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Béliim 1
GIRIS

Bu tezde caligacagimiz temel nesneler niimerik yarigruplardir. nq,no,...,n; arala-
rinda asal olmak iizere,

b
SF— <n17n27"'7nb> = {Zainiuai € ZZO}

bir niimerik yarigrup ve
kS]] = K[[t°]s € S]] = K[[t™, - - - "] < K[[]]

ise S niimerik yarigrubuna kargilik gelen yerel halkadir. Bir (R, m) yerel halkasinin
Hilbert fonksiyonu, o halkanin ilgili dereceli halkasinin, bir bagka degisle

grm(R) = R/m @ m/m*> @ m?/m* & ..

dereceli halkasinin Hilbert fonksiyonudur. Bir yarigrubun diizenlilik indeksi ile

grm (E[[t", "2, - - t™]]) halkasinin Hilbert fonksiyonunun n; degerine esit olmaya
bagladig1 noktay1 kastediyoruz ve i(.S) ile gosteriyoruz. Benzer bi¢imde, bir (R, m) ye-
rel halkasinin diizenlilik indeksi ile de gr,,(R) halkasinin Hilbert fonksiyonunun halka-
nin kathligina egit olmaya bagladigi noktay1 tanimliyoruz ve i( R) ile gosteriyoruz. Do-
layisiyla, S = (nq,ng, ..., n) yarigrunun diizenlilik indeksi veya R = k[[t",--- ,t"™]]
halkasinin diizenlilik indeksi ayni1 degismezi gostermektedir.

Soru. Arf kapanisi ayni olan halkalarin diizenlilik indekslerine iliskin Arslan ve Sertoz
tarafindan one siiriilen ve diizenlilik indeksinin tekillligin bir 6l¢iisii olarak degerlen-
dirilmesi fikrine dayanan saniya odaklaniyoruz:

2. boliimde tezde kullanacagimiz temel cebirsel altyapiyr verecegiz. Dereceli halka,
Hilbert fonksiyonu, Cohen-Macaulay, Gorenstein ve tam kesigim halkas1 gibi kulla-

nacagimiz temel kavramlar: tanimliyoruz.

3. bolimde niimerik yarigruplar ile ilgili temel tanimlar1 ve literatiirii verecegiz.
Apery kiimesi, Apery tablosu gibi niimerik gruplar1 calismak icin gerekli araclar

1



BOLUM 1. GIRIS

yaninda, Arf yarigrubu ve Arf kapanigi kavramlarini da tanimlayacagiz.

4. 51 C 95 iken cesitli durumlarda yarigruplarin diizenlilik indeksinin nasil degisti-
gine iligkin sonuclar veriyoruz. Arslan ve Sertdz’iin sanmisinin genelde dogru olmadi-
g bir kars1 6rnek ile gdsteriyoruz. Ayrica, 6telenmis yarigrup ailelerinde diizenlilik
indeksinin nasil degistigine iligkin 6nemli bir sonu¢ sunuyoruz.



Bolum 2

COHEN-MACAULAY HALKALAR
VE HILBERT FONKSIYONU

Bu boéliimde tezde kullanacagimiz temel cebirsel tanimlar: verecegiz.

2.1 Cohen-Macaulay Halkalari

Tanim 2.1.1 [3] R bir degigmeli halka olsun. {ay,--- ,a,} C R kiimesi su iki kogulu
saghyorsa {a, - ,a,} kiimesine diizenli dizi denir:

i) R# (a1, ,an)R

ii) a;, R'de sifir bolen degildir ve her j € {2,---n} icin a;, R/(a1,---a;_1)’de sifir
bolen degildir.

Tanim 2.1.2 [3] R bir Noetherian halka ve I, R’nin bir ideali olsun. I igindeki

herhangi bir maksimal diizenli dizinin uzunluguna / idealinin derinligi denir.

Tanim 2.1.3 [3] R bir halka ve P, R'nin bir asal ideali olsun. P, C --- C P, C
Py = P kesin artan idealler zincirlerinin /[ uzunlugunun supremumuna P idealinin
yiksekligi denir. Ayrica R’nin herhangi bir T ideali i¢in I'y1 kapsayan asal ideallerin

yiiksekliklerinin infimumuna I'nin yiiksekligi denir.

Not 2.1.4 R bir halka, I R'nin bir ideali ve p(/) I'nin minimal tireteg kiimesinin

eleman sayisi olmak iizere ;

derinlik(I) < yiikseklik(I) < p(I)

olur.



BOLUM 2. COHEN-MACAULAY HALKALAR VE HILBERT FONKSIYONU

Tanimm 2.1.5 [3] R Noetherian bir halka olsun. Eger R'nin her I ideali i¢in
derinlik(I) = yiikseklik(I)
oluyorsa R’ye Cohen-Macaulay halkasi denir.

Agagidaki teorem sayesinde, yukaridaki egitligin sadece maksimal ideallerde saglan-

digini kontrol ederek halkanin Cohen-Macaulay oldugunu séyleyebiliriz:

Teorem 2.1.6 [11| R Noetherian bir halka olsun. Agagidakiler denktir:
a) R Cohen-Macaulay bir halkadur.

b) R’nin her m maksimal ideali i¢in, derinlik(m) = ykseklik(m).

¢) R’nin her p asal ideali igin, derinlik(p) = ykseklik(p).

d) R'nin her [ ideali i¢in, derinlik(l) = ykseklik(I).

2.2 Gorenstein Halkalar

Ozel Cohen-Macaulay halkalar olan Gorenstein halkalar da bu tezde ilginecegimiz

onemli cebirsel nesnelerdir.

Tanimm 2.2.1 [35] (R, m) d boyutlu bir yerel halka ve I, R'nin bir m-primary ideali
olsun. I'nin herhangi bir d elemanl {irete¢ kiimesine (R, m)’nin parametreler sistemi

denir.

Tanim 2.2.2 [3]| Bir 6z ideal, kendisini kapsayan iki 6z idealin kesigimi olarak yazi-

lamiyorsa, o ideale indirgenemez denir.

Tamim 2.2.3 [35] (R, m) bir yerel halka olsun. Eger R’nin her parametreler sistemi

bir indirgenemez ideal iiretiyorsa R’ye Gorenstein denir.

Ozel bir Gorenstein halkasi olan tam kesigim halkasinin tanimini da verelim.

Tamim 2.2.4 [34] Bir (R, m) yerel halkasi, bir diizenli yerel halkanin diizenli dizi ile

boliim halkasi olarak verilebiliyorsa, o halkaya tam kesigim halkas1 denir.

Noetherian yerel halkalar, agagidaki kapsama iligkisine sahiptir:

Tam kesisim halkalar1 C Gorenstein halkalar1 C Cohen-Macaulay halkalar

4



BOLUM 2. COHEN-MACAULAY HALKALAR VE HILBERT FONKSIYONU

2.3 Dereceli Halkalar, Hilbert Fonksiyonu ve Diizenlilik Indeksi

Tanmim 2.3.1 [22| R bir halka olsun. Eger R halkas
R=Ry®R @R, ®---

olacak gekilde R; degismeli gruplarinin direkt toplami geklinde yazilabiliyor ve her
i,7 > 0i¢in R;R; C R;,; oluyorsa, R’ye dereceli halka denir. R; gruplarimin eleman-
larina R’nin derecesi ¢ olan homojen elemanlar1 denir. Homojen elemanlar tarafindan

iiretilen ideale ise homojen ideal denir.

Her f € Relemanm f = fo+ fi+--- ., fi € R; seklinde tek tiirli yazilabilir. Buradaki

fi’lere, f'nin homojen bilesenleri denir.

Tanim 2.3.2 [22]
R=Ry®Ri ® Ry ®---

bir dereceli halka olsun. Eger M modiilii
M =P M

olacak gekilde R;M; C M,; kosulunu saglayan Abelyan gruplarin direkt toplami

seklinde yazilabiliyorsa M’ye R iizerinde dereceli modiil denir.

Tanim 2.3.3 [22] M, k[xq,- -, x,] lizerinde sonlu {iretilmig bir dereceli modiil olsun.

niimerik fonksiyonuna M’nin Hilbert fonksiyonu denir.

Bir (R, m) yerel halkasinin Hilbert fonksiyonunu tanimlamak i¢in onunla bir dereceli
halka iligkilendirilir. R’nin maksimal ideal m’ye gore iligkili dereceli halkasi olarak

adlandirilan ve gr,,(R) ile gosterilen bu halka
grm(R) = R/m @ m/m* @ m?*/m> & ...
bigiminde tanimlanir. Boylece, (R, m) yerel halkasinin Hilbert fonksiyonunu, bu ilig-

5



BOLUM 2. COHEN-MACAULAY HALKALAR VE HILBERT FONKSIYONU

kili dereceli halkanin Hilbert fonksiyonu olarak tanimlariz:
Hg(i) = Hyp,.(r) (i) = dimpmm’/m"™ = dimym’ /m"*!

