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OZET
Yiiksek Lisans Tezi

ARITMETIK TOPLANABILME
VE ARITMETIK YAKINSAKLIK

[brahim BOZTEPE
Afyon Kocatepe Universitesi
Fen Bilimleri Enstitiisii
Matematik Anabilim Dali
Damsman: Prof. Dr. Erding DUNDAR

Bu tez c¢alismasi bes ana boliimden olusmaktadir.

Birinci boliimde, tez ¢alismasindaki konunun matematik alanindaki 6nemini ve konu ile
ilgili yapilan c¢alismalar1 &zetleyen literatiir bilgisi sunulmustur. Ikinci boliimde,
matematik literatiiriinde iyi bilinen ve tez ¢alismasinda yararlanilan bazi temel tanimlar
ve kavramlar not edilmistir. Ugiincii boéliimde, aritmetik toplanabilir diziler uzayi,
aritmetik toplanabilir sinirli diziler uzayr ve aritmetik yakinsak diziler uzay: ile ilgili
temel kavramlar verilerek bu kavramlar arasindaki iligkileri inceleyen teoremler ve
ispatlar1 verilmistir. Dordiincii boliimde, aritmetik toplanabilme ve ¢arpan dizi kavramlari
kullanilarak bir dizi uzay:1 tanitilmis ve bu uzayla ilgili bazi 6nemli 6zellikleri inceleyen

teoremler ve ispatlar1 verilmistir.

Son boliim olan besinci boliimde ise, tez galismasi siiresince faydalanilan ve literatiirde

mevcut olan kaynaklar listelenmistir.

2023, v + 44 sayfa
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ABSTRACT
M.Sc. Thesis

ARITHMETICAL SUMMABILITY
AND ARITHMETICAL CONVERGENCE

Ibrahim BOZTEPE
Afyon Kocatepe University
Graduate School of Natural and Applied Sciences
Department of Mathematics
Supervisor: Prof. Erding DUNDAR

This thesis consists of five main chapters.

In the first part, the literature information that summarizes the importance of the subject
in the thesis in the field of mathematics and the studies on the subject is presented. In the
second part, some basic definitions and concepts that are well known in the mathematics
literature and used in the thesis are noted. In the third chapter, basic concepts about
arithmetic summable sequence space, arithmetic summable bounded sequence space and
arithmetic convergent sequence space are given, and theorems examining the
relationships between these concepts and their proofs are given. In the fourth chapter, a
sequence space is introduced by using the concepts of arithmetic summability and
multiplier sequence, and theorems and proofs that examine some important properties of

this space are given.

In the fifth chapter, which is the last chapter, the sources used during the thesis study and

available in the literature are listed.

2023, v + 44 pages
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SIMGELER DiZiNi

Simgeler
N Dogal sayilar kiimesi
Z Tam sayilar kiimesi
R Reel sayilar kiimesi
C Kompleks Sayilar kiimesi
k|n k, n yi boler veya n, k nin bir katidir
Z Xj k, 1 ve n dahil olmak iizere n yi bdlen tam sayilarin tizerinde
T degisirken tiim x; sayilarinin sonlu toplami
(m,n) Iki tam say1 m ve n nin en biiyiik ortak boleni
AC Aritmetik yakinsak dizilerin uzay1
AS Aritmetik toplanabilir dizilerin uzay1
BAS sup{|Zxm f(k)|:n = 1,2, ...} < oo sartini1 saglayan tiim f
dizilerinin uzay1
AS* AS nin dual uzayi
AS; Sonunda 0 olan dizilerin ¢ uzayinin AS* daki kapanisi
Q.f =g g(@) = f(<n,i>) tarafindan tanimlanan dizi
Qnf =49 g(i) = f(maksy<n, i>) tarafindan tanimlanan dizi
{Ar} Matrislerin sayilamayan kiimesi
A (f) Kosegen matris
w(k) k nin asal garpanlarinin sayisi
|| E |l f € AS dizileri tizerinde | f (k)| degerlerinin maksimumu
Q(n) n tam sayisinin asallarin farkli kuvvetlerine ¢arpanlara ayrilmasi
m
n= pflpgz ...p,’ilm olmak lizere Z k;
i=1
20(k) AS iizerindeki koordinat E; (f) = f (k) fonksiyonelinin normu




1. GIRIS

Yakinsaklik, aritmetik yakinsaklik ve aritmetik toplanabilme kavramlari, Analiz ve
Fonksiyonlar Teorisi alaninin 6nemli kavramlarindan olup, son zamanlarda birgok
matematik¢i tarafindan g¢alisilmaktadir. Tez konusu ile ilgili temel olan kavramlar
bir¢ok bilim insani tarafindan ¢alisilmistir. Yapilan bu ¢alismalar tez ¢alismasinin daha
iyi anlasilmasi agisindan incelenmistir. Banach (1932) ve Dunford ve Schwartz (1958)
lineer operatorleri incelemislerdir. Hardy ve Wright (1960) sayilar teorisi ile ilgili
kavramlari tanitmiglardir. Berg ve Wilansky (1962) ve Berg (1963) periyodik, hemen
hemen periyodik ve yari-periyodik diziler ve yari-periyodik dizilerin cebirini
calismuglardir. Leindler (1965) genel ortogonal serilerinin  la Vallee-Pousin
toplanabilmesi hakkinda inceleme yapmistir. Berg (1966) yari-periyodik diziler
uzaymin konjuge uzayim c¢alismistir. Milutin (1966) kuvvet siirekliligi kompaktlar
tizerinde siirekli fonksiyonlarin uzaylarimin izomorfizmleri {izerine inceleme yapmuistir.
Goes ve Goes (1970) smurli varyasyon dizileri ve Fourier katsay:r dizilerini
incelemislerdir. Siddigi (1971) hemen hemen periyodik dizilerin sonsuz matris toplami
kavramini tanitmistir. Ruckle (1972) dizi uzaylarinda topolojileri incelemistir. Jimenez
(1985) yari-periyodik dizi uzaylarin carpanlarini incelemistir. Schwarz ve Spilker
(1994) aritmetik fonksiyonlar ve aritmetik fonksiyonlarin temel ve analitik 6zellikleri
ile hemen hemen periyodik 6zelliklerini incelemislerdir. Haukkanen, Wang ve Sillanpaa
(1997) Smith determinanti iizerine inceleme yapmuslardir. Tripathy ve Mahanta (2004)
carpan dizileriyle iliskili vektor degerli dizi smiflar lizerine incelemeler yapmislardir.
Altimisik, Tuglu ve Haukkanen (2007) karsilama ve birlestirme matrislerinin
determinantt ve tersini incelemislerdir. Haukkanen ve Tossavainen (2008) gift
fonksiyonlar yardimiyla aritmetik fonksiyonlarin yaklasimi iizerine c¢aligmalar
yapmislardir. Toth ve Haukkanen (2011) r-¢ift fonksiyonlarin ayrik Fourier doniisimii

ozelliklerini incelemislerdir.

Tezimizin tigiincli boliimiinde, Ruckle (2012) tarafindan yapilan ¢aligmadaki aritmetik
toplanabilen diziler uzay1 (AS), aritmetik toplanabilen sinirli diziler uzayr (BAS) ve
aritmetik yakinsak diziler uzay1 (AC) ile ilgili temel kavramlar verilerek bu kavramlar

arasindaki iligkileri inceleyen ozellikler incelenmistir. Bu anlamda, ilk olarak periyodik



dizilerin bir alt cebiri olarak aritmetik yakinsak diziler uzay ilgili teoremler, 6nermeler
ve ispatlart verilmistir. Daha sonra aritmetik yakinsak dizilerin dual uzayr kavrami
tanitilmis olup bu uzayla ilgili bazi 6nemli teorem, 6nerme ve ispatlar1 verilmistir.
Ayrica, AS ve AS nin AC ve BAS ile iliskisi incelenmistir. Bu boliimde son olarak AS™

ve AS; kavramlari ile ilgili teoremler ve 6nermeler ispatlariyla agiklanmustir.

Tezimizin dordiincli boliimiinde ise, Yaying ve Hazarika (2012) tarafindan yapilan
calismadaki aritmetik toplanabilme ve ¢arpan dizi kavramlar1 kullanilarak tanitilan bir
dizi uzay1 ve bu uzayla ilgili baz1 6nemli &zellikleri inceleyen teoremler ve ispatlari
verilmistir. Bu anlamda ilk olarak, her aritmetik yakinsak bir dizinin sinirli oldugu
gosterilmistir. AC uzayindaki her dizinin Cauchy sartin1 sagladigr ispatlanmistir. Daha
sonra, carpan dizileri kullanarak aritmetik yakinsak dizi uzayr ve Ozellikleri
incelenmistir. Ayrica, eger (x,,) ve (v,), (AC(A), AS, ve AS(A)) uzaylarinda herhangi
iki dizi ise, bu durumda (x, +y,,) de (AC(A), AS, ve AS(A)) uzaylarinda bir dizi
oldugu her bir uzay i¢in sirasiyla ispatlanmistir. Bu béliimde (x;) € AC(A) ve her K igin
Ny, Ny |nk4+q olacak sekilde tam sayilarin bir dizisi ise, bu durumda (y;) = (lnkxnk)

dizisine yakinsadig1 gosterilmistir.

