 33.2 449 0.015 457 406 33.2 438 0.043 330 457 0.32 J
Watanabe et al. [241] WJ-6 INT 0 29 364 36 0.013 250 29 358 0.012 300 200 29 373 0.04 300 300 0.07 BJ
Fujii and Morita [51] A1 INT 0 40.2 291 52 0.005 190 40.2 1069 0.017 250 160 40.2 643 0.042 220 220 0.08 J
Noguchi and Kashiwazaki [55] OKJ-5 INT 0 70 955 50 0.009 250 70 718 0.025 300 200 70 718 0.034 300 300 0.12 J
Noguchi and Kashiwazaki [55] OKJ-6 INT 0 53.5 955 50 0.009 250 53.5 718 0.02 300 200 53.5 718 0.028 300 300 0.12 J
Morita et al. [240] M1 INT 0 17.1 344 80 0.003 300 17.1 520 0.019 400 300 17.1 520 0.059 350 300 0 J
Oka and Shiohara [270] J-10 INT 0 39.2 598 50 0.004 270 39.2 687 0.019 300 240 39.2 687 0.034 300 300 0.12 J
Megget [225] Unit A EXT 0 22.1 317 50 0.016 293 22.1 374 0.017 460 255 22.1 365 0.025 380 330 0.07 BJ
Ehsani and Wight [259] 3B EXT 0 40.9 437 84 0.017 279 40.9 331 0.018 480 259 40.9 490 0.025 300 300 0.06 BJ
Ehsani and Alameddine [54] LH8 EXT 0 55.8 437 61 0.02 337 55.8 437 0.019 508 318 55.8 437 0.028 356 356 0.04 BJ
Ehsani and Alameddine [54] HH8 EXT 0 55.8 437 61 0.02 337 55.8 437 0.019 508 318 55.8 437 0.032 356 356 0.07 BJ
Joh et al. [226] NRC-J13 EXT 0 79.4 770 36 0.006 225 79.4 698 0.025 250 200 79.4 698 0.024 250 250 0.02 BJ
Ehsani and Alameddine [54] LL8 EXT 0 55.8 437 102 0.012 337 55.8 437 0.015 508 318 55.8 437 0.028 356 356 0.04 BJ
Ehsani and Wight [259] 2B EXT 0 35 437 99 0.015 279 35 331 0.02 439 259 35 490 0.032 300 300 0.07 J
Joh et al. [243] HO-NO EXT 0 29.6 380 38 0.004 275 29.6 606 0.024 350 200 29.6 581 0.025 260 350 0.02 J
Joh et al. [243] MM-NO EXT 0 27.8 380 38 0.004 275 27.8 606 0.024 350 200 27.8 581 0.028 260 350 0.02 J
Joh et al. [243] HH-NO EXT 0 29.3 380 38 0.004 275 29.3 606 0.024 350 200 29.3 581 0.025 260 350 0.02 J
Joh et al. [243] H’O-NO EXT 0 31.5 380 38 0.004 275 31.5 606 0.024 350 200 31.5 581 0.025 260 350 0.02 J
Joh et al. [243] HH-N96 EXT 0 30.5 380 38 0.004 275 30.5 606 0.024 350 200 30.5 581 0.034 260 350 0.31 J
Joh et al. [245] NRC-J1 EXT 0 51.5 815 36 0.006 225 51.5 1091 0.032 250 200 51.5 1091 0.024 250 250 0.02 J
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Table A.1 Experimental Database – (continued from previous page)
Ref Unit Joint Type # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fcc fyc rhoc hc bc n Failure Type

