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ABSTRACT

Prediction of Response and Damage in Reinforced
Concrete Joints Through Artificial Intelligence
Techniques

Mehmet Ozan YILMAZ
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The modern approach to design of earthquake resistant reinforced concrete structures
is based on predictable ductile failure of structures. The most basic principle in
the operation of the ductile damage mechanism is to maintain the redistribution
of plastic strains in beams under earthquake effects up to ductility levels that can
meet high displacement demands. The design of columns to be stronger than beams
in terms of bearing capacity has been introduced in order to ensure that plastic
deformations occur in beams and has been accepted as the strongest guarantee of the
aforementioned damage mechanism in many cases. In addition, it has been accepted
in the analysis and design that the joints of reinforced concrete beams-columns, where

large shear forces are transmitted, do not produce nonlinear deformations.

It is clear that the occurrence of nonlinear deformations in the joint regions is an
obstacle to the ductile response of the frame. In recent years, some experimental
studies have shown that nonlinear reactions may develop in frame members where
these conditions are met, as well as in joints where the conditions set forth by modern
codes are not met. This situation reveals the necessity of taking into account the
nonlinear deflections occurring in the joints in the calculations performed both in the

evaluation of existing structures and in the design of new structural systems.

In the literature, the models proposed for the prediction of internal forces and

deformations under cyclic effects in joint regions can be categorised into two different
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main groups. The first one is the models in which the results of a limited number
of experimental studies, each with different experimental conditions, are used in
calibration and the so-called super-elements, which are formed by one or more
uniaxial springs are used. The second class of models is the plane and space models in
which concrete and reinforcement are represented using more advanced finite element
and constitutive relations. Both model classes are studied, and the reasons they are not
commonly used in practical structural engineering evaluation and design applications
are revealed.

It has been evaluated that the ability of the super-elements presented in the literature
to simulate with acceptable approximation the nonlinear strain responses of a given
reinforced concrete column-beam joint region under cyclic effects is directly related
to the a priori estimation of the unidirectional incremental rotation-shear force
relationship of the relevant reinforced concrete column-beam region. Due to this,
two distinct models have been introduced which take the fundamental physical
variables of any joint region sample as input and estimate shear strain-stress. The
first one is an advanced artificial neural network model that utilises the results of
experimental studies reported in the literature. A second prediction model, which
serves the same purpose, is constructed by nonlinear regression between shear
strain-stress relationships obtained from numerical simulation models using advanced
finite element techniques and physical variables related to the joint region. Utilizing
a non-dominated sorting genetic algorithm, scalars based on the joint type have been
proposed to estimate the reduction in strength and stiffness of reinforced concrete

column-beam joints under cyclic effects.

Keywords: reinforced concrete joints, nonlinear finite element analysis, artificial

neural networks, genetic algorithm
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OZET

Betonarme Birlesim Bolgelerinde Tepki ve Hasarin
Yapay Zeka Teknikleri Kullanilarak Tahmini

Mehmet Ozan YILMAZ

Insaat Miihendisligi Anabilim Dali

Doktora Tezi

Danisman: Prof. Dr. Serkan BEKIROGLU

Depreme dayanikli betonarme yapi1 tasarimda cagdas yaklasim, yapilarin 6ngortilebilir
siinek hasar almasi iizerine kurulmustur. Deprem etkileri altinda plastik
sekildegistirmelerin kirislerde olusarak yeniden dagilimin, yiiksek yerdegistirme
taleplerini karsilayabilecek stineklik seviyelerine kadar siirdiiriilebilmesi siinek hasar
mekanizmasinin calistirilmasindaki en temel ilke olarak goriilebilir.  Kolonlarin
tasima giici bakimindan kirislerden daha giiclii olarak tasarlanmasi, plastik
sekildegistirmelerin kirislerde olusmasini saglamak amaciyla ortaya konmus ve bircok
durumda anilan hasar mekanizmasinin en giiclii giivencesi olarak kabul edilmistir.
Bunun yaninda, ¢6ziimlemede ve tasarimda, biiyiik kesme kuvvetlerinin aktarildig:
betonarme kiris-kolonlarin birlesim bolgelerinin dogrusal olmayan sekildegistirmeler

yapmadig1 kabul gormiistiir.

Birlesim bolgelerinde dogrusal olmayan sekildegistirmelerin olusumunun, cercevenin
siinek tepkiler olusturmasinin Onitinde bir engel oldugu aciktir. ~ Son yillarda
deneysel olarak gerceklestirilen bazi calismalarda, ¢agdas yonetmeliklerce ortaya
konan sartlarin saglanmadig: birlesimlerin yaninda, bu kosullarin saglandigi cerceve
elemanlarinda da dogrusal olmayan tepkilerin gelisebilecegine dair sonuglara
ulasmisti. ~ Bu durum, gerek mevcut yapilarin degerlendirilmesinde, gerekse
yeni tasiyici sistemlerin tasarlanmasinda yapilan hesaplarda birlesim bolgelerinde
olusan dogrusal olmayan sekildegistirmelerin gézoniine alinmas: gerekliligini ortaya
koymaktadir.
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Literatlirde, birlesim bolgelerinde cevrimsel etkiler altinda olusan i¢ kuvvet ve
sekildegistirmelerin kestirim icin ortaya konan modeller iki farkli temel sinifta
incelenebilir. Bunlardan ilki, her biri farkli deney kosullarina sahip sinirli sayida
deneysel calismaya ait sonuclarin kalibrasyonda kullanildig1 ve tek eksende calisan
bir veya birden fazla yayin bir araya gelerek olusturdugu siiper-eleman olarak
adlandirilan elemanlarin kullanildigi modellerdir.  ikinci smif ise, betonun ve
donatinin kiyasla daha gelismis sonlu eleman ve biinye bagintilar1 kullanilarak temsil
edildigi, diizlemde ve uzayda olusturulan modellerdir. Her iki siniftaki modeller
incelenerek, yap1 mithendisliginde pratik degerlendirme ve tasarim uygulamalarinda

yer bulmamalarinda etkili oldugu degerlendirilen nedenler ortaya konmustur.

Yapilan irdelemelerde, literatiirde ortaya konmus siiper-elemanlarin, cevrimsel etkiler
altindaki belli bir betonarme kolon-kiris birlesim bolgesine ait dogrusal olmayan
sekildegistirme tepkilerine kabul edilebilir yaklasiklikta benzetim kurabilme yetisinin,
ilgili betonarme kolon-kiris bolgesinin tek yonlii artimsal donme-kesme kuvveti
iliskisinin Onsel kestirimi ile dogrudan ilintili oldugu degerlendirilmistir ~ Bu
sebeple, herhangi bir birlesim bolgesi 6rnegini tanimlayan temel fiziksel degiskenleri
girdi olarak kabul eden ve kayma sekil degistirme-gerilme kestirimi yapan iki
farkli model ileri siirtilmiistiir. Bunlardan ilki, literatiirde sonuglar1 raporlanmis
deneysel calismalarin sonuclarindan faydalanan bir gelismis yapay sinir aglar
modelidir. Ayni amaca hizmet eden ikinci bir kestirim modeli, giincel sonlu eleman
teknigi kullanilarak olusturulan sayisal benzetim modellerinden elde edilen kayma
sekildegistirme-gerilme iligkileri ile birlesim bolgesine iliskin fiziksel degiskenler
arasinda yapilan dogrusal olmayan regresyon yoluyla olusturulmustur. Betonarme
kolon-kiris birlesim bolgelerinin cevrimsel etkiler altinda dayamimda ve rijitlikte
gosterdigi azalimin tahmini icin ise baskin olmayan siralama genetik algoritmayi

kullanan bir kestirim modeli ortaya konmustur.

Anahtar Kelimeler: betonarme birlesim boélgeleri, dogrusal olmayan sonlu eleman

¢oziimlemesi, yapay sinir aglari, genetik algoritma

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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1

INTRODUCTION

1.1 Research Background

Performance-Based Seismic Design (PBSD) is an advanced engineering approach, that
aims to achieve a desired level of structural performance and reliability under seismic
loading. This methodology grounded in probabilistic seismic hazard analysis and
structural response assessment, provides a comprehensive framework for addressing
the complex interactions between ground motion, structural behavior and damage
potential. By integrating both qualitative and quantitative aspects, PBSD allows for
efficient and sustainable designs that are tailored to specific performance objectives
and risk tolerance levels. The Structural Engineering Association of California [|1]
made an effort to establish a relationship between performance levels and the
anticipated damage in the overall building, while simultaneously correlating these
performance levels and seismic hazards with a triad of performance objectives (see

Figure|1.1).

The initial stage involves the identification and quantification of seismic hazards
pertinent to the site under consideration. Probabilistic Seismic Hazard Analysis
(PSHA) is typically employed to estimate the likelihood of different levels of ground
motion occurring at the site over a specified time period. The methodology generates a

hazard curve which represents the relationship between ground motion intensity and
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Figure 1.1 Performance levels defined in SEAOC [|1]]



the corresponding annual rate of exceedance. In the following stage, the structural
system response to the defined seismic hazard is analysed using appropriate analytical
models. Structural analysis methods can be linear or nonlinear depending on the
desired accuracy and complexity. The final component entails evaluating the structural
performance under different seismic demand scenarios [2]]. This evaluation is based
on predefined performance objectives which are typically categorized into operational,
life safety, and collapse prevention levels. By comparing the structural response to
these objectives, engineers can determine if the design meets the desired performance
criteria. In case of non-compliance, an iterative design process is undertaken until the

objectives are satisfied.

A crucial aspect of PBSD is the development of performance-based acceptance criteria,
which involve the establishment of performance levels and corresponding limit states.
These criteria are essential for quantifying structural damage and for ensuring that the
design meets the intended risk tolerance. The selection of appropriate performance
levels and limit states is guided by factors such as building occupancy, structural

importance, and societal expectations.

The methodology underpinning Performance-Based Seismic Design (PBSD) is
predicated on the assumption that structural members should adhere to ductile
behavior criteria. This ductility allows for the redistribution of forces and increased
energy dissipation, ultimately enhancing the overall seismic performance of the
structure. However, it is important to recognize the inherent brittleness of
beam-column joints, which arises due to the substantial shear forces they are subjected
to during seismic events [[3]]. This brittle nature presents a challenge in reconciling the
ductile behavior objectives of PBSD with the actual behavior of joints, necessitating
careful consideration and innovative design solutions to ensure adequate performance

under seismic loading.

A significant challenge concerning reinforced concrete joints emerges when
conducting performance assessments of existing buildings. It has been observed that
a considerable number of these structures lack appropriate reinforcement detailing.
Consequently, they are prone to joint failures, which can lead to substantial structural
damages. This underscores the need for diligent evaluation and retrofitting strategies

to mitigate potential hazards in such buildings.

Following the February 2023 earthquakes in Turkey and Syria, post-earthquake
investigations revealed significant damage not only in older buildings with inadequate
reinforcement detailing in joint regions, but also in more recent reinforced

concrete frames. Yilmaz et al. [[4] reported that joint failure was evident in



Figure 1.2 Joint failure in a building built in mid-2000s from Samandag, Hatay

numerous buildings constructed in compliance with contemporary seismic design
requirements. Interestingly, only a subset of these structures displayed discernible
faulty workmanship. This finding highlights the need to reevaluate current seismic
design standards and construction practices to ensure greater structural resilience.
In addition to field observations, there is a large amount of experimental evidence
indicating that deformations of both reinforced and unreinforced joints can control

the response of reinforced concrete frames [5-11]].

The ACI318-71 [12]] building code was the first to recommend transverse
reinforcement within the joint core for regions with high seismic activity. However,
Park and Paulay (1973) argued that the provisions set forth in [[12]] were insufficient.
Subsequently, numerous studies in the field prompted the development of ACI352-76
[113]], which put forth a design guideline for beam-column joints. This guideline
introduced new criteria, such as moment strength ratio, shear strength, confinement,

and development length within the joint region, in order to achieve the necessary
strength and ductility [[14].

Joint design in structural engineering primarily follows an approach that involves
maintaining joint dimensions within a specified range to reduce the acting shear
stress and ensure the provision of adequate reinforcement, which serves to confine
the concrete material in the core region [15]. The load transmission mechanism
is typically idealized as a concrete compression strut and reinforcement truss in
proximity to the joint core [[16]]. Furthermore, the force couple that forms the bending
moment at the joint face is transmitted to the joint core via bond force between the

concrete material and the reinforcement.

However, there are inconsistent findings concerning the critical factors influencing



the actual stress state in the joint core [|17, [18]. This may suggest that the prevailing
design approach may be an oversimplification of the complex behavior of joint regions.
Although this analogy might yield safe designs when the acting internal forces are
predicted accurately, it neglects non-linear inelastic deformations and the intricate
stress state present within the joint region, potentially limiting its applicability in

certain cases.

Numerous experimental studies conducted in recent decades, as well as
post-earthquake investigations, have underscored the need to reevaluate the
role of reinforced concrete joints within the framework of performance-based design
and assessment methodologies [[3, [19]. The advancements in modern technology,
including sophisticated finite element analysis and soft computing techniques, offer

promising opportunities to facilitate this reevaluation process.

The idealization of the joint region should be scrutinized using state-of-the-art
techniques, such as advanced finite element analysis, to better understand and
represent their behavior under seismic loading. A comprehensive assessment of the
factors influencing joint seismic performance is necessary for designing more resilient
structures [[16]]. Consequently, it is essential to establish and incorporate well-defined

limits for joint elements in the evaluation of their performance.

Additionally, it is crucial to examine the uncertainties arising from the omission of
joint inelastic deformations and their impact on the overall structural system and load
redistribution [20]. By addressing these concerns, the field of earthquake engineering
can develop more accurate and reliable methodologies for designing and assessing the

seismic performance of reinforced concrete structures.

1.2 Objective and Scope

The primary goal of the research is to advance the understanding of reinforced
concrete joint modelling by thoroughly examining existing numerical methods and
identifying areas for improvement. For this purpose, the research is aimed to develop
novel approaches that facilitate the integration of joint inelastic deformations into
performance-based design and assessment processes. To accomplish this, the creation
of a prediction model for shear strain-stress behavior that accurately reflects the
complex deformation states in the joint region is intended, drawing upon experimental
results from the literature. In an effort to minimize reliance on experimental data, an

alternative prediction model using finite element simulations will also be developed.

Recognizing the significance of strength and stiffness deterioration due to cyclic effects



associated with strong ground motions, the thesis will further aim to create the other

prediction model for these specific parameters.

1.3 Hypothesis

Employing an optimized artificial neural network architecture will enable the
development of a model that accurately estimates the shear strain-stress behavior
of reinforced concrete joints using their physical properties as input parameters.
Parametric finite element models, when subjected to monotonic simulations up
to severe damage conditions, will validate the microplane material and element
formulation against experimental results. From this, a secondary predictive model
for joint shear strain-stress relationships can be derived from regression analysis of

the finite element outcomes.

The use of the genetic algorithm and Non-dominated Sorting Genetic Algorithm
IT (NSGA-II) will effectively assess the hysteresis model parameters necessary for

estimating strength and stiffness degradation due to cyclic loads.

Finally, integrating these predictive models will significantly enhance our

understanding of the seismic performance of reinforced concrete structures.

1.4 Organization of the Thesis

The thesis is organized into a rational sequence of chapters, beginning with a
comprehensive literature review in Chapter This chapter provides an in-depth
exploration of current modelling techniques for reinforced concrete joints, including
spring-based elements, advanced finite element formulations, hysteresis models,
artificial intelligence fundamentals, and applications in structural engineering and
joint modelling. The chapter also covers calibration of joint models and fragility
curves of reinforced concrete frames and joints. Chapter [3| delves into the finite
element implementation of the joint super-element model, outlining the assumptions
regarding material behavior, hysteresis models, and calibration of joint parameters
and introduction the object oriented simulation framework used in simulations. The
focus of this chapter is the development of a practical super-element model for use in
structural engineering applications. Chapter[4]introduces the artificial neural network
models employed for the development of the prediction model for joint deformation
characteristics. In Chapter|[5] the thesis examines the use of 2D and 3D finite element
analysis for joint simulation, presenting a description of the finite element models

generated within the scope of the research and the results obtained from the analyses.



Chapter [6] proposes a methodology to calibrate fit-to-experiment parameters of a
commonly used hysteresis model and aims to provide insight for the nature of these
parameters to reduce dependency to the experimentation. In this chapter, results
from the prediction models proposed in Chapter 4 and Chapter |5/ are used and their
efficiency are indirectly tested. Finally, Chapter|[7|presents a discussion of the findings,
shedding light on the implications of the results and offering suggestions for further

research on the subject.



2

LITERATURE REVIEW

The increasing loss due to seismic events around the world in recent decades has
emphasized the need to design earthquake-resistant structures, a concept that has
garnered significant interest from engineers. This research focuses on examining
the behavior of reinforced concrete (RC) joints under quasi-static cyclic and seismic
loading. Cutting-edge methods are utilized to adjust the model parameters necessary
for numerical simulations, assess different stages of structural damage, and determine
seismic fragility curves for various structural performance levels. As part of this
investigation, an extensive literature review has been carried out, offering a thorough
summary of the current state-of-the-art and key findings, which are explored in the

sections that follow.

Over the past several decades, there has been a comprehensive investigation into
understanding the behavior of joints under seismic conditions, utilizing a variety of
methods including experimental, statistical, analytical, and numerical approaches.
Within this chapter, a presentation of general definitions related to the concepts
utilized in the thesis is provided while referencing the relevant contemporary

literature.

2.1 Analytical Definition on RC Joint Problem

Joints within reinforced concrete frames are characterized as the spatial region
encompassing the depth of the deepest beam connecting to the column. These
joints are classified according to ACI352-R02 [21] into three categories: interior,
exterior, and corner, as depicted in Figure 2.1, In order to analyze the internal
forces of a reinforced concrete space frame subjected to lateral effects in orthogonal
directions, the beams framed to the column can be subdivided into plane frame beams
(represented by the color blue in Figure[2.1)) and transverse beams (represented by the
color white in Figure[2.1)). Considering the influence of transverse beams on the stress

distribution within the joint region as confinement [22], the number of joint region
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Figure 2.1 Joint types according to ACI352-R02 || (a) interior, (b) exterior, (¢) corner,
(d) roof-interior, (e) roof-exterior, (f) roof-corner

types defined by ACI352-R02 can be minimized. In the existing literature, it is
commonly observed that the joint regions are analyzed as interior (Figure(a)-(d)),
exterior (Figure (b)-(c)), and knee (Figure (e)-(f)) types in nearly all studies.
Consequently, the investigations conducted within the scope of this study align with
this established classification framework.

The considerable forces and performance requisites imposed on these joints
necessitate an enhanced comprehension of their seismic behavior. These forces
engender intricate mechanisms encompassing bond and shear interactions within the
joint. The first ever analytical effort to quantify joint response is carried out by W
Hanson and W Conner [23]] determined joint shear force through a free-body diagram
from the mid-height section of the joint. Park and Paulay [24]] postulated a strut-truss
mechanism includes a concrete struts which sustains only compression to transfer
shear forces and assumed to be formed in the potential failure plane. Paulay et al.
improved the compression strut approach which is formed in the diagonal direction
between compression fields of beam and the column and tension forces are assumed to
be carried by joint reinforcement at horizontal direction and column reinforcement at
vertical direction. Vertical and horizontal reinforcement in the joint core region form
a truss mechanism to contribute to the shear resistance. Horizontal and vertical forces

transferred by bond form the beam and column flexural reinforcement are transmitted
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Figure 2.2 Joint shear resistance mechanisms: (a) concrete strut, (b) concrete truss (per Kim
and LaFave [|25]])

to the core concrete. The shear resistance mechanisms idealized by Paulay et al. [22]
are shown in Figure In the existing literature, various versions of strut-tie models
with minor adjustments are available, which are based on the traditional form of this

approach.

In the out-of-plane direction, the torsional resistance of beams contributes to the shear
stiffness of the joint region. Similarly, torsional strength also contributes to shear
strength. The warping occurring in these beams causes a confinement effect in the

joint region.

Hwang and Lee [[26]] proposed a softened strut-and-tie model capable of estimating the
shear strength of reinforced concrete joints for both interior and exterior connections.
The proposed softened strut-and-tie model adheres to the principles of mechanics,
namely equilibrium, compatibility, and constitutive relations for cracked reinforced
concrete. However, this version of the softened strut-and-tie model gives up the
advantage of simplicity that is characteristic of traditional strut-and-tie models in order

to adhere to these fundamental mechanical principles.

Murakami et al. [27]] put forth a joint shear strength model exclusively for interior
connections, lacking out-of-plane members and joint eccentricity. The model
employed regression analysis to establish a joint shear strength model, taking into
account the concrete compressive strength. FEMA356 [28]] recommended an envelope
curve for RC joint shear behavior, predominantly influenced by factors such as
column axial load, joint transverse reinforcement quantity and spacing, out-of-plane
geometry, and in-plane geometry. [_29]] introduced an analytical model to foresee
joint shear behavior in both interior and exterior connections, by specifying plane

strain conditions for the joint panel. They maintained that a joint panel’s shear



resistance emanates from the bearing of beam and column compression zones, as well
as from the bond between reinforcement and the surrounding concrete. Attaalla [[30]
offered an analytical equation to estimate joint shear strength for interior and exterior
connections, developed from the assumption of a stress distribution around the joint
panel satisfying equilibrium and taking into consideration a compression-softening
phenomenon correlated with cracked reinforced concrete. The parameters included
in the proposed equation consisted of the axial force in the beam and column, joint
reinforcement ratio in the longitudinal and transverse directions of the joint, and
geometry. Russo and Somma [31] recently proposed a joint shear strength model
solely for exterior connections, in the absence of out-of-plane members and joint
eccentricity. Shiohara [32] proposed a mathematical model to determine the joint
shear strength of interior, exterior, and knee connections. In this suggestion, the
so-called “quadruple flexural resistance” within a joint panel played an important
role in defining joint shear failures. Joint shear strength was determined from
satisfying force equilibrium in four rigid segments within the joint panel. They chose a
deterministic model, comprising the contribution of vertical stress transmitted by the
column, longitudinal beam reinforcement, and passive confinement of the joint due
to transverse reinforcement. Tsonos [8]] suggested a shear strength model contingent
on concrete compressive strength and joint aspect ratio, grounded in the concrete

material model put forward by Scott et al. [33]].

Kamimura et al. [|18]] also claimed that joint shear strength is not significantly
affected by the joint transverse reinforcement. Bonacci and Pantazoupoulou [[17]
reported the same result on axial load effect while had opposite findings on the joint
transverse reinforcement. Joh et al. [34]] claimed that the most influential factor is
the compressive strength of the concrete after a large experimental examination on

75 setups.

Tsonos [8]] carried out an experimental and analytical study on beam-column joints.
He concluded shear strength values given by design codes are based on Paulay et
al. [22] and yields to overestimations. Tsonos [8] summarized the load transfer
mechanism and determination of shear strength of a joint region via following
formulation. The summation of vertical forces equals the vertical joint shear force

Vi

V, =D, +D,, =D, + (T, +...T,) (2.1)

where subindice T; denotes forces acting on longitudinal steel bars and D,, is the

compression strut in vertical direction. In horizontal direction joint shear force V;,

10



Vip = Diy + Dy = Dy + (D, +...+D,,) (2.2)
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Figure 2.3 Forces acting on joint core concrete through strut and truss mechanism

Scheme shown in Figure shows the forces acting on joint core region. Vertical
normal compressive stress o and shear stress T uniformly distributed over the plane

are given by

o= Vv (2.3)
h.b;

T= i (2.4)
hb;

where h/ and b/ denotes the length and the width of joint core respectively. Following
relationship given in[2.5|between ¢ and 7 can be established.

Vi,
oO=—XT (2.5)
Vin
It has been shown that
V; h
v b
_— = a 2.6
v P (2.6)

] C
where a is the joint aspect ratio. Concrete biaxial strength curve is represented by a
fiftth-degree parabola as a function of increased joint concrete compressive strength

due to confinement and first and second principle stresses; thus o and 7.

(o) (o)
_I_*_(J

fe S
Substituting Eq. into Eq. and using T = y+/f. gives following expression

—10 »r=1 2.7)
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Assuming here

X = (2.9)
2+/f.
and
ay 4
= 1+— (2.10)
RPN/ R
Eq. can be transformed into
(x+)P°+10p—10x =1 (2.11)

The solution of system of Eq. gives the ultimate shear strength © = y+/f,.

Over recent decades, advancements in finite element technology have built upon
earlier analytical studies to facilitate a more comprehensive understanding of complex
stress states within reinforced concrete joints. This progression has led to research
utilizing springs with varying deformation capabilities, membrane elements and truss

analogy. A detailed presentation of such research can be found in Section

2.1.1 Code recommendations

In design specifications, it is generally assumed that the joints will not undergo any
inelastic strain, as mentioned in the previous section. Therefore, the design process
is strength-based and the shear forces assumed to occur in the joint zone, which do
not exceed the shear strengths recommended by the specifications, may be considered

sufficient for the joint zone to be considered safe.

Within the parameters of ACI352-R02 [21]], as well as ASCE41-17 [35]] the shear
strength of the joint is ascertained by utilizing Equation [2.12]

V, = 1/f.bjh, (2.12)

where y is the shear factor for the joint zone, f, is the compressive strength of the
concrete, b; is the effective width of the joint zone as determined by the column

and beam width; and h, is the depth of the column. The shear factor functions as
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a coefficient subject to variation, dependent on confinement of the joint by transverse
beams. It is worth to note that ACI318-19 [36]] adopts an analogous methodology
for both external and knee-type joint zones, without discerning between the two. In
Turkish Design Code [37]], joint shear strength is defined in a similar fashion described
in ACI352-R02 [21]] with alterations in the coefficient takes into account the effect of
the transverse beams.

AlJ1999 suggested Equation to determine the joint shear strength.

F;=0.8 x (f,)*7 (2.14)

The coefficient k pertains to the geometric properties of the joint region in the plane,
while the coefficient ¢ relates to the joint region’s out-of-plane geometry. The concrete
compressive strength coefficient, F;, is determined using Equation and the
effective joint zone width, b;, is dependent on the widths of the column and beam

while D; is the column depth or beam reinforcement anchorage length.

EC8 [38], the draft code to supercede EC8 [39]], the principle stress criterion is
employed to evaluate joint strength by assuming that the joint volume is in a
plane stress condition. Equation defines the joint stress by incorporating the
reinforcement ratio p,, between joint horizontal transverse reinforcement and beam
longitudinal reinforcement ratio, the normalized axial force denoted as v and f,,,

concrete tensile strength.

Ty :fC\J (vpsh+%) (v+%) (2.15)

Presuming that p, is equal to zero for an unreinforced joint, the tensile normalized
joint shear strength, denoted as v;,, can be derived from Equation Similar to the
process employed for extracting Equation [2.16], Mohr’s Circle is utilized to find out the
compressive normalized joint shear strength, which is expressed in Equation In
this context, n represents a reduction factor that accounts for the negative impact of

transverse tensile strains.
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Similar to EC8 [38]], NZSEE-17 [40] describes strength with respect to shear stress,
as expressed in Equation [2.15] which assumes the utilization of the principal

stress method for assessing joint shear strength. Meanwhile, the normalized shear

strength for tensile and compressive forces is presented in Equations |2.16|and [2.17],

respectively. Within these equations, k; serves as an empirical coefficient that
accommodates the increased strength of the interior joint relative to the exterior, as

well as the strength reduction at a prescribed ductility level as noted by Hakuto et al.

(31

_ S Fyifnm
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085

Vi /T

1/ (0.60f )2 —0.6f2v (2.20)

Unlike the strength-based approaches, in FEMA356 [28]] and later ASCE41-17 [35]],
the nonlinear response of the joint zones is described as rotation and the corresponding
generalised force, enabling the consideration of their effects on the behaviour of the

structural system in nonlinear static and dynamic analysis procedures.

While the inclusion of joint regions as distinct structural elements within the
FEMA356 [28] regulations represents a notable advancement, allowing for the
consideration of these elements’ deformations in the analysis of structural systems
under seismic impacts and the evaluation of their plastic rotations as damage in
the performance-based design process, a deficiency in the rational underpinnings
of the modeling parameters and acceptance criteria has been identified. For
non-linear dynamic procedure, complete hysteresis representation of each component
is suggested including stiffness and strength deterioration. Kim and LaFave [25]

highlighted that modelling parameters and acceptance criteria may alter significantly

14



than proposed in the code depending on the physical parameters defining the
joint. This shortcoming hinders the approach from serving a restrictive and
determinative function in earthquake specifications applied across seismically active

regions worldwide.

2.2 Experimental Studies on RC Joint Testing

Since the early 1970s, it can be said that a significant portion of the scientific research
conducted on reinforced concrete joint regions has been on an experimental basis.
Although recent studies have focused on retrofitting joint regions with different
materials and applications, many of the experimental studies aim to interpret the
responses of the joint region under stress and deformation levels that can cause
damage, which can also be considered as the main objective of this study. Within
the scope of this study, the experiments conducted on only non-retrofitted specimens
in both classes were examined, and the data obtained from these experiments were

included in the databases used in the study.

By examining load transfer and damage mechanisms in joint regions, some pioneering
studies of their time are presented chronologically, attempting to convey the historical
development of experimental studies in identifying factors affecting the strength and

deformation properties of joint regions.

Joint shear demand was identified as a crucial parameter in determining if a joint will
exhibit brittle failure under earthquake loading by Higashi and Ohwada [[41]]. Minimal
lateral confinement of the joint and an increase in joint shear strength are provided
by interior column bars, as found by Meinheit and Jirsa [[42]]. They also concluded
that column axial load influences shear cracking stress magnitude and shear crack
inclination in the beam-column joint but not joint shear strength, and shear strength

is not a linear function of joint hoop reinforcement volume.

It was concluded by Birss [[43] that the joint load transfer mechanism, proposed by
Paulay et al. [[22], is satisfactory for design, and the beam-column joint region remains
within the elastic regime when beam hinges are relocated away from the column face.
Beckingsale [44]] observed that specimens with low column axial load failed due to
bar-slip, while specimens with higher column axial loads did not. The development
of the two joint load-transfer mechanisms proposed by Paulay et al. [22] was also

confirmed.

Improved joint behavior resulted from relocating beam plastic hinges away from the
face of the joint, as found by Park and Milburn [45[]. The conclusion of Otani et al. [46]
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was that the number of column middle reinforcements doesn’t significantly affect joint
response. However, the joint shear failure behavior can be improved by increasing

joint hoop steel and reducing joint shear stress demand.

The importance of joint transverse reinforcement for maintaining ductility levels in
reinforced concrete beam-to-column connections was determined by Durrani and
Wight [47]]. They also found that joint shear stress significantly influences seismic
performance. More hoops with lower yield strength improve seismic performance, as
discovered by Ehsani and Wight [48]. They also concluded that when the moment
strength ratio (M,) is greater than 1.4, plastic hinges in the joint are prevented or

prolonged.

Restrictions on beam bar diameter through the joint, joint shear stress demand, and
minimum lateral reinforcement in the joint region were suggested by Kitayama et al.
[49]. Their conclusions also stated that column axial load ratios below 0.3 do not
exhibit a beneficial effect on bond resistance along beam reinforcement within the

joint region, and those below 0.5 do not influence joint shear strength.

Endoh et al. [50] concluded that strength loss in post-peak load-deformation response
was more significant for lightweight concrete compared to normal strength concrete.
Additionally, they found that joint shear strengths of lightweight concrete were smaller

due to reduced compressive strength.

Interior frames were discovered to have higher displacement ductility compared to
exterior frames by Fujii and Morita [51]]. Their conclusions also stated that column
axial load ratio does not impact joint shear strength, an increase in joint transverse
reinforcement ratio enhances joint shear capacity, and degradation of shear rigidity

accelerates once joint shear strain reaches 0.5%.

It was observed by Joh et al. [|34] that higher joint transverse reinforcement ratios
reduce bond deterioration of longitudinal beam bars in the joint. Additionally, they
noted that a large volume of transverse joint reinforcement can enhance joint stiffness
after cracking and prevent bond deterioration by relocating the beam plastic hinge.
Ductility was found to increase with higher joint hoop reinforcement and axial loads
by Kaku and Asakusa [52[]. Factors affecting bond behavior, such as column axial
load, transverse reinforcement in the connection region, and the ratio of bottom
beam reinforcement to top bar amount, were identified by Kaku and Asakusa [53]].
They also found the anchorage length of beam bars to be significant. Ehsani and
Alameddine [[54] discovered that high concrete compressive strength results in higher

shear capacity but lower ductility.
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Noguchi and Kashiwazaki [|55]] found that maximum joint shear strength did not
increase significantly with higher concrete compressive strength. They also discovered
that the confinement effect of joint lateral reinforcement became significant only
at large deformation levels, specifically drift angles exceeding 1/50 rad. Joint
shear capacity was found to increase with higher concrete compressive strength and
percentage of longitudinal reinforcement in beams by Oka and Shiohara [56]], but the

relationship was not linear.

In tests on two interior beam-column-slab connection subassemblies, Guimaraes et al.
[57] observed that joint shear strength is a function of approximately the square root
of concrete compressive strength. Hayashi et al. [[58] developed a model relating bond
strength to bar slip for beam longitudinal reinforcing steel, showing that both beam
bar bond and joint shear stress demand play roles in joint failure under earthquake

loading.

The ultimate shear strength of the joint panel and the shear panel envelope were
successfully predicted using a proposed empirical equation by Teraoka et al. [[59].
Walker [60] found that joints maintain strength and adequate stiffness when drift
demand is under 1.5% and shear stress is under 10+/f. psi, where f. represents
concrete compressive strength. Column interior bars were concluded to be necessary
for low axial load ratios by Park and Ruitong [61], who also recommended limiting
the diameter of longitudinal bars in interior beam-column joints to reduce bond stress

demand.

Zaid [|62] confirmed conclusions of Shiohara [[63] that the lever arm distance between
tension and compression forces at the joint perimeter changes with loading, indicating
that joint shear stress cannot be assumed to be proportional to the story shear.
Pantelides et al. [[64] found that joint shear strength capacities were approximately
8 % higher for specimens with higher axial load, and specimens with an axial load of
0.1f.A. dissipated about 20 % more energy than those with 0.25f,A, axial load.

Attaalla [[30] concluded that using joint shear strength as a function of the square root
of concrete compressive strength is an inappropriate measure of shear demand for

joints with high-strength concrete.

The existing literature reports some contradictory or inconsistent findings on the
behavior of reinforced concrete joints, which may be attributed to variations in
the sampling space of the specimens examined, boundary conditions, reinforcement
arrangements, and loading protocols across experimental studies. However, it is
widely accepted that certain parameters, such as concrete compressive strength, beam

longitudinal area and yield strength, column longitudinal reinforcement area, joint
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transverse reinforcement area, and column axial load, have a significant impact on

the response of the joints [[65].

2.3 Numerical Studies on RC Joint Modelling

From the 1970s to the early 2000s, analytical and experimental investigations on joint
regions have led to the evolution of models used to calculate the response of joint
regions under earthquake effects, from strut-tie models exemplified within analytical
models to more complex deformation mechanisms that can be numerically expressed

in finite element solutions.

2.3.1 Super-element models

In the design of reinforced concrete (RC) frames, it is customary to assume
rigid joints regardless of the detailing provided as it is discussed in Chapter
However, this assumption may not always hold true, particularly when evaluating
the seismic performance of non-ductile RC frames, as detailing deficiencies can lead
to a substantial reduction in joint stiffness. Moreover, joint failure might precede
the ultimate capacity attainment of adjoining beams and columns. Consequently,
accurately modeling joint inelastic behavior is crucial when assessing the seismic
performance of non-ductile RC frames, requiring the consideration of two primary
mechanisms: the shear response of the joint core, and bond-slip of longitudinal beam
bars.

Following the development of strut-tie models, various finite element formulations
have emerged to integrate joint behavior into the global modeling of frames.
A category of joint models, known as "super-elements," comprises solutions that
incorporate collections of finite elements representing different load transmission
mechanisms Cook et al. [66]. The aim of devising super-elements is to decrease the
number of degrees of freedom in large-scale finite element method problems while
preserving accuracy. By merging these elements, the number of degrees of freedom
can be reduced compared to representing the problem domain with plane or space

finite elements, significantly lowering computational costs.

In structural engineering, the prevailing practice involves using either centerline
(Figure [2.4la) or rigid (Figure [2.4/b) joints, both of which disregard the effects of
joint flexibility [|67]]. El-Metwally and Chen [68]] introduced one of the earliest models
incorporating zero-length rotational spring elements, positioned at the intersection
of beam and column members, to define the joint’s inelastic behavior through a

load-deformation response. This model, occasionally termed the scissors model
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Figure 2.4 Spring-based super-elements used for joint modelling

without rigid joints, was later refined by Alath and Kunnath [[69] and became known
as the scissors model (Figure[2.4lc). While the cyclic response of the rotational spring
was calibrated to experimental shear stress-strain data, the bond-slip mechanism was
not considered.

Biddah and Ghobarah [70] employed distinct rotational springs to represent joint
shear and bond-slip responses, defining the joint shear envelope using Hsu [71]
softened truss model and calibrating bond-slip springs with experimental data (Figure
2.4ld). Youssef and Ghobarah [72]] incorporated 12 translational springs forming a
truss at the panel zone and introduced separate bar-slip mechanisms (Figure [2.4e),
calibrating each spring based on experimental findings.

Celik and Ellingwood [[73] noted that the need for defining separate constitutive rules
and the availability of experimental data limit the applicability of the element model.
Shin and LaFave [74]] proposed a joint element composed of hinged rigid links at the
joint perimeter, a rotational spring embedded in a hinge forming a panel zone, and

rotational springs at the member ends representing the bond-slip mechanism (Figure

2.4.0.

More recently, Lowes and Altoontash [[16]] introduced a continuum-type element
combined with transition interface elements for compatibility with beam-column
line elements (Figure [2.4lg). This model explicitly simulates three inelastic joint
mechanisms: (i) a rotational spring for the joint core’s shear response, (ii) eight
bar-slip springs for bond failure in longitudinal bars within beams and columns, and
(iii) four interface-shear springs to model shear load transfer loss at beam-joint and
column-joint interfaces due to concrete crushing. Despite offering high control over

various inputs, the model’s drawback is increased computational effort and limited
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availability of detailed response models for specific components (e.g., bond-slip).
Consequently, Altoontash [|75]] simplified the Lowes and Altoontash [16]] model,
resulting in the commonly referred Joint2D model (Figure [2.4/h). Joint2D includes
a rotational spring for joint core shear deformations and four zero-length rotational
springs at beam-joint and column-joint interfaces to model the bond-slip behavior of
longitudinal beam and column bars. Both the Lowes and Altoontash [[16]] model and
Altoontash [[75] model have been implemented in OpenSEES [[76].

In the models proposed by Lowes and Altoontash [|16]] and Altoontash [|75]], the strain
behaviour of the finite element representing the joint region as a panel is assigned by
the Modified Compression Field Theory developed by Vecchio and Collins [77]]. Shear
stress-strain envelope of the panel zone was approximated with Modified Compression
Field Theory and stiffness/strength deterioration properties were assigned through

experimental data provided by [[78].

The Modified Compression Field Theory (MCFT) is a model for evaluating the
load-deformation response of cracked reinforced concrete under shear stress [38]].
It considers concrete stresses in principal directions and reinforcing stresses, which
are assumed to be axial. The MCFT model treats cracked concrete as a distinct
material with empirically determined stress-strain behavior, potentially deviating from
traditional stress-strain curves. The model takes into account average strains and
stresses, which encompass local strains at cracks, strains between cracks, stresses
between and at cracks. The validity of this assumption depends on including multiple
cracks when determining average behavior. Mitra and Lowes [79] stated that the use
of MCFT is not suitable especially for joints where transverse reinforcement is limited

and proposed another strut-tie based model.

In the estimation of shear stress-deformation characteristics at joint regions, the
simplifications made by strut-tie based understandings have proven to be inadequate
in reflecting the stress conditions formed under earthquake effects within the joint
region. Consequently, the models proposed in this field rely more on the examination
of various experimental studies using statistical methods rather than on mechanistic

approaches.

The backbone curve, shown in Figure is typically characterized by four key points
Celik and Ellingwood [73]]. Point 7, signifies the shear stress at cracking, while
points T, and 75 correspond to the shear stress in the joint when beams or columns
reach their yield and ultimate capacities, respectively, with both values limited by the
joint’s shear strength. Point 7, represents the residual strength, and the associated

gamma (y) values indicate shear strain. The combined effects of the joint panel’s
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Figure 2.5 Multi-linear definition of shear strain - shear stress envelope for spring-based
super-elements used for joint modelling

shear response and bar-slip of the lower longitudinal beam bars are integrated into
a single stress-strain relationship. Bar-slip is considered by diminishing the yield and
ultimate moment capacities of the beam under positive bending, utilizing a reduction
factor obtained from extensive experiments. To ascertain stress values for points two
and three, it is essential to identify the nature of joint failure: whether hinges develop
in the beams or column or if the joint shear strength is reached preceding the adjoining
members attaining their yield and ultimate capacities.

The backbone curve determination necessitates defining angular shear strain values
for key shear stress values, which dictates the joint’s deformation response Park
and Mosalam [80]]. Literature primarily focuses on joint shear stress capacity
rather than deformation capacity. For primary lateral load-resisting systems, a 20%
reduction in peak strength is typically used to define joint failure; however, this
may be too conservative for secondary structural systems. Experimental testing on
non-ductile joints generally ceases upon observing significant joint damage and lateral
load-carrying capacity loss. Lower strain limits exhibit relatively constant joint strain,
implying shear strain values are less impacted by joint detailing Park and Mosalam
[80]. Park and Mosalam [|81]] noted joint aspect ratio’s influence on joint shear strain
response, and Jeon et al. [[82] found exterior joints have lower deformation capacity
compared to interior joints, also accounting for bar-slip effects on exterior joints’

deformation response.