Bu tezde Krull boyutu 1 olan (R, m) yerel halkalarina odaklanacagiz. Bu durumda,
yeterince biiyiik ¢ degerleri icin Hg(i) = e olur ve e, R'nin kathihgidir. Bu da diizen-

lilik indeksi tanimini yapmamizi miimkiin kilar.

Tanim 2.3.4 [18] (R, m) boyutu 1 ve katlihg: e olan yerel halka olsun.
i(R) = Min{i |Hg(i) = e}
sayisina R'nin diizenlilik indeksi denir.

Krull boyutu 1 olan (R, m) yerel halkalar ile ilgili herhangi bir soruyu galigmak i¢in
bagvurabilecegimiz temel nesneler tekterimli egriler veya niimerik yarigruplardir. Dii-
zenlilik indeksi problemine odaklanmak i¢in de bu nesnelerden yararlanacagimizdan,

bu nesneleri ve yerel halkalar ile iligkilerini anlamamiz gerekir.



Bolum 3

TEKTERIMLI EGRILER VE
NUMERIK YARIGRUPLAR

Bu béliimde tekterimli egrileri, niimerik yarigruplar: ve Krull boyutu 1 olan (R, m)

yerel halkalar ile iligkilerini inceleyip, niimerik yarigruplara iligkin detaylh bir litera-

tiir verecegiz.

3.1 Tekterimli Egriler

Temel geometrik nesnelerimiz,, afin uzaydaki bir boyutlu 6zel egriler olan tekterimli

egrilerdir.
Tamim 3.1.1 [19] k bir cisim ve n bir pozitif dogal say1 olmak iizere
K ={(a1,---,a) | a1, ---,ay €k}
kiimesine k cismi iizerinde tanimh n-boyutlu afin uzay denir.
Tanim 3.1.2 [19] k bir cisim ve fi, -, fs € klxy, -+, z,] olmak iizere,
{(ar, -+ ,a,) €E" | V1<i<s, filar, - ,a,) =0}
kiimesine fi,---, f, tarafindan belirlenen afin varyete denir.
Tanmim 3.1.3 [19] V C k" bir afin varyete olmak iizere

IV)y=A{f €klxy, - ,z) | Y(ar, - ,an) €V, flar, - ,a,) =

7
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BOLUM 3. TEKTERIMLI EGRILER VE NUMERIK YARIGRUPLAR

kiimesi bir idealdir ve bu ideale V'nin tanimlayici ideali denir.

Tamim 3.1.4 [19] k[zy, -+, 2,]/I(V) halkasma V' varyetesinin koordinat halkas: de-

11r.

Tanim 3.1.5 [19] k° afin uzaymmda, ny < ... < ny, pozitif tamsayilar olmak iizere
T =ty =1t .. xp =1t

parametrizasyonu ile verilen egriye tekterimli egri denir.

3.2 Niimerik Yarigruplar

Her tek terimli egri bir niimerik yarigruba karsilik gelir. Bu bize geometri ile aritmetik
arasinda gidip gelme olanagi sunar. Bu iligkiyi gbérmek i¢in sirasiyla yarigrup, monoid

ve niimerik yarigrup kavramlarini tanimlayalim.

Tamim 3.2.1 [37] S bostan farkli bir kiime ve "+" S kiimesi iizerinde birlegmeli bir
ikili iglem olsun. Bu durumda (S, +) ikilisine yarigrup denir. Eger her s € S i¢in

0+s = s+0 = s olacak sekilde bir 0 € S eleman1 varsa (S, +) ikilisine monoid denir.

Tamim 3.2.2 [37] S C N bir yarigrup olsun. Eger
e (0esS
e S’nin tiimleyeni, (S¢), sonlu
kosullar1 saglaniyorsa, S’ye niimerik yarigrup denir.
Tanmim 3.2.3 [37] A= {ny, - ,ny} C Nve OBEB(A) =1 olsun.
(A) ={Mni+-+Xmp | A, N €N}

kiimesi bir niimerik yarigruptur. Bu yarigruba A’nin iirettigi niimerik yarigrup denir

ve (ny, -+ ,ny) ile gosterilir.

Teorem 3.2.4 [37] M # {0}, N'nin bir alt monoidi olsun. O zaman M bir niimerik

yarigruba izomorftur.

Tanim 3.2.5 S = (nq,--- ,n,) niimerik yarigrubunun iiretecleri, her
1<i<biginn; & (ny, -+ ,n;_1,n11, - ,np) kogulunu sagliyorsa,
{n1,--- ,np} kilmesine S’nin minimal iirete¢ kiimesi denir.

8



BOLUM 3. TEKTERIMLI EGRILER VE NUMERIK YARIGRUPLAR

Lemma 3.2.6 [37| S bir niimerik yarigrup ve S* = S—{0} olsun. O zaman S*\ (S*+
S*) kiimesi S’nin bir iirete¢ kiimesidir. Ayrica, S’nin her iireteg kiimesi S*\ (S* + S*)

kiimesini kapsar.

Kamit. s € S* olsun. Eger s ¢ S*\ (S* + 5*) ise s = x + y olacak sekilde z,y € S*
vardir ve x,y < s olur. Bu prosediirii ardarda uygulayarak sonlu adim sonunda
s =81+ -+ s, olacak sekilde sy, ,s, € S*\ (S* + 5*) elemanlarim elde ederiz.
Bu yiizden S*\ (S* 4+ S*), S’nin bir iirete¢ kiimesidir. A, S’nin bir iireteg kiimesi
olsun. x € §*\ (S* + S*) alalim. o = A\;s; + -+ - + A\, s, olacak gekilde s1,--- ,s, € A
ve A, -+, A, € Nvardir. z ¢ S* + S* oldugundan = = s; olacak sekilde bir ¢ vardir.
Yani x € A olur. Sonug olarak S*\ (S* 4+ 5*) C A olur.

3.3 Niimerik Yarigruba Karsilik Gelen Yerel Halka

Yukaridaki tanimlar1 kullanarak, xq = t™, 29 = t"2, ..., 1, = t"™ parametrizasyonu ile
verilen tekterimli C' egrisine S = (nq,--- ,ny) niimerik yarigrubunun kargihik geldi-
gini soyleyebiliriz. Dahasi, agagida gosterildigi {izere S’ye karsilik gelen bir de yerel
halka vardir. Dolayisiyla, niimerik yarigruplar geometrik, aritmetik ve cebirsel olarak

calisilabilir.

Tamim 3.3.1 [18] S = (n4,---ny) bir niimerik yarigrup olsun.
KIST) = Kl[t°]s € SI = K[[e™ -+ 2™]] € E[[1]

biciminde tanimlanan yerel halkaya S niimerik yarigrubuna karsilik gelen yerel halka

denir.

Burada k[[S]] bir yerel tamlik bolgesidir ve m = (¢™,--- ¢") maksimal idealdir.

nmimlayici ideali olmak tizere (f, ile f’nin en diigiik dereceli homojen bilegenini goste-
rirsek, I(V'), ideali, her f € I(V) i¢in elde edilen f, homojen elemanlarnin iirettigi

idealdir), agagidaki izomor6fizma elde edilir:

gro (E[[t", 872, t™]]) =2 k[x, xg, .., 1) [ T(C)s

Ne}
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Tanimm 3.3.2 S = (nq,---ny) yarigrubunun diizenlilik indeksi,

E[[t™, .-  t™]] yerel halkasinin diizenlilik indeksi olarak tanimlanir.

Y

Boylece, grp, (k[[t",t",...,t"]]) = k[z1, 29, ...,2)/1(C). izomorfismasi nedeniyle,
S’nin diizenlilik indeksi gr,, (k[[t™, "2, ..., t"]]) veya

klxy, za, ..., 2] /I(C), halkalarmin Hilbert fonksiyonlarinin n, degerini almaya bagla-
diklar1 indekstir.

3.4 Apery Kiimesi

Tanim 3.4.1 [37] S bir niimerik yarigrup ve n € S* olsun.
Ap(S,n)={se S | s—n¢ S}

kiimesine S’nin n’ye gore Apery kiimesi denir.

Bu tanimin dogrudan bir sonucu asagidaki lemmadir.

Lemma 3.4.2 S bir niimerik yarigrup ve n € S* olsun. O zaman
her i € {0,---,n — 1} igin w(i), S'nin mod n’ye gore i’ye denk en kiigiik elemamn
olmak tizere

Ap(S,n) ={0=w(0),--- ,w(n —1)}

olur.

Bu lemma, niimerik yarigruptaki her elemanin Apery kiimesindeki elemanlara n’nin

katlarinin eklenmesiyle elde edilebilecegi sonucunu verir.

Lemma 3.4.3 [37] S bir niimerik yarigrup ve n € S* olsun. O zaman her s € S i¢in
s = kn + w olacak gekilde (k,w) € N x Ap(S,n) vardir.

Apery kiimesini kullanarak minimal {iretec¢ kiimesinin biricik ve sonlu oldugunu gos-

terebiliriz.