Ishida et al. [234] A0 EXT 0 27 271 50 0.005 190 27 700 0.015 250 160 27 700 0.031 220 220 0.15 J
Ishida et al. [234] A0F EXT 0 27 271 50 0.005 190 27 467 0.015 250 160 27 467 0.031 220 220 0.15 BJ
Ehsani and Alameddine [54] HL8 EXT 0 55.8 437 102 0.012 337 55.8 437 0.019 508 318 55.8 437 0.032 356 356 0.07 J
Joh et al. [226] NRC-J2 EXT 0 81.8 815 36 0.006 225 81.8 1091 0.032 250 200 81.8 1091 0.024 250 250 0.02 J
Joh et al. [226] NRC-J4 EXT 0 88.9 815 36 0.006 225 88.9 1091 0.032 250 200 88.9 1091 0.024 250 250 0.3 J
Kurose et al. [228] J1 INT 0 24.1 550 102 0.007 457 24.1 463 0.011 508 406 24.1 463 0.024 508 508 0 BJ
Kurose et al. [228] J3N INT 1 27.6 409 152 0.008 305 27.6 463 0.02 457 279 27.6 459 0.051 457 330 0 BJ
Shin and LaFave [74] SL4 INT 1 31.2 448 64 0.012 279 31.2 510 0.008 406 279 31.5 503 0.026 368 279 0 BJ
Meinheit and Jirsa [229] 8 INT 2 33.1 409 152 0.005 305 33.1 449 0.022 457 279 33.1 449 0.043 457 330 0.32 BJ
Kurose et al. [228] J2E INT 2 27.6 409 152 0.008 305 27.6 463 0.028 457 279 27.6 459 0.068 457 330 0 BJ
Guimaraes et al. [57] J4 INT 2 31.6 550 102 0.008 457 31.6 463 0.01 508 406 29.1 523 0.04 508 508 0 BJ
Guimaraes et al. [57] J5 INT 2 77.9 550 102 0.008 457 77.9 561 0.023 508 406 95.1 543 0.063 508 508 0 BJ
Guimaraes et al. [57] J6 INT 2 92.1 570 64 0.016 457 92.1 523 0.019 508 406 70.3 561 0.063 508 508 0 BJ
Tsubosaki et al. [231] J12NS INT 2 60.3 800 50 0.004 270 60.3 711 0.02 320 240 60.3 973 0.044 300 300 0.29 BJ
Kurose et al. [228] J3E EXT 2 27.6 409 152 0.008 305 27.6 459 0.029 457 279 27.6 459 0.051 457 330 0 BJ
Goto and Joh [237] HM-125 INT 0 28.9 411 50 0.003 325 28.9 413 0.016 350 200 28.9 379 0.018 300 450 0.17 BJ
Goto and Joh [237] HH-125 INT 0 31.4 411 32 0.004 325 31.4 413 0.016 350 200 31.4 379 0.018 300 450 0.17 BJ
Goto and Joh [237] HU-125 INT 0 22.2 355 24 0.005 325 22.2 408 0.016 350 200 22.2 388 0.017 300 450 0.17 BJ
Teng and Zhou [238] S2 INT 0 34 440 75 0.008 300 34 510 0.014 400 200 34 530 0.031 300 400 0.11 BJ
Teng and Zhou [238] S3 INT 0 35 440 75 0.008 300 35 510 0.014 400 200 35 530 0.031 300 400 0.11 BJ
Teng and Zhou [238] S5 INT 0 39 440 50 0.012 300 39 425 0.009 400 200 39 530 0.047 200 400 0.11 BJ
Teng and Zhou [238] S6 INT 0 38 440 50 0.012 300 38 425 0.009 400 200 38 530 0.047 200 400 0.11 BJ
Kusuhara et al. [239] JE-55S INT 0 27 364 37 0.009 250 27 387 0.016 300 180 27 345 0.023 280 320 0 BJ
Raffaelle and Wight [232] 1 INT 0 28.6 476 89 0.008 305 28.6 441 0.01 381 254 28.6 441 0.018 356 356 0.02 BJ
Raffaelle and Wight [232] 2 INT 0 26.8 476 89 0.008 267 26.8 441 0.009 381 178 26.8 441 0.018 356 356 0.03 BJ
Raffaelle and Wight [232] 3 INT 0 37.7 476 89 0.008 273 37.7 441 0.009 381 191 37.7 441 0.018 356 356 0.02 BJ
Raffaelle and Wight [232] 4 INT 0 19.3 476 89 0.008 273 19.3 441 0.006 559 191 19.3 441 0.018 356 356 0.04 BJ
Shin and LaFave [74] SL1 INT 1 29.9 448 79 0.006 368 29.9 503 0.008 406 279 35.8 538 0.015 330 457 0 BJ
Shin and LaFave [74] SL2 INT 1 36.2 448 79 0.006 318 36.2 503 0.012 406 178 40.7 538 0.015 330 457 0 BJ
Meinheit and Jirsa [229] 6 INT 0 36.7 409 152 0.005 305 36.7 449 0.022 457 279 36.7 449 0.043 457 330 0.48 BJ
Noguchi and Kurusu [242] No2 INT 0 34.1 354 150 0.001 250 34.1 325 0.015 300 200 34.1 388 0.023 300 300 0.06 BJ
Noguchi and Kurusu [242] No4 INT 0 34.1 354 150 0.001 250 34.1 388 0.012 300 200 34.1 388 0.023 300 300 0.06 BJ
Joh et al. [244] JXO-B1 INT 0 21.3 307 88 0.002 225 21.3 371 0.008 350 150 21.3 371 0.011 300 300 0.16 BJ
Kitayama et al. [230] I3 INT 0 41.4 360 75 0.004 250 41.4 799 0.024 300 200 41.4 361 0.035 300 300 0.03 BJ
Goto and Joh [233] BJ-PL INT 0 29.7 326 50 0.004 250 29.7 395 0.014 350 200 29.7 640 0.031 300 300 0.17 BJ

Continued on next page
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Table A.1 Experimental Database – (continued from previous page)
Ref Unit Joint Type # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fcc fyc rhoc hc bc n Failure Type

