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ÖZET 

Yüksek Lisans Tezi  

 

ARİTMETİK TOPLANABİLME  

VE ARİTMETİK YAKINSAKLIK 

 

 

İbrahim BOZTEPE 

Afyon Kocatepe Üniversitesi  

Fen Bilimleri Enstitüsü  

Matematik Anabilim Dalı 

Danışman: Prof. Dr. Erdinç DÜNDAR 

 

Bu tez çalışması beş ana bölümden oluşmaktadır.  

 

Birinci bölümde, tez çalışmasındaki konunun matematik alanındaki önemini ve konu ile 

ilgili yapılan çalışmaları özetleyen literatür bilgisi sunulmuştur. İkinci bölümde, 

matematik literatüründe iyi bilinen ve tez çalışmasında yararlanılan bazı temel tanımlar 

ve kavramlar not edilmiştir. Üçüncü bölümde, aritmetik toplanabilir diziler uzayı, 

aritmetik toplanabilir sınırlı diziler uzayı ve aritmetik yakınsak diziler uzayı ile ilgili 

temel kavramlar verilerek bu kavramlar arasındaki ilişkileri inceleyen teoremler ve 

ispatları verilmiştir. Dördüncü bölümde, aritmetik toplanabilme ve çarpan dizi kavramları 

kullanılarak bir dizi uzayı tanıtılmış ve bu uzayla ilgili bazı önemli özellikleri inceleyen 

teoremler ve ispatları verilmiştir. 

 

Son bölüm olan beşinci bölümde ise, tez çalışması süresince faydalanılan ve literatürde 

mevcut olan kaynaklar listelenmiştir. 

 

2023, v + 44 sayfa 

 

Anahtar Kelimeler: Aritmetik yakınsaklık, Aritmetik toplanabilme, Çarpan dizi.  
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ABSTRACT 

M.Sc. Thesis 

 

ARITHMETICAL SUMMABILITY  

AND ARITHMETICAL CONVERGENCE 

 

İbrahim BOZTEPE 

Afyon Kocatepe University 

Graduate School of Natural and Applied Sciences 

Department of Mathematics 

Supervisor: Prof. Erdinç DÜNDAR 

 

This thesis consists of five main chapters.  

 

In the first part, the literature information that summarizes the importance of the subject 

in the thesis in the field of mathematics and the studies on the subject is presented. In the 

second part, some basic definitions and concepts that are well known in the mathematics 

literature and used in the thesis are noted. In the third chapter, basic concepts about 

arithmetic summable sequence space, arithmetic summable bounded sequence space and 

arithmetic convergent sequence space are given, and theorems examining the 

relationships between these concepts and their proofs are given. In the fourth chapter, a 

sequence space is introduced by using the concepts of arithmetic summability and 

multiplier sequence, and theorems and proofs that examine some important properties of 

this space are given. 

 

In the fifth chapter, which is the last chapter, the sources used during the thesis study and 

available in the literature are listed. 

 

2023, v + 44 pages 
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SİMGELER DİZİNİ 

 

Simgeler 

 

ℕ Doğal sayılar kümesi 

ℤ  Tam sayılar kümesi 

ℝ Reel sayılar kümesi 

ℂ  Kompleks Sayılar kümesi 

𝑘|𝑛  𝑘, 𝑛 yi böler veya 𝑛, 𝑘 nın bir katıdır 

∑ 𝑥𝑘

𝑘|𝑛

 𝑘, 1 ve 𝑛 dahil olmak üzere 𝑛 yi bölen tam sayıların üzerinde 

değişirken tüm 𝑥𝑘 sayılarının sonlu toplamı 

〈𝑚, 𝑛〉  İki tam sayı 𝑚 ve 𝑛 nin en büyük ortak böleni 

AC Aritmetik yakınsak dizilerin uzayı 

AS Aritmetik toplanabilir dizilerin uzayı 

BAS 
sup{|∑ 𝑓(𝑘)𝑘|𝑛 |: 𝑛 = 1,2, … } < ∞ şartını sağlayan tüm 𝑓 

dizilerinin uzayı 

AS∗ AS nin dual uzayı 

AS0
∗  Sonunda 0 olan dizilerin 𝜑 uzayının AS∗ daki kapanışı 

𝑄𝑛𝑓 = 𝑔 𝑔(𝑖) = 𝑓(˂𝑛, 𝑖˃) tarafından tanımlanan dizi 

𝑄𝑛𝑘
𝑓 = 𝑔 𝑔(𝑖) = 𝑓(maks𝑘˂𝑛, 𝑖˃) tarafından tanımlanan dizi 

{𝐴Γ} Matrislerin sayılamayan kümesi  

△ (𝑓) Köşegen matris 

𝜔(𝑘) 𝑘 nın asal çarpanlarının sayısı 

‖𝐸𝑘‖  𝑓 ∈ AS dizileri üzerinde |𝑓(𝑘)| değerlerinin maksimumu 

Ω(𝑛)  𝑛 tam sayısının asalların farklı kuvvetlerine çarpanlara ayrılması      

 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑚
𝑘𝑚  olmak üzere ∑ 𝑘𝑖  

𝑚

𝑖=1

 

2𝜔(𝑘)  AS üzerindeki koordinat 𝐸𝑘(𝑓) = 𝑓(𝑘) fonksiyonelinin normu 
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1. GİRİŞ 

 

Yakınsaklık, aritmetik yakınsaklık ve aritmetik toplanabilme kavramları, Analiz ve 

Fonksiyonlar Teorisi alanının önemli kavramlarından olup, son zamanlarda birçok 

matematikçi tarafından çalışılmaktadır. Tez konusu ile ilgili temel olan kavramlar 

birçok bilim insanı tarafından çalışılmıştır. Yapılan bu çalışmalar tez çalışmasının daha 

iyi anlaşılması açısından incelenmiştir. Banach (1932) ve Dunford ve Schwartz (1958) 

lineer operatörleri incelemişlerdir. Hardy ve Wright (1960) sayılar teorisi ile ilgili 

kavramları tanıtmışlardır. Berg ve Wilansky (1962) ve Berg (1963) periyodik, hemen 

hemen periyodik ve yarı-periyodik diziler ve yarı-periyodik dizilerin cebirini 

çalışmışlardır. Leindler (1965) genel ortogonal serilerinin la Vallee-Pousin 

toplanabilmesi hakkında inceleme yapmıştır. Berg (1966) yarı-periyodik diziler 

uzayının konjuge uzayını çalışmıştır. Milutin (1966) kuvvet sürekliliği kompaktları 

üzerinde sürekli fonksiyonların uzaylarının izomorfizmleri üzerine inceleme yapmıştır. 

Goes ve Goes (1970) sınırlı varyasyon dizileri ve Fourier katsayı dizilerini 

incelemişlerdir. Siddiqi (1971) hemen hemen periyodik dizilerin sonsuz matris toplamı 

kavramını tanıtmıştır. Ruckle (1972) dizi uzaylarında topolojileri incelemiştir. Jimenez 

(1985) yarı-periyodik dizi uzaylarının çarpanlarını incelemiştir. Schwarz ve Spilker 

(1994) aritmetik fonksiyonlar ve aritmetik fonksiyonların temel ve analitik özellikleri 

ile hemen hemen periyodik özelliklerini incelemişlerdir. Haukkanen, Wang ve Sillanpӓӓ 

(1997) Smith determinantı üzerine inceleme yapmışlardır. Tripathy ve Mahanta (2004) 

çarpan dizileriyle ilişkili vektör değerli dizi sınıfları üzerine incelemeler yapmışlardır. 

Altınışık, Tuglu ve Haukkanen (2007) karşılama ve birleştirme matrislerinin 

determinantı ve tersini incelemişlerdir. Haukkanen ve Tossavainen (2008) çift 

fonksiyonlar yardımıyla aritmetik fonksiyonların yaklaşımı üzerine çalışmalar 

yapmışlardır. Tόth ve Haukkanen (2011) r-çift fonksiyonların ayrık Fourier dönüşümü 

özelliklerini incelemişlerdir.  

 

Tezimizin üçüncü bölümünde, Ruckle (2012) tarafından yapılan çalışmadaki aritmetik 

toplanabilen diziler uzayı (AS), aritmetik toplanabilen sınırlı diziler uzayı (BAS) ve 

aritmetik yakınsak diziler uzayı (AC) ile ilgili temel kavramlar verilerek bu kavramlar 

arasındaki ilişkileri inceleyen özellikler incelenmiştir. Bu anlamda, ilk olarak periyodik 
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dizilerin bir alt cebiri olarak aritmetik yakınsak diziler uzayı ilgili teoremler, önermeler 

ve ispatları verilmiştir. Daha sonra aritmetik yakınsak dizilerin dual uzayı kavramı 

tanıtılmış olup bu uzayla ilgili bazı önemli teorem, önerme ve ispatları verilmiştir. 

Ayrıca, AS ve AS nin AC ve BAS ile ilişkisi incelenmiştir. Bu bölümde son olarak AS∗ 

ve AS0
∗  kavramları ile ilgili teoremler ve önermeler ispatlarıyla açıklanmıştır. 

 

Tezimizin dördüncü bölümünde ise, Yaying ve Hazarika (2012) tarafından yapılan 

çalışmadaki aritmetik toplanabilme ve çarpan dizi kavramları kullanılarak tanıtılan bir 

dizi uzayı ve bu uzayla ilgili bazı önemli özellikleri inceleyen teoremler ve ispatları 

verilmiştir. Bu anlamda ilk olarak, her aritmetik yakınsak bir dizinin sınırlı olduğu 

gösterilmiştir. AC uzayındaki her dizinin Cauchy şartını sağladığı ispatlanmıştır. Daha 

sonra, çarpan dizileri kullanarak aritmetik yakınsak dizi uzayı ve özellikleri 

incelenmiştir. Ayrıca, eğer (𝑥𝑛) ve (𝑦𝑛), (AC(Λ),  AS, ve AS(Λ)) uzaylarında herhangi 

iki dizi ise, bu durumda (𝑥𝑛 ± 𝑦𝑛) de (AC(Λ),  AS, ve AS(Λ)) uzaylarında bir dizi 

olduğu her bir uzay için sırasıyla ispatlanmıştır. Bu bölümde (𝑥𝑘) ∈ AC(Λ) ve her k için 

𝑛𝑘, 𝑛𝑘|𝑛𝑘+1 olacak şekilde tam sayıların bir dizisi ise, bu durumda (𝑦𝑘) = (𝜆𝑛𝑘
𝑥𝑛𝑘

) 

dizisine yakınsadığı gösterilmiştir. 

 

Son bölüm olan beşinci bölümde ise çalışma süresince yararlanılan literatürdeki 

kaynaklar listelenmiştir. 
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2. TEMEL KAVRAMLAR 

 

Bu bölümde, tez çalışmasında yararlanılan bazı temel kavramlar verilmiştir. Literatürde 

iyi bilinen doğal sayılar kümesi ℕ, tam sayılar kümesi ℤ, reel sayılar kümesi ℝ ve 

kompleks sayılar kümesi ℂ gibi temel kavramlar burada verilmeyecektir. 

 

2.1 Temel Tanım ve Kavramlar 

 

Öncelikle metrik uzay, sınırlı dizi ve yakınsak dizi kavramları not edilecektir. 

 

Tanım 2.1.1 𝒱 boştan farklı bir küme olsun.  

𝜇 ∶ 𝒱 × 𝒱 → ℝ 

fonksiyonu her 𝜐1, 𝜐2, 𝜐3 ∈ 𝒱 için 

     M1. 𝜇(𝜐1, 𝜐2) = 0 ⇔ 𝜐1 =  𝜐2, 

     M2. 𝜇(𝜐1, 𝜐2) = 𝜇(𝜐2, 𝜐1), 

     M3. 𝜇(𝜐1, 𝜐3) ≤ 𝜇(𝜐1, 𝜐2) + 𝜇(𝜐2, 𝜐3) 

şartlarını sağlıyorsa 𝜇 fonksiyonuna 𝒱 de bir metrik ve (𝒱, 𝜇) ikilisine de metrik uzay 

denir (Bayraktar 2006). 

 

Bu tez çalışması boyunca 𝒱 = ℝ uzayı üzerinde  

𝜇(𝜐1, 𝜐2) = |𝜐1 − 𝜐2| 

biçiminde tanımlanan mutlak değer metriği göz önüne alınacaktır.  

 

Tanım 2.1.2 Tanım kümesi ℕ = {1,2, … , 𝑛, … } doğal sayılar kümesi olan her 

fonksiyona dizi denir. Diziler değer kümelerine göre adlandırılır. Eğer bir dizinin değer 

kümesi reel sayılar kümesi ise diziye reel terimli dizi veya reel sayı dizisi ya da reel dizi 

denir. Yani reel terimli bir dizi 

𝑓 ∶  ℕ → ℝ 

şeklinde bir fonksiyondur. Genel terimi 𝑥𝑘 olan bir dizi  (𝑥𝑘) = {𝑥1, 𝑥2, … , 𝑥𝑛, … } 

biçiminde gösterilir (Balcı 1999). 
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Tez çalışmasında aksi belirtilmediği sürece (𝑥𝑘)  dizisini reel sayı dizisi olarak ele 

alacağız. 

 

Tanım 2.1.3 (𝑥𝑘) bir dizi ve ℒ ∈ ℝ olsun. Her ε > 0 için, 𝑘 > 𝑛0 olduğunda  

|𝑥𝑘 − ℒ| < 𝜀 

olacak şekilde 𝜀 a bağlı bir 𝑛0 ∈ ℕ sayısı bulunabiliyor ise (𝑥𝑘) dizisi, ℒ sayısına 

yakınsaktır denir ve   

lim
𝑘→∞

𝑥𝑘 = ℒ  veya  𝑥𝑘 → ℒ 

biçiminde gösterilir. Herhangi bir sayıya yakınsayan diziye yakınsak dizi denir. 

Yakınsak olmayan diziye ise ıraksak dizi denir (Balcı 1999). 