Teorem 3.4.4 [37| Her niimerik yarigrubun tek bir minimal {irete¢ kiimesi vardir

ve bu kiime sonludur.

Kanit. Lemma 3.4.3’iin bir sonucu olarak (Ap(S,n)U{n}) =S ve Lemma 3.2.6’den
S*\ (S* 4 5%), S’nin minimal iireteg kiimesidir. Ayrica S*\ (S*+.5*) C Ap(S,n)U{n}
oldugundan S*\ (S* + 5*) kiimesi sonludur.

10
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Minimal iirete¢ sayisinin biricik olmasi, agagidaki tanimlart yapmamizi miimkiin ki-

lar.

Tamim 3.4.5 [37] S bir niimerik yarigrup ve ny < -+ < n, olmak tizere {ny,--- ,np}
S’nin minimal {irete¢ kiimesi olsun. Bu durumda n;’e S’nin katliligi, b’ye de S’nin

gomiiliig boyutu denir. Sirasiyla, m(S) ve u(S) ile gosterilir.

Tamim 3.4.6 [37] S bir niimerik yarigrup olsun. N\ S kiimesine S’nin bogluk nok-
talar kiimesi denir ve G(.59) ile gosterilir. Bu kiimenin kardinalitesine de S’nin cinsi
(genus) denir ve g(95) ile gosterilir. S’de olmayan en biiyiik dogal sayiya ise S’nin
Frobenius sayisi denir ve F'(S) ile gosterilir. (Bir bagka deyisle, F'(S) = max(G(S5))
olur.) Her n dogal sayis1 i¢in = + n € S olacak gekildeki en kii¢iikk x € S elemanina

S’nin kondiiktorii denir.

Gomiiliis boyutu ikiden biiyiik olan herhangi bir niimerik yarigrubun Frobenius sayisi
ve cinsi i¢in bilinen genel bir formiil yoktur. Ancak herhangi bir n € S* i¢in Ap(S,n)

biliniyorsa bu degismezleri hesaplamak kolaydir.

Teorem 3.4.7 [37] S bir niimerik yarigrup ve n € S* olsun. O zaman,

i) F(S)=maksAp(S,n) —n

1 n—1

11) g(S) = E ZwéAp(S,n) w — 2

Kanit. 1) Apery kiimesinin tamimindan dolayr mazAp(S,n) — n ¢ S olur. F =
maksAp(S,n) — n diyelim. Eger « > F ise © + n > maksAp(S,n) olur. w(i) =
x +n mod n olacak sekilde ¢ € {0,---,n — 1} vardir. w(i) < = + n oldugundan
x = w(i) + kn olacak gekilde & > 0 vardir. O zaman v —n = w(i) + (k—1)n € S
olur ve bu yiizden F(S) = F' = maksAp(S,n) — n olur.

ii) Her w(i) € Ap(S,n) elemam w(i) = kn +1i, i € {0,-,n — 1}, k; € N formunda
yazilabilir. Bir bagka deyisle,

Ap(S,n) = {0 =w(0),w(l) =kn+1,--- ky1+(n—1)}

11
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olur. x = w(i)mod n i¢in z € S <> w(i) < z oldugundan,

g(S) = ]{71 +"'I€n_1

= {ln 4 1)+ (o 2) b (ki (0= 1))] = 2

weAp(S,n)

SI—3|

S = {a,b) , a < b durumunda Ap(S,a) = 0,b,2b,--- ,(a — 1)b oldugundan gémii-
liis boyutu iki olan niimerik yarigruplarin Frobenius sayisi ve cinsinin formiiliinii

verebiliriz:

Sonug 3.4.8 i) F({(a,b)) =ab—a—b

ab—a—b+1
2

i) g((a,b)) =

S bir niimerik yarigrubu igin s € S ise F(S) — s ¢ S olur. Bunun sonucu olarak,
yarigrupta yer alan ve Frobenius sayisindan kiiciik olan her elemana karsilik en az

bir bosluk oldugundan, agagidaki esitsizligi elde ederiz.

Lemma 3.4.9 [37]| Bir S niimerik yarigrubunda

F(S) +1

9(S) > 5

esitsizligi saglanir.

Tanmim 3.4.10 [37] S bir niimerik yangrup ve z € G(S) olsun. Eger her s € S* i¢in
x4+ s € S oluyorsa x’e S’nin pseudo-Frobenius sayisi denir. S’nin pseudo-Frobenius
sayllarinin kiimesi PF(S) ile gosterilir. Bu kiimenin kardinalitesine S’nin tipi denir

ve t(S) ile gosterilir.
Tanim 3.4.11 [18]| S bir niimerik yarigrup olsun. a,b € S i¢in,
a<ghb << b—achs

seklinde tanimlanan bagint1 bir kismi siralama bagintisidir.

12
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Teorem 3.4.12 37| S bir niimerik yarigrup olsun. O zaman,

i) PF(S) kiimesi Z \ S kiimesinin <g kismi siralamasi altinda maksimal olan

elemanlarinin olugturdugu kiimedir ve Maksimaller<,Z \ S ile gosterilir.

i) r€Z\S < f—ux e S olacak gekilde f € PF(S) vardir.

Benzer bi¢imde tanimlanan Minimaller< S* kiimesinin S’nin minimal {ireteg sistemi

oldugunu kolayca gorebiliriz.

Teorem 3.4.13 [37] S bir niimerik yarigrup ve n € S* olsun. O halde
PF(S) = {w — n|w € Maksimaller<,Ap(S,n)}
olur.

Kanit. x € PF(S) olsun. O zaman x ¢ S ve x +n € S olur. Bir bagka deyisle,
x+n € Ap(S,n) olur. x +n <g w olacak gekilde w € Ap(S,n) olsun.

= w—(r+n)=w—zx—nes

= w —x —n = s olacak gekildes € S vardir.
= w—n=x+Ss

— w-—n¢ S vex e PF(S) oldugundan s =0
= wW—Nn==

= w=x+n

Bir bagka deyisle, PF'(S) C {w—n|w € Maksimaller<,Ap(S,n)} olur. Tersine, w €
Maksimaller<, Ap(S,n) olsun. O zaman w—n ¢ S olur. w—n+s ¢ S olacak sekilde
s € S* elemani var olsun. w+s € S ve w+ s —n ¢ S oldugundan w + s € Ap(S,n)
olur. Bu durumda w <g w + s olur ve bu da w € Maksimaller<,Ap(S,n) olmast ile
geligir. O zaman her s € S* igin w —n + s € S olur. Yani w —n € PF(S) olur.
Sonug olarak, {w — njw € Maksimaller<,Ap(S,n)} C PF(S) olur ve buradan
PF(S) = {w — njlw € Maksimaller<,Ap(S,n)} olur.

Sonug 3.4.14 Bir S niimerik yarigrubu igin ¢(S) < m(s) — 1 olur.

13
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Gomiiliig boyutu 2 olan niimerik yarigruplar icin ¢(S) = 1 oldugunu biliyoruz. u(S) =
3 durumunda ise t(S) = 1 veya ¢(S) = 2 olur. Ancak, p(S) > 3 i¢in ¢(S)’in bir ist

sinir1 yoktur.

Ornek 3.4.15 S =< s5,s4+3,s+3n+1,s+3n+2>.,n>2,3>3n+2ve
s =r(3n 4 2) 4+ 3 olsun. Bu durumda ¢(S) = 2n + 3 olur.

Tanim 3.4.16 [37] S niimerik yarigrubu icin
N(S)={seS | s<F(9)}

kiimesini tanimlayalim ve bu kiimenin kardinalitesini de n(.S5) ile gosterelim. Bu kiime

S’yi tamamen belirler ve ayrica n(S) + ¢g(S) = F(S) + 1 olur.

Eger x ¢ S ise © <g f olacak sekilde f € PF(S) vardir. f, = min{f € PF(S)|f —
x € S} seklinde tanimlayalim.
O zaman ¢ : G(S) — PF(S) x N(S) , v — (fs, fo — x) seklinde tanimlanan ¢

fonksiyonu birebirdir. Buradan ¢(95) i¢in agagidaki sinir1 elde ederiz.

Teorem 3.4.17 [37] S bir niimerik yarigrup olsun. O halde
9(5) < t(S)n(9)

olur.
Bu esitsizlik F(S) + 1 < (¢(S) + 1)n(S) esitsizligine denktir.

3.4.1 Arf Niimerik Yarigruplar

Bir sonraki béliimde Arf kapaniglar: ayni olan halkalar tizerine bir saniya karsit érnek

verirken Arf niimerik yarigruplarini kullanacagiz.

Tanim 3.4.18 (37| S niimerik yarigrubunda, x > y > 2z kosulunu saglayan her
x,y,z € Sigin x +y — 2z € S oluyorsa, S’ye Arf niimerik yarigrup denir.

Teorem 3.4.19 [37| Bir S niimerik yarigrubu ve x € S* i¢in

S Arf niimerik yarigruptur <= S’ = (z+ S) U {0} Arf niimerik yarigruptur.