Yoshino et al. [235] 1 INT 0 28.6 420 50 0.005 215 28.6 382 0.013 250 180 28.6 379 0.025 250 250 0.16 BJ
Yoshino et al. [235] 3 INT 0 28.6 420 50 0.005 215 28.6 379 0.016 250 180 28.6 379 0.025 250 250 0.16 BJ
Yoshino et al. [235] 4 INT 0 28.6 420 50 0.005 215 28.6 379 0.011 250 180 28.6 379 0.025 250 250 0.16 BJ
Suzuki and al. [236] E00 INT 0 24 358 100 0.004 315 24 384 0.018 500 230 24 384 0.014 500 400 0.25 J
Teng and Zhou [238] S1 INT 0 33 440 75 0.008 300 33 510 0.014 400 200 33 530 0.031 300 400 0.11 BJ
Kusuhara et al. [239] JE-0 INT 0 27 364 74 0.003 250 27 387 0.016 300 180 27 345 0.023 280 320 0 BJ
Meinheit and Jirsa [229] 1 INT 0 26.2 409 152 0.005 305 26.2 449 0.022 457 279 26.2 457 0.021 457 330 0.4 J
Meinheit and Jirsa [229] 2 INT 0 41.8 409 152 0.005 305 41.8 449 0.022 457 279 41.8 449 0.043 457 330 0.25 J
Meinheit and Jirsa [229] 3 INT 0 26.6 409 152 0.005 305 26.6 449 0.022 457 279 26.6 402 0.067 457 330 0.39 J
Meinheit and Jirsa [229] 4 INT 0 36.1 409 152 0.004 432 36.1 449 0.015 457 406 36.1 438 0.043 330 457 0.3 J
Meinheit and Jirsa [229] 5 INT 0 35.9 409 152 0.005 305 35.9 449 0.022 457 279 35.9 449 0.043 457 330 0.04 J
Meinheit and Jirsa [229] 7 INT 0 37.2 409 152 0.004 432 37.2 449 0.015 457 406 37.2 438 0.043 330 457 0.47 J
Endoh et al. [50] A1 INT 0 30.6 320 45 0.006 250 30.6 780 0.02 300 200 30.6 539 0.035 300 300 0.06 J
Fujii and Morita [51] A1 INT 0 40.2 291 52 0.005 190 40.2 1069 0.017 250 160 40.2 643 0.042 220 220 0.08 J
Fujii and Morita [51] A2 INT 0 40.2 291 52 0.005 190 40.2 409 0.016 250 160 40.2 387 0.042 220 220 0.08 J
Fujii and Morita [51] A3 INT 0 40.2 291 52 0.005 190 40.2 1069 0.017 250 160 40.2 643 0.042 220 220 0.23 J
Goto and Joh [237] UM-0 INT 0 24 355 50 0.003 325 24 697 0.018 350 200 24 388 0.02 300 450 0.17 J
Kaku and Asakusa [53] 3 EXT 0 41.7 250 52 0.005 190 41.7 381 0.016 220 160 41.7 360 0.016 220 220 0 BJ
Kaku and Asakusa [53] 5 EXT 0 36.7 281 52 0.001 190 36.7 381 0.016 220 160 36.7 360 0.016 220 220 0.09 BJ
Kaku and Asakusa [53] 6 EXT 0 40.4 281 52 0.001 190 40.4 381 0.016 220 160 40.4 360 0.016 220 220 0 BJ
Kaku and Asakusa [53] 9 EXT 0 40.6 250 52 0.005 190 40.6 381 0.016 220 160 40.6 395 0.018 220 220 0 BJ
Kaku and Asakusa [53] 11 EXT 0 41.9 281 52 0.001 190 41.9 381 0.016 220 160 41.9 395 0.018 220 220 0.08 BJ
Kaku and Asakusa [53] 12 EXT 0 35.1 281 52 0.001 190 35.1 381 0.016 220 160 35.1 395 0.018 220 220 0 BJ
Kaku and Asakusa [53] 14 EXT 0 41 281 52 0.001 190 41 381 0.016 220 160 41 381 0.016 220 220 0.08 BJ
Kaku and Asakusa [53] 15 EXT 0 39.7 281 52 0.001 190 39.7 381 0.016 220 160 39.7 381 0.016 220 220 0.08 BJ
Fujii and Morita [51] B2 EXT 0 30 291 52 0.005 190 30 409 0.016 250 160 30 387 0.031 220 220 0.07 J
Joh et al. [243] NRC-J12 EXT 0 83.7 717 42 0.002 225 83.7 698 0.025 250 200 83.7 698 0.024 250 250 0.02 BJ
Joh et al. [243] LO-NO EXT 0 27.9 380 110 0.001 275 27.9 606 0.024 350 200 27.9 581 0.025 260 350 0.02 J
Joh et al. [243] LO-N96 EXT 0 31.5 380 100 0.002 275 31.5 606 0.024 350 200 31.5 581 0.034 260 350 0.3 J
Fujii and Morita [51] B1 EXT 0 30 291 52 0.005 190 30 1069 0.017 250 160 30 387 0.031 220 220 0.07 J
Fujii and Morita [51] B3 EXT 0 30 291 52 0.005 190 30 1069 0.017 250 160 30 387 0.031 220 220 0.24 J
Joh et al. [226] NRC-J8 EXT 0 53.7 717 42 0.002 225 53.7 675 0.025 250 200 53.7 675 0.028 250 250 0.02 J
Meinheit and Jirsa [229] 9 INT 2 31 409 152 0.005 305 31 449 0.022 457 279 31 449 0.043 457 330 0.35 J
Meinheit and Jirsa [229] 10 INT 2 29.6 409 152 0.005 305 29.6 449 0.022 457 279 29.6 449 0.043 457 330 0.36 J
Meinheit and Jirsa [229] 11 INT 2 25.6 409 152 0.004 432 25.6 449 0.015 457 406 25.6 438 0.043 330 457 0.42 J
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Table A.1 Experimental Database – (continued from previous page)
Ref Unit Joint Type # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fcc fyc rhoc hc bc n Failure Type

Goto and Joh [271] LM-60 INT 0 26.4 411 50 0.003 325 26.4 396 0.016 350 200 26.4 379 0.018 300 450 0.17 BJ
Goto and Joh [271] LM-125 INT 0 26 411 50 0.003 325 26 396 0.012 350 200 26 379 0.018 300 450 0.17 BJ
Goto and Joh [271] HM-60 INT 0 24.3 411 50 0.003 325 24.3 396 0.02 350 200 24.3 379 0.018 300 450 0.17 BJ
Kusuhara et al. [239] JE-55 INT 0 27 364 74 0.003 250 27 387 0.016 300 180 27 345 0.023 280 320 0 BJ
Suzuki and al. [236] E085 INT 0 23 358 100 0.004 315 23 384 0.018 500 230 23 384 0.014 500 400 0.25 J
Suzuki and al. [236] E135 INT 0 22.7 358 100 0.003 365 22.7 384 0.013 450 230 22.7 384 0.019 300 500 0.25 J
Goto and Joh [237] UM-60 INT 0 24.6 355 50 0.003 325 24.6 697 0.018 350 200 24.6 388 0.02 300 450 0.17 J
Goto and Joh [237] UM-125 INT 0 25.2 355 50 0.003 325 25.2 697 0.018 350 200 25.2 388 0.02 300 450 0.17 J
Goto and Joh [237] UU-125 INT 0 25.4 355 24 0.005 325 25.4 697 0.018 350 200 25.4 388 0.02 300 450 0.17 BJ
Walker [60] PEER14 INT 0 31.8 31.8 508 0 406 31.8 423 0.009 508 406 31.8 423 0.014 457 406 0.11 BJ
Walker [60] CD1514 INT 0 29.8 29.8 508 0 406 29.8 423 0.009 508 406 29.8 423 0.014 457 406 0.12 BJ
Walker [60] CD3014 INT 0 42.5 42.5 508 0 406 42.5 423 0.009 508 406 42.5 423 0.014 457 406 0.08 BJ
Walker [60] PADH14 INT 0 42.9 42.9 508 0 406 42.9 423 0.009 508 406 42.9 423 0.014 457 406 0.09 BJ
Walker [60] PEER22 INT 0 38.4 38.4 508 0 406 38.4 527 0.013 508 406 38.4 538 0.028 457 406 0.09 BJ
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Table A.2 Experimental Database