Hassan [|83]] and Hassan and Moehle [84]] investigated the response of joints lacking
transverse reinforcement up to axial load failure, focusing solely on exterior joints.
They reported that the residual capacity of the joint at significant damage should be
considered as 70-80% of its peak capacity. Moreover, the maximum recommended

shear strain for the positive envelope (when the bottom beam bars experience tension)
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Figure 2.6 Illustration of bond stress across the anchored bar in joint [|16]]

Table 2.1 Average bond stresses for anchorage-zone

Notation U, Steel Strain  Description
e 2Vf. 0<e < €, Tension in elastic regime
Uep 0.5V f. €>e€, Tension in post yield regime
Uee 3.14/f. —€, < €,<0 Compression in elastic regime

Uep 3.1/f. € < —€, Compression in post yield regime

is 0.03. They also suggested that if axial load failure is of specific interest, the final
point on the backbone curve could be extended to the shear strain corresponding to

50% of the joint’s peak capacity.

Another crucial mechanism impacting joint subassemblage response is the bond-slip
of the flexural reinforcement of the beams. Lowes and Altoontash [|16] suggested a
constitutive model to delineate the load-deformation history of bond-slip, employing
uniaxial springs to simulate the inelastic anchorage zone response (see Figure [2.6)).
Accurate reporting of bar-slip data is scarce in experimental investigations, as it
necessitates sophisticated instrumentation setups and the adoption of a definition for
slip. Due to challenges in conducting experiments and observing bar-slip response in
joints, experimental data is limited. Since available experimental results on bond-slip
behaviour in frame joints are limited in the literature, anchorage-zone cyclic loading
test results were used to define bar stress—slip envelope and cyclic deterioration
properties. Average bond strength (u,,,) values are established based on experimental
data from Eligehausen et al. [[85]] and Eligehausen et al. [86]. Experimental evidence
indicates bond stress deterioration after exceeding a slip limit. Assuming the concrete
surrounding a beam longitudinal reinforcement bar anchored in a joint and stressed
in tension does not exceed yield stress, it is considered to be in compression or tension

with a defined crack width. Table provides average bond stress values for various
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steel strain states. In the models by Celik and Ellingwood [|73]] and Jeon et al. [[82]],
the bond-slip mechanism is not explicitly considered but is incorporated in the shear

response of the panel spring.

To extend the monotonic bar stress with respect to slip history cyclically, calibration
of the unload-reload path and damage rules is required. Lowes and Altoontash [[16]

introduced a set of rules to complete the definition of the model.

1. The unloading stiffness is presumed to be the same as the elastic stiffness,

2. Residual bar stress is calculated by assuming a uniform residual bond stress of

0.154/f.,

3. The slip at which reloading transpires is considered to be one fourth of the

maximum historical slip,

4. The force at which reloading occurs is estimated to be be one fourth of the force
developed at the maximum historical slip, based on experimental data provided
by Eligehausen et al. [[85]] and Hawkins et al. [|87]].

Experimental results provided by Ma et al. [88]] indicated that as the cracks initiated at
the joint faces, flexibility of the shear transfer mechanism increases. This mechanism
is idealized with interface springs in the super-element definition. Walraven [89]
remarked that unloading stiffness does not deteriorate as a function of loading history
and reloading stiffness is approximately identical to the initial stiffness. Based upon
these facts, in numerical studies conducted by Altoontash [|75]], Lowes et al. [[90] and
Mitra and Lowes [79], interface springs are assumed elastic and extremely stiff thus
the contribution of the shear transfer mechanism to the overall response of the joint
is neglected. However, calibration of the load transfer mechanism using experimental
data is recommended by Lowes et al. [90], while remarking the lack of experimental
data.

Lowes and Altoontash [|16[], Lowes et al. [|90]] and Mitra and Lowes [[79] assumed a
very stiff uniaxial elastic spring and ignored interface flexibility remarking the lack
of available experimental data describing the phenomenon. Lowes et al. [90] stated
that interface shear stiffness can significantly decrease with increasing crack width
at beam end. All element models were validated through a set of experiments;
however, it should be noted all element models require a calibration process using
the varying level of data provided from the experiment itself. This fact makes the

element formulations useful to model any particular unit with available experimental
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data, but impractical for general use in design or performance assessment purposes

when specific experimental data is not available.

The shear stress strain models proposed for the introduced models should be
complemented by hysteretic response rules describing the characteristics such as
loading, unloading, deterioration in strength and stiffness under cyclic effects. Studies

on this subject are discussed in the next subsection.

Alternatively, Ning et al. [91] and Sengupta and Li [92] used Modified
Bouc-Wen-Baber-Noori (BWBN) model to replicate experimental response of columns
and joints respectively. Despite well-matched results after calibration through
experiments; generalization of calibration process is quite complicated since BWBN

models are defined with parameters that have little or no physical meaning.

2.3.2 Considerations on Hysteretic Response

For the definition of the response of any structural component to a cyclic
effect, hysteretic behaviour including unloading and reloading features should be
established. For reinforced concrete joint instance, pinching and degradation in
stiffness and strength should be covered as well. These parameters indeed are
dependent on the material properties, reinforcement configuration and geometry of
the specimen of interest [93]]. Nevertheless, relation between parameters required to
generate one of the hysteretic models available in the literature and the mentioned

physical properties is questionable [[67]].

Numerous hysteresis models have been proposed over the years, such as the Takeda
model [|94], Ibarra-Medina-Krawinkler Deterioration model [95]], and Pinching4
model [|16, 96]. Among these, the pinching4 model, available as a uniaxial material
model in OpenSEES, has gained popularity due to its versatility. Nonetheless,
recent research has critiqued the pinching4 model’s practicality, as it necessitates
defining 39 parameters for characterizing hysteretic behavior, prompting suggestions
for alternative models with fewer required parameters [91]]. A key advantage of the
pinching4 model is its ability to directly define four critical points for the positive and
negative backbone, allowing for easy calibration of envelope responses in joints. In
contrast, other available hysteretic models enable direct definition of only up to three
critical points for the positive and negative envelope, often resulting in inaccurate
initial stiffness estimations due to the simplification of using three points instead of
four to define the backbone.

Lowes and Altoontash [[16]] suggested model parameters for cyclic response of
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Figure 2.7 Truss analogy approach to model an interior joint [[100]

pinching4 based on the experimental findings in [97]] and [78]]. Mitra and
Lowes [79] proposed constant values for a set of parameters controlling hysteretic
response of the pinching4 material and proposed empirical equations for degradation
parameters based on the statistical evaluation of 57 sub-assemblages from 12 different
experimental studies. Hysteretic parameters related to bond-slip spring response,
in a similar fashion with the introduced in pinching4 material, calibrated with the
experimental results of the test carried out by Viwathanatepa et al. [98]] and Stevens et
al. [78]]. Based on the investigation of the experimental results and analytical point of
view introduced by Shiohara [99], Celik and Ellingwood [|73] postulated an approach
that is based on the reduction of joint strength due to poor bonding conditions. A
further detailed discussion on the model parameters governing the pinching4 material

is held in Section

2.3.3 Nonlinear Truss Analogy

The truss analogy in the finite element method refers to a simplified approach used to
analyze and design structural elements, such as beams, columns, or joints, subjected
to various loading conditions like shear, flexure, and axial forces. In this approach,
the structural elements are modeled as a series of interconnected truss elements,
which are simple bar elements capable of resisting axial forces. Truss analogy
simplifies the complexity of real structural behavior by assuming that the forces are
distributed through the interconnected truss elements, which can deform only in the

axial direction.

Research on truss-based modeling approaches has been conducted for the design
and analysis of reinforced concrete (RC) members subjected to shear, flexure, and
axial forces [[101-103]]. Panagiotou et al. [[104] refined existing truss modeling
methods by incorporating mesh size effects and biaxial effects for diagonal elements in
compression. Moharrami et al. [[105]] further improved the truss model for the analysis
of shear-critical RC columns, considering the contribution of aggregate interlock
effects. Bowers [[106]] and Xing et al. [[100] proposed a hybrid numerical model for
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beam-column joints in non-ductile frames, including a nonlinear cyclic truss model for

the connection region and a distributed plasticity model for beams and columns.

2.3.4 2D and 3D FE Analysis of RC Joints

The use of advanced constitutive and finite element formulations has become
increasingly common in contemporary research and engineering applications, as
they enable more accurate and robust analyses of complex material behavior. A
comprehensive understanding of these formulations necessitates a solid foundation in
plasticity theory, which serves as the cornerstone of many advanced material models,

particularly for concrete and other quasi-brittle materials.

In this overview, the basic principles of plasticity theory and its utilization in concrete
material modeling are to be briefly examined. Additionally, a review will be provided
on the latest advancements that include damage-based models, improvements that
have the potential to amplify the predictive proficiency of these models. Finally, recent
instances of finite element analyses that are applied to reinforced concrete joints are
to be illustrated, showcasing the proficiency of these cutting-edge constitutive models

in encapsulating the intricate behavior of such structural elements.

2.3.4.1 Plasticity Theory Fundamentals

The theory of plasticity is commonly employed by researchers to characterize the
behavior of materials that exhibit permanent deformations under the influence of
external forces. However, concrete or similar materials possess unique characteristics
that make them challenging to represent solely through plasticity theory. Despite these
complexities, plasticity theory is still utilized to approximate the behavior of concrete,

albeit with varying degrees of accuracy.

Plasticity was initially introduced for metals subjected to loading beyond their elastic
limits, where deformation is proportional to the applied load. As the load surpasses
the elastic limit, materials begin to exhibit plastic (irreversible) strains. Unlike metals,
which maintain continuity until rupture, even with high levels of plastic strains,
concrete is a composite material comprising aggregates of varying sizes and interstitial
mortar, and tends to lose continuity more easily after only a portion of its strength
limit is reached (due to cracking and crushing). Furthermore, in contrast to metals
that harden after yielding, concrete softens after exceeding its strength limit, allowing
lower stresses with increasing levels of plastic strains. Consequently, a plasticity model
for concrete must be used in conjunction with a damage model to adequately represent

its behavior.
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In the literature, the definition of plasticity frequently commences with the
decomposition of strains into two distinct components: elastic strains (&,) and plastic

strains (ep).

E=¢Eqt &y (2.21)

The stress generated is directly proportional to the elastic strains, while plastic strains

are assessed based on a specified yield criterion and flow rule.

o = Deg, (2.22)

The yield criterion is a function that incorporates stress o, and internal variables,
denoted by &.

f(0,8)=0 (2.23)

Function f represents a particular form of yield criterion for each plasticity model and

gives a surface in stress space which an example is illustrated in Figure[2.8] (a)
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Figure 2.8 Illustration of (a) yield surface in stress space, (b) flow rule, (¢) hardening
(ANSYS 18.2 Material Reference

Yield condition, defines the stress states where the plastic strains occur. In elastic
conditions, stress state in principle stress space is in the area or volume bounded by
Equation[2.23] After reaching yield surface it is not possible for the material to produce
higher levels of stress. Following conditions often referred as Karush-Kuhn-Tucker

conditions must be satisfied in material behavior.

f<0,A>0,fA=0 (2.24)
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where A is plastic strain increment. This conditions force material to remain in elastic
region (A = 0) when f < 0 is satisfied. If f = 0, stress state is reached to yield surface

and increase in plastic strains (A > 0) are expected.

Material yielding decision must be independent of the coordinate system that the
calculations performed. For isotropic materials, yield condition depends only on stress
invariants (not necessarily all of them at once): trace of the stress tensor (I;) and

deviator invariants (J,,J3).

Once material starts to yield according to the condition given in Equation (2.24),
amount and direction of the plastic strain increment should be determined. Evolution

of plastic strains are determined by the following flow rule:

. 9Q

=A— 2.25
P (2.25)

E;)l
where Q is plastic potential which is again a scalar function. In most cases, plastic
potential may be selected as the same function with the yield criterion. Plastic strain

increment is normal to the yield surface as it is illustrated in Figure (b).

The yield criterion is not defined by a constant surface but a function of a set of
parameters and it is dependent on the history of loading and evolution of plastic
strains. The increase in yield criterion is called hardening. Isotropic hardening which
the stress state change from o (t;) to o(t,) as it is shown in Figure (c) is defined
in the form:

F(o)—o,(§)=0 (2.26)

where o (&) is the stress limit that yielding starts.
Isotropic hardening is often useful under monotonic loading but often does not give
realistic results for materials subjected to cyclic loads and plastic deformation after

a load reversal from a plastic stress state. For this cases, kinematic hardening is
introduced in the form

flo—a,8)=0 (2.27)

where a is back stress tensor. Since softening phenomenon causes a decrease in
strength/stiffness, it is a significant and relatively complex feature of concrete material

modeling. A brief discussion about softening will be presented in the concrete
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constitutive models.

In addition to analytical and experimental investigations, numerous numerical studies
have employed finite element analysis as an approximation method for addressing the
issue of joint behavior. The thesis focuses on the most accurate and up-to-date research
in this domain. Generally, numerical solutions can be categorized into two primary
groups: those utilizing frame, spring, and plane elements in their numerical models,
and those implementing three-dimensional solid elements within the finite element

analysis.

Nonetheless, it is crucial to acknowledge that endeavors employing solid models have
frequently encountered inherent challenges related to the numerical representation
of concrete material. Consequently, the loading conditions in these studies have
predominantly remained monotonic, owing to the intricate nature of stress state
evaluation. While this research does not delve into the results derived from numerical

models, it does provide a comprehensive review of the modeling techniques employed.

Atta et al. [[107] applied the concrete failure model proposed by William and Warnke
(1975) utilizing ANSYS software to replicate the experimental study conducted by
Scott [[108]. Notably, even without specifying a bond rule between the concrete
and reinforcement elements, a strong correlation with the experimental results was
observed. A parametric investigation encompassing column axial load, reinforcement
detailing, concrete strength, and beam dimensions was executed. The focus of the
investigation remained on the strength basis, as the employed model demonstrated
instability in instances where strength loss occurred within the concrete material.
Subsequent to the emergence of tensile cracks, localized strains were not regularized
via a smeared crack approach in this analysis, rendering the results dependent on the
size of the finite elements and thus lacking objectivity. Additionally, it is important
to highlight that the models under investigation did not exhibit abrupt strength loss
attributable to a brittle failure mode; rather, they demonstrated a combination of beam

and joint failure.

Mitra [|65/]] employed a Drucker-Prager-based continuum formulation, utilizing DIANA
9.1 software, to simulate the response of an interior reinforced concrete joint.
However, it was concluded that the simulation relies on an excessive number of
parameters, many of which possess minimal or no physical significance, indicating that
an enhanced comprehension of modeling parameters is necessary for the continuum
formulation of any reinforced concrete structure. Furthermore, Mitra [|65] observed
that the continuum methodology is beset with convergence issues and necessitates

a considerable amount of computational time and complexity. This underscores the
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need for ongoing research to develop computationally stable and robust continuum

methods for structural analysis in this domain.

Allam et al. [[109] performed finite element analysis utilizing concrete damage
plasticity (CDP), a modified version of the Drucker-Prager formulation, implemented
through ABAQUS software, to simulate the response of an exterior reinforced concrete

joint.

Kaliske and Zreid [[110] employed a coupled plasticity-damage microplane model
[111] through ANSYS software to replicate the experimental study findings of a
reinforced concrete joint devoid of transverse reinforcement [[112]. illustrates the
concurrence between experimental and numerical outcomes, as well as the efficacy of

the constitutive model in capturing the softening behavior of concrete material.

Ozbolt et al. [[113] implemented a microplane relaxed kinematic constraint model
to simulate the cyclic response of two exterior joints. In this investigation, Ozbolt
et al. [|113]] obtained favorable outcomes (refer to Figure 8) employing a relatively
coarse mesh in comparison to contemporary studies, adopting an approach grounded
in crack band regularization. In addition to strain regularization, Ozbolt et al. [[113]
incorporated a smeared slip approach in their work via calibrated contact elements.
Nevertheless, the authors did not provide further elaboration regarding the calibration

process.

Yilmaz et al. [|[114] presented closely aligned load-displacement histories under
monotonic loading up to 6.5% drift. Although there was concurrence between
the observed and computed reaction forces, a more in-depth examination of the
results disclosed that the calculated failure mode did not entirely correspond with

the experimental observations.

Comparison of the results of studies on modelling of reinforced concrete joints with
advanced finite element techniques with the results obtained experimentally indicates
that, as a common point, a large number of model parameters contained in the
complex constitutive and element relations used need to be calibrated by fine-tuning
on an experiment-specific basis, which indicates that the mentioned techniques are not
suitable for practical purposes. This emphasises the need for generalised calibration

methods in the use of these methods.

2.3.4.2 Constitutive Models used for Concrete Material in RC Joint Modelling

In the literature, there is a vast amount of studies which defines the features of
plasticity described in Section [2.3.4.1| according to the experiments carried out over
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concrete specimens. Dislike metals, internal friction materials such as rock and
concrete exhibits decrease in yield criterion after tension and compression strength
of the material exceeded. This phenomenon is named softening. Overall behavior
includes perfect elasto-plasticity and a non-smooth softening where further loading
does not experience any resistance to deformation. This fact often cause numerical
difficulties which lead to non-convergent results. Softening behavior is slightly
different than hardening since it is initiated and its evolution is maintained by localiza-
tion [[115]]. After exceeding the strength limit of concrete in tension or compression,
contrary to hardening phenomena; some parts of material stops to resist deformations
and stress is dissipated and localized in other parts. Hence, the primary issue with
the concrete plasticity modelling is introducing a feasible numerical solution to the

softening phenomenon.

Grassl [|116]] noted that associated flow rule produce overestimated maximum stress
for concrete-like materials which deform due to internal frictional sliding, remarking
that concrete material does not follow an associated flow rule. In non-associated flow
rule, plastic potential is not proportional to the yield surface and strain increment is

not in the same direction as the stress increments.

In ANSYS Mechanical APDL. Material Reference [[117]] a set of generalized rules
described to be used in combination with applicable yield criterion and flow rules.
Yield function in compression (2, is given by a nonlinear hardening function and a
linear softening function. Relative stress level at the onset of nonlinear hardening is

Q.; with a hardening yield function:

Qc = Qci + (1 - Qci (228)

where k and k., denote actual plastic strain value and plastic strain value when the
material strength is exceeded, respectively. After the state that peak compression

strength is exceeded, softening starts with the function:

Q=1—-—""(k—x,,) (2.29)

when « exceeds defined critical plastic strain threshold x., compression strength is

reduced to the pre-defined residual stress. Piece-wise set of equation [2.28|and [2.29|
are plotted in figure 2.9 (a).
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Figure 2.9 Hardening and Softening Rule under (a) Compression (b) Tension (ANSYS
Material Reference, 2019)

Under tension, yield function €2, is given by a linear softening function where relative
yield stress equal to 1 at initial yielding and decreases to the given residual relative
stress 2,, when effective plastic strain is k,.. Described function is plotted in
Figure (b). Softening can be defined in an exponential form as well, surely that
definition requires intermediate parameters that control the skewness of the curve.
A better presentation might be defined based on Fracture Energy as Moharrami and
Koutromanos [|118]] suggests; but it is known that formulation is based on mesh area
and thus dependent on the mesh size. Only linear softening rule is used in this

research, but other mentioned rules may be included in further steps of the study.

Mises [119] introduced well-known yield criterion shown in Eq which is only

dependent on J, and material parameter.

f(J)=+I,—t=0 (2.30)
Materials with internal friction, slip surfaces are rough and shear stress needed to
activate slip is affected by the stress normal to the slip plane. Feenstra and De Borst
[120] states that to combine von Mises criterion with Rankine surface for tension may

yield realistic results for concrete material. Another well-known surface is proposed
by Drucker and Prager [[121] in the form of

fI,J)=al, +/J,— 7, (2.31)

where a and 7, are material parameters. This indicates that the Drucker-Prager
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Table 2.2 Plasticity Features of ANSYS APDL Plasticity Material Models ANSYS Mechanical

APDL Material Reference [|117]]

Name TBLab Yield Criterion Flow Rule Hardening Material Re-
Rule sponse
Bilinear BISO von Mises/Hill associative work harden- bilinear
Isotropic ing
Hardening
Nonlinear NLISO von Mises/Hill associative work harden- nonlinear
Isotropic ing
Hardening
Classical BKIN von Mises/Hill associative kinematic bilinear
Bilinear (Prandtl- Reuss hardening
Kinematic equations)
Hardening
Nonlinear CHAB  von Mises/Hill associative kinematic nonlinear
Kinematic hardening
Hardening
Drucker DP von Mises with associative  or none elastic- per-
Prager dependence non- associative fectly plastic
on hydrostatic
stress
Extended EDP von Mises with associative  or work harden- multilinear
Drucker dependence non- associative  ing
Prager on hydrostatic
stress
Cast Iron CAST von Mises with non- associative = work harden- multilinear
dependence ing
on hydrostatic
stress
Gurson GURS von Mises with associative work harden- multilinear
dependence ing
pressure and
porosity
Menetrey MW von Mises with non-associative work harden- multilinear
Willam dependence ing

on hydrostatic
stress

yield criterion is the same with von Mises, except with the slight difference about the
fact that shear yield stress is adjusted to hydrostatic (volumetric) stress. Jirasek and
Bazant [|122]] notes that for concrete material, it is possible to obtain better matching
results in comparison with von Mises surface, however in tension, large deviations are
still observed. Available constitutive models representing plastic behavior of concrete

mostly rely on extension, combination or slight modification on Drucker-Prager model.

Available plasticity based concrete models offered in ANSYS Mechanical APDL
Material Reference [[117] is shown in Table [2.2| with their plasticity features.
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2.3.4.3 Microplane Plasticity-Damage Model
An unconventional but powerful approach is introduced by Zreid and Kaliske [[111]

to overcome numerical issues due to localization of strains. Their formulation uses
microplane quantities which replaces tensorial formulation with uniaxial stress states
on planes with varying orientations. The main advantages of such approach are
(1) providing a constitutive model that the modeler need not worry about tensorial
invariance since it is satisfied by the summation of responses from microplanes of
various orientations; (2) ability to capture deviations from normality caused by
dilatancy in frictional materials and (3) direct characterization physical phenomena

associated with surfaces, i.e. slip friction, lateral confinement etc.

Figure 2.10 Microplanes ||

It is assumed that macroscopic (conventional) quantities are computed through

numerical integration over the sphere formed by micro-planes (see Fig. [2.10) using
Equation

3 21 .
o L (.)dQ = Z ()w (2.32)

mic=1

Microplane counterpart of any yield criterion can be defined to establish a microplane
plasticity model. In this case, Drucker-Prager Drucker and Prager [[121]] yield function

is given in Equation [2.33]
mic 3 e ~e e
pp — EO-DGD tao, —0y (2.33)

where o7 is effective deviatoric stress, o7, is effective volumetric stress, a is friction
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angle and o is initial yield strength. Introduced function forms an open surface in
stress space. To cover all possible stress states, its form is bounded by compression and

tension caps as it is described in Equation and ensured a continuous derivative.

. 3
fme(os, o8, k) = Eo;ale) — fi(of, K)f. (0%, K)f(0F, k) (2.34)

where f; is the plain Drucker-Prager yield surface. Compression bound function is

given by Equation and

(0¢ —0§)
XZ
X =Rf(0o}) (2.36)

fe=1—=H/(oy—0%) (2.35)

where O"C/ is abscissa of the intersection point between the compression cap and the
Drucker-Prager yield function and R is ratio between volumetric and minor axes of the
cap, H is the Heaviside function. Equation and reads the tension cap,

e _ ~TH2
f, = 1—%(%—03)% (2.37)
T =Ty + R, fir(x) (2.38)

where o is abscissa of the intersection of tension cap and Drucker-Prager yield
function and Ty, is the initial intersection of the cap with the major axis. Hardening is

defined by Equation where D is a material constant retrieved as a material input.

fn(x) = Dx (2.39)

Figure shows a schematic representation of the yield surface generated by the
Equation

Evaluation of plastic strains under monotonic loading is straightforward using the
theory presented above. However, under cyclic loading, realistic representation
without stiffness degradation is not possible. Equation - defines the damage

rule,

1—dpe = (1—d")(1 —r,d") (2.40)
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Figure 2.11 Drucker-Prager Cap Surface [[111]]
dy.. =1—exp(—Bri.) (2.41)
drcnic — exp(_[chfniC) (2.42)

where ¢ and t index note split compression and tension damage parameters
respectively and they are controlled with user input 8 and y. r, is split weight
factor and used to create distinct damage behavior under tension and compression.
In transition from tension to compression, stiffness degradation due to cracks is

recovered by crack closure mechanism r,, is a function of principal strains.

Since the introduced constitutive model aims to reproduce concrete response including
softening branch, it is not possible to obtain any practical results due to the numerical
instability issues associated with plasticity models with negative hardening. The main
reason is that the softening region is infinitely small and total amount of energy
dissipated during the failure process is zero [[123]], thus there is no trivial solution
for the boundary value problem. In this context, this region is infinitely small, akin
to a mere theoretical point, rather than a physically measurable size. This is pivotal
because, in most systems, when a failure occurs, energy is typically lost or dissipated
into another form. However, in this scenario, the total energy dissipated during
the failure process is zero, implying no energy conversion. This combination of a
minuscule softening region and absence of energy dissipation makes the boundary

value problem particularly complex, ruling out a simple or "trivial" solution.

Several solutions to this problem were introduced in literature; a very effective
one among them is implicit gradient enhancement which replaces local variables
that make the solution unstable with non-local counterparts to prevent localization.

The non-local average of a local variable is computed assuming the non-local value
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governed by Helmholtz-type equation (see Eq. [2.43)) with the homogenous Neumann
boundary condition (see Eq. |2.44]).

n_m_cvzn_m = MNm (243)

Vfr’_mnb =0 (244)

where 7),, is the local variable (e.g. equivalent strain) to be enhanced and 7,
is the non-local counterpart. c is the length-scale parameter which controls the
radius of interaction (or localization) and n; is the boundary normal vector. Implicit
regularization is obtained by the weighted combination of local and non-local variables

as it is described in Equation [2.45

N = Mg + (1 — M), (2.45)

where i = t,c note tension and compression respectively. m is regularization
parameter. Prevention of the localization or with other words homogenization of the
local variables over an interaction range requires two (for compression and tension)
additional degree of freedom for each element. This feature is available in CPT215

8-node coupled pore-pressure solid element [[124].

2.3.4.4 Elastic Microplane Damage Model

Plasticity theory is used to describe the inelastic behavior of concrete materials,
specifically when they experience loading beyond their elastic limits, resulting in
permanent deformation. Damage theory, on the other hand, accounts for the
degradation of material properties due to the formation and growth of microcracks
and voids in the concrete structure. Combining these two theories provides a more
comprehensive representation of concrete behavior, as it takes into account both
irreversible deformations and material deterioration. In a concrete plasticity damage
model, the stress-strain relationship of concrete is described by considering the elastic,
plastic, and damage components. The model typically incorporates a yield criterion
to define the onset of plastic deformation and a flow rule to govern the evolution of
plastic strains. Simultaneously, the model includes a damage variable to quantify the

loss of material stiffness and strength due to crack formation and propagation.

Alternative to the tensorial definitions, Bazant and Prat [[125] proposed a novel

approach that the material behavior is modelled through uniaxial stress-strain laws
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on various planes which are referred as microplanes.

Following the formulation presented in ANSYS Material Reference [|117]], Microplane
theory is based on the assumption that microscopic free energy on the microplane level
exists and its integral over all pre-defined microplanes is identical to the macroscopic

free Helmholtz energy, defined as;

e = 2 f TmedQ (2.46)

4r ),
In thermodynamics, free energy is a measure of the amount of energy in a system
that can perform work when temperature and volume are uniform throughout the
system. It represents the energy that is "free" or available to be used.Summing up
these energies from all microplanes yields a total corresponding to the macroscopic
Helmholtz free energy. The Helmholtz free energy, defined as , represents the energy
available to do work in a system at constant volume and temperature. Different
thermodynamic potentials, like the Helmholtz free energy, are used to simplify
analyses of specific conditions. In the case of the Helmholtz free energy, it is
particularly useful for systems with fixed volume and temperature, indicating the

maximum work obtainable excluding volume expansion.

The strains and stresses on microplanes are decomposed into volumetric and

deviatoric parts based on the V-D split in which the strain is expressed as

e=ep+eyl (2.47)
ey, =V:e (2.48)
v=14 (2.49)
=3 .
€p=Dev:e (2.50)
1 dev
Dev:n-l'[—gn-1®1=n~l'[ (2.51)

38



where €, and €, correspond to deviatoric and volumetric components of the total
calculated strain; V is the second-order volumetric projection tensor, 1 is second order
identity tensor, Pi is the fourth-order symmetric identity tensor and n is the normal
vector of the microplane. The stresses are evaluated by free energy derivative with
respect to the strain as

o._i 5,¢mic
 4n q O¢€

3
dQ = —J (Voy +2Devyo,)dQ2 (2.52)
4r ),

where o, and o, are volumetric and deviatoric stresses respectively. Assuming

isotropic elasticity, they can be described respectively as

5 mic )
O-V = /lib = Kmlcev (2.53)
o€y
S mic )
op = v = D¢} (2.54)
oep

where K,;. and G,,;. are microplane elasticity parameters, bulk and shear moduli

respectively and they can be related with the macroscopic properties as

K™¢ =3KG™ =G (2.55)

Integration over the approximate sphere surface (microplanes) to calculate the

homogenized stresses and strains is obtained by numerical integration

N
3 mic _ - mic\i,,,i
4—RJ(.) dQ—;(. Yiw (2.56)

where w; is the weight factor stands for the contribution weight of each microplane
vector to the calculated quatity. This formulation leads to anisotropic behavior even

though the elastic uniaxial laws are defined for individual microplane vectors.

Strain-softening material models typically cause numerical instability due to stress
singularities which can be mitigated by implicit gradient regularization in some cases
[111, [123[]. Implicit gradient regularization enhances a local variable by considering
its non-local counterpart as an extra degree of freedom governed by a Helmholtz-type

equation. Governing equations are given by the linear momentum-balance equation
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and modified Helmholtz equation defining the non-local equivalent strain field n,,,.

V-o+f=0 (2.57)

ﬁm_cvznAm =TMm (258)

where o is the Cauchy stress tensor, f is the body force vector, V is the divergence, V>
is the gradient and is the Laplace operator. The gradient parameter c is the variable
governs the range of non-local interaction. With the homogenous Neumann boundary
condition defined as follows;

V1, -n,=0 (2.59)

where n, is the normal to the outer boundary of the non-local field, no explicit
definition of boundary conditions for the extra degree of freeom is required.

Bazant and Pijaudier-Cabot [126] suggests to identifiy the gradient parameter c
through the comparison of homogenous and nonhomogenous tensile tests of concrete
while the first specimen is subjected to a distributed damage field and the second
is a notched specimen and subjected to a localized damage. In such case, damage
parameter is obtained by calibrating distributed and localized damage specimens
force-displacement curves while keeping other parameters effecting material damage
as constant. However, experiments representing distributed damage field for complex
failure modes may not be possible. For such cases, Lehky and Novak [[127]] proposes

inverse calibration of force-deflection curves.

Damage is considered through modification of microscopic free energy function which

includes a damage parameter, d,,;. which is a normalized damage variable d

mic mic*

U™ (e, €p,d™) = (1—d™)™ (e, €p) (2.60)

The damage status of the material is described by the equivalent strain based damage
function ¢™¢ = ¢(n™°) —d,,;. < 0 where n™¢ is the equivalent strain which is a
scalar measure that controls the damage initialization and evolution. Among other

definitions, Bazant [[123]] defines equivalent strain as follows

40



1

}
- o
< 4
\ |

\l

Figure 2.12 Failure surface of microplane material in invariant space

n™e = kol; + /K312 + kyJ, (2.61)

Isotropic damage model does not take into account the diffirent behavior of the
material under tension and compression. kO, k1, k2 are the result of the adoptation
of the model to different response of the material under different deformation states
defined by invariants I; and J, as it is illustrated in Figure Figure[2.12]also shows
allowable deformation domain in invariant space where material behaves elastic (in

microplane level) while beyond the envelope, material is damaged.

The damage variable d,,;, itself is expressed with damage evolution law

mic
Yo

d ,
lec

=1—

(1 . amic + amic exp(ﬁmic(ygnic _ Ymic))) (2.62)

mic

where y™¢, a™¢ and ™ respectively represent maximum history equivalent strain
maximum degradation and damage rate while 7, is the equivalent strain threshold for

damage initialization.

2.4 Parameter Identification with Soft-Computing Methods

In structural mechanics, the parameter identification (i.e. inverse analysis) problem is

a crucial challenge that involves determining the material and geometrical properties
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of a structure or its components. These properties, often referred to as parameters, are
essential for accurate modeling, analysis, and prediction of structural behavior under
various loading conditions. The parameter identification problem can be approached
through a combination of experimental and computational methods. Experimental
data, such as displacement, stress, and strain measurements are acquired from
physical tests on the structure or its components. Computational methods, including
the finite element method and other numerical techniques are employed to develop
mathematical models that represent the structural behavior. The objective is to
calibrate these models to match the experimental data by adjusting the parameters

within their physically feasible ranges [[128].

Kucerova [|129] describes the solution to an inverse analysis into two distinct
directions: forward mode and inverse mode. The forward mode is characterized by
the minimization of an error function F(x), defined as the discrepancy between the
outputs of the model y™, a function of the model parameters and the experimental

output y£ i.e.

minF (x) = min||y® — M(x)|| (2.63)

Conversely, the inverse mode assumes the existence of an inverse model MMV

associated with the model M, satisfying

x=MN(y) (2.64)

for all possible values of y.

In the context of the forward mode, which can be viewed as a solution to
an optimization problem, gradient-based optimization techniques are commonly
employed. Approaches inspired by simulated annealing methods [[130], which utilize
a single solution at a time, or evolutionary algorithms [[131-133]], which operate with
populations of solutions, are typically adopted. Various genetic algorithm solutions
have been proposed for this class of problems in the literature [|134, [135]], including
multi-objective optimization techniques [136, 137]]. Any solution offered which
is based on approximating the assumed inverse model, traditional artificial neural
network applications serve as an example for inverse mode inverse analysis [|138]].
A strong interest has been developed for formulating inverse analysis methods to

determine the quasi-brittle fracture behaviour of concrete [139-150].
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Figure 2.13 Illustration of inverse analysis through neural networks

Novak and Lehky [[138] presented an approach to inverse analysis, integrating
stratified Monte Carlo simulations with artificial neural networks. The process consists
of several essential stages. Initially, a computational model for a specific issue
is formulated using suitable finite element method tools. The model undergoes
calibration via a trial-and-error method with model parameters (i.e. identification
parameters: IP) and preliminary computations, leading to an approximate alignment
with experimental measurement data (MD). Initial IP estimations rely on testing,
engineering discernment, and virtual computational simulations, with refinements
occurring in later stages. IP is regarded as random variables represented by probability
distributions, such as rectangular or Gaussian distributions. Monte Carlo simulations
are utilized to produce random IP realizations, with Latin Hypercube Sampling (LHS)
being the favored technique. Probable statistical correlations among parameters
are also taken into account to enhance inverse analysis and preserve computational
model coherence. Several deterministic calculations are executed using random IP
realizations (y), resulting in a statistical set of virtual responses (p). The suitable
number of simulations is contingent upon factors like problem intricacy, neural
network configuration, and IP variability. Random realizations (y) and computational
model responses (p) serve as the basis for training an artificial neural network. This
vital step is exemplified by a nonlinear load-deflection curve encompassing both
pre-peak and post-peak behaviors. The trained ANN is employed to pinpoint the
optimal IP set (y,,.) that achieves the highest concordance with MD when used as
input for network simulations. Lastly, the results are validated by computing the
computational model with the optimal parameters (y,,.) and contrasting the output

with MD to evaluate the effectiveness of the inverse analysis.

2.4.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a type of computational model inspired by the

structure and function of the human brain. ANNs are composed of a large number
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of simple processing elements, or neurons, which are connected to each other via
weighted connections. Each neuron receives input signals from other neurons or
from external sources, processes these signals using a mathematical function, and
produces an output signal that is transmitted to other neurons in the network. There
are numerous terms used to describe the field of artificial neural networks, including
connectionism, parallel distributed processing, neurocomputing, natural intelligent

systems, machine learning algorithms, and more [129].

Artificial neural networks have a long and rich history, dating back to the early days
of computing. In the 1940s, researchers such as McCulloch and Pitts [|[151]] began to
explore the idea of modeling biological neurons using electronic circuits. This led to
the development of the first artificial neuron model, which consisted of a simple binary
threshold function that could be used to model logical operations. In the 1950s and
1960s, sophisticated neural network models are introduced, such as the perceptron
and the adaptive linear neuron [[152, |153]. These models were capable of learning
from examples and could be used for pattern recognition and classification tasks. In
the 1970s and 1980s, new types of neural network models are introduced, such as the
Hopfield network [[154]] and the backpropagation algorithm [[155]. These models were
capable of learning more complex patterns and could be used for tasks such as image
and speech recognition. In the 1990s, the field of ANNs experienced a resurgence
of interest, driven in part by the development of more powerful computers and the
availability of large datasets. Researchers began to develop new types of neural
network models, such as the radial basis function network and the self-organizing
map. In recent years, the field of ANNs has continued to evolve and grow, with new
developments such as deep learning and convolutional neural networks. These models
have achieved impressive results in a variety of fields, such as computer vision, natural

language processing, and speech recognition.

The structure and function of ANNs can vary widely depending on the specific
application, but they typically consist of multiple layers of neurons organized in a
hierarchical fashion. The input layer receives raw data from the outside world, while
the output layer produces the final output of the network. In between the input and
output layers, there may be one or more hidden layers of neurons that process the
input signals in increasingly complex ways. The interconnections within an artificial
neural network are typically denoted by numerical weights, signifying the magnitude
and direction of signal transmission between neurons. Throughout the training
process, these weights are modified according to the input-output pairs from a dataset,
enabling the network to generate accurate outputs for specific inputs. ANNs are a
potent method for addressing numerous real-world challenges. They can enhance

performance and adapt to environmental changes through experiential learning.
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Moreover, ANNs can manage incomplete or noisy data and excel in scenarios where
problem-solving rules or steps are undefined. Their straightforward implementation
and substantial parallelism render them highly efficient. The most significant
advantage of ANNs is their capacity to function as an arbitrary approximation
mechanism that learns from observed data. However, their utilization necessitates a
solid comprehension of the underlying theory. With proper selection of the model,
cost function, and learning algorithm, the resulting ANN can exhibit remarkable
robustness. The following subsection provides a review of several typical types of

artificial neural networks.

2.4.1.1 Feed-Forward Neural Networks

Feedforward neural networks (FFNNs) are a class of artificial neural networks
characterized by the unidirectional flow of information from input to output layers
without any feedback loops [[156]. These networks consist of multiple layers of
interconnected neurons, including an input layer, one or more hidden layers, and
an output layer [[157]]. Each neuron within a layer is connected to every neuron in
the subsequent layer through weighted connections, where the weights signify the

strength and direction of the signal transmission.

In a feedforward neural network, the input data traverses through the network in a
single direction, undergoing a series of transformations as it passes from one layer to
the next. The neurons in the hidden layers apply activation functions to the weighted
sum of their inputs, introducing nonlinearity into the network [[158]. Common
activation functions include the sigmoid, hyperbolic tangent, and rectified linear unit
(ReLU) functions [[159].

Training a feedforward neural network entails adjusting the weights of the connections
to minimize a predefined cost function, which quantifies the discrepancy between
the network’s predicted output and the actual target values [[160]. Gradient-based
optimization methods, such as stochastic gradient descent (SGD) or more advanced
variants like Adam, are typically employed to optimize the weights during the training
process [[161]]. The backpropagation algorithm, a fundamental technique in training
feedforward neural networks, computes the gradient of the cost function with respect
to each weight by applying the chain rule of calculus [[155].

Feedforward neural networks have found extensive applications across various
domains, including image and speech recognition [[162[], natural language processing
[163]], and financial forecasting [[164]]. Despite their simplicity and lack of recurrent
connections, FFNNs have demonstrated the ability to solve complex problems by
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approximating arbitrary functions [[165]]. However, their performance is limited when
addressing tasks that require the processing of sequential or temporal data, as they lack
the inherent memory and feedback mechanisms present in recurrent neural networks
(RNNs) and other more sophisticated architectures [[166].

The information in a feed-forward network flows from the input layer through the
hidden layers to the output layer, without any feedback loops. The output of a neuron

in a layer is computed using the following equations:

Ni
o _ 0 (-1 0]
z; —Zwﬁ a; ' +b;, (2.65)
i=1
a;l) me(zj(»l)), (2.66)

where [ denotes the layer number, N;_; is the number of neurons in layer [ — 1, wg?
(-1
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activation of neuron i in layer [ — 1, bJ(.Z) is the bias term of neuron j in layer I, zj(.
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and fW(-) is the activation function of layer .

Training a feed-forward neural network involves adjusting the weights and biases to
minimize the difference between the predicted outputs and the actual outputs for
a given set of training examples. This process is typically done using a supervised
learning algorithm, such as gradient descent combined with backpropagation. The
objective is to minimize a loss function, E,(w, b), which measures the error between

the predicted outputs and the true outputs:
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where N is the number of training examples, y; is the predicted output and y; is the
true output for the i-th training example. A flowchart for definition, training and

validation of a back-propagation feed-forward neural network is given in Figure [2.14;

During the training process, the dataset is often split into two or more parts: a training
set and a validation set. The training set is used to adjust the weights and biases of the
network, while the validation set is used to evaluate the performance of the trained
model and to prevent overfitting. Overfitting occurs when the model learns to perform

very well on the training set but does not generalize well to new, unseen data. By
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monitoring the performance on the validation set, we can stop the training process
when the performance on the validation set starts to degrade, a technique known as

early stopping.

2.4.1.2 Radial Basis Function Networks

Radial basis function networks (RBFNs) are a specific class of feedforward artificial
neural networks that utilize radial basis functions (RBFs) as activation functions
within the hidden layer neurons. RBFNs have gained significant attention in the
field of machine learning and pattern recognition due to their excellent approximation

capabilities, fast training process, and simple structure [[167-H169].

The architecture of RBFNs typically consists of three layers: an input layer, a hidden
layer with RBF neurons, and an output layer. In the hidden layer, each neuron
computes the Euclidean distance between the input vector and its center vector, then
applies a radial basis function to this distance. The most commonly used RBF is the
Gaussian function, which has the advantage of smoothness and locality [[167]. The
output layer consists of linear neurons that perform a weighted sum of the hidden

layer outputs to generate the final output [[170].

