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ÖZET 

Serebrovasküler hastalıklar, beyni besleyen damar bölümleri üzerinde, kan akışının 

zayıflaması, durması veya damarların yırtılması sonucunda beyinde hasara yol açan ve beyin 

fonksiyonlarında ciddi bozukluklara sebep olan hastalık grubudur. Serebrovasküler 

hastalıklar, dünya genelinde ölüm nedenleri arasında üçüncü sırada yer alırken, hastalık 

sonrasında engelli kalma oranı açısından ilk sırada yer almaktadır. Bu nedenle, beyin 

damarlarının oluşturduğu vasküler yapının detaylı bir şekilde incelenmesi, erken hastalık 

teşhisi ve cerrahi planlama gibi klinik uygulamalar için büyük önem taşımaktadır. Klinik 

uygulamalarda, radyologlar tarafından kullanılan medikal görüntüleme araçlarındaki damar 

segmentasyon işlemi, manuel veya yarı otomatik bir şekilde gerçekleştirilebilmektedir. 

Genellikle bu işlemlerde kullanılan algoritmalar kural tabanlı veya el ile öz nitelik çıkartım 

işlemini içerdiğinden, karmaşık yapıdaki anjiyografi görüntülerinde damar segmentasyon 

başarısının düşük olmasına sebebiyet verebilmektedir. Bu nedenle, yapılan tez çalışmasının 

ilk aşamasında Hesse matris tabanlı filtreleme, bağlı birleşen analizi ve bölge büyütme 

algoritması gibi klasik görüntü işleme tabanlı yöntemler kullanılarak damar bölümlerinin 

segmentasyonu sağlanmıştır. İkinci aşamada ise segmentasyon başarısını artırmak amacıyla 

son yıllarda bilgisayarlı görü alanında oldukça popüler olan derin öğrenme teknikleri 

kullanılarak, klinik kullanım için yüksek doğruluk oranıyla otomatik ve hızlı bir şekilde 

damar segmentasyonu gerçekleştirilmiştir. Derin öğrenme tabanlı segmentasyon işleminde 

ilk olarak majör serebral arterlere odaklanılmış olup bu bölgelerin segmentasyonu amacıyla 

UNet, ResUNet, ResUNet++ ve TransUNet gibi medikal görüntüleme alanında yaygın 

olarak kullanılan derin öğrenme mimarileri kullanılarak performansları karşılaştırılmıştır. 

Çalışmanın deneysel sonuçları incelendiğinde damar segmentasyon probleminde 

ResUNet++ mimarisinin diğer mimarilere kıyasla %91.6 ortalama Jaccard indeks değeri ile 

en yüksek başarı sonucu elde ettiği görülmüştür. Çalışmanın ilerleyen kısımlarında ise majör 

arterlerin yanı sıra diğer arter bölümlerinin de ResUNet++ mimarisi vasıtasıyla bölütlenmesi 

sağlanarak önerilen yaklaşımın, klasik kural tabanlı görüntü işleme algoritmalarına göre 

daha başarılı sonuçlar elde ettiği gözlemlenmiştir. 
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ABSTRACT 

Cerebrovascular diseases are a group of diseases that cause damage to the brain and serious 

disorders in brain functions as a result of weakening, stopping, or tearing of the blood flow 

in the vascular sections that feed the brain. While cerebrovascular diseases are in third place 

among the causes of death worldwide, they are in first place in terms of the rate of being 

disabled after the disease. Therefore, a detailed examination of the vascular structure formed 

by the cerebral vessels is of great importance for clinical applications such as early disease 

diagnosis and surgical planning. In clinical applications, vessel segmentation in medical 

imaging tools used by radiologists can be performed manually or semi-automatically. Since 

the algorithms generally used in these processes involve rule-based or manual feature 

extraction, they may cause low vessel segmentation success in complex angiography images. 

For this reason, in the first stage of the thesis study, segmentation of vessel segments is 

provided by using classical image processing-based methods such as Hesse matrix-based 

filtering, associated component analysis and region amplification algorithm. In the second 

stage, in order to increase the segmentation success, using deep learning techniques, which 

have been very popular in the field of computer vision in recent years, automatic and rapid 

vessel segmentation was performed with high accuracy for clinical use. In the deep learning-

based segmentation process, the major cerebral arteries were focused first, and their 

performances were compared using deep learning architectures commonly used in the 

medical imaging field such as UNet, ResUNet, ResUNet++ and TransUNet for the 

segmentation of these regions. When the experimental results of the study were examined, 

it was seen that the ResUNet++ architecture achieved the highest success with an average 

Jaccard index value of 91.6% compared to other architectures in the vessel segmentation 

problem. In the later parts of the study, it was observed that the proposed approach achieved 

more successful results than the classical rule-based image processing algorithms by 

ensuring that the major arteries as well as other artery sections were segmented through the 

ResUNet++ architecture. 
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1. GİRİŞ 

 

Serebrovasküler hastalıklar (SVH), genellikle beyin damarlarının yoğunlaştığı bölgelerde 

beyni besleyen damarların tıkanması veya kanaması sonucu ortaya çıkan hastalık 

gruplarıdır. SVH beyin bölgesi etkilenmeden fiziksel bir şekilde açık bir belirti 

göstermezken, belirtiler etkilenen bölgeye göre farklılık gösterebilmektedir. Bazı 

durumlarda hastalar belirti öncesinde konuşma bozuklukları, hafıza problemleri, görme 

kayıpları gibi kan akımındaki geçici azalmalar sebebiyle oluşan çeşitli uyarıcı belirtilerle 

karşılaşabilmektedir. Bu gibi durumlarda hastanın ikinci bir atağı önlemek için koruyucu 

tedaviye alınması gerekmektedir [1]. 

 

Günümüzde SVH grubuna çok sayıda hastalık dâhil olsa da inme ve anevrizmalar bu 

hastalıkların klinik düzeyde en çok karşılaşılan biçimleridir.  İnme, halk arasında felç olarak 

bilinen bu hastalık, beyni besleyen damarların tıkanması veya kanaması sonucu ortaya 

çıkmaktadır. Damarlarındaki tıkanma veya kanama sonucunda ilgili beyin bölgesine yeterli 

miktarda oksijen ve gerekli beslenme sağlanmadığından bölge üzerinde yer alan hücrelerde 

hasar meydana gelmektedir. Anevrizma ise genellikle damarların yoğunlaştığı yerlerde, kan 

damarları duvarlarının zayıflığından kaynaklanan damarlardaki şişmelerdir. Bu şişmeler, 

gereğinden fazla zayıflayan damar duvarlarının yırtılmasına ya da patlamasına sebep 

olabilmektedir. Genellikle yırtılmalar sonucunda oluşan beyin kanamaları kişilerin felç 

olmasına sebebiyet verebilirken, anevrizmaların yırtılması ise kanamanın şiddetine bağlı 

olarak beyin hasarlarına ya da ölümle sonuçlanmaktadır. 

 

Dünya genelinde SVH, ölüm nedenleri arasında üçüncü sırada yer alırken, hastalık 

sonrasında engelli kalma oranı açısından ilk sıralarda yer almaktadır [2]. Bu sebeple 

serebrovasküler hastalıklar kapsamında beyin damarlarının oluşturduğu vasküler yapının 

detaylı bir şekilde incelenmesi erken hastalık teşhisi ve cerrahi planlama gibi birçok klinik 

uygulama açısından oldukça önemlidir. Bu durum vasküler yapının detaylı incelenebilmesi 

ve içerisindeki akan kanın görselleştirilebilmesi için çeşitli tıbbi görüntüleme 

teknolojilerinin geliştirilmesine olanak sağlamıştır. Böylece radyolog gelişen medikal 

teknolojiler sayesinde hastaların durumları hakkında değerlendirmeler yaparak teşhis imkânı 

gerçekleştirmektedir.  
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Radyologlar tarafından SVH tespitinde, Manyetik Rezonans Anjiyografi (MRA), Dijital 

Subtraksiyon Anjiyografi (DSA) ve Bilgisayarlı Tomografi Anjiyografi (BTA) hastalığın 

türü ve derecesine göre sıklıkla kullanılan medikal görüntüleme teknikleridir. DSA 

görüntüleme tekniği invazif bir yöntemdir ve çekim aşaması öncesinde hastaya radyo aktif 

maddeler damardan enjekte edilmektedir. Görüntüleme esnasında ise bu radyo aktif 

maddenin yaydığı ışımalar cihaz tarafından algılanmaktadır. MRA görüntüleme tekniği, 

DSA ve CTA tekniğine kıyasla invazif olmayan görüntüleme yöntemleridir [3].  MRA 

görüntüleme tekniği sırasında cihaz tarafından hastaya sabit bir manyetik alan verilirken, 

CTA ve DSA görüntüleme tekniğin de ise hasta X-ışınlarına maruz kalarak iyonize 

radyasyon durumlarına sebep olabilmektedir. Görüntü oluşturma aşamasında ise bu sinyaller 

üzerinde meydana gelen zayıflamalar cihaz içerisinde yer alan alıcı sensörler vasıtasıyla 

algılanarak görüntü formatına dönüştürülmektedir.  

 

SVH tespitinde radyologlar medikal görüntüleme teknikleri vasıtasıyla elde edilmiş 

görüntüler içerisindeki damarların çaplarını, çevresel kalınlıklarını, düzensizliklerini ve 

tıkanıklıklarını değerlendirerek, hastalık teşhisi koymaktadırlar. Klinik uygulamalarda bu 

incelemelerin yapılabilmesi için radyologlar tarafından çeşitli medikal görüntüleme 

araçlarından faydalanılmaktadır. Kullanılan bu görüntüleme araçlarındaki damar 

segmentasyon işlemi çoğunlukla manuel veya yarı otomatik bir şekilde 

gerçekleştirilmektedir.  

 

Manuel bir şekilde gerçekleştirilen damar segmentasyon işlemi gözlemciler arası 

değişkenlik gösterebildiğinden hata yapmaya açık olduğu gibi zaman açısından da 

radyologlar açısından oldukça maliyetli olmaktadır. Benzer şekilde yarı otomatik bir şekilde 

kullanılan yöntemlerdeki algoritmalar,  kural tabanlı veya el ile öz nitelik çıkartım işlemini 

içerdiğinden karmaşık yapıdaki anjiyografi görüntülerindeki vasküler yapının 

çıkartılmasında başarı oranının düşük olmasına sebebiyet verebilmektedir. Bu sebeple 

ilerleyen yıllarda gerçekleştirilen araştırmalar, daha hızlı ve daha doğru otomatik damar 

segmentasyon yöntemleri geliştirmeye odaklanmıştır [4]. Bu kapsamda geliştirilen tam 

otomatik damar segmentasyon araçları maliyetli olmak ile beraber performans açısından 

çeşitli dezavantajları yer almaktadır. Bu nedenle radyologların klinikte hastalık teşhisinde 

veya cerrahi planlamada kullanabileceği yüksek başarı sağlayan ve hızlı bir şekilde çıktı 

veren damar segmentasyon yöntemlerine ihtiyaç duymaktadırlar.   
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Gerçekleştirilen tez çalışmasında beyin bölgesinde yer alan damar bölümlerinin bölütleme 

işlemi sağlanarak vasküler yapının incelenmesi sağlanmıştır. Bu kapsamda beyin 

içerisindeki damarların iki farklı şekilde segmentasyonu gerçekleştirilmiştir. İlk bölütleme 

işleminde beyin içerisindeki ana serebral arterlerin segmentasyonuna odaklanılmışken, 

ikinci yaklaşımda ise kafatası kemiğine 10 mm uzaklıktaki beyin içerisinde yer alan tüm 

damar bölümlerinin segmentasyonuna odaklanılmıştır. Bu nedenle her iki bölüm içinde ilk 

aşamada klasik görüntü işleme tabanlı teknikler vasıtasıyla beyin bölgesinde yer alan 

damarların bölütleme işlemi gerçekleştirilmiştir. Böylece görüntü işleme algoritmalarından 

faydalanılarak hızlı bir şekilde etiketlenmiş veri seti oluşturulmuştur. Oluşturulan bu veri 

seti ikinci aşamada derin öğrenme tabanlı UNet, ResUNet, ResUNet++ ve TransUNet gibi 

medikal görüntüleme alanında yaygın olarak kullanılan mimarilere uyarlanarak derin 

öğrenme tabanlı tekniklerin damar segmentasyon probleminde performansları 

karşılaştırılmıştır.  

 

Gerçekleştirilen tez çalışması, doktorlara yardımcı bir çalışma olmasına ek olarak geliştirilen 

görüntü işleme algoritmaları vasıtasıyla hızlı bir şekilde etiketli veri oluşturulmasını da 

sağlamaktadır. Bu nedenle literatürde damarsal bölümlerin segmentasyonu ile alakalı 

herkesin erişimine açık herhangi bir etiketli veri seti olmadığından geliştirilen yöntem 

vasıtasıyla hızlı bir şekilde etiketlenmiş veri seti oluşturularak derin öğrenme tabanlı 

algoritmalar için transfer öğrenme işlemini de kolaylaştırmaktadır. 

 

 

  



4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

2. LİTERATÜR ÇALIŞMALARI 

 

Gerçekleştirilen tez çalışması kapsamında klasik görüntü işleme tabanlı yöntemler ile derin 

öğrenme tabanlı yöntemlerin beraber kullanımıyla gerçekleştirilmiştir. Bu kapsamda yapılan 

literatür çalışmaları görüntü işleme ve derin öğrenme olmak üzere ikiye ayrılmaktadır.  

 

2.1. Görüntü İşleme Tabanlı Literatür Çalışmaları 

 

Beyin içerisindeki damarların oluşturduğu vasküler yapının doğru bir şekilde incelenmesi, 

hastalık teşhisi veya cerrahi planlama gibi birçok klinik uygulama için son derece önemlidir. 

Radyologlar tarafından SVH teşhisinde ve takibinde yaygın olarak MRA ve CTA gibi çeşitli 

anjiyografi tabanlı görüntüleme teknikleri kullanılmaktadır. Bu teknikler vasıtasıyla, hastaya 

ait incelenecek beyin bölgesine ait çok sayıda iki boyutlu kesit görüntüleri elde edilmektedir. 

Radyologlar hastalığın teşhis işleminde kesit görüntülerini incelemelerinin yanı sıra medikal 

görüntüleme araçları vasıtasıyla iki boyutlu kesit görüntülerini kullanarak hacimsel gösterim 

tekniğinden de faydalanarak üç boyutlu şekilde inceleyebilmektedir.  

 

SVH teşhisinde hacimsel gösterim vasıtasıyla üç boyutlu damarsal yapının incelenebilmesi 

için medikal görüntüler içerisinde yer alan damarların doku kemik gibi istenmeyen 

kısımlardan ayrıştırılması gerekmektedir. MRA tabanlı medikal görüntüler incelendiğinde 

beyin bölgesinde yer alan damarların çevresindeki dokulara göre daha parlak olma özelliği 

taşımaktadır. Bu nedenle literatürde bu özellikten faydalanılarak geliştirilmiş filtreleme ve 

türevsel analize dayanan çeşitli teknikler vasıtasıyla damarsal yapıların belirginleştirmesine 

yönelik çalışmalar yer almaktadır. 

 

Gaussian filtreleme, görüntülerdeki gürültüyü ortadan kaldırmak için kullanılan iki boyutlu 

konvolüsyon operatörüdür. Resim ve dijital sinyallerdeki gürültü; görüntüler üzerinde ortaya 

çıkan leke, bozukluk gibi istenmeyen işaretlerdir. Medikal görüntüler, görüntüleme 

cihazlarının doğası ve içindeki devrelerin yapısından kaynaklı çeşitli gürültü bileşenleri 

içermektedirler [5]. Bu tür gürültüler görüntünün kalitesinde bozulmalara neden olduğu gibi 

damarsal yapıların parlaklık dağılımlarında da homojen olmayan davranış göstermesine 

sebep olabilmektedir. Bu nedenle beyin bölgesindeki damarların bölütlenmesi işlemi için 
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yapılan çalışmaların ilk aşamasında Gaussian tabanlı filtreleme tekniğinden 

faydalanılmaktadır. 

 

Anjiyografi tabanlı elde edilen görüntülerde yer alan damarlar, çevresindeki dokulara göre 

daha parlak olma özelliği taşımaktadır. Bu nedenle damarsal bölgelerin tespit işleminde, 

görüntüler üzerindeki kenar köşe gibi önemli noktaların tespitinde kullanılan türeve dayalı 

filtreler vasıtasıyla parlaklık değişiminin olduğu bölgeler ayırt edilebilmektedir. Ancak, 

türeve dayalı filtreler görüntü içerisindeki piksel komşuluk değerlerinin birbirleriyle 

değişimine dayalı olduğundan görüntü üzerindeki gürültülerden kolaylıkla 

etkilenebilmektedir. Bu sebeple ilk aşamada Gaussian filtreleme vasıtasıyla yumuşatma 

işlemi yapılıp daha sonrasında çeşitli filtreler yardımıyla türev alma işlemi uygulanmaktadır. 

Benzer şekilde, doğrudan Gaussian filtresinin türevi alınarak da hem yumuşatma hem de 

parlaklık değişimlerinin algılama işlemi eş zamanlı bir şekilde gerçekleştirilebilmektedir.  

 

Hesse matrisi, skaler değerli bir fonksiyonun ya da skaler alanın ikinci dereceden kısmı 

türevlerini içeren kare matris olarak adlandırılmaktadır [6]. Matematiksel olarak birinci 

türev herhangi bir fonksiyon grafiğinin belirli bir noktada eğimini verirken ikinci türev ise 

bu fonksiyonun şekli hakkında bilgi vermektedir. Hesse matrisi, görüntü üzerine 

uygulandığında ise tüm görüntü boyunca yerel parlaklık değişimlerinin yapısını 

tanımlayabilmektedir. İlerleyen aşamada bu parlaklık değişimlerini içeren her bir piksel 

bölgesi için öz değer ve öz vektör ayrışım işlemi uygulanarak incelenen yüzeyin geometrik 

bir şekilde yapısı hakkında bilgi elde edilebilmektedir.  

 

Damar segmentasyonu alanında ilk çalışmalardan biri Sato ve arkadaşları tarafından 1997 

yılında geliştirilmiştir [7]. Temelinde ikinci derece türevsel analize dayanan bu yaklaşım üç 

aşamadan oluşmaktadır. İlk aşamada Gaussian filtrenin ikinci derece kısmi türev 

bileşenlerine ayrılarak görüntü üzerine konvolüsyon işlemine tabi tutulmaktadır. İkinci 

aşamada ise her bir piksel değeri için hesaplanan kısmi türev değerleri bir araya getirilerek 

Hesse matrisini oluşturulmaktadır. Beyin bölgesi içerisinde yer alan damarlar farklı 

boyutlarda olabildiğinden Gaussian filtresinin ölçek ayarı yapılarak farklı boyutlardaki 

damarlar için farklı Hesse matrisleri elde edilebilmektedir.  Son aşamada her bir piksel 

konumu için Hesse matrisleri üzerinden hesaplanan öz değerler arasında maksimum filtre 

yanıtı dikkate alınarak sonuç öz değer matrisi elde edilmektedir. Oluşturulan sonuç matrisi 

içerisinde yer alan öz değerlerin birbirleriyle ilişkileri incelenerek beyin bölgesindeki her bir 
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piksel için damar olma skoru hesaplanmaktadır.  

 

Sato ve arkadaşları iki boyutlu kesit görüntülerinin birleştirilmesiyle oluşmuş üç boyutlu 

görüntü dizilerinde her bir piksel için damar olma skorunu hesaplarken üç farklı öz değer 

matrislerinden sadece iki tanesini kullanmaktadır. 1998 yılında Frangi ve arkadaşları ise her 

bir piksel için damar olma skoru hesaplanırken tüm öz değerlerin kullanılması gerektiğini 

ve böylece sezgisel olarak geometrik bir şekilde damarsal yapıların yorumlanabileceğinden 

yola çıkarak yeni bir yaklaşım geliştirmişlerdir [8]. Geliştirilen bu yaklaşım damar gibi boru 

şeklindeki yapıların ayrıştırılması için iki farklı öz değeri kullanırken plaka şeklindeki düz 

yapılarda üç farklı öz değerin birbirleriyle ilişkisinden faydalanmaktadır. Kesit 

görüntülerinde oluşabilecek farklı boyuttaki kontrast değişimlerinden etkilenmemek 

amacıyla da üç farklı öz değerin büyüklüğünü de dikkate almaktadır.  

 

Meijering ve arkadaşları tarafından nörobiyologların molekül mekanizmasında bulunan sinir 

hücre uzantılarının oluşumlarını ve farklılaşmalarını tespit etmelerine yardımcı olmak için 

2004 yılında yeni bir yaklaşım geliştirilmiştir [9]. Diğer çalışmalarda olduğu gibi 

gerçekleştirilen bu çalışmada da geliştirilen yöntem ikinci türeve dayalı olan Hesse matrisine 

dayanmaktadır fakat literatürden farklı olarak öz değerlerin hesaplandığı Hesse matrisi 

kendisi ve 90 derece rotasyonu ile toplanarak üzerinde modifiye yapılmıştır. Meijering ve 

arkadaşlarına göre bu durum Hesse matrisinin rotasyon matrisleri yardımıyla 

yönlendirilebilmesi üç boyutlu uzayda filtrenin daha geniş alandan sorumlu olmasına 

karşılık gelmektedir bu durum doğrudan ince uzun sinir hücre uzantılarında geliştirilen 

tekniğin daha fazla yanıt döndürmesini sağlamaktadır. 

 

Jerman ve arkadaşları tarafından damarsal patolojilerin detaylı incelenmesinde filtrelerden 

faydalanabilmek için 2016 yılında yeni bir yaklaşım geliştirilmiştir [10]. Geçmişli yıllarda 

yapılan çalışmalarda anjiyografi görüntüleri üzerindeki damarların çatallanma bölgelerinde 

yer alan anevrizmalı bölümler, farklı ölçek ve kontrast değişikliklerinden kaynaklı 

geliştirilen filtrelerin uniform olmayan bir yanıt üretmesine neden olabilmektedir. Bunun 

temel nedeni olarak yuvarlak olan bölümlerde üretilen öz değerler birbirine oldukça yakın 

olmakla birlikte ince uzun yapılardaki damarlarda merkezden uzaklaştıkça parlaklık 

değişimlerinden kaynaklı öz değerler birbirlerinden farklı davranış sergileyebilmektedir. Bu 

kapsamda Jerman ve arkadaşları bu durumları göz önüne alarak yeni bir damar olma skor 
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fonksiyonu geliştirilmişlerdir. Böylece geliştirilen yeni teknik vasıtasıyla anevrizmalı 

bölümlerdeki bölütleme başarısı artırılmıştır. 

 

Anjiyografi tabanlı görüntüleme teknikleri vasıtasıyla elde edilen görüntüler üzerinde 

incelenecek bölgenin görüntüsünün kalitesi, sinyal gürültü oranı ve artefaktlar gibi 

faktörlerden doğrudan etkilenebilmektedir. Bu durum görüntüler üzerindeki damarların 

uniform olmayan parlaklık değişimlerine sahip olmasına neden olarak küçük ve ince 

damarsal yapılar üzerinde Gaussian filtreleme ve Hesse matrisi tabanlı yaklaşımların 

yetersiz kalmasına sebep olabilmektedir. Ayrıca, geliştirilen görüntü işleme tabanlı 

yöntemler, parametrik olmaları nedeniyle farklı MRA cihazlarında ve farklı hastalarda, 

damar dışında istenmeyen bölümlerin yanlış bir şekilde bölütleme işlemine neden 

olabilmektedir. Bu durum, doğru tıbbi teşhis ve tedavi planlaması açısından son derece 

önemli bir konudur. Bu nedenle son yıllarda derin öğrenme tabanlı yaklaşımların, görüntü 

işleme tabanlı tekniklerdeki zorlukları aşmak için kullanılmaya başlanmış ve daha başarılı 

sonuçlar üretebildiği gözlemlenmektedir. 

 

2.2. Derin Öğrenme Tabanlı Literatür Çalışmaları 

 

Medikal görüntüler üzerindeki damarların ayrıştırılma işlemi literatürde segmentasyon 

problemi olarak kabul edilmektedir. Segmentasyon, bir diğer adıyla bölümleme ya da 

bölütleme; bir görüntüyü farklı özelliklerin tutulduğu anlamlı bölgelere ayırma işlemi olarak 

tanımlanmaktadır. Derin öğrenme alanında bölütleme, semantik bölütleme ve örnek 

bölütleme şeklinde iki farklı kategoriye ayrılmaktadır. Semantik bölütleme problemlerinde, 

görüntü üzerinde yer alan objelerin içerdiği her bir piksel objenin türüne göre önceden 

tanımlanmış bir sınıf etiketi atanırken, örnek bölütleme de ise aynı türe ait farklı objelere 

farklı sınıf etiketi atanmaktadır [11].  

 

Görüntü içerisindeki her bir piksele, türüne göre önceden tanımlanmış sınıf etiketi atmayı 

amaçlayan semantik bölütleme, bilgisayarlı görü alanında karşılaşılan en temel 

problemlerden birisidir. Semantik bölütleme problemlerinin ilk yıllarında gerçekleştirilen 

algoritmalar genellikle iki aşamadan oluşmaktadır. Algoritmanın ilk aşamasında görüntü 

işleme gibi çeşitli teknikler vasıtasıyla öz nitelikler çıkartılırken ikinci aşamasında ise bu öz 

nitelikler güçlendirme, rastgele orman, destek vektör makinaları gibi çeşitli tekniklerle 

oluşturulmuş sınıflandırıcılar vasıtasıyla bölümlenmektedir [12]. İlerleyen yıllarda 
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bağlamsal bilginin ve çeşitli yapısal tahmin tekniklerinin kullanılması segmentasyon 

anlamında önemli derecede gelişmeler sağlasa da el ile çıkarılan öz niteliklerin sınırlı oluşu 

geliştirilen sistemlerin performansını doğrudan etkilemiştir. 

 

Son yıllarda teknolojide yapılan gelişmelerin etkisiyle işlem gücü yüksek donanımların 

tasarlanması makine öğrenmesinin alt dalı olan derin öğrenme gibi yüksek işlem gücü 

gerektiren, veriden öğrenmeye dayanan algoritmaların geliştirilmesini mümkün kıldırmıştır. 

Özellikle örüntü tanıma problemlerinde sıklıkla kullanılan derin öğrenme tabanlı Evrişimsel 

Sinir Ağlarındaki(ESA) gelişmeler obje tanıma ve nesne algılama problemlerinde insan 

seviyesinde veya daha üstünde elde ettiği başarılar çeşitli yarışmalarda kendilerini 

kanıtlanmıştır. 

 

1998 yılında Yann LeCun ve ekibi tarafından geliştirilen ilk ESA modelleri, posta 

numaraları ve banka çekleri üzerindeki sayıların sınıflandırılması ve tanınması için 

kullanılarak başarılı sonuçlar elde etmiştir [13]. Evrişimsel sinir ağlarındaki bir diğer önemli 

ilerleme ise Alex Krizhevsky ve arkadaşları tarafından 2012 yılında gerçekleştirilmiştir. 

Çalışma süresince, Alex Krizhevsky ve ekibi ESA’nın grafik işlemci birimleri üzerine 

yüksek düzeyde optimize edilmiş bir şekilde entegrasyonunu sağlayarak daha derin 

mimarilerinin eğitilmesine imkân sağlamıştır [14]. Son birkaç yılda derin öğrenme tabanlı 

yaklaşım olan ESA’larında yaşanan gelişmeler ile otomatik bir şekilde öz nitelik çıkartma 

işleminin el ile çıkarılmış öz niteliklere göre başarılı sonuçlar ürettiği çeşitli sınıflandırma 

yarışmalarında kanıtlanmıştır [15–18]. Bu başarılar takibinde ESA’ların sınıflandırma 

problemlerinden segmentasyon problemlerine de transfer edilebileceği fikrini doğurmuş ve 

geliştirilen modeller segmentasyon yarışmalarında da başarılarını kanıtlamışlardır [19–21]. 

 

ESA kullanarak anlamsal bölütleme konusunda ilk derin öğrenme çalışmalarından birisi 

Long ve arkadaşları tarafından gerçekleştirilmiştir. Çalışma içerisinde geliştirilen model 

sadece Evrişimli Sinir Ağlarının kaskat şeklinde birbirine bağlanmasıyla meydana 

geldiğinden değişken boyutta giriş görüntüsü kabul ederek giriş ile aynı boyutta çıktı 

görüntüsü oluşturabilmektedir. Bu çalışma ile derin ağların anlamsal bölütleme problemi 

için uçtan uca eğitilebileceğini kanıtlamıştır [22].  Geliştirilen bu yaklaşım popüler ve etkili 

olmasına rağmen gerçek zamanlı çalışmalardaki yavaşlığı ve ESA’ların yerel piksel 

bölümlerinde çalıştığından küresel içerik bilgisinin dikkate almadığından bazı sınırlamalar 

içermekteydi. Liu ve arkadaşları küresel içerik bilgisini dikkate alabilmek için ParseNet 
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adında yeni bir model geliştirmişlerdir. ParseNet, her bir katmanda çıkarılan öz niteliklerin 

ortalamasını alarak, çıkarıldığı katmandaki öz niteliklerle tekrardan birleştirerek küresel 

içerik bilgisinin korunmasını sağlamıştır [23].  

 

ESA sınıflandırma gibi yüksek seviyeli görevlerde oldukça iyi olsa da çeşitli boyut düşürücü 

katmanlar sebebiyle düşük yerelleştirme özelliğine sahiptir. Bu durum geliştirilen 

tekniklerin objeler kenarlarında düşük kalitede segmentasyon çıktısı üretmesine neden 

olmaktadır. Bu kapsamda koşullu rastgele alanlar, Markov rastgele alanı gibi olasılıksal 

grafik modelleriyle evrişimli sinir ağlarının beraber kullanımı sağlanarak kenarlardaki 

yerelleştirme problemlerinin önüne geçilmeye çalışılmıştır [12].  

 

İlerleyen yıllarda gerçekleştirilen çalışmalar farklı ölçeklerdeki objelerin segmentasyon 

başarısını artırmak ve daha yüksek seviyedeki öz niteliklerin çıkartma işlemini sağlamak 

için Uzamsal Piramit Ağları ve/veya kodlayıcı-kod çözücü mimarileri geliştirilmiştir. 

Uzamsal Piramit Ağları içerisinde farklı boyutlarda çekirdek boyutları veya ilerleme adımı 

olan Evrişimli Sinir Ağlarının bir araya getirerek farklı ölçeklerdeki objelerin segmentasyon 

başarısı artırılmaya çalışılmıştır [24,25]. Kodlayıcı ve kod çözücü tabanlı mimariler de ise 

kodlayıcı bölümünde her bir blokta öz nitelik haritasının boyutu azalırken, elde edilen öz 

niteliklerin seviyesi artmaktadır. Kod çözücü katmanında ise öz nitelik haritaları ters evrişim 

veya yukarı örnekleme metotlarıyla tekrardan eski haline getirilerek, kodlayıcı tarafında 

çıkarılan öz niteliklerle birleştirilmektedir. Bu sayede kenarlarda daha keskin ve başarılı 

segmentasyon sonuçları elde edilmiştir [26–29]. 

 

Derin öğrenme tabanlı segmentasyon modellerindeki gelişmeler ile çeşitli segmentasyon 

yarışmalarında elde ettikleri başarılar, medikal görüntüleme alanında da bu yöntemlerin 

uygulanabilirliği hakkında farkındalık oluşturmuştur. Medikal segmentasyon problemlerinin 

çözümündeki temel yaklaşım olan U-Net mimarisi, Ronneberger ve arkadaşları tarafından 

2015 yılında ışık mikroskobu vasıtasıyla elde edilen biyomedikal görüntüler üzerindeki 

çeşitli hücrelerin segmentasyonunu yapmak amacıyla geliştirilerek oldukça başarılı sonuçlar 

elde etmiştir [27]. Bu nedenle derin öğrenme tabanlı serebral arter segmentasyonu 

kapsamında ilk çalışmalarından birisi de 2018 yılında Livne ve arkadaşları tarafından U-Net 

mimarisi kullanılarak gerçekleştirilmiştir. Yapılan çalışmada ön işlem adımı olarak z skor 

normalizasyon ve kafatası üzerindeki kemiklerden ayrıştırma işlemi seçilmiştir. Eğitim 

aşamasında ise kesit görüntüler, iki boyutlu yama şeklinde bölümlere ayrılarak daha az 
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parametre ile verimli bir şekilde eğitimi sağlanmıştır. Böylece bu çalışma ile büyük 

damarlarda yüksek bir performans sergilerken küçük damarlarda yeterli bir performans 

göstermektedir [30]. 

 

Hilbert ve arkadaşları damarların segmentasyon başarısını artırmak amacıyla BRAVE-NET 

mimarisini geliştirmiştir. Geliştirilen mimari temel olarak U-Net mimarisiyle benzerlik 

gösterse de, yenilik olarak ortalama havuzlama işlemi kullanılarak elde edilen bağlam bilgisi 

de giriş görüntüleriyle beraber mimariye verilmektedir. Ayrıca, BRAVE-NET mimarisinde 

eğitim işlemi sırasında, U-Net mimarisinde kullanılan iki boyutlu yamalar yerine üç boyutlu 

yamalar kullanılarak gerçekleştirilmiştir. Bu iyileştirmeler, özellikle küçük damarlar için 

yüksek segmentasyon başarısıyla sonuçlanan bir modelin geliştirilmesini olanak 

sağlamaktadır [31]. 

 

De Vos ve arkadaşları 2021 yılında, uçuş süresi zaman protokolünde MRA cihazları 

tarafından elde edilmiş görüntülerinde serebrovasküler yapıları otomatik ve doğru bir şekilde 

segmente etmek için derin öğrenme yöntemlerini kullanmışlardır. İki boyutlu ve üç boyutlu 

yama şeklindeki bölümlenmiş kesit görüntüleri üzerinde U-Net mimarisini eğitmiş olup 

farklı veri artırma tekniklerinin performanslarını karşılaştırmışlardır.  Gerçekleştirilen 

çalışma doğrultusunda daha büyük yama boyutları ve Gauss bulanıklığı, döndürme ve 

aynalama gibi veri artırma yöntemleriyle en iyi sonuçlar elde edildiği gözlemlenmiştir [32]. 

 

Dang ve arkadaşları 2022 yılında serebral arter segmentasyon probleminde damarların 

küçük boyutu ve vasküler yapının karmaşıklığı tarafından ortaya çıkan zorlukları aşmak için 

VESSEL-CAPTCHA olarak adlandırılan derin öğrenme tabanlı yaklaşım geliştirmişlerdir. 

Geliştirilen bu yaklaşım, segmentasyon ağı eğitimi için ihtiyaç duyulan etiketlenmiş 

görüntüyü zayıf etiketleme algoritması kullanarak, alternatif etiketleme işlemi sağlanmıştır. 

Gerçekleştirilen çalışmanın eğitim aşamasında, birbirine sıralı olarak bağlanan iki adet U-

Net mimarisinin bir araya gelerek oluşturduğu W-Net mimarisi kullanılmıştır.  Önerilen 

yaklaşım, manuel etiketleme tekniklerine göre etiketleme süresini %77'ye kadar azaltırken, 

en son teknolojiye dayalı bir doğruluk elde etmektedir [33]. 
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3.  MATERYAL VE YÖNTEM 

 

Tez çalışması kapsamında beyin görüntülerinde yer alan damar bölümlerinin segmentasyon 

işlemi için görüntü işleme ve derin öğrenme temelli olmak üzere iki farklı yöntem 

geliştirilmiştir. Bu başlık altında, tezde kullanılan teknikleri içerisinde barındıran yöntemler 

ile alakalı olarak genel bilgilendirmeler yapılmaktadır. 

 

3.1. Medikal Görüntüleme Sistemleri  

 

Tıbbi alanda, SVH tespitinde radyologlar tarafından hastalığın türüne göre üç farklı medikal 

görüntüleme tekniği yaygın olarak kullanılmaktadır. Bu teknikler sırasıyla Manyetik 

Rezonans Anjiyografi, Dijital Subtraksiyon Anjiyografi ve Bilgisayarlı Tomografi 

Anjiyografi şeklindedir [34]. SVH şüphesi olan hastaların tanısal aşamasında başvurulan ilk 

yöntemlerden birisi görüntüleme teknolojileridir. SVH tanısı olan her hasta belirli 

periyotlarla anjiyografi tabanlı görüntüleme yöntemleri olan BTA ve MRA çekimleri 

yapılarak hastalığın takip edilmesi sağlanmaktadır. 

 

DSA görüntüleme tekniği, vücudun tüm bölgelerinde yer alan damarlardaki daralma, 

genişleme, malformasyon, fistül ve benzeri hastalıkların tanısında kullanılmaktadır ve 

anevrizma gibi SVH tanısında altın standart olarak kabul edilmektedir [35]. DSA çekimleri 

öncesinde, hastaların atardamarlarına kateter vasıtasıyla kontrast madde enjekte edilerek 

damarların ayrıntılı bir şekilde görüntülenmesi sağlanmaktadır. Bu sebeple DSA 

görüntüleme tekniği invazif bir yöntemdir ve çekim süresi boyunca hastaya damardan 

verilen bu radyo aktif maddelerin yaydığı ışımalar görüntüleme cihazı tarafından algılanarak 

görüntü sinyallerine dönüştürülmektedir. Resim 3.1’de DSA cihazı ve bu cihaza ait beyin 

bölgesindeki çıktı görüntüsü gösterilmektedir; 

 

 
 

Resim 3.1. DSA görüntüleme sistemi 
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BTA görüntüleme tekniği, vücuttaki doku veya organ gibi incelenecek bölümlerin kesit 

görüntüsünü oluşturan tanı yöntemidir. Bu yöntem, görüntüleme esnasında farklı açılardan 

alınmış iki boyutlu kesit görüntülerinin birleştirilmesiyle incelenecek yapının üç boyutlu 

görüntüsünü oluşturmaktadır [36]. SVH tanısında kullanılan BTA, ilaçlı ve ilaçsız olmak 

üzere iki farklı şekilde uygulanabilmektedir. İlaçlı görüntülemede hastaya kontrast madde 

enjekte edilirken, ilaçsız yöntem de herhangi bir enjeksiyon işlemi yapılmamaktadır. BTA 

çekimi esnasında, cihaz tarafından hastanın incelenecek doku veya organlarına kaynak 

olarak X ışınları yansıtılmaktadır. İncelenecek bölüm boyunca yayılan X ışınlarının 

zayıflamasındaki değişimler kaydedilerek görüntüye dönüştürülmektedir. Bu durum 

hastaların bir miktar radyasyona maruz kalmasına sebep olabilmektedir. Resim 3.2’ de BTA 

cihazı vasıtasıyla elde edilmiş inme hastasına ait beyin kesit görüntüsü gösterilmektedir; 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Resim 3.2. İnme hastasına ait BTA kesit görüntüsü 

 

Manyetik Rezonans Görüntüleme (MRG), genellikle yumuşak dokuların görüntülenmesinde 

yaygın olarak kullanılan görüntüleme tekniğidir. Görüntüleme esnasında dokuların çok iyi 

bir şekilde anatomik görüntüsünü oluşturmasıyla beraber dokuların yapısal incelenmelerini 

de mümkün kıldırmaktadır. MRG cihazlarında hasta üzerinde çekilecek dokulara sabit bir 

manyetik alan içerisinde, radyo frekans dalgaları verilerek bu sinyaller üzerindeki değişimler 

incelenerek görüntü sinyalleri elde edilmektedir. Bu sebeple kullanımı sırasında hastaya 

herhangi bir madde enjekte edilmediğinden invazif olmayan görüntüleme tekniğidir [37].  
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Tez çalışması kapsamında radyasyon içermemesi, kontrastsız ya da düşük doz kontrast 

madde ile çekim işlemi yapılabilmesi ve hasta takip incelemelerinin birçok kez tekrar 

edilebilirliği nedeniyle, SVH saptanmasında invazif olmayan ve etkin bir görüntüleme 

yöntemi olan Manyetik Rezonans Anjiyografi tekniğinin üç boyutlu uçuş süresi çekim 

protokolünde ürettiği görüntüler üzerinde çalışmalar gerçekleştirilmiştir. 

 

Üç boyutlu uçuş süresi görüntüleme tekniği sıvı akış geliştirme prensibini temel alarak 

geliştirilen ve beyin bölgesindeki vasküler yapının görüntülemesini sağlayan çekim 

protokolüdür. Bu çekim protokolü yüksek çözünürlükte damarsal bölümlerin 

görüntülenmesine imkan sağlarken çekim sırasında hasta herhangi bir kontrast madde ve 

radyasyona maruz kalmamaktadır. Bu sebeple SVH takip işleminde yaygın olarak 

kullanılmaktadır. Bu tekniğe göre Manyetik Rezonans Anjiyografi görüntüleme sırasında 

kan akışının olmadığı veya az olduğu bölümlerde, hastaya dışarıdan verilen radyo dalgaları 

dokuda bulunan az sayıdaki atomları düşük seviyede uyaracağından bu bölümler görüntülere 

koyu renkte yansımaktadır. Kan akışının olduğu damar dokularında ise radyo dalgaları 

dokudaki çok sayıda bulunan atomları yüksek seviyede uyaracağından çıkış görüntüsüne 

daha parlak şekilde yansımaktadır [38]. Böylece vasküler yapıyı oluşturan bölümlerin 

incelenmesi sağlanabilmektedir. Resim 3.3’de MRA cihazı vasıtasıyla üç boyutlu uçuş 

süresi görüntüleme protokolünde hastaya kesit görüntüsü gösterilmektedir. Görüntü 

içerisinde anevrizma bölgesine ait kısım kırmızı daire ile boyanmıştır. 

 

 
 

Resim 3.3. Anevrizma hastasına ait MRA görüntüsü 
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3.2. Görüntü İşleme  

 

Görüntüler, dünya üzerindeki nesnelerin konumlandırıldığı iki boyutlu veya üç boyutlu 

yüzey haritaları olarak tanımlanmaktadır. Klasik görüntüleme yöntemlerinde, obje üzerine 

düşen ışık kaynağından yansıyan değişimler, çeşitli sensörlerin yer aldığı kameralar 

tarafından algılanarak objenin konum ve ışık parlaklık sinyalleri, yüzey haritaları adı verilen 

görüntü düzlemi üzerinde kaydedilmektedir. Medikal görüntüleme tekniklerinde ise bu 

görünür ışık kaynağı yerini çeşitli elektromanyetik dalgalara bırakarak incelenecek doku, 

organ gibi çeşitli hücreler üzerinde dalgalarda meydana gelen değişimler ve konum 

sinyalleri görüntü düzlemi üzerinde kaydedilerek hücrelerin işlevleri kontrol 

edilebilmektedir. Şekil 3.1’de temel dijital görüntü elde etme sistemi gösterilmektedir. 

 

 
  

Şekil 3.1. Dijital görüntü elde etme sistemi [39] 

 

Görüntüler, içerisindeki sinyallerin aldığı değer türüne göre analog ve dijital görüntü olmak 

üzere iki farklı gruba ayrılmaktadır. Analog görüntüler, görüntünün her bir pikselinin 

değerinin sürekli bir fonksiyon olarak ifade edildiği görüntülerdir. Bu nedenle, analog 

görüntülerde, her bir pikselin değeri sonsuz sayıda olası değere sahip olabilir. Örneğin, 

analog fotoğraf makineleri incelendiğinde, içerisinde ışığı filtrelerden geçirerek film 

üzerinde görüntü oluşturmasını sağlayan bir mekanizma kullanmaktadır. Bu mekanizma, 

ışık kaynağından gelen ışığın lensler aracılığıyla odaklanmasını ve filtrelerden geçmesini 

sağlamaktadır. Bu filtreler, belirli dalga boylarındaki ışığı engelleyerek görüntünün 

oluşumunda önemli bir rol oynamaktadır. Örneğin, yeşil filtre, mavi ve kırmızı dalga boyuna 

sahip ışığı engellerken sadece mavi ışığın geçmesine izin vermektedir. 
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Analog fotoğraf makinelerinde, çekim esnasında farklı dalga boylarındaki ışık bileşenleri 

filtrelerden geçerek, fotoğraf makinesi içerisindeki film ile kimyasal tepkimeye girmektedir. 

Bu tepkimeler vasıtasıyla, bir pikselin belirli bir renginin görüntü içerisinde nasıl göründüğü 

belirlenmektedir. Film üzerindeki bu kimyasal reaksiyonlar, her pikselin değerini oluşturan 

sürekli bir fonksiyon şeklinde kaydedilmektedir. Bu nedenle, bir analog fotoğraf makinesi 

ile çekilen bir fotoğrafta her pikselin içerdiği rengin değeri, bir sürekli fonksiyon vasıtasıyla 

ifade edilmektedir. 

 

Dijital görüntüler ise, analog görüntülerden farklı olarak, her bir pikselin değerinin belirli 

bir sıklıkla örneklenerek elde edildiği görüntülerdir. Bu sıklık örnekleme periyodu olarak 

adlandırılmaktadır ve bu sıklık ne kadar yüksek olursa, elde edilen görüntü de keskin ve 

detaylı olacaktır. Dijital görüntüler, örnekleme işlemi sırasında piksel değerlerini yalnızca 

belirli bir değer kümesine yerleştirmektedir. Bu değer kümesi, genellikle 8 bit büyüklüğünde 

tam sayılardan oluşan bir kümedir. Tıbbi görüntüleme tekniklerinde ise, incelenecek 

dokunun daha ayrıntılı bir şekilde analiz edilmesi, teşhis doğrulunun artırılarak görüntüleme 

sistemlerindeki olası hataları azaltmak amacıyla 12-16 bit gibi daha yüksek hassasiyetine 

sahip sayı aralığında saklanmaktadır. Şekil 3.2 üzerinde sürekli yapıdaki görüntünün belirli 

sıklıkla örneklenerek dijitalleştirilmesi gösterilmektedir. 

 

 
 

Şekil 3.2. Analog – Dijital sinyal dönüşümü [39] 
 



18 

 

Dijital görüntüyü oluşturan harita üzerindeki sinyallerin depolandığı her bir nokta iki 

boyutlu görüntülerde piksel olarak adlandırılırken bu noktaların üç boyutlu görüntüler 

üzerindeki karşılığı ise voksel olarak adlandırılmaktadır. İki boyutlu görüntüler de her bir 

piksel elemanları bir araya gelerek satır ve sütunlardan oluşan görüntü matrisi 

oluşturmaktadır. Üç boyutlu görüntü matrislerinde ise satır ve sütunun yanında derinlik 

bilgisini içeren üçüncü bir boyut eklenmektedir. Görüntü matrisi içerisinde yer alan her bir 

satır veya sütun sinyalin algılandığı sensörün konumunu simgelerken içeriği ise sensör 

tarafından algılanan sinyalin değerini simgelemektedir. Bu kapsamda Şekil 3.3’de piksel 

elemanlarının bir araya gelmesiyle oluşturulmuş iki boyutlu görüntülere ait görüntü matrisi 

gösterilmektedir; 

 

 
 

Şekil 3.3. İki boyutlu görüntü matris örneği [40] 

 

Görüntü işleme, bir görüntüyü dijital bir formata dönüştürme ve üzerinde farklı işlemler 

gerçekleştirerek bazı yararlı bilgiler elde etme süreci olarak tanımlanmaktadır. Görüntü 

işleme sistemin, belirli sinyal işleme yöntemlerinin çözülmek istenilen probleme uygun 

olarak görüntü üzerinde uygulanmasıyla elde edilir. Bu yöntemler, görüntü işleme 

algoritmaları olarak adlandırılır ve önceden belirlenmiş adımlarla görüntü üzerinde işlem 

yaparak, gürültü azaltma, kenar tespiti, obje tanıma, renk ayarlama gibi çeşitli amaçlar için 

kullanılmaktadır. Günümüzde görüntü işleme teknolojisi tıpta görüntüleme ve hastalık 

analizi gibi pek çok alanda yaygın olarak kullanılmaktadır. Görüntü işleme teknolojisi, veri 

analizi ve yapay zekâ uygulamalarında da sıklıkla kullanılmaktadır ve gelecekte daha da 

önemli bir role sahip olması beklenmektedir. 
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3.2.1. Gaussian filtreleme 

 

Görüntü filtreleme, dijital görüntü işleme alanında yaygın olarak kullanılan tekniktir. Bu 

teknik vasıtasıyla, görüntü içerisindeki çeşitli özellikler belirlenebildiği gibi bu özelliklerin 

belirginliğinin artırma işlemi de yapılabilmektedir. Görüntü filtreleme işlemleri, filtreler 

olarak adlandırılan çekirdek matrisleri aracılığıyla gerçekleştirilmektedir. Görüntü 

filtreleme işlemleri, filtreler olarak adlandırılan çekirdek matrisleri aracılığıyla 

uygulanmaktadır. Örneğin, görüntüyü keskinleştirmek, bulanıklığı azaltmak, kenarları 

vurgulamak, gürültüyü azaltmak veya renkleri değiştirmek gibi işlemler filtreleme teknikleri 

vasıtasıyla gerçekleştirilmektedir.  

Gaussian filtreleme, doğada yer alan Gauss dağılımından esinlenilerek geliştirilmiştir ve 

genellikle görüntüler üzerindeki gürültüyü ortadan kaldırmak için kullanılan iki boyutlu 

konvolüsyon operatörüdür [39]. Bu özelliğinin yanı sıra Gaussian filtresinin ikinci türevi 

kullanılarak görüntüler içerisindeki blob, görüntü üzerindeki belirli bir bölgeyi oluşturan 

piksellerin benzer-homojen parlaklık değerine sahip olmasıyla oluşan bölge, tarzındaki 

yapıların bulunmasında da aktif olarak kullanılmaktadır. Aşağıda Gaussian filtresinin 2 

boyutlu uzayda formülü ile birlikte gösterilmektedir; 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
ⅇ

− 
𝑥2+𝑦2

2𝜎2                                                                                                         (3.1) 

 

 
 

Şekil 3.4. İkinci dereceden Gaussian filtre gösterimi 
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Şekil 3.4’de görüleceği üzere Gaussian filtresinin kat sayıları filtre merkezinden 

uzaklaştıkça azalmaktadır bu durum sayesinde görüntü içerisindeki benzer piksel 

değerlerine sahip bölgelerde filtre yanıtının yüksek olması sağlanmaktadır. Formül 

içerisindeki sigma değeriyle ile de filtre için daha geniş veya daha dar tepe aralığı elde 

edilerek farklı boyuttaki unsurların tespit edilmesi sağlanabilmektedir.  

Gaussian filtresinin ve konvolüsyon işleminin lineerlik özelliği, görüntü işleme 

uygulamalarında önemli bir rol oynamaktadır. Bu özellik vasıtasıyla, Gaussian filtresi 

görüntü üzerine uygulandıktan sonra türev filtreleri kullanılarak kenar ve köşe benzeri 

bölümlerin tespit edildiği gibi doğrudan Gaussian filtresinin türevi alındıktan sonra görüntü 

ile konvolüsyon işlemi yapılmasıyla da kenar köşe noktaları bulunarak benzer sonuç elde 

edilmektedir. Bu durum işlem gücü açısından da daha hızlı bir sonuç üretilmesini 

sağlamaktadır [39]. Aşağıda Gaussian filtresinin x ve y yönündeki ikinci dereceden 

türevlerinin toplamını içeren Laplacian of Gaussian filtresi(LoG) ve matematiksel ifadesi 

gösterilmektedir. 

𝐿(𝑥, 𝑦) = 𝛻2𝑓(𝑥, 𝑦) =
𝜕2𝑓(𝑥, 𝑦)

𝜕𝑥2
+  

𝜕2𝑓(𝑥, 𝑦)

𝜕𝑦2
                                                                     (3.2) 

𝐿𝑜𝐺(𝑥, 𝑦) =
1

𝜋𝜎4
[1 −

𝑥2 + 𝑦2

2𝜎2
] ⅇ

− 
𝑥2+𝑦2

2𝜎2                                                                                  (3.3) 

 

 
 
Şekil 3.5. Laplacian of Gaussian filtre gösterimi 
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Giriş bölümünde bahsedildiği üzere, görüntüler üzerindeki benzer parlaklık gösteren blob 

tarzındaki yapıların tespit edilmesi işleminde LoG filtresi, görüntü ile konvolüsyon işlemine 

tabi tutulmaktadır. Filtre içerisindeki sigma parametresi ile de farklı boyutlardaki blobların 

tespit edilmesi gerçekleştirilmektedir. 

3.2.2. Hesse matrisi 

Hesse matrisi(Hessian Matrix) Alman matematikçi Otto Hesse tarafından 19. yüzyılda 

bulunan simetrik bir matristir. Temelde skaler değerli bir fonksiyonun ya da skaler alanın 

ikincide derece kısmı türevlerini içeren kare matris olarak da adlandırılmaktadır [6]. Hesse 

matrisi, herhangi bir fonksiyonun farklı yönlerdeki değişimlerinin miktarını gösterdiğinden 

çok değişkenli fonksiyonların yerel eğrilikleri hakkında da yorum yapılabilmektedir. Şekil 

3.6’da N değişkenli f fonksiyonunun Hesse Matrisi gösterilmektedir. 

2 2 2

2

1 1 2 1

2 2 2

2

2 1 2 2

2 2 2

2

1 2

n

n

n n n

f f f

x x x x x

f f f
H

x x x x x

f f f

x x x x x

 
 

   
     
 
   

      
 
 
 

   
      

 

 

Şekil 3.6. N boyutlu Hesse matrisi 

 

Matematiksel olarak, bir fonksiyonun birinci türevi, belirli bir noktada eğim değerini 

verirken, ikinci türevi ise belirli bir noktadaki yerel ekstremum noktalarının konveks veya 

konkavlık durumu hakkında tanımlama yapılmasını sağlamaktadır. Geometrik olarak, bir 

yüzey tanımlanırken, bir fonksiyonun oluşturduğu yüzey üzerindeki herhangi bir noktanın 

vektörü ile bu vektöre dik şeklinde gelen normal vektör kullanılmaktadır. Bu iki vektörün 

noktasal çarpımı ile üç boyutlu uzayda düzlem oluşturmaktadır.  Bu oluşan düzlem, bir 

fonksiyonun oluşturduğu yüzey ile kesişerek tek boyutlu bir iz düşüm fonksiyonu oluşturur. 

İz düşüm fonksiyonu vasıtasıyla istenilen noktalarda belirlediğimiz yönlerde eğrilik 

büyüklükleri elde edilebilmektedir. Böylece yüzeyin matematiksel bir şekilde yorumlanması 

sağlanmaktadır. 
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Yüzey üzerindeki rastgele yönlerdeki eğrilik miktarlarının bulunması tam anlamıyla yüzeyin 

yorumlanmasını sağlamamaktadır. Bu kapsamda Hesse matrisi, fonksiyonu oluşturan tüm 

yönlerde ikinci dereceden kısmı türevleri içerdiğinden her yöndeki eğrilik hakkında bilgi 

içermektedir. Bu kapsamda Hesse matrisi üzerinde yapılan çalışmalar da matris üzerindeki 

öz değer ve öz vektörler vasıtasıyla oluşan iz düşüm fonksiyonu, yüzeydeki maksimum ve 

minimum eğrilik yönleri ile büyüklüklerinin bulunabileceğini kanıtlanmıştır.  Böylece 

oluşan yüzey hakkında daha anlamlı yorumlar yapılabilmektedir. Şekil 3.7’de Gaussian 

manzara yüzeyi üzerindeki (0, -6) noktasındaki minimum ve maksimum eğriliğe karşılık 

gelen öz değerler ve yönlerini ifaden eden öz vektörler gösterilmektedir [41]. 

 

 
 

Şekil 3.7. Silindirik yüzeyde öz değer ve öz vektörlerin gösterimi [41] 
 

Yukarıdaki şekilde gösterilen Gaussian manzarası üzerinde görüleceği üzere (0,-6) 

noktasında eğriliğin en büyük olduğu yer olan 1. öz vektörün yönü ve büyüklüğünü mavi ok 

ile temsil edilirken, sarı olan ise eğriliğin en küçük olduğu ikinci öz vektörün yönü ve 

büyüklüğünü simgelemektedir.  Hesse matrisi yardımıyla her bir noktadaki maksimum ve 

minimum bölgeler için bu öz değer ve öz vektörler ayrı ayrı hesaplanarak yüzey bilgisi 

yorumlanabilmektedir. 



23 

 

Matematiksel olarak, Hesse matrisi vasıtasıyla bir yüzey için öz değer ve öz vektörlerin 

bulunması, yüzeyin eğriliği hakkında bilgi vermektedir. Bu kapsamda Hesse matrisi ile öz 

değer ve öz vektörlerin beraber kullanımı, bir yüzey için aşağıdaki yorumlar 

yapılabilmektedir; 

 

 İki öz değer vektörünün büyüklüğü birbirine eşit veya çok yakınsa, o bölgede oluşan 

eğrilik her yönde aynıdır ve herhangi bir minimum ya da maksimum bir yönelim 

bulunmaz. Bu durum genellikle küresel yüzeye sahip cisimlerde görülür 

 İki farklı öz değer vektörü büyüklüğünden küçük olanı sıfıra çok yakınsa ve diğeri 0'dan 

çok büyükse, Şekil 3.10’daki örnekteki gibi bir tepe noktasında silindir benzeri bir yapı 

oluşur. 

 İki farklı öz değer vektörünün büyüklüğü sıfıra yakınsa, yüzeyde herhangi bir minimum 

veya maksimum yoktur. Bu durumun gerçekleşmesi düz bir yüzeyi temsil etmektedir. 

Bu durum Şekil 3.8’de gösterilmektedir. 

 

 
 

Şekil 3.8. Düz yüzeydeki öz değer ve öz vektörlerin gösterimi [41]  
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Hesse matrisleri, fonksiyonlara uygulandığı gibi iki boyutlu ve üç boyutlu kesit görüntü 

serilerine de uygulanabilmektedir. Görüntü üzerine uygulandığında genellikle bu matris, 

görüntü içerisindeki her bir piksel noktası için ikinci dereceden kısmi yerel parlaklık 

değişimlerinin yapısını tanımlayabildiğinden, görüntü içerisinde yüzey bilgisinin 

yorumlanabilmesini sağlamaktadır. Şekil 3.9’da genişlik(x), yükseklik(y) ve derinlik(z) 

çözünürlükte “I” görüntüsü için üç boyutlu Hesse matrisi gösterilmektedir. 

 

xx xy xz

yx yy yz

zx zy zz

I I I

H I I I

I I I

 
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  
 
   

 

Şekil 3.9. Üç boyutlu görüntü matrisi 

 

Yukarıdaki şekilde gösterilen Hesse matrisi, görüntü içerisindeki her bir voksel için ayrı ayrı 

oluşturulması gerekmektedir. Örneğin, 150 adet kesit görüntüsü içeren MRA görüntüleri, 

her biri 512 genişlik ve 512 yükseklik boyutlarına sahip olduğunda, toplamda 39,321,600 

adet voksel içermektedir.  Her bir voksel için oluşturulacak olan Hesse matrisi, 3x3 

boyutlarda matristen meydana geldiğinden toplamda 3 adet öz değer ve 3 adet öz vektör 

içermektedir. Bu durum görüntü içerisindeki her bir pikselin 3 farklı öz değer ve öz vektöre 

sahip olacağını belirttiğinden toplamda 117 964 800 adet öz değer ve öz vektör içermektedir.  

Bu öz değerlerin büyüklüğüne göre görüntü içerisindeki herhangi bir yapının geometrik 

olarak yorumlanması mümkündür. Çizelge 3.1’de iki veya üç boyutlu görüntülerdeki öz 

değer büyüklüklerine göre objelerin yorumlanabilmektedir. Çizelge içerisindeki “H” harfi 

yüksek, “L” harfi düşük, “N” harfi ise gürültü anlamına gelmektedir. 

 

Çizelge 3.1. Öz değerlerin büyüklüğüne göre geometrik yapıların yorumlanması 

 
 
 

 

 
 

 

2D 3D orientation pattern 

ʎ1 ʎ2 ʎ1 ʎ2 ʎ3  

N N N N N noisy, no preferred direction 

  L L H- Plate-like structure(bright) 

  L L H+ Plate-like structure (dark) 

L H- L H- H- Tubular structure (bright) 

L H+ L H+ H+ Tubular structure (dark) 

H- H- H- H- H- Blob-like structure (bright) 

H+ H+ H+ H+ H+ Blob-like structure (dark) 
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3.3. Yapay Zekâ  

 

Yapay zekâ, bir bilgisayarın veya bilgisayar kontrollü herhangi bir makinenin,  insan gibi 

zeki canlılara benzer şekilde çeşitli görevleri yerine getirme yeteneğinin kazandırılması 

şeklinde tanımlanmaktadır. Bu nedenle yapay zekâ, makinalara veya robotlara insan 

beyninin ve düşünme sisteminin entegre edilmiş kopyasına benzetilmektedir [42]. 

Günümüzde, teknolojideki gelişmelerin etkisiyle yüksek işlem gücüne sahip donanımların 

tasarlanması yapay zekâ alanındaki gelişmeleri artırmış olsa da, yapay zekâ teknolojisinin 

temelleri 1940-1950'li yıllarda Alan Turing'in "Makineler düşünebilir mi?" fikrini ortaya 

atmasına dayanmaktadır. 

 

Yapay zekâ kavramına daha derinlemesine inceleyecek olursak, temel bir yapay zekânın 

kendisine öğretilen çözümleri uygulayabildiği, daha yetenekli yapay zekânın ise kendi 

kendine öğrenebilen sistemler olduğu bilinmektedir. Öğrenme işlemin sırasında kullanılan 

çeşitli algoritmalar vasıtasıyla geliştirilen sistemler de, algoritmaların problemler üzerinde 

oluşturduğu hatalar minimize edilecek şeklinde optimizasyon işlemi yapılmaktadır. Bu 

bağlamda Şekil 3.10’da yapay zekâyı oluşturan alt alanlar, kendi içerisinde hiyerarşik olacak 

şekilde gösterilmektedir [42]. Makinelere insan benzeri kabiliyet kazandırma konusunda 

yapılan çalışmalar yapay zekâ gelişmeleri olarak isimlendirilirken, Makine öğrenmesi ve 

Derin öğrenme çalışmaları ise yapay zekânın daha alt alanlarını oluşturmaktadır. 

 

 
 

Şekil 3.10. Yapay zekâ  alt alanlarının hiyerarşik gösterimi 
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3.4. Makine Öğrenmesi 

 

Makine öğrenimi ya da makine öğrenmesi, bilgisayarların veya bilgisayar kontrollü herhangi 

bir makinenin insan benzeri tanıma ve öğrenme görevlerini yerine getirmek amacıyla 

geliştirilen uygulamalar bütünü olarak tanımlanmaktadır. Makine öğrenimi, içerisinde 

öğrenme işlemi içerdiğinden yapay zekânın alt kümesidir. Öğrenme sürecinde kullanılan 

algoritmalar, veri setleri üzerindeki örneklerden bir anlam çıkararak, çıkarılan anlamları 

genelleştirip,  farklı veriler üzerinde de uygulanmasını sağlamaktadır. Bu sayede, 

bilgisayarlar klasik kural tabanlı sistemler yerine, veri setindeki örnekleri genelleştirerek 

kendi kurallarını oluşturabilmektedir. Böylece geliştiricileri tarafından her durumu 

kapsayarak geliştirdikleri kurallara ihtiyaç kalmamaktadır [42]. 

 

Makine öğrenme tekniklerinin uygulanması sırasında, geliştirilen algoritmaların öğrenme 

sürecini takip eden ve denetleyen bir sistem olup olmaması durumuna göre Şekil 3.11’de ki 

gibi 3 farklı ana başlığa ayrılmaktadır. Denetimli öğrenme sırasında geliştirilen 

algoritmalarda, makine öğrenme algoritmalarına problemin yanı sıra problemin sonucunu 

içeren bilgiler de verilmektedir. Bu şekilde geliştirilen algoritmalar, girdi ve çıktı ilişkisini 

denetleyerek problemin öğrenilmesi amaçlanmaktadır. Denetimsiz öğrenme yönteminde ise, 

makineye sadece girdi bilgisi verilmektedir. Problemin sonucuna dair herhangi bir bilgi 

algoritmaya sağlanmadığından üretilen sonuçlar denetlenmemektedir. Böylece makineden 

giriş öz niteliklerini kullanarak bir örüntü oluşturulması istenmektedir. Pekiştirmeli 

öğrenmede yönteminde ise, algoritmadan sayısal bir ödül değerini en üst düzeye çıkartması 

istenir ve algoritmanın en fazla ödülü elde etmesi amaçlanır [43]. 

 

 
 

Şekil 3.11. Makine öğrenmesini oluşturan alt alanların gösterimi 
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3.4.1. Denetimli öğrenme 

 

Denetimli öğrenme, öğrenme işlemi sırasında problemin içerdiği verilerin yanı sıra 

problemin sonucunun da öğrenme algoritmalarına verildiği öğrenme yöntemidir. Bu sebeple 

insan öğrenme sistemine oldukça benzerdir. Makineler, girdi verileriyle birlikte bu girdiye 

karşılık gelen çıktı verileri sağlanarak, probleme yönelik veri setindeki örüntünün 

çıkartılması istenmektedir [43].  

 

Denetimli öğrenme konusuna örnek vermek gerekirse, kedi ve köpek görüntülerinin 

sınıflandırması probleminde, hangi görüntünün kedi hangi görüntünün köpek olduğu 

bilinmektedir. Makinenin burada yapması gereken, girdi görüntülerini kullanarak kedi ve 

köpeği birbirinden ayıran en önemli öz nitelikleri belirleyerek doğru çıktıya ulaşacak 

örüntüyü çıkartmaktır. Bu kapsamda denetimli öğrenme sırasında, model önceden 

etiketlenmiş veri setlerini üzerinde eğitim işlemleri gerçekleştirilerek, modelin girdileri 

kullanarak tahmin çıktısı üretmesi beklenmektedir. Modelin yaptığı tahminler, gerçek 

sonuçlarla karşılaştırarak doğru ya da yanlış olma durumuna göre çeşitli sinyal değerleri 

üretilmektedir. Üretilen sinyal değerlerine göre optimizasyon teknikleri vasıtasıyla modelin 

örüntüyü çıkartacak parametrelerinin güncellenmesini sağlanmaktadır. Bu durum Şekil 

3.12’de gösterilen denetimli öğrenme blok diyagramında gösterilmektedir; 

 

 
 

Şekil 3.12. Denetimli öğrenme blok diyagramı [44] 
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Denetimli öğrenme Şekil 3.12’de gösterildiği üzere problemin tipine göre sınıflandırma ve 

regresyon olmak üzere iki kategoriye ayrılmaktadır.  

 

 Sınıflandırma (Clasification): Sınıflandırma problemlerinde çıktı değerleri bir kategori 

olarak açıklanmaktadır. Örneğin, bir önceki sayfada bahsedilen kedi köpek ayrıştırma 

probleminde çıktı değeri kedi veya köpek olmak üzere iki farklı kategorik değerden 

meydana gelmektedir. Bu kategorik değerler bilgisayar ortamında kediler 0 değeri,  

köpekler ise 1 değeri gibi iki farklı ayrık değer vasıtasıyla saklanmaktadır. Geliştirilen 

model, girdi görüntüsüne göre bu değerleri tahmin etmesi beklenmektedir. 

Gerçekleştirilecek tez çalışması kapsamında beyin bölgesindeki damar olan bölgeler ve 

damar olmayan bölgelerin bölütleme işlemi gerçekleştirilmektedir. Bölütleme 

problemlerinde de her bir pikselin hangi sınıfa ait olma durumu bulunduğundan bu tür 

problemlerde piksel seviyesinde sınıflandırma problemleri olarak adlandırılmaktadır. 

 Regresyon (Regression): Regresyon problemlerinde çıktılar, sayı gibi sürekli değere 

sahip olduğu denetimli öğrenme çeşididir. Bu tür problemlerde geliştirilen modelin 

istenilen sayı çıktısına yaklaşması amaçlanmaktadır. Örnek vermek gerekirse, girdi 

olarak tümörlü hücrelerin görüntülerinin verildiği ve çıktı olarak da bu hücrelerin 

yıldaki büyüme miktarlarının tahmin edildiği uygulamalar verilebilmektedir. Görüntü 

işleme alanında kullanılan obje tespit algoritmaları da regresyon problemleri alanına 

girmektedir. Bu problemler içerisinde görüntü içerisinde yer alan objenin konumlarının 

bulunması işlemi gerçekleştirilmektedir. 

 

Şekil 3.13’de sınıflandırma ve regresyon problemleri örnekleri olan bölütleme ve tespit etme 

işlemlerini içeren örnek gösterilmektedir; 

 

 
 

Şekil 3.13. Medikal bölütleme ve tespit problem örneği [45] 
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3.4.2. Denetimsiz öğrenme 

 

Denetimsiz öğrenme, veri seti içerisindeki örüntülerin keşfedilmesi işlemi esnasında 

makinanın veya bilgisayarın ürettiği çıktıların denetlenmediği öğrenme yöntemidir. Bu 

yöntemde, veri setindeki etiketler veya gerçek çıktı değerleri kullanılmamaktadır. Modele 

sadece girdiler sağlanarak, modelden çıktıları oluşturması beklenmektedir. Model, veri seti 

içerisindeki yapıları, benzerlikleri ve örüntüleri kendi kendine tanımlayarak öğrenmektedir. 

Bu yöntem, verilerin etiketlenmesi için zaman ve maliyet gerektiren durumlarda aktif olarak 

faydalanılmaktadır [43]. 

 

Denetimsiz öğrenme, genellikle veri seti içerisinde yer alan örüntülerin keşfedilmesi 

sırasında, kümeleme veya boyut indirgeme gibi çeşitli tekniklerden faydalanmaktadır. 

Örneğin, bir müşteri veri setinde, benzer satın alma davranışları sergileyen müşterilerin 

gruplandırılması, denetimsiz öğrenme kullanılarak yapılabilmektedir. Ayrıca, boyut 

indirgeme teknikleri vasıtasıyla da özellikle büyük boyutlu veri setleri üzerinde çalışırken, 

ilişkilerin görsel biçimde incelenmesi amacıyla aktif olarak faydalanılmaktadır. Bu 

kapsamda Şekil 3.14’de denetimli öğrenme blok diyagramı gösterilmektedir. 

 

 
 

Şekil 3.14. Denetimsiz öğrenme blok diyagramı [43] 
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3.5. Derin Öğrenme 

 

Derin öğrenme, yapay zekâ alanındaki makine öğrenmesi tekniklerinin alt kümesidir ve 

günümüzde yüksek işlem gücüne sahip donanımların tasarlanması ve veri erişiminin 

kolaylaşması sayesinde yaygın bir şekilde kullanılmaktadır. Temelde derin öğrenme 

içerisinde çok sayıda makine öğrenmesi tekniklerinin birleşiminden meydana geldiğinden 

işlem gücü oldukça yüksek donanımlara ihtiyaç duymaktadır.  

 

Makine öğrenmesi, örüntü tanıma, bilgisayarlı görü gibi alanlarda bilgisayar bilimlerinin bir 

alt alanıdır ve yapay zekâ teknolojilerinin alt kümesini oluşturmaktadır. Makine öğrenmesi 

tekniklerinde, veri seti oluşturulurken ilk aşamada veri seti üzerinde manuel ya da çeşitli 

algoritmalar vasıtasıyla önemli özellikleri temsil eden öz niteliklerin çıkartılması 

gerekmektedir. Böylece makine öğrenmesi algoritmaları, çıkarılan öz nitelikler üzerinde 

çeşitli matematiksel ve istatiksel işlemler yaparak karar verme işlemini yerine getirmektedir. 

Derin öğrenme tekniklerinde ise yeterli veri olması halinde makine öğrenmesi 

uygulamalarının ilk aşamasında kullanılan öz nitelik çıkartma işlemlerinin uygulanmasına 

ihtiyaç duyulmamaktadır. Eğitim işlemi esnasında geri yayılım teknikleri vasıtasıyla 

otomatik bir şekilde öz nitelik çıkartma işlemi gerçekleşmektedir [46].   

 

Makine öğrenmesi tekniklerinde olduğu gibi derin öğrenme teknikleri de denetimli öğrenme, 

denetimsiz öğrenme ve pekiştirmeli öğrenme şeklinde Şekil 3.15’deki gibi üç gruba 

ayrılmaktadır. Gerçekleştirilecek tez çalışması kapsamında denetimli derin öğrenme 

teknikleri kullanıldığından ilerleyen kısımlarda bu tekniğin üzerinde durulmuştur. 

 

 
 

Şekil 3.15. Derin öğrenmeyi oluşturan alt alanların gösterimi 
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3.5.1. Yapay sinir ağları  

 

Yapay zekânın temelini oluşturan bilgisayar veya bilgisayar kontrollü herhangi makinaya 

insan gibi zeki canlılara benzer şekilde çeşitli görevleri yerine getirme düşüncesi,  insan 

beyninin öğrenme yapısının matematiksel olarak modellenmesiyle gerçekleşebileceği fikrini 

ortaya çıkartmıştır. Bu kapsamda, insan öğrenme yapısını temel alan yapay sinir 

ağları(YSA) konusunda yapılan çalışmalar 1980 öncesi ve 1980 sonrası çalışmalar olmak 

üzere iki farklı ana başlık altında incelenmektedir [47]. 

 

1980 öncesi yapılan çalışmalarda ilk çalışma, Warren McCulloch ve Walter Pitts tarafından 

1943 yılında elektrik devrelerini kullanarak, insan sinir sisteminden esinlenerek 

geliştirdikleri yapay sinir ağ hücrelerinin modellini oluşturmaya çalışmışlardır. 

Gerçekleştirdikleri model ile her türlü mantıksal ifadenin formülize edilebileceğini 

göstermiş olsalar da o yıllarda teknolojide gelişmeler ve şartların yetersizliği sebebiyle 

gerçekleştirilen bu çalışma ilgi odağı olamamıştır [47].  Frank Rosenblatt 1958 yılında ilk 

tek katmanlı eğitilebilen algılayıcı model olan “Perceptron” modelini gerçekleştirerek çeşitli 

lojik işlemleri başarı ile gerçekleştirmiş ve bu alanda çalışmalara hız kazandırmıştır [48]. 

1969 yılında Marvin Minsky ve Seymour Papert tarafından o yıllarda gerçekleştirilen yapay 

sinir ağı çalışmalarının lineer problemlerde başarılı sonuçlar ürettiği ve lineer olmayan 

problemlere çözüm üretemeyeceğini öne sürmüşlerdir[49]. Bu kapsamda yapay sinir 

ağlarının XOR probleminin çözümünde yetersiz olduğunu göstererek yapay sinir ağları 

konusunda yapılan çalışmaların yavaşlamasına neden olmuştur ve bu durum 1980 yılına 

kadar devam etmiştir. 

 

1980 yılından sonraki yapılan çalışmalar ile kural tabanlı algoritmik sistemler vasıtasıyla 

çözülmesi zor olan problemlerin yapay sinir ağları vasıtasıyla genelleştirileceği ve 

problemlere çözüm üretilebileceği anlayışı doğmuştur. Bu kapsamda teknolojinin 

gelişmesiyle beraber paralel programlamadaki çalışmalar ile çok katmanlı yapay sinir 

ağlarının üretilmesi ve geriye yayılım yönteminin kullanılmasıyla çalışmalar hız kazanarak 

popüler hala gelmiştir [13].  

 

Yapay sinir ağlarının çalışmasına detaylı geçiş yapmadan önce biyolojik sinir hücresi 

hakkında genel bilgiye sahip olunması, yapay sinir ağı modellerinin anlaşılmasını 

kolaylaştırmaktadır. 
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Biyolojik sinir ağı hücreleri 

 

Yapay sinir ağı modelleri, insan sinir sistemi çalışma prensibini taklit ederek geliştirilmiş 

matematiksel modellerden meydana gelmektedir. Bu kapsamda Yapay Sinir Ağlarının 

çalışmasının net bir şekilde anlaşılabilmesi için öncelikle insan sinir sisteminin anlaşılması 

gerekmektedir.  Bu nedenle Şekil 3.19’da insan sinir hücresinin yapısı gösterilmektedir; 

 

 
 
Şekil 3.16. Biyolojik sinir ağı hücresi [50] 

 

Yapay sinir ağ modeller, nöron adı verilen yapay sinir hücrelerinden meydana gelmektedir. 

İnsan beyninde 100 milyar adet nöron olduğu tahmin edilmektedir ve nöronlar birbirleri ile 

bağlantı kurarak çeşitli fonksiyonları yerine getirmektedir. İnsan sinir hücresi kısaca 

nöronlar Şekil 3.16’da görüleceği üzere temelde Akson, Dentrit, Sinaps ve Çekirdek olmak 

üzere 4 ana bölümden oluşmaktadır [50].  Dentritler, dışarıdan gelen uyarı sinyallerini 

algılama işleminde görevli pasif elemanlardır ve hücrelerin aksonları sinaps adı verilen 

hücreler vasıtasıyla dentritler ile bağlantı içerisindedirler. Dentritler tarafından algılanan bu 

sinyaller, çekirdek vasıtasıyla aksonlarda periyodik olarak elektriksel işlem sonucu çıkış 

sinyali üretmektedir.  Çıkış sinyalleri tekrardan akson üzerinden çeşitli kimyasal taşıyıcılar 

vasıtasıyla sinapslara iletilmektedir. Gelen sinyallerin eşik değerine göre çıkış hücrelerinin 

uyarılma ya da bastırma işlemi gerçekleşmektedir.  Böylece milyonlarca sinir hücrelerinin 

birbirine bağlı olarak çalışması sonucunda gerçekleştirilen konuşma, düşünme vb. 

davranışların gerçekleşmesi sağlanmaktadır [51].  
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İnsan sinir sisteminde yer alan sinir hücreleri modellenerek, makine ve bilgisayarlar için 

kullanılabilen yapay sinir ağları oluşturulabilmektedir. Bu kapsamda Şekil 3.17'de gösterilen 

yapay sinir ağı, tek bir katman içerisinde yer alan bir adet nöron hücresini temsil etmektedir. 

Tıpkı insan sinir sisteminde olduğu gibi başka bir nöron ya da dışarıdan gelen sinyaller(x0) 

dentritler vasıtasıyla algılanmaktadır. Algılanan sinyaller, sinapslar içerisinde yer alan çeşitli 

ağırlıklar ile çarpılarak hücre gövdesine iletilmektedir. Hücre gövdesinde yer alan toplama 

işlemi ve belirli eşik değerine göre çıktı sinyali oluşturma işlemi yapan aktivasyon 

fonksiyonuna maruz kalmaktadır. Üretilen çıktı yine akson benzeri bir yapı ile nöron 

hücresine ya da ilerleyen katmanlara aktarılarak çıktı sinyali oluşturulmaktadır [51].  

 

 
 

Şekil 3.17. Yapay sinir hücresi [51] 
 

Yukarıdaki şekilde yer alan yapay sinir hücrelerinin bir araya getirilmesiyle yapay sinir 

ağları oluşmaktadır. Yapay sinir ağları temelde giriş katmanı, gizli katmanlar ve çıktı 

katmanı olmak üzere 3 ana bölümden oluşmaktadır. Giriş katmanında veri seti içerisinde yer 

alan problemin içerdiği sinyal veya öz nitelik değerleri, gizli katmanlarda probleme yönelik 

önemli öz nitelikleri çıkartma işlemi yapan nöron hücre grupları ve son katmanda da anlamlı 

sonuç üretilmesine yarayan çıktı katmanı yer alır. Bu durum Şekil 3.18’de gösterilmektedir.  

 

 
 

Şekil 3.18. Yapay sinir ağı katmanları [51] 
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Tek katmanlı yapay sinir ağları 

 

Tek katmandan oluşan yapay sinir ağları, genellikle giriş katmanı, hesaplama işlemini 

yapacak bir adet nöron ve çıkış katmanı olmak üzere üç ana bölümden oluşmaktadır. Tek 

katmanlı algılayıcılar da, giriş vektörleri öncelikle çeşitli ağırlık değerleriyle ile çarpma 

işlemine tabi tutulduktan sonra genel bir toplama işlemi vasıtasıyla çıkış sinyali 

oluşturmaktadır. Çıkış sinyali problemin tipine göre çeşitli aktivasyon fonksiyonlarına 

maruz kalarak ara çıktı oluşturmaktadır. Bu ara çıktı basit eşikleme fonksiyonu vasıtasıyla 

ikili değer aralığına getirilerek sonuç çıktısı elde edilmektedir. Genellikle üretilen bu çıktılar 

iki durum içerdiğinden basit ikili sınıflandırma problemlerinde tek katmanlı yapay sinir 

ağları yaygın olarak kullanılmaktadır. Şekil 3.19’da tek katmanlı yapay sinir ağına ait temel 

blok diyagramı gösterilmektedir; 

 

 
 

Şekil 3.19. Tek katmanlı yapay sinir ağı  
 

Yukarıdaki şekil içerisinde yer alan tek katmanlı yapay sinir ağında x1, x2, x3 gibi toplamda 

m adet girdi değerlerinden her biri kendisine özel w1, w2, w3 gibi toplamda m adet ağırlık 

değerleri ile çarpılarak ara çıktı değeri oluşturmaktadır. İlerleyen kısımda bu ara çıktı 

değerleri çeşitli aktivasyon ve eşikleme fonksiyonuna maruz kalarak sonuç çıktısını 

oluşturmaktadır [46]. Bu işlemleri içeren ifadeler denklem 3.4 ve 3.5’de gösterilmektedir. 

Z = w0x0 + w1x1 + … +wmzm                                                                                                                 (3.4) 

Ø(z) = 
1 0,

1

if z

otherwise

 
 
 

                                                                                                 (3.5)  
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Şekil 3.19’da gösterilen tek katmanlı yapay sinir ağları zamanla üzerinde geliştirilen çeşitli 

yaklaşımlarda kullanılan aktivasyon fonksiyonlarına göre çeşitli isimlendirmeler 

yapılmıştır. Katman içerisinde herhangi bir aktivasyon fonksiyonu kullanılmadığında basit 

algılayıcı(Perceptron) olarak adlandırılırken, lineer bir aktivasyon fonksiyonu 

kullanıldığında uyarlanabilir doğrusal nöron(Adaptive Lineer Neuron) adını almıştır. 

İlerleyen yıllarda çeşitli problemlerde olasılıksal çıktı almak amacıyla aktivasyon 

fonksiyonu olarak sigmoid kullanılmıştır ve bu modeller lojistik regresyon(Logistic 

Regression) adını almaktadır [43]. Bu durumlara ait genel mimariler Şekil 3.20’de 

gösterilmektedir; 

 

 
 

Şekil 3.20. Tek katmanlı çeşitli yapay sinir ağları [43] 
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Çok katmanlı yapay sinir ağları 

 

Çok katmanlı yapay sinir ağları, tek katmanlı yapay sinir ağları üzerinde yer alan girdi ve 

çıktı katman arasına gizli katman adı verilen çeşitli katmanların yerleştirilmesiyle 

oluşturulmuştur. Çok katmanlı algılayıcılar genellikle tek katmanlı algılayıcıların karmaşık 

problemlerdeki başarısını artırmak amacıyla geliştirilmiştir.  

 

Tek katmanlı yapay sinir ağlarında girdiler sadece tek katman içerisinde yer alan ağırlık 

değerleriyle çarpılarak öz nitelik çıkartma işlemi gerçekleşmekteydi. Çok katmanlı yapay 

sinir ağlarında ise her bir gizli katman içerisinde kendisinden önce gelen öz nitelikleri çeşitli 

ağırlık değerleri ile çarpılıp çeşitli aktivasyon fonksiyonlarına maruz kalarak yeni öz 

nitelikler oluşturmaktadır. Çıkarılan bu öz nitelikler kendisinden önce gelen öz niteliklere 

göre daha yüksek seviyeli olmaktadır. Dolayısıyla gizli katman içerisinde yer alan 

katmanların artırılması yani daha derine gidilmesi öz niteliklerin seviyesini artırdığından çok 

katmanlı algılayıcıların başarısını doğrudan artırmaktadır. Çıktı katmanında ise gizli 

katmanlar vasıtasıyla çıkarılan öz nitelikler problemin tipine göre olasılıksal ya da regresyon 

şeklinde çıktı oluşturarak problemin çözülmesi sağlanmaktadır. Şekil 3.21’de çok katmanlı 

yapay sinir ağı gösterilmektedir. 

 

 
 

Şekil 3.21. Çok katmanlı yapay sinir ağı [52] 
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3.5.2. Evrişimsel sinir ağları 

 

Evrişimsel sinir ağları, diğer bir adıyla konvolüsyonel sinir ağları, derin öğrenme başlığı 

altında yer alan diğer bir sinir ağı çeşididir. Bu ağlar, son yıllarda bilgisayarlı görü alanında 

karşılaşılan çeşitli örüntü tanıma problemlerini çözmek amacıyla yaygın olarak 

kullanılmaktadır. Özellikle obje tanıma, obje tespiti ve obje segmentasyonu gibi yüksek 

seviyeli problemlerde, kural tabanlı görüntü işleme algoritmalarının yetersiz kaldığı 

durumlarda ESA etkili çözümler sunmaktadır. Bu sebeple tez çalışması kapsamında, SVH 

tespitinde kullanılacak olan damar bölütlenmesi işleminde ESA’yı temel alan mimariler 

kullanılmıştır. Şekil 3.22’de en temel yapıda ESA’nın birbirleriyle bağlanarak oluşturduğu 

sınıflandırma mimarisi gözükmektedir. Geliştirilen bu mimari, giriş görüntüleri üzerinden 

kedi köpek gibi birçok sınıfın ayrıştırma işlemini gerçekleştirebilmektedir. 

 

 
 

Şekil 3.22. Evrişimli sinir ağları mimarisi [53] 
 

ESA, canlıların görsel korteksinin öğrenme mantığının örneklenmesi temeline 

dayanmaktadır. Hubel ve Wiesel hayvan beyinleri üzerinde yaptıkları çeşitli deneylerde 

görsel korteks üzerine düşürdükleri görüntüler de korteks üzerinde yer alan algılayıcıların 

birbirinden farklı sinyaller ürettiğini gözlemlemiştir. İlerleyen yıllarda yapılan çeşitli 

çalışmalarda da görsel korteks üzerindeki bazı nöronların görüntü içerisinde yer alan dikey 

kenarlara maruz kaldığında sinyal üretirken diğer nöronların bir kısmının da yatay veya 

diyagonal kenarları tespit ettiğinde sinyal ürettiği gözlemlemiştir. Böylece üretilen farklı 

seviyedeki sinyaller beynin karmaşık görüntü merkezlerine iletilerek görüntü oluşturma 

işlemi gerçekleşmektedir [54]. Evrişimli Sinir Ağları da bu çalışma prensibini referans 

alarak geliştirilmiş olup, görüntüler üzerinde yer alan çeşitli kenar ve köşe gibi problemin 

türüne göre önemli noktalar da sinyal üretme işlemi gerçekleşmektedir. 
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Evrişimli sinir ağları, YSA’nın görüntü işleme problemlerine uygulanabilirliğini artırmak 

amacıyla özelleştirilmesiyle oluşturulmuştur. YSA, temelde girdi katmanları üzerinde yer 

alan her bir girdi vektör değerleri için ağırlık matrisi oluşturmaktadır. Görüntü işleme tabanlı 

problemlerde, giriş vektörleri görüntünün genişlik yükseklik gibi çözünürlük değerine bağlı 

olduğundan, YSA tabanlı mimarilerin kullanılması her bir piksel için ağırlık değerinin 

oluşturulmasına neden olmaktadır. Bu konuya matematiksel biçimde örnek vermek 

gerekirse; 512 x 512 çözünürlük boyutunda 3 kanallı bir görüntü, toplamda 786 432 adet 

pikselden meydana gelmektedir.  İlk katman içerisinde toplam 10 adet nörondan oluşan bir 

YSA mimarisinde, bu boyuttaki giriş için yaklaşık 7 860 432 adet ağırlık değerine ihtiyaç 

duyulmaktadır. Bu durum işlem yükünün artmasına sebep olduğu gibi, YSA’nın yapısından 

kaynaklı giriş vektörü içerisinde yer alan değerlerin birbiriyle ilişkisinin göz ardı etmesine 

de neden olmaktadır. Bu durum görüntü gibi her bir pikselin kendisine komşu piksel ile 

ilişkisi olan görevlerde uygulanabilirlik açısından problem oluşturmaktadır. Bu gibi 

sebeplerden dolayı ESA geliştirilmiştir. 

 

Geçmişli yıllarda bilgisayarlı görü alanında obje tanıma, tespit ve bölütleme gibi çeşitli 

problemler üzerinde, uzmanlar tarafından probleme yönelik filtre tasarımı yapılarak 

görüntüler üzerinde yer alan önemli öz niteliklerin çıkartılması gerekmekteydi. Çıkartılan öz 

nitelikler ilerleyen aşamada, çeşitli makine öğrenmesi veya klasik kural tabanlı algoritmalar 

kullanılarak ilgili probleme yönelik çözüm üretilmekteydi [12]. Evrişimli Sinir Ağları ise 

uzmanlar tarafından probleme yönelik manuel ya da çeşitli algoritmalar vasıtasıyla elde 

edilen öz niteliklerin, geri yayılım algoritması ile otomatik bir şekilde çıkartılmasını 

sağlamaktadır. Yapay sinir ağlarında, her bir katman içerisinde yer alan ağırlık değerleri, 

giriş vektörü ile lineer bir şekilde yapılan matris çarpım işlemi vasıtasıyla yüksek seviyeli 

öz nitelikler elde edilmektedir. Evrişimli Sinir Ağlarında ise her bir katman içerisinde yer 

alan ağırlık değerleri filtre biçiminde tasarlanarak giriş vektörleri ile konvolüsyon işlemine 

maruz kalmaktadır. Bu sayede, görüntü üzerinde her bir piksel, katman içerisinde yer alan 

benzer filtre değerleriyle ile konvolüsyon işlemine tabi tutulmaktadır. Böylece filtreler 

içerisindeki ağırlıkların giriş görüntüsü üzerinde paylaşılma durumu söz konusu olmaktadır. 

Bu nedenle, 224 x 224 x 3 şeklinde bir giriş için 10 adet 3x3 boyutlarda filtre kullanılması 

toplamda 270 adet parametre ihtiyacı oluşturmaktadır. Bu durum, hem işlem yükünün 

azaltılmasını hem de resim gibi piksellerin birbirleriyle ilişkili olduğu problemlerde 

komşuluk ilişkilerinden faydalanılmasını sağlamaktadır [55].  

 



39 

 

Evrişim katmanı 

 

Konvolüsyon ya da diğer bir adıyla evrişim işlemi, mühendislik, olasılık, istatistik, fizik ve 

sinyal işleme gibi birçok farklı alanda uzun yıllardır bilinen ve yaygın olarak kullanılan 

matematiksel işlemdir. Genellikle bu işlem bir fonksiyonun şeklinin başka bir fonksiyon 

tarafından nasıl modifiye edildiğini gösterdiğinden bu işlem vasıtasıyla, birim dürtü yanıtı, 

h(t), bilinen lineer bir sistemin, herhangi bir giriş işaretine, x(t),  karşılık üreteceği çıkış 

sinyalini, y(t), zaman domaininde bulunmasında kullanılmaktadır [56].  Literatürde 

konvolüsyon işlemi gösteriminde yaygın olarak  “*” sembolü kullanılmaktadır. Şekil 

3.26’da lineer bir sisteme uygulanan konvolüsyon işleminin blok diyagramı ile bu işlemin 

ayrık domainde oluşturduğu matematiksel eşitlikler gösterilmektedir; 

 

 

 

     *

Linear

x t system y t

h t

x t h t y t

 


 

 

Şekil 3.23. Konvolüsyon işlemi blok gösterimi  
 

y[t] = x[t] ∗ h[t]                                                                                                                             (3.6) 

 

y[n] = ∑ x[n] ⋅ h[n − k]

𝑘=+∞

𝑘=−∞

                                                                                                       (3.7) 

 

Görüntü işleme alanında, nesne tanıma, sınıflandırma ve tespit gibi problemler için yaygın 

olarak kullanılan derin öğrenme tabanlı ESA mimarilerinin, evrişim katmanlarında temel 

olarak konvolüsyon işlemi kullanılmaktadır. Bu işlem, tek boyutlu ayrık domainde 

uygulanan konvolüsyon işleminin özelleştirilmesiyle görüntü üzerinde 

gerçekleştirilmektedir. Genellikle bu özelleştirme işlemi iki boyutlu veya üç boyutlu girdi 

görüntülerine bağlı olarak Eşitlik 3.7 üzerine boyut ekleme işlemi vasıtasıyla yapılmaktadır. 

Bu sayede, görüntüdeki özelliklerin çıkarılması ve nesne tanıma, sınıflandırma ve tespit gibi 

problemlerin çözümleri için gerekli olan öz nitelik bilgilerinin otomatik olarak elde edilmesi, 

geri yayılım algoritmasıyla beraber kullanılarak mümkün olmaktadır. 
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Görüntüler üzerinde uygulanan konvolüsyon işleminin daha detaylı incelemesi Şekil 3.24 

üzerinde gösterilmektedir. Şekil üzerinde görüleceği üzere konvolüsyon işleminin ilk 

aşamasında, H ile gösterilen çekirdek matrisi 180 derece döndürüldükten sonra görüntü 

üzerine yerleştirilmektedir. İkinci aşamada ise görüntü üzerine yerleştirilen filtre matrisinin 

içerisindeki değerlerin görüntü üzerinde karşılık geldiği piksel değerleriyle önce çarpma 

işlemi ardından toplama işlemi yapılarak yeni piksel değeri elde edilmektedir. Üçüncü 

aşamada elde edilen yeni piksel değeri, filtrenin yerleştiği görüntüdeki merkez değeri ile 

değiştirilmektedir. Son aşamada ise ilk üç aşamada yapılan bu işlemler, çekirdek matrisinin 

tüm görüntü boyunca belirlenen adım sayıları ile kaydırılmasıyla tekrar etmektedir. Bu 

kapsamda Eşitlik 3.8’de görüntüler üzerinde uygulanan iki boyutlu konvolüsyon işlemi 

gösterilmektedir. Burada girdi matrisi yani giriş görüntüsü f ile simgelenirken, görüntü 

içerisindeki piksel konumları “k” ve “l” ile gösterilmektedir. H ise filtre matrisini 

simgelemektedir, “i” ve “j” değerleri ise filtre matrisi içerisindeki elemanların 

ötelenmelerinde kullanılmaktadır. İlk üç aşamada bahsedilen işlemlerin açık hali aşağıda 

gösterilmektedir; 

 

 𝑓 ∗ ℎ = ∑ ∑ 𝑓(𝑘, 𝑙) ℎ(i − k , j − l)

𝑙𝑘

                                                                                      (3.8) 

𝑓 = [

𝑓1𝑓2𝑓3

𝑓4𝑓5𝑓6

𝑓7𝑓8𝑓9

] , ℎ = [

ℎ1ℎ2ℎ3

ℎ4ℎ5ℎ6

ℎ7ℎ8ℎ9

] 

𝑓 ∗ ℎ = 𝑓1ℎ9 + 𝑓2ℎ8 + 𝑓3ℎ7 + 𝑓4ℎ4 + 𝑓5ℎ5 + 𝑓6ℎ6 + 𝑓7ℎ3 + 𝑓8ℎ2 + 𝑓9ℎ1                      (3.9) 

 

Görüntü Matrisi                                                               Çıktı Matrisi 

 

                                                                      

Çekirdek Matrisi 

                                     

 

Şekil 3.24. Konvolüsyon işlem gösterimi 

 

23     

     

     

     

     

     

0 0 0 0 0 0 

0 30 55 80 105 130 

0 42 34 26 18 10 

0 89 23 43 109 175 

0 102 44 14 72 130 

0 55 45 35 25 15 

0 23 75 127 179 231 

0 -1  0 

-1  4 -1 

 0 -1  0 
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Evrişimsel sinir ağları ismini ne kadar konvolüsyon işleminden almış olsa da Pytorch, 

Tensorflow gibi çeşitli derin öğrenme kütüphanelerinde, hız optimizasyonu açısından 

konvolüsyon işlemi yerine çapraz korelasyon işlemi tercih edilmektedir. Evrişim işleminde, 

görüntü üzerine yerleştirilen filtre ile görüntü elemanları arasında çarpım işlemi yapılmadan 

önce filtre 180 derece döndürülmektedir. Çapraz korelasyon tekniğinde ise doğrudan 

görüntü üzerine yerleştirilen filtre ile karşılık geldiği piksel elemanları doğrudan 

çarpılmaktadır. Bu durum teoride öğrenme işlemi sırasında, başarı açısından herhangi bir 

sonuç değişikliği yapmamaktadır. Bunun temel nedeni evrişim tekniği ile öğrenilmiş 

filtreler, çapraz doğrulama ile öğrenilmiş filtrelerin döndürülmüş halidir. Bu kapsamda, 

çapraz korelasyon işlemine ait matematiksel ifade Eşitlik 3.10’da gösterilmektedir;  

 

(𝐼 ⊗ 𝐹)𝑚,𝑛 = ∑ ∑ 𝐼[ⅈ, 𝑗̇]𝐹[𝑚 + ⅈ, 𝑛 + 𝑗]

𝑖=+∞

𝑖=−∞

𝑗=+∞

𝑗=−∞

                                                                   (3.10) 

 

Evrişimsel sinir ağları içerisinde çapraz korelasyon işlemi kullanılmış olsa da literatürde bu 

işlemi anlatmak amacıyla yaygın olarak evrişim terimi kullanılmaktadır. Bu nedenle 

gerçekleştirilen tez çalışma kapsamında da çapraz doğrulama işlemi evrişim işlemi olarak 

adlandırılacaktır. Şekil 3.25’de 5x5 boyutundaki giriş görüntüsünün 3x3 boyutundaki filtre 

ile evrişim işlemindeki her bir adım gösterilmektedir.  

 

 
 

Şekil 3.25. Evrişimsel sinir ağlarında evrişim işlemi 
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Havuzlama ve ortalama katmanları 

 

Havuzlama katmanları(Pooling Layers). Literatürde derin öğrenme alanında yaygın olarak 

maksimum havuzlama ve ortalama havuzlama olmak üzere iki temel havuzlama katmanı yer 

almaktadır. Maksimum havuzlama işleminde belirlenen filtre boyutu belirli adım aralığında 

görüntü içerisinde kaydırılarak pencere içerisinde kalan değerlerden maksimum yanıtı veren 

ilgili pencereyi temsil eden değer çıktı olarak kullanılmaktadır. Ortalama havuzlama 

katmanı da maksimum havuzlama katmanına oldukça benzer olmakla birlikte birbirini 

ayıran en temel özellik ise pencere içerisindeki değerlerin ortalaması alınarak pencereyi 

temsil eden değer belirlenmektedir [57]. Havuzlama katmanları genellikle ESA 

katmanlarının ardından oluşan öz nitelik haritasının boyutunu azaltarak hesaplama işleminin 

maliyetini düşürdüğü gibi görüntüler içerisinde yer alan öteleme hareketinden etkilenmeyen 

öz nitelik haritalarının oluşmasını sağlamaktadır. Şekil 3.26’da maksimum havuzlama 

katmanı ve ortalama havuzlama katmanının yaptığı işlemler gösterilmektedir. 

 

 
 
Şekil 3.26. Maksimum ve ortalama havuzlama katman [57] 
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Sıkıştır ve uyarma ağ katmanı 

 

Sıkıştır ve uyarma ağ katmanı(Squeeze and Excitation Network), Jie Hu ve arkadaşları 

tarafından 2018 yılında derin öğrenme algoritmalarının ürettiği öz nitelik haritalarının temsil 

güçlerini artırmak amacıyla geliştirilmiştir. Bu ağlar temelde sıkıştırma, uyarma ve 

örnekleme olmak üzere üç ana parçadan meydana gelmektedir. Sıkıştırma aşamasında giriş 

görüntüsü veya öz nitelik haritası küresel havuzlama katmanından geçirilmektedir. Böylece 

giriş görüntüsü veya öz nitelik haritası uzamsal çözünürlüklerden arındırılarak kanal sayısı 

kadar bilgi içermektedir. Uyarma bölümünde ise YSA veya ESA ile birlikte aktivasyon 

fonksiyonları kullanılarak kanalların birbirleriyle olan ilişkileri çıkartılmaktadır. Bu sayede 

her bir kanal için önem değerleri belirlenmiş olmaktadır. Bu değerler son aşama olan 

ölçekleme aşamasında tekrardan giriş görüntüsü veya öz nitelik haritası ile çarpılarak 

kanalların içerdiği önemli bilgiler korunurken önemsiz bilgiler ise bastırılmaktadır [58]. 

Şekil 3.27’de sıkıştır ve uyarma bloğu gösterilmektedir.  

 

 
 

Şekil 3.27. Sıkıştır ve uyarma bloğu [59] 
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Atrous uzamsal piramit havuzlama katmanı 

 

Atrous uzamsal piramit havuzlama katmanı(Atrous Spatial Pyramid Pooling), 2016 yılında 

Liang-Chieh Chen ve arkadaşları tarafından segmentasyon mimarilerinin farklı ölçeklerdeki 

objelerden etkilenme probleminin önüne geçebilmek amacıyla geliştirilmiştir. Bu katman 

içerisinde giriş görüntülerine veya öz nitelik haritalarına farklı genişleme değerlerine sahip 

ESA uygulanarak filtrelerin görüş alanları artırılmaktadır. Böylece geniş bağlam bilgisine 

ulaşılarak, farklı ölçeklerdeki objelerin tespitinde kullanılabilecek yüksek seviyeli 

öznitelikleri çıkarılmaktadır. Katman çıkışında bu öz nitelikler tekrardan birleştirilerek, ESA 

uygulanarak kompakt yapıda öz niteliklerin çıkartılması sağlanmaktadır. Bu sayede kenar 

köşe gibi bölümlerde segmentasyon çıktılarındaki yerelleştirme problemi çözülerek daha 

başarılı çıktılar elde edilmektedir [12]. Şekil 3.28’de Atrous Uzamsal Piramit Havuzlama 

bloğu gösterilmektedir. 

 

 
 

Şekil 3.28. Atrous uzamsal piramit havuzlama katmanı [12] 
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3.5.3. Yinelemeli sinir ağları 

 

Yinelemeli sinir ağları(Recurrent Neural Network),  derin öğrenme alanında kullanılan 

yapay sinir ağlarının özelleştirilmesiyle oluşturulmuştur. Temelde yapay sinir ağları, girdi 

vektörleri içerisindeki bilgiler arasında sıralı bir ilişki içermezken, yinelemeli sinir ağları 

girdi bilgileri içerisindeki zamansal bağımlılıkları modellemek için geliştirilmiştir. Bu 

kapsamda yinelemeli sinir ağları, doğal dil işleme, konuşma tanıma, zaman serisi verileri 

gibi giriş bilgilerinin birbirleriyle sıralı ilişkisi olan problemlerde yaygın olarak 

kullanılmaktadırlar.  

 

Yinelemeli sinir ağı mimarileri, temelde çok sayıda tekrar eden YSA hücrelerinden meydana 

gelmektedir. Bu hücreler, her bir adımda önceki adımdan elde edilen bilgiyi hafızalarında 

tutarlar ve bu bilgiyi mevcut girdi verileriyle birleştirerek daha doğru bir çıktı bilgisi 

üretmektedir. Yinelemeli sinir ağı mimarilerinde yer alan her bir hücrede aynı ağırlık 

değerlerine sahip YSA tekrarlı olarak kullanılmaktadır. Bu durum eğitim işlemi esnasında 

ağırlık paylaşım durumunu sağlayarak kullanılacak parametre sayısını azaltmaktadır. Bu 

kapsamda geleneksel yinelemeli sinir ağı mimarisi, Şekil 3.29'da gösterilmiştir. Mimari 

içerisinde, giriş vektörleri “x” ile temsil edilirken, her bir hücrede hesaplanan aktivasyon 

değerleri “a” harfi ile ifade edilmektedir. Bu yapıda, her hücre, önceki adımdan gelen 

aktivasyon değerleri ile mevcut girdi vektörlerini birleştirerek yeni bir aktivasyon değeri 

üretmektedir. Bu aktivasyon değeri, hem bir sonraki adımın hesaplamalarında kullanılırken, 

hem de çıktı değeri olarak kullanılabilmektedir [60]. 

 

 
 

Şekil 3.29. Geleneksel yinelemeli sinir ağı mimarisi [60] 
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Yinelemeli sinir ağı mimarilerine daha detaylı inceleyecek olursak, Şekil 3.30’da mimari 

içerisinde her bir hücrede kullanılan bileşenler ile bu bileşenlerden çıkış sinyali üretmede 

faydalanılan matematiksel ifadeler gösterilmektedir. Denklemler üzerinde açıkça görüleceği 

üzere, t anındaki giriş vektörü ve kendisinden önceki hücreden ”t-1” anında gelen aktivasyon 

sinyalleri YSA hücrelerinin içerdiği ağırlık ve bias değerleriyle işlenerek aktivasyon çıktı 

sinyali oluşturmaktadır. Bu sinyal ise son aşamada üçüncü bir YSA hücresinin içerdiği 

ağırlık ve bias değerleriyle işlenerek çıktı sinyali oluşturmaktadır. 

 

𝑎(𝑡) = 𝑔1(𝑊𝑎𝑎𝑎(𝑡−1) + 𝑊𝑎𝑎𝑥(𝑡) + 𝑏𝑎 )                                                                                  (3.11) 

 

𝑦(𝑡) = 𝑔2(𝑊𝑦𝑎𝑎(𝑡) + 𝑏𝑦 )                                                                                                          (3.12) 

 

 
 

Şekil 3.30. Yinelemeli sinir ağı hücre gösterimi [60] 
 

Yinelemeli sinir ağı temelli çalışmalar incelendiğinde, dil işleme problemleri gibi uzun sıralı 

girdi verileri içeren alanlarda geri yayılım algoritmasında kullanılan türev değerlerinin yok 

olması ve sadece geçmişteki bilgiden yararlanılması gibi problemler ortaya çıkmaktadır. Bu 

durum, gelecekteki bilginin kullanılamaması ve dolayısıyla dil işleme gibi sıralı bilgi içeren 

problemlerde düşük başarılı sonuçların üretilmesine neden olabilmektedir [61]. Bu 

kapsamda hücreler içerisindeki yapılan geliştirmeler sonucunda yeni yaklaşımlar elde 

edilmiştir. 
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Geçitli tekrarlayan üniteler 

 

Yinelemeli sinir ağı temelli çalışmalar incelendiğinde, geri yayılım algoritması vasıtasıyla 

ağırlık değerlerinin güncellenmesi için kullanılacak olan türev değerlerinin uzun sıralı gelen 

cümlelerde yok olması ve sadece geçmişteki bilgiden yararlanılması sebebiyle, dil işleme 

problemlerinde iyi sonuçlar üretmek zor olabilmektedir. Bunun temel nedeni türev değerleri 

güncelleme işlemi esnasında kullanıldığında ağırlık değerlerinin kaybolmasına yol açarak 

etkili bir şekilde eğitim işlemini mümkün kıldırmamaktadır. Bu problemin önüne geçilmesi 

amacıyla literatürde yaygın olarak kullanılan geçitli tekrarlayan ünite(Gated Recurrent Unit) 

geliştirilmiştir [62].  

 

Geçitli tekrarlayan üniteler(GRU) temelde yinelemeli sinir ağı hücrelerinin 

özelleştirilmesiyle oluşturulmuştur. Bu özelleştirme işleminde, güncelleme ve uygunluk adı 

verilen yeni iki adet kapı kullanılmaktadır. Bu kapılar vasıtasıyla t-1 anında gelen aktivasyon 

bilgisinin, t anında gelen giriş bilgisi ile ilişkisi uygunluk kapısı vasıtasıyla bulunurken, 

güncelleme kapısı vasıtasıyla da geçmişten gelen gizli durum bilgilerinin ağırlıkları 

belirlenmektedir. Bu sayede geri yayılım algoritması sırasında elde edilen türev değerlerinin 

yok olması önlenmektedir. Bu kapsamda Şekil 3.31’de geçitli tekrarlayan birim hücresi 

gösterilmektedir [60]. 

 

 
 

Şekil 3.31. Geçitli tekrarlayan ünite gösterimi [60] 
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Uzun kısa vadeli bellek  

 

Uzun kısa vadeli bellek(Long Short Term Memory) hücreleri, uzun ve kısa dönem bellekleri 

bir arada kullanarak uzun dönem bağımlılıkları modellemek için tasarlanmış bir yinelemeli 

sinir ağı hücresidir. Uzun kısa süreli bellek(LSTM) hücreleri tıpkı GRU hücresinde olduğu 

gibi, girdiler, aktivasyon sinyalleri ve gizli durum bilgilerini kontrol eden kapı 

mekanizmalarını kullanarak, hafızadan uzun dönem boyunca faydalanabilmektedir. Bu 

sayede, zaman içerisindeki giriş sinyalleri arasındaki bağımlılıklar daha iyi modellenerek 

daha anlamlı sonuçlar elde edilmektedir. 

 

LSTM hücreleri temelde GRU hücrelerine oldukça benzer olmakla birlikte, unutma ve çıkış 

kapısı olmak üzere iki adet yeni kapı eklenmiş yeni sürümüdür. Unutma kapısı vasıtasıyla, 

“t-1” anında geçmişten gelen gizli durum bilgilerinden hangi bilginin unutulacağı 

belirlenmektedir. Çıkış kapısı vasıtasıyla ise hafıza hücrelerinde yer alan bilgilerin ne 

kadarının son çıktıya etki edeceği kontrol edilebilmektedir [60]. Bu kapsamda Şekil 3.32’de 

LSTM hücresi gösterilmektedir; 

 

 
 
Şekil 3.32. Uzun kısa süreli bellek hücre gösterimi [60] 
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Dikkat mekanizmaları 

 

LSTM veya GRU hücreleri içerisine yerleştirilen hafıza bellek hücreleri, her ne kadar uzun 

sıralı girişe sahip problemlerde türev değerlerinin yok olmasının önüne geçmiş olsa da, bu 

tarz mimariler çeviri gibi dil modelleme problemlerinde düşük başarı skoru ile sonuç 

üretmektedir. Bu durumun temel nedeni, uzun cümleler içerisinde yer alan kelimelerin 

birbirleriyle olan ilişkilerinin çıkartılmasında LSTM veya GRU hücreleri yetersiz 

kalabilmektedir. Bu mimariler, yalnızca kendisinden bir adım önce veya bir adım 

sonrasındaki aktivasyon veya gizli durum bilgilerinden belirli ağırlık oranında 

faydalanabilmektedir. Kelimeler arasındaki uzaklık arttıkça bu faydalanma oranı azalır ve 

özellikle çeviri gibi uzun cümlelerde düşük başarı skorlarının üretilmesin neden olmaktadır.  

 

LSTM mimarilerinin çeviri gibi problemlerde yetersiz kalmasının engellemek amacıyla 

ilerleyen yıllarda LSTM blokları içerisinde yer alan gizli durum bilgilerinin birbirleriyle 

ilişkilerinin çıkartılması amacıyla dikkat mekanizması(Attention Mechanism) adı verilen 

bloklar geliştirilmiştir. Bu bloklar vasıtasıyla, her bir giriş adımında çıkartılan gizli durum 

bilgilerinden sıra bağımsız bir şekilde sıralı tüm çıkış vektörleri faydalanabilmektedir. Şekil 

3.33’de “y” harfi sıralı çıkış kelimelerini simgelerken “h” harfi ise sıralı gizli katman 

bilgilerini içermektedir. Softmax fonksiyonu vasıtasıyla her bir gizli katman bilgisinin 

ağırlığı belirlenerek çıkış vektöründe tüm bilgilerden faydalanılması sağlanmaktadır. Bu 

kapsamda elde edilen bu yaklaşım,  Bahdanau ve arkadaşları tarafından geliştirilmiş olup, 

ekleme tarzında dikkat mekanizması(Additive Style Attention Mechanism) olarak 

adlandırılmaktadır [63]. 

 

 

 

Şekil 3.33. Ekleme tarzında dikkat mekanizması blok gösterimi [64] 
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Şekil 3.33’de gösterilen, eklemeli dikkat mekanizması bloğu, sıralı tüm kodlayıcı gizli 

durum bilgileri ile çıkışa karşılık gelen kod çözücü gizli durum bilgilerini, YSA vasıtasıyla 

kullanarak skor değerleri oluşturmaktadır. Bu değer ilerleyen aşamada, softmax 

fonksiyonundan yararlanılarak, çıkışa karşılık gelen kod çözücü ile kodlayıcı kısımdaki gizli 

durum bilgilerinin birbirleriyle arasındaki ilişkiyi veren kat sayılar hesaplanmaktadır. Bu 

katsayılarda doğrudan içerik vektörünün(Context Vector) hesabında kullanılmaktadır. Son 

aşamada içerik vektörü ve kod çözücü gizli katman bilgisi tekrardan kullanılarak çıkış 

kelime vektörü oluşturulmaktadır. Bu işlemleri içeren matematiksel ifadeler aşağıda 

gösterilmektedir. Eşitlikler içerisindeki, “s” harfi bir önceki kod çözücü gizli durum bilgisini 

temsil ederken, “h” harfi ise kodlayıcı kısmındaki gizli durum bilgisini temsil etmektedir. 

Kelimelerin birbirleriyle ilişki kat sayılarını çıkarmada kullanılan Softmax fonksiyonu ise 

Eşitlik 3.14’de gösterilmektedir.  

 

𝑆𝑐𝑜𝑟ⅇ(𝑠𝑡−1, ℎ𝑖  ) = 𝑣𝑎
𝑇 tanh(𝑊1ℎ𝑖 + 𝑊2𝑠𝑗)                                                                          (3.13) 

 

𝑎𝑡,𝑖 =
ⅇ(𝑆𝑐𝑜𝑟𝑒(𝑠𝑡−1,ℎ𝑖))

∑ ⅇ(𝑆𝑐𝑜𝑟𝑒(𝑠𝑡−1,ℎ𝑖′))𝑛
𝑖′=−1

                                                                                                   (3.14) 

 

𝑐𝑡 = ∑ 𝑎𝑡,𝑖 ℎ𝑖                                                                                                                              (3.15)

𝑙

 

 

İlerleyen yıllarda yapılan çalışmalarda Bahdanau ve arkadaşları tarafından geliştirilen 

eklemeli dikkat mekanizma bloğunun uzun cümlelerde softmax aktivasyon fonksiyonundan 

kaynaklı doyuma gittiği ve içerisinde yer alan yapay sinir ağlarından kaynaklı hesaplama 

maliyeti ürettiği gözlemlenmiştir. Bu kapsamda Luong ve arkadaşları tarafından nokta 

çarpım dikkat mekanizma(Dot Product Attention)  bloğu geliştirilmiştir. Geliştirilen yeni 

yaklaşım,  kodlayıcı ve kod çözücü kısımlarında üretilen gizli durum bilgilerinin doğrudan 

çarpılarak oluşturduğu çıktı vektörünün Softmax aktivasyon fonksiyonu uygulaması 

yapılarak, ağırlık katsayılarının hesaplanmasını sağlamaktadır [65]. Bahdanau ve 

arkadaşlarında olduğu gibi Luong ve arkadaşları tarafından da başarıyı artırmak amacıyla 

YSA kullandıkları çeşitli denklem formları da yer almaktadır. Literatürde bu formlardan en 

çok kullanılanı nokta çarpım dikkat mekanizması olarak adlandırılmaktadır ve doğrudan kod 

çözücü gizli durum bilgileri ile kodlayıcı gizli durum bilgilerinin çarpılması ile elde 

edilmektedir. 
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Dönüştürücü mekanizmaları 

 

Dikkat mekanizmaları, çeviri gibi problemlerde oldukça başarılı olmasına rağmen, kelime 

içerisindeki özelliklerin çıkarılması konusunda bazen yetersiz kalabilmektedir. Bu nedenle, 

2017 yılında Vaswani ve arkadaşları tarafından, dönüştürücüler(Transformers) adı verilen 

blok mimarileri geliştirilmiştir. Dönüştürücü blokları içerisinde kullanılan yapılar, veri 

tabanı sistemlerinden etkilenerek isimlendirilmiştir. Örneğin, Youtube’da her bir video için 

başlık gibi anahtar(Key) kelimeler içermektedir. Kullanıcıların arama yaparken, izlemek 

istediği videoları bulması ise sorgu(Query) durumunu simgelemektedir. Arama sonuçlarına 

bağlı olarak önerilen videolar ise çıktı değerlerini(Value) simgelemektedir. Bu nedenle 

dönüştürücü mimarilerinde, giriş vektörleri üç farklı yapay sinir ağından geçirilir ve her bir 

sinir ağının çıktısı, "key", "query" ve "value" olmak üzere üç farklı gömme 

vektörü(Embedding Vector) elde edilmektedir. Bu vektörlerden “key” ve “query”, dikkat 

mekanizması vasıtasıyla, sıralı giriş cümlesindeki kelimeler arasındaki ilişkiyi veren kat 

sayılarının hesaplanması için kullanılır ve çıkış “value” ile ilişkilendirerek çıkış vektörü 

oluşturulmaktadır [66]. Bu duruma ait ikinci kelime ile alakalı dönüştürücü çıkış vektörünün 

matematiksel ifadesi Eşitlik 3.16’da verilmekte olup ve Şekil 3.34’de gösterilmektedir. 

 

𝐴(𝑞2, 𝐾, 𝑉) = ∑
ⅇ(𝑞2𝑘𝑖

𝑇)

∑ ⅇ(𝑞2𝑘𝑗
𝑇)

𝑗

 x 𝑣𝑖                                                                                            (3.16)

𝑇

𝑖=1

 

 

 
 

Şekil 3.34. Nokta çarpım dikkat mekanizması blok gösterimi [64] 
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Dönüştürücü blokları detaylı incelendiğinde, temelini çok sayıda nokta çarpım dikkat 

mekanizması bloklarının bir araya gelerek oluşturduğu çoklu kafa dikkat (Multi Head 

Attention) hücrelerinden meydana gelmektedir. Burada dikkat edilmesi gereken kısım 

“query” ve “key” öz nitelik vektörlerinin nokta çarpım dikkat mekanizması sonuçları 

incelendiğinde, Softmax aktivasyon fonksiyonunun doyuma gittiği gözlemlenmiştir. Bu 

durumun önüne geçebilmek amacıyla ölçeklendirme işlemi yapılmış ve bu sebeple 

ölçeklendirilmiş nokta çarpım dikkat mekanizması(Scaled Dot Product Attention) olarak 

isimlendirilmektedir [66].  

 

Dönüştürücü blok hücreleri içerisinde dikkat mekanizması bloklarının yanı sıra öz nitelik 

seviyesini yükseltmek amacıyla yapay sinir ağları, eğitim sürecini hızlandırmak amacıyla 

çeşitli katman normalizasyonu(Layer Normalization) teknikleri ve türev değerlerinin yok 

olması probleminin önüne geçmek için kullanılan çeşitli kısa yol bağlantıları(Shortcut 

Connections) da yer almaktadır [17], [67]. Şekil 3.35’de dönüştürücü mimarisini oluşturan 

birimler detaylı bir şekilde gösterilmektedir. 

 

 
 
Şekil 3.35. Dönüştürücü mekanizması blok gösterimi [64] 
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Görüntü dönüştürücü mekanizmaları 

 

Dönüştürücü mimarilerinin doğal dil işleme problemlerindeki başarısı, bu yaklaşımın 

görüntü problemlerine de uygulanabilme sorusunu akıllara getirmiştir. Bu kapsamda 

Dosovitskiy ve ekibi tarafından ilk kez görüntü üzerinden nesne tanıma problemlerine 

görüntü dönüştürücüler(Vision Transformers) mimarisi yaklaşımını geliştirmiştir. Şekil 

3.36’da görüntü dönüştürücü mimari gösterilmektedir [68]. 

 

 
 

Şekil 3.36. Görüntü dönüştürücü mimarisi [68] 
 

Dönüştürücü mimarileri, doğal diş işleme alanında giriş cümlesi içerisinde yer alan sıralı 

kelime vektörleri üzerinde çalışmaktadır. Bu kapsamda bu mimarinin görüntüye 

uygulayabilmek için ilk aşamada görüntüler, parça(Patch) adı verilen sıralı bölümlere 

ayrılmaktadır. İkinci aşamada, her bir parçanın görüntü üzerinde konum bilgisinden 

faydalanabilmek için, gömme(Embedding) adı verilen öğrenebilir parametreler ile 

birleştirilmektedir. İlerleyen aşamalarda ise klasik dönüştürücü mimarinde olduğu gibi 

katman normalizasyonu,  çoklu kafa dikkat mekanizmaları ve YSA içeren dönüştürücü bloğa 

maruz kalarak çıktı oluşturulmaktadır. Bu çıktılar problemin zorluğuna göre tekrardan 

dönüştürücü bloğuna verilerek daha yüksek seviyeli öz niteliklerin çıkartma işlemi 

gerçekleştirilmektedir. Son aşamada ise elde edilen çıktı, sınıflandırma katmanına verilerek 

görüntü tanıma problemi gerçekleşmektedir. Geliştirilen bu mimari ESA’na göre daha az 

işlem yüküne sahip olduğu gibi ve yüksek sayıda veri içeren veri setlerinde uygulandığında 

daha yüksek sonuçlar elde ettiği kanıtlanmıştır [68].  
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 3.5.4. Evrişimsel sinir ağı modelleri 

 

Evrişimsel Sinir Ağları kullanılarak yapılan bölütleme veya segmentasyon çalışmaları genel 

olarak örnek segmentasyonu ve semantik segmentasyon olmak üzere iki ayrı kategoride 

değerlendirilmektedir. Semantik bölütleme problemlerinde, görüntüde objelerin içerdiği her 

bir piksel objenin türüne göre önceden tanımlanmış bir sınıf etiketi atanırken, örnek 

bölütleme de ise aynı türe ait farklı objelere farklı sınıf etiketleri atanmaktadır. 

Gerçekleştirilen tez çalışması kapsamında SVH tespiti amacıyla damar bölümlerinin 

ayrıştırılması işlemi piksel seviyesinde sınıflandırma problemi olan semantik segmentasyon 

başlığı altında yer almaktadır. 

 

Bu bölüm başlığı altında, medikal alanda semantik segmentasyon problemlerinde literatürde 

yaygın olarak kullanılan mimarilerin incelenmesi gerçekleştirilmiştir. İlerleyen bölümlerde 

ise bu mimariler gerçekleştirilecek olan beyin bölgesindeki damarların bölütlenmesi 

problemine uyarlanma işlemi sağlanmıştır. Böylece gerçekleştirilen tez çalışması 

kapsamında farklı mimarilerin başarıları kıyaslanarak, problem için en uygun mimarinin 

tespiti sağlanmıştır. 

 

U-Net  

 

U-Net mimarisi, Ronneberger ve arkadaşları tarafından 2015 yılında ışık mikroskobu 

vasıtasıyla elde edilen biyomedikal görüntüler üzerindeki çeşitli hücrelerin 

segmentasyonunu yapmak amacıyla geliştirilmiştir. Temelde Evrişimli Sinir Ağlarının bir 

araya getirilerek oluşturduğu bu mimari U-Net olarak adlandırılmaktadır. U-Net mimarisi 

literatürde yaygın olarak medikal görüntüler üzerinde kullanıldığı gibi, bilgisayarlı görü 

alanında gerçekleştirilen otonom sürüş için sahne algılama problemlerinde, uzaktan algılama 

ile elde edilmiş görüntülerin analizinde, sanal gerçeklik veya artırılmış gerçeklik gibi çeşitli 

problemlerde de aktif olarak kullanılmaktadır. Mimari yapısı ilerleyen sayfada Şekil 3.37’de 

görüleceği üzere U harfine benzer bir yapıdan meydana geldiğinden geliştirilen mimariye 

U-Net ismi verilmiştir [27]. Geliştirilen bu mimari, literatürde yer alan derin öğrenme tabanlı 

geliştirilen mimarilere kıyasla daha az veride daha yüksek skorlar elde edebilmektedir. Bu 

nedenle, literatürde U-Net mimarisinden medikal görüntüleme alanında yaygın olarak tercih 

edilmektedir. 



55 

 

Şekil 3.37’de görüleceği üzere U-Net mimarisi kodlayıcı(Encoder) ve kod çözücü(Decoder) 

adı verilen birbirine paralel iki bölümden meydana gelmektedir. İlk bölüm kodlayıcı adı 

verilen ve içerisinde yer alan her bir katmanda öz nitelik haritasının çözünürlük boyutu 

havuzlama katmanı vasıtasıyla azaltılmaktadır. Bu duruma ek olarak evrişimli sinir ağları 

içerisinde yer alan filtreleme işlemleri vasıtasıyla da çıkarılan öz niteliklerin seviyesi 

artmaktadır bu durum ölçek boyutundan bağımsız segmentasyon çıktısı sağlayarak başarılı 

bir şekilde öz niteliklerin oluşturulmasını sağlamaktadır. 

 

 
 

Şekil 3.37. U-Net mimarisi [27] 
 

U-Net mimarisinin ikinci bölümünde ise kodlayıcı kısmının son bölümünde elde edilen öz 

nitelik haritası tekrardan yukarı örnekleme(Up Sampling) işlemine maruz kalarak uzamsal 

çözünürlük boyutu artırılmaktadır. Çözünürlüğü artan öz nitelikler, tekrardan kodlayıcı 

bölümündeki öz niteliklerle birleştirilerek kodlayıcı bölümünde elde edilen öz niteliklerden 

faydalanılması sağlanmaktadır. Oluşturulan yeni öznitelikler tekrardan ESA maruz kalarak 

yüksek seviyeli yeni öz nitelik haritaları oluşmaktadır. Bu durum giriş görüntüsü boyutu elde 

edilinceye kadar tekrarlı bir şekilde devam etmektedir. Böylece segmentasyon işleminde 

ölçekten bağımsız, kenar ve köşe bölümlerinde daha başarılı bir segmentasyon çıktısı elde 

edilmektedir. 
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ResUNet  

 

ResUNet mimarisi, 2017 yılında uzaktan algılanmış hava görüntüleri üzerinden yolların 

segmentasyonu problemini çözmek için geliştirilmiş mimaridir. Konsept olarak U-Net 

mimarisine oldukça benzer olduğu gibi birbiri arasındaki en temel fark ise mimari içerisinde 

yer alan kodlayıcı ve kod çözücü katmanlarında kısa yol adı verilen bağlantı 

yollarının(Shortcut Connections) yer almasıdır [69].  

 

ResNet mimarisinde bilindiği üzere mimarilerin daha derin bir şekilde tasarlanabilmesi ve 

geri yayılım algoritması sonucunda üretilen türev değerlerinin yok olmasının önüne 

geçebilmek amacıyla kısa yol adı verilen bağlantılar geliştirmiştir [17]. Bu bağlantılar, U-

Net içerisinde yer alan kodlayıcı ve kod çözücü kısımlarındaki her bir bölüme entegre 

edilerek, katmanlar içerisindeki bilgi akışını artırdığı gibi daha derin mimarilerinin 

oluşturulması ve verimli bir şekilde eğitilmesine imkan sağlamaktadır. Böylece kodlayıcı 

kısmından kod çözücü kısmına uzanan bağlantı yollarında da bilgi aktarımı daha kolay 

sağlanacağından daha az parametre ile daha fazla başarı skoru elde edilmektedir. Şekil 

3.38’de ResUNet mimarisi detaylı bir şekilde gösterilmektedir.  

 

 
 

Şekil 3.38. ResUNet mimarisi [72] 



57 

 

ResUNet++  

 

ResUNet++ mimarisi, 2019 yılında kolorektal kanser hastalığının oluşmasına neden olan 

polip hücrelerinin endoskopi görüntüleri üzerinden segmentasyonu için geliştirilmiştir. 

ResUNet++ mimarisi, ResUNet mimarisinden esinlenilerek oluşturulduğundan kodlayıcı ve 

kod çözücü olmak üzere iki ana bölümden oluşmaktadır. UNet ve ResUNet mimarisinden 

farklı olarak kod çözücü kısmında kanalların birbiriyle olan ilişkilerinin çıkartmak için 

sıkıştırma ve uyarma blokları eklenmiştir[59]. Kenar, köşe gibi bölgelerde segmentasyon 

başarılarını artırmak ve kodlayıcı ile kod çözücü arasındaki geçiş kısmı olan köprü kısmına, 

filtrelerin etki ettikleri alanların görüş alanını artırmak amacıyla Atrous uzamsal piramit 

havuzlama katman bloğu kullanılmıştır[12]. Bu duruma ilave olarak kodlayıcı kısmından 

gelen bilgiler ve kod çözücü kısımdaki bilgiler doğrudan birleştirmek yerine, kodlayıcı 

kısmındaki bilgileri kullanarak kod çözücü kısmından gelen önemli öz niteliklerin 

belirginliğini artırmak için evrişimsel dikkat mekanizma blokları kullanılmıştır [70]. 

Geliştirilen bu mimari, Şekil 3.39’da gösterilmektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 3.39. ResUNet++ mimarisi [70]  
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TransUNet 

 

TransUNet mimarisi, Chen ve arkadaşları tarafından 2021 yılında BTA cihazları vasıtasıyla 

elde edilmiş aort, böbrek, pankreas başta olmak üzere çeşitli organların segmentasyonu için 

geliştirilmiş derin öğrenme mimarisidir. Geliştirilen bu mimari görüntü sınıflandırma 

alanında en son teknoloji olan görüntü dönüştürücüleri, medikal görüntüleme alanında 

başarılı çıktılar veren UNet segmentasyon mimarisine entegre edilmesinden meydana 

gelmektedir [71].  

 

Chen ve arkadaşları, motivasyon olarak ESA ile oluşturulan mimarilerde konvolüsyon 

operasyonunun doğasından gelen öğrenme yeteneği yerel olarak görüntü üzerindeki piksel 

bölgelerinde çalışmaktadır. Bu durum uzun menzilli bağımlılık içeren bölgelerin tespitinde 

hastadan hastaya farklılık gösteren şekil ve boyutlardan kolayca etkilendiğinden segmente 

edilen objelerin başarıları oranlarının düşük olmasına sebep olmaktadır. Bu kapsamda Chen 

ve arkadaşları görüntü dönüştürücüleri başlığı altında anlatılan dönüştürücü mimarilerini 

kullanarak küresel bir şekilde piksellerin birbirleriyle olan tüm ilişkilerini dikkate alarak 

segmentasyon başarısını artırmışlardır. Şekil 3.40’da geliştirilen mimarinin içeriği 

gösterilmektedir. 

 

 
 

Şekil 3.40. TransUNet mimarisi [71] 
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Şekil 3.40’da gösterildiği üzere TransUNet mimarisi, kodlayıcı ve kod çözücü olmak üzere 

iki ana bölümden oluşmaktadır. Kod çözücü bölümü kendi içerisinde 4 farklı katmandan 

oluşmaktadır. İlk üç katman içerisinde evrişimsel sinir ağlarını içeren konvolüsyon blokları 

vasıtasıyla görüntüyü oluşturan uzamsal çözünürlüklerin boyutları azaltılmaktadır. Son 

katmanda ise ardı ardına bağlı 12 adet görüntü dönüştürücü blok kullanarak öz niteliklerin 

birbirleriyle olan ilişkileri çıkartılmıştır. Böylece küresel bilgiyi içeren yeni öz nitelik 

haritası elde edilmiştir.  Kod çözücü kısımda ise kodlayıcı kısmının son katmanındaki 

bilginin uzamsal çözünürlüğünü artırıp kendisine karşılık gelen kodlayıcı bölümündeki öz 

niteliklerle birleştirilmektedir. Bu işlem orijinal görüntü boyutuna ulaşıncaya kadar devam 

etmektedir. Bu sayede kenar köşe gibi bölümlerde segmentasyon başarısı yüksek ve hastalar 

arası çok sayıda farklılık içeren tomografi görüntülerinde yüksek segmentasyon başarısı elde 

edilmektedir. 

   

3.6. Performans Değerlendirme Metrikleri  

 

Yapay zeka veya görüntü işleme alanında problemin türüne göre kullanılan değerlendirme 

metrikleri farklılık gösterebilmektedir. Örnek vermek gerekirse sınıflandırma 

uygulamalarında doğruluk metriği aktif olarak kullanılırken görüntü tabanlı segmentasyon 

problemlerinde doğruluk metriğini tek başına kullanmak modelin başarısını değerlendirme 

açısından yanlışlıklara sebep olabilmektedir. Bu kapsamda beyin bölgesinde yer alan 

damarlar bölümlerinin bölütlenmesi problemi segmentasyon problemi olduğundan ilerleyen 

bölümde segmentasyon problemlerinde kullanılan yaygın değerlendirme metriklerine 

değinilmiştir. 

 

Değerlendirme metriklerinin hesaplanmasında ortak olarak, gerçek pozitif (TP), gerçek 

negatif (TN), yanlış pozitif (FP) ve yanlış negatif (FN) bileşenleri kullanılmaktadır. TP, 

modelin doğru bir şekilde pozitif olarak sınıflandırdığı yani doğru şekilde tahmin yaptığı 

damar bölümlerinin örnek sayısını ifade ederken, TN ise modelin doğru bir şekilde negatif 

olarak sınıflandırdığı yani doğru şekilde tahmin yaptığı damar olmayan bölümlerin örnek 

sayısını ifade etmektedir. FP, modelin negatif olan örnekleri pozitif olarak sınıflandırdığı 

yani gerçekte damar olmayan bölümlere, damar dediği yanlış örnek sayısını ifade ederken, 

FN, modelin pozitif olan örnekleri negatif olarak sınıflandırdığı yani damar olan bölümlere, 

damar yok şekilde tahmin yaptığı yanlış örnek sayısını ifade etmektedir. 
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3.6.1. Piksel doğruluk metriği  

 

Küresel doğruluk olarak da bilinen piksel doğruluğu (PD), görüntü içerisinde doğru şekilde 

sınıflandırılan piksellerin yüzdesini gösteren semantik segmentasyon metriğidir. PD, 

sınıftan bağımsız olarak görüntülerdeki doğru sınıflandırılmış piksel sayısı ile görüntü 

içerisindeki toplam piksel sayısı arasındaki oranı hesaplamaktadır. PD, sezgisel ve 

yorumlanabilir bir ölçüm metriğidir. Bu sebeple bu değerin yüksek olması segmentasyon 

başarısını tam anlamıyla doğru olduğunu ifade etmemektedir. Bunun temel nedeni, damar 

segmentasyon probleminde arka plan ve ön plan olmak üzere iki farklı sınıf bulunmaktadır. 

Görüntü içerisindeki damarlar ön plan olarak adlandırılırken, diğer bölümler ise arka plan 

olarak adlandırılmaktadır. Manyetik Rezonans Anjiyografi görüntülerinde yaklaşık olarak 

tüm piksellerin %0.004 lük kısmı damar içerdiğinden – geliştirilen model tüm görüntüye 

arka plan olarak çıktı verse bile başarı değeri %99.996 olmaktadır. Bu durum geliştirilen 

modelin yanlış yorumlanmasına neden olabilmektedir. Bu kapsamda, piksel doğruluğu 

metriğine ait ilişkin matematiksel ifade aşağıda gösterilmektedir. 

  

𝑃ⅈ𝑘𝑠ⅇ𝑙 𝐷𝑜ğ𝑟𝑢𝑙𝑢ğ𝑢 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                (3.17) 

 

3.6.2. Kesinlik metriği 

 

Kesinlik(Precision) metriği segmentasyon problemi içerisinde yer alan her bir sınıf için ayrı 

ayrı tanımlandığı gibi sınıfların ortalaması şeklinde de gösterilebilir. Gerçekleştirilen tez 

çalışması kapsamında kesinlik değeri ön plan sınıfı olarak adlandırılan damar bölümleri için 

hesaplanmıştır. Kesinlik metriği temelde geliştirilen model tarafından damar olarak tahmin 

edilen piksel bölümlerinin ne kadarının gerçekten damar olduğu oranını bizlere ifade 

etmektedir. Bu değerlendirme metriği ne ilişkin formül aşağıda gösterilmiştir; 

 

𝐾ⅇ𝑠ⅈ𝑛𝑙ⅈ𝑘 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                      (3.18) 
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3.6.3. Duyarlılık metriği  

 

Duyarlılık(Recall) metriği segmentasyon problemi içerisinde yer alan her bir sınıf için ayrı 

ayrı tanımlandığı gibi sınıfların ortalaması şeklinde de gösterilebilir. Gerçekleştirilen tez 

çalışması kapsamında duyarlılık değeri ön plan sınıfı olarak adlandırılan damar bölümleri 

için hesaplanmıştır. Duyarlılık metriği temelde geliştirilen modelin görüntü içerisinde yer 

alana damar piksel bölümlerinin ne kadarının doğru bulunduğu oranını bizlere ifade 

etmektedir. Bu değerlendirme metriği ne ilişkin formül aşağıda gösterilmiştir; 

 

𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                      (3.19) 

 

3.6.4. F Değeri (F Score)  

 

F değeri, kesinlik ve duyarlılık metriğinin birleştirilmesiyle oluşturulmuştur. Bu metrik Dice 

kat sayısı olarak da adlandırılır ve temelde kesinlik ve duyarlılık metriklerinin harmonik 

ortalaması alınarak hesaplanmaktadır. Bu değerlendirme metriği ne ilişkin formül aşağıda 

gösterilmiştir; 

 

F𝐷𝑒ğ𝑒𝑟𝑖 = 2 ×
𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘×𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
                                                                                            (3.20) 

 

3.6.5. Jaccard indeksi(Intersection Over Union) 

 

Jaccard indeksi olarak da adlandırılan (IoU) metriği, semantik bölümlemede en yaygın 

kullanılan metriklerden biridir. IoU, temelde etiketlenmiş gerçek maske görüntüsü ile model 

tarafından tahmin edilen maske çıktısı arasındaki örtüşmenin yüzdesini ölçmek için 

kullanılan bir yöntemdir. Bu metrik, 0 ile 1 arasında değişir; 0, örtüşme olmadığını 

simgelerken 1 değeri ise mükemmel şekilde örtüşen segmentasyon sonuçlarını ifade 

etmektedir. IoU metriği, her bir sınıf için ayrı ayrı tanımlandığı gibi sınıfların ortalaması 

şeklinde(mIoU) de gösterilebilir. Gerçekleştirilen tez çalışması kapsamında ön plan ve arka 

plan olarak adlandırılan iki sınıf için mIoU değeri hesaplanmıştır. Bu değerlendirme metriği 

ne ilişkin formül aşağıda gösterilmiştir; 

 

𝑚𝐼𝑜𝑈 =
1

𝐶

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                                                                            (3.21) 
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4. GERÇEKLEŞTİRİLEN UYGULAMALAR VE SONUÇLARIN 

İNCELENMESİ 
 

Tez çalışması kapsamında, SVH tespitinde faydalanılacak olan damar bölümlerinin 

segmentasyon problemi için görüntü işleme ve derin öğrenme tabanlı olmak üzere iki farklı 

yöntem geliştirilmiştir. Bu bölüm altında ilk olarak çalışma içerisinde kullanılacak olan veri 

setine değinilmiş olup ilerleyen aşamalarda sırasıyla görüntü işleme ve derin öğrenme 

tabanlı teknikler detaylı bir şekilde açıklanmaktadır.    

 

4.1. Çalışma Kapsamında Kullanılan Veri Seti 

 

Gerçekleştirilen tez çalışması,  Lozan Üniversite Hastanesi tarafından anevrizma 

hastalığının bilgisayar destekli teknikler vasıtasıyla tespit işlemi için hazırlanan veri seti 

üzerinde gerçekleştirilmiştir. İncelenen veri seti, toplamda 284 hasta görüntüsü içermektedir. 

Bu görüntülerin 127 tanesi sağlıklı hastaya aitken, 157 tanesinde anevrizma hastalığı tespit 

edilen hastalara aittir. Veri seti içerisinde yer alan tüm hasta görüntüleri MRG cihazları 

vasıtasıyla üç boyutlu uçuş süresi zaman protokolünde çekilmiş kesit görüntülerinden 

meydana gelmektedir. Araştırmacıların çalışabilmesi ve medikal alanda yapılan çalışmaların 

artırılması amacıyla veri seti herkesin erişimine açıktır.  Bu kapsamda konu ile alakalı 

çalışma yapmak isteyenler openneuro.org adresinden veri setine erişim sağlayabilirler [72]. 

 

 
 

Resim 4.1. Veri seti erişim bilgileri [73] 
 

SVH tespiti için gerekli olan damar bölümlerinin segmentasyonu için geliştirilecek olan 

tekniklerin ilk aşamasında, tüm hasta verileri taranarak yüksek kalitede görüntü serilerine 

sahip olan hastalar özenle belirlenmiştir. Bunun temel nedeni olarak, geçmişli yıllara ait 

görüntüler içerisinde ağırlıklı olarak hastalar çekim işlemi sırasında hareket etmesinden 

kaynaklı bulanık ve keskin olmayan görüntü dizileri yer almaktadır. Bu durum beraberinde, 

bazı görüntülerde çeşitli artefaktlar oluşmasına da neden olmuştur. 
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Gerçekleştirilen çalışma kapsamında veri seti içerisinde hasta seçimleri yapılırken, 

çözünürlük sınırı olarak 512 x 512 belirlenmiş olup, bu değere eşit veya yüksek 

çözünürlükteki görüntü serilerine sahip 40 adet hasta seçilmiştir. Seçilen hasta 

görüntülerinde, çekim sırasında hasta hareketinden kaynaklı görüntü üzerinde oluşabilecek 

herhangi bir problem amacıyla manuel bir şekilde kontrol edilmiştir. Bu kapsamda elde 

edilmiş veriler, ağırlıklı olarak Philips ve Siemens marka cihazlarda uçuş süresi zaman 

protokolünde verilerin elde edildiği gözlemlenmiştir. Böylece seçilen 40 hastaya ait makine, 

model ve görüntü bilgileri Çizelge 4.1’de detaylı bir şekilde gösterilmektedir;  

 

Çizelge 4. 1. Veri setini oluşturan veri dağılımı 
 

Marka Model Piksel Aralığı Çözünürlük Adet 

Philips Intera 0.41 mm x 0.41 mm x 0.55 mm 512 x 512 x 140 1 

Siemens Skyra 0.27 mm x 0.27 mm x 0.50 mm 652 x 768 x 168 13 

Siemens Skyra 0.23 mm x 0.23 mm x 0.70 mm 720 x 896 x 160 9 

Siemens Verio 0.23 mm x 0.23 mm x 0.70 mm 700 x 896 x 160 4 

Siemens Prisma Fit 0.28 mm x 0.28 mm x 0.50 mm 696 x 768 x 200 12 

Siemens Aera 0.35 mm x 0.35 mm x 0.50 mm 512 x 512 x 152 1 

 

Gerçekleştirilen çalışmanın ilk bölümünde, damar bölümlerinin otomatize bir şekilde 

etiketlenmesi amacıyla görüntü işleme tabanlı teknik geliştirilmiştir. Bu teknik vasıtasıyla 

hızlı bir şekilde görüntülerin etiketlenme işlemi yapılabilmektedir. İkinci aşamada ise 

üretilen veri seti vasıtasıyla, damar bölümlerinin segmentasyonu için kullanılacak olan 

evrişimsel sinir ağı tabanlı mimariler kullanılarak eğitim işlemi gerçekleştirilmiştir. Bu 

kapsamda görüntülerin etiketlenmesi ile alakalı detaylar ilgili bölüm altında detaylı olarak 

verilmektedir.  

 

4.2. Görüntü İşleme Teknikleriyle Damar Bölümlerinin Segmentasyonu 

 

Bu bölümde, SVH tespiti kapsamında damar segmentasyon problemi için geliştirilen 

görüntü işleme tabanlı tekniklerden bahsedilmiştir. Geliştirilen tekniğin ilk aşamasında, Sato 

ve arkadaşları tarafından Hesse matris tabanlı filtreleme kullanılarak damar bölümleri tespit 

edilmektedir. İkinci aşamada ise bağlı bileşen etiketleme tekniği vasıtasıyla FP şeklindeki 

damar olmayan bölgelerin ortadan kaldırılması sağlanmaktadır. Son aşamada ise damar 

bölümleri üzerinde bölge büyütme algoritması kullanılarak damarların segmentasyon 

başarısı artırılmaktadır. 
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Bu kapsamda, bölüm içerisinde gerçekleştirilecek olan algoritmalara ait akış diyagramı Şekil 

4.1’de gösterilmektedir; 

 

 
  

Şekil 4.1. Görüntü işleme tabanlı sistem akış diyagramı 
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4.2.1. Sato filtreleme 

 

Sato ve arkadaşları tarafından 1997 yılında geliştirilen damar bölütleme yaklaşımı, bu 

alandaki ilk çalışmalardan birisi olarak kabul edilmektedir [7]. Temelinde ikinci derece 

türevsel analize dayanan bu yaklaşım dört aşamadan oluşmaktadır.  İlk aşamada, Gaussian 

filtresinin ikinci derece kısmi türev bileşenlerine ayrılmaktadır. İkinci aşamada elde edilen 

kısmi türevler, görüntü üzerine konvolüsyon işlemine tabi tutularak Hesse matrisi 

hesaplanmaktadır. Bu kapsamda MRA görüntülerinde kullanılacak olan üç boyutlu 

Gaussian filtresi Eşitlik 4.1’de gösterilmektedir. Eşitlik içerisindeki sigma(σ) parametresi 

vasıtasıyla, beyin bölgesi içerisinde yer alan küçük veya büyük damarların ayrıştırma işlemi 

sağlanmaktadır.  

 

𝐺(𝑥, 𝑦, 𝑧; 𝜎) =
1

(2𝜋𝜎2)3/2
ⅇ

− 
𝑥2+𝑦2𝑧2

2𝜎2                                                                                           (4.1) 

 

Hesse matrislerinin elde edilebilmesi amacıyla her bir piksel için ikinci dereceden kısmi 

türevlerin tüm yönlü olacak şekilde hesaplanması gerekmektedir. Bu kapsamda, Eşitlik 

4.1’de gösterilen üç boyutlu Gaussian filtresinin ikinci dereceden kısmi türev bileşenleri, 

tüm yönlü olacak şekilde hesaplanmaktadır. Bu nedenle Sato ve arkadaşları tarafından 

geliştirilen yaklaşımın ilk aşamasında, Gaussian filtrenin kısmi türev bileşenleri elde 

edilerek, görüntü ile konvolüsyon işlemine maruz kalmaktadır. Bu bağlamda, aşağıda yer 

alan matematiksel ifadelerde Hesse matrisi elde etme aşamasında kullanılacak olan kısmi 

türevler gösterilmektedir. 

 

𝐼𝑥𝑥 = (𝜎2𝑥
𝜕2

𝜕𝑥2
𝐺(𝑥, 𝑦, 𝑧; 𝜎)) ∗ 𝐼(𝑥, 𝑦, 𝑧)                                                                                (4.2) 

𝐼𝑥𝑦 = (𝜎2𝑥
𝜕2

𝜕𝑥𝜕𝑦
𝐺(𝑥, 𝑦, 𝑧; 𝜎)) ∗ 𝐼(𝑥, 𝑦, 𝑧)                                                                             (4.3) 

𝐼𝑥𝑧 = (𝜎2𝑥
𝜕2

𝜕𝑥𝜕𝑧
𝐺(𝑥, 𝑦, 𝑧; 𝜎)) ∗ 𝐼(𝑥, 𝑦, 𝑧)                                                                             (4.4) 
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𝐼𝑦𝑦 = (𝜎2𝑥
𝜕2

𝜕𝑦2
𝐺(𝑥, 𝑦, 𝑧; 𝜎)) ∗ 𝐼(𝑥, 𝑦, 𝑧)                                                                               (4.5) 

𝐼𝑦𝑧 = (𝜎2𝑥
𝜕2

𝜕𝑦𝜕𝑧
𝐺(𝑥, 𝑦, 𝑧; 𝜎)) ∗ 𝐼(𝑥, 𝑦, 𝑧)                                                                             (4.6) 

𝐼𝑧𝑧 = (𝜎2𝑥
𝜕2

𝜕𝑧2
𝐺(𝑥, 𝑦, 𝑧; 𝜎)) ∗ 𝐼(𝑥, 𝑦, 𝑧)                                                                                (4.7) 

 

Sato filtrelemenin ikinci aşamasında, ilk aşamada hesaplanan kısmi türevler kullanılarak, 

görüntüdeki her piksel için parlaklık değişimleri bulunmaktadır. Bu değişimler, Hesse matris 

denklemine yerleştirildiğinde, her bir piksel için Şekil 4.1 üzerinde görüleceği üzere 3 x 3 

kare matris oluşmaktadır.  

 

xx xy xz

yx yy yz

zx zy zz

I I I

H I I I

I I I

 
 

  
 
   

 

Şekil 4.2. Üç boyutlu Hesse görüntü matrisi 
 

Yukardaki şekilde gösterilen Hesse matrisi, "H" ile simgelenmektedir ve öz değer ve öz 

vektörlerinin bulunabilmesi için sırasıyla aşağıda gösterilen lineer cebir eşitliklerinden 

faydalanılmaktadır. Eşitlik içerisinde yer alan  “λ” sembolü öz değerleri simgelerken “ⅇ⃗” 

sembolü ise öz vektörleri simgelemektedir. Kısaca bu değerler vasıtasıyla yüzey üzerindeki 

maksimum ve minimum eğrilik yön ve büyükleri hesaplanmaktadır. İlerleyen aşamada, öz 

vektörlerin sıfır olmadığı bilindiğinden, eşitliğin sol tarafındaki kalan kısmın singular 

çözüme sahip olması gerekmektedir. Bu sebeple, eşitliğin sol bölümündeki determinant sıfır 

kabul edilerek, 3. dereceden denklemlerin çözümü vasıtasıyla öz değerler bulunmaktadır. 

Bu öz değerlerin de tekrardan formül içerisine yerleştirilmesi ile öz vektörler 

hesaplanmaktadır. 

 

𝐴ⅇ⃗ = 𝜆ⅇ⃗                                                                                                                                            (4.8)                                                                                                                               
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𝐴ⅇ⃗ = 𝜆𝐼ⅇ⃗                                                                                                                                          (4.9)        

(𝐴 − 𝜆𝐼)ⅇ⃗ = 0                                                                                                                              (4.10) 

𝑑ⅇ𝑡(𝐴 − 𝜆𝐼)ⅇ⃗ = 0                                                                                                                       (4.11) 

 

Sato ve ekibinin çalışmasına göre damar şeklinde yapılar genelde boru biçimindeki yapılarla 

benzerlik göstermektedir. Bu nedenle geliştirilecek filtre, boru şeklindeki yapılarda yüksek 

seviye filtre yanıt üretmesi gerekmektedir. Sato ve arkadaşları, bu nedenle öz değerlerin 

birbirine göre oranlanması yoluyla bu tür yapıların tespit edilebileceğini ileri sürmüştür. Bu 

sebeple boru biçimindeki yapılar için öz değerler küçükten büyüğe doğru sıralandığında, en 

küçük öz değerler yaklaşık olarak 0 değerini üretirken diğer öz değerler görüntünün parlaklık 

ya da koyuluk durumuna göre en küçük öz değerden çok büyük veya çok küçük değer olma 

durumundadır. Bu sebeple küçük olan öz değerin büyük olan öz değerlere göre oranlanması 

kullanılarak damar olma skor değerlerinin hesaplanmasını sağlanmaktadır. Bu kapsamda 

Sato ve arkadaşları tarafından geliştirilen damar olma skor fonksiyonunun matematiksel 

ifadesi aşağıda gösterilmiştir; 

 

𝜆c = min(−𝜆2, −𝜆3)    |𝜆1| ≪ |𝜆2|,   |𝜆1| ≪ |𝜆3|                                                                (4.12) 

𝑓(𝜆1; 𝜆𝑐) = {
ⅇ

(−
𝜆1

2

2(𝜎1𝜆𝑐)2)
    𝜆1 ≤ 0,   𝜆𝑐 ≠ 0 

ⅇ
(−

𝜆1
2

2(𝜎2𝜆𝑐)2)
    𝜆1 > 0,   𝜆𝑐 ≠ 0

}                                                                     (4.13) 

 

Eşitlik 4.12'de belirtildiği gibi, boru şeklindeki yapılar için öz değerler küçükten büyüğe 

doğru sıralandığında, bir adet küçük öz değer bulunurken diğer öz değerler, küçük öz değere 

göre oldukça büyük ya da küçük olmaktadır. Çeşitli durumlarda öz değerler negatif veya 

pozitif gelebilmektedir bu durumun temel nedeni, görüntü içerisindeki objelerin parlaklık 

değişiminden kaynaklanmaktadır. Genellikle karanlık bir arka plandaki beyaz objelerin 

oluşturacağı öz değerler negatif işarete sahip olurken, beyaz bir arka plandaki karanlık 

objelerin oluşturacağı öz değerler ise pozitif değer almaktadır. Bu sebeple uçuş süresi zaman 

protokolünde çekilen MRA görüntüleri referans alındığında, öz değerlerin negatif geldiği 

gözlemlenmektedir. Bu sebeple ikinci ve üçüncü öz değerlerin negatif işareti alınırken damar 

olma skor fonksiyonunda daha iyi sonuç üretmesi açısından küçük olan kullanılmaktadır.  



69 

 

Eşitlik 4.13’de görüleceği üzere, damar bölümlerinin skorunun hesaplanmasında 

kullanılacak olan fonksiyon incelendiğinde, damar yapılarında genellikle küçük olan öz 

değer sıfıra yakın ve büyük olan öz değer ise sıfırdan çok büyük olmaktadır. Bu nedenle iki 

öz değerinin birbirine göre oranlanması sıfıra yakın bir sonuç getirmektedir. Üretilen bu 

sonuç değerinin, üsteli alındığında ise damar olma skoru açısında 1 değeri elde edilmektedir. 

Bu sayede, damar gibi yapılar için fonksiyon sonucu yaklaşık olarak 1 olurken, damar 

olmayan yapılar için sonuç 1'den uzak olmaktadır. Formül içerisinde α1 ve α2 sırasıyla 

görüntü üzerindeki gürültülerin bastırılması ve yumuşak bir sonuç üretilmesini 

sağlamaktadır. Genellikle bu değerler sırasıyla 0.5 ve 2 olarak belirlenmektedir. 

 

Sato ve ekibi, geliştirdikleri filtrenin arter gibi sadece büyük damarlarda değil, aynı zamanda 

farklı ölçeklerdeki damar bölümlerinde de başarılı bir şekilde çalışması gerektiğini 

hedeflemişlerdir. Bu amaçla Gaussian filtreleme içerisindeki sigma parametresini 

kullanarak, farklı ölçek değerlerinde Hesse matrisleri elde etmişlerdir. Bu matrisler, damar 

olma skor fonksiyonuna girdi sağlanarak, her bir ölçekteki her bir piksel değeri için damar 

skoru üreten çıktı değeri hesaplanmaktadır. Oluşturulan farklı ölçeklerdeki çıktılar, her bir 

piksel konumunun farklı ölçekleri arasında maksimum filtre yanıtı alınarak farklı 

boyutlardaki damarların segmentasyonu gerçekleştirilmektedir. 

 

𝐿 = 𝑓(𝜆1; 𝜆𝑐) 𝑥 𝜆𝑐                                                                                                                        (4.14) 

𝑚𝑎𝑥 (
1

𝑛𝑖
 𝐿𝑖(𝑥, 𝑦, 𝑧))                                                                                                                  (4.15) 

 

Son aşamada, görüntü içerisinde gürültünün fazla olduğu durumlarda türev değerleri yüksek 

yanıt vermektedir ve buna bağlı olarak da damar olmayan bölümlerde yüksek değerli Hesse 

matrisleri üretilmektedir. Bu durum, ikinci aşamada gerçekleştirilen maksimum alma işlemi 

sırasında hataların oluşmasına sebep olmaktadır. Bu problemin önüne geçmek için Sato ve 

arkadaşları farklı ölçek değerlerindeki görüntülerden 16x16x16 patchler alarak gürültü 

değerinin standart sapmasını tahmin etmişlerdir. Bu değer Eşitlik 4.16 içerisinde “𝑛𝑖” 

harfiyle gösterilmektedir. Böylece geliştirilen yaklaşım farklı ölçeklerdeki damarın 

bölütleme işleminde de başarılı ile sonuçlar üretmektedir. 
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Sato filtreleme tekniğinin sonuçları 

 

Bu bölüm içerisinde Sato ve arkadaşları tarafından damar bölümlerinin bölütlenmesi için 

geliştirilen filtrenin farklı hastalara ait MRA görüntülerinde ürettiği sonuçlar 

gösterilmektedir. Bu kapsamda incelenen ilk hastanın verisi, 3 Tesla manyetik alan gücüne 

sahip Philips marka Intera model MRA cihazı tarafından 3 boyutlu uçuş süresi zaman çekim 

protokolünde elde edilmiş görüntü serisi üzerinde gerçekleştirilmiştir. Filtre içerisindeki 

farklı boyutlardaki damarların tespitinde etkili olan Gaussian filtrenin sigma parametresi bu 

hasta için 2 olarak kaydedilmiştir. Eşitlik 4.14’de yer alan α1 ve α2 parametreleri sırasıyla 

0.5 ve 2 seçilmiştir. Bu kapsamda filtreleme sonucu oluşan bölütleme çıktıları aşağıdaki 

şekillerde gösterilmektedir; 

 

  
 

Resim 4.2. İlk hastanın kesit görüntüsündeki orijinal ve segmentasyon çıktıları     
 

 
 

Resim 4.3. İlk hastanın kesit görüntüsündeki orijinal ve segmentasyon çıktıları         
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Resim 4.4. İlk hastanın kesit görüntüsündeki orijinal ve segmentasyon çıktıları    

 

Yukarıdaki şekillerde görüleceği üzere, orijinal MRA görüntüleri sol tarafta verilmişken sağ 

tarafta ise filtreleme sonucunda oluşan segmentasyon görüntüleri yer almaktadır. İnceleme 

sırasında, iki boyutlu görüntü serilerinin detaylı incelenmesinin yanı sıra hacim oluşturma 

teknikleri kullanılarak da hastaların damar bölümlerinin incelenmesi sağlanmaktadır. 

Genellikle bu işlem çeşitli hacim oluşturma teknikleri vasıtasıyla gerçekleştirilmektedir. Bu 

kapsamda ilk hastaya ait 3 boyutlu hacim görüntüsü aşağıdaki şekilde gösterilmektedir; 

 

 

Resim 4.5. İlk hastaya ait 3 boyutlu segmentasyon çıktısı 
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Çalışma kapsamında incelenen ikinci hastanın verisi 3 Tesla manyetik alan gücüne sahip 

Siemens marka Skyra model MRA cihazı tarafından 3 boyutlu uçuş süresi zaman çekim 

protokolünde elde edilmiş görüntü serisi üzerinde gerçekleştirilmiştir. Filtre içerisindeki 

farklı boyutlardaki damarların tespitinde etkili olan Gaussian filtrenin sigma parametresi bu 

hasta için de 2 olarak kaydedilmiştir. Eşitlik 4.14 üzerinde yer alan α1 ve α2 parametreleri 

de sırasıyla 0.5 ve 2 seçilmiştir. Bu kapsamda filtreleme sonucu oluşan iki boyutlu bölütleme 

çıktıları aşağıdaki şekillerde gösterilmektedir; 

 
 

Resim 4.6. İkinci hastanın kesit görüntüsündeki orijinal ve segmentasyon çıktıları    

 

 
 

Resim 4.7. İkinci hastanın kesit görüntüsündeki orijinal ve segmentasyon çıktıları 
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Resim 4.8. İkinci hastanın kesit görüntüsündeki orijinal ve segmentasyon çıktıları 

 

Yukarıdaki şekillerde görüleceği üzere, ikinci hasta için orijinal MRA görüntüleri sol tarafta 

verilmişken sağ tarafta ise filtreleme sonucunda oluşan segmentasyon görüntüleri yer 

almaktadır. İnceleme sırasında, iki boyutlu görüntü serilerinin detaylı incelenmesinin yanı 

sıra hacim oluşturma teknikleri kullanılarak da hastaların damar bölümlerinin incelenmesi 

sağlanmaktadır. Bu kapsamda ilk hastaya ait 3 boyutlu hacim görüntüsü aşağıda 

gösterilmektedir; 

 

 

Resim 4.9. İkinci hastaya ait 3 boyutlu segmentasyon çıktısı 
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4.2.2. Bağlı bileşenlerin etiketlenmesi 

 

Bağlı birleşen etiketleme(Connected Component Labelling) tekniği, görüntü işleme 

alanında, ayrık nesne bölgelerini belirlemek ve her bir nesneye farklı bir etiket veya numara 

vermek için geliştirilen bir yöntemdir. Bağlı birleşen etiketleme(CCL) tekniği, genellikle 

bağlı birleşenlerin analizi(Connected Component Analysis) ile birlikte kullanılarak bir 

görüntü içerisindeki ayrık nesne bölgelerinin sayısını, yapısını ve konumlarını belirleme de 

kullanılmaktadır.   

 

Bağlı birleşen etiketleme tekniği temelde, görüntüdeki her bir pikselin birbirleriyle nasıl 

bağlantılı olduğunu belirleyerek çalışmaktadır. Bu kapsamda, eğer iki piksel aynı nesneye 

aitse, aynı etikete sahip olurken, farklı nesnelere ait ise farklı etiketlere sahip olmaktadır. Bu 

işlem de genellikle dört yönlü veya sekiz yönlü komşuluk bağlantıları adı verilen iki farklı 

bağlantı yöntemi kullanılarak gerçekleştirilmektedir. Bu kapsamda, Şekil 4.2’de 4’lü ve 8’li 

komşuluk bağlantıları gösterilmektedir. 

 

 
 

Şekil 4.3. Farklı bağlantı komşuluklarının gösterimi [74] 

 

Bağlı birleşen etiketleme tekniğinin çalışması için öncelikle maske adı verilen ikili formatta 

görüntünün elde edilmesi gerekmektedir. Bu sebeple genellikle görüntü işleme 

uygulamalarında eşikleme vasıtasıyla ilk adım olarak ikili görüntü elde edilmektedir. İkinci 

aşamada, maske görüntüsündeki her bir piksel için sırasıyla Şekil 4.2 üzerinde yer alan 

komşuluklarına bakılmaktadır. Eğer komşulukları üzerinde önceden etiketlenmiş bir piksel 

var ise ilgili pikselde bu etikete sahip olurken, herhangi bir etiketlenmiş piksel yok ise bu 

piksele yeni bir etiket atanmaktadır. Bu duruma ek olarak, komşu piksellerde iki farklı 

etiketlenme durumu söz konusu ise bu iki etiketin de benzer objeye ait olduğu referans 

alınarak sonuç etiket görüntüsü oluştururken etiket değerleri aynı olacak şekilde 
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değiştirilmektedir. Bu işlem görüntü içerisindeki tüm pikseller boyunca benzer şekilde tekrar 

etmektedir.  

 

Bağlı bileşenlerin etiketlenmesi tekniğinin uygulanması 

 

Tez çalışması kapsamında, bağlı birleşen etiketleme tekniği Sato filtreleme sonucunda 

oluşmuş bölütleme maskesi içerisindeki yanlış etiketlenmiş damar olmayan bölümler ile 

kılcal damar gibi küçük damar bölümlerinin kaldırılması amacıyla kullanılmaktadır. Bu 

kapsamda üç boyutlu maske görüntüsü üzerinden 300 voksel altında damar içeren bölümler 

belirlenerek görüntü üzerinden kaldırılmıştır. Bu kapsamda ilk hastaya ait bazı kesit 

görüntülerinde algoritma çıktısı aşağıdaki gibidir; 

 

 
 

Resim 4.10. Sato filtreleme ve bağlı bileşen etiketleme tekniklerinin çıktıları 
 

 
 

Resim 4.11. Sato filtreleme ve bağlı bileşen etiketleme tekniklerinin çıktıları 
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Bir önceki sayfadaki şekillerde görüleceği üzere, ilk hasta için Sato filtreleme sonrası oluşan 

segmentasyon çıktı görüntüleri sol tarafta gösterilirken, sağ tarafta ise bağlı bileşenlerin 

etiketlenmesinin ardından 300 vokselden küçük bölümlerin kaldırılmasıyla oluşan 

segmentasyon çıktı görüntüleri yer almaktadır. Resim 4.12’de ise ilk hastaya bağlı birleşen 

analiz tekniğinin uygulanması ardından 3 boyutlu hacim görüntüsü gösterilmektedir; 

 

 
 

Resim 4.12. İlk hastaya ait bağlı bileşen etiketleme tekniğinin üç boyutlu çıktısı 
 

İkinci hasta için de üç boyutlu maske görüntüsü üzerinden 300 voksel altında damar içeren 

bölümler belirlenerek görüntü üzerinden kaldırılmıştır. Bu kapsamda ikinci hastaya ait çıktı 

segmentasyon görüntüleri aşağıdaki şekillerde gösterilmektedir; 

 

 
 

Resim 4.13. Sato filtreleme ve bağlı bileşen etiketleme tekniklerinin çıktıları 
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Resim 4.14. Sato filtreleme ve bağlı bileşen etiketleme tekniklerinin çıktıları 
 

Yukarıdaki şekillerde görüleceği üzere, ikinci hastanın Sato filtreleme sonrası oluşan 

segmentasyon çıktı görüntüleri sol tarafta gösterilirken, sağ tarafta ise bağlı bileşenlerin 

etiketlenmesinin ardından 300 vokselden küçük bölümlerin kaldırılmasıyla oluşan 

segmentasyon çıktı görüntüleri yer almaktadır. Resim 4.15’de ise ikinci hastaya ait 3 boyutlu 

hacim görüntüsü gösterilmektedir; 

 

 
 

Resim 4.15. İkinci hastaya ait bağlı bileşen etiketleme tekniğinin üç boyutlu çıktısı 
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4.2.3. Bölge büyütme tekniği 

 

Bölge büyütme algoritması, rastgele bir başlangıç noktasından başlayarak, kullanıcı 

tarafından belirlenmiş bir kurala göre komşu pikselleri veya bölgeleri bu başlangıç noktasına 

ekleyerek, bir bölgenin veya nesnenin tamamının bölütlenmesi için yaygın olarak kullanılan 

bir görüntü işleme algoritmasıdır. Bu algoritma, özellikle medikal görüntüler üzerinde 

bölütleme yapılacak bölgenin yarı otomatik bir şekilde segmentasyonunda yaygın olarak 

kullanılmaktadır. 

 

Bölge büyütme algoritması temelde 5 adım da gerçekleşir. İlk olarak, algoritmanın 

başlaması için bir başlangıç noktasının seçilmesi gerekmektedir. Bu nokta kullanıcı 

tarafından seçilebildiği gibi rastgele olacak şekilde otomatik olarak da seçilebilmektedir. 

İkinci aşamada bağlı bileşenlerin etiketlenmesinde olduğu gibi, 4’lü ya da 8’li komşuluk 

ilkesi olmak üzere ölçüt seçilmektedir.  Üçüncü aşamada komşu piksel bölümlerinin, ana 

bölgeye eklenebilmesi için kriter belirlenmektedir. Genellikle bu kriter komşuluklardaki 

piksel parlaklıklarının merkezde piksel ile benzerliğinin karşılaştırılmasıyla oluşmaktadır. 

Dördüncü aşamada ise tüm piksel bölümleri için başlangıç noktasından başlayarak, komşu 

pikseller sıraya göre kontrol edilip, kriteri karşılayanlar ana bölgeye eklenmektedir. Son 

aşamada yapılan bu işlemler eklenen yeni pikseller için de uygulanarak bölgenin büyüme 

işlemi gerçekleşmektedir. 

 

Gerçekleştirilen tez çalışması kapsamında, doğrudan Sato filtreleme ve bağlı bileşenlerin 

etiketlenmesi algoritmaları kullanarak oluşturulan çıktılarda görüleceği üzere damar 

bölümlerinin tam anlamıyla bölütlenmesi sağlanamamaktadır. Benzer şekilde üç boyutlu 

görüntüler incelendiğinde damarlar üzerindeki çeşitli bölümlerde kopukluklar olduğu 

gözlemlenmiştir. Bu gibi problemlerin aşılabilmesi amacıyla bölge büyütme algoritması 

kullanılmıştır. Bölge büyütme algoritması içerisinde başlangıç noktaları olarak, Sato 

filtreleme ve ardından bağlı bileşenlerin etiketlenmesi sonucu oluşan maske görüntüsünde 

yer alan piksel bölümleri seçilmiştir. Komşuluk kriteri olarak, üç boyutlu medikal görüntü 

serisi içerisindeki tüm pikseller küçükten büyüğe sıralanmıştır. Sıralanmış pikseller 

içerisinden 99,7 yüzdelik değerine karşılık gelen değer eşik değeri olarak belirlenerek bu 

eşikten büyük olan bölümlerde bölge büyütme algoritması uygulanmıştır. Böylece filtreleme 

sonucunda oluşan çıktı içerisinde boyalı bölgelere komşu olan minimum eşik değerinden 

yüksek olan bölümler boyanarak segmentasyon başarısı artırılmıştır. 



79 

 

Bölge büyütme tekniğinin uygulanması  

 

Bölge büyütme tekniği, Sato filtreleme ve ardından bağlı bileşenlerin etiketlenmesi 

tekniğinin uygulanarak, 300 vokselden küçük damar bölümlerinin silinmesiyle oluşturulan 

maske görüntüleri üzerine uygulanmıştır. Bölge büyütme algoritmasında kullanılacak eşik 

kriter değeri ise küçükten büyüğe sıralanmış piksellerin 99,7 yüzdelik değerine karşılık gelen 

parlaklık değeri seçilmiştir. Bu kapsamda ilk hastaya ait sonuç görüntüleri aşağıdaki 

şekillerde gösterilmektedir; 

 

 
 

Resim 4.16. Bağlı bileşen etiketleme ve bölge büyütme tekniklerinin çıktıları 
 

 
 

Resim 4.17. Bağlı bileşen etiketleme ve bölge büyütme tekniklerinin çıktıları 
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Yukarıdaki şekillerde görüleceği üzere, ilk hastanın bağlı bileşenlerin etiketlenmesi 

tekniğinin çıktıları sol tarafta yer alırken, sağ tarafta bölge büyütme algoritma çıktıları yer 

almaktadır. Bölge büyütme algoritması ile damar olan fakat damar olarak etiketlenmemiş 

bölümlerinde etiketlenerek segmentasyon başarısı artırılmıştır. Bu kapsamda Şekil 4.18’de 

ilk hastaya ait bölge büyütme algoritmasının üç boyutlu görüntüsü gösterilmektedir; 

 
 

Resim 4.18. İlk hastaya ait bölge büyütme tekniğinin üç boyutlu çıktısı 
 

İkinci hasta içinde bölge büyütme algoritmasında kullanılacak eşik kriter değeri de 

piksellerin küçükten büyüğe sıralanarak 99,7 yüzdelik değerine karşılık gelen parlaklık 

değeri seçilmiştir. Bu kapsamda ikinci hastaya ait sonuç görüntüleri aşağıdaki şekillerde 

gösterilmektedir; 

 

 
 

Resim 4.19. Bağlı bileşen etiketleme ve bölge büyütme tekniklerinin çıktıları         
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Resim 4.20. Bağlı bileşen etiketleme ve bölge büyütme tekniklerinin çıktıları 
 

Yukarıdaki şekillerde görüleceği üzere, ikinci hastanın bağlı bileşenlerin etiketlenmesi 

tekniğinin çıktıları sol tarafta yer alırken, sağ tarafta bölge büyütme algoritma çıktıları yer 

almaktadır. Bölge büyütme algoritması ile damar olan fakat damar olarak etiketlenmemiş 

bölümlerinde etiketlenerek segmentasyon başarısı artırılmıştır. Bu kapsamda Resim 4.21’de 

ikinci hastaya ait hacim oluşturma tekniği çıktılarının 3 boyutlu görüntüsü gösterilmektedir; 

 
 

Resim 4.21. İkinci hastaya ait bölge büyütme tekniğinin üç boyutlu çıktısı 
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4.2.4. Görüntü işleme sonuçlarının değerlendirilmesi  

 

Gerçekleştirilen tez çalışması kapsamında detaylı bir şekilde etiketlenen 3 farklı hasta 

üzerinde görüntü işleme tabanlı geliştirilen algoritmanın oluşturduğu segmentasyon 

başarıları aşağıda gösterilmektedir. 

 

Çizelge 4.2. Test görüntüleri üzerinde algoritma çıktılarının değerlendirilmesi 
 

 Marka  Model Piksel 

Doğruluğu 

Ortalama 

Jaccard 

İndeksi 

Kesinlik Duyarlılık F Skor 

Hasta 1  Siemens  Skyra 0.9973 0.7042 0.9403 0.4255 0.5859 
Hasta 2  Siemens  Skyra 0.9961 0.6862 0.7755 0.4259 0.5499 

Hasta 3 Philips  Intera 0.9972 0.7248 0.7381 0.5787 0.6484 

 

Tez çalışması kapsamında, görüntü işleme tabanlı damarların segmentasyonu için 

geliştirilmiş teknik ne kadar başarılı olsa da parametrik oluşu sebebiyle farklı MRA 

cihazlarında veya farklı hastalarda yukarıdaki çizelgede görüldüğü gibi bölütleme 

başarısının düşük olmasına sebep olabilmektedir. Bu kapsamda Resim 4.24’te farklı bir 

hastaya ait farklı MR cihazı tarafından elde edilmiş görüntüde, kafatası bölgesinde 

algoritmanın damar olarak etiketlediği yanlış çıktı görüntü örneği gösterilmektedir; 

 

 
 

Resim 4.22. Farklı bir hastanın algoritma çıktı kesit görüntüsü 
 

Gerçekleştirilen tez çalışmasının ilerleyen bölümlerinde ise son yıllarda popüler olan derin 

öğrenme tabanlı yaklaşımların beyin bölgesi içerisinde yer alan damarların bölütleme 

problemine uygulanması sağlanmaktadır. Geliştirilen görüntü işleme tabanlı teknikten ise 

derin öğrenme tabanlı algoritmalar tarafından ihtiyaç duyulan etiketli veri seti oluşturma 

işleminde aktif olarak faydalanılmaktadır. 
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4.3. Derin Öğrenme Teknikleriyle Damar Bölümlerinin Segmentasyonu 

 

Bu bölümde, SVH tespiti kapsamında damar segmentasyon problemleri için geliştirilen 

derin öğrenme tabanlı teknikler hakkında bilgi verilmiştir. Tez kapsamında gerçekleştirilen 

çalışmalarda, beyin bölgesinde yer alan damar bölümlerinin segmentasyonu problemi için 

iki farklı yaklaşım denenmiştir. İlk çalışma, beyindeki ana serebral arterlerin segmentasyonu 

için gerçekleştirilirken, ikinci yaklaşımda ise artefaktlar sebebiyle kafatası bölümünden 10 

mm geride kalan kısımlarda yer alan tüm arterlerin bölütlenmesi gerçekleştirilmektedir. 

 

4.3.1. Etiketli veri setinin oluşturulması 

 

Beyin bölgesindeki damarların bölütlenmesi probleminde derin öğrenme tabanlı 

yaklaşımlarımdan faydalanabilmek amacıyla, öncelikle etiketli bir şekilde veri setinin 

oluşturulması gerekmektedir. Bu kapsamda bu bölüm içerisinde iki farklı yaklaşım için 

etiketli bir şekilde veri seti oluşturma işleminden detaylı bir şekilde bahsedilmiştir.  

 

Ana serebral arterler için etiketli veri seti oluşturulması 

 

Derin öğrenme tabanlı tez çalışmasının ilk bölümünde ana serebral arterlerin segmentasyonu 

üzerine odaklanılmıştır. Ana serebral arterler, beyne ve çevresindeki yapılara temel kan 

akışını sağlayan ve beynin tabanında bulunan halka benzeri bir arteriyel yapıdadır. 

Genellikle, anevrizma gibi çeşitli serebrovasküler hastalıkların birçoğu bu bölge üzerinde 

yer alan damarlarda meydana gelmektedir. Bu nedenle bu bölgenin doğru bir şekilde 

bölütleme işlemi, hastalık teşhisi için oldukça önem taşımaktadır. Resim 4.23’te ana serebral 

arterleri içeren MRA görüntüsü üzerinde gösterilmektedir; 

 

 

 

Resim 4.23. Ana serebral arter bölgesinin MRA görüntülerinde gösterimi [75] 
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Uçuş zaman süresi çekim protokolündeki MRA görüntüleri çok sayıda kesit görüntüsünden 

oluşmaktadır. Hastaya ait MRA kesit görüntüler detaylı incelendiğinde, hastanın görüntü 

serisindeki ana serebral arter bölgesini oluşturan damarların tüm piksellere oranı yaklaşık 

%0.05 olduğu tespit edilmiştir. Bu nedenle bu bölgeyi oluşturan damarların etiketlenmesi 

için, Çizelge 4.1’de gösterilen Philips marka Intera model MR cihazında yaklaşık olarak 152 

846 adet voksel elemanının etiketlenmesi gerekmektedir. Bu durum ise manuel olarak 

etiketleme açısından maliyetli ve deneyimli radyolog ihtiyacı olduğundan ağır iş yükü 

oluşturmaktadır. 

 

Tez çalışması kapsamında, veri etiketleme sürecini hızlandırmak amacıyla Bölüm 4.1'deki 

görüntü işleme algoritması kullanılmıştır. Bu sayede, 40 farklı hastaya ait MR kesit 

görüntüleri hızlı bir şekilde etiketlenmiştir. İkinci aşamada hastalara ait görüntü işleme 

algoritması vasıtasıyla etiketlenen bu görüntüler 3D-Slicer uygulamasında incelenmiştir. 

İnceleme sırasında, görüntü işleme algoritması tarafından damar olmayan bölümlerdeki 

yanlış etiketler ve ana serebral arter dışındaki damar bölümleri Slicer uygulaması içerisinde 

yer alan interaktif silme işlemi vasıtasıyla manuel bir şekilde kaldırılmıştır [76]. Bu işlem 

sonucu Resim 4.25 üzerinde örnek bir hasta da aşağıdaki gibi gösterilmektedir; 

 

 
 

Resim 4.24. Görüntü işleme algoritma çıktısı 
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Resim 4.25. Ana serebral arterler dışındaki bölümlerin silinmesiyle oluşan çıktı görüntüsü 
 

Yukarıdaki şekil üzerinde yer alan hastanın üç boyutlu damar segmentasyon sonucunda 

görüleceği üzere ana serebral arter bölgesinden uzaklaştıkça damarlarda incelmeler meydana 

gelmektedir. Damardaki incelmeler kan akışını doğrudan etkilediğinden görüntü işleme 

algoritması içerisinde yer alan Hesse matrisi tabanlı filtrelemenin başarısını doğrudan 

etkilenmektedir. Bu problemin önüne geçmek amacıyla Slicer uygulamasında yer alan ve 

içerisinde morfolojik işlemleri barındıran Hollow algoritması kullanılmıştır. Hollow 

algoritması görüntü işleme yardımıyla segmente edilmiş damar bölümlerindeki her bir 

voksel elamanı ve çevresine uniform şekilde dağılım gösteren kabuk yerleştirmektedir [76]. 

Bu kapsamda Resim 4.26’da Hollow algoritma çıktısı gösterilmektedir; 

 

 
 

Resim 4.26. Hollow algoritması vasıtasıyla oluşan çıktı görüntüsü 
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Tez çalışması kapsamında, Hollow algoritmasında kullanılan kabuğun kalınlığı hastaya 

özgü manuel olarak 0.65 - 0.75 mm arasında seçilmektedir. Bu sayede ana serebral arter 

bölgesi merkezinden uzaklaştıkça damarların daha doğru bölütleme işlemi sağlanmıştır. 

Geliştirilen bu teknik vasıtasıyla farklı hastalara ait çıktılar aşağıda gösterilmektedir; 

 

 
 

Resim 4.27. Hollow algoritması vasıtasıyla oluşan çıktı görüntüsü 
 

 

Resim 4.28. Hollow algoritması vasıtasıyla oluşan çıktı görüntüsü 
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Bu yöntem kullanılarak 40 farklı hastaya ait kesit görüntüleri hızlı bir şekilde etiketlenmiştir. 

Oluşturulan veri seti, toplamda 6,500 etiketlenmiş görüntü serisinden oluşmaktadır. Damar 

segmentasyonu konusunda yapılan literatür araştırmalarında, herkesin erişimine açık 

herhangi bir etiketli veri seti ile karşılaşılmamıştır. Bu tez çalışması ile damar segmentasyon 

alanında herkesin erişimine açık bir şekilde kullanılabilecek veri seti de üretilmiş olacaktır. 

Böylece medikal alanda anevrizma, damar bölütlenmesi gibi problemlerde derin öğrenme 

tekniklerinin başlangıç ağırlıkları oluşturmasında faydalanabilecektir. 

 

Serebral arterler için etiketli veri seti oluşturulması 

 

Gerçekleştirilmiş olan derin öğrenme tabanlı ikinci yaklaşımda ise radyologlar tarafından 

incelenmek istenen ana serebral arterlerin yanı sıra bazı kılcal damarlara ve kulak 

çevresindeki istenmeyen damar bölümlerinin ortadan kaldırılmasına odaklanılmıştır. Bu 

kapsamda 1 adet Philips Intera ve 2 adet Siemens Skyra cihazından elde edilmiş 3 farklı 

hastaya ait toplamda 500 adet kesit görüntüsünün etiketleme işlemi yapılmıştır. Etiketleme 

işleminde görüntü işleme algoritması vasıtasıyla çıktılar, ITK-SNAP uygulaması vasıtasıyla 

tüm damarlar etiketlenecek şekilde manuel olarak üstünden geçilmiştir [77].  

 

Etiketleme işlemi sırasında beyin bölgesini kapsayan kafatası kemiğinin 10 milimetre geri 

mesafesinden başlayarak beyin merkezine doğru yer alan damarların etiketlenmesi 

yapılmıştır. Bunun temel nedeni kemik çevresinde yer alan damarlar üzerinde meydana 

gelen artefakt oluşum etkisinden kaynaklanmaktadır. Bu kapsamda, Philips Intera cihaza ait 

manuel etiketlenmiş kesit görüntüleri aşağıda gösterilmiştir; 

 

 
 

Resim 4.29. Philips Intera cihazına ait etiketlenmiş kesit görüntüleri 



88 

 

 

Resim 4.30. Siemens Skyra cihazına ait etiketlenmiş kesit görüntüleri 
 

 
 

Resim 4.31. Siemens Skyra cihazına ait etiketlenmiş kesit görüntüleri  
 

Yukarıdaki resimlerden gösterilen görüntüler, Siemens marka Skyra model MRG cihazında 

farklı hastalardan elde edilmiş görüntülerin etiketlenmiş halini göstermektedir. Kesit 

görüntüler görsel açıdan tek başına damarsal yapıları aktif bir şekilde ifade edememektedir. 

Bu kapsamda hacim oluşturma tekniği vasıtasıyla üç boyutlu etiketlenmiş segmentasyon 

çıktıları görsel açıdan damar yapısının incelenmesini kolaylaştırmaktadır. Böylece yanlış 

etiketleme gibi durumlar kolayca tespit edilerek üzerinde kolayca güncellemeler 

yapılabilmektedir.  
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Aşağıdaki resimlerde Siemens marka Skyra model 3T gücündeki MRA cihazı tarafından 

elde edilmiş hastaya ait görüntülerin, manuel olarak etiketlenerek oluşturduğu üç boyutlu 

çıktı görüntüleri gösterilmektedir; 

 

 
 

Resim 4.32. Siemens Skyra cihaz ilk hastaya ait etiketlenmiş 3D görüntü 
 

 
 

Resim 4.33. Siemens Skyra cihaz ilk hastaya ait etiketlenmiş 3D görüntü 
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Resim 4.34. Siemens Skyra cihaz ilk hastaya ait etiketlenmiş 3D görüntü 
 

Üç boyutlu çıktıları gösterilen hastaya ait veri seti toplamda 652 x 768 çözünürlükte 168 

adet kesit görüntüsünden oluşmaktadır. Çekim yapılan MR cihazı içerisinde pikseller arası 

boşluk 0.27mm x 0.27mm x 0.5mm şeklindedir.  Siemens marka Skyra model cihaz 

tarafından ikinci hastaya ait görüntüler aşağıda gösterilmektedir; 

 
 

Resim 4.35. Siemens Skyra cihaz ikinci hastaya ait etiketlenmiş 3D görüntü 
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Resim 4.36. Siemens Skyra cihaz ikinci hastaya ait etiketlenmiş 3D görüntü 

  

 

 

 

 

 

 

 

 

 

 

 

 

Resim 4.37. Siemens Skyra cihaz ikinci hastaya ait etiketlenmiş 3D görüntü 
 

Yukarıdaki resimlerde gösterilen hastaya ait veri seti toplamda 135 adet kesit görüntüsü 

olmak üzere her bir kesit 720 x 896 görüntü çözünürlüğünden meydana gelmektedir. Çekim 

yapılan MR cihazı içerisinde pikseller arası boşluk 0.23mm x 0.23mm x 0.7mm şeklindedir.  
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Philips marka Intera model 3 Tesla gücündeki MRA cihazına ait hastanın etiketlenmiş 

görüntüsünün üç boyutlu çıktısı Resim 4.38’de gösterilmektedir. Görüntündeki hastaya ait 

veri seti toplamda 140 adet kesit görüntüsü olmak üzere her bir kesit 512 x 512 

çözünürlükten meydana gelmektedir. Çekim yapılan MRA cihazı içerisinde pikseller arası 

boşluk 0.41mm x 0.41mm x 0.55mm şeklindedir.   

 
 

Resim 4.38. Philips Intera cihaz üçüncü hastaya ait etiketlenmiş 3D görüntü 
 

Gerçekleştirilen çalışma kapsamında, görüntü işleme algoritması vasıtasıyla elde edilen 

çıktılar bir önceki sayfalardaki görsellerde gösterildiği gibi manuel olarak etiketleme işlemi 

gerçekleştirilmiştir. Bu sayede toplamda 3 hastaya ait 500 adet kesit görüntüsü içeren 

görüntülerin etiketleme işlemi yapılarak eğitim veri seti hazırlanmıştır. 

 

4.3.2. Yapay zeka modellerinin eğitim hazırlıkları 

 

Bu bölüm içerisinde, derin öğrenme tabanlı ESA mimarilerinin eğitim süreci için yapılan 

hazırlıklardan bahsedilmektedir. Öncelikle, veri seti üzerinde gerçekleştirilen ön işlemler, 

yani görüntülerin ölçeklendirilmesi ve normalizasyon işlemleri anlatılmaktadır. İlerleyen 

kısımlarda, yapay zeka modeli için ihtiyaç duyulan yitim fonksiyonları ve optimizasyon 

teknikleri hakkında bilgi verilmektedir. Bu hazırlıkların doğru bir şekilde yapılması, eğitim 

sürecinin daha verimli ve başarılı geçmesine katkı sağlamaktadır. 
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Bu kapsamda, bölüm içerisinde gerçekleştirilecek olan algoritmalara ait akış diyagramı Şekil 

4.40’da gösterilmektedir; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.4. Derin öğrenme tabanlı sistem için akış diyagramı 
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Veri seti ön işlem adımlarının gerçekleştirilmesi 

 

Gerçekleştirilen çalışma kapsamında, eğitim işleminin verimliliği açısından ilk aşamada veri 

seti üzerinde çeşitli ön işlem adımlarının uygulanması gerekmektedir. Bu kapsamda ilk 

olarak veri seti içerisinde farklı marka ve modellere ait MRA cihazlarından elde edilmiş 

kesit görüntüleri üzerine odaklanılmıştır. Her bir kesit görüntüsü içerisindeki damar 

parlaklık değerleri MRA cihazı ve hastalara göre farklılık göstermektedir. Bu durum, derin 

öğrenme tekniklerinin eğitim aşamasında optimizasyon ve başarılarını doğrudan 

etkilemektedir.  

 

Makine öğrenmesinin alt kümesi olan derin öğrenme tekniklerinin damar segmentasyon 

problemi üzerinde yüksek başarı skor değerleri elde edebilmek amacıyla veri seti üzerinde 

standardizasyon işleminin uygulanması gerekmektedir. Standardizasyon işlemi vasıtasıyla 

her bir hastaya ait kesit görüntüleri benzer uzaya dönüştürülerek farklı MRA cihazlarının 

oluşturduğu farklı dağılımların önüne geçilmektedir. Bu kapsamda MRA görüntülerinde 

sıklıkla kullanılan Nyúl ve Udupa normalizasyon tekniği kullanılmıştır. Bu tekniğin ilk 

aşamasında hastalara ait MRA kesit görüntüleri kullanarak tüm veri setini tanımlayan yüzde 

birlik histogram dağılım değerleri elde edilmektedir. İkinci aşamada ise bu yüzde birlik 

histogram dağılım değerleri, her bir hasta verisinde kullanılarak tüm veri seti için benzer 

parlaklık dağılım değerler aralığı elde edilmektedir [78]. Resim 4.39 üzerinde sol taraftaki 

kesit ham MRA görüntüsünü temsil ederken sağ taraftaki görüntü ise Nyúl ve Udupa 

normalizasyon tekniğinin çıktısını göstermektedir. 

 

 
 

Resim 4 39. Orijinal ve normalizasyon tekniğinin çıktı görüntüleri 
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Evrişimsel sinir ağı tabanlı derin öğrenme mimarilerinin verimli bir şekilde eğitimi işlemi 

için model girişlerine statik boyutta giriş görüntüsünün sağlanması gerekmektedir. Tez 

çalışması kapsamında oluşturulan veri seti içerisinde farklı marka ve modelde MRA 

cihazları barındırdığından hastalara ait farklı çözünürlükte kesit görüntüleri oluşmaktadır. 

Bu kapsamda, MRA görüntülerinde parlaklık anlamında standardizasyon sağlandığı gibi 

verimli bir şekilde eğitim işleminin gerçekleştirilebilmesi için çözünürlük anlamında da 

standardizasyonunun sağlanması gerekmektedir.  

 

Çözünürlük anlamında standardizasyon sağlanabilmesi için Çizelge 4.1 içerisinde yer alan 

veri seti detaylı bir şekilde incelenmiştir. İncelemeler sırasında MRA cihazlarında 

görüntünün genişlik ve yükseklik kısımlarının oluşturulmasında kullanılan algılayıcıların 

piksel genişlikleri birbirine yakın bir şekilde yerleştiğinden kesit görüntüler benzer 

ölçeklerde yer almaktadır. Bu sebeple görüntüler üzerinde herhangi bir ölçeklendirme veya 

yeniden örnekleme işlemine ihtiyaç duyulmamıştır. Veri seti incelemeleri sonucunda 800 x 

800 çözünürlüğün tüm veriler için ilgili beyin bölgesini kapsamada yeterli olacağı görülmüş 

ve bu kapsamda tüm hastalara ait iki boyutlu kesit görüntüler 800 x 800 piksel 

çözünürlüğüne sığdırılmıştır. Resim 4.40 üzerinde çözünürlük anlamında standardizasyon 

işlemi için en belirgin olan Philips marka Intera modelde 512 x 512 çözünürlükte kesit 

görüntüsü seçilmiş olup, doldurma işlemi vasıtasıyla elde edilen standart formatta yeni 

görüntü gösterilmektedir. Bu görüntüler ardından modele verilirken 400 x 400 olacak şekilde 

boyut küçültme işlemi yapılmaktadır. 

 

 
 

Resim 4.40. Çözünürlük standardizasyon işleminin gösterilmesi 
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Model yitim fonksiyonu ve optimizasyon algoritması 

 

Yapay zekâ algoritmalarında kullanılan yitim fonksiyonları, eğitim işlemi sırasında 

gerçekleştirilen modelin yaptığı tahmin çıktılarının, gerçek değerlerden ne kadar 

uzaklaştığına dair ölçüsünü yansıtmaktadır. Yapılan eğitimin amacı, modelin tahminleri ile 

gerçek değerler arasındaki farkı minimize etmektir. Yitim fonksiyonu ise, genellikle geriye 

doğru yayılım algoritması sırasında kullanılarak, modelin içerdiği parametrelerin 

güncellemesini sağlamaktadır. 

 

Yitim fonksiyonları, problemin türüne ve kullanılan modelin yapısına bağlı olarak farklılık 

gösterebilmektedir. Örneğin, sınıflandırma problemleri için genellikle çapraz entropi(Cross 

Entropy) yitim fonksiyonu kullanılmaktadır. Bu fonksiyon temelde, tahmin edilen sınıf 

dağılımını gerçek sınıf dağılımıyla karşılaştırarak oluşan hatayı hesaplamaktadır. Kısaca, 

doğru tahminlerde hatanın az, yanlış tahminlerde hatanın yüksek olması beklenmektedir. Bu 

kapsamda, yitim fonksiyonları ayrı ayrı kullanıldığı gibi, probleme özgü farklı yitim 

fonksiyonlarının bir araya getirilmesiyle oluşturulmuş birleşik yitim fonksiyonları da 

kullanılabilmektedir. 

 

Gerçekleştirilen tez çalışması kapsamında, SVH tespiti amacıyla damar problemlerinin 

bölütlenmesi piksel seviyesinde sınıflandırma problemi olarak kabul edilmektedir.  Bu 

kapsamda, yitim fonksiyonu olarak ikili çapraz entropi(Binary Cross Entropy) ve Dice yitim 

fonksiyonlarının bir araya gelerek oluşturduğu birleşik yitim fonksiyonu kullanılmıştır. İkili 

çapraz entropi fonksiyonu olasılık dağılım tabanlı özelliğini kullanarak yitim değerini 

minimize edilirken, eş zamanlı olarak Dice yitim fonksiyonunun da bölge tabanlı kesişim 

oranına bakarak dengesiz veri setlerinde yitim fonksiyonunu istikrarlı hale getirmektedir. Bu 

kapsamda yeni birleşik yitim fonksiyonu aşağıdaki eşitliklerdeki gibidir; 

 

𝐿𝐵𝐶𝐸 =  
1

𝑁
∑ 𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)                                                                 (4.16)

𝑁

𝑖=0

 

𝐿𝐷𝑖𝑐𝑒 =  
2 ∗  𝛴𝑦𝑡𝑟𝑢𝑒̇ ∗ 𝛴𝑦𝑝𝑟𝑒𝑑̇

𝛴𝑦𝑡𝑟𝑢𝑒
2 +  𝛴𝑦𝑝𝑟𝑒𝑑

2                                                                                                   (4.17) 

𝐿𝑜𝑠𝑠 = 𝐿𝐵𝐶𝐸 +  𝐿𝐷𝑖𝑐𝑒                                                                                                                   (4.18) 
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Derin öğrenme algoritmalarında, optimizasyon algoritmaları vasıtasıyla geri yayılım 

algoritması tarafından üretilen türev değerlerine bağlı olarak ağırlık değerlerinin 

güncellenme işlemi gerçekleşmektedir. Bu kapsamda probleme uygun olarak optimizasyon 

algoritmalarının seçimi büyük önem taşımaktadır. Çalışma içerisinde literatürde derin 

öğrenme alanında sıklıkla kullanılan Adam optimizasyon algoritması kullanılmaktadır. Bu 

teknik vasıtasıyla, her bir yığın içerisinde geri yayılım algoritması tarafından hesaplanan 

ortalama türev değerleri ile kendinden önce gelen yığınlardaki ortalama türev değerlerinin 

üstel ağırlıklı ortalaması alınarak mimari içerisinde yer alan ağırlık parametrelerinin 

güncellenmesi sağlanmaktadır. Bu nedenle Adam optimizasyon algoritması, RMSProp ve 

Momentum algoritmasının birleştirilmesiyle oluştuğundan yığın içerisinde büyük yada 

küçük şekilde gelen ortalama türev değerlerinden etkilenmeden yitim fonksiyon değerinin 

global minimuma ulaşılmasına yardımcı olmaktadır [79]. Bu kapsamda optimizasyon 

algoritmaları vasıtasıyla oluşan yitim fonksiyonu plato eğrisi aşağıda gösterilmektedir; 

 

 
 

Şekil 4.5. Yitim fonksiyonu plato eğrisi 
 

Derin öğrenme modellerinde öğrenme hızı ya da öğrenme oranı(Learning Rate), geliştirilen 

modelin eğitimi sırasında ağırlık güncellemelerinin yapılmasında kullanılan bir katsayıdır. 

Bu kapsamda deneysel olarak başlangıç aşamasında öğrenme kat sayısı 0.001 seçilerek yitim 

fonksiyonun ilk kademelerde salınım yapmasının önüne geçilmiştir. Eğitim süresi boyunca 

ise yitim fonksiyonunun global minimuma yaklaştığı esnada ağırlık değerlerinin büyük bir 

oranda güncellenmesinin önüne geçebilmek amacıyla öğrenme kat sayısı değeri her 5000 

yığında 0.95 oranda azalacak şekilde üstel biçimde azaltılmıştır. 
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Eğitim konfigürasyonu 

 

Derin öğrenme modellerinin eğitim işlemi sırasında Intel 10.nesil i7-10750 h işlemci, 128 

GB ram ve NVIDIA RTX 3090 ekran kartından meydana gelen bilgisayar üzerinde 

gerçekleştirilmiştir. Geliştirilen tüm kodlar Pytorch 1.13.1 sürüm üzerinde geliştirilmiş 

olmakla beraber eğitim aşamasında GPU üzerindeki birimlerden faydalanabilmek için 

NVIDIA CUDA 11.7 sürümü kullanılmıştır.  

 

4.3.3. Derin öğrenme tabanlı ana serebral arterlerin segmentasyonu 

 

Gerçekleştirilen tez çalışmasının ilk bölümünde, ana serebral arter bölgesinde yer alan 

damarların bölütleme işlemi üzerine odaklanılmıştır. Bu kapsamda, derin öğrenme tabanlı 

medikal görüntüleme uygulamalarında aktif olarak kullanılan UNet, ResUNet, ResUNet++ 

ve TransUNet mimarileri damar segmentasyon problemine yönelik uyarlanmıştır. Bu 

kapsamda kullanılan mimarilere ait detaylı parametre bilgileri Çizelge 4.3’de sunulmaktadır; 

 

Çizelge 4.3. Eğitim mimarilerinin parametre bilgileri 
 

 UNet ResUNet ResUNet++   TransUNet 

Görüntü Boyutu 400 × 400 400 × 400 400 × 400 400x400 

Öğrenme Kat 

Sayısı 
1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 

Yığın Boyutu 24 24 24 24 

Epok Sayısı 45 45 45 45 

Optimizer Adam Adam Adam Adam 

Attention Sayısı - - - 12 

Transformer 

Sayısı 

- - - 12 

Patch Boyutu - - - 5 

Gömme Boyutu - - - 768 

Saklı Boyutu - - - 2048 

Parametre Sayısı 7,762,465 13,167,969 4,053,201 116,098,801 

 

Çizelge 4.3’ de görüleceği üzere, UNet, ResUNet, ResUNet++ mimarileri genellikle 

ESA’dan meydana geldiğinden benzer yapıda özellik göstermektedir. TransUNet mimarisi 

ise dil işleme alanında kullanılan mimariler gibi içerisinde barındırdığı dönüştürücüler 

sayesinde aktif olarak YSA kullanıldığından diğer mimarilere kıyasla daha yüksek 

parametre sayısına sahiptir. Bunun temel nedeni ESA yapısından kaynaklı içerisinde 
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ağırlıkların paylaşım özelliği gerçekleşirken, bu durum YSA mimarilerinde 

gerçekleşememektedir.  

 

Parametre sayısının artması, geliştirilen mimarinin eğitim maliyetini artırmış gibi gözükse 

de, modern derin öğrenme kütüphaneleri vasıtasıyla geliştirilen YSA’nın GPU üzerinde 

bütünleşik çalıştığından eğitim işlemi hızlı ve başarılı bir şekilde gerçekleşebilmektedir. Bu 

durum, çalışma kapsamında dört farklı modelin ve içerdikleri farklı yaklaşımların 

birbirleriyle karşılaştırılmasını ve problem için en uygun mimarinin seçilmesini mümkün 

kıldırmaktadır. 

 

Derin öğrenme tabanlı eğitim işlemi ve sonuçların değerlendirilmesi 

 

Gerçekleştirilen tez çalışması kapsamında UNet, ResUNet, ResUNet++, TransUNet 

mimarileri, toplamda 40 hasta üzerinden elde edilen 6312 adet kesit görüntüsü kullanılarak 

eğitilmiştir. Eğitim işlemi sırasında 5052 adet kesit görüntüsü kullanılırken, kalan 1262 adet 

kesit görüntüsü test işlemi için ayrılmıştır. Mimarilerin adil bir şekilde karşılaştırılması 

amacıyla UNet, ResUNet ve ResUNet++ mimarilerinin kodlayıcı ve kod çözücü 

kısımlarında yer alan ESA’dan meydana gelen blok sayıları eşit seçilmiştir. UNet ve 

ResUNet mimarilerinde her blokta kullanılan filtre sayıları eşit seçilirken, ResUNet++ 

mimarisinde işlem maliyetini azaltmak amacıyla her bloktaki filtre sayısı diğer mimarilere 

kıyasla yarısı kadar azaltılmıştır. Bu kapsamda 4 farklı mimarinin eğitim işlemi sırasındaki 

yitim fonksiyon değerleri Şekil 4.4’te gösterilmektedir; 
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Şekil 4.6. Geliştirilen mimarilerin yitim fonksiyon değerlerinin karşılaştırılması 
 

 
 

Şekil 4.7. Geliştirilen mimarilerin Jaccard indeks değerlerinin karşılaştırılması 
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ResUNet++ mimarisi Şekil 4.14 incelendiğinde diğer mimarilere kıyasla daha erken 

aşamalarda öğrenme işlemi gerçekleştiği gözlemlenmiştir. Bu duruma ilave olarak Şekil 

4.5’de ise her bir iterasyondaki validasyon seti üzerinde Jaccard indeks değeri 

gösterilmektedir. Değerler üzerinde görüleceği üzere öğrenme işlemi beraberinde genelleme 

başarısı da getirdiği ve Jaccard indeks değeri açısından en büyük skorun yine ResUNet++ 

mimarisinde elde edildiği gözlemlenmiştir. Bu kapsamda Çizelge 4.3’de mimarilerin farklı 

metrikler açısından test verisi üzerinde elde ettiği başarı skorları gösterilmektedir; 

 

Çizelge 4.4. Test verisi üzerinde modellerin başarılarının karşılaştırılması 
 

 UNet ResUNet ResUNet++ TransUNet 

Piksel Doğruluğu 0.9994 0.9994 0.9995 0.9994 

Ortalama Jaccard 

İndeksi 

0.9030 0.9072 0.9168 0.8960 

Duyarlılık 0.9077 0.8940 0.9008 0.8908 

Kesinlik 0.8805 0.9048 0.9193 0.8935 

F Skor 0.8921 0.8968 0.9093 0.8893 

Hesap Süresi(us) 0.4580 0.7771 0.7480 0.5461 

 

Çizelge 4.3 üzerinde açıkça görüleceği üzere,  duyarlılık metrikleri dışındaki tüm 

metriklerde en iyi segmentasyon sonuçları ResUNet++ mimarisinde elde edilmiştir. UNet, 

ResUNet ve TransUNet mimarileri piksel doğruluğu açısından yeterli olmaların rağmen, 

mIoU, hassasiyet ve F skoru metrikleri açısından ResUNet++ mimarisinin gerisinde 

kalmaktadır. Özellikle UNet mimarisindeki düşük kesinlik değeri, damar segmentasyon 

probleminde yanlış damarların etiketlenmesine neden olmaktadır ve bu durum hatalı 

segmentasyon sonuçları üretmektedir. TransUNet mimarisindeki düşük duyarlılık değeri ise 

damar bölümlerinin belirli parçalarının zayıf bir şekilde bölütlenmesi işlemine neden 

olmaktadır.  

 

Gerçekleştirilen çalışma kapsamında ResUNet++ mimarisi ise diğer mimarilere kıyasla daha 

yüksek başarı değerleriyle ve daha istikrarlı sonuçlar ürettiği gözlemlenmiştir. Bu nedenle 

ResUNet++ mimarisinin, hastalara ait çeşitli kesit görüntülerinde ürettiği segmentasyon 

çıktıları aşağıdaki şekillerde gösterilmektedir. Şekiller içerisinde sol taraftaki kesit 

görüntüsü tarafımızca görüntü işleme metodu ve ITK-SNAP uygulaması vasıtasıyla manuel 

bir şekilde etiketlenmiş görüntüleri simgelerken sağ taraftaki kesit görüntüsü ise geliştirilen 

model tarafından yapılan tahmin çıktısını göstermektedir; 
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Resim 4.41. Etiketlenmiş görüntü ve ResUNet++ modelinin tahmin çıktısı 
 

 
 

Resim 4.42. Etiketlenmiş görüntü ve ResUNet++ modelinin tahmin çıktısı 
 

 
 
Resim 4.43. Etiketlenmiş görüntü ve ResUNet++ modelinin tahmin çıktısı 
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Resim 4.44. Etiketlenmiş görüntü ve ResUNet++ modelinin tahmin çıktısı 
 

 
 

Resim 4.45. Etiketlenmiş görüntü ve ResUNet++ modelinin tahmin çıktısı 
 

Yukarıdaki şekiller, hastalara ait kesit görüntülerindeki modelin başarısını göstermektedir. 

Bunun yanı sıra, farklı hastalara ait oluşturulmuş üç boyutlu segmentasyon sonuçları da 

ilerleyen şekillerde gösterilmektedir. Şekillerdeki mavi renk, etiketlenmiş görüntüyü temsil 

ederken, kırmızı renkli kısımlar ise modelin tahmin sonuçlarını göstermektedir. İki renk bir 

araya geldiğinde oluşan görüntü ise, geliştirilen modelin tahmin çıktısı ile etiketlenmiş 

görüntünün çıktısını karşılaştırmaktadır. 
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Resim 4.46. Siemens marka Skyra model hastaya ait etiketlenmiş görüntü 
 

 
 

Resim 4.47. Siemens marka Skyra model hastaya ait ResUNet++ tahmin çıktısı 
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Resim 4.48. Siemens marka Skyra model hastaya ait çıktıların karşılaştırılması 
 

Aşağıdaki şekillerde Siemens marka Verio model hastaya ait üç boyutlu etiketlenmiş 

görüntü ve model tahmin çıktıları gösterilmektedir; 

 

 
 

Resim 4.49. Siemens marka Verio model hastaya ait etiketlenmiş görüntü 
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Resim 4.50. Siemens marka Verio model hastaya ait ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.51. Siemens marka Skyra model hastaya ait çıktıların karşılaştırılması 
 

Aşağıdaki şekillerde ise Philips marka Intera model hastaya ait üç boyutlu etiketlenmiş 

görüntü ve model tahmin çıktıları gösterilmektedir.  
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Resim 4.52. Philips marka Intera model hastaya ait etiketlenmiş görüntü 
 

 
 

Resim 4.53. Philips marka Intera model hastaya ait ResUNet++ tahmin çıktısı 
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Resim 4.54. Philips marka Intera model hastaya ait çıktıların karşılaştırılması 
 

4.3.4. Derin öğrenme tabanlı serebral arterlerin segmentasyonu 

 

Tez çalışmasının ikinci bölümünde, sadece ana serebral arter damarlarının yanı sıra aynı 

zamanda diğer serebral arterlerin de bölütleme işlemi üzerinde durulmuştur. Bu kapsamda 

geliştirilen yaklaşımda, artefakt oluşumu sebebiyle beyin bölgesindeki korteks yüzeydeki 

damarlar hariç, beyindeki tüm serebral arterlere odaklanılmıştır. Bu sayede, damarlar 

üzerinde meydana gelecek herhangi bir hastalığın hızlı bir şekilde teşhis edilmesi 

amaçlanmaktadır.  

 

Gerçekleştirilen çalışmanın ikinci bölümünde, beyin bölgesinde yer alan damar 

bölümlerinin segmentasyonu probleminde derin öğrenme mimarisi olarak ResUNet++ 

mimarisi seçilmiştir. Bunun temel nedeni, ResUNet++ mimarisi ana arter damarlarının 

segmentasyonunda diğer mimarilere kıyasla daha başarılı sonuçlar elde ettiği bölüm 4.3.3.1 

içerisinde kanıtlanmıştır. Bu nedenle çalışma içerisinde kullanılan modele ait parametre 

bilgileri aşağıdaki tabloda gösterilmektedir; 
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Çizelge 4.5. Eğitim mimarisinin parametre bilgileri 
 

 ResUNet++   

Giriş Görüntü Boyutu 400 × 400 

Her Bloktaki Filtre Sayısı 16, 32, 64, 128, 256 

Öğrenme Kat Sayısı 1 × 10−3 

Yığın Boyutu 24 

Epok Sayısı 20 

Optimizer Adam 

Parametre Sayısı 4,053,201 

 

Gerçekleştirilen derin öğrenme tabanlı mimarinin eğitim işlemleri sırasında kullanılacak veri 

seti toplamda 3 farklı hastalara ait kesit görüntülerinden meydana gelmektedir. Kullanılan 

hastaların verileri incelendiğinde, iki farklı hastaya ait görüntüler Siemens marka Skyra 

model cihazda çekilirken, üçüncü hastanın görüntüleri ise Philips marka Intera model MRA 

cihazıyla kaydedilmiştir. Eğitim işlemi sırasında çapraz doğrulama yöntemi kullanılarak, 

test aşamasında kullanılacak verilerin eğitim aşamasında kullanılacak verilerden farklı 

olması sağlanmıştır. Bu sayede, modelin farklı hastalar üzerindeki genelleme başarısı adil 

bir şekilde karşılaştırılmış olup başarılı bir şekilde eğitim işlemi gerçekleştirilmiştir. 

 

Bu kapsamda, bölüm içerisinde gerçekleştirilecek olan algoritmalara ait akış diyagramı Şekil 

4.56’da gösterilmektedir; 
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Şekil 4.8. Derin öğrenme tabanlı sistem için akış diyagramı 
 

Derin öğrenme tabanlı eğitim işlemi ve sonuçların değerlendirilmesi 

 

Eğitim işlemi sırasında, modelin içerdiği ağırlıkların rastgele bir şekilde başlaması yerine, 

ana serebral arterlerin bölütlenmesi işleminde eğitilmiş ağırlıklar transfer edilerek modelin 
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eğitim işlemi gerçekleştirilmiştir. Eğitim sırasında çapraz doğrulama tekniği kullanılmıştır. 

Bu sayede toplamda 3 farklı hastaya ait kesit görüntüleri her bir hasta test setinde olacak 

şekilde 3 farklı eğitim işlemi gerçekleştirilmiştir. Böylece eğitim aşamasında test edilen 

hastaya ait herhangi bir kesit görüntüsü eğitim seti içerisinde yer almamaktadır. Bu 

kapsamda yapılan eğitime ait metrik sonuç değerleri Çizelge 4.5’de verilmiştir; 

 

Çizelge 4.6. Test verisi üzerinde modellerin başarılarının karşılaştırılması 
 

 Marka  Model Piksel 

Doğruluğu 

Ortalama 

Jaccard 

İndeksi 

Kesinlik Duyarlılık F Skor 

Hasta 1  Siemens  Skyra 0.9984 0.8861 0.8751 0.8697 0.8700 

Hasta 2  Siemens  Skyra 0.9986 0.8851 0.9180 0.8321 0.8654 

Hasta 3 Philips  Intera 0.9992 0.8610 0.9020 0.7915 0.8267 

        

        

 

Eğitim sonucunda elde edilmiş her bir hasta için, ayrı ayrı üretilen çapraz doğrulanmış 

modellerin iki boyutlu kesit test görüntülerinde oluşturdukları ResUNet++  modelinin 

tahmin çıktıları elde edilmiştir. Bu kapsamda Philips Intera makinesinde çekim yapılmış bir 

hastanın 135 adet kesit görüntüsü içerisinde modelin yaptığı bazı tahminler aşağıdaki 

şekillerde gösterilmiştir. Şekiller içerisinde sol taraftaki kesit görüntüsü tarafımızca 

etiketlenmiş görüntüleri içerirken sağ taraftakiler modelin tahminini göstermektedir. 

 

 
 

Resim 4.55. Philips Intera cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
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Resim 4.56. Philips Intera cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.57. Philips Intera cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.58. Philips Intera cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
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Benzer şekilde Siemens marka Skyra model MR makinesinde çekim yapılmış ikinci hastaya 

ait kesit görüntülerinde modelin yaptığı tahmin çıktıları aşağıdaki şekillerde 

gösterilmektedir. Şekiller içerisinde sol taraftaki kesit görüntüsü tarafımızca etiketlenmiş 

görüntüleri simgelerken sağ tarafta yer alan görüntüler ise modelin tahmin çıktılarını 

göstermektedir. 

 

 
 

Resim 4.59. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.60. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
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Resim 4.61. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

  
 

Resim 4.62. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.63. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
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Son olarak Siemens marka Skyra model MR makinesinde çekim yapılmış üçüncü hastaya 

ait kesit görüntülerinde modelin yaptığı tahmin çıktıları aşağıdaki şekillerde 

gösterilmektedir. Şekiller içerisinde sol taraftaki kesit görüntüsü tarafımızca etiketlenmiş 

görüntüleri simgelerken sağ tarafta yer alan görüntüler ise modelin tahmin çıktılarını 

göstermektedir. 

 

 
 

Resim 4.64. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.65. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
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Resim 4.66. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.67. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
 

 
 

Resim 4.68. Siemens Skyra cihaza ait hasta kesit görüntüsü ve ResUNet++ tahmin çıktısı 
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Bir önceki sayfalarda gösterilen şekiller, çapraz doğrulama kullanılarak hastalara ait kesit 

görüntülerindeki modellerin başarısını göstermektedir. Bunun yanı sıra, farklı hastalara ait 

iki boyutlu tahmin çıktılarının birleştirilerek oluşturduğu üç boyutlu segmentasyon 

çıktılarını incelemek daha anlaşılır olacaktır. Bu kapsamda, Siemens marka Skyra model 

MR cihazında çekilmiş hastaya ait üç boyutlu etiketlenmiş ve model tahmin çıktıları 

aşağıdaki şekillerde gösterilmektedir. Mavi renkli şekiller etiketlenmiş görüntüyü temsil 

ederken kırmızı renkli görüntüler ise ResUNet++ tahmin çıktısını göstermektedir. 

 

 
 

Resim 4.69. Siemens Skyra cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.70. Siemens Skyra cihaza ait ResUNet++ tahmin çıktı görüntüsü 



118 

 

 
 

Resim 4.71. Siemens Skyra cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.72. Siemens Skyra cihaza ait ResUNet++ tahmin çıktı görüntüsü 
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Resim 4.73. Siemens Skyra cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.74. Siemens Skyra cihaza ait model ResUNet++ çıktı görüntüsü 
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İkinci olarak Siemens Skyra marka Manyetik Rezonans Görüntüleme cihazında kesit 

görüntüleri elde edilmiş hastaya ait gerçekleştirilen modelin tahmin sonuçlarını 

içermektedir. Bu kapsamda hastaya ait üç boyutlu etiketlenmiş ve model tahmin çıktı 

görüntüleri aşağıdaki şekillerde gösterilmektedir; 

 

 
 

Resim 4.75. Siemens Skyra cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.76. Siemens Skyra cihaza ait ResUNet++ tahmin çıktı görüntüsü 
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Resim 4.77. Siemens Skyra cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.78. Siemens Skyra cihaza ait ResUNet++ tahmin çıktı görüntüsü 
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Resim 4.79. Siemens Skyra cihaza ait etiketlenmiş hasta çıktı görüntüsü.  
 

 
 

Resim 4.80. Siemens Skyra cihaza ait ResUNet++ tahmin çıktı görüntüsü 
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Son olarak Philips marka Intera model Manyetik Rezonans Görüntüleme cihazında kesit 

görüntüleri elde edilmiş hastaya ait gerçekleştirilen modelin tahmin sonuçlarını 

içermektedir. Bu kapsamda hastaya ait üç boyutlu etiketlenmiş ve model tahmin çıktı 

görüntüleri aşağıdaki şekillerde gösterilmektedir; 

 

 
 

Resim 4.81.  Philips Intera cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.82. Philips Intera cihaza ait ResUNet++ tahmin çıktı görüntüsü 
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Resim 4.83. Philips Intera cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.84. Philips Intera cihaza ait ResUNet++ tahmin çıktı görüntüsü 



125 

 

 
 

Resim 4.85. Philips Intera cihaza ait etiketlenmiş hasta çıktı görüntüsü 
 

 
 

Resim 4.86. Philips Intera cihaza ait ResUNet++ tahmin çıktı görüntüsü 
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5. TARTIŞMA 

 

Gerçekleştirilen tez çalışması doğrultusunda, TransUNet mimarisi diğer tekniklere kıyasla 

en güncel görüntü dönüştürücüleri(Vision Transformers) teknolojilerini içermesine rağmen, 

daha düşük bir başarı sonucu elde etmiştir. Bunun temel nedeni, dönüştürücü tabanlı 

mimarilerin genellikle yüksek miktarda veri ve güçlü veri artırım teknikleriyle birlikte 

kullanıldığında başarısının arttığı çeşitli literatür çalışmalarıyla kanıtlanmıştır. 

Gerçekleştirilen çalışmada ise, sınırlı bir veri seti kullanılmış olması, TransUNet 

mimarisinin diğer mimarilere kıyasla daha düşük bir başarı skoru elde etmesine neden 

olmuştur. Böylece, dönüştürücü tabanlı mimarilerin başarılarıyla ilgili daha kapsamlı 

çalışmaların ve daha fazla veriye dayalı araştırmaların gerekliliğini vurgulamaktadır. 

 

Gerçekleştirilen çalışmanın çıktıları incelendiğinde, konvolüsyon tabanlı mimarilerin damar 

segmentasyon probleminde dönüştürücü tabanlı mimarilere göre daha iyi bir performans 

gösterdiği gözlemlenmiştir. Bu durum, konvolüsyon tabanlı mimarilerin daha az veriyle 

daha kolay öğrenebilme yetenekleri ve genelleme başarılarının yüksek olduğu 

gözlemlenmiştir. Çalışmamızda, konvolüsyon tabanlı mimarilerden ResUNet++ 

mimarisinin damar segmentasyonunda en yüksek skoru elde ettiği görülmüştür. Bu sonuçlar, 

damar segmentasyonu için daha fazla veri elde edilemediği durumlarda, konvolüsyon tabanlı 

mimarilerin güvenilir bir seçenek olduğunu göstermektedir. Bu duruma ilave olarak yapılan 

çalışma ResUNet, ResUNet++, TransUNet mimarilerinin damar segmentasyonuna 

uyarlandığı ilk çalışma özelliği taşımaktadır. 

 

Literatürdeki çalışmalar incelendiğinde damar segmentasyonu problemlerinde kullanılan 

mimarilere genellikle görüntüler parçalara ayrıldıktan sonra eğitim işlemi yapılmaktadır. 

Gerçekleştirilen çalışma diğer çalışmalardan farklı olarak hastaya ait tüm iki boyutlu kesit 

görüntüsü üzerinde eğitim işlemi yapılarak başarısını kanıtlamıştır. Sonuç olarak, çalışma 

hem serebral arterlerin tamamının hem de ana serebral arterlerin segmentasyonu için farklı 

mimarilerin başarılarını değerlendirmiştir.  

 

 

 

 



128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



129 

 

6. SONUÇLAR VE ÖNERİLER 

 

Serebrovasküler hastalıklar, beyni besleyen damar bölümleri üzerinde, kan akışının 

zayıflaması, durması veya damarların yırtılması sonucunda ciddi beyin hasarlarına sebep 

olan hastalık grubudur. Bu sebeple serebrovasküler hastalıklar, dünya genelinde ölüm 

nedenleri arasında üçüncü sırada yer alırken, hastalık sonrasında engelli kalma oranı 

açısından ilk sırada yer almaktadır. Bu nedenle, beyin damarlarının oluşturduğu vasküler 

yapının detaylı bir şekilde incelenmesi, erken hastalık teşhisi için büyük önem taşımaktadır. 

Bu sebeple çalışma kapsamında, erken aşamada SVH teşhisinde kullanılabilecek üç farklı 

yöntem geliştirilmiştir. 

 

Gerçekleştirilen tez çalışmasının ilk bölümünde, klasik görüntü işleme tabanlı yöntemler 

kullanılarak beyin bölgesinde yer alan damarların bölütlenmesi sağlanmıştır. Geliştirilen 

yöntem ilk olarak Hesse matrisleri vasıtasıyla ilgili damar bölümlerini çıkarmaktadır. İkinci 

aşamada ise bağlı bileşenlerin etiketlenmesi algoritmasından faydalanılarak belirli voksel 

boyutundan küçük olan bölümlerin silinmesi sağlanmıştır. Son aşamada ise bölge büyütme 

algoritması kullanılarak damar bölümlerindeki bölütleme başarısı artırılmaktadır. Görüntü 

işleme tabanlı sonuçlar incelendiğinde damarların büyük bir bölümünü başarılı şekilde 

segmentasyonunu sağlasa da içerisinde kullanılan algoritmaların parametrik oluşu sebebiyle 

genelleme başarısının düşük olmasına sebep olmaktadır. Bu nedenle farklı Manyetik 

Rezonans Anjiyografi cihazlarında farklı hastalara ait görüntülerde damar olmayan 

bölümlerin segmentasyonuna veya damar olan bölümlerin eksik bir şekilde bölütleme 

işlemine neden olabilmektedir.  

 

Görüntü işleme tabanlı geliştirilen yöntemlerdeki eksiklikler son yıllarda popüler olan derin 

öğrenme yaklaşımlarının damar bölütleme problemine uygulanmasını doğurmuştur. Derin 

öğrenme tabanlı yöntemlerin uygulanabilirliği için öncelikle etiketli bir şekilde veri setinin 

oluşturulması gerekmektedir. Medikal görüntüler incelendiğinde milyonlarca vokselden 

meydana gelmektedir. Bu nedenle sıfırdan etiketli bir veri setinin oluşturulması zaman ve 

deneyimli radyolog açısından maliyetli olmaktadır. Süreci hızlandırmak amacıyla görüntü 

işleme tabanlı geliştirilen teknikler kullanılarak hızlı bir şekilde veri setinin oluşturulması 

sağlanmıştır. İlerleyen aşamada ise oluşturulan veri seti üzerinde manuel olarak kontrol ve 

etiketleme işlemleri sağlanarak veri seti oluşturulmuştur. 
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Gerçekleştirilen tez çalışmasının ikinci bölümünde ana serebral arterlerin segmentasyonu 

üzerine odaklanılmıştır. Bunun nedeni genellikle, anevrizma gibi çeşitli serebrovasküler 

hastalıkların birçoğu bu bölge üzerinde yer alan damarlar üzerinde meydana gelmektedir. 

Bu nedenle bu bölümlerin doğru bir şekilde bölütleme işlemi, hastalık teşhisi için oldukça 

önem taşımaktadır. Bu kapsamda, medikal problemlerde yaygın olarak kullanılan derin 

öğrenme mimarileri olan UNet, ResUNet, ResUNet++ ve TransUNet yaklaşımları 

kullanılarak beyin içerisinde ana serebral arterlerin segmentasyonu başarılı bir şekilde 

sağlanmıştır. Sonuçlar incelendiğinde %91.68 mIoU değeri ile en yüksek skorun 

ResUNet++ mimarisinde elde edildiği gözlemlenmiştir. 

 

Çalışmanın son bölümünde ise ana serebral arterlerin yanı sıra diğer damar bölümlerinin de 

segmentasyonuna odaklanılmıştır. Bu kapsamda ana serebral arterlerin segmentasyonunda 

en yüksek skor değerlerini elde eden ResUNet++ mimarisi seçilmiştir. Eğitim işlemi 

sırasında, modelin içerdiği ağırlıkların rastgele bir şekilde başlaması yerine, ana serebral 

arterlerin bölütlenmesi işleminde eğitilmiş ağırlıklar transfer edilerek üç farklı hastaya ait 

görüntüler üzerinde çapraz doğrulama yöntemi vasıtasıyla eğitim işlemi gerçekleştirilmiştir. 

Gerçekleştirilen eğitim sonuçları incelendiğinde Siemens marka Skyra modele ait hasta için 

%88.61 mIoU değeri elde edilmiştir. Benzer şekilde ikinci hastaya ait Siemens marka Skyra 

model makine vasıtasıyla elde edilmiş görüntüler incelendiğinde  %88.51 mIoU değeri elde 

edilmiştir. İki hasta içinde ortak olarak merkezden uzaklaştıkça damarlar inceldiğinden ve 

bu durum görüntüdeki piksel yoğunluk değerlerini düşürdüğünden bazı bölümlerde eksik 

bölütleme işlemine neden olduğu gözlemlenmiştir.  

 

 Üçüncü hastaya ait görüntüler incelendiğinde ise %86.10 mIoU değeri ile diğer iki hastaya 

nazaran biraz daha düşük başarı skorları ile segmentasyon sonuçları elde edilmiştir. Bunun 

temel nedeni olarak ağırlık transferi yapılan mimaride kullanılan veri seti içerisinde 

genellikle Siemens marka MRA cihazlarından elde edilmiş veri setinden meydana 

gelmektedir. Bu sebeple farklı dağılıma ait Philips marka makinede daha düşük sonuçlara 

neden olduğu gözlemlenmiştir. Böylece ilerleyen çalışmalarda Philips marka MRA 

cihazından çekilmiş hastalara ait verilerin eklenerek segmentasyon başarı değerlerinin 

artırılması planlanmaktadır bu sayede veri seti içerisinde benzer sayıda MRA cihaz çeşitliliği 

sağlanarak daha verimli ve daha başarılı bir şekilde eğitim işleminin yapılması 

planlanmaktadır.  
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Sonuç olarak gerçekleştirilen çalışmalar doğrultusunda görüntü işleme ve derin öğrenme 

tabanlı yaklaşımlar ile beyin bölgesinde yer alan damarların segmentasyonu başarı bir 

şekilde gerçekleştirilmiştir. Gerçekleştirilen çalışma içerisinde beyin bölgesinde yer alan 

damarların uzamsal konumlarından faydalanabilmek amacıyla doğrudan kesit görüntüleri 

bölümlere ayrılmadan ana görüntü üzerinde çalışılmıştır. Bu nedenle çalışma kapsamında 

kullanılan derin öğrenme tabanlı mimariler iki boyutlu evrişimsel sinir ağlarından meydana 

gelmektedir. Gelecekteki çalışmalarda, elde edilen bölütlenmiş arter bölümleri için klinik 

kullanıma daha uygun ve hastalıkların tespitine yardımcı olacak, damarların geometrik 

muayenesi için hızlı ve etkili yöntemler geliştirmeye odaklanılacaktır. 
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