Authors Unit fc ρ j N Lc hc bc cc φ ntopc nmidc nbotc Fyc φt sc Ltotc Ft y
Fernandes [248] JPA-1 19.8 0.0000 200 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [248] JPA-2 19.8 0.0000 200 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [248] JPA-3 19.8 0.0000 450 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [248] JPB 19.8 0.0000 450 1600 300 300 20 12 3 2 3 590 8 250 1040 590
Fernandes [248] JPC 19.8 0.0000 450 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [248] JD 19.8 0.0000 200 1600 300 300 20 12 3 2 3 480 8 100 1040 480
Pantelides et al. [251] Type I 43 0.0000 708.7948 1295 406 406 30 32 2 0 2 454 10 406 1504 454
Pantelides et al. [251] Type II 43 0.0000 708.7948 1397 406 406 30 32 2 0 2 454 10 406 1504 454
Liu [252] Unit 1 44 0.0000 0 1500 300 460 40 24 3 0 3 321 6 230 1760 318
Liu [252] Unit 2 49 0.0000 811.44 1500 300 460 40 24 3 0 3 321 6 230 1760 318
Noguchi and Kurusu [242] No 2 34.1 0.0001 294 585 300 300 20 13 6 4 6 388 10 100 2200 354
Noguchi and Kurusu [242] No 4 34.1 0.0001 294 585 300 300 20 13 6 4 6 388 10 100 2200 354
Noguchi and Kurusu [242] No 5 29.3 0.0001 294 585 300 300 20 13 6 4 6 374 10 100 2200 322
Noguchi and Kurusu [242] No 7 29.3 0.0001 294 585 300 300 20 13 6 4 6 374 10 100 2200 322
Dhakal and Pan [254] QS1 31.7 0.0000 600 1575 500 350 30 25 3 2 3 576 10 150 1680 364
Dhakal and Pan [254] QS2 32.8 0.0000 600 1575 400 400 30 25 3 2 3 576 10 150 1500 364
Xin et al. [255] Unit 1 20 0.0025 0 837 450 300 39 20 5.36 2 5.36 492 10 60 2027 348
Xin et al. [255] Unit 2 20 0.0025 0 837 450 300 39 16 5.5 2 5.5 445 10 60 2027 348
Xin et al. [255] Unit 3 40 0.0025 0 837 450 300 39 20 6.12 2 6.12 492 10 90 2027 348
Xin et al. [255] Unit 4 40 0.0025 0 837 450 300 39 20 4.92 1.28 4.92 492 10 90 2027 348
Xin et al. [255] Unit 5 60 0.0036 0 837 450 300 39 20 6.12 2 6.12 492 12 80 2027 327
Xin et al. [255] Unit 6 60 0.0036 0 837 450 300 39 20 6.12 2 6.12 492 12 80 2027 327
Raffaelle and Wight [232] S1 28.59 0.0013 89 876.3 355.6 355.6 25.4 19 3 2 3 440 9.53 88.9 2057 475
Raffaelle and Wight [232] S2 26.8 0.0012 89 876.3 355.6 355.6 25.4 19 3 2 3 440 9.53 88.9 2057 475
Raffaelle and Wight [232] S3 37.69 0.0017 89 876.3 355.6 355.6 25.4 19 3 2 3 440 9.53 88.9 2057 475
Raffaelle and Wight [232] S4 19.29 0.0006 89 787.4 355.6 355.6 25.4 19 3 2 3 440 9.53 88.9 2057 475
Kurose et al. [228] B1 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B2 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B3 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B4 24.4 0.0011 353 700 300 300 20 13 3 2 3 378 6 87.5 1040 378
Kurose et al. [228] B5 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B6 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B8 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kurose et al. [228] B9 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kurose et al. [228] B10 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kurose et al. [228] B11 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kusuhara and Shiohara [258] A1 28.3 0.0025 216 585 300 300 20 13 5 6 5 345 6 50 1040 295
Kusuhara and Shiohara [258] C1 28.3 0.0025 216 585 300 300 20 13 5 6 5 345 6 50 1040 295
Kusuhara and Shiohara [258] D1 30.4 0.0025 216 585 300 300 20 13 5 4 5 345 6 50 1040 295
Kusuhara and Shiohara [258] D2 30.4 0.0025 216 585 300 300 20 13 5 4 5 345 6 50 1040 295
Lee et al. [249] J1 40 0.0081 0 880 350 350 20 29 4 4 4 514.4 10 50 1240 510.4
Lee et al. [249] BJ1 40 0.0081 0 880 350 350 20 29 4 4 4 514.4 10 50 1240 510.4
Lee et al. [249] BJ2 40 0.0054 0 880 350 350 20 29 4 4 4 514.4 10 75 1240 510.4
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Table A.2 Experimental Database – (continued from previous page)
Authors Unit fc ρ j N Lc hc bc cc φ ntopc nmidc nbotc Fyc φt sc Ltotc Ft y