 

Tanım 2.1.4 Eğer her 𝑘 doğal sayısı için  

|𝑥𝑘| ≤ 𝑀 

olacak şekilde bir 𝑀 > 0 reel sayısı bulunabiliyor ise (𝑥𝑘) dizisine sınırlı dizi denir. 

Tüm sınırlı reel veya kompleks dizilerin kümesi ℓ∞ ile gösterilir (Balcı 1999). 

 

Şimdi sonlu toplam, periyodik dizi ve dual uzay tanımları verilecektir. 

 

Tanım 2.1.5 ℕ de bir (𝑥𝑘) dizisi ve 𝑛 ∈ ℕ için 

∑ 𝑥𝑘

𝑘|𝑛

 

gösterimi 𝑘, 1 ve 𝑛 dahil olmak üzere 𝑛 yi bölen tam sayıların üzerinde değişirken tüm 

𝑥𝑘 sayılarının sonlu toplamı anlamına gelir. Genel olarak 𝑘|𝑛 yi “𝑘, 𝑛 yi böler” veya “𝑛, 

𝑘 nın bir katıdır” anlamında yazılır. İki tam sayı 𝑚 ve 𝑛 nin en büyük ortak bölenini 

belirtmek için 〈𝑚, 𝑛〉 sembolü kullanılır (Yaying ve Hazarika 2017). 

 

Tanım 2.1.6 Bir 𝑥 = (𝑥𝑘) dizisi ve tüm 𝑘 ∈ ℕ için 𝑥𝑘+𝑛 = 𝑥𝑘 olacak şekilde bir 𝑛 tam 

sayısı varsa 𝑥 dizisine periyodik denir. Bu şartı sağlayan en küçük 𝑛 tam sayısına ise 𝑥 

dizisinin periyodu denir. 𝑃 ile tüm periyodik dizilerin lineer uzayı ve 𝑄𝑃 ile tüm sınırlı 

dizilerin ℓ∞ uzayında 𝑃 nin kapanışı gösterilir (Yaying ve Hazarika 2017). 
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Tanım 2.1.7 𝑋 ve 𝑌 aynı cisim üzerinde iki normlu uzay olsun. 𝐵(𝑋, 𝑌) ile 𝑋 den 𝑌 nin 

içine olan tüm sınırlı lineer operatörlerin kümesini gösterelim. 𝐵(𝑋, 𝑌), 

(𝑇1 + 𝑇2)(𝑥) = 𝑇1𝑥 + 𝑇2𝑥  ve  (𝑎𝑇)(𝑥) = 𝑎𝑇𝑥 

işlemleri ile bir vektör uzayı olup daha önce tanımlanan operatör normu ile bir normlu 

uzaydır. Hatta 𝑌 uzayının Banach olması durumunda 𝐵(𝑋, 𝑌) uzayı da bir Banach 

uzayıdır. 𝑋 üzerinde tanımlı tüm sınırlı lineer fonksiyonellerin (yani, 𝑌 = ℝ veya  𝑌 =

ℂ) uzayına ise 𝑋 in dual uzayı (sürekli dual) denir ve 𝑋′ ile gösterilir (Bayraktar 2006). 

 

2.2 Möbius Matrisi, Tersi ve Transpozu 

 

Şimdi Ruckle (2012) tarafından yapılan makalede verilen Möbius matrisi, tersi ve 

transpozu kavramları not edilecektir. 

 

𝑖, 𝑗 nin böleni ise 𝑤𝑖,𝑗 = 1 ve aksi halde 𝑤𝑖,𝑗 = 0 olan [𝑤𝑖,𝑗] alt üçgensel matrisi 𝑊 ile 

gösterilsin. Böylece  

𝑔(𝑛) = ∑ 𝑓(𝑘)
𝑘|𝑛

 

demek, yan yana getirmenin sıradan matris çarpımını ifade ettiği 𝑔 = 𝑊𝑓 demeye 

eşdeğer olduğu açıktır. 𝑊 nin tersini tanımlamak için ise 𝜇(1) = 1, eğer 𝑝1, 𝑝2, … , 𝑝𝑘 

farklı asal sayılar ise 𝜇(𝑝1 ∙ 𝑝2 ∙ … ∙  𝑝𝑘) = (−1)𝑘 ve  𝑛 nin uygun bir kare çarpanı varsa 

𝜇(𝑛) = 0 ile bir dizi olarak tanımlanan 𝜇(𝑛) Möbius fonksiyonu kullanılır. Möbius 

Ters Teoremi, eğer  

𝑔(𝑛) = ∑ 𝑓(𝑑)

𝑑|𝑛

 

ise, bu durumda 

𝑓(𝑛) = ∑ 𝜇 (
𝑛

𝑑
) 𝑔(𝑑)

𝑑|𝑛

 

olduğunu ifade eder (Hardy ve Wright 1960, s. 236). Böylece 𝑀, 𝑖|𝑗 ve aksi takdirde 0 

olmak üzere 𝑖. satırında ve 𝑗. sütununda elamanı 𝜇 (
𝑗

𝑖
) olan matris ise, Möbius Ters 

Teoremi, eğer 𝑔 = 𝑊𝑓 ise o zaman 𝑓 = 𝑀𝑔 veya eşdeğer olarak 𝑀 nin tersinin 𝑊 

olduğunu belirtir. 𝑊 ve 𝑀 nin transpoz matrisleri 𝑊𝑇 ve 𝑀𝑇 biçiminde yazılır. Bu 

matris çiftleri birbirinin tersidir. Alt üçgensel olan 𝑊 ve 𝑀 tüm dizilere 
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uygulanabilirken transpozları mutlak toplanabilen dizilere uygulanır (çünkü elemanlar 

kümesi sınırlıdır), ancak tüm dizilere zorunlu değildir. 

 

Aşağıdaki diyagram, ℓ1 (mutlak yakınsak diziler) uzayı, ℓ∞ (sınırlı diziler) uzayı ve 

inceleyeceğimiz uzayları ve bunların birbiriyle olan ilişkilerini özetlemektedir. 

 

Çift ok ⇒ bir matris eşlemesini çevreler; tek ok → dualiteyi belirtir ve ⊂ kesin dahil 

etme anlamına gelir. 

 

  𝓵𝟏    ⟹ 𝑾𝑻  ⟹  𝐀𝐒𝟎
∗  ⊂  𝐀𝐒∗ 

   ↓                               ↓ 

𝓵∞  ⟹  𝑴  ⟹   𝐁𝐀𝐒             
∪                               ∪               

  𝐀𝐂 ⟹  𝑴  ⟹     𝐀𝐒  →  𝑨𝐒∗ 
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3.  ARİTMETİK TOPLANABİLME 

 

Bu bölümde, Ruckle (2012) tarafından yapılan makaledeki tanım, teorem ve lemmalar 

ispatlarıyla birlikte not edilecektir. 

 

3.1 Aritmetik Toplanabilme   

 

Bu kısımda, öncelikle aritmetik toplanabilme tanımı verilecektir. 

 

Tanım 3.1.1 ℕ üzerinde tanımlı bir 𝑓 dizisi verilsin. Eğer her bir 𝜀 > 0 için bir 𝑛 tam 

sayısı vardır öyle ki her 𝑚 tam sayısı için  

|∑ 𝑓(𝑘)

𝑘|𝑚

− ∑ 𝑓(𝑘)

𝑘|〈𝑚,𝑛〉

| < 𝜀 

ise, bu durumda 𝑓 ye aritmetik toplanabilirdir denir. Eğer her bir 𝜀 > 0 için bir 𝑛 tam 

sayısı vardır öyle ki her 𝑚 tam sayısı için 

|𝑔(𝑚) − 𝑔(〈𝑚, 𝑛〉)| <  𝜀 

ise, bu durumda 𝑔 ye aritmetik yakınsaktır denir. 

 

Bir 𝑓 dizisi aritmetik toplanabilirdir ancak ve ancak 𝑔(𝑛) = ∑ 𝑓(𝑘)𝑘|𝑛  ile tanımlanan 𝑔 

dizisi aritmetik yakınsaktır fakat 𝑔 dizisi alışılmış anlamda yakınsak değildir ve aslında 

periyodiktir.  

 

Aşağıda verilen uzaylar çalışılacaktır. 

AC: Aritmetik yakınsak diziler uzayı. 

AS: Aritmetik toplanabilir diziler uzayı. 

BAS: sup{|∑ 𝑓(𝑘)𝑘|𝑛 |: 𝑛 = 1,2, … } < ∞ şartını sağlayan tüm 𝑓 dizilerinin uzayı. 

𝐀𝐒∗: AS nin dual uzayı. Bu ise 𝑥′, AS üzerindeki tüm sürekli doğrusal fonksiyoneller 

üzerinde değişirken ve 𝑒𝑖, 𝑗 ≠ 𝑖 için 𝑒𝑖(𝑖) = 1 ve 𝑒𝑖(𝑗) = 0 olacak şekilde bir dizi 

olmak üzere 𝑓(𝑖) = 𝑥′(𝑒𝑖) biçimimde tanımlanan tüm 𝑓  dizilerinin uzayı demektir. 

𝐀𝐒𝟎
∗: Sonunda 0 olan dizilerin 𝜑 uzayının 𝐀𝐒∗ daki kapanışı. 
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3.2 Periyodik Dizilerin Bir Alt Cebiri Olarak Aritmetik Yakınsak Diziler Uzayı 

 

Tüm  𝑘 ∈ ℕ için  

𝑓(𝑘 + 𝑛) = 𝑓(𝑘) 

olacak şekilde bir 𝑛 sayısı varsa,  𝑓 dizisine periyodiktir denir. Bu özelliği sağlayan en 

küçük 𝑛 tam sayısına 𝑓 nin periyodu denir. 𝑃 ile tüm periyodik dizilerin lineer uzayı ve 

𝑄𝑃 ile tüm sınırlı dizilerin ℓ∞ uzayında 𝑃 nin kapanışı gösterilir. 𝑃 ve 𝑄𝑃 uzayları  

Berg (1963), Berg ve Wilansky (1962), Berg (1966) ve Jimenez (1985) tarafından ele 

alınmıştır. ℕ üzerinde tanımlı periyodik dizilerin lineer uzayından ℤ üzerinde tanımlı 

olanlara kadar bir izomorfizm, ℤ ye genişleme ve ℕ  ye kısıtlama ile belirlenir. ℤ 

üzerinde tanımlanan periyodik dizilerin yararlı bir özelliği 𝑓(1) i dizinin bir 

periyodunun ilk değeri olarak kabul ederseniz o zaman, pozitif 𝑗 için 𝑓(𝑗) 𝑗 modülü 𝑛  

konumunda bulunan değeri belirtirken, pozitif olmayan 𝑗 için 𝑓(𝑗) 𝑛 − 𝑗 modülü 𝑛 

konumunda bulunan değeri belirtir. Bu özellik, aşağıdakiler vasıtasıyla 𝑄𝑃 uzayına 

aktarılır. 

 

Önerme 3.2.1 Eğer 𝑓 ∈ 𝑄𝑃(ℤ) ise, bu durumda her bir 𝑖 ∈ ℕ için  

lim
𝑛→∞

𝑓(𝑛! − 𝑖) = 𝑓(−𝑖)   ve  lim
𝑛→∞

𝑓(𝑛!) = 𝑓(0) 

eşitlikleri geçerlidir. 

 

İspat: 𝑓 nin periyodu 𝑝 olmak üzere 𝑛 ≥ 𝑝 olduğunda  

𝑓(𝑛! − 𝑖) = 𝑓(−𝑖) 

olduğundan, tüm 𝑓 ∈ 𝑃 için limit elde edilir. 𝑃, 𝑄𝑃 de yoğun olduğundan formül 𝑄𝑃 

nin tümüne genişletilebilir ve 

lim
𝑛→∞

𝑓(𝑛! − 𝑖)  ve  𝑓(−𝑖) 

fonksiyonellerinin her ikisi de sınırlı ve dolayısıyla süreklidir. 

 

𝑄𝑃 deki bir  𝑓 dizisi, eğer ℤ ye uzantısı için  

𝑓(𝑖) = 𝑓(−𝑖) 

ise simetrik olarak adlandırılacaktır. Bizim için özellikle ilgi çekici olan 

𝑑𝑛(𝑗) = {
1;  𝑛|𝑗 ise               

 0;   diğer durumlar
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olacak şekilde ℕ üzerinde 𝑛 = 1,2, … için tanımlanan 𝑑𝑛   periyodik dizilerinin 

kümesini kurmaktır. Tanımlarından, 𝑊 nin sütunları olan bu dizilerin aritmetik 

yakınsak ve simetrik olduğu açıktır. 

 

Aritmetik bir 𝑓 fonksiyonu, tüm 𝑘 için  

𝑓(𝑘) = 𝑓(˂𝑘, 𝑛˃) 

ise çift 𝑚𝑜𝑑(𝑚) dir. Bu nedenle Tanım 3.1.1 den,  bir dizi bazı 𝑛 ler için çift 𝑚𝑜𝑑(𝑛) 

olan tüm dizilerin uzayının düzgün kapanışındaysa aritmetik yakınsaktır. Bu tür diziler 

yakın zamanda Haukkanen ve Tossavainen (2008), Schwarz ve Spilker (1994) ve Toth 

ve Haukkanen (2011) tarafından ele alınmıştır. 

 

Herhangi bir diziden, AC de bir dizi (gerçekte çift modülü 𝑛 olan bir dizi) türetmenin 

doğal ve basit bir yolu vardır. 

  

Önerme 3.2.2 Eğer 𝑓 herhangi bir dizi ve 𝑛 herhangi bir tam sayı ise, bu durumda       

𝑔(𝑖) = 𝑓(˂𝑛, 𝑖˃) 

tarafından tanımlanan 𝑄𝑛𝑓 = 𝑔 dizisi AC dedir ve 

sup𝑖|𝑔(𝑖)| ≤ sup𝑖|𝑓(𝑖)| 

dir. Her bir 𝑄𝑛, ℓ∞ dan AC ye sürekli doğrusal bir iz düşümdür. Her bir 𝑚, 𝑛 tam sayı 

çifti için 

𝑄𝑚𝑄𝑛 = 𝑄˂𝑚,𝑛˃ 

ve dolayısıyla 𝑚 ve 𝑛 aralarında asal ise her bir 𝑖 için 𝑔(𝑖) = 𝑓(1) olmak üzere 

𝑄𝑚𝑄𝑛𝑓 = 𝑄1𝑓 = 𝑔 

elde edilir. 

