T.C.
AKSARAY UNIVERSITESI
FEN BIiLIMLERI ENSTITUSU

MATEMATIK ANABILIM DALI

B-KONVEKS FONKSIYONLAR iCIN
KESIRLI INTEGRAL ESITSIZLIKLERI

YUKSEK LiSANS TEZi

Sunullah KARABUDAK

DANISMAN
Doc. Dr. ilknur YESILCE ISIK

AKSARAY, 2023



Aksaray Universitesi Fen Bilimleri Enstitiisii’niin 202342401 numaral1 Yiiksek Lisans
ogrencisi  Sunullah KARABUDAK tarafindan hazirlanan “B-KONVEKS
FONKSIYONLAR ICIN KESIiRLi INTEGRAL ESIiTSIZLIKLERI”

adli tez caligmas1 asagidaki jiiri tarafindan OYBIRLIGI ile Matematik Anabilim
Dalinda YUKSEK LISANS TEZI olarak kabul edilmistir.

Damisman: Doc. Dr. flknur YESILCE ISIK

Aksaray Universitesi

Bu tezin, kapsam ve kalite olarak Yiiksek Lisans Tezi oldugunu onayliyorum ...

Uye: Dog. Dr. Yunus ATALAN

Aksaray Universitesi

Bu tezin, kapsam ve kalite olarak Yiiksek Lisans Tezi oldugunu onayliyorum ...

Uye: Dog. Dr. Giiltekin TINAZTEPE

Akdeniz Universitesi

Bu tezin, kapsam ve kalite olarak Yiiksek Lisans Tezi oldugunu onayliyorum ...

Tez Savunma Tarihi: 24/05/2023

Jiiri tarafindan kabul edilen bu tezin Yiiksek Lisans Tezi olmasi i¢in gerekli sartlari

yerine getirdigini onayliyorum.

Fen Bilimleri Enstitiisi Mudura



DOGRULUK BEYANI

Yiiksek lisans tezi olarak sundugum bu ¢aligmayi, akademik kurallara ve bilimsel
etik, ahlak ve geleneklere aykiri diisecek bir yol ve yardima basvurmaksizin
yazdigimi, yararlandigim eserlerin kaynakcada gosterilenlerden olustugunu,
calismamda kullandigim verilerin orijinalligini ve her tiirlii intithalden uzak oldugunu
beyan ederim.

Enstitii tarafindan belli bir zamana bagli olmaksizin, tezimle ilgili yaptigim bu beyana
aykirt bir durumun saptanmasi durumunda, ortaya c¢ikacak tiim ahlaki ve hukuki
sonuglara katlanacagimi bildiririm.

Sunullah KARABUDAK



TESEKKUR

Lisansiistii 6grenim siiresi boyunca sabriyla bana destek olan, zamanini benimle
paylasan ve akademik olarak beni daha ileri tagiyacagina inanarak birikimini bana
aktaran danisman 6gretmenim Dog. Dr. Ilknur YESILCE ISIK’ a tesekkiir ederim.
Ayrica, lisansiistli 6grenim siiresince bilgi, birikim ve tecriibelerini bana aktaran Dog.
Dr. Samet MALDAR ve Dog¢. Dr. Yunus ATALAN O6gretmenlerime de tesekkiir
ederim.

Diinya tizerinde beni en ¢ok seven insanlar olan, her zaman yanimda olduklarini
bildigim, verdikleri emeklerin her zerresine ne kadar tesekkiir etsem az olacagini
bildigim anneme ve babama, ilk arkadaglarim olan canim kardeslerime ve esime
tesekkiirlerimi sunuyorum.

Bana desteklerini her zaman hissettigim yakin arkadaslarima, ¢alisma arkadaslarima
ve 6grencilerime tesekkiir ederim.

Sunullah KARABUDAK
AKSARAY, 2023



ICINDEKILER

TESEKKUR ..ottt ettt eeeeas i
ICINDEKILER ...........oooomiiiiceeeeeeeeeeeeeee e i
OZET ...ttt nenaes iii
ABSTRACT ...t iv
SEKILLER DIZINT ..o, v
SIMGELER VE KISALTMALAR .........c.cocooiiiiiiiiieeeeeeeeeeeeeeeeeeeee e, vi
Lo GIRIS oo, 1
2. KONVEKSLIiK KAVRAMI VE BAZI SOYUT KONVEKSLIiK
KAVRAMLARI iLE BAZI SOYUT KONVEKSLIK CESITLERI ................ 4
2.1 Konveks Kiimeler ve Konveks Fonksiyonlarla Ilgili Temel Kavramlar-........... 4
2.2 Soyut Konvekslik ile Ilgili Temel Kavramlar ..............ccccoeueveverreuerereeeneriennnn, 6
2.3 Baz1 Soyut Konvekslik Cesitler ........cuuriiiiiiiniiiieniieieceeeeeee e 7
2.4 B-konveks Kiimeler ve Fonksiyonlar............cccceevieriiiiiieniieiecieeiecie e 8
3. KESIRLI INTEGRALLER .........c..cocooviiimiiiieeeceeeeeeeee e, 11
4. HERMITE-HADAMARD ESITSIZLIKLERI ...........cccooooooiiiiiiiiece, 14
4.1 Klasik Hermite-Hadamard EsitsizliKIeri.........c..c.cooooveiiiiiiiiiiiiiiiicceiee e 14
4.2 B-konveks Fonksiyonlar I¢gin Bazi EsitsizIiKIer .............ccocooveveirueverererreennnne, 15
5. B-KONVEKS FONKSIYONLAR iCiN TRAPEZOIDAL
ESITSIZLIKLER VE KESIRLI INTEGRAL ESIiTSIiZLiKLERI ............... 17
5.1 Trapezoidal ESitsiZIIKIET..........ccceeiuiiiiiiiiiieeiiee e 17
5.2 Genellestirilmis Riemann-Liouville Kesirli integral Esitsizlikleri ................. 22
6. SONUC VE ONERILER .........c.ooooiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee e, 37
0.1 SONUGIAT.......viiiiiiieeeeeceee ettt ete e e e ve e e ereeeeareeens 37
0.2 OMICIILCT ..ot e et e e et e e e e et e e e e e e e e e e ee e, 37
KAYNAKLAR ..ot 39
OZGECMIS ..o, 42

il



YUKSEK LiSANS TEZi

B-KONVEKS FONKSIYONLAR ICIN KESIRLI INTEGRAL
ESITSIZLIKLERI

Sunullah KARABUDAK

Aksaray Universitesi
Fen Bilimleri Enstitiisii
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Damisman: Dog. Dr. ilknur YESILCE ISIK

OZET

Matematigin 6nemli alanlarindan birisi olan konveks analizin alt dallarindan birisi de
soyut konveks analizdir. Bu tezde oncelikle temel olarak konveks analiz ve soyut
konveks analiz bilgileri verilmistir. Ardindan, soyut konvekslik ¢esitleri ve tizerinde
calisilacak olan B-konvekslikten bahsedilmistir. Daha sonra ise kesirli integral
cesitleri ve {lizerinde caligilacak olan genellestirilmis Riemann-Liouville kesirli
integrali tanimlanmustir. Bu kesirli integral operatérleri ile verilen Hermite-Hadamard
esitsizliklerine de tezde yer verilmistir.

Bu tezde ana arastirma bulgulari olarak iki seye deginilecektir. Bunlardan ilki tiirevinin
mutlak degeri B-konveks olan fonksiyonlar i¢in trapezoidal bir esitsizligi kanitlamak
olacaktir. Ikincisi ise B-konveks fonksiyonlar igin genellestirilmis Riemann-Liouville
kesirli integrali kullanarak Hermite-Hadamard esitsizligini ifade etmek olacaktir.
Bunlarin yani sira, son olarak bu esitsizliklerin bazi uygulamalari verilecektir.

Anahtar Kelimeler: Konvekslik, Soyut Konvekslik, B-konvekslik, Hermite-
Hadamard Esitsizligi, Kesirli Integral, Riemann-Liouville Kesirli integrali,
Genellestirilmis Riemann-Liouville Kesirli Integrali.

Mayis, 2023; 43 sayfa

il



M.Sc. THESIS
FRACTIONAL INTEGRAL INEQUALITIES FOR B-CONVEX FUNCTIONS
Sunullah KARABUDAK

Aksaray University
Graduate School of Natural and Applied Sciences
Department of Mathematics

Supervisor: Assoc. Prof. Ilknur YESILCE ISIK

ABSTRACT

One of the subfield of convex analysis, which is one of the important areas of
mathematics, is abstract convex analysis. In this thesis, primarily convex analysis and
abstract convex analysis information are given mainly. Afterwards, abstract convexity
types and B-convexity to be studied are mentioned. Then, the fractional integral types
and the generalized Riemann-Liouville fractional integral to be studied are introduced.
Hermite-Hadamard inequalities via these fractional integral operators are also included
in the thesis.

In this thesis, two items are mentioned as the main research findings. The first would
be to prove a trapezoidal inequality for a function whose absolute value of derivative
is B-convex. The second one is to express the Hermite-Hadamard inequality using the
generalized Riemann-Liouville fractional integral for B-convex functions. Besides,
some applications of these inequalities are given finally.

Keywords: Convexity, Abstract Convexity, B-convexity, Hermite-Hadamard
Inequality, Fractional Integral, Riemann-Liouville Fractional Integral, Generalized
Riemann-Liouville Fractional Integral

May,2023; 43 pages
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SIMGELER VE KISALTMALAR

sup  supremum
max maksimum

Y Koordinatlara gére maksimum
['(a) Gamma fonksiyonu

R Reel sayilar kiimesi

R™  n boyutlu 6klid uzay1

R Reel sayilar kiimesinin kapanisi

R,  Negatif olmayan reel sayilar kiimesi
R7% {(xq, %5, ., x)|x; = 0,i = 1,2, ...,n}
v Her

[0) Bos kiime

[ Ispatin bittigini gosterir
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1. GIRIS

Insanlik tarihinin en eski bilimlerinden birisi matematiktir. Insanlarin diisiinlerine yén
veren ve onu bigimlendiren matematik, medeniyetlerin gelismesinde 6nemli olmustur.
Matematik sdzciigii, M.O. 550 yillarinda, Pisagor okulu iginde, ilk kez dile
getirilmistir. M.O. 380 yillarinda ise Platon’la literatiire girmistir. Sozciik anlami
“Ogrenilmesi gereken sey” olarak bilinir. Bu anlama gelen matematigin ilk
kullamminin ise daha eskiye dayandigi diisiiniilmektedir. Ilk olarak, Misir ve
Mezopotamya’da matematigin kullanildig1 sdylenmektedir. Zamanmi kaydetmeye
calismada, ticarette, yildizlarin konumlarinda, dogada kisacasi her yerde matematigi
kullanmiglardir. Zaman gegtikce matematigin kullanildig: alanlar giderek artmistir.
Miihendislik, tip, ekonomi, bilisim, teknoloji, sanat gibi alanlar matematikle
harmanlanarak daha da etkin bir hale gelmistir. Matematik kendi i¢inde alt bilim

dallarina ayrilarak, ¢alisma alanlar1 kendi iginde daha da spesifik hale gelmistir.

Alt ¢alisma alanlarmin en énemlilerinden birisi de konveks analizdir. Ozellikle son
zamanlarda bu alanda yapilan calismalar daha da hizlanmistir. Bu caligsmalarla,
konvekslik kavraminin hem giinliik hayattaki hem de bilimsel ¢aligmalardaki kayda
deger uygulamalarimin varlig1r 6nemini oldukga arttirmistir. Optimizasyon Teorisi [1],
Esitsizlikler Teorisi [2], Matematiksel Ekonomi [3,4], Yoneylem Arastirmasi [5] gibi
konveks analizin uygulama alanlar1 hem teorik hem de pratik olarak biiyiik bir ilgi

¢ekmektedir.

Klasik konveksligin genellestirilmesi ile soyut konvekslige gecis yapilir [6]. Bu gecis

ile elde edilen soyut konvekslik tiirlerinden birisi de B-konveksliktir [7].
U € R kiimesi i¢in V x,y € U ve B € [0, 1] olmak tizere,

pxVvyeuU (1.1)
oluyorsa U kiimesine B-konveks kiime denir [7].

C c R"™ kiimesi B-konveks kiime olmak iizere, f: C - R U {0} fonksiyonu verilsin.

f fonksiyonu; V x,y € C ve B € [0, 1] igin,

fGxVBy) < f)VBFY) (1.2)



esitsizligini sagliyorsa f fonksiyonuna B-konveks fonksiyon denir [8].

Kiime teorisi, fonksiyonlar ve ekonomi iizerine yapilan ¢aligmalarin gelistirilmesine

B-konvekslik biiyiik bir katki saglamaktadir [7,9,10,11].

Kesirli tiirev ve kesirli integral ilk olarak 17. ylizyilda ortaya ¢ikmistir ve bunlarin
gelismesinde ilk adimi1 Riemann ve Liouville atmistir [12]. Daha sonra devaminda
Hadamard kendi isminde bir kesirli integral ve tiirev tanimlamistir [13]. Son
zamanlarda ise kesirli operatorler lizerine ¢aligmalar hiz kazanmis ve pek ¢ok kesirli
operator tanimi genellestirilerek ifade edilmistir [14,15]. Bu ¢alismaya konu olacak
olan genellestirilmis Riemann-Liouville kesirli integrali bazi kesirli integrallerin bir
genellestirilmesidir ve ¢ok sayida calismaya konu olmustur [14,16,17,18,19].

Riemann-Liouville kesirli integrali asagidaki gibi tanimlanmaktadir.

fi:la,b] € R - R fonksiyonu verilsin. 0 < a < b <o , [a,b] kapali araliginda

integrallenebilen f fonksiyonu ve a > 0 i¢in,

Jo+f(x) = (@ )f (x —)* 1f(t)dt ,X > a (1.3)

seklinde tanimlanan integrale a. mertebeden sagdan Riemann-Liouville kesirli

integrali,

1
JE-f(x) = (e )j (t —x)* 7 1f (t)dt ,x<b (1.4)

seklinde tanimlanan integrale ise a. mertebeden soldan Riemann-Liouville kesirli

integrali denir [20].

Matematigin her alaninda kullanilan ve ¢ok biiyiik bir dneme sahip olan teorilerden
birisi de Esitsizlikler Teorisidir [2]. Esitsizlikler bircok matematik¢i i¢in heyecan
verici gizemleri i¢inde barindirdigindan yeni ¢alismalarda kullanimi her gegen giin
daha da artmaktadir. Jensen [21], Cauchy-Holder, Hermite-Hadamard [22,23,24],
Fejer [25] adlariyla bilinen esitsizlikler matematikte onemli yer edinmislerdir ve
bilimsel olarak kullanilan esitsizliklerin baginda gelmektedir [9,10,15,26,27]. B-

konveks fonksiyonlar icin Hermite-Hadamard esitsizligi asagidaki gibi verilmistir.



fila,b] € R, - R, B-konveks fonksiyonu verilsin. f [a,b] kapali araliginda

integrallenebilen bir fonksiyon olmak iizere,

f(a) , f(@) = f(b)

1 b 2 2
=), FOde= b (@) + G®)) - 20 @ ®) (15)

esitsizligi saglanir [8].

Tez ¢aligmamiz alti boliimden olusmaktadir. Birinci boliim giris boliimiidiir. Bu
boliimde icerik ve tez ile ilgili genel bilgiler verilmistir. Ikinci boliimde konvekslik
kavrami bunlarin soyutlastirilmasi ve bazi soyut konvekslik gesitleri verilmistir. Bu
soyut konvekslik cesitlerinden tezimizin sonu¢ ve bulgularina temel olusturan B-
konveks kiime ve fonksiyonlarin iizerinde ayrintili sekilde durulmustur. Tez
calismasinin tigiincii boliimiinde {lizerinde ¢alisilan kesirli integrallerden bahsedilerek
gerekli tanimlar verilmistir. Dordiincii boliimde Hermite-Hadamard esitsizliginin yeni
bir versiyonu ile ilgili caligmalar gerceklestirecegimizden onunla ilgili bilgiler
verilecektir. Besinci boliimde ise bizim kendi ispat ve sonuglarimiz ile bunlarin
uygulamalar1 verilecektir. Bu ispat ve sonuglar B-konveks fonksiyonlar igin
trapezoidal esitsizlikler ve kesirli integral esitsizlikleri ile bunlardan elde edilen

uygulamalardir. Tezin son bdliimiinde ise sonug ve onerilerden olusmaktadir.



2. KONVEKSLIK VE SOYUT KONVEKSLIK KAVRAMLARI iLE BAZI
SOYUT KONVEKSLIK CESITLERI

Bu boliimde ilk olarak klasik konvekslik ve soyut konvekslikle ilgili temel bilgilere
deginilecektir. Sonra soyut konvekslik ¢esitlerinden B-konvekslikle ilgili tanimlar ve

gerekli bilgiler verilecektir.

2.1 Konveks Kiimeler ve Konveks Fonksiyonlar ile lgili Temel Kavramlar

Tanmim 2.1.1 [21] C c R" ve C # @ olsun. V x,y € C ve B € [0, 1] igin
Bx+(1—-pB)yecC (2.1)

saglantyorsa C kiimesine konveks kiime denir. Baska bir deyisle C kiimesinin i¢inden
alian herhangi iki noktay1 birlestiren dogru parcasi C kiimesinin i¢inde kaliyorsa, C

kiimesine konvekstir denir. Konveks olmayan kiimelere ise konkav kiimeler denir.

(a)
(c)

(b)
(d)

Sekil 2.1 Konveks Olan ve Olmayan Kiimeler

Yukarida Sekil 2.1 de verilen (a) ve (c) kiimeleri konveks kiime iken (b) ve (d)

kiimeleri konkav kiimelerdir.



Teorem 2.1.1 [21] € < R™ kiimesi verilsin. C kiimesinin konveks kiime olmasi i¢in

gerek ve yeter sart V xq, X5, ..., X, €C, 1,02, ., Bn=0ve By + B+ 4B, =1

i¢in,

sartinin saglanmasidir.

B1x1 + Brxy + - +Ppxy €C

(2.2)

Tamim 2.1.2 [21] € < R™ kiimesi konveks kiime olsun. f: C - R U {400} fonksiyonu

verilsin. f fonksiyonu; x,y € C ve § € [0, 1] igin,

fBx+A=PB)y) <Bfx)+ A -Bf») (2.3)
esitsizligini saglayan  f fonksiyonuna  konveks fonksiyon  denir.
14 -
12 4 (x, Bf(x) + (1 — ﬁ)f(xz)) ey £ ()
(x1, f (1)) : [
i |
. |
! |
. |
! |
I 4 (x,f(/:"x1|+ (1= PB)x2)) I
| i |
2 1 I |
l : |
— e Ty
-6 -4 -2 0 2 4 6 8 10, 12 14 16
X 2

x = Bx; + (1 —PB)x;

Sekil 2.2 Konveks Fonksiyon



Sekil 2.2 de verilen fonksiyon konveks fonksiyondur. Gergekten x; ve x, noktalarinin
x = fx; + (1 —B)x, konveks kombinasyonunun fonksiyon altindaki goriintiisii
f(xy) ve f(x;) noktalarimin Bf(x;) + (1 — B)f(x,) konveks kombinasyonundan
kiigiik kalir.

Teorem 2.1.2 (Jensen Esitsizligi) [21] f: R™ —» R U {+oo} fonksiyonu verilsin. f

fonksiyonunun konveks olmasi i¢in gerek ve yeter sart

f(Brxy + Baxa + -+ +Bnxn) < Pif (x1) + Bof (x2) + -+ Buf (xn) (2.4)
esitsizliginin saglanmasidir. Burada Sy, S5, ..., S = 0 iken 5; + B, + -+ +f, = 1 dir.
2.2 Soyut Konvekslik ile ilgili Temel Kavramlar
Konvekslik kavrami temel olarak asagidaki bigimlerde soyutlastirilir.

Tanmim 2.2.1 [6] H,X kiimesi lizerinde tanimli sonlu fonksiyonlarin bir kiimesi ve

f:X - Rolsun. Eger H nin
f(x) = supth(x):x € X,h € U} (2.5)

olacak sekilde bir U alt kiimesi varsa, f fonksiyonu H ye gore soyut konvekstir ( H-

konvekstir) denir. Burada H fonksiyonlar sinifina elemanter fonksiyonlar ailesi denir.
H = @ olmasi durumunda f(x) = —oo olarak kabul edilecektir.

Bu yontemden baska “Topolojik Soyut Konvekslik” ve “Fonksiyonel Soyut

Konvekslik” isimli soyutlastirma yontemleri de vardir.

Tanim 2.2.2 (Topolojik Soyut Konvekslik) [6] X bir vektor uzay, C < X olsun.
Vm =2 tamsayist i¢in V, € R™ kiimesini alalim. Bir &,,:C™ %XV, - C

fonksiyonlar ailesi verilsin. Eger U < C igin,
(X1, i, Xy EU,Qq, ooyt € V) = D (X4, o, Xy, g, oe, Q) EU,m = 2,3, ...

U kiimesine ®,,, fonksiyonlar ailesine gore soyut konvekstir denir.



Tamm 2.2.3 (Fonksiyonel Soyut Konvekslik) [6] X bir vektor uzay, C € X ve L de
£: C — R fonksiyonlarinin bir ailesi olsun. Eger U c C olmak {izere, Vx & U noktasi
L den bir fonksiyon ile U kiimesinden ayrilabilir ise, yani 0yle bir £ € L vardir ki

£(x) > sup €(u) ise, U kiimesine L ye gore soyut konveks kiime denir.
2.3 Baz1 Soyut Konvekslik Cesitleri

Tanim 2.3.1 (s-konveks Kiime) [28] C € R" ve 0 < s < 1 olsun. Herx,y € C ve
A u = 0igin A + u® = 1 olmak tizere Ax + py € C sartlarini saglayan C kiimesine s-

konveks kiime denir.

Tanim 2.3.2 (Birinci Anlamda s-konveks Fonksiyonlar) [29] f: C € R™ — R bir
fonksiyon olsun. s € (0, 1] ve C s-konveks kiime olmak tizere V x,y € C ve A, 4 = 0,
A*+u® =1igin

fx +py) < 2f() +p°f(y) (2.6)
esitsizligini saglayan f fonksiyonuna birinci anlamda s-konveks fonksiyon denir.

Tamim 2.3.3 (ikinci Anlamda s-konveks Fonksiyonlar) [30] f:C € R™ - R bir
fonksiyon olsun. s € (0, 1] ve C konveks kiime olmak tizere V x,y € C ve A, u = 0,

A+ pu=1ig¢in
fQx +puy) S 2f(x) + 1 f(y) (2.7)
esitsizligini saglayan f fonksiyonuna ikinci anlamda s-konveks fonksiyon denir.

Tamim 2.3.4 (Ugiincii Anlamda s-konveks Fonksiyonlar) [31] f:C € R" — R bir
fonksiyon olsun. s € (0, 1] ve C s-konveks kiime olmak tizere V x,y € C ve A, u = 0,
A5+ u® =1igin

FQx + py) < BF () + 15 F(y) (2.8)

esitsizligini saglayan f fonksiyonuna ii¢iincii anlamda s-konveks fonksiyon denir.



Tanim 2.3.5 (Dordiincii Anlamda s-konveks Fonksiyonlar) [32] f:C € R" - R
bir fonksiyon olsun. s € (0, 1] ve C konveks kiime olmak iizere V x,y € C ve A, u =

0,A+u=1 igin

1 1
fx +uy) < Asf(x) + psf(y) (2.9)
esitsizligini saglayan f fonksiyonuna dordiincti anlamda s-konveks fonksiyon denir.

Tanim 2.3.6 (p-konveks Kiime) [33] C € R" ve 0 < p < 1 olsun. Herx,y € C ve
A u =0 igin AP + uP = 1 olmak tizere Ax + uy € C sartlarin1 saglayan C kiimesine

p-konveks kiime denir.

Tamm 2.3.7 (p-konveks Fonksiyonlar) [34] U € R" ve f:U — R bir fonksiyon
olsun. p € (0,1] ve U p-konveks kiime olmak tizere Vx,y € U ve A, u =0, 1P +
uP = 1igin

fx +py) < Af () + uf(y) (2.10)
esitsizligini saglayan f fonksiyonuna p-konveks fonksiyon denir.
2.4 B-konveks Kiimeler ve Fonksiyonlar

B-konvekslik de soyut konvekslik ¢esitlerinden biridir. Ekonomi lizerine uygulamalari
olan, ayrica matematiksel anlamda da bir¢ok ¢alismaya konu olmus olan B-konveks
kiimeler ve B-konveks fonksiyonlar bu boliimde ifade edilip, oérneklendirilecektir.

Ardindan da bu tezde B-konveks fonksiyonlar i¢in ¢esitli esitsizlikler ispat edilecektir.
Tanmmm 2.4.1 [7] U € R” kiimesi i¢in V x,y € U ve B € [0, 1] olmak lizere,
Bxvy€eU (2.11)

oluyorsa U kiimesine B-konveks kiime denir. Burada V koordinatlara gére maksimum

demektir.



Ornek 2.4.1U = {(x,y)| 1 < x < 3ve 2 < y < 4} € R? kiimesi B-konvekstir.

I I
OO e -

1

Sekil 2.3 U = {(x,y)| 1 < x < 3ve 2 <y < 4} kiimesi

Yukarida Sekil 2.3 ile verilen kiime B-konveks bir kiimedir. Gergekten,
V(x1,y1), (x2,y2) € U ve B € [0,1] igin

B,y V (x2,y2) = (Bx1V X2, BY1 V ¥2)
olur. Buradan

1) x;<xyisefx;Vx,=x,
Xy, Px1<xy
Bx1, Bx1 = x;
(i)  y1 <ypisefy1Vy, =y,

Y2, Byi <y
By, By1=y>

(i) x; =xy1se fxq1 Vxy = {

(V) w2 ysise vy, =

elde edilir. Dolayisiyla, kiime tlizerindeki sartlarin saglandig1 goriilmektedir. Boylece

gercekten U kiimesinin B-konveks bir kiime oldugu gdsterilmis olur.



Teorem 2.4.1 [7] U € R% olmak lizere k > 2 ve Xy, ...,x; € U olsun. By, ...,B, =0

ve max{By, ..., Bi} = 1 i¢in

k
\/,[)’l-xl- ev (212)
i=1

oluyorsa U kiimesi B-konveks kiimedir.

Tanim 2.4.2 [8] C c R™ kiimesi B-konveks kiime olsun. f:C — R U {£oo}
fonksiyonu verilsin. f fonksiyonu; V x,y € C ve B € [0, 1] i¢in,

fGxvBy) < f(x)VBFy) (2.13)
esitsizligini sagliyorsa f fonksiyonuna B-konveks fonksiyon denir.
Ornek 2.4.2 f: R, - R, f(x) = x? fonksiyonu B-konveks fonksiyondur.
Vx,y €R,vep €|0,1]i¢in,

fGevBy) = f(x)VBF) (2.14)
esitsizligi

o xVPBy=uxisef(xVPy) =x><x*VBy*=f(x)VLf(y)
o xVBy=yisef(xVpy)=p*y*<Py*<x*VBy*=fx)VEf(¥)

seklinde saglandigindan f(x) = x? fonksiyonu B-konveks fonksiyondur.

Teorem 2.4.3 (B-konveks Fonksiyonlar icin Jensen Esitsizligi) [8] U € R} ve
f:U - R, U {400} fonksiyonu verilsin. U kiimesi B-konveks kiime ve i = 1, ..., k

olmak tizere; V x; € U, B; € [0,1] ve ,rr}axk{ﬁi} = 1ig¢in
i=1,.,

k k
f (\/ﬁixi) < \/ﬁif(xi) (2.15)
i=1 i=1

esitsizligini sagliyorsa f fonksiyonu B-konveks fonksiyondur.
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3. KESIRLi INTEGRALLER

Bu boliimde tezde kullanilan bazi kesirli integral ¢esitlerinden bahsedilecektir.

Tammm 3.1 (Riemann-Liouville Kesirli integrali) [20] f:[a,b)]c R— R
fonksiyonu verilsin. 0 < a < b < oo, [a,b] kapali araliginda integrallenebilen f

fonksiyonu ve a > 0 i¢in,

14 1 * -
J&F(x) = @f (x - ()dt ,x>a (3.1)

seklinde tanimlanan integrale a. mertebeden sagdan Riemann-Liouville kesirli

integrali,

1
JE-f(x) = (e )j (t —x)* 7 1f(t)dt ,x<b (3.2)

seklinde tanimlanan integrale ise a. mertebeden soldan Riemann-Liouville kesirli

integrali denir. Burada I'(e) Gamma fonksiyonudur ve a > 0 igin,
I'(a) = j x* le*dx (3.3)
0

seklinde tanimlanir.
Riemann-Liouville kesirli integrali i¢in

Jarf GO = Jp-f(0) = f () (3.4)
olur.

Tammm 3.2 (Hadamard Kesirli integrali) [13] f:[a,b] € R - R fonksiyonu
verilsin. 0 < a < b < o, [a, b] kapali araliginda integrallenebilen f fonksiyonu ve

a > 0i¢in,

]g+f(x)=ria)fx(l —)a 1@dt ,X>a (3.5)

11



J-f(x) = %Lb (l ;)a 1f(t) ,x < b (3.6)

seklinde tanimlanan integrallere sirasiyla sag ve sol Hadamard kesirli integrali denir.

Genellestirilmis kesirli Riemann-Liouveille integral operatdriinii tanimlamak igin ilk

olarak asagidaki fonksiyonlar sinifi ifade edilecektir.

@:[0,00) = [0,0) integrallenebilir fonksiyonu, @ > 0 igin @ (r)r® artan ve f = 0

i¢cin % azalan olmak lizere,

fo th < (3.7)

Ailszg;sm , %s;sz (3.8)

<pr(2r) A, (ps(zs) , S<r (3.9)

(pr(zr)—@ gA3|r—s|(pr(zr) , %s;sz (3.10)

sartlarin1 saglasin, burada A, 4,, A3 > 0 ve r,s > 0 dir [15]. M, bu ¢ fonksiyonlar

ailesinin kiimesi olarak isaretlensin.
Tanim 3.3 (Genellestirilmis Riemann-Liouville Kesirli integrali) [15]

fila,b] c R > R ve ¢ € M fonksiyonlar1 verilsin. 0 < a < b < oo, [a,b] kapal

araliginda integrallenebilen f fonksiyonu igin
atlof (x) =f (pi )f(t)dt x>a (3.11)
a

e )_f d )f(t)dt x<b (3.12)

seklinde tanimlanan integrallere sirasiyla sag ve sol Genellestirilmis Riemann-

12



Liouville kesirli integrali denir.

Yukarida verilen (3.11) ve (3.12) de ¢(t) = t alinirsa Riemann integraline ulasilir.

Eger, (3.11) ve (3.12) esitliklerinde ¢(t) = % yazilirsa Riemann-Liouville kesirli

a
integraline, yine bu esitliklerde ¢ (t) = tk yazilirsa k-Riemann-Liouville kesirli

1
kT (a)

integraline ulagilmis olur. (3.11) ve (3.12) esitliklerinde sirasiyla

<p(t) = ﬁt(x _ t)s(xs+1 _ ts+1)a—1 (3.13)
veE
p(t) = ﬁt(t — x)S(t5t1 — xSt1)a-l (3.14)

yazilirsa Katugampola kesirli integrali elde edilir. @ (t) yerine t(x — t)*~1 yazilirsa

Conformable kesirli integraline ulasilir. (3.11) ve (3.12) esitliklerinde sirasiyla

o) =1 (10{) [log gx_jz] (3.15)
Ve
¢(®) = (10() t [log 5?2] (3.16)

yazilirsa Hadamard kesirli integrali elde edilir. Son olarak genellestirilmis Riemann-
1-a

Liouville kesirli integrallerinde ¢(t) yerine ée(_Tt) yazilirsa exponential Kernel

kesirli integrali elde edilir [15].
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4. HERMITE-HADAMARD ESITSIZLIKLERI
4.1 Klasik Hermite-Hadamard Esitsizlikleri

Konveks fonksiyonlar i¢in verilen en temel esitsizliklerden olan Hermite-Hadamard

esitsizligi agagidaki gibi ifade edilmektedir.

Tamim 4.1.1 [10] f: [a, b] € R — R konveks fonksiyonu verilsin.

b
f(a;rb)sbiaf f(x)dxsw 4.1

esitsizligine Hermite-Hadamard esitsizligi denir.

Hermite-Hadamard esitsizliginin genellestirilmeleri ve iyilestirmeleri de pek c¢ok
calismaya konu olmustur. Bu iyilestirilme ¢alismalardan birine 6rnek olarak asagidaki
teorem verilebilir. Bu esitsizligi ifade edebilmek i¢in dncelikle (4.2) denkligini veren

lemma verilmelidir.

Lemma 4.1.1 [26] f:I € R — R diferensellenebilir fonksiyon, a,b €1 ve a < b

olsun. f' fonksiyonu [a, b] kapal1 araliginda integrallenebilirse

f@+f®) 1
2 b—a

b _ 1
j FOO)dx = bTaf (1=20f'(ta+ (1— Ob)dt  (4.2)
a 0

esitligi saglanir.
Bu lemma yardimui ile agagidaki trapezoid esitsizligin verilmesi miimkiindiir.

Teorem 4.1.1 [26] f:1 € R - R diferensellenebilir fonksiyon, a,b € I ve a < b
olsun. |f'| fonksiyonu [a, b] kapali araliginda konveks bir fonksiyon ise

f@+f®) 1
2 b—a

b —
< @I+1f BN (43)

fbf(x)dx

esitsizligi saglanir.
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4.2 B-konveks Fonksiyonlar i¢cin Baz1 Esitsizlikler

Bu bolimde B-konveks fonksiyonlar i¢cin Hermite-Hadamard esitsizligi ve bu

esitsizligin Riemann-Liouville kesirli integrali ile gdsterilen formu ifade edilecektir.

Teorem 4.2.1 (B-konveks Fonksiyonlar icin Hermite-Hadamard Esitsizlikleri)
[10] f:[a, b] € R, — R, B-konveks fonksiyonu verilsin. f, [a, b] kapali araliginda

integrallenebilen bir fonksiyon olmak iizere,

- fla) @)= f(b)
— | r@de< b (@) + F®)°) - 2ar @ ®)

b= D) ;@ < f®)

esitsizligi saglanir.

B-konveks fonksiyonlar i¢cin Riemann-Liouville kesirli integrali ile ifade edilen

Hermite-Hadamard esitsizlikleri ise asagidaki teoremlerde verilmektedir.

Teorem 4.2.2 [13] f:[a,b] € R, - R, verilsin. f, [a,b] kapali araliginda B-

konveks ve integrallenebilen bir fonksiyon olmak iizere,

( f(@)(® - a)® 1 < f(a)
T(a+1) © = F)
(@ + Df@FB) b - a)®
r 2)(F(0)"
J%F(b) <4 @+ W) (4.5)
b*(f(b) — f(a)) a _f(a)
+ - , TS <1
F(a +2)(f(b)) b~ f(b)
(b —a)*f(b)(aa + b) , 0<f@ _a
L bl (a + 2) fb) b

esitsizligi saglanir.
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Teorem 4.2.3 [13] f:[a, b] c R, — R, verilsin. f [a, b] kapali araliginda B-konveks

ve integrallenebilen bir fonksiyon olmak iizere,

Jo-f(a) <1

esitsizligi saglanir.

( f@b—-a)
Na+1)

b —a)*(£ (b)) (ab + )

, 1

bT(a + 2)(F(b))”
L (bf @ - af ()"
bT(a + 2)(f(b))*
(b —a)*f(b)(ab + a)
\ bI'(a + 2)

16
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5. B-BKONVEKS FONKSIYONLAR iCIN TRAPEZOIDAL ESITSIZLIKLER
VE KESIRLI INTEGRAL ESITSIZLIKLERI

Bu boliimde, bu tezde elde edilen yeni esitsizlikler ve bu esitsizlikler ile ilgili bazi

sonuglar verilecektir.

Iki bashik altinda ifade edilecek olan esitsizliklerden ilk kisimdakiler Hermite-
Hadamard esitsizliklerin bir gesit iyilestirilmesi olan trapozoidal bir esitsizligin B-
konveks fonksiyonlar i¢in bir bi¢iminin kanitlanmas1 olacaktir. ikinci kisimda ise B-
konveks fonksiyonlar i¢in genellestirilmis Riemann-Liouville kesirli integralleri ile
verilen Hermite-Hadamard esitsizlikleri ve bunlarin sonuglar1 olarak klasik ve

Riemann-Liouville kesirli integrali iceren yeni esitsizlikler ispat edilecektir.

5.1 Trapezoidal Esitsizlikler

Lemma 5.1.1 f:] € R - R diferansiyellenebilir bir fonksiyon, a,b €1 ve a <b

olsun. Eger f' fonksiyonu [a, b] kapali araliginda integrallenebilir ise

1 b
F@ - 5— | Feodx

1
= af (@) ~ 2 | ® = maxta, a0)f Graxta, par  (51)
0

esitligi saglanir.

Ispat f’ fonksiyonu [a, b] kapali arahiginda integrallenebilir oldugundan, A € [0,1]

icin agagidaki integrali ele alabiliriz.
1
f (b — max{a, Ab})f' (max{a, Ab})dA
0
7 1
= f (b—a)f'(a)dr + L (b —Ab)f'(Ab)dA
0 b
=20 -Of @ - @+ Fabda
b b a
— 2 -af @ -2 @+ | 'F (52)
b b b, '

olur. Buradan
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fl(b — max{a, Ab}) f' (max{a, Ab})dA
0

a

b— 1P
=E(b—a)f’(a)—Taf(a)+Efaf(x)dx (5.3)

b—a 1 (P
@ = | Feoax

=2(b-f (@) - f (b — max{a, b)) f (max{a, b})dA (5.4)
0

1 b
f@-5— | fedx

1
= af'(a) - & f (b — max{a, Ab)f' (max{a, Ab)dA  (5.5)
0

elde edilir. m

Teorem 5.1.1 f:1 € R, — R fonksiyonu diferansiyellenebilir bir fonksiyon olsun.
a,b € I ve a < b olmak iizere, eger |f'| fonksiyonu [a, b] kapali araliginda B-konveks

bir fonksiyon ise

If(@) 5= J) f)dx| <

( 3a+b | ,, < IF (@]
2 If (a)l ) 1 —_ |f’(b)|
(6ab-9a%)|r" @| (' ®))*+p?(r' )]’
6(b-a)(If' (b))
) 2(| ¢! 201 2(| ¢! 3 ’ (56)

4 32 @I @) -b2(f (@)]) a_ @l
6(b=a)(f' ()2 SCETHO]

sabf' (@)||f'®)|+3b%(|f' @)])*+(a®+ab+b2)(|f (b)])* 0 < @l _a

\ 6b|f’(b)| G

esitsizligi saglanir.

Ispat f diferansiyellenebilir ve f’ fonksiyonu [a, b] kapal1 araliginda integrallenebilir

oldugundan Lemma 5.1.1 saglanir. Buna gore
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1 b
@ -5 [ rooas

1
< al|f'(a)| +bf—af |b — max{a, Ab}||f' (max{a, Ab})|dA

IA

b 1
alf' @+ 5—— | b= max{a, bl lmax(f'(@), Af ()]dA
0

olur. Burada

b 1
alf' (@) + mj |b — max{a, Ab}||max{f’(a), Af'(b)}ldA  (5.7)
0

ifadesindeki integralinin ¢6ziimii i¢in agagidaki i durum incelenmelidir.

(i)1< o )l olmasi durumunda

b 1
alf' @ +5—— | 1b ~ max(a b}l Imax{f' (@), A (B)}ld
b (b !
=aIf’(a)I—m(f Ib—aIIf’(a)Id/1+LIb—/lbllf’(a)ld/1>
0 —

b b
= alf’ (a)|+b—( (b - alf’ <a>|+<b—5—a+ >|f (a>|)

— @1+ 5 (- ol @i g @+ S @)
P @I+ (5 6 - al @1+ 2 @)
= alf @] + alf @] + 752 I (@)

SR (58)

sonucu elde edilir.
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|’ (@]
<
(u) < ol < 1lise

b 1
alf @]+ = | 1b = maxfa, b}l Imax{f’ (@), Af ()}ld2

'@

= alf'(@)| +—<f b — allf'(@)dA + ff b 2611 (@)]dA

1
+ jf,(a)lb —Ablllf’(b)ldl)

O)

1@
O

—a|f(a)|+—<f ® - lf (a)|dz+f (b — Ab)f"(a)dA

1
Ty Jf,(a)(b — Ab)Af'(b)dA

HO)

b
= alf’ (a)|+—< (b - a)lf' (@]

blf (a)l b(lf (a)l)z a2 ’
(|f'(b)| 20 ()D? +ﬁ> If'(a)l

b b bUf'@D>  bUf @D,
(5 RO 3(If’(b)|)3> 4 (b)')

o , b2(If"(@)])? b2(If (@)])?
= aff @l +af DI+ G =37 o® ~ 26 = 007 G2
@~ 2ab ¥ I @)
20— Yoo PG aro)
b2(If (@)])?

TR ITAODE

2620 @DAF' B = B0 @D | @ =2ab
20— DA BID? 26—a) @

b2 202(f @D = 362 @DAIF b))
Teo—a DT EPAOIE

 2ab - 342 b? 3b2(If @D21F'®)] = bA(IF (@]
PR R e R 606 — O (f B))?

= 2alf'(a)| +

20



_ (6ab —9a®)If" (@) (BIN* + b*(If" (b))’
6(b —a)(If"(b))?
N 3b2(If" (@D?If' ()| = b2(If"(@))®
6(b —a)(If'(B)])?

(5.9)

bulunur.

I’ (a)I
| (b)l

(iii) 0 < = 1ken

b 1
alf' @ +5—— | 1b ~ max{a b}l Imax(f'(@), Af (B)}ld

f() a

b
=a|f,(a)|+m<f0 ()lb_a”f (a)|d/1+f,()

O

|b — allAf"(b)|dA

1
+ .L |b — Ab||Af'(b)|dA

@ a

b b
=a|f’(a)|+m<f”)(b— DI @ldA+ [ (b= AU B

f’(b)

1
+ja (b — AB)ALF' (b)|dA

_ (f"(@D?
= alf’ (a>|+—(< -~ gyt b a DL IF o)
(f' (@D? a* a’\,
EGROE rro f(b)—(——ﬁ)v (b)|>
o b(If'(@? a?If'()| bUf'(@D*  b*If' (b))
=df @O == Y T T 2w T e —a)
(3a*b — 2a3)|f'(b)|
B 6b(b — a)
o b(If'(@?* (3a*b —3a®+ b* —3a?b + 2a3)|f'(b)|

b(f'(@D? N (1% = a®)If' )
2|f"(b)] 6b(b — a)

b(If'(@D? N (a® + ab + b*)|f' ()]
2lf" ()l 6b

= alf' (@)l +

=alf'(a)| +
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_ 6ablf"(@)IIf" ()| + 3b*(If"(@))* + (a* + ab + b*)(If"(b))*

(5.10)
6b|f'(b)I
olur. Buradan
1 b
If (@) - Efa fodx| <
[ 3a+b < '@
(6ab—9a2)|f (a)l(lf'cb>|)2+b2(|f'<b>|)3
6(b-a)(If' (b)])?
5.11
302(|1' @) °)f' )| -b*(f' @)’ a _ |f'@)| (5.11)
+ 7 y < 7 <1
6(b-a)(If' (b)])? b= If'(b)]
sab|f'(@)||f' ®)|+3%(|f'@)])° +(a?+ab+b2)(|f'(b)])° 0 <@l _a
\ 6b|f'(b)| R V)|

esitsizligi elde edilir. m
5.2 Genellestirilmis Riemann-Liouville Kesirli Integral Esitsizlikleri

Teorem 5.2.1 f: [a,b] € R, — R, B-konveks fonksiyonu ve ¢ € M integrallenebilir
fonksiyonu verilsin. 0 <a <b <o  olmak {lizere [a,b] kapali araliginda

integrallenebilen f fonksiyonu i¢in

atlof(b) <
r e p© 1@
fla J, dt <25
0 b(1-75) o0
f(a)f (1 f(ag) dt + f(b)f Tdt
JAC)
) b 1-L2 5.12
—¥f0( f(b))(p(t)dt ;Eg <1 (5.12)
(af (b)-bf (@) . (p(b—a) b-a ¢(t)
2bf(b) b— +f(b) fO t dt
f(b) b-a f(a)
<1z
— [, e®)dt 0 <25 <
esitsizligi saglanir.
Ispat f fonksiyonu B-konveks fonksiyon oldugundan;
a,b€R,,a<bvep €[0,1]i¢in
f (max{a, pb}) < max{f(a),Bf(b)} (5.13)
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esitsizligi saglanir. Bu esitsizligin her iki tarafi

@ (b — max{a, fb})
b — max{a, fb}

(5.14)

carpilarak [0, 1] araliginda integrallenirse

to(b — max{a, pb})
b — max{a, fb} f(max{a, Bb})dp

0

<j @ (b — max{a, fb})
~Jo

b — max{a, Bb} max{f (a), Bf (b)}dp (5.15)

esitsizligi elde edilir. Esitsizligin sol tarafi

1 _
[ Pb — maxta, Bb)) o vta, po}ap

b — max{a, fb}

bp(b —a) L (b~ pb)
- | f(a)dﬁ+fg b [(B)ap

af(a) <P(b—a) 1

b—a ba

_af(a) p(b—a) 1
== "p=a tplalef®) (5.16)

biciminde elde edilir. Esitsizligin sag tarafinda bulunan

Yo (b — max{a, fb})
o b—max{a, b}

max{f (a), Bf (b)}dp (5.17)
integralinin ¢6ziimii i¢in asagidaki i durum incelenir.

(1< % olmasi durumunda

1o - ,Bb
[ ol = maxta, b)) o r(@), 81 B)dp
0

b — max{a, Bb}
_ [Peb—a) L o(b — Bb)
- [ F@ap + |, S r@as
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_af(@ eb—a)  fla) (")
b Tbh-a Tp ), &

_af(@ eb—a)  fla) ("e()
b Tbha TTp ), &

(5.18)

bulunur. Buradan

af (a) <P(b (a) pb—a) f(a) b= “<P()
b b — (a+I‘Pf(b)) < b—a

b—-a
atlof(b) < f(a )] (p( ) (5.19)

elde edilir.

a_fl@
(u) f()<11se

jl ¢ (b — max{a, Bb})
0

b — max{a, fb} max{f(a), Bf(b)}dpB

bfp(b— a) 7) (b — Bb) ' @(b - Bb)
fo f(a)dp + f o @+ | G b s

_y@ 9b-a) f@ (" 9@ fO) (m»)go(t)

— (b —1t)dt
_ a 2
b b—a b b(l_;ébi) t b= J,

_of@ ¢b-a) f@) " o®  fb) fb(l-ii—ii) 0@
) t t

b b— b f(a)
a b(1—m

) 05w)

bz ), @(t)dt (5.20)
bulunur. Buradan
fla) (b
- ba (pb_ +- (a+I<Pf(b))

b b—a b b(1—f(—“)) t

fb)

_ b—a
Saf(a)_q)(b a)+f(a) e(t) it

fo) (20T e . F®) (07w
+ —d
b J, t bz J,

p(t)dt
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) 7)) (t)

Tt

() < f(@) f dt + f(b) f

%)

f(a)

_f® 0w

b p(t)dt (5.21)

0

elde edilir.

i) 0 < F@ @
(lu)OSf(b)<b1ken

Ly(h — ,Bb

5 o(b—
f@)dp + fm“”; z a“) BF®IAE + |,

fb)

Yo(b - Bb)
b— Bb

b b —
f “ ”’)( ) BF(B)dB
0

_(@)’ ob-a) a*f®) ¢lb=a) (f@)" ¢b-a)
— f(b) b—a 2b?2 b—a 2f(b) b—a

IO a<p(t)
bz J,
_(@)’ gb-a) a*f®) ¢lb-a) (f@)" ¢b-a)
— f(b) b—a 2b? b—a 2f(b) b—a
b—a
IO f ¢(t) f( )

(b —t)dt

p(t)dt
0

2(f(b)) +b*(f(@)" pb—a) fb) b“qa(t)

2b%f (b) b—a b J, ¢
b—
! 152) o(t)dt (5.22)
0

bulunur. Buradan

fla) o(b
aba (pb_ + - (a"’I(Pf(b))

_CUO) +h(f@)” g -a) fO) (@)
2b2 b—a b J, t

fb)
b2

q)(t)dt (5.23)

0
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L (af® —bf (@)’ <p(b — ) b- acp( )
b
— f—; ) p(t)dt (5.24)
0
elde edilir. Sonug olarak
a+1¢f(b) <
r ba () 1@
f(a) fo dt , 1< 0
o(t) b(1- LZ))q)(t)
f(a)f rayE=dt+ f(b) [ T ER e
b(1-75) t :
{ (b)f (1 fébg) ()dt a_f@ <1 (5.25)
¢ s = 1)
(af )-bf(@)* p(b-a) b- a<p(t>
2bf(b) b-a +f(b)f dt
f(b) rb—a fla) _a
L —Tfo (p(t)dt ,0Sm<;

esitsizligi elde edilir. m

Sonug 5.2.1 Teorem 5.2.1 kosuslari altinda ¢(t) = t alinirsa (4.4) ile ifade edilen B-

konveks fonksiyonlar i¢in Hermite-Hadamard esitsizligi elde edilir.

Ispat Gergekten; (5.12) esitsizliginde ,+I,f (b) = ﬁ f; f(t)dt olur ve esitsizligin

sag kismi i¢in ise,

(1< fE 3 olmasi durumunda

b—a b—a
f(a )f wdt_f(a)f dt
0
= f(a)(b —a) (5.26)

elde edilir.
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@ _ 1@
(ll) f( ) < 1ise

f()fl_m) ©, +f(b)f

fb)

p(1-L&@
(b) (t) _f) f( f(b))(p(t)dt

b-a b) b ( (b))
_f()f dt+f(b)f f()d_]% f()tdt

1__

F(b) 0

bf(@(f(b) — f(@)
f(b)

D B)(fB) - f(@)
2b(f (b))

b(f(@)” _ _ bf(b)
5y~ HYf ) —bf(@ ===+ bf(a)

= (b -a)f(a) -

+b(f(b) - f(@)

= bf(a) — af(a) — bf (a) +
b(f@)’
2/ (b)

_ 2b(f(@)" +2b(f ()" — 2af (a)f (b) = b(F ()"
2f ()

_ b(f(@ +£(®)° — 2af (@)f (b)
2f (b)

(5.27)

elde edilir.

< f@ <%
(iii) 0 < o) b1ken

(af(b) - bf(a)) (P(b —a) b- a(p( ) F(b) (b
2bf (b) b— +f(b)f —j p(t)dt

_(af(®) - bf@)° b=a  f£(b)
= 257 (b) +f(b)j dt ——— tdt

b 0
_(af®) - bf (@) (b — a)?f(b)
- 2bf(b) +b-afb) - ——p——

_(af ) = bf(@)" +2b(b — )(F(B))" — (b — a)2(F(B))*
B 2bf (b)

_D2(f(B))* - 2abf(@f (b) + b*(f (@)’
B 2bf (b)
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_b(f@+f®)" —2af (@f ()

27 (0) (5.28)
elde edilir. Buradan
(@ , F@ > )
— j fde < b ((F@)’ . ((;”(_bl))f)(;)Zaf(a)f(b) o f)

esitsizligi saglanir. m

Sonu¢ 5.2.2 Teorem 5.2.1 de ¢(t) = % almirsa B-konveks fonksiyonlar i¢in

Riemann-Liouville kesirli integrali igeren asagidaki Hermite-Hadamard tipli esitsizlik
elde edilir.

( f@®-a)“ 1< fla)
| I'(a+1) ’ f(b)
(a+Df(@(f (1) -a)*+b%(f(b)—f (@) a _ f(@
Jorf(b) < 4 r@r D))" IS ) <1 (5.29)
l(af(b)—bf(a))z(b—a)“‘l (-0 ®)@ath) o _f@ _a
2bf (D) () br(a+2) ! f(B) " b
Ispat (i) 1 < i Eb; olmas1 durumunda
b—a b—a a 1
@(t)
f@ )] T2t =f(a )j
_ f@)(® - a)“ (5.30)
M'(a+1) '

elde edilir.

f(a)
(u) ®) < 1ise

b b b(l_LZ))
f()f f()(p()d+f(b)f e, f(b)fo " (0t

t
(b)

f(b) t*” 1 _f) f(b) t%
—f()j mr(a) +f(b)] ot j st
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_f@G -0 @b ()~ f@)"  fBB(fB) - f@)°

M(a+1) Ma + D))" [(a+ ()"
_FBBEL(FB) - f(@) "
b(a + DL@)(Fb)™""
_ @+ DF@(f(0)"“ (b — )% + b(f(b) - f(@)“" (531)
['(a+2)(f())"
elde edilir.

(iii) 0 < ;Ebi 2 iken

(af ) = bf(@)" (b -a) b=ap(t)  f(b) [P
2570h) 5 +f(b)f —dt - f p(t)dt

_(f ) -bf@) (-

. b—a (x 1 f(b) b—a ta
2B G-ar@ (b)f ) f RO

_(af ) - bf (@) (b — @) LfO)b—a)®  fb)(b— a)

2bf(b)I'(a) Fla+1)  bla+ DI(a)

_(af(b) - bf(a))z(b —a)* ! N (@ +Dbf(b)(b —a)* — af (b)(b — a)**!
B 2bf(b)I'(a) b(a + DI'(a)

_(af®) = bf@) (b —a)** (b —a)*f(b)(aa + b)

= 2bf (D) () T e+ 2 (5:32)

elde edilir. Buradan

( f@®-a)“ 1 <@
| I'(a+1) - f(b)
o (@+1)f@(f ()" (b-a)*+b¥(fF ()~ (@) """ g < f@
JEfb) <4 ) e  E<lDy (s33)
L(af(b)—bf(a))z(b—a)“‘l b-a)*f®)(aatb) . f(a) <
2bf(b)T(a) bl (a+2) — fp)

esitsizligi saglanir. m
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Teorem 5.2.2 f: [a, b] € R, - R, B-konveks fonksiyonu ve ¢ € M integrallenebilir

fonksiyonu verilsin. 0 <a <b <o  olmak {lizere [a,b] kapali araliginda

integrallenebilen f fonksiyonu i¢in

p-Ipf(a) <
r f@f) 2 ar 1< %
- (t) () ©
a
f(a)fﬂb) (p dt + b ﬁ;f(a) a(pt dt
1 f(b)
b
& )fbf(a) . ® e(t)dt ]{EZ; <1
f(b)
af(b) rb—a o(t) f) (b-a < f@
. o Tdt+= o)) T eadt 0 <25 <

esitsizligi saglanir.
Ispat f B-konveks fonksiyon oldugundan;
a,b € R,,a <bvep €[0,1]icin
f(max{a, pb}) < max{f(a), Bf (b)}
esitsizligi saglanir. Bu esitsizligin her iki tarafi

o(Bb —a)
Bb—a

carpilarak tanimli oldugu [%, 1] araliginda f ya gore integrallenirse

1 b —
"’('B—;)max{f(a).ﬁf(b)}dﬁ

Bb Bb —

Yo(Bb —a
[ 2= pmaxtaprap < ||
b a b
esitsizligi elde edilir. (5.37) esitsizligin sol tarafi

QB — @) 4 oaxia, gb})dp = f")(ﬁ D ¢ (pbydp

=7 L —(pgt__aa) F(0)dt

Yo(Bb - a)
a Bb—a
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(5.34)

(5.35)

(5.36)

(5.37)



1
= E (b‘Igof(a))
bulunur. (5.37) esitsizligin sag tarafinda bulunan

1 b —
2= mantf @, B ()

integralinin ¢6ziimii i¢in ise asagidaki tic durum incelenir.

(1< % olmasi durumunda

Lo(Bb - a)
s pb-a

<p(ﬁ—)

max{(f(a), B (b)}dB = j f(@dp

f(a) fb ‘o)
= dt

bulunur. Buradan

1 b—a
E(b of (a ))_f(a) 0 (pit)dt
b—a
sl f (@) < f(a) j v
elde edilir.
(u) - %< 1 ise
1 b —
[, B = maxts @, b ()
763 0 (8b — a) 1 o(Bb—a)
= | r@dp + |, B b

fb)

bfl@_, b-a
:f(a)ff(b) <P(t)dt+fl§l2’) - @(t+ a)dt

fb)
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(5.39)

(5.40)

(5.41)

(5.42)



_f@ fl’%)—“so(t) afB) (70 9©

b? Jor@_, t
f®)

f(b)
+752

b—a
jm_a p(t)dt (5.43)
f(b)

bulunur. Buradan

bf(a)
1 fl@) (Fo~ <p(t) af(b) IO
E(,,_I(,,f(a))s 5 fo ——dt+—3 by e dt

AQ)

b2 Jrr@_, v(t)dt
Fb)
b b—a b b—
-1, (@) < F(@) f - A “flf)m_a"’f)dwf o RCr
f(b) f(b)

elde edilir.

(iii) 0 < ;‘Ebi 2 iken

1 b —
} “”g’; =D ax(f (@), B ()}dp

_ (te(Bb—-a)
=) T

b-a
= flgl;) i (pgt) (t+ a)dt

_a® (e )
=T ) T e ‘ot (5.44)

bulunur. Buradan

b—a
(b Iof(@) < f (b) oW 4 S zgl:) p(t)dt (5.45)
0

t 0

b—a
lof@ < lfb) [

b b—-a
d +f;)fo o(t)dt (5.46)
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elde edilir. Sonug olarak

b‘I(pf(a) <
( b-a o) f@
f(a J, —dt 1< o)
bﬂa o(t b o(t
f( )ff(b) ()dt+af()f ()dt
) b e ¢ (5.47)
f(b)f br_, @()dt <@y
0) f(b)
af(b) rb-a o) f®) (b-a f@ _a
\ —J, T dt+==f) e®adt ,Osf(b)<b

esitsizligi elde edilir. m

Sonug 5.2.3 Teorem 5.2.2 de ¢(t) = t alinirsa B-konveks fonksiyonlar i¢in asagidaki
esitsizlik elde edilir.

f(a)
< 12
fla) ST
1 b b((F@)*+(F®))*)-2af (@)f (b) a _ f@
— t)dt < a 5.48
b-a fa foydt < 2(b-a)f(b) "b = f(b) N ( )
l(bz—az)ﬂb) 0<f@_ 2
2b f(b) b

Ispat Teorem 5.2.2°deki esitsizlikte ilk olarak

(i)1< < L@ (Imasi durumu incelendiginde,

f()
b—-a b—-a
¢(t)
f@  TRde=r@]| a
0
=f(a)(b—a) (5.49)

elde edilir.
(u) < 1@ 1 olmasi durumunda i ise,

f(b)

—dt t)dt
b bf@_, 't b bf(a)_a(p()
fb) f(b)

bi(a) b-a
(@) f )~ q)(t) O (b) e(t) WAQ (b)
0
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b bf(a) b Jpfla_
ONM ON

L@_a b—a b—a
= f(a) f a4 af () dt fb) tdt
0

_ bf(a) a(b—a)f(b) af(b) (bf(a) (b —a)*f(b)
_f(a)(f(b)_a>+ b b (f(b)_a>+T
_f®) (bf@ Y’
2b \ f(b)
_b(f@)’ (b® — a®)f (b) a?f(b) b(f(@)”
=~f) —af(a) + o5 —af(@) +——- 2700) +af (a)
_a’f(b)
2b
bf(b) b ?
_ fz( ) (2%))) _af@
_b(f@+ f(bz);(b; 2af (a)f (b) (5:50)
elde edilir.
(iii) 0 < % <Ziken
af(b) (P  fb) ("¢
5 L . dt+Tj0 p(t)dt
B a (b) b—a @ b—a
= b J; dt + b fo tdt
_ab-a)f®) G- a)*f(b)
B b 2b
_ (b —a*)f(b)
= - (5.51)
elde edilir. Buradan
f@
|( f(a) 1< o
1 b b((f(@)*+(r1)°)-2af @ ®) a_ f@
ol MO OLIES By ssim<1 (552
(b%-a?)f(b) g<f@ _a
2b T T f) b

esitsizligi saglanir. m
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Sonug 5.2.4 Teorem 5.2.2 kosullar1 altinda ¢(t) = ﬁ alinirsa (4.6) ile ifade edilen

B-konveks fonksiyonlar i¢cin Riemann-Liouville kesirli integrali ile ifade edilen

Hermite-Hadamard esitsizligi elde edilir.

Ispat Gergekten; (5.34) esitsizliginde - of (@) = ﬁ f: f(t)dt ve esitsizligin sag

kismi igin ise,

(1< < 2@ (imasi durumunda

i
f(a )jb - fa )jb Ty
r f—(I‘fZibJ:l‘;)a (5.53)
elde edilir.
(i) §<f8<1ise
f(a) f()%_a¢§t) dt + aflfb) ;l_agait) dt +f§)b) L@_a(p(t)dt

fb) f(b)

f(b) -a %= 1 af(b) b—a ta—l f(b) b—a te
=/ (a)f I'(a) dt+ b bf(a) o (@) dt+ b bf(a) (@)
_f (@) (bf (@) — af ()" N af ()b —a)*  af(b)(bf(a) - af )"

(f(0)T(a + 1) br'(a + 1) b(f(0) T(a + 1)

fD)b— ) fb)(bf (a) — af (b))
b(a + DI'(a) b(a + 1)(f(5)T(a)

_ (= (f ()" (@b +a) + (bf (a) — af (b))
br(a + 2)(F(1))"

a+1

a+1

(5.54)

elde edilir.
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(iii) 0 < ;Eai 2 iken

b—a b-a
af(b)f <p(t)dt+f§9b)f o(0)dt

af(b)]b ata- 1dt+f()jba t% it

I'(a)

_af(b)(b—a)” N fB)(b — a)***
 bl(a+1) (a + 1)bT'(a)

_ala+ Db - a)*f(b) + alb — )" f(b)

bI'(a + 2)

_(b=a)*f(b)(ab + a)
B bl (a + 2)

elde edilir. Buradan

( fl@(-a)*
| I'(a+1)
b-a)*(F ()" (ab+a)+(bf (@)-af (b))
a_ <
Jp-f(@) = br(a+2)(f(b))"
(b-a)%f (b)(ab+a)
bI'(a+2)

a+1

esitsizligi saglanir. m
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6. SONUC VE ONERILER

6.1 Sonuclar

Bu tez calismasinda B-konveks fonksiyonlar icin gegerli, yeni bir esitsizlik elde
edilmistir. Bunun ig¢in klasik konvekslikte var olan bir lemmanin B-konveks
fonksiyonlardaki karsiligi bulunmustur. (Lemma 5.1.1) Daha sonra ise elde edilen bu
lemma yardimiyla trapezoidal bir esitsizlik elde edilmistir. (Teorem 5.1.1)

Hermite-Hadamard esitsizliklerinin  Genellestirilmis Riemann-Liouville kesirli
integralleri iceren durumu B-konveks fonksiyonlar i¢in (Teorem 5.2.1) ispat
edilmistir. Bu esitsizlik genellestirilmis sag Riemann-Liouville kesirli integraline
aittir. Elde edilen bu esitsizlikten ortaya c¢ikan ve esitsizligin gercekten bir
genellestirme oldugunun da kanit1 halinde olan sonuglar ise Sonug 5.2.1 ve Sonug 5.2.2
ile verilmistir. Ilk olarak, Sonu¢ 5.2.1 ile B-konveks fonksiyonlar icin Hermite-
Hadamard esitsizliginin elde edildigi gosterilir. Sonu¢ 5.2.2°de ise B-konveks
fonksiyonlar i¢in Riemann-Liouville kesirli integrali iceren yeni bir Hermite-
Hadamard esitsizligi elde edilmistir. Ayni sekilde, Hermite-Hadamard esitsizliginin
sol Genellestirilmis Riemann-Liouville kesirli integralini i¢ceren ikinci formu Teorem
5.2.2 ile ifade edilmistir. Elde edilen bu esitsizlikten ortaya ¢ikan sonuglar Sonug 5.2.3
ve Sonu¢ 5.2.4 ile verilmistir. Bulunan 6zel sonuglardan ilki Sonug¢ 5.2.3°de
bahsedilen, B-konveks fonksiyonlar i¢in Riemann-Liouville kesirli integrali iceren
Hermite-Hadamard tipli yeni bir esitsizliktir. Sonug 5.2.4 ise B-konveks fonksiyonlar

icin Hermite-Hadamard tipli yeni bir esitsizlik icermektedir.
6.2 Oneriler

Bu tezde temel alinan ve fonksiyonlar i¢in bir integral esitlik veren temel lemma farkl
durumlarda da elde edilebilir. Bununla birlikte de ortaya ¢ikan trapezodial esitsizligin

baska sonuglara evrildigi goriilecektir.

Genelestirilmis kesirli Riemann-Liouville kesirli integrali pek ¢ok kesirli integralin bir
genellemesidir. Tezde birkag durum incelenerek bununla ilgili caligmalar ifade
edilmistir. Ancak, bu genellestirilmis kesirli integralde kullanilan ¢ fonksiyonu yerine
tanimdan da gorildiigii iizere farkli ve yeni fonksiyonlar yazilarak baska kesirli
integraller ve esitsizlikler elde edilebilir. Boylece, B-konveks fonksiyonlar i¢in yeni

kesirli integraller iceren esitsizlikler elde edilebilir. Ayrica elde edilmis daha 6nceki
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sonugclar ile cakistig1 da gosterilerek esitsizliklerin dogrulugu kanitlanabilir.

Tezdeki bulgular B-konveks fonksiyonlar i¢in iiretilmistir. Elde edilen tiim bu veriler
bu konuda yeni ve popiiler bir diger soyut konvekslik c¢esidi olan B'-konveks
fonksiyonlar iginde caligilabilir. Bununla birlikte, bu tarzda ¢alismalar daha pek ¢ok

soyut konveks fonskiyonlar i¢in genellestirilebilir.
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