RBFNs have been employed in various applications such as function approximation,
classification, regression, and time series prediction [[157, [171[]. One of the primary
advantages of RBFNs is their ability to approximate any continuous function to
arbitrary accuracy, given sufficient hidden layer neurons [169]. Additionally, RBFNs
offer a more localized response in comparison to other feedforward networks, such as

multilayer perceptrons (MLPs), which rely on global basis functions [[168].

The output of a radial basis function network (RBFN) can be defined as a function of
the inputs, weights, and centers of the radial basis functions. Specifically, the predicted

output for class k, denoted y,, is given by:

H
Y= wyxd(llx —¢l) (2.68)
j=1

where x represents the input vector, c; is the center of the jth radial basis function,
wy; is the weight associated with the jth radial basis function for class k, and ¢(-) is
the radial basis function.

To train an RBFN, the error between the predicted outputs and the true outputs is

minimized using a least squares approach. The error is given by:
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where N is the number of training samples, K is the number of classes, y, is the true
output for the nth sample and kth class, and ¥, is the predicted output for the nth
sample and kth class. A flowchart for definition, training and validation of a radial
basis function neural network is given in Figure [2.15]

A General Regression Neural Network (GRNN) is a type of radial basis function
network that is specifically designed for regression tasks. GRNN is a one-pass learning
algorithm that offers fast learning and smooth function approximation [[172]. GRNN
is a single-pass learning algorithm with excellent generalization capabilities, making

it well-suited for function approximation, prediction, and classification tasks.

In GRNN, the pattern layer consists of neurons, each representing a data point from
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the training set. These neurons employ radial basis functions, such as Gaussian
functions, as activation functions to measure the similarity or distance between the
input and the stored data points [[172]. The width of the radial basis functions,
known as the smoothing parameter or spread constant, influences the network’s
performance and can be optimized based on the problem at hand. The summation
layer consists of two sets of neurons, one for the weighted sum of the radial basis
function outputs (the numerator) and another for the sum of the activation values
(the denominator). The output layer computes the ratio of the weighted sum and the
sum of the activation values, yielding the network’s final output, which corresponds

to the function approximation or prediction.

GRNN'’s single-pass learning algorithm, smooth decision boundaries, and ability to
avoid overfitting make it an attractive choice for various applications, including time

series forecasting, classification, and regression tasks.

Architecture of GRNN consists of an input layer, a pattern (or radial basis) layer, a
summation layer, and an output layer. The output of a GRNN is calculated using the

following equation:
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where N is the number of training examples, x is the input vector, x; is the i-th training
input vector, y; is the corresponding target output, w; is the weight associated with
the i-th training example, o is the kernel width parameter, and K(-) is the radial basis
function kernel.

Training a GRNN is straightforward, as it is a one-pass learning algorithm. The training
phase consists of setting the centers of the radial basis functions to the input vectors of
the training examples and the corresponding weights to the target output values. The
only parameter that needs to be determined during the training process is the kernel
width parameter, o, which controls the smoothness of the function approximation.
The selection of o can be done using techniques such as cross-validation or trial and

€ITOoTr.

Similar to other neural networks, the dataset for training a GRNN is usually divided
into a training set and a validation set. The training set is used to determine the centers
of the radial basis functions and the corresponding weights, while the validation set is
employed to evaluate the performance of the trained model and to select the optimal

kernel width parameter, o. By monitoring the performance on the validation set,
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in Figure [2.16]

2.4.1.3 Other Types of Artificial Neural Networks

Kohonen Self-Organizing Networks, also known as Self-Organizing Maps (SOMs), are
a type of unsupervised learning algorithm introduced by Teuvo Kohonen in the early
1980s [[173]]. SOMs are employed primarily for dimensionality reduction and data
visualization tasks, where they preserve the topology and relative distances of the
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input data in a lower-dimensional space. SOMs consist of an array of interconnected
neurons organized in a grid-like structure that adapt to the input patterns through

competitive learning, thereby forming a spatial representation of the input data [|174].

Recurrent Neural Networks (RNNs) are a class of artificial neural networks
characterized by the presence of feedback connections, which allow the network to
exhibit dynamic temporal behavior and store information over time [|175]]. RNNs are
particularly effective in dealing with sequential data and have been widely applied
to tasks such as natural language processing, time series prediction, and speech
recognition [176, [177]. The most popular RNN architectures, Long Short-Term
Memory (LSTM) [|166] and Gated Recurrent Units (GRU) [[178]], address the vanishing

gradient problem commonly faced by traditional RNNs.

Hopfield Networks, introduced by John Hopfield in 1982, are a type of recurrent
neural network that function as associative memory systems [|154(]. Hopfield networks
store patterns in their weight matrix and can recall the stored patterns when
provided with partial or noisy input. These networks are characterized by their
symmetrical weight matrix, which ensures energy minimization and convergence
to stable states. Hopfield networks have been applied to various tasks, including

optimization problems and image recognition [[179].

Fuzzy Neural Networks are a hybrid approach that combines the principles of
fuzzy logic and artificial neural networks, aiming to overcome the limitations of
both techniques and improve the learning and generalization capabilities [|180]].
FNNs employ fuzzy reasoning within the network structure, enabling them to
handle imprecise, uncertain, or noisy data more effectively than traditional neural
networks. Applications of FNNs include control systems, decision-making, and pattern

recognition [[181]].

2.4.1.4 Training Set Preparation and Partitioning Techniques

The training and validation of artificial neural networks require a careful selection of
the dataset partitioning technique. This section provides an overview of the various

partitioning techniques commonly used in ANNs.

Proper partitioning of a dataset is crucial for training and validating artificial neural
networks (ANNs) to ensure the generalization of learned models in regression tasks
[157]. There are several approaches to divide the dataset into training and validation
sets:

The holdout technique entails randomly splitting the dataset into two separate subsets
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for training and validation purposes. The ANN is trained using the training subset and
validated against the validation subset to evaluate its performance and generalization
capabilities. While simple, this method may result in a high variance performance

assessment, particularly for smaller datasets [|158].

k-Fold cross-validation addresses the variance issue of the holdout method by dividing
the dataset into k equal-sized folds. The ANN is trained and validated k times, with
each fold being used as a validation set exactly once while the remaining k — 1 folds
serve as the training set. The overall performance estimate is obtained by averaging
the performance metrics across the k iterations [[158]]. This method provides a more

reliable estimate of the model’s performance, especially for small datasets.

This method represents a specific case of k-fold cross-validation where k is equal to the
dataset’s total number of data points [[182]]. The ANN is trained on the entire dataset,
excluding one data point, and validated against the single excluded point. This process
is repeated for every data point in the dataset. While leave-one-out cross-validation
offers a low-bias performance evaluation, it can be computationally demanding for

larger datasets.

The bootstrap method generates multiple resampled datasets by drawing samples with
replacement from the original dataset. Each resampled dataset is used to train an ANN,
and the model’s performance is assessed using out-of-bag samples not included in the
resampled dataset. Although the bootstrap method can yield a robust performance

evaluation, it may introduce bias due to the replacement sampling [|182]].

The choice of a partitioning technique depends on several factors, including the size
of the dataset, the distribution of the data, and the computational resources available
for training and validation. A careful selection of the partitioning technique is crucial

in ensuring that the ANN is properly trained and can generalize well to new data.

2.4.2 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a statistical technique commonly used for
generating well-spaced, representative samples from high-dimensional data spaces.
LHS has been applied in various fields such as optimization, simulation, and
uncertainty quantification [[183-185[]. In the context of artificial neural networks,
LHS can be used as a random sampling technique for training data preparation. By
randomly selecting input values from an LHS distribution, the resulting training data
is more likely to capture the full range of input space and avoid overfitting, resulting

in better generalization performance [[182,(186]].
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LHS works by dividing each input variable range into equal intervals and randomly
selecting one sample from each interval. This ensures that each sample is well-spaced
and representative of the input space. There are various techniques for generating
LHS samples, including the algorithm proposed by [[183], which iteratively generates
a set of Latin hypercube samples by randomly selecting one sample per column, and

then shuffling the rows.

In summary, LHS is a powerful and widely used statistical technique for generating
well-spaced, representative samples from high-dimensional data spaces. In the
context of artificial neural networks, LHS can be used as a random sampling technique
for training data preparation, leading to improved generalization performance.
Several techniques for generating LHS samples exist, including the algorithm proposed
by [[183]. A simplified flowchart describing the LHS procedure is given with Figure

2.4.3 Genetic Algorithms

Genetic algorithms (GAs) are a family of optimization techniques inspired by the

process of natural selection and evolution [[131]. These algorithms have been widely
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applied to solve various optimization problems due to their ability to search large and
complex solution spaces effectively [187]. GAs employ a population-based approach,
and their primary components include selection, crossover, and mutation operations,
which mimic the principles of survival of the fittest, recombination, and random

genetic variations, respectively [[188].

There are several types of genetic algorithms, including the canonical genetic
algorithm, the steady-state genetic algorithm, and parallel and distributed genetic
algorithms [[189]]. The canonical genetic algorithm is the most basic form, which uses
a fixed-size population and applies genetic operations to generate offspring, replacing
a portion of the population in each generation. In contrast, the steady-state genetic
algorithm updates the population continuously by replacing one or a few individuals
at a time. Parallel and distributed GAs exploit the power of parallel computing to
perform multiple searches simultaneously, improving the efficiency and effectiveness

of the search process.

Genetic algorithms differ from traditional optimization methods in several ways. First,
GAs work with a population of solutions, whereas traditional methods typically focus
on a single solution. This population-based approach allows GAs to explore multiple
regions of the search space simultaneously, reducing the risk of converging to a local
optimum [[190]. Second, GAs operate on encoded representations of solutions rather
than the solutions themselves, allowing them to handle discrete and combinatorial
problems more effectively than gradient-based methods, which require continuous
and differentiable objective functions [[131]. Third, GAs are adaptive and stochastic
in nature, which makes them more robust to changes in the problem and less sensitive
to the initial conditions, in contrast to deterministic methods that can be heavily

influenced by the starting point [|189]].

A typical genetic algorithm formulation consists of several key steps that guide the

search process towards an optimal solution in a systematic and efficient manner [[131]:

* Initialization: The first step in a GA is to create an initial population of
candidate solutions, often generated randomly [[187]]. The population size,
which is an essential parameter, is determined based on the problem complexity

and computational resources available [[189]].

* Evaluation: Each individual in the population is evaluated using a fitness
function that quantifies the quality of the solution concerning the optimization
objective(s) [[188]. The fitness function plays a crucial role in guiding the search

process, and its design significantly influences the algorithm’s performance
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[190].

Selection: The selection operator chooses individuals from the current
population to create a mating pool, favoring those with higher fitness values.
Various selection strategies exist, such as roulette wheel selection, tournament
selection, and rank-based selection, each with its advantages and drawbacks
[189]. Roulette wheel selection, also known as fitness proportionate selection,
is one of the earliest and most widely used selection techniques [[187]]. In this
method, the probability of selecting an individual is proportional to its fitness
relative to the total fitness of the population. This approach ensures that fitter
individuals have a higher chance of being chosen for reproduction, but it may
lead to premature convergence if a small number of individuals dominate the
selection process [|131]]. Tournament selection, introduced by Goldberg and Deb
[[191], addresses some of the issues associated with roulette wheel selection.
In this method, a fixed number of individuals are randomly chosen from the
population to participate in a "tournament," with the winner being the fittest
among them. By adjusting the tournament size, the selection pressure can be
controlled, allowing for a balance between exploration and exploitation [|189]].
Rank-based selection, proposed by Baker [[192], focuses on the relative fitness of
individuals rather than their absolute fitness. The population is sorted according
to their fitness values, and the selection probability is assigned based on their
rank. This method reduces the impact of extremely fit individuals on the
selection process, promoting diversity and preventing premature convergence
[189]. Elitism, though not a standalone selection method, is often incorporated
into other selection techniques to ensure that the best individuals in the
population are preserved across generations [[193]]. By retaining the fittest
individuals, elitism can prevent the overall fitness from decreasing and help

maintain the search’s direction towards optimal solutions [[188].

Crossover: The crossover operator combines the genetic material of selected
parents to generate offspring, mimicking the process of recombination in natural
evolution [|187|]]. Crossover methods include single-point, multi-point, and
uniform crossover, among others, and the choice of a suitable crossover operator
depends on the problem representation and the desired exploration-exploitation
trade-off [[188]. Single-point crossover, introduced by Holland (1975), is the
simplest and most intuitive crossover method. In this technique, a random
crossover point is chosen along the parent chromosomes, and the genetic
material is exchanged after this point to create the offspring. Although easy
to implement, single-point crossover can disrupt beneficial building blocks in

the solutions, known as schemata, which may hinder the GAs performance.
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Multi-point crossover, or n-point crossover, generalizes single-point crossover
by using multiple crossover points [[131]]. By exchanging genetic information at
several points along the chromosomes, multi-point crossover aims to preserve
schemata more effectively and reduce the disruptive effect of the recombination
process. Uniform crossover, proposed by Syswerda [[194], is another popular
crossover technique that operates at the gene level. Instead of using fixed
crossover points, uniform crossover randomly chooses which parent contributes
each gene to the offspring, with a predefined mixing ratio. This method allows
for a more fine-grained exploration of the search space and can be particularly
beneficial when the problem representation does not exhibit strong locality.
Order-based crossover methods, such as partially mapped crossover (PMX) by
Goldberg and Lingle [[195]] and cycle crossover by Oliver et al. [196]], have been

specifically designed for permutation-based problems.

Mutation: The mutation operator introduces small random perturbations in the
offspring’s genetic material to maintain diversity in the population and prevent
premature convergence [[131]]. Mutation rates and strategies vary depending
on the problem and representation, with common approaches including bit-flip,

swap, and Gaussian mutation [[189]].

Replacement: The new offspring are integrated into the population, replacing
some or all of the current individuals, depending on the GA variant (canonical,
steady-state, or others) [[190]. Replacement strategies can be generational,
where the entire population is replaced, or elitist, where the best individuals

are preserved to ensure that the overall fitness does not decrease [|188]].

Termination: The algorithm iterates through steps 2-6 until a termination
criterion is met, which could be a predefined number of generations, a

convergence threshold, or a combination of factors.

A simplified flowchart of the process is also given in the Figure The main
challenge in inverse analysis lies in the ill-posed nature of the problems, which

often exhibit non-uniqueness, instability, or non-linearity in the solution space [[197]].

Genetic algorithms (GAs) have been employed as a popular and effective optimization

technique to address these challenges in inverse analysis [[198]. The population-based

search mechanism and global optimization capabilities of GAs make them well-suited

for solving ill-posed inverse problems [199]. GAs have been used in various

applications, including the identification of material parameters in solid mechanics
[200].
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2.4.3.1 Multiobjective Optimization

In practice, the process of calibrating or validating models typically involves
minimizing discrepancies between observed and simulated data across several
performance metrics. These metrics can be in conflict with one another, and
optimizing one may lead to the deterioration of another. Multi-objective optimization
algorithms, such as NSGA-II, provide a means to navigate these trade-offs and identify
a diverse set of Pareto-optimal solutions that represent the best compromise between

the competing objectives.

Multiobjective optimization, also known as multi-criteria or multi-objective decision
making, is an optimization process where multiple conflicting objectives must be
optimized simultaneously [[190]. In real-world applications, it is often necessary to
balance trade-offs between various objectives, as improving one may result in the
degradation of another. Genetic algorithms (GAs) have emerged as a powerful tool
for solving multiobjective optimization problems due to their population-based search

mechanism and inherent parallelism [201]].

In multiobjective optimization, the concept of Pareto optimality is of critical
importance. A solution is said to be Pareto optimal if no other solution can improve one
objective without worsening another [[190]. The goal of multiobjective optimization
using GAs is to identify a set of Pareto-optimal solutions that provide decision-makers
with a range of alternatives, thereby enabling a better understanding of the problem’s
solution landscape [202[]. Multi-objective optimization encourages the consideration
of multiple performance criteria during the inverse analysis process. This can
lead to better model performance, as calibrating a model to multiple objectives
simultaneously can help identify deficiencies or biases that might be overlooked when

optimizing for a single objective.

Several multiobjective genetic algorithms have been proposed in the literature, such
as the Non-dominated Sorting Genetic Algorithm (NSGA-II) [203], the Strength
Pareto Evolutionary Algorithm (SPEA2) [[204], and the Multiobjective Evolutionary
Algorithm based on Decomposition (MOEA/D) [205]]. These algorithms differ in their
selection, crossover, and mutation operators, as well as their strategies for handling

the Pareto front and maintaining diversity among the solutions [[201]].

A critical aspect of multiobjective optimization with GAs is the selection of appropriate
performance metrics to assess the quality of the obtained Pareto front. Common
performance metrics include the hypervolume indicator, the generational distance,
the inverted generational distance, and the epsilon indicator [206]. These metrics
provide insights into the convergence, diversity, and distribution of the solutions along
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the Pareto front [201].

The optimization performance of genetic algorithms is influenced by multiple factors,
each playing a critical role in determining the efficiency and effectiveness of the
search process [131, 207]. Appropriate population size and initialization are
vital for adequate search space exploration and convergence [208]. The fitness
function should be well-designed to guide the GA towards optimal solutions [[131].
Selection strategy, crossover operator, and mutation operator and rate are crucial for
balancing exploration and exploitation [[190]]. Furthermore, the replacement strategy
determines the integration of offspring into the population, affecting convergence
behavior [208]. Termination criteria control the stopping point of the algorithm,
impacting overall performance. Additionally, algorithm variants and problem

representation can influence the efficiency of the search process [207]].

2.4.3.2 Non-dominated Sorting Genetic Algorithm II (NSGA-II)

The Non-dominated Sorting Genetic Algorithm II is a multi-objective optimization
algorithm that has gained widespread recognition in recent years due to its robust
performance and adaptability in solving various optimization problems. Introduced
by Deb et al. [[203]], the algorithm is designed to tackle the challenges posed by multiple
conflicting objectives in the optimization landscape. It employs a non-dominated
sorting approach coupled with a crowding distance measure to maintain diversity in
the population while evolving towards the Pareto-optimal front. The main procedure
of NSGA-II involves the following steps:

* Initialization: A population of candidate solutions is randomly generated,

where each solution is represented by a set of decision variables.

e Evaluation: Each candidate solution is evaluated by computing its fitness
based on multiple objective functions. The objective functions are typically
conflicting, meaning that improving one objective may lead to a decrease in
another objective.

* Non-dominated sorting: The candidate solutions are sorted into multiple levels
based on their non-domination relationships. A solution is non-dominated if
there is no other solution that is better in all objectives. Solutions in the first
level are non-dominated by all other solutions, solutions in the second level are

non-dominated by all solutions in the first level and so on.

* Crowding distance assignment: Solutions in the same level are then assigned

a crowding distance metric based on their distance to neighboring solutions.
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This metric is used to ensure that the diversity of the population is maintained

during selection.

* Selection: A new population is then created by selecting solutions from the

different levels and based on their crowding distance metric.

* Variation: The selected solutions are then subjected to genetic operators such

as crossover and mutation to create new candidate solutions.

* Repeat steps 2 to 6 until a termination criterion is met, such as reaching a

maximum number of generations or a satisfactory level of convergence.

The main difference between NSGA-II and the standard multi-objective optimization
procedure lies in the non-dominated sorting and crowding distance assignment
steps. These steps are used to maintain the diversity of the population and avoid
premature convergence to a single optimal solution. In contrast, the standard
multi-objective optimization procedure typically uses a weighted sum method to
combine the objectives into a single fitness function, which can lead to a biased search

towards a particular region of the solution space.

The non-dominated sorting step is a crucial component of the NSGA-II algorithm,
which is used to partition the population of candidate solutions into different levels of
non-dominated fronts. Non-dominated sorting is performed based on the concept of
Pareto dominance, which is a fundamental principle in multi-objective optimization
that characterizes the superiority of one solution over another in terms of objective

function values.

2.4.4 Meta-Modelling in Inverse Analysis

Meta-modelling, also known as surrogate modelling, has become an essential
tool for addressing complex and computationally expensive engineering problems,
particularly in inverse analysis applications [[209, [210]. Inverse analysis seeks
to estimate unknown parameters or system properties based on observed data,
often involving the minimization of a discrepancy between model predictions and
measurements [[197]]. Any instance of artificial neural network application intended
to establish relation between input and output parameters of an engineering problem

is also an example of meta-modelling.

Meta-modelling process for an inverse analysis problem, which aims to approximate
the objective function (e.g., cost) is done through several key steps. First, an

approximative model, such as an artificial neural network, is estimated, requiring
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numerous simulations, appropriate topology determination, and training to minimize
the error between the original and approximative models. This model maps a few
inputs to tens or hundreds of outputs, presenting a complex task for the artificial
neural network. Secondly, optimization is performed on the approximative model
using either experimental or reference simulated data to determine the corresponding
inputs. Following this, the first verification step involves comparing the identified
inputs with the original input data for a reference data pair, ensuring the accuracy
of the identification procedure. The second verification step entails simulating the
computational model using the identified input data and comparing the resulting
outputs to the reference outputs. Lastly, validation is conducted by executing
the optimization process on experimental data and using the identified inputs to
simulate the computational model. The obtained outputs are then compared with

the experimental outputs to assess the performance of the meta-model [|129]].

An interesting approach in meta-modelling involves the approximation of the error
function rather than the objective function [[211[]. By constructing a surrogate model
that captures the relationship between the input parameters and the error in the model
predictions, researchers can focus on minimizing the error directly. This approach can
lead to improved accuracy and robustness in the inverse analysis, especially when

dealing with noisy or incomplete data [212]].

The main difference between meta-modeling of an error function and meta-modeling
of an objective function lies in the nature of the mapping between inputs and
outputs. In the case of meta-modeling the error function, an approximative function
(FF) is established to represent the error function (F). The inputs to this function
remain unchanged, but the number of outputs typically reduces to a single value,
representing the error. This process simplifies the task of approximating the error
function compared to the objective function. In certain situations, multiple objectives
may be incorporated into the error function, leading to a multi-objective formulation.
However, even in these cases, determining an approximative error function (FF) is

generally less complex than determining an approximative model (M).

On the other hand, when meta-modeling the objective function, the focus is on
approximating the original model (M) with its multiple outputs. This task can be
more complicated due to the increased complexity of the mapping between inputs

and outputs, and the need to accurately represent the relationships between them.
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3

IMPLEMENTATION OF THE SIMULATION FRAMEWORK

3.1 Overview

The literature survey presented in Chapter [2|revealed that the finite element method
provides possibilities for reinforced concrete joint modeling with varying degrees of
complexity. The complexity range starts with a single uniaxial spring and goes to
various plasticity models coupled with damage definitions. The survey also points out
that the complex is not always the best under every condition. Once the complexity
of the physical phenomenon increases, the numerical model representing it is often
computationally more expensive and requires more parameters, some of which are not
measurable directly from the physical definition of the problem. This often requires a
parametric search of the mentioned parameters for each individual simulation, where
the aim is to calibrate the simulation model parameters so that they can represent the

experimentally observed response.

A significant conceptual issue arises at this point: simulation models are created to
avoid costly experiments. Improving the fundamental understanding of a physical
problem (i.e., damage initiation and evolution in reinforced concrete beam-to-column
joints) requires the exploration of a large domain of effective variables that define
the problem of interest and its corresponding output. In other words, simulations are
done to imitate and replace experiments, but they need more and more experiments

to be refined.

Depending on the nature of the problem, this exploration process can be conducted
using a variety of methods. It is possible to conduct only experimental investigations,
but experiments can be expensive, time-consuming, and sometimes impractical,
especially in scenarios involving large-scale systems or hazardous conditions.
Additionally, certain phenomena may be challenging to capture experimentally due
to technical constraints. On the other hand, simulations offer the opportunity
for extensive parametric studies, enabling researchers to systematically vary input

parameters and observe their effects on the system’s behavior. This ability to
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explore the problem domain enhances the understanding of the underlying processes,
facilitates optimization efforts, and guides the design of experiments by identifying
critical variables and refining experimental protocols. Nevertheless, simulations
must be appropriately validated and verified to ensure their accuracy and reliability.
Validation involves comparing simulation results against experimental data to assess
the model’s ability to reproduce observed phenomena. Verification, on the other
hand, focuses on confirming the correctness of the simulation implementation. While
verification and validation establish the correctness and accuracy of the simulation
models, calibration ensures their ability to replicate experimental results. The extent
of calibration required may vary depending on the complexity of the simulation models

employed.

In complex simulation models (e.g., advanced finite element models employed in the
studies introduced in Chapter[5)), calibration plays a crucial role due to the complicated
nature of the phenomena being studied. These models typically involve a variety
of variables, and in such cases, calibration becomes essential to refine the model’s
behavior and achieve agreement with experimental observations. By iteratively
adjusting model parameters, calibration seeks to minimize the discrepancies between
simulated and experimental results. This process helps improve the model’s predictive
capabilities and enhances its ability to capture the complex aspects of the real-world
system. However, it is crucial to consider the risks associated with calibration,
particularly the dangers of overfitting the model to specific experimental data.
Overfitting occurs when a simulation model becomes excessively tailored to match
experimental results, losing its generalization capabilities. This can lead to an overly
complex model that is unable to accurately predict outcomes beyond the specific
calibration data. Therefore, caution must be exercised to strike a balance between
fitting the model to experimental data and maintaining its ability to generalize
to broader scenarios. In contrast, relatively simplified simulation models (e.g.,
finite element models composed of uniaxial springs employed in the investigations
introduced in Chapter [4), often employed to handle computationally challenging
problems, may require less extensive calibration. These models, which will be referred
to as "simplified models" or "super-element models" in this manuscript, aim to capture
only the essential characteristics of the system while omitting relatively less significant
details and complexities. Due to their reduced complexity, simplified models may
rely on fewer adjustable parameters and exhibit less sensitivity to calibration. By
focusing on the fundamental aspects and key trends, these models can offer insights
into the underlying mechanisms. However, even in simplified models, calibration
is necessary to ensure that the fundamental behavior and key trends observed in

experiments are adequately represented. Simplified models often require fewer
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calibration parameters, making them less susceptible to overfitting and reducing the
risk of tailoring the model excessively to specific calibration data. On the other hand,
complex models, while capable of providing a more detailed representation, inherently
carry a higher risk of overfitting during the calibration process. With a larger number
of adjustable parameters, complex models possess a greater capacity to fit the model’s
behavior closely to the calibration data. However, this level of calibration precision
may come at the expense of generalization as the model becomes too finely tuned to
the specific calibration dataset. The lack of generalization in the existing model poses
a challenge for accurately representing the desired task. To achieve generalization,
calibration using a substantial amount of experimentally observed data is necessary.
However, conducting a large number of experiments is both difficult and costly.

This thesis proposes a solution by expanding the calibration dataset through the
application of artificial intelligence techniques. This approach is crucial in developing
a practical and robust joint element simulation, particularly for withstanding the
severe effects of earthquakes. By considering joint inelastic deformations, the
proposed method contributes to the advancement of performance-based design
and assessment processes. Complex models with sophisticated definitions often
fail to provide generalized solutions due to the need for extensive fine-tuning
and high computational costs. However, with instance specific calibration, the
beamcolumnjoint element in OpenSees, combined with the pinching4 material
definition, is explicitly proven to lead to realistic inelastic deformations in concrete
(shear), reinforcement, and bar-slip mechanisms [|16, 65, |75, 79, 213]]. The use of
explicit elements for joints has been recognized as a valuable strategy for enhancing
predictions regarding the failure mode and characteristic behavior of reinforced
concrete frames. By explicitly considering joint behavior, a more comprehensive
evaluation of the structural response can be achieved [9, 10, 214]].

The thesis focuses on developing and evaluating a calibration approach that is
supported by a larger domain of model parameters that can be covered solely by
experimental investigations. The Figure illustrates the research concept. As it
is discussed in detail in Section |2} it is essential to emphasize that the accuracy of
this representation heavily relies on the proper definition of the pinching4 model
parameters. The material model requires two sets of model parameters: the first
is the definition of joint shear strain and shear stress envelope (envelopeParams),
and the second is the calibration parameters controlling the deterioration equations
(deteriorationParams). In Chapter [5/ and Chapter {4, two distinct prediction models
on envelopeParams are proposed based on advanced finite element techniques and
artificial neural networks, respectively. For accurate calibration of deteriorationParams

for a given reinforced concrete joint sub-assemblage, another prediction model
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Figure 3.1 General organization diagram of the present research

which utilizes multi-objective optimization and artificial neural network techniques

is introduced in Chapter [6]

The MATLAB implementation of the simulation framework used in this investigation
is designed to be object-oriented, meaning that it uses objects to represent different
components of the simulation model. This approach allows for greater flexibility
and modularity in the code, making it easier to modify and extend as needed. A
brief introduction of the class structure and workflow of the simulation framework
is introduced in this chapter. Also, the beamcolumjoint element and pinching4
material formulations and the theoretical foundations on which they are based will

be explained in addition to the details given in Section [2.3.1

3.2 The Open System for Earthquake Engineering Simulation
(OpenSees)

OpenSees, or Open System for Earthquake Engineering Simulation, is an open-source
software framework that specializes in simulating the behavior of structural and
geotechnical systems under seismic loading, developed by the Pacific Earthquake
Engineering Research Center (PEER) at the University of California, Berkeley.
OpenSees provides researchers and engineers with a powerful and flexible tool for

advancing the field of earthquake engineering through the development of innovative
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simulation models and techniques. The software is designed with a modular
architecture, allowing users to build complex, large-scale models using a combination

of pre-built and user-defined elements, materials, and solution algorithms.

One of the significant capabilities of OpenSees is its ability to simulate reinforced
concrete (RC) structures and joints. The software offers a wide array of element types
and material models specifically tailored for RC components. These elements and
models can accurately capture the non-linear behavior of concrete and reinforcing
steel, such as cracking, crushing, and yielding. Additionally, OpenSees can handle the
complex interaction between the reinforcement and the surrounding concrete, which

is crucial for understanding the behavior of joints under various loading conditions.

In the context of reinforced concrete joint simulation, OpenSees enables researchers
and engineers to study the performance of beam-column joints, slab-column joints,
and other types of connections commonly found in RC structures. The software
can account for various joint configurations and reinforcement detailing practices,
making it possible to evaluate the influence of different design choices on the
overall performance of the joint. Furthermore, OpenSees can simulate the impact
of confinement, shear transfer mechanisms, and bond-slip effects on joint behavior,

which are essential factors to consider in seismic design.

In structural engineering problems with any level of plasticity involved, consideration
of the assumption on the dissipation of plastic strains is quite important in terms
of accuracy and computational cost. Distributed plasticity models, also known as
continuous or fiber-based plasticity models, consider the plastic behavior distributed
along the entire length of the element. These models account for the gradual spread
of plasticity and provide a detailed representation of the strain distribution across
the cross section and along the length of the member. They typically involve the
integration of the stress-strain response of many individual fibers within a cross-section
to accurately capture the overall behavior. This method can provide a more accurate
and realistic representation of the structural response, but it comes with higher
computational cost due to the increased complexity and number of computations
involved [215]. Lumped plasticity models, or concentrated plasticity models, assume
that plastic deformation occurs only at discrete points within the structure, usually at
the ends of the elements. In these models, the interior of the member is assumed to
remain elastic, and all the inelastic behavior is concentrated into these plastic hinge
regions. These models are simpler and more computationally efficient than distributed
plasticity models, making them suitable for large scale problems or for preliminary
design studies where a detailed representation of the strain distribution is not required.

However, they might not be able to capture the detailed strain distribution as
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accurately as the distributed plasticity models [216]]. The choice between lumped
and distributed plasticity models is a trade-off between computational efficiency and
the level of detail in the representation of the strain distribution. The choice of the
appropriate model will depend on the specific requirements of the analysis and the
characteristics of the problem. In the present study, beams and columns framing to

the joint element are modelled with distributed plasticity approach.

OpenSees is also widely acknowledged for its impressive assortment of capabilities
regarding material and element formulations. This software platform, with its diverse
methodologies for approximating plastic deformations, has found extensive use in
academic literature for simulating joint responses under cyclical effects. The versatility
and applicability of OpenSees in a variety of research contexts is demonstrated by
its extensive use in exploring the complexities of material behavior under different
loading conditions.

In this section, a comprehensive discussion is conducted on the general assumptions
and formulations that are essential for the finite element analysis of reinforced
concrete joints, with a focus on the application of super-elements. The objective is to
illuminate the nuances of selecting and using appropriate elements within the broader
context of OpenSees simulations. The impact that various assumptions and element
formulations can have on the accuracy and realism of simulated joint responses is of

particular interest.

3.2.1 Material definition

One of the standout features of OpenSees is its extensive material modeling
capabilities, which cover a broad range of material behaviors, allowing for
various simulation cases. n Among many material models, a wide range of
constitutive formulations are given in uniaxialMaterial class where the stress-strain
(i.e. force-displacement) relationship is represented by a uni-axial implementation.
Discussion in this subsection will be introducing material models commonly used in

the simulation of reinforced concrete elements including beam-to-column joints.

Beyond the implementations provided for simple uniaxial constitutive relations
provided for linear elastic, elastic and perfectly plastic and elastic with no tension
material (e.g. Elastic, ElasticPP, ENT respectively), a large variety of material
formulations for complex non-linear constitutive stress strain relationship of concrete
and steel materials is implemented (or contributed by various researchers) in
OpenSees. For instance, Concrete01 material uses formulation provided by Scott et al.

[33] model with degraded linear unloading-reloading stiffness based on the findings
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Figure 3.2 Comparison of the response of the concrete material classes implemented in
Opensees for different loading histories

of Karsan and Jirsa [217]] while assuming zero tensile strength. Concrete02 provides a
similar formulation but adding tension strength to the material with capability of linear
tension softening while Concrete03 uses a control parameter 3 that enables non-linear
definition for tension softening. An advanced implementation of concrete material
under cyclic loads is provided with Concrete04 material class using the compressive
strain stress path proposed by Popovics [218].

Similar to the concrete, various material classes for steel (or reinforcement steel) with
varying degrees of sophistication are provided. SteelO1 is implemented based on the
bi-linear force deformation relation with kinematic hardening. The Steel02 material
class is similarly takes into account a bilinear deformation curve with smoother
transition. The theoretical formulation used in formulation introduced by Menegotto
and Pinto [219] and later improved by Filippou et al. [220]. As the simulation
results of uniaxial spring units with Steel01 and Steel02 material models shown in
Figure [3.3| present, there is very slight difference between the responses produced by
two material classes, mainly on the smoothing of the transition between elastic and
elastoplastic regime [[221]]. However, it is worth noting that smooth transition between
two regimes might help to solve convergence issues in finite element simulations of
complex numerical models.

Figure [3.2] and Figure show the comparison of the concrete and steel material
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Figure 3.3 Comparison of the response of the steel material classes implemented in
Opensees for different loading histories

classes strain stress response under a series of displacement loading histories,
respectively. In the first run, strain is applied in one direction, specifically tension,
unveiling how the material deforms and responds to unidirectional tensile stress.
This contrasts to the second run, where strain is applied solely in compression,
providing insight into the material’s behavior under the opposing stress. The third
and fourth runs introduce cycling of tension and compression at a low maximum-strain
level. Here, the distinction lies in the starting point of the cycle, with the third run
beginning with tension and the fourth with compression. These runs grant us the
opportunity to explore the material’s hysteresis behavior and understand its capacity
to regain its original shape after deformation. Run five and six escalate the previous
procedure to a higher maximum strain level, testing the material’s resilience under
larger deformations. Again, the difference lies in the starting point, tension for the
fifth run and compression for the sixth. Runs seven through ten introduce a more
complex scenario. Here, numerous cycles with increasing amplitude are applied.
In the seventh run, these cycles go up to a high maximume-strain level but remain
solely in tension. This pattern is expected to repeat in the eighth run, assuming
it might be intended to be applied in compression. The last two runs add another
level of complexity by applying these increasing amplitude cycles in both tension and
compression. Run nine goes up to a low maximum strain level, while run ten goes up to
a high maximum-strain level. These latter runs particularly shed light on the material’s

fatigue behavior under both tensile and compressive loads. Through these diverse
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oading patterns, a comprehensive overview o e material’s mechanical behavior
load tt , h f th terial’ h 1 beh

under various conditions is obtained.

3.2.1.1 pinching4 class

Beyond the representation of the relation between strain and stress for the various
materials, uni-axial material class in OpenSees is also commonly used to define the
force-displacement of macro-models (e.g. super-elements) which are intended to
simulate the response of the structural elements but requiring model parameters do

not correspond to direct measurable physical quantities.

In Section a brief discussion is made on the pinching4 material class,
its assumptions and formulation since it is commonly used in a wide range of
macro-models for reinforced concrete elements including joints. Among other
material classes implemented in the software, pinching4 is found particularly suitable
for modeling the hysteretic response of reinforced concrete joints or masonry
structures where significant pinching of the hysteresis loops is typically observed due
to crack opening and closing, shear distortion and bond deterioration [[16, [75]].

In this study, the focus has been centered on the simulation of reinforced concrete
joints, a critical component in structures that often exhibits complex behavior under
cyclic loading. To capture this nuanced response, the pinching4 material model in
OpenSees was chosen, largely due to its inherent ability to replicate the characteristic
‘pinching’ phenomenon frequently observed in such joints. This phenomenon,
typically resulting from bond deterioration or other related mechanisms, manifests
as a narrowed or pinched shape of the hysteresis loops in the stress-strain behavior of

the material.

The pinching4 model through its detailed mathematical formulation presented in
Mazzoni et al. [[222]], allows for the accurate representation of this behavior, thereby
providing a reliable tool for predicting the response of reinforced concrete joints
under various loading conditions. It should be noted that, while other material
models exist within the literature that are capable of capturing complex hysteretic
behavior, the pinching4 model was selected specifically for its suitability for joint
simulations. As such, a comparative evaluation of these alternative material models

was not undertaken as part of this study.

pinching4 material is introduced following its definition in Mitra [65] since it is
used within the scope of the present study due to its proven reliability and stronger

connection of its parameters to the observable measures of a joint specimen.
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Figure 3.4 Backbone (red) and hysteretic response of pinching4 material [65]

The four material states in Figure define the material model’s behavior under
diverse loading conditions. States I and II, user-defined input parameters, represent
the loading response envelope and can be adjusted to simulate hysteretic strength
degradation. The load-paths for states III and IV are redefined with each deformation
reversal. Additional load-deformation points establish state III and state IV load paths:
one reached during significant unloading and another where considerable reloading
occurs. For states III and IV, the load during unloading is defined as a fraction of the
absolute maximum attainable. This sets the end of the substantial unload phase. The
load-deformation point for substantial reloading in states IIl and IV is determined as a
fraction of the absolute maximum historic deformation demand and a fraction of the

load developed at the absolute maximum deformation demand.

Deformation history impact on response is determined by three damage rules that
govern degradation in unloading stiffness, deterioration in strength achieved at
previously unattained deformation demands, and deterioration in strength near
maximum and minimum deformation demands. Each rule utilizes a damage index, 6
defined with Equations (3.1} and

& = (a1 (dyax)® + ax(K)™) < 8y (3.1)
n d d.
dpe = Max ( = ﬂ) (3.2)
Dmax Dmin

In equation a are parameters tailored to fit experimental data, &,;,, represents
the maximum possible damage index value which is used for numerical stability, d,,,,,

and d,,;,, denote the maximum and minimum historic deformation demands, D,,,, and

min
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Dmin
states I and II, subscript i pertains to the current load step, and k measures energy

dissipation under cyclic loading, as outlined in Equations [3.3] and Accumulated
hysteretic energy is given by|[3.5]

indicate the positive and negative deformations at which strength loss starts in

E.
= 3.3
8 Emonotonic ( )
du
= 3.4
=2 G4
El:f dE (3.5)
history

E, onotonic €quals the energy required to achieve D, ., under monotonic loading, du
corresponds to the displacement in a load-deformation history, and u,,,, refers to the

deformation achieved up to the current load step i.

Stiffness and strength degradation are defined in Equations and k
represents the unloading stiffness, d,,,, is the unloading stiffness damage index, f,,,,
is the maximum strength of the response envelope, 5{ is the strength damage index,
d,.., is the maximum historic deformation demand and reloading target, 51?1 is the
reloading stiffness damage index, and subscripts i and O refer to load step i and the

initial load step, respectively.

ki =ko(1—6%) (3.6)
fmax,i = max,O(1 - 5{) (37)
dmax,i = dmax,O(l + 6?) (38)

In OpenSees, pinching4 model is implemented as a material class that its constructor
requires inputs to utilize the formulation described by Equations [3.1] - The first
set of input parameters (referred to as envelopeParams in this study) control the basic

strain-stress behavior of the material. Brief description of the first set is given below.
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stress1p, stress2p, stress1n, stress2n: These parameters represent the stress levels
at specific points on the stress-strain curve. stress1p and stress2p refer to positive
(tensile) stress levels, and stress1n and stress2n refer to negative (compressive)

stress levels.

strainlp, strain2p, strainln, strain2n: These parameters represent the strain
levels at specific points on the stress-strain curve. strainlp and strain2p refer
to positive (tensile) strain levels, and strainln and strain2n refer to negative

(compressive) strain levels.

The second set of parameters are for controlling the deterioration (referred to as de-

teriorationParams in this study) features of the material

rDispB rForceB uForceP rDispN, rForceN, uForceN: These parameters represent
control points on the hysteresis loop, which describe the material’s behavior
under cyclic loading. The "P" parameters are for the positive (tensile) direction,

and the "N" parameters are for the negative (compressive) direction.

gammaK1, gammaK2, gammaK3, gammaK4, gammaKLimit: These parameters
control the rate of deterioration in stiffness under cyclic loading. Different values

of gammakK correspond to different stages of deterioration.

gammaD1, gammaD2, gammaD3, gammaD4, gammaDLimit: These parameters
control the rate of deterioration in energy dissipation capacity under cyclic
loading. Different values of gammaD correspond to different stages of

deterioration.

gammaF1, gammaF2, gammaF3, gammaF4, gammaFLimit: These parameters
control the rate of deterioration in strength under cyclic loading. Different

values of gammaF correspond to different stages of deterioration.

gammaE: This parameter controls the final asymptotic value of cyclic

deterioration.

Existing literature suggests that researchers have identified potential values for the

parameters of the ’pinching4’ material model (see Section [2.3.2)). These parameters

are grouped into two sets, serving different purposes in the modeling process. The

first set forms the definition of the joint panel deformation, a crucial component for a

realistic simulation of the overall response envelope and inelastic joint deformations.