Lee et al. [249] BJ3 40 0.0054 0 880 350 350 20 29 4 4 4 514.4 10 75 1240 510.4
Lee et al. [249] B1 40 0.0054 0 880 350 350 20 29 4 4 4 514.4 10 75 1240 510.4
Alaee and Li [250] IN80 80 0.0116 1863 1400 450 300 20 25 2.41 0.82 2.41 500 10 60 2310 700
Alaee and Li [250] IH80 80 0.0093 1903.5 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [250] IH80A 80 0.0093 1944 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [250] IN100 100 0.0116 1984.5 1400 450 300 20 25 2.41 0.82 2.41 500 10 60 2310 700
Alaee and Li [250] IH100 100 0.0116 2025 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [250] IH60 60 0.0093 2065.5 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [250] IH60A 60 0.0093 2106 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Ehsani and Wight [259] 1B -33.55 0.009047831 180 827 300 300 45 19.05 3 2 3 488 13 63.5 886 413
Ehsani and Wight [259] 2B -34.93 0.009999121 222 827 300 300 45 19.05 4 2 4 488 13 63.5 886 413
Ehsani and Wight [259] 3B -40.86 0.012063774 222 827 300 300 45 19.05 3 2 3 488 13 63.5 1329 413
Ehsani and Wight [259] 4B -44.58 0.013332162 222 827 300 300 45 19.05 4 2 4 488 13 63.5 1329 413
Ehsani and Wight [259] 5B -24.32 0.009047831 355.23 865 340 340 50.8 25.4 4 2 4 413 13 63.5 886 413
Ehsani and Wight [259] 6B -39.78 0.009047831 302.66 865 340 340 50.8 25.4 3 2 3 413 13 63.5 886 413
Ehsani and Alameddine [54] LL11 -75.8 0.012837267 285 1536 356 356 63.5 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [54] LL14 -96.5 0.012837267 236 1536 356 356 63.5 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [54] LH11 -75.8 0.017972174 276 1536 356 356 63.5 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [54] LH14 -96.5 0.017972174 223 1536 356 356 63.5 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [54] HL11 -75.8 0.012837267 687 1536 356 356 63.5 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [54] HH14 -96.5 0.017972174 476 1536 356 356 63.5 25.4 3 2 3 496 13 63.5 1460 446
Kaku and Asakusa [52] 4D16H617 -31.1 0.0049 258 660 220 220 19 16 2 0 2 360 12 52 728 250
Kaku and Asakusa [52] 4D16H610 -41.7 0.0049 199 660 220 220 19 16 2 0 2 360 12 52 728 250
Kaku and Asakusa [52] 4D16H600 -41.7 0.0049 0 660 220 220 19 16 2 0 2 360 12 52 728 250
Kaku and Asakusa [52] 4D16H317 -44.7 0.0012 360 660 220 220 19 16 2 0 2 360 6 52 728 281
Kaku and Asakusa [52] 4D16H309 -36.7 0.0012 160 660 220 220 19 16 2 0 2 360 6 52 728 281
Kaku and Asakusa [52] 4D16H300 -40.4 0.0012 0 660 220 220 19 16 2 0 2 360 6 52 728 281
Kaku and Asakusa [52] 4D108D10H612 -32.2 0.0049 194 660 220 220 16 10 4 4 4 395 12 52 752 250
Kaku and Asakusa [52] 4D108D10H608 -41.2 0.0049 160 660 220 220 16 10 4 4 4 395 12 52 752 250
Kaku and Asakusa [52] 4D108D10H600 -40.6 0.0049 0 660 220 220 16 10 4 4 4 395 12 52 752 250
Kaku and Asakusa [52] 4D108D10H317 -44.4 0.0012 360 660 220 220 16 10 4 4 4 395 6 52 752 281
Kaku and Asakusa [52] 4D10 8D10 H3 08 -41.9 0.0012 160 660 220 220 16 10 4 4 4 395 6 52 752 281
Kaku and Asakusa [52] 4D10 8D10 H3 00 -35.1 0.0012 0 660 220 220 16 10 4 4 4 395 6 52 752 281
Kaku and Asakusa [52] 4D10 8D10 H3 -04 -46.4 0.0049 -100 660 220 220 16 10 4 4 4 395 12 52 752 250
Shafaei et al. [214] J1 -23 0.012932627 220 925 250 250 15 14 3 2 3 460 8 60 880 350
Shafaei et al. [214] J2 -23.3 0 220 925 250 250 15 14 3 2 3 460 8 60 880 350
Shafaei et al. [214] J3 -24.7 0 220 925 250 250 15 14 3 2 3 460 8 60 880 350
Chutarat and Aboutaha [261] I1 -27.6 0.013594346 0 1194 406 406 25.4 22.23 4 4 4 482.7 13 88.89 2845 365.4
Chutarat and Aboutaha [261] A2 -33.1 0.013594346 0 1194 508 406 25.4 22.23 3 2 3 482.7 13 88.89 2845 365.4
Ehsani et al. [260] 1 -64.72 0.011949747 133.447 1487.2 340 340 50.8 22.23 3 2 3 413 13 120 1630 413
Ehsani et al. [260] 2 -67.34 0.011949747 338.065 1487.2 340 340 50.8 22.23 3 2 3 413 13 120 1630 413
Ehsani et al. [260] 3 -64.72 0.01504164 382.547 1507.5 300 300 50.8 22.23 3 2 3 413 13 110 1352 413
Ehsani et al. [260] 4 -67.34 0.01504164 324.72 1507.5 300 300 50.8 25.4 3 2 3 413 13 110 1352 413
Ehsani et al. [260] 5 -44.64 0.01504164 222.411 849.1 300 300 50.8 19.05 3 2 3 413 13 110 1352 413
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Table A.2 Experimental Database – (continued from previous page)
Authors Unit fc ρ j N Lc hc bc cc φ ntopc nmidc nbotc Fyc φt sc Ltotc Ft y

Tsonos [8] A1 -35 0.009559798 200 550 200 200 30 10 3 2 3 500 6 50 792 540
Tsonos [8] E1 -22 0.009559798 200 550 200 200 30 14 3 2 3 500 6 50 792 540
Tsonos [8] E2 -35 0.009958123 200 550 200 200 30 14 3 2 3 495 6 48 792 540
Tsonos [8] G1 -22 0.008535534 200 550 200 200 30 14 3 2 3 495 8 100 792 540
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Table A.3 Experimental Database