Son boliim olan besinci boliimde ise c¢alisma siiresince yararlanilan literatiirdeki

kaynaklar listelenmistir.



2. TEMEL KAVRAMLAR

Bu béliimde, tez calismasinda yararlanilan bazi temel kavramlar verilmistir. Literatiirde
1yl bilinen dogal sayilar kiimesi N, tam sayilar kiimesi Z, reel sayilar kiimesi R ve

kompleks sayilar kiimesi C gibi temel kavramlar burada verilmeyecektir.

2.1 Temel Tanim ve Kavramlar

Oncelikle metrik uzay, smirh dizi ve yakinsak dizi kavramlar: not edilecektir.

Tanmm 2.1.1 V bostan farkli bir kiime olsun.
Uu:VxV->~R

fonksiyonu her vy,v,,v5; € V i¢in

M1. u(vy,v,) =0 © vy = vy,

M2. u(vy,v2) = p(vz,v1),

M3. u(vy,v3) < p(vy,v2) + p(vs,v3)
sartlarin1 sagliyorsa p fonksiyonuna V de bir metrik ve (V, ) ikilisine de metrik uzay
denir (Bayraktar 2006).

Bu tez ¢alismasi boyunca V = R uzay1 lizerinde

pu(vy,v;2) = vy —v,|

bi¢ciminde tanimlanan mutlak deger metrigi géz oniine alinacaktir.

Tanmim 2.1.2 Tanim kimesi N ={1,2,...,n,...} dogal sayilar kiimesi olan her
fonksiyona dizi denir. Diziler deger kiimelerine gore adlandirilir. Eger bir dizinin deger
kiimesi reel sayilar kiimesi ise diziye reel terimli dizi veya reel say1 dizisi ya da reel dizi
denir. Yani reel terimli bir dizi

f: N>R
seklinde bir fonksiyondur. Genel terimi x; olan bir dizi (xp) = {x1, %2, ..., X, ... }

biciminde gosterilir (Balc1 1999).



Tez calismasinda aksi belirtilmedigi siirece (xj) dizisini reel say1 dizisi olarak ele

alacagiz.

Tanmim 2.1.3 (x;) bir dizi ve £ € R olsun. Her € > 0 igin, k > ny oldugunda
lx, — L] < €
olacak sekilde € a bagl bir ny € N sayis1 bulunabiliyor ise (xj) dizisi, £ sayisina
yakinsaktir denir ve
Ill_)rgjxk =L veya x, - L
biciminde gosterilir. Herhangi bir sayiya yakinsayan diziye yakinsak dizi denir.

Yakinsak olmayan diziye ise iraksak dizi denir (Balc1 1999).

Tanim 2.1.4 Eger her k dogal sayisi icin
lxe| < M
olacak sekilde bir M > 0 reel sayis1 bulunabiliyor ise (xj) dizisine sinirli dizi denir.

Tiim sinirh reel veya kompleks dizilerin kiimesi £ ile gosterilir (Balc1 1999).
Simdi sonlu toplam, periyodik dizi ve dual uzay tanimlar1 verilecektir.

Tamim 2.1.5 N de bir (x; ) dizisi ve n € N igin

2

kln
gosterimi k, 1 ve n dahil olmak iizere n yi bolen tam sayilarin tizerinde degisirken tiim
X, sayilarmin sonlu toplami anlamina gelir. Genel olarak k|n yi “k, n yi boler” veya “n,
k mn bir katidir” anlaminda yazilir. Iki tam say1 m ve n nin en biiyiik ortak bolenini

belirtmek i¢in (m, n) sembolii kullanilir (Yaying ve Hazarika 2017).

Tamim 2.1.6 Bir x = (x;,) dizisi ve tim k € N i¢in x;,, = X olacak sekilde bir n tam
sayis1 varsa x dizisine periyodik denir. Bu sart1 saglayan en kiiglik n tam sayisina ise x
dizisinin periyodu denir. P ile tiim periyodik dizilerin lineer uzay1 ve QP ile tiim sinirh

dizilerin £ uzaymda P nin kapanis1 gosterilir (Yaying ve Hazarika 2017).



Tanmm 2.1.7 X ve Y ayni cisim iizerinde iki normlu uzay olsun. B(X,Y) ile X den Y nin
icine olan tiim sinirlt lineer operatdrlerin kiimesini gosterelim. B(X,Y),

(T, + T,)(x) =Tyx + T,x ve (aT)(x) = aTx
islemleri ile bir vektor uzayi olup daha 6nce tanimlanan operatér normu ile bir normlu
uzaydir. Hatta Y uzayinin Banach olmasi durumunda B(X,Y) uzay: da bir Banach
uzayidir. X tlizerinde tanimli tiim sinirlt lineer fonksiyonellerin (yani, ¥ = R veya Y =

C) uzayina ise X in dual uzay: (siirekli dual) denir ve X' ile gosterilir (Bayraktar 2006).
2.2 Mobius Matrisi, Tersi ve Transpozu

Simdi Ruckle (2012) tarafindan yapilan makalede verilen Mobius matrisi, tersi ve

transpozu kavramlar1 not edilecektir.

i, j nin bdleni ise w; ; = 1 ve aksi halde w; ; = 0 olan [w; ;] alt iiggensel matrisi W ile

gosterilsin. Boylece

s =) f)

demek, yan yana getirmenin siradan matris ¢arpimini ifade ettigi g = Wf demeye
esdeger oldugu agiktir. W nin tersini tanimlamak igin ise u(1) = 1, eger p1, P2, -, Pk
farkli asal sayilar ise u(py - py * ...” Pr) = (—1)¥ ve n nin uygun bir kare ¢arpani varsa
u(n) = 0 ile bir dizi olarak tanimlanan w(n) Mobius fonksiyonu kullanilir. Mobius

Ters Teoremi, eger

gt =) f(d)
dln
ise, bu durumda
Fo0 = u(3) 9@
dln

oldugunu ifade eder (Hardy ve Wright 1960, s. 236). Boylece M, i|j ve aksi takdirde 0
olmak iizere i. satirinda ve j. siitununda elamani u G) olan matris ise, Mdbius Ters

Teoremi, eger g = W ise 0 zaman f = Mg veya esdeger olarak M nin tersinin W
oldugunu belirtir. W ve M nin transpoz matrisleri WT ve MT bigiminde yazilir. Bu

matris ¢iftleri birbirinin tersidir. Alt t{ggensel olan W ve M tim dizilere



uygulanabilirken transpozlari mutlak toplanabilen dizilere uygulanir (giinkii elemanlar

kiimesi sinirlidir), ancak tiim dizilere zorunlu degildir.

Asagidaki diyagram, #1 (mutlak yakinsak diziler) uzayi, £ (sinirh diziler) uzay1 ve

inceleyecegimiz uzaylar1 ve bunlarin birbiriyle olan iligkilerini 6zetlemektedir.

Cift ok = bir matris eslemesini gevreler; tek ok — dualiteyi belirtir ve < kesin dahil

etme anlamina gelir.

1 = W' = AS; c AS*

l l
£ = M = BAS
U U

AC=> M = AS - AS"



3. ARITMETIiK TOPLANABILME

Bu boliimde, Ruckle (2012) tarafindan yapilan makaledeki tanim, teorem ve lemmalar

ispatlartyla birlikte not edilecektir.
3.1 Aritmetik Toplanabilme
Bu kisimda, 6ncelikle aritmetik toplanabilme tanimi verilecektir.

Tamim 3.1.1 N {izerinde tanimli bir f dizisi verilsin. Eger her bir € > 0 i¢in bir n tam

sayist vardir 0yle ki her m tam sayis1 igin

<ég&

NICEINIG)

k|m kl(m,n)

ise, bu durumda f ye aritmetik toplanabilirdir denir. Eger her bir € > 0 igin bir n tam
sayis1 vardir 0yle ki her m tam sayis1 igin

lg(m) —g((m,n)| < ¢
ise, bu durumda g ye aritmetik yakinsaktir denir.

Bir f dizisi aritmetik toplanabilirdir ancak ve ancak g(n) = Y, f (k) ile tanimlanan g
dizisi aritmetik yakinsaktir fakat g dizisi alisilmig anlamda yakinsak degildir ve aslinda
periyodiktir.