The second set corresponds to parameters recommended for calibration based on
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actual experimental data, although analytical approximations with varying level of
accuracy for the first set are also available. The ultimate goal of this study, as stated in
the Section|1.2} is to establish prediction models for pinching4 material usage, thereby

removing the need for experimental investigation for any given joint sub-assemblage.

3.2.2 FElement Formulations

The Force Method and the Displacement Method are the two primary approaches
to structural analysis, as well as finite element analysis. Both are fundamentally
about solving the system of equations that comes from equilibrium, compatibility, and
constitutive relations. However, they differ in the primary unknowns they consider

and the procedures they use to solve the system.

The Force (flexibility) Method takes forces (or moments, in the case of rotational
degrees of freedom) as the primary unknowns. In this method, one assembles
a flexibility matrix and then solves the system of equations to obtain the forces.
Displacements are then computed as secondary results from these forces. This method
can be more computationally expensive than the displacement method, especially for
large structures, because it requires the inversion of the flexibility matrix. However,
it can be more accurate for certain types of problems, such as those involving large

displacements or nonlinear material behavior.

In the Displacement Method (also known as the stiffness method), displacements are
the primary unknowns. The procedure involves assembling a stiffness matrix (which
characterizes how resistant the structure is to deformation) and solving a system
of equations to obtain the displacements. Forces are then computed as secondary
results from the displacements. This method is most often used in practice, and it is

particularly well-suited to computer-based solutions due to its matrix structure.

In the domain of finite element structural analysis, a variety of structures are analyzed,
including trusses, beams, plates, shells, or combinations thereof. The stiffness method
is a common approach in this field, which involves discretizing the displacement field
of the structure and interpolating it in terms of n4.; generalized displacement degrees
of freedom, symbolized by q. Under the framework of the stiffness method, the

displacement field u(x) is formulated as

u(x) = N(x)q (3.9)

The matrix N is defined as:
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Nu(x) 0 0
N = 0 Nw(x) 0 (3.10)
0 0 Nv(x)

Itis a 3 x ng,, matrix which encompasses the interpolation function vectors Nu, Nw
and Nv for displacement fields u, w and v respectively. For the deformation field d(x),

the following expression holds:

d(x)=B(x)q (3.11)

Here, the strain-displacement transformation matrix B houses first and second
derivatives of displacement shape functions, respecting kinematic relationships. On
incorporating the differential form Ad of the deformation field equation into the
constitutive relation AD = kAd, the ensuing relation is:

AD(x) = k(x)Ad(x) = k(x)B(x)Aq (3.12)

This gives the force field increment AD(x). By invoking the principle of virtual
displacement, we obtain the equilibrium condition:

L
Q= f BT (x)D(x)dx (3.13)
0

This leads to its linearized form:

k5q =R (3.14)

It signifies a force-displacement relation where Q stands for the element resisting

forces. The element stiffness matrix is given by:

_9Q_

K
aq

J BT (x)k(x)B(x)dx (3.15)

In this equation, Aq and R are vectors signifying displacement increments and residual

forces respectively. The parameter L denotes the element length.
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(a) (b)

Figure 3.5 Joint model proposed by (a) Lowes and Altoontash [[16] and (b) Altoontash [75]]

3.2.2.1 Lowes - Altoontash Model

Lowes and Altoontash [|16]] proposed a comprehensive methodology to model the
response of reinforced concrete beam—column joints under two-dimensional structural
analyses. The strategy was to introduce a four-node super-element characterized
by twelve degrees of freedom. The super-element encapsulated three essential
components: a shear-panel component, bar-slip springs, and interface-shear springs,
each contributing to the overall behavior of the joint in distinct manners. An
illustration of the model is given in Figure (a).

The shear-panel component primarily modeled the loss of strength and stiffness, which
is attributed to the failure of the joint core. Bar-slip springs, which comprised eight
in total, emulated the loss of stiffness and strength induced by damage within the
anchorage zone. Lastly, the model also incorporated four interface-shear springs.
These were particularly crucial in capturing the diminished capacity for shear transfer

at the joint perimeter, a phenomenon that arises due to crack development.

The Lowes and Altoontash [[16] employed a one-dimensional load-deformation
response model to predict the behavior of these constituent components within the
joint element [16]]. This model manifested through a multi-linear response envelope,
a tri-linear unload-reload path, and three damage rules, each of which played a pivotal
role in governing the evolution of the response path. The specific unload-reload path
adhered to the definition of the pinching4 material, a concept extensively discussed in
Section

To implement this general load-deformation response model successfully, specific
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calibration procedures were deemed necessary for each component of the element. In
cases where the joints possess moderate to high volumes of transverse reinforcement,
the researchers advocate the utilization of the modified compression field theory
(MCFT) [[77]. This theory is instrumental in delineating the response of the shear
panel and supplying necessary parameters to simulate cyclic response effectively. The
bond-slip spring response was defined based on the assumption of a constant or
piece-wise constant bond-stress distribution within the joint. Various bond strength
values, contingent on different bond-zone conditions, were provided alongside
parameters that aid in simulating response under cyclic loading conditions. Lastly, the
interface-shear springs were assumed to possess an elastic behavior, largely attributed
to the dearth of experimental data available to calibrate these components.

Altoontash [|75] presents a refinement to the Lowes and Altoontash [|16] Joint Model,
a schematic representation of which is depicted in Figure [3.5](b). This streamlined
version features four zero-length rotational springs situated at the interfaces of the
beam-column. The purpose of these springs is to replicate the end-rotations of
the member arising from bond-slip phenomena. In addition to this, a panel zone
rotational spring is incorporated to mimic the shear deformation that occurs within
the joint. The constitutive relation for the panel zone remains the same to the
model developed by Lowes and Altoontash [[16]. This similarity ensures that the
calculation of the constitutive parameters, derived from structural properties and
experimental responses, remains consistent and comparable. This simplified model,
therefore, provides a more streamlined and efficient approach, while maintaining the

key features and accuracy of the original formulation.

3.2.2.2 Mitra - Lowes Model

Mitra and Lowes [213]] proposed several key modifications to the joint model,
initially presented by Lowes and Altoontash [[16]], aiming to enhance the accuracy
of response predictions across a wide range of design parameters. These amendments
included a reconfiguration of the joint element where bar-slip springs are now located
at the centroid of the beam and column flexural tension and compression zones,
an advancement that augments the simulation of bar-slip spring force demands.
Simultaneously, a novel model was proposed for calibrating the joint-panel component
which, diverging from the uniform shear stress field in the previous model, adopts
a diagonal compression strut mechanism for internal load transfer. This effectively
simulates strength losses due to cyclic loading and anchorage-zone damage. Lastly, a
new bar-slip response model was proposed, which combines hysteretic strength-loss

with a model that evades negative stiffness until the reinforcing steel reaches its
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Figure 3.6 External and internal (a) nodal displacements and component deformations (b)
nodal forces and component forces [[79]]

ultimate strength. This approach mitigates numerical instability issues and also refines
the unload-reload model to provide an accurate simulation of frictional resistance for

bars under tension and compression.

The joint element formulation, as proposed by Lowes and Altoontash [|16], was
refined to enhance the simulation of the response in the anchorage zone. This
was accomplished by transitioning the position of the bar-slip springs from the joint
element’s periphery to the centroid of the compression and tension zones in the
beam and column flexural. Figure a illustrates the component deformations A;,
internal nodal displacements v;, and external nodal displacements u;. It is essential
to note that while the external nodes are shared between the joint element and the
surrounding beam-column elements, the internal nodes are exclusive to the joint
element. Standard sign conventions apply to the deformations of the bar-slip spring
and shear-panel. For the interface-shear springs, a positive shear deformation is
associated with positive external and null internal displacement. The component

deformations can be expressed in Equation (3.16

h, w, h, W are as defined in Figure (a). The bar-slip spring separation distance,
h and W, incorporated into Equation provides an improved depiction of
the bar-slip response. Figure b presents the component forces f;, internal nodal
resultants ®;, and external nodal resultants F;. The component forces are linked
to the component deformations via the one-dimensional load-deformation response
relationships. Imposing equilibrium at the internal and external degrees of freedom
allows the computation of the external nodal resultants and internal nodal resultants

from component forces in Equation [3.17]
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(3.17)

The uniqueness of the internal element nodes to the joint element requires that a valid

element state is realized when the internal nodal resultants are null. This condition

can be employed to compute the four internal nodal displacements, v;, given the

external nodal displacements, u;, which are computed as part of the global solution

algorithm. Further details on the formulation can be found in Mitra [[65].
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3.3 Implementation of the Analysis Framework

Within the scope of this study, an object-oriented framework is implemented in
MATLAB to effectively utilize the capabilities provided by the beamcolumnjoint
element and pinching4 material formulations provided in OpenSees. The framework
is designed to facilitate the manipulation of stored data and consists of a set of class
structures that hold the necessary information of the relevant objects and method

functions.

The central component of the framework is the Joint class, which serves as the main
entry point and is responsible for generating object instances. Each object instance
represents a specific joint specimen from the experimental database. These joint

objects have several capabilities:

* Retrieve and store measured displacement and force data from .csv file,

* Retrieve and parameter values associated to the physical features of the joint

sub-assemblage,

* Generate and store beam and column objects (instances of Frame class)

associated with the stored physical features,

* Generate and store beamcolumnjoint and pinching4material objects associated

with the physical features,

* Generate a tcl script file that creates beam and column sections, beam and
column elements framing to the joint, a joint element, boundary conditions,

displacement loading history and analysis options.

Once the tcl scripts are generated for all the joint specimens, the framework proceeds
with simulating the response of each instance. During the analyses, multiple instances
may be created for each experimental specimen, particularly when conducting a
parametric search focused on the pinching4 model parameters. After completing
the analyses, the simulated response for each instance is stored within the Joint
object. This allows for a detailed comparison between the experimental and simulated
responses, which is essential for evaluating the accuracy and performance of the
simulation. The criteria for evaluating the difference between experimental and
simulated responses are described in Chapter|[6], and the accuracy of the simulation is

assessed based on these criteria.

A diagram which illustrates the simplified object interaction of between the relevant

classes are presented in Figure The most basic unit in the framework is a
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Pinching4 Material

RC Section F---> Frame F---> Joint

Figure 3.7 Simplified class diagram of the beamColumnJoint-pinching4 analysis framework

RCSection object which consists the information related to concrete material and
reinforcement configuration. Any instance of RCSection class can be associated to
an instance of a Frame class. For example, using RCSection constructor function, two
different rectangular section (with varying geometrical dimensions and reinforcement
configurations) can be created and related information can be inherited to an instance
of Frame class, which corresponds to an object represents a beam or column. Methods
defined in RCSection can compute confined strain-stress curve and create a rectangular
section which consists of rectangular Patch layers for concrete material and Straight
fibers for longitudinal reinforcement, and return a string variable that can be executed

in OpenSees tcl script to create a Fiber section.

A Frame object has the inherited properties of an RCSection as well as the spatial
definition of the member. It has a method to generate a OpenSees tcl command to
create nonlinearBeamColumn elements. Three or four frame objects can be constructed
as the subclass of a Joint object and one or two of them should be defined as beam
to construct a Joint object. Additionally, material properties and related methods
are inherited by a subclass named Pinching4Material which is capable of storing
model parameters of a particular pinching4 material definition and return OpenSees

command as string to generate related material.

In accordance with Section the primary approach relies on the calibration
of the pinching4 material. In relation to the experiments outlined in Table a
collection of Joint entities is created, each associated with distinct pinching4 objects
possessing different model parameters while the properties of the corresponding
Frame objects remain constant throughout this process. Matlab script which defines
the Pinching4Material class including its constructor function and the method function

that returns OpenSees command is given in Listing

Overall, the framework provides a systematic approach to analyze and assess the
behavior of beam-column joints using the beamcolumnjoint element and pinching4
material in OpenSees. By leveraging the object-oriented nature of the framework and
the capabilities of the associated classes, it enables efficient data management, model

generation, and simulation for multiple joint specimens in the experimental database.
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classdef Pinching4Material < handle

properties
stresslp; stress2p; stressln; stress2n;
strainlp; strain2p; strainln; strain2n;
rDispP; rForceP; uForceP; rDispN; rForceN; uForceN;
gammakKl; gammaK2; gammaK3; gammaK4; gammaKLimit;
gammaD1; gammaD2; gammaD3; gammaD4; gammaDLimit;
gammaF1l; gammaF2; gammaF3; gammaF4; gammaFLimit; gammaE;
materialld

end

methods

% Constructor
function obj = Pinching4Material (materialld, envelopeParams, deteriorationParams)
obj.materialld = materialld;
if length(envelopeParams) ~= 8
error ('envelopeParams vector should contain 8 parameters')
end
if length(deteriorationParams) ~= 22
error ('deteriorationParams vector should contain 22 parameters')
end
[obj.stresslp, obj.stress2p, obj.stressln, obj.stress2n,
obj.strainlp, obj.strain2p, obj.strainln, obj.strain2n] = envelopeParams{:};
[obj.rDispP, obj.rForceP, obj.uForceP, obj.rDispN, obj.rForceN, obj.uForceN,
obj.gammaKl, obj.gammaK2, obj.gammaK3, obj.gammaK4, obj.gammaKLimit,
obj.gammaD1, obj.gammaD2, obj.gammaD3, obj.gammaD4, obj.gammaDLimit,
obj.gammaF1, obj.gammaF2, obj.gammaF3, obj.gammaF4, obj.gammaFLimit, obj.gammaE ]
= deteriorationParams {:};
end

% Method to generate OpenSees command
function cmdStr = getOpenSeesCommand (obj)
cmdStr = sprintf('uniaxialMaterial Pinching4 %d %f %f %f %f %f %f %f %f %f %f %f
%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f', ..
obj.materialld , obj.stresslp, obj.stress2p, obj.stressln, obj.stress2n, obj.
strainlp, obj.strain2p, obj.strainln, obj.strain2n,
obj.rDispP, obj.rForceP, obj.uForceP, obj.rDispN, obj.rForceN, obj.uForceN,
obj.gammaK1l, obj.gammaK2, obj.gammaK3, obj.gammaK4, obj.gammaKLimit,
obj.gammaD1, obj.gammaD2, obj.gammaD3, obj.gammaD4, obj.gammaDLimit,
obj.gammaF1, obj.gammaF2, obj.gammaF3, obj.gammaF4, obj.gammaFLimit, obj.gammaE)
end
end
end

Figure 3.8 Class Definition for Pinching4Material Class
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4

ARTIFICIAL NEURAL NETWORKS IN JOINT MODEL
PARAMETER IDENTIFICATION

4.1 Overview

In this study, a predictive model for the shear strain-shear stress response in joint
cores using artificial neural network methods was developed. To achieve this, an
experimental database was collected from the available literature based on a set of
selection criteria, including material type, loading conditions, and joint geometry. The
most influential parameters on the shear strain-stress response were identified using
correlation matrices, which were then used as input parameters for the neural network
models. Several neural network models were trained using various architectures and
training algorithms, and their performance was evaluated using a range of metrics,
including mean squared error and coefficient of determination. The best-performing
neural network model was selected based on its ability to accurately predict the shear
strain-stress response for new input parameters. This model was validated using a
hold-out dataset and compared to the available prediction models in the literature,

demonstrating superior performance.

4.2 Problem Definition and Experimental Database

As Chapter (3| discusses, definition of reinforced concrete joint deformation in
any particular numerical model requires a priori information of shear strain-stress
information of the joint core. A comprehensive review on the available prediction
models including analytical, statistical and numerical is presented in Chapter
Review on the available literature has shown that analytical approaches have
limitations to define a generalized behaviour taking all of the relevant parameters
into account. Despite the fact all of these models led to satisfactory results within
their calibration databases, their applicability to an arbitrary joint configuration is
disputable [223]]. Empirical models are typically dependent on the dataset and the
used statistical method; thus, generalization is remained as an issue so far. Empirical
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models have other issues associated to their scope and reliability [224]. In this
study, a generalized solution for this problem through machine learning techniques
is sought. Ability of this methodology to provide a global and reliable solution is also
investigated.

The problem defined in the Chapter [3]is processed as a meta-modelling problem. The
major objective is assigned as building a collection of meta-models which predict shear
strain and stress values using characteristic physical properties of an arbitrary joint
sub-assemblage. Training and validation data for the prediction model is provided

from the experimental studies available in the literature.

In collection of experimental data, 120 reinforced concrete joint sub-assemblages
tested under monotonic or cyclic conditions carried out by Joh et al. [34]], Ehsani
and Wight [[48], Endoh et al. [|50], Fujii and Morita [|51], Kaku and Asakusa [52],
Kaku and Asakusa [53]], Ehsani and Alameddine [|54/], Noguchi and Kashiwazaki [|55]],
Oka and Shiohara [[56]], Guimaraes et al. [57]], Walker [[60], Shin and LaFave [74],
Leon [|97]], Megget [225]], Joh et al. [[226]], Kitayama et al. [227]], Kurose et al. [228]],
Meinheit and Jirsa [229], Kitayama et al. [230]], Tsubosaki et al. [231], Raffaelle and
Wight [[232], Goto and Joh [233]], Ishida et al. [|234]], Yoshino et al. [235|], Suzuki and
al. [236]], Goto and Joh [237]], Teng and Zhou [238]], Kusuhara et al. [239]], Morita et
al. [[240], Watanabe et al. [241], Noguchi and Kurusu [242]], and Joh et al. [243-245]]
are gathered through following criteria:

* The sub-assemblage is tested under quasi-static loading conditions,
* No retrofitting material (e.g. FRP) is introduced to the sub-assemblage,

* The load is applied to the beam free-end while the column ends are simply

supported both for interior and exterior joint sub-assemblages,
» Joint shear stress with respect to the strain is reported,
* The sub-assemblage is loaded only in-plane,

* Reinforcement detailing is not changed between framing beams for exterior

joints and framing columns for both exterior and interior joints.

» Tested sub-assemblage experienced joint shear failure (J) or joint shear failure

in conjunction with beam yielding (BJ).

The basic statistical information about the experimental database is presented in Table
The detailed information of the collected data is provided in Table [A]in Section
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[Al It is worth noting that the provided dataset includes different experimental sources

introduced in Section [2] considering the defined selection criteria listed above.

Table 4.1 Statistical description of the continuous variables

Var. Min Max Mean SD Histogram | Var. Min Max Mean SD Histogram
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The basic statistical information about the physical parameters included in the
experimental database is presented in Table f. is the compressive strength of the
concrete material, f,; is the yielding strength of the joint transverse reinforcement,
fy» is the yielding strength of the beam longitudinal reinforcement, f, . is the yielding
strength of the column longitudinal reinforcement, p; is the volumetric reinforcement
ratio in joint core, p, is the longitudinal reinforcement ratio of the beam, p, is the
longitudinal reinforcement ratio of the column, b; is effective joint width [37]], e is the
eccentricity, n is the ratio between the applied axial force and capacity, b, and h;, are
the beam width and depth, b. and h, are the column width and depth in respective
order.

Figure presents visual representations of the correlation values between the
introduced parameters and the observed shear strength (a) as well as the shear strain
(b) recorded at the point of shear strength exceedance in an effort to simplify the
dataset for the prediction model and improve a preliminary understanding of the

parameters affecting the targeted values. The results of the correlation analysis
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indicate that the compressive strength of the concrete material, denoted as f,, has a
significant impact on joint strength. Additionally, the axial load ratio n, joint transverse
reinforcement ratio p;, beam transverse reinforcement ratio p,, and yield strength of
the beam longitudinal reinforcement f,, exhibit a moderate level of influence on joint
strength while the remaining parameters have a relatively insignificant impact on the
ultimate stress attained in the core of the joint. In addition to the stress response,
the shear strain values corresponding to the point of ultimate stress measurement
are examined. Findings indicate that it can be inferred that the joint shear strain
response is moderately influenced by several parameters, including f,;, b;, b,, and
h,, in addition to the other parameters that were identified as impacting the stress
response. It is noteworthy that the influence of f. on the shear strain is comparatively
lower than its effect on the stress.

It is important to acknowledge that the distribution of variables in the sampling
space, as depicted in Table is non-uniform. Therefore, it is possible that a
correlation analysis that includes a more comprehensive representation of all relevant
parameters may produce slightly different outcomes. However, it is essential to bear in
consideration that the correlation analysis primarily provides a preliminary assessment
of the most influential input variables for the objective of the proposed predictive

model.

The methodology employed involves the identification of three crucial points on the
curve that represents the stress-strain relationship within the joint core. Point A
represents the initial significant change in the slope (stiffness) of the curve. The
aforementioned alteration is indicating of the initiation of shear crack propagation
within the joint’s core. At this point, the strain and stress values are denoted as v,
and 1, correspondingly. In this study, the process of identifying Point A is aided by the

determination of the peak value of the first derivative of the curve.

Point B is identified as the location where the greatest stress response is observed
throughout the recorded history. The values of strain and stress at this particular
location are denoted as y; and 75, respectively. It is noteworthy that the symbol 74
denotes the shear capacity. The reliability of the proposed model can be evaluated
by comparing its 7 predictions with those of previous studies, which can provide

valuable insights.

The final point of interest is Point C, which is characterized by the highest observed
deformation level. The values of strain and stress at this particular point have been
designated as y. and 7, respectively. A significant obstacle in determining this

juncture pertains to its correlation with the intrinsic mechanical characteristics of the
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Figure 4.1 Visualization of correlation matrix between parameters presented in Table
and observed (a) joint shear strength i and (b) shear strain when the joint shear strength is
achieved

88



Experimental
e PointA

»
A\
B
|
]

e PointB
Point C

[N]
=]

3
o

=)

Joint Shear Stress (MPa)
Joint Shear Stress (MPa)

—— Experimental

® PointA
2+ e PointB
Point C

0 0.005 0.01 0.015 0.02 0.025 0 0.01 062 063 0.04
Joint Deformation (rad) Joint Deformation (rad)

Figure 4.2 Points A, B and C for the experimental setup tested by (a) Meinheit and Jirsa
[229]] and overall database

articulation. In some cases, the capacity to quantify deformation may be restricted
by experimental constraints and measurement instrumentation, which may result in
the ultimate deformation value being a reflection of these limitations rather than
the maximum observable deformation. Despite its imprecise representation of the
ultimate deformation point, the determination of post-peak stiffness via Point C can
provide sufficient information for establishing constitutional relationships in joint
finite element simulations. The primary objective of this particular methodology is
to ascertain a correlation between strain and stress by means of the anticipated data

points.

In Figure critical points are illustrated on the results of the experiment carried out
by Meinheit and Jirsa [|42] and the overall database.

4.3 Meta-Modelling

In this section, meta-modelling methodology for the relation between effective
physical parameters for a reinforced joint sub-assemblage and characteristic points
defining shear strain - stress curve are discussed through a test function for clarity
and introduced for the mentioned problem. Test function is used for visualization
of the results since the true mathematical expression for joint shear strain stress
characteristic as a function of the aforementioned input parameters is quite complex

and unknown for the particular case.

The main focus is on the detection of the most efficient neural network type,
architecture and training method for the related problem which is defined in the
previous section. For the sake of clarity and visualization, a complex test function
. _ N _ 2 .

is selected and expressed as f(x) = Zi exp(a x (x — b)*) where a and b are arbitrary

scalars (e.g. N =4, a = [5,—1,-3,—-1], b = [-3,—6,—8,—11]). Two different
neural network types are investigated: feed-forward neural network and generalized
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regression neural network. For each type, different internal parameters (e.g. number
of hidden layers and neurons for FFNN and sigma parameter for GRNN) are used.
For both neural network types random partition of database to training and validation
and k-fold cross validation techniques are used. Pseudo-codes for the main procedure

used to generate FFNNs and GRNNs during the approximation are given in Algorithm

[4.3]and [4.4]

In Figure the function approximation results from Feed forward Neural Networks
of different neural network architectures are displayed. Each figure corresponds to a
distinct partition of a 5-fold cross-validation test. The true function, the approximation
target is represented as a black solid line while the training samples are shown as
scattered red points. The approximated functions created by FFNNs with 1 to 5
hidden layers are also depicted as dashed lines of varying colors. The ability to
capture complex patterns in data is evaluated by comparing the approximations to
the true function. Over-fitting risk, which tends to increase with the complexity of the
model is managed by the cross-validation process. Through the Figures[4.5 (a)-(e), the
performance of each network architecture on training data and its generalization to
unseen data are assessed, guiding the selection of the optimal architecture for efficient

and accurate function approximation.
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Figure 4.5 Comparison of true function approximation using FFNNs with varying number of
hidden layers for (a) first, (b) second, (c) third, (d) fourth and (e) fifth data split in 5-fold
cross validation

The MSE values indicate the average squared difference between the network’s
predictions and the true function values. Lower MSE values indicate a better fit of
the model to the data. Therefore, the goal is to minimize the MSE for both the
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training and test data. From the given data, it can be observed that FFNNs with
more hidden layers generally achieve lower MSEs across different partitions. This
suggests these networks may be more capable of capturing the complexity of the
underlying function, leading to more accurate approximations. However, the MSEs
are not consistently minimized with increasing hidden layers. For example, the MSE
for the fourth partition significantly increases when moving from three to four hidden
layers. This could be due to over-fitting, where the model becomes too complex and
performs poorly on unseen data. The variance in MSE across different k-fold partitions
indicates the model’s performance variability with different splits of the data. This
emphasizes the importance of cross-validation in assessing the model’s robustness and

its ability to generalize to unseen data.

Table 4.2 Mean Squared Errors for FFNNs with varying architectures and k-fold partitions

K-Fold 1 H.L. 2 H.L. 3HL 4HL  S5HL

1 2.5256 1.8502 0.5620 1.5289 0.1937
1.7263 1.1737 5.4463 1.9134 0.6565
4.5832 1.1471 0.5023 2.9629 0.1449
3.3717  23.7516 1.6592 1.6682 0.1847
12.3821 5.6178 5.6920 2.0789 3.6076

g A WN

The same test function is approximated by several GRNNs built with varying o
parameter between 0.5 and 1.0. The analysis of mean squared error (MSE) results
(see comparing General Regression Neural Network and Feed-Forward Neural
Network reveals a marked performance difference between the two approaches. On
average, the MSE from GRNN is approximately an order of magnitude lower than
that from FFNN. This remarkable distinction indicates that GRNN is far superior in

prediction accuracy when compared to FFNN.

Table 4.3 Mean Squared Errors for GRNNs with varying spread parameter o and k-fold
partitions

KFold | c=05 0=06 ¢=07 0=08 0c=09 oc=1.0

1 3.2371 3.2014 3.0679 2.8124 2.4912 2.1805
0.2817 0.2806 0.2765 0.2689 0.2601  0.2530
0.1811 0.1811 0.1814 0.1817 0.1820 0.1812
3.1593 3.1677 3.2008 3.2736 3.3888 3.5416
0.0086 0.0088 0.0093 0.0106 0.0133 0.0178

aua b wN

The results provided in Table suggests an evaluation of MSE across varying spread
parameters for the GRNN for different runs of k-fold cross-validation (each row
representing a separate run). Observations from the data indicate an initial decrease in
MSE values as the spread parameter increases, reaching a minimum, and subsequently
increasing. This behavior is consistent with the expectation that there exists an
optimal spread parameter that minimizes the MSE, beyond which the model may start

over-fitting, thereby increasing the MSE. For instance, the first row representing one
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run of k-fold cross-validation shows MSE decreasing from 3.2371 to 2.1805 as the
spread parameter is increased. Similar trends are observed in subsequent runs as well.
The consistency of this trend across different runs suggests a robust behavior. It should
be noted that, while each k-fold partition is random and independent, the consistency
of trends across the different runs enhances the confidence in these observations.
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Figure 4.6 Comparison of true function approximation using GRNNs with varying o for (a)
first, (b) second, (c) third, (d) fourth and (e) fifth data split in 5-fold cross validation

The figures|4.6|provide a visual representation of the test function, the training sample
data points from each k-fold partition and the GRNN approximations with varying
sigma (o) parameters depicted by dashed lines. Each figure provides insight into
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the relationship between the true function the scattered training samples and the
GRNN approximations. The second and the fifth k-fold partitions stand out with their
performance. They seem to capture the underlying pattern of the true function more
accurately than the other approximations, demonstrating a higher level of accuracy in
replicating the test function. This result aligns with the observed performance metrics
in the associated table. The dashed lines representing the GRNN approximations
provide an important visualization of how the model’s accuracy can vary with changes
in the sigma parameter. The different dashed lines, therefore, help to identify optimal
sigma values that result in the lowest discrepancies between the GRNN approximations

and the true function.

Throughout the course of this section, an emphasis has been placed on the comparative
analysis of different neural network types and architectures. A test function has been
utilized for this purpose, primarily due to its capability for visualization. When a
known function is used the accuracy of any approximation model can be assessed
directly by comparing it with the true function. However, such comparison may not
provide sufficient information to conclude which neural network type is most suitable
for creating a meta-model of a complex approximation function which is intended to
predict the response of a joint over multiple parameters. The complexities of this task

might not be fully addressed by the test function alone.

In cases where visualization is not possible, other metrics like the mean squared error
(MSE) and coefficient of determination (R?) values are often calculated to assess the
performance of the meta-model. These metrics offer a quantitative evaluation of the
model’s predictions in relation to the actual values. As part of the research outlined
in this thesis, the best approaches for constructing approximation functions for joint
shear and strain values are being explored. Two distinct approximation functions are
sought: one for joint shear strength, and another for the corresponding shear strain

value.

A low MSE, along with a small variation across different k-fold partitions may suggest
an effective approach to meta-modelling this complex problem. This hypothesis is a
fundamental part of the current research. The ultimate aim is to apply these findings in
the construction of more accurate and reliable approximation functions for complex,

multi-parameter problems.

In Figure and Figure |4.8, mean values of MSE for different k-fold runs are plotted
as bar charts for the FFNN and GRNN which are built to predict joint shear strength
after training with the data provided in Table respectively. While the blue bars
show the mean values, variation in the various k-fold runs are shown with the solid
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black lines.
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Figure 4.7 Mean MSE values obtained by approximation with FFNNs with varying
architecture for joint shear prediction model

For joint strength prediction models, in the comparison of the Mean Squared Error
(MSE) of feedforward neural networks (FFNNs) and generalized regression neural
networks (GRNNSs) in approximating joint shear strength, a discernible pattern arises.
This study employed 30 different FFNN architectures and 20 sigma spread values
in GRNN models, denoted as 'H.L. :i|N :j’ and numeric values respectively, each

corresponding to specific MSE results.

For the FFNNs, MSE values displayed a wide range, from as low as 0.0000433 to as
high as 0.0686870, with no evident correlation between the MSE and the network
architecture complexity. The highest MSE values were associated with relatively
simple architectures (H.L. :1|N :3’ and 'H.L. :1|N :12"), while the lowest MSEs were
found in more complex architectures (CH.L. :5|N :15’ and "H.L. :5|N :18’). It is also
noteworthy that not all complex architectures resulted in low MSEs, indicating that
complexity alone does not guarantee optimal performance.

On the other hand, the GRNNs exhibited a consistently increasing MSE as the spread
value increased, ranging from 0.0007119 to 0.0200590. The lowest MSE was
associated with the smallest spread (0.01) and the highest with the largest spread
(0.5). The monotonic increase in MSE with spread value suggests a direct correlation

between the two parameters in the context of the GRNN model’s performance.
For the shear strain corresponds to joint strength prediction model (see Figure[4.9), it
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Figure 4.8 Mean MSE values obtained by approximation with GRNNs with varying spread
parameter for joint shear prediction model

is observed that for FFNNs, the mean squared errors (MSE) vary widely across different
architectures. For instance, MSE values are significantly low (close to zero) for many
architectures such as 'H.L. :1|N :6’, 'H.L. :2|N :6’, and 'H.L. :3|N :9’. However, there
are a few architectures like 'H.L. :1|N :15’ and 'H.L. :5|N :12’ which exhibit higher
MSE values. This variation suggests that the architecture (number of hidden layers and
neurons) greatly influences the performance of FFNNs. It also implies that a careful
selection of architecture is required to obtain the optimal performance. For GRNNs
(see Figure[4.10), MSE values increase progressively with the increase in sigma values
from 0.1 to 0.5. The GRNN starts with a higher MSE value than FFNNs, but as the
sigma value increases, the MSE shows a consistent upward trend. This indicates that
the spread of the radial basis function, governed by the sigma parameter, significantly
impacts the model’s approximation accuracy. A larger sigma value causes the radial
basis function to spread more, which might lead to underfitting, resulting in a higher
MSE.

FFNN architectures showed varied performance, with the MSE not directly correlated
to the complexity of the architecture. Conversely, GRNN models displayed a clear
trend of increasing error with larger spread values. Overall, while both models
provide viable avenues for joint shear strength approximation, their performance is
highly dependent on the chosen parameters, underscoring the necessity of meticulous

parameter selection in these machine learning techniques.
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Figure 4.9 Mean MSE values obtained by approximation with FFNNs with varying
architecture for joint shear strain value corresponding to the shear strength prediction model
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Figure 4.10 Mean MSE values obtained by approximation with GRNNs with varying spread
parameter for joint shear strain value corresponding to the shear strength prediction model

Comparing two approaches, GRNNs have a simple and fast one-pass learning process.
Unlike FFNNs that require iterative training methods such as backpropagation,
GRNNs use the entire dataset in one step to adjust their weights. This results in
a much faster training process, making GRNNs more efficient for large datasets
or real-time applications. Although FFNNs with a large number of hidden layers
may yield lower MSEs, they are also more prone to overfitting, especially when
dealing with a limited amount of data. Overfitting is a situation where the model
performs well on the training data but poorly on unseen data. GRNNs, due to their
architecture and training process, are less prone to overfitting. GRNNs are known for
providing smooth function approximations. They make use of radial basis functions,
which result in smooth and continuous approximations. On the other hand, FFNNs
with sigmoid or ReLU activation functions can sometimes create discontinuities or
non-smooth approximations. GRNNs excel at capturing non-linear relationships in

the data without the need for complex architectures. They are capable of forming
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highly nonlinear decision boundaries, which is beneficial when dealing with complex

function approximation problems.

4.4 Results

Six GRNN models which are trained to predict the coordinates of Point A, Point B and
Point C on the strain-stress space. The training data-set is constructed from randomly
selected samples from the total data-set presented in Table The ratio of numbers
of test/training samples is 0.25 : 0.75, corresponds to 90 training and 30 testing
samples. To investigate the reliability and applicability of the proposed prediction
models, their performance are evaluated by the means of correlation coefficients (R)
for predictions for different target parameters. Also, its accuracy is monitored through
the mean values and coefficients of variation (C.0.V.) of ratio between predictions and

experimental outputs.

R— Z(xi_f)(yl'_}_’)
V2O =322 (i — )2

Correlation coefficient, theoretically shows the statistical dependence between two
random variables. R =~ 1 indicate a perfect statistical dependence while R ~ 0
shows that two variables are not associated to each other. Considering the high
number of input parameters, non-uniformity of the parameter samples in the dataset
and differentiations related to experimentation and measurement techniques, models
with R > 0.75 remarked as acceptable in this study. It is worth noting that higher
performance can be achieved with customized databases, but for the sake of simplicity
and the objective of implementing a generalized practical framework, this level of
accuracy is adopted. The database presented in Table is divided into subsets
regarding to the specimens’ framing type, failure mode and reinforcement ratio and
accuracy measures for these subsets are presented to distinguish the performance of
the models for different joint types, failure modes and joint ductility.

4.4.1 Point A

In the cases that large correlation coefficients are achieved in the training data, but
significantly lower in the test data imply an over-fitted model to the training set,
which is not able to make reasonable predictions for an arbitrary input, but fits almost
perfectly to the inputs in training set. In other words, larger correlation coefficients
for test data indicate an accurate model. Figure Figure show model predictions
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Figure 4.11 GRNN predictions versus experimentally observed values, training data (top)
and all data (bottom) for Point A
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Figure 4.12 Scatter of y, GRNN predictions by type, failure type and reinforcement ratio
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Figure 4.13 Scatter of 7, GRNN predictions by type, failure type and reinforcement ratio

versus experimentally observed results for y, and 7,. In both models, determined
correlation coefficients for test and overall data are very close to each other, that fact

notes that models (y,, 7,) are properly trained and not over-fitted.

In Figure and Figure it is shown that the ratio between model predicted
and experimentally observed values of y, and 7, respectively scattered around the
ideal value of 1. Mean values for different subsets varies between 0.97 — 1.01 and
no significant differences between subsets are observed. However, examination of
coefficient of variations reveal that there is much larger dispersal in y, predictions
in comparison with 7,. Moreover, variation in predictions for exterior joints is
significantly larger than the ones for interior joints, notes the proposed model is more
accurate for interior joints. Variations between coefficients of variation in failure type

and joint reinforcement subsets are statistically insignificant.

4.4.2 Point B

In Figure scatter of the experimental versus predicted values are given for
yg and 7z. Close correlation coefficient values (R, = 0.80, R,; = 0.78) are
obtained for test and overall data for y,. Significantly larger correlation among
predictions and experimental outputs for test and all data of 7, is observed. Figure
and Figure also verifies this significant difference between accuracy of
shear strain (yz) and shear stress models () respectively. Much larger dispersion
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Figure 4.14 GRNN predictions versus experimentally observed values, training data (top)
and all data (bottom) for Point B
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Figure 4.15 Scatter of yz GRNN predictions by type, failure type and reinforcement ratio
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Figure 4.16 Scatter of 7z GRNN predictions by type, failure type and reinforcement ratio

is observed in strain prediction output data in comparison with stress. Another fact to
stress out, mean values for strain prediction of exterior joints (0.93) and joints with
lower reinforcement ratio than 0.005 (0.91) are much lower than the mean values
determined for other subsets. This fact implies that accuracy of the strain model
should be improved with more well-quality data from these type of joints. Another
important factor contributes to the relatively lower performance in strain predictions,
after the first significant change in stiffness, stress response may exhibit only minor
variations until the ultimate point (Point C). Detection of the strain level at the point
with maximum stress response (Point B) may be challenging in cases that reported

results have not sufficient resolution to represent these minor variations.

4.4.3 Point C

In Figure |4.17, scatter of the experimental versus predicted values are given for y. in
which close correlation coefficient values R,,,, = 0.87 for test data and R,;; = 0.83 for
all data for y. predictions. As it was pointed in Point B results, there is a significant
performance difference between y. and 7. results, noting that prediction model for
T¢ has R, = 0.92 and R,;; = 0.94 implying a higher performance. Among other
uncertainties, a factor contribute to this fact is the limitation of the experimentation
or measurement technique. As the congestion of experimental output in the range
of 0.04—0.05 points out, some of the deformation measurements in the database are
limited to finite values close to 0.05, thus joint deformation capacity beyond this point
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Figure 4.17 GRNN predictions versus experimentally observed values, training data (top)
and all data (bottom) for Point C
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Figure 4.18 Scatter of y- GRNN predictions by type, failure type and reinforcement ratio
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Figure 4.19 Scatter of 7. GRNN predictions by type, failure type and reinforcement ratio

is ignored.

Figure and Figure show that mean values for Point C predictions to
experimentally observed quantities vary between 0.98—1.04. Coefficient of variations
in 7, exceeds 0.20 only for joint failure specimens. As expected, larger variation is
observed in y. in which the larger C.O.V. is calculated as 0.31 in beam-joint failure
joint specimen units.

To evaluate the accuracy of the proposed prediction method, joint shear strain-stress
envelopes predicted by the models are compared with the experimental observations,
analytical solution using MCFT [77] and statistical model based on Bayesian
parameter estimation method by Kim and LaFave [25]].

Table 4.4 Comparison of prediction/experiment values obtained by different methods

YA Ta YB TB Yc Tc
MCEFT [77]] Mean 1.00 0.99 0.59 0.81 0.88 0.63
SD 0.93 0.51 049 0.29 0.56 0.27
Kim and LaFave [[25] Mean 1.61 1.19 1.12 1.02 1.11 1.08
SD 1.04 0.33 043 0.14 0.78 0.22
GRNN (Proposed) Mean 1.10 1.03 1.10 1.02 1.06 1.03
SD 0.37 0.19 0.37 0.15 0.32 0.18

In Table mean values and standard deviations of the ratio between predicted
and experimentally observed values by MCFT, Kim and LaFave [|25]] equations and the
proposed GRNN model. It is seen that Point A properties are estimated by MCFT
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Figure 4.20 Comparison of experimental and predicted methods with various methods for
exterior joints with joint shear (top) and beam-joint shear (bottom) failure modes

most accurately in average, however, large standard deviations of the estimations
imply that MCFT can lead to misleading Point A predictions for some joint type and
design configurations. GRNN predictions have mean value of 1.10 and 1.03 mean
values for y, and 7, respectively and relatively narrower band of predictions with
0.37 and 0.19 standard deviation in same respective order. Thus, it can be inferred
that GRNN has the ability to yield more consistent predictions among these methods.
In Point B, GRNN and Kim and LaFave [[25] equations have almost identical statistical
results overall in terms of mean values and standard deviations while MCFT [|77]
predictions are significantly less accurate for both y; and 7. For vy, proposed model
yielded predictions with slightly better mean value accuracy (mean(yc_gin) : 1.11
and mean(y._gryn) : 1.06) but significantly less disperse in terms of coefficient of
variations (SD(y¢_gim) : 0.78 and SD(yc_gran) : 0.32).

Considering the large number of specimens, only selected results are presented in
Figure and Figure Based on the plotted results for exterior joints in Figure
one can interpret that MCFT estimates joint shear strength with an acceptable
accuracy except for the specimen tested by Joh et al. [226[] which the joint failure was
observed. In terms of deformation, MCFT underestimated the ultimate deformation
for the specimens with relatively larger amount of joint horizontal reinforcement [52]].

Despite the fact that accurate estimations by Kim and LaFave [25]] of joint strength
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Figure 4.21 Comparison of experimental and predicted methods with various methods for
interior joints with joint shear (top) and beam-joint shear (bottom) failure modes

for exterior joints are observed, joint deformation is only predicted for the specimen
with low amount of reinforcement which exhibited joint failure. It is also observed
that proposed model estimated joint strength and deformation significantly better for

exterior joints with varying reinforcement level and failure types.