14
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Sonug¢ 3.4.20 Bir S niimerik yarigrubu ve x € S* icin S’nin bir Arf niimerik ya-

rigrup olmasi igin gerek ve yeter kogul S = {0, 21,21 + 2o, -+ ;21 + - + x,, =} Ve
her i € {1,--- ,n} icin z; € {T1, i1 + Tigo, -+, Ty + -+ - ,, —} olacak gekilde
x1,- -, x, pozitif dogal sayilarinin var olmasidir.

Teorem 3.4.21 37| Sonlu sayida Arf niimerik yarigrubun kesigimi yine bir Arf nii-

merik yarigrup olur.

S bir niimerik yarigrup olsun. N\ S sonlu oldugundan S’yi kapsayan Arf niimerik
yarigruplarin kiimesi de sonludur ve bu niimerik yarigruplarin kesigimi yine bir Arf

niimerik yarigrup olur.

Tanim 3.4.22 [37| S bir niimerik yarigrubunu kapsayan Arf niimerik yarigruplarin
kesigimine S’nin Arf kapanigi denir ve Arf(S) ile gosterilir.

Lemma 3.4.23 [37] S, N'nin bir alt monoidi olsun. O zaman
S'={z+y—zla,y2z€Sv>y>z}
kiimesi N’nin bir alt monoididir ve S C S’ olur.

Kamit. © € S olsun.  + 2 —x = x € S’ oldugundan S C S’ olur. a,b € S’ olsun.
a=x14+1y1 —2z1veb=x9+ys — 20, T1 > Y > 21, Ty > Yo > 2z olacak sekilde
T1, T, Y1, Y2, 21, 22 € S elemanlar: vardir. Bu durumda, a + b = (x; + 22) + (y1 +
y2) — (21 + 22) ve (x1 + x2) > (y1 + y2) > (21 + 22) oldugu i¢in a + b € S’ olur.

S bir niimerik yarigrup olmak iizere
i) S°=5
i) St = (snY

seklinde tanimlayalim.

Teorem 3.4.24 |37 Her S niimerik yarigrubu igin S* = Arf(S) olacak gekilde
k € N vardir.
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Kanit. n iizerinden tiimevarim uygulayahm. Her n € N i¢in S™ C Arf(S) oldugu
aciktir ve Lemma’dan dolay1
SgSlgSQQ---CS”Q---

dizisi vardir ve bu dizi bir yerde sabitlenir. Yani S¥ = S*¥*! olacak sekilde bir & € N
vardir. S* = S**! oldugundan S* bir Arf niimerik yarigruptur. Ayrca S*, Syi
kapsayan en kiigiik Arf niimerik yarigrup oldugundan Arf(S) = S* olur.

Arf kapaniginin bu karakterizasyonu kullanilarak asagidaki Lemma ve Teorem ara-

ciligr ile Arf kapamisi icin bir algoritma verilebilir.

Lemma 3.4.25 [37] m,ry,--- ,rp,n € N ve OBEB(m,ry,---,r,) = 1 olsun. O
zaman

m+ <m,ry, -1, >TCArf(m,m+ry, -, m4ry)

olur.

Teorem 3.4.26 37| m,ry,---,r, € Nve OBEB(m,ry,---,r,) = 1 olsun. O halde
Arf(m,m+ry,--- ,m+r,) = (m+ Arf(m,r,---,7,)) U{0}

olur.

Sonug 3.4.27 m,ry,--- .1, € Nve OBEB(m,ry,--- ,r,) = 1 olsun. O zaman;
F(Arf(m,m+ry,--- ,m+1,)) =m+ F(Arf(m,ry,--- ,1,))

olur.

Boylece, Arf kapanisini hesaplamak icin su algoritmay1 verebiliriz:
T CN\ {0} ve OBEB(T) =1 olsun.

i) Appr={x—min A, | z € A,} U{min A,}
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OBEB(T) = 1 oldugundan, Oklid algoritmasi ¢ = min {k € N | 1 € A;} olacak

sekilde bir ¢ sayisinin varhigin garanti eder ve
Arf(T) = {0, min Ay, min Ay + minAsy,--- ;min Ay + -+ minA,_1,—}
bi¢iminde yazilabilir.

Hatirlatma 3.4.28 Bu algoritmanin, Arf’in bu kavramlar ve teoriyi iirettigi ma-

kalesinde degistirilmiy Jacobi algoritmasi olarak verildigini belirtmek gerekir [1], [2].

Ornek 3.4.29 S = (10, 32,41) olsun.

Ay = {10,32,41}  min A, =10
Ay = {10,22,31}  min Ay =10
Ay = {10,12,21}  min A3 =10
A= {10,2,11}  min Ay =2

As = {8,2,9} min Ay = 2
Ag= {6,2,7} min Ag = 2
A, = {4,2,5} min A7 =2
As = {2,2,3} min Ag = 2
Ag = {1,2} min Ag =1

O zaman, Arf(S) = {0, 10, 20, 30, 32, 34, 36, 38,40, —} olur.

3.4.2 Simetrik ve pseudo-Simetrik Niimerik Yarigruplar
Tanim 3.4.30 [37| Bir S niimerik yarigrubu kendisinden farkli iki niimerik yarigru-

bun kesigimi geklinde yazilamiyorsa S’ye indirgenemez denir.

Lemma 3.4.31 [37] Eger S, N'den farkh bir niimerik yarigrup ise,
SU{F(S)} de bir niimerik yarigruptur.

Kanat. N\ S sonlu oldugundan N\ (SUF'(S)) sonludur. a,b € SU{F(S)} olsun. Eger
a,b € Sise, a+b € S oldugu agiktir. O zaman, a = F/(S),b € S alalim. Bu durumda
a+b> F(S) olur ve bu yiizden a +b € S U{F(S)} olur. O halde, S U{F(S)} bir
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niimerik yarigruptur.

Teorem 3.4.32 37| Bir S niimerik yarigrubu icin agagidakiler denktir.
i) S indirgenemezdir.
ii) S, Frobenius sayis1 F'(S) olan niimerik yarigruplarin kiimesinde maksimaldir.

iii) 9, F(9)1 icermeyen niimerik yarigruplar kiimesinde maksimaldir

Kanit. (i) = (14) T bir niimerik yarngrup, S C T ve F(T) = F(S) olsun. O zaman
S =(SU{F(S)})NT olur. S indirgenemez oldugundan S = T olur.

(11) = (i1d) T bir niimerik yarigrup, S C T ve F(S) ¢ T olsun. O zaman 7" =
TU{F(S)+1,F(S)+2,---,—} seklinde tamimlanan niimerik yarigrup icin, S C 7"
ve F'(S) = F(T) olur. Yani S = T" ve bu yiizden S = T olur.

(49) = (iii) Si, S, birer niimerik yarigrup, S G Sy ve S G S, olsun. O zaman
hipotezden dolayr F(S) € S; ve F(S) € Sy olur. Bir bagka deyigle, F(S) € S

celigkisini elde ederiz.

Tanim 3.4.33 [37| Bir S niimerik yarigrubu indirgenemez ve F'(S) tek say1 ise S’e

simetrik denir. Eger S indirgenemez ve F(S) ¢ift say1 ise S’e pseudo-Simetrik denir.

Simetrik ve pseudo-simetrik yarigruplar su sekilde karakterize edilebilir:

Teorem 3.4.34 [37| S bir niimerik yarigrup olsun.

i) S simetriktir <= F(S) tek say1 ve v € G(S) = F(S)—z € S

ii) S pseudo-Simetriktir <= F(9) ¢ift say1 ve z € G(S) — F(S) —x €
F(S)

g —
veya x 5

Bu, niimerik yarigruplarin bogluk sayisina dayanan su karakterizasyonu verir:

Sonug 3.4.35 [37] S bir niimerik yarigrup olsun.
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i) S simetrik <= g¢(95) = %
F(S)+2

ii) S pseudo-Simetrik <= ¢(5) = i

F(S)+1
Béylece, bir S niimerik yarigrubu i¢in ¢(S) > (5) + oldugundan, indirgenemez
niimerik yarigruplar miimkiin olan en az bogluk noktasina sahip niimerik yarigrup-

lardir.

Lemma 3.4.36 [37] S niimerik yarigrubu icin n € S* olsun. Eger x,y € S i¢in
r+y € Ap(S,n) ise {z,y} C Ap(S,n) olur.

Teorem 3.4.37 [37] Bir S niimerik yarigrubu igin n € S* ve Ap(S,n) = {ag =0 <

a;p < -+ < ap_1}ise
S simetriktir <= Vi€ {0,---n— 1} i¢in a; + ap_1_; = ay_1

Kanit. (=) a,—1—n = F(S) oldugunu biliyoruz.a,_; ¢ S ve S simetrik oldugundan
F(S)—(a; —n) = a,—1 — a; € S olur. Bu durumda, yukaridaki Lemma’dan, a,_1 =
a; + a; olacak gekilde a; € Ap(S,n) vardir ve ap < a3 < ag < - -+ < a,—1 oldugundan
@; = Qp_1—; olmahdir.