Authors Unit Lb hb bb cb φ ntopb nmidb nbotb Fy b φt b sb Ltotb Ft y b
Fernandes [248] JPA-1 2150 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [248] JPA-2 2150 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [248] JPA-3 2150 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [248] JPB 2150 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [248] JPC 2150 400 300 20 12 2 0 4 590 8 100 1040 590
Fernandes [248] JD 2150 400 300 20 12 2 0 4 480 8 200 1040 480
Pantelides et al. [251] Type I 1677 610 406 30 13 17.34 1.18 2 454 10 229 1912 454
Pantelides et al. [251] Type II 1677 406 406 30 13 12.08 1.18 3 454 10 229 1504 454
Liu [252] Unit 1 1605 500 300 40 24 4 0 2 321 12 380 1280 318
Liu [252] Unit 2 1605 500 300 40 24 4 0 2 321 12 380 1280 318
Noguchi and Kurusu [242] No 2 1200 300 200 20 10 10 0 10 325 6 100 1800 354
Noguchi and Kurusu [242] No 4 1200 300 200 20 13 5 0 5 388 6 100 1800 354
Noguchi and Kurusu [242] No 5 1200 300 200 20 10 10 0 10 325 6 100 1800 322
Noguchi and Kurusu [242] No 7 1200 300 200 20 13 5 0 5 374 6 100 1800 322
Dhakal and Pan [254] QS1 2450 550 300 30 25 5 0 2 538 10 200 1500 264
Dhakal and Pan [254] QS2 2500 550 300 30 25 6 0 2 538 10 200 1500 264
Xin et al. [255] Unit 1 1855 500 250 44 12 7 0 7 453 6 70 1140 356
Xin et al. [255] Unit 2 1855 500 250 44 16 4 0 2 445 10 90 1140 348
Xin et al. [255] Unit 3 1855 500 250 44 16 4 0 4 445 10 90 1140 348
Xin et al. [255] Unit 4 1855 500 250 44 20 2 0 1.28 492 10 90 1140 348
Xin et al. [255] Unit 5 1855 500 250 44 20 3 0 3 492 10 90 1140 348
Xin et al. [255] Unit 6 1855 500 250 44 20 3.92 0 2 492 10 90 1140 348
Raffaelle and Wight [232] S1 2089 381 254 25.4 15.88 4.32 0 3 440 6.35 82.55 1068.8 475
Raffaelle and Wight [232] S2 2089 381 177.8 25.4 15.88 2.88 0 2 440 6.35 82.55 914.4 475
Raffaelle and Wight [232] S3 2089 381 190.5 25.4 15.88 3 0 2 440 6.35 82.55 939.8 475
Raffaelle and Wight [232] S4 2089 558.8 190.5 25.4 15.88 3 0 2 440 6.35 127 1295.4 475
Kurose et al. [228] B1 1350 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B2 1350 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B3 1350 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B4 1350 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B5 1350 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B6 1350 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B8 1350 350 200 20 13 3 0 3 378 6 50 1190 378
Kurose et al. [228] B9 1350 350 200 20 13 3 0 3 378 6 100 900 378
Kurose et al. [228] B10 1350 350 200 20 13 5 0 5 378 6 50 1190 378
Kurose et al. [228] B11 1350 350 200 20 13 5 0 3 378 6 50 1190 378
Kusuhara and Shiohara [258] A1 1350 300 300 20 13 8 0 8 345 6 50 1040 295
Kusuhara and Shiohara [258] C1 1350 300 300 20 13 8 0 8 345 6 50 1040 295
Kusuhara and Shiohara [258] D1 1350 300 300 20 16 6 0 6 345 6 50 1040 295
Kusuhara and Shiohara [258] D2 1350 300 300 20 16 6 0 6 345 6 50 1040 295
Lee et al. [249] J1 1375 400 300 20 16 10 0 10 509.9 10 100 1240 510.4
Lee et al. [249] BJ1 1375 400 300 20 16 6 0 6 509.9 10 100 1240 510.4
Lee et al. [249] BJ2 1375 400 300 20 16 5 0 5 509.9 10 200 1240 510.4
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Table A.3 Experimental Database – (continued from previous page)
Authors Unit Lb hb bb cb φ ntopb nmidb nbotb Fy b φt b sb Ltotb Ft y b

Lee et al. [249] BJ3 1375 400 300 20 16 4 0 4 509.9 10 200 1240 510.4
Lee et al. [249] B1 1375 400 300 20 16 3 0 3 509.9 10 200 1240 510.4
Alaee and Li [250] IN80 2175 500 250 20 16 4 0 2 500 10 65 1340 500
Alaee and Li [250] IH80 2175 500 250 20 16 4 0 2 700 10 85 1340 700
Alaee and Li [250] IH80A 2175 500 250 20 16 4 0 2 700 10 65 1340 700
Alaee and Li [250] IN100 2175 500 250 20 16 4 0 2 700 10 65 1340 700
Alaee and Li [250] IH100 2175 500 250 20 16 4 0 2 700 10 65 1340 700
Alaee and Li [250] IH60 2175 500 250 20 16 2 0 2 700 10 85 1340 700
Alaee and Li [250] IH60A 2175 500 250 20 16 2 0 2 700 10 85 1340 700
Ehsani and Wight [259] 1B 762 480 259 76 20.63 6 0 6 340 13 101.6 1072 413
Ehsani and Wight [259] 2B 762 439 259 48.3 20.63 6 0 6 340 13 88.9 1072 413
Ehsani and Wight [259] 3B 762 480 259 50.8 20.63 6 0 6 340 13 101.6 1072 413
Ehsani and Wight [259] 4B 762 439 259 48.3 20.63 6 0 6 340 13 88.9 1072 413
Ehsani and Wight [259] 5B 534 480 300 50.8 22.23 6 0 6 340 13 101.6 1072 413
Ehsani and Wight [259] 6B 534 480 300 50.8 20.63 6 0 6 340 13 76.2 1072 413
Ehsani and Alameddine [54] LL11 800 508 311 76.2 25.4 4 0 4 496 13 88.9 1092 446
Ehsani and Alameddine [54] LL14 800 508 311 76.2 25.4 4 0 4 496 13 88.9 1092 446
Ehsani and Alameddine [54] LH11 800 508 311 76.2 25.4 4 0 4 496 13 63.5 1092 446
Ehsani and Alameddine [54] LH14 800 508 311 76.2 25.4 4 0 4 496 13 63.5 1092 446
Ehsani and Alameddine [54] HL11 800 508 311 76.2 28.58 4 0 4 496 13 88.9 1092 446
Ehsani and Alameddine [54] HH14 800 508 311 76.2 28.58 4 0 4 496 13 63.5 1092 446
Kaku and Asakusa [52] 4D16H617 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [52] 4D16H610 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [52] 4D16H600 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [52] 4D16H317 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [52] 4D16H309 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [52] 4D16H300 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [52] 4D108D10H612 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [52] 4D108D10H608 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [52] 4D108D10H600 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [52] 4D108D10H317 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [52] 4D10 8D10 H3 08 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [52] 4D10 8D10 H3 00 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [52] 4D10 8D10 H3 -04 445 220 160 17 13 4 0 4 391 12 50 624 250
Shafaei et al. [214] J1 575 250 220 15 14 4 0 3 460 8 60 820 350
Shafaei et al. [214] J2 575 250 220 15 14 4 0 3 460 8 60 820 350
Shafaei et al. [214] J3 575 250 220 15 14 4 0 3 460 8 60 820 350
Chutarat and Aboutaha [261] I1 1067 457 356 25.4 22.23 4 0 4 482.7 13 88.9 2235 365.4
Chutarat and Aboutaha [261] A2 1067 457 356 25.4 22.23 4 0 4 482.7 13 88.9 2235 365.4
Ehsani et al. [260] 1 787 480 300 50.8 20.96 5 0 5 413 13 120 774.7 413
Ehsani et al. [260] 2 787 480 300 50.8 19.05 5 0 5 413 13 120 774.7 413
Ehsani et al. [260] 3 787 440 260 50.8 17.78 5 0 5 413 13 110 990.6 413
Ehsani et al. [260] 4 787 440 260 50.8 19.69 5 0 5 413 13 110 990.6 413
Ehsani et al. [260] 5 787 440 260 50.8 20.64 6 0 6 275 13 110 990.6 413
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Table A.3 Experimental Database – (continued from previous page)
Authors Unit Lb hb bb cb φ ntopb nmidb nbotb Fy b φt b sb Ltotb Ft y b

