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ÖZET 
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1. GİRİŞ 

İnsanlık tarihinin en eski bilimlerinden birisi matematiktir. İnsanların düşünlerine yön 

veren ve onu biçimlendiren matematik, medeniyetlerin gelişmesinde önemli olmuştur. 

Matematik sözcüğü, M.Ö. 550 yıllarında, Pisagor okulu içinde, ilk kez dile 

getirilmiştir. M.Ö. 380 yıllarında ise Platon’la literatüre girmiştir. Sözcük anlamı 

“öğrenilmesi gereken şey” olarak bilinir. Bu anlama gelen matematiğin ilk 

kullanımının ise daha eskiye dayandığı düşünülmektedir. İlk olarak, Mısır ve 

Mezopotamya’da matematiğin kullanıldığı söylenmektedir. Zamanı kaydetmeye 

çalışmada, ticarette, yıldızların konumlarında, doğada kısacası her yerde matematiği 

kullanmışlardır. Zaman geçtikçe matematiğin kullanıldığı alanlar giderek artmıştır. 

Mühendislik, tıp, ekonomi, bilişim, teknoloji, sanat gibi alanlar matematikle 

harmanlanarak daha da etkin bir hale gelmiştir. Matematik kendi içinde alt bilim 

dallarına ayrılarak, çalışma alanları kendi içinde daha da spesifik hale gelmiştir. 

Alt çalışma alanlarının en önemlilerinden birisi de konveks analizdir. Özellikle son 

zamanlarda bu alanda yapılan çalışmalar daha da hızlanmıştır. Bu çalışmalarla, 

konvekslik kavramının hem günlük hayattaki hem de bilimsel çalışmalardaki kayda 

değer uygulamalarının varlığı önemini oldukça arttırmıştır. Optimizasyon Teorisi [1], 

Eşitsizlikler Teorisi [2], Matematiksel Ekonomi [3,4], Yöneylem Araştırması [5] gibi 

konveks analizin uygulama alanları hem teorik hem de pratik olarak büyük bir ilgi 

çekmektedir.  

Klasik konveksliğin genelleştirilmesi ile soyut konveksliğe geçiş yapılır [6]. Bu geçiş 

ile elde edilen soyut konvekslik türlerinden birisi de B-konveksliktir [7].  

𝑈𝑈 ⊆ ℝ+
𝑛𝑛  kümesi için ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝑈𝑈 ve 𝛽𝛽 ∈ [0, 1] olmak üzere, 

𝛽𝛽𝛽𝛽 ∨ 𝑦𝑦 ∈ 𝑈𝑈                                                             (1.1) 

oluyorsa 𝑈𝑈 kümesine B-konveks küme denir [7]. 

𝐶𝐶 ⊂ ℝ𝑛𝑛 kümesi B-konveks küme olmak üzere, 𝑓𝑓:𝐶𝐶 → ℝ ∪ {±∞} fonksiyonu verilsin. 

𝑓𝑓 fonksiyonu; ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 𝛽𝛽 ∈ [0, 1] için, 

𝑓𝑓(𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽) ≤ 𝑓𝑓(𝑥𝑥) ∨ 𝛽𝛽𝛽𝛽(𝑦𝑦)                                              (1.2) 
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eşitsizliğini sağlıyorsa 𝑓𝑓 fonksiyonuna B-konveks fonksiyon denir [8]. 

Küme teorisi, fonksiyonlar ve ekonomi üzerine yapılan çalışmaların geliştirilmesine 

B-konvekslik büyük bir katkı sağlamaktadır [7,9,10,11]. 

Kesirli türev ve kesirli integral ilk olarak 17. yüzyılda ortaya çıkmıştır ve bunların 

gelişmesinde ilk adımı Riemann ve Liouville atmıştır [12]. Daha sonra devamında 

Hadamard kendi isminde bir kesirli integral ve türev tanımlamıştır [13]. Son 

zamanlarda ise kesirli operatörler üzerine çalışmalar hız kazanmış ve pek çok kesirli 

operatör tanımı genelleştirilerek ifade edilmiştir [14,15]. Bu çalışmaya konu olacak 

olan genelleştirilmiş Riemann-Liouville kesirli integrali bazı kesirli integrallerin bir 

genelleştirilmesidir ve çok sayıda çalışmaya konu olmuştur [14,16,17,18,19]. 

Riemann-Liouville kesirli integrali aşağıdaki gibi tanımlanmaktadır. 

𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ → ℝ fonksiyonu verilsin. 0 < 𝑎𝑎 < 𝑏𝑏 < ∞ , [𝑎𝑎, 𝑏𝑏] kapalı aralığında 

integrallenebilen 𝑓𝑓 fonksiyonu ve 𝛼𝛼 > 0 için, 

𝐽𝐽𝑎𝑎+
𝛼𝛼 𝑓𝑓(𝑥𝑥) =

1
Γ(𝛼𝛼)�

(𝑥𝑥 − 𝑡𝑡)𝛼𝛼−1𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑎𝑎
        , 𝑥𝑥 > 𝑎𝑎                          (1.3) 

şeklinde tanımlanan integrale 𝛼𝛼. mertebeden sağdan Riemann-Liouville kesirli 

integrali, 

𝐽𝐽𝑏𝑏−𝛼𝛼 𝑓𝑓(𝑥𝑥) =
1

Γ(𝛼𝛼)�
(𝑡𝑡 − 𝑥𝑥)𝛼𝛼−1𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑏𝑏

𝑥𝑥
        , 𝑥𝑥 < 𝑏𝑏                          (1.4) 

şeklinde tanımlanan integrale ise 𝛼𝛼. mertebeden soldan Riemann-Liouville kesirli 

integrali denir [20]. 

Matematiğin her alanında kullanılan ve çok büyük bir öneme sahip olan teorilerden 

birisi de Eşitsizlikler Teorisidir [2]. Eşitsizlikler birçok matematikçi için heyecan 

verici gizemleri içinde barındırdığından yeni çalışmalarda kullanımı her geçen gün 

daha da artmaktadır. Jensen [21], Cauchy-Hölder, Hermite-Hadamard [22,23,24], 

Fejer [25] adlarıyla bilinen eşitsizlikler matematikte önemli yer edinmişlerdir ve 

bilimsel olarak kullanılan eşitsizliklerin başında gelmektedir [9,10,15,26,27]. B-

konveks fonksiyonlar için Hermite-Hadamard eşitsizliği aşağıdaki gibi verilmiştir. 
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𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+ B-konveks fonksiyonu verilsin. 𝑓𝑓  [𝑎𝑎, 𝑏𝑏] kapalı aralığında 

integrallenebilen bir fonksiyon olmak üzere, 

1
𝑏𝑏 − 𝑎𝑎

� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≤ �

𝑓𝑓(𝑎𝑎)                                                               ,   𝑓𝑓(𝑎𝑎) ≥ 𝑓𝑓(𝑏𝑏)

𝑏𝑏 ��𝑓𝑓(𝑎𝑎)�2 + �𝑓𝑓(𝑏𝑏)�2� − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2(𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑏𝑏) ,    𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏)
    (1.5) 

eşitsizliği sağlanır [8]. 

Tez çalışmamız altı bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. Bu 

bölümde içerik ve tez ile ilgili genel bilgiler verilmiştir. İkinci bölümde konvekslik 

kavramı bunların soyutlaştırılması ve bazı soyut konvekslik çeşitleri verilmiştir. Bu 

soyut konvekslik çeşitlerinden tezimizin sonuç ve bulgularına temel oluşturan B-

konveks küme ve fonksiyonların üzerinde ayrıntılı şekilde durulmuştur. Tez 

çalışmasının üçüncü bölümünde üzerinde çalışılan kesirli integrallerden bahsedilerek 

gerekli tanımlar verilmiştir. Dördüncü bölümde Hermite-Hadamard eşitsizliğinin yeni 

bir versiyonu ile ilgili çalışmalar gerçekleştireceğimizden onunla ilgili bilgiler 

verilecektir. Beşinci bölümde ise bizim kendi ispat ve sonuçlarımız ile bunların 

uygulamaları verilecektir. Bu ispat ve sonuçlar B-konveks fonksiyonlar için 

trapezoidal eşitsizlikler ve kesirli integral eşitsizlikleri ile bunlardan elde edilen 

uygulamalardır. Tezin son bölümünde ise sonuç ve önerilerden oluşmaktadır.  
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2. KONVEKSLİK VE SOYUT KONVEKSLİK KAVRAMLARI İLE BAZI 
SOYUT KONVEKSLİK ÇEŞİTLERİ 

Bu bölümde ilk olarak klasik konvekslik ve soyut konvekslikle ilgili temel bilgilere 

değinilecektir. Sonra soyut konvekslik çeşitlerinden B-konvekslikle ilgili tanımlar ve 

gerekli bilgiler verilecektir. 

2.1 Konveks Kümeler ve Konveks Fonksiyonlar ile İlgili Temel Kavramlar 

Tanım 2.1.1 [21] 𝐶𝐶 ⊂ ℝ𝑛𝑛 ve 𝐶𝐶 ≠ ∅ olsun. ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶 ve 𝛽𝛽 ∈ [0, 1] için 

𝛽𝛽𝛽𝛽 + (1 − 𝛽𝛽)𝑦𝑦 ∈ 𝐶𝐶                                                (2.1) 

sağlanıyorsa 𝐶𝐶 kümesine konveks küme denir. Başka bir deyişle 𝐶𝐶 kümesinin içinden 

alınan herhangi iki noktayı birleştiren doğru parçası 𝐶𝐶 kümesinin içinde kalıyorsa, 𝐶𝐶 

kümesine konvekstir denir. Konveks olmayan kümelere ise konkav kümeler denir. 

 

 

 

(a)                                                                   (b) 

  

 

 

                          (c)                                                                        (d) 

Şekil 2.1 Konveks Olan ve Olmayan Kümeler 

Yukarıda Şekil 2.1 de verilen (a) ve (c) kümeleri konveks küme iken (b) ve (d) 

kümeleri konkav kümelerdir.  
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Teorem 2.1.1 [21] 𝐶𝐶 ⊂ ℝ𝑛𝑛 kümesi verilsin. 𝐶𝐶 kümesinin konveks küme olması için 

gerek ve yeter şart ∀ 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝐶𝐶, 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛 ≥ 0 ve 𝛽𝛽1 + 𝛽𝛽2 + ⋯+𝛽𝛽𝑛𝑛 = 1 

için, 

𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 ∈ 𝐶𝐶                                         (2.2) 

şartının sağlanmasıdır. 

Tanım 2.1.2 [21] 𝐶𝐶 ⊂ ℝ𝑛𝑛 kümesi konveks küme olsun. 𝑓𝑓:𝐶𝐶 → ℝ ∪ {+∞} fonksiyonu 

verilsin. 𝑓𝑓 fonksiyonu; 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 𝛽𝛽 ∈ [0, 1] için, 

𝑓𝑓(𝛽𝛽𝛽𝛽 + (1 − 𝛽𝛽)𝑦𝑦) ≤ 𝛽𝛽𝛽𝛽(𝑥𝑥) + (1 − 𝛽𝛽)𝑓𝑓(𝑦𝑦)                               (2.3) 

eşitsizliğini sağlayan 𝑓𝑓 fonksiyonuna konveks fonksiyon denir. 

 

  

 

 

 

 

 

 

 

 

  

Şekil 2.2 Konveks Fonksiyon 

𝑥𝑥1 𝑥𝑥2 
𝑥𝑥 = 𝛽𝛽𝑥𝑥1 + (1 − 𝛽𝛽)𝑥𝑥2 

(𝑥𝑥2,𝑓𝑓(𝑥𝑥2)) 

(𝑥𝑥1,𝑓𝑓(𝑥𝑥1)) 

(𝑥𝑥,𝑓𝑓(𝛽𝛽𝑥𝑥1 + (1 − 𝛽𝛽)𝑥𝑥2)) 

�𝑥𝑥,𝛽𝛽𝛽𝛽(𝑥𝑥1) + (1 − 𝛽𝛽)𝑓𝑓(𝑥𝑥2)� 
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Şekil 2.2 de verilen fonksiyon konveks fonksiyondur. Gerçekten 𝑥𝑥1 ve 𝑥𝑥2 noktalarının 
𝑥𝑥 = 𝛽𝛽𝑥𝑥1 + (1 − 𝛽𝛽)𝑥𝑥2 konveks kombinasyonunun fonksiyon altındaki görüntüsü 
𝑓𝑓(𝑥𝑥1) ve 𝑓𝑓(𝑥𝑥2) noktalarının 𝛽𝛽𝛽𝛽(𝑥𝑥1) + (1 − 𝛽𝛽)𝑓𝑓(𝑥𝑥2) konveks kombinasyonundan 
küçük kalır. 

Teorem 2.1.2 (Jensen Eşitsizliği) [21] 𝑓𝑓:ℝ𝑛𝑛 → ℝ ∪ {+∞} fonksiyonu verilsin. 𝑓𝑓 

fonksiyonunun konveks olması için gerek ve yeter şart 

𝑓𝑓(𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛) ≤ 𝛽𝛽1𝑓𝑓(𝑥𝑥1) + 𝛽𝛽2𝑓𝑓(𝑥𝑥2) + ⋯𝛽𝛽𝑛𝑛𝑓𝑓(𝑥𝑥𝑛𝑛)        (2.4) 

eşitsizliğinin sağlanmasıdır. Burada 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑛𝑛 ≥ 0 iken 𝛽𝛽1 + 𝛽𝛽2 + ⋯+𝛽𝛽𝑛𝑛 = 1 dir. 

2.2 Soyut Konvekslik ile İlgili Temel Kavramlar 

Konvekslik kavramı temel olarak aşağıdaki biçimlerde soyutlaştırılır.  

Tanım 2.2.1 [6] 𝐻𝐻,𝑋𝑋 kümesi üzerinde tanımlı sonlu fonksiyonların bir kümesi ve 

𝑓𝑓:𝑋𝑋 → ℝ�  olsun. Eğer 𝐻𝐻 nin  

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠{ℎ(𝑥𝑥): 𝑥𝑥 ∈ 𝑋𝑋,ℎ ∈ 𝑈𝑈}                                 (2.5) 

olacak şekilde bir 𝑈𝑈 alt kümesi varsa, 𝑓𝑓 fonksiyonu 𝐻𝐻 ye göre soyut konvekstir ( 𝐻𝐻-

konvekstir) denir. Burada 𝐻𝐻 fonksiyonlar sınıfına elemanter fonksiyonlar ailesi denir. 

 𝐻𝐻 = ∅  olması durumunda 𝑓𝑓(𝑥𝑥) = −∞ olarak kabul edilecektir. 

Bu yöntemden başka “Topolojik Soyut Konvekslik” ve “Fonksiyonel Soyut 

Konvekslik” isimli soyutlaştırma yöntemleri de vardır. 

Tanım 2.2.2 (Topolojik Soyut Konvekslik) [6] 𝑋𝑋 bir vektör uzay, 𝐶𝐶 ⊂ 𝑋𝑋 olsun. 

∀ 𝑚𝑚 ≥ 2 tamsayısı için 𝑉𝑉𝑚𝑚 ⊂ ℝ𝑚𝑚 kümesini alalım. Bir Φ𝑚𝑚:𝐶𝐶𝑚𝑚 × 𝑉𝑉𝑚𝑚 → 𝐶𝐶 

fonksiyonlar ailesi verilsin. Eğer 𝑈𝑈 ⊂ 𝐶𝐶 için, 

(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 ∈ 𝑈𝑈,𝛼𝛼1, … ,𝛼𝛼𝑚𝑚 ∈ 𝑉𝑉𝑚𝑚) ⇒ Φ𝑚𝑚(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚,𝛼𝛼1, … ,𝛼𝛼𝑚𝑚) ∈ 𝑈𝑈,𝑚𝑚 = 2,3, … 

𝑈𝑈 kümesine Φ𝑚𝑚 fonksiyonlar ailesine göre soyut konvekstir denir. 
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Tanım 2.2.3 (Fonksiyonel Soyut Konvekslik) [6] 𝑋𝑋 bir vektör uzay, 𝐶𝐶 ⊂ 𝑋𝑋 ve 𝐿𝐿 de 

ℓ:𝐶𝐶 → ℝ fonksiyonlarının bir ailesi olsun. Eğer 𝑈𝑈 ⊂ 𝐶𝐶 olmak üzere, ∀𝑥𝑥 ∉ 𝑈𝑈 noktası 

𝐿𝐿 den bir fonksiyon ile 𝑈𝑈 kümesinden ayrılabilir ise, yani öyle bir  ℓ ∈ 𝐿𝐿 vardır ki 

ℓ(𝑥𝑥) > 𝑠𝑠𝑠𝑠𝑠𝑠 ℓ(𝑢𝑢) ise, 𝑈𝑈 kümesine 𝐿𝐿 ye göre soyut konveks küme denir. 

2.3 Bazı Soyut Konvekslik Çeşitleri 

Tanım 2.3.1 (s-konveks Küme) [28] 𝐶𝐶 ⊆ ℝ𝑛𝑛 ve 0 < 𝑠𝑠 ≤ 1 olsun. Her 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 

𝜆𝜆, 𝜇𝜇 ≥ 0 için 𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠 = 1 olmak üzere 𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 ∈ 𝐶𝐶 şartlarını sağlayan 𝐶𝐶 kümesine s-

konveks küme denir. 

Tanım 2.3.2 (Birinci Anlamda s-konveks Fonksiyonlar) [29] 𝑓𝑓:𝐶𝐶 ⊆ ℝ𝑛𝑛 → ℝ bir 

fonksiyon olsun. 𝑠𝑠 ∈ (0, 1] ve 𝐶𝐶 s-konveks küme olmak üzere ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 𝜆𝜆, 𝜇𝜇 ≥ 0, 

𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠 = 1 için 

𝑓𝑓(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) ≤ 𝜆𝜆𝑠𝑠𝑓𝑓(𝑥𝑥) + 𝜇𝜇𝑠𝑠𝑓𝑓(𝑦𝑦)                                       (2.6) 

eşitsizliğini sağlayan 𝑓𝑓 fonksiyonuna birinci anlamda s-konveks fonksiyon denir. 

Tanım 2.3.3 (İkinci Anlamda s-konveks Fonksiyonlar) [30] 𝑓𝑓:𝐶𝐶 ⊆ ℝ𝑛𝑛 → ℝ bir 

fonksiyon olsun. 𝑠𝑠 ∈ (0, 1] ve 𝐶𝐶 konveks küme olmak üzere ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝐶𝐶 ve 𝜆𝜆, 𝜇𝜇 ≥ 0, 

𝜆𝜆 + 𝜇𝜇 = 1 için 

𝑓𝑓(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) ≤ 𝜆𝜆𝑠𝑠𝑓𝑓(𝑥𝑥) + 𝜇𝜇𝑠𝑠𝑓𝑓(𝑦𝑦)                                     (2.7) 

eşitsizliğini sağlayan 𝑓𝑓 fonksiyonuna ikinci anlamda s-konveks fonksiyon denir. 

Tanım 2.3.4 (Üçüncü Anlamda s-konveks Fonksiyonlar) [31] 𝑓𝑓:𝐶𝐶 ⊆ ℝ𝑛𝑛 → ℝ bir 

fonksiyon olsun. 𝑠𝑠 ∈ (0, 1] ve 𝐶𝐶 s-konveks küme olmak üzere ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 𝜆𝜆, 𝜇𝜇 ≥ 0, 

𝜆𝜆𝑠𝑠 + 𝜇𝜇𝑠𝑠 = 1 için 

𝑓𝑓(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) ≤ 𝜆𝜆
1
𝑠𝑠𝑓𝑓(𝑥𝑥) + 𝜇𝜇

1
𝑠𝑠𝑓𝑓(𝑦𝑦)                                   (2.8) 

eşitsizliğini sağlayan 𝑓𝑓 fonksiyonuna üçüncü anlamda s-konveks fonksiyon denir. 
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Tanım 2.3.5 (Dördüncü Anlamda s-konveks Fonksiyonlar) [32] 𝑓𝑓:𝐶𝐶 ⊆ ℝ𝑛𝑛 → ℝ 

bir fonksiyon olsun. 𝑠𝑠 ∈ (0, 1] ve 𝐶𝐶 konveks küme olmak üzere ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 𝜆𝜆, 𝜇𝜇 ≥

0, 𝜆𝜆 + 𝜇𝜇 = 1  için 

𝑓𝑓(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) ≤ 𝜆𝜆
1
𝑠𝑠𝑓𝑓(𝑥𝑥) + 𝜇𝜇

1
𝑠𝑠𝑓𝑓(𝑦𝑦)                                   (2.9) 

eşitsizliğini sağlayan 𝑓𝑓 fonksiyonuna dördüncü anlamda s-konveks fonksiyon denir. 

Tanım 2.3.6 (p-konveks Küme)  [33] 𝐶𝐶 ⊆ ℝ𝑛𝑛 ve 0 < 𝑝𝑝 ≤ 1 olsun. Her 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 

𝜆𝜆, 𝜇𝜇 ≥ 0 için 𝜆𝜆𝑝𝑝 + 𝜇𝜇𝑝𝑝 = 1 olmak üzere 𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇 ∈ 𝐶𝐶 şartlarını sağlayan 𝐶𝐶 kümesine 

p-konveks küme denir. 

Tanım 2.3.7 (p-konveks Fonksiyonlar) [34] 𝑈𝑈 ⊆ ℝ𝑛𝑛 ve 𝑓𝑓:𝑈𝑈 → ℝ bir fonksiyon 

olsun. 𝑝𝑝 ∈ (0, 1] ve 𝑈𝑈 p-konveks küme olmak üzere ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑈𝑈 ve 𝜆𝜆, 𝜇𝜇 ≥ 0, 𝜆𝜆𝑝𝑝 +

𝜇𝜇𝑝𝑝 = 1 için 

𝑓𝑓(𝜆𝜆𝜆𝜆 + 𝜇𝜇𝜇𝜇) ≤ 𝜆𝜆𝜆𝜆(𝑥𝑥) + 𝜇𝜇𝜇𝜇(𝑦𝑦)                                      (2.10) 

eşitsizliğini sağlayan f fonksiyonuna p-konveks fonksiyon denir. 

2.4 B-konveks Kümeler ve Fonksiyonlar 

B-konvekslik de soyut konvekslik çeşitlerinden biridir. Ekonomi üzerine uygulamaları 

olan, ayrıca matematiksel anlamda da birçok çalışmaya konu olmuş olan B-konveks 

kümeler ve B-konveks fonksiyonlar bu bölümde ifade edilip, örneklendirilecektir. 

Ardından da bu tezde B-konveks fonksiyonlar için çeşitli eşitsizlikler ispat edilecektir.  

Tanım 2.4.1  [7] 𝑈𝑈 ⊆ ℝ+
𝑛𝑛  kümesi için ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑈𝑈 ve 𝛽𝛽 ∈ [0, 1] olmak üzere, 

𝛽𝛽𝛽𝛽 ∨ 𝑦𝑦 ∈ 𝑈𝑈                                                    (2.11) 

oluyorsa 𝑈𝑈 kümesine B-konveks küme denir. Burada ∨ koordinatlara göre maksimum 

demektir. 
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Örnek 2.4.1 𝑈𝑈 = {(𝑥𝑥,𝑦𝑦)| 1 ≤ 𝑥𝑥 ≤ 3 ve 2 ≤ 𝑦𝑦 ≤ 4} ⊆ ℝ2 kümesi B-konvekstir.   

 

 

 

 

 

 

 

Şekil 2.3 𝑈𝑈 = {(𝑥𝑥,𝑦𝑦)| 1 ≤ 𝑥𝑥 ≤ 3 ve 2 ≤ 𝑦𝑦 ≤ 4} kümesi 

Yukarıda Şekil 2.3 ile verilen küme B-konveks bir kümedir. Gerçekten,  

∀(𝑥𝑥1,𝑦𝑦1), (𝑥𝑥2,𝑦𝑦2) ∈ 𝑈𝑈 ve 𝛽𝛽 ∈ [0, 1] için 

𝛽𝛽(𝑥𝑥1,𝑦𝑦1) ∨ (𝑥𝑥2, 𝑦𝑦2) = (𝛽𝛽𝑥𝑥1 ∨ 𝑥𝑥2,𝛽𝛽𝑦𝑦1 ∨ 𝑦𝑦2) 

olur. Buradan  

(i) 𝑥𝑥1 < 𝑥𝑥2 ise 𝛽𝛽𝑥𝑥1 ∨ 𝑥𝑥2 = 𝑥𝑥2 

(ii) 𝑥𝑥1 ≥ 𝑥𝑥2 ise 𝛽𝛽𝑥𝑥1 ∨ 𝑥𝑥2 = �𝑥𝑥2 ,     𝛽𝛽𝑥𝑥1 < 𝑥𝑥2
𝛽𝛽𝑥𝑥1 ,   𝛽𝛽𝑥𝑥1 ≥ 𝑥𝑥2

 

(iii) 𝑦𝑦1 < 𝑦𝑦2 ise 𝛽𝛽𝑦𝑦1 ∨ 𝑦𝑦2 = 𝑦𝑦2 

(iv) 𝑦𝑦1 ≥ 𝑦𝑦2 ise 𝛽𝛽𝑦𝑦1 ∨ 𝑦𝑦2 = �𝑦𝑦2 ,     𝛽𝛽𝑦𝑦1 < 𝑦𝑦2
𝛽𝛽𝑦𝑦1 ,   𝛽𝛽𝑦𝑦1 ≥ 𝑦𝑦2

 

elde edilir. Dolayısıyla, küme üzerindeki şartların sağlandığı görülmektedir. Böylece 

gerçekten U kümesinin B-konveks bir küme olduğu gösterilmiş olur. 
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Teorem 2.4.1 [7] 𝑈𝑈 ⊆ ℝ+
𝑛𝑛  olmak üzere 𝑘𝑘 ≥ 2 ve  𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝑈𝑈 olsun. 𝛽𝛽1, … ,𝛽𝛽𝑘𝑘 ≥ 0 

ve max{𝛽𝛽1, … ,𝛽𝛽𝑘𝑘} = 1 için 

�𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

∈ 𝑈𝑈                                                         (2.12) 

oluyorsa 𝑈𝑈 kümesi B-konveks kümedir. 

Tanım 2.4.2 [8] 𝐶𝐶 ⊂ ℝ𝑛𝑛 kümesi B-konveks küme olsun. 𝑓𝑓:𝐶𝐶 → ℝ ∪ {±∞} 

fonksiyonu verilsin. 𝑓𝑓 fonksiyonu; ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶 ve 𝛽𝛽 ∈ [0, 1] için, 

𝑓𝑓(𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽) ≤ 𝑓𝑓(𝑥𝑥) ∨ 𝛽𝛽𝛽𝛽(𝑦𝑦)                                            (2.13) 

eşitsizliğini sağlıyorsa 𝑓𝑓 fonksiyonuna B-konveks fonksiyon denir.  

Örnek 2.4.2 𝑓𝑓:ℝ+ → ℝ, 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 fonksiyonu B-konveks fonksiyondur. 

∀ 𝑥𝑥, 𝑦𝑦 ∈ ℝ+ ve 𝛽𝛽 ∈ [0, 1] için, 

𝑓𝑓(𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽) ≤ 𝑓𝑓(𝑥𝑥) ∨ 𝛽𝛽𝛽𝛽(𝑦𝑦)                                            (2.14) 

eşitsizliği  

• 𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽 = 𝑥𝑥 ise 𝑓𝑓(𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽) = 𝑥𝑥2 ≤ 𝑥𝑥2 ∨ 𝛽𝛽𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) ∨ 𝛽𝛽𝛽𝛽(𝑦𝑦) 

• 𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽 = 𝛽𝛽𝛽𝛽 ise 𝑓𝑓(𝑥𝑥 ∨ 𝛽𝛽𝛽𝛽) = 𝛽𝛽2𝑦𝑦2 ≤ 𝛽𝛽𝑦𝑦2 ≤ 𝑥𝑥2 ∨ 𝛽𝛽𝑦𝑦2 = 𝑓𝑓(𝑥𝑥) ∨ 𝛽𝛽𝛽𝛽(𝑦𝑦) 

şeklinde sağlandığından 𝑓𝑓(𝑥𝑥) = 𝑥𝑥2 fonksiyonu B-konveks fonksiyondur. 

Teorem 2.4.3 (B-konveks Fonksiyonlar için Jensen Eşitsizliği) [8] 𝑈𝑈 ⊆ ℝ+
𝑛𝑛  ve 

𝑓𝑓:𝑈𝑈 → ℝ+ ∪ {+∞} fonksiyonu verilsin. 𝑈𝑈 kümesi B-konveks küme ve 𝑖𝑖 = 1, … , 𝑘𝑘 

olmak üzere; ∀ 𝑥𝑥𝑖𝑖 ∈ 𝑈𝑈, 𝛽𝛽𝑖𝑖 ∈ [0, 1] ve max
𝑖𝑖=1,…,𝑘𝑘

{𝛽𝛽𝑖𝑖} = 1 için 

𝑓𝑓 ��𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖

𝑘𝑘

𝑖𝑖=1

� ≤�𝛽𝛽𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝑓𝑓(𝑥𝑥𝑖𝑖)                                            (2.15) 

eşitsizliğini sağlıyorsa 𝑓𝑓 fonksiyonu B-konveks fonksiyondur. 
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3. KESİRLİ İNTEGRALLER 

Bu bölümde tezde kullanılan bazı kesirli integral çeşitlerinden bahsedilecektir.  

Tanım 3.1 (Riemann-Liouville Kesirli İntegrali) [20] 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ → ℝ 

fonksiyonu verilsin. 0 < 𝑎𝑎 < 𝑏𝑏 < ∞, [𝑎𝑎, 𝑏𝑏] kapalı aralığında integrallenebilen 𝑓𝑓 

fonksiyonu ve 𝛼𝛼 > 0 için, 

𝐽𝐽𝑎𝑎+
𝛼𝛼 𝑓𝑓(𝑥𝑥) =

1
Γ(𝛼𝛼)�

(𝑥𝑥 − 𝑡𝑡)𝛼𝛼−1𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑎𝑎
        , 𝑥𝑥 > 𝑎𝑎                            (3.1) 

şeklinde tanımlanan integrale 𝛼𝛼. mertebeden sağdan Riemann-Liouville kesirli 

integrali, 

𝐽𝐽𝑏𝑏−𝛼𝛼 𝑓𝑓(𝑥𝑥) =
1

Γ(𝛼𝛼)�
(𝑡𝑡 − 𝑥𝑥)𝛼𝛼−1𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑏𝑏

𝑥𝑥
        , 𝑥𝑥 < 𝑏𝑏                            (3.2) 

şeklinde tanımlanan integrale ise 𝛼𝛼. mertebeden soldan Riemann-Liouville kesirli 

integrali denir. Burada Γ(𝛼𝛼) Gamma fonksiyonudur ve 𝛼𝛼 > 0 için, 

Γ(𝛼𝛼) = � 𝑥𝑥𝛼𝛼−1𝑒𝑒𝑥𝑥𝑑𝑑𝑑𝑑
∞

0
                                                  (3.3) 

şeklinde tanımlanır.  

Riemann-Liouville kesirli integrali için  

𝐽𝐽𝑎𝑎+
0 𝑓𝑓(𝑥𝑥) = 𝐽𝐽𝑏𝑏−0 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)                                            (3.4) 

olur.  

Tanım 3.2 (Hadamard Kesirli İntegrali) [13] 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ → ℝ fonksiyonu 

verilsin. 0 < 𝑎𝑎 < 𝑏𝑏 < ∞, [𝑎𝑎, 𝑏𝑏] kapalı aralığında integrallenebilen 𝑓𝑓 fonksiyonu ve 

𝛼𝛼 > 0 için, 

𝐽𝐽𝑎𝑎+
𝛼𝛼 𝑓𝑓(𝑥𝑥) =

1
Γ(𝛼𝛼)� �ln

𝑥𝑥
𝑡𝑡
�
𝛼𝛼−1 𝑓𝑓(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑

𝑥𝑥

𝑎𝑎
        , 𝑥𝑥 > 𝑎𝑎                      (3.5) 
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𝐽𝐽𝑏𝑏−𝛼𝛼 𝑓𝑓(𝑥𝑥) =
1

Γ(𝛼𝛼)� �ln
𝑡𝑡
𝑥𝑥�

𝛼𝛼−1 𝑓𝑓(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏

𝑥𝑥
        , 𝑥𝑥 < 𝑏𝑏                      (3.6) 

şeklinde tanımlanan integrallere sırasıyla sağ ve sol Hadamard kesirli integrali denir. 

Genelleştirilmiş kesirli Riemann-Liouveille integral operatörünü tanımlamak için ilk 

olarak aşağıdaki fonksiyonlar sınıfı ifade edilecektir. 

𝜑𝜑: [0,∞) → [0,∞) integrallenebilir fonksiyonu, 𝛼𝛼 ≥ 0 için 𝜑𝜑(𝑟𝑟)𝑟𝑟𝛼𝛼 artan ve 𝛽𝛽 ≥ 0 

için 𝜑𝜑(𝑟𝑟)
𝑟𝑟𝛽𝛽

 azalan olmak üzere, 

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
1

0
< ∞                                                   (3.7) 

1
𝐴𝐴1

≤
𝜑𝜑(𝑠𝑠)
𝜑𝜑(𝑟𝑟) ≤ 𝐴𝐴1             ,

1
2
≤
𝑠𝑠
𝑟𝑟
≤ 2                              (3.8) 

𝜑𝜑(𝑟𝑟)
𝑟𝑟2

≤ 𝐴𝐴2
𝜑𝜑(𝑠𝑠)
𝑠𝑠2

             , 𝑠𝑠 ≤ 𝑟𝑟                                       (3.9) 

�
𝜑𝜑(𝑟𝑟)
𝑟𝑟2

−
𝜑𝜑(𝑠𝑠)
𝑠𝑠2

� ≤ 𝐴𝐴3|𝑟𝑟 − 𝑠𝑠|
𝜑𝜑(𝑟𝑟)
𝑟𝑟2

             ,
1
2
≤
𝑠𝑠
𝑟𝑟
≤ 2                              (3.10) 

şartlarını sağlasın, burada 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 > 0 ve 𝑟𝑟, 𝑠𝑠 > 0  dır [15]. Μ, bu 𝜑𝜑 fonksiyonlar 

ailesinin kümesi olarak işaretlensin. 

Tanım 3.3 (Genelleştirilmiş Riemann-Liouville Kesirli İntegrali) [15] 

𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ → ℝ ve 𝜑𝜑 ∈ Μ fonksiyonları verilsin. 0 < 𝑎𝑎 < 𝑏𝑏 < ∞, [𝑎𝑎, 𝑏𝑏] kapalı 

aralığında integrallenebilen 𝑓𝑓 fonksiyonu için 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑥𝑥) =𝑎𝑎+ �
𝜑𝜑(𝑥𝑥 − 𝑡𝑡)
𝑥𝑥 − 𝑡𝑡

𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

𝑎𝑎
,       𝑥𝑥 > 𝑎𝑎                           (3.11) 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑥𝑥) =𝑏𝑏− �
𝜑𝜑(𝑡𝑡 − 𝑥𝑥)
𝑡𝑡 − 𝑥𝑥

𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑥𝑥
,       𝑥𝑥 < 𝑏𝑏                          (3.12) 

şeklinde tanımlanan integrallere sırasıyla sağ ve sol Genelleştirilmiş Riemann-
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Liouville kesirli integrali denir. 

Yukarıda verilen (3.11) ve (3.12) de 𝜑𝜑(𝑡𝑡) = 𝑡𝑡 alınırsa Riemann integraline ulaşılır. 

Eğer, (3.11) ve (3.12) eşitliklerinde 𝜑𝜑(𝑡𝑡) = 𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)
 yazılırsa Riemann-Liouville kesirli 

integraline, yine bu eşitliklerde 𝜑𝜑(𝑡𝑡) = 1
kΓ𝑘𝑘(𝛼𝛼)

𝑡𝑡
𝛼𝛼
𝑘𝑘  yazılırsa 𝑘𝑘-Riemann-Liouville kesirli 

integraline ulaşılmış olur. (3.11) ve (3.12) eşitliklerinde sırasıyla  

𝜑𝜑(𝑡𝑡) =
1

Γ(𝛼𝛼) 𝑡𝑡
(𝑥𝑥 − 𝑡𝑡)𝑠𝑠(𝑥𝑥𝑠𝑠+1 − 𝑡𝑡𝑠𝑠+1)𝛼𝛼−1                         (3.13) 

ve 

𝜑𝜑(𝑡𝑡) =
1

Γ(𝛼𝛼) 𝑡𝑡
(𝑡𝑡 − 𝑥𝑥)𝑠𝑠(𝑡𝑡𝑠𝑠+1 − 𝑥𝑥𝑠𝑠+1)𝛼𝛼−1                         (3.14) 

yazılırsa Katugampola kesirli integrali elde edilir. 𝜑𝜑(𝑡𝑡) yerine 𝑡𝑡(𝑥𝑥 − 𝑡𝑡)𝛼𝛼−1 yazılırsa 

Conformable kesirli integraline ulaşılır. (3.11) ve (3.12) eşitliklerinde sırasıyla 

𝜑𝜑(𝑡𝑡) =
1

Γ(𝛼𝛼)
�log � 𝑥𝑥

𝑥𝑥−𝑡𝑡
��
𝛼𝛼−1

𝑥𝑥 − 𝑡𝑡
                                         (3.15) 

ve 

𝜑𝜑(𝑡𝑡) =
1

Γ(𝛼𝛼) 𝑡𝑡
�log �𝑡𝑡−𝑥𝑥

𝑥𝑥
��
𝛼𝛼−1

𝑡𝑡 − 𝑥𝑥
                                        (3.16) 

yazılırsa Hadamard kesirli integrali elde edilir. Son olarak genelleştirilmiş Riemann-

Liouville kesirli integrallerinde 𝜑𝜑(𝑡𝑡) yerine 𝑡𝑡
𝛼𝛼
𝑒𝑒�−

1−𝛼𝛼
𝛼𝛼 𝑡𝑡� yazılırsa exponential Kernel 

kesirli integrali elde edilir [15]. 
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4. HERMITE-HADAMARD EŞİTSİZLİKLERİ 

4.1 Klasik Hermite-Hadamard Eşitsizlikleri 

Konveks fonksiyonlar için verilen en temel eşitsizliklerden olan Hermite-Hadamard 

eşitsizliği aşağıdaki gibi ifade edilmektedir.   

Tanım 4.1.1 [10] 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ → ℝ konveks fonksiyonu verilsin. 

𝑓𝑓 �
𝑎𝑎 + 𝑏𝑏

2 � ≤
1

𝑏𝑏 − 𝑎𝑎
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≤
𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)

2
                      (4.1) 

eşitsizliğine Hermite-Hadamard eşitsizliği denir.  

Hermite-Hadamard eşitsizliğinin genelleştirilmeleri ve iyileştirmeleri de pek çok 

çalışmaya konu olmuştur. Bu iyileştirilme çalışmalardan birine örnek olarak aşağıdaki 

teorem verilebilir. Bu eşitsizliği ifade edebilmek için öncelikle (4.2) denkliğini veren 

lemma verilmelidir.  

Lemma 4.1.1 [26] 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ diferensellenebilir fonksiyon, 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ve 𝑎𝑎 < 𝑏𝑏 

olsun. 𝑓𝑓′ fonksiyonu [𝑎𝑎, 𝑏𝑏] kapalı aralığında integrallenebilirse  

𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)
2

−
1

𝑏𝑏 − 𝑎𝑎
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
=
𝑏𝑏 − 𝑎𝑎

2
� (1 − 2𝑡𝑡)𝑓𝑓′(𝑡𝑡𝑡𝑡 + (1 − 𝑡𝑡)𝑏𝑏)𝑑𝑑𝑑𝑑
1

0
       (4.2) 

eşitliği sağlanır. 

Bu lemma yardımı ile aşağıdaki trapezoid eşitsizliğin verilmesi mümkündür. 

Teorem 4.1.1 [26] 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ diferensellenebilir fonksiyon, 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ve 𝑎𝑎 < 𝑏𝑏 

olsun. |𝑓𝑓′| fonksiyonu [𝑎𝑎, 𝑏𝑏] kapalı aralığında konveks bir fonksiyon ise 

�
𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)

2
−

1
𝑏𝑏 − 𝑎𝑎

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
� ≤

𝑏𝑏 − 𝑎𝑎
8

(|𝑓𝑓′(𝑎𝑎)| + |𝑓𝑓′(𝑏𝑏)|)                     (4.3) 

eşitsizliği sağlanır. 
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4.2 B-konveks Fonksiyonlar için Bazı Eşitsizlikler 

Bu bölümde B-konveks fonksiyonlar için Hermite-Hadamard eşitsizliği ve bu 

eşitsizliğin Riemann-Liouville kesirli integrali ile gösterilen formu ifade edilecektir.  

Teorem 4.2.1 (B-konveks Fonksiyonlar için Hermite-Hadamard Eşitsizlikleri) 

[10] 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+ B-konveks fonksiyonu verilsin. 𝑓𝑓 , [𝑎𝑎, 𝑏𝑏] kapalı aralığında 

integrallenebilen bir fonksiyon olmak üzere, 

1
𝑏𝑏 − 𝑎𝑎

� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≤ �

𝑓𝑓(𝑎𝑎)                                                               ,   𝑓𝑓(𝑎𝑎) ≥ 𝑓𝑓(𝑏𝑏)

𝑏𝑏 ��𝑓𝑓(𝑎𝑎)�2 + �𝑓𝑓(𝑏𝑏)�2� − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2(𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑏𝑏) ,    𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏)
    (4.4) 

eşitsizliği sağlanır. 

B-konveks fonksiyonlar için Riemann-Liouville kesirli integrali ile ifade edilen 

Hermite-Hadamard eşitsizlikleri ise aşağıdaki teoremlerde verilmektedir. 

Teorem 4.2.2 [13] 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+ verilsin. 𝑓𝑓, [𝑎𝑎, 𝑏𝑏] kapalı aralığında B-

konveks ve integrallenebilen bir fonksiyon olmak üzere, 

𝐽𝐽𝑎𝑎+
𝛼𝛼 𝑓𝑓(𝑏𝑏) ≤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 1)                            ,    1 ≤
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

(𝛼𝛼 + 1)𝑓𝑓(𝑎𝑎)�𝑓𝑓(𝑏𝑏)�𝛼𝛼(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
                                         

+
𝑏𝑏𝛼𝛼�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�𝛼𝛼+1

Γ(𝛼𝛼 + 2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
                 ,   

𝑎𝑎
𝑏𝑏
≤
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏) < 1

(𝑏𝑏 − 𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼 + 𝑏𝑏)
𝑏𝑏Γ(𝛼𝛼 + 2)                  ,   0 ≤

𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏) <

𝑎𝑎
𝑏𝑏

      (4.5) 

eşitsizliği sağlanır.   
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Teorem 4.2.3 [13] 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+ verilsin. 𝑓𝑓 [𝑎𝑎, 𝑏𝑏] kapalı aralığında B-konveks 

ve integrallenebilen bir fonksiyon olmak üzere, 

𝐽𝐽𝑏𝑏−𝛼𝛼 𝑓𝑓(𝑎𝑎) ≤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 1)                              ,    1 ≤
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

(𝑏𝑏 − 𝑎𝑎)𝛼𝛼�𝑓𝑓(𝑏𝑏)�𝛼𝛼+1(𝛼𝛼𝛼𝛼 + 𝑎𝑎)

𝑏𝑏Γ(𝛼𝛼 + 2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
                                    

+
�𝑏𝑏𝑏𝑏(𝑎𝑎) − 𝑎𝑎𝑎𝑎(𝑏𝑏)�𝛼𝛼+1

𝑏𝑏Γ(𝛼𝛼 + 2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
                  ,   

𝑎𝑎
𝑏𝑏
≤
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏) < 1

(𝑏𝑏 − 𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼 + 𝑎𝑎)
𝑏𝑏Γ(𝛼𝛼 + 2)                    ,   0 ≤

𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏) <

𝑎𝑎
𝑏𝑏

          (4.6) 

eşitsizliği sağlanır.  

 

 



17 

5. B-KONVEKS FONKSİYONLAR İÇİN TRAPEZOİDAL EŞİTSİZLİKLER 
VE KESİRLİ İNTEGRAL EŞİTSİZLİKLERİ  

Bu bölümde, bu tezde elde edilen yeni eşitsizlikler ve bu eşitsizlikler ile ilgili bazı 
sonuçlar verilecektir.  

İki başlık altında ifade edilecek olan eşitsizliklerden ilk kısımdakiler Hermite-
Hadamard eşitsizliklerin bir çeşit iyileştirilmesi olan trapozoidal bir eşitsizliğin B-
konveks fonksiyonlar için bir biçiminin kanıtlanması olacaktır. İkinci kısımda ise B-
konveks fonksiyonlar için genelleştirilmiş Riemann-Liouville kesirli integralleri ile 
verilen Hermite-Hadamard eşitsizlikleri ve bunların sonuçları olarak klasik ve 
Riemann-Liouville kesirli integrali içeren yeni eşitsizlikler ispat edilecektir.  

 
5.1 Trapezoidal Eşitsizlikler 

Lemma 5.1.1 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ diferansiyellenebilir bir fonksiyon, 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ve 𝑎𝑎 < 𝑏𝑏 

olsun. Eğer 𝑓𝑓′ fonksiyonu [𝑎𝑎, 𝑏𝑏] kapalı aralığında integrallenebilir ise  

𝑓𝑓(𝑎𝑎) −
1

𝑏𝑏 − 𝑎𝑎
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

= 𝑎𝑎𝑓𝑓′(𝑎𝑎) −
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� (𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑓𝑓′(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑑𝑑𝑑𝑑
1

0
         (5.1) 

eşitliği sağlanır. 

İspat 𝑓𝑓′ fonksiyonu [𝑎𝑎, 𝑏𝑏] kapalı aralığında integrallenebilir olduğundan, 𝜆𝜆 ∈ [0,1] 

için aşağıdaki integrali ele alabiliriz. 

� (𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑓𝑓′(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑑𝑑𝑑𝑑
1

0

= � (𝑏𝑏 − 𝑎𝑎)𝑓𝑓′(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑎𝑎
𝑏𝑏

0
+ � (𝑏𝑏 − 𝜆𝜆𝜆𝜆)𝑓𝑓′(𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑

1

𝑎𝑎
𝑏𝑏

=
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)𝑓𝑓′(𝑎𝑎) −
𝑏𝑏 − 𝑎𝑎
𝑏𝑏

𝑓𝑓(𝑎𝑎) + � 𝑓𝑓(𝜆𝜆𝜆𝜆)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

=
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)𝑓𝑓′(𝑎𝑎) −
𝑏𝑏 − 𝑎𝑎
𝑏𝑏

𝑓𝑓(𝑎𝑎) +
1
𝑏𝑏
� 𝑓𝑓
𝑏𝑏

𝑎𝑎
(𝑥𝑥)𝑑𝑑𝑑𝑑                            (5.2) 

olur. Buradan 
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� (𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑓𝑓′(𝑚𝑚𝑎𝑎𝑎𝑎{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑑𝑑𝑑𝑑
1

0

=
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)𝑓𝑓′(𝑎𝑎) −
𝑏𝑏 − 𝑎𝑎
𝑏𝑏

𝑓𝑓(𝑎𝑎) +
1
𝑏𝑏
� 𝑓𝑓
𝑏𝑏

𝑎𝑎
(𝑥𝑥)𝑑𝑑𝑑𝑑                              (5.3) 

𝑏𝑏 − 𝑎𝑎
𝑏𝑏

𝑓𝑓(𝑎𝑎) −
1
𝑏𝑏
� 𝑓𝑓
𝑏𝑏

𝑎𝑎
(𝑥𝑥)𝑑𝑑𝑑𝑑

=
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)𝑓𝑓′(𝑎𝑎) −� (𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑓𝑓′(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑑𝑑𝑑𝑑
1

0
     (5.4) 

𝑓𝑓(𝑎𝑎) −
1

𝑏𝑏 − 𝑎𝑎
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

= 𝑎𝑎𝑓𝑓′(𝑎𝑎) −
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� (𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑓𝑓′(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})𝑑𝑑𝑑𝑑
1

0
         (5.5) 

elde edilir. ∎ 

Teorem 5.1.1 𝑓𝑓: 𝐼𝐼 ⊆ ℝ+ → ℝ fonksiyonu diferansiyellenebilir bir fonksiyon olsun. 

𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ve 𝑎𝑎 < 𝑏𝑏 olmak üzere, eğer |𝑓𝑓′| fonksiyonu [𝑎𝑎, 𝑏𝑏] kapalı aralığında B-konveks 

bir fonksiyon ise 

�𝑓𝑓(𝑎𝑎) − 1
𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 � ≤

⎩
⎪
⎪
⎨

⎪
⎪
⎧

3𝑎𝑎+𝑏𝑏
2

|𝑓𝑓′(𝑎𝑎)|                                                            ,    1 ≤ �𝑓𝑓′(𝑎𝑎)�
|𝑓𝑓′(𝑏𝑏)|

�6𝑎𝑎𝑎𝑎−9𝑎𝑎2��𝑓𝑓′(𝑎𝑎)���𝑓𝑓′(𝑏𝑏)��2+𝑏𝑏2��𝑓𝑓′(𝑏𝑏)��3

6(𝑏𝑏−𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2
                                                      

+ 3𝑏𝑏2��𝑓𝑓′(𝑎𝑎)��2�𝑓𝑓′(𝑏𝑏)�−𝑏𝑏2��𝑓𝑓′(𝑎𝑎)��3

6(𝑏𝑏−𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2
                                   ,   𝑎𝑎

𝑏𝑏
≤ �𝑓𝑓′(𝑎𝑎)�

|𝑓𝑓′(𝑏𝑏)|
< 1

6𝑎𝑎𝑎𝑎�𝑓𝑓′(𝑎𝑎)��𝑓𝑓′(𝑏𝑏)�+3𝑏𝑏2��𝑓𝑓′(𝑎𝑎)��2+�𝑎𝑎2+𝑎𝑎𝑎𝑎+𝑏𝑏2���𝑓𝑓′(𝑏𝑏)��2

6𝑏𝑏|𝑓𝑓′(𝑏𝑏)|
      ,   0 ≤ �𝑓𝑓′(𝑎𝑎)�

|𝑓𝑓′(𝑏𝑏)|
< 𝑎𝑎

𝑏𝑏

                    (5.6)  

eşitsizliği sağlanır. 

İspat 𝑓𝑓 diferansiyellenebilir ve 𝑓𝑓′ fonksiyonu [𝑎𝑎, 𝑏𝑏] kapalı aralığında integrallenebilir 

olduğundan Lemma 5.1.1 sağlanır. Buna göre 



19 

�𝑓𝑓(𝑎𝑎) −
1

𝑏𝑏 − 𝑎𝑎
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
�

≤  𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� |𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆}||𝑓𝑓′(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆})|𝑑𝑑𝑑𝑑       
1

0

≤  𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� |𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆}||𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓′(𝑎𝑎), 𝜆𝜆𝑓𝑓′(𝑏𝑏)}|𝑑𝑑𝑑𝑑
1

0
 

olur. Burada 

𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� |𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆}||𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓′(𝑎𝑎), 𝜆𝜆𝑓𝑓′(𝑏𝑏)}|𝑑𝑑𝑑𝑑
1

0
         (5.7) 

ifadesindeki integralinin çözümü için aşağıdaki üç durum incelenmelidir. 

(𝒊𝒊) 1 ≤ �𝑓𝑓′(𝑎𝑎)�
|𝑓𝑓′(𝑏𝑏)|

 olması durumunda 

𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� |𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆}||𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓′(𝑎𝑎), 𝜆𝜆𝑓𝑓′(𝑏𝑏)}|𝑑𝑑𝑑𝑑
1

0
 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| −
𝑏𝑏

𝑏𝑏 − 𝑎𝑎 �
� |𝑏𝑏 − 𝑎𝑎||𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

𝑎𝑎
𝑏𝑏

0
+ � |𝑏𝑏 − 𝜆𝜆𝜆𝜆||𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

1

𝑎𝑎
𝑏𝑏

� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
�
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑎𝑎)| + �𝑏𝑏 −
𝑏𝑏
2
− 𝑎𝑎 +

𝑎𝑎2

2𝑏𝑏
� |𝑓𝑓′(𝑎𝑎)|� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
�
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏
2

|𝑓𝑓′(𝑎𝑎)| +
𝑎𝑎2 − 2𝑎𝑎𝑎𝑎

2𝑏𝑏
|𝑓𝑓′(𝑎𝑎)|� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
�
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏2 + 𝑎𝑎2 − 2𝑎𝑎𝑎𝑎

2𝑏𝑏
|𝑓𝑓′(𝑎𝑎)|� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| + 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏 − 𝑎𝑎

2
|𝑓𝑓′(𝑎𝑎)| 

=
3𝑎𝑎 + 𝑏𝑏

2
|𝑓𝑓′(𝑎𝑎)|                                                                                                (5.8) 

sonucu elde edilir. 
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(𝒊𝒊𝒊𝒊) 𝑎𝑎
𝑏𝑏
≤ �𝑓𝑓′(𝑎𝑎)�

|𝑓𝑓′(𝑏𝑏)|
< 1 ise 

𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� |𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆}||𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓′(𝑎𝑎), 𝜆𝜆𝑓𝑓′(𝑏𝑏)}|𝑑𝑑𝑑𝑑
1

0
 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎 �
� |𝑏𝑏 − 𝑎𝑎||𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

𝑎𝑎
𝑏𝑏

0
+ � |𝑏𝑏 − 𝜆𝜆𝜆𝜆||𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

𝑎𝑎
𝑏𝑏

+ � |𝑏𝑏 − 𝜆𝜆𝜆𝜆||𝜆𝜆𝑓𝑓′(𝑏𝑏)|𝑑𝑑𝑑𝑑
1

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎 �
� (𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

𝑎𝑎
𝑏𝑏

0
+ � (𝑏𝑏 − 𝜆𝜆𝜆𝜆)𝑓𝑓′(𝑎𝑎)𝑑𝑑𝑑𝑑

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

𝑎𝑎
𝑏𝑏

+ � (𝑏𝑏 − 𝜆𝜆𝜆𝜆)𝜆𝜆𝑓𝑓′(𝑏𝑏)𝑑𝑑𝑑𝑑
1

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
�
𝑎𝑎
𝑏𝑏

(𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑎𝑎)|

+ �
𝑏𝑏|𝑓𝑓′(𝑎𝑎)|
|𝑓𝑓′(𝑏𝑏)| −

𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

2(|𝑓𝑓′(𝑏𝑏)|)2 − 𝑎𝑎 +
𝑎𝑎2

2𝑏𝑏
� |𝑓𝑓′(𝑎𝑎)|

+ �
𝑏𝑏
2
−
𝑏𝑏
3
−
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

2(|𝑓𝑓′(𝑏𝑏)|)2 +
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)3

3(|𝑓𝑓′(𝑏𝑏)|)3�
|𝑓𝑓′(𝑏𝑏)|� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| + 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2

(𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑏𝑏)|(𝑏𝑏) −
𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)3

2(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2

+
𝑎𝑎2 − 2𝑎𝑎𝑎𝑎
2(𝑏𝑏 − 𝑎𝑎)

|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏2

6(𝑏𝑏 − 𝑎𝑎) 𝑓𝑓
′(𝑏𝑏) −

𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2

2(𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑏𝑏)|

+
𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)3

3(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2 

= 2𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
2𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2|𝑓𝑓′(𝑏𝑏)| − 𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)3

2(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2 +
𝑎𝑎2 − 2𝑎𝑎𝑎𝑎
2(𝑏𝑏 − 𝑎𝑎)

|𝑓𝑓′(𝑎𝑎)|

+
𝑏𝑏2

6(𝑏𝑏 − 𝑎𝑎) 𝑓𝑓
′(𝑏𝑏) +

2𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)3 − 3𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2|𝑓𝑓′(𝑏𝑏)|
6(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2  

=
2𝑎𝑎𝑎𝑎 − 3𝑎𝑎2

2(𝑏𝑏 − 𝑎𝑎)
|𝑓𝑓′(𝑎𝑎)| +

𝑏𝑏2

6(𝑏𝑏 − 𝑎𝑎)
|𝑓𝑓′(𝑏𝑏)| +

3𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2|𝑓𝑓′(𝑏𝑏)| − 𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)3

6(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2  
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=
(6𝑎𝑎𝑎𝑎 − 9𝑎𝑎2)|𝑓𝑓′(𝑎𝑎)|(|𝑓𝑓′(𝑏𝑏)|)2 + 𝑏𝑏2(|𝑓𝑓′(𝑏𝑏)|)3

6(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2

+
3𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2|𝑓𝑓′(𝑏𝑏)| − 𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)3

6(𝑏𝑏 − 𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2                                      (5.9)  

bulunur. 

(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ �𝑓𝑓′(𝑎𝑎)�
|𝑓𝑓′(𝑏𝑏)|

< 𝑎𝑎
𝑏𝑏
  iken 

𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎
� |𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎, 𝜆𝜆𝜆𝜆}||𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓′(𝑎𝑎), 𝜆𝜆𝑓𝑓′(𝑏𝑏)}|𝑑𝑑𝑑𝑑
1

0
 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎 �
� |𝑏𝑏 − 𝑎𝑎||𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

0
+ � |𝑏𝑏 − 𝑎𝑎||𝜆𝜆𝑓𝑓′(𝑏𝑏)|𝑑𝑑𝑑𝑑

𝑎𝑎
𝑏𝑏

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

+ � |𝑏𝑏 − 𝜆𝜆𝜆𝜆||𝜆𝜆𝑓𝑓′(𝑏𝑏)|𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎 �
� (𝑏𝑏 − 𝑎𝑎)|𝑓𝑓′(𝑎𝑎)|𝑑𝑑𝑑𝑑

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

0
+ � (𝑏𝑏 − 𝑎𝑎)𝜆𝜆|𝑓𝑓′(𝑏𝑏)|𝑑𝑑𝑑𝑑

𝑎𝑎
𝑏𝑏

𝑓𝑓′(𝑎𝑎)
𝑓𝑓′(𝑏𝑏)

+ � (𝑏𝑏 − 𝜆𝜆𝜆𝜆)𝜆𝜆|𝑓𝑓′(𝑏𝑏)|𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏

𝑏𝑏 − 𝑎𝑎 �
(𝑏𝑏 − 𝑎𝑎)

(|𝑓𝑓′(𝑎𝑎)|)2

|𝑓𝑓′(𝑏𝑏)| + (𝑏𝑏 − 𝑎𝑎)
𝑎𝑎2

2𝑏𝑏2
|𝑓𝑓′(𝑏𝑏)|

− (𝑏𝑏 − 𝑎𝑎)
(|𝑓𝑓′(𝑎𝑎)|)2

2|𝑓𝑓′(𝑏𝑏)| +
𝑏𝑏
6
𝑓𝑓′(𝑏𝑏) − �

𝑎𝑎2

2𝑏𝑏
−
𝑎𝑎3

3𝑏𝑏2
� |𝑓𝑓′(𝑏𝑏)|� 

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

|𝑓𝑓′(𝑏𝑏)| +
𝑎𝑎2|𝑓𝑓′(𝑏𝑏)|

2𝑏𝑏
−
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

2|𝑓𝑓′(𝑏𝑏)| +
𝑏𝑏2|𝑓𝑓′(𝑏𝑏)|
6(𝑏𝑏 − 𝑎𝑎)

−
(3𝑎𝑎2𝑏𝑏 − 2𝑎𝑎3)|𝑓𝑓′(𝑏𝑏)|

6𝑏𝑏(𝑏𝑏 − 𝑎𝑎)  

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

2|𝑓𝑓′(𝑏𝑏)| +
(3𝑎𝑎2𝑏𝑏 − 3𝑎𝑎3 + 𝑏𝑏3 − 3𝑎𝑎2𝑏𝑏 + 2𝑎𝑎3)|𝑓𝑓′(𝑏𝑏)|

6𝑏𝑏(𝑏𝑏 − 𝑎𝑎)  

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

2|𝑓𝑓′(𝑏𝑏)| +
(𝑏𝑏3 − 𝑎𝑎3)|𝑓𝑓′(𝑏𝑏)|

6𝑏𝑏(𝑏𝑏 − 𝑎𝑎)  

= 𝑎𝑎|𝑓𝑓′(𝑎𝑎)| +
𝑏𝑏(|𝑓𝑓′(𝑎𝑎)|)2

2|𝑓𝑓′(𝑏𝑏)| +
(𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2)|𝑓𝑓′(𝑏𝑏)|

6𝑏𝑏
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=
6𝑎𝑎𝑎𝑎|𝑓𝑓′(𝑎𝑎)||𝑓𝑓′(𝑏𝑏)| + 3𝑏𝑏2(|𝑓𝑓′(𝑎𝑎)|)2 + (𝑎𝑎2 + 𝑎𝑎𝑎𝑎 + 𝑏𝑏2)(|𝑓𝑓′(𝑏𝑏)|)2

6𝑏𝑏|𝑓𝑓′(𝑏𝑏)|          (5.10) 

olur. Buradan  

�𝑓𝑓(𝑎𝑎) − 1
𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 � ≤

⎩
⎪
⎪
⎨

⎪
⎪
⎧

3𝑎𝑎+𝑏𝑏
2

|𝑓𝑓′(𝑎𝑎)|                                                            ,    1 ≤ �𝑓𝑓′(𝑎𝑎)�
|𝑓𝑓′(𝑏𝑏)|

�6𝑎𝑎𝑎𝑎−9𝑎𝑎2��𝑓𝑓′(𝑎𝑎)���𝑓𝑓′(𝑏𝑏)��2+𝑏𝑏2��𝑓𝑓′(𝑏𝑏)��3

6(𝑏𝑏−𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2
                                                      

+ 3𝑏𝑏2��𝑓𝑓′(𝑎𝑎)��2�𝑓𝑓′(𝑏𝑏)�−𝑏𝑏2��𝑓𝑓′(𝑎𝑎)��3

6(𝑏𝑏−𝑎𝑎)(|𝑓𝑓′(𝑏𝑏)|)2
                                   ,   𝑎𝑎

𝑏𝑏
≤ �𝑓𝑓′(𝑎𝑎)�

|𝑓𝑓′(𝑏𝑏)|
< 1

6𝑎𝑎𝑎𝑎�𝑓𝑓′(𝑎𝑎)��𝑓𝑓′(𝑏𝑏)�+3𝑏𝑏2��𝑓𝑓′(𝑎𝑎)��2+�𝑎𝑎2+𝑎𝑎𝑎𝑎+𝑏𝑏2���𝑓𝑓′(𝑏𝑏)��2

6𝑏𝑏|𝑓𝑓′(𝑏𝑏)|
      ,   0 ≤ �𝑓𝑓′(𝑎𝑎)�

|𝑓𝑓′(𝑏𝑏)|
< 𝑎𝑎

𝑏𝑏

                 (5.11) 

eşitsizliği elde edilir. ∎ 

5.2 Genelleştirilmiş Riemann-Liouville Kesirli İntegral Eşitsizlikleri 

Teorem 5.2.1 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+ B-konveks fonksiyonu ve 𝜑𝜑 ∈ Μ  integrallenebilir 

fonksiyonu verilsin. 0 < 𝑎𝑎 < 𝑏𝑏 < ∞  olmak üzere [𝑎𝑎, 𝑏𝑏] kapalı aralığında 

integrallenebilen 𝑓𝑓 fonksiyonu için 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ ≤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                                       , 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)
𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)∫ 𝜑𝜑(𝑡𝑡)
𝑡𝑡
𝑑𝑑𝑑𝑑

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

0                                   

−𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

0                                                , 𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

�𝑎𝑎𝑎𝑎(𝑏𝑏)−𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏)
∙ 𝜑𝜑(𝑏𝑏−𝑎𝑎)

𝑏𝑏−𝑎𝑎
+ 𝑓𝑓(𝑏𝑏)∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                

−𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                                       ,0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

                (5.12)  

eşitsizliği sağlanır. 

İspat 𝑓𝑓 fonksiyonu B-konveks fonksiyon olduğundan;  

𝑎𝑎, 𝑏𝑏 ∈ ℝ+,𝑎𝑎 < 𝑏𝑏 ve 𝛽𝛽 ∈ [0, 1] için 

𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽}) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}                          (5.13) 
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eşitsizliği sağlanır. Bu eşitsizliğin her iki tarafı 

𝜑𝜑(𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽}                                             (5.14) 

çarpılarak [0, 1] aralığında integrallenirse 

�
𝜑𝜑(𝑏𝑏 −𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽} 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})𝑑𝑑𝑑𝑑

1

0

≤ �
𝜑𝜑(𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽} 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑

1

0
                   (5.15) 

eşitsizliği elde edilir. Eşitsizliğin sol tarafı 

�
𝜑𝜑(𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽} 𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})𝑑𝑑𝑑𝑑

1

0
 

= �
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑎𝑎
𝑏𝑏

0
+ �

𝜑𝜑(𝑏𝑏 − 𝛽𝛽𝛽𝛽)
𝑏𝑏 − 𝛽𝛽𝛽𝛽

𝑓𝑓(𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

=
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
1
𝑏𝑏
�

𝜑𝜑(𝑏𝑏 − 𝑡𝑡)
𝑏𝑏 − 𝑡𝑡

𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
 

=
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ �                                    (5.16) 

biçiminde elde edilir. Eşitsizliğin sağ tarafında bulunan  

�
𝜑𝜑(𝑏𝑏 −𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽} 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑

1

0
                 (5.17) 

integralinin çözümü için aşağıdaki üç durum incelenir. 

(𝒊𝒊) 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 olması durumunda  

�
𝜑𝜑(𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽} 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑

1

0
 

= �
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑎𝑎
𝑏𝑏

0
+ �

𝜑𝜑(𝑏𝑏 − 𝛽𝛽𝛽𝛽)
𝑏𝑏 − 𝛽𝛽𝛽𝛽

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏
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=
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                             (5.18)  

bulunur. Buradan   

𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ � ≤

𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ ≤ 𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                               (5.19)  

elde edilir. 

(𝒊𝒊𝒊𝒊) 𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1 ise 

�
𝜑𝜑(𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽} 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑

1

0
 

= �
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑎𝑎
𝑏𝑏

0
+ �

𝜑𝜑(𝑏𝑏 − 𝛽𝛽𝛽𝛽)
𝑏𝑏 − 𝛽𝛽𝛽𝛽

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

𝑎𝑎
𝑏𝑏

+ �
𝜑𝜑(𝑏𝑏 − 𝛽𝛽𝛽𝛽)
𝑏𝑏 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽(𝑏𝑏)𝑑𝑑𝑑𝑑
1

𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 

=
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

(𝑏𝑏 − 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
 

=
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0

−
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
                                                             (5.20) 

bulunur. Buradan 

𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ �

≤
𝑎𝑎𝑎𝑎(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
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𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ ≤ 𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0

−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
                                      (5.21)  

elde edilir. 

(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏
 iken 

�
𝜑𝜑(𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})
𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝑏𝑏} 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑

1

0
 

= �
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

0
+ �

𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

𝛽𝛽𝛽𝛽(𝑏𝑏)𝑑𝑑𝑑𝑑
𝑎𝑎
𝑏𝑏

𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

+ �
𝜑𝜑(𝑏𝑏 − 𝛽𝛽𝛽𝛽)
𝑏𝑏 − 𝛽𝛽𝛽𝛽

𝛽𝛽𝛽𝛽(𝑏𝑏)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

=
�𝑓𝑓(𝑎𝑎)�2

𝑓𝑓(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑎𝑎2𝑓𝑓(𝑏𝑏)

2𝑏𝑏2
∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

−
�𝑓𝑓(𝑎𝑎)�2

2𝑓𝑓(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

(𝑏𝑏 − 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
�𝑓𝑓(𝑎𝑎)�2

𝑓𝑓(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑎𝑎2𝑓𝑓(𝑏𝑏)

2𝑏𝑏2
∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

−
�𝑓𝑓(𝑎𝑎)�2

2𝑓𝑓(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑎𝑎2�𝑓𝑓(𝑏𝑏)�2 + 𝑏𝑏2�𝑓𝑓(𝑎𝑎)�2

2𝑏𝑏2𝑓𝑓(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0

−
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                                                              (5.22) 

bulunur. Buradan 

𝑎𝑎𝑓𝑓(𝑎𝑎)
𝑏𝑏

∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ �

≤
𝑎𝑎2�𝑓𝑓(𝑏𝑏)�2 + 𝑏𝑏2�𝑓𝑓(𝑎𝑎)�2

2𝑏𝑏2
∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0

−
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                                                           (5.23) 
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� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ � ≤
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+ 𝑓𝑓(𝑏𝑏)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0

−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                                                (5.24) 

elde edilir. Sonuç olarak  

𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ ≤

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                                       , 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)
𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)∫ 𝜑𝜑(𝑡𝑡)
𝑡𝑡
𝑑𝑑𝑑𝑑

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

0                                   

−𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

0                                                , 𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

�𝑎𝑎𝑎𝑎(𝑏𝑏)−𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏)
∙ 𝜑𝜑(𝑏𝑏−𝑎𝑎)

𝑏𝑏−𝑎𝑎
+ 𝑓𝑓(𝑏𝑏)∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                

−𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                                       ,0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

           (5.25)  

eşitsizliği elde edilir. ∎   

Sonuç 5.2.1 Teorem 5.2.1 koşuşları altında  𝜑𝜑(𝑡𝑡) = 𝑡𝑡 alınırsa (4.4) ile ifade edilen B-

konveks fonksiyonlar için Hermite-Hadamard eşitsizliği elde edilir. 

İspat Gerçekten; (5.12) eşitsizliğinde 𝐼𝐼𝜑𝜑𝑓𝑓(𝑏𝑏)𝑎𝑎+ = 1
𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎  olur ve eşitsizliğin 

sağ kısmı için ise,  

(𝒊𝒊) 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 olması durumunda 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
= 𝑓𝑓(𝑎𝑎)� 𝑑𝑑𝑑𝑑

𝑏𝑏−𝑎𝑎

0
 

= 𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)                                       (5.26) 

elde edilir. 
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(𝒊𝒊𝒊𝒊)  𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1 ise 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
 

= 𝑓𝑓(𝑎𝑎)� 𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)� 𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
 

= (𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑎𝑎) −
𝑏𝑏𝑏𝑏(𝑎𝑎)�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�

𝑓𝑓(𝑏𝑏) + 𝑏𝑏�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�

−
𝑏𝑏2𝑓𝑓(𝑏𝑏)�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�2

2𝑏𝑏�𝑓𝑓(𝑏𝑏)�2
 

= 𝑏𝑏𝑏𝑏(𝑎𝑎) − 𝑎𝑎𝑎𝑎(𝑎𝑎) − 𝑏𝑏𝑏𝑏(𝑎𝑎) +
𝑏𝑏�𝑓𝑓(𝑎𝑎)�2

𝑓𝑓(𝑏𝑏) + 𝑏𝑏𝑏𝑏(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎) −
𝑏𝑏𝑏𝑏(𝑏𝑏)

2
+ 𝑏𝑏𝑏𝑏(𝑎𝑎)

−
𝑏𝑏�𝑓𝑓(𝑎𝑎)�2

2𝑓𝑓(𝑏𝑏)  

=
2𝑏𝑏�𝑓𝑓(𝑎𝑎)�2 + 2𝑏𝑏�𝑓𝑓(𝑏𝑏)�2 − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏) − 𝑏𝑏�𝑓𝑓(𝑏𝑏)�2

2𝑓𝑓(𝑏𝑏)  

=
𝑏𝑏�𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)�2 − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2𝑓𝑓(𝑏𝑏)                                                                     (5.27) 

elde edilir. 

(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏
 iken 

�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+ 𝑓𝑓(𝑏𝑏)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏) + 𝑓𝑓(𝑏𝑏)� 𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏−𝑎𝑎

0
 

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏) + (𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑏𝑏) −
(𝑏𝑏 − 𝑎𝑎)2𝑓𝑓(𝑏𝑏)

2𝑏𝑏
 

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2 + 2𝑏𝑏(𝑏𝑏 − 𝑎𝑎)�𝑓𝑓(𝑏𝑏)�2 − (𝑏𝑏 − 𝑎𝑎)2�𝑓𝑓(𝑏𝑏)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏)  

=
𝑏𝑏2�𝑓𝑓(𝑏𝑏)�2 − 2𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏) + 𝑏𝑏2�𝑓𝑓(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏)  
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=
𝑏𝑏�𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)�2 − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2𝑓𝑓(𝑏𝑏)                            (5.28) 

elde edilir. Buradan 

1
𝑏𝑏 − 𝑎𝑎

� 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≤ �

𝑓𝑓(𝑎𝑎)                                                               ,   𝑓𝑓(𝑎𝑎) ≥ 𝑓𝑓(𝑏𝑏)

𝑏𝑏 ��𝑓𝑓(𝑎𝑎)�2 + �𝑓𝑓(𝑏𝑏)�2� − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2(𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑏𝑏) ,    𝑓𝑓(𝑎𝑎) < 𝑓𝑓(𝑏𝑏)
 

eşitsizliği sağlanır. ∎ 

Sonuç 5.2.2 Teorem 5.2.1 de  𝜑𝜑(𝑡𝑡) = 𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)
 alınırsa B-konveks fonksiyonlar için 

Riemann-Liouville kesirli integrali içeren aşağıdaki Hermite-Hadamard tipli eşitsizlik 

elde edilir. 

𝐽𝐽𝑎𝑎+
𝛼𝛼 𝑓𝑓(𝑏𝑏) ≤

⎩
⎪
⎨

⎪
⎧

𝑓𝑓(𝑎𝑎)(𝑏𝑏−𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼+1)
                                                 ,    1 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)

(𝛼𝛼+1)𝑓𝑓(𝑎𝑎)�𝑓𝑓(𝑏𝑏)�𝛼𝛼(𝑏𝑏−𝑎𝑎)𝛼𝛼+𝑏𝑏𝛼𝛼�𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)�𝛼𝛼+1

Γ(𝛼𝛼+2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
     ,   𝑎𝑎

𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

�𝑎𝑎𝑎𝑎(𝑏𝑏)−𝑏𝑏𝑏𝑏(𝑎𝑎)�2(𝑏𝑏−𝑎𝑎)𝛼𝛼−1

2𝑏𝑏𝑏𝑏(𝑏𝑏)Γ(𝛼𝛼)
+ (𝑏𝑏−𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼+𝑏𝑏)

𝑏𝑏Γ(𝛼𝛼+2)
 ,   0 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 𝑎𝑎

𝑏𝑏

        (5.29)  

İspat (𝒊𝒊) 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 olması durumunda 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
= 𝑓𝑓(𝑎𝑎)�

𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 1)                          (5.30) 

elde edilir. 

(𝒊𝒊𝒊𝒊)  𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1 ise 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
 

= 𝑓𝑓(𝑎𝑎)�
𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏�1−𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)�

+ 𝑓𝑓(𝑏𝑏)�
𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏�1−𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)�

0
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=
𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 1) −
𝑓𝑓(𝑎𝑎)𝑏𝑏𝛼𝛼�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�𝛼𝛼

Γ(𝛼𝛼 + 1)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
+
𝑓𝑓(𝑏𝑏)𝑏𝑏𝛼𝛼�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�𝛼𝛼

Γ(𝛼𝛼 + 1)�𝑓𝑓(𝑏𝑏)�𝛼𝛼

−
𝑓𝑓(𝑏𝑏)𝑏𝑏𝛼𝛼+1�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�𝛼𝛼+1

𝑏𝑏(𝛼𝛼 + 1)Γ(𝛼𝛼)�𝑓𝑓(𝑏𝑏)�𝛼𝛼+1
 

=
(𝛼𝛼 + 1)𝑓𝑓(𝑎𝑎)�𝑓𝑓(𝑏𝑏)�𝛼𝛼(𝑏𝑏 − 𝑎𝑎)𝛼𝛼 + 𝑏𝑏𝛼𝛼�𝑓𝑓(𝑏𝑏) − 𝑓𝑓(𝑎𝑎)�𝛼𝛼+1

Γ(𝛼𝛼 + 2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
                            (5.31) 

elde edilir. 

(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏
 iken 

�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏) ∙
𝜑𝜑(𝑏𝑏 − 𝑎𝑎)
𝑏𝑏 − 𝑎𝑎

+ 𝑓𝑓(𝑏𝑏)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2

2𝑏𝑏𝑏𝑏(𝑏𝑏) ∙
(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

(𝑏𝑏 − 𝑎𝑎)Γ(𝛼𝛼) + 𝑓𝑓(𝑏𝑏)�
𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
−
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2(𝑏𝑏 − 𝑎𝑎)𝛼𝛼−1

2𝑏𝑏𝑏𝑏(𝑏𝑏)Γ(𝛼𝛼) +
𝑓𝑓(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 1) −
𝑓𝑓(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼+1

𝑏𝑏(𝛼𝛼 + 1)Γ(𝛼𝛼)   

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2(𝑏𝑏 − 𝑎𝑎)𝛼𝛼−1

2𝑏𝑏𝑏𝑏(𝑏𝑏)Γ(𝛼𝛼) +
(𝛼𝛼 + 1)𝑏𝑏𝑏𝑏(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼 − 𝛼𝛼𝛼𝛼(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼+1

𝑏𝑏(𝛼𝛼 + 1)Γ(𝛼𝛼)  

=
�𝑎𝑎𝑎𝑎(𝑏𝑏) − 𝑏𝑏𝑏𝑏(𝑎𝑎)�2(𝑏𝑏 − 𝑎𝑎)𝛼𝛼−1

2𝑏𝑏𝑏𝑏(𝑏𝑏)Γ(𝛼𝛼) +
(𝑏𝑏 − 𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼 + 𝑏𝑏)

𝑏𝑏Γ(𝛼𝛼 + 2)                         (5.32) 

elde edilir. Buradan 

𝐽𝐽𝑎𝑎+
𝛼𝛼 𝑓𝑓(𝑏𝑏) ≤

⎩
⎪
⎨

⎪
⎧

𝑓𝑓(𝑎𝑎)(𝑏𝑏−𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼+1)
                                                 ,    1 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)

(𝛼𝛼+1)𝑓𝑓(𝑎𝑎)�𝑓𝑓(𝑏𝑏)�𝛼𝛼(𝑏𝑏−𝑎𝑎)𝛼𝛼+𝑏𝑏𝛼𝛼�𝑓𝑓(𝑏𝑏)−𝑓𝑓(𝑎𝑎)�𝛼𝛼+1

Γ(𝛼𝛼+2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
     ,   𝑎𝑎

𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

�𝑎𝑎𝑎𝑎(𝑏𝑏)−𝑏𝑏𝑏𝑏(𝑎𝑎)�2(𝑏𝑏−𝑎𝑎)𝛼𝛼−1

2𝑏𝑏𝑏𝑏(𝑏𝑏)Γ(𝛼𝛼)
+ (𝑏𝑏−𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼+𝑏𝑏)

𝑏𝑏Γ(𝛼𝛼+2)
 ,   0 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 𝑎𝑎

𝑏𝑏

             (5.33)  

eşitsizliği sağlanır. ∎ 
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Teorem 5.2.2 𝑓𝑓: [𝑎𝑎, 𝑏𝑏] ⊂ ℝ+ → ℝ+ B-konveks fonksiyonu ve 𝜑𝜑 ∈ Μ integrallenebilir 

fonksiyonu verilsin. 0 < 𝑎𝑎 < 𝑏𝑏 < ∞  olmak üzere [𝑎𝑎, 𝑏𝑏] kapalı aralığında 

integrallenebilen 𝑓𝑓 fonksiyonu için 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− ≤

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                         ,1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)
𝑡𝑡
𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0 + 𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

                                         

−𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

                                        , 𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0 + 𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0           , 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

                    (5.34)     

eşitsizliği sağlanır. 

İspat 𝑓𝑓 B-konveks fonksiyon olduğundan; 

𝑎𝑎, 𝑏𝑏 ∈ ℝ+,𝑎𝑎 < 𝑏𝑏 ve 𝛽𝛽 ∈ [0, 1] için 

𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽}) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}                        (5.35) 

eşitsizliği sağlanır. Bu eşitsizliğin her iki tarafı 

𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

                                                            (5.36) 

çarpılarak tanımlı olduğu �𝑎𝑎
𝑏𝑏

, 1� aralığında 𝛽𝛽 ya göre integrallenirse 

�
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

≤ �
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

      (5.37) 

eşitsizliği elde edilir. (5.37) eşitsizliğin sol tarafı 

�
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑓𝑓(𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝛽𝛽𝛽𝛽})𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

= �
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑓𝑓(𝛽𝛽𝛽𝛽)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

=
1
𝑏𝑏
�

𝜑𝜑(𝑡𝑡 − 𝑎𝑎)
𝑡𝑡 − 𝑎𝑎

𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏
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=
1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− �                                    (5.38) 

bulunur. (5.37) eşitsizliğin sağ tarafında bulunan  

�
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

                                (5.39) 

integralinin çözümü için ise aşağıdaki üç durum incelenir. 

(𝒊𝒊) 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 olması durumunda 

�
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

= �
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

=
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                     (5.40) 

bulunur. Buradan 

1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− � ≤

𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                             (5.41) 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− ≤ 𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                              (5.42)  

elde edilir. 

(𝒊𝒊𝒊𝒊)  𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1 ise 

�
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

= �
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑓𝑓(𝑎𝑎)𝑑𝑑𝑑𝑑
𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

𝑎𝑎
𝑏𝑏

+ �
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝛽𝛽𝛽𝛽(𝑏𝑏)𝑑𝑑𝑑𝑑
1

𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 

=
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

(𝑡𝑡 + 𝑎𝑎)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎
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=
𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

                                           (5.43) 

bulunur. Buradan 

1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− � ≤

𝑓𝑓(𝑎𝑎)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− ≤ 𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

 

elde edilir. 

(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏
 iken 

�
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝑚𝑚𝑚𝑚𝑚𝑚{𝑓𝑓(𝑎𝑎),𝛽𝛽𝛽𝛽(𝑏𝑏)}𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

= �
𝜑𝜑(𝛽𝛽𝛽𝛽 − 𝑎𝑎)
𝛽𝛽𝛽𝛽 − 𝑎𝑎

𝛽𝛽𝛽𝛽(𝑏𝑏)𝑑𝑑𝑑𝑑
1

𝑎𝑎
𝑏𝑏

 

=
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

(𝑡𝑡 + 𝑎𝑎)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                 (5.44) 

bulunur. Buradan 

1
𝑏𝑏
� 𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− � ≤

𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏2

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏2

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
               (5.45) 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− ≤
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
                (5.46) 
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elde edilir. Sonuç olarak 

𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎)𝑏𝑏− ≤

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0                                         ,1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

𝑓𝑓(𝑎𝑎)∫ 𝜑𝜑(𝑡𝑡)
𝑡𝑡
𝑑𝑑𝑑𝑑

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0 + 𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

                                         

−𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

                                        , 𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)

𝑡𝑡
𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0 + 𝑓𝑓(𝑏𝑏)
𝑏𝑏 ∫ 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏−𝑎𝑎

0           , 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

 (5.47)     

eşitsizliği elde edilir. ∎ 

Sonuç 5.2.3 Teorem 5.2.2 de  𝜑𝜑(𝑡𝑡) = 𝑡𝑡 alınırsa B-konveks fonksiyonlar için aşağıdaki 

eşitsizlik elde edilir. 

1
𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 ≤

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓(𝑎𝑎)                                              , 1 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)

𝑏𝑏��𝑓𝑓(𝑎𝑎)�2+�𝑓𝑓(𝑏𝑏)�2�−2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2(𝑏𝑏−𝑎𝑎)𝑓𝑓(𝑏𝑏)
            , 𝑎𝑎

𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

�𝑏𝑏2−𝑎𝑎2�𝑓𝑓(𝑏𝑏)
2𝑏𝑏

                                          , 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

         (5.48)  

İspat Teorem 5.2.2’deki eşitsizlikte ilk olarak    

(𝒊𝒊) 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 olması durumu incelendiğinde,  

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
= 𝑓𝑓(𝑎𝑎)� 𝑑𝑑𝑑𝑑

𝑏𝑏−𝑎𝑎

0
 

= 𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)                          (5.49) 

elde edilir. 

(𝒊𝒊𝒊𝒊)  𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1 olması durumunda ise, 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎
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= 𝑓𝑓(𝑎𝑎)� 𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

� 𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

 

= 𝑓𝑓(𝑎𝑎)�
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) − 𝑎𝑎� +

𝑎𝑎(𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑏𝑏)
𝑏𝑏

−
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) − 𝑎𝑎� +

(𝑏𝑏 − 𝑎𝑎)2𝑓𝑓(𝑏𝑏)
2𝑏𝑏

−
𝑓𝑓(𝑏𝑏)
2𝑏𝑏

�
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) − 𝑎𝑎�

2

 

=
𝑏𝑏�𝑓𝑓(𝑎𝑎)�2

𝑓𝑓(𝑏𝑏) − 𝑎𝑎𝑎𝑎(𝑎𝑎) +
(𝑏𝑏2 − 𝑎𝑎2)𝑓𝑓(𝑏𝑏)

2𝑏𝑏
− 𝑎𝑎𝑎𝑎(𝑎𝑎) +

𝑎𝑎2𝑓𝑓(𝑏𝑏)
𝑏𝑏

−
𝑏𝑏�𝑓𝑓(𝑎𝑎)�2

2𝑓𝑓(𝑏𝑏) + 𝑎𝑎𝑎𝑎(𝑎𝑎)

−
𝑎𝑎2𝑓𝑓(𝑏𝑏)

2𝑏𝑏
 

=
𝑏𝑏𝑏𝑏(𝑏𝑏)

2
+
𝑏𝑏�𝑓𝑓(𝑎𝑎)�2

2𝑓𝑓(𝑏𝑏) − 𝑎𝑎𝑎𝑎(𝑎𝑎) 

=
𝑏𝑏�𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)�2 − 2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2𝑓𝑓(𝑏𝑏)                                                                   (5.50) 

elde edilir. 

(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏
 iken 

𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

� 𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏−𝑎𝑎

0
 

=
𝑎𝑎(𝑏𝑏 − 𝑎𝑎)𝑓𝑓(𝑏𝑏)

𝑏𝑏
+

(𝑏𝑏 − 𝑎𝑎)2𝑓𝑓(𝑏𝑏)
2𝑏𝑏

 

=
(𝑏𝑏2 − 𝑎𝑎2)𝑓𝑓(𝑏𝑏)

2𝑏𝑏
                                                               (5.51) 

elde edilir. Buradan 

1
𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 ≤

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓(𝑎𝑎)                                              , 1 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)

𝑏𝑏��𝑓𝑓(𝑎𝑎)�2+�𝑓𝑓(𝑏𝑏)�2�−2𝑎𝑎𝑎𝑎(𝑎𝑎)𝑓𝑓(𝑏𝑏)

2(𝑏𝑏−𝑎𝑎)𝑓𝑓(𝑏𝑏)
            , 𝑎𝑎

𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

�𝑏𝑏2−𝑎𝑎2�𝑓𝑓(𝑏𝑏)
2𝑏𝑏

                                          , 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

          (5.52)  

eşitsizliği sağlanır. ∎ 
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Sonuç 5.2.4 Teorem 5.2.2 koşulları altında  𝜑𝜑(𝑡𝑡) = 𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)
 alınırsa (4.6) ile ifade edilen 

B-konveks fonksiyonlar için Riemann-Liouville kesirli integrali ile ifade edilen 

Hermite-Hadamard eşitsizliği elde edilir. 

İspat Gerçekten; (5.34) eşitsizliğinde 𝐼𝐼𝜑𝜑𝑓𝑓(𝑎𝑎) = 1
𝑏𝑏−𝑎𝑎 ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎𝑏𝑏−  ve eşitsizliğin sağ 

kısmı için ise,  

(𝒊𝒊) 1 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

 olması durumunda 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
= 𝑓𝑓(𝑎𝑎)�

𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑓𝑓(𝑎𝑎)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼 + 1)                                        (5.53) 

elde edilir. 

(𝒊𝒊𝒊𝒊)  𝑎𝑎
𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1 ise 

𝑓𝑓(𝑎𝑎)�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

 

= 𝑓𝑓(𝑎𝑎)�
𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

0
+
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

𝑏𝑏𝑏𝑏(𝑎𝑎)
𝑓𝑓(𝑏𝑏) −𝑎𝑎

 

=
𝑓𝑓(𝑎𝑎)�𝑏𝑏𝑏𝑏(𝑎𝑎) − 𝑎𝑎𝑎𝑎(𝑏𝑏)�𝛼𝛼

�𝑓𝑓(𝑏𝑏)�𝛼𝛼Γ(𝛼𝛼 + 1)
+
𝑎𝑎𝑎𝑎(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

𝑏𝑏Γ(𝛼𝛼 + 1) −
𝑎𝑎𝑎𝑎(𝑏𝑏)�𝑏𝑏𝑏𝑏(𝑎𝑎) − 𝑎𝑎𝑎𝑎(𝑏𝑏)�𝛼𝛼

𝑏𝑏�𝑓𝑓(𝑏𝑏)�𝛼𝛼Γ(𝛼𝛼 + 1)

+
𝑓𝑓(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼+1

𝑏𝑏(𝛼𝛼 + 1)Γ(𝛼𝛼) −
𝑓𝑓(𝑏𝑏)�𝑏𝑏𝑏𝑏(𝑎𝑎) − 𝑎𝑎𝑎𝑎(𝑏𝑏)�𝛼𝛼+1

𝑏𝑏(𝛼𝛼 + 1)�𝑓𝑓(𝑏𝑏)�𝛼𝛼Γ(𝛼𝛼)
 

=
(𝑏𝑏 − 𝑎𝑎)𝛼𝛼�𝑓𝑓(𝑏𝑏)�𝛼𝛼+1(𝛼𝛼𝛼𝛼 + 𝑎𝑎) + �𝑏𝑏𝑏𝑏(𝑎𝑎) − 𝑎𝑎𝑎𝑎(𝑏𝑏)�𝛼𝛼+1

𝑏𝑏Γ(𝛼𝛼 + 2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
            (5.54) 

elde edilir.  
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(𝒊𝒊𝒊𝒊𝒊𝒊) 0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏
 iken 

𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝜑𝜑(𝑡𝑡)
𝑡𝑡

𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

� 𝜑𝜑(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
 

=
𝑎𝑎𝑎𝑎(𝑏𝑏)
𝑏𝑏

�
𝑡𝑡𝛼𝛼−1

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
+
𝑓𝑓(𝑏𝑏)
𝑏𝑏

�
𝑡𝑡𝛼𝛼

Γ(𝛼𝛼)𝑑𝑑𝑑𝑑
𝑏𝑏−𝑎𝑎

0
  

=
𝑎𝑎𝑎𝑎(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼

𝑏𝑏Γ(𝛼𝛼 + 1) +
𝑓𝑓(𝑏𝑏)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼+1

(𝛼𝛼 + 1)𝑏𝑏Γ(𝛼𝛼)  

=
𝑎𝑎(𝛼𝛼 + 1)(𝑏𝑏 − 𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏) + 𝛼𝛼(𝑏𝑏 − 𝑎𝑎)𝛼𝛼+1𝑓𝑓(𝑏𝑏)

𝑏𝑏Γ(𝛼𝛼 + 2)  

=
(𝑏𝑏 − 𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼 + 𝑎𝑎)

𝑏𝑏Γ(𝛼𝛼 + 2)                                                      (5.55) 

elde edilir. Buradan 

𝐽𝐽𝑏𝑏−𝛼𝛼 𝑓𝑓(𝑎𝑎) ≤

⎩
⎪
⎨

⎪
⎧

𝑓𝑓(𝑎𝑎)(𝑏𝑏−𝑎𝑎)𝛼𝛼

Γ(𝛼𝛼+1)
                                                            ,    1 ≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)

(𝑏𝑏−𝑎𝑎)𝛼𝛼�𝑓𝑓(𝑏𝑏)�𝛼𝛼+1(𝛼𝛼𝛼𝛼+𝑎𝑎)+�𝑏𝑏𝑏𝑏(𝑎𝑎)−𝑎𝑎𝑎𝑎(𝑏𝑏)�𝛼𝛼+1

𝑏𝑏Γ(𝛼𝛼+2)�𝑓𝑓(𝑏𝑏)�𝛼𝛼
                  ,   𝑎𝑎

𝑏𝑏
≤ 𝑓𝑓(𝑎𝑎)

𝑓𝑓(𝑏𝑏)
< 1

(𝑏𝑏−𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)(𝛼𝛼𝛼𝛼+𝑎𝑎)
𝑏𝑏Γ(𝛼𝛼+2)

                                                         ,   0 ≤ 𝑓𝑓(𝑎𝑎)
𝑓𝑓(𝑏𝑏)

< 𝑎𝑎
𝑏𝑏

  

eşitsizliği sağlanır. ∎ 
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6. SONUÇ VE ÖNERİLER 

6.1 Sonuçlar 

Bu tez çalışmasında B-konveks fonksiyonlar için geçerli, yeni bir eşitsizlik elde 

edilmiştir. Bunun için klasik konvekslikte var olan bir lemmanın B-konveks 

fonksiyonlardaki  karşılığı bulunmuştur. (Lemma 5.1.1) Daha sonra ise elde edilen bu 

lemma yardımıyla trapezoidal bir eşitsizlik elde edilmiştir. (Teorem 5.1.1) 

Hermite-Hadamard eşitsizliklerinin Genelleştirilmiş Riemann-Liouville kesirli 

integralleri içeren durumu B-konveks fonksiyonlar için (Teorem 5.2.1) ispat 

edilmiştir. Bu eşitsizlik genelleştirilmiş sağ Riemann-Liouville kesirli integraline 

aittir. Elde edilen bu eşitsizlikten ortaya çıkan ve eşitsizliğin gerçekten bir 

genelleştirme olduğunun da kanıtı halinde olan sonuçlar ise Sonuç 5.2.1 ve Sonuç 5.2.2 

ile verilmiştir. İlk olarak, Sonuç 5.2.1 ile B-konveks fonksiyonlar için Hermite-

Hadamard eşitsizliğinin elde edildiği gösterilir. Sonuç 5.2.2’de ise B-konveks 

fonksiyonlar için Riemann-Liouville kesirli integrali içeren yeni bir Hermite-

Hadamard eşitsizliği elde edilmiştir. Aynı şekilde, Hermite-Hadamard eşitsizliğinin 

sol Genelleştirilmiş Riemann-Liouville kesirli integralini içeren ikinci formu Teorem 

5.2.2 ile ifade edilmiştir. Elde edilen bu eşitsizlikten ortaya çıkan sonuçlar Sonuç 5.2.3 

ve Sonuç 5.2.4 ile verilmiştir. Bulunan özel sonuçlardan ilki Sonuç 5.2.3’de 

bahsedilen, B-konveks fonksiyonlar için Riemann-Liouville kesirli integrali içeren 

Hermite-Hadamard tipli yeni bir eşitsizliktir. Sonuç 5.2.4 ise B-konveks fonksiyonlar 

için Hermite-Hadamard tipli yeni bir eşitsizlik içermektedir. 

6.2 Öneriler 

Bu tezde temel alınan ve fonksiyonlar için bir integral eşitlik veren  temel lemma farklı 

durumlarda da elde edilebilir. Bununla birlikte de ortaya çıkan trapezodial eşitsizliğin 

başka sonuçlara evrildiği görülecektir. 

Geneleştirilmiş kesirli Riemann-Liouville kesirli integrali pek çok kesirli integralin bir 

genellemesidir. Tezde birkaç durum incelenerek bununla ilgili çalışmalar ifade 

edilmiştir. Ancak, bu genelleştirilmiş kesirli integralde kullanılan 𝜑𝜑 fonksiyonu yerine 

tanımdan da görüldüğü üzere farklı ve yeni fonksiyonlar yazılarak başka kesirli 

integraller ve eşitsizlikler elde edilebilir. Böylece, B-konveks fonksiyonlar için yeni 

kesirli integraller içeren eşitsizlikler elde edilebilir. Ayrıca elde edilmiş daha önceki 
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sonuçlar ile çakıştığı da  gösterilerek eşitsizliklerin doğruluğu kanıtlanabilir.  

Tezdeki bulgular B-konveks fonksiyonlar için üretilmiştir. Elde edilen tüm bu veriler 

bu konuda yeni ve popüler bir diğer soyut konvekslik çeşidi olan B-1-konveks 

fonksiyonlar içinde çalışılabilir. Bununla birlikte, bu tarzda çalışmalar daha pek çok 

soyut konveks fonskiyonlar için genelleştirilebilir.  

 

 

 



39 

KAYNAKLAR 

1. Boyd, S. ve Vandenberghe, L., 2004. Convex optimization, Cambridge University 
Press, Cambridge, MA. 

2. Beckenbach, E. F. ve Bellman, R., 1961. Inequalities, Springer, Berlin.  

3. Niculescu, C. P. ve Persson, L. - E., 2006. Convex functions and their applications 
A contemporary approach, CMS Books in Mathematics, Springer-Verlag, New 
York.  

4. Pečarić, J., Proschan, F. ve Tong, Y. L., 1992. Convex functions, Partial Orderings 
and Statistical Applications, Academic Press Inc, San Diego.  

5. Rubinov, A. M. ve Kutateladze, S. S., 1972. Minkowski duality and its applications, 
Russian Mathematical Surveys, 27, 3, 137-191.  

6. Rubinov, A., 2000. Abstract Convexity and global optimization, Kluwer Academic 
Publishers, Boston Dordrecht-London. 

7. Briec, W. ve Horvath, C. D., 2004. B-convexity, Optimization, 53, 103-127. 

8. Adilov, G. ve Yesilce, I., 2018. Some important properties of B-convex functions, 
Journal of Nonlinear and Convex Analysis, 19, 4, 669-680. 

9. Yesilce, I. ve Adilov, G., 2017. Fractional integrals inequalities for B-convex 
Functions, Creative Mathematics Inform, 26, 3, 345-351. 

10. Yesilce, I. ve Adilov, G., 2017. Hermite-Hadamard inequalities for B-convex and 
B-1- convex Functions, International Journal of Nonlinear Analysis and 
Applications, 8, 1, 225-233. 

11. Adilov, G. ve Rubinov, A., 2006. B-convex sets and functions, Numerical 
Functional Analysis and Optimization, 27, 3-4, 237-257. 

12. Ceyda, Ç., 2019. Kesirli İntegral Eşitsizlikleri, Yüksek Lisans Tezi, Uşak 
Üniversitesi, Fen Bilimleri Enstitüsü, Uşak. 

13. Yesilce, I., 2019. Inequalities for B-convex functions via generalized fractional 
integral, Journal of Inequalities and Applications, 194. 

14. Katugampola, U.N., 2011. New approach to a generalized fractional integral, 
Applied Mathematics and Computations, 218, 3, 860-865. 

15. Sarikaya, M.Z. ve Ertuğral, F., 2020. On the generalized Hermite-Hadamard 
inequalities, Mathematics and Computer Science Series, 47, 1, 193-213. 

16. Sarikaya, M.Z. ve Yildirim, H., 2007. On generalization of the riesz potential, 
Indian Journal of Mathematics and Mathematical Sciences, 3, 2, 231-235. 



40 

17. Mubeen, S. ve Habibullah, G.M., 2012. k-fractional integrals and application, 
International Journal of Contemporary Mathematical Sciences, 7, 2, 89-94. 

18. Khalil, R., Al Horani, M., Yousef, A. ve Sababheh M., 2014. A new definition of 
fractional derivative, Journal of Computational and Applied Mathematics, 264, 
65-70. 

19. Ahmad, B., Alsaedi, A., Kirane, M. ve Torebek, B. T., 2019. Hermite–Hadamard, 
Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities 
for convex functions via new fractional integrals, Journal of Computational and 
Applied Mathematics, 353, 120-129. 

20. Kilbas, A.A., Marichev, O.I. ve Samko, S.G., 1993. Fractional integrals and 
derivatives, Theory and Applications, Gordon & Breach, Switzerland. 

21. Rockafellar, R., Tyrrell, 1970. Convex analysis, Princeton University Press, 
Princeton, New Jersey. 

22. Hadamard, J., 1893. Etude sur les proprietes des fonctions entieres et en particulier 
d'une fonction consideree par Riemann, Journal de Mathematiques Pures et 
Appliquees, 58, 171-215. 

23. Hermite, C., 1883. Sur deux limites d'une integrale define, Mathesis, 3, 82. 

24. Dragomir, S. S. ve Pearce, C. E. M., 2000. Selected topics on Hermite-Hadamard 
inequalities and applications, RGMIA Monographs, Victoria University. 

25. Fejer L., 1906.  Uber die fourierreihen, II, Math, Naturwiss Anz. Ungar. Akad. 
Wiss, 24, 369–390. 

26. Sarikaya M.Z., Set E., Yaldiz H. ve Başak N. 2013. Hermite-Hadamard’s 
inequalities for fractional integrals and related fractional inequalities, 
Mathematical and Modelling 57, 2403-2407. 

27. Adilov, G., 2011. Increasing co-radiant functions and Hermite-Hadamard type 
inequalities, Mathematical Inequalities and Applications. 14, 45-60. 

28. Kemalı S., Sezer S., Tınaztepe G. ve Adilov G., 2021. s-convex functions in the 
third Sense, Korean Journal of Mathematics, 29, 3, 593-602. 

29. Singer, I., 1997. Abstract convex analysis, Wiley-Interscience Publication, New 
York. 

30. Hudzik, H. ve Maligranda, L., 1994. Some remarks on s−convex functions, 
Aequationes Mathematicae, 48, 100-111. 

31. Eken, Z., Sezer, S., Tınaztepe, G. ve Adilov, G., 2021. s-convex functions in the 
fourth sense and some of their properties, Konuralp Journal of Mathematics, 9, 
2, 260-267.  



41 

32. Iscan, I., 2016. Hermite-Hadamard type inequalities for p-convex functions, 
International Journal of Analysis and Application 11, 2, 137-145. 

33. Bayoumi A., 2003. Foundation of complex analysis in non locally convex spaces, 
Mathematics Studies Elsevier, North Holland. 

34. Sezer, S., Eken, Z., Tınaztepe, G. ve Adilov, G., 2021. p-convex functions and 
some of their properties, Numerical Functional Analysis and Optimization, 42, 
4, 443-459. 

 

 

 

 

 

 



42 

ÖZGEÇMİŞ 

Adı ve Soyadı  : Sunullah KARABUDAK 

EĞİTİM BİLGİLERİ (Kurum ve Yıl) 

Lisans   : Selçuk Üniversitesi, Matematik Bölümü, 2004-2008 

Yüksek Lisans : Aksaray Üniversitesi, Matematik Anabilim Dalı, 2020-2023 

MESLEKİ DENEYİM VE ÖDÜLLERİ 

1. Milli Eğitim Bakanlığı - Matematik Yazar 24/01/2022 - … 

2. Konya Kulu Mesleki ve Teknik Anadolu Lisesi – Öğretmen 28/06/2019 - … 

3. Konya Ilgın Argıthanı Milli Eğitim Vakfı ÇPAL - Müdür Yardımcısı 10/09/2018 

- 28/06/2019 

4. Konya Kulu Şeyh Edebali Anadolu Lisesi – Öğretmen 22/02/2016 - 07/09/2018 

5. Konya Özel Çağdaş İstanbul Boğaziçi Temel Lisesi – Öğretmen 18/09/2015 - 

08/02/2016 

6. Konya Özel Çağdaş İstanbul Boğaziçi Dershanesi – Öğretmen 11/02/2015 - 

20/08/2015 

7. Konya Özel Çağdaş İstanbul Boğaziçi Dershanesi - Uzman Öğretici 13/12/2014 - 

10/02/2015 

8. Konya Özel Konya Anadolu Dershanesi - Uzman Öğretici 16/10/2014 - 

30/11/2014 

9. Konya Özel Çağdaş İstanbul Boğaziçi Dershanesi - Uzman Öğretici 05/10/2011 - 

11/08/2014 

10. Konya Özel Profesyonel Eğitim Merkezi Dershanesi - Uzman Öğretici 01/10/2009 

- 31/05/2010 

11. Konya Özel Konya Anadolu Dershanesi - Uzman Öğretici 07/10/2008 - 

19/06/2009 

12. Milli Eğitim Bakanlığı - Başarı Belgesi 17/01/2022 

13. Milli Eğitim Bakanlığı - Başarı Belgesi 01/06/2022 

 

 

 



43 

TEZDEN ÜRETİLEN YAYINLAR, SUNUMLAR VE PATENTLER 

Kongrelerde Sunulan Bildiriler 

1. Yeşilce Işık, I. ve Karabudak, S. 2023. Some New Fractional Integral 

Inequalities For B-convex Functions, 4. International Cappadocia Scientific Research 

Congress, Nevşehir, Bildiriler Kitabı, 633. 


	İÇİNDEKİLER
	ŞEKİLLER DİZİNİ
	SİMGELER VE KISALTMALAR
	1. GİRİŞ
	2. KONVEKSLİK VE SOYUT KONVEKSLİK KAVRAMLARI İLE BAZI SOYUT KONVEKSLİK ÇEŞİTLERİ
	3. KESİRLİ İNTEGRALLER
	5. B-KONVEKS FONKSİYONLAR İÇİN TRAPEZOİDAL EŞİTSİZLİKLER VE KESİRLİ İNTEGRAL EŞİTSİZLİKLERİ
	5.1 Trapezoidal Eşitsizlikler
	6. SONUÇ VE ÖNERİLER
	KAYNAKLAR
	ÖZGEÇMİŞ