(«<=) Hipotezden Maksimaller<,Ap(S,n) = {a,—1} olur ve bu yiizden PF(S) =
{F(S9)} = Maksimaller<,G(S) olur. Dolayisiyla, x € G(S) ise F/(S) —x € S olur.

Eger F(S) cift say ise @ € G(95) ve bu yiizden F(S)— @ = %S) € (9) geligkisini

elde ederiz. O halde, F(S) tek sayidir ve bunun sonucunda S simetriktir.

Sonug 3.4.38 Bir S niimerik yarigrubu icin agagidakiler denktir.
i) S simetriktir.
ii) PF(S)={F(5)}
iii) ¢(S) =1
Sonuc¢ 3.4.39 Bir S niimerik yarigrubu ve n € S* i¢in

Ssimetriktir <= Maksimaller< Ap(S,n) = {F(S) +n}
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Ornek 3.4.40 S = (a,b) ve OBEB(a,b) = 1 olsun.

oldugundan her i € 0,--- ,a — 1 igin ib+ (a — 1 — i) = (a — 1)b olur ve bu yiizden S

simetriktir. Yani gémiiliis boyutu 2 olan tiim niimerik yarigruplar simetriktir.

Kunz’un simetrik gruplari, Gorenstein halkalar ile baglayan su 6nemli sonucu bu

ornegi geometrik olarak ¢ok daha kolay ifade etmemizi saglar.

Teorem 3.4.41 [32] S = (ny,---np) yarigrubunun simetrik olmasi i¢in gerek ve

yeter kogul k[[t",--- ,¢™]] halkasinin Gorenstein olmasidir.

Ornek 3.3'teki S = (a, b) yarigrubuna karsilik gelen tek terimli egri iki boyutlu uzayda
tek iiretecle tammlandigindan tam kesisim egrisidir. Dolayisiyla, k[[t%,t]] halkasi
tam kesigim halkasidir. Her tam kesigim halkasi Gorenstein oldugundan, Kunz’un
karakterizasyonundan S = (a,b) yarigrubu simetriktir.

3.4.3 Apery Tablosu

Apery tablosu verilen bir yarigruba ait tiim bilgileri barindirir. Bir yarigruba karsi-
lik gelen yerel halkanin Hilbert fonksiyonunu, diizenlilik indeksini ve iligkili dereceli
halkanin Cohen-Macaulay olup olmadigin1 bu tablodan okuyabiliriz. Tabloyu tanim-

lamadan 6nce bazi1 tanumlar: verelim.

Tamim 3.4.42 [18] S bir niimerik yarigrup olsun. H # () i¢cin H+S C Sved+H C S
olacak gekilde d € S varsa H’ye S’nin goreli ideali denir. Eger H C S ise H’ye S’nin

ideali denir.
Tamim 3.4.43 [22] M = S\ {0} idealine S’nin maksimal ideali denir.

Tanim 3.4.44 [12| S bir ntimerik yarigrup, L ve H ,S’nin birer goreli ideali olsun.

Bu durumda;
L+H={l+hlle L,he H}
kiimesi de bir goreli idealdir. Ayrica z € Z i¢in

z+ S ={z+s|se S}
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kiimesi de bir goreli idealdir ve bu goreli ideale z tarafindan iiretilmig temel goéreli

ideal denir.

Benzer gekilde z1,--- 2, € Z i¢in {2, -+ , 2, } tarafindan iiretilen goreli ideal (z; +
S)U---U(z,+95) seklinde tanimlanir ve (21, - -+, z,) + .S ile gosterilir. Boylece, S'nin
maksimal ideali M nin, S’nin minimal iirete¢ kiimesi tarafndan iiretilmig goreli bir
ideal oldugunu sdyleyebiliriz.

S = (ny,---np) yarigrubuna karsilik gelen halka R = Kk[[t™,t"2,....t"]] ve m =
(t"™,--- t"™) bu halkanin maksimal ideali ise, derece ile verilen v degerlemesi i¢in
v(R) = S, v(m) = M = S\ {0} ve her pozitif i tamsayisi i¢in v(m') = iM =
M + ... + M olur.

Tanim 3.4.45 [18] S bir niimerik yarigrup ve M, S’nin maksimal ideali ise , e +

nM = (n+ 1)M kogulunu saglayan en kiigiik n tamsayisina indirgeme sayisi denir.

Hatirlatma 3.4.46 Yukaridaki degerleme ile e+nM = (n+1)M kogulunu saglayan
en kiiciik n tamsayisinin #m™ = m" ! kosulunu saglayan en kiiciik n tamsayisinin
ayni oldugunu goriiriiz. Bu sayidan sonra m!/mi*! ile m**! /m*? izomorfik olacagin-
dan Hilbert fonksiyonu sabitlenir. Dolayisiyla, diizenlilik indeksi ile indirgeme sayisi

esittir.

Boylece, S = (ny,---np) yarigrubuna kargihk gelen halka R = E[[t", "2, ..., t™]] ve

m = (t",--- ,t"™) olmak iizere, agagidaki egitlikleri kullanabiliriz:

i) e =ny =dimi(R/t"R) =S\ (n1 +9)|
i) b= dimy,(m/m?) =M\ 2M]|
iii) r=min{r e N|mt =zm"} =min{r | (r + )M =n; + rM}
iv) 6 = dimi(R/R) = ¢g(S) (6, R'nin tekillik derecesi olarak adlandirilir).

v) Hp(n) = p(m") = M(m"/m"*1) = | nM\ (n+ 1)M |

Tamim 3.4.47 [18] S = (ny,---np) bir niimerik yarigrup ve s € S olsun. Tiim
s = riny + ... + ryny temsilleri arasinda E?:l r; maksimum olacak sekildeki s =
r1ni+...+1pnp temsiline s'nin maksimal gosterilisi denir ve Z?:l r;'ye s'nin mertebesi

(order) denir ve ord(s) ile gosterilir.
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Eger s = riny + ... + rpyn, bir maksimal gosterilis ise, her r; < r; olacak gekildeki
s' =riny + ... + ryn, toplami bir maksimal gosteriligtir.

Ayrica s = rinq + ... + ryny € Ap(S) ise her r, < r; olacak sekildeki ' = rin; + ... +
ryn, € Ap(S) olur. (Ap(S) ile Ap(S,n;) kiimesini kastediyoruz.)

Tamim 3.4.48 [18] S bir niimerik yarigrup ve s € S olsun. Eger ord(s + cny) >
ord(s) + ¢ olacak gekilde 0 # ¢ € N varsa s’ye torsiyon eleman denir. S’nin torsiyon
elemanlarinin kiimesi

T:={seS | Je¢>0; ord(s+cny) > ord(s) + c}

ile gosterilir. s'nin torsiyon mertebesi tord(s) = min{c > 0|ord(s+cny) > ord(s)+c}

seklinde tanimlanir.

Simdi Apery tablosunu tanimlayabiliriz.
Tanim 3.4.49 [18] S bir niimerik yarigrup ve M, S’nin maksimal ideali olsun. Her

n € N i¢in

Ap(nM) = {wn,o = ne,..., wn,i7 ~-~7wn,e—1}

olmak tlizere

Ap(S) Wo,0 | Wo,1 | -+ | Woyi | -+ | Wo,e—1
AP(M) Wi,0 | W11 e | W1y cee | W1e—1
Ap(ﬂM) wn,O Wn,1 Wn, 4 Wpe—1
Ap(tM) | wyp | Wrg | coe | Wrg | oo | Wreo

tablosuna M’nin Apery Tablosu denir.

Ornek 3.4.50 S = (8,19, 29) niimerik yarigrubunun Apery tablosu

Ap(S) | 0 |57 (58|19 | 76|29 |38 |87
p(M) | 8 | 57|58 |19 |76 |29 | 3887
(2M) | 16 | 57 | 58 | 27 | 76 | 37 | 38 | &7
Ap(3M) | 24 | 57 | 66 | 35 | 76 | 45 | 46 | 87
(4M)
(5M)

2>

32165744376 |53 ]541]95
40 | 73 | 82 |51 | 84 | 61 | 62|95
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Tamim 3.4.51 [18] E = {wy, - ,wy} € Z olsun. Eger wy < --- < w,, ise buna
bir merdiven diyecegiz. Verilen bir merdivenin L = {w;,---w;x} altkiimesi i¢in
Wi—p < W; = -+ = Witk < Wiypsr1 oluyorsa L’ye k uzunluklu bir diizleme denir. Bu
durumda ¢ indeksine bu diizlemenin baglangici, ¢ + k£ indeksine de bu diizlemenin
bitisi denir ve sirasi ile s(L) ve e(L) ile gosterilir. Bir L diizlemesi igin eger s(L) > 1
ise L’ye gercek diizleme denir. Verilen L ve L’ diizlemeleri i¢in eger s(L) < s(L’) ise
L < L' denir. Ly < --- Lypy E’'deki diizlemeler olsun. O zaman her 0 < j < [(E) icin

i) 5;(E) =e(Ly), e;(E) = e(L;)
i) ¢(E) =s;j—ej
iii) kj(E) =e; —s;

sayilarini tanimlayalim. Bu notasyonla, her 1 < ¢ < e — 1 i¢in M’nin Apery tab-
losunun her bir siitununu, Q° = {wy,;}o<n<r, bir merdiven olarak diigiinelim. Bu

durumda,
i) I; =1(Q): Q siitunundaki dogru diizleme sayist
ii) d; = e;,(2): son diizlemenin bitisi
iii) 0% = e;_1(Q) ve ¢ = ¢;(V)
sayilarini tanimlayalim.