Tsonos [8] A1 450 300 200 30 10 4 0 4 500 6 65 760 540
Tsonos [8] E1 450 300 200 30 14 3 0 3 500 6 75 760 540
Tsonos [8] E2 450 300 200 30 14 2 0 2 495 6 75 760 540
Tsonos [8] G1 450 300 200 30 14 3 0 3 495 8 100 760 540
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B
FITTED SURFACES ON THE FE SIMULATION OUTPUT

This appendix chapter presents the fitted surfaces for the simulation results obtained
in the context of concrete behavior analysis. The surfaces are generated using cubic
surfaces and capture the relationship between shear strain and stress values with
respect to concrete strength, aspect ratio, and joint reinforcement ratio. A total of 1500
simulation results were utilized for the fitting process. The polynomial coefficients
used to construct the surfaces are listed in Table 1, while Table 2 presents the metrics
indicating the goodness of fit for the constructed surfaces.

To establish the relationships between shear strain and stress values, cubic
surfaces were employed. These surfaces allow for the representation of complex
three-dimensional interactions between the variables of interest, namely concrete
strength, aspect ratio, and joint reinforcement ratio. By fitting the cubic surfaces to
the simulation results, a comprehensive understanding of the concrete behavior under
the defined criteria can be obtained.

Table 1 provides the polynomial coefficients obtained from the surface fitting process.
These coefficients are crucial for accurately reproducing the fitted surfaces. Each
term in the polynomial equation contributes to the overall shape and characteristics
of the surfaces. By incorporating these coefficients, researchers and practitioners can
efficiently utilize the fitted surfaces for further analysis and decision-making processes.

Table 2 presents the metrics used to evaluate the goodness of fit for the constructed
surfaces. These metrics provide insights into the accuracy and reliability of the fitted
surfaces in representing the simulation results. Commonly used metrics, such as root
mean square error (RMSE), coefficient of determination (R²), and mean absolute error
(MAE), are reported. These metrics allow for an objective assessment of the quality
of the fitted surfaces and aid in understanding the level of agreement between the
simulation results and the fitted models.

This appendix chapter demonstrates the fitting of cubic surfaces to 1500 simulation
results, which represent shear strain and stress values under defined criteria. By
employing polynomial coefficients listed in Table 1, the fitted surfaces accurately
capture the complex interdependencies between concrete strength, aspect ratio, and
joint reinforcement ratio. The goodness of fit metrics presented in Table 2 assure
the reliability of the fitted surfaces. Researchers and practitioners can utilize these
surfaces to gain insights into concrete behavior and make informed decisions based
on the defined criteria.
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(a) (b)

(c) (d)

(e)

Figure B.1 Scatter and fitted surfaces for shear strain values, γx y(z) and concrete strength
values, fc (x) and joint reinforcement ratio, ρ j (y) for (a) Limit I, (b) Limit II, (c) Limit III,

(d) Limit IV and (e) Limit V
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(a) (b)

(c) (d)

(e)

Figure B.2 Scatter and fitted surfaces for shear strain values, γx y(z) and concrete strength
values, fc (x) and aspect ratio, b/h (y) for (a) Limit I, (b) Limit II, (c) Limit III, (d) Limit IV

and (e) Limit V
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(a) (b)

(c) (d)

(e)

Figure B.3 Scatter and fitted surfaces for shear stress values, τx y(z) and concrete strength
values, fc (x) and aspect ratio, ρ j (y) for (a) Limit I, (b) Limit II, (c) Limit III, (d) Limit IV

and (e) Limit V
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(a) (b)

(c) (d)

(e)

Figure B.4 Scatter and fitted surfaces for shear stress values, τx y(z) and concrete strength
values, fc (x) and aspect ratio, b/h (y) for (a) Limit I, (b) Limit II, (c) Limit III, (d) Limit IV

and (e) Limit V
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(a) (b)

(c) (d)

(e)

Figure B.5 Scatter and fitted surfaces for shear strain values, γx y(z) and concrete strength
values, fc (x) and joint reinforcement ratio, ρ j (y) for (a) Limit A, (b) Limit B, (c) Limit C,

(d) Limit D and (e) Limit E
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(a) (b)

(c) (d)

(e)

Figure B.6 Scatter and fitted surfaces for shear strain values, γx y(z) and concrete strength
values, fc (x) and aspect ratio, b/h (y) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D

and (e) Limit E
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(a) (b)

(c) (d)

(e)

Figure B.7 Scatter and fitted surfaces for shear stress values, τx y(z) and concrete strength
values, fc (x) and aspect ratio, ρ j (y) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D and

(e) Limit E
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(a) (b)

(c) (d)

(e)

Figure B.8 Scatter and fitted surfaces for shear stress values, τx y(z) and concrete strength
values, fc (x) and aspect ratio, b/h (y) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D

and (e) Limit E
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Table B.1 Polynomial coefficients for surfaces fitted to shear strain data for material strength limit states

Function p00 p10 p01 p20 p11 p02 p30 p21 p12 p03
γ1( fc ,ρ j) 0.0033 -4.112e-05 -0.0002053 0.0006908 -0.000551 -0.0002384 -0.0003309 -0.0001274 0.0002409 6.86e-05
γ1( fc , b/h) 0.003101 0.0002183 -0.0001638 0.0006495 1.702e-06 -4.011e-05 -0.0004901 -2.479e-05 -2.133e-05 -5.898e-07
γ2( fc ,ρ j) 0.01894 -0.00259 0.002112 -0.0007852 -0.000997 -0.003427 0.0001952 -0.0003786 0.0006939 0.0006018
γ2( fc , b/h) 0.01485 0.001379 0.0006839 0.0004231 -0.0008556 7.56e-05 -0.001423 0.0003254 -0.0004777 -0.0001216
γ3( fc ,ρ j) 0.01774 -0.002028 0.001869 -0.001839 -0.0007375 -0.003099 0.0005747 -0.0004858 0.0006154 0.0005675
γ3( fc , b/h) 0.0142 0.001712 0.0009086 -0.000702 -0.0006058 -4.534e-05 -0.001018 8.567e-05 -0.0003545 -8.825e-05
γ4( fc ,ρ j) 0.01566 -0.001882 0.0007032 0.001268 -0.0007421 -0.002525 -0.0004526 -0.0005993 -0.0001408 0.0005171
γ4( fc , b/h) 0.01339 -0.00038 -0.00068 0.002231 0.0005144 -0.0001225 -0.001762 3.42e-06 0.0003972 8.53e-05
γ5( fc ,ρ j) 0.03127 -0.003141 0.001123 0.002238 -0.001313 -0.005321 -0.001084 -0.0009177 -0.000348 0.001132
γ5( fc , b/h) 0.02651 -0.0002491 -0.001331 0.004128 0.0009772 -0.0001194 -0.003658 9.446e-05 2.452e-05 -2.031e-05