Asagida verilen uzaylar ¢alisilacaktir.

AC: Aritmetik yakinsak diziler uzay:.

AS: Aritmetik toplanabilir diziler uzay:.

BAS: sup{|Xxn f(k)|:n = 1,2, ...} < oo sartin1 saglayan tiim f dizilerinin uzay.

AS*: AS nin dual uzay1. Bu ise x’, AS iizerindeki tiim siirekli dogrusal fonksiyoneller
tizerinde degisirken ve e;, j # i icin e;(i) =1 ve e;(j) = 0 olacak sekilde bir dizi
olmak tizere f (i) = x'(e;) bicimimde tanimlanan tiim f dizilerinin uzay1 demektir.

AS,: Sonunda 0 olan dizilerin ¢ uzaymin AS* daki kapanisi.



3.2 Periyodik Dizilerin Bir Alt Cebiri Olarak Aritmetik Yakinsak Diziler Uzay1

Tim k € N igin
flk+n) = f(k)

olacak sekilde bir n sayist varsa, f dizisine periyodiktir denir. Bu 6zelligi saglayan en
kiiciik n tam sayisia f nin periyodu denir. P ile tiim periyodik dizilerin lineer uzayi ve
QP ile tiim sinirh dizilerin £ uzayinda P nin kapanisi gosterilir. P ve QP uzaylari
Berg (1963), Berg ve Wilansky (1962), Berg (1966) ve Jimenez (1985) tarafindan ele
alinmistir. N {izerinde tanimli periyodik dizilerin lineer uzaymdan Z tizerinde taniml
olanlara kadar bir izomorfizm, Z ye genisleme ve N ye kisitlama ile belirlenir. Z
tizerinde tanimlanan periyodik dizilerin yararli bir 6zelligi f(1) i dizinin bir
periyodunun ilk degeri olarak kabul ederseniz 0 zaman, pozitif j i¢in f(j) j modilin
konumunda bulunan degeri belirtirken, pozitif olmayan j igin f(j) n —j modili n
konumunda bulunan degeri belirtir. Bu 6zellik, asagidakiler vasitasiyla QP uzayma

aktarilir.

Onerme 3.2.1 Eger f € QP(Z) ise, bu durumda her bir i € N icin
Aim f(n!=i) = f(=i) ve lim f(n!) = £(0)
—00 n—oo

esitlikleri gecerlidir.

Ispat: f nin periyodu p olmak iizere n > p oldugunda

fl =) = f(=D)
oldugundan, tiim f € P igin limit elde edilir. P, QP de yogun oldugundan formiil QP

nin tiimiine genisletilebilir ve
lim f(n! —1i) ve f(-i)
n—oo

fonksiyonellerinin her ikisi de siirli ve dolayisiyla stireklidir.

QP deki bir f dizisi, eger Z ye uzantisi igin

f@=f(=0
ise simetrik olarak adlandirilacaktir. Bizim i¢in 6zellikle ilgi ¢ekici olan
~ _ (1, nljise
dn(j) = {O; diger durumlar



olacak sekilde N iizerinde n = 1,2,... i¢in tanimlanan d, periyodik dizilerinin
kiimesini kurmaktir. Tanimlarindan, W nin situnlari olan bu dizilerin aritmetik

yakinsak ve simetrik oldugu agiktir.

Aritmetik bir f fonksiyonu, tiim k i¢in

flk) = f(<k,n>)
ise ¢ift mod(m) dir. Bu nedenle Tanim 3.1.1 den, bir dizi bazi n ler i¢in ¢ift mod(n)
olan tiim dizilerin uzaymin diizgiin kapanisindaysa aritmetik yakinsaktir. Bu tiir diziler
yakin zamanda Haukkanen ve Tossavainen (2008), Schwarz ve Spilker (1994) ve Toth

ve Haukkanen (2011) tarafindan ele alinmustir.

Herhangi bir diziden, AC de bir dizi (gergekte ¢ift modiilii n olan bir dizi) tiiretmenin

dogal ve basit bir yolu vardir.

Onerme 3.2.2 Eger f herhangi bir dizi ve n herhangi bir tam sayi ise, bu durumda
g9(@) = f(<n,i>)
tarafindan tanimlanan Q,, f = g dizisi AC dedir ve

sup;|g(D)] < sup;|f (D]
dir. Her bir Q,,, £ dan AC ye siirekli dogrusal bir iz diistimdiir. Her bir m, n tam say1

cifti i¢in
QmQn = Qamn>
ve dolayisiyla m ve n aralarinda asal ise her bir i i¢in g(i) = f(1) olmak tizere
QmQnf =01f =g
elde edilir.

Ispat: Tiim m igin
g(m) = f(<n,m>) = g(<n,m>)
oldugundan Q,f = g esitligi AC dedir. Diger ifadelerin ispatlar1 da agik sekilde

rutindir.

Q,, 1z diistimleri ilging yakinsama ozelliklerine sahiptir.



Onerme 3.2.3 Eger f, AC de herhangi bir dizi ve her bir k igin ny|ny., olacak sekilde
ny tam sayilarmn herhangi bir dizisi ise, bu durumda Q,, f, AC de

g(@) = f(maksy<i,ng>)
dizisine yakinsar.

Ispat: Q,, f dizisi diizgiin siirl ve her bir d,,, i¢in

0; <m,n,><mise

Qg = {dm; diger durumlar
olur. Boylece @, f, AC de diizgiin smirlilik ilkesi ile kendisinin agik olarak noktasal

limiti olan g ye yakinsaktir.

Teorem 3.2.1 f, AC de bir dizi ve her bir k i¢in ny|ng,,; ve my |my,, olacak sekilde
ny ve my, iki tam sayi dizisi olsun. Bu durumda, her bir f € AC i¢in

limQy, f = limQy,, f
esitligi gecerli olmasi i¢in gerek ve yeter sart her bir p asal sayis1 ve her bir h tam sayisi

icin p"|ny, olacak sekilde n, vardir gerek ve yeter sart p™|m,olacak sekilde m, vardir.

Ispat: M (i) = maks,<i, n,> dizisi ¢arpimsaldir (Hardy ve Wright 1960, s. 53). iy, i,
nin aralarinda asal oldugunu ve

M(iy) = <ig, ng, >, M(iy) = <ip,n,>
oldugunu varsayalim. ny, 1| 1y, oldugundan dolay1 n;, < ny, ise, bu durumda

<iq, Ny, > = <iy, Ny, >

ve bdylece,
M (iqiy) = <iqiy, N> = <iq, Ny><iy, N> < M(iy,15)
oldugunda
M (i )M (iy) = <iy, Ny, ><ip, Ny, > = <iyip, Ny,> < M(iqi;)
dir.

Her p asal ve her h tam sayisi i¢in s; h den kii¢iik veya ona esit en biiyiikk tam say1

olmak tzere

M@") =p*
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dir oyle ki p° baz1 n; lart boler. Kosul gegerli ise, bu durumda bir asal saymin her
kuvveti i¢gin
maks; <p®, n;> = maks,<p®, my>

ve boylece her tam say1 i¢in

maks; <i, n,> = maks,<i, my>
olup her bir f € AC igin

limQy, f = 1imQ,, f
dir. Eger g,
N Y
9() = { %)', gigle;lgﬁrumlar

biciminde bir dizi ise, bu durumda

h .
. _ (g p"lnyise
limQp,g _{0; diger durumlar

olur. Cilinkii i<p?® igin
<ps,n ><p® ve g(i) =0
dir. Bu da kosulun gerekli oldugunu gosterir.

Iz diisiim kosulundan, Teorem 3.2.1 gosterir ki lim@,, f formunun iz distimleri
@ = {p": p bir asal say1 ve bazi i ler i¢in p¥|n; dir.}
kiimesi tarafindan tamamen hesaplanir. Boylece
imQy,f = Qpf

yazilir.
Bir sonraki teorem, AC uzayinin temel 6zelliklerini 6zetler.
Teorem 3.2.2 (a) Eger bir f dizisi aritmetik yakinsak ise, bu durumda her bir ¢ > 0
icin periyodik bir g dizisi vardir dyle ki her bir i igin
If (@) —g@l<e

dir. Boylece AC, QP nin kapali bir alt cebiridir.

(b) AC deki yalniz yakinsak olan diziler sabit dizilerdir.

11



(¢) f € AC ve ny, tim k igin ng| ng,, olacak sekilde bir tam sayi dizisi ise, bu

durumda g(k) = f(ny) dizisi yakinsaktir.

(d) f € AC ve qy, ortak carpani olmayan artan bir tam say1 dizisi ise, bu durumda
h(k) = f(qy) dizisi f(1) e yakinsar.

(e) Her periyodik aritmetik yakinsak f dizisi, d,, dizilerinin bir lineer birlesimidir.