Figure shows that MCFT failed to estimate joint strength and ultimate
deformation level in interior joints for all plotted specimen results regardless of the
failure type and reinforcement amount. In a similar way of exterior joint results, Kim
and LaFave [25] model predicted joint shear strength level accurately, but failed to
predict deformation except the specimen tested by Morita et al. [240] while proposed
model predicts the full shear stress-strain envelope in an acceptable range.

Samples from different subsets are plotted to demonstrate the overall accuracy of the
model is not significantly affected by the joint’s type, failure mode or reinforcement
ratio and can be used in practice to estimate shear strain - stress history envelope

without any customization or modification on the structure of the framework.
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4.5 Conclusions

A large experimental database of reinforced concrete joints has been collected. Joint
specimens in the database were tested under static or quasi-static loading conditions
and exhibited a dominant joint shear failure or beam failure followed by joint shear
failure. Despite its upmost importance in finite element modelling of joints, there
are only few studies available in the literature aiming to predict joint strain - stress
envelope curve. A prediction framework is constructed in this study using specialized

neural networks.

Investigation of the statistical correlation between experimental observations and
model prediction output led to the conclusion that GRNN structure is capable of
predicting essential key-points on the strain-stress curve using only general input
data. Previous studies highlighted GRNN has strong priorities over conventional FENN
structures. The most importantly, the GRNN approximation algorithm is controlled by
only one free parameter (o) and optimization of the neural network structure is not
required. Expectedly, GRNN yielded reasonably acceptable predictions by collection of

120 experiments, without any need for manual classification of data before training.

Comparison of the model results with a widely used analytical approach [|77]] and a
statistical prediction model proposed by Kim and LaFave [25] demonstrated that the
proposed model has the most accurate predictions among them. To demonstrate the
capability of the proposed model in all various types of joints, the comparison was
made for combinations of interior/exterior types, joint/beam-joint failure types and
joints with smaller/greater reinforcement ratio than 0.005. For all comparison subsets,

proposed model performed significantly better than the others.

As a conclusion, proposed GRNN joint shear strain - stress envelope prediction model
is capable of making accurate predictions with only essential input and it has a good
potential to contribute finite element analyses to be done with super-elements. A soft
copy of the trained model is available in the Reference [246]] in which the MATLAB
users can use to predict joint shear strain-stress envelope using the required input
parameters shown in Table
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5}

ADVANCED FINITE ELEMENT ANALYSIS OF
REINFORCED CONCRETE JOINTS

5.1 Overview

This chapter presents a detailed analysis and validation of microplane plasticity
damage material models for reinforced concrete joints. The primary objective is to
assess the accuracy and effectiveness of these models compared to other material
models implemented in ANSYS Parametric Design Language (APDL). The chapter
covers various aspects related to the analysis and validation process, highlighting
the advantages of microplane models, discussing the element formulation, addressing
limitations, and examining the practicality of these models in simulating cyclic effects
on reinforced concrete. Essential notes on the theoretical background of these
constitutive models can be found in Chapter |2, further details are available in the

relevant references.

Microplane models offer significant advantages over classical plasticity-based models
when simulating the behavior of concrete. These models excel at capturing the
anisotropic and heterogeneous nature of concrete materials, providing a more
accurate representation of their response. A key aspect of the analysis is the
element formulation employed in the microplane models. The chapter explores the
incorporation of additional degrees of freedom specifically designed to account for
tension and compression damage separately. This enhanced formulation extends the
accuracy of simulations by explicitly considering the damage behavior of concrete
materials. Additionally, the concept of regularization is introduced, which addresses
numerical challenges arising from the discontinuous nature of damage variables in

microplane models, enhancing their numerical stability.

However, the limitations of microplane models in simulating cyclic effects on
reinforced concrete structures are also addressed. The chapter examines the
challenges associated with accurately capturing the bar-slip mechanism within these

models. It emphasizes the need for further research to develop more realistic modeling
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approaches capable of effectively representing cyclic behavior. The calibration process
focuses on determining appropriate values for damage and non-local parameters
within the microplane plasticity damage material models. Experimental data from
laboratory tests on reinforced concrete structures are used for comparison and
alignment with the model predictions. This ensures that the material models
accurately represent the complex damage mechanisms occurring in reinforced

concrete under different loading scenarios.

Furthermore, the chapter explores the definition and investigation of critical points
along the joint strain-stress curve. These critical points are identified and analyzed
to establish their relationship with joint dimensions, reinforcement, and concrete
material properties. Nonlinear regression techniques are applied to understand the
influence of these parameters on the behavior of reinforced concrete joints, providing

valuable insights into their performance characteristics.

To enhance the accuracy of the regression analysis, the solution domain is divided
into subdomains. This subdomain splitting approach allows for a more refined
investigation, enabling a better understanding of the relationship between critical
points and various influencing factors. By analyzing these subdomains separately,
more robust regression models can be developed, improving the predictive capabilities

of the microplane plasticity damage material models.

5.2 Aspects on the numerical modelling through plasticity and

plasticity-damage material models

5.2.1 Unit Finite Element

A comprehensive parametric investigation was conducted to provide basic
understanding of the relation between control parameters in material formulations
introduced in Section and corresponding output. The primary objective of
this investigation was to identify the most capable material formulation for accurately
reproducing the mechanical behavior of unreinforced concrete. Three distinct
material formulations were considered for evaluation: Drucker-Prager with HSDO6,
MPLA (Elastic Microplane Material with Isotropic Damage and Implicit Gradient
Regularization), and MPDP (Drucker-Prager Microplane with Anisotropic Damage and
Implicit Gradient Regularization) [|117]].

To ensure simplicity in the analysis, the initial phase of the investigation utilized the
most basic finite element unit, representing a 100 x 100 x 100 mm cube discretized

with a single finite element (see Figure [5.1). This approach follows the methodology
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Figure 5.1 Sinlge finite element under cyclic displacement load

employed by Zreid and Kaliske [[111]. The element is fixed at the bottom and
cyclic displacement histories are applied at the top nodes. Two different loading
protocol definitions were used to observe the response to different loading protocols.
Accordingly, loading protocol I describes a cyclic loading with one step between -0.6
mm and +0.06 mm, while loading protocol II takes these values as the ultimate
displacement and reaches these values incrementally with steps of -0.1 mm and +0.01

mm, respectively.

The investigation aimed to compare and assess the performance of the different
material formulations in terms of their ability to accurately reproduce softening
behavior under compression and tension, sensitivities to control parameters, the
number of parameters governing changes in the stress-strain curve, and computational
cost. The analyses were done and their results were compared to each other to
evaluate the efficiency of the material formulations in capturing the desired behavior
of unreinforced concrete. By considering various factors and metrics, this study aimed
to provide valuable insights into the capabilities and limitations of different material
formulations for simulating the mechanical response of unreinforced concrete. For
the sake of clarity, a subset of simulations with a range of material model parameters
is plotted in the following subsections, providing insight into the effect of these
parameters on the material response; however, it should be noted that numerous other

simulations have been conducted using a wider range of parameters.

5.2.1.1 Drucker-Prager combined with HSD06

As described in Section|2.3.4.2] plasticity based material models implemented in APDL
can be used combined with a Hardening-Softening-Dilatation (HSD) definition. One of

the most common HSD model is HSDO6 which assumes linear softening after tension
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Figure 5.2 Stress strain curves of a unit finite element representing f. = 30M Pa concrete
material for various combinations of dilatation factors d,, d, (a) under loading protocol I and
(b) loading protocol II

limit is exceeded.

The main advantage of using this combined material formulation is the intuitiveness
of the model parameters that control the stress-strain relationship. The dependence of
the control parameters on the compressive strength characterising the concrete leads
to a significant reduction of the free variables within the formulation. Accordingly,
a definition of plasticity can be made with uniaxial compressive strength f., tensile
strength f,, which is considered to be approximately 1/10 of the compressive strength
and biaxial concrete compressive strength f,, which can be considered to be 1.15 —
1.20 times the compressive strength [[247], and dilatation factors d, and d., which
are defined separately for tension and compression. In addition, the softening
that will occur after the strength is exceeded in compression and tension can be
obtained by defining the relative stress ratios (.;,Q..,,¢2., and the plastic strain
values (k,, K., K.-) corresponding to the softening trend. A disadvantage is that the
parameters controlling the softening trend must be estimated in advance and given
to the model. However, it can be assumed that the physical quantities represented by
these parameters are close to the values given by ANSYS Mechanical APDL Material
Reference [[117] for concrete materials in a wide range of compressive strengths.

Figure [5.2] (a) shows the response of a unit finite element with 30M Pa compressive
strength for Protocol I, which is a one-step cyclic loading targeting the endpoint
displacement in tension and compression. Although there is no noticeable difference
between the measured responses for different parameters, a significant difference was
observed in the number of Newton-Raphson iterations performed to arrive at these
solutions. For example, for the solution of the simulation with d, = 0.75,d. = 1.00,

approximately half of the Newton Raphson iteration was performed for the solution
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of the simulation with d, = 0.50,d. = 1.00, although it gave the same response
results. Figure plots the stress and strain responses of the unit finite element for
incremental cyclic displacement loading procedure (Protocol II) for different dilatation
factors. Accordingly, while the strength goes to infinity in simulations where the
compressive dilatation factor d. is below unit, meaningful results can be obtained
only in simulations where the tensile dilatation factor d, is close to 0 among the other

cases.

5.2.1.2 Elastic Microplane Damage

The responses obtained from the material model constructed using the elastic
microplane damage formulation are controlled by the variables k,, k;, and k,, as well
as the damage parameters (8, a, and y,) of the equivalent strain (see Equation[2.61))
and the damage (see Equation [2.3.4.4)) equations, respectively. This can be expressed
as

112( ok 1)"‘[1( K )+k—2=J2 (5.1)

Simplifying this expression yields

X, + 11X, + X3 =1J, (5.2)
rr oI 1 X, J,
oIl X =] (5.3)
Iczb ch 1 X3 Jcb

Solving the resulting linear equation system allows to obtain the damage surface in
the invariant space (see Figure 2.12)), thus k, k; and k.

For the purpose of comparison, considering a concrete material with a characteristic
strength of 30MPa, an elastic modulus of approximately E = 30000, a Poisson’s
ratio of approximately 0.2, and assuming that the tensile strength is approximately
one-tenth of the compressive strength, as mentioned in Section [5.2.1.1] the variables
k,, k,, and k, can be obtained as 0.703, 0.703, and 0.215, respectively.

Assuming the value of gamma is taken as suggested in the ANSYS Mechanical APDL
Material Reference [[117]], f,/E, the scope of this parametric study can be limited to
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Figure 5.3 Stress strain curves of a unit finite element representing f. = 30M Pa concrete
material for various combinations of damage parameter variables a, # (a) under loading
protocol I and (b) loading protocol II
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Figure 5.4 Damage parameter with respect to strain of a unit finite element representing
f. = 30MPa concrete material for various combinations of damage parameter variables a, 3
(a) under loading protocol I and (b) loading protocol II

investigating the influence of 8 and a parameters on the stress-strain response.

Finite element simulations conducted with CPT215 [[124] element with an additional
degree of freedom reserved for isotropic damage parameter d,,;.. No implicit gradient

regularization used in simulations.

Simulation results are shown in Figure Firstly, contrary to the results obtained
with the Drucker-Prager material model, it can be observed that the stress-strain
curves and strain-damage parameter curves are independent of the displacement
loading procedure. Additionally, during both unloading stages under compression and
tension, it can be observed that the stiffness curve follows a zero-strain point target

rather than the elastic or damaged stiffness.
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The strain-damage parameter curves shown in Figure |5.4] also indicate that the
material is more prone to damage for values of  ranging between 500 and 5000
compared to other parameter ranges. Furthermore, it was only possible to reach
the state where the material’s strength is completely exhausted by using a simulation
model with 3 = 5000.

In terms of damage parameters, it is expected that the damage parameter will be
close to d,,;. = 1 for both loading procedures considering that the total ultimate strain
values are exceeded for a standard f, = 30M Pa concrete. This is demonstrated by the
simulation conducted with a value of f = 5000, thereby supporting the conclusion
that the sensitivity is relatively low for the remaining f values. Additionally, it is
observed that the realistic representation of the material’s stress behavior during

unloading is not reflected in the results.

5.2.1.3 Drucker-Prager Microplane Damage

In a similar manner to the Elastic Microplane Damage model described in the
previous section, the proposed material model by Zreid and Kaliske [[111] includes
damage parameters defined with an exponential function, coupled with stress-strain
relationships. The loss of load-carrying capacity of the material occurs as these damage
parameters approach unity. A notable difference is that the damage definition is
separately formulated for tension and compression, which is considered to be more
realistic. Steinke et al. [[247]] suggests a relationship between the tensile damage
variable 3, and the compressive damage variable f3. as 3, = 1.58,

Additionally, definitions related to plastic yielding, hardening, and softening are
described in Section involving seven parameters, including f., f,, and f;.
Steinke et al. [[247]] remarks low sensitivity to parameters R and R, and, Zreid and
Kaliske [|111] suggest o., as a function of f,. As a result of this variable reduction,
reactions for Procedure I and Procedure II were simulated and observed for different
values of 3, (tensile damage variable) and D (material constant controls hardening),

solely for a concrete material with a compressive strength of 30M Pa.
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Figure 5.5 Stress - strain curves of a unit finite element representing f. = 30M Pa concrete
material for various combinations of damage parameter variables 3,, D (a) under loading
protocol I and (b) loading protocol II
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Figure 5.6 Tensile damage parameter with respect to strain of a unit finite element
representing f, = 30M Pa concrete material for various combinations of damage parameter
variables f3;, D (a) under loading protocol I and (b) loading protocol II
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Figure 5.7 Compressive damage parameter with respect to strain of a unit finite element
representing f, = 30M Pa concrete material for various combinations of damage parameter
variables f3,, D (a) under loading protocol I and (b) loading protocol II
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Figure|5.5|illustrates the strain-stress relationship for simulations with different MPDP
model parameters. The simulations show varying stress levels as strain increases.
The solid blue line exhibits a decreasing trend, indicating that stress decreases with
increasing strain. The light blue line shows a similar trend but with a steeper slope.
The orange line demonstrates a moderate decline in stress as strain increases, while
the green line demonstrates a gradual decrease in stress. The stress-strain data reveals
that varying the 3, and D parameters has distinct effects on the material’s response
to stress. Increasing the 3, parameter leads to a decrease in stress, indicating that the
material becomes less resistant to deformation and requires less stress to produce a
given strain. Conversely, as the D parameter decreases, there is a significant increase
in stress, suggesting that the material becomes more susceptible to deformation and
requires higher stress levels to achieve the same amount of strain. These observations
highlight the importance of these parameters in influencing the material’s behavior
under stress, with higher 3, values leading to a weaker response and lower D values
resulting in a stronger response. Alteration in slopes for the unloading sections
indicates that distinct from MPLA material, the material unloads with a reduction
in the initial stiffness. An important note about the effect of the loading history on the
material response is clearly shown through the simulations for D = 4e5, 3, = 1500

and D = 1e5, 3, = 1000 model parameters run for Protocol I and II.

Figure depicts the relationship between strain and the tensile damage parameter.
The simulations reveal changes in the tensile damage parameter as strain magnitude
escalates. The solid blue line shows an increasing trend, indicating that the tensile
damage parameter rises with increasing strain. The light blue line displays a
steeper increase, while the orange line exhibits a moderate increase. The green line
demonstrates a gradual increase in the tensile damage parameter with increasing
strain. Figure represents the relationship between strain and the compressive
damage parameter. The simulations reveal variations in the compressive damage
parameter with increasing strain. The solid blue line showcases a gradual increase
in the compressive damage parameter as strain magnitude increases. The light blue
line displays a steeper incline, while the orange line exhibits a moderate increase. The
green line demonstrates a gradual increase in the compressive damage parameter with

increasing strain.

5.2.2 Exterior Joint Specimens Tested by Tsonos [|8]

In order to extend the investigations carried out on the unit finite element to a real
engineering problem, three finite element models were produced that reflect the

geometry of the experimental studies carried out by Tsonos [|8]. In the first of these, the
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Figure 5.8 Experimental configuration of E1 specimen tested under cyclic loads [8]]

concrete material was discretized using the SOLID186 finite element and the material
formulation was made by combining the classical Drucker-Prager plasticity material
model with the HSDO06 dilatation definition. In the second model, the CPT215 finite
element formulation was used and an additional degree of freedom was created for the
isotropic damage formula, and in the third model, the same finite element formulation,

two degrees of freedom were added for tensile and compressive damage.

In all three finite element models, flexural reinforcement and transverse reinforcement
were modelled explicitly and BEAMI188 element formulation was used for
discretization. The stress-strain behaviour of the reinforcement is based on the yield
strengths reported in the experimental study using a isotropic hardening bilinear
material formulation. Full interlock between the reinforcement and the concrete

material is assumed [65]].

In order to realistically reflect the boundary conditions and loading protocol, it is
considered that the loading jack is constituted by a rotatable mechanism and all nodal
points on the beam end section surface are connected to an imaginary nodal point
formed at the section centre with MPC184 elements with rigid link formulation and
cyclic displacement loading is performed through this imaginary nodal point. The
same arrangement was made for the supports at the column ends. The upper end
of the column was not fixed vertically and a vertical load of 200 kN, which was kept
constant throughout the experiment, was applied at the upper end of the column.
38160 elements are used to discretize the problem domain and symmetrical boundary
conditions are applied to the vertical axis passing through the centroid of the beam
section.

119



(a) (b)

Figure 5.9 Finite element model of E1 specimen [8] (a) concrete body (b) reinforcement and
constraints (red) for boundary conditions (purple)

The simulation results of the finite element model of specimen E1, which was
experimentally tested by Tsonos [8]], using the introduced material models and
the displacement loading procedure applied in the experiment are shown in Figure
[5.10/ The figure shows the simulation responses with the least error compared to the
experimental results in the parametric analyses performed with the model parameters
mentioned in the previous section. In the comparison, in addition to the numerical
magnitude of the response, the prediction of the damage mode received by the joint
region was also used. In Figure the damage conditions at the joint region are
presented for different loading steps of the experiment while Figure displays
the loading cycle and the measured amount of total strain of the yielding transverse
reinforcement within the joint region, as observed in the experimental model. For
comparison purposes, Figure provides the total equivalent total strain map of the
concrete body modeled using different material models in finite element models at
various loading steps. Figure illustrates the distribution of total principle strain

in the transverse reinforcement observed in the simulation models.
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reinforcement of subassemblage E1
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According to the results presented in Figure [5.10](a), although the results obtained
with the material model in which the Drucker-Prager plasticity model is used in
combination with HSD06 have consistent responses for the initial cycle, the section
reaches its bearing capacity by the yielding of the beam reinforcement at the end of
the beam, not in the joint region, contrary to the experimental observation (see Figure
and (a)). In addition, since the material model does not include any damage
definition, the initial stiffness of the section is observed at the stages of unloading. On
the other hand, it was observed experimentally that the stiffness decreased at each
stage of loading. The cycle curve obtained by simulations using this material model is

far from reflecting the actual plastic deformation.

In the simulations performed with the MPLA material model in Figure (b),
although the force response obtained in each cycle is observed realistically, it is
observed that the stiffness is equal to the secant stiffness in all cases during the
unloading phases of the loading. In accordance with the experimental observations, it
was found that no beam hinge was observed in the joint and intense total equivalent
deformations (EPTO) were observed in the joint region (see Figure[5.11]and[5.14] (b)).
The phase in which the damage in the joint region is intensified can be determined

as the phase in which the transverse reinforcement yields. As Figure |5.13|and |5.14]

demonstrate, in the simulation results, there is a discrepancy between the total strain

of the joint transverse reinforcement and the cycle in which this strain occurs.

When examining the results obtained from simulations using the MPDP material
model plotted in Figure [5.10}(c), which provides the most realistic outcome, it can
be concluded that there are fewer inconsistencies compared to other models. Analysis
of the total equivalent strain values reveals that plastic deformations occur as expected
in the joint region, and the actual force responses observed during all loading stages
are better represented by this material model compared to others. Additionally, the
damage parameters defined in the material model demonstrate a gradual decrease
in stiffness during the unloading stages. Although there may not be a perfect match
between the experimentally measured unit strain values and the simulated values, it
is deemed acceptable that realistic results are obtained to a satisfactory extent.

The comparison between the results obtained from the simulation model built using
the MPDP model and the experimental observations revealed the most significant
difference to be the pinching behavior, which is one of the fundamental characteristics
of hysteretic response in the joint region. Pinching, which appeared to be quite
prominent in the experimental results, was observed to a limited extent in the
simulation results. This can be interpreted as follows: there are two main sources

for the occurrence of pinching in the hysteretic response. The first is the reversible
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Figure 5.16 Comparison of the FEM results obtained by bond-spring and MPDP material
definition

opening and closing of cracks in the concrete material, leading to changes in stiffness
along the section during loading and unloading cycles, influencing the load transfer
throughout the cycle. The second source is the bond-slip mechanism that controls the
load transfer and slippage between the concrete and reinforcement. Incorporating the
bond-slip mechanism in finite element analyses can be achieved by defining springs
that represent the nonlinear load-displacement relationship along the reinforcement
axis, rather than defining constraints acting in all directions between the finite
element nodes representing the reinforcement and concrete material. In this regard,
a parametric study was conducted and zero-length (COMB39) elements were defined
between the node points corresponding to the same spatial coordinates (see Figure
[5.15). The main challenge in establishing this definition lies in the uncertainty
of the load-displacement relationship during loading and unloading phases. This
definition was created by scaling the results of pull-out tests using the cyclic pinching
material model within the framework of a super-element formulation. However,
specifying the load-displacement characteristics of this mechanism for individual node
points involves considerable uncertainty. The response results of the simulation
model generated by incorporating this definition into the parametric investigation are
provided in Figure in comparison with the experimental responses.
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The responses obtained from the solution of the simulation models are compared
with experimental observations and presented in Figure These models utilize
the MPDP material model for concrete and the COMB39 zero-length uniaxial spring
element. The bi-linear isotropic hardening load-displacement relationship is defined
for the bond-slip mechanism. Bond strength values are fixed to the values defined in
Table and displacements are introduced as random variables. The comparisons
demonstrate a certain level of agreement with experimental observations. However,
the contribution of this definition to the complexity of the model outweights the
realism effect. The increased complexity of the model results in an increase in
computational effort required for achieving a single solution. Additionally, it involves
the inclusion of new parameters that influence the behavior, and a significant effort is
needed to create a simulation example that yields responses within acceptable error
bounds. The parametric search at this stage follows the conventional trial and error
method thus lacks an objective quantitative measurement of the increase in effort.
Nevertheless, it is evident that the solutions obtained through this approach exceed

the practical limits of the current study in terms of scope and objectives.

A secondary objective here is to simplify the material formulation and modelling
technique, whose ability to represent the real problem has been validated, in order
to meet the main objectives described in this thesis. Remembering that the purpose of
the simulation models is to determine the boundaries (envelope) of the deformation
likely to occur in the joint region, a more effective solution method in terms of
practicality is to perform the displacement loading directly as the envelope of the
cyclic displacement loading, instead of obtaining cyclic responses by simulation and
using their envelope as the model output. In this case, it is clear that there will be
some deviation in the internal forces and displacements to be obtained. However, as
can be seen from the comparison of the computational effort required to realise an
example of the simulations in Figure it was order of magnitude more practical
to apply the displacement loading in monotonic procedure. Validation tests for the
monotonic loading case have shown that this deviation is acceptable. The validation
tests presented in Section cover the entire experimental database, not only the
simulation model of specimen E1.

In order to obtain more statistically significant results for the validation and calibration
process simulations performed for each sample in the experimental database as
described in Appendix[A] it is important to perform as many simulations as practicality
allows. Therefore, in order to reduce the computational cost for each simulation run,
the dimension in which the problem is defined within the validated assumptions is
reduced from space to the plane. The strain in the cross-section due to the confinement

effect can be considered close to the plane strain assumption. A comparison of the
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simulation results in 3 dimensions (CPT215) and 2 dimensions (CPT213) with plane
strain assumption under monotonic loading conditions is given in Figure In the
same figure, the results obtained from finite element models discretized with different
number of elements are also given comparatively to verify finite element discretization

technique used.

It should be noted that there is an order difference in the finite element models
discretized with CPT213 and CPT215 due to the size of the problem and each
discretization requires a regularisation process. For this reason, the interaction
parameter ¢ appropriate to the discretization dimension is used for each model whose
result is shown in the Figure[5.18]

Using three different material models defined in ANSYS Parametric Design Language
(APDL) Material reference, a finite element model comprising a unit element and
an experimentally tested joint subassemblage was constructed. The objective was to
qualitatively observe the sensitivity of these material models to the various parameters
of the model. Through this analysis, it was determined that the Drucker-Prager
Microplane Damage (MPDP) model offers a realistic description of concrete material
behavior based on cyclic and monotonic tests conducted on the unit finite element.
The MPDP model can be effectively controlled by adjusting the two most sensitive
parameters associated with it. To achieve the most accurate representation of
the joint specimen’s response to cyclic displacement loads, which was supported

by available experimental results, a modeling approach involving the definition of
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springs with nonlinear load-displacement characteristics at the nodes where the finite
elements representing concrete and reinforcement coincide was employed. Although
this approach yields a more realistic representation, it introduces limitations and
increased complexity to the simulation process. When the expected magnitude of
the output at the end of the simulations is specified as an envelope curve depicting
joint deformation, the simulations conducted to achieve this outcome can be viewed
as an envelope of the displacements that are cyclically applied. This approach enables
a comprehensive assessment of the joint’s behavior. Furthermore, the presence of the
confinement effect allows for the assumption that the stress-strain state within the
joint zone is a plane strain state, thereby significantly reducing the computational
cost. This simplification contributes to more efficient calculations while still capturing

the essential characteristics of the joint’s response.

The MPDP material model exhibits the capability to provide realistic results in both
unidirectional and cyclic simulations of joint regions, owing to its constitutive relations
and implicit gradient regularization feature. Additionally, the model’s advantageous
characteristics include a small number of parameters governing material behavior and
simplifications that effectively reduce computational costs. These benefits make the
MPDP model particularly valuable for calibrating the models used in this approach.

5.3 Calibration of MPDP Model Parameters

As mentioned in the previous section, the parameters of the material model used
in simulations need to be calibrated for each experiment. This calibration is done
by classical trial-and-error in many studies in the literature. The necessity of the

trial-and-error method in MPDP material is also emphasized by Zreid and Kaliske
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[111] through the interaction parameter ¢ that governs the regularization process.
The interaction parameter controls the area of damage propagation and is related
to the characteristic length of the material. The approach used by Bazant and
Pijouder to determine the characteristic length by comparing the energy dissipation
in cases where the damage is diffuse and localized is not possible in cases where
the damage is diffuse, such as joint damage. On the other hand, the approach
followed by Zreid and Kaliske [[111[], where damage (or plastic deformation) initiation
and evolution and load-displacement characteristics are monitored and compared
with experimental measurements, can lead to appropriate approximate regularization
processes. In addition, since the damage patterns and finite element discretization
magnitudes of the specimens forming the calibration sample pool are equivalent and
there are no order of magnitude differences in terms of geometric dimensions and
material character, a single characteristic length and hence interaction parameter can
be assumed. In this case, the need for trial and error for the interaction parameter
will be eliminated and a calibration process can be carried out based on the model
parameters 3, and D of the MPDP material model as implemented in the previous

section.

Another point that should be emphasized at this stage is that the damage generation
and propagation should be equivalent for each specimen. This implies that the damage
must occur in the joint region in all simulated joint region specimens. For this reason,
in the experimental database table given in Appendix[A] only the results of specimens
showing "J" joint damage or "BJ" beam-joint combined damage are considered. In
addition, the results of the experiment conducted by Vecchio and Collins [[77]] in which
reinforced concrete panels were subjected to pure shear stresses were also added to
the database. Material properties of the reinforced concrete panels tested by Vecchio
and Collins [[77] are given in the Table 5.1 Thus, finite element models of a total of 40
specimens experimentally determined to have shear damage were generated and 50
sets of 3, and D model parameters were generated for each model using LHS sampling
for better representation of the sampling domain. The remaining control parameters
were determined and used depending on the concrete compressive strength (f,) as
suggested by Steinke et al. [247]. The interaction parameter was taken equal to the
value obtained by trial-and-error approach for the E1 joint specimen (¢ = 625) of

Tsonos [|8] in the previous section.

Within the 50 simulations performed for each specimen in the experimental dataset,
the experimental response was considered as the envelope of the force response
to cyclic displacement loading and an error value was calculated between the
experimental and simulation results by interpolating the simulation response for each

displacement point forming this curve. Among the 50 simulations performed for each
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Table 5.1 Material properties of specimens experimentally tested by [[77]

Specimen fc fyx(MPa) p, fyy(MPa) p,

pPV3 26.6 662 0.00483 662 0.00483
PV4 26.6 242 0.01056 242 0.01056
PV6 29.8 266 0.01785 266 0.01785
PV9 11.6 455 0.01785 455 0.01785
PV10 14.5 276 0.01785 276 0.00999
PV11 15.6 235 0.01785 235 0.01306
PV12 16 469 0.01785 269 0.00446
PV13 18.2 248 0.01785 - 0

PV16 21.7 255 0.0074 255 0.0074
PV18 19.5 431 0.01785 412 0.00315
PV19 19 458 0.01785 299 0.00713
PV20 19.6 460 0.01785 297 0.00885

specimen, the material model parameters belonging to the value with the least error
were determined as the parameter set that most appropriately represents the response
of the relevant specimen.

As mentioned in the previous section, the parameters of the material model used
in simulations need to be calibrated for each experiment. This calibration is done
by classical trial-and-error in many studies in the literature. The necessity of the
trial-and-error method in MPDP material is also emphasised by Zreid and Kaliske
[111]] through the interaction parameter c, which controls the regularisation process.
The interaction parameter controls the area of damage propagation and is associated
with the characteristic length of the material. The approach used by Bazant and
Pijaudier-Cabot [|126] to determine the characteristic length by comparing the energy
dissipation in cases where the damage is diffuse and localised is not possible in cases
where the damage is diffuse, such as joint damage. On the other hand, the approach
followed by Zreid and Kaliske [[111]], where damage (or plastic strain) formation
and progression and load-displacement characteristics are monitored and compared
with experimental measurements, can lead to appropriate approximate regularisation
processes. In addition, since the damage patterns and finite element discretization
magnitudes of the specimens forming the calibration sample pool are identical and
there are no order of magnitude differences in terms of geometrical dimensions and
material character, a single characteristic length and therefore interaction parameter
can be assumed. In this case, the need for trial and error for the interaction parameter
will be eliminated and a calibration process based on the model parameters 3, and D

of the MPDP material model as applied in the previous section can be carried out.

Similar to Steinke et al. [247], where most of the material model parameters are
obtained as a function of concrete compressive strength, the values of D and f,
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Figure 5.19 The surface fitted for the scatter of f3,, D values yielding the best result with
respect to the concrete strength f. of the corresponding specimen
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Figure 5.20 (a) Scatter plot of damage parameter f3, versus concrete strength f, (b) Scatter
plot of hardening parameter D versus concrete strength f,

parameters selected for the calibration of the material model, which give the most
approximate result for each simulation, are given as a surface in the f.-f,-D space
in Figure The surface shows that a correlation can be established between the
variable f, and D and f3,.

For the sake of simplicity, linear regression technique is used to express the model
parameters 3, and D as a function of concrete compressive strength. Figures [5.20
show the scatter plots of f3,-f. and D-f. and the nonlinear functions describing the
relationship. Accordingly, Equation |5.4] is proposed for the f3,-f, relationship and
Equation [5.5| for the D-f, relationship.

B, = 73.76f. + 435.53 (5.4)
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Figure 5.21 Comparison of the experimental responses to the simulated responses obtained
through CPT213 Plane Strain MPDP models which 3, and D parameters are assigned with

Equation [5.4]and

D =—4563.4f. + 39243 (5.5)

The scatter plots given in Figure (a) and Figure (b) show that there
is no statistically significant difference in the determination of 3, and D for the
reinforced concrete panel, internal joint region or external joint region. Therefore,
it is considered as appropriate to use Equation[5.4/and Equation|[5.5|for all three types
of simulations.

5.4 Validation
Proposed Equations and have been tested for all sub-assemblages and

reinforced concrete panels tested by Tsonos [|8]] and Vecchio and Collins [[77]. Figure
presents a comparison between the simulated responses and the experimentally
measured responses for the models described in [|8]]. In simulation models Al and
El, the initiation of plastic strains at the column face and their propagation to the
beam body resulted in the formation of a flexural hinge, which aligns well with the
observations from the experiment (see Figure (a)). However, it should be noted
that while specimen Al remained intact even after a 4.5% drift, in the simulation
model, plastic strains were formed in the joint region after 3.5% drift, indicating a
coupled failure mode. For models G1 and E2, plastic strains were observed to initiate
in the vicinity of the joint core and propagate inside the joint, resulting in a premature
failure mode similar to the experimental observations (see Figure (b)). The
simulation models successfully captured the formation of this failure mode as well
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Figure 5.22 Total strain plots for the simulations at the final state of (a) G1 and (b) E2
specimens tested by Tsonos [|8]

as the overall response. However, there was a slight overestimation of the flexural
capacity by approximately 15% in model Al, and in both models Al and G1, a
beam-joint failure mode was observed, whereas the severe joint failure was reported
in the experiment. These findings indicate that the simulation models provide a
reasonable representation of the structural behavior and can effectively predict the
formation of failure modes observed in the experiments. Despite some discrepancies
in flexural capacity estimation and the occurrence of specific failure modes, the overall
response of the reinforced concrete panels under cyclic loading was well-predicted.
These insights contribute to a better understanding of the structural response under
shear effects and inform the design and assessment of reinforced concrete structures

subjected to similar loading conditions.

The maximum shear stress, first principal stress, and second principal stress values
obtained from the finite element analysis were compared with the corresponding
experimentally observed values for the reinforced concrete panels. This comparison
aimed to assess the accuracy and reliability of the numerical simulation. To visually
illustrate the agreement between the measured and calculated values, scatter plots
were generated, as shown in Figure Each point on the scatter plot represents a
specific panel configuration, and its position indicates the corresponding values of the
maximum shear stress, first principal stress, and second principal stress obtained from
both experimental measurements and finite element analysis. Upon analyzing the
scatter plots, it was observed that there is a strong correlation between the measured
and calculated values. The coefficients of determination (R-squared values) were
determined to quantify this correlation. The coefficient of determination measures
the proportion of the total variation in the experimental data that can be explained by

the calculated values.
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The coefficients of determination between the measured and calculated maximum
shear stresses, first principal stresses, and second principal stresses were found to be
R* = 0.92, R> = 0.96, and R* = 0.88, respectively. These high R-squared values
indicate a significant level of agreement between the experimental and numerical
results, suggesting that the finite element analysis accurately predicts the response
of the reinforced concrete panels under shear effects. The obtained coefficients of
determination provide confidence in the reliability of the numerical simulation and
demonstrate its capability to capture the essential features of the panel behavior. The
strong correlation between the measured and calculated values confirms the suitability
of the developed prediction model for estimating the characteristic points of joint shear

strain-stress curves.

5.5 Parametric Simulations

This section focuses on the parametric analyses and the generation of a comprehensive
dataset for the prediction model related to joint shear strain-stress curves’
characteristic points. Three distinct simulation types were conducted, namely interior
joint simulations, exterior joint simulations, and panel simulations. A substantial
number of 500 simulations were performed for each simulation type, resulting in
a comprehensive dataset comprising a total of 1500 simulations. The simulations
aimed to analyze the influence of various model parameters on the response of these

structural elements under varying loading conditions.

The interior and exterior joint simulations involved a meticulous examination of model
parameters, excluding beam eccentricity due to the adoption of plane modeling and
the limited variations observed in the dataset. Notably, the concrete body dimensions,
including the width and depth of the joint in the plane (h,, h;), as well as the
configuration of reinforcement in the beam and column, were thoroughly investigated.
Additionally, the joint transverse reinforcement ratio and the material strength of the
concrete were varied within prescribed ranges outlined in Table For the purpose
of analysis, the yielding strength of the reinforcement was maintained at 200 MPa
for half of the simulations and 400 MPa for the remaining half, as the variability in
this parameter was deemed relatively low when compared to the concrete material.
Furthermore, the reinforcement configuration exhibited diversity as specified in Table
5.2] augmenting the comprehensiveness of the investigations. Alongside this, the
panel simulations incorporated variations in panel dimensions, reinforcement ratio,
and concrete material strength, all within the intervals prescribed in Table
Consistent with the joint simulations, the yielding strength of the reinforcement

was divided into two groups: 200 MPa and 400 MPa, ensuring a comprehensive
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Table 5.2 Descriptions and bounds of the input parameters of the panel parametric
simulation set

Type Parameter Bounds Units Description
Int. and Ext. Joints  f. 10-90 MPa  Compressive strength of the concrete
(see Fig. (a-b)) fyb 200, 400 MPa  Yield strength of the beam long. reinf.
Ve 200, 400 MPa  Yield strength of the column long. reinf.

fye 200, 400 MPa  Yield strength of the joint trans. reinf.

Ob 0.001 - 0.025 Beam reinforcement ratio

Jolt 0.001 - 0.025 Column reinforcement ratio

Pj 0.000 - 0.025 Joint volumetric reinf. ratio

Pbe 0.0005 - 0.002 Beam transverse reinf. ratio

Pet 0.0005 - 0.002 Column transverse reinf. ratio

hy 200 - 1300 mm  Beam height

h. 200 - 1300 mm  Column height

b, 200 - 600 mm  Beam width

b, 200 - 600 mm  Column width

n 0-0.6 Column axial force to capacity ratio
RC Panels f. 10-90 MPa  Compressive strength of the concrete
(see Fig. (c)) fx 200, 400 MPa  Yield strength of the reinf. along x dir.

b 200, 400 MPa  Yield strength of the reinf. along y dir.

Py 0.000 - 0.025 Reinforcement ratio in x dir.

oy 0.000 - 0.025 Reinforcement ratio in y dir.

b 200 - 1300 mm  Panel width

h 200 - 1300 mm  Panel height

examination of its effects. It is also worth noting that in panel simulations, number of
reinforcement kept constant and different joint reinforcement ratios are obtained by

altering the size of the reinforcement bars.

In order to effectively cover a larger portion of the sampling domain while minimizing
the number of required samples, the generation of the simulation sampling space
was conducted using Latin hypercube sampling. By leveraging Latin hypercube
sampling, the simulation space was efficiently explored, ensuring a comprehensive
representation of the varying model parameters and their effects on the structural
behavior of reinforced concrete elements. This approach enabled the researchers to
obtain meaningful and statistically significant results, despite the relatively limited
number of simulations performed. It reduces the likelihood of missing important
regions or clusters within the domain, allowing for a more representative sampling
of the input variables. By partitioning the space into equally probable intervals
along each dimension, LHS offers a higher level of coverage and exploration of
the parameter space. Thus, the adoption of Latin hypercube sampling allowed for
the efficient utilization of computational resources while maintaining a robust and
extensive coverage of the parameter space, thereby enhancing the overall validity and
reliability of the study’s findings.

The collective outcomes of these simulations present a valuable contribution to the

understanding of interior joints, exterior joints, and panels, shedding light on their
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structural behavior under severe effects. To establish a relationship between the model
parameters and the desired outputs, nonlinear regression techniques are employed.
This approach allows for the identification of the interdependencies and correlations
between the various parameters influencing the joint’s behavior and the resulting
characteristic points. By accurately modeling this relationship, a prediction model
can be developed to estimate the joint shear strain-stress curve’s characteristic points

based on the input parameters.

5.5.1 Investigation of Critical Points along the Joint Strain-Stress Curve

In order to establish a relationship between the model input parameters defining
the joint model and the shear strain-stress output, a selection process is used to
identify multiple points that effectively characterize the shear strain-stress output.
This selection is founded on predetermined criteria. These principles are defined using
two separate methodologies. The first strategy focuses on the damage formulation
of the concrete material model, which involves minimizing the load transformation
capacity of the discrete elements that represent the concrete material. The results of
this methodology are presented in the Section[5.5.1.1] Alternately, a method based on
the stress limit conditions of both the concrete and the joint reinforcement material
is developed. In the Section the results of the analyses conducted using this
methodology are presented.

The correlation analysis conducted in Section reveals that the concrete strength,
denoted by f,, exerts a significantly greater influence on the shear strain and stress
output than other model parameters. In order to assess the sensitivity of the
aforementioned output to other influential model parameters, correlation coefficients
between simulation outputs belong to the various sub-domains of the sampling
domain and concrete strength, f.. As a result, f, is chosen as the principal variable
upon which the input-output relation is constructed. To establish a mathematical
representation of the obtained outputs in relation to concrete strength, curves are fit
to the selected coordinates. Utilizing both nonlinear regression techniques, the most

statistically robust relationship is determined.

An additional control subroutine is implemented for the damage-based method to
arrange strain outputs in ascending order based on the damage index. Likewise, a
control subroutine is implemented for the material strength-based method, permitting
the shear strain points corresponding to intermediate limit states to be evaluated in any
order. Although these control subroutines do not significantly improve the statistical
metrics for the curve-fitting process, they effectively prevent overlapped strain point

predictions.
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(a) Interior Joint reinforcement configuration (left) and concrete body (right)

(b) Exterior Joint reinforcement configuration (left) and concrete body (right)

(c) Reinforced concrete panel subjected to pure shear

Figure 5.24 Illustration of discretization and boundary conditions of the finite element
models
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Figure 5.25 Shear strain - stress plots of simulations (gray solid lines) and scatters of the
strain - stress values that specified material damage occurred for Limit A, Limit B, Limit C,
Limit D and Limit E

5.5.1.1 Damage Index Based Approach

In this chapter, the primary objective is the development of explicit equations to
provide a clear representation of the phenomena under study. To achieve this,
a process of simplification and selection has been adopted. The most influential
parameter, f., which stands for the concrete compressive strength, has been singled
out for this purpose. All other quantities are then intended to be expressed as a
function of this critical parameter. The selection of f. as the central variable is due

to its established role in significantly affecting the outcomes in the system.

While f. serves as the central variable, it is also essential to acknowledge that
the complexity of the system involves other parameters. These include the joint
reinforcement ratio and the joint geometry (h./h;), which have also been found to be
influential, based on empirical evidence. These parameters have thus been included

in the categorization of the subdomains of the sampling space.