grm(R)’in Cohen-Macaulay olmasi i¢in gerek ve yeter sart torsiyon elemaninin olma-
masidir. Bunu da Apery tablosunda siitunlarda hi¢ gercek diizleme olmamasi olarak
okuyabiliriz. Bir bagka deyisle, her 1 < ¢ < e — 1 i¢in [; = 0 ve d; = b; olmasi-
dir. Ayrica eger gr,,(R) Cohen-Macaulay ise R'nin diizenlilik indeksi, Ap(S)’deki
elemanlarin mertebelerinin en biiyiigiidiir. Benzer sekilde gr,,(R)’in Gorensteinligi
de Apery tablosundan kontrol edilebilir. gr,,(R)’in Gorenstein olmasi igin gerek ve
yeter sart grp,,(R) Cohen-Macaulay , S simetrik ve S'nin M-saf olmasidir. Ap(S) =
{wy < +++ < we_1} ve S simetrik olsun. Bu durumda S’nin M-saf olmasi i¢in gerek
ve yeter kogul her ¢ = 0,---e — 1 icin ord(w;) + ord(we—1-;) = ord(w._1) olmasidir.
Bu da Apery tablosunda b; + b._1_; = b._1 olmasidir. Bu da Apery tablosunda ilk
diizlemelerin sonunda bir tiir simetri olmas1 demektir.

Ornek 3.4.52 § = (n1,n9) , OBEB(ni,n3) = 1 ve ny < ny olsun. Bu durumda

M’nin Ap(S)’deki elemanlar1 artan sirayla dizerek olugturdugumuz Apery tablosu
agsagidaki gibidir.
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Ap(S) 0 ng kng (n1 — 1)712
Ap(M) ni no kno ve | (n1—1)n2
Ap(kM) kny na + (k—1)nmy kno ve | (n1 =12
Ap((k+1)M) (k + 1)n1 ng + kni kno +nq (n1 — 1)712
Ap(rM) (ni—1Dm1 | no+(n1—2n1 | . | kno+(m1—k—1n1 | ... | (n1 —1)ng

Tablodan S’nin diizenlilik indeksi 7(S) = ny — 1 oldugunu gorebiliriz.

Ap(S)’deki en biiyiik eleman (n; — 1)ny oldugundan F'(S) = (ny — 1)ng — ny olur ve
—ng — 1 F(S

biliyoruz ki ¢(S5) = e T e (2 )

S simetrik ve R = k[[t",¢"?]] Gorenstein olur. Ayrica Apery tablosunda hi¢ gergek

. O zaman, ¢(S) = olur ve bu yiizden
diizleme olmadigi igin gr,,(R) Cohen-Macaulay olur. Yine, Apery Tablosundan her
iigin b; = 7 olur ve bu yiizden b; +b._; 1 = it+e—1—1=e—1 = b._; olur.
Yani S, M-pure olur. Sonug olarak, S simetrik, M-pure ve gr,,(R) Cohen-Macaulay
oldugundan, gr,,(R) Gorensteindir.
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Bolum 4

DUZENLILIK INDEKSINE ILISKIN
SONUCLAR

Bu béliimde, bir S = (nq,---ny) yarigrubununu diizenlilik indeksinin, bir bagka de-
yigle yarigruba kargihk gelen halka olan R = E[[¢t"* "2, ..., t"™]] halkasimin Hilbert
fonksiyonunun n; olmaya bagladigi indeksin nasil degistigine iligkin elde ettigimiz

sonuglar: sunacagiz.

4.1 S; C S, Durumunda Indeksin Degigimi

Oncelikle, Arf kapanisi ayn1 olan halkalarin diizenlilik indekslerine iliskin Arslan ve

Sertoz tarafindan one siiriilen saniy1 animsatalim:

Soru. [9] R C S C kl[t]] yerel halkalarinin Arf kapaniglar: esit ise, i(S) < i(R) midir?

Bu saninin temel motivasyonu, Arf halkalarinin diizenlilik indekslerinin 1 olmasi ve
Arf kapaniginin bir anlamda karsilik gelen yarigruptaki bogluklarin doldurulmast ile
elde edilmesi diigiincesidir. Bu, dogal olarak bosluklar dolduruldukca diizenlilik in-

deksi azalir m1 sorusunu sormamizi tegvik eder.

S = (ny,---np) yarigrubuna kargihk gelen halka R = E[[t", ", ..., t™]] olmak iizere,
R’nin m maksimal idealinin indirgeme sayisin1 t"'m™ = m"*! kosulunu saglayan en
kiiciik n olarak tanimlamigtik ve bunun diizenlilik indeksine egit oldugunu gérmiis-
tiik. Esasinda bu minimal inidirgeme kavraminin yarigruba kargilik gelen halkalara
uygulanmig hali idi. Indirgeme sayisina iliskin literatiirdeki bazi énemli sonuclari

vermek icin 6ncelikle genel tanimini verelim.
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Tanim 4.1.2 (R, m), d boyutlu bir yerel halka olsun. v/I = m kosulunu saglayan I
ideali i¢in JI™ = I"*! kogulunu saglayan bir J ideali varsa, J’ye I’'nin bir indirgemesi
denir ve bu kogulu saglayan en kiiciik n sayisina I'nin J’ye gére indirgeme sayisi denir.
I'min indirgemelerinden kapsama iligkisi altinda en kiiciiklerine minimal indirgeme
ve bunlarin arasindaki en kiiciik indirgeme sayisina I'nin indirgeme sayisi denir ve

r(I) ile gosterilir.

R/m cisminin sonsuz olmasimin her /'min d eleman ile iiretilen bir minimal indirge-
mesinin varhigini garanti ettigini belirtelim. Rossi, 1 boyutlu Cohen-Macaulay (R, m)
halkasi igin, kathiligi e([/) ile verilen bir [ idealinin, r(I) < e(I) — 1 esitsizligini sag-
ladigim1 gostermistir [38]. Sally ise d boyutlu Cohen-Macaulay (R, m) halkasinin m
ideali i¢in r(m) < dle(R) — 1 esitsizligini vermigtir [39]. Vasconcelos, bunu genel-
legtirerek d boyutlu Cohen-Macaulay (R, m) halkasimin herhangi bir I ideali i¢in
r(I) < de(I) — 2d + 1 esitsizligini vermigtir [41].

S = (nq,---ny) yarigrubu ile calisirken kargilik gelen halka E[[t"', "2, ..., t™]] olmak
lizere, m = (t",t"2 ..., t") idealinin minimal indirgeme ideali (t"*) olur. Bu du-
rumda, yukaridaki ii¢ esitsizlik de r(m) < n; — 1 verir. Bir bagka deyisle, i(S) =
i(R) =r(m) <n; — 1 olur.

Bir onceki boliimde, n; < ng olmak iizere S; = (ny,ns) yarigrubunun diizenlilik
indeksinin n; — 1 oldugunu gostermigtik. Bu durumda, yukaridaki egitsizlikten, n; <
ny < ng < --- < ng olmak iizere Sy = (ny,ng,ns,...,ng) yarigrubunun indeksi

i(S) < 1(S1) = ny — 1 kosulunu saglar.

Lemma 4.1.3 [5| n; < ny < n3 < -+ < ng olmak iizere S; = (ny,ng) ve Sy =

(n1,ng,ns, ...,ng) olsun. Bu durumda i(S;) < i(S;) olur.

Kanit. N = (ny,na,ng,....,nq) \ {0} ise ny + (ny — 1)N C ny N acik oldugundan,
niN C ny + (ny — 1)N oldugunu gostermemiz yeterlidir.

asno + asnsg + - - + agng € NN olsun. O halde, as + ag + - + ag > nq ve asng +
asng---+ agng —ny > ngng —ng > F((ng — 1)M) = (ny — 1)ngy — ny oldugundan

asng + asng -+ + agng —ny € (ng — 1)N olur ve ispat tamamlanir.

Agagdaki ornekleri inceleyerek yeni sorular sorabiliriz.
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Ornek 4.1.4
Niimerik yarigrup | Diizenlilik indeksi
(10,23, 37) 6
(10,11, 23, 37) 9
(10, 23,24, 37) 3
(10, 23,37, 44) 5t

Birinci ve ikinci satirdaki 6rnekler, eklenen say1 n, ile ny arasinda ise indeksin arta-

bilecegini gosteriyor.