(f) Periyodik aritmetik yakinsak dizilerin uzay1, P nin uygun bir alt uzayidir ve QP de
AC simetrik dizilerin uygun kapali bir alt cebiridir.

Ispat: (a) Aritmetik yakinsamanin tanimi geregi, her bir i icin

lf (i) = f(<i,n>)|<e
olacak sekilde bir n tam sayis1 vardir.

g = f(<i,n >)

dizisini tanimlayalim.

<i+nn>=<i,n>
oldugundan, g dizisi en fazla n periyodu ile periyodiktir. AC nin bir cebir oldugu ve
diizgiin topolojide kapali oldugu yaklasim ile ilgili rutin bir arastirmadir ve ispati

tamamlariz.

(b) Sadece yakinsak periyodik diziler (a) geregince sabittir.

(c) € > 0 verilsin ve bir m alalim 6yle ki her bir i i¢in
|[f (i) — f(<i,m>)|<e
olsun. k > K igin
<M, Ng>= <M, Nkgyq1>

olacak sekilde bir K alalim. Boylece, i,j = K i¢in

12



9@ = g1 = |f () = ()|
= |f(ni) — f(<n;,m>) — f(nj) + f(<ni’m>)|
< |f(m) — f(<n;, m>)| + |_f(nj) + f(<n;, m>)|
= |f(n) — f(<n;, m>)| + |f(n]) - f(<nj,m>)|
<2

elde edilir. Bu nedenle g Cauchy kosulunu saglar, boylece yakinsar.

(d) € > 0 verilsin ve bir m alalim 6yle ki her bir i igin
|f (@) = f(<i,m>)|<e
olsun. g, tam sayilarinin ortak ¢arpani olmadigindan,
<m,q;>>1
olan tiim k larin kiimesi sonludur. Dolayisiyla k > K i¢in
<m,qr>=1
olacak sekilde K vardir. Bu
If (1) —h()| = | (1) — f(qwl
= |f(<m, qi>) — f(qi)l
<e&g

anlamina gelir.

(e) f periyodik oldugundan yalnizca sonlu sayida deger alir. Béylece € > 0 vardir 6yle
Ki eger

If@ - fl<e
ise

f@ =134
olur. f aritmetik yakinsak oldugundan, bir m tam sayis1 vardir dyle ki her bir i i¢in
|f (@) = f(<i,m>)|<e

olup bu ise her bir i i¢in

f@ = f(<i,m>)
anlamina gelir. g, her bir i i¢in

g(@) = g(<i,m>)
ozelligine sahip bagka bir dizi ise, bu durumda f + g ayn1 6zellige sahiptir.
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1 =my<m,...<mg = m ile artan diizende m nin tim bdlenlerinin dizisi olsun. m;|j
oldugundan d,,, fonksiyonu
dm;(j) = dp,(<j,m>)
Ozelligine sahip olmasi i¢in gerek ve yeter sart
m;|<j, m>
dir. Boylece, fonksiyonlarin dizisi
fi=f-fd;
ve genel olarak
firi=fi— fi(mi)dmi
tarafindan tanimlanir 6yle ki tiimii
fi G) = fi(<j,m>)
Ozelligine sahiptir. Her bir i igin
fs(m) =0
oldugundan, f; sifir dizisidir. f; den f ye tersine dogru caligmak, f nin d,, dizilerinin

lineer birlesimi oldugunu gosterir.

(f) d; nin Z ye uzantisi,

d.( )_{1; n=0,%1,%2, .. icin
i\ =10; i,k nin bir carpani degilse
ile periyodik bir dizidir. Bu dizilerin timdi, her i, j i¢in
di(=)) = d;(j)

kosulunu saglar. Bu lineer bir kosul oldugundan ve tiim d; lerin kiimesi, periyodik
aritmetik yakinsak dizilerin uzayi i¢in cebirsel bir baz oldugundan, tiim bdyle g ler i¢in
gecerli olan kosulu izler. d; nin acikligi AC de yogun oldugundan ve koordinat
fonksiyonelleri siirekli oldugundan kosul tim f € AC(Z) igin elde edilir. AC de
olmayan bir simetrik periyodik dizi 6rnegi olusturmak i¢in, ilk bes ay,a,, a,, a4, as
terimine sahip bes periyod dizisinin simetrik oldugu, ancak aritmetik yakinsak bir

periyod dizisinin ilk bes a,, a4, a;, a;, as terimine sahip olmasi gézlemlenir.

14



Teorem 3.2.3 Sonlu bir S kiimesi i¢in eger
f= Z a;d;
i€s
ve hi¢ bir a; # 0 ise, bu durumda f nin periyodu n dir, {i:i € S} nin en kiigiik ortak
katidir ve k nin bir ¢arpani olan bir i € S yoksa f (k) = 0 dur.

Ispat: S nin herhangi bir elaman1 yoksa ispat aciktir. S, n — 1 elemana sahip iken
onermenin dogru oldugunu kabul edelim ve S, n elemana sahip oldugunda 6nermenin

dogru oldugunu gosterelim. S, n elemana sahip olsun ve S nin en biiyiik eleman: olarak

g=z a;d;

i€S|h

h yi alalm. Eger

ise, bu durumda
f =g+ andy
igin ve tiim j ler igin
fGk) = g(Gk) + ap
ve aksi halde
h(i) = g(D)
dir. n', {i: i € S|h} nin en kii¢iik ortak katin1 gostersin. Eger i, h i kat1 degilse
h(i+n) =g +n)=g@{) =h()
olur, ¢iinkii n', n nin bir ¢arpanidir ve h, i + n yi bolmez. i, h 1n kat1 ise
h(i+n)=g@{+n)+a, =g@)+a, = h()
dir, ¢linkli n’, n nin bir ¢arpanidir ve h, i + n yi boler. f nin periyodu kesin olarak n dir,

¢linkii f, n de )} a; degerini alir ama n' de almaz.

Onerme 3.2.4 Her bir f dizisi i¢in a; katsayilar1 vardir 6yle ki her bir k igin
K

£ = ad;(0)

j=1
dir. Boylece, tiim dizilerin uzayr w igin (dj) bir baz olup, koordinatsal yakinsama

topolojisini verir.
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Ispat: a; = f(1) olsun ve k < n icin
K

£ = ayd;i0)

j=1

y1 saglayan ay: k < n bulunursa,
n
Ane1 = f(n+1) — Z a;di(n + 1)
j=1

olur.j <n+1igin

dn+1(i) =0
oldugundan, {a,: k < n} bulunurki k <n + 1 igin
K

£ = (k)

j=1

saglanir. (Q,,/f nin f ye yakinsak oldugu goriilebilir.)
3.3 Aritmetik Yakinsak Dizilerin Dual Uzay1

Bu bolimde, AC nin dual uzayr agiklanacak ve agiklama, AC gibi QP nin C[0,1]

cebirine gore izomorfik oldugunu gostermek i¢in kullanilacak.

0 < g < p olan her p, q tam say1 cifti ve baz1 k tam sayilar igin by, ; dizisi

1, j=q+ kpise
0; diger durumlar

bp,q 0 = {
seklinde tanimlansin. Her bir p i¢in {bp_q: q=1.2, ...,p} dizileri, p periyoduna sahip

dizilerin alt uzay1 i¢in bir baz olusturur. Bir periyodu p olan dizi ayrica her h pozitif tam

sayist i¢in hp periyoduna sahip oldugundan,

h-1
bpq = Z bhp,q+kp
k=0

dir. QP, £ un ayrilabilir kapali bir alt uzay1 oldugundan A bir matris olmak uzere,

stirekli lineer fonksiyonellerin

F(F) = lim > A DF()
J
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bi¢ciminde temsil edilebilecegi bilinmektedir (Banach 1932, s. 68-72). Berg (1966) bu
soruyu yanitladi ve Jimenez (1985) aymi soruyu P izerindeki siirekli lineer
fonksiyoneller icin yanitladi. QP iizerinde siirekli lineer fonksiyonellerin gosterimi
matrislerin belirlenmesine esdeger olup QP yi yakinsak dizilerin ¢ uzayma esler
(Siddiqgi 1971). Asagidaki teorem bu ii¢ ¢alismanin sonuglarini birlestiren QP dual uzay1

icin dogrudan bir agiklamadir.

Teorem 3.3.1 A = A(i, j) matrisi igin agsagidaki li¢ ifade esdegerdir:

(a) A matrisi
F(f) =lim > A0 )DF()
J

formiilii ile QP tizerinde siirekli dogrusal bir F fonksiyonelini belirler.

(b) A matrisi asagidaki sartlar1 saglar:

1)
supd Y 1A, )| f < o0
"G
(2) Hermve her 0 < k < migin
lim Z A(n,mj + k)
n =
limiti vardir.