A simple correlation analysis, similar to what was conducted in Chapter [4] would
reveal the influence of these additional parameters. The inclusion of these factors
adds depth to the analysis, ensuring that while f, remains the primary variable,
other significant parameters are also considered. This approach provides a more
comprehensive, yet focused, method to understand and represent the system. The
resulting explicit equations thus offer a balanced account of the complexity of the
system, highlighting the predominant influence of f, while acknowledging the roles

of other critical parameters.

Two different approaches to the selection of critical points are developed

139



comparatively. In the first one, using the damage definition (d,,., see Eq.
proposed by Zreid and Kaliske [|[111]] for the material model, limit points with equal
intervals between 0 (undamaged material) and 1 (0.99: damaged material) were
selected. Although it does not have a direct physical meaning, d,,;. is important in
terms of representing the numerical equivalent of the damage state of concrete. Figure
shows the strain-stress pairs as scatter plots on the simulation bundle. In this
= 0.05,0.25,0.50,0.75,0.95 are named as Limit A, Limit

B, Limit C, Limit D and Limit E, respectively.

approach, the values of d

mic

Regardless of the shear stress level received by the concrete material, it is observed
that the limit described as Limit A is exceeded in a very narrow range, even at small
loading steps. The points where the whole population reached Limit A had a mean
value of 9.0029e — 04 and a standard deviation of 4.1462e — 04. Similarly, the Limit

B value determined as d,,;, = 0.25 was also realised in small loading steps and in a

narrow band similar to Limit A. The mean of the points where the whole population
reaches Limit B is 0.0015 and the standard deviation is 5.4522¢ — 04, similar to Limit
A. The mean of the points where the whole population reaches Limit B is 0.0015 and
the standard deviation is 5.4522e—04, similar to Limit A. After reaching Limit B, it can
be seen that the plateau to be covered On the strain axis, the mean values for Limit
C, Limit D and Limit E are 0.0028, 0.0061, 0.0122 and the standard deviations are
0.0012, 0.0061, 0.0066. In stress terms, mean shear stress for the entire population
values are 10.2018, 10.9540, 9.5885, 5.5338 and 3.1589 MPa for Limit A, B, C, D
and E respectively. Standard deviations for the same limit points are 6.0278, 4.9655,
3.6581, 2.0355 and 1.2885. It was observed that the standard deviations of the stress
values decreased with the stress value at which the limit exceedance occurred, but the

standard deviations of the strain values increased as the strain value increased.

In the Figure the relationship between the deformation values of the
sub-populations separated according to aspect ratio h, /h;, and joint reinforcement
ratio p; values and the concrete compressive strength f, is expressed in terms of
coefficient of correlation. Accordingly, regardless of the h./h, values, it is seen
that the simulated specimens reinforced with relatively lower reinforcement ratio are
more sensitive to the concrete compressive strength. In the subdomain low level
reinforcement is included in the joint region (p < 0.0059), the mean correlation
coefficient calculated between f. and shear strains for defined limit states is remarked

very strong (R2 = 0.63) It is considered that the correlation among the concrete

strength f. and the shear strain output for the high level reinforcement subdomain
(p > 0.0059) is not equally powerful as it is seen in the low level reinforcement
subdomain; but still accepted as a sufficient correlation (Rimn = 0.41) for including

samples from all subdomains. Correlation between f, and shear strength values did
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not given since no significant difference with respect to the defined subdomains are

observed.

The variables y,(f.), v5(f.), Yc(f.), vp(f.), and yy(f.) indicate the shear strain as a
function of concrete strength while indices denote the corresponding limits defined
in this subsection. Table shows fitted equations, proposed coefficients for 90%
prediction bounds and correlation coefficients as goodness of fit measure for each
equation fitted. For strain functions denote limit states A, B, C and E are represented
with cubic polynomials while an exponential equation is fitted to the limit state D.
Similarly, the variables 7,(f.), T5(f.), Tc(f.), Tp(f.), and T5(f.) are power-law curve
fits, representing the relationship between concrete strength f, and the expected shear
stress values at limit states A, B, C, D and E, respectively. It is worth noting that
all curves proposed for shear stress are power-law equations that predicts 0.5 for
exponent coefficient of base variable f.. The correspondence with numerous academic
investigations and established design codes that suggests a potent correlation between
the square root of concrete strength and ultimate shear strength is significant. Curve
fitting results indicate that the that strong connection is valid for the other stress states
corresponds to defined criteria. Stress values did not show a significant correlation
difference within the decomposed population as was the case for strain values.
Although the sensitivity of the different limit states to the compressive strength of
concrete shows small differences, there is no dependence in terms of other parameters.
The curve fitting study for shear stresses is given in Table

Fitted curves are shown with scattered data and 90% prediction bounds are given in
Figure and Figure As it was remarked in the results presented in Table
and Table 5.4} stress curves significantly better correlation with the scattered data

compared to the strain curves.

As can be seen in the Tables [5.3] and [5.4] and Figures [5.27] and [5.28], the data based

on the proposed curves show a large amount of dispersion. Therefore, the proposed

curves for different strain or stress states, although statistically well representing the
data they represent, may take inconsistent values with each other. In other words,
accurate prediction of the shear strain stress curve requires sequential representation
of limit states A, B, C, D and E (or at least one limit state to be chosen from B, C and
D). This may not be straightforward for curves fitted separately for the data. In this
study, each fitted curve is checked for the displacement equivalents of the different
limit states to ensure that they do not cross each other in such a way as to create
inconsistencies. With Figure the strain prediction curves corresponding to each
limit state are plotted on the same figure to show that the described logical order is

not broken.

141



1 0.8
0.8 06
0.6
~ ~ 0.4
0.4 o
0.2 0.2
0 0
0.0045 0.0045
0.00595 0.00595
5.75
0.00825 0.00825
0.02 1 0.02 1
P 0.667 b/h 4 0.667 b/h
() (b)
0.8 0.8
0.6 0.6
N 0.4 o 0.4
0.2 0.2
0 0
0.0045 0.0045
0.00595 0.00595
5.75
0.00825 0.00825
0.02 1 0.02 1
P 0.667 b/h 4 0.667 b/h
(0 (d
0.8
0.6
o 0.4
0.2

0.0045
0.00595
0.00825

5.75

0.02

P 0.667 b/h

(e)

Figure 5.26 Coefficient of correlation between concrete compression strength f. of the shear
strains belong to different levels of average p and aspect ratio h./h,
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Considering that the determination coefficients representing goodness of fit of the
fitted curves are not strong particularly for shear strain values corresponding to the
intermediate steps of damage index based criteria; a surface fitting application based
on cubic polynomials accepting other influential parameters, joint reinforcement
ratio p; and aspect ratio h./h, as well as the concrete strength f.. The surface
fitting results are presented in Figure and Figure dependent on f. and
pj, and f, and h./h,, respectively. Determination coefficients are calculated as
R?> = 0.7501,0.6961,0.8106,0.6828,0.6150 for the surface fitted between strains
dependent on f, and p; while R? = 0.7143,0.8276,0.6721,0.7824,0.6349 for the
surface fitted to strains dependent on f. and h./h,.

A similar surface fitting application is employed for the shear stress values
corresponding to the damage index limit states. The resulting surfaces along
with the scattered data are presented in Figure and Figure for the
stress surfaces as three-degrees polynomials as functions of f, and p; and f. and
h./h,. Their goodness of fit is demonstrated by determination coefficients R* =
0.7291,0.8632,0.7924,0.8197,0.8803 for the shear stress surfaces as functions of f.
and p; while R?>=0.7512,0.9225,0.8367,0.7331,0.9078 for the shear stress surfaces

as functions of f, and h_/h,.

As a conclusion, specimens with lower reinforcement ratios demonstrated greater
sensitivity to concrete compressive strength. This was evident from a stronger
correlation between f, and shear strain outputs for the subdomain with lower
level reinforcement. Curve fitting studies involving shear strain and shear stress
further revealed that while stress curves had a better correlation with scattered data
compared to strain curves, data based on these curves displayed significant dispersion.
This suggests that an accurate prediction of the shear strain-stress curve requires a

sequential representation of all the limit states.

Surface fitting applications using cubic polynomials, which incorporated parameters
such as joint reinforcement ratio, aspect ratio, and concrete strength, were conducted
to address weaknesses in goodness of fit, particularly for shear strain values. Both
stress and strain surfaces demonstrated a generally high determination coefficient,
indicating good agreement with the data. As a whole, these findings underline
the fact that of considering multiple factors and using complex methodologies can
approximate better predictions but for the sake of simplicity and practicality, both
shear strain and stress values corresponds to the predefined limit states can be

predicted with acceptable accuracy using f, as the governing variable.
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Table 5.3 Descriptions of the fitted curves for simulation shear strain output based on

damage index approach

Variable Equation Coefficient  Value Lower Bound  Upper Bound R?
ya(fe) pl-f3+p2-f2+p3-f.+p4 pl —3.734x107% —5375x10"% —2.092x1078  0.5451
p2 6.229 x 1070 3.68 x107° 8.778 x 107¢
p3 —0.0003308 —0.0004502 —0.0002113
p4 0.01131 0.009718 0.01289
ys(f.) pl-f2+p2-f2+p3-f.+p4 pl —7.679x107%  —1.096x1077 —4.399x107®  0.5912
p2 1.289 x 107° 7.793 x 107° 1.798 x 1075
p3 —0.0006843 —0.0009229 —0.0004456
p4 0.02287 0.0197 0.02604
ve(fe) pl-f3+p2-f2+p3-f.+p4 pl —1.109x 1077  —1.596x 1077 —6.214x 107  0.4913
p2 1.846 x 107° 1.089 x 107° 2.603 x 107>
p3 —0.0009835 —0.001338 —0.0006289
p4 0.03392 0.0292 0.03863
yo(fe) a-exp(b-f.)+c-exp(d-f.) a 1.083 —-1.067 3.233 0.5561
b —0.3103 —0.4439 —0.1767
c 0.02556 0.02348 0.02765
d —0.001936 —0.003267 —0.0006046
ve(f.) pl-f2+p2-f2+p3-f.+p4 pl —1.898x 1077 —2.709x 1077 —1.088x1077 0.5136
p2 3.183x 107> 1.925 x 107° 4.441 x 107°
p3 —0.001701 —0.002291 —0.001112
p4 0.05736 0.04952 0.0652

Table 5.4 Descriptions of the fitted curves for simulation shear stress output based on

damage index approach

Variable Equation Coefficient Value Lower Bound Upper Bound R?

Ta(fo) a-fl+c a 13.78  —35.68 63.23 0.6711
b 0.1522  —0.198 0.5024
c —17.15 —72.44 38.14

75(f.) afl+c a 1.27 —0.684 3.224 0.7196
b 0.5448  0.2697 0.82
c —-1.382 —6.13 3.367

Te(f.) afl+c a 1.502  —0.8945 3.899 0.7233
b 0.5157  0.2353 0.7961
c —1.616 —7.045 3.813

Tp(fe) a-fl+c a 1.52 —0.6408 3.681 0.7425
b 0.5275  0.2759 0.7792
c —1.941 —6.976 3.095

Tg(f.) afl+c a 2.11 —1.007 5.228 0.6925
b 0.4763  0.2234 0.7292
c —3.166  —9.602 3.27
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Figure 5.27 Scatter and fitted equations for shear strain values, y,, (y) and concrete strength
values, f. (x) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D and (e) Limit E
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Figure 5.28 Scatter and fitted equations for shear strain values, T Xy (y) and concrete

strength values, f, (x) for (a) Limit A, (b) Limit B, (c) Limit C, (d) Limit D and (e) Limit E
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Figure 5.29 Strain prediction curves proposed for Limit A, Limit B, Limit C, Limit D and
Limit E

5.5.1.2 Material Strength Based Approach

Within the scope of this study, in addition to the approach based on the concrete
damage index, another approach based on the critical points of the material was
developed. In figure, scatter of the strain stress pairs corresponding to the states that
several limit states exceeded. These limit states are described as;

1. Limit I: Cracking of concrete, when the first principal stress exceeds the tensile
strength.

2. Limit II: Rebar Yielding, first plastic strains developed in rebars in any direction.

3. Limit III: Crushing of concrete, second principal stress exceeds the compressive
strength.

4. Limit IV: Maximum shear stress, state that maximum shear stress is observed
over history

5. Limit V: Ultimate concrete stress, state that 50% of compressive strength

achieved after softening plateau

In the Figure the shear strain shear stress pairs are scattered where the described
limit states are realized. The mean of the strain points where the whole population
reaches Limit A is 0.0012 with a standard deviation of 7e-04. The mean of the
strain points where the whole population reaches Limit B is 0.0060 with a standard
deviation of 0.0109. The mean strain values for Limit C, Limit D, and Limit E are
0.0019, 0.0017, and 0.008 with standard deviations of 0.0015, 0.0012, and 0.0093,
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Figure 5.30 Shear strain and shear stress pairs scattered where the described limit states are
occurred

respectively. In terms of shear stress in joint, the mean values for the entire population
are 13.6843MPa, 4.3329MPa, 13.2673MPa, 12.3657MPa, and 3.9978MPa for
Limit A, B, C, D, and E, respectively. The standard deviations for these limit points
are 5.0510, 7.3714, 6.5619, 6.1159, and 3.1413, respectively.

When the is analyzed in terms of shear stress, it is seen that the Limit I case is
spread in a wide band between 5MPa and 15MPa. This trend does not change for
Limit III and Limit IV. However, Limit V is found to take values in a narrower stress
band. Among these limit states, the propagation of Limit B is unique among the others,
as is its definition. While the other limit cases are defined in terms of concrete material,
Limit II is defined in terms of steel reinforcement yielding. Limit II, unlike the other
limit states, is spread over the entire stress band. In strain terms, strain values that
Limit I, Limit IIT and Limit IV are reached, are located in a narrow strain band, while

Limit IV and Limit V are spread over a wider strain field.

The relationship between the limit states (I-V) based on stress and the damage index
d,;,c was investigated. A scatter plot of shear stress damage index pairs, shown in
Figure [5.31] (b), was used to illustrate this relationship. Interestingly, the analysis
indicated that the correlations between shear stress and damage for Limits I, III,
IV, and V were quite weak. This was evidenced by the correlation coefficients of
0.0024, 0.0026, 0.0164, and 0.1123, respectively, suggesting an absence of a strong,
direct relationship between these two parameters. A similar trend was observed when
examining the relationships in terms of strain, with correlation coefficients of 0.0023,
0.1657, 0.2561, and 0.3015 for Limits I, III, IV, and V, respectively, further affirming
the lack of substantial correlation. However, a significant exception was observed

in the case of Limit II, which pertains to the yielding of the joint reinforcement.
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Figure 5.31 Damage index with respect to shear stress (a) and damage index with respect to
shear strain (b)

Here, a strong correlation was discovered between concrete strength f, and both
shear strain and shear stress, with a coefficient of determination (R?) of 0.8515
for shear strain and 0.9154 for shear stress. Such a robust correlation suggested a
potent linear relationship. This finding reveals that a strong direct relationship exists
between the yielding of the reinforcement bars and the damage definition based on
the concrete material. This finding may have practical implications, suggesting that
valuable insights into the overall health and status of the concrete material could be
provided by careful observation and monitoring of the strain and stress in the joint
reinforcement. Consequently, this understanding may be instrumental in predictive

maintenance and failure prevention in concrete structures.

The correlation between the deformation values of sub-domains, predicated on
their h./h;, and p; values, and the compressive strength of concrete is depicted
in Figure An interesting revelation made through this analysis is that the
specimens with moderate aspect ratios (b./b;,) demonstrate a higher sensitivity to
the compressive strength of concrete. This observation is valid irrespective of the
variations in the average reinforcement p; values, thereby establishing a consistent
pattern. Furthermore, a distinctive segment within the population, characterized
by aspect ratios ranging between 0.667 and 1.556, was identified. This sub-group
displayed unique characteristics in relation to the concrete compressive strength,
setting them apart from the rest of the population. With a similar reason explained in
previous subsection, no significant difference between various subdomains is observed
in terms of correlation coefficients, relation between concrete strength f. and shear

strength is not included.

However, it is worth noting that a residual segment of the population exists that falls

outside this distinctive group. When a correlation analysis was performed on the shear
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Figure 5.32 Coefficient of correlation between concrete compression strength f. of the shear
strains belong to different levels of average p and aspect ratio h./h,
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strain and stress responses from the simulation samples of this remaining segment,
an R? value of 0.4191 and 0.6116 were obtained. This is considerably lower than
the R? value of 0.6321 noted for the sub-domain with aspect ratios between 0.7364
and 1.556. This discrepancy suggests a more robust relationship between the aspect
ratios and compressive strength in the distinguished sub-domain, as compared to the

remaining population.

Table illustrates the proposed strain prediction equations for the limit states I to V
(y; to vy) as a function of the concrete compressive strength f.. Different functional
forms have been used for each limit state, reflecting the unique strain behaviors
observed. For y,(f.), a cubic polynomial form has been employed. The coefficient
values for p1, p2, p3, and p4 suggest that the response is highly sensitive to variations
in f., with the coefficients covering a wide range of magnitudes. The strain prediction
for y;,(f.), meanwhile, is modeled by a sum of two exponential terms. The wide range
of the coefficients of a, b, ¢, and d indicate complex exponential behavior, which
may be indicative of the nonlinear behavior typically observed in steel reinforcement
yielding. The function form used for v, (f.) is a power function. The parameter b
takes a wide range of values between 0.4919 and 12.8, suggesting that f, is raised to
a higher power, indicating a potentially high sensitivity to f.. For y;,(f.) and y(f.),
a cubic polynomial form is again used. The coefficients exhibit significant variability,

which, akin to y,;(f.), suggests a complex response to variations in f,.

Table presents the proposed stress prediction curves for the limit states I to V (7,
to T,), as a function of the concrete compressive strength f.. For all limit states,
a power function has been employed, indicative of the nonlinear stress responses
observed. For 7,(f.), the coefficients a, b, and ¢ have values spanning from negative
to positive, hinting at a complex relationship between stress and compressive strength.
The coefficient of b lies in the range 0.9252 to 1.543, implying that f, is predominantly
raised to the first power, while the wide range for ¢ may suggest a constant stress offset.
The 7,,(f.) curve, similar to 7,(f.), is modeled using a power function. The a and ¢
coefficients exhibit a wider range, signifying potential variation in the underlying data.
For 7,;;(f.), the coefficient b falls between 0.3001 and 0.7863, suggesting a less steep
response curve to f. changes. The coefficient ¢ varies widely, with a negative lower
bound, indicative of a possible shift in the stress response. The model for 7,,(f.)
shows a smaller value for b between 0.06381 and 0.6109, indicating a potential lower
degree of sensitivity to changes in f,. The coefficient ¢ varies from negative to positive,
possibly indicating a shifted baseline for the stress values. Finally, the 7, (f.) model
shares similar characteristics with 7;;;(f.) and 7,,(f.), with the b coefficient value

ranging from 0.2327 to 0.7993 and the c coefficient ranging from negative to positive.
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Fitted curves are shown with scattered data and 90% prediction bounds are given in
Figure and Figure As it was remarked in the results presented in Table
and Table stress curves significantly better correlation with the scattered data
compared to the strain curves.

Table 5.5 Strain prediction curves proposed for Limit I, Limit II, Limit III, Limit IV and Limit V

Variable = Equation Coefficient  Value Lower Bound Upper Bound  R?
YD) pl-f3+p2-fZ+p3-f.+p4 pl 8.061 x 10~ 6.733x 10~° 9.389 x 10~° 0.6154
p2 —9.033x107%  —1.11x107° —6.971 x 107°
p3 0.0002745 0.0001779 0.0003711
p4 0.001618 0.0003333 0.002903
v (f) a-ePfe fc.edfe a —4.191x107® —4.108x107°  3.27x107° 0.4685
b 0.08135 —0.01272 0.1754
c 0.01464 0.01344 0.01585
d 0.001705 —0.001702 0.005111
r(f)  a-fP+c a —3.028x1071®  —8576x107° 7.971x10°°  0.5631
b 6.647 0.4919 12.8
c 0.01411 0.01373 0.01448
riv(f)  pl-f2+p2-f*+p3-f.+p4 pl —9.742x 1078  —1.392x 10" —5.568x 10°°  0.6354
p2 1.61 x 107> 9.621x 107 2.259 x 107>
p3 —0.000846 —0.00115 —0.0005423
p4 0.02845 0.02441 0.03249
yv(f.) pl-f3+p2-fZ+p3-f.+p4 pl —2.147 x 10~ —2.975 x 10~ —1.319x 1077  0.5874
p2 3.555 x 107> 2.269 x 107> 4.84x107°
p3 —0.001862 —0.002464 —0.00126
p4 0.05951 0.0515 0.06751

Table 5.6 Stress prediction curves proposed for Limit I, Limit II, Limit III, Limit IV and Limit V

Variable Equation Coefficient Value Lower Bound Upper Bound R?
() a ff+c a 0.03635 —0.0163 0.08901 0.7151
b 1.234 0.9252 1.543
c 3.463 2.562 4.365
w(f)  a-fltc a 0.1634  —0.1122 0.4391 0.6841
b 0.9175 0.5742 1.261
c 2.795 0.9768 4.613
tn(f)  a-fP+c a 1.485 —0.5351 3.504 0.6512
b 0.5432 0.3001 0.7863
c —2.002 —6.89 2.886

tw(f)  a-fltc a 5.405 —4.472 15.28 0.7321
b 0.3374 0.06381 0.6109
c —8.7 —23.78 6.383

() aff+c a 1.459 —0.8922 3.811 0.6663
b 0.516 0.2327 0.7993
c —1.978 —7.308 3.351

The coefficients and their corresponding ranges reveal the complex, nonlinear
response of the system, while the different functional forms reflect the unique behavior
observed at each limit state. However, it should be noted that these models are subject
to the usual assumptions and limitations of curve fitting, and the ranges provided give

a measure of the uncertainty inherent in the fitting process.

As described in the previous subsection, the order of occurrence of limit states in a
prediction based on independent data must remain within the limits of logic. However,
since no gradual change of a variable is taken into account here, as in the definition
of the damage index, it is logically possible for all intermediate steps between Limit

I and Limit V to transition to each other. Therefore, in this part of the method, it is
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Figure 5.33 Strain prediction curves proposed for Limit I, Limit II, Limit III, Limit IV and
Limit V

advisable to use the strain and stress values of limit states B, C or D in the intermediate
steps. This can be seen by comparing the strain values corresponding to the boundary

states for different values of f, in the Figure|[5.33

5.6 Conclusion

In this chapter, the shear strain - stress envelope of reinforced concrete joints was
investigated through the utilization of advanced finite element method simulations.
The lack of unified experimental configurations in literature made it necessary to seek

alternatives for the statistical implementation of strain stress prediction models.

The need for a solution led to the exploration of artificial intelligence techniques
as a means to provide a connection between the physical characteristics of the
RC joint sub-assemblages and the resulting shear strain-stress outcomes. Although
these techniques often provide black-box solutions that can be effective in many
modelling applications, they usually offer limited insight into the characteristics of
the problem being defined. The approach in this study involved introducing a
specialized type of artificial neural network structure in regression applications while
also exploring basic statistical methods to establish a direct relationship between
the aforementioned quantities. The lack of abundant data samples in literature
necessitated the use of advanced finite element methods to create an accurate
statistical model. The application of finite element modelling techniques which
includes particularly sophisticated solutions for high-level nonlinear behavior of
concrete material helped overcome the issues encountered due to the diversity of

configurations, measurement techniques, design code alterations, and insufficient
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information about test setups in the existing literature. A calibration procedure for
the MPDP material model [[111]] was proposed, based solely on concrete strength, f.,
following the methodology introduced by Steinke et al. [247]. It was concluded that,
with the use of equations provided by Steinke et al. [247]] and this chapter, a test
specimen expected to have joint panel damage or coupled joint panel beam flexure

damage can be accurately simulated.

The generation of 1500 simulation samples under predefined assumptions was
executed, with the results being classified based on limit states defined by the concrete
material damage index and the exceedance of concrete or reinforcement material
strength. Regression techniques were applied to these outcomes, and it was concluded
that the shear strain-stress envelope of any given joint sub-assembly with a known
concrete strength can be predicted with acceptable accuracy. It was found that the
inclusion of auxiliary terms such as p; and h./h, could further enhance this accuracy.
However, for the sake of simplicity, the proposed equations were determined to be

adequate for the prediction of the mentioned quantities.

In conclusion, it was shown that the proposed equations are capable of calibrating the
MPDP material for use in joint specimens. Furthermore, the fitted equations from the
simulation results can predict the general characteristics of the joint shear strain-stress

envelope within acceptable limits.

Overall, a significant contribution has been made towards the practical applications
of joint modeling, with the insights gained from this work aiding in the further
understanding of the shear strain-stress behavior of RC joints. These findings
present opportunities for further refinement of these models and an expansion of

understanding in future studies.

Table 5.7 Mean and standard deviation for the damage index based approach and material
strength approach (Gamma y Variables)

Ya YB
Mean StdDev | Mean StdDev | Mean

Damage Index Based Approach 1.2510 0.4645 | 1.5010 0.5328 | 1.7747 0.6750
Material Strength Based Approach 1.2062 0.3806 | 1.3960 0.5904 | 1.4198 0.6787

Yc
Std Dev

Table 5.8 Mean and standard deviation for the damage index based approach and material
strength approach (Tau 7 Variables)

TA TB Tc
Mean StdDev | Mean StdDev | Mean Std Dev

Damage Index Based Approach 1.4644 0.5637 | 1.4703 0.5282 | 0.8645 0.2602
Material Strength Based Approach  0.9031 0.4213 | 1.5359 0.5478 | 0.9625 0.3364

157



In Table and Table mean values and standard deviations for ratio between
joint shear strain and stress predictions and experimental observations based on the
criteria defined in Chapter |4, The present definition was based on the geometrical
properties of the shear strain - shear stress curve, enabling the objective comparison
between experimental and simulated quantities. Even though the definition of the
curves based on the limit states give more comprehensive insight on the mechanics
of the joint deformation, due to the lack of reported objective information about the

experimental observations on the limit state exceedence.

In Table presenting the joint shear predictions, the Damage Index Based Approach
shows higher mean values for each of v,, v, and y compared to the Material Strength
Based Approach. This indicates that, on average, the Damage Index Based Approach
predicts higher gamma values, suggesting a more severe damage. However, the
standard deviation values for the Damage Index Based Approach are also consistently
higher, implying greater variability or spread in the predicted values. This could mean
that while the Damage Index Based Approach generally predicts more severe damage,

it also comes with a higher level of uncertainty in the predictions.

In Figure - comparison between experimental results and predicted
joint shear strain-stress curves of the specimens experimentally tested by various
researchers are given. Table displays the mean and standard deviation values
for the joint shear stress predictions. Here, a mixed picture is presented. For 7,, the
Material Strength Based Approach predicts a lower mean value with lower variability,
suggesting that it predicts less severe damage with less uncertainty. However, for 75
and 7., the Material Strength Based Approach predicts higher mean values, which
suggests it predicts more severe damage for these variables. In the case of 7,
the standard deviation is slightly higher for the Material Strength Based Approach,
implying slightly more variability or spread in these predictions. For 7., however, the
standard deviation is higher for the Material Strength Based Approach, suggesting a

higher degree of uncertainty in these predictions.

In summary, while the Damage Index Based Approach generally predicts higher levels
of damage (as reflected in the shear strain and stress variables), it also exhibits higher
variability, suggesting greater uncertainty in these predictions. The Material Strength
Based Approach, on the other hand, shows mixed results with lower predicted levels
of damage for some variables, but higher predicted levels for others. It also exhibits a
generally lower degree of variability, indicating less uncertainty in these predictions.
These considerations should be taken into account when choosing between these two

approaches for predicting damage in reinforced concrete joints.
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6

CALIBRATION OF JOINT MODEL THROUGH GENETIC
ALGORITHM

6.1 Overview

Building on the detailed discussions in Chapter the goal is to construct a
mathematical model that is expected to be capable of predicting the inelastic response
of any reinforced concrete joint with known basic physical properties. The model’s
purpose extends to its application in practical design and evaluation tasks. Apart from
incorporating the envelope parameters estimated in the previous sections, it is also
necessary to estimate the deterioration parameters. These parameters are critical in

controlling the responses to cyclic loads.

In this chapter, a calibration method for the deterioration parameters (referred to
as deteriorationParams) is proposed based on the collection of artificial intelligence
algorithms. The objective is to estimate the deterioration parameters that control
the joint panel shear deformation envelope for each experiment. Two methods are
employed for parameter estimation: the Finite Element Method using the MPDP
material model, introduced in Chapter [5] and generalized regression neural networks

trained using experimental results, as discussed in Chapter [4

The process begins by estimating the model parameters for each experiment using
the aforementioned methods. Next, a set of deteriorationParams is generated for
each experiment using Latin Hypercube Sampling (LHS). These deteriorationParams
populations serve as the initial generation. The joint sub-assemblage model,
constructed using the reported features, is then simulated using the simulation

framework introduced in Chapter

The simulated responses of the joint sub-assemblage model representing each sample
introduced in Table are compared to the experimentally observed responses. A
different experimental database is used in this process, since the all the samples of
database used in Chapter[5|and Chapter[4]did not apply cyclic loading procedure. The
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fitness or error of each simulation is assessed using several criteria explained in Section
Error assignment involves adopting two different methods: in the first, the error
is directly evaluated based on the simulation results while in the second method, a
relatively larger initial population is created, and an error meta-model is generated

using artificial neural networks.

Based on the criteria introduced in Section multiple objectives are evaluated,
and the simulation that leads to the least error is determined using a non-dominated
sorting algorithm. In the generations following the initial population, simulations
for the new population are performed through the direct method in the first
error assessment method (Method I). In the second method (Method II), the error
meta-model is evaluated in each run. The deteriorationParams set that provide the best
solution for each experimental test are listed and statistically investigated to establish
a relationship between the physical features of the joint sub-assemblage. Nonlinear

regression results are presented to analyze the obtained data.

This chapter presents a comprehensive method for calibrating deterioration
parameters using artificial intelligence algorithms. The approach combines parameter
estimation techniques, simulation frameworks, and error assessment methods to find
the optimal solution for each experimental test. The results obtained provide valuable
insights into the relationship between the physical features of the joint sub-assemblage

and the corresponding deterioration parameters.

6.2 Problem Definition

A sub-assemblage is a portion of a moment frame isolated at approximate zero moment
sections. General configuration a simulation model representing a testing unit is
presented in Figure In both exterior and interior joint models, both translational
degrees of freedoms are fixed at the bottom column end while vertical translation is
free at top column to allow axial loading. The cyclic displacement load is applied to
the free beam ends.

In the given experimental setup configuration, experimentally measurable parameters
(concrete strength (f.), longitudinal reinforcement in beams and columns (p;,p.),
transverse reinforcement in beams, columns and joint region (o, P.;> P;j.), section
width and height in beams and columns (b,,h;,b.,h.) and clear length of beams and
columns (L,,L.) are typically reported for the available test results in the literature.
Despite the uncertainty consisted in the measurement of these quantities, these

parameters are considered deterministic.
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Figure 6.1 Idealization of the experimental setups for (a) interior and (b) exterior reinforced
concrete frame joints

Concrete material properties are defined with uniaxial Kent-Scott-Park Model [[33]
which considers linear unloading/reloading stiffness and no tensile strength. Confined
concrete properties are derived through the definition of unconfined concrete and
provided reinforcement at any section according to Scott et al. [[33] confinement
model. In steel reinforcement, Menegotto and Pinto [[219]] steel model with isotropic
strain hardening material model is used. Beside the basic characteristic parameters
representing the bilinear load-deformation response curve of reinforcement steel
material, a group of parameters are required to control the transition between elastic
and plastic regions which has a strong impact in the hysteresis unloading and reloading
behaviour. These parameters denoted by RO, CR1, CR2 and al —a4 are considered as

deterministic scalars of their recommended values [[220].

Along with the deterministic input parameters representing measurable features of an
arbitrary joint sub-assemblage, and prediction of the general characteristics defined
with envelopeParams which are discussed in Chapter |4/ and Chapter |5 a complete
mathematical representation with pinching4 in OpenSees require proper estimation
of the damage rule defined in Equation - This process require proper
estimation of aforementioned deteriorationParams which is inherently challenging due
to the large number of combinations of the governing parameters and corresponding
outcomes. Descriptions and bounds observed in the previous studies available in the
literature are presented in Table

In estimation of these parameters, conventional trial-error procedure is often followed

in the literature, as it is discussed in further detail in Chapter However, examination
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Table 6.1 Description and bounds of the deteriorationParams

Parameter Description Bounds
rDisp Pinching displacement reloading parameter 0.0 — 0.4
rForce Pinching response reloading parameter 0.0—-04
uForce Pinching response unloading parameter 0.0—0.25
gK,—gK, Hysteresis stiffness degradation parameter 0.0—-1.0
gD, —gD, Hysteresis displacement degradation parameter 0.0—-1.0
gF,—gF, Hysteresis response degradation parameter 0.0—-1.0
gE Hysteresis energy degradation parameter 1.0—-10.0

of the common approach reveals the lack of rational prediction through principles
of structural mechanics in the numerical representation of stiffness and strength
degradation phenomenon in reinforced concrete joints. Moreover, the same approach
has led to the use of existing equations (see Equations - controlling
deterioration only for the purpose of matching simulation results with experimental
observations, thus ensuring full dependence on experimental results. The fact is,
however, that there are practically no experimentally reported observations for each
joint region sample for which civil engineers have to estimate inelastic responses

during structural design or evaluation.

6.3 Methodology

The methodological framework presented in this chapter follows a structured and
systematic process, ensuring a comprehensive exploration of the parameter space.
Initially, an experimental database is compiled, encompassing only those specimens

subjected to a cyclic displacement procedure.

Distinct from the experimental database used in the previous two chapters, the
experimental database to be used for the intended purpose should include reported
observations of cyclic loading protocols. A new database is collected from the available
literature and the detailed information about the model parameters described
experimental setups is given in Table Interior joint sub-assemblages of 52
different configurations tested by Fernandes [248], Lee et al. [249]], Alaee and Li [250]],
Pantelides et al. [251]], Liu [[252]], Noguchi and Kurusu [[253]], Dhakal and Pan [254]],
Xin et al. [255|], RaffaelleE and Wight [[256]], Kurose et al. [257]], and Kusuhara and
Shiohara [|258]], 45 different exterior joint sub-assemblage tested by Tsonos [|8]], Kaku
and Asakusa [|52], Ehsani and Alameddine [|54], Shafaei et al. [214]], Ehsani and Wight
[259], Ehsani et al. [260], and Chutarat and Aboutaha [|261]] are used as experimental
database.

Subsequently, their envelope parameters are predicted utilizing the dual
methodologies proposed in Chapters (4 and [5. A crucial aspect of the methodology
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is the adoption of Latin Hypercube Sampling to sample deterioration parameters,
aiming to achieve a comprehensive coverage of the sampling domain. The efficacy
of LHS lies in its ability to ensure a uniformly distributed and representative sample
across the entire problem space, thereby reducing the risks associated with overfitting

or underfitting and enhancing the robustness of the derived models.

Subsequently, OpenSees models are built by the collected information, the predicted
shear strain-stress curve, and randomly sampled deterioration parameters. Each
simulation sample is then evaluated based on predefined error (or fitness) criteria,
and a new generation of deterioration parameters is created following the principles
of the non-dominated sorting genetic algorithm. The algorithm iteratively seeks
the optimal solution until the convergence criteria are satisfied. Following this
optimization process, the obtained deterioration parameters are associated with the
physical features of the experimental specimens. This leads to the establishment
of relationships between the measurable features of joint sub-assemblies and the
detected deterioration parameters. The resulting correlations provide valuable
insights, paving the way for more accurate and efficient prediction and analysis in
future research and applications. In the subsections of this section, essential aspects

of the developed methodology are introduced.

6.3.1 Parameter Sampling

Training data preparation is a critical step in the effective implementation of both
feed-forward neural networks (FFNNs) and regression models, particularly in cases
where the ability to design the learning database exists. In such instances, one does
not merely rely on collected data, but can leverage the power of generated data,
enabling the creation of rich, diverse, and balanced datasets. In this regard, the data
generation process becomes a potent tool, enabling the provision of comprehensive
and representative training sets which can facilitate improved learning and modeling
of intricate underlying relationships. Along with the quality of data, the method
employed for training sample selection is also of significant importance. Techniques
such as Latin Hypercube Sampling (LHS) play a pivotal role in ensuring a uniformly
distributed and representative sample from the entirety of the problem domain.
This balanced sampling approach mitigates the risks of overfitting or underfitting,
enhancing the robustness of the derived models. As such, the thoughtful design
and generation of the training database, incorporating effective sampling strategies
like LHS, are vital to enhancing the accuracy and performance of both FFNNs and

regression models.

In Figure two subfigures are observed, illustrating the performance of
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feed-forward neural networks (FFNNs) in approximating a given true function, which
is represented by a blue solid line. The effects of different training sample selection
methods, namely uniform random sampling and Latin Hypercube Sampling (LHS),
on the approximation accuracy are demonstrated by the subfigures. For the sake
of clarity and visualization, a complex test function is selected and expressed as
flx) = Zfl exp(a*(x —b)?) where a and b are arbitrary scalars (e.g. N = 4,
a=[5-1,-3,-1], b =[-3,—6,—8,—11]). In the Figure[6.2](a), the true function
is compared with several approximation functions, which are derived from FFNNs
with varying numbers of hidden layer neurons. These approximation functions are
depicted as dashed lines of different colors. The training samples are generated by
having random numbers drawn within the function’s domain, following a uniform
distribution. While some of the approximation functions closely follow the true
function, a higher degree of deviation is exhibited by others, indicating the varying
performance of the FFNNs with different architectures. In contrast, the performance
of FFNNs with the same architectures as in the Figure[6.2] (a) is presented in the Figure
[6.2] (b), but the training samples are now selected using LHS. This sampling method
ensures that the training dataset is more evenly distributed across the entire input
space, thus reducing the likelihood of overfitting or underfitting. As evident from
the Figure (b), a much closer adherence to the true function is exhibited by the
approximation functions provided by the FFNNs trained with LHS samples, compared
to their counterparts in the 6.2} (b).

By providing a more balanced and representative set of training samples, LHS
allows the neural networks to learn the underlying patterns of the true function
more efficiently The utilization of LHS for sample selection in training dataset
preparation can lead to improved performance and generalization in feed-forward

neural network-based approximations, as demonstrated by the findings.

During the training of a feedforward neural network (FFNN), the weights and biases
are adjusted to establish a relationship between the inputs and outputs presented in
the training dataset (as explained in Section [2.4.1)). The performance of the network
is evaluated using an error function (such as mean squared error) by comparing the
neural network response to the desired output. However, according to Celikoglu
[262], FFNNs may struggle to find a global optimum solution or require a large
amount of training data when many input parameters are involved, even when using
advanced optimization algorithms (e.g., Newton or Levenberg-Marquardt). In such
cases, finding an effective neural network structure (e.g., number of input and hidden
layers, number of neurons, activation function) may require significant effort through
trial-and-error. Additionally, Cigizoglu and Alp [263]] notes that the accuracy of the

neural network is heavily dependent on the random initialization of the input weights.
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Figure 6.3 Approximation to selected true function by GRNN through points sampled
through the domain with (a) uniform distribution (b) Latin Hypercube Sampling

Furthermore, depending on the dataset and target, a unique FFNN structure may be

required for each target parameter, as one structure may not be effective for all targets.

Figure presents two subfigures comparing the performance of Generalized
Regression Neural Networks (GRNNs) with varying spread parameters (o), using
uniform random sampling and Latin Hypercube Sampling (LHS) for training sample
selection. The results highlight the superior approximation accuracy achieved by
GRNNs trained with LHS samples, emphasizing the importance of LHS in enhancing

performance and generalization in GRNN-based approximations.

6.3.2 Error Definition

In the evaluation of simulation accuracy, several critical fitness or error criteria are
considered based on the investigation of experimental specimens listed in Table

which offer a comprehensive understanding of how closely the simulated response
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matches the experimentally observed response.

The first criterion, maximum strength (f;), refers to the highest lateral load the
sub-assemblage can resist. This measure is essential because it directly corresponds
to the sub-assemblage’s load-bearing capacity, a crucial factor in determining the

robustness of the simulated response.

The second criterion is the drift at maximum lateral load (f,), a measurement derived
from the ratio of the lateral displacement at the column top to the total height of
the sub-assemblage when the load is at its peak. This metric provides insight into
the structural deformation under the maximum load, thereby revealing the structural

integrity of the simulated response under peak stress conditions.

The strength loss at the last cycle (f;), which signifies the reduction in strength from
the maximum during the final load cycle, is the third criterion. This quantifies the
progressive deterioration of the structure’s load-bearing capability over successive load
cycles, providing crucial information about the simulation’s depiction of structural

fatigue.

The fourth and fifth criteria are derived from the load-displacement history of the
specimen. Tangent stiffness (f,) offers a measure of the rate of change of loading
with respect to displacement. It is influenced by multiple factors, including behavior
within the joint core and the flexural stiffness of the beams and columns. Unloading
stiffness (f5), on the other hand, is indicative of the stiffness deterioration of the
specimen linked to inelastic response within the joint core. Both measures offer vital
information about the load-displacement characteristics and the stiffness deterioration
of the structure under simulated conditions. The final criterion, (fg), is the convex hull
area of the load deformation history which has a particular importance to represent

the accuracy in terms of pinching.

In conclusion, these six criteria, while individually providing unique insights into
various aspects of the simulated structural response, collectively give a comprehensive
understanding of how well the simulated response mirrors the experimentally
observed response. As such, they serve as critical benchmarks for evaluating the

accuracy of the simulations. Illustrative representation of the criteria is shown in

Figure

One of the most essential aspects affecting the quality and accuracy is the definition
of error or the fitness of the each individual simulation sample. In the present study,
two approaches are proposed; the first defines the optimization problem based on the

minimization error defined by one criterion, or the norm of the defined criteria. This

166



200

tang‘ent stiffness

150
fi

100 -

VA

50 | % |
f,

50 F unTloading stiffness

fs

Reaction Force (kN)
o

fy
-150 F cycles 7

-150 -100 -50 0 50 100 150
Displacement (mm)

Figure 6.4 Illustration of the error definitions used in multi-objective error minimization
problem

approach corresponds to a uni-objective unconstrained optimization problem which
requires less sophisticated solutions compared to the second. The second approach
aims to minimize a collection of error criteria simultaneously. In the result section,

effect of the objective definition is investigated.