Table B.2 Polynomial coefficients for surfaces fitted to shear stress data for material strength limit states

Function p00 p10 p01 p20 p11 p02 p30 p21 p12 p03
τ1( fc ,ρ j) 7.776 4.249 -0.4513 0.962 0.964 -1.255 -1.144 0.801 -0.4556 0.3774
τ1( fc , b/h) 6.928 3.822 -0.8362 1.27 0.1863 0.04634 -1.244 -0.06645 0.0364 0.01045
τ2( fc ,ρ j) 8.017 4.536 -0.6713 1.455 0.7698 -1.109 -1.245 0.8317 -0.3291 0.3672
τ2( fc , b/h) 7.361 4.096 -0.7794 1.655 0.2027 -0.008256 -1.237 -0.01441 0.002448 0.01899
τ3( fc ,ρ j) 10.58 5.581 0.289 -0.05377 1.809 -1.382 -1.171 0.6123 -0.8274 0.367
τ3( fc , b/h) 9.747 5.673 -0.6991 0.574 0.3026 -0.07089 -1.605 0.05769 -0.01784 0.04216
τ4( fc ,ρ j) 11.63 6.354 0.2334 -0.1422 2.192 -1.552 -1.638 0.7242 -0.9584 0.4095
τ4( fc , b/h) 10.67 6.665 -0.6862 0.718 0.5297 -0.09116 -2.343 -0.1966 -0.1376 0.04213
τ5( fc ,ρ j) 9.575 5.141 0.1778 -0.2527 1.83 -1.202 -1.204 0.7929 -0.6392 0.3089
τ5( fc , b/h) 9.015 5.216 -0.459 0.08087 0.1225 -0.1602 -1.561 -0.2967 -0.1354 0.03524
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Table B.3 Polynomial coefficients for surfaces fitted to shear strain data for damage index limit states

Function p00 p10 p01 p20 p11 p02 p30 p21 p12 p03
γA( fc ,ρ j) 0.006314 -0.00063 0.0002713 0.0004164 -0.0002495 -0.001058 -0.0002276 -0.0001989 -7.01E-05 0.0002226
γA( fc , b/h) 0.00529 -5.81E-05 -0.0003207 0.0008392 0.0002031 1.69E-05 -0.0007392 6.50E-05 1.92E-05 -7.26E-06
γB( fc ,ρ j) 0.01236 -0.001265 0.0005464 0.001068 -0.0004876 -0.002089 -0.0004459 -0.0004115 -0.0001664 0.000432
γB( fc , b/h) 0.01045 -5.59E-05 -0.0005274 0.00188 0.0004495 -4.38E-05 -0.001476 6.10E-05 -2.28E-05 -5.28E-06
γC ( fc ,ρ j) 0.01929 -0.002189 0.0007622 0.001234 -0.000879 -0.003454 -0.0004709 -0.0005024 -0.0002087 0.0007375
γC ( fc , b/h) 0.01616 -0.0001237 -0.0008607 0.002561 0.0006998 -0.0001407 -0.002169 0.0001087 -8.49E-05 -3.74E-06
γD( fc ,ρ j) 0.02534 -0.002657 0.0007263 0.001906 -0.001209 -0.004402 -0.0009437 -0.0006457 -0.0002205 0.0009644
γD( fc , b/h) 0.02125 -0.0002908 -0.001031 0.003643 0.0008168 -1.26E-05 -0.003023 0.0003097 0.000248 -2.50E-05
γE( fc ,ρ j) 0.03153 -0.003657 0.0012 0.002029 -0.001044 -0.005741 -0.0004928 -0.001019 -0.0006002 0.001303
γE( fc , b/h) 0.0263 -0.0006348 -0.001504 0.004207 0.001086 5.29E-05 -0.003223 0.000525 0.0001241 -3.27E-05

Table B.4 Polynomial coefficients for surfaces fitted to shear stress data for damage index limit states

Function p00 p10 p01 p20 p11 p02 p30 p21 p12 p03
τA( fc ,ρ j) 8.585 3.702 0.556 -0.5013 1.261 -1.511 -0.8869 0.228 -0.6478 0.3855
τA( fc , b/h) 7.42 4.202 -0.7059 0.2298 0.3282 0.139 -1.543 0.1529 0.0924 -0.000301
τB( fc ,ρ j) 9.666 5.317 0.3724 -0.04375 1.61 -1.343 -1.404 0.5734 -0.6305 0.3473
τB( fc , b/h) 8.807 5.506 -0.4864 0.5066 0.2912 -0.04197 -1.837 -0.1697 -0.04739 0.02003
τC ( fc ,ρ j) 10.02 5.219 0.3758 -0.07415 1.76 -1.327 -1.285 0.6703 -0.716 0.3393
τC ( fc , b/h) 9.229 5.391 -0.773 0.5109 0.3021 -0.08456 -1.719 0.1501 0.001166 0.04528
τD( fc ,ρ j) 10.26 5.298 0.5842 -0.06859 1.866 -1.337 -1.154 0.5283 -0.8333 0.2995
τD( fc , b/h) 9.471 5.587 -0.5934 0.547 0.294 -0.1096 -1.717 -0.09267 -0.08499 0.04034
τE( fc ,ρ j) 10.69 5.569 0.1865 -0.1236 1.84 -1.482 -1.238 0.7417 -0.836 0.3895
τE( fc , b/h) 9.89 5.755 -0.5912 0.4369 0.1901 -0.1828 -1.755 -0.207 -0.1284 0.048
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