(c) A matrisi QP yi c ye esler.

ispat: (a) = (b): Bir A(n,.) satir

E(F) =) A f()
J

ile QP tizerinde bir fonksiyonel tanimlamak i¢in gerek ve yeter sart
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Fo= ) lA@ DI < o
J

olmasidir. Eger (F,) dizisi zayif yakinsar ise, bu durumda smirhdir. Dolayisiyla (1)

sart1 saglanir. by, , de fonksiyonelin degeri
lim Z A(n,mj + k)
n =
oldugundan (2) nin gerekliligi elde edilir.

(b) = (c): A matrisi (1) ve (2) kosullarin1 sagliyor ise, bu durumda her bir f € QP

i¢in
> A FO)
J
mevcuttur ve

gt =) A, £()
J

biciminde tanimlanan g dizisi yakinsar.

(¢) = (a): A matrisi QP yi c ye esler ise, bu durumda

E(F) =) A f()
J

ile QP tizerinde tanimlanan fonksiyoneller QP tizerinde diizgiin sinirhidir ve her bir by,

icin yakinsar ve bdylece her bir f € QP igin yakinsarlar.
b i yerine d,, dizilerini kullanarak AC i¢in karsilik gelen sonug elde edilebilir.

Teorem 3.3.2 A = A(i, j) matrisi i¢in asagidaki ti¢ ifade denktir:

(a) A matrisi AC tizerinde
F(f) =lim > AGm,) ()
j

ile siirekli bir lineer F fonksiyoneli belirler.
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(b) A matrisi asagidaki sartlar1 saglar:

@
sup) > [A(m )| < oo.
J

(2) Her bir m igin

lim ZA(n, mj)
n =

limiti mevcuttur.
(c) A matrisi QP yi c ye esler.

QP de bir fonksiyonel belirleyen her matris agik olarak AC de bir fonksiyonel belirler.
AC de matrisler tarafindan tanimlanan fonksiyoneller tek olarak belirlenmez. Bununla
birlikte AC cebirinde Milutin Teoremini uygulamamiza izin veren sayilamayan sayida

farkli "nokta" fonksiyonel vardir.

Onerme 3.3.1 T, 0 ve 1 lerin sonsuz bir dizisi ve asal sayilar dizisi

2=p <pp <
olsun.

s(0)=1vel(k)=1

ise

s(k) = s(k = 1py
aksi takdirde

stk)=s(k—1)
olan bir s tam sayilar dizisi tanimlansn. Ilk satir1 0 ve
Pr <0< ey ise Ap(i,s(k)) =1
aksi takdirde
Ar(i,j) =0

olacak sekilde bir Ar matrisi tamimlansin. Matrislerin sayilamayan kiimesi {Ar}, AC

tizerindeki farkli fonksiyonelleri belirler.
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Ispat: m baz1 k lar icin s(k) yi boler ise, her bir m icin

Z.O:A(n, mj)
=1

sonug olarak 1 dir ve aksi halde her zaman 0 dir. Eger bu tiir sonsuz iki I';, T, dizileri
farkl ise, bu durumda belirlenen matrisler tarafindan tanimlanan fonksiyoneller ilk

(@) # (D) icin ilk dizi d,,, lizerinde farklilik gdsterir.

Milutin Teoreminden (Milutin 1966) bir sonraki sonug elde edilir.
Sonu¢ 3.3.1 AC uzaylar1 C[0,1] e izomorfiktir.

3.4 AS ve AS nin AC ve BAS ile Tliskisi

Eger f, ¢ de bir dizi ise, (f dizilerin uzayidir dyle ki j > Nf i¢in f(j) = 0 olacak
sekilde N¢vardir) bu durumda f* aritmetik toplanabilir ve

ORI

kin
bi¢giminde tanimlanan g dizisi aritmetik yakinsaktir ve P de bir dizidir. g i¢in esdeger
bir ifade

9= ftdy
k

dir.

W matrisinin siitunlar1 P uzayinda oldugundan, W (¢) nin P nin uygun bir alt uzayidir
ve W (AS), AC nin bir alt uzayidir. W (AS) nin AC nin tamaminda oldugunu gostermek
igin W nin tersi olan M matrisi kullanilir ve M&bius Inversiyon Teoremi asagidaki
teoremi verir (Hardy ve Wright 1960, s. 236).
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Teorem 3.4.1 (a) Bir f € P dizisinin W (¢) ye ait olmasi igin gerek ve yeter kosul i >

> u()rmr=o

jli

nigin

olacak sekilde n nin var olmasidir.

(b) Eger f, AS de bir dizi ise, bu durumda

MOEDWIO

ile tamimlanan g dizisi aritmetik yakinsak, AC de bir dizi ve f den g ye doniistimii AS

den AC ye bire bir izometrik bir eslemedir.

(c) Eger f, BAS ta bir dizi ise, bu durumda W f, £ da bir dizidir ve eger g, £ da bir
dizi ise, bu durumda Mg, BAS da bir dizidir. Bu nedenle,

A= 1IWflle
normu ile BAS, £ a izometriktir ve AS, BAS da ¢ nin kapanisidir.

Tiim dizileri AC ye esleyen Q, eslemesine benzer sekilde tiim dizileri ¢  AS ye

esleyen R,, eslemesidir.

Teorem 3.4.2 Eger f, herhangi bir dizi ve n herhangi bir tam sayi ise, bu durumda i|n

ise g(i) = f(i) ve i t nise g(i) = 0 olarak tanimlanan R, f = g dizisi ¢ dedir ve

> 9 Do

ilm ilm

Sup;, < sup,,

dir. Her bir R,,, BAS tan AS ye siirekli lineer iz diistimdiir. Her bir m, n tam sayilari
cifti i¢in

RmRy = Rimn)
ve boylece eger m ve n aralarinda asal ise,

g =f(D)vei>1icing(i) =0

olmak tlizere
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RuR.f =R f =g
dir. Eger f, AS deki herhangi bir dizi ve ny, her bir k i¢in ny|n; ., olacak sekilde tam
sayilarm herhangi bir dizisi ise, bu durumda R, f, AS de
g(©) = f(maks; (i, ny))

olan bir g dizisine yakinsar.

Ispat: ilk iki iddianin ispatlari rutindir. Ugiincii iddiay1 dogrulamak igin Ry, f dizisinin
diizgiin siirli oldugunu ve her bir e, igin

0; (m,n,) < mise

Rnem = {em; diger durumlar
oldugunu gorelim. Bu nedenle R,, f, AS de Diizgiin Smirlilik flkesi ile noktasal limitine

yakinsar ki bu agik¢a g dir.

Teorem 3.4.3 f, AS de bir dizi ve her bir k igin ny|n;,, ve m; |my,, olacak sekilde
n, ve my, iki tam say1 dizisi olsun. Bu durumda, her bir f € AS i¢in
limR,, f = limR, f
esit olmasi icin gerek ve yeter sart asagidaki sart saglanir ise gecerlidir:
Her bir p asal sayis1 ve her bir h tam sayis1 i¢in p"|n;, olacak sekilde n, vardir gerek ve

yeter sart p™*|m; olacak sekilde m, vardir.

Ispat: M(i) = maks,(i,n;) dizisi carpimsaldir (Hardy ve Wright 1960, s. 53). Eger
kosul gegerli ise, bu durumda bir asal sayinin her kuvveti igin

maks; (p®, ny) = maks,(p®, my)
boylece her tam say1 igin

maks; (i, n;) = max, (i, my)
dir ki her bir f € AS i¢in
limR,,, f = Ry, f

dir. Eger p"|ny ise, bu durumda Rye,n e,n diger durumda Ry.e,n sifirdr.

Dolayistyla kosul gereklidir.
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Bdylece limR,, f formunun iz diisiimleri tamamen
¢ = {p*:p bir asal sayidir ve p* bazi i ler icin n; yi béler}
kiimesi tarafindan belirlenir. Boylece,
limR,, f = Ry f

elde edilir.
Onerme 3.4.1 #1 c AS ancak AS, ¢£* tarafindan kapsanmaz.

Ispat: ilk kapsama agiktir. AS de olan ancak £ da olmayan bir diziyi bulmak igin dnce
w(n) ve Q(n) olmak tizere iki diziyi asagidaki gibi tanimlayalim:
n tam sayisinin farkli asal kuvvetlerine garpanlara ayrilmasi
ki k Km
n=p, 0% ..0m
ise

wn) =m

Q(n) = i k;

w(1)=21)=0
olsun. (Bakiniz Hardy ve Wright 1960, s. 354). Eger m ve n aralarinda asal iki tam

ve

tanimlayalim ve

sayilar ise, bu durumda

wm+n) =wlm) + wn)
ve

Q(m +n) = Q(m) + Q(n)
dir. Boylece

f(n) = (=1)2m20m
tarafindan tanimlanan dizi, iki ¢arpimsal dizilerin sonucu olan ¢arpimsaldir. Agikca f
siirl degildir. £ nin BAS ta oldugunu gostermek i¢in ilki f ¢arpimsaldir, boylece
gtm) =" f)
nlm

ile tanimlanan g dizisi de ¢arpimsaldir (Hardy ve Wright 1960).
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Bir asal p icin

IOV =fO+fO+fEH++fP)=1-2+2—+ (D2 =(-D*
dir boylece her n igin

lg(m)| =1
boylece f € BAS dir. AS de sinirsiz bir dizi olusturmak igin p;p, ... pyy, asallarinin ilk

2n nin triini (k,,) olmak tlizere
hn = (Rk, — Ri, . )f
olsun. Bu durumda,
IRnllgas < Ry fllg g + RS Il 0 < 2
fakat
hy (ky) = 4"
dir. Her bir h,, ¢ de oldugundan ve sifirdan farkli ortak koordinatlara sahip

Zz—" h,
n

AS de bir diziye mutlak yakinsar fakat £ da degildir.

olmadigindan

Sonraki iki sonug, AS nin alt uzaylarinin altta yatan koordinatlarinin dogasi ile ayirt

edilen ozellikleriyle ilgilidir.

Teorem 3.4.4 Kabul edelim ki (n;), elamanlar1 aralarinda asal olan artan bir dizidir.
Eger f, baz1 i ler i¢in j = n; olmadik¢a f(j) = 0 olacak sekilde bir dizi ise, bu durumda
f € BAS dir gerek ve yeter sart f € £1 dir. Boylece, f de AS dedir.

Ispat: Eger f € £! ise, 0 zaman f agik¢a AS dedir. Simdi f € BAS oldugunu kabul

edelim. Ilk olarak f nin reel degerli dizilerden olustugunu varsayalim.
M = {n;: f(n;) > 0}

WOEE

alinsin. Eger

ise, bu durumda
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sup

z f(i): H, M nin sonlu alt kﬁmesidir}
i€H
kiimesi sonsuzdur. Fakat H deki sayilar aralarinda asal oldugundan

n=] ]k

keH

sayisinin tek ¢arpan1 H deki sayilardir. Bu demektir ki

{Z f(): H, M nin sonlu alt kumesidir} = Z @)

iEH i|IN
bdylece f, BAS da olamaz. Benzer sekilde
DU ) <0}
nin —oo olmadigini iddia edebiliriz. Son olarak
maks{|a|, |b|} < |a + bi| < |a| + |b|

esitsizligini, karmasik bir dizinin BAS da oldugunu dogrulamak i¢in kullanabiliriz gerek

ve yeter sart gercek ve sanal kisimlart da BAS dadir.

Teorem 3.4.5 p bir asal say1 ise, bu durumda her f € BAS igin

if(p")
i=1

sup, <

ve her f € AS i¢in

i ")

yakinsar.

Ispat: ik sonug, BAS 1n tammindan ikinci sonug ise limitin her f € ¢ igin var oldugu

gerceginden agiktir ve ¢, AS de yogundur.

3.5 AS* ve AS;,
AS, C[0,1] uzayma izomorfik oldugundan AS*, C[0,1] in dual uzayma izomorfiktir,
yani [0,1] tizerindeki diizgiin siirekli ve toplamsal 6lgtimlerdir (Dunford ve Schwartz

958). Bununla birlikte birincil ilgi alanimiz bir dizi uzay1 olarak AS* in dogasi olacaktir.
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Lemma 3.5.1 Eger f € ¢ ise, bu durumda

sup{Zf(i)g(i) = ||g||Ass1}= Al = Y |3 (3) £O)
i j

i
Ispat: || gllas < 1 ise, bu durumda

dir.

IWglle= = sup; [ > g(D| < 1
Jli

oyle ki

‘Z F(g()

- ‘Z FOMWg)D)| = ‘E(MTf)(i)((Wg)(i))‘

< IMTfllp2 [IWglleo

< IM"fll
dir. f € ¢ oldugundan, M7 f dizisi ¢ dedir ¢iinkii M7 nin siitunlar1 ¢ dedir. i > n i¢in

MTf(i)=0
olacak sekilde bir n oldugunu kabul edelim ve |h(i)| < 1 olacak sekilde herhangi bir h
dizisi alalim ve her i < n i¢in
h@OMTf () = IMTf (D)

olsun. m, 1 < i < n tam sayilarinin en kiigiik ortak kat1 ve x = Q,,,h olsun. Bu durumda
h, AC dedir,

lxllas = 1 ve (M"f,x) = ZIMTf(D|
dir.
Teorem 3.5.1 Asagidaki ifadeler bir f dizisi i¢in birbirine denktir:

(a) f, AS™ dadur.

(b) Bir A matrisi vardir 6yle ki

supy 4 Y 14(, I f < o0
J
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ve her bir k igin
lim,, Z A(n, kj)
j=1
limit vardir ve f (k) ya esittir.

() {MTR,f : n=1,2,..}, 1 in smirh bir alt kiimesidir.

(d) {MTR,f : n € A}, baz1 tam sayilarin kiimesi 4 i¢in #1 in sinirl bir alt kiimesidir

Oyle ki her m tam sayisi igin m|n olacak sekilde n € A vardir.

(e) Her bir g € AS i¢in
h(®) = f(Dg(@)

bi¢ciminde tanimlanan

h=fg
carpim dizisi AS dedir.

(f) Her bir g € BAS i¢in
h(i) = f(Dg@)
bi¢iminde tanimlanan

h=fg
carpim dizisi BAS dadir.

(g) A (f), kosegen f ile kosegen matrisi gosteriyor ise boylece
.~ (f@); i=jise,
AN = { 0; diger durumlar
dirve A =W A (f)M matrisinin satirlari

sup; ) 1AG, )l < oo
J

kosulunu saglar.
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Ispat: (a) = (b) Dogrudan Teorem 3.2.2 den agiktir. F,
F(ey) = f(k)
olacak sekilde bir fonksiyonel ve 4,
G(g) = F(Mg) (bileske)
bi¢iminde tanimlanan AC iizerindeki fonksiyoneli belirleyen herhangi bir matris ise, bu

durumda

F(e,) = F(Mdy) = lim,, ZA(n, km)
j=1

dir.

(a) = (c¢): Eger E,, her bir g € AS i¢in

F(9)= ) f(Dg(®
iln
bi¢iminde tanimlanan bir fonksiyonel ise, bu durumda Lemma 3.5.1 den

> g

iln

< IRxglllIF N < £ Nlgll

> FORDO
iln
oyle ki {R,f :n=1,2,..} zayif smirh ve boylece sinirlidir. M doniigimi, AS™ n

goreceli topolojisine sahip ¢ den £1 e bir izometridir dolayisiyla (¢) gegerlidir.
(c¢) = (d) Agiktir.

(d) = (a): (d) saglanir ise, bu durumda {R,,f}, AS™ da sinirl1 bir dizidir. F,, her bir g €
AS icin
Fi(9) = ) (R DD
i
olan fonksiyoneli gostersin.

D RPDID =) DD = ) fFORDD
i iln i
oldugundan, F(R,g) nin sinirli oldugu anlagilir. Ancak R,g, AS de g ye yakinsar

boylece AS iizerinde siirekli dogrusal bir F fonksiyoneli vardir 6yle ki her bir i i¢in
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F(g) = limnf(Rng) ve F(ei) = limnf(Rnei) = f(l)
yani f € AS* dir.

(a) = (e):

Eg = limy ) g(k)
k|n!

formiilii ile AS {izerinde tanimlanan fonksiyonel, g € ¢ i¢in

Eg = Zg(i)

ozelligine sahiptir yani E, AS iizerinde bir toplamdir. Eger f, AS nin bir ¢arpani ise, bu

durumda

F(9) = E(fg)

biciminde tanimlanan fonksiyonel

F(e;) = f(e)
Ozelligine sahiptir yani f € AS™ dir.

(e) = (c): f € AS™ ve g € AS ise burada her i i¢in
F(e) =f@)

dir. Her bir n igin

> Fldg®

i|n

= [F(Rng)| < [IFIlIRzgll = lIFIlllgl

dir.

(e) = (f): Tuim g € BAS igin fg € BAS ise, bu durumda BAS tan BAS a

g-fg
bi¢iminde tanimlanan diyagonal doniisiim Kapali Grafik Teoremi geregince siireklidir.
Doniigiim altindaki ¢ nin gorintiisii ¢ oldugundan, AS nin goriintisiinin ¢ nin

tamlamas1 yani, AS oldugu sonucu ortaya ¢ikar.

(f) = (e), (e) = (c) nin ispatina benzerdir. Ciinkii R,,g, ¢ dedir, dolayisiyla AS dedir.
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(f), (g) ye denktir: M, £ u BAS a esler ve W, BAS 1 £ a esler. Eger f, AS™ da ise,
bu durumda A(f), BAS 1 BAS a esler boylece WA(f)M, €% u kendine esler, bu da
verilen kosulu saglar. WA(f)M, £ u kendi igine esler ise, bu durumda g € BAS igin
Wg € £ boylece

WA(f)MWg = WA(f)g
£* dadir ve sonug olarak

MWA(f)g = A(f)g = fg € BAS
dir.

(a) ve (e) nin denkligi su anlamdadir: AS, bir toplam uzaydir (Ruckle 1972). Ciinkii
her koordinatta 1 degerine sahip e dizisini agik¢a igerir. Bu ayni zamanda AS* in

koordinatsal yakinsama agisindan bir cebir oldugu anlamina gelir.

Onerme 3.5.1 w(k), k nin asal carpanlarinin sayisi olmak iizere, AS iizerindeki

Ex(f) = f(k)
koordinat fonksiyonelinin normu 2% dir,

Ispat: Tanimdan ||E,||, f € AS dizileri iizerinde |f(k)| degerlerinin maksimumudur

IO

iln

oyle ki

n= 1,2,...}3 1

IFI=IMFll = SUP{

dir. ¢, AS de yogun oldugundan f € ¢ nin supremunu diisiinebiliriz. Mdbius Ters

Cevirme Teoremine gore

0= u(5)mpm = u(>) (Z f(i))

nlk nlk iln

dir. Her bir n i¢in

<1

Do

iln

oldugundan

HGIEDY (§)| _ 0l

nlk
elde edilir (Hardy ve Wright 1960).
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g (k) nin maksimum oldugu ¢ de bir g dizisi elde etmek i¢in ilk olarak Onerme 3.3.1 in

ispatinda

f () = u(n). 2000
bigiminde tanimlanan f dizisini kullanilir. Bu durumda, g = R f alinur.

Onerme 3.5.2 f, £' uzay iizerinde degisirken AS;, uzay

g = F©

nli
bicimindeki tiim g dizilerinden olusur. Boylece
ASy; =WTet

ve AS; iizerindeki BK topolojisi #1 e izomorfiktir.

Ispat: W matrisi, AS den AC ye bir izometri belirler. Bu T matrisinin dual operatérii
(mutlaka bir matris degildir), AC nin dual uzay1 olan AC* dan AS nin dual uzayi olan

AS” a bir izometri belirler. ¢ deki bir £ dizisi

D@l

(.9 = fDgD)

ile AC iizerinde siirekli bir dogrusal fonksiyonel belirler. Bu fonksiyonelin

Zf(i)

dir. Bu WT nin ¢ iizerindeki T eslemesiyle cakistigi anlamina gelir ve #1 in goreceli

normuna sahip

d,,n = 1,2, .. lzerindeki degeri

topolojisine sahip ¢ uzaymni AS™ in goreceli topolojisine veya esdegeri olarak AS,
topolojisine sahip ¢ iizerine esler. W7 nin tiim #! e genislemesi WT#! dir ki bdylece

iddia gecerlidir.

AC” bir cebir oldugundan, 6nceki sonug asagidaki sonuca sahiptir.
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Sonug¢ 3.5.1 Eger f ve g, £* de ise, bu durumda #* de bir tek h dizisi vardir dyle ki her

50)(g)-(3)

kli kli kli

bir k i¢in

esitligi gecerlidir.

Ispat: f ve g, £* de oldugundan

dizileri AS; dadir, 6yle ki

carpimi da AS;, da olup, boylece #1 de garpimu belirleyen bir tek h vardir.

Ancak #1 deki her dizi bdyle bir ayrisima yol agmaz ¢iinkii AS;, ¢! iigermez. Teorem

3.3.4 1in “dual” sonucu bir sonraki teoremde verilmistir.

Teorem 3.5.2 Kabul edelim ki (n;), elamanlar1 aralarinda asal olan artan bir tam sayi

dizisi olsun. Eger f smurl1 bir dizi ise, bu durumda AS* da her bir i igin

g(m) = f ()
olacak sekilde bir g dizisi vardir. Eger f, 0 a yakinsayan bir dizi ise, bu durumda AS,
da her bir i i¢in

g(n) = f()

olacak sekilde bir g dizisi vardir.

Ispat: Teorem 3.3.4 e gore, i & {n;} ise h(i) = 0 olan AS deki h dizilerin uzayr £* e
izomorfiktir. Bu uzayda siirekli lineer bir x fonksiyoneli var oldugunu gerektirir dyle ki
x(en,) = £(D)

dir. Eger y, tiim AS de x in bir genislemesi ise, g yi tiim i ler i¢in

g = y(e)
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ile tanimlanan dizi olarak alinsin. 0 a yakinsayan bir dizi i¢in ASy m AS deki e; nin
kapanis1 oldugu gercegi kullanilarak, boylece ASq, n; iizerinde 0 a yakinsak olan

dizileri igerir.
Yukaridaki teoremin ikinci ifadesinin yeniden ifadesi agsagidaki gibidir.

Teorem 3.5.3 Eger (n;), elamanlar aralarinda asal olan artan bir tam say1 dizisi ve f, 0
a yakinsayan bir dizi ise, bu durumda #1 de her bir i igin
f) =) g(k)
nilk

olacak sekilde bir g dizisi vardir.
Ornegin, P carpimu ile farkl asal sayilar i = 1.py, Py, ..., Py icin f(i) = 1 ve i > P igin

f(i) =0 olan f dizisi, g(P) = 1 ve aksi takdirde g(i) = 0 olan g dizisi tarafindan

uretilir.
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4. ARITMETIK TOPLANABILIRLIK VE CARPAN DIiZILER

Bu boliimde, Yaying ve Hazarika (2012) tarafindan yapilan makaledeki tanim, teorem

ve lemmalar ispatlariyla birlikte not edilecektir.
4.1 Aritmetik Yakinsak Diziler Uzay1

Bu boliimde, aritmetik yakinsak dizi uzayinin temel 6zellikleri incelenecek ve bu uzayla

ilgili baz1 ilging sonuglar verilecektir.

Oncelikle aritmetik yakisak dizilerin uzayi olan AC uzayi
AC= {(xm): € > 0, her m ve bir n tam sayisi icin, |xm — x<m,n)| < s}

bi¢iminde verilsin.
Teorem 4.1.1 Aritmetik yakinsak olan her dizi sinirhdir.
Ispat: Teoremin ispat1 agiktir.

Teorem 4.1.2 Eger (x,,) Ve (¥,) herhangi iki aritmetik yakinsak dizi ise, bu durumda
() (x; £ yi) dizileri de aritmetik yakinsaktir.

(ii) (XY dizisi de aritmetik yakinsaktir.

Ispat: (i) (x,,) ve (v,,,), AC uzayinda diziler oldugundan £ > 0, her m ve bir n tam
say1s1 igin
& &
|xm - x(m,n)l < 2 L |ym - y(m,n)l < 2
oldugu agiktir. Simdi her m ve bir n tam sayis1 i¢in
|(xm + V) — (x(m,n) t y(m,n))l = |(xm - x(m,n)) + (ym - y(m,n))l

< |xm - x(m,n)l + |ym - y(m,n)l

<s+£
2 2
=¢

elde edilir. Bu (x,, = ¥,) nin AC uzayinda oldugunu gésterir.
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(ii) Yakinsak olan (x,,) ve (y,) dizileri sinirlidir. Dolayisiyla, K; ve K, pozitif sayilari
vardir dyle ki her m igin
|xm| < Ky Ve |lynl <K,
esitsizlikleri gegerlidir. Bu durumda, bir n tam sayis1 ve € > 0 igin
|XmYm = XmnyYimmy| = [Xm (Vm = Vimm) + Yemmy (6m = Xmm)|
< [y = Yimmy| + [Yomm | [Xm — Xmm]

< K1|ym - y(m,n)l + |y(m,n)||xm - x(m,n)l
elde edilir. Yine € > 0 ve her m i¢in

€ €
Xm — Ximmy| < ve [V — Yimn)| < 55
| m (mn)l 2|3’(m,n)| | m (mn>| 2K,
esitsizlikleri gegerlidir. Boylece, bir n tam sayisi ve € > 0 igin
£ €
|(xm + ym) - (x(m,n) + Y(m,n))l < E + E =&

elde edilir ki bu da ispat1 tamamlar.
Teorem 4.1.3 AC uzayindaki her dizi Cauchy sartini saglar.

ispat: (x,,), AC uzayinda herhangi bir dizi olsun.
= (x,,) aritmetik yakinsaktir.
= & > 0 olacak sekilde her m ve bazi n tam sayisi i¢in
|t — Xmmy| < €
olsun. Her m,n = K igin, (m, j) = (n,j) olacak sekilde bir K alinsin. Bu durumda, & >
0, her m,n > K ve bir j tam sayisi i¢in
ot = x| = ot = X, jy + X, jy = X

< [xtm = X,y | + [y — 2

= |xtm = X | + [0 — X,y

<et+e=2¢

elde edilir. Dolayistyla (x,,) Cauchy sartin1 saglar.

Teorem 4.1.4 Eger (x,), x, = 0, her n ve bir m tam sayis1 igin X, ) Ye aritmetik

yakinsak ise, bu durumda x,, ,y = 0 dur.

35



Ispat: Kabul edelim Ki x(;,»y < 0 olsun. Simdi (x,,) € AC oldugundan verilen bir & >
0 i¢in bir m tam sayis1 vardir, dyle ki her n igin

|t — Xmmy| < €

olup,
Ximny — € < Xp < X(mn) + €
esitsizligi gecerlidir. Simdi € = — @ secelim, boylece her n ve bir m tam sayisi i¢in
X(m,n) X(m,n)
Ximn) T —2 < Xp < Xmn) — >
olup,
X
X, < (r;l,n)

esitsizligi gecerlidir. Her n ve bir m tam sayisi i¢in
Xmmn) < 0> x, <0

oldugundan boylece bir ¢eliski elde edilir. Bu da teoremin ispatini tamamlar.
4.2 Carpan Diziler Uzayr

Ruckle (2012), aritmetik toplanabilir dizilerin uzayini

AS = {(x;): € > 0,3n € N ve her migin, X — Z X

k|lm k|{m,n)

.

bi¢iminde tanimladi.

A = (A), pozitif reel sayilarin artan bir dizisi olsun, 6yle ki
A1 <Am+1, 44 =1,4,, & 0o (m - o)
dir (Leindler 1965). Carpan dizisini kullanarak yeni dizi uzay1 asagidaki gibi tanimlanir:

AC(A) = {(xm): € > 0, her m ve bir n tam sayisi i¢in, |/1mxm — /1<m,n>x(m,n)| < e}

<4

Teorem 4.2.1 Eger (x,,) Ve (¥n), AC(A) uzayinda herhangi iki dizi ise, bu durumda

ve

AXy — Z AXe
klm kl(mn)

AS(A) = {(x,,): € > 0,her m ve bir n tam sayisi icin,

(X, £ V1) toplam dizisi de AC(A) uzaymndadir.
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Ispat: (x,,) ve (y,,), AC(A) uzaymda iki dizi olsun, bu durumda & > 0, her m ve bir n
tam sayist i¢in
| AmXm = Ay Xmmy| < % Ve [AmYm = AmmVimm| < %
oldugu aciktir. Boylece her m ve bir n tam sayisi i¢in
[Am Cem £ Ym) = Aamay(Ximmy £ Vi) |
= |(tmAm = Amny Xmmy) E (An¥m = Amny Yonm)|

< | AmXm = Aanmy Xmmy| + [Amdm = Aammy Yomm)|
< & n &

—_ —=¢

2" 2

elde edilir ki bu da ispat1 tamamlar.

Teorem 4.2.2 x = (x;,) herhangi bir dizi ve n bir tam sayi ise, bu durumda

1
Vi = A_ix(n,i)
ile tanimlanan
an =y

dizisi, AC(A) uzayindadir.

Ispat: Her m ve bir n tam sayist igin
(n,(m,n)) = (n,m) = (m,n)
oldugundan

1 1
Mmym - A(m,n) y(m,n)l = |An A_x(n,m) - )l(m,n)
m

X
A(m,n) (n,(n,m))

= |x(m,n) - x(mﬂ)l =0

elde edilir ki bu da ispat1 tamamlar.

Teorem 4.2.3 x = (x;) € AC(A) ve her K i¢in n;, n,|n,,, olacak sekilde tam sayilarin

bir dizisi ise, bu durumda

(i) = (Ankxnk)

dizisi yakinsar.
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Ispat: € > 0 verilsin ve m € N olsun &yle ki her i igin
|4 = iy Ximy| < €
oldugu agiktir. Tiim k > K igin
(m, ng) = (M, Nye4q)
olacak sekilde K alalim. Boylece, her i,j > K igin
|yi - le = |Anixni - Anjxnj| = |/1nixni - A(ni,m)x(ni,m) + A(ni,m)x(ni,m) - Anjxnj|

= |/1nixnl- - A(ni,m)x(ni,m)l + |/1njxnj - A(ni,m)x(ni,m)|

= | A %n; = Xngm Ximmy | + |/1n,-xn,- - /1<n,-,m>x<j,m>|
<e+¢€
= 2¢

elde edilir. Dolayisiyla (y, ), Cauchy sartini1 saglar ve boylece yakinsar.

Teorem 4.2.4 (x,) € AC(A) ve qy, ortak carpan1 olmayan artan bir tam say1 dizisi ise,
bu durumda
(hi) = (ACIkaIk)

dizisi A,x; e yakinsar.

Ispat: (x,), AC(A) da bir dizidir 6yle ki verilen bir £ > 0, her n ve bir m tam sayis1
i¢in,
|/1nxn - A(m,n)x(m,n)l <¢
oldugu agiktir. g, tam sayilarinin ortak ¢arpani olmadigindan
(m,q,) > 1
olan tiim k lerin kiimesi sonludur bdylece k > K i¢in
(m,q) =1
olacak sekilde bir K vardir. Boylece, her k > K igin{m, q) = 1 oldugundan
|21 — hy| = |Alx1 - Aquqkl
= |/1Qkak - /1<m:Qk)x<m:Qk)|
<¢g

elde edilir ki bu da ispat1 tamamlar.
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Teorem 4.2.5 (x,,) ve (y,) iki dizi oyle ki
(i) Her n igin x,, < y, ve
(ii) Aritmetik olarak x, = X¢m,) V€ ¥ = Yinm,)
ise, bu durumda
Xnmy) S Yinm,)

esitsizligi gecerlidir.

Ispat: Kabul edelim ki
Xnm) = Yinms,)
olsun.
X(nmy) ~ Yinmy) = 3€
olarak alinsmn 6yle ki Y5 1m,y V€ X(nm,y IN komsuluklar1 sirastyla
(Vinmy) = & Vinmyy + €) ve (Xinmy) = & Xinmyy + €)
ayriktir. Simdi aritmetik olarak
Xn = X(mm,) V€ Yn = Yinm,)
oldugundan, € > 0 i¢in
I) her n ve bir m; tam sayisi igin
Xnmy) — € < Xn < Xinm,) T &
ii) her n ve bir m, tam sayisi i¢in
Yinm,) — € < Vn < Vinm,) T €
oldugu aciktir.
m = (my, my)
olsun. Boylece
xn € (Xmm) — & Xmny + €) V€ Y € Vimmy — & Vimmy + €)
olup, sonug olarak her n igin
X(nm) = Yinm)
oldugundan

yn < xn
dir dyle ki bu da her n igin

gercegi ile celisir.
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Teorem 4.2.6 Eger (x,) ve (y,), AS uzaymnda herhangi iki dizi ise, bu durumda
(x,, = y,) de AS uzayinda bir dizidir.

Ispat: (x,) ve (y,), AS uzaymda oldugundan verilen bir £ > 0, her n ve bir m tam

sayisl i¢in

Xk — z Xk <e¢g
kln k|{m,n)
ve
Q= ), wl<e
k|n k|{m,n)

oldugu agiktir. Simdi

Z(xk T yi) — z (xx = Y1)

= (Zxk_ Z xk>i<Z)’k— Z }’k>
kln k|{(mn) kln k|{mn)

kin k|{mn)
[T 3 e[S 3
kln k|(m,n) kln kl(m,n)
<eg+c¢
= 2¢

elde edilir ki bu da ispat: tamamlar.

Teorem 4.2.7 Eger (x,) ve (¥,), AS(A) uzayinda herhangi iki dizi ise, bu durumda
(xn, * y,) de AS(A) uzayinda bir dizidir.

Ispat: (x,)) ve (3,), AS(A) de oldugundan, verilen bir € > 0, her n ve bir m tam sayis1

i¢cin
Akxk — z }lkxk <&
kln kl(mn)
ve
Z MY — Z M| <€
kln kl(m,n)

oldugu agiktir. Simdi
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Z/lk(xk + ) — z A (e £ i)

kln kl|(m,n)

= (Z Akxy — Z Akxk> + (Z MYk — Z AkYk)
kln k|(m,n) k|n k|{(mn)

< Zﬂkxk— Z Axy | + Zlk)’k— Z MYk
k|n k|(m,n) kin k|{mn)

<e+¢

= 2¢

elde edilir ki bu da ispat1 tamamlar.
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