6.3.3 Optimization Problem

In the present study, the proper modeling of an arbitrary joint sub-assemblage is
defined as an optimization problem where the best solution is aimed and the de-
teriorationParams leading to the optimal solution. After assessment of the deteri-
orationParams for the all specimens introduced in Table factors affecting the
alteration of the members of this parameter set and its sensitivities to the joint features
are investigated.

Among many, genetic algorithms are often adopted for such parameter identification
problems [[129]. One of the biggest benefits is that they can search the entire solution
space which is particularly helpful in avoiding local optima, which are points that look
like the best solution within a small sub-domain. What sets genetic algorithms apart is
their adaptability. Genetic algorithms are not rigid, but rather capable of evolving over
time, adjusting to changes in the problem space. This makes them particularly useful
for dynamic optimization problems where the optimal solution might shift as time
progresses. In addition, genetic algorithms shine due to their problem-independent
nature. They don’t demand specific knowledge about the problem in order to

find solutions. As long as a fitness function is provided to guide the evolutionary
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process, genetic algorithms can be employed to solve a wide array of optimization
problems. Genetic algorithms are well-equipped to handle non-linear parameters and
discontinuous search spaces, thanks to their robustness and flexibility. Even when
a problem has complex interactions between variables, or numerous local optima,
genetic algorithms can still navigate the solution space effectively. Notably, they also
excel at multi-objective optimization. Through techniques like Pareto optimization,
genetic algorithms can find solutions that optimize several conflicting objectives at
once [|146].

In the mathematical representation of the joint deformation problem, the i-th

simulated response in the j-th population is expressed as

vij = f(dj, ¢ij»8ij» Pij» £), L € [ 1, nl?,je€[1,m]’ (6.1)

where d s;; and p;; are vectors of input parameters related to model dimensions,

NG
1j> “ij>
concrete material, steel (reinforcement) material and pinching4 material respectively

and f stands for structural analysis operator. While the d;;, ¢;; and s;; are consisted

jo
of only deterministic scalar variables, p;; consists of both deterministic scalars (pfj”)
and a set of random scalars (pl.rlfmd) which were recommended to be fitted to the

experimental data.

The fitness of each simulation sample g;; is defined as the squared error between

simulated (vij(t)) and experimentally observed (v,,,(t)) response (the objective

exp

output defined in terms of various response quantities in the previous section).

gij(vij’ Vexp) = (Vij - vexp)z (6.2)

The calibration process is adopted as an optimization problem that targets to minimize
the fitness function. The squared error is used to define fitness to overcome the
issue related to the fact negative error values may lead to inaccurate predictions of

simulations’ fitness.

After generation of the j-th population of n converged solutions, each sample is sorted
in the respective order of their normalized fitness (¢) values. p, € [0,1]" is a random
variable to be returned for each selection while F(§ = P(fg) < p,)) corresponds to
the selection case where F is the cumulative distribution function. Since simulation
samples with less fitness values have higher F(g) values returned, thus have greater

chance to be selected in comparison with the other simulation samples.
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After random selection of parent simulation samples, new sets of simulations samples
(referred as child) of the next generation are generated with the crossover process.
Probability of crossover is defined as P(p, € [0,1]% < p.) and exceedence of a given
threshold p. (typically assigned a high value e.g. 0.9 to enhance variation in solutions)
corresponds to realization of generation of new random parameters deriving from

selected solution samples.

Y =By, +A=PB) -y, (6.3)

where a and b are indices of selected samples, f € [0,1]} is a random parameter
that controls contribution of parameters from genes and superscript indicates the
kth component of model parameter vector. At last, generated model parameters
(genes) are mutated to a value randomly generated within the sampling interval with
probability defined as P(p,, € [0,1]% < p,,) to expand solution domain. Members of
the mth population are expected to be consisted of the solution samples with the least

€ITOTr.

6.3.4 Multiobjective Optimization

Use of more than one objectives in optimization process turns the case to a
multi-objective optimization problem. Within the scope of the present study,
a collection of functions has been developed and implemented for the purpose
of addressing multi-objective optimization problems as needed. These functions
have been designed to be compatible with MATLAB’s built-in ’gamultiobj’ function,
which utilizes the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for
solving multi-objective optimization problems [264]. Performance evaluation of the
optimization process is carried out by monitoring the hypervolume metric across
successive generations. This metric offers valuable insights into the convergence and
diversity properties of the algorithm, thereby facilitating the assessment of the quality

of the Pareto front approximations obtained during the optimization process.

A generic function is introduced to describe essential concepts used in the optimization
process used in the present study. To evaluate the performance of the developed
methodology, the well-established ZDT1 test problem (Equation ??) has been
employed as a benchmark [[265]]. This particular test problem has been extensively
utilized in the literature for assessing the efficacy of various optimization algorithms.
The ZDT1 function is challenging to optimize because it exhibits both convex and
non-convex regions in the search space. The non-linear nature of the second objective

function also adds to the difficulty. Therefore, optimization algorithms need to
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be able to balance between exploring the search space to find diverse solutions
and exploiting the solutions found to improve the objective values. Because of its
complexity and difficulty, ZDT1 is widely used as a benchmark test function in the

field of multi-objective optimization.

NSGA-II is an extension of the classical genetic algorithm framework, incorporating
several key modifications to enhance its ability to address multi-objective optimization
problems. These include a fast non-dominated sorting procedure, an elitist
preservation strategy, and a crowding distance sorting mechanism. By integrating
these features, NSGA-II effectively balances the exploration and exploitation aspects
of the search process, allowing it to converge to the Pareto-optimal set more efficiently.
A primary advantage of NSGA-II is its ability to generate a diverse set of Pareto-optimal
solutions. This diversity stems from the crowding distance calculation, which serves
to estimate the density of solutions surrounding a given individual in the objective
space. By incorporating this measure into the selection process, NSGA-II promotes
a more uniform distribution of solutions along the Pareto front, thereby enabling
decision-makers to identify a wider range of trade-offs between conflicting objectives.

An illustrative flowchart of NSGA-II algorithm is presented with Figure [6.5

Regardless of the used algorithm, in multi-objective optimization, the Pareto front is
described a set of solutions that are not dominated by any other solution in terms of
all objective functions. Specifically, a solution is Pareto optimal if there is no other
solution that is better in all objectives, and there is at least one objective in which the

other solution is worse. The Pareto front is the set of all Pareto optimal solutions.

The Pareto front is a useful tool for decision making, as it represents the trade-offs
between the different objectives. A decision maker can choose a solution from
the Pareto front based on their preferences or priorities for the different objectives.
Figure displays the Pareto fronts of different generations during the optimization
process. The x-axis represents the first objective, while the y-axis represents the second
objective. Each dot represents a solution, and the Pareto fronts are shown in different
colors. As the optimization progresses, the Pareto fronts move closer to the true
Pareto front, which might be not available in all cases. The figure demonstrates the
convergence of the optimization algorithm towards the true Pareto front and provides

insight into the trade-offs between the different objectives.

In a Pareto front, there is no single "best" solution that dominates all others in terms
of all objectives. Instead, the best solution for a particular decision maker or problem

depends on their preferences and priorities for the different objectives.
One approach to finding the best solution among a Pareto front using Euclidean
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Figure 6.6 Pareto front of bi-objective ZDT1 problem

distance to the origin is to first normalize the objective values of each solution in
the Pareto front by subtracting the ideal solution and dividing by the range between
the ideal solution and the Nadir point. This normalization transforms the Pareto front
into a unit hypercube centered at the origin.

Supposing a Pareto front with m objectives and n solutions. Let y; € R™ denote the
objective values of the i-th solution in the Pareto front, where i =1,...,n.

ideal

Ideal solution y'4** and the Nadir point y"*¢" are defined as follows:

ideal

yeer = Elllin N (6.4)
ynadir — .EI}aX y; (65)

Next, objective values can be normalized of each solution in the Pareto front as follows:

ideal

Yy
Yi = Jredir —yideat (6.6)

This normalization transforms the Pareto front into a unit hypercube centered at the

origin. Then, the Euclidean distance can be calculated of each solution to the origin
as follows:
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(6.7)

The solution with the smallest Euclidean distance to the origin is considered the best

solution among the Pareto front in terms of Euclidean distance:

i* =arg _Irllin d (6.8)

The best solution among the solutions in the Pareto front of the last generation is
remarked in yellow in Figure

6.3.5 Performance Metrics and Validation

Generational Distance (GD) and Hypervolume (HV) are two popular performance
indicators used to evaluate the quality of solutions obtained from multiobjective
optimization algorithms. They provide quantitative measures of the performance of

the algorithms and help in comparing their effectiveness [266].

Generational Distance is a measure of the average distance between the obtained
Pareto front and the true Pareto front while Hypervolume is a measure of the size
of the space dominated by the obtained Pareto front. It quantifies the convergence
of the algorithm towards the true Pareto front. Both Generational Distance and
Hypervolume are valuable performance indicators in multiobjective optimization.
While Generational Distance focuses on convergence to the true Pareto front,
Hypervolume takes into account both convergence and diversity of the solutions. By
tracking the indicators over generations, you can observe how the algorithm converges
towards the true Pareto front. If the hypervolume value increases rapidly at first
and then starts to plateau, it'’s an indication that the algorithm has converged to a
reasonable approximation of the Pareto front.

In most inverse analysis problems, analytical form of objective functions may not
be available thus true Pareto front is unknown. Deb and Jain [[267] remark the
limitations of generational distance and propose the use of hypervolume as a more
suitable performance indicator, especially when the true Pareto front in such cases.
The authors argue that hypervolume has some desirable properties that make it a

convenient choice for evaluating the quality of the Pareto front approximations.

Hypervolume provides information about both the convergence of the algorithm
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Figure 6.7 Histogram of the norm of error vector minimized for the entire dataset through
uni-objective optimization (Method I)

(how close the obtained Pareto front is to the true Pareto front) and the diversity
of the solutions (how well the solutions are spread along the Pareto front). A larger
hypervolume indicates better performance in terms of convergence and diversity. To
calculate the hypervolume, a reference point is required, which should be strictly
worse than any point in the true Pareto front. The hypervolume is then calculated as
the volume of the space enclosed between the obtained Pareto front and the reference

point.

6.4 Results

In this section, the optimization processes carried out with different objective
functions and modelling approaches are evaluated in terms of efficiency and obtained
coefficients. In these processes, firstly, the problem is considered as a single
objective function optimisation problem and the optimum result is sought by using
the modelling approaches presented in Chapter [4and Chapter[5| The single objective
function chosen can be defined as the norm of the vector of scalar values of the criteria
defined in Section[6.3.2] The operation carried out here is referred to as Method I. In
the second part of the analysis, the aim is to simultaneously minimize the quantities
constituting the error vector as separate objective functions. Similar to Method I, both

GRNN predictions and equations obtained from FEM are used as modelling approach.

Since the accurate prediction of the cyclic response in both methods depends to a great
extent on the correct estimation of the envelope curve, an objective comparison can

only be made on the results using the same assumptions.
Firstly, in order to compare the effectiveness of both approaches, Figure |6.7H6.9)
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Figure 6.8 Histograms of the objective functions minimized for the entire dataset through
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Figure 6.9 Histograms of the objective functions minimized for the entire dataset through
multi-objective optimization (Method II) based on the GRNN predicted shear strain stress
curve
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show the lowest relative error (see Section obtained in simulations with 50
generations of 50 individuals each, for each sample in the database characterised in
Tables and The distributions of the relative error vector generated from the
defined criteria f; - f, for the two different modelling approaches performed in Method
I are given in Figure Accordingly, it is seen that the results obtained from the
optimisation scheme based on the envelope estimation with GRNN can obtain more
convergent results at the same number of function cycles compared to the models
based on the envelope estimation with FEM. In the results obtained with FEM, there
are also results around 20% in the relative error vector, whereas there are very few
simulation examples with errors beyond 5% relative error in the results obtained by
GRNN.

Secondly, the relative error distributions obtained as a result of the multi-objective
optimisation process based on the joint deformation envelope obtained by FEM in the
Method II application, which includes 6 different objective functions, are shown in
Figure According to this, it is seen that the function f;, which is based only on
the strength value, converged to the minimum values for most of the specimens, and
the objective functions remained far from the acceptable convergence range within
the defined number of function cycles. On the other hand, it is seen in Figure that
with the error minimization process carried out over the joint deformation envelope
predictions made by GRNN, relative errors at reasonable levels can be obtained for
almost all discrete objective functions within the defined number of common function

cycles.

Accordingly, it is obvious that running both optimization methods with the predictions
made with GRNN is more efficient. In the comparison of the optimisation processes
carried out with Method I and Method II using the predictions from GRNN, it can
be suggested that more convergent results can be obtained with the multiobjective

optimization process based on the relevant results.

6.4.1 Estimation of deteriorationParams

Due to the nature of the problem, it is not entirely possible to relate the results obtained
as a result of the optimisation process carried out in this chapter to measurable
quantities describing the simulation models, or the corresponding experimental
samples, as was done in Chapters 4{ and [5, Since the set of parameters obtained in
each solution work together to create a damage description, it is not acceptable to
relate the parameters obtained separately from the individual solutions to different
quantities. Nevertheless, it is still possible to make certain inferences by examining

the outputs obtained through the optimization process of these parameters.
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Figure 6.10 Histograms of the pinching parameters resulted from the optimization
procedure of Method II GRNN approach

In Figure strong accumulations are observed between the values of 0.20 - 0.25
for the pinching parameters rDisp, rForce while uForce is highly dissipated along the
sampling space. However, no distinguishable difference is observed based on concrete
strength f., reinforcement ratio p;, aspect ratio b/h or joint type. On the other hand
the distribution of second to fourth terms of cyclic unloading stiffness degradation
parameters (gK2,gK3,gK4), cyclic reloading stiffness degradation parameters
(gD2,gD3,gD4), cyclic strength degradation parameters (gF2,gF3,gF4) and
maximum energy dissipation under cyclic loading parameter (gE) have shown very
large variance almost approximating an uniform distribution along the space. The
dissipation of the parameters along the sampling interval can indicate the low

sensitivity of the simulation model to the listed parameters.

When the distribution of the parameter gK1, which is outside the listed parameters,
is examined separately according to the type of the joint area, it is observed that the
values best approximating the result form two distinct clusters as it is shown in Figure
The data for the interior joints varies significantly, suggesting a diverse range of
behaviors within this category. The values, while predominantly centering around the
mid-range, have a wide span. Conversely, the gK1 values for exterior joints appear to
be generally higher, indicating a potential difference in the behavioral characteristics
between interior and exterior joints. This observation might suggest that exterior
joints generally exhibit higher gK1 values.

A similar clustering is also present for the gD1 values, albeit in a more variant form.
When a distinction is made specific to the type of joint, a notable separation is observed
in the distribution of parameters that yield convergent results. Upon analyzing the

gD1 values for interior and exterior joints, we can observe a couple of distinct features.
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Figure 6.11 Histograms of gK1 parameters resulted from the optimization procedure of
Method II GRNN approach split data based on the joint type

For interior joints, the data seems to vary more widely than that of exterior joints.
The mean value for gD1 for interior joints is approximately 0.39, suggesting that
most of the data points cluster around this value. However, the standard deviation of
approximately 0.17 indicates a high level of variance, showing that the data is spread
out over a large range. The minimum and maximum values lie between approximately
0.07 and 0.78 respectively, thus indicating the wide dispersion.

On the other hand, for exterior joints, the mean value is around 0.72, which is
significantly higher than that of interior joints. This suggests that the gD1 values for
exterior joints tend to be higher on average. The standard deviation is approximately
0.20, indicating a more spread out data set than the interior joint data, but also, it is
consistent with the larger mean value. The minimum and maximum values span from
approximately 0.30 to 1.00.

The gF1 parameter exhibits a certain level of consistency across both interior and
exterior joints, indicating that this specific parameter might not be significantly
influenced by the joint type. The parameter is characterized by a relatively low mean
value of around 0.15, suggesting that the majority of gF1 values are clustered in
this region. Furthermore, the standard deviation of 0.21, though higher than the
mean, indicates a reasonable level of dispersion around this mean value. However,
it is noteworthy to mention that no discernible patterns or clusters specific to either
interior or exterior joints have been observed within the data for gF1. This signifies
that the gF1 values remain relatively consistent regardless of the joint type, hinting at
a level of universality for this particular parameter across different types of joints in the
studied system. This can be an intriguing area of study to understand the underlying

factors causing such uniformity and its implications on the overall behavior of the
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Figure 6.12 Histograms of gD1 parameters resulted from the optimization procedure of
Method IT GRNN approach split data based on the joint type
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Figure 6.13 Comparative presentation of experimental and simulated responses for
Specimen 1B [259], (a) Optimized deteriorationParams through Method I GRNN Approach
(b) Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72

system.

6.4.2 Numerical Examples

The conclusions drawn from the findings of this section are tested on an experimental
set, with an optimised interior and exterior joint sub-assemblages. In the previous
section, it was evaluated that it was appropriate to use the norms of both criteria as
the objective function in the genetic algorithm in the evaluation made on the relative
errors obtained over the whole data set through scatter plots. In Figure [6.13](a), a
simulation result obtained with the Method I GRNN approach is shown in comparison

with experimental observations reported by Ehsani and Wight [[259] about Specimen
1B.
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Figure 6.14 Comparative presentation of experimental and simulated responses for
Specimen LL1 [54]], (a) Optimized deteriorationParams through Method I GRNN Approach
(b) Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72
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Figure 6.15 Comparative presentation of experimental and simulated responses for
Specimen LL1 [[53]], (a) Optimized deteriorationParams through Method I GRNN Approach
(b) Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72

Figure [6.13] (b) shows the result of a simulation with the proposed values of the 4
effective parameters (rDisp = 0.2, uDisp = 0.2, gK1 = 0.65 and gD1 = 0.72) for
an external joint region without optimisation based on simple estimations based on
inferences made from the distribution of the parameters. Comparison between error

norms between two simulations lead to 21% increase in the relative error.

Figure[6.14] Figure[6.15]and Figure[6.16|show the optimized and predicted simulation
responses in comparison with experimental measurements reported by Ehsani and
Alameddine [[54], Kaku and Asakusa [[53]] and Kaku and Asakusa [52] in respective
order. Commonly, Method I with GRNN approach is used for joint deformation
envelope prediction.
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Figure 6.16 Comparative presentation of experimental and simulated responses for
Specimen 6 [[52], (a) Optimized deteriorationParams through Method I GRNN Approach (b)
Predicted through rDisp = 0.2, uDisp = 0.2, gK1 = 0.30 and gD1 = 0.39

6.5 Conclusion

In conclusion, this chapter has conducted a thorough investigation into the application
of genetic algorithms for the problem of reinforced concrete joint modelling.
Two distinct genetic algorithm forms were employed and the divergence between
simulated and observed responses was systematically classified to delineate different
aspects of joint deformation characteristics. A meticulous search was undertaken for
the parameter set that would yield the minimum error.

The techniques applied were twofold: the first method aimed for the minimization
of the norm of the error criteria (Method I), while the second one took a more
complex approach in minimizing all the objective functions simultaneously using the
principles of NSGA-II (Method II). Both techniques were tested using two different
joint deformation prediction models proposed in the preceding chapters, with findings
indicating superior accuracy from the GRNN-based prediction model.

The results clearly indicate that the employment of both methods in conjunction
with the GRNN joint deformation prediction model is capable of producing highly

approximate solutions, leveraging the robust capabilities of the Genetic Algorithm.

A comprehensive exploration of the procured deterioration parameters demonstrated
that the vast majority of parameters have minimal impact on the joint response.
However, four parameters — rDisp, uDisp, gK1, and gD1 — were found to significantly
influence the joint response. The effect of these crucial parameters was analyzed

separately based on the joint type, and their effective ranges were identified.

The mean values obtained from this statistical analysis were subsequently applied
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to both interior and exterior specimens. The results were found to be suitable
for practical applications, reinforcing the validity and efficacy of the methods and
models adopted in this study. This research lays a substantial foundation for further

exploration and improvement in the field of reinforced concrete joint modeling.
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7

DISCUSSION and FUTURE WORK

In summary, this thesis presents a comprehensive exploration into the shear
strain-stress envelope of reinforced concrete joints, leveraging advanced finite
element method simulations and artificial intelligence techniques. The research
was necessitated by the lack of unified experimental configurations in the literature,
resulting in the need for alternative statistical implementation of strain stress

prediction models.

In response to this, the study introduced a specialized type of artificial neural network
structure and explored basic statistical methods to establish a relationship between
the physical characteristics of the RC joint sub-assemblies and the resulting shear
strain-stress outcomes. The scarcity of data samples from the literature led to the
utilization of advanced finite element methods to create an accurate statistical model,
which was achieved by applying intricate solutions for high-level nonlinear behavior

of concrete material.

The study generated a significant number of simulation samples under predefined
assumptions. These results were systematically classified and regression techniques
were applied, leading to the conclusion that the shear strain-stress envelope of any
given joint sub-assembly can be predicted with acceptable accuracy. It was further
observed that including auxiliary terms could enhance this accuracy, although for the

sake of simplicity, the proposed equations were deemed sufficient.

The thesis subsequently delved into the practical application of genetic algorithms
for reinforced concrete joint modeling. Employing two distinct forms of genetic
algorithms, the study systematically classified the divergence between simulated and
observed responses to delineate different aspects of joint deformation characteristics.
It was found that a combination of these genetic algorithm forms and the GRNN joint
deformation prediction model could produce highly approximate solutions. Further
analysis revealed that the majority of deterioration parameters had minimal impact

on joint response. However, a select few — rDisp, uDisp, gK1, and gD1 — were found
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to have a significant effect, laying the groundwork for future research in this area.

The study has demonstrated that the GRNN-based model provides the most accurate
predictions among existing models, thereby showcasing the potential of the GRNN
model in enhancing the understanding of joint deformation characteristics and aiding
practical applications of joint modeling. A publicly accessible version of the trained

model has been provided to facilitate its wider use and further improvements.

Continuing from the findings of this thesis, a comprehensive parametric study of joint
mechanics is an important next step. The proposed methods, tools, and equations in
this thesis form a foundation for this study, allowing for the inclusion of more factors
in the exploration. By considering a broader range of parameters, a more detailed
understanding of joint mechanics may be achieved, which could lead to even more

accurate predictive models.

Microplane material formulation and bond springs under cyclic loading conditions
have shown significant potential. However, their application is often restricted due to
the high computational demands. Therefore, a future focus is to develop a calibration
technique to replace the current laborious trial and error fine-tuning process. This
could simplify the implementation of more comprehensive models and allow for more

detailed investigations.

Moreover, the proposed approach from this study could be adapted and integrated
into the existing design and assessment processes described in seismic codes and
provisions. Embedding these advanced modeling techniques into industry standards
could streamline the design process and possibly lead to structures that are more
efficient and safer. Based on the results of the parametric analyses, the possibility
of considering joint failures in force-based assessment methods through the use
of reduction factors will also be examined. Incorporating joint failures into these
methods could offer a more realistic representation of joint behavior under different
loads. This could contribute to the development of more accurate and safer structural

designs.

Incremental dynamic analyses and similar methods also present an interesting area
for future study. These methods could be used to represent the failure probabilities of
joints with varying characteristics in the form of fragility curves. This could provide
important insights for engineers and architects when assessing structural resilience

under different loading conditions.

In conclusion, this thesis has made a substantial contribution to the understanding of

the shear strain-stress behavior of RC joints. It has shown the feasibility of advanced
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Al techniques in predicting the strain-stress envelope, the effectiveness of genetic
algorithms in finding the most appropriate parameter set, and the superiority of the
GRNN model in predicting joint deformation. The insights and methods provided
by this study will certainly aid in the further understanding and improvement of
reinforced concrete joint modeling. Future research directions promise to significantly
contribute to the ongoing development and refinement of reinforced concrete joint
modeling. They offer a promising path towards enhancing our understanding of joint
behavior, leading to safer and more resilient structures.
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EXPERIMENTAL DATABASES

In this appendix chapter, experimental database collected from the available literature
are presented. In Table database used for generalized regression neural network
training and validation is shown. The sub-assemblages in this collection include only
experimental studies which reported joint shear strain versus shear stress in an explicit
form. Further details are given in Chapter The same database, with addition
of reinforced concrete panel test carried out by Vecchio and Collins [[77]] is used in
calibration and validation of the method introduced in Chapter

The second collection of experimental studies is presented in Table and Table
indicating the joint and column properties of the sub-assemblages and beam
configuration in respective order. In this database, all the sub-assemblages are
subjected to cyclic loads at least 5% drift ratio and their overall response are reported
in the cited references. The experimental results are used to evaluate and minimize
the error based on the defined criteria according to the method introduced in Chapter
6] through the simulation framework introduced in Chapter
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Table A.1 Experimental Database

Ref Unit Joint Type | # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fec fyc rhoc he be n Failure Type
Meinheit and Jirsa [|229] 12 INT 0 35.2 | 423 51 0.024 | 305 | 35.2 | 449 0.022 | 457 | 279 | 35.2 | 449 0.043 | 457 | 330 | 0.3 BJ
Watanabe et al. [241] WJ-1 INT 0 29 364 36 0.013 | 250 | 29 326 0.008 | 300 [ 200 | 29 358 0.026 | 300 | 300 | 0.07 | BJ
Watanabe et al. [241] WJ-3 INT 0 29 364 36 0.013 | 250 | 29 364 0.008 | 300 [ 200 | 29 373 0.026 | 300 | 300 | 0.07 | BJ
Leon [97] BCJ2 INT 0 27.6 | 414 51 0.005 | 229 | 27.6 | 414 0.009 | 305 | 203 | 27.6 | 414 0.028 | 254 | 254 | O BJ
Leon [|97] BCJ3 INT 0 27.6 | 414 51 0.004 | 254 | 27.6 | 414 0.009 | 305 | 203 | 27.6 | 414 0.023 | 254 | 305 | O BJ
Noguchi and Kashiwazaki [|55] [ OKJ-1 INT 0 70 955 50 0.009 | 250 | 70 718 0.023 | 300 [ 200 | 70 718 0.028 | 300 | 300 | 0.12 | BJ
Noguchi and Kashiwazaki [|55] | OKJ-4 INT 0 70 955 50 0.009 | 250 [ 70 718 0.018 | 300 [ 200 | 70 718 0.028 | 300 | 300 | 0.12 | BJ
Goto and Joh [[233] BJ-PH INT 0 30.5 | 326 40 0.009 | 250 | 30.5 | 395 0.014 | 350 | 200 | 30.5 | 640 0.031 | 300 [ 300 | 0.17 | BJ
Kaku et al. [[268)] J11A INT 0 57.6 | 893 86 0.005 | 280 | 57.6 | 371 0.022 | 350 | 260 | 57.6 | 371 0.033 | 400 [ 300 | 0.24 | BJ
Kaku et al. [[268)] J12A INT 0 56.6 | 893 86 0.005 | 280 | 56.6 | 371 0.03 350 | 260 | 56.6 | 371 0.033 | 400 [ 300 | 0.25 | BJ
Kaku et al. [[268)] J32A INT 0 55.2 | 893 65 0.006 | 280 | 55.2 | 363 0.032 | 350 | 260 | 55.2 | 371 0.033 | 400 [ 300 | 0.25 | BJ
Ishikawa and Kamimura [|269] No.3 INT 0 23.3 | 330 50 0.01 215 | 23.3 | 373 0.016 | 250 | 180 | 23.3 | 373 0.032 | 250 | 250 | 0.18 | BJ
Kitayama et al. [[227] B2 INT 0 24.5 | 235 54 0.003 | 250 | 24.5 | 371 0.021 | 300 | 200 | 24.5 | 351 0.035 | 300 [ 300 | 0.08 | BJ
Meinheit and Jirsa [229] 13 INT 0 41.3 | 409 51 0.015 | 305 | 41.3 | 449 0.022 | 457 | 279 | 41.3 | 449 0.043 | 457 | 330 | 0.25 | J
Meinheit and Jirsa [229] 14 INT 0 33.2 | 409 51 0.011 | 432 | 33.2 | 449 0.015 | 457 | 406 | 33.2 | 438 0.043 | 330 | 457 | 032 | J
Watanabe et al. [241] WJ-6 INT 0 29 364 36 0.013 | 250 | 29 358 0.012 | 300 [ 200 | 29 373 0.04 300 [ 300 | 0.07 | BJ
Fujii and Morita [|51] Al INT 0 40.2 | 291 52 0.005 | 190 | 40.2 | 1069 | 0.017 | 250 | 160 | 40.2 | 643 0.042 | 220 | 220 | 0.08 | J
Noguchi and Kashiwazaki [|55] | OKJ-5 INT 0 70 955 50 0.009 | 250 | 70 718 0.025 | 300 [ 200 | 70 718 0.034 | 300 | 300 | 0.12 | J
Noguchi and Kashiwazaki [|55] | OKJ-6 INT 0 53.5 | 955 50 0.009 | 250 | 53.5 | 718 0.02 300 [ 200 | 53.5 | 718 0.028 | 300 | 300 | 0.12 | J
Morita et al. [|240] M1 INT 0 17.1 | 344 80 0.003 | 300 | 17.1 | 520 0.019 | 400 | 300 | 17.1 520 0.059 | 350 | 300 | O J
Oka and Shiohara [270] J-10 INT 0 39.2 | 598 50 0.004 | 270 | 39.2 | 687 0.019 | 300 | 240 | 39.2 | 687 0.034 | 300 | 300 | 0.12 | J
Megget [225] Unit A EXT 0 22.1 | 317 50 0.016 | 293 | 22.1 | 374 0.017 | 460 [ 255 | 22.1 | 365 0.025 | 380 | 330 | 0.07 | BJ
Ehsani and Wight [|259] 3B EXT 0 40.9 | 437 84 0.017 | 279 | 409 | 331 0.018 | 480 | 259 | 409 | 490 0.025 | 300 [ 300 | 0.06 | BJ
Ehsani and Alameddine [|54] LH8 EXT 0 55.8 | 437 61 0.02 337 | 55.8 | 437 0.019 | 508 | 318 | 55.8 | 437 0.028 | 356 | 356 | 0.04 | BJ
Ehsani and Alameddine [|54] HHS8 EXT 0 55.8 | 437 61 0.02 337 | 55.8 | 437 0.019 | 508 | 318 | 55.8 | 437 0.032 | 356 | 356 | 0.07 | BJ
Joh et al. [226] NRC-J13 | EXT 0 79.4 | 770 36 0.006 | 225 | 79.4 | 698 0.025 [ 250 | 200 | 79.4 | 698 0.024 | 250 [ 250 | 0.02 | BJ
Ehsani and Alameddine [|54] LL8 EXT 0 55.8 | 437 102 | 0.012 | 337 | 55.8 | 437 0.015 | 508 | 318 | 55.8 | 437 0.028 | 356 | 356 | 0.04 | BJ
Ehsani and Wight [|259] 2B EXT 0 35 437 99 0.015 | 279 | 35 331 0.02 439 | 259 | 35 490 0.032 | 300 | 300 | 0.07 | J
Joh et al. [243] HO-NO EXT 0 29.6 | 380 38 0.004 | 275 | 29.6 | 606 0.024 | 350 | 200 | 29.6 | 581 0.025 | 260 | 350 | 0.02 | J
Joh et al. [243)] MM-NO EXT 0 27.8 | 380 38 0.004 | 275 | 27.8 | 606 0.024 | 350 | 200 | 27.8 | 581 0.028 [ 260 | 350 | 0.02 | J
Joh et al. [243)] HH-NO EXT 0 29.3 | 380 38 0.004 | 275 | 29.3 | 606 0.024 | 350 | 200 | 29.3 | 581 0.025 | 260 | 350 | 0.02 | J
Joh et al. [243] H'0O-NO EXT 0 31.5 | 380 | 38 0.004 | 275 | 31.5 | 606 0.024 | 350 [ 200 | 31.5 | 581 0.025 | 260 | 350 | 0.02 | J
Joh et al. [243] HH-N96 | EXT 0 30.5 | 380 | 38 0.004 | 275 | 30.5 | 606 0.024 | 350 [ 200 | 30.5 | 581 0.034 | 260 | 350 | 0.31 | J
Joh et al. [[245] NRC-J1 EXT 0 51.5 | 815 | 36 0.006 | 225 | 51.5 | 1091 [ 0.032 | 250 | 200 | 51.5 | 1091 | 0.024 | 250 | 250 | 0.02 | J
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Table A.1 Experimental Database - (continued from previous page)

Ref Unit Joint Type | # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fec fyc rhoc he be n Failure Type

Ishida et al. [|234] A0 EXT 0 27 271 50 0.005 | 190 | 27 700 0.015 | 250 | 160 | 27 700 0.031 | 220 | 220 | 0.15 | J

Ishida et al. [|234] AOQF EXT 0 27 271 50 0.005 | 190 | 27 467 0.015 | 250 | 160 | 27 467 0.031 | 220 | 220 | 0.15 | BJ
Ehsani and Alameddine [|54] HL8 EXT 0 55.8 | 437 102 | 0.012 | 337 | 55.8 | 437 0.019 | 508 | 318 | 55.8 | 437 0.032 | 356 | 356 | 0.07 | J

Joh et al. [226] NRC-J2 EXT 0 81.8 | 815 36 0.006 | 225 | 81.8 | 1091 | 0.032 | 250 | 200 | 81.8 | 1091 | 0.024 | 250 | 250 | 0.02 | J

Joh et al. [226] NRC-J4 EXT 0 88.9 | 815 36 0.006 | 225 | 88.9 | 1091 | 0.032 | 250 | 200 | 88.9 | 1091 [ 0.024 | 250 | 250 | 0.3 J

Kurose et al. [1228] J1 INT 0 24.1 | 550 102 | 0.007 | 457 | 24.1 | 463 0.011 | 508 [ 406 | 24.1 | 463 0.024 | 508 | 508 | O BJ
Kurose et al. [228] J3N INT 1 27.6 | 409 152 | 0.008 | 305 | 27.6 | 463 0.02 457 | 279 | 27.6 | 459 0.051 | 457 | 330 | O BJ
Shin and LaFave [|74] SL4 INT 1 31.2 | 448 64 0.012 | 279 | 31.2 | 510 0.008 | 406 | 279 | 31.5 | 503 0.026 | 368 [ 279 | O BJ
Meinheit and Jirsa [229] 8 INT 2 33.1 | 409 152 | 0.005 | 305 | 33.1 | 449 0.022 | 457 | 279 | 33.1 | 449 0.043 | 457 | 330 | 0.32 | BJ
Kurose et al. [228] J2E INT 2 27.6 | 409 152 | 0.008 | 305 | 27.6 | 463 0.028 | 457 | 279 | 27.6 | 459 0.068 | 457 | 330 | O BJ
Guimaraes et al. [|57] J4 INT 2 31.6 | 550 102 | 0.008 | 457 | 31.6 | 463 0.01 508 | 406 | 29.1 523 0.04 508 [ 508 | O BJ
Guimaraes et al. [|57] J5 INT 2 77.9 | 550 102 | 0.008 | 457 | 779 | 561 0.023 | 508 | 406 | 95.1 543 0.063 | 508 | 508 | O BJ
Guimaraes et al. [|57] J6 INT 2 92.1 | 570 64 0.016 | 457 | 92.1 | 523 0.019 | 508 | 406 | 70.3 | 561 0.063 | 508 | 508 | O BJ
Tsubosaki et al. [[231] J12NS INT 2 60.3 | 800 50 0.004 | 270 | 60.3 | 711 0.02 320 | 240 | 60.3 | 973 0.044 | 300 [ 300 | 0.29 | BJ
Kurose et al. [228] J3E EXT 2 27.6 | 409 152 | 0.008 | 305 | 27.6 | 459 0.029 | 457 | 279 | 27.6 | 459 0.051 | 457 | 330 | O BJ
Goto and Joh [[237] HM-125 INT 0 28.9 | 411 50 0.003 | 325 | 289 | 413 0.016 | 350 | 200 | 28.9 | 379 0.018 | 300 | 450 | 0.17 | BJ
Goto and Joh [[237] HH-125 INT 0 31.4 | 411 32 0.004 | 325 | 314 | 413 0.016 | 350 | 200 | 31.4 | 379 0.018 | 300 | 450 | 0.17 | BJ
Goto and Joh [[237] HU-125 INT 0 22.2 | 355 24 0.005 | 325 | 22.2 | 408 0.016 | 350 | 200 | 22.2 | 388 0.017 | 300 | 450 | 0.17 | BJ
Teng and Zhou [|238] S2 INT 0 34 440 75 0.008 | 300 | 34 510 0.014 | 400 | 200 | 34 530 0.031 | 300 [ 400 | 0.11 | BJ
Teng and Zhou [|238] S3 INT 0 35 440 75 0.008 | 300 | 35 510 0.014 | 400 | 200 | 35 530 0.031 | 300 [ 400 | 0.11 | BJ
Teng and Zhou [|238] S5 INT 0 39 440 50 0.012 | 300 | 39 425 0.009 | 400 [ 200 | 39 530 0.047 | 200 [ 400 | 0.11 | BJ
Teng and Zhou [|238] S6 INT 0 38 440 50 0.012 | 300 | 38 425 0.009 | 400 | 200 | 38 530 0.047 | 200 | 400 | 0.11 | BJ
Kusuhara et al. [239] JE-55S INT 0 27 364 37 0.009 [ 250 | 27 387 0.016 | 300 | 180 | 27 345 0.023 | 280 | 320 | O BJ
Raffaelle and Wight [|232] 1 INT 0 28.6 | 476 89 0.008 | 305 | 28.6 | 441 0.01 381 | 254 | 28.6 | 441 0.018 | 356 | 356 | 0.02 | BJ
Raffaelle and Wight [|232] 2 INT 0 26.8 | 476 89 0.008 | 267 | 26.8 | 441 0.009 | 381 178 | 26.8 | 441 0.018 | 356 | 356 | 0.03 | BJ
Raffaelle and Wight [|232] 3 INT 0 37.7 | 476 89 0.008 | 273 | 37.7 | 441 0.009 | 381 191 | 37.7 | 441 0.018 | 356 | 356 | 0.02 | BJ
Raffaelle and Wight [|232] 4 INT 0 19.3 | 476 89 0.008 | 273 19.3 | 441 0.006 [ 559 | 191 19.3 | 441 0.018 | 356 | 356 | 0.04 | BJ
Shin and LaFave [|74] SL1 INT 1 29.9 | 448 79 0.006 | 368 | 29.9 | 503 0.008 | 406 | 279 | 35.8 | 538 0.015 | 330 | 457 | O BJ
Shin and LaFave [|74] SL2 INT 1 36.2 | 448 79 0.006 | 318 | 36.2 | 503 0.012 | 406 | 178 | 40.7 | 538 0.015 | 330 | 457 | O BJ
Meinheit and Jirsa [|229] 6 INT 0 36.7 | 409 152 | 0.005 | 305 | 36.7 | 449 0.022 | 457 | 279 | 36.7 | 449 0.043 | 457 | 330 | 048 | BJ
Noguchi and Kurusu [[242] No2 INT 0 34.1 | 354 150 | 0.001 | 250 | 34.1 | 325 0.015 | 300 | 200 | 34.1 | 388 0.023 | 300 [ 300 | 0.06 | BJ
Noguchi and Kurusu [242] No4 INT 0 34.1 | 354 | 150 | 0.001 | 250 | 34.1 | 388 0.012 | 300 | 200 | 34.1 | 388 0.023 | 300 [ 300 [ 0.06 | BJ
Joh et al. [244] JXO-B1 INT 0 21.3 | 307 | 88 0.002 | 225 | 21.3 | 371 0.008 | 350 | 150 | 21.3 | 371 0.011 | 300 [ 300 [ 0.16 | BJ
Kitayama et al. [[230] I3 INT 0 41.4 | 360 | 75 0.004 | 250 | 41.4 | 799 0.024 | 300 [ 200 | 41.4 | 361 0.035 | 300 [ 300 [ 0.03 | BJ
Goto and Joh [|233] BJ-PL INT 0 29.7 | 326 | 50 0.004 | 250 | 29.7 | 395 0.014 | 350 | 200 | 29.7 | 640 0.031 | 300 [ 300 [ 0.17 | BJ
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Table A.1 Experimental Database - (continued from previous page)