  

İspat: Tüm 𝑚 için  

𝑔(𝑚) = 𝑓(˂𝑛, 𝑚˃) = 𝑔(˂𝑛, 𝑚˃) 

olduğundan 𝑄𝑛𝑓 = 𝑔 eşitliği AC dedir. Diğer ifadelerin ispatları da açık şekilde 

rutindir. 

 

𝑄𝑛 iz düşümleri ilginç yakınsama özelliklerine sahiptir. 
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Önerme 3.2.3 Eğer 𝑓, AC de herhangi bir dizi ve her bir 𝑘 için 𝑛𝑘|𝑛𝑘+1 olacak şekilde 

𝑛𝑘 tam sayıların herhangi bir dizisi ise, bu durumda  𝑄𝑛𝑘
𝑓, AC de   

𝑔(𝑖) = 𝑓(maks𝑘˂𝑖, 𝑛𝑘˃) 

dizisine yakınsar. 

 

İspat: 𝑄𝑛𝑘
𝑓 dizisi düzgün sınırlı ve her bir 𝑑𝑚 için  

𝑄𝑛𝑘
𝑑𝑚 = {

0;   ˂𝑚, 𝑛𝑘˃ ˂ 𝑚 ise               
𝑑𝑚;   diğer durumlar                   

 

olur. Böylece 𝑄𝑛𝑘
𝑓, AC de düzgün sınırlılık ilkesi ile kendisinin açık olarak noktasal 

limiti olan 𝑔 ye yakınsaktır.  

 

Teorem 3.2.1 𝑓, AC de bir dizi ve her bir 𝑘 için 𝑛𝑘|𝑛𝑘+1  ve 𝑚𝑘 |𝑚𝑘+1 olacak şekilde 

𝑛𝑘 ve 𝑚𝑘 iki tam sayı dizisi olsun. Bu durumda, her bir 𝑓 ∈ 𝐀𝐂 için  

lim𝑄𝑛𝑘
𝑓 = lim𝑄𝑚𝑘

𝑓 

eşitliği geçerli olması için gerek ve yeter şart her bir 𝑝 asal sayısı ve her bir ℎ tam sayısı 

için 𝑝ℎ|𝑛𝑘 olacak şekilde 𝑛𝑘 vardır gerek ve yeter şart 𝑝ℎ|𝑚1olacak şekilde 𝑚1 vardır. 

 

İspat: 𝑀(𝑖) = maks𝑘˂𝑖, 𝑛𝑘˃ dizisi çarpımsaldır (Hardy ve Wright 1960, s. 53). 𝑖1, 𝑖2 

nin aralarında asal olduğunu ve  

𝑀(𝑖1) = ˂𝑖1, 𝑛𝑘1
˃, 𝑀(𝑖2) = ˂𝑖2, 𝑛𝑘2

˃ 

olduğunu varsayalım. 𝑛𝑘1
| 𝑛𝑘1

 olduğundan dolayı 𝑛𝑘1
≤ 𝑛𝑘2

 ise, bu durumda  

˂𝑖1, 𝑛𝑘1
˃ = ˂𝑖1, 𝑛𝑘2

˃ 

ve böylece, 

𝑀(𝑖1𝑖2) = ˂𝑖1𝑖2, 𝑛𝑘˃ = ˂𝑖1, 𝑛𝑘˃˂𝑖2, 𝑛𝑘˃ ≤ 𝑀(𝑖1, 𝑖2) 

olduğunda 

𝑀(𝑖1)𝑀(𝑖2) = ˂𝑖1, 𝑛𝑘2
˃˂𝑖2, 𝑛𝑘2

˃ = ˂𝑖1𝑖2, 𝑛𝑘2
˃ ≤ 𝑀(𝑖1𝑖2)  

dir.  

 

Her 𝑝 asal ve her ℎ tam sayısı için 𝑠; ℎ den küçük veya ona eşit en büyük tam sayı 

olmak üzere 

𝑀(𝑝ℎ) = 𝑝𝑠 
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dir öyle ki 𝑝𝑠 bazı 𝑛𝑘 ları böler. Koşul geçerli ise, bu durumda bir asal sayının her 

kuvveti için 

maks𝑘˂𝑝𝑠, 𝑛𝑘˃ = maks𝑘˂𝑝𝑠 , 𝑚𝑘˃ 

ve böylece her tam sayı için  

maks𝑘˂𝑖, 𝑛𝑘˃ = maks𝑘˂𝑖, 𝑚𝑘˃ 

olup her bir 𝑓 ∈ 𝐀𝐂 için  

lim𝑄𝑛𝑘
𝑓 = lim𝑄𝑚𝑘

𝑓 

dir. Eğer 𝑔, 

𝑔(𝑖) = {
 1;   𝑝ℎ| 𝑖 ise               
0;   diğer durumlar

 

biçiminde bir dizi ise, bu durumda  

lim𝑄𝑛𝑘
𝑔 = {

𝑔;    𝑝ℎ|𝑛𝑘 ise               
 0;   diğer durumlar     

 

olur. Çünkü 𝑖˂𝑝𝑠 için   

˂𝑝𝑠, 𝑛𝑘 ˃˂𝑝𝑠   ve   𝑔(𝑖) = 0 

dir. Bu da koşulun gerekli olduğunu gösterir. 

 

İz düşüm koşulundan, Teorem 3.2.1 gösterir ki lim𝑄𝑛𝑖
𝑓 formunun iz düşümleri                 

𝜑 = {𝑝𝑘: 𝑝 bir asal sayı ve bazı 𝑖 ler için 𝑝𝑘|𝑛𝑖  dir. } 

kümesi tarafından tamamen hesaplanır. Böylece  

lim𝑄𝑛𝑖
𝑓 = 𝑄𝜑𝑓 

yazılır.  

 

Bir sonraki teorem, AC uzayının temel özelliklerini özetler. 

 

Teorem 3.2.2 (𝑎) Eğer bir 𝑓 dizisi aritmetik yakınsak ise, bu durumda her bir 𝜀 > 0 

için periyodik bir 𝑔 dizisi vardır öyle ki her bir 𝑖 için 

|𝑓(𝑖) − 𝑔(𝑖)|˂𝜀 

dir. Böylece AC, 𝑄𝑃 nin kapalı bir alt cebiridir. 

 

(𝑏) AC deki yalnız yakınsak olan diziler sabit dizilerdir. 
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(𝑐) 𝑓 ∈ 𝐀𝐂 ve 𝑛𝑘, tüm 𝑘 için 𝑛𝑘| 𝑛𝑘+1 olacak şekilde bir tam sayı dizisi ise, bu 

durumda  𝑔(𝑘) =  𝑓(𝑛𝑘) dizisi yakınsaktır. 

 

(𝑑) 𝑓 ∈ 𝐀𝐂 ve 𝑞𝑘, ortak çarpanı olmayan artan bir tam sayı dizisi ise, bu durumda 

ℎ(𝑘) =  𝑓(𝑞𝑘) dizisi 𝑓(1) e yakınsar. 

 

(𝑒) Her periyodik aritmetik yakınsak 𝑓 dizisi, 𝑑𝑛 dizilerinin bir lineer birleşimidir. 

 

(𝑓) Periyodik aritmetik yakınsak dizilerin uzayı, 𝑃 nin uygun bir alt uzayıdır ve 𝑄𝑃 de 

AC simetrik dizilerin uygun kapalı bir alt cebiridir. 

 

İspat: (𝑎) Aritmetik yakınsamanın tanımı gereği, her bir 𝑖 için  

|𝑓(𝑖) − 𝑓(˂𝑖, 𝑛 ˃)|˂𝜀 

olacak şekilde bir 𝑛 tam sayısı vardır.  

𝑔(𝑖) = 𝑓(˂𝑖, 𝑛 ˃) 

dizisini tanımlayalım.  

˂𝑖 + 𝑛, 𝑛 ˃ = ˂𝑖, 𝑛 ˃ 

olduğundan, 𝑔 dizisi en fazla 𝑛 periyodu ile periyodiktir. AC nin bir cebir olduğu ve 

düzgün topolojide kapalı olduğu yaklaşım ile ilgili rutin bir araştırmadır ve ispatı 

tamamlarız. 

 

(𝑏) Sadece yakınsak periyodik diziler (𝑎) gereğince sabittir. 

 

(𝑐) 𝜀 > 0 verilsin ve bir 𝑚 alalım öyle ki her bir 𝑖 için  

|𝑓(𝑖) − 𝑓(˂𝑖, 𝑚˃)|˂𝜀 

olsun. 𝑘 ≥ 𝐾 için  

˂𝑚, 𝑛𝑘˃ = ˂𝑚, 𝑛𝑘+1˃ 

olacak şekilde bir 𝐾 alalım. Böylece, 𝑖, 𝑗 ≥ 𝐾 için 
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          |𝑔(𝑖) − 𝑔(𝑗)| = |𝑓(𝑛𝑖) − 𝑓(𝑛𝑗)| 

= |𝑓(𝑛𝑖) − 𝑓(˂𝑛𝑖 , 𝑚˃) − 𝑓(𝑛𝑗) + 𝑓(˂𝑛𝑖, 𝑚˃)| 

          ≤ |𝑓(𝑛𝑖) − 𝑓(˂𝑛𝑖 , 𝑚˃)| + |−𝑓(𝑛𝑗) + 𝑓(˂𝑛𝑖 , 𝑚˃)|        

  = |𝑓(𝑛𝑖) − 𝑓(˂𝑛𝑖 , 𝑚˃)| + |𝑓(𝑛𝑗) − 𝑓(˂𝑛𝑗 , 𝑚˃)| 

                                < 2𝜀 

elde edilir. Bu nedenle  𝑔 Cauchy koşulunu sağlar, böylece yakınsar. 

  

(𝑑) 𝜀 > 0 verilsin ve bir 𝑚 alalım öyle ki her bir 𝑖 için  

|𝑓(𝑖) − 𝑓(˂𝑖, 𝑚˃)|˂𝜀 

olsun. 𝑞𝑘 tam sayılarının ortak çarpanı olmadığından,  

˂𝑚, 𝑞𝑘˃ > 1 

olan tüm 𝑘 ların kümesi sonludur. Dolayısıyla 𝑘 ≥ 𝐾 için  

˂𝑚, 𝑞𝑘˃ = 1 

olacak şekilde 𝐾 vardır. Bu  

|𝑓(1) − ℎ(𝑘)| = |𝑓(1) − 𝑓(𝑞𝑘)| 

                                   = |𝑓(˂𝑚, 𝑞𝑘˃) − 𝑓(𝑞𝑘)| 

< 𝜀 

anlamına gelir. 

 

(𝑒) 𝑓 periyodik olduğundan yalnızca sonlu sayıda değer alır. Böylece 𝜀 > 0 vardır öyle 

ki eğer  

|𝑓(𝑖) − 𝑓(𝑗)| < 𝜀 

ise  

𝑓(𝑖) = 𝑓(𝑗) 

olur. 𝑓 aritmetik yakınsak olduğundan, bir 𝑚 tam sayısı vardır öyle ki her bir 𝑖 için  

|𝑓(𝑖) − 𝑓(˂𝑖, 𝑚˃)|˂𝜀 

olup bu ise her bir 𝑖 için  

𝑓(𝑖) = 𝑓(˂𝑖, 𝑚˃) 

anlamına gelir. 𝑔, her bir 𝑖 için  

𝑔(𝑖) = 𝑔(˂𝑖, 𝑚˃) 

özelliğine sahip başka bir dizi ise, bu durumda 𝑓 + 𝑔 aynı özelliğe sahiptir. 
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1 = 𝑚1˂𝑚2 … ˂𝑚𝑠 = 𝑚 ile artan düzende 𝑚 nin tüm bölenlerinin dizisi olsun. 𝑚𝑖|𝑗 

olduğundan 𝑑𝑚𝑖
 fonksiyonu 

𝑑𝑚𝑖
(𝑗) = 𝑑𝑚𝑖

(˂𝑗, 𝑚˃) 

özelliğine sahip olması için gerek ve yeter şart  

𝑚𝑖|˂𝑗, 𝑚˃ 

dir. Böylece, fonksiyonların dizisi  

𝑓1 = 𝑓 − 𝑓(1)𝑑1 

ve genel olarak  

𝑓𝑖+1 = 𝑓𝑖 − 𝑓𝑖(𝑚𝑖)𝑑𝑚𝑖
 

tarafından tanımlanır öyle ki tümü  

𝑓𝑖  (𝑗) = 𝑓𝑖(˂𝑗, 𝑚˃) 

özelliğine sahiptir. Her bir 𝑖 için  

𝑓𝑠(𝑚𝑖) = 0 

olduğundan, 𝑓𝑠 sıfır dizisidir. 𝑓𝑠 den 𝑓 ye tersine doğru çalışmak, 𝑓 nin 𝑑𝑚𝑖
 dizilerinin 

lineer birleşimi olduğunu gösterir. 

 

(𝑓) 𝑑𝑖 nin ℤ ye uzantısı, 

𝑑𝑖(𝑛𝑖) = {
 1;   𝑛 = 0, ±1, ±2, …   için               
 0;   𝑖, 𝑘 nın bir çarpanı değilse      

 

ile periyodik bir dizidir. Bu dizilerin tümü, her 𝑖, 𝑗 için  

𝑑𝑖(−𝑗) = 𝑑𝑖(𝑗) 

koşulunu sağlar. Bu lineer bir koşul olduğundan ve tüm 𝑑𝑖 lerin kümesi, periyodik 

aritmetik yakınsak dizilerin uzayı için cebirsel bir baz olduğundan, tüm böyle 𝑔 ler için 

geçerli olan koşulu izler. 𝑑𝑖 nin açıklığı AC de yoğun olduğundan ve koordinat 

fonksiyonelleri sürekli olduğundan koşul tüm 𝑓 ∈ 𝐀𝐂(ℤ) için elde edilir. AC de 

olmayan bir simetrik periyodik dizi örneği oluşturmak için, ilk beş 𝑎1, 𝑎2, 𝑎2, 𝑎1, 𝑎5 

terimine sahip beş periyod dizisinin simetrik olduğu, ancak aritmetik yakınsak bir 

periyod dizisinin ilk beş 𝑎1, 𝑎1, 𝑎1, 𝑎1, 𝑎5 terimine sahip olması gözlemlenir. 
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Teorem 3.2.3 Sonlu bir 𝑆 kümesi için eğer 

𝑓 = ∑ 𝑎𝑖𝑑𝑖 

𝑖∈𝑆

 

ve hiç bir 𝑎𝑖 ≠ 0 ise, bu durumda 𝑓 nin periyodu 𝑛 dir, {𝑖: 𝑖 ∈ 𝑆} nin en küçük ortak 

katıdır ve 𝑘 nın bir çarpanı olan bir 𝑖 ∈ 𝑆 yoksa 𝑓(𝑘) = 0 dır. 

 

İspat: 𝑆 nin herhangi bir elamanı yoksa ispat açıktır. 𝑆, 𝑛 − 1 elemana sahip iken 

önermenin doğru olduğunu kabul edelim ve 𝑆, 𝑛 elemana sahip olduğunda önermenin 

doğru olduğunu gösterelim. 𝑆, 𝑛 elemana sahip olsun ve 𝑆 nin en büyük elemanı olarak 

ℎ yi alalım. Eğer  

𝑔 = ∑ 𝑎𝑖𝑑𝑖 

𝑖∈𝑆|ℎ

 

ise, bu durumda  

𝑓 = 𝑔 + 𝑎ℎ𝑑ℎ 

için ve tüm 𝑗 ler için  

𝑓(𝑗𝑘) = 𝑔(𝑗𝑘) + 𝑎ℎ 

ve aksi halde 

ℎ(𝑖) = 𝑔(𝑖) 

dir. 𝑛′, {𝑖: 𝑖 ∈ 𝑆|ℎ} nin en küçük ortak katını göstersin. Eğer 𝑖, ℎ ın katı değilse  

ℎ(𝑖 + 𝑛) = 𝑔(𝑖 + 𝑛) = 𝑔(𝑖) = ℎ(𝑖) 

olur, çünkü 𝑛′,  𝑛 nin bir çarpanıdır ve ℎ, 𝑖 + 𝑛 yi bölmez. 𝑖, ℎ ın katı ise  

ℎ(𝑖 + 𝑛) = 𝑔(𝑖 + 𝑛) + 𝑎ℎ = 𝑔(𝑖)+𝑎ℎ = ℎ(𝑖) 

dir, çünkü 𝑛′, 𝑛 nin bir çarpanıdır ve ℎ, 𝑖 + 𝑛 yi böler. 𝑓 nin periyodu kesin olarak 𝑛 dir, 

çünkü 𝑓, 𝑛 de ∑ 𝑎𝑖 değerini alır ama 𝑛′ de almaz. 

 

Önerme 3.2.4 Her bir 𝑓 dizisi için 𝑎𝑖 katsayıları vardır öyle ki her bir 𝑘 için 

𝑓(𝑘) = ∑ 𝑎𝑗𝑑𝑗(𝑘)

𝑘

𝑗=1

 

dir. Böylece, tüm dizilerin uzayı 𝜔 için (𝑑𝑗) bir baz olup, koordinatsal yakınsama 

topolojisini verir.  
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İspat: 𝑎1 =  𝑓(1) olsun ve 𝑘 ≤ 𝑛 için   

𝑓(𝑘) = ∑ 𝑎𝑗𝑑𝑗(𝑘)

𝑘

𝑗=1

 

yı sağlayan 𝑎𝑘: 𝑘 ≤ 𝑛 bulunursa,   

𝑎𝑛+1 = 𝑓(𝑛 + 1) − ∑ 𝑎𝑗𝑑𝑗(𝑛 + 1) 

𝑛

𝑗=1

 

olur. 𝑗 < 𝑛 + 1 için  

𝑑𝑛+1(𝑗) = 0 

olduğundan, {𝑎𝑘: 𝑘 ≤ 𝑛} bulunur ki 𝑘 ≤ 𝑛 + 1 için  

𝑓(𝑘) = ∑ 𝑎𝑗𝑑𝑗(𝑘)

𝑘

𝑗=1

 

sağlanır. (𝑄𝑛′𝑓 nin 𝑓 ye yakınsak olduğu görülebilir.) 

 

3.3 Aritmetik Yakınsak Dizilerin Dual Uzayı 

 

Bu bölümde, AC nin dual uzayı açıklanacak ve açıklama, AC gibi 𝑄𝑃 nin 𝐶[0,1] 

cebirine göre izomorfik olduğunu göstermek için kullanılacak. 

 

0 < 𝑞 ≤ 𝑝 olan her 𝑝, 𝑞 tam sayı çifti ve bazı  𝑘 tam sayıları için 𝑏𝑝,𝑞 dizisi 

𝑏𝑝,𝑞(𝑗) = {
1;   𝑗 = 𝑞 + 𝑘𝑝 ise               
0;   diğer durumlar             

 

şeklinde tanımlansın. Her bir 𝑝 için {𝑏𝑝,𝑞: 𝑞 = 1,2, … , 𝑝} dizileri, 𝑝 periyoduna sahip 

dizilerin alt uzayı için bir baz oluşturur. Bir periyodu 𝑝 olan dizi ayrıca her ℎ pozitif tam 

sayısı için ℎ𝑝 periyoduna sahip olduğundan,   

𝑏𝑝,𝑞 = ∑ 𝑏ℎ𝑝,𝑞+𝑘𝑝 

ℎ−1

𝑘=0

 

dir. 𝑄𝑃, ℓ∞ un ayrılabilir kapalı bir alt uzayı olduğundan 𝐴 bir matris olmak üzere, 

sürekli lineer fonksiyonellerin  

𝐹(𝑓) = lim
𝑛→∞

∑ 𝐴(𝑛, 𝑗)𝑓(𝑗)

𝑗
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biçiminde temsil edilebileceği bilinmektedir (Banach 1932, s. 68-72). Berg (1966) bu 

soruyu yanıtladı ve Jimenez (1985) aynı soruyu 𝑃 üzerindeki sürekli lineer 

fonksiyoneller için yanıtladı. 𝑄𝑃 üzerinde sürekli lineer fonksiyonellerin gösterimi 

matrislerin belirlenmesine eşdeğer olup 𝑄𝑃 yi yakınsak dizilerin 𝑐 uzayına eşler 

(Siddiqi 1971). Aşağıdaki teorem bu üç çalışmanın sonuçlarını birleştiren 𝑄𝑃 dual uzayı 

için doğrudan bir açıklamadır. 

 

Teorem 3.3.1 𝐴 = 𝐴(𝑖, 𝑗) matrisi için aşağıdaki üç ifade eşdeğerdir: 

(𝑎) 𝐴 matrisi  

𝐹(𝑓) = lim
𝑛

∑ 𝐴(𝑛, 𝑗)𝑓(𝑗)

𝑗

 

formülü ile 𝑄𝑃 üzerinde sürekli doğrusal bir 𝐹 fonksiyonelini belirler. 

 

(𝑏) 𝐴 matrisi aşağıdaki şartları sağlar: 

(1)  

sup
𝑛

{∑|𝐴(𝑛, 𝑗)|

𝑗

} < ∞  

(2) Her 𝑚 ve her 0 ≤ 𝑘 < 𝑚 için  

lim
𝑛

{∑ 𝐴(𝑛, 𝑚𝑗 + 𝑘) 

∞

𝑗=1

}  

limiti vardır. 

 

(𝑐) 𝐴 matrisi 𝑄𝑃 yi 𝑐 ye eşler. 

 

İspat: (𝑎) ⇒ (𝑏): Bir 𝐴(𝑛, . ) satır 

𝐹𝑛(𝑓) = ∑ 𝐴(𝑛, 𝑗)

𝑗

𝑓(𝑗)  

ile 𝑄𝑃 üzerinde bir fonksiyonel tanımlamak için gerek ve yeter şart 
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𝐹𝑛 = ∑|𝐴(𝑛, 𝑗)|

𝑗

< ∞  

olmasıdır. Eğer (𝐹𝑛) dizisi zayıf yakınsar ise, bu durumda sınırlıdır. Dolayısıyla (1) 

şartı sağlanır. 𝑏𝑚,𝑘  de fonksiyonelin değeri 

lim
𝑛

{∑ 𝐴(𝑛, 𝑚𝑗 + 𝑘) 

∞

𝑗=1

}  

olduğundan (2) nin gerekliliği elde edilir. 

 

(𝑏) ⇒ (𝑐): 𝐴 matrisi (1) ve (2) koşullarını sağlıyor ise, bu durumda her bir 𝑓 ∈ 𝑄𝑃  

için 

∑ 𝐴(𝑛, 𝑗)

𝑗

𝑓(𝑗) 

mevcuttur ve  

𝑔(𝑛) = ∑ 𝐴(𝑛, 𝑗)

𝑗

𝑓(𝑗)  

biçiminde tanımlanan 𝑔 dizisi yakınsar.  

 

(𝑐) ⇒ (𝑎): 𝐴 matrisi 𝑄𝑃 yi 𝑐 ye eşler ise, bu durumda  

𝐹𝑛(𝑓) = ∑ 𝐴(𝑛, 𝑗)

𝑗

𝑓(𝑗)  

ile 𝑄𝑃 üzerinde tanımlanan fonksiyoneller 𝑄𝑃 üzerinde düzgün sınırlıdır ve her bir 𝑏𝑚,𝑘  

için yakınsar ve böylece her bir 𝑓 ∈ 𝑄𝑃  için yakınsarlar.  

 

𝑏𝑚,𝑘 yerine 𝑑𝑛 dizilerini kullanarak AC için karşılık gelen sonuç elde edilebilir. 

 

Teorem 3.3.2 𝐴 = 𝐴(𝑖, 𝑗) matrisi için aşağıdaki üç ifade denktir: 

(𝑎) 𝐴 matrisi AC üzerinde  

𝐹(𝑓) = lim
𝑛

∑ 𝐴(𝑛, 𝑗)

𝑗

𝑓(𝑗)  

ile sürekli bir lineer 𝐹 fonksiyoneli belirler. 
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(𝑏) 𝐴 matrisi aşağıdaki şartları sağlar: 

(1)  

sup
𝑛

{∑|𝐴(𝑛, 𝑗)|

𝑗

} < ∞ . 

(2) Her bir 𝑚 için  

lim
𝑛

{∑ 𝐴(𝑛, 𝑚𝑗) 

∞

𝑗=1

} 

limiti mevcuttur. 

 

(𝑐) 𝐴 matrisi 𝑄𝑃 yi 𝑐 ye eşler. 

 

𝑄𝑃 de bir fonksiyonel belirleyen her matris açık olarak AC de bir fonksiyonel belirler. 

AC de matrisler tarafından tanımlanan fonksiyoneller tek olarak belirlenmez. Bununla 

birlikte AC cebirinde Milutin Teoremini uygulamamıza izin veren sayılamayan sayıda 

farklı "nokta" fonksiyonel vardır.  

 

Önerme 3.3.1 Γ, 0 ve 1 lerin sonsuz bir dizisi ve asal sayılar dizisi  

2 = 𝑝1 < 𝑝2 < ⋯ 

olsun.  

𝑠(0) = 1 ve Γ(𝑘) = 1 

ise  

𝑠(𝑘) = 𝑠(𝑘 − 1)𝑝𝑘 

aksi takdirde  

𝑠(𝑘) = 𝑠(𝑘 − 1) 

olan bir 𝑠 tam sayılar dizisi tanımlansın. İlk satırı 0 ve  

𝑝𝑘 ≤ 𝑖 < 𝑝𝑘+1  ise 𝐴Γ(𝑖, 𝑠(𝑘)) = 1 

aksi takdirde  

𝐴Γ(𝑖, 𝑗) = 0 

olacak şekilde bir 𝐴Γ matrisi tanımlansın. Matrislerin sayılamayan kümesi {𝐴Γ}, AC 

üzerindeki farklı fonksiyonelleri belirler. 
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İspat: 𝑚 bazı 𝑘 lar için 𝑠(𝑘) yi böler ise, her bir 𝑚 için 

∑ 𝐴(𝑛, 𝑚𝑗) 

∞

𝑗=1

 

sonuç olarak 1 dir ve aksi halde her zaman 0 dır. Eğer bu tür sonsuz iki Γ1, Γ2 dizileri 

farklı ise, bu durumda belirlenen matrisler tarafından tanımlanan fonksiyoneller ilk 

Γ1(𝑖) ≠ Γ2(𝑖) için ilk dizi 𝑑𝑝𝑖
 üzerinde farklılık gösterir. 

  

Milutin Teoreminden (Milutin 1966) bir sonraki sonuç elde edilir. 

 

Sonuç 3.3.1 AC uzayları 𝐶[0,1] e izomorfiktir. 

 

3.4 AS ve AS nin AC ve BAS ile İlişkisi 

 

Eğer 𝑓, 𝜑 de bir dizi ise, (𝑓 dizilerin uzayıdır öyle ki 𝑗 > N𝑓 için 𝑓(𝑗) = 0 olacak 

şekilde N𝑓vardır) bu durumda 𝑓 aritmetik toplanabilir ve  

𝑔(𝑛) = ∑ 𝑓(𝑘)

𝑘|𝑛

  

biçiminde tanımlanan 𝑔 dizisi aritmetik yakınsaktır ve 𝑃 de bir dizidir. 𝑔 için eşdeğer 

bir ifade  

𝑔 = ∑ 𝑓(𝑘)d𝑘

𝑘

  

dır. 

 

𝑊 matrisinin sütunları 𝑃 uzayında olduğundan, 𝑊(𝜑) nin 𝑃 nin uygun bir alt uzayıdır 

ve 𝑊(𝐀𝐒), AC nin bir alt uzayıdır. 𝑊(𝐀𝐒) nin AC nin tamamında olduğunu göstermek 

için 𝑊 nin tersi olan 𝑀 matrisi kullanılır ve Möbius İnversiyon Teoremi aşağıdaki 

teoremi verir (Hardy ve Wright 1960, s. 236). 
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Teorem 3.4.1 (𝑎) Bir 𝑓 ∈ 𝑃 dizisinin 𝑊(𝜑) ye ait olması için gerek ve yeter koşul 𝑖 ≥

𝑛 için  

∑ 𝜇 (
𝑖

𝑗
) 𝑓(𝑗)

𝑗|𝑖

= 0  

olacak şekilde 𝑛 nin var olmasıdır. 

 

(𝑏) Eğer 𝑓, AS de bir dizi ise, bu durumda 

𝑔(𝑛) = ∑ 𝑓(𝑘)

𝑘|𝑛

  

ile tanımlanan 𝑔 dizisi aritmetik yakınsak, AC de bir dizi ve 𝑓 den 𝑔 ye dönüşümü AS 

den AC ye bire bir izometrik bir eşlemedir.  

 

(𝑐) Eğer 𝑓, BAS ta bir dizi ise, bu durumda 𝑊𝑓, ℓ∞ da bir dizidir ve eğer  𝑔, ℓ∞ da bir 

dizi ise, bu durumda 𝑀𝑔, BAS da bir dizidir. Bu nedenle,  

‖𝑓‖ = ‖𝑊𝑓‖∞ 

normu ile BAS, ℓ∞ a izometriktir ve AS, BAS da 𝜑 nin kapanışıdır. 

 

Tüm dizileri AC ye eşleyen 𝑄𝑛 eşlemesine benzer şekilde tüm dizileri 𝜑 ⊂ 𝐀𝐒 ye 

eşleyen 𝑅𝑛 eşlemesidir.  

 

Teorem 3.4.2 Eğer 𝑓, herhangi bir dizi ve 𝑛 herhangi bir tam sayı ise, bu durumda 𝑖|𝑛 

ise 𝑔(𝑖) = 𝑓(𝑖) ve  𝑖 ∤ 𝑛 ise  𝑔(𝑖) = 0 olarak tanımlanan 𝑅𝑛𝑓 = 𝑔 dizisi 𝜑 dedir ve  

sup𝑚 |∑ 𝑔(𝑖)

𝑖|𝑚

| ≤ sup𝑚 |∑ 𝑓(𝑖)

𝑖|𝑚

| 

dir. Her bir 𝑅𝑛, BAS tan AS ye sürekli lineer iz düşümdür. Her bir 𝑚, 𝑛 tam sayıları  

çifti için 

 𝑅𝑚𝑅𝑛 = 𝑅〈𝑚,𝑛〉 

ve böylece eğer 𝑚 ve 𝑛 aralarında asal ise,  

𝑔(1) = 𝑓(1) ve 𝑖 > 1 için 𝑔(𝑖) = 0 

olmak üzere  
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𝑅𝑚𝑅𝑛𝑓 = 𝑅1𝑓 = 𝑔 

dir. Eğer 𝑓, AS deki herhangi bir dizi ve 𝑛𝑘, her bir 𝑘 için 𝑛𝑘|𝑛𝑘+1 olacak şekilde tam 

sayıların herhangi bir dizisi ise, bu durumda 𝑅𝑛𝑘
𝑓, AS de   

𝑔(𝑖) = 𝑓(maks𝑘〈𝑖, 𝑛𝑘〉) 

olan bir 𝑔 dizisine yakınsar. 

 

İspat: İlk iki iddianın ispatları rutindir. Üçüncü iddiayı doğrulamak için 𝑅𝑛𝑘
𝑓 dizisinin 

düzgün sınırlı olduğunu ve her bir 𝑒𝑚 için 

𝑅𝑛𝑘
𝑒𝑚 = {

   0;   〈𝑚, 𝑛𝑘〉 < 𝑚 ise                
𝑒𝑚;   diğer durumlar               

 

olduğunu görelim. Bu nedenle 𝑅𝑛𝑘
𝑓, AS de Düzgün Sınırlılık İlkesi ile noktasal limitine 

yakınsar ki bu açıkça 𝑔 dir. 

 

Teorem 3.4.3 𝑓, AS de bir dizi ve her bir 𝑘 için 𝑛𝑘|𝑛𝑘+1  ve 𝑚𝑘 |𝑚𝑘+1 olacak şekilde 

𝑛𝑘 ve 𝑚𝑘 iki tam sayı dizisi olsun. Bu durumda, her bir 𝑓 ∈ 𝐀𝐒 için  

lim𝑅𝑛𝑘
𝑓 = lim𝑅𝑚𝑘

𝑓 

eşit olması için gerek ve yeter şart aşağıdaki şart sağlanır ise geçerlidir:  

Her bir 𝑝 asal sayısı ve her bir ℎ tam sayısı için 𝑝ℎ|𝑛𝑘 olacak şekilde 𝑛𝑘 vardır gerek ve 

yeter şart 𝑝ℎ|𝑚1 olacak şekilde 𝑚1 vardır. 

 

İspat: 𝑀(𝑖) = maks𝑘〈𝑖, 𝑛𝑘〉 dizisi çarpımsaldır (Hardy ve Wright 1960, s. 53). Eğer 

koşul geçerli ise, bu durumda bir asal sayının her kuvveti için  

maks𝑘〈𝑝𝑠, 𝑛𝑘〉 = maks𝑘〈𝑝𝑠, 𝑚𝑘〉 

böylece her tam sayı için  

maks𝑘〈𝑖, 𝑛𝑘〉 = max𝑘〈𝑖, 𝑚𝑘〉 

dir ki her bir 𝑓 ∈ 𝐀𝐒 için  

lim𝑅𝑛𝑘
𝑓 = 𝑅𝑚𝑘

𝑓 

dir. Eğer 𝑝ℎ|𝑛𝑘 ise, bu durumda 𝑅𝑛𝑘
𝑒𝑝ℎ,  𝑒𝑝ℎ diğer durumda 𝑅𝑛𝑘

𝑒𝑝ℎ sıfırdır. 

Dolayısıyla koşul gereklidir. 
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Böylece lim𝑅𝑛𝑖
𝑓 formunun iz düşümleri tamamen  

𝜙 = {𝑝𝑘: 𝑝  bir asal sayıdır ve 𝑝𝑘   bazı 𝑖 ler için 𝑛𝑖 yi böler} 

 kümesi tarafından belirlenir. Böylece,  

lim𝑅𝑛𝑖
𝑓 = 𝑅𝜙𝑓 

elde edilir. 

 

Önerme 3.4.1 ℓ1 ⊂ 𝐀𝐒 ancak AS, ℓ∞ tarafından kapsanmaz. 

 

İspat: İlk kapsama açıktır. AS de olan ancak ℓ∞ da olmayan bir diziyi bulmak için önce 

𝜔(𝑛) ve Ω(𝑛) olmak üzere iki diziyi aşağıdaki gibi tanımlayalım:  

𝑛 tam sayısının farklı asal kuvvetlerine çarpanlara ayrılması  

𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑚
𝑘𝑚  

ise  

𝜔(𝑛) = 𝑚  

ve  

Ω(𝑛) = ∑ 𝑘𝑖  

𝑚

𝑖=1

 

tanımlayalım ve  

𝜔(1) = Ω(1) = 0 

olsun. (Bakınız Hardy ve Wright 1960, s. 354). Eğer 𝑚 ve 𝑛 aralarında asal iki tam 

sayılar ise, bu durumda 

𝜔(𝑚 + 𝑛) = 𝜔(𝑚) + 𝜔(𝑛) 

ve 

Ω(𝑚 + 𝑛) = Ω(𝑚) + Ω(𝑛) 

dir. Böylece  

𝑓(𝑛) = (−1)Ω(𝑛)2𝜔(𝑛) 

tarafından tanımlanan dizi, iki çarpımsal dizilerin sonucu olan çarpımsaldır. Açıkça 𝑓 

sınırlı değildir. 𝑓 nin BAS ta olduğunu göstermek için ilki 𝑓 çarpımsaldır, böylece  

𝑔(𝑚) = ∑ 𝑓(𝑛)

𝑛|𝑚

  

ile tanımlanan  𝑔 dizisi de çarpımsaldır (Hardy ve Wright 1960).  
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Bir asal 𝑝 için  

𝑔(𝑝𝑘) = 𝑓(1) + 𝑓(𝑝) + 𝑓(𝑝2) + ⋯ + 𝑓(𝑝𝑘) = 1 − 2 + 2 − ⋯ + (−1)𝑘2 = (−1)𝑘 

dir böylece her 𝑛 için  

|𝑔(𝑛)| = 1 

böylece 𝑓 ∈ 𝐁𝐀𝐒 dir. AS de sınırsız bir dizi oluşturmak için 𝑝1𝑝2 … 𝑝2𝑛 asallarının ilk  

2𝑛 nin ürünü (𝑘𝑛) olmak üzere 

ℎ𝑛 = (𝑅𝑘𝑛
− 𝑅𝑘𝑛−1

)𝑓 

olsun. Bu durumda,  

‖ℎ𝑛‖𝐁𝐀𝐒 ≤ ‖𝑅𝑘𝑛−1
𝑓‖

𝐁𝐀𝐒
+ ‖𝑅𝑘𝑛

𝑓‖
𝐁𝐀𝐒

≤ 2 

fakat 

ℎ𝑛(𝑘𝑛) = 4𝑛 

dir. Her bir ℎ𝑛, 𝜑 de olduğundan ve sıfırdan farklı ortak koordinatlara sahip 

olmadığından  

∑ 2−𝑛

𝑛

ℎ𝑛  

AS de bir diziye mutlak yakınsar fakat ℓ∞ da değildir. 

 

Sonraki iki sonuç, AS nin alt uzaylarının altta yatan koordinatlarının doğası ile ayırt 

edilen özellikleriyle ilgilidir.  

 

Teorem 3.4.4 Kabul edelim ki (𝑛𝑖), elamanları aralarında asal olan artan bir dizidir. 

Eğer 𝑓, bazı 𝑖 ler için 𝑗 = 𝑛𝑖  olmadıkça 𝑓(𝑗) = 0 olacak şekilde bir dizi ise, bu durumda 

𝑓 ∈ 𝐁𝐀𝐒 dir gerek ve yeter şart 𝑓 ∈ ℓ1 dir. Böylece, 𝑓 de AS dedir. 

 

İspat: Eğer 𝑓 ∈ ℓ1 ise, o zaman 𝑓 açıkça AS dedir. Şimdi 𝑓 ∈ 𝐁𝐀𝐒 olduğunu kabul 

edelim. İlk olarak 𝑓 nin reel değerli dizilerden oluştuğunu varsayalım. 

𝑀 = {𝑛𝑖: 𝑓(𝑛𝑖) > 𝑂} 

alınsın. Eğer  

∑ 𝑓(𝑗) = ∞

𝑗∈𝑀

 

ise, bu durumda 
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sup {∑ 𝑓(𝑖): 𝐻, 𝑀 nin sonlu alt kümesidir

𝑖∈𝐻

} 

kümesi sonsuzdur. Fakat 𝐻 deki sayılar aralarında asal olduğundan   

𝑁 = ∏ 𝑘

𝑘∈𝐻

 

sayısının tek çarpanı  𝐻 deki sayılardır. Bu demektir ki 

{∑ 𝑓(𝑖): 𝐻, 𝑀 nin sonlu alt kümesidir

𝑖∈𝐻

} = ∑ 𝑓(𝑖)

𝑖|𝑁

 

böylece 𝑓, BAS da olamaz. Benzer şekilde  

∑{𝑓(𝑗) ∶  𝑓(𝑗) < 0} 

nın −∞ olmadığını iddia edebiliriz. Son olarak  

maks{|𝑎|, |𝑏|} ≤ |𝑎 + 𝑏𝑖| ≤ |𝑎| + |𝑏| 

eşitsizliğini, karmaşık bir dizinin BAS da olduğunu doğrulamak için kullanabiliriz gerek 

ve yeter şart gerçek ve sanal kısımları da BAS dadır. 

 

Teorem 3.4.5 𝑝 bir asal sayı ise, bu durumda her 𝑓 ∈ 𝐁𝐀𝐒 için  

sup𝑛 |∑ 𝑓(𝑝𝑛)

𝑛

𝑖=1

| < ∞ 

ve her 𝑓 ∈ 𝐀𝐒 için  

∑ 𝑓(𝑝𝑛)

∞

𝑛=1

 

yakınsar. 

 

İspat: İlk sonuç, BAS ın tanımından ikinci sonuç ise limitin her 𝑓 ∈ 𝜑 için var olduğu 

gerçeğinden açıktır ve 𝜑, AS de yoğundur. 

 

 3.5 𝐀𝐒∗ ve 𝐀𝐒𝟎
∗  

AS, 𝐶[0,1] uzayına izomorfik olduğundan 𝐀𝐒∗, 𝐶[0,1] in dual uzayına izomorfiktir, 

yani [0,1] üzerindeki düzgün sürekli ve toplamsal ölçümlerdir (Dunford ve Schwartz  

958). Bununla birlikte birincil ilgi alanımız bir dizi uzayı olarak 𝐀𝐒∗ ın doğası olacaktır. 
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Lemma 3.5.1 Eğer 𝑓 ∈ 𝜑 ise, bu durumda 

sup {|∑ 𝑓(𝑖)𝑔(𝑖)

𝑖

| ∶  ‖𝑔‖𝐀𝐒 ≤ 1} = ‖𝑀𝑇𝑓‖ℓ1 = ∑ |∑ 𝜇 (
𝑗

𝑖
) 𝑓(𝑗)

𝑗

|

𝑖

 

dir. 

 

İspat: ‖𝑔‖𝐀𝐒 ≤ 1 ise, bu durumda 

‖𝑊𝑔‖ℓ∞ = sup𝑖 |∑ 𝑔(𝑗)

𝑗|𝑖

| ≤ 1 

öyle ki  

|∑ 𝑓(𝑖)𝑔(𝑖)

𝑖

| = |∑ 𝑓(𝑖)((𝑀𝑊𝑔)(𝑖))

𝑖

| = |∑(𝑀𝑇𝑓)(𝑖)((𝑊𝑔)(𝑖))

𝑖

| 

                                                                                 ≤ ‖𝑀𝑇𝑓‖ℓ1 ‖𝑊𝑔‖ℓ∞ 

                                                                                 ≤ ‖𝑀𝑇𝑓‖ℓ1  

dir. 𝑓 ∈ 𝜑 olduğundan, 𝑀𝑇𝑓 dizisi 𝜑 dedir çünkü 𝑀𝑇 nin sütunları 𝜑 dedir. 𝑖 > 𝑛 için 

𝑀𝑇𝑓(𝑖) = 0 

olacak şekilde bir 𝑛 olduğunu kabul edelim ve |ℎ(𝑖)| ≤ 1 olacak şekilde herhangi bir ℎ 

dizisi alalım ve her 𝑖 ≤ 𝑛 için  

ℎ(𝑖)𝑀𝑇𝑓(𝑖) = |𝑀𝑇𝑓(𝑖)| 

olsun. 𝑚, 1 ≤ 𝑖 ≤ 𝑛 tam sayılarının en küçük ortak katı ve 𝑥 = 𝑄𝑚ℎ olsun. Bu durumda 

ℎ, AC dedir,  

‖𝑥‖𝐀𝐒 = 1 ve 〈𝑀𝑇𝑓, 𝑥〉 = ∑|𝑀𝑇𝑓(𝑖)| 

dir. 

 

Teorem 3.5.1 Aşağıdaki ifadeler bir 𝑓 dizisi için birbirine denktir: 

 

(𝑎) 𝑓, 𝐀𝐒∗ dadır. 

 

(𝑏) Bir 𝐴 matrisi vardır öyle ki 

 sup𝑛 {∑|𝐴(𝑛, 𝑗)|

𝑗

} < ∞ 
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ve her bir 𝑘 için  

lim𝑛 {∑ 𝐴(𝑛, 𝑘𝑗)

∞

𝑗=1

} 

limit vardır ve 𝑓(𝑘) ya eşittir. 

 

(𝑐) {𝑀𝑇𝑅𝑛𝑓 ∶ 𝑛 = 1,2, … }, ℓ1  in sınırlı bir alt kümesidir. 

 

(𝑑) {𝑀𝑇𝑅𝑛𝑓 ∶ 𝑛 ∈ 𝐴}, bazı tam sayıların kümesi 𝐴 için ℓ1  in sınırlı bir alt kümesidir 

öyle ki her 𝑚 tam sayısı için 𝑚|𝑛 olacak şekilde 𝑛 ∈ 𝐴 vardır. 

 

(𝑒) Her bir 𝑔 ∈ 𝐀𝐒 için  

ℎ(𝑖) = 𝑓(𝑖)𝑔(𝑖) 

biçiminde tanımlanan  

ℎ = 𝑓𝑔 

çarpım dizisi AS dedir. 

 

(𝑓) Her bir 𝑔 ∈ 𝐁𝐀𝐒 için  

ℎ(𝑖) = 𝑓(𝑖)𝑔(𝑖) 

biçiminde tanımlanan  

ℎ = 𝑓𝑔 

çarpım dizisi BAS dadır. 

 

(𝑔) △ (𝑓), köşegen 𝑓 ile köşegen matrisi gösteriyor ise böylece  

△ (𝑓)(𝑖, 𝑗) = {
𝑓(𝑖) ;    𝑖 = 𝑗 ise,                           
       0;   diğer durumlar               

 

dır ve  𝐴 = 𝑊 △ (𝑓)𝑀 matrisinin satırları  

sup𝑖 ∑|𝐴(𝑖, 𝑗)|

𝑗

< ∞ 

koşulunu sağlar. 

 

 



 

   

28 

 

İspat: (𝑎) ⇒ (𝑏) Doğrudan Teorem 3.2.2 den açıktır. 𝐹,  

𝐹(𝑒𝑘) = 𝑓(𝑘) 

olacak şekilde bir fonksiyonel ve 𝐴, 

𝐺(𝑔) = 𝐹(𝑀𝑔) (𝑏𝑖𝑙𝑒ş𝑘𝑒) 

biçiminde tanımlanan AC üzerindeki fonksiyoneli belirleyen herhangi bir matris ise, bu 

durumda  

𝐹(𝑒𝑘) = 𝐹(𝑀𝑑𝑘) = lim𝑛 {∑ 𝐴(𝑛, 𝑘𝑚)

∞

𝑗=1

} 

dir. 

 

(𝑎) ⇒ (𝑐): Eğer 𝐹𝑛, her bir  𝑔 ∈ 𝐀𝐒 için  

𝐹𝑛(𝑔) = ∑ 𝑓(𝑖)𝑔(𝑖)

𝑖|𝑛

 

biçiminde tanımlanan bir fonksiyonel ise, bu durumda Lemma 3.5.1 den 

|∑ 𝑓(𝑖)𝑔(𝑖)

𝑖|𝑛

| = |∑ 𝑓(𝑖)(𝑅𝑛𝑔)(𝑖)

𝑖|𝑛

| ≤ ‖𝑅𝑛𝑔‖‖𝑓‖ ≤ ‖𝑓‖‖𝑔‖ 

öyle ki {𝑅𝑛𝑓 ∶ 𝑛 = 1,2, … } zayıf sınırlı ve böylece sınırlıdır. 𝑀 dönüşümü, 𝐀𝐒∗ ın 

göreceli topolojisine sahip 𝜑 den ℓ1  e bir izometridir dolayısıyla (𝑐) geçerlidir. 

 

(𝑐) ⇒ (𝑑) Açıktır. 

 

(𝑑) ⇒ (𝑎): (𝑑) sağlanır ise, bu durumda {𝑅𝑛𝑓}, 𝐀𝐒∗ da sınırlı bir dizidir. 𝐹𝑛, her bir 𝑔 ∈

𝐀𝐒 için  

𝐹𝑛(𝑔) = ∑(𝑅𝑛𝑓)(𝑖)𝑔(𝑖)

𝑖

 

olan fonksiyoneli göstersin.  

∑(𝑅𝑛𝑓)(𝑖)𝑔(𝑖)

𝑖

= ∑ 𝑓(𝑖)𝑔(𝑖)

𝑖|𝑛

= ∑ 𝑓(𝑖)(𝑅𝑛𝑔)(𝑖)

𝑖

 

olduğundan, 𝐹(𝑅𝑛𝑔) nin sınırlı olduğu anlaşılır. Ancak 𝑅𝑛𝑔, AS de 𝑔 ye yakınsar 

böylece AS üzerinde sürekli doğrusal bir 𝐹 fonksiyoneli vardır öyle ki her bir 𝑖 için  
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𝐹(𝑔) = lim𝑛𝑓(𝑅𝑛𝑔) ve 𝐹(𝑒𝑖) = lim𝑛𝑓(𝑅𝑛𝑒𝑖) = 𝑓(𝑖) 

yani 𝑓 ∈ 𝐀𝐒∗ dır. 

 

(𝑎) ⇒ (𝑒):  

𝐸𝑔 = lim𝑛! ∑ 𝑔(𝑘)

𝑘|𝑛!

 

formülü ile AS üzerinde tanımlanan fonksiyonel, 𝑔 ∈ 𝜑 için  

𝐸𝑔 = ∑ 𝑔(𝑖)

𝑖

 

özelliğine sahiptir yani 𝐸, AS üzerinde bir toplamdır. Eğer 𝑓, AS nin bir çarpanı ise, bu 

durumda 

𝐹(𝑔) = 𝐸(𝑓𝑔) 

biçiminde tanımlanan fonksiyonel  

𝐹(𝑒𝑖) = 𝑓(𝑒𝑖) 

özelliğine sahiptir yani 𝑓 ∈ 𝐀𝐒∗ dır. 

 

(𝑒) ⇒ (𝑐): 𝑓 ∈ 𝐀𝐒∗ ve 𝑔 ∈ 𝐀𝐒 ise burada her 𝑖 için  

𝐹(𝑒𝑖) = 𝑓(𝑖) 

dir. Her bir  𝑛 için 

|∑ 𝑓(𝑖)𝑔(𝑖)

𝑖|𝑛

| = |𝐹(𝑅𝑛𝑔)| ≤ ‖𝐹‖‖𝑅𝑛𝑔‖ = ‖𝐹‖‖𝑔‖ 

dir. 

 

(𝑒) ⇒ (𝑓): Tüm 𝑔 ∈ 𝐁𝐀𝐒 için 𝑓𝑔 ∈ 𝐁𝐀𝐒 ise, bu durumda BAS tan BAS a  

𝑔 → 𝑓𝑔 

biçiminde tanımlanan diyagonal dönüşüm Kapalı Grafik Teoremi gereğince süreklidir. 

Dönüşüm altındaki 𝜑 nin görüntüsü 𝜑 olduğundan, AS nin görüntüsünün 𝜑 nin 

tamlaması yani, AS olduğu sonucu ortaya çıkar.  

 

(𝑓) ⇒ (𝑒), (𝑒) ⇒ (𝑐) nin ispatına benzerdir. Çünkü 𝑅𝑛𝑔, 𝜑 dedir, dolayısıyla AS dedir.  
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(𝑓), (𝑔) ye denktir: 𝑀, ℓ∞ u BAS a eşler ve 𝑊, BAS ı ℓ∞ a eşler. Eğer 𝑓, 𝐀𝐒∗ da ise, 

bu durumda ∆(𝑓), BAS ı BAS a eşler böylece 𝑊∆(𝑓)𝑀, ℓ∞ u kendine eşler, bu da 

verilen koşulu sağlar.  𝑊∆(𝑓)𝑀, ℓ∞ u kendi içine eşler ise, bu durumda 𝑔 ∈ 𝐁𝐀𝐒 için 

𝑊𝑔 ∈ ℓ∞ böylece  

𝑊∆(𝑓)𝑀𝑊𝑔 = 𝑊∆(𝑓)𝑔 

ℓ∞ dadır ve sonuç olarak   

𝑀𝑊∆(𝑓)𝑔 = ∆(𝑓)𝑔 = 𝑓𝑔 ∈ 𝐁𝐀𝐒 

dır.  

 

(𝑎) ve (𝑒) nin denkliği şu anlamdadır: AS, bir toplam uzaydır (Ruckle 1972). Çünkü 

her koordinatta 1 değerine sahip 𝑒 dizisini açıkça içerir. Bu aynı zamanda 𝐀𝐒∗ ın 

koordinatsal yakınsama açısından bir cebir olduğu anlamına gelir. 

 

Önerme 3.5.1 𝜔(𝑘),  𝑘 nın asal çarpanlarının sayısı olmak üzere, AS üzerindeki  

𝐸𝑘(𝑓) = 𝑓(𝑘) 

koordinat fonksiyonelinin normu 2𝜔(𝑘) dır. 

İspat: Tanımdan ‖𝐸𝑘‖, 𝑓 ∈ 𝐀𝐒 dizileri üzerinde |𝑓(𝑘)| değerlerinin maksimumudur 

öyle ki  

‖𝑓‖ = ‖𝑀𝑓‖ = sup {|∑ 𝑓(𝑖)

𝑖|𝑛

| : 𝑛 = 1,2, … } ≤ 1 

dir. 𝜑, AS de yoğun olduğundan 𝑓 ∈ 𝜑 nin supremunu düşünebiliriz. Möbius Ters 

Çevirme Teoremine göre  

𝑓(𝑘) = ∑ 𝜇 (
𝑘

𝑛
) (𝑀𝑓)(𝑛) =

𝑛|𝑘

∑ 𝜇 (
𝑘

𝑛
) (∑ 𝑓(𝑖)

𝑖|𝑛

)

𝑛|𝑘

 

dir. Her bir 𝑛 için  

|∑ 𝑓(𝑖)

𝑖|𝑛

| ≤ 1 

olduğundan  

|𝑓(𝑘)| ≤ ∑ |𝜇 (
𝑘

𝑛
)|

𝑛|𝑘

= 2𝜔(𝑘)  

elde edilir (Hardy ve Wright 1960). 



 

   

31 

 

𝑔(𝑘) nın maksimum olduğu 𝜑 de bir 𝑔 dizisi elde etmek için ilk olarak Önerme 3.3.1 in 

ispatında  

𝑓(𝑛) = 𝜇(𝑛). 2𝜔(𝑛) 

biçiminde tanımlanan 𝑓 dizisini kullanılır. Bu durumda, 𝑔 = 𝑅𝑘𝑓 alınır. 

 

Önerme 3.5.2 𝑓,  ℓ1  uzayı üzerinde değişirken 𝐀𝐒𝟎
∗  uzayı  

𝑔(𝑛) = ∑ 𝑓(𝑖)

𝑛|𝑖

 

biçimindeki tüm 𝑔 dizilerinden oluşur. Böylece  

𝐀𝐒𝟎
∗ = 𝑊𝑇ℓ1 

ve 𝐀𝐒𝟎
∗  üzerindeki 𝐵𝐾 topolojisi ℓ1  e izomorfiktir. 

 

İspat: 𝑊 matrisi, AS den AC ye bir izometri belirler. Bu 𝑇 matrisinin dual operatörü 

(mutlaka bir matris değildir), AC nin dual uzayı olan 𝐀𝐂∗ dan AS nin dual uzayı olan 

𝐀𝐒∗ a bir izometri belirler. 𝜑 deki bir 𝑓 dizisi 

∑|𝑓(𝑖)| 

normuna sahip  

〈𝑓, 𝑔〉 = ∑ 𝑓(𝑖) 𝑔(𝑖) 

ile AC üzerinde sürekli bir doğrusal fonksiyonel belirler. Bu fonksiyonelin          

𝑑𝑛, 𝑛 = 1,2, … üzerindeki değeri 

∑ 𝑓(𝑖)

𝑛|𝑖

  

dir.  Bu 𝑊𝑇 nin 𝜑 üzerindeki 𝑇 eşlemesiyle çakıştığı anlamına gelir ve ℓ1 in göreceli 

topolojisine sahip 𝜑 uzayını 𝐀𝐒∗ ın göreceli topolojisine veya eşdeğeri olarak 𝐀𝐒𝟎
∗  

topolojisine sahip 𝜑 üzerine eşler. 𝑊𝑇 nin tüm ℓ1 e genişlemesi 𝑊𝑇ℓ1  dir ki böylece 

iddia geçerlidir. 

 

𝐀𝐂∗ bir cebir olduğundan, önceki sonuç aşağıdaki sonuca sahiptir. 

  

 



 

   

32 

 

Sonuç 3.5.1 Eğer 𝑓 ve 𝑔, ℓ1  de ise, bu durumda ℓ1 de bir tek ℎ dizisi vardır öyle ki her 

bir 𝑘 için  

(∑ 𝑓(𝑖)

𝑘|𝑖

) (∑ 𝑔(𝑖)

𝑘|𝑖

) = (∑ ℎ(𝑖)

𝑘|𝑖

) 

eşitliği geçerlidir. 

 

İspat: 𝑓 ve 𝑔, ℓ1 de olduğundan  

(∑ 𝑓(𝑖)

𝑘|𝑖

)   ve  (∑ 𝑔(𝑖)

𝑘|𝑖

) 

dizileri 𝐀𝐒0
∗  dadır, öyle ki  

((∑ 𝑓(𝑖)

𝑘|𝑖

) (∑ 𝑔(𝑖)

𝑘|𝑖

)) 

çarpımı da 𝐀𝐒0
∗  da olup, böylece ℓ1  de çarpımı belirleyen bir tek ℎ vardır. 

 

Ancak ℓ1  deki her dizi böyle bir ayrışıma yol açmaz çünkü 𝐀𝐒𝟎
∗ ,  ℓ1  i içermez. Teorem 

3.3.4 ün “dual” sonucu bir sonraki teoremde verilmiştir. 

 

Teorem 3.5.2 Kabul edelim ki (𝑛𝑖), elamanları aralarında asal olan artan bir tam sayı 

dizisi olsun. Eğer 𝑓 sınırlı bir dizi ise, bu durumda 𝐀𝐒∗ da her bir 𝑖 için  

𝑔(𝑛𝑖) = 𝑓(𝑖) 

olacak şekilde bir 𝑔 dizisi vardır. Eğer 𝑓, 0 a yakınsayan bir dizi ise, bu durumda 𝐀𝐒𝟎
∗  

da her bir 𝑖 için  

𝑔(𝑛𝑖) = 𝑓(𝑖) 

olacak şekilde bir 𝑔 dizisi vardır. 

 

İspat: Teorem 3.3.4 e göre, 𝑖 ∉ {𝑛𝑗} ise ℎ(𝑖) = 0 olan AS deki ℎ dizilerin uzayı ℓ1 e 

izomorfiktir. Bu uzayda sürekli lineer bir 𝑥 fonksiyoneli var olduğunu gerektirir öyle ki 

𝑥(𝑒𝑛𝑖
) = 𝑓(𝑖) 

dir. Eğer 𝑦, tüm AS de 𝑥 in bir genişlemesi ise, 𝑔 yi tüm 𝑖 ler için  

𝑔(𝑖) = 𝑦(𝑒𝑖) 
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ile tanımlanan dizi olarak alınsın. 0 a yakınsayan bir dizi için 𝐀𝐒𝟎
∗  ın AS deki 𝑒𝑖 nin 

kapanışı olduğu gerçeği kullanılarak, böylece 𝐀𝐒𝟎
∗ , 𝑛𝑗  üzerinde 0 a yakınsak olan 

dizileri içerir. 

 

Yukarıdaki teoremin ikinci ifadesinin yeniden ifadesi aşağıdaki gibidir. 

 

Teorem 3.5.3 Eğer (𝑛𝑖), elamanları aralarında asal olan artan bir tam sayı dizisi ve 𝑓, 0 

a yakınsayan bir dizi ise, bu durumda ℓ1  de her bir 𝑖 için  

𝑓(𝑛𝑖) = ∑ 𝑔(𝑘)

𝑛𝑖|𝑘

 

olacak şekilde bir 𝑔 dizisi vardır. 

 

Örneğin, 𝑃 çarpımı ile farklı asal sayılar 𝑖 = 1. 𝑝1, 𝑝2, … , 𝑝𝑘 için 𝑓(𝑖) = 1 ve 𝑖 > 𝑃 için 

𝑓(𝑖) = 0 olan 𝑓 dizisi, 𝑔(𝑃) = 1 ve aksi takdirde 𝑔(𝑖) = 0 olan 𝑔 dizisi tarafından 

üretilir. 
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4. ARİTMETİK TOPLANABİLİRLİK VE ÇARPAN DİZİLER 

 

Bu bölümde, Yaying ve Hazarika (2012) tarafından yapılan makaledeki tanım, teorem 

ve lemmalar ispatlarıyla birlikte not edilecektir. 

 

4.1 Aritmetik Yakınsak Diziler Uzayı 

 

Bu bölümde, aritmetik yakınsak dizi uzayının temel özellikleri incelenecek ve bu uzayla 

ilgili bazı ilginç sonuçlar verilecektir.  

 

Öncelikle aritmetik yakınsak dizilerin uzayı olan AC uzayı 

 AC= {(𝑥𝑚): 𝜀 > 0, her 𝑚 ve bir 𝑛 tam sayısı için, |𝑥𝑚 − 𝑥〈𝑚,𝑛〉| < 𝜀} 

biçiminde verilsin. 

 

Teorem 4.1.1 Aritmetik yakınsak olan her dizi sınırlıdır. 

 

İspat: Teoremin ispatı açıktır. 

 

Teorem 4.1.2 Eğer (𝑥𝑚) ve (𝑦𝑚) herhangi iki aritmetik yakınsak dizi ise, bu durumda 

(𝑖) (𝑥𝑚 ± 𝑦𝑚) dizileri de aritmetik yakınsaktır. 

(𝑖𝑖) (𝑥𝑚𝑦𝑚) dizisi de aritmetik yakınsaktır.  

 

İspat: (𝑖)  (𝑥𝑚) ve (𝑦𝑚), AC uzayında diziler olduğundan 𝜀 > 0, her 𝑚 ve bir 𝑛 tam 

sayısı için 

|𝑥𝑚 − 𝑥〈𝑚,𝑛〉| <
𝜀

2
   ve  |𝑦𝑚 − 𝑦〈𝑚,𝑛〉| <

𝜀

2
 

olduğu açıktır. Şimdi her 𝑚 ve bir 𝑛 tam sayısı için 

|(𝑥𝑚 ± 𝑦𝑚)  − (𝑥〈𝑚,𝑛〉 ± 𝑦〈𝑚,𝑛〉)| = |(𝑥𝑚 − 𝑥〈𝑚,𝑛〉)  ± (𝑦𝑚 − 𝑦〈𝑚,𝑛〉)| 

                                                                     ≤ |𝑥𝑚 − 𝑥〈𝑚,𝑛〉| + |𝑦𝑚 − 𝑦〈𝑚,𝑛〉| 

         <
𝜀

2
+

𝜀

2
 

  = 𝜀 

elde edilir. Bu (𝑥𝑚 ± 𝑦𝑚) nin AC uzayında olduğunu gösterir. 
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(𝑖𝑖) Yakınsak olan (𝑥𝑚) ve (𝑦𝑚) dizileri sınırlıdır. Dolayısıyla, 𝐾1 ve 𝐾2 pozitif sayıları 

vardır öyle ki her 𝑚 için 

|𝑥𝑚| ≤ 𝐾1  ve  |𝑦𝑚| ≤ 𝐾2  

eşitsizlikleri geçerlidir. Bu durumda, bir 𝑛 tam sayısı ve 𝜀 > 0 için 

|𝑥𝑚𝑦𝑚 − 𝑥〈𝑚,𝑛〉𝑦〈𝑚,𝑛〉| = |𝑥𝑚(𝑦𝑚 − 𝑦〈𝑚,𝑛〉) + 𝑦〈𝑚,𝑛〉(𝑥𝑚 − 𝑥〈𝑚,𝑛〉)| 

                                                      ≤ |𝑥𝑚||𝑦𝑚 − 𝑦〈𝑚,𝑛〉| + |𝑦〈𝑚,𝑛〉||𝑥𝑚 − 𝑥〈𝑚,𝑛〉| 

                                                      ≤ 𝐾1|𝑦𝑚 − 𝑦〈𝑚,𝑛〉| + |𝑦〈𝑚,𝑛〉||𝑥𝑚 − 𝑥〈𝑚,𝑛〉| 

elde edilir. Yine 𝜀 > 0 ve her 𝑚 için 

|𝑥𝑚 − 𝑥〈𝑚,𝑛〉| <
𝜀

2|𝑦〈𝑚,𝑛〉|
  ve  |𝑦𝑚 − 𝑦〈𝑚,𝑛〉| <

𝜀

2𝐾1
 

eşitsizlikleri geçerlidir. Böylece, bir 𝑛 tam sayısı ve 𝜀 > 0 için 

|(𝑥𝑚 ± 𝑦𝑚)  − (𝑥〈𝑚,𝑛〉 ± 𝑦〈𝑚,𝑛〉)| <
𝜀

2
+

𝜀

2
= 𝜀 

elde edilir ki bu da ispatı tamamlar. 

 

Teorem 4.1.3 AC uzayındaki her dizi Cauchy şartını sağlar. 

 

İspat: (𝑥𝑚), AC uzayında herhangi bir dizi olsun. 

⇒ (𝑥𝑚) aritmetik yakınsaktır. 

⇒ 𝜀 > 0 olacak şekilde her 𝑚 ve bazı 𝑛 tam sayısı için 

|𝑥𝑚 − 𝑥〈𝑚,𝑛〉| < 𝜀 

olsun. Her 𝑚, 𝑛 ≥ 𝐾 için, 〈𝑚, 𝑗〉 = 〈𝑛, 𝑗〉  olacak şekilde bir 𝐾 alınsın. Bu durumda, 𝜀 >

0, her 𝑚, 𝑛 ≥ 𝐾 ve bir 𝑗 tam sayısı için 

|𝑥𝑚 − 𝑥𝑛| = |𝑥𝑚 − 𝑥〈𝑚,𝑗〉 + 𝑥〈𝑚,𝑗〉 − 𝑥𝑛| 

                                                       ≤ |𝑥𝑚 − 𝑥〈𝑚,𝑗〉| + |𝑥〈𝑚,𝑗〉 − 𝑥𝑛| 

                                                       = |𝑥𝑚 − 𝑥〈𝑚,𝑗〉| + |𝑥𝑛 − 𝑥〈𝑚,𝑗〉| 

                                                        < 𝜀 + 𝜀 = 2𝜀 

elde edilir. Dolayısıyla (𝑥𝑚) Cauchy şartını sağlar. 

 

Teorem 4.1.4 Eğer (𝑥𝑛), 𝑥𝑛 ≥ 0, her 𝑛 ve bir 𝑚 tam sayısı için 𝑥〈𝑚,𝑛〉 ye aritmetik 

yakınsak ise, bu durumda 𝑥〈𝑚,𝑛〉 ≥ 0 dır. 
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İspat: Kabul edelim ki 𝑥〈𝑚,𝑛〉 < 0 olsun. Şimdi (𝑥𝑛) ∈ 𝐀𝐂 olduğundan verilen bir 𝜀 >

0 için bir 𝑚 tam sayısı vardır, öyle ki her 𝑛 için 

|𝑥𝑛 − 𝑥〈𝑚,𝑛〉| < 𝜀 

olup, 

                                                  𝑥〈𝑚,𝑛〉 − 𝜀 < 𝑥𝑛 < 𝑥〈𝑚,𝑛〉 + 𝜀 

eşitsizliği geçerlidir. Şimdi 𝜀 = −
𝑥〈𝑚,𝑛〉

2
 seçelim, böylece her 𝑛 ve bir 𝑚 tam sayısı için 

𝑥〈𝑚,𝑛〉 +
𝑥〈𝑚,𝑛〉

2
< 𝑥𝑛 < 𝑥〈𝑚,𝑛〉 −

𝑥〈𝑚,𝑛〉

2
 

olup, 

𝑥𝑛 <
𝑥〈𝑚,𝑛〉

2
 

eşitsizliği geçerlidir. Her 𝑛 ve bir 𝑚 tam sayısı için 

𝑥〈𝑚,𝑛〉 < 0 ⇒ 𝑥𝑛 < 0 

olduğundan böylece bir çelişki elde edilir. Bu da teoremin ispatını tamamlar. 

 

4.2 Çarpan Diziler Uzayı 

 

Ruckle (2012), aritmetik toplanabilir dizilerin uzayını 

𝐀𝐒 = {(𝑥𝑘): 𝜀 > 0, ∃𝑛 ∈ ℕ ve her 𝑚 için, |∑ 𝑥𝑘

𝑘|𝑚

− ∑ 𝑥𝑘

𝑘|〈𝑚,𝑛〉

| < 𝜀} 

biçiminde tanımladı. 

 

𝜆 = (𝜆𝑚), pozitif reel sayıların artan bir dizisi olsun, öyle ki 

𝜆𝑚+1 ≤ 𝜆𝑚 + 1,  𝜆1 = 1, 𝜆𝑚 → ∞ (𝑚 → ∞)  

dir (Leindler 1965). Çarpan dizisini kullanarak yeni dizi uzayı aşağıdaki gibi tanımlanır: 

𝐀𝐂(𝚲) = {(𝑥𝑚): 𝜀 > 0, her 𝑚 ve bir 𝑛 tam sayısı için, |𝜆𝑚𝑥𝑚 − 𝜆〈𝑚,𝑛〉𝑥〈𝑚,𝑛〉| < 𝜀} 

ve 

𝐀𝐒(𝚲) = {(𝑥𝑚): 𝜀 > 0, her 𝑚 ve bir 𝑛 tam sayısı için, |∑ 𝜆𝑘𝑥𝑘

𝑘|𝑚

− ∑ 𝜆𝑘𝑥𝑘

𝑘|〈𝑚,𝑛〉

| < 𝜀}. 

 

Teorem 4.2.1 Eğer (𝑥𝑚) ve (𝑦𝑚), 𝐀𝐂(𝚲) uzayında herhangi iki dizi ise, bu durumda  

(𝑥𝑚 ± 𝑦𝑚) toplam dizisi de 𝐀𝐂(𝚲) uzayındadır. 
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İspat: (𝑥𝑚) ve (𝑦𝑚), 𝐀𝐂(𝚲) uzayında iki dizi olsun, bu durumda 𝜀 > 0, her 𝑚 ve bir 𝑛 

tam sayısı için 

|𝜆𝑚𝑥𝑚 − 𝜆〈𝑚,𝑛〉𝑥〈𝑚,𝑛〉| <
𝜀

2
  ve  |𝜆𝑚𝑦𝑚 − 𝜆〈𝑚,𝑛〉𝑦〈𝑚,𝑛〉| <

𝜀

2
 

olduğu açıktır. Böylece her 𝑚 ve bir 𝑛 tam sayısı için 

            |𝜆𝑚(𝑥𝑚 ± 𝑦𝑚)  − 𝜆〈𝑚,𝑛〉(𝑥〈𝑚,𝑛〉 ± 𝑦〈𝑚,𝑛〉) | 

           = |(𝑥𝑚𝜆𝑚 − 𝜆〈𝑚,𝑛〉 𝑥〈𝑚,𝑛〉) ± (𝜆𝑚𝑦𝑚 − 𝜆〈𝑚,𝑛〉 𝑦〈𝑚,𝑛〉)| 

       ≤ |𝜆𝑚𝑥𝑚 − 𝜆〈𝑚,𝑛〉 𝑥〈𝑚,𝑛〉| + |𝜆𝑚𝑦𝑚 − 𝜆〈𝑚,𝑛〉 𝑦〈𝑚,𝑛〉| 

<
𝜀

2
+

𝜀

2
= 𝜀                                                               

elde edilir ki bu da ispatı tamamlar. 

 

Teorem 4.2.2 𝑥 = (𝑥𝑘) herhangi bir dizi ve 𝑛 bir tam sayı ise, bu durumda 

𝑦𝑖 =
1

𝜆𝑖
𝑥〈𝑛,𝑖〉 

ile tanımlanan  

𝑄𝑛𝑥 = 𝑦 

dizisi, 𝐀𝐂(𝚲) uzayındadır. 

 

İspat: Her m ve bir 𝑛 tam sayısı için 

〈𝑛, 〈𝑚, 𝑛〉〉 = 〈𝑛, 𝑚〉 = 〈𝑚, 𝑛〉 

olduğundan 

|𝜆𝑚𝑦𝑚 − 𝜆〈𝑚,𝑛〉 𝑦〈𝑚,𝑛〉| = |𝜆𝑚

1

𝜆𝑚
𝑥〈𝑛,𝑚〉 − 𝜆〈𝑚,𝑛〉

1

𝜆〈𝑚,𝑛〉
𝑥〈𝑛,〈𝑛,𝑚〉〉| 

          = |𝑥〈𝑚,𝑛〉 − 𝑥〈𝑚,𝑛〉| = 0 

elde edilir ki bu da ispatı tamamlar. 

 

Teorem 4.2.3 𝑥 = (𝑥𝑘) ∈ 𝐀𝐂(𝚲) ve her k için 𝑛𝑘, 𝑛𝑘|𝑛𝑘+1 olacak şekilde tam sayıların 

bir dizisi ise, bu durumda  

(𝑦𝑘) = (𝜆𝑛𝑘
𝑥𝑛𝑘

) 

dizisi yakınsar. 
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İspat: 𝜀 > 0 verilsin ve 𝑚 ∈ ℕ olsun öyle ki her 𝑖 için 

|𝜆𝑖𝑥𝑖 − 𝜆〈𝑖,𝑚〉 𝑥〈𝑖,𝑚〉| < 𝜀 

olduğu açıktır. Tüm 𝑘 ≥ 𝐾 için  

〈𝑚, 𝑛𝑘〉 = 〈𝑚, 𝑛𝑘+1〉 

olacak şekilde 𝐾 alalım. Böylece, her 𝑖, 𝑗 ≥ 𝐾 için 

|𝑦𝑖 − 𝑦𝑗| = |𝜆𝑛𝑖
𝑥𝑛𝑖

− 𝜆𝑛𝑗
𝑥𝑛𝑗

| = |𝜆𝑛𝑖
𝑥𝑛𝑖

− 𝜆〈𝑛𝑖,𝑚〉𝑥〈𝑛𝑖,𝑚〉 + 𝜆〈𝑛𝑖,𝑚〉𝑥〈𝑛𝑖,𝑚〉 − 𝜆𝑛𝑗
𝑥𝑛𝑗

| 

                                                     ≤ |𝜆𝑛𝑖
𝑥𝑛𝑖

− 𝜆〈𝑛𝑖,𝑚〉𝑥〈𝑛𝑖,𝑚〉| + |𝜆𝑛𝑗
𝑥𝑛𝑗

− 𝜆〈𝑛𝑖,𝑚〉𝑥〈𝑛𝑖,𝑚〉| 

                                                     = |𝜆𝑛𝑖
𝑥𝑛𝑖

− 𝜆〈𝑛𝑖,𝑚〉𝑥〈𝑛𝑖,𝑚〉| + |𝜆𝑛𝑗
𝑥𝑛𝑗

− 𝜆〈𝑛𝑗,𝑚〉𝑥〈𝑗,𝑚〉| 

                                                     < 𝜀 + 𝜀 

                                                     = 2𝜀 

elde edilir. Dolayısıyla (𝑦𝑘), Cauchy şartını sağlar ve böylece yakınsar. 

 

Teorem 4.2.4 (𝑥𝑛) ∈ 𝐀𝐂(𝚲) ve 𝑞𝑘, ortak çarpanı olmayan artan bir tam sayı dizisi ise, 

bu durumda  

(ℎ𝑘) = (𝜆𝑞𝑘
𝑥𝑞𝑘

) 

dizisi 𝜆1𝑥1 e yakınsar. 

 

İspat: (𝑥𝑛), 𝐀𝐂(𝚲) da bir dizidir öyle ki verilen bir 𝜀 > 0, her 𝑛 ve bir 𝑚 tam sayısı 

için, 

|𝜆𝑛𝑥𝑛 − 𝜆〈𝑚,𝑛〉𝑥〈𝑚,𝑛〉| < 𝜀 

olduğu açıktır. 𝑞𝑘, tam sayılarının ortak çarpanı olmadığından  

〈𝑚, 𝑞𝑘〉 > 1 

olan tüm 𝑘 lerin kümesi sonludur böylece 𝑘 ≥ 𝐾 için  

〈𝑚, 𝑞𝑘〉 = 1 

olacak şekilde bir 𝐾 vardır. Böylece, her 𝑘 ≥ 𝐾 için〈𝑚, 𝑞𝑘〉 = 1 olduğundan 

                                         |𝜆1𝑥1 − ℎ𝑘| = |𝜆1𝑥1 − 𝜆𝑞𝑘
𝑥𝑞𝑘

| 

                        = |𝜆𝑞𝑘
𝑥𝑞𝑘

− 𝜆〈𝑚,𝑞𝑘〉𝑥〈𝑚,𝑞𝑘〉| 

                                                             < 𝜀 

elde edilir ki bu da ispatı tamamlar. 
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Teorem 4.2.5 (𝑥𝑛) ve (𝑦𝑛) iki dizi öyle ki 

(𝑖) Her n için 𝑥𝑛 ≤ 𝑦𝑛 ve 

(𝑖𝑖) Aritmetik olarak 𝑥𝑛 → 𝑥〈𝑛,𝑚1〉 ve 𝑦𝑛 → 𝑦〈𝑛,𝑚2〉  

ise, bu durumda  

𝑥〈𝑛,𝑚1〉 ≤ 𝑦〈𝑛,𝑚2〉 

eşitsizliği geçerlidir. 

 

İspat: Kabul edelim ki 

𝑥〈𝑛,𝑚1〉 > 𝑦〈𝑛,𝑚2〉 

olsun.  

𝑥〈𝑛,𝑚1〉 − 𝑦〈𝑛,𝑚2〉 = 3𝜀 

olarak alınsın öyle ki 𝑦〈𝑛,𝑚2〉 ve 𝑥〈𝑛,𝑚1〉 in komşulukları sırasıyla  

(𝑦〈𝑛,𝑚2〉 − 𝜀, 𝑦〈𝑛,𝑚2〉 + 𝜀) ve (𝑥〈𝑛,𝑚1〉 − 𝜀, 𝑥〈𝑛,𝑚1〉 + 𝜀) 

ayrıktır. Şimdi aritmetik olarak 

𝑥𝑛 → 𝑥〈𝑛,𝑚1〉 ve 𝑦𝑛 → 𝑦〈𝑛,𝑚2〉 

olduğundan, 𝜀 > 0 için 

i) her 𝑛 ve bir 𝑚1 tam sayısı için  

𝑥〈𝑛,𝑚1〉 − 𝜀 < 𝑥𝑛 < 𝑥〈𝑛,𝑚1〉 + 𝜀, 

ii) her 𝑛 ve bir 𝑚2 tam sayısı için  

𝑦〈𝑛,𝑚2〉 − 𝜀 < 𝑦𝑛 < 𝑦〈𝑛,𝑚2〉 + 𝜀 

olduğu açıktır. 

𝑚 = 〈𝑚1, 𝑚2〉 

olsun. Böylece 

𝑥𝑛 ∈ (𝑥〈𝑚,𝑛〉 − 𝜀, 𝑥〈𝑚,𝑛〉 + 𝜀) ve 𝑦𝑛 ∈ (𝑦〈𝑚,𝑛〉 − 𝜀, 𝑦〈𝑚,𝑛〉 + 𝜀) 

olup, sonuç olarak her 𝑛 için 

𝑥〈𝑛,𝑚〉 > 𝑦〈𝑛,𝑚〉 

olduğundan  

𝑦𝑛 < 𝑥𝑛 

dir öyle ki bu da her 𝑛 için 

𝑥𝑛 ≤ 𝑦𝑛 

gerçeği ile çelişir. 
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Teorem 4.2.6 Eğer (𝑥𝑛) ve (𝑦𝑛), AS uzayında herhangi iki dizi ise, bu durumda 

(𝑥𝑛 ± 𝑦𝑛) de AS uzayında bir dizidir. 

 

İspat: (𝑥𝑛) ve (𝑦𝑛), AS uzayında olduğundan verilen bir 𝜀 > 0, her 𝑛 ve bir 𝑚 tam 

sayısı için 

|∑ 𝑥𝑘

𝑘|𝑛

− ∑ 𝑥𝑘

𝑘|〈𝑚,𝑛〉

| < 𝜀 

ve 

|∑ 𝑦𝑘

𝑘|𝑛

− ∑ 𝑦𝑘

𝑘|〈𝑚,𝑛〉

| < 𝜀 

olduğu açıktır. Şimdi 

|∑(𝑥𝑘 ± 𝑦𝑘) 

𝑘|𝑛

− ∑ (𝑥𝑘 ± 𝑦𝑘)

𝑘|〈𝑚,𝑛〉

| = |(∑ 𝑥𝑘

𝑘|𝑛

− ∑ 𝑥𝑘

𝑘|〈𝑚,𝑛〉

) ± (∑ 𝑦𝑘

𝑘|𝑛

− ∑ 𝑦𝑘

𝑘|〈𝑚,𝑛〉

)| 

                                                         ≤ |∑ 𝑥𝑘

𝑘|𝑛

− ∑ 𝑥𝑘

𝑘|〈𝑚,𝑛〉

| + |∑ 𝑦𝑘

𝑘|𝑛

− ∑ 𝑦𝑘

𝑘|〈𝑚,𝑛〉

| 

                                                           < 𝜀 + 𝜀 

                                                           = 2𝜀 

elde edilir ki bu da ispatı tamamlar. 

 

Teorem 4.2.7 Eğer (𝑥𝑛) ve (𝑦𝑛), 𝐀𝐒(𝚲)  uzayında herhangi iki dizi ise, bu durumda  

(𝑥𝑛 ± 𝑦𝑛) de 𝐀𝐒(𝚲)  uzayında bir dizidir. 

 

İspat: (𝑥𝑛) ve (𝑦𝑛), 𝐀𝐒(𝚲) de olduğundan, verilen bir 𝜀 > 0, her 𝑛 ve bir 𝑚 tam sayısı 

için 

|∑ 𝜆𝑘𝑥𝑘

𝑘|𝑛

− ∑ 𝜆𝑘𝑥𝑘

𝑘|〈𝑚,𝑛〉

| < 𝜀 

ve 

|∑ 𝜆𝑘𝑦𝑘

𝑘|𝑛

− ∑ 𝜆𝑘𝑦𝑘

𝑘|〈𝑚,𝑛〉

| < 𝜀 

olduğu açıktır. Şimdi 
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             |∑ 𝜆𝑘(𝑥𝑘 ± 𝑦𝑘) 

𝑘|𝑛

− ∑ 𝜆𝑘(𝑥𝑘 ± 𝑦𝑘)

𝑘|〈𝑚,𝑛〉

| 

                          = |(∑ 𝜆𝑘𝑥𝑘

𝑘|𝑛

− ∑ 𝜆𝑘𝑥𝑘

𝑘|〈𝑚,𝑛〉

) ± (∑ 𝜆𝑘𝑦𝑘

𝑘|𝑛

− ∑ 𝜆𝑘𝑦𝑘

𝑘|〈𝑚,𝑛〉

)| 

                  ≤ |∑ 𝜆𝑘𝑥𝑘

𝑘|𝑛

− ∑ 𝜆𝑘𝑥𝑘

𝑘|〈𝑚,𝑛〉

| + |∑ 𝜆𝑘𝑦𝑘

𝑘|𝑛

− ∑ 𝜆𝑘𝑦𝑘

𝑘|〈𝑚,𝑛〉

| 

                                   < 𝜀 + 𝜀 

                                   = 2𝜀 

elde edilir ki bu da ispatı tamamlar. 
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