O halde su soruyu sorabiliriz:

Soru. Sy = (n1,n9,...,nq), So = (N1, N9, ..., ng, M) ve N3 < ny < m olsun. Bu du-
rumda 7(S3) < i(S7) olur mu?

Ornek 4.1.6 S, = (11,23,36) ve S, = (11,23,24,36) olsun. Bu durumda i(S;) =

4 < i(Sy) = b oldugundan yukaridaki sorunun yaniti olumsuzdur.

Ancak, bu soruyu soyle simirlandirirsak, hala aciktir.

Soru. Sy = (n1,n9,...,ng), So = (N1, Ng,...,ng,m), N1 < ng < m ve n; < 10 olsun.
Bu durumda, i(Ss) < i(.S;) olur mu?

Su sorunun da hala acik oldugunu belirtelim:

Soru. S; = (ny,na,...,ng), So = (ny1,Ng,...,Ng, M) ve ng < ng < --- < ng < m olsun.
Bu durumda i(S3) < i(S1) olur mu?

Yeni bir eleman eklendiginde indeksin artmadigl baz1 durumlar karakterize edelim.

Teorem 4.1.9 [5| S1 = (ny,n2,...,n4), So = (n1,n9,....,ng, M) ve Ny < ng < M
olsun. i(S;) = r ve M = S; — {0} i¢in F(rM) < rng + m — ny olsun. O zaman
Z(SQ) < Z(Sl) olur.

Kanit. M = S; — {0} ve N = Sy — {0} oldugundan F(rN) < F(rM) olur. z €
(r+1)N alahm. 2 —ny > rny +m —ny = F(rM) oldugundan

x—ny €rM CrN olur ve ny + N = (r + 1)N elde ederiz.

Dolayisiyla, i(S2) < r = i(S;) olur.
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OJ

Lemma 4.1.10 [5] S = (nq,...,nq4) ve i(S) = r olsun. O zaman F(rM) < rng — n,

olur.

Kanit. Her n € N* i¢in nM \ (n + 1)M C Ap(nM) oldugunu biliyoruz. |rM \ (r +
1)M| = ny ve |Ap(rM)| = ny oldugundan Ap(rM) =rM \ (r + 1)M olur. O zaman
x € Ap(rM) ise ord(z)’in alabilecegi maksimum deger r’dir ve bu yiizden x < rny

olur. Dolaywsiyla, F'(rM) = maksimum Ap(rM) —ny < rng—ng

Hatirlatma 4.1.11 F(S) < F(M) < F(2M) < --- < F(rM) < rng — ny oldugun-
dan, bu Lemma S’nin Frobenius sayisi igin de bir smir verir. S = (ny,ng) i¢in bu

siir rng —ny = (n1 — 1)ng — ny = nyng — ny — ny Frobenius sayisidir.

Bu smin kullanarak, asagidaki Teorem’i elde ederiz.

Teorem 4.1.12 [5] Eger S; = (n1,ng,...,ng), So = (n1,N9, ..., ng, m), ny < ng < m

ve m > r(ng — ng) ise i(S;) < i(S;) olur.

Kanit. i(S1) = r olsun. Bir bagka deyigler, ny +rM = (r+1)M olsun. z € (r+1)N

alalim. x > rng +m ise  — ny > rng +m — ny olur. m > r(ng — ny) oldugundan,
T —MNy > TNo +TNg —TNo — Ny = TNg — Ny

elde ederiz ve Lemma 4.1.10’dan x — ny > F(rM) ve = x —ny € rM C rN olur ve
ny +rN = (r +1)N oldugundan i(Sy) < r = i(S;) elde ederiz.

S = (ny,---ny) yarigrubuna kargilik gelen halka R = k[[t™,¢"2,...,t™]] olmak iizere
grm(R) Cohen-Macaulay oldugu durumda, Apery kiimesindeki mertebesi en biiyiik

olan elemanin mertebesi aynm1 zamanda indeksi verdiginden, gu soruyu sorduk:
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Soru. S; = (ny,...,ng), So = (N1, N9, ..., Ng, M), N < ng < m,
Ry = K[[t™,t"2, ..., t"™]] ve Ry = E[[t",t",...,t™ t™]] halkalarnm iligkili dereceli
halkalar1 ( gry,(R1) ve grm(R2)) Cohen-Macaulay ise i(.52) < i(S;) olur mu?

Ornek 4.1.14 S; = (11,23,36) ve S, = (11,23,24,36) niimerik yarigruplarmm
Apery tablolar

(S1) | 0 23|46 |36 |59 |82 |72| 95 | 118|108 | 131
Ap(M) | 11|23 |46 | 36|59 |82 | 72| 95 | 118 | 108 | 131
(2M) | 22 | 34 | 46 | 47 | 59 | 82 | 72 | 95 | 118 | 108 | 131
Ap(3M) | 33 |45 | 57 |58 | 70 | 82 [ 83| 95 | 118 | 108 | 131
(4M) | 44 | 56 | 68 | 69 | 81 | 93 | 94 | 106 | 118 | 119 | 131

Ap(Ss) | 0 | 23124 |36|48 60| 72| 84 | 96 | 108 | 120
Ap(N) |11 |23 24|36 |48 |60 | 72| 84 | 96 | 108 | 120
Ap(2N) | 22 | 34 | 35 |47 |48 |60 | 72| 84 | 96 | 108 | 120

44 156 | 57 {69 | 70 | 82 | 83| 95 | 96 | 108 | 120
20 | 67 |68 |80 |81 (93|94 | 106 | 107 | 119 | 120

(2N)

Ap(3N) | 33 | 45 | 46 |58 | 59 | 71 | 72 | 84 | 96 | 108 | 120
(4N)
(5N)

Birinci tabloda mertebesi 4, ikinci tabloda mertebesi 5 olan elemanlarin bulunmasi
nedeniyle Ry = E[[t",t%3,3%]] ve Ry = K[[t'!,¢*,¢**,¢%]] halkalarmmn iligkili dere-
celi halkalar1 Cohen-Macaulay olur. Fakat indeks arttigindan, yukaridaki sorunun
yaniti olumsuzdur. Ayrica,bu tablodan her w(i) € Ap(Sy) ve w'(i) € Ap(Ss) icin
ord(w'(i)) < ord(w(i)) olmadigmi da goriiriiz. ordg, (w(10)) = ords, (131) = 4 ancak
ordg,(w'(10)) = ords,(120) =5

Bu soruda, Sy = (nq, ..., ng) yarigrubu i¢in simetrik olma kogulu koyarsak asagidaki

teoremi elde ederiz.

Teorem 4.1.15 S} = (nq, ..., ng) simetrik bir niimerik yarigrup,

S = (N1, N, ...,ng,my, ng < -+ < ng < m ve Ry = k[[t",t",...,t" ¢™]] halkasinin
iligkili dereceli halkas1 Cohen-Macaulay olsun.

O zaman i(5;) < i(S) olur.

Kanit. w' = bong + -+« + bgng + km € Ap(Ss) olsun.
O zaman byng + - -+ + bgng € Ap(S2) ve byng + -+ + bgng — ny ¢ Sy oldugundan
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bang+- - -+bgng—ny & Sy olur ve bu yiizden bong+- - -+bgng € Ap(Sy) olur. Simetriklik
kogulu Maksimaller<,Ap(Sy) kiimesinin tek elemanl olmasidir. Bu nedenle, (by +
ko)ng -« + (bg + ka)na = w = Max<,Ap(S7) olacak sekilde ko, -+ , kg € N vardir.
w—mny = F(S1) > F(5;) oldugundan w > w’ olur. O halde,

bong + + - + bgng + km < (b2+k2)n2+~--(bd+kd)nd
km < kong + -+ + kanag < (kg + -+ + ka)nag

Buradan k£ < ky 4 - - - + kg esitsizligini elde ederiz. Bu durumda

ord(w’) = (by+ -+ +ba) + k< (ba+---+ba) + (h2t - +ka)
= (by+ ko) + - (bg + kq) < ord(w)

Rs halkasimin iligkili dereceli halkasi Cohen-Macaulay oldugundan Sy’nin diizenlilik
indeksi, Ap(Ss)’deki elemanlarin mertebelerinin en biiytigiidiir. Bu nedenle i(.S3) <
i(S1) olur.

Béliimiin baginda verdigimiz saniy1 [9] niimerik yarigruplara sinirlayarak dogru ol-

madigim gosterelim:

Soru. Sy = (ny,...nq), So = (nq,...ng,m) ve Arf(Sy) = Arf(S;) olsun. Bu durumda
i(S3) < i(S1) olur mu?

Ornek 4.1.17 S, = (19,51,96) ve Sy = (19,51,64,96) olsun. S; = (19,51, 96)

yarigrubunun Arf kapanigini hesaplayalim:

Ay = {19,51,96}  min A; =19
Ay = {19,32,77}  min Ay =19
Ay = {19,13,58}  min A =13
Ay = {6,13,45} min Ay =6
As = {6,7,39} min As =6
Ag = {6,1,33} min Ag =1
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Sy = (19,51, 64,96) yarigrubunun Arf kapanigini hesaplayalim:

Ay = {19,51,64,96}  min A, = 19
Ay = {19,32,45,77}  min Ay =19
Ay = {19,13,26,58}  min A = 13
Ay = {6,13,13,45} min Ay =6
As = {6,7,7,39} min As = 6
Ag= {6,1,1,33} min Ag =1

O zaman, Arf(S;) = Arf(S2) = {0,19,38,51,57,63,64, —} olur. Ancak, i(S;) =

7 < i(S2) = 9 oldugundan sorunun yanit1 olumsuzdur.

4.2 Otelenmis Niimerik Yarigruplar

Bu béliimde 6telenmis niimerik yarigrup aileleri i¢in indeksin nasil degistigini goste-

recegiz.

Tanim 4.2.1 [36] S = (ry, -+ ,rg) bir niimerik monoid ve d = OBEB(ry,- -+ , 1)
olsun. Bu durumda 7" = ﬁ, e ,%k olmak iizere S’nin Frobenius sayisi F(S) =

d
dF(T) seklinde tanimlanir.

a € S elemani i¢in a = 271 + - - - + 2,7 olsun. Burada 7 = (21, - zx) vektoriine
z'nin faktorizasyonu denir ve |Z| = z; + - - 4 z,'va bu faktorizasyonun uzunlugu
denir. s’nin tiim faktorizasyonlarimin kiimesini Zg(s) ve s'nin faktorizasyonlarinin

uzunluklarinin kiimesini de L,,(s) ile gosterecegiz.

Teorem 4.2.2 [36] S = (ry,---,rg) bir niimerik monoid olsun ve m : S — Zx,
her s € S elemanimi en kisa faktorizasyon uzunluguna gotiirsiin. Bu durumda her
§ > rE_1T) i¢in,

m(s+ri) =m(s)+1

olur.

n > ri ve OBEB(n,d) = 1 olmak iizere M,, = (n,n + r1,--- ,n + 7;) niimerik

yarigrubu olsun.
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Teorem 4.2.3 [36] n > r? ve dn € S olsun. O zaman,
Ap(M) = {i + ms(i)n | i € Ap(S,dn)}

olur. Ayrica her i € Ap(S,dn) i¢in Ly, (i +mg(i).n) = {mg(i)} olur.

Teorem 4.2.4 (36| S =<7y, - ,r, > ven >r; icin Ap(S,dn) = {ag, - ,an_1} ,
di di € S
a; =
di+dn di¢S
formundadir.
Lemma 4.2.5 S =< ry,--- 7}, > bir niimerik monoid olsun. Eger n > r? ise dn —

dry, > F(S) olur.

Kanat.
TeTk—1 Tk  Tk-1
F df—— = — —
(9) < (d d d d )
2

< %—27%

< n—rg

< dn — dry,

Teorem 4.2.6 S = (ry,--- ,r}) niimerik monoid, d = OBEB(ry,- 1) =d,n > 1}
ve OBEB(d,n) = 1 olsun.

arny + -+ agng = ay(ng + 1) + -4 ap_1 (np—1 +7r-1) + (a4 d) (ng, + 71,) seklinde
tanimlanan

Qb : Ap(Mn) — Ap(Mn-‘rm)

fonksiyonu birebirdir. Ayrica
p(Maksimaller<,, Ap(M,)) = MaksimallergMn+Tk Ap(M,, 1)

olur.
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Kamit. ¢ = Ap(S,dn) — AP(S,dn + dry) , ¢(i) = i + drj, fonksiyonu yardimuyla
(i +mg(i).n) =i+ dry + mg(i + dry)(n + ri) seklinde tanimlayalim. a € Ap(M,,)

icina=any + -+ ang =1i+mg(i)n,a; + -+ axr = mg(z) olsun.

¢(a) = i+ dry + mg(i + drg).(n + 1)
= i+ mg(i)n + mg(i)ry + d(n + 2ry)
= arng + -+ agng + (ar + -+ ag)re + d(n + 2ry)
= ai(ny+rp)+ - +apg1(ne_1 +rr_1) + (ax + d)(ng + 1)

¢’ birebir oldugundan ¢ birebirdir. b ¢ Im(¢) ve b € MaxSMan Ap(M,, ) olsun.
¢, Apery kiimelerindeki di + dn’e kargilik gelen elemanlarla di + dn + dry’ye kargilik
gelen elemanlar arasinda birebir eglesme sagladigy i¢in b = di + mg(di)(n + ry,) for-
munda olmahdir. b ¢ I'm(¢) oldugundan di — dry, ¢ S olmahdir. Lemma 4.2.5’den
dolay1 di — dry < dn — dry, olur. O zaman di + dry, € Ap(S, dn + dry) olur.

¢ = di + dry +mg(di + dry)(n + ry) olsun.

c—b=drpy+dn+ry) = dry + ms(dri)(n + 1) € Ap(My4,,) oldugundan b ¢
MaksimallerSMnHk Ap(M, 4., ) olur.

a <y, d,a,ad € Ap(M,) olsun. O zaman a; < a olacak sekilde a = agna+- - - +agng
, @ = ahng + - - - + apny, gosteriligleri vardir. O zaman ¢(a) = as(ng +15) + -+ - +
ak_l(nk_l +Tk) + ak(nk +7"k) s gb(a’) = GIQ(TLQ +Tk> +- - +a;€_1(nk_1 +Tk) + a;(nk +T‘k)
ve bu yiizden ¢(a) <p, ¢(a’) olur.

Bir bagka deyisle,

¢(Maksimaller<,, Ap(M,)) = MaksimallerSMnHk Ap(M,,1r,)

olur.

Sonug 4.2.7 n > ri olacak gekildeki yeterince biiyiin n igin

i(M,) +d=1i(M,ir,)
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Kanit. Yeterince biiyiik n i¢in G(M,,) ve G(M,4,,) Cohen-Macaulay oldugundan
i(M,) ve i(Myy,,) Apery kiimelerindeki maksimal elemanlarin mertebelerinin en
biiyiigiine esittir. Bu durumda eger i(M,,) = r = ord(w) ise i(M,,,) = ord(p(w)) =
r + d olur.

Sonug 4.2.8 n > 7 igin
t(M,) = t(M, + )

olur. Ozel olarak, M™ simetriktir ancak ve ancak M, +,, simetriktir.

Kamt. type(M,) = |Maksimaller<,, Ap(M,)| = [Maksimaller<,, = Ap(Mpir,)|=
>Mn —Mntry
type(M,, + 1)

Sonug 4.2.9 n > r? igin,

- F(MN-&-M) - F(Mn) - d(nk + Tk) + Tk)
Tk

Kanit. F(M,) = w — n olacak sekilde w € Maksimaller<,, Ap(M,) vardir. Bu
durumda F(M,,,) = ¢(w) — (n + r) oldugu icin yukaridaki egitligi elde ederiz.

Ornek 4.2.10 S =< 6,10, 14 > olsun.
n > ri = 14 = 196 koguluna uygun olmasi i¢in Mz =< 293,299, 303,307 > ve
Msp7 =< 307,313, 317,321 > niimerik yarigruplarini inceleyelim.
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Ap(M,) = {i+mg(i).n|i € Ap(S,dn)} oldugu i¢in Apery kiimelerindeki her elemana
kargilik gelen Ap(S,586) ve Ap(S,614) kiimelerindeki elemanlar sirasiyla ;

{578, 582,590,594} ve {606, 610,618,622} olur.

Buradan da acikca gorebiliriz ki ¢ (578) = 606 , ¢ (582) = 610 , ¢ (590) = 618 ,
¢ (594) = 622 olur ve bu yiizden;

o(13177) = 14421 , $(13181) = 14425 | ¢(13189) = 14433 ve ¢(13193) = 14437 olur.
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Bolum 5

SONUC

Bu tezde niimerik yarigruplarin diizenlilik indekslerinin nasil degistigine odaklandik.
S1 C Sy iken ¢esitli durumlarda yarigruplarin diizenlilik indeksinin nasil degigtigine
iliskin sonuclar elde ettik ve Arf kapanisi aym olan halkalarin diizenlilik indekslerine
iligkin Arslan ve Sertdz tarafindan 6ne siiriilen bir saniya karsit 6rnek sunduk. Ayrica,
otelenmis yarigrup ailelerinde diizenlilik indeksinin nasil degistigine iligkin sonuclar
da elde ettik.

Sp C 59 iken su iki temel durumun hala acik oldugunu vurgulayalim:

Soru. S; = (ny,na,...,ng), So = (N1, N9, ...,Ng, M) ve ny < ng < --- < ng < m olsun.
Bu durumda i(S3) < i(S7) olur mu?

Soru. S1 = (nq,n2,...,ng), So = (N1, Ng,...,ng,m), ng < ng < m ve n; < 10 olsun.
Bu durumda, i(Ss) < i(.S;) olur mu?
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