Ref Unit Joint Type | # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fec fyc rhoc he be n Failure Type
Yoshino et al. [|235] 1 INT 0 28.6 | 420 50 0.005 | 215 | 28.6 | 382 0.013 | 250 | 180 | 28.6 | 379 0.025 | 250 [ 250 | 0.16 | BJ
Yoshino et al. [|235] 3 INT 0 28.6 | 420 50 0.005 | 215 | 28.6 | 379 0.016 | 250 | 180 | 28.6 | 379 0.025 | 250 [ 250 | 0.16 | BJ
Yoshino et al. [|235] 4 INT 0 28.6 | 420 50 0.005 | 215 | 28.6 | 379 0.011 | 250 | 180 | 28.6 | 379 0.025 | 250 [ 250 | 0.16 | BJ
Suzuki and al. [236] EOO0 INT 0 24 358 100 | 0.004 | 315 | 24 384 0.018 | 500 | 230 | 24 384 0.014 | 500 | 400 | 0.25 | J
Teng and Zhou [|238] S1 INT 0 33 440 75 0.008 | 300 | 33 510 0.014 | 400 | 200 | 33 530 0.031 | 300 | 400 | 0.11 | BJ
Kusuhara et al. [239] JE-0 INT 0 27 364 74 0.003 [ 250 | 27 387 0.016 | 300 | 180 | 27 345 0.023 | 280 | 320 | O BJ
Meinheit and Jirsa [229] 1 INT 0 26.2 | 409 152 | 0.005 | 305 | 26.2 | 449 0.022 | 457 | 279 | 26.2 | 457 0.021 | 457 | 330 | 0.4 J
Meinheit and Jirsa [229] 2 INT 0 41.8 | 409 152 | 0.005 | 305 | 41.8 | 449 0.022 | 457 | 279 | 41.8 | 449 0.043 | 457 | 330 | 0.25 | J
Meinheit and Jirsa [229] 3 INT 0 26.6 | 409 152 | 0.005 | 305 | 26.6 | 449 0.022 | 457 | 279 | 26.6 | 402 0.067 | 457 | 330 | 0.39 | J
Meinheit and Jirsa [229] 4 INT 0 36.1 | 409 152 | 0.004 | 432 | 36.1 | 449 0.015 | 457 | 406 | 36.1 | 438 0.043 | 330 | 457 | 0.3 J
Meinheit and Jirsa [229] 5 INT 0 35.9 | 409 152 | 0.005 | 305 | 35.9 | 449 0.022 | 457 | 279 | 359 | 449 0.043 | 457 | 330 | 0.04 | J
Meinheit and Jirsa [229] 7 INT 0 37.2 | 409 152 | 0.004 | 432 | 37.2 | 449 0.015 | 457 | 406 | 37.2 | 438 0.043 | 330 | 457 | 047 | J
Endoh et al. [|50] Al INT 0 30.6 | 320 45 0.006 | 250 | 30.6 | 780 0.02 300 | 200 | 30.6 | 539 0.035 | 300 | 300 | 0.06 | J
Fujii and Morita [|51] Al INT 0 40.2 | 291 52 0.005 | 190 | 40.2 | 1069 | 0.017 | 250 | 160 | 40.2 | 643 0.042 | 220 | 220 | 0.08 | J
Fujii and Morita [|51] A2 INT 0 40.2 | 291 52 0.005 | 190 | 40.2 | 409 0.016 | 250 | 160 | 40.2 | 387 0.042 | 220 | 220 | 0.08 | J
Fujii and Morita [|51] A3 INT 0 40.2 | 291 52 0.005 | 190 | 40.2 | 1069 | 0.017 | 250 | 160 | 40.2 | 643 0.042 | 220 | 220 | 0.23 | J
Goto and Joh [[237] UM-0 INT 0 24 355 50 0.003 | 325 | 24 697 0.018 | 350 | 200 | 24 388 0.02 300 [ 450 | 0.17 | J
Kaku and Asakusa [|53] 3 EXT 0 41.7 | 250 52 0.005 | 190 | 41.7 | 381 0.016 | 220 | 160 | 41.7 | 360 0.016 | 220 | 220 | © BJ
Kaku and Asakusa [|53] 5 EXT 0 36.7 | 281 52 0.001 190 | 36.7 | 381 0.016 | 220 | 160 | 36.7 | 360 0.016 | 220 | 220 | 0.09 | BJ
Kaku and Asakusa [|53] 6 EXT 0 40.4 | 281 52 0.001 190 | 40.4 | 381 0.016 | 220 | 160 | 40.4 | 360 0.016 | 220 | 220 | © BJ
Kaku and Asakusa [|53] 9 EXT 0 40.6 | 250 52 0.005 | 190 | 40.6 | 381 0.016 | 220 | 160 | 40.6 | 395 0.018 | 220 | 220 | O BJ
Kaku and Asakusa [|53] 11 EXT 0 419 | 281 52 0.001 190 | 41.9 | 381 0.016 | 220 | 160 | 41.9 | 395 0.018 | 220 | 220 | 0.08 | BJ
Kaku and Asakusa [|53] 12 EXT 0 35.1 | 281 52 0.001 190 | 35.1 | 381 0.016 | 220 | 160 | 35.1 | 395 0.018 | 220 | 220 | O BJ
Kaku and Asakusa [|53] 14 EXT 0 41 281 52 0.001 190 | 41 381 0.016 | 220 | 160 | 41 381 0.016 | 220 | 220 | 0.08 | BJ
Kaku and Asakusa [|53] 15 EXT 0 39.7 | 281 52 0.001 190 | 39.7 | 381 0.016 | 220 | 160 | 39.7 | 381 0.016 | 220 | 220 | 0.08 | BJ
Fujii and Morita [|51] B2 EXT 0 30 291 52 0.005 | 190 | 30 409 0.016 | 250 | 160 | 30 387 0.031 | 220 | 220 | 0.07 | J
Joh et al. [243)] NRC-J12 | EXT 0 83.7 | 717 42 0.002 | 225 | 83.7 | 698 0.025 [ 250 | 200 | 83.7 | 698 0.024 | 250 [ 250 | 0.02 | BJ
Joh et al. [243)] LO-NO EXT 0 27.9 | 380 110 | 0.001 | 275 | 27.9 | 606 0.024 | 350 | 200 | 279 | 581 0.025 | 260 | 350 | 0.02 | J
Joh et al. [243)] LO-N96 EXT 0 31.5 | 380 100 | 0.002 | 275 | 31.5 | 606 0.024 | 350 | 200 | 31.5 | 581 0.034 | 260 | 350 | 0.3 J
Fujii and Morita [|51] B1 EXT 0 30 291 52 0.005 | 190 | 30 1069 | 0.017 | 250 | 160 | 30 387 0.031 | 220 | 220 | 0.07 | J
Fujii and Morita [|51] B3 EXT 0 30 291 52 0.005 | 190 | 30 1069 | 0.017 | 250 | 160 | 30 387 0.031 | 220 | 220 | 0.24 | J
Joh et al. [226] NRC-J8 EXT 0 53.7 | 717 | 42 0.002 | 225 | 53.7 | 675 0.025 | 250 [ 200 | 53.7 | 675 0.028 | 250 | 250 | 0.02 | J
Meinheit and Jirsa [229] 9 INT 2 31 409 152 | 0.005 | 305 | 31 449 0.022 | 457 | 279 | 31 449 0.043 | 457 | 330 | 0.35 | J
Meinheit and Jirsa [229] 10 INT 2 29.6 | 409 152 | 0.005 | 305 | 29.6 | 449 0.022 | 457 | 279 | 29.6 | 449 0.043 | 457 | 330 | 0.36 | J
Meinheit and Jirsa [229] 11 INT 2 25.6 | 409 152 | 0.004 | 432 | 25.6 | 449 0.015 | 457 | 406 | 25.6 | 438 0.043 | 330 | 457 | 042 | J
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Ref Unit Joint Type | # TB fcj fyj sj rhoj bj fcb fyb rhob hb bb fec fyc rhoc he be n Failure Type

Goto and Joh [|271] LM-60 INT 0 26.4 | 411 50 0.003 | 325 | 26.4 | 396 0.016 | 350 | 200 | 26.4 | 379 0.018 | 300 | 450 | 0.17 | BJ
Goto and Joh [|271] LM-125 INT 0 26 411 50 0.003 | 325 | 26 396 0.012 | 350 | 200 | 26 379 0.018 | 300 | 450 | 0.17 | BJ
Goto and Joh [|271] HM-60 INT 0 24.3 | 411 50 0.003 | 325 | 24.3 | 396 0.02 350 | 200 | 24.3 | 379 0.018 | 300 | 450 | 0.17 | BJ
Kusuhara et al. [|239] JE-55 INT 0 27 364 74 0.003 | 250 | 27 387 0.016 | 300 | 180 | 27 345 0.023 | 280 | 320 | O BJ
Suzuki and al. [[236] E085 INT 0 23 358 100 | 0.004 | 315 | 23 384 0.018 | 500 | 230 | 23 384 0.014 | 500 | 400 | 0.25 | J

Suzuki and al. [[236] E135 INT 0 22.7 | 358 100 | 0.003 | 365 | 22.7 | 384 0.013 | 450 | 230 | 22.7 | 384 0.019 | 300 | 500 | 0.25 | J

Goto and Joh [[237] UM-60 INT 0 24.6 | 355 50 0.003 | 325 | 24.6 | 697 0.018 | 350 | 200 | 24.6 | 388 0.02 300 [ 450 | 0.17 | J

Goto and Joh [[237] UM-125 INT 0 25.2 | 355 50 0.003 | 325 | 25.2 | 697 0.018 | 350 | 200 | 25.2 | 388 0.02 300 [ 450 | 0.17 | J

Goto and Joh [[237] UU-125 INT 0 254 | 355 24 0.005 | 325 | 25.4 | 697 0.018 | 350 | 200 | 25.4 | 388 0.02 300 [ 450 | 0.17 | BJ
Walker [60 PEER14 INT 0 31.8 | 31.8 | 508 | O 406 | 31.8 | 423 0.009 | 508 [ 406 | 31.8 | 423 0.014 | 457 | 406 | 0.11 | BJ
Walker [60 CD1514 INT 0 29.8 [ 298 | 508 | O 406 | 29.8 | 423 0.009 | 508 [ 406 | 29.8 | 423 0.014 | 457 | 406 | 0.12 | BJ
Walker [60 CD3014 INT 0 42.5 | 42.5 | 508 | O 406 | 42.5 | 423 0.009 | 508 [ 406 | 42.5 | 423 0.014 | 457 | 406 | 0.08 | BJ
Walker [60] PADH14 INT 0 429 | 429 | 508 | O 406 | 429 | 423 0.009 | 508 [ 406 | 42.9 | 423 0.014 | 457 | 406 | 0.09 | BJ
Walker [60] PEER22 INT 0 384 | 384 | 508 | O 406 | 38.4 | 527 0.013 | 508 | 406 | 38.4 | 538 0.028 | 457 | 406 | 0.09 | BJ
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Table A.2 Experimental Database

Authors Unit fe Pj N L. h. b, . ¢ ntop, | nmid. | nbot, Fye b Se Ltot, Fyy
Fernandes [[248] JPA-1 19.8 0.0000 200 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [[248] JPA-2 19.8 0.0000 200 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [[248] JPA-3 19.8 0.0000 450 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [[248] JPB 19.8 0.0000 450 1600 300 300 20 12 3 2 3 590 8 250 1040 590
Fernandes [[248] JPC 19.8 0.0000 450 1600 300 300 20 12 2 0 2 590 8 250 1040 590
Fernandes [[248] JD 19.8 0.0000 200 1600 300 300 20 12 3 2 3 480 8 100 1040 480
Pantelides et al. [251] Type 1 43 0.0000 708.7948 | 1295 406 406 30 32 2 0 2 454 10 406 1504 454
Pantelides et al. [251] Type II 43 0.0000 708.7948 | 1397 406 406 30 32 2 0 2 454 10 406 1504 454
Liu [252] Unit 1 44 0.0000 0 1500 300 460 40 24 3 0 3 321 6 230 1760 318
Liu [252] Unit 2 49 0.0000 811.44 1500 300 460 40 24 3 0 3 321 6 230 1760 318
Noguchi and Kurusu [[242] No 2 34.1 0.0001 294 585 300 300 20 13 6 4 6 388 10 100 2200 354
Noguchi and Kurusu [[242] No 4 34.1 0.0001 294 585 300 300 20 13 6 4 6 388 10 100 2200 354
Noguchi and Kurusu [[242] No 5 29.3 0.0001 294 585 300 300 20 13 6 4 6 374 10 100 2200 322
Noguchi and Kurusu [[242] No 7 29.3 0.0001 294 585 300 300 20 13 6 4 6 374 10 100 2200 322
Dhakal and Pan [254] QS1 31.7 0.0000 600 1575 500 350 30 25 3 2 3 576 10 150 1680 364
Dhakal and Pan [1254] QS2 32.8 0.0000 600 1575 400 400 30 25 3 2 3 576 10 150 1500 364
Xin et al. [255] Unit 1 20 0.0025 0 837 450 300 39 20 5.36 2 5.36 492 10 60 2027 348
Xin et al. [255] Unit 2 20 0.0025 0 837 450 300 39 16 5.5 2 5.5 445 10 60 2027 348
Xin et al. [255] Unit 3 40 0.0025 0 837 450 300 39 20 6.12 2 6.12 492 10 90 2027 348
Xin et al. [255] Unit 4 40 0.0025 0 837 450 300 39 20 4.92 1.28 4.92 492 10 90 2027 348
Xin et al. [255] Unit 5 60 0.0036 0 837 450 300 39 20 6.12 2 6.12 492 12 80 2027 327
Xin et al. [255] Unit 6 60 0.0036 0 837 450 300 39 20 6.12 2 6.12 492 12 80 2027 327
Raffaelle and Wight [|232] S1 28.59 0.0013 89 876.3 355.6 | 355.6 | 254 | 19 3 2 3 440 9.53 | 88.9 2057 475
Raffaelle and Wight [|232] S2 26.8 0.0012 89 876.3 355.6 | 355.6 | 254 | 19 3 2 3 440 9.53 | 88.9 2057 475
Raffaelle and Wight [|232] S3 37.69 0.0017 89 876.3 355.6 | 355.6 | 254 | 19 3 2 3 440 9.53 | 88.9 2057 475
Raffaelle and Wight [|232] S4 19.29 0.0006 89 787.4 355.6 | 355.6 | 254 | 19 3 2 3 440 9.53 | 88.9 2057 475
Kurose et al. [228] Bl 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B2 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B3 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B4 24.4 0.0011 353 700 300 300 20 13 3 2 3 378 6 87.5 1040 378
Kurose et al. [228] B5 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B6 24.4 0.0016 353 700 300 300 20 13 3 2 3 378 6 50 1040 378
Kurose et al. [228] B8 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kurose et al. [228] B9 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kurose et al. [228] B10 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kurose et al. [228] B11 24.4 0.0016 353 700 300 300 20 13 4 6 4 378 6 50 1040 378
Kusuhara and Shiohara [258] | Al 28.3 0.0025 216 585 300 300 20 13 5 6 5 345 6 50 1040 295
Kusuhara and Shiohara [258] | C1 28.3 0.0025 216 585 300 300 20 13 5 6 5 345 6 50 1040 295
Kusuhara and Shiohara [|258] | D1 30.4 0.0025 216 585 300 300 20 13 5 4 5 345 6 50 1040 295
Kusuhara and Shiohara [|258] | D2 30.4 0.0025 216 585 300 300 20 13 5 4 5 345 6 50 1040 295
Lee et al. [|249] J1 40 0.0081 0 880 350 350 20 29 4 4 4 514.4 | 10 50 1240 510.4
Lee et al. [[249] BJ1 40 0.0081 0 880 350 350 20 29 4 4 4 514.4 | 10 50 1240 510.4
Lee et al. [[249] BJ2 40 0.0054 0 880 350 350 20 29 4 4 4 514.4 | 10 75 1240 510.4
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Table A.2 Experimental Database — (continued from previous page)

Authors Unit fe Pj N L. h. b, . ¢ ntop. | nmid. | nbot, Fye b Se Ltot, Fyy
Lee et al. [|249] BJ3 40 0.0054 0 880 350 350 20 29 4 4 4 5144 | 10 75 1240 510.4
Lee et al. [|249] B1 40 0.0054 0 880 350 350 20 29 4 4 4 514.4 | 10 75 1240 510.4
Alaee and Li [250] IN8O 80 0.0116 1863 1400 450 300 20 25 2.41 0.82 2.41 500 10 60 2310 700
Alaee and Li [250] IH80 80 0.0093 1903.5 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [250] IH80A 80 0.0093 1944 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [250] IN100 100 0.0116 1984.5 1400 450 300 20 25 2.41 0.82 2.41 500 10 60 2310 700
Alaee and Li [[250] TH100 100 0.0116 2025 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [[250] IH60 60 0.0093 2065.5 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Alaee and Li [|250] TH60A 60 0.0093 2106 1400 450 300 20 25 2.92 1.28 2.92 500 10 60 2310 700
Ehsani and Wight [|259] 1B -33.55 | 0.009047831 180 827 300 300 45 19.05 | 3 2 3 488 13 63.5 886 413
Ehsani and Wight [|259] 2B -34.93 [ 0.009999121 | 222 827 300 300 45 19.05 | 4 2 4 488 13 63.5 886 413
Ehsani and Wight [|259] 3B -40.86 | 0.012063774 | 222 827 300 300 45 19.05 | 3 2 3 488 13 63.5 1329 413
Ehsani and Wight [|259] 4B -44.58 | 0.013332162 | 222 827 300 300 45 19.05 | 4 2 4 488 13 63.5 1329 413
Ehsani and Wight [|259] 5B -24.32 [ 0.009047831 | 355.23 865 340 340 50.8 | 254 4 2 4 413 13 63.5 886 413
Ehsani and Wight [|259] 6B -39.78 | 0.009047831 | 302.66 865 340 340 50.8 | 254 3 2 3 413 13 63.5 886 413
Ehsani and Alameddine [|54] LL11 -75.8 0.012837267 | 285 1536 356 356 63.5 | 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [|54] LL14 -96.5 0.012837267 | 236 1536 356 356 63.5 | 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [|54] LH11 -75.8 0.017972174 | 276 1536 356 356 63.5 | 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [|54] LH14 -96.5 0.017972174 | 223 1536 356 356 63.5 | 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [|54] HL11 -75.8 0.012837267 | 687 1536 356 356 63.5 | 25.4 3 2 3 496 13 63.5 1460 446
Ehsani and Alameddine [|54] HH14 -96.5 0.017972174 | 476 1536 356 356 63.5 | 25.4 3 2 3 496 13 63.5 1460 446
Kaku and Asakusa [|52] 4D16H617 -31.1 0.0049 258 660 220 220 19 16 2 0 2 360 12 52 728 250
Kaku and Asakusa [|52] 4D16H610 -41.7 0.0049 199 660 220 220 19 16 2 0 2 360 12 52 728 250
Kaku and Asakusa [|52] 4D16H600 -41.7 0.0049 0 660 220 220 19 16 2 0 2 360 12 52 728 250
Kaku and Asakusa [|52] 4D16H317 -44.7 0.0012 360 660 220 220 19 16 2 0 2 360 6 52 728 281
Kaku and Asakusa [|52] 4D16H309 -36.7 0.0012 160 660 220 220 19 16 2 0 2 360 6 52 728 281
Kaku and Asakusa [|52] 4D16H300 -40.4 0.0012 0 660 220 220 19 16 2 0 2 360 6 52 728 281
Kaku and Asakusa [|52] 4D108D10H612 -32.2 0.0049 194 660 220 220 16 10 4 4 4 395 12 52 752 250
Kaku and Asakusa [|52] 4D108D10H608 -41.2 0.0049 160 660 220 220 16 10 4 4 4 395 12 52 752 250
Kaku and Asakusa [|52] 4D108D10H600 -40.6 0.0049 0 660 220 220 16 10 4 4 4 395 12 52 752 250
Kaku and Asakusa [|52] 4D108D10H317 -44.4 0.0012 360 660 220 220 16 10 4 4 4 395 6 52 752 281
Kaku and Asakusa [|52] 4D10 8D10 H3 08 -41.9 0.0012 160 660 220 220 16 10 4 4 4 395 6 52 752 281
Kaku and Asakusa [|52] 4D10 8D10 H3 00 -35.1 0.0012 0 660 220 220 16 10 4 4 4 395 6 52 752 281
Kaku and Asakusa [|52] 4D10 8D10 H3 -04 | -46.4 0.0049 -100 660 220 220 16 10 4 4 4 395 12 52 752 250
Shafaei et al. [|214] J1 -23 0.012932627 | 220 925 250 250 15 14 3 2 3 460 8 60 880 350
Shafaei et al. [|214] J2 -23.3 0 220 925 250 250 15 14 3 2 3 460 8 60 880 350
Shafaei et al. [|214] J3 -24.7 0 220 925 250 250 15 14 3 2 3 460 8 60 880 350
Chutarat and Aboutaha [[261] | I1 -27.6 0.013594346 | O 1194 406 406 254 | 2223 | 4 4 4 482.7 | 13 88.89 | 2845 365.4
Chutarat and Aboutaha [[261] | A2 -33.1 0.013594346 | 0 1194 508 406 254 | 2223 | 3 2 3 482.7 | 13 88.89 | 2845 365.4
Ehsani et al. [|260] 1 -64.72 | 0.011949747 | 133.447 1487.2 | 340 340 50.8 | 22.23 | 3 2 3 413 13 120 1630 413
Ehsani et al. [|260] 2 -67.34 | 0.011949747 | 338.065 1487.2 | 340 340 50.8 | 22.23 | 3 2 3 413 13 120 1630 413
Ehsani et al. [|260] 3 -64.72 | 0.01504164 382.547 1507.5 | 300 300 50.8 | 22.23 | 3 2 3 413 13 110 1352 413
Ehsani et al. [260] 4 -67.34 | 0.01504164 324.72 1507.5 | 300 300 50.8 | 25.4 3 2 3 413 13 110 1352 413
Ehsani et al. [|260] 5 -44.64 | 0.01504164 222.411 849.1 300 300 50.8 | 19.05 | 3 2 3 413 13 110 1352 413
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Table A.2 Experimental Database — (continued from previous page)

Authors Unit fe Pj N L. h. b, . ¢ ntop. | nmid. | nbot, Fye b Se Ltot, Fyy
Tsonos [8] Al -35 0.009559798 | 200 550 200 200 30 10 3 2 3 500 6 50 792 540
Tsonos [8] El -22 0.009559798 | 200 550 200 200 30 14 3 2 3 500 6 50 792 540
Tsonos [8] E2 -35 0.009958123 | 200 550 200 200 30 14 3 2 3 495 6 48 792 540
Tsonos [|8] Gl -22 0.008535534 | 200 550 200 200 30 14 3 2 3 495 8 100 792 540
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Table A.3 Experimental Database

Authors Unit Ly hy by Cp ¢ ntop, | nmid, | nboty Fyp ¢.b Sp Ltoty, Fiyp
Fernandes [|248] JPA-1 2150 | 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [|248] JPA-2 2150 | 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [248] JPA-3 2150 | 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [|248] JPB 2150 | 400 300 20 12 2 0 4 590 8 200 1040 590
Fernandes [|248] JPC 2150 | 400 300 20 12 2 0 4 590 8 100 1040 590
Fernandes [|248] JD 2150 | 400 300 20 12 2 0 4 480 8 200 1040 480
Pantelides et al. [[251] Type I 1677 | 610 406 30 13 17.34 1.18 2 454 10 229 1912 454
Pantelides et al. [[251] Type II 1677 | 406 406 30 13 12.08 1.18 3 454 10 229 1504 454
Liu [|252] Unit 1 1605 | 500 300 40 24 4 0 2 321 12 380 1280 318
Liu [[252] Unit 2 1605 | 500 300 40 24 4 0 2 321 12 380 1280 318
Noguchi and Kurusu [|242] No 2 1200 | 300 200 20 10 10 0 10 325 6 100 1800 354
Noguchi and Kurusu [|242] No 4 1200 | 300 200 20 13 5 0 5 388 6 100 1800 354
Noguchi and Kurusu [|242] No 5 1200 | 300 200 20 10 10 0 10 325 6 100 1800 322
Noguchi and Kurusu [|242] No 7 1200 | 300 200 20 13 5 0 5 374 6 100 1800 322
Dhakal and Pan [|254] QS1 2450 | 550 300 30 25 5 0 2 538 10 200 1500 264
Dhakal and Pan [254] QS2 2500 | 550 300 30 25 6 0 2 538 10 200 1500 264
Xin et al. [255] Unit 1 1855 | 500 250 44 12 7 0 7 453 6 70 1140 356
Xin et al. [255] Unit 2 1855 | 500 250 44 16 4 0 2 445 10 90 1140 348
Xin et al. [255] Unit 3 1855 | 500 250 44 16 4 0 4 445 10 90 1140 348
Xin et al. [[255] Unit 4 1855 | 500 250 44 20 2 0 1.28 492 10 90 1140 348
Xin et al. [[255] Unit 5 1855 | 500 250 44 20 3 0 3 492 10 90 1140 348
Xin et al. [[255] Unit 6 1855 | 500 250 44 20 3.92 0 2 492 10 90 1140 348
Raffaelle and Wight [|232] S1 2089 | 381 254 254 | 15.88 | 4.32 0 3 440 6.35 | 82.55 1068.8 | 475
Raffaelle and Wight [|232] S2 2089 | 381 177.8 | 25.4 | 15.88 | 2.88 0 2 440 6.35 | 82.55 | 914.4 475
Raffaelle and Wight [|232] S3 2089 | 381 190.5 | 25.4 | 15.88 | 3 0 2 440 6.35 | 82.55 [ 939.8 475
Raffaelle and Wight [|232] S4 2089 | 558.8 | 190.5 | 254 | 15.88 | 3 0 2 440 6.35 127 1295.4 | 475
Kurose et al. [228] Bl 1350 | 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B2 1350 | 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B3 1350 | 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B4 1350 | 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B5 1350 | 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B6 1350 | 350 150 20 13 3 0 3 378 6 75 840 378
Kurose et al. [228] B8 1350 | 350 200 20 13 3 0 3 378 6 50 1190 378
Kurose et al. [228] B9 1350 | 350 200 20 13 3 0 3 378 6 100 900 378
Kurose et al. [228] B10 1350 | 350 200 20 13 5 0 5 378 6 50 1190 378
Kurose et al. [228] B11 1350 | 350 200 20 13 5 (0] 3 378 6 50 1190 378
Kusuhara and Shiohara [258] | Al 1350 | 300 300 20 13 8 (0] 8 345 6 50 1040 295
Kusuhara and Shiohara [258] | C1 1350 | 300 300 20 13 8 0 8 345 6 50 1040 295
Kusuhara and Shiohara [|258] | D1 1350 | 300 300 20 16 6 0 6 345 6 50 1040 295
Kusuhara and Shiohara [|258] | D2 1350 | 300 300 20 16 6 0 6 345 6 50 1040 295
Lee et al. [249] J1 1375 | 400 300 20 16 10 0 10 5099 | 10 100 1240 510.4
Lee et al. [249] BJ1 1375 | 400 300 20 16 6 0 6 5099 | 10 100 1240 510.4
Lee et al. [249] BJ2 1375 | 400 300 20 16 5 0 5 509.9 | 10 200 1240 510.4
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Table A.3 Experimental Database — (continued from previous page)

Authors Unit Ly hy by Cp ¢ ntop, | nmid, | nboty Fyp ¢.b Sp Ltoty Fiyp
Lee et al. [249] BJ3 1375 | 400 300 20 16 4 0 4 509.9 | 10 200 1240 510.4
Lee et al. [249] Bl 1375 | 400 300 20 16 3 0 3 509.9 | 10 200 1240 510.4
Alaee and Li [250] IN80 2175 | 500 250 20 16 4 0 2 500 10 65 1340 500
Alaee and Li [250] 1H80 2175 | 500 250 20 16 4 0 2 700 10 85 1340 700
Alaee and Li [|250] TH80A 2175 | 500 250 20 16 4 0 2 700 10 65 1340 700
Alaee and Li [|250] IN100 2175 | 500 250 20 16 4 0 2 700 10 65 1340 700
Alaee and Li [|250] TH100 2175 | 500 250 20 16 4 0 2 700 10 65 1340 700
Alaee and Li [|250] IH60 2175 | 500 250 20 16 2 0 2 700 10 85 1340 700
Alaee and Li [|250] TH60A 2175 | 500 250 20 16 2 0 2 700 10 85 1340 700
Ehsani and Wight [|259] 1B 762 480 259 76 20.63 | 6 0 6 340 13 101.6 | 1072 413
Ehsani and Wight [|259] 2B 762 439 259 48.3 | 20.63 | 6 0 6 340 13 88.9 1072 413
Ehsani and Wight [[259] 3B 762 480 259 50.8 | 20.63 | 6 0 6 340 13 101.6 | 1072 413
Ehsani and Wight [[259] 4B 762 439 259 48.3 | 20.63 | 6 0 6 340 13 88.9 1072 413
Ehsani and Wight [|259] 5B 534 480 300 50.8 | 22.23 | 6 0 6 340 13 101.6 | 1072 413
Ehsani and Wight [|259] 6B 534 480 300 50.8 | 20.63 | 6 0 6 340 13 76.2 1072 413
Ehsani and Alameddine [|54] LL11 800 508 311 76.2 | 25.4 4 0 4 496 13 88.9 1092 446
Ehsani and Alameddine [|54] LL14 800 508 311 76.2 | 25.4 4 0 4 496 13 88.9 1092 446
Ehsani and Alameddine [|54] LH11 800 508 311 76.2 | 25.4 4 0 4 496 13 63.5 1092 446
Ehsani and Alameddine [|54] LH14 800 508 311 76.2 | 25.4 4 0 4 496 13 63.5 1092 446
Ehsani and Alameddine [|54] HL11 800 508 311 76.2 | 28.58 | 4 0 4 496 13 88.9 1092 446
Ehsani and Alameddine [|54] HH14 800 508 311 76.2 | 28.58 | 4 0 4 496 13 63.5 1092 446
Kaku and Asakusa [|52] 4D16H617 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [|52] 4D16H610 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [|52] 4D16H600 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [|52] 4D16H317 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [|52] 4D16H309 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [|52] 4D16H300 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [|52] 4D108D10H612 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [|52] 4D108D10H608 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [|52] 4D108D10H600 445 220 160 17 13 4 0 4 391 12 50 624 250
Kaku and Asakusa [|52] 4D108D10H317 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [|52] 4D10 8D10 H3 08 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [|52] 4D10 8D10 H3 00 445 220 160 17 13 4 0 4 391 6 50 624 281
Kaku and Asakusa [|52] 4D10 8D10 H3 -04 | 445 220 160 17 13 4 0 4 391 12 50 624 250
Shafaei et al. [|214] J1l 575 250 220 15 14 4 0 3 460 8 60 820 350
Shafaei et al. [[214] J2 575 250 220 15 14 4 0 3 460 8 60 820 350
Shafaei et al. [[214] J3 575 250 220 15 14 4 0 3 460 8 60 820 350
Chutarat and Aboutaha [[261] | I1 1067 | 457 356 254 | 2223 | 4 0 4 482.7 | 13 88.9 2235 365.4
Chutarat and Aboutaha [[261] | A2 1067 | 457 356 254 | 2223 | 4 0 4 482.7 | 13 88.9 2235 365.4
Ehsani et al. [|260] 1 787 480 300 50.8 | 2096 | 5 0 5 413 13 120 774.7 413
Ehsani et al. [|260] 2 787 480 300 50.8 | 19.05 | 5 0 5 413 13 120 774.7 413
Ehsani et al. [|260] 3 787 440 260 50.8 | 17.78 | 5 0 5 413 13 110 990.6 413
Ehsani et al. [260] 4 787 440 260 50.8 | 19.69 | 5 0 5 413 13 110 990.6 413
Ehsani et al. [260] 5 787 440 260 50.8 | 20.64 | 6 0 6 275 13 110 990.6 413
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Authors Unit Ly hy by Cp ¢ ntop, | nmid, | nboty Fyp ¢.b Sp Ltoty Fiyp
Tsonos [8] Al 450 300 200 30 10 4 0 4 500 6 65 760 540
Tsonos [8] El 450 300 200 30 14 3 0 3 500 6 75 760 540
Tsonos [8] E2 450 300 200 30 14 2 0 2 495 6 75 760 540
Tsonos [|8] Gl 450 300 200 30 14 3 0 3 495 8 100 760 540




FITTED SURFACES ON THE FE SIMULATION OUTPUT

This appendix chapter presents the fitted surfaces for the simulation results obtained
in the context of concrete behavior analysis. The surfaces are generated using cubic
surfaces and capture the relationship between shear strain and stress values with
respect to concrete strength, aspect ratio, and joint reinforcement ratio. A total of 1500
simulation results were utilized for the fitting process. The polynomial coefficients
used to construct the surfaces are listed in Table 1, while Table 2 presents the metrics
indicating the goodness of fit for the constructed surfaces.

To establish the relationships between shear strain and stress values, cubic
surfaces were employed. These surfaces allow for the representation of complex
three-dimensional interactions between the variables of interest, namely concrete
strength, aspect ratio, and joint reinforcement ratio. By fitting the cubic surfaces to
the simulation results, a comprehensive understanding of the concrete behavior under
the defined criteria can be obtained.

Table 1 provides the polynomial coefficients obtained from the surface fitting process.
These coefficients are crucial for accurately reproducing the fitted surfaces. Each
term in the polynomial equation contributes to the overall shape and characteristics
of the surfaces. By incorporating these coefficients, researchers and practitioners can
efficiently utilize the fitted surfaces for further analysis and decision-making processes.

Table 2 presents the metrics used to evaluate the goodness of fit for the constructed
surfaces. These metrics provide insights into the accuracy and reliability of the fitted
surfaces in representing the simulation results. Commonly used metrics, such as root
mean square error (RMSE), coefficient of determination (R?), and mean absolute error
(MAE), are reported. These metrics allow for an objective assessment of the quality
of the fitted surfaces and aid in understanding the level of agreement between the
simulation results and the fitted models.

This appendix chapter demonstrates the fitting of cubic surfaces to 1500 simulation
results, which represent shear strain and stress values under defined criteria. By
employing polynomial coefficients listed in Table 1, the fitted surfaces accurately
capture the complex interdependencies between concrete strength, aspect ratio, and
joint reinforcement ratio. The goodness of fit metrics presented in Table 2 assure
the reliability of the fitted surfaces. Researchers and practitioners can utilize these
surfaces to gain insights into concrete behavior and make informed decisions based
on the defined criteria.
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Figure B.1 Scatter and fitted surfaces for shear strain values, y,,(z) and concrete strength
values, f. (x) and joint reinforcement ratio, p i (y) for (a) Limit I, (b) Limit II, (c¢) Limit III,
(d) Limit IV and (e) Limit V
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Figure B.2 Scatter and fitted surfaces for shear strain values, y,,(z) and concrete strength
values, f. (x) and aspect ratio, b/h (y) for (a) Limit I, (b) Limit II, (¢) Limit III, (d) Limit IV
and (e) Limit V
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Figure B.3 Scatter and fitted surfaces for shear stress values, 7, (z) and concrete strength
values, f. (x) and aspect ratio, p j (y) for (a) Limit I, (b) Limit II, (c) Limit III, (d) Limit IV
and (e) Limit V
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Figure B.4 Scatter and fitted surfaces for shear stress values, 7, (z) and concrete strength
values, f. (x) and aspect ratio, b/h (y) for (a) Limit I, (b) Limit II, (¢) Limit III, (d) Limit IV
and (e) Limit V
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Figure B.5 Scatter and fitted surfaces for shear strain values, y,,(z) and concrete strength
values, f. (x) and joint reinforcement ratio, p i (y) for (a) Limit A, (b) Limit B, (c¢) Limit C,
(d) Limit D and (e) Limit E
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Figure B.6 Scatter and fitted surfaces for shear strain values, y,,(z) and concrete strength
values, f. (x) and aspect ratio, b/h (y) for (a) Limit A, (b) Limit B, (c¢) Limit C, (d) Limit D
and (e) Limit E
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Figure B.7 Scatter and fitted surfaces for shear stress values, 7, (z) and concrete strength
values, f. (x) and aspect ratio, p i (y) for (a) Limit A, (b) Limit B, (c¢) Limit C, (d) Limit D and
(e) Limit E

222



Fitted surface
Simulated Data

(€)) (b)

I Fitted surface W Fitted surface
o Simulated Data mulated Data

(o) (@

W Fitted surface
o Simulated Data

(e)

Figure B.8 Scatter and fitted surfaces for shear stress values, 7, (z) and concrete strength
values, f. (x) and aspect ratio, b/h (y) for (a) Limit A, (b) Limit B, (c¢) Limit C, (d) Limit D

and (e) Limit E
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Table B.1 Polynomial coefficients for surfaces fitted to shear strain data for material strength limit states

Function p00 p10 pO1 p20 pll p02 p30 p21 pl2 p03
r1(fe, 0;5) 0.0033 -4.112e-05 | -0.0002053 | 0.0006908 -0.000551 -0.0002384 | -0.0003309 | -0.0001274 | 0.0002409 6.86e-05
y1(f;, b/h) | 0.003101 0.0002183 | -0.0001638 | 0.0006495 1.702e-06 -4.011e-05 | -0.0004901 | -2.479e-05 -2.133e-05 -5.898e-07
v2(fe, pj) 0.01894 -0.00259 0.002112 -0.0007852 -0.000997 -0.003427 0.0001952 | -0.0003786 | 0.0006939 0.0006018
yo(fe, b/h) 0.01485 0.001379 0.0006839 0.0004231 -0.0008556 7.56e-05 -0.001423 0.0003254 | -0.0004777 | -0.0001216
r3(fe, 05) 0.01774 -0.002028 0.001869 -0.001839 -0.0007375 -0.003099 0.0005747 | -0.0004858 | 0.0006154 0.0005675
y3(fe, b/h) 0.0142 0.001712 0.0009086 -0.000702 -0.0006058 | -4.534e-05 -0.001018 8.567e-05 -0.0003545 | -8.825e-05
Ya(fe, p;j) 0.01566 -0.001882 0.0007032 0.001268 -0.0007421 -0.002525 -0.0004526 | -0.0005993 | -0.0001408 | 0.0005171
y4(fe,b/h) 0.01339 -0.00038 -0.00068 0.002231 0.0005144 | -0.0001225 -0.001762 3.42e-06 0.0003972 8.53e-05
vs(fe, 0;5) 0.03127 -0.003141 0.001123 0.002238 -0.001313 -0.005321 -0.001084 -0.0009177 -0.000348 0.001132
ys(fe, b/h) 0.02651 -0.0002491 -0.001331 0.004128 0.0009772 | -0.0001194 -0.003658 9.446e-05 2.452e-05 -2.031e-05

Table B.2 Polynomial coefficients for surfaces fitted to shear stress data for material strength limit states

Function poo0 plo0 po1 p20 pl1 po2 p30 p21 pl2 p03

71(fe;Pj) 7.776 | 4.249 | -0.4513 0.962 0.964 -1.255 -1.144 0.801 -0.4556 0.3774
71(f.,b/h) | 6.928 | 3.822 | -0.8362 1.27 0.1863 0.04634 -1.244 | -0.06645 0.0364 0.01045
T5(fe, Pj) 8.017 | 4.536 | -0.6713 1.455 0.7698 -1.109 -1.245 0.8317 -0.3291 0.3672
T5(fe,b/h) | 7.361 | 4.096 | -0.7794 1.655 0.2027 | -0.008256 | -1.237 | -0.01441 | 0.002448 | 0.01899
73(fe;Pj) 10.58 | 5.581 0.289 -0.05377 1.809 -1.382 -1.171 0.6123 -0.8274 0.367

73(f.,b/h) | 9.747 | 5.673 | -0.6991 0.574 0.3026 -0.07089 -1.605 | 0.05769 -0.01784 | 0.04216
t4(fe, Pj) 11.63 | 6.354 | 0.2334 -0.1422 2.192 -1.552 -1.638 0.7242 -0.9584 0.4095
74(f.,b/h) | 10.67 | 6.665 | -0.6862 0.718 0.5297 -0.09116 -2.343 -0.1966 -0.1376 0.04213
75(fe;Pj) 9.575 | 5.141 0.1778 -0.2527 1.83 -1.202 -1.204 0.7929 -0.6392 0.3089
75(f.,b/h) | 9.015 | 5.216 -0.459 0.08087 | 0.1225 -0.1602 -1.561 -0.2967 -0.1354 0.03524




S¢¢

Table B.3 Polynomial coefficients for surfaces fitted to shear strain data for damage index limit states

Function p00 p10 pO1 p20 pl1 po2 p30 p21 pl2 po3
Yalfe; pj) 0.006314 -0.00063 0.0002713 | 0.0004164 | -0.0002495 -0.001058 -0.0002276 | -0.0001989 -7.01E-05 0.0002226
yalfe, b/h) 0.00529 -5.81E-05 -0.0003207 | 0.0008392 | 0.0002031 1.69E-05 -0.0007392 6.50E-05 1.92E-05 -7.26E-06
D) 0.01236 -0.001265 0.0005464 0.001068 -0.0004876 -0.002089 -0.0004459 | -0.0004115 | -0.0001664 0.000432
ye(fe, b/h) 0.01045 -5.59E-05 -0.0005274 0.00188 0.0004495 -4.38E-05 -0.001476 6.10E-05 -2.28E-05 -5.28E-06
vc(fep5) 0.01929 -0.002189 0.0007622 0.001234 -0.000879 -0.003454 -0.0004709 | -0.0005024 [ -0.0002087 | 0.0007375
yvc(fe,b/h) 0.01616 -0.0001237 | -0.0008607 0.002561 0.0006998 | -0.0001407 -0.002169 0.0001087 -8.49E-05 -3.74E-06
vo(fe,P}) 0.02534 -0.002657 0.0007263 0.001906 -0.001209 -0.004402 -0.0009437 | -0.0006457 | -0.0002205 | 0.0009644
yp(fe, b/h) 0.02125 -0.0002908 -0.001031 0.003643 0.0008168 -1.26E-05 -0.003023 0.0003097 0.000248 -2.50E-05
ve(fe, Pj) 0.03153 -0.003657 0.0012 0.002029 -0.001044 -0.005741 -0.0004928 -0.001019 -0.0006002 0.001303
ye(fe, b/h) 0.0263 -0.0006348 -0.001504 0.004207 0.001086 5.29E-05 -0.003223 0.000525 0.0001241 -3.27E-05

Table B.4 Polynomial coefficients for surfaces fitted to shear stress data for damage index limit states

Function p00 plo po1 p20 pll po02 p30 p21 pl12 pO3
talfe, Pj) 8.585 [ 3.702 0.556 -0.5013 1.261 -1.511 -0.8869 0.228 -0.6478 0.3855
Ta(f., b/h) 7.42 4.202 | -0.7059 0.2298 0.3282 0.139 -1.543 0.1529 0.0924 -0.000301
15(fe, P;5) 9.666 | 5.317 | 0.3724 | -0.04375 1.61 -1.343 -1.404 0.5734 -0.6305 0.3473
7(f.,b/h) | 8.807 | 5.506 | -0.4864 0.5066 0.2912 | -0.04197 -1.837 -0.1697 -0.04739 0.02003
tc(fe, ;) 10.02 | 5.219 | 0.3758 | -0.07415 1.76 -1.327 -1.285 0.6703 -0.716 0.3393
tc(fe,b/h) | 9.229 | 5.391 -0.773 0.5109 0.3021 | -0.08456 -1.719 0.1501 0.001166 0.04528
tp(fesPj) 10.26 | 5.298 | 0.5842 | -0.06859 1.866 -1.337 -1.154 0.5283 -0.8333 0.2995
vp(fe,b/h) | 9.471 | 5.587 | -0.5934 0.547 0.294 -0.1096 -1.717 -0.09267 | -0.08499 0.04034
5 (fe, p;j) 10.69 | 5.569 | 0.1865 -0.1236 1.84 -1.482 -1.238 0.7417 -0.836 0.3895
Tg(fe, b/h) 9.89 5.755 | -0.5912 0.4369 0.1901 -0.1828 -1.755 -0.207 -0.1284